sentence1
stringlengths 52
3.87M
| sentence2
stringlengths 1
47.2k
| label
stringclasses 1
value |
|---|---|---|
def splitPolygon(self, polygon, coplanarFront, coplanarBack, front, back):
"""
Split `polygon` by this plane if needed, then put the polygon or polygon
fragments in the appropriate lists. Coplanar polygons go into either
`coplanarFront` or `coplanarBack` depending on their orientation with
respect to this plane. Polygons in front or in back of this plane go into
either `front` or `back`
"""
COPLANAR = 0 # all the vertices are within EPSILON distance from plane
FRONT = 1 # all the vertices are in front of the plane
BACK = 2 # all the vertices are at the back of the plane
SPANNING = 3 # some vertices are in front, some in the back
# Classify each point as well as the entire polygon into one of the above
# four classes.
polygonType = 0
vertexLocs = []
numVertices = len(polygon.vertices)
for i in range(numVertices):
t = self.normal.dot(polygon.vertices[i].pos) - self.w
loc = -1
if t < -Plane.EPSILON:
loc = BACK
elif t > Plane.EPSILON:
loc = FRONT
else:
loc = COPLANAR
polygonType |= loc
vertexLocs.append(loc)
# Put the polygon in the correct list, splitting it when necessary.
if polygonType == COPLANAR:
normalDotPlaneNormal = self.normal.dot(polygon.plane.normal)
if normalDotPlaneNormal > 0:
coplanarFront.append(polygon)
else:
coplanarBack.append(polygon)
elif polygonType == FRONT:
front.append(polygon)
elif polygonType == BACK:
back.append(polygon)
elif polygonType == SPANNING:
f = []
b = []
for i in range(numVertices):
j = (i+1) % numVertices
ti = vertexLocs[i]
tj = vertexLocs[j]
vi = polygon.vertices[i]
vj = polygon.vertices[j]
if ti != BACK:
f.append(vi)
if ti != FRONT:
if ti != BACK:
b.append(vi.clone())
else:
b.append(vi)
if (ti | tj) == SPANNING:
# interpolation weight at the intersection point
t = (self.w - self.normal.dot(vi.pos)) / self.normal.dot(vj.pos.minus(vi.pos))
# intersection point on the plane
v = vi.interpolate(vj, t)
f.append(v)
b.append(v.clone())
if len(f) >= 3:
front.append(Polygon(f, polygon.shared))
if len(b) >= 3:
back.append(Polygon(b, polygon.shared))
|
Split `polygon` by this plane if needed, then put the polygon or polygon
fragments in the appropriate lists. Coplanar polygons go into either
`coplanarFront` or `coplanarBack` depending on their orientation with
respect to this plane. Polygons in front or in back of this plane go into
either `front` or `back`
|
entailment
|
def invert(self):
"""
Convert solid space to empty space and empty space to solid space.
"""
for poly in self.polygons:
poly.flip()
self.plane.flip()
if self.front:
self.front.invert()
if self.back:
self.back.invert()
temp = self.front
self.front = self.back
self.back = temp
|
Convert solid space to empty space and empty space to solid space.
|
entailment
|
def clipPolygons(self, polygons):
"""
Recursively remove all polygons in `polygons` that are inside this BSP
tree.
"""
if not self.plane:
return polygons[:]
front = []
back = []
for poly in polygons:
self.plane.splitPolygon(poly, front, back, front, back)
if self.front:
front = self.front.clipPolygons(front)
if self.back:
back = self.back.clipPolygons(back)
else:
back = []
front.extend(back)
return front
|
Recursively remove all polygons in `polygons` that are inside this BSP
tree.
|
entailment
|
def clipTo(self, bsp):
"""
Remove all polygons in this BSP tree that are inside the other BSP tree
`bsp`.
"""
self.polygons = bsp.clipPolygons(self.polygons)
if self.front:
self.front.clipTo(bsp)
if self.back:
self.back.clipTo(bsp)
|
Remove all polygons in this BSP tree that are inside the other BSP tree
`bsp`.
|
entailment
|
def allPolygons(self):
"""
Return a list of all polygons in this BSP tree.
"""
polygons = self.polygons[:]
if self.front:
polygons.extend(self.front.allPolygons())
if self.back:
polygons.extend(self.back.allPolygons())
return polygons
|
Return a list of all polygons in this BSP tree.
|
entailment
|
def build(self, polygons):
"""
Build a BSP tree out of `polygons`. When called on an existing tree, the
new polygons are filtered down to the bottom of the tree and become new
nodes there. Each set of polygons is partitioned using the first polygon
(no heuristic is used to pick a good split).
"""
if len(polygons) == 0:
return
if not self.plane:
self.plane = polygons[0].plane.clone()
# add polygon to this node
self.polygons.append(polygons[0])
front = []
back = []
# split all other polygons using the first polygon's plane
for poly in polygons[1:]:
# coplanar front and back polygons go into self.polygons
self.plane.splitPolygon(poly, self.polygons, self.polygons,
front, back)
# recursively build the BSP tree
if len(front) > 0:
if not self.front:
self.front = BSPNode()
self.front.build(front)
if len(back) > 0:
if not self.back:
self.back = BSPNode()
self.back.build(back)
|
Build a BSP tree out of `polygons`. When called on an existing tree, the
new polygons are filtered down to the bottom of the tree and become new
nodes there. Each set of polygons is partitioned using the first polygon
(no heuristic is used to pick a good split).
|
entailment
|
def get_rate(currency):
"""Returns the rate from the default currency to `currency`."""
source = get_rate_source()
try:
return Rate.objects.get(source=source, currency=currency).value
except Rate.DoesNotExist:
raise CurrencyConversionException(
"Rate for %s in %s do not exists. "
"Please run python manage.py update_rates" % (
currency, source.name))
|
Returns the rate from the default currency to `currency`.
|
entailment
|
def get_rate_source():
"""Get the default Rate Source and return it."""
backend = money_rates_settings.DEFAULT_BACKEND()
try:
return RateSource.objects.get(name=backend.get_source_name())
except RateSource.DoesNotExist:
raise CurrencyConversionException(
"Rate for %s source do not exists. "
"Please run python manage.py update_rates" % backend.get_source_name())
|
Get the default Rate Source and return it.
|
entailment
|
def base_convert_money(amount, currency_from, currency_to):
"""
Convert 'amount' from 'currency_from' to 'currency_to'
"""
source = get_rate_source()
# Get rate for currency_from.
if source.base_currency != currency_from:
rate_from = get_rate(currency_from)
else:
# If currency from is the same as base currency its rate is 1.
rate_from = Decimal(1)
# Get rate for currency_to.
rate_to = get_rate(currency_to)
if isinstance(amount, float):
amount = Decimal(amount).quantize(Decimal('.000001'))
# After finishing the operation, quantize down final amount to two points.
return ((amount / rate_from) * rate_to).quantize(Decimal("1.00"))
|
Convert 'amount' from 'currency_from' to 'currency_to'
|
entailment
|
def convert_money(amount, currency_from, currency_to):
"""
Convert 'amount' from 'currency_from' to 'currency_to' and return a Money
instance of the converted amount.
"""
new_amount = base_convert_money(amount, currency_from, currency_to)
return moneyed.Money(new_amount, currency_to)
|
Convert 'amount' from 'currency_from' to 'currency_to' and return a Money
instance of the converted amount.
|
entailment
|
def format_date(format_string=None, datetime_obj=None):
"""
Format a datetime object with Java SimpleDateFormat's-like string.
If datetime_obj is not given - use current datetime.
If format_string is not given - return number of millisecond since epoch.
:param format_string:
:param datetime_obj:
:return:
:rtype string
"""
datetime_obj = datetime_obj or datetime.now()
if format_string is None:
seconds = int(datetime_obj.strftime("%s"))
milliseconds = datetime_obj.microsecond // 1000
return str(seconds * 1000 + milliseconds)
else:
formatter = SimpleDateFormat(format_string)
return formatter.format_datetime(datetime_obj)
|
Format a datetime object with Java SimpleDateFormat's-like string.
If datetime_obj is not given - use current datetime.
If format_string is not given - return number of millisecond since epoch.
:param format_string:
:param datetime_obj:
:return:
:rtype string
|
entailment
|
def allZero(buffer):
"""
Tries to determine if a buffer is empty.
@type buffer: str
@param buffer: Buffer to test if it is empty.
@rtype: bool
@return: C{True} if the given buffer is empty, i.e. full of zeros,
C{False} if it doesn't.
"""
allZero = True
for byte in buffer:
if byte != "\x00":
allZero = False
break
return allZero
|
Tries to determine if a buffer is empty.
@type buffer: str
@param buffer: Buffer to test if it is empty.
@rtype: bool
@return: C{True} if the given buffer is empty, i.e. full of zeros,
C{False} if it doesn't.
|
entailment
|
def writeByte(self, byte):
"""
Writes a byte into the L{WriteData} stream object.
@type byte: int
@param byte: Byte value to write into the stream.
"""
self.data.write(pack("B" if not self.signed else "b", byte))
|
Writes a byte into the L{WriteData} stream object.
@type byte: int
@param byte: Byte value to write into the stream.
|
entailment
|
def writeWord(self, word):
"""
Writes a word value into the L{WriteData} stream object.
@type word: int
@param word: Word value to write into the stream.
"""
self.data.write(pack(self.endianness + ("H" if not self.signed else "h"), word))
|
Writes a word value into the L{WriteData} stream object.
@type word: int
@param word: Word value to write into the stream.
|
entailment
|
def writeDword(self, dword):
"""
Writes a dword value into the L{WriteData} stream object.
@type dword: int
@param dword: Dword value to write into the stream.
"""
self.data.write(pack(self.endianness + ("L" if not self.signed else "l"), dword))
|
Writes a dword value into the L{WriteData} stream object.
@type dword: int
@param dword: Dword value to write into the stream.
|
entailment
|
def writeQword(self, qword):
"""
Writes a qword value into the L{WriteData} stream object.
@type qword: int
@param qword: Qword value to write into the stream.
"""
self.data.write(pack(self.endianness + ("Q" if not self.signed else "q"), qword))
|
Writes a qword value into the L{WriteData} stream object.
@type qword: int
@param qword: Qword value to write into the stream.
|
entailment
|
def setOffset(self, value):
"""
Sets the offset of the L{WriteData} stream object in wich the data is written.
@type value: int
@param value: Integer value that represent the offset we want to start writing in the L{WriteData} stream.
@raise WrongOffsetValueException: The value is beyond the total length of the data.
"""
if value >= len(self.data.getvalue()):
raise excep.WrongOffsetValueException("Wrong offset value. Must be less than %d" % len(self.data))
self.data.seek(value)
|
Sets the offset of the L{WriteData} stream object in wich the data is written.
@type value: int
@param value: Integer value that represent the offset we want to start writing in the L{WriteData} stream.
@raise WrongOffsetValueException: The value is beyond the total length of the data.
|
entailment
|
def skipBytes(self, nroBytes):
"""
Skips the specified number as parameter to the current value of the L{WriteData} stream.
@type nroBytes: int
@param nroBytes: The number of bytes to skip.
"""
self.data.seek(nroBytes + self.data.tell())
|
Skips the specified number as parameter to the current value of the L{WriteData} stream.
@type nroBytes: int
@param nroBytes: The number of bytes to skip.
|
entailment
|
def readDword(self):
"""
Reads a dword value from the L{ReadData} stream object.
@rtype: int
@return: The dword value read from the L{ReadData} stream.
"""
dword = unpack(self.endianness + ('L' if not self.signed else 'l'), self.readAt(self.offset, 4))[0]
self.offset += 4
return dword
|
Reads a dword value from the L{ReadData} stream object.
@rtype: int
@return: The dword value read from the L{ReadData} stream.
|
entailment
|
def readWord(self):
"""
Reads a word value from the L{ReadData} stream object.
@rtype: int
@return: The word value read from the L{ReadData} stream.
"""
word = unpack(self.endianness + ('H' if not self.signed else 'h'), self.readAt(self.offset, 2))[0]
self.offset += 2
return word
|
Reads a word value from the L{ReadData} stream object.
@rtype: int
@return: The word value read from the L{ReadData} stream.
|
entailment
|
def readByte(self):
"""
Reads a byte value from the L{ReadData} stream object.
@rtype: int
@return: The byte value read from the L{ReadData} stream.
"""
byte = unpack('B' if not self.signed else 'b', self.readAt(self.offset, 1))[0]
self.offset += 1
return byte
|
Reads a byte value from the L{ReadData} stream object.
@rtype: int
@return: The byte value read from the L{ReadData} stream.
|
entailment
|
def readQword(self):
"""
Reads a qword value from the L{ReadData} stream object.
@rtype: int
@return: The qword value read from the L{ReadData} stream.
"""
qword = unpack(self.endianness + ('Q' if not self.signed else 'b'), self.readAt(self.offset, 8))[0]
self.offset += 8
return qword
|
Reads a qword value from the L{ReadData} stream object.
@rtype: int
@return: The qword value read from the L{ReadData} stream.
|
entailment
|
def readString(self):
"""
Reads an ASCII string from the L{ReadData} stream object.
@rtype: str
@return: An ASCII string read form the stream.
"""
resultStr = ""
while self.data[self.offset] != "\x00":
resultStr += self.data[self.offset]
self.offset += 1
return resultStr
|
Reads an ASCII string from the L{ReadData} stream object.
@rtype: str
@return: An ASCII string read form the stream.
|
entailment
|
def readAlignedString(self, align = 4):
"""
Reads an ASCII string aligned to the next align-bytes boundary.
@type align: int
@param align: (Optional) The value we want the ASCII string to be aligned.
@rtype: str
@return: A 4-bytes aligned (default) ASCII string.
"""
s = self.readString()
r = align - len(s) % align
while r:
s += self.data[self.offset]
self.offset += 1
r -= 1
return s.rstrip("\x00")
|
Reads an ASCII string aligned to the next align-bytes boundary.
@type align: int
@param align: (Optional) The value we want the ASCII string to be aligned.
@rtype: str
@return: A 4-bytes aligned (default) ASCII string.
|
entailment
|
def read(self, nroBytes):
"""
Reads data from the L{ReadData} stream object.
@type nroBytes: int
@param nroBytes: The number of bytes to read.
@rtype: str
@return: A string containing the read data from the L{ReadData} stream object.
@raise DataLengthException: The number of bytes tried to be read are more than the remaining in the L{ReadData} stream.
"""
if nroBytes > self.length - self.offset:
if self.log:
print "Warning: Trying to read: %d bytes - only %d bytes left" % (nroBytes, self.length - self.offset)
nroBytes = self.length - self.offset
resultStr = self.data[self.offset:self.offset + nroBytes]
self.offset += nroBytes
return resultStr
|
Reads data from the L{ReadData} stream object.
@type nroBytes: int
@param nroBytes: The number of bytes to read.
@rtype: str
@return: A string containing the read data from the L{ReadData} stream object.
@raise DataLengthException: The number of bytes tried to be read are more than the remaining in the L{ReadData} stream.
|
entailment
|
def readAt(self, offset, size):
"""
Reads as many bytes indicated in the size parameter at the specific offset.
@type offset: int
@param offset: Offset of the value to be read.
@type size: int
@param size: This parameter indicates how many bytes are going to be read from a given offset.
@rtype: str
@return: A packed string containing the read data.
"""
if offset > self.length:
if self.log:
print "Warning: Trying to read: %d bytes - only %d bytes left" % (nroBytes, self.length - self.offset)
offset = self.length - self.offset
tmpOff = self.tell()
self.setOffset(offset)
r = self.read(size)
self.setOffset(tmpOff)
return r
|
Reads as many bytes indicated in the size parameter at the specific offset.
@type offset: int
@param offset: Offset of the value to be read.
@type size: int
@param size: This parameter indicates how many bytes are going to be read from a given offset.
@rtype: str
@return: A packed string containing the read data.
|
entailment
|
def send(self, message, channel_name=None, fail_silently=False,
options=None):
# type: (Text, Optional[str], bool, Optional[SendOptions]) -> None
"""Send a notification to channels
:param message: A message
"""
if channel_name is None:
channels = self.settings["CHANNELS"]
else:
try:
channels = {
"__selected__": self.settings["CHANNELS"][channel_name]
}
except KeyError:
raise Exception("channels does not exist %s", channel_name)
for _, config in channels.items():
if "_backend" not in config:
raise ImproperlyConfigured(
"Specify the backend class in the channel configuration")
backend = self._load_backend(config["_backend"]) # type: Any
config = deepcopy(config)
del config["_backend"]
channel = backend(**config)
channel.send(message, fail_silently=fail_silently, options=options)
|
Send a notification to channels
:param message: A message
|
entailment
|
def request(self, method, path,
params=None, headers=None, cookies=None, data=None, json=None, allow_redirects=None, timeout=None):
"""
Prepares and sends an HTTP request. Returns the HTTPResponse object.
:param method: str
:param path: str
:return: response
:rtype: HTTPResponse
"""
headers = headers or {}
timeout = timeout if timeout is not None else self._timeout
allow_redirects = allow_redirects if allow_redirects is not None else self._allow_redirects
if self._keep_alive and self.__session is None:
self.__session = requests.Session()
if self.__session is not None and not self._use_cookies:
self.__session.cookies.clear()
address = self._bake_address(path)
req_headers = copy.deepcopy(self._additional_headers)
req_headers.update(headers)
response = http.request(method, address, session=self.__session,
params=params, headers=headers, cookies=cookies, data=data, json=json,
allow_redirects=allow_redirects, timeout=timeout)
if self._auto_assert_ok:
response.assert_ok()
return response
|
Prepares and sends an HTTP request. Returns the HTTPResponse object.
:param method: str
:param path: str
:return: response
:rtype: HTTPResponse
|
entailment
|
def load_genomic_CDR3_anchor_pos_and_functionality(anchor_pos_file_name):
"""Read anchor position and functionality from file.
Parameters
----------
anchor_pos_file_name : str
File name for the functionality and position of a conserved residue
that defines the CDR3 region for each V or J germline sequence.
Returns
-------
anchor_pos_and_functionality : dict
Residue anchor position and functionality for each gene/allele.
"""
anchor_pos_and_functionality = {}
anchor_pos_file = open(anchor_pos_file_name, 'r')
first_line = True
for line in anchor_pos_file:
if first_line:
first_line = False
continue
split_line = line.split(',')
split_line = [x.strip() for x in split_line]
anchor_pos_and_functionality[split_line[0]] = [int(split_line[1]), split_line[2].strip().strip('()')]
return anchor_pos_and_functionality
|
Read anchor position and functionality from file.
Parameters
----------
anchor_pos_file_name : str
File name for the functionality and position of a conserved residue
that defines the CDR3 region for each V or J germline sequence.
Returns
-------
anchor_pos_and_functionality : dict
Residue anchor position and functionality for each gene/allele.
|
entailment
|
def read_igor_V_gene_parameters(params_file_name):
"""Load raw genV from file.
genV is a list of genomic V information. Each element is a list of three
elements. The first is the name of the V allele, the second is the genomic
sequence trimmed to the CDR3 region for productive sequences, and the last
is the full germline sequence. For this 'raw genV' the middle element is an
empty string to be filled in later.
Parameters
----------
params_file_name : str
File name for a IGOR parameter file.
Returns
-------
genV : list
List of genomic V information.
"""
params_file = open(params_file_name, 'r')
V_gene_info = {}
in_V_gene_sec = False
for line in params_file:
if line.startswith('#GeneChoice;V_gene;'):
in_V_gene_sec = True
elif in_V_gene_sec:
if line[0] == '%':
split_line = line[1:].split(';')
V_gene_info[split_line[0]] = [split_line[1] , int(split_line[2])]
else:
break
params_file.close()
genV = [[]]*len(V_gene_info.keys())
for V_gene in V_gene_info.keys():
genV[V_gene_info[V_gene][1]] = [V_gene, '', V_gene_info[V_gene][0]]
return genV
|
Load raw genV from file.
genV is a list of genomic V information. Each element is a list of three
elements. The first is the name of the V allele, the second is the genomic
sequence trimmed to the CDR3 region for productive sequences, and the last
is the full germline sequence. For this 'raw genV' the middle element is an
empty string to be filled in later.
Parameters
----------
params_file_name : str
File name for a IGOR parameter file.
Returns
-------
genV : list
List of genomic V information.
|
entailment
|
def read_igor_D_gene_parameters(params_file_name):
"""Load genD from file.
genD is a list of genomic D information. Each element is a list of the name
of the D allele and the germline sequence.
Parameters
----------
params_file_name : str
File name for a IGOR parameter file.
Returns
-------
genD : list
List of genomic D information.
"""
params_file = open(params_file_name, 'r')
D_gene_info = {}
in_D_gene_sec = False
for line in params_file:
if line.startswith('#GeneChoice;D_gene;'):
in_D_gene_sec = True
elif in_D_gene_sec:
if line[0] == '%':
split_line = line[1:].split(';')
D_gene_info[split_line[0]] = [split_line[1] , int(split_line[2])]
else:
break
params_file.close()
genD = [[]]*len(D_gene_info.keys())
for D_gene in D_gene_info.keys():
genD[D_gene_info[D_gene][1]] = [D_gene, D_gene_info[D_gene][0]]
return genD
|
Load genD from file.
genD is a list of genomic D information. Each element is a list of the name
of the D allele and the germline sequence.
Parameters
----------
params_file_name : str
File name for a IGOR parameter file.
Returns
-------
genD : list
List of genomic D information.
|
entailment
|
def read_igor_J_gene_parameters(params_file_name):
"""Load raw genJ from file.
genJ is a list of genomic J information. Each element is a list of three
elements. The first is the name of the J allele, the second is the genomic
sequence trimmed to the CDR3 region for productive sequences, and the last
is the full germline sequence. For this 'raw genJ' the middle element is an
empty string to be filled in later.
Parameters
----------
params_file_name : str
File name for a IGOR parameter file.
Returns
-------
genJ : list
List of genomic J information.
"""
params_file = open(params_file_name, 'r')
J_gene_info = {}
in_J_gene_sec = False
for line in params_file:
if line.startswith('#GeneChoice;J_gene;'):
in_J_gene_sec = True
elif in_J_gene_sec:
if line[0] == '%':
split_line = line[1:].split(';')
J_gene_info[split_line[0]] = [split_line[1] , int(split_line[2])]
else:
break
params_file.close()
genJ = [[]]*len(J_gene_info.keys())
for J_gene in J_gene_info.keys():
genJ[J_gene_info[J_gene][1]] = [J_gene, '', J_gene_info[J_gene][0]]
return genJ
|
Load raw genJ from file.
genJ is a list of genomic J information. Each element is a list of three
elements. The first is the name of the J allele, the second is the genomic
sequence trimmed to the CDR3 region for productive sequences, and the last
is the full germline sequence. For this 'raw genJ' the middle element is an
empty string to be filled in later.
Parameters
----------
params_file_name : str
File name for a IGOR parameter file.
Returns
-------
genJ : list
List of genomic J information.
|
entailment
|
def read_igor_marginals_txt(marginals_file_name , dim_names=False):
"""Load raw IGoR model marginals.
Parameters
----------
marginals_file_name : str
File name for a IGOR model marginals file.
Returns
-------
model_dict : dict
Dictionary with model marginals.
dimension_names_dict : dict
Dictionary that defines IGoR model dependecies.
"""
with open(marginals_file_name,'r') as file:
#Model parameters are stored inside a dictionary of ndarrays
model_dict = {}
dimension_names_dict = {}
element_name=""
first = True
first_dim_line = False
element_marginal_array = []
indices_array = []
for line in file:
strip_line = line.rstrip('\n') #Remove end of line character
if strip_line[0]=='@':
first_dim_line = True
if not(first):
#Add the previous to the dictionnary
model_dict[element_name] = element_marginal_array
else:
first = False
element_name = strip_line[1:]
if strip_line[0]=='$':
#define array dimensions
coma_index = strip_line.find(',')
dimensions = []
#Get rid of $Dim[
previous_coma_index = 4
while coma_index != -1:
dimensions.append(int(strip_line[previous_coma_index+1:coma_index]))
previous_coma_index = coma_index
coma_index = strip_line.find(',',coma_index+1)
#Add last dimension and get rid of the closing bracket
dimensions.append(int(strip_line[previous_coma_index+1:-1]))
element_marginal_array = np.ndarray(shape=dimensions)
if strip_line[0]=='#':
if first_dim_line:
dimensions_names = []
if len(dimensions) > 1:
comma_index = strip_line.find(',')
opening_bracket_index = strip_line.find('[')
while opening_bracket_index != -1:
dimensions_names.append(strip_line[opening_bracket_index+1:comma_index])
opening_bracket_index = strip_line.find('[',comma_index)
comma_index = strip_line.find(',',opening_bracket_index)
first_dim_line = False
dimensions_names.append(element_name)
dimension_names_dict[element_name] = dimensions_names
#update indices
indices_array = []
if len(dimensions) > 1:
comma_index = strip_line.find(',')
closing_brack_index = strip_line.find(']')
while closing_brack_index != -1:
indices_array.append(int(strip_line[comma_index+1:closing_brack_index]))
opening_bracket_index = strip_line.find('[',closing_brack_index)
comma_index = strip_line.find(',',opening_bracket_index)
closing_brack_index = strip_line.find(']',closing_brack_index+1)
if strip_line[0]=='%':
#read doubles
coma_index = strip_line.find(',')
marginals_values = []
#Get rid of the %
previous_coma_index = 0
while coma_index != -1:
marginals_values.append(float(strip_line[previous_coma_index+1:coma_index]))
previous_coma_index = coma_index
coma_index = strip_line.find(',',coma_index+1)
#Add last dimension and get rid of the closing bracket
marginals_values.append(float(strip_line[previous_coma_index+1:]))
if len(marginals_values)!=dimensions[-1]:
print "problem"
element_marginal_array[tuple(indices_array)] = marginals_values
model_dict[element_name] = element_marginal_array
return [model_dict,dimension_names_dict]
|
Load raw IGoR model marginals.
Parameters
----------
marginals_file_name : str
File name for a IGOR model marginals file.
Returns
-------
model_dict : dict
Dictionary with model marginals.
dimension_names_dict : dict
Dictionary that defines IGoR model dependecies.
|
entailment
|
def anchor_and_curate_genV_and_genJ(self, V_anchor_pos_file, J_anchor_pos_file):
"""Trim V and J germline sequences to the CDR3 region.
Unproductive sequences have an empty string '' for the CDR3 region
sequence.
Edits the attributes genV and genJ
Parameters
----------
V_anchor_pos_file_name : str
File name for the conserved residue (C) locations and functionality
of each V genomic sequence.
J_anchor_pos_file_name : str
File name for the conserved residue (F/W) locations and
functionality of each J genomic sequence.
"""
V_anchor_pos = load_genomic_CDR3_anchor_pos_and_functionality(V_anchor_pos_file)
J_anchor_pos = load_genomic_CDR3_anchor_pos_and_functionality(J_anchor_pos_file)
for V in self.genV:
try:
if V_anchor_pos[V[0]][0] > 0 and V_anchor_pos[V[0]][1] == 'F': #Check for functionality
V[1] = V[2][V_anchor_pos[V[0]][0]:]
else:
V[1] = ''
except KeyError:
V[1] = ''
for J in self.genJ:
try:
if J_anchor_pos[J[0]][0] > 0 and J_anchor_pos[J[0]][1] == 'F': #Check for functionality
J[1] = J[2][:J_anchor_pos[J[0]][0]+3]
else:
J[1] = ''
except KeyError:
J[1] = ''
|
Trim V and J germline sequences to the CDR3 region.
Unproductive sequences have an empty string '' for the CDR3 region
sequence.
Edits the attributes genV and genJ
Parameters
----------
V_anchor_pos_file_name : str
File name for the conserved residue (C) locations and functionality
of each V genomic sequence.
J_anchor_pos_file_name : str
File name for the conserved residue (F/W) locations and
functionality of each J genomic sequence.
|
entailment
|
def generate_cutV_genomic_CDR3_segs(self):
"""Add palindromic inserted nucleotides to germline V sequences.
The maximum number of palindromic insertions are appended to the
germline V segments so that delV can index directly for number of
nucleotides to delete from a segment.
Sets the attribute cutV_genomic_CDR3_segs.
"""
max_palindrome = self.max_delV_palindrome
self.cutV_genomic_CDR3_segs = []
for CDR3_V_seg in [x[1] for x in self.genV]:
if len(CDR3_V_seg) < max_palindrome:
self.cutV_genomic_CDR3_segs += [cutR_seq(CDR3_V_seg, 0, len(CDR3_V_seg))]
else:
self.cutV_genomic_CDR3_segs += [cutR_seq(CDR3_V_seg, 0, max_palindrome)]
|
Add palindromic inserted nucleotides to germline V sequences.
The maximum number of palindromic insertions are appended to the
germline V segments so that delV can index directly for number of
nucleotides to delete from a segment.
Sets the attribute cutV_genomic_CDR3_segs.
|
entailment
|
def generate_cutJ_genomic_CDR3_segs(self):
"""Add palindromic inserted nucleotides to germline J sequences.
The maximum number of palindromic insertions are appended to the
germline J segments so that delJ can index directly for number of
nucleotides to delete from a segment.
Sets the attribute cutJ_genomic_CDR3_segs.
"""
max_palindrome = self.max_delJ_palindrome
self.cutJ_genomic_CDR3_segs = []
for CDR3_J_seg in [x[1] for x in self.genJ]:
if len(CDR3_J_seg) < max_palindrome:
self.cutJ_genomic_CDR3_segs += [cutL_seq(CDR3_J_seg, 0, len(CDR3_J_seg))]
else:
self.cutJ_genomic_CDR3_segs += [cutL_seq(CDR3_J_seg, 0, max_palindrome)]
|
Add palindromic inserted nucleotides to germline J sequences.
The maximum number of palindromic insertions are appended to the
germline J segments so that delJ can index directly for number of
nucleotides to delete from a segment.
Sets the attribute cutJ_genomic_CDR3_segs.
|
entailment
|
def load_igor_genomic_data(self, params_file_name, V_anchor_pos_file, J_anchor_pos_file):
"""Set attributes by loading in genomic data from IGoR parameter file.
Sets attributes genV, max_delV_palindrome, cutV_genomic_CDR3_segs,
genD, max_delDl_palindrome, max_delDr_palindrome,
cutD_genomic_CDR3_segs, genJ, max_delJ_palindrome, and
cutJ_genomic_CDR3_segs.
Parameters
----------
params_file_name : str
File name for a IGOR parameter file.
V_anchor_pos_file_name : str
File name for the conserved residue (C) locations and functionality
of each V genomic sequence.
J_anchor_pos_file_name : str
File name for the conserved residue (F/W) locations and
functionality of each J genomic sequence.
"""
self.genV = read_igor_V_gene_parameters(params_file_name)
self.genD = read_igor_D_gene_parameters(params_file_name)
self.genJ = read_igor_J_gene_parameters(params_file_name)
self.anchor_and_curate_genV_and_genJ(V_anchor_pos_file, J_anchor_pos_file)
self.read_VDJ_palindrome_parameters(params_file_name) #Need palindrome info before generating cut_genomic_CDR3_segs
self.generate_cutV_genomic_CDR3_segs()
self.generate_cutD_genomic_CDR3_segs()
self.generate_cutJ_genomic_CDR3_segs()
|
Set attributes by loading in genomic data from IGoR parameter file.
Sets attributes genV, max_delV_palindrome, cutV_genomic_CDR3_segs,
genD, max_delDl_palindrome, max_delDr_palindrome,
cutD_genomic_CDR3_segs, genJ, max_delJ_palindrome, and
cutJ_genomic_CDR3_segs.
Parameters
----------
params_file_name : str
File name for a IGOR parameter file.
V_anchor_pos_file_name : str
File name for the conserved residue (C) locations and functionality
of each V genomic sequence.
J_anchor_pos_file_name : str
File name for the conserved residue (F/W) locations and
functionality of each J genomic sequence.
|
entailment
|
def generate_cutD_genomic_CDR3_segs(self):
"""Add palindromic inserted nucleotides to germline V sequences.
The maximum number of palindromic insertions are appended to the
germline D segments so that delDl and delDr can index directly for number
of nucleotides to delete from a segment.
Sets the attribute cutV_genomic_CDR3_segs.
"""
max_palindrome_L = self.max_delDl_palindrome
max_palindrome_R = self.max_delDr_palindrome
self.cutD_genomic_CDR3_segs = []
for CDR3_D_seg in [x[1] for x in self.genD]:
if len(CDR3_D_seg) < min(max_palindrome_L, max_palindrome_R):
self.cutD_genomic_CDR3_segs += [cutR_seq(cutL_seq(CDR3_D_seg, 0, len(CDR3_D_seg)), 0, len(CDR3_D_seg))]
else:
self.cutD_genomic_CDR3_segs += [cutR_seq(cutL_seq(CDR3_D_seg, 0, max_palindrome_L), 0, max_palindrome_R)]
|
Add palindromic inserted nucleotides to germline V sequences.
The maximum number of palindromic insertions are appended to the
germline D segments so that delDl and delDr can index directly for number
of nucleotides to delete from a segment.
Sets the attribute cutV_genomic_CDR3_segs.
|
entailment
|
def read_VDJ_palindrome_parameters(self, params_file_name):
"""Read V, D, and J palindrome parameters from file.
Sets the attributes max_delV_palindrome, max_delDl_palindrome,
max_delDr_palindrome, and max_delJ_palindrome.
Parameters
----------
params_file_name : str
File name for an IGoR parameter file of a VDJ generative model.
"""
params_file = open(params_file_name, 'r')
in_delV = False
in_delDl = False
in_delDr = False
in_delJ = False
for line in params_file:
if line.startswith('#Deletion;V_gene;'):
in_delV = True
in_delDl = False
in_delDr = False
in_delJ = False
elif line.startswith('#Deletion;D_gene;Three_prime;'):
in_delV = False
in_delDl = False
in_delDr = True
in_delJ = False
elif line.startswith('#Deletion;D_gene;Five_prime;'):
in_delV = False
in_delDl = True
in_delDr = False
in_delJ = False
elif line.startswith('#Deletion;J_gene;'):
in_delV = False
in_delDl = False
in_delDr = False
in_delJ = True
elif any([in_delV, in_delDl, in_delDr, in_delJ]) and line.startswith('%'):
if int(line.split(';')[-1]) == 0:
if in_delV:
self.max_delV_palindrome = np.abs(int(line.lstrip('%').split(';')[0]))
elif in_delDl:
self.max_delDl_palindrome = np.abs(int(line.lstrip('%').split(';')[0]))
elif in_delDr:
self.max_delDr_palindrome = np.abs(int(line.lstrip('%').split(';')[0]))
elif in_delJ:
self.max_delJ_palindrome = np.abs(int(line.lstrip('%').split(';')[0]))
else:
in_delV = False
in_delDl = False
in_delDr = False
in_delJ = False
|
Read V, D, and J palindrome parameters from file.
Sets the attributes max_delV_palindrome, max_delDl_palindrome,
max_delDr_palindrome, and max_delJ_palindrome.
Parameters
----------
params_file_name : str
File name for an IGoR parameter file of a VDJ generative model.
|
entailment
|
def load_igor_genomic_data(self, params_file_name, V_anchor_pos_file, J_anchor_pos_file):
"""Set attributes by loading in genomic data from IGoR parameter file.
Sets attributes genV, genJ, max_delV_palindrome, max_delJ_palindrome,
cutV_genomic_CDR3_segs, and cutJ_genomic_CDR3_segs.
Parameters
----------
params_file_name : str
File name for a IGOR parameter file.
V_anchor_pos_file_name : str
File name for the conserved residue (C) locations and functionality
of each V genomic sequence.
J_anchor_pos_file_name : str
File name for the conserved residue (F/W) locations and
functionality of each J genomic sequence.
"""
self.genV = read_igor_V_gene_parameters(params_file_name)
self.genJ = read_igor_J_gene_parameters(params_file_name)
self.anchor_and_curate_genV_and_genJ(V_anchor_pos_file, J_anchor_pos_file)
self.read_igor_VJ_palindrome_parameters(params_file_name)
self.generate_cutV_genomic_CDR3_segs()
self.generate_cutJ_genomic_CDR3_segs()
|
Set attributes by loading in genomic data from IGoR parameter file.
Sets attributes genV, genJ, max_delV_palindrome, max_delJ_palindrome,
cutV_genomic_CDR3_segs, and cutJ_genomic_CDR3_segs.
Parameters
----------
params_file_name : str
File name for a IGOR parameter file.
V_anchor_pos_file_name : str
File name for the conserved residue (C) locations and functionality
of each V genomic sequence.
J_anchor_pos_file_name : str
File name for the conserved residue (F/W) locations and
functionality of each J genomic sequence.
|
entailment
|
def read_igor_VJ_palindrome_parameters(self, params_file_name):
"""Read V and J palindrome parameters from file.
Sets the attributes max_delV_palindrome and max_delJ_palindrome.
Parameters
----------
params_file_name : str
File name for an IGoR parameter file of a VJ generative model.
"""
params_file = open(params_file_name, 'r')
in_delV = False
in_delJ = False
for line in params_file:
if line.startswith('#Deletion;V_gene;'):
in_delV = True
in_delJ = False
elif line.startswith('#Deletion;J_gene;'):
in_delV = False
in_delJ = True
elif any([in_delV, in_delJ]) and line.startswith('%'):
if int(line.split(';')[-1]) == 0:
if in_delV:
self.max_delV_palindrome = np.abs(int(line.lstrip('%').split(';')[0]))
elif in_delJ:
self.max_delJ_palindrome = np.abs(int(line.lstrip('%').split(';')[0]))
else:
in_delV = False
in_delJ = False
|
Read V and J palindrome parameters from file.
Sets the attributes max_delV_palindrome and max_delJ_palindrome.
Parameters
----------
params_file_name : str
File name for an IGoR parameter file of a VJ generative model.
|
entailment
|
def load_and_process_igor_model(self, marginals_file_name):
"""Set attributes by reading a generative model from IGoR marginal file.
Sets attributes PV, PdelV_given_V, PDJ, PdelJ_given_J,
PdelDldelDr_given_D, PinsVD, PinsDJ, Rvd, and Rdj.
Parameters
----------
marginals_file_name : str
File name for a IGoR model marginals file.
"""
raw_model = read_igor_marginals_txt(marginals_file_name)
self.PV = raw_model[0]['v_choice']
self.PinsVD = raw_model[0]['vd_ins']
self.PinsDJ = raw_model[0]['dj_ins']
self.PdelV_given_V = raw_model[0]['v_3_del'].T
self.PdelJ_given_J = raw_model[0]['j_5_del'].T
#While this class assumes P(V, D, J) factorizes into P(V)*P(D, J), the B cell model
#infers allowing for the full correlation. Most of the correlation information is due to
#chromosomal correlation of alleles (i.e. what chromosome each allele is found on).
#While this information can be interesting for inference purposes, it is discarded here
#as generally these models may be use for CDR3s from individuals the models weren't inferred
#from (and thus the chromosomal correlations are incorrect). This also equates the T and B cell
#models. To reintroduce the chromosomal correlations use V and J usage masks after inferring the
#allele identities on each chromosome.
if raw_model[1]['d_gene'] == ['j_choice', 'd_gene']:
#Factorized P(V, D, J) = P(V)*P(D, J) --- correct for T cell models
self.PDJ = np.multiply(raw_model[0]['d_gene'].T, raw_model[0]['j_choice'])
elif raw_model[1]['d_gene'] == ['v_choice', 'j_choice', 'd_gene']:
#Full P(V, D, J) for B cells --- need to compute the marginal P(D, J)
PVJ = np.multiply(raw_model[0]['j_choice'].T, raw_model[0]['v_choice']).T
PVDJ = np.zeros([raw_model[0]['d_gene'].shape[0], raw_model[0]['d_gene'].shape[2], raw_model[0]['d_gene'].shape[1]])
for v_in in range(raw_model[0]['d_gene'].shape[0]):
for j_in in range(raw_model[0]['d_gene'].shape[1]):
PVDJ[v_in, :, j_in] = PVJ[v_in, j_in]*raw_model[0]['d_gene'][v_in, j_in, :]
self.PDJ = np.sum(PVDJ, 0)
else:
print 'Unrecognized model structure -- need to construct P(D, J)'
return 0
self.PdelDldelDr_given_D = np.transpose(np.multiply(np.transpose(raw_model[0]['d_3_del'], (2, 0, 1)), raw_model[0]['d_5_del']), (2, 0 , 1))
Rvd_raw = raw_model[0]['vd_dinucl'].reshape((4, 4)).T
self.Rvd = np.multiply(Rvd_raw, 1/np.sum(Rvd_raw, axis = 0))
Rdj_raw = raw_model[0]['dj_dinucl'].reshape((4, 4)).T
self.Rdj = np.multiply(Rdj_raw, 1/np.sum(Rdj_raw, axis = 0))
|
Set attributes by reading a generative model from IGoR marginal file.
Sets attributes PV, PdelV_given_V, PDJ, PdelJ_given_J,
PdelDldelDr_given_D, PinsVD, PinsDJ, Rvd, and Rdj.
Parameters
----------
marginals_file_name : str
File name for a IGoR model marginals file.
|
entailment
|
def load_and_process_igor_model(self, marginals_file_name):
"""Set attributes by reading a generative model from IGoR marginal file.
Sets attributes PVJ, PdelV_given_V, PdelJ_given_J, PinsVJ, and Rvj.
Parameters
----------
marginals_file_name : str
File name for a IGoR model marginals file.
"""
raw_model = read_igor_marginals_txt(marginals_file_name)
self.PinsVJ = raw_model[0]['vj_ins']
self.PdelV_given_V = raw_model[0]['v_3_del'].T
self.PdelJ_given_J = raw_model[0]['j_5_del'].T
self.PVJ = np.multiply( raw_model[0]['j_choice'].T, raw_model[0]['v_choice']).T
Rvj_raw = raw_model[0]['vj_dinucl'].reshape((4, 4)).T
self.Rvj = np.multiply(Rvj_raw, 1/np.sum(Rvj_raw, axis = 0))
|
Set attributes by reading a generative model from IGoR marginal file.
Sets attributes PVJ, PdelV_given_V, PdelJ_given_J, PinsVJ, and Rvj.
Parameters
----------
marginals_file_name : str
File name for a IGoR model marginals file.
|
entailment
|
def parse(readDataInstance):
"""
Returns a new L{ImageBoundForwarderRefEntry} object.
@type readDataInstance: L{ReadData}
@param readDataInstance: A L{ReadData} object with the corresponding data to generate a new L{ImageBoundForwarderRefEntry} object.
@rtype: L{ImageBoundForwarderRefEntry}
@return: A new L{ImageBoundForwarderRefEntry} object.
"""
boundForwarderEntry = ImageBoundForwarderRefEntry()
boundForwarderEntry.timeDateStamp.value = readDataInstance.readDword()
boundForwarderEntry.offsetModuleName.value = readDataInstance.readWord()
boundForwarderEntry.reserved.value = readDataInstance.readWord()
return boundForwarderEntry
|
Returns a new L{ImageBoundForwarderRefEntry} object.
@type readDataInstance: L{ReadData}
@param readDataInstance: A L{ReadData} object with the corresponding data to generate a new L{ImageBoundForwarderRefEntry} object.
@rtype: L{ImageBoundForwarderRefEntry}
@return: A new L{ImageBoundForwarderRefEntry} object.
|
entailment
|
def parse(readDataInstance, numberOfEntries):
"""
Returns a L{ImageBoundForwarderRef} array where every element is a L{ImageBoundForwarderRefEntry} object.
@type readDataInstance: L{ReadData}
@param readDataInstance: A L{ReadData} object with the corresponding data to generate a new L{ImageBoundForwarderRef} object.
@type numberOfEntries: int
@param numberOfEntries: The number of C{IMAGE_BOUND_FORWARDER_REF} entries in the array.
@rtype: L{ImageBoundForwarderRef}
@return: A new L{ImageBoundForwarderRef} object.
@raise DataLengthException: If the L{ReadData} instance has less data than C{NumberOfEntries} * sizeof L{ImageBoundForwarderRefEntry}.
"""
imageBoundForwarderRefsList = ImageBoundForwarderRef()
dLength = len(readDataInstance)
entryLength = ImageBoundForwarderRefEntry().sizeof()
toRead = numberOfEntries * entryLength
if dLength >= toRead:
for i in range(numberOfEntries):
entryData = readDataInstance.read(entryLength)
rd = utils.ReadData(entryData)
imageBoundForwarderRefsList.append(ImageBoundForwarderRefEntry.parse(rd))
else:
raise excep.DataLengthException("Not enough bytes to read.")
return imageBoundForwarderRefsList
|
Returns a L{ImageBoundForwarderRef} array where every element is a L{ImageBoundForwarderRefEntry} object.
@type readDataInstance: L{ReadData}
@param readDataInstance: A L{ReadData} object with the corresponding data to generate a new L{ImageBoundForwarderRef} object.
@type numberOfEntries: int
@param numberOfEntries: The number of C{IMAGE_BOUND_FORWARDER_REF} entries in the array.
@rtype: L{ImageBoundForwarderRef}
@return: A new L{ImageBoundForwarderRef} object.
@raise DataLengthException: If the L{ReadData} instance has less data than C{NumberOfEntries} * sizeof L{ImageBoundForwarderRefEntry}.
|
entailment
|
def parse(readDataInstance):
"""
Returns a new L{ImageBoundImportDescriptor} object.
@type readDataInstance: L{ReadData}
@param readDataInstance: A L{ReadData} object containing the data to create a new L{ImageBoundImportDescriptor} object.
@rtype: L{ImageBoundImportDescriptor}
@return: A new {ImageBoundImportDescriptor} object.
"""
ibd = ImageBoundImportDescriptor()
entryData = readDataInstance.read(consts.SIZEOF_IMAGE_BOUND_IMPORT_ENTRY32)
readDataInstance.offset = 0
while not utils.allZero(entryData):
prevOffset = readDataInstance.offset
boundEntry = ImageBoundImportDescriptorEntry.parse(readDataInstance)
# if the parsed entry has numberOfModuleForwarderRefs we must adjust the value in the readDataInstance.offset field
# in order to point after the last ImageBoundForwarderRefEntry.
if boundEntry.numberOfModuleForwarderRefs.value:
readDataInstance.offset = prevOffset + (consts.SIZEOF_IMAGE_BOUND_FORWARDER_REF_ENTRY32 * boundEntry.numberOfModuleForwarderRefs.value)
else:
readDataInstance.offset = prevOffset
ibd.append(boundEntry)
entryData = readDataInstance.read(consts.SIZEOF_IMAGE_BOUND_IMPORT_ENTRY32)
return ibd
|
Returns a new L{ImageBoundImportDescriptor} object.
@type readDataInstance: L{ReadData}
@param readDataInstance: A L{ReadData} object containing the data to create a new L{ImageBoundImportDescriptor} object.
@rtype: L{ImageBoundImportDescriptor}
@return: A new {ImageBoundImportDescriptor} object.
|
entailment
|
def parse(readDataInstance):
"""
Returns a new L{ImageBoundImportDescriptorEntry} object.
@type readDataInstance: L{ReadData}
@param readDataInstance: A L{ReadData} object containing data to create a new L{ImageBoundImportDescriptorEntry}.
@rtype: L{ImageBoundImportDescriptorEntry}
@return: A new {ImageBoundImportDescriptorEntry} object.
"""
boundEntry = ImageBoundImportDescriptorEntry()
boundEntry.timeDateStamp.value = readDataInstance.readDword()
boundEntry.offsetModuleName.value = readDataInstance.readWord()
boundEntry.numberOfModuleForwarderRefs.value = readDataInstance.readWord()
numberOfForwarderRefsEntries = boundEntry.numberOfModuleForwarderRefs .value
if numberOfForwarderRefsEntries:
bytesToRead = numberOfForwarderRefsEntries * ImageBoundForwarderRefEntry().sizeof()
rd = utils.ReadData(readDataInstance.read(bytesToRead))
boundEntry.forwarderRefsList = ImageBoundForwarderRef.parse(rd, numberOfForwarderRefsEntries)
return boundEntry
|
Returns a new L{ImageBoundImportDescriptorEntry} object.
@type readDataInstance: L{ReadData}
@param readDataInstance: A L{ReadData} object containing data to create a new L{ImageBoundImportDescriptorEntry}.
@rtype: L{ImageBoundImportDescriptorEntry}
@return: A new {ImageBoundImportDescriptorEntry} object.
|
entailment
|
def parse(readDataInstance):
"""
Returns a new L{TLSDirectory} object.
@type readDataInstance: L{ReadData}
@param readDataInstance: A L{ReadData} object containing data to create a new L{TLSDirectory} object.
@rtype: L{TLSDirectory}
@return: A new {TLSDirectory} object.
"""
tlsDir = TLSDirectory()
tlsDir.startAddressOfRawData.value = readDataInstance.readDword()
tlsDir.endAddressOfRawData.value = readDataInstance.readDword()
tlsDir.addressOfIndex.value = readDataInstance.readDword()
tlsDir.addressOfCallbacks.value = readDataInstance.readDword()
tlsDir.sizeOfZeroFill.value = readDataInstance.readDword()
tlsDir.characteristics.value = readDataInstance.readDword()
return tlsDir
|
Returns a new L{TLSDirectory} object.
@type readDataInstance: L{ReadData}
@param readDataInstance: A L{ReadData} object containing data to create a new L{TLSDirectory} object.
@rtype: L{TLSDirectory}
@return: A new {TLSDirectory} object.
|
entailment
|
def parse(readDataInstance):
"""
Returns a new L{TLSDirectory64} object.
@type readDataInstance: L{ReadData}
@param readDataInstance: A L{ReadData} object containing data to create a new L{TLSDirectory64} object.
@rtype: L{TLSDirectory64}
@return: A new L{TLSDirectory64} object.
"""
tlsDir = TLSDirectory64()
tlsDir.startAddressOfRawData.value = readDataInstance.readQword()
tlsDir.endAddressOfRawData.value = readDataInstance.readQword()
tlsDir.addressOfIndex.value = readDataInstance.readQword()
tlsDir.addressOfCallbacks.value = readDataInstance.readQword()
tlsDir.sizeOfZeroFill.value = readDataInstance.readDword()
tlsDir.characteristics.value = readDataInstance.readDword()
return tlsDir
|
Returns a new L{TLSDirectory64} object.
@type readDataInstance: L{ReadData}
@param readDataInstance: A L{ReadData} object containing data to create a new L{TLSDirectory64} object.
@rtype: L{TLSDirectory64}
@return: A new L{TLSDirectory64} object.
|
entailment
|
def parse(readDataInstance):
"""
Returns a new L{ImageLoadConfigDirectory64} object.
@type readDataInstance: L{ReadData}
@param readDataInstance: A L{ReadData} object containing data to create a new L{ImageLoadConfigDirectory64} object.
@rtype: L{ImageLoadConfigDirectory64}
@return: A new L{ImageLoadConfigDirectory64} object.
"""
configDir = ImageLoadConfigDirectory64()
configDir.size.value = readDataInstance.readDword()
configDir.timeDateStamp.value = readDataInstance.readDword()
configDir.majorVersion.value = readDataInstance.readWord()
configDir.minorVersion.value = readDataInstance.readWord()
configDir.globalFlagsClear.value = readDataInstance.readDword()
configDir.globalFlagsSet.value = readDataInstance.readDword()
configDir.criticalSectionDefaultTimeout.value = readDataInstance.readDword()
configDir.deCommitFreeBlockThreshold.value = readDataInstance.readQword()
configDir.deCommitTotalFreeThreshold.value = readDataInstance.readQword()
configDir.lockPrefixTable.value = readDataInstance.readQword()
configDir.maximumAllocationSize.value = readDataInstance.readQword()
configDir.virtualMemoryThreshold.value = readDataInstance.readQword()
configDir.processAffinityMask.value = readDataInstance.readQword()
configDir.processHeapFlags.value = readDataInstance.readDword()
configDir.cdsVersion.value = readDataInstance.readWord()
configDir.reserved1.value = readDataInstance.readWord()
configDir.editList.value = readDataInstance.readQword()
configDir.securityCookie.value = readDataInstance.readQword()
configDir.SEHandlerTable.value = readDataInstance.readQword()
configDir.SEHandlerCount.value = readDataInstance.readQword()
# Fields for Control Flow Guard
configDir.GuardCFCheckFunctionPointer.value = readDataInstance.readQword() # VA
configDir.Reserved2.value = readDataInstance.readQword()
configDir.GuardCFFunctionTable.value = readDataInstance.readQword() # VA
configDir.GuardCFFunctionCount.value = readDataInstance.readQword()
configDir.GuardFlags.value = readDataInstance.readQword()
return configDir
|
Returns a new L{ImageLoadConfigDirectory64} object.
@type readDataInstance: L{ReadData}
@param readDataInstance: A L{ReadData} object containing data to create a new L{ImageLoadConfigDirectory64} object.
@rtype: L{ImageLoadConfigDirectory64}
@return: A new L{ImageLoadConfigDirectory64} object.
|
entailment
|
def parse(readDataInstance):
"""
Returns a new L{ImageBaseRelocationEntry} object.
@type readDataInstance: L{ReadData}
@param readDataInstance: A L{ReadData} object with data to parse as a L{ImageBaseRelocationEntry} object.
@rtype: L{ImageBaseRelocationEntry}
@return: A new L{ImageBaseRelocationEntry} object.
"""
reloc = ImageBaseRelocationEntry()
reloc.virtualAddress.value = readDataInstance.readDword()
reloc.sizeOfBlock.value = readDataInstance.readDword()
toRead = (reloc.sizeOfBlock.value - 8) / len(datatypes.WORD(0))
reloc.items = datatypes.Array.parse(readDataInstance, datatypes.TYPE_WORD, toRead)
return reloc
|
Returns a new L{ImageBaseRelocationEntry} object.
@type readDataInstance: L{ReadData}
@param readDataInstance: A L{ReadData} object with data to parse as a L{ImageBaseRelocationEntry} object.
@rtype: L{ImageBaseRelocationEntry}
@return: A new L{ImageBaseRelocationEntry} object.
|
entailment
|
def parse(readDataInstance):
"""
Returns a new L{ImageDebugDirectory} object.
@type readDataInstance: L{ReadData}
@param readDataInstance: A new L{ReadData} object with data to be parsed as a L{ImageDebugDirectory} object.
@rtype: L{ImageDebugDirectory}
@return: A new L{ImageDebugDirectory} object.
"""
dbgDir = ImageDebugDirectory()
dbgDir.characteristics.value = readDataInstance.readDword()
dbgDir.timeDateStamp.value = readDataInstance.readDword()
dbgDir.majorVersion.value = readDataInstance.readWord()
dbgDir.minorVersion.value = readDataInstance.readWord()
dbgDir.type.value = readDataInstance.readDword()
dbgDir.sizeOfData.value = readDataInstance.readDword()
dbgDir.addressOfData.value = readDataInstance.readDword()
dbgDir.pointerToRawData.value = readDataInstance.readDword()
return dbgDir
|
Returns a new L{ImageDebugDirectory} object.
@type readDataInstance: L{ReadData}
@param readDataInstance: A new L{ReadData} object with data to be parsed as a L{ImageDebugDirectory} object.
@rtype: L{ImageDebugDirectory}
@return: A new L{ImageDebugDirectory} object.
|
entailment
|
def parse(readDataInstance, nDebugEntries):
"""
Returns a new L{ImageDebugDirectories} object.
@type readDataInstance: L{ReadData}
@param readDataInstance: A L{ReadData} object with data to be parsed as a L{ImageDebugDirectories} object.
@type nDebugEntries: int
@param nDebugEntries: Number of L{ImageDebugDirectory} objects in the C{readDataInstance} object.
@rtype: L{ImageDebugDirectories}
@return: A new L{ImageDebugDirectories} object.
@raise DataLengthException: If not enough data to read in the C{readDataInstance} object.
"""
dbgEntries = ImageDebugDirectories()
dataLength = len(readDataInstance)
toRead = nDebugEntries * consts.SIZEOF_IMAGE_DEBUG_ENTRY32
if dataLength >= toRead:
for i in range(nDebugEntries):
dbgEntry = ImageDebugDirectory.parse(readDataInstance)
dbgEntries.append(dbgEntry)
else:
raise excep.DataLengthException("Not enough bytes to read.")
return dbgEntries
|
Returns a new L{ImageDebugDirectories} object.
@type readDataInstance: L{ReadData}
@param readDataInstance: A L{ReadData} object with data to be parsed as a L{ImageDebugDirectories} object.
@type nDebugEntries: int
@param nDebugEntries: Number of L{ImageDebugDirectory} objects in the C{readDataInstance} object.
@rtype: L{ImageDebugDirectories}
@return: A new L{ImageDebugDirectories} object.
@raise DataLengthException: If not enough data to read in the C{readDataInstance} object.
|
entailment
|
def parse(readDataInstance):
"""
Returns a new L{ImageImportDescriptorEntry} object.
@type readDataInstance: L{ReadData}
@param readDataInstance: A L{ReadData} object with data to be parsed as a L{ImageImportDescriptorEntry}.
@rtype: L{ImageImportDescriptorEntry}
@return: A new L{ImageImportDescriptorEntry} object.
"""
iid = ImageImportDescriptorEntry()
iid.originalFirstThunk.value = readDataInstance.readDword()
iid.timeDateStamp.value = readDataInstance.readDword()
iid.forwarderChain.value = readDataInstance.readDword()
iid.name.value = readDataInstance.readDword()
iid.firstThunk.value = readDataInstance.readDword()
return iid
|
Returns a new L{ImageImportDescriptorEntry} object.
@type readDataInstance: L{ReadData}
@param readDataInstance: A L{ReadData} object with data to be parsed as a L{ImageImportDescriptorEntry}.
@rtype: L{ImageImportDescriptorEntry}
@return: A new L{ImageImportDescriptorEntry} object.
|
entailment
|
def parse(readDataInstance, nEntries):
"""
Returns a new L{ImageImportDescriptor} object.
@type readDataInstance: L{ReadData}
@param readDataInstance: A L{ReadData} object with data to be parsed as a L{ImageImportDescriptor} object.
@type nEntries: int
@param nEntries: The number of L{ImageImportDescriptorEntry} objects in the C{readDataInstance} object.
@rtype: L{ImageImportDescriptor}
@return: A new L{ImageImportDescriptor} object.
@raise DataLengthException: If not enough data to read.
"""
importEntries = ImageImportDescriptor()
dataLength = len(readDataInstance)
toRead = nEntries * consts.SIZEOF_IMAGE_IMPORT_ENTRY32
if dataLength >= toRead:
for i in range(nEntries):
importEntry = ImageImportDescriptorEntry.parse(readDataInstance)
importEntries.append(importEntry)
else:
raise excep.DataLengthException("Not enough bytes to read.")
return importEntries
|
Returns a new L{ImageImportDescriptor} object.
@type readDataInstance: L{ReadData}
@param readDataInstance: A L{ReadData} object with data to be parsed as a L{ImageImportDescriptor} object.
@type nEntries: int
@param nEntries: The number of L{ImageImportDescriptorEntry} objects in the C{readDataInstance} object.
@rtype: L{ImageImportDescriptor}
@return: A new L{ImageImportDescriptor} object.
@raise DataLengthException: If not enough data to read.
|
entailment
|
def parse(readDataInstance):
"""
Returns a new L{ExportTableEntry} object.
@type readDataInstance: L{ReadData}
@param readDataInstance: A L{ReadData} object with data to be parsed as a L{ExportTableEntry} object.
@rtype: L{ExportTableEntry}
@return: A new L{ExportTableEntry} object.
"""
exportEntry = ExportTableEntry()
exportEntry.functionRva.value = readDataInstance.readDword()
exportEntry.nameOrdinal.value = readDataInstance.readWord()
exportEntry.nameRva.value = readDataInstance.readDword()
exportEntry.name.value = readDataInstance.readString()
return exportEntry
|
Returns a new L{ExportTableEntry} object.
@type readDataInstance: L{ReadData}
@param readDataInstance: A L{ReadData} object with data to be parsed as a L{ExportTableEntry} object.
@rtype: L{ExportTableEntry}
@return: A new L{ExportTableEntry} object.
|
entailment
|
def parse(readDataInstance):
"""
Returns a new L{ImageExportTable} object.
@type readDataInstance: L{ReadData}
@param readDataInstance: A L{ReadData} object with data to be parsed as a L{ImageExportTable} object.
@rtype: L{ImageExportTable}
@return: A new L{ImageExportTable} object.
"""
et = ImageExportTable()
et.characteristics.value = readDataInstance.readDword()
et.timeDateStamp.value = readDataInstance.readDword()
et.majorVersion.value = readDataInstance.readWord()
et.minorVersion.value = readDataInstance.readWord()
et.name.value = readDataInstance.readDword()
et.base.value = readDataInstance.readDword()
et.numberOfFunctions.value = readDataInstance.readDword()
et.numberOfNames.value = readDataInstance.readDword()
et.addressOfFunctions.value = readDataInstance.readDword()
et.addressOfNames.value = readDataInstance.readDword()
et.addressOfNameOrdinals.value = readDataInstance.readDword()
return et
|
Returns a new L{ImageExportTable} object.
@type readDataInstance: L{ReadData}
@param readDataInstance: A L{ReadData} object with data to be parsed as a L{ImageExportTable} object.
@rtype: L{ImageExportTable}
@return: A new L{ImageExportTable} object.
|
entailment
|
def parse(readDataInstance):
"""
Returns a new L{NETDirectory} object.
@type readDataInstance: L{ReadData}
@param readDataInstance: A L{ReadData} object with data to be parsed as a L{NETDirectory} object.
@rtype: L{NETDirectory}
@return: A new L{NETDirectory} object.
"""
nd = NETDirectory()
nd.directory = NetDirectory.parse(readDataInstance)
nd.netMetaDataHeader = NetMetaDataHeader.parse(readDataInstance)
nd.netMetaDataStreams = NetMetaDataStreams.parse(readDataInstance)
return nd
|
Returns a new L{NETDirectory} object.
@type readDataInstance: L{ReadData}
@param readDataInstance: A L{ReadData} object with data to be parsed as a L{NETDirectory} object.
@rtype: L{NETDirectory}
@return: A new L{NETDirectory} object.
|
entailment
|
def parse(readDataInstance):
"""
Returns a new L{NetDirectory} object.
@type readDataInstance: L{ReadData}
@param readDataInstance: A L{ReadData} object with data to be parsed as a L{NetDirectory} object.
@rtype: L{NetDirectory}
@return: A new L{NetDirectory} object.
"""
nd = NetDirectory()
nd.cb.value = readDataInstance.readDword()
nd.majorRuntimeVersion.value= readDataInstance.readWord()
nd.minorRuntimeVersion.value = readDataInstance.readWord()
nd.metaData.rva.value = readDataInstance.readDword()
nd.metaData.size.value = readDataInstance.readDword()
nd.metaData.name.value = "MetaData"
nd.flags.value = readDataInstance.readDword()
nd.entryPointToken.value = readDataInstance.readDword()
nd.resources.rva.value = readDataInstance.readDword()
nd.resources.size.value = readDataInstance.readDword()
nd.resources.name.value = "Resources"
nd.strongNameSignature.rva.value = readDataInstance.readDword()
nd.strongNameSignature.size.value = readDataInstance.readDword()
nd.strongNameSignature.name.value = "StrongNameSignature"
nd.codeManagerTable.rva.value = readDataInstance.readDword()
nd.codeManagerTable.size.value = readDataInstance.readDword()
nd.codeManagerTable.name.value = "CodeManagerTable"
nd.vTableFixups.rva.value = readDataInstance.readDword()
nd.vTableFixups.size.value = readDataInstance.readDword()
nd.vTableFixups.name.value = "VTableFixups"
nd.exportAddressTableJumps.rva.value = readDataInstance.readDword()
nd.exportAddressTableJumps.size.value = readDataInstance.readDword()
nd.exportAddressTableJumps.name.value = "ExportAddressTableJumps"
nd.managedNativeHeader.rva.value = readDataInstance.readDword()
nd.managedNativeHeader.size.value = readDataInstance.readDword()
nd.managedNativeHeader.name.value = "ManagedNativeHeader"
return nd
|
Returns a new L{NetDirectory} object.
@type readDataInstance: L{ReadData}
@param readDataInstance: A L{ReadData} object with data to be parsed as a L{NetDirectory} object.
@rtype: L{NetDirectory}
@return: A new L{NetDirectory} object.
|
entailment
|
def parse(readDataInstance):
"""
Returns a new L{NetMetaDataHeader} object.
@type readDataInstance: L{ReadData}
@param readDataInstance: A L{ReadData} object with data to be parsed as a L{NetMetaDataHeader} object.
@rtype: L{NetMetaDataHeader}
@return: A new L{NetMetaDataHeader} object.
"""
nmh = NetMetaDataHeader()
nmh.signature.value = readDataInstance.readDword()
nmh.majorVersion.value = readDataInstance.readWord()
nmh.minorVersion.value = readDataInstance.readWord()
nmh.reserved.value = readDataInstance.readDword()
nmh.versionLength.value = readDataInstance.readDword()
nmh.versionString.value = readDataInstance.readAlignedString()
nmh.flags.value = readDataInstance.readWord()
nmh.numberOfStreams.value = readDataInstance.readWord()
return nmh
|
Returns a new L{NetMetaDataHeader} object.
@type readDataInstance: L{ReadData}
@param readDataInstance: A L{ReadData} object with data to be parsed as a L{NetMetaDataHeader} object.
@rtype: L{NetMetaDataHeader}
@return: A new L{NetMetaDataHeader} object.
|
entailment
|
def parse(readDataInstance):
"""
Returns a new L{NetMetaDataStreamEntry} object.
@type readDataInstance: L{ReadData}
@param readDataInstance: A L{ReadData} object with data to be parsed as a L{NetMetaDataStreamEntry}.
@rtype: L{NetMetaDataStreamEntry}
@return: A new L{NetMetaDataStreamEntry} object.
"""
n = NetMetaDataStreamEntry()
n.offset.value = readDataInstance.readDword()
n.size.value = readDataInstance.readDword()
n.name.value = readDataInstance.readAlignedString()
return n
|
Returns a new L{NetMetaDataStreamEntry} object.
@type readDataInstance: L{ReadData}
@param readDataInstance: A L{ReadData} object with data to be parsed as a L{NetMetaDataStreamEntry}.
@rtype: L{NetMetaDataStreamEntry}
@return: A new L{NetMetaDataStreamEntry} object.
|
entailment
|
def parse(readDataInstance, nStreams):
"""
Returns a new L{NetMetaDataStreams} object.
@type readDataInstance: L{ReadData}
@param readDataInstance: A L{ReadData} object with data to be parsed as a L{NetMetaDataStreams} object.
@type nStreams: int
@param nStreams: The number of L{NetMetaDataStreamEntry} objects in the C{readDataInstance} object.
@rtype: L{NetMetaDataStreams}
@return: A new L{NetMetaDataStreams} object.
"""
streams = NetMetaDataStreams()
for i in range(nStreams):
streamEntry = NetMetaDataStreamEntry()
streamEntry.offset.value = readDataInstance.readDword()
streamEntry.size.value = readDataInstance.readDword()
streamEntry.name.value = readDataInstance.readAlignedString()
#streams.append(streamEntry)
streams.update({ i: streamEntry, streamEntry.name.value: streamEntry })
return streams
|
Returns a new L{NetMetaDataStreams} object.
@type readDataInstance: L{ReadData}
@param readDataInstance: A L{ReadData} object with data to be parsed as a L{NetMetaDataStreams} object.
@type nStreams: int
@param nStreams: The number of L{NetMetaDataStreamEntry} objects in the C{readDataInstance} object.
@rtype: L{NetMetaDataStreams}
@return: A new L{NetMetaDataStreams} object.
|
entailment
|
def parse(readDataInstance):
"""
Returns a new L{NetMetaDataTableHeader} object.
@type readDataInstance: L{ReadData}
@param readDataInstance: A L{ReadData} object with data to be parsed as a L{NetMetaDataTableHeader} object.
@rtype: L{NetMetaDataTableHeader}
@return: A new L{NetMetaDataTableHeader} object.
"""
th = NetMetaDataTableHeader()
th.reserved_1.value = readDataInstance.readDword()
th.majorVersion.value = readDataInstance.readByte()
th.minorVersion.value = readDataInstance.readByte()
th.heapOffsetSizes.value = readDataInstance.readByte()
th.reserved_2.value = readDataInstance.readByte()
th.maskValid.value = readDataInstance.readQword()
th.maskSorted.value = readDataInstance.readQword()
return th
|
Returns a new L{NetMetaDataTableHeader} object.
@type readDataInstance: L{ReadData}
@param readDataInstance: A L{ReadData} object with data to be parsed as a L{NetMetaDataTableHeader} object.
@rtype: L{NetMetaDataTableHeader}
@return: A new L{NetMetaDataTableHeader} object.
|
entailment
|
def parse(readDataInstance, netMetaDataStreams):
"""
Returns a new L{NetMetaDataTables} object.
@type readDataInstance: L{ReadData}
@param readDataInstance: A L{ReadData} object with data to be parsed as a L{NetMetaDataTables} object.
@rtype: L{NetMetaDataTables}
@return: A new L{NetMetaDataTables} object.
"""
dt = NetMetaDataTables()
dt.netMetaDataTableHeader = NetMetaDataTableHeader.parse(readDataInstance)
dt.tables = {}
metadataTableDefinitions = dotnet.MetadataTableDefinitions(dt, netMetaDataStreams)
for i in xrange(64):
dt.tables[i] = { "rows": 0 }
if dt.netMetaDataTableHeader.maskValid.value >> i & 1:
dt.tables[i]["rows"] = readDataInstance.readDword()
if i in dotnet.MetadataTableNames:
dt.tables[dotnet.MetadataTableNames[i]] = dt.tables[i]
for i in xrange(64):
dt.tables[i]["data"] = []
for j in range(dt.tables[i]["rows"]):
row = None
if i in metadataTableDefinitions:
row = readDataInstance.readFields(metadataTableDefinitions[i])
dt.tables[i]["data"].append(row)
for i in xrange(64):
if i in dotnet.MetadataTableNames:
dt.tables[dotnet.MetadataTableNames[i]] = dt.tables[i]["data"]
dt.tables[i] = dt.tables[i]["data"]
return dt
|
Returns a new L{NetMetaDataTables} object.
@type readDataInstance: L{ReadData}
@param readDataInstance: A L{ReadData} object with data to be parsed as a L{NetMetaDataTables} object.
@rtype: L{NetMetaDataTables}
@return: A new L{NetMetaDataTables} object.
|
entailment
|
def parse(readDataInstance):
"""
Returns a new L{NetResources} object.
@type readDataInstance: L{ReadData}
@param readDataInstance: A L{ReadData} object with data to be parsed as a L{NetResources} object.
@rtype: L{NetResources}
@return: A new L{NetResources} object.
"""
r = NetResources()
r.signature = readDataInstance.readDword()
if r.signature != 0xbeefcace:
return r
r.readerCount = readDataInstance.readDword()
r.readerTypeLength = readDataInstance.readDword()
r.readerType = utils.ReadData(readDataInstance.read(r.readerTypeLength)).readDotNetBlob()
r.version = readDataInstance.readDword()
r.resourceCount = readDataInstance.readDword()
r.resourceTypeCount = readDataInstance.readDword()
r.resourceTypes = []
for i in xrange(r.resourceTypeCount):
r.resourceTypes.append(readDataInstance.readDotNetBlob())
# aligned to 8 bytes
readDataInstance.skipBytes(8 - readDataInstance.tell() & 0x7)
r.resourceHashes = []
for i in xrange(r.resourceCount):
r.resourceHashes.append(readDataInstance.readDword())
r.resourceNameOffsets = []
for i in xrange(r.resourceCount):
r.resourceNameOffsets.append(readDataInstance.readDword())
r.dataSectionOffset = readDataInstance.readDword()
r.resourceNames = []
r.resourceOffsets = []
base = readDataInstance.tell()
for i in xrange(r.resourceCount):
readDataInstance.setOffset(base + r.resourceNameOffsets[i])
r.resourceNames.append(readDataInstance.readDotNetUnicodeString())
r.resourceOffsets.append(readDataInstance.readDword())
r.info = {}
for i in xrange(r.resourceCount):
readDataInstance.setOffset(r.dataSectionOffset + r.resourceOffsets[i])
r.info[i] = readDataInstance.read(len(readDataInstance))
r.info[r.resourceNames[i]] = r.info[i]
return r
|
Returns a new L{NetResources} object.
@type readDataInstance: L{ReadData}
@param readDataInstance: A L{ReadData} object with data to be parsed as a L{NetResources} object.
@rtype: L{NetResources}
@return: A new L{NetResources} object.
|
entailment
|
def verify_and_fill_address_paths_from_bip32key(address_paths, master_key, network):
'''
Take address paths and verifies their accuracy client-side.
Also fills in all the available metadata (WIF, public key, etc)
'''
assert network, network
wallet_obj = Wallet.deserialize(master_key, network=network)
address_paths_cleaned = []
for address_path in address_paths:
path = address_path['path']
input_address = address_path['address']
child_wallet = wallet_obj.get_child_for_path(path)
if child_wallet.to_address() != input_address:
err_msg = 'Client Side Verification Fail for %s on %s:\n%s != %s' % (
path,
master_key,
child_wallet.to_address(),
input_address,
)
raise Exception(err_msg)
pubkeyhex = child_wallet.get_public_key_hex(compressed=True)
server_pubkeyhex = address_path.get('public')
if server_pubkeyhex and server_pubkeyhex != pubkeyhex:
err_msg = 'Client Side Verification Fail for %s on %s:\n%s != %s' % (
path,
master_key,
pubkeyhex,
server_pubkeyhex,
)
raise Exception(err_msg)
address_path_cleaned = {
'pub_address': input_address,
'path': path,
'pubkeyhex': pubkeyhex,
}
if child_wallet.private_key:
privkeyhex = child_wallet.get_private_key_hex()
address_path_cleaned['wif'] = child_wallet.export_to_wif()
address_path_cleaned['privkeyhex'] = privkeyhex
address_paths_cleaned.append(address_path_cleaned)
return address_paths_cleaned
|
Take address paths and verifies their accuracy client-side.
Also fills in all the available metadata (WIF, public key, etc)
|
entailment
|
def solution_path(self):
'''Follows the solution path of the generalized lasso to find the best lambda value.'''
lambda_grid = np.exp(np.linspace(np.log(self.max_lambda), np.log(self.min_lambda), self.lambda_bins))
aic_trace = np.zeros((len(self.bins),lambda_grid.shape[0])) # The AIC score for each lambda value
aicc_trace = np.zeros((len(self.bins),lambda_grid.shape[0])) # The AICc score for each lambda value (correcting for finite sample size)
bic_trace = np.zeros((len(self.bins),lambda_grid.shape[0])) # The BIC score for each lambda value
dof_trace = np.zeros((len(self.bins),lambda_grid.shape[0])) # The degrees of freedom of each final solution
log_likelihood_trace = np.zeros((len(self.bins),lambda_grid.shape[0]))
bic_best_idx = [None for _ in self.bins]
aic_best_idx = [None for _ in self.bins]
aicc_best_idx = [None for _ in self.bins]
bic_best_betas = [None for _ in self.bins]
aic_best_betas = [None for _ in self.bins]
aicc_best_betas = [None for _ in self.bins]
if self.k == 0 and self.trails is not None:
betas = [np.zeros(self.num_nodes, dtype='double') for _ in self.bins]
zs = [np.zeros(self.breakpoints[-1], dtype='double') for _ in self.bins]
us = [np.zeros(self.breakpoints[-1], dtype='double') for _ in self.bins]
else:
betas = [np.zeros(self.num_nodes, dtype='double') for _ in self.bins]
us = [np.zeros(self.Dk.shape[0], dtype='double') for _ in self.bins]
for i, _lambda in enumerate(lambda_grid):
if self.verbose:
print('\n#{0} Lambda = {1}'.format(i, _lambda))
# Run the graph fused lasso over each bin with the current lambda value
initial_values = (betas, zs, us) if self.k == 0 and self.trails is not None else (betas, us)
self.run(_lambda, initial_values=initial_values)
if self.verbose > 1:
print('\tCalculating degrees of freedom and information criteria')
for b, beta in enumerate(betas):
if self.bins_allowed is not None and b not in self.bins_allowed:
continue
# Count the number of free parameters in the grid (dof)
# TODO: this is not really the true DoF, since a change in a higher node multiplies
# the DoF in the lower nodes
# dof_trace[b,i] = len(self.calc_plateaus(beta))
dof_vals = self.Dk_minus_one.dot(beta) if self.k > 0 else beta
plateaus = calc_plateaus(dof_vals, self.edges, rel_tol=0.01) if (self.k % 2) == 0 else nearly_unique(dof_vals, rel_tol=0.03)
#plateaus = calc_plateaus(dof_vals, self.edges, rel_tol=1e-5) if (self.k % 2) == 0 else nearly_unique(dof_vals, rel_tol=1e-5)
dof_trace[b,i] = max(1,len(plateaus)) #* (k+1)
# Get the negative log-likelihood
log_likelihood_trace[b,i] = self.data_log_likelihood(self.bins[b][-1], self.bins[b][-2], beta)
# Calculate AIC = 2k - 2ln(L)
aic_trace[b,i] = 2. * dof_trace[b,i] - 2. * log_likelihood_trace[b,i]
# Calculate AICc = AIC + 2k * (k+1) / (n - k - 1)
aicc_trace[b,i] = aic_trace[b,i] + 2 * dof_trace[b,i] * (dof_trace[b,i]+1) / (self.num_nodes - dof_trace[b,i] - 1.)
# Calculate BIC = -2ln(L) + k * (ln(n) - ln(2pi))
bic_trace[b,i] = -2 * log_likelihood_trace[b,i] + dof_trace[b,i] * (np.log(self.num_nodes) - np.log(2 * np.pi))
# Track the best model thus far
if aic_best_idx[b] is None or aic_trace[b,i] < aic_trace[b,aic_best_idx[b]]:
aic_best_idx[b] = i
aic_best_betas[b] = np.array(beta)
# Track the best model thus far
if aicc_best_idx[b] is None or aicc_trace[b,i] < aicc_trace[b,aicc_best_idx[b]]:
aicc_best_idx[b] = i
aicc_best_betas[b] = np.array(beta)
# Track the best model thus far
if bic_best_idx[b] is None or bic_trace[b,i] < bic_trace[b,bic_best_idx[b]]:
bic_best_idx[b] = i
bic_best_betas[b] = np.array(beta)
if self.verbose and self.bins_allowed is not None:
print('\tBin {0} Log-Likelihood: {1} DoF: {2} AIC: {3} AICc: {4} BIC: {5}'.format(b, log_likelihood_trace[b,i], dof_trace[b,i], aic_trace[b,i], aicc_trace[b,i], bic_trace[b,i]))
if self.verbose and self.bins_allowed is None:
print('Overall Log-Likelihood: {0} DoF: {1} AIC: {2} AICc: {3} BIC: {4}'.format(log_likelihood_trace[:,i].sum(), dof_trace[:,i].sum(), aic_trace[:,i].sum(), aicc_trace[:,i].sum(), bic_trace[:,i].sum()))
if self.verbose:
print('')
print('Best settings per bin:')
for b, (aic_idx, aicc_idx, bic_idx) in enumerate(zip(aic_best_idx, aicc_best_idx, bic_best_idx)):
if self.bins_allowed is not None and b not in self.bins_allowed:
continue
left, mid, right, trials, successes = self.bins[b]
print('\tBin #{0} ([{1}, {2}], split={3}) lambda: AIC={4:.2f} AICC={5:.2f} BIC={6:.2f} DoF: AIC={7:.0f} AICC={8:.0f} BIC={9:.0f}'.format(
b, left, right, mid,
lambda_grid[aic_idx], lambda_grid[aicc_idx], lambda_grid[bic_idx],
dof_trace[b,aic_idx], dof_trace[b,aicc_idx], dof_trace[b,bic_idx]))
print('')
if self.bins_allowed is None:
if self.verbose:
print('Creating densities from betas...')
bic_density = self.density_from_betas(bic_best_betas)
aic_density = self.density_from_betas(aic_best_betas)
aicc_density = self.density_from_betas(aicc_best_betas)
self.map_density = bic_density
else:
aic_density, aicc_density, bic_density = None, None, None
self.map_betas = bic_best_betas
return {'aic': aic_trace,
'aicc': aicc_trace,
'bic': bic_trace,
'dof': dof_trace,
'loglikelihood': log_likelihood_trace,
'lambdas': lambda_grid,
'aic_betas': aic_best_betas,
'aicc_betas': aicc_best_betas,
'bic_betas': bic_best_betas,
'aic_best_idx': aic_best_idx,
'aicc_best_idx': aicc_best_idx,
'bic_best_idx': bic_best_idx,
'aic_densities': aic_density.reshape(self.data_shape),
'aicc_densities': aicc_density.reshape(self.data_shape),
'bic_densities': bic_density.reshape(self.data_shape)}
|
Follows the solution path of the generalized lasso to find the best lambda value.
|
entailment
|
def run(self, lam, initial_values=None):
'''Run the graph-fused logit lasso with a fixed lambda penalty.'''
if initial_values is not None:
if self.k == 0 and self.trails is not None:
betas, zs, us = initial_values
else:
betas, us = initial_values
else:
if self.k == 0 and self.trails is not None:
betas = [np.zeros(self.num_nodes, dtype='double') for _ in self.bins]
zs = [np.zeros(self.breakpoints[-1], dtype='double') for _ in self.bins]
us = [np.zeros(self.breakpoints[-1], dtype='double') for _ in self.bins]
else:
betas = [np.zeros(self.num_nodes, dtype='double') for _ in self.bins]
us = [np.zeros(self.Dk.shape[0], dtype='double') for _ in self.bins]
for j, (left, mid, right, trials, successes) in enumerate(self.bins):
if self.bins_allowed is not None and j not in self.bins_allowed:
continue
if self.verbose > 2:
print('\tBin #{0} [{1},{2},{3}]'.format(j, left, mid, right))
# if self.verbose > 3:
# print 'Trials:\n{0}'.format(pretty_str(trials))
# print ''
# print 'Successes:\n{0}'.format(pretty_str(successes))
beta = betas[j]
u = us[j]
if self.k == 0 and self.trails is not None:
z = zs[j]
# Run the graph-fused lasso algorithm
self.graphfl(len(beta), trials, successes,
self.ntrails, self.trails, self.breakpoints,
lam, self.alpha, self.inflate,
self.max_steps, self.converge,
beta, z, u)
else:
# Run the graph trend filtering algorithm
self.graphtf(len(beta), trials, successes, lam,
self.Dk.shape[0], self.Dk.shape[1], self.Dk.nnz,
self.Dk.row.astype('int32'), self.Dk.col.astype('int32'), self.Dk.data.astype('double'),
self.max_steps, self.converge,
beta, u)
beta = np.clip(beta, 1e-12, 1-1e-12) # numerical stability
betas[j] = -np.log(1./beta - 1.) # convert back to natural parameter form
return (betas, zs, us) if self.k == 0 and self.trails is not None else (betas, us)
|
Run the graph-fused logit lasso with a fixed lambda penalty.
|
entailment
|
def data_log_likelihood(self, successes, trials, beta):
'''Calculates the log-likelihood of a Polya tree bin given the beta values.'''
return binom.logpmf(successes, trials, 1.0 / (1 + np.exp(-beta))).sum()
|
Calculates the log-likelihood of a Polya tree bin given the beta values.
|
entailment
|
def spawn_worker(params):
"""
This method has to be module level function
:type params: Params
"""
setup_logging(params)
log.info("Adding worker: idx=%s\tconcurrency=%s\tresults=%s", params.worker_index, params.concurrency,
params.report)
worker = Worker(params)
worker.start()
worker.join()
|
This method has to be module level function
:type params: Params
|
entailment
|
def run_nose(self, params):
"""
:type params: Params
"""
thread.set_index(params.thread_index)
log.debug("[%s] Starting nose iterations: %s", params.worker_index, params)
assert isinstance(params.tests, list)
# argv.extend(['--with-apiritif', '--nocapture', '--exe', '--nologcapture'])
end_time = self.params.ramp_up + self.params.hold_for
end_time += time.time() if end_time else 0
time.sleep(params.delay)
plugin = ApiritifPlugin(self._writer)
self._writer.concurrency += 1
config = Config(env=os.environ, files=all_config_files(), plugins=DefaultPluginManager())
config.plugins.addPlugins(extraplugins=[plugin])
config.testNames = params.tests
config.verbosity = 3 if params.verbose else 0
if params.verbose:
config.stream = open(os.devnull, "w") # FIXME: use "with", allow writing to file/log
iteration = 0
try:
while True:
log.debug("Starting iteration:: index=%d,start_time=%.3f", iteration, time.time())
thread.set_iteration(iteration)
ApiritifTestProgram(config=config)
log.debug("Finishing iteration:: index=%d,end_time=%.3f", iteration, time.time())
iteration += 1
# reasons to stop
if plugin.stop_reason:
log.debug("[%s] finished prematurely: %s", params.worker_index, plugin.stop_reason)
elif iteration >= params.iterations:
log.debug("[%s] iteration limit reached: %s", params.worker_index, params.iterations)
elif 0 < end_time <= time.time():
log.debug("[%s] duration limit reached: %s", params.worker_index, params.hold_for)
else:
continue # continue if no one is faced
break
finally:
self._writer.concurrency -= 1
if params.verbose:
config.stream.close()
|
:type params: Params
|
entailment
|
def _write_single_sample(self, sample):
"""
:type sample: Sample
"""
bytes = sample.extras.get("responseHeadersSize", 0) + 2 + sample.extras.get("responseBodySize", 0)
message = sample.error_msg
if not message:
message = sample.extras.get("responseMessage")
if not message:
for sample in sample.subsamples:
if sample.error_msg:
message = sample.error_msg
break
elif sample.extras.get("responseMessage"):
message = sample.extras.get("responseMessage")
break
self.writer.writerow({
"timeStamp": int(1000 * sample.start_time),
"elapsed": int(1000 * sample.duration),
"Latency": 0, # TODO
"label": sample.test_case,
"bytes": bytes,
"responseCode": sample.extras.get("responseCode"),
"responseMessage": message,
"allThreads": self.concurrency, # TODO: there will be a problem aggregating concurrency for rare samples
"success": "true" if sample.status == "PASSED" else "false",
})
self.out_stream.flush()
|
:type sample: Sample
|
entailment
|
def addError(self, test, error):
"""
when a test raises an uncaught exception
:param test:
:param error:
:return:
"""
# test_dict will be None if startTest wasn't called (i.e. exception in setUp/setUpClass)
# status=BROKEN
if self.current_sample is not None:
assertion_name = error[0].__name__
error_msg = str(error[1]).split('\n')[0]
error_trace = self._get_trace(error)
self.current_sample.add_assertion(assertion_name)
self.current_sample.set_assertion_failed(assertion_name, error_msg, error_trace)
|
when a test raises an uncaught exception
:param test:
:param error:
:return:
|
entailment
|
def parse(readDataInstance):
"""
Returns a L{Directory}-like object.
@type readDataInstance: L{ReadData}
@param readDataInstance: L{ReadData} object to read from.
@rtype: L{Directory}
@return: L{Directory} object.
"""
d = Directory()
d.rva.value = readDataInstance.readDword()
d.size.value = readDataInstance.readDword()
return d
|
Returns a L{Directory}-like object.
@type readDataInstance: L{ReadData}
@param readDataInstance: L{ReadData} object to read from.
@rtype: L{Directory}
@return: L{Directory} object.
|
entailment
|
def parse(readDataInstance):
"""Returns a L{DataDirectory}-like object.
@type readDataInstance: L{ReadData}
@param readDataInstance: L{ReadData} object to read from.
@rtype: L{DataDirectory}
@return: The L{DataDirectory} object containing L{consts.IMAGE_NUMBEROF_DIRECTORY_ENTRIES} L{Directory} objects.
@raise DirectoryEntriesLengthException: The L{ReadData} instance has an incorrect number of L{Directory} objects.
"""
if len(readDataInstance) == consts.IMAGE_NUMBEROF_DIRECTORY_ENTRIES * 8:
newDataDirectory = DataDirectory()
for i in range(consts.IMAGE_NUMBEROF_DIRECTORY_ENTRIES):
newDataDirectory[i].name.value = dirs[i]
newDataDirectory[i].rva.value = readDataInstance.readDword()
newDataDirectory[i].size.value = readDataInstance.readDword()
else:
raise excep.DirectoryEntriesLengthException("The IMAGE_NUMBEROF_DIRECTORY_ENTRIES does not match with the length of the passed argument.")
return newDataDirectory
|
Returns a L{DataDirectory}-like object.
@type readDataInstance: L{ReadData}
@param readDataInstance: L{ReadData} object to read from.
@rtype: L{DataDirectory}
@return: The L{DataDirectory} object containing L{consts.IMAGE_NUMBEROF_DIRECTORY_ENTRIES} L{Directory} objects.
@raise DirectoryEntriesLengthException: The L{ReadData} instance has an incorrect number of L{Directory} objects.
|
entailment
|
def main():
"""Compute Pgens from a file and output to another file."""
parser = OptionParser(conflict_handler="resolve")
parser.add_option('--humanTRA', '--human_T_alpha', action='store_true', dest='humanTRA', default=False, help='use default human TRA model (T cell alpha chain)')
parser.add_option('--humanTRB', '--human_T_beta', action='store_true', dest='humanTRB', default=False, help='use default human TRB model (T cell beta chain)')
parser.add_option('--mouseTRB', '--mouse_T_beta', action='store_true', dest='mouseTRB', default=False, help='use default mouse TRB model (T cell beta chain)')
parser.add_option('--humanIGH', '--human_B_heavy', action='store_true', dest='humanIGH', default=False, help='use default human IGH model (B cell heavy chain)')
parser.add_option('--set_custom_model_VDJ', dest='vdj_model_folder', metavar='PATH/TO/FOLDER/', help='specify PATH/TO/FOLDER/ for a custom VDJ generative model')
parser.add_option('--set_custom_model_VJ', dest='vj_model_folder', metavar='PATH/TO/FOLDER/', help='specify PATH/TO/FOLDER/ for a custom VJ generative model')
parser.add_option('-i', '--infile', dest = 'infile_name',metavar='PATH/TO/FILE', help='read in CDR3 sequences (and optionally V/J masks) from PATH/TO/FILE')
parser.add_option('-o', '--outfile', dest = 'outfile_name', metavar='PATH/TO/FILE', help='write CDR3 sequences and pgens to PATH/TO/FILE')
parser.add_option('--seq_in', '--seq_index', type='int', metavar='INDEX', dest='seq_in_index', default = 0, help='specifies sequences to be read in are in column INDEX. Default is index 0 (the first column).')
parser.add_option('--v_in', '--v_mask_index', type='int', metavar='INDEX', dest='V_mask_index', help='specifies V_masks are found in column INDEX in the input file. Default is no V mask.')
parser.add_option('--j_in', '--j_mask_index', type='int', metavar='INDEX', dest='J_mask_index', help='specifies J_masks are found in column INDEX in the input file. Default is no J mask.')
parser.add_option('--v_mask', type='string', dest='V_mask', help='specify V usage to condition Pgen on for seqs read in as arguments.')
parser.add_option('--j_mask', type='string', dest='J_mask', help='specify J usage to condition Pgen on for seqs read in as arguments.')
parser.add_option('-m', '--max_number_of_seqs', type='int',metavar='N', dest='max_number_of_seqs', help='compute Pgens for at most N sequences.')
parser.add_option('--lines_to_skip', type='int',metavar='N', dest='lines_to_skip', default = 0, help='skip the first N lines of the file. Default is 0.')
parser.add_option('-a', '--alphabet_filename', dest='alphabet_filename', metavar='PATH/TO/FILE', help="specify PATH/TO/FILE defining a custom 'amino acid' alphabet. Default is no custom alphabet.")
parser.add_option('--seq_type_out', type='choice',metavar='SEQ_TYPE', dest='seq_type_out', choices=['all', 'ntseq', 'nucleotide', 'aaseq', 'amino_acid'], help="if read in sequences are ntseqs, declare what type of sequence to compute pgen for. Default is all. Choices: 'all', 'ntseq', 'nucleotide', 'aaseq', 'amino_acid'")
parser.add_option('--skip_off','--skip_empty_off', action='store_true', dest = 'skip_empty', default=True, help='stop skipping empty or blank sequences/lines (if for example you want to keep line index fidelity between the infile and outfile).')
parser.add_option('--display_off', action='store_false', dest='display_seqs', default=True, help='turn the sequence display off (only applies in write-to-file mode). Default is on.')
parser.add_option('--num_lines_for_display', type='int', metavar='N', default = 50, dest='num_lines_for_display', help='N lines of the output file are displayed when sequence display is on. Also used to determine the number of sequences to average over for speed and time estimates.')
parser.add_option('--time_updates_off', action='store_false', dest='time_updates', default=True, help='turn time updates off (only applies when sequence display is disabled).')
parser.add_option('--seqs_per_time_update', type='float', metavar='N', default = 100, dest='seqs_per_time_update', help='specify the number of sequences between time updates. Default is 1e5.')
parser.add_option('-d', '--delimiter', type='choice', dest='delimiter', choices=['tab', 'space', ',', ';', ':'], help="declare infile delimiter. Default is tab for .tsv input files, comma for .csv files, and any whitespace for all others. Choices: 'tab', 'space', ',', ';', ':'")
parser.add_option('--raw_delimiter', type='str', dest='delimiter', help="declare infile delimiter as a raw string.")
parser.add_option('--delimiter_out', type='choice', dest='delimiter_out', choices=['tab', 'space', ',', ';', ':'], help="declare outfile delimiter. Default is tab for .tsv output files, comma for .csv files, and the infile delimiter for all others. Choices: 'tab', 'space', ',', ';', ':'")
parser.add_option('--raw_delimiter_out', type='str', dest='delimiter_out', help="declare for the delimiter outfile as a raw string.")
parser.add_option('--gene_mask_delimiter', type='choice', dest='gene_mask_delimiter', choices=['tab', 'space', ',', ';', ':'], help="declare gene mask delimiter. Default comma unless infile delimiter is comma, then default is a semicolon. Choices: 'tab', 'space', ',', ';', ':'")
parser.add_option('--raw_gene_mask_delimiter', type='str', dest='gene_mask_delimiter', help="declare delimiter of gene masks as a raw string.")
parser.add_option('--comment_delimiter', type='str', dest='comment_delimiter', help="character or string to indicate comment or header lines to skip.")
(options, args) = parser.parse_args()
#Check that the model is specified properly
main_folder = os.path.dirname(__file__)
default_models = {}
default_models['humanTRA'] = [os.path.join(main_folder, 'default_models', 'human_T_alpha'), 'VJ']
default_models['humanTRB'] = [os.path.join(main_folder, 'default_models', 'human_T_beta'), 'VDJ']
default_models['mouseTRB'] = [os.path.join(main_folder, 'default_models', 'mouse_T_beta'), 'VDJ']
default_models['humanIGH'] = [os.path.join(main_folder, 'default_models', 'human_B_heavy'), 'VDJ']
num_models_specified = sum([1 for x in default_models.keys() + ['vj_model_folder', 'vdj_model_folder'] if getattr(options, x)])
if num_models_specified == 1: #exactly one model specified
try:
d_model = [x for x in default_models.keys() if getattr(options, x)][0]
model_folder = default_models[d_model][0]
recomb_type = default_models[d_model][1]
except IndexError:
if options.vdj_model_folder: #custom VDJ model specified
model_folder = options.vdj_model_folder
recomb_type = 'VDJ'
elif options.vj_model_folder: #custom VJ model specified
model_folder = options.vj_model_folder
recomb_type = 'VJ'
elif num_models_specified == 0:
print 'Need to indicate generative model.'
print 'Exiting...'
return -1
elif num_models_specified > 1:
print 'Only specify one model'
print 'Exiting...'
return -1
#Check that all model and genomic files exist in the indicated model folder
if not os.path.isdir(model_folder):
print 'Check pathing... cannot find the model folder: ' + model_folder
print 'Exiting...'
return -1
params_file_name = os.path.join(model_folder,'model_params.txt')
marginals_file_name = os.path.join(model_folder,'model_marginals.txt')
V_anchor_pos_file = os.path.join(model_folder,'V_gene_CDR3_anchors.csv')
J_anchor_pos_file = os.path.join(model_folder,'J_gene_CDR3_anchors.csv')
for x in [params_file_name, marginals_file_name, V_anchor_pos_file, J_anchor_pos_file]:
if not os.path.isfile(x):
print 'Cannot find: ' + x
print 'Please check the files (and naming conventions) in the model folder ' + model_folder
print 'Exiting...'
return -1
alphabet_filename = options.alphabet_filename #used if a custom alphabet is to be specified
if alphabet_filename is not None:
if not os.path.isfile(alphabet_filename):
print 'Cannot find custom alphabet file: ' + infile_name
print 'Exiting...'
return -1
#Load up model based on recomb_type
#VDJ recomb case --- used for TCRB and IGH
if recomb_type == 'VDJ':
genomic_data = load_model.GenomicDataVDJ()
genomic_data.load_igor_genomic_data(params_file_name, V_anchor_pos_file, J_anchor_pos_file)
generative_model = load_model.GenerativeModelVDJ()
generative_model.load_and_process_igor_model(marginals_file_name)
pgen_model = generation_probability.GenerationProbabilityVDJ(generative_model, genomic_data, alphabet_filename)
#VJ recomb case --- used for TCRA and light chain
elif recomb_type == 'VJ':
genomic_data = load_model.GenomicDataVJ()
genomic_data.load_igor_genomic_data(params_file_name, V_anchor_pos_file, J_anchor_pos_file)
generative_model = load_model.GenerativeModelVJ()
generative_model.load_and_process_igor_model(marginals_file_name)
pgen_model = generation_probability.GenerationProbabilityVJ(generative_model, genomic_data, alphabet_filename)
aa_alphabet = ''.join(pgen_model.codons_dict.keys())
if options.infile_name is not None:
infile_name = options.infile_name
if not os.path.isfile(infile_name):
print 'Cannot find input file: ' + infile_name
print 'Exiting...'
return -1
if options.outfile_name is not None:
outfile_name = options.outfile_name
if os.path.isfile(outfile_name):
if not raw_input(outfile_name + ' already exists. Overwrite (y/n)? ').strip().lower() in ['y', 'yes']:
print 'Exiting...'
return -1
#Parse delimiter
delimiter = options.delimiter
if delimiter is None: #Default case
if options.infile_name is None:
delimiter = '\t'
elif infile_name.endswith('.tsv'): #parse TAB separated value file
delimiter = '\t'
elif infile_name.endswith('.csv'): #parse COMMA separated value file
delimiter = ','
else:
try:
delimiter = {'tab': '\t', 'space': ' ', ',': ',', ';': ';', ':': ':'}[delimiter]
except KeyError:
pass #Other string passed as the delimiter.
#Parse delimiter_out
delimiter_out = options.delimiter_out
if delimiter_out is None: #Default case
if delimiter is None:
delimiter_out = '\t'
else:
delimiter_out = delimiter
if options.outfile_name is None:
pass
elif outfile_name.endswith('.tsv'): #output TAB separated value file
delimiter_out = '\t'
elif outfile_name.endswith('.csv'): #output COMMA separated value file
delimiter_out = ','
else:
try:
delimiter_out = {'tab': '\t', 'space': ' ', ',': ',', ';': ';', ':': ':'}[delimiter_out]
except KeyError:
pass #Other string passed as the delimiter.
#Parse gene_delimiter
gene_mask_delimiter = options.gene_mask_delimiter
if gene_mask_delimiter is None: #Default case
gene_mask_delimiter = ','
if delimiter == ',':
gene_mask_delimiter = ';'
else:
try:
gene_mask_delimiter = {'tab': '\t', 'space': ' ', ',': ',', ';': ';', ':': ':'}[gene_mask_delimiter]
except KeyError:
pass #Other string passed as the delimiter.
#More options
time_updates = options.time_updates
display_seqs = options.display_seqs
num_lines_for_display = options.num_lines_for_display
seq_in_index = options.seq_in_index #where in the line the sequence is after line.split(delimiter)
lines_to_skip = options.lines_to_skip #one method of skipping header
comment_delimiter = options.comment_delimiter #another method of skipping header
seqs_per_time_update = options.seqs_per_time_update
max_number_of_seqs = options.max_number_of_seqs
V_mask_index = options.V_mask_index #Default is not conditioning on V identity
J_mask_index = options.J_mask_index #Default is not conditioning on J identity
skip_empty = options.skip_empty
seq_type_out = options.seq_type_out #type of pgens to be computed. Can be ntseq, aaseq, or both
if seq_type_out is not None:
seq_type_out = {'all': None, 'ntseq': 'ntseq', 'nucleotide': 'ntseq', 'aaseq': 'aaseq', 'amino_acid': 'aaseq'}[seq_type_out]
if options.infile_name is None: #No infile specified -- args should be the input seqs
print_warnings = True
seqs = args
seq_types = [determine_seq_type(seq, aa_alphabet) for seq in seqs]
unrecognized_seqs = [seq for i, seq in enumerate(seqs) if seq_types[i] is None]
if len(unrecognized_seqs) > 0 and print_warnings:
print 'The following sequences/arguments were not recognized: ' + ', '.join(unrecognized_seqs)
seqs = [seq for i, seq in enumerate(seqs) if seq_types[i] is not None]
seq_types = [seq_type for seq_type in seq_types if seq_type is not None]
#Format V and J masks -- uniform for all argument input sequences
try:
V_mask = options.V_mask.split(',')
unrecognized_v_genes = [v for v in V_mask if v not in pgen_model.V_mask_mapping.keys()]
V_mask = [v for v in V_mask if v in pgen_model.V_mask_mapping.keys()]
if len(unrecognized_v_genes) > 0:
print 'These V genes/alleles are not recognized: ' + ', '.join(unrecognized_v_genes)
if len(V_mask) == 0:
print 'No recognized V genes/alleles in the provided V_mask. Continuing without conditioning on V usage.'
V_mask = None
except AttributeError:
V_mask = options.V_mask #Default is None, i.e. not conditioning on V identity
try:
J_mask = options.J_mask.split(',')
unrecognized_j_genes = [j for j in J_mask if j not in pgen_model.J_mask_mapping.keys()]
J_mask = [j for j in J_mask if j in pgen_model.J_mask_mapping.keys()]
if len(unrecognized_j_genes) > 0:
print 'These J genes/alleles are not recognized: ' + ', '.join(unrecognized_j_genes)
if len(J_mask) == 0:
print 'No recognized J genes/alleles in the provided J_mask. Continuing without conditioning on J usage.'
J_mask = None
except AttributeError:
J_mask = options.J_mask #Default is None, i.e. not conditioning on J identity
print ''
start_time = time.time()
for seq, seq_type in zip(seqs, seq_types):
if seq_type == 'aaseq':
c_pgen = pgen_model.compute_aa_CDR3_pgen(seq, V_mask, J_mask, print_warnings)
print 'Pgen of the amino acid sequence ' + seq + ': ' + str(c_pgen)
print ''
elif seq_type == 'regex':
c_pgen = pgen_model.compute_regex_CDR3_template_pgen(seq, V_mask, J_mask, print_warnings)
print 'Pgen of the regular expression sequence ' + seq + ': ' + str(c_pgen)
print ''
elif seq_type == 'ntseq':
if seq_type_out is None or seq_type_out == 'ntseq':
c_pgen_nt = pgen_model.compute_nt_CDR3_pgen(seq, V_mask, J_mask, print_warnings)
print 'Pgen of the nucleotide sequence ' + seq + ': ' + str(c_pgen_nt)
if seq_type_out is None or seq_type_out == 'aaseq':
c_pgen_aa = pgen_model.compute_aa_CDR3_pgen(nt2aa(seq), V_mask, J_mask, print_warnings)
print 'Pgen of the amino acid sequence nt2aa(' + seq + ') = ' + nt2aa(seq) + ': ' + str(c_pgen_aa)
print ''
c_time = time.time() - start_time
if c_time > 86400: #more than a day
c_time_str = '%d days, %d hours, %d minutes, and %.2f seconds.'%(int(c_time)/86400, (int(c_time)/3600)%24, (int(c_time)/60)%60, c_time%60)
elif c_time > 3600: #more than an hr
c_time_str = '%d hours, %d minutes, and %.2f seconds.'%((int(c_time)/3600)%24, (int(c_time)/60)%60, c_time%60)
elif c_time > 60: #more than a min
c_time_str = '%d minutes and %.2f seconds.'%((int(c_time)/60)%60, c_time%60)
else:
c_time_str = '%.2f seconds.'%(c_time)
print 'Completed pgen computation in: ' + c_time_str
else: #Read sequences in from file
print_warnings = False #Most cases of reading in from file should have warnings disabled
seqs = []
seq_types = []
V_usage_masks = []
J_usage_masks = []
infile = open(infile_name, 'r')
for i, line in enumerate(infile):
if comment_delimiter is not None: #Default case -- no comments/header delimiter
if line.startswith(comment_delimiter): #allow comments
continue
if i < lines_to_skip:
continue
if delimiter is None: #Default delimiter is any whitespace
split_line = line.split()
else:
split_line = line.split(delimiter)
#Find the seq
try:
seq = split_line[seq_in_index].strip()
if len(seq.strip()) == 0:
if skip_empty:
continue
else:
seqs.append(seq) #keep the blank seq as a placeholder
seq_types.append('aaseq')
else:
seqs.append(seq)
seq_types.append(determine_seq_type(seq, aa_alphabet))
except IndexError: #no index match for seq
if skip_empty and len(line.strip()) == 0:
continue
print 'seq_in_index is out of range'
print 'Exiting...'
infile.close()
return -1
#Find and format V_usage_mask
if V_mask_index is None:
V_usage_masks.append(None) #default mask
else:
try:
V_usage_mask = split_line[V_mask_index].strip().split(gene_mask_delimiter)
#check that all V gene/allele names are recognized
if all([v in pgen_model.V_mask_mapping for v in V_usage_mask]):
V_usage_masks.append(V_usage_mask)
else:
print str(V_usage_mask) + " is not a usable V_usage_mask composed exclusively of recognized V gene/allele names"
print 'Unrecognized V gene/allele names: ' + ', '.join([v for v in V_usage_mask if not v in pgen_model.V_mask_mapping.keys()])
print 'Exiting...'
infile.close()
return -1
except IndexError: #no index match for V_mask_index
print 'V_mask_index is out of range'
print 'Exiting...'
infile.close()
return -1
#Find and format J_usage_mask
if J_mask_index is None:
J_usage_masks.append(None) #default mask
else:
try:
J_usage_mask = split_line[J_mask_index].strip().split(gene_mask_delimiter)
#check that all V gene/allele names are recognized
if all([j in pgen_model.J_mask_mapping for j in J_usage_mask]):
J_usage_masks.append(J_usage_mask)
else:
print str(J_usage_mask) + " is not a usable J_usage_mask composed exclusively of recognized J gene/allele names"
print 'Unrecognized J gene/allele names: ' + ', '.join([j for j in J_usage_mask if not j in pgen_model.J_mask_mapping.keys()])
print 'Exiting...'
infile.close()
return -1
except IndexError: #no index match for J_mask_index
print 'J_mask_index is out of range'
print 'Exiting...'
infile.close()
return -1
if max_number_of_seqs is not None:
if len(seqs) >= max_number_of_seqs:
break
unrecognized_seqs = [seq for i, seq in enumerate(seqs) if seq_types[i] is None]
if len(unrecognized_seqs) > 0 and len(unrecognized_seqs) < len(seqs):
if print_warnings or options.outfile_name is not None:
print 'Some strings read in were not parsed as sequences -- they will be omitted.'
print 'Examples of improperly read strings: '
for unrecognized_seq in unrecognized_seqs[:10]:
print unrecognized_seq
seqs = [seq for i, seq in enumerate(seqs) if seq_types[i] is not None]
V_usage_masks = [V_usage_mask for i, V_usage_mask in enumerate(V_usage_masks) if seq_types[i] is not None]
seq_types = [seq_type for seq_type in seq_types if seq_type is not None]
elif len(unrecognized_seqs) > 0 and len(unrecognized_seqs) == len(seqs):
print 'None of the read in strings were parsed as sequences. Check input file.'
print 'Examples of improperly read strings:'
for unrecognized_seq in unrecognized_seqs[:10]:
print unrecognized_seq
print 'Exiting...'
return -1
infile.close()
if options.outfile_name is not None: #OUTFILE SPECIFIED, allow printed info/display
print 'Successfully read in and formatted ' + str(len(seqs)) + ' sequences and any V or J usages.'
if display_seqs:
sys.stdout.write('\r'+'Continuing to Pgen computation in 3... ')
sys.stdout.flush()
time.sleep(0.4)
sys.stdout.write('\r'+'Continuing to Pgen computation in 2... ')
sys.stdout.flush()
time.sleep(0.4)
sys.stdout.write('\r'+'Continuing to Pgen computation in 1... ')
sys.stdout.flush()
time.sleep(0.4)
else:
print 'Continuing to Pgen computation.'
print_warnings = True #Display is off, can print warnings
if display_seqs:
lines_for_display = []
times_for_speed_calc = [time.time()]
outfile = open(outfile_name, 'w')
start_time = time.time()
for i, seq in enumerate(seqs):
if seq_types[i] == 'aaseq':
#Compute Pgen and print out
c_pgen_line = seq + delimiter_out + str(pgen_model.compute_aa_CDR3_pgen(seq, V_usage_masks[i], J_usage_masks[i], print_warnings))
if seq_types[i] == 'regex':
#Compute Pgen and print out
c_pgen_line = seq + delimiter_out + str(pgen_model.compute_regex_CDR3_template_pgen(seq, V_usage_masks[i], J_usage_masks[i], print_warnings))
elif seq_types[i] == 'ntseq':
ntseq = seq
if len(ntseq) % 3 == 0: #inframe sequence
aaseq = nt2aa(ntseq)
#Compute Pgen and print out based on recomb_type and seq_type_out
if seq_type_out is None:
c_pgen_line = ntseq + delimiter_out + str(pgen_model.compute_nt_CDR3_pgen(ntseq, V_usage_masks[i], J_usage_masks[i], print_warnings)) + delimiter_out + aaseq + delimiter_out + str(pgen_model.compute_aa_CDR3_pgen(aaseq, V_usage_masks[i], J_usage_masks[i], print_warnings))
elif seq_type_out == 'ntseq':
c_pgen_line = ntseq + delimiter_out + str(pgen_model.compute_nt_CDR3_pgen(ntseq, V_usage_masks[i], J_usage_masks[i], print_warnings))
elif seq_type_out == 'aaseq':
c_pgen_line = aaseq + delimiter_out + str(pgen_model.compute_aa_CDR3_pgen(aaseq, V_usage_masks[i], J_usage_masks[i], print_warnings))
else: #out of frame sequence -- Pgens are 0 and use 'out_of_frame' for aaseq
if seq_type_out is None:
c_pgen_line = ntseq + delimiter_out + '0' + delimiter_out + 'out_of_frame' + delimiter_out + '0'
elif seq_type_out == 'ntseq':
c_pgen_line = ntseq + delimiter_out + '0'
elif seq_type_out == 'aaseq':
c_pgen_line = 'out_of_frame' + delimiter_out + '0'
outfile.write(c_pgen_line + '\n')
#Print time update
if display_seqs:
cc_time = time.time()
c_time = cc_time - start_time
times_for_speed_calc = [cc_time] + times_for_speed_calc[:num_lines_for_display]
c_avg_speed = (len(times_for_speed_calc)-1)/float(times_for_speed_calc[0] - times_for_speed_calc[-1])
#eta = ((len(seqs) - (i+1))/float(i+1))*c_time
eta = (len(seqs) - (i+1))/c_avg_speed
lines_for_display = [c_pgen_line] + lines_for_display[:num_lines_for_display]
c_time_str = '%s hours, %s minutes, and %s seconds.'%(repr(int(c_time)/3600).rjust(3), repr((int(c_time)/60)%60).rjust(2), repr(int(c_time)%60).rjust(2))
eta_str = '%s hours, %s minutes, and %s seconds.'%(repr(int(eta)/3600).rjust(3), repr((int(eta)/60)%60).rjust(2), repr(int(eta)%60).rjust(2))
time_str = 'Time to compute Pgen on %s seqs: %s \nEst. time for remaining %s seqs: %s'%(repr(i+1).rjust(9), c_time_str, repr(len(seqs) - (i + 1)).rjust(9), eta_str)
speed_str = 'Current Pgen computation speed: %s seqs/min'%(repr(round((len(times_for_speed_calc)-1)*60/float(times_for_speed_calc[0] - times_for_speed_calc[-1]), 2)).rjust(8))
display_str = '\n'.join(lines_for_display[::-1]) + '\n' + '-'*80 + '\n' + time_str + '\n' + speed_str + '\n' + '-'*80
print '\033[2J' + display_str
elif (i+1)%seqs_per_time_update == 0 and time_updates:
c_time = time.time() - start_time
eta = ((len(seqs) - (i+1))/float(i+1))*c_time
if c_time > 86400: #more than a day
c_time_str = '%d days, %d hours, %d minutes, and %.2f seconds.'%(int(c_time)/86400, (int(c_time)/3600)%24, (int(c_time)/60)%60, c_time%60)
elif c_time > 3600: #more than an hr
c_time_str = '%d hours, %d minutes, and %.2f seconds.'%((int(c_time)/3600)%24, (int(c_time)/60)%60, c_time%60)
elif c_time > 60: #more than a min
c_time_str = '%d minutes and %.2f seconds.'%((int(c_time)/60)%60, c_time%60)
else:
c_time_str = '%.2f seconds.'%(c_time)
if eta > 86400: #more than a day
eta_str = '%d days, %d hours, %d minutes, and %.2f seconds.'%(int(eta)/86400, (int(eta)/3600)%24, (int(eta)/60)%60, eta%60)
elif eta > 3600: #more than an hr
eta_str = '%d hours, %d minutes, and %.2f seconds.'%((int(eta)/3600)%24, (int(eta)/60)%60, eta%60)
elif eta > 60: #more than a min
eta_str = '%d minutes and %.2f seconds.'%((int(eta)/60)%60, eta%60)
else:
eta_str = '%.2f seconds.'%(eta)
print 'Pgen computed for %d sequences in: %s Estimated time remaining: %s'%(i+1, c_time_str, eta_str)
c_time = time.time() - start_time
if c_time > 86400: #more than a day
c_time_str = '%d days, %d hours, %d minutes, and %.2f seconds.'%(int(c_time)/86400, (int(c_time)/3600)%24, (int(c_time)/60)%60, c_time%60)
elif c_time > 3600: #more than an hr
c_time_str = '%d hours, %d minutes, and %.2f seconds.'%((int(c_time)/3600)%24, (int(c_time)/60)%60, c_time%60)
elif c_time > 60: #more than a min
c_time_str = '%d minutes and %.2f seconds.'%((int(c_time)/60)%60, c_time%60)
else:
c_time_str = '%.2f seconds.'%(c_time)
print 'Completed Pgen computation for %d sequences: in %s'%(len(seqs), c_time_str)
outfile.close()
else: #NO OUTFILE -- print directly to stdout
start_time = time.time()
for i, seq in enumerate(seqs):
if seq_types[i] == 'aaseq':
#Compute Pgen and print out
c_pgen_line = seq + delimiter_out + str(pgen_model.compute_aa_CDR3_pgen(seq, V_usage_masks[i], J_usage_masks[i], print_warnings))
if seq_types[i] == 'regex':
#Compute Pgen and print out
c_pgen_line = seq + delimiter_out + str(pgen_model.compute_regex_CDR3_template_pgen(seq, V_usage_masks[i], J_usage_masks[i], print_warnings))
elif seq_types[i] == 'ntseq':
ntseq = seq
if len(ntseq) % 3 == 0: #inframe sequence
aaseq = nt2aa(ntseq)
#Compute Pgen and print out based on recomb_type and seq_type_out
if seq_type_out is None:
c_pgen_line = ntseq + delimiter_out + str(pgen_model.compute_nt_CDR3_pgen(ntseq, V_usage_masks[i], J_usage_masks[i], print_warnings)) + delimiter_out + aaseq + delimiter_out + str(pgen_model.compute_aa_CDR3_pgen(aaseq, V_usage_masks[i], J_usage_masks[i], print_warnings))
elif seq_type_out == 'ntseq':
c_pgen_line = ntseq + delimiter_out + str(pgen_model.compute_nt_CDR3_pgen(ntseq, V_usage_masks[i], J_usage_masks[i], print_warnings))
elif seq_type_out == 'aaseq':
c_pgen_line = aaseq + delimiter_out + str(pgen_model.compute_aa_CDR3_pgen(aaseq, V_usage_masks[i], J_usage_masks[i], print_warnings))
else: #out of frame sequence -- Pgens are 0 and use 'out_of_frame' for aaseq
if seq_type_out is None:
c_pgen_line = ntseq + delimiter_out + '0' + delimiter_out + 'out_of_frame' + delimiter_out + '0'
elif seq_type_out == 'ntseq':
c_pgen_line = ntseq + delimiter_out + '0'
elif seq_type_out == 'aaseq':
c_pgen_line = 'out_of_frame' + delimiter_out + '0'
print c_pgen_line
|
Compute Pgens from a file and output to another file.
|
entailment
|
def create_plateaus(data, edges, plateau_size, plateau_vals, plateaus=None):
'''Creates plateaus of constant value in the data.'''
nodes = set(edges.keys())
if plateaus is None:
plateaus = []
for i in range(len(plateau_vals)):
if len(nodes) == 0:
break
node = np.random.choice(list(nodes))
nodes.remove(node)
plateau = [node]
available = set(edges[node]) & nodes
while len(nodes) > 0 and len(available) > 0 and len(plateau) < plateau_size:
node = np.random.choice(list(available))
plateau.append(node)
available |= nodes & set(edges[node])
available.remove(node)
nodes -= set(plateau)
plateaus.append(set(plateau))
for p,v in zip(plateaus, plateau_vals):
data[np.array(list(p), dtype=int)] = v
return plateaus
|
Creates plateaus of constant value in the data.
|
entailment
|
def pretty_str(p, decimal_places=2, print_zero=True, label_columns=False):
'''Pretty-print a matrix or vector.'''
if len(p.shape) == 1:
return vector_str(p, decimal_places, print_zero)
if len(p.shape) == 2:
return matrix_str(p, decimal_places, print_zero, label_columns)
raise Exception('Invalid array with shape {0}'.format(p.shape))
|
Pretty-print a matrix or vector.
|
entailment
|
def matrix_str(p, decimal_places=2, print_zero=True, label_columns=False):
'''Pretty-print the matrix.'''
return '[{0}]'.format("\n ".join([(str(i) if label_columns else '') + vector_str(a, decimal_places, print_zero) for i, a in enumerate(p)]))
|
Pretty-print the matrix.
|
entailment
|
def vector_str(p, decimal_places=2, print_zero=True):
'''Pretty-print the vector values.'''
style = '{0:.' + str(decimal_places) + 'f}'
return '[{0}]'.format(", ".join([' ' if not print_zero and a == 0 else style.format(a) for a in p]))
|
Pretty-print the vector values.
|
entailment
|
def calc_plateaus(beta, edges, rel_tol=1e-4, verbose=0):
'''Calculate the plateaus (degrees of freedom) of a graph of beta values in linear time.'''
if not isinstance(edges, dict):
raise Exception('Edges must be a map from each node to a list of neighbors.')
to_check = deque(range(len(beta)))
check_map = np.zeros(beta.shape, dtype=bool)
check_map[np.isnan(beta)] = True
plateaus = []
if verbose:
print('\tCalculating plateaus...')
if verbose > 1:
print('\tIndices to check {0} {1}'.format(len(to_check), check_map.shape))
# Loop until every beta index has been checked
while to_check:
if verbose > 1:
print('\t\tPlateau #{0}'.format(len(plateaus) + 1))
# Get the next unchecked point on the grid
idx = to_check.popleft()
# If we already have checked this one, just pop it off
while to_check and check_map[idx]:
try:
idx = to_check.popleft()
except:
break
# Edge case -- If we went through all the indices without reaching an unchecked one.
if check_map[idx]:
break
# Create the plateau and calculate the inclusion conditions
cur_plateau = set([idx])
cur_unchecked = deque([idx])
val = beta[idx]
min_member = val - rel_tol
max_member = val + rel_tol
# Check every possible boundary of the plateau
while cur_unchecked:
idx = cur_unchecked.popleft()
# neighbors to check
local_check = []
# Generic graph case, get all neighbors of this node
local_check.extend(edges[idx])
# Check the index's unchecked neighbors
for local_idx in local_check:
if not check_map[local_idx] \
and beta[local_idx] >= min_member \
and beta[local_idx] <= max_member:
# Label this index as being checked so it's not re-checked unnecessarily
check_map[local_idx] = True
# Add it to the plateau and the list of local unchecked locations
cur_unchecked.append(local_idx)
cur_plateau.add(local_idx)
# Track each plateau's indices
plateaus.append((val, cur_plateau))
# Returns the list of plateaus and their values
return plateaus
|
Calculate the plateaus (degrees of freedom) of a graph of beta values in linear time.
|
entailment
|
def nearly_unique(arr, rel_tol=1e-4, verbose=0):
'''Heuristic method to return the uniques within some precision in a numpy array'''
results = np.array([arr[0]])
for x in arr:
if np.abs(results - x).min() > rel_tol:
results = np.append(results, x)
return results
|
Heuristic method to return the uniques within some precision in a numpy array
|
entailment
|
def hypercube_edges(dims, use_map=False):
'''Create edge lists for an arbitrary hypercube. TODO: this is probably not the fastest way.'''
edges = []
nodes = np.arange(np.product(dims)).reshape(dims)
for i,d in enumerate(dims):
for j in range(d-1):
for n1, n2 in zip(np.take(nodes, [j], axis=i).flatten(), np.take(nodes,[j+1], axis=i).flatten()):
edges.append((n1,n2))
if use_map:
return edge_map_from_edge_list(edges)
return edges
|
Create edge lists for an arbitrary hypercube. TODO: this is probably not the fastest way.
|
entailment
|
def get_delta(D, k):
'''Calculate the k-th order trend filtering matrix given the oriented edge
incidence matrix and the value of k.'''
if k < 0:
raise Exception('k must be at least 0th order.')
result = D
for i in range(k):
result = D.T.dot(result) if i % 2 == 0 else D.dot(result)
return result
|
Calculate the k-th order trend filtering matrix given the oriented edge
incidence matrix and the value of k.
|
entailment
|
def decompose_delta(deltak):
'''Decomposes the k-th order trend filtering matrix into a c-compatible set
of arrays.'''
if not isspmatrix_coo(deltak):
deltak = coo_matrix(deltak)
dk_rows = deltak.shape[0]
dk_rowbreaks = np.cumsum(deltak.getnnz(1), dtype="int32")
dk_cols = deltak.col.astype('int32')
dk_vals = deltak.data.astype('double')
return dk_rows, dk_rowbreaks, dk_cols, dk_vals
|
Decomposes the k-th order trend filtering matrix into a c-compatible set
of arrays.
|
entailment
|
def matrix_from_edges(edges):
'''Returns a sparse penalty matrix (D) from a list of edge pairs. Each edge
can have an optional weight associated with it.'''
max_col = 0
cols = []
rows = []
vals = []
if type(edges) is defaultdict:
edge_list = []
for i, neighbors in edges.items():
for j in neighbors:
if i <= j:
edge_list.append((i,j))
edges = edge_list
for i, edge in enumerate(edges):
s, t = edge[0], edge[1]
weight = 1 if len(edge) == 2 else edge[2]
cols.append(min(s,t))
cols.append(max(s,t))
rows.append(i)
rows.append(i)
vals.append(weight)
vals.append(-weight)
if cols[-1] > max_col:
max_col = cols[-1]
return coo_matrix((vals, (rows, cols)), shape=(rows[-1]+1, max_col+1))
|
Returns a sparse penalty matrix (D) from a list of edge pairs. Each edge
can have an optional weight associated with it.
|
entailment
|
def ks_distance(a, b):
'''Get the Kolmogorov-Smirnov (KS) distance between two densities a and b.'''
if len(a.shape) == 1:
return np.max(np.abs(a.cumsum() - b.cumsum()))
return np.max(np.abs(a.cumsum(axis=1) - b.cumsum(axis=1)), axis=1)
|
Get the Kolmogorov-Smirnov (KS) distance between two densities a and b.
|
entailment
|
def tv_distance(a, b):
'''Get the Total Variation (TV) distance between two densities a and b.'''
if len(a.shape) == 1:
return np.sum(np.abs(a - b))
return np.sum(np.abs(a - b), axis=1)
|
Get the Total Variation (TV) distance between two densities a and b.
|
entailment
|
def jdFromDate(dd, mm, yy):
'''def jdFromDate(dd, mm, yy): Compute the (integral) Julian day number of
day dd/mm/yyyy, i.e., the number of days between 1/1/4713 BC
(Julian calendar) and dd/mm/yyyy.'''
a = int((14 - mm) / 12.)
y = yy + 4800 - a
m = mm + 12 * a - 3
jd = dd + int((153 * m + 2) / 5.) \
+ 365 * y + int(y / 4.) - int(y / 100.) \
+ int(y / 400.) - 32045
if (jd < 2299161):
jd = dd + int((153 * m + 2) / 5.) \
+ 365 * y + int(y / 4.) - 32083
return jd
|
def jdFromDate(dd, mm, yy): Compute the (integral) Julian day number of
day dd/mm/yyyy, i.e., the number of days between 1/1/4713 BC
(Julian calendar) and dd/mm/yyyy.
|
entailment
|
def jdToDate(jd):
'''def jdToDate(jd): Convert a Julian day number to day/month/year.
jd is an integer.'''
if (jd > 2299160):
# After 5/10/1582, Gregorian calendar
a = jd + 32044
b = int((4 * a + 3) / 146097.)
c = a - int((b * 146097) / 4.)
else:
b = 0
c = jd + 32082
d = int((4 * c + 3) / 1461.)
e = c - int((1461 * d) / 4.)
m = int((5 * e + 2) / 153.)
day = e - int((153 * m + 2) / 5.) + 1
month = m + 3 - 12 * int(m / 10.)
year = b * 100 + d - 4800 + int(m / 10.)
return [day, month, year]
|
def jdToDate(jd): Convert a Julian day number to day/month/year.
jd is an integer.
|
entailment
|
def NewMoon(k):
'''def NewMoon(k): Compute the time of the k-th new moon after
the new moon of 1/1/1900 13:52 UCT (measured as the number of
days since 1/1/4713 BC noon UCT, e.g., 2451545.125 is 1/1/2000 15:00 UTC.
Returns a floating number, e.g., 2415079.9758617813 for k=2 or
2414961.935157746 for k=-2.'''
# Time in Julian centuries from 1900 January 0.5
T = k / 1236.85
T2 = T * T
T3 = T2 * T
dr = math.pi / 180.
Jd1 = 2415020.75933 + 29.53058868 * k \
+ 0.0001178 * T2 - 0.000000155 * T3
Jd1 = Jd1 + 0.00033 * math.sin(
(166.56 + 132.87 * T - 0.009173 * T2) * dr)
# Mean new moon
M = 359.2242 + 29.10535608 * k \
- 0.0000333 * T2 - 0.00000347 * T3
# Sun's mean anomaly
Mpr = 306.0253 + 385.81691806 * k \
+ 0.0107306 * T2 + 0.00001236 * T3
# Moon's mean anomaly
F = 21.2964 + 390.67050646 * k - 0.0016528 * T2 \
- 0.00000239 * T3
# Moon's argument of latitude
C1 = (0.1734 - 0.000393 * T) * math.sin(M * dr) \
+ 0.0021 * math.sin(2 * dr * M)
C1 = C1 - 0.4068 * math.sin(Mpr * dr) \
+ 0.0161 * math.sin(dr * 2 * Mpr)
C1 = C1 - 0.0004 * math.sin(dr * 3 * Mpr)
C1 = C1 + 0.0104 * math.sin(dr * 2 * F) \
- 0.0051 * math.sin(dr * (M + Mpr))
C1 = C1 - 0.0074 * math.sin(dr * (M - Mpr)) \
+ 0.0004 * math.sin(dr * (2 * F + M))
C1 = C1 - 0.0004 * math.sin(dr * (2 * F - M)) \
- 0.0006 * math.sin(dr * (2 * F + Mpr))
C1 = C1 + 0.0010 * math.sin(dr * (2 * F - Mpr)) \
+ 0.0005 * math.sin(dr * (2 * Mpr + M))
if (T < -11):
deltat = 0.001 + 0.000839 * T + 0.0002261 * T2 \
- 0.00000845 * T3 - 0.000000081 * T * T3
else:
deltat = -0.000278 + 0.000265 * T + 0.000262 * T2
JdNew = Jd1 + C1 - deltat
return JdNew
|
def NewMoon(k): Compute the time of the k-th new moon after
the new moon of 1/1/1900 13:52 UCT (measured as the number of
days since 1/1/4713 BC noon UCT, e.g., 2451545.125 is 1/1/2000 15:00 UTC.
Returns a floating number, e.g., 2415079.9758617813 for k=2 or
2414961.935157746 for k=-2.
|
entailment
|
def SunLongitude(jdn):
'''def SunLongitude(jdn): Compute the longitude of the sun at any time.
Parameter: floating number jdn, the number of days since 1/1/4713 BC noon.
'''
T = (jdn - 2451545.0) / 36525.
# Time in Julian centuries
# from 2000-01-01 12:00:00 GMT
T2 = T * T
dr = math.pi / 180. # degree to radian
M = 357.52910 + 35999.05030 * T \
- 0.0001559 * T2 - 0.00000048 * T * T2
# mean anomaly, degree
L0 = 280.46645 + 36000.76983 * T + 0.0003032 * T2
# mean longitude, degree
DL = (1.914600 - 0.004817 * T - 0.000014 * T2) \
* math.sin(dr * M)
DL += (0.019993 - 0.000101 * T) * math.sin(dr * 2 * M) \
+ 0.000290 * math.sin(dr * 3 * M)
L = L0 + DL # true longitude, degree
L = L * dr
L = L - math.pi * 2 * (float(L / (math.pi * 2)))
# Normalize to (0, 2*math.pi)
return L
|
def SunLongitude(jdn): Compute the longitude of the sun at any time.
Parameter: floating number jdn, the number of days since 1/1/4713 BC noon.
|
entailment
|
def getLunarMonth11(yy, timeZone):
'''def getLunarMonth11(yy, timeZone): Find the day that starts the luner month
11of the given year for the given time zone.'''
# off = jdFromDate(31, 12, yy) \
# - 2415021.076998695
off = jdFromDate(31, 12, yy) - 2415021.
k = int(off / 29.530588853)
nm = getNewMoonDay(k, timeZone)
sunLong = getSunLongitude(nm, timeZone)
# sun longitude at local midnight
if (sunLong >= 9):
nm = getNewMoonDay(k - 1, timeZone)
return nm
|
def getLunarMonth11(yy, timeZone): Find the day that starts the luner month
11of the given year for the given time zone.
|
entailment
|
def getLeapMonthOffset(a11, timeZone):
'''def getLeapMonthOffset(a11, timeZone): Find the index of the leap month
after the month starting on the day a11.'''
k = int((a11 - 2415021.076998695) / 29.530588853 + 0.5)
last = 0
i = 1 # start with month following lunar month 11
arc = getSunLongitude(
getNewMoonDay(k + i, timeZone), timeZone)
while True:
last = arc
i += 1
arc = getSunLongitude(
getNewMoonDay(k + i, timeZone),
timeZone)
if not (arc != last and i < 14):
break
return i - 1
|
def getLeapMonthOffset(a11, timeZone): Find the index of the leap month
after the month starting on the day a11.
|
entailment
|
def S2L(dd, mm, yy, timeZone=7):
'''def S2L(dd, mm, yy, timeZone = 7): Convert solar date dd/mm/yyyy to
the corresponding lunar date.'''
dayNumber = jdFromDate(dd, mm, yy)
k = int((dayNumber - 2415021.076998695) / 29.530588853)
monthStart = getNewMoonDay(k + 1, timeZone)
if (monthStart > dayNumber):
monthStart = getNewMoonDay(k, timeZone)
# alert(dayNumber + " -> " + monthStart)
a11 = getLunarMonth11(yy, timeZone)
b11 = a11
if (a11 >= monthStart):
lunarYear = yy
a11 = getLunarMonth11(yy - 1, timeZone)
else:
lunarYear = yy + 1
b11 = getLunarMonth11(yy + 1, timeZone)
lunarDay = dayNumber - monthStart + 1
diff = int((monthStart - a11) / 29.)
lunarLeap = 0
lunarMonth = diff + 11
if (b11 - a11 > 365):
leapMonthDiff = \
getLeapMonthOffset(a11, timeZone)
if (diff >= leapMonthDiff):
lunarMonth = diff + 10
if (diff == leapMonthDiff):
lunarLeap = 1
if (lunarMonth > 12):
lunarMonth = lunarMonth - 12
if (lunarMonth >= 11 and diff < 4):
lunarYear -= 1
# print [lunarDay, lunarMonth, lunarYear, lunarLeap]
return \
[lunarDay, lunarMonth, lunarYear, lunarLeap]
|
def S2L(dd, mm, yy, timeZone = 7): Convert solar date dd/mm/yyyy to
the corresponding lunar date.
|
entailment
|
def L2S(lunarD, lunarM, lunarY, lunarLeap, tZ=7):
'''def L2S(lunarD, lunarM, lunarY, lunarLeap, tZ = 7): Convert a lunar date
to the corresponding solar date.'''
if (lunarM < 11):
a11 = getLunarMonth11(lunarY - 1, tZ)
b11 = getLunarMonth11(lunarY, tZ)
else:
a11 = getLunarMonth11(lunarY, tZ)
b11 = getLunarMonth11(lunarY + 1, tZ)
k = int(0.5 +
(a11 - 2415021.076998695) / 29.530588853)
off = lunarM - 11
if (off < 0):
off += 12
if (b11 - a11 > 365):
leapOff = getLeapMonthOffset(a11, tZ)
leapM = leapOff - 2
if (leapM < 0):
leapM += 12
if (lunarLeap != 0 and lunarM != leapM):
return [0, 0, 0]
elif (lunarLeap != 0 or off >= leapOff):
off += 1
monthStart = getNewMoonDay(k + off, tZ)
return jdToDate(monthStart + lunarD - 1)
|
def L2S(lunarD, lunarM, lunarY, lunarLeap, tZ = 7): Convert a lunar date
to the corresponding solar date.
|
entailment
|
def hasMZSignature(self, rd):
"""
Check for MZ signature.
@type rd: L{ReadData}
@param rd: A L{ReadData} object.
@rtype: bool
@return: True is the given L{ReadData} stream has the MZ signature. Otherwise, False.
"""
rd.setOffset(0)
sign = rd.read(2)
if sign == "MZ":
return True
return False
|
Check for MZ signature.
@type rd: L{ReadData}
@param rd: A L{ReadData} object.
@rtype: bool
@return: True is the given L{ReadData} stream has the MZ signature. Otherwise, False.
|
entailment
|
def hasPESignature(self, rd):
"""
Check for PE signature.
@type rd: L{ReadData}
@param rd: A L{ReadData} object.
@rtype: bool
@return: True is the given L{ReadData} stream has the PE signature. Otherwise, False.
"""
rd.setOffset(0)
e_lfanew_offset = unpack("<L", rd.readAt(0x3c, 4))[0]
sign = rd.readAt(e_lfanew_offset, 2)
if sign == "PE":
return True
return False
|
Check for PE signature.
@type rd: L{ReadData}
@param rd: A L{ReadData} object.
@rtype: bool
@return: True is the given L{ReadData} stream has the PE signature. Otherwise, False.
|
entailment
|
def validate(self):
"""
Performs validations over some fields of the PE structure to determine if the loaded file has a valid PE format.
@raise PEException: If an invalid value is found into the PE instance.
"""
# Ange Albertini (@angie4771) can kill me for this! :)
if self.dosHeader.e_magic.value != consts.MZ_SIGNATURE:
raise excep.PEException("Invalid MZ signature. Found %d instead of %d." % (self.dosHeader.magic.value, consts.MZ_SIGNATURE))
if self.dosHeader.e_lfanew.value > len(self):
raise excep.PEException("Invalid e_lfanew value. Probably not a PE file.")
if self.ntHeaders.signature.value != consts.PE_SIGNATURE:
raise excep.PEException("Invalid PE signature. Found %d instead of %d." % (self.ntHeaders.optionaHeader.signature.value, consts.PE_SIGNATURE))
if self.ntHeaders.optionalHeader.numberOfRvaAndSizes.value > 0x10:
print excep.PEWarning("Suspicious value for NumberOfRvaAndSizes: %d." % self.ntHeaders.optionaHeader.numberOfRvaAndSizes.value)
|
Performs validations over some fields of the PE structure to determine if the loaded file has a valid PE format.
@raise PEException: If an invalid value is found into the PE instance.
|
entailment
|
def readFile(self, pathToFile):
"""
Returns data from a file.
@type pathToFile: str
@param pathToFile: Path to the file.
@rtype: str
@return: The data from file.
"""
fd = open(pathToFile, "rb")
data = fd.read()
fd.close()
return data
|
Returns data from a file.
@type pathToFile: str
@param pathToFile: Path to the file.
@rtype: str
@return: The data from file.
|
entailment
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.