sentence1
stringlengths 52
3.87M
| sentence2
stringlengths 1
47.2k
| label
stringclasses 1
value |
|---|---|---|
def _map_exception(e):
"""Maps an exception from urlib3 to httplib2."""
if isinstance(e, urllib3.exceptions.MaxRetryError):
if not e.reason:
return e
e = e.reason
message = e.args[0] if e.args else ''
if isinstance(e, urllib3.exceptions.ResponseError):
if 'too many redirects' in message:
return httplib2.RedirectLimit(message)
if isinstance(e, urllib3.exceptions.NewConnectionError):
if ('Name or service not known' in message or
'nodename nor servname provided, or not known' in message):
return httplib2.ServerNotFoundError(
'Unable to find hostname.')
if 'Connection refused' in message:
return socket.error((errno.ECONNREFUSED, 'Connection refused'))
if isinstance(e, urllib3.exceptions.DecodeError):
return httplib2.FailedToDecompressContent(
'Content purported as compressed but not uncompressable.',
httplib2.Response({'status': 500}), '')
if isinstance(e, urllib3.exceptions.TimeoutError):
return socket.timeout('timed out')
if isinstance(e, urllib3.exceptions.SSLError):
return ssl.SSLError(*e.args)
return e
|
Maps an exception from urlib3 to httplib2.
|
entailment
|
def run_workers(no_subprocess, watch_paths=None, is_background=False):
"""
subprocess handler
"""
import atexit, os, subprocess, signal
if watch_paths:
from watchdog.observers import Observer
# from watchdog.observers.fsevents import FSEventsObserver as Observer
# from watchdog.observers.polling import PollingObserver as Observer
from watchdog.events import FileSystemEventHandler
def on_modified(event):
if not is_background:
print("Restarting worker due to change in %s" % event.src_path)
log.info("modified %s" % event.src_path)
try:
kill_children()
run_children()
except:
log.exception("Error while restarting worker")
handler = FileSystemEventHandler()
handler.on_modified = on_modified
# global child_pids
child_pids = []
log.info("starting %s workers" % no_subprocess)
def run_children():
global child_pids
child_pids = []
for i in range(int(no_subprocess)):
proc = subprocess.Popen([sys.executable, __file__],
stdout=subprocess.PIPE,
stderr=subprocess.PIPE)
child_pids.append(proc.pid)
log.info("Started worker with pid %s" % proc.pid)
def kill_children():
"""
kill subprocess on exit of manager (this) process
"""
log.info("Stopping worker(s)")
for pid in child_pids:
if pid is not None:
os.kill(pid, signal.SIGTERM)
run_children()
atexit.register(kill_children)
signal.signal(signal.SIGTERM, kill_children)
if watch_paths:
observer = Observer()
for path in watch_paths:
if not is_background:
print("Watching for changes under %s" % path)
observer.schedule(handler, path=path, recursive=True)
observer.start()
while 1:
try:
sleep(1)
except KeyboardInterrupt:
log.info("Keyboard interrupt, exiting")
if watch_paths:
observer.stop()
observer.join()
sys.exit(0)
|
subprocess handler
|
entailment
|
def exit(self, signal=None, frame=None):
"""
Properly close the AMQP connections
"""
self.input_channel.close()
self.client_queue.close()
self.connection.close()
log.info("Worker exiting")
sys.exit(0)
|
Properly close the AMQP connections
|
entailment
|
def connect(self):
"""
make amqp connection and create channels and queue binding
"""
self.connection = pika.BlockingConnection(BLOCKING_MQ_PARAMS)
self.client_queue = ClientQueue()
self.input_channel = self.connection.channel()
self.input_channel.exchange_declare(exchange=self.INPUT_EXCHANGE,
type='topic',
durable=True)
self.input_channel.queue_declare(queue=self.INPUT_QUEUE_NAME)
self.input_channel.queue_bind(exchange=self.INPUT_EXCHANGE, queue=self.INPUT_QUEUE_NAME)
log.info("Bind to queue named '%s' queue with exchange '%s'" % (self.INPUT_QUEUE_NAME,
self.INPUT_EXCHANGE))
|
make amqp connection and create channels and queue binding
|
entailment
|
def clear_queue(self):
"""
clear outs all messages from INPUT_QUEUE_NAME
"""
def remove_message(ch, method, properties, body):
print("Removed message: %s" % body)
self.input_channel.basic_consume(remove_message, queue=self.INPUT_QUEUE_NAME, no_ack=True)
try:
self.input_channel.start_consuming()
except (KeyboardInterrupt, SystemExit):
log.info(" Exiting")
self.exit()
|
clear outs all messages from INPUT_QUEUE_NAME
|
entailment
|
def run(self):
"""
actual consuming of incoming works starts here
"""
self.input_channel.basic_consume(self.handle_message,
queue=self.INPUT_QUEUE_NAME,
no_ack=True
)
try:
self.input_channel.start_consuming()
except (KeyboardInterrupt, SystemExit):
log.info(" Exiting")
self.exit()
|
actual consuming of incoming works starts here
|
entailment
|
def handle_message(self, ch, method, properties, body):
"""
this is a pika.basic_consumer callback
handles client inputs, runs appropriate workflows and views
Args:
ch: amqp channel
method: amqp method
properties:
body: message body
"""
input = {}
headers = {}
try:
self.sessid = method.routing_key
input = json_decode(body)
data = input['data']
# since this comes as "path" we dont know if it's view or workflow yet
# TODO: just a workaround till we modify ui to
if 'path' in data:
if data['path'] in VIEW_METHODS:
data['view'] = data['path']
else:
data['wf'] = data['path']
session = Session(self.sessid)
headers = {'remote_ip': input['_zops_remote_ip'],
'source': input['_zops_source']}
if 'wf' in data:
output = self._handle_workflow(session, data, headers)
elif 'job' in data:
self._handle_job(session, data, headers)
return
else:
output = self._handle_view(session, data, headers)
except HTTPError as e:
import sys
if hasattr(sys, '_called_from_test'):
raise
output = {"cmd": "error", "error": self._prepare_error_msg(e.message), "code": e.code}
log.exception("Http error occurred")
except:
self.current = Current(session=session, input=data)
self.current.headers = headers
import sys
if hasattr(sys, '_called_from_test'):
raise
err = traceback.format_exc()
output = {"cmd": "error", "error": self._prepare_error_msg(err), "code": 500}
log.exception("Worker error occurred with messsage body:\n%s" % body)
if 'callbackID' in input:
output['callbackID'] = input['callbackID']
log.info("OUTPUT for %s: %s" % (self.sessid, output))
output['reply_timestamp'] = time()
self.send_output(output)
|
this is a pika.basic_consumer callback
handles client inputs, runs appropriate workflows and views
Args:
ch: amqp channel
method: amqp method
properties:
body: message body
|
entailment
|
def get_progress(start, finish):
"""
Args:
start (DateTime): start date
finish (DateTime): finish date
Returns:
"""
now = datetime.now()
dif_time_start = start - now
dif_time_finish = finish - now
if dif_time_start.days < 0 and dif_time_finish.days < 0:
return PROGRESS_STATES[3][0]
elif dif_time_start.days < 0 and dif_time_finish.days >= 1:
return PROGRESS_STATES[2][0]
elif dif_time_start.days >= 1 and dif_time_finish.days >= 1:
return PROGRESS_STATES[0][0]
else:
return PROGRESS_STATES[2][0]
|
Args:
start (DateTime): start date
finish (DateTime): finish date
Returns:
|
entailment
|
def sync_wf_cache(current):
"""
BG Job for storing wf state to DB
"""
wf_cache = WFCache(current)
wf_state = wf_cache.get() # unicode serialized json to dict, all values are unicode
if 'role_id' in wf_state:
# role_id inserted by engine, so it's a sign that we get it from cache not db
try:
wfi = WFInstance.objects.get(key=current.input['token'])
except ObjectDoesNotExist:
# wf's that not started from a task invitation
wfi = WFInstance(key=current.input['token'])
wfi.wf = BPMNWorkflow.objects.get(name=wf_state['name'])
if not wfi.current_actor.exist:
# we just started the wf
try:
inv = TaskInvitation.objects.get(instance=wfi, role_id=wf_state['role_id'])
inv.delete_other_invitations()
inv.progress = 20
inv.save()
except ObjectDoesNotExist:
current.log.exception("Invitation not found: %s" % wf_state)
except MultipleObjectsReturned:
current.log.exception("Multiple invitations found: %s" % wf_state)
wfi.step = wf_state['step']
wfi.name = wf_state['name']
wfi.pool = wf_state['pool']
wfi.current_actor_id = str(wf_state['role_id']) # keys must be str not unicode
wfi.data = wf_state['data']
if wf_state['finished']:
wfi.finished = True
wfi.finish_date = wf_state['finish_date']
wf_cache.delete()
wfi.save()
else:
# if cache already cleared, we have nothing to sync
pass
|
BG Job for storing wf state to DB
|
entailment
|
def get_or_create_by_content(cls, name, content):
"""
if xml content updated, create a new entry for given wf name
Args:
name: name of wf
content: xml content
Returns (DiagramXML(), bool): A tuple with two members.
(DiagramXML instance and True if it's new or False it's already exists
"""
new = False
diagrams = cls.objects.filter(name=name)
if diagrams:
diagram = diagrams[0]
if diagram.body != content:
new = True
else:
new = True
if new:
diagram = cls(name=name, body=content).save()
return diagram, new
|
if xml content updated, create a new entry for given wf name
Args:
name: name of wf
content: xml content
Returns (DiagramXML(), bool): A tuple with two members.
(DiagramXML instance and True if it's new or False it's already exists
|
entailment
|
def get_description(self):
"""
Tries to get WF description from 'collabration' or 'process' or 'pariticipant'
Returns str: WF description
"""
paths = ['bpmn:collaboration/bpmn:participant/bpmn:documentation',
'bpmn:collaboration/bpmn:documentation',
'bpmn:process/bpmn:documentation']
for path in paths:
elm = self.root.find(path, NS)
if elm is not None and elm.text:
return elm.text
|
Tries to get WF description from 'collabration' or 'process' or 'pariticipant'
Returns str: WF description
|
entailment
|
def get_name(self):
"""
Tries to get WF name from 'process' or 'collobration' or 'pariticipant'
Returns:
str. WF name.
"""
paths = ['bpmn:process',
'bpmn:collaboration/bpmn:participant/',
'bpmn:collaboration',
]
for path in paths:
tag = self.root.find(path, NS)
if tag is not None and len(tag):
name = tag.get('name')
if name:
return name
|
Tries to get WF name from 'process' or 'collobration' or 'pariticipant'
Returns:
str. WF name.
|
entailment
|
def set_xml(self, diagram, force=False):
"""
updates xml link if there aren't any running instances of this wf
Args:
diagram: XMLDiagram object
"""
no_of_running = WFInstance.objects.filter(wf=self, finished=False, started=True).count()
if no_of_running and not force:
raise RunningInstancesExist(
"Can't update WF diagram! Running %s WF instances exists for %s" % (
no_of_running, self.name
))
else:
self.xml = diagram
parser = BPMNParser(diagram.body)
self.description = parser.get_description()
self.title = parser.get_name() or self.name.replace('_', ' ').title()
extensions = dict(parser.get_wf_extensions())
self.programmable = extensions.get('programmable', False)
self.task_type = extensions.get('task_type', None)
self.menu_category = extensions.get('menu_category', settings.DEFAULT_WF_CATEGORY_NAME)
self.save()
|
updates xml link if there aren't any running instances of this wf
Args:
diagram: XMLDiagram object
|
entailment
|
def create_wf_instances(self, roles=None):
"""
Creates wf instances.
Args:
roles (list): role list
Returns:
(list): wf instances
"""
# if roles specified then create an instance for each role
# else create only one instance
if roles:
wf_instances = [
WFInstance(
wf=self.wf,
current_actor=role,
task=self,
name=self.wf.name
) for role in roles
]
else:
wf_instances = [
WFInstance(
wf=self.wf,
task=self,
name=self.wf.name
)
]
# if task type is not related with objects save instances immediately.
if self.task_type in ["C", "D"]:
return [wfi.save() for wfi in wf_instances]
# if task type is related with its objects, save populate instances per object
else:
wf_obj_instances = []
for wfi in wf_instances:
role = wfi.current_actor if self.task_type == "A" else None
keys = self.get_object_keys(role)
wf_obj_instances.extend(
[WFInstance(
wf=self.wf,
current_actor=role,
task=self,
name=self.wf.name,
wf_object=key,
wf_object_type=self.object_type
).save() for key in keys]
)
return wf_obj_instances
|
Creates wf instances.
Args:
roles (list): role list
Returns:
(list): wf instances
|
entailment
|
def create_tasks(self):
"""
will create a WFInstance per object
and per TaskInvitation for each role and WFInstance
"""
roles = self.get_roles()
if self.task_type in ["A", "D"]:
instances = self.create_wf_instances(roles=roles)
self.create_task_invitation(instances)
elif self.task_type in ["C", "B"]:
instances = self.create_wf_instances()
self.create_task_invitation(instances, roles)
|
will create a WFInstance per object
and per TaskInvitation for each role and WFInstance
|
entailment
|
def get_object_query_dict(self):
"""returns objects keys according to self.object_query_code
which can be json encoded queryset filter dict or key=value set
in the following format: ```"key=val, key2 = val2 , key3= value with spaces"```
Returns:
(dict): Queryset filtering dicqt
"""
if isinstance(self.object_query_code, dict):
# _DATE_ _DATETIME_
return self.object_query_code
else:
# comma separated, key=value pairs. wrapping spaces will be ignored
# eg: "key=val, key2 = val2 , key3= value with spaces"
return dict(pair.split('=') for pair in self.object_query_code.split(','))
|
returns objects keys according to self.object_query_code
which can be json encoded queryset filter dict or key=value set
in the following format: ```"key=val, key2 = val2 , key3= value with spaces"```
Returns:
(dict): Queryset filtering dicqt
|
entailment
|
def get_object_keys(self, wfi_role=None):
"""returns object keys according to task definition
which can be explicitly selected one object (self.object_key) or
result of a queryset filter.
Returns:
list of object keys
"""
if self.object_key:
return [self.object_key]
if self.object_query_code:
model = model_registry.get_model(self.object_type)
return [m.key for m in
self.get_model_objects(model, wfi_role, **self.get_object_query_dict())]
|
returns object keys according to task definition
which can be explicitly selected one object (self.object_key) or
result of a queryset filter.
Returns:
list of object keys
|
entailment
|
def get_model_objects(model, wfi_role=None, **kwargs):
"""
Fetches model objects by filtering with kwargs
If wfi_role is specified, then we expect kwargs contains a
filter value starting with role,
e.g. {'user': 'role.program.user'}
We replace this `role` key with role instance parameter `wfi_role` and try to get
object that filter value 'role.program.user' points by iterating `getattribute`. At
the end filter argument becomes {'user': user}.
Args:
model (Model): Model class
wfi_role (Role): role instance of wf instance
**kwargs: filter arguments
Returns:
(list): list of model object instances
"""
query_dict = {}
for k, v in kwargs.items():
if isinstance(v, list):
query_dict[k] = [str(x) for x in v]
else:
parse = str(v).split('.')
if parse[0] == 'role' and wfi_role:
query_dict[k] = wfi_role
for i in range(1, len(parse)):
query_dict[k] = query_dict[k].__getattribute__(parse[i])
else:
query_dict[k] = parse[0]
return model.objects.all(**query_dict)
|
Fetches model objects by filtering with kwargs
If wfi_role is specified, then we expect kwargs contains a
filter value starting with role,
e.g. {'user': 'role.program.user'}
We replace this `role` key with role instance parameter `wfi_role` and try to get
object that filter value 'role.program.user' points by iterating `getattribute`. At
the end filter argument becomes {'user': user}.
Args:
model (Model): Model class
wfi_role (Role): role instance of wf instance
**kwargs: filter arguments
Returns:
(list): list of model object instances
|
entailment
|
def get_roles(self):
"""
Returns:
Role instances according to task definition.
"""
if self.role.exist:
# return explicitly selected role
return [self.role]
else:
roles = []
if self.role_query_code:
# use given "role_query_code"
roles = RoleModel.objects.filter(**self.role_query_code)
elif self.unit.exist:
# get roles from selected unit or sub-units of it
if self.recursive_units:
# this returns a list, we're converting it to a Role generator!
roles = (RoleModel.objects.get(k) for k in
UnitModel.get_role_keys(self.unit.key))
else:
roles = RoleModel.objects.filter(unit=self.unit)
elif self.get_roles_from:
# get roles from selected predefined "get_roles_from" method
return ROLE_GETTER_METHODS[self.get_roles_from](RoleModel)
if self.abstract_role.exist and roles:
# apply abstract_role filtering on roles we got
if isinstance(roles, (list, types.GeneratorType)):
roles = [a for a in roles if a.abstract_role.key == self.abstract_role.key]
else:
roles = roles.filter(abstract_role=self.abstract_role)
else:
roles = RoleModel.objects.filter(abstract_role=self.abstract_role)
return roles
|
Returns:
Role instances according to task definition.
|
entailment
|
def post_save(self):
"""can be removed when a proper task manager admin interface implemented"""
if self.run:
self.run = False
self.create_tasks()
self.save()
|
can be removed when a proper task manager admin interface implemented
|
entailment
|
def delete_other_invitations(self):
"""
When one person use an invitation, we should delete other invitations
"""
# TODO: Signal logged-in users to remove the task from their task list
self.objects.filter(instance=self.instance).exclude(key=self.key).delete()
|
When one person use an invitation, we should delete other invitations
|
entailment
|
def save(self, wf_state):
"""
write wf state to DB through MQ >> Worker >> _zops_sync_wf_cache
Args:
wf_state dict: wf state
"""
self.wf_state = wf_state
self.wf_state['role_id'] = self.current.role_id
self.set(self.wf_state)
if self.wf_state['name'] not in settings.EPHEMERAL_WORKFLOWS:
self.publish(job='_zops_sync_wf_cache',
token=self.db_key)
|
write wf state to DB through MQ >> Worker >> _zops_sync_wf_cache
Args:
wf_state dict: wf state
|
entailment
|
def send_to_default_exchange(self, sess_id, message=None):
"""
Send messages through RabbitMQ's default exchange,
which will be delivered through routing_key (sess_id).
This method only used for un-authenticated users, i.e. login process.
Args:
sess_id string: Session id
message dict: Message object.
"""
msg = json.dumps(message, cls=ZEngineJSONEncoder)
log.debug("Sending following message to %s queue through default exchange:\n%s" % (
sess_id, msg))
self.get_channel().publish(exchange='', routing_key=sess_id, body=msg)
|
Send messages through RabbitMQ's default exchange,
which will be delivered through routing_key (sess_id).
This method only used for un-authenticated users, i.e. login process.
Args:
sess_id string: Session id
message dict: Message object.
|
entailment
|
def send_to_prv_exchange(self, user_id, message=None):
"""
Send messages through logged in users private exchange.
Args:
user_id string: User key
message dict: Message object
"""
exchange = 'prv_%s' % user_id.lower()
msg = json.dumps(message, cls=ZEngineJSONEncoder)
log.debug("Sending following users \"%s\" exchange:\n%s " % (exchange, msg))
self.get_channel().publish(exchange=exchange, routing_key='', body=msg)
|
Send messages through logged in users private exchange.
Args:
user_id string: User key
message dict: Message object
|
entailment
|
def compose(self, other):
"""
compose 2 graphs to CGR
:param other: Molecule or CGR Container
:return: CGRContainer
"""
if not isinstance(other, Compose):
raise TypeError('CGRContainer or MoleculeContainer [sub]class expected')
cgr = self._get_subclass('CGRContainer')
common = self._node.keys() & other
if not common:
if not (isinstance(self, cgr) or isinstance(other, cgr)):
return cgr() | self | other
return self | other
unique_reactant = self._node.keys() - common
unique_product = other._node.keys() - common
h = cgr()
atoms = h._node
bonds = []
common_adj = {n: {} for n in common}
common_bonds = []
r_atoms = {}
r_skin = defaultdict(list)
if isinstance(self, cgr):
for n in unique_reactant:
h.add_atom(self._node[n], n)
for m, bond in self._adj[n].items():
if m not in atoms:
if m in common: # bond to common atoms is broken bond
r_bond = bond._reactant
if r_bond is None: # skip None>None
continue
r_skin[n].append(m)
bond = DynBond.__new__(DynBond)
bond.__init_copy__(r_bond, None)
bonds.append((n, m, bond))
for n in common:
r_atoms[n] = self._node[n]._reactant
for m, bond in self._adj[n].items():
if m not in r_atoms and m in common:
tmp = [bond._reactant, None]
common_adj[n][m] = common_adj[m][n] = tmp
common_bonds.append((n, m, tmp))
else:
for n in unique_reactant:
atom = DynAtom.__new__(DynAtom) # add unique atom into CGR
atom.__init_copy__(self._node[n], self._node[n])
h.add_atom(atom, n)
for m, r_bond in self._adj[n].items(): # unique atom neighbors
if m not in atoms: # bond not analyzed yet
bond = DynBond.__new__(DynBond)
if m in common: # bond to common atoms
r_skin[n].append(m)
bond.__init_copy__(r_bond, None)
else: # bond static
bond.__init_copy__(r_bond, r_bond)
bonds.append((n, m, bond))
for n in common:
r_atoms[n] = self._node[n]
for m, bond in self._adj[n].items():
if m not in r_atoms and m in common: # analyze only common atoms bonds
tmp = [bond, None] # reactant state only
common_adj[n][m] = common_adj[m][n] = tmp
common_bonds.append((n, m, tmp))
p_atoms = {}
p_skin = defaultdict(list)
if isinstance(other, cgr):
for n in unique_product:
h.add_atom(other._node[n], n)
for m, bond in other._adj[n].items():
if m not in atoms:
if m in common: # bond to common atoms is new bond
p_bond = bond._product
if p_bond is None: # skip None>None
continue
p_skin[n].append(m)
bond = DynBond.__new__(DynBond)
bond.__init_copy__(None, p_bond)
bonds.append((n, m, bond))
for n in common:
p_atoms[n] = other._node[n]._product
n_bonds = common_adj[n]
for m, bond in other._adj[n].items():
if m in n_bonds:
n_bonds[m][1] = bond._product
elif m not in p_atoms and m in common: # new bond of reaction
p_bond = bond._product
if p_bond is None: # skip None>None
continue
bond = DynBond.__new__(DynBond)
bond.__init_copy__(None, p_bond)
bonds.append((n, m, bond))
else:
for n in unique_product:
atom = DynAtom.__new__(DynAtom)
atom.__init_copy__(other._node[n], other._node[n])
h.add_atom(atom, n)
for m, p_bond in other._adj[n].items():
if m not in atoms:
bond = DynBond.__new__(DynBond)
if m in common:
p_skin[n].append(m)
bond.__init_copy__(None, p_bond)
else:
bond.__init_copy__(p_bond, p_bond)
bonds.append((n, m, bond))
for n in common:
p_atoms[n] = other._node[n]
n_bonds = common_adj[n]
for m, p_bond in other._adj[n].items():
if m in n_bonds: # set product state of changed bond
n_bonds[m][1] = p_bond
elif m not in p_atoms and m in common: # new bond of reaction
bond = DynBond.__new__(DynBond)
bond.__init_copy__(None, p_bond)
bonds.append((n, m, bond))
for n, r_atom in r_atoms.items(): # prepare common DynAtom's
p_atom = p_atoms[n]
if r_atom.element != p_atom.element or r_atom.isotope != p_atom.isotope:
raise ValueError('atom-to-atom mapping invalid')
atom = DynAtom.__new__(DynAtom)
atom.__init_copy__(r_atom, p_atom)
h.add_atom(atom, n)
for n, m, (r_bond, p_bond) in common_bonds:
if r_bond is p_bond is None: # skip None>None
continue
bond = DynBond.__new__(DynBond)
bond.__init_copy__(r_bond, p_bond)
h.add_bond(n, m, bond)
for n, m, bond in bonds:
h.add_bond(n, m, bond)
return h
|
compose 2 graphs to CGR
:param other: Molecule or CGR Container
:return: CGRContainer
|
entailment
|
def decompose(self):
"""
decompose CGR to pair of Molecules, which represents reactants and products state of reaction
:return: tuple of two molecules
"""
mc = self._get_subclass('MoleculeContainer')
reactants = mc()
products = mc()
for n, atom in self.atoms():
reactants.add_atom(atom._reactant, n)
products.add_atom(atom._product, n)
for n, m, bond in self.bonds():
if bond._reactant is not None:
reactants.add_bond(n, m, bond._reactant)
if bond._product is not None:
products.add_bond(n, m, bond._product)
return reactants, products
|
decompose CGR to pair of Molecules, which represents reactants and products state of reaction
:return: tuple of two molecules
|
entailment
|
def cycle_data(self, verbose=False, result_cycle=None, result_size=None, result_edges=None,changelog=True):
"""Get data from JIRA for cycle/flow times and story points size change.
Build a numerically indexed data frame with the following 'fixed'
columns: `key`, 'url', 'issue_type', `summary`, `status`, and
`resolution` from JIRA, as well as the value of any fields set in
the `fields` dict in `settings`. If `known_values` is set (a dict of
lists, with field names as keys and a list of known values for each
field as values) and a field in `fields` contains a list of values,
only the first value in the list of known values will be used.
If 'query_attribute' is set in `settings`, a column with this name
will be added, and populated with the `value` key, if any, from each
criteria block under `queries` in settings.
In addition, `cycle_time` will be set to the time delta between the
first `accepted`-type column and the first `complete` column, or None.
The remaining columns are the names of the items in the configured
cycle, in order.
Each cell contains the last date/time stamp when the relevant status
was set.
If an item moves backwards through the cycle, subsequent date/time
stamps in the cycle are erased.
"""
cycle_names = [s['name'] for s in self.settings['cycle']]
accepted_steps = set(s['name'] for s in self.settings['cycle'] if s['type'] == StatusTypes.accepted)
completed_steps = set(s['name'] for s in self.settings['cycle'] if s['type'] == StatusTypes.complete)
series = {
'key': {'data': [], 'dtype': str},
'url': {'data': [], 'dtype': str},
'issue_type': {'data': [], 'dtype': str},
'summary': {'data': [], 'dtype': str},
'status': {'data': [], 'dtype': str},
'resolution': {'data': [], 'dtype': str},
'cycle_time': {'data': [], 'dtype': 'timedelta64[ns]'},
'completed_timestamp': {'data': [], 'dtype': 'datetime64[ns]'},
'created_timestamp': {'data': [], 'dtype': 'datetime64[ns]'}
}
if sys.platform.startswith('win'):
buffer = open("cycledata.tmp", "w+",1)
# Opens a file for writing only in binary format. Overwrites the file if the file exists.
# buffering value is 1
# Windows users seem to have a problem with spooled file
else:
buffer = tempfile.SpooledTemporaryFile(max_size=50000, mode='w+t')
#issuelinks = open("issuelinks.csv", "w+", 1)
#df_edges = pd.DataFrame()
#df_edges = pd.DataFrame(columns=['Source', 'OutwardLink', 'Target', 'Inwardlink','LinkType'])
#df_edges.to_csv(issuelinks, columns=['Source', 'OutwardLink', 'Target', 'Inwardlink','LinkType'], header=True, index=None, sep='\t',encoding='utf-8')
df_size_history = pd.DataFrame( columns=['key','fromDate','toDate','size'])
df_size_history.to_csv(buffer, columns=['key', 'fromDate', 'toDate', 'size'], header=True, index=None, sep='\t',encoding='utf-8')
for cycle_name in cycle_names:
series[cycle_name] = {'data': [], 'dtype': 'datetime64[ns]'}
for name in self.fields.keys():
series[name] = {'data': [], 'dtype': 'object'}
if self.settings['query_attribute']:
series[self.settings['query_attribute']] = {'data': [], 'dtype': str}
for criteria in self.settings['queries']:
for issue in self.find_issues(criteria, order='updatedDate DESC', verbose=verbose, changelog=changelog):
# Deal with the differences in strings between Python 2 & 3
if (sys.version_info > (3, 0)):
# Python 3 code in this block
item = {
'key': issue.key,
'url': "%s/browse/%s" % (self.jira._options['server'], issue.key,),
'issue_type': issue.fields.issuetype.name,
'summary': issue.fields.summary, # .encode('utf-8'),
'status': issue.fields.status.name,
'resolution': issue.fields.resolution.name if issue.fields.resolution else None,
'cycle_time': None,
'completed_timestamp': None,
'created_timestamp': issue.fields.created[:19]
}
else:
# Python 2 code in this block
item = {
'key': issue.key,
'url': "%s/browse/%s" % (self.jira._options['server'], issue.key,),
'issue_type': issue.fields.issuetype.name,
'summary': issue.fields.summary.encode('utf-8'),
'status': issue.fields.status.name,
'resolution': issue.fields.resolution.name if issue.fields.resolution else None,
'cycle_time': None,
'completed_timestamp': None,
'created_timestamp': issue.fields.created[:19]
}
for name, field_name in self.fields.items():
item[name] = self.resolve_field_value(issue, name, field_name)
if self.settings['query_attribute']:
item[self.settings['query_attribute']] = criteria.get('value', None)
for cycle_name in cycle_names:
item[cycle_name] = None
# Get the relationships for this issue
edges = [] # Source, Target, Inward Link, Outward Link, Type
issuelinks = issue.fields.issuelinks
# It is seems that having an Epic Parent does not record an Epic Link, just the name "Epic Name"
# Creating Epic relationship requires more work. Also each Jira instance will have different customfields for Epic data
# Remove this code.
#issueEpic = issue.fields.customfield_10008 if issue.fields.customfield_10008 else None # Epic Link
#if issueEpic is not None:
# data = {'Source':issueEpic, 'Target':issue.key, 'InwardLink':'Belongs to Epic', 'OutwardLink':'Issue in Epic', 'LinkType':'EpicIssue'}
# edges.append(data)
for link in issuelinks:
inwardissue = None
outwardissue = None
try:
inwardissue = link.inwardIssue.key
except:
outwardissue = link.outwardIssue.key
if inwardissue is not None:
data = {'LinkID':link.id,'Source':inwardissue, 'Target':issue.key, 'InwardLink':link.type.inward, 'OutwardLink': link.type.outward, 'LinkType':link.type.name}
else:
data = {'LinkID':link.id,'Source':issue.key, 'Target': outwardissue, 'InwardLink':link.type.inward, 'OutwardLink':link.type.outward, 'LinkType':link.type.name}
edges.append(data)
if len(edges)>0:
try:
df_edges
except NameError:
#print('Not found')
df_edges = pd.DataFrame(edges)
else:
df_links = pd.DataFrame(edges)
df_edges=df_edges.append(df_links) # = pd.DataFrame(edges)
# Got all the relationships for this issue
rows = []
try:
for snapshot in self.iter_size_changes(issue):
data= {'key':snapshot.key,'fromDate':snapshot.date,'size':snapshot.size}
rows.append(data)
df = pd.DataFrame(rows)
# Create the toDate column
df_toDate=df['fromDate'].shift(-1)
df_toDate.loc[len(df_toDate)-1] = datetime.datetime.now(pytz.utc)
df['toDate'] = df_toDate
except:
df = pd.DataFrame(columns = ['key', 'fromDate', 'toDate', 'size'])
# Round Down datetimes to full dates
df['fromDate'] = df['fromDate'].apply(lambda dt: datetime.datetime(dt.year, dt.month, dt.day))
df['toDate'] = df['toDate'].apply(lambda dt: datetime.datetime(dt.year, dt.month, dt.day))
# If we only have one row of size changes and current issue has a size then it must have been created with a size value at creation.
# This size will not be recorded in the size_change record.
# Hence update the single row we have with the current issue size.
# Get Story Points size changes history
#If condition is met update the size cell
if getattr(item, 'StoryPoints', None) is not None and (df.shape[0]==1):
#if (item['StoryPoints'] is not None ) and (len(df)==1):
df.loc[df.index[0], 'size'] = item['StoryPoints']
# Append to csv file
df.to_csv(buffer, columns=['key', 'fromDate', 'toDate', 'size'], header=None,
mode='a', sep='\t', date_format='%Y-%m-%d',encoding='utf-8')
#print(rows)
# If the first column in item lifecycle was scipted put the created data in it.
if item[cycle_names[0]] is None:
item[cycle_names[0]] = dateutil.parser.parse(item['created_timestamp']) #item['created_timestamp']
# Figure out why the first Column does not have created date
#print(dateutil.parser.parse(item['created_timestamp']))
# Record date of status changes
for snapshot in self.iter_changes(issue, True):
snapshot_cycle_step = self.settings['cycle_lookup'].get(snapshot.status.lower(), None)
if snapshot_cycle_step is None:
if verbose:
print(issue.key, "transitioned to unknown JIRA status", snapshot.status)
continue
snapshot_cycle_step_name = snapshot_cycle_step['name']
# Keep the first time we entered a step
if item[snapshot_cycle_step_name] is None:
item[snapshot_cycle_step_name] = snapshot.date
# Wipe any subsequent dates, in case this was a move backwards
found_cycle_name = False
for cycle_name in cycle_names:
if not found_cycle_name and cycle_name == snapshot_cycle_step_name:
found_cycle_name = True
continue
elif found_cycle_name and item[cycle_name] is not None:
if verbose:
print(issue.key, "moved backwards to", snapshot_cycle_step_name, "wiping date for subsequent step", cycle_name)
item[cycle_name] = None
# Wipe timestamps if items have moved backwards; calculate cycle time
previous_timestamp = None
accepted_timestamp = None
completed_timestamp = None
for cycle_name in cycle_names:
if item[cycle_name] is not None:
previous_timestamp = item[cycle_name]
if accepted_timestamp is None and previous_timestamp is not None and cycle_name in accepted_steps:
accepted_timestamp = previous_timestamp
if completed_timestamp is None and previous_timestamp is not None and cycle_name in completed_steps:
completed_timestamp = previous_timestamp
if accepted_timestamp is not None and completed_timestamp is not None:
item['cycle_time'] = completed_timestamp - accepted_timestamp
item['completed_timestamp'] = completed_timestamp
for k, v in item.items():
series[k]['data'].append(v)
data = {}
for k, v in series.items():
data[k] = pd.Series(v['data'], dtype=v['dtype'])
result_cycle = pd.DataFrame(data,
columns=['key', 'url', 'issue_type', 'summary', 'status', 'resolution'] +
sorted(self.fields.keys()) +
([self.settings['query_attribute']] if self.settings['query_attribute'] else []) +
['cycle_time', 'completed_timestamp'] +
cycle_names
)
result_size = pd.DataFrame()
buffer.seek(0)
result_size = result_size.from_csv(buffer, sep='\t')
buffer.close()
try:
df_edges
except NameError:
# print('Not found')
df_edges = pd.DataFrame()
try:
df_edges = df_edges[['Source', 'OutwardLink', 'Target', 'InwardLink','LinkType','LinkID']] # Specify dataframe sort order
#df_edges.to_csv("myedges.csv", sep='\t', index=False,encoding='utf-8')
except KeyError:
print('Info: No issue edges found.')
result_edges=df_edges
# There maybe no result_size data is we might not have any change history
try:
result_size.set_index('key')
except KeyError:
result_size = pd.DataFrame(index= ['key'],columns = ['fromDate', 'toDate', 'size'])
result_size['toDate'] = pd.to_datetime(result_size['toDate'], format=('%Y-%m-%d'))
result_size['fromDate'] = pd.to_datetime(result_size['fromDate'], format=('%Y-%m-%d'))
return result_cycle, result_size, result_edges
|
Get data from JIRA for cycle/flow times and story points size change.
Build a numerically indexed data frame with the following 'fixed'
columns: `key`, 'url', 'issue_type', `summary`, `status`, and
`resolution` from JIRA, as well as the value of any fields set in
the `fields` dict in `settings`. If `known_values` is set (a dict of
lists, with field names as keys and a list of known values for each
field as values) and a field in `fields` contains a list of values,
only the first value in the list of known values will be used.
If 'query_attribute' is set in `settings`, a column with this name
will be added, and populated with the `value` key, if any, from each
criteria block under `queries` in settings.
In addition, `cycle_time` will be set to the time delta between the
first `accepted`-type column and the first `complete` column, or None.
The remaining columns are the names of the items in the configured
cycle, in order.
Each cell contains the last date/time stamp when the relevant status
was set.
If an item moves backwards through the cycle, subsequent date/time
stamps in the cycle are erased.
|
entailment
|
def size_history(self,size_data):
"""Return the a DataFrame,
indexed by day, with columns containing story size for each issue.
In addition, columns are soted by Jira Issue key. First by Project and then by id number.
"""
def my_merge(df1, df2):
# http://stackoverflow.com/questions/34411495/pandas-merge-several-dataframes
res = pd.merge(df1, df2, how='outer', left_index=True, right_index=True)
cols = sorted(res.columns)
pairs = []
for col1, col2 in zip(cols[:-1], cols[1:]):
if col1.endswith('_x') and col2.endswith('_y'):
pairs.append((col1, col2))
for col1, col2 in pairs:
res[col1[:-2]] = res[col1].combine_first(res[col2])
res = res.drop([col1, col2], axis=1)
return res
dfs_key = []
# Group the dataframe by regiment, and for each regiment,
for name, group in size_data.groupby('key'):
dfs = []
for row in group.itertuples():
# print(row.Index, row.fromDate,row.toDate, row.size)
dates = pd.date_range(start=row.fromDate, end=row.toDate)
sizes = [row.size] * len(dates)
data = {'date': dates, 'size': sizes}
df2 = pd.DataFrame(data, columns=['date', 'size'])
pd.to_datetime(df2['date'], format=('%Y-%m-%d'))
df2.set_index(['date'], inplace=True)
dfs.append(df2)
# df_final = reduce(lambda left,right: pd.merge(left,right), dfs)
df_key = (reduce(my_merge, dfs))
df_key.columns = [name if x == 'size' else x for x in df_key.columns]
dfs_key.append(df_key)
df_all = (reduce(my_merge, dfs_key))
# Sort the columns based on Jira Project code and issue number
mykeys = df_all.columns.values.tolist()
mykeys.sort(key=lambda x: x.split('-')[0] + '-' + str(int(x.split('-')[1])).zfill(6))
df_all = df_all[mykeys]
# Reindex to make sure we have all dates
start, end = df_all.index.min(), df_all.index.max()
df_all = df_all.reindex(pd.date_range(start, end, freq='D'), method='ffill')
return df_all
|
Return the a DataFrame,
indexed by day, with columns containing story size for each issue.
In addition, columns are soted by Jira Issue key. First by Project and then by id number.
|
entailment
|
def cfd(self, cycle_data,size_history= None, pointscolumn= None, stacked = True ):
"""Return the data to build a cumulative flow diagram: a DataFrame,
indexed by day, with columns containing cumulative counts for each
of the items in the configured cycle.
In addition, a column called `cycle_time` contains the approximate
average cycle time of that day based on the first "accepted" status
and the first "complete" status.
If stacked = True then return dataframe suitable for plotting as stacked area chart
else return for platting as non-staked or line chart.
"""
# Define helper function
def cumulativeColumnStates(df,stacked):
"""
Calculate the column sums, were the incoming matrix columns represents items in workflow states
States progress from left to right.
We what to zero out items, other than right most value to avoid counting items in prior states.
:param df:
:return: pandas dataframe row with sum of column items
"""
# Helper functions to return the right most cells in 2D array
def last_number(lst):
if all(map(lambda x: x == 0, lst)):
return 0
elif lst[-1] != 0:
return len(lst) - 1
else:
return last_number(lst[:-1])
def fill_others(lst):
new_lst = [0] * len(lst)
new_lst[last_number(lst)] = lst[last_number(lst)]
return new_lst
df_zeroed = df.fillna(value=0) # ,inplace = True Get rid of non numeric items. Make a ?deep? copy
if stacked:
df_result = df_zeroed.apply(lambda x: fill_others(x.values.tolist()), axis=1)
else:
df_result = df_zeroed
sum_row = df_result[df.columns].sum() # Sum Columns
return pd.DataFrame(data=sum_row).T # Transpose into row dataframe and return
# Helper function to return the right most cells in 2D array
def keeprightmoststate(df):
"""
Incoming matrix columns represents items in workflow states
States progress from left to right.
We what to zero out items, other than right most value.
:param df:
:return: pandas dataframe row with sum of column items
"""
def last_number(lst):
if all(map(lambda x: x == 0, lst)):
return 0
elif lst[-1] != 0:
return len(lst) - 1
else:
return last_number(lst[:-1])
def fill_others(lst):
new_lst = [0] * len(lst)
new_lst[last_number(lst)] = lst[last_number(lst)]
return new_lst
df_zeroed = df.fillna(value=0) # ,inplace = True Get rid of non numeric items. Make a ?deep? copy
df_result = df_zeroed.apply(lambda x: fill_others(x.values.tolist()), axis=1)
return df_result
# Define helper function
def hide_greater_than_date(cell, adate):
""" Helper function to compare date values in cells
"""
result = False
try:
celldatetime = datetime.date(cell.year, cell.month, cell.day)
except:
return True
if celldatetime > adate:
return True
return False # We have a date value in cell and it is less than or equal to input date
# Helper function
def appendDFToCSV(df, csvFilePath, sep="\t",date_format='%Y-%m-%d', encoding='utf-8'):
import os
if not os.path.isfile(csvFilePath):
df.to_csv(csvFilePath, mode='a', index=False, sep=sep, date_format=date_format, encoding=encoding)
elif len(df.columns) != len(pd.read_csv(csvFilePath, nrows=1, sep=sep).columns):
raise Exception(
"Columns do not match!! Dataframe has " + str(len(df.columns)) + " columns. CSV file has " + str(
len(pd.read_csv(csvFilePath, nrows=1, sep=sep).columns)) + " columns.")
elif not (df.columns == pd.read_csv(csvFilePath, nrows=1, sep=sep).columns).all():
raise Exception("Columns and column order of dataframe and csv file do not match!!")
else:
df.to_csv(csvFilePath, mode='a', index=False, sep=sep, header=False, date_format=date_format, encoding=encoding)
#print(pointscolumn)
# List of all state change columns that may have date value in them
cycle_names = [s['name'] for s in self.settings['cycle']]
# Create list of columns that we want to return in our results dataFrame
slice_columns = list(self.settings['none_sized_statuses']) # Make a COPY of the list so that we dont modify the reference.
if pointscolumn:
for size_state in self.settings['sized_statuses']: # states_to_size:
sizedStateName = size_state + 'Sized'
slice_columns.append(sizedStateName)
# Check that it works if we use all columns as sized.
slice_columns = []
for size_state in cycle_names:
sizedStateName = size_state + 'Sized'
slice_columns.append(sizedStateName)
else:
slice_columns = cycle_names
# Build a dataframe of just the "date" columns
df = cycle_data[cycle_names].copy()
# Strip out times from all dates
df = pd.DataFrame(
np.array(df.values, dtype='<M8[ns]').astype('<M8[D]').astype('<M8[ns]'),
columns=df.columns,
index=df.index
)
# No history provided this thus we return dataframe with just column headers.
if size_history is None:
return df
# Get a list of dates that a issue changed state
state_changes_on_dates_set = set()
for state in cycle_names:
state_changes_on_dates_set = state_changes_on_dates_set.union(set(df[state]))
# How many unique days did a issue stage state
# Remove non timestamp vlaues and sort the list
state_changes_on_dates = filter(lambda x: type(x.date()) == datetime.date,
sorted(list(state_changes_on_dates_set)))
# Replace missing NaT values (happens if a status is skipped) with the subsequent timestamp
df = df.fillna(method='bfill', axis=1)
if pointscolumn:
storypoints = cycle_data[pointscolumn] # As at today
ids = cycle_data['key']
# create blank results dataframe
df_results = pd.DataFrame()
# For each date on which we had a issue state change we want to count and sum the totals for each of the given states
# 'Open','Analysis','Backlog','In Process','Done','Withdrawn'
timenowstr = datetime.datetime.now().strftime('-run-%Y-%m-%d_%H-%M-%S')
for date_index,statechangedate in enumerate(state_changes_on_dates):
if date_index%10 == 0: # Print out Progress every tenth
pass #print("CFD state change {} of {} ".format(date_index,len(state_changes_on_dates)))
if type(statechangedate.date()) == datetime.date:
# filterdate.year,filterdate.month,filterdate.day
filterdate = datetime.date(statechangedate.year, statechangedate.month,
statechangedate.day) # statechangedate.datetime()
# Apply function to each cell and only make it visible if issue was in state on or after the filter date
df_filtered = df.applymap(lambda x: 0 if hide_greater_than_date(x, filterdate) else 1)
if stacked:
df_filtered=keeprightmoststate(df_filtered)
if pointscolumn and (size_history is not None):
# For debug
#if filterdate.isoformat() == '2016-11-22':
# size_history.loc[filterdate.isoformat()].to_csv("debug-size-history.csv")
storypoints_series_on = size_history.loc[filterdate.isoformat()].T
df_size_on_day = pd.Series.to_frame(storypoints_series_on)
df_size_on_day.columns = [pointscolumn]
# Make sure get size data in the same sequence as ids.
left = pd.Series.to_frame(ids)
right = df_size_on_day
result = left.join(right, on=['key']) # http://pandas.pydata.org/pandas-docs/stable/merging.html\
df_countable = pd.concat([result, df_filtered], axis=1)
# for debuging and analytics append the days state to file
df_countable['date'] = filterdate.isoformat()
if stacked:
file_name = "daily-cfd-stacked-run-at"+ timenowstr + ".csv"
else:
file_name = "daily-cfd-run-at" + timenowstr + ".csv"
appendDFToCSV(df_countable, file_name )
else:
df_countable = df_filtered
# Because we size issues with Story Points we need to add some additional columns
# for each state based on size not just count
if pointscolumn:
for size_state in self.settings['sized_statuses']: #states_to_size:
sizedStateName = size_state + 'Sized'
df_countable[sizedStateName] = df_countable.apply( lambda row: (row[pointscolumn] * row[size_state] ), axis=1)
# For debugging write dataframe to sheet for current day.
#file_name="countable-cfd-for-day-"+ filterdate.isoformat()+timenowstr+".csv"
#df_countable.to_csv(file_name, sep='\t', encoding='utf-8', quoting=csv.QUOTE_ALL)
df_slice = df_countable.loc[:,slice_columns].copy()
df_sub_sum = cumulativeColumnStates(df_slice,stacked)
final_table = df_sub_sum.rename(index={0: filterdate})
# append to results
df_results = df_results.append(final_table)
df_results.sort_index(inplace=True)
df= df_results
# Count number of times each date occurs, preserving column order
#df = pd.concat({col: df[col].value_counts() for col in df}, axis=1)[cycle_names]
# Fill missing dates with 0 and run a cumulative sum
#df = df.fillna(0).cumsum(axis=0)
# Reindex to make sure we have all dates
start, end = df.index.min(), df.index.max()
try: # If we have no change history we will not have any data in the df and will get a ValueError on reindex
df = df.reindex(pd.date_range(start, end, freq='D'), method='ffill')
except ValueError:
pass
return df
|
Return the data to build a cumulative flow diagram: a DataFrame,
indexed by day, with columns containing cumulative counts for each
of the items in the configured cycle.
In addition, a column called `cycle_time` contains the approximate
average cycle time of that day based on the first "accepted" status
and the first "complete" status.
If stacked = True then return dataframe suitable for plotting as stacked area chart
else return for platting as non-staked or line chart.
|
entailment
|
def histogram(self, cycle_data, bins=10):
"""Return histogram data for the cycle times in `cycle_data`. Returns
a dictionary with keys `bin_values` and `bin_edges` of numpy arrays
"""
values, edges = np.histogram(cycle_data['cycle_time'].astype('timedelta64[D]').dropna(), bins=bins)
index = []
for i, v in enumerate(edges):
if i == 0:
continue
index.append("%.01f to %.01f" % (edges[i - 1], edges[i],))
return pd.Series(values, name="Items", index=index)
|
Return histogram data for the cycle times in `cycle_data`. Returns
a dictionary with keys `bin_values` and `bin_edges` of numpy arrays
|
entailment
|
def throughput_data(self, cycle_data, frequency='1D',pointscolumn= None):
"""Return a data frame with columns `completed_timestamp` of the
given frequency, either
`count`, where count is the number of items
'sum', where sum is the sum of value specified by pointscolumn. Expected to be 'StoryPoints'
completed at that timestamp (e.g. daily).
"""
if len(cycle_data)<1:
return None # Note completed items yet, return None
if pointscolumn:
return cycle_data[['completed_timestamp', pointscolumn]] \
.rename(columns={pointscolumn: 'sum'}) \
.groupby('completed_timestamp').sum() \
.resample(frequency).sum() \
.fillna(0)
else:
return cycle_data[['completed_timestamp', 'key']] \
.rename(columns={'key': 'count'}) \
.groupby('completed_timestamp').count() \
.resample(frequency).sum() \
.fillna(0)
|
Return a data frame with columns `completed_timestamp` of the
given frequency, either
`count`, where count is the number of items
'sum', where sum is the sum of value specified by pointscolumn. Expected to be 'StoryPoints'
completed at that timestamp (e.g. daily).
|
entailment
|
def scatterplot(self, cycle_data):
"""Return scatterplot data for the cycle times in `cycle_data`. Returns
a data frame containing only those items in `cycle_data` where values
are set for `completed_timestamp` and `cycle_time`, and with those two
columns as the first two, both normalised to whole days, and with
`completed_timestamp` renamed to `completed_date`.
"""
columns = list(cycle_data.columns)
columns.remove('cycle_time')
columns.remove('completed_timestamp')
columns = ['completed_timestamp', 'cycle_time'] + columns
data = (
cycle_data[columns]
.dropna(subset=['cycle_time', 'completed_timestamp'])
.rename(columns={'completed_timestamp': 'completed_date'})
)
data['cycle_time'] = data['cycle_time'].astype('timedelta64[D]')
data['completed_date'] = data['completed_date'].map(pd.Timestamp.date)
return data
|
Return scatterplot data for the cycle times in `cycle_data`. Returns
a data frame containing only those items in `cycle_data` where values
are set for `completed_timestamp` and `cycle_time`, and with those two
columns as the first two, both normalised to whole days, and with
`completed_timestamp` renamed to `completed_date`.
|
entailment
|
def _is_ready(self, topic_name):
'''
Is NSQ running and have space to receive messages?
'''
url = 'http://%s/stats?format=json&topic=%s' % (self.nsqd_http_address, topic_name)
#Cheacking for ephmeral channels
if '#' in topic_name:
topic_name, tag =topic_name.split("#", 1)
try:
data = self.session.get(url).json()
'''
data = {u'start_time': 1516164866, u'version': u'1.0.0-compat', \
u'health': u'OK', u'topics': [{u'message_count': 19019, \
u'paused': False, u'topic_name': u'test_topic', u'channels': [], \
u'depth': 19019, u'backend_depth': 9019, u'e2e_processing_latency': {u'count': 0, \
u'percentiles': None}}]}
'''
topics = data.get('topics', [])
topics = [t for t in topics if t['topic_name'] == topic_name]
if not topics:
raise Exception('topic_missing_at_nsq')
topic = topics[0]
depth = topic['depth']
depth += sum(c.get('depth', 0) for c in topic['channels'])
self.log.debug('nsq_depth_check', topic=topic_name,
depth=depth, max_depth=self.nsq_max_depth)
if depth < self.nsq_max_depth:
return
else:
raise Exception('nsq_is_full_waiting_to_clear')
except:
raise
|
Is NSQ running and have space to receive messages?
|
entailment
|
def _matcher(self, other):
"""
QueryContainer < MoleculeContainer
QueryContainer < QueryContainer[more general]
QueryContainer < QueryCGRContainer[more general]
"""
if isinstance(other, MoleculeContainer):
return GraphMatcher(other, self, lambda x, y: y == x, lambda x, y: y == x)
elif isinstance(other, (QueryContainer, QueryCGRContainer)):
return GraphMatcher(other, self, lambda x, y: x == y, lambda x, y: x == y)
raise TypeError('only query-molecule, query-query or query-cgr_query possible')
|
QueryContainer < MoleculeContainer
QueryContainer < QueryContainer[more general]
QueryContainer < QueryCGRContainer[more general]
|
entailment
|
def _matcher(self, other):
"""
QueryCGRContainer < CGRContainer
QueryContainer < QueryCGRContainer[more general]
"""
if isinstance(other, CGRContainer):
return GraphMatcher(other, self, lambda x, y: y == x, lambda x, y: y == x)
elif isinstance(other, QueryCGRContainer):
return GraphMatcher(other, self, lambda x, y: x == y, lambda x, y: x == y)
raise TypeError('only cgr_query-cgr or cgr_query-cgr_query possible')
|
QueryCGRContainer < CGRContainer
QueryContainer < QueryCGRContainer[more general]
|
entailment
|
def calculate2d(self, force=False, scale=1):
"""
recalculate 2d coordinates. currently rings can be calculated badly.
:param scale: rescale calculated positions.
:param force: ignore existing coordinates of atoms
"""
dist = {}
# length forces
for n, m_bond in self._adj.items():
dist[n] = {}
for m in m_bond:
dist[n][m] = .825
# angle forces
for n, m_bond in self._adj.items():
if len(m_bond) == 2: # single-single or single-double bonds has angle = 120, other 180
(m1, b1), (m2, b2) = m_bond.items()
dist[m1][m2] = dist[m2][m1] = 1.43 if b1.order + b2.order in (2, 3) else 1.7 # +.05
elif len(m_bond) == 3:
m1, m2, m3 = m_bond
dist[m1][m2] = dist[m1][m3] = dist[m2][m3] = dist[m3][m2] = dist[m2][m1] = dist[m3][m1] = 1.43
elif len(m_bond) == 4:
# 1
#
# 2 X 4
#
# 3
m1, m2, m3, m4 = m_bond
dist[m1][m2] = dist[m1][m4] = dist[m2][m1] = dist[m2][m3] = 1.17
dist[m3][m2] = dist[m3][m4] = dist[m4][m1] = dist[m4][m3] = 1.17
dist[m1][m3] = dist[m3][m1] = dist[m2][m4] = dist[m4][m2] = 1.7 # +.05
# cycle forces
for r in self.sssr:
if len(r) == 6:
# 6
#
# 1 5
#
# 2 4
#
# 3
m1, m2, m3, m4, m5, m6 = r
dist[m1][m4] = dist[m4][m1] = dist[m2][m5] = dist[m5][m2] = dist[m3][m6] = dist[m6][m3] = 1.7 # +.05
if force:
pos = None
else:
pos = {n: (atom.x or uniform(0, .01), atom.y or uniform(0, .01)) for n, atom in self.atoms()}
for n, xy in kamada_kawai_layout(self, dist=dict(dist), pos=pos, scale=scale).items():
atom = self._node[n]
atom.x, atom.y = xy
self.flush_cache()
|
recalculate 2d coordinates. currently rings can be calculated badly.
:param scale: rescale calculated positions.
:param force: ignore existing coordinates of atoms
|
entailment
|
def possible_moves(self, position):
"""
Finds all possible knight moves
:type: position Board
:rtype: list
"""
for direction in [0, 1, 2, 3]:
angles = self._rotate_direction_ninety_degrees(direction)
for angle in angles:
try:
end_loc = self.location.shift(angle).shift(direction).shift(direction)
if position.is_square_empty(end_loc):
status = notation_const.MOVEMENT
elif not position.piece_at_square(end_loc).color == self.color:
status = notation_const.CAPTURE
else:
continue
yield Move(end_loc=end_loc,
piece=self,
status=status,
start_loc=self.location)
except IndexError:
pass
|
Finds all possible knight moves
:type: position Board
:rtype: list
|
entailment
|
def centers_list(self):
""" get a list of lists of atoms of reaction centers
"""
center = set()
adj = defaultdict(set)
for n, atom in self.atoms():
if atom._reactant != atom._product:
center.add(n)
for n, m, bond in self.bonds():
if bond._reactant != bond._product:
adj[n].add(m)
adj[m].add(n)
center.add(n)
center.add(m)
out = []
while center:
n = center.pop()
if n in adj:
c = set(self.__plain_bfs(adj, n))
out.append(list(c))
center.difference_update(c)
else:
out.append([n])
return out
|
get a list of lists of atoms of reaction centers
|
entailment
|
def center_atoms(self):
""" get list of atoms of reaction center (atoms with dynamic: bonds, charges, radicals).
"""
nodes = set()
for n, atom in self.atoms():
if atom._reactant != atom._product:
nodes.add(n)
for n, m, bond in self.bonds():
if bond._reactant != bond._product:
nodes.add(n)
nodes.add(m)
return list(nodes)
|
get list of atoms of reaction center (atoms with dynamic: bonds, charges, radicals).
|
entailment
|
def center_bonds(self):
""" get list of bonds of reaction center (bonds with dynamic orders).
"""
return [(n, m) for n, m, bond in self.bonds() if bond._reactant != bond._product]
|
get list of bonds of reaction center (bonds with dynamic orders).
|
entailment
|
def reset_query_marks(self):
"""
set or reset hyb and neighbors marks to atoms.
"""
for i, atom in self.atoms():
neighbors = 0
hybridization = 1
p_neighbors = 0
p_hybridization = 1
# hyb 1- sp3; 2- sp2; 3- sp1; 4- aromatic
for j, bond in self._adj[i].items():
isnth = self._node[j].element != 'H'
order = bond.order
if order:
if isnth:
neighbors += 1
if hybridization not in (3, 4):
if order == 4:
hybridization = 4
elif order == 3:
hybridization = 3
elif order == 2:
if hybridization == 2:
hybridization = 3
else:
hybridization = 2
order = bond.p_order
if order:
if isnth:
p_neighbors += 1
if p_hybridization not in (3, 4):
if order == 4:
p_hybridization = 4
elif order == 3:
p_hybridization = 3
elif order == 2:
if p_hybridization == 2:
p_hybridization = 3
else:
p_hybridization = 2
atom._reactant._neighbors = neighbors
atom._reactant._hybridization = hybridization
atom._product._neighbors = p_neighbors
atom._product._hybridization = p_hybridization
atom.__dict__.clear() # flush cache
self.flush_cache()
|
set or reset hyb and neighbors marks to atoms.
|
entailment
|
def substructure(self, atoms, meta=False, as_view=True):
"""
create substructure containing atoms from nbunch list
:param atoms: list of atoms numbers of substructure
:param meta: if True metadata will be copied to substructure
:param as_view: If True, the returned graph-view provides a read-only view
of the original structure scaffold without actually copying any data
"""
s = super().substructure(atoms, meta, as_view)
if as_view:
s.reset_query_marks = frozen
return s
|
create substructure containing atoms from nbunch list
:param atoms: list of atoms numbers of substructure
:param meta: if True metadata will be copied to substructure
:param as_view: If True, the returned graph-view provides a read-only view
of the original structure scaffold without actually copying any data
|
entailment
|
def _matcher(self, other):
"""
CGRContainer < CGRContainer
"""
if isinstance(other, CGRContainer):
return GraphMatcher(other, self, lambda x, y: x == y, lambda x, y: x == y)
raise TypeError('only cgr-cgr possible')
|
CGRContainer < CGRContainer
|
entailment
|
def __plain_bfs(adj, source):
"""modified NX fast BFS node generator"""
seen = set()
nextlevel = {source}
while nextlevel:
thislevel = nextlevel
nextlevel = set()
for v in thislevel:
if v not in seen:
yield v
seen.add(v)
nextlevel.update(adj[v])
|
modified NX fast BFS node generator
|
entailment
|
def token(self):
"""
Returns authorization token provided by Cocaine.
The real meaning of the token is determined by its type. For example OAUTH2 token will
have "bearer" type.
:return: A tuple of token type and body.
"""
if self._token is None:
token_type = os.getenv(TOKEN_TYPE_KEY, '')
token_body = os.getenv(TOKEN_BODY_KEY, '')
self._token = _Token(token_type, token_body)
return self._token
|
Returns authorization token provided by Cocaine.
The real meaning of the token is determined by its type. For example OAUTH2 token will
have "bearer" type.
:return: A tuple of token type and body.
|
entailment
|
def _send(self):
""" Send a message lazy formatted with args.
External log attributes can be passed via named attribute `extra`,
like in logging from the standart library.
Note:
* Attrs must be dict, otherwise the whole message would be skipped.
* The key field in an attr is converted to string.
* The value is sent as is if isinstance of (str, unicode, int, float, long, bool),
otherwise we convert the value to string.
"""
buff = BytesIO()
while True:
msgs = list()
try:
msg = yield self.queue.get()
# we need to connect first, as we issue verbosity request just after connection
# and channels should strictly go in ascending order
if not self._connected:
yield self.connect()
try:
while True:
msgs.append(msg)
counter = next(self.counter)
msgpack_pack([counter, EMIT, msg], buff)
msg = self.queue.get_nowait()
except queues.QueueEmpty:
pass
try:
yield self.pipe.write(buff.getvalue())
except Exception:
pass
# clean the buffer or we will end up without memory
buff.truncate(0)
except Exception:
for message in msgs:
self._log_to_fallback(message)
|
Send a message lazy formatted with args.
External log attributes can be passed via named attribute `extra`,
like in logging from the standart library.
Note:
* Attrs must be dict, otherwise the whole message would be skipped.
* The key field in an attr is converted to string.
* The value is sent as is if isinstance of (str, unicode, int, float, long, bool),
otherwise we convert the value to string.
|
entailment
|
def moves_in_direction(self, direction, position):
"""
Finds moves in a given direction
:type: direction: lambda
:type: position: Board
:rtype: list
"""
current_square = self.location
while True:
try:
current_square = direction(current_square)
except IndexError:
return
if self.contains_opposite_color_piece(current_square, position):
yield self.create_move(current_square, notation_const.CAPTURE)
if not position.is_square_empty(current_square):
return
yield self.create_move(current_square, notation_const.MOVEMENT)
|
Finds moves in a given direction
:type: direction: lambda
:type: position: Board
:rtype: list
|
entailment
|
def possible_moves(self, position):
"""
Returns all possible rook moves.
:type: position: Board
:rtype: list
"""
for move in itertools.chain(*[self.moves_in_direction(fn, position) for fn in self.cross_fn]):
yield move
|
Returns all possible rook moves.
:type: position: Board
:rtype: list
|
entailment
|
def overlap_status(a, b):
"""Check overlap between two arrays.
Parameters
----------
a, b : array-like
Arrays to check. Assumed to be in the same unit.
Returns
-------
result : {'full', 'partial', 'none'}
* 'full' - ``a`` is within or same as ``b``
* 'partial' - ``a`` partially overlaps with ``b``
* 'none' - ``a`` does not overlap ``b``
"""
# Get the endpoints
a1, a2 = a.min(), a.max()
b1, b2 = b.min(), b.max()
# Do the comparison
if a1 >= b1 and a2 <= b2:
result = 'full'
elif a2 < b1 or b2 < a1:
result = 'none'
else:
result = 'partial'
return result
|
Check overlap between two arrays.
Parameters
----------
a, b : array-like
Arrays to check. Assumed to be in the same unit.
Returns
-------
result : {'full', 'partial', 'none'}
* 'full' - ``a`` is within or same as ``b``
* 'partial' - ``a`` partially overlaps with ``b``
* 'none' - ``a`` does not overlap ``b``
|
entailment
|
def validate_totalflux(totalflux):
"""Check integrated flux for invalid values.
Parameters
----------
totalflux : float
Integrated flux.
Raises
------
synphot.exceptions.SynphotError
Input is zero, negative, or not a number.
"""
if totalflux <= 0.0:
raise exceptions.SynphotError('Integrated flux is <= 0')
elif np.isnan(totalflux):
raise exceptions.SynphotError('Integrated flux is NaN')
elif np.isinf(totalflux):
raise exceptions.SynphotError('Integrated flux is infinite')
|
Check integrated flux for invalid values.
Parameters
----------
totalflux : float
Integrated flux.
Raises
------
synphot.exceptions.SynphotError
Input is zero, negative, or not a number.
|
entailment
|
def validate_wavelengths(wavelengths):
"""Check wavelengths for ``synphot`` compatibility.
Wavelengths must satisfy these conditions:
* valid unit type, if given
* no zeroes
* monotonic ascending or descending
* no duplicate values
Parameters
----------
wavelengths : array-like or `~astropy.units.quantity.Quantity`
Wavelength values.
Raises
------
synphot.exceptions.SynphotError
Wavelengths unit type is invalid.
synphot.exceptions.DuplicateWavelength
Wavelength array contains duplicate entries.
synphot.exceptions.UnsortedWavelength
Wavelength array is not monotonic.
synphot.exceptions.ZeroWavelength
Negative or zero wavelength occurs in wavelength array.
"""
if isinstance(wavelengths, u.Quantity):
units.validate_wave_unit(wavelengths.unit)
wave = wavelengths.value
else:
wave = wavelengths
if np.isscalar(wave):
wave = [wave]
wave = np.asarray(wave)
# Check for zeroes
if np.any(wave <= 0):
raise exceptions.ZeroWavelength(
'Negative or zero wavelength occurs in wavelength array',
rows=np.where(wave <= 0)[0])
# Check for monotonicity
sorted_wave = np.sort(wave)
if not np.alltrue(sorted_wave == wave):
if np.alltrue(sorted_wave[::-1] == wave):
pass # Monotonic descending is allowed
else:
raise exceptions.UnsortedWavelength(
'Wavelength array is not monotonic',
rows=np.where(sorted_wave != wave)[0])
# Check for duplicate values
if wave.size > 1:
dw = sorted_wave[1:] - sorted_wave[:-1]
if np.any(dw == 0):
raise exceptions.DuplicateWavelength(
'Wavelength array contains duplicate entries',
rows=np.where(dw == 0)[0])
|
Check wavelengths for ``synphot`` compatibility.
Wavelengths must satisfy these conditions:
* valid unit type, if given
* no zeroes
* monotonic ascending or descending
* no duplicate values
Parameters
----------
wavelengths : array-like or `~astropy.units.quantity.Quantity`
Wavelength values.
Raises
------
synphot.exceptions.SynphotError
Wavelengths unit type is invalid.
synphot.exceptions.DuplicateWavelength
Wavelength array contains duplicate entries.
synphot.exceptions.UnsortedWavelength
Wavelength array is not monotonic.
synphot.exceptions.ZeroWavelength
Negative or zero wavelength occurs in wavelength array.
|
entailment
|
def generate_wavelengths(minwave=500, maxwave=26000, num=10000, delta=None,
log=True, wave_unit=u.AA):
"""Generate wavelength array to be used for spectrum sampling.
.. math::
minwave \\le \\lambda < maxwave
Parameters
----------
minwave, maxwave : float
Lower and upper limits of the wavelengths.
These must be values in linear space regardless of ``log``.
num : int
The number of wavelength values.
This is only used when ``delta=None``.
delta : float or `None`
Delta between wavelength values.
When ``log=True``, this is the spacing in log space.
log : bool
If `True`, the wavelength values are evenly spaced in log scale.
Otherwise, spacing is linear.
wave_unit : str or `~astropy.units.core.Unit`
Wavelength unit. Default is Angstrom.
Returns
-------
waveset : `~astropy.units.quantity.Quantity`
Generated wavelength set.
waveset_str : str
Info string associated with the result.
"""
wave_unit = units.validate_unit(wave_unit)
if delta is not None:
num = None
waveset_str = 'Min: {0}, Max: {1}, Num: {2}, Delta: {3}, Log: {4}'.format(
minwave, maxwave, num, delta, log)
# Log space
if log:
logmin = np.log10(minwave)
logmax = np.log10(maxwave)
if delta is None:
waveset = np.logspace(logmin, logmax, num, endpoint=False)
else:
waveset = 10 ** np.arange(logmin, logmax, delta)
# Linear space
else:
if delta is None:
waveset = np.linspace(minwave, maxwave, num, endpoint=False)
else:
waveset = np.arange(minwave, maxwave, delta)
return waveset.astype(np.float64) * wave_unit, waveset_str
|
Generate wavelength array to be used for spectrum sampling.
.. math::
minwave \\le \\lambda < maxwave
Parameters
----------
minwave, maxwave : float
Lower and upper limits of the wavelengths.
These must be values in linear space regardless of ``log``.
num : int
The number of wavelength values.
This is only used when ``delta=None``.
delta : float or `None`
Delta between wavelength values.
When ``log=True``, this is the spacing in log space.
log : bool
If `True`, the wavelength values are evenly spaced in log scale.
Otherwise, spacing is linear.
wave_unit : str or `~astropy.units.core.Unit`
Wavelength unit. Default is Angstrom.
Returns
-------
waveset : `~astropy.units.quantity.Quantity`
Generated wavelength set.
waveset_str : str
Info string associated with the result.
|
entailment
|
def merge_wavelengths(waveset1, waveset2, threshold=1e-12):
"""Return the union of the two sets of wavelengths using
:func:`numpy.union1d`.
The merged wavelengths may sometimes contain numbers which are nearly
equal but differ at levels as small as 1e-14. Having values this
close together can cause problems down the line. So, here we test
whether any such small differences are present, with a small
difference defined as less than ``threshold``. If a small
difference is present, the lower of the too-close pair is removed.
Parameters
----------
waveset1, waveset2 : array-like or `None`
Wavelength values, assumed to be in the same unit already.
Also see :func:`~synphot.models.get_waveset`.
threshold : float, optional
Merged wavelength values are considered "too close together"
when the difference is smaller than this number.
The default is 1e-12.
Returns
-------
out_wavelengths : array-like or `None`
Merged wavelengths. `None` if undefined.
"""
if waveset1 is None and waveset2 is None:
out_wavelengths = None
elif waveset1 is not None and waveset2 is None:
out_wavelengths = waveset1
elif waveset1 is None and waveset2 is not None:
out_wavelengths = waveset2
else:
out_wavelengths = np.union1d(waveset1, waveset2)
delta = out_wavelengths[1:] - out_wavelengths[:-1]
i_good = np.where(delta > threshold)
# Remove "too close together" duplicates
if len(i_good[0]) < delta.size:
out_wavelengths = np.append(
out_wavelengths[i_good], out_wavelengths[-1])
return out_wavelengths
|
Return the union of the two sets of wavelengths using
:func:`numpy.union1d`.
The merged wavelengths may sometimes contain numbers which are nearly
equal but differ at levels as small as 1e-14. Having values this
close together can cause problems down the line. So, here we test
whether any such small differences are present, with a small
difference defined as less than ``threshold``. If a small
difference is present, the lower of the too-close pair is removed.
Parameters
----------
waveset1, waveset2 : array-like or `None`
Wavelength values, assumed to be in the same unit already.
Also see :func:`~synphot.models.get_waveset`.
threshold : float, optional
Merged wavelength values are considered "too close together"
when the difference is smaller than this number.
The default is 1e-12.
Returns
-------
out_wavelengths : array-like or `None`
Merged wavelengths. `None` if undefined.
|
entailment
|
def download_data(cdbs_root, verbose=True, dry_run=False):
"""Download CDBS data files to given root directory.
Download is skipped if a data file already exists.
Parameters
----------
cdbs_root : str
Root directory for CDBS data files.
verbose : bool
Print extra information to screen.
dry_run : bool
Go through the logic but skip the actual download.
This would return a list of files that *would have been*
downloaded without network calls.
Use this option for debugging or testing.
Raises
------
OSError
Problem with directory.
Returns
-------
file_list : list of str
A list of downloaded files.
"""
from .config import conf # Avoid potential circular import
if not os.path.exists(cdbs_root):
os.makedirs(cdbs_root, exist_ok=True)
if verbose: # pragma: no cover
print('Created {}'.format(cdbs_root))
elif not os.path.isdir(cdbs_root):
raise OSError('{} must be a directory'.format(cdbs_root))
host = 'http://ssb.stsci.edu/cdbs/'
file_list = []
if not cdbs_root.endswith(os.sep):
cdbs_root += os.sep
# See https://github.com/astropy/astropy/issues/8524
for cfgitem in conf.__class__.__dict__.values():
if (not isinstance(cfgitem, ConfigItem) or
not cfgitem.name.endswith('file')):
continue
url = cfgitem()
if not url.startswith(host):
if verbose: # pragma: no cover
print('{} is not from {}, skipping download'.format(
url, host))
continue
dst = url.replace(host, cdbs_root).replace('/', os.sep)
if os.path.exists(dst):
if verbose: # pragma: no cover
print('{} already exists, skipping download'.format(dst))
continue
# Create sub-directories, if needed.
subdirs = os.path.dirname(dst)
os.makedirs(subdirs, exist_ok=True)
if not dry_run: # pragma: no cover
try:
src = download_file(url)
copyfile(src, dst)
except Exception as exc:
print('Download failed - {}'.format(str(exc)))
continue
file_list.append(dst)
if verbose: # pragma: no cover
print('{} downloaded to {}'.format(url, dst))
return file_list
|
Download CDBS data files to given root directory.
Download is skipped if a data file already exists.
Parameters
----------
cdbs_root : str
Root directory for CDBS data files.
verbose : bool
Print extra information to screen.
dry_run : bool
Go through the logic but skip the actual download.
This would return a list of files that *would have been*
downloaded without network calls.
Use this option for debugging or testing.
Raises
------
OSError
Problem with directory.
Returns
-------
file_list : list of str
A list of downloaded files.
|
entailment
|
async def main(loop):
"""Demonstrate functionality of PyVLX."""
pyvlx = PyVLX('pyvlx.yaml', loop=loop)
# Alternative:
# pyvlx = PyVLX(host="192.168.2.127", password="velux123", loop=loop)
# Runing scenes:
await pyvlx.load_scenes()
await pyvlx.scenes["All Windows Closed"].run()
# Changing position of windows:
await pyvlx.load_nodes()
await pyvlx.nodes['Bath'].open()
await pyvlx.nodes['Bath'].close()
await pyvlx.nodes['Bath'].set_position(Position(position_percent=45))
# Changing of on-off switches:
# await pyvlx.nodes['CoffeeMaker'].set_on()
# await pyvlx.nodes['CoffeeMaker'].set_off()
# You can easily rename nodes:
# await pyvlx.nodes["Window 10"].rename("Window 11")
await pyvlx.disconnect()
|
Demonstrate functionality of PyVLX.
|
entailment
|
def get_payload(self):
"""Return Payload."""
if self.password is None:
raise PyVLXException("password is none")
if len(self.password) > self.MAX_SIZE:
raise PyVLXException("password is too long")
return string_to_bytes(self.password, self.MAX_SIZE)
|
Return Payload.
|
entailment
|
def add(self, node):
"""Add Node, replace existing node if node with node_id is present."""
if not isinstance(node, Node):
raise TypeError()
for i, j in enumerate(self.__nodes):
if j.node_id == node.node_id:
self.__nodes[i] = node
return
self.__nodes.append(node)
|
Add Node, replace existing node if node with node_id is present.
|
entailment
|
async def load(self, node_id=None):
"""Load nodes from KLF 200, if no node_id is specified all nodes are loaded."""
if node_id is not None:
await self._load_node(node_id=node_id)
else:
await self._load_all_nodes()
|
Load nodes from KLF 200, if no node_id is specified all nodes are loaded.
|
entailment
|
async def _load_node(self, node_id):
"""Load single node via API."""
get_node_information = GetNodeInformation(pyvlx=self.pyvlx, node_id=node_id)
await get_node_information.do_api_call()
if not get_node_information.success:
raise PyVLXException("Unable to retrieve node information")
notification_frame = get_node_information.notification_frame
node = convert_frame_to_node(self.pyvlx, notification_frame)
if node is not None:
self.add(node)
|
Load single node via API.
|
entailment
|
async def _load_all_nodes(self):
"""Load all nodes via API."""
get_all_nodes_information = GetAllNodesInformation(pyvlx=self.pyvlx)
await get_all_nodes_information.do_api_call()
if not get_all_nodes_information.success:
raise PyVLXException("Unable to retrieve node information")
self.clear()
for notification_frame in get_all_nodes_information.notification_frames:
node = convert_frame_to_node(self.pyvlx, notification_frame)
if node is not None:
self.add(node)
|
Load all nodes via API.
|
entailment
|
async def handle_frame(self, frame):
"""Handle incoming API frame, return True if this was the expected frame."""
if isinstance(frame, FrameGetAllNodesInformationConfirmation):
self.number_of_nodes = frame.number_of_nodes
# We are still waiting for FrameGetAllNodesInformationNotification
return False
if isinstance(frame, FrameGetAllNodesInformationNotification):
self.notification_frames.append(frame)
if isinstance(frame, FrameGetAllNodesInformationFinishedNotification):
if self.number_of_nodes != len(self.notification_frames):
PYVLXLOG.warning("Number of received scenes does not match expected number")
self.success = True
return True
return False
|
Handle incoming API frame, return True if this was the expected frame.
|
entailment
|
async def handle_frame(self, frame):
"""Handle incoming API frame, return True if this was the expected frame."""
if isinstance(frame, FrameGetNodeInformationConfirmation) and frame.node_id == self.node_id:
# We are still waiting for GetNodeInformationNotification
return False
if isinstance(frame, FrameGetNodeInformationNotification) and frame.node_id == self.node_id:
self.notification_frame = frame
self.success = True
return True
return False
|
Handle incoming API frame, return True if this was the expected frame.
|
entailment
|
def start(self):
"""Create loop task."""
self.run_task = self.pyvlx.loop.create_task(
self.loop())
|
Create loop task.
|
entailment
|
async def stop(self):
"""Stop heartbeat."""
self.stopped = True
self.loop_event.set()
# Waiting for shutdown of loop()
await self.stopped_event.wait()
|
Stop heartbeat.
|
entailment
|
async def loop(self):
"""Pulse every timeout seconds until stopped."""
while not self.stopped:
self.timeout_handle = self.pyvlx.connection.loop.call_later(
self.timeout_in_seconds, self.loop_timeout)
await self.loop_event.wait()
if not self.stopped:
self.loop_event.clear()
await self.pulse()
self.cancel_loop_timeout()
self.stopped_event.set()
|
Pulse every timeout seconds until stopped.
|
entailment
|
async def pulse(self):
"""Send get state request to API to keep the connection alive."""
get_state = GetState(pyvlx=self.pyvlx)
await get_state.do_api_call()
if not get_state.success:
raise PyVLXException("Unable to send get state.")
|
Send get state request to API to keep the connection alive.
|
entailment
|
def get_payload(self):
"""Return Payload."""
payload = bytes([self.gateway_state.value, self.gateway_sub_state.value])
payload += bytes(4) # State date, reserved for future use
return payload
|
Return Payload.
|
entailment
|
def from_payload(self, payload):
"""Init frame from binary data."""
self.gateway_state = GatewayState(payload[0])
self.gateway_sub_state = GatewaySubState(payload[1])
|
Init frame from binary data.
|
entailment
|
def string_to_bytes(string, size):
"""Convert string to bytes add padding."""
if len(string) > size:
raise PyVLXException("string_to_bytes::string_to_large")
encoded = bytes(string, encoding='utf-8')
return encoded + bytes(size-len(encoded))
|
Convert string to bytes add padding.
|
entailment
|
def bytes_to_string(raw):
"""Convert bytes to string."""
ret = bytes()
for byte in raw:
if byte == 0x00:
return ret.decode("utf-8")
ret += bytes([byte])
return ret.decode("utf-8")
|
Convert bytes to string.
|
entailment
|
def get_payload(self):
"""Return Payload."""
payload = bytes([self.node_id])
payload += bytes([self.state])
payload += bytes(self.current_position.raw)
payload += bytes(self.target.raw)
payload += bytes(self.current_position_fp1.raw)
payload += bytes(self.current_position_fp2.raw)
payload += bytes(self.current_position_fp3.raw)
payload += bytes(self.current_position_fp4.raw)
payload += bytes([self.remaining_time >> 8 & 255, self.remaining_time & 255])
payload += struct.pack(">I", self.timestamp)
return payload
|
Return Payload.
|
entailment
|
def from_payload(self, payload):
"""Init frame from binary data."""
self.node_id = payload[0]
self.state = payload[1]
self.current_position = Parameter(payload[2:4])
self.target = Parameter(payload[4:6])
self.current_position_fp1 = Parameter(payload[6:8])
self.current_position_fp2 = Parameter(payload[8:10])
self.current_position_fp3 = Parameter(payload[10:12])
self.current_position_fp4 = Parameter(payload[12:14])
self.remaining_time = payload[14] * 256 + payload[15]
# @VELUX: looks like your timestamp is wrong. Looks like
# you are only transmitting the two lower bytes.
self.timestamp = struct.unpack(">I", payload[16:20])[0]
|
Init frame from binary data.
|
entailment
|
async def house_status_monitor_enable(pyvlx):
"""Enable house status monitor."""
status_monitor_enable = HouseStatusMonitorEnable(pyvlx=pyvlx)
await status_monitor_enable.do_api_call()
if not status_monitor_enable.success:
raise PyVLXException("Unable enable house status monitor.")
|
Enable house status monitor.
|
entailment
|
async def house_status_monitor_disable(pyvlx):
"""Disable house status monitor."""
status_monitor_disable = HouseStatusMonitorDisable(pyvlx=pyvlx)
await status_monitor_disable.do_api_call()
if not status_monitor_disable.success:
raise PyVLXException("Unable disable house status monitor.")
|
Disable house status monitor.
|
entailment
|
async def handle_frame(self, frame):
"""Handle incoming API frame, return True if this was the expected frame."""
if not isinstance(frame, FrameHouseStatusMonitorEnableConfirmation):
return False
self.success = True
return True
|
Handle incoming API frame, return True if this was the expected frame.
|
entailment
|
async def handle_frame(self, frame):
"""Handle incoming API frame, return True if this was the expected frame."""
if not isinstance(frame, FrameHouseStatusMonitorDisableConfirmation):
return False
self.success = True
return True
|
Handle incoming API frame, return True if this was the expected frame.
|
entailment
|
def BitmathType(bmstring):
"""An 'argument type' for integrations with the argparse module.
For more information, see
https://docs.python.org/2/library/argparse.html#type Of particular
interest to us is this bit:
``type=`` can take any callable that takes a single string
argument and returns the converted value
I.e., ``type`` can be a function (such as this function) or a class
which implements the ``__call__`` method.
Example usage of the bitmath.BitmathType argparser type:
>>> import bitmath
>>> import argparse
>>> parser = argparse.ArgumentParser()
>>> parser.add_argument("--file-size", type=bitmath.BitmathType)
>>> parser.parse_args("--file-size 1337MiB".split())
Namespace(file_size=MiB(1337.0))
Invalid usage includes any input that the bitmath.parse_string
function already rejects. Additionally, **UNQUOTED** arguments with
spaces in them are rejected (shlex.split used in the following
examples to conserve single quotes in the parse_args call):
>>> parser = argparse.ArgumentParser()
>>> parser.add_argument("--file-size", type=bitmath.BitmathType)
>>> import shlex
>>> # The following is ACCEPTABLE USAGE:
...
>>> parser.parse_args(shlex.split("--file-size '1337 MiB'"))
Namespace(file_size=MiB(1337.0))
>>> # The following is INCORRECT USAGE because the string "1337 MiB" is not quoted!
...
>>> parser.parse_args(shlex.split("--file-size 1337 MiB"))
error: argument --file-size: 1337 can not be parsed into a valid bitmath object
"""
try:
argvalue = bitmath.parse_string(bmstring)
except ValueError:
raise argparse.ArgumentTypeError("'%s' can not be parsed into a valid bitmath object" %
bmstring)
else:
return argvalue
|
An 'argument type' for integrations with the argparse module.
For more information, see
https://docs.python.org/2/library/argparse.html#type Of particular
interest to us is this bit:
``type=`` can take any callable that takes a single string
argument and returns the converted value
I.e., ``type`` can be a function (such as this function) or a class
which implements the ``__call__`` method.
Example usage of the bitmath.BitmathType argparser type:
>>> import bitmath
>>> import argparse
>>> parser = argparse.ArgumentParser()
>>> parser.add_argument("--file-size", type=bitmath.BitmathType)
>>> parser.parse_args("--file-size 1337MiB".split())
Namespace(file_size=MiB(1337.0))
Invalid usage includes any input that the bitmath.parse_string
function already rejects. Additionally, **UNQUOTED** arguments with
spaces in them are rejected (shlex.split used in the following
examples to conserve single quotes in the parse_args call):
>>> parser = argparse.ArgumentParser()
>>> parser.add_argument("--file-size", type=bitmath.BitmathType)
>>> import shlex
>>> # The following is ACCEPTABLE USAGE:
...
>>> parser.parse_args(shlex.split("--file-size '1337 MiB'"))
Namespace(file_size=MiB(1337.0))
>>> # The following is INCORRECT USAGE because the string "1337 MiB" is not quoted!
...
>>> parser.parse_args(shlex.split("--file-size 1337 MiB"))
error: argument --file-size: 1337 can not be parsed into a valid bitmath object
|
entailment
|
def update(self, pbar):
"""Updates the widget with the current NIST/SI speed.
Basically, this calculates the average rate of update and figures out
how to make a "pretty" prefix unit"""
if pbar.seconds_elapsed < 2e-6 or pbar.currval < 2e-6:
scaled = bitmath.Byte()
else:
speed = pbar.currval / pbar.seconds_elapsed
scaled = bitmath.Byte(speed).best_prefix(system=self.system)
return scaled.format(self.format)
|
Updates the widget with the current NIST/SI speed.
Basically, this calculates the average rate of update and figures out
how to make a "pretty" prefix unit
|
entailment
|
async def handle_frame(self, frame):
"""Handle incoming API frame, return True if this was the expected frame."""
if isinstance(frame, FrameCommandSendConfirmation) and frame.session_id == self.session_id:
if frame.status == CommandSendConfirmationStatus.ACCEPTED:
self.success = True
return not self.wait_for_completion
if isinstance(frame, FrameCommandRemainingTimeNotification) and frame.session_id == self.session_id:
# Ignoring FrameCommandRemainingTimeNotification
return False
if isinstance(frame, FrameCommandRunStatusNotification) and frame.session_id == self.session_id:
# At the moment I don't reall understand what the FrameCommandRunStatusNotification is good for.
# Ignoring these packets for now
return False
if isinstance(frame, FrameSessionFinishedNotification) and frame.session_id == self.session_id:
return True
return False
|
Handle incoming API frame, return True if this was the expected frame.
|
entailment
|
def request_frame(self):
"""Construct initiating frame."""
self.session_id = get_new_session_id()
return FrameCommandSendRequest(node_ids=[self.node_id], parameter=self.parameter, session_id=self.session_id)
|
Construct initiating frame.
|
entailment
|
def read_config(self, path):
"""Read configuration file."""
PYVLXLOG.info('Reading config file: %s', path)
try:
with open(path, 'r') as filehandle:
doc = yaml.safe_load(filehandle)
self.test_configuration(doc, path)
self.host = doc['config']['host']
self.password = doc['config']['password']
if 'port' in doc['config']:
self.port = doc['config']['port']
except FileNotFoundError as ex:
raise PyVLXException('file does not exist: {0}'.format(ex))
|
Read configuration file.
|
entailment
|
def setup_apiv2():
"""
Setup apiv2 when using PyQt4 and Python2.
"""
# setup PyQt api to version 2
if sys.version_info[0] == 2:
logging.getLogger(__name__).debug(
'setting up SIP API to version 2')
import sip
try:
sip.setapi("QString", 2)
sip.setapi("QVariant", 2)
except ValueError:
logging.getLogger(__name__).critical(
"failed to set up sip api to version 2 for PyQt4")
raise ImportError('PyQt4')
|
Setup apiv2 when using PyQt4 and Python2.
|
entailment
|
def autodetect():
"""
Auto-detects and use the first available QT_API by importing them in the
following order:
1) PyQt5
2) PyQt4
3) PySide
"""
logging.getLogger(__name__).debug('auto-detecting QT_API')
try:
logging.getLogger(__name__).debug('trying PyQt5')
import PyQt5
os.environ[QT_API] = PYQT5_API[0]
logging.getLogger(__name__).debug('imported PyQt5')
except ImportError:
try:
logging.getLogger(__name__).debug('trying PyQt4')
setup_apiv2()
import PyQt4
os.environ[QT_API] = PYQT4_API[0]
logging.getLogger(__name__).debug('imported PyQt4')
except ImportError:
try:
logging.getLogger(__name__).debug('trying PySide')
import PySide
os.environ[QT_API] = PYSIDE_API[0]
logging.getLogger(__name__).debug('imported PySide')
except ImportError:
raise PythonQtError('No Qt bindings could be found')
|
Auto-detects and use the first available QT_API by importing them in the
following order:
1) PyQt5
2) PyQt4
3) PySide
|
entailment
|
def from_config(cls, pyvlx, item):
"""Read roller shutter from config."""
name = item['name']
ident = item['id']
subtype = item['subtype']
typeid = item['typeId']
return cls(pyvlx, ident, name, subtype, typeid)
|
Read roller shutter from config.
|
entailment
|
async def handle_frame(self, frame):
"""Handle incoming API frame, return True if this was the expected frame."""
if isinstance(frame, FrameGetSceneListConfirmation):
self.count_scenes = frame.count_scenes
if self.count_scenes == 0:
self.success = True
return True
# We are still waiting for FrameGetSceneListNotification(s)
return False
if isinstance(frame, FrameGetSceneListNotification):
self.scenes.extend(frame.scenes)
if frame.remaining_scenes != 0:
# We are still waiting for FrameGetSceneListConfirmation(s)
return False
if self.count_scenes != len(self.scenes):
PYVLXLOG.warning("Warning: number of received scenes does not match expected number")
self.success = True
return True
return False
|
Handle incoming API frame, return True if this was the expected frame.
|
entailment
|
def get_payload(self):
"""Return Payload."""
ret = bytes([len(self.scenes)])
for number, name in self.scenes:
ret += bytes([number])
ret += string_to_bytes(name, 64)
ret += bytes([self.remaining_scenes])
return ret
|
Return Payload.
|
entailment
|
def from_payload(self, payload):
"""Init frame from binary data."""
number_of_objects = payload[0]
self.remaining_scenes = payload[-1]
predicted_len = number_of_objects * 65 + 2
if len(payload) != predicted_len:
raise PyVLXException('scene_list_notification_wrong_length')
self.scenes = []
for i in range(number_of_objects):
scene = payload[(i*65+1):(i*65+66)]
number = scene[0]
name = bytes_to_string(scene[1:])
self.scenes.append((number, name))
|
Init frame from binary data.
|
entailment
|
def read_remote_spec(filename, encoding='binary', cache=True,
show_progress=True, **kwargs):
"""Read FITS or ASCII spectrum from a remote location.
Parameters
----------
filename : str
Spectrum filename.
encoding, cache, show_progress
See :func:`~astropy.utils.data.get_readable_fileobj`.
kwargs : dict
Keywords acceptable by :func:`read_fits_spec` (if FITS) or
:func:`read_ascii_spec` (if ASCII).
Returns
-------
header : dict
Metadata.
wavelengths, fluxes : `~astropy.units.quantity.Quantity`
Wavelength and flux of the spectrum.
"""
with get_readable_fileobj(filename, encoding=encoding, cache=cache,
show_progress=show_progress) as fd:
header, wavelengths, fluxes = read_spec(fd, fname=filename, **kwargs)
return header, wavelengths, fluxes
|
Read FITS or ASCII spectrum from a remote location.
Parameters
----------
filename : str
Spectrum filename.
encoding, cache, show_progress
See :func:`~astropy.utils.data.get_readable_fileobj`.
kwargs : dict
Keywords acceptable by :func:`read_fits_spec` (if FITS) or
:func:`read_ascii_spec` (if ASCII).
Returns
-------
header : dict
Metadata.
wavelengths, fluxes : `~astropy.units.quantity.Quantity`
Wavelength and flux of the spectrum.
|
entailment
|
def read_spec(filename, fname='', **kwargs):
"""Read FITS or ASCII spectrum.
Parameters
----------
filename : str or file pointer
Spectrum file name or pointer.
fname : str
Filename. This is *only* used if ``filename`` is a pointer.
kwargs : dict
Keywords acceptable by :func:`read_fits_spec` (if FITS) or
:func:`read_ascii_spec` (if ASCII).
Returns
-------
header : dict
Metadata.
wavelengths, fluxes : `~astropy.units.quantity.Quantity`
Wavelength and flux of the spectrum.
Raises
------
synphot.exceptions.SynphotError
Read failed.
"""
if isinstance(filename, str):
fname = filename
elif not fname: # pragma: no cover
raise exceptions.SynphotError('Cannot determine filename.')
if fname.endswith('fits') or fname.endswith('fit'):
read_func = read_fits_spec
else:
read_func = read_ascii_spec
return read_func(filename, **kwargs)
|
Read FITS or ASCII spectrum.
Parameters
----------
filename : str or file pointer
Spectrum file name or pointer.
fname : str
Filename. This is *only* used if ``filename`` is a pointer.
kwargs : dict
Keywords acceptable by :func:`read_fits_spec` (if FITS) or
:func:`read_ascii_spec` (if ASCII).
Returns
-------
header : dict
Metadata.
wavelengths, fluxes : `~astropy.units.quantity.Quantity`
Wavelength and flux of the spectrum.
Raises
------
synphot.exceptions.SynphotError
Read failed.
|
entailment
|
def read_ascii_spec(filename, wave_unit=u.AA, flux_unit=units.FLAM, **kwargs):
"""Read ASCII spectrum.
ASCII table must have following columns:
#. Wavelength data
#. Flux data
It can have more than 2 columns but the rest is ignored.
Comments are discarded.
Parameters
----------
filename : str or file pointer
Spectrum file name or pointer.
wave_unit, flux_unit : str or `~astropy.units.core.Unit`
Wavelength and flux units, which default to Angstrom and FLAM,
respectively.
kwargs : dict
Keywords accepted by :func:`astropy.io.ascii.ui.read`.
Returns
-------
header : dict
This is just an empty dictionary, so returned values
are the same as :func:`read_fits_spec`.
wavelengths, fluxes : `~astropy.units.quantity.Quantity`
Wavelength and flux of the spectrum.
They are set to 'float64' percision.
"""
header = {}
dat = ascii.read(filename, **kwargs)
wave_unit = units.validate_unit(wave_unit)
flux_unit = units.validate_unit(flux_unit)
wavelengths = dat.columns[0].data.astype(np.float64) * wave_unit
fluxes = dat.columns[1].data.astype(np.float64) * flux_unit
return header, wavelengths, fluxes
|
Read ASCII spectrum.
ASCII table must have following columns:
#. Wavelength data
#. Flux data
It can have more than 2 columns but the rest is ignored.
Comments are discarded.
Parameters
----------
filename : str or file pointer
Spectrum file name or pointer.
wave_unit, flux_unit : str or `~astropy.units.core.Unit`
Wavelength and flux units, which default to Angstrom and FLAM,
respectively.
kwargs : dict
Keywords accepted by :func:`astropy.io.ascii.ui.read`.
Returns
-------
header : dict
This is just an empty dictionary, so returned values
are the same as :func:`read_fits_spec`.
wavelengths, fluxes : `~astropy.units.quantity.Quantity`
Wavelength and flux of the spectrum.
They are set to 'float64' percision.
|
entailment
|
def read_fits_spec(filename, ext=1, wave_col='WAVELENGTH', flux_col='FLUX',
wave_unit=u.AA, flux_unit=units.FLAM):
"""Read FITS spectrum.
Wavelength and flux units are extracted from ``TUNIT1`` and ``TUNIT2``
keywords, respectively, from data table (not primary) header.
If these keywords are not present, units are taken from
``wave_unit`` and ``flux_unit`` instead.
Parameters
----------
filename : str or file pointer
Spectrum file name or pointer.
ext: int
FITS extension with table data. Default is 1.
wave_col, flux_col : str
Wavelength and flux column names (case-insensitive).
wave_unit, flux_unit : str or `~astropy.units.core.Unit`
Wavelength and flux units, which default to Angstrom and FLAM,
respectively. These are *only* used if ``TUNIT1`` and ``TUNIT2``
keywords are not present in table (not primary) header.
Returns
-------
header : dict
Primary header only. Extension header is discarded.
wavelengths, fluxes : `~astropy.units.quantity.Quantity`
Wavelength and flux of the spectrum.
"""
fs = fits.open(filename)
header = dict(fs[str('PRIMARY')].header)
wave_dat = fs[ext].data.field(wave_col).copy()
flux_dat = fs[ext].data.field(flux_col).copy()
fits_wave_unit = fs[ext].header.get('TUNIT1')
fits_flux_unit = fs[ext].header.get('TUNIT2')
if fits_wave_unit is not None:
try:
wave_unit = units.validate_unit(fits_wave_unit)
except (exceptions.SynphotError, ValueError) as e: # pragma: no cover
warnings.warn(
'{0} from FITS header is not valid wavelength unit, using '
'{1}: {2}'.format(fits_wave_unit, wave_unit, e),
AstropyUserWarning)
if fits_flux_unit is not None:
try:
flux_unit = units.validate_unit(fits_flux_unit)
except (exceptions.SynphotError, ValueError) as e: # pragma: no cover
warnings.warn(
'{0} from FITS header is not valid flux unit, using '
'{1}: {2}'.format(fits_flux_unit, flux_unit, e),
AstropyUserWarning)
wave_unit = units.validate_unit(wave_unit)
flux_unit = units.validate_unit(flux_unit)
wavelengths = wave_dat * wave_unit
fluxes = flux_dat * flux_unit
if isinstance(filename, str):
fs.close()
return header, wavelengths, fluxes
|
Read FITS spectrum.
Wavelength and flux units are extracted from ``TUNIT1`` and ``TUNIT2``
keywords, respectively, from data table (not primary) header.
If these keywords are not present, units are taken from
``wave_unit`` and ``flux_unit`` instead.
Parameters
----------
filename : str or file pointer
Spectrum file name or pointer.
ext: int
FITS extension with table data. Default is 1.
wave_col, flux_col : str
Wavelength and flux column names (case-insensitive).
wave_unit, flux_unit : str or `~astropy.units.core.Unit`
Wavelength and flux units, which default to Angstrom and FLAM,
respectively. These are *only* used if ``TUNIT1`` and ``TUNIT2``
keywords are not present in table (not primary) header.
Returns
-------
header : dict
Primary header only. Extension header is discarded.
wavelengths, fluxes : `~astropy.units.quantity.Quantity`
Wavelength and flux of the spectrum.
|
entailment
|
def write_fits_spec(filename, wavelengths, fluxes, pri_header={},
ext_header={}, overwrite=False, trim_zero=True,
pad_zero_ends=True, precision=None, epsilon=0.00032,
wave_col='WAVELENGTH', flux_col='FLUX',
wave_unit=u.AA, flux_unit=units.FLAM):
"""Write FITS spectrum.
.. warning::
If data is being written out as single-precision but wavelengths
are in double-precision, some rows may be omitted.
Parameters
----------
filename : str
Output spectrum filename.
wavelengths, fluxes : array-like or `~astropy.units.quantity.Quantity`
Wavelength and flux of the spectrum.
pri_header, ext_header : dict
Metadata to be added to primary and given extension FITS header,
respectively. Do *not* use this to define column names and units.
overwrite : bool
Overwrite existing file. Defaults to `False`.
trim_zero : bool
Remove rows with zero-flux. Default is `True`.
pad_zero_ends : bool
Pad each end of the spectrum with a row of zero flux
like :func:`synphot.spectrum.BaseSpectrum.taper`.
This is unnecessary if input is already tapered.
precision : {`None`, 'single', 'double'}
Precision of values in output file.
Use native flux precision by default.
epsilon : float
Single-precision :math:`\\epsilon` value, taken from IRAF SYNPHOT FAQ.
This is the minimum separation in wavelengths necessary for SYNPHOT
to read the entries as distinct single-precision numbers.
This is *only* used if ``precision='single'`` but data are in
double-precision. Default from the FAQ is 0.00032.
wave_col, flux_col : str
Wavelength and flux column names (case-insensitive).
wave_unit, flux_unit : str or `~astropy.units.core.Unit`
Wavelength and flux units, which default to Angstrom and FLAM,
respectively. These are *only* used if wavelengths and fluxes
are not in astropy quantities.
Raises
------
synphot.exceptions.SynphotError
Wavelengths and fluxes have difference shapes or value precision
is not supported.
"""
if isinstance(wavelengths, u.Quantity):
wave_unit = wavelengths.unit
wave_value = wavelengths.value
else:
wave_value = wavelengths
if isinstance(fluxes, u.Quantity):
flux_unit = fluxes.unit
flux_value = fluxes.value
else:
flux_value = fluxes
wave_unit = units.validate_unit(wave_unit).to_string().upper()
flux_unit = units.validate_unit(flux_unit).to_string().upper()
if wave_value.shape != flux_value.shape:
raise exceptions.SynphotError(
'Wavelengths have shape {0} but fluxes have shape {1}'.format(
wave_value.shape, flux_value.shape))
# Remove rows with zero flux. Putting this before precision logic to avoid
# keeping duplicate wavelengths with zero flux.
if trim_zero:
idx = np.where(flux_value != 0)
wave_value = wave_value[idx]
flux_value = flux_value[idx]
n_thrown = wave_value.size - len(idx[0])
if n_thrown != 0:
log.info('{0} zero-flux rows are thrown out'.format(n_thrown))
# Only these Numpy types are supported
# 'f' np.float32
# 'd' np.float64
pcodes = {'d': 'D', 'f': 'E'} # Numpy to FITS conversion
# Use native flux precision
if precision is None:
precision = flux_value.dtype.char
if precision not in pcodes:
raise exceptions.SynphotError('flux is not float32 or float64')
# Use user specified precision
else:
precision = precision.lower()
if precision == 'single':
precision = 'f'
elif precision == 'double':
precision = 'd'
else:
raise exceptions.SynphotError(
'precision must be single or double')
# Now check wavelength precision
wave_precision = wave_value.dtype.char
if wave_precision not in pcodes:
raise exceptions.SynphotError(
'wavelength is not float32 or float64')
# If wavelength is double-precision but data is written out as
# single-precision, wavelength values have to be recalculated
# so that they will still be sorted with no duplicates.
if wave_precision == 'd' and precision == 'f':
orig_size = wave_value.size
idx = np.where(np.abs(wave_value[1:] - wave_value[:-1]) > epsilon)
wave_value = np.append(wave_value[idx], wave_value[-1])
flux_value = np.append(flux_value[idx], flux_value[-1])
n_thrown = orig_size - wave_value.size
if n_thrown != 0:
warnings.warn(
'{0} rows are thrown out in converting wavelengths from '
'double- to single-precision'.format(n_thrown),
AstropyUserWarning)
# Keep one zero at each end
if pad_zero_ends:
w1 = wave_value[0] ** 2 / wave_value[1]
w2 = wave_value[-1] ** 2 / wave_value[-2]
wave_value = np.insert(wave_value, [0, wave_value.size], [w1, w2])
flux_value = np.insert(flux_value, [0, flux_value.size], [0.0, 0.0])
# Construct the columns
cw = fits.Column(name=wave_col, array=wave_value, unit=wave_unit,
format=pcodes[precision])
cf = fits.Column(name=flux_col, array=flux_value, unit=flux_unit,
format=pcodes[precision])
# These are written to the primary header:
# 1. Filename
# 2. Origin
# 3. User dictionary (can overwrite defaults)
hdr_hdu = fits.PrimaryHDU()
hdr_hdu.header['filename'] = (os.path.basename(filename), 'name of file')
hdr_hdu.header['origin'] = ('synphot', 'Version {0}'.format(__version__))
for key, val in pri_header.items():
hdr_hdu.header[key] = val
# Make the extension HDU and include user dictionary in extension header.
tab_hdu = fits.BinTableHDU.from_columns(fits.ColDefs([cw, cf]))
for key, val in ext_header.items():
tab_hdu.header[key] = val
# Write to file
hdulist = fits.HDUList([hdr_hdu])
hdulist.append(tab_hdu)
hdulist.writeto(filename, overwrite=overwrite)
|
Write FITS spectrum.
.. warning::
If data is being written out as single-precision but wavelengths
are in double-precision, some rows may be omitted.
Parameters
----------
filename : str
Output spectrum filename.
wavelengths, fluxes : array-like or `~astropy.units.quantity.Quantity`
Wavelength and flux of the spectrum.
pri_header, ext_header : dict
Metadata to be added to primary and given extension FITS header,
respectively. Do *not* use this to define column names and units.
overwrite : bool
Overwrite existing file. Defaults to `False`.
trim_zero : bool
Remove rows with zero-flux. Default is `True`.
pad_zero_ends : bool
Pad each end of the spectrum with a row of zero flux
like :func:`synphot.spectrum.BaseSpectrum.taper`.
This is unnecessary if input is already tapered.
precision : {`None`, 'single', 'double'}
Precision of values in output file.
Use native flux precision by default.
epsilon : float
Single-precision :math:`\\epsilon` value, taken from IRAF SYNPHOT FAQ.
This is the minimum separation in wavelengths necessary for SYNPHOT
to read the entries as distinct single-precision numbers.
This is *only* used if ``precision='single'`` but data are in
double-precision. Default from the FAQ is 0.00032.
wave_col, flux_col : str
Wavelength and flux column names (case-insensitive).
wave_unit, flux_unit : str or `~astropy.units.core.Unit`
Wavelength and flux units, which default to Angstrom and FLAM,
respectively. These are *only* used if wavelengths and fluxes
are not in astropy quantities.
Raises
------
synphot.exceptions.SynphotError
Wavelengths and fluxes have difference shapes or value precision
is not supported.
|
entailment
|
def spectral_density_vega(wav, vegaflux):
"""Flux equivalencies between PHOTLAM and VEGAMAG.
Parameters
----------
wav : `~astropy.units.quantity.Quantity`
Quantity associated with values being converted
(e.g., wavelength or frequency).
vegaflux : `~astropy.units.quantity.Quantity`
Flux of Vega at ``wav``.
Returns
-------
eqv : list
List of equivalencies.
"""
vega_photlam = vegaflux.to(
PHOTLAM, equivalencies=u.spectral_density(wav)).value
def converter(x):
"""Set nan/inf to -99 mag."""
val = -2.5 * np.log10(x / vega_photlam)
result = np.zeros(val.shape, dtype=np.float64) - 99
mask = np.isfinite(val)
if result.ndim > 0:
result[mask] = val[mask]
elif mask:
result = np.asarray(val)
return result
def iconverter(x):
return vega_photlam * 10**(-0.4 * x)
return [(PHOTLAM, VEGAMAG, converter, iconverter)]
|
Flux equivalencies between PHOTLAM and VEGAMAG.
Parameters
----------
wav : `~astropy.units.quantity.Quantity`
Quantity associated with values being converted
(e.g., wavelength or frequency).
vegaflux : `~astropy.units.quantity.Quantity`
Flux of Vega at ``wav``.
Returns
-------
eqv : list
List of equivalencies.
|
entailment
|
def spectral_density_count(wav, area):
"""Flux equivalencies between PHOTLAM and count/OBMAG.
Parameters
----------
wav : `~astropy.units.quantity.Quantity`
Quantity associated with values being converted
(e.g., wavelength or frequency).
area : `~astropy.units.quantity.Quantity`
Telescope collecting area.
Returns
-------
eqv : list
List of equivalencies.
"""
from .binning import calculate_bin_widths, calculate_bin_edges
wav = wav.to(u.AA, equivalencies=u.spectral())
area = area.to(AREA)
bin_widths = calculate_bin_widths(calculate_bin_edges(wav))
factor = bin_widths.value * area.value
def converter_count(x):
return x * factor
def iconverter_count(x):
return x / factor
def converter_obmag(x):
return -2.5 * np.log10(x * factor)
def iconverter_obmag(x):
return 10**(-0.4 * x) / factor
return [(PHOTLAM, u.count, converter_count, iconverter_count),
(PHOTLAM, OBMAG, converter_obmag, iconverter_obmag)]
|
Flux equivalencies between PHOTLAM and count/OBMAG.
Parameters
----------
wav : `~astropy.units.quantity.Quantity`
Quantity associated with values being converted
(e.g., wavelength or frequency).
area : `~astropy.units.quantity.Quantity`
Telescope collecting area.
Returns
-------
eqv : list
List of equivalencies.
|
entailment
|
def convert_flux(wavelengths, fluxes, out_flux_unit, **kwargs):
"""Perform conversion for :ref:`supported flux units <synphot-flux-units>`.
Parameters
----------
wavelengths : array-like or `~astropy.units.quantity.Quantity`
Wavelength values. If not a Quantity, assumed to be in
Angstrom.
fluxes : array-like or `~astropy.units.quantity.Quantity`
Flux values. If not a Quantity, assumed to be in PHOTLAM.
out_flux_unit : str or `~astropy.units.core.Unit`
Output flux unit.
area : float or `~astropy.units.quantity.Quantity`
Area that fluxes cover. If not a Quantity, assumed to be in
:math:`cm^{2}`. This value *must* be provided for conversions involving
OBMAG and count, otherwise it is not needed.
vegaspec : `~synphot.spectrum.SourceSpectrum`
Vega spectrum from :func:`~synphot.spectrum.SourceSpectrum.from_vega`.
This is *only* used for conversions involving VEGAMAG.
Returns
-------
out_flux : `~astropy.units.quantity.Quantity`
Converted flux values.
Raises
------
astropy.units.core.UnitsError
Conversion failed.
synphot.exceptions.SynphotError
Area or Vega spectrum is not given when needed.
"""
if not isinstance(fluxes, u.Quantity):
fluxes = fluxes * PHOTLAM
out_flux_unit = validate_unit(out_flux_unit)
out_flux_unit_name = out_flux_unit.to_string()
in_flux_unit_name = fluxes.unit.to_string()
# No conversion necessary
if in_flux_unit_name == out_flux_unit_name:
return fluxes
in_flux_type = fluxes.unit.physical_type
out_flux_type = out_flux_unit.physical_type
# Wavelengths must Quantity
if not isinstance(wavelengths, u.Quantity):
wavelengths = wavelengths * u.AA
eqv = u.spectral_density(wavelengths)
# Use built-in astropy equivalencies
try:
out_flux = fluxes.to(out_flux_unit, eqv)
# Use PHOTLAM as in-between unit
except u.UnitConversionError:
# Convert input unit to PHOTLAM
if fluxes.unit == PHOTLAM:
flux_photlam = fluxes
elif in_flux_type != 'unknown':
flux_photlam = fluxes.to(PHOTLAM, eqv)
else:
flux_photlam = _convert_flux(
wavelengths, fluxes, PHOTLAM, **kwargs)
# Convert PHOTLAM to output unit
if out_flux_unit == PHOTLAM:
out_flux = flux_photlam
elif out_flux_type != 'unknown':
out_flux = flux_photlam.to(out_flux_unit, eqv)
else:
out_flux = _convert_flux(
wavelengths, flux_photlam, out_flux_unit, **kwargs)
return out_flux
|
Perform conversion for :ref:`supported flux units <synphot-flux-units>`.
Parameters
----------
wavelengths : array-like or `~astropy.units.quantity.Quantity`
Wavelength values. If not a Quantity, assumed to be in
Angstrom.
fluxes : array-like or `~astropy.units.quantity.Quantity`
Flux values. If not a Quantity, assumed to be in PHOTLAM.
out_flux_unit : str or `~astropy.units.core.Unit`
Output flux unit.
area : float or `~astropy.units.quantity.Quantity`
Area that fluxes cover. If not a Quantity, assumed to be in
:math:`cm^{2}`. This value *must* be provided for conversions involving
OBMAG and count, otherwise it is not needed.
vegaspec : `~synphot.spectrum.SourceSpectrum`
Vega spectrum from :func:`~synphot.spectrum.SourceSpectrum.from_vega`.
This is *only* used for conversions involving VEGAMAG.
Returns
-------
out_flux : `~astropy.units.quantity.Quantity`
Converted flux values.
Raises
------
astropy.units.core.UnitsError
Conversion failed.
synphot.exceptions.SynphotError
Area or Vega spectrum is not given when needed.
|
entailment
|
def _convert_flux(wavelengths, fluxes, out_flux_unit, area=None,
vegaspec=None):
"""Flux conversion for PHOTLAM <-> X."""
flux_unit_names = (fluxes.unit.to_string(), out_flux_unit.to_string())
if PHOTLAM.to_string() not in flux_unit_names:
raise exceptions.SynphotError(
'PHOTLAM must be one of the conversion units but get '
'{0}.'.format(flux_unit_names))
# VEGAMAG
if VEGAMAG.to_string() in flux_unit_names:
from .spectrum import SourceSpectrum
if not isinstance(vegaspec, SourceSpectrum):
raise exceptions.SynphotError('Vega spectrum is missing.')
flux_vega = vegaspec(wavelengths)
out_flux = fluxes.to(
out_flux_unit,
equivalencies=spectral_density_vega(wavelengths, flux_vega))
# OBMAG or count
elif (u.count in (fluxes.unit, out_flux_unit) or
OBMAG.to_string() in flux_unit_names):
if area is None:
raise exceptions.SynphotError(
'Area is compulsory for conversion involving count or OBMAG.')
elif not isinstance(area, u.Quantity):
area = area * AREA
out_flux = fluxes.to(
out_flux_unit,
equivalencies=spectral_density_count(wavelengths, area))
else:
raise u.UnitsError('{0} and {1} are not convertible'.format(
fluxes.unit, out_flux_unit))
return out_flux
|
Flux conversion for PHOTLAM <-> X.
|
entailment
|
def validate_unit(input_unit):
"""Validate unit.
To be compatible with existing SYNPHOT data files:
* 'angstroms' and 'inversemicrons' are accepted although
unrecognized by astropy units
* 'transmission', 'extinction', and 'emissivity' are
converted to astropy dimensionless unit
Parameters
----------
input_unit : str or `~astropy.units.core.Unit`
Unit to validate.
Returns
-------
output_unit : `~astropy.units.core.Unit`
Validated unit.
Raises
------
synphot.exceptions.SynphotError
Invalid unit.
"""
if isinstance(input_unit, str):
input_unit_lowcase = input_unit.lower()
# Backward-compatibility
if input_unit_lowcase == 'angstroms':
output_unit = u.AA
elif input_unit_lowcase == 'inversemicrons':
output_unit = u.micron ** -1
elif input_unit_lowcase in ('transmission', 'extinction',
'emissivity'):
output_unit = THROUGHPUT
elif input_unit_lowcase == 'jy':
output_unit = u.Jy
# Work around mag unit limitations
elif input_unit_lowcase in ('stmag', 'mag(st)'):
output_unit = u.STmag
elif input_unit_lowcase in ('abmag', 'mag(ab)'):
output_unit = u.ABmag
else:
try: # astropy.units is case-sensitive
output_unit = u.Unit(input_unit)
except ValueError: # synphot is case-insensitive
output_unit = u.Unit(input_unit_lowcase)
elif isinstance(input_unit, (u.UnitBase, u.LogUnit)):
output_unit = input_unit
else:
raise exceptions.SynphotError(
'{0} must be a recognized string or '
'astropy.units.core.Unit'.format(input_unit))
return output_unit
|
Validate unit.
To be compatible with existing SYNPHOT data files:
* 'angstroms' and 'inversemicrons' are accepted although
unrecognized by astropy units
* 'transmission', 'extinction', and 'emissivity' are
converted to astropy dimensionless unit
Parameters
----------
input_unit : str or `~astropy.units.core.Unit`
Unit to validate.
Returns
-------
output_unit : `~astropy.units.core.Unit`
Validated unit.
Raises
------
synphot.exceptions.SynphotError
Invalid unit.
|
entailment
|
def validate_wave_unit(wave_unit):
"""Like :func:`validate_unit` but specific to wavelength."""
output_unit = validate_unit(wave_unit)
unit_type = output_unit.physical_type
if unit_type not in ('length', 'wavenumber', 'frequency'):
raise exceptions.SynphotError(
'wavelength physical type is not length, wave number, or '
'frequency: {0}'.format(unit_type))
return output_unit
|
Like :func:`validate_unit` but specific to wavelength.
|
entailment
|
def validate_quantity(input_value, output_unit, equivalencies=[]):
"""Validate quantity (value and unit).
.. note::
For flux conversion, use :func:`convert_flux` instead.
Parameters
----------
input_value : number, array-like, or `~astropy.units.quantity.Quantity`
Quantity to validate. If not a Quantity, assumed to be
already in output unit.
output_unit : str or `~astropy.units.core.Unit`
Output quantity unit.
equivalencies : list of equivalence pairs, optional
See `astropy.units`.
Returns
-------
output_value : `~astropy.units.quantity.Quantity`
Validated quantity in given unit.
"""
output_unit = validate_unit(output_unit)
if isinstance(input_value, u.Quantity):
output_value = input_value.to(output_unit, equivalencies=equivalencies)
else:
output_value = input_value * output_unit
return output_value
|
Validate quantity (value and unit).
.. note::
For flux conversion, use :func:`convert_flux` instead.
Parameters
----------
input_value : number, array-like, or `~astropy.units.quantity.Quantity`
Quantity to validate. If not a Quantity, assumed to be
already in output unit.
output_unit : str or `~astropy.units.core.Unit`
Output quantity unit.
equivalencies : list of equivalence pairs, optional
See `astropy.units`.
Returns
-------
output_value : `~astropy.units.quantity.Quantity`
Validated quantity in given unit.
|
entailment
|
def add(self, device):
"""Add device."""
if not isinstance(device, Device):
raise TypeError()
self.__devices.append(device)
|
Add device.
|
entailment
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.