sentence1
stringlengths 52
3.87M
| sentence2
stringlengths 1
47.2k
| label
stringclasses 1
value |
|---|---|---|
def full_data(self):
"""
Returns all the info available for the user in the following format:
name [username] <id> (locale) bot_or_user
If any data is not available, it is not added.
"""
data = [
self.full_name,
self._username(),
self._id(),
self._language_code(),
self._is_bot()
]
return " ".join(filter(None, data))
|
Returns all the info available for the user in the following format:
name [username] <id> (locale) bot_or_user
If any data is not available, it is not added.
|
entailment
|
def full_data(self):
"""
Returns all the info available for the chat in the following format:
title [username] (type) <id>
If any data is not available, it is not added.
"""
data = [
self.chat.title,
self._username(),
self._type(),
self._id()
]
return " ".join(filter(None, data))
|
Returns all the info available for the chat in the following format:
title [username] (type) <id>
If any data is not available, it is not added.
|
entailment
|
def use_defaults(func):
"""
Decorator for functions that should automatically fall back to the Cohort-default filter_fn and
normalized_per_mb if not specified.
"""
@wraps(func)
def wrapper(row, cohort, filter_fn=None, normalized_per_mb=None, **kwargs):
filter_fn = first_not_none_param([filter_fn, cohort.filter_fn], no_filter)
normalized_per_mb = first_not_none_param([normalized_per_mb, cohort.normalized_per_mb], False)
return func(row=row,
cohort=cohort,
filter_fn=filter_fn,
normalized_per_mb=normalized_per_mb,
**kwargs)
return wrapper
|
Decorator for functions that should automatically fall back to the Cohort-default filter_fn and
normalized_per_mb if not specified.
|
entailment
|
def count_function(func):
"""
Decorator for functions that return a collection (technically a dict of collections) that should be
counted up. Also automatically falls back to the Cohort-default filter_fn and normalized_per_mb if
not specified.
"""
# Fall back to Cohort-level defaults.
@use_defaults
@wraps(func)
def wrapper(row, cohort, filter_fn=None, normalized_per_mb=None, **kwargs):
per_patient_data = func(row=row,
cohort=cohort,
filter_fn=filter_fn,
normalized_per_mb=normalized_per_mb,
**kwargs)
patient_id = row["patient_id"]
if patient_id in per_patient_data:
count = len(per_patient_data[patient_id])
if normalized_per_mb:
count /= float(get_patient_to_mb(cohort)[patient_id])
return count
return np.nan
return wrapper
|
Decorator for functions that return a collection (technically a dict of collections) that should be
counted up. Also automatically falls back to the Cohort-default filter_fn and normalized_per_mb if
not specified.
|
entailment
|
def count_variants_function_builder(function_name, filterable_variant_function=None):
"""
Creates a function that counts variants that are filtered by the provided filterable_variant_function.
The filterable_variant_function is a function that takes a filterable_variant and returns True or False.
Users of this builder need not worry about applying e.g. the Cohort's default `filter_fn`. That will be applied as well.
"""
@count_function
def count(row, cohort, filter_fn, normalized_per_mb, **kwargs):
def count_filter_fn(filterable_variant, **kwargs):
assert filter_fn is not None, "filter_fn should never be None, but it is."
return ((filterable_variant_function(filterable_variant) if filterable_variant_function is not None else True) and
filter_fn(filterable_variant, **kwargs))
patient_id = row["patient_id"]
return cohort.load_variants(
patients=[cohort.patient_from_id(patient_id)],
filter_fn=count_filter_fn,
**kwargs)
count.__name__ = function_name
count.__doc__ = str("".join(inspect.getsourcelines(filterable_variant_function)[0])) if filterable_variant_function is not None else ""
return count
|
Creates a function that counts variants that are filtered by the provided filterable_variant_function.
The filterable_variant_function is a function that takes a filterable_variant and returns True or False.
Users of this builder need not worry about applying e.g. the Cohort's default `filter_fn`. That will be applied as well.
|
entailment
|
def count_effects_function_builder(function_name, only_nonsynonymous, filterable_effect_function=None):
"""
Create a function that counts effects that are filtered by the provided filterable_effect_function.
The filterable_effect_function is a function that takes a filterable_effect and returns True or False.
Users of this builder need not worry about applying e.g. the Cohort's default `filter_fn`. That will be applied as well.
"""
@count_function
def count(row, cohort, filter_fn, normalized_per_mb, **kwargs):
def count_filter_fn(filterable_effect, **kwargs):
assert filter_fn is not None, "filter_fn should never be None, but it is."
return ((filterable_effect_function(filterable_effect) if filterable_effect_function is not None else True) and
filter_fn(filterable_effect, **kwargs))
# This only loads one effect per variant.
patient_id = row["patient_id"]
return cohort.load_effects(
only_nonsynonymous=only_nonsynonymous,
patients=[cohort.patient_from_id(patient_id)],
filter_fn=count_filter_fn,
**kwargs)
count.__name__ = function_name
count.__doc__ = (("only_nonsynonymous=%s\n" % only_nonsynonymous) +
str("".join(inspect.getsourcelines(filterable_effect_function)[0])) if filterable_effect_function is not None else "")
# Keep track of these to be able to query the returned function for these attributes
count.only_nonsynonymous = only_nonsynonymous
count.filterable_effect_function = filterable_effect_function
return count
|
Create a function that counts effects that are filtered by the provided filterable_effect_function.
The filterable_effect_function is a function that takes a filterable_effect and returns True or False.
Users of this builder need not worry about applying e.g. the Cohort's default `filter_fn`. That will be applied as well.
|
entailment
|
def median_vaf_purity(row, cohort, **kwargs):
"""
Estimate purity based on 2 * median VAF.
Even if the Cohort has a default filter_fn, ignore it: we want to use all variants for
this estimate.
"""
patient_id = row["patient_id"]
patient = cohort.patient_from_id(patient_id)
variants = cohort.load_variants(patients=[patient], filter_fn=no_filter)
if patient_id in variants.keys():
variants = variants[patient_id]
else:
return np.nan
def grab_vaf(variant):
filterable_variant = FilterableVariant(variant, variants, patient)
return variant_stats_from_variant(variant, filterable_variant.variant_metadata).tumor_stats.variant_allele_frequency
vafs = [grab_vaf(variant) for variant in variants]
return 2 * pd.Series(vafs).median()
|
Estimate purity based on 2 * median VAF.
Even if the Cohort has a default filter_fn, ignore it: we want to use all variants for
this estimate.
|
entailment
|
def bootstrap_auc(df, col, pred_col, n_bootstrap=1000):
"""
Calculate the boostrapped AUC for a given col trying to predict a pred_col.
Parameters
----------
df : pandas.DataFrame
col : str
column to retrieve the values from
pred_col : str
the column we're trying to predict
n_boostrap : int
the number of bootstrap samples
Returns
-------
list : AUCs for each sampling
"""
scores = np.zeros(n_bootstrap)
old_len = len(df)
df.dropna(subset=[col], inplace=True)
new_len = len(df)
if new_len < old_len:
logger.info("Dropping NaN values in %s to go from %d to %d rows" % (col, old_len, new_len))
preds = df[pred_col].astype(int)
for i in range(n_bootstrap):
sampled_counts, sampled_pred = resample(df[col], preds)
if is_single_class(sampled_pred, col=pred_col):
continue
scores[i] = roc_auc_score(sampled_pred, sampled_counts)
return scores
|
Calculate the boostrapped AUC for a given col trying to predict a pred_col.
Parameters
----------
df : pandas.DataFrame
col : str
column to retrieve the values from
pred_col : str
the column we're trying to predict
n_boostrap : int
the number of bootstrap samples
Returns
-------
list : AUCs for each sampling
|
entailment
|
def set_callbacks(self, worker_start_callback: callable, worker_end_callback: callable, are_async: bool = False):
"""
:param are_async: True if the callbacks execute asynchronously, posting any heavy work to another thread.
"""
# We are setting self.worker_start_callback and self.worker_end_callback
# to lambdas instead of saving them in private vars and moving the lambda logic
# to a member function for, among other reasons, making callback updates atomic,
# ie. once a callback has been posted, it will be executed as it was in that
# moment, any call to set_callbacks will only affect callbacks posted since they
# were updated, but not to any pending callback.
# If callback is async, execute the start callback in the calling thread
scheduler = self.immediate if are_async else self.background
self.worker_start_callback = lambda worker: scheduler(Work(
lambda: worker_start_callback(worker), "worker_start_callback:" + worker.name
))
# As the end callback is called *just* before the thread dies,
# there is no problem running it on the thread
self.worker_end_callback = lambda worker: self.immediate(Work(
lambda: worker_end_callback(worker), "worker_end_callback:" + worker.name
))
|
:param are_async: True if the callbacks execute asynchronously, posting any heavy work to another thread.
|
entailment
|
def _start_worker(self, worker: Worker):
"""
Can be safely called multiple times on the same worker (for workers that support it)
to start a new thread for it.
"""
# This function is called from main thread and from worker pools threads to start their children threads
with self.running_workers_lock:
self.running_workers.append(worker)
thread = SchedulerThread(worker, self._worker_ended)
thread.start()
# This may or may not be posted to a background thread (see set_callbacks)
self.worker_start_callback(worker)
|
Can be safely called multiple times on the same worker (for workers that support it)
to start a new thread for it.
|
entailment
|
def new_worker(self, name: str):
"""Creates a new Worker and start a new Thread with it. Returns the Worker."""
if not self.running:
return self.immediate_worker
worker = self._new_worker(name)
self._start_worker(worker)
return worker
|
Creates a new Worker and start a new Thread with it. Returns the Worker.
|
entailment
|
def new_worker_pool(self, name: str, min_workers: int = 0, max_workers: int = 1,
max_seconds_idle: int = DEFAULT_WORKER_POOL_MAX_SECONDS_IDLE):
"""
Creates a new worker pool and starts it.
Returns the Worker that schedules works to the pool.
"""
if not self.running:
return self.immediate_worker
worker = self._new_worker_pool(name, min_workers, max_workers, max_seconds_idle)
self._start_worker_pool(worker)
return worker
|
Creates a new worker pool and starts it.
Returns the Worker that schedules works to the pool.
|
entailment
|
def as_dataframe(self, on=None, join_with=None, join_how=None,
return_cols=False, rename_cols=False,
keep_paren_contents=True, **kwargs):
"""
Return this Cohort as a DataFrame, and optionally include additional columns
using `on`.
on : str or function or list or dict, optional
- A column name.
- Or a function that creates a new column for comparison, e.g. count.snv_count.
- Or a list of column-generating functions or column names.
- Or a map of new column names to their column-generating functions or column names.
If `on` is a function or functions, kwargs is passed to those functions.
Otherwise kwargs is ignored.
Other parameters
----------------
`return_cols`: (bool)
If True, return column names generated via `on` along with the `DataFrame`
as a `DataFrameHolder` tuple.
`rename_cols`: (bool)
If True, then return columns using "stripped" column names
("stripped" means lower-case names without punctuation other than `_`)
See `utils.strip_column_names` for more details
defaults to False
`keep_paren_contents`: (bool)
If True, then contents of column names within parens are kept.
If False, contents of column names within-parens are dropped.
Defaults to True
----------
Return : `DataFrame` (or `DataFrameHolder` if `return_cols` is True)
"""
df = self._as_dataframe_unmodified(join_with=join_with, join_how=join_how)
if on is None:
return DataFrameHolder.return_obj(None, df, return_cols)
if type(on) == str:
return DataFrameHolder.return_obj(on, df, return_cols)
def apply_func(on, col, df):
"""
Sometimes we have functions that, by necessity, have more parameters
than just `row`. We construct a function with just the `row` parameter
so it can be sent to `DataFrame.apply`. We hackishly pass `cohort`
(as `self`) along if the function accepts a `cohort` argument.
"""
on_argnames = on.__code__.co_varnames
if "cohort" not in on_argnames:
func = lambda row: on(row=row, **kwargs)
else:
func = lambda row: on(row=row, cohort=self, **kwargs)
if self.show_progress:
tqdm.pandas(desc=col)
df[col] = df.progress_apply(func, axis=1) ## depends on tqdm on prev line
else:
df[col] = df.apply(func, axis=1)
return DataFrameHolder(col, df)
def func_name(func, num=0):
return func.__name__ if not is_lambda(func) else "column_%d" % num
def is_lambda(func):
return func.__name__ == (lambda: None).__name__
if type(on) == FunctionType:
return apply_func(on, func_name(on), df).return_self(return_cols)
if len(kwargs) > 0:
logger.warning("Note: kwargs used with multiple functions; passing them to all functions")
if type(on) == dict:
cols = []
for key, value in on.items():
if type(value) == str:
df[key] = df[value]
col = key
elif type(value) == FunctionType:
col, df = apply_func(on=value, col=key, df=df)
else:
raise ValueError("A value of `on`, %s, is not a str or function" % str(value))
cols.append(col)
if type(on) == list:
cols = []
for i, elem in enumerate(on):
if type(elem) == str:
col = elem
elif type(elem) == FunctionType:
col = func_name(elem, i)
col, df = apply_func(on=elem, col=col, df=df)
cols.append(col)
if rename_cols:
rename_dict = _strip_column_names(df.columns, keep_paren_contents=keep_paren_contents)
df.rename(columns=rename_dict, inplace=True)
cols = [rename_dict[col] for col in cols]
return DataFrameHolder(cols, df).return_self(return_cols)
|
Return this Cohort as a DataFrame, and optionally include additional columns
using `on`.
on : str or function or list or dict, optional
- A column name.
- Or a function that creates a new column for comparison, e.g. count.snv_count.
- Or a list of column-generating functions or column names.
- Or a map of new column names to their column-generating functions or column names.
If `on` is a function or functions, kwargs is passed to those functions.
Otherwise kwargs is ignored.
Other parameters
----------------
`return_cols`: (bool)
If True, return column names generated via `on` along with the `DataFrame`
as a `DataFrameHolder` tuple.
`rename_cols`: (bool)
If True, then return columns using "stripped" column names
("stripped" means lower-case names without punctuation other than `_`)
See `utils.strip_column_names` for more details
defaults to False
`keep_paren_contents`: (bool)
If True, then contents of column names within parens are kept.
If False, contents of column names within-parens are dropped.
Defaults to True
----------
Return : `DataFrame` (or `DataFrameHolder` if `return_cols` is True)
|
entailment
|
def load_dataframe(self, df_loader_name):
"""
Instead of joining a DataFrameJoiner with the Cohort in `as_dataframe`, sometimes
we may want to just directly load a particular DataFrame.
"""
logger.debug("loading dataframe: {}".format(df_loader_name))
# Get the DataFrameLoader object corresponding to this name.
df_loaders = [df_loader for df_loader in self.df_loaders if df_loader.name == df_loader_name]
if len(df_loaders) == 0:
raise ValueError("No DataFrameLoader with name %s" % df_loader_name)
if len(df_loaders) > 1:
raise ValueError("Multiple DataFrameLoaders with name %s" % df_loader_name)
return df_loaders[0].load_dataframe()
|
Instead of joining a DataFrameJoiner with the Cohort in `as_dataframe`, sometimes
we may want to just directly load a particular DataFrame.
|
entailment
|
def _get_function_name(self, fn, default="None"):
""" Return name of function, using default value if function not defined
"""
if fn is None:
fn_name = default
else:
fn_name = fn.__name__
return fn_name
|
Return name of function, using default value if function not defined
|
entailment
|
def load_variants(self, patients=None, filter_fn=None, **kwargs):
"""Load a dictionary of patient_id to varcode.VariantCollection
Parameters
----------
patients : str, optional
Filter to a subset of patients
filter_fn : function
Takes a FilterableVariant and returns a boolean. Only variants returning True are preserved.
Overrides default self.filter_fn. `None` passes through to self.filter_fn.
Returns
-------
merged_variants
Dictionary of patient_id to VariantCollection
"""
filter_fn = first_not_none_param([filter_fn, self.filter_fn], no_filter)
filter_fn_name = self._get_function_name(filter_fn)
logger.debug("loading variants with filter_fn: {}".format(filter_fn_name))
patient_variants = {}
for patient in self.iter_patients(patients):
variants = self._load_single_patient_variants(patient, filter_fn, **kwargs)
if variants is not None:
patient_variants[patient.id] = variants
return patient_variants
|
Load a dictionary of patient_id to varcode.VariantCollection
Parameters
----------
patients : str, optional
Filter to a subset of patients
filter_fn : function
Takes a FilterableVariant and returns a boolean. Only variants returning True are preserved.
Overrides default self.filter_fn. `None` passes through to self.filter_fn.
Returns
-------
merged_variants
Dictionary of patient_id to VariantCollection
|
entailment
|
def _hash_filter_fn(self, filter_fn, **kwargs):
""" Construct string representing state of filter_fn
Used to cache filtered variants or effects uniquely depending on filter fn values
"""
filter_fn_name = self._get_function_name(filter_fn, default="filter-none")
logger.debug("Computing hash for filter_fn: {} with kwargs {}".format(filter_fn_name, str(dict(**kwargs))))
# hash function source code
fn_source = str(dill.source.getsource(filter_fn))
pickled_fn_source = pickle.dumps(fn_source) ## encode as byte string
hashed_fn_source = int(hashlib.sha1(pickled_fn_source).hexdigest(), 16) % (10 ** 11)
# hash kwarg values
kw_dict = dict(**kwargs)
kw_hash = list()
if not kw_dict:
kw_hash = ["default"]
else:
[kw_hash.append("{}-{}".format(key, h)) for (key, h) in sorted(kw_dict.items())]
# hash closure vars - for case where filter_fn is defined within closure of filter_fn
closure = []
nonlocals = inspect.getclosurevars(filter_fn).nonlocals
for (key, val) in nonlocals.items():
## capture hash for any function within closure
if inspect.isfunction(val):
closure.append(self._hash_filter_fn(val))
closure.sort() # Sorted for file name consistency
closure_str = "null" if len(closure) == 0 else "-".join(closure)
# construct final string comprising hashed components
hashed_fn = ".".join(["-".join([filter_fn_name,
str(hashed_fn_source)]),
".".join(kw_hash),
closure_str]
)
return hashed_fn
|
Construct string representing state of filter_fn
Used to cache filtered variants or effects uniquely depending on filter fn values
|
entailment
|
def _load_single_patient_variants(self, patient, filter_fn, use_cache=True, **kwargs):
""" Load filtered, merged variants for a single patient, optionally using cache
Note that filtered variants are first merged before filtering, and
each step is cached independently. Turn on debug statements for more
details about cached files.
Use `_load_single_patient_merged_variants` to see merged variants without filtering.
"""
if filter_fn is None:
use_filtered_cache = False
else:
filter_fn_name = self._get_function_name(filter_fn)
logger.debug("loading variants for patient {} with filter_fn {}".format(patient.id, filter_fn_name))
use_filtered_cache = use_cache
## confirm that we can get cache-name (else don't use filtered cache)
if use_filtered_cache:
logger.debug("... identifying filtered-cache file name")
try:
## try to load filtered variants from cache
filtered_cache_file_name = "%s-variants.%s.pkl" % (self.merge_type,
self._hash_filter_fn(filter_fn, **kwargs))
except:
logger.warning("... error identifying filtered-cache file name for patient {}: {}".format(
patient.id, filter_fn_name))
use_filtered_cache = False
else:
logger.debug("... trying to load filtered variants from cache: {}".format(filtered_cache_file_name))
try:
cached = self.load_from_cache(self.cache_names["variant"], patient.id, filtered_cache_file_name)
if cached is not None:
return cached
except:
logger.warning("Error loading variants from cache for patient: {}".format(patient.id))
pass
## get merged variants
logger.debug("... getting merged variants for: {}".format(patient.id))
merged_variants = self._load_single_patient_merged_variants(patient, use_cache=use_cache)
# Note None here is different from 0. We want to preserve None
if merged_variants is None:
logger.info("Variants did not exist for patient %s" % patient.id)
return None
logger.debug("... applying filters to variants for: {}".format(patient.id))
filtered_variants = filter_variants(variant_collection=merged_variants,
patient=patient,
filter_fn=filter_fn,
**kwargs)
if use_filtered_cache:
logger.debug("... saving filtered variants to cache: {}".format(filtered_cache_file_name))
self.save_to_cache(filtered_variants, self.cache_names["variant"], patient.id, filtered_cache_file_name)
return filtered_variants
|
Load filtered, merged variants for a single patient, optionally using cache
Note that filtered variants are first merged before filtering, and
each step is cached independently. Turn on debug statements for more
details about cached files.
Use `_load_single_patient_merged_variants` to see merged variants without filtering.
|
entailment
|
def _load_single_patient_merged_variants(self, patient, use_cache=True):
""" Load merged variants for a single patient, optionally using cache
Note that merged variants are not filtered.
Use `_load_single_patient_variants` to get filtered variants
"""
logger.debug("loading merged variants for patient {}".format(patient.id))
no_variants = False
try:
# get merged-variants from cache
if use_cache:
## load unfiltered variants into list of collections
variant_cache_file_name = "%s-variants.pkl" % (self.merge_type)
merged_variants = self.load_from_cache(self.cache_names["variant"], patient.id, variant_cache_file_name)
if merged_variants is not None:
return merged_variants
# get variant collections from file
variant_collections = []
optional_maf_cols = ["t_ref_count", "t_alt_count", "n_ref_count", "n_alt_count"]
if self.additional_maf_cols is not None:
optional_maf_cols.extend(self.additional_maf_cols)
for patient_variants in patient.variants_list:
if type(patient_variants) == str:
if ".vcf" in patient_variants:
try:
variant_collections.append(varcode.load_vcf_fast(patient_variants))
# StopIteration is thrown for empty VCFs. For an empty VCF, don't append any variants,
# and don't throw an error. But do record a warning, in case the StopIteration was
# thrown for another reason.
except StopIteration as e:
logger.warning("Empty VCF (or possibly a VCF error) for patient {}: {}".format(
patient.id, str(e)))
elif ".maf" in patient_variants:
# See variant_stats.maf_somatic_variant_stats
variant_collections.append(
varcode.load_maf(
patient_variants,
optional_cols=optional_maf_cols,
encoding="latin-1"))
else:
raise ValueError("Don't know how to read %s" % patient_variants)
elif type(patient_variants) == VariantCollection:
variant_collections.append(patient_variants)
else:
raise ValueError("Don't know how to read %s" % patient_variants)
# merge variant-collections
if len(variant_collections) == 0:
no_variants = True
elif len(variant_collections) == 1:
# There is nothing to merge
variants = variant_collections[0]
merged_variants = variants
else:
merged_variants = self._merge_variant_collections(variant_collections, self.merge_type)
except IOError:
no_variants = True
# Note that this is the number of variant collections and not the number of
# variants. 0 variants will lead to 0 neoantigens, for example, but 0 variant
# collections will lead to NaN variants and neoantigens.
if no_variants:
print("Variants did not exist for patient %s" % patient.id)
merged_variants = None
# save merged variants to file
if use_cache:
self.save_to_cache(merged_variants, self.cache_names["variant"], patient.id, variant_cache_file_name)
return merged_variants
|
Load merged variants for a single patient, optionally using cache
Note that merged variants are not filtered.
Use `_load_single_patient_variants` to get filtered variants
|
entailment
|
def load_polyphen_annotations(self, as_dataframe=False,
filter_fn=None):
"""Load a dataframe containing polyphen2 annotations for all variants
Parameters
----------
database_file : string, sqlite
Path to the WHESS/Polyphen2 SQLite database.
Can be downloaded and bunzip2"ed from http://bit.ly/208mlIU
filter_fn : function
Takes a FilterablePolyphen and returns a boolean.
Only annotations returning True are preserved.
Overrides default self.filter_fn. `None` passes through to self.filter_fn.
Returns
-------
annotations
Dictionary of patient_id to a DataFrame that contains annotations
"""
filter_fn = first_not_none_param([filter_fn, self.filter_fn], no_filter)
patient_annotations = {}
for patient in self:
annotations = self._load_single_patient_polyphen(
patient,
filter_fn=filter_fn)
if annotations is not None:
annotations["patient_id"] = patient.id
patient_annotations[patient.id] = annotations
if as_dataframe:
return pd.concat(patient_annotations.values())
return patient_annotations
|
Load a dataframe containing polyphen2 annotations for all variants
Parameters
----------
database_file : string, sqlite
Path to the WHESS/Polyphen2 SQLite database.
Can be downloaded and bunzip2"ed from http://bit.ly/208mlIU
filter_fn : function
Takes a FilterablePolyphen and returns a boolean.
Only annotations returning True are preserved.
Overrides default self.filter_fn. `None` passes through to self.filter_fn.
Returns
-------
annotations
Dictionary of patient_id to a DataFrame that contains annotations
|
entailment
|
def load_effects(self, patients=None, only_nonsynonymous=False,
all_effects=False, filter_fn=None, **kwargs):
"""Load a dictionary of patient_id to varcode.EffectCollection
Note that this only loads one effect per variant.
Parameters
----------
patients : str, optional
Filter to a subset of patients
only_nonsynonymous : bool, optional
If true, load only nonsynonymous effects, default False
all_effects : bool, optional
If true, return all effects rather than only the top-priority effect per variant
filter_fn : function
Takes a FilterableEffect and returns a boolean. Only effects returning True are preserved.
Overrides default self.filter_fn. `None` passes through to self.filter_fn.
Returns
-------
effects
Dictionary of patient_id to varcode.EffectCollection
"""
filter_fn = first_not_none_param([filter_fn, self.filter_fn], no_filter)
filter_fn_name = self._get_function_name(filter_fn)
logger.debug("loading effects with filter_fn {}".format(filter_fn_name))
patient_effects = {}
for patient in self.iter_patients(patients):
effects = self._load_single_patient_effects(
patient, only_nonsynonymous, all_effects, filter_fn, **kwargs)
if effects is not None:
patient_effects[patient.id] = effects
return patient_effects
|
Load a dictionary of patient_id to varcode.EffectCollection
Note that this only loads one effect per variant.
Parameters
----------
patients : str, optional
Filter to a subset of patients
only_nonsynonymous : bool, optional
If true, load only nonsynonymous effects, default False
all_effects : bool, optional
If true, return all effects rather than only the top-priority effect per variant
filter_fn : function
Takes a FilterableEffect and returns a boolean. Only effects returning True are preserved.
Overrides default self.filter_fn. `None` passes through to self.filter_fn.
Returns
-------
effects
Dictionary of patient_id to varcode.EffectCollection
|
entailment
|
def load_kallisto(self):
"""
Load Kallisto transcript quantification data for a cohort
Parameters
----------
Returns
-------
kallisto_data : Pandas dataframe
Pandas dataframe with Kallisto data for all patients
columns include patient_id, gene_name, est_counts
"""
kallisto_data = pd.concat(
[self._load_single_patient_kallisto(patient) for patient in self],
copy=False
)
if self.kallisto_ensembl_version is None:
raise ValueError("Required a kallisto_ensembl_version but none was specified")
ensembl_release = cached_release(self.kallisto_ensembl_version)
kallisto_data["gene_name"] = \
kallisto_data["target_id"].map(lambda t: ensembl_release.gene_name_of_transcript_id(t))
# sum counts across genes
kallisto_data = \
kallisto_data.groupby(["patient_id", "gene_name"])[["est_counts"]].sum().reset_index()
return kallisto_data
|
Load Kallisto transcript quantification data for a cohort
Parameters
----------
Returns
-------
kallisto_data : Pandas dataframe
Pandas dataframe with Kallisto data for all patients
columns include patient_id, gene_name, est_counts
|
entailment
|
def _load_single_patient_kallisto(self, patient):
"""
Load Kallisto gene quantification given a patient
Parameters
----------
patient : Patient
Returns
-------
data: Pandas dataframe
Pandas dataframe of sample's Kallisto data
columns include patient_id, target_id, length, eff_length, est_counts, tpm
"""
data = pd.read_csv(patient.tumor_sample.kallisto_path, sep="\t")
data["patient_id"] = patient.id
return data
|
Load Kallisto gene quantification given a patient
Parameters
----------
patient : Patient
Returns
-------
data: Pandas dataframe
Pandas dataframe of sample's Kallisto data
columns include patient_id, target_id, length, eff_length, est_counts, tpm
|
entailment
|
def load_cufflinks(self, filter_ok=True):
"""
Load a Cufflinks gene expression data for a cohort
Parameters
----------
filter_ok : bool, optional
If true, filter Cufflinks data to row with FPKM_status == "OK"
Returns
-------
cufflinks_data : Pandas dataframe
Pandas dataframe with Cufflinks data for all patients
columns include patient_id, gene_id, gene_short_name, FPKM, FPKM_conf_lo, FPKM_conf_hi
"""
return \
pd.concat(
[self._load_single_patient_cufflinks(patient, filter_ok) for patient in self],
copy=False
)
|
Load a Cufflinks gene expression data for a cohort
Parameters
----------
filter_ok : bool, optional
If true, filter Cufflinks data to row with FPKM_status == "OK"
Returns
-------
cufflinks_data : Pandas dataframe
Pandas dataframe with Cufflinks data for all patients
columns include patient_id, gene_id, gene_short_name, FPKM, FPKM_conf_lo, FPKM_conf_hi
|
entailment
|
def _load_single_patient_cufflinks(self, patient, filter_ok):
"""
Load Cufflinks gene quantification given a patient
Parameters
----------
patient : Patient
filter_ok : bool, optional
If true, filter Cufflinks data to row with FPKM_status == "OK"
Returns
-------
data: Pandas dataframe
Pandas dataframe of sample's Cufflinks data
columns include patient_id, gene_id, gene_short_name, FPKM, FPKM_conf_lo, FPKM_conf_hi
"""
data = pd.read_csv(patient.tumor_sample.cufflinks_path, sep="\t")
data["patient_id"] = patient.id
if filter_ok:
# Filter to OK FPKM counts
data = data[data["FPKM_status"] == "OK"]
return data
|
Load Cufflinks gene quantification given a patient
Parameters
----------
patient : Patient
filter_ok : bool, optional
If true, filter Cufflinks data to row with FPKM_status == "OK"
Returns
-------
data: Pandas dataframe
Pandas dataframe of sample's Cufflinks data
columns include patient_id, gene_id, gene_short_name, FPKM, FPKM_conf_lo, FPKM_conf_hi
|
entailment
|
def get_filtered_isovar_epitopes(self, epitopes, ic50_cutoff):
"""
Mostly replicates topiary.build_epitope_collection_from_binding_predictions
Note: topiary needs to do fancy stuff like subsequence_protein_offset + binding_prediction.offset
in order to figure out whether a variant is in the peptide because it only has the variant's
offset into the full protein; but isovar gives us the variant's offset into the protein subsequence
(dictated by protein_sequence_length); so all we need to do is map that onto the smaller 8-11mer
peptides generated by mhctools.
"""
mutant_binding_predictions = []
for binding_prediction in epitopes:
peptide = binding_prediction.peptide
peptide_offset = binding_prediction.offset
isovar_row = dict(binding_prediction.source_sequence_key)
is_mutant = contains_mutant_residues(
peptide_start_in_protein=peptide_offset,
peptide_length=len(peptide),
mutation_start_in_protein=isovar_row["variant_aa_interval_start"],
mutation_end_in_protein=isovar_row["variant_aa_interval_end"])
if is_mutant and binding_prediction.value <= ic50_cutoff:
mutant_binding_predictions.append(binding_prediction)
return EpitopeCollection(mutant_binding_predictions)
|
Mostly replicates topiary.build_epitope_collection_from_binding_predictions
Note: topiary needs to do fancy stuff like subsequence_protein_offset + binding_prediction.offset
in order to figure out whether a variant is in the peptide because it only has the variant's
offset into the full protein; but isovar gives us the variant's offset into the protein subsequence
(dictated by protein_sequence_length); so all we need to do is map that onto the smaller 8-11mer
peptides generated by mhctools.
|
entailment
|
def plot_roc_curve(self, on, bootstrap_samples=100, ax=None, **kwargs):
"""Plot an ROC curve for benefit and a given variable
Parameters
----------
on : str or function or list or dict
See `cohort.load.as_dataframe`
bootstrap_samples : int, optional
Number of boostrap samples to use to compute the AUC
ax : Axes, default None
Axes to plot on
Returns
-------
(mean_auc_score, plot): (float, matplotlib plot)
Returns the average AUC for the given predictor over `bootstrap_samples`
and the associated ROC curve
"""
plot_col, df = self.as_dataframe(on, return_cols=True, **kwargs)
df = filter_not_null(df, "benefit")
df = filter_not_null(df, plot_col)
df.benefit = df.benefit.astype(bool)
return roc_curve_plot(df, plot_col, "benefit", bootstrap_samples, ax=ax)
|
Plot an ROC curve for benefit and a given variable
Parameters
----------
on : str or function or list or dict
See `cohort.load.as_dataframe`
bootstrap_samples : int, optional
Number of boostrap samples to use to compute the AUC
ax : Axes, default None
Axes to plot on
Returns
-------
(mean_auc_score, plot): (float, matplotlib plot)
Returns the average AUC for the given predictor over `bootstrap_samples`
and the associated ROC curve
|
entailment
|
def plot_benefit(self, on, benefit_col="benefit", label="Response", ax=None,
alternative="two-sided", boolean_value_map={},
order=None, **kwargs):
"""Plot a comparison of benefit/response in the cohort on a given variable
"""
no_benefit_plot_name = "No %s" % self.benefit_plot_name
boolean_value_map = boolean_value_map or {True: self.benefit_plot_name, False: no_benefit_plot_name}
order = order or [no_benefit_plot_name, self.benefit_plot_name]
return self.plot_boolean(on=on,
boolean_col=benefit_col,
alternative=alternative,
boolean_label=label,
boolean_value_map=boolean_value_map,
order=order,
ax=ax,
**kwargs)
|
Plot a comparison of benefit/response in the cohort on a given variable
|
entailment
|
def plot_boolean(self,
on,
boolean_col,
plot_col=None,
boolean_label=None,
boolean_value_map={},
order=None,
ax=None,
alternative="two-sided",
**kwargs):
"""Plot a comparison of `boolean_col` in the cohort on a given variable via
`on` or `col`.
If the variable (through `on` or `col`) is binary this will compare
odds-ratios and perform a Fisher's exact test.
If the variable is numeric, this will compare the distributions through
a Mann-Whitney test and plot the distributions with box-strip plot
Parameters
----------
on : str or function or list or dict
See `cohort.load.as_dataframe`
plot_col : str, optional
If on has many columns, this is the one whose values we are plotting.
If on has a single column, this is unnecessary.
We might want many columns if, e.g. we're generating boolean_col from a
function as well.
boolean_col : str
Column name of boolean column to plot or compare against.
boolean_label : None, optional
Label to give boolean column in the plot
boolean_value_map : dict, optional
Map of conversions for values in the boolean column, i.e. {True: 'High', False: 'Low'}
order : None, optional
Order of the labels on the x-axis
ax : None, optional
Axes to plot on
alternative : str, optional
Choose the sidedness of the mannwhitneyu or Fisher's Exact test.
Returns
-------
(Test statistic, p-value): (float, float)
"""
cols, df = self.as_dataframe(on, return_cols=True, **kwargs)
plot_col = self.plot_col_from_cols(cols=cols, plot_col=plot_col)
df = filter_not_null(df, boolean_col)
df = filter_not_null(df, plot_col)
if boolean_label:
df[boolean_label] = df[boolean_col]
boolean_col = boolean_label
condition_value = None
if boolean_value_map:
assert set(boolean_value_map.keys()) == set([True, False]), \
"Improper mapping of boolean column provided"
df[boolean_col] = df[boolean_col].map(lambda v: boolean_value_map[v])
condition_value = boolean_value_map[True]
if df[plot_col].dtype == "bool":
results = fishers_exact_plot(
data=df,
condition1=boolean_col,
condition2=plot_col,
condition1_value=condition_value,
alternative=alternative,
order=order,
ax=ax)
else:
results = mann_whitney_plot(
data=df,
condition=boolean_col,
distribution=plot_col,
condition_value=condition_value,
alternative=alternative,
order=order,
ax=ax)
return results
|
Plot a comparison of `boolean_col` in the cohort on a given variable via
`on` or `col`.
If the variable (through `on` or `col`) is binary this will compare
odds-ratios and perform a Fisher's exact test.
If the variable is numeric, this will compare the distributions through
a Mann-Whitney test and plot the distributions with box-strip plot
Parameters
----------
on : str or function or list or dict
See `cohort.load.as_dataframe`
plot_col : str, optional
If on has many columns, this is the one whose values we are plotting.
If on has a single column, this is unnecessary.
We might want many columns if, e.g. we're generating boolean_col from a
function as well.
boolean_col : str
Column name of boolean column to plot or compare against.
boolean_label : None, optional
Label to give boolean column in the plot
boolean_value_map : dict, optional
Map of conversions for values in the boolean column, i.e. {True: 'High', False: 'Low'}
order : None, optional
Order of the labels on the x-axis
ax : None, optional
Axes to plot on
alternative : str, optional
Choose the sidedness of the mannwhitneyu or Fisher's Exact test.
Returns
-------
(Test statistic, p-value): (float, float)
|
entailment
|
def plot_survival(self,
on,
how="os",
survival_units="Days",
strata=None,
ax=None,
ci_show=False,
with_condition_color="#B38600",
no_condition_color="#A941AC",
with_condition_label=None,
no_condition_label=None,
color_map=None,
label_map=None,
color_palette="Set2",
threshold=None, **kwargs):
"""Plot a Kaplan Meier survival curve by splitting the cohort into two groups
Parameters
----------
on : str or function or list or dict
See `cohort.load.as_dataframe`
how : {"os", "pfs"}, optional
Whether to plot OS (overall survival) or PFS (progression free survival)
survival_units : str
Unit of time for the survival measure, i.e. Days or Months
strata : str
(optional) column name of stratifying variable
ci_show : bool
Display the confidence interval around the survival curve
threshold : int, "median", "median-per-strata" or None (optional)
Threshold of `col` on which to split the cohort
"""
assert how in ["os", "pfs"], "Invalid choice of survival plot type %s" % how
cols, df = self.as_dataframe(on, return_cols=True, **kwargs)
plot_col = self.plot_col_from_cols(cols=cols, only_allow_one=True)
df = filter_not_null(df, plot_col)
results = plot_kmf(
df=df,
condition_col=plot_col,
xlabel=survival_units,
ylabel="Overall Survival (%)" if how == "os" else "Progression-Free Survival (%)",
censor_col="deceased" if how == "os" else "progressed_or_deceased",
survival_col=how,
strata_col=strata,
threshold=threshold,
ax=ax,
ci_show=ci_show,
with_condition_color=with_condition_color,
no_condition_color=no_condition_color,
with_condition_label=with_condition_label,
no_condition_label=no_condition_label,
color_palette=color_palette,
label_map=label_map,
color_map=color_map,
)
return results
|
Plot a Kaplan Meier survival curve by splitting the cohort into two groups
Parameters
----------
on : str or function or list or dict
See `cohort.load.as_dataframe`
how : {"os", "pfs"}, optional
Whether to plot OS (overall survival) or PFS (progression free survival)
survival_units : str
Unit of time for the survival measure, i.e. Days or Months
strata : str
(optional) column name of stratifying variable
ci_show : bool
Display the confidence interval around the survival curve
threshold : int, "median", "median-per-strata" or None (optional)
Threshold of `col` on which to split the cohort
|
entailment
|
def plot_correlation(self, on, x_col=None, plot_type="jointplot", stat_func=pearsonr, show_stat_func=True, plot_kwargs={}, **kwargs):
"""Plot the correlation between two variables.
Parameters
----------
on : list or dict of functions or strings
See `cohort.load.as_dataframe`
x_col : str, optional
If `on` is a dict, this guarantees we have the expected ordering.
plot_type : str, optional
Specify "jointplot", "regplot", "boxplot", or "barplot".
stat_func : function, optional.
Specify which function to use for the statistical test.
show_stat_func : bool, optional
Whether or not to show the stat_func result in the plot itself.
plot_kwargs : dict, optional
kwargs to pass through to plotting functions.
"""
if plot_type not in ["boxplot", "barplot", "jointplot", "regplot"]:
raise ValueError("Invalid plot_type %s" % plot_type)
plot_cols, df = self.as_dataframe(on, return_cols=True, **kwargs)
if len(plot_cols) != 2:
raise ValueError("Must be comparing two columns, but there are %d columns" % len(plot_cols))
for plot_col in plot_cols:
df = filter_not_null(df, plot_col)
if x_col is None:
x_col = plot_cols[0]
y_col = plot_cols[1]
else:
if x_col == plot_cols[0]:
y_col = plot_cols[1]
else:
y_col = plot_cols[0]
series_x = df[x_col]
series_y = df[y_col]
coeff, p_value = stat_func(series_x, series_y)
if plot_type == "jointplot":
plot = sb.jointplot(data=df, x=x_col, y=y_col,
stat_func=stat_func if show_stat_func else None,
**plot_kwargs)
elif plot_type == "regplot":
plot = sb.regplot(data=df, x=x_col, y=y_col,
**plot_kwargs)
elif plot_type == "boxplot":
plot = stripboxplot(data=df, x=x_col, y=y_col, **plot_kwargs)
else:
plot = sb.barplot(data=df, x=x_col, y=y_col, **plot_kwargs)
return CorrelationResults(coeff=coeff, p_value=p_value, stat_func=stat_func,
series_x=series_x, series_y=series_y, plot=plot)
|
Plot the correlation between two variables.
Parameters
----------
on : list or dict of functions or strings
See `cohort.load.as_dataframe`
x_col : str, optional
If `on` is a dict, this guarantees we have the expected ordering.
plot_type : str, optional
Specify "jointplot", "regplot", "boxplot", or "barplot".
stat_func : function, optional.
Specify which function to use for the statistical test.
show_stat_func : bool, optional
Whether or not to show the stat_func result in the plot itself.
plot_kwargs : dict, optional
kwargs to pass through to plotting functions.
|
entailment
|
def _list_patient_ids(self):
""" Utility function to return a list of patient ids in the Cohort
"""
results = []
for patient in self:
results.append(patient.id)
return(results)
|
Utility function to return a list of patient ids in the Cohort
|
entailment
|
def summarize_provenance_per_cache(self):
"""Utility function to summarize provenance files for cached items used by a Cohort,
for each cache_dir that exists. Only existing cache_dirs are summarized.
This is a summary of provenance files because the function checks to see whether all
patients data have the same provenance within the cache dir. The function assumes
that it will be desireable to have all patients data generated using the same
environment, for each cache type.
At the moment, most PROVENANCE files contain details about packages used to generat
e the cached data file. However, this function is generic & so it summarizes the
contents of those files irrespective of their contents.
Returns
----------
Dict containing summarized provenance for each existing cache_dir, after checking
to see that provenance files are identical among all patients in the data frame for
that cache_dir.
If conflicting PROVENANCE files are discovered within a cache-dir:
- a warning is generated, describing the conflict
- and, a value of `None` is returned in the dictionary for that cache-dir
See also
-----------
* `?cohorts.Cohort.summarize_provenance` which summarizes provenance files among
cache_dirs.
* `?cohorts.Cohort.summarize_dataframe` which hashes/summarizes contents of the data
frame for this cohort.
"""
provenance_summary = {}
df = self.as_dataframe()
for cache in self.cache_names:
cache_name = self.cache_names[cache]
cache_provenance = None
num_discrepant = 0
this_cache_dir = path.join(self.cache_dir, cache_name)
if path.exists(this_cache_dir):
for patient_id in self._list_patient_ids():
patient_cache_dir = path.join(this_cache_dir, patient_id)
try:
this_provenance = self.load_provenance(patient_cache_dir = patient_cache_dir)
except:
this_provenance = None
if this_provenance:
if not(cache_provenance):
cache_provenance = this_provenance
else:
num_discrepant += compare_provenance(this_provenance, cache_provenance)
if num_discrepant == 0:
provenance_summary[cache_name] = cache_provenance
else:
provenance_summary[cache_name] = None
return(provenance_summary)
|
Utility function to summarize provenance files for cached items used by a Cohort,
for each cache_dir that exists. Only existing cache_dirs are summarized.
This is a summary of provenance files because the function checks to see whether all
patients data have the same provenance within the cache dir. The function assumes
that it will be desireable to have all patients data generated using the same
environment, for each cache type.
At the moment, most PROVENANCE files contain details about packages used to generat
e the cached data file. However, this function is generic & so it summarizes the
contents of those files irrespective of their contents.
Returns
----------
Dict containing summarized provenance for each existing cache_dir, after checking
to see that provenance files are identical among all patients in the data frame for
that cache_dir.
If conflicting PROVENANCE files are discovered within a cache-dir:
- a warning is generated, describing the conflict
- and, a value of `None` is returned in the dictionary for that cache-dir
See also
-----------
* `?cohorts.Cohort.summarize_provenance` which summarizes provenance files among
cache_dirs.
* `?cohorts.Cohort.summarize_dataframe` which hashes/summarizes contents of the data
frame for this cohort.
|
entailment
|
def summarize_dataframe(self):
"""Summarize default dataframe for this cohort using a hash function.
Useful for confirming the version of data used in various reports, e.g. ipynbs
"""
if self.dataframe_hash:
return(self.dataframe_hash)
else:
df = self._as_dataframe_unmodified()
return(self.dataframe_hash)
|
Summarize default dataframe for this cohort using a hash function.
Useful for confirming the version of data used in various reports, e.g. ipynbs
|
entailment
|
def summarize_provenance(self):
"""Utility function to summarize provenance files for cached items used by a Cohort.
At the moment, most PROVENANCE files contain details about packages used to
generate files. However, this function is generic & so it summarizes the contents
of those files irrespective of their contents.
Returns
----------
Dict containing summary of provenance items, among all cache dirs used by the Cohort.
IE if all provenances are identical across all cache dirs, then a single set of
provenances is returned. Otherwise, if all provenances are not identical, the provenance
items per cache_dir are returned.
See also
----------
`?cohorts.Cohort.summarize_provenance_per_cache` which is used to summarize provenance
for each existing cache_dir.
"""
provenance_per_cache = self.summarize_provenance_per_cache()
summary_provenance = None
num_discrepant = 0
for cache in provenance_per_cache:
if not(summary_provenance):
## pick arbitrary provenance & call this the "summary" (for now)
summary_provenance = provenance_per_cache[cache]
summary_provenance_name = cache
## for each cache, check equivalence with summary_provenance
num_discrepant += compare_provenance(
provenance_per_cache[cache],
summary_provenance,
left_outer_diff = "In %s but not in %s" % (cache, summary_provenance_name),
right_outer_diff = "In %s but not in %s" % (summary_provenance_name, cache)
)
## compare provenance across cached items
if num_discrepant == 0:
prov = summary_provenance ## report summary provenance if exists
else:
prov = provenance_per_cache ## otherwise, return provenance per cache
return(prov)
|
Utility function to summarize provenance files for cached items used by a Cohort.
At the moment, most PROVENANCE files contain details about packages used to
generate files. However, this function is generic & so it summarizes the contents
of those files irrespective of their contents.
Returns
----------
Dict containing summary of provenance items, among all cache dirs used by the Cohort.
IE if all provenances are identical across all cache dirs, then a single set of
provenances is returned. Otherwise, if all provenances are not identical, the provenance
items per cache_dir are returned.
See also
----------
`?cohorts.Cohort.summarize_provenance_per_cache` which is used to summarize provenance
for each existing cache_dir.
|
entailment
|
def summarize_data_sources(self):
"""Utility function to summarize data source status for this Cohort, useful for confirming
the state of data used for an analysis
Returns
----------
Dictionary with summary of data sources
Currently contains
- dataframe_hash: hash of the dataframe (see `?cohorts.Cohort.summarize_dataframe`)
- provenance_file_summary: summary of provenance file contents (see `?cohorts.Cohort.summarize_provenance`)
"""
provenance_file_summary = self.summarize_provenance()
dataframe_hash = self.summarize_dataframe()
results = {
"provenance_file_summary": provenance_file_summary,
"dataframe_hash": dataframe_hash
}
return(results)
|
Utility function to summarize data source status for this Cohort, useful for confirming
the state of data used for an analysis
Returns
----------
Dictionary with summary of data sources
Currently contains
- dataframe_hash: hash of the dataframe (see `?cohorts.Cohort.summarize_dataframe`)
- provenance_file_summary: summary of provenance file contents (see `?cohorts.Cohort.summarize_provenance`)
|
entailment
|
def strelka_somatic_variant_stats(variant, variant_metadata):
"""Parse out the variant calling statistics for a given variant from a Strelka VCF
Parameters
----------
variant : varcode.Variant
sample_info : dict
Dictionary of sample to variant calling statistics, corresponds to the sample columns
in a Strelka VCF
Returns
-------
SomaticVariantStats
"""
sample_info = variant_metadata["sample_info"]
# Ensure there are exactly two samples in the VCF, a tumor and normal
assert len(sample_info) == 2, "More than two samples found in the somatic VCF"
tumor_stats = _strelka_variant_stats(variant, sample_info["TUMOR"])
normal_stats = _strelka_variant_stats(variant, sample_info["NORMAL"])
return SomaticVariantStats(tumor_stats=tumor_stats, normal_stats=normal_stats)
|
Parse out the variant calling statistics for a given variant from a Strelka VCF
Parameters
----------
variant : varcode.Variant
sample_info : dict
Dictionary of sample to variant calling statistics, corresponds to the sample columns
in a Strelka VCF
Returns
-------
SomaticVariantStats
|
entailment
|
def _strelka_variant_stats(variant, sample_info):
"""Parse a single sample"s variant calling statistics based on Strelka VCF output
Parameters
----------
variant : varcode.Variant
sample_info : dict
Dictionary of Strelka-specific variant calling fields
Returns
-------
VariantStats
"""
if variant.is_deletion or variant.is_insertion:
# ref: https://sites.google.com/site/strelkasomaticvariantcaller/home/somatic-variant-output
ref_depth = int(sample_info['TAR'][0]) # number of reads supporting ref allele (non-deletion)
alt_depth = int(sample_info['TIR'][0]) # number of reads supporting alt allele (deletion)
depth = ref_depth + alt_depth
else:
# Retrieve the Tier 1 counts from Strelka
ref_depth = int(sample_info[variant.ref+"U"][0])
alt_depth = int(sample_info[variant.alt+"U"][0])
depth = alt_depth + ref_depth
if depth > 0:
vaf = float(alt_depth) / depth
else:
# unclear how to define vaf if no reads support variant
# up to user to interpret this (hopefully filtered out in QC settings)
vaf = None
return VariantStats(depth=depth, alt_depth=alt_depth, variant_allele_frequency=vaf)
|
Parse a single sample"s variant calling statistics based on Strelka VCF output
Parameters
----------
variant : varcode.Variant
sample_info : dict
Dictionary of Strelka-specific variant calling fields
Returns
-------
VariantStats
|
entailment
|
def mutect_somatic_variant_stats(variant, variant_metadata):
"""Parse out the variant calling statistics for a given variant from a Mutect VCF
Parameters
----------
variant : varcode.Variant
sample_info : dict
Dictionary of sample to variant calling statistics, corresponds to the sample columns
in a Mutect VCF
Returns
-------
SomaticVariantStats
"""
sample_info = variant_metadata["sample_info"]
# Ensure there are exactly two samples in the VCF, a tumor and normal
assert len(sample_info) == 2, "More than two samples found in the somatic VCF"
# Find the sample with the genotype field set to variant in the VCF
tumor_sample_infos = [info for info in sample_info.values() if info["GT"] == "0/1"]
# Ensure there is only one such sample
assert len(tumor_sample_infos) == 1, "More than one tumor sample found in the VCF file"
tumor_sample_info = tumor_sample_infos[0]
normal_sample_info = [info for info in sample_info.values() if info["GT"] != "0/1"][0]
tumor_stats = _mutect_variant_stats(variant, tumor_sample_info)
normal_stats = _mutect_variant_stats(variant, normal_sample_info)
return SomaticVariantStats(tumor_stats=tumor_stats, normal_stats=normal_stats)
|
Parse out the variant calling statistics for a given variant from a Mutect VCF
Parameters
----------
variant : varcode.Variant
sample_info : dict
Dictionary of sample to variant calling statistics, corresponds to the sample columns
in a Mutect VCF
Returns
-------
SomaticVariantStats
|
entailment
|
def _mutect_variant_stats(variant, sample_info):
"""Parse a single sample"s variant calling statistics based on Mutect"s (v1) VCF output
Parameters
----------
variant : varcode.Variant
sample_info : dict
Dictionary of Mutect-specific variant calling fields
Returns
-------
VariantStats
"""
# Parse out the AD (or allele depth field), which is an array of [REF_DEPTH, ALT_DEPTH]
ref_depth, alt_depth = sample_info["AD"]
depth = int(ref_depth) + int(alt_depth)
vaf = float(alt_depth) / depth
return VariantStats(depth=depth, alt_depth=alt_depth, variant_allele_frequency=vaf)
|
Parse a single sample"s variant calling statistics based on Mutect"s (v1) VCF output
Parameters
----------
variant : varcode.Variant
sample_info : dict
Dictionary of Mutect-specific variant calling fields
Returns
-------
VariantStats
|
entailment
|
def maf_somatic_variant_stats(variant, variant_metadata):
"""
Parse out the variant calling statistics for a given variant from a MAF file
Assumes the MAF format described here: https://www.biostars.org/p/161298/#161777
Parameters
----------
variant : varcode.Variant
variant_metadata : dict
Dictionary of metadata for this variant
Returns
-------
SomaticVariantStats
"""
tumor_stats = None
normal_stats = None
if "t_ref_count" in variant_metadata:
tumor_stats = _maf_variant_stats(variant, variant_metadata, prefix="t")
if "n_ref_count" in variant_metadata:
normal_stats = _maf_variant_stats(variant, variant_metadata, prefix="n")
return SomaticVariantStats(tumor_stats=tumor_stats, normal_stats=normal_stats)
|
Parse out the variant calling statistics for a given variant from a MAF file
Assumes the MAF format described here: https://www.biostars.org/p/161298/#161777
Parameters
----------
variant : varcode.Variant
variant_metadata : dict
Dictionary of metadata for this variant
Returns
-------
SomaticVariantStats
|
entailment
|
def _vcf_is_strelka(variant_file, variant_metadata):
"""Return True if variant_file given is in strelka format
"""
if "strelka" in variant_file.lower():
return True
elif "NORMAL" in variant_metadata["sample_info"].keys():
return True
else:
vcf_reader = vcf.Reader(open(variant_file, "r"))
try:
vcf_type = vcf_reader.metadata["content"]
except KeyError:
vcf_type = ""
if "strelka" in vcf_type.lower():
return True
return False
|
Return True if variant_file given is in strelka format
|
entailment
|
def variant_stats_from_variant(variant,
metadata,
merge_fn=(lambda all_stats: \
max(all_stats, key=(lambda stats: stats.tumor_stats.depth)))):
"""Parse the variant calling stats from a variant called from multiple variant files. The stats are merged
based on `merge_fn`
Parameters
----------
variant : varcode.Variant
metadata : dict
Dictionary of variant file to variant calling metadata from that file
merge_fn : function
Function from list of SomaticVariantStats to single SomaticVariantStats.
This is used if a variant is called by multiple callers or appears in multiple VCFs.
By default, this uses the data from the caller that had a higher tumor depth.
Returns
-------
SomaticVariantStats
"""
all_stats = []
for (variant_file, variant_metadata) in metadata.items():
if _vcf_is_maf(variant_file=variant_file):
stats = maf_somatic_variant_stats(variant, variant_metadata)
elif _vcf_is_strelka(variant_file=variant_file,
variant_metadata=variant_metadata):
stats = strelka_somatic_variant_stats(variant, variant_metadata)
elif _vcf_is_mutect(variant_file=variant_file,
variant_metadata=variant_metadata):
stats = mutect_somatic_variant_stats(variant, variant_metadata)
else:
raise ValueError("Cannot parse sample fields, variant file {} is from an unsupported caller.".format(variant_file))
all_stats.append(stats)
return merge_fn(all_stats)
|
Parse the variant calling stats from a variant called from multiple variant files. The stats are merged
based on `merge_fn`
Parameters
----------
variant : varcode.Variant
metadata : dict
Dictionary of variant file to variant calling metadata from that file
merge_fn : function
Function from list of SomaticVariantStats to single SomaticVariantStats.
This is used if a variant is called by multiple callers or appears in multiple VCFs.
By default, this uses the data from the caller that had a higher tumor depth.
Returns
-------
SomaticVariantStats
|
entailment
|
def _get_and_execute(self):
"""
:return: True if it should continue running, False if it should end its execution.
"""
try:
work = self.queue.get(timeout=self.max_seconds_idle)
except queue.Empty:
# max_seconds_idle has been exhausted, exiting
self.end_notify()
return False
else:
self._work(work)
self.queue.task_done()
return True
|
:return: True if it should continue running, False if it should end its execution.
|
entailment
|
def format(self, full_info: bool = False):
"""
:param full_info: If True, adds more info about the chat. Please, note that this additional info requires
to make up to THREE synchronous api calls.
"""
chat = self.api_object
if full_info:
self.__format_full(chat)
else:
self.__format_simple(chat)
|
:param full_info: If True, adds more info about the chat. Please, note that this additional info requires
to make up to THREE synchronous api calls.
|
entailment
|
def list(self):
"""
:rtype: list(setting_name, value, default_value, is_set, is_supported)
"""
settings = []
for setting in _SETTINGS:
value = self.get(setting)
is_set = self.is_set(setting)
default_value = self.get_default_value(setting)
is_supported = True
settings.append((setting, value, default_value, is_set, is_supported))
for setting in sorted(self.settings_state.list_keys()):
if not self.is_supported(setting):
value = self.get(setting)
default_value = None
is_set = True
is_supported = False
settings.append((setting, value, default_value, is_set, is_supported))
return settings
|
:rtype: list(setting_name, value, default_value, is_set, is_supported)
|
entailment
|
def load_ensembl_coverage(cohort, coverage_path, min_tumor_depth, min_normal_depth=0,
pageant_dir_fn=None):
"""
Load in Pageant CoverageDepth results with Ensembl loci.
coverage_path is a path to Pageant CoverageDepth output directory, with
one subdirectory per patient and a `cdf.csv` file inside each patient subdir.
If min_normal_depth is 0, calculate tumor coverage. Otherwise, calculate
join tumor/normal coverage.
pageant_dir_fn is a function that takes in a Patient and produces a Pageant
dir name.
Last tested with Pageant CoverageDepth version 1ca9ed2.
"""
# Function to grab the pageant file name using the Patient
if pageant_dir_fn is None:
pageant_dir_fn = lambda patient: patient.id
columns_both = [
"depth1", # Normal
"depth2", # Tumor
"onBP1",
"onBP2",
"numOnLoci",
"fracBPOn1",
"fracBPOn2",
"fracLociOn",
"offBP1",
"offBP2",
"numOffLoci",
"fracBPOff1",
"fracBPOff2",
"fracLociOff",
]
columns_single = [
"depth",
"onBP",
"numOnLoci",
"fracBPOn",
"fracLociOn",
"offBP",
"numOffLoci",
"fracBPOff",
"fracLociOff"
]
if min_normal_depth < 0:
raise ValueError("min_normal_depth must be >= 0")
use_tumor_only = (min_normal_depth == 0)
columns = columns_single if use_tumor_only else columns_both
ensembl_loci_dfs = []
for patient in cohort:
patient_ensembl_loci_df = pd.read_csv(
path.join(coverage_path, pageant_dir_fn(patient), "cdf.csv"),
names=columns,
header=1)
# pylint: disable=no-member
# pylint gets confused by read_csv
if use_tumor_only:
depth_mask = (patient_ensembl_loci_df.depth == min_tumor_depth)
else:
depth_mask = (
(patient_ensembl_loci_df.depth1 == min_normal_depth) &
(patient_ensembl_loci_df.depth2 == min_tumor_depth))
patient_ensembl_loci_df = patient_ensembl_loci_df[depth_mask]
assert len(patient_ensembl_loci_df) == 1, (
"Incorrect number of tumor={}, normal={} depth loci results: {} for patient {}".format(
min_tumor_depth, min_normal_depth, len(patient_ensembl_loci_df), patient))
patient_ensembl_loci_df["patient_id"] = patient.id
ensembl_loci_dfs.append(patient_ensembl_loci_df)
ensembl_loci_df = pd.concat(ensembl_loci_dfs)
ensembl_loci_df["MB"] = ensembl_loci_df.numOnLoci / 1000000.0
return ensembl_loci_df[["patient_id", "numOnLoci", "MB"]]
|
Load in Pageant CoverageDepth results with Ensembl loci.
coverage_path is a path to Pageant CoverageDepth output directory, with
one subdirectory per patient and a `cdf.csv` file inside each patient subdir.
If min_normal_depth is 0, calculate tumor coverage. Otherwise, calculate
join tumor/normal coverage.
pageant_dir_fn is a function that takes in a Patient and produces a Pageant
dir name.
Last tested with Pageant CoverageDepth version 1ca9ed2.
|
entailment
|
def vertical_percent(plot, percent=0.1):
"""
Using the size of the y axis, return a fraction of that size.
"""
plot_bottom, plot_top = plot.get_ylim()
return percent * (plot_top - plot_bottom)
|
Using the size of the y axis, return a fraction of that size.
|
entailment
|
def hide_ticks(plot, min_tick_value=None, max_tick_value=None):
"""Hide tick values that are outside of [min_tick_value, max_tick_value]"""
for tick, tick_value in zip(plot.get_yticklabels(), plot.get_yticks()):
tick_label = as_numeric(tick_value)
if tick_label:
if (min_tick_value is not None and tick_label < min_tick_value or
max_tick_value is not None and tick_label > max_tick_value):
tick.set_visible(False)
|
Hide tick values that are outside of [min_tick_value, max_tick_value]
|
entailment
|
def add_significance_indicator(plot, col_a=0, col_b=1, significant=False):
"""
Add a p-value significance indicator.
"""
plot_bottom, plot_top = plot.get_ylim()
# Give the plot a little room for the significance indicator
line_height = vertical_percent(plot, 0.1)
# Add some extra spacing below the indicator
plot_top = plot_top + line_height
# Add some extra spacing above the indicator
plot.set_ylim(top=plot_top + line_height * 2)
color = "black"
line_top = plot_top + line_height
plot.plot([col_a, col_a, col_b, col_b], [plot_top, line_top, line_top, plot_top], lw=1.5, color=color)
indicator = "*" if significant else "ns"
plot.text((col_a + col_b) * 0.5, line_top, indicator, ha="center", va="bottom", color=color)
|
Add a p-value significance indicator.
|
entailment
|
def stripboxplot(x, y, data, ax=None, significant=None, **kwargs):
"""
Overlay a stripplot on top of a boxplot.
"""
ax = sb.boxplot(
x=x,
y=y,
data=data,
ax=ax,
fliersize=0,
**kwargs
)
plot = sb.stripplot(
x=x,
y=y,
data=data,
ax=ax,
jitter=kwargs.pop("jitter", 0.05),
color=kwargs.pop("color", "0.3"),
**kwargs
)
if data[y].min() >= 0:
hide_negative_y_ticks(plot)
if significant is not None:
add_significance_indicator(plot=plot, significant=significant)
return plot
|
Overlay a stripplot on top of a boxplot.
|
entailment
|
def fishers_exact_plot(data, condition1, condition2, ax=None,
condition1_value=None,
alternative="two-sided", **kwargs):
"""
Perform a Fisher's exact test to compare to binary columns
Parameters
----------
data: Pandas dataframe
Dataframe to retrieve information from
condition1: str
First binary column to compare (and used for test sidedness)
condition2: str
Second binary column to compare
ax : Axes, default None
Axes to plot on
condition1_value:
If `condition1` is not a binary column, split on =/!= to condition1_value
alternative:
Specify the sidedness of the test: "two-sided", "less"
or "greater"
"""
plot = sb.barplot(
x=condition1,
y=condition2,
ax=ax,
data=data,
**kwargs
)
plot.set_ylabel("Percent %s" % condition2)
condition1_mask = get_condition_mask(data, condition1, condition1_value)
count_table = pd.crosstab(data[condition1], data[condition2])
print(count_table)
oddsratio, p_value = fisher_exact(count_table, alternative=alternative)
add_significance_indicator(plot=plot, significant=p_value <= 0.05)
only_percentage_ticks(plot)
if alternative != "two-sided":
raise ValueError("We need to better understand the one-sided Fisher's Exact test")
sided_str = "two-sided"
print("Fisher's Exact Test: OR: {}, p-value={} ({})".format(oddsratio, p_value, sided_str))
return FishersExactResults(oddsratio=oddsratio,
p_value=p_value,
sided_str=sided_str,
with_condition1_series=data[condition1_mask][condition2],
without_condition1_series=data[~condition1_mask][condition2],
plot=plot)
|
Perform a Fisher's exact test to compare to binary columns
Parameters
----------
data: Pandas dataframe
Dataframe to retrieve information from
condition1: str
First binary column to compare (and used for test sidedness)
condition2: str
Second binary column to compare
ax : Axes, default None
Axes to plot on
condition1_value:
If `condition1` is not a binary column, split on =/!= to condition1_value
alternative:
Specify the sidedness of the test: "two-sided", "less"
or "greater"
|
entailment
|
def mann_whitney_plot(data,
condition,
distribution,
ax=None,
condition_value=None,
alternative="two-sided",
skip_plot=False,
**kwargs):
"""
Create a box plot comparing a condition and perform a
Mann Whitney test to compare the distribution in condition A v B
Parameters
----------
data: Pandas dataframe
Dataframe to retrieve information from
condition: str
Column to use as the splitting criteria
distribution: str
Column to use as the Y-axis or distribution in the test
ax : Axes, default None
Axes to plot on
condition_value:
If `condition` is not a binary column, split on =/!= to condition_value
alternative:
Specify the sidedness of the Mann-Whitney test: "two-sided", "less"
or "greater"
skip_plot:
Calculate the test statistic and p-value, but don't plot.
"""
condition_mask = get_condition_mask(data, condition, condition_value)
U, p_value = mannwhitneyu(
data[condition_mask][distribution],
data[~condition_mask][distribution],
alternative=alternative
)
plot = None
if not skip_plot:
plot = stripboxplot(
x=condition,
y=distribution,
data=data,
ax=ax,
significant=p_value <= 0.05,
**kwargs
)
sided_str = sided_str_from_alternative(alternative, condition)
print("Mann-Whitney test: U={}, p-value={} ({})".format(U, p_value, sided_str))
return MannWhitneyResults(U=U,
p_value=p_value,
sided_str=sided_str,
with_condition_series=data[condition_mask][distribution],
without_condition_series=data[~condition_mask][distribution],
plot=plot)
|
Create a box plot comparing a condition and perform a
Mann Whitney test to compare the distribution in condition A v B
Parameters
----------
data: Pandas dataframe
Dataframe to retrieve information from
condition: str
Column to use as the splitting criteria
distribution: str
Column to use as the Y-axis or distribution in the test
ax : Axes, default None
Axes to plot on
condition_value:
If `condition` is not a binary column, split on =/!= to condition_value
alternative:
Specify the sidedness of the Mann-Whitney test: "two-sided", "less"
or "greater"
skip_plot:
Calculate the test statistic and p-value, but don't plot.
|
entailment
|
def roc_curve_plot(data, value_column, outcome_column, bootstrap_samples=100, ax=None):
"""Create a ROC curve and compute the bootstrap AUC for the given variable and outcome
Parameters
----------
data : Pandas dataframe
Dataframe to retrieve information from
value_column : str
Column to retrieve the values from
outcome_column : str
Column to use as the outcome variable
bootstrap_samples : int, optional
Number of bootstrap samples to use to compute the AUC
ax : Axes, default None
Axes to plot on
Returns
-------
(mean_bootstrap_auc, roc_plot) : (float, matplotlib plot)
Mean AUC for the given number of bootstrap samples and the plot
"""
scores = bootstrap_auc(df=data,
col=value_column,
pred_col=outcome_column,
n_bootstrap=bootstrap_samples)
mean_bootstrap_auc = scores.mean()
print("{}, Bootstrap (samples = {}) AUC:{}, std={}".format(
value_column, bootstrap_samples, mean_bootstrap_auc, scores.std()))
outcome = data[outcome_column].astype(int)
values = data[value_column]
fpr, tpr, thresholds = roc_curve(outcome, values)
if ax is None:
ax = plt.gca()
roc_plot = ax.plot(fpr, tpr, lw=1, label=value_column)
ax.set_xlim([-0.05, 1.05])
ax.set_ylim([-0.05, 1.05])
ax.set_xlabel('False Positive Rate')
ax.set_ylabel('True Positive Rate')
ax.legend(loc=2, borderaxespad=0.)
ax.set_title('{} ROC Curve (n={})'.format(value_column, len(values)))
return (mean_bootstrap_auc, roc_plot)
|
Create a ROC curve and compute the bootstrap AUC for the given variable and outcome
Parameters
----------
data : Pandas dataframe
Dataframe to retrieve information from
value_column : str
Column to retrieve the values from
outcome_column : str
Column to use as the outcome variable
bootstrap_samples : int, optional
Number of bootstrap samples to use to compute the AUC
ax : Axes, default None
Axes to plot on
Returns
-------
(mean_bootstrap_auc, roc_plot) : (float, matplotlib plot)
Mean AUC for the given number of bootstrap samples and the plot
|
entailment
|
def get_cache_dir(cache_dir, cache_root_dir=None, *args, **kwargs):
"""
Return full cache_dir, according to following logic:
- if cache_dir is a full path (per path.isabs), return that value
- if not and if cache_root_dir is not None, join two paths
- otherwise, log warnings and return None
Separately, if args or kwargs are given, format cache_dir using kwargs
"""
cache_dir = cache_dir.format(*args, **kwargs)
if path.isabs(cache_dir):
if cache_root_dir is not None:
logger.warning('cache_dir ({}) is a full path; ignoring cache_root_dir'.format(cache_dir))
return cache_dir
if cache_root_dir is not None:
return path.join(cache_root_dir, cache_dir)
else:
logger.warning("cache dir is not full path & cache_root_dir not given. Caching may not work as expected!")
return None
|
Return full cache_dir, according to following logic:
- if cache_dir is a full path (per path.isabs), return that value
- if not and if cache_root_dir is not None, join two paths
- otherwise, log warnings and return None
Separately, if args or kwargs are given, format cache_dir using kwargs
|
entailment
|
def _strip_column_name(col_name, keep_paren_contents=True):
"""
Utility script applying several regexs to a string.
Intended to be used by `strip_column_names`.
This function will:
1. replace informative punctuation components with text
2. (optionally) remove text within parentheses
3. replace remaining punctuation/whitespace with _
4. strip leading/trailing punctuation/whitespace
Parameters
----------
col_name (str): input character string
keep_paren_contents (logical):
controls behavior of within-paren elements of text
- if True, (the default) all text within parens retained
- if False, text within parens will be removed from the field name
Returns
--------
modified string for new field name
Examples
--------
> print([_strip_column_name(col) for col in ['PD-L1','PD L1','PD L1_']])
"""
# start with input
new_col_name = col_name
# replace meaningful punctuation with text equivalents
# surround each with whitespace to enforce consistent use of _
punctuation_to_text = {
'<=': 'le',
'>=': 'ge',
'=<': 'le',
'=>': 'ge',
'<': 'lt',
'>': 'gt',
'#': 'num'
}
for punctuation, punctuation_text in punctuation_to_text.items():
new_col_name = new_col_name.replace(punctuation, punctuation_text)
# remove contents within ()
if not(keep_paren_contents):
new_col_name = re.sub('\([^)]*\)', '', new_col_name)
# replace remaining punctuation/whitespace with _
punct_pattern = '[\W_]+'
punct_replacement = '_'
new_col_name = re.sub(punct_pattern, punct_replacement, new_col_name)
# remove leading/trailing _ if it exists (if last char was punctuation)
new_col_name = new_col_name.strip("_")
# TODO: check for empty string
# return lower-case version of column name
return new_col_name.lower()
|
Utility script applying several regexs to a string.
Intended to be used by `strip_column_names`.
This function will:
1. replace informative punctuation components with text
2. (optionally) remove text within parentheses
3. replace remaining punctuation/whitespace with _
4. strip leading/trailing punctuation/whitespace
Parameters
----------
col_name (str): input character string
keep_paren_contents (logical):
controls behavior of within-paren elements of text
- if True, (the default) all text within parens retained
- if False, text within parens will be removed from the field name
Returns
--------
modified string for new field name
Examples
--------
> print([_strip_column_name(col) for col in ['PD-L1','PD L1','PD L1_']])
|
entailment
|
def strip_column_names(cols, keep_paren_contents=True):
"""
Utility script for renaming pandas columns to patsy-friendly names.
Revised names have been:
- stripped of all punctuation and whitespace (converted to text or `_`)
- converted to lower case
Takes a list of column names, returns a dict mapping
names to revised names.
If there are any concerns with the conversion, this will
print a warning & return original column names.
Parameters
----------
cols (list): list of strings containing column names
keep_paren_contents (logical):
controls behavior of within-paren elements of text
- if True, (the default) all text within parens retained
- if False, text within parens will be removed from the field name
Returns
-------
dict mapping col_names -> new_col_names
Example
-------
> df = {'one' : pd.Series([1., 2., 3.], index=['a', 'b', 'c']),
'two' : pd.Series([1., 2., 3., 4.], index=['a', 'b', 'c', 'd']),
'PD L1 (value)': pd.Series([1., 2., 3., 4.], index=['a', 'b', 'c', 'd']),
'PD L1 (>1)': pd.Series([0., 1., 1., 0.], index=['a', 'b', 'c', 'd']),
}
> df = pd.DataFrame(df)
> df = df.rename(columns = strip_column_names(df.columns))
## observe, by comparison
> df2 = df.rename(columns = strip_column_names(df.columns,
keep_paren_contents=False))
"""
# strip/replace punctuation
new_cols = [
_strip_column_name(col, keep_paren_contents=keep_paren_contents)
for col in cols]
if len(new_cols) != len(set(new_cols)):
warn_str = 'Warning: strip_column_names (if run) would introduce duplicate names.'
warn_str += ' Reverting column names to the original.'
warnings.warn(warn_str, Warning)
print('Warning: strip_column_names would introduce duplicate names. Please fix & try again.')
return dict(zip(cols, cols))
return dict(zip(cols, new_cols))
|
Utility script for renaming pandas columns to patsy-friendly names.
Revised names have been:
- stripped of all punctuation and whitespace (converted to text or `_`)
- converted to lower case
Takes a list of column names, returns a dict mapping
names to revised names.
If there are any concerns with the conversion, this will
print a warning & return original column names.
Parameters
----------
cols (list): list of strings containing column names
keep_paren_contents (logical):
controls behavior of within-paren elements of text
- if True, (the default) all text within parens retained
- if False, text within parens will be removed from the field name
Returns
-------
dict mapping col_names -> new_col_names
Example
-------
> df = {'one' : pd.Series([1., 2., 3.], index=['a', 'b', 'c']),
'two' : pd.Series([1., 2., 3., 4.], index=['a', 'b', 'c', 'd']),
'PD L1 (value)': pd.Series([1., 2., 3., 4.], index=['a', 'b', 'c', 'd']),
'PD L1 (>1)': pd.Series([0., 1., 1., 0.], index=['a', 'b', 'c', 'd']),
}
> df = pd.DataFrame(df)
> df = df.rename(columns = strip_column_names(df.columns))
## observe, by comparison
> df2 = df.rename(columns = strip_column_names(df.columns,
keep_paren_contents=False))
|
entailment
|
def set_attributes(obj, additional_data):
"""
Given an object and a dictionary, give the object new attributes from that dictionary.
Uses _strip_column_name to git rid of whitespace/uppercase/special characters.
"""
for key, value in additional_data.items():
if hasattr(obj, key):
raise ValueError("Key %s in additional_data already exists in this object" % key)
setattr(obj, _strip_column_name(key), value)
|
Given an object and a dictionary, give the object new attributes from that dictionary.
Uses _strip_column_name to git rid of whitespace/uppercase/special characters.
|
entailment
|
def return_obj(cols, df, return_cols=False):
"""Construct a DataFrameHolder and then return either that or the DataFrame."""
df_holder = DataFrameHolder(cols=cols, df=df)
return df_holder.return_self(return_cols=return_cols)
|
Construct a DataFrameHolder and then return either that or the DataFrame.
|
entailment
|
def compare_provenance(
this_provenance, other_provenance,
left_outer_diff = "In current but not comparison",
right_outer_diff = "In comparison but not current"):
"""Utility function to compare two abritrary provenance dicts
returns number of discrepancies.
Parameters
----------
this_provenance: provenance dict (to be compared to "other_provenance")
other_provenance: comparison provenance dict
(optional)
left_outer_diff: description/prefix used when printing items in this_provenance but not in other_provenance
right_outer_diff: description/prefix used when printing items in other_provenance but not in this_provenance
Returns
-----------
Number of discrepancies (0: None)
"""
## if either this or other items is null, return 0
if (not this_provenance or not other_provenance):
return 0
this_items = set(this_provenance.items())
other_items = set(other_provenance.items())
# Two-way diff: are any modules introduced, and are any modules lost?
new_diff = this_items.difference(other_items)
old_diff = other_items.difference(this_items)
warn_str = ""
if len(new_diff) > 0:
warn_str += "%s: %s" % (
left_outer_diff,
_provenance_str(new_diff))
if len(old_diff) > 0:
warn_str += "%s: %s" % (
right_outer_diff,
_provenance_str(old_diff))
if len(warn_str) > 0:
warnings.warn(warn_str, Warning)
return(len(new_diff)+len(old_diff))
|
Utility function to compare two abritrary provenance dicts
returns number of discrepancies.
Parameters
----------
this_provenance: provenance dict (to be compared to "other_provenance")
other_provenance: comparison provenance dict
(optional)
left_outer_diff: description/prefix used when printing items in this_provenance but not in other_provenance
right_outer_diff: description/prefix used when printing items in other_provenance but not in this_provenance
Returns
-----------
Number of discrepancies (0: None)
|
entailment
|
def _plot_kmf_single(df,
condition_col,
survival_col,
censor_col,
threshold,
title,
xlabel,
ylabel,
ax,
with_condition_color,
no_condition_color,
with_condition_label,
no_condition_label,
color_map,
label_map,
color_palette,
ci_show,
print_as_title):
"""
Helper function to produce a single KM survival plot, among observations in df by groups defined by condition_col.
All inputs are required - this function is intended to be called by `plot_kmf`.
"""
# make color inputs consistent hex format
if colors.is_color_like(with_condition_color):
with_condition_color = colors.to_hex(with_condition_color)
if colors.is_color_like(no_condition_color):
no_condition_color = colors.to_hex(no_condition_color)
## prepare data to be plotted; producing 3 outputs:
# - `condition`, series containing category labels to be plotted
# - `label_map` (mapping condition values to plot labels)
# - `color_map` (mapping condition values to plotted colors)
if threshold is not None:
is_median = threshold == "median"
if is_median:
threshold = df[condition_col].median()
label_suffix = float_str(threshold)
condition = df[condition_col] > threshold
default_label_no_condition = "%s ≤ %s" % (condition_col, label_suffix)
if is_median:
label_suffix += " (median)"
default_label_with_condition = "%s > %s" % (condition_col, label_suffix)
with_condition_label = with_condition_label or default_label_with_condition
no_condition_label = no_condition_label or default_label_no_condition
if not label_map:
label_map = {False: no_condition_label,
True: with_condition_label}
if not color_map:
color_map = {False: no_condition_color,
True: with_condition_color}
elif df[condition_col].dtype == 'O' or df[condition_col].dtype.name == "category":
condition = df[condition_col].astype("category")
if not label_map:
label_map = dict()
[label_map.update({condition_value: '{} = {}'.format(condition_col,
condition_value)})
for condition_value in condition.unique()]
if not color_map:
rgb_values = sb.color_palette(color_palette, len(label_map.keys()))
hex_values = [colors.to_hex(col) for col in rgb_values]
color_map = dict(zip(label_map.keys(), hex_values))
elif df[condition_col].dtype == 'bool':
condition = df[condition_col]
default_label_with_condition = "= {}".format(condition_col)
default_label_no_condition = "¬ {}".format(condition_col)
with_condition_label = with_condition_label or default_label_with_condition
no_condition_label = no_condition_label or default_label_no_condition
if not label_map:
label_map = {False: no_condition_label,
True: with_condition_label}
if not color_map:
color_map = {False: no_condition_color,
True: with_condition_color}
else:
raise ValueError('Don\'t know how to plot data of type\
{}'.format(df[condition_col].dtype))
# produce kmf plot for each category (group) identified above
kmf = KaplanMeierFitter()
grp_desc = list()
grp_survival_data = dict()
grp_event_data = dict()
grp_names = list(condition.unique())
for grp_name, grp_df in df.groupby(condition):
grp_survival = grp_df[survival_col]
grp_event = (grp_df[censor_col].astype(bool))
grp_label = label_map[grp_name]
grp_color = color_map[grp_name]
kmf.fit(grp_survival, grp_event, label=grp_label)
desc_str = "# {}: {}".format(grp_label, len(grp_survival))
grp_desc.append(desc_str)
grp_survival_data[grp_name] = grp_survival
grp_event_data[grp_name] = grp_event
if ax:
ax = kmf.plot(ax=ax, show_censors=True, ci_show=ci_show, color=grp_color)
else:
ax = kmf.plot(show_censors=True, ci_show=ci_show, color=grp_color)
## format the plot
# Set the y-axis to range 0 to 1
ax.set_ylim(0, 1)
y_tick_vals = ax.get_yticks()
ax.set_yticklabels(["%d" % int(y_tick_val * 100) for y_tick_val in y_tick_vals])
# plot title
if title:
ax.set_title(title)
elif print_as_title:
ax.set_title(' | '.join(grp_desc))
else:
[print(desc) for desc in grp_desc]
# axis labels
if xlabel:
ax.set_xlabel(xlabel)
if ylabel:
ax.set_ylabel(ylabel)
## summarize analytical version of results
## again using same groups as are plotted
if len(grp_names) == 2:
# use log-rank test for 2 groups
results = logrank_test(grp_survival_data[grp_names[0]],
grp_survival_data[grp_names[1]],
event_observed_A=grp_event_data[grp_names[0]],
event_observed_B=grp_event_data[grp_names[1]])
elif len(grp_names) == 1:
# no analytical result for 1 or 0 groups
results = NullSurvivalResults()
else:
# cox PH fitter for >2 groups
cf = CoxPHFitter()
cox_df = patsy.dmatrix('+'.join([condition_col, survival_col,
censor_col]),
df, return_type='dataframe')
del cox_df['Intercept']
results = cf.fit(cox_df, survival_col, event_col=censor_col)
results.print_summary()
# add metadata to results object so caller can print them
results.survival_data_series = grp_survival_data
results.event_data_series = grp_event_data
results.desc = grp_desc
return results
|
Helper function to produce a single KM survival plot, among observations in df by groups defined by condition_col.
All inputs are required - this function is intended to be called by `plot_kmf`.
|
entailment
|
def plot_kmf(df,
condition_col,
censor_col,
survival_col,
strata_col=None,
threshold=None,
title=None,
xlabel=None,
ylabel=None,
ax=None,
with_condition_color="#B38600",
no_condition_color="#A941AC",
with_condition_label=None,
no_condition_label=None,
color_map=None,
label_map=None,
color_palette="Set1",
ci_show=False,
print_as_title=False):
"""
Plot survival curves by splitting the dataset into two groups based on
condition_col. Report results for a log-rank test (if two groups are plotted)
or CoxPH survival analysis (if >2 groups) for association with survival.
Regarding definition of groups:
If condition_col is numeric, values are split into 2 groups.
- if threshold is defined, the groups are split on being > or < condition_col
- if threshold == 'median', the threshold is set to the median of condition_col
If condition_col is categorical or string, results are plotted for each unique value in the dataset.
If condition_col is None, results are plotted for all observations
Currently, if `strata_col` is given, the results are repeated among each stratum of the df.
A truly "stratified" analysis is not yet supported by may be soon.
Parameters
----------
df: dataframe
condition_col: string, column which contains the condition to split on
survival_col: string, column which contains the survival time
censor_col: string,
strata_col: optional string, denoting column containing data to
stratify by (default: None)
threshold: int or string, if int, condition_col is thresholded at int,
if 'median', condition_col thresholded
at its median
if 'median-per-strata', & if stratified analysis
then condition_col thresholded by strata
title: Title for the plot, default None
ax: an existing matplotlib ax, optional, default None
note: not currently supported when `strata_col` is not None
with_condition_color: str, hex code color for the with-condition curve
no_condition_color: str, hex code color for the no-condition curve
with_condition_label: str, optional, label for True condition case
no_condition_label: str, optional, label for False condition case
color_map: dict, optional, mapping of hex-values to condition text
in the form of {value_name: color_hex_code}.
defaults to `sb.color_palette` using `default_color_palette` name,
or *_condition_color options in case of boolean operators.
label_map: dict, optional, mapping of labels to condition text.
defaults to "condition_name = condition_value", or *_condition_label
options in case of boolean operators.
color_palette: str, optional, name of sb.color_palette to use
if color_map not provided.
print_as_title: bool, optional, whether or not to print text
within the plot's title vs. stdout, default False
"""
# set reasonable default threshold value depending on type of condition_col
if threshold is None:
if df[condition_col].dtype != "bool" and \
np.issubdtype(df[condition_col].dtype, np.number):
threshold = "median"
# check inputs for threshold for validity
elif isinstance(threshold, numbers.Number):
logger.debug("threshold value is numeric")
elif threshold not in ("median", "median-per-strata"):
raise ValueError("invalid input for threshold. Must be numeric, None, 'median', or 'median-per-strata'.")
elif threshold == "median-per-strata" and strata_col is None:
raise ValueError("threshold given was 'median-per-strata' and yet `strata_col` was None. Did you mean 'median'?")
# construct kwarg dict to pass to _plot_kmf_single.
# start with args that do not vary according to strata_col
arglist = dict(
condition_col=condition_col,
survival_col=survival_col,
censor_col=censor_col,
threshold=threshold,
with_condition_color=with_condition_color,
no_condition_color=no_condition_color,
with_condition_label=with_condition_label,
no_condition_label=no_condition_label,
color_map=color_map,
label_map=label_map,
xlabel=xlabel,
ylabel=ylabel,
ci_show=ci_show,
color_palette=color_palette,
print_as_title=print_as_title)
# if strata_col is None, pass all parameters to _plot_kmf_single
if strata_col is None:
arglist.update(dict(
df=df,
title=title,
ax=ax))
return _plot_kmf_single(**arglist)
else:
# prepare for stratified analysis
if threshold == "median":
# by default, "median" threshold should be intra-strata median
arglist["threshold"] = df[condition_col].dropna().median()
elif threshold == "median-per-strata":
arglist["threshold"] = "median"
# create axis / subplots for stratified results
if ax is not None:
raise ValueError("ax not supported with stratified analysis.")
n_strata = len(df[strata_col].unique())
f, ax = plt.subplots(n_strata, sharex=True)
# create results dict to hold per-strata results
results = dict()
# call _plot_kmf_single for each of the strata
for i, (strat_name, strat_df) in enumerate(df.groupby(strata_col)):
if n_strata == 1:
arglist["ax"] = ax
else:
arglist["ax"] = ax[i]
subtitle = "{}: {}".format(strata_col, strat_name)
arglist["title"] = subtitle
arglist["df"] = strat_df
results[subtitle] = plot_kmf(**arglist)
[print(desc) for desc in results[subtitle].desc]
if title:
f.suptitle(title)
return results
|
Plot survival curves by splitting the dataset into two groups based on
condition_col. Report results for a log-rank test (if two groups are plotted)
or CoxPH survival analysis (if >2 groups) for association with survival.
Regarding definition of groups:
If condition_col is numeric, values are split into 2 groups.
- if threshold is defined, the groups are split on being > or < condition_col
- if threshold == 'median', the threshold is set to the median of condition_col
If condition_col is categorical or string, results are plotted for each unique value in the dataset.
If condition_col is None, results are plotted for all observations
Currently, if `strata_col` is given, the results are repeated among each stratum of the df.
A truly "stratified" analysis is not yet supported by may be soon.
Parameters
----------
df: dataframe
condition_col: string, column which contains the condition to split on
survival_col: string, column which contains the survival time
censor_col: string,
strata_col: optional string, denoting column containing data to
stratify by (default: None)
threshold: int or string, if int, condition_col is thresholded at int,
if 'median', condition_col thresholded
at its median
if 'median-per-strata', & if stratified analysis
then condition_col thresholded by strata
title: Title for the plot, default None
ax: an existing matplotlib ax, optional, default None
note: not currently supported when `strata_col` is not None
with_condition_color: str, hex code color for the with-condition curve
no_condition_color: str, hex code color for the no-condition curve
with_condition_label: str, optional, label for True condition case
no_condition_label: str, optional, label for False condition case
color_map: dict, optional, mapping of hex-values to condition text
in the form of {value_name: color_hex_code}.
defaults to `sb.color_palette` using `default_color_palette` name,
or *_condition_color options in case of boolean operators.
label_map: dict, optional, mapping of labels to condition text.
defaults to "condition_name = condition_value", or *_condition_label
options in case of boolean operators.
color_palette: str, optional, name of sb.color_palette to use
if color_map not provided.
print_as_title: bool, optional, whether or not to print text
within the plot's title vs. stdout, default False
|
entailment
|
def concat(self, formatted_text):
""":type formatted_text: FormattedText"""
assert self._is_compatible(formatted_text), "Cannot concat text with different modes"
self.text += formatted_text.text
return self
|
:type formatted_text: FormattedText
|
entailment
|
def join(self, formatted_texts):
""":type formatted_texts: list[FormattedText]"""
formatted_texts = list(formatted_texts) # so that after the first iteration elements are not lost if generator
for formatted_text in formatted_texts:
assert self._is_compatible(formatted_text), "Cannot join text with different modes"
self.text = self.text.join((formatted_text.text for formatted_text in formatted_texts))
return self
|
:type formatted_texts: list[FormattedText]
|
entailment
|
def concat(self, *args, **kwargs):
"""
:type args: FormattedText
:type kwargs: FormattedText
"""
for arg in args:
assert self.formatted_text._is_compatible(arg), "Cannot concat text with different modes"
self.format_args.append(arg.text)
for kwarg in kwargs:
value = kwargs[kwarg]
assert self.formatted_text._is_compatible(value), "Cannot concat text with different modes"
self.format_kwargs[kwarg] = value.text
return self
|
:type args: FormattedText
:type kwargs: FormattedText
|
entailment
|
def random_cohort(size, cache_dir, data_dir=None,
min_random_variants=None,
max_random_variants=None,
seed_val=1234):
"""
Parameters
----------
min_random_variants: optional, int
Minimum number of random variants to be generated per patient.
max_random_variants: optional, int
Maximum number of random variants to be generated per patient.
"""
seed(seed_val)
d = {}
d["id"] = [str(id) for id in range(size)]
d["age"] = choice([10, 15, 28, 32, 59, 62, 64, 66, 68], size)
d["smoker"] = choice([False, True], size)
d["OS"] = [randint(10, 1000) for i in range(size)]
d["PFS"] = [int(os * 0.6) for os in d["OS"]]
d["benefit"] = [pfs < 50 for pfs in d["PFS"]]
d["random"] = [randint(100) for i in range(size)]
d["random_boolean"] = choice([False, True], size)
d["benefit_correlate"] = [randint(50) if benefit else randint(20) for benefit in d["benefit"]]
d["benefit_correlate_boolean"] = [True if corr > 10 else False for corr in d["benefit_correlate"]]
d["deceased"] = choice([False, True], size)
d["progressed_or_deceased"] = [deceased or choice([False, True]) for deceased in d["deceased"]]
df = pd.DataFrame(d)
patients = []
for i, row in df.iterrows():
snv_vcf_paths = None
if max_random_variants is not None and min_random_variants is not None:
if data_dir is None:
raise ValueError("data_dir must be provided if random variants are being generated.")
vcf_path = path.join(data_dir, "patient_%s_mutect.vcf" % row["id"])
generate_simple_vcf(
vcf_path, generate_random_missense_variants(num_variants=randint(min_random_variants, max_random_variants)))
snv_vcf_paths = [vcf_path]
patient = Patient(
id=row["id"],
os=row["OS"],
pfs=row["PFS"],
benefit=row["benefit"],
deceased=row["deceased"],
progressed_or_deceased=row["progressed_or_deceased"],
hla_alleles=["HLA-A02:01"],
variants={"snv": snv_vcf_paths},
additional_data=row)
patients.append(patient)
return Cohort(
patients=patients,
cache_dir=cache_dir,
mhc_class=RandomBindingPredictor)
|
Parameters
----------
min_random_variants: optional, int
Minimum number of random variants to be generated per patient.
max_random_variants: optional, int
Maximum number of random variants to be generated per patient.
|
entailment
|
def generate_random_missense_variants(num_variants=10, max_search=100000, reference="GRCh37"):
"""
Generate a random collection of missense variants by trying random variants repeatedly.
"""
variants = []
for i in range(max_search):
bases = ["A", "C", "T", "G"]
random_ref = choice(bases)
bases.remove(random_ref)
random_alt = choice(bases)
random_contig = choice(["1", "2", "3", "4", "5"])
random_variant = Variant(contig=random_contig, start=randint(1, 1000000),
ref=random_ref, alt=random_alt, ensembl=reference)
try:
effects = random_variant.effects()
for effect in effects:
if isinstance(effect, Substitution):
variants.append(random_variant)
break
except:
continue
if len(variants) == num_variants:
break
return VariantCollection(variants)
|
Generate a random collection of missense variants by trying random variants repeatedly.
|
entailment
|
def generate_simple_vcf(filename, variant_collection):
"""
Output a very simple metadata-free VCF for each variant in a variant_collection.
"""
contigs = []
positions = []
refs = []
alts = []
for variant in variant_collection:
contigs.append("chr" + variant.contig)
positions.append(variant.start)
refs.append(variant.ref)
alts.append(variant.alt)
df = pd.DataFrame()
df["contig"] = contigs
df["position"] = positions
df["id"] = ["."] * len(variant_collection)
df["ref"] = refs
df["alt"] = alts
df["qual"] = ["."] * len(variant_collection)
df["filter"] = ["."] * len(variant_collection)
df["info"] = ["."] * len(variant_collection)
df["format"] = ["GT:AD:DP"] * len(variant_collection)
normal_ref_depths = [randint(1, 10) for v in variant_collection]
normal_alt_depths = [randint(1, 10) for v in variant_collection]
df["n1"] = ["0:%d,%d:%d" % (normal_ref_depths[i], normal_alt_depths[i],
normal_ref_depths[i] + normal_alt_depths[i])
for i in range(len(variant_collection))]
tumor_ref_depths = [randint(1, 10) for v in variant_collection]
tumor_alt_depths = [randint(1, 10) for v in variant_collection]
df["t1"] = ["0/1:%d,%d:%d" % (tumor_ref_depths[i], tumor_alt_depths[i], tumor_ref_depths[i] + tumor_alt_depths[i])
for i in range(len(variant_collection))]
with open(filename, "w") as f:
f.write("##fileformat=VCFv4.1\n")
f.write("##reference=file:///projects/ngs/resources/gatk/2.3/ucsc.hg19.fasta\n")
with open(filename, "a") as f:
df.to_csv(f, sep="\t", index=None, header=None)
|
Output a very simple metadata-free VCF for each variant in a variant_collection.
|
entailment
|
def list_folder(self, path):
"""Looks up folder contents of `path.`"""
# Inspired by https://github.com/rspivak/sftpserver/blob/0.3/src/sftpserver/stub_sftp.py#L70
try:
folder_contents = []
for f in os.listdir(path):
attr = paramiko.SFTPAttributes.from_stat(os.stat(os.path.join(path, f)))
attr.filename = f
folder_contents.append(attr)
return folder_contents
except OSError as e:
return SFTPServer.convert_errno(e.errno)
|
Looks up folder contents of `path.`
|
entailment
|
def filter_variants(variant_collection, patient, filter_fn, **kwargs):
"""Filter variants from the Variant Collection
Parameters
----------
variant_collection : varcode.VariantCollection
patient : cohorts.Patient
filter_fn: function
Takes a FilterableVariant and returns a boolean. Only variants returning True are preserved.
Returns
-------
varcode.VariantCollection
Filtered variant collection, with only the variants passing the filter
"""
if filter_fn:
return variant_collection.clone_with_new_elements([
variant
for variant in variant_collection
if filter_fn(FilterableVariant(
variant=variant,
variant_collection=variant_collection,
patient=patient,
), **kwargs)
])
else:
return variant_collection
|
Filter variants from the Variant Collection
Parameters
----------
variant_collection : varcode.VariantCollection
patient : cohorts.Patient
filter_fn: function
Takes a FilterableVariant and returns a boolean. Only variants returning True are preserved.
Returns
-------
varcode.VariantCollection
Filtered variant collection, with only the variants passing the filter
|
entailment
|
def filter_effects(effect_collection, variant_collection, patient, filter_fn, all_effects, **kwargs):
"""Filter variants from the Effect Collection
Parameters
----------
effect_collection : varcode.EffectCollection
variant_collection : varcode.VariantCollection
patient : cohorts.Patient
filter_fn : function
Takes a FilterableEffect and returns a boolean. Only effects returning True are preserved.
all_effects : boolean
Return the single, top-priority effect if False. If True, return all effects (don't filter to top-priority).
Returns
-------
varcode.EffectCollection
Filtered effect collection, with only the variants passing the filter
"""
def top_priority_maybe(effect_collection):
"""
Always (unless all_effects=True) take the top priority effect per variant
so we end up with a single effect per variant.
"""
if all_effects:
return effect_collection
return EffectCollection(list(effect_collection.top_priority_effect_per_variant().values()))
def apply_filter_fn(filter_fn, effect):
"""
Return True if filter_fn is true for the effect or its alternate_effect.
If no alternate_effect, then just return True if filter_fn is True.
"""
applied = filter_fn(FilterableEffect(
effect=effect,
variant_collection=variant_collection,
patient=patient), **kwargs)
if hasattr(effect, "alternate_effect"):
applied_alternate = filter_fn(FilterableEffect(
effect=effect.alternate_effect,
variant_collection=variant_collection,
patient=patient), **kwargs)
return applied or applied_alternate
return applied
if filter_fn:
return top_priority_maybe(EffectCollection([
effect
for effect in effect_collection
if apply_filter_fn(filter_fn, effect)]))
else:
return top_priority_maybe(effect_collection)
|
Filter variants from the Effect Collection
Parameters
----------
effect_collection : varcode.EffectCollection
variant_collection : varcode.VariantCollection
patient : cohorts.Patient
filter_fn : function
Takes a FilterableEffect and returns a boolean. Only effects returning True are preserved.
all_effects : boolean
Return the single, top-priority effect if False. If True, return all effects (don't filter to top-priority).
Returns
-------
varcode.EffectCollection
Filtered effect collection, with only the variants passing the filter
|
entailment
|
def count_lines_in(filename):
"Count lines in a file"
f = open(filename)
lines = 0
buf_size = 1024 * 1024
read_f = f.read # loop optimization
buf = read_f(buf_size)
while buf:
lines += buf.count('\n')
buf = read_f(buf_size)
return lines
|
Count lines in a file
|
entailment
|
def view_name_from(path):
"Resolve a path to the full python module name of the related view function"
try:
return CACHED_VIEWS[path]
except KeyError:
view = resolve(path)
module = path
name = ''
if hasattr(view.func, '__module__'):
module = resolve(path).func.__module__
if hasattr(view.func, '__name__'):
name = resolve(path).func.__name__
view = "%s.%s" % (module, name)
CACHED_VIEWS[path] = view
return view
|
Resolve a path to the full python module name of the related view function
|
entailment
|
def generate_table_from(data):
"Output a nicely formatted ascii table"
table = Texttable(max_width=120)
table.add_row(["view", "method", "status", "count", "minimum", "maximum", "mean", "stdev", "queries", "querytime"])
table.set_cols_align(["l", "l", "l", "r", "r", "r", "r", "r", "r", "r"])
for item in sorted(data):
mean = round(sum(data[item]['times'])/data[item]['count'], 3)
mean_sql = round(sum(data[item]['sql'])/data[item]['count'], 3)
mean_sqltime = round(sum(data[item]['sqltime'])/data[item]['count'], 3)
sdsq = sum([(i - mean) ** 2 for i in data[item]['times']])
try:
stdev = '%.2f' % ((sdsq / (len(data[item]['times']) - 1)) ** .5)
except ZeroDivisionError:
stdev = '0.00'
minimum = "%.2f" % min(data[item]['times'])
maximum = "%.2f" % max(data[item]['times'])
table.add_row([data[item]['view'], data[item]['method'], data[item]['status'], data[item]['count'], minimum, maximum, '%.3f' % mean, stdev, mean_sql, mean_sqltime])
return table.draw()
|
Output a nicely formatted ascii table
|
entailment
|
def analyze_log_file(logfile, pattern, reverse_paths=True, progress=True):
"Given a log file and regex group and extract the performance data"
if progress:
lines = count_lines_in(logfile)
pbar = ProgressBar(widgets=[Percentage(), Bar()], maxval=lines+1).start()
counter = 0
data = {}
compiled_pattern = compile(pattern)
for line in fileinput.input([logfile]):
if progress:
counter = counter + 1
parsed = compiled_pattern.findall(line)[0]
date = parsed[0]
method = parsed[1]
path = parsed[2]
status = parsed[3]
time = parsed[4]
sql = parsed[5]
sqltime = parsed[6]
try:
ignore = False
for ignored_path in IGNORE_PATHS:
compiled_path = compile(ignored_path)
if compiled_path.match(path):
ignore = True
if not ignore:
if reverse_paths:
view = view_name_from(path)
else:
view = path
key = "%s-%s-%s" % (view, status, method)
try:
data[key]['count'] = data[key]['count'] + 1
data[key]['times'].append(float(time))
data[key]['sql'].append(int(sql))
data[key]['sqltime'].append(float(sqltime))
except KeyError:
data[key] = {
'count': 1,
'status': status,
'view': view,
'method': method,
'times': [float(time)],
'sql': [int(sql)],
'sqltime': [float(sqltime)],
}
except Resolver404:
pass
if progress:
pbar.update(counter)
if progress:
pbar.finish()
return data
|
Given a log file and regex group and extract the performance data
|
entailment
|
def to_string(self, limit=None):
"""
Create a string representation of this collection, showing up to
`limit` items.
"""
header = self.short_string()
if len(self) == 0:
return header
contents = ""
element_lines = [
" -- %s" % (element,)
for element in self.elements[:limit]
]
contents = "\n".join(element_lines)
if limit is not None and len(self.elements) > limit:
contents += "\n ... and %d more" % (len(self) - limit)
return "%s\n%s" % (header, contents)
|
Create a string representation of this collection, showing up to
`limit` items.
|
entailment
|
def get_instance(cls, state):
""":rtype: UserStorageHandler"""
if cls.instance is None:
cls.instance = UserStorageHandler(state)
return cls.instance
|
:rtype: UserStorageHandler
|
entailment
|
def _get_active_threads_names():
"""May contain sensitive info (like user ids). Use with care."""
active_threads = threading.enumerate()
return FormattedText().join(
[
FormattedText().newline().normal(" - {name}").start_format().bold(name=thread.name).end_format()
for thread in active_threads
]
)
|
May contain sensitive info (like user ids). Use with care.
|
entailment
|
def _get_running_workers_names(running_workers: list):
"""May contain sensitive info (like user ids). Use with care."""
return FormattedText().join(
[
FormattedText().newline().normal(" - {name}").start_format().bold(name=worker.name).end_format()
for worker in running_workers
]
)
|
May contain sensitive info (like user ids). Use with care.
|
entailment
|
def _get_worker_pools_names(worker_pools: list):
"""May contain sensitive info (like user ids). Use with care."""
return FormattedText().join(
[
FormattedText().newline().normal(" - {name}").start_format().bold(name=worker.name).end_format()
for worker in worker_pools
]
)
|
May contain sensitive info (like user ids). Use with care.
|
entailment
|
def format(self, member_info: bool = False):
"""
:param member_info: If True, adds also chat member info. Please, note that this additional info requires
to make ONE api call.
"""
user = self.api_object
self.__format_user(user)
if member_info and self.chat.type != CHAT_TYPE_PRIVATE:
self._add_empty()
self.__format_member(user)
|
:param member_info: If True, adds also chat member info. Please, note that this additional info requires
to make ONE api call.
|
entailment
|
def safe_log_error(self, error: Exception, *info: str):
"""Log error failing silently on error"""
self.__do_safe(lambda: self.logger.error(error, *info))
|
Log error failing silently on error
|
entailment
|
def safe_log_info(self, *info: str):
"""Log info failing silently on error"""
self.__do_safe(lambda: self.logger.info(*info))
|
Log info failing silently on error
|
entailment
|
def wald_wolfowitz(sequence):
"""
implements the wald-wolfowitz runs test:
http://en.wikipedia.org/wiki/Wald-Wolfowitz_runs_test
http://support.sas.com/kb/33/092.html
:param sequence: any iterable with at most 2 values. e.g.
'1001001'
[1, 0, 1, 0, 1]
'abaaabbba'
:rtype: a dict with keys of
`n_runs`: the number of runs in the sequence
`p`: the support to reject the null-hypothesis that the number of runs
supports a random sequence
`z`: the z-score, used to calculate the p-value
`sd`, `mean`: the expected standard deviation, mean the number of runs,
given the ratio of numbers of 1's/0's in the sequence
>>> r = wald_wolfowitz('1000001')
>>> r['n_runs'] # should be 3, because 1, 0, 1
3
>>> r['p'] < 0.05 # not < 0.05 evidence to reject Ho of random sequence
False
# this should show significance for non-randomness
>>> li = [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]
>>> wald_wolfowitz(li)['p'] < 0.05
True
"""
R = n_runs = sum(1 for s in groupby(sequence, lambda a: a))
n = float(sum(1 for s in sequence if s == sequence[0]))
m = float(sum(1 for s in sequence if s != sequence[0]))
# expected mean runs
ER = ((2 * n * m ) / (n + m)) + 1
# expected variance runs
VR = (2 * n * m * (2 * n * m - n - m )) / ((n + m)**2 * (n + m - 1))
O = (ER - 1) * (ER - 2) / (n + m - 1.)
assert VR - O < 0.001, (VR, O)
SD = math.sqrt(VR)
# Z-score
Z = (R - ER) / SD
return {'z': Z, 'mean': ER, 'sd': SD, 'p': zprob(Z), 'n_runs': R}
|
implements the wald-wolfowitz runs test:
http://en.wikipedia.org/wiki/Wald-Wolfowitz_runs_test
http://support.sas.com/kb/33/092.html
:param sequence: any iterable with at most 2 values. e.g.
'1001001'
[1, 0, 1, 0, 1]
'abaaabbba'
:rtype: a dict with keys of
`n_runs`: the number of runs in the sequence
`p`: the support to reject the null-hypothesis that the number of runs
supports a random sequence
`z`: the z-score, used to calculate the p-value
`sd`, `mean`: the expected standard deviation, mean the number of runs,
given the ratio of numbers of 1's/0's in the sequence
>>> r = wald_wolfowitz('1000001')
>>> r['n_runs'] # should be 3, because 1, 0, 1
3
>>> r['p'] < 0.05 # not < 0.05 evidence to reject Ho of random sequence
False
# this should show significance for non-randomness
>>> li = [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]
>>> wald_wolfowitz(li)['p'] < 0.05
True
|
entailment
|
def auto_correlation(sequence):
"""
test for the autocorrelation of a sequence between t and t - 1
as the 'auto_correlation' it is less likely that the sequence is
generated randomly.
:param sequence: any iterable with at most 2 values that can be turned
into a float via np.float . e.g.
'1001001'
[1, 0, 1, 0, 1]
[1.2,.1,.5,1]
:rtype: returns a dict of the linear regression stats of sequence[1:] vs.
sequence[:-1]
>>> result = auto_correlation('00000001111111111100000000')
>>> result['p'] < 0.05
True
>>> result['auto_correlation']
0.83766233766233755
"""
if isinstance(sequence, basestring):
sequence = map(int, sequence)
seq = np.array(list(sequence), dtype=np.float)
dseq = np.column_stack((seq[1:], seq[:-1]))
slope, intercept, r, ttp, see = linregress(seq[1:], seq[:-1])
cc = np.corrcoef(dseq, rowvar=0)[0][1]
return {'slope': slope, 'intercept': intercept, 'r-squared': r ** 2,
'p': ttp, 'see': see, 'auto_correlation': cc}
|
test for the autocorrelation of a sequence between t and t - 1
as the 'auto_correlation' it is less likely that the sequence is
generated randomly.
:param sequence: any iterable with at most 2 values that can be turned
into a float via np.float . e.g.
'1001001'
[1, 0, 1, 0, 1]
[1.2,.1,.5,1]
:rtype: returns a dict of the linear regression stats of sequence[1:] vs.
sequence[:-1]
>>> result = auto_correlation('00000001111111111100000000')
>>> result['p'] < 0.05
True
>>> result['auto_correlation']
0.83766233766233755
|
entailment
|
def _parse_header_links(response):
"""
Parse the links from a Link: header field.
.. todo:: Links with the same relation collide at the moment.
:param bytes value: The header value.
:rtype: `dict`
:return: A dictionary of parsed links, keyed by ``rel`` or ``url``.
"""
values = response.headers.getRawHeaders(b'link', [b''])
value = b','.join(values).decode('ascii')
with LOG_HTTP_PARSE_LINKS(raw_link=value) as action:
links = {}
replace_chars = u' \'"'
for val in re.split(u', *<', value):
try:
url, params = val.split(u';', 1)
except ValueError:
url, params = val, u''
link = {}
link[u'url'] = url.strip(u'<> \'"')
for param in params.split(u';'):
try:
key, value = param.split(u'=')
except ValueError:
break
link[key.strip(replace_chars)] = value.strip(replace_chars)
links[link.get(u'rel') or link.get(u'url')] = link
action.add_success_fields(parsed_links=links)
return links
|
Parse the links from a Link: header field.
.. todo:: Links with the same relation collide at the moment.
:param bytes value: The header value.
:rtype: `dict`
:return: A dictionary of parsed links, keyed by ``rel`` or ``url``.
|
entailment
|
def _default_client(jws_client, reactor, key, alg):
"""
Make a client if we didn't get one.
"""
if jws_client is None:
pool = HTTPConnectionPool(reactor)
agent = Agent(reactor, pool=pool)
jws_client = JWSClient(HTTPClient(agent=agent), key, alg)
return jws_client
|
Make a client if we didn't get one.
|
entailment
|
def _find_supported_challenge(authzr, responders):
"""
Find a challenge combination that consists of a single challenge that the
responder can satisfy.
:param ~acme.messages.AuthorizationResource auth: The authorization to
examine.
:type responder: List[`~txacme.interfaces.IResponder`]
:param responder: The possible responders to use.
:raises NoSupportedChallenges: When a suitable challenge combination is not
found.
:rtype: Tuple[`~txacme.interfaces.IResponder`,
`~acme.messages.ChallengeBody`]
:return: The responder and challenge that were found.
"""
matches = [
(responder, challbs[0])
for challbs in authzr.body.resolved_combinations
for responder in responders
if [challb.typ for challb in challbs] == [responder.challenge_type]]
if len(matches) == 0:
raise NoSupportedChallenges(authzr)
else:
return matches[0]
|
Find a challenge combination that consists of a single challenge that the
responder can satisfy.
:param ~acme.messages.AuthorizationResource auth: The authorization to
examine.
:type responder: List[`~txacme.interfaces.IResponder`]
:param responder: The possible responders to use.
:raises NoSupportedChallenges: When a suitable challenge combination is not
found.
:rtype: Tuple[`~txacme.interfaces.IResponder`,
`~acme.messages.ChallengeBody`]
:return: The responder and challenge that were found.
|
entailment
|
def answer_challenge(authzr, client, responders):
"""
Complete an authorization using a responder.
:param ~acme.messages.AuthorizationResource auth: The authorization to
complete.
:param .Client client: The ACME client.
:type responders: List[`~txacme.interfaces.IResponder`]
:param responders: A list of responders that can be used to complete the
challenge with.
:return: A deferred firing when the authorization is verified.
"""
responder, challb = _find_supported_challenge(authzr, responders)
response = challb.response(client.key)
def _stop_responding():
return maybeDeferred(
responder.stop_responding,
authzr.body.identifier.value,
challb.chall,
response)
return (
maybeDeferred(
responder.start_responding,
authzr.body.identifier.value,
challb.chall,
response)
.addCallback(lambda _: client.answer_challenge(challb, response))
.addCallback(lambda _: _stop_responding)
)
|
Complete an authorization using a responder.
:param ~acme.messages.AuthorizationResource auth: The authorization to
complete.
:param .Client client: The ACME client.
:type responders: List[`~txacme.interfaces.IResponder`]
:param responders: A list of responders that can be used to complete the
challenge with.
:return: A deferred firing when the authorization is verified.
|
entailment
|
def poll_until_valid(authzr, clock, client, timeout=300.0):
"""
Poll an authorization until it is in a state other than pending or
processing.
:param ~acme.messages.AuthorizationResource auth: The authorization to
complete.
:param clock: The ``IReactorTime`` implementation to use; usually the
reactor, when not testing.
:param .Client client: The ACME client.
:param float timeout: Maximum time to poll in seconds, before giving up.
:raises txacme.client.AuthorizationFailed: if the authorization is no
longer in the pending, processing, or valid states.
:raises: ``twisted.internet.defer.CancelledError`` if the authorization was
still in pending or processing state when the timeout was reached.
:rtype: Deferred[`~acme.messages.AuthorizationResource`]
:return: A deferred firing when the authorization has completed/failed; if
the authorization is valid, the authorization resource will be
returned.
"""
def repoll(result):
authzr, retry_after = result
if authzr.body.status in {STATUS_PENDING, STATUS_PROCESSING}:
return (
deferLater(clock, retry_after, lambda: None)
.addCallback(lambda _: client.poll(authzr))
.addCallback(repoll)
)
if authzr.body.status != STATUS_VALID:
raise AuthorizationFailed(authzr)
return authzr
def cancel_timeout(result):
if timeout_call.active():
timeout_call.cancel()
return result
d = client.poll(authzr).addCallback(repoll)
timeout_call = clock.callLater(timeout, d.cancel)
d.addBoth(cancel_timeout)
return d
|
Poll an authorization until it is in a state other than pending or
processing.
:param ~acme.messages.AuthorizationResource auth: The authorization to
complete.
:param clock: The ``IReactorTime`` implementation to use; usually the
reactor, when not testing.
:param .Client client: The ACME client.
:param float timeout: Maximum time to poll in seconds, before giving up.
:raises txacme.client.AuthorizationFailed: if the authorization is no
longer in the pending, processing, or valid states.
:raises: ``twisted.internet.defer.CancelledError`` if the authorization was
still in pending or processing state when the timeout was reached.
:rtype: Deferred[`~acme.messages.AuthorizationResource`]
:return: A deferred firing when the authorization has completed/failed; if
the authorization is valid, the authorization resource will be
returned.
|
entailment
|
def from_url(cls, reactor, url, key, alg=RS256, jws_client=None):
"""
Construct a client from an ACME directory at a given URL.
:param url: The ``twisted.python.url.URL`` to fetch the directory from.
See `txacme.urls` for constants for various well-known public
directories.
:param reactor: The Twisted reactor to use.
:param ~josepy.jwk.JWK key: The client key to use.
:param alg: The signing algorithm to use. Needs to be compatible with
the type of key used.
:param JWSClient jws_client: The underlying client to use, or ``None``
to construct one.
:return: The constructed client.
:rtype: Deferred[`Client`]
"""
action = LOG_ACME_CONSUME_DIRECTORY(
url=url, key_type=key.typ, alg=alg.name)
with action.context():
check_directory_url_type(url)
jws_client = _default_client(jws_client, reactor, key, alg)
return (
DeferredContext(jws_client.get(url.asText()))
.addCallback(json_content)
.addCallback(messages.Directory.from_json)
.addCallback(
tap(lambda d: action.add_success_fields(directory=d)))
.addCallback(cls, reactor, key, jws_client)
.addActionFinish())
|
Construct a client from an ACME directory at a given URL.
:param url: The ``twisted.python.url.URL`` to fetch the directory from.
See `txacme.urls` for constants for various well-known public
directories.
:param reactor: The Twisted reactor to use.
:param ~josepy.jwk.JWK key: The client key to use.
:param alg: The signing algorithm to use. Needs to be compatible with
the type of key used.
:param JWSClient jws_client: The underlying client to use, or ``None``
to construct one.
:return: The constructed client.
:rtype: Deferred[`Client`]
|
entailment
|
def register(self, new_reg=None):
"""
Create a new registration with the ACME server.
:param ~acme.messages.NewRegistration new_reg: The registration message
to use, or ``None`` to construct one.
:return: The registration resource.
:rtype: Deferred[`~acme.messages.RegistrationResource`]
"""
if new_reg is None:
new_reg = messages.NewRegistration()
action = LOG_ACME_REGISTER(registration=new_reg)
with action.context():
return (
DeferredContext(
self.update_registration(
new_reg, uri=self.directory[new_reg]))
.addErrback(self._maybe_registered, new_reg)
.addCallback(
tap(lambda r: action.add_success_fields(registration=r)))
.addActionFinish())
|
Create a new registration with the ACME server.
:param ~acme.messages.NewRegistration new_reg: The registration message
to use, or ``None`` to construct one.
:return: The registration resource.
:rtype: Deferred[`~acme.messages.RegistrationResource`]
|
entailment
|
def _maybe_location(cls, response, uri=None):
"""
Get the Location: if there is one.
"""
location = response.headers.getRawHeaders(b'location', [None])[0]
if location is not None:
return location.decode('ascii')
return uri
|
Get the Location: if there is one.
|
entailment
|
def _maybe_registered(self, failure, new_reg):
"""
If the registration already exists, we should just load it.
"""
failure.trap(ServerError)
response = failure.value.response
if response.code == http.CONFLICT:
reg = new_reg.update(
resource=messages.UpdateRegistration.resource_type)
uri = self._maybe_location(response)
return self.update_registration(reg, uri=uri)
return failure
|
If the registration already exists, we should just load it.
|
entailment
|
def agree_to_tos(self, regr):
"""
Accept the terms-of-service for a registration.
:param ~acme.messages.RegistrationResource regr: The registration to
update.
:return: The updated registration resource.
:rtype: Deferred[`~acme.messages.RegistrationResource`]
"""
return self.update_registration(
regr.update(
body=regr.body.update(
agreement=regr.terms_of_service)))
|
Accept the terms-of-service for a registration.
:param ~acme.messages.RegistrationResource regr: The registration to
update.
:return: The updated registration resource.
:rtype: Deferred[`~acme.messages.RegistrationResource`]
|
entailment
|
def update_registration(self, regr, uri=None):
"""
Submit a registration to the server to update it.
:param ~acme.messages.RegistrationResource regr: The registration to
update. Can be a :class:`~acme.messages.NewRegistration` instead,
in order to create a new registration.
:param str uri: The url to submit to. Must be
specified if a :class:`~acme.messages.NewRegistration` is provided.
:return: The updated registration resource.
:rtype: Deferred[`~acme.messages.RegistrationResource`]
"""
if uri is None:
uri = regr.uri
if isinstance(regr, messages.RegistrationResource):
message = messages.UpdateRegistration(**dict(regr.body))
else:
message = regr
action = LOG_ACME_UPDATE_REGISTRATION(uri=uri, registration=message)
with action.context():
return (
DeferredContext(self._client.post(uri, message))
.addCallback(self._parse_regr_response, uri=uri)
.addCallback(self._check_regr, regr)
.addCallback(
tap(lambda r: action.add_success_fields(registration=r)))
.addActionFinish())
|
Submit a registration to the server to update it.
:param ~acme.messages.RegistrationResource regr: The registration to
update. Can be a :class:`~acme.messages.NewRegistration` instead,
in order to create a new registration.
:param str uri: The url to submit to. Must be
specified if a :class:`~acme.messages.NewRegistration` is provided.
:return: The updated registration resource.
:rtype: Deferred[`~acme.messages.RegistrationResource`]
|
entailment
|
def _parse_regr_response(self, response, uri=None, new_authzr_uri=None,
terms_of_service=None):
"""
Parse a registration response from the server.
"""
links = _parse_header_links(response)
if u'terms-of-service' in links:
terms_of_service = links[u'terms-of-service'][u'url']
if u'next' in links:
new_authzr_uri = links[u'next'][u'url']
if new_authzr_uri is None:
raise errors.ClientError('"next" link missing')
return (
response.json()
.addCallback(
lambda body:
messages.RegistrationResource(
body=messages.Registration.from_json(body),
uri=self._maybe_location(response, uri=uri),
new_authzr_uri=new_authzr_uri,
terms_of_service=terms_of_service))
)
|
Parse a registration response from the server.
|
entailment
|
def _check_regr(self, regr, new_reg):
"""
Check that a registration response contains the registration we were
expecting.
"""
body = getattr(new_reg, 'body', new_reg)
for k, v in body.items():
if k == 'resource' or not v:
continue
if regr.body[k] != v:
raise errors.UnexpectedUpdate(regr)
if regr.body.key != self.key.public_key():
raise errors.UnexpectedUpdate(regr)
return regr
|
Check that a registration response contains the registration we were
expecting.
|
entailment
|
def request_challenges(self, identifier):
"""
Create a new authorization.
:param ~acme.messages.Identifier identifier: The identifier to
authorize.
:return: The new authorization resource.
:rtype: Deferred[`~acme.messages.AuthorizationResource`]
"""
action = LOG_ACME_CREATE_AUTHORIZATION(identifier=identifier)
with action.context():
message = messages.NewAuthorization(identifier=identifier)
return (
DeferredContext(
self._client.post(self.directory[message], message))
.addCallback(self._expect_response, http.CREATED)
.addCallback(self._parse_authorization)
.addCallback(self._check_authorization, identifier)
.addCallback(
tap(lambda a: action.add_success_fields(authorization=a)))
.addActionFinish())
|
Create a new authorization.
:param ~acme.messages.Identifier identifier: The identifier to
authorize.
:return: The new authorization resource.
:rtype: Deferred[`~acme.messages.AuthorizationResource`]
|
entailment
|
def _expect_response(cls, response, code):
"""
Ensure we got the expected response code.
"""
if response.code != code:
raise errors.ClientError(
'Expected {!r} response but got {!r}'.format(
code, response.code))
return response
|
Ensure we got the expected response code.
|
entailment
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.