sentence1
stringlengths
52
3.87M
sentence2
stringlengths
1
47.2k
label
stringclasses
1 value
def multis_2_mono(table): """ Converts each multiline string in a table to single line. Parameters ---------- table : list of list of str A list of rows containing strings Returns ------- table : list of lists of str """ for row in range(len(table)): for column in range(len(table[row])): table[row][column] = table[row][column].replace('\n', ' ') return table
Converts each multiline string in a table to single line. Parameters ---------- table : list of list of str A list of rows containing strings Returns ------- table : list of lists of str
entailment
def get_html_row_count(spans): """Get the number of rows""" if spans == []: return 0 row_counts = {} for span in spans: span = sorted(span) try: row_counts[str(span[0][1])] += get_span_row_count(span) except KeyError: row_counts[str(span[0][1])] = get_span_row_count(span) values = list(row_counts.values()) return max(values)
Get the number of rows
entailment
def levenshtein_distance(word1, word2): """ Computes the Levenshtein distance. [Reference]: https://en.wikipedia.org/wiki/Levenshtein_distance [Article]: Levenshtein, Vladimir I. (February 1966). "Binary codes capable of correcting deletions, insertions,and reversals". Soviet Physics Doklady 10 (8): 707–710. [Implementation]: https://en.wikibooks.org/wiki/Algorithm_Implementation/Strings/Levenshtein_distance#Python """ if len(word1) < len(word2): return levenshtein_distance(word2, word1) if len(word2) == 0: return len(word1) previous_row = list(range(len(word2) + 1)) for i, char1 in enumerate(word1): current_row = [i + 1] for j, char2 in enumerate(word2): insertions = previous_row[j + 1] + 1 deletions = current_row[j] + 1 substitutions = previous_row[j] + (char1 != char2) current_row.append(min(insertions, deletions, substitutions)) previous_row = current_row return previous_row[-1]
Computes the Levenshtein distance. [Reference]: https://en.wikipedia.org/wiki/Levenshtein_distance [Article]: Levenshtein, Vladimir I. (February 1966). "Binary codes capable of correcting deletions, insertions,and reversals". Soviet Physics Doklady 10 (8): 707–710. [Implementation]: https://en.wikibooks.org/wiki/Algorithm_Implementation/Strings/Levenshtein_distance#Python
entailment
def better_ts_function(f): '''Decorator which check if timeseries has a better implementation of the function.''' fname = f.__name__ def _(ts, *args, **kwargs): func = getattr(ts, fname, None) if func: return func(*args, **kwargs) else: return f(ts, *args, **kwargs) _.__name__ = fname return _
Decorator which check if timeseries has a better implementation of the function.
entailment
def zscore(ts, **kwargs): '''Rolling Z-Score statistics. The Z-score is more formally known as ``standardised residuals``. To calculate the standardised residuals of a data set, the average value and the standard deviation of the data value have to be estimated. .. math:: z = \frac{x - \mu(x)}{\sigma(x)} ''' m = ts.rollmean(**kwargs) s = ts.rollstddev(**kwargs) result = (ts - m)/s name = kwargs.get('name', None) if name: result.name = name return result
Rolling Z-Score statistics. The Z-score is more formally known as ``standardised residuals``. To calculate the standardised residuals of a data set, the average value and the standard deviation of the data value have to be estimated. .. math:: z = \frac{x - \mu(x)}{\sigma(x)}
entailment
def prange(ts, **kwargs): '''Rolling Percentage range. Value between 0 and 1 indicating the position in the rolling range. ''' mi = ts.rollmin(**kwargs) ma = ts.rollmax(**kwargs) return (ts - mi)/(ma - mi)
Rolling Percentage range. Value between 0 and 1 indicating the position in the rolling range.
entailment
def bindata(data, maxbins = 30, reduction = 0.1): ''' data must be numeric list with a len above 20 This function counts the number of data points in a reduced array ''' tole = 0.01 N = len(data) assert N > 20 vmin = min(data) vmax = max(data) DV = vmax - vmin tol = tole*DV vmax += tol if vmin >= 0: vmin -= tol vmin = max(0.0,vmin) else: vmin -= tol n = min(maxbins,max(2,int(round(reduction*N)))) DV = vmax - vmin bbin = npy.linspace(vmin,vmax,n+1) sso = npy.searchsorted(bbin,npy.sort(data)) x = [] y = [] for i in range(0,n): x.append(0.5*(bbin[i+1]+bbin[i])) y.append(0.0) dy = 1.0/N for i in sso: y[i-1] += dy/(bbin[i]-bbin[i-1]) return (x,y)
data must be numeric list with a len above 20 This function counts the number of data points in a reduced array
entailment
def binOp(op, indx, amap, bmap, fill_vec): ''' Combines the values from two map objects using the indx values using the op operator. In situations where there is a missing value it will use the callable function handle_missing ''' def op_or_missing(id): va = amap.get(id, None) vb = bmap.get(id, None) if va is None or vb is None: # This should create as many elements as the number of columns!? result = fill_vec else: try: result = op(va, vb) except Exception: result = None if result is None: result = fill_vec return result seq_arys = map(op_or_missing, indx) data = np.vstack(seq_arys) return data
Combines the values from two map objects using the indx values using the op operator. In situations where there is a missing value it will use the callable function handle_missing
entailment
def _toVec(shape, val): ''' takes a single value and creates a vecotor / matrix with that value filled in it ''' mat = np.empty(shape) mat.fill(val) return mat
takes a single value and creates a vecotor / matrix with that value filled in it
entailment
def center_line(space, line): """ Add leading & trailing space to text to center it within an allowed width Parameters ---------- space : int The maximum character width allowed for the text. If the length of text is more than this value, no space will be added.\ line : str The text that will be centered. Returns ------- line : str The text with the leading space added to it """ line = line.strip() left_length = math.floor((space - len(line)) / 2) right_length = math.ceil((space - len(line)) / 2) left_space = " " * int(left_length) right_space = " " * int(right_length) line = ''.join([left_space, line, right_space]) return line
Add leading & trailing space to text to center it within an allowed width Parameters ---------- space : int The maximum character width allowed for the text. If the length of text is more than this value, no space will be added.\ line : str The text that will be centered. Returns ------- line : str The text with the leading space added to it
entailment
def register(self, function): """Register a function in the function registry. The function will be automatically instantiated if not already an instance. """ function = inspect.isclass(function) and function() or function name = function.name self[name] = function
Register a function in the function registry. The function will be automatically instantiated if not already an instance.
entailment
def unregister(self, name): """Unregister function by name. """ try: name = name.name except AttributeError: pass return self.pop(name,None)
Unregister function by name.
entailment
def row_includes_spans(table, row, spans): """ Determine if there are spans within a row Parameters ---------- table : list of lists of str row : int spans : list of lists of lists of int Returns ------- bool Whether or not a table's row includes spans """ for column in range(len(table[row])): for span in spans: if [row, column] in span: return True return False
Determine if there are spans within a row Parameters ---------- table : list of lists of str row : int spans : list of lists of lists of int Returns ------- bool Whether or not a table's row includes spans
entailment
def _setup_states(state_definitions, prev=()): """Create a StateList object from a 'states' Workflow attribute.""" states = list(prev) for state_def in state_definitions: if len(state_def) != 2: raise TypeError( "The 'state' attribute of a workflow should be " "a two-tuple of strings; got %r instead." % (state_def,) ) name, title = state_def state = State(name, title) if any(st.name == name for st in states): # Replacing an existing state states = [state if st.name == name else st for st in states] else: states.append(state) return StateList(states)
Create a StateList object from a 'states' Workflow attribute.
entailment
def _setup_transitions(tdef, states, prev=()): """Create a TransitionList object from a 'transitions' Workflow attribute. Args: tdef: list of transition definitions states (StateList): already parsed state definitions. prev (TransitionList): transition definitions from a parent. Returns: TransitionList: the list of transitions defined in the 'tdef' argument. """ trs = list(prev) for transition in tdef: if len(transition) == 3: (name, source, target) = transition if is_string(source) or isinstance(source, State): source = [source] source = [states[src] for src in source] target = states[target] tr = Transition(name, source, target) else: raise TypeError( "Elements of the 'transition' attribute of a " "workflow should be three-tuples; got %r instead." % (transition,) ) if any(prev_tr.name == tr.name for prev_tr in trs): # Replacing an existing state trs = [tr if prev_tr.name == tr.name else prev_tr for prev_tr in trs] else: trs.append(tr) return TransitionList(trs)
Create a TransitionList object from a 'transitions' Workflow attribute. Args: tdef: list of transition definitions states (StateList): already parsed state definitions. prev (TransitionList): transition definitions from a parent. Returns: TransitionList: the list of transitions defined in the 'tdef' argument.
entailment
def transition(trname='', field='', check=None, before=None, after=None): """Decorator to declare a function as a transition implementation.""" if is_callable(trname): raise ValueError( "The @transition decorator should be called as " "@transition(['transition_name'], **kwargs)") if check or before or after: warnings.warn( "The use of check=, before= and after= in @transition decorators is " "deprecated in favor of @transition_check, @before_transition and " "@after_transition decorators.", DeprecationWarning, stacklevel=2) return TransitionWrapper(trname, field=field, check=check, before=before, after=after)
Decorator to declare a function as a transition implementation.
entailment
def _make_hook_dict(fun): """Ensure the given function has a xworkflows_hook attribute. That attribute has the following structure: >>> { ... 'before': [('state', <TransitionHook>), ...], ... } """ if not hasattr(fun, 'xworkflows_hook'): fun.xworkflows_hook = { HOOK_BEFORE: [], HOOK_AFTER: [], HOOK_CHECK: [], HOOK_ON_ENTER: [], HOOK_ON_LEAVE: [], } return fun.xworkflows_hook
Ensure the given function has a xworkflows_hook attribute. That attribute has the following structure: >>> { ... 'before': [('state', <TransitionHook>), ...], ... }
entailment
def _match_state(self, state): """Checks whether a given State matches self.names.""" return (self.names == '*' or state in self.names or state.name in self.names)
Checks whether a given State matches self.names.
entailment
def _match_transition(self, transition): """Checks whether a given Transition matches self.names.""" return (self.names == '*' or transition in self.names or transition.name in self.names)
Checks whether a given Transition matches self.names.
entailment
def applies_to(self, transition, from_state=None): """Whether this hook applies to the given transition/state. Args: transition (Transition): the transition to check from_state (State or None): the state to check. If absent, the check is 'might this hook apply to the related transition, given a valid source state'. """ if '*' in self.names: return True elif self.kind in (HOOK_BEFORE, HOOK_AFTER, HOOK_CHECK): return self._match_transition(transition) elif self.kind == HOOK_ON_ENTER: return self._match_state(transition.target) elif from_state is None: # Testing whether the hook may apply to at least one source of the # transition return any(self._match_state(src) for src in transition.source) else: return self._match_state(from_state)
Whether this hook applies to the given transition/state. Args: transition (Transition): the transition to check from_state (State or None): the state to check. If absent, the check is 'might this hook apply to the related transition, given a valid source state'.
entailment
def _pre_transition_checks(self): """Run the pre-transition checks.""" current_state = getattr(self.instance, self.field_name) if current_state not in self.transition.source: raise InvalidTransitionError( "Transition '%s' isn't available from state '%s'." % (self.transition.name, current_state.name)) for check in self._filter_hooks(HOOK_CHECK): if not check(self.instance): raise ForbiddenTransition( "Transition '%s' was forbidden by " "custom pre-transition check." % self.transition.name)
Run the pre-transition checks.
entailment
def _filter_hooks(self, *hook_kinds): """Filter a list of hooks, keeping only applicable ones.""" hooks = sum((self.hooks.get(kind, []) for kind in hook_kinds), []) return sorted(hook for hook in hooks if hook.applies_to(self.transition, self.current_state))
Filter a list of hooks, keeping only applicable ones.
entailment
def _post_transition(self, result, *args, **kwargs): """Performs post-transition actions.""" for hook in self._filter_hooks(HOOK_AFTER, HOOK_ON_ENTER): hook(self.instance, result, *args, **kwargs)
Performs post-transition actions.
entailment
def load_parent_implems(self, parent_implems): """Import previously defined implementations. Args: parent_implems (ImplementationList): List of implementations defined in a parent class. """ for trname, attr, implem in parent_implems.get_custom_implementations(): self.implementations[trname] = implem.copy() self.transitions_at[trname] = attr self.custom_implems.add(trname)
Import previously defined implementations. Args: parent_implems (ImplementationList): List of implementations defined in a parent class.
entailment
def add_implem(self, transition, attribute, function, **kwargs): """Add an implementation. Args: transition (Transition): the transition for which the implementation is added attribute (str): the name of the attribute where the implementation will be available function (callable): the actual implementation function **kwargs: extra arguments for the related ImplementationProperty. """ implem = ImplementationProperty( field_name=self.state_field, transition=transition, workflow=self.workflow, implementation=function, **kwargs) self.implementations[transition.name] = implem self.transitions_at[transition.name] = attribute return implem
Add an implementation. Args: transition (Transition): the transition for which the implementation is added attribute (str): the name of the attribute where the implementation will be available function (callable): the actual implementation function **kwargs: extra arguments for the related ImplementationProperty.
entailment
def should_collect(self, value): """Decide whether a given value should be collected.""" return ( # decorated with @transition isinstance(value, TransitionWrapper) # Relates to a compatible transition and value.trname in self.workflow.transitions # Either not bound to a state field or bound to the current one and (not value.field or value.field == self.state_field))
Decide whether a given value should be collected.
entailment
def collect(self, attrs): """Collect the implementations from a given attributes dict.""" for name, value in attrs.items(): if self.should_collect(value): transition = self.workflow.transitions[value.trname] if ( value.trname in self.implementations and value.trname in self.custom_implems and name != self.transitions_at[value.trname]): # We already have an implementation registered. other_implem_at = self.transitions_at[value.trname] raise ValueError( "Error for attribute %s: it defines implementation " "%s for transition %s, which is already implemented " "at %s." % (name, value, transition, other_implem_at)) implem = self.add_implem(transition, name, value.func) self.custom_implems.add(transition.name) if value.check: implem.add_hook(Hook(HOOK_CHECK, value.check)) if value.before: implem.add_hook(Hook(HOOK_BEFORE, value.before)) if value.after: implem.add_hook(Hook(HOOK_AFTER, value.after))
Collect the implementations from a given attributes dict.
entailment
def get_custom_implementations(self): """Retrieve a list of cutom implementations. Yields: (str, str, ImplementationProperty) tuples: The name of the attribute an implementation lives at, the name of the related transition, and the related implementation. """ for trname in self.custom_implems: attr = self.transitions_at[trname] implem = self.implementations[trname] yield (trname, attr, implem)
Retrieve a list of cutom implementations. Yields: (str, str, ImplementationProperty) tuples: The name of the attribute an implementation lives at, the name of the related transition, and the related implementation.
entailment
def register_function_hooks(self, func): """Looks at an object method and registers it for relevent transitions.""" for hook_kind, hooks in func.xworkflows_hook.items(): for field_name, hook in hooks: if field_name and field_name != self.state_field: continue for transition in self.workflow.transitions: if hook.applies_to(transition): implem = self.implementations[transition.name] implem.add_hook(hook)
Looks at an object method and registers it for relevent transitions.
entailment
def _may_override(self, implem, other): """Checks whether an ImplementationProperty may override an attribute.""" if isinstance(other, ImplementationProperty): # Overriding another custom implementation for the same transition # and field return (other.transition == implem.transition and other.field_name == self.state_field) elif isinstance(other, TransitionWrapper): # Overriding the definition that led to adding the current # ImplementationProperty. return ( other.trname == implem.transition.name and (not other.field or other.field == self.state_field) and other.func == implem.implementation) return False
Checks whether an ImplementationProperty may override an attribute.
entailment
def fill_attrs(self, attrs): """Update the 'attrs' dict with generated ImplementationProperty.""" for trname, attrname in self.transitions_at.items(): implem = self.implementations[trname] if attrname in attrs: conflicting = attrs[attrname] if not self._may_override(implem, conflicting): raise ValueError( "Can't override transition implementation %s=%r with %r" % (attrname, conflicting, implem)) attrs[attrname] = implem return attrs
Update the 'attrs' dict with generated ImplementationProperty.
entailment
def transform(self, attrs): """Perform all actions on a given attribute dict.""" self.collect(attrs) self.add_missing_implementations() self.fill_attrs(attrs)
Perform all actions on a given attribute dict.
entailment
def log_transition(self, transition, from_state, instance, *args, **kwargs): """Log a transition. Args: transition (Transition): the name of the performed transition from_state (State): the source state instance (object): the modified object Kwargs: Any passed when calling the transition """ logger = logging.getLogger('xworkflows.transitions') try: instance_repr = u(repr(instance), 'ignore') except (UnicodeEncodeError, UnicodeDecodeError): instance_repr = u("<bad repr>") logger.info( u("%s performed transition %s.%s (%s -> %s)"), instance_repr, self.__class__.__name__, transition.name, from_state.name, transition.target.name)
Log a transition. Args: transition (Transition): the name of the performed transition from_state (State): the source state instance (object): the modified object Kwargs: Any passed when calling the transition
entailment
def _add_workflow(mcs, field_name, state_field, attrs): """Attach a workflow to the attribute list (create a StateProperty).""" attrs[field_name] = StateProperty(state_field.workflow, field_name)
Attach a workflow to the attribute list (create a StateProperty).
entailment
def _find_workflows(mcs, attrs): """Finds all occurrences of a workflow in the attributes definitions. Returns: dict(str => StateField): maps an attribute name to a StateField describing the related Workflow. """ workflows = {} for attribute, value in attrs.items(): if isinstance(value, Workflow): workflows[attribute] = StateField(value) return workflows
Finds all occurrences of a workflow in the attributes definitions. Returns: dict(str => StateField): maps an attribute name to a StateField describing the related Workflow.
entailment
def _add_transitions(mcs, field_name, workflow, attrs, implems=None): """Collect and enhance transition definitions to a workflow. Modifies the 'attrs' dict in-place. Args: field_name (str): name of the field transitions should update workflow (Workflow): workflow we're working on attrs (dict): dictionary of attributes to be updated. implems (ImplementationList): Implementation list from parent classes (optional) Returns: ImplementationList: The new implementation list for this field. """ new_implems = ImplementationList(field_name, workflow) if implems: new_implems.load_parent_implems(implems) new_implems.transform(attrs) return new_implems
Collect and enhance transition definitions to a workflow. Modifies the 'attrs' dict in-place. Args: field_name (str): name of the field transitions should update workflow (Workflow): workflow we're working on attrs (dict): dictionary of attributes to be updated. implems (ImplementationList): Implementation list from parent classes (optional) Returns: ImplementationList: The new implementation list for this field.
entailment
def update(self): "Updates cartesian coordinates for drawing tree graph" # get new shape and clear for attrs self.edges = np.zeros((self.ttree.nnodes - 1, 2), dtype=int) self.verts = np.zeros((self.ttree.nnodes, 2), dtype=float) self.lines = [] self.coords = [] # fill with updates self.update_idxs() # get dimensions of tree self.update_fixed_order() # in case ntips changed self.assign_vertices() # get node locations self.assign_coordinates() # get edge locations self.reorient_coordinates()
Updates cartesian coordinates for drawing tree graph
entailment
def update_idxs(self): "set root idx highest, tip idxs lowest ordered as ladderized" # internal nodes: root is highest idx idx = self.ttree.nnodes - 1 for node in self.ttree.treenode.traverse("levelorder"): if not node.is_leaf(): node.add_feature("idx", idx) if not node.name: node.name = str(idx) idx -= 1 # external nodes: lowest numbers are for tips (0-N) for node in self.ttree.treenode.get_leaves(): node.add_feature("idx", idx) if not node.name: node.name = str(idx) idx -= 1
set root idx highest, tip idxs lowest ordered as ladderized
entailment
def update_fixed_order(self): "after pruning fixed order needs update to match new nnodes/ntips." # set tips order if fixing for multi-tree plotting (default None) fixed_order = self.ttree._fixed_order self.ttree_fixed_order = None self.ttree_fixed_idx = list(range(self.ttree.ntips)) # check if fixed_order changed: if fixed_order: fixed_order = [ i for i in fixed_order if i in self.ttree.get_tip_labels()] self.ttree._set_fixed_order(fixed_order) else: self.ttree._fixed_idx = list(range(self.ttree.ntips))
after pruning fixed order needs update to match new nnodes/ntips.
entailment
def assign_vertices(self): """ Sets .edges, .verts for node positions. X and Y positions here refer to base assumption that tree is right facing, reorient_coordinates() will handle re-translating this. """ # shortname uselen = bool(self.ttree.style.use_edge_lengths) # postorder: children then parents (nidxs from 0 up) # store edge array for connecting child nodes to parent nodes nidx = 0 for node in self.ttree.treenode.traverse("postorder"): if not node.is_root(): self.edges[nidx, :] = [node.up.idx, node.idx] nidx += 1 # store verts array with x,y positions of nodes (lengths of branches) # we want tips to align at the right face (larger axis number) _root = self.ttree.treenode.get_tree_root() _treeheight = _root.get_distance(_root.get_farthest_leaf()[0]) # set node x, y tidx = len(self.ttree) - 1 for node in self.ttree.treenode.traverse("postorder"): # Just leaves: x positions are evenly spread and ordered on axis if node.is_leaf() and (not node.is_root()): # set y-positions (heights). Distance from root or zero node.y = _treeheight - _root.get_distance(node) if not uselen: node.y = 0.0 # set x-positions (order of samples) if self.ttree._fixed_order: node.x = self.ttree._fixed_order.index(node.name)# - tidx else: node.x = tidx tidx -= 1 # store the x,y vertex positions self.verts[node.idx] = [node.x, node.y] # All internal node positions are not evenly spread or ordered else: # height is either distance or nnodes from root node.y = _treeheight - _root.get_distance(node) if not uselen: node.y = max([i.y for i in node.children]) + 1 # x position is halfway between childrens x-positions if node.children: nch = node.children node.x = sum(i.x for i in nch) / float(len(nch)) else: node.x = tidx # store the x,y vertex positions self.verts[node.idx] = [node.x, node.y]
Sets .edges, .verts for node positions. X and Y positions here refer to base assumption that tree is right facing, reorient_coordinates() will handle re-translating this.
entailment
def reorient_coordinates(self): """ Returns a modified .verts array with new coordinates for nodes. This does not need to modify .edges. The order of nodes, and therefore of verts rows is still the same because it is still based on the tree branching order (ladderized usually). """ # if tree is empty then bail out if len(self.ttree) < 2: return # down is the default orientation # down-facing tips align at y=0, first ladderized tip at x=0 if self.ttree.style.orient in ('down', 0): pass # right-facing tips align at x=0, last ladderized tip at y=0 elif self.ttree.style.orient in ('right', 3): # verts swap x and ys and make xs 0 to negative tmp = np.zeros(self.verts.shape) tmp[:, 1] = self.verts[:, 0] tmp[:, 0] = self.verts[:, 1] * -1 self.verts = tmp # coords... tmp = np.zeros(self.coords.shape) tmp[:, 1] = self.coords[:, 0] tmp[:, 0] = self.coords[:, 1] * -1 self.coords = tmp elif self.ttree.style.orient in ('left', 1): raise NotImplementedError("todo: left facing") else: raise NotImplementedError("todo: up facing")
Returns a modified .verts array with new coordinates for nodes. This does not need to modify .edges. The order of nodes, and therefore of verts rows is still the same because it is still based on the tree branching order (ladderized usually).
entailment
def tsiterator(ts, dateconverter=None, desc=None, clean=False, start_value=None, **kwargs): '''An iterator of timeseries as tuples.''' dateconverter = dateconverter or default_converter yield ['Date'] + ts.names() if clean == 'full': for dt, value in full_clean(ts, dateconverter, desc, start_value): yield (dt,) + tuple(value) else: if clean: ts = ts.clean() for dt, value in ts.items(desc=desc, start_value=start_value): dt = dateconverter(dt) yield (dt,) + tuple(value)
An iterator of timeseries as tuples.
entailment
def set_baselines(self): """ Modify coords to shift tree position for x,y baseline arguments. This is useful for arrangeing trees onto a Canvas with other plots, but still sharing a common cartesian axes coordinates. """ if self.style.xbaseline: if self.style.orient in ("up", "down"): self.coords.coords[:, 0] += self.style.xbaseline self.coords.verts[:, 0] += self.style.xbaseline else: self.coords.coords[:, 1] += self.style.xbaseline self.coords.verts[:, 1] += self.style.xbaseline
Modify coords to shift tree position for x,y baseline arguments. This is useful for arrangeing trees onto a Canvas with other plots, but still sharing a common cartesian axes coordinates.
entailment
def add_tip_labels_to_axes(self): """ Add text offset from tips of tree with correction for orientation, and fixed_order which is usually used in multitree plotting. """ # get tip-coords and replace if using fixed_order xpos = self.ttree.get_tip_coordinates('x') ypos = self.ttree.get_tip_coordinates('y') if self.style.orient in ("up", "down"): if self.ttree._fixed_order: xpos = list(range(self.ttree.ntips)) ypos = ypos[self.ttree._fixed_idx] if self.style.tip_labels_align: ypos = np.zeros(self.ttree.ntips) if self.style.orient in ("right", "left"): if self.ttree._fixed_order: xpos = xpos[self.ttree._fixed_idx] ypos = list(range(self.ttree.ntips)) if self.style.tip_labels_align: xpos = np.zeros(self.ttree.ntips) # pop fill from color dict if using color tstyle = deepcopy(self.style.tip_labels_style) if self.style.tip_labels_colors: tstyle.pop("fill") # add tip names to coordinates calculated above self.axes.text( xpos, ypos, self.tip_labels, angle=(0 if self.style.orient in ("right", "left") else -90), style=tstyle, color=self.style.tip_labels_colors, ) # get stroke-width for aligned tip-label lines (optional) # copy stroke-width from the edge_style unless user set it if not self.style.edge_align_style.get("stroke-width"): self.style.edge_align_style["stroke-width"] = ( self.style.edge_style["stroke-width"])
Add text offset from tips of tree with correction for orientation, and fixed_order which is usually used in multitree plotting.
entailment
def add_tip_lines_to_axes(self): "add lines to connect tips to zero axis for tip_labels_align=True" # get tip-coords and align-coords from verts xpos, ypos, aedges, averts = self.get_tip_label_coords() if self.style.tip_labels_align: self.axes.graph( aedges, vcoordinates=averts, estyle=self.style.edge_align_style, vlshow=False, vsize=0, )
add lines to connect tips to zero axis for tip_labels_align=True
entailment
def fit_tip_labels(self): """ Modifies display range to ensure tip labels fit. This is a bit hackish still. The problem is that the 'extents' range of the rendered text is totally correct. So we add a little buffer here. Should add for user to be able to modify this if needed. If not using edge lengths then need to use unit length for treeheight. """ # user entered values #if self.style.axes.x_domain_max or self.style.axes.y_domain_min: # self.axes.x.domain.max = self.style.axes.x_domain_max # self.axes.y.domain.min = self.style.axes.y_domain_min # IF USE WANTS TO CHANGE IT THEN DO IT AFTER USING AXES # or auto-fit (tree height) #else: if self.style.use_edge_lengths: addon = self.ttree.treenode.height * .85 else: addon = self.ttree.treenode.get_farthest_leaf(True)[1] # modify display for orientations if self.style.tip_labels: if self.style.orient == "right": self.axes.x.domain.max = addon elif self.style.orient == "down": self.axes.y.domain.min = -1 * addon
Modifies display range to ensure tip labels fit. This is a bit hackish still. The problem is that the 'extents' range of the rendered text is totally correct. So we add a little buffer here. Should add for user to be able to modify this if needed. If not using edge lengths then need to use unit length for treeheight.
entailment
def assign_node_colors_and_style(self): """ Resolve conflict of 'node_color' and 'node_style['fill'] args which are redundant. Default is node_style.fill unless user entered node_color. To enter multiple colors user must use node_color not style fill. Either way, we build a list of colors to pass to Drawing.node_colors which is then written to the marker as a fill CSS attribute. """ # SET node_colors and POP node_style.fill colors = self.style.node_colors style = self.style.node_style if colors is None: if style["fill"] in (None, "none"): style.pop("fill") else: if isinstance(style["fill"], (list, tuple)): raise ToytreeError( "Use node_color not node_style for multiple node colors") # check the color color = style["fill"] if isinstance(color, (np.ndarray, np.void, list, tuple)): color = toyplot.color.to_css(color) self.node_colors = [color] * self.ttree.nnodes # otherwise parse node_color else: style.pop("fill") if isinstance(colors, str): # check the color color = colors if isinstance(color, (np.ndarray, np.void, list, tuple)): color = toyplot.color.to_css(color) self.node_colors = [color] * self.ttree.nnodes elif isinstance(colors, (list, tuple)): if len(colors) != len(self.node_colors): raise ToytreeError("node_colors arg is the wrong length") for cidx in range(len(self.node_colors)): color = colors[cidx] if isinstance(color, (np.ndarray, np.void, list, tuple)): color = toyplot.color.to_css(color) self.node_colors[cidx] = color # use CSS none for stroke=None if self.style.node_style["stroke"] is None: self.style.node_style.stroke = "none" # apply node markers markers = self.style.node_markers if markers is None: self.node_markers = ["o"] * self.ttree.nnodes else: if isinstance(markers, str): self.node_markers = [markers] * self.ttree.nnodes elif isinstance(markers, (list, tuple)): for cidx in range(len(self.node_markers)): self.node_markers[cidx] = markers[cidx]
Resolve conflict of 'node_color' and 'node_style['fill'] args which are redundant. Default is node_style.fill unless user entered node_color. To enter multiple colors user must use node_color not style fill. Either way, we build a list of colors to pass to Drawing.node_colors which is then written to the marker as a fill CSS attribute.
entailment
def assign_node_labels_and_sizes(self): "assign features of nodes to be plotted based on user kwargs" # shorthand nvals = self.ttree.get_node_values() # False == Hide nodes and labels unless user entered size if self.style.node_labels is False: self.node_labels = ["" for i in nvals] if self.style.node_sizes is not None: if isinstance(self.style.node_sizes, (list, tuple, np.ndarray)): assert len(self.node_sizes) == len(self.style.node_sizes) self.node_sizes = self.style.node_sizes elif isinstance(self.style.node_sizes, (int, str)): self.node_sizes = ( [int(self.style.node_sizes)] * len(nvals) ) self.node_labels = [" " if i else "" for i in self.node_sizes] # True == Show nodes, label=idx, and show hover elif self.style.node_labels is True: # turn on node hover even if user did not set it explicit self.style.node_hover = True # get idx labels self.node_labels = self.ttree.get_node_values('idx', 1, 1) # use default node size as a list if not provided if not self.style.node_sizes: self.node_sizes = [18] * len(nvals) else: assert isinstance(self.style.node_sizes, (int, str)) self.node_sizes = ( [int(self.style.node_sizes)] * len(nvals) ) # User entered lists or other for node labels or sizes; check lengths. else: # make node labels into a list of values if isinstance(self.style.node_labels, list): assert len(self.style.node_labels) == len(nvals) self.node_labels = self.style.node_labels # check if user entered a feature else use entered val elif isinstance(self.style.node_labels, str): self.node_labels = [self.style.node_labels] * len(nvals) if self.style.node_labels in self.ttree.features: self.node_labels = self.ttree.get_node_values( self.style.node_labels, 1, 0) # default to idx at internals if nothing else else: self.node_labels = self.ttree.get_node_values("idx", 1, 0) # make node sizes as a list; set to zero if node label is "" if isinstance(self.style.node_sizes, list): assert len(self.style.node_sizes) == len(nvals) self.node_sizes = self.style.node_sizes elif isinstance(self.style.node_sizes, (str, int, float)): self.node_sizes = [int(self.style.node_sizes)] * len(nvals) else: self.node_sizes = [18] * len(nvals) # override node sizes to hide based on node labels for nidx, node in enumerate(self.node_labels): if self.node_labels[nidx] == "": self.node_sizes[nidx] = 0 # ensure string type self.node_labels = [str(i) for i in self.node_labels]
assign features of nodes to be plotted based on user kwargs
entailment
def assign_tip_labels_and_colors(self): "assign tip labels based on user provided kwargs" # COLOR # tip color overrides tipstyle.fill if self.style.tip_labels_colors: #if self.style.tip_labels_style.fill: # self.style.tip_labels_style.fill = None if self.ttree._fixed_order: if isinstance(self.style.tip_labels_colors, (list, np.ndarray)): cols = np.array(self.style.tip_labels_colors) orde = cols[self.ttree._fixed_idx] self.style.tip_labels_colors = list(orde) # LABELS # False == hide tip labels if self.style.tip_labels is False: self.style.tip_labels_style["-toyplot-anchor-shift"] = "0px" self.tip_labels = ["" for i in self.ttree.get_tip_labels()] # LABELS # user entered something... else: # if user did not change label-offset then shift it here if not self.style.tip_labels_style["-toyplot-anchor-shift"]: self.style.tip_labels_style["-toyplot-anchor-shift"] = "15px" # if user entered list in get_tip_labels order reverse it for plot if isinstance(self.style.tip_labels, list): self.tip_labels = self.style.tip_labels # True assigns tip labels from tree else: if self.ttree._fixed_order: self.tip_labels = self.ttree._fixed_order else: self.tip_labels = self.ttree.get_tip_labels()
assign tip labels based on user provided kwargs
entailment
def assign_edge_colors_and_widths(self): """ Resolve conflict of 'node_color' and 'node_style['fill'] args which are redundant. Default is node_style.fill unless user entered node_color. To enter multiple colors user must use node_color not style fill. Either way, we build a list of colors to pass to Drawing.node_colors which is then written to the marker as a fill CSS attribute. """ # node_color overrides fill. Tricky to catch cuz it can be many types. # SET edge_widths and POP edge_style.stroke-width if self.style.edge_widths is None: if not self.style.edge_style["stroke-width"]: self.style.edge_style.pop("stroke-width") self.style.edge_style.pop("stroke") self.edge_widths = [None] * self.nedges else: if isinstance(self.style.edge_style["stroke-width"], (list, tuple)): raise ToytreeError( "Use edge_widths not edge_style for multiple edge widths") # check the color width = self.style.edge_style["stroke-width"] self.style.edge_style.pop("stroke-width") self.edge_widths = [width] * self.nedges else: self.style.edge_style.pop("stroke-width") if isinstance(self.style.edge_widths, (str, int)): self.edge_widths = [int(self.style.edge_widths)] * self.nedges elif isinstance(self.style.edge_widths, (list, tuple)): if len(self.style.edge_widths) != self.nedges: raise ToytreeError("edge_widths arg is the wrong length") for cidx in range(self.nedges): self.edge_widths[cidx] = self.style.edge_widths[cidx] # SET edge_colors and POP edge_style.stroke if self.style.edge_colors is None: if self.style.edge_style["stroke"] is None: self.style.edge_style.pop("stroke") self.edge_colors = [None] * self.nedges else: if isinstance(self.style.edge_style["stroke"], (list, tuple)): raise ToytreeError( "Use edge_colors not edge_style for multiple edge colors") # check the color color = self.style.edge_style["stroke"] if isinstance(color, (np.ndarray, np.void, list, tuple)): color = toyplot.color.to_css(color) self.style.edge_style.pop("stroke") self.edge_colors = [color] * self.nedges # otherwise parse node_color else: self.style.edge_style.pop("stroke") if isinstance(self.style.edge_colors, (str, int)): # check the color color = self.style.edge_colors if isinstance(color, (np.ndarray, np.void, list, tuple)): color = toyplot.color.to_css(color) self.edge_colors = [color] * self.nedges elif isinstance(self.style.edge_colors, (list, tuple)): if len(self.style.edge_colors) != self.nedges: raise ToytreeError("edge_colors arg is the wrong length") for cidx in range(self.nedges): self.edge_colors[cidx] = self.style.edge_colors[cidx] # do not allow empty edge_colors or widths self.edge_colors = [i if i else "#262626" for i in self.edge_colors] self.edge_widths = [i if i else 2 for i in self.edge_widths]
Resolve conflict of 'node_color' and 'node_style['fill'] args which are redundant. Default is node_style.fill unless user entered node_color. To enter multiple colors user must use node_color not style fill. Either way, we build a list of colors to pass to Drawing.node_colors which is then written to the marker as a fill CSS attribute.
entailment
def add_nodes_to_axes(self): """ Creates a new marker for every node from idx indexes and lists of node_values, node_colors, node_sizes, node_style, node_labels_style. Pulls from node_color and adds to a copy of the style dict for each node to create marker. Node_colors has priority to overwrite node_style['fill'] """ # bail out if not any visible nodes (e.g., none w/ size>0) if all([i == "" for i in self.node_labels]): return # build markers for each node. marks = [] for nidx in self.ttree.get_node_values('idx', 1, 1): # select node value from deconstructed lists nlabel = self.node_labels[nidx] nsize = self.node_sizes[nidx] nmarker = self.node_markers[nidx] # get styledict copies nstyle = deepcopy(self.style.node_style) nlstyle = deepcopy(self.style.node_labels_style) # and mod style dict copies from deconstructed lists nstyle["fill"] = self.node_colors[nidx] # create mark if text or node if (nlabel or nsize): mark = toyplot.marker.create( shape=nmarker, label=str(nlabel), size=nsize, mstyle=nstyle, lstyle=nlstyle, ) else: mark = "" # store the nodes/marks marks.append(mark) # node_hover == True to show all features interactive if self.style.node_hover is True: title = self.get_hover() elif isinstance(self.style.node_hover, list): # todo: return advice if improperly formatted title = self.style.node_hover # if hover is false then no hover else: title = None # add nodes self.axes.scatterplot( self.coords.verts[:, 0], self.coords.verts[:, 1], marker=marks, title=title, )
Creates a new marker for every node from idx indexes and lists of node_values, node_colors, node_sizes, node_style, node_labels_style. Pulls from node_color and adds to a copy of the style dict for each node to create marker. Node_colors has priority to overwrite node_style['fill']
entailment
def get_tip_label_coords(self): """ Get starting position of tip labels text based on locations of the leaf nodes on the tree and style offset and align options. Node positions are found using the .verts attribute of coords and is already oriented for the tree face direction. """ # number of tips ns = self.ttree.ntips # x-coordinate of tips assuming down-face tip_xpos = self.coords.verts[:ns, 0] tip_ypos = self.coords.verts[:ns, 1] align_edges = None align_verts = None # handle orientations if self.style.orient in (0, 'down'): # align tips at zero if self.style.tip_labels_align: tip_yend = np.zeros(ns) align_edges = np.array([ (i + len(tip_ypos), i) for i in range(len(tip_ypos)) ]) align_verts = np.array( list(zip(tip_xpos, tip_ypos)) + \ list(zip(tip_xpos, tip_yend)) ) tip_ypos = tip_yend else: # tip labels align finds the zero axis for orientation... if self.style.tip_labels_align: tip_xend = np.zeros(ns) align_edges = np.array([ (i + len(tip_xpos), i) for i in range(len(tip_xpos)) ]) align_verts = np.array( list(zip(tip_xpos, tip_ypos)) + \ list(zip(tip_xend, tip_ypos)) ) tip_xpos = tip_xend return tip_xpos, tip_ypos, align_edges, align_verts
Get starting position of tip labels text based on locations of the leaf nodes on the tree and style offset and align options. Node positions are found using the .verts attribute of coords and is already oriented for the tree face direction.
entailment
def get_dims_from_tree_size(self): "Calculate reasonable canvas height and width for tree given N tips" ntips = len(self.ttree) if self.style.orient in ("right", "left"): # height is long tip-wise dimension if not self.style.height: self.style.height = max(275, min(1000, 18 * ntips)) if not self.style.width: self.style.width = max(350, min(500, 18 * ntips)) else: # width is long tip-wise dimension if not self.style.height: self.style.height = max(275, min(500, 18 * ntips)) if not self.style.width: self.style.width = max(350, min(1000, 18 * ntips))
Calculate reasonable canvas height and width for tree given N tips
entailment
def get_longest_line_length(text): """Get the length longest line in a paragraph""" lines = text.split("\n") length = 0 for i in range(len(lines)): if len(lines[i]) > length: length = len(lines[i]) return length
Get the length longest line in a paragraph
entailment
def isnumeric(obj): ''' Return true if obj is a numeric value ''' from decimal import Decimal if type(obj) == Decimal: return True else: try: float(obj) except: return False return True
Return true if obj is a numeric value
entailment
def significant_format(number, decimal_sep='.', thousand_sep=',', n=3): """Format a number according to a given number of significant figures. """ str_number = significant(number, n) # sign if float(number) < 0: sign = '-' else: sign = '' if str_number[0] == '-': str_number = str_number[1:] if '.' in str_number: int_part, dec_part = str_number.split('.') else: int_part, dec_part = str_number, '' if dec_part: dec_part = decimal_sep + dec_part if thousand_sep: int_part_gd = '' for cnt, digit in enumerate(int_part[::-1]): if cnt and not cnt % 3: int_part_gd += thousand_sep int_part_gd += digit int_part = int_part_gd[::-1] return sign + int_part + dec_part
Format a number according to a given number of significant figures.
entailment
def to_text_string(obj, encoding=None): """Convert `obj` to (unicode) text string""" if PY2: # Python 2 if encoding is None: return unicode(obj) else: return unicode(obj, encoding) else: # Python 3 if encoding is None: return str(obj) elif isinstance(obj, str): # In case this function is not used properly, this could happen return obj else: return str(obj, encoding)
Convert `obj` to (unicode) text string
entailment
def text_to_qcolor(text): """ Create a QColor from specified string Avoid warning from Qt when an invalid QColor is instantiated """ color = QColor() if not is_string(text): # testing for QString (PyQt API#1) text = str(text) if not is_text_string(text): return color if text.startswith('#') and len(text)==7: correct = '#0123456789abcdef' for char in text: if char.lower() not in correct: return color elif text not in list(QColor.colorNames()): return color color.setNamedColor(text) return color
Create a QColor from specified string Avoid warning from Qt when an invalid QColor is instantiated
entailment
def tuple_to_qfont(tup): """ Create a QFont from tuple: (family [string], size [int], italic [bool], bold [bool]) """ if not isinstance(tup, tuple) or len(tup) != 4 \ or not is_text_string(tup[0]) \ or not isinstance(tup[1], int) \ or not isinstance(tup[2], bool) \ or not isinstance(tup[3], bool): return None font = QFont() family, size, italic, bold = tup font.setFamily(family) font.setPointSize(size) font.setItalic(italic) font.setBold(bold) return font
Create a QFont from tuple: (family [string], size [int], italic [bool], bold [bool])
entailment
def fedit(data, title="", comment="", icon=None, parent=None, apply=None, ok=True, cancel=True, result='list', outfile=None, type='form', scrollbar=False, background_color=None, widget_color=None): """ Create form dialog and return result (if Cancel button is pressed, return None) :param tuple data: datalist, datagroup (see below) :param str title: form title :param str comment: header comment :param QIcon icon: dialog box icon :param QWidget parent: parent widget :param str ok: customized ok button label :param str cancel: customized cancel button label :param tuple apply: (label, function) customized button label and callback :param function apply: function taking two arguments (result, widgets) :param str result: result serialization ('list', 'dict', 'OrderedDict', 'JSON' or 'XML') :param str outfile: write result to the file outfile.[py|json|xml] :param str type: layout type ('form' or 'questions') :param bool scrollbar: vertical scrollbar :param str background_color: color of the background :param str widget_color: color of the widgets :return: Serialized result (data type depends on `result` parameter) datalist: list/tuple of (field_name, field_value) datagroup: list/tuple of (datalist *or* datagroup, title, comment) Tips: * one field for each member of a datalist * one tab for each member of a top-level datagroup * one page (of a multipage widget, each page can be selected with a combo box) for each member of a datagroup inside a datagroup Supported types for field_value: - int, float, str, unicode, bool - colors: in Qt-compatible text form, i.e. in hex format or name (red,...) (automatically detected from a string) - list/tuple: * the first element will be the selected index (or value) * the other elements can be couples (key, value) or only values """ # Create a QApplication instance if no instance currently exists # (e.g. if the module is used directly from the interpreter) test_travis = os.environ.get('TEST_CI_WIDGETS', None) if test_travis is not None: app = QApplication.instance() if app is None: app = QApplication([]) timer = QTimer(app) timer.timeout.connect(app.quit) timer.start(1000) elif QApplication.startingUp(): _app = QApplication([]) translator_qt = QTranslator() translator_qt.load('qt_' + QLocale.system().name(), QLibraryInfo.location(QLibraryInfo.TranslationsPath)) _app.installTranslator(translator_qt) serial = ['list', 'dict', 'OrderedDict', 'JSON', 'XML'] if result not in serial: print("Warning: '%s' not in %s, default to list" % (result, ', '.join(serial)), file=sys.stderr) result = 'list' layouts = ['form', 'questions'] if type not in layouts: print("Warning: '%s' not in %s, default to form" % (type, ', '.join(layouts)), file=sys.stderr) type = 'form' dialog = FormDialog(data, title, comment, icon, parent, apply, ok, cancel, result, outfile, type, scrollbar, background_color, widget_color) if dialog.exec_(): return dialog.get()
Create form dialog and return result (if Cancel button is pressed, return None) :param tuple data: datalist, datagroup (see below) :param str title: form title :param str comment: header comment :param QIcon icon: dialog box icon :param QWidget parent: parent widget :param str ok: customized ok button label :param str cancel: customized cancel button label :param tuple apply: (label, function) customized button label and callback :param function apply: function taking two arguments (result, widgets) :param str result: result serialization ('list', 'dict', 'OrderedDict', 'JSON' or 'XML') :param str outfile: write result to the file outfile.[py|json|xml] :param str type: layout type ('form' or 'questions') :param bool scrollbar: vertical scrollbar :param str background_color: color of the background :param str widget_color: color of the widgets :return: Serialized result (data type depends on `result` parameter) datalist: list/tuple of (field_name, field_value) datagroup: list/tuple of (datalist *or* datagroup, title, comment) Tips: * one field for each member of a datalist * one tab for each member of a top-level datagroup * one page (of a multipage widget, each page can be selected with a combo box) for each member of a datagroup inside a datagroup Supported types for field_value: - int, float, str, unicode, bool - colors: in Qt-compatible text form, i.e. in hex format or name (red,...) (automatically detected from a string) - list/tuple: * the first element will be the selected index (or value) * the other elements can be couples (key, value) or only values
entailment
def get_dialog(self): """Return FormDialog instance""" dialog = self.parent() while not isinstance(dialog, QDialog): dialog = dialog.parent() return dialog
Return FormDialog instance
entailment
def get(self): """Return form result""" # It is import to avoid accessing Qt C++ object as it has probably # already been destroyed, due to the Qt.WA_DeleteOnClose attribute if self.outfile: if self.result in ['list', 'dict', 'OrderedDict']: fd = open(self.outfile + '.py', 'w') fd.write(str(self.data)) elif self.result == 'JSON': fd = open(self.outfile + '.json', 'w') data = json.loads(self.data, object_pairs_hook=OrderedDict) json.dump(data, fd) elif self.result == 'XML': fd = open(self.outfile + '.xml', 'w') root = ET.fromstring(self.data) tree = ET.ElementTree(root) tree.write(fd, encoding='UTF-8') fd.close() else: return self.data
Return form result
entailment
def ts_merge(series): '''Merge timeseries into a new :class:`~.TimeSeries` instance. :parameter series: an iterable over :class:`~.TimeSeries`. ''' series = iter(series) ts = next(series) return ts.merge(series)
Merge timeseries into a new :class:`~.TimeSeries` instance. :parameter series: an iterable over :class:`~.TimeSeries`.
entailment
def ts_bin_op(op_name, ts1, ts2, all=True, fill=None, name=None): '''Entry point for any arithmetic type function performed on a timeseries and/or a scalar. op_name - name of the function to be performed ts1, ts2 - timeseries or scalars that the function is to performed over all - whether all dates should be included in the result fill - the value that should be used to represent "missing values" name - the name of the resulting time series ''' op = op_get(op_name) fill = fill if fill is not None else settings.missing_value if hasattr(fill, '__call__'): fill_fn = fill else: fill_fn = lambda: fill name = name or '%s(%s,%s)' % (op_name, ts1, ts2) if is_timeseries(ts1): ts = ts1 if is_timeseries(ts2): dts, data = op_ts_ts(op_name, op, ts1, ts2, all, fill_fn) else: dts, data = op_ts_scalar(op_name, op, ts1, ts2, fill_fn) else: if is_timeseries(ts2): ts = ts2 dts, data = op_scalar_ts(op_name, op, ts1, ts2, fill_fn) else: return op(ts1, ts2) return ts.clone(date=dts, data=data, name=name)
Entry point for any arithmetic type function performed on a timeseries and/or a scalar. op_name - name of the function to be performed ts1, ts2 - timeseries or scalars that the function is to performed over all - whether all dates should be included in the result fill - the value that should be used to represent "missing values" name - the name of the resulting time series
entailment
def getalgo(self, operation, name): '''Return the algorithm for *operation* named *name*''' if operation not in self._algorithms: raise NotAvailable('{0} not registered.'.format(operation)) oper = self._algorithms[operation] try: return oper[name] except KeyError: raise NotAvailable('{0} algorithm {1} not registered.' .format(operation, name))
Return the algorithm for *operation* named *name*
entailment
def dates(self, desc=None): '''Returns an iterable over ``datetime.date`` instances in the timeseries.''' c = self.dateinverse for key in self.keys(desc=desc): yield c(key)
Returns an iterable over ``datetime.date`` instances in the timeseries.
entailment
def items(self, desc=None, start_value=None, shift_by=None): '''Returns a python ``generator`` which can be used to iterate over :func:`dynts.TimeSeries.dates` and :func:`dynts.TimeSeries.values` returning a two dimensional tuple ``(date,value)`` in each iteration. Similar to the python dictionary items function. :parameter desc: if ``True`` the iteratioon starts from the more recent data and proceeds backwards. :parameter shift_by: optional parallel shift in values. :parameter start_value: optional start value of timeseries. ''' if self: if shift_by is None and start_value is not None: for cross in self.values(): missings = 0 if shift_by is None: shift_by = [] for v in cross: shift_by.append(start_value - v) if v != v: missings += 1 else: for j in range(len(shift_by)): s = shift_by[j] v = cross[j] if s != s: if v == v: shift_by[j] = start_value - v else: missings += 1 if not missings: break if shift_by: for d, v in zip(self.dates(desc=desc), self.values(desc=desc)): yield d, v + shift_by else: for d, v in zip(self.dates(desc=desc), self.values(desc=desc)): yield d, v
Returns a python ``generator`` which can be used to iterate over :func:`dynts.TimeSeries.dates` and :func:`dynts.TimeSeries.values` returning a two dimensional tuple ``(date,value)`` in each iteration. Similar to the python dictionary items function. :parameter desc: if ``True`` the iteratioon starts from the more recent data and proceeds backwards. :parameter shift_by: optional parallel shift in values. :parameter start_value: optional start value of timeseries.
entailment
def series(self): '''Generator of single series data (no dates are included).''' data = self.values() if len(data): for c in range(self.count()): yield data[:, c] else: raise StopIteration
Generator of single series data (no dates are included).
entailment
def named_series(self, ordering=None): '''Generator of tuples with name and serie data.''' series = self.series() if ordering: series = list(series) todo = dict(((n, idx) for idx, n in enumerate(self.names()))) for name in ordering: if name in todo: idx = todo.pop(name) yield name, series[idx] for name in todo: idx = todo[name] yield name, series[idx] else: for name_serie in zip(self.names(), series): yield name_serie
Generator of tuples with name and serie data.
entailment
def clone(self, date=None, data=None, name=None): '''Create a clone of timeseries''' name = name or self.name data = data if data is not None else self.values() ts = self.__class__(name) ts._dtype = self._dtype if date is None: # dates not provided ts.make(self.keys(), data, raw=True) else: ts.make(date, data) return ts
Create a clone of timeseries
entailment
def reduce(self, size, method='simple', **kwargs): '''Trim :class:`Timeseries` to a new *size* using the algorithm *method*. If *size* is greater or equal than len(self) it does nothing.''' if size >= len(self): return self return self.getalgo('reduce', method)(self, size, **kwargs)
Trim :class:`Timeseries` to a new *size* using the algorithm *method*. If *size* is greater or equal than len(self) it does nothing.
entailment
def clean(self, algorithm=None): '''Create a new :class:`TimeSeries` with missing data removed or replaced by the *algorithm* provided''' # all dates original_dates = list(self.dates()) series = [] all_dates = set() for serie in self.series(): dstart, dend, vend = None, None, None new_dates = [] new_values = [] missings = [] values = {} for d, v in zip(original_dates, serie): if v == v: if dstart is None: dstart = d if missings: for dx, vx in algorithm(dend, vend, d, v, missings): new_dates.append(dx) new_values.append(vx) missings = [] dend = d vend = v values[d] = v elif dstart is not None and algorithm: missings.append((dt, v)) if missings: for dx, vx in algorithm(dend, vend, None, None, missings): new_dates.append(dx) new_values.append(vx) dend = dx series.append((dstart, dend, values)) all_dates = all_dates.union(values) cdate = [] cdata = [] for dt in sorted(all_dates): cross = [] for start, end, values in series: if start is None or (dt >= start and dt <= end): value = values.get(dt) if value is None: cross = None break else: value = nan cross.append(value) if cross: cdate.append(dt) cdata.append(cross) return self.clone(date=cdate, data=cdata)
Create a new :class:`TimeSeries` with missing data removed or replaced by the *algorithm* provided
entailment
def isconsistent(self): '''Check if the timeseries is consistent''' for dt1, dt0 in laggeddates(self): if dt1 <= dt0: return False return True
Check if the timeseries is consistent
entailment
def var(self, ddof=0): '''Calculate variance of timeseries. Return a vector containing the variances of each series in the timeseries. :parameter ddof: delta degree of freedom, the divisor used in the calculation is given by ``N - ddof`` where ``N`` represents the length of timeseries. Default ``0``. .. math:: var = \\frac{\\sum_i^N (x - \\mu)^2}{N-ddof} ''' N = len(self) if N: v = self.values() mu = sum(v) return (sum(v*v) - mu*mu/N)/(N-ddof) else: return None
Calculate variance of timeseries. Return a vector containing the variances of each series in the timeseries. :parameter ddof: delta degree of freedom, the divisor used in the calculation is given by ``N - ddof`` where ``N`` represents the length of timeseries. Default ``0``. .. math:: var = \\frac{\\sum_i^N (x - \\mu)^2}{N-ddof}
entailment
def sd(self): '''Calculate standard deviation of timeseries''' v = self.var() if len(v): return np.sqrt(v) else: return None
Calculate standard deviation of timeseries
entailment
def apply(self, func, window=None, bycolumn=True, align=None, **kwargs): '''Apply function ``func`` to the timeseries. :keyword func: string indicating function to apply :keyword window: Rolling window, If not defined ``func`` is applied on the whole dataset. Default ``None``. :keyword bycolumn: If ``True``, function ``func`` is applied on each column separately. Default ``True``. :keyword align: string specifying whether the index of the result should be ``left`` or ``right`` (default) or ``centered`` aligned compared to the rolling window of observations. :keyword kwargs: dictionary of auxiliary parameters used by function ``func``. ''' N = len(self) window = window or N self.precondition(window <= N and window > 0, OutOfBound) return self._rollapply(func, window=window, align=align or self.default_align, bycolumn=bycolumn, **kwargs)
Apply function ``func`` to the timeseries. :keyword func: string indicating function to apply :keyword window: Rolling window, If not defined ``func`` is applied on the whole dataset. Default ``None``. :keyword bycolumn: If ``True``, function ``func`` is applied on each column separately. Default ``True``. :keyword align: string specifying whether the index of the result should be ``left`` or ``right`` (default) or ``centered`` aligned compared to the rolling window of observations. :keyword kwargs: dictionary of auxiliary parameters used by function ``func``.
entailment
def rollapply(self, func, window=20, **kwargs): '''A generic :ref:`rolling function <rolling-function>` for function *func*. Same construct as :meth:`dynts.TimeSeries.apply` but with default ``window`` set to ``20``. ''' return self.apply(func, window=window, **kwargs)
A generic :ref:`rolling function <rolling-function>` for function *func*. Same construct as :meth:`dynts.TimeSeries.apply` but with default ``window`` set to ``20``.
entailment
def rollsd(self, scale=1, **kwargs): '''A :ref:`rolling function <rolling-function>` for stadard-deviation values: Same as:: self.rollapply('sd', **kwargs) ''' ts = self.rollapply('sd', **kwargs) if scale != 1: ts *= scale return ts
A :ref:`rolling function <rolling-function>` for stadard-deviation values: Same as:: self.rollapply('sd', **kwargs)
entailment
def unwind(self, values, backend, **kwargs): '''Unwind expression by applying *values* to the abstract nodes. The ``kwargs`` dictionary can contain data which can be used to override values ''' if not hasattr(self, "_unwind_value"): self._unwind_value = self._unwind(values, backend, **kwargs) return self._unwind_value
Unwind expression by applying *values* to the abstract nodes. The ``kwargs`` dictionary can contain data which can be used to override values
entailment
def removeduplicates(self, entries = None): ''' Loop over children a remove duplicate entries. @return - a list of removed entries ''' removed = [] if entries == None: entries = {} new_children = [] for c in self.children: cs = str(c) cp = entries.get(cs,None) if cp: new_children.append(cp) removed.append(c) else: dups = c.removeduplicates(entries) if dups: removed.extend(dups) entries[cs] = c new_children.append(c) self.children = new_children return removed
Loop over children a remove duplicate entries. @return - a list of removed entries
entailment
def html2md(html_string): """ Convert a string or html file to a markdown table string. Parameters ---------- html_string : str Either the html string, or the filepath to the html Returns ------- str The html table converted to a Markdown table Notes ----- This function requires BeautifulSoup_ to work. Example ------- >>> html_text = ''' ... <table> ... <tr> ... <th> ... Header 1 ... </th> ... <th> ... Header 2 ... </th> ... <th> ... Header 3 ... </th> ... <tr> ... <td> ... <p>This is a paragraph</p> ... </td> ... <td> ... Just text ... </td> ... <td> ... Hot dog ... </td> ... </tr> ... </table> ... ''' >>> import dashtable >>> print(dashtable.html2md(html_text)) | Header 1 | Header 2 | Header 3 | |---------------------|-----------|----------| | This is a paragraph | Just text | Hot dog | .. _BeautifulSoup: https://www.crummy.com/software/BeautifulSoup/ """ if os.path.isfile(html_string): file = open(html_string, 'r', encoding='utf-8') lines = file.readlines() file.close() html_string = ''.join(lines) table_data, spans, use_headers = html2data(html_string) if table_data == '': return '' return data2md(table_data)
Convert a string or html file to a markdown table string. Parameters ---------- html_string : str Either the html string, or the filepath to the html Returns ------- str The html table converted to a Markdown table Notes ----- This function requires BeautifulSoup_ to work. Example ------- >>> html_text = ''' ... <table> ... <tr> ... <th> ... Header 1 ... </th> ... <th> ... Header 2 ... </th> ... <th> ... Header 3 ... </th> ... <tr> ... <td> ... <p>This is a paragraph</p> ... </td> ... <td> ... Just text ... </td> ... <td> ... Hot dog ... </td> ... </tr> ... </table> ... ''' >>> import dashtable >>> print(dashtable.html2md(html_text)) | Header 1 | Header 2 | Header 3 | |---------------------|-----------|----------| | This is a paragraph | Just text | Hot dog | .. _BeautifulSoup: https://www.crummy.com/software/BeautifulSoup/
entailment
def table_cells_2_spans(table, spans): """ Converts the table to a list of spans, for consistency. This method combines the table data with the span data into a single, more consistent type. Any normal cell will become a span of just 1 column and 1 row. Parameters ---------- table : list of lists of str spans : list of lists of int Returns ------- table : list of lists of lists of int As you can imagine, this is pretty confusing for a human which is why data2rst accepts table data and span data separately. """ new_spans = [] for row in range(len(table)): for column in range(len(table[row])): span = get_span(spans, row, column) if not span: new_spans.append([[row, column]]) new_spans.extend(spans) new_spans = list(sorted(new_spans)) return new_spans
Converts the table to a list of spans, for consistency. This method combines the table data with the span data into a single, more consistent type. Any normal cell will become a span of just 1 column and 1 row. Parameters ---------- table : list of lists of str spans : list of lists of int Returns ------- table : list of lists of lists of int As you can imagine, this is pretty confusing for a human which is why data2rst accepts table data and span data separately.
entailment
def keys(self, desc = None): '''numpy asarray does not copy data''' res = asarray(self.rc('index')) if desc == True: return reversed(res) else: return res
numpy asarray does not copy data
entailment
def values(self, desc = None): '''numpy asarray does not copy data''' if self._ts: res = asarray(self._ts) if desc == True: return reversed(res) else: return res else: return ndarray([0,0])
numpy asarray does not copy data
entailment
def rcts(self, command, *args, **kwargs): '''General function for applying a rolling R function to a timeserie''' cls = self.__class__ name = kwargs.pop('name','') date = kwargs.pop('date',None) data = kwargs.pop('data',None) kwargs.pop('bycolumn',None) ts = cls(name=name,date=date,data=data) ts._ts = self.rc(command, *args, **kwargs) return ts
General function for applying a rolling R function to a timeserie
entailment
def get_html_column_count(html_string): """ Gets the number of columns in an html table. Paramters --------- html_string : str Returns ------- int The number of columns in the table """ try: from bs4 import BeautifulSoup except ImportError: print("ERROR: You must have BeautifulSoup to use html2data") return soup = BeautifulSoup(html_string, 'html.parser') table = soup.find('table') if not table: return 0 column_counts = [] trs = table.findAll('tr') if len(trs) == 0: return 0 for tr in range(len(trs)): if tr == 0: tds = trs[tr].findAll('th') if len(tds) == 0: tds = trs[tr].findAll('td') else: tds = trs[tr].findAll('td') count = 0 for td in tds: if td.has_attr('colspan'): count += int(td['colspan']) else: count += 1 column_counts.append(count) return max(column_counts)
Gets the number of columns in an html table. Paramters --------- html_string : str Returns ------- int The number of columns in the table
entailment
def add_cushions(table): """ Add space to start and end of each string in a list of lists Parameters ---------- table : list of lists of str A table of rows of strings. For example:: [ ['dog', 'cat', 'bicycle'], ['mouse', trumpet', ''] ] Returns ------- table : list of lists of str Note ---- Each cell in an rst grid table should to have a cushion of at least one space on each side of the string it contains. For example:: +-----+-------+ | foo | bar | +-----+-------+ | cat | steve | +-----+-------+ is better than:: +-----+---+ |foo| bar | +-----+---+ |cat|steve| +-----+---+ """ for row in range(len(table)): for column in range(len(table[row])): lines = table[row][column].split("\n") for i in range(len(lines)): if not lines[i] == "": lines[i] = " " + lines[i].rstrip() + " " table[row][column] = "\n".join(lines) return table
Add space to start and end of each string in a list of lists Parameters ---------- table : list of lists of str A table of rows of strings. For example:: [ ['dog', 'cat', 'bicycle'], ['mouse', trumpet', ''] ] Returns ------- table : list of lists of str Note ---- Each cell in an rst grid table should to have a cushion of at least one space on each side of the string it contains. For example:: +-----+-------+ | foo | bar | +-----+-------+ | cat | steve | +-----+-------+ is better than:: +-----+---+ |foo| bar | +-----+---+ |cat|steve| +-----+---+
entailment
def rollsingle(self, func, window=20, name=None, fallback=False, align='right', **kwargs): '''Efficient rolling window calculation for min, max type functions ''' rname = 'roll_{0}'.format(func) if fallback: rfunc = getattr(lib.fallback, rname) else: rfunc = getattr(lib, rname, None) if not rfunc: rfunc = getattr(lib.fallback, rname) data = np.array([list(rfunc(serie, window)) for serie in self.series()]) name = name or self.makename(func, window=window) dates = asarray(self.dates()) desc = settings.desc if (align == 'right' and not desc) or desc: dates = dates[window-1:] else: dates = dates[:-window+1] return self.clone(dates, data.transpose(), name=name)
Efficient rolling window calculation for min, max type functions
entailment
def find_ge(self, dt): '''Building block of all searches. Find the index corresponding to the leftmost value greater or equal to *dt*. If *dt* is greater than the :func:`dynts.TimeSeries.end` a :class:`dynts.exceptions.RightOutOfBound` exception will raise. *dt* must be a python datetime.date instance.''' i = bisect_left(self.dates, dt) if i != len(self.dates): return i raise RightOutOfBound
Building block of all searches. Find the index corresponding to the leftmost value greater or equal to *dt*. If *dt* is greater than the :func:`dynts.TimeSeries.end` a :class:`dynts.exceptions.RightOutOfBound` exception will raise. *dt* must be a python datetime.date instance.
entailment
def find_le(self, dt): '''Find the index corresponding to the rightmost value less than or equal to *dt*. If *dt* is less than :func:`dynts.TimeSeries.end` a :class:`dynts.exceptions.LeftOutOfBound` exception will raise. *dt* must be a python datetime.date instance.''' i = bisect_right(self.dates, dt) if i: return i-1 raise LeftOutOfBound
Find the index corresponding to the rightmost value less than or equal to *dt*. If *dt* is less than :func:`dynts.TimeSeries.end` a :class:`dynts.exceptions.LeftOutOfBound` exception will raise. *dt* must be a python datetime.date instance.
entailment
def upgrade(): """Update database.""" op.create_table( 'transaction', sa.Column('issued_at', sa.DateTime(), nullable=True), sa.Column('id', sa.BigInteger(), nullable=False), sa.Column('remote_addr', sa.String(length=50), nullable=True), ) op.create_primary_key('pk_transaction', 'transaction', ['id']) if op._proxy.migration_context.dialect.supports_sequences: op.execute(CreateSequence(Sequence('transaction_id_seq')))
Update database.
entailment
def downgrade(): """Downgrade database.""" op.drop_table('transaction') if op._proxy.migration_context.dialect.supports_sequences: op.execute(DropSequence(Sequence('transaction_id_seq')))
Downgrade database.
entailment
def t_NUMBER(self, t): r'([0-9]+\.?[0-9]*|\.[0-9]+)([eE](\+|-)?[0-9]+)?' try: sv = t.value v = float(sv) iv = int(v) t.value = (iv if iv == v else v, sv) except ValueError: print("Number %s is too large!" % t.value) t.value = 0 return t
r'([0-9]+\.?[0-9]*|\.[0-9]+)([eE](\+|-)?[0-9]+)?
entailment
def t_ID(self, t): r'`[^`]*`|[a-zA-Z_][a-zA-Z_0-9:@]*' res = self.oper.get(t.value, None) # Check for reserved words if res is None: res = t.value.upper() if res == 'FALSE': t.type = 'BOOL' t.value = False elif res == 'TRUE': t.type = 'BOOL' t.value = True else: t.type = 'ID' else: t.value = res t.type = 'FUNCTION' return t
r'`[^`]*`|[a-zA-Z_][a-zA-Z_0-9:@]*
entailment
def read_newick(newick, root_node=None, format=0): """ Reads a newick tree from either a string or a file, and returns an ETE tree structure. A previously existent node object can be passed as the root of the tree, which means that all its new children will belong to the same class as the root (This allows to work with custom TreeNode objects). You can also take advantage from this behaviour to concatenate several tree structures. """ ## check newick type as a string or filepath, Toytree parses urls to str's if isinstance(newick, six.string_types): if os.path.exists(newick): if newick.endswith('.gz'): import gzip nw = gzip.open(newick).read() else: nw = open(newick, 'rU').read() else: nw = newick ## get re matcher for testing newick formats matcher = compile_matchers(formatcode=format) nw = nw.strip() if not nw.startswith('(') and nw.endswith(';'): return _read_node_data(nw[:-1], root_node, "single", matcher, format) elif not nw.startswith('(') or not nw.endswith(';'): raise NewickError('Unexisting tree file or Malformed newick tree structure.') else: return _read_newick_from_string(nw, root_node, matcher, format) else: raise NewickError("'newick' argument must be either a filename or a newick string.")
Reads a newick tree from either a string or a file, and returns an ETE tree structure. A previously existent node object can be passed as the root of the tree, which means that all its new children will belong to the same class as the root (This allows to work with custom TreeNode objects). You can also take advantage from this behaviour to concatenate several tree structures.
entailment
def _read_newick_from_string(nw, root_node, matcher, formatcode): """ Reads a newick string in the New Hampshire format. """ if nw.count('(') != nw.count(')'): raise NewickError('Parentheses do not match. Broken tree structure?') # white spaces and separators are removed nw = re.sub("[\n\r\t]+", "", nw) current_parent = None # Each chunk represents the content of a parent node, and it could contain # leaves and closing parentheses. # We may find: # leaf, ..., leaf, # leaf, ..., leaf))), # leaf)), leaf, leaf)) # leaf)) # ) only if formatcode == 100 for chunk in nw.split("(")[1:]: # If no node has been created so far, this is the root, so use the node. current_parent = root_node if current_parent is None else current_parent.add_child() subchunks = [ch.strip() for ch in chunk.split(",")] # We should expect that the chunk finished with a comma (if next chunk # is an internal sister node) or a subchunk containing closing parenthesis until the end of the tree. #[leaf, leaf, ''] #[leaf, leaf, ')))', leaf, leaf, ''] #[leaf, leaf, ')))', leaf, leaf, ''] #[leaf, leaf, ')))', leaf), leaf, 'leaf);'] if subchunks[-1] != '' and not subchunks[-1].endswith(';'): raise NewickError('Broken newick structure at: %s' %chunk) # lets process the subchunks. Every closing parenthesis will close a # node and go up one level. for i, leaf in enumerate(subchunks): if leaf.strip() == '' and i == len(subchunks) - 1: continue # "blah blah ,( blah blah" closing_nodes = leaf.split(")") # first part after splitting by ) always contain leaf info _read_node_data(closing_nodes[0], current_parent, "leaf", matcher, formatcode) # next contain closing nodes and data about the internal nodes. if len(closing_nodes)>1: for closing_internal in closing_nodes[1:]: closing_internal = closing_internal.rstrip(";") # read internal node data and go up one level _read_node_data(closing_internal, current_parent, "internal", matcher, formatcode) current_parent = current_parent.up return root_node
Reads a newick string in the New Hampshire format.
entailment
def _parse_extra_features(node, NHX_string): """ Reads node's extra data form its NHX string. NHX uses this format: [&&NHX:prop1=value1:prop2=value2] """ NHX_string = NHX_string.replace("[&&NHX:", "") NHX_string = NHX_string.replace("]", "") for field in NHX_string.split(":"): try: pname, pvalue = field.split("=") except ValueError as e: raise NewickError('Invalid NHX format %s' %field) node.add_feature(pname, pvalue)
Reads node's extra data form its NHX string. NHX uses this format: [&&NHX:prop1=value1:prop2=value2]
entailment
def compile_matchers(formatcode): """ Tests newick string against format types? and makes a re.compile """ matchers = {} for node_type in ["leaf", "single", "internal"]: if node_type == "leaf" or node_type == "single": container1 = NW_FORMAT[formatcode][0][0] container2 = NW_FORMAT[formatcode][1][0] converterFn1 = NW_FORMAT[formatcode][0][1] converterFn2 = NW_FORMAT[formatcode][1][1] flexible1 = NW_FORMAT[formatcode][0][2] flexible2 = NW_FORMAT[formatcode][1][2] else: container1 = NW_FORMAT[formatcode][2][0] container2 = NW_FORMAT[formatcode][3][0] converterFn1 = NW_FORMAT[formatcode][2][1] converterFn2 = NW_FORMAT[formatcode][3][1] flexible1 = NW_FORMAT[formatcode][2][2] flexible2 = NW_FORMAT[formatcode][3][2] if converterFn1 == str: FIRST_MATCH = "("+_NAME_RE+")" elif converterFn1 == float: FIRST_MATCH = "("+_FLOAT_RE+")" elif converterFn1 is None: FIRST_MATCH = '()' if converterFn2 == str: SECOND_MATCH = "(:"+_NAME_RE+")" elif converterFn2 == float: SECOND_MATCH = "(:"+_FLOAT_RE+")" elif converterFn2 is None: SECOND_MATCH = '()' if flexible1 and node_type != 'leaf': FIRST_MATCH += "?" if flexible2: SECOND_MATCH += "?" matcher_str= '^\s*%s\s*%s\s*(%s)?\s*$' % (FIRST_MATCH, SECOND_MATCH, _NHX_RE) compiled_matcher = re.compile(matcher_str) matchers[node_type] = [container1, container2, converterFn1, converterFn2, compiled_matcher] return matchers
Tests newick string against format types? and makes a re.compile
entailment
def _read_node_data(subnw, current_node, node_type, matcher, formatcode): """ Reads a leaf node from a subpart of the original newicktree """ if node_type == "leaf" or node_type == "single": if node_type == "leaf": node = current_node.add_child() else: node = current_node else: node = current_node subnw = subnw.strip() if not subnw and node_type == 'leaf' and formatcode != 100: raise NewickError('Empty leaf node found') elif not subnw: return container1, container2, converterFn1, converterFn2, compiled_matcher = matcher[node_type] data = re.match(compiled_matcher, subnw) if data: data = data.groups() # This prevents ignoring errors even in flexible nodes: if subnw and data[0] is None and data[1] is None and data[2] is None: raise NewickError("Unexpected newick format '%s'" %subnw) if data[0] is not None and data[0] != '': node.add_feature(container1, converterFn1(data[0].strip())) if data[1] is not None and data[1] != '': node.add_feature(container2, converterFn2(data[1][1:].strip())) if data[2] is not None \ and data[2].startswith("[&&NHX"): _parse_extra_features(node, data[2]) else: raise NewickError("Unexpected newick format '%s' " %subnw[0:50]) return
Reads a leaf node from a subpart of the original newicktree
entailment
def write_newick(rootnode, features=None, format=1, format_root_node=True, is_leaf_fn=None, dist_formatter=None, support_formatter=None, name_formatter=None): """ Iteratively export a tree structure and returns its NHX representation. """ newick = [] leaf = is_leaf_fn if is_leaf_fn else lambda n: not bool(n.children) for postorder, node in rootnode.iter_prepostorder(is_leaf_fn=is_leaf_fn): if postorder: newick.append(")") if node.up is not None or format_root_node: newick.append(format_node(node, "internal", format, dist_formatter=dist_formatter, support_formatter=support_formatter, name_formatter=name_formatter)) newick.append(_get_features_string(node, features)) else: if node is not rootnode and node != node.up.children[0]: newick.append(",") if leaf(node): safe_name = re.sub("["+_ILEGAL_NEWICK_CHARS+"]", "_", \ str(getattr(node, "name"))) newick.append(format_node(node, "leaf", format, dist_formatter=dist_formatter, support_formatter=support_formatter, name_formatter=name_formatter)) newick.append(_get_features_string(node, features)) else: newick.append("(") newick.append(";") return ''.join(newick)
Iteratively export a tree structure and returns its NHX representation.
entailment