sentence1
stringlengths 52
3.87M
| sentence2
stringlengths 1
47.2k
| label
stringclasses 1
value |
|---|---|---|
def GetMemActiveMB(self):
'''Retrieves the amount of memory the virtual machine is actively using its
estimated working set size.'''
counter = c_uint()
ret = vmGuestLib.VMGuestLib_GetMemActiveMB(self.handle.value, byref(counter))
if ret != VMGUESTLIB_ERROR_SUCCESS: raise VMGuestLibException(ret)
return counter.value
|
Retrieves the amount of memory the virtual machine is actively using its
estimated working set size.
|
entailment
|
def GetMemBalloonedMB(self):
'''Retrieves the amount of memory that has been reclaimed from this virtual
machine by the vSphere memory balloon driver (also referred to as the
"vmmemctl" driver).'''
counter = c_uint()
ret = vmGuestLib.VMGuestLib_GetMemBalloonedMB(self.handle.value, byref(counter))
if ret != VMGUESTLIB_ERROR_SUCCESS: raise VMGuestLibException(ret)
return counter.value
|
Retrieves the amount of memory that has been reclaimed from this virtual
machine by the vSphere memory balloon driver (also referred to as the
"vmmemctl" driver).
|
entailment
|
def GetMemBalloonMaxMB(self):
'''Undocumented.'''
counter = c_uint()
ret = vmGuestLib.VMGuestLib_GetMemBalloonMaxMB(self.handle.value, byref(counter))
if ret != VMGUESTLIB_ERROR_SUCCESS: raise VMGuestLibException(ret)
return counter.value
|
Undocumented.
|
entailment
|
def GetMemBalloonTargetMB(self):
'''Undocumented.'''
counter = c_uint()
ret = vmGuestLib.VMGuestLib_GetMemBalloonTargetMB(self.handle.value, byref(counter))
if ret != VMGUESTLIB_ERROR_SUCCESS: raise VMGuestLibException(ret)
return counter.value
|
Undocumented.
|
entailment
|
def GetMemLimitMB(self):
'''Retrieves the upper limit of memory that is available to the virtual
machine. For information about setting a memory limit, see "Limits and
Reservations" on page 14.'''
counter = c_uint()
ret = vmGuestLib.VMGuestLib_GetMemLimitMB(self.handle.value, byref(counter))
if ret != VMGUESTLIB_ERROR_SUCCESS: raise VMGuestLibException(ret)
return counter.value
|
Retrieves the upper limit of memory that is available to the virtual
machine. For information about setting a memory limit, see "Limits and
Reservations" on page 14.
|
entailment
|
def GetMemLLSwappedMB(self):
'''Undocumented.'''
counter = c_uint()
ret = vmGuestLib.VMGuestLib_GetMemLLSwappedMB(self.handle.value, byref(counter))
if ret != VMGUESTLIB_ERROR_SUCCESS: raise VMGuestLibException(ret)
return counter.value
|
Undocumented.
|
entailment
|
def GetMemMappedMB(self):
'''Retrieves the amount of memory that is allocated to the virtual machine.
Memory that is ballooned, swapped, or has never been accessed is
excluded.'''
counter = c_uint()
ret = vmGuestLib.VMGuestLib_GetMemMappedMB(self.handle.value, byref(counter))
if ret != VMGUESTLIB_ERROR_SUCCESS: raise VMGuestLibException(ret)
return counter.value
|
Retrieves the amount of memory that is allocated to the virtual machine.
Memory that is ballooned, swapped, or has never been accessed is
excluded.
|
entailment
|
def GetMemOverheadMB(self):
'''Retrieves the amount of "overhead" memory associated with this virtual
machine that is currently consumed on the host system. Overhead
memory is additional memory that is reserved for data structures required
by the virtualization layer.'''
counter = c_uint()
ret = vmGuestLib.VMGuestLib_GetMemOverheadMB(self.handle.value, byref(counter))
if ret != VMGUESTLIB_ERROR_SUCCESS: raise VMGuestLibException(ret)
return counter.value
|
Retrieves the amount of "overhead" memory associated with this virtual
machine that is currently consumed on the host system. Overhead
memory is additional memory that is reserved for data structures required
by the virtualization layer.
|
entailment
|
def GetMemReservationMB(self):
'''Retrieves the minimum amount of memory that is reserved for the virtual
machine. For information about setting a memory reservation, see "Limits
and Reservations" on page 14.'''
counter = c_uint()
ret = vmGuestLib.VMGuestLib_GetMemReservationMB(self.handle.value, byref(counter))
if ret != VMGUESTLIB_ERROR_SUCCESS: raise VMGuestLibException(ret)
return counter.value
|
Retrieves the minimum amount of memory that is reserved for the virtual
machine. For information about setting a memory reservation, see "Limits
and Reservations" on page 14.
|
entailment
|
def GetMemSharedMB(self):
'''Retrieves the amount of physical memory associated with this virtual
machine that is copy-on-write (COW) shared on the host.'''
counter = c_uint()
ret = vmGuestLib.VMGuestLib_GetMemSharedMB(self.handle.value, byref(counter))
if ret != VMGUESTLIB_ERROR_SUCCESS: raise VMGuestLibException(ret)
return counter.value
|
Retrieves the amount of physical memory associated with this virtual
machine that is copy-on-write (COW) shared on the host.
|
entailment
|
def GetMemSharedSavedMB(self):
'''Retrieves the estimated amount of physical memory on the host saved
from copy-on-write (COW) shared guest physical memory.'''
counter = c_uint()
ret = vmGuestLib.VMGuestLib_GetMemSharedSavedMB(self.handle.value, byref(counter))
if ret != VMGUESTLIB_ERROR_SUCCESS: raise VMGuestLibException(ret)
return counter.value
|
Retrieves the estimated amount of physical memory on the host saved
from copy-on-write (COW) shared guest physical memory.
|
entailment
|
def GetMemShares(self):
'''Retrieves the number of memory shares allocated to the virtual machine.
For information about how an ESX server uses memory shares to manage
virtual machine priority, see the vSphere Resource Management Guide.'''
counter = c_uint()
ret = vmGuestLib.VMGuestLib_GetMemShares(self.handle.value, byref(counter))
if ret != VMGUESTLIB_ERROR_SUCCESS: raise VMGuestLibException(ret)
return counter.value
|
Retrieves the number of memory shares allocated to the virtual machine.
For information about how an ESX server uses memory shares to manage
virtual machine priority, see the vSphere Resource Management Guide.
|
entailment
|
def GetMemSwappedMB(self):
'''Retrieves the amount of memory that has been reclaimed from this virtual
machine by transparently swapping guest memory to disk.'''
counter = c_uint()
ret = vmGuestLib.VMGuestLib_GetMemSwappedMB(self.handle.value, byref(counter))
if ret != VMGUESTLIB_ERROR_SUCCESS: raise VMGuestLibException(ret)
return counter.value
|
Retrieves the amount of memory that has been reclaimed from this virtual
machine by transparently swapping guest memory to disk.
|
entailment
|
def GetMemSwapTargetMB(self):
'''Undocumented.'''
counter = c_uint()
ret = vmGuestLib.VMGuestLib_GetMemSwapTargetMB(self.handle.value, byref(counter))
if ret != VMGUESTLIB_ERROR_SUCCESS: raise VMGuestLibException(ret)
return counter.value
|
Undocumented.
|
entailment
|
def GetMemTargetSizeMB(self):
'''Retrieves the size of the target memory allocation for this virtual machine.'''
counter = c_uint()
ret = vmGuestLib.VMGuestLib_GetMemTargetSizeMB(self.handle.value, byref(counter))
if ret != VMGUESTLIB_ERROR_SUCCESS: raise VMGuestLibException(ret)
return counter.value
|
Retrieves the size of the target memory allocation for this virtual machine.
|
entailment
|
def GetMemUsedMB(self):
'''Retrieves the estimated amount of physical host memory currently
consumed for this virtual machine's physical memory.'''
counter = c_uint()
ret = vmGuestLib.VMGuestLib_GetMemUsedMB(self.handle.value, byref(counter))
if ret != VMGUESTLIB_ERROR_SUCCESS: raise VMGuestLibException(ret)
return counter.value
|
Retrieves the estimated amount of physical host memory currently
consumed for this virtual machine's physical memory.
|
entailment
|
def GetMemZippedMB(self):
'''Undocumented.'''
counter = c_uint()
ret = vmGuestLib.VMGuestLib_GetMemZippedMB(self.handle.value, byref(counter))
if ret != VMGUESTLIB_ERROR_SUCCESS: raise VMGuestLibException(ret)
return counter.value
|
Undocumented.
|
entailment
|
def GetMemZipSavedMB(self):
'''Undocumented.'''
counter = c_uint()
ret = vmGuestLib.VMGuestLib_GetMemZipSavedMB(self.handle.value, byref(counter))
if ret != VMGUESTLIB_ERROR_SUCCESS: raise VMGuestLibException(ret)
return counter.value
|
Undocumented.
|
entailment
|
def spev(t_int, C, deg, x, cov_C=None, M_spline=False, I_spline=False, n=0):
"""Evaluate a B-, M- or I-spline with the specified internal knots, order and coefficients.
`deg` boundary knots are appended at both sides of the domain.
The zeroth order basis functions are modified to ensure continuity at the
right-hand boundary.
Note that the I-splines include the :math:`i=0` case in order to have a "DC
offset". This way your functions do not have to start at zero. If you want
to not include this, simply set the first coefficient in `C` to zero.
Parameters
----------
t_int : array of float, (`M`,)
The internal knot locations. Must be monotonic (this is NOT checked).
C : array of float, (`M + deg - 1`,)
The coefficients applied to the basis functions.
deg : nonnegative int
The polynomial degree to use.
x : array of float, (`N`,)
The locations to evaluate the spline at.
cov_C : array of float, (`M + deg - 1`,) or (`M + deg - 1`, `M + deg - 1`), optional
The covariance matrix of the coefficients. If a 1d array is passed, this
is treated as the variance. If None, then the uncertainty is not
computed.
M_spline : bool, optional
If True, compute the M-spline instead of the B-spline. M-splines are
normalized to integrate to unity, as opposed to B-splines which sum to
unity at all points. Default is False (compute B-spline).
I_spline : bool, optional
If True, compute the I-spline instead of the B-spline. Note that this
will override `M_spline`. I-splines are the integrals of the M-splines,
and hence ensure curves are monotonic if all coefficients are of the
same sign. Note that the I-splines returned will be of polynomial degree
`deg` (i.e., the integral of what is returned from calling the function
with `deg=deg-1` and `M_spline=True`. Default is False (compute B-spline
or M-spline).
n : int, optional
The derivative order to compute. Default is 0. If `n>d`, all zeros are
returned (i.e., the discontinuities are not included).
Returns
-------
`y` or (`y`, `cov_y`): The values (and possibly uncertainties) of the spline
at the specified locations.
"""
C = scipy.asarray(C, dtype=float)
t_int = scipy.asarray(t_int, dtype=float)
if (t_int != scipy.sort(t_int)).any():
raise ValueError("Knots must be in increasing order!")
# if len(scipy.unique(t_int)) != len(t_int):
# raise ValueError("Knots must be unique!")
if n > deg:
return scipy.zeros_like(x, dtype=float)
if I_spline:
# I_{i,k} = int_L^x M_{i,k}(u)du, so just take the derivative of the
# underlying M-spline. Discarding the first coefficient dumps the "DC
# offset" term.
if cov_C is not None:
cov_C = scipy.asarray(cov_C)
if cov_C.ndim == 1:
cov_C = cov_C[1:]
elif cov_C.ndim == 2:
cov_C = cov_C[1:, 1:]
if n > 0:
return spev(
t_int, C[1:], deg - 1, x,
cov_C=cov_C, M_spline=True, I_spline=False, n=n - 1
)
M_spline = True
if n > 0:
if M_spline:
t = scipy.concatenate(([t_int[0]] * deg, t_int, [t_int[-1]] * deg))
C = (deg + 1.0) * (
C[1:] / (t[deg + 2:len(t_int) + 2 * deg] - t[1:len(t_int) + deg - 1]) -
C[:-1] / (t[deg + 1:len(t_int) + 2 * deg - 1] - t[:len(t_int) + deg - 2])
)
else:
C = C[1:] - C[:-1]
return spev(
t_int, C, deg - 1, x,
cov_C=cov_C, M_spline=True, I_spline=False, n=n - 1
)
if len(C) != len(t_int) + deg - 1:
raise ValueError("Length of C must be equal to M + deg - 1!")
# Append the external knots directly at the boundary:
t = scipy.concatenate(([t_int[0]] * deg, t_int, [t_int[-1]] * deg))
# Compute the different orders:
B = scipy.zeros((deg + 1, len(t) - 1, len(x)))
# NOTE: The first dimension is indexed by deg, and is zero-indexed.
# Zeroth order: constant function
d = 0
for i in xrange(deg, deg + len(t_int) - 2 + 1):
# The second condition contains a hack to make the basis functions
# continuous at the right-hand edge.
mask = (t[i] <= x) & (
(x < t[i + 1]) | ((i == deg + len(t_int) - 2) & (x == t[-1]))
)
B[d, i, mask] = 1.0 / (t[i + 1] - t[i]) if M_spline else 1.0
# Loop over other orders:
for d in xrange(1, deg + 1):
for i in xrange(deg - d, deg + len(t_int) - 2 + 1):
if t[i + d] != t[i]:
v = (x - t[i]) * B[d - 1, i, :]
if not M_spline:
v /= t[i + d] - t[i]
B[d, i, :] += v
if t[i + d + 1] != t[i + 1]:
v = (t[i + d + 1] - x) * B[d - 1, i + 1, :]
if not M_spline:
v /= t[i + d + 1] - t[i + 1]
B[d, i, :] += v
if M_spline and ((t[i + d] != t[i]) or (t[i + d + 1] != t[i + 1])):
B[d, i, :] *= (d + 1) / (d * (t[i + d + 1] - t[i]))
B = B[deg, 0:len(C), :].T
# Now compute the I-splines, if needed:
if I_spline:
I = scipy.zeros_like(B)
for i in xrange(0, len(C)):
for m in xrange(i, len(C)):
I[:, i] += (t[m + deg + 1] - t[m]) * B[:, m] / (deg + 1.0)
B = I
y = B.dot(C)
if cov_C is not None:
cov_C = scipy.asarray(cov_C)
# If there are no covariances, promote cov_C to a diagonal matrix
if cov_C.ndim == 1:
cov_C = scipy.diag(cov_C)
cov_y = B.dot(cov_C).dot(B.T)
return (y, cov_y)
else:
return y
|
Evaluate a B-, M- or I-spline with the specified internal knots, order and coefficients.
`deg` boundary knots are appended at both sides of the domain.
The zeroth order basis functions are modified to ensure continuity at the
right-hand boundary.
Note that the I-splines include the :math:`i=0` case in order to have a "DC
offset". This way your functions do not have to start at zero. If you want
to not include this, simply set the first coefficient in `C` to zero.
Parameters
----------
t_int : array of float, (`M`,)
The internal knot locations. Must be monotonic (this is NOT checked).
C : array of float, (`M + deg - 1`,)
The coefficients applied to the basis functions.
deg : nonnegative int
The polynomial degree to use.
x : array of float, (`N`,)
The locations to evaluate the spline at.
cov_C : array of float, (`M + deg - 1`,) or (`M + deg - 1`, `M + deg - 1`), optional
The covariance matrix of the coefficients. If a 1d array is passed, this
is treated as the variance. If None, then the uncertainty is not
computed.
M_spline : bool, optional
If True, compute the M-spline instead of the B-spline. M-splines are
normalized to integrate to unity, as opposed to B-splines which sum to
unity at all points. Default is False (compute B-spline).
I_spline : bool, optional
If True, compute the I-spline instead of the B-spline. Note that this
will override `M_spline`. I-splines are the integrals of the M-splines,
and hence ensure curves are monotonic if all coefficients are of the
same sign. Note that the I-splines returned will be of polynomial degree
`deg` (i.e., the integral of what is returned from calling the function
with `deg=deg-1` and `M_spline=True`. Default is False (compute B-spline
or M-spline).
n : int, optional
The derivative order to compute. Default is 0. If `n>d`, all zeros are
returned (i.e., the discontinuities are not included).
Returns
-------
`y` or (`y`, `cov_y`): The values (and possibly uncertainties) of the spline
at the specified locations.
|
entailment
|
def parser(subparsers):
"Build an argparse argument parser to parse the command line."
# create the parser for the version subcommand.
parser_version = subparsers.add_parser(
'version',
help="Output the version of %(prog)s to the console.")
parser_version.set_defaults(func=command_version)
return parser_version
|
Build an argparse argument parser to parse the command line.
|
entailment
|
def wafer_form_helper(context, helper_name):
'''
Find the specified Crispy FormHelper and instantiate it.
Handy when you are crispyifying other apps' forms.
'''
request = context.request
module, class_name = helper_name.rsplit('.', 1)
if module not in sys.modules:
__import__(module)
mod = sys.modules[module]
class_ = getattr(mod, class_name)
return class_(request=request)
|
Find the specified Crispy FormHelper and instantiate it.
Handy when you are crispyifying other apps' forms.
|
entailment
|
def page_menus(root_menu):
"""Add page menus."""
for page in Page.objects.filter(include_in_menu=True):
path = page.get_path()
menu = path[0] if len(path) > 1 else None
try:
root_menu.add_item(page.name, page.get_absolute_url(), menu=menu)
except MenuError as e:
logger.error("Bad menu item %r for page with slug %r."
% (e, page.slug))
|
Add page menus.
|
entailment
|
def redirect_profile(request):
'''
The default destination from logging in, redirect to the actual profile URL
'''
if request.user.is_authenticated:
return HttpResponseRedirect(reverse('wafer_user_profile',
args=(request.user.username,)))
else:
return redirect_to_login(next=reverse(redirect_profile))
|
The default destination from logging in, redirect to the actual profile URL
|
entailment
|
def reviewed_badge(user, talk):
"""Returns a badge for the user's reviews of the talk"""
context = {
'reviewed': False,
}
review = None
if user and not user.is_anonymous():
review = talk.reviews.filter(reviewer=user).first()
if review:
context['reviewed'] = True
context['review_is_current'] = review.is_current()
return context
|
Returns a badge for the user's reviews of the talk
|
entailment
|
def beta_cdf_warp(X, d, n, *args):
r"""Warp inputs that are confined to the unit hypercube using the regularized incomplete beta function.
Applies separately to each dimension, designed for use with
:py:class:`WarpingFunction`.
Assumes that your inputs `X` lie entirely within the unit hypercube [0, 1].
Note that you may experience some issues with constraining and computing
derivatives at :math:`x=0` when :math:`\alpha < 1` and at :math:`x=1` when
:math:`\beta < 1`. As a workaround, try mapping your data to not touch the
boundaries of the unit hypercube.
Parameters
----------
X : array, (`M`,)
`M` inputs from dimension `d`.
d : non-negative int
The index (starting from zero) of the dimension to apply the warping to.
n : non-negative int
The derivative order to compute.
*args : 2N scalars
The remaining parameters to describe the warping, given as scalars.
These are given as `alpha_i`, `beta_i` for each of the `D` dimensions.
Note that these must ALL be provided for each call.
References
----------
.. [1] J. Snoek, K. Swersky, R. Zemel, R. P. Adams, "Input Warping for
Bayesian Optimization of Non-stationary Functions" ICML (2014)
"""
X = scipy.asarray(X)
a = args[2 * d]
b = args[2 * d + 1]
if n == 0:
return scipy.special.betainc(a, b, X)
elif n == 1:
# http://functions.wolfram.com/GammaBetaErf/BetaRegularized/20/01/01/
return (1 - X)**(b - 1) * X**(a - 1) / scipy.special.beta(a, b)
else:
# http://functions.wolfram.com/GammaBetaErf/BetaRegularized/20/02/01/
out = scipy.zeros_like(X)
for k in range(0, n):
out += (
(-1.0)**(n - k) * scipy.special.binom(n - 1, k) *
fixed_poch(1.0 - b, k) * fixed_poch(1.0 - a, n - k - 1.0) *
(X / (1.0 - X))**k
)
return -(1.0 - X)**(b - 1.0) * X**(a - n) * out / scipy.special.beta(a, b)
|
r"""Warp inputs that are confined to the unit hypercube using the regularized incomplete beta function.
Applies separately to each dimension, designed for use with
:py:class:`WarpingFunction`.
Assumes that your inputs `X` lie entirely within the unit hypercube [0, 1].
Note that you may experience some issues with constraining and computing
derivatives at :math:`x=0` when :math:`\alpha < 1` and at :math:`x=1` when
:math:`\beta < 1`. As a workaround, try mapping your data to not touch the
boundaries of the unit hypercube.
Parameters
----------
X : array, (`M`,)
`M` inputs from dimension `d`.
d : non-negative int
The index (starting from zero) of the dimension to apply the warping to.
n : non-negative int
The derivative order to compute.
*args : 2N scalars
The remaining parameters to describe the warping, given as scalars.
These are given as `alpha_i`, `beta_i` for each of the `D` dimensions.
Note that these must ALL be provided for each call.
References
----------
.. [1] J. Snoek, K. Swersky, R. Zemel, R. P. Adams, "Input Warping for
Bayesian Optimization of Non-stationary Functions" ICML (2014)
|
entailment
|
def linear_warp(X, d, n, *args):
r"""Warp inputs with a linear transformation.
Applies the warping
.. math::
w(x) = \frac{x-a}{b-a}
to each dimension. If you set `a=min(X)` and `b=max(X)` then this is a
convenient way to map your inputs to the unit hypercube.
Parameters
----------
X : array, (`M`,)
`M` inputs from dimension `d`.
d : non-negative int
The index (starting from zero) of the dimension to apply the warping to.
n : non-negative int
The derivative order to compute.
*args : 2N scalars
The remaining parameters to describe the warping, given as scalars.
These are given as `a_i`, `b_i` for each of the `D` dimensions. Note
that these must ALL be provided for each call.
"""
X = scipy.asarray(X, dtype=float)
a = args[2 * d]
b = args[2 * d + 1]
if n == 0:
return (X - a) / (b - a)
elif n == 1:
return 1.0 / (b - a) * scipy.ones_like(X)
else:
return scipy.zeros_like(X)
|
r"""Warp inputs with a linear transformation.
Applies the warping
.. math::
w(x) = \frac{x-a}{b-a}
to each dimension. If you set `a=min(X)` and `b=max(X)` then this is a
convenient way to map your inputs to the unit hypercube.
Parameters
----------
X : array, (`M`,)
`M` inputs from dimension `d`.
d : non-negative int
The index (starting from zero) of the dimension to apply the warping to.
n : non-negative int
The derivative order to compute.
*args : 2N scalars
The remaining parameters to describe the warping, given as scalars.
These are given as `a_i`, `b_i` for each of the `D` dimensions. Note
that these must ALL be provided for each call.
|
entailment
|
def w_func(self, X, d, n):
"""Evaluate the (possibly recursive) warping function and its derivatives.
Parameters
----------
X : array, (`M`,)
The points (from dimension `d`) to evaluate the warping function at.
d : int
The dimension to warp.
n : int
The derivative order to compute. So far only 0 and 1 are supported.
"""
if n == 0:
wX = self.w(X, d, 0)
if isinstance(self.k, WarpedKernel):
wX = self.k.w_func(wX, d, 0)
return wX
elif n == 1:
wXn = self.w(X, d, n)
if isinstance(self.k, WarpedKernel):
wX = self.w_func(X, d, 0)
wXn *= self.k.w_func(wX, d, n)
return wXn
else:
raise ValueError("Derivative orders greater than one are not supported!")
|
Evaluate the (possibly recursive) warping function and its derivatives.
Parameters
----------
X : array, (`M`,)
The points (from dimension `d`) to evaluate the warping function at.
d : int
The dimension to warp.
n : int
The derivative order to compute. So far only 0 and 1 are supported.
|
entailment
|
def enforce_bounds(self, v):
"""Set `enforce_bounds` for both of the kernels to a new value.
"""
self._enforce_bounds = v
self.k.enforce_bounds = v
self.w.enforce_bounds = v
|
Set `enforce_bounds` for both of the kernels to a new value.
|
entailment
|
def free_params(self, value):
"""Set the free parameters. Note that this bypasses enforce_bounds.
"""
value = scipy.asarray(value, dtype=float)
self.K_up_to_date = False
self.k.free_params = value[:self.k.num_free_params]
self.w.free_params = value[self.k.num_free_params:self.k.num_free_params + self.w.num_free_params]
|
Set the free parameters. Note that this bypasses enforce_bounds.
|
entailment
|
def set_hyperparams(self, new_params):
"""Set the (free) hyperparameters.
Parameters
----------
new_params : :py:class:`Array` or other Array-like
New values of the free parameters.
Raises
------
ValueError
If the length of `new_params` is not consistent with :py:attr:`self.params`.
"""
new_params = scipy.asarray(new_params, dtype=float)
if len(new_params) == len(self.free_params):
num_free_k = sum(~self.k.fixed_params)
self.k.set_hyperparams(new_params[:num_free_k])
self.w.set_hyperparams(new_params[num_free_k:])
else:
raise ValueError("Length of new_params must be %s!" % (len(self.free_params),))
|
Set the (free) hyperparameters.
Parameters
----------
new_params : :py:class:`Array` or other Array-like
New values of the free parameters.
Raises
------
ValueError
If the length of `new_params` is not consistent with :py:attr:`self.params`.
|
entailment
|
def get(self, request, *args, **kwargs):
"""
Handles GET requests and instantiates blank versions of the form and its inline formsets.
"""
# Prepare base
if 'pk' in kwargs:
self.object = self.get_object()
else:
self.object = None
form_class = self.get_form_class()
# Get prefix
if 'field_prefix' in form_class.Meta.__dict__:
# Get name from the form
field_prefix = form_class.Meta.field_prefix
else:
# Get name from the class
field_prefix = str(form_class).split("'")[1].split(".")[-1]
self.field_prefix = field_prefix
# Build form
form = self.get_form(form_class)
# Find groups
if 'groups' in dir(self):
# Save groups
groups = self.groups
# Redefine groups inside the form
form.__groups__ = lambda: groups
# Initialize list of fields
fields = []
else:
groups = None
# Add special prefix support to properly support form independency
form.add_prefix = lambda fields_name, field_prefix=field_prefix: "%s_%s" % (field_prefix, fields_name)
if 'autofill' not in dir(form.Meta):
form.Meta.autofill = {}
# For every extra form
forms = []
position_form_default = 0
for (formelement, linkerfield, modelfilter) in self.forms:
if formelement is None:
formobj = form
position_form_default = len(forms)
else:
# Locate linked element
if self.object:
related_name = formelement._meta.model._meta.get_field(linkerfield).related_query_name()
queryset = getattr(self.object, related_name)
if modelfilter:
queryset = queryset.filter(eval("Q(%s)" % (modelfilter)))
get_method = getattr(queryset, 'get', None)
if get_method:
instance = queryset.get()
else:
instance = queryset
else:
instance = None
if 'autofill' in dir(formelement.Meta):
formname = str(formelement).split('.')[-1].split("'")[0]
for key in formelement.Meta.autofill:
form.Meta.autofill['{}_{}'.format(formname, key)] = formelement.Meta.autofill[key]
# Get prefix
if 'field_prefix' in formelement.Meta.__dict__:
# Get name from the form
field_prefix = formelement.Meta.field_prefix
else:
# Get name from the class
field_prefix = str(formelement).split("'")[1].split(".")[-1]
self.field_prefix = field_prefix
# Prepare form
formobj = formelement(instance=instance)
formobj.form_name = form.form_name
# Excluded fields
if 'exclude' not in formobj.Meta.__dict__:
formobj.Meta.exclude = [linkerfield]
elif linkerfield not in formobj.Meta.exclude:
formobj.Meta.exclude.append(linkerfield)
if linkerfield in formobj.fields:
del(formobj.fields[linkerfield])
# Add special prefix support to properly support form independency
formobj.add_prefix = lambda fields_name, field_prefix=field_prefix: "%s_%s" % (field_prefix, fields_name)
formobj.scope_prefix = field_prefix
# Save fields to the list
if groups:
for field in formobj:
fields.append(field)
else:
# Add the form to the list of forms
forms.append(formobj)
if position_form_default == 0:
open_tabs = 1
else:
open_tabs = 0
# Remember list of fields
if groups:
form.list_fields = fields
# Add context and return new context
return self.render_to_response(self.get_context_data(form=form, forms=forms, open_tabs=open_tabs, position_form_default=position_form_default))
|
Handles GET requests and instantiates blank versions of the form and its inline formsets.
|
entailment
|
def post(self, request, *args, **kwargs):
"""
andles POST requests, instantiating a form instance and its inline formsets with the passed POST variables and then checking them for validity.
"""
# Prepare base
if 'pk' in kwargs:
self.object = self.get_object()
else:
self.object = None
form_class = self.get_form_class()
# Get prefix
if 'field_prefix' in form_class.Meta.__dict__:
# Get name from the form
field_prefix = form_class.Meta.field_prefix
# Initialize list of fields
else:
# Get name from the class
field_prefix = str(form_class).split("'")[1].split(".")[-1]
self.field_prefix = field_prefix
# Build the form
form = self.get_form(form_class)
# Find groups
if 'groups' in dir(self):
# Save groups
groups = self.groups
# Redefine groups inside the form
form.__groups__ = lambda: groups
# Initialize list of fields
fields = []
else:
groups = None
# Add special prefix support to properly support form independency
form.add_prefix = lambda fields_name, field_prefix=field_prefix: "%s_%s" % (field_prefix, fields_name)
# Check validation
valid = form.is_valid()
if (not valid) and ('non_field_errors' in dir(self)):
errors = [element[5] for element in list(self.non_field_errors())[:-1]]
elif form.errors.as_data():
errors = []
for element in form.errors.as_data():
for err in form.errors.as_data()[element][0]:
errors.append(err)
else:
errors = []
# For every extra form
temp_forms = []
position_form_default = 0
for (formelement, linkerfield, modelfilter) in self.forms:
if formelement is None:
formobj = form
position_form_default = len(temp_forms)
else:
# Locate linked element
if self.object:
related_name = formelement._meta.model._meta.get_field(linkerfield).related_query_name()
queryset = getattr(self.object, related_name)
if modelfilter:
queryset = queryset.filter(eval("Q(%s)" % (modelfilter)))
get_method = getattr(queryset, 'get', None)
if get_method:
instance = queryset.get()
else:
instance = queryset
else:
instance = None
# Get prefix
if 'field_prefix' in formelement.Meta.__dict__:
# Get name from the form
field_prefix = formelement.Meta.field_prefix
else:
# Get name from the class
field_prefix = str(formelement).split("'")[1].split(".")[-1]
self.field_prefix = field_prefix
# Prepare form
formobj = formelement(instance=instance, data=self.request.POST)
formobj.form_name = form.form_name
# Excluded fields
if 'exclude' not in formobj.Meta.__dict__:
formobj.Meta.exclude = [linkerfield]
elif linkerfield not in formobj.Meta.exclude:
formobj.Meta.exclude.append(linkerfield)
if linkerfield in formobj.fields:
del(formobj.fields[linkerfield])
# Link it to the main model
formobj.add_prefix = lambda fields_name, field_prefix=field_prefix: "%s_%s" % (field_prefix, fields_name)
# Validate
valid *= formobj.is_valid()
# append error
if not formobj.is_valid() and ('non_field_errors' in dir(formobj)):
errors += [element[5] for element in list(formobj.non_field_errors())[:-1]]
# Save fields to the list
if groups:
for field in formobj:
# raise Exception (field.__dict__)
if 'unblock_t2ime' in field.html_name:
raise Exception(field.field.__dict__)
fields.append(field)
# Add a new form
temp_forms.append((formobj, linkerfield))
# execute validation specified
validate_forms = None
if valid and ("validate" in dir(self)):
validate_forms = [tform[0] for tform in temp_forms]
errors = self.validate(*validate_forms)
# valid = len(errors) == 0
valid = False
if errors is None or len(errors) == 0:
valid = True
# Remember list of fields
if groups:
form.list_fields = fields
forms = []
else:
if validate_forms:
forms = validate_forms
else:
forms = [tform[0] for tform in temp_forms]
if position_form_default == 0:
open_tabs = 1
else:
open_tabs = 0
# Check validation result
if valid:
# Everything is OK, call valid
return self.form_valid(form, temp_forms)
else:
# Something went wrong, attach error and call invalid
form.list_errors = errors
return self.form_invalid(form, forms, open_tabs, position_form_default)
|
andles POST requests, instantiating a form instance and its inline formsets with the passed POST variables and then checking them for validity.
|
entailment
|
def form_valid(self, form, forms):
"""
Called if all forms are valid. Creates a Recipe instance along with associated Ingredients and Instructions and then redirects to a success page.
"""
if self.object:
form.save()
for (formobj, linkerfield) in forms:
if form != formobj:
formobj.save()
else:
self.object = form.save()
for (formobj, linkerfield) in forms:
if form != formobj:
setattr(formobj.instance, linkerfield, self.object)
formobj.save()
return HttpResponseRedirect(self.get_success_url())
|
Called if all forms are valid. Creates a Recipe instance along with associated Ingredients and Instructions and then redirects to a success page.
|
entailment
|
def form_invalid(self, form, forms, open_tabs, position_form_default):
"""
Called if a form is invalid. Re-renders the context data with the data-filled forms and errors.
"""
# return self.render_to_response( self.get_context_data( form = form, forms = forms ) )
return self.render_to_response(self.get_context_data(form=form, forms=forms, open_tabs=open_tabs, position_form_default=position_form_default))
|
Called if a form is invalid. Re-renders the context data with the data-filled forms and errors.
|
entailment
|
def wrap_fmin_slsqp(fun, guess, opt_kwargs={}):
"""Wrapper for :py:func:`fmin_slsqp` to allow it to be called with :py:func:`minimize`-like syntax.
This is included to enable the code to run with :py:mod:`scipy` versions
older than 0.11.0.
Accepts `opt_kwargs` in the same format as used by
:py:func:`scipy.optimize.minimize`, with the additional precondition
that the keyword `method` has already been removed by the calling code.
Parameters
----------
fun : callable
The function to minimize.
guess : sequence
The initial guess for the parameters.
opt_kwargs : dict, optional
Dictionary of extra keywords to pass to
:py:func:`scipy.optimize.minimize`. Refer to that function's
docstring for valid options. The keywords 'jac', 'hess' and 'hessp'
are ignored. Note that if you were planning to use `jac` = True
(i.e., optimization function returns Jacobian) and have set
`args` = (True,) to tell :py:meth:`update_hyperparameters` to
compute and return the Jacobian this may cause unexpected behavior.
Default is: {}.
Returns
-------
Result : namedtuple
:py:class:`namedtuple` that mimics the fields of the
:py:class:`Result` object returned by
:py:func:`scipy.optimize.minimize`. Has the following fields:
======= ======= ===================================================================================
status int Code indicating the exit mode of the optimizer (`imode` from :py:func:`fmin_slsqp`)
success bool Boolean indicating whether or not the optimizer thinks a minimum was found.
fun float Value of the optimized function (-1*LL).
x ndarray Optimal values of the hyperparameters.
message str String describing the exit state (`smode` from :py:func:`fmin_slsqp`)
nit int Number of iterations.
======= ======= ===================================================================================
Raises
------
ValueError
Invalid constraint type in `constraints`. (See documentation for :py:func:`scipy.optimize.minimize`.)
"""
opt_kwargs = dict(opt_kwargs)
opt_kwargs.pop('method', None)
eqcons = []
ieqcons = []
if 'constraints' in opt_kwargs:
if isinstance(opt_kwargs['constraints'], dict):
opt_kwargs['constraints'] = [opt_kwargs['constraints'],]
for con in opt_kwargs.pop('constraints'):
if con['type'] == 'eq':
eqcons += [con['fun'],]
elif con['type'] == 'ineq':
ieqcons += [con['fun'],]
else:
raise ValueError("Invalid constraint type %s!" % (con['type'],))
if 'jac' in opt_kwargs:
warnings.warn("Jacobian not supported for default solver SLSQP!",
RuntimeWarning)
opt_kwargs.pop('jac')
if 'tol' in opt_kwargs:
opt_kwargs['acc'] = opt_kwargs.pop('tol')
if 'options' in opt_kwargs:
opts = opt_kwargs.pop('options')
opt_kwargs = dict(opt_kwargs.items() + opts.items())
# Other keywords with less likelihood for causing failures are silently ignored:
opt_kwargs.pop('hess', None)
opt_kwargs.pop('hessp', None)
opt_kwargs.pop('callback', None)
out, fx, its, imode, smode = scipy.optimize.fmin_slsqp(
fun,
guess,
full_output=True,
eqcons=eqcons,
ieqcons=ieqcons,
**opt_kwargs
)
Result = collections.namedtuple('Result',
['status', 'success', 'fun', 'x', 'message', 'nit'])
return Result(status=imode,
success=(imode == 0),
fun=fx,
x=out,
message=smode,
nit=its)
|
Wrapper for :py:func:`fmin_slsqp` to allow it to be called with :py:func:`minimize`-like syntax.
This is included to enable the code to run with :py:mod:`scipy` versions
older than 0.11.0.
Accepts `opt_kwargs` in the same format as used by
:py:func:`scipy.optimize.minimize`, with the additional precondition
that the keyword `method` has already been removed by the calling code.
Parameters
----------
fun : callable
The function to minimize.
guess : sequence
The initial guess for the parameters.
opt_kwargs : dict, optional
Dictionary of extra keywords to pass to
:py:func:`scipy.optimize.minimize`. Refer to that function's
docstring for valid options. The keywords 'jac', 'hess' and 'hessp'
are ignored. Note that if you were planning to use `jac` = True
(i.e., optimization function returns Jacobian) and have set
`args` = (True,) to tell :py:meth:`update_hyperparameters` to
compute and return the Jacobian this may cause unexpected behavior.
Default is: {}.
Returns
-------
Result : namedtuple
:py:class:`namedtuple` that mimics the fields of the
:py:class:`Result` object returned by
:py:func:`scipy.optimize.minimize`. Has the following fields:
======= ======= ===================================================================================
status int Code indicating the exit mode of the optimizer (`imode` from :py:func:`fmin_slsqp`)
success bool Boolean indicating whether or not the optimizer thinks a minimum was found.
fun float Value of the optimized function (-1*LL).
x ndarray Optimal values of the hyperparameters.
message str String describing the exit state (`smode` from :py:func:`fmin_slsqp`)
nit int Number of iterations.
======= ======= ===================================================================================
Raises
------
ValueError
Invalid constraint type in `constraints`. (See documentation for :py:func:`scipy.optimize.minimize`.)
|
entailment
|
def fixed_poch(a, n):
"""Implementation of the Pochhammer symbol :math:`(a)_n` which handles negative integer arguments properly.
Need conditional statement because scipy's impelementation of the Pochhammer
symbol is wrong for negative integer arguments. This function uses the
definition from
http://functions.wolfram.com/GammaBetaErf/Pochhammer/02/
Parameters
----------
a : float
The argument.
n : nonnegative int
The order.
"""
# Old form, calls gamma function:
# if a < 0.0 and a % 1 == 0 and n <= -a:
# p = (-1.0)**n * scipy.misc.factorial(-a) / scipy.misc.factorial(-a - n)
# else:
# p = scipy.special.poch(a, n)
# return p
if (int(n) != n) or (n < 0):
raise ValueError("Parameter n must be a nonnegative int!")
n = int(n)
# Direct form based on product:
terms = [a + k for k in range(0, n)]
return scipy.prod(terms)
|
Implementation of the Pochhammer symbol :math:`(a)_n` which handles negative integer arguments properly.
Need conditional statement because scipy's impelementation of the Pochhammer
symbol is wrong for negative integer arguments. This function uses the
definition from
http://functions.wolfram.com/GammaBetaErf/Pochhammer/02/
Parameters
----------
a : float
The argument.
n : nonnegative int
The order.
|
entailment
|
def Kn2Der(nu, y, n=0):
r"""Find the derivatives of :math:`K_\nu(y^{1/2})`.
Parameters
----------
nu : float
The order of the modified Bessel function of the second kind.
y : array of float
The values to evaluate at.
n : nonnegative int, optional
The order of derivative to take.
"""
n = int(n)
y = scipy.asarray(y, dtype=float)
sqrty = scipy.sqrt(y)
if n == 0:
K = scipy.special.kv(nu, sqrty)
else:
K = scipy.zeros_like(y)
x = scipy.asarray(
[
fixed_poch(1.5 - j, j) * y**(0.5 - j)
for j in scipy.arange(1.0, n + 1.0, dtype=float)
]
).T
for k in scipy.arange(1.0, n + 1.0, dtype=float):
K += (
scipy.special.kvp(nu, sqrty, n=int(k)) *
incomplete_bell_poly(n, int(k), x)
)
return K
|
r"""Find the derivatives of :math:`K_\nu(y^{1/2})`.
Parameters
----------
nu : float
The order of the modified Bessel function of the second kind.
y : array of float
The values to evaluate at.
n : nonnegative int, optional
The order of derivative to take.
|
entailment
|
def yn2Kn2Der(nu, y, n=0, tol=5e-4, nterms=1, nu_step=0.001):
r"""Computes the function :math:`y^{\nu/2} K_{\nu}(y^{1/2})` and its derivatives.
Care has been taken to handle the conditions at :math:`y=0`.
For `n=0`, uses a direct evaluation of the expression, replacing points
where `y=0` with the appropriate value. For `n>0`, uses a general sum
expression to evaluate the expression, and handles the value at `y=0` using
a power series expansion. Where it becomes infinite, the infinities will
have the appropriate sign for a limit approaching zero from the right.
Uses a power series expansion around :math:`y=0` to avoid numerical issues.
Handles integer `nu` by performing a linear interpolation between values of
`nu` slightly above and below the requested value.
Parameters
----------
nu : float
The order of the modified Bessel function and the exponent of `y`.
y : array of float
The points to evaluate the function at. These are assumed to be
nonegative.
n : nonnegative int, optional
The order of derivative to take. Set to zero (the default) to get the
value.
tol : float, optional
The distance from zero for which the power series is used. Default is
5e-4.
nterms : int, optional
The number of terms to include in the power series. Default is 1.
nu_step : float, optional
The amount to vary `nu` by when handling integer values of `nu`. Default
is 0.001.
"""
n = int(n)
y = scipy.asarray(y, dtype=float)
if n == 0:
K = y**(nu / 2.0) * scipy.special.kv(nu, scipy.sqrt(y))
K[y == 0.0] = scipy.special.gamma(nu) / 2.0**(1.0 - nu)
else:
K = scipy.zeros_like(y)
for k in scipy.arange(0.0, n + 1.0, dtype=float):
K += (
scipy.special.binom(n, k) * fixed_poch(1.0 + nu / 2.0 - k, k) *
y**(nu / 2.0 - k) * Kn2Der(nu, y, n=n-k)
)
# Do the extra work to handle y == 0 only if we need to:
mask = (y == 0.0)
if (mask).any():
if int(nu) == nu:
K[mask] = 0.5 * (
yn2Kn2Der(nu - nu_step, y[mask], n=n, tol=tol, nterms=nterms, nu_step=nu_step) +
yn2Kn2Der(nu + nu_step, y[mask], n=n, tol=tol, nterms=nterms, nu_step=nu_step)
)
else:
if n > nu:
K[mask] = scipy.special.gamma(-nu) * fixed_poch(1 + nu - n, n) * scipy.inf
else:
K[mask] = scipy.special.gamma(nu) * scipy.special.gamma(n + 1.0) / (
2.0**(1.0 - nu + 2.0 * n) * fixed_poch(1.0 - nu, n) *
scipy.special.factorial(n)
)
if tol > 0.0:
# Replace points within tol (absolute distance) of zero with the power
# series approximation:
mask = (y <= tol) & (y > 0.0)
K[mask] = 0.0
if int(nu) == nu:
K[mask] = 0.5 * (
yn2Kn2Der(nu - nu_step, y[mask], n=n, tol=tol, nterms=nterms, nu_step=nu_step) +
yn2Kn2Der(nu + nu_step, y[mask], n=n, tol=tol, nterms=nterms, nu_step=nu_step)
)
else:
for k in scipy.arange(n, n + nterms, dtype=float):
K[mask] += (
scipy.special.gamma(nu) * fixed_poch(1.0 + k - n, n) * y[mask]**(k - n) / (
2.0**(1.0 - nu + 2 * k) * fixed_poch(1.0 - nu, k) * scipy.special.factorial(k))
)
for k in scipy.arange(0, nterms, dtype=float):
K[mask] += (
scipy.special.gamma(-nu) * fixed_poch(1.0 + nu + k - n, n) *
y[mask]**(nu + k - n) / (
2.0**(1.0 + nu + 2.0 * k) * fixed_poch(1.0 + nu, k) *
scipy.special.factorial(k)
)
)
return K
|
r"""Computes the function :math:`y^{\nu/2} K_{\nu}(y^{1/2})` and its derivatives.
Care has been taken to handle the conditions at :math:`y=0`.
For `n=0`, uses a direct evaluation of the expression, replacing points
where `y=0` with the appropriate value. For `n>0`, uses a general sum
expression to evaluate the expression, and handles the value at `y=0` using
a power series expansion. Where it becomes infinite, the infinities will
have the appropriate sign for a limit approaching zero from the right.
Uses a power series expansion around :math:`y=0` to avoid numerical issues.
Handles integer `nu` by performing a linear interpolation between values of
`nu` slightly above and below the requested value.
Parameters
----------
nu : float
The order of the modified Bessel function and the exponent of `y`.
y : array of float
The points to evaluate the function at. These are assumed to be
nonegative.
n : nonnegative int, optional
The order of derivative to take. Set to zero (the default) to get the
value.
tol : float, optional
The distance from zero for which the power series is used. Default is
5e-4.
nterms : int, optional
The number of terms to include in the power series. Default is 1.
nu_step : float, optional
The amount to vary `nu` by when handling integer values of `nu`. Default
is 0.001.
|
entailment
|
def incomplete_bell_poly(n, k, x):
r"""Recursive evaluation of the incomplete Bell polynomial :math:`B_{n, k}(x)`.
Evaluates the incomplete Bell polynomial :math:`B_{n, k}(x_1, x_2, \dots, x_{n-k+1})`,
also known as the partial Bell polynomial or the Bell polynomial of the
second kind. This polynomial is useful in the evaluation of (the univariate)
Faa di Bruno's formula which generalizes the chain rule to higher order
derivatives.
The implementation here is based on the implementation in:
:py:func:`sympy.functions.combinatorial.numbers.bell._bell_incomplete_poly`
Following that function's documentation, the polynomial is computed
according to the recurrence formula:
.. math::
B_{n, k}(x_1, x_2, \dots, x_{n-k+1}) = \sum_{m=1}^{n-k+1}x_m\binom{n-1}{m-1}B_{n-m, k-1}(x_1, x_2, \dots, x_{n-m-k})
| The end cases are:
| :math:`B_{0, 0} = 1`
| :math:`B_{n, 0} = 0` for :math:`n \ge 1`
| :math:`B_{0, k} = 0` for :math:`k \ge 1`
Parameters
----------
n : scalar int
The first subscript of the polynomial.
k : scalar int
The second subscript of the polynomial.
x : :py:class:`Array` of floats, (`p`, `n` - `k` + 1)
`p` sets of `n` - `k` + 1 points to use as the arguments to
:math:`B_{n,k}`. The second dimension can be longer than
required, in which case the extra entries are silently ignored
(this facilitates recursion without needing to subset the array `x`).
Returns
-------
result : :py:class:`Array`, (`p`,)
Incomplete Bell polynomial evaluated at the desired values.
"""
if n == 0 and k == 0:
return scipy.ones(x.shape[0], dtype=float)
elif k == 0 and n >= 1:
return scipy.zeros(x.shape[0], dtype=float)
elif n == 0 and k >= 1:
return scipy.zeros(x.shape[0], dtype=float)
else:
result = scipy.zeros(x.shape[0], dtype=float)
for m in xrange(0, n - k + 1):
result += x[:, m] * scipy.special.binom(n - 1, m) * incomplete_bell_poly(n - (m + 1), k - 1, x)
return result
|
r"""Recursive evaluation of the incomplete Bell polynomial :math:`B_{n, k}(x)`.
Evaluates the incomplete Bell polynomial :math:`B_{n, k}(x_1, x_2, \dots, x_{n-k+1})`,
also known as the partial Bell polynomial or the Bell polynomial of the
second kind. This polynomial is useful in the evaluation of (the univariate)
Faa di Bruno's formula which generalizes the chain rule to higher order
derivatives.
The implementation here is based on the implementation in:
:py:func:`sympy.functions.combinatorial.numbers.bell._bell_incomplete_poly`
Following that function's documentation, the polynomial is computed
according to the recurrence formula:
.. math::
B_{n, k}(x_1, x_2, \dots, x_{n-k+1}) = \sum_{m=1}^{n-k+1}x_m\binom{n-1}{m-1}B_{n-m, k-1}(x_1, x_2, \dots, x_{n-m-k})
| The end cases are:
| :math:`B_{0, 0} = 1`
| :math:`B_{n, 0} = 0` for :math:`n \ge 1`
| :math:`B_{0, k} = 0` for :math:`k \ge 1`
Parameters
----------
n : scalar int
The first subscript of the polynomial.
k : scalar int
The second subscript of the polynomial.
x : :py:class:`Array` of floats, (`p`, `n` - `k` + 1)
`p` sets of `n` - `k` + 1 points to use as the arguments to
:math:`B_{n,k}`. The second dimension can be longer than
required, in which case the extra entries are silently ignored
(this facilitates recursion without needing to subset the array `x`).
Returns
-------
result : :py:class:`Array`, (`p`,)
Incomplete Bell polynomial evaluated at the desired values.
|
entailment
|
def generate_set_partition_strings(n):
"""Generate the restricted growth strings for all of the partitions of an `n`-member set.
Uses Algorithm H from page 416 of volume 4A of Knuth's `The Art of Computer
Programming`. Returns the partitions in lexicographical order.
Parameters
----------
n : scalar int, non-negative
Number of (unique) elements in the set to be partitioned.
Returns
-------
partitions : list of :py:class:`Array`
List has a number of elements equal to the `n`-th Bell number (i.e.,
the number of partitions for a set of size `n`). Each element has
length `n`, the elements of which are the restricted growth strings
describing the partitions of the set. The strings are returned in
lexicographic order.
"""
# Handle edge cases:
if n == 0:
return []
elif n == 1:
return [scipy.array([0])]
partitions = []
# Step 1: Initialize
a = scipy.zeros(n, dtype=int)
b = scipy.ones(n, dtype=int)
while True:
# Step 2: Visit
partitions.append(a.copy())
if a[-1] == b[-1]:
# Step 4: Find j. j is the index of the first element from the end
# for which a != b, with the exception of the last element.
j = (a[:-1] != b[:-1]).nonzero()[0][-1]
# Step 5: Increase a_j (or terminate):
if j == 0:
break
else:
a[j] += 1
# Step 6: Zero out a_{j+1} to a_n:
b[-1] = b[j] + (a[j] == b[j])
a[j + 1:] = 0
b[j + 1 :-1] = b[-1]
else:
# Step 3: Increase a_n:
a[-1] += 1
return partitions
|
Generate the restricted growth strings for all of the partitions of an `n`-member set.
Uses Algorithm H from page 416 of volume 4A of Knuth's `The Art of Computer
Programming`. Returns the partitions in lexicographical order.
Parameters
----------
n : scalar int, non-negative
Number of (unique) elements in the set to be partitioned.
Returns
-------
partitions : list of :py:class:`Array`
List has a number of elements equal to the `n`-th Bell number (i.e.,
the number of partitions for a set of size `n`). Each element has
length `n`, the elements of which are the restricted growth strings
describing the partitions of the set. The strings are returned in
lexicographic order.
|
entailment
|
def generate_set_partitions(set_):
"""Generate all of the partitions of a set.
This is a helper function that utilizes the restricted growth strings from
:py:func:`generate_set_partition_strings`. The partitions are returned in
lexicographic order.
Parameters
----------
set_ : :py:class:`Array` or other Array-like, (`m`,)
The set to find the partitions of.
Returns
-------
partitions : list of lists of :py:class:`Array`
The number of elements in the outer list is equal to the number of
partitions, which is the len(`m`)^th Bell number. Each of the inner lists
corresponds to a single possible partition. The length of an inner list
is therefore equal to the number of blocks. Each of the arrays in an
inner list is hence a block.
"""
set_ = scipy.asarray(set_)
strings = generate_set_partition_strings(len(set_))
partitions = []
for string in strings:
blocks = []
for block_num in scipy.unique(string):
blocks.append(set_[string == block_num])
partitions.append(blocks)
return partitions
|
Generate all of the partitions of a set.
This is a helper function that utilizes the restricted growth strings from
:py:func:`generate_set_partition_strings`. The partitions are returned in
lexicographic order.
Parameters
----------
set_ : :py:class:`Array` or other Array-like, (`m`,)
The set to find the partitions of.
Returns
-------
partitions : list of lists of :py:class:`Array`
The number of elements in the outer list is equal to the number of
partitions, which is the len(`m`)^th Bell number. Each of the inner lists
corresponds to a single possible partition. The length of an inner list
is therefore equal to the number of blocks. Each of the arrays in an
inner list is hence a block.
|
entailment
|
def unique_rows(arr, return_index=False, return_inverse=False):
"""Returns a copy of arr with duplicate rows removed.
From Stackoverflow "Find unique rows in numpy.array."
Parameters
----------
arr : :py:class:`Array`, (`m`, `n`)
The array to find the unique rows of.
return_index : bool, optional
If True, the indices of the unique rows in the array will also be
returned. I.e., unique = arr[idx]. Default is False (don't return
indices).
return_inverse: bool, optional
If True, the indices in the unique array to reconstruct the original
array will also be returned. I.e., arr = unique[inv]. Default is False
(don't return inverse).
Returns
-------
unique : :py:class:`Array`, (`p`, `n`) where `p` <= `m`
The array `arr` with duplicate rows removed.
"""
b = scipy.ascontiguousarray(arr).view(
scipy.dtype((scipy.void, arr.dtype.itemsize * arr.shape[1]))
)
try:
out = scipy.unique(b, return_index=True, return_inverse=return_inverse)
dum = out[0]
idx = out[1]
if return_inverse:
inv = out[2]
except TypeError:
if return_inverse:
raise RuntimeError(
"Error in scipy.unique on older versions of numpy prevents "
"return_inverse from working!"
)
# Handle bug in numpy 1.6.2:
rows = [_Row(row) for row in b]
srt_idx = sorted(range(len(rows)), key=rows.__getitem__)
rows = scipy.asarray(rows)[srt_idx]
row_cmp = [-1]
for k in xrange(1, len(srt_idx)):
row_cmp.append(rows[k-1].__cmp__(rows[k]))
row_cmp = scipy.asarray(row_cmp)
transition_idxs = scipy.where(row_cmp != 0)[0]
idx = scipy.asarray(srt_idx)[transition_idxs]
out = arr[idx]
if return_index:
out = (out, idx)
elif return_inverse:
out = (out, inv)
elif return_index and return_inverse:
out = (out, idx, inv)
return out
|
Returns a copy of arr with duplicate rows removed.
From Stackoverflow "Find unique rows in numpy.array."
Parameters
----------
arr : :py:class:`Array`, (`m`, `n`)
The array to find the unique rows of.
return_index : bool, optional
If True, the indices of the unique rows in the array will also be
returned. I.e., unique = arr[idx]. Default is False (don't return
indices).
return_inverse: bool, optional
If True, the indices in the unique array to reconstruct the original
array will also be returned. I.e., arr = unique[inv]. Default is False
(don't return inverse).
Returns
-------
unique : :py:class:`Array`, (`p`, `n`) where `p` <= `m`
The array `arr` with duplicate rows removed.
|
entailment
|
def compute_stats(vals, check_nan=False, robust=False, axis=1, plot_QQ=False, bins=15, name=''):
"""Compute the average statistics (mean, std dev) for the given values.
Parameters
----------
vals : array-like, (`M`, `D`)
Values to compute the average statistics along the specified axis of.
check_nan : bool, optional
Whether or not to check for (and exclude) NaN's. Default is False (do
not attempt to handle NaN's).
robust : bool, optional
Whether or not to use robust estimators (median for mean, IQR for
standard deviation). Default is False (use non-robust estimators).
axis : int, optional
Axis to compute the statistics along. Presently only supported if
`robust` is False. Default is 1.
plot_QQ : bool, optional
Whether or not a QQ plot and histogram should be drawn for each channel.
Default is False (do not draw QQ plots).
bins : int, optional
Number of bins to use when plotting histogram (for plot_QQ=True).
Default is 15
name : str, optional
Name to put in the title of the QQ/histogram plot.
Returns
-------
mean : ndarray, (`M`,)
Estimator for the mean of `vals`.
std : ndarray, (`M`,)
Estimator for the standard deviation of `vals`.
Raises
------
NotImplementedError
If `axis` != 1 when `robust` is True.
NotImplementedError
If `plot_QQ` is True.
"""
if axis != 1 and robust:
raise NotImplementedError("Values of axis other than 1 are not supported "
"with the robust keyword at this time!")
if robust:
# TODO: This stuff should really be vectorized if there is something that allows it!
if check_nan:
mean = scipy.stats.nanmedian(vals, axis=axis)
# TODO: HANDLE AXIS PROPERLY!
std = scipy.zeros(vals.shape[0], dtype=float)
for k in xrange(0, len(vals)):
ch = vals[k]
ok_idxs = ~scipy.isnan(ch)
if ok_idxs.any():
std[k] = (scipy.stats.scoreatpercentile(ch[ok_idxs], 75) -
scipy.stats.scoreatpercentile(ch[ok_idxs], 25))
else:
# Leave a nan where there are no non-nan values:
std[k] = scipy.nan
std /= IQR_TO_STD
else:
mean = scipy.median(vals, axis=axis)
# TODO: HANDLE AXIS PROPERLY!
std = scipy.asarray([scipy.stats.scoreatpercentile(ch, 75.0) -
scipy.stats.scoreatpercentile(ch, 25.0)
for ch in vals]) / IQR_TO_STD
else:
if check_nan:
mean = scipy.stats.nanmean(vals, axis=axis)
std = scipy.stats.nanstd(vals, axis=axis)
else:
mean = scipy.mean(vals, axis=axis)
std = scipy.std(vals, axis=axis)
if plot_QQ:
f = plt.figure()
gs = mplgs.GridSpec(2, 2, height_ratios=[8, 1])
a_QQ = f.add_subplot(gs[0, 0])
a_hist = f.add_subplot(gs[0, 1])
a_slider = f.add_subplot(gs[1, :])
title = f.suptitle("")
def update(val):
"""Update the index from the results to be displayed.
"""
a_QQ.clear()
a_hist.clear()
idx = slider.val
title.set_text("%s, n=%d" % (name, idx))
nan_idxs = scipy.isnan(vals[idx, :])
if not nan_idxs.all():
osm, osr = scipy.stats.probplot(vals[idx, ~nan_idxs], dist='norm', plot=None, fit=False)
a_QQ.plot(osm, osr, 'bo', markersize=10)
a_QQ.set_title('QQ plot')
a_QQ.set_xlabel('quantiles of $\mathcal{N}(0,1)$')
a_QQ.set_ylabel('quantiles of data')
a_hist.hist(vals[idx, ~nan_idxs], bins=bins, normed=True)
locs = scipy.linspace(vals[idx, ~nan_idxs].min(), vals[idx, ~nan_idxs].max())
a_hist.plot(locs, scipy.stats.norm.pdf(locs, loc=mean[idx], scale=std[idx]))
a_hist.set_title('Normalized histogram and reported PDF')
a_hist.set_xlabel('value')
a_hist.set_ylabel('density')
f.canvas.draw()
def arrow_respond(slider, event):
"""Event handler for arrow key events in plot windows.
Pass the slider object to update as a masked argument using a lambda function::
lambda evt: arrow_respond(my_slider, evt)
Parameters
----------
slider : Slider instance associated with this handler.
event : Event to be handled.
"""
if event.key == 'right':
slider.set_val(min(slider.val + 1, slider.valmax))
elif event.key == 'left':
slider.set_val(max(slider.val - 1, slider.valmin))
slider = mplw.Slider(a_slider,
'index',
0,
len(vals) - 1,
valinit=0,
valfmt='%d')
slider.on_changed(update)
update(0)
f.canvas.mpl_connect('key_press_event', lambda evt: arrow_respond(slider, evt))
return (mean, std)
|
Compute the average statistics (mean, std dev) for the given values.
Parameters
----------
vals : array-like, (`M`, `D`)
Values to compute the average statistics along the specified axis of.
check_nan : bool, optional
Whether or not to check for (and exclude) NaN's. Default is False (do
not attempt to handle NaN's).
robust : bool, optional
Whether or not to use robust estimators (median for mean, IQR for
standard deviation). Default is False (use non-robust estimators).
axis : int, optional
Axis to compute the statistics along. Presently only supported if
`robust` is False. Default is 1.
plot_QQ : bool, optional
Whether or not a QQ plot and histogram should be drawn for each channel.
Default is False (do not draw QQ plots).
bins : int, optional
Number of bins to use when plotting histogram (for plot_QQ=True).
Default is 15
name : str, optional
Name to put in the title of the QQ/histogram plot.
Returns
-------
mean : ndarray, (`M`,)
Estimator for the mean of `vals`.
std : ndarray, (`M`,)
Estimator for the standard deviation of `vals`.
Raises
------
NotImplementedError
If `axis` != 1 when `robust` is True.
NotImplementedError
If `plot_QQ` is True.
|
entailment
|
def univariate_envelope_plot(x, mean, std, ax=None, base_alpha=0.375, envelopes=[1, 3], lb=None, ub=None, expansion=10, **kwargs):
"""Make a plot of a mean curve with uncertainty envelopes.
"""
if ax is None:
f = plt.figure()
ax = f.add_subplot(1, 1, 1)
elif ax == 'gca':
ax = plt.gca()
mean = scipy.asarray(mean, dtype=float).copy()
std = scipy.asarray(std, dtype=float).copy()
# Truncate the data so matplotlib doesn't die:
if lb is not None and ub is not None and expansion != 1.0:
expansion *= ub - lb
ub = ub + expansion
lb = lb - expansion
if ub is not None:
mean[mean > ub] = ub
if lb is not None:
mean[mean < lb] = lb
l = ax.plot(x, mean, **kwargs)
color = plt.getp(l[0], 'color')
e = []
for i in envelopes:
lower = mean - i * std
upper = mean + i * std
if ub is not None:
lower[lower > ub] = ub
upper[upper > ub] = ub
if lb is not None:
lower[lower < lb] = lb
upper[upper < lb] = lb
e.append(ax.fill_between(x, lower, upper, facecolor=color, alpha=base_alpha / i))
return (l, e)
|
Make a plot of a mean curve with uncertainty envelopes.
|
entailment
|
def summarize_sampler(sampler, weights=None, burn=0, ci=0.95, chain_mask=None):
r"""Create summary statistics of the flattened chain of the sampler.
The confidence regions are computed from the quantiles of the data.
Parameters
----------
sampler : :py:class:`emcee.Sampler` instance or array, (`n_temps`, `n_chains`, `n_samp`, `n_dim`), (`n_chains`, `n_samp`, `n_dim`) or (`n_samp`, `n_dim`)
The sampler to summarize the chains of.
weights : array, (`n_temps`, `n_chains`, `n_samp`), (`n_chains`, `n_samp`) or (`n_samp`,), optional
The weight for each sample. This is useful for post-processing the
output from MultiNest sampling, for instance.
burn : int, optional
The number of samples to burn from the beginning of the chain. Default
is 0 (no burn).
ci : float, optional
A number between 0 and 1 indicating the confidence region to compute.
Default is 0.95 (return upper and lower bounds of the 95% confidence
interval).
chain_mask : (index) array, optional
Mask identifying the chains to keep before plotting, in case there are
bad chains. Default is to use all chains.
Returns
-------
mean : array, (num_params,)
Mean values of each of the parameters sampled.
ci_l : array, (num_params,)
Lower bounds of the `ci*100%` confidence intervals.
ci_u : array, (num_params,)
Upper bounds of the `ci*100%` confidence intervals.
"""
try:
k = sampler.flatchain.shape[-1]
except AttributeError:
# Assumes array input is only case where there is no "flatchain" attribute.
k = sampler.shape[-1]
if isinstance(sampler, emcee.EnsembleSampler):
if chain_mask is None:
chain_mask = scipy.ones(sampler.chain.shape[0], dtype=bool)
flat_trace = sampler.chain[chain_mask, burn:, :]
flat_trace = flat_trace.reshape((-1, k))
elif isinstance(sampler, emcee.PTSampler):
if chain_mask is None:
chain_mask = scipy.ones(sampler.nwalkers, dtype=bool)
flat_trace = sampler.chain[temp_idx, chain_mask, burn:, :]
flat_trace = flat_trace.reshape((-1, k))
elif isinstance(sampler, scipy.ndarray):
if sampler.ndim == 4:
if chain_mask is None:
chain_mask = scipy.ones(sampler.shape[1], dtype=bool)
flat_trace = sampler[temp_idx, chain_mask, burn:, :]
flat_trace = flat_trace.reshape((-1, k))
if weights is not None:
weights = weights[temp_idx, chain_mask, burn:]
weights = weights.ravel()
elif sampler.ndim == 3:
if chain_mask is None:
chain_mask = scipy.ones(sampler.shape[0], dtype=bool)
flat_trace = sampler[chain_mask, burn:, :]
flat_trace = flat_trace.reshape((-1, k))
if weights is not None:
weights = weights[chain_mask, burn:]
weights = weights.ravel()
elif sampler.ndim == 2:
flat_trace = sampler[burn:, :]
flat_trace = flat_trace.reshape((-1, k))
if weights is not None:
weights = weights[burn:]
weights = weights.ravel()
else:
raise ValueError("Unknown sampler class: %s" % (type(sampler),))
cibdry = 100.0 * (1.0 - ci) / 2.0
if weights is None:
mean = scipy.mean(flat_trace, axis=0)
ci_l, ci_u = scipy.percentile(flat_trace, [cibdry, 100.0 - cibdry], axis=0)
else:
mean = weights.dot(flat_trace) / weights.sum()
ci_l = scipy.zeros(k)
ci_u = scipy.zeros(k)
p = scipy.asarray([cibdry, 100.0 - cibdry])
for i in range(0, k):
srt = flat_trace[:, i].argsort()
x = flat_trace[srt, i]
w = weights[srt]
Sn = w.cumsum()
pn = 100.0 / Sn[-1] * (Sn - w / 2.0)
j = scipy.digitize(p, pn) - 1
ci_l[i], ci_u[i] = x[j] + (p - pn[j]) / (pn[j + 1] - pn[j]) * (x[j + 1] - x[j])
return (mean, ci_l, ci_u)
|
r"""Create summary statistics of the flattened chain of the sampler.
The confidence regions are computed from the quantiles of the data.
Parameters
----------
sampler : :py:class:`emcee.Sampler` instance or array, (`n_temps`, `n_chains`, `n_samp`, `n_dim`), (`n_chains`, `n_samp`, `n_dim`) or (`n_samp`, `n_dim`)
The sampler to summarize the chains of.
weights : array, (`n_temps`, `n_chains`, `n_samp`), (`n_chains`, `n_samp`) or (`n_samp`,), optional
The weight for each sample. This is useful for post-processing the
output from MultiNest sampling, for instance.
burn : int, optional
The number of samples to burn from the beginning of the chain. Default
is 0 (no burn).
ci : float, optional
A number between 0 and 1 indicating the confidence region to compute.
Default is 0.95 (return upper and lower bounds of the 95% confidence
interval).
chain_mask : (index) array, optional
Mask identifying the chains to keep before plotting, in case there are
bad chains. Default is to use all chains.
Returns
-------
mean : array, (num_params,)
Mean values of each of the parameters sampled.
ci_l : array, (num_params,)
Lower bounds of the `ci*100%` confidence intervals.
ci_u : array, (num_params,)
Upper bounds of the `ci*100%` confidence intervals.
|
entailment
|
def plot_sampler(
sampler, suptitle=None, labels=None, bins=50,
plot_samples=False, plot_hist=True, plot_chains=True,
burn=0, chain_mask=None, temp_idx=0, weights=None, cutoff_weight=None,
cmap='gray_r', hist_color='k', chain_alpha=0.1,
points=None, covs=None, colors=None, ci=[0.95],
max_hist_ticks=None, max_chain_ticks=6,
label_chain_y=False, hide_chain_yticklabels=False, chain_ytick_pad=2.0,
label_fontsize=None, ticklabel_fontsize=None, chain_label_fontsize=None,
chain_ticklabel_fontsize=None, xticklabel_angle=90.0,
bottom_sep=0.075, suptitle_space=0.1, fixed_height=None,
fixed_width=None, l=0.1, r=0.9, t1=None, b1=None, t2=0.2, b2=0.1,
ax_space=0.1
):
"""Plot the results of MCMC sampler (posterior and chains).
Loosely based on triangle.py. Provides extensive options to format the plot.
Parameters
----------
sampler : :py:class:`emcee.Sampler` instance or array, (`n_temps`, `n_chains`, `n_samp`, `n_dim`), (`n_chains`, `n_samp`, `n_dim`) or (`n_samp`, `n_dim`)
The sampler to plot the chains/marginals of. Can also be an array of
samples which matches the shape of the `chain` attribute that would be
present in a :py:class:`emcee.Sampler` instance.
suptitle : str, optional
The figure title to place at the top. Default is no title.
labels : list of str, optional
The labels to use for each of the free parameters. Default is to leave
the axes unlabeled.
bins : int, optional
Number of bins to use for the histograms. Default is 50.
plot_samples : bool, optional
If True, the samples are plotted as individual points. Default is False.
plot_hist : bool, optional
If True, histograms are plotted. Default is True.
plot_chains : bool, optional
If True, plot the sampler chains at the bottom. Default is True.
burn : int, optional
The number of samples to burn before making the marginal histograms.
Default is zero (use all samples).
chain_mask : (index) array, optional
Mask identifying the chains to keep before plotting, in case there are
bad chains. Default is to use all chains.
temp_idx : int, optional
Index of the temperature to plot when plotting a
:py:class:`emcee.PTSampler`. Default is 0 (samples from the posterior).
weights : array, (`n_temps`, `n_chains`, `n_samp`), (`n_chains`, `n_samp`) or (`n_samp`,), optional
The weight for each sample. This is useful for post-processing the
output from MultiNest sampling, for instance. Default is to not weight
the samples.
cutoff_weight : float, optional
If `weights` and `cutoff_weight` are present, points with
`weights < cutoff_weight * weights.max()` will be excluded. Default is
to plot all points.
cmap : str, optional
The colormap to use for the histograms. Default is 'gray_r'.
hist_color : str, optional
The color to use for the univariate histograms. Default is 'k'.
chain_alpha : float, optional
The transparency to use for the plots of the individual chains. Setting
this to something low lets you better visualize what is going on.
Default is 0.1.
points : array, (`D`,) or (`N`, `D`), optional
Array of point(s) to plot onto each marginal and chain. Default is None.
covs : array, (`D`, `D`) or (`N`, `D`, `D`), optional
Covariance matrix or array of covariance matrices to plot onto each
marginal. If you do not want to plot a covariance matrix for a specific
point, set its corresponding entry to `None`. Default is to not plot
confidence ellipses for any points.
colors : array of str, (`N`,), optional
The colors to use for the points in `points`. Default is to use the
standard matplotlib RGBCMYK cycle.
ci : array, (`num_ci`,), optional
List of confidence intervals to plot for each non-`None` entry in `covs`.
Default is 0.95 (just plot the 95 percent confidence interval).
max_hist_ticks : int, optional
The maximum number of ticks for the histogram plots. Default is None
(no limit).
max_chain_ticks : int, optional
The maximum number of y-axis ticks for the chain plots. Default is 6.
label_chain_y : bool, optional
If True, the chain plots will have y axis labels. Default is False.
hide_chain_yticklabels : bool, optional
If True, hide the y axis tick labels for the chain plots. Default is
False (show y tick labels).
chain_ytick_pad : float, optional
The padding (in points) between the y-axis tick labels and the axis for
the chain plots. Default is 2.0.
label_fontsize : float, optional
The font size (in points) to use for the axis labels. Default is
`axes.labelsize`.
ticklabel_fontsize : float, optional
The font size (in points) to use for the axis tick labels. Default is
`xtick.labelsize`.
chain_label_fontsize : float, optional
The font size (in points) to use for the labels of the chain axes.
Default is `axes.labelsize`.
chain_ticklabel_fontsize : float, optional
The font size (in points) to use for the chain axis tick labels. Default
is `xtick.labelsize`.
xticklabel_angle : float, optional
The angle to rotate the x tick labels, in degrees. Default is 90.
bottom_sep : float, optional
The separation (in relative figure units) between the chains and the
marginals. Default is 0.075.
suptitle_space : float, optional
The amount of space (in relative figure units) to leave for a figure
title. Default is 0.1.
fixed_height : float, optional
The desired figure height (in inches). Default is to automatically
adjust based on `fixed_width` to make the subplots square.
fixed_width : float, optional
The desired figure width (in inches). Default is `figure.figsize[0]`.
l : float, optional
The location (in relative figure units) of the left margin. Default is
0.1.
r : float, optional
The location (in relative figure units) of the right margin. Default is
0.9.
t1 : float, optional
The location (in relative figure units) of the top of the grid of
histograms. Overrides `suptitle_space` if present.
b1 : float, optional
The location (in relative figure units) of the bottom of the grid of
histograms. Overrides `bottom_sep` if present. Defaults to 0.1 if
`plot_chains` is False.
t2 : float, optional
The location (in relative figure units) of the top of the grid of chain
plots. Default is 0.2.
b2 : float, optional
The location (in relative figure units) of the bottom of the grid of
chain plots. Default is 0.1.
ax_space : float, optional
The `w_space` and `h_space` to use (in relative figure units). Default
is 0.1.
"""
masked_weights = None
if points is not None:
points = scipy.atleast_2d(points)
if covs is not None and len(covs) != len(points):
raise ValueError(
"If covariance matrices are provided, len(covs) must equal len(points)!"
)
elif covs is None:
covs = [None,] * len(points)
if colors is None:
c_cycle = itertools.cycle(['b', 'g', 'r', 'c', 'm', 'y', 'k'])
colors = [c_cycle.next() for p in points]
# Create axes:
try:
k = sampler.flatchain.shape[-1]
except AttributeError:
# Assumes array input is only case where there is no "flatchain" attribute.
k = sampler.shape[-1]
if labels is None:
labels = [''] * k
# Set up geometry:
# plot_chains =
# True: False:
# +-----------+ +-----------+
# | +-------+ | | +-------+ |
# | | | | | | | |
# | | | | | | | |
# | | | | | | | |
# | +-------+ | | +-------+ |
# | +-------+ | +-----------+
# | | | |
# | +-------+ |
# +-----------+
# We retain support for the original suptitle_space keyword, but can
# override with t1 as needed:
if t1 is None:
t1 = 1 - suptitle_space
# We retain support for the original bottom_sep keyword, but can override
# with b1 as needed:
if b1 is None:
if plot_chains:
b1 = t2 + bottom_sep
else:
b1 = 0.1
if fixed_height is None and fixed_width is None:
# Default: use matplotlib's default width, handle remaining parameters
# with the fixed width case below:
fixed_width = matplotlib.rcParams['figure.figsize'][0]
if fixed_height is None and fixed_width is not None:
# Only width specified, compute height to yield square histograms:
fixed_height = fixed_width * (r - l) / (t1 - b1)
elif fixed_height is not None and fixed_width is None:
# Only height specified, compute width to yield square histograms
fixed_width = fixed_height * (t1 - b1) / (r - l)
# Otherwise width and height are fixed, and we may not have square
# histograms, at the user's discretion.
wspace = ax_space
hspace = ax_space
# gs1 is the histograms, gs2 is the chains:
f = plt.figure(figsize=(fixed_width, fixed_height))
gs1 = mplgs.GridSpec(k, k)
gs1.update(bottom=b1, top=t1, left=l, right=r, wspace=wspace, hspace=hspace)
if plot_chains:
gs2 = mplgs.GridSpec(1, k)
gs2.update(bottom=b2, top=t2, left=l, right=r, wspace=wspace, hspace=hspace)
axes = []
# j is the row, i is the column.
for j in xrange(0, k + int(plot_chains)):
row = []
for i in xrange(0, k):
if i > j:
row.append(None)
else:
sharey = row[-1] if i > 0 and i < j and j < k else None
sharex = axes[-1][i] if j > i and j < k else \
(row[-1] if i > 0 and j == k else None)
gs = gs1[j, i] if j < k else gs2[:, i]
row.append(f.add_subplot(gs, sharey=sharey, sharex=sharex))
if j < k and ticklabel_fontsize is not None:
row[-1].tick_params(labelsize=ticklabel_fontsize)
elif j >= k and chain_ticklabel_fontsize is not None:
row[-1].tick_params(labelsize=chain_ticklabel_fontsize)
axes.append(row)
axes = scipy.asarray(axes)
# Update axes with the data:
if isinstance(sampler, emcee.EnsembleSampler):
if chain_mask is None:
chain_mask = scipy.ones(sampler.chain.shape[0], dtype=bool)
flat_trace = sampler.chain[chain_mask, burn:, :]
flat_trace = flat_trace.reshape((-1, k))
elif isinstance(sampler, emcee.PTSampler):
if chain_mask is None:
chain_mask = scipy.ones(sampler.nwalkers, dtype=bool)
flat_trace = sampler.chain[temp_idx, chain_mask, burn:, :]
flat_trace = flat_trace.reshape((-1, k))
elif isinstance(sampler, scipy.ndarray):
if sampler.ndim == 4:
if chain_mask is None:
chain_mask = scipy.ones(sampler.shape[1], dtype=bool)
flat_trace = sampler[temp_idx, chain_mask, burn:, :]
flat_trace = flat_trace.reshape((-1, k))
if weights is not None:
weights = weights[temp_idx, chain_mask, burn:]
weights = weights.ravel()
elif sampler.ndim == 3:
if chain_mask is None:
chain_mask = scipy.ones(sampler.shape[0], dtype=bool)
flat_trace = sampler[chain_mask, burn:, :]
flat_trace = flat_trace.reshape((-1, k))
if weights is not None:
weights = weights[chain_mask, burn:]
weights = weights.ravel()
elif sampler.ndim == 2:
flat_trace = sampler[burn:, :]
flat_trace = flat_trace.reshape((-1, k))
if weights is not None:
weights = weights[burn:]
weights = weights.ravel()
if cutoff_weight is not None and weights is not None:
mask = weights >= cutoff_weight * weights.max()
flat_trace = flat_trace[mask, :]
masked_weights = weights[mask]
else:
masked_weights = weights
else:
raise ValueError("Unknown sampler class: %s" % (type(sampler),))
# j is the row, i is the column.
for i in xrange(0, k):
axes[i, i].clear()
if plot_hist:
axes[i, i].hist(flat_trace[:, i], bins=bins, color=hist_color, weights=masked_weights, normed=True, histtype='stepfilled')
if plot_samples:
axes[i, i].plot(flat_trace[:, i], scipy.zeros_like(flat_trace[:, i]), ',', alpha=0.1)
if points is not None:
# axvline can only take a scalar x, so we have to loop:
for p, c, cov in zip(points, colors, covs):
axes[i, i].axvline(x=p[i], linewidth=3, color=c)
if cov is not None:
xlim = axes[i, i].get_xlim()
i_grid = scipy.linspace(xlim[0], xlim[1], 100)
axes[i, i].plot(
i_grid,
scipy.stats.norm.pdf(
i_grid,
loc=p[i],
scale=scipy.sqrt(cov[i, i])
),
c,
linewidth=3.0
)
axes[i, i].set_xlim(xlim)
if i == k - 1:
axes[i, i].set_xlabel(labels[i], fontsize=label_fontsize)
plt.setp(axes[i, i].xaxis.get_majorticklabels(), rotation=xticklabel_angle)
if i < k - 1:
plt.setp(axes[i, i].get_xticklabels(), visible=False)
plt.setp(axes[i, i].get_yticklabels(), visible=False)
for j in xrange(i + 1, k):
axes[j, i].clear()
if plot_hist:
ct, x, y, im = axes[j, i].hist2d(
flat_trace[:, i],
flat_trace[:, j],
bins=bins,
cmap=cmap,
weights=masked_weights
)
if plot_samples:
axes[j, i].plot(flat_trace[:, i], flat_trace[:, j], ',', alpha=0.1)
if points is not None:
for p, c, cov in zip(points, colors, covs):
axes[j, i].plot(p[i], p[j], 'o', color=c)
if cov is not None:
Sigma = scipy.asarray([[cov[i, i], cov[i, j]], [cov[j, i], cov[j, j]]], dtype=float)
lam, v = scipy.linalg.eigh(Sigma)
chi2 = [-scipy.log(1.0 - cival) * 2.0 for cival in ci]
a = [2.0 * scipy.sqrt(chi2val * lam[-1]) for chi2val in chi2]
b = [2.0 * scipy.sqrt(chi2val * lam[-2]) for chi2val in chi2]
ang = scipy.arctan2(v[1, -1], v[0, -1])
for aval, bval in zip(a, b):
ell = mplp.Ellipse(
[p[i], p[j]],
aval,
bval,
angle=scipy.degrees(ang),
facecolor='none',
edgecolor=c,
linewidth=3
)
axes[j, i].add_artist(ell)
# axes[j, i].plot(points[i], points[j], 'o')
# xmid = 0.5 * (x[1:] + x[:-1])
# ymid = 0.5 * (y[1:] + y[:-1])
# axes[j, i].contour(xmid, ymid, ct.T, colors='k')
if j < k - 1:
plt.setp(axes[j, i].get_xticklabels(), visible=False)
if i != 0:
plt.setp(axes[j, i].get_yticklabels(), visible=False)
if i == 0:
axes[j, i].set_ylabel(labels[j], fontsize=label_fontsize)
if j == k - 1:
axes[j, i].set_xlabel(labels[i], fontsize=label_fontsize)
plt.setp(axes[j, i].xaxis.get_majorticklabels(), rotation=xticklabel_angle)
if plot_chains:
axes[-1, i].clear()
if isinstance(sampler, emcee.EnsembleSampler):
axes[-1, i].plot(sampler.chain[:, :, i].T, alpha=chain_alpha)
elif isinstance(sampler, emcee.PTSampler):
axes[-1, i].plot(sampler.chain[temp_idx, :, :, i].T, alpha=chain_alpha)
else:
if sampler.ndim == 4:
axes[-1, i].plot(sampler[temp_idx, :, :, i].T, alpha=chain_alpha)
elif sampler.ndim == 3:
axes[-1, i].plot(sampler[:, :, i].T, alpha=chain_alpha)
elif sampler.ndim == 2:
axes[-1, i].plot(sampler[:, i].T, alpha=chain_alpha)
# Plot the weights on top of the chains:
if weights is not None:
a_wt = axes[-1, i].twinx()
a_wt.plot(weights, alpha=chain_alpha, linestyle='--', color='r')
plt.setp(a_wt.yaxis.get_majorticklabels(), visible=False)
a_wt.yaxis.set_ticks_position('none')
# Plot the cutoff weight as a horizontal line and the first sample
# which is included as a vertical bar. Note that this won't be quite
# the right behavior if the weights are not roughly monotonic.
if cutoff_weight is not None:
a_wt.axhline(cutoff_weight * weights.max(), linestyle='-', color='r')
wi, = scipy.where(weights >= cutoff_weight * weights.max())
a_wt.axvline(wi[0], linestyle='-', color='r')
if burn > 0:
axes[-1, i].axvline(burn, color='r', linewidth=3)
if points is not None:
for p, c in zip(points, colors):
axes[-1, i].axhline(y=p[i], linewidth=3, color=c)
# Reset the xlim since it seems to get messed up:
axes[-1, i].set_xlim(left=0)
# try:
# [axes[-1, i].axhline(y=pt, linewidth=3) for pt in points[i]]
# except TypeError:
# axes[-1, i].axhline(y=points[i], linewidth=3)
if label_chain_y:
axes[-1, i].set_ylabel(labels[i], fontsize=chain_label_fontsize)
axes[-1, i].set_xlabel('step', fontsize=chain_label_fontsize)
plt.setp(axes[-1, i].xaxis.get_majorticklabels(), rotation=xticklabel_angle)
for tick in axes[-1, i].get_yaxis().get_major_ticks():
tick.set_pad(chain_ytick_pad)
tick.label1 = tick._get_text1()
for i in xrange(0, k):
if max_hist_ticks is not None:
axes[k - 1, i].xaxis.set_major_locator(plt.MaxNLocator(nbins=max_hist_ticks - 1))
axes[i, 0].yaxis.set_major_locator(plt.MaxNLocator(nbins=max_hist_ticks - 1))
if plot_chains and max_chain_ticks is not None:
axes[k, i].yaxis.set_major_locator(plt.MaxNLocator(nbins=max_chain_ticks - 1))
axes[k, i].xaxis.set_major_locator(plt.MaxNLocator(nbins=max_chain_ticks - 1))
if plot_chains and hide_chain_yticklabels:
plt.setp(axes[k, i].get_yticklabels(), visible=False)
if suptitle is not None:
f.suptitle(suptitle)
f.canvas.draw()
return f
|
Plot the results of MCMC sampler (posterior and chains).
Loosely based on triangle.py. Provides extensive options to format the plot.
Parameters
----------
sampler : :py:class:`emcee.Sampler` instance or array, (`n_temps`, `n_chains`, `n_samp`, `n_dim`), (`n_chains`, `n_samp`, `n_dim`) or (`n_samp`, `n_dim`)
The sampler to plot the chains/marginals of. Can also be an array of
samples which matches the shape of the `chain` attribute that would be
present in a :py:class:`emcee.Sampler` instance.
suptitle : str, optional
The figure title to place at the top. Default is no title.
labels : list of str, optional
The labels to use for each of the free parameters. Default is to leave
the axes unlabeled.
bins : int, optional
Number of bins to use for the histograms. Default is 50.
plot_samples : bool, optional
If True, the samples are plotted as individual points. Default is False.
plot_hist : bool, optional
If True, histograms are plotted. Default is True.
plot_chains : bool, optional
If True, plot the sampler chains at the bottom. Default is True.
burn : int, optional
The number of samples to burn before making the marginal histograms.
Default is zero (use all samples).
chain_mask : (index) array, optional
Mask identifying the chains to keep before plotting, in case there are
bad chains. Default is to use all chains.
temp_idx : int, optional
Index of the temperature to plot when plotting a
:py:class:`emcee.PTSampler`. Default is 0 (samples from the posterior).
weights : array, (`n_temps`, `n_chains`, `n_samp`), (`n_chains`, `n_samp`) or (`n_samp`,), optional
The weight for each sample. This is useful for post-processing the
output from MultiNest sampling, for instance. Default is to not weight
the samples.
cutoff_weight : float, optional
If `weights` and `cutoff_weight` are present, points with
`weights < cutoff_weight * weights.max()` will be excluded. Default is
to plot all points.
cmap : str, optional
The colormap to use for the histograms. Default is 'gray_r'.
hist_color : str, optional
The color to use for the univariate histograms. Default is 'k'.
chain_alpha : float, optional
The transparency to use for the plots of the individual chains. Setting
this to something low lets you better visualize what is going on.
Default is 0.1.
points : array, (`D`,) or (`N`, `D`), optional
Array of point(s) to plot onto each marginal and chain. Default is None.
covs : array, (`D`, `D`) or (`N`, `D`, `D`), optional
Covariance matrix or array of covariance matrices to plot onto each
marginal. If you do not want to plot a covariance matrix for a specific
point, set its corresponding entry to `None`. Default is to not plot
confidence ellipses for any points.
colors : array of str, (`N`,), optional
The colors to use for the points in `points`. Default is to use the
standard matplotlib RGBCMYK cycle.
ci : array, (`num_ci`,), optional
List of confidence intervals to plot for each non-`None` entry in `covs`.
Default is 0.95 (just plot the 95 percent confidence interval).
max_hist_ticks : int, optional
The maximum number of ticks for the histogram plots. Default is None
(no limit).
max_chain_ticks : int, optional
The maximum number of y-axis ticks for the chain plots. Default is 6.
label_chain_y : bool, optional
If True, the chain plots will have y axis labels. Default is False.
hide_chain_yticklabels : bool, optional
If True, hide the y axis tick labels for the chain plots. Default is
False (show y tick labels).
chain_ytick_pad : float, optional
The padding (in points) between the y-axis tick labels and the axis for
the chain plots. Default is 2.0.
label_fontsize : float, optional
The font size (in points) to use for the axis labels. Default is
`axes.labelsize`.
ticklabel_fontsize : float, optional
The font size (in points) to use for the axis tick labels. Default is
`xtick.labelsize`.
chain_label_fontsize : float, optional
The font size (in points) to use for the labels of the chain axes.
Default is `axes.labelsize`.
chain_ticklabel_fontsize : float, optional
The font size (in points) to use for the chain axis tick labels. Default
is `xtick.labelsize`.
xticklabel_angle : float, optional
The angle to rotate the x tick labels, in degrees. Default is 90.
bottom_sep : float, optional
The separation (in relative figure units) between the chains and the
marginals. Default is 0.075.
suptitle_space : float, optional
The amount of space (in relative figure units) to leave for a figure
title. Default is 0.1.
fixed_height : float, optional
The desired figure height (in inches). Default is to automatically
adjust based on `fixed_width` to make the subplots square.
fixed_width : float, optional
The desired figure width (in inches). Default is `figure.figsize[0]`.
l : float, optional
The location (in relative figure units) of the left margin. Default is
0.1.
r : float, optional
The location (in relative figure units) of the right margin. Default is
0.9.
t1 : float, optional
The location (in relative figure units) of the top of the grid of
histograms. Overrides `suptitle_space` if present.
b1 : float, optional
The location (in relative figure units) of the bottom of the grid of
histograms. Overrides `bottom_sep` if present. Defaults to 0.1 if
`plot_chains` is False.
t2 : float, optional
The location (in relative figure units) of the top of the grid of chain
plots. Default is 0.2.
b2 : float, optional
The location (in relative figure units) of the bottom of the grid of
chain plots. Default is 0.1.
ax_space : float, optional
The `w_space` and `h_space` to use (in relative figure units). Default
is 0.1.
|
entailment
|
def plot_sampler_fingerprint(
sampler, hyperprior, weights=None, cutoff_weight=None, nbins=None,
labels=None, burn=0, chain_mask=None, temp_idx=0, points=None,
plot_samples=False, sample_color='k', point_color=None, point_lw=3,
title='', rot_x_labels=False, figsize=None
):
"""Make a plot of the sampler's "fingerprint": univariate marginal histograms for all hyperparameters.
The hyperparameters are mapped to [0, 1] using
:py:meth:`hyperprior.elementwise_cdf`, so this can only be used with prior
distributions which implement this function.
Returns the figure and axis created.
Parameters
----------
sampler : :py:class:`emcee.Sampler` instance or array, (`n_temps`, `n_chains`, `n_samp`, `n_dim`), (`n_chains`, `n_samp`, `n_dim`) or (`n_samp`, `n_dim`)
The sampler to plot the chains/marginals of. Can also be an array of
samples which matches the shape of the `chain` attribute that would be
present in a :py:class:`emcee.Sampler` instance.
hyperprior : :py:class:`~gptools.utils.JointPrior` instance
The joint prior distribution for the hyperparameters. Used to map the
values to [0, 1] so that the hyperparameters can all be shown on the
same axis.
weights : array, (`n_temps`, `n_chains`, `n_samp`), (`n_chains`, `n_samp`) or (`n_samp`,), optional
The weight for each sample. This is useful for post-processing the
output from MultiNest sampling, for instance.
cutoff_weight : float, optional
If `weights` and `cutoff_weight` are present, points with
`weights < cutoff_weight * weights.max()` will be excluded. Default is
to plot all points.
nbins : int or array of int, (`D`,), optional
The number of bins dividing [0, 1] to use for each histogram. If a
single int is given, this is used for all of the hyperparameters. If an
array of ints is given, these are the numbers of bins for each of the
hyperparameters. The default is to determine the number of bins using
the Freedman-Diaconis rule.
labels : array of str, (`D`,), optional
The labels for each hyperparameter. Default is to use empty strings.
burn : int, optional
The number of samples to burn before making the marginal histograms.
Default is zero (use all samples).
chain_mask : (index) array, optional
Mask identifying the chains to keep before plotting, in case there are
bad chains. Default is to use all chains.
temp_idx : int, optional
Index of the temperature to plot when plotting a
:py:class:`emcee.PTSampler`. Default is 0 (samples from the posterior).
points : array, (`D`,) or (`N`, `D`), optional
Array of point(s) to plot as horizontal lines. Default is None.
plot_samples : bool, optional
If True, the samples are plotted as horizontal lines. Default is False.
sample_color : str, optional
The color to plot the samples in. Default is 'k', meaning black.
point_color : str or list of str, optional
The color to plot the individual points in. Default is to loop through
matplotlib's default color sequence. If a list is provided, it will be
cycled through.
point_lw : float, optional
Line width to use when plotting the individual points.
title : str, optional
Title to use for the plot.
rot_x_labels : bool, optional
If True, the labels for the x-axis are rotated 90 degrees. Default is
False (do not rotate labels).
figsize : 2-tuple, optional
The figure size to use. Default is to use the matplotlib default.
"""
try:
k = sampler.flatchain.shape[-1]
except AttributeError:
# Assumes array input is only case where there is no "flatchain" attribute.
k = sampler.shape[-1]
# Process the samples:
if isinstance(sampler, emcee.EnsembleSampler):
if chain_mask is None:
chain_mask = scipy.ones(sampler.chain.shape[0], dtype=bool)
flat_trace = sampler.chain[chain_mask, burn:, :]
flat_trace = flat_trace.reshape((-1, k))
elif isinstance(sampler, emcee.PTSampler):
if chain_mask is None:
chain_mask = scipy.ones(sampler.nwalkers, dtype=bool)
flat_trace = sampler.chain[temp_idx, chain_mask, burn:, :]
flat_trace = flat_trace.reshape((-1, k))
elif isinstance(sampler, scipy.ndarray):
if sampler.ndim == 4:
if chain_mask is None:
chain_mask = scipy.ones(sampler.shape[1], dtype=bool)
flat_trace = sampler[temp_idx, chain_mask, burn:, :]
flat_trace = flat_trace.reshape((-1, k))
if weights is not None:
weights = weights[temp_idx, chain_mask, burn:]
weights = weights.ravel()
elif sampler.ndim == 3:
if chain_mask is None:
chain_mask = scipy.ones(sampler.shape[0], dtype=bool)
flat_trace = sampler[chain_mask, burn:, :]
flat_trace = flat_trace.reshape((-1, k))
if weights is not None:
weights = weights[chain_mask, burn:]
weights = weights.ravel()
elif sampler.ndim == 2:
flat_trace = sampler[burn:, :]
flat_trace = flat_trace.reshape((-1, k))
if weights is not None:
weights = weights[burn:]
weights = weights.ravel()
if cutoff_weight is not None and weights is not None:
mask = weights >= cutoff_weight * weights.max()
flat_trace = flat_trace[mask, :]
weights = weights[mask]
else:
raise ValueError("Unknown sampler class: %s" % (type(sampler),))
if labels is None:
labels = [''] * k
u = scipy.asarray([hyperprior.elementwise_cdf(p) for p in flat_trace], dtype=float).T
if nbins is None:
lq, uq = scipy.stats.scoreatpercentile(u, [25, 75], axis=1)
h = 2.0 * (uq - lq) / u.shape[0]**(1.0 / 3.0)
n = scipy.asarray(scipy.ceil(1.0 / h), dtype=int)
else:
try:
iter(nbins)
n = nbins
except TypeError:
n = nbins * scipy.ones(u.shape[0])
hist = [scipy.stats.histogram(uv, numbins=nv, defaultlimits=[0, 1], weights=weights) for uv, nv in zip(u, n)]
max_ct = max([max(h.count) for h in hist])
min_ct = min([min(h.count) for h in hist])
f = plt.figure(figsize=figsize)
a = f.add_subplot(1, 1, 1)
for i, (h, pn) in enumerate(zip(hist, labels)):
a.imshow(
scipy.atleast_2d(scipy.asarray(h.count[::-1], dtype=float)).T,
cmap='gray_r',
interpolation='nearest',
vmin=min_ct,
vmax=max_ct,
extent=(i, i + 1, 0, 1),
aspect='auto'
)
if plot_samples:
for p in u:
for i, uv in enumerate(p):
a.plot([i, i + 1], [uv, uv], sample_color, alpha=0.1)
if points is not None:
points = scipy.atleast_2d(scipy.asarray(points, dtype=float))
u_points = [hyperprior.elementwise_cdf(p) for p in points]
if point_color is None:
c_cycle = itertools.cycle(['b', 'g', 'r', 'c', 'm', 'y', 'k'])
else:
c_cycle = itertools.cycle(scipy.atleast_1d(point_color))
for p in u_points:
c = c_cycle.next()
for i, uv in enumerate(p):
a.plot([i, i + 1], [uv, uv], color=c, lw=point_lw)
a.set_xlim(0, len(hist))
a.set_ylim(0, 1)
a.set_xticks(0.5 + scipy.arange(0, len(hist), dtype=float))
a.set_xticklabels(labels)
if rot_x_labels:
plt.setp(a.xaxis.get_majorticklabels(), rotation=90)
a.set_xlabel("parameter")
a.set_ylabel("$u=F_P(p)$")
a.set_title(title)
return f, a
|
Make a plot of the sampler's "fingerprint": univariate marginal histograms for all hyperparameters.
The hyperparameters are mapped to [0, 1] using
:py:meth:`hyperprior.elementwise_cdf`, so this can only be used with prior
distributions which implement this function.
Returns the figure and axis created.
Parameters
----------
sampler : :py:class:`emcee.Sampler` instance or array, (`n_temps`, `n_chains`, `n_samp`, `n_dim`), (`n_chains`, `n_samp`, `n_dim`) or (`n_samp`, `n_dim`)
The sampler to plot the chains/marginals of. Can also be an array of
samples which matches the shape of the `chain` attribute that would be
present in a :py:class:`emcee.Sampler` instance.
hyperprior : :py:class:`~gptools.utils.JointPrior` instance
The joint prior distribution for the hyperparameters. Used to map the
values to [0, 1] so that the hyperparameters can all be shown on the
same axis.
weights : array, (`n_temps`, `n_chains`, `n_samp`), (`n_chains`, `n_samp`) or (`n_samp`,), optional
The weight for each sample. This is useful for post-processing the
output from MultiNest sampling, for instance.
cutoff_weight : float, optional
If `weights` and `cutoff_weight` are present, points with
`weights < cutoff_weight * weights.max()` will be excluded. Default is
to plot all points.
nbins : int or array of int, (`D`,), optional
The number of bins dividing [0, 1] to use for each histogram. If a
single int is given, this is used for all of the hyperparameters. If an
array of ints is given, these are the numbers of bins for each of the
hyperparameters. The default is to determine the number of bins using
the Freedman-Diaconis rule.
labels : array of str, (`D`,), optional
The labels for each hyperparameter. Default is to use empty strings.
burn : int, optional
The number of samples to burn before making the marginal histograms.
Default is zero (use all samples).
chain_mask : (index) array, optional
Mask identifying the chains to keep before plotting, in case there are
bad chains. Default is to use all chains.
temp_idx : int, optional
Index of the temperature to plot when plotting a
:py:class:`emcee.PTSampler`. Default is 0 (samples from the posterior).
points : array, (`D`,) or (`N`, `D`), optional
Array of point(s) to plot as horizontal lines. Default is None.
plot_samples : bool, optional
If True, the samples are plotted as horizontal lines. Default is False.
sample_color : str, optional
The color to plot the samples in. Default is 'k', meaning black.
point_color : str or list of str, optional
The color to plot the individual points in. Default is to loop through
matplotlib's default color sequence. If a list is provided, it will be
cycled through.
point_lw : float, optional
Line width to use when plotting the individual points.
title : str, optional
Title to use for the plot.
rot_x_labels : bool, optional
If True, the labels for the x-axis are rotated 90 degrees. Default is
False (do not rotate labels).
figsize : 2-tuple, optional
The figure size to use. Default is to use the matplotlib default.
|
entailment
|
def plot_sampler_cov(
sampler, method='corr', weights=None, cutoff_weight=None, labels=None,
burn=0, chain_mask=None, temp_idx=0, cbar_label=None, title='',
rot_x_labels=False, figsize=None, xlabel_on_top=True
):
"""Make a plot of the sampler's correlation or covariance matrix.
Returns the figure and axis created.
Parameters
----------
sampler : :py:class:`emcee.Sampler` instance or array, (`n_temps`, `n_chains`, `n_samp`, `n_dim`), (`n_chains`, `n_samp`, `n_dim`) or (`n_samp`, `n_dim`)
The sampler to plot the chains/marginals of. Can also be an array of
samples which matches the shape of the `chain` attribute that would be
present in a :py:class:`emcee.Sampler` instance.
method : {'corr', 'cov'}
Whether to plot the correlation matrix ('corr') or the covariance matrix
('cov'). The covariance matrix is often not useful because different
parameters have wildly different scales. Default is to plot the
correlation matrix.
labels : array of str, (`D`,), optional
The labels for each hyperparameter. Default is to use empty strings.
burn : int, optional
The number of samples to burn before making the marginal histograms.
Default is zero (use all samples).
chain_mask : (index) array, optional
Mask identifying the chains to keep before plotting, in case there are
bad chains. Default is to use all chains.
temp_idx : int, optional
Index of the temperature to plot when plotting a
:py:class:`emcee.PTSampler`. Default is 0 (samples from the posterior).
cbar_label : str, optional
The label to use for the colorbar. The default is chosen based on the
value of the `method` keyword.
title : str, optional
Title to use for the plot.
rot_x_labels : bool, optional
If True, the labels for the x-axis are rotated 90 degrees. Default is
False (do not rotate labels).
figsize : 2-tuple, optional
The figure size to use. Default is to use the matplotlib default.
xlabel_on_top : bool, optional
If True, the x-axis labels are put on top (the way mathematicians
present matrices). Default is True.
"""
try:
k = sampler.flatchain.shape[-1]
except AttributeError:
# Assumes array input is only case where there is no "flatchain" attribute.
k = sampler.shape[-1]
# Process the samples:
if isinstance(sampler, emcee.EnsembleSampler):
if chain_mask is None:
chain_mask = scipy.ones(sampler.chain.shape[0], dtype=bool)
flat_trace = sampler.chain[chain_mask, burn:, :]
flat_trace = flat_trace.reshape((-1, k))
elif isinstance(sampler, emcee.PTSampler):
if chain_mask is None:
chain_mask = scipy.ones(sampler.nwalkers, dtype=bool)
flat_trace = sampler.chain[temp_idx, chain_mask, burn:, :]
flat_trace = flat_trace.reshape((-1, k))
elif isinstance(sampler, scipy.ndarray):
if sampler.ndim == 4:
if chain_mask is None:
chain_mask = scipy.ones(sampler.shape[1], dtype=bool)
flat_trace = sampler[temp_idx, chain_mask, burn:, :]
flat_trace = flat_trace.reshape((-1, k))
if weights is not None:
weights = weights[temp_idx, chain_mask, burn:]
weights = weights.ravel()
elif sampler.ndim == 3:
if chain_mask is None:
chain_mask = scipy.ones(sampler.shape[0], dtype=bool)
flat_trace = sampler[chain_mask, burn:, :]
flat_trace = flat_trace.reshape((-1, k))
if weights is not None:
weights = weights[chain_mask, burn:]
weights = weights.ravel()
elif sampler.ndim == 2:
flat_trace = sampler[burn:, :]
flat_trace = flat_trace.reshape((-1, k))
if weights is not None:
weights = weights[burn:]
weights = weights.ravel()
if cutoff_weight is not None and weights is not None:
mask = weights >= cutoff_weight * weights.max()
flat_trace = flat_trace[mask, :]
weights = weights[mask]
else:
raise ValueError("Unknown sampler class: %s" % (type(sampler),))
if labels is None:
labels = [''] * k
if cbar_label is None:
cbar_label = r'$\mathrm{cov}(p_1, p_2)$' if method == 'cov' else r'$\mathrm{corr}(p_1, p_2)$'
if weights is None:
if method == 'corr':
cov = scipy.corrcoef(flat_trace, rowvar=0, ddof=1)
else:
cov = scipy.cov(flat_trace, rowvar=0, ddof=1)
else:
cov = scipy.cov(flat_trace, rowvar=0, aweights=weights)
if method == 'corr':
stds = scipy.sqrt(scipy.diag(cov))
STD_1, STD_2 = scipy.meshgrid(stds, stds)
cov = cov / (STD_1 * STD_2)
f_cov = plt.figure(figsize=figsize)
a_cov = f_cov.add_subplot(1, 1, 1)
a_cov.set_title(title)
if method == 'cov':
vmax = scipy.absolute(cov).max()
else:
vmax = 1.0
cax = a_cov.pcolor(cov, cmap='seismic', vmin=-1 * vmax, vmax=vmax)
divider = make_axes_locatable(a_cov)
a_cb = divider.append_axes("right", size="10%", pad=0.05)
cbar = f_cov.colorbar(cax, cax=a_cb, label=cbar_label)
a_cov.set_xlabel('parameter')
a_cov.set_ylabel('parameter')
a_cov.axis('square')
a_cov.invert_yaxis()
if xlabel_on_top:
a_cov.xaxis.tick_top()
a_cov.xaxis.set_label_position('top')
a_cov.set_xticks(0.5 + scipy.arange(0, flat_trace.shape[1], dtype=float))
a_cov.set_yticks(0.5 + scipy.arange(0, flat_trace.shape[1], dtype=float))
a_cov.set_xticklabels(labels)
if rot_x_labels:
plt.setp(a_cov.xaxis.get_majorticklabels(), rotation=90)
a_cov.set_yticklabels(labels)
a_cov.set_xlim(0, flat_trace.shape[1])
a_cov.set_ylim(flat_trace.shape[1], 0)
return f_cov, a_cov
|
Make a plot of the sampler's correlation or covariance matrix.
Returns the figure and axis created.
Parameters
----------
sampler : :py:class:`emcee.Sampler` instance or array, (`n_temps`, `n_chains`, `n_samp`, `n_dim`), (`n_chains`, `n_samp`, `n_dim`) or (`n_samp`, `n_dim`)
The sampler to plot the chains/marginals of. Can also be an array of
samples which matches the shape of the `chain` attribute that would be
present in a :py:class:`emcee.Sampler` instance.
method : {'corr', 'cov'}
Whether to plot the correlation matrix ('corr') or the covariance matrix
('cov'). The covariance matrix is often not useful because different
parameters have wildly different scales. Default is to plot the
correlation matrix.
labels : array of str, (`D`,), optional
The labels for each hyperparameter. Default is to use empty strings.
burn : int, optional
The number of samples to burn before making the marginal histograms.
Default is zero (use all samples).
chain_mask : (index) array, optional
Mask identifying the chains to keep before plotting, in case there are
bad chains. Default is to use all chains.
temp_idx : int, optional
Index of the temperature to plot when plotting a
:py:class:`emcee.PTSampler`. Default is 0 (samples from the posterior).
cbar_label : str, optional
The label to use for the colorbar. The default is chosen based on the
value of the `method` keyword.
title : str, optional
Title to use for the plot.
rot_x_labels : bool, optional
If True, the labels for the x-axis are rotated 90 degrees. Default is
False (do not rotate labels).
figsize : 2-tuple, optional
The figure size to use. Default is to use the matplotlib default.
xlabel_on_top : bool, optional
If True, the x-axis labels are put on top (the way mathematicians
present matrices). Default is True.
|
entailment
|
def sample_u(self, q):
r"""Extract a sample from random variates uniform on :math:`[0, 1]`.
For a univariate distribution, this is simply evaluating the inverse
CDF. To facilitate efficient sampling, this function returns a *vector*
of PPF values, one value for each variable. Basically, the idea is that,
given a vector :math:`q` of `num_params` values each of which is
distributed uniformly on :math:`[0, 1]`, this function will return
corresponding samples for each variable.
Parameters
----------
q : array-like, (`num_params`,)
Values between 0 and 1 to evaluate inverse CDF at.
"""
p1_num_params = len(self.p1.bounds)
return scipy.concatenate(
(
self.p1.sample_u(q[:p1_num_params]),
self.p2.sample_u(q[p1_num_params:])
)
)
|
r"""Extract a sample from random variates uniform on :math:`[0, 1]`.
For a univariate distribution, this is simply evaluating the inverse
CDF. To facilitate efficient sampling, this function returns a *vector*
of PPF values, one value for each variable. Basically, the idea is that,
given a vector :math:`q` of `num_params` values each of which is
distributed uniformly on :math:`[0, 1]`, this function will return
corresponding samples for each variable.
Parameters
----------
q : array-like, (`num_params`,)
Values between 0 and 1 to evaluate inverse CDF at.
|
entailment
|
def elementwise_cdf(self, p):
r"""Convert a sample to random variates uniform on :math:`[0, 1]`.
For a univariate distribution, this is simply evaluating the CDF. To
facilitate efficient sampling, this function returns a *vector* of CDF
values, one value for each variable. Basically, the idea is that, given
a vector :math:`q` of `num_params` values each of which is distributed
according to the prior, this function will return variables uniform on
:math:`[0, 1]` corresponding to each variable. This is the inverse
operation to :py:meth:`sample_u`.
Parameters
----------
p : array-like, (`num_params`,)
Values to evaluate CDF at.
"""
p1_num_params = len(self.p1.bounds)
return scipy.concatenate(
(
self.p1.elementwise_cdf(p[:p1_num_params]),
self.p2.elementwise_cdf(p[p1_num_params:])
)
)
|
r"""Convert a sample to random variates uniform on :math:`[0, 1]`.
For a univariate distribution, this is simply evaluating the CDF. To
facilitate efficient sampling, this function returns a *vector* of CDF
values, one value for each variable. Basically, the idea is that, given
a vector :math:`q` of `num_params` values each of which is distributed
according to the prior, this function will return variables uniform on
:math:`[0, 1]` corresponding to each variable. This is the inverse
operation to :py:meth:`sample_u`.
Parameters
----------
p : array-like, (`num_params`,)
Values to evaluate CDF at.
|
entailment
|
def random_draw(self, size=None):
"""Draw random samples of the hyperparameters.
The outputs of the two priors are stacked vertically.
Parameters
----------
size : None, int or array-like, optional
The number/shape of samples to draw. If None, only one sample is
returned. Default is None.
"""
draw_1 = self.p1.random_draw(size=size)
draw_2 = self.p2.random_draw(size=size)
if draw_1.ndim == 1:
return scipy.hstack((draw_1, draw_2))
else:
return scipy.vstack((draw_1, draw_2))
|
Draw random samples of the hyperparameters.
The outputs of the two priors are stacked vertically.
Parameters
----------
size : None, int or array-like, optional
The number/shape of samples to draw. If None, only one sample is
returned. Default is None.
|
entailment
|
def sample_u(self, q):
r"""Extract a sample from random variates uniform on :math:`[0, 1]`.
For a univariate distribution, this is simply evaluating the inverse
CDF. To facilitate efficient sampling, this function returns a *vector*
of PPF values, one value for each variable. Basically, the idea is that,
given a vector :math:`q` of `num_params` values each of which is
distributed uniformly on :math:`[0, 1]`, this function will return
corresponding samples for each variable.
Parameters
----------
q : array of float
Values between 0 and 1 to evaluate inverse CDF at.
"""
q = scipy.atleast_1d(q)
if len(q) != len(self.bounds):
raise ValueError("length of q must equal the number of parameters!")
if q.ndim != 1:
raise ValueError("q must be one-dimensional!")
if (q < 0).any() or (q > 1).any():
raise ValueError("q must be within [0, 1]!")
return scipy.asarray([(b[1] - b[0]) * v + b[0] for v, b in zip(q, self.bounds)])
|
r"""Extract a sample from random variates uniform on :math:`[0, 1]`.
For a univariate distribution, this is simply evaluating the inverse
CDF. To facilitate efficient sampling, this function returns a *vector*
of PPF values, one value for each variable. Basically, the idea is that,
given a vector :math:`q` of `num_params` values each of which is
distributed uniformly on :math:`[0, 1]`, this function will return
corresponding samples for each variable.
Parameters
----------
q : array of float
Values between 0 and 1 to evaluate inverse CDF at.
|
entailment
|
def elementwise_cdf(self, p):
r"""Convert a sample to random variates uniform on :math:`[0, 1]`.
For a univariate distribution, this is simply evaluating the CDF. To
facilitate efficient sampling, this function returns a *vector* of CDF
values, one value for each variable. Basically, the idea is that, given
a vector :math:`q` of `num_params` values each of which is distributed
according to the prior, this function will return variables uniform on
:math:`[0, 1]` corresponding to each variable. This is the inverse
operation to :py:meth:`sample_u`.
Parameters
----------
p : array-like, (`num_params`,)
Values to evaluate CDF at.
"""
p = scipy.atleast_1d(p)
if len(p) != len(self.bounds):
raise ValueError("length of p must equal the number of parameters!")
if p.ndim != 1:
raise ValueError("p must be one-dimensional!")
c = scipy.zeros(len(self.bounds))
for k in xrange(0, len(self.bounds)):
if p[k] <= self.bounds[k][0]:
c[k] = 0.0
elif p[k] >= self.bounds[k][1]:
c[k] = 1.0
else:
c[k] = (p[k] - self.bounds[k][0]) / (self.bounds[k][1] - self.bounds[k][0])
return c
|
r"""Convert a sample to random variates uniform on :math:`[0, 1]`.
For a univariate distribution, this is simply evaluating the CDF. To
facilitate efficient sampling, this function returns a *vector* of CDF
values, one value for each variable. Basically, the idea is that, given
a vector :math:`q` of `num_params` values each of which is distributed
according to the prior, this function will return variables uniform on
:math:`[0, 1]` corresponding to each variable. This is the inverse
operation to :py:meth:`sample_u`.
Parameters
----------
p : array-like, (`num_params`,)
Values to evaluate CDF at.
|
entailment
|
def random_draw(self, size=None):
"""Draw random samples of the hyperparameters.
Parameters
----------
size : None, int or array-like, optional
The number/shape of samples to draw. If None, only one sample is
returned. Default is None.
"""
return scipy.asarray([numpy.random.uniform(low=b[0], high=b[1], size=size) for b in self.bounds])
|
Draw random samples of the hyperparameters.
Parameters
----------
size : None, int or array-like, optional
The number/shape of samples to draw. If None, only one sample is
returned. Default is None.
|
entailment
|
def random_draw(self, size=None):
"""Draw random samples of the hyperparameters.
Parameters
----------
size : None, int or array-like, optional
The number/shape of samples to draw. If None, only one sample is
returned. Default is None.
"""
if size is None:
size = 1
single_val = True
else:
single_val = False
out_shape = [len(self.bounds)]
try:
out_shape.extend(size)
except TypeError:
out_shape.append(size)
out = scipy.zeros(out_shape)
for j in xrange(0, len(self.bounds)):
if j != 2:
out[j, :] = numpy.random.uniform(low=self.bounds[j][0],
high=self.bounds[j][1],
size=size)
else:
out[j, :] = numpy.random.uniform(low=self.bounds[j][0],
high=out[j - 1, :],
size=size)
if not single_val:
return out
else:
return out.ravel()
|
Draw random samples of the hyperparameters.
Parameters
----------
size : None, int or array-like, optional
The number/shape of samples to draw. If None, only one sample is
returned. Default is None.
|
entailment
|
def sample_u(self, q):
r"""Extract a sample from random variates uniform on :math:`[0, 1]`.
For a univariate distribution, this is simply evaluating the inverse
CDF. To facilitate efficient sampling, this function returns a *vector*
of PPF values, one value for each variable. Basically, the idea is that,
given a vector :math:`q` of `num_params` values each of which is
distributed uniformly on :math:`[0, 1]`, this function will return
corresponding samples for each variable.
Parameters
----------
q : array of float
Values between 0 and 1 to evaluate inverse CDF at.
"""
q = scipy.atleast_1d(q)
if len(q) != len(self.univariate_priors):
raise ValueError("length of q must equal the number of parameters!")
if q.ndim != 1:
raise ValueError("q must be one-dimensional!")
if (q < 0).any() or (q > 1).any():
raise ValueError("q must be within [0, 1]!")
return scipy.asarray([p.ppf(v) for v, p in zip(q, self.univariate_priors)])
|
r"""Extract a sample from random variates uniform on :math:`[0, 1]`.
For a univariate distribution, this is simply evaluating the inverse
CDF. To facilitate efficient sampling, this function returns a *vector*
of PPF values, one value for each variable. Basically, the idea is that,
given a vector :math:`q` of `num_params` values each of which is
distributed uniformly on :math:`[0, 1]`, this function will return
corresponding samples for each variable.
Parameters
----------
q : array of float
Values between 0 and 1 to evaluate inverse CDF at.
|
entailment
|
def elementwise_cdf(self, p):
r"""Convert a sample to random variates uniform on :math:`[0, 1]`.
For a univariate distribution, this is simply evaluating the CDF. To
facilitate efficient sampling, this function returns a *vector* of CDF
values, one value for each variable. Basically, the idea is that, given
a vector :math:`q` of `num_params` values each of which is distributed
according to the prior, this function will return variables uniform on
:math:`[0, 1]` corresponding to each variable. This is the inverse
operation to :py:meth:`sample_u`.
Parameters
----------
p : array-like, (`num_params`,)
Values to evaluate CDF at.
"""
p = scipy.atleast_1d(p)
if len(p) != len(self.univariate_priors):
raise ValueError("length of p must equal the number of parameters!")
if p.ndim != 1:
raise ValueError("p must be one-dimensional!")
return scipy.asarray([pr.cdf(v) for v, pr in zip(p, self.univariate_priors)])
|
r"""Convert a sample to random variates uniform on :math:`[0, 1]`.
For a univariate distribution, this is simply evaluating the CDF. To
facilitate efficient sampling, this function returns a *vector* of CDF
values, one value for each variable. Basically, the idea is that, given
a vector :math:`q` of `num_params` values each of which is distributed
according to the prior, this function will return variables uniform on
:math:`[0, 1]` corresponding to each variable. This is the inverse
operation to :py:meth:`sample_u`.
Parameters
----------
p : array-like, (`num_params`,)
Values to evaluate CDF at.
|
entailment
|
def random_draw(self, size=None):
"""Draw random samples of the hyperparameters.
Parameters
----------
size : None, int or array-like, optional
The number/shape of samples to draw. If None, only one sample is
returned. Default is None.
"""
return scipy.asarray([p.rvs(size=size) for p in self.univariate_priors])
|
Draw random samples of the hyperparameters.
Parameters
----------
size : None, int or array-like, optional
The number/shape of samples to draw. If None, only one sample is
returned. Default is None.
|
entailment
|
def bounds(self):
"""The bounds of the random variable.
Set `self.i=0.95` to return the 95% interval if this is used for setting
bounds on optimizers/etc. where infinite bounds may not be useful.
"""
return [scipy.stats.norm.interval(self.i, loc=m, scale=s) for s, m in zip(self.sigma, self.mu)]
|
The bounds of the random variable.
Set `self.i=0.95` to return the 95% interval if this is used for setting
bounds on optimizers/etc. where infinite bounds may not be useful.
|
entailment
|
def sample_u(self, q):
r"""Extract a sample from random variates uniform on :math:`[0, 1]`.
For a univariate distribution, this is simply evaluating the inverse
CDF. To facilitate efficient sampling, this function returns a *vector*
of PPF values, one value for each variable. Basically, the idea is that,
given a vector :math:`q` of `num_params` values each of which is
distributed uniformly on :math:`[0, 1]`, this function will return
corresponding samples for each variable.
Parameters
----------
q : array of float
Values between 0 and 1 to evaluate inverse CDF at.
"""
q = scipy.atleast_1d(q)
if len(q) != len(self.sigma):
raise ValueError("length of q must equal the number of parameters!")
if q.ndim != 1:
raise ValueError("q must be one-dimensional!")
if (q < 0).any() or (q > 1).any():
raise ValueError("q must be within [0, 1]!")
return scipy.asarray([scipy.stats.norm.ppf(v, loc=m, scale=s) for v, s, m in zip(q, self.sigma, self.mu)])
|
r"""Extract a sample from random variates uniform on :math:`[0, 1]`.
For a univariate distribution, this is simply evaluating the inverse
CDF. To facilitate efficient sampling, this function returns a *vector*
of PPF values, one value for each variable. Basically, the idea is that,
given a vector :math:`q` of `num_params` values each of which is
distributed uniformly on :math:`[0, 1]`, this function will return
corresponding samples for each variable.
Parameters
----------
q : array of float
Values between 0 and 1 to evaluate inverse CDF at.
|
entailment
|
def elementwise_cdf(self, p):
r"""Convert a sample to random variates uniform on :math:`[0, 1]`.
For a univariate distribution, this is simply evaluating the CDF. To
facilitate efficient sampling, this function returns a *vector* of CDF
values, one value for each variable. Basically, the idea is that, given
a vector :math:`q` of `num_params` values each of which is distributed
according to the prior, this function will return variables uniform on
:math:`[0, 1]` corresponding to each variable. This is the inverse
operation to :py:meth:`sample_u`.
Parameters
----------
p : array-like, (`num_params`,)
Values to evaluate CDF at.
"""
p = scipy.atleast_1d(p)
if len(p) != len(self.sigma):
raise ValueError("length of p must equal the number of parameters!")
if p.ndim != 1:
raise ValueError("p must be one-dimensional!")
return scipy.asarray([scipy.stats.norm.cdf(v, loc=m, scale=s) for v, s, m in zip(p, self.sigma, self.mu)])
|
r"""Convert a sample to random variates uniform on :math:`[0, 1]`.
For a univariate distribution, this is simply evaluating the CDF. To
facilitate efficient sampling, this function returns a *vector* of CDF
values, one value for each variable. Basically, the idea is that, given
a vector :math:`q` of `num_params` values each of which is distributed
according to the prior, this function will return variables uniform on
:math:`[0, 1]` corresponding to each variable. This is the inverse
operation to :py:meth:`sample_u`.
Parameters
----------
p : array-like, (`num_params`,)
Values to evaluate CDF at.
|
entailment
|
def random_draw(self, size=None):
"""Draw random samples of the hyperparameters.
Parameters
----------
size : None, int or array-like, optional
The number/shape of samples to draw. If None, only one sample is
returned. Default is None.
"""
return scipy.asarray([scipy.stats.norm.rvs(loc=m, scale=s, size=size) for s, m in zip(self.sigma, self.mu)])
|
Draw random samples of the hyperparameters.
Parameters
----------
size : None, int or array-like, optional
The number/shape of samples to draw. If None, only one sample is
returned. Default is None.
|
entailment
|
def bounds(self):
"""The bounds of the random variable.
Set `self.i=0.95` to return the 95% interval if this is used for setting
bounds on optimizers/etc. where infinite bounds may not be useful.
"""
return [scipy.stats.lognorm.interval(self.i, s, loc=0, scale=em) for s, em in zip(self.sigma, self.emu)]
|
The bounds of the random variable.
Set `self.i=0.95` to return the 95% interval if this is used for setting
bounds on optimizers/etc. where infinite bounds may not be useful.
|
entailment
|
def sample_u(self, q):
r"""Extract a sample from random variates uniform on :math:`[0, 1]`.
For a univariate distribution, this is simply evaluating the inverse
CDF. To facilitate efficient sampling, this function returns a *vector*
of PPF values, one value for each variable. Basically, the idea is that,
given a vector :math:`q` of `num_params` values each of which is
distributed uniformly on :math:`[0, 1]`, this function will return
corresponding samples for each variable.
Parameters
----------
q : array of float
Values between 0 and 1 to evaluate inverse CDF at.
"""
q = scipy.atleast_1d(q)
if len(q) != len(self.sigma):
raise ValueError("length of q must equal the number of parameters!")
if q.ndim != 1:
raise ValueError("q must be one-dimensional!")
if (q < 0).any() or (q > 1).any():
raise ValueError("q must be within [0, 1]!")
return scipy.asarray([scipy.stats.lognorm.ppf(v, s, loc=0, scale=em) for v, s, em in zip(q, self.sigma, self.emu)])
|
r"""Extract a sample from random variates uniform on :math:`[0, 1]`.
For a univariate distribution, this is simply evaluating the inverse
CDF. To facilitate efficient sampling, this function returns a *vector*
of PPF values, one value for each variable. Basically, the idea is that,
given a vector :math:`q` of `num_params` values each of which is
distributed uniformly on :math:`[0, 1]`, this function will return
corresponding samples for each variable.
Parameters
----------
q : array of float
Values between 0 and 1 to evaluate inverse CDF at.
|
entailment
|
def elementwise_cdf(self, p):
r"""Convert a sample to random variates uniform on :math:`[0, 1]`.
For a univariate distribution, this is simply evaluating the CDF. To
facilitate efficient sampling, this function returns a *vector* of CDF
values, one value for each variable. Basically, the idea is that, given
a vector :math:`q` of `num_params` values each of which is distributed
according to the prior, this function will return variables uniform on
:math:`[0, 1]` corresponding to each variable. This is the inverse
operation to :py:meth:`sample_u`.
Parameters
----------
p : array-like, (`num_params`,)
Values to evaluate CDF at.
"""
p = scipy.atleast_1d(p)
if len(p) != len(self.sigma):
raise ValueError("length of p must equal the number of parameters!")
if p.ndim != 1:
raise ValueError("p must be one-dimensional!")
return scipy.asarray([scipy.stats.lognorm.cdf(v, s, loc=0, scale=em) for v, s, em in zip(p, self.sigma, self.emu)])
|
r"""Convert a sample to random variates uniform on :math:`[0, 1]`.
For a univariate distribution, this is simply evaluating the CDF. To
facilitate efficient sampling, this function returns a *vector* of CDF
values, one value for each variable. Basically, the idea is that, given
a vector :math:`q` of `num_params` values each of which is distributed
according to the prior, this function will return variables uniform on
:math:`[0, 1]` corresponding to each variable. This is the inverse
operation to :py:meth:`sample_u`.
Parameters
----------
p : array-like, (`num_params`,)
Values to evaluate CDF at.
|
entailment
|
def random_draw(self, size=None):
"""Draw random samples of the hyperparameters.
Parameters
----------
size : None, int or array-like, optional
The number/shape of samples to draw. If None, only one sample is
returned. Default is None.
"""
return scipy.asarray([scipy.stats.lognorm.rvs(s, loc=0, scale=em, size=size) for s, em in zip(self.sigma, self.emu)])
|
Draw random samples of the hyperparameters.
Parameters
----------
size : None, int or array-like, optional
The number/shape of samples to draw. If None, only one sample is
returned. Default is None.
|
entailment
|
def bounds(self):
"""The bounds of the random variable.
Set `self.i=0.95` to return the 95% interval if this is used for setting
bounds on optimizers/etc. where infinite bounds may not be useful.
"""
return [scipy.stats.gamma.interval(self.i, a, loc=0, scale=1.0 / b) for a, b in zip(self.a, self.b)]
|
The bounds of the random variable.
Set `self.i=0.95` to return the 95% interval if this is used for setting
bounds on optimizers/etc. where infinite bounds may not be useful.
|
entailment
|
def sample_u(self, q):
r"""Extract a sample from random variates uniform on :math:`[0, 1]`.
For a univariate distribution, this is simply evaluating the inverse
CDF. To facilitate efficient sampling, this function returns a *vector*
of PPF values, one value for each variable. Basically, the idea is that,
given a vector :math:`q` of `num_params` values each of which is
distributed uniformly on :math:`[0, 1]`, this function will return
corresponding samples for each variable.
Parameters
----------
q : array of float
Values between 0 and 1 to evaluate inverse CDF at.
"""
q = scipy.atleast_1d(q)
if len(q) != len(self.a):
raise ValueError("length of q must equal the number of parameters!")
if q.ndim != 1:
raise ValueError("q must be one-dimensional!")
if (q < 0).any() or (q > 1).any():
raise ValueError("q must be within [0, 1]!")
return scipy.asarray([scipy.stats.gamma.ppf(v, a, loc=0, scale=1.0 / b) for v, a, b in zip(q, self.a, self.b)])
|
r"""Extract a sample from random variates uniform on :math:`[0, 1]`.
For a univariate distribution, this is simply evaluating the inverse
CDF. To facilitate efficient sampling, this function returns a *vector*
of PPF values, one value for each variable. Basically, the idea is that,
given a vector :math:`q` of `num_params` values each of which is
distributed uniformly on :math:`[0, 1]`, this function will return
corresponding samples for each variable.
Parameters
----------
q : array of float
Values between 0 and 1 to evaluate inverse CDF at.
|
entailment
|
def elementwise_cdf(self, p):
r"""Convert a sample to random variates uniform on :math:`[0, 1]`.
For a univariate distribution, this is simply evaluating the CDF. To
facilitate efficient sampling, this function returns a *vector* of CDF
values, one value for each variable. Basically, the idea is that, given
a vector :math:`q` of `num_params` values each of which is distributed
according to the prior, this function will return variables uniform on
:math:`[0, 1]` corresponding to each variable. This is the inverse
operation to :py:meth:`sample_u`.
Parameters
----------
p : array-like, (`num_params`,)
Values to evaluate CDF at.
"""
p = scipy.atleast_1d(p)
if len(p) != len(self.a):
raise ValueError("length of p must equal the number of parameters!")
if p.ndim != 1:
raise ValueError("p must be one-dimensional!")
return scipy.asarray([scipy.stats.gamma.cdf(v, a, loc=0, scale=1.0 / b) for v, a, b in zip(p, self.a, self.b)])
|
r"""Convert a sample to random variates uniform on :math:`[0, 1]`.
For a univariate distribution, this is simply evaluating the CDF. To
facilitate efficient sampling, this function returns a *vector* of CDF
values, one value for each variable. Basically, the idea is that, given
a vector :math:`q` of `num_params` values each of which is distributed
according to the prior, this function will return variables uniform on
:math:`[0, 1]` corresponding to each variable. This is the inverse
operation to :py:meth:`sample_u`.
Parameters
----------
p : array-like, (`num_params`,)
Values to evaluate CDF at.
|
entailment
|
def random_draw(self, size=None):
"""Draw random samples of the hyperparameters.
Parameters
----------
size : None, int or array-like, optional
The number/shape of samples to draw. If None, only one sample is
returned. Default is None.
"""
return scipy.asarray([scipy.stats.gamma.rvs(a, loc=0, scale=1.0 / b, size=size) for a, b in zip(self.a, self.b)])
|
Draw random samples of the hyperparameters.
Parameters
----------
size : None, int or array-like, optional
The number/shape of samples to draw. If None, only one sample is
returned. Default is None.
|
entailment
|
def sample_u(self, q):
r"""Extract a sample from random variates uniform on :math:`[0, 1]`.
For a univariate distribution, this is simply evaluating the inverse
CDF. To facilitate efficient sampling, this function returns a *vector*
of PPF values, one value for each variable. Basically, the idea is that,
given a vector :math:`q` of `num_params` values each of which is
distributed uniformly on :math:`[0, 1]`, this function will return
corresponding samples for each variable.
Parameters
----------
q : array of float
Values between 0 and 1 to evaluate inverse CDF at.
"""
q = scipy.atleast_1d(q)
if len(q) != self.num_var:
raise ValueError("length of q must equal the number of parameters!")
if q.ndim != 1:
raise ValueError("q must be one-dimensional!")
if (q < 0).any() or (q > 1).any():
raise ValueError("q must be within [0, 1]!")
# Old way, not quite correct:
# q = scipy.sort(q)
# return scipy.asarray([(self.ub - self.lb) * v + self.lb for v in q])
# New way, based on conditional marginals:
out = scipy.zeros_like(q, dtype=float)
out[0] = self.lb
for d in xrange(0, len(out)):
out[d] = (
(1.0 - (1.0 - q[d])**(1.0 / (self.num_var - d))) *
(self.ub - out[max(d - 1, 0)]) + out[max(d - 1, 0)]
)
return out
|
r"""Extract a sample from random variates uniform on :math:`[0, 1]`.
For a univariate distribution, this is simply evaluating the inverse
CDF. To facilitate efficient sampling, this function returns a *vector*
of PPF values, one value for each variable. Basically, the idea is that,
given a vector :math:`q` of `num_params` values each of which is
distributed uniformly on :math:`[0, 1]`, this function will return
corresponding samples for each variable.
Parameters
----------
q : array of float
Values between 0 and 1 to evaluate inverse CDF at.
|
entailment
|
def elementwise_cdf(self, p):
r"""Convert a sample to random variates uniform on :math:`[0, 1]`.
For a univariate distribution, this is simply evaluating the CDF. To
facilitate efficient sampling, this function returns a *vector* of CDF
values, one value for each variable. Basically, the idea is that, given
a vector :math:`q` of `num_params` values each of which is distributed
according to the prior, this function will return variables uniform on
:math:`[0, 1]` corresponding to each variable. This is the inverse
operation to :py:meth:`sample_u`.
Parameters
----------
p : array-like, (`num_params`,)
Values to evaluate CDF at.
"""
p = scipy.atleast_1d(p)
if len(p) != len(self.bounds):
raise ValueError("length of p must equal the number of parameters!")
if p.ndim != 1:
raise ValueError("p must be one-dimensional!")
c = scipy.zeros(len(self.bounds))
# Old way, based on sorted uniform variables:
# for k in xrange(0, len(self.bounds)):
# if p[k] <= self.bounds[k][0]:
# c[k] = 0.0
# elif p[k] >= self.bounds[k][1]:
# c[k] = 1.0
# else:
# c[k] = (p[k] - self.bounds[k][0]) / (self.bounds[k][1] - self.bounds[k][0])
# New way, based on conditional marginals:
for d in xrange(0, len(c)):
pdm1 = p[d - 1] if d > 0 else self.lb
if p[d] <= pdm1:
c[d] = 0.0
elif p[d] >= self.ub:
c[d] = 1.0
else:
c[d] = 1.0 - (1.0 - (p[d] - pdm1) / (self.ub - pdm1))**(self.num_var - d)
return c
|
r"""Convert a sample to random variates uniform on :math:`[0, 1]`.
For a univariate distribution, this is simply evaluating the CDF. To
facilitate efficient sampling, this function returns a *vector* of CDF
values, one value for each variable. Basically, the idea is that, given
a vector :math:`q` of `num_params` values each of which is distributed
according to the prior, this function will return variables uniform on
:math:`[0, 1]` corresponding to each variable. This is the inverse
operation to :py:meth:`sample_u`.
Parameters
----------
p : array-like, (`num_params`,)
Values to evaluate CDF at.
|
entailment
|
def random_draw(self, size=None):
"""Draw random samples of the hyperparameters.
Parameters
----------
size : None, int or array-like, optional
The number/shape of samples to draw. If None, only one sample is
returned. Default is None.
"""
if size is None:
size = 1
single_val = True
else:
single_val = False
out_shape = [self.num_var]
try:
out_shape.extend(size)
except TypeError:
out_shape.append(size)
out = scipy.sort(
numpy.random.uniform(
low=self.lb,
high=self.ub,
size=out_shape
),
axis=0
)
if not single_val:
return out
else:
return out.ravel()
|
Draw random samples of the hyperparameters.
Parameters
----------
size : None, int or array-like, optional
The number/shape of samples to draw. If None, only one sample is
returned. Default is None.
|
entailment
|
def zapier_cancel_hook(request):
'''
Zapier can post something like this when tickets are cancelled
{
"ticket_type": "Individual (Regular)",
"barcode": "12345678",
"email": "demo@example.com"
}
'''
if request.META.get('HTTP_X_ZAPIER_SECRET', None) != settings.WAFER_TICKETS_SECRET:
raise PermissionDenied('Incorrect secret')
# This is required for python 3, and in theory fine on python 2
payload = json.loads(request.body.decode('utf8'))
ticket = Ticket.objects.filter(barcode=payload['barcode'])
if ticket.exists():
# delete the ticket
ticket.delete()
return HttpResponse("Cancelled\n", content_type='text/plain')
|
Zapier can post something like this when tickets are cancelled
{
"ticket_type": "Individual (Regular)",
"barcode": "12345678",
"email": "demo@example.com"
}
|
entailment
|
def zapier_guest_hook(request):
'''
Zapier can POST something like this when tickets are bought:
{
"ticket_type": "Individual (Regular)",
"barcode": "12345678",
"email": "demo@example.com"
}
'''
if request.META.get('HTTP_X_ZAPIER_SECRET', None) != settings.WAFER_TICKETS_SECRET:
raise PermissionDenied('Incorrect secret')
# This is required for python 3, and in theory fine on python 2
payload = json.loads(request.body.decode('utf8'))
import_ticket(payload['barcode'], payload['ticket_type'],
payload['email'])
return HttpResponse("Noted\n", content_type='text/plain')
|
Zapier can POST something like this when tickets are bought:
{
"ticket_type": "Individual (Regular)",
"barcode": "12345678",
"email": "demo@example.com"
}
|
entailment
|
def fetch_token(self):
"""Gains token from secure backend service.
:return: Token formatted for Cocaine protocol header.
"""
grant_type = 'client_credentials'
channel = yield self._tvm.ticket_full(
self._client_id, self._client_secret, grant_type, {})
ticket = yield channel.rx.get()
raise gen.Return(self._make_token(ticket))
|
Gains token from secure backend service.
:return: Token formatted for Cocaine protocol header.
|
entailment
|
def make_secure_adaptor(service, mod, client_id, client_secret, tok_update_sec=None):
"""
:param service: Service to wrap in.
:param mod: Name (type) of token refresh backend.
:param client_id: Client identifier.
:param client_secret: Client secret.
:param tok_update_sec: Token update interval in seconds.
"""
if mod == 'TVM':
return SecureServiceAdaptor(service, TVM(client_id, client_secret), tok_update_sec)
return SecureServiceAdaptor(service, Promiscuous(), tok_update_sec)
|
:param service: Service to wrap in.
:param mod: Name (type) of token refresh backend.
:param client_id: Client identifier.
:param client_secret: Client secret.
:param tok_update_sec: Token update interval in seconds.
|
entailment
|
def process_summary(summaryfile, **kwargs):
"""Extracting information from an albacore summary file.
Only reads which have a >0 length are returned.
The fields below may or may not exist, depending on the type of sequencing performed.
Fields 1-14 are for 1D sequencing.
Fields 1-23 for 2D sequencing.
Fields 24-27, 2-5, 22-23 for 1D^2 (1D2) sequencing
Fields 28-38 for barcoded workflows
1 filename
2 read_id
3 run_id
4 channel
5 start_time
6 duration
7 num_events
8 template_start
9 num_events_template
10 template_duration
11 num_called_template
12 sequence_length_template
13 mean_qscore_template
14 strand_score_template
15 complement_start
16 num_events_complement
17 complement_duration
18 num_called_complement
19 sequence_length_complement
20 mean_qscore_complement
21 strand_score_complement
22 sequence_length_2d
23 mean_qscore_2d
24 filename1
25 filename2
26 read_id1
27 read_id2
28 barcode_arrangement
29 barcode_score
30 barcode_full_arrangement
31 front_score
32 rear_score
33 front_begin_index
34 front_foundseq_length
35 rear_end_index
36 rear_foundseq_length
37 kit
38 variant
"""
logging.info("Nanoget: Collecting metrics from summary file {} for {} sequencing".format(
summaryfile, kwargs["readtype"]))
ut.check_existance(summaryfile)
if kwargs["readtype"] == "1D":
cols = ["read_id", "run_id", "channel", "start_time", "duration",
"sequence_length_template", "mean_qscore_template"]
elif kwargs["readtype"] in ["2D", "1D2"]:
cols = ["read_id", "run_id", "channel", "start_time", "duration",
"sequence_length_2d", "mean_qscore_2d"]
if kwargs["barcoded"]:
cols.append("barcode_arrangement")
logging.info("Nanoget: Extracting metrics per barcode.")
try:
datadf = pd.read_csv(
filepath_or_buffer=summaryfile,
sep="\t",
usecols=cols,
)
except ValueError:
logging.error("Nanoget: did not find expected columns in summary file {}:\n {}".format(
summaryfile, ', '.join(cols)))
sys.exit("ERROR: expected columns in summary file {} not found:\n {}".format(
summaryfile, ', '.join(cols)))
if kwargs["barcoded"]:
datadf.columns = ["readIDs", "runIDs", "channelIDs", "time", "duration",
"lengths", "quals", "barcode"]
else:
datadf.columns = ["readIDs", "runIDs", "channelIDs", "time", "duration", "lengths", "quals"]
logging.info("Nanoget: Finished collecting statistics from summary file {}".format(summaryfile))
return ut.reduce_memory_usage(datadf.loc[datadf["lengths"] != 0].copy())
|
Extracting information from an albacore summary file.
Only reads which have a >0 length are returned.
The fields below may or may not exist, depending on the type of sequencing performed.
Fields 1-14 are for 1D sequencing.
Fields 1-23 for 2D sequencing.
Fields 24-27, 2-5, 22-23 for 1D^2 (1D2) sequencing
Fields 28-38 for barcoded workflows
1 filename
2 read_id
3 run_id
4 channel
5 start_time
6 duration
7 num_events
8 template_start
9 num_events_template
10 template_duration
11 num_called_template
12 sequence_length_template
13 mean_qscore_template
14 strand_score_template
15 complement_start
16 num_events_complement
17 complement_duration
18 num_called_complement
19 sequence_length_complement
20 mean_qscore_complement
21 strand_score_complement
22 sequence_length_2d
23 mean_qscore_2d
24 filename1
25 filename2
26 read_id1
27 read_id2
28 barcode_arrangement
29 barcode_score
30 barcode_full_arrangement
31 front_score
32 rear_score
33 front_begin_index
34 front_foundseq_length
35 rear_end_index
36 rear_foundseq_length
37 kit
38 variant
|
entailment
|
def check_bam(bam, samtype="bam"):
"""Check if bam file is valid.
Bam file should:
- exists
- has an index (create if necessary)
- is sorted by coordinate
- has at least one mapped read
"""
ut.check_existance(bam)
samfile = pysam.AlignmentFile(bam, "rb")
if not samfile.has_index():
pysam.index(bam)
samfile = pysam.AlignmentFile(bam, "rb") # Need to reload the samfile after creating index
logging.info("Nanoget: No index for bam file could be found, created index.")
if not samfile.header['HD']['SO'] == 'coordinate':
logging.error("Nanoget: Bam file {} not sorted by coordinate!.".format(bam))
sys.exit("Please use a bam file sorted by coordinate.")
if samtype == "bam":
logging.info("Nanoget: Bam file {} contains {} mapped and {} unmapped reads.".format(
bam, samfile.mapped, samfile.unmapped))
if samfile.mapped == 0:
logging.error("Nanoget: Bam file {} does not contain aligned reads.".format(bam))
sys.exit("FATAL: not a single read was mapped in bam file {}".format(bam))
return samfile
|
Check if bam file is valid.
Bam file should:
- exists
- has an index (create if necessary)
- is sorted by coordinate
- has at least one mapped read
|
entailment
|
def process_ubam(bam, **kwargs):
"""Extracting metrics from unaligned bam format
Extracting lengths
"""
logging.info("Nanoget: Starting to collect statistics from ubam file {}.".format(bam))
samfile = pysam.AlignmentFile(bam, "rb", check_sq=False)
if not samfile.has_index():
pysam.index(bam)
# Need to reload the samfile after creating index
samfile = pysam.AlignmentFile(bam, "rb")
logging.info("Nanoget: No index for bam file could be found, created index.")
datadf = pd.DataFrame(
data=[(read.query_name, nanomath.ave_qual(read.query_qualities), read.query_length)
for read in samfile.fetch(until_eof=True)],
columns=["readIDs", "quals", "lengths"]) \
.dropna(axis='columns', how='all') \
.dropna(axis='index', how='any')
logging.info("Nanoget: ubam {} contains {} reads.".format(
bam, datadf["lengths"].size))
return ut.reduce_memory_usage(datadf)
|
Extracting metrics from unaligned bam format
Extracting lengths
|
entailment
|
def process_bam(bam, **kwargs):
"""Combines metrics from bam after extraction.
Processing function: calls pool of worker functions
to extract from a bam file the following metrics:
-lengths
-aligned lengths
-qualities
-aligned qualities
-mapping qualities
-edit distances to the reference genome scaled by read length
Returned in a pandas DataFrame
"""
logging.info("Nanoget: Starting to collect statistics from bam file {}.".format(bam))
samfile = check_bam(bam)
chromosomes = samfile.references
params = zip([bam] * len(chromosomes), chromosomes)
with cfutures.ProcessPoolExecutor() as executor:
datadf = pd.DataFrame(
data=[res for sublist in executor.map(extract_from_bam, params) for res in sublist],
columns=["readIDs", "quals", "aligned_quals", "lengths",
"aligned_lengths", "mapQ", "percentIdentity"]) \
.dropna(axis='columns', how='all') \
.dropna(axis='index', how='any')
logging.info("Nanoget: bam {} contains {} primary alignments.".format(
bam, datadf["lengths"].size))
return ut.reduce_memory_usage(datadf)
|
Combines metrics from bam after extraction.
Processing function: calls pool of worker functions
to extract from a bam file the following metrics:
-lengths
-aligned lengths
-qualities
-aligned qualities
-mapping qualities
-edit distances to the reference genome scaled by read length
Returned in a pandas DataFrame
|
entailment
|
def extract_from_bam(params):
"""Extracts metrics from bam.
Worker function per chromosome
loop over a bam file and create list with tuples containing metrics:
-qualities
-aligned qualities
-lengths
-aligned lengths
-mapping qualities
-edit distances to the reference genome scaled by read length
"""
bam, chromosome = params
samfile = pysam.AlignmentFile(bam, "rb")
return [
(read.query_name,
nanomath.ave_qual(read.query_qualities),
nanomath.ave_qual(read.query_alignment_qualities),
read.query_length,
read.query_alignment_length,
read.mapping_quality,
get_pID(read))
for read in samfile.fetch(reference=chromosome, multiple_iterators=True)
if not read.is_secondary]
|
Extracts metrics from bam.
Worker function per chromosome
loop over a bam file and create list with tuples containing metrics:
-qualities
-aligned qualities
-lengths
-aligned lengths
-mapping qualities
-edit distances to the reference genome scaled by read length
|
entailment
|
def get_pID(read):
"""Return the percent identity of a read.
based on the NM tag if present,
if not calculate from MD tag and CIGAR string
read.query_alignment_length can be zero in the case of ultra long reads aligned with minimap2 -L
"""
try:
return 100 * (1 - read.get_tag("NM") / read.query_alignment_length)
except KeyError:
try:
return 100 * (1 - (parse_MD(read.get_tag("MD")) + parse_CIGAR(read.cigartuples))
/ read.query_alignment_length)
except KeyError:
return None
except ZeroDivisionError:
return None
|
Return the percent identity of a read.
based on the NM tag if present,
if not calculate from MD tag and CIGAR string
read.query_alignment_length can be zero in the case of ultra long reads aligned with minimap2 -L
|
entailment
|
def handle_compressed_input(inputfq, file_type="fastq"):
"""Return handles from compressed files according to extension.
Check for which fastq input is presented and open a handle accordingly
Can read from compressed files (gz, bz2, bgz) or uncompressed
Relies on file extensions to recognize compression
"""
ut.check_existance(inputfq)
if inputfq.endswith(('.gz', 'bgz')):
import gzip
logging.info("Nanoget: Decompressing gzipped {} {}".format(file_type, inputfq))
return gzip.open(inputfq, 'rt')
elif inputfq.endswith('.bz2'):
import bz2
logging.info("Nanoget: Decompressing bz2 compressed {} {}".format(file_type, inputfq))
return bz2.open(inputfq, 'rt')
elif inputfq.endswith(('.fastq', '.fq', 'fasta', '.fa', '.fas')):
return open(inputfq, 'r')
else:
logging.error("INPUT ERROR: Unrecognized file extension {}".format(inputfq))
sys.exit('INPUT ERROR:\nUnrecognized file extension in {}\n'
'Supported are gz, bz2, bgz, fastq, fq, fasta, fa and fas'.format(inputfq))
|
Return handles from compressed files according to extension.
Check for which fastq input is presented and open a handle accordingly
Can read from compressed files (gz, bz2, bgz) or uncompressed
Relies on file extensions to recognize compression
|
entailment
|
def process_fasta(fasta, **kwargs):
"""Combine metrics extracted from a fasta file."""
logging.info("Nanoget: Starting to collect statistics from a fasta file.")
inputfasta = handle_compressed_input(fasta, file_type="fasta")
return ut.reduce_memory_usage(pd.DataFrame(
data=[len(rec) for rec in SeqIO.parse(inputfasta, "fasta")],
columns=["lengths"]
).dropna())
|
Combine metrics extracted from a fasta file.
|
entailment
|
def process_fastq_plain(fastq, **kwargs):
"""Combine metrics extracted from a fastq file."""
logging.info("Nanoget: Starting to collect statistics from plain fastq file.")
inputfastq = handle_compressed_input(fastq)
return ut.reduce_memory_usage(pd.DataFrame(
data=[res for res in extract_from_fastq(inputfastq) if res],
columns=["quals", "lengths"]
).dropna())
|
Combine metrics extracted from a fastq file.
|
entailment
|
def extract_from_fastq(fq):
"""Extract metrics from a fastq file.
Return average quality and read length
"""
for rec in SeqIO.parse(fq, "fastq"):
yield nanomath.ave_qual(rec.letter_annotations["phred_quality"]), len(rec)
|
Extract metrics from a fastq file.
Return average quality and read length
|
entailment
|
def stream_fastq_full(fastq, threads):
"""Generator for returning metrics extracted from fastq.
Extract from a fastq file:
-readname
-average and median quality
-read_lenght
"""
logging.info("Nanoget: Starting to collect full metrics from plain fastq file.")
inputfastq = handle_compressed_input(fastq)
with cfutures.ProcessPoolExecutor(max_workers=threads) as executor:
for results in executor.map(extract_all_from_fastq, SeqIO.parse(inputfastq, "fastq")):
yield results
logging.info("Nanoget: Finished collecting statistics from plain fastq file.")
|
Generator for returning metrics extracted from fastq.
Extract from a fastq file:
-readname
-average and median quality
-read_lenght
|
entailment
|
def extract_all_from_fastq(rec):
"""Extract metrics from a fastq file.
Return identifier, read length, average quality and median quality
"""
return (rec.id,
len(rec),
nanomath.ave_qual(rec.letter_annotations["phred_quality"]),
nanomath.median_qual(rec.letter_annotations["phred_quality"]))
|
Extract metrics from a fastq file.
Return identifier, read length, average quality and median quality
|
entailment
|
def process_fastq_rich(fastq, **kwargs):
"""Extract metrics from a richer fastq file.
Extract information from fastq files generated by albacore or MinKNOW,
containing richer information in the header (key-value pairs)
read=<int> [72]
ch=<int> [159]
start_time=<timestamp> [2016-07-15T14:23:22Z] # UTC ISO 8601 ISO 3339 timestamp
Z indicates UTC time, T is the delimiter between date expression and time expression
dateutil.parser.parse("2016-07-15T14:23:22Z") imported as dparse
-> datetime.datetime(2016, 7, 15, 14, 23, 22, tzinfo=tzutc())
"""
logging.info("Nanoget: Starting to collect statistics from rich fastq file.")
inputfastq = handle_compressed_input(fastq)
res = []
for record in SeqIO.parse(inputfastq, "fastq"):
try:
read_info = info_to_dict(record.description)
res.append(
(nanomath.ave_qual(record.letter_annotations["phred_quality"]),
len(record),
read_info["ch"],
read_info["start_time"],
read_info["runid"]))
except KeyError:
logging.error("Nanoget: keyerror when processing record {}".format(record.description))
sys.exit("Unexpected fastq identifier:\n{}\n\n \
missing one or more of expected fields 'ch', 'start_time' or 'runid'".format(
record.description))
df = pd.DataFrame(
data=res,
columns=["quals", "lengths", "channelIDs", "timestamp", "runIDs"]).dropna()
df["channelIDs"] = df["channelIDs"].astype("int64")
return ut.reduce_memory_usage(df)
|
Extract metrics from a richer fastq file.
Extract information from fastq files generated by albacore or MinKNOW,
containing richer information in the header (key-value pairs)
read=<int> [72]
ch=<int> [159]
start_time=<timestamp> [2016-07-15T14:23:22Z] # UTC ISO 8601 ISO 3339 timestamp
Z indicates UTC time, T is the delimiter between date expression and time expression
dateutil.parser.parse("2016-07-15T14:23:22Z") imported as dparse
-> datetime.datetime(2016, 7, 15, 14, 23, 22, tzinfo=tzutc())
|
entailment
|
def readfq(fp):
"""Generator function adapted from https://github.com/lh3/readfq."""
last = None # this is a buffer keeping the last unprocessed line
while True: # mimic closure; is it a bad idea?
if not last: # the first record or a record following a fastq
for l in fp: # search for the start of the next record
if l[0] in '>@': # fasta/q header line
last = l[:-1] # save this line
break
if not last:
break
name, seqs, last = last[1:].partition(" ")[0], [], None
for l in fp: # read the sequence
if l[0] in '@+>':
last = l[:-1]
break
seqs.append(l[:-1])
if not last or last[0] != '+': # this is a fasta record
yield name, ''.join(seqs), None # yield a fasta record
if not last:
break
else: # this is a fastq record
seq, leng, seqs = ''.join(seqs), 0, []
for l in fp: # read the quality
seqs.append(l[:-1])
leng += len(l) - 1
if leng >= len(seq): # have read enough quality
last = None
yield name, seq, ''.join(seqs) # yield a fastq record
break
if last: # reach EOF before reading enough quality
yield name, seq, None # yield a fasta record instead
break
|
Generator function adapted from https://github.com/lh3/readfq.
|
entailment
|
def fq_minimal(fq):
"""Minimal fastq metrics extractor.
Quickly parse a fasta/fastq file - but makes expectations on the file format
There will be dragons if unexpected format is used
Expects a fastq_rich format, but extracts only timestamp and length
"""
try:
while True:
time = next(fq)[1:].split(" ")[4][11:-1]
length = len(next(fq))
next(fq)
next(fq)
yield time, length
except StopIteration:
yield None
|
Minimal fastq metrics extractor.
Quickly parse a fasta/fastq file - but makes expectations on the file format
There will be dragons if unexpected format is used
Expects a fastq_rich format, but extracts only timestamp and length
|
entailment
|
def process_fastq_minimal(fastq, **kwargs):
"""Swiftly extract minimal features (length and timestamp) from a rich fastq file"""
infastq = handle_compressed_input(fastq)
try:
df = pd.DataFrame(
data=[rec for rec in fq_minimal(infastq) if rec],
columns=["timestamp", "lengths"]
)
except IndexError:
logging.error("Fatal: Incorrect file structure for fastq_minimal")
sys.exit("Error: file does not match expected structure for fastq_minimal")
return ut.reduce_memory_usage(df)
|
Swiftly extract minimal features (length and timestamp) from a rich fastq file
|
entailment
|
def _get_piece(string, index):
"""
Returns Piece subclass given index of piece.
:type: index: int
:type: loc Location
:raise: KeyError
"""
piece = string[index].strip()
piece = piece.upper()
piece_dict = {'R': Rook,
'P': Pawn,
'B': Bishop,
'N': Knight,
'Q': Queen,
'K': King}
try:
return piece_dict[piece]
except KeyError:
raise ValueError("Piece {} is invalid".format(piece))
|
Returns Piece subclass given index of piece.
:type: index: int
:type: loc Location
:raise: KeyError
|
entailment
|
def incomplete_alg(alg_str, input_color, position):
"""
Converts a string written in short algebraic form into an incomplete move.
These incomplete moves do not have the initial location specified and
therefore cannot be used to update the board. IN order to fully utilize
incomplete move, it must be run through ``make_legal()`` with
the corresponding position. It is recommended to use
``short_alg()`` instead of this method because it returns a complete
move.
Examples: e4, Nf3, exd5, Qxf3, 00, 000, e8=Q
:type: alg_str: str
:type: input_color: Color
"""
edge_rank = 0 \
if input_color == color.white \
else 7
if alg_str is None or len(alg_str) <= 1:
raise ValueError("algebraic string {} is invalid".format(alg_str))
# King-side castle
if alg_str in ["00", "oo", "OO", "0-0", "o-o", "O-O"]:
return Move(end_loc=Location(edge_rank, 6),
piece=King(input_color, Location(edge_rank, 4)),
status=notation_const.KING_SIDE_CASTLE,
start_loc=Location(edge_rank, 4))
# Queen-side castle
if alg_str in ["000", "ooo", "OOO", "0-0-0", "o-o-o", "O-O-O"]:
return Move(end_loc=Location(edge_rank, 2),
piece=King(input_color, Location(edge_rank, 4)),
status=notation_const.QUEEN_SIDE_CASTLE,
start_loc=Location(edge_rank, 4))
try:
end_location = Location.from_string(alg_str[-2:])
except ValueError:
end_location = Location.from_string(alg_str[-4:-2])
# Pawn movement
if len(alg_str) == 2:
possible_pawn = position.piece_at_square(end_location.shift_back(input_color))
if type(possible_pawn) is Pawn and \
possible_pawn.color == input_color:
start_location = end_location.shift_back(input_color)
else:
start_location = end_location.shift_back(input_color, times=2)
return Move(end_loc=end_location,
piece=position.piece_at_square(start_location),
status=notation_const.MOVEMENT,
start_loc=start_location)
# Non-pawn Piece movement
if len(alg_str) == 3:
possible_piece, start_location = _get_piece_start_location(end_location,
input_color,
_get_piece(alg_str, 0),
position)
return Move(end_loc=end_location,
piece=possible_piece,
status=notation_const.MOVEMENT,
start_loc=start_location)
# Multiple options (Capture or Piece movement with file specified)
if len(alg_str) == 4:
# Capture
if alg_str[1].upper() == "X":
# Pawn capture
if not alg_str[0].isupper():
pawn_location = Location(end_location.rank, ord(alg_str[0]) - 97).shift_back(input_color)
possible_pawn = position.piece_at_square(pawn_location)
if type(possible_pawn) is Pawn and \
possible_pawn.color == input_color:
en_passant_pawn = position.piece_at_square(end_location.shift_back(input_color))
if type(en_passant_pawn) is Pawn and \
en_passant_pawn.color != input_color and \
position.is_square_empty(end_location):
return Move(end_loc=end_location,
piece=position.piece_at_square(pawn_location),
status=notation_const.EN_PASSANT,
start_loc=pawn_location)
else:
return Move(end_loc=end_location,
piece=position.piece_at_square(pawn_location),
status=notation_const.CAPTURE,
start_loc=pawn_location)
# Piece capture
elif alg_str[0].isupper():
possible_piece, start_location = _get_piece_start_location(end_location,
input_color,
_get_piece(alg_str, 0),
position)
return Move(end_loc=end_location,
piece=possible_piece,
status=notation_const.CAPTURE,
start_loc=start_location)
# Pawn Promotion
elif alg_str[2] == "=":
promote_end_loc = Location.from_string(alg_str[:2])
if promote_end_loc.rank != 0 and promote_end_loc.rank != 7:
raise ValueError("Promotion {} must be on the last rank".format(alg_str))
return Move(end_loc=promote_end_loc,
piece=Pawn(input_color, promote_end_loc),
status=notation_const.PROMOTE,
promoted_to_piece=_get_piece(alg_str, 3),
start_loc=promote_end_loc.shift_back(input_color))
# Non-pawn Piece movement with file specified (aRb7)
elif alg_str[1].isupper() and not alg_str[0].isdigit():
possible_piece, start_location = _get_piece_start_location(end_location,
input_color,
_get_piece(alg_str, 1),
position,
start_file=alg_str[0])
return Move(end_loc=end_location,
piece=possible_piece,
status=notation_const.MOVEMENT,
start_loc=start_location)
# (alt) Non-pawn Piece movement with file specified (Rab7)
elif alg_str[0].isupper() and not alg_str[1].isdigit():
possible_piece, start_location = _get_piece_start_location(end_location,
input_color,
_get_piece(alg_str, 0),
position,
start_file=alg_str[1])
return Move(end_loc=end_location,
piece=possible_piece,
status=notation_const.MOVEMENT,
start_loc=start_location)
# Non-pawn Piece movement with rank specified (R1b7)
elif alg_str[0].isupper() and alg_str[1].isdigit():
possible_piece, start_location = _get_piece_start_location(end_location,
input_color,
_get_piece(alg_str, 0),
position,
start_rank=alg_str[1])
return Move(end_loc=end_location,
piece=possible_piece,
status=notation_const.MOVEMENT,
start_loc=start_location)
# Multiple options
if len(alg_str) == 5:
# Non-pawn Piece movement with rank and file specified (a2Ra1
if not alg_str[0].isdigit() and \
alg_str[1].isdigit() and \
alg_str[2].isupper() and \
not alg_str[3].isdigit() and \
alg_str[4].isdigit:
start_loc = Location.from_string(alg_str[:2])
return Move(end_loc=end_location,
piece=_get_piece(alg_str, 2)(input_color, end_location),
status=notation_const.MOVEMENT,
start_loc=start_loc)
# Multiple Piece capture options
if alg_str[2].upper() == "X":
# Piece capture with rank specified (R1xa1)
if alg_str[1].isdigit():
possible_piece, start_location = _get_piece_start_location(end_location,
input_color,
_get_piece(alg_str, 0),
position,
start_rank=alg_str[1])
return Move(end_loc=end_location,
piece=possible_piece,
status=notation_const.CAPTURE,
start_loc=start_location)
# Piece capture with file specified (Rdxd7)
else:
possible_piece, start_location = _get_piece_start_location(end_location,
input_color,
_get_piece(alg_str, 0),
position,
start_file=alg_str[1])
return Move(end_loc=end_location,
piece=possible_piece,
status=notation_const.CAPTURE,
start_loc=start_location)
# Pawn promotion with capture
if len(alg_str) == 6 and alg_str[4] == "=":
start_file = ord(alg_str[0]) - 97
promote_capture_end_loc = Location.from_string(alg_str[2:4])
return Move(end_loc=promote_capture_end_loc,
piece=Pawn(input_color, promote_capture_end_loc),
status=notation_const.CAPTURE_AND_PROMOTE,
promoted_to_piece=_get_piece(alg_str, 5),
start_loc=Location(end_location.shift_back(input_color).rank, start_file))
raise ValueError("algebraic string {} is invalid in \n{}".format(alg_str, position))
|
Converts a string written in short algebraic form into an incomplete move.
These incomplete moves do not have the initial location specified and
therefore cannot be used to update the board. IN order to fully utilize
incomplete move, it must be run through ``make_legal()`` with
the corresponding position. It is recommended to use
``short_alg()`` instead of this method because it returns a complete
move.
Examples: e4, Nf3, exd5, Qxf3, 00, 000, e8=Q
:type: alg_str: str
:type: input_color: Color
|
entailment
|
def make_legal(move, position):
"""
Converts an incomplete move (initial ``Location`` not specified)
and the corresponding position into the a complete move
with the most likely starting point specified. If no moves match, ``None``
is returned.
:type: move: Move
:type: position: Board
:rtype: Move
"""
assert isinstance(move, Move)
for legal_move in position.all_possible_moves(move.color):
if move.status == notation_const.LONG_ALG:
if move.end_loc == legal_move.end_loc and \
move.start_loc == legal_move.start_loc:
return legal_move
elif move == legal_move:
return legal_move
raise ValueError("Move {} not legal in \n{}".format(repr(move), position))
|
Converts an incomplete move (initial ``Location`` not specified)
and the corresponding position into the a complete move
with the most likely starting point specified. If no moves match, ``None``
is returned.
:type: move: Move
:type: position: Board
:rtype: Move
|
entailment
|
def short_alg(algebraic_string, input_color, position):
"""
Converts a string written in short algebraic form, the color
of the side whose turn it is, and the corresponding position
into a complete move that can be played. If no moves match,
None is returned.
Examples: e4, Nf3, exd5, Qxf3, 00, 000, e8=Q
:type: algebraic_string: str
:type: input_color: Color
:type: position: Board
"""
return make_legal(incomplete_alg(algebraic_string, input_color, position), position)
|
Converts a string written in short algebraic form, the color
of the side whose turn it is, and the corresponding position
into a complete move that can be played. If no moves match,
None is returned.
Examples: e4, Nf3, exd5, Qxf3, 00, 000, e8=Q
:type: algebraic_string: str
:type: input_color: Color
:type: position: Board
|
entailment
|
def long_alg(alg_str, position):
"""
Converts a string written in long algebraic form
and the corresponding position into a complete move
(initial location specified). Used primarily for
UCI, but can be used for other purposes.
:type: alg_str: str
:type: position: Board
:rtype: Move
"""
if alg_str is None or len(alg_str) < 4 or len(alg_str) > 6:
raise ValueError("Invalid string input {}".format(alg_str))
end = Location.from_string(alg_str[2:])
start = Location.from_string(alg_str[:2])
piece = position.piece_at_square(start)
if len(alg_str) == 4:
return make_legal(Move(end_loc=end,
piece=piece,
status=notation_const.LONG_ALG,
start_loc=start), position)
promoted_to = _get_piece(alg_str, 4)
if promoted_to is None or \
promoted_to is King or \
promoted_to is Pawn:
raise Exception("Invalid move input")
return make_legal(Move(end_loc=end,
piece=piece,
status=notation_const.LONG_ALG,
start_loc=start,
promoted_to_piece=promoted_to), position)
|
Converts a string written in long algebraic form
and the corresponding position into a complete move
(initial location specified). Used primarily for
UCI, but can be used for other purposes.
:type: alg_str: str
:type: position: Board
:rtype: Move
|
entailment
|
def reset_query_marks(self):
"""
set or reset hyb and neighbors marks to atoms.
"""
for i, atom in self.atoms():
neighbors = 0
hybridization = 1
# hybridization 1- sp3; 2- sp2; 3- sp1; 4- aromatic
for j, bond in self._adj[i].items():
if self._node[j].element != 'H':
neighbors += 1
if hybridization in (3, 4):
continue
order = bond.order
if order == 4:
hybridization = 4
elif order == 3:
hybridization = 3
elif order == 2:
if hybridization == 2:
hybridization = 3
else:
hybridization = 2
atom._neighbors = neighbors
atom._hybridization = hybridization
self.flush_cache()
|
set or reset hyb and neighbors marks to atoms.
|
entailment
|
def implicify_hydrogens(self):
"""
remove explicit hydrogen if possible
:return: number of removed hydrogens
"""
explicit = defaultdict(list)
c = 0
for n, atom in self.atoms():
if atom.element == 'H':
for m in self.neighbors(n):
if self._node[m].element != 'H':
explicit[m].append(n)
for n, h in explicit.items():
atom = self._node[n]
len_h = len(h)
for i in range(len_h, 0, -1):
hi = h[:i]
if atom.get_implicit_h([y.order for x, y in self._adj[n].items() if x not in hi]) == i:
for x in hi:
self.remove_node(x)
c += 1
break
self.flush_cache()
return c
|
remove explicit hydrogen if possible
:return: number of removed hydrogens
|
entailment
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.