sentence1
stringlengths 52
3.87M
| sentence2
stringlengths 1
47.2k
| label
stringclasses 1
value |
|---|---|---|
def redistribute_threads(blockdimx, blockdimy, blockdimz,
dimx, dimy, dimz):
"""
Redistribute threads from the Z dimension towards the X dimension.
Also clamp number of threads to the problem dimension size,
if necessary
"""
# Shift threads from the z dimension
# into the y dimension
while blockdimz > dimz:
tmp = blockdimz // 2
if tmp < dimz:
break
blockdimy *= 2
blockdimz = tmp
# Shift threads from the y dimension
# into the x dimension
while blockdimy > dimy:
tmp = blockdimy // 2
if tmp < dimy:
break
blockdimx *= 2
blockdimy = tmp
# Clamp the block dimensions
# if necessary
if dimx < blockdimx:
blockdimx = dimx
if dimy < blockdimy:
blockdimy = dimy
if dimz < blockdimz:
blockdimz = dimz
return blockdimx, blockdimy, blockdimz
|
Redistribute threads from the Z dimension towards the X dimension.
Also clamp number of threads to the problem dimension size,
if necessary
|
entailment
|
def register_default_dimensions(cube, slvr_cfg):
""" Register the default dimensions for a RIME solver """
import montblanc.src_types as mbs
# Pull out the configuration options for the basics
autocor = slvr_cfg['auto_correlations']
ntime = 10
na = 7
nbands = 1
nchan = 16
npol = 4
# Infer number of baselines from number of antenna,
nbl = nr_of_baselines(na, autocor)
if not npol == 4:
raise ValueError("npol set to {}, but only 4 polarisations "
"are currently supported.")
# Register these dimensions on this solver.
cube.register_dimension('ntime', ntime,
description="Timesteps")
cube.register_dimension('na', na,
description="Antenna")
cube.register_dimension('nbands', nbands,
description="Bands")
cube.register_dimension('nchan', nchan,
description="Channels")
cube.register_dimension('npol', npol,
description="Polarisations")
cube.register_dimension('nbl', nbl,
description="Baselines")
# Register dependent dimensions
cube.register_dimension('npolchan', nchan*npol,
description='Polarised channels')
cube.register_dimension('nvis', ntime*nbl*nchan,
description='Visibilities')
# Convert the source types, and their numbers
# to their number variables and numbers
# { 'point':10 } => { 'npsrc':10 }
src_cfg = default_sources()
src_nr_vars = sources_to_nr_vars(src_cfg)
# Sum to get the total number of sources
cube.register_dimension('nsrc', sum(src_nr_vars.itervalues()),
description="Sources (Total)")
# Register the individual source types
for nr_var, nr_of_src in src_nr_vars.iteritems():
cube.register_dimension(nr_var, nr_of_src,
description='{} sources'.format(mbs.SOURCE_DIM_TYPES[nr_var]))
|
Register the default dimensions for a RIME solver
|
entailment
|
def get_ip_address(ifname):
""" Hack to get IP address from the interface """
s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
return socket.inet_ntoa(fcntl.ioctl(
s.fileno(),
0x8915, # SIOCGIFADDR
struct.pack('256s', ifname[:15])
)[20:24])
|
Hack to get IP address from the interface
|
entailment
|
def nvcc_compiler_settings():
""" Find nvcc and the CUDA installation """
search_paths = os.environ.get('PATH', '').split(os.pathsep)
nvcc_path = find_in_path('nvcc', search_paths)
default_cuda_path = os.path.join('usr', 'local', 'cuda')
cuda_path = os.environ.get('CUDA_PATH', default_cuda_path)
nvcc_found = os.path.exists(nvcc_path)
cuda_path_found = os.path.exists(cuda_path)
# Can't find either NVCC or some CUDA_PATH
if not nvcc_found and not cuda_path_found:
raise InspectCudaException("Neither nvcc '{}' "
"or the CUDA_PATH '{}' were found!".format(
nvcc_path, cuda_path))
# No NVCC, try find it in the CUDA_PATH
if not nvcc_found:
log.warn("nvcc compiler not found at '{}'. "
"Searching within the CUDA_PATH '{}'"
.format(nvcc_path, cuda_path))
bin_dir = os.path.join(cuda_path, 'bin')
nvcc_path = find_in_path('nvcc', bin_dir)
nvcc_found = os.path.exists(nvcc_path)
if not nvcc_found:
raise InspectCudaException("nvcc not found in '{}' "
"or under the CUDA_PATH at '{}' "
.format(search_paths, cuda_path))
# No CUDA_PATH found, infer it from NVCC
if not cuda_path_found:
cuda_path = os.path.normpath(
os.path.join(os.path.dirname(nvcc_path), ".."))
log.warn("CUDA_PATH not found, inferring it as '{}' "
"from the nvcc location '{}'".format(
cuda_path, nvcc_path))
cuda_path_found = True
# Set up the compiler settings
include_dirs = []
library_dirs = []
define_macros = []
if cuda_path_found:
include_dirs.append(os.path.join(cuda_path, 'include'))
if sys.platform == 'win32':
library_dirs.append(os.path.join(cuda_path, 'bin'))
library_dirs.append(os.path.join(cuda_path, 'lib', 'x64'))
else:
library_dirs.append(os.path.join(cuda_path, 'lib64'))
library_dirs.append(os.path.join(cuda_path, 'lib'))
if sys.platform == 'darwin':
library_dirs.append(os.path.join(default_cuda_path, 'lib'))
return {
'cuda_available' : True,
'nvcc_path' : nvcc_path,
'include_dirs': include_dirs,
'library_dirs': library_dirs,
'define_macros': define_macros,
'libraries' : ['cudart', 'cuda'],
'language': 'c++',
}
|
Find nvcc and the CUDA installation
|
entailment
|
def inspect_cuda_version_and_devices(compiler, settings):
"""
Poor mans deviceQuery. Returns CUDA_VERSION information and
CUDA device information in JSON format
"""
try:
output = build_and_run(compiler, '''
#include <cuda.h>
#include <stdio.h>
__device__ void test(int * in, int * out)
{
int tid = blockIdx.x*blockDim.x + threadIdx.x;
out[tid] = in[tid];
}
int main(int argc, char* argv[]) {
printf("{\\n");
printf(" \\"cuda_version\\": %d,\\n", CUDA_VERSION);
printf(" \\"devices\\": [\\n");
int nr_of_devices = 0;
cudaGetDeviceCount(&nr_of_devices);
for(int d=0; d < nr_of_devices; ++d)
{
cudaDeviceProp p;
cudaGetDeviceProperties(&p, d);
printf(" {\\n");
bool last = (d == nr_of_devices-1);
printf(" \\"name\\": \\"%s\\",\\n", p.name);
printf(" \\"major\\": %d,\\n", p.major);
printf(" \\"minor\\": %d,\\n", p.minor);
printf(" \\"memory\\": %lu\\n", p.totalGlobalMem);
printf(" }%s\\n", last ? "" : ",");
}
printf(" ]\\n");
printf("}\\n");
return 0;
}
''',
filename='test.cu',
include_dirs=settings['include_dirs'],
library_dirs=settings['library_dirs'],
libraries=settings['libraries'])
except Exception as e:
msg = ("Running the CUDA device check "
"stub failed\n{}".format(str(e)))
raise InspectCudaException(msg), None, sys.exc_info()[2]
return output
|
Poor mans deviceQuery. Returns CUDA_VERSION information and
CUDA device information in JSON format
|
entailment
|
def customize_compiler_for_nvcc(compiler, nvcc_settings):
"""inject deep into distutils to customize gcc/nvcc dispatch """
# tell the compiler it can process .cu files
compiler.src_extensions.append('.cu')
# save references to the default compiler_so and _compile methods
default_compiler_so = compiler.compiler_so
default_compile = compiler._compile
# now redefine the _compile method. This gets executed for each
# object but distutils doesn't have the ability to change compilers
# based on source extension: we add it.
def _compile(obj, src, ext, cc_args, extra_postargs, pp_opts):
# Use NVCC for .cu files
if os.path.splitext(src)[1] == '.cu':
compiler.set_executable('compiler_so', nvcc_settings['nvcc_path'])
default_compile(obj, src, ext, cc_args, extra_postargs, pp_opts)
# reset the default compiler_so, which we might have changed for cuda
compiler.compiler_so = default_compiler_so
# inject our redefined _compile method into the class
compiler._compile = _compile
|
inject deep into distutils to customize gcc/nvcc dispatch
|
entailment
|
def inspect_cuda():
""" Return cuda device information and nvcc/cuda setup """
nvcc_settings = nvcc_compiler_settings()
sysconfig.get_config_vars()
nvcc_compiler = ccompiler.new_compiler()
sysconfig.customize_compiler(nvcc_compiler)
customize_compiler_for_nvcc(nvcc_compiler, nvcc_settings)
output = inspect_cuda_version_and_devices(nvcc_compiler, nvcc_settings)
return json.loads(output), nvcc_settings
|
Return cuda device information and nvcc/cuda setup
|
entailment
|
def template_dict(self):
"""
Returns a dictionary suitable for templating strings with
properties and dimensions related to this Solver object.
Used in templated GPU kernels.
"""
slvr = self
D = {
# Constants
'LIGHTSPEED': montblanc.constants.C,
}
# Map any types
D.update(self.type_dict())
# Update with dimensions
D.update(self.dim_local_size_dict())
# Add any registered properties to the dictionary
for p in self._properties.itervalues():
D[p.name] = getattr(self, p.name)
return D
|
Returns a dictionary suitable for templating strings with
properties and dimensions related to this Solver object.
Used in templated GPU kernels.
|
entailment
|
def rime_solver(slvr_cfg):
""" Factory function that produces a RIME solver """
from montblanc.impl.rime.tensorflow.RimeSolver import RimeSolver
return RimeSolver(slvr_cfg)
|
Factory function that produces a RIME solver
|
entailment
|
def find_sources(obj, argspec=None):
"""
Returns a dictionary of source methods found on this object,
keyed on method name. Source methods are identified.by argspec,
a list of argument specifiers. So for e.g. an argpsec of
:code:`[['self', 'context'], ['s', 'c']]` would match
methods looking like:
.. code-block:: python
def f(self, context):
...
.. code-block:: python
def f(s, c):
...
is but not
.. code-block:: python
def f(self, ctx):
...
"""
if argspec is None:
argspec = [DEFAULT_ARGSPEC]
return { n: m for n, m in inspect.getmembers(obj, callable)
if not n.startswith('_') and
inspect.getargspec(m).args in argspec }
|
Returns a dictionary of source methods found on this object,
keyed on method name. Source methods are identified.by argspec,
a list of argument specifiers. So for e.g. an argpsec of
:code:`[['self', 'context'], ['s', 'c']]` would match
methods looking like:
.. code-block:: python
def f(self, context):
...
.. code-block:: python
def f(s, c):
...
is but not
.. code-block:: python
def f(self, ctx):
...
|
entailment
|
def sources(self):
"""
Returns a dictionary of source methods found on this object,
keyed on method name. Source methods are identified by
(self, context) arguments on this object. For example:
.. code-block:: python
def f(self, context):
...
is a source method, but
.. code-block:: python
def f(self, ctx):
...
is not.
"""
try:
return self._sources
except AttributeError:
self._sources = find_sources(self)
return self._sources
|
Returns a dictionary of source methods found on this object,
keyed on method name. Source methods are identified by
(self, context) arguments on this object. For example:
.. code-block:: python
def f(self, context):
...
is a source method, but
.. code-block:: python
def f(self, ctx):
...
is not.
|
entailment
|
def parallactic_angles(times, antenna_positions, field_centre):
"""
Computes parallactic angles per timestep for the given
reference antenna position and field centre.
Arguments:
times: ndarray
Array of unique times with shape (ntime,),
obtained from TIME column of MS table
antenna_positions: ndarray of shape (na, 3)
Antenna positions, obtained from POSITION
column of MS ANTENNA sub-table
field_centre : ndarray of shape (2,)
Field centre, should be obtained from MS PHASE_DIR
Returns:
An array of parallactic angles per time-step
"""
import pyrap.quanta as pq
try:
# Create direction measure for the zenith
zenith = pm.direction('AZEL','0deg','90deg')
except AttributeError as e:
if pm is None:
raise ImportError("python-casacore import failed")
raise
# Create position measures for each antenna
reference_positions = [pm.position('itrf',
*(pq.quantity(x,'m') for x in pos))
for pos in antenna_positions]
# Compute field centre in radians
fc_rad = pm.direction('J2000',
*(pq.quantity(f,'rad') for f in field_centre))
return np.asarray([
# Set current time as the reference frame
pm.do_frame(pm.epoch("UTC", pq.quantity(t, "s")))
and
[ # Set antenna position as the reference frame
pm.do_frame(rp)
and
pm.posangle(fc_rad, zenith).get_value("rad")
for rp in reference_positions
]
for t in times])
|
Computes parallactic angles per timestep for the given
reference antenna position and field centre.
Arguments:
times: ndarray
Array of unique times with shape (ntime,),
obtained from TIME column of MS table
antenna_positions: ndarray of shape (na, 3)
Antenna positions, obtained from POSITION
column of MS ANTENNA sub-table
field_centre : ndarray of shape (2,)
Field centre, should be obtained from MS PHASE_DIR
Returns:
An array of parallactic angles per time-step
|
entailment
|
def setup_logging():
""" Setup logging configuration """
# Console formatter, mention name
cfmt = logging.Formatter(('%(name)s - %(levelname)s - %(message)s'))
# File formatter, mention time
ffmt = logging.Formatter(('%(asctime)s - %(levelname)s - %(message)s'))
# Console handler
ch = logging.StreamHandler()
ch.setLevel(logging.INFO)
ch.setFormatter(cfmt)
# File handler
fh = logging.handlers.RotatingFileHandler('montblanc.log',
maxBytes=10*1024*1024, backupCount=10)
fh.setLevel(logging.INFO)
fh.setFormatter(ffmt)
# Create the logger,
# adding the console and file handler
mb_logger = logging.getLogger('montblanc')
mb_logger.handlers = []
mb_logger.setLevel(logging.DEBUG)
mb_logger.addHandler(ch)
mb_logger.addHandler(fh)
# Set up the concurrent.futures logger
cf_logger = logging.getLogger('concurrent.futures')
cf_logger.setLevel(logging.DEBUG)
cf_logger.addHandler(ch)
cf_logger.addHandler(fh)
return mb_logger
|
Setup logging configuration
|
entailment
|
def constant_cache(method):
"""
Caches constant arrays associated with an array name.
The intent of this decorator is to avoid the cost
of recreating and storing many arrays of constant data,
especially data created by np.zeros or np.ones.
Instead, a single array of the first given shape is created
and any further requests for constant data of the same
(or smaller) shape are served from the cache.
Requests for larger shapes or different types are regarded
as a cache miss and will result in replacement of the
existing cache value.
"""
@functools.wraps(method)
def wrapper(self, context):
# Defer to method if no caching is enabled
if not self._is_cached:
return method(self, context)
name = context.name
cached = self._constant_cache.get(name, None)
# No cached value, call method and return
if cached is None:
data = self._constant_cache[name] = method(self, context)
return data
# Can we just slice the existing cache entry?
# 1. Are all context.shape's entries less than or equal
# to the shape of the cached data?
# 2. Do they have the same dtype?
cached_ok = (cached.dtype == context.dtype and
all(l <= r for l,r in zip(context.shape, cached.shape)))
# Need to return something bigger or a different type
if not cached_ok:
data = self._constant_cache[name] = method(self, context)
return data
# Otherwise slice the cached data
return cached[tuple(slice(0, s) for s in context.shape)]
f = wrapper
f.__decorator__ = constant_cache.__name__
return f
|
Caches constant arrays associated with an array name.
The intent of this decorator is to avoid the cost
of recreating and storing many arrays of constant data,
especially data created by np.zeros or np.ones.
Instead, a single array of the first given shape is created
and any further requests for constant data of the same
(or smaller) shape are served from the cache.
Requests for larger shapes or different types are regarded
as a cache miss and will result in replacement of the
existing cache value.
|
entailment
|
def chunk_cache(method):
"""
Caches chunks of default data.
This decorator caches generated default data so as to
avoid recomputing it on a subsequent queries to the
provider.
"""
@functools.wraps(method)
def wrapper(self, context):
# Defer to the method if no caching is enabled
if not self._is_cached:
return method(self, context)
# Construct the key for the given index
name = context.name
idx = context.array_extents(name)
key = tuple(i for t in idx for i in t)
# Access the sub-cache for this array
array_cache = self._chunk_cache[name]
# Cache miss, call the function
if key not in array_cache:
array_cache[key] = method(self, context)
return array_cache[key]
f = wrapper
f.__decorator__ = chunk_cache.__name__
return f
|
Caches chunks of default data.
This decorator caches generated default data so as to
avoid recomputing it on a subsequent queries to the
provider.
|
entailment
|
def _create_defaults_source_provider(cube, data_source):
"""
Create a DefaultsSourceProvider object. This provides default
data sources for each array defined on the hypercube. The data sources
may either by obtained from the arrays 'default' data source
or the 'test' data source.
"""
from montblanc.impl.rime.tensorflow.sources import (
find_sources, DEFAULT_ARGSPEC)
from montblanc.impl.rime.tensorflow.sources import constant_cache
# Obtain default data sources for each array,
# Just take from defaults if test data isn't specified
staging_area_data_source = ('default' if not data_source == 'test'
else data_source)
cache = True
default_prov = DefaultsSourceProvider(cache=cache)
# Create data sources on the source provider from
# the cube array data sources
for n, a in cube.arrays().iteritems():
# Unnecessary for temporary arrays
if 'temporary' in a.tags:
continue
# Obtain the data source
data_source = a.get(staging_area_data_source)
# Array marked as constant, decorate the data source
# with a constant caching decorator
if cache is True and 'constant' in a.tags:
data_source = constant_cache(data_source)
method = types.MethodType(data_source, default_prov)
setattr(default_prov, n, method)
def _sources(self):
"""
Override the sources method to also handle lambdas that look like
lambda s, c: ..., as defined in the config module
"""
try:
return self._sources
except AttributeError:
self._sources = find_sources(self, [DEFAULT_ARGSPEC] + [['s', 'c']])
return self._sources
# Monkey patch the sources method
default_prov.sources = types.MethodType(_sources, default_prov)
return default_prov
|
Create a DefaultsSourceProvider object. This provides default
data sources for each array defined on the hypercube. The data sources
may either by obtained from the arrays 'default' data source
or the 'test' data source.
|
entailment
|
def _construct_tensorflow_expression(slvr_cfg, feed_data, device, shard):
""" Constructs a tensorflow expression for computing the RIME """
zero = tf.constant(0)
src_count = zero
src_ph_vars = feed_data.src_ph_vars
LSA = feed_data.local
polarisation_type = slvr_cfg['polarisation_type']
# Pull RIME inputs out of the feed staging_area
# of the relevant shard, adding the feed once
# inputs to the dictionary
D = LSA.feed_many[shard].get_to_attrdict()
D.update({k: fo.var for k, fo in LSA.feed_once.iteritems()})
with tf.device(device):
# Infer chunk dimensions
model_vis_shape = tf.shape(D.model_vis)
ntime, nbl, nchan, npol = [model_vis_shape[i] for i in range(4)]
# Infer float and complex type
FT, CT = D.uvw.dtype, D.model_vis.dtype
# Compute sine and cosine of parallactic angles
# for the beam
beam_sin, beam_cos = rime.parallactic_angle_sin_cos(
D.parallactic_angles)
# Compute sine and cosine of feed rotation angle
feed_sin, feed_cos = rime.parallactic_angle_sin_cos(
D.parallactic_angles[:, :] +
D.feed_angles[None, :])
# Compute feed rotation
feed_rotation = rime.feed_rotation(feed_sin, feed_cos, CT=CT,
feed_type=polarisation_type)
def antenna_jones(lm, stokes, alpha, ref_freq):
"""
Compute the jones terms for each antenna.
lm, stokes and alpha are the source variables.
"""
# Compute the complex phase
cplx_phase = rime.phase(lm, D.uvw, D.frequency, CT=CT)
# Check for nans/infs in the complex phase
phase_msg = ("Check that '1 - l**2 - m**2 >= 0' holds "
"for all your lm coordinates. This is required "
"for 'n = sqrt(1 - l**2 - m**2) - 1' "
"to be finite.")
phase_real = tf.check_numerics(tf.real(cplx_phase), phase_msg)
phase_imag = tf.check_numerics(tf.imag(cplx_phase), phase_msg)
# Compute the square root of the brightness matrix
# (as well as the sign)
bsqrt, sgn_brightness = rime.b_sqrt(stokes, alpha,
D.frequency, ref_freq, CT=CT,
polarisation_type=polarisation_type)
# Check for nans/infs in the bsqrt
bsqrt_msg = ("Check that your stokes parameters "
"satisfy I**2 >= Q**2 + U**2 + V**2. "
"Montblanc performs a cholesky decomposition "
"of the brightness matrix and the above must "
"hold for this to produce valid values.")
bsqrt_real = tf.check_numerics(tf.real(bsqrt), bsqrt_msg)
bsqrt_imag = tf.check_numerics(tf.imag(bsqrt), bsqrt_msg)
# Compute the direction dependent effects from the beam
ejones = rime.e_beam(lm, D.frequency,
D.pointing_errors, D.antenna_scaling,
beam_sin, beam_cos,
D.beam_extents, D.beam_freq_map, D.ebeam)
deps = [phase_real, phase_imag, bsqrt_real, bsqrt_imag]
deps = [] # Do nothing for now
# Combine the brightness square root, complex phase,
# feed rotation and beam dde's
with tf.control_dependencies(deps):
antenna_jones = rime.create_antenna_jones(bsqrt, cplx_phase,
feed_rotation, ejones, FT=FT)
return antenna_jones, sgn_brightness
# While loop condition for each point source type
def point_cond(coherencies, npsrc, src_count):
return tf.less(npsrc, src_ph_vars.npsrc)
def gaussian_cond(coherencies, ngsrc, src_count):
return tf.less(ngsrc, src_ph_vars.ngsrc)
def sersic_cond(coherencies, nssrc, src_count):
return tf.less(nssrc, src_ph_vars.nssrc)
# While loop bodies
def point_body(coherencies, npsrc, src_count):
""" Accumulate visiblities for point source batch """
S = LSA.sources['npsrc'][shard].get_to_attrdict()
# Maintain source counts
nsrc = tf.shape(S.point_lm)[0]
src_count += nsrc
npsrc += nsrc
ant_jones, sgn_brightness = antenna_jones(S.point_lm,
S.point_stokes, S.point_alpha, S.point_ref_freq)
shape = tf.ones(shape=[nsrc,ntime,nbl,nchan], dtype=FT)
coherencies = rime.sum_coherencies(D.antenna1, D.antenna2,
shape, ant_jones, sgn_brightness, coherencies)
return coherencies, npsrc, src_count
def gaussian_body(coherencies, ngsrc, src_count):
""" Accumulate coherencies for gaussian source batch """
S = LSA.sources['ngsrc'][shard].get_to_attrdict()
# Maintain source counts
nsrc = tf.shape(S.gaussian_lm)[0]
src_count += nsrc
ngsrc += nsrc
ant_jones, sgn_brightness = antenna_jones(S.gaussian_lm,
S.gaussian_stokes, S.gaussian_alpha, S.gaussian_ref_freq)
gauss_shape = rime.gauss_shape(D.uvw, D.antenna1, D.antenna2,
D.frequency, S.gaussian_shape)
coherencies = rime.sum_coherencies(D.antenna1, D.antenna2,
gauss_shape, ant_jones, sgn_brightness, coherencies)
return coherencies, ngsrc, src_count
def sersic_body(coherencies, nssrc, src_count):
""" Accumulate coherencies for sersic source batch """
S = LSA.sources['nssrc'][shard].get_to_attrdict()
# Maintain source counts
nsrc = tf.shape(S.sersic_lm)[0]
src_count += nsrc
nssrc += nsrc
ant_jones, sgn_brightness = antenna_jones(S.sersic_lm,
S.sersic_stokes, S.sersic_alpha, S.sersic_ref_freq)
sersic_shape = rime.sersic_shape(D.uvw, D.antenna1, D.antenna2,
D.frequency, S.sersic_shape)
coherencies = rime.sum_coherencies(D.antenna1, D.antenna2,
sersic_shape, ant_jones, sgn_brightness, coherencies)
return coherencies, nssrc, src_count
with tf.device(device):
base_coherencies = tf.zeros(shape=[ntime,nbl,nchan,npol], dtype=CT)
# Evaluate point sources
summed_coherencies, npsrc, src_count = tf.while_loop(
point_cond, point_body,
[base_coherencies, zero, src_count])
# Evaluate gaussians
summed_coherencies, ngsrc, src_count = tf.while_loop(
gaussian_cond, gaussian_body,
[summed_coherencies, zero, src_count])
# Evaluate sersics
summed_coherencies, nssrc, src_count = tf.while_loop(
sersic_cond, sersic_body,
[summed_coherencies, zero, src_count])
# Post process visibilities to produce model visibilites and chi squared
model_vis, chi_squared = rime.post_process_visibilities(
D.antenna1, D.antenna2, D.direction_independent_effects, D.flag,
D.weight, D.model_vis, summed_coherencies, D.observed_vis)
# Create enstaging_area operation
put_op = LSA.output.put_from_list([D.descriptor, model_vis, chi_squared])
# Return descriptor and enstaging_area operation
return D.descriptor, put_op
|
Constructs a tensorflow expression for computing the RIME
|
entailment
|
def _get_data(data_source, context):
""" Get data from the data source, checking the return values """
try:
# Get data from the data source
data = data_source.source(context)
# Complain about None values
if data is None:
raise ValueError("'None' returned from "
"data source '{n}'".format(n=context.name))
# We want numpy arrays
elif not isinstance(data, np.ndarray):
raise TypeError("Data source '{n}' did not "
"return a numpy array, returned a '{t}'".format(
t=type(data)))
# And they should be the right shape and type
elif data.shape != context.shape or data.dtype != context.dtype:
raise ValueError("Expected data of shape '{esh}' and "
"dtype '{edt}' for data source '{n}', but "
"shape '{rsh}' and '{rdt}' was found instead".format(
n=context.name, esh=context.shape, edt=context.dtype,
rsh=data.shape, rdt=data.dtype))
return data
except Exception as e:
ex = ValueError("An exception occurred while "
"obtaining data from data source '{ds}'\n\n"
"{e}\n\n"
"{help}".format(ds=context.name,
e=str(e), help=context.help()))
raise ex, None, sys.exc_info()[2]
|
Get data from the data source, checking the return values
|
entailment
|
def _supply_data(data_sink, context):
""" Supply data to the data sink """
try:
data_sink.sink(context)
except Exception as e:
ex = ValueError("An exception occurred while "
"supplying data to data sink '{ds}'\n\n"
"{e}\n\n"
"{help}".format(ds=context.name,
e=str(e), help=context.help()))
raise ex, None, sys.exc_info()[2]
|
Supply data to the data sink
|
entailment
|
def _apply_source_provider_dim_updates(cube, source_providers, budget_dims):
"""
Given a list of source_providers, apply the list of
suggested dimension updates given in provider.updated_dimensions()
to the supplied hypercube.
Dimension global_sizes are always updated with the supplied sizes and
lower_extent is always set to 0. upper_extent is set to any reductions
(current upper_extents) existing in budget_dims, otherwise it is set
to global_size.
"""
# Create a mapping between a dimension and a
# list of (global_size, provider_name) tuples
update_map = collections.defaultdict(list)
for prov in source_providers:
for dim_tuple in prov.updated_dimensions():
name, size = dim_tuple
# Don't accept any updates on the nsrc dimension
# This is managed internally
if name == 'nsrc':
continue
dim_update = DimensionUpdate(size, prov.name())
update_map[name].append(dim_update)
# No dimensions were updated, quit early
if len(update_map) == 0:
return cube.bytes_required()
# Ensure that the global sizes we receive
# for each dimension are unique. Tell the user
# when conflicts occur
update_list = []
for name, updates in update_map.iteritems():
if not all(updates[0].size == du.size for du in updates[1:]):
raise ValueError("Received conflicting "
"global size updates '{u}'"
" for dimension '{n}'.".format(n=name, u=updates))
update_list.append((name, updates[0].size))
montblanc.log.info("Updating dimensions {} from "
"source providers.".format(str(update_list)))
# Now update our dimensions
for name, global_size in update_list:
# Defer to existing any existing budgeted extent sizes
# Otherwise take the global_size
extent_size = budget_dims.get(name, global_size)
# Take the global_size if extent_size was previously zero!
extent_size = global_size if extent_size == 0 else extent_size
# Clamp extent size to global size
if extent_size > global_size:
extent_size = global_size
# Update the dimension
cube.update_dimension(name,
global_size=global_size,
lower_extent=0,
upper_extent=extent_size)
# Handle global number of sources differently
# It's equal to the number of
# point's, gaussian's, sersic's combined
nsrc = sum(cube.dim_global_size(*mbu.source_nr_vars()))
# Extent size will be equal to whatever source type
# we're currently iterating over. So just take
# the maximum extent size given the sources
es = max(cube.dim_extent_size(*mbu.source_nr_vars()))
cube.update_dimension('nsrc',
global_size=nsrc,
lower_extent=0,
upper_extent=es)
# Return our cube size
return cube.bytes_required()
|
Given a list of source_providers, apply the list of
suggested dimension updates given in provider.updated_dimensions()
to the supplied hypercube.
Dimension global_sizes are always updated with the supplied sizes and
lower_extent is always set to 0. upper_extent is set to any reductions
(current upper_extents) existing in budget_dims, otherwise it is set
to global_size.
|
entailment
|
def _setup_hypercube(cube, slvr_cfg):
""" Sets up the hypercube given a solver configuration """
mbu.register_default_dimensions(cube, slvr_cfg)
# Configure the dimensions of the beam cube
cube.register_dimension('beam_lw', 2,
description='E Beam cube l width')
cube.register_dimension('beam_mh', 2,
description='E Beam cube m height')
cube.register_dimension('beam_nud', 2,
description='E Beam cube nu depth')
# =========================================
# Register hypercube Arrays and Properties
# =========================================
from montblanc.impl.rime.tensorflow.config import (A, P)
def _massage_dtypes(A, T):
def _massage_dtype_in_dict(D):
new_dict = D.copy()
new_dict['dtype'] = mbu.dtype_from_str(D['dtype'], T)
return new_dict
return [_massage_dtype_in_dict(D) for D in A]
dtype = slvr_cfg['dtype']
is_f32 = dtype == 'float'
T = {
'ft' : np.float32 if is_f32 else np.float64,
'ct' : np.complex64 if is_f32 else np.complex128,
'int' : int,
}
cube.register_properties(_massage_dtypes(P, T))
cube.register_arrays(_massage_dtypes(A, T))
|
Sets up the hypercube given a solver configuration
|
entailment
|
def _partition(iter_dims, data_sources):
"""
Partition data sources into
1. Dictionary of data sources associated with radio sources.
2. List of data sources to feed multiple times.
3. List of data sources to feed once.
"""
src_nr_vars = set(source_var_types().values())
iter_dims = set(iter_dims)
src_data_sources = collections.defaultdict(list)
feed_many = []
feed_once = []
for ds in data_sources:
# Is this data source associated with
# a radio source (point, gaussian, etc.?)
src_int = src_nr_vars.intersection(ds.shape)
if len(src_int) > 1:
raise ValueError("Data source '{}' contains multiple "
"source types '{}'".format(ds.name, src_int))
elif len(src_int) == 1:
# Yep, record appropriately and iterate
src_data_sources[src_int.pop()].append(ds)
continue
# Are we feeding this data source multiple times
# (Does it possess dimensions on which we iterate?)
if len(iter_dims.intersection(ds.shape)) > 0:
feed_many.append(ds)
continue
# Assume this is a data source that we only feed once
feed_once.append(ds)
return src_data_sources, feed_many, feed_once
|
Partition data sources into
1. Dictionary of data sources associated with radio sources.
2. List of data sources to feed multiple times.
3. List of data sources to feed once.
|
entailment
|
def _feed(self, cube, data_sources, data_sinks, global_iter_args):
""" Feed stub """
try:
self._feed_impl(cube, data_sources, data_sinks, global_iter_args)
except Exception as e:
montblanc.log.exception("Feed Exception")
raise
|
Feed stub
|
entailment
|
def _feed_impl(self, cube, data_sources, data_sinks, global_iter_args):
""" Implementation of staging_area feeding """
session = self._tf_session
FD = self._tf_feed_data
LSA = FD.local
# Get source strides out before the local sizes are modified during
# the source loops below
src_types = LSA.sources.keys()
src_strides = [int(i) for i in cube.dim_extent_size(*src_types)]
src_staging_areas = [[LSA.sources[t][s] for t in src_types]
for s in range(self._nr_of_shards)]
compute_feed_dict = { ph: cube.dim_global_size(n) for
n, ph in FD.src_ph_vars.iteritems() }
compute_feed_dict.update({ ph: getattr(cube, n) for
n, ph in FD.property_ph_vars.iteritems() })
chunks_fed = 0
which_shard = itertools.cycle([self._shard(d,s)
for s in range(self._shards_per_device)
for d, dev in enumerate(self._devices)])
while True:
try:
# Get the descriptor describing a portion of the RIME
result = session.run(LSA.descriptor.get_op)
descriptor = result['descriptor']
except tf.errors.OutOfRangeError as e:
montblanc.log.exception("Descriptor reading exception")
# Quit if EOF
if descriptor[0] == -1:
break
# Make it read-only so we can hash the contents
descriptor.flags.writeable = False
# Find indices of the emptiest staging_areas and, by implication
# the shard with the least work assigned to it
emptiest_staging_areas = np.argsort(self._inputs_waiting.get())
shard = emptiest_staging_areas[0]
shard = which_shard.next()
feed_f = self._feed_executors[shard].submit(self._feed_actual,
data_sources.copy(), cube.copy(),
descriptor, shard,
src_types, src_strides, src_staging_areas[shard],
global_iter_args)
compute_f = self._compute_executors[shard].submit(self._compute,
compute_feed_dict, shard)
consume_f = self._consumer_executor.submit(self._consume,
data_sinks.copy(), cube.copy(), global_iter_args)
self._inputs_waiting.increment(shard)
yield (feed_f, compute_f, consume_f)
chunks_fed += 1
montblanc.log.info("Done feeding {n} chunks.".format(n=chunks_fed))
|
Implementation of staging_area feeding
|
entailment
|
def _compute(self, feed_dict, shard):
""" Call the tensorflow compute """
try:
descriptor, enq = self._tfrun(self._tf_expr[shard], feed_dict=feed_dict)
self._inputs_waiting.decrement(shard)
except Exception as e:
montblanc.log.exception("Compute Exception")
raise
|
Call the tensorflow compute
|
entailment
|
def _consume(self, data_sinks, cube, global_iter_args):
""" Consume stub """
try:
return self._consume_impl(data_sinks, cube, global_iter_args)
except Exception as e:
montblanc.log.exception("Consumer Exception")
raise e, None, sys.exc_info()[2]
|
Consume stub
|
entailment
|
def _consume_impl(self, data_sinks, cube, global_iter_args):
""" Consume """
LSA = self._tf_feed_data.local
output = self._tfrun(LSA.output.get_op)
# Expect the descriptor in the first tuple position
assert len(output) > 0
assert LSA.output.fed_arrays[0] == 'descriptor'
descriptor = output['descriptor']
# Make it read-only so we can hash the contents
descriptor.flags.writeable = False
dims = self._transcoder.decode(descriptor)
cube.update_dimensions(dims)
# Obtain and remove input data from the source cache
try:
input_data = self._source_cache.pop(descriptor.data)
except KeyError:
raise ValueError("No input data cache available "
"in source cache for descriptor {}!"
.format(descriptor))
# For each array in our output, call the associated data sink
gen = ((n, a) for n, a in output.iteritems() if not n == 'descriptor')
for n, a in gen:
sink_context = SinkContext(n, cube,
self.config(), global_iter_args,
cube.array(n) if n in cube.arrays() else {},
a, input_data)
_supply_data(data_sinks[n], sink_context)
|
Consume
|
entailment
|
def rime_solver_cfg(**kwargs):
"""
Produces a SolverConfiguration object, inherited from
a simple python dict, and containing the options required
to configure the RIME Solver.
Keyword arguments
-----------------
Any keyword arguments are inserted into the
returned dict.
Returns
-------
A SolverConfiguration object.
"""
from configuration import (load_config, config_validator,
raise_validator_errors)
def _merge_copy(d1, d2):
return { k: _merge_copy(d1[k], d2[k]) if k in d1
and isinstance(d1[k], dict)
and isinstance(d2[k], dict)
else d2[k] for k in d2 }
try:
cfg_file = kwargs.pop('cfg_file')
except KeyError as e:
slvr_cfg = kwargs
else:
cfg = load_config(cfg_file)
slvr_cfg = _merge_copy(cfg, kwargs)
# Validate the configuration, raising any errors
validator = config_validator()
validator.validate(slvr_cfg)
raise_validator_errors(validator)
return validator.document
|
Produces a SolverConfiguration object, inherited from
a simple python dict, and containing the options required
to configure the RIME Solver.
Keyword arguments
-----------------
Any keyword arguments are inserted into the
returned dict.
Returns
-------
A SolverConfiguration object.
|
entailment
|
def _create_filenames(filename_schema, feed_type):
"""
Returns a dictionary of beam filename pairs,
keyed on correlation,from the cartesian product
of correlations and real, imaginary pairs
Given 'beam_$(corr)_$(reim).fits' returns:
{
'xx' : ('beam_xx_re.fits', 'beam_xx_im.fits'),
'xy' : ('beam_xy_re.fits', 'beam_xy_im.fits'),
...
'yy' : ('beam_yy_re.fits', 'beam_yy_im.fits'),
}
Given 'beam_$(CORR)_$(REIM).fits' returns:
{
'xx' : ('beam_XX_RE.fits', 'beam_XX_IM.fits'),
'xy' : ('beam_XY_RE.fits', 'beam_XY_IM.fits'),
...
'yy' : ('beam_YY_RE.fits', 'beam_YY_IM.fits'),
}
"""
template = FitsFilenameTemplate(filename_schema)
def _re_im_filenames(corr, template):
try:
return tuple(template.substitute(
corr=corr.lower(), CORR=corr.upper(),
reim=ri.lower(), REIM=ri.upper())
for ri in REIM)
except KeyError:
raise ValueError("Invalid filename schema '%s'. "
"FITS Beam filename schemas "
"must follow forms such as "
"'beam_$(corr)_$(reim).fits' or "
"'beam_$(CORR)_$(REIM).fits." % filename_schema)
if feed_type == 'linear':
CORRELATIONS = LINEAR_CORRELATIONS
elif feed_type == 'circular':
CORRELATIONS = CIRCULAR_CORRELATIONS
else:
raise ValueError("Invalid feed_type '{}'. "
"Should be 'linear' or 'circular'")
return collections.OrderedDict(
(c, _re_im_filenames(c, template))
for c in CORRELATIONS)
|
Returns a dictionary of beam filename pairs,
keyed on correlation,from the cartesian product
of correlations and real, imaginary pairs
Given 'beam_$(corr)_$(reim).fits' returns:
{
'xx' : ('beam_xx_re.fits', 'beam_xx_im.fits'),
'xy' : ('beam_xy_re.fits', 'beam_xy_im.fits'),
...
'yy' : ('beam_yy_re.fits', 'beam_yy_im.fits'),
}
Given 'beam_$(CORR)_$(REIM).fits' returns:
{
'xx' : ('beam_XX_RE.fits', 'beam_XX_IM.fits'),
'xy' : ('beam_XY_RE.fits', 'beam_XY_IM.fits'),
...
'yy' : ('beam_YY_RE.fits', 'beam_YY_IM.fits'),
}
|
entailment
|
def _open_fits_files(filenames):
"""
Given a {correlation: filename} mapping for filenames
returns a {correlation: file handle} mapping
"""
kw = { 'mode' : 'update', 'memmap' : False }
def _fh(fn):
""" Returns a filehandle or None if file does not exist """
return fits.open(fn, **kw) if os.path.exists(fn) else None
return collections.OrderedDict(
(corr, tuple(_fh(fn) for fn in files))
for corr, files in filenames.iteritems() )
|
Given a {correlation: filename} mapping for filenames
returns a {correlation: file handle} mapping
|
entailment
|
def _create_axes(filenames, file_dict):
""" Create a FitsAxes object """
try:
# Loop through the file_dictionary, finding the
# first open FITS file.
f = iter(f for tup in file_dict.itervalues()
for f in tup if f is not None).next()
except StopIteration as e:
raise (ValueError("No FITS files were found. "
"Searched filenames: '{f}'." .format(
f=filenames.values())),
None, sys.exc_info()[2])
# Create a FitsAxes object
axes = FitsAxes(f[0].header)
# Scale any axes in degrees to radians
for i, u in enumerate(axes.cunit):
if u == 'DEG':
axes.cunit[i] = 'RAD'
axes.set_axis_scale(i, np.pi/180.0)
return axes
|
Create a FitsAxes object
|
entailment
|
def _initialise(self, feed_type="linear"):
"""
Initialise the object by generating appropriate filenames,
opening associated file handles and inspecting the FITS axes
of these files.
"""
self._filenames = filenames = _create_filenames(self._filename_schema,
feed_type)
self._files = files = _open_fits_files(filenames)
self._axes = axes = _create_axes(filenames, files)
self._dim_indices = dim_indices = l_ax, m_ax, f_ax = tuple(
axes.iaxis(d) for d in self._fits_dims)
# Complain if we can't find required axes
for i, ax in zip(dim_indices, self._fits_dims):
if i == -1:
raise ValueError("'%s' axis not found!" % ax)
self._cube_extents = _cube_extents(axes, l_ax, m_ax, f_ax,
self._l_sign, self._m_sign)
self._shape = tuple(axes.naxis[d] for d in dim_indices) + (4,)
self._beam_freq_map = axes.grid[f_ax]
# Now describe our dimension sizes
self._dim_updates = [(n, axes.naxis[i]) for n, i
in zip(self._beam_dims, dim_indices)]
self._initialised = True
|
Initialise the object by generating appropriate filenames,
opening associated file handles and inspecting the FITS axes
of these files.
|
entailment
|
def ebeam(self, context):
""" ebeam cube data source """
if context.shape != self.shape:
raise ValueError("Partial feeding of the "
"beam cube is not yet supported %s %s." % (context.shape, self.shape))
ebeam = np.empty(context.shape, context.dtype)
# Iterate through the correlations,
# assigning real and imaginary data, if present,
# otherwise zeroing the correlation
for i, (re, im) in enumerate(self._files.itervalues()):
ebeam[:,:,:,i].real[:] = 0 if re is None else re[0].data.T
ebeam[:,:,:,i].imag[:] = 0 if im is None else im[0].data.T
return ebeam
|
ebeam cube data source
|
entailment
|
def model_vis(self, context):
""" model visibility data sink """
column = self._vis_column
msshape = None
# Do we have a column descriptor for the supplied column?
try:
coldesc = self._manager.column_descriptors[column]
except KeyError as e:
coldesc = None
# Try to get the shape from the descriptor
if coldesc is not None:
try:
msshape = [-1] + coldesc['shape'].tolist()
except KeyError as e:
msshape = None
# Otherwise guess it and warn
if msshape is None:
guessed_shape = [self._manager._nchan, 4]
montblanc.log.warn("Could not obtain 'shape' from the '{c}' "
"column descriptor. Guessing it is '{gs}'.".format(
c=column, gs=guessed_shape))
msshape = [-1] + guessed_shape
lrow, urow = MS.row_extents(context)
self._manager.ordered_main_table.putcol(column,
context.data.reshape(msshape),
startrow=lrow, nrow=urow-lrow)
|
model visibility data sink
|
entailment
|
def _cache(method):
"""
Decorator for caching data source return values
Create a key index for the proxied array in the context.
Iterate over the array shape descriptor e.g. (ntime, nbl, 3)
returning tuples containing the lower and upper extents
of string dimensions. Takes (0, d) in the case of an integer
dimensions.
"""
@functools.wraps(method)
def memoizer(self, context):
# Construct the key for the given index
idx = context.array_extents(context.name)
key = tuple(i for t in idx for i in t)
with self._lock:
# Access the sub-cache for this data source
array_cache = self._cache[context.name]
# Cache miss, call the data source
if key not in array_cache:
array_cache[key] = method(context)
return array_cache[key]
return memoizer
|
Decorator for caching data source return values
Create a key index for the proxied array in the context.
Iterate over the array shape descriptor e.g. (ntime, nbl, 3)
returning tuples containing the lower and upper extents
of string dimensions. Takes (0, d) in the case of an integer
dimensions.
|
entailment
|
def _proxy(method):
"""
Decorator returning a method that proxies a data source.
"""
@functools.wraps(method)
def memoizer(self, context):
return method(context)
return memoizer
|
Decorator returning a method that proxies a data source.
|
entailment
|
def start(self, start_context):
""" Perform any logic on solution start """
for p in self._providers:
p.start(start_context)
if self._clear_start:
self.clear_cache()
|
Perform any logic on solution start
|
entailment
|
def stop(self, stop_context):
""" Perform any logic on solution stop """
for p in self._providers:
p.stop(stop_context)
if self._clear_stop:
self.clear_cache()
|
Perform any logic on solution stop
|
entailment
|
def default_base_ant_pairs(self, context):
""" Compute base antenna pairs """
k = 0 if context.cfg['auto_correlations'] == True else 1
na = context.dim_global_size('na')
gen = (i.astype(context.dtype) for i in np.triu_indices(na, k))
# Cache np.triu_indices(na, k) as its likely that (na, k) will
# stay constant much of the time. Assumption here is that this
# method will be grafted onto a DefaultsSourceProvider with
# the appropriate members.
if self._is_cached:
array_cache = self._chunk_cache['default_base_ant_pairs']
key = (k, na)
# Cache miss
if key not in array_cache:
array_cache[key] = tuple(gen)
return array_cache[key]
return tuple(gen)
|
Compute base antenna pairs
|
entailment
|
def default_antenna1(self, context):
""" Default antenna1 values """
ant1, ant2 = default_base_ant_pairs(self, context)
(tl, tu), (bl, bu) = context.dim_extents('ntime', 'nbl')
ant1_result = np.empty(context.shape, context.dtype)
ant1_result[:,:] = ant1[np.newaxis,bl:bu]
return ant1_result
|
Default antenna1 values
|
entailment
|
def default_antenna2(self, context):
""" Default antenna2 values """
ant1, ant2 = default_base_ant_pairs(self, context)
(tl, tu), (bl, bu) = context.dim_extents('ntime', 'nbl')
ant2_result = np.empty(context.shape, context.dtype)
ant2_result[:,:] = ant2[np.newaxis,bl:bu]
return ant2_result
|
Default antenna2 values
|
entailment
|
def identity_on_pols(self, context):
"""
Returns [[1, 0], tiled up to other dimensions
[0, 1]]
"""
A = np.empty(context.shape, context.dtype)
A[:,:,:] = [[[1,0,0,1]]]
return A
|
Returns [[1, 0], tiled up to other dimensions
[0, 1]]
|
entailment
|
def default_stokes(self, context):
"""
Returns [[1, 0], tiled up to other dimensions
[0, 0]]
"""
A = np.empty(context.shape, context.dtype)
A[:,:,:] = [[[1,0,0,0]]]
return A
|
Returns [[1, 0], tiled up to other dimensions
[0, 0]]
|
entailment
|
def frequency(self, context):
""" Frequency data source """
channels = self._manager.spectral_window_table.getcol(MS.CHAN_FREQ)
return channels.reshape(context.shape).astype(context.dtype)
|
Frequency data source
|
entailment
|
def ref_frequency(self, context):
""" Reference frequency data source """
num_chans = self._manager.spectral_window_table.getcol(MS.NUM_CHAN)
ref_freqs = self._manager.spectral_window_table.getcol(MS.REF_FREQUENCY)
data = np.hstack((np.repeat(rf, bs) for bs, rf in zip(num_chans, ref_freqs)))
return data.reshape(context.shape).astype(context.dtype)
|
Reference frequency data source
|
entailment
|
def uvw(self, context):
""" Per-antenna UVW coordinate data source """
# Hacky access of private member
cube = context._cube
# Create antenna1 source context
a1_actual = cube.array("antenna1", reify=True)
a1_ctx = SourceContext("antenna1", cube, context.cfg,
context.iter_args, cube.array("antenna1"),
a1_actual.shape, a1_actual.dtype)
# Create antenna2 source context
a2_actual = cube.array("antenna2", reify=True)
a2_ctx = SourceContext("antenna2", cube, context.cfg,
context.iter_args, cube.array("antenna2"),
a2_actual.shape, a2_actual.dtype)
# Get antenna1 and antenna2 data
ant1 = self.antenna1(a1_ctx).ravel()
ant2 = self.antenna2(a2_ctx).ravel()
# Obtain per baseline UVW data
lrow, urow = MS.uvw_row_extents(context)
uvw = self._manager.ordered_uvw_table.getcol(MS.UVW,
startrow=lrow,
nrow=urow-lrow)
# Perform the per-antenna UVW decomposition
ntime, nbl = context.dim_extent_size('ntime', 'nbl')
na = context.dim_global_size('na')
chunks = np.repeat(nbl, ntime).astype(ant1.dtype)
auvw = mbu.antenna_uvw(uvw, ant1, ant2, chunks, nr_of_antenna=na)
return auvw.reshape(context.shape).astype(context.dtype)
|
Per-antenna UVW coordinate data source
|
entailment
|
def antenna1(self, context):
""" antenna1 data source """
lrow, urow = MS.uvw_row_extents(context)
antenna1 = self._manager.ordered_uvw_table.getcol(
MS.ANTENNA1, startrow=lrow, nrow=urow-lrow)
return antenna1.reshape(context.shape).astype(context.dtype)
|
antenna1 data source
|
entailment
|
def antenna2(self, context):
""" antenna2 data source """
lrow, urow = MS.uvw_row_extents(context)
antenna2 = self._manager.ordered_uvw_table.getcol(
MS.ANTENNA2, startrow=lrow, nrow=urow-lrow)
return antenna2.reshape(context.shape).astype(context.dtype)
|
antenna2 data source
|
entailment
|
def parallactic_angles(self, context):
""" parallactic angle data source """
# Time and antenna extents
(lt, ut), (la, ua) = context.dim_extents('ntime', 'na')
return (mbu.parallactic_angles(self._times[lt:ut],
self._antenna_positions[la:ua], self._phase_dir)
.reshape(context.shape)
.astype(context.dtype))
|
parallactic angle data source
|
entailment
|
def observed_vis(self, context):
""" Observed visibility data source """
lrow, urow = MS.row_extents(context)
data = self._manager.ordered_main_table.getcol(
self._vis_column, startrow=lrow, nrow=urow-lrow)
return data.reshape(context.shape).astype(context.dtype)
|
Observed visibility data source
|
entailment
|
def flag(self, context):
""" Flag data source """
lrow, urow = MS.row_extents(context)
flag = self._manager.ordered_main_table.getcol(
MS.FLAG, startrow=lrow, nrow=urow-lrow)
return flag.reshape(context.shape).astype(context.dtype)
|
Flag data source
|
entailment
|
def weight(self, context):
""" Weight data source """
lrow, urow = MS.row_extents(context)
weight = self._manager.ordered_main_table.getcol(
MS.WEIGHT, startrow=lrow, nrow=urow-lrow)
# WEIGHT is applied across all channels
weight = np.repeat(weight, self._manager.channels_per_band, 0)
return weight.reshape(context.shape).astype(context.dtype)
|
Weight data source
|
entailment
|
def load_tf_lib():
""" Load the tensorflow library """
from os.path import join as pjoin
import pkg_resources
import tensorflow as tf
path = pjoin('ext', 'rime.so')
rime_lib_path = pkg_resources.resource_filename("montblanc", path)
return tf.load_op_library(rime_lib_path)
|
Load the tensorflow library
|
entailment
|
def raise_validator_errors(validator):
"""
Raise any errors associated with the validator.
Parameters
----------
validator : :class:`cerberus.Validator`
Validator
Raises
------
ValueError
Raised if errors existed on `validator`.
Message describing each error and information
associated with the configuration option
causing the error.
"""
if len(validator._errors) == 0:
return
def _path_str(path, name=None):
""" String of the document/schema path. `cfg["foo"]["bar"]` """
L = [name] if name is not None else []
L.extend('["%s"]' % p for p in path)
return "".join(L)
def _path_leaf(path, dicts):
""" Dictionary Leaf of the schema/document given the path """
for p in path:
dicts = dicts[p]
return dicts
wrap = partial(textwrap.wrap, initial_indent=' '*4,
subsequent_indent=' '*8)
msg = ["There were configuration errors:"]
for e in validator._errors:
schema_leaf = _path_leaf(e.document_path, validator.schema)
doc_str = _path_str(e.document_path, "cfg")
msg.append("Invalid configuration option %s == '%s'." % (doc_str, e.value))
try:
otype = schema_leaf["type"]
msg.extend(wrap("Type must be '%s'." % otype))
except KeyError:
pass
try:
allowed = schema_leaf["allowed"]
msg.extend(wrap("Allowed values are '%s'." % allowed))
except KeyError:
pass
try:
description = schema_leaf["__description__"]
msg.extend(wrap("Description: %s" % description))
except KeyError:
pass
raise ValueError("\n".join(msg))
|
Raise any errors associated with the validator.
Parameters
----------
validator : :class:`cerberus.Validator`
Validator
Raises
------
ValueError
Raised if errors existed on `validator`.
Message describing each error and information
associated with the configuration option
causing the error.
|
entailment
|
def indented(text, level, indent=2):
"""Take a multiline text and indent it as a block"""
return "\n".join("%s%s" % (level * indent * " ", s) for s in text.splitlines())
|
Take a multiline text and indent it as a block
|
entailment
|
def dumped(text, level, indent=2):
"""Put curly brackets round an indented text"""
return indented("{\n%s\n}" % indented(text, level + 1, indent) or "None", level, indent) + "\n"
|
Put curly brackets round an indented text
|
entailment
|
def copy_file(
source_path,
target_path,
allow_undo=True,
no_confirm=False,
rename_on_collision=True,
silent=False,
extra_flags=0,
hWnd=None
):
"""Perform a shell-based file copy. Copying in
this way allows the possibility of undo, auto-renaming,
and showing the "flying file" animation during the copy.
The default options allow for undo, don't automatically
clobber on a name clash, automatically rename on collision
and display the animation.
"""
return _file_operation(
shellcon.FO_COPY,
source_path,
target_path,
allow_undo,
no_confirm,
rename_on_collision,
silent,
extra_flags,
hWnd
)
|
Perform a shell-based file copy. Copying in
this way allows the possibility of undo, auto-renaming,
and showing the "flying file" animation during the copy.
The default options allow for undo, don't automatically
clobber on a name clash, automatically rename on collision
and display the animation.
|
entailment
|
def move_file(
source_path,
target_path,
allow_undo=True,
no_confirm=False,
rename_on_collision=True,
silent=False,
extra_flags=0,
hWnd=None
):
"""Perform a shell-based file move. Moving in
this way allows the possibility of undo, auto-renaming,
and showing the "flying file" animation during the copy.
The default options allow for undo, don't automatically
clobber on a name clash, automatically rename on collision
and display the animation.
"""
return _file_operation(
shellcon.FO_MOVE,
source_path,
target_path,
allow_undo,
no_confirm,
rename_on_collision,
silent,
extra_flags,
hWnd
)
|
Perform a shell-based file move. Moving in
this way allows the possibility of undo, auto-renaming,
and showing the "flying file" animation during the copy.
The default options allow for undo, don't automatically
clobber on a name clash, automatically rename on collision
and display the animation.
|
entailment
|
def rename_file(
source_path,
target_path,
allow_undo=True,
no_confirm=False,
rename_on_collision=True,
silent=False,
extra_flags=0,
hWnd=None
):
"""Perform a shell-based file rename. Renaming in
this way allows the possibility of undo, auto-renaming,
and showing the "flying file" animation during the copy.
The default options allow for undo, don't automatically
clobber on a name clash, automatically rename on collision
and display the animation.
"""
return _file_operation(
shellcon.FO_RENAME,
source_path,
target_path,
allow_undo,
no_confirm,
rename_on_collision,
silent,
extra_flags,
hWnd
)
|
Perform a shell-based file rename. Renaming in
this way allows the possibility of undo, auto-renaming,
and showing the "flying file" animation during the copy.
The default options allow for undo, don't automatically
clobber on a name clash, automatically rename on collision
and display the animation.
|
entailment
|
def delete_file(
source_path,
allow_undo=True,
no_confirm=False,
silent=False,
extra_flags=0,
hWnd=None
):
"""Perform a shell-based file delete. Deleting in
this way uses the system recycle bin, allows the
possibility of undo, and showing the "flying file"
animation during the delete.
The default options allow for undo, don't automatically
clobber on a name clash and display the animation.
"""
return _file_operation(
shellcon.FO_DELETE,
source_path,
None,
allow_undo,
no_confirm,
False,
silent,
extra_flags,
hWnd
)
|
Perform a shell-based file delete. Deleting in
this way uses the system recycle bin, allows the
possibility of undo, and showing the "flying file"
animation during the delete.
The default options allow for undo, don't automatically
clobber on a name clash and display the animation.
|
entailment
|
def structured_storage(filename):
"""Pick out info from MS documents with embedded
structured storage(typically MS Word docs etc.)
Returns a dictionary of information found
"""
if not pythoncom.StgIsStorageFile(filename):
return {}
flags = storagecon.STGM_READ | storagecon.STGM_SHARE_EXCLUSIVE
storage = pythoncom.StgOpenStorage(filename, None, flags)
try:
properties_storage = storage.QueryInterface(pythoncom.IID_IPropertySetStorage)
except pythoncom.com_error:
return {}
property_sheet = properties_storage.Open(FMTID_USER_DEFINED_PROPERTIES)
try:
data = property_sheet.ReadMultiple(PROPERTIES)
finally:
property_sheet = None
title, subject, author, created_on, keywords, comments, template_used, \
updated_by, edited_on, printed_on, saved_on, \
n_pages, n_words, n_characters, \
application = data
result = {}
if title:
result['title'] = title
if subject:
result['subject'] = subject
if author:
result['author'] = author
if created_on:
result['created_on'] = created_on
if keywords:
result['keywords'] = keywords
if comments:
result['comments'] = comments
if template_used:
result['template_used'] = template_used
if updated_by:
result['updated_by'] = updated_by
if edited_on:
result['edited_on'] = edited_on
if printed_on:
result['printed_on'] = printed_on
if saved_on:
result['saved_on'] = saved_on
if n_pages:
result['n_pages'] = n_pages
if n_words:
result['n_words'] = n_words
if n_characters:
result['n_characters'] = n_characters
if application:
result['application'] = application
return result
|
Pick out info from MS documents with embedded
structured storage(typically MS Word docs etc.)
Returns a dictionary of information found
|
entailment
|
def CreateShortcut(Path, Target, Arguments="", StartIn="", Icon=("", 0), Description=""):
"""Create a Windows shortcut:
Path - As what file should the shortcut be created?
Target - What command should the desktop use?
Arguments - What arguments should be supplied to the command?
StartIn - What folder should the command start in?
Icon -(filename, index) What icon should be used for the shortcut?
Description - What description should the shortcut be given?
eg
CreateShortcut(
Path=os.path.join(desktop(), "PythonI.lnk"),
Target=r"c:\python\python.exe",
Icon=(r"c:\python\python.exe", 0),
Description="Python Interpreter"
)
"""
lnk = shortcut(Target)
lnk.arguments = Arguments
lnk.working_directory = StartIn
lnk.icon_location = Icon
lnk.description = Description
lnk.write(Path)
|
Create a Windows shortcut:
Path - As what file should the shortcut be created?
Target - What command should the desktop use?
Arguments - What arguments should be supplied to the command?
StartIn - What folder should the command start in?
Icon -(filename, index) What icon should be used for the shortcut?
Description - What description should the shortcut be given?
eg
CreateShortcut(
Path=os.path.join(desktop(), "PythonI.lnk"),
Target=r"c:\python\python.exe",
Icon=(r"c:\python\python.exe", 0),
Description="Python Interpreter"
)
|
entailment
|
def undelete(self, original_filepath):
"""Restore the most recent version of a filepath, returning
the filepath it was restored to(as rename-on-collision will
apply if a file already exists at that path).
"""
candidates = self.versions(original_filepath)
if not candidates:
raise x_not_found_in_recycle_bin("%s not found in the Recycle Bin" % original_filepath)
#
# NB Can't use max(key=...) until Python 2.6+
#
newest = sorted(candidates, key=lambda entry: entry.recycle_date())[-1]
return newest.undelete()
|
Restore the most recent version of a filepath, returning
the filepath it was restored to(as rename-on-collision will
apply if a file already exists at that path).
|
entailment
|
def _get_queue_types(fed_arrays, data_sources):
"""
Given a list of arrays to feed in fed_arrays, return
a list of associated queue types, obtained from tuples
in the data_sources dictionary
"""
try:
return [data_sources[n].dtype for n in fed_arrays]
except KeyError as e:
raise ValueError("Array '{k}' has no data source!"
.format(k=e.message)), None, sys.exc_info()[2]
|
Given a list of arrays to feed in fed_arrays, return
a list of associated queue types, obtained from tuples
in the data_sources dictionary
|
entailment
|
def create_queue_wrapper(name, queue_size, fed_arrays, data_sources, *args, **kwargs):
"""
Arguments
name: string
Name of the queue
queue_size: integer
Size of the queue
fed_arrays: list
array names that will be fed by this queue
data_sources: dict
(lambda/method, dtype) tuples, keyed on array names
"""
qtype = SingleInputMultiQueueWrapper if 'count' in kwargs else QueueWrapper
return qtype(name, queue_size, fed_arrays, data_sources, *args, **kwargs)
|
Arguments
name: string
Name of the queue
queue_size: integer
Size of the queue
fed_arrays: list
array names that will be fed by this queue
data_sources: dict
(lambda/method, dtype) tuples, keyed on array names
|
entailment
|
def parse_python_assigns(assign_str):
"""
Parses a string, containing assign statements
into a dictionary.
.. code-block:: python
h5 = katdal.open('123456789.h5')
kwargs = parse_python_assigns("spw=3; scans=[1,2];"
"targets='bpcal,radec';"
"channels=slice(0,2048)")
h5.select(**kwargs)
Parameters
----------
assign_str: str
Assignment string. Should only contain assignment statements
assigning python literals or builtin function calls, to variable names.
Multiple assignment statements should be separated by semi-colons.
Returns
-------
dict
Dictionary { name: value } containing
assignment results.
"""
if not assign_str:
return {}
def _eval_value(stmt_value):
# If the statement value is a call to a builtin, try evaluate it
if isinstance(stmt_value, ast.Call):
func_name = stmt_value.func.id
if func_name not in _BUILTIN_WHITELIST:
raise ValueError("Function '%s' in '%s' is not builtin. "
"Available builtins: '%s'"
% (func_name, assign_str, list(_BUILTIN_WHITELIST)))
# Recursively pass arguments through this same function
if stmt_value.args is not None:
args = tuple(_eval_value(a) for a in stmt_value.args)
else:
args = ()
# Recursively pass keyword arguments through this same function
if stmt_value.keywords is not None:
kwargs = {kw.arg : _eval_value(kw.value) for kw
in stmt_value.keywords}
else:
kwargs = {}
return getattr(__builtin__, func_name)(*args, **kwargs)
# Try a literal eval
else:
return ast.literal_eval(stmt_value)
# Variable dictionary
variables = {}
# Parse the assignment string
stmts = ast.parse(assign_str, mode='single').body
for i, stmt in enumerate(stmts):
if not isinstance(stmt, ast.Assign):
raise ValueError("Statement %d in '%s' is not a "
"variable assignment." % (i, assign_str))
# Evaluate assignment lhs
values = _eval_value(stmt.value)
# "a = b = c" => targets 'a' and 'b' with 'c' as result
for target in stmt.targets:
# a = 2
if isinstance(target, ast.Name):
variables[target.id] = values
# Tuple/List unpacking case
# (a, b) = 2
elif isinstance(target, (ast.Tuple, ast.List)):
# Require all tuple/list elements to be variable names,
# although anything else is probably a syntax error
if not all(isinstance(e, ast.Name) for e in target.elts):
raise ValueError("Tuple unpacking in assignment %d "
"in expression '%s' failed as not all "
"tuple contents are variable names.")
# Promote for zip and length checking
if not isinstance(values, (tuple, list)):
elements = (values,)
else:
elements = values
if not len(target.elts) == len(elements):
raise ValueError("Unpacking '%s' into a tuple/list in "
"assignment %d of expression '%s' failed. "
"The number of tuple elements did not match "
"the number of values."
% (values, i, assign_str))
# Unpack
for variable, value in zip(target.elts, elements):
variables[variable.id] = value
else:
raise TypeError("'%s' types are not supported"
"as assignment targets." % type(target))
return variables
|
Parses a string, containing assign statements
into a dictionary.
.. code-block:: python
h5 = katdal.open('123456789.h5')
kwargs = parse_python_assigns("spw=3; scans=[1,2];"
"targets='bpcal,radec';"
"channels=slice(0,2048)")
h5.select(**kwargs)
Parameters
----------
assign_str: str
Assignment string. Should only contain assignment statements
assigning python literals or builtin function calls, to variable names.
Multiple assignment statements should be separated by semi-colons.
Returns
-------
dict
Dictionary { name: value } containing
assignment results.
|
entailment
|
def find_sinks(obj):
"""
Returns a dictionary of sink methods found on this object,
keyed on method name. Sink methods are identified by
(self, context) arguments on this object. For example:
def f(self, context):
...
is a sink method, but
def f(self, ctx):
...
is not.
"""
SINK_ARGSPEC = ['self', 'context']
return { n: m for n, m in inspect.getmembers(obj, inspect.ismethod)
if inspect.getargspec(m)[0] == SINK_ARGSPEC }
|
Returns a dictionary of sink methods found on this object,
keyed on method name. Sink methods are identified by
(self, context) arguments on this object. For example:
def f(self, context):
...
is a sink method, but
def f(self, ctx):
...
is not.
|
entailment
|
def sinks(self):
"""
Returns a dictionary of sink methods found on this object,
keyed on method name. Sink methods are identified by
(self, context) arguments on this object. For example:
def f(self, context):
...
is a sink method, but
def f(self, ctx):
...
is not.
"""
try:
return self._sinks
except AttributeError:
self._sinks = find_sinks(self)
return self._sinks
|
Returns a dictionary of sink methods found on this object,
keyed on method name. Sink methods are identified by
(self, context) arguments on this object. For example:
def f(self, context):
...
is a sink method, but
def f(self, ctx):
...
is not.
|
entailment
|
def _antenna_uvw(uvw, antenna1, antenna2, chunks, nr_of_antenna):
""" numba implementation of antenna_uvw """
if antenna1.ndim != 1:
raise ValueError("antenna1 shape should be (row,)")
if antenna2.ndim != 1:
raise ValueError("antenna2 shape should be (row,)")
if uvw.ndim != 2 or uvw.shape[1] != 3:
raise ValueError("uvw shape should be (row, 3)")
if not (uvw.shape[0] == antenna1.shape[0] == antenna2.shape[0]):
raise ValueError("First dimension of uvw, antenna1 "
"and antenna2 do not match")
if chunks.ndim != 1:
raise ValueError("chunks shape should be (utime,)")
if nr_of_antenna < 1:
raise ValueError("nr_of_antenna < 1")
ant_uvw_shape = (chunks.shape[0], nr_of_antenna, 3)
antenna_uvw = np.full(ant_uvw_shape, np.nan, dtype=uvw.dtype)
start = 0
for ci, chunk in enumerate(chunks):
end = start + chunk
# one pass should be enough!
_antenna_uvw_loop(uvw, antenna1, antenna2, antenna_uvw, ci, start, end)
start = end
return antenna_uvw
|
numba implementation of antenna_uvw
|
entailment
|
def _raise_decomposition_errors(uvw, antenna1, antenna2,
chunks, ant_uvw, max_err):
""" Raises informative exception for an invalid decomposition """
start = 0
problem_str = []
for ci, chunk in enumerate(chunks):
end = start + chunk
ant1 = antenna1[start:end]
ant2 = antenna2[start:end]
cuvw = uvw[start:end]
ant1_uvw = ant_uvw[ci, ant1, :]
ant2_uvw = ant_uvw[ci, ant2, :]
ruvw = ant2_uvw - ant1_uvw
# Identifty rows where any of the UVW components differed
close = np.isclose(ruvw, cuvw)
problems = np.nonzero(np.logical_or.reduce(np.invert(close), axis=1))
for row in problems[0]:
problem_str.append("[row %d [%d, %d] (chunk %d)]: "
"original %s recovered %s "
"ant1 %s ant2 %s" % (
start+row, ant1[row], ant2[row], ci,
cuvw[row], ruvw[row],
ant1_uvw[row], ant2_uvw[row]))
# Exit inner loop early
if len(problem_str) >= max_err:
break
# Exit outer loop early
if len(problem_str) >= max_err:
break
start = end
# Return early if nothing was wrong
if len(problem_str) == 0:
return
# Add a preamble and raise exception
problem_str = ["Antenna UVW Decomposition Failed",
"The following differences were found "
"(first 100):"] + problem_str
raise AntennaUVWDecompositionError('\n'.join(problem_str))
|
Raises informative exception for an invalid decomposition
|
entailment
|
def _raise_missing_antenna_errors(ant_uvw, max_err):
""" Raises an informative error for missing antenna """
# Find antenna uvw coordinates where any UVW component was nan
# nan + real == nan
problems = np.nonzero(np.add.reduce(np.isnan(ant_uvw), axis=2))
problem_str = []
for c, a in zip(*problems):
problem_str.append("[chunk %d antenna %d]" % (c, a))
# Exit early
if len(problem_str) >= max_err:
break
# Return early if nothing was wrong
if len(problem_str) == 0:
return
# Add a preamble and raise exception
problem_str = ["Antenna were missing"] + problem_str
raise AntennaMissingError('\n'.join(problem_str))
|
Raises an informative error for missing antenna
|
entailment
|
def antenna_uvw(uvw, antenna1, antenna2, chunks,
nr_of_antenna, check_missing=False,
check_decomposition=False, max_err=100):
"""
Computes per-antenna UVW coordinates from baseline ``uvw``,
``antenna1`` and ``antenna2`` coordinates logically grouped
into baseline chunks.
The example below illustrates two baseline chunks
of size 6 and 5, respectively.
.. code-block:: python
uvw = ...
ant1 = np.array([0, 0, 0, 1, 1, 2, 0, 0, 0, 1, 1], dtype=np.int32)
ant2 = np.array([1, 2, 3, 2, 3, 3, 1, 2, 3, 1, 2], dtype=np.int32)
chunks = np.array([6, 5], dtype=np.int32)
ant_uv = antenna_uvw(uvw, ant1, ant2, chunks, nr_of_antenna=4)
The first antenna of the first baseline of a chunk is chosen as the origin
of the antenna coordinate system, while the second antenna is set to the
negative of the baseline UVW coordinate. Subsequent antenna UVW coordinates
are iteratively derived from the first two coordinates. Thus,
the baseline indices need not be properly ordered (within the chunk).
If it is not possible to derive coordinates for an antenna,
it's coordinate will be set to nan.
Parameters
----------
uvw : np.ndarray
Baseline UVW coordinates of shape (row, 3)
antenna1 : np.ndarray
Baseline first antenna of shape (row,)
antenna2 : np.ndarray
Baseline second antenna of shape (row,)
chunks : np.ndarray
Number of baselines per unique timestep with shape (chunks,)
:code:`np.sum(chunks) == row` should hold.
nr_of_antenna : int
Total number of antenna in the solution.
check_missing (optional) : bool
If ``True`` raises an exception if it was not possible
to compute UVW coordinates for all antenna (i.e. some were nan).
Defaults to ``False``.
check_decomposition (optional) : bool
If ``True``, checks that the antenna decomposition accurately
reproduces the coordinates in ``uvw``, or that
:code:`ant_uvw[c,ant1,:] - ant_uvw[c,ant2,:] == uvw[s:e,:]`
where ``s`` and ``e`` are the start and end rows
of chunk ``c`` respectively. Defaults to ``False``.
max_err (optional) : integer
Maximum numbers of errors when checking for missing antenna
or innacurate decompositions. Defaults to ``100``.
Returns
-------
np.ndarray
Antenna UVW coordinates of shape (chunks, nr_of_antenna, 3)
"""
ant_uvw = _antenna_uvw(uvw, antenna1, antenna2, chunks, nr_of_antenna)
if check_missing:
_raise_missing_antenna_errors(ant_uvw, max_err=max_err)
if check_decomposition:
_raise_decomposition_errors(uvw, antenna1, antenna2, chunks,
ant_uvw, max_err=max_err)
return ant_uvw
|
Computes per-antenna UVW coordinates from baseline ``uvw``,
``antenna1`` and ``antenna2`` coordinates logically grouped
into baseline chunks.
The example below illustrates two baseline chunks
of size 6 and 5, respectively.
.. code-block:: python
uvw = ...
ant1 = np.array([0, 0, 0, 1, 1, 2, 0, 0, 0, 1, 1], dtype=np.int32)
ant2 = np.array([1, 2, 3, 2, 3, 3, 1, 2, 3, 1, 2], dtype=np.int32)
chunks = np.array([6, 5], dtype=np.int32)
ant_uv = antenna_uvw(uvw, ant1, ant2, chunks, nr_of_antenna=4)
The first antenna of the first baseline of a chunk is chosen as the origin
of the antenna coordinate system, while the second antenna is set to the
negative of the baseline UVW coordinate. Subsequent antenna UVW coordinates
are iteratively derived from the first two coordinates. Thus,
the baseline indices need not be properly ordered (within the chunk).
If it is not possible to derive coordinates for an antenna,
it's coordinate will be set to nan.
Parameters
----------
uvw : np.ndarray
Baseline UVW coordinates of shape (row, 3)
antenna1 : np.ndarray
Baseline first antenna of shape (row,)
antenna2 : np.ndarray
Baseline second antenna of shape (row,)
chunks : np.ndarray
Number of baselines per unique timestep with shape (chunks,)
:code:`np.sum(chunks) == row` should hold.
nr_of_antenna : int
Total number of antenna in the solution.
check_missing (optional) : bool
If ``True`` raises an exception if it was not possible
to compute UVW coordinates for all antenna (i.e. some were nan).
Defaults to ``False``.
check_decomposition (optional) : bool
If ``True``, checks that the antenna decomposition accurately
reproduces the coordinates in ``uvw``, or that
:code:`ant_uvw[c,ant1,:] - ant_uvw[c,ant2,:] == uvw[s:e,:]`
where ``s`` and ``e`` are the start and end rows
of chunk ``c`` respectively. Defaults to ``False``.
max_err (optional) : integer
Maximum numbers of errors when checking for missing antenna
or innacurate decompositions. Defaults to ``100``.
Returns
-------
np.ndarray
Antenna UVW coordinates of shape (chunks, nr_of_antenna, 3)
|
entailment
|
def default_sources(**kwargs):
"""
Returns a dictionary mapping source types
to number of sources. If the number of sources
for the source type is supplied in the kwargs
these will be placed in the dictionary.
e.g. if we have 'point', 'gaussian' and 'sersic'
source types, then
default_sources(point=10, gaussian=20)
will return an OrderedDict {'point': 10, 'gaussian': 20, 'sersic': 0}
"""
S = OrderedDict()
total = 0
invalid_types = [t for t in kwargs.keys() if t not in SOURCE_VAR_TYPES]
for t in invalid_types:
montblanc.log.warning('Source type %s is not yet '
'implemented in montblanc. '
'Valid source types are %s' % (t, SOURCE_VAR_TYPES.keys()))
# Zero all source types
for k, v in SOURCE_VAR_TYPES.iteritems():
# Try get the number of sources for this source
# from the kwargs
value = kwargs.get(k, 0)
try:
value = int(value)
except ValueError:
raise TypeError(('Supplied value %s '
'for source %s cannot be '
'converted to an integer') % \
(value, k))
total += value
S[k] = value
# Add a point source if no others exist
if total == 0:
S[POINT_TYPE] = 1
return S
|
Returns a dictionary mapping source types
to number of sources. If the number of sources
for the source type is supplied in the kwargs
these will be placed in the dictionary.
e.g. if we have 'point', 'gaussian' and 'sersic'
source types, then
default_sources(point=10, gaussian=20)
will return an OrderedDict {'point': 10, 'gaussian': 20, 'sersic': 0}
|
entailment
|
def sources_to_nr_vars(sources):
"""
Converts a source type to number of sources mapping into
a source numbering variable to number of sources mapping.
If, for example, we have 'point', 'gaussian' and 'sersic'
source types, then passing the following dict as an argument
sources_to_nr_vars({'point':10, 'gaussian': 20})
will return an OrderedDict
{'npsrc': 10, 'ngsrc': 20, 'nssrc': 0 }
"""
sources = default_sources(**sources)
try:
return OrderedDict((SOURCE_VAR_TYPES[name], nr)
for name, nr in sources.iteritems())
except KeyError as e:
raise KeyError((
'No source type ''%s'' is '
'registered. Valid source types '
'are %s') % (e, SOURCE_VAR_TYPES.keys()))
|
Converts a source type to number of sources mapping into
a source numbering variable to number of sources mapping.
If, for example, we have 'point', 'gaussian' and 'sersic'
source types, then passing the following dict as an argument
sources_to_nr_vars({'point':10, 'gaussian': 20})
will return an OrderedDict
{'npsrc': 10, 'ngsrc': 20, 'nssrc': 0 }
|
entailment
|
def source_range_tuple(start, end, nr_var_dict):
"""
Given a range of source numbers, as well as a dictionary
containing the numbers of each source, returns a dictionary
containing tuples of the start and end index
for each source variable type.
"""
starts = np.array([0 for nr_var in SOURCE_VAR_TYPES.itervalues()])
ends = np.array([nr_var_dict[nr_var] if nr_var in nr_var_dict else 0
for nr_var in SOURCE_VAR_TYPES.itervalues()])
sum_counts = np.cumsum(ends)
idx = np.arange(len(starts))
# Find the intervals containing the
# start and ending indices
start_idx, end_idx = np.searchsorted(
sum_counts, [start, end], side='right')
# Handle edge cases
if end >= sum_counts[-1]:
end = sum_counts[-1]
end_idx = len(sum_counts) - 1
# Find out which variable counts fall within the range
# of the supplied indices and zero those outside this range
invalid = np.logical_not(np.logical_and(start_idx <= idx, idx <= end_idx))
starts[invalid] = ends[invalid] = 0
# Modify the associated starting and ending positions
starts[start_idx] = start
ends[end_idx] = end
if start >= sum_counts[0]:
starts[start_idx] -= sum_counts[start_idx-1]
if end >= sum_counts[0]:
ends[end_idx] -= sum_counts[end_idx-1]
return OrderedDict((n, (starts[i], ends[i]))
for i, n in enumerate(SOURCE_VAR_TYPES.values()))
|
Given a range of source numbers, as well as a dictionary
containing the numbers of each source, returns a dictionary
containing tuples of the start and end index
for each source variable type.
|
entailment
|
def source_range(start, end, nr_var_dict):
"""
Given a range of source numbers, as well as a dictionary
containing the numbers of each source, returns a dictionary
containing tuples of the start and end index
for each source variable type.
"""
return OrderedDict((k, e-s)
for k, (s, e)
in source_range_tuple(start, end, nr_var_dict).iteritems())
|
Given a range of source numbers, as well as a dictionary
containing the numbers of each source, returns a dictionary
containing tuples of the start and end index
for each source variable type.
|
entailment
|
def source_range_slices(start, end, nr_var_dict):
"""
Given a range of source numbers, as well as a dictionary
containing the numbers of each source, returns a dictionary
containing slices for each source variable type.
"""
return OrderedDict((k, slice(s,e,1))
for k, (s, e)
in source_range_tuple(start, end, nr_var_dict).iteritems())
|
Given a range of source numbers, as well as a dictionary
containing the numbers of each source, returns a dictionary
containing slices for each source variable type.
|
entailment
|
def point_lm(self, context):
""" Return a lm coordinate array to montblanc """
lm = np.empty(context.shape, context.dtype)
# Print the array schema
montblanc.log.info(context.array_schema.shape)
# Print the space of iteration
montblanc.log.info(context.iter_args)
(ls, us) = context.dim_extents('npsrc')
lm[:,0] = 0.0008
lm[:,1] = 0.0036
lm[:,:] = 0
return lm
|
Return a lm coordinate array to montblanc
|
entailment
|
def point_stokes(self, context):
""" Return a stokes parameter array to montblanc """
stokes = np.empty(context.shape, context.dtype)
stokes[:,:,0] = 1
stokes[:,:,1:4] = 0
return stokes
|
Return a stokes parameter array to montblanc
|
entailment
|
def ref_frequency(self, context):
""" Return a reference frequency array to montblanc """
ref_freq = np.empty(context.shape, context.dtype)
ref_freq[:] = 1.415e9
return ref_freq
|
Return a reference frequency array to montblanc
|
entailment
|
def update(self, scopes=[], add_scopes=[], rm_scopes=[], note='',
note_url=''):
"""Update this authorization.
:param list scopes: (optional), replaces the authorization scopes with
these
:param list add_scopes: (optional), scopes to be added
:param list rm_scopes: (optional), scopes to be removed
:param str note: (optional), new note about authorization
:param str note_url: (optional), new note URL about this authorization
:returns: bool
"""
success = False
json = None
if scopes:
d = {'scopes': scopes}
json = self._json(self._post(self._api, data=d), 200)
if add_scopes:
d = {'add_scopes': add_scopes}
json = self._json(self._post(self._api, data=d), 200)
if rm_scopes:
d = {'remove_scopes': rm_scopes}
json = self._json(self._post(self._api, data=d), 200)
if note or note_url:
d = {'note': note, 'note_url': note_url}
json = self._json(self._post(self._api, data=d), 200)
if json:
self._update_(json)
success = True
return success
|
Update this authorization.
:param list scopes: (optional), replaces the authorization scopes with
these
:param list add_scopes: (optional), scopes to be added
:param list rm_scopes: (optional), scopes to be removed
:param str note: (optional), new note about authorization
:param str note_url: (optional), new note URL about this authorization
:returns: bool
|
entailment
|
def iter_labels(self, number=-1, etag=None):
"""Iterate over the labels for every issue associated with this
milestone.
.. versionchanged:: 0.9
Add etag parameter.
:param int number: (optional), number of labels to return. Default: -1
returns all available labels.
:param str etag: (optional), ETag header from a previous response
:returns: generator of :class:`Label <github3.issues.label.Label>`\ s
"""
url = self._build_url('labels', base_url=self._api)
return self._iter(int(number), url, Label, etag=etag)
|
Iterate over the labels for every issue associated with this
milestone.
.. versionchanged:: 0.9
Add etag parameter.
:param int number: (optional), number of labels to return. Default: -1
returns all available labels.
:param str etag: (optional), ETag header from a previous response
:returns: generator of :class:`Label <github3.issues.label.Label>`\ s
|
entailment
|
def current_function(frame):
"""
Get reference to currently running function from inspect/trace stack frame.
Parameters
----------
frame : stack frame
Stack frame obtained via trace or inspect
Returns
-------
fnc : function reference
Currently running function
"""
if frame is None:
return None
code = frame.f_code
# Attempting to extract the function reference for these calls appears
# to be problematic
if code.co_name == '__del__' or code.co_name == '_remove' or \
code.co_name == '_removeHandlerRef':
return None
try:
# Solution follows suggestion at http://stackoverflow.com/a/37099372
lst = [referer for referer in gc.get_referrers(code)
if getattr(referer, "__code__", None) is code and
inspect.getclosurevars(referer).nonlocals.items() <=
frame.f_locals.items()]
if lst:
return lst[0]
else:
return None
except ValueError:
# inspect.getclosurevars can fail with ValueError: Cell is empty
return None
|
Get reference to currently running function from inspect/trace stack frame.
Parameters
----------
frame : stack frame
Stack frame obtained via trace or inspect
Returns
-------
fnc : function reference
Currently running function
|
entailment
|
def current_module_name(frame):
"""
Get name of module of currently running function from inspect/trace
stack frame.
Parameters
----------
frame : stack frame
Stack frame obtained via trace or inspect
Returns
-------
modname : string
Currently running function module name
"""
if frame is None:
return None
if hasattr(frame.f_globals, '__name__'):
return frame.f_globals['__name__']
else:
mod = inspect.getmodule(frame)
if mod is None:
return ''
else:
return mod.__name__
|
Get name of module of currently running function from inspect/trace
stack frame.
Parameters
----------
frame : stack frame
Stack frame obtained via trace or inspect
Returns
-------
modname : string
Currently running function module name
|
entailment
|
def _trace(self, frame, event, arg):
"""
Build a record of called functions using the trace mechanism
"""
# Return if this is not a function call
if event != 'call':
return
# Filter calling and called functions by module names
src_mod = current_module_name(frame.f_back)
dst_mod = current_module_name(frame)
# Avoid tracing the tracer (specifically, call from
# ContextCallTracer.__exit__ to CallTracer.stop)
if src_mod == __modulename__ or dst_mod == __modulename__:
return
# Apply source and destination module filters
if not self.srcmodflt.match(src_mod):
return
if not self.dstmodflt.match(dst_mod):
return
# Get calling and called functions
src_func = current_function(frame.f_back)
dst_func = current_function(frame)
# Filter calling and called functions by qnames
if not self.srcqnmflt.match(function_qname(src_func)):
return
if not self.dstqnmflt.match(function_qname(dst_func)):
return
# Get calling and called function full names
src_name = function_fqname(src_func)
dst_name = function_fqname(dst_func)
# Modify full function names if necessary
if self.fnmsub is not None:
src_name = re.sub(self.fnmsub[0], self.fnmsub[1], src_name)
dst_name = re.sub(self.fnmsub[0], self.fnmsub[1], dst_name)
# Update calling function count
if src_func is not None:
if src_name in self.fncts:
self.fncts[src_name][0] += 1
else:
self.fncts[src_name] = [1, 0]
# Update called function count
if dst_func is not None and src_func is not None:
if dst_name in self.fncts:
self.fncts[dst_name][1] += 1
else:
self.fncts[dst_name] = [0, 1]
# Update caller/calling pair count
if dst_func is not None and src_func is not None:
key = (src_name, dst_name)
if key in self.calls:
self.calls[key] += 1
else:
self.calls[key] = 1
|
Build a record of called functions using the trace mechanism
|
entailment
|
def stop(self):
"""Stop tracing"""
# Stop tracing
sys.settrace(None)
# Build group structure if group filter is defined
if self.grpflt is not None:
# Iterate over graph nodes (functions)
for k in self.fncts:
# Construct group identity string
m = self.grpflt.search(k)
# If group identity string found, append current node
# to that group
if m is not None:
ms = m.group(0)
if ms in self.group:
self.group[ms].append(k)
else:
self.group[ms] = [k, ]
|
Stop tracing
|
entailment
|
def _clrgen(n, h0, hr):
"""Default colour generating function
Parameters
----------
n : int
Number of colours to generate
h0 : float
Initial H value in HSV colour specification
hr : float
Size of H value range to use for colour generation
(final H value is h0 + hr)
Returns
-------
clst : list of strings
List of HSV format colour specification strings
"""
n0 = n if n == 1 else n-1
clst = ['%f,%f,%f' % (h0 + hr*hi/n0, 0.35, 0.85) for
hi in range(n)]
return clst
|
Default colour generating function
Parameters
----------
n : int
Number of colours to generate
h0 : float
Initial H value in HSV colour specification
hr : float
Size of H value range to use for colour generation
(final H value is h0 + hr)
Returns
-------
clst : list of strings
List of HSV format colour specification strings
|
entailment
|
def graph(self, fnm=None, size=None, fntsz=None, fntfm=None, clrgen=None,
rmsz=False, prog='dot'):
"""
Construct call graph
Parameters
----------
fnm : None or string, optional (default None)
Filename of graph file to be written. File type is determined by
the file extentions (e.g. dot for 'graph.dot' and SVG for
'graph.svg'). If None, a file is not written.
size : string or None, optional (default None)
Graph image size specification string.
fntsz : int or None, optional (default None)
Font size for text.
fntnm : string or None, optional (default None)
Font family specification string.
clrgen : function or None, optional (default None)
Function to call to generate the group colours. This function
should take an integer specifying the number of groups as an
argument and return a list of graphviz-compatible colour
specification strings.
rmsz : bool, optional (default False)
If True, remove the width and height specifications from an
SVG format output file so that the size scales properly when
viewed in a web browser
prog : string, optional (default 'dot')
Name of graphviz layout program to use.
Returns
-------
pgr : pygraphviz.AGraph
Call graph of traced function calls
"""
# Default colour generation function
if clrgen is None:
clrgen = lambda n: self._clrgen(n, 0.330, 0.825)
# Generate color list
clrlst = clrgen(len(self.group))
# Initialise a pygraphviz graph
g = pgv.AGraph(strict=False, directed=True, landscape=False,
rankdir='LR', newrank=True, fontsize=fntsz,
fontname=fntfm, size=size, ratio='compress',
color='black', bgcolor='#ffffff00')
# Set graph attributes
g.node_attr.update(penwidth=0.25, shape='box', style='rounded,filled')
# Iterate over functions adding them as graph nodes
for k in self.fncts:
g.add_node(k, fontsize=fntsz, fontname=fntfm)
# If lnksub regex pair is provided, compute an href link
# target from the node name and add it as an attribute to
# the node
if self.lnksub is not None:
lnktgt = re.sub(self.lnksub[0], self.lnksub[1], k)
g.get_node(k).attr.update(href=lnktgt, target="_top")
# If function has no calls to it, set its rank to "source"
if self.fncts[k][1] == 0:
g.get_node(k).attr.update(rank='source')
# If groups defined, construct a subgraph for each and add the
# nodes in each group to the corresponding subgraph
if self.group:
fngrpnm = {}
# Iterate over group number/group name pairs
for k in zip(range(len(self.group)), sorted(self.group)):
g.add_subgraph(self.group[k[1]], name='cluster_' + k[1],
label=k[1], penwidth=2, style='dotted',
pencolor=clrlst[k[0]])
# Iterate over nodes in current group
for l in self.group[k[1]]:
# Create record of function group number
fngrpnm[l] = k[0]
# Set common group colour for current node
g.get_node(l).attr.update(fillcolor=clrlst[k[0]])
# Iterate over function calls, adding each as an edge
for k in self.calls:
# If groups defined, set edge colour according to group of
# calling function, otherwise set a standard colour
if self.group:
g.add_edge(k[0], k[1], penwidth=2, color=clrlst[fngrpnm[k[0]]])
else:
g.add_edge(k[0], k[1], color='grey')
# Call layout program
g.layout(prog=prog)
# Write graph file if filename provided
if fnm is not None:
ext = os.path.splitext(fnm)[1]
if ext == '.dot':
g.write(fnm)
else:
if ext == '.svg' and rmsz:
img = g.draw(format='svg').decode('utf-8')
cp = re.compile(r'\n<svg width=\"[^\"]*\" '
'height=\"[^\"]*\"')
img = cp.sub(r'\n<svg', img, count=1)
with open(fnm, 'w') as fd:
fd.write(img)
else:
g.draw(fnm)
# Return graph object
return g
|
Construct call graph
Parameters
----------
fnm : None or string, optional (default None)
Filename of graph file to be written. File type is determined by
the file extentions (e.g. dot for 'graph.dot' and SVG for
'graph.svg'). If None, a file is not written.
size : string or None, optional (default None)
Graph image size specification string.
fntsz : int or None, optional (default None)
Font size for text.
fntnm : string or None, optional (default None)
Font family specification string.
clrgen : function or None, optional (default None)
Function to call to generate the group colours. This function
should take an integer specifying the number of groups as an
argument and return a list of graphviz-compatible colour
specification strings.
rmsz : bool, optional (default False)
If True, remove the width and height specifications from an
SVG format output file so that the size scales properly when
viewed in a web browser
prog : string, optional (default 'dot')
Name of graphviz layout program to use.
Returns
-------
pgr : pygraphviz.AGraph
Call graph of traced function calls
|
entailment
|
def create_review_comment(self, body, commit_id, path, position):
"""Create a review comment on this pull request.
All parameters are required by the GitHub API.
:param str body: The comment text itself
:param str commit_id: The SHA of the commit to comment on
:param str path: The relative path of the file to comment on
:param int position: The line index in the diff to comment on.
:returns: The created review comment.
:rtype: :class:`~github3.pulls.ReviewComment`
"""
url = self._build_url('comments', base_url=self._api)
data = {'body': body, 'commit_id': commit_id, 'path': path,
'position': int(position)}
json = self._json(self._post(url, data=data), 201)
return ReviewComment(json, self) if json else None
|
Create a review comment on this pull request.
All parameters are required by the GitHub API.
:param str body: The comment text itself
:param str commit_id: The SHA of the commit to comment on
:param str path: The relative path of the file to comment on
:param int position: The line index in the diff to comment on.
:returns: The created review comment.
:rtype: :class:`~github3.pulls.ReviewComment`
|
entailment
|
def diff(self):
"""Return the diff"""
resp = self._get(self._api,
headers={'Accept': 'application/vnd.github.diff'})
return resp.content if self._boolean(resp, 200, 404) else None
|
Return the diff
|
entailment
|
def is_merged(self):
"""Checks to see if the pull request was merged.
:returns: bool
"""
url = self._build_url('merge', base_url=self._api)
return self._boolean(self._get(url), 204, 404)
|
Checks to see if the pull request was merged.
:returns: bool
|
entailment
|
def iter_comments(self, number=-1, etag=None):
"""Iterate over the comments on this pull request.
:param int number: (optional), number of comments to return. Default:
-1 returns all available comments.
:param str etag: (optional), ETag from a previous request to the same
endpoint
:returns: generator of :class:`ReviewComment <ReviewComment>`\ s
"""
url = self._build_url('comments', base_url=self._api)
return self._iter(int(number), url, ReviewComment, etag=etag)
|
Iterate over the comments on this pull request.
:param int number: (optional), number of comments to return. Default:
-1 returns all available comments.
:param str etag: (optional), ETag from a previous request to the same
endpoint
:returns: generator of :class:`ReviewComment <ReviewComment>`\ s
|
entailment
|
def iter_files(self, number=-1, etag=None):
"""Iterate over the files associated with this pull request.
:param int number: (optional), number of files to return. Default:
-1 returns all available files.
:param str etag: (optional), ETag from a previous request to the same
endpoint
:returns: generator of :class:`PullFile <PullFile>`\ s
"""
url = self._build_url('files', base_url=self._api)
return self._iter(int(number), url, PullFile, etag=etag)
|
Iterate over the files associated with this pull request.
:param int number: (optional), number of files to return. Default:
-1 returns all available files.
:param str etag: (optional), ETag from a previous request to the same
endpoint
:returns: generator of :class:`PullFile <PullFile>`\ s
|
entailment
|
def iter_issue_comments(self, number=-1, etag=None):
"""Iterate over the issue comments on this pull request.
:param int number: (optional), number of comments to return. Default:
-1 returns all available comments.
:param str etag: (optional), ETag from a previous request to the same
endpoint
:returns: generator of :class:`IssueComment <IssueComment>`\ s
"""
url = self._build_url(base_url=self.links['comments'])
return self._iter(int(number), url, IssueComment, etag=etag)
|
Iterate over the issue comments on this pull request.
:param int number: (optional), number of comments to return. Default:
-1 returns all available comments.
:param str etag: (optional), ETag from a previous request to the same
endpoint
:returns: generator of :class:`IssueComment <IssueComment>`\ s
|
entailment
|
def merge(self, commit_message='', sha=None):
"""Merge this pull request.
:param str commit_message: (optional), message to be used for the
merge commit
:returns: bool
"""
parameters = {'commit_message': commit_message}
if sha:
parameters['sha'] = sha
url = self._build_url('merge', base_url=self._api)
json = self._json(self._put(url, data=dumps(parameters)), 200)
self.merge_commit_sha = json['sha']
return json['merged']
|
Merge this pull request.
:param str commit_message: (optional), message to be used for the
merge commit
:returns: bool
|
entailment
|
def patch(self):
"""Return the patch"""
resp = self._get(self._api,
headers={'Accept': 'application/vnd.github.patch'})
return resp.content if self._boolean(resp, 200, 404) else None
|
Return the patch
|
entailment
|
def update(self, title=None, body=None, state=None):
"""Update this pull request.
:param str title: (optional), title of the pull
:param str body: (optional), body of the pull request
:param str state: (optional), ('open', 'closed')
:returns: bool
"""
data = {'title': title, 'body': body, 'state': state}
json = None
self._remove_none(data)
if data:
json = self._json(self._patch(self._api, data=dumps(data)), 200)
if json:
self._update_(json)
return True
return False
|
Update this pull request.
:param str title: (optional), title of the pull
:param str body: (optional), body of the pull request
:param str state: (optional), ('open', 'closed')
:returns: bool
|
entailment
|
def reply(self, body):
"""Reply to this review comment with a new review comment.
:param str body: The text of the comment.
:returns: The created review comment.
:rtype: :class:`~github3.pulls.ReviewComment`
"""
url = self._build_url('comments', base_url=self.pull_request_url)
index = self._api.rfind('/') + 1
in_reply_to = self._api[index:]
json = self._json(self._post(url, data={
'body': body, 'in_reply_to': in_reply_to
}), 201)
return ReviewComment(json, self) if json else None
|
Reply to this review comment with a new review comment.
:param str body: The text of the comment.
:returns: The created review comment.
:rtype: :class:`~github3.pulls.ReviewComment`
|
entailment
|
def add_member(self, login):
"""Add ``login`` to this team.
:returns: bool
"""
warnings.warn(
'This is no longer supported by the GitHub API, see '
'https://developer.github.com/changes/2014-09-23-one-more-week'
'-before-the-add-team-member-api-breaking-change/',
DeprecationWarning)
url = self._build_url('members', login, base_url=self._api)
return self._boolean(self._put(url), 204, 404)
|
Add ``login`` to this team.
:returns: bool
|
entailment
|
def add_repo(self, repo):
"""Add ``repo`` to this team.
:param str repo: (required), form: 'user/repo'
:returns: bool
"""
url = self._build_url('repos', repo, base_url=self._api)
return self._boolean(self._put(url), 204, 404)
|
Add ``repo`` to this team.
:param str repo: (required), form: 'user/repo'
:returns: bool
|
entailment
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.