repo_name
stringlengths
6
97
path
stringlengths
3
341
text
stringlengths
8
1.02M
gkucsko/NeMo
nemo/collections/nlp/data/dialogue/dataset/dialogue_zero_shot_intent_dataset.py
<reponame>gkucsko/NeMo # Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # Copyright 2019 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Dict, List, Optional, Union import numpy as np from nemo.collections.common.tokenizers.tokenizer_spec import TokenizerSpec from nemo.collections.nlp.data.glue_benchmark.data_processors import InputExample from nemo.collections.nlp.data.glue_benchmark.glue_benchmark_dataset import GLUEDataset from nemo.core.neural_types import CategoricalValuesType, ChannelType, MaskType, NeuralType from nemo.utils import logging __all__ = ['DialogueZeroShotIntentDataset'] class DialogueZeroShotIntentDataset(GLUEDataset): """ Dataset for training a NLI model for zero shot intent recognition. Similar to GLUE/MNLI dataset, but allows the user to specify which columns in the data files contain the premise, hypothesis, and gold label. """ @property def output_types(self) -> Optional[Dict[str, NeuralType]]: """Returns definitions of module output ports. """ return { 'input_ids': NeuralType(('B', 'T'), ChannelType()), 'segment_ids': NeuralType(('B', 'T'), ChannelType()), 'input_mask': NeuralType(('B', 'T'), MaskType()), 'labels': NeuralType(tuple('B'), CategoricalValuesType()), } def __init__(self, dataset_split: str, dialogues_processor: object, tokenizer, cfg): """ Args: dataset_split: dataset split dialogues_processor: Data generator for dialogues tokenizer: tokenizer to split text into sub-word tokens cfg: config dict for dataset num_classes: number of classes in the data (should be either 2 or 3, corresponding to labels ['entailment', 'not_entailment'] or ["contradiction", "entailment", "neutral"]) """ self.cfg = cfg self.tokenizer = tokenizer if self.cfg.num_classes not in [2, 3]: raise ValueError("num_classes must be either 2 or 3!") self.label_list = ( ["contradiction", "entailment", "neutral"] if self.cfg.num_classes == 3 else ['not_entailment', 'entailment'] ) token_params = { 'bos_token': None, 'eos_token': tokenizer.eos_token, 'pad_token': tokenizer.pad_token, 'cls_token': tokenizer.cls_token, 'sep_token_extra': tokenizer.eos_token if hasattr(tokenizer, 'name') and 'roberta' in tokenizer.name.lower() else None, } self.raw_features = dialogues_processor.get_dialog_examples(dataset_split) self.examples = self._create_examples(self.raw_features, dataset_split) self.features = self.convert_examples_to_features( self.examples, [0, 1, 2, 3], self.cfg.max_seq_length, tokenizer, output_mode="classification", **token_params, ) def _create_examples(self, raw_features, dataset_split: str): """Creates examples for the training and dev sets.""" examples = [] for idx in range(len(raw_features)): ex = self.raw_features[idx].data user_utterance = ex["utterance"] intent = ex["labels"]["intent"] for candidate_idx, candidate_intent in enumerate(ex["possible_labels"]["intent"]): guid = "{}-{}-{}".format(dataset_split, idx, candidate_idx) text_a = user_utterance text_b = "{} {}".format(self.cfg.prompt_template, candidate_intent) label = 1 if candidate_intent == intent else 0 examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) return examples def convert_examples_to_features( self, examples: List[str], label_list: List[int], max_seq_length: int, tokenizer: TokenizerSpec, output_mode: str, bos_token: str = None, eos_token: str = '[SEP]', pad_token: str = '[PAD]', cls_token: str = '[CLS]', sep_token_extra: str = None, cls_token_at_end: bool = False, cls_token_segment_id: int = 0, pad_token_segment_id: int = 0, pad_on_left: bool = False, mask_padding_with_zero: bool = True, sequence_a_segment_id: int = 0, sequence_b_segment_id: int = 1, ): """ Loads a data file into a list of `InputBatch`s. The `cls_token_at_end` defines the location of the CLS token: * False (Default, BERT/XLM pattern): [CLS] + A + [SEP] + B + [SEP] * True (XLNet/GPT pattern): A + [SEP] + B + [SEP] + [CLS] The `cls_token_segment_id` defines the segment id associated to the CLS token (0 for BERT, 2 for XLNet) The convention in BERT is: a. For sequence pairs: * tokens: [CLS] is this jack ##ville ? [SEP] no it is not . [SEP] * type_ids: 0 0 0 0 0 0 0 1 1 1 1 1 1 b. For single sequences: * tokens: [CLS] the dog is hairy . [SEP] * type_ids: 0 0 0 0 0 0 0 Where "type_ids" are used to indicate whether this is the first sequence or the second sequence. The embedding vectors for `type=0` and `type=1` were learned during pre-training and are added to the wordpiece embedding vector (and position vector). This is not *strictly* necessarysince the [SEP] token unambiguously separates the sequences, but it makes it easier for the model to learn the concept of sequences. For classification tasks, the first vector (corresponding to [CLS]) is used as as the "sentence vector". Note that this only makes sense because the entire model is fine-tuned. The convention for NMT is: a. For sequence pairs: * tokens:<BOS> is this jack ##ville ? <EOS> <BOS> no it is not . <EOS> * type_ids:0 0 0 0 0 0 0 1 1 1 1 1 1 1 b. For single sequences: * tokens: <BOS> the dog is hairy . <EOS> * type_ids: 0 0 0 0 0 0 0 """ label_map = {label: i for i, label in enumerate(label_list)} features = [] for ex_index, example in enumerate(examples): if example.label == "-": # skip examples without a consensus label (e.g. in SNLI data set) continue if ex_index % 10000 == 0: logging.info("Writing example %d of %d" % (ex_index, len(examples))) if hasattr(tokenizer, 'text_to_tokens'): tokens_a = tokenizer.text_to_tokens(example.text_a) else: tokens_a = tokenizer.tokenize(example.text_a) tokens_b = None if example.text_b: if hasattr(tokenizer, 'text_to_tokens'): tokens_b = tokenizer.text_to_tokens(example.text_b) else: tokens_b = tokenizer.tokenize(example.text_b) special_tokens_count = 2 if eos_token else 0 special_tokens_count += 1 if sep_token_extra else 0 special_tokens_count += 2 if bos_token else 0 special_tokens_count += 1 if cls_token else 0 self._truncate_seq_pair(tokens_a, tokens_b, max_seq_length - special_tokens_count) else: special_tokens_count = 1 if eos_token else 0 special_tokens_count += 1 if sep_token_extra else 0 special_tokens_count += 1 if bos_token else 0 if len(tokens_a) > max_seq_length - special_tokens_count: tokens_a = tokens_a[: max_seq_length - special_tokens_count] # Add special tokens to sequence_a tokens = tokens_a if bos_token: tokens = [bos_token] + tokens if eos_token: tokens += [eos_token] segment_ids = [sequence_a_segment_id] * len(tokens) # Add sequence separator between sequences if tokens_b and sep_token_extra: tokens += [sep_token_extra] segment_ids += [sequence_a_segment_id] # Add special tokens to sequence_b if tokens_b: if bos_token: tokens += [bos_token] segment_ids += [sequence_b_segment_id] tokens += tokens_b segment_ids += [sequence_b_segment_id] * (len(tokens_b)) if eos_token: tokens += [eos_token] segment_ids += [sequence_b_segment_id] # Add classification token - for BERT models if cls_token: if cls_token_at_end: tokens += [cls_token] segment_ids += [cls_token_segment_id] else: tokens = [cls_token] + tokens segment_ids = [cls_token_segment_id] + segment_ids if hasattr(tokenizer, 'tokens_to_ids'): input_ids = tokenizer.tokens_to_ids(tokens) else: input_ids = tokenizer.convert_tokens_to_ids(tokens) # The mask has 1 for real tokens and 0 for padding tokens. Only real # tokens are attended to. input_mask = [1 if mask_padding_with_zero else 0] * len(input_ids) # Zero-pad up to the sequence length. padding_length = max_seq_length - len(input_ids) if hasattr(tokenizer, 'tokens_to_ids'): pad_token_id = tokenizer.tokens_to_ids([pad_token])[0] else: pad_token_id = tokenizer.convert_tokens_to_ids([pad_token])[0] if pad_on_left: input_ids = ([pad_token_id] * padding_length) + input_ids input_mask = ([0 if mask_padding_with_zero else 1] * padding_length) + input_mask segment_ids = ([pad_token_segment_id] * padding_length) + segment_ids else: input_ids = input_ids + ([pad_token_id] * padding_length) input_mask = input_mask + ([0 if mask_padding_with_zero else 1] * padding_length) segment_ids = segment_ids + ([pad_token_segment_id] * padding_length) if len(input_ids) != max_seq_length: raise ValueError("input_ids must be of length max_seq_length") if len(input_mask) != max_seq_length: raise ValueError("input_mask must be of length max_seq_length") if len(segment_ids) != max_seq_length: raise ValueError("segment_ids must be of length max_seq_length") if output_mode == "classification": label_id = label_map[example.label] elif output_mode == "regression": label_id = np.float32(example.label) else: raise KeyError(output_mode) if ex_index < 5: logging.info("*** Example ***") logging.info("guid: %s" % (example.guid)) logging.info("tokens: %s" % " ".join(list(map(str, tokens)))) logging.info("input_ids: %s" % " ".join(list(map(str, input_ids)))) logging.info("input_mask: %s" % " ".join(list(map(str, input_mask)))) logging.info("segment_ids: %s" % " ".join(list(map(str, segment_ids)))) logging.info("label: %s (id = %d)" % (example.label, label_id)) features.append( InputFeatures(input_ids=input_ids, input_mask=input_mask, segment_ids=segment_ids, label_id=label_id) ) return features class InputFeatures(object): """A single set of features of data. Args: input_ids: input/token ids input_mask: masks out subword tokens segment_ids: distinguish one sentence from the other one (if present) label_ids: label for the current example """ def __init__( self, input_ids: List[int], input_mask: List[int], segment_ids: List[int], label_id: Union[float, int] ): """Initialized InputFeatures.""" self.input_ids = input_ids self.input_mask = input_mask self.segment_ids = segment_ids self.label_id = label_id
gkucsko/NeMo
nemo/collections/asr/parts/submodules/ssl_quantizers.py
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch import torch.nn.functional as F from torch import nn from nemo.collections.asr.parts.submodules.jasper import jasper_activations from nemo.core import NeuralModule from nemo.core.neural_types import EncodedRepresentation, LossType, NeuralType class GumbelVectorQuantizer(NeuralModule): def __init__( self, dim, num_vars, temp, groups, combine_groups, vq_dim, time_first, activation="gelu", weight_proj_depth=1, weight_proj_factor=1, ): """Vector quantization using gumbel softmax Args: dim: input dimension (channels) num_vars: number of quantized vectors per group temp: temperature for training. this should be a tuple of 3 elements: (start, stop, decay factor) groups: number of groups for vector quantization combine_groups: whether to use the vectors for all groups vq_dim: dimensionality of the resulting quantized vector time_first: if true, expect input in BxTxC format, otherwise in BxCxT activation: what activation to use (should be a module). this is only used if weight_proj_depth is > 1 weight_proj_depth: number of layers (with activation in between) to project input before computing logits weight_proj_factor: this is used only if weight_proj_depth is > 1. scales the inner dimensionality of projections by this factor """ super().__init__() self.groups = groups self.combine_groups = combine_groups self.input_dim = dim self.num_vars = num_vars self.time_first = time_first assert vq_dim % groups == 0, f"dim {vq_dim} must be divisible by groups {groups} for concatenation" var_dim = vq_dim // groups num_groups = groups if not combine_groups else 1 self.vars = nn.Parameter(torch.FloatTensor(1, num_groups * num_vars, var_dim)) nn.init.uniform_(self.vars) if weight_proj_depth > 1: activation = jasper_activations["gelu"] def block(input_dim, output_dim): return nn.Sequential(nn.Linear(input_dim, output_dim), activation) inner_dim = self.input_dim * weight_proj_factor self.weight_proj = nn.Sequential( *[block(self.input_dim if i == 0 else inner_dim, inner_dim) for i in range(weight_proj_depth - 1)], nn.Linear(inner_dim, groups * num_vars), ) else: self.weight_proj = nn.Linear(self.input_dim, groups * num_vars) nn.init.normal_(self.weight_proj.weight, mean=0, std=1) nn.init.zeros_(self.weight_proj.bias) assert len(temp) == 3, "Quantize temperature should be a tuple of 3 elements: (start, stop, decay factor)" self.max_temp, self.min_temp, self.temp_decay = temp self.curr_temp = self.max_temp self.codebook_indices = None def set_num_updates(self, num_updates): self.curr_temp = max(self.max_temp * self.temp_decay ** num_updates, self.min_temp) def get_codebook_indices(self): if self.codebook_indices is None: from itertools import product p = [range(self.num_vars)] * self.groups inds = list(product(*p)) self.codebook_indices = torch.tensor(inds, dtype=torch.long, device=self.vars.device).flatten() if not self.combine_groups: self.codebook_indices = self.codebook_indices.view(self.num_vars ** self.groups, -1) for b in range(1, self.groups): self.codebook_indices[:, b] += self.num_vars * b self.codebook_indices = self.codebook_indices.flatten() return self.codebook_indices def sample_from_codebook(self, b, n): indices = self.get_codebook_indices() indices = indices.view(-1, self.groups) cb_size = indices.size(0) assert n < cb_size, f"sample size {n} is greater than size of codebook {cb_size}" sample_idx = torch.randint(low=0, high=cb_size, size=(b * n,)) indices = indices[sample_idx] z = self.vars.squeeze(0).index_select(0, indices.flatten()).view(b, n, -1) return z @property def input_types(self): """Returns definitions of module input ports. """ if self.time_first: return {"x": NeuralType(('B', 'T', 'D'), EncodedRepresentation())} return {"x": NeuralType(('B', 'D', 'T'), EncodedRepresentation())} @property def output_types(self): """Returns definitions of module output ports. """ if self.time_first: return { "x": NeuralType(('B', 'T', 'D'), EncodedRepresentation()), "quantize_prob_ppl": NeuralType(elements_type=LossType()), } return { "x": NeuralType(('B', 'D', 'T'), EncodedRepresentation()), "quantize_prob_ppl": NeuralType(elements_type=LossType()), } def forward(self, x, return_ids=False): if not self.time_first: x = x.transpose(1, 2) bsz, tsz, fsz = x.shape x = x.reshape(-1, fsz) x = self.weight_proj(x) x = x.view(bsz * tsz * self.groups, -1) _, k = x.max(-1) hard_x = x.new_zeros(*x.shape).scatter_(-1, k.view(-1, 1), 1.0).view(bsz * tsz, self.groups, -1) # Calculate quantize prob perplexity num_vars = self.num_vars * self.groups avg_probs = torch.softmax(x.view(bsz * tsz, self.groups, -1).float(), dim=-1).mean(dim=0) quantize_prob_ppl = torch.exp(-torch.sum(avg_probs * torch.log(avg_probs + 1e-7), dim=-1)).sum() quantize_prob_ppl = (num_vars - quantize_prob_ppl) / num_vars if self.training: x = F.gumbel_softmax(x.float(), tau=self.curr_temp, hard=True).type_as(x) else: x = hard_x x = x.view(bsz * tsz, -1) vars = self.vars if self.combine_groups: vars = vars.repeat(1, self.groups, 1) x = x.unsqueeze(-1) * vars x = x.view(bsz * tsz, self.groups, self.num_vars, -1) x = x.sum(-2) x = x.view(bsz, tsz, -1) cur_codebook_temp = self.curr_temp if not self.time_first: x = x.transpose(1, 2) # BTC -> BCT if return_ids: hard_x_max = hard_x.argmax(-1).reshape(bsz, tsz, -1) # BxTxG # create single id from multiple group ids target_ids = hard_x.new_zeros(bsz, tsz).long() for i in range(self.groups): target_ids *= self.num_vars target_ids += hard_x_max[:, :, i] return x, quantize_prob_ppl, cur_codebook_temp, target_ids else: return x, quantize_prob_ppl, cur_codebook_temp
gkucsko/NeMo
nemo/collections/nlp/modules/common/prompt_encoder.py
<reponame>gkucsko/NeMo # Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Dict, Optional import torch from torch import nn from nemo.core.classes import Exportable, NeuralModule from nemo.core.classes.common import typecheck from nemo.core.neural_types import ChannelType, NeuralType __all__ = ['PromptEncoder'] class PromptEncoder(NeuralModule, Exportable): """ The prompt encoder network that is used to generate the virtual token embeddings for p-tuning. """ @property def input_types(self) -> Optional[Dict[str, NeuralType]]: return { "taskname_embeddings": NeuralType(('B', 'T', 'C'), ChannelType(), optional=False), } @property def output_types(self) -> Optional[Dict[str, NeuralType]]: return {"output_embeds": NeuralType(('B', 'T', 'C'), ChannelType())} def __init__(self, total_virtual_tokens: int, hidden_size: int, lstm_dropout: float, num_layers: int): """ Initializes the PromptEncoder module. Args: total_virtual_tokens: the total number of vitural tokens hidden_size: hidden dimension lstm_dropout: the dropout used for the LSTM num_layers: number of layers used in the LSTM """ super().__init__() self.hidden_size = hidden_size self.total_virtual_tokens = total_virtual_tokens # Set fixed indicies for forward pass self.register_buffer('indices', torch.LongTensor(list(range(self.total_virtual_tokens)))) # embedding self.embedding = torch.nn.Embedding(self.total_virtual_tokens, self.hidden_size) # LSTM self.lstm_head = torch.nn.LSTM( input_size=self.hidden_size, hidden_size=self.hidden_size // 2, num_layers=num_layers, dropout=lstm_dropout, bidirectional=True, batch_first=True, ) self.mlp_head = nn.Sequential( nn.Linear(self.hidden_size, self.hidden_size), nn.ReLU(), nn.Linear(self.hidden_size, self.hidden_size) ) @typecheck() def forward(self, taskname_embeddings) -> torch.Tensor: input_embeds = self.embedding(self.indices).unsqueeze(0) batch_size, task_seq_length, _ = taskname_embeddings.shape input_embeds = input_embeds.expand(batch_size, self.total_virtual_tokens, self.hidden_size).clone() length = min(task_seq_length, self.total_virtual_tokens) # Replace general input with task specific embeddings to specify the correct task input_embeds[:, 0:length, :] = taskname_embeddings[:, 0:length, :] output_embeds = self.mlp_head(self.lstm_head(input_embeds)[0]) return output_embeds
gkucsko/NeMo
nemo_text_processing/text_normalization/en/verbalizers/electronic.py
<gh_stars>0 # Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from nemo_text_processing.text_normalization.en.graph_utils import ( NEMO_NOT_QUOTE, NEMO_SIGMA, TO_UPPER, GraphFst, delete_extra_space, delete_space, insert_space, ) from nemo_text_processing.text_normalization.en.utils import get_abs_path try: import pynini from pynini.lib import pynutil from pynini.examples import plurals PYNINI_AVAILABLE = True except (ModuleNotFoundError, ImportError): PYNINI_AVAILABLE = False class ElectronicFst(GraphFst): """ Finite state transducer for verbalizing electronic e.g. tokens { electronic { username: "cdf1" domain: "abc.edu" } } -> c d f one at a b c dot e d u Args: deterministic: if True will provide a single transduction option, for False multiple transduction are generated (used for audio-based normalization) """ def __init__(self, deterministic: bool = True): super().__init__(name="electronic", kind="verbalize", deterministic=deterministic) graph_digit_no_zero = pynini.invert(pynini.string_file(get_abs_path("data/number/digit.tsv"))).optimize() graph_zero = pynini.cross("0", "zero") if not deterministic: graph_zero |= pynini.cross("0", "o") | pynini.cross("0", "oh") graph_digit = graph_digit_no_zero | graph_zero graph_symbols = pynini.string_file(get_abs_path("data/electronic/symbol.tsv")).optimize() default_chars_symbols = pynini.cdrewrite( pynutil.insert(" ") + (graph_symbols | graph_digit) + pynutil.insert(" "), "", "", NEMO_SIGMA ) user_name = ( pynutil.delete("username:") + delete_space + pynutil.delete("\"") + default_chars_symbols + pynutil.delete("\"") ) domain_common = pynini.string_file(get_abs_path("data/electronic/domain.tsv")) domain = ( default_chars_symbols + insert_space + plurals._priority_union( domain_common, pynutil.add_weight(pynini.cross(".", "dot"), weight=0.0001), NEMO_SIGMA ) + pynini.closure( insert_space + (pynini.cdrewrite(TO_UPPER, "", "", NEMO_SIGMA) @ default_chars_symbols), 0, 1 ) ) domain = ( pynutil.delete("domain:") + delete_space + pynutil.delete("\"") + domain + delete_space + pynutil.delete("\"") ).optimize() protocol = pynutil.delete("protocol: \"") + pynini.closure(NEMO_NOT_QUOTE, 1) + pynutil.delete("\"") graph = ( pynini.closure(protocol + delete_space, 0, 1) + pynini.closure(user_name + delete_space + pynutil.insert(" at ") + delete_space, 0, 1) + domain + delete_space ).optimize() @ pynini.cdrewrite(delete_extra_space, "", "", NEMO_SIGMA) delete_tokens = self.delete_tokens(graph) self.fst = delete_tokens.optimize()
gkucsko/NeMo
nemo/collections/nlp/metrics/dialogue_metrics.py
# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # Copyright 2019 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json from collections import Counter import numpy as np from sacrebleu import corpus_bleu class DialogueGenerationMetrics(object): @staticmethod def save_predictions( filename, generated_field, ground_truth_field, inputs, ): """ Save predictions as a jsonl file Args: Each arg is a list of strings (all args have the same length) """ docs = [] for i in range(len(inputs)): docs.append( {"input": inputs[i], "ground_truth": ground_truth_field[i], "generated": generated_field[i],} ) with open(filename, 'w', encoding="UTF-8") as f: for item in docs: f.write(json.dumps(item) + "\n") @staticmethod def _get_one_f1(generated_field, ground_truth_field): """ Get precision, recall, f1 based on token overlap between generated and ground_truth sequence """ generated_tokens = generated_field.split() ground_truth_tokens = ground_truth_field.split() common = Counter(generated_tokens) & Counter(ground_truth_tokens) num_same = sum(common.values()) if num_same == 0: return 0, 0, 0 precision = 1.0 * num_same / len(generated_tokens) recall = 1.0 * num_same / len(ground_truth_tokens) f1 = (2 * precision * recall) / (precision + recall) return np.array([precision * 100, recall * 100, f1 * 100]) @staticmethod def get_f1(generated_fields, ground_truth_fields): total_p_r_f1 = np.array( [ DialogueGenerationMetrics._get_one_f1(generated_fields[i], ground_truth_fields[i]) for i in range(len(ground_truth_fields)) ] ) avg_p_r_f1 = np.mean(total_p_r_f1, axis=0) return avg_p_r_f1 @staticmethod def get_bleu(generated_field, ground_truth_field): """ Referenced from NMT evaluation Note 13a is the default tokenizer for English for WMT Known issue that it doesn't hand edge case of None or '' https://github.com/mjpost/sacrebleu/issues/161 """ valid_indices = [i for i in range(len(generated_field)) if generated_field[i] and ground_truth_field[i]] generated_field = [generated_field[i] for i in valid_indices] ground_truth_field = [ground_truth_field[i] for i in valid_indices] sacre_bleu = corpus_bleu(generated_field, [ground_truth_field], tokenize="13a") return sacre_bleu.score class DialogueClassificationMetrics(object): @staticmethod def save_predictions( filename, generated_labels, generated_slots, ground_truth_labels, ground_truth_slots, generated_field, ground_truth_field, inputs, ): """ Save predictions as a jsonl file Args: Each arg is a list of strings (all args have the same length) """ docs = [] for i in range(len(inputs)): docs.append( { "input": inputs[i], "ground_truth": ground_truth_field[i], "ground_truth_slots": ground_truth_slots[i], "ground_truth_labels": ground_truth_labels[i], "generated": generated_field[i], "generated_slots": generated_slots[i], "generated_labels": generated_labels[i], } ) with open(filename, 'w', encoding="UTF-8") as f: for item in docs: f.write(json.dumps(item) + "\n") @staticmethod def split_label_and_slots(fields, with_slots=False): """ Split target into label and slots when doing joint label (i.e. intent) classificaiton and slot filling For instance, split "reserve_restaurant\nslots: time_of_day(7pm), number_of_people(3)" into label = "reserve_restaurant" and slots = ["time_of_day(7pm)", "number_of_people(3)"] Args: fields: list of strings """ labels = [] slots_list = [] for field in fields: if with_slots: combo = [i.strip() for i in field.split('slots:', 1)] label = 'none' if len(combo) == 2: label, slots = combo elif len(combo) == 1: slots = combo[0] label = 'none' if isinstance(slots, str): # temporary patch for purnendu model output if 'possible intents:' in slots: slots = slots.split('possible intents:')[0] slots = slots.split(', ') else: slots = ['None'] else: label = field slots = [] slots_list.append(slots) labels.append(label) return labels, slots_list @staticmethod def get_slot_filling_metrics(generated_slots, ground_truth_slots): """ Args: generated_slots: list of list of strings. Each string is slot-name and slot-value pair e.g. location(Seattle) ground_truth_slots: list of list of strings """ all_recall = [] all_precision = [] all_joint_goal_accuracy = [] for i in range(len(generated_slots)): # depulicate and sort ground_truth = sorted(list(set(ground_truth_slots[i]))) predicted = sorted(list(set(generated_slots[i]))) correct = [item for item in predicted if item in ground_truth] recall = len(correct) / len(ground_truth) if len(ground_truth) > 0 else 0 precision = len(correct) / len(predicted) if len(predicted) > 0 else 0 joint_goal_accuracy = int(ground_truth == predicted) all_recall.append(recall) all_precision.append(precision) all_joint_goal_accuracy.append(joint_goal_accuracy) avg_joint_goal_accuracy = np.mean(all_joint_goal_accuracy) * 100 avg_precision = np.mean(all_precision) * 100 avg_recall = np.mean(all_recall) * 100 avg_f1 = 2 * (avg_recall * avg_precision) / (avg_recall + avg_precision + 1e-20) return avg_precision, avg_recall, avg_f1, avg_joint_goal_accuracy
gkucsko/NeMo
scripts/dataset_processing/nlp/financial_phrase_bank/prompt_learning_financial_phrase_bank_preprocessing.py
<filename>scripts/dataset_processing/nlp/financial_phrase_bank/prompt_learning_financial_phrase_bank_preprocessing.py # Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import json import random from tqdm import tqdm """ Dataset preprocessing script for the Financial Phrase Bank Sentiement dataset: https://www.researchgate.net/profile/Pekka_Malo/publication/251231364_FinancialPhraseBank-v10/data/0c96051eee4fb1d56e000000/FinancialPhraseBank-v10.zip Converts the dataset into a jsonl format that can be used for p-tuning/prompt tuning in NeMo. Inputs: data-dir: (str) The unziped directory where the Financial PhraseBank dataset was downloaded, files will be saved here file-name: (str) Name of the input file you want to process save-name-base: (str) The base name for each of the train, val, and test files. If save-name-base were 'financial_phrase_bank' for example, the files would be saved as financial_phrase_bank_train.jsonl, financial_phrase_bank_val.jsonl, and financial_phrase_bank_test.jsonl make-ground-truth: (bool) If true, test files will include labels, if false, test files will not include labels random-seed: (int) Random seed for repeatable shuffling of train/val/test splits. train-percent: (float) Precentage of data that should be used for the train split. The val and test splits will be made by splitting the remaining data evenly. Saves train, val, and test files for the Financial PhraseBank dataset. An example of the processed output written to file: {"taskname": "sentiment", "sentence": "In the Baltic countries , sales fell by 42.6 % .", "label": " negative"} {"taskname": "sentiment", "sentence": "Danske Bank is Denmark 's largest bank with 3.5 million customers .", "label": " neutral"} {"taskname": "sentiment", "sentence": "The total value of the deliveries is some EUR65m .", "label": " neutral"} {"taskname": "sentiment", "sentence": "Operating profit margin increased from 11.2 % to 11.7 % .", "label": " positive"} {"taskname": "sentiment", "sentence": "It will also strengthen Ruukki 's offshore business .", "label": " positive"} {"taskname": "sentiment", "sentence": "Sanoma News ' advertising sales decreased by 22 % during the year .", "label": " negative"} """ def main(): parser = argparse.ArgumentParser() parser.add_argument("--data-dir", type=str, default="data/FinancialPhraseBank-v1.0") parser.add_argument("--file-name", type=str, default="Sentences_AllAgree.txt") parser.add_argument("--save-name-base", type=str, default="financial_phrase_bank") parser.add_argument("--make-ground-truth", action='store_true') parser.add_argument("--random-seed", type=int, default=1234) parser.add_argument("--train-percent", type=float, default=0.8) args = parser.parse_args() data = open(f"{args.data_dir}/{args.file_name}", "r", encoding="ISO-8859-1").readlines() save_name_base = f"{args.data_dir}/{args.save_name_base}" process_data(data, save_name_base, args.train_percent, args.random_seed, args.make_ground_truth) def process_data(data, save_name_base, train_percent, random_seed, make_ground_truth=False): random.seed(random_seed) random.shuffle(data) data_total = len(data) train_total = int(data_total * train_percent) val_total = (data_total - train_total) // 2 train_set = data[0:train_total] val_set = data[train_total : train_total + val_total] test_set = data[train_total + val_total :] gen_file(train_set, save_name_base, 'train') gen_file(val_set, save_name_base, 'val') gen_file(test_set, save_name_base, 'test', make_ground_truth) def gen_file(data, save_name_base, split_type, make_ground_truth=False): save_path = f"{save_name_base}_{split_type}.jsonl" print(f"Saving {split_type} split to {save_path}") with open(save_path, 'w') as save_file: for line in tqdm(data): example_json = {"taskname": "sentiment"} sent, label = line.split('@') sent = sent.strip() label = label.strip() example_json["sentence"] = sent # Dont want labels in the test set if split_type != "test" or make_ground_truth: example_json["label"] = " " + label save_file.write(json.dumps(example_json) + '\n') if __name__ == "__main__": main()
gkucsko/NeMo
scripts/nemo_legacy_import/nlp_checkpoint_port.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Copyright 2017 Johns Hopkins University (<NAME>) # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import logging import os import sys import pytorch_lightning as pl import torch from omegaconf import OmegaConf, open_dict from nemo.collections.nlp.parts.nlp_overrides import NLPSaveRestoreConnector from nemo.core import ModelPT from nemo.core.config import TrainerConfig def get_args(argv): parser = argparse.ArgumentParser( formatter_class=argparse.ArgumentDefaultsHelpFormatter, description=f"Update NLP models trained on previous versions to current version ", ) parser.add_argument("source", help="Source .nemo file") parser.add_argument("out", help="Location to write result to") parser.add_argument("--megatron-legacy", help="If the source model is megatron-bert trained on NeMo < 1.5") parser.add_argument( "--megatron-checkpoint", type=str, help="Path of the MegatronBert nemo checkpoint converted from MegatronLM using megatron_lm_ckpt_to_nemo.py file (Not NLP model checkpoint)", ) parser.add_argument("--verbose", default=None, help="Verbose level for logging, numeric") args = parser.parse_args(argv) return args def nemo_convert(argv): args = get_args(argv) loglevel = logging.INFO # assuming loglevel is bound to the string value obtained from the # command line argument. Convert to upper case to allow the user to # specify --log=DEBUG or --log=debug if args.verbose is not None: numeric_level = getattr(logging, args.verbose.upper(), None) if not isinstance(numeric_level, int): raise ValueError('Invalid log level: %s' % numeric_level) loglevel = numeric_level logger = logging.getLogger(__name__) if logger.handlers: for handler in logger.handlers: logger.removeHandler(handler) logging.basicConfig(level=loglevel, format='%(asctime)s [%(levelname)s] %(message)s') logging.info("Logging level set to {}".format(loglevel)) """Convert a .nemo saved model trained on previous versions of nemo into a nemo fie with current version.""" nemo_in = args.source out = args.out # Create a PL trainer object which is required for restoring Megatron models cfg_trainer = TrainerConfig( gpus=1, accelerator="ddp", num_nodes=1, # Need to set the following two to False as ExpManager will take care of them differently. logger=False, checkpoint_callback=False, ) trainer = pl.Trainer(cfg_trainer) logging.info("Restoring NeMo model from '{}'".format(nemo_in)) try: # If the megatron based NLP model was trained on NeMo < 1.5, then we need to update the lm_checkpoint on the model config if args.megatron_legacy: if args.megatron_checkpoint: connector = NLPSaveRestoreConnector() model_cfg = ModelPT.restore_from( restore_path=nemo_in, save_restore_connector=connector, trainer=trainer, return_config=True ) OmegaConf.set_struct(model_cfg, True) with open_dict(model_cfg): model_cfg.language_model.lm_checkpoint = args.megatron_checkpoint model_cfg['megatron_legacy'] = True model_cfg['masked_softmax_fusion'] = False model_cfg['bias_gelu_fusion'] = False model = ModelPT.restore_from( restore_path=nemo_in, save_restore_connector=connector, trainer=trainer, override_config_path=model_cfg, ) else: logging.error("Megatron Checkpoint must be provided if Megatron legacy is chosen") else: model = ModelPT.restore_from(restore_path=nemo_in, trainer=trainer) logging.info("Model {} restored from '{}'".format(model.cfg.target, nemo_in)) # Save the model model.save_to(out) logging.info("Successfully converted to {}".format(out)) del model except Exception as e: logging.error( "Failed to restore model from NeMo file : {}. Please make sure you have the latest NeMo package installed with [all] dependencies.".format( nemo_in ) ) raise e if __name__ == '__main__': nemo_convert(sys.argv[1:])
gkucsko/NeMo
nemo/collections/asr/parts/utils/speaker_utils.py
<gh_stars>0 # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import math import os from copy import deepcopy from functools import reduce from typing import List import numpy as np import omegaconf import soundfile as sf import torch from pyannote.core import Annotation, Segment, Timeline from pyannote.metrics.diarization import DiarizationErrorRate from tqdm import tqdm from nemo.collections.asr.parts.utils.nmesc_clustering import COSclustering from nemo.utils import logging """ This file contains all the utility functions required for speaker embeddings part in diarization scripts """ def get_uniqname_from_filepath(filepath): """ Return base name from provided filepath """ if type(filepath) is str: uniq_id = os.path.splitext(os.path.basename(filepath))[0] return uniq_id else: raise TypeError("input must be filepath string") def get_uniq_id_with_dur(meta, deci=3): """ Return basename with offset and end time labels """ bare_uniq_id = get_uniqname_from_filepath(meta['audio_filepath']) if meta['offset'] is None and meta['duration'] is None: return bare_uniq_id if meta['offset']: offset = str(int(round(meta['offset'], deci) * pow(10, deci))) else: offset = 0 if meta['duration']: endtime = str(int(round(meta['offset'] + meta['duration'], deci) * pow(10, deci))) else: endtime = 'NULL' uniq_id = f"{bare_uniq_id}_{offset}_{endtime}" return uniq_id def audio_rttm_map(manifest): """ This function creates AUDIO_RTTM_MAP which is used by all diarization components to extract embeddings, cluster and unify time stamps Args: manifest file that contains keys audio_filepath, rttm_filepath if exists, text, num_speakers if known and uem_filepath if exists returns: AUDIO_RTTM_MAP (dict) : A dictionary with keys of uniq id, which is being used to map audio files and corresponding rttm files """ AUDIO_RTTM_MAP = {} with open(manifest, 'r') as inp_file: lines = inp_file.readlines() logging.info("Number of files to diarize: {}".format(len(lines))) for line in lines: line = line.strip() dic = json.loads(line) meta = { 'audio_filepath': dic['audio_filepath'], 'rttm_filepath': dic.get('rttm_filepath', None), 'offset': dic.get('offset', None), 'duration': dic.get('duration', None), 'text': dic.get('text', None), 'num_speakers': dic.get('num_speakers', None), 'uem_filepath': dic.get('uem_filepath', None), 'ctm_filepath': dic.get('ctm_filepath', None), } uniqname = get_uniqname_from_filepath(filepath=meta['audio_filepath']) if uniqname not in AUDIO_RTTM_MAP: AUDIO_RTTM_MAP[uniqname] = meta else: raise KeyError( "file {} is already part AUDIO_RTTM_Map, it might be duplicated".format(meta['audio_filepath']) ) return AUDIO_RTTM_MAP def parse_scale_configs(window_lengths_in_sec, shift_lengths_in_sec, multiscale_weights): """ Check whether multiscale parameters are provided correctly. window_lengths_in_sec, shift_lengfhs_in_sec and multiscale_weights should be all provided in omegaconf.listconfig.ListConfig type. In addition, the scales should be provided in descending order, from the longest scale to the base scale (the shortest). Example: Single-scale setting: parameters.window_length_in_sec=1.5 parameters.shift_length_in_sec=0.75 parameters.multiscale_weights=null Multiscale setting (base scale - window_length 0.5 s and shift_length 0.25): parameters.window_length_in_sec=[1.5,1.0,0.5] parameters.shift_length_in_sec=[0.75,0.5,0.25] parameters.multiscale_weights=[0.33,0.33,0.33] In addition, you can also specify session-by-session multiscale weight. In this case, each dictionary key points to different weights. """ checkFloatConfig = [type(var) == float for var in (window_lengths_in_sec, shift_lengths_in_sec)] checkListConfig = [ type(var) == type(omegaconf.listconfig.ListConfig([])) for var in (window_lengths_in_sec, shift_lengths_in_sec, multiscale_weights) ] if all(checkListConfig) or all(checkFloatConfig): # If bare floating numbers are provided, convert them to list format. if all(checkFloatConfig): window_lengths, shift_lengths, multiscale_weights = ( [window_lengths_in_sec], [shift_lengths_in_sec], [1.0], ) else: window_lengths, shift_lengths, multiscale_weights = ( window_lengths_in_sec, shift_lengths_in_sec, multiscale_weights, ) length_check = ( len(set([len(window_lengths), len(shift_lengths), len(multiscale_weights)])) == 1 and len(multiscale_weights) > 0 ) scale_order_check = ( window_lengths == sorted(window_lengths)[::-1] and shift_lengths == sorted(shift_lengths)[::-1] ) # Check whether window lengths are longer than shift lengths if len(window_lengths) > 1: shift_length_check = all([w > s for w, s in zip(window_lengths, shift_lengths)]) == True else: shift_length_check = window_lengths[0] > shift_lengths[0] multiscale_args_dict = {'use_single_scale_clustering': False} if all([length_check, scale_order_check, shift_length_check]) == True: if len(window_lengths) > 1: multiscale_args_dict['scale_dict'] = { k: (w, s) for k, (w, s) in enumerate(zip(window_lengths, shift_lengths)) } else: multiscale_args_dict['scale_dict'] = {0: (window_lengths[0], shift_lengths[0])} multiscale_args_dict['multiscale_weights'] = multiscale_weights return multiscale_args_dict else: raise ValueError('Multiscale parameters are not properly setup.') elif any(checkListConfig): raise ValueError( 'You must provide a list config for all three parameters: window, shift and multiscale weights.' ) else: return None def get_embs_and_timestamps(multiscale_embeddings_and_timestamps, multiscale_args_dict): """ The embeddings and timestamps in multiscale_embeddings_and_timestamps dictionary are indexed by scale index. This function rearranges the extracted speaker embedding and timestamps by unique ID to make the further processing more convenient. Args: multiscale_embeddings_and_timestamps (dict): Dictionary of embeddings and timestamps for each scale. multiscale_args_dict (dict): Dictionary of scale information: window, shift and multiscale weights. Returns: embs_and_timestamps (dict) A dictionary containing embeddings and timestamps of each scale, indexed by unique ID. """ embs_and_timestamps = { uniq_id: {'multiscale_weights': [], 'scale_dict': {}} for uniq_id in multiscale_embeddings_and_timestamps[0][0].keys() } if multiscale_args_dict['use_single_scale_clustering']: _multiscale_args_dict = deepcopy(multiscale_args_dict) _multiscale_args_dict['scale_dict'] = {0: multiscale_args_dict['scale_dict'][0]} _multiscale_args_dict['multiscale_weights'] = multiscale_args_dict['multiscale_weights'][:1] else: _multiscale_args_dict = multiscale_args_dict for scale_idx in sorted(_multiscale_args_dict['scale_dict'].keys()): embeddings, time_stamps = multiscale_embeddings_and_timestamps[scale_idx] for uniq_id in embeddings.keys(): embs_and_timestamps[uniq_id]['multiscale_weights'] = ( torch.tensor(_multiscale_args_dict['multiscale_weights']).unsqueeze(0).half() ) assert len(embeddings[uniq_id]) == len(time_stamps[uniq_id]) embs_and_timestamps[uniq_id]['scale_dict'][scale_idx] = { 'embeddings': embeddings[uniq_id], 'time_stamps': time_stamps[uniq_id], } return embs_and_timestamps def get_contiguous_stamps(stamps): """ Return contiguous time stamps """ lines = deepcopy(stamps) contiguous_stamps = [] for i in range(len(lines) - 1): start, end, speaker = lines[i].split() next_start, next_end, next_speaker = lines[i + 1].split() if float(end) > float(next_start): avg = str((float(next_start) + float(end)) / 2.0) lines[i + 1] = ' '.join([avg, next_end, next_speaker]) contiguous_stamps.append(start + " " + avg + " " + speaker) else: contiguous_stamps.append(start + " " + end + " " + speaker) start, end, speaker = lines[-1].split() contiguous_stamps.append(start + " " + end + " " + speaker) return contiguous_stamps def merge_stamps(lines): """ Merge time stamps of the same speaker. """ stamps = deepcopy(lines) overlap_stamps = [] for i in range(len(stamps) - 1): start, end, speaker = stamps[i].split() next_start, next_end, next_speaker = stamps[i + 1].split() if float(end) == float(next_start) and speaker == next_speaker: stamps[i + 1] = ' '.join([start, next_end, next_speaker]) else: overlap_stamps.append(start + " " + end + " " + speaker) start, end, speaker = stamps[-1].split() overlap_stamps.append(start + " " + end + " " + speaker) return overlap_stamps def labels_to_pyannote_object(labels, uniq_name=''): """ Convert the given labels to pyannote object to calculate DER and for visualization """ annotation = Annotation(uri=uniq_name) for label in labels: start, end, speaker = label.strip().split() start, end = float(start), float(end) annotation[Segment(start, end)] = speaker return annotation def uem_timeline_from_file(uem_file, uniq_name=''): """ Generate pyannote timeline segments for uem file <UEM> file format UNIQ_SPEAKER_ID CHANNEL START_TIME END_TIME """ timeline = Timeline(uri=uniq_name) with open(uem_file, 'r') as f: lines = f.readlines() for line in lines: line = line.strip() speaker_id, channel, start_time, end_time = line.split() timeline.add(Segment(float(start_time), float(end_time))) return timeline def labels_to_rttmfile(labels, uniq_id, out_rttm_dir): """ Write rttm file with uniq_id name in out_rttm_dir with time_stamps in labels """ filename = os.path.join(out_rttm_dir, uniq_id + '.rttm') with open(filename, 'w') as f: for line in labels: line = line.strip() start, end, speaker = line.split() duration = float(end) - float(start) start = float(start) log = 'SPEAKER {} 1 {:.3f} {:.3f} <NA> <NA> {} <NA> <NA>\n'.format(uniq_id, start, duration, speaker) f.write(log) return filename def rttm_to_labels(rttm_filename): """ Prepare time stamps label list from rttm file """ labels = [] with open(rttm_filename, 'r') as f: for line in f.readlines(): rttm = line.strip().split() start, end, speaker = float(rttm[3]), float(rttm[4]) + float(rttm[3]), rttm[7] labels.append('{} {} {}'.format(start, end, speaker)) return labels def write_cluster_labels(base_scale_idx, lines_cluster_labels, out_rttm_dir): """ Write cluster labels that are generated from clustering into a file. Args: base_scale_idx (int): The base scale index which is the highest scale index. lines_cluster_labels (list): The start and end time-stamps of each segment with the predicted cluster label. out_rttm_dir (str): The path where output rttm files are saved. """ out_label_name = os.path.join( out_rttm_dir, '../speaker_outputs', f'subsegments_scale{base_scale_idx}_cluster.label' ) with open(out_label_name, 'w') as f: for clus_label_line in lines_cluster_labels: f.write(clus_label_line) def perform_clustering(embs_and_timestamps, AUDIO_RTTM_MAP, out_rttm_dir, clustering_params): """ Performs spectral clustering on embeddings with time stamps generated from VAD output Args: embs_and_timestamps (dict): This dictionary contains the following items indexed by unique IDs. 'embeddings' : Embeddings with key as unique_id 'time_stamps' : Time stamps list for each audio recording AUDIO_RTTM_MAP (dict): AUDIO_RTTM_MAP for mapping unique id with audio file path and rttm path out_rttm_dir (str): Path to write predicted rttms clustering_params (dict): clustering parameters provided through config that contains max_num_speakers (int), oracle_num_speakers (bool), max_rp_threshold(float), sparse_search_volume(int) and enhance_count_threshold (int) Returns: all_reference (list[uniq_name,Annotation]): reference annotations for score calculation all_hypothesis (list[uniq_name,Annotation]): hypothesis annotations for score calculation """ all_hypothesis = [] all_reference = [] no_references = False max_num_speakers = clustering_params['max_num_speakers'] lines_cluster_labels = [] cuda = True if not torch.cuda.is_available(): logging.warning("cuda=False, using CPU for Eigen decomposition. This might slow down the clustering process.") cuda = False for uniq_id, value in tqdm(AUDIO_RTTM_MAP.items()): if clustering_params.oracle_num_speakers: num_speakers = value.get('num_speakers', None) if num_speakers is None: raise ValueError("Provided option as oracle num of speakers but num_speakers in manifest is null") else: num_speakers = None cluster_labels = COSclustering( uniq_embs_and_timestamps=embs_and_timestamps[uniq_id], oracle_num_speakers=num_speakers, max_num_speaker=max_num_speakers, enhanced_count_thres=clustering_params.enhanced_count_thres, max_rp_threshold=clustering_params.max_rp_threshold, sparse_search_volume=clustering_params.sparse_search_volume, cuda=cuda, ) base_scale_idx = max(embs_and_timestamps[uniq_id]['scale_dict'].keys()) lines = embs_and_timestamps[uniq_id]['scale_dict'][base_scale_idx]['time_stamps'] assert len(cluster_labels) == len(lines) for idx, label in enumerate(cluster_labels): tag = 'speaker_' + str(label) lines[idx] += tag a = get_contiguous_stamps(lines) labels = merge_stamps(a) if out_rttm_dir: labels_to_rttmfile(labels, uniq_id, out_rttm_dir) lines_cluster_labels.extend([f'{uniq_id} {seg_line}\n' for seg_line in lines]) hypothesis = labels_to_pyannote_object(labels, uniq_name=uniq_id) all_hypothesis.append([uniq_id, hypothesis]) rttm_file = value.get('rttm_filepath', None) if rttm_file is not None and os.path.exists(rttm_file) and not no_references: ref_labels = rttm_to_labels(rttm_file) reference = labels_to_pyannote_object(ref_labels, uniq_name=uniq_id) all_reference.append([uniq_id, reference]) else: no_references = True all_reference = [] if out_rttm_dir: write_cluster_labels(base_scale_idx, lines_cluster_labels, out_rttm_dir) return all_reference, all_hypothesis def score_labels(AUDIO_RTTM_MAP, all_reference, all_hypothesis, collar=0.25, ignore_overlap=True): """ Calculates DER, CER, FA and MISS Args: AUDIO_RTTM_MAP : Dictionary containing information provided from manifestpath all_reference (list[uniq_name,Annotation]): reference annotations for score calculation all_hypothesis (list[uniq_name,Annotation]): hypothesis annotations for score calculation Returns: metric (pyannote.DiarizationErrorRate): Pyannote Diarization Error Rate metric object. This object contains detailed scores of each audiofile. mapping (dict): Mapping dict containing the mapping speaker label for each audio input < Caveat > Unlike md-eval.pl, "no score" collar in pyannote.metrics is the maximum length of "no score" collar from left to right. Therefore, if 0.25s is applied for "no score" collar in md-eval.pl, 0.5s should be applied for pyannote.metrics. """ metric = None if len(all_reference) == len(all_hypothesis): metric = DiarizationErrorRate(collar=2 * collar, skip_overlap=ignore_overlap) mapping_dict = {} for (reference, hypothesis) in zip(all_reference, all_hypothesis): ref_key, ref_labels = reference _, hyp_labels = hypothesis uem = AUDIO_RTTM_MAP[ref_key].get('uem_filepath', None) if uem is not None: uem = uem_timeline_from_file(uem_file=uem, uniq_name=ref_key) metric(ref_labels, hyp_labels, uem=uem, detailed=True) mapping_dict[ref_key] = metric.optimal_mapping(ref_labels, hyp_labels) DER = abs(metric) CER = metric['confusion'] / metric['total'] FA = metric['false alarm'] / metric['total'] MISS = metric['missed detection'] / metric['total'] logging.info( "Cumulative Results for collar {} sec and ignore_overlap {}: \n FA: {:.4f}\t MISS {:.4f}\t \ Diarization ER: {:.4f}\t, Confusion ER:{:.4f}".format( collar, ignore_overlap, FA, MISS, DER, CER ) ) return metric, mapping_dict else: logging.warning( "check if each ground truth RTTMs were present in provided manifest file. Skipping calculation of Diariazation Error Rate" ) return None def get_vad_out_from_rttm_line(rttm_line): """ Extract VAD timestamp from the given RTTM lines. """ vad_out = rttm_line.strip().split() if len(vad_out) > 3: start, dur, _ = float(vad_out[3]), float(vad_out[4]), vad_out[7] else: start, dur, _ = float(vad_out[0]), float(vad_out[1]), vad_out[2] start, dur = float("{:}".format(start)), float("{:}".format(dur)) return start, dur def get_offset_and_duration(AUDIO_RTTM_MAP, uniq_id, deci=5): """ Extract offset and duration information from AUDIO_RTTM_MAP dictionary. If duration information is not specified, a duration value is extracted from the audio file directly. Args: AUDIO_RTTM_MAP (dict): Dictionary containing RTTM file information, which is indexed by unique file id. uniq_id (str): Unique file id Returns: offset (float): The offset value that determines the beginning of the audio stream. duration (float): The length of audio stream that is expected to be used. """ audio_path = AUDIO_RTTM_MAP[uniq_id]['audio_filepath'] if AUDIO_RTTM_MAP[uniq_id].get('duration', None): duration = round(AUDIO_RTTM_MAP[uniq_id]['duration'], deci) offset = round(AUDIO_RTTM_MAP[uniq_id]['offset'], deci) else: sound = sf.SoundFile(audio_path) duration = sound.frames / sound.samplerate offset = 0.0 return offset, duration def write_overlap_segments(outfile, AUDIO_RTTM_MAP, uniq_id, overlap_range_list, include_uniq_id, deci=5): """ Write the json dictionary into the specified manifest file. Args: outfile: File pointer that indicates output file path. AUDIO_RTTM_MAP (dict): Dictionary containing the input manifest information uniq_id (str): Unique file id overlap_range_list (list): List containing overlapping ranges between target and source. """ audio_path = AUDIO_RTTM_MAP[uniq_id]['audio_filepath'] for (stt, end) in overlap_range_list: meta = { "audio_filepath": audio_path, "offset": round(stt, deci), "duration": round(end - stt, deci), "label": 'UNK', "uniq_id": uniq_id, } json.dump(meta, outfile) outfile.write("\n") def read_rttm_lines(rttm_file_path): """ Read rttm files and return the rttm information lines. Args: rttm_file_path (str): Returns: lines (list): List containing the strings from the RTTM file. """ if rttm_file_path and os.path.exists(rttm_file_path): f = open(rttm_file_path, 'r') else: raise FileNotFoundError( "Requested to construct manifest from rttm with oracle VAD option or from NeMo VAD but received filename as {}".format( rttm_file_path ) ) lines = f.readlines() return lines def isOverlap(rangeA, rangeB): """ Check whether two ranges have overlap. Args: rangeA (list, tuple): List or tuple containing start and end value in float. rangeB (list, tuple): List or tuple containing start and end value in float. Returns: (bool): Boolean that indicates whether the input ranges have overlap. """ start1, end1 = rangeA start2, end2 = rangeB return end1 > start2 and end2 > start1 def getOverlapRange(rangeA, rangeB): """ Calculate the overlapping range between rangeA and rangeB. Args: rangeA (list, tuple): List or tuple containing start and end value in float. rangeB (list, tuple): List or tuple containing start and end value in float. Returns: (list): List containing the overlapping range between rangeA and rangeB. """ assert isOverlap(rangeA, rangeB), f"There is no overlap between rangeA:{rangeA} and rangeB:{rangeB}" return [max(rangeA[0], rangeB[0]), min(rangeA[1], rangeB[1])] def combine_float_overlaps(ranges, deci=5, margin=2): """ Combine overlaps with floating point numbers. Since neighboring integers are considered as continuous range, we need to add margin to the starting range before merging then subtract margin from the result range. Args: ranges (list): List containing ranges. Example: [(10.2, 10.83), (10.42, 10.91), (10.45, 12.09)] deci (int): Number of rounding decimals margin (int): margin for determining overlap of the two ranges when ranges are converted to integer ranges. Default is margin=2 which follows the python index convention. Examples: If margin is 0: [(1, 10), (10, 20)] -> [(1, 20)] [(1, 10), (11, 20)] -> [(1, 20)] If margin is 1: [(1, 10), (10, 20)] -> [(1, 20)] [(1, 10), (11, 20)] -> [(1, 10), (11, 20)] If margin is 2: [(1, 10), (10, 20)] -> [(1, 10), (10, 20)] [(1, 10), (11, 20)] -> [(1, 10), (11, 20)] Returns: merged_list (list): List containing the combined ranges. Example: [(10.2, 12.09)] """ ranges_int = [] for x in ranges: stt, end = fl2int(x[0], deci) + margin, fl2int(x[1], deci) if stt == end: logging.warning(f"The range {stt}:{end} is too short to be combined thus skipped.") else: ranges_int.append([stt, end]) merged_ranges = combine_int_overlaps(ranges_int) merged_ranges = [[int2fl(x[0] - margin, deci), int2fl(x[1], deci)] for x in merged_ranges] return merged_ranges def combine_int_overlaps(ranges): """ Merge the range pairs if there is overlap exists between the given ranges. This algorithm needs a sorted range list in terms of the start time. Note that neighboring numbers lead to a merged range. Example: [(1, 10), (11, 20)] -> [(1, 20)] Refer to the original code at https://stackoverflow.com/a/59378428 Args: ranges(list): List containing ranges. Example: [(102, 103), (104, 109), (107, 120)] Returns: merged_list (list): List containing the combined ranges. Example: [(102, 120)] """ ranges = sorted(ranges, key=lambda x: x[0]) merged_list = reduce( lambda x, element: x[:-1:] + [(min(*x[-1], *element), max(*x[-1], *element))] if x[-1][1] >= element[0] - 1 else x + [element], ranges[1::], ranges[0:1], ) return merged_list def fl2int(x, deci=3): """ Convert floating point number to integer. """ return int(round(x * pow(10, deci))) def int2fl(x, deci=3): """ Convert integer to floating point number. """ return round(float(x / pow(10, deci)), int(deci)) def getMergedRanges(label_list_A: List, label_list_B: List, deci: int = 3) -> List: """ Calculate the merged ranges between label_list_A and label_list_B. Args: label_list_A (list): List containing ranges (start and end values) label_list_B (list): List containing ranges (start and end values) Returns: (list): List containing the merged ranges """ if label_list_A == [] and label_list_B != []: return label_list_B elif label_list_A != [] and label_list_B == []: return label_list_A else: label_list_A = [[fl2int(x[0] + 1, deci), fl2int(x[1], deci)] for x in label_list_A] label_list_B = [[fl2int(x[0] + 1, deci), fl2int(x[1], deci)] for x in label_list_B] combined = combine_int_overlaps(label_list_A + label_list_B) return [[int2fl(x[0] - 1, deci), int2fl(x[1], deci)] for x in combined] def getMinMaxOfRangeList(ranges): """ Get the min and max of a given range list. """ _max = max([x[1] for x in ranges]) _min = min([x[0] for x in ranges]) return _min, _max def getSubRangeList(target_range, source_range_list) -> List: """ Get the ranges that has overlaps with the target range from the source_range_list. Example: source range: |===--======---=====---====--| target range: |--------================----| out_range: |--------===---=====---==----| Args: target_range (list): A range (a start and end value pair) that defines the target range we want to select. target_range = [(start, end)] source_range_list (list): List containing the subranges that need to be selected. source_ragne = [(start0, end0), (start1, end1), ...] Returns: out_range (list): List containing the overlap between target_range and source_range_list. """ if target_range == []: return [] else: out_range = [] for s_range in source_range_list: if isOverlap(s_range, target_range): ovl_range = getOverlapRange(s_range, target_range) out_range.append(ovl_range) return out_range def write_rttm2manifest(AUDIO_RTTM_MAP: str, manifest_file: str, include_uniq_id: bool = False, deci: int = 5) -> str: """ Write manifest file based on rttm files (or vad table out files). This manifest file would be used by speaker diarizer to compute embeddings and cluster them. This function takes care of overlapping VAD timestamps and trimmed with the given offset and duration value. Args: AUDIO_RTTM_MAP (dict): Dictionary containing keys to uniqnames, that contains audio filepath and rttm_filepath as its contents, these are used to extract oracle vad timestamps. manifest (str): The path to the output manifest file. Returns: manifest (str): The path to the output manifest file. """ with open(manifest_file, 'w') as outfile: for uniq_id in AUDIO_RTTM_MAP: rttm_file_path = AUDIO_RTTM_MAP[uniq_id]['rttm_filepath'] rttm_lines = read_rttm_lines(rttm_file_path) offset, duration = get_offset_and_duration(AUDIO_RTTM_MAP, uniq_id, deci) vad_start_end_list_raw = [] for line in rttm_lines: start, dur = get_vad_out_from_rttm_line(line) vad_start_end_list_raw.append([start, start + dur]) vad_start_end_list = combine_float_overlaps(vad_start_end_list_raw, deci) if len(vad_start_end_list) == 0: logging.warning(f"File ID: {uniq_id}: The VAD label is not containing any speech segments.") elif duration == 0: logging.warning(f"File ID: {uniq_id}: The audio file has zero duration.") else: min_vad, max_vad = getMinMaxOfRangeList(vad_start_end_list) if max_vad > round(offset + duration, deci) or min_vad < offset: logging.warning("RTTM label has been truncated since start is greater than duration of audio file") overlap_range_list = getSubRangeList( source_range_list=vad_start_end_list, target_range=[offset, offset + duration] ) write_overlap_segments(outfile, AUDIO_RTTM_MAP, uniq_id, overlap_range_list, include_uniq_id, deci) return manifest_file def segments_manifest_to_subsegments_manifest( segments_manifest_file: str, subsegments_manifest_file: str = None, window: float = 1.5, shift: float = 0.75, min_subsegment_duration: float = 0.05, include_uniq_id: bool = False, ): """ Generate subsegments manifest from segments manifest file Args: segments_manifest file (str): path to segments manifest file, typically from VAD output subsegments_manifest_file (str): path to output subsegments manifest file (default (None) : writes to current working directory) window (float): window length for segments to subsegments length shift (float): hop length for subsegments shift min_subsegments_duration (float): exclude subsegments smaller than this duration value Returns: returns path to subsegment manifest file """ if subsegments_manifest_file is None: pwd = os.getcwd() subsegments_manifest_file = os.path.join(pwd, 'subsegments.json') with open(segments_manifest_file, 'r') as segments_manifest, open( subsegments_manifest_file, 'w' ) as subsegments_manifest: segments = segments_manifest.readlines() for segment in segments: segment = segment.strip() dic = json.loads(segment) audio, offset, duration, label = dic['audio_filepath'], dic['offset'], dic['duration'], dic['label'] subsegments = get_subsegments(offset=offset, window=window, shift=shift, duration=duration) if include_uniq_id and 'uniq_id' in dic: uniq_id = dic['uniq_id'] else: uniq_id = None for subsegment in subsegments: start, dur = subsegment if dur > min_subsegment_duration: meta = { "audio_filepath": audio, "offset": start, "duration": dur, "label": label, "uniq_id": uniq_id, } json.dump(meta, subsegments_manifest) subsegments_manifest.write("\n") return subsegments_manifest_file def get_subsegments(offset: float, window: float, shift: float, duration: float): """ Return subsegments from a segment of audio file Args: offset (float): start time of audio segment window (float): window length for segments to subsegments length shift (float): hop length for subsegments shift duration (float): duration of segment Returns: subsegments (List[tuple[float, float]]): subsegments generated for the segments as list of tuple of start and duration of each subsegment """ subsegments = [] start = offset slice_end = start + duration base = math.ceil((duration - window) / shift) slices = 1 if base < 0 else base + 1 for slice_id in range(slices): end = start + window if end > slice_end: end = slice_end subsegments.append((start, end - start)) start = offset + (slice_id + 1) * shift return subsegments def embedding_normalize(embs, use_std=False, eps=1e-10): """ Mean and l2 length normalize the input speaker embeddings Args: embs: embeddings of shape (Batch,emb_size) Returns: embs: normalized embeddings of shape (Batch,emb_size) """ embs = embs - embs.mean(axis=0) if use_std: embs = embs / (embs.std(axis=0) + eps) embs_l2_norm = np.expand_dims(np.linalg.norm(embs, ord=2, axis=-1), axis=1) embs = embs / embs_l2_norm return embs
gkucsko/NeMo
nemo/collections/nlp/models/language_modeling/megatron_finetune_model.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import torch from omegaconf import DictConfig, ListConfig from pytorch_lightning.trainer.trainer import Trainer from nemo.collections.common.data import ConcatDataset from nemo.collections.common.metrics import MetricStringToTorchMetric from nemo.collections.common.metrics.classification_accuracy import ExactStringPerCategoryMatchMetric from nemo.collections.nlp.data.common.sequence_to_sequence_dataset import SequenceToSequenceDataset from nemo.collections.nlp.models.language_modeling.megatron_t5_model import MegatronT5Model from nemo.collections.nlp.parts.nlp_overrides import GlobalBatchDataFetcher from nemo.utils import AppState, logging try: from apex.transformer import parallel_state from apex.transformer.pipeline_parallel.utils import _reconfigure_microbatch_calculator, get_num_microbatches HAVE_APEX = True except (ImportError, ModuleNotFoundError): HAVE_APEX = False __all__ = ['MegatronT5FinetuneModel'] class MegatronT5FinetuneModel(MegatronT5Model): """Finetune Model that Inherits from MegatronT5Model instead.""" def __init__(self, cfg: DictConfig, trainer: Trainer): super().__init__(cfg, trainer=trainer) self.val_metric, self.val_metric_name = self.setup_metric(self.cfg.data.validation_ds) self.val_metric = torch.nn.ModuleList(self.val_metric) if hasattr(self.cfg.data, "test_ds"): self.test_metric, self.test_metric_name = self.setup_metric(self.cfg.data.test_ds) self.test_metric = torch.nn.ModuleList(self.test_metric) def setup_metric(self, data_cfg): # XNLI is a special case. metric_name = "exact_string_match" if hasattr(self.cfg, "eval_languages"): metric = [ExactStringPerCategoryMatchMetric(self.cfg.eval_languages)] else: if not hasattr(data_cfg, "metric"): metric = MetricStringToTorchMetric["exact_string_match"] else: if not hasattr(data_cfg.metric, "name"): raise ValueError("Metric name is not provided in the metric config.") if data_cfg.metric.name not in MetricStringToTorchMetric: raise KeyError( f"{data_cfg.metric.name} is not supported. List of supported metrics: {MetricStringToTorchMetric.keys()}" ) metric_name = data_cfg.metric.name metric = MetricStringToTorchMetric[metric_name] # GLUE will not have a "src_file_name" attribute and will always have only a single metric. if hasattr(data_cfg, "src_file_name"): if isinstance(data_cfg.src_file_name, ListConfig): # We pass average and num_classes to the metric constructor via kwargs even if they don't exist for each metric. metric = [ metric(average=data_cfg.metric.average, num_classes=data_cfg.metric.num_classes) for _ in range(len(self.cfg.data.test_ds.src_file_name)) ] else: metric = [metric(average=data_cfg.metric.average, num_classes=data_cfg.metric.num_classes)] else: metric = [metric()] # GLUE does need to specify average or num_classes. return metric, metric_name def setup(self, stage=None): # This is just to keep the parent class happy since we override its setup() method. self.init_consumed_samples = 0 self.init_global_step = 0 if stage == 'predict': return # NOTE: PTL uses the same stage string "test" for both testing and validation. self.build_train_valid_test_datasets(stage=stage) if hasattr(self, '_validation_ds'): self.setup_validation_data() if hasattr(self, '_test_ds'): self.setup_test_data() if hasattr(self, '_train_ds'): self.setup_training_data() def _process_global_batch(self, global_batch): """Process a list of microbatches into a global batch.""" # If there is no language information in the global batch (ex: English MNLI), we can use the parent global batch processor as is. if 'lang' not in global_batch[0]: return self._process_global_batch_without_megatron_batch_sampler(global_batch) # For validation data (XNLI), we need to process the global batch and and then deal with language info separately. else: assert all(['lang' in micro_batch for micro_batch in global_batch]) langs_list = [] processed_global_batch = self._process_global_batch_without_megatron_batch_sampler( [{k: v for k, v in micro_batch.items() if k != 'lang'} for micro_batch in global_batch] ) for micro_batch in global_batch: langs_list.extend(micro_batch['lang']) processed_global_batch['lang'] = langs_list return processed_global_batch def on_validation_epoch_start(self): app_state = AppState() _reconfigure_microbatch_calculator( rank=app_state.global_rank, rampup_batch_size=None, global_batch_size=self.cfg.data.validation_ds.global_batch_size, micro_batch_size=self.cfg.data.validation_ds.micro_batch_size, data_parallel_size=parallel_state.get_data_parallel_world_size(), ) return super().on_validation_epoch_start() def on_validation_epoch_end(self): app_state = AppState() if hasattr(self, "_train_ds"): _reconfigure_microbatch_calculator( rank=app_state.global_rank, rampup_batch_size=None, global_batch_size=self.cfg.data.train_ds.global_batch_size, micro_batch_size=self.cfg.data.train_ds.micro_batch_size, data_parallel_size=parallel_state.get_data_parallel_world_size(), ) # When running `trainer.validate()`, the training dataset is not available. else: logging.warning('No training data found, reconfiguring microbatches based on validation batch sizes.') _reconfigure_microbatch_calculator( rank=app_state.global_rank, rampup_batch_size=None, global_batch_size=self.cfg.data.validation_ds.global_batch_size, micro_batch_size=self.cfg.data.validation_ds.micro_batch_size, data_parallel_size=parallel_state.get_data_parallel_world_size(), ) return super().on_validation_epoch_end() def training_step(self, batch, batch_idx): micro_batch_size = batch[0]['text_enc'].size(0) # This should happen only on the last batch of the dataset. if micro_batch_size != self.cfg.data.train_ds.micro_batch_size: app_state = AppState() _reconfigure_microbatch_calculator( rank=app_state.global_rank, rampup_batch_size=None, global_batch_size=micro_batch_size * parallel_state.get_data_parallel_world_size() * get_num_microbatches(), micro_batch_size=micro_batch_size, data_parallel_size=parallel_state.get_data_parallel_world_size(), ) # At this point batch is a list of dictionaries where eatch dict is a microbatch. # After the process_global_batch call, batch will be a single dictionary containing the global batch. # This is required since the parent class expects a single global batch dictioanry. batch = self._process_global_batch(batch) return super().training_step(batch, batch_idx) def cast_for_metric(self, pred, label, metric_name): if metric_name == 'exact_string_match': return pred, label pred = pred.replace(' ', '') label = label.replace(' ', '') # Correlation metrics require casting to float. if metric_name in ['pearson_corr_coef', 'spearman_corr_coef']: # Text-to-text model predictions may not always be valid floating point numbers. try: pred = float(pred) except ValueError: pred = 0.0 try: label = float(label) except ValueError: raise ValueError(f'Could not convert {label} to float.') pred = torch.FloatTensor([pred]).to(self.device) label = torch.FloatTensor([label]).to(self.device) # Other metrics require casting to integers. elif metric_name in ['accuracy', 'auc', 'auroc', 'average_precision', 'f1']: # Text-to-text model predictions may not always be valid integers. try: pred = int(pred) except ValueError: pred = 0 try: label = int(label) except ValueError: raise ValueError(f'Could not convert {label} to int.') pred = torch.LongTensor([pred]).to(self.device) label = torch.LongTensor([label]).to(self.device) else: raise ValueError(f'Metric {metric_name} not supported.') return pred, label def inference_step(self, batch, batch_idx, mode, dataloader_idx=0): batch_has_lang_information = len(batch[0]) == 7 micro_batch_size = batch[0]['text_enc'].size(0) # This should happen only on the last batch of the dataset. if micro_batch_size != self.cfg.data.validation_ds.micro_batch_size: app_state = AppState() _reconfigure_microbatch_calculator( rank=app_state.global_rank, rampup_batch_size=None, global_batch_size=micro_batch_size * parallel_state.get_data_parallel_world_size() * get_num_microbatches(), micro_batch_size=micro_batch_size, data_parallel_size=parallel_state.get_data_parallel_world_size(), ) # At this point processed_batch is a list of dictionaries where eatch dict is a microbatch. # After the process_global_batch call, processed_batch will be a single dictionary containing the global batch. # This is required since the parent class expects a single global batch dictioanry. processed_batch = self._process_global_batch(batch) # Call parent validation step to get the loss. # NOTE: There could be extra keys in the processed_batch dictionary such as "langs" for XNLI, this will be ignored in the parent class. loss = super().validation_step(processed_batch, batch_idx) predicted_token_ids, _ = self.decode( tokens_enc=processed_batch['text_enc'], enc_mask=processed_batch['enc_mask'], num_tokens_to_generate=30 ) # Special ids to text function to handle stripping <eos> and special tokens with sentencepiece tokenizers. preds_text = self.ids_to_text(predicted_token_ids) labels_text = self.ids_to_text(processed_batch['labels']) input_text = self.ids_to_text(processed_batch['text_enc']) if not batch_has_lang_information: categories = [None] * len(preds_text) else: categories = processed_batch['lang'] metric = self.val_metric[dataloader_idx] if mode == 'validation' else self.test_metric[dataloader_idx] assert len(categories) == len(preds_text) == len(labels_text) for _, (pred, label, category) in enumerate(zip(preds_text, labels_text, categories)): # To compute metrics like pearson or spearman correlation, we need to cast the predicted string and labels to floats. pred, label = self.cast_for_metric( pred, label, self.val_metric_name if mode == 'validation' else self.test_metric_name ) if batch_has_lang_information: _ = metric(pred, label, category) else: _ = metric(pred, label) return { 'loss': loss, 'preds': preds_text, 'labels': labels_text, 'categories': categories, 'inputs': input_text, } def ids_to_text(self, batch_ids): batch_ids = batch_ids.cpu().numpy().tolist() texts = [] for ids in batch_ids: if self.tokenizer.eos_id in ids: idx = ids.index(self.tokenizer.eos_id) ids = ids[:idx] # Legacy sentencepiece detokenization still preserves special tokens which messes up exact string match. if hasattr(self.tokenizer, 'special_token_to_id'): ids = [id for id in ids if id not in self.tokenizer.special_token_to_id.values()] text = self.tokenizer.ids_to_text(ids) texts.append(text) return texts def _determine_log_key(self, data_config, dataloader_idx, metric_name, mode): # Function that determines whether to log based on the user provided name of the dataset or the dataloader index. base_key = f"{mode}_{metric_name}_" if metric_name is not None else f"{mode}_" # If the user provided names for each validation/test dataset, use those. if hasattr(data_config, "names") and data_config.names is not None: # With only a single validation/test dataset, the name is not a list. if not isinstance(data_config.names, ListConfig): name = data_config.names else: name = data_config.names[dataloader_idx] return base_key + name else: return base_key + f"dataloader{dataloader_idx}" def inference_epoch_end(self, outputs, mode, data_cfg): # Parent class will handle logging of the loss. if not outputs: return if isinstance(outputs[0], dict): outputs = [outputs] averaged_loss = [] averaged_metric = [] metric_name = self.val_metric_name if mode == 'validation' else self.test_metric_name # Log metrics for each provided validation/test dataset. for dataloader_idx, output in enumerate(outputs): loss = super().validation_epoch_end([x['loss'] for x in output]) # Determine the key used to log the loss based on the user provided name of the dataset or the dataloader index. loss_log_key = self._determine_log_key(data_cfg, dataloader_idx, "loss", mode) # Determine the key used to log the eval metric based on the user provided name of the dataset or the dataloader index. metric_log_key = self._determine_log_key(data_cfg, dataloader_idx, metric_name, mode) self.log(loss_log_key, loss) metric_object = ( self.val_metric[dataloader_idx] if mode == 'validation' else self.test_metric[dataloader_idx] ) metric = metric_object.compute() # Handle logging of GLUE/XNLI separately here. XNLI has a separate metric per language. if isinstance(metric, dict): # GLUE case: if len(metric) == 1 and 'acc' in metric: metric = metric['acc'] self.log(metric_log_key, metric) logging.info(f"{mode} {metric_name}: {metric}") # XNLI case where the metric dictionary contains the language and the computed metric as values. else: for k, v in metric.items(): if k != 'acc' and 'total' not in k: self.log(metric_log_key + f'_{k}', v) logging.info(f"{mode} {metric_name} lang {k} : {v}") metric = metric['acc'] else: self.log(metric_log_key, metric) logging.info(f"{mode} {metric_name}: {metric}") metric_object.reset() averaged_loss.append(loss) averaged_metric.append(metric) # Write predictions, labels, and inputs to a file for each validation/test dataset. if data_cfg.get("write_predictions_to_file", False): # Check if the user provided a prefix path to the file(s) they want to write. if not hasattr(data_cfg, "output_file_path_prefix") or data_cfg.output_file_path_prefix is None: raise ValueError( f"Cannot write predictions to file when output_file_path_prefix is not set or present in the yaml config file." ) # Gather the outputs object from all data parallel ranks since we are using the DistributedSampler which splits data across DDP ranks. gathered_outputs = [None for _ in range(self.world_size)] torch.distributed.all_gather_object( gathered_outputs, [ { 'preds': x['preds'], 'labels': x['labels'], 'categories': x['categories'], 'inputs': x['inputs'], } for x in output ], ) # Figure out what the suffix of the file should be. filename_log_key = self._determine_log_key(data_cfg, dataloader_idx, None, mode) # Keep a set of ground truths and inputs to write deduplicated predictions. Distributed Sampler may duplicate examples. gt_inp_set = set() deduplicated_outputs = { 'preds': [], 'labels': [], 'categories': [], 'inputs': [], } # PTL models have a self.global_rank attribute and we want to write to disk only on global rank 0. if self.global_rank == 0: for rank in range(0, self.world_size): for batch in gathered_outputs[rank]: for pred, label, input, category in zip( batch['preds'], batch['labels'], batch['inputs'], batch['categories'] ): if input + label not in gt_inp_set: gt_inp_set.add(input + label) deduplicated_outputs['preds'].append(pred) deduplicated_outputs['labels'].append(label) deduplicated_outputs['categories'].append(category) deduplicated_outputs['inputs'].append(input) self.write_predictions_to_file( deduplicated_outputs, f"{data_cfg.output_file_path_prefix}_{filename_log_key}" ) torch.distributed.barrier() # Logging of the averaged metrics: averaged_loss = sum(averaged_loss) / len(averaged_loss) averaged_metric = sum(averaged_metric) / len(averaged_metric) # Handle case where metrics can be nan or inf. This can break checkpoint save/load. if torch.isinf(averaged_metric) or torch.isnan(averaged_metric): app_state = AppState() monitor_mode = app_state.checkpoint_callback_params.mode assert monitor_mode in ['min', 'max'] averaged_metric = 0.0 if monitor_mode == 'max' else 1e5 if mode == 'validation': self.log("validation_loss", averaged_loss) self.log(f"validation_{self.val_metric_name}", averaged_metric) elif mode == 'test': self.log("test_loss", averaged_loss) self.log(f"test_{self.test_metric_name}", averaged_metric) return averaged_loss, averaged_metric def write_predictions_to_file(self, outputs, output_file_path_prefix): with open(output_file_path_prefix + "_inputs_preds_labels.json", "w") as f_json: json_output = { "inputs": outputs["inputs"], "preds": outputs["preds"], "labels": outputs["labels"], } json.dump(json_output, f_json) def validation_step(self, batch, batch_idx, dataloader_idx=0): return self.inference_step(batch, batch_idx, 'validation', dataloader_idx) def validation_epoch_end(self, outputs): _ = self.inference_epoch_end(outputs, 'validation', self.cfg.data.validation_ds) def test_step(self, batch, batch_idx, dataloader_idx=0): return self.inference_step(batch, batch_idx, 'test', dataloader_idx) def test_epoch_end(self, outputs): _ = self.inference_epoch_end(outputs, 'test', self.cfg.data.test_ds) def build_data_loader( self, dataset, micro_batch_size, global_batch_size, shuffle, num_workers, pin_memory, drop_last, check_validation_interval, ): """Buld dataloader given an input dataset.""" if dataset is None: return None rank = parallel_state.get_data_parallel_rank() world_size = parallel_state.get_data_parallel_world_size() sampler = torch.utils.data.distributed.DistributedSampler( dataset, num_replicas=world_size, rank=rank, shuffle=shuffle ) # This check makes sure the val_check_interval is less than the number of global batches. # Normally, PTL would do this check and properly account for gradient accumulation. # But now, it is implicit in the apex fwd/bwd functions and so we need to check for this somewhere. # The consequence of not doing this is that training loop will never run validation. # NOTE: Prog bar is also broken as a result of this. global_batch_size_per_gpu = micro_batch_size * get_num_microbatches() if ( self.trainer.val_check_interval > (sampler.num_samples // global_batch_size_per_gpu) and check_validation_interval ): raise ValueError( f"trainer.val_check_interval {self.trainer.val_check_interval} is > number of global batches {sampler.num_samples // global_batch_size}" ) # Data loader. Note that batch size is the per GPU batch size. return torch.utils.data.DataLoader( dataset, collate_fn=dataset.collate_fn, sampler=sampler, batch_size=micro_batch_size, num_workers=num_workers, pin_memory=pin_memory, drop_last=drop_last, ) def setup_training_data(self): self._train_dl = self.build_data_loader( self._train_ds, micro_batch_size=self.cfg.data.train_ds.micro_batch_size, global_batch_size=self.cfg.data.train_ds.global_batch_size, shuffle=self.cfg.data.train_ds.shuffle, num_workers=self.cfg.data.train_ds.num_workers, pin_memory=self.cfg.data.train_ds.pin_memory, drop_last=self.cfg.data.train_ds.drop_last, check_validation_interval=True, ) def setup_eval_data(self, datasets, data_cfg): dataloaders = [] for dataset in datasets: eval_dl = self.build_data_loader( dataset, micro_batch_size=data_cfg.micro_batch_size, global_batch_size=data_cfg.global_batch_size, shuffle=data_cfg.shuffle, num_workers=data_cfg.num_workers, pin_memory=data_cfg.pin_memory, drop_last=data_cfg.drop_last, check_validation_interval=False, ) dataloaders.append(eval_dl) return dataloaders def setup_validation_data(self): self._validation_dl = self.setup_eval_data(self._validation_ds, self.cfg.data.validation_ds) def setup_test_data(self): self._test_dl = self.setup_eval_data(self._test_ds, self.cfg.data.test_ds) def _build_train_dataset(self, data_cfg): """Build the training dataset.""" if ( data_cfg.drop_last is False and data_cfg.global_batch_size > data_cfg.micro_batch_size * parallel_state.get_data_parallel_world_size() ): raise ValueError( f"Cannot use drop_last=False in your training data with gradient accumulation found grad acc of {data_cfg.global_batch_size // (data_cfg.micro_batch_size * parallel_state.get_data_parallel_world_size())} with global_batch_size {data_cfg.global_batch_size}, micro_batch_size {data_cfg.micro_batch_size}, data parallel size {parallel_state.get_data_parallel_world_size()}" ) datasets = [] # Determine if we are using a single dataset or a list of datasets. is_src_list_config = isinstance(data_cfg.src_file_name, ListConfig) is_tgt_list_config = isinstance(data_cfg.tgt_file_name, ListConfig) if (is_src_list_config and not is_tgt_list_config) or (is_tgt_list_config and not is_src_list_config): raise ValueError("src_list and tgt_list must both be either a ListConfig or a string. ") if is_src_list_config: if len(data_cfg.src_file_name) != len(data_cfg.tgt_file_name): raise ValueError("src_file_name and tgt_file_name must have the same number of elements. ") else: data_cfg.src_file_name = [data_cfg.src_file_name] data_cfg.tgt_file_name = [data_cfg.tgt_file_name] for src, tgt in zip(data_cfg.src_file_name, data_cfg.tgt_file_name): dataset = SequenceToSequenceDataset( src_file_name=src, tgt_file_name=tgt, src_tokenizer=self.tokenizer, tgt_tokenizer=self.tokenizer, max_src_seq_length=data_cfg.max_src_seq_length, max_tgt_seq_length=data_cfg.max_tgt_seq_length, ) datasets.append(dataset) if len(datasets) > 1: dataset = ConcatDataset( datasets=datasets, sampling_technique=data_cfg.get('concat_sampling_technique', 'temperature'), sampling_temperature=data_cfg.get('concat_sampling_temperature', 5), sampling_probabilities=data_cfg.get( 'concat_sampling_probabilities', [1 / len(datasets)] * len(datasets) ), global_rank=parallel_state.get_data_parallel_rank(), world_size=parallel_state.get_data_parallel_world_size(), ) return dataset else: return datasets[0] def _build_eval_dataset(self, data_cfg): """Build the evaluation dataset.""" if data_cfg.global_batch_size > data_cfg.micro_batch_size * parallel_state.get_data_parallel_world_size(): raise ValueError( f'You are trying to use "implicit gradient accumulation" of {data_cfg.global_batch_size // (data_cfg.micro_batch_size * parallel_state.get_data_parallel_world_size())} in your validation/test datasets. This is not supported. Please set global_batch_size equal to micro_batch_size * data_parallel_world_size.' ) datasets = [] # Determine if we are using a single dataset or a list of datasets. is_src_list_config = isinstance(data_cfg.src_file_name, ListConfig) is_tgt_list_config = isinstance(data_cfg.tgt_file_name, ListConfig) is_names_list_config = False if hasattr(data_cfg, "names"): if isinstance(data_cfg.names, ListConfig): is_names_list_config = True if (is_src_list_config and not is_tgt_list_config) or (is_tgt_list_config and not is_src_list_config): raise ValueError("src_list and tgt_list must both be either a ListConfig or a string. ") if is_src_list_config: if len(data_cfg.src_file_name) != len(data_cfg.tgt_file_name): raise ValueError("src_file_name and tgt_file_name must have the same number of elements. ") if is_names_list_config and len(data_cfg.names) != len(data_cfg.src_file_name): raise ValueError( "If you are providing names for each src/tgt file, they must have the same number of elements." ) else: data_cfg.src_file_name = [data_cfg.src_file_name] data_cfg.tgt_file_name = [data_cfg.tgt_file_name] for src, tgt in zip(data_cfg.src_file_name, data_cfg.tgt_file_name): dataset = SequenceToSequenceDataset( src_file_name=src, tgt_file_name=tgt, src_tokenizer=self.tokenizer, tgt_tokenizer=self.tokenizer, max_src_seq_length=data_cfg.max_src_seq_length, max_tgt_seq_length=data_cfg.max_tgt_seq_length, ) datasets.append(dataset) return datasets def build_train_valid_test_datasets(self, stage): logging.info('Building datasets ...') if stage != 'test': self._validation_ds = self._build_eval_dataset(self.cfg.data.validation_ds) if stage != 'validation': if hasattr(self.cfg.data, 'test_ds'): self._test_ds = self._build_eval_dataset(self.cfg.data.test_ds) if stage == 'validation' or stage == 'test': return self._train_ds = self._build_train_dataset(self.cfg.data.train_ds) logging.info(f'Finished building datasets ...') def on_train_start(self) -> None: """PTL hook used to override DataFetcher with GlobalBatchDataFetcher """ self.trainer.fit_loop._data_fetcher = GlobalBatchDataFetcher() def on_validation_start(self) -> None: """PTL hook used to override DataFetcher with GlobalBatchDataFetcher """ self.trainer.fit_loop.epoch_loop.val_loop._data_fetcher = GlobalBatchDataFetcher() self.trainer.validate_loop._data_fetcher = GlobalBatchDataFetcher() def on_test_start(self) -> None: self.trainer.test_loop._data_fetcher = GlobalBatchDataFetcher()
spyysalo/prodigy-wiki-linking
builddb.py
#!/usr/bin/env python3 import sys from os.path import join from collections import defaultdict from argparse import ArgumentParser from tqdm import tqdm from sqlitedict import SqliteDict def load_wd_aliases(fn): """ Load mapping from Wikidata QIDs to Wikidata aliases. """ total = 0 aliases_by_qid = defaultdict(list) with open(fn) as f: next(f) # skip header for ln, l in enumerate(f, start=2): l = l.rstrip('\n') qid, alias = l.split('|', 1) aliases_by_qid[qid].append(alias) total += 1 print(f'loaded {total} aliases for {len(aliases_by_qid)} IDs from {fn}', file=sys.stderr) return aliases_by_qid def load_title_by_qid(fn): """ Load mapping from Wikipedia titles to Wikidata QIDs. """ title_by_qid = {} with open(fn) as f: next(f) # skip header for ln, l in enumerate(f, start=2): l = l.rstrip('\n') title, qid = l.split('|') assert qid not in title_by_qid, f'dup in {fn}: {qid}' title_by_qid[qid] = title print(f'loaded {len(title_by_qid)} titles from {fn}', file=sys.stderr) return title_by_qid def load_descriptions(fn): desc_by_qid = {} with open(fn) as f: next(f) # skip header for ln, l in enumerate(f, start=2): l = l.rstrip('\n') qid, description = l.split('|', 1) assert qid not in desc_by_qid, f'dup in {fn}: {qid}' desc_by_qid[qid] = description print(f'loaded {len(desc_by_qid)} descriptions from {fn}', file=sys.stderr) return desc_by_qid def filter_title(title): excluded_prefixes = [ 'Käyttäjä:', 'Toiminnot:', 'Metasivu:', 'Luokka:', ':Luokka:' ] if any(title.startswith(p) for p in excluded_prefixes): return True return False def load_counts(fn): filtered, total = 0, 0 counts = defaultdict(lambda: defaultdict(int)) with open(fn) as f: next(f) # skip header for ln, l in enumerate(f, start=2): l = l.rstrip('\n') alias, count, title = l.split('|') count = int(count) if filter_title(title): filtered += 1 else: counts[alias][title] += count total += 1 print(f'filtered {filtered}/{total} titles from {fn}', file=sys.stderr) print(f'loaded counts for {len(counts)} strings from {fn}', file=sys.stderr) return counts def argparser(): ap = ArgumentParser() ap.add_argument('indir', help='directory with wiki csv data') ap.add_argument('dbname', help='database name') return ap def main(argv): args = argparser().parse_args(argv[1:]) aliases = load_wd_aliases(join(args.indir, 'entity_alias.csv')) descs = load_descriptions(join(args.indir, 'entity_descriptions.csv')) title_by_qid = load_title_by_qid(join(args.indir, 'entity_defs.csv')) counts = load_counts(join(args.indir, 'prior_prob.csv')) qid_by_title = { v: k for k, v in title_by_qid.items() } # make sure each WD alias is included for qid, aliases in aliases.items(): if qid not in title_by_qid: continue # unmappable for alias in aliases: counts[alias][title_by_qid[qid]] += 0 with SqliteDict(args.dbname) as db: for string, title_count in tqdm(counts.items()): data = {} for title, count in title_count.items(): qid = qid_by_title.get(title) data[title] = { 'count': count, 'qid': qid, 'description': descs.get(qid), } db[string] = data print('committing ...') db.commit() return 0 if __name__ == '__main__': sys.exit(main(sys.argv))
spyysalo/prodigy-wiki-linking
el_kb.py
<reponame>spyysalo/prodigy-wiki-linking import sys import os import re from collections import defaultdict from logging import warning from sqlitedict import SqliteDict from standoff import ann_stream def load_lemma_data(fn): lemma_data = defaultdict(list) with open(fn) as f: for ln, l in enumerate(f, start=1): l = l.rstrip('\n') if l.startswith('#'): continue # skip comments count, form, lemma, pos = l.split('\t') # assume '#' is used to join compound words and remove it # when it appears between two alphabetic characters lemma = re.sub(r'(?<=[^\W\d])#(?=[^\W\d])', r'', lemma) lemma_data[form].append((lemma, pos, count)) return lemma_data def unique(sequence): """Return unique items in sequence, preserving order.""" # https://www.peterbe.com/plog/fastest-way-to-uniquify-a-list-in-python-3.6 return list(dict.fromkeys(sequence)) class KnowledgeBase: def __init__(self, lemmafn): self.lemma_data = load_lemma_data(lemmafn) def lemmatize_last(self, words): for lemma, pos, count in self.lemma_data.get(words[-1], []): yield words[:-1] + [lemma] def variants(self, string): words = string.split(' ') # assume space-separated for lemmatized in self.lemmatize_last(words): yield ' '.join(lemmatized) yield string def candidates(self, string): matches = [] for s in unique(self.variants(string)): matches.extend(self.exact_match_candidates(s)) matches.sort(key=lambda c: c[0], reverse=True) # descending by count seen, uniq = set(), [] for count, qid, title, desc in matches: if title not in seen: uniq.append((count, qid, title, desc)) seen.add(title) return uniq def exact_match_candidates(self, string): raise NotImplementedError class SqliteKnowledgeBase(KnowledgeBase): def __init__(self, dbfn, lemmafn): super().__init__(lemmafn) self.db = SqliteDict(dbfn, flag='r') def exact_match_candidates(self, string): if string not in self.db: return [] result = [] for title, data in self.db[string].items(): qid, desc = data['qid'], data['description'] result.append((data['count'], qid, title, desc)) result.sort(key=lambda c: c[0], reverse=True) # highest count first return result def main(argv): kb = SqliteKnowledgeBase('fiwiki.sqlite', 'data/fi-lemmas.tsv') stream = ann_stream('data/ann') for sent, span in stream: candidates = kb.candidates(span.text) for c in candidates: print(span.text, c) if not candidates: print('MISSED:', span.text) if __name__ == '__main__': sys.exit(main(sys.argv))
spyysalo/prodigy-wiki-linking
el_recipe.py
<gh_stars>0 import datetime import hashlib import prodigy from pathlib import Path from logging import warning from prodigy.components.filters import filter_duplicates from standoff import ann_stream from el_kb import SqliteKnowledgeBase def iso8601_now(): """Return current time in ISO 8601 format w/o microseconds.""" return datetime.datetime.now().replace(microsecond=0).isoformat(' ') def _hash(string): return int(hashlib.sha1(string.encode('utf-8')).hexdigest(), 16) % 2**31 def make_prodigy_example(docid, text, span): # Construct a dictionary with the structure that prodigy expects example = { 'text': text, 'meta': { 'score': 1.0 } # TODO add ID } example['_input_hash'] = _hash(docid) span_dict = { 'start': span.start, 'end': span.end, 'text': span.text, 'label': span.type, 'source': 'manual', 'rank': 0, 'score': 1.0, 'input_hash': example['_input_hash'], } example['spans'] = [span_dict] # add _input_hash and _task_hash values required by prodigy example['_task_hash'] = _hash(f'{docid} {span.id} {span.type} {span.text}') return example def format_option(count, qid, title, description): wp_prefix = 'https://fi.wikipedia.org/wiki/' wd_prefix = 'https://www.wikidata.org/wiki/' return ''.join([ f'{title} ', f'<a href="{wp_prefix}{title}" target="_blank">[WP]</a> ', f'<a href="{wd_prefix}{qid}" target="_blank">[WD]</a> ' if qid else '', f'({count})', f': {description}' if description else '' ]) def add_options(stream, kb): for task in stream: for span in task['spans']: options = [] for candidate in kb.candidates(span['text']): count, qid, title, desc = candidate options.append({ 'id': title, 'html': format_option(*candidate), }) if not options: warning(f'no options for {span["text"]}, skipping...') continue options.append({ 'id': 'NIL_other', 'text': 'Not in options'}) options.append( {'id': 'NIL_ambiguous', 'text': 'Need more context'}) task['options'] = options yield task @prodigy.recipe( 'entity_linker.manual', dataset=('The dataset to use', 'positional', None, str), annotator=('Annotator name', 'positional', None, str), directory=('The source data directory', 'positional', None, Path), kbpath=('Path to the KB', 'positional', None, Path), ) def entity_linker_manual(dataset, annotator, directory, kbpath): kb = SqliteKnowledgeBase(kbpath, 'data/fi-lemmas.tsv') stream = ann_stream(directory) stream = (make_prodigy_example(*e) for e in stream) stream = add_options(stream, kb) stream = filter_duplicates(stream, by_input=False, by_task=True) def before_db(examples): for e in examples: if 'created' not in e: e['created'] = iso8601_now() if 'annotator' not in e: e['annotator'] = annotator return examples return { 'dataset': dataset, 'stream': stream, 'view_id': 'choice', 'before_db': before_db, } if __name__ == '__main__': el = entity_linker_manual('dummy-dataset', 'dummy-user', 'normtest', 'fiwiki-kb-filtered') for e in el['stream']: print(e)
spyysalo/prodigy-wiki-linking
standoff.py
import os from glob import glob from collections import namedtuple from logging import warning # Entity types to exlude by default from candidates EXCLUDE_BY_DEFAULT = set([ 'DATE', 'TIME', 'CARDINAL', 'ORDINAL', 'QUANTITY', 'PERCENT', ]) Textbound = namedtuple('Textbound', 'id type start end text') def load_textbounds(txt_fn, ann_fn): with open(txt_fn) as txt_f: doc_text = txt_f.read() textbounds = [] with open(ann_fn) as ann_f: for ln, l in enumerate(ann_f, start=1): l = l.rstrip('\n') if not l.startswith('T'): continue # skip all but textbound annotations id_, type_span, text = l.split('\t') type_, start, end = type_span.split(' ') start, end = int(start), int(end) assert doc_text[start:end] == text textbounds.append(Textbound(id_, type_, start, end, text)) return doc_text, textbounds def get_span_sentence(text, span): # Return the sentence in which the given span occurs in the text. # Assumes that sentences are separated by newlines. offset = 0 for index, sentence in enumerate(text.split('\n'), start=1): if offset+len(sentence) > span.start: assert offset+len(sentence) >= span.end # Create span with adjusted text s, e = span.start - offset, span.end - offset sent_span = Textbound(span.id, span.type, s, e, span.text) assert sentence[sent_span.start:sent_span.end] == sent_span.text return index, sentence, sent_span offset += len(sentence) + 1 def ann_stream(directory, exclude=EXCLUDE_BY_DEFAULT): if exclude is None: exclude = set() # List .txt and .ann files txt_fns = glob(os.path.join(directory, '*.txt')) ann_fns = glob(os.path.join(directory, '*.ann')) # Grab unique for each without extension txt_fns = set(os.path.splitext(n)[0] for n in txt_fns) ann_fns = set(os.path.splitext(n)[0] for n in ann_fns) if txt_fns - ann_fns: warning(f'.txt files without .ann: {txt_fns-ann_fns}') if ann_fns - txt_fns: warning(f'.ann files without .txt: {ann_fns-txt_fns}') for fn in sorted(txt_fns & ann_fns): text, spans = load_textbounds(f'{fn}.txt', f'{fn}.ann') spans = [s for s in spans if s.type not in exclude] for span in spans: sentidx, sentence, sent_span = get_span_sentence(text, span) yield f'{fn}.{sentidx}', sentence, sent_span
spyysalo/prodigy-wiki-linking
filter_kb.py
<filename>filter_kb.py #!/usr/bin/env python3 import sys import os from collections import defaultdict from argparse import ArgumentParser from el_kb import load_wd_aliases, load_descriptions, load_title_qid_map from el_kb import load_counts def save_aliases(fn, aliases_by_qid): with open(fn, 'w') as f: print('WD_id|alias', file=f) # header for qid, aliases in aliases_by_qid.items(): for alias in aliases: print(f'{qid}|{alias}', file=f) def save_descriptions(fn, desc_by_qid): with open(fn, 'w') as f: print('WD_id|description', file=f) # header for qid, desc in desc_by_qid.items(): print(f'{qid}|{desc}', file=f) def save_titles(fn, title_by_qid): with open(fn, 'w') as f: print('WP_title|WD_id', file=f) # header for qid, title in title_by_qid.items(): print(f'{title}|{qid}', file=f) def save_counts(fn, counts_by_alias, title_by_qid): with open(fn, 'w') as f: print('alias|count|entity', file=f) # header for alias, counts in counts_by_alias.items(): for count, qid in counts: title = title_by_qid[qid] print(f'{alias}|{count}|{title}', file=f) def argparser(): ap = ArgumentParser() ap.add_argument('indir', help='KB directory') ap.add_argument('outdir', help='output directory') ap.add_argument('-m', '--min-count', type=int, default=2) return ap def main(argv): args = argparser().parse_args(argv[1:]) aliases = load_wd_aliases(os.path.join(args.indir, 'entity_alias.csv')) descriptions = load_descriptions( os.path.join(args.indir, 'entity_descriptions.csv')) titles = load_title_qid_map(os.path.join(args.indir, 'entity_defs.csv')) counts = load_counts(os.path.join(args.indir, 'prior_prob.csv'), titles) filtered_qids = set() filtered_counts = defaultdict(list) filtered, total = 0, 0 for alias, count_list in counts.items(): for count, qid in count_list: if count >= args.min_count: filtered_counts[alias].append((count, qid)) filtered_qids.add(qid) else: filtered += 1 total += 1 print(f'filtered {filtered}/{total} ({filtered/total:.1%}) counts', file=sys.stderr) filtered_titles = {} filtered, total = 0, 0 for qid, title in titles.items(): if qid in filtered_qids: filtered_titles[qid] = title else: filtered += 1 total += 1 print(f'filtered {filtered}/{total} ({filtered/total:.1%}) titles', file=sys.stderr) filtered_descs = {} filtered, total = 0, 0 for qid, desc in descriptions.items(): if qid in filtered_qids: filtered_descs[qid] = desc else: filtered += 1 total += 1 print(f'filtered {filtered}/{total} ({filtered/total:.1%}) descriptions', file=sys.stderr) filtered_aliases = defaultdict(list) filtered, total = 0, 0 for qid, alias_list in aliases.items(): for alias in alias_list: if qid in filtered_qids: filtered_aliases[qid].append(alias) else: filtered += 1 total += 1 print(f'filtered {filtered}/{total} ({filtered/total:.1%}) aliases', file=sys.stderr) save_aliases(os.path.join(args.outdir, 'entity_alias.csv'), filtered_aliases) save_descriptions(os.path.join(args.outdir, 'entity_descriptions.csv'), filtered_descs) save_titles(os.path.join(args.outdir, 'entity_defs.csv'), filtered_titles) save_counts(os.path.join(args.outdir, 'prior_prob.csv'), filtered_counts, titles) return 0 if __name__ == '__main__': sys.exit(main(sys.argv))
jhult/compose_format
setup.py
<filename>setup.py<gh_stars>10-100 from setuptools import setup def readme(): with open('README.rst') as file: return file.read() setup( name='compose_format', version='1.1.0', description='format docker-compose files', long_description=readme(), url='http://github.com/funkwerk/compose_format', author='<NAME>', license='MIT', packages=['compose_format'], install_requires=['ruamel.yaml'], zip_safe=False, classifiers=[ 'License :: OSI Approved :: MIT License', 'Programming Language :: Python :: 3', 'Topic :: Software Development', 'Environment :: Console', 'Operating System :: OS Independent', ], keywords='docker-compose format docker yml', include_package_data=True, scripts=['bin/compose_format'])
jhult/compose_format
compose_format/__init__.py
<filename>compose_format/__init__.py from ruamel.yaml import RoundTripDumper, RoundTripLoader, dump, load from ruamel.yaml.comments import CommentedMap, CommentedSeq from ruamel.yaml.scalarstring import SingleQuotedScalarString class ComposeFormat: TOPLEVEL_ORDER = ['version', 'services', 'volumes', 'networks', 'secrets'] SERVICE_ORDER = [ 'image', 'command', 'entrypoint', 'container_name', 'links', 'volumes_from', 'volumes', 'volume_driver', 'tmpfs', 'build', 'expose', 'ports', 'net', 'network_mode', 'networks', 'deploy', 'labels', 'devices', 'read_only', 'healthcheck', 'env_file', 'environment', 'secrets', 'cpu_shares', 'cpu_quota', 'cpuset', 'domainname', 'hostname', 'ipc', 'mac_address', 'mem_limit', 'memswap_limit', 'privileged', 'shm_size', 'depends_on', 'extends', 'external_links', 'stdin_open', 'user', 'working_dir', 'extra_hosts', 'restart', 'ulimits', 'tty', 'dns', 'dns_search', 'pid', 'security_opt', 'cap_add', 'cap_drop', 'cgroup_parent', 'logging', 'log_driver', 'log_opt', 'stopsignal', 'stop_signal', 'stop_grace_period', 'sysctls', 'userns_mode', 'autodestroy', 'autoredeploy', 'deployment_strategy', 'sequential_deployment', 'tags', 'target_num_containers', 'roles', ] DEPLOY_ORDER = [ 'placement', 'replicas', 'mode', 'update_config', 'resources', 'restart_policy', 'labels', ] HEALTHCHECK_ORDER = [ 'test', 'interval', 'timeout', 'retries', 'disable', ] BUILD_ORDER = ['context', 'dockerfile', 'args', 'cache_from', 'labels', 'shm_size', 'target'] ORDERS = { 'version': TOPLEVEL_ORDER, 'services': TOPLEVEL_ORDER, 'image': SERVICE_ORDER, 'dockerfile': BUILD_ORDER, 'placement': DEPLOY_ORDER, 'replicas': DEPLOY_ORDER, 'test': HEALTHCHECK_ORDER, } NON_SORTABLE_ARRAYS = [ 'entrypoint', 'command', 'test', ] def __init__(self): pass def format(self, path, replace=False, strict=True): with open(path, 'r') as file: data = file.read() original = data formatted = self.format_string(data, replace=replace, strict=strict) if replace: with open(path, 'w') as file: file.write(formatted) else: print(formatted) return original == formatted def format_string(self, data, replace=False, strict=True): data = self.reorder(load(data, RoundTripLoader), strict=strict) formatted = dump(data, Dumper=RoundTripDumper, indent=2, block_seq_indent=2, width=120) return formatted.strip() + '\n' @staticmethod def reorder(data, strict=True): if type(data) is CommentedMap: order = ComposeFormat.order_map(list(data.keys())) keys = list(data.keys()) while ComposeFormat.sorted_by_order(keys, order, strict) != keys: for a, b in zip(ComposeFormat.sorted_by_order(keys, order, strict), keys): if a == b: continue data.move_to_end(b) break keys = list(data.keys()) for key, item in data.items(): if key in ComposeFormat.NON_SORTABLE_ARRAYS: continue ComposeFormat.reorder(item, strict) return data if type(data) is CommentedSeq: for i, value in enumerate(data): if type(value) is not CommentedMap: data[i] = ComposeFormat.fix_sexadecimal_numbers(value) data.sort() return data return data @staticmethod def fix_sexadecimal_numbers(value): import re SEXADECIMAL_NUMBER = '(?P<left>\d+):(?P<right>\d+)' match = re.match(SEXADECIMAL_NUMBER, str(value)) if not match or int(match.group('left')) > 60 or int(match.group('right')) > 60: return value return SingleQuotedScalarString('{0}:{1}'.format(match.group('left'), match.group('right'))) @staticmethod def order_map(keys): for key in ComposeFormat.ORDERS.keys(): if key in keys: return ComposeFormat.ORDERS[key] return None @staticmethod def sorted_by_order(keys, order, strict): if order is None: return sorted(keys) def order_function(key): if strict: assert key in order, 'key: {0} not known'.format(key) if key in order: return order.index(key) return len(order) + ComposeFormat.name_to_order(key) return sorted(keys, key=order_function) @staticmethod def name_to_order(value): from functools import reduce return reduce(lambda left, right: (left * 256 + right), (ord(char) for char in value))
JinJackson/Simcse-unsup
train_unsup.py
# -*- coding: utf-8 -*- # @Time : 2021/6/10 # @Author : kaka import argparse import logging import os from pathlib import Path from datasets import load_dataset import torch import torch.nn.functional as F from torch.utils.data import DataLoader from tqdm import tqdm from transformers import BertTokenizer from SimCSE import SimCSE from CSECollator import CSECollator #python train_unsup.py --train_file ./data/news_title.txt --pretrained./model/bert-wwm/ def parse_args(): parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument("--train_file", type=str, help="train text file") parser.add_argument("--pretrained", type=str, default="hfl/chinese-bert-wwm-ext", help="huggingface pretrained model") parser.add_argument("--model_out", type=str, default="./model", help="model output path") parser.add_argument("--num_proc", type=int, default=5, help="dataset process thread num") parser.add_argument("--max_length", type=int, default=100, help="sentence max length") parser.add_argument("--batch_size", type=int, default=64, help="batch size") parser.add_argument("--epochs", type=int, default=2, help="epochs") parser.add_argument("--lr", type=float, default=1e-5, help="learning rate") parser.add_argument("--tao", type=float, default=0.05, help="temperature") parser.add_argument("--device", type=str, default="cuda", help="device") parser.add_argument("--display_interval", type=int, default=50, help="display interval") parser.add_argument("--save_interval", type=int, default=100, help="save interval") parser.add_argument("--pool_type", type=str, default="cls", help="pool_type") parser.add_argument("--dropout_rate", type=float, default=0.3, help="dropout_rate") args = parser.parse_args() return args def load_data(args, tokenizer): data_files = {"train": args.train_file} ds = load_dataset("text", data_files=data_files) ds_tokenized = ds.map(lambda example: tokenizer(example["text"]), num_proc=args.num_proc) collator = CSECollator(tokenizer, max_len=args.max_length) dl = DataLoader(ds_tokenized["train"], batch_size=args.batch_size, collate_fn=collator.collate) return dl def compute_loss(y_pred, tao=0.05, device="cuda"): idxs = torch.arange(0, y_pred.shape[0], device=device) y_true = idxs + 1 - idxs % 2 * 2 similarities = F.cosine_similarity(y_pred.unsqueeze(1), y_pred.unsqueeze(0), dim=2) similarities = similarities - torch.eye(y_pred.shape[0], device=device) * 1e12 similarities = similarities / tao loss = F.cross_entropy(similarities, y_true) return torch.mean(loss) def train(args): tokenizer = BertTokenizer.from_pretrained(args.pretrained, mirror="tuna") dl = load_data(args, tokenizer) model = SimCSE(args.pretrained, args.pool_type, args.dropout_rate).to(args.device) optimizer = torch.optim.AdamW(model.parameters(), lr=args.lr) model_out = Path(args.model_out) if not model_out.exists(): os.mkdir(model_out) model.train() batch_idx = 0 for epoch_idx in range(args.epochs): for data in tqdm(dl): batch_idx += 1 pred = model(input_ids=data["input_ids"].to(args.device), attention_mask=data["attention_mask"].to(args.device), token_type_ids=data["token_type_ids"].to(args.device)) loss = compute_loss(pred, args.tao, args.device) optimizer.zero_grad() loss.backward() optimizer.step() loss = loss.item() if batch_idx % args.display_interval == 0: logging.info(f"batch_idx: {batch_idx}, loss: {loss:>10f}") if batch_idx % args.save_interval == 0: torch.save(model.state_dict(), model_out / "epoch_{0}-batch_{1}-loss_{2:.6f}".format(epoch_idx, batch_idx, loss)) def main(): args = parse_args() train(args) if __name__ == "__main__": log_fmt = "%(asctime)s|%(name)s|%(levelname)s|%(message)s" logging.basicConfig(level=logging.INFO, format=log_fmt) main()
JinJackson/Simcse-unsup
SimCSERetrieval.py
# -*- coding: utf-8 -*- # @Time : 2021/6/10 # @Author : kaka import faiss import numpy as np import torch from tqdm import tqdm from transformers import BertTokenizer from SimCSE import SimCSE class SimCSERetrieval(object): def __init__(self, fname, pretrained_path, simcse_model_path, batch_size=32, max_length=100, device="cuda"): self.fname = fname self.batch_size = batch_size self.max_length = max_length self.device = device self.tokenizer = BertTokenizer.from_pretrained(pretrained_path) model = SimCSE(pretrained=pretrained_path).to(device) model.load_state_dict(torch.load(simcse_model_path)) self.model = model self.model.eval() self.id2text = None self.vecs = None self.ids = None self.index = None def encode_batch(self, texts): text_encs = self.tokenizer(texts, padding=True, max_length=self.max_length, truncation=True, return_tensors="pt") input_ids = text_encs["input_ids"].to(self.device) attention_mask = text_encs["attention_mask"].to(self.device) token_type_ids = text_encs["token_type_ids"].to(self.device) with torch.no_grad(): output = self.model.forward(input_ids, attention_mask, token_type_ids) return output def encode_file(self): all_texts = [] all_ids = [] all_vecs = [] with open(self.fname, "r", encoding="utf8") as h: texts = [] idxs = [] for idx, line in tqdm(enumerate(h)): if not line.strip(): continue texts.append(line.strip()) idxs.append(idx) if len(texts) >= self.batch_size: vecs = self.encode_batch(texts) vecs = vecs / vecs.norm(dim=1, keepdim=True) all_texts.extend(texts) all_ids.extend(idxs) all_vecs.append(vecs.cpu()) texts = [] idxs = [] all_vecs = torch.cat(all_vecs, 0).numpy() id2text = {idx: text for idx, text in zip(all_ids, all_texts)} self.id2text = id2text self.vecs = all_vecs self.ids = np.array(all_ids, dtype="int64") def build_index(self, nlist=256): dim = self.vecs.shape[1] quant = faiss.IndexFlatIP(dim) index = faiss.IndexIVFFlat(quant, dim, min(nlist, self.vecs.shape[0])) index.train(self.vecs) index.add_with_ids(self.vecs, self.ids) self.index = index def sim_query(self, sentence, topK=20): vec = self.encode_batch([sentence]) vec = vec / vec.norm(dim=1, keepdim=True) vec = vec.cpu().numpy() _, sim_idx = self.index.search(vec, topK) sim_sentences = [] for i in range(sim_idx.shape[1]): idx = sim_idx[0, i] sim_sentences.append(self.id2text[idx]) return sim_sentences
JinJackson/Simcse-unsup
test_unsup.py
# -*- coding: utf-8 -*- # @Time : 2021/6/10 # @Author : kaka import logging from SimCSERetrieval import SimCSERetrieval def main(): fname = "./data/news_title.txt" pretrained = "hfl/chinese-bert-wwm-ext" # huggingface modelhub 下载的预训练模型 simcse_model = "./model/batch-1400" batch_size = 64 max_length = 100 device = "cuda" logging.info("Load model") simcse = SimCSERetrieval(fname, pretrained, simcse_model, batch_size, max_length, device) logging.info("Sentences to vectors") simcse.encode_file() logging.info("Build faiss index") simcse.build_index(n_list=1024) simcse.index.nprob = 20 query_sentence = "基金亏损路未尽 后市看法仍偏谨慎" print("\nquery title:{0}".format(query_sentence)) print("\nsimilar titles:") print(u"\n".join(simcse.sim_query(query_sentence, topK=10))) if __name__ == "__main__": log_fmt = "%(asctime)s|%(name)s|%(levelname)s|%(message)s" logging.basicConfig(level=logging.INFO, format=log_fmt) main()
JinJackson/Simcse-unsup
CSECollator.py
# -*- coding: utf-8 -*- # @Time : 2021/6/10 # @Author : kaka class CSECollator(object): def __init__(self, tokenizer, features=("input_ids", "attention_mask", "token_type_ids"), max_len=100): self.tokenizer = tokenizer self.features = features self.max_len = max_len def collate(self, batch): new_batch = [] for example in batch: for i in range(2): # 每个句子重复两次 new_batch.append({fea: example[fea] for fea in self.features}) new_batch = self.tokenizer.pad( new_batch, padding=True, max_length=self.max_len, return_tensors="pt" ) return new_batch
JinJackson/Simcse-unsup
SimCSE.py
<filename>SimCSE.py # -*- coding: utf-8 -*- # @Time : 2021/6/10 # @Author : kaka import torch.nn as nn from transformers import BertConfig, BertModel class SimCSE(nn.Module): def __init__(self, pretrained="hfl/chinese-bert-wwm-ext", pool_type="cls", dropout_prob=0.3): super().__init__() conf = BertConfig.from_pretrained(pretrained) conf.attention_probs_dropout_prob = dropout_prob conf.hidden_dropout_prob = dropout_prob self.encoder = BertModel.from_pretrained(pretrained, config=conf) assert pool_type in ["cls", "pooler"], "invalid pool_type: %s" % pool_type self.pool_type = pool_type def forward(self, input_ids, attention_mask, token_type_ids): output = self.encoder(input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids) if self.pool_type == "cls": output = output.last_hidden_state[:, 0] elif self.pool_type == "pooler": output = output.pooler_output return output
JinJackson/Simcse-unsup
eval_unsup.py
<filename>eval_unsup.py # -*- coding: utf-8 -*- # @Time : 2021/6/18 # @Author : kaka import logging import torch import torch.nn.functional as F import numpy as np import scipy.stats from transformers import BertTokenizer from SimCSE import SimCSE def load_test_data(fname, tokenizer, max_length): lines = open(fname, "r", encoding="utf8").read().splitlines() sent_a = [] sent_b = [] score = [] for line in lines: _, sa, sb, s = line.strip().split(u"||") sent_a.append(sa) sent_b.append(sb) score.append(float(s)) sent_a_encs = tokenizer(sent_a, truncation=True, padding="max_length", max_length=max_length, return_tensors="pt") sent_b_encs = tokenizer(sent_b, truncation=True, padding="max_length", max_length=max_length, return_tensors="pt") return {"sent_a_encs": sent_a_encs, "sent_b_encs": sent_b_encs, "score": np.array(score)} def eval(data, model, device): model.eval() model.to(device) with torch.no_grad(): a_embed = model( input_ids=data["sent_a_encs"]["input_ids"].to(device), attention_mask=data["sent_a_encs"]["attention_mask"].to(device), token_type_ids=data["sent_a_encs"]["token_type_ids"].to(device), ) b_embed = model( input_ids=data["sent_b_encs"]["input_ids"].to(device), attention_mask=data["sent_b_encs"]["attention_mask"].to(device), token_type_ids=data["sent_b_encs"]["token_type_ids"].to(device), ) sim_score = F.cosine_similarity(a_embed, b_embed).cpu().numpy() corr = scipy.stats.spearmanr(sim_score, data["score"]).correlation return corr def main(): pretrained_model_path = "hfl/chinese-bert-wwm-ext" # huggingface 提供的预训练模型,也可指定本地模型文件 simcse_model_path = "" # simcse训练得到的模型文件 f_test = "./data/STS-B/cnsd-sts-test.txt" f_dev = "./data/STS-B/cnsd-sts-dev.txt" logging.info("Load tokenizer") tokenizer = BertTokenizer.from_pretrained(pretrained_model_path) max_length = 100 device = torch.device("cuda") test_data = load_test_data(f_test, tokenizer, max_length) logging.info("test data:{0}".format(len(test_data["sent_a_encs"]["input_ids"]))) dev_data = load_test_data(f_dev, tokenizer, max_length) logging.info("dev data:{0}".format(len(dev_data["sent_a_encs"]["input_ids"]))) logging.info("eval bert model") model = SimCSE(pretrained_model_path, "cls") bert_test_score = eval(test_data, model, device) bert_dev_score = eval(dev_data, model, device) logging.info("eval simcse model\n") model.load_state_dict(torch.load(simcse_model_path)) simcse_test_score = eval(test_data, model, device) simcse_dev_score = eval(dev_data, model, device) logging.info(u"bert model test score:{:.4f}".format(bert_test_score)) logging.info(u"bert model dev score:{:.4f}".format(bert_dev_score)) logging.info(u"simcse model test score:{:.4f}".format(simcse_test_score)) logging.info(u"simcse model dev score:{:.4f}".format(simcse_dev_score)) if __name__ == "__main__": log_fmt = "%(asctime)s|%(name)s|%(levelname)s|%(message)s" logging.basicConfig(level=logging.INFO, format=log_fmt) main()
Mamdasn/Perceptron-a-Showcase
Perceptron-a-Showcase.py
import pygame import sys window = pygame.display.set_mode((620,450)) pygame.display.set_caption("Time Series Analysis") WHITE = [255, 255, 255] RED = [200,0,0] GREEN = [0,200,0] BLACK = [20,20,20] GRAY = [128,128,128] window.fill(WHITE) pygame.display.flip() pygame.font.init() # you have to call this at the start, # if you want to use this module. myfont = pygame.font.SysFont("Times New Roman", 16, bold=False, italic=False) myfont_small = pygame.font.SysFont("Times New Roman", 11, bold=False, italic=False) radius = 10 # Initilize the GUI def initialize_screen(window): window.fill(WHITE) for i in range(10): pygame.draw.lines(window, BLACK, False, [(27+28*(i+1),35), (177,150)], 1) for i in range(21): pygame.draw.circle(window,GRAY,(28*(i+1),20),radius) # DRAW 21 INPUT CIRCLES pygame.draw.circle(window,GRAY,(177, 165),radius) # DRAW THE PREDICTION CIRCLE pygame.draw.circle(window,GREEN,(310, 100+8),radius) # HELPER window.blit(myfont.render('1=neuron active', True, BLACK),(330,100)) # HELPER pygame.draw.circle(window,RED,(310, 130+8),radius) # HELPER window.blit(myfont.render('0=neuron quiescent', True, BLACK),(330,130)) # HELPER window.blit(myfont_small.render('Prediction for the INPUT', True, BLACK),(117,185)) # HELPER pygame.draw.lines(window, BLACK, False, [(167,180), (187,180)], 1) # HELPER window.blit(myfont_small.render('INPUT', True, BLACK),(12,40)) # HELPER pygame.draw.lines(window, BLACK, False, [(18,35), (38,35)], 1) # HELPER pygame.draw.lines(window, BLACK, False, [(25,339), (320,339)], 2) # HELPER FOR PLOTTING WEIGHTS window.blit(myfont.render("weight distribution", True, BLACK),(330,330)) # HELPER FOR PLOTTING WEIGHTS window.blit(myfont.render("Commands: 1, 0, [n]ew statistics, [e]nd", True, BLACK),(330,400)) # HELPER initialize_screen(window) pygame.display.update() import random # Number of input neurons N = 10 # Initialize variables runs = 0 corrects = 0 neuron = [] neuron_last_21 = [] weights = [0 for _ in range(N)] lastNpredictionStatus = [] y = 0 while True: # User input controls for event in pygame.event.get(): if event.type == pygame.QUIT: sys.exit() if event.type == pygame.KEYDOWN: # n for new statistics if event.key == pygame.K_n: neuron = [] neuron_last_21 = [] weights = [0 for _ in range(N)] initialize_screen(window) pygame.display.update() continue # e for exit elif event.key == pygame.K_e: sys.exit() # 1 for 1 elif event.key == pygame.K_1: y = 1 break # 0 for -1 elif event.key == pygame.K_0: y = -1 break else: continue # Increment number of runs runs += 1 # Predict the y h = 0 for each_neuron, each_weight in zip(neuron, weights): h += each_weight * each_neuron if h * y > 0: # The prediction is correct. corrects += 1 # If a wrong prediction happened, update the weights if h * y <= 0: for i in range(len(neuron)): weights[i] += y * neuron[i] / len(neuron) # This is for the sake of calculating the accuracy of the predictions lastNpredictionStatus.append(h * y > 0) if len(lastNpredictionStatus) > N: lastNpredictionStatus = lastNpredictionStatus[-N:] # Append the user input to the input neurons neuron.append(y) if len(neuron) > N: neuron = neuron[-N:] # Save last 21 user input for further calculation neuron_last_21.append(y) if len(neuron_last_21) > 21: neuron_last_21 = neuron_last_21[-21:] # Calculate hit frequency hit_frequency = round(corrects/runs * 100, 2) # Calculate hit frequency for the last N user inputs hit_frequency_N = round(sum(lastNpredictionStatus)/len(lastNpredictionStatus) * 100, 2) prediction = 1 if h > 0 else -1 # Draw colored circles for the last 21 user inputs for i in range(len(neuron_last_21)): length_of_neuron_last_21 = len(neuron_last_21) color = RED if neuron_last_21[length_of_neuron_last_21-1-i] == -1 else GREEN pygame.draw.circle(window,color,(28*(i+1),20),radius) # DRAW CIRCLE # Draw the prediction circle color = RED if prediction == -1 else GREEN pygame.draw.circle(window,color,(177, 165),radius) # DRAW CIRCLE window.blit(myfont.render('The prediction is correct' if h * y > 0 else \ 'The prediction is incorrect', True, BLACK),(300,200)) window.blit(myfont.render(f"hit percentage: {hit_frequency}%"\ , True, BLACK),(300,220)) window.blit(myfont.render(f"hit percentage for the last {N} steps: {hit_frequency_N}%"\ , True, BLACK),(300,240)) # Draw weights for i in range(N): bar = -int(weights[i]*100//1) top = 340 if bar > 0: # left, top, width, height pygame.draw.rect(window, BLACK, pygame.Rect(30*(i+1), top, 15, bar), 1) else: pygame.draw.rect(window, BLACK, pygame.Rect(30*(i+1), top+bar, 15, abs(bar)), 1) pygame.display.update() initialize_screen(window)
cohenjer/mscode
mscode/xp/fista_reglevel.py
<reponame>cohenjer/mscode # Recov vs best lamb/lamb_max (generate randomly, find best, report scores, show histogram of realizations in background with second origin) # Show av. Recovery vs deviations from best (0 dev means average from previous curve) # Do for all Fistamix and Fista # Check redundancy rate import numpy as np from matplotlib import pyplot as plt #from itertools import combinations, product #import shelve from mscode.utils.utils import count_support from mscode.methods.algorithms import ista_mix, ista from mscode.utils.generator import gen_mix, initialize import pandas as pd import plotly.express as px # Problem parameters k = 5 r = 6 #2 n = 50 #10 m = 50 #20 d = 100 #50 #noise = 0.03 # 0.03 SNR = 20 # dB cond = 2*1e2 tol = 1e-6 distr = 'Gaussian' # Grid on lambda/lambda_max (11 values) #grid = np.linspace(0, 0.1, 11, endpoint=True) grid = [0, 0.0001, 0.0002, 0.0005, 0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.1] print(grid) # Storage Ntest = 200 labels=['-90%', '-50%', '-20%', 'optimal', '+100%', '+400%', '+900%'] # Storing with Pandas DataFrame store_pd = pd.DataFrame(columns=["xp", "value", "algorithm", "alpha", "alpha_mod"]) # Loop on tensors, test 100 for i in range(Ntest): print(i) # Data generation Y, Ytrue, D, B, X, S, sig, condB = gen_mix([m, n, d, r], k, snr=SNR, cond=cond, distr=distr) X0 = initialize([d,r], distr = 'Zeros') # initial recovery rates and best lambdas recov_istam = 0 recov_ista = 0 lamb_best_istam = 0 lamb_best_ista = 0 cnt = 1 cnt_m = 1 for lamb in grid: # Running FIstas _, _, _, S_istam = ista_mix(Y, D, B, lamb, k=k, X0=X0, verbose=False, tol=tol) _, _, _, S_ista = ista(Y, D, B, lamb, k=k, X0=X0, verbose=False, tol=tol) # Computing recovery rates, store if larger temp_recov_istam = count_support(S, S_istam) if temp_recov_istam > recov_istam: lamb_best_istam = lamb recov_istam = temp_recov_istam elif temp_recov_istam == recov_istam: # store for averaging cnt_m += 1 lamb_best_istam += lamb temp_recov_ista = count_support(S, S_ista) if temp_recov_ista > recov_ista: lamb_best_ista = lamb recov_ista = temp_recov_ista elif temp_recov_ista == recov_ista: # store for averaging cnt += 1 lamb_best_ista += lamb lamb_best_ista = lamb_best_ista/cnt lamb_best_istam = lamb_best_istam/cnt_m dic = { "xp":2*['xp1'], "alpha": [lamb_best_ista, lamb_best_istam], "alpha_mod": [lamb_best_ista, lamb_best_istam], "value": [recov_ista, recov_istam], "algorithm": ["Block-FISTA","Mixed-FISTA"] } store_pd = store_pd.append(pd.DataFrame(dic), ignore_index=True) # Robustness to lambda trials # log'ish' scale grid2 = np.array([-9*lamb_best_ista/10, -5*lamb_best_ista/10, -2*lamb_best_ista/10, 0, lamb_best_ista, 5*lamb_best_ista, 10*lamb_best_ista]) + lamb_best_ista for (cnt, lamb) in enumerate(grid2): # Running Fista on a local optimal grid _, _, _, S_ista = ista(Y, D, B, lamb, k=k, X0=X0, verbose=False, tol=tol) recov_ista = count_support(S, S_ista) # TODO dic = { "xp":1*['xp2'], "alpha": [lamb_best_ista], "alpha_mod": [labels[cnt]], "value": [recov_ista], "algorithm": ["Block-FISTA"] } store_pd = store_pd.append(pd.DataFrame(dic), ignore_index=True) for (cnt, lamb) in enumerate(grid2): # Running Fista mix on a local optimal grid _, _, _, S_istam = ista_mix(Y, D, B, lamb, k=k, X0=X0, verbose=False, tol=tol) recov_istam = count_support(S, S_istam) #storage_onedatam.append(recov_istam) dic = { "xp":1*['xp2'], "alpha": [lamb_best_istam], "alpha_mod": [labels[cnt]], "value": [recov_istam], "algorithm": ["Mixed-FISTA"] } store_pd = store_pd.append(pd.DataFrame(dic), ignore_index=True) #storage_robustm.append(storage_onedatam) # end loop on data matrices # Starting plots # lambda effect, maybe todo improve? #storage = np.array(storage) #storage_m = np.array(storage_m) #plt.figure() #plt.scatter(np.log10(storage[:,0]),storage[:,1], color='r') #plt.scatter(np.log10(storage_m[:,0]),storage_m[:,1], color='b') #plt.legend(['Block Fista','Mixed Fista']) df1 = store_pd[store_pd.xp == 'xp1'] df2 = store_pd[store_pd.xp == 'xp2'] fig = px.scatter(df1, x='alpha', y='value', color='algorithm', title="", labels={'value': 'Support recovery', 'alpha': 'regularization strength alpha'},log_x=True) #fig.for_each_annotation(lambda a: a.update(text=a.text.split("=")[-1])) #fig.update_xaxes(type='category') fig.update_layout( font_family="HelveticaBold", font_size=15, autosize=False, width=1000, height=400, #paper_bgcolor="white",#'rgb(233,233,233)', #plot_bgcolor="white",#'rgb(233,233,233)', ) fig.show() fig2 = px.box(df2, x='alpha_mod', y='value', color='algorithm', facet_col='algorithm', title="", labels={'value': 'Support recovery', 'alpha_mod': 'variation wrt optimal alpha'})#, log_x=True) #fig2.for_each_annotation(lambda a: a.update(text=a.text.split("=")[-1])) fig2.update_xaxes(type='category') fig2.update_layout( font_family="HelveticaBold", font_size=15, autosize=False, width=1000, height=400, paper_bgcolor="white",#'rgb(233,233,233)', plot_bgcolor="white",#'rgb(233,233,233)', ) fig2.show() # note: because the grid for finding the optimal lambda percentage is grosser than the second refinement grid, also the grids are different, it is possible that around the optimal value we still improve. Optimal is only wrt the first grid search. # Uncomment for storing outputs # path designed for running from mscode root (where setup is located) #year = 2021 #month = 10 #day = 25 #path = '../..' #stor_name = '{}-{}-{}'.format(year,month,day) #store_pd.to_pickle('{}/data/XP5/{}_results'.format(path,stor_name)) #fig.write_image('{}/data/XP5/{}_plot.pdf'.format(path,stor_name)) #fig2.write_image('{}/data/XP5/{}_plot2.pdf'.format(path,stor_name))
cohenjer/mscode
mscode/xp/general_comparison.py
<reponame>cohenjer/mscode<gh_stars>0 # recovery (and error) vs noise for all algorithms # recovery (and error) vs condB for all algorithms # recovery vs (k,d) for all algorithms (heatmap) # todo: also condD? # Questions: # - test two distributions for X: Gaussian, and decreasing # - to choose lambda(s), we fix according to average best one from a set of experiments using the same settings on the fly. The grid is very coarse. In practice, use cross-validation. # - We initialize with 1 zero init, cf init tests for more details # Reasonable dimensions for reasonable runtime import numpy as np from matplotlib import pyplot as plt from itertools import combinations, product import shelve import pandas as pd from mscode.utils.utils import count_support, redundance_count, find_lambda from mscode.methods.algorithms import iht_mix, homp, omp, ls_kn_supp, pseudo_trick, brute_trick, ista_mix, ista, admm_mix from mscode.utils.generator import gen_mix, initialize import plotly.express as px # Random seeding np.random.seed(seed=0) # Problem parameters k = 5 #2 r = 6 #2 n = 50 #10 m = 50 #20 d = 100 #50 #noise = 0.03 # 0.03 SNR = 20 # dB cond = 2*1e2 distr = 'Uniform' tol = 1e-6 # We run the tests several times since performances are very problem-dependent Nbdata = 50 # Recovery and error versus noise grid_SNR = [1000, 100, 50, 40, 30, 20, 15, 10, 5, 2, 0] #[40, 20] grid_lambda = [1e-5, 1e-4, 1e-3, 1e-2, 1e-1] # Store results in Pandas DataFrame store_pd = pd.DataFrame(columns=["xp", "value", "algorithm", "error type", "SNR", "lambda", "k", "r", "d", "m", "n", "cond"]) for SNR in grid_SNR: print('SNR', SNR, 'dB') # run 3 checks for lambda, to find a reasonable value store_lamb = [] store_lamb_m = [] for iter in range(3): store_lamb_m.append(find_lambda((m,n,d,k,r,SNR,cond), grid_lambda, 'Fista_m')) store_lamb.append(find_lambda((m,n,d,k,r,SNR,cond), grid_lambda, 'Fista')) lamb = np.median(store_lamb) lamb_m = np.median(store_lamb_m) print('lambda ratio is', lamb, 'and for mixed', lamb_m) for j in range(Nbdata): # Generate data Y, Ytrue, D, B, X, S, sig, condB = gen_mix([m, n, d, r], k, snr=SNR, cond=cond, distr = distr) # The default zero init X0 = initialize([d,r], distr = 'Zeros') # Running algorithms X_istam, _, err_ista_m, S_ista_m = ista_mix(Y, D, B, lamb_m, k=k, X0=X0, verbose=False, tol=tol) X_ista, _, err_ista, S_ista = ista(Y, D, B, lamb, k=k, X0=X0, verbose=False, tol=tol) X_homp, err_homp, S_homp = homp(Y, D, B, k, X0, tol=tol) X_iht, err_iht, S_iht = iht_mix(Y, D, B, k, X0, tol=tol) X_trick, err_trick, S_trick = pseudo_trick(Y, D, B, k) # Storing results dic={ 'xp':10*['XP1'], 'value':[count_support(S, S_ista_m), count_support(S, S_ista), count_support(S, S_homp), count_support(S, S_iht), count_support(S, S_trick)]+ [np.linalg.norm(X - X_istam), np.linalg.norm(X - X_ista), np.linalg.norm(X - X_homp), np.linalg.norm(X - X_iht), np.linalg.norm(X - X_trick)], 'algorithm': 2*['Mixed-FISTA', 'Block-FISTA', 'HOMP', 'IHT', 'TrickOMP'], "error type": 5*['support recovery']+5*['reconstruction error'], "SNR":10*[SNR], "lambda":2*[lamb, lamb_m,0,0,0], "k":10*[k], "r":10*[r], "d":10*[d], "m":10*[m], "n":10*[n], "cond":10*[condB], } store_pd = store_pd.append(pd.DataFrame(dic), ignore_index=True) ## Recovery and error versus conditionning SNR = 20 grid_cond = [1, 10, 50, 100, 5*1e2, 1e3, 5*1e3, 1e4, 5*1e4, 1e5] for cond in grid_cond: print('cond', cond) # run 3 checks for lambda, to find a reasonable value store_lamb = [] store_lamb_m = [] for iter in range(3): store_lamb_m.append(find_lambda((m,n,d,k,r,SNR,cond), grid_lambda, 'Fista_m')) store_lamb.append(find_lambda((m,n,d,k,r,SNR,cond), grid_lambda, 'Fista')) lamb = np.median(store_lamb) lamb_m = np.median(store_lamb_m) print('lambda ratio is', lamb, 'and for mixed', lamb_m) for j in range(Nbdata): # Generate data Y, Ytrue, D, B, X, S, sig, condB = gen_mix([m, n, d, r], k, snr=SNR, cond=cond, distr=distr) # The default zero init X0 = initialize([d,r], distr = 'Zeros') # Running algorithms X_istam, _, err_ista_m, S_ista_m = ista_mix(Y, D, B, lamb_m, k=k, X0=X0, verbose=False, tol=tol) X_ista, _, err_ista, S_ista = ista(Y, D, B, lamb, k=k, X0=X0, verbose=False, tol=tol) X_homp, err_homp, S_homp = homp(Y, D, B, k, X0, tol=tol) X_iht, err_iht, S_iht = iht_mix(Y, D, B, k, X0, tol=tol) X_trick, err_trick, S_trick = pseudo_trick(Y, D, B, k) dic={ 'xp':10*['XP2'], 'value':[count_support(S, S_ista_m), count_support(S, S_ista), count_support(S, S_homp), count_support(S, S_iht), count_support(S, S_trick)]+ [np.linalg.norm(X - X_istam), np.linalg.norm(X - X_ista), np.linalg.norm(X - X_homp), np.linalg.norm(X - X_iht), np.linalg.norm(X - X_trick)], 'algorithm': 2*['Mixed-FISTA', 'Block-FISTA', 'HOMP', 'IHT', 'TrickOMP'], "error type": 5*['support recovery']+5*['reconstruction error'], "SNR":10*[SNR], "lambda":2*[lamb, lamb_m,0,0,0], "k":10*[k], "r":10*[r], "d":10*[d], "m":10*[m], "n":10*[n], "cond":10*[np.round(condB,3)], } store_pd = store_pd.append(pd.DataFrame(dic), ignore_index=True) ## Recovery and error versus (k,d) cond = 5*1e2 grid_k = [1, 2, 5, 10, 20] grid_d = [20, 50, 100, 200, 400] for d in grid_d: for k in grid_k: print('(d,k) is', d, k) # run 3 checks for lambda, to find a reasonable value store_lamb = [] store_lamb_m = [] for iter in range(3): store_lamb_m.append(find_lambda((m,n,d,k,r,SNR,cond), grid_lambda, 'Fista_m')) store_lamb.append(find_lambda((m,n,d,k,r,SNR,cond), grid_lambda, 'Fista')) lamb = np.median(store_lamb) lamb_m = np.median(store_lamb_m) print('lambda ratio is', lamb, 'and for mixed', lamb_m) for j in range(Nbdata): # Generate data Y, Ytrue, D, B, X, S, sig, condB = gen_mix([m, n, d, r], k, snr=SNR, cond=cond, distr=distr) # The default zero init X0 = initialize([d,r], distr = 'Zeros') # Running algorithms X_istam, _, err_ista_m, S_ista_m = ista_mix(Y, D, B, lamb_m, k=k, X0=X0, verbose=False, tol=tol) X_ista, _, err_ista, S_ista = ista(Y, D, B, lamb, k=k, X0=X0, verbose=False, tol=tol) X_homp, err_homp, S_homp = homp(Y, D, B, k, X0, tol=tol) X_iht, err_iht, S_iht = iht_mix(Y, D, B, k, X0, tol=tol) X_trick, err_trick, S_trick = pseudo_trick(Y, D, B, k) # Storing results dic={ 'xp':10*['XP3'], 'value':[count_support(S, S_ista_m), count_support(S, S_ista), count_support(S, S_homp), count_support(S, S_iht), count_support(S, S_trick)]+ [np.linalg.norm(X - X_istam), np.linalg.norm(X - X_ista), np.linalg.norm(X - X_homp), np.linalg.norm(X - X_iht), np.linalg.norm(X - X_trick)], 'algorithm': 2*['Mixed-FISTA', 'Block-FISTA', 'HOMP', 'IHT', 'TrickOMP'], "error type": 5*['support recovery']+5*['reconstruction error'], "SNR":10*[SNR], "lambda":2*[lamb, lamb_m,0,0,0], "k":10*[k], "r":10*[r], "d":10*[d], "m":10*[m], "n":10*[n], "cond":10*[condB], } store_pd = store_pd.append(pd.DataFrame(dic), ignore_index=True) df1 = store_pd[store_pd.xp=='XP1'] df2 = store_pd[store_pd.xp=='XP2'] df3 = store_pd[store_pd.xp=='XP3'] fig = px.box(df1[df1['error type']=='support recovery'], x='SNR', y='value', facet_col='algorithm', color='algorithm', title="Support recovery versus SNR", labels={'value':'Support recovery'}) fig.for_each_annotation(lambda a: a.update(text=a.text.split("=")[-1])) fig.update_xaxes(type='category') fig.update_layout( font_family="HelveticaBold", font_size=15, autosize=False, width=1000, height=400, yaxis=dict(zeroline=False, gridcolor='rgb(233,233,233)'), yaxis2=dict(zeroline=False, gridcolor='rgb(233,233,233)'), yaxis3=dict(zeroline=False, gridcolor='rgb(233,233,233)'), yaxis4=dict(zeroline=False, gridcolor='rgb(233,233,233)'), yaxis5=dict(zeroline=False, gridcolor='rgb(233,233,233)'), paper_bgcolor="white",#'rgb(233,233,233)', plot_bgcolor="white",#'rgb(233,233,233)', showlegend=False, ) fig.show() fig2 = px.box(df2[df2['error type']=='support recovery'], x='cond', y='value', color='algorithm', facet_col='algorithm', title="Support recovery versus conditionning of B", labels={'value':'Support recovery'}) fig2.for_each_annotation(lambda a: a.update(text=a.text.split("=")[-1])) fig2.update_xaxes(type='category') fig2.update_layout( font_family="HelveticaBold", font_size=15, autosize=False, width=1000, height=400, yaxis=dict(zeroline=False, gridcolor='rgb(233,233,233)'), yaxis2=dict(zeroline=False, gridcolor='rgb(233,233,233)'), yaxis3=dict(zeroline=False, gridcolor='rgb(233,233,233)'), yaxis4=dict(zeroline=False, gridcolor='rgb(233,233,233)'), yaxis5=dict(zeroline=False, gridcolor='rgb(233,233,233)'), paper_bgcolor="white",#'rgb(233,233,233)', plot_bgcolor="white",#'rgb(233,233,233)', showlegend=False, ) fig2.show() # Normalizing the support recovery scores fig3=px.density_heatmap(df3[df3['error type']=='support recovery'], x='d', y='k', z='value', facet_col='algorithm', color_continuous_scale='Viridis', histfunc="avg", labels={'value':'Support recovery'}, title='Recovery for varying sparsity and dictionary size') fig3.for_each_annotation(lambda a: a.update(text=a.text.split("=")[-1])) fig3.update_xaxes(type='category') fig3.update_yaxes(type='category') fig3.update_layout( font_family="HelveticaBold", font_size=15, autosize=False, width=1000, height=310, paper_bgcolor="white",#'rgb(233,233,233)', plot_bgcolor="white",#'rgb(233,233,233)', ) fig3.show() year = 2021 month = 10 day = 20 path = '../..' stor_name = '{}-{}-{}'.format(year,month,day) #store_pd.to_pickle('{}/data/XP1/{}_results'.format(path,stor_name)) #fig.write_image('{}/data/XP1/{}_plot1.pdf'.format(path,stor_name)) #fig2.write_image('{}/data/XP1/{}_plot2.pdf'.format(path,stor_name)) #fig3.write_image('{}/data/XP1/{}_plot3.pdf'.format(path,stor_name)) # for Frontiers export #fig.write_image('{}/data/XP1/{}_plot1.jpg'.format(path,stor_name)) #fig2.write_image('{}/data/XP1/{}_plot2.jpg'.format(path,stor_name)) #fig3.write_image('{}/data/XP1/{}_plot3.jpg'.format(path,stor_name)) # to load data #store_pd = pd.read_pickle('{}/data/XP1/{}_results'.format(path,stor_name))
cohenjer/mscode
mscode/xp/homp_bahvior.py
<gh_stars>0 # Check convergence for k>1 # Same for iht ? import numpy as np from matplotlib import pyplot as plt #from itertools import combinations, product #import shelve from mscode.utils.utils import count_support from mscode.methods.algorithms import iht_mix, homp from mscode.utils.generator import gen_mix, initialize # Problem parameters # todo: implement a loader to choose these globally k = 5 #2 r = 6 #2 n = 50 #10 m = 50 #20 d = 100 #50 #noise = 0.03 # 0.03 SNR = 20 # dB cond = 2*1e2 tol = 1e-6 distr = 'Gaussian' Nbruns = 4 Nbinit = 10 # not a working parameter at the moment store_err = [] store_rec = [] for i in range(Nbruns): print(i) Y, Ytrue, D, B, X, S, sig, condB = gen_mix([m, n, d, r], k, snr=SNR, cond=cond) for j in range(Nbinit): X0 = initialize([d,r], distr = 'Gaussian') _, err_homp, S_homp = homp(Y, D, B, k, X0, tol=tol) store_rec.append(count_support(S_homp, S)) store_err.append(err_homp) X0 = initialize([d,r], distr= 'Zeros') _, err_homp, S_homp = homp(Y, D, B, k, X0) store_rec.append(count_support(S_homp, S)) store_err.append(err_homp) colors = ['b', 'g', 'r', 'c', 'm', 'y', 'k', 'w'] plt.figure() Nbinit = Nbinit+1 for i in range(Nbruns): for j in range(Nbinit): plt.semilogy(store_err[i*Nbinit+j], color=colors[i]) #plt.legend(['run1','run2', 'run3', 'run4', 'run5']) plt.show() # Note : zero init seems good for small and large values of k, but its nice to also try random init. # Uncomment for storing outputs # path designed for running from mscode root (where setup is located) #year = 2021 #month = 3 #day = 16 #path = '.' #stor_name = '{}-{}-{}'.format(year,month,day) #np.save('{}/data/XP6/{}_{}_support_err'.format(path,stor_name,distr), store_err) #np.save('{}/data/XP6/{}_{}_rec_err'.format(path,stor_name,distr), store_rec)
cohenjer/mscode
mscode/xp/noise_comparison_nn.py
<reponame>cohenjer/mscode # recovery (and error) vs noise for block-FISTA and its nonnegative version # Questions: # - test two distributions for X: Gaussian, and decreasing # - to choose lambda(s), we fix according to average best one from a set of experiments using the same settings on the fly. The grid is very coarse. In practice, use cross-validation. # - We initialize with 1 zero init, cf init tests for more details # Reasonable dimensions for reasonable runtime import numpy as np from matplotlib import pyplot as plt from itertools import combinations, product import shelve from mscode.utils.utils import count_support, redundance_count, find_lambda from mscode.methods.algorithms import ista, ista_nn from mscode.utils.generator import gen_mix, initialize import plotly.express as px import pandas as pd # Problem parameters k = 5 #2 r = 6 #2 n = 50 #10 m = 50 #20 d = 100 #50 #noise = 0.03 # 0.03 SNR = 20 # dB cond = 2*1e2 distr = 'Uniform' tol = 1e-6 # We run the tests several times since performances are very problem-dependent Nbdata = 50 # Recovery and error versus noise grid_SNR = [1000, 100, 50, 40, 30, 20, 15, 10, 5, 2, 0] #[40, 20] grid_lambda = [1e-5, 1e-4, 1e-3, 1e-2, 1e-1] # Storage variables l_SNR = len(grid_SNR) # Store results in Pandas DataFrame store_pd = pd.DataFrame(columns=["value", "algorithm",'SNR']) #stock_ista_nn = np.zeros([l_SNR,Nbdata,2]) #stock_ista = np.zeros([l_SNR,Nbdata,2]) for (i,SNR) in enumerate(grid_SNR): print('SNR', SNR, 'dB') # run 3 checks for lambda, to find a reasonable value store_lamb = [] store_lamb_nn = [] for iter in range(3): #store_lamb_nn.append(find_lambda((m,n,d,k,r,SNR,cond), grid_lambda, 'Fista_nn')) store_lamb.append(find_lambda((m,n,d,k,r,SNR,cond), grid_lambda, 'Fista')) store_lamb_nn = store_lamb lamb = np.median(store_lamb) lamb_nn = np.median(store_lamb_nn) print('lambda ratio is', lamb, 'and for nonneg', lamb_nn) for j in range(Nbdata): # Generate data Y, Ytrue, D, B, X, S, sig, condB = gen_mix([m, n, d, r], k, snr=SNR, cond=cond, distr = distr) # The default zero init X0 = initialize([d,r], distr = 'Zeros') # Fista and Fista_mix # Running ISTA_mix (init 0) X_istann, _, err_ista_nn, S_ista_nn = ista_nn(Y, D, B, lamb_nn, k=k, X0=X0, verbose=False, tol=tol) #stock_ista_nn[i, j, 0]=count_support(S, S_ista_nn) #stock_ista_nn[i, j, 1]=np.linalg.norm(X - X_istann, 'fro') # Test Ista X_ista, _, err_ista, S_ista = ista(Y, D, B, lamb, k=k, X0=X0, verbose=False, tol=tol) #stock_ista[i, j, 0]=count_support(S, S_ista) #stock_ista[i, j, 1]=np.linalg.norm(X - X_ista, 'fro') dic = { 'value':[count_support(S, S_ista), count_support(S, S_ista_nn)], 'algorithm': ['Block-FISTA', 'nonnegative Block-FISTA'], 'SNR': 2*[SNR] } store_pd = store_pd.append(pd.DataFrame(dic), ignore_index=True) # Plots fig = px.box(store_pd, x='SNR', y='value', facet_col='algorithm', color='algorithm', title="", labels={'value':'Support recovery'} ) fig.for_each_annotation(lambda a: a.update(text=a.text.split("=")[-1])) fig.update_xaxes(type='category') fig.update_layout( font_family="HelveticaBold", font_size=15, autosize=False, width=1000, height=400, paper_bgcolor="white",#'rgb(233,233,233)', plot_bgcolor="white",#'rgb(233,233,233)', showlegend=False) fig.show() # Uncomment for storing outputs # path designed for running from mscode root (where setup is located) #year = 2021 #month = 10 #day = 25 #path = '../..' #stor_name = '{}-{}-{}'.format(year,month,day) #stor_name = '{}-{}-{}'.format(year,month,day) #store_pd.to_pickle('{}/data/XPnn/{}_results'.format(path,stor_name)) #fig.write_image('{}/data/XPnn/{}_plot.pdf'.format(path,stor_name))
cohenjer/mscode
mscode/xp/basic_tests.py
import numpy as np from matplotlib import pyplot as plt from itertools import combinations, product import shelve from mscode.utils.utils import count_support, redundance_count from mscode.methods.algorithms import iht_mix, homp, omp, ls_kn_supp, pseudo_trick, brute_trick, ista_mix, ista, admm_mix, ista_nn from mscode.utils.generator import gen_mix, initialize # Generation k = 5 #2 r = 6 #2 n = 50 #10 m = 50 #20 d = 100 #50 #noise = 0.03 # 0.03 SNR = 20 # dB cond = 2*1e2 distr = 'Uniform' tol = 1e-6 Y, Ytrue, D, B, X, S, sig, condB = gen_mix([m, n, d, r], k, snr=SNR, cond=cond, cond_rand=False, distr=distr) X0 = initialize([d,r], distr = 'Uniform') # Running HOMP print('Using HOMP\n') X_homp, err_homp, S_homp = homp(Y, D, B, k, X0, tol=tol) # Running ISTA_mix (init 0) print('Using Ista(s)\n') Xinit = X0 lamb_rel = 0.001 X_ista, cost_ista, err_ista, S_ista = ista_mix(Y, D, B, lamb_rel, k=k, X0=Xinit, verbose=False, tol=tol) # checkup sparsity level #nz_level = np.sum(np.abs(X_ista) > 1e-16, axis=0) #print('There are ', nz_level, 'nonzeros in columns of X_ista') ## Same with larger lambda #lamb_rel = 0.2 #X_ista2, cost_ista_m, err_ista2, S_ista2 = ista_mix(Y, D, B, lamb_rel, k=k, X0=Xinit, tol=tol, verbose=False) ## checkup sparsity level ##nz_level2 = np.sum(np.abs(X_ista2) > 1e-16, axis=0) ##print('There are ', nz_level2, 'nonzeros in columns of X_ista') # Test Ista (nn) lamb_rel = 0.001 X_ista0, cost_ista0, err_ista0, S_ista0 = ista_nn(Y, D, B, lamb_rel, k=k, X0=Xinit, tol=tol, verbose=False) #X_ista0, cost_ista0, err_ista0, S_ista0 = ista(Y, D, B, lamb_rel, k=k, X0=Xinit, tol=tol, verbose=False) # checkup sparsity level #nz_level0 = np.sum(np.abs(X_ista0) > 1e-16, axis=0) #print('There are ', nz_level0, 'nonzeros in columns of X_ista') # Test IHTmix print('Using IHTmix\n') eta = 1/np.linalg.norm(D.T@D) X_iht, err_iht, S_iht = iht_mix(Y, D, B, k, X0, eta=eta, tol=1e-8, itermax=1000) # Test ADMM print('using ADMM') X_adm, err_adm, S_adm, Z_adm, err_Z = admm_mix(Y, D, B, k, X0) # Comparison with trick print('Using PseudoTrick\n') X_trick, err_trick, S_trick = pseudo_trick(Y, D, B, k) # HOMP with Trick init test print('Using HOMP Trick init') X_homp2, err_homp2, S_homp2 = homp(Y, D, B, k, X_trick) # Compare with best solution of true support (S) X_S, err_S = ls_kn_supp(Y, D, B, S, k) # Plotting error curves of iterative algorithms plt.figure() plt.semilogy(cost_ista) plt.semilogy(cost_ista0) plt.semilogy(err_homp) plt.semilogy(err_iht) plt.semilogy(err_adm) plt.legend(['Mixed Fista','Block Fista', 'HOMP', 'IHT', 'ADMM']) # checking support #for i in range(r): # print('True', np.sort(S[i])) # print('IHT', np.sort(S_iht[:,i])) # print('ADMM', np.sort(S_adm[:,i])) # print('HOMP', np.sort(S_homp[:,i])) # print('ISTAm', np.sort(S_ista[:,i])) # print('ISTAm large', np.sort(S_ista2[:,i])) # print('ISTA', np.sort(S_ista0[:,i])) # print('OMPcol', np.sort(S_trick[:,i])) # print('HOMPtrickinit', np.sort(S_homp2[:,i]), '\n') # # Error prints print('Reconstruction errors \n') print('TrueS error', err_S) print('IHT error', err_iht[-1]) print('ADMM error', err_adm[-1]) print('FISTA_mix (small lambda) error', err_ista[-1]) #print('FISTA_mix (large lambda) error', err_ista2[-1]) print('FISTA error', err_ista0[-1]) print('HOMP error', err_homp[-1]) print('Trick error', np.linalg.norm(Y-D@X_trick@B.T, 'fro')) print('HOMPi error', err_homp2[-1]) # Support evaluations print('support scores') print('Fista_m ', count_support(S, S_ista)) #print('Fista_m large', count_support(S, S_ista2)) print('Fista', count_support(S, S_ista0)) print('HOMP ', count_support(S, S_homp)) print('HOMP init trick ', count_support(S, S_homp2)) print('OMP trick ', count_support(S, S_trick)) print('FIHT ', count_support(S, S_iht)) print('ADMM ', count_support(S, S_adm)) # Checking redudancy levels print('True redundance', redundance_count(S)) print('Fista_m redundance', redundance_count(S_ista)) #print('Fista_m large redundance', redundance_count(S_ista2)) print('Fista redundance', redundance_count(S_ista0)) print('HOMP redundance', redundance_count(S_homp)) print('HOMPinit redundance', redundance_count(S_homp2)) print('Trick redundance', redundance_count(S_trick)) print('FIHT redundance', redundance_count(S_iht)) print('ADMM redundance', redundance_count(S_adm))
cohenjer/mscode
mscode/xp/runtimes.py
# Average 5 runs (problems) for various n,m dimensions. k,d fixed # Same wrt k,d and n,m fixed large # For all algorithms # Check av. number of iterations and time per iteration as well when applicable import numpy as np from matplotlib import pyplot as plt from itertools import combinations, product import shelve from mscode.utils.utils import count_support, redundance_count from mscode.methods.algorithms import iht_mix, homp, omp, ls_kn_supp, pseudo_trick, brute_trick, ista_mix, ista, admm_mix from mscode.utils.generator import gen_mix, initialize import time import pandas as pd # Seeding np.random.seed(0) ## 1: fixed k,d, runtime wrt n,m # Generation k = 5 r = 6 d = 100 SNR = 20 # dB cond = 2*1e2 tol = 1e-6 distr = 'Gaussian' # vary n,m grid_n = [10, 50, 1000] grid_m = [10, 50, 1000] Nbruns = 10 # Storing in DataFrame store_pd = pd.DataFrame(columns=["xp", "n", "m", "d", "k", "algorithm", "iteration", "time"]) for i in range(3): for j in range(3): for l in range(Nbruns): n = grid_n[i] m = grid_n[j] print('d,k,n,m,r',d,k,n,m,r) Y, Ytrue, D, B, X, S, sig, condB = gen_mix([m, n, d, r], k, snr=SNR, cond=cond, distr=distr) X0 = initialize([d,r], distr = 'Gaussian') # Running HOMP tic = time.time() X_homp, err_homp, S_homp = homp(Y, D, B, k, X0, tol=tol) time_homp = time.time()-tic # Running ISTA_mix (init 0) lamb = 0.0005 tic = time.time() _, cost_istam, err_istam, S_istam = ista_mix(Y, D, B, lamb, k=k, X0=X0, verbose=False, tol=tol) time_istam = time.time()-tic # Test Ista lamb = 0.001 tic = time.time() _, _, err_ista, S_ista = ista(Y, D, B, lamb, k=k, X0=X0, verbose=False, tol=tol) time_ista = time.time()-tic # Test IHTmix tic = time.time() X_iht, err_iht, S_iht = iht_mix(Y, D, B, k, X0, tol=tol) time_iht = time.time()-tic # Comparison with trick tic = time.time() X_trick, err_trick, S_trick = pseudo_trick(Y, D, B, k) time_trick = time.time()-tic # Compare with best solution of true support (S) tic = time.time() X_S, err_S = ls_kn_supp(Y, D, B, S, k) time_supportest = time.time()-tic # Storing dic = { "xp":"XP1", 'n':6*[n], 'm':6*[m], 'd':6*[d], 'k':6*[k], 'algorithm': ['HOMP', 'Mixed-FISTA', 'Block-FISTA', 'IHT', 'TrickOMP', 'Fixed Support'], 'iteration': [len(err_homp), len(err_istam), len(err_ista), len(err_iht), 1, 1], 'time': [time_homp, time_istam, time_ista, time_iht, time_trick, time_supportest], } store_pd = store_pd.append(pd.DataFrame(dic), ignore_index=True) # Second test: fix n, m vary d,k n = 50 m = 50 grid_d = [50, 100, 1000] grid_k = [5, 10, 30] Nbruns = 10 for i in range(3): for j in range(3): for l in range(Nbruns): d = grid_d[i] k = grid_k[j] print('d,k,n,m,r',d,k,n,m,r) Y, Ytrue, D, B, X, S, sig, condB = gen_mix([m, n, d, r], k, snr=SNR, cond=cond) X0 = initialize([d,r], distr = 'Gaussian') ### Running HOMP tic = time.time() X_homp, err_homp, S_homp = homp(Y, D, B, k, X0, tol=tol) time_homp = time.time()-tic # Running ISTA_mix (init 0) lamb = 0.0005 tic = time.time() _, cost_istam, err_istam, S_istam = ista_mix(Y, D, B, lamb, k=k, X0=X0, verbose=False, tol=tol) time_istam = time.time()-tic # Test Ista lamb = 0.001 tic = time.time() _, _, err_ista, S_ista = ista(Y, D, B, lamb, k=k, X0=X0, verbose=False, tol=tol) time_ista = time.time()-tic # Test IHTmix tic = time.time() X_iht, err_iht, S_iht = iht_mix(Y, D, B, k, X0, tol=tol) time_iht = time.time()-tic # Comparison with trick tic = time.time() X_trick, err_trick, S_trick = pseudo_trick(Y, D, B, k) time_trick = time.time()-tic # Compare with best solution of true support (S) tic = time.time() X_S, err_S = ls_kn_supp(Y, D, B, S, k) time_supportest = time.time()-tic # Storing dic = { "xp":"XP2", 'n':6*[n], 'm':6*[m], 'd':6*[d], 'k':6*[k], 'algorithm': ['HOMP', 'Mixed-FISTA', 'Block-FISTA', 'IHT', 'TrickOMP', 'Fixed Support'], 'iteration': [len(err_homp), len(err_istam), len(err_ista), len(err_iht), 1, 1], 'time': [time_homp, time_istam, time_ista, time_iht, time_trick, time_supportest], } store_pd = store_pd.append(pd.DataFrame(dic), ignore_index=True) #todo automate processing of values # Uncomment for storing outputs # path designed for running from mscode root (where setup is located) #year = 2021 #month = 10 #day = 21 #path = '../..' #stor_name = '{}-{}-{}'.format(year,month,day) #store_pd.to_pickle('{}/data/XP7/{}_results'.format(path,stor_name))
cohenjer/mscode
mscode/utils/utils.py
<filename>mscode/utils/utils.py import numpy as np from mscode.methods.algorithms import ista_mix, ista, ista_nn from mscode.utils.generator import gen_mix, initialize def count_support(Strue, Sest): ''' Counts the number of corrected estimated atoms Parameters ---------- Strue : list of list (or numpy nd array) True support Sest : list of list (or numpy nd array) Estimated support Returns ------- score : float Percentage of correctly estimated atoms ''' if isinstance(Strue, np.ndarray): # Conversion to list of list from ndarray numpy Strue = list(Strue.T) Strue = [list(i) for i in Strue] if isinstance(Sest, np.ndarray): # Conversion to list of list from ndarray numpy Sest = list(Sest.T) Sest = [list(i) for i in Sest] r = len(Strue) maxscore = r*len(Strue[0]) # all same size cnt = 0 for i in range(r): for el in Strue[i]: if el in Sest[i]: cnt += 1 return cnt/maxscore*100 def redundance_count(S): ''' Checks how many times the same columns are chosen in various support. Gives the total of repeated columns with multiplicities. Parameters ---------- S : list of list or numpy array Support Returns ------- out : int Number of repeated columns ''' if isinstance(S, np.ndarray): # Conversion to list of list from ndarray numpy Strue = list(S.T) Strue = [list(i) for i in S] cnt=0 r = len(S) # unfolded uniqued list Sunfold = [] for i in S: for j in i: Sunfold.append(j) Sunfold = list(set(Sunfold)) for el in Sunfold: for i in S: for j in i: if el == j: cnt += 1 return cnt - len(Sunfold) def find_lambda(dims, grid, ista_type): ''' Finds a good lambda value by running a fixed (Mixed) Lasso problem of fixed size with varying regularization. Parameters ---------- dims : list (m,n,d,k,r,SNR,cond) grid : list tested lambda values ista_type : string choose between 'Fista', 'Fista_m' and 'Fista_nn' Returns ------- lamb : float estimated good regularization ratio ''' m,n,d,k,r,SNR,cond = dims Y, Ytrue, D, B, X, S, sig, condB = gen_mix([m, n, d, r], k, snr=SNR, cond=cond) X0 = initialize([d,r], distr = 'Zeros') # initial recovery rates and best lambdas recov_ista = 0 lamb_best_ista = 0 cnt = 1 for lamb in grid: # Running FIstas if ista_type == 'Fista_m': _, _, _, S_ista = ista_mix(Y, D, B, lamb, k=k, X0=X0, tol=1e-5, verbose=False) elif ista_type == 'Fista': _, _, _, S_ista = ista(Y, D, B, lamb, k=k, X0=X0, tol=1e-5, verbose=False) elif ista_type == 'Fista_nn': _, _, _, S_ista = ista_nn(Y, D, B, lamb, k=k, X0=X0, tol=1e-5, verbose=False) # Computing recovery rates, store if larger temp_recov_ista = count_support(S, S_ista) if temp_recov_ista > recov_ista: lamb_best_ista = lamb recov_ista = temp_recov_ista elif temp_recov_ista == recov_ista: # store for averaging cnt += 1 lamb_best_ista += lamb lamb_best_ista = lamb_best_ista/cnt return lamb_best_ista
cohenjer/mscode
mscode/methods/prox_ind_l1_norm.py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ This script illustrates how to use the call the compiled C code in Python using ctypes. @author: <NAME> """ # ============================================================================ # import modules # ============================================================================ import numpy as np import ctypes from ctypes import POINTER, byref # ============================================================================ # classes and functions # ============================================================================ class Matrix(ctypes.Structure): _fields_ = [("data",POINTER(ctypes.c_double)), ("nrows",ctypes.c_uint), ("ncols",ctypes.c_uint)] # ---------------------------------------------------------------------------- # load external libraries # ============================================================================ # load library for computing the proximal operator #lib = ctypes.cdll.LoadLibrary('/home/jecohen/Travail/Ecriture-Projets/2021/DCPD_part1_MixtureSparseCoding/Mixed_Sparse_coding/mscode/mscode/methods/libprox.so') # Todo: set as parameter # Todo: does not work on windows, disabling this function for now # proximal operator #prox_l1 = lib.prox_l1_norm_column_sort # wrapper for the proximal operator def prox_l1inf(V,X,LAMBDA): ## get data dimensions #n,m = V.shape ## create matrix object #Mx = Matrix(X.ctypes.data_as(POINTER(ctypes.c_double)),n,m) #Mv = Matrix(V.ctypes.data_as(POINTER(ctypes.c_double)),n,m) ## call proximal operator (result in X) #prox_l1(byref(Mx),byref(Mv),ctypes.c_double(LAMBDA)) return # ============================================================================ # MAIN - module executed as a script # ============================================================================ if __name__ == "__main__": # ------------------------------------------------------------------------ # parameters # ======================================================================== # random seed initialization np.random.seed(0) # image dimensions (in pixels) n, m = 5, 5 # regularization LAMBDA = 1 # ------------------------------------------------------------------------ # variables and data loading # ======================================================================== # create input and output matrices V = np.asfortranarray(np.random.randn(n,m)) # optimization variable (PROX VARIABLE MUST BE F_CONTIGUOUS) X = np.asfortranarray(np.zeros((n,m))) # ------------------------------------------------------------------------ # compute proximal operator # ======================================================================== # l1,oo proximal operator prox_l1inf(V,X,LAMBDA) # display original and thresholded matrices print('\nOriginal matrix:') print(V) print('\nThresholded matrix:') print(X) # display l1 norm of the columns print('\nOriginal matrix -- l1 norm of columns:') print(np.sum(np.abs(V),axis=0)) print('\nThresholded matrix -- l1 norm of columns:') print(np.sum(np.abs(X),axis=0)) # check that the norm of the projection equals LAMBDA print('\nLAMBDA = %.2f'%(LAMBDA)) print('loo,1 norm of projection = %.2f'%(np.sum(np.max(np.abs(V-X),axis=0))))
cohenjer/mscode
setup.py
#!/usr/bin/env python import setuptools setuptools.setup( name='mscode', version='0.0', description='Code for Mixed Sparse Coding', author='<NAME>', author_email='<EMAIL>', packages=setuptools.find_packages(), license='MIT' )
cohenjer/mscode
mscode/methods/algorithms.py
<filename>mscode/methods/algorithms.py import numpy as np from itertools import combinations from mscode.methods.proxs import prox_ml1,prox_ml1_fast from mscode.methods.proxs import SoftT from mscode.methods.proxs import ml1 from mscode.methods.proxs import HardT from mscode.methods.proxs import ls_kn_supp, ls_cg from scipy.linalg import svdvals import time def admm_mix(Y, D, B, k, X0=None, itermax=1000, tol=1e-6, verbose=True, rho=None): ''' Solves (approximatively, without guaranties) the mixed sparse coding problem using ADMM with hard thresholding as the proximity operator of the l0 sparsity constraint. The problem is formulated as :math:`\\min_X\; \\|Y - DXB\\|_F^2 \; s.t.\; \\|X_i\\|_0 \\leq k` where k is the maximal number of nonzeros per column of X. Parameters ---------- Y : numpy array input data, required D : numpy array input dictionary (fat), required B : numpy array input mixing matrix, required k : integer sparsity level per column, thresholded at the end, required rho : float augmented Lagrangian penality coefficient, by default it is set to ?? Returns ---------- X : numpy array estimated X e : list fittings along iterations support : numpy array the support of each column of X ''' # Copy input X = np.copy(X0) # Input caracteristics n, d = D.shape m, r = B.shape # Store DtD, BtB and DtYB if possible DtD = D.T@D Bt = B.T BtB = Bt@B DtYB = D.T@Y@B # Initialisation of coefficients x # this does not matter too much since the problem is convex if X0 is None: X = np.zeros([d, r]) # Choice of rho, use Lipschitz constant singvalD = np.linalg.svd(DtD)[1][0] singvalB = np.linalg.svd(BtB)[1][0] #why 2? eta = 1/singvalD/singvalB if rho is None: rho = (np.linalg.norm(D, 'fro')*np.linalg.norm(B, 'fro'))**2/(n*r) if verbose: print('The automatic value of rho is ', rho) # heuristic based on optimal quadratic rho, here the average of squared singular values of the mixing matrix # Initial error e0 = (np.linalg.norm(Y - D@X@Bt, 'fro') ** 2)/2 e = [np.Inf, e0] err_Z = [np.Inf] # Initial iteration count iter = 0 # Main print if verbose: print('ADMM mix running\n') # Main loop # pairing and dual variables for ADMM Z = np.copy(X) nu = np.zeros([d,r]) while iter < itermax: if np.abs(e[-1] - e[-2])/e[-1] < tol and np.abs(err_Z[-1] - err_Z[-2]) < 1e-2: break # printing if iter % 10 == 1: if verbose: print('ADMM iteration ', iter, ' cost ', e[-1]) #else: # print('.', end='') iter += 1 # Prox wrt X rhs = DtYB + rho * (Z - nu) X, _ = ls_cg(rhs, DtD, BtB, X, rho, itercg = 50) # solves linear system wrt X # Prox wrt Z Z = HardT(X + nu, k) # Gradient ascent step nu = nu + X - Z # error computation rec = np.linalg.norm(Y - D@X@Bt, 'fro') e.append(rec**2/2) err_Z.append(np.linalg.norm(X - Z, 'fro')/np.linalg.norm(X, 'fro')) e = e[1:] err_Z = err_Z[1:] # Get k largest entries per columns # Estimating support (np arrays with supports) support = np.argsort(np.abs(X), 0) # truncating the support support = support[-k:, :] # Post-processing option for k-sparse columnwise # Running least squares X, _ = ls_kn_supp(Y, D, B, support, k) # error computation rec = np.linalg.norm(Y - D@X@Bt, 'fro') e.append(rec**2/2) if verbose: print('\n') return X, e, support, Z, err_Z def ista_mix(Y, D, B, lamb_rel, k=None, X0=None, itermax=1000, tol=1e-6, verbose=True): ''' Solves the tighest convex relaxation of the mixed sparse coding problem using Fast Iterative Soft Thresholding (Fista). The cost function is :math:`\\frac{1}{2} \\|Y - DXB^T \\|_F^2 + \\lambda \\|X\\|_{1,1}` where :math:`\\lambda = \\lambda_{rel}\\lambda_{\\max}` Parameters ---------- Y : numpy array input data, required D : numpy array input dictionary (fat), required B : numpy array input mixing matrix, required lamb_rel : float ratio of lambda_max used as a regularization, required k : integer sparsity level per column, thresholded at the end X0 : numpy array initial estimation of X itermax : integer (default 1000) maximum number of proximal iterations tol : float (default 1e-6) relative error threshold for stopping the algorithm verbose : boolean (default True) Set to False to remove prints Returns ---------- X : numpy array estimated X e : list fittings along iterations rec : list reconstruction errors along iterations support : numpy array the support of each column of X ''' # Copy input X = np.copy(X0) # Input caracteristics n, d = D.shape m, r = B.shape # Store DtD, BtB and DtYB if possible DtD = D.T@D Bt = B.T BtB = Bt@B DtYB = D.T@Y@B # Computing lambda_max DtYBabs = np.abs(DtYB) lambda_max = np.sum(np.max(DtYBabs, axis=0)) lamb = lamb_rel*lambda_max if verbose: print('lambda max is', lambda_max, ' \n') # Initialisation of coefficients x # this does not matter too much since the problem is convex if X0 is None: X = np.zeros([d, r]) # Choice of stepsize, use Lipschitz constant singvalD = np.linalg.svd(DtD)[1][0] singvalB = np.linalg.svd(BtB)[1][0] #why 2? eta = 1/singvalD/singvalB # Initial error rec0 = np.linalg.norm(Y - D@X@Bt, 'fro') e0 = rec0**2/2 + lamb*ml1(X) # e_old = 0 rec = [rec0] e = [np.Inf, e0] # Initial iteration count iter = 0 # Main print if verbose: print('ISTA l11 running\n') # Main loop with proximal gradient # pairing variable for Fista Z = np.copy(X) beta = 1 while np.abs(e[-1] - e[-2])/e[-1] > tol and iter < itermax: # printing if iter % 10 == 1: if verbose: print('ISTA iteration ', iter, ' cost ', e[-1], '\n') #else: # print('.', end='') iter += 1 # compute the gradient X_old = np.copy(X) #X, _, _ = prox_ml1(Z - eta * (DtD@Z@BtB - DtYB), lamb*eta, tol=1e-6) X = prox_ml1_fast(Z - eta * (DtD@Z@BtB - DtYB), lamb*eta) # Extrapolation beta_old = beta beta = (1+np.sqrt(1+4*beta**2))/2 Z = X + ((beta_old-1)/beta) * (X-X_old) # error computation rec_new = np.linalg.norm(Y - D@X@Bt, 'fro') rec.append(rec_new) e.append(rec_new**2/2 + lamb*ml1(X)) e = e[1:] # Get k largest entries per columns # Estimating support (np arrays with supports) support = np.argsort(np.abs(X), 0) # truncating the support support = support[-k:, :] # Post-processing option for k-sparse columnwise if k is not None: # Running least squares X, _ = ls_kn_supp(Y, D, B, support, k) # error computation rec_new = np.linalg.norm(Y - D@X@Bt, 'fro') rec.append(rec_new) e.append(rec_new**2/2 + lamb*ml1(X)) if verbose: print('\n') return X, e, rec, support def ista(Y, D, B, lamb_rel, k=None, X0=None, itermax=1000, tol=1e-6, verbose=True, samereg=False, warning=False, DtD=None, DtY=None, DtYB=None, BtB=None, return_old=False, eta=None): ''' Solves a simple convex relaxation of the mixed sparse coding problem using Fast Iterative Soft Thresholding (Block-Fista). Each columns has its own regularization parameter. The cost function is :math:`\\frac{1}{2} \\|Y - DXB^T \\|_F^2 + \\sum_i \\lambda_i \\|X_i\\|_{1}` where :math:`\\lambda_i = \\lambda_{rel,i}\\lambda_{\\max,i}` Parameters ---------- Y : numpy array input data, required D : numpy array input dictionary (fat), required B : numpy array input mixing matrix, required lamb_rel : float or list of floats ratio of lambda_max used as a regularization, required. If float is provided, the same regularization ratio is used in all columns. If list is provided, it must be of length X.shape[1] and provide regularization level for each columns. k : integer sparsity level per column, thresholded at the end. Use None to ignore. samereg : boolean if True, all lamb values are equal to lambda_max*lamb_rel, which yields the usual Lasso problem. X0 : numpy array initial estimation of X itermax : integer (default 1000) maximum number of proximal iterations tol : float (default 1e-6) relative error threshold for stopping the algorithm verbose : boolean (default True) Set to False to remove prints warning : boolean (default False) If True, will prompt a warning when the final estimation before debiaising is sparser than the desired sparsity level. return_old : boolean (default False) If True, adds a fith output which is the estimated X before debiaising eta : float (default None) the stepsize for ISTA. If None, the Lipschitz constant is computed and used. DtD, BtB (...) : numpy arrays pre-computed cross products of the inputs if available. Returns ---------- X : numpy array estimated X e : list fittings along iterations rec : list reconstruction errors along iterations support : numpy array the support of each column of X ''' # Copy input X = np.copy(X0) # Input caracteristics n, d = D.shape m, r = B.shape # Store DtD, BtB and DtYB if possible if DtD is None: DtD = D.T@D if DtY is None: DtY = D.T@Y Bt = B.T if BtB is None: BtB = Bt@B if DtYB is None: DtYB = DtY@B # Computing lambda_max DtYBabs = np.abs(DtYB) lambda_max = np.max(DtYBabs, axis=0) if samereg: # We get the usual Lasso lambda_max lambda_max = np.max(lambda_max) lamb = lamb_rel*lambda_max if verbose: print('lambda max is', lambda_max, ' \n') # Initialisation of coefficients x # this does not matter too much since the problem is convex if X0 is None: X = np.zeros([d, r]) # Choice of stepsize, use Lipschitz constant (improvable by power iteration or randomization) if eta is None: singvalD = np.linalg.svd(DtD)[1][0] singvalB = np.linalg.svd(BtB)[1][0] eta = 1/singvalD/singvalB # Initial error rec0 = np.linalg.norm(Y - D@X@Bt, 'fro') e0 = rec0**2/2 + np.sum(lamb*np.sum(np.abs(X), axis=0)) # e_old = 0 rec = [rec0] e = [np.Inf, e0] # Initial iteration count iter = 0 # Main print if verbose: print('ISTA l11 running\n') # Main loop with proximal gradient # pairing variable for Fista Z = np.copy(X) beta = 1 while np.abs(e[-1] - e[-2])/e[-1] > tol and iter < itermax: # printing if iter % 10 == 1: if verbose: print('ISTA iteration ', iter, ' cost ', e[-1], '\n') #else: # print('.', end='') iter += 1 # compute the gradient X_old = np.copy(X) X = SoftT(Z - eta * (DtD@Z@BtB - DtYB), lamb*eta) # Extrapolation beta_old = beta beta = (1+np.sqrt(1+4*beta**2))/2 Z = X + ((beta_old-1)/beta) * (X-X_old) # error computation rec_new = np.linalg.norm(Y - D@X@Bt, 'fro') rec.append(rec_new) e.append(rec_new**2/2 + np.sum(lamb*np.sum(np.abs(X), axis=0))) e = e[1:] # Get k largest entries per columns # Estimating support (np arrays with supports) support = np.argsort(np.abs(X), 0) if k is not None: # truncating the support support = support[-k:, :] if warning: # check if there are too many zeroes already for i in range(r): Xabs = np.abs(X) if np.min(Xabs[support[:,i],i])==0: print('Warning: regularization may be too strong') if verbose: print('\n') if return_old: X_old=np.copy(X) # Post-processing option for k-sparse columnwise if k is not None: # Running least squares X, _ = ls_kn_supp(Y, D, B, support, k) # error computation rec_new = np.linalg.norm(Y - D@X@Bt, 'fro') rec.append(rec_new) e.append(rec_new**2/2 + np.sum(lamb*np.sum(np.abs(X), axis=0))) if return_old: return X, e, rec, support, X_old else: return X, e, rec, support def ista_nn(Y, D, B, lamb_rel, k=None, X0=None, itermax=1000, tol=1e-6, verbose=True, samereg=False, return_old=False, DtD=None, DtY=None, DtYB=None, BtB=None,eta=None, warning=False): ''' Solves a simple convex relaxation of the mixed sparse coding problem using Fast Iterative Soft Thresholding (Fista) under nonnegativity constraints. Each columns has its own regularization parameter. The cost function is :math:`\\frac{1}{2} \\|Y - DXB^T \\|_F^2 + \\sum_i \\lambda_i \\|X_i\\|_{1}\; s.t.\; X\\geq 0` where :math:`\\lambda_i = \\lambda_{rel,i}\\lambda_{\\max,i}` Parameters ---------- Y : numpy array input data, required D : numpy array input dictionary (fat), required B : numpy array input mixing matrix, required lamb_rel : float or list of floats ratio of lambda_max used as a regularization, required. If float is provided, the same regularization ratio is used in all columns. If list is provided, it must be of length X.shape[1] and provide regularization level for each columns. k : integer sparsity level per column, thresholded at the end. Use None to ignore. samereg : boolean if True, all lamb values are equal to lambda_max*lamb_rel, which yields the usual Lasso problem. X0 : numpy array initial estimation of X itermax : integer (default 1000) maximum number of proximal iterations tol : float (default 1e-6) relative error threshold for stopping the algorithm verbose : boolean (default True) Set to False to remove prints warning : boolean (default False) If True, will prompt a warning when the final estimation before debiaising is sparser than the desired sparsity level. return_old : boolean (default False) If True, adds a fith output which is the estimated X before debiaising eta : float (default None) the stepsize for ISTA. If None, the Lipschitz constant is computed and used. DtD, BtB (...) : numpy arrays pre-computed cross products of the inputs if available. Returns ---------- X : numpy array estimated X e : list fittings along iterations rec : list reconstruction errors along iterations support : numpy array the support of each column of X ''' # Copy input X = np.copy(X0) # Input caracteristics n, d = D.shape m, r = B.shape # Store DtD, BtB and DtYB if possible if DtD is None: DtD = D.T@D if DtY is None: DtY = D.T@Y Bt = B.T if BtB is None: BtB = Bt@B if DtYB is None: DtYB = DtY@B # Computing lambda_max DtYBabs = np.abs(DtYB) lambda_max = np.max(DtYBabs, axis=0) if samereg: # We get the usual Lasso lambda_max lambda_max = np.max(lambda_max) lamb = lamb_rel*lambda_max if verbose: print('lambda max is', lambda_max, ' \n') # Initialisation of coefficients x # this does not matter too much since the problem is convex if X0 is None: X = np.zeros([d, r]) # Choice of stepsize, use Lipschitz constant (improvable by power iteration or randomization) if eta is None: singvalD = np.linalg.svd(DtD)[1][0] singvalB = np.linalg.svd(BtB)[1][0] eta = 1/singvalD/singvalB # Initial error rec0 = np.linalg.norm(Y - D@X@Bt, 'fro') e0 = rec0**2/2 + np.sum(lamb*np.sum(np.abs(X), axis=0)) # e_old = 0 rec = [rec0] e = [np.Inf, e0] # Initial iteration count iter = 0 # Main print if verbose: print('ISTA l11 running\n') # Main loop with proximal gradient # pairing variable for Fista Z = np.copy(X) beta = 1 while np.abs(e[-1] - e[-2])/e[-1] > tol and iter < itermax: # printing if iter % 10 == 1: if verbose: print('ISTA iteration ', iter, ' cost ', e[-1], '\n') #else: # print('.', end='') iter += 1 # compute the gradient X_old = np.copy(X) X = np.maximum(Z - eta * (DtD@Z@BtB - DtYB + lamb*np.ones(Z.shape)) ,0) # Extrapolation beta_old = beta beta = (1+np.sqrt(1+4*beta**2))/2 Z = X + ((beta_old-1)/beta) * (X-X_old) # error computation rec_new = np.linalg.norm(Y - D@X@Bt, 'fro') rec.append(rec_new) e.append(rec_new**2/2 + np.sum(lamb*np.sum(np.abs(X), axis=0))) e = e[1:] # Get k largest entries per columns # Estimating support (np arrays with supports) support = np.argsort(np.abs(X), 0) if k is not None: # truncating the support support = support[-k:, :] if warning: # check if there are too many zeroes already for i in range(r): Xabs = np.abs(X) if np.min(Xabs[support[:,i],i])==0: print('Warning: regularization may be too strong') if verbose: print('\n') if return_old: X_old=np.copy(X) # Post-processing option for k-sparse columnwise if k is not None: # Running nonnegative least squares X, _ = ls_kn_supp(Y, D, B, support, k, nonnegative=True) # error computation rec_new = np.linalg.norm(Y - D@X@Bt, 'fro') rec.append(rec_new) e.append(rec_new**2/2 + np.sum(lamb*np.sum(np.abs(X), axis=0))) if return_old: return X, e, rec, support, X_old else: return X, e, rec, support def iht_mix(Y, D, B, k , X_in, tol=1e-6, itermax=1000, verbose=False, DtD=None, DtY=None, eta=None): ''' An adaptation of the (Extrapolated) Iterated Hard Thresholding Algorithm for the mixed sparse coding problem. At each iteration, a Nesterov Fast Gradient step is performed with projection on the set of columnwise k-sparse matrices. Parameters ---------- Y : numpy array input data, required D : numpy array input dictionary (fat), required B : numpy array input mixing matrix, required k : integer Sparsity level, must be the number of terms in each subset of S (not checked) Xin : numpy array Initial guess for solution X itermax : integer (default 1000) maximum number of proximal iterations tol : float (default 1e-6) relative error threshold for stopping the algorithm verbose : boolean (default True) Set to False to remove prints eta : float (default None) the stepsize for ISTA. If None, the Lipschitz constant is computed and used. DtD, DtY : numpy arrays pre-computed cross products of the inputs if available. Returns ---------- X : numpy array Solution of the mixed sparse coding problem with fixed column sparsity err : float Reconstruction error / residuals. support : numpy array the support of each column of X ''' X = np.copy(X_in) if DtD is None: DtD = D.T@D if DtY is None: DtY = D.T@Y Bt = B.T BtB = Bt@B DtY = D.T@Y DtYB = DtY@B if eta is None: step = 1/np.linalg.svd(DtD)[1][0]/np.linalg.svd(BtB)[1][0] #why 2? else: step = eta if verbose: print('IHT stepsize is fixed to ', step) err = np.linalg.norm(Y - D@X@Bt, 'fro') err = [np.Inf, err] #Fast version Z = np.copy(X) beta = 1 iter = 0 while np.abs(err[-1] - err[-2])/err[-1] > tol and iter < itermax: # printing if iter % 10 == 1: if verbose: print('IHT iteration ', iter, ' cost ', err[-1], '\n') #else: # print('.', end='') iter += 1 X_old = np.copy(X) X = HardT(Z - step * (DtD@Z@BtB - DtYB), k) beta_old = beta beta = (1+np.sqrt(1+4*beta**2))/2 Z = X + ((beta_old-1)/beta) * (X-X_old) err.append(np.linalg.norm(Y - D@X@Bt, 'fro')) # suboptimal #for iter in range(itermax): #X = ht_op(X - step * (DtD@X@BtB - DtYB), k) #err.append(np.linalg.norm(Y - D@X@B.T, 'fro')) # suboptimal err = err[1:] # Get k largest entries per columns # Estimating support (np arrays with supports) support = np.argsort(np.abs(X), 0) # truncating the support support = support[-k:, :] # Post-processing option for k-sparse columnwise if k is not None: # Running least squares X, _ = ls_kn_supp(Y, D, B, support, k) # error computation err.append(np.linalg.norm(Y - D@X@Bt, 'fro')) if verbose: print('\n') return X, err, support def homp(Y, D, B, k, Xin=None, tol=1e-6, itermax=1000): ''' Hierarchical Orthogonal Matching Pursuit for the mixed sparse coding problem. Computes k-sparse approximations of column sub-problems until convergence using OMP (modified) as a routine. Parameters ---------- Y : numpy array Input data, required D : numpy array Input dictionary, required B : numpy array Input mixing matrix, required k : int Sparsity level, required Xin : numpy array (default: random) Initial X itermax : integer (default 1000) maximum number of proximal iterations tol : float (default 1e-6) relative error threshold for stopping the algorithm Returns ---------- X : numpy array Final estimated X err : list Error after each pass. S : numpy array Support of the solution ''' n, m = Y.shape _, r = B.shape _, d = D.shape # todo: checks on sizes # todo: init X random X = np.copy(Xin) # Supports in numpy 1/0 format S = np.zeros(X.shape) # Supports in list of list format (col per col) Slist = [[0 for i in range(k)] for j in range(r)] err = np.linalg.norm(Y-D@X@B.T, 'fro') err = [np.Inf, err] #itermax = 50 it = 0 while it < itermax: if np.abs(err[-1] - err[-2])/err[-1] < tol: break it += 1 for i in range(r): reject = 0 V = Y - D@X@B.T + D@np.outer(X[:,i],B[:,i]) normb = np.linalg.norm(B[:,i],2) ** 2 Vb = V@B[:,i]/normb x, s_idx = omp(Vb, D, k) if np.linalg.norm(Vb - D@x) > np.linalg.norm(Vb - D@X[:,i]): #print('bad, bad omp !! Rejecting step') x = np.zeros(d) z = np.linalg.lstsq(D[:,Slist[i]], Vb, rcond=None) x[Slist[i]] = z[0] reject += 1 else: Slist[i] = s_idx X[:,i] = x err.append(np.linalg.norm(Y - D@X@B.T, 'fro')) if reject == r: print('why, why homp !!! you were such a good boy. Stopping algorithm to avoid infinity loop.') break err = err[1:] # At the end, do a least squares with the final support X, err_temp = ls_kn_supp(Y, D, B, Slist, k) err.append(err_temp) return X, err, np.transpose(np.array(Slist)) def omp(V, D, k): ''' Orthogonal Matrix Pursuit modified, in a naive implementation. Parameters ---------- V : numpy column vector input data, required D : numpy array input dictionary, required b : numpy column vector input mixing vector, required k : integer sparsity level, required Returns ---------- x : numpy column vector estimated sparse coefficients s : numpy column vector binary vector with ones at the support position of x TODO: write for matrix input ''' _, d = D.shape x = np.zeros(d) list_idx = [] res = V for p in range(k): temp = D.T@res j = np.argmax(np.abs(temp)) list_idx.append(j) z = np.linalg.lstsq(D[:,list_idx], V, rcond=None) x[list_idx] = z[0] res = V - D@x return x, list_idx def pseudo_trick(Y,D,B,k): ''' Tries to solve the mixed sparse coding problem by looking at the distorted problem :math:`min_{\\|X_i\\|_0\\leq k} \\|Y(B^T)^\\dagger - DX \\|_F^2`, which is solved in parallel, column by column, using the omp algorithm. As a post-processing step, a least squares fitting is done with the identified support. Parameters ---------- Y : numpy array Input data, required D : numpy array Input dictionary, required B : numpy array Input mixing matrix, required k : int Sparsity level, required Returns ---------- X : numpy array Final estimated X err : list Error after each pass. S : numpy array Support of the solution ''' _, d = D.shape _, r = B.shape C = np.linalg.pinv(B.T) V = Y@C X_trick = np.zeros([d, r]) Slist = [[0 for i in range(k)] for j in range(r)] for i in range(r): z, s_idx = omp(V[:, i], D, k) Slist[i] = s_idx X_trick[:, i] = z # Debiaising X_trick, err = ls_kn_supp(Y, D, B, Slist, k) return X_trick, err, np.transpose(np.array(Slist)) def brute_trick(Y,D,B,k): ''' A brute force version of the pseudo_trick, for checking counter examples. Returns the error in the B domain. ''' _, d = D.shape _, r = B.shape C = np.linalg.pinv(B.T); V = Y@C X_trick = np.zeros([d,r]) Slist = [[0 for i in range(k)] for j in range(r)] for i in range(r): print(i) err = 10 ** 16 count=0 listcombi = combinations([i for i in range(d)],k) for s in listcombi: count = count+1 if count%100==0: print(count) Ds = D[:,s] z = np.linalg.lstsq(Ds,V[:,i], rcond=None)[0] errnew = np.linalg.norm(V[:,i]-Ds@z) if errnew < err: err = errnew store_s = s store_z = z Slist[i] = list(store_s) X_trick[store_s,i] = store_z # Debiaising #X_trick, err = ls_kn_supp(Y,D,B,Slist,k) err = np.linalg.norm(Y - D@X_trick<EMAIL>, 'fro') return X_trick, err, Slist
cohenjer/mscode
mscode/methods/proxs.py
import numpy as np from scipy.optimize import nnls from numpy.matlib import repmat as repmat from mscode.methods.prox_ind_l1_norm import prox_l1inf def ml1(X): ''' Computes the induced matrix l1 norm of X ''' return np.max(np.sum(np.abs(X), axis=0)) def SoftT(x, lamb): ''' Computes the Soft-Thresholding of input vector x, with coefficient lamb ''' return np.maximum(np.abs(x) - lamb, 0)*np.sign(x) def ls_kn_supp(Y, D, B, S, k, nonnegative=False): ''' Solves the mixed sparse coding problem once the support has been fixed. This is a least-squares problem with a lot of structure, so let's be careful not to waste too much computation time. If the support is large, better not to use this function as it will form a k**2 * r**2 system We solve a linear system :math:`M^T y = M^T M z` where :math:`M = [D_{S_1} \\odot b_1, \\ldots, D_{S_i} \\odot b_i, \\ldots]` which is yields the unique solution to the overcomplete least squares problem :math:`\\min_z \\| y - Mz \\|_2^2`. We use the structure of M to compute :math:`M^T y` and :math:`M^T M`. Can also handle nonnegative least squares with scipy nnls active set solver. Parameters ---------- Y : numpy array input data, required D : numpy array input dictionary (fat), required B : numpy array input mixing matrix, required S : list of list of integers (or numpy array) Known support for each column of the solution, required example: [[0,3],[1,3]] means columns one has support S_1 = {0,3} and column 2 has support S_2={1,3}. k : integer Sparsity level, must be the number of terms in each subset of S (not checked) nonnegative : boolean Default to False. Set to True to impose nonnegativity constraints on the solution, the NNLS solver is active set from scipy. Returns ------- X : numpy array Solution of the mixed sparse coding problem with fixed column sparsity err : float Reconstruction error / residuals. ''' #TODO: check correctness, seen some weird things with error not being minimal. #TODO: if support is too large, solve with conjugate gradient instead. m, n = Y.shape _, d = D.shape _, r = B.shape klist = np.array([i for i in range(k)]) if isinstance(S, np.ndarray): # Conversion to list of list from ndarray numpy S = list(S.T) S = [list(i) for i in S] # Computing Mty # YBt = [N_1, ..., N_i, ..., N_r] YB = Y@B # m*r Mty = np.zeros(k*r) for i in range(r): D_S = D[:, S[i]] #size should be k Mty[i*k + klist] = D_S.T@YB[:,i] # Computing MtM MtM = np.zeros([k*r, k*r]) for i in range(r): for j in range(r): D_Si = D[:,S[i]] #size should be k D_Sj = D[:,S[j]] #size should be k temp = (D_Si.T@D_Sj)*(B[:,i].T@B[:,j]) # size should be k^2 for p in range(k): MtM[klist + i*k, j*k+p] = temp[:,p] # Let's solve the small square system if nonnegative==False: try: z = np.linalg.solve(MtM, Mty) except np.linalg.LinAlgError: MtM = MtM + 1e-6*np.eye(MtM.shape[0],MtM.shape[1]) z = np.linalg.solve(MtM, Mty) else: MtM = MtM + 1e-6*np.eye(MtM.shape[0],MtM.shape[1]) z,_ = nnls(MtM, Mty, 1000) # Putting back the values in X X = np.zeros([d,r]) for i in range(r): X[S[i],i] = z[i*k + klist] # error computed in the original domain, check if efficient version err = np.linalg.norm(Y - D@X@B.T, 'fro') return X, err def HardT(X, k): ''' Truncates to the k largest values of X columnwise, arbitrarily so if necessary. This is somewhat the proximal operator of the l0 "norm". ''' if X.ndim == 1: m=X.shape[0] Z = np.copy(X) idx = np.argsort(np.abs(X), axis = 0) Z[idx[0:m-k]] = 0 else: m, n = X.shape Z = np.copy(X) idx = np.argsort(np.abs(X), axis = 0) for p in range(n): # may be vectorized Z[idx[0:m-k,p],p] = 0 return Z def ls_cg(Y, DtD, BtB, Xinit, rho, itercg = 50): ''' Solves linear systems of the form :math:`(D^TD X B^TB + \\rho X) = Y` using conjugate gradient. The important point is that the large mixing matrix (DtD otimes BtB + rho I) is never formed explicitely. However the DtD matrix is formed, as in the other methods. Parameters ---------- Y : numpy array Input data. It corresponds to DtYB + rho (Z - mu) in ADMM. DtD : numpy array dictionary BBt : numpy array mixing matrix Xinit : numpy array current estimate for the coefficients X rho : float parameter of the ADMM itercg : int (default 50) maximum number of conjugate gradient iterations Returns ------- X : numpy array estimated least squares solution out : internal output ''' X = np.copy(Xinit) d, r = np.shape(Y) # getting this next part right is the whole point of the CG here AX = (DtD@X)@BtB + rho*X R = Y - AX tol = 1e-16*np.linalg.norm(Y,'fro') P = np.copy(R) stock = [] for i in range(itercg): if np.dot(R.flatten(), R.flatten()) < tol: break # Classical CG (vectorized for understanding but we could do all in matrix format), with clever Ap product. AP = DtD@P@BtB + rho*P alpha = np.dot(R.flatten(), R.flatten())/np.dot(P.flatten(), AP.flatten()) X = X + alpha*P R_old = np.copy(R) R = R - alpha*AP beta = np.dot(R.flatten(),R.flatten())/np.dot(R_old.flatten(), R_old.flatten()) P = R + beta * P stock.append(np.dot(R.flatten(), R.flatten())) return X, stock def prox_ml1_fast(X,lamb): ''' A faster proximal operator algorithm for l1infty norm, exact after a few steps. Reference: The fastest l1oo prox in the west, <NAME>, <NAME> and <NAME>, 2019 Note: This is simply a wrapper for their code. Be careful of the following bug: if X is an integer array, the output will always be 0. ''' # output variable X = np.asfortranarray(X) V = np.asfortranarray(np.zeros(X.shape)) # Catch exceptions or bugs if lamb==0: V = X else: prox_l1inf(X,V,lamb) return V def prox_ml1(X, lamb, tol=1e-10): ''' Computes the proximal operator of the matrix induced l1 norm. Parameters ---------- X : numpy array input of the proximal operator lamb : float regularization parameter tol : float small tolerance on the value of the maximal columnwise 1 norm Returns ------- U : numpy array the proximal operator applied to X t : float maximum l1 norm of the columns of U nu_t : list of floats optimal dual parameters Credits to <NAME> Reference: "Computing the proximal operator of the l1 induced matrix norm, J.E.Cohen, arxiv:2005.06804v2". ''' # Lambda cannot be Zero if lamb == 0: out = np.copy(X) return out, np.max(np.sum(np.abs(X), axis=0)), 0 # Remove single column case if X.ndim==1: out = SoftT(B, lamb) return out, np.sum(np.abs(out)), 1 #%% Precomputations # Constants n, m = np.shape(X) ps = np.linspace(1,n,n) Xsort = np.sort(np.abs(X), axis=0) Xsort = np.flip(Xsort, axis=0) Xcumsum=np.cumsum(Xsort, axis=0) # Maximal value of t (prox is identity) Xsum = np.sum(Xsort, axis=0) # Xsort for abs value tmax = np.max(Xsum) tmin = 0 t = tmax/2 # initial value in the middle of the admissible interval # Find the order of visited columns in X sorted_sums = np.flip(np.sort(Xsum)) order = np.flip(np.argsort(Xsum)) # Deal with the lamb>lamb_max case in advance to avoid bug if lamb>=np.sum(Xsort[0,:]): U = np.zeros([n,m]) t = 0 nu_t = Xsort[0,:]/lamb return U, t, nu_t #%% Starting bisection while tmax-tmin > tol: # Compute the current active set and its size I = order[sorted_sums>t] l = len(I) # Process commulative sums Xcumsum_t = (Xcumsum[:, I]-t)/lamb # Compute the candidate nu values Ps = np.transpose(repmat(ps, l, 1)) # matrix of sequences from 1 to n in with i columns nu = Xcumsum_t/Ps nu_t = np.zeros(m) N = Xsort[:, I] - lamb*nu # temp is reverse sorted N = np.flip(N, axis=0) # temp is sorted for j in range(l): # Find the largest index for which the condition described in the paper is satisfied # i.e. xsort(p) - \lambda\nu(p) >= 0 idx = np.searchsorted(N[:,j], 0, side='left') idx = len(N[:,j]) - idx - 1 # counter effect flip nu_t[I[j]] = nu[idx, j] # end j loop # Checking dual condition 1< or 1> to move t if np.sum(nu_t) < 1: # t must be decreased tmax = t t = (t + tmin)/2 else: # t must be increased tmin = t t = (t + tmax)/2 # Final step, thresholding vectors that need to be U = SoftT(X, lamb*nu_t) return U, t, nu_t
cohenjer/mscode
mscode/utils/generator.py
<reponame>cohenjer/mscode<filename>mscode/utils/generator.py import numpy as np import tensorly as tl def gen_mix(dims, k, snr=20, distr='Gaussian', cond=1, cond_rand=False, decrease_coeff = 0.7): ''' Generates simulated dataset for experiments according to the mixed sparse coding model. Parameters ---------- dims : list of length 4 [m, n, d, r] k : integer sparsity constraint snr : integer signal to noise ratio, controls noise level distr : string Default is 'Gaussian', but 'Uniform' also works. 'Decreasing' is Gaussian D,B and Uniform X with artificially decreasing weights for X. cond : float Controls the conditionning of the B matrix cond_rand : boolean If True, the singular values of a random gaussian matrix are scaled by cond. If False, the singular values are linearly spaced and conditionning is indeed cond. decrease_coeff : float (default 0.7) In the 'Decreasing setup', multiplicative factor for decrease Returns ------- Y : nd numpy array noised data Ytrue : nd numpy array noiseless data D : nd numpy array dictionary normalized columnswise in l2 norm B : nd numpy array mixing matrix X : nd numpy array true unknown sparse coefficients S : nd numpy array support of X sig : float noise variance used in practice condB : float the true conditionning of B ''' m, n, d, r = dims if distr == ('Gaussian' or 'Decreasing'): D = np.random.randn(n, d) B = np.random.randn(m, r) elif distr == 'Uniform': D = np.random.rand(n, d) B = np.random.rand(m, r) else: print('Distribution not supported') for i in range(d): D[:, i] = D[:, i]/np.linalg.norm(D[:, i]) # add poor B conditionning if cond: u, s, v = np.linalg.svd(B) if cond_rand: a = (s[0] - s[-1]/100)/(s[0]-s[-1]) b = s[0] - a*s[0] s = a*s + b # conditionning is exactly 100, sv are linearly spaced else: s = np.linspace(1, 1/cond, r) B = u[:, :r]@np.diag(s)@v.T else: s = [1,1] # X k-sparse columnwise generation X = np.zeros([d, r]) S = [] for i in range(r): pos = np.random.permutation(d)[0:k] if distr == 'Uniform': X[pos, i] = np.random.rand(k) elif distr == 'Gaussian': X[pos, i] = np.random.randn(k) elif distr == 'Decreasing': for l, npos in enumerate(pos): X[npos,i] = np.random.choice((-1,1))*np.random.rand(1)*(decrease_coeff ** l) else: print('Distribution not supported') S.append(pos) # Formatting to np array S = np.transpose(np.array(S)) # Noise and SNR Ytrue = D@X@B.T noise = np.random.rand(n, m) spower = np.linalg.norm(Ytrue, 'fro')**2 npower = np.linalg.norm(noise, 'fro')**2 old_snr = np.log10(spower/npower) sig = 10**((old_snr - snr/10)/2) noise = sig*noise # scaling to get SNR right Y = Ytrue + noise return Y, Ytrue, D, B, X, S, sig, s[0]/s[-1] def gen_mix_tensor(dims, dims_D, k, snr=20, distr='Gaussian', cond=1, cond_rand=False, decrease_coeff = 0.7): ''' Generates simulated dataset for experiments according to the mixed sparse coding model. Parameters ---------- dims : list [m, n, l] #todo: implement for arbriratry order dims_D : list with the number of atoms and rank [d, r] k : integer sparsity constraint snr : integer signal to noise ratio, controls noise level distr : string Default is 'Gaussian', but 'Uniform' also works. 'Decreasing' is Gaussian D,B and Uniform X with artificially decreasing weights for X. cond : float Controls the conditionning of the B matrix cond_rand : boolean If True, the singular values of a random gaussian matrix are scaled by cond. If False, the singular values are linearly spaced and conditionning is indeed cond. decrease_coeff : float (default 0.7) In the 'Decreasing setup', multiplicative factor for decrease Returns ------- Y : nd numpy array noised data Ytrue : nd numpy array noiseless data D : nd numpy array dictionary normalized columnswise in l2 norm B : nd numpy array mixing matrix X : nd numpy array true unknown sparse coefficients S : nd numpy array support of X sig : float noise variance used in practice condB : float the true conditionning of B ''' n,m,l = dims d, r = dims_D if distr == ('Gaussian' or 'Decreasing'): D = np.random.randn(n, d) B = np.random.randn(m, r) C = np.random.randn(l, r) elif distr == 'Uniform': D = np.random.rand(n, d) B = np.random.rand(m, r) C = np.random.rand(l, r) else: print('Distribution not supported') for i in range(d): D[:, i] = D[:, i]/np.linalg.norm(D[:, i]) # add poor B conditionning u, s, v = np.linalg.svd(B) if cond_rand: a = (s[0] - s[-1]/100)/(s[0]-s[-1]) b = s[0] - a*s[0] s = a*s + b # conditionning is exactly 100, sv are linearly spaced else: s = np.linspace(1, 1/cond, r) B = u[:, :r]@np.diag(s)@v.T # X k-sparse columnwise generation X = np.zeros([d, r]) S = [] for i in range(r): pos = np.random.permutation(d)[0:k] if distr == 'Uniform': X[pos, i] = np.random.rand(k) elif distr == 'Gaussian': X[pos, i] = np.random.randn(k) elif distr == 'Decreasing': for l, npos in enumerate(pos): X[npos,i] = np.random.choice((-1,1))*np.random.rand(1)*(decrease_coeff ** l) else: print('Distribution not supported') S.append(pos) # Formatting to np array S = np.transpose(np.array(S)) # Noise and SNR #Ytrue = D@X@B.T Ytrue = tl.cp_tensor.cp_to_tensor((None,[D@X,B,C])) noise = np.random.rand(n, m, l) spower = tl.norm(Ytrue, 2)**2 npower = tl.norm(noise, 2)**2 old_snr = np.log10(spower/npower) sig = 10**((old_snr - snr/10)/2) noise = sig*noise # scaling to get SNR right Y = Ytrue + noise return Y, Ytrue, D, B, C, X, S, sig, s[0]/s[-1] def initialize(dims, distr='Gaussian'): ''' Provides an initial guess for X in the mixed sparse coding problem given dimensions are an elementwise standard distribution. Parameters ---------- dims : list [d,r], where d is the dictionary size, and r the mixing size distr : string "Gaussian", "Uniform", "Zeros" Returns ------- X : numpy array Initial guess for Mixed Sparse Coding ''' if distr == 'Gaussian': X = np.random.randn(dims[0], dims[1]) elif distr == 'Uniform': X = np.random.rand(dims[0], dims[1]) elif distr == 'Zeros': X = np.zeros(dims) return X
cohenjer/mscode
mscode/xp/initialization_sensitivity.py
# For all functions, boxplot with normal and uniform inits, only error. Keep problem constant, Fista should not change results. import numpy as np from matplotlib import pyplot as plt #from itertools import combinations, product #import shelve from mscode.utils.utils import count_support from mscode.methods.algorithms import iht_mix, homp, omp, ls_kn_supp, pseudo_trick, brute_trick, ista_mix, ista, admm_mix from mscode.utils.generator import gen_mix, initialize import pandas as pd import plotly.express as px # Problem parameters k = 5 #2 r = 6 #2 n = 50 #10 m = 50 #20 d = 100 #50 #noise = 0.03 # 0.03 SNR = 20 # dB cond = 2*1e2 tol = 1e-6 lamb_m = 0.001 lamb= 0.005 distr='Uniform' #always uniform here init_distr='Gaussian' # Store results in Pandas DataFrame store_pd = pd.DataFrame(columns=["value", "algorithm", "init type", "data number"]) # Generate a few data matrices, and for each run 10 init Nbdata = 10 Nbinit = 10 for i in range(Nbdata): print(i) Y, Ytrue, D, B, X, S, sig, condB = gen_mix([m, n, d, r], k, snr=SNR, cond=cond, distr=distr) # Zero initialization test X0z = initialize([d,r], distr= 'Zeros') # IHT _, err_iht, S_iht = iht_mix(Y, D, B, k, X0z, tol=tol) # Comparison with trick (independent of init) _, err_trick, S_trick = pseudo_trick(Y, D, B, k) # Running HOMP _, err_homp, S_homp = homp(Y, D, B, k, X0z, tol=tol) # Running ISTA_mix (init 0) _, _, err_ista_m, S_ista_m = ista_mix(Y, D, B, lamb_m, k=k, X0=X0z, verbose=False, tol=tol) # Test Ista _, _, err_ista, S_ista = ista(Y, D, B, lamb, k=k, X0=X0z, verbose=False, tol=tol) dic = { 'value':[count_support(S, S_ista_m), count_support(S, S_ista), count_support(S, S_homp), count_support(S, S_iht), count_support(S, S_trick)], 'algorithm': ['Mixed-FISTA', 'Block-FISTA', 'HOMP', 'IHT', 'TrickOMP'], "init type": 5*['zero init'], "data number": 5*[i] } store_pd = store_pd.append(pd.DataFrame(dic), ignore_index=True) # Initialise Loop for j in range(Nbinit): if init_distr=='Gaussian': X0 = initialize([d,r], distr = 'Gaussian') else: X0 = initialize([d,r], distr = 'Uniform') # Running all algorithms # IHT _, err_iht, S_iht = iht_mix(Y, D, B, k, X0, tol=tol) # Running HOMP _, err_homp, S_homp = homp(Y, D, B, k, X0, tol=tol) # Running ISTA_mix (init 0) _, _, err_ista_m, S_ista_m = ista_mix(Y, D, B, lamb_m, k=k, X0=X0, verbose=False, tol=tol) # Test Ista _, _, err_ista, S_ista = ista(Y, D, B, lamb, k=k, X0=X0, verbose=False, tol=tol) dic = { 'value':[count_support(S, S_ista_m), count_support(S, S_ista), count_support(S, S_homp), count_support(S, S_iht)], 'algorithm': ['Mixed-FISTA', 'Block-FISTA', 'HOMP', 'IHT'], "init type": 4*['random init'], "data number": 4*[i] } store_pd = store_pd.append(pd.DataFrame(dic), ignore_index=True) fig = px.box(store_pd, x='data number', y='value', facet_col='algorithm', color='init type', title="Robustess to random initializations for 10 problem instances", labels={'value':'Support recovery', 'data number': 'problem index'}, notched=True) fig.for_each_annotation(lambda a: a.update(text=a.text.split("=")[-1])) fig.update_xaxes(type='category') fig.update_layout( font_family="HelveticaBold", font_size=15, autosize=False, width=1500, height=500, #paper_bgcolor="white",#'rgb(233,233,233)', #plot_bgcolor="white",#'rgb(233,233,233)', ) fig.show() # Note: ISta algorithms are convex and should not depend too much on the initialization (they still do, maybe run longer?). # Uncomment for storing outputs # path designed for running from mscode root (where setup is located) #year = 2021 #month = 10 #day = 22 #path = '../..' #stor_name = '{}-{}-{}'.format(year,month,day) #store_pd.to_pickle('{}/data/XP4/{}_results'.format(path,stor_name)) #fig.write_image('{}/data/XP4/{}_plot.pdf'.format(path,stor_name))
4n6ir/remedy-lambda-public-ip-visibility
bundle/get-public-ip/extension.py
#!/usr/bin/env python3 import json import os import requests import signal import sys from pathlib import Path from requests.adapters import HTTPAdapter from requests.packages.urllib3.util.retry import Retry LAMBDA_EXTENSION_NAME = Path(__file__).parent.name def execute_custom_processing(event): retry_strategy = Retry( total = 3, status_forcelist = [429, 500, 502, 503, 504], backoff_factor = 1 ) adapter = HTTPAdapter( max_retries = retry_strategy ) http = requests.Session() http.mount("https://", adapter) r = http.get('https://checkip.amazonaws.com') print(f"[{LAMBDA_EXTENSION_NAME}] {r.text}", flush=True) def handle_signal(signal, frame): sys.exit(0) def register_extension(): headers = { 'Lambda-Extension-Name': LAMBDA_EXTENSION_NAME, } payload = { 'events': [ 'INVOKE', 'SHUTDOWN' ], } response = requests.post( url=f"http://{os.environ['AWS_LAMBDA_RUNTIME_API']}/2020-01-01/extension/register", json=payload, headers=headers ) ext_id = response.headers['Lambda-Extension-Identifier'] return ext_id def process_events(ext_id): headers = { 'Lambda-Extension-Identifier': ext_id } while True: response = requests.get( url=f"http://{os.environ['AWS_LAMBDA_RUNTIME_API']}/2020-01-01/extension/event/next", headers=headers, timeout=None ) event = json.loads(response.text) if event['eventType'] == 'SHUTDOWN': sys.exit(0) else: execute_custom_processing(event) def main(): signal.signal(signal.SIGINT, handle_signal) signal.signal(signal.SIGTERM, handle_signal) extension_id = register_extension() process_events(extension_id) if __name__ == "__main__": main()
4n6ir/remedy-lambda-public-ip-visibility
remedy_lambda_public_ip_visibility/remedy_lambda_public_ip_visibility_stack.py
from aws_cdk import ( RemovalPolicy, Stack, aws_lambda as _lambda, ) from constructs import Construct class RemedyLambdaPublicIpVisibilityStack(Stack): def __init__(self, scope: Construct, construct_id: str, **kwargs) -> None: super().__init__(scope, construct_id, **kwargs) layer = _lambda.LayerVersion( self, 'layer', code = _lambda.Code.from_asset('bundle/extension.zip'), compatible_architectures = [ _lambda.Architecture.ARM_64, _lambda.Architecture.X86_64 ], compatible_runtimes = [ _lambda.Runtime.PYTHON_2_7, _lambda.Runtime.PYTHON_3_6, _lambda.Runtime.PYTHON_3_7, _lambda.Runtime.PYTHON_3_8, _lambda.Runtime.PYTHON_3_9 ], description = 'AWS Lambda Extension captures the Public IP into Cloud Watch logs at execution using Requests v2.27.1 Python library.', layer_version_name = 'get-public-ip', license = 'Apache-2.0 License', removal_policy = RemovalPolicy.DESTROY )
tanukihee/Pearson3CurveFitting
HessianProbabilityGrid.py
# Pearson-III curve plotting and fitting, # used for hydrological analysis and hydraulic calculations. # v6.1 # Copyright (c) 2020 -- 2021 ListLee import matplotlib import matplotlib.pyplot as plt import numpy as np import probscale import scipy.stats as stats from scipy.optimize import curve_fit from scipy.stats import pearson3 USE_TEX = True if USE_TEX: matplotlib.use("pgf") plt.rcParams["figure.constrained_layout.use"] = True plt.rcParams["pgf.rcfonts"] = False plt.rcParams["pgf.preamble"] += r""" \usepackage{xeCJK} \usepackage{amsmath} \usepackage{siunitx} \sisetup{detect-all} \usepackage{unicode-math} \setsansfont{FiraGO} \setmathfont{Fira Math} \setCJKsansfont{Source Han Sans SC} """ else: plt.rcParams["font.sans-serif"] = "SimHei" class Data: """ # 水文数据类 ## 构造函数参数 + `arr`:实测水文数据 """ def __init__(self, arr): self.arr = np.sort(arr)[::-1] # 降序排序输入数组 self.n = len(arr) # 实测期长度 self.extreme_num = 0 # 特大洪水数 def history(self, arr, length, num=0): """ # 历史洪水数据 ## 输入参数 + `arr` 历史特大洪水序列,均为特大洪水 + `length` 调查期长度 + `num` 特大洪水数,包括历史特大洪水与实测特大洪水,默认为历史特大洪水数 """ self.historia = np.sort(arr)[::-1] # 历史洪水序列 self.length = length # 调查期长度 self.extreme_num = max(len(self.historia), num) # 特大洪水数 self.extreme_num_in_measure = self.extreme_num - len(arr) # 实测期特大洪水数 # 特大洪水序列与一般洪水序列 self.extreme = self.historia self.ordinary = self.arr if self.extreme_num_in_measure > 0: for i in range(self.extreme_num_in_measure): self.extreme = np.append(self.extreme, self.arr[i]) self.ordinary = np.delete(self.arr, range(self.extreme_num_in_measure)) self.arr = np.sort(np.append(self.extreme, self.ordinary))[::-1] def figure(self, grid=True, logVert=False): """ # 绘制图形 ## 输入参数 + `gird`:是否显示背景网格,默认为 `True` + `logVert`:纵坐标是否为对数坐标,默认为 `False` """ self.fig, self.ax = plt.subplots(figsize=(7, 5)) # 创建「画板」与「画布」 self.ax.set_xscale("prob") # 横坐标改为概率坐标 self.ax.set_xlabel(r"频率 $P$(%)") self.ax.set_ylabel(r"流量 $Q$(\si{m\cubed /s})") self.ax.grid(grid) # 背景网格 if logVert: self.ax.set_yscale("log") def empi_scatter(self, empi_prob=None): """ # 点绘经验概率点 """ # 数学期望公式计算经验概率 if empi_prob is None: if self.extreme_num == 0: self.empi_prob = (np.arange(self.n) + 1) / (self.n + 1) * 100 else: self.extreme_prob = (np.arange(self.extreme_num) + 1) / (self.length + 1) * 100 self.ordinary_prob = self.extreme_prob[-1] + ( 100 - self.extreme_prob[-1]) * ( np.arange(self.n - self.extreme_num_in_measure) + 1) / (self.n - self.extreme_num_in_measure + 1) self.empi_prob = np.append(self.extreme_prob, self.ordinary_prob) else: self.empi_prob = empi_prob # 画布坐标轴设置 prob_lim = lambda prob: 1 if prob > 1 else 10**(np.ceil( np.log10(prob) - 1)) self.prob_lim_left = prob_lim(self.empi_prob[0]) self.prob_lim_right = 100 - prob_lim(100 - self.empi_prob[-1]) self.ax.set_xlim(self.prob_lim_left, self.prob_lim_right) # 点绘经验概率 if self.extreme_num: self.ax.scatter(self.ordinary_prob, self.ordinary, marker="o", c="none", edgecolors="k", label="一般洪水经验概率点") self.ax.scatter(self.extreme_prob, self.extreme, marker="x", c="k", label="特大洪水经验概率点") else: self.ax.scatter(self.empi_prob, self.arr, marker="o", c="none", edgecolors="k", label="经验概率点") def stat_params(self, output=True): """ # 输出数据的统计参数 ## 输入参数 + `output`:是否在控制台输出参数,默认为 True """ if self.extreme_num == 0: self.expectation = np.mean(self.arr) # 期望 self.modulus_ratio = self.arr / self.expectation # 模比系数 self.coeff_of_var = np.sqrt( np.sum((self.modulus_ratio - 1)**2) / (self.n - 1)) # 变差系数 else: self.expectation = (np.sum(self.extreme) + (self.length - self.extreme_num) / (self.n - self.extreme_num_in_measure) * np.sum(self.ordinary)) / self.length self.coeff_of_var = (np.sqrt( (np.sum((self.extreme - self.expectation)**2) + (self.length - self.extreme_num) / (self.n - self.extreme_num_in_measure) * np.sum( (self.ordinary - self.expectation)**2)) / (self.length - 1))) / self.expectation self.coeff_of_skew = stats.skew(self.arr, bias=False) # 偏态系数 if output: print("期望 EX 为 %.2f" % self.expectation) print("变差系数 Cv 为 %.4f" % self.coeff_of_var) print("偏态系数 Cs 为 %.4f" % self.coeff_of_skew) def moment_plot(self): """ # 绘制矩法估计参数理论概率曲线 """ x = np.linspace(self.prob_lim_left, self.prob_lim_right, 1000) theo_y = (pearson3.ppf(1 - x / 100, self.coeff_of_skew) * self.coeff_of_var + 1) * self.expectation self.ax.plot(x, theo_y, "--", lw=1, label="矩法估计参数概率曲线") # 绘制理论曲线 def plot_fitting(self, sv_ratio=0, ex_fitting=True, output=True): """ # 优化适线 ## 输入参数 + `sv_ratio`:倍比系数,即偏态系数 `Cs` 与 变差系数 `Cv` 之比。 默认为 0,即关闭倍比系数功能。 - 当 `sv_ratio` ≠ 0 时,Cs 不参与适线运算中,且 `Cs` = `sv_ratio` × `Cv`; - 当 `sv_ratio` = 0 时,Cs 正常参与适线运算。 + `ex_fitting`:适线时是否调整 EX,默认为 True + `output`:是否在控制台输出参数,默认为 True """ if sv_ratio == 0: if ex_fitting: p3 = lambda prob, ex, cv, cs: (pearson3.ppf( 1 - prob / 100, cs) * cv + 1) * ex [self.fit_EX, self.fit_CV, self.fit_CS], pcov = curve_fit( p3, self.empi_prob, self.arr, [self.expectation, self.coeff_of_var, self.coeff_of_skew]) else: p3 = lambda prob, cv, cs: (pearson3.ppf(1 - prob / 100, cs) * cv + 1) * self.expectation [self.fit_CV, self.fit_CS ], pcov = curve_fit(p3, self.empi_prob, self.arr, [self.coeff_of_var, self.coeff_of_skew]) self.fit_EX = self.expectation else: if ex_fitting: p3 = lambda prob, ex, cv: (pearson3.ppf( 1 - prob / 100, cv * sv_ratio) * cv + 1) * ex [self.fit_EX, self.fit_CV ], pcov = curve_fit(p3, self.empi_prob, self.arr, [self.expectation, self.coeff_of_var]) else: p3 = lambda prob, cv: (pearson3.ppf( 1 - prob / 100, cv * sv_ratio) * cv + 1) * self.expectation [self.fit_CV], pcov = curve_fit(p3, self.empi_prob, self.arr, [self.coeff_of_var]) self.fit_EX = self.expectation self.fit_CS = self.fit_CV * sv_ratio if output: print("适线后") print("期望 EX 为 %.2f" % self.fit_EX) print("变差系数 Cv 为 %.4f" % self.fit_CV) print("偏态系数 Cs 为 %.4f" % self.fit_CS) def fitted_plot(self): """ # 绘制适线后的概率曲线 """ x = np.linspace(self.prob_lim_left, self.prob_lim_right, 1000) theoY = (pearson3.ppf(1 - x / 100, self.fit_CS) * self.fit_CV + 1) * self.fit_EX self.ax.plot(x, theoY, lw=2, label="适线后概率曲线") # 绘制理论曲线 def prob_to_value(self, prob): """ # 由设计频率转换设计值 ## 输入参数 + `prob`:设计频率,单位百分数 ## 输出参数 + `value`:设计值 """ value = (pearson3.ppf(1 - prob / 100, self.fit_CS) * self.fit_CV + 1) * self.fit_EX print("%.4f%% 的设计频率对应的设计值为 %.2f" % (prob, value)) return value def value_to_prob(self, value): """ # 由设计值转换设计参数 ## 输入参数 + `value`:设计值 ## 输出参数 + `prob`:设计频率,单位百分数 """ prob = 100 - pearson3.cdf( (value / self.fit_EX - 1) / self.fit_CV, self.fit_CS) * 100 print("%.2f 的设计值对应的设计频率为 %.4f%%" % (value, prob)) return prob def successive(): data = Data( np.array([ 680.6, 468.4, 489.2, 450.6, 436.8, 586.2, 567.9, 473.9, 357.8, 650.9, 391, 201.2, 452.4, 750.9, 585.2, 304.5, 370.5, 351, 294.8, 360.9, 276, 549.1, 534, 349, 350, 372, 292, 485, 427, 620.8, 539, 474, 292, 228, 357, 425, 365, 241, 267, 305, 306, 238.9, 277.3, 170.8, 217.9, 208.5, 187.9 ])) # 本例取自《工程水文学》(2010 年第 4 版,詹道江 徐向阳 陈元芳 主编)P150~151 表 6-3 data.figure() data.empi_scatter() data.stat_params() data.moment_plot() data.plot_fitting() data.fitted_plot() data.ax.legend() data.fig.savefig("successive.pdf", transparent=True) def nonsuccessive(): data = Data( np.array([ 1800, 530, 590, 1460, 2440, 490, 1060, 1790, 1480, 2770, 1420, 410, 7100, 2200, 3400, 1300, 3080, 946, 430, 857, 421, 4500, 2800, 846, 1400, 1100, 740, 3600, 1470, 690 ])) data.history(np.array([9200]), 100, 2) # 本例取自《工程水文学》(1992 年第 2 版,王燕生 主编)P203 例 10-2 data.figure() data.empi_scatter() data.stat_params() data.moment_plot() data.plot_fitting() data.fitted_plot() data.ax.legend() data.fig.savefig("nonsuccessive.pdf", transparent=True) if __name__ == "__main__": successive() nonsuccessive()
Litou-lyh/pytorch_resnet_cifar10
scheduler.py
import torch import torch.optim.lr_scheduler as lr_scheduler class MultiStageScheduler(): def __init__(self,optimizer,args=None) -> None: self.optimizer = optimizer self.policy = args.policy if args else None self.schedulers = [] self.steps = 0 self.stage = 0 self.milestones = args.milestones if args and args.policy[0] != 'step' else None self.decay = 0.1 for i, p in enumerate(self.policy): if p == 'cyclic': self.schedulers.append(lr_scheduler.CyclicLR(self.optimizer, base_lr=args.lr * pow(self.decay,i), max_lr=args.max_lr * pow(self.decay,i),step_size_up=5000 * pow(self.decay * 5,i))) elif p == 'step': self.schedulers.append(lr_scheduler.MultiStepLR(self.optimizer, milestones=args.milestones)) elif p == 'rop': self.schedulers.append(lr_scheduler.ReduceLROnPlateau(self.optimizer, mode='max')) elif p == 'sgdr': self.schedulers.append(lr_scheduler.CosineAnnealingWarmRestarts(self.optimizer,T_0=10, T_mult=2)) elif p == 'constant': self.schedulers.append(None) elif p == 'cos': self.schedulers.append(lr_scheduler.CosineAnnealingLR(self.optimizer, args.epochs)) self.current_scheduler = self.schedulers[0] if self.schedulers else None def check_switch(self): if self.stage >= len(self.milestones): return if self.steps > self.milestones[self.stage]: self.stage += 1 if self.stage >= len(self.schedulers): raise Exception('error') self.current_scheduler = self.schedulers[self.stage] def step(self, arg=None): if self.milestones: self.check_switch() if not self.current_scheduler: return if arg: self.current_scheduler.step(arg) else: self.current_scheduler.step() self.steps += 1
Litou-lyh/pytorch_resnet_cifar10
trainer.py
<filename>trainer.py import argparse import os from scheduler import MultiStageScheduler import shutil import time from typing_extensions import get_args import matplotlib.pyplot as plt import torch import torch.nn as nn import torch.nn.parallel import torch.backends.cudnn as cudnn import torch.optim import torch.utils.data import torchvision.transforms as transforms import torchvision.datasets as datasets import resnet model_names = sorted(name for name in resnet.__dict__ if name.islower() and not name.startswith("__") and name.startswith("resnet") and callable(resnet.__dict__[name])) print(model_names) parser = argparse.ArgumentParser(description='Propert ResNets for CIFAR10 in pytorch') parser.add_argument('--arch', '-a', metavar='ARCH', default='resnet56', choices=model_names, help='model architecture: ' + ' | '.join(model_names) + ' (default: resnet32)') parser.add_argument('-j', '--workers', default=4, type=int, metavar='N', help='number of data loading workers (default: 4)') parser.add_argument('--epochs', default=200, type=int, metavar='N', help='number of total epochs to run') parser.add_argument('--start-epoch', default=0, type=int, metavar='N', help='manual epoch number (useful on restarts)') parser.add_argument('-b', '--batch-size', default=128, type=int, metavar='N', help='mini-batch size (default: 128)') parser.add_argument('--lr', '--base_lr', default=0.1, type=float, metavar='LR', help='initial learning rate') parser.add_argument('--momentum', default=0.9, type=float, metavar='M', help='momentum') parser.add_argument('--weight-decay', '--wd', default=5e-4, type=float, metavar='W', help='weight decay (default: 1e-4)') parser.add_argument('--print-freq', '-p', default=50, type=int, metavar='N', help='print frequency (default: 50)') parser.add_argument('--resume', default='', type=str, metavar='PATH', help='path to latest checkpoint (default: none)') parser.add_argument('-e', '--evaluate', dest='evaluate', action='store_true', help='evaluate model on validation set') parser.add_argument('--pretrained', dest='pretrained', action='store_true', help='use pre-trained model') parser.add_argument('--half', dest='half', action='store_true', help='use half-precision(16-bit) ') parser.add_argument('--save-dir', dest='save_dir', help='The directory used to save the trained models', default='save_temp', type=str) parser.add_argument('--save-every', dest='save_every', help='Saves checkpoints at every specified number of epochs', type=int, default=10) parser.add_argument('--gpu', '--device', dest='gpu', help='gpu_id', type=str, default='cuda:0') parser.add_argument('--policy','--p', nargs='*', dest='policy', help= 'lr scheduler', type=str, default=['step']) parser.add_argument('--milestones', nargs='*', help= 'milestones', type=int, default=None) parser.add_argument('--max_lr', default=3.0, type=float, help='max learning rate') parser.add_argument('--exp', dest='exp',type=str, help='experiments: super / lr_range', default='super') parser.add_argument('--seed', dest='seed',type=int,default=None) parser.add_argument('--max_iters', dest='max_iters',type=int,default=float('inf')) best_prec1 = 0 iters = 0 def main(): global args, best_prec1,iters args = parser.parse_args() print('policy:',args.policy) if args.seed: torch.backends.cudnn.deterministic = True torch.manual_seed(args.seed) torch.cuda.manual_seed(args.seed) # np.random.seed(args.seed) # Check the save_dir exists or not if not os.path.exists(args.save_dir): os.makedirs(args.save_dir) model = torch.nn.DataParallel(resnet.__dict__[args.arch](),device_ids=[args.gpu]) model.cuda(args.gpu) # optionally resume from a checkpoint if args.resume: if os.path.isfile(args.resume): print("=> loading checkpoint '{}'".format(args.resume)) checkpoint = torch.load(args.resume) args.start_epoch = checkpoint['epoch'] best_prec1 = checkpoint['best_prec1'] model.load_state_dict(checkpoint['state_dict']) print("=> loaded checkpoint '{}' (epoch {})" .format(args.evaluate, checkpoint['epoch'])) else: print("=> no checkpoint found at '{}'".format(args.resume)) cudnn.benchmark = True normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) train_loader = torch.utils.data.DataLoader( datasets.CIFAR10(root='./data', train=True, transform=transforms.Compose([ transforms.RandomHorizontalFlip(), transforms.RandomCrop(32, 4), transforms.ToTensor(), normalize, ]), download=True), batch_size=args.batch_size, shuffle=True, num_workers=args.workers, pin_memory=True) val_loader = torch.utils.data.DataLoader( datasets.CIFAR10(root='./data', train=False, transform=transforms.Compose([ transforms.ToTensor(), normalize, ])), batch_size=128, shuffle=False, num_workers=args.workers, pin_memory=True) # define loss function (criterion) and optimizer criterion = nn.CrossEntropyLoss().cuda(args.gpu) if args.half: model.half() criterion.half() optimizer = torch.optim.SGD(model.parameters(), args.lr, momentum=args.momentum, weight_decay=args.weight_decay,nesterov=False) max_iter = args.max_iters#10000 scheduler = None second_scheduler = None switch_iter = float('inf') # if args.p1 == 'cyclic': # max_iter = 80000 # if args.p2: # max_iter = 15000 # switch_iter = 10000 # sche_list = [scheduler, second_scheduler] # policy_list = [args.p1, args.p2] # for idx, p in enumerate(policy_list): # if p == 'cyclic': # sche_list[idx] = torch.optim.lr_scheduler.CyclicLR(optimizer, 0.1, 0.3, step_size_up=2000, step_size_down=None, # mode='triangular', gamma=1.0, scale_fn=None, scale_mode='cycle', cycle_momentum=True, # base_momentum=0.8, max_momentum=0.9, last_epoch=-1) # elif p == 'rop': # sche_list[idx] = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='max', factor=0.1, patience=10, threshold=0.0001, # threshold_mode='rel', cooldown=0, min_lr=0, eps=1e-08, verbose=False) # elif p == 'step': # small problem, default p2 != step # sche_list[idx] = torch.optim.lr_scheduler.MultiStepLR(optimizer, # milestones=[100,150], last_epoch=args.start_epoch - 1) # else: # sche_list[idx] = None scheduler = MultiStageScheduler(optimizer, args) # if args.arch in ['resnet1202', 'resnet110']: # for resnet1202 original paper uses lr=0.01 for first 400 minibatches for warm-up # then switch back. In this setup it will correspond for first epoch. # for param_group in optimizer.param_groups: # param_group['lr'] = args.lr*0.1 # current_sche = sche_list[0] if args.evaluate: validate(val_loader, model, criterion) return for epoch in range(args.start_epoch, args.epochs): if iters >= max_iter: break # if iters == switch_iter: # current_sche = sche_list[1] print(f"lr: {optimizer.state_dict()['param_groups'][0]['lr']}") # train for one epoch if scheduler and type(scheduler.current_scheduler) == torch.optim.lr_scheduler.CyclicLR: train(train_loader, model, criterion, optimizer, epoch, scheduler=scheduler) else: train(train_loader, model, criterion, optimizer, epoch, scheduler=None) # evaluate on validation set prec1 = 0 if args.exp == 'super' or epoch == 99: # only for lr range test prec1 = validate(val_loader, model, criterion) else: next # remember best prec@1 and save checkpoint is_best = prec1 > best_prec1 best_prec1 = max(prec1, best_prec1) '''Change LR policy here''' if scheduler: if type(scheduler.current_scheduler) == torch.optim.lr_scheduler.ReduceLROnPlateau: scheduler.step(prec1) elif type(scheduler.current_scheduler) == torch.optim.lr_scheduler.MultiStepLR or type(scheduler.current_scheduler) == torch.optim.lr_scheduler.CosineAnnealingWarmRestarts or type(scheduler.current_scheduler) == torch.optim.lr_scheduler.CosineAnnealingLR: scheduler.step() if epoch > 0 and epoch % args.save_every == 0: save_checkpoint({ 'epoch': epoch + 1, 'state_dict': model.state_dict(), 'best_prec1': best_prec1, }, is_best, filename=os.path.join(args.save_dir, 'checkpoint.th')) save_checkpoint({ 'state_dict': model.state_dict(), 'best_prec1': best_prec1, }, is_best, filename=os.path.join(args.save_dir, 'model.th')) #print(f"lr: {optimizer.state_dict()['param_groups'][0]['lr']}") def train(train_loader, model, criterion, optimizer, epoch, scheduler=None, switch_iter=float('inf')): global iters """ Run one train epoch """ batch_time = AverageMeter() data_time = AverageMeter() losses = AverageMeter() top1 = AverageMeter() # switch to train mode model.train() end = time.time() for i, (input, target) in enumerate(train_loader): # measure data loading time data_time.update(time.time() - end) target = target.cuda(args.gpu) input_var = input.cuda(args.gpu) target_var = target if args.half: input_var = input_var.half() # compute output output = model(input_var) loss = criterion(output, target_var) # compute gradient and do SGD step optimizer.zero_grad() loss.backward() optimizer.step() # for CLR policy if scheduler: scheduler.step() iters += 1 output = output.float() loss = loss.float() # measure accuracy and record loss prec1 = accuracy(output.data, target)[0] losses.update(loss.item(), input.size(0)) top1.update(prec1.item(), input.size(0)) # measure elapsed time batch_time.update(time.time() - end) end = time.time() if i % args.print_freq == 0: print('Epoch: [{0}][{1}/{2}]\t' 'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t' 'Data {data_time.val:.3f} ({data_time.avg:.3f})\t' 'Loss {loss.val:.4f} ({loss.avg:.4f})\t' 'Prec@1 {top1.val:.3f} ({top1.avg:.3f})'.format( epoch, i, len(train_loader), batch_time=batch_time, data_time=data_time, loss=losses, top1=top1)) def validate(val_loader, model, criterion): global acc_list """ Run evaluation """ batch_time = AverageMeter() losses = AverageMeter() top1 = AverageMeter() # switch to evaluate mode model.eval() end = time.time() with torch.no_grad(): for i, (input, target) in enumerate(val_loader): target = target.cuda(args.gpu) input_var = input.cuda(args.gpu) target_var = target.cuda(args.gpu) if args.half: input_var = input_var.half() # compute output output = model(input_var) loss = criterion(output, target_var) output = output.float() loss = loss.float() # measure accuracy and record loss prec1 = accuracy(output.data, target)[0] # acc_list.append(prec1.item()) losses.update(loss.item(), input.size(0)) top1.update(prec1.item(), input.size(0)) # measure elapsed time batch_time.update(time.time() - end) end = time.time() if i % args.print_freq == 0: print('Test: [{0}/{1}]\t' 'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t' 'Loss {loss.val:.4f} ({loss.avg:.4f})\t' 'Prec@1 {top1.val:.3f} ({top1.avg:.3f})'.format( i, len(val_loader), batch_time=batch_time, loss=losses, top1=top1)) print(' * Prec@1 {top1.avg:.3f}' .format(top1=top1)) acc_list.append(top1.avg) return top1.avg def save_checkpoint(state, is_best, filename='checkpoint.pth.tar'): """ Save the training model """ torch.save(state, filename) class AverageMeter(object): """Computes and stores the average and current value""" def __init__(self): self.reset() def reset(self): self.val = 0 self.avg = 0 self.sum = 0 self.count = 0 def update(self, val, n=1): self.val = val self.sum += val * n self.count += n self.avg = self.sum / self.count def accuracy(output, target, topk=(1,)): """Computes the precision@k for the specified values of k""" maxk = max(topk) batch_size = target.size(0) _, pred = output.topk(maxk, 1, True, True) pred = pred.t() correct = pred.eq(target.view(1, -1).expand_as(pred)) res = [] for k in topk: correct_k = correct[:k].view(-1).float().sum(0) res.append(correct_k.mul_(100.0 / batch_size)) return res if __name__ == '__main__': print(str(None)) acc_list = [] main() plt.plot([i for i in range(len(acc_list))], acc_list, '.-') plt.xlabel('epoch') plt.ylabel('test acc') plt.show() with open('test_acc_plot.txt','a') as f: f.write(f'policy: {args.policy}, lr: {args.lr}, bs: {args.batch_size}, e: {args.epochs}, seed: {args.seed} ') f.write('[') for j in range(len(acc_list)): f.write(str(acc_list[j]) + ', ') f.write(']\n') # plt.plot([i for i in range(len(acc_list))], acc_list, '.-') # plt.xlabel('epoch') # plt.ylabel('test acc') # plt.show()
taldatech/tf-bgd
bgd_model.py
<filename>bgd_model.py ''' Bayesian Gradient Descent Implementation of the BGD algorithm: The basic assumption is that in each step, the previous posterior distribution is used as the new prior distribution and that the parametric distribution is approximately a Diagonal Gaussian, that is, all the parameters of the weight vector `theta` are independent. We define the following: * `epsilon_i` - a Random Variable (RV) sampled from N(0,1) * `theta` - the weights which we wish to find their posterior distribution * `phi` = (mu,sigma) - the parameters which serve as a condition for the distribution of `theta` * `mu` - the mean of the weights' distribution, initially sampled from `N(0,2/{n_input + n_output}})` * `sigma` - the STD (Variance's root) of the weights' distribution, initially set to a small constant. * `K` - the number of sub-networks * `eta` - hyper-parameter to compenstate for the accumulated error (tunable). * `L(theta)` - Loss function * See Jupter Notebook for more details and derivations ''' import tensorflow as tf import numpy as np from datetime import datetime class BgdModel(): def __init__(self, config, mode): ''' mode: train or predict config: dictionary consisting of network's parameters config uses tf's flags ''' assert mode.lower() in ['train', 'predict'] self.config = config self.mode = mode.lower() self.num_sub_networks = config['num_sub_networks'] # K self.num_layers = config['num_layers'] self.n_inputs = config['n_inputs'] self.n_outputs = config['n_outputs'] self.hidden_units = config['hidden_units'] self.sigma_0 = config['sigma_0'] self.eta = config['eta'] self.batch_size = config['batch_size'] # Learning Rate Scheduling: self.decay_steps = config['decay_steps'] self.decay_rate = config['decay_rate'] self.dtype = tf.float16 if config['use_fp16'] else tf.float32 # for faster learning self.build_model() def build_model(self): ''' Builds the BNN model. ''' print("building model..") self.graph = tf.Graph() with self.graph.as_default(): self.init_placeholders() self.build_variables() self.build_dnn() self.build_losses() self.build_grads() self.build_eval() self.build_predictions() # Merge all the training summaries self.summary_op = tf.summary.merge_all() def init_placeholders(self): ''' Initialize the place holders to ineract with the outside world. ''' print("initializing placeholders...") # inputs: [batch_size, data] self.inputs = tf.placeholder(tf.float32, shape=(None,self.n_inputs), name="inputs") # outputs: [batch_size, data] self.targets = tf.placeholder(tf.float32, shape=(None,self.n_outputs), name="outputs") def build_variables(self): ''' Builds the variables used in the network, trainable and random-variables. ''' print("building variables...") with tf.name_scope("variables"): self.global_step = tf.Variable(0, trainable=False, name="global_step", dtype=tf.float32) self.global_step_op = \ tf.assign(self.global_step, self.global_step + 1) self.global_epoch_step = tf.Variable(0, trainable=False, name='global_epoch_step') self.global_epoch_step_op = \ tf.assign(self.global_epoch_step, self.global_epoch_step + 1) # learning rate: self.eta_rate = tf.train.exponential_decay(np.float32(self.eta), self.global_step, self.decay_steps, self.decay_rate) self.mu_s = self.build_mu_s() self.sigma_s = self.build_sigma_s() self.epsilons_s = self.build_epsilons_s() self.theta_s = self.build_theta_s() self.num_weights = (self.n_inputs + 1) * self.hidden_units + \ (self.hidden_units + 1) * (self.hidden_units) * (self.num_layers - 1) + \ (self.hidden_units + 1) * self.n_outputs def build_mu_layer(self, n_inputs, n_outputs, n_outputs_connections, name=None): ''' This function creates the trainable mean variables for a layer ''' if name is not None: name_ker = "mu_ker_" + name name_bias = "mu_bias_" + name else: name_ker = "mu_ker" name_bias = "mu_bias" # Reminder: we add 1 because of the bias mu_ker = tf.Variable(tf.random_normal(shape=(n_inputs, n_outputs), mean=0.0, stddev=(tf.sqrt(2 / (n_inputs + 1 + n_outputs_connections))) ),name=name_ker,trainable=False) mu_bias = tf.Variable(tf.random_normal(shape=(n_outputs,), mean=0.0, stddev=(tf.sqrt(2 / (n_inputs + 1 + n_outputs_connections))) ), name=name_bias, trainable=False) return mu_ker, mu_bias def build_mu_s(self): ''' This function builds the mean variables for the whole network. Returns a list of mean variables. ''' mu_s = [] for i in range(self.num_layers + 1): if not i: # This might be wrong, since for one layer there should be one output. so # instead of n_hidden we should change to `n_input of next layer` if ( i + 1 == self.num_layers): mu_ker, mu_bias = self.build_mu_layer(self.n_inputs, self.hidden_units, self.n_outputs, name="hid_0") else: mu_ker, mu_bias = self.build_mu_layer(self.n_inputs, self.hidden_units, self.hidden_units, name="hid_0") elif (i == self.num_layers): mu_ker, mu_bias = self.build_mu_layer(self.hidden_units, self.n_outputs, self.n_outputs, name="out") else: if ( i + 1 == self.num_layers): mu_ker, mu_bias = self.build_mu_layer(self.hidden_units, self.hidden_units, self.n_outputs, name="hid_" + str(i)) else: mu_ker, mu_bias = self.build_mu_layer(self.hidden_units, self.hidden_units, self.hidden_units, name="hid_" + str(i)) mu_s += [mu_ker, mu_bias] return mu_s def build_sigma_layer(self, n_inputs, n_outputs, sigma_0=0.001 ,name=None): ''' This function creates the trainable variance variables for a layer ''' if name is not None: name_ker = "sigma_ker_" + name name_bias = "sigma_bias_" + name else: name_ker = "sigma_ker" name_bias = "sigma_bias" sigma_ker = tf.Variable(tf.fill((n_inputs, n_outputs), sigma_0), name=name_ker, trainable=False) sigma_bias = tf.Variable(tf.fill((n_outputs,), sigma_0), name=name_bias, trainable=False) return sigma_ker, sigma_bias def build_sigma_s(self): ''' This function builds the variance variables for the whole network. Returns a list of variance variables. ''' sigma_s = [] for i in range(self.num_layers + 1): if not i: sigma_ker, sigma_bias = self.build_sigma_layer(self.n_inputs, self.hidden_units, sigma_0=self.sigma_0 ,name="hid_0") elif (i == self.num_layers): sigma_ker, sigma_bias = self.build_sigma_layer(self.hidden_units, self.n_outputs, sigma_0=self.sigma_0, name="out") else: sigma_ker, sigma_bias = self.build_sigma_layer(self.hidden_units, self.hidden_units, sigma_0=self.sigma_0, name="hid_" + str(i)) sigma_s += [sigma_ker, sigma_bias] return sigma_s def build_epsilons_layer(self, n_inputs, n_outputs, K, name=None): ''' This function creates the epsilons random variables for a layer in each sub-network k ''' if name is not None: name_ker = "epsilons_ker_" + name name_bias = "epsilons_bias_" + name else: name_ker = "epsilons_ker" name_bias = "epsilons_bias" epsilons_ker = [tf.random_normal(shape=(n_inputs, n_outputs), mean=0.0, stddev=1, name=name_ker + "_" + str(i)) for i in range(K)] epsilons_bias = [tf.random_normal(shape=(n_outputs,), mean=0.0, stddev=1, name=name_bias + "_" + str(i)) for i in range(K)] return epsilons_ker, epsilons_bias def build_epsilons_s(self): ''' This function builds the epsilons random variables for the whole network. Returns a list of lists of epsilons variables. ''' epsilons_s = [] for i in range(self.num_layers + 1): if not i: epsilons_ker, epsilons_bias = self.build_epsilons_layer(self.n_inputs, self.hidden_units, self.num_sub_networks ,name="hid_0") elif (i == self.num_layers): epsilons_ker, epsilons_bias = self.build_epsilons_layer(self.hidden_units, self.n_outputs, self.num_sub_networks, name="out") else: epsilons_ker, epsilons_bias = self.build_epsilons_layer(self.hidden_units, self.hidden_units, self.num_sub_networks, name="hid_" + str(i)) epsilons_s += [epsilons_ker, epsilons_bias] return epsilons_s def build_theta_layer(self, mu, sigma, epsilons, K, name=None): ''' This function creates the thea variables for a layer in each sub-network k. Indices for mu, sigma, epsilons: 0 - kernel 1 - bias ''' if name is not None: name_ker = "theta_ker_" + name name_bias = "theta_bias_" + name else: name_ker = "theta_ker" name_bias = "theta_bias" theta_ker = [tf.identity(mu[0] + tf.multiply(epsilons[0][j], sigma[0]), name=name_ker + "_" + str(j)) for j in range(K)] theta_bias = [tf.identity(mu[1] + tf.multiply(epsilons[1][j], sigma[1]), name=name_bias + "_" + str(j)) for j in range(K)] return theta_ker, theta_bias def build_theta_s(self): ''' This function builds the theta variables for the whole network. Returns a list of lists of theta variables. ''' theta_s = [] for i in range(0, 2 * (self.num_layers + 1) ,2): if (i == 2 * self.num_layers): theta_ker, theta_bias = self.build_theta_layer(self.mu_s[i:i + 2], self.sigma_s[i:i + 2], self.epsilons_s[i:i + 2], self.num_sub_networks, name="out") else: theta_ker, theta_bias = self.build_theta_layer(self.mu_s[i:i + 2], self.sigma_s[i:i + 2], self.epsilons_s[i:i + 2], self.num_sub_networks, name="hid_" + str(i)) theta_s += [theta_ker, theta_bias] return theta_s def build_theta_layer_boundries(self, mu, sigma, K, name=None): ''' This function creates the max and min thea variables for a layer in each sub-network k. Indices for mu, sigma, epsilons: 0 - kernel 1 - bias ''' if name is not None: name_ker = "theta_ker_" + name name_bias = "theta_bias_" + name else: name_ker = "theta_ker" name_bias = "theta_bias" theta_ker_max = [tf.identity(mu[0] + sigma[0], name=name_ker + "_max_" + str(j)) for j in range(K)] theta_bias_max = [tf.identity(mu[1] + sigma[1], name=name_bias + "_max_" + str(j)) for j in range(K)] theta_ker_min = [tf.identity(mu[0] - sigma[0], name=name_ker + "_min_" + str(j)) for j in range(K)] theta_bias_min = [tf.identity(mu[1] - sigma[1], name=name_bias + "_min_" + str(j)) for j in range(K)] return theta_ker_min, theta_bias_min, theta_ker_max, theta_bias_max def build_theta_s_boundries(self): ''' This function builds the max and min theta variables for the whole network. Returns a list of lists of theta variables. ''' theta_s_min = [] theta_s_max = [] for i in range(0, 2 * (self.num_layers + 1) ,2): if (i == 2 * self.num_layers): theta_ker_min, theta_bias_min, theta_ker_max, theta_bias_max = self.build_theta_layer_boundries(self.mu_s[i:i + 2], self.sigma_s[i:i + 2], self.num_sub_networks, name="out") else: theta_ker_min, theta_bias_min, theta_ker_max, theta_bias_max = self.build_theta_layer_boundries(self.mu_s[i:i + 2], self.sigma_s[i:i + 2] , self.num_sub_networks, name="hid_" + str(i)) theta_s_min += [theta_ker_min, theta_bias_min] theta_s_max += [theta_ker_max, theta_bias_max] return theta_s_min, theta_s_max def build_hidden_layers(self, inputs, n_layers, n_hidden, K, activation=tf.nn.relu): ''' This function builds and denses the hidden layers of the network. Returns the layers and their corresponding outputs. ''' hiddens_func = [] hiddens_out = [] for i in range(n_layers): if not i: hid_funcs = [tf.layers.Dense(n_hidden, name="hidden_0_" + str(k), activation=activation) for k in range(K)] hid_out = [hid_funcs[k](inputs) for k in range(K)] hiddens_func.append(hid_funcs) hiddens_out.append(hid_out) else: hid_funcs = [tf.layers.Dense(n_hidden, name="hidden_" + str(i) + "_" + str(k), activation=activation) for k in range(K)] hid_out = [hid_funcs[k](hiddens_out[i - 1][k]) for k in range(K)] hiddens_func.append(hid_funcs) hiddens_out.append(hid_out) return hiddens_func, hiddens_out def build_dnn(self): ''' This function builds the deep network's layout in terms of layers. ''' print("building layers...") with tf.name_scope("dnns"): self.hiddens_funcs, self.hiddens_out = self.build_hidden_layers(self.inputs, self.num_layers, self.hidden_units, self.num_sub_networks) self.out_funcs = [tf.layers.Dense(self.n_outputs, name="outputs_" + str(i), activation=None) \ for i in range(self.num_sub_networks)] self.outputs = [self.out_funcs[k](self.hiddens_out[-1][k]) for k in range(self.num_sub_networks)] total_hidden_params = sum([self.hiddens_funcs[i][0].count_params() for i in range(self.num_layers)]) graph_params_count = total_hidden_params + self.out_funcs[0].count_params() if (graph_params_count != self.num_weights): print("Number of actual parameters ({}) different from the calculated number ({})".format( graph_params_count, self.num_weights)) def build_losses(self): ''' This functions builds the error and losses of the network. ''' print("configuring loss...") with tf.name_scope("loss"): errors = [(self.outputs[i] - self.targets) for i in range(self.num_sub_networks)] self.losses = [0.5 * tf.reduce_sum(tf.square(errors[i]), name="loss_" + str(i)) \ for i in range(self.num_sub_networks)] def grad_mu_sigma(self, gradients_tensor, mu, sigma, epsilons, eta): # Calculate number of sub-networks = samples: K = len(epsilons[0]) ''' We need to sum over K, that is, for each weight in num_weights, we calculate the average/weighted average over K. gradients_tensor[k] is the gradients of sub-network k out of K. Note: in order to apply the gradients later, we should keep the variables in gradient_tensor apart. ''' # Number of separated variables in each network (in order to update each one without changing the shape) num_vars = sum(1 for gv in gradients_tensor[0] if gv[0] is not None) mu_n = [] sigma_n = [] # filter non-relavent variables for k in range(len(gradients_tensor)): gradients_tensor[k] = [gradients_tensor[k][i] for i in range(len(gradients_tensor[k])) if gradients_tensor[k][i][0] is not None] for var_layer in range(num_vars): var_list = [tf.reshape(gradients_tensor[k][var_layer][0], [-1]) for k in range(K)] E_L_theta = tf.reduce_mean(var_list, axis=0) var_list = [tf.reshape(gradients_tensor[k][(var_layer)][0] * epsilons[var_layer][k], [-1]) for k in range(K)] E_L_theta_epsilon = tf.reduce_mean(var_list, axis=0) # reshape it back to its original shape new_mu = mu[var_layer] - eta * tf.square(sigma[var_layer]) * tf.reshape(E_L_theta, mu[var_layer].shape) mu_n.append(new_mu) E_L_theta_epsilon = tf.reshape(E_L_theta_epsilon, sigma[var_layer].shape) new_sigma = sigma[var_layer] * tf.sqrt(1 + tf.square(0.5 * sigma[var_layer] * E_L_theta_epsilon)) - 0.5 * tf.square(sigma[var_layer]) * E_L_theta_epsilon sigma_n.append(new_sigma) return mu_n, sigma_n def build_grads(self): ''' This functions builds the gradients update nodes of the network. ''' print("configuring optimization and gradients...") with tf.name_scope("grads"): optimizer = tf.train.GradientDescentOptimizer(self.eta) gradients = [optimizer.compute_gradients(loss=self.losses[i]) for i in range(self.num_sub_networks)] mu_n, sigma_n = self.grad_mu_sigma(gradients, self.mu_s, self.sigma_s, self.epsilons_s, self.eta_rate) self.grad_op = [self.mu_s[i].assign(mu_n[i]) for i in range(len(self.mu_s))] + \ [self.sigma_s[i].assign(sigma_n[i]) for i in range(len(self.sigma_s))] def build_eval(self): ''' This function builds the model's evaluation nodes. ''' print("preparing evaluation...") with tf.name_scope("eval"): self.accuracy = tf.reduce_mean([tf.reduce_mean(self.losses[i]) for i in range(self.num_sub_networks)]) def build_predictions(self): ''' This function builds the model's prediction nodes. ''' print("preparing predictions") with tf.name_scope("prediction"): self.predictions = tf.reduce_mean(self.outputs, axis=0) self.mean, self.variance = tf.nn.moments(tf.convert_to_tensor(self.outputs), axes=[0]) self.std = tf.sqrt(self.variance) self.max_output = tf.reduce_max(self.outputs, axis=0) self.min_output = tf.reduce_min(self.outputs, axis=0) def weights_init(self, sess): ''' Initialize BNN weights. ''' for k in range(self.num_sub_networks): weights_init = [self.theta_s[i][k].eval() for i in range(len(self.theta_s))] for i in range(self.num_layers): self.hiddens_funcs[i][k].set_weights([weights_init[2 * i], weights_init[2 * i + 1]]) self.out_funcs[k].set_weights([weights_init[-2], weights_init[-1]]) def train(self, sess, inputs, outputs): ''' Execute a single training step. Returns train step accuracy. ''' sess.run(self.grad_op, feed_dict={self.inputs: inputs, self.targets: outputs}) sess.run(self.global_step_op) for k in range(self.num_sub_networks): weights_calc = [self.theta_s[i][k].eval() for i in range(len(self.theta_s))] for i in range(self.num_layers): self.hiddens_funcs[i][k].set_weights([weights_calc[2 * i], weights_calc[2 * i + 1]]) self.out_funcs[k].set_weights([weights_calc[-2], weights_calc[-1]]) acc_train = self.accuracy.eval(feed_dict={self.inputs: inputs, self.targets: outputs}) return acc_train def calc_accuracy(self, sess, inputs, outputs): ''' Returns the accuracy over the inputs using the BNN's current weights. ''' return self.accuracy.eval(feed_dict={self.inputs: inputs, self.targets: outputs}) def predict(self, sess, inputs): ''' Returns predictions for the inputs using the BNN's current weights. ''' return self.predictions.eval(feed_dict={self.inputs: inputs}) def calc_confidence(self, sess, inputs): ''' Returns the upper and lower confidence for the inputs using the BNN's current weights. ''' stan_dv = self.std.eval(feed_dict={self.inputs: inputs}) upper_conf = stan_dv lower_conf = -1 * stan_dv return upper_conf, lower_conf def save(self, sess, path, var_list=None, global_step=None): # var_list = None returns the list of all saveable variables saver = tf.train.Saver(var_list) save_path = saver.save(sess, save_path=path, global_step=global_step) print('model saved at %s' % save_path) def restore(self, sess, path, var_list=None): # var_list = None returns the list of all saveable variables saver = tf.train.Saver(var_list) saver.restore(sess, save_path=path) print('model restored from %s' % path)
taldatech/tf-bgd
bgd_regression_example.py
# imports import tensorflow as tf import numpy as np from sklearn.model_selection import train_test_split from bgd_model import BgdModel from matplotlib import pyplot as plt from datetime import datetime import time import os import json import shutil from collections import OrderedDict from random import shuffle import argparse # Globals: # write_log = False FLAGS = tf.app.flags.FLAGS def set_train_flags(num_sub_networks=10, hidden_units=100, num_layers=1, eta=1.0, sigma_0=0.0001, batch_size=5, epochs=40, n_inputs=1, n_outputs=1, decay_steps=10000, decay_rate=1/10, display_step=100, save_freq=200): tf.app.flags.FLAGS.__flags.clear() # Network parameters tf.app.flags.DEFINE_integer('num_sub_networks', num_sub_networks, 'Number of hidden units in each layer') tf.app.flags.DEFINE_integer('hidden_units', hidden_units, 'Number of hidden units in each layer') tf.app.flags.DEFINE_integer('num_layers', num_layers , 'Number of layers') # Training parameters tf.app.flags.DEFINE_float('eta', eta, 'eta parameter (step size)') tf.app.flags.DEFINE_float('sigma_0', sigma_0, 'Initialization for sigma parameter') tf.app.flags.DEFINE_integer('batch_size', batch_size, 'Batch size') tf.app.flags.DEFINE_integer('max_epochs', epochs, 'Maximum # of training epochs') tf.app.flags.DEFINE_integer('n_inputs', n_inputs, 'Inputs dimension') tf.app.flags.DEFINE_integer('n_outputs', n_inputs, 'Outputs dimension') tf.app.flags.DEFINE_integer('decay_steps', decay_steps, 'Decay steps for learning rate scheduling') tf.app.flags.DEFINE_float('decay_rate', decay_rate, 'Decay rate for learning rate scheduling') tf.app.flags.DEFINE_integer('display_freq', display_step, 'Display training status every this iteration') tf.app.flags.DEFINE_integer('save_freq', save_freq, 'Save model checkpoint every this iteration') tf.app.flags.DEFINE_string('model_dir', './model/', 'Path to save model checkpoints') tf.app.flags.DEFINE_string('summary_dir', './model/summary', 'Path to save model summary') tf.app.flags.DEFINE_string('model_name', 'linear_reg_bgd.ckpt', 'File name used for model checkpoints') # Ignore Cmmand Line tf.app.flags.DEFINE_string('w', '', '') tf.app.flags.DEFINE_string('s', '', '') tf.app.flags.DEFINE_string('e', '', '') tf.app.flags.DEFINE_string('b', '', '') tf.app.flags.DEFINE_string('n', '', '') tf.app.flags.DEFINE_string('l', '', '') tf.app.flags.DEFINE_string('t', '', '') tf.app.flags.DEFINE_string('g', '', '') tf.app.flags.DEFINE_string('f', '', '') tf.app.flags.DEFINE_string('r', '', '') tf.app.flags.DEFINE_string('k', '', '') tf.app.flags.DEFINE_string('y', '', '') tf.app.flags.DEFINE_string('u', '', '') tf.app.flags.DEFINE_boolean('use_fp16', False, 'Use half precision float16 instead of float32 as dtype') # Runtime parameters tf.app.flags.DEFINE_boolean('allow_soft_placement', True, 'Allow device soft placement') tf.app.flags.DEFINE_boolean('log_device_placement', False, 'Log placement of ops on devices') def set_predict_flags(checkpoint=-1): tf.app.flags.FLAGS.__flags.clear() latest_ckpt = tf.train.latest_checkpoint('./model/') if (checkpoint == -1): ckpt = latest_ckpt else: ckpt = './model/linear_reg_bgd.ckpt-' + str(checkpoint) tf.app.flags.DEFINE_string('model_path',ckpt, 'Path to a specific model checkpoint.') # Runtime parameters tf.app.flags.DEFINE_boolean('allow_soft_placement', True, 'Allow device soft placement') tf.app.flags.DEFINE_boolean('log_device_placement', False, 'Log placement of ops on devices') # Ignore Cmmand Line tf.app.flags.DEFINE_string('w', '', '') tf.app.flags.DEFINE_string('s', '', '') tf.app.flags.DEFINE_string('e', '', '') tf.app.flags.DEFINE_string('b', '', '') tf.app.flags.DEFINE_string('n', '', '') tf.app.flags.DEFINE_string('l', '', '') tf.app.flags.DEFINE_string('t', '', '') tf.app.flags.DEFINE_string('g', '', '') tf.app.flags.DEFINE_string('f', '', '') tf.app.flags.DEFINE_string('r', '', '') tf.app.flags.DEFINE_string('k', '', '') tf.app.flags.DEFINE_string('y', '', '') tf.app.flags.DEFINE_string('u', '', '') def create_model(FLAGS): config = OrderedDict(sorted((dict([(key,val.value) for key,val in FLAGS.__flags.items()])).items())) model = BgdModel(config, 'train') return model def restore_model(session, model, FLAGS): ckpt = tf.train.get_checkpoint_state(FLAGS.model_dir) if (ckpt): print("Found a checkpoint state...") print(ckpt.model_checkpoint_path) if (ckpt and tf.train.checkpoint_exists(ckpt.model_checkpoint_path)): print('Reloading model parameters..') model.restore(session, ckpt.model_checkpoint_path) else: if not os.path.exists(FLAGS.model_dir): os.makedirs(FLAGS.model_dir) print('Created new model parameters..') session.run(tf.global_variables_initializer()) def batch_gen(x, y, batch_size): if (len(x) != len(y)): print("Error generating batches, source and target lists do not match") return total_samples = len(x) curr_batch_size = 0 x_batch = [] y_batch = [] for i in range(len(x)): if (curr_batch_size < batch_size): x_batch.append(x[i]) y_batch.append(y[i]) curr_batch_size += 1 else: yield(x_batch, y_batch) x_batch = [x[i]] y_batch = [y[i]] curr_batch_size = 1 yield(x_batch, y_batch) def batch_gen_random(x, y, batch_size): if (len(x) != len(y)): print("Error generating batches, source and target lists do not match") return total_samples = len(x) curr_batch_size = 0 xy = list(zip(x,y)) shuffle(xy) x_batch = [] y_batch = [] for i in range(len(xy)): if (curr_batch_size < batch_size): x_batch.append(xy[i][0]) y_batch.append(xy[i][1]) curr_batch_size += 1 else: yield(x_batch, y_batch) x_batch = [xy[i][0]] y_batch = [xy[i][1]] curr_batch_size = 1 yield(x_batch, y_batch) def train(X_train, y_train, X_test, y_test, write_log=False): avg_error_train = [] avg_error_valid = [] batch_size = FLAGS.batch_size # Create a new model or reload existing checkpoint model = create_model(FLAGS) # Initiate TF session with tf.Session(graph=model.graph,config=tf.ConfigProto(allow_soft_placement=FLAGS.allow_soft_placement, log_device_placement=FLAGS.log_device_placement, gpu_options=tf.GPUOptions(allow_growth=True))) as sess: restore_model(sess, model, FLAGS) input_size = X_train.shape[0] + X_test.shape[0] test_size = X_test.shape[0] total_batches = input_size // batch_size print("# Samples: {}".format(input_size)) print("Total batches: {}".format(total_batches)) # Split data to training and validation sets num_validation = test_size total_valid_batches = num_validation // batch_size total_train_batches = total_batches - total_valid_batches print("Total validation batches: {}".format(total_valid_batches)) print("Total training batches: {}".format(total_train_batches)) if (write_log): now = datetime.utcnow().strftime("%Y%m%d%H%M%S") root_logdir = "tf_logs" logdir = "{}/run-{}/".format(root_logdir, now) # TensorBoard-compatible binary log string called a summary error_summary = tf.summary.scalar('Step-Loss', model.accuracy) # Write summaries to logfiles in the log directory file_writer = tf.summary.FileWriter(logdir, tf.get_default_graph()) step_time = 0.0 start_time = time.time() global_start_time = start_time # Training loop print('Training..') for epoch in range(FLAGS.max_epochs): if (model.global_epoch_step.eval() >= FLAGS.max_epochs): print('Training is already complete.', \ 'current epoch:{}, max epoch:{}'.format(model.global_epoch_step.eval(), FLAGS.max_epochs)) break batches_gen = batch_gen_random(X_train, y_train, batch_size) batch_acc_train = [] batch_acc_test = [] for batch_i, batch in enumerate(batches_gen): X_batch = batch[0] Y_batch = batch[1] # Execute a single training step batch_acc_train = model.train(sess, X_batch, Y_batch) batch_acc_test = model.calc_accuracy(sess, X_test, y_test) if (write_log): summary_str = error_summary.eval(feed_dict={model.inputs: X_batch, model.targets: Y_batch}) file_writer.add_summary(summary_str, model.global_step.eval()) if (model.global_step.eval() % FLAGS.display_freq == 0): time_elapsed = time.time() - start_time step_time = time_elapsed / FLAGS.display_freq print("Epoch: ", model.global_epoch_step.eval(), "Batch: {}/{}".format(batch_i, total_train_batches), "Train Mean Error:", batch_acc_train, "Valid Mean Error:", batch_acc_test) # Save the model checkpoint if (model.global_step.eval() % FLAGS.save_freq == 0): print('Saving the model..') checkpoint_path = os.path.join(FLAGS.model_dir, FLAGS.model_name) model.save(sess, checkpoint_path, global_step=model.global_step) json.dump(model.config, open('%s-%d.json' % (checkpoint_path, model.global_step.eval()), 'w'), indent=2) # Increase the epoch index of the model model.global_epoch_step_op.eval() print('Epoch {0:} DONE'.format(model.global_epoch_step.eval())) avg_error_train.append(np.mean(batch_acc_train)) avg_error_valid.append(np.mean(batch_acc_test)) if (write_log): file_writer.close() print('Saving the last model..') checkpoint_path = os.path.join(FLAGS.model_dir, FLAGS.model_name) model.save(sess, checkpoint_path, global_step=model.global_step) json.dump(model.config, open('%s-%d.json' % (checkpoint_path, model.global_step.eval()), 'w'), indent=2) total_time = time.time() - global_start_time print('Training Terminated, Total time: {} seconds'.format(total_time)) return avg_error_train, avg_error_valid def load_config(FLAGS): config = json.load(open('%s.json' % FLAGS.model_path, 'r')) for key, value in FLAGS.__flags.items(): config[key] = value.value return config def load_model(config): model = BgdModel(config, 'predict') return model def restore_model_predict(session, model): if tf.train.checkpoint_exists(FLAGS.model_path): print('Reloading model parameters..') model.restore(session, FLAGS.model_path) else: raise ValueError('No such file:[{}]'.format(FLAGS.model_path)) def predict(inputs): # Load model config config = load_config(FLAGS) # Load configured model model = load_model(config) with tf.Session(graph=model.graph,config=tf.ConfigProto(allow_soft_placement=FLAGS.allow_soft_placement, log_device_placement=FLAGS.log_device_placement, gpu_options=tf.GPUOptions(allow_growth=True))) as sess: # Reload existing checkpoint restore_model_predict(sess, model) print("Predicting results for inputs...") # Prepare results dict results = {} # Predict results['predictions'] = model.predict(sess, inputs) # Statistics results['max_out'] = model.max_output.eval(feed_dict={model.inputs: inputs}) results['min_out'] = model.min_output.eval(feed_dict={model.inputs: inputs}) upper_confidence, lower_confidence = model.calc_confidence(sess, inputs) results['upper_confidence'] = upper_confidence results['lower_confidence'] = lower_confidence results['avg_sigma'] = np.mean([s.eval() for s in model.sigma_s]) print("Finished predicting.") return results def main(): parser = argparse.ArgumentParser( description="train and test BGD regression of y=x^3") parser.add_argument("-w", "--write_log", help="save log for tensorboard", action="store_true") parser.add_argument("-u", "--reset", help="reset, start training from scratch", action="store_true") parser.add_argument("-s", "--step", type=int, help="display step to show training progress, default: 10") parser.add_argument("-k", "--num_sub_nets", type=int, help="number of sub networks (K parameter), default: 10") parser.add_argument("-e", "--epochs", type=int, help="number of epochs to run, default: 40") parser.add_argument("-b", "--batch_size", type=int, help="batch size, default: 1") parser.add_argument("-n", "--neurons", type=int, help="number of hidden units, default: 100") parser.add_argument("-l", "--layers", type=int, help="number of layers in each rnn, default: 1") parser.add_argument("-t", "--eta", type=float, help="eta parameter ('learning rate'), deafult: 50.0") parser.add_argument("-g", "--sigma", type=float, help="sigma_0 parameter, default: 0.002") parser.add_argument("-f", "--save_freq", type=int, help="frequency to save checkpoints of the model, default: 200") parser.add_argument("-r", "--decay_rate", type=float, help="decay rate of eta (exponential scheduling), default: 1/10") parser.add_argument("-y", "--decay_steps", type=int, help="decay steps fof eta (exponential scheduling), default: 10000") args = parser.parse_args() # Prepare the dataset input_size = 25 train_size = (np.ceil(0.8 * input_size)).astype(np.int) test_size = input_size - train_size # Generate dataset X = np.random.uniform(low=-4, high=4, size=input_size) y = np.power(X,3) + np.random.normal(0, 3, size=input_size) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=test_size) y_original = np.power(X, 3) X_sorted = X[X.argsort()] y_orig_sorted = y_original[X.argsort()] y_train = y_train.reshape(-1,1) y_test = y_test.reshape(-1,1) X_train = X_train.reshape(-1,1) X_test = X_test.reshape(-1,1) X_real_test = np.linspace(-6, 6, 2000) X_real_test = X_real_test.reshape(-1,1) if (args.write_log): write_log = True else: write_log = False if (args.step): display_step = args.step else: display_step = 10 if (args.num_sub_nets): K = args.num_sub_nets else: K = 10 if (args.epochs): epochs = args.epochs else: epochs = 40 if (args.batch_size): batch_size = args.batch_size else: batch_size = 1 if (args.neurons): num_units = args.neurons else: num_units = 100 if (args.layers): num_layers = args.layers else: num_layers = 1 if (args.eta): eta = args.eta else: eta = 50.0 if (args.sigma): sigma = args.sigma else: sigma = 0.002 if (args.save_freq): save_freq = args.save_freq else: save_freq = 200 if (args.decay_rate): decay_rate = args.decay_rate else: decay_rate = 1/10 if (args.decay_steps): decay_steps = args.decay_steps else: decay_steps = 10000 if (args.reset): try: shutil.rmtree('./model/') except FileNotFoundError: pass set_train_flags(num_sub_networks=K, hidden_units=num_units, num_layers=num_layers, eta=eta, sigma_0=sigma, batch_size=batch_size, epochs=epochs, n_inputs=1, n_outputs=1, decay_steps=decay_steps, decay_rate=decay_rate, display_step=display_step, save_freq=save_freq) avg_error_train, avg_error_valid = train(X_train, y_train, X_test, y_test, write_log=write_log) set_predict_flags() y_real_test_res = predict(X_real_test) print("Maximum uncertainty: ",abs(max(y_real_test_res['upper_confidence']))) # Visualize Error: # plt.rcParams['figure.figsize'] = (15,20) # SSE plt.subplot(2,1,1) plt.plot(range(len(avg_error_train)), avg_error_train, label="Train") plt.plot(range(len(avg_error_valid)), avg_error_valid, label="Valid") plt.xlabel('Epoch') plt.ylabel('Mean Error') plt.title('Train and Valid Mean Error vs Epoch') plt.legend() plt.subplot(2,1,2) # Predictions of train and test vs original X_train_sorted = X_train[X_train.T.argsort()] y_noisy_sorted = y[X.argsort()] y_real = np.power(X_real_test, 3) plt.scatter(X_sorted, y_noisy_sorted, label='Noisy data', c='k') plt.plot(X_sorted, y_orig_sorted, linestyle='-', marker='o', label='True data') plt.plot(X_real_test, y_real_test_res['predictions'], linestyle='-', label= 'Test prediction') plt.plot(X_real_test, y_real, linestyle='-', label= 'y = x^3') low_conf = y_real_test_res['predictions'][:,0] + 100 * y_real_test_res['lower_confidence'][:,0] up_conf = y_real_test_res['predictions'][:,0] + 100 * y_real_test_res['upper_confidence'][:,0] plt.fill_between(X_real_test[:,0], low_conf, up_conf, interpolate=True, color='pink', alpha=0.5) plt.legend() plt.xlabel('X') plt.ylabel('y') plt.title(('$y=x^3$ for original input and BP predictions for noisy input')) plt.tight_layout() plt.show() if __name__ == "__main__": main()
rzhao271/css-none-scraper
scraper.py
<reponame>rzhao271/css-none-scraper import ast import re import requests from lxml import etree valid_property_re = re.compile('^[^(@:]+$') # scrape_properties: void -> [(link, property-name)] def scrape_properties(): main_page_url = 'https://developer.mozilla.org/en-US/docs/Web/CSS/Reference' content = requests.get(main_page_url).text tree = etree.HTML(content) nodes = tree.xpath('//div[@class=\'index\']/ul/li') processed_nodes = [] for node in nodes: link = node.xpath('a')[0].get('href') text = node.xpath('a/code')[0].text if valid_property_re.match(text): processed_nodes.append((link, text)) return processed_nodes # scrape_prop #: str -> initial_value: str|None def scrape_prop(page_url): content = requests.get(page_url).text tree = etree.HTML(content) try: node = tree.xpath('//table[@class=\'properties\']/tbody/tr')[0] heading = node.xpath('th/a')[0].text value = etree.tostring(node.xpath('td')[0]).decode('UTF-8') if heading.lower() == 'initial value': return value else: return None except: return None def main(): scrape = 1 # Scrape properties along with their initial values properties_iv_dict = dict() if scrape: properties = scrape_properties() for link, name in properties: initial_value = scrape_prop(f'https://developer.mozilla.org/{link}') properties_iv_dict[name] = initial_value with open('prop-iv-dict.txt', 'w') as f: f.write(str(properties_iv_dict)) else: with open('prop-iv-dict.txt', 'r') as f: properties_iv_dict = ast.literal_eval(f.read()) properties_with_none_value = [key for key, val in properties_iv_dict.items() if val is not None and '<code>none</code>' in val] print('\n'.join(properties_with_none_value)) if __name__ == '__main__': main()
jD91mZM2/MCWASM
src/instructions.py
<reponame>jD91mZM2/MCWASM from cmds import CmdGenerator from value_types import Type, Types, Value import wasm CONDITION_COUNTER = 0 def InstructionHandler(func): def first_invocation(*args): def second_invocation(cmd, ins): return func(*args, cmd, ins) return second_invocation return first_invocation class InstructionTable: def __init__(self, ctx, wasm_function, namespace): self.wasm_function = wasm_function self.conditions = ["if score returned wasm = zero wasm"] self.ctx = ctx self.namespace = namespace self.output = [wasm_function.name] self.snippets = 0 self.types = Types() # Set up the initial types. `local_frame_push` and other functions # won't touch the type list - they rather rely on the new function # setting up the same type list by information from WASM. self.types.locals = Type.from_wasm(wasm_function.type.param_types) self.types.locals += Type.from_wasm_locals(wasm_function.body.locals) # See the spec: # https://webassembly.github.io/spec/core/binary/instructions.html self.handlers = { wasm.OP_GET_LOCAL: self.local_get(), wasm.OP_SET_LOCAL: self.local_set(), wasm.OP_TEE_LOCAL: self.local_tee(), wasm.OP_CALL: self.call(), # Conditions & Loops wasm.OP_IF: self.if_(), wasm.OP_ELSE: self.else_(), wasm.OP_RETURN: self.return_(), wasm.OP_END: self.end(), # Consts wasm.OP_I32_CONST: self.const(Type.I32), wasm.OP_I64_CONST: self.const(Type.I64), wasm.OP_F32_CONST: self.const(Type.F32), wasm.OP_F64_CONST: self.const(Type.F64), # i32 data types wasm.OP_I32_EQZ: self.eqz(), wasm.OP_I32_EQ: self.cmp("="), wasm.OP_I32_LT_S: self.cmp("<"), wasm.OP_I32_GT_S: self.cmp(">"), wasm.OP_I32_ADD: self.operation("+="), wasm.OP_I32_SUB: self.operation("-="), wasm.OP_I32_MUL: self.operation("*="), wasm.OP_I32_DIV_U: self.operation("/="), wasm.OP_I32_REM_U: self.operation("%="), # i64 data types wasm.OP_I64_EQZ: self.eqz(), wasm.OP_I64_EQ: self.cmp("="), wasm.OP_I64_LT_S: self.cmp("<"), wasm.OP_I64_GT_S: self.cmp(">"), wasm.OP_I64_ADD: self.operation("+="), wasm.OP_I64_SUB: self.operation("-="), wasm.OP_I64_MUL: self.operation("*="), wasm.OP_I64_DIV_U: self.operation("/="), wasm.OP_I64_REM_U: self.operation("%="), } def prologue(self): return None def epilogue(self): cmd = CmdGenerator([]) cmd.set_scoreboard(f"returned", 0) return cmd.output def handle(self, instruction): default_out = self.output[-1] cmd = CmdGenerator(self.conditions[:], types=self.types) if instruction.op.id in self.handlers: print(instruction.op.mnemonic, self.types.stack) cmd.execute( 'tellraw @a "[WASM] Executing: ' + wasm.format_instruction(instruction) + '"' ) specified_out = self.handlers[instruction.op.id](cmd, instruction) if specified_out is not None: return cmd.output, specified_out else: cmd.execute( 'tellraw @a {"text":"[WASM] TODO: ' + wasm.format_instruction(instruction) + '","color":"red"}' ) return cmd.output, default_out @InstructionHandler def const(self, type, cmd, ins): cmd.stack().push(Value(type, ins.imm.value)) @InstructionHandler def operation(self, op, cmd, _ins): cmd.stack().operation(op) @InstructionHandler def eqz(self, cmd, _ins): cmd.stack().load_to_scoreboard("lhs") cmd.stack().set(Value.i32(0)) with cmd.execute_param("if score lhs wasm = zero wasm"): cmd.stack().set(Value.i32(1)) @InstructionHandler def cmp(self, op, cmd, _ins): cmd.stack().load_to_scoreboard("rhs") cmd.stack().drop() cmd.stack().load_to_scoreboard("lhs") cmd.stack().set(Value.i32(0)) with cmd.execute_param(f"if score lhs wasm {op} rhs wasm"): cmd.stack().set(Value.i32(1)) @InstructionHandler def if_(self, cmd, _ins): with cmd.no_execute_params(): cmd.conditions().push(Value.i32(0)) cmd.conditions().set_from(cmd.stack()) cmd.conditions().load_to_scoreboard("condition") cmd.stack().drop() snippet = f"{self.wasm_function.name}_snippet_{self.snippets}" self.snippets += 1 cmd.comment("Conditional is split into separate function") with cmd.execute_param( f"unless score condition wasm = zero wasm" ): cmd.function(self.namespace, snippet) self.output.append(snippet) @InstructionHandler def else_(self, cmd, _ins): cmd.conditions().load_to_scoreboard("condition") snippet = f"{self.wasm_function.name}_snippet_{self.snippets}" self.snippets += 1 cmd.comment("Else branch is also split into separate function") with cmd.execute_param( f"if score condition wasm = zero wasm" ): cmd.function(self.namespace, snippet) self.output[-1] = snippet return self.output[-2] @InstructionHandler def end(self, cmd, _ins): # Beware: This may be the whole function's end if len(self.output) > 1: self.output.pop() with cmd.no_execute_params(): cmd.conditions().drop() return self.output[-1] @InstructionHandler def return_(self, cmd, _ins): self.types.stack.pop() cmd.set_scoreboard(f"returned", 1) @InstructionHandler def call(self, cmd, ins): func = self.ctx.function(ins.imm.function_index) # Map stack to local variables cmd.local_frame_push(Type.from_wasm(func.type.param_types)) for i in range(func.type.param_count): cmd.local_set(i) cmd.stack().drop() # Actually execute function cmd.function(self.namespace, func.name) # Drop the stack frame cmd.local_frame_drop() # Register return value type self.types.stack.append(Type.from_wasm(func.type.return_type)) @InstructionHandler def local_set(self, cmd, ins): cmd.local_set(ins.imm.local_index) cmd.stack().drop() @InstructionHandler def local_get(self, cmd, ins): cmd.local_get(ins.imm.local_index) @InstructionHandler def local_tee(self, cmd, ins): cmd.local_set(ins.imm.local_index)
jD91mZM2/MCWASM
src/transpiler.py
from collections import defaultdict, namedtuple from enum import Enum import wasm from cmds import CmdGenerator from instructions import InstructionTable from value_types import Type class ExportKind(Enum): FUNCTION = 0x0 TABLE = 0x1 MEMORY = 0x2 GLOBAL = 0x3 Function = namedtuple("Function", ["name", "type", "body"]) Export = namedtuple("Export", ["name", "kind", "value"]) condition_counter = 0 class Context: def __init__(self, bytecode): sections = iter(wasm.decode_module(bytecode)) # First section is the header header, header_data = next(sections) print(header.to_string(header_data)) # TODO remove self.header = header self.header_data = header_data # Following sections are specified at # https://webassembly.github.io/spec/core/binary/modules.html#sections self.types = [] self.func_types = [] self.functions = [] self.exports = [] for section, section_data in sections: # Debug print. TODO remove or use proper logging interface print(section.to_string(section_data)) if type(section) == wasm.Section: if section_data.id == wasm.SEC_CODE: self.functions += section_data.payload.bodies elif section_data.id == wasm.SEC_TYPE: self.types += section_data.payload.entries elif section_data.id == wasm.SEC_FUNCTION: self.func_types += section_data.payload.types elif section_data.id == wasm.SEC_EXPORT: self.exports += section_data.payload.entries def export(self, i): export = self.exports[i] # TODO support more types? if export.kind == ExportKind.FUNCTION.value: return Export( name=bytearray(export.field_str).decode("UTF-8"), kind=ExportKind.FUNCTION, value=self.function(export.index), ) def iter_exports(self): return map(self.export, range(len(self.exports))) def function(self, i): return Function( name="func_" + str(i), type=self.types[self.func_types[i]], body=self.functions[i], ) def iter_functions(self): return map(self.function, range(len(self.functions))) def transpile(self, func, namespace): outputs = defaultdict(lambda: []) instruction_table = InstructionTable(self, func, namespace) if func.body.local_count > 0: cmd = CmdGenerator([]) cmd.comment("Reserve space for local variables (other than args)") cmd.local_frame_reserve(Type.from_wasm_locals(func.body.locals)) outputs[func.name].append(cmd.output) prologue = instruction_table.prologue() if prologue is not None: outputs[func.name].append(prologue) for instruction in wasm.decode_bytecode(func.body.code): commands, out = instruction_table.handle(instruction) outputs[out].append(commands) epilogue = instruction_table.epilogue() if epilogue is not None: outputs[func.name].append(epilogue) for out in outputs: outputs[out] = "\n".join(outputs[out]) return outputs
jD91mZM2/MCWASM
src/cmds.py
from value_types import Type, Value class WithGuard: def __init__(self, restore): self.restore = restore def __enter__(self): pass def __exit__(self, type, value, traceback): self.restore() class CmdGenerator: def __init__(self, execute_params, types=None): self.output = "" self.types = types self.execute_params = execute_params # Add a comment to the output, just to keep the output somewhat navigatable def comment(self, text): self.output += "# " + text + "\n" # Execute a raw Minecraft command. For portability reasons with upcoming # releases, this should be executed from as few places as possible. def execute(self, line): params = list(filter(lambda x: x is not None, self.execute_params)) if params: self.output += ( "execute " + " ".join(params) + " run " + line + "\n" ) else: self.output += line + "\n" # Adds a parameter to the `execute` command that may surround the # function. Supposed to be used with a `with` statement which drops the # parameter when the with construct is exited. def execute_param(self, param): self.execute_params.append(param) return WithGuard(lambda: self.execute_params.pop()) # Removes all `execute` parameters temporarily, so this will run regardless # of if the function has been returned or anything! def no_execute_params(self): old = self.execute_params self.execute_params = [] def restore(): self.execute_params = old return WithGuard(restore) # Set a static value to the scoreboard def set_scoreboard(self, score, value): self.execute(f"scoreboard players set {score} wasm {value}") # Return the main stack def stack(self): return Stack(self, "Stack", self.types.stack) # Return the stack of conditionals def conditions(self): return Stack(self, "Conditions", self.types.conditions) # Add a new local variable list, setting each value to zero initially # # NOTE: Unlike the stack, this does not update the type list. So make sure # you don't rely on frames for much more than calling a function. def local_frame_push(self, types): nbt = map( lambda t: ( f"{t[0].name}: [{', '.join([str(Value(t[0], 0))] * t[1])}]" ), Type.count(types).items(), ) self.execute( f"data modify storage wasm Locals append value " f"{{{', '.join(nbt)}}}" ) # Drop the top local variable list. # # NOTE: Unlike the stack, this does not update the type list. So make sure # you don't rely on frames for much more than calling a function. def local_frame_drop(self): self.execute("data remove storage wasm Locals[-1]") # Reserve extra local variable space # # NOTE: Unlike the stack, this does not update the type list. So make sure # you don't rely on frames for much more than calling a function. def local_frame_reserve(self, types): for ty in types: self.execute( f"data modify storage wasm Locals[-1].{ty.name} append " f"value {Value(ty, 0)}" ) # Get local def local_get(self, local_index): ty = self.types.locals[local_index] self.types.stack.append(ty) self.execute( f"data modify storage wasm Stack.{ty.name} append " f"from storage wasm Locals[-1].{ty.name}[{local_index}]" ) # Set local def local_set(self, local_index): ty = self.types.stack[-1] assert ty == self.types.locals[local_index] self.execute( f"data modify storage wasm Locals[-1].{ty.name}[{local_index}] " f"set from storage wasm Stack.{ty.name}[-1]" ) # Run a function def function(self, namespace, func): self.execute(f"function {namespace}:{func}") class Stack: def __init__(self, cmd, name, types): self.cmd = cmd self.name = name self.types = types # Push a static value to the stack def push(self, value): self.types.append(value.type) self.cmd.execute( f"data modify storage wasm {self.name}.{value.tyname} " f"append value {value}" ) # Discard the top of the stack def drop(self): ty = self.types.pop() self.cmd.execute(f"data remove storage wasm {self.name}.{ty.name}[-1]") # Copy the top level value from another stack def push_from(self, other): ty = other.types[-1] self.types.append(ty) self.cmd.execute( f"data modify storage wasm {self.name}.{ty.name} append from " f"storage wasm {other.name}.{ty.name}[-1]" ) # Set the top value of the stack def set(self, value): value = value.cast(self.types[-1]) self.cmd.execute( f"data modify storage wasm {self.name}.{value.tyname}[-1] " f"set value {value}" ) # Copy the top level value to another stack, and assign it in-place def set_from(self, other): if self.types[-1] == other.types[-1]: self.drop() self.push_from(other) else: ty = self.types[-1] self.cmd.execute( f"data modify storage wasm {self.name}.{ty.name}[-1] set from " f"storage wasm {other.name}.{ty.name}[-1]" ) # Load a value from the stack to the scoreboard, where the index is an # offset from the top of the stack. def load_to_scoreboard(self, score): ty = self.types[-1] with self.cmd.execute_param(f"store result score {score} wasm"): self.cmd.execute( f"data get storage wasm {self.name}.{ty.name}[-1]" ) # Load a value from the scoreboard to the stack, where the index is an # offset from the top of the stack. def load_from_scoreboard(self, score): ty = self.types[-1] with self.cmd.execute_param( f"store result storage wasm {self.name}.{ty.name}[-1] " f"{ty.mc_name} 1" ): self.cmd.execute(f"scoreboard players get {score} wasm") # Run a mathematical operation on the top two values on the stack def operation(self, op): # Note: Since it's a stack we want to grab the second operand first! self.load_to_scoreboard("rhs") self.drop() self.load_to_scoreboard("lhs") ty = self.types[-1] with self.cmd.execute_param( f"store result storage wasm {self.name}.{ty.name}[-1] " f"{ty.mc_name} 1" ): self.cmd.execute( f"scoreboard players operation lhs wasm {op} rhs wasm" )
jD91mZM2/MCWASM
src/value_types.py
<reponame>jD91mZM2/MCWASM<gh_stars>1-10 from collections import defaultdict, namedtuple import wasm class Type(namedtuple( "Type", ["name", "python_type", "format_spec", "mc_name"] )): def __str__(self): return self.name def __repr__(self): return self.__str__() def from_wasm(type_ids): if not isinstance(type_ids, list): return { wasm.LANG_TYPE_I32: Type.I32, wasm.LANG_TYPE_I64: Type.I64, wasm.LANG_TYPE_F32: Type.F32, wasm.LANG_TYPE_F64: Type.F64, }[type_ids] else: return list(map(Type.from_wasm, type_ids)) def from_wasm_locals(local_entries): types = [] for entry in local_entries: types += [Type.from_wasm(entry.type)] * entry.count return types def count(types): counted = defaultdict(lambda: 0) for ty in types: counted[ty] += 1 return counted Type.I32 = Type("i32", int, "{}", "int") Type.I64 = Type("i64", int, "{}l", "long") Type.F32 = Type("f32", float, "{}f", "float") Type.F64 = Type("f64", float, "{}d", "double") class Types: def __init__(self): self.stack = [] self.conditions = [] self.locals = [] class Value: def __init__(self, type, value): self.type = type self.value = value def i32(value): return Value(Type.I32, value) def i64(value): return Value(Type.I64, value) def f32(value): return Value(Type.F32, value) def f64(value): return Value(Type.F64, value) @property def tyname(self): return self.type.name def cast(self, type): return Value(type, type.python_type(self.value)) def __str__(self): return self.type.format_spec.format(self.value) def __repr__(self): return self.__str__()
jD91mZM2/MCWASM
src/main.py
<reponame>jD91mZM2/MCWASM<gh_stars>1-10 from argparse import ArgumentParser from pathlib import Path from string import Template import json import shutil import sys import transpiler parser = ArgumentParser(description="Convert WASM to .mcfunction") parser.add_argument("input", help="The .wasm file to input") parser.add_argument( "out_dir", type=Path, help="The functions directory to pop all functions", ) parser.add_argument( "--namespace", help="The datapack's namespace", ) parser.add_argument( "--force", action="store_true", help="Don't prompt before deleting any previous directory", ) args = parser.parse_args() with open(args.input, "rb") as f: bytecode = f.read() ctx = transpiler.Context(bytecode) # Start generation: Copy over template if args.out_dir.exists(): if not args.force: print( "Directory already exists! Are you sure you wish " "to delete its contents?" ) print("Pass --force to be noninteractive") verification = input("Enter 'yes': ") if verification != "yes": print("Did not verify") sys.exit(1) shutil.rmtree(args.out_dir) shutil.copytree( Path(__file__).parent.with_name("template"), args.out_dir, ) if args.namespace is None: args.namespace = args.out_dir.name data_dir = args.out_dir.joinpath("data") namespace_dir = data_dir.joinpath(args.namespace) shutil.move(data_dir.joinpath("$namespace"), namespace_dir) # Substitute tag load_file = data_dir.joinpath("minecraft", "tags", "functions", "load.json") with load_file.open("r+") as f: original = f.read() processed = Template(original).substitute(namespace=args.namespace) f.seek(0) f.truncate(0) f.write(processed) # Generate functions functions_dir = namespace_dir.joinpath("functions") for func in ctx.iter_functions(): outputs = ctx.transpile(func, args.namespace) for out, text in outputs.items(): path = functions_dir.joinpath(out + ".mcfunction") with path.open("w") as f: f.write(text) # Create tags for all exports tag_dir = namespace_dir.joinpath("tags", "functions") tag_dir.mkdir(parents=True) for export in filter(lambda e: e is not None, ctx.iter_exports()): path = tag_dir.joinpath(export.name + ".json") with path.open("w") as f: f.write(json.dumps({ "values": [ f"{args.namespace}:{export.value.name}", f"{args.namespace}:post_function" ] }))
whtsky/font-rename
font_rename.py
<reponame>whtsky/font-rename<filename>font_rename.py #!/usr/bin/env python3 import argparse from pathlib import Path from typing import List import cchardet as chardet from fontTools.ttLib import TTCollection from fontTools.ttLib import TTFont from fontTools.ttLib.tables._n_a_m_e import NameRecord from fontTools.ttLib.tables._n_a_m_e import table__n_a_m_e as NameTable PREFERRED_IDS = ( (3, 1, 0x0C04), (3, 1, 0x0804), (3, 1, 0x0404), (3, 1, 0x0411), (1, 0, 0), ) FAMILY_RELATED_IDS = dict( LEGACY_FAMILY=1, TRUETYPE_UNIQUE_ID=3, FULL_NAME=4, POSTSCRIPT_NAME=6, PREFERRED_FAMILY=16, WWS_FAMILY=21, ) PREFERRED_NAME_IDS = ( FAMILY_RELATED_IDS["FULL_NAME"], FAMILY_RELATED_IDS["POSTSCRIPT_NAME"], FAMILY_RELATED_IDS["PREFERRED_FAMILY"], FAMILY_RELATED_IDS["LEGACY_FAMILY"], ) def decode_name(name: NameRecord) -> str: try: return name.toUnicode().strip() except: raw = name.toBytes() guess = chardet.detect(raw) return raw.decode(guess["encoding"]).strip() def get_current_family_name(table: NameTable) -> str: for plat_id, enc_id, lang_id in PREFERRED_IDS: for name_id in PREFERRED_NAME_IDS: family_name_rec = table.getName( nameID=name_id, platformID=plat_id, platEncID=enc_id, langID=lang_id ) if family_name_rec: return decode_name(family_name_rec) for name_id in PREFERRED_NAME_IDS: results: List[str] = [] for name_record in table.names: if name_record.nameID == name_id: results.append(decode_name(name_record)) if results: return sorted(results, key=len)[-1] raise ValueError("family name not found; can't add suffix") def get_font_name(font: TTFont): return get_current_family_name(font["name"]) def rename_font(filepath: Path, remove_unparsable: bool) -> None: try: font = TTFont(str(filepath.resolve())) except: if remove_unparsable: print(f"Failed to parse {filepath}, removing") filepath.unlink() return else: print(f"Failed to parse {filepath}, ignore") return new_path = filepath.parent / f"{get_font_name(font)}{filepath.suffix.lower()}" if filepath != new_path: if new_path.exists(): print(f"{new_path} exist, remove: {filepath}") filepath.unlink() else: print(f"{filepath} -> {new_path}") filepath.rename(new_path) def unpack_ttc(filepath: Path) -> None: try: collection = TTCollection(str(filepath.resolve())) except: print(f"Failed to parse {filepath}, ignore") return for font in collection.fonts: ttf_path = filepath.parent / f"{get_font_name(font)}.ttf" font.save(ttf_path) print(f"{filepath} -> {ttf_path}") filepath.unlink() def unpack_otc(filepath: Path) -> None: try: collection = TTCollection(str(filepath.resolve())) except: print(f"Failed to parse {filepath}, ignore") return for font in collection.fonts: ttf_path = filepath.parent / f"{get_font_name(font)}.otf" font.save(ttf_path) print(f"{filepath} -> {ttf_path}") filepath.unlink() def handle_file(filepath: Path, remove_unparsable: bool) -> None: suffix = filepath.suffix.lower() if suffix == ".ttc": unpack_ttc(filepath) elif suffix == ".otc": unpack_otc(filepath) else: rename_font(filepath, remove_unparsable=remove_unparsable) def handle_path(path: Path, remove_unparsable: bool) -> None: if path.stem.startswith("."): return if path.is_dir(): for f in path.iterdir(): handle_path(f, remove_unparsable=remove_unparsable) else: handle_file(path, remove_unparsable=remove_unparsable) def main() -> None: parser = argparse.ArgumentParser() parser.add_argument( "-ru", "--remove-unparsable", dest="remove_unparsable", action="store_true", help="Remove unparsable fonts instead of ignore", ) parser.add_argument("files", nargs="+") args = parser.parse_args() for path in args.files: handle_path(Path(path), remove_unparsable=args.remove_unparsable) if __name__ == "__main__": main()
Marcelo-Augusto-Silva/Programa-que-encontrar-emails-e-telefones-em-textos
principal.py
import re def email(txt): email = re.compile('([a-zA-Z0-9._%+-]+)' # Nome do usuario '(@[a-zA-Z0-9]+)' # dominio '(\.[a-zA-Z]{2,4})') # depois do .com procurar = email.findall(txt) return procurar def numero(num): numero_celular = re.compile('(\(\d{2}\)|\d{2})?' # Encontrar o DDD do telefone '( ?\d{5})' # encontrar os cincos primeiros numeros '(\s|-|\.)?' # ve se ele separa com um - espaco ou um ponto '(\d{4})') # encontrar os 4 ultimos numeros procurar = numero_celular.findall(num) return procurar texto = str(input('Cole o texto para encontrar emails e telefones ')) numeros = [] emails = [] try: numeros.append(numero(texto)) if numeros[0][0] == None: print('erro') for c in numeros: print('Encontrei os seguintes numeros ') for n in range(0,len(c)): print(''.join(numeros[0][n])) except: print('Não encontrei nenhum numero telefonico') try: emails.append(email(texto)) if emails[0][0] == None: print('erro') for c in emails: print('Encontrei os seguintes emails') for n in range(0,len(c)): print(''.join(emails[0][n])) except: print('Não encontrei nenhum email')
rberrelleza/cuelake
api/workflows/serializers.py
import json from rest_framework import serializers # from django_celery_beat.models import CrontabSchedule from workflows.models import Workflow, WorkflowRun, NotebookJob class WorkflowSerializer(serializers.ModelSerializer): """ Serializer for the model NotebookJob """ triggerWorkflow = serializers.SerializerMethodField() lastRun = serializers.SerializerMethodField() schedule = serializers.SerializerMethodField() notebooks = serializers.SerializerMethodField() def get_triggerWorkflow(self, obj): """ Gets name of depends on Workflow """ if not obj.triggerWorkflow: return None return {'id': obj.triggerWorkflow.id, 'name': obj.triggerWorkflow.name} def get_lastRun(self, obj): """ Gets last run time of workflow """ workflowRuns = obj.workflowrun_set.order_by("-startTimestamp") if workflowRuns.count(): return {"status": workflowRuns[0].status, "startTimestamp": workflowRuns[0].startTimestamp} else: return None def get_schedule(self, obj): """ Get schedule""" if not obj.crontab: return None return {'id': obj.crontab.id, 'name': str(obj.crontab)} def get_notebooks(self, obj): """Gets notebooks in workflow""" return list(NotebookJob.objects.filter(workflow=obj).values_list("notebookId", flat=True)) class Meta: model = Workflow fields = ["id", "name", "triggerWorkflow", "triggerWorkflowStatus", "lastRun", "schedule", "notebooks"] class WorkflowRunSerializer(serializers.ModelSerializer): """ Serializer for the model WorkflowRun """ class Meta: model = WorkflowRun fields = ["id", "status", "workflow", "startTimestamp", "endTimestamp"] # class RunStatusSerializer(serializers.ModelSerializer): # """ # Serializer for the model RunStatus # """ # logsJSON = serializers.SerializerMethodField() # def get_logsJSON(self, obj): # """ # Gets logs in JSON form # """ # return json.loads(obj.logs) # class Meta: # model = RunStatus # fields = ["id", "notebookId", "startTimestamp", "status", "logsJSON", "runType"]
rberrelleza/cuelake
api/workflows/views.py
from django.http import HttpRequest from rest_framework.views import APIView from rest_framework.response import Response from rest_framework.decorators import api_view from workflows.services import WorkflowServices, WorkflowActions class Workflows(APIView): """ Class to get and post workflows """ def get(self, request, offset: int): """Gets all workflows""" res = WorkflowServices.getWorkflows(offset) return Response(res.json()) def post(self, request): data = request.data name = data.get("name", "") scheduleId = data.get("scheduleId", "") triggerWorkflowId = data.get("triggerWorkflowId", "") triggerWorkflowStatus = data.get("triggerWorkflowStatus", "") notebookIds = data.get("notebookIds", []) if 'id' in data and data['id']: res = WorkflowServices.updateWorkflow(data['id'], name, scheduleId, triggerWorkflowId, triggerWorkflowStatus, notebookIds) else: res = WorkflowServices.createWorkflow(name, scheduleId, triggerWorkflowId, triggerWorkflowStatus, notebookIds) return Response(res.json()) class Workflow(APIView): """ Class to get and post workflows """ def delete(self, request, workflowId: int): res = WorkflowServices.deleteWorkflow(workflowId) return Response(res.json()) class WorkflowRun(APIView): """ Class to get and post WorkflowRun """ def get(self, request, workflowId: int, offset: int): """Gets all workflows runs associated with given workflow :param workflowId: id of Workflows.Workflow """ res = WorkflowServices.getWorkflowRuns(workflowId, offset) return Response(res.json()) class RunWorkflow(APIView): """ Class to manually run workflows """ def get(self, request, workflowId: int): """Gets all workflows runs associated with given workflow :param workflowId: id of Workflows.Workflow """ res = WorkflowActions.runWorkflow(workflowId) return Response(res.json()) class StopWorkflow(APIView): """ Class to manually stop workflows """ def get(self, request, workflowId: int): """Gets all workflows runs associated with given workflow :param workflowId: id of Workflows.Workflow """ res = WorkflowActions.stopWorkflow(workflowId) return Response(res.json()) class WorkflowRunLog(APIView): """ Class to get and post WorkflowRun """ def get(self, request, workflowId: int): """Gets all workflows runs associated with given workflow :param workflowId: id of Workflows.Workflow """ res = WorkflowServices.getWorkflowRunLogs(workflowId) return Response(res.json()) class UpdateTriggerWorkflow(APIView): """ Class to update trigger workflow associated with workflow """ def post(self, request, workflowId: int): """ Updated trigger workflow """ data = request.data triggerWorkflowId = data.get("triggerWorkflowId", "") triggerWorkflowStatus = data.get("triggerWorkflowStatus", "") res = WorkflowServices.updateTriggerWorkflow(workflowId, triggerWorkflowId, triggerWorkflowStatus) return Response(res.json()) class UpdateSchedule(APIView): """ Class to update schedule associated with workflow """ def post(self, request, workflowId: int): """ Updated trigger workflow """ data = request.data scheduleId = data.get("scheduleId", "") res = WorkflowServices.updateSchedule(workflowId, scheduleId) return Response(res.json())
rberrelleza/cuelake
api/genie/admin.py
<reponame>rberrelleza/cuelake<filename>api/genie/admin.py from django.contrib import admin from genie.models import NotebookJob, RunStatus, Connection, ConnectionType, ConnectionParam, ConnectionParamValue, NotebookTemplate class RunStatusAdmin(admin.ModelAdmin): # Adding starttimestamp in a new modelAdmin class as its a readonly field # to make it visible in the admin panel readonly_fields = ('startTimestamp',) admin.site.register(NotebookJob) admin.site.register(RunStatus, RunStatusAdmin) admin.site.register(Connection) admin.site.register(ConnectionType) admin.site.register(ConnectionParam) admin.site.register(ConnectionParamValue) admin.site.register(NotebookTemplate)
rberrelleza/cuelake
api/genie/migrations/0005_auto_20210414_1316.py
<gh_stars>0 # Generated by Django 3.1.7 on 2021-04-14 13:16 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('genie', '0004_auto_20210414_1012'), ] operations = [ migrations.AlterField( model_name='connectionparam', name='properties', field=models.JSONField(blank=True, null=True), ), ]
rberrelleza/cuelake
api/workflows/migrations/0003_auto_20210426_1919.py
<gh_stars>0 # Generated by Django 3.1.8 on 2021-04-26 19:19 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('workflows', '0002_auto_20210421_0926'), ] operations = [ migrations.RenameField( model_name='workflow', old_name='dependsOnWorkflow', new_name='triggerWorkflow', ), migrations.RenameField( model_name='workflow', old_name='dependsOnWorkflowStatus', new_name='triggerWorkflowStatus', ), ]
rberrelleza/cuelake
api/system/migrations/0003_auto_20210418_0738.py
# Generated by Django 3.1.7 on 2021-04-18 07:38 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('system', '0002_auto_20210418_0735'), ] operations = [ migrations.AlterField( model_name='accountsetting', name='value', field=models.TextField(blank=True), ), ]
rberrelleza/cuelake
api/genie/migrations/0002_auto_20210318_1404.py
<reponame>rberrelleza/cuelake<filename>api/genie/migrations/0002_auto_20210318_1404.py # Generated by Django 3.1.7 on 2021-03-18 14:04 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('genie', '0001_initial'), ] operations = [ migrations.AlterField( model_name='notebookjob', name='notebookId', field=models.CharField(db_index=True, max_length=50, unique=True), ), migrations.CreateModel( name='RunStatus', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('timestamp', models.DateTimeField(auto_now_add=True)), ('logs', models.TextField(default='{}')), ('status', models.CharField(max_length=7)), ('notebookJob', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='genie.notebookjob')), ], ), ]
rberrelleza/cuelake
api/genie/migrations/0009_merge_0008_runstatus_worflowrun_0008_schedule.py
<reponame>rberrelleza/cuelake # Generated by Django 3.2 on 2021-05-04 02:19 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('genie', '0008_runstatus_worflowrun'), ('genie', '0008_schedule'), ] operations = [ ]
rberrelleza/cuelake
api/genie/tasks.py
<gh_stars>0 import json import datetime as dt import dateutil.parser as dp import requests import polling from celery import shared_task from django.conf import settings from genie.models import NotebookJob, RunStatus, NOTEBOOK_STATUS_SUCCESS, NOTEBOOK_STATUS_ERROR, NOTEBOOK_STATUS_RUNNING, NOTEBOOK_STATUS_FINISHED, NOTEBOOK_STATUS_ABORT from system.services import NotificationServices from utils.zeppelinAPI import Zeppelin import logging # Get an instance of a logger logger = logging.getLogger(__name__) @shared_task def runNotebookJob(notebookId: str, runStatusId: int = None, runType: str = "Scheduled"): """ Celery task to run a zeppelin notebook :param notebookId: ID of the zeppelin notebook which to run :param runStatusId: ID of genie.runStatus model """ if not runStatusId: runStatus = RunStatus.objects.create(notebookId=notebookId, status=NOTEBOOK_STATUS_RUNNING, runType=runType) else: runStatus = RunStatus.objects.get(id=runStatusId) runStatus.startTimestamp = dt.datetime.now() runStatus.save() try: # Check if notebook is already running isRunning, notebookName = checkIfNotebookRunning(notebookId) if(isRunning): runStatus.status=NOTEBOOK_STATUS_ERROR runStatus.message="Notebook already running" runStatus.save() else: # Clear notebook results Zeppelin.clearNotebookResults(notebookId) response = Zeppelin.runNotebookJob(notebookId) if response: try: polling.poll( lambda: checkIfNotebookRunningAndStoreLogs(notebookId, runStatus) != True, step=3, timeout=3600 ) except Exception as ex: runStatus.status = NOTEBOOK_STATUS_ERROR runStatus.message = str(ex) runStatus.save() NotificationServices.notify(notebookName=notebookName, isSuccess=False, message=str(ex)) else: runStatus.status=NOTEBOOK_STATUS_ERROR runStatus.message = "Failed running notebook" runStatus.save() except Exception as ex: runStatus.status=NOTEBOOK_STATUS_ERROR runStatus.message = str(ex) runStatus.save() NotificationServices.notify(notebookName=notebookName, isSuccess=False, message=str(ex)) def checkIfNotebookRunning(notebookId: str): response = Zeppelin.getNotebookDetails(notebookId) isNotebookRunning = response.get("info", {}).get("isRunning", False) notebookName = response.get("name", "Undefined") return isNotebookRunning, notebookName def checkIfNotebookRunningAndStoreLogs(notebookId, runStatus): response = Zeppelin.getNotebookDetails(notebookId) runStatus.logs = json.dumps(response) runStatus.save() isNotebookRunning = response.get("info", {}).get("isRunning", False) if not isNotebookRunning: setNotebookStatus(response, runStatus) return isNotebookRunning def setNotebookStatus(response: dict, runStatus: RunStatus): paragraphs = response.get("paragraphs", []) notebookName = response.get("name", "Undefined") for paragraph in paragraphs: if paragraph.get("status") != "FINISHED": runStatus.status=NOTEBOOK_STATUS_ERROR runStatus.save() NotificationServices.notify(notebookName=notebookName, isSuccess=False, message=paragraph.get("title") + " " + paragraph.get("id") + " failed") return runStatus.status=NOTEBOOK_STATUS_SUCCESS runStatus.save() NotificationServices.notify(notebookName=notebookName, isSuccess=True, message="Run successful")
rberrelleza/cuelake
api/genie/serializers.py
<reponame>rberrelleza/cuelake import json from rest_framework import serializers from django_celery_beat.models import CrontabSchedule from genie.models import NotebookJob, RunStatus, Connection, ConnectionType, NotebookTemplate, Schedule class NotebookJobSerializer(serializers.ModelSerializer): """ Serializer for the model NotebookJob """ class Meta: model = NotebookJob fields = ["id", "notebookId"] class RunStatusSerializer(serializers.ModelSerializer): """ Serializer for the model RunStatus """ logsJSON = serializers.SerializerMethodField() def get_logsJSON(self, obj): """ Gets logs in JSON form """ return json.loads(obj.logs) class Meta: model = RunStatus fields = ["id", "notebookId", "startTimestamp", "status", "logsJSON", "runType"] class ScheduleSerializer(serializers.ModelSerializer): """ Serializer for the model CrontabSchedule """ schedule = serializers.SerializerMethodField() crontab = serializers.SerializerMethodField() timezone = serializers.SerializerMethodField() notebookCount = serializers.SerializerMethodField() workflowCount = serializers.SerializerMethodField() def get_schedule(self, obj): """ Gets string form of the crontab """ return str(obj) def get_timezone(self, obj): """ Gets schedule timezone""" return str(obj.timezone) def get_crontab(self, obj): """Gets schedule crontab """ return str(obj.crontab) def count(self, obj): """Count number of workflow and notebook assinged with schedule """ workflow= 0 notebook = 0 schedule = Schedule.objects.get(id= obj.id) scheduleJob = list(schedule.periodictask_set.values()) for listItem in scheduleJob: if "task" in listItem and listItem["task"]: notebook+=1 if "task" in listItem and not listItem["task"]: workflow +=1 return [notebook,workflow] def get_notebookCount(self,obj): """Gets assigned notebook count """ scheduleCount= self.count(obj) return scheduleCount[0] def get_workflowCount(self, obj): """Gets assigned workflow count """ scheduleCount= self.count(obj) return scheduleCount[1] class Meta: model = Schedule fields = ["id", "schedule","name","timezone","crontab","notebookCount","workflowCount"] # Connection Serializers class ConnectionSerializer(serializers.ModelSerializer): connectionTypeId = serializers.SerializerMethodField() connectionType = serializers.SerializerMethodField() def get_connectionTypeId(self, obj): return obj.connectionType.id def get_connectionType(self, obj): return obj.connectionType.name class Meta: model = Connection fields = [ "id", "name", "description", "connectionTypeId", "connectionType", ] class ConnectionDetailSerializer(serializers.ModelSerializer): params = serializers.SerializerMethodField() connectionTypeId = serializers.SerializerMethodField() connectionType = serializers.SerializerMethodField() def get_params(self, obj): params = {} for val in obj.cpvc.all(): params[val.connectionParam.name] = val.value if not val.connectionParam.isEncrypted else "**********" return params def get_connectionTypeId(self, obj): return obj.connectionType.id def get_connectionType(self, obj): return obj.connectionType.name class Meta: model = Connection fields = [ "id", "name", "description", "params", "connectionTypeId", "connectionType", ] class ConnectionTypeSerializer(serializers.ModelSerializer): params = serializers.SerializerMethodField() def get_params(self, obj): paramList = [] for param in obj.connectionTypeParam.all(): params = {} params["id"] = param.id params["name"] = param.name params["label"] = param.label params["isEncrypted"] = param.isEncrypted params["properties"] = param.properties paramList.append(params) return paramList class Meta: model = ConnectionType fields = ["id", "name", "params"] class NotebookTemplateSerializer(serializers.ModelSerializer): """ Serializer for the model NotebookJob """ class Meta: model = NotebookTemplate fields = ["id", "name", "formJson"]
rberrelleza/cuelake
api/workflows/services.py
<gh_stars>0 from typing import List import asyncio import json import pytz import time from django.db import transaction import polling from workflows.models import ( Workflow, WorkflowRun, NotebookJob, STATUS_SUCCESS, STATUS_FAILURE, STATUS_ALWAYS, STATUS_RUNNING, STATUS_RECEIVED, STATUS_ABORTED ) from workflows.serializers import WorkflowSerializer, WorkflowRunSerializer from utils.apiResponse import ApiResponse from utils.zeppelinAPI import Zeppelin from genie.tasks import runNotebookJob as runNotebookJobTask from genie.services import NotebookJobServices from genie.models import RunStatus, NOTEBOOK_STATUS_RUNNING, NOTEBOOK_STATUS_SUCCESS from django_celery_beat.models import CrontabSchedule # Name of the celery task which calls the zeppelin api CELERY_TASK_NAME = "genie.tasks.runNotebookJob" class WorkflowServices: """ Class containing services related to NotebookJob model """ @staticmethod def getWorkflows(offset: int = 0): """ Service to fetch and serialize Workflows :param offset: Offset for fetching NotebookJob objects """ LIMIT = 10 res = ApiResponse(message="Error retrieving workflows") workflows = Workflow.objects.filter(enabled=True).order_by("-id") total = workflows.count() data = WorkflowSerializer(workflows[offset:LIMIT], many=True).data res.update( True, "Workflows retrieved successfully", {"total": total, "workflows": data}, ) return res @staticmethod @transaction.atomic def createWorkflow( name: str, scheduleId: int, triggerWorkflowId: int, triggerWorkflowStatus: str, notebookIds: List[int], ): """ Creates workflow :param name: name of new workflow :param scheduleId: crontab id :param triggerWorkflowId: id of workflow which triggers this workflow :param triggerWorkflowStatus: ["success", "failure", "always"] required status of triggerWorkflow to trigger this workflow :param notebookIds: notebookIds for workflow """ res = ApiResponse(message="Error in creating workflow") if not scheduleId: # to avoid error: 'One of clocked, interval, crontab, or solar must be set.' crontab = CrontabSchedule.objects.create() workflow = Workflow.objects.create( name=name, crontab_id=scheduleId if scheduleId else crontab.id, triggerWorkflow_id=triggerWorkflowId, triggerWorkflowStatus=triggerWorkflowStatus, ) if not scheduleId: # removing fake crontab id & deleting it workflow.crontab_id = scheduleId workflow.save() crontab.delete() notebookJobs = [ NotebookJob(workflow=workflow, notebookId=notebookId) for notebookId in notebookIds ] NotebookJob.objects.bulk_create(notebookJobs) res.update(True, "Workflow created successfully", workflow.id) return res @staticmethod @transaction.atomic def updateWorkflow( id: int, name: str, scheduleId: int, triggerWorkflowId: int, triggerWorkflowStatus: str, notebookIds: List[int], ): """ Updates workflow :param name: name of new workflow :param scheduleId: crontab id :param triggerWorkflowId: id of workflow which triggers this workflow :param triggerWorkflowStatus: ["success", "failure", "always"] required status of triggerWorkflow to trigger this workflow :param notebookIds: notebookIds for workflow """ res = ApiResponse(message="Error in updating workflow") workflow = Workflow.objects.filter(id=id).update( name=name, crontab_id=scheduleId, triggerWorkflow_id=triggerWorkflowId, triggerWorkflowStatus=triggerWorkflowStatus, ) NotebookJob.objects.filter(workflow_id=id).delete() notebookJobs = [ NotebookJob(workflow_id=id, notebookId=notebookId) for notebookId in notebookIds ] NotebookJob.objects.bulk_create(notebookJobs) try: if workflow: res.update(True, "Workflow updated successfully", workflow) except: res.update(False, "Error in updating workflow") return res @staticmethod def deleteWorkflow(workflowId: int): """ Delete workflow :param workflowId: id of Workflows.Workflow """ res = ApiResponse(message="Error in deleting workflow logs") count = Workflow.objects.filter(id=workflowId).update(enabled=False) res.update(True, "Workflow delete successfully") return res @staticmethod def getWorkflowRuns(workflowId: int, offset: int): """ Service to fetch and serialize workflows runs :param workflowId: id of Workflows.Workflow """ LIMIT = 10 res = ApiResponse(message="Error in retrieving workflow logs") workflowRuns = WorkflowRun.objects.filter(enabled=True, workflow=workflowId).order_by("-id") total = workflowRuns.count() data = WorkflowRunSerializer(workflowRuns[offset:LIMIT], many=True).data res.update( True, "WorkflowRuns retrieved successfully", {"total": total, "workflowRuns": data}, ) return res @staticmethod def getWorkflowRunLogs(workflowRunId: int): """ Service to fetch logs related to given workflowRun :param workflowRunId: if of model workflows.workflowRun """ res = ApiResponse(message="Error in retrieving workflow logs") workflowRun = WorkflowRun.objects.get(id=workflowRunId) total = [] res.update( True, "WorkflowRuns retrieved successfully", {"total": total, "workflowRunLogs": []}, ) return res @staticmethod def updateTriggerWorkflow(workflowId: int, triggerWorkflowId: int, triggerWorkflowStatus: int): """Update given workflow's trigger workflow""" res = ApiResponse(message="Error in updating trigger workflow") updateStatus = Workflow.objects.filter(id=workflowId).update(triggerWorkflow_id=triggerWorkflowId, triggerWorkflowStatus=triggerWorkflowStatus) res.update(True, "Trigger workflow updated successfully", updateStatus) return res @staticmethod def updateSchedule(workflowId: int, scheduleId: int): """Update given workflow's schedule""" res = ApiResponse(message="Error in updating workflow schedule") updateStatus = Workflow.objects.filter(id=workflowId).update(crontab_id=scheduleId) res.update(True, "Workflow schedule updated successfully", True) return res @staticmethod def runWorkflow(workflowId: int, workflowRunId: int = None): """ Runs workflow """ # TODO If workflow already notebookIds = list( NotebookJob.objects.filter(workflow_id=workflowId).values_list( "notebookId", flat=True ) ) if workflowRunId: workflowRun = WorkflowRun.objects.get(id=workflowRunId) workflowRun.status = STATUS_RUNNING workflowRun.save() else: workflowRun = WorkflowRun.objects.create( workflow_id=workflowId, status=STATUS_RUNNING ) notebookRunStatusIds = [] for notebookId in notebookIds: runStatus = RunStatus.objects.create( notebookId=notebookId, status=NOTEBOOK_STATUS_RUNNING, runType="Scheduled" ) runNotebookJobTask.delay(notebookId=notebookId, runStatusId=runStatus.id) notebookRunStatusIds.append(runStatus.id) workflowStatus = polling.poll( lambda: WorkflowServices.__checkGivenRunStatuses(notebookRunStatusIds) != "stillRunning", step=3, timeout=3600, ) if WorkflowRun.objects.get(id=workflowRunId).status == STATUS_ABORTED: return [] if workflowStatus: workflowRun.status = STATUS_SUCCESS workflowRun.save() else: workflowRun.status = STATUS_FAILURE workflowRun.save() dependentWorkflowIds = list( Workflow.objects.filter( triggerWorkflow_id=workflowId, triggerWorkflowStatus__in=[STATUS_ALWAYS, workflowRun.status], ).values_list("id", flat=True) ) return dependentWorkflowIds @staticmethod def __checkGivenRunStatuses(notebookRunStatusIds: List[int]): """Check if given runStatuses are status is SUCCESS""" if ( len(notebookRunStatusIds) == RunStatus.objects.filter(id__in=notebookRunStatusIds) .exclude(status=NOTEBOOK_STATUS_RUNNING) .count() ): return ( len(notebookRunStatusIds) == RunStatus.objects.filter( id__in=notebookRunStatusIds, status=NOTEBOOK_STATUS_SUCCESS ).count() ) return "stillRunning" class WorkflowActions: @staticmethod def runWorkflow(workflowId: int): """ Runs given workflow """ from workflows.tasks import runWorkflowJob res = ApiResponse(message="Error in running workflow") existingWorkflows = WorkflowRun.objects.filter(workflow_id=workflowId).order_by( "-startTimestamp" ) if existingWorkflows.count() and existingWorkflows[0].status in [ STATUS_RUNNING, STATUS_RECEIVED, ]: res.update(False, "Can't run already running workflow") return res workflowRun = WorkflowRun.objects.create( workflow_id=workflowId, status=STATUS_RECEIVED ) runWorkflowJob.delay(workflowId=workflowId, workflowRunId=workflowRun.id) res.update(True, "Ran workflow successfully") return res @staticmethod def stopWorkflow(workflowId: int): """ Stops given workflow """ res = ApiResponse(message="Error in stopping workflow") notebookIds = list( NotebookJob.objects.filter(workflow_id=workflowId).values_list( "notebookId", flat=True ) ) workflowRuns = WorkflowRun.objects.filter(workflow_id=workflowId).order_by("-startTimestamp") if workflowRuns.count(): workflowRun = workflowRuns[0] workflowRun.status = STATUS_ABORTED workflowRun.save() notebookIds = Workflow.objects.get(id=workflowId).notebookjob_set.all().values_list("notebookId", flat=True) responses = [ NotebookJobServices.stopNotebookJob(notebookId) for notebookId in notebookIds ] res.update(True, "Stopped workflow successfully") return res # @staticmethod # def addNotebook(payload): # res = ApiResponse(message="Error adding notebook") # notebookTemplate = NotebookTemplate.objects.get(id=payload.get("notebookTemplateId", 0)) # context = payload # Storing payload in context variable so that it can be used for rendering # # Handling connection variables # if payload.get("sourceConnection", False): # connection = Connection.objects.get(id=payload["sourceConnection"]) # connectionParams = connection.cpvc.all() # for cp in connectionParams: # paramName = cp.connectionParam.name # context["sourceConnection_" + paramName] = cp.value # if payload.get("targetConnection", False): # connection = Connection.objects.get(id=payload["sourceConnection"]) # connectionParams = connection.cpvc.all() # for cp in connectionParams: # paramName = cp.connectionParam.name # context["sourceConnection_" + paramName] = cp.value # # Handling S3 path - Splitting it to get the table name # if payload.get("destinationTableS3Path", False): # destinationTableName = payload["destinationTableS3Path"].rsplit('/', 1)[1] # warehouseLocation = payload["destinationTableS3Path"].rsplit('/', 1)[0] # context["destinationTableName"] = destinationTableName # context["warehouseLocation"] = warehouseLocation # # Adding a temp table name to the context # context["tempTableName"] = "tempTable_" + str(round(time.time() * 1000)) # notebook = Template(notebookTemplate.template).render(Context(context)) # response = Zeppelin.addNotebook(notebook) # if response: # res.update(True, "Notebook added successfully") # return res
rberrelleza/cuelake
api/genie/migrations/0003_auto_20210412_0719.py
<gh_stars>0 # Generated by Django 3.1.7 on 2021-04-12 07:19 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('genie', '0002_auto_20210318_1404'), ] operations = [ migrations.RenameField( model_name='runstatus', old_name='timestamp', new_name='startTimestamp', ), migrations.AddField( model_name='runstatus', name='endTimestamp', field=models.DateTimeField(default=None, null=True), ), migrations.AddField( model_name='runstatus', name='message', field=models.CharField(default=None, max_length=5000, null=True), ), ]
rberrelleza/cuelake
api/utils/zeppelinAPI.py
<filename>api/utils/zeppelinAPI.py import asyncio import aiohttp import requests from django.conf import settings from rest_framework import response NOTEBOOKS_ENDPOINT = "api/notebook" NOTEBOOK_STATUS_ENDPOINT = "api/notebook/job" class ZeppelinAPI: """ Functionalities around zeppelin APIs """ def getAllNotebooks(self): """ Return all notebooks from zeppelin """ response = requests.get(f"{settings.ZEPPELIN_HOST}:{settings.ZEPPELIN_PORT}/{NOTEBOOKS_ENDPOINT}") return self.__parseResponse(response) async def getNotebookStatus(self, notebookId: str): """ Async method to return status of all paragraphs from a notebook """ url = f"{settings.ZEPPELIN_HOST}:{settings.ZEPPELIN_PORT}/{NOTEBOOK_STATUS_ENDPOINT}/{notebookId}" defaultResponse = {"id": notebookId} try: async with aiohttp.ClientSession() as session: async with session.get(url) as response: responseJSON = await response.json() if responseJSON["status"] == "OK": return responseJSON["body"] else: return defaultResponse except Exception as ex: return defaultResponse def getNotebookDetails(self, notebookId: str): """ Return all paragraphs from a notebook """ response = requests.get(f"{settings.ZEPPELIN_HOST}:{settings.ZEPPELIN_PORT}/{NOTEBOOKS_ENDPOINT}/{notebookId}") return self.__parseResponse(response) def runNotebookJob(self, notebookId: str): """ Run all paragraphs from a notebook """ response = requests.post(f"{settings.ZEPPELIN_HOST}:{settings.ZEPPELIN_PORT}/{NOTEBOOKS_ENDPOINT}/job/{notebookId}") return self.__parseResponse(response) def stopNotebookJob(self, notebookId: str): """ Stop all paragraphs from a notebook """ response = requests.delete(f"{settings.ZEPPELIN_HOST}:{settings.ZEPPELIN_PORT}/{NOTEBOOKS_ENDPOINT}/job/{notebookId}") return self.__parseResponse(response) def clearNotebookResults(self, notebookId: str): """ Clear all paragraph results from a notebook """ response = requests.put(f"{settings.ZEPPELIN_HOST}:{settings.ZEPPELIN_PORT}/{NOTEBOOKS_ENDPOINT}/{notebookId}/clear") return self.__parseResponse(response) def addNotebook(self, notebook: dict): """ Clear all paragraph results from a notebook """ response = requests.post(f"{settings.ZEPPELIN_HOST}:{settings.ZEPPELIN_PORT}/{NOTEBOOKS_ENDPOINT}", notebook) return self.__parseResponse(response) def cloneNotebook(self, notebookId: str, payload: dict): """ Clear all paragraph results from a notebook """ response = requests.post(f"{settings.ZEPPELIN_HOST}:{settings.ZEPPELIN_PORT}/{NOTEBOOKS_ENDPOINT}/{notebookId}", payload) print(response.json()) print(payload) return self.__parseResponse(response) def deleteNotebook(self, notebookId: str): """ Clear all paragraph results from a notebook """ response = requests.delete(f"{settings.ZEPPELIN_HOST}:{settings.ZEPPELIN_PORT}/{NOTEBOOKS_ENDPOINT}/{notebookId}") return self.__parseResponse(response) def __parseResponse(self, response): """ Parses the response returned by zeppelin APIs """ try: responseJSON = response.json() if responseJSON["status"] == "OK": return responseJSON.get("body", True) else: return False except Exception as ex: return False # Export initalized class Zeppelin = ZeppelinAPI()
rberrelleza/cuelake
api/system/migrations/0002_auto_20210418_0735.py
<filename>api/system/migrations/0002_auto_20210418_0735.py<gh_stars>0 # Generated by Django 3.1.7 on 2021-04-18 07:35 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('system', '0001_initial'), ] operations = [ migrations.AddField( model_name='accountsetting', name='label', field=models.CharField(blank=True, max_length=200, null=True), ), migrations.AddField( model_name='accountsetting', name='type', field=models.CharField(default='text', max_length=200), ), migrations.AlterField( model_name='accountsetting', name='key', field=models.CharField(blank=True, max_length=200, null=True), ), ]
rberrelleza/cuelake
api/workflows/admin.py
from django.contrib import admin from workflows.models import Workflow, WorkflowRun, NotebookJob class WorkflowRunAdmin(admin.ModelAdmin): # Adding starttimestamp in a new modelAdmin class as its a readonly field # to make it visible in the admin panel readonly_fields = ('startTimestamp',) admin.site.register(Workflow) admin.site.register(WorkflowRun, WorkflowRunAdmin) admin.site.register(NotebookJob)
rberrelleza/cuelake
api/workflows/tasks.py
import json import datetime as dt import dateutil.parser as dp import requests import polling from celery import shared_task from django.conf import settings from system.services import NotificationServices from workflows.services import WorkflowServices from workflows.models import WorkflowRun, STATUS_RECEIVED, STATUS_FAILURE import logging # Get an instance of a logger logger = logging.getLogger(__name__) @shared_task def runWorkflowJob(workflowId: int, workflowRunId: int = None): """ Celery task to run a Workflow :param workflowId: ID of Workflows.workflow model """ try: dependentWorkflowIds = WorkflowServices.runWorkflow(workflowId=workflowId, workflowRunId=workflowRunId) for workflowId in dependentWorkflowIds: workflowRun = WorkflowRun.objects.create(workflow_id=workflowId, status=STATUS_RECEIVED) runWorkflowJob.delay(workflowId=workflowId, workflowRunId=workflowRun.id) except Exception as ex: WorkflowRun.objects.filter(id=workflowRunId).update(status=STATUS_FAILURE)
rberrelleza/cuelake
api/utils/druidSpecGenerator.py
<reponame>rberrelleza/cuelake # Class to generate Druid ingestion spec import json import os import logging from typing import List from urllib.parse import urlparse import boto3 import pyarrow.parquet as pq import s3fs PARQUET_STRING = ["STRING", "ENUM", "UUID"] PARQUET_COMPLEX_TYPE = ["LIST", "STRUCT"] PARQUET_INTEGER = ["INT"] PARQUET_TIMESTAMP = ["TIME", "TIMESTAMP", "DATE"] PARQUET_DECIMAL = ["DECIMAL"] logger = logging.getLogger(__name__) class DruidIngestionSpecGenerator: """ Class to handle functionality around Druid ingestion spec generation """ @staticmethod def getIngestionSpec(datasetLocation, datasourceName, datasetSchema): """ Method to generate Druid ingestion spec Method doesn't support complex druid data types right now. :param datasetLocation: S3 location of the dataset :param datasourceName Name of the dataset :param datasetSchema The schema of the dataset :returns DruidSpec """ logger.info("Generating Druid spec for dataset at: %s", datasetLocation) logger.info("Schema for dataset: %s", datasetSchema) return json.dumps( { "type": "index", "spec": { "dataSchema": { "dataSource": datasourceName, "timestampSpec": { "column": DruidIngestionSpecGenerator._getTimestampColumn(datasetSchema), "format": "millis", "missingValue": None, }, "dimensionsSpec": { "dimensions": DruidIngestionSpecGenerator._getDimensions(datasetSchema) }, "metricsSpec": DruidIngestionSpecGenerator._getMetrics(datasetSchema), "granularitySpec": { "type": "uniform", "segmentGranularity": "MONTH", "queryGranularity": "MINUTE", "rollup": True, "intervals": None, }, "transformSpec": {"filter": None, "transforms": []}, }, "ioConfig": { "type": "index", "inputSource": { "type": "s3", "uris": None, "prefixes": [datasetLocation], "objects": None, }, "inputFormat": { "type": "parquet", "flattenSpec": {"useFieldDiscovery": True, "fields": []}, "binaryAsString": False, }, "appendToExisting": False, }, "tuningConfig": { "type": "index_parallel", "maxRowsPerSegment": 5000000, "maxRowsInMemory": 1000000, "maxBytesInMemory": 0, "maxTotalRows": None, "numShards": None, "splitHintSpec": None, "partitionsSpec": { "type": "dynamic", "maxRowsPerSegment": 5000000, "maxTotalRows": None, }, "indexSpec": { "bitmap": {"type": "concise"}, "dimensionCompression": "lz4", "metricCompression": "lz4", "longEncoding": "longs", }, "indexSpecForIntermediatePersists": { "bitmap": {"type": "concise"}, "dimensionCompression": "lz4", "metricCompression": "lz4", "longEncoding": "longs", }, "maxPendingPersists": 0, "forceGuaranteedRollup": False, "reportParseExceptions": False, "pushTimeout": 0, "segmentWriteOutMediumFactory": None, "maxNumConcurrentSubTasks": 1, "maxRetry": 3, "taskStatusCheckPeriodMs": 1000, "chatHandlerTimeout": "PT10S", "chatHandlerNumRetries": 5, "maxNumSegmentsToMerge": 100, "totalNumMergeTasks": 10, "logParseExceptions": False, "maxParseExceptions": 2147483647, "maxSavedParseExceptions": 0, "buildV9Directly": True, "partitionDimensions": [], }, }, "context": {"forceTimeChunkLock": True}, "dataSource": datasourceName, } ) @staticmethod def _getTimestampColumn(datasetSchema) -> str: """ Method to extract the timestamp column from the spec. In case of multiple timestamp columns in the spec, any of the random timestamp columns will be returned. :param datasetSchema Schema of the dataset :returns Name of the timestamp column """ logger.info("Fetching the timestamp column from the schema") timestampColumn = None for obj in datasetSchema: if obj.logical_type.type.upper() in PARQUET_TIMESTAMP: timestampColumn = obj.name break return timestampColumn @staticmethod def _getMetrics(datasetSchema): """ Method to fetch the metrics from the dremio schema :param datasetSchema Scheme of the dataset """ logger.info("Fetching all the metrics from the schema") metrics = [{"type": "count", "name": "count"}] for obj in datasetSchema: metric = None if obj.logical_type.type.upper() in PARQUET_INTEGER: typeMetric = "longSum" metric = { "type": typeMetric, "name": obj.name, "fieldName": obj.name, "expression": None, } elif obj.logical_type.type.upper() in PARQUET_DECIMAL: typeMetric = "doubleSum" metric = { "type": typeMetric, "name": obj.name, "fieldName": obj.name, "expression": None, } if metric is not None: metrics.append(metric) return metrics @staticmethod def _getDimensions(datasetSchema): """ Method to fetch the metrics from the dremio schema :param datasetSchema Scheme of the dataset """ logger.info("Fetching all the dimensions from the schema") dimensions = [] timestampColumns = [] for obj in datasetSchema: if obj.logical_type.type.upper() in PARQUET_STRING: dimension = { "type": "string", "name": obj.name, "multiValueHandling": "SORTED_ARRAY", "createBitmapIndex": True, } dimensions.append(dimension) elif obj.logical_type.type.upper() in PARQUET_TIMESTAMP: dimension = { "type": "string", "name": obj.name, "multiValueHandling": "SORTED_ARRAY", "createBitmapIndex": True, } timestampColumns.append(dimension) # the rest of the timestamp columns are being ingnored. Add those to the dim list dimensions.extend(timestampColumns[1:]) return dimensions @staticmethod def _getSchemaForDatasourceInS3(datasetLocation: str): """ Gets schema for a datasource in S3 bucket at staging location """ parsedInfo = urlparse(datasetLocation) bucket = parsedInfo.netloc key = parsedInfo.path s3 = boto3.client("s3") files = s3.list_objects( Bucket=bucket, Prefix=key.lstrip('/') ) if len(files["Contents"]) > 0: try: fileName = files["Contents"][-1]["Key"] schema = pq.ParquetDataset( bucket + "/" + fileName, filesystem=s3fs.S3FileSystem( anon=False ), ).schema return schema except Exception as ex: logger.error(str(ex)) return [] else: return []
rberrelleza/cuelake
api/genie/services.py
import asyncio import json import pytz import time from typing import List from django.template import Template, Context # from django_celery_beat.models import CrontabSchedule from genie.models import NotebookJob, RunStatus, Connection, ConnectionType, ConnectionParam, ConnectionParamValue, NotebookTemplate, Schedule from genie.serializers import NotebookJobSerializer, ScheduleSerializer, RunStatusSerializer, ConnectionSerializer, ConnectionDetailSerializer, ConnectionTypeSerializer, NotebookTemplateSerializer from utils.apiResponse import ApiResponse from utils.zeppelinAPI import Zeppelin from utils.druidSpecGenerator import DruidIngestionSpecGenerator from genie.tasks import runNotebookJob as runNotebookJobTask, checkIfNotebookRunning # Name of the celery task which calls the zeppelin api CELERY_TASK_NAME = "genie.tasks.runNotebookJob" GET_NOTEBOOKJOBS_LIMIT = 10 RUN_STATUS_LIMIT = 10 class NotebookJobServices: """ Class containing services related to NotebookJob model """ @staticmethod async def _fetchNotebookStatuses(notebooks: list): """ Async method to fetch notebook status details for multiple notebooks Returns a dict with notebook ids as keys :param notebooks: List of notebook describing dicts each containing the 'id' field """ notebookStatuses = {} for future in asyncio.as_completed([Zeppelin.getNotebookStatus(notebook["id"]) for notebook in notebooks]): status = await future notebookStatuses[status["id"]] = status return notebookStatuses @staticmethod def getNotebooks(offset: int = 0): """ Service to fetch and serialize NotebookJob objects Number of NotebookJobs fetched is stored as the constant GET_NOTEBOOKJOBS_LIMIT :param offset: Offset for fetching NotebookJob objects """ res = ApiResponse(message="Error retrieving notebooks") notebooks = Zeppelin.getAllNotebooks() if notebooks: notebookCount = len(notebooks) notebooks = notebooks[offset: offset + GET_NOTEBOOKJOBS_LIMIT] notebookIds = [notebook["id"] for notebook in notebooks] notebookJobs = NotebookJob.objects.filter(notebookId__in=notebookIds) for notebook in notebooks: notebook["name"] = notebook["path"] notebookJob = next((notebookJob for notebookJob in notebookJobs if notebookJob.name == notebook["id"]), False) if notebookJob: notebook["isScheduled"] = True notebook["schedule"] = str(notebookJob.crontab) notebook["isActive"] = notebookJob.enabled notebook["notebookJobId"] = notebookJob.id else: notebook["isScheduled"] = False notebookRunStatus = RunStatus.objects.filter(notebookId=notebook["id"]).order_by("-startTimestamp").first() if notebookRunStatus: notebook["lastRun"] = RunStatusSerializer(notebookRunStatus).data res.update(True, "NotebookJobs retrieved successfully", {"notebooks": notebooks, "count": notebookCount}) return res @staticmethod def getNotebooksLight(): """ Gets concise notebook data""" res = ApiResponse(message="Error retrieving notebooks") notebooks = Zeppelin.getAllNotebooks() res.update(True, "Notebooks retrieved successfully", notebooks) return res @staticmethod def addNotebook(payload): res = ApiResponse(message="Error adding notebook") notebookTemplate = NotebookTemplate.objects.get(id=payload.get("notebookTemplateId", 0)) context = payload # Storing payload in context variable so that it can be used for rendering # Handling connection variables if payload.get("sourceConnection", False): connection = Connection.objects.get(id=payload["sourceConnection"]) context["sourceConnection_type"] = connection.connectionType.name connectionParams = connection.cpvc.all() for cp in connectionParams: paramName = cp.connectionParam.name context["sourceConnection_" + paramName] = cp.value if payload.get("targetConnection", False): connection = Connection.objects.get(id=payload["sourceConnection"]) context["targetConnection_type"] = connection.connectionType.name connectionParams = connection.cpvc.all() for cp in connectionParams: paramName = cp.connectionParam.name context["targetConnection" + paramName] = cp.value # Handling S3 path - Splitting it to get the table name if payload.get("destinationTableS3Path", False): destinationTableName = payload["destinationTableS3Path"].rsplit('/', 1)[1] warehouseLocation = payload["destinationTableS3Path"].rsplit('/', 1)[0] context["destinationTableName"] = destinationTableName context["warehouseLocation"] = warehouseLocation # Adding a temp table name to the context context["tempTableName"] = "tempTable_" + str(round(time.time() * 1000)) notebook = Template(notebookTemplate.template).render(Context(context)) response = Zeppelin.addNotebook(notebook) if response: res.update(True, "Notebook added successfully") return res @staticmethod def getNotebookJobDetails(notebookId: int, runStatusOffset: int = 0): """ Service to fetch run details and logs of the selected NotebookJob :param notebookId: ID of the NotebookJob :param runStatusOffset: Offset for fetching NotebookJob run statuses """ res = ApiResponse() notebookJobData = {} runStatuses = RunStatus.objects.filter(notebookId=notebookId).order_by("-startTimestamp")[runStatusOffset: runStatusOffset + RUN_STATUS_LIMIT] notebookRunCount = RunStatus.objects.filter(notebookId=notebookId).count() notebookJobData["runStatuses"] = RunStatusSerializer(runStatuses, many=True).data notebookJobData["count"] = notebookRunCount res.update(True, "NotebookJobs retrieved successfully", notebookJobData) return res @staticmethod def addNotebookJob(notebookId: str, scheduleId: int): """ Service to add a new NotebookJob :param notebookId: ID of the notebook for which to create job :param scheduleId: ID of schedule """ res = ApiResponse() scheduleObj = Schedule.objects.get(crontabschedule_ptr_id=scheduleId) NotebookJob.objects.update_or_create(name=notebookId, notebookId=notebookId, defaults={"crontab":scheduleObj, "task":CELERY_TASK_NAME, "args":f'["{notebookId}"]'}) res.update(True, "NotebookJob added successfully", None) return res @staticmethod def updateNotebookJob(notebookJobId: int, scheduleId: int): """ Service to update crontab of an existing NotebookJob :param notebookId: ID of the NotebookJob for which to update crontab :param scheduleId: ID of schedule """ res = ApiResponse() scheduleObj = Schedule.objects.get(crontabschedule_ptr_id=scheduleId) NotebookJob.objects.filter(id=notebookJobId).update(crontab=scheduleObj) res.update(True, "NotebookJob updated successfully", None) return res @staticmethod def deleteNotebookJob(notebookId: int): """ Service to update crontab of an existing NotebookJob :param notebookId: ID of the Notebook for which to delete """ res = ApiResponse() NotebookJob.objects.filter(name=notebookId).delete() res.update(True, "NotebookJob deleted successfully", None) return res @staticmethod def toggleNotebookJob(notebookId: int, enabled: bool): """ Service to update crontab of an existing NotebookJob :param notebookId: ID of the NotebookJob for which to update crontab :param scheduleId: ID of schedule """ res = ApiResponse() NotebookJob.objects.filter(notebookId=notebookId).update(enabled=enabled) res.update(True, "NotebookJob updated successfully", None) return res @staticmethod def getSchedules(): """ Service to get all schedule objects """ res = ApiResponse() schedules = Schedule.objects.all() data = ScheduleSerializer(schedules, many=True).data res.update(True, "Schedules fetched successfully", data) return res @staticmethod def addSchedule(cron: str, timezone: str = None, name: str = ""): """ Service to add Schedule :param cron: Crontab in string format :param timezone: Timezone string for which to configure Schedule :param name: Name of schedule provided by user """ res = ApiResponse() cronElements = cron.split() if len(cronElements) != 5: res.update(False, "Crontab must contain five elements") return res timezone = timezone if timezone else "UTC" Schedule.objects.create( minute=cronElements[0], hour=cronElements[1], day_of_month=cronElements[2], month_of_year=cronElements[3], day_of_week=cronElements[4], timezone=timezone, name=name, ) res.update(True, "Schedule added successfully", None) return res @staticmethod def getSingleSchedule(scheduleId: int): """ Service to get singleSchedule :param scheduleId: int """ res = ApiResponse() schedules = Schedule.objects.filter(crontabschedule_ptr_id=scheduleId) data = ScheduleSerializer(schedules, many=True).data res.update(True, "Schedules fetched successfully", data) return res @staticmethod def updateSchedule(id, cron, timezone, name): """ Service to update Schedule param id: int param cron: Crontab in string format param timezone: Timezone in string format param name: String """ res = ApiResponse() schedules = Schedule.objects.get(crontabschedule_ptr_id=id) schedules.cron = cron schedules.timezone = timezone schedules.name = name schedules.save() res.update(True, "Schedules updated successfully", []) return res @staticmethod def deleteSchedule(scheduleId: int): """ Service to delete schedule of given scheduleId """ res = ApiResponse() Schedule.objects.filter(crontabschedule_ptr_id=scheduleId).delete() res.update(True, "Schedules deleted successfully", []) return res @staticmethod def getTimezones(): """ Service to fetch all pytz timezones """ res = ApiResponse() timezones = pytz.all_timezones res.update(True, "Timezones fetched successfully", timezones) return res @staticmethod def runNotebookJob(notebookId: str): """ Service to run notebook job """ res = ApiResponse("Error in running notebook") runNotebookJobTask.delay(notebookId=notebookId, runType="Manual") res.update(True, "Notebook triggered successfully", None) return res @staticmethod def stopNotebookJob(notebookId: str): """ Service to run notebook job """ res = ApiResponse(message="Error in stopping notebook") # Updating runStatus that the task was aborted response = Zeppelin.stopNotebookJob(notebookId) if response: res.update(True, "Notebook stopped successfully", None) return res @staticmethod def clearNotebookResults(notebookId: str): """ Service to run notebook job """ res = ApiResponse(message="Error in clearing notebook") response = Zeppelin.clearNotebookResults(notebookId) if response: res.update(True, "Notebook cleared successfully", None) return res @staticmethod def cloneNotebook(notebookId: str, payload: dict): """ Service to run notebook job """ res = ApiResponse(message="Error in cloning notebook") response = Zeppelin.cloneNotebook(notebookId, json.dumps(payload)) if response: res.update(True, "Notebook cloned successfully", None) return res @staticmethod def deleteNotebook(notebookId: str): """ Service to run notebook job """ res = ApiResponse(message="Error in cloning notebook") response = Zeppelin.deleteNotebook(notebookId) if response: res.update(True, "Notebook deleted successfully", None) return res class Connections: @staticmethod def getConnections(): res = ApiResponse() connections = Connection.objects.all() serializer = ConnectionSerializer(connections, many=True) res.update(True, "Connections retrieved successfully", serializer.data) return res @staticmethod def getConnection(connection_id): res = ApiResponse() connections = Connection.objects.get(id=connection_id) serializer = ConnectionDetailSerializer(connections) res.update(True, "Connection retrieved successfully", serializer.data) return res @staticmethod def addConnection(payload): res = ApiResponse() connectionType = ConnectionType.objects.get(id=payload["connectionType_id"]) connection = Connection.objects.create( name=payload["name"], description=payload["description"], connectionType=connectionType ) for param in payload["params"]: cp = ConnectionParam.objects.get(name=param, connectionType=connectionType) ConnectionParamValue.objects.create( connectionParam=cp, value=payload["params"][param], connection=connection ) res.update(True, "Connection added successfully") return res @staticmethod def removeConnection(connection_id): res = ApiResponse() Connection.objects.get(id=connection_id).delete() res.update(True, "Connection deleted successfully") return res @staticmethod def updateConnection(connection_id, payload): res = ApiResponse() Connection.objects.filter(id=connection_id).update( name=payload.get("name", ""), description=payload.get("description", ""), connectionType=ConnectionType.objects.get(id=payload["connectionType_id"]), ) connection = Connection.objects.get(id=connection_id) # ToDo: delete params related to this & then update for param in payload["params"]: cp = ConnectionParam.objects.get(id=param["paramId"]) # if cp.isEncrypted: # encryptionObject= AESCipher() # param['paramValue'] = encryptionObject.encrypt(param['paramValue']) ConnectionParamValue.objects.create( connectionParam=cp, value=param["paramValue"], connection=connection ) res.update(True, "Connection updated successfully") return res @staticmethod def getConnectionTypes(): res = ApiResponse() connectionTypes = ConnectionType.objects.all() serializer = ConnectionTypeSerializer(connectionTypes, many=True) res.update(True, "Successfully retrieved connection types", serializer.data) return res class NotebookTemplateService: @staticmethod def getNotebookTemplates(): res = ApiResponse() templates = NotebookTemplate.objects.all() serializer = NotebookTemplateSerializer(templates, many=True) res.update(True, "Connections retrieved successfully", serializer.data) return res @staticmethod def getDatasetDetails(datasetLocation, datasourceName): """ Service to fetch S3 dataset details :param datasetLocation: Location of the S3 bucket """ res = ApiResponse() schema = DruidIngestionSpecGenerator._getSchemaForDatasourceInS3(datasetLocation) ingestionSpec = DruidIngestionSpecGenerator.getIngestionSpec( datasetLocation=datasetLocation, datasourceName=datasourceName, datasetSchema=schema ) s3DatasetSchema = list(map(lambda x: {"columnName": x.name, "dataType": x.logical_type.type}, schema)) datasetDetails = { "dremioSchema": s3DatasetSchema, "druidIngestionSpec": ingestionSpec } res.update(True, "Dataset schema retrieved successfully", datasetDetails) return res
rberrelleza/cuelake
api/genie/migrations/0004_auto_20210414_1012.py
<reponame>rberrelleza/cuelake # Generated by Django 3.1.7 on 2021-04-14 10:12 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('genie', '0003_auto_20210412_0719'), ] operations = [ migrations.CreateModel( name='Connection', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=200)), ('description', models.TextField()), ], ), migrations.CreateModel( name='ConnectionParam', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(blank=True, max_length=200, null=True)), ('label', models.CharField(blank=True, max_length=200, null=True)), ('isEncrypted', models.BooleanField(default=False)), ('properties', models.TextField(blank=True, null=True)), ], ), migrations.CreateModel( name='ConnectionType', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(db_index=True, max_length=200, unique=True)), ], ), migrations.CreateModel( name='ConnectionParamValue', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('value', models.TextField()), ('connection', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='cpvc', to='genie.connection')), ('connectionParam', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='cpvcp', to='genie.connectionparam')), ], ), migrations.AddField( model_name='connectionparam', name='connectionType', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='connectionTypeParam', to='genie.connectiontype'), ), migrations.AddField( model_name='connection', name='connectionType', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='connectionTypeConnection', to='genie.connectiontype'), ), ]
rberrelleza/cuelake
api/workflows/migrations/0001_initial.py
<filename>api/workflows/migrations/0001_initial.py # Generated by Django 3.1.8 on 2021-04-19 13:53 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ('django_celery_beat', '0015_edit_solarschedule_events_choices'), ] operations = [ migrations.CreateModel( name='Workflow', fields=[ ('periodictask_ptr', models.OneToOneField(auto_created=True, on_delete=django.db.models.deletion.CASCADE, parent_link=True, primary_key=True, serialize=False, to='django_celery_beat.periodictask')), ('dependsOnWorkflowStatus', models.CharField(default='success', max_length=50)), ('dependsOnWorkflow', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='workflows.workflow')), ], bases=('django_celery_beat.periodictask',), ), migrations.CreateModel( name='WorkflowRun', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('status', models.CharField(default='success', max_length=50)), ('startTimestamp', models.DateTimeField(auto_now_add=True)), ('endTimestamp', models.DateTimeField(default=None, null=True)), ('workflow', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='workflows.workflow')), ], ), migrations.CreateModel( name='NotebookJob', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('notebookId', models.CharField(default='000000000', max_length=20)), ('workflow', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='workflows.workflow')), ], ), ]
rberrelleza/cuelake
api/genie/urls.py
from django.urls import path from . import views urlpatterns = [ path("notebooks/<int:offset>", views.NotebookView.as_view(), name="notebookView"), path("notebooksLight", views.NotebooksLight.as_view(), name="notebookView"), path("notebook/<str:notebookId>", views.NotebookOperationsView.as_view(), name="notebookView"), path("notebook/actions/<str:notebookId>", views.NotebookActionsView.as_view(), name="notebookView"), path("notebook", views.NotebookView.as_view(), name="notebookView"), path("notebookjob/<str:notebookId>", views.NotebookJobView.as_view(), name="notebookJobView"), path("notebookjob/", views.NotebookJobView.as_view(), name="notebookJobView"), path("notebookTemplates/", views.NotebookTemplateView.as_view(), name="notebookTemplateView"), path("schedules/", views.ScheduleView.as_view(), name="scheduleView"), path("schedules/<int:scheduleId>", views.schedule, name="getSingleSchedule"), path("timezones/", views.TimzoneView.as_view(), name="timezoneView"), # ===================================================================================================== # Connections # ===================================================================================================== path("connections", views.connections, name="connections"), path("connection/<int:connection_id>", views.connection, name="connection"), path("connectiontypes", views.connectionTypes, name="connectionTypes"), # ===================================================================================================== # Connections # ===================================================================================================== path("datasetDetails", views.datasetDetails, name="datasetDetails"), ]
rberrelleza/cuelake
api/workflows/models.py
<reponame>rberrelleza/cuelake<gh_stars>0 from django.db import models from django_celery_beat.models import PeriodicTask STATUS_SUCCESS = "success" STATUS_FAILURE = "failure" STATUS_ALWAYS = "always" STATUS_RUNNING = "running" STATUS_RECEIVED = "received" # just before triggering job STATUS_ABORTED = "aborted" class Workflow(PeriodicTask): """ Subclass of django_celery_beat.models.PeriodicTask """ triggerWorkflow = models.ForeignKey("self", null=True, blank=True, on_delete=models.CASCADE, db_index=True) triggerWorkflowStatus = models.CharField(max_length=50, default=STATUS_SUCCESS) class WorkflowRun(models.Model): workflow = models.ForeignKey(Workflow, on_delete=models.CASCADE, db_index=True) status = models.CharField(max_length=50, default=STATUS_SUCCESS) startTimestamp = models.DateTimeField(auto_now_add=True) endTimestamp = models.DateTimeField(null=True, default=None) class NotebookJob(models.Model): workflow = models.ForeignKey(Workflow, on_delete=models.CASCADE, db_index=True) notebookId = models.CharField(max_length=20, default="000000000") # dependsOn notebookId = models.CharField(max_length=20, default="000000000") # dependsOn notebookStatus =
rberrelleza/cuelake
api/genie/migrations/0001_initial.py
# Generated by Django 3.1.7 on 2021-03-12 14:17 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ('django_celery_beat', '0015_edit_solarschedule_events_choices'), ] operations = [ migrations.CreateModel( name='NotebookJob', fields=[ ('periodictask_ptr', models.OneToOneField(auto_created=True, on_delete=django.db.models.deletion.CASCADE, parent_link=True, primary_key=True, serialize=False, to='django_celery_beat.periodictask')), ('notebookId', models.CharField(db_index=True, max_length=50)), ], bases=('django_celery_beat.periodictask',), ), ]
rberrelleza/cuelake
api/genie/migrations/0008_runstatus_worflowrun.py
<gh_stars>0 # Generated by Django 3.1.8 on 2021-04-19 13:53 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('workflows', '0001_initial'), ('genie', '0007_auto_20210417_1807'), ] operations = [ migrations.AddField( model_name='runstatus', name='worflowRun', field=models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, to='workflows.workflowrun'), ), ]
rberrelleza/cuelake
api/genie/views.py
from django.http import HttpRequest from rest_framework.views import APIView from rest_framework.response import Response from genie.services import NotebookJobServices, Connections, NotebookTemplateService from rest_framework.decorators import api_view class NotebookOperationsView(APIView): """ Class to get notebooks from zeppelin server """ def post(self, request, notebookId): res = NotebookJobServices.cloneNotebook(notebookId, request.data) return Response(res.json()) def delete(self, request, notebookId): res = NotebookJobServices.deleteNotebook(notebookId) return Response(res.json()) class NotebookActionsView(APIView): """ Class to get notebooks from zeppelin server """ def post(self, request, notebookId): res = NotebookJobServices.runNotebookJob(notebookId) return Response(res.json()) def delete(self, request, notebookId): res = NotebookJobServices.stopNotebookJob(notebookId) return Response(res.json()) def put(self, request, notebookId): res = NotebookJobServices.clearNotebookResults(notebookId) return Response(res.json()) class NotebooksLight(APIView): """ Get concise notebook data """ def get(self, request): res = NotebookJobServices.getNotebooksLight() return Response(res.json()) class NotebookView(APIView): """ Class to get notebooks from zeppelin server """ def get(self, request, offset: int): res = NotebookJobServices.getNotebooks(offset) return Response(res.json()) def post(self, request): res = NotebookJobServices.addNotebook(request.data) return Response(res.json()) class NotebookJobView(APIView): """ Class to get, add and update a NotebookJob details The put and post methods only require request body and not path parameters The get method requires the notebookJobId as the path parameter """ def get(self, request, notebookId=None): offset = int(request.GET.get("offset", 0)) res = NotebookJobServices.getNotebookJobDetails(notebookId=notebookId, runStatusOffset=offset) return Response(res.json()) def post(self, request): notebookId = request.data["notebookId"] scheduleId = request.data["scheduleId"] res = NotebookJobServices.addNotebookJob(notebookId=notebookId, scheduleId=scheduleId) return Response(res.json()) def put(self, request): notebookId = request.data["notebookId"] if "scheduleId" in request.data: scheduleId = request.data["scheduleId"] res = NotebookJobServices.updateNotebookJob(notebookId=notebookId, scheduleId=scheduleId) elif "enabled" in request.data: enabled = request.data["enabled"] res = NotebookJobServices.toggleNotebookJob(notebookId=notebookId, enabled=enabled) return Response(res.json()) def delete(self, request, notebookId=None): res = NotebookJobServices.deleteNotebookJob(notebookId=notebookId) return Response(res.json()) class ScheduleView(APIView): """ Class to get and add available crontab schedules """ def get(self, request): res = NotebookJobServices.getSchedules() return Response(res.json()) def post(self, request): name = request.data["name"] cron = request.data["crontab"] timezone = request.data["timezone"] res = NotebookJobServices.addSchedule(cron=cron, timezone=timezone, name=name) return Response(res.json()) def put(self,request): id = request.data["id"] name = request.data["name"] cron = request.data["crontab"] timezone = request.data["timezone"] res = NotebookJobServices.updateSchedule(id=id, cron=cron, timezone=timezone, name=name) return Response(res.json()) @api_view(["GET", "PUT", "DELETE"]) def schedule(request: HttpRequest, scheduleId: int) -> Response: """ Method for crud operations on a single connection :param request: HttpRequest :param connection_id: Connection Id """ if request.method == "GET": res = NotebookJobServices.getSingleSchedule(scheduleId) return Response(res.json()) if request.method == "DELETE": res = NotebookJobServices.deleteSchedule(scheduleId) return Response(res.json()) class TimzoneView(APIView): """ Class to get standard pytz timezones """ def get(self, request): res = NotebookJobServices.getTimezones() return Response(res.json()) # TODO # Change connection views to class @api_view(["GET", "POST"]) def connections(request: HttpRequest) -> Response: """ Method to get or add connection :param request: HttpRequest """ if request.method == "GET": res = Connections.getConnections() return Response(res.json()) elif request.method == "POST": res = Connections.addConnection(request.data) return Response(res.json()) @api_view(["GET", "PUT", "DELETE"]) def connection(request: HttpRequest, connection_id: int) -> Response: """ Method for crud operations on a single connection :param request: HttpRequest :param connection_id: Connection Id """ if request.method == "GET": res = Connections.getConnection(connection_id) return Response(res.json()) elif request.method == "DELETE": res = Connections.removeConnection(connection_id) return Response(res.json()) elif request.method == "PUT": res = Connections.updateConnection(connection_id, request.data) return Response(res.json()) @api_view(["GET", "POST"]) def connectionTypes(request: HttpRequest) -> Response: """ Method to get all connection types :param request: HttpRequest """ if request.method == "GET": res = Connections.getConnectionTypes() return Response(res.json()) @api_view(["POST"]) def datasetDetails(request: HttpRequest) -> Response: """ Method to get dataset details from s3 location :param request: HttpRequest """ datasetLocation = request.data.get("datasetLocation") datasourceName = request.data.get("datasourceName") res = NotebookTemplateService.getDatasetDetails(datasetLocation, datasourceName) return Response(res.json()) class NotebookTemplateView(APIView): def get(self, request): res = NotebookTemplateService.getNotebookTemplates() return Response(res.json())
Sen/ledger
test/dummy/db/migrate/20191028102323_create_ookkee_entries.rb
class CreateOokkeeEntries < ActiveRecord::Migration[6.0] def change create_table :ookkee_entries do |t| t.integer :sheet_id t.string :sheet_name # assets, liability, etc t.integer :account_id # cash, bank payable t.string :entry_type # credit/debit t.decimal :amount, scale: 10, precision: 30 t.string :trackable_type t.integer :trackable_id t.timestamps end add_index :ookkee_entries, :sheet_id add_index :ookkee_entries, :entry_type add_index :ookkee_entries, :sheet_name add_index :ookkee_entries, :account_id add_index :ookkee_entries, :trackable_type add_index :ookkee_entries, :trackable_id end end
Sen/ledger
lib/ookkee/repos/entry_repo.rb
require 'bigdecimal' module Ookkee class EntryRepo def build_from_factory(sheet, factory) entry = sheet.entries.build entry.account = factory.attributes[:account] entry.trackable = factory.attributes[:trackable] entry.sheet_name = factory.attributes[:sheet_name] entry.entry_type = factory.attributes[:entry_type] entry.amount = BigDecimal(factory.attributes[:amount] || 0) entry end def sheets_with_user(user) Ookkee::Sheet.where(user_id: user.id, user_type: user.class.name).order('created_at DESC') end def account_entries_with_user(account, user) Ookkee::Entry.joins(:account, :sheet) .where(sheet_name: account.sheet_name) .where('ookkee_accounts.name = ?', account.name) .where('ookkee_sheets.user_id = ? and ookkee_sheets.user_type = ?', user.id, user.class.name) .order('ookkee_entries.created_at DESC') .select("ookkee_entries.*, SUM( CASE WHEN ookkee_entries.entry_type = 'debit' then ookkee_entries.amount WHEN ookkee_entries.entry_type = 'credit' then ookkee_entries.amount * -1 END ) OVER (ORDER BY ookkee_entries.id) AS balance_cache") end def calculate_account_balance(account, user) entries = account_entries_with_user(account, user) entries.where('entry_type = ?', 'debit').sum(:amount) - entries.where('entry_type = ?', 'credit').sum(:amount) end end end
Sen/ledger
lib/ookkee/liability.rb
<filename>lib/ookkee/liability.rb module Ookkee class Liability < Sheet end end
Sen/ledger
lib/ookkee/revenue.rb
module Ookkee class Revenue < Sheet end end
Sen/ledger
lib/tasks/ookkee_tasks.rake
# desc "Explaining what the task does" namespace :ookkee do task :install do end end
Sen/ledger
lib/ookkee/model/sheet.rb
<gh_stars>0 module Ookkee class Sheet < ActiveRecord::Base self.table_name = "ookkee_sheets" has_many :entries, class_name: 'Ookkee::Entry', foreign_key: :sheet_id belongs_to :user, polymorphic: true validates :title, presence: true validate :credit_and_debit_must_be_exists validate :ledger_equalities Entry::ENTRY_TYPES.each do |type| define_method "#{type}_filter" do |*args| args[0].select { |entry| entry.entry_type == type } end end Entry::SHEET_NAMES.each do |name| define_method "#{name}_filter" do |*args| args[0].select { |entry| entry.sheet_name == name } end end private def credit_and_debit_must_be_exists if credit_filter(entries).count == 0 || debit_filter(entries).count == 0 errors.add(:base, "credit and debut must be exists") end end def ledger_equalities assets = ledger_left(assets_filter(entries)) expenses = ledger_left(expenses_filter(entries)) liabilities = ledger_right(liabilities_filter(entries)) equity = ledger_right(equity_filter(entries)) revenue = ledger_right(revenue_filter(entries)) if assets + expenses != liabilities + equity + revenue errors.add(:base, "credits amount must equal to debits amount") end end def ledger_left(collection) debits = debit_filter(collection).inject(0) { |sum, entry| sum + entry.amount } credits = credit_filter(collection).inject(0) { |sum, entry| sum + entry.amount } debits - credits end def ledger_right(collection) -1 * ledger_left(collection) end end end
Sen/ledger
lib/ookkee.rb
<gh_stars>0 require "ookkee/railtie" require 'ookkee/model/entry' require 'ookkee/model/sheet' require 'ookkee/model/account' require 'ookkee/builder' require 'ookkee/builder_proxy' require 'ookkee/factory' # require 'ookkee/stack' require 'ookkee/repos/entry_repo' require 'ookkee/usecase' module Ookkee # Your code goes here... end
Sen/ledger
lib/ookkee/usecase.rb
module Ookkee class Usecase class << self def account_balance_with_user(account, user) repo.calculate_account_balance(account, user) end def account_entries(account, user) repo.account_entries_with_user(account, user) end def user_sheets(user) repo.sheets_with_user(user) end private def repo @repo ||= EntryRepo.new end end end end
Sen/ledger
test/dummy/db/migrate/20191028101521_create_ookkee_sheets.rb
class CreateOokkeeSheets < ActiveRecord::Migration[6.0] def change create_table :ookkee_sheets do |t| t.string :title t.string :transaction_number t.string :user_type t.integer :user_id t.timestamps end add_index :ookkee_sheets, :transaction_number add_index :ookkee_sheets, :user_type add_index :ookkee_sheets, :user_id end end
Sen/ledger
lib/ookkee/builder_proxy.rb
module Ookkee class BuilderProxy def initialize(options) @builder = options[:builder] end def credit(account) factory = Factory.new yield factory factory.entry_type 'credit' factory.account account factory.sheet_name account.sheet_name @builder.registry << factory end def debit(account) factory = Factory.new yield factory factory.entry_type 'debit' factory.account account factory.sheet_name account.sheet_name @builder.registry << factory end end end
Sen/ledger
lib/ookkee/equity.rb
module Ookkee class Equity end end
Sen/ledger
lib/ookkee/model/entry.rb
module Ookkee class Entry < ActiveRecord::Base self.table_name = "ookkee_entries" ENTRY_TYPES = %w[credit debit] SHEET_NAMES = %w[assets liabilities equity revenue expenses] belongs_to :sheet, class_name: 'Ookkee::Sheet', foreign_key: :sheet_id belongs_to :account, class_name: 'Ookkee::Account', foreign_key: :account_id belongs_to :trackable, polymorphic: true validates :entry_type, presence: true, \ inclusion: { in: ENTRY_TYPES, message: "%{value} is not a valid entry type" } validates :sheet_name, presence: true, \ inclusion: { in: SHEET_NAMES, message: "%{value} is not a valid account name" } end end
Sen/ledger
test/ookkee/builder_test.rb
<gh_stars>0 require 'test_helper' class Ookkee::BuilderTest < ActiveSupport::TestCase setup do @account = Ookkee::Account.new @account.name = 'cash' @account.sheet_name = 'assets' @account.save! @user = User.create!(name: 'tester') @order = Order.create!(title: 'test order') end test "klass" do assert_equal Ookkee::Builder.new.class.name, 'Ookkee::Builder' end test 'build' do balance_account = Ookkee::Account.new balance_account.name = 'balance' balance_account.sheet_name = 'assets' balance_account.save! bank_payable_account = Ookkee::Account.new bank_payable_account.name = 'bank payable' bank_payable_account.sheet_name = 'liabilities' bank_payable_account.save! sheet = Ookkee::Builder.build do |b| b.title 'abcd' b.transaction_number 'dfdfdf' b.user @user b.credit bank_payable_account do |cr| cr.amount 200 cr.trackable @order end b.debit balance_account do |dr| dr.amount 200 dr.trackable @order end end sheet.save! assert_equal sheet.title, 'abcd' assert_equal sheet.transaction_number, 'dfdfdf' assert_equal sheet.user_id, @user.id assert_equal sheet.user_type, 'User' credit = sheet.entries.where(entry_type: 'credit').first assert_equal credit.amount, 200 assert_equal credit.trackable_id, @order.id assert_equal credit.trackable_type, 'Order' assert_equal credit.account.name, 'bank payable' assert_equal credit.account.sheet_name, 'liabilities' debit = sheet.entries.where(entry_type: 'debit').first assert_equal debit.amount, 200 assert_equal debit.trackable_id, @order.id assert_equal debit.trackable_type, 'Order' assert_equal debit.account.name, 'balance' assert_equal debit.account.sheet_name, 'assets' end end
Sen/ledger
lib/ookkee/model/account.rb
<filename>lib/ookkee/model/account.rb module Ookkee class Account < ActiveRecord::Base self.table_name = "ookkee_accounts" validates :name, presence: true validates :sheet_name, presence: true, \ inclusion: { in: Entry::SHEET_NAMES, message: "%{value} is not a valid account name" } end end
Sen/ledger
test/ookkee/sheet_test.rb
<gh_stars>0 require 'test_helper' class Ookkee::SheetTest < ActiveSupport::TestCase test "truth" do assert_equal Ookkee::Sheet.new.class.name, 'Ookkee::Sheet' end end
Sen/ledger
lib/ookkee/expense.rb
module Ookkee class Expense < Sheet end end
Sen/ledger
test/ookkee/account_test.rb
<filename>test/ookkee/account_test.rb require 'test_helper' class Ookkee::AccountTest < ActiveSupport::TestCase test "truth" do assert_equal Ookkee::Account.new.class.name, 'Ookkee::Account' end test "create" do count = Ookkee::Account.count sheet = Ookkee::Account.new sheet.name = 'cash' sheet.sheet_name = 'assets' sheet.save! assert_equal Ookkee::Account.count, count + 1 end end
Sen/ledger
lib/ookkee/builder.rb
module Ookkee class Builder attr_accessor :registry def initialize @registry = [] @attributes = {} end def self.build instance = self.new yield instance instance.build_activerecord_objects end def title(value) @attributes[:title] = value end def transaction_number(value) @attributes[:transaction_number] = value end def user(value) @attributes[:user] = value end def credit(account, &block) builder_proxy = BuilderProxy.new({builder: self}) builder_proxy.credit(account, &block) end def debit(account, &block) builder_proxy = BuilderProxy.new({builder: self}) builder_proxy.debit(account, &block) end def build_activerecord_objects sheet = Sheet.new( title: @attributes[:title], transaction_number: @attributes[:transaction_number], user: @attributes[:user] ) registry.each do |element| entry_repo.build_from_factory(sheet, element) end sheet end private def entry_repo @entry_repo ||= EntryRepo.new end end end
Sen/ledger
test/dummy/db/migrate/20191031040323_create_ookkee_accounts.rb
class CreateOokkeeAccounts < ActiveRecord::Migration[6.0] def change create_table :ookkee_accounts do |t| t.string :name t.string :sheet_name # assets, liability, etc t.timestamps end add_index :ookkee_accounts, :sheet_name add_index :ookkee_accounts, [:name, :sheet_name], unique: true end end
Sen/ledger
test/dummy/db/schema.rb
<reponame>Sen/ledger # This file is auto-generated from the current state of the database. Instead # of editing this file, please use the migrations feature of Active Record to # incrementally modify your database, and then regenerate this schema definition. # # This file is the source Rails uses to define your schema when running `rails # db:schema:load`. When creating a new database, `rails db:schema:load` tends to # be faster and is potentially less error prone than running all of your # migrations from scratch. Old migrations may fail to apply correctly if those # migrations use external dependencies or application code. # # It's strongly recommended that you check this file into your version control system. ActiveRecord::Schema.define(version: 2019_11_11_041450) do create_table "ookkee_accounts", force: :cascade do |t| t.string "name" t.string "sheet_name" t.index ["name", "sheet_name"], name: "index_ookkee_accounts_on_name_and_sheet_name", unique: true t.index ["sheet_name"], name: "index_ookkee_accounts_on_sheet_name" end create_table "ookkee_entries", force: :cascade do |t| t.integer "sheet_id" t.string "sheet_name" t.integer "account_id" t.string "entry_type" t.decimal "amount", precision: 30, scale: 10 t.string "trackable_type" t.integer "trackable_id" t.index ["account_id"], name: "index_ookkee_entries_on_account_id" t.index ["entry_type"], name: "index_ookkee_entries_on_entry_type" t.index ["sheet_id"], name: "index_ookkee_entries_on_sheet_id" t.index ["sheet_name"], name: "index_ookkee_entries_on_sheet_name" t.index ["trackable_id"], name: "index_ookkee_entries_on_trackable_id" t.index ["trackable_type"], name: "index_ookkee_entries_on_trackable_type" end create_table "ookkee_sheets", force: :cascade do |t| t.string "title" t.string "transaction_number" t.string "user_type" t.integer "user_id" t.index ["transaction_number"], name: "index_ookkee_sheets_on_transaction_number" t.index ["user_id"], name: "index_ookkee_sheets_on_user_id" t.index ["user_type"], name: "index_ookkee_sheets_on_user_type" end create_table "orders", force: :cascade do |t| t.string "title" t.datetime "created_at", precision: 6, null: false t.datetime "updated_at", precision: 6, null: false end create_table "users", force: :cascade do |t| t.string "name" t.datetime "created_at", precision: 6, null: false t.datetime "updated_at", precision: 6, null: false end end
Sen/ledger
lib/ookkee/asset.rb
<filename>lib/ookkee/asset.rb module Ookkee class Asset end end
appcues/data-uploader
lib/appcues_data_uploader.rb
#!/usr/bin/env ruby # # Appcues Data Uploader # # Uploads CSV-formatted user profile data to the Appcues API. # Run `appcues-data-uploader -h` for more information. # # Homepage: https://github.com/appcues/data-uploader # # Copyright 2018, Appcues, Inc. # # Released under the MIT License, whose text is available at: # https://opensource.org/licenses/MIT require 'net/http' require 'csv' require 'json' require 'optparse' require 'appcues_data_uploader/version' class AppcuesDataUploader UserActivity = Struct.new(:account_id, :user_id, :profile_update, :events) UploadOpts = Struct.new(:account_id, :csv_filenames, :quiet, :dry_run) attr_reader :opts class << self ## Handles command-line invocation. def main(argv) options = UploadOpts.new option_parser = OptionParser.new do |opts| opts.banner = <<-EOT Usage: appcues-data-uploader [options] -a account_id [filename ...] Uploads profile data from one or more CSVs to the Appcues API. If no filename or a filename of '-' is given, STDIN is used. Each CSV should start with a row of header names, including one named something like "user ID". Other headers will be used verbatim as attribute names. Attribute values can be boolean ('true' or 'false'), 'null', numeric, or string-typed. For example, giving `appcues-data-uploader -a 999` the following CSV data: user_id,first_name,has_posse,height_in_inches 123,Pete,false,68.5 456,André,true,88 Will result in two profile updates being sent to the API: {"account_id": "999", "user_id": "123", "profile_update": {"first_name": "Pete", "has_posse": false, "height_in_inches": 68.5}} {"account_id": "999", "user_id": "456", "profile_update": {"first_name": "André", "has_posse": true, "height_in_inches": 88}} See https://github.com/appcues/data-uploader for more information. EOT opts.separator "" opts.separator "Options:" opts.on('-a', '--account-id ACCOUNT_ID', 'Set Appcues account ID') do |account_id| options.account_id = account_id end opts.on('-d', '--dry-run', 'Write requests to STDOUT instead of sending') do options.dry_run = true end opts.on('-q', '--quiet', "Don't write debugging info to STDERR") do options.quiet = true end opts.on('-v', '--version', "Print version information and exit") do puts "appcues-data-uploader version #{VERSION} (#{VERSION_DATE})" puts "See https://github.com/appcues/data-uploader for more information." exit end opts.on('-h', '--help', 'Print this message and exit') do puts opts exit end end csv_filenames = option_parser.parse(argv) csv_filenames = ["-"] if csv_filenames == [] options.csv_filenames = csv_filenames if !options.account_id STDERR.puts "You must specify an account ID with the -a option." STDERR.puts "Run `appcues-data-uploader --help` for more information." exit 1 end begin new(options).perform_uploads() rescue Exception => e STDERR.puts "#{e.class}: #{e.message}" exit 255 end end end def initialize(init_opts) @opts = init_opts.is_a?(UploadOpts) ? init_opts : UploadOpts.new( init_opts[:account_id] || init_opts["account_id"], init_opts[:csv_filenames] || init_opts["csv_filenames"], init_opts[:quiet] || init_opts["quiet"], init_opts[:dry_run] || init_opts["dry_run"], ) if !opts.account_id raise ArgumentError, "account_id is required but missing" end if !opts.csv_filenames raise ArgumentError, "csv_filenames must be a list of filenames" end end def perform_uploads opts.csv_filenames.each do |filename| upload_profile_csv(filename) end end private ## Uploads the profile data in the given CSV to the Appcues API. ## ## The CSV should begin with a row of headers, and one of these headers ## must be named something like `user_id` or `userId`. ## Other header names are treated as attribute names. ## ## Numeric, boolean, and null values in this CSV will be converted to their ## appropriate data type. def upload_profile_csv(csv_filename) display_filename = csv_filename == '-' ? "STDIN" : "'#{csv_filename}'" input_fh = csv_filename == '-' ? STDIN : File.open(csv_filename, 'r') debug "Uploading profiles from #{display_filename} for account #{opts.account_id}..." user_id_column = nil user_activities = [] CSV.new(input_fh, headers: true).each do |row| row_hash = row.to_hash if !user_id_column user_id_column = get_user_id_column(row_hash) end user_id = row_hash.delete(user_id_column) profile_update = cast_data_types(row_hash) user_activities << UserActivity.new(opts.account_id, user_id, profile_update, []) end input_fh.close if opts.dry_run user_activities.each do |ua| puts JSON.dump(ua.to_h) end else make_activity_requests(user_activities) end debug "Done processing #{display_filename}." end ## Applies the given UserActivity updates to the Appcues API. ## Retries failed requests, indefinitely. def make_activity_requests(user_activities) failed_uas = [] user_activities.each do |ua| resp = make_activity_request(ua) if resp.code.to_i / 100 == 2 debug "Request for user_id #{ua.user_id} was successful" else debug "Request for user_id #{ua.user_id} failed with code #{resp.code} -- retrying later" failed_uas << ua end end if failed_uas.count > 0 debug "Retrying #{failed_uas.count} requests." make_activity_requests(failed_uas) end end ## Returns a new profile_update hash where boolean and numeric values ## are cast out of String format. Leaves other values alone. def cast_data_types(profile_update) output = {} profile_update.each do |key, value| output[key] = case value when 'null' nil when 'true' true when 'false' false when /^ -? \d* \. \d+ (?: [eE] [+-]? \d+)? $/x # float value.to_f when /^ -? \d+ $/x # integer value.to_i else value end end output end ## Detects and returns the name used in the CSV header to identify user ID. ## Raises an exception if we can't find it. def get_user_id_column(row_hash) row_hash.keys.each do |key| canonical_key = key.gsub(/[^a-zA-Z]/, '').downcase return key if canonical_key == 'userid' end raise "Couldn't detect user ID column from CSV input. Ensure that the CSV data starts with headers, and one is named like 'user_id'." end ## Prints a message to STDERR unless we're in quiet mode. def debug(msg) STDERR.puts(msg) unless self.opts.quiet end ## Returns the base URL for the Appcues API. def appcues_api_url ENV['APPCUES_API_URL'] || "https://api.appcues.com" end ## Returns a URL for the given Appcues API UserActivity endpoint. def activity_url(account_id, user_id) "#{appcues_api_url}/v1/accounts/#{account_id}/users/#{user_id}/activity" end ## Makes a POST request to the Appcues API UserActivity endpoint, ## returning the Net::HTTPResponse object. def make_activity_request(user_activity) url = activity_url(user_activity.account_id, user_activity.user_id) post_request(url, { "profile_update" => user_activity.profile_update, "events" => user_activity.events }) end ## Makes a POST request to the given URL, ## returning the Net::HTTPResponse object. def post_request(url, data, headers = {}) uri = URI(url) use_ssl = uri.scheme == 'https' Net::HTTP.start(uri.host, uri.port, use_ssl: use_ssl) do |http| req_headers = headers.merge({'Content-type' => 'application/json'}) req = Net::HTTP::Post.new(uri.request_uri, req_headers) req.body = JSON.dump(data) http.request(req) end end end
appcues/data-uploader
appcues_data_uploader.gemspec
require "./lib/appcues_data_uploader/version" Gem::Specification.new do |s| s.name = 'appcues_data_uploader' s.version = AppcuesDataUploader::VERSION s.date = AppcuesDataUploader::VERSION_DATE s.summary = 'Upload CSVs of user profile data to the Appcues API' s.homepage = 'https://github.com/appcues/data-uploader' s.authors = ['<NAME>'] s.email = '<EMAIL>' s.license = 'MIT' s.has_rdoc = false s.files = Dir['lib/**/*'] + Dir['bin/**/*'] s.require_path = 'lib' s.bindir = 'bin' s.executables << 'appcues-data-uploader' s.required_ruby_version = '>= 2.0' end
appcues/data-uploader
lib/appcues_data_uploader/version.rb
class AppcuesDataUploader VERSION = "0.2.0" VERSION_DATE = "2018-11-08" end