repo_name
stringlengths
6
97
path
stringlengths
3
341
text
stringlengths
8
1.02M
josephlewis42/personal_codebase
python/Genetic Programming/Examples/pyevolve_ex8_gauss_int.py
<reponame>josephlewis42/personal_codebase<filename>python/Genetic Programming/Examples/pyevolve_ex8_gauss_int.py from pyevolve import G1DList from pyevolve import GSimpleGA from pyevolve import Selectors from pyevolve import Mutators # This function is the evaluation function, we want # to give high score to more zero'ed chromosomes def eval_func(chromosome): score = 0.0 # iterate over the chromosome for value in chromosome: if value==0: score += 0.1 return score def run_main(): # Genome instance genome = G1DList.G1DList(40) # The gauss_mu and gauss_sigma is used to the Gaussian Mutator, but # if you don't specify, the mutator will use the defaults genome.setParams(rangemin=0, rangemax=10, gauss_mu=4, gauss_sigma=6) genome.mutator.set(Mutators.G1DListMutatorIntegerGaussian) # The evaluator function (objective function) genome.evaluator.set(eval_func) # Genetic Algorithm Instance ga = GSimpleGA.GSimpleGA(genome) #ga.selector.set(Selectors.GRouletteWheel) ga.setGenerations(800) # Do the evolution, with stats dump # frequency of 10 generations ga.evolve(freq_stats=150) # Best individual print ga.bestIndividual() if __name__ == "__main__": run_main()
josephlewis42/personal_codebase
python/gamebot/ini_reader.py
<gh_stars>1-10 #!/usr/bin/env python '''Provides NumberList and FrequencyDistribution, classes for statistics. NumberList holds a sequence of numbers, and defines several statistical operations (mean, stdev, etc.) FrequencyDistribution holds a mapping from items (not necessarily numbers) to counts, and defines operations such as Shannon entropy and frequency normalization. Copyright 2011 <NAME> <<EMAIL>> This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. ''' import ConfigParser import os __author__ = "<NAME>" __copyright__ = "Copyright 2011, <NAME>" __license__ = "GPL" __version__ = "" CONFIG_FILE = 'config_file.ini' config = ConfigParser.ConfigParser() #Creates and parses an ini file for the if os.path.exists(CONFIG_FILE): config.read(CONFIG_FILE) else: config.add_section('SMTP') config.add_section('POP') config.set('SMTP', 'username', '<EMAIL>') config.set('SMTP', 'password', '<PASSWORD>') config.set('SMTP', 'hostname', 'smtp.gmail.com') config.set('SMTP', 'port', '587') config.set('POP', 'username', '<EMAIL>') config.set('POP', 'password', '<PASSWORD>') config.set('POP', 'hostname', 'pop.<EMAIL>') config.set('POP', 'port', '995') config.set('POP', 'ssl', 'True') # Writing our configuration file to 'example.cfg' with open(CONFIG_FILE, 'wb') as configfile: config.write(configfile) def setup_fetcher(email_fetcher): '''sets up an email fetcher from the given information in the ini. ''' email_fetcher.configure_pop( config.get('POP', 'username'), config.get('POP', 'password'), config.get('POP', 'hostname'), config.getint('POP', 'port'), config.getboolean('POP', 'ssl') ) email_fetcher.configure_smtp( config.get('SMTP', 'username'), config.get('SMTP', 'password'), config.get('SMTP', 'hostname'), config.getint('SMTP', 'port'), )
josephlewis42/personal_codebase
python/timed_message.py
<reponame>josephlewis42/personal_codebase #!/usr/bin/env python import datetime import re import smtplib import time from email.mime.multipart import MIMEMultipart from email.mime.text import MIMEText gmail_user = "<EMAIL>" gmail_pwd = "password" def mail(to, subject, body): msg = MIMEMultipart('alternative') msg['From'] = gmail_user msg['To'] = to msg['Subject'] = subject if '<html>' in body: msg.attach(MIMEText(re.sub(r'<.*?>', '', body), 'plain')) msg.attach(MIMEText(body, 'html')) else: msg.attach(MIMEText(body, 'plain')) m = smtplib.SMTP("smtp.gmail.com", 587) m.ehlo() m.starttls() m.ehlo() m.login(gmail_user, gmail_pwd) m.sendmail(gmail_user, to, msg.as_string()) m.quit() if __name__ == "__main__": while datetime.datetime.today() < datetime.datetime(2011, 5, 24): time.sleep(10) mail("<EMAIL>", "subject", "<html><b>body</b> nonbold</html>")
josephlewis42/personal_codebase
python/randall/alife_randall_checkout/ai_webserver/actor_map.py
# actor_map.py -- Displays the internal map of an actor. # # Copyright 2011 <NAME> <<EMAIL>> # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, # MA 02110-1301, USA. self.send_200() if not SESSION or 'login' not in SESSION.keys() or not SESSION['login']: self.wfile.write("You are not logged in...<script type='text/javascript'>window.location = 'login.py'</script>") else: try: w = SESSION['world'] a = SESSION['actor'] page = w[a].internal_map.gen_HTML() self.wfile.write(page) except KeyError, e: self.wfile.write("Error: Couldn't find the key specified: %s" %(e)) except Exception, e: self.wfile.write("Error: %s" %(e))
josephlewis42/personal_codebase
python/reprap-franklin/display.py
#!/usr/bin/env python '''Provides a main GUI for the RepRap Franklin. Copyright 2011 <NAME> <<EMAIL>> This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. ''' from Tkinter import * import tkMessageBox import tkFileDialog import time import firmware import inputs import reprap __author__ = "<NAME>" __copyright__ = "Copyright 2011 <NAME> <<EMAIL>>, GPL2 license." __license__ = "GPL" __version__ = "20110311" #Filetypes for tk open/save dialogs. GCODE_FILETYPE = ("GCode Files", ".gcode") PS_FILETYPE = ("Post Script", ".ps") ALL_FILETYPE = ("All Files", ".*") class Display: '''A GUI display for the program.''' waittime = 0.1 #Time to sleep between drawing cycles. def speed_closer(self, time): '''Creates and returns a function for setting the wait_time to a certain value. Paramaters: time - The time to create the function for setting waittime to. Return: A function that sets waittime to the given time. ''' def settime(): self.waittime = time self.notify("Setting delay to: %s, this may take a moment." % (time)) return settime def timer(self): '''Called by inputs to delay their inputs for a user determined amount of time. Also pauses if the emulated RepRap is paused. ''' time.sleep(self.waittime) while self.rep.paused: time.sleep(1) def save(self): '''Saves the print bed view as a post-script file.''' loc = tkFileDialog.asksaveasfilename(defaultextension=".ps", filetypes=[PS_FILETYPE]) if not loc: self.notify("Save image canceled.") return try: f = open(loc, 'w') f.write( self.canvas.postscript() ) self.notify("Saved image to %s" % (loc)) except IOError, e: self.notify("Couldn't save image: %s." % (e)) def file_input(self): loc = tkFileDialog.askopenfilename(filetypes=[GCODE_FILETYPE, ALL_FILETYPE]) if not loc: return f = inputs.file_input.FileInput(self.rep, loc, self.timer) f.start() self.notify("Using file %s as input." % (loc)) def unix_input(self): '''Setus up the input as a unix socket.''' loc = tkFileDialog.askopenfilename() if not loc: return f = inputs.unix_socket.UNIXSocketInput(self.rep, loc, self.timer) f.start() self.notify("Using file %s as input." % (loc)) def firmware_changer(self, fw): '''Takes in a class and returns a function to change to the firmware represented by the given class. ''' def change_firmware(): self.rep.current_firmware = fw(self.rep) self.notify("Changed firmware to %s" % fw.title) return change_firmware def toggle_paused(self): '''Toggles the paused state of the RepRap.''' self.rep.paused = not self.rep.paused if self.rep.paused: self.notify("Paused") else: self.notify("Un-Paused") def setup_reprap(self): '''Draw the text and dividing lines on the bed.''' self.rep = reprap.RepRap() bed = self.rep.bed #Shorten future commands by nine chars. #Place to draw the output. self.canvas = Canvas(self.root, width=bed.bed_width, height=bed.bed_height, bg="#6BB56B") self.canvas.pack(side=TOP) bed.canvas = self.canvas bed.reset() #Draw dividing lines for displays. def clear_canvas(self): #print dir(self.rep.bed.xy_canvas) self.rep.bed.canvas.delete(ALL) self.rep.bed.reset() def notify(self, text): '''Notifies the user of an event.''' t = time.strftime("%H:%M:%S") text = "%s - %s\n" % (t, text) self.notify_panel.insert(END, text) self.notify_panel.see(END) def __init__(self): root = Tk(className=" RepRap Franklin") self.root = root #Setup Menus menu = Menu(root) root.config(menu=menu) filemenu = Menu(menu) menu.add_cascade(label="Display", menu=filemenu) filemenu.add_command(label="Save As...", command=self.save) filemenu.add_command(label="Clear", command=self.clear_canvas) filemenu.add_command(label="Quit", command=exit) repmenu = Menu(menu) menu.add_cascade(label="RepRap", menu=repmenu) #Add all the possible firmwares. fw_menu = Menu(repmenu) repmenu.add_cascade(label="Change Firmware", menu=fw_menu) for i in firmware.full.Firmware.__subclasses__(): fw_menu.add_command(label=i.title, command=self.firmware_changer(i)) repmenu.add_separator() repmenu.add_command(label="Pause", command=self.toggle_paused) #Input menu (select gcode source) inputmenu = Menu(menu) menu.add_cascade(label="Input Source", menu=inputmenu) inputmenu.add_command(label="File...", command=self.file_input) inputmenu.add_command(label="UNIX Socket...", command=self.unix_input) #Speed menu speed_menu = Menu(menu) menu.add_cascade(label="Delay", menu=speed_menu) for i in [0, 0.005, 0.01, 0.1, 0.2, 0.5, 1, 2, 5]: speed_menu.add_command(label="%s seconds" % i, command=self.speed_closer(i)) #Notification panel for the user. self.notify_panel = Text(root, height=5) self.notify_panel.pack(side=BOTTOM) self.setup_reprap() self.notify(__copyright__) mainloop() if __name__ == "__main__": d = Display()
josephlewis42/personal_codebase
python/reprap-franklin/reprap.py
#!/usr/bin/env python '''Provides a RepRap Object for the RepRap Franklin. This is used as the abstract RepRap and has a set of toolheads, a firmware, a printing bed and other small components, like fans. Copyright 2011 <NAME> <<EMAIL>> This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. ''' import firmware import toolheads class _PrintBed: ''' A printing bed representation. TODO Add ability to turn on/off lines from certain toolheads. To start printing to a canvas just set the canvas variable to a Tk.Canvas instance. ''' lines = [] #All of the lines on the canvas. layer = [] #The current z layer's lines. layer_z = 0.0 #The z value of the current layer. canvas = None #The canvas for the printer. #Physical properties temperature = 22.22 #Room temp. pressure = 0 #Holding pressure in bar. #Dimensions (mm) dim_x = 250 dim_y = 250 dim_z = 125 scale = 1.5 #This many px = 1 mm, can't be below 1 for sanity. bed_width = None bed_height = None def __init__(self): #Setup scaling. self.bed_height = (self.dim_y + self.dim_z) * self.scale self.bed_width = (self.dim_x + self.dim_z) * self.scale self.max_y = self.dim_y * self.scale #Max y value self.max_x = self.dim_x * self.scale #Max x value def reset(self): #Clears the bed and re-draws the border lines. if self.canvas != None: y = self.dim_y * self.scale #Max y value x = self.dim_x * self.scale #Max x value #Horizontal Line self.canvas.create_line((0, y, self.bed_width, y), fill="black") #Vertical Line self.canvas.create_line((x, 0, x, self.bed_height), fill="black") #Denoting the areas. self.canvas.create_text(10, 10, text="XY") self.canvas.create_text(x+10, 10, text="YZ") self.canvas.create_text(10, y+10, text="XZ") self.canvas.create_text(x+45,y+10, text="Current Layer") def add_line(self, coord1, coord2, toolhead): #Scale the coordinates properly. coord1.scale(self.scale) coord2.scale(self.scale) self.lines.append((coord1, coord2, toolhead)) x1 = coord1.x y1 = coord1.y z1 = coord1.z x2 = coord2.x y2 = coord2.y z2 = coord2.z #Immediately draw to the canvas. if self.canvas != None: #XY self.canvas.create_line((x1, y1, x2, y2), fill=toolhead.color, width=toolhead.width) #YZ self.canvas.create_line((self.bed_width-z1, y1, self.bed_width-z2, y2), fill=toolhead.color, width=toolhead.width) #XZ self.canvas.create_line((x1, self.bed_height-z1, x2, self.bed_height-z2), fill=toolhead.color, width=toolhead.width) #Draw lines for the current layer in the corner. if z2 != self.layer_z: #If the z layer has moved, erase the corner. for line in self.layer: self.canvas.delete(line) self.layer_z = z2 self.layer = [] x1 += self.max_x - (self.max_x / 4.0) #Cut 1/4 off all edges. x2 += self.max_x - (self.max_x / 4.0) y1 += self.max_y - (self.max_y / 4.0) y2 += self.max_y - (self.max_y / 4.0) j = self.canvas.create_line((x1,y1,x2,y2), fill=toolhead.color, width=toolhead.width) self.layer.append(j) class Chamber: '''A chamber representation for the RepRap''' temperature = 22.22 #Room temp. class RepRap: '''A reprap model, has a print bed, firmware and toolheads.''' #Physical properties. fan = False #On = True stop = False idle_hold_on = True paused = False def __init__(self): '''Sets up the RepRap and some nice variables: current_firmware: An initalized instance of a pice of firmware. bed: The print bed. chamber: The chamber for the device. possible_toolheads: The toolheads in each slot of the machine, corresponds to the T number in GCode. current_toolhead: A pointer to the currently used toolhead, automatically 0. ''' self.current_firmware = firmware.full.Firmware(self) self.bed = _PrintBed() self.chamber = Chamber() self.possible_toolheads = [toolheads.basic.BasicExtruder(),] self.current_toolhead = self.possible_toolheads[0] def change_toolhead(self, number): '''Changes to toolhead N if possible.''' try: self.current_toolhead = self.possible_toolheads[number] except Exception, e: print ("Couldn't change toolhead: %s" % e) def move_toolhead(self, c1, c2): '''Moves the toolhead from coordinates 1 to 2, drawing along the way if applicable. ''' if self.current_toolhead.extrude_rate > 0: self.bed.add_line(c1, c2, self.current_toolhead)
josephlewis42/personal_codebase
python/Genetic Programming/Examples/pyevolve_ex18_gp.py
from pyevolve import Util from pyevolve import GTree from pyevolve import GSimpleGA from pyevolve import Consts import math rmse_accum = Util.ErrorAccumulator() def gp_add(a, b): return a+b def gp_sub(a, b): return a-b def gp_mul(a, b): return a*b def gp_sqrt(a): return math.sqrt(abs(a)) def eval_func(chromosome): global rmse_accum rmse_accum.reset() code_comp = chromosome.getCompiledCode() for a in xrange(0, 5): for b in xrange(0, 5): evaluated = eval(code_comp) target = math.sqrt((a*a)+(b*b)) rmse_accum += (target, evaluated) return rmse_accum.getRMSE() def main_run(): genome = GTree.GTreeGP() genome.setParams(max_depth=4, method="ramped") genome.evaluator += eval_func ga = GSimpleGA.GSimpleGA(genome) ga.setParams(gp_terminals = ['a', 'b'], gp_function_prefix = "gp") ga.setMinimax(Consts.minimaxType["minimize"]) ga.setGenerations(50) ga.setCrossoverRate(1.0) ga.setMutationRate(0.25) ga.setPopulationSize(800) ga(freq_stats=10) best = ga.bestIndividual() print best if __name__ == "__main__": main_run()
josephlewis42/personal_codebase
python/OpenCalc/Lib/Code/Functions/Log_Exp.py
''' Holds Logarithmic and Exponential Functions @Author = <NAME> <<EMAIL>> @Date = 2010-03-03 (Originally) @License = GPL ==Changelog== 2010-03-03 - Original of this document, so far it is a wrapper for the python log and exponential math functions, soon I hope it to be more ''' #Import Statements import math #Define Constants E = math.e #Define Functions def exp(base, exp): ''' Raise the base to the exponent ''' return base**exp def log(num, base=10): ''' Return the log of x to given base if no base is provided, use 10 ''' return math.log(num,base) def natlog(num): ''' Return the natural log of a number ''' return math.log(num) def ln(num): ''' Return the natrual log of a number (TI-83) ''' return math.log(num) def sqrt(num): ''' Return the square root of a number ''' return math.sqrt(num) def root(num, root): ''' Return a root of the number: Original Code ''' x = num**(1.0/root) return x
josephlewis42/personal_codebase
python/Genetic Programming/Examples/pyevolve_ex3_schaffer.py
from pyevolve import G1DList, GSimpleGA, Selectors from pyevolve import Initializators, Mutators, Consts import math # This is the Schaffer F6 Function # This function has been conceived by Schaffer, it's a # multimodal function and it's hard for GAs due to the # large number of local minima, the global minimum is # at x=0,y=0 and there are many local minima around it def schafferF6(genome): t1 = math.sin(math.sqrt(genome[0]**2 + genome[1]**2)); t2 = 1.0 + 0.001*(genome[0]**2 + genome[1]**2); score = 0.5 + (t1*t1 - 0.5)/(t2*t2) return score def run_main(): # Genome instance genome = G1DList.G1DList(2) genome.setParams(rangemin=-100.0, rangemax=100.0, bestrawscore=0.0000, rounddecimal=4) genome.initializator.set(Initializators.G1DListInitializatorReal) genome.mutator.set(Mutators.G1DListMutatorRealGaussian) # The evaluator function (objective function) genome.evaluator.set(schafferF6) # Genetic Algorithm Instance ga = GSimpleGA.GSimpleGA(genome) ga.selector.set(Selectors.GRouletteWheel) ga.setMinimax(Consts.minimaxType["minimize"]) ga.setGenerations(8000) ga.setMutationRate(0.05) ga.setPopulationSize(100) ga.terminationCriteria.set(GSimpleGA.RawScoreCriteria) # Do the evolution, with stats dump # frequency of 10 generations ga.evolve(freq_stats=250) # Best individual best = ga.bestIndividual() print best print "Best individual score: %.2f" % best.getRawScore() if __name__ == "__main__": run_main()
josephlewis42/personal_codebase
Euler/pymath.py
<reponame>josephlewis42/personal_codebase ''' A small, general-purpose math library for Python - <NAME> ''' import math import random def factor(n): ''' Finds the factors of the given number.''' result = set() for i in range(1, int(n ** 0.5) + 1): div, mod = divmod(n, i) if mod == 0: result |= {i, div} return result def prime(n): ''' Finds if n is a prime number. Optionally n can be a set, will return a set containing all primes in that list.''' try: return n == 1 or len(factor(n)) == 2 except Exception: return [x for x in n if prime(x)] def prime_factors(n): '''Returns the prime factors of the given number.''' return prime(factor(n)) def has_multiple(i, multiples): '''True if i is divisible by any number in the array multiples an even number of times. ''' for p in multiples: if i == p or i % p: return True return False def gen_fib(largest, last = 2, prev = 1, li = [1,2]): ''' Generates the fibonacci numbers up to the largest given.''' if last + prev > largest: return li li.append(last + prev) return gen_fib(largest, last+prev, last, li) def palindrome(number): '''Returns true if the number is a palindrome''' backwards = "".join(reversed(str(number))) return backwards == str(number) def gcd(a, b): '''Returns the greatest common divisor of the two numbers. Using the Euclidian method.''' mod = 1 while mod != 0: div,mod = divmod(a,b) a = b b = mod return a def lcm(a, b): '''Returns the leaste common multiple of the two numbers.''' return abs(a * b) / gcd(a, b) def lcm_array(nums): ''' Returns the least common multiple of a list of numbers.''' return reduce(lambda x, y: lcm(x,y), nums) def sum_of_squares(nums): return sum([x ** 2 for x in nums]) def square_of_sum(nums): return sum(nums) ** 2 def n_primes(n): '''Returns the first n primes.''' i = 0 primes = set() while len(primes) != n: i += 1 if prime(i): primes.add(i) return primes def primes_below(n): '''Finds a list of all primes below the given number. Using Sieve's Algorithm.''' if n < 2: return [] if n == 2: return [2] n = n + 1 # find the primes below n marked = set() primes = [] for x in range(2, n): if not x in marked: primes.append(x) for y in range(x, n, x): marked.add(y) return primes def quadratic(a, b, c, x=0): '''Returns the values for c such that the quadratic equation is solved. Only returns real solutions. Returns None for complex numbers.''' c = c - x sltns = b**2 - 4 * a * c if sltns > 0: sltn1 = (-b + math.sqrt(sltns))/(2.0 * a) sltn2 = (-b - math.sqrt(sltns))/(2.0 * a) return (sltn1, sltn2) if sltns == 0: sltn1 = (-b + math.sqrt(sltns))/(2.0 * a) return (sltn1, sltn1) return None def pythagorean_triple(perim): '''Returns a pythagorean triple such that the sum of a,b,c is the given number. The triples won't be primitive.''' #perim = 2n + 1 + 2n(n+1) + 2n(n+1) + 1 #perim = 4n**2 + 6n + 2 # n = 15 q = quadratic(4, 6, 2, perim) n = q[0] if q[0] > q[1] else q[1] a = 2 * n + 1 b = 2 * n * (n + 1) c = 2 * n * (n + 1) + 1 return (a,b,c) def are_coprime(a,b): '''Determines if the two numbers are coprime.''' return gcd(a,b) == 1 def is_pythagorean(a,b,c): return (a**2 + b**2) == c**2 def primitive_pythagorean_triples(perim): '''Returns a pythagorean triple such that the sum of a,b,c is the given number. Returns none if it does not exist. ''' results = [] for c in range(2, perim): for b in range(1, perim - c): a = perim - b - c if a > b: continue if is_pythagorean(a,b,c): results.append([a,b,c]) return results def split_2d_array_to_1d(array, up=False, down=False, left=False, right=True, diagonal_up=False, diagonal_down=False): ''' Splits a 2d array in to a bunch of 1d arrays, the array should be in the format [row][col] ''' result = [] if up: for col in range(len(array)): tmp = [] row = 0 try: tmp.append(array[row][col]) row += 1 except IndexError: result.append(tmp) if down: for col in range(len(array)): tmp = [] row = 0 try: tmp.append(array[row][col]) row += 1 except IndexError: result.append([x for x in reversed(tmp)]) if left: for a in array: result.append([x for x in reversed(a)]) if right: for a in array: result.append(a) if diagonal_up: maxrow = len(array) maxcol = len(array[1]) # try going down for row in range(len(array)): tmp = [] col = 0 try: while row >= 0 and col >= 0 and row < maxrow and col < maxcol: tmp.append(array[row][col]) row -= 1 col += 1 except IndexError: pass result.append(tmp) # then across for col in range(1,len(array[len(array) - 1])): tmp = [] row = len(array) - 1 try: while row >= 0 and col >= 0 and row < maxrow and col < maxcol: tmp.append(array[row][col]) row -= 1 col += 1 except IndexError: pass result.append(tmp) if diagonal_down: maxrow = len(array) maxcol = len(array[1]) # try going down for row in range(maxrow): tmp = [] col = 0 try: while row >= 0 and col >= 0 and row < maxrow and col < maxcol: tmp.append(array[row][col]) row += 1 col += 1 except IndexError: pass result.append(tmp) # then across for col in range(1,maxcol): tmp = [] row = 0 try: while row >= 0 and col >= 0 and row < maxrow and col < maxcol: tmp.append(array[row][col]) row += 1 col += 1 except IndexError: pass result.append(tmp) return result def greatest_product(numbers, length_of_chain): '''Finds the greatest product that can be found in the list of numbers. ''' largest = None for i in range(len(numbers) - length_of_chain + 1): num = numbers[i] for k in range(1,length_of_chain): num *= numbers[i + k] if num > largest or i == 0: largest = num return largest def triangluar_number(n): '''Generates the nth triangular number.''' return (n * (n + 1)) / 2 def print_prob(how_often, *args): if random.random() < (1.0 / how_often): print args def factorial(n): '''Calculates n factorial.''' total = 1 for i in range(n, 1, -1): total *= i return total def choose(n, k): '''Calculates n choose k''' return factorial(n) / (factorial(k) * factorial(n - k)) def to_word(number, suffix=''): '''changes a word to an english number.''' number = str(number) pre = number[:-3] if len(pre != 0): prefix = to_word whole_tens = ['ten','twenty','thirty','forty','fifty','sixty','seventy','eighty','ninety'] ones = ['','one','two','three','four','five','six','seven','eight','nine'] tens_one = ['ten','eleven','twelve','thirteen','fourteen','fifteen','sixteen','seventeen','eighteen','nineteen'] suffixes = ['','thousand','million','billion','trillion']
josephlewis42/personal_codebase
python/OpenCalc/Lib/Code/Frontend.py
#!/usr/bin/python import wx.html as html import Parser import wx import Graph class events(): ''' This class holds all of the events for the main gui and their helper methods. ''' def submit_function(self, event): index = self.functions_list_box.GetSelection() fx = Graph.function(self.function_text_ctrl.GetValue(), self.function_name_text_ctrl.GetValue()) fx.will_graph = self.function_show_checkbox.GetValue() fx.line_color = self.function_color_combo_box.GetValue() fx.line_style = self.function_style_combo_box.GetValue() #Set the function Graph.function_list[index] = fx #Update the box self.setup_functions_list() event.Skip() def update_function_editor(self, event): #Get selected f(x) location index = event.GetSelection() #Get the correct function from the tupple fx = Graph.function_list[index] #Set all values self.function_text_ctrl.SetValue(fx.function_value) self.function_color_combo_box.SetValue(fx.line_color) self.function_style_combo_box.SetValue(fx.line_style) self.function_name_text_ctrl.SetValue(fx.function_name) self.function_show_checkbox.SetValue(fx.will_graph) event.Skip() def LoadPage(self, event): # wxGlade: CalcWidget.<event_handler> print "Event handler `LoadPage' not implemented" event.Skip() def input_key_press(self, event): ''' Checks for the enter key, if it has been pressed then the program will submit the value that is in the pad input box ''' keycode = event.GetKeyCode() #If user pressed enter or return spawn the submit input event if keycode == wx.WXK_RETURN or keycode == wx.WXK_NUMPAD_ENTER: self.Submit_Input(event) event.Skip() def show_tab(self, event): # wxGlade: CalcWidget.<event_handler> print "Event handler `show_tab' not implemented!" event.Skip() def clear_pad(self, event): # wxGlade: CalcWidget.<event_handler> self.output_text_ctrl.Clear() event.Skip() def save_graph_as(self, event): # wxGlade: CalcWidget.<event_handler> print "Event handler `save_graph_as' not implemented!" event.Skip() def Submit_Input(self, event): ''' Parse the input for the pads ''' if self.input_text_ctrl.GetValue() != "": #Parse the data self.output_text_ctrl.AppendText("==" + self.input_text_ctrl.GetValue() + "\n") self.output_text_ctrl.AppendText(str(Parser.parse(self.input_text_ctrl.GetValue()))+"\n") #If an error happens above the text will NOT be cleared, allowing the #user to correct their mistake easily. self.input_text_ctrl.Clear() event.Skip() def LoadPage(self, event): ''' Load the main html page. ''' self.html_window.LoadPage("./Lib/Function Lookup/index.html") def switch_to_pad(self, event): ''' Switch to the pad tab ''' self.notebook_manager.SetSelection(0) event.Skip() def write(self,text): #Used to print stdout to output control self.output_text_ctrl.AppendText(text+"\n") def switch_to_functions(self, event): ''' Switch to the functions tab ''' self.notebook_manager.SetSelection(1) event.Skip() def switch_to_graphs(self, event): ''' Switch to the graphs tab ''' self.notebook_manager.SetSelection(2) event.Skip() def toggle_fullscreen(self, event): ''' Toggles the window being fullscreen. TODO : Test this function ''' self.main_window.ShowFullScreen(True, style=wx.FULLSCREEN_ALL) def setup_functions_list(self): ''' Add all of the functions as well as their text to the listbox ''' #Clear Box self.functions_list_box.Clear() #Get all function titles titles = Graph.get_function_titles() #Add title to list for title in titles: self.functions_list_box.Append(title) def graph(self): ''' Graphs the current functions and plots the user has entered. ''' #Get x range for y to be calculated off of x = Graph.get_x_range(Graph.xmin,Graph.xmax,Graph.x_increment) #Get all functions to plot functions_to_plot = Graph.get_on_functions() for fx in functions_to_plot: fx.update_function(x) #Now set up and plot the functions fig = self.graph_2d_plot_panel.get_figure() axes = fig.gca() # clear the axes and replot everything axes.cla() for fx in functions_to_plot: axes.plot(fx.x_values, fx.y_values,fx.get_color()+fx.get_line_style(), linewidth=1.0, label=fx.function_name) #Set the limits for the graph TODO get this working #axes.set_xlim((-100,100)) axes.set_ylim(-1,1) def on_resize_window(self, event): ''' Changes the position of the window divider (help frame, and tabs) when the window is resized, being that the help window will take all the space otherwise. ''' frame_size = event.GetSize() self.main_window.SetSize(frame_size) width = frame_size.GetWidth() self.main_window.SetSashPosition(width - 300, redraw=True) event.Skip() def notebook_page_changed(self, event): # wxGlade: CalcWidget.<event_handler> ''' Called when the tabs change, if graphing tab, update graph ''' if self.notebook_manager.GetSelection() == 2: self.graph() #TODO try to speed this up event.Skip() def _do_bindings(self): ''' Does all of the custom bindings left out by wxGlade when the project is generated. ''' #Bind the pad input control with the enter key self.input_text_ctrl.Bind(wx.EVT_KEY_DOWN, self.input_key_press) #Bind window resize with a recalculation of the divider placement wx.EVT_SIZE(self, self.on_resize_window) def setup(self): ''' This function sets up the program in the proper way, and inits all components. ''' #Bind all of the extras self._do_bindings() #Load the main web page self.LoadPage("") #Disallow any of the panels from disappearing self.main_window.SetMinimumPaneSize(1) #Add functions to the listbox self.setup_functions_list() #self.graph()
josephlewis42/personal_codebase
python/randall/alife_randall_checkout/ai_webserver/actor_chooser.py
# actor_chooser.py # # Copyright 2011 <NAME> <<EMAIL>> # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, # MA 02110-1301, USA. self.send_200() if not SESSION or 'login' not in SESSION.keys() or not SESSION['login']: self.wfile.write("You are not logged in...<script type='text/javascript'>window.location = 'login.py'</script>") else: if 'actor' not in SESSION.keys(): try: SESSION['actor'] = SESSION['world'].actors[0].name except IndexError: import warnings warnings.warn("Can't find the world OR an actor in it.") if POST_DICT and 'actor' in POST_DICT.keys(): #Change actor on successful post. SESSION['actor'] = POST_DICT['actor'] #Handle AJAX refresh query. if 'load' in QUERY_DICT.keys(): page = ''' <script type="text/javascript" src="assets/jquery.js"></script> <h3>Actor Panel:</h3> <div id="progresscontainer"> <h4>Choose Actor:</h4> <form id="actorselect"> <select name="actor" onchange="$.post('actor_chooser.py', $('#actorselect').serialize());"> ''' try: for item in SESSION['world'].actors: page += "<option>%s</option>"%(item.name) except KeyError: pass page += '''</select></form>''' #Generate the normal links for the actor. page += '''<hr> <a href="actor_map.py" target="_blank">Map</a> <a href="pavlov.py" target="_blank">Association</a>''' page += "</div>" self.wfile.write(page) #Handle page query. else: self.wfile.write(''' <html> <head> <script type="text/javascript" src="assets/jquery.js"></script> <link rel="StyleSheet" href="assets/login.css" type="text/css" /> </head> <body class="widget"> </body> </html> ''')
josephlewis42/personal_codebase
python/reprap-franklin/toolheads/__init__.py
import toolhead #Include all other toolheads here import basic
josephlewis42/personal_codebase
python/OpenCalc/Main (copy).py
#!/usr/bin/env python # -*- coding: utf-8 -*- # generated by wxGlade 0.6.3 on Sat Feb 27 13:35:04 2010 import wx # begin wxGlade: extracode import wx.html as html from Lib.Code import Parser import sys # end wxGlade class CalcWidget(wx.Frame): def __init__(self, *args, **kwds): # begin wxGlade: CalcWidget.__init__ kwds["style"] = wx.CAPTION|wx.CLOSE_BOX|wx.MINIMIZE_BOX|wx.MAXIMIZE_BOX|wx.SYSTEM_MENU|wx.RESIZE_BORDER|wx.FULL_REPAINT_ON_RESIZE|wx.TAB_TRAVERSAL|wx.CLIP_CHILDREN wx.Frame.__init__(self, *args, **kwds) self.main_window = wx.SplitterWindow(self, -1, style=wx.SP_3DBORDER|wx.SP_BORDER|wx.SP_LIVE_UPDATE) self.help_browser_panel = wx.Panel(self.main_window, -1) self.main_panel = wx.Panel(self.main_window, -1) self.notebook_manager = wx.Notebook(self.main_panel, -1, style=0) self.pad_panel = wx.Panel(self.notebook_manager, -1) # Menu Bar self.main_menubar = wx.MenuBar() wxglade_tmp_menu = wx.Menu() self.switch_to_pad_menu_item = wx.MenuItem(wxglade_tmp_menu, wx.NewId(), "&Switch To Pad\tCtrl+Shift+P", "Switches to the pad", wx.ITEM_NORMAL) wxglade_tmp_menu.AppendItem(self.switch_to_pad_menu_item) wxglade_tmp_menu.AppendSeparator() self.clear_pad_menu_item = wx.MenuItem(wxglade_tmp_menu, wx.NewId(), "&Clear\tCtrl+K", "Clears the pad.", wx.ITEM_NORMAL) wxglade_tmp_menu.AppendItem(self.clear_pad_menu_item) self.main_menubar.Append(wxglade_tmp_menu, "&Pad") self.graph_menu = wx.Menu() self.save_graph = wx.MenuItem(self.graph_menu, wx.NewId(), "Save As", "", wx.ITEM_NORMAL) self.graph_menu.AppendItem(self.save_graph) self.main_menubar.Append(self.graph_menu, "&Graph") self.SetMenuBar(self.main_menubar) # Menu Bar end self.main_statusbar = self.CreateStatusBar(1, wx.ST_SIZEGRIP) self.output_text_ctrl = wx.TextCtrl(self.pad_panel, -1, "", style=wx.TE_MULTILINE) self.input_text_ctrl = wx.TextCtrl(self.pad_panel, -1, "") self.button_3 = wx.Button(self.pad_panel, -1, "&Submit") self.functions_panel = wx.Panel(self.notebook_manager, -1) self.graphs_panel = wx.Panel(self.notebook_manager, -1) self.table_panel = wx.Panel(self.notebook_manager, -1) self.bitmap_button_1 = wx.BitmapButton(self.help_browser_panel, -1, wx.Bitmap("/home/joseph/Python/Calc/Lib/Icons/go-home.png", wx.BITMAP_TYPE_ANY)) self.panel_2 = wx.Panel(self.help_browser_panel, -1) self.label_1 = wx.StaticText(self.help_browser_panel, -1, "Help Browser", style=wx.ALIGN_CENTRE) self.html_window = html.HtmlWindow(self.help_browser_panel, -1) self.__set_properties() self.__do_layout() self.Bind(wx.EVT_MENU, self.switch_to_pad, self.switch_to_pad_menu_item) self.Bind(wx.EVT_MENU, self.clear_pad, self.clear_pad_menu_item) self.Bind(wx.EVT_MENU, self.save_graph_as, self.save_graph) self.Bind(wx.EVT_BUTTON, self.Submit_Input, self.button_3) self.Bind(wx.EVT_BUTTON, self.LoadPage, self.bitmap_button_1) # end wxGlade def __set_properties(self): # begin wxGlade: CalcWidget.__set_properties self.SetTitle("OpenCalc") self.SetSize((640, 509)) self.main_statusbar.SetStatusWidths([-1]) # statusbar fields main_statusbar_fields = ["OpenCalc 10.0 Stable"] for i in range(len(main_statusbar_fields)): self.main_statusbar.SetStatusText(main_statusbar_fields[i], i) self.bitmap_button_1.SetSize(self.bitmap_button_1.GetBestSize()) # end wxGlade def __do_layout(self): # begin wxGlade: CalcWidget.__do_layout main_sizer = wx.BoxSizer(wx.VERTICAL) help_browser_sizer = wx.BoxSizer(wx.VERTICAL) help_browser_title_sizer = wx.BoxSizer(wx.HORIZONTAL) sizer_2 = wx.BoxSizer(wx.HORIZONTAL) sizer_3 = wx.BoxSizer(wx.VERTICAL) sizer_3.Add(self.output_text_ctrl, 1, wx.ALL|wx.EXPAND, 5) sizer_3.Add(self.input_text_ctrl, 0, wx.ALL|wx.EXPAND, 5) sizer_3.Add(self.button_3, 0, wx.ALL|wx.ALIGN_RIGHT, 5) self.pad_panel.SetSizer(sizer_3) self.notebook_manager.AddPage(self.pad_panel, "Pad") self.notebook_manager.AddPage(self.functions_panel, "Functions") self.notebook_manager.AddPage(self.graphs_panel, "Graphs") self.notebook_manager.AddPage(self.table_panel, "Tables") sizer_2.Add(self.notebook_manager, 1, wx.EXPAND, 0) self.main_panel.SetSizer(sizer_2) help_browser_title_sizer.Add(self.bitmap_button_1, 0, 0, 0) help_browser_title_sizer.Add(self.panel_2, 1, wx.EXPAND, 0) help_browser_title_sizer.Add(self.label_1, 0, wx.ALL|wx.ALIGN_CENTER_HORIZONTAL|wx.ALIGN_CENTER_VERTICAL, 8) help_browser_sizer.Add(help_browser_title_sizer, 0, wx.EXPAND|wx.ALIGN_CENTER_HORIZONTAL|wx.ALIGN_CENTER_VERTICAL, 1) help_browser_sizer.Add(self.html_window, 1, wx.ALL|wx.EXPAND|wx.ALIGN_CENTER_HORIZONTAL|wx.ALIGN_CENTER_VERTICAL, 5) self.help_browser_panel.SetSizer(help_browser_sizer) self.main_window.SplitVertically(self.main_panel, self.help_browser_panel) main_sizer.Add(self.main_window, 1, wx.EXPAND, 0) self.SetSizer(main_sizer) self.Layout() self.Centre() # end wxGlade self.LoadPage("") self.input_text_ctrl.Bind(wx.EVT_KEY_DOWN, self.input_key_press) self.main_window.SetMinimumPaneSize(1) def input_key_press(self, event): #If the user presses return or enter in the pad input area keycode = event.GetKeyCode() #If user pressed enter or return spawn the submit input event if keycode == wx.WXK_RETURN or keycode == wx.WXK_NUMPAD_ENTER: self.Submit_Input(event) event.Skip() def show_tab(self, event): # wxGlade: CalcWidget.<event_handler> print "Event handler `show_tab' not implemented!" event.Skip() def clear_pad(self, event): # wxGlade: CalcWidget.<event_handler> self.output_text_ctrl.Clear() event.Skip() def save_graph_as(self, event): # wxGlade: CalcWidget.<event_handler> print "Event handler `save_graph_as' not implemented!" event.Skip() def Submit_Input(self, event): # wxGlade: CalcWidget.<event_handler> if self.input_text_ctrl.GetValue() != "": #Parse the data self.output_text_ctrl.AppendText("==" + self.input_text_ctrl.GetValue() + "\n") self.output_text_ctrl.AppendText(str(Parser.parse(self.input_text_ctrl.GetValue()))+"\n") #If an error happens above the text will NOT be cleared, allowing the #user to correct their mistake easily. self.input_text_ctrl.Clear() event.Skip() def LoadPage(self, event): # wxGlade: CalcWidget.<event_handler> self.html_window.LoadPage("./Lib/Function Lookup/index.html") def switch_to_pad(self, event): # wxGlade: CalcWidget.<event_handler> self.notebook_manager.SetSelection(0) event.Skip() def write(self,text): #Used to print stdout to output control self.output_text_ctrl.AppendText(text+"\n") event.Skip() # end of class CalcWidget if __name__ == "__main__": app = wx.PySimpleApp(0) wx.InitAllImageHandlers() Main_Frame = CalcWidget(None, -1, "") app.SetTopWindow(Main_Frame) #Redirect stdout to the pad sys.stdout=Main_Frame Main_Frame.Show() app.MainLoop()
josephlewis42/personal_codebase
python/webkit_browser/simple_webkit_browser_with_tabs.py
<reponame>josephlewis42/personal_codebase<filename>python/webkit_browser/simple_webkit_browser_with_tabs.py #!/usr/bin/env python ''' # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following disclaimer # in the documentation and/or other materials provided with the # distribution. # * Neither the name of the nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. Copyright 2010-08-21 <NAME> <<EMAIL>> ''' import gtk import webkit #Constants BROWSER_NAME = "Simple Browser" class MyWebBrowser(gtk.VBox): def __init__(self): #Init the program, essentially just create the gtk environment self.label = gtk.Label("") #Holds the title #Create the vbox to hold the menubar and gtkwindow self.vbox = gtk.VBox(False, 2) self.view = webkit.WebView() self.view.open("http://www.google.com/") self.view.connect('title-changed', self.update_title_bar) self.view.connect('document-load-finished', self.doc_load_finished) self.sw = gtk.ScrolledWindow() self.sw.add(self.view) self.make_menu_bar() self.vbox.pack_end(self.sw) def make_menu_bar(self): '''Makes the menu bar for the program, pretty simple really.''' #Make the hbox to fit everything in. self.menu_box = gtk.HBox(False, 5) #Make the back button and set it up. self.back_button = gtk.Button(stock=gtk.STOCK_GO_BACK) self.menu_box.pack_start(self.back_button, False, False, 0) self.back_button.connect("pressed",self.page_back) #Make the forward button and set it up. self.forward_button = gtk.Button(stock=gtk.STOCK_GO_FORWARD) self.menu_box.pack_start(self.forward_button, False, False, 0) self.forward_button.connect("pressed",self.page_forward) #The Refresh button #The home button #The url entry box self.url_entry = gtk.Entry() self.menu_box.pack_start(self.url_entry, True, True, 0) #The go button self.go_button = gtk.Button("Go") self.menu_box.pack_start(self.go_button, False, False, 0) self.go_button.connect("pressed",self.go_to_url) self.vbox.pack_start(self.menu_box, False, False, 0) def go_to_url(self, event): '''Goes to the url provided in the input box. Also adds www and http, if needed.''' url = self.url_entry.get_text() #if not url.startswith("www.") and not url.startswith("http://"): # url = "http://www."+url if not url.startswith("http://"): url = "http://"+url self.view.open(url) def update_title_bar(self, webview, frame, title): '''Updates the title bar when a webpage title is changed.''' self.label.set_label(title) def doc_load_finished(self, webview, unknown): '''Changes browser settings when a url is loaded, like location bar, and title.''' #Set the title for the page self.label.set_label(str(self.view.get_property("title"))) #Set the new uri self.url_entry.set_text( self.view.get_property("uri") ) def page_back(self, event): '''Go back a page.''' self.view.go_back() def page_forward(self, event): '''Go forward a page.''' self.view.go_forward() class MyNotebook(gtk.Notebook): def __init__(self): gtk.Notebook.__init__(self) #set the tab properties #self.set_property('homogeneous', True) def new_tab(self): #Create a new browser to put in the tab browser = MyWebBrowser() browser_label = browser.label browser_vbox = browser.vbox browser_vbox.show_all() nbpages = self.get_n_pages() self.append_page(browser_vbox) #we create a "Random" image to put in the tab image = gtk.Image() nbpages = self.get_n_pages() icon = gtk.STOCK_ABOUT image.set_from_stock(icon, gtk.ICON_SIZE_DIALOG) #self.append_page(image) #creation of a custom tab. the left image and #the title are made of the stock icon name #we pass the child of the tab so we can find the #tab back upon closure label, tochild = self.create_tab_label(browser_label, browser_vbox) label.show_all() browser.label = tochild self.set_tab_label_packing(image, True, True, gtk.PACK_START) #self.set_tab_label(image, label) self.set_tab_label(browser_vbox, label) image.show_all() self.set_current_page(nbpages) def create_tab_label(self, title, tab_child): box = gtk.HBox() title = gtk.Label("Tab") closebtn = gtk.Button() #the close button is made of an empty button #where we set an image image = gtk.Image() image.set_from_stock(gtk.STOCK_CLOSE, gtk.ICON_SIZE_MENU) closebtn.connect("clicked", self.close_tab, tab_child) closebtn.set_image(image) closebtn.set_relief(gtk.RELIEF_NONE) box.pack_start(title, True, True) box.pack_end(closebtn, False, False) return box, title def close_tab(self, widget, child): pagenum = self.page_num(child) if pagenum != -1: self.remove_page(pagenum) child.destroy() def on_destroy(win): gtk.main_quit() def on_delete_event(widget, event): gtk.main_quit() def new_tab(widget): notebook.new_tab() if __name__ == "__main__": window = gtk.Window() window.set_title( BROWSER_NAME ) window.resize(600,400) box = gtk.VBox() button = gtk.Button("New Tab") box.pack_start(button,False) button.connect("clicked", new_tab) notebook = MyNotebook() box.pack_start(notebook) window.add(box) window.connect("destroy", on_destroy) window.connect("delete-event", on_delete_event) window.show_all() gtk.main()
josephlewis42/personal_codebase
python/randall/alife_randall_checkout/randallai/AI/body.py
<filename>python/randall/alife_randall_checkout/randallai/AI/body.py #!/usr/bin/env python ''' Copyright (c) 2011 <NAME> <<EMAIL>> This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. ''' import threading import time import pavlov class Organ(): ''' The organ class represents a bodily need in a creature, for example hunger, it's value is between 0 and 100 and updated using the update_function supplied. This class can trigger events when the value reaches certain levels. These levels must be added to the dictionary "events" with the key being the condition sent to the pavlov.ResponseNetwork class supplied and value being a tuple of size 2 . For example: "hello":(2,20) Would trigger the event "hello" when this particular emotion was between (and including) 2 and 20. Alternatively you could use the add_event function. WARNING: If you see warnings from this class something has gone horribly wrong, but it will continue to function, albeit probably wrongly. The creature may begin to act sporatically or even violently, or may even commit suicide. ''' value = 0 last_value = 0 events = {} name = "Defined at init" def __init__(self, name, update_function, pavlovrn): ''' Initializes the Organ. Paramaters: name -- The name of the organ for identification and warning purposes. (String) update_function -- The function called when the organ needs it's value updated, should return a number between 0 and 100 inclusive. (Function) pavlovrn -- An implementation of the pavlov.ResponseNetwork class. (pavlov.ResponseNetwork) Raises: TypeError "ERROR: Wrong type of pavlov.ResponseNetwork class", this happens if the pavlov.ResponseNetwork class is not an instance of pavlov.ResponseNetwork. ''' self.name = name self.update_function = update_function if isinstance(pavlovrn, pavlov.ResponseNetwork): self.response_network = pavlovrn else: raise TypeError, "ERROR: Wrong type of pavlov.ResponseNetwork class" def update(self): '''Updates the value of this Organ by calling the update function. If the value is less than 0 it will be made to be equal to 0 and if it is > 100 the value will be set to 100. ''' try: #Try providing the current value. try: v = self.update_function(self.value) except TypeError: v = self.update_function() #Check for illegal values. if v < 0: v = 0 if v > 100: v = 100 self.last_value = self.value self.value = v except TypeError: print("ERROR: The update function for %s is not a function!" % (self.name)) raise except ValueError: print("ERROR: The update function for %s didn't return a number." % (self.name)) raise self.send_events() def send_events(self): '''Sends events for values set in the events dictionary by the user. This class can trigger events when the value reaches certain levels. These levels must be added to the dictionary "events" with the key being the condition sent to the pavlov.ResponseNetwork class supplied and value being a tuple of size 2 . For example: "hello":(2,20) Would trigger the event "hello" when this particular emotion was between (and including) 2 and 20. Alternatively you could use the add_event function. NOTE: This function is called periodically by the Body class, it does not need to be done manually unless desired. ''' for cond in self.events.keys(): low, high = self.events[cond] if self.value in range(low, high + 1): self.response_network.condition(cond) def add_event(self, low, high, event_name): '''A convenience function for adding events to the emotion. Paramaters: low -- The low number to trigger the event. high -- The high number to stop triggering the event at. event_name -- The event sent to the pavlov.ResponseNetwork class. ''' self.events[event_name] = (low, high) def autogen_events(self, step=10, start=0, stop=101): ''' Autogenerates events for ranges starting at start ending at stop every stop numbers and adds them to the response_network neuron list. Returns a list of these events. Example: >>> autogen_events(10, 20, 50) ['name_20','name_30','name_40'] Where name is the name of this emotion. Event name_20 would be triggered from 20-29, name_30 30-49 and name_40 from 40-49. ''' new_events = range(start, stop, step) #Add the maximum so we can get to the stop. new_events.append(stop) newnames = [] x = 0 while x < len(new_events) - 1: #Generate the name of this event. e_name = "%s_%d" % (self.name, new_events[x]) newnames.append(e_name) #Generate new neurons self.response_network.register_con_res(e_name) #Generate it locally, subtract from the high so there aren't #conflicts in ranges. self.add_event(new_events[x], new_events[x+1] - 1, e_name) x += 1 return newnames def get_value(self): '''A getter that is used by any function that needs a dynamic way to get the value. (I'm looking at you maslow!) ''' return self.value class Body(threading.Thread): '''A simple container for organs. To add organs, just append them to the variable "organs".''' organs = [] _update_time = None _awake = True #True if thread is running, false to kill it. def __init__(self, update_time=1, begin=True): '''Sets up the body. Paramaters: update_time -- A function that returns a float as the number of seconds until the organs update and fire events, or just a float. | DEFAULT:1 | (function, float) begin -- Whether or not to start the thred as soon as done initializing. If false, the thread won't ever trigger events or check for value correctness unless you manually start it by calling start() DEFAULT: True (boolean) ''' self._update_time = update_time threading.Thread.__init__(self) if begin: self.start() def run(self): self._awake = True while self._awake: #Handle update times for functions and numbers. if hasattr(self._update_time, '__call__'): ut = float(self._update_time()) else: ut = self._update_time #Wait so we don't hog the cpu time.sleep(ut) #Have all the organs fetch new values #and fire events to the pavlov network. for organ in self.organs: organ.update() def sleep(self): '''Kills the thread.''' self._awake = False def __len__(self): '''Returns the number of organs registered.''' return len(self.organs) def __getitem__(self, key): '''Emulates a list or dictionary, called with the name of the organ, or an index. Raises IndexError if not found. Example: >>> <Body>['eyes'] <class Organ at 0x0000007b> >>> <Body>[0] <class Organ at 0x0000002a> >>> <Body>[None] IndexError ''' #Check for strings try: for n in self.organs: if n.name == key: return n except TypeError: pass #Check for indexes try: return self.organs[key] except TypeError: pass #else raise error raise IndexError def append(self, o): '''Adds the given organ (o) to the body.''' self.organs.append(o)
josephlewis42/personal_codebase
python/game_of_life/conway.py
#!/usr/bin/env python ''' Conway's game of life in python. Copyright 2011-09-30 <NAME> <<EMAIL>> MIT License 1. Any live cell with fewer than two live neighbours dies. 2. Any live cell with two or three live neighbours lives. 3. Any live cell with more than three live neighbours dies. 4. Any dead cell with exactly three live neighbours becomes alive. -- Wikipedia. ''' import random import time ROWSCOLS = None # Number of rows and columns in the game. grid = None # A grid with 0s and 1s, 0 is no cell, 1 is a cell. def printgrid(): '''Prints out the given grid after blanking the screen.''' print 10 * "\n" print "+"+ "-" * ROWSCOLS + "+" # Border top for r in grid: line = "|" # Border Left for c in r: if c: line += "0" # Cell else: line += " " print line + "|" # Border Right print "+"+ "-" * ROWSCOLS + "+" # Border Bottom def do_life(): '''calculates the next grid''' grid_len = range(0,ROWSCOLS) grid2 = [[0 for i in grid_len] for i in grid_len] for r in grid_len: for c in grid_len: if grid[r][c]: increment(grid2, r, c) for r in grid_len: for c in grid_len: g = grid2[r][c] if g < 2 or g > 3: grid[r][c] = 0 elif g == 3: grid[r][c] = 1 def increment(grid, row, col): '''Increments the life count for all cells around this one.''' for r,c in [(row, col+1), (row, col-1), (row+1, col), (row-1, col), (row+1, col+1), (row-1, col-1), (row+1, col-1), (row-1, col+1)]: grid[r % ROWSCOLS][c % ROWSCOLS] += 1 def start_life(): '''Randomly fills the game.''' for i in range(0, ROWSCOLS**2 / 4): r = random.randint(0, ROWSCOLS-1) c = random.randint(0, ROWSCOLS-1) grid[r][c] = 1 if __name__ == "__main__": try: print("=Conways Game of Life=") k = int(input("How many turns should I run before I reset (200 is nice)? ")) ROWSCOLS = int(input("How many rows and columns of life should there be (35 is nice)? ")) t = float(input("How many frames per secould should I run (10 is nice)? ")) except Exception: print("Hey! Play nice, enter a number!") exit(1) grid = [[0 for i in range(0, ROWSCOLS)] for i in range(0, ROWSCOLS)] j = 0 while True: if not j: start_life() j = k # Number of turns to run before restart. j -= 1 do_life() printgrid() time.sleep(1/t)
josephlewis42/personal_codebase
python/Genetic Programming/Examples/pyevolve_ex2_realgauss.py
<gh_stars>1-10 from pyevolve import GSimpleGA from pyevolve import G1DList from pyevolve import Selectors from pyevolve import Initializators, Mutators # Find negative element def eval_func(genome): score = 0.0 for element in genome: if element < 0: score += 0.1 return score def run_main(): # Genome instance genome = G1DList.G1DList(20) genome.setParams(rangemin=-6.0, rangemax=6.0) # Change the initializator to Real values genome.initializator.set(Initializators.G1DListInitializatorReal) # Change the mutator to Gaussian Mutator genome.mutator.set(Mutators.G1DListMutatorRealGaussian) # The evaluator function (objective function) genome.evaluator.set(eval_func) # Genetic Algorithm Instance ga = GSimpleGA.GSimpleGA(genome) ga.selector.set(Selectors.GRouletteWheel) ga.setGenerations(100) # Do the evolution ga.evolve(freq_stats=10) # Best individual print ga.bestIndividual() if __name__ == "__main__": run_main()
josephlewis42/personal_codebase
python/spellcheck/spell_checker.py
<filename>python/spellcheck/spell_checker.py #!/usr/bin/env python '''A simple spell checker for Python, modified version of <NAME>'s http://norvig.com/spell-correct.html Created by: <NAME> <joehms22 [at] gmail [dot] com> 2012-09-19 ''' import re import collections DICTIONARY_FILE = "american-english" class Checker: known_words = set() check_cache = {} alphabet = 'abcdefghijklmnopqrstuvwxyz' def __init__(self): ''' Sets up the checker. ''' with open(DICTIONARY_FILE) as fp: self.populate_dict(fp) def populate_dict(self, fp): ''' Populates the known-words dictionary. ''' # normalize everything in the aspell dict doc = fp.read() doc = doc.lower() doc = re.sub(r'[^\w\s]+', '', doc) for word in doc.split(): self.known_words.add(word) def get_doc_dict(self, document_words_list): '''Gets a word->frequency dict for the words in the given doc.''' model = collections.defaultdict(lambda: 1) for f in features: model[f] += 1 return model def check_word(self, word, doc_dict={}): ''' Checks the given word against the dictionary, returns a "corrected" one. ''' word = word.lower() try: return self.check_cache[word] except KeyError: pass # faster than if in if word in self.known_words: return word candidates = self.known([word]) or self.known(self.edits1(word)) or self.known_edits2(word) or [word] nuword = max(candidates, key=doc_dict.get) if len(candidates) == 1: self.check_cache[word] = nuword return nuword twitterizations = {"":"", "4":"for", "2":"to", "txt":"text"} def edits1(self, word): twitterizations = [word.replace(k,v) for k,v in self.twitterizations.items()] splits = [(word[:i], word[i:]) for i in range(len(word) + 1)] deletes = [a + b[1:] for a, b in splits if b] transposes = [a + b[1] + b[0] + b[2:] for a, b in splits if len(b)>1] replaces = [a + c + b[1:] for a, b in splits for c in self.alphabet if b] inserts = [a + c + b for a, b in splits for c in self.alphabet] return set(deletes + transposes + replaces + inserts + twitterizations) def known_edits2(self, word): return set(e2 for e1 in self.edits1(word) for e2 in self.edits1(e1) if e2 in self.known_words) def known(self, words): return set(w for w in words if w in self.known_words)
josephlewis42/personal_codebase
python/PersonalFileServer/Site/index.py
self.send_200() self.wfile.write(''' <!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8" /> <title>Upload/Download</title> <style TYPE="text/css"> body { background-color:#ADD8E6; text-align:center; margin:0px; padding:0px; font-family:airal,helvetica; } .main{ display:block; background-color:#E5E5E5; margin-left:auto; margin-right:auto; padding:10px; width:800px; } </style> <script type="text/javascript"> function getNameFromPath(strFilepath) { var objRE = new RegExp(/([^\\/\\\\]+)$/); var strName = objRE.exec(strFilepath); if (strName == null) { return null; } else { return strName[0]; } } function setName() { document.getElementById('filename').value = getNameFromPath(document.getElementById('up').value); } </script> </head> <body> <div class="main"> <H1>Upload / Download Files</H1> <form action="upload.py" enctype="multipart/form-data" method="post"> <input type="file" name="myfile" size="chars" id="up"> <input name="filename" id="filename" type="hidden"></input> <input type="submit" value="Send" onclick="setName()"> </form> <hr> <h2>Download</h2> <ul> ''') import os j = os.listdir("Downloads") for item in j: self.wfile.write("<li><a href='download.py?f=%s'>%s</a></li>" % (item,item)) self.wfile.write(''' </ul> </div> </body> </html>''')
josephlewis42/personal_codebase
python/Genetic Programming/Examples/pyevolve_ex1_simple.py
from pyevolve import G1DList from pyevolve import GSimpleGA from pyevolve import Selectors from pyevolve import Statistics from pyevolve import DBAdapters # This function is the evaluation function, we want # to give high score to more zero'ed chromosomes def eval_func(genome): score = 0.0 # iterate over the chromosome # The same as "score = len(filter(lambda x: x==0, genome))" for value in genome: if value==0: score += 1 return score def run_main(): # Genome instance, 1D List of 50 elements genome = G1DList.G1DList(50) # Sets the range max and min of the 1D List genome.setParams(rangemin=0, rangemax=10) # The evaluator function (evaluation function) genome.evaluator.set(eval_func) # Genetic Algorithm Instance ga = GSimpleGA.GSimpleGA(genome) # Set the Roulette Wheel selector method, the number of generations and # the termination criteria ga.selector.set(Selectors.GRouletteWheel) ga.setGenerations(500) ga.terminationCriteria.set(GSimpleGA.ConvergenceCriteria) # Sets the DB Adapter, the resetDB flag will make the Adapter recreate # the database and erase all data every run, you should use this flag # just in the first time, after the pyevolve.db was created, you can # omit it. sqlite_adapter = DBAdapters.DBSQLite(identify="ex1", resetDB=True) ga.setDBAdapter(sqlite_adapter) # Do the evolution, with stats dump # frequency of 20 generations ga.evolve(freq_stats=20) # Best individual print ga.bestIndividual() if __name__ == "__main__": run_main()
josephlewis42/personal_codebase
Euler/008.py
#!/usr/bin/env python ''' Find the greatest product of five consecutive digits in the 1000-digit number. 73167176531330624919225119674426574742355349194934 96983520312774506326239578318016984801869478851843 85861560789112949495459501737958331952853208805511 12540698747158523863050715693290963295227443043557 66896648950445244523161731856403098711121722383113 62229893423380308135336276614282806444486645238749 30358907296290491560440772390713810515859307960866 70172427121883998797908792274921901699720888093776 65727333001053367881220235421809751254540594752243 52584907711670556013604839586446706324415722155397 53697817977846174064955149290862569321978468622482 83972241375657056057490261407972968652414535100474 82166370484403199890008895243450658541227588666881 16427171479924442928230863465674813919123162824586 17866458359124566529476545682848912883142607690042 24219022671055626321111109370544217506941658960408 07198403850962455444362981230987879927244284909188 84580156166097919133875499200524063689912560717606 05886116467109405077541002256983155200055935729725 71636269561882670428252483600823257530420752963450 ''' nums = "73167176531330624919225119674426574742355349194934\ 96983520312774506326239578318016984801869478851843\ 85861560789112949495459501737958331952853208805511\ 12540698747158523863050715693290963295227443043557\ 66896648950445244523161731856403098711121722383113\ 62229893423380308135336276614282806444486645238749\ 30358907296290491560440772390713810515859307960866\ 70172427121883998797908792274921901699720888093776\ 65727333001053367881220235421809751254540594752243\ 52584907711670556013604839586446706324415722155397\ 53697817977846174064955149290862569321978468622482\ 83972241375657056057490261407972968652414535100474\ 82166370484403199890008895243450658541227588666881\ 16427171479924442928230863465674813919123162824586\ 17866458359124566529476545682848912883142607690042\ 24219022671055626321111109370544217506941658960408\ 07198403850962455444362981230987879927244284909188\ 84580156166097919133875499200524063689912560717606\ 05886116467109405077541002256983155200055935729725\ 71636269561882670428252483600823257530420752963450" m = 0 for i in range(len(nums) - 4): t = int(nums[i]) * int(nums[i + 1]) * int(nums[i + 2]) * int(nums[i + 3]) * int(nums[i + 4]) if t > m: print i m = t print m
josephlewis42/personal_codebase
Euler/003.py
<filename>Euler/003.py #!/usr/bin/env python ''' The prime factors of 13195 are 5, 7, 13 and 29. What is the largest prime factor of the number 600851475143 ? ''' import pymath print max(pymath.prime(pymath.factor(600851475143)))
josephlewis42/personal_codebase
python/reprap-franklin/inputs/file_input.py
<gh_stars>1-10 #!/usr/bin/env python import threading import time class FileInput( threading.Thread ): def __init__(self, reprap, source, delay=None): self.reprap = reprap self.source = source self.delay = delay threading.Thread.__init__(self) self.daemon = True def run(self): with open(self.source) as src: for line in src: self.reprap.current_firmware.execute_gcode(line) if callable(self.delay): self.delay() else: time.sleep( float(self.delay) ) print("Done reading from file.")
josephlewis42/personal_codebase
python/Genetic Programming/Examples/pyevolve_ex4_sigmatrunc.py
from pyevolve import G1DList from pyevolve import GSimpleGA from pyevolve import Selectors from pyevolve import Initializators, Mutators from pyevolve import Scaling from pyevolve import Consts import math def eval_func(ind): score = 0.0 var_x = ind[0] var_z = var_x**2+2*var_x+1*math.cos(var_x) return var_z def run_main(): # Genome instance genome = G1DList.G1DList(1) genome.setParams(rangemin=-60.0, rangemax=60.0) # Change the initializator to Real values genome.initializator.set(Initializators.G1DListInitializatorReal) # Change the mutator to Gaussian Mutator genome.mutator.set(Mutators.G1DListMutatorRealGaussian) # Removes the default crossover genome.crossover.clear() # The evaluator function (objective function) genome.evaluator.set(eval_func) # Genetic Algorithm Instance ga = GSimpleGA.GSimpleGA(genome) ga.setMinimax(Consts.minimaxType["minimize"]) pop = ga.getPopulation() pop.scaleMethod.set(Scaling.SigmaTruncScaling) ga.selector.set(Selectors.GRouletteWheel) ga.setGenerations(100) # Do the evolution ga.evolve(10) # Best individual print ga.bestIndividual() if __name__ == "__main__": run_main()
josephlewis42/personal_codebase
python/reprap-franklin/firmware/full.py
#!/usr/bin/env python '''Provides a fullly implemented GCode parser for Franklin. Commands can be passed in one at a time through the execute_gcode function, returncodes will be returned. Copyright 2011 <NAME> <<EMAIL>> This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. ''' import string #Implements a full gcode parser. class GCode: '''Takes a single line of GCode, and parses it in to its parts. ==All of the below types have a default None value.== cmd_type - The type of command, G,M,T checksum - The checksum of the command. checksum_pass - Whether or not the checksum is correct. (boolean) comment - The comment for the line of GCode cmd - The command i.e. G28 line_number - The line number of the current command. S,P,X,Y,Z,I,J,F,R,Q,E,N - Optional arguments, values will be None or int/float. ''' cmd_type = None checksum = None checksum_pass = None comment = None cmd = None line_number = None #Paramaters. S = P = X = Y = Z = I = J = F = R = Q = E = N = G = M = T = None def grab_int(self, string): '''Grabs the paramater from a code as an int, if not possible returns None. ''' try: return int(string[1:]) except: return None def __init__(self, code): '''Creates a GCode object from a line of GCode.''' #Cut off comment. if ';' in code: code, self.comment = code.split(";", 2) #Cut off checksum. if '*' in code: code, cs = code.split("*", 2) self.checksum = int(cs) #Verify the checksum v = 0 for c in code: v = v ^ ord(c) self.checksum_pass = (v == self.checksum) #Make sure this isn't an END statment if code.startswith("END"): return #Make sure all letters have spaces in front of them. for c in string.ascii_letters: code = code.replace(c, ' %s'%(c)) #Split in to individual paramaters. cmds = code.split() for c in cmds: if c.startswith('N'): #Line number command. n = self.grab_int(c) self.line_number = n self.N = n elif c[0] == 'G': self.G = self.grab_int(c) self.cmd_type = 'G' self.cmd = c elif c[0] == 'M': self.M = self.grab_int(c) self.cmd_type = 'M' self.cmd = c elif c[0] == 'T': self.T = self.grab_int(c) self.cmd_type = 'T' self.cmd = c else: #All other types are floats. try: t = c[0] val = float(c[1:]) exec("self.%s = %s" % (t, val)) except ValueError as exc: #Empty string causes, but how does that happen? print("\n\nError while parsing %s: %s" % (c, exc)) except SyntaxError, e: print ("ERROR: SyntaxError %s" % (e)) print (" : %s" % (c)) print (" : %s" % (code)) class Coords: '''A representation of x,y,z and e coordinates for the RepRap''' x = 0 y = 0 z = 0 e = 0 def __init__(self, gc=None, co=None): '''Creates a new coordinate system with all zero coordinates, unless a paramater is passed. gc - An instance of GCode, X,Y,Z,E values are taken from here. ''' if gc: self.setup(gc) if co: self.x = co.x self.y = co.y self.z = co.z self.e = co.e def copy(self): '''Returns a copy of the current coordinates.''' return Coords(co=self) def __str__(self): return "X:%s Y:%s Z:%s E:%s" % (self.x, self.y, self.z, self.e) def setup(self, gc): '''Sets the variables from a GCode instance.''' if gc.X: self.x = gc.X if gc.Y: self.y = gc.Y if gc.Z: self.z = gc.Z if gc.E: self.e = gc.E def offset(self, other): '''Offsets these coordinates from another, extrude value is copied.''' self.x += other.x self.y += other.y self.z += other.z self.e = other.e def in_to_mm(self): '''Multiplies all coordinates by 25.4, the number of mm in an inch. ''' self.scale(25.4) #Num of mm in an in def scale(self, factor): '''Scales all coordinates by factor, including e.''' self.x *= factor self.y *= factor self.z *= factor self.e *= factor class Firmware (object): '''The firmware baseclass, all GCodes are implemented here as functions that take in a GCode class as their paramater. The function need not return any value, but if it does it needs to be a string, not newline terminated. If nothing is returned an ok is sent back to the machine. ''' title = "" origin = Coords() #Origin of the machine. display = Coords() #Center of display. display.x = 125 #Center of grid (mm) display.y = 125 #Center of grid (mm) last = Coords() #The last location the toolhead was at. last.offset(origin) #Set current location to origin. line_number = 0 #The current line number. absolute = True #Type of positioning Flase is Relative. units_mm = True #Are the units in mm:True in:False STEPS_PER_MM = 2 #Number of steps per mm #Default debugging level for RepRap debug_echo = False debug_info = True debug_errors = True #Information about the RepRap Firmware #Extruder count will be generated at runtime and appended at the end. FIRMWARE_INFO = "PROTOCOL_VERSION:0.1 FIRMWARE_NAME:FiveD MACHINE_TYPE:Mendel" def __init__(self, reprap): '''Starts the firmware with the given reprap.''' self.reprap = reprap def debug(self, msg): '''Prints a debugging message.''' if self.debug_info: print ("DEBUG: %s" % (msg)) def error(self, msg): '''Print an error message if errors is on.''' if self.debug_errors: print("ERROR: %s" % (msg)) def warning(self, msg): '''Print a warning message.''' if self.debug_errors: print ("WARNING: %s" % (msg)) def mm(self, value): '''If the current units are not mm, converts to mm.''' if not self.units_mm: return 25.4 * value def steps(self, value): '''Returns the number of steps that a distance comprises of. Any unit conversions are done here. ''' return self.STEPS_PER_MM * self.mm(value) def G0(self, gc): co = self.last.copy() #Start off with last values. co.setup(gc) #Set up for the given values. if not self.units_mm: co.in_to_mm() #If we are offsetting from origin. if self.absolute: co.offset(self.origin) else: #If we are offsetting from last position. co.offset(self.last) #Draw line from the last place to the current place, pass #duplicate coordinate systems though so the printbed #can scale without messing us up. dco = self.display.copy() dco.offset(co) dcl = self.display.copy() dcl.offset(self.last) self.reprap.move_toolhead(dco, dcl) #Set the current location to last. self.last = co if self.debug_echo: self.debug("G0/G1: Move to %s" % (self.last)) pass G1 = G0 #The rep-rap firmware uses the same code for G0/G1 def G28(self, gc): self.debug("G28: Move to origin.") if gc.X or gc.Y or gc.Z: if gc.X: self.last.x = self.origin.x if gc.Y: self.last.y = self.origin.y if gc.Z: self.last.z = self.origin.z else: self.last = self.origin.copy() def G4(self, gc): self.debug("G4: Dwelling") def G20(self, gc): #Units to inches. self.debug("G20: Setting units to Inches") self.units_mm = False def G21(self, gc): #Units to mm. self.debug("G21: Setting units to Milimeters") self.units_mm = True def G90(self, gc): self.debug("G90: Setting absolute positioning.") self.absolute = True def G91(self, gc): self.debug("G91: Setting relative positioning.") self.relative = True def G92(self, gc): #Must move before debug. self.origin.setup(gc) self.debug("G92: Setting new position: %s" % (self.origin)) def M0(self, gc): self.debug("M0: Stop") self.reprap.stop = True def M84(self, gc): self.debug("M84: Stop idle hold.") self.reprap.idle_hold_on = False def M104(self, gc): self.debug("M104: Set temperature (fast) %s" % (gc.S)) self.reprap.current_toolhead.temperature = int(gc.S) def M105(self, gc): self.debug("M104: Get extruder temperature.") tt = self.reprap.current_toolhead.temperature bt = self.reprap.bed.temperature return "ok T:%s B:%s" % (int(tt), int(bt)) def M106(self, gc): self.debug("M106: Fan on.") self.reprap.fan = True def M107(self, gc): self.debug("M106: Fan off.") self.reprap.fan = False def M108(self, gc): self.debug("M108: Set extruder speed to %s." % (gc.S)) self.error("M108: DEPRECATION WARNING: Use M113 instead.") if gc.S: self.reprap.current_toolhead.extrude_rate = gc.S def M109(self, gc): self.debug("M109: Set extruder temperature to %s." % (int(gc.S))) if gc.S: self.reprap.current_toolhead.temperature = int(gc.S) def M110(self, gc): self.debug("M110: Set current line number to %s." % (gc.N)) if gc.N: self.line_number = int(gc.N) def M111(self, gc): self.debug("M111: Set debug level: %s" % (gc.S)) if gc.S: self.debug_echo = int(gc.S) >> 0 & 1 self.debug_errors = int(gc.S) >> 2 & 1 self.debug_info = int(gc.S) >> 1 & 1 def M112(self, gc): self.debug("M112: Emergency stop.") self.error("M112: Emergency stop.") self.reprap.stop = True def M113(self, gc): self.debug("M113: Set extruder PWM") self.reprap.current_toolhead.extrude_rate = 10 if gc.S: self.reprap.current_toolhead.extrude_rate = int(gc.S * 10) def M114(self, gc): self.debug("M114: Get current position: %s." % (self.last)) return "ok C: %s" % (self.last) def M115(self, gc): nt = len(self.reprap.possible_toolheads) #Number of toolheads output = "ok %s EXTRUDER_COUNT:%s" % (self.FIRMWARE_INFO, nt) self.debug("M115: Get firmware version and capabilities.") self.debug(" >> %s" % (output)) return output def M116(self, gc): self.debug("M116: Wait.") def M117(self, gc): self.debug("M117: Get zero position.") return "ok C: X:0 Y:0 Z:0 E:0" def M126(self, gc): self.debug("M126: Open valve.") self.reprap.current_toolhead.open_valve() def M127(self, gc): self.debug("M126: Close valve.") self.reprap.current_toolhead.close_valve() def M140(self, gc): self.debug("M140: Set bed temperature to %s (fast)." % (int(gc.S))) if gc.S: self.reprap.bed.temperature = int(gc.S) def M141(self, gc): self.debug("M141: Set chamber temperature to %s (fast)." % (int(gc.S))) if gc.S: self.reprap.chamber.temperature = int(gc.S) def M142(self, gc): self.debug("M142: Set holding pressure to %s." % (int(gc.S))) if gc.S: self.reprap.bed.pressure = int(gc.S) def M226(self, gc): self.debug("M226: GCode initiated pause.") self.reprap.paused = True def M227(self, gc): self.debug("M227: Enable reverse and prime, does nothing.") def M228(self, gc): self.debug("M228: Disalbe auto reverse and prime, does nothing.") def M229(self, gc): self.debug("M229: Enable reverse and prime, does nothing.") def M230(self, gc): self.debug("M230: Disable/Enable wait for temp change, does nothing.") def T(self, gc): try: new_toolhead = self.reprap.possible_toolheads[gc.T] self.debug("T: Select tool #%s, %s" % (gc.T, new_toolhead.name)) self.reprap.current_toolhead = new_toolhead except: self.error("T: ERROR: Couldn't select the given toolhead, does it exist?") def illegal_use_command(self, gc): '''Use this as a command replacement for any commands that aren't implemented in your hardware. EXAMPLE: If M111 isn't allowed in your firmware, do: >>> M111 = illegal_use_command >>> M111(gc) The command M111 is not legal for this firmware! >>> ''' self.warning("The command %s is not legal for this firmware!" % gc.cmd) def execute_gcode(self, cmd): '''Executes a single gcode command (cmd).''' gc = GCode(cmd) #Create a GCode representation of the cmd. #If the user wants echo debugging. if self.debug_echo: print(cmd) if gc.cmd_type == 'T': self.T(gc) elif gc.cmd != None: try: retcode = eval("self.%s(gc)" % (gc.cmd)) if retcode != None: return retcode + "\n" except AttributeError, e: print ("ERROR: %s is not a valid command." % (gc.cmd)) print ("%s" % (e)) return "ok\n" class FullWare (Firmware): title = "Full Implementation"
josephlewis42/personal_codebase
python/stpetersburg.py
<gh_stars>1-10 #!/usr/bin/python '''stpetersburg.py -- A saint petersburg simulator. 2011/02/25 15:36:28 Copyright 2011 <NAME> <<EMAIL>> Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ''' import random def play(): total_won = 0 payoff_matrix = {} print("Iter:\tFlips:\tWinnings:\tWon?") for i in range(iterations): winnings = 0 flips = flip(max_game) #Flip the coin until tails. #Determine winnings based upon the wager multiplier and flips. if flips: winnings = multiplier**(flips) #Stats total_won += winnings if flips in payoff_matrix.keys(): payoff_matrix[flips] = payoff_matrix[flips] + 1 else: payoff_matrix[flips] = 1 print("%i\t%i\t%i\t\t%s" % (i, flips, winnings, winnings >= initial_wager)) #Do some basic stats. avg_won = float(total_won) / iterations print ("Avg. Winnings:\t%d" % (avg_won)) print ("Flips x Frequency") for k in payoff_matrix.keys(): print("%s x %s" % (k, payoff_matrix[k])) print ("Money Won: %s" % (total_won)) print ("Money Waged: %s" % (iterations * initial_wager)) def flip(max_flip): '''Flips a coin until max_flip is reached or the coin turns up tails. Returns the number of flips that came up heads. If max_flip is -1 flipping will continue until a tails is reached. ''' numflips = 0 while numflips != max_flip: numflips += 1 if random.randint(0,1): #0 = heads 1 = Tails: return numflips return numflips def ask_int(question, default): '''Asks the user for an int printing out the default and question. ''' num = raw_input(question + " (Default: %s)\n" % (str(default))) if num == '': return default return int(num) if __name__ == "__main__": print __doc__ #Notify the user of the license (top of file) #Set up simulation iterations = ask_int("How many iterations?", 100000) initial_wager = ask_int("What is the initial wager?", 2) multiplier = ask_int("What is the multiplier per win?", 2) max_game = ask_int("What is the bound on the number of games -1 for infinity?", -1) #Start simulation play()
josephlewis42/personal_codebase
python/OpenCalc/Lib/Code/Variables.py
<gh_stars>1-10 #!/usr/bin/python #Define A-Z a = 0 b = 0 c = 0 d = 0 e = 0 f = 0 g = 0 h = 0 i = 0 j = 0 k = 0 l = 0 m = 0 n = 0 o = 0 p = 0 q = 0 r = 0 s = 0 t = 0 u = 0 v = 0 w = 0 x = 0 y = 0 z = 0
josephlewis42/personal_codebase
python/apropos.py
#!/usr/bin/env python # -*- coding: utf-8 -*- # generated by wxGlade 0.6.3 on Fri Oct 29 10:43:01 2010 import wx # begin wxGlade: extracode # end wxGlade class MainFrame(wx.Frame): def __init__(self, *args, **kwds): # begin wxGlade: MainFrame.__init__ kwds["style"] = wx.DEFAULT_FRAME_STYLE wx.Frame.__init__(self, *args, **kwds) self.label_1 = wx.StaticText(self, -1, "Program Search", style=wx.ALIGN_CENTRE) self.text_ctrl_1 = wx.TextCtrl(self, -1, "") self.label_2 = wx.StaticText(self, -1, "Results:") self.text_ctrl_2 = wx.TextCtrl(self, -1, "Enter search terms above:\nPrograms will appear here.", style=wx.TE_MULTILINE|wx.TE_READONLY) self.__set_properties() self.__do_layout() self.Bind(wx.EVT_TEXT, self.enter_search_text, self.text_ctrl_1) # end wxGlade def __set_properties(self): # begin wxGlade: MainFrame.__set_properties self.SetTitle("Program Search") self.SetSize((500, 250)) # end wxGlade def __do_layout(self): # begin wxGlade: MainFrame.__do_layout sizer_1 = wx.BoxSizer(wx.VERTICAL) sizer_1.Add(self.label_1, 0, wx.EXPAND, 0) sizer_1.Add(self.text_ctrl_1, 0, wx.ALL|wx.EXPAND, 5) sizer_1.Add(self.label_2, 0, wx.LEFT, 5) sizer_1.Add(self.text_ctrl_2, 1, wx.ALL|wx.EXPAND, 5) self.SetSizer(sizer_1) self.Layout() # end wxGlade def show_help_text(self): text='''Enter a query above, program names will appear below. Ex: calculator, tells you the different calculators on your system. This is a frontend for the apropos command. Created by: <NAME> <<EMAIL>>''' self.text_ctrl_2.Clear() #print new search query self.text_ctrl_2.AppendText(text) def enter_search_text(self, event): # wxGlade: MainFrame.<event_handler> import subprocess process = subprocess.Popen(["apropos", self.text_ctrl_1.GetValue()], stdout=subprocess.PIPE) output, unused_err = process.communicate() #clear output self.text_ctrl_2.Clear() #print new search query self.text_ctrl_2.AppendText(output) event.Skip() ''' #if text none, replace with default msg if self.text_ctrl_1.GetValue() == "": self.show_help_text() #if text, search else: import subprocess process = subprocess.Popen(["apropos", self.text_ctrl_1.GetValue()], stdout=subprocess.PIPE) output, unused_err = process.communicate() retcode = process.poll() #clear output self.text_ctrl_2.Clear() #print new search query self.text_ctrl_2.AppendText(output) event.Skip() ''' # end of class MainFrame if __name__ == "__main__": app = wx.PySimpleApp(0) wx.InitAllImageHandlers() frame_1 = MainFrame(None, -1, "") app.SetTopWindow(frame_1) frame_1.Show() frame_1.show_help_text() app.MainLoop()
josephlewis42/personal_codebase
python/get_firefox_bookmarks.py
#!/usr/bin/python # get_firefox_bookmarks.py # # Copyright 2010 <NAME> <<EMAIL>> # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, # MA 02110-1301, USA. ''' Gets firefox bookmarks and saves them to ~/Backup/Firefox Bookmarks as a json document that can be restored in firefox manually later. Bookmarks > Organize Bookmarks [Import/Export] ''' print 'Retrieveing Firefox Bookmarks, please shut down Firefox before doing this operation.' import os #Get folder location firefoxdir = os.path.expanduser("~/.mozilla/firefox") os.chdir(firefoxdir) #Get Profile information import ConfigParser config = ConfigParser.RawConfigParser() config.read('profiles.ini') firefoxdir += "/" + config.get("Profile0", "Path") + "/bookmarkbackups" os.chdir(firefoxdir) #Get json documents in file list = os.listdir(firefoxdir) #Get the most recent bookmark save file list.sort() list.reverse() firefoxdir += "/" + list[0] savedir = os.path.expanduser("~/Backup/Firefox Bookmarks/") #copy it to savedir import shutil shutil.copy(firefoxdir, savedir)
josephlewis42/personal_codebase
Euler/012.py
<gh_stars>1-10 #!/usr/bin/env python u''' The sequence of triangle numbers is generated by adding the natural numbers. So the 7th triangle number would be 1 + 2 + 3 + 4 + 5 + 6 + 7 = 28. The first ten terms would be: 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, ... Let us list the factors of the first seven triangle numbers: 1: 1 3: 1,3 6: 1,2,3,6 10: 1,2,5,10 15: 1,3,5,15 21: 1,3,7,21 28: 1,2,4,7,14,28 We can see that 28 is the first triangle number to have over five divisors. What is the value of the first triangle number to have over five hundred divisors? ''' import pymath i = 1 while True: triangle = pymath.triangluar_number(i) if len(pymath.factor(triangle)) > 500: print triangle break i += 1 pymath.print_prob(1000, "1000 done")
josephlewis42/personal_codebase
python/randall/alife_randall_checkout/ai_webserver/pavlov.py
# pavlov.py # # Copyright 2011 <NAME> <<EMAIL>> # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, # MA 02110-1301, USA. self.send_200() if not SESSION or 'login' not in SESSION.keys() or not SESSION['login']: self.wfile.write("You are not logged in...<script type='text/javascript'>window.location = 'login.py'</script>") #Handle AJAX query. elif 'reload' in QUERY_DICT.keys(): try: w = SESSION['world'] a = SESSION['actor'] content = w[a].response_network.export_HTML_table() #Make bars for used emotions page = '''<h3>Pavlov Response Network:</h3> <div id="progresscontainer"> %s </div>''' % (content) self.wfile.write(page) except KeyError, e: self.wfile.write("Error: Couldn't find the key specified: %s" %(e)) except Exception, e: self.wfile.write("Error: %s" %(e)) #Handle page query. else: page = ''' <html> <head> <script type="text/javascript" src="assets/jquery.js"></script> <script type="text/javascript" src="assets/reloader.js"></script> <link rel="StyleSheet" href="assets/login.css" type="text/css" /> </head> <body onLoad="javascript:Update(2000, 'body', 'pavlov.py?reload=true');" style="background-color:#fff;" class="widget pavlov"> Loading... </body> </html> ''' self.wfile.write(page)
josephlewis42/personal_codebase
python/email_attachment_extractor.py
#!/usr/bin/env python3 import email.parser import os import sys import base64 import binascii import sys def extract(rootdir): fileList = [] for root, subFolders, files in os.walk(rootdir): for file in files: fileList.append(os.path.join(root,file)) for path in fileList: if not path.endswith(".eml"): continue fp = email.parser.BytesFeedParser() fp.feed(open(path, "rb").read()) message = fp.close() print("Checking {}".format(path)) for message in message.walk(): fn = message.get_filename() if fn == None: continue try: try: with open(fn, 'wb') as out: out.write(message.get_payload(decode=True)) except (TypeError, binascii.Error): with open(fn, 'wb') as out: print(message.get_payload()) out.write(bytes(message.get_payload(), message.get_charset())) except Exception: print("Error extracting item from {}".format(path)) if __name__ == "__main__": if len(sys.argv) == 1: print("usage: {} path/to/.eml/files".format(sys.argv[0])) exit(1) extract(sys.argv[1])
josephlewis42/personal_codebase
python/Genetic Programming/Examples/pyevolve_ex6_dbadapter.py
<gh_stars>1-10 from pyevolve import G1DList from pyevolve import GSimpleGA from pyevolve import Selectors from pyevolve import DBAdapters from pyevolve import Statistics # This function is the evaluation function, we want # to give high score to more zero'ed chromosomes def eval_func(chromosome): score = 0.0 # iterate over the chromosome for value in chromosome: if value==0: score += 0.5 return score # Genome instance genome = G1DList.G1DList(100) genome.setParams(rangemin=0, rangemax=10) # The evaluator function (objective function) genome.evaluator.set(eval_func) # Genetic Algorithm Instance ga = GSimpleGA.GSimpleGA(genome, 666) ga.setGenerations(80) ga.setMutationRate(0.2) # Create DB Adapter and set as adapter #sqlite_adapter = DBAdapters.DBSQLite(identify="ex6", resetDB=True) #ga.setDBAdapter(sqlite_adapter) # Using CSV Adapter #csvfile_adapter = DBAdapters.DBFileCSV() #ga.setDBAdapter(csvfile_adapter) # Using the URL Post Adapter # urlpost_adapter = DBAdapters.DBURLPost(url="http://whatismyip.oceanus.ro/server_variables.php", post=False) # ga.setDBAdapter(urlpost_adapter) # Do the evolution, with stats dump # frequency of 10 generations ga.evolve(freq_stats=10) # Best individual #print ga.bestIndividual()
josephlewis42/personal_codebase
python/OpenCalc/Lib/Code/Functions/OpenCalc.py
<gh_stars>1-10 ''' Description Of Module @Author = <NAME><<EMAIL>> @Date = 2010-2-24 @License = GPL ==Changelog== 2010-2-24 - First version made by <NAME> ''' #Import Statements #Define Constants #Define Functions def isNum(var): if(type(var).__name__ == 'int' or type(var).__name__ == 'float'): return True else: return False
josephlewis42/personal_codebase
python/markov.py
#!/usr/bin/env python3 ''' Provides common functions used through the similarity engines. Copyright 2012 <NAME> <<EMAIL>> | <<EMAIL>> Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 2012-10-28 - Initial Work ''' import random import pickle import re START_WORD = "<START>" TERMINAL_WORD = "<END>" def document_to_terms(doc): '''Parses a document in to a list of strings.''' doc = doc.lower() doc = re.sub(r"""[^\w\s]+""", '', doc) return doc.split() class TwoGramCorpus(): words = None def __init__(self, fp=None): if fp: self.words = pickle.load(fp) else: self.words = {} def save(self, fp): pickle.dump(self.words, fp, 1) def load_file(self, fp): for sentence in fp.read().split("."): self.load_line(document_to_terms(sentence)) def load_line(self, line): if len(line) == 0: return line.append(TERMINAL_WORD) lastword = START_WORD for word in line: self.add_2gram(lastword, word) lastword = word def add_2gram(self, first, second): firstlist = None try: firstlist = self.words[first] except KeyError: self.words[first] = {second : 1} return try: firstlist[second] += 1 except KeyError: firstlist[second] = 1 def __str__(self): return str(self.words) def __unicode__(self): return str(self.words) def _random_prob_word(self, start): ''' chooses a random word that follows the given one with the probability of the frequency it occurs. ''' rest = self.words[start] total_possible = sum(rest.values()) chosen = random.randint(1,total_possible) for word, value in rest.items(): chosen -= value if chosen <= 0: return word return None def generate_sentence(self): # choose a random start word. sentence = [] lastword = self._random_prob_word(START_WORD) while lastword != TERMINAL_WORD: sentence.append(lastword) lastword = self._random_prob_word(lastword) return " ".join(sentence) + "." def generate(self, num_sentences): sentences = [] for i in range(num_sentences): sentences.append(self.generate_sentence()) return " ".join(sentences) if __name__ == "__main__": tgc = TwoGramCorpus() tgc.load_file(open('/home/joseph/Desktop/books2/pg2.txt')) print(tgc.generate(3))
josephlewis42/personal_codebase
wheel_of_fortune_ai/wheelmatch.py
<gh_stars>1-10 import re class WheelMatch: letters = set(['a','t','e']) looking = ['a','.','e','.','.','.','a'] def matches(self, word): if len(word) != len(self.looking): return False for i, letter in enumerate(self.looking): if letter == '.': if word[i] in self.letters: return False else: if word[i] != letter: return False return True if __name__ == "__main__": wm = WheelMatch() wordlist = open('/usr/share/dict/american-english').readlines() wordlist = [word.strip().lower() for word in wordlist] for i in range(100): for word in wordlist: if wm.matches(word): print words
josephlewis42/personal_codebase
Euler/015.py
<reponame>josephlewis42/personal_codebase '''Starting in the top left corner of a 2x2 grid, and only being able to move to the right and down, there are exactly 6 routes to the bottom right corner. How many such routes are there through a 20x20 grid? ''' # there are a total of n * 2 steps you must take where n is length of a side, # therefore let's say you choose only the down steps, leaving the rest to be # across: import pymath print(pymath.choose(40,20))
josephlewis42/personal_codebase
python/randall/alife_randall_checkout/randallai/Randall.py
<reponame>josephlewis42/personal_codebase #!/usr/bin/env python ''' A simple AI mouse named Randall. Copyright (c) 2011 <NAME> <<EMAIL>> This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. ''' from AI import * from AI import world from AI import body from AI import limbic from AI import maslow from AI import mapper from AI import logos import time class Randall( world.Actor ): '''Randall is an actor in a world, Actors have basic attributes and systems. ''' def setup_organs(self): self.my_body = body.Body() #Hunger is a good thing... def hunger_update(old): return old + 2 stomach = body.Organ("stomach", hunger_update, self.response_network) self.my_body.append(stomach) #Thirst! def thirst_update(old): return old + 2 thirst = body.Organ("thirst", thirst_update, self.response_network) self.my_body.append(thirst) #What goes in must come out. def bladder_update(old): old_value = self.my_body["stomach"].last_value new_value = self.my_body["stomach"].value return old + ((new_value - old_value) / 2.0) bladder = body.Organ("bladder", bladder_update, self.response_network) self.my_body.append(bladder) #Sleep, deep sleep. def sleep(old): return old + .25 s = body.Organ("sleep", sleep, self.response_network) self.my_body.append(s) def setup_emotions(self): self.emotions = limbic.generate_plutchik_limbic(self.response_network) #TODO fix emotions def setup_mind(self): mind = logos.Mind(self.needs, self, autostart=False) logos.quick_search_and_go(['food', 'water'], mind) self.mind = mind def setup_needs(self): needs = maslow.Heirarchy(maslow.PHYSIOLOGICAL, self.response_network) #Basic needs with updown registers needs['food'].update_function = self.my_body["stomach"].get_value needs['water'].update_function = self.my_body["thirst"].get_value #needs['sleep'].update_function = self.my_body["sleep"].get_value #needs['excretion'].update_function = self.my_body["bladder"].get_value #Remove all without update function (reads: that we aren't using). needs.clean_needs() self.needs = needs class map_functions: def food(self, actor): actor.my_body["stomach"].value = 0 return "Stomach for %s set to 0" % (actor.name) def water(self, actor): actor.my_body["thirst"].value = 0 return "Thirst for %s set to 0" % (actor.name) def lever(self, actor): #Levers give food. actor.my_body["stomach"].value = 0 return "Lever pressed: Stomach for %s set to 0" % (actor.name) def newrandall(): '''Makes a new randall and returns the world he lives in.''' import sys, os m = map_functions() mypath = os.path.abspath( __file__ ) mydirpath = mypath[:mypath.rfind(os.sep)] #mygridpath = os.path.join(mydirpath, "AI","mazes","totem.map") mygridpath = os.path.join(mydirpath, "AI","mazes","pavlov.map") #mygridpath = os.path.join(mydirpath, "AI","mazes","617161.map") mygrid = mapper.make_from_mapfile(mygridpath) #mapper.map2HTML(mygridpath) m = mapper.interface_from_grid(mygrid, m) w = world.World(mygrid, m, move_time=1) #world.DEBUGGING = True r = Randall("Randall", w, 0,0) w.append(r) return w if __name__ == "__main__": w = newrandall() try: print "Press Control + C to quit." while True: time.sleep(1) #j = m.fetch_news() #if j: # print j except KeyboardInterrupt: w.kill()
josephlewis42/personal_codebase
python/py_basic_ide/pyBASIC/__init__.py
from parser import tokenize_document, tokenize_from_file from runner import run def set_debug(bool): print "DEBUG = ", bool runner.debug = bool
josephlewis42/personal_codebase
wheel_of_fortune_ai/ngram.py
<reponame>josephlewis42/personal_codebase #!/usr/bin/env python import re ngrams = {} word_scores = {} with open("w2_.txt") as ngram: for line in ngram: nwords, w1, w2 = line.split() nwords = int(nwords) try: ngrams[w1].append((nwords, w2)) except: ngrams[w1] = [(nwords, w2)] start_words = ngrams.keys() for key in start_words: ngrams[key] = sorted(ngrams[key], reverse=True) word_scores[key] = sum([tup[0] for tup in ngrams[key]]) def find_startword(regex): return sorted([(get_word_score(word), word) for word in start_words if re.match(regex, word) != None], reverse=True) def find_matches(startword, regex): try: return [tup for tup in ngrams[startword] if re.match(regex, tup[1]) != None] except Exception, e: print(e) return [] def get_word_score(word): try: return word_scores[word] except KeyError: return 1
josephlewis42/personal_codebase
python/email_grabber/email.pyw
#!/usr/bin/env python # -*- coding: utf-8 -*- # generated by wxGlade 0.6.3 on Wed Mar 24 11:22:54 2010 import wx # begin wxGlade: extracode # end wxGlade class MyFrame(wx.Frame): def __init__(self, *args, **kwds): # begin wxGlade: MyFrame.__init__ kwds["style"] = wx.DEFAULT_FRAME_STYLE wx.Frame.__init__(self, *args, **kwds) self.label_1 = wx.StaticText(self, -1, "URL:") self.url = wx.TextCtrl(self, -1, "Put a URL Here") self.input = wx.TextCtrl(self, -1, "OR put text here\n\nEmails will be output Below.", style=wx.TE_MULTILINE) self.submit = wx.Button(self, -1, "Get From Text") self.button_3 = wx.Button(self, -1, "Get From URL") self.button_1 = wx.Button(self, -1, "Clear Text (Above)") self.button_2 = wx.Button(self, -1, "Clear Emails (Below)") self.output = wx.TextCtrl(self, -1, "", style=wx.TE_MULTILINE) self.save = wx.Button(self, wx.ID_SAVE, "") self.__set_properties() self.__do_layout() self.Bind(wx.EVT_BUTTON, self.process_input, self.submit) self.Bind(wx.EVT_BUTTON, self.process_url, self.button_3) self.Bind(wx.EVT_BUTTON, self.clear_web, self.button_1) self.Bind(wx.EVT_BUTTON, self.clear_email, self.button_2) self.Bind(wx.EVT_BUTTON, self.save_doc, self.save) # end wxGlade def __set_properties(self): # begin wxGlade: MyFrame.__set_properties self.SetTitle("Email Grabber <joehms22<EMAIL>> - GNU GPL V.3.0") self.SetSize((640, 480)) # end wxGlade def __do_layout(self): # begin wxGlade: MyFrame.__do_layout sizer_1 = wx.BoxSizer(wx.VERTICAL) sizer_2 = wx.BoxSizer(wx.VERTICAL) sizer_3 = wx.BoxSizer(wx.HORIZONTAL) sizer_4 = wx.BoxSizer(wx.HORIZONTAL) sizer_4.Add(self.label_1, 0, 0, 0) sizer_4.Add(self.url, 1, wx.EXPAND, 0) sizer_2.Add(sizer_4, 0, wx.EXPAND, 0) sizer_2.Add(self.input, 1, wx.EXPAND, 0) sizer_3.Add(self.submit, 0, 0, 0) sizer_3.Add(self.button_3, 0, 0, 0) sizer_3.Add(self.button_1, 0, 0, 0) sizer_3.Add(self.button_2, 0, 0, 0) sizer_2.Add(sizer_3, 0, wx.EXPAND, 0) sizer_2.Add(self.output, 1, wx.EXPAND, 0) sizer_1.Add(sizer_2, 1, wx.EXPAND, 0) sizer_1.Add(self.save, 0, 0, 0) self.SetSizer(sizer_1) self.Layout() # end wxGlade def process_input(self, event): # wxGlade: MyFrame.<event_handler> import re email_pattern = re.compile('([\w\-\.]+@(\w[\w\-]+\.)+[\w\-]+)') # there are several matches per line for match in email_pattern.findall(self.input.GetValue()): self.output.AppendText(match[0] + ",\t") #Clear url and text self.input.Clear() self.text_ctrl_1.Clear() event.Skip() def clear_web(self, event): # wxGlade: MyFrame.<event_handler> self.input.Clear() event.Skip() def clear_email(self, event): # wxGlade: MyFrame.<event_handler> self.output.Clear() event.Skip() def process_url(self, event): # wxGlade: MyFrame.<event_handler> from urllib import urlopen import re email_pattern = re.compile('([\w\-\.]+@(\w[\w\-]+\.)+[\w\-]+)') # there are several matches per line for match in email_pattern.findall(urlopen( self.url.GetValue()).read()): self.output.AppendText(match[0] + ", ") #Clear url and text self.input.Clear() self.url.Clear() event.Skip() def save_doc(self, event): # wxGlade: MyFrame.<event_handler> import os dlg = wx.FileDialog(self, "Save a file", os.getcwd(), "", "Text Files (*.txt)|*.txt|Comma Seperated Value Files (*.csv)|*.csv|All Files|*.*", wx.SAVE) if dlg.ShowModal() == wx.ID_OK: path = dlg.GetPath() if dlg.GetFilterIndex() == 0: path = path+".txt" if dlg.GetFilterIndex() == 1: path = path+".csv" print "Saving at: %s" % (path) file = open(path, 'w') file.write(self.output.GetValue()) file.close() dlg.Destroy() event.Skip() # end of class MyFrame if __name__ == "__main__": app = wx.PySimpleApp(0) wx.InitAllImageHandlers() frame_1 = MyFrame(None, -1, "") app.SetTopWindow(frame_1) frame_1.Show() app.MainLoop()
josephlewis42/personal_codebase
python/randall/alife_randall_checkout/randallai/AI/world.py
<reponame>josephlewis42/personal_codebase<filename>python/randall/alife_randall_checkout/randallai/AI/world.py<gh_stars>1-10 #!/usr/bin/env python ''' The world provides a place for actors to interact. All Actors should have some basic variables (cheifly location and hunger), these can be accessed by the organs so the animal can "sense" what is going on around it. Having the variables here also ensures that the Actors don't know about them, and therefore nothing gets hard coded in to an animal. Copyright (c) 2011 <NAME> <<EMAIL>> This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. ''' import mapper import copy import pavlov import threading import time __version__ = 1.0 DEBUGGING = False class Actor: '''A simple instance of an actor.''' image = None #The location of the actor's image. world = None #The world in which the actor lives. response_network = None #The condition-response mechanism for this animal my_body = None #The organ systems for this Actor emotions = None #The emotion systems for this Actor internal_map = None #The map this actor has of the world it lives in. needs = None #The needs of this Actor, maslow.Heirarchy can_move = False #Set to false when the actor moves, reset by #the world. mind = None #logos.Mind controler. _css_move_history = [] #Stores the css selectors of the past 100 moves. def __init__(self, name, world, x, y, z=0, seed=100): '''Initializes the actor. Arguments: seed - The seed to set the Actor's decision process to. Default: 100 x - The x location of the Actor in the world. (int) y - The y location of the Actor in the world. (int) z - The z location of the Actor in the world. (int) Default: 0 name - A string to be used as the Actor's name. (String) ''' self.seed = seed self.name = name self.world = world self.x = x self.y = y self.z = z self.setup() self._css_move_history.append(self.view_terrain().css_id) def __str__(self): return "%s At:(%i,%i,%i)" % (self.name, self.x, self.y, self.z) def view_terrain(self): '''Acts as a kind of eyes for an actor, returns the cell in the world where the actor is located.''' #Never give the actor the original, they might learn to use it to break #or expand their matrix! #return copy.deepcopy(self.world.terrain.cell_at(self.x, self.y, self.z)) return self.world.terrain.cell_at(self.x, self.y, self.z) def move_to_cell(self, cell): '''Move to the location at the given cell if possible.''' return self.move_to(cell.x, cell.y, cell.z) def move_to(self, x, y, z): '''Moves the actor to the given x, y, z if possible. Errors Raised: AssertionError -- The Cell at x,y,z is not accessable from the current location. IndexError -- The cell at the supplied x,y,z is beyond the edge of the world! RuntimeWarning -- The Actor has moved too recently and is unable to do it again at this time. ''' here = self.world.map_grid.cell_at(self.x, self.y, self.z) try: there = self.world.map_grid.cell_at(x,y,z) except IndexError: raise IndexError("The cell at %i,%i,%i is out of bounds." % (x,y,z)) #Update the actor's current map. self.internal_map.update_or_add(here) #Are they touching, and accessable, and the actor can move #at this time? if self.world.map_grid.is_touching(here, there): if self.world.map_grid.is_accessable(here, there): if self.can_move: self.x = x self.y = y self.z = z self.can_move = False if DEBUGGING: print "%s moving to %s" % (self.name, str(there)) self._css_move_history.append(there.css_id) if len(self._css_move_history) > 100: self._css_move_history = self._css_move_history[-100:] return else: raise RuntimeWarning("The actor %s moved too recently." % (self.name)) raise AssertionError("%s can't access cell %s from %s" % (self.name, str(there), str(here))) def move_north(self): '''Moves the actor north if possible.''' self.move_to(self.x, self.y-1, self.z) def move_south(self): '''Moves the actor south if possible.''' self.move_to(self.x, self.y+1, self.z) def move_west(self): '''Moves the actor west if possible.''' self.move_to(self.x-1, self.y, self.z) def move_east(self): '''Moves the actor east if possible.''' self.move_to(self.x+1, self.y, self.z) def move_up(self): '''Moves the actor up a floor if possible.''' self.move_to(self.x, self.y, self.z-1) def move_down(self): '''Moves the actor down a floor if possible.''' self.move_to(self.x, self.y, self.z+1) def setup_map(self): '''Override me if needed. Sets up a blank mapper.Map with the same size as the world map, just filled with Nones. This is the one the Actor uses in it's brain. Sets: internal_map''' self.internal_map = mapper.Grid(self.world.terrain._x, self.world.terrain._y, self.world.terrain._z, name="%s's internal map"%(self.name)) def setup_pavlov(self): '''Override me if needed. Sets up a blank pavlov.ResponseNetwork and stores it to the response_network variable. The response_network has been started. Sets: response_network ''' self.response_network = pavlov.ResponseNetwork(autostart=True, update_time=5) def setup_organs(self): raise NotImplementedError, "You didn't override the setup_organs function." def setup_emotions(self): '''Set up your emotions by overriding this class. At the end set self.emotions to an instance of limbic.Limbic.''' raise NotImplementedError, "You didn't override the setup_emotions function." def setup_mind(self): '''Set up the mind by overriding this class. At the end set self.mind to an instance of logos.Mind''' raise NotImplementedError, "You didn't override the setup_mind function." def setup_needs(self): '''Sets up the needs system for this creature, the self.needs should be an instance of maslow.Heirarchy by the end of this method.''' raise NotImplementedError, "You didn't override the setup_needs function." def setup_special(self): '''Put anything here that you need called at the end of the setup.''' pass def setup_threads(self): '''Starts the threads on all of the classes, if they are allready started does nothing.''' if DEBUGGING: print ('Starting Actor "%s"' % (self.name)) if not self.response_network.is_alive(): if DEBUGGING: print " -> Response Network" self.response_network.start() if not self.my_body.is_alive(): if DEBUGGING: print " -> Body" self.my_body.start() if not self.emotions.is_alive(): if DEBUGGING: print " -> Emotions" self.emotions.start() if not self.mind.is_alive(): if DEBUGGING: print " -> Mind" self.mind.start() if DEBUGGING: print "[Success]" def setup(self): '''Sets up the Actor's basic systems, this in turn calls the setup functions, after this is run all threads should be started.''' self.setup_pavlov() self.setup_map() self.setup_organs() self.setup_emotions() self.setup_needs() self.setup_mind() self.setup_special() self.setup_threads() def interact(self, item_name): '''Call with an item in the current cell to interact with it.''' self.world.item_event_interface.interact(self, item_name) def kill(self): '''Kills the actor and its respective threads.''' if DEBUGGING: print 'Killing Actor "%s"' % (self.name) if self.response_network.is_alive(): if DEBUGGING: print " -> Response Network" self.response_network.sleep() if self.my_body.is_alive(): if DEBUGGING: print " -> Body" self.my_body.sleep() if self.emotions.is_alive(): if DEBUGGING: print " -> Emotions" self.emotions.sleep() if self.mind.is_alive(): if DEBUGGING: print " -> Mind" self.mind.sleep() if DEBUGGING: print "[Success]" def fetch_move_history(self): '''Clears and returns the move history for this actor.''' a = self._css_move_history self._css_move_history = [] return a class World (threading.Thread): '''A simple 3d world for actors to reside in.''' actors = [] terrain = "Depreciated, use map_grid instead" map_grid = None item_event_interface = None _awake = True def __init__(self, map_grid, item_event_interface, move_time=1, autostart=True): ''' Creates the world from a mapfile and class containing instructions for that mapfile. Paramaters: map_grid -- item_event_interface -- move_time -- The amount of time to wait between Actor moves can be a function or float or int. If it is a function the function should either wait for a certain amount of time then return 0 or return the number of seconds to wait. Default: 0.1 (Function, float, int) autostart -- Should the World start as soon as it is instanciated? If not the Actors will not be able to move until its thread is started using the start() function. Default: True (boolean) ''' self.terrain = map_grid self.map_grid = map_grid self.item_event_interface = item_event_interface self.move_time = move_time threading.Thread.__init__(self) #Start the thread automagically if desired. if autostart: self.start() def __getitem__(self, key): '''Emulates a list or dictionary, called with the name of the actor. Raises IndexError if not found.''' #Check for strings for e in self.actors: if e.name == key: return e #Check for ints return self.actors[key] #else raise error raise IndexError def __len__(self): '''Returns the number of actors.''' return len(self.actors) def keys(self): '''Returns a list of all the names of the actors.''' k = [] for e in self.actors: k.append(e.name) return k def add_actor(self, actor): '''Depreciated, use World.append instead''' self.actors.apend(actor) raise DeprecationWarning("Use World.append instead of World.add_actor") def append(self, actor): '''Appends an actor to the list.''' self.actors.append(actor) def run(self): '''Waits for the amount of time specified by move_time then resets the Actor's can_move to True allowing their bodies to move again, that way they don't buzz around the world.''' #Make sure awake is true before we start lest the developer #tries to sleep then re-wake the thread for some reason. self._awake = True while self._awake: #Handle update times for functions and numbers. if hasattr(self.move_time, '__call__'): ut = float( self.move_time() ) else: ut = self.move_time #Wait so we don't hog the CPU. What are we coming to? A #world where AI doesn't rape your machine? time.sleep(ut) for a in self.actors: a.can_move = True def sleep(self): self._awake = False def kill(self): '''Kills the world and all actors within.''' self._awake = False for a in self.actors: a.kill()
josephlewis42/personal_codebase
python/Genetic Programming/Examples/pyevolve_ex9_g2dlist.py
from pyevolve import G2DList from pyevolve import GSimpleGA from pyevolve import Selectors from pyevolve import Crossovers from pyevolve import Mutators # This function is the evaluation function, we want # to give high score to more zero'ed chromosomes def eval_func(chromosome): score = 0.0 # iterate over the chromosome for i in xrange(chromosome.getHeight()): for j in xrange(chromosome.getWidth()): # You can use the chromosome.getItem(i, j) too if chromosome[i][j]==0: score += 0.1 return score def run_main(): # Genome instance genome = G2DList.G2DList(8, 5) genome.setParams(rangemin=0, rangemax=100) # The evaluator function (objective function) genome.evaluator.set(eval_func) genome.crossover.set(Crossovers.G2DListCrossoverSingleHPoint) genome.mutator.set(Mutators.G2DListMutatorIntegerRange) # Genetic Algorithm Instance ga = GSimpleGA.GSimpleGA(genome) ga.setGenerations(800) # Do the evolution, with stats dump # frequency of 10 generations ga.evolve(freq_stats=100) # Best individual print ga.bestIndividual() if __name__ == "__main__": run_main()
josephlewis42/personal_codebase
python/Genetic Programming/Examples/pyevolve_ex13_sphere.py
from pyevolve import G1DList from pyevolve import Mutators, Initializators from pyevolve import GSimpleGA, Consts # This is the Sphere Function def sphere(xlist): total = 0 for i in xlist: total += i**2 return total def run_main(): genome = G1DList.G1DList(140) genome.setParams(rangemin=-5.12, rangemax=5.13) genome.initializator.set(Initializators.G1DListInitializatorReal) genome.mutator.set(Mutators.G1DListMutatorRealGaussian) genome.evaluator.set(sphere) ga = GSimpleGA.GSimpleGA(genome, seed=666) ga.setMinimax(Consts.minimaxType["minimize"]) ga.setGenerations(1500) ga.setMutationRate(0.01) ga.evolve(freq_stats=500) best = ga.bestIndividual() if __name__ == "__main__": run_main()
josephlewis42/personal_codebase
Euler/006.py
<gh_stars>1-10 #!/usr/bin/env python ''' The sum of the squares of the first ten natural numbers is, 12 + 22 + ... + 102 = 385 The square of the sum of the first ten natural numbers is, (1 + 2 + ... + 10)2 = 552 = 3025 Hence the difference between the sum of the squares of the first ten natural numbers and the square of the sum is 3025 385 = 2640. Find the difference between the sum of the squares of the first one hundred natural numbers and the square of the sum. ''' import pymath print pymath.square_of_sum(range(1,101)) - pymath.sum_of_squares(range(1,101))
josephlewis42/personal_codebase
python/Genetic Programming/Examples/pyevolve_ex22_monkey.py
#=============================================================================== # Pyevolve version of the Infinite Monkey Theorem # See: http://en.wikipedia.org/wiki/Infinite_monkey_theorem # By <NAME> #=============================================================================== from pyevolve import G1DList from pyevolve import GSimpleGA, Consts from pyevolve import Selectors from pyevolve import Initializators, Mutators, Crossovers import math sentence = """ 'Just living is not enough,' said the butterfly, 'one must have sunshine, freedom, and a little flower.' """ numeric_sentence = map(ord, sentence) def evolve_callback(ga_engine): generation = ga_engine.getCurrentGeneration() if generation%50==0: indiv = ga_engine.bestIndividual() print ''.join(map(chr,indiv)) return False def run_main(): genome = G1DList.G1DList(len(sentence)) genome.setParams(rangemin=min(numeric_sentence), rangemax=max(numeric_sentence), bestrawscore=0.00, gauss_mu=1, gauss_sigma=4) genome.initializator.set(Initializators.G1DListInitializatorInteger) genome.mutator.set(Mutators.G1DListMutatorIntegerGaussian) genome.evaluator.set(lambda genome: sum( [abs(a-b) for a, b in zip(genome, numeric_sentence)] )) ga = GSimpleGA.GSimpleGA(genome) #ga.stepCallback.set(evolve_callback) ga.setMinimax(Consts.minimaxType["minimize"]) ga.terminationCriteria.set(GSimpleGA.RawScoreCriteria) ga.setPopulationSize(60) ga.setMutationRate(0.02) ga.setCrossoverRate(0.9) ga.setGenerations(5000) ga.evolve(freq_stats=100) best = ga.bestIndividual() print "Best individual score: %.2f" % (best.score,) print ''.join(map(chr, best)) if __name__ == "__main__": run_main()
josephlewis42/personal_codebase
wheel_of_fortune_ai/wheel.py
#!/usr/bin/env python from __future__ import division import common import re import ngram # sort in to lengths words = [] puzzle = [] guessed_letters = [] fullpuzzle = None def setupPuzzle(): global puzzle global guessed_letters global fullpuzzle print "To play, enter a full puzzle in lower case." print "The computer will output its best guesses for the puzzle." print "After that, input a letter, and the computer will guess again." tmp = raw_input("Enter Puzzle: ") if tmp == '': exit() fullpuzzle = None try: puzzle = [['.' for j in range(int(i))] for i in tmp.split()] guessed_letters = [] except ValueError: puzzle = tmp.lower() fullpuzzle = tmp puzzle = [['.' for j in range(len(i))] for i in tmp.split()] def format_output(grams): grams = sorted(grams, reverse=True) return ["%s (%s)" % (tup[1], tup[0]) for tup in grams] def guess_ngram(location = 0, last=None,allstart=False): grams = [] if len(guessed_letters) != 0: non_letters = "[^%s]" % ("".join(guessed_letters)) else: non_letters = "." regex = ("^%s$" % ("".join(puzzle[location]))).replace(".",non_letters) if location == 0: words = ngram.find_startword(regex) if len(puzzle) == 1: return format_output(words) if not allstart: words = words[:10] else: words = words[:50] else: words = ngram.find_matches(last, regex)[:5] mult = 1 if words == []: words = ngram.find_startword(regex)[:5] mult = .5 if location == len(puzzle) - 1: return words for val, word in words: for tup in guess_ngram(location + 1, word)[:5]: grams.append(((tup[0] + val) * mult, word + " " + tup[1])) if location != 0: return grams if len(grams) == 0: return guess_ngram(0,None,0,True) return format_output(grams) def find_matching_words(location): wordlist = set() regex = "^%s$" % ("".join(puzzle[location])) desired_length = len(puzzle[location]) for word in words: if(len(word) == desired_length): if(re.match(regex, word)): wordlist.add(word) return wordlist def output_puzzle(): print("Puzzle: %s" % (" ".join(["".join(puz) for puz in puzzle]),)) if fullpuzzle != None: print(" (%s)" % (fullpuzzle,)) def update_puzzle(): global puzzle if fullpuzzle == None: try: update = raw_input("Update puzzle <letter> [wordnum,loc ...] (blank to end): ").split() letter = update[0][0] for pos in update[1:]: wordnum, loc = map(int, pos.split(",")) puzzle[wordnum - 1][loc - 1] = letter guessed_letters.append(letter) return False except IndexError: return True else: letter = 'blank' while len(letter) > 1: letter = raw_input("Update puzzle <letter> (blank to end): ") if letter == '': return True guessed_letters.append(letter) count = 0 for word in puzzle: for pos in range(len(word)): if fullpuzzle[count] == letter: word[pos] = letter count += 1 count += 1 # manage spaces return False if __name__ == "__main__": while(True): setupPuzzle() puzzle_done = False while(not puzzle_done): print("\n".join(guess_ngram()[:10])) puzzle_done = update_puzzle() output_puzzle()
josephlewis42/personal_codebase
python/webkit_browser/simple_webkit_browser.py
#!/usr/bin/env python ''' # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following disclaimer # in the documentation and/or other materials provided with the # distribution. # * Neither the name of the nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. Copyright 2010 <NAME> <<EMAIL>> ''' import gtk import webkit #Constants BROWSER_NAME = "Simple Browser" class MyWebBrowser(gtk.Window): def __init__(self): #Init the program, essentially just create the gtk environment. #Create the vbox to hold the menubar and gtkwindow self.vbox = gtk.VBox(False, 2) self.view = webkit.WebView() self.view.open("http://localhost/") self.view.connect('title-changed', self.update_title_bar) self.view.connect('document-load-finished', self.doc_load_finished) self.sw = gtk.ScrolledWindow() self.sw.add(self.view) self.make_menu_bar() self.win = gtk.Window() self.win.set_size_request(760, 500) self.vbox.pack_end(self.sw) self.win.add(self.vbox) self.win.show_all() self.win.connect('delete_event', gtk.main_quit) def make_menu_bar(self): '''Makes the menu bar for the program, pretty simple really.''' #Make the hbox to fit everything in. self.menu_box = gtk.HBox(False, 5) #Make the back button and set it up. self.back_button = gtk.Button(stock=gtk.STOCK_GO_BACK) self.menu_box.pack_start(self.back_button, False, False, 0) self.back_button.connect("pressed",self.page_back) #Make the forward button and set it up. self.forward_button = gtk.Button(stock=gtk.STOCK_GO_FORWARD) self.menu_box.pack_start(self.forward_button, False, False, 0) self.forward_button.connect("pressed",self.page_forward) #The Refresh button #The home button #The url entry box self.url_entry = gtk.Entry() self.menu_box.pack_start(self.url_entry, True, True, 0) #The go button self.go_button = gtk.Button("Go") self.menu_box.pack_start(self.go_button, False, False, 0) self.go_button.connect("pressed",self.go_to_url) self.vbox.pack_start(self.menu_box, False, False, 0) def go_to_url(self, event): '''Goes to the url provided in the input box.''' self.view.open(self.url_entry.get_text()) def update_title_bar(self, webview, frame, title): '''Updates the title bar when a webpage title is changed.''' self.win.set_title(title) def doc_load_finished(self, webview, unknown): '''Changes browser settings when a url is loaded, like location bar, and title.''' #Set the title for the page self.win.set_title(BROWSER_NAME + " - " + str(self.view.get_property("title"))) #Set the new uri self.url_entry.set_text( self.view.get_property("uri") ) def page_back(self, event): '''Go back a page.''' self.view.go_back() def page_forward(self, event): '''Go forward a page.''' self.view.go_forward() if __name__ == "__main__": webbrowser = MyWebBrowser() gtk.main()
josephlewis42/personal_codebase
python/PersonalFileServer/Site/upload.py
import os if POST_DICT: try: print POST_DICT.keys() print POST_DICT['filename'] path = os.path.join("Downloads", POST_DICT['filename']) print path with open(path, 'wb') as f: f.write(POST_DICT['myfile']) except Exception, e: print e self.redirect("index.py")
josephlewis42/personal_codebase
python/Genetic Programming/Examples/pyevolve_ex19_gp.py
from pyevolve import GSimpleGA from pyevolve import GTree from pyevolve import Consts from pyevolve import Selectors from pyevolve import Mutators from math import sqrt import pydot import random def gp_add(a, b): assert len(a)==len(b) new_list = [x+y for x,y in zip(a,b)] return new_list #def gp_sub(a, b): # assert len(a)==len(b) # new_list = [x-y for x,y in zip(a,b)] # return new_list def prot_div(a, b): if b==0: return b else: return a/b #def gp_div(a,b): # assert len(a)==len(b) # new_list = [prot_div(x,float(y)) for x,y in zip(a,b)] # return new_list def gp_mul(a,b): assert len(a)==len(b) new_list = [x*y for x,y in zip(a,b)] return new_list def random_lists(size): list_a = [random.randint(1,20) for i in xrange(size)] list_b = [random.randint(1,20) for i in xrange(size)] return (list_a, list_b) def eval_func(chromosome): sz = 20 code_comp = chromosome.getCompiledCode() square_accum = 0.0 for j in xrange(sz): a, b = random_lists(5) target_list = gp_add(gp_mul(a,b),gp_mul(a,b)) ret_list = eval(code_comp) square_accum += (sum(target_list)-sum(ret_list))**2 RMSE = sqrt(square_accum / float(sz)) score = (1.0 / (RMSE+1.0)) return score def main_run(): genome = GTree.GTreeGP() root = GTree.GTreeNodeGP('a', Consts.nodeType["TERMINAL"]) genome.setRoot(root) genome.setParams(max_depth=2, method="ramped") genome.evaluator += eval_func genome.mutator.set(Mutators.GTreeGPMutatorSubtree) ga = GSimpleGA.GSimpleGA(genome) ga.setParams(gp_terminals = ['a', 'b'], gp_function_prefix = "gp") ga.setMinimax(Consts.minimaxType["maximize"]) ga.setGenerations(500) ga.setCrossoverRate(1.0) ga.setMutationRate(0.08) ga.setPopulationSize(80) ga(freq_stats=1) print ga.bestIndividual() graph = pydot.Dot() ga.bestIndividual().writeDotGraph(graph) graph.write_jpeg('tree.png', prog='dot') if __name__ == "__main__": main_run() #import hotshot, hotshot.stats #prof = hotshot.Profile("ev.prof") #prof.runcall(main_run) #prof.close() #stats = hotshot.stats.load("ev.prof") #stats.strip_dirs() #stats.sort_stats('time', 'calls') #stats.print_stats(20)
josephlewis42/personal_codebase
python/pyWebserver/configure.py
""" This application starts the webserver. @Author : <NAME> <<EMAIL>> @Licence : Apache License @Date : Fri 12 Feb 2010 05:00:22 PM MST """ #WX Stuff import wx from wx import xrc #Config Parser, not needed in normal wx applications. import ConfigParser config = ConfigParser.RawConfigParser() class ServerApp(wx.App): ''' The server app creates a class that wx can use to interact with the items in the application. ''' def OnInit(self): ''' Called by wx to start the applet. ''' #The location of the configuration file self.res = xrc.XmlResource("./Lib/configure_gui.xrc") #Init the frame and the items within self.InitFrame() #Init the buttons and bind them self.InitButtons() #Start up the sizer, and show the frame self.InitEverythingElse() return True def InitFrame(self): ''' Sets the variables of the main frame, and the controls ''' #Init frame self.frame = self.res.LoadFrame(None, "MainFrame") #Init the main panel self.panel = xrc.XRCCTRL(self.frame, "MainPanel") #Init Input Boxes self.portControl = xrc.XRCCTRL(self.panel, "port_ctrl") self.hostControl = xrc.XRCCTRL(self.panel, "host_ctrl") self.rootControl = xrc.XRCCTRL(self.panel, "root_ctrl") self.errorsControl = xrc.XRCCTRL(self.panel, "errors_ctrl") self.indexControl = xrc.XRCCTRL(self.panel, "index_ctrl") self._404Control = xrc.XRCCTRL(self.panel, "_404_ctrl") def InitButtons(self): ''' Bind the user controllable items. ''' self.frame.Bind(wx.EVT_BUTTON, self.StartServer, id=xrc.XRCID("StartServerButton")) def InitEverythingElse(self): ''' Adds a sizer, and shows the panel ''' sizer = self.panel.GetSizer() sizer.Fit(self.frame) sizer.SetSizeHints(self.frame) self.frame.Show() def StartServer(self, evt): ''' Write the config file, then start the server. ''' #Set Variables config.add_section('Pages') config.set('Pages', 'error_dir', self.errorsControl.GetValue()) config.set('Pages', '_404', self._404Control.GetValue()) config.set('Pages', 'siteroot', self.rootControl.GetValue()) config.set('Pages', 'index', self.indexControl.GetValue()) config.add_section('Server') config.set('Server', 'port', self.portControl.GetValue()) config.set('Server', 'host_name', self.hostControl.GetValue()) # Write the configuration file to 'configure.cfg' with open('./Configuration/configure.cfg', 'wb') as configfile: config.write(configfile) #Start the webserver in a new process (fork) import os pid = os.fork() if pid: import webserver webserver.main() else: #Start a browser for the user to see their work. import webbrowser webbrowser.open("http://"+ str(self.hostControl.GetValue())+":"+str(self.portControl.GetValue())) def main(): app = ServerApp(0) app.MainLoop() if __name__ == '__main__': main()
josephlewis42/personal_codebase
python/PersonalFileServer/Site/download.py
import os import mimetypes import urllib if QUERY_DICT: filename = urllib.unquote(QUERY_DICT['f'][0]) mime = mimetypes.guess_type(filename) path = os.path.join("Downloads", filename) head={'Content-Disposition':'attachment; filename="%s"' %(filename)} self.send_200(mime_type=mime, headers=head) with open(path) as f: self.wfile.write(f.read()) else: self.redirect("index.py")
josephlewis42/personal_codebase
python/advanced_find_replace/replace_over.py
<gh_stars>1-10 #!/usr/bin/env python # -*- coding: latin-1 -*- '''A handy little script that replaces files in a directory with Copyright 2011 <NAME> <joehms22 [at] gmail com> Originally Made: 2012-06-12 Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. Potential improvements: Allow the regex rules to also be applied only to documents with a certain structure. Allow rules to only be done once/based upon expressions Allow the choice of files by either entering one, or a list ''' import os, os.path import difflib import webbrowser import re import string import argparse import json import codecs __author__ = "<NAME>" __copyright__ = "Copyright 2012, <NAME>" __license__ = "BSD" # {string_doc_must_contain_to_do_replacement : {orig_text : replacement} rep_rules = {} # {string_line_must_contain_to_do_replacement : {orig_text : replacement} line_rep_rules = {} regx_rules = {} changed_files = [] doc_vars = [] universal_diff = "" # CLI vars verbose = True accept_all = False show_summary = True print_diff = False def print_verbose(to_print): if verbose: print to_print def do_diff(name_a, name_b, str_a, str_b): ''' Create a diff of the given two strings, seperated based on the character provided. Returns True if the revision was accepted, false otherwise. ''' global universal_diff if print_diff: for line in difflib.unified_diff(str_a.split('\n'), str_b.split('\n'), name_a, name_a): universal_diff += line + "\n" return True if accept_all: return True with codecs.open("/tmp/difflib.tmp.html",'w', encoding='utf-8') as dlt: dlt.write(difflib.HtmlDiff().make_file(str_a.split("\n"),str_b.split("\n"),name_a,name_b)) webbrowser.open("file:///tmp/difflib.tmp.html") j = raw_input("Keep current? (Y|N) ") if len(j) > 0 and j.upper()[0] == 'Y': return True return False check_file_prepped = False def check_file(f, name): '''Checks the file for lines and replaces them. ''' document_variables = {} orig_doc = f.read() changed_doc = orig_doc # Find variables for the document for match in doc_vars: tmp = re.finditer(match, changed_doc) for t in tmp: document_variables.update(t.groupdict()) break if document_variables: print_verbose("Found vars: %s" % str(document_variables)) # Simple replacement for check, replace_dict in rep_rules.items(): if not check in orig_doc: continue for to_replace, replace_with in replace_dict.items(): changed_doc = changed_doc.replace(to_replace, replace_with) # Regex dict replacement. e.g. # Orig: " print "Hello: " + itema.firstname # print "From: " + itemb.fistname # torep: "(?P<itemname>\w+).firstname" # repwith: "${itemname}.lastname" # new: " print "Hello: " + itema.lastname # print "From: " + itemb.lastname" for to_replace, replace_with in regx_rules.items(): try: to_replace = to_replace % document_variables for match in re.finditer(to_replace, changed_doc): temp_dict = match.groupdict() temp_dict.update(document_variables) changed_doc = changed_doc.replace(match.group(), replace_with % temp_dict) except KeyError: continue except Exception, ex: print str(ex) print to_replace # Simple replacement (lines) for check, replace_dict in line_rep_rules.items(): tmpdoc = [] for line in changed_doc.split("\n"): if not check in line: tmpdoc.append(line) continue for to_replace, replace_with in replace_dict.items(): line = line.replace(to_replace, replace_with) tmpdoc.append(line) changed_doc = "\n".join(tmpdoc) if orig_doc != changed_doc: if do_diff(name, "Changed Version", orig_doc, changed_doc): return changed_doc return None def summarize(): ''' Shows a summary of the changed documents.''' if print_diff: print "== Diff ==" print universal_diff return if not show_summary: return print "== Summary of Changed Files ==" for tmp in changed_files: print "\t%s" % (tmp) def save_file(location, content): ''' Saves a file to the given location with the given content and updates the list of changed files. ''' with codecs.open(location, 'w', encoding='utf-8') as curr_file: curr_file.write(content) changed_files.append(location) def check_diff_dirs(dir_to_check): for root, dirs, files in os.walk(dir_to_check): for f in files: fullpath = os.path.join(root, f) print "Checking: " + fullpath ret = None try: with codecs.open(fullpath, encoding='utf-8') as curr_file: ret = check_file(curr_file, fullpath) if ret and not print_diff: save_file(fullpath, ret) except UnicodeDecodeError, ex: print fullpath print ex continue summarize() def validate_regex(regex): '''Validates a regex, if valid return true, else false. ''' try: re.compile(regex) return True except Exception, ex: print "Error in your REGEX: %s \n\t%s" % (regex, ex) return False def load_expressions(path_to_file): ''' The replacement filter file is in a JSON format: [file_version, rep_rules, regex_rules] file_version = 2.0 rep_rules = {string_doc_must_contain_to_do_replacement : {orig_text : replacement, ...}, ...} regex_rules = {orig_text : replacement, ...} e.g. A file looking like: { "version":2.0, "replace":{"":{"Hello":"Hola"}}, "regex":{"(?P<greeting>\\w+), world!":"%(greeting)s, Joseph!"}, "variables":["Hello, (?P<OrigName>\\w+)"], "lines":{"linecontains":{"toreplace":"replacewith"}} } Would produce: Hello, world! --> Hola, Joseph! Note: You may use variables in the regex output, and regex inputs, and replace input strings by including them using string vars: %(varname)s, any var not found will be left. ''' global rep_rules global line_rep_rules global regx_rules global doc_vars is_valid_regex = True try: with codecs.open(path_to_file, encoding='utf-8') as f: tmp_array = json.load(f) file_version = tmp_array['version'] rep_rules = tmp_array['replace'] regx_rules = tmp_array['regex'] doc_vars = tmp_array['variables'] if float(file_version) >= 2.0: line_rep_rules = tmp_array['lines'] else: print "Using a 1.0 document, 2.0 is suggested." line_rep_rules = {} for k in regx_rules.keys(): ret = validate_regex(k) if not ret: is_valid_regex = False for k in doc_vars: ret = validate_regex(k) if not ret: is_valid_regex = False if not is_valid_regex: print "Cannot continue with invalid regex(s)" exit(2) print_verbose( "== Regex Rules ==") for k, v in regx_rules.items(): print_verbose("\t %s -> %s" % (k,v)) print_verbose("== Variables ==") for k in doc_vars: print_verbose("\t %s" % k) for big_k, big_d in rep_rules.items(): print_verbose("==Rules for files containing: '%s'==" % (big_k)) for k, v in big_d.items(): print_verbose("\t %s -> %s" % (k,v)) for big_k, big_d in line_rep_rules.items(): print_verbose("==Rules for lines containing: '%s'==" % (big_k)) for k, v in big_d.items(): print_verbose("\t %s -> %s" % (k,v)) except Exception, ex: print "Your JSON is not properly formatted: %s" % (ex) exit(2) if __name__ == "__main__": parser = argparse.ArgumentParser(description='Replaces text in files based upon complex regexs', epilog=load_expressions.__doc__, formatter_class=argparse.RawDescriptionHelpFormatter) parser.add_argument('-q', '--quiet', help="Turns off verbose debugging", action='store_true', default=False) parser.add_argument('-a', '--accept', help="Automatically accept ALL file changes without showing them", action='store_true', default=False) parser.add_argument('-d', '--diff_only', help="Does not change files, rather creates a universal diff and prints it to stdout (implies -a)",action='store_true', default=False) parser.add_argument('--no_summary', help="Do not show a summary of the changed files.", action='store_false', default=True) parser.add_argument('PATH', help='the path of the directory to parse files in') parser.add_argument('REPLACE_PATH', help='the path of the replacement fiter') args = parser.parse_args() try: verbose = not args.quiet accept_all = args.accept show_summary = args.no_summary print_diff = args.diff_only if args.PATH and args.REPLACE_PATH: load_expressions(args.REPLACE_PATH) check_diff_dirs(args.PATH) except IOError: print "File given can't be found."
josephlewis42/personal_codebase
python/OpenCalc/Lib/Code/Graph.py
#!/usr/bin/python ''' Graph provides an interface to matplotlib, as well as classes defining graph objects, and function objects @Author = <NAME> @Date = 2010-03-12 @License = GPL ==Changelog== 2010-03-12 - Original Built by <NAME> <<EMAIL>> 2010-03-17 - Added functions to get the graph colors and style - JL ''' #from pylib import * import numpy import Parser import matplotlib.numerix as nx #Depreciated TODO fix import matplotlib.patches #Fixes momentarily the Depreciation? xmin = -10 xmax = 10 x_increment = 0.01 ymin = -10 ymax = 10 zmin = -10 zmax = 10 def get_x_range(lower,upper,by): ''' Returns a range from lower, to upper, by incriment. ''' return nx.arange(lower,upper,by) class function(): ''' Defines a function object, this object holds a function to be plotted ''' function_name = "" function_value = "" previous_fx_value = "" will_graph = False line_color = "Blue" line_style = "Solid Line" x_values = () y_values = [] def __init__(self, value, name): self.function_value = value self.function_name = name def get_descriptor(self): ''' Returns a string description of the plot ''' desc = self.function_name + " " +self.function_value if self.will_graph: desc = desc + " " + "ON" else: desc = desc + " " + "OFF" return desc def update_function(self, arr): ''' Creates a set of Y values from the x values in the array only if the current set will not work for some reason ''' if tuple(arr) != self.x_values or self.previous_fx_value != self.function_value: #Update the conditions that made this switch work so it wont again #if next time the f(x) is the same. self.x_values = tuple(arr) self.previous_fx_value = self.function_value self.y_values = [] for x in arr: self.y_values.append(Parser.clean_parse(self.function_value, x)) def get_color(self): ''' Get the matplotlib equivilent of a color word that is input. ''' color_values = { "Blue": "b", "Cyan": "c", "Green":"g", "Black":"k", "Magenta":"m", "Yellow": "y", "Red": "r", "White": "w", } return color_values.get(self.line_color, 'b') #Default = blue def get_line_style(self): ''' Get the matplotlib equivilent of a style word that is input. ''' line_values = { "Solid Line":'-', "Dashed Line":'--', "Dashed - Dot Line":"-.", "Dotted Line":":", } return line_values.get(self.line_style, '-') #Default = solid def get_function_titles(): ''' Returns a list of function descriptors ''' global function_list titles = [] for fx in function_list: titles.append(fx.get_descriptor()) return titles def get_on_functions(): ''' Returns a list of lists, the first value is x, the next is y, the third is the title of the plot. ''' on_functions = [] for fx in function_list: if fx.will_graph: on_functions.append(fx) return on_functions function_list = [function('sin(x)', 'Y1'), function('', 'Y2'), function('', 'Y3'), function('', 'Y4'),function('', 'Y5'),function('', 'Y6'), function('', 'Y7'),function('', 'Y8'),function('', 'Y9'), function('', 'Y0')] #The default functions #Test xmin = -180 xmax = 180 function_list[0].will_graph = True
josephlewis42/personal_codebase
python/randall/alife_randall_checkout/randallai/AI/limbic.py
<filename>python/randall/alife_randall_checkout/randallai/AI/limbic.py #!/usr/bin/env python ''' The limbic module is responsible for maintaining emotions. Copyright (c) 2011 <NAME> <<EMAIL>> This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. ''' import threading import time import pavlov __version__ = 1.0 __author__ = "<NAME> <<EMAIL>>" def generate_plutchik_limbic(response_network): '''Returns a basic Limbic emotion system, in which emotions are (somewhat) tied together. The emotions that begin with a > are dependant upon the two next to it and will contain the average of those two values. Based off Plutchik's Wheel of Emotions http://www.storiedmind.com/wp-content/uploads/2009/09/Wheel-of-Emotions2-441x450.jpg joy > love trust > submission fear > awe surprise > disapproval sadness > remorse disgust > contempt anger > aggressiveness anticipation > optimism joy Paramaters: response_network -- An implementation of the pavlov.ResponseNetwork class. (pavlov.ResponseNetwork) ''' def average_emotion(emotion_one, emotion_two): def average(): return (emotion_one.value + emotion_two.value) / 2 return average l = Limbic() #Primary emotions l.emotions.append( Emotion("joy", response_network) ) l.emotions.append( Emotion("trust", response_network) ) l.emotions.append( Emotion("fear", response_network) ) l.emotions.append( Emotion("surprise", response_network) ) l.emotions.append( Emotion("sadness", response_network) ) l.emotions.append( Emotion("disgust", response_network) ) l.emotions.append( Emotion("anger", response_network) ) l.emotions.append( Emotion("anticipation", response_network) ) #Secondary emotions tmp = average_emotion(l['joy'], l['trust']) l.emotions.append( Emotion("love", response_network, tmp) ) tmp = average_emotion(l['trust'], l['fear']) l.emotions.append( Emotion("submission", response_network, tmp) ) tmp = average_emotion(l['fear'], l['surprise']) l.emotions.append( Emotion("awe", response_network, tmp) ) tmp = average_emotion(l['surprise'], l['sadness']) l.emotions.append( Emotion("disapproval", response_network, tmp) ) tmp = average_emotion(l['sadness'], l['disgust']) l.emotions.append( Emotion("remorse", response_network, tmp) ) tmp = average_emotion(l['disgust'], l['anger']) l.emotions.append( Emotion("contempt", response_network, tmp) ) tmp = average_emotion(l['anger'], l['anticipation']) l.emotions.append( Emotion("aggressiveness", response_network, tmp) ) tmp = average_emotion(l['anticipation'], l['joy']) l.emotions.append( Emotion("optimism", response_network, tmp) ) return l class Emotion(): ''' The emotion class represents an emotion in a creature, for example happiness, it's value is between 0 and 100 and is raised or lowered through calls. This class can trigger events when the value reaches certain levels. These levels must be added to the dictionary "events" with the key being the condition sent to the pavlov.ResponseNetwork class supplied and value being a tuple of size 2 . For example: "hello":(2,20) Would trigger the event "hello" when this particular emotion was between (and including) 2 and 20. Alternatively you could use the add_event function. ''' updown = None last_value = 0 value = 0 events = {} name = "Defined at init" def __init__(self, name, response_network, update_function=None, updown=True): ''' Initializes the Emotion. Paramaters: name -- The name of the emotion for identification and warning purposes. (String) response_network -- An implementation of the pavlov.ResponseNetwork class. (pavlov.ResponseNetwork) update_function -- The function called when the emotion needs it's value updated, should return a number between 0 and 100 inclusive. The function will be passed the current value if possible. You don't need to supply this. DEFAULT:None (Function) updown -- A boolean, if true the conditions <emotionname>_up and <emotionname>_down will be created, when the emotion value is raised <emotionname>_up will be fired and the opposite for lowering. (boolean) Default: True Raises: TypeError "ERROR: Wrong type of pavlov.ResponseNetwork class", this happens if the pavlov.ResponseNetwork class is not an instance of pavlov.ResponseNetwork. ''' self.name = name self.update_function = update_function if isinstance(response_network, pavlov.ResponseNetwork): self.response_network = response_network else: raise TypeError, "ERROR: Wrong type of pavlov.ResponseNetwork class" #Do the updown setup. if updown: response_network.register_con_res("%s_up"%name) response_network.register_con_res("%s_down"%name) self.updown = updown def add_event(self, low, high, event_name): '''A convenience function for adding events to the emotion. Paramaters: low -- The low number to trigger the event. high -- The high number to stop triggering the event at. event_name -- The event sent to the pavlov.ResponseNetwork class. ''' self.events[event_name] = (low, high) def update(self): '''Updates the value if a function was given at init, after that sends events to the ResponseNetwork by calling send_events(). Returns the updated value. ''' self.last_value = self.value if hasattr(self.update_function, '__call__'): try: self.value = self.update_function(self.value) except TypeError: self.value = self.update_function() self.send_events() return self.value def send_events(self): '''Sends events for values set in the events dictionary by the user. This class can trigger events when the value reaches certain levels. These levels must be added to the dictionary "events" with the key being the condition sent to the pavlov.ResponseNetwork class supplied and value being a tuple of size 2 . For example: "hello":(2,20) Would trigger the event "hello" when this particular emotion was between (and including) 2 and 20. Alternatively you could use the add_event function. NOTE: This function is called periodically by the Limbic class, it does not need to be done manually unless desired. NOTE: This function is used for ensuring the value is really between 0 and 100, if less than or greater than the value will be set to 0 or 100. ''' global value if self.value < 0: self.value = 0 if self.value > 100: self.value = 100 #Register raise and lowering of emotions. if self.updown: if self.value > self.last_value: self.response_network.condition("%s_up"%self.name) elif self.value < self.last_value: self.response_network.condition("%s_down"%self.name) #Register percentages. for cond in self.events.keys(): low, high = self.events[cond] if self.value in range(low, high + 1): self.response_network.condition(cond) def autogen_events(self, step=10, start=0, stop=101): ''' Autogenerates events for ranges starting at start ending at stop every stop numbers and adds them to the response_network neuron list. Returns a list of these events. Example: >>> autogen_events(10, 20, 50) ['name_20','name_30','name_40'] Where name is the name of this emotion. Event name_20 would be triggered from 20-29, name_30 30-49 and name_40 from 40-49. ''' new_events = range(start, stop, step) #Add the maximum so we can get to the stop. new_events.append(stop) newnames = [] x = 0 while x < len(new_events) - 1: #Generate the name of this event. e_name = "%s_%d" % (self.name, new_events[x]) newnames.append(e_name) #Generate new neurons self.response_network.register_con_res(e_name) #Generate it locally, subtract from the high so there aren't #conflicts in ranges. self.add_event(new_events[x], new_events[x+1] - 1, e_name) x += 1 return newnames def get_value(self): '''A getter that is used by any function that needs a dynamic way to get the value. (I'm looking at you maslow!) ''' return self.value class Limbic(threading.Thread): '''A simple container for Emotions. To add emotions, just append them to the variable "emotions". The Limbic class can get emotions just like a dictionary: <Limbic>[emotionname] will return the emotion whose name is that supplied. ''' emotions = [] _update_time = None _awake = True #True if thread is running, false to kill it. def __init__(self, update_time=1, begin=True): '''Sets up the emotional system. Paramaters: update_time -- A function that returns a float as the number of seconds until the organs update and fire events, or just a float. | DEFAULT:1 | (function, float) begin -- Whether or not to start the thred as soon as done initializing. If false, the thread won't ever trigger events or check for value correctness unless you manually start it by calling start() DEFAULT: True (boolean) ''' self._update_time = update_time threading.Thread.__init__ ( self ) if begin: self.start() def __getitem__(self, key): '''Emulates a list or dictionary, called with the name of the emotion. Raises IndexError if not found.''' #Check for strings for e in self.emotions: if e.name == key: return e #Check for ints return self.emotions[key] #else raise error raise IndexError def __len__(self): '''Returns the number of emotions.''' return len(self.emotions) def keys(self): '''Returns a list of all the names of the emotions.''' k = [] for e in self.emotions: k.append(e.name) return k def run(self): while self._awake: #Handle update times for functions and numbers. if hasattr(self._update_time, '__call__'): ut = float(self._update_time()) else: ut = self._update_time #Wait so we don't hog the cpu time.sleep(ut) #Have all the emotions fire events to the pavlov network. for emotion in self.emotions: emotion.update() def sleep(self): '''Kills the thread.''' self._awake = False if __name__ == "__main__": def myresponse(): print "I am happy" def loveup(): print "Love raised" rn = pavlov.ResponseNetwork() rn.start() rn.register_con_res('happy80', myresponse) l = generate_plutchik_limbic(rn) l['joy'].add_event(80, 70, "happy80") rn.change_response('love_up', loveup) l['joy'].value = 100 l['trust'].value = 80 time.sleep(2) print l['love'].value l.sleep()
josephlewis42/personal_codebase
python/randall/alife_randall_checkout/randallai/AI/mapper.py
#!/usr/bin/env python ''' The mapper module is used to maintain a map of places. Copyright (c) 2011 <NAME> <<EMAIL>> This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. ''' import threading import time import random import copy __version__ = 1.0 __author__ = "<NAME> <<EMAIL>>" __license__ = "Copyright (c) 2010 <NAME> <<EMAIL>> all rights reserved." DEBUGGING = False def make_maze(seed=None, xsize=10, ysize=10, zsize=1): '''Returns a randomized grid (a maze). A seed can be supplied to get the same maze each time. Paramaters: seed -- An int to seed the random number generator with. xsize -- The width of the maze to generate. (int) Default: 10 ysize -- The height of the maze to generate. (int) Default: 10 zsize -- The z of the maze to generate. (int) Default: 1 ''' if not seed: seed = int(random.random() * 1000000) random.seed(seed) #Make a graph and populate it with cells g = Grid(xsize, ysize, zsize, True, name="Random Seed:%s"%(str(seed))) #Gets the non visited neighbors of the given cell. def non_visited_neighbors(cell): nonvisited = [] for n in g.neighbors(cell): if n.parent == None: nonvisited.append(n) return nonvisited #Recursively remove walls, without recursive calls due to overflows. current = g.cell_at(0,0,0) last = [] last.append(current) while last: #If there are neighbors remove a wall and add to the stack. nvn = non_visited_neighbors(current) if nvn: next = random.choice(nvn) g.set_accessible(current, next, True) next.parent = current last.append(current) current = next else: #If there are no neighbors pop the stack and try from there. current = last.pop() return g def make_from_mapfile(mapfile_location): '''Re-creates a maze from a mapfile at the given filesystem path. ''' f = open(mapfile_location) name = "" size = None #Read first line, this should say MAP version. line = f.readline() if "MAP" not in line: raise Exception, "Not a valid mapfile!" if eval(line.split(" ")[1]) > __version__: raise Exception("Map file too new!") #Fetch the name and size of the map. while line.startswith("#"): line = f.readline() if "Name" in line: name = line[line.index(' '):-1] #-1 = Don't include newline if "Size" in line: size = line[line.index(' '):-1] #-1 = Don't include newline size = eval(size) #Change to tuple #Make new map instance that fits the size of the given file. x, y, z = size newgrid = Grid(x, y, z, True, name) #Get all of the cells and populate the map. #A line is in the format: (x,y,z) nesw [] f.seek(0) for line in f: if line.startswith("#"): #Skip comments. continue a = line.split('\t') x, y, z = eval(a[0]) d = a[1] items = eval(a[2]) c = Cell(x,y,z, 'n' in d, 's' in d, 'e' in d, 'w' in d, \ 'u' in d, 'd' in d) c.items = items newgrid.append(c) return newgrid def map2HTML(mapfile_location): '''Generates an HTML version of the mapfile at the same location as the original.''' g = make_from_mapfile(mapfile_location) g.gen_HTML(file_path=mapfile_location+".html") class Cell: '''A representation of a square of the map, has an x y and z axis to allow better representaiton of the map. Each square can have extra variables attached to it such as temperature, humidity, etc. Map squares can also have objects attached to them, usually things identified by the senses that the Actor can interact with. These can be stored in a list in the map square. Variables: north -- Can this cell access the one to the north? (boolean) south -- Can this cell access the one to the south? (boolean) east -- Can this cell access the one to the east? (boolean) west -- Can this cell access the one to the west? (boolean) up -- Can this cell access the one above? (boolean) down -- Can this cell access the one below? (boolean) x -- The x (E/W) location of this cell in the world. (int) y -- The y (N/S) location of this cell in the world. (int) z -- The z (U/D) location of this cell in the world. (int) items -- A list of items this cell holds that Actors can interact with. (List of Strings) css_id -- A unique id for representing this Cell when it is placed in an HTML file. Format: x00,y00,z00 Where the zeros are replaced by the x,y, and z of the Cell. (String) Note: Just because this cell can access another doesn't mean the reverse is true. ''' last_visit = 0.0 #The last time this cell was seen live. #For a* algorithm score = 0 parent = None def __init__(self, x, y, z, north, south, east, west, up=False, down=False): '''Creates a new map square, with the x y and z location, as well as the movement variables. Paramaters: x -- The x location of this square (int) y -- The y location of this square (int) z -- The z location of this square (int) north -- Can this square access the north? (bool) south -- Can this square access the south? (bool) east -- Can this square access the east? (bool) west -- Can this square access the west? (bool) up -- Can this square access above? (bool) Default: False down -- Can this square access below? (bool) Default: False ''' self.x = x self.y = y self.z = z self.north = north self.south = south self.east = east self.west = west self.up = up self.down = down self.items = [] self.css_id = "x%iy%iz%i" % (x, y, z) def __str__(self): return "(%i,%i,%i)" % (self.x, self.y, self.z) def is_north(self, other): '''Is this cell North of the one given? Return bool.''' return self.y < other.y def is_south(self, other): '''Is this cell South of the one given? Return bool.''' return self.y > other.y def is_east(self, other): '''Is this cell East of the one given? Return bool.''' return self.x > other.x def is_west(self, other): '''Is this cell West of the one given? Return bool.''' return self.x < other.x def is_up(self, other): '''Is this cell above the one given? Return bool.''' return self.z < other.z def is_down(self, other): '''Is this cell below the one given? Return bool.''' return self.z > other.z def is_same_location(self, other): '''Is this cell in the same location as the one given? (bool) ''' return other.x == self.x and other.y == self.y and other.z == self.z def update(self, newer): '''Updates this cell's directions and item list based off the values of another (newer) version. Also updates the last_visit variable to the current time. Paramaters: newer -- An instance of a Cell whose direction and items values are to be copied to this cell's. (Cell) ''' self.north = newer.north self.east = newer.east self.south = newer.south self.west = newer.west self.up = newer.up self.down = newer.down self.items = copy.copy(newer.items) self.last_visit = time.time() class Grid: '''A container of Cells. North/South is y Furthest north is 0 East/West is x Furthest West is 0 Up/Down is z Furthest up is 0 Variables: grid -- A 3D array of Cells. _x -- The x size for the grid. (int) _y -- The y size for the grid. (int) _z -- The z size for the grid. (int) name -- A name for this grid. (String) ''' def __init__(self, x, y, z=1, fill=False, name=""): '''Creates a new grid with the number of elements. To concerve memory with potentially large grids they are not filled unless specified with the fill variable. Paramaters: x -- The number of x columns. (int) y -- The number of y rows. (int) z -- The number of z levels. (int) Default: 1 fill -- Should the grid be populated with cells? (bool) Default: False name -- The name of this map. (string) Default: "" ''' if not isinstance(x, int) or not isinstance(y, int) or not isinstance(z, int): raise TypeError("Can't create grid from non int indexes.") self._x = x self._y = y self._z = z self.name = name #Create a new grid filled with Nones. self.grid = [[[None]*z for i in xrange(y)] for j in xrange(x)] if fill: for j in range(x): for k in range(y): for l in range(z): c = Cell(j, k, l, False, False, False, False) self.append(c) class Iterator(): '''A simple dirty iterator for mapper.''' def __init__(self, parent): self.mylist = [] for j in range(parent._x): for k in range(parent._y): for l in range(parent._z): self.mylist.append( parent.cell_at(j, k, l) ) self.mylist.reverse() def next(self): #Check for stop: if not self.mylist: raise StopIteration return self.mylist.pop() def __iter__(self): '''Allows Grid to be used in for loops. Example: >>> for cell in Grid: >>> print cell ''' return self.Iterator(self) def add_cell(self, cell): '''Adds a cell to the Grid.''' import warnings warnings.warn("Use Grid.append() instead of Grid.add_cell()", DeprecationWarning, stacklevel=2) self.append(cell) def append(self, cell): '''Adds a cell to the Grid container.''' self.grid[cell.x][cell.y][cell.z] = cell def cell_at(self, x, y, z=0): '''Returns the cell at the given location. Returns none if the cell has not been generated yet. Throws: IndexError -- If indexes are negative or out of bounds. ''' if x < 0 or y < 0 or z < 0: raise IndexError("List index negative.") return self.grid[x][y][z] def safe_cell_at(self, x, y, z=0): '''Returns the cell at the given location. Returns none if the cell has not been generated yet or is out of bounds. ''' try: return self.cell_at(x, y, z) except IndexError: return None def clear_parents(self): '''Removes all parents settings from the cells.''' for c in self: try: c.parent = None except AttributeError: pass def get_all_items(self): '''Returns a list of all the unique items in the Grid's Cells.''' itemlist = [] for c in self: try: for i in c.items: itemlist.append(i) except AttributeError: pass #The cell must be None return list( set(itemlist) ) #Uniquify def find_closest_list(self, items_list, othercell, quick=False): '''Returns the closest Cell to the one given that has the of the given items from items_list in its item list. Paramaters: items_list -- A list of names of items to search for. (string) othercell -- The cell to judge distances from. (Cell) quick -- True to judge the distance quickly based on the cells relative position, False to actually find a route to each cell before returning the fastest. False is much more accurate, but much slower. Default: False (boolean) Returns a tuple (distance to closest cell, closest cell, item at that cell). Returns (None, None, None) if no cell has the given item. ''' eachitem = [] self.clear_parents() for i in items_list: dist, cell = self.find_closest(i, othercell, quick) if dist and cell: cell.parent = i eachitem.append((dist, cell)) for j in sorted(eachitem): return (j[0], j[1], j[1].parent) return (None, None, None) def find_closest(self, itemname, othercell, quick=False): '''Returns the closest Cell to the one given that has the given item in its item list. Paramaters: itemname -- The name of the desired item. (string) othercell -- The cell to judge distances from. (Cell) quick -- True to judge the distance quickly based on the cells relative position, False to actually find a route to each cell before returning the fastest. False is much more accurate, but much slower. Default: False (boolean) Returns a tuple (distance to closest cell, closest cell). Returns (None, None) if no cell has the given item. ''' closest = None dist = None #The distance to the closest for c in self: if not c: continue if itemname in c.items: if DEBUGGING: print "%s is in %s" % (itemname, c) #Get the first one. if not closest: closest = c dist = self.heuristic(othercell, c) #Less computation if quick: mydist = self.heuristic(othercell, c) if mydist < dist: closest = c dist = mydist #More computation, but more accuracy else: mydist = self.heuristic(othercell, c) if mydist <= dist: mydist = len(self.path_to(othercell, c)) - 1 #Subtract the starting position. if mydist < dist: closest = c dist = mydist return (dist, closest) def find_closest_unexplored(self, here): '''Finds the closest cell with unexplored neighbors, returns as a tuple (distance, closest_cell). ''' for c in self: if c and self.unvisited_neighbors(c): c.items.append("has_unexplored_neighbors") print c output = self.find_closest("has_unexplored_neighbors", here, True) #Remove unvisited status for c in self: try: c.items.remove("has_unexplored_neighbors") except: pass return output def heuristic(self, here, there): '''A heuristic estimate of distance between two nodes. Paramaters: here -- A cell or a tuple with x,y,z coordinates for a location. there -- A cell or a tuple with x,y,z coordinates for a location. Example: heuristic(Cell c, (2,2,8)) ''' if hasattr(here, "__module__"): h_x, h_y, h_z = here.x, here.y, here.z else: h_x, h_y, h_z = here #Unpack the tuple if hasattr(there, "__module__"): t_x, t_y, t_z = there.x, there.y, there.z else: t_x, t_y, t_z = there x = abs(h_x - t_x) y = abs(h_y - t_y) z = abs(h_z - t_z) return x + y + z def path_to(self, here, there): '''Returns the path from the first cell to the second using the A* search algorighm. TODO: add support for terrain difficulty. ''' self.clear_parents() open_set = set() closed_set = set() path = [] def retrace_path(c): path = [c] while c.parent is not None: c = c.parent path.append(c) path.reverse() return path open_set.add(here) while open_set: #Get the node in openset having the lowest f_score value (stored as score in ini) current = sorted(open_set, key=lambda i:i.score)[0] #end if we have reached the end. if current == there: return retrace_path(current) #Move x from openset to closedset open_set.remove(current) closed_set.add(current) for y in self.accessible_neighbors(current): if y not in closed_set: y.score = self.heuristic(y, there) if y not in open_set: open_set.add(y) y.parent = current return [] #Failed def is_touching(self, cellone, celltwo): '''Returns True if both cells are touching (regardless of if they can access one another or not). Cells in the same location are always touching. ''' for n in self.neighbors(cellone): if celltwo.is_same_location(n): return True if cellone.is_same_location(celltwo): return True return False def is_accessable(self, cellone, celltwo): '''Returns True if celltwo is accessable from cellone, note that the reverse isn't always True. Cells in the same location are always accessable to each other.''' for n in self.accessible_neighbors(cellone): if celltwo.is_same_location(n): return True if cellone.is_same_location(celltwo): return True return False '''if cellone.is_north(celltwo): return cellone.south if cellone.is_south(celltwo): return cellone.north if cellone.is_east(celltwo): return cellone.west if cellone.is_west(celltwo): return cellone.east if cellone.is_up(celltwo): return cellone.down #Cellone must be below celltwo return cellone.up''' def neighbors(self, cell): '''Returns a list of the neighbors for the cell supplied. If the neighbors haven't been added to the grid (None) they are ignored. Paramaters: cell -- The cell to return neighbors for. ''' x = cell.x y = cell.y z = cell.z return self.neighbors_by_location(x,y,z) def neighbors_by_location(self, x, y, z): '''Returns a list of the neighbors for the coordinates supplied. If the neighbors haven't been added to the grid (None) they are ignored. Paramaters: x,y,z -- The coordinates for the cell to get neighbors from. ''' n = [] n.append(self.safe_cell_at(x-1, y, z)) n.append(self.safe_cell_at(x+1, y, z)) n.append(self.safe_cell_at(x, y+1, z)) n.append(self.safe_cell_at(x, y-1, z)) n.append(self.safe_cell_at(x, y, z-1)) n.append(self.safe_cell_at(x, y, z+1)) #Remove Nones so as not to mess up program #ValueError is thrown when no more exist. try: while True: n.remove(None) except ValueError: pass return n def unvisited_neighbors(self, cell): '''Returns the number of neighbors that are accessible but unvisited for the given cell. ''' x = cell.x y = cell.y z = cell.z c = cell unvisited = [] if c.north: try: unvisited.append(self.cell_at(x, y-1, z)) except IndexError: pass if c.south: try: unvisited.append(self.cell_at(x, y+1, z)) except IndexError: pass if c.east: try: unvisited.append(self.cell_at(x+1, y, z)) except IndexError: pass if c.west: try: unvisited.append(self.cell_at(x-1, y, z)) except IndexError: pass if c.up: try: unvisited.append(self.cell_at(x, y, z-1)) except IndexError: pass if c.down: try: unvisited.append(self.cell_at(x, y, z+1)) except IndexError: pass count = 0 for u in unvisited: if not u: count += 1 return count def accessible_neighbors(self, cell): '''Returns a list of the neighbors accessible from the cell at the given point. If the neighbors haven't been added to the grid (unexplored) they are ignored. Paramaters: cell -- The cell to get neighbors from ''' x = cell.x y = cell.y z = cell.z c = cell accessible = [] if c.north: accessible.append(self.safe_cell_at(x, y-1, z)) if c.south: accessible.append(self.safe_cell_at(x, y+1, z)) if c.east: accessible.append(self.safe_cell_at(x+1, y, z)) if c.west: accessible.append(self.safe_cell_at(x-1, y, z)) if c.up: accessible.append(self.safe_cell_at(x, y, z-1)) if c.down: accessible.append(self.safe_cell_at(x, y, z+1)) #Remove Nones so as not to mess up program #ValueError is thrown when no more exist. try: while True: accessible.remove(None) except ValueError: pass return accessible def random_accessible_neighbor(self, cell, notin=None): '''Returns a random accessible neighbor for the cell given.''' myn = self.accessible_neighbors(cell) random.shuffle(myn) if notin and myn[0].is_same_location(notin): try: return myn[1] except: pass return myn[0] def random_neighbor(self, cell, notin=None): '''Returns a random neighbor for the cell given. If supplied the cell given at notin will not be chosen.''' myn = self.neighbors(cell) random.shuffle(myn) if notin and myn[0].is_same_location(notin): try: return myn[1] except: return myn[0] return myn[0] def set_accessible(self, cellone, celltwo, value=True): '''Sets the walls between two cells to value. If the cells aren't neighbors do nothing. The default value removes the walls between the two cells. Paramaters: cellone -- A Cell to add or remove a wall between. celltwo -- A Cell to add or remove a wall between. value -- True = Remove "walls" False = Add "walls" ''' if celltwo in self.neighbors(cellone): if cellone.is_north(celltwo): cellone.south = value celltwo.north = value elif cellone.is_south(celltwo): cellone.north = value celltwo.south = value elif cellone.is_east(celltwo): cellone.west = value celltwo.east = value elif cellone.is_west(celltwo): cellone.east = value celltwo.west = value elif cellone.is_up(celltwo): cellone.down = value celltwo.up = value elif cellone.is_down(celltwo): cellone.up = value celltwo.down = value def gen_inner_HTML(self, z=0): '''Generates the grid for the gen_HTML function.''' table = "" #Set up the css and divs for all cells for j in range(self._y): for k in range(self._x): c = self.safe_cell_at(k, j, z) css_id = "x%iy%iz%i"%(k, j, z) if c == None: #Not explored inner = "?" nesw = "unknown" else: inner = "" if c.up: inner += "&uarr;" if c.down: inner += "&darr;" if c.items != []: for item in c.items: inner += str(item)+"<br />" nesw = "" #class ids to apply if not c.north: nesw += "n " if not c.east: nesw += "e " if not c.south: nesw += "s " if not c.west: nesw += "w" table += "<div id='%s' class='%s'>%s</div>\n" % (css_id, nesw, inner) return table def table_width(self, size_of_cell): return size_of_cell * self._x def gen_HTML(self, z=0, commands="", file_path=None): '''Generates an HTML representation of the NESW directions for the given level. Paramaters: z -- The level to generate from. commands -- The cell IDs to be placed in the javascript function. These correspond with cells. file_path -- The file to write the map to, overwrites if existing. (string) ''' table = self.gen_inner_HTML(z) page = ''' <html><head> <script type="text/javascript"> var orig = ""; var current = null; var list = []; var i = 0; function play() { clearInterval(); var all = document.getElementById('commands').value; list = all.split("\\n"); i = 0; setInterval(next, 200); } function next() { if( current != null) { document.getElementById(current).innerHTML = orig; } current = list[i]; orig = document.getElementById(current).innerHTML; document.getElementById(current).innerHTML = "<:3)~"; i++; if( i >= list.length - 1) { clearInterval(); } } </script> <style> div { width:28px; height:28px; text-align:center; border:1px solid #FFF; float:left; font-size:8pt; } #entire { width:%ipx; text-align:left; margin:0px; padding:0px; } .unknown { background-color:#999; font-size:28px;} .n { border-top:1px solid #000; } .s { border-bottom:1px solid #000; } .e { border-right:1px solid #000; } .w { border-left:1px solid #000; } </style></head> <body><h1>%s</h1><div id="entire">%s</div> <div width="100%%"> <textarea cols="50" rows="4" id="commands">%s</textarea> <button type="button" onClick="javascript:play();">Play</button> </div></body></html> '''%(self.table_width(30), self.name, table, commands) #Write file if desired. if file_path: f = open(file_path, 'w') f.write(page) f.close() return page def update_or_add(self, cell): '''Updates the cell at the same location as the current cell if it exists, adds it otherwise.''' if self.cell_at(cell.x, cell.y, cell.z) != None: self.cell_at(cell.x, cell.y, cell.z).update(cell) else: self.append( cell ) def gen_mapfile(self, file_path = None): '''Generates a mapfile for this specific map. Returns it as a string. Optionally writes it to a file. Paramaters: file_path = The file to write the map to, overwrites if existing. (string) ''' output = "#MAP %s Used by AI mapper class, %s\n" % (str(__version__), __license__) output += "#Generation Time UTC: %s\n" % (time.strftime("%Y-%m-%d %H.%M.%S")) output += "#Name: %s\n" % (self.name) output += "#Size: (%i,%i,%i)\n" % (self._x, self._y, self._z) for c in self: if not c: #If null, just get next continue representation = str(c) + "\t" if c.north: representation += "n" if c.east: representation += "e" if c.south: representation += "s" if c.west: representation += "w" if c.up: representation += "u" if c.down: representation += "d" representation += "\t" + str(c.items) + "\n" output += representation #Write file if desired. if file_path: f = open(file_path, 'w') f.write(output) f.close() return output def interface_from_grid(grid, mynameclass): '''Generates an ItemEventInterface from the given Grid, grid. All of the Grid's item names are sought after in the given class mynameclass. For example if you had a Grid whose Cells had the following items: ['food', 'water', 'lever'] and passed an instance of the class c: class c: def food(self, actor): <--Insert code here--> def water(self, actor): <--Insert code here--> Then the items food and water would be mapped to the functions with the same name, the final item would throw an exception. Paramaters: grid -- An instance of Grid to take items from. mynameclass -- An instance of a class whose methods are the same names as the items. ''' func_names = set(dir(mynameclass)) items = grid.get_all_items() iei = ItemEventInterface() for i in items: if i in func_names: func_i = eval('mnc.%s' % (i), {}, {'mnc':mynameclass}) iei.register(i, func_i) else: raise KeyError("Can't map %s to a function!" % (i)) return iei class ItemEventInterface: '''Provides an interface for interacting with items on the map. Items get registered with their specific functions.''' _iei = {} news = [] def name_to_action(self, string): '''Convert the name of an object to an interaction name.''' return string + "_interact" def register(self, item_name, event): '''Adds the item_name and event to the interface. Paramaters: item_name -- The name of the item as it is found in the items list in Cells on a Grid. (string) event -- The function that is triggered when an Actor interacts with the item. Takes a single paramater, the Actor that is interacting with the item. Returns a string about what happened (for logging/news updates) or None. (function) ''' #Change the name to action item_name = self.name_to_action(item_name) self._iei[item_name] = event def interact(self, actor, item_name): '''This function is called when an actor wishes to interact with an item on the map. Also registers the action with the Actor's pavlov.ResponseNetwork, adding it if necessary. Paramaters: item_name -- The name of the item as it is found in the items list in Cells on a Grid. (string) ''' if DEBUGGING: print("Actor %s interacted with %s" % (actor.name, item_name)) #Change the name to action item_name = self.name_to_action(item_name) #Register the action with the Actor's pavlov. actor.response_network.condition(item_name) #Run the event. self.news.append( self._iei[item_name](actor) ) def fetch_news(self): '''Returns a list of strings of the news generated by the actor's interactions with their environment. ''' n = self.news self.news = [] return n def exists(self, i): '''Checks if an item actually exists. Return true/false. If i is a list, returns a list of the items that exist. ''' #String if not hasattr(i, '__iter__'): #Change the name to action i = self.name_to_action(i) return i in self._iei.keys() #List new = [] for j in i: if self.exists(j): new.append(j) return new if __name__ == "__main__": g = make_maze(seed=617161, xsize=30, ysize=30) #g.gen_HTML(file_path="output_basic.html") g.grid[1][1][0].items = ['food'] a,b = g.find_closest('food',g.cell_at(1,1)) #print b #print g.heuristic(g.cell_at(1,1), g.cell_at(2,2)) #x = g.find_closest_unexplored(g.cell_at(9,9)) #print x[1] #cmds = "" #for x in g.path_to(g.cell_at(9,9), x[1]): # cmds += ("%s\n"%(x.css_id)) #g.gen_HTML(commands=cmds, file_path="output.html") #g.gen_mapfile('output.map')
josephlewis42/personal_codebase
python/randall/alife_randall_checkout/randallai/AI/maslow.py
<reponame>josephlewis42/personal_codebase #!/usr/bin/env python ''' The maslow module provides a basic list of needs and the ability to judge how well those needs are doing based off organs. More Info: http://en.wikipedia.org/wiki/Maslow's_hierarchy_of_needs Copyright (c) 2011 <NAME> <<EMAIL>> This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. ''' __version__ = 1.0 __author__ = "<NAME> <<EMAIL>>" DEBUGGING = False PHYSIOLOGICAL = 0 SAFETY = 1 LOVE = 2 ESTEEM = 3 SELF_ACTUALIZATION = 4 OTHER = 5 PHYSIOLOGICAL_NEEDS = ['breathing', 'food', 'water', 'sex', 'sleep', \ 'homeostasis', 'excretion'] SAFETY_NEEDS = ['body', 'employment', 'family', 'health', 'resources', \ 'morality', 'property'] LOVE_NEEDS = ['friendship', 'family', 'intimacy'] ESTEEM_NEEDS = ['self_esteem', 'confidence', 'achivement', \ 'respect_of_others', 'respect_by_others'] SELF_ACTUALIZATION_NEEDS = ['creativity', 'morality', 'spontaneity', \ 'problem_solving', 'lack_prejudice', \ 'fact_acceptance'] #The number of items to keep in a needs history used for extrapolating future needs. NEED_HISTORY_LENGTH = 5 class Need: '''The need class represents a particular need for a creature. The higher the Need.value the more pressing it is.''' importance = None update_function = None name = None need_history = [] #The last NEED_HISTORY_LENGTH values for need, determines change value = 0 def __init__(self, name, importance, update_function=None, updown=None): '''Initializes a Need. Paramaters: name -- The key used to represent this need in the Heirarchy. Usually a string. importance -- The importance of this need in the heirarchy, 0 being the lowest (PHYSIOLOGICAL variable) and 4 being the highest (SELF_ACTUALIZATION). (int) update_function -- The function called to update this need, if none is provided the need will be ignored! The function will be passed one variable, the current value, if the function does not accept this variable it will be called with none. The function should return a number between 0 and 100 anything higher or lower will be changed to it's respective min/max (function) Default: None updown -- An instance of pavlov.Response_Network, if not None the conditions <needname>_up and <needname>_down will be created, when the need value is raised <needname>_up will be fired and the opposite for lowering. (pavlov.ResponseNetwork) Default: None ''' self.name = name self.importance = importance self.update_function = update_function #Do the updown setup. if updown != None: self.response_network = updown self.updown = True updown.register_con_res("%s_up"%(name)) updown.register_con_res("%s_down"%(name)) else: self.updown = False def __str__(self): '''Returns the name and value of this need as a string.''' return "%s:%i" % (self.name, self.value) def sortvalue(self): '''Creates a value to be used in sorting for importance. The lower the value the more pressing this need. Needs with a lower importance will always come in before needs with a higher one, even if the need with the higher importance has a higher value. ''' return (100 - self.value) + (self.importance * 100) def update(self): '''Updates the Need's value by calling the need's update_function. Returns the new value. ''' if hasattr(self.update_function, '__call__'): #Try providing the current value. try: self.value = self.update_function(self.value) except TypeError: self.value = self.update_function() #Set the need history, but don't let it get too long. self.need_history.append(self.value) if len(self.need_history) > NEED_HISTORY_LENGTH: self.need_history = self.need_history[-NEED_HISTORY_LENGTH:] #Fix values if self.value > 100: self.value = 100 elif self.value < 0: self.value = 0 #Register raise and lowering of emotions. if self.updown and len(self.need_history) > 2: if self.need_history[-1] > self.need_history[-2]: self.response_network.condition("%s_up"%self.name) elif self.need_history[-1] < self.need_history[-2]: self.response_network.condition("%s_down"%self.name) if DEBUGGING: print(str(self)) return self.value def _average_need_history(self): '''Returns the average slope of the need history.''' myslopes = [] for i in range(len(self.need_history)-1): tmp = self.need_history[i+1] - self.need_history[i] #Change in x, change in y is always 1 myslopes.append(tmp) return sum(myslopes) / float(len(myslopes)) def calls_to_max(self): '''Returns the (guessed) number of update calls until this Need hits 100. Uses past data, the number of past points is defined by the NEED_HISTORY_LENGTH variable. Note: If need is going down the number of calls will be negative ''' return (100 - self.value) / self._average_need_history() def calls_to_min(self): '''Returns the (guessed) number of update calls until this Need hits 0. Uses past data, the number of past points is defined by the NEED_HISTORY_LENGTH varaible. Note: If need is rising the number of calls will be negative. ''' return -self.value / self._average_need_history() class Heirarchy: '''The Heirarchy class is used in determining needs. Each need has a priority and an update function, when the Heirarchy class is polled for the highest need it updates itself, this can add time but reduces latency between need changes and resolution. It also removes the overhead of having an extra thread running constantly. ''' needs = [] def __init__(self, level, updown_response_network=None): '''Creates a heirarchy with the level of needs corresponding to the given level. The update functions for these needs must be set so they are considered when getting the most pressing need. If the level provided does not correspond to any need list then no default needs will be added. If updown_response_network is an instance of pavlov.ResponseNetwork then conditions will be registered on the raising and lowering of needs. DEFAULT: None Paramaters: level -- The level of needs to autogenerate (adds these needs and all on lower levels). (int) Default: 1 updown -- An instance of pavlov.Response_Network, if not None the conditions <needname>_up and <needname>_down will be created for each autogenerated need. When the need value is raised <needname>_up will be fired and the opposite for lowering. (pavlov.ResponseNetwork) Default: None Example: >>> h = Heirarchy(maslow.PHYSIOLOGICAL) >>> h.needs ['breathing', 'food', 'water', 'sex' ... 'sleep'] ''' needs_list_list = [] if level >= SELF_ACTUALIZATION: for n in SELF_ACTUALIZATION_NEEDS: self.needs.append( Need(n, SELF_ACTUALIZATION, updown=updown_response_network) ) if level >= ESTEEM: for n in ESTEEM_NEEDS: self.needs.append( Need(n, ESTEEM, updown=updown_response_network) ) if level >= LOVE: for n in LOVE_NEEDS: self.needs.append( Need(n, LOVE, updown=updown_response_network) ) if level >= SAFETY: for n in SAFETY_NEEDS: self.needs.append( Need(n, SAFETY, updown=updown_response_network) ) if level >= PHYSIOLOGICAL: for n in PHYSIOLOGICAL_NEEDS: self.needs.append( Need(n, PHYSIOLOGICAL, updown=updown_response_network) ) def __getitem__(self, key): '''Emulates a list or dictionary, called with the name of the need, or an index. Raises IndexError if not found. Example: >>> <Heirarchy>['food'] <class Need at 0x0000007b> >>> <Heirarchy>[0] <class Need at 0x0000002a> >>> <Heirarchy>[None] IndexError ''' #Check for strings try: for n in self.needs: if n.name == key: return n except TypeError: pass #Check for indexes try: return self.needs[key] except TypeError: pass #else raise error raise IndexError def __len__(self): '''Returns the number of needs registered.''' return len(self.needs) def clean_needs(self): '''Removes needs from the need list that have no update_function This speeds up searches, updates, and clears memory. Needs such as this may enter the needs list upon initialization. ''' new_needs = [] for n in self.needs: if hasattr(n.update_function, '__call__'): new_needs.append(n) self.needs = new_needs def update_needs(self): '''Updates the value of all needs by having each call its update_function.''' for n in self.needs: n.update() def most_urgent(self, threshold=80, update=True): '''Gets the most urgent need from the lowest possible need level that breaches the threshold. Return None if there are no breaches. If the threshold is None, just return the Need with the highest value. Paramaters: threshold -- The number the need's value must be over to consider returning the need. (int/None) Default: 80 update -- Should the needs be updated before calling? (boolean) Default: True ''' #Update needs if desired if update: self.update_needs() #If threshhold is none return need with highest value (last). if not threshold: return sorted(self.needs, key=lambda i:i.value)[-1] #Get all needs over threshold. over = [] for n in self.needs: if n.value > threshold: over.append(n) #Sort so the most important is first try: return sorted(over, key=lambda i:i.sortvalue())[0] except IndexError: return None if __name__ == "__main__": h = Heirarchy(LOVE) for n in h.needs: print n print h.most_urgent() #Test needs cleaning def friend(): return 81 def food(): return 81 h['friendship'].update_function = friend h['food'].update_function = food h.clean_needs() #Test urgency rating print h.most_urgent()
josephlewis42/personal_codebase
python/Genetic Programming/Examples/pyevolve_ex16_g2dbinstr.py
<filename>python/Genetic Programming/Examples/pyevolve_ex16_g2dbinstr.py from pyevolve import G2DBinaryString from pyevolve import GSimpleGA from pyevolve import Selectors from pyevolve import Crossovers from pyevolve import Mutators # This function is the evaluation function, we want # to give high score to more zero'ed chromosomes def eval_func(chromosome): score = 0.0 # iterate over the chromosome for i in xrange(chromosome.getHeight()): for j in xrange(chromosome.getWidth()): # You can use the chromosome.getItem(i, j) if chromosome[i][j]==0: score += 0.1 return score # Genome instance genome = G2DBinaryString.G2DBinaryString(8, 5) # The evaluator function (objective function) genome.evaluator.set(eval_func) genome.crossover.set(Crossovers.G2DBinaryStringXSingleHPoint) genome.mutator.set(Mutators.G2DBinaryStringMutatorSwap) # Genetic Algorithm Instance ga = GSimpleGA.GSimpleGA(genome) ga.setGenerations(200) # Do the evolution, with stats dump # frequency of 10 generations ga.evolve(freq_stats=10) # Best individual print ga.bestIndividual()
josephlewis42/personal_codebase
python/xkcdfetch.py
<filename>python/xkcdfetch.py<gh_stars>1-10 #!/usr/bin/python import urllib2 import time import sys WGET = False try: if sys.argv[1] == "-w": WGET = True except IndexError: pass for i in range(1,850): if i == 404: #Skip the 404th comic which is an error 404 page. continue url = "http://xkcd.com/%i/info.0.json" % (int(i)) comic_json = urllib2.urlopen(url) time.sleep(.2) comic = eval( comic_json.read() ) number = comic['num'] title = comic['title'] image = comic['img'] alt = comic['alt'] if WGET: #Just list urls for wget :) print(image) else: print("<li><a href='%s'>%s - %s</a> - %s</li>\n" % (image, number, title, alt))
josephlewis42/personal_codebase
python/reprap-franklin/firmware/repman.py
<filename>python/reprap-franklin/firmware/repman.py<gh_stars>1-10 #!/usr/bin/env python '''An emulator for RepMan specific commands (not complete) Copyright 2011 <NAME> <<EMAIL>> This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. ''' import full __author__ = "<NAME>" __copyright__ = "Copyright 2011, <NAME>" __license__ = "GPL" __version__ = "1.0" class RepMan (full.Firmware): title = "RepMan" def M101(self, gc): self.debug("M101: Turn extruder 1 on forward.") if self.reprap.current_toolhead.extrude_rate == 0: self.reprap.current_toolhead.extrude_rate = 1 def M103(self, gc): self.debug("M103: Turn all extruders off.") for th in self.reprap.possible_toolheads: th.extrude_rate = 0
josephlewis42/personal_codebase
python/Genetic Programming/Finished Programs/2010-08-30 GP Vaccum .py
from pyevolve import * import math import pprint NORTH = 0 SOUTH = 2 EAST = 1 WEST = 3 lowest_score_yet = 100 #Print out the lowest scores. loc_x = 1 loc_y = 1 direction = 0 grid = [] def setup_map(): global grid global loc_x global loc_y global direction loc_x = 1 loc_y = 1 direction = 2 grid = [["x","x","x","x","x","x","x","x","x","x","x","x"], ["x",0,0,0,0,0,0,0,0,0,0,"x"], ["x",0,0,0,0,0,0,0,0,0,0,"x"], ["x",0,0,0,0,0,0,0,0,0,0,"x"], ["x",0,0,0,0,0,0,0,0,0,0,"x"], ["x",0,0,0,0,0,0,0,0,0,0,"x"], #10x10 Grid, 1-10, 1-10 ["x",0,0,0,0,0,0,0,0,0,0,"x"], #Upper Left is 0,0 ["x",0,0,0,0,0,0,0,0,0,0,"x"], #Must be refrenced [y][x] ["x",0,0,0,0,0,0,0,0,0,0,"x"], ["x",0,0,0,0,0,0,0,0,0,0,"x"], ["x",0,0,0,0,0,0,0,0,0,0,"x"], ["x","x","x","x","x","x","x","x","x","x","x","x"]] def eval_grid(): total_zeros = 0 for x in range(len(grid)): for y in range(len(grid[x])): if grid[y][x] == 0: total_zeros += 1 return total_zeros def gp_turn_right(z): global direction direction +=1 if direction > 3: direction = 0 return wall_on_right() def gp_turn_left(z): global direction direction -=1 if direction < 0: direction = 3 return wall_on_left() def can_move_forward(): global direction global loc_x global loc_y global grid if direction == 0: #North a = grid[loc_y - 1][loc_x] != "x" if direction == 1: #East a = grid[loc_y][loc_x + 1] != "x" if direction == 2: #South a = grid[loc_y + 1][loc_x] != "x" if direction == 3: #West a = grid[loc_y][loc_x - 1] != "x" if a == True: return 1 else: return -1 def wall_on_right(): global direction global loc_x global loc_y global grid if direction == 3: #North is on right a = grid[loc_y - 1][loc_x] != "x" if direction == 0: #East is on right a = grid[loc_y][loc_x + 1] != "x" if direction == 1: #South is on right a = grid[loc_y + 1][loc_x] != "x" if direction == 2: #West is on right a = grid[loc_y][loc_x - 1] != "x" if a == True: return 1 else: return -1 def wall_on_left(): global direction global loc_x global loc_y global grid if direction == 1: #North is on left a = grid[loc_y - 1][loc_x] != "x" if direction == 2: #East is on left a = grid[loc_y][loc_x + 1] != "x" if direction == 3: #South is on left a = grid[loc_y + 1][loc_x] != "x" if direction == 0: #West is on left a = grid[loc_y][loc_x - 1] != "x" if a == True: return 1 else: return -1 def gp_if_gt_zero(a,b,c): if a > 0: return b else: return c def place_marker(): global grid grid[loc_y][loc_x] = 1 def gp_go_forward(z): global loc_x global loc_y place_marker() if can_move_forward() == 1: if direction == 0: #NORTH loc_y -= 1 if direction == 1: #EAST loc_x += 1 if direction == 2: #SOUTH loc_y += 1 if direction == 3: #WEST loc_x -= 1 return 1 def gp_go_forward_until_stop(z): while can_move_forward() == 1: gp_go_forward("") return -1 error_accum = Util.ErrorAccumulator() def rangef(min, max, step): result = [] while 1: result.append(min) min = min+step if min>=max: break return result def eval_func(chromosome): global error_accum global lowest_score_yet error_accum.reset() code_comp = chromosome.getCompiledCode() setup_map() #print grid eval(code_comp, globals(), locals()) evaluated = eval_grid() #Print out the significant patterns. if evaluated < lowest_score_yet: lowest_score_yet = evaluated pprint.pprint(grid) target = 0 #0 empty spaces is target error_accum += (target, evaluated) return error_accum.getRMSE() def main_run(): genome = GTree.GTreeGP() genome.setParams(max_depth=10, method="ramped") genome.evaluator.set(eval_func) ga = GSimpleGA.GSimpleGA(genome) ga.setParams(gp_terminals = ['wall_on_right()','wall_on_left()','can_move_forward()'], gp_function_prefix = "gp") ga.setMinimax(Consts.minimaxType["minimize"]) ga.setGenerations(100) ga.setMutationRate(0.08) ga.setCrossoverRate(1.0) ga.setPopulationSize(50) ga.evolve(freq_stats=5) print ga.bestIndividual() if __name__ == "__main__": main_run()
josephlewis42/personal_codebase
python/Genetic Programming/Examples/pyevolve_ex11_allele.py
from pyevolve import G1DList from pyevolve import GSimpleGA from pyevolve import Mutators from pyevolve import Initializators from pyevolve import GAllele # This function is the evaluation function, we want # to give high score to more zero'ed chromosomes def eval_func(chromosome): score = 0.0 # iterate over the chromosome for value in chromosome: if value == 0: score += 0.5 # Remember from the allele set defined above # this value 'a' is possible at this position if chromosome[18] == 'a': score += 1.0 # Remember from the allele set defined above # this value 'xxx' is possible at this position if chromosome[12] == 'xxx': score += 1.0 return score def run_main(): # Genome instance setOfAlleles = GAllele.GAlleles() # From 0 to 10 we can have only some # defined ranges of integers for i in xrange(11): a = GAllele.GAlleleRange(0, i) setOfAlleles.add(a) # From 11 to 19 we can have a set # of elements for i in xrange(11, 20): # You can even add objects instead of strings or # primitive values a = GAllele.GAlleleList(['a','b', 'xxx', 666, 0]) setOfAlleles.add(a) genome = G1DList.G1DList(20) genome.setParams(allele=setOfAlleles) # The evaluator function (objective function) genome.evaluator.set(eval_func) # This mutator and initializator will take care of # initializing valid individuals based on the allele set # that we have defined before genome.mutator.set(Mutators.G1DListMutatorAllele) genome.initializator.set(Initializators.G1DListInitializatorAllele) # Genetic Algorithm Instance ga = GSimpleGA.GSimpleGA(genome) ga.setGenerations(40) # Do the evolution, with stats dump # frequency of 10 generations ga.evolve(freq_stats=5) # Best individual print ga.bestIndividual() if __name__ == "__main__": run_main()
josephlewis42/personal_codebase
python/Genetic Programming/Examples/pyevolve_ex15_rosenbrock.py
from pyevolve import G1DList, GSimpleGA, Selectors, Statistics from pyevolve import Initializators, Mutators, Consts, DBAdapters # This is the Rosenbrock Function def rosenbrock(xlist): sum_var = 0 for x in xrange(1, len(xlist)): sum_var += 100.0 * (xlist[x] - xlist[x-1]**2)**2 + (1 - xlist[x-1])**2 return sum_var def run_main(): # Genome instance genome = G1DList.G1DList(15) genome.setParams(rangemin=-1, rangemax=1.1) genome.initializator.set(Initializators.G1DListInitializatorReal) genome.mutator.set(Mutators.G1DListMutatorRealRange) # The evaluator function (objective function) genome.evaluator.set(rosenbrock) # Genetic Algorithm Instance ga = GSimpleGA.GSimpleGA(genome) ga.setMinimax(Consts.minimaxType["minimize"]) ga.selector.set(Selectors.GRouletteWheel) ga.setGenerations(4000) ga.setCrossoverRate(0.9) ga.setPopulationSize(100) ga.setMutationRate(0.03) ga.evolve(freq_stats=500) # Best individual best = ga.bestIndividual() print "\nBest individual score: %.2f" % (best.score,) print best if __name__ == "__main__": run_main()
josephlewis42/personal_codebase
python/Genetic Programming/Examples/pyevolve_ex12_tsp.py
from pyevolve import G1DList, GAllele from pyevolve import GSimpleGA from pyevolve import Mutators from pyevolve import Crossovers from pyevolve import Consts import sys, random random.seed(1024) from math import sqrt PIL_SUPPORT = None try: from PIL import Image, ImageDraw, ImageFont PIL_SUPPORT = True except: PIL_SUPPORT = False cm = [] coords = [] CITIES = 100 WIDTH = 1024 HEIGHT = 768 LAST_SCORE = -1 def cartesian_matrix(coords): """ A distance matrix """ matrix={} for i,(x1,y1) in enumerate(coords): for j,(x2,y2) in enumerate(coords): dx, dy = x1-x2, y1-y2 dist=sqrt(dx*dx + dy*dy) matrix[i,j] = dist return matrix def tour_length(matrix, tour): """ Returns the total length of the tour """ total = 0 t = tour.getInternalList() for i in range(CITIES): j = (i+1)%CITIES total += matrix[t[i], t[j]] return total def write_tour_to_img(coords, tour, img_file): """ The function to plot the graph """ padding=20 coords=[(x+padding,y+padding) for (x,y) in coords] maxx,maxy=0,0 for x,y in coords: maxx, maxy = max(x,maxx), max(y,maxy) maxx+=padding maxy+=padding img=Image.new("RGB",(int(maxx),int(maxy)),color=(255,255,255)) font=ImageFont.load_default() d=ImageDraw.Draw(img); num_cities=len(tour) for i in range(num_cities): j=(i+1)%num_cities city_i=tour[i] city_j=tour[j] x1,y1=coords[city_i] x2,y2=coords[city_j] d.line((int(x1),int(y1),int(x2),int(y2)),fill=(0,0,0)) d.text((int(x1)+7,int(y1)-5),str(i),font=font,fill=(32,32,32)) for x,y in coords: x,y=int(x),int(y) d.ellipse((x-5,y-5,x+5,y+5),outline=(0,0,0),fill=(196,196,196)) del d img.save(img_file, "PNG") print "The plot was saved into the %s file." % (img_file,) def G1DListTSPInitializator(genome, **args): """ The initializator for the TSP """ lst = [i for i in xrange(genome.getListSize())] random.shuffle(lst) genome.setInternalList(lst) # This is to make a video of best individuals along the evolution # Use mencoder to create a video with the file list list.txt # mencoder mf://@list.txt -mf w=400:h=200:fps=3:type=png -ovc lavc # -lavcopts vcodec=mpeg4:mbd=2:trell -oac copy -o output.avi # def evolve_callback(ga_engine): global LAST_SCORE if ga_engine.getCurrentGeneration() % 100 == 0: best = ga_engine.bestIndividual() if LAST_SCORE != best.getRawScore(): write_tour_to_img( coords, best, "tspimg/tsp_result_%d.png" % ga_engine.getCurrentGeneration()) LAST_SCORE = best.getRawScore() return False def main_run(): global cm, coords, WIDTH, HEIGHT coords = [(random.randint(0, WIDTH), random.randint(0, HEIGHT)) for i in xrange(CITIES)] cm = cartesian_matrix(coords) genome = G1DList.G1DList(len(coords)) genome.evaluator.set(lambda chromosome: tour_length(cm, chromosome)) genome.crossover.set(Crossovers.G1DListCrossoverEdge) genome.initializator.set(G1DListTSPInitializator) # 3662.69 ga = GSimpleGA.GSimpleGA(genome) ga.setGenerations(200000) ga.setMinimax(Consts.minimaxType["minimize"]) ga.setCrossoverRate(1.0) ga.setMutationRate(0.02) ga.setPopulationSize(80) # This is to make a video ga.stepCallback.set(evolve_callback) # 21666.49 import psyco psyco.full() ga.evolve(freq_stats=500) best = ga.bestIndividual() if PIL_SUPPORT: write_tour_to_img(coords, best, "tsp_result.png") else: print "No PIL detected, cannot plot the graph !" if __name__ == "__main__": main_run()
josephlewis42/personal_codebase
python/OpenCalc/Lib/Code/Functions/Trig.py
''' Basic Trig Stuff @Author = <NAME> @Date = Friday, Feb. 19, 2010 ==Changelog== 2010-2-25 - Added the boolean that changes if you want radians or degrees 2010-02-27 - Fixed a problem with the basic trigonometric functions that was causing improper numbers to be returned. Also added the functions that set the want_deg variable, so the user can do this from now on easily.s ''' import math PI = math.pi pie = "()()() \n|\\ 3\n\\ \\ .\n \\ \\ 1\n \\_\\4" PIE = pie want_deg = True #Used to tell the system to use radians or degrees #Conversion def useradians(): global want_deg want_deg = False return "Now using Radians" def usedegrees(): global want_deg want_deg = True return "Now using Degrees" #Basic def sin(num): if want_deg == True: return math.sin(torad(num)) else: return math.sin(num) def cos(num): if want_deg == True: return math.cos(torad(num)) else: return math.cos(num) def tan(num): if want_deg == True: return math.tan(torad(num)) else: return math.tan(num) #Arc def asin(num): if want_deg == True: return math.asin(torad(num)) else: return math.asin(num) def acos(num): if want_deg == True: return math.acos(torad(num)) else: return math.acos(num) def atan(num): if want_deg == True: return math.atan(torad(num)) else: return math.atan(num) #Conversions def todeg(num): return num*(180.0/PI) def torad(num): return num*(PI/180.0)
josephlewis42/personal_codebase
python/randall/alife_randall_checkout/ai_webserver/organs.py
# organs.py # # Copyright 2011 <NAME> <<EMAIL>> # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, # MA 02110-1301, USA. self.send_200() if not SESSION or 'login' not in SESSION.keys() or not SESSION['login']: self.wfile.write("You are not logged in...<script type='text/javascript'>window.location = 'login.py'</script>") else: if 'reload' in QUERY_DICT.keys(): #Handle AJAX query. page = '''<h3>Organs:</h3><div id="progresscontainer">''' try: w = SESSION['world'] a = SESSION['actor'] for item in w[a].my_body: page += item.name + ":<br />" #Set colors for different values (so the humans can easily see) color = "#0D5995" if item.value >= 25 and item.value < 50: color = "#00FF00" if item.value >= 50 and item.value < 75: color = "#FFA500" if item.value >= 75: color = "#A52A2A" page += '''<div class='progressbar'> <div class='progressbartext'>%i%%</div> <div class='progressbarinner' style='width:%i%%; background-color:%s;'></div> </div> ''' % (int(item.value), int(item.value),color) page += "<br /></div>" self.wfile.write(page) except KeyError, e: self.wfile.write("Error: Couldn't find the key specified: %s" %(e)) except Exception, e: self.wfile.write("Error: %s" %(e)) #Handle page query. else: page = ''' <html> <head> <script type="text/javascript" src="assets/jquery.js"></script> <script type="text/javascript" src="assets/reloader.js"></script> <link rel="StyleSheet" href="assets/login.css" type="text/css" /> </head> <body onLoad="javascript:Update(2000, 'body', 'organs.py?reload=true');" class="widget"> Loading... </body> </html> ''' self.wfile.write(page)
josephlewis42/personal_codebase
python/gamebot/codescraper.py
#!/usr/bin/python ''' Copyright (c) 2010 <NAME> <<EMAIL>> Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ''' import re import urllib2 from xml.sax.saxutils import unescape as xmlunescape numnones = 0 def unescape(string): '''Unescape the & escapes in html, like &quot; returns a string ''' string = string.replace("&quot;", "\"") #Not done by xml lib string = xmlunescape(string) return string def remove_HTML_tags(text): '''Removes html tags from a supplied string. Warning: This is accomplished using regular expressions that simply cut out all text in between and including less than and greater than characters. ''' regex_html = re.compile(r'<.*?>') return regex_html.sub('', text) def fetch_page(url): '''Returns the html for the webpage at the supplied url.''' hdr = {'User-Agent': 'Mozilla/5.0 Gecko/20100101 Firefox/4.0', 'Accept':'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8', 'Accept-Language':'en-us,en;q=0.5', 'Accept-Encoding':'none', 'Accept-Charset':'ISO-8859-1,utf-8;q=0.7,*;q=0.7', 'Keep-Alive':'115', 'Connection':'keep-alive'} request = urllib2.Request(url, None, hdr) page = urllib2.urlopen(request) pagetext = "" for line in page: pagetext += line return pagetext def url_content_type(url): from urlparse import urlparse o = urlparse(url) import httplib conn = httplib.HTTPConnection(o.netloc) conn.request("HEAD", o.path) res = conn.getresponse() for key, value in res.getheaders(): if key.lower() == "content-type": return value def return_between(first_tag, second_tag, text): '''Returns an array of the text between the delimiters given. All text between the end and beginning delimiters will be discarded. Arguments: first_tag -- The tag to begin text harvesting. (string) second_tag -- The tag to end text harvesting. (string) text -- The string in which the tags are to be found. (string) ''' basic_split = text.split(first_tag) #select only the sections which contain the close tags, discard the rest. second_split = [] for i in basic_split: if second_tag in i: second_split.append(i) #Cut out the text before the close tag between = [] for line in second_split: value, end = line.split(second_tag, 1) between.append(value) return between
PhiladelphiaController/covid19-forecaster
covid19_forecaster/v2/rtt.py
<filename>covid19_forecaster/v2/rtt.py import numpy as np import pandas as pd from .. import DATA_DIR from ..core import RevenueForecast from ..forecasters import NoBaselineForecasterBySector from . import ( BASELINE_START, BASELINE_STOP, FORECAST_START, FORECAST_STOP, FREQ, ) class RealtyTransferTaxForecast(NoBaselineForecasterBySector, RevenueForecast): """Realty transfer tax revenue forecast.""" ASSUMPTIONS = {} def __init__(self, fresh=False): # Load the assumptions path = DATA_DIR / "models" / "v2" / "RTT Analysis.xlsx" skiprows = {"moderate": 5, "severe": 15} for scenario in ["moderate", "severe"]: # Load the data data = pd.read_excel( path, nrows=2, header=0, index_col=0, usecols="A,D:I", sheet_name="FY21-FY22 RTT Scenarios", skiprows=skiprows[scenario], ) # Convert to keys --> sectors and values --> revenue self.ASSUMPTIONS[scenario] = {} for k in data.index: self.ASSUMPTIONS[scenario][k] = data.loc[k].tolist() super().__init__( tax_name="rtt", forecast_start=FORECAST_START, forecast_stop=FORECAST_STOP, freq=FREQ, baseline_start=BASELINE_START, baseline_stop=BASELINE_STOP, fresh=fresh, ignore_sectors=False, agg_after_fitting=True, fit_kwargs={"seasonality_mode": "additive"}, flat_growth=True, )
PhiladelphiaController/covid19-forecaster
covid19_forecaster/v1/rtt.py
<filename>covid19_forecaster/v1/rtt.py import numpy as np from ..core import RevenueForecast from ..forecasters import DefaultForecaster from . import ( BASELINE_START, BASELINE_STOP, FORECAST_START, FORECAST_STOP, FREQ, ) class RealtyTransferTaxForecast(DefaultForecaster, RevenueForecast): """Realty transfer tax revenue forecast.""" ASSUMPTIONS = { "moderate": np.concatenate( [[0, 0.25, 0.5], np.repeat(0.1, 6), np.repeat(0.05, 12)] ), "severe": np.concatenate( [[0, 0.25, 0.5], np.repeat(0.25, 6), np.repeat(0.1, 12)] ), } def __init__(self, fresh=False): super().__init__( tax_name="rtt", forecast_start=FORECAST_START, forecast_stop=FORECAST_STOP, freq=FREQ, baseline_start=BASELINE_START, baseline_stop=BASELINE_STOP, fresh=fresh, ignore_sectors=True, fit_kwargs={"seasonality_mode": "multiplicative"}, )
PhiladelphiaController/covid19-forecaster
covid19_forecaster/v2/__init__.py
# Forecast range FORECAST_START = "2021-01-01" FORECAST_STOP = "2022-06-30" # Baseline range BASELINE_START = "2013-07-01" BASELINE_STOP = "2020-03-31" # Forecast frequency FREQ = "Q" # Scenario names SCENARIOS = ["moderate", "severe"] from ..core import ScenarioComparison, ScenarioForecast from .amusement import AmusementTaxForecast from .birt import BIRTForecast from .npt import NPTForecast from .parking import ParkingTaxForecast from .rtt import RealtyTransferTaxForecast from .sales import SalesTaxForecast from .soda import SodaTaxForecast from .wage import WageTaxForecast TAXES = [ AmusementTaxForecast, BIRTForecast, NPTForecast, ParkingTaxForecast, RealtyTransferTaxForecast, SalesTaxForecast, SodaTaxForecast, WageTaxForecast, ]
PhiladelphiaController/covid19-forecaster
setup.py
from setuptools import setup, find_packages import re from pathlib import Path PACKAGE_NAME = "covid19_forecaster" HERE = Path(__file__).parent.absolute() def find_version(*paths: str) -> str: with HERE.joinpath(*paths).open("tr") as fp: version_file = fp.read() version_match = re.search( r"^__version__ = ['\"]([^'\"]*)['\"]", version_file, re.M ) if version_match: return version_match.group(1) raise RuntimeError("Unable to find version string.") DESCRIPTION = ( "Forecasting the revenue impact of COVID-19" " on the City of Philadelphia's finances" ) setup( name=PACKAGE_NAME, version=find_version(PACKAGE_NAME, "__init__.py"), author="<NAME>", maintainer="<NAME>", maintainer_email="<EMAIL>", packages=find_packages(), description=DESCRIPTION, license="MIT", python_requires=">=3.6", install_requires=[ "pandas", "fbprophet", "phila-style", "matplotlib", "openpyxl", ], )
PhiladelphiaController/covid19-forecaster
covid19_forecaster/baseline/sales.py
<filename>covid19_forecaster/baseline/sales.py """Transform sales data by splitting between City and School District""" import pandas as pd from ..utils import get_fiscal_year # School district gets $120M MAX_DISTRICT_AMOUNT = 120e6 def get_sales_fiscal_year(r: pd.Series) -> int: """ July/Aug are associated with the previous fiscal year due to the accrual period. """ if r["month"] in [7, 8]: return r["fiscal_year"] - 1 else: return r["fiscal_year"] def _get_city_sales_only(df: pd.DataFrame) -> pd.DataFrame: """ Internal function to extract city sales data. Notes ----- There must be "month", "total", and "fiscal_year" columns. Parameters ---------- df : sales data in tidy format Returns ------- out : a copy of the input data, with """ # Make sure our columns exist assert all(col in df.columns for col in ["month", "fiscal_year", "total"]) # Create a copy and add the fiscal year for sales calculation X = df.copy() X["fiscal_year_sales"] = df.apply(get_sales_fiscal_year, axis=1) def add_sales_total(grp): """ Keep track of school district portion and allocate. Strategy: - Start in September - Collections get split 50/50, until District hits cap - City gets 100% of remaining months, until new fiscal year """ cnt = 0 out = [] months = [9, 10, 11, 12, 1, 2, 3, 4, 5, 6, 7, 8] for month in months: # Get data for this month row = grp.query(f"month == {month}").copy() if len(row): # Sum up total total = row["total"].sum() school_district_fraction = 0.0 if ( row.iloc[0]["fiscal_year_sales"] >= 2015 and cnt < MAX_DISTRICT_AMOUNT ): school_district_fraction = 0.5 school_district = total * school_district_fraction if cnt + school_district > 120e6: school_district_fraction = (120e6 - cnt) / total # Add the city row["total"] = row["total"] * (1 - school_district_fraction) out.append(row) # Add to the cumulative count cnt += total * school_district_fraction out = pd.concat(out, axis=0, ignore_index=True) return out # Perform the calculation and return out = X.groupby("fiscal_year_sales").apply(add_sales_total) return out.drop(labels=["fiscal_year_sales"], axis=1).droplevel( axis=0, level=0 ) def get_city_sales_only(X): """ Return a data frame that only includes the City portion of the sales tax. School District receives 50% of monthly collections until the cap ($120M) is reached. This gives the City sales data a strong seasonality, with peaks in the summer months. """ # Set up R = X.copy() has_sectors = X.columns.nlevels > 1 # Add a fake column level for continuity of cases if not has_sectors and len(X.columns) != 1: R.columns = pd.MultiIndex.from_product([["total"], R.columns]) has_sectors = True # Get the "total" R = R["total"].reset_index() # Using sectors if has_sectors: R = R.melt(id_vars=["date"], value_name="total", var_name="sector") # Put into tidy format R = R.assign( fiscal_year=lambda df: df.date.apply(get_fiscal_year), month=lambda df: df.date.dt.month, ) # Do the allocation R = _get_city_sales_only(R) # Postprocess if has_sectors: # Pivot back R = R.pivot_table(index="date", values="total", columns="sector") R.columns = pd.MultiIndex.from_product([["total"], R.columns]) # Add upper and lower if "upper" in X.columns: out = [R] for col in ["upper", "lower"]: tmp = X[col] / X["total"] * R["total"] tmp.columns = pd.MultiIndex.from_product([[col], tmp.columns]) out.append(tmp) # Combine along column axis out = pd.concat(out, axis=1).sort_index(axis=1, level=1) else: out = R else: if "upper" in X.columns: out = R[["date", "total"]] for col in ["upper", "lower"]: out[col] = X[col] / X["total"] * R["total"] out = out.set_index("date") else: out = R.set_index("date")[["total"]] if has_sectors and X.columns.nlevels == 1: out = out["total"] return out
PhiladelphiaController/covid19-forecaster
covid19_forecaster/v1/npt.py
from ..core import RevenueForecast from . import ( BASELINE_START, BASELINE_STOP, FORECAST_START, FORECAST_STOP, FREQ, ) class NPTForecast(RevenueForecast): """Net profits tax revenue forecast.""" ASSUMPTIONS = { "moderate": {2020: 0.05, 2021: 0.1}, "severe": {2020: 0.1, 2021: 0.15}, } def __init__(self, fresh=False): super().__init__( tax_name="npt", forecast_start=FORECAST_START, forecast_stop=FORECAST_STOP, freq=FREQ, baseline_start=BASELINE_START, baseline_stop=BASELINE_STOP, fresh=fresh, fit_kwargs={"seasonality_mode": "additive"}, ) def get_forecast_value(self, date, baseline, scenario): """Return the forecasted decline.""" assert scenario in ["moderate", "severe"] decline = self.ASSUMPTIONS[scenario][date.year] return baseline * (1 - decline)
PhiladelphiaController/covid19-forecaster
covid19_forecaster/io.py
<reponame>PhiladelphiaController/covid19-forecaster<filename>covid19_forecaster/io.py<gh_stars>1-10 import calendar import pandas as pd from phl_budget_data.clean import ( load_birt_collections_by_sector, load_city_collections, load_rtt_collections_by_sector, load_sales_collections_by_sector, load_wage_collections_by_sector, ) from . import DATA_DIR MONTH_NAMES = [x.lower() for x in calendar.month_abbr] def load_monthly_sales_tax_data(): """Load monthly sales tax collections.""" # Load the raw data sales = pd.read_excel( DATA_DIR / "taxes" / "monthly-sales-data.xlsx", sheet_name="Sales", usecols="B,U:AB", skiprows=12, nrows=12, index_col=0, ) # Format it sales = ( sales.melt( ignore_index=False, var_name="fiscal_year", value_name="total" ) .rename_axis("month_name", axis=0) .reset_index() .assign( fiscal_year=lambda df: df.fiscal_year.str.slice(2).astype(int), month_name=lambda df: df.month_name.str.lower().str.slice(0, 3), month=lambda df: df.month_name.apply( lambda x: MONTH_NAMES.index(x) ), fiscal_month=lambda df: ((df.month - 7) % 12 + 1), year=lambda df: df.apply( lambda r: r["fiscal_year"] if r["month"] < 7 else r["fiscal_year"] - 1, axis=1, ), date=lambda df: pd.to_datetime( df["month"].astype(str) + "/" + df["year"].astype(str) ), ) .dropna(subset=["total"]) ) return sales def load_tax_rates(tax: str) -> pd.DataFrame: """Load the tax rates for the specified tax.""" # Check the allowed values allowed = ["birt", "npt", "parking", "rtt", "sales", "wage"] if tax.lower() not in allowed: raise ValueError(f"Allowed values are: {allowed}") # Load path = DATA_DIR / "rates" / f"{tax}.csv" rates = pd.read_csv(path, index_col=0) if tax == "wage": rates["rate"] = ( 0.6 * rates["rate_resident"] + 0.4 * rates["rate_nonresident"] ) elif tax == "npt": rates["rate"] = ( 0.515 * rates["rate_resident"] + 0.485 * rates["rate_nonresident"] ) elif tax == "birt": rates["rate"] = ( 0.75 * rates["rate_net_income"] + 0.25 * rates["rate_gross_receipts"] ) # index is "fiscal_year" and one column "rate" return rates[["rate"]] def load_data_by_sector(kind: str, use_subsectors=False) -> pd.DataFrame: """ Load data for various taxes by sector. Parameters ---------- kind : str load sector info for BIRT, sales tax, or wage tax main_sectors_only : bool, optional if True, only return the main sectors Returns ------- DataFrame : sector info for the requested tax """ allowed = ["birt", "sales", "wage", "rtt"] if kind not in allowed: raise ValueError(f"Allowed values are: {allowed}") LOADERS = { "birt": load_birt_collections_by_sector, "sales": load_sales_collections_by_sector, "wage": load_wage_collections_by_sector, "rtt": load_rtt_collections_by_sector, } # Load df = LOADERS[kind]() # Get the main sectors if not use_subsectors: out = df.query("parent_sector.isnull()").copy() # Use sub-sectors else: parent_sectors = df["parent_sector"].unique() out = df.query("sector not in @parent_sectors").copy() if kind == "birt": out["fiscal_year"] = out["tax_year"] elif kind == "rtt": out = out.query("sector != 'Unclassified'") return out def load_monthly_collections(tax_name) -> pd.DataFrame: """ Load data for monthly tax revenue collections Returns ------- DataFrame : the data for collections by month """ if tax_name == "sales": return load_monthly_sales_tax_data() # Load all the data df = load_city_collections().query("kind == 'Tax'") # Combine wage + earnings if tax_name == "wage": # Combine wage + earnings tax_names = ["wage", "earnings"] df = df.query("name in @tax_names") # Do the total out = df.groupby( [ "fiscal_year", "month_name", "month", "fiscal_month", "year", "date", ], as_index=False, )["total"].sum() else: # Fix the tax names for some if tax_name == "rtt": tax_name = "real_estate_transfer" elif tax_name == "npt": tax_name = "net_profits" # Query out = df.query(f"name == '{tax_name}'").drop( labels=["kind", "name"], axis=1 ) if tax_name == "soda": out = out.query("date >= '2017-04-01'") elif tax_name in ["birt", "net_profits"]: # SOURCE: june 2020 collections report if tax_name == "birt": accrual = 261024311 else: accrual = 10737282 # Subtract from July 2020 sel = (out["month"] == 7) & (out["year"] == 2020) out.loc[sel, "total"] -= accrual # Add to April 2020 sel = (out["month"] == 4) & (out["year"] == 2020) out.loc[sel, "total"] += accrual return out
PhiladelphiaController/covid19-forecaster
covid19_forecaster/v1/parking.py
<gh_stars>1-10 import numpy as np from ..core import RevenueForecast from ..forecasters import DefaultForecaster from . import ( BASELINE_START, BASELINE_STOP, FORECAST_START, FORECAST_STOP, FREQ, ) class ParkingTaxForecast(DefaultForecaster, RevenueForecast): """Parking tax revenue forecast.""" ASSUMPTIONS = { "moderate": np.concatenate( [ np.repeat(0.3, 3), np.repeat(0.15, 3), np.repeat(0.1, 3), np.repeat(0.05, 12), ] ), "severe": np.concatenate( [ np.repeat(0.5, 3), np.repeat(0.3, 3), np.repeat(0.15, 3), np.repeat(0.1, 3), np.repeat(0.05, 9), ] ), } def __init__(self, fresh=False): # Initialize the underlying forecast class super().__init__( tax_name="parking", forecast_start=FORECAST_START, forecast_stop=FORECAST_STOP, freq=FREQ, baseline_start=BASELINE_START, baseline_stop=BASELINE_STOP, fresh=fresh, fit_kwargs={"seasonality_mode": "multiplicative"}, )
PhiladelphiaController/covid19-forecaster
covid19_forecaster/v2/sales.py
<reponame>PhiladelphiaController/covid19-forecaster import numpy as np from ..core import RevenueForecast from ..forecasters import SectorForecaster from . import ( BASELINE_START, BASELINE_STOP, FORECAST_START, FORECAST_STOP, FREQ, ) class SalesTaxForecast(SectorForecaster, RevenueForecast): """Sales tax revenue forecast.""" GROUPS = { "impacted": [ "Hotels", "Restaurants, bars, concessionaires and caterers", "Motor Vehicle Sales Tax", ] } ASSUMPTIONS = { "moderate": { "impacted": [0.25, 0.20, 0.15, 0.10, 0.05, 0.05], "default": [0.03, 0.02, 0.01, 0.01, 0.01, 0.0], }, "severe": { "impacted": [0.30, 0.30, 0.25, 0.2, 0.15, 0.125], "default": [0.03, 0.03, 0.02, 0.02, 0.01, 0.01], }, } def __init__( self, fresh=False, ): super().__init__( tax_name="sales", forecast_start=FORECAST_START, forecast_stop=FORECAST_STOP, freq=FREQ, baseline_start=BASELINE_START, baseline_stop=BASELINE_STOP, fresh=fresh, ignore_sectors=False, agg_after_fitting=False, fit_kwargs={"seasonality_mode": "multiplicative"}, flat_growth=True, )
PhiladelphiaController/covid19-forecaster
covid19_forecaster/v2/npt.py
from ..core import RevenueForecast from ..forecasters import DefaultForecaster from . import ( BASELINE_START, BASELINE_STOP, FORECAST_START, FORECAST_STOP, FREQ, ) class NPTForecast(DefaultForecaster, RevenueForecast): """Net profits tax revenue forecast.""" ASSUMPTIONS = { "moderate": [0.4, 0.4, 0.0, -0.02, -0.02, -0.05], "severe": [0.6, 0.6, 0.02, 0.02, 0.02, 0.03], } def __init__(self, fresh=False): super().__init__( tax_name="npt", forecast_start=FORECAST_START, forecast_stop=FORECAST_STOP, freq=FREQ, baseline_start=BASELINE_START, baseline_stop=BASELINE_STOP, fresh=fresh, agg_after_fitting=False, fit_kwargs={"seasonality_mode": "additive"}, flat_growth=True, )
PhiladelphiaController/covid19-forecaster
covid19_forecaster/run.py
import argparse import shutil from pathlib import Path from typing import List, Union import click import openpyxl import pandas as pd from loguru import logger from matplotlib import pyplot as plt from . import DATA_DIR, v1, v2 from .core import RevenueForecast, ScenarioComparison, ScenarioForecast from .utils import get_fiscal_year def groupby_fiscal_year(df): """Group the input data by the "fiscal_year" column""" # Re-index the input data by fiscal year X = df.copy() X.index = pd.Index( [get_fiscal_year(dt) for dt in X.index], name="fiscal_year" ) # Group by and sum return X.groupby("fiscal_year").sum() def get_scenarios_with_actuals( summary, by_fiscal_year=False, scenario_start_date="2021-01" ): """Get scenarios combined with actuals until the forecast.""" # Actuals actuals = summary.xs("actual", level=1, axis=1).dropna() # Moderate moderate = ( summary.loc[scenario_start_date:] .xs("moderate", level=1, axis=1) .dropna() ) moderate = pd.concat([actuals, moderate], axis=0) # Severe severe = ( summary.loc[scenario_start_date::] .xs("severe", level=1, axis=1) .dropna() ) severe = pd.concat([actuals, severe], axis=0) # Group by fiscal year? if by_fiscal_year: moderate = groupby_fiscal_year(moderate).T severe = groupby_fiscal_year(severe).T return moderate, severe def save_scenario_results( scenarios: ScenarioComparison, filename: Union[str, Path] ): """Save the scenario results to the specified path.""" if isinstance(filename, str): filename = Path(filename) # Check parent directory if not filename.parent.exists(): filename.parent.mkdir() # --------------------------------------------------- # Calculation #1: Get the normalized declines # --------------------------------------------------- declines = scenarios.get_normalized_summary() declines = declines.T.loc["2020":].T # --------------------------------------------------- # Calculation #2: Get the FY totals declines # --------------------------------------------------- r = scenarios.get_summary(start_date="07-01-2014").T moderate_fy_totals, severe_fy_totals = get_scenarios_with_actuals( r, by_fiscal_year=True ) # Copy the template template_path = DATA_DIR / "templates" / "covid-budget-scenarios-v2.xlsx" shutil.copy(template_path, filename) # Open the workbook book = openpyxl.load_workbook(filename) # Verify sheets are deleted sheets = [ "Normalized Declines (Raw)", "Optimistic (Raw)", "Pessimistic (Raw)", ] for sheet in sheets: if sheet in book.sheetnames: del book[sheet] book.save(filename) # Open and save the calculations with pd.ExcelWriter(filename, engine="openpyxl", mode="a") as writer: # Save the declines declines.to_excel(writer, sheet_name=sheets[0]) # FY totals (moderate_fy_totals / 1e3)[[2020, 2021, 2022]].to_excel( writer, sheet_name=sheets[1] ) (severe_fy_totals / 1e3)[[2020, 2021, 2022]].to_excel( writer, sheet_name=sheets[2] ) def _ensure_data_frame(X): out = X.copy() if isinstance(X, pd.Series): out = out.to_frame() return out def save_model_outputs(scenarios: ScenarioComparison, path: Union[str, Path]): """Save the model outputs.""" if isinstance(path, str): path = Path(path) # Check directory if not path.exists(): path.mkdir() # Set up output directories actual_dir = path / "actuals" baseline_dir = path / "baseline" forecast_dir = path / "forecasts" for d in [actual_dir, baseline_dir, forecast_dir]: if not d.exists(): d.mkdir() # Loop over each scenario for i, scenario in enumerate(scenarios.scenario_names): # Get this scenario this_scenario = scenarios[scenario] # Loop over each tax for tax_name in this_scenario.taxes: # Get this tax tax = this_scenario[tax_name] # Save Actuals and Baseline if i == 0: # The baseline forecast b = tax.baseline_forecast # Actuals b.actual_revenue_.to_csv( actual_dir / f"{tax_name}-revenue.csv" ) b.actual_tax_base_.to_csv( actual_dir / f"{tax_name}-tax-base.csv" ) # Baseline _ensure_data_frame(b.forecasted_revenue_["total"]).to_csv( baseline_dir / f"{tax_name}-revenue.csv" ) _ensure_data_frame(b.forecasted_tax_base_["total"]).to_csv( baseline_dir / f"{tax_name}-tax-base.csv" ) for scenario in ["moderate", "severe"]: # Run the forecast f = _ensure_data_frame(tax.run_forecast(scenario)) f.to_csv(forecast_dir / f"{tax_name}-{scenario}-revenue.csv") # Save the figure too tax.plot() plt.savefig( forecast_dir / f"{tax_name}-{scenario}-revenue.png" ) plt.close() def run_scenarios( taxes: List[RevenueForecast], fresh=False, scenarios=["moderate", "severe"] ): """Run the scenarios for the input taxes.""" results = {} # Run all of the scenarios for scenario in scenarios: logger.info(f"Running scenario '{scenario}'") forecasts = [] for cls in taxes: # Initialize and log tax = cls(fresh=fresh) logger.info(f" Running forecast for '{tax.tax_name}'") # Run the forecast tax.run_forecast(scenario) # Save it forecasts.append(tax) # Save a scenario forecast object results[scenario] = ScenarioForecast(*forecasts) return ScenarioComparison(results) def run_and_save_scenarios( taxes: List[RevenueForecast], path: Union[str, Path], fresh=False, clean=False, scenarios=["moderate", "severe"], ): """Run the scenarios and save the results.""" # Run scenarios = run_scenarios(taxes, fresh=fresh, scenarios=scenarios) # Make sure we have a Path object if isinstance(path, str): path = Path(path) # Remove directory? out_dir = path.parent if out_dir.exists() and clean: shutil.rmtree(out_dir) # Make sure it exists if not out_dir.exists(): out_dir.mkdir() # Save the scenarios save_scenario_results(scenarios, path) # Save the model inputs save_model_outputs(scenarios, out_dir) @click.command() @click.argument( "output_dir", type=Path, ) @click.option( "--clean", is_flag=True, help="Whether to remove the output directory first.", ) @click.option( "--fresh", is_flag=True, help="Whether to create fresh baselines when modeling.", ) def main(output_dir, clean=False, fresh=False): """Run and save the March 2021 model forecast.""" # Get the config for version #2 taxes = v2.TAXES scenarios = v2.SCENARIOS # Run and save path = output_dir / f"covid-budget-impact-{version}.xlsx" run_and_save_scenarios( taxes, path, fresh=fresh, clean=clean, scenarios=scenarios )
PhiladelphiaController/covid19-forecaster
covid19_forecaster/v2/soda.py
<reponame>PhiladelphiaController/covid19-forecaster import numpy as np from ..core import RevenueForecast from ..forecasters import DefaultForecaster from . import ( BASELINE_START, BASELINE_STOP, FORECAST_START, FORECAST_STOP, FREQ, ) class SodaTaxForecast(DefaultForecaster, RevenueForecast): """Soda tax revenue forecast.""" ASSUMPTIONS = { "moderate": [0.1, 0.1, 0.05, 0.05, 0.03, 0.01], "severe": [0.15, 0.15, 0.1, 0.075, 0.05, 0.03], } def __init__(self, fresh=False): super().__init__( tax_name="soda", forecast_start=FORECAST_START, forecast_stop=FORECAST_STOP, freq=FREQ, baseline_start=BASELINE_START, baseline_stop=BASELINE_STOP, fresh=fresh, agg_after_fitting=True, fit_kwargs={"seasonality_mode": "additive"}, flat_growth=True, )
PhiladelphiaController/covid19-forecaster
covid19_forecaster/v1/__init__.py
<reponame>PhiladelphiaController/covid19-forecaster # Forecast range FORECAST_START = "2020-04-01" FORECAST_STOP = "2021-12-31" # Baseline range BASELINE_START = "2013-07-01" BASELINE_STOP = "2020-03-31" # Forecast frequency FREQ = "M" # Scenario names SCENARIOS = ["moderate", "severe"] from loguru import logger from ..core import ScenarioComparison, ScenarioForecast from .amusement import AmusementTaxForecast from .birt import BIRTForecast from .npt import NPTForecast from .parking import ParkingTaxForecast from .rtt import RealtyTransferTaxForecast from .sales import SalesTaxForecast from .soda import SodaTaxForecast from .wage import WageTaxForecast TAXES = [ AmusementTaxForecast, BIRTForecast, NPTForecast, ParkingTaxForecast, RealtyTransferTaxForecast, SalesTaxForecast, SodaTaxForecast, WageTaxForecast, ] def run_scenarios(fresh=False): """Run the scenarios.""" scenarios = {} # Run all of the scenarios for scenario in SCENARIOS: logger.info(f"Running scenario '{scenario}'") forecasts = [] for cls in TAXES: # Initialize and log tax = cls(fresh=fresh) logger.info(f" Running forecast for '{tax.tax_name}'") # Run the forecast tax.run_forecast(scenario) # Save it forecasts.append(tax) # Save a scenario forecast object scenarios[scenario] = ScenarioForecast(*forecasts) comp = ScenarioComparison(scenarios) # comp.save() return comp
PhiladelphiaController/covid19-forecaster
covid19_forecaster/utils.py
<filename>covid19_forecaster/utils.py import hashlib import json import numpy as np import pandas as pd def aggregate_to_quarters(df, cols=None, key=None): """Aggregate monthly data to quarters.""" grouped = df.groupby(pd.Grouper(freq="QS", key=key)) if cols is not None: out = grouped[cols].sum() else: out = grouped.sum() # Set quarters w/o three to missing size = grouped.size() missing = size != 3 out.loc[missing, :] = np.nan return out.dropna(axis=0, how="all") def get_unique_id(d, n=5): """Generate a unique hash string from a dictionary.""" unique_id = hashlib.sha1( json.dumps(d, sort_keys=True).encode() ).hexdigest() return unique_id[:n] def get_fiscal_year(dt): """Get fiscal year from a date.""" if dt.month >= 7: return dt.year + 1 else: return dt.year
PhiladelphiaController/covid19-forecaster
covid19_forecaster/baseline/transformers.py
import logging logger = logging.getLogger("fbprophet.plot") logger.setLevel(logging.CRITICAL) from dataclasses import dataclass, field from typing import Optional import numpy as np import pandas as pd from fbprophet import Prophet from sklearn.base import TransformerMixin from .. import io from ..utils import get_fiscal_year @dataclass class BaselineForecaster(TransformerMixin): """ Transformer to produce a baseline forecast from actuals. """ fit_kwargs: Optional[dict] = field(default_factory=dict) fit_start_date: Optional[str] = None fit_stop_date: Optional[str] = "2020-03-31" forecast_stop_date: Optional[str] = "2022-06-30" def fit(self, data): """ Fit the data. Notes ----- Data must have a Datetime index. """ # Do some checks if not isinstance(data.index, pd.DatetimeIndex): raise ValueError("Index for input data should be a DatetimeIndex") # Set freq self.freq_ = data.index.inferred_freq if self.freq_ is None: raise ValueError("Freq of input datetime index cannot be None") return self def transform(self, data): """ Run the forecast for each column in data. """ # Trim the fit period if self.fit_start_date is not None: data = data.loc[self.fit_start_date :] if self.fit_stop_date is not None: data = data.loc[: self.fit_stop_date] # Get the fit kwargs fit_kwargs = { "daily_seasonality": False, "weekly_seasonality": False, "n_changepoints": min(int(0.7 * len(data)), 25), **self.fit_kwargs, } # Fit each variable out = [] for col in data.columns: # Format data for Prophet df = ( data[col] .rename_axis("ds") .reset_index() .rename(columns={col: "y"}) .sort_values("ds") ) # Initialize and fit the model model = Prophet(**fit_kwargs) model.fit(df) # Get the forecast period periods = ( pd.to_datetime(self.forecast_stop_date).to_period( self.freq_[0] ) - df["ds"].max().to_period(self.freq_[0]) ).n future = model.make_future_dataframe( periods=periods, freq=self.freq_ ) # Forecast forecast = model.predict(future) # Add the yearly term too (in absolute units) forecast["yearly"] *= forecast["trend"] # Keep total & uncertainty levels forecast = ( forecast[ [ "ds", "yhat", "yhat_lower", "yhat_upper", "yearly", "trend", ] ] .rename( columns={ "ds": "date", "yhat": "total", "yhat_lower": "lower", "yhat_upper": "upper", } ) .set_index("date") ) # If we're doing this by sector, we need to add another # level to the column index if len(data.columns) > 1: forecast.columns = pd.MultiIndex.from_product( [forecast.columns, [col],] ) # Save out.append(forecast) return pd.concat(out, axis=1) @dataclass class RevenueToTaxBase(TransformerMixin): """Convert from revenue to tax base.""" tax_name: str def __post_init__(self): self.rates = None try: self.rates = io.load_tax_rates(self.tax_name) except: self.rates = None def fit(self, X, y=None): """Fit the data.""" return self def _transform(self, X, inverse=False): """Internal function to do transformation.""" # No transformation needed if self.rates is None: return X # Start from a copy fiscal_years = [get_fiscal_year(dt) for dt in X.index] out = X.copy() # Loop over all of the columns (columns can be a multi-index here) for col in out.columns: # Get the column and index by the fiscal years df = X[col].copy() df.index = fiscal_years # Do the transformation (pandas will align the indices) if not inverse: rescaled = (df / self.rates["rate"]).dropna() else: rescaled = (df * self.rates["rate"]).dropna() # Reset the index back to the original rescaled.index = X.index # And save it out[col] = rescaled return out def transform(self, X): """Do the transformation from revenue to tax base.""" return self._transform(X) def inverse_transform(self, X): """Do the inverse transformation from revenue to tax base.""" return self._transform(X, inverse=True) @dataclass class DisaggregateCollectionsBySector: """ Given monthly total collections, disaggregate by industry, using historical data for collections by industry. """ sector_data: pd.DataFrame def fit_transform(self, data, **kwargs): """Convenience function""" # Fit self.fit(data, **kwargs) # Transform return self.transform(data, **kwargs) def fit(self, data, key="sector"): """Fit the data.""" # Check columns exist for col in ["fiscal_year", key]: if col not in self.sector_data.columns: raise ValueError( f"Missing column '{col}' in input sector data" ) # Determine how to group self.time_cols_ = ["fiscal_year"] if "month" in self.sector_data.columns: self.time_cols_ += ["month"] def transform(self, data, key="sector"): """ Transform the input data to disaggregate by industry. Note: if historical data by industry is not available for a specific month, the most recent observation is used. """ # Aggregate over sector to get total for each time bin sector_agg = self.sector_data.groupby(self.time_cols_)["total"].sum() # Get the sector shares # This is the share of collections to a specific sector per a given time period # e.g., month or fiscal year sector_shares = ( self.sector_data.groupby(self.time_cols_ + [key])["total"].sum() / sector_agg ).rename("sector_share") # Check if the time periods for the input data and historical data are misaligned i = data.set_index(self.time_cols_).index missing = i.difference(sector_agg.index) # Impute missing industry shares using most recent observations if len(missing): # Setup existing_index = sector_shares.index unique_sectors = existing_index.get_level_values(level=-1).unique() # New time periods that we need to add to historical data new_index = [] for ii in missing: if not isinstance(ii, tuple): ii = (ii,) new_index += [(*ii, sector) for sector in unique_sectors] # Reindex and impute missing with most recent obs sector_shares = ( sector_shares.reindex(existing_index.tolist() + new_index) .sort_index(level=-1, sort_remaining=True) .fillna(method="ffill") ) out = ( data.merge( sector_shares.reset_index(), on=self.time_cols_, how="left" ) .assign(total=lambda df: df["total"] * df["sector_share"]) .drop(labels=["sector_share"], axis=1) ) return out
PhiladelphiaController/covid19-forecaster
covid19_forecaster/__init__.py
from pathlib import Path # Version number __version__ = "2.0.0" # Data directory DATA_DIR = Path(__file__).parent.absolute() / "data"
PhiladelphiaController/covid19-forecaster
covid19_forecaster/forecasters.py
import pandas as pd def check_date_bounds(date, start_date, stop_date): """Check the bounds of a specific date.""" # Check min date if date < pd.to_datetime(start_date): date_str = date.strftime("%Y-%m-%d") raise ValueError( f"Date {date_str} before min forecast date ('{start_date}')" ) # Check max date if date > pd.to_datetime(stop_date): date_str = date.strftime("%Y-%m-%d") raise ValueError( f"Date {date_str} after max forecast date ('{stop_date}')" ) class DefaultForecaster: """ Default forecaster to make a prediction based on a decline from a baseline forecast. """ ASSUMPTIONS = None def get_forecast_value(self, date, baseline, scenario): """ For a given scenario (and optionally sector), return the revenue decline from the baseline forecast for the specific date. Parameters ---------- date : pandas.Timestamp the date object for the month to forecast """ # Check inputs assert self.ASSUMPTIONS is not None if isinstance(self.ASSUMPTIONS, dict): assert scenario is not None # Check bounds of the date check_date_bounds(date, self.forecast_start, self.forecast_stop) # Get the scenario assumptions declines = self.ASSUMPTIONS[scenario] # Check length if len(self.forecast_dates) != len(declines): raise ValueError( f"Size mismatch between forecast dates (length={len(self.forecast_dates)}) " f"and forecast declines (length={len(declines)})" ) # Get the matching index # Default behavior: find the PREVIOUS index value if no exact match. i = self.forecast_dates.get_loc(date, method="ffill") # Retune 1 - decline return baseline * (1 - declines[i]) class NoBaselineForecasterBySector: """ Default forecaster to make a prediction based on a decline from a baseline forecast. """ ASSUMPTIONS = None def get_forecast_value(self, date, baseline, scenario): """ For a given scenario (and optionally sector), return the revenue decline from the baseline forecast for the specific date. Parameters ---------- date : pandas.Timestamp the date object for the month to forecast """ # Check inputs assert self.ASSUMPTIONS is not None if isinstance(self.ASSUMPTIONS, dict): assert scenario is not None # Check bounds of the date check_date_bounds(date, self.forecast_start, self.forecast_stop) # Get the scenario assumptions values = self.ASSUMPTIONS[scenario] # Get the matching index # Default behavior: find the PREVIOUS index value if no exact match. i = self.forecast_dates.get_loc(date, method="ffill") out = baseline.copy() for sector in out.index: sector_values = values[sector] if len(self.forecast_dates) != len(sector_values): raise ValueError( f"Size mismatch between forecast dates (length={len(self.forecast_dates)}) " f"and forecast declines (length={len(sector_values)})" ) out.loc[sector] = sector_values[i] return out class SectorForecaster: """ Default sector-based forecaster to make a prediction based on a decline from a baseline forecast. """ GROUPS = None ASSUMPTIONS = None def get_forecast_value(self, date, baseline, scenario): """ For a given scenario (and optionally sector), return the revenue decline from the baseline forecast for the specific date. Parameters ---------- date : pandas.Timestamp the date object for the month to forecast """ # Check inputs assert self.ASSUMPTIONS is not None assert self.GROUPS is not None # Check bounds of the date check_date_bounds(date, self.forecast_start, self.forecast_stop) # Get the scenario assumptions declines = self.ASSUMPTIONS[scenario] # Get the matching index # Default behavior: find the PREVIOUS index value if no exact match. i = self.forecast_dates.get_loc(date, method="ffill") out = baseline.copy() for sector in out.index: # Get the group label for this sector group = "default" for label in self.GROUPS: if sector in self.GROUPS[label]: group = label break sector_declines = declines[group] if len(self.forecast_dates) != len(sector_declines): raise ValueError( f"Size mismatch between forecast dates (length={len(self.forecast_dates)}) " f"and forecast declines (length={len(sector_declines)})" ) # Multiply by 1 - decline out.loc[sector] *= 1 - sector_declines[i] return out
PhiladelphiaController/covid19-forecaster
covid19_forecaster/v2/wage.py
<reponame>PhiladelphiaController/covid19-forecaster<gh_stars>1-10 import numpy as np import pandas as pd from .. import DATA_DIR from ..core import RevenueForecast from ..forecasters import NoBaselineForecasterBySector from . import ( BASELINE_START, BASELINE_STOP, FORECAST_START, FORECAST_STOP, FREQ, ) CROSSWALK = { "Leisure & Hospitality": [ "Arts, Entertainment, and Other Recreation", "Hotels", "Restaurants", "Sport Teams", ], "Financial activities": [ "Banking & Credit Unions", "Insurance", "Real Estate, Rental and Leasing", "Securities / Financial Investments", ], "Mining, Logging, & Construction": ["Construction"], "Educational & Health Services": [ "Education", "Health and Social Services", ], "Government": ["Government"], "Manufacturing": ["Manufacturing"], "Other services": ["Other Sectors", "Unclassified Accounts"], "Professional & Business Services": ["Professional Services"], "Trade, Transportation, & Utilities": [ "Public Utilities", "Retail Trade", "Transportation and Warehousing", "Wholesale Trade", ], "Information": [ "Publishing, Broadcasting, and Other Information", "Telecommunication", ], } class WageTaxForecast(NoBaselineForecasterBySector, RevenueForecast): """Wage tax revenue forecast.""" ASSUMPTIONS = {} def __init__( self, fresh=False, ): # Load the assumptions path = DATA_DIR / "models" / "v2" / "Wage Tax Analysis.xlsx" skiprows = {"moderate": 23, "severe": 41} for scenario in ["moderate", "severe"]: # Load the data data = pd.read_excel( path, nrows=10, header=0, index_col=0, usecols="A,D:I", sheet_name="FY21-FY22 Wage Tax Scenarios", skiprows=skiprows[scenario], ) # Convert to keys --> sectors and values --> revenue self.ASSUMPTIONS[scenario] = {} for k in data.index: self.ASSUMPTIONS[scenario][k] = data.loc[k].tolist() super().__init__( tax_name="wage", forecast_start=FORECAST_START, forecast_stop=FORECAST_STOP, freq=FREQ, baseline_start=BASELINE_START, baseline_stop=BASELINE_STOP, fresh=fresh, sector_crosswalk=CROSSWALK, agg_after_fitting=True, fit_kwargs={"seasonality_mode": "multiplicative"}, flat_growth=True, ) def run_forecast(self, scenario): """Run the forecast, adding seasonality in the severe case.""" # Run the base self.forecast_ = super().run_forecast(scenario) # Get the seasonality baseline = self.baseline_forecast.forecasted_revenue_.copy() seasonality = baseline["yearly"] / baseline["trend"] # Get ratio of trends to actuals trend_to_actuals = ( baseline["trend"] / self.baseline_forecast.actual_revenue_ ) # Calibrate to 4th of calendar year TA = trend_to_actuals.loc[:"2020-01"].copy() TA.index = TA.index.quarter TREND_FACTOR = TA.loc[4].mean() # Apply seasonality start = self.forecast_start self.forecast_.loc[start:] *= ( 1 + seasonality.loc[start:] ) * TREND_FACTOR return self.forecast_
PhiladelphiaController/covid19-forecaster
covid19_forecaster/v2/birt.py
from ..core import RevenueForecast from ..utils import get_fiscal_year from . import ( BASELINE_START, BASELINE_STOP, FORECAST_START, FORECAST_STOP, FREQ, ) class BIRTForecast(RevenueForecast): """BIRT revenue forecast.""" ASSUMPTIONS = { "moderate": {2020: 0.0, 2021: 0.075, 2022: -0.05}, "severe": {2020: 0.0, 2021: 0.15, 2022: 0.0}, } def __init__(self, fresh=False): super().__init__( tax_name="birt", forecast_start=FORECAST_START, forecast_stop=FORECAST_STOP, freq=FREQ, baseline_start=BASELINE_START, baseline_stop=BASELINE_STOP, fresh=fresh, ignore_sectors=True, agg_after_fitting=False, fit_kwargs={"seasonality_mode": "additive"}, flat_growth=True, ) def get_forecast_value(self, date, baseline, scenario): """Return the forecasted decline.""" assert scenario in ["moderate", "severe"] fiscal_year = get_fiscal_year(date) decline = self.ASSUMPTIONS[scenario][fiscal_year] return baseline * (1 - decline)
PhiladelphiaController/covid19-forecaster
covid19_forecaster/core.py
<filename>covid19_forecaster/core.py from abc import ABC, abstractmethod from dataclasses import dataclass, field from typing import Dict, Optional, Union import numpy as np import pandas as pd from matplotlib import pyplot as plt from phila_style import get_digital_standards from phila_style.matplotlib import get_theme from .baseline.core import BaselineForecast @dataclass class RevenueForecast(ABC): """ A revenue forecast. This class is the base class for forecasts for individual taxes. The forecast is composed of: 1. A smooth, pre-COVID baseline forecast that captures seasonality (computed using Prophet) 2. A post-COVID forecast parameterized as a function of the baseline; in the simplest case, this forecast is a decline from the baseline. Parameters ---------- tax_name : str the name of the tax to forecast forecast_start : the start date for the predicted forecast forecast_stop : the stop date for the predicted forecast freq : {'M', 'Q'} the frequency of the forecast, either monthly or quarterly baseline_start : optional the start date to fit the baseline baseline_stop : optional the stop date to fit the baseline; default is just before COVID pandemic ignore_sectors : optional whether to include sectors in the forecast use_subsectors : optional whether to include subsectors when forecasting sector_crosswalk : optional a cross walk to re-align sectors fresh : optional if True, calculate a fresh baseline fit fit_kwargs : optional additional parameters to pass agg_after_fitting : optional whether to aggregate to the desired frequency before or after fitting the baseline flat_growth : optional whether to assume a flat baseline forecast beyond the baseline fitting period city_sales_only : optional whether to transform sales tax data to model only City revenue """ tax_name: str forecast_start: str forecast_stop: str freq: str baseline_start: str = "2013-07-01" baseline_stop: str = "2020-03-31" ignore_sectors: Optional[bool] = False use_subsectors: Optional[bool] = False sector_crosswalk: Optional[dict] = None fresh: Optional[bool] = False fit_kwargs: Optional[dict] = field(default_factory=dict) agg_after_fitting: Optional[bool] = False flat_growth: Optional[bool] = False city_sales_only: Optional[bool] = False def __post_init__(self): # Initialize the baseline forecaster self.baseline_forecast = BaselineForecast( tax_name=self.tax_name, freq=self.freq, fit_start_date=self.baseline_start, fit_stop_date=self.baseline_stop, ignore_sectors=self.ignore_sectors, use_subsectors=self.use_subsectors, fresh=self.fresh, fit_kwargs=self.fit_kwargs, sector_crosswalk=self.sector_crosswalk, agg_after_fitting=self.agg_after_fitting, flat_growth=self.flat_growth, city_sales_only=self.city_sales_only, ) # Create forecast dates index freq = self.baseline_forecast.inferred_freq self.forecast_dates = pd.date_range( self.forecast_start, self.forecast_stop, freq=freq ) def __repr__(self): """Improved representation.""" name = self.__class__.__name__ return ( f"{name}(tax_name='{self.tax_name}', " f"forecast_start='{self.forecast_start}', " f"forecast_stop='{self.forecast_stop}')" ) @property def has_sectors(self) -> bool: """Whether the forecast uses sector-based data.""" return self.baseline_forecast.has_sectors @property def actuals_raw(self) -> pd.DataFrame: """ The actual revenue collection (raw) data. Note: this is in tidy format. """ return self.baseline_forecast.actuals_raw @property def total_baseline(self) -> pd.Series: """ The total baseline, summed over any sectors. Note: This is a pandas Series indexed by date. """ baseline = self.baseline_forecast.forecasted_total_revenue_ return baseline.loc[: self.forecast_stop] @property def total_forecast(self) -> pd.Series: """ The total forecast, summed over any sectors. For dates prior to the forecast period, the forecast is equal to the baseline. Note: This is a pandas Series indexed by date. """ assert hasattr(self, "forecast_"), "Please call run_forecast() first" forecast = self.forecast_ if self.has_sectors: forecast = forecast.sum(axis=1) return forecast.loc[: self.forecast_stop] @property def total_actuals(self) -> pd.Series: """ The total actuals, summed over any sectors. Note: This is a pandas Series indexed by date. """ return self.baseline_forecast.actual_total_revenue_ @property def actuals(self) -> pd.DataFrame: """ The actuals revenue collections. Note: Columns are sectors (if using) or a single column 'Total' """ actuals = self.baseline_forecast.actual_revenue_ if not self.has_sectors: actuals = actuals.rename(columns={"total": "Total"}) return actuals @property def baseline(self) -> pd.DataFrame: """ The baseline forecast. Note: Columns are sectors (if using) or a single column 'Total' """ # Get the baseline revenue forecast baseline = self.baseline_forecast.forecasted_revenue_["total"] baseline = baseline.loc[: self.forecast_stop] if not self.has_sectors: baseline = baseline.to_frame(name="Total") return baseline def run_forecast(self, scenario: str) -> pd.DataFrame: """ Run the forecast for the specified scenario. Note: this must be called before the "forecast_" attribute is calculated. Parameters ---------- scenario : the name of the scenario to run Returns ------- forecast_ : the predicted revenue forecast """ # Set up the forecast period start = self.forecast_start stop = self.forecast_stop # --------------------------------------------------------------------- # STEP 1: Start from the baseline forecast over the forecast period # --------------------------------------------------------------------- self.forecast_ = self.baseline.copy() # --------------------------------------------------------------------- # STEP 2: Iterate over each time step and apply the reduction # --------------------------------------------------------------------- for date in self.forecast_.loc[start:stop].index: # This is the baseline # Either a value or a Series for each sector baseline = self.baseline.loc[date].squeeze() # Get the forecasted change forecast_value = self.get_forecast_value( date, baseline, scenario=scenario ) # Save self.forecast_.loc[date, :] = forecast_value # Return the forecast return self.forecast_ @abstractmethod def get_forecast_value( self, date: pd.Timestamp, baseline: Union[float, pd.Series], scenario: str, ) -> Union[float, pd.Series]: """ For a given scenario, return the revenue forecast for the specific date and the specific scenario. Note: this is abstract — subclasses must define this function! Parameters ---------- date : the date for the forecast baseline : the baseline forecast for the specified date scenario : the scenario to forecast """ pass def get_summary( self, include_sectors: bool = False, quarterly: bool = False, start_date: Optional[str] = None, ) -> pd.DataFrame: """ Summarize the current forecast, returning the actuals, forecast, and baseline. Note: you must call `run_forecast()` before this. Parameters ---------- include_sectors : whether to include sectors quarterly : if data is monthly, whether to summarize in quarters start_date : Only include data from this date forward in the summary Returns ------- summary : Dataframe indexed by sector and kind, where kind includes "actual", "forecast" and "baseline". Columns are dates. """ assert hasattr(self, "forecast_"), "Please call run_forecast() first" out = [] labels = ["baseline", "actual", "forecast"] for i, df in enumerate([self.baseline, self.actuals, self.forecast_]): # Get the data frame with date along column axis B = df.T.copy() # Add a "Total" row if self.has_sectors: B.loc["Total"] = B.sum(axis=0) # Prepend a level to the index B = pd.concat({labels[i]: B}, names=["sector"]) out.append(B) # Combine and make sure index is (tax, kind) X = pd.concat(out, axis=0).swaplevel() # Re-order the tax indices if self.has_sectors: cols = self.actuals.columns.tolist() + ["Total"] X = X.loc[cols] # Just return the "Total" if not include_sectors: X = X.loc[["Total"]] # Summarize to quarters? if self.freq == "M" and quarterly: # Put date on row axis X = X.T # Set sum to Nan if not 3 months per quarter X = X.groupby(pd.Grouper(freq="QS")).sum(min_count=3) # Date on column axis X = X.T # Trim by start date if start_date is not None: X = X.T.loc[start_date:].T return X.rename_axis(("sector", "kind")) def get_normalized_summary( self, include_sectors=False, quarterly=False, start_date=None ) -> pd.DataFrame: """ Return the actuals & forecast normalized by the baseline. Note: you must call `run_forecast()` before this. Parameters ---------- include_sectors : whether to include sectors quarterly : if data is monthly, whether to summarize in quarters start_date : Only include data from this date forward in the summary Returns ------- summary : Dataframe indexed by sector and kind, where kind includes "actual" and "forecast". Columns are dates. """ # Get the summary S = self.get_summary( include_sectors=include_sectors, quarterly=quarterly, start_date=start_date, ) # Get the baseline baseline = S.xs("baseline", axis=0, level=-1) # Create a copy to return and remove baseline out = S.copy().drop("baseline", level=-1) for name in ["forecast", "actual"]: # Normalize the actuals/forecast F = S.xs(name, axis=0, level=-1) F = F / baseline # Set it! out.loc[pd.IndexSlice[:, name], :] = F.values return out def get_baseline_differences( self, cumulative: bool = True, include_sectors: bool = False, quarterly: bool = False, start_date: Optional[str] = None, ) -> pd.DataFrame: """ Return the differences between the baseline and actuals/forecast. Note: you must call `run_forecast()` before this. Parameters ---------- cumulative : whether to return cumulative difference since the specified start date include_sectors : whether to include sectors quarterly : if data is monthly, whether to summarize in quarters start_date : Only include data from this date forward in the summary Returns ------- summary : Dataframe indexed by sector and kind, where kind includes "actual" and "forecast". Columns are dates. """ # Get the summary S = self.get_summary( include_sectors=include_sectors, quarterly=quarterly, start_date=start_date, ) # Get the baseline baseline = S.xs("baseline", axis=0, level=-1) # Create a copy to return and remove baseline out = S.copy().drop("baseline", level=-1) for name in ["forecast", "actual"]: # Get the differences F = S.xs(name, axis=0, level=-1) F = F - baseline if cumulative: F = F.cumsum(axis=1) # Set it! out.loc[pd.IndexSlice[:, name], :] = F.values return out def plot(self, normalized=False, month_to_quarters=False, start_date=None): """ Plot the baseline and scenario forecasts, as well as the historical data points. Parameters ---------- normalized : normalize the forecast by the baseline month_to_quarters : whether to aggregate monthly data to quarters before plotting start_date : Only include data from this date forward in the summary """ # Summarize S = self.get_summary( quarterly=month_to_quarters, start_date=start_date ).loc["Total"] # Get the components baseline = S.loc["baseline"] forecast = S.loc["forecast"] actuals = S.loc["actual"] # Load the palettes palette = get_digital_standards() with plt.style.context(get_theme()): fig, ax = plt.subplots( figsize=(6, 4), gridspec_kw=dict(left=0.15, bottom=0.1) ) # Not normalized if not normalized: baseline.plot( lw=1, ax=ax, y="total", color=palette["medium-gray"], zorder=10, legend=False, label="Baseline", clip_on=False, ) # Get the forecast, with one point previous to where it started i = forecast.index.get_loc( self.forecast_start, method="nearest" ) forecast = forecast.iloc[i:] # Plot the forecast forecast.plot( lw=1, ax=ax, y="total", color=palette["ben-franklin-blue"], zorder=10, legend=False, label="Forecast", clip_on=False, ) # Plot the actuals scatter actuals.reset_index(name="total").plot( kind="scatter", x="date", y="total", ax=ax, color=palette["love-park-red"], zorder=11, label="Actuals", clip_on=False, ) else: # Plot the forecast N = forecast / baseline N.plot( lw=1, ax=ax, y="total", color=palette["ben-franklin-blue"], zorder=10, legend=False, label="Forecast", clip_on=False, ) # Plot the actuals scatter A = (actuals / baseline).dropna() A.reset_index(name="total").plot( kind="scatter", x="date", y="total", ax=ax, color=palette["love-park-red"], zorder=11, label="Actuals", clip_on=False, ) # Format ax.set_yticks(ax.get_yticks()) if not normalized: ax.set_yticklabels([f"${x/1e6:.0f}M" for x in ax.get_yticks()]) else: ax.set_yticklabels([f"{x*100:.0f}%" for x in ax.get_yticks()]) ax.set_xlabel("") ax.set_ylabel("") ax.legend(loc=0, fontsize=10) return fig, ax class ScenarioForecast: """ A collection of revenue forecasts for different taxes for a specific scenario. Parameters ---------- *forecasts : individual RevenueForecast objects for each tax forecast scenario : if provided, call `run_forecast(scenario)` for each of the input forecasts. """ def __init__(self, *forecasts: RevenueForecast, scenario=None): # Save the forecasts as a dict self.forecasts = {f.tax_name: f for f in forecasts} # Run the specified forecast if scenario is not None: for name in self.forecasts: self.forecasts[name].run_forecast(scenario) @property def taxes(self): """The names of the taxes in the forecast.""" return sorted(self.forecasts.keys()) def __getitem__(self, name): """Return a specific forecast.""" if name in self.taxes: return self.forecasts[name] return super().__getitem__(name) def __getattr__(self, name): if name in self.taxes: return self.forecasts[name] raise AttributeError(f"No such attribute '{name}'") def __iter__(self): yield from self.taxes def _get_report( self, func_name, include_sectors=False, quarterly=False, start_date=None, **kwargs, ): """Internal function to calculate a specific report.""" out = [] for tax_name in self: # Get the tax object tax = self[tax_name] # Get the function func = getattr(tax, func_name) # Call it summary = func( include_sectors=include_sectors, quarterly=quarterly, start_date=start_date, **kwargs, ) # Rename the index level so it includes tax summary = pd.concat({tax.tax_name: summary}, names=["tax"]) summary = summary.rename_axis(("tax", "sector", "kind")) out.append(summary) # Combine # Date is now on column axis with taxes on row axis out = pd.concat(out, axis=0) # Add a "all taxes" column all_taxes = out.xs("Total", axis=0, level=1).sum(axis=0, level=-1) for name in all_taxes.index: out.loc[("all_taxes", "Total", name)] = all_taxes.loc[name] # Re-order out = out.loc[self.taxes + ["all_taxes"]] # Return just the total if not include_sectors: out = out.xs("Total", axis=0, level=1) return out def get_summary( self, include_sectors: bool = False, quarterly: bool = False, start_date: Optional[str] = None, ) -> pd.DataFrame: """ Summarize the scenario by providing actual, baseline, and forecast values for each tax. Note: you must call `run_forecast()` before this. Parameters ---------- include_sectors : whether to include sectors quarterly : if data is monthly, whether to summarize in quarters start_date : Only include data from this date forward in the summary Returns ------- summary : Dataframe indexed by tax, sector and kind, where kind includes "actual", "forecast" and "baseline". Columns are dates. """ return self._get_report( "get_summary", include_sectors=include_sectors, quarterly=quarterly, start_date=start_date, ) def get_normalized_summary( self, include_sectors=False, quarterly=False, start_date=None ) -> pd.DataFrame: """ Return the actuals & forecast normalized by the baseline. Note: you must call `run_forecast()` before this. Parameters ---------- include_sectors : whether to include sectors quarterly : if data is monthly, whether to summarize in quarters start_date : Only include data from this date forward in the summary Returns ------- summary : Dataframe indexed by sector and kind, where kind includes "actual" and "forecast". Columns are dates. """ # Get the summary S = self.get_summary( include_sectors=include_sectors, quarterly=quarterly, start_date=start_date, ) # Get the baseline baseline = S.xs("baseline", axis=0, level=-1) # Create a copy to return and remove baseline out = S.copy().drop("baseline", level=-1) for name in ["forecast", "actual"]: # Normalize the actuals/forecast F = S.xs(name, axis=0, level=-1) F = F / baseline # Set it! if include_sectors: idx = pd.IndexSlice[:, :, name] else: idx = pd.IndexSlice[:, name] out.loc[idx, :] = F.values return out def get_baseline_differences( self, cumulative: bool = True, include_sectors: bool = False, quarterly: bool = False, start_date: Optional[str] = None, ) -> pd.DataFrame: """ Return the differences between the baseline and actuals/forecast. Note: you must call `run_forecast()` before this. Parameters ---------- cumulative : whether to return cumulative difference since the specified start date include_sectors : whether to include sectors quarterly : if data is monthly, whether to summarize in quarters start_date : Only include data from this date forward in the summary Returns ------- summary : Dataframe indexed by sector and kind, where kind includes "actual" and "forecast". Columns are dates. """ return self._get_report( "get_baseline_differences", cumulative=cumulative, include_sectors=include_sectors, quarterly=quarterly, start_date=start_date, ) @dataclass class ScenarioComparison: """ A class to facilitate comparisons of multiple scenario forecasts. Parameters ---------- scenarios : dict mapping scenario name to forecast """ scenarios: Dict[str, ScenarioForecast] def __repr__(self): name = self.__class__.__name__ return f"{name}(scenarios={self.scenario_names})" @property def scenario_names(self): """The names of the scenarios to compare.""" return sorted(self.scenarios.keys()) def __getitem__(self, name): """Return a specific scenario.""" if name in self.scenario_names: return self.scenarios[name] return super().__getitem__(name) def __getattr__(self, name): if name in self.scenario_names: return self.scenarios[name] raise AttributeError(f"No such attribute '{name}'") def _get_report( self, func_name, start_date=None, quarterly=False, include_sectors=False, **kwargs, ): """Internal function to get scenario report.""" out = [] for i, scenario in enumerate(self.scenario_names): # This scenario scenario_forecast = self.scenarios[scenario] # Get the function func = getattr(scenario_forecast, func_name) # Run the function df = func( include_sectors=include_sectors, quarterly=quarterly, start_date=start_date, **kwargs, ) # Rename the forecast df = df.rename(index={"forecast": scenario}) # Drop baseline if we need to if "baseline" in df.index.get_level_values(-1): df = df.drop("baseline", axis=0, level=-1) # Drop actual if not the first if i > 0: df = df.drop("actual", axis=0, level=-1) out.append(df) # Combine out = pd.concat(out, axis=0).sort_index() # Return with "total" last i = out.index.get_level_values(0).unique() return out.loc[i.drop("all_taxes").tolist() + ["all_taxes"]] def get_summary( self, include_sectors: bool = False, quarterly: bool = False, start_date: Optional[str] = None, ) -> pd.DataFrame: """ Return a summary of the scenario forecasts. Note: This includes actual and forecasts but not baseline. Parameters ---------- start_date : Only include data from this date forward in the summary include_sectors : whether to include sectors quarterly : if data is monthly, whether to summarize in quarters Returns ------- summary : Dataframe indexed by tax, sector and kind, where kind includes "actual" and scenario names. Columns are dates. """ return self._get_report( "get_summary", start_date=start_date, quarterly=quarterly, include_sectors=include_sectors, ) def get_baseline_differences( self, cumulative: bool = True, include_sectors: bool = False, quarterly: bool = False, start_date: Optional[str] = None, ) -> pd.DataFrame: """ Return cumulative differences between forecast and baseline since the specified start date. Note: This includes differences between actual values and baseline and forecasted values and baseline. Parameters ---------- start_date : Only include data from this date forward in the summary include_sectors : whether to include sectors quarterly : if data is monthly, whether to summarize in quarters Returns ------- diffs : Dataframe indexed by tax, sector and kind, where kind includes "actual" and scenario names. Columns are dates. """ return self._get_report( "get_baseline_differences", cumulative=cumulative, start_date=start_date, quarterly=quarterly, include_sectors=include_sectors, ) def get_normalized_summary( self, include_sectors: bool = False, quarterly: bool = False, start_date: Optional[str] = None, ) -> pd.DataFrame: """ Return the actual and scenario forecasts normalized by the baseline. Parameters ---------- start_date : Only include data from this date forward in the summary include_sectors : whether to include sectors quarterly : if data is monthly, whether to summarize in quarters Returns ------- declines : Dataframe indexed by tax, sector and kind, where kind includes "actual" and scenario names. Columns are dates. """ return self._get_report( "get_normalized_summary", start_date=start_date, quarterly=quarterly, include_sectors=include_sectors, )
PhiladelphiaController/covid19-forecaster
covid19_forecaster/v1/amusement.py
<gh_stars>1-10 import numpy as np from ..core import RevenueForecast from ..forecasters import DefaultForecaster from . import ( BASELINE_START, BASELINE_STOP, FORECAST_START, FORECAST_STOP, FREQ, ) class AmusementTaxForecast(DefaultForecaster, RevenueForecast): """Amusement tax revenue forecast.""" ASSUMPTIONS = { "moderate": np.concatenate( [ np.repeat(0.7, 3), np.repeat(0.4, 3), np.repeat(0.25, 3), np.repeat(0.15, 12), ] ), "severe": np.concatenate( [ np.repeat(0.9, 3), np.repeat(0.6, 3), np.repeat(0.3, 3), np.repeat(0.2, 3), np.repeat(0.15, 9), ] ), } def __init__(self, fresh=False): super().__init__( tax_name="amusement", forecast_start=FORECAST_START, forecast_stop=FORECAST_STOP, freq=FREQ, baseline_start=BASELINE_START, baseline_stop=BASELINE_STOP, fresh=fresh, fit_kwargs={"seasonality_mode": "multiplicative"}, )
PhiladelphiaController/covid19-forecaster
covid19_forecaster/v1/sales.py
<gh_stars>1-10 import numpy as np from ..core import RevenueForecast from ..forecasters import SectorForecaster from . import ( BASELINE_START, BASELINE_STOP, FORECAST_START, FORECAST_STOP, FREQ, ) class SalesTaxForecast(SectorForecaster, RevenueForecast): """Sales tax revenue forecast.""" GROUPS = { "impacted": [ "Hotels", "Restaurants, bars, concessionaires and caterers", "Total Retail", "Wholesale", ] } ASSUMPTIONS = { "moderate": { "impacted": np.repeat([0.5, 0.3, 0.2, 0.1, 0.05, 0.0, 0.0], 3), "default": np.repeat([0.3, 0.2, 0.1, 0.05, 0.03, 0.0, 0.0], 3), }, "severe": { "impacted": np.repeat([0.7, 0.5, 0.3, 0.2, 0.1, 0.05, 0.0], 3), "default": np.repeat([0.5, 0.3, 0.2, 0.1, 0.05, 0.03, 0.0], 3), }, } def __init__(self, fresh=False): super().__init__( tax_name="sales", forecast_start=FORECAST_START, forecast_stop=FORECAST_STOP, freq=FREQ, baseline_start=BASELINE_START, baseline_stop=BASELINE_STOP, fresh=fresh, ignore_sectors=False, fit_kwargs={"seasonality_mode": "multiplicative"}, city_sales_only=True, )
PhiladelphiaController/covid19-forecaster
covid19_forecaster/v1/wage.py
<gh_stars>1-10 import numpy as np from ..core import RevenueForecast from ..forecasters import check_date_bounds from . import ( BASELINE_START, BASELINE_STOP, FORECAST_START, FORECAST_STOP, FREQ, ) class WageTaxForecast(RevenueForecast): """Wage tax revenue forecast.""" RECOVERY_RATES = { "moderate": {"impacted": 0.15, "default": 0.25}, "severe": {"impacted": 0.1, "default": 0.2}, } GROUPS = { "impacted": [ "Arts, Entertainment, and Other Recreation", "Hotels", "Restaurants", "Retail Trade", "Sport Teams", "Wholesale Trade", ] } ASSUMPTIONS = { "moderate": { "Construction": 0.1, "Manufacturing": 0.15, "Public Utilities": 0.05, "Transportation and Warehousing": 0.15, "Telecommunication": 0.05, "Publishing, Broadcasting, and Other Information": 0.05, "Wholesale Trade": 0.25, "Retail Trade": 0.25, "Banking & Credit Unions": 0.05, "Securities / Financial Investments": 0.1, "Insurance": 0.05, "Real Estate, Rental and Leasing": 0.05, "Health and Social Services": 0.1, "Education": 0.1, "Professional Services": 0.05, "Hotels": 0.25, "Restaurants": 0.7, "Sport Teams": 0.25, "Arts, Entertainment, and Other Recreation": 0.25, "Other Sectors": 0.15, "Government": 0.03, "Unclassified Accounts": 0.05, }, "severe": { "Construction": 0.2, "Manufacturing": 0.3, "Public Utilities": 0.1, "Transportation and Warehousing": 0.3, "Telecommunication": 0.1, "Publishing, Broadcasting, and Other Information": 0.1, "Wholesale Trade": 0.5, "Retail Trade": 0.5, "Banking & Credit Unions": 0.1, "Securities / Financial Investments": 0.2, "Insurance": 0.1, "Real Estate, Rental and Leasing": 0.1, "Health and Social Services": 0.2, "Education": 0.2, "Professional Services": 0.1, "Hotels": 0.5, "Restaurants": 0.9, "Sport Teams": 0.5, "Arts, Entertainment, and Other Recreation": 0.5, "Other Sectors": 0.3, "Government": 0.05, "Unclassified Accounts": 0.1, }, } def get_forecast_value(self, date, baseline, scenario): """ For a given scenario (and optionally sector), return the revenue decline from the baseline forecast for the specific date. Parameters ---------- date : pandas.Timestamp the date object for the month to forecast """ # Check bounds of the date check_date_bounds(date, self.forecast_start, self.forecast_stop) # Get the scenario assumptions initial_declines = self.ASSUMPTIONS[scenario] # Get the matching index # Default behavior: find the PREVIOUS index value if no exact match. i = self.forecast_dates.get_loc(date, method="ffill") out = baseline.copy() for sector in out.index: # Make sure we have this sector assert sector in initial_declines, sector # Get the group label for this sector group = "default" for label in self.GROUPS: if sector in self.GROUPS[label]: group = label break # The recovery rate recovery_rate = self.RECOVERY_RATES[scenario][group] # The initial drop initial_drop = initial_declines[sector] # Get the decline if scenario == "moderate" and i in [0, 1]: decline = initial_drop elif scenario == "severe" and i in [0, 1, 2]: decline = initial_drop else: decline = initial_drop * (1 - recovery_rate) ** i # Multiply by 1 - decline out.loc[sector] *= 1 - decline return out def __init__(self, fresh=False): super().__init__( tax_name="wage", forecast_start=FORECAST_START, forecast_stop=FORECAST_STOP, freq=FREQ, baseline_start=BASELINE_START, baseline_stop=BASELINE_STOP, fresh=fresh, fit_kwargs={"seasonality_mode": "multiplicative"}, )
PhiladelphiaController/covid19-forecaster
covid19_forecaster/v1/soda.py
<reponame>PhiladelphiaController/covid19-forecaster<gh_stars>1-10 import numpy as np from ..core import RevenueForecast from ..forecasters import DefaultForecaster from . import ( BASELINE_START, BASELINE_STOP, FORECAST_START, FORECAST_STOP, FREQ, ) class SodaTaxForecast(DefaultForecaster, RevenueForecast): """Soda tax revenue forecast.""" ASSUMPTIONS = { "moderate": np.concatenate( [ np.repeat(0.2, 3), np.repeat(0.1, 3), np.repeat(0.05, 3), np.repeat(0.03, 3), np.repeat(0.01, 9), ] ), "severe": np.concatenate( [ np.repeat(0.4, 3), np.repeat(0.3, 3), np.repeat(0.15, 3), np.repeat(0.05, 3), np.repeat(0.03, 9), ] ), } def __init__(self, fresh=False): super().__init__( tax_name="soda", forecast_start=FORECAST_START, forecast_stop=FORECAST_STOP, freq=FREQ, baseline_start=BASELINE_START, baseline_stop=BASELINE_STOP, fresh=fresh, fit_kwargs={"seasonality_mode": "additive"}, )
PhiladelphiaController/covid19-forecaster
covid19_forecaster/baseline/core.py
<reponame>PhiladelphiaController/covid19-forecaster from collections import OrderedDict from dataclasses import dataclass, field from functools import partial from typing import Dict, List, Optional import pandas as pd from cached_property import cached_property from sklearn.pipeline import Pipeline from sklearn.preprocessing import FunctionTransformer from .. import DATA_DIR, io from ..utils import aggregate_to_quarters, get_unique_id from .sales import get_city_sales_only from .transformers import ( BaselineForecaster, DisaggregateCollectionsBySector, RevenueToTaxBase, ) TAX_NAMES = [ "wage", "birt", "amusement", "npt", "parking", "rtt", "sales", "soda", ] def _has_sectors(tax_name: str, ignore_sectors: bool) -> bool: """Determine whether we are doing a sector-based forecast.""" return tax_name in ["birt", "sales", "wage", "rtt"] and not ignore_sectors def _crosswalk_sectors( df: pd.DataFrame, crosswalk: Dict[str, List[str]] ) -> pd.DataFrame: """Internal function to perform a crosswalk across sectors.""" # Loop over keys of crosswalk -> these are the new groupings # Columns are the old groupings out = [] for name in crosswalk: X = df[crosswalk[name]].sum(axis=1).rename(name) out.append(X) return pd.concat(out, axis=1) def _get_monthly_total(df): """Internal utility to get the monthly total.""" return df.groupby("date")["total"].sum().sort_index() class cached_baseline: """Convenience wrapper to check if cached baseline is present.""" def __init__(self, func): self.function = func def __get__(self, instance, owner): return partial(self.__call__, instance) def __call__(self, baseline, X): """Decorator that checks cache first, and then calls function.""" # Get the cache path path = self.get_cache_path(baseline) # Call if we need to if baseline.fresh or not path.exists(): # Call the function out = self.function(baseline, X) # Setup output path path = self.get_cache_path(baseline) if not path.parent.exists(): path.parent.mkdir() # Save out.to_csv(path) baseline.fresh = False else: # Load from disk out = self.load_from_cache(baseline) return out def get_cache_identifier(self, baseline): """Cache path for baseline data.""" # Get the params that go into the hash d = {} for key in [ "use_subsectors", "ignore_sectors", "freq", "fit_start_date", "fit_stop_date", "agg_after_fitting", "flat_growth", ]: d[key] = getattr(baseline, key) # Add fit kwargs d.update(baseline.fit_kwargs) # Get the hash string return get_unique_id(d) def get_cache_path(self, baseline): """Return the cache path.""" # Get the file path tag = self.get_cache_identifier(baseline) return DATA_DIR / "cache" / f"{baseline.tax_name}-baseline-{tag}.csv" def load_from_cache(self, baseline): """Load a cached baseline.""" # Get the file path path = self.get_cache_path(baseline) assert path.exists() # Number of headers in cached CSV if _has_sectors(baseline.tax_name, baseline.ignore_sectors): header = [0, 1] else: header = [0] # Return return pd.read_csv(path, index_col=0, parse_dates=[0], header=header) @dataclass class BaselineForecast: """ A baseline tax revenue forecast, produced using Facebook's Prophet tool on using collections data. Parameters ---------- tax_name : the name of the tax to fit freq : the prediction frequency, either 'M' (monthly) or 'Q' (quarterly) fit_start_date : where to begin fitting the baseline fit_stop_date : where to stop fitting the baseline forecast_stop_date : where to stop the baseline forecast ignore_sectors : do not disaggregate actual data into sectors (if possible) use_subsectors : whether to disaggregate with parent sectors or subsectors fresh : whether to use the cached baseline, or generate a fresh copy fit_kwargs : any additional fitting keywords to pass to Prophet sector_crosswalk : a cross walk from old to new sector definitions """ tax_name: str freq: str fit_start_date: str = "2014-07-01" fit_stop_date: str = "2020-03-31" ignore_sectors: Optional[bool] = False use_subsectors: Optional[bool] = False fresh: Optional[bool] = False fit_kwargs: Optional[dict] = field(default_factory=dict) sector_crosswalk: Optional[Dict[str, List[str]]] = None agg_after_fitting: Optional[bool] = False flat_growth: Optional[bool] = False city_sales_only: Optional[bool] = False def __post_init__(self): # Check parameter values assert self.freq in ["M", "Q"] assert self.tax_name in TAX_NAMES if self.tax_name == "sales" and self.freq == "Q": self.agg_after_fitting = True # Load the actual data self.actuals_raw = io.load_monthly_collections(self.tax_name) # Construct the pipeline self.steps = OrderedDict() # ------------------------------------------------------------ # STEP 1: Disaggregate monthly totals by sector and reshape # ------------------------------------------------------------ if _has_sectors(self.tax_name, self.ignore_sectors): self.steps["disaggregate_by_sector"] = FunctionTransformer( self.disaggregate_by_sector ) else: self.steps["reshape_raw_actuals"] = FunctionTransformer( self.reshape_raw_actuals ) # ----------------------------------------------------------------- # STEP 2: Aggregate to quarters before fitting (optional) # ----------------------------------------------------------------- if self.freq == "Q" and not self.agg_after_fitting: self.steps["aggregate_to_quarters"] = FunctionTransformer( aggregate_to_quarters ) # ----------------------------------------------------------------- # STEP 3: Convert revenue to tax base # ----------------------------------------------------------------- self.steps["to_tax_base"] = FunctionTransformer(self.to_tax_base) # ----------------------------------------------------------------- # STEP 4: Generate the tax base baseline forecast from the actuals # ----------------------------------------------------------------- self.steps["fit_tax_base"] = FunctionTransformer(self.fit_tax_base) # ----------------------------------------------------------------- # STEP 5: Convert back to revenue # ----------------------------------------------------------------- self.steps["to_revenue"] = FunctionTransformer(self.to_revenue) # ----------------------------------------------------------------- # STEP 6: Extract city portion of sales (optional) # ----------------------------------------------------------------- if self.city_sales_only and self.tax_name == "sales": self.steps["extract_city_sales"] = FunctionTransformer( get_city_sales_only ) # ----------------------------------------------------------------- # STEP 7: Aggregate to quarters after fitting (optional) # ----------------------------------------------------------------- if self.freq == "Q" and self.agg_after_fitting: self.steps["aggregate_to_quarters"] = FunctionTransformer( aggregate_to_quarters ) # ----------------------------------------------------------------- # FINAL: Create the pipeline that runs all of the above steps # ----------------------------------------------------------------- self.pipeline = Pipeline(self.steps.items()) @cached_property def forecasted_revenue_(self): """The predicted revenue forecast.""" return self.pipeline.fit_transform(self.actuals_raw) @cached_property def forecasted_tax_base_(self): """The predicted tax base forecast.""" if self.tax_name != "sales": return self.to_tax_base(self.forecasted_revenue_) else: # Steps we will skip skip = ["to_revenue", "extract_city_sales"] # Start from raw actuals and then transform X = self.actuals_raw for (name, step) in self.pipeline.steps: if name not in skip: X = step.fit_transform(X) return X @cached_property def forecasted_total_revenue_(self): """The predicted total revenue forecast, summed over any sectors""" return self.sum_over_sectors(self.forecasted_revenue_["total"]) @cached_property def forecasted_total_tax_base_(self): """The predicted total tax base forecast, summed over any sectors""" return self.sum_over_sectors(self.forecasted_tax_base_["total"]) @cached_property def actual_revenue_(self): """The actual, processed revenue data""" # Steps we will skip skip = [ "to_tax_base", "fit_tax_base", "project_flat_growth", "to_revenue", ] # Start from raw actuals and then transform X = self.actuals_raw for (name, step) in self.pipeline.steps: if name not in skip: X = step.fit_transform(X) return X @cached_property def actual_tax_base_(self): """The actual, processed revenue data""" if self.tax_name != "sales": return self.to_tax_base(self.actual_revenue_) else: # Steps we will skip skip = [ "fit_tax_base", "project_flat_growth", "to_revenue", "extract_city_sales", ] # Start from raw actuals and then transform X = self.actuals_raw for (name, step) in self.pipeline.steps: if name not in skip: X = step.fit_transform(X) return X @cached_property def actual_total_revenue_(self): """The actual revenue data, summed over any sectors""" return self.sum_over_sectors(self.actual_revenue_) @cached_property def actual_total_tax_base_(self): """The actual tax base data, summed over any sectors""" return self.sum_over_sectors(self.actual_tax_base_) def disaggregate_by_sector(self, X): """STEP: Disaggregate input actuals by sector.""" # Load the sector sector_data = io.load_data_by_sector( self.tax_name, use_subsectors=self.use_subsectors ) # Disaggregate actuals by sector sector_transformer = DisaggregateCollectionsBySector(sector_data) X = sector_transformer.fit_transform(X) # Pivot so each sector has its own column X = X.pivot_table(index="date", values="total", columns="sector") # Now do any cross walk if we need to if self.sector_crosswalk is not None: X = _crosswalk_sectors(X, self.sector_crosswalk) return X def reshape_raw_actuals(self, X): """STEP: Reshape the input actuals so index is date and there is one column""" # Index is date and one column "total" return X.pivot_table(index="date", values="total") def to_tax_base(self, X): """STEP: Convert revenue to tax base by dividing by tax rate.""" # Initialize the transformer and return transformed tax_base_transformer = RevenueToTaxBase(self.tax_name) return tax_base_transformer.fit_transform(X) @cached_baseline def fit_tax_base(self, X): """STEP: Run Prophet to fit the tax base data.""" # Initialize the baseline baseline = BaselineForecaster( fit_start_date=self.fit_start_date, fit_stop_date=self.fit_stop_date, fit_kwargs=self.fit_kwargs, forecast_stop_date="2025-06-30", ) # Transform out = baseline.fit_transform(X) # ----------------------------------------------------------------- # Project flat tax base growth (optional) # ----------------------------------------------------------------- if self.flat_growth: out = self.project_flat_growth(out) return out def to_revenue(self, X): """STEP: Convert tax base to revenue by multiplying by tax rate.""" # Initialize the transformer and return transformed tax_base_transformer = RevenueToTaxBase(self.tax_name) return tax_base_transformer.inverse_transform(X) def project_flat_growth(self, X, start="2019-04", stop="2020-03"): """Normalize future growth to be flat at the last annual period.""" # Make a copy first X = X.copy() freq = X.index.inferred_freq X.index.freq = freq # This is the part that will be projected norm = X.loc[start:stop].copy() latest_date = norm.index[-1] # This should be monthly or quarterly assert len(norm) in [4, 12] if len(norm) == 4: key = lambda dt: dt.quarter else: key = lambda dt: dt.month # Reset the index to months/quarters norm.index = [key(dt) for dt in norm.index] # Change the forecast to be flat forecast_start = latest_date + latest_date.freq Y = X.loc[forecast_start:].copy() # Reset index i = Y.index Y.index = [key(dt) for dt in Y.index] # Overwrite Y.loc[:] = norm.loc[Y.index].values Y.index = i # Add back to original X.loc[Y.index] = Y.values return X def sum_over_sectors(self, X): """Convenience function to (optionally) sum over sectors.""" if self.has_sectors: return X.sum(axis=1) else: return X.squeeze() @property def sectors(self): """The names of the sectors fit if the data is sector-based.""" if self.has_sectors: return self.forecasted_revenue_.columns.get_level_values( level=-1 ).unique() else: return [] @property def inferred_freq(self): """The frequency inferred from the data used in the fit.""" return self.actual_revenue_.index.inferred_freq @property def has_sectors(self): """Whether a baseline was fit for multiple sectors.""" return self.forecasted_revenue_.columns.nlevels > 1 @property def mean_abs_error(self): """The mean absolute error of the fit.""" P = self.forecasted_total_revenue_ H = self.actual_total_revenue_ diff = (H - P).loc[self.fit_start_date : self.fit_stop_date] return diff.dropna().abs().mean() @property def mean_abs_percent_error(self): """Mean absolute percent error of the fit.""" P = self.forecasted_total_revenue_ H = self.actual_total_revenue_ diff = ((H - P) / H).loc[self.fit_start_date : self.fit_stop_date] return diff.dropna().abs().mean() @property def mean_rms(self): """The average root mean squared error of the fit.""" P = self.forecasted_total_revenue_ H = self.actual_total_revenue_ diff = ((H - P) ** 2).loc[self.fit_start_date : self.fit_stop_date] return diff.dropna().mean() ** 0.5 def plot(self, sector=None, tax_base=False): """Plot the total forecast, as well as the historical data points.""" from matplotlib import pyplot as plt from phila_style import get_digital_standards from phila_style.matplotlib import get_theme # Load the palettes palette = get_digital_standards() if sector is not None: assert sector in self.sectors with plt.style.context(get_theme()): fig, ax = plt.subplots( figsize=(6, 4), gridspec_kw=dict(left=0.15, bottom=0.1) ) def _transform(X, sector): if self.has_sectors: if sector is not None: X = X[sector] else: X = X.sum(axis=1) return X # Plot the prediction prediction = self.forecasted_revenue_ if tax_base: prediction = self.forecasted_tax_base_ total = _transform(prediction["total"], sector) total.plot( lw=1, ax=ax, color=palette["dark-ben-franklin"], zorder=10, legend=False, ) # Uncertainty lower = _transform(prediction["lower"], sector) upper = _transform(prediction["upper"], sector) ax.fill_between( lower.index, lower.values, upper.values, facecolor=palette["dark-ben-franklin"], alpha=0.7, zorder=9, ) # Plot the historical scatter if not tax_base: H = _transform(self.actual_revenue_, sector) else: H = _transform(self.actual_tax_base_, sector) ax.scatter( H.index, H.values, color=palette["love-park-red"], zorder=11, ) # Format ax.set_yticks(ax.get_yticks()) ax.set_yticklabels([f"${x/1e6:.0f}M" for x in ax.get_yticks()]) ax.set_xlabel("") ax.set_ylabel("") return fig, ax
PhiladelphiaController/covid19-forecaster
covid19_forecaster/baseline/__init__.py
from .core import TAX_NAMES, BaselineForecast
PhiladelphiaController/covid19-forecaster
covid19_forecaster/v2/parking.py
import numpy as np from ..core import RevenueForecast from ..forecasters import DefaultForecaster from . import ( BASELINE_START, BASELINE_STOP, FORECAST_START, FORECAST_STOP, FREQ, ) class ParkingTaxForecast(DefaultForecaster, RevenueForecast): """Parking tax revenue forecast.""" ASSUMPTIONS = { "moderate": [0.5, 0.4, 0.3, 0.2, 0.1, 0.1], "severe": [0.5, 0.5, 0.4, 0.3, 0.3, 0.2], } def __init__(self, fresh=False): # Initialize the underlying forecast class super().__init__( tax_name="parking", forecast_start=FORECAST_START, forecast_stop=FORECAST_STOP, freq=FREQ, baseline_start=BASELINE_START, baseline_stop=BASELINE_STOP, fresh=fresh, agg_after_fitting=False, fit_kwargs={"seasonality_mode": "multiplicative"}, flat_growth=True, )
Zapata/bitshares-explorer-api
config.py
<filename>config.py import os WEBSOCKET_URL = os.environ.get('WEBSOCKET_URL', "ws://localhost:8090/ws") # Default connection to Elastic Search. ELASTICSEARCH = { 'hosts': os.environ.get('ELASTICSEARCH_URL', 'https://es.bitshares.eu/').split(','), 'user': os.environ.get('ELASTICSEARCH_USER', 'BitShares'), 'password': <PASSWORD>('ELASTICSEARCH_USER', '******') } # Optional ElasticSearch cluster to access other data. # Currently expect: # - 'operations': for bitshares-* indexes where operations are stored # - 'objects': for objects-* indexes where Chain data is stored. # # Sample: # # ELASTICSEARCH_ADDITIONAL { # 'operations': None, # Use default cluster. # 'objects': { # 'hosts': ['https://es.mycompany.com/'], # 'user': 'myself', # 'password': '<PASSWORD>' # } # } ELASTICSEARCH_ADDITIONAL = { # Overwrite cluster to use to retrieve bitshares-* index. 'operations': None, # Overwrite cluster to use to retrieve bitshares-* index. 'objects': { 'hosts': ['http://192.168.127.12:5005/'] # oxarbitrage (no credentials) } } # Cache: see https://flask-caching.readthedocs.io/en/latest/#configuring-flask-caching CACHE = { 'CACHE_TYPE': os.environ.get('CACHE_TYPE', 'simple'), # use 'uwsgi' when running under uWSGI server. 'CACHE_DEFAULT_TIMEOUT': int(os.environ.get('CACHE_DEFAULT_TIMEOUT', 600)) # 10 min } # Configure profiler: see https://github.com/muatik/flask-profiler PROFILER = { 'enabled': os.environ.get('PROFILER_ENABLED', False), 'username': os.environ.get('PROFILER_USERNAME', None), 'password': os.environ.get('PROFILER_PASSWORD', None), } CORE_ASSET_SYMBOL = 'BTS' CORE_ASSET_ID = '1.3.0' TESTNET = 0 # 0 = not in the testnet, 1 = testnet CORE_ASSET_SYMBOL_TESTNET = 'TEST' # Choose which APIs to expose, default to all. #EXPOSED_APIS = ['explorer', 'es_wrapper', 'udf']
seanmorris/dotsyntax-sublime
dotsyntax.py
<reponame>seanmorris/dotsyntax-sublime<gh_stars>1-10 import sublime_plugin import sublime import os.path import fnmatch import io import re class DotSyntaxCommand(sublime_plugin.EventListener): mappings = {} def on_load_async(self, view): self.set_syntax(view) def on_post_save_async(self, view): self.set_syntax(view) def set_syntax(self, view): file = os.path.basename(view.file_name()); views = [view]; if file == '.syntax': views = view.window().views() for _view in views: file = _view.file_name(); if not file: continue print('dotsyntax checking ' + file) mapped_ext = self.map_file_extension(file) syntax_file = self.lookup_syntax_def_file(mapped_ext) _view.settings().set('syntax', syntax_file) def lookup_syntax_def_file(self, extension): if(len(self.mappings) == 0): self.load_settings() if extension in self.mappings: return self.mappings[extension] def map_file_extension(self, file): filename = os.path.basename(file) dir = os.path.dirname(file) dot_syntax_files = self.find_dotsyntax_files(dir) for dot_syntax_file in dot_syntax_files: dot_syntax_dir = os.path.dirname(dot_syntax_file) rel_path = os.path.relpath(file, dot_syntax_dir) # rel_path = os.path.dirname(rel_path) with open(dot_syntax_file, "r") as handle: defs = [i.strip().rpartition(':') for i in handle if i.strip()] match = next((i for i in defs if self.filename_match(rel_path,i)), None) if not match: match = next((i for i in defs if self.filename_match(filename,i)), None) if not match: continue *_, extension = match extension = extension.strip() print("\t.syntax " + dot_syntax_file) print("\t syntax " + extension + "\n") return extension.strip() def filename_match(self, file, check): *_ ,ext = os.path.splitext(file) check = check[0].strip() if check in {ext,file} or fnmatch.fnmatch(file, check): print("\tmatched " + check + "\n\t file " + file) return check def find_dotsyntax_files(self, dir): files = [] while dir != '/': syntaxFile = dir + '/.syntax' if os.path.exists(syntaxFile): files.append(syntaxFile) dir = os.path.abspath(os.path.join(dir, os.pardir)) return files def load_settings(self): syntaxDefFiles = sublime.find_resources('*.sublime-syntax') extmode=0 for syntaxDefFile in syntaxDefFiles: try: settings = sublime.load_resource(syntaxDefFile) for line in io.StringIO(settings): if extmode == 1: match = re.match('\s{2}-(.+?)\s+?\#?', line) if match is not None: extension = '.' + match.group(1).strip() self.mappings[extension] = syntaxDefFile else: extmode = 0 break; match = re.match('^file_extensions\:', line) if match is not None: extmode=1 continue; except: continue
madpin/renthub
main/app/alembic/versions/ef3f101feb21_initial_9.py
<reponame>madpin/renthub """Initial 9 Revision ID: ef<PASSWORD> Revises: <PASSWORD> Create Date: 2021-11-14 06:45:24.012682 """ from alembic import op import sqlalchemy as sa import sqlmodel # revision identifiers, used by Alembic. revision = 'ef<PASSWORD>' down_revision = '<PASSWORD>' branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.add_column('images', sa.Column('url_600', sqlmodel.sql.sqltypes.AutoString(), nullable=True)) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_column('images', 'url_600') # ### end Alembic commands ###
madpin/renthub
main/app/backgroud.py
import asyncio class BackgroundRunner: def __init__(self): self.value = 0 self.is_running = False async def run_main(self): while True: if(not self.is_running): await asyncio.sleep(1) continue await asyncio.sleep(0.1) self.value += 1
madpin/renthub
location/app/schemas.py
import os from typing import List, Optional # import datetime from pydantic import BaseModel class Point(BaseModel): lat: float long: float class Location(BaseModel): point: Point name: str tags: Optional[List[str]] class RouteSummary(BaseModel): waking_distance: int total_distance: int total_time: int public_transport_count: int class InterestPoint(Point): name: str address: str distance: int website: Optional[str] website_domain: Optional[str] chain_name: Optional[str]