repo_name
stringlengths
6
97
path
stringlengths
3
341
text
stringlengths
8
1.02M
fxdemolisher/frano
frano/main/models.py
<reponame>fxdemolisher/frano # Copyright (c) 2011 <NAME> # Licensed under the MIT license # see LICENSE file for copying permission. import random import string from datetime import datetime from django.db import models #-------------\ # CONSTANTS | #-------------/ TOKEN_LETTERS = string.digits + string.uppercase + string.lowercase #----------\ # MODELS | #----------/ class User(models.Model): open_id = models.CharField(max_length = 255, unique = True) email = models.CharField(max_length = 255, unique = True, null = True) create_date = models.DateTimeField() class Meta: db_table = 'user' def __unicode__(self): return "%s - %s" % (self.email, self.open_id) class Portfolio(models.Model): user = models.ForeignKey(User) name = models.CharField(max_length = 30) read_only_token = models.CharField(max_length = 20, unique = True) create_date = models.DateTimeField() class Meta: db_table = 'portfolio' def __unicode__(self): return "%s" % (self.name) #------------\ # SERVICES | #------------/ def create_user(open_id, email): """Create and save a new user with the given open ID and email address.""" user = User() user.open_id = open_id user.email = email user.create_date = datetime.now() user.save() return user def create_portfolio(user, name): """Create and save a new portfolio for the given user and with the given name.""" read_only_token = '' for i in range(10): read_only_token += random.choice(TOKEN_LETTERS) portfolio = Portfolio() portfolio.user = user portfolio.name = name portfolio.read_only_token = read_only_token portfolio.create_date = datetime.now() portfolio.save() return portfolio #-------------------\ # LOCAL FUNCTIONS | #-------------------/
fxdemolisher/frano
frano/main/decorators.py
<gh_stars>0 # Copyright (c) 2011 <NAME> # Licensed under the MIT license # see LICENSE file for copying permission. from django.shortcuts import redirect from models import Portfolio from models import User #-------------\ # CONSTANTS | #-------------/ #---------------------\ # EXPOSED FUNCTIONS | #---------------------/ def portfolio_manipulation_decorator(view_function): def view_function_decorated(request, portfolio_id, read_only = False, **args): portfolio = Portfolio.objects.filter(id = int(portfolio_id))[0] sample_portfolio_id = request.session.get('sample_portfolio_id') user_id = request.session.get('user_id') is_sample = (portfolio.id == sample_portfolio_id) if is_sample or portfolio.user.id == user_id or read_only: return view_function(request, portfolio = portfolio, is_sample = is_sample, read_only = read_only, **args) return redirect("/index.html") return view_function_decorated def login_required_decorator(view_function): def view_function_decorated(request, **args): user_id = request.session.get('user_id') if user_id == None: return redirect("/index.html") else: user = User.objects.filter(id = user_id)[0] args['user'] = user return view_function(request, **args) return view_function_decorated def read_only_decorator(view_function): def view_function_decorated(request, read_only_token, **args): portfolio = Portfolio.objects.filter(read_only_token__exact = read_only_token)[0] return view_function(request, portfolio = portfolio, **args) return view_function_decorated #-------------------\ # LOCAL FUNCTIONS | #-------------------/
fxdemolisher/frano
frano/main/demo.py
<filename>frano/main/demo.py # Copyright (c) 2011 <NAME> # Licensed under the MIT license # see LICENSE file for copying permission. from datetime import datetime from datetime import timedelta from math import ceil from math import floor from random import choice from random import randint from random import random from random import sample from quotes.models import CASH_SYMBOL from quotes.models import quotes_by_symbols from transactions.models import Transaction #-------------\ # CONSTANTS | #-------------/ # set of instruments a demo portfolio will choose from DEMO_INSTRUMENTS = [ 'AA', # Alcoa 'AAPL', # Apple 'ACWI', # MSCI ACWI 'AGG', # Barclays Aggregate Bond Fund 'BND', # Vanguard Total Bond Market 'DBC', # PowerShares DB Commodity Index 'DBO', # PowerShares DB Oil Fund 'DIA', # Dow Jones Industrial Average 'EEM', # MSCI Emerging Markets 'EFA', # MSCI EAFE 'EMB', # JP Morgan USD Emerging Markets 'FFNOX', # Fidelity Four-in-One 'GE', # General Electric 'GLD', # GLD Trust 'GOOG', # Google 'IJH', # S&P MidCap 400 'INTC', # Intel 'IWM', # Rusell 2000 'IWV', # Russell 3000 'IYR', # Dow Jones US Real Estate 'MSFT', # Microsoft 'QQQ', # PowerShares QQQ (Nasdaq) 'SCZ', # MSCI EAFE Small Cap 'SLV', # Silver Trust 'SPY', # S&P 500 'TIP', # Barclays TIPS Bond fund 'XOM', # Exxon Mobil 'YACKX', # Yacktman Fund ] # demo portfolio commissions, chosen at random once per portfolio DEMO_COMMISSIONS = [ 4.5, 7.99, 9.99 ] # Min/max number of instruments in a demo portfolio DEMO_MIN_INSTRUMENTS = 4 DEMO_MAX_INSTRUMENTS = 8 # Min/max investment in a demo portfolio DEMO_MIN_INVESTMENT = 10000 DEMO_MAX_INVESTMENT = 100000 # Number of demo portfolios to generate DEMO_PORTFOLIOS = 10 # Nunmber of days to go back in history to make the demo portfolios DEMO_DAYS_CUTOFF = 365 # Approximate number of transactions to have in a demo portfolios DEMO_TARGET_TRANSACTIONS = 40 # Approximate number of deposits in a demo portfolio DEMO_TARGET_DEPOSITS = 5 # Ratio of buys vs. sells DEMO_BUY_SELL_RATIO = 4 # List of lists of demo transactions DEMO = [] #------------\ # SERVICES | #------------/ def get_demo_transactions(): global DEMO if len(DEMO) == 0: print '==============GEN===============' DEMO = _generate_demo_portfolios(DEMO_PORTFOLIOS) return choice(DEMO) #-------------------\ # LOCAL FUNCTIONS | #-------------------/ def _generate_demo_portfolios(count): out = [] for i in range(count): instruments = sample(DEMO_INSTRUMENTS, randint(DEMO_MIN_INSTRUMENTS, DEMO_MAX_INSTRUMENTS)) total_investment = randint(DEMO_MIN_INVESTMENT, DEMO_MAX_INVESTMENT) commission = choice(DEMO_COMMISSIONS) out.append(_generate_random_transactions(instruments, total_investment, commission) ) return out def _generate_random_transactions(instruments, total_amount, commission): # Load historic prices quotes = quotes_by_symbols(instruments) cutoff_date = datetime.now().date() - timedelta(days = DEMO_DAYS_CUTOFF) prices = dict([ (quote.symbol, {}) for quote in quotes ]) dates = set([]) quote_map = { } for quote in quotes: quote_map[quote.symbol] = quote for history in quote.pricehistory_set.filter(as_of_date__gte = cutoff_date).order_by('as_of_date'): cur_date = history.as_of_date.date() prices.get(quote.symbol)[cur_date] = history.price dates.add(cur_date) # portfolio probabilities transaction_probability = DEMO_TARGET_TRANSACTIONS / float(len(dates)) deposit_probability = DEMO_TARGET_DEPOSITS / float(DEMO_TARGET_TRANSACTIONS) buy_sell_probability = DEMO_BUY_SELL_RATIO / float(DEMO_BUY_SELL_RATIO + 1) # generate transactions transactions = [] quantities = dict([ (symbol, 0.0) for symbol in instruments ]) undeposited_cash = total_amount cash = 0 for date in sorted(dates): sell_candidates = [ q[0] for q in quantities.items() if q[1] > 0 ] # see if there is a transaction today or if we are just starting out if random() <= transaction_probability or len(transactions) == 0: # deposits if undeposited_cash > 1 and random() <= deposit_probability: deposit = min([ undeposited_cash, round(undeposited_cash * (randint(10, 100) / 100.0), -2), total_amount * 0.5 ]) undeposited_cash -= deposit cash += deposit transactions.append(Transaction(type = 'DEPOSIT', as_of_date = date, symbol = CASH_SYMBOL, quantity = deposit, price = 1.0, total = deposit, )) # buys - if we have any cash elif random() <= buy_sell_probability: amount = min([ cash, round(cash * (randint(20, 100) / 100.0)), total_amount * 0.1 ]) symbol = choice(instruments) price = (prices.get(symbol).get(date) if not quote_map.get(symbol).cash_equivalent else 1.0) quantity = floor((amount - commission) / price) if quantity > 0: total = (quantity * price) + commission cash -= total quantities[symbol] = quantities.get(symbol) + quantity transactions.append(Transaction(type = 'BUY', as_of_date = date, symbol = symbol, quantity = quantity, price = price, total = total, )) # sells - if there is anything to sell elif len(sell_candidates) > 0: symbol = choice(sell_candidates) price = (prices.get(symbol).get(date) if not quote_map.get(symbol).cash_equivalent else 1.0) available_quantity = quantities.get(symbol) quantity = min(available_quantity, round(available_quantity * (randint(20, 100) / 100.0))) if quantity > 0: total = (quantity * price) - commission cash += total quantities[symbol] = quantities.get(symbol) - quantity transactions.append(Transaction(type = 'SELL', as_of_date = date, symbol = symbol, quantity = quantity, price = price, total = total, )) return transactions
fxdemolisher/frano
frano/positions/models.py
<filename>frano/positions/models.py # Copyright (c) 2011 <NAME> # Licensed under the MIT license # see LICENSE file for copying permission. from bisect import insort from datetime import datetime from django.db import models from main.models import Portfolio from quotes.models import CASH_SYMBOL from transactions.models import Transaction #-------------\ # CONSTANTS | #-------------/ QUANTITY_TOLERANCE = 0.000001 #----------\ # MODELS | #----------/ class Position(models.Model): portfolio = models.ForeignKey(Portfolio) as_of_date = models.DateField() symbol = models.CharField(max_length = 10) quantity = models.FloatField() cost_price = models.FloatField() cost_basis = models.FloatField() realized_pl = models.FloatField() class Meta: db_table = 'position' def __unicode__(self): return "%.2f of %s on %s @ %.2f" % (self.quantity, self.symbol, self.as_of_date.strftime('%m/%d/%Y'), self.cost_price) class Lot(models.Model): position = models.ForeignKey(Position) as_of_date = models.DateField(null = True) quantity = models.FloatField() price = models.FloatField() total = models.FloatField() sold_as_of_date = models.DateField(null = True) sold_quantity = models.FloatField() sold_price = models.FloatField() sold_total = models.FloatField() class Meta: db_table = 'lot' def __unicode__(self): return "Lot: Bought %.4f @ %.4f on %s (%.4f), Sold %.4f @ %.4f on %s (%.4f)" % ( self.quantity, self.price, self.as_of_date.strftime('%m/%d/%Y') if self.as_of_date != None else None, self.total, self.sold_quantity, self.sold_price, self.sold_as_of_date.strftime('%m/%d/%Y') if self.sold_as_of_date != None else None, self.sold_total ) def __cmp__(self, other): my_date = min([ date for date in [self.as_of_date, self.sold_as_of_date] if date is not None ]) other_date = min([ date for date in [other.as_of_date, other.sold_as_of_date] if date is not None ]) if my_date == other_date: return 0 else: return (-1 if my_date < other_date else 1) #------------\ # SERVICES | #------------/ def latest_positions(portfolio): """Retrieve a list of latest positions for the given portfolio.""" latest_date = Position.objects.filter(portfolio__id__exact = portfolio.id).dates('as_of_date', 'day', order = 'DESC')[0:1] if latest_date.count() > 0: return Position.objects.filter(portfolio__id__exact = portfolio.id, as_of_date = latest_date[0]).order_by('symbol') else: return [] def decorate_position_with_prices(position, price, previous_price): """Decorate the given position with various pieces of data that require pricing (p/l, market_value)""" position.price = price position.previous_price = previous_price position.market_value = position.quantity * position.price position.previous_market_value = position.quantity * position.previous_price position.pl = (position.market_value - position.cost_basis) position.pl_percent = (((position.pl / position.cost_basis) * 100) if position.cost_basis != 0 else 0) position.day_pl = (position.market_value - position.previous_market_value) position.day_pl_percent = (((position.day_pl / position.previous_market_value) * 100) if position.previous_market_value != 0 else 0) def refresh_positions(portfolio, transactions = None, force = False): """Refresh all positions in the given portfolio if needed or if the caller requests a forced refresh""" if transactions == None: transactions = Transaction.objects.filter(portfolio__id__exact = portfolio.id) positions = Position.objects.filter(portfolio__id__exact = portfolio.id) if (transactions.count() > 0 and positions.count() == 0) or force: positions.delete() _refresh_positions_from_transactions(transactions) #-----------------\ # VALUE OBJECTS | #-----------------/ class LotBuilder: def __init__(self): self.long_half_lots = [] self.short_half_lots = [] self.closed_lots = [] def __repr__(self): return "Open (Long):\n %s\n\nOpen (Short):\n %s\n\nClosed:\n %s" % (self.long_lots, self.short_lots, self.closed_lots) def add_transaction(self, transaction): fees = transaction.total - (transaction.quantity * transaction.price) quantity = transaction.quantity poll = self.short_half_lots push = self.long_half_lots if transaction.type == 'SELL': push = poll poll = self.long_half_lots while quantity > 0 and len(poll) > 0: half_lot = poll.pop(0) if (quantity - half_lot.quantity) > -QUANTITY_TOLERANCE: partial_fees = fees * (half_lot.quantity / quantity) fees = fees - partial_fees quantity -= half_lot.quantity insort(self.closed_lots, half_lot.close(transaction.as_of_date, transaction.price, partial_fees)) else: closed = half_lot.partial_close(transaction.as_of_date, quantity, transaction.price, fees) poll.insert(0, half_lot) insort(self.closed_lots, closed) quantity = 0 fees = 0 if quantity > QUANTITY_TOLERANCE: push.append(HalfLot(type = transaction.type, as_of_date = transaction.as_of_date, quantity = quantity, price = transaction.price, total = (quantity * transaction.price) + fees )) return self def get_lots(self): out = [] for lot in self.closed_lots: insort(out, _clone_lot(lot)) for half_lot in (self.long_half_lots + self.short_half_lots): insort(out, half_lot.to_lot(None, 0.0, 0.0, 0.0)) return out class HalfLot(): def __init__(self, type, as_of_date, quantity, price, total): self.type = type self.as_of_date = as_of_date self.quantity = quantity self.price = price self.total = total def __repr__(self): return "%s: %.4f @ %.4f on %s (%.4f)" % ( self.type, self.quantity, self.price, self.as_of_date.strftime('%m/%d/%Y'), self.total, ) def close(self, as_of_date, price, fees): return self.to_lot(as_of_date, self.quantity, price, fees) def partial_close(self, as_of_date, quantity, price, fees): split_lot = HalfLot(type = self.type, as_of_date = self.as_of_date, quantity = quantity, price = self.price, total = None, ) split_lot.total = self.total * (split_lot.quantity / self.quantity) self.total -= split_lot.total self.quantity -= quantity return split_lot.close(as_of_date, price, fees) def to_lot(self, as_of_date, quantity, price, fees): lot = None if self.type == 'BUY': lot = Lot(as_of_date = self.as_of_date, quantity = self.quantity, price = self.price, total = self.total, sold_as_of_date = as_of_date, sold_quantity = quantity, sold_price = price, sold_total = (quantity * price) + fees, ) else: lot = Lot(as_of_date = as_of_date, quantity = quantity, price = price, total = (quantity * price) + fees, sold_as_of_date = self.as_of_date, sold_quantity= self.quantity, sold_price = self.price, sold_total = self.total, ) return lot #-------------------\ # LOCAL FUNCTIONS | #-------------------/ def _refresh_positions_from_transactions(transactions): if len(transactions) == 0: return # presort and bucket transactions transactions = sorted(transactions, key = (lambda transaction: transaction.id)) transactions = sorted(transactions, key = (lambda transaction: transaction.as_of_date)) dates = sorted(set([ t.as_of_date for t in transactions])) transactions_by_date = dict([(date, []) for date in dates]) for transaction in transactions: transactions_by_date.get(transaction.as_of_date).append(transaction) # prepare trackers builder_by_symbol = { } cash = Position(portfolio = transactions[0].portfolio, as_of_date = datetime.now().date(), symbol = CASH_SYMBOL, quantity = 0, cost_price = 1.0, cost_basis = 0.0, realized_pl = 0.0 ) # go through days and build positions lots = None positions = [] for date in dates: current_transactions = transactions_by_date.get(date) # process transactions either through cash or lot builder for transaction in current_transactions: if transaction.type == 'DEPOSIT' or transaction.type == 'SELL': cash.quantity += transaction.total elif transaction.type == 'WITHDRAW' or transaction.type == 'BUY': cash.quantity -= transaction.total elif transaction.type == 'ADJUST': cash.quantity += transaction.total cash.realized_pl += transaction.total if transaction.type == 'BUY' or transaction.type == 'SELL': builder = builder_by_symbol.get(transaction.symbol, None) if builder == None: builder = LotBuilder() builder_by_symbol[transaction.symbol] = builder builder.add_transaction(transaction) # add current cash to positions. days_cash = _clone_position(cash, date) days_cash.cost_basis = days_cash.quantity positions.append(days_cash) # compose current lots into a position. lots = [] for symbol, builder in builder_by_symbol.items(): position = Position(portfolio = transactions[0].portfolio, as_of_date = date, symbol = symbol, quantity = 0.0, cost_price = 0.0, cost_basis = 0.0, realized_pl = 0.0, ) for lot in builder.get_lots(): lot.position = position lots.append(lot) quantity = (lot.quantity - lot.sold_quantity) if abs(quantity) < QUANTITY_TOLERANCE: quantity = 0.0 if abs(quantity) > QUANTITY_TOLERANCE: position.cost_basis += (lot.total - lot.sold_total) total = (position.quantity * position.cost_price) + (quantity * lot.price) position.quantity += quantity position.cost_price = (total / position.quantity if quantity <> 0.0 else 0.0) else: position.realized_pl += lot.sold_total - lot.total if abs(position.quantity) < QUANTITY_TOLERANCE: position.quantity = 0.0 positions.append(position) # save positions for position in positions: position.save() # save latest lots for lot in lots: if abs(lot.quantity) < QUANTITY_TOLERANCE: lot.quantity = 0.0 if abs(lot.sold_quantity) < QUANTITY_TOLERANCE: lot.sold_quantity = 0.0 lot.position = lot.position # hack to reset position_id in lot lot.save() def _clone_lot(lot): return Lot(as_of_date = lot.as_of_date, quantity = lot.quantity, price = lot.price, total = lot.total, sold_as_of_date = lot.sold_as_of_date, sold_quantity = lot.sold_quantity, sold_price = lot.sold_price, sold_total = lot.sold_total ) def _clone_position(position, new_as_of_date = None): out = Position() out.portfolio = position.portfolio out.as_of_date = (position.as_of_date if new_as_of_date == None else new_as_of_date) out.symbol = position.symbol out.quantity = position.quantity out.cost_price = position.cost_price out.realized_pl = position.realized_pl return out
fxdemolisher/frano
frano/quotes/models.py
<filename>frano/quotes/models.py # Copyright (c) 2011 <NAME> # Licensed under the MIT license # see LICENSE file for copying permission. import json from datetime import date from datetime import datetime from datetime import timedelta from urllib import quote_plus from urllib import urlopen from django.db import models #-------------\ # CONSTANTS | #-------------/ CASH_SYMBOL = '*CASH' PRICE_HISTORY_LIMIT_IN_DAYS = 365 * 10 #----------\ # MODELS | #----------/ class Quote(models.Model): symbol = models.CharField(max_length = 10, unique = True) name = models.CharField(max_length = 255) price = models.FloatField() last_trade = models.DateTimeField() cash_equivalent = models.BooleanField() class Meta: db_table = 'quote' def __unicode__(self): return '%s - %s' % (self.symbol, self.name) class PriceHistory(models.Model): quote = models.ForeignKey(Quote) as_of_date = models.DateTimeField() price = models.FloatField() class Meta: db_table = 'price_history' unique_together = ( 'quote', 'as_of_date' ) def __unicode__(self): return '%s @ %.2f on %s' % (self.quote.symbol, self.price, self.as_of_date.strftime('%Y-%m-%d')) #------------\ # SERVICES | #------------/ def price_as_of(quote, as_of): """Get the price for quote as of a specific date.""" if quote.cash_equivalent or quote.last_trade.date() == as_of: return quote.price else: candidates = quote.pricehistory_set.filter(as_of_date__lte = as_of.strftime('%Y-%m-%d')).order_by('-as_of_date')[0:1] return (candidates[0].price if candidates.count() > 0 else 0) def previous_close_price(quote): """Get the previous close price for a quote.""" return price_as_of(quote, quote.last_trade.date() - timedelta(days = 1)) def quote_by_symbol(symbol): """Retrieve a quote by symbol.""" return quotes_by_symbols([ symbol ])[0] def quotes_by_symbols(symbols, force_retrieve = False): """Retrieve a quotes by a list of symbols.""" # load or prime quotes for each symbol existing_quotes = dict([ (q.symbol, q) for q in Quote.objects.filter(symbol__in = symbols) ]) quotes = { } symbols_to_retrieve = [] for symbol in symbols: quote = existing_quotes.get(symbol, None) exists = True if quote == None: quote = Quote(symbol = symbol, last_trade = datetime.now()) exists = False quotes[symbol] = quote if symbol == CASH_SYMBOL and not exists: quote.name = '<NAME>ollars' quote.price = 1.0 quote.cash_equivalent = True quote.changed = True elif not exists or force_retrieve: quote.price = 0.0 quote.changed = True symbols_to_retrieve.append(symbol) else: quote.changed = False # retrieve fresh prices from yahoo if len(symbols_to_retrieve) > 0: csv_url = ('http://download.finance.yahoo.com/d/quotes.csv?s=%s&f=sl1d1t1n&e=.csv' % (','.join(symbols_to_retrieve))) csv_columns = 'symbol,price,date,time,name' for row in _yql_csv_to_json(csv_url, csv_columns): price = row['price'] tradeDate = row['date'] tradeTime = row['time'] quote = quotes.get(row['symbol']) quote.cash_equivalent = price.endswith('%') quote.price = (1.0 if quote.cash_equivalent else float(price)) quote.name = row['name'] if tradeDate != 'N/A' and tradeTime != 'N/A': month, day, year = [int(f) for f in tradeDate.split('/')] time = datetime.strptime(tradeTime, '%I:%M%p') quote.last_trade = datetime(year, month, day, time.hour, time.minute, time.second) # save all changes for quote in quotes.values(): if quote.changed: quote.save() if not quote.cash_equivalent and quote.price > 0.0 and quote.pricehistory_set.count() == 0: refresh_price_history(quote) return quotes.values() def refresh_price_history(quote): start_date = quote.last_trade + timedelta(days = 0 - PRICE_HISTORY_LIMIT_IN_DAYS) end_date = quote.last_trade + timedelta(days = 1) csv_columns = 'date,open,high,low,close,volume,adj_close' csv_url = ('http://ichart.finance.yahoo.com/table.csv?s=%s&a=%.2d&b=%.2d&c=%.4d&d=%.2d&e=%.2d&f=%.4d&g=d&ignore=.csv' % ( quote.symbol, (start_date.month - 1), start_date.day, start_date.year, (end_date.month - 1), end_date.day, end_date.year) ) to_remove = { } for history in quote.pricehistory_set.filter(as_of_date__gte = start_date.date()): to_remove[history.as_of_date.date()] = history to_save = [] for row in _yql_csv_to_json(csv_url, csv_columns, PRICE_HISTORY_LIMIT_IN_DAYS, 2): as_of_date = datetime.strptime(row['date'], '%Y-%m-%d') price = float(row['adj_close']) history = to_remove.get(as_of_date.date()) if history == None: history = PriceHistory() history.quote = quote history.as_of_date = as_of_date history.price = price else: del(to_remove[as_of_date.date()]) if abs(history.price - price) > 0.0001: history.price = price else: continue to_save.append(history) if len(to_remove) > 0: ids = [ h.id for h in to_remove.values() ] PriceHistory.objects.filter(id__in = ids).delete() if len(to_save) > 0: for history in to_save: history.save() quote.history_date = datetime.now() quote.save() return quote #-------------------\ # LOCAL FUNCTIONS | #-------------------/ def _yql_csv_to_json(csv_url, csv_columns, limit = None, offset = None): u = None try: yql_suffix = '' if limit != None and offset != None: yql_suffix = yql_suffix + (' limit %d offset %d' % (limit, offset)) yql_query = ("select * from csv where url='%s' and columns='%s' %s" % (csv_url, csv_columns, yql_suffix)) u = urlopen('http://query.yahooapis.com/v1/public/yql?q=%s&format=json&callback=' % quote_plus(yql_query)) packet = json.loads(u.read()) out = [ ] if packet.has_key('query'): count = packet['query']['count'] if count == 1: out.append(packet['query']['results']['row']) elif count > 0: out = packet['query']['results']['row'] return out finally: if u != None: u.close()
fxdemolisher/frano
frano/management/commands/refresh_quotes.py
# Copyright (c) 2011 <NAME> # Licensed under the MIT license # see LICENSE file for copying permission. from sys import stdout from django.core.management.base import BaseCommand from frano.main.demo import DEMO_INSTRUMENTS from frano.quotes.models import Quote from frano.quotes.models import quotes_by_symbols class Command(BaseCommand): help = 'Refreshes all quotes from yahoo finance' def handle(self, *args, **options): symbols = set([ quote.symbol for quote in Quote.objects.all()] + DEMO_INSTRUMENTS) stdout.write('Found %d quotes to refresh\nStarting...\n' % len(symbols)) quotes_by_symbols(symbols, True) stdout.write('Successfully refreshed quotes\n')
fxdemolisher/frano
frano/transactions/models.py
# Copyright (c) 2011 <NAME> # Licensed under the MIT license # see LICENSE file for copying permission. import codecs import csv from exceptions import Exception from django.db import models from parsers import FRANO_TRANSACTION_EXPORT_HEADER from parsers import GOOGLE_TRANSACTION_EXPORT_HEADER from parsers import AMERITRADE_TRANSACTION_EXPORT_HEADER from parsers import ZECCO_TRANSACTION_EXPORT_HEADER from parsers import SCOTTRADE_TRANSACTION_EXPORT_HEADER from parsers import CHARLES_TRANSACTION_EXPORT_HEADER from parsers import FIDELITY_TRANSACTION_EXPORT_HEADER from parsers import MERCER_401_TRANSACTION_EXPORT_HEADER from parsers import parse_frano_transactions from parsers import parse_google_transactions from parsers import parse_ameritrade_transactions from parsers import parse_zecco_transactions from parsers import parse_scottrade_transactions from parsers import parse_charles_transactions from parsers import parse_fidelity_transactions from parsers import parse_mercer_401_transactions from main.models import Portfolio #-------------\ # CONSTANTS | #-------------/ HEADER_TO_IMPORT_TYPE_MAP = { ",".join(FRANO_TRANSACTION_EXPORT_HEADER) : 'FRANO', ",".join(GOOGLE_TRANSACTION_EXPORT_HEADER) : 'GOOGLE', ",".join(AMERITRADE_TRANSACTION_EXPORT_HEADER) : 'AMERITRADE', ",".join(ZECCO_TRANSACTION_EXPORT_HEADER) : 'ZECCO', ",".join(SCOTTRADE_TRANSACTION_EXPORT_HEADER) : 'SCOTTRADE', ",".join([ ('"%s"' % v) for v in CHARLES_TRANSACTION_EXPORT_HEADER]) : 'CHARLES', ",".join(FIDELITY_TRANSACTION_EXPORT_HEADER) : 'FIDELITY', ",".join(MERCER_401_TRANSACTION_EXPORT_HEADER) : 'MERCER_401', } TRANSACTION_TYPES = ( ('BUY', 'Buy'), ('SELL', 'Sell'), ('DEPOSIT', 'Deposit'), ('WITHDRAW', 'Withdraw'), ('ADJUST', 'Adjust'), ) #----------\ # MODELS | #----------/ class Transaction(models.Model): portfolio = models.ForeignKey(Portfolio) type = models.CharField(max_length = 10, choices = TRANSACTION_TYPES) as_of_date = models.DateField() symbol = models.CharField(max_length = 10) quantity = models.FloatField() price = models.FloatField() total = models.FloatField() linked_symbol = models.CharField(max_length = 10, null = True) class Meta: db_table = 'transaction' ordering = [ '-as_of_date', 'symbol' ] def __unicode__(self): return "%.2f-%s @ %.2f on %s" % (self.quantity, self.symbol, self.price, self.as_of_date.strftime('%m/%d/%Y')) #------------\ # SERVICES | #------------/ def clone_transaction(transaction, new_portfolio = None): """Return a copy of the given transaction, optionally overriding which portfolio the transaction belongs to.""" out = Transaction() out.portfolio = (new_portfolio if new_portfolio != None else transaction.portfolio) out.type = transaction.type out.as_of_date = transaction.as_of_date out.symbol = transaction.symbol out.quantity = transaction.quantity out.price = transaction.price out.total = transaction.total out.linked_symbol = transaction.linked_symbol return out def transactions_as_csv(target, portfolio): writer = csv.writer(target) writer.writerow(FRANO_TRANSACTION_EXPORT_HEADER) transactions = Transaction.objects.filter(portfolio__id__exact = portfolio.id).order_by('-as_of_date', '-id') for transaction in transactions: writer.writerow([transaction.as_of_date.strftime('%m/%d/%Y'), transaction.type, transaction.symbol, transaction.quantity, transaction.price, transaction.total, transaction.linked_symbol]) def parse_transactions(type, file): # Filter the file for utf sigs at the front of the file or null bytes. file = _null_byte_line_filter(codecs.iterdecode(file, 'utf_8_sig')) parsed = None if type == 'FRANO': reader = csv.reader(file) _verify_transaction_file_header(reader, FRANO_TRANSACTION_EXPORT_HEADER) parsed = parse_frano_transactions(reader) elif type == 'GOOGLE': reader = csv.reader(codecs.iterdecode(file, 'utf_8_sig')) _verify_transaction_file_header(reader, GOOGLE_TRANSACTION_EXPORT_HEADER) parsed = parse_google_transactions(reader) elif type == 'AMERITRADE': reader = csv.reader(file) _verify_transaction_file_header(reader, AMERITRADE_TRANSACTION_EXPORT_HEADER) parsed = parse_ameritrade_transactions(reader) elif type == 'ZECCO': reader = csv.reader(file) _verify_transaction_file_header(reader, ZECCO_TRANSACTION_EXPORT_HEADER) parsed = parse_zecco_transactions(reader) elif type == 'SCOTTRADE': reader = csv.reader(_null_byte_line_filter(file)) _verify_transaction_file_header(reader, SCOTTRADE_TRANSACTION_EXPORT_HEADER) parsed = parse_scottrade_transactions(reader) elif type == 'CHARLES': reader = csv.reader(_null_byte_line_filter(file)) reader.next() # skip header line _verify_transaction_file_header(reader, CHARLES_TRANSACTION_EXPORT_HEADER) parsed = parse_charles_transactions(reader) elif type == 'FIDELITY': reader = csv.reader(file) # fidelity leaves three blank lines on top of the file...go figure for x in range(3): reader.next() _verify_transaction_file_header(reader, FIDELITY_TRANSACTION_EXPORT_HEADER) parsed = parse_fidelity_transactions(reader) elif type == 'MERCER_401': reader = csv.reader(file) _verify_transaction_file_header(reader, MERCER_401_TRANSACTION_EXPORT_HEADER) parsed = parse_mercer_401_transactions(reader) transactions = [] for row in parsed: transaction = Transaction() transaction.as_of_date = row['date'] transaction.type = row['type'] transaction.symbol = row['symbol'].upper() transaction.quantity = row['quantity'] transaction.price = row['price'] transaction.total = row['total'] transaction.linked_symbol = row.get('linked_symbol', None) transactions.append(transaction) return transactions def detect_transaction_file_type(file): # Filter the file for utf sigs at the front of the file or null bytes. file = _null_byte_line_filter(codecs.iterdecode(file, 'utf_8_sig')) first_line = None for line in file: first_line = line if first_line != None and not first_line.startswith('"Transactions for account') and len(first_line.strip()) != 0: break return HEADER_TO_IMPORT_TYPE_MAP.get(line.strip(), None) #-------------------\ # LOCAL FUNCTIONS | #-------------------/ def _null_byte_line_filter(stream): for line in stream: yield line.replace('\x00', '') def _verify_transaction_file_header(reader, required_header): header = reader.next() if len(header) != len(required_header): raise Exception('Header mismatch for transaction file') for i in range(len(required_header)): if header[i] != required_header[i]: raise Exception("Header mismatch at %d: %s <> %s" % (i, header[i], required_header[i]))
fxdemolisher/frano
frano/management/commands/cleanup_sample_portfolios.py
# Copyright (c) 2011 <NAME> # Licensed under the MIT license # see LICENSE file for copying permission. from datetime import datetime, timedelta from sys import stdout from django.core.management.base import BaseCommand from frano.main.models import Portfolio from frano.main.models import User from frano.main.view_utils import get_demo_user class Command(BaseCommand): help = 'Cleanup sample portfolios older than two weeks' def handle(self, *args, **options): user = get_demo_user() cutoff_date = datetime.now() - timedelta(weeks = 2) portfolios = Portfolio.objects.filter(user__id__exact = user.id, create_date__lte = cutoff_date) stdout.write('Found %d sample portfolios to clean up\n' % portfolios.count()) portfolios.delete() stdout.write('Successfully removed old sample portfolios\n')
fxdemolisher/frano
frano/positions/views.py
# Copyright (c) 2011 <NAME> # Licensed under the MIT license # see LICENSE file for copying permission. from datetime import datetime from datetime import timedelta from django.db import connection from django.db import transaction from main.decorators import portfolio_manipulation_decorator from main.decorators import read_only_decorator from main.models import Portfolio from main.view_utils import render_page from models import decorate_position_with_prices from models import latest_positions from models import refresh_positions from quotes.models import CASH_SYMBOL from quotes.models import quote_by_symbol from quotes.models import quotes_by_symbols from quotes.models import previous_close_price from transactions.models import Transaction #-------------\ # CONSTANTS | #-------------/ DAYS_IN_PERFORMANCE_HISTORY = 90 PERFORMANCE_BENCHMARK_SYMBOL = 'ACWI' #---------\ # VIEWS | #---------/ @portfolio_manipulation_decorator def positions(request, portfolio, is_sample, read_only): transactions = Transaction.objects.filter(portfolio__id__exact = portfolio.id).order_by('-as_of_date', '-id') refresh_positions(portfolio, transactions) positions = latest_positions(portfolio) _decorate_positions_for_display(positions, request.GET.get("showClosedPositions", False)) _decorate_positions_with_lots(positions) summary = _get_summary(positions, transactions) performance_history = _get_performance_history(portfolio, DAYS_IN_PERFORMANCE_HISTORY) context = { 'read_only' : read_only, 'is_sample' : is_sample, 'positions': positions, 'summary' : summary, 'current_tab' : 'positions', 'performance_history' : performance_history, 'benchmark_symbol' : PERFORMANCE_BENCHMARK_SYMBOL, } return render_page('positions.html', request, portfolio = portfolio, extra_dictionary = context) @read_only_decorator def read_only_positions(request, portfolio): return positions(request, portfolio.id, read_only = True) @portfolio_manipulation_decorator def allocation(request, portfolio, is_sample, read_only): refresh_positions(portfolio) positions = latest_positions(portfolio) _decorate_positions_for_display(positions, False) context = { 'positions': positions, 'current_tab' : 'allocation', } return render_page('allocation.html', request, portfolio = portfolio, extra_dictionary = context) @portfolio_manipulation_decorator def income(request, portfolio, is_sample, read_only): transactions = Transaction.objects.filter(portfolio__id__exact = portfolio.id).order_by('-as_of_date', '-id') refresh_positions(portfolio, transactions) positions = latest_positions(portfolio) _decorate_positions_for_display(positions, request.GET.get("showClosedPositions", False)) summary_map = {} for position in positions: summary_map[position.symbol] = IncomeSummary(position.symbol, position.market_value, position.cost_basis, position.pl, position.pl_percent, position.realized_pl, position.show) total_summary = IncomeSummary('*TOTAL*', 0.0, 0.0, 0.0, 0.0, 0.0, True) for transaction in transactions: if transaction.type != 'ADJUST': continue symbol = transaction.linked_symbol if symbol == None or symbol == '': symbol = transaction.symbol summary = summary_map.get(symbol) summary.add_income(transaction.as_of_date, transaction.total) if summary.show: total_summary.add_income(transaction.as_of_date, transaction.total) summaries = sorted(summary_map.values(), key = (lambda summary: summary.symbol)) for summary in summaries: total_summary.market_value = total_summary.market_value + summary.market_value total_summary.cost_basis = total_summary.cost_basis + summary.cost_basis total_summary.unrealized_pl = total_summary.unrealized_pl + summary.unrealized_pl total_summary.realized_pl = total_summary.realized_pl + summary.realized_pl total_summary.unrealized_pl_percent = ((total_summary.market_value / total_summary.cost_basis) - 1) * 100 context = { 'read_only' : read_only, 'summaries': summaries, 'total_summary' : total_summary, 'current_tab' : 'income', } return render_page('income.html', request, portfolio = portfolio, extra_dictionary = context) @read_only_decorator def read_only_income(request, portfolio): return income(request, portfolio.id, read_only = True) #---------\ # FORMS | #---------/ #-------------------\ # LOCAL FUNCTIONS | #-------------------/ def _decorate_positions_for_display(positions, showClosedPositions): symbols = [ position.symbol for position in positions ] + [ CASH_SYMBOL ] quotes = dict((quote.symbol, quote) for quote in quotes_by_symbols(symbols)) as_of_date = min([quote.last_trade.date() for symbol, quote in quotes.items()]) total_market_value = 0 for position in positions: price = (1.0 if position.symbol == CASH_SYMBOL else quotes[position.symbol].price) previous_price = (1.0 if position.symbol == CASH_SYMBOL else previous_close_price(quotes[position.symbol])) decorate_position_with_prices(position, price, previous_price) position.show = (showClosedPositions or abs(position.quantity) > 0.01 or position.symbol == CASH_SYMBOL) total_market_value += position.market_value for position in positions: position.allocation = ((position.market_value / total_market_value * 100) if total_market_value != 0 else 0) position.effective_as_of_date = as_of_date def _decorate_positions_with_lots(positions): for position in positions: lots = [] for lot in position.lot_set.order_by('-as_of_date'): total = max(lot.total, lot.sold_total) days_open = (datetime.now().date() - (lot.as_of_date if lot.as_of_date != None else lot.sold_as_of_date)).days if abs(lot.quantity - lot.sold_quantity) < 0.0001: lot.status = 'Closed' lot.pl = lot.sold_total - lot.total else: lot.status = 'Open' lot.pl = ((lot.quantity - lot.sold_quantity) * position.price) - (lot.total - lot.sold_total) lot.pl_percent = (((lot.pl / total) * 100) if total <> 0.0 else 0) lots.append(lot) position.lots = lots def _get_summary(positions, transactions): as_of_date = max([position.effective_as_of_date for position in positions]) if len(positions) > 0 else datetime.now().date() start_date = min([transaction.as_of_date for transaction in transactions]) if len(transactions) > 0 else datetime.now().date() risk_capital = 0 for transaction in transactions: if transaction.type == 'DEPOSIT': risk_capital = risk_capital + transaction.total elif transaction.type == 'WITHDRAW': risk_capital = risk_capital - transaction.total market_value = 0 cost_basis = 0 realized_pl = 0 previous_market_value = 0 for position in positions: market_value += position.market_value cost_basis += position.cost_basis realized_pl += position.realized_pl previous_market_value += position.previous_market_value return Summary(as_of_date, start_date, market_value, cost_basis, risk_capital, realized_pl, previous_market_value) def _get_performance_history(portfolio, days): query = """ SELECT D.portfolio_date, D.deposit, D.withdrawal, SUM(P.quantity * ((CASE WHEN P.symbol = '*CASH' OR Q.cash_equivalent = '1' THEN 1.0 ELSE H.price END))) as market_value FROM position P JOIN ( SELECT D.portfolio_id, D.portfolio_date, D.position_date, SUM(CASE WHEN T.type = 'DEPOSIT' THEN T.total ELSE 0 END) as deposit, SUM(CASE WHEN T.type = 'WITHDRAW' THEN T.total ELSE 0 END) as withdrawal FROM ( SELECT P.portfolio_id, D.portfolio_date, MAX(P.as_of_date) as position_date FROM ( SELECT DISTINCT D.portfolio_id, DATE(H.as_of_date) as portfolio_date FROM ( SELECT DISTINCT P.portfolio_id, P.symbol FROM position P WHERE P.symbol != '*CASH' AND P.portfolio_id = %(portfolio_id)s ) S JOIN quote Q ON (Q.symbol = S.symbol) JOIN price_history H ON (H.quote_id = Q.id) JOIN ( SELECT P.portfolio_id, MIN(as_of_date) as start_date FROM position P WHERE P.portfolio_id = %(portfolio_id)s GROUP BY P.portfolio_id ) D ON (D.portfolio_id = S.portfolio_id AND H.as_of_date >= D.start_date) WHERE DATEDIFF(NOW(), H.as_of_date) < %(days)s ) D JOIN ( SELECT DISTINCT P.portfolio_id, P.as_of_date FROM position P WHERE P.portfolio_id = %(portfolio_id)s ) P ON (P.portfolio_id = D.portfolio_id AND P.as_of_date <= D.portfolio_date) GROUP BY D.portfolio_id, D.portfolio_date ) D LEFT JOIN ( SELECT T.portfolio_id, T.as_of_date, T.type, T.total FROM transaction T WHERE T.type IN ('DEPOSIT', 'WITHDRAW') AND T.portfolio_id = %(portfolio_id)s ) T ON (T.portfolio_id = D.portfolio_id AND T.as_of_date = D.portfolio_date) GROUP BY D.portfolio_id, D.portfolio_date ) D ON (P.portfolio_id = D.portfolio_id AND P.as_of_date = D.position_date) LEFT JOIN quote Q ON (Q.symbol = P.symbol) LEFT JOIN price_history H ON (H.quote_id = Q.id AND H.as_of_date = D.portfolio_date) WHERE P.quantity <> 0 AND P.portfolio_id = %(portfolio_id)s GROUP BY D.portfolio_date ORDER BY D.portfolio_date""" cursor = connection.cursor() cursor.execute(query, { 'days' : days, 'portfolio_id' : portfolio.id }) benchmark_quote = quote_by_symbol(PERFORMANCE_BENCHMARK_SYMBOL) cutoff_date = datetime.now().date() - timedelta(days = DAYS_IN_PERFORMANCE_HISTORY) benchmark_price = {} for history in benchmark_quote.pricehistory_set.filter(as_of_date__gte = cutoff_date).order_by('as_of_date'): benchmark_price[history.as_of_date.date()] = history.price shares = None last_price = None first_benchmark = None out = [] for row in cursor.fetchall(): as_of_date = row[0] deposit = float(row[1]) withdraw = float(row[2]) market_value = float(row[3]) benchmark = benchmark_price.get(as_of_date, 0.0) if first_benchmark == None: first_benchmark = benchmark performance = 0 if shares == None: shares = market_value else: net_inflow = deposit - withdraw shares += net_inflow / last_price performance = (((market_value / shares) - 1) if shares <> 0 else 0) last_price = ((market_value / shares) if shares <> 0 else 1.0) benchmark_performance = (((benchmark / first_benchmark) - 1) if first_benchmark <> 0 else 0) out.append(PerformanceHistory(as_of_date, performance, benchmark_performance)) cursor.close() return out #-----------------\ # VALUE OBJECTS | #-----------------/ class Summary: def __init__(self, as_of_date, start_date, market_value, cost_basis, risk_capital, realized_pl, previous_market_value): self.as_of_date = as_of_date self.start_date = start_date self.market_value = market_value self.cost_basis = cost_basis self.risk_capital = risk_capital self.realized_pl = realized_pl self.previous_market_value = previous_market_value self.day_pl = market_value - previous_market_value self.day_pl_percent = ((self.day_pl / previous_market_value) * 100) if previous_market_value != 0 else 0 self.pl = market_value - cost_basis self.pl_percent = ((self.pl / cost_basis) * 100) if cost_basis != 0 else 0 self.risk_capital_pl = market_value - risk_capital self.risk_capital_pl_percent = ((self.risk_capital_pl / risk_capital) * 100) if risk_capital != 0 else 0 class PerformanceHistory: def __init__(self, as_of_date, percent, benchmark_percent): self.as_of_date = as_of_date self.percent = percent self.benchmark_percent = benchmark_percent class IncomeSummary: def __init__(self, symbol, market_value, cost_basis, unrealized_pl, unrealized_pl_percent, realized_pl, show): self.symbol = symbol self.market_value = market_value self.cost_basis = cost_basis self.unrealized_pl = unrealized_pl self.unrealized_pl_percent = unrealized_pl_percent self.realized_pl = realized_pl self.show = show self.income_one_month = 0.0 self.income_three_months = 0.0 self.income_six_months = 0.0 self.income_one_year = 0.0 self.total_income = 0.0 def add_income(self, as_of_date, amount): current = datetime.now().date() self.total_income += amount if (current - as_of_date).days < 365: self.income_one_year += amount if (current - as_of_date).days < 180: self.income_six_months += amount if (current - as_of_date).days < 90: self.income_three_months += amount if (current - as_of_date).days < 30: self.income_one_month += amount
fxdemolisher/frano
frano/main/views.py
# Copyright (c) 2011 <NAME> # Licensed under the MIT license # see LICENSE file for copying permission. import json import random from StringIO import StringIO from urllib import urlopen from django.shortcuts import redirect from demo import get_demo_transactions from models import Portfolio from models import User from models import create_portfolio from models import create_user from transactions.models import clone_transaction from settings import JANRAIN_API_KEY from view_utils import get_demo_user from view_utils import logout_user from view_utils import redirect_to_portfolio_action from view_utils import render_page #-------------\ # CONSTANTS | #-------------/ #---------\ # VIEWS | #---------/ def index(request): user_id = request.session.get('user_id') portfolio = None if user_id != None and request.GET.get('demo') == None: portfolio = Portfolio.objects.filter(user__id__exact = user_id)[0] else: portfolio_id = request.session.get('sample_portfolio_id') portfolio = _get_demo_portfolio(portfolio_id) request.session['sample_portfolio_id'] = portfolio.id return redirect("/%s/positions.html" % portfolio.id) def read_only(request, read_only_token): return redirect("/%s/positions.html" % read_only_token) def legal(request): return render_page('legal.html', request) def feedback(request): return render_page('feedback.html', request) def login(request): token = None if request.method == 'POST': token = request.POST.get('token') else: token = request.GET.get('token') if token == None: return redirect("/demo.html?loginFailed=true") u = None try: u = urlopen('https://rpxnow.com/api/v2/auth_info?apiKey=%s&token=%s' % (JANRAIN_API_KEY, token)) auth_info = json.loads(u.read()) status = auth_info['stat'] if status != 'ok': return redirect("/demo.html?loginFailed=true") profile = auth_info['profile'] identifier = profile['identifier'] email = profile['email'] if profile.has_key('email') else None candidate = User.objects.filter(open_id = identifier) user = None portfolio = None target = 'transactions' if candidate.count() == 0: user = create_user(identifier, email) portfolio = create_portfolio(user, 'Default') else: user = candidate[0] portfolio = Portfolio.objects.filter(user__id__exact = user.id)[0] target = 'positions' request.session['user_id'] = user.id return redirect_to_portfolio_action(target, portfolio) finally: if u != None: u.close() def logout(request): return logout_user(request) #-------------------\ # LOCAL FUNCTIONS | #-------------------/ def _get_demo_portfolio(portfolio_id): if portfolio_id != None: candidate = Portfolio.objects.filter(id = portfolio_id) if candidate.count() == 1: return candidate[0] else: portfolio = create_portfolio(get_demo_user(), ('SAMPLE #%d' % random.randint(100000000, 999999999))) for sample_transaction in get_demo_transactions(): transaction = clone_transaction(sample_transaction, portfolio); transaction.save() return portfolio
fxdemolisher/frano
frano/urls.py
<filename>frano/urls.py # Copyright (c) 2011 <NAME> # Licensed under the MIT license # see LICENSE file for copying permission. import os from django.conf.urls.defaults import * from django.views.static import serve from settings import SERVE_STATICS # Main views urlpatterns = patterns('frano.main.views', (r'^$', 'index'), (r'^index.html', 'index'), (r'^(?P<read_only_token>\w{10})/$', 'read_only'), (r'^legal.html', 'legal'), (r'^feedback.html', 'feedback'), (r'^login.html', 'login'), (r'^logout.html', 'logout'), ) # Quote views urlpatterns += patterns('frano.quotes.views', (r'^priceQuote.json', 'price_quote'), ) # Account views urlpatterns += patterns('frano.account.views', (r'^account.html', 'account'), (r'^removeAccount.html', 'remove'), (r'^createPortfolio.html', 'new_portfolio'), (r'^(?P<portfolio_id>\d+)/setName.html', 'set_portfolio_name'), (r'^(?P<portfolio_id>\d+)/remove.html', 'remove_portfolio'), ) # Transaction views urlpatterns += patterns('frano.transactions.views', (r'^(?P<portfolio_id>\d+)/transactions.html', 'transactions'), (r'^(?P<portfolio_id>\d+)/addTransaction.html', 'add'), (r'^(?P<portfolio_id>\d+)/(?P<transaction_id>\d+)/remove.html', 'remove'), (r'^(?P<portfolio_id>\d+)/removeAllTransactions.html', 'remove_all'), (r'^(?P<portfolio_id>\d+)/(?P<transaction_id>\d+)/update.json', 'update'), (r'^(?P<portfolio_id>\d+)/exportTransactions.(?P<format>\w{3})', 'export'), (r'^(?P<portfolio_id>\d+)/importTransactions.html', 'import_form'), (r'^(?P<portfolio_id>\d+)/processImportTransactions.html', 'process_import'), (r'^(?P<portfolio_id>\d+)/requestImportType.html', 'request_import_type'), ) # Position views urlpatterns += patterns('frano.positions.views', (r'^(?P<portfolio_id>\d+)/positions.html', 'positions'), (r'^(?P<read_only_token>\w{10})/positions.html', 'read_only_positions'), (r'^(?P<portfolio_id>\d+)/allocation.html', 'allocation'), (r'^(?P<portfolio_id>\d+)/income.html', 'income'), (r'^(?P<read_only_token>\w{10})/income.html', 'read_only_income'), ) if SERVE_STATICS: dir = os.path.realpath(os.path.dirname(__file__)) + "/static/" urlpatterns += patterns('django.views.static', (r'^css/(?P<path>.*)$', 'serve', { 'document_root' : dir + '/css' }), (r'^img/(?P<path>.*)$', 'serve', { 'document_root' : dir + '/img' }), (r'^js/(?P<path>.*)$', 'serve', { 'document_root' : dir + '/js' }), )
fxdemolisher/frano
frano/management/commands/cleanup_unused_quotes.py
# Copyright (c) 2011 <NAME> # Licensed under the MIT license # see LICENSE file for copying permission. from sys import stdout from django.core.management.base import BaseCommand from django.db import connection from frano.main.demo import DEMO_INSTRUMENTS from frano.quotes.models import Quote from frano.positions.views import PERFORMANCE_BENCHMARK_SYMBOL class Command(BaseCommand): help = 'Cleanup any quotes and price history that are unused' def handle(self, *args, **options): query = ''' SELECT DISTINCT Q.symbol FROM quote Q WHERE Q.symbol NOT IN ( SELECT DISTINCT T.symbol FROM transaction T ) ''' symbols = set([]) cursor = connection.cursor() cursor.execute(query) for row in cursor.fetchall(): symbols.add(row[0]) cursor.close() symbols.difference_update(DEMO_INSTRUMENTS + [ PERFORMANCE_BENCHMARK_SYMBOL ]) unused = Quote.objects.filter(symbol__in = symbols) stdout.write('Found %d unused quotes\n' % unused.count()) for quote in unused: stdout.write('Removing quote and price history for: %s\n' % quote.symbol) quote.delete() stdout.write('Successfully removed unused quotes and price history\n')
fxdemolisher/frano
frano/transactions/parsers.py
<reponame>fxdemolisher/frano<gh_stars>0 # Copyright (c) 2011 <NAME> # Licensed under the MIT license # see LICENSE file for copying permission. from datetime import datetime from exceptions import Exception from quotes.models import CASH_SYMBOL from quotes.models import quote_by_symbol from quotes.models import price_as_of #-------------\ # CONSTANTS | #-------------/ FRANO_TRANSACTION_EXPORT_HEADER = [ 'DATE', 'TYPE', 'SYMBOL', 'QUANTITY', 'PRICE', 'TOTAL', 'LINKED_SYMBOL' ] GOOGLE_TRANSACTION_EXPORT_HEADER = [ 'Symbol', 'Name', 'Type', 'Date', 'Shares', 'Price', 'Cash value', 'Commission', 'Notes' ] AMERITRADE_TRANSACTION_EXPORT_HEADER = [ 'DATE', 'TRANSACTION ID', 'DESCRIPTION', 'QUANTITY', 'SYMBOL', 'PRICE', 'COMMISSION', 'AMOUNT', 'NET CASH BALANCE', 'REG FEE', 'SHORT-TERM RDM FEE', 'FUND REDEMPTION FEE', ' DEFERRED SALES CHARGE' ] ZECCO_TRANSACTION_EXPORT_HEADER = [ 'TradeDate', 'AccountTypeDescription', 'TransactionType', 'Symbol', 'Cusip', 'ActivityDescription', 'SecuritySubDescription', 'Quantity', 'Price', 'Currency', 'PrincipalAmount', 'NetAmount', 'TradeNumber' ] SCOTTRADE_TRANSACTION_EXPORT_HEADER = [ 'Symbol', 'Quantity', 'Price', 'ActionNameUS', 'TradeDate', 'SettledDate', 'Interest', 'Amount', 'Commission', 'Fees', 'CUSIP', 'Description', 'ActionId', 'TradeNumber', 'RecordType', 'TaxLotNumber' ] CHARLES_TRANSACTION_EXPORT_HEADER = [ 'Date', 'Action', 'Quantity', 'Symbol', 'Description', 'Price', 'Amount', 'Fees & Comm' ] FIDELITY_TRANSACTION_EXPORT_HEADER = [ 'Trade Date', 'Action', 'Symbol', 'Security Description', 'Security Type', 'Quantity', 'Price ($)', 'Commission ($)', 'Fees ($)', 'Accrued Interest ($)', 'Amount ($)', 'Settlement Date' ] MERCER_401_TRANSACTION_EXPORT_HEADER = [ 'Date', 'Source', 'Transaction', 'Ticker', 'Investment', 'Amount', 'Price', 'Shares/Units' ] GOOGLE_TRANSACTION_TYPE_MAP = { 'Buy' : 'BUY', 'Sell' : 'SELL', 'Deposit Cash' : 'DEPOSIT', 'Withdraw Cash' : 'WITHDRAW', } #---------------------\ # EXPOSED FUNCTIONS | #---------------------/ def parse_frano_transactions(reader): parsed = [] for row in reader: parsed.append({ 'date' : datetime.strptime(row[0], '%m/%d/%Y').date(), 'type' : row[1], 'symbol' : row[2], 'quantity' : float(row[3]), 'price' : float(row[4]), 'total' : float(row[5]), 'linked_symbol' : (row[6] if row[6] != '' else None), }) return parsed def parse_google_transactions(reader): parsed = [] for row in reader: type = GOOGLE_TRANSACTION_TYPE_MAP.get(row[2]) if type == None: raise Exception("Unknown transaction type in google finance file: %s" % row[2]) if type == 'DEPOSIT' or type == 'WITHDRAW': symbol = CASH_SYMBOL quantity = abs(float(row[6])) price = 1.0 commission = 0.0 else: symbol = row[0] quantity = float(row[4]) price = float(row[5]) commission = float(row[7]) commission_multiplier = 1.0 if type == 'SELL': commission_multiplier = -1.0 parsed.append({ 'date' : datetime.strptime(row[3], '%b %d, %Y').date(), 'type' : type, 'symbol' : symbol, 'quantity' : quantity, 'price' : price, 'total' : ((quantity * price) + (commission_multiplier * commission)), }) return parsed def parse_ameritrade_transactions(reader): parsed = [] for row in reader: if len(row) != len(AMERITRADE_TRANSACTION_EXPORT_HEADER): continue date_field = row[0] description_field = row[2] quantity_field = row[3] symbol_field = row[4] price_field = row[5] commission_field = row[6] amount_field = row[7] net_cash_field = row[8] linked_symbol = None # money market interest is a special case since it doesn't have a normal amount if description_field.startswith('MONEY MARKET INTEREST'): symbol = CASH_SYMBOL type = 'ADJUST' quantity = float(quantity_field) price = 1.0 commission = 0.0 # skip no amount and no net cash transactions...for now elif abs(float(amount_field)) < 0.01 or abs(float(net_cash_field)) < 0.01: continue # skip money market purchases and redemptions\ elif description_field.startswith('MONEY MARKET PURCHASE') or description_field.startswith('MONEY MARKET REDEMPTION'): continue # symbol and price in place, buy/sell transactions elif symbol_field != '' and price_field != '': symbol = symbol_field type = ('SELL' if float(amount_field) >= 0 else 'BUY') quantity = float(quantity_field) price = float(price_field) commission = (float(commission_field) if len(commission_field) > 0 else 0.0) # symbol is there, but price is not, dividend elif symbol_field != '' or description_field.startswith('MONEY MARKET INTEREST'): symbol = CASH_SYMBOL type = 'ADJUST' quantity = float(amount_field) price = 1.0 commission = 0.0 linked_symbol = symbol_field # otherwise its a cash movement else: symbol = CASH_SYMBOL type = ('DEPOSIT' if float(amount_field) >= 0 else 'WITHDRAW') quantity = (abs(float(amount_field))) price = 1.0 commission = 0.0 commission_multiplier = 1.0 if type == 'SELL': commission_multiplier = -1.0 parsed.append({ 'date' : datetime.strptime(date_field, '%m/%d/%Y').date(), 'type' : type, 'symbol' : symbol, 'quantity' : quantity, 'price' : price, 'total' : ((quantity * price) + (commission_multiplier * commission)), 'linked_symbol': linked_symbol, }) return parsed def parse_zecco_transactions(reader): split_map = { } parsed = [] for row in reader: as_of_date = datetime.strptime(row[0], '%m/%d/%Y').date() account_type = row[1] transaction_type = row[2] description_field = row[5] symbol_field = row[3] quantity_field = row[7] price_field = row[8] net_amount_field = row[11] linked_symbol = None # skip credit sweeps if description_field.find('Credit Sweep') >= 0: continue # deposits/withdrawals happen on the cash journal elif transaction_type == 'Cash Journal' and ( description_field.startswith('ACH DEPOSIT') or description_field.startswith('ACH DISBURSEMENT') or description_field.startswith('W/T FRM CUST') or description_field.startswith('W/T TO CUST') ): symbol = CASH_SYMBOL type = ('DEPOSIT' if float(net_amount_field) >= 0 else 'WITHDRAW') quantity = (abs(float(net_amount_field))) price = 1.0 commission = 0.0 # buys/sells are marked by their transaction types elif transaction_type == 'B' or transaction_type == 'S': symbol = symbol_field type = ('SELL' if transaction_type == 'S' else 'BUY') quantity = abs(float(quantity_field)) price = float(price_field) commission = abs(float(net_amount_field)) - (quantity * price) # everything else on the margin account or cash is an adjustment elif transaction_type in ['Interest Paid', 'Qualified Dividend', 'Short Term Capital Gain', 'Long Term Capital Gain']: symbol = CASH_SYMBOL type = 'ADJUST' quantity = float(net_amount_field) price = 1.0 commission = 0.0 linked_symbol = symbol_field # splits are processed after all the parsing is done, just record and skip them elif transaction_type in [ 'Security Journal' ] and description_field.endswith('SPLIT'): _record_split(split_map, as_of_date, symbol_field, float(quantity_field)) continue # otherwise just skip it for now else: continue commission_multiplier = 1.0 if type == 'SELL': commission_multiplier = -1.0 parsed.append({ 'date' : as_of_date, 'type' : type, 'symbol' : symbol, 'quantity' : quantity, 'price' : price, 'total' : ((quantity * price) + (commission_multiplier * commission)), 'linked_symbol': linked_symbol, }) splits = [ split for sub_list in split_map.values() for split in sub_list ] _apply_splits(parsed, splits) return parsed def parse_scottrade_transactions(reader): parsed = [] for row in reader: action_field = row[3] symbol_field = row[0] quantity_field = row[1] price_field = row[2] date_field = row[4] amount_field = row[7] commission_field = row[8] linked_symbol = None # deposits and withdrawals if action_field == 'IRA Receipt' or action_field == 'Journal': symbol = CASH_SYMBOL type = ('DEPOSIT' if float(amount_field) >= 0 else 'WITHDRAW') quantity = abs(float(amount_field)) price = 1.0 commission = 0.0 # buys and sells elif action_field == 'Buy' or action_field == 'Sell': symbol = symbol_field type = ('SELL' if action_field == 'Sell' else 'BUY') quantity = abs(float(quantity_field)) price = float(price_field) commission = abs(float(commission_field)) # incoming transfers mimic a deposit and a buy elif action_field == 'Transfer In': quantity = float(quantity_field) price = float(price_field) / quantity parsed.append({ 'date' : datetime.strptime(date_field, '%m/%d/%Y').date(), 'type' : 'DEPOSIT', 'symbol' : CASH_SYMBOL, 'quantity' : (price * quantity), 'price' : 1.0, 'total' : (price * quantity), }) symbol = symbol_field type = 'BUY' commission = 0.0 # everything else is an adjustment else: symbol = CASH_SYMBOL type = 'ADJUST' quantity = float(amount_field) price = 1.0 commission = 0.0 linked_symbol = (symbol_field if symbol_field != 'Cash' else None) commission_multiplier = 1.0 if type == 'SELL': commission_multiplier = -1.0 parsed.append({ 'date' : datetime.strptime(date_field, '%m/%d/%Y').date(), 'type' : type, 'symbol' : symbol, 'quantity' : quantity, 'price' : price, 'total' : ((quantity * price) + (commission_multiplier * commission)), 'linked_symbol': linked_symbol, }) return parsed def parse_charles_transactions(reader): parsed = [] for row in reader: date_field = row[0][:10] action_field = row[1].strip(' ') quantity_field = row[2].strip(' ') symbol_field = row[3].strip(' ') price_field = row[5].replace('$', '').strip(' ') amount_field = row[6].replace('$', '').strip(' ') commission_field = row[7].replace('$', '').strip(' ').strip('*') linked_symbol = None # deposits and withdrawals have no symbols or prices if symbol_field == '' and price_field == '': symbol = CASH_SYMBOL type = ('DEPOSIT' if float(amount_field) >= 0 else 'WITHDRAW') quantity = abs(float(amount_field)) price = 1.0 commission = 0.0 # buys and sells elif action_field == 'Buy' or action_field == 'Sell': symbol = symbol_field type = ('SELL' if action_field == 'Sell' else 'BUY') quantity = float(quantity_field) price = float(price_field) commission = (float(commission_field) if commission_field != '' else 0.0) # transfers have a symbol and quantity, and little else elif symbol_field != '' and quantity_field != '' and amount_field == '': as_of_date = datetime.strptime(date_field, '%m/%d/%Y') symbol = symbol_field quantity = float(quantity_field) price = price_as_of(quote_by_symbol(symbol), as_of_date) parsed.append({ 'date' : as_of_date.date(), 'type' : 'DEPOSIT', 'symbol' : CASH_SYMBOL, 'quantity' : (price * quantity), 'price' : 1.0, 'total' : (price * quantity), }) type = 'BUY' commission = 0.0 # everything else is an adjustment else: symbol = CASH_SYMBOL type = 'ADJUST' quantity = float(amount_field) price = 1.0 commission = 0.0 linked_symbol = symbol_field commission_multiplier = 1.0 if type == 'SELL': commission_multiplier = -1.0 parsed.append({ 'date' : datetime.strptime(date_field, '%m/%d/%Y').date(), 'type' : type, 'symbol' : symbol, 'quantity' : quantity, 'price' : price, 'total' : ((quantity * price) + (commission_multiplier * commission)), 'linked_symbol': linked_symbol, }) return parsed def parse_fidelity_transactions(reader): parsed = [] for row in reader: if len(row) < 11: continue date_field = row[0].strip() action_field = row[1].strip() symbol_field = row[2].strip() symbol_description_field = row[3].strip() quantity_field = row[5].strip() price_field = row[6].strip() amount_field = row[10].strip() linked_symbol = None # deposits and withdrawals have no symbols or prices if symbol_field == '' and price_field == '': symbol = CASH_SYMBOL type = ('DEPOSIT' if float(amount_field) >= 0 else 'WITHDRAW') quantity = abs(float(amount_field)) price = 1.0 total = quantity # buys and sells elif action_field.startswith('YOU BOUGHT') or action_field.startswith('YOU SOLD') or (symbol_description_field != 'CASH' and (action_field in [ 'PURCHASE INTO CORE ACCOUNT', 'REDEMPTION FROM CORE ACCOUNT', 'REINVESTMENT' ])): symbol = symbol_field type = ('SELL' if (action_field.startswith('YOU SOLD') or action_field == 'REDEMPTION FROM CORE ACCOUNT') else 'BUY') quantity = abs(float(quantity_field)) price = float(price_field) total = abs(float(amount_field)) # certain known actions are adjustments elif action_field in [ 'SHORT-TERM CAP GAIN', 'LONG-TERM CAP GAIN', 'DIVIDEND RECEIVED', 'INTEREST EARNED' ]: symbol = CASH_SYMBOL type = 'ADJUST' quantity = float(amount_field) price = 1.0 total = abs(float(amount_field)) linked_symbol = (symbol_field if symbol_description_field != 'CASH' else None) # ignore everything else else: continue parsed.append({ 'date' : datetime.strptime(date_field, '%m/%d/%Y').date(), 'type' : type, 'symbol' : symbol, 'quantity' : quantity, 'price' : price, 'total' : total, 'linked_symbol': linked_symbol, }) return parsed def parse_mercer_401_transactions(reader): parsed = [] for row in reader: if len(row) != 8 or row[0] == 'Total': continue as_of_date = datetime.strptime(row[0].strip(' '), '%m/%d/%Y').date() action = row[2].strip(' ') symbol = row[3].strip(' ') amount_field = row[5].replace('$', '').replace(',', '').strip(' ') price = float(row[6].replace('$', '').replace(',', '').strip(' ')) quantity = float(row[7].replace('$', '').replace(',', '').strip(' ')) linked_symbol = None if amount_field[:1] == '(' and amount_field[-1:] == ')': amount = 0 - float(amount_field[1:-1]) else: amount = float(amount_field) # deposits are contributions or conversions and are treated like transfers if action in [ 'CONTRIBUTIONS', 'CONVERSION' ]: parsed.append({ 'date' : as_of_date, 'type' : 'DEPOSIT', 'symbol' : CASH_SYMBOL, 'quantity' : amount, 'price' : 1.0, 'total' : amount, }) type = 'BUY' # buys and sells are transfer in/out actions elif action in [ 'TRANSFER OUT', 'TRANSFER IN' ] and symbol != None and symbol != '': type = ('SELL' if action == 'TRANSFER OUT' else 'BUY') quantity = abs(quantity) amount = abs(amount) # dividends are adjustments and reinvestments. fees are sells and negative adjustments. elif action in [ 'DIVIDEND', 'FEE' ]: parsed.append({ 'date' : as_of_date, 'type' : 'ADJUST', 'symbol' : CASH_SYMBOL, 'quantity' : amount, 'price' : 1.0, 'total' : amount, 'linked_symbol' : symbol, }) type = ('BUY' if action == 'DIVIDEND' else 'SELL') quantity = abs(quantity) amount = abs(amount) else: continue parsed.append({ 'date' : as_of_date, 'type' : type, 'symbol' : symbol, 'quantity' : quantity, 'price' : price, 'total' : amount, 'linked_symbol' : linked_symbol, }) return parsed #-----------------\ # VALUE OBJECTS | #-----------------/ class Split: def __init__(self, as_of_date, symbol, quantity): self.as_of_date = as_of_date if quantity > 0: self.to_symbol = symbol self.to_quantity = quantity else: self.from_symbol = symbol self.from_quantity = abs(quantity) def __repr__(self): return "Split: %.4f of %s to %.4f of %s" % (self.from_quantity, self.from_symbol, self.to_quantity, self.to_symbol) #-------------------\ # LOCAL FUNCTIONS | #-------------------/ def _record_split(split_map, as_of_date, symbol, quantity): splits_on_date = split_map.get(as_of_date, None) if splits_on_date == None: splits_on_date = [ Split(as_of_date, symbol, quantity) ] split_map[as_of_date] = splits_on_date else: found = False for split in splits_on_date: if quantity > 0 and split.from_symbol != None and split.from_symbol.startswith(symbol): split.to_symbol = symbol split.to_quantity = quantity found = True break elif split.to_symbol != None and symbol.startswith(split.to_symbol): split.from_symbol = symbol split.from_quantity = abs(quantity) found = True break if not found: splits_on_date.append(Split(as_of_date, symbol, quantity)) def _apply_splits(parsed, splits): """ split processing - adjust price and quantity of all pre-split transactions the double loop is intentional since a stock can split more than once, start processing by earliest date """ for split in sorted(splits, key = (lambda split: split.as_of_date)): for transaction in parsed: if transaction.get('symbol') == split.from_symbol and transaction.get('date') <= split.as_of_date: factor = split.to_quantity / split.from_quantity transaction['symbol'] = split.to_symbol transaction['quantity'] = transaction.get('quantity') * factor transaction['price'] = transaction.get('price') / factor
fxdemolisher/frano
frano/account/views.py
# Copyright (c) 2011 <NAME> # Licensed under the MIT license # see LICENSE file for copying permission. from django import forms from django.shortcuts import redirect from main.decorators import login_required_decorator from main.decorators import portfolio_manipulation_decorator from main.models import Portfolio from main.models import create_portfolio from main.view_utils import logout_user from main.view_utils import redirect_to_portfolio_action from main.view_utils import render_page #-------------\ # CONSTANTS | #-------------/ #---------\ # VIEWS | #---------/ @login_required_decorator def account(request, user): return render_page('account.html', request) @login_required_decorator def remove(request, user): user.delete() return logout_user(request) @login_required_decorator def new_portfolio(request, user): form = PortfolioNameForm(request.POST) if not form.is_valid(): return redirect("/account.html") name = _get_effective_portfolio_name(user, form.cleaned_data.get('portfolioName').encode('UTF-8')) portfolio = create_portfolio(user, name) return redirect_to_portfolio_action('importTransactions', portfolio) @login_required_decorator @portfolio_manipulation_decorator def set_portfolio_name(request, user, portfolio, is_sample, read_only): form = PortfolioNameForm(request.POST) if form.is_valid(): portfolio.name = _get_effective_portfolio_name(user, form.cleaned_data.get('portfolioName').encode('UTF-8')) portfolio.save() return redirect("/account.html") @login_required_decorator @portfolio_manipulation_decorator def remove_portfolio(request, user, portfolio, is_sample, read_only): portfolio.delete() return redirect("/account.html") #---------\ # FORMS | #---------/ class PortfolioNameForm(forms.Form): portfolioName = forms.CharField(min_length = 3, max_length = 30) #-------------------\ # LOCAL FUNCTIONS | #-------------------/ def _get_effective_portfolio_name(user, name): portfolios = Portfolio.objects.filter(user__id__exact = user.id) names = set([ p.name for p in portfolios]) index = 0 new_name = name while new_name in names: index = index + 1 new_name = "%s-%d" % (name, index) return new_name
otchlan/Pytkon_wprowadzenie
src/main.py
<filename>src/main.py import podstawy as po import toto as tt import tablica_np as tn if __name__ == '__main__': # print("Witaj świecie") a = 7 b = 5.5 """SKTÓTY KLAWISZOWE""" """cTRL+d - duplikownie lini kodu""" """Ctrl + / - komentowanie lini/linijek kodu""" # print ("to jest liczbe całokowita ",a) # print (b) # print(a + b) # po.suma(a, b) # po.jezeli(55, 3 , 2) # po.petla_while() # po.petla_for() # tt.losowanie() # tt.lotek() """pokazać wprowadzanie z klawiatury i rzutowanie liczby na inta""" # zKlaw = int(input("Podaj liczbe ")) # print(zKlaw) """Tablica wbudowana w Pythona""" # tablica = [1,2,3] # print(tablica) """Klasa tablica_np""" # tn.prosta() # tn.wybierz_elem() # tn.wybierz_wk() # tn.losowanie() # tn.zamien()
otchlan/Pytkon_wprowadzenie
src/tablica_np.py
<reponame>otchlan/Pytkon_wprowadzenie<gh_stars>0 import numpy as np def prosta(): print() tablica = np.array([4,5,6]) print("Tablica jednowymiarowa ", tablica) print() tablica_dwu = np.array([[1,2,3],[4,5,6],[7,8,9]]) print("Tablica dwuwymiarowa:\n", tablica_dwu) print() tablica_m = np.array([[1, 2, 3], ["raz", "dwa", "trzy"]]) print("Tablica dwuwymiarowa:\n", tablica_m) print() print("Rozmiat tablicy:") print("jednowymiarowa:", tablica.shape) print("jednowymiarowa:", tablica_dwu.shape) def wybierz_elem (wiersz = 0, kolumna = 0): print() tablica = np.array([[1,2,3,4,5],[6,7,8,9,0]]) x = tablica.shape # print("Kształt tablicy", x) print("Tablica:\n", tablica) print() print("Konkretna liczna z tablicy (0,0)- ", tablica[wiersz, kolumna]) print("Podaj wiersz i kolume tablica o rozmiarze:", x) wiersz = int(input("P wiersz: ")) kolumna = int(input("P kolumna: ")) print("Wybrałeś:", tablica[wiersz, kolumna]) def wybierz_wk(): tablica = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) print("Tab 3x3\n", tablica) print() print("Wiersz nr 1", tablica[0, :]) print("Kolumna nr 3", tablica[:, 2]) # def losowanie(): # tablica = np.random.rand() # print() # print("wYLOSOWANA TABLICA\n", tablica") def zamien(): tab_1_wym = np.zeros(3) tab_2_wym = np.zeros((5, 5)) tabnn = np.zeros((2,2,2,2)) print() print("Tablica jedno:\n", tab_1_wym) print("Tablica dwu:\n", tab_2_wym) # print("Tablica nn:\n", tabnn) a = 5 tab_2_wym[2,3] = a print() print(tab_2_wym)
otchlan/Pytkon_wprowadzenie
src/podstawy.py
def suma (a, b): print("w klasie", a+b) def jezeli (a, b, c): ab = a+b if ab == c: print ("if-1 a+b=c", a+b) elif a+c == b: print ("if-2 a+c=b", a+c) elif b+c == a: print ("if-3 b+c=a", b+c) else: print ("żadna liczba nie psuje") """1.True""" """2.<""" """3.<=""" def petla_while (): x = 1 while x <= 10: print("Lecimy dalej. x = ", x) x += 1 def petla_for (): for x in range(2, 5): print(x)
otchlan/Pytkon_wprowadzenie
src/toto.py
<gh_stars>0 # 1. importujemy rand -> tworzymy funkcję losowanie -> wywołujemy ją w main # 2. tworzymy funkcję lotek: # tworzymy listę i FORa dla listy -> wywołujemy w main # importujemy numpy -> instalujemy przez PIP -> tworzymy tablice import random import numpy as np def losowanie (): liczba = random.randint(1, 10) print("wylosowana liczba = ", liczba) def lotek(x=6): lista = [] tablica = np.array for i in range(x): liczba = random.randint(1,49) print(i+1, liczba) # lista.append(liczba) #Dodawanie do listy """Do tablicy tablica dodajemy liczbe""" tablica = np.append(tablica, liczba) """Może się trafić, że liczby bądą się powtarzać dlatego jeśli starczy nam czasu""" """Możemy dodać IFa, który będzie nam sprawdzał czy liczba się powtórzyła i wtedy jeszcze raz będzie randomować""" # print("Szczęśliwe numery to: ", *lista) print("Szczęsliwe liczby tabliy", tablica)
ztaylor2/sr-problems
problems.py
<gh_stars>0 """Problem solutions.""" """Qualitative questions: 1. What are your goals for the next five years? I am currently very focused on getting my first software engineering job, and my hope is that after I get that job I will be able to move vertically within that organization. I would like to be something like a Senior Lead Software Engineer five years from now. 2. What is your reason for leaving your previous position, or why do you want to leave your current position (if applicable)? What do you hope to get out of this position? The first part of the question is not applicable. I hope to gain quality experience and growth as a software engineer. I'm seeking a position that will facilitate learning and career growth. 3. Can you share your biggest professional or academic accomplishment? Can you share your biggest professional or academic failure? My biggest academic accomplishment is graduating Cum Laude with a mechanical engineering degree. This is not an easy thing to do, and I'm very proud of the hard work and dedication that accomplishment highlights. My biggest professional failure is probably not receiving a job offer from the startup Rover. They are currently only hiring senior engineers but they decided to give me a chance at the interview process after I passed a coding test for them. I then passed an hour long live coding phone screen and was assigned a take home coding project. I spent around 30 hours on the project and ended up not moving forward in the interview process. This was fairly discouraging for me, but on the bright side I learned a great deal while building out the project and became a better software engineer in the process. 4. What would your peers say are your strengths and weaknesses? My peers would say my strengths include my work ethic, drive, ability to get along with people, and technical aptitude. My weaknesses include organization and first impressions. """ """ Coding Questions: 1. Implement a function to check if a binary tree is balanced. For the purposes of this question, a balanced tree is defined to be a tree such that the heights of the two subtrees of any node never differ by more than one. 2. Implement an algorithm to find the kth to last element of a singly linked list. 3. Write a program that outputs all possibilities to put the operators ‘+’, ‘-’, or nothing between the numbers 1,2,...,9 (in this order) such that the result is 100. For example 1 + 2 + 3 - 4 + 5 + 6 + 78 + 9 = 100. """ """1. Check if a bst is balanced at every node.""" def is_balanced(root): """Check if balanced.""" return is_balanced_int(root) >= 0 def is_balanced_int(root): """Check if balanced.""" if root is None: return 0 left = is_balanced_int(root.left) right = is_balanced_int(root.right) if left < 0 or right < 0 or abs(left - right) > 1: return -1 return max((left, right)) + 1 """2. Implement an algorithm to find the kth to last element of a singly linked list.""" class Node(object): """The node object.""" def __init__(self, data, next): """Build node attributes on init.""" self.data = data self.next = next class LinkedList(object): """Create linked list object.""" def __init__(self, iterable=None): """Head node is none on init.""" self.head = None self._counter = 0 if isinstance(iterable, (tuple, list)): for item in iterable: self.push(item) def kth_to_last(self, k): """Return the kth to last elements in linked list.""" if k > self._counter: raise IndexError('K greater than length of list.') current_node = self.head for i in range(k - 1): current_node = current_node.next kth_to_last_list = [] while current_node: kth_to_last_list.append(current_node.data) current_node = current_node.next return kth_to_last_list """3. Write a program that outputs all possibilities to put the operators ‘+’, ‘-’, or nothing between the numbers 1,2,...,9 (in this order) such that the result is 100. For example 1 + 2 + 3 - 4 + 5 + 6 + 78 + 9 = 100.""" def find_all_paths(): """.""" digits = [1, 2, 3, 4, 5, 6, 7, 8, 9] search_sum = 100 paths = [] def find_paths(curr_sum, previous_number, index, total_path='1'): """.""" previous_digit = abs(previous_number % 10) if index >= len(digits): if curr_sum == 100: paths.append(total_path) return return current_digit = digits[index] concatinated_number = int(str(previous_digit) + str(current_digit)) if total_path[-2:].isdigit(): concatinated_path = total_path[:-1] + str(concatinated_number) else: concatinated_path = total_path + str(concatinated_number) find_paths(curr_sum - previous_number, current_digit, index + 1, total_path + ' + ' + str(current_digit)) find_paths(curr_sum - previous_number, -current_digit, index + 1, total_path + ' - ' + str(current_digit)) find_paths(curr_sum, concatinated_number, index + 1, concatinated_path) find_paths(search_sum, digits[0], 1)
Operation-Falcon/sectrails
dns.py
import argparse import sys from banner.banner import banner_design from function import * banner=banner_design() parser=argparse.ArgumentParser(description="Subdomain enumeration", formatter_class=argparse.RawTextHelpFormatter) parser.add_argument("-d", "--domain", help="domain name for subdomain enumeration", type=str, required=True) parser.add_argument("-o","--output", help="output filename to save the results", type=str, required=True) parser.add_argument("-a", "--api", help="Security trails api key", type=str, required=True) args=parser.parse_args() if len(sys.argv) <7: sys.exit() elif sys.argv[2]==args.domain and sys.argv[4]==args.api and sys.argv[6]==args.output: dns(args.domain, args.api, args.output)
Operation-Falcon/sectrails
function.py
<reponame>Operation-Falcon/sectrails import requests def subdomain(domain, api, output): param={"children_only":"false", "include_inactive":"true"} header={"Accept": "application/json", "APIKEY": f"{api}"} r=requests.get(f"https://api.securitytrails.com/v1/domain/{domain}/subdomains?children_only=false&include_inactive=true", params=param, headers=header) data=r.json()["subdomains"] with open(output, 'w') as file: for i in range(0, len(data)): try: file.writelines("%s%s%s\n"% (data[i], ".", domain)) print("%s%s%s\n" %(data[i], ".", domain)) except Exception as e: pass def tags(domain, api, output): headers={"Accept":"application/json", "APIKEY": f"{api}"} r=requests.get(f"https://api.securitytrails.com/v1/domain/{domain}/tags", headers=headers) data=r.json()["tags"] with open(output, "w") as file: for i in range(0, len(data)): try: file.writelines("%s\n" % data[i]) print("%s\n" % data[i]) except Exception as e: pass def details(domain, api, output): headers = {"Accept": "application/json", "APIKEY": f"{api}"} r=requests.get(f"https://api.securitytrails.com/v1/domain/{domain}", headers=headers) data=r.json()["current_dns"] with open(output, "a") as file: file.writelines("TXT:\n") for i in range(0, len(data)): try: file.writelines("%s\n" % data["txt"]["values"][i]["value"]) print("%s\n" % data["txt"]["values"][i]["value"]) except Exception as e:\ pass file.writelines("SOA:\n") for i in range(0, len(data)): try: file.writelines("%s\n" % data["txt"]["values"][i]["value"]) print("%s\n" % data["txt"]["values"][i]["value"]) except Exception as e: \ pass file.writelines("NS:\n") for i in range(0, len(data)): try: file.writelines("%s\n" % data["txt"]["values"][i]["value"]) print("%s\n" % data["txt"]["values"][i]["value"]) except Exception as e:\ pass file.writelines("MX:\n") for i in range(0, len(data)): try: file.writelines("%s\n" % data["txt"]["values"][i]["value"]) print("%s\n" % data["txt"]["values"][i]["value"]) except Exception as e:\ pass file.writelines("AAAA:\n") for i in range(0, len(data)): try: file.writelines("%s\n" % data["txt"]["values"][i]["value"]) print("%s\n" % data["txt"]["values"][i]["value"]) except Exception as e:\ pass file.writelines("A:\n") for i in range(0, len(data)): try: file.writelines("%s\n" % data["txt"]["values"][i]["value"]) print("%s\n" % data["txt"]["values"][i]["value"]) except Exception as e:\ pass def dns(domain, api, output): headers={"Accept":"application/json", "APIKEY": f"{api}"} r=requests.get(f"https://api.securitytrails.com/v1/history/{domain}/dns/a", headers=headers) data=r.json()["records"] with open(output, "w") as file: for i in range(0, len(data)): for j in range(0, len(data[i]["values"])): try: file.writelines("%s\n" % data[i]["values"][j]["ip"]) print("%s\n" % data[i]["values"][j]["ip"]) except Exception as e: pass def whois(domain, api, output): headers={"Accept":"application/json", "APIKEY": f"{api}"} r=requests.get(f"https://api.securitytrails.com/v1/history/{domain}/whois", headers=headers) data=r.json()["result"]["items"] with open(output, "w") as file: for i in range(0, len(data)): for j in range(0, len(data[i]["contact"])): try: file.writelines("%s\n" % data[i]["contact"][j]["type"]) file.writelines("%s\n" % data[i]["contact"][j]["telephone"]) file.writelines("%s\n" % data[i]["contact"][j]["street1"]) file.writelines("%s\n" % data[i]["contact"][j]["state"]) file.writelines("%s\n" % data[i]["contact"][j]["postalCode"]) file.writelines("%s\n" % data[i]["contact"][j]["organization"]) file.writelines("%s\n" % data[i]["contact"][j]["name"]) file.writelines("%s\n" % data[i]["contact"][j]["email"]) file.writelines("%s\n" % data[i]["contact"][j]["country"]) file.writelines("%s\n" % data[i]["contact"][j]["city"]) file.writelines("\n\n") print("%s\n" % data[i]["contact"][j]["type"]) print("%s\n" % data[i]["contact"][j]["telephone"]) print("%s\n" % data[i]["contact"][j]["street1"]) print("%s\n" % data[i]["contact"][j]["state"]) print("%s\n" % data[i]["contact"][j]["postalCode"]) print("%s\n" % data[i]["contact"][j]["organization"]) print("%s\n" % data[i]["contact"][j]["name"]) print("%s\n" % data[i]["contact"][j]["email"]) print("%s\n" % data[i]["contact"][j]["country"]) print("%s\n" % data[i]["contact"][j]["city"]) print("\n\n") except Exception as e: pass def neighbours(ip, api, output): headers={"Accept":"application/json", "APIKEY": f"{api}"} r=requests.get(f"https://api.securitytrails.com/v1/ips/nearby/{ip}", headers=headers) data=r.json()["blocks"] with open(output, "w") as file: for i in range(0, len(data)): try: file.writelines("%s\n" % (data[i]["ip"])) print("%s\n" % (data[i]["ip"])) except Exception as e: pass
miniyus/finance-data-auto-posting
fdap/app/autopost/template.py
def make_subject(sector: str, year: str, q: str): return f'[업종: {sector}] {year}년도 {q}분기' def make_strong_tag(value: str): return f'<strong>{value}</strong>' def make_p_tag(value: str): return f'<p>{value}</p>' def make_img_tag(name: str, src: str): return f'<img src="{src}" alt="{name}">' def make_new_line(repeat: int = 1): return '<p>&nbsp;</p>' * repeat def replace_template_str(template: str, values: dict, parameter_format: list = None): import re if parameter_format is None: parameter_format = ['{{', '}}'] re_value = None for key, value in values.items(): re_key = parameter_format[0] + key + parameter_format[1] re_value = re.sub(re_key, value, template) return re_value class Template: _title: str = '' _description: str = '' _image: str = '' def __init__(self, title: str, image: dict, description: str = ''): """ Args: title: image: description: """ self.set_title(title) self.set_image(image['name'], image['src']) self.set_description(description) def set_title(self, title: str): if title: self._title = make_p_tag(title) return self def set_image(self, name: str, src: str): if name and src: self._image = make_img_tag(name, src) return self def set_description(self, description: str): if description: self._description = make_p_tag(description) return self def make(self): res = '' res += self._title res += make_new_line(1) res += self._description res += self._image res += make_new_line(3) return res
miniyus/finance-data-auto-posting
fdap_manage/views.py
<filename>fdap_manage/views.py from django.shortcuts import render from django.shortcuts import redirect from django.urls import reverse from django.http import HttpResponse from django.utils import timezone from .models import Posts from fdap.definitions import LOG_PATH from fdap.utils.util import config_json, write_config_json from fdap.config.config import Config from .forms import get_form import os # Create your views here. def index(request): post_list = Posts.objects.all() return render(request, 'home.html', {'post_list': post_list}) def posts(request): post_list = Posts.objects.all() return render(request, 'posts.html', {'post_list': post_list}) def logs(request): log_list = os.listdir(LOG_PATH) logs_list = [] recent = {} for con in log_list: if 'log' in con: try: name, ext, date = con.split('.') logs_list.append({'date': date, 'subject': con}) except ValueError as e: name, ext = con.split('.') date = timezone.now().strftime('%Y-%m-%d') recent = {'date': date, 'subject': con} logs_list.reverse() logs_list.insert(0, recent) return render(request, 'log_list.html', {'log_list': logs_list}) def log(request, f_name): f = open(LOG_PATH + '/' + f_name, 'r', encoding='utf-8') contents = f.read() return render(request, 'log.html', {'f_name': f_name, 'contents': contents}) def config(request, module): config_list = Config.list() conf = None if module in config_list: conf = config_json(module) return render(request, 'config_form.html', {'config': conf, 'module': module}) def write_config(request, module): if module in Config.list(): data = get_form(module, request.POST) conf = write_config_json(module, data.to_dict()) return redirect('config', module=module)
miniyus/finance-data-auto-posting
fdap/contracts/webdriver.py
<gh_stars>0 from abc import ABC, abstractmethod from selenium.webdriver.remote.webdriver import WebDriver from selenium.common.exceptions import WebDriverException from typing import Union from fdap.utils.loggeradapter import LoggerAdapter from fdap.contracts.blog_client import BlogLoginInfo class WebDriverHandler(ABC): _web_driver: WebDriver _logger: LoggerAdapter _config: dict _login_data: BlogLoginInfo def __init__( self, web_driver: WebDriver, logger: LoggerAdapter, config: dict = None, login_data: BlogLoginInfo = None ): self._web_driver = web_driver self._logger = logger self._config = config self._login_data = login_data def run(self, url: str) -> Union[bool, any]: try: self._web_driver.get(url) result = self.handle() self._web_driver.close() return result except WebDriverException as e: self._logger.error(e.msg) self._logger.error(e.stacktrace) return False @abstractmethod def handle(self): pass
miniyus/finance-data-auto-posting
fdap/__init__.py
<reponame>miniyus/finance-data-auto-posting from fdap.application import Application from fdap.core.containter import Container app = Application(Container())
miniyus/finance-data-auto-posting
fdap/app/opendart/__init__.py
<reponame>miniyus/finance-data-auto-posting # Resolve dependency injection # use: from fdap.app.opendart import OpenDartService def service(): from fdap.app.opendart.opendart_service import OpenDartService from fdap.config.config import Config config = Config.OPENDART return OpenDartService(config['api']['url'], config['api']['api_key'])
miniyus/finance-data-auto-posting
fdap/application.py
<gh_stars>0 from dependency_injector import containers from fdap.config.config import Config from fdap.utils.customlogger import CustomLogger from fdap.utils.loggeradapter import LoggerAdapter from typing import Callable class Application: _container: containers.DeclarativeContainer _logger: LoggerAdapter def __init__(self, container: containers.DeclarativeContainer, callback: Callable = None): self._logger = CustomLogger.logger('root', 'application') self._container = container self._container.config.from_dict(Config.all()) self._container.init_resources() if callback is not None: self.bootstrap(callback) def get(self, name: str) -> any: return self._container.providers.get(name)() def bootstrap(self, callback: Callable): try: callback(self) except Exception as e: self._logger.error('Failed Bootstrapping...') self._logger.error(e)
miniyus/finance-data-auto-posting
fdap/database/database.py
<gh_stars>0 from sqlalchemy import create_engine from sqlalchemy.orm import scoped_session, sessionmaker from sqlalchemy.ext.declarative import declarative_base from fdap.config.config import Config config = Config.DATABASE['mysql'] access_info = 'mysql://{id}:{passwd}@{host}/{db}?charset=utf8'.format( id=config['id'], passwd=config['password'], host=config['host'], db=config['db'] ) engine = create_engine(access_info, convert_unicode=False) db_session = scoped_session(sessionmaker(autocommit=False, autoflush=False, bind=engine)) Base = declarative_base() Base.query = db_session.query_property() def init_db(): Base.metadata.create_all(engine)
miniyus/finance-data-auto-posting
fdap/app/tistory/__init__.py
<filename>fdap/app/tistory/__init__.py # Resolve dependency injection # use: from fdap.app.tistory import TistoryClient def service(): from fdap.app.tistory.tistory_client import TistoryClient, LoginInfo from fdap.config.config import Config config = Config.TISTORY api_config = config['api'] kakao_config = config['kakao'] client = TistoryClient(api_config['url'], config) login_info = LoginInfo( client_id=api_config['client_id'], client_secret=api_config['client_secret'], redirect_uri=api_config['redirect_uri'], response_type=api_config['response_type'], login_id=kakao_config['id'], login_password=<PASSWORD>_<PASSWORD>['password'], state=api_config['state'] ) client.login(login_info) return client
miniyus/finance-data-auto-posting
fdap.py
<gh_stars>0 # execute fdap from fdap.application import Application def run(app: Application): from fdap.database.database import init_db from fdap.app.autopost.autopost import AutoPost from fdap.app.tistory.tistory_client import TistoryClient init_db() tistory_login_info = app.get('tistory_login_info') tistory_client = app.get('tistory_client') if isinstance(tistory_client, TistoryClient): tistory_client.login(tistory_login_info) # print(tistory_client) service = app.get('auto_post') if isinstance(service, AutoPost): service.auto() # print(service) if __name__ == "__main__": import fdap fdap.app.bootstrap(run)
miniyus/finance-data-auto-posting
fdap/app/kiwoom/__init__.py
<filename>fdap/app/kiwoom/__init__.py # Resolve dependency injection # use: from fdap.app.kiwoom import KiwoomService def service(): from fdap.app.kiwoom.kiwoom_service import KiwoomService from fdap.config.config import Config return KiwoomService(Config.KOAPY['account']['id'], Config.KOAPY['account']['password'])
miniyus/finance-data-auto-posting
fdap/prototype/auto_post.py
from fdap.prototype.handler import Handler from fdap.app.autopost import instance class AutoPost(Handler): TAG: str = 'auto-post' @staticmethod def make_module(): return instance() def handle(self): module = self.make_module() # result = module.run( # Parameters( # sector_code='20', # sector_name='통신업', # year='2021', # quarter=3 # ) # ) result = module.auto() # kiwoom api 연결 종료를 위해... module.close() return result
miniyus/finance-data-auto-posting
fdap/app/autopost/autopost.py
<gh_stars>0 from fdap.contracts.service import Service from fdap.app.opendart.report_code import ReportCode from fdap.app.kiwoom.kiwoom_service import KiwoomService from fdap.app.opendart.opendart_service import OpenDartService from fdap.app.tistory.tistory_client import TistoryClient from fdap.app.kiwoom.basic_info import BasicInfo from fdap.app.refine.refine import Refine from fdap.app.infographic.table import Table from fdap.app.infographic.chart import Chart from fdap.definitions import RESOURCE_PATH from fdap.app.autopost.template import * from fdap.app.repositories.post_repository import PostsRepository from fdap.app.tistory.tistory_data import PostData from fdap.app.tistory.tistory_data import PostDto from fdap.app.autopost.parameters import Parameters from fdap.app.autopost.rotation import RotationSector, StockCondition from fdap.utils.util import get_quarter from typing import Dict, Union, List from datetime import datetime import os class AutoPost(Service): _kiwoom: KiwoomService _opendart: OpenDartService _tistory: TistoryClient _refine: Refine _repo: PostsRepository def __init__( self, kiwoom: KiwoomService, opendart: OpenDartService, tistory: TistoryClient, refine: Refine, repo: PostsRepository ): super().__init__() self._kiwoom = kiwoom self._opendart = opendart self._tistory = tistory self._refine = refine self._repo = repo def __del__(self): self.close() def close(self): self._kiwoom.disconnect() def _make_data(self, parameters: Parameters): sector = parameters.sector_code year = parameters.year q = ReportCode.get_by_index(parameters.quarter) condition = parameters.stock_condition self._logger.debug('make_data') stock_list = self._kiwoom.get_stock_list_by_sector(sector) self._logger.debug('stock_list: ' + str(len(stock_list))) corp_codes = [] for basic_info in stock_list: if isinstance(basic_info, BasicInfo): corp_code = self._opendart.get_corp_code_by_stock_code(basic_info.code) if corp_code is not None: corp_codes.append(corp_code.corp_code) collect = self._opendart.get_multi(corp_codes, year, q) self._logger.debug(f"finance_data: {str(len(collect))}") refine_collection = self._refine.refine_multiple(stock_list, collect) self._logger.debug(f"refine_data: {str(refine_collection.count())}") table = Table(refine_collection) df = table.make_dataframe(condition.value) if df is None: self._logger.debug('make_data is None') return None table_file_path = os.path.join(RESOURCE_PATH, f'{sector}_{year}_{q.value}_table.png') chart_dict = {} if table.save_img(table_file_path): chart = Chart(df) y_label = chart.get_ko_col_names() # y_label.pop('rank') y_label.pop('stock_name') y_label.pop('stock_code') for key, ko in y_label.items(): chart_file_path = os.path.join(RESOURCE_PATH, f'{sector}_{year}_{q.value}_{key}_chart.png') if chart.save_img(chart_file_path, '종목명', ko): chart_dict[ko] = chart_file_path return { 'table': table_file_path, 'chart': chart_dict } def _upload_file(self, file_path: str): with open(file_path, 'rb') as f: filename = os.path.basename(file_path) contents = f.read() res = self._tistory.apis().post().attach(filename, contents) return res['tistory']['url'] def _upload_images(self, upload_files: Dict[str, Union[str, Union[str, dict]]]) -> dict: self._logger.debug('ready for post') img_url = { 'table': None, 'chart': {} } if 'table' in upload_files: table = upload_files['table'] img_url['table'] = self._upload_file(table) if 'chart' in upload_files: chart_dict = upload_files['chart'] for ko, chart in chart_dict.items(): img_url['chart'][ko] = self._upload_file(chart) return img_url def run(self, parameters: Parameters) -> Union[int, None]: self._logger.debug(f"Parameters: {parameters.to_json()}") sector_name = parameters.sector_name sector = parameters.sector_code year = parameters.year report_code = ReportCode.get_by_index(parameters.quarter) stock_condition = parameters.stock_condition data = self._make_data(parameters) urls = self._upload_images(data) subject = make_subject(sector_name, year, str(ReportCode.get_index(report_code.value))) table = urls['table'] if stock_condition == StockCondition.UP: condition_txt = '상위' else: condition_txt = '하위' contents = Template( title=f'{sector_name} {condition_txt} 10개 종목', image={'name': f'{sector_name} {condition_txt} 10개 종목', 'src': table} ).make() for ko, chart in urls['chart'].items(): contents += Template( title=f'{sector_name}: {ko}', image={'name': f'{sector_name}: {ko}', 'src': chart}, description=f'{ko}: is test' ).make() post = PostData( title=subject, content=contents, visibility=0 ) post_api = self._tistory.apis().post() res = post_api.write(post) post_dto = PostDto(title=subject, content=contents) post_dto.sector = sector post_dto.report_code = report_code.value post_dto.year = year if post_api.is_success(): post_dto.url = res['tistory']['url'] post_dto.is_success = True else: post_dto.url = None post_dto.is_success = False return self._repo.create(post_dto) @staticmethod def _make_parameters(rotator: RotationSector) -> Parameters: date = datetime.now() quarter = get_quarter(date) - 1 report_code = ReportCode.get_by_index(quarter) sector = rotator.get_sector(str(date.year), report_code.value) return Parameters( sector_code=sector['code'], sector_name=sector['name'], year=str(date.year), quarter=quarter, stock_condition=sector['condition'] ) def auto(self, sector_list: List[dict] = None, rules: dict = None) -> Union[int, None]: if sector_list is None or len(sector_list) == 0: sector_list = self._kiwoom.get_sector_list() rotator = RotationSector(self._repo, sector_list, rules) parameter = self._make_parameters(rotator) return self.run(parameter)
miniyus/finance-data-auto-posting
fdap_manage/forms.py
from django import forms from abc import abstractmethod class ConfigForm(forms.Form): @abstractmethod def to_dict(self) -> dict: pass class KoapyForm(ConfigForm): kw_id = forms.CharField(label='koapy id') kw_pass = forms.CharField(label='koapy pass') def to_dict(self) -> dict: return { 'account': { 'id': self.data['kw_id'], 'password': self.data['kw_pass'] } } class DataBaseForm(ConfigForm): db_name = forms.CharField(label='db name') db_id = forms.CharField(label='db id') db_pass = forms.CharField(label='db pass') dbms = 'mysql' host = 'localhost' def to_dict(self) -> dict: return { self.dbms: { 'id': self.data['db_id'], 'password': <PASSWORD>['<PASSWORD>'], 'host': self.host, 'db': self.data['db_name'] } } class OpenDartForm(ConfigForm): op_key = forms.CharField(label='open dart api key') op_url = forms.CharField(label='open dart url') def to_dict(self) -> dict: return { 'api': { 'url': self.data['op_url'], 'api_key': self.data['op_key'] } } class TistoryForm(ConfigForm): kakao_id = forms.CharField() kakao_pass = forms.CharField() ts_url = forms.CharField() client_id = forms.CharField() client_secret = forms.CharField() redirect_uri = forms.CharField() blog_name = forms.CharField() driver = forms.CharField() confirm_btn = forms.CharField() kakao_login_link = forms.CharField() kakao_email_input = forms.CharField() kakao_pass_input = forms.CharField() kakao_login_submit = forms.CharField() USER_AGENT = "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/95.0.4638.54 Safari/537.36" def to_dict(self) -> dict: return { 'kakao': { 'id': self.data['kakao_id'], 'password': self.data['<PASSWORD>'] }, 'api': { 'url': self.data['ts_url'], 'client_id': self.data['client_id'], 'client_secret': self.data['client_secret'], 'redirect_uri': self.data['redirect_uri'], 'response_type': 'code', 'state': self.data['blog_name'], 'blog_name': self.data['blog_name'], 'user_agent': self.USER_AGENT, }, 'webdriver': { 'driver_name': self.data['driver'], 'confirm_btn': self.data['confirm_btn'], 'kakao_login_link': self.data['kakao_login_link'], 'kakao_email_input': self.data['kakao_email_input'], 'kakao_pass_input': self.data['kak<PASSWORD>pass_input'], 'kakao_login_submit': self.data['kakao_login_submit'] } } def get_form(module: str, data) -> ConfigForm: config_dict = { 'koapy': KoapyForm, 'opendart': OpenDartForm, 'database': DataBaseForm, 'tistory': TistoryForm } return config_dict[module](data)
miniyus/finance-data-auto-posting
fdap/contracts/core.py
<reponame>miniyus/finance-data-auto-posting from abc import ABC class Container(ABC): def run(self, **kwargs): pass
miniyus/finance-data-auto-posting
fdap/app/opendart/opendart_service.py
<reponame>miniyus/finance-data-auto-posting<filename>fdap/app/opendart/opendart_service.py import xmltodict import os from fdap.app.opendart.opendart_client import OpenDartClient from fdap.app.opendart.opendart_data import * from fdap.utils.util import currency_to_int from fdap.config.config import Config from fdap.app.opendart.report_code import ReportCode from fdap.contracts.service import Service from typing import List, Dict, Union class OpenDartService(Service): """ Open Dart Api """ Q1: ReportCode.Q1 = ReportCode.Q1 Q2: ReportCode.Q2 = ReportCode.Q2 Q3: ReportCode.Q3 = ReportCode.Q3 Q4: ReportCode.Q4 = ReportCode.Q4 QUARTERS: dict = ReportCode.__members__ _config: dict _client: OpenDartClient def __init__(self, url: str = None, api_key: str = None): """ :param url: open dart api access url :param api_key: open dart api key """ super().__init__() if url is None or api_key is None: self._config = Config.OPENDART url = self._config['api']['url'] api_key = self._config['api']['api_key'] self._client = OpenDartClient(host=url, api_key=api_key) self._logger.info('init: %s', __name__) def get_corp_codes(self) -> List[CorpCode]: """ 상장기업들의 고유코드 가져오기 :return: List[CorpCode] """ filename = 'CORPCODE.xml' self._logger.debug('get corp codes') if os.path.isfile(filename): self._logger.debug('exists CORPCODE.xml') with open(filename, 'r', encoding='utf-8') as f: corp_code_xml = f.read() corp_code_dict = xmltodict.parse(corp_code_xml).get('result').get('list') else: self._logger.debug('request open dart get corp-codes...') corp_code_dict = self._client.get_corp_codes() if self._client.is_success(): self._logger.debug('success request') else: self._logger.warning('fail request: %s', self._client.get_error()) return CorpCode().map_list(corp_code_dict) def get_corp_code_by_stock_code(self, stock_code: str) -> Union[CorpCode, None]: for corp_code in self.get_corp_codes(): if stock_code == corp_code.stock_code: return corp_code return None def get_single(self, corp_code: str, year: str, report_code: ReportCode) -> Union[Dict[str, AcntCollection], None]: self._logger.debug('request get single corp accounts') self._logger.debug(f"corp_code: {corp_code}, year: {year}, report_code: {report_code.value}") single_acnt = self._client.get_single(corp_code, year, report_code.value) if self._client.is_success(): self._logger.debug('success request') self._logger.debug('corp_code: ' + corp_code) else: self._logger.warning('fail request: %s', self._client.get_error()) single = None if isinstance(single_acnt, dict): if 'list' in single_acnt: single = self._div_by_stock(Acnt().map_list(single_acnt['list'])) return single def get_recent(self, corp_code: str, year: str, report_code: ReportCode) -> Union[Dict[str, AcntCollection], None]: single = self.get_single(corp_code, year, report_code) if single is None: max_count = 8 count = 0 while count < max_count: re_rc = ReportCode.sub(report_code.value, 1) if ReportCode.Q4 == re_rc: re_year = int(year) - 1 else: re_year = year single = self.get_single(corp_code, str(re_year), re_rc) if single is not None: return single count += 1 return single def get_multi(self, corp_codes: list, year: str, report_code: ReportCode) -> Dict[str, AcntCollection]: self._logger.debug('request get multiple corp accounts') multi = {} for corp_code in corp_codes: single = self.get_single(corp_code, year, report_code) if single is not None: multi.update(single) return multi def get_deficit_count(self, corp_code: str, year: str, count: int = 3): deficit_count = 0 for i in range(count): for q in self.QUARTERS.values(): acnt = self.get_single(corp_code, str(int(year) - i), q) if acnt is not None: for acnt_collect in acnt.values(): account = acnt_collect.get_by_account_nm('당기순') if account is not None: if account.thstrm_amount is not None: if currency_to_int(account.thstrm_amount) < 0: deficit_count += 1 return deficit_count @staticmethod def _div_by_stock(multi_acnt: List[Acnt]) -> Dict[str, AcntCollection]: rs_dict = {} for acnt in multi_acnt: if acnt.stock_code: if acnt.stock_code not in rs_dict: rs_dict[acnt.stock_code] = AcntCollection() rs_dict[acnt.stock_code].push(acnt) return rs_dict
miniyus/finance-data-auto-posting
fdap/app/opendart/finance_data.py
import dataclasses from fdap.app.opendart.opendart_service import OpenDartService from fdap.utils.data import BaseData from typing import Dict, Union from fdap.app.opendart.opendart_data import AcntCollection from fdap.utils.customlogger import CustomLogger from fdap.utils.util import currency_to_int @dataclasses.dataclass class FinanceData(BaseData): date: str = None reprt_code: str = None current_assets: int = 0 total_assets: int = 0 floating_debt: int = 0 total_debt: int = 0 total_capital: int = 0 net_income: int = 0 deficit_count: int = 0 flow_rate: float = 0.0 debt_rate: float = 0.0 pbr: float = 0.0 per: float = 0.0 roe: float = 0.0 @staticmethod def get_map_table() -> Dict[str, Dict[str, str]]: return { 'account_nm': { 'current_assets': '유동자산', 'total_assets': '자산총계', 'floating_debt': '유동부채', 'total_debt': '부채총계', 'total_capital': '자본총계', 'net_income': '당기순이익' } } def map(self, acnt: AcntCollection) -> __name__: """ :param acnt: List[Acnt] :return FinanceData: """ for key, name in self.get_map_table()['account_nm'].items(): account = acnt.get_by_account_nm(account_nm=name, fs_div='CFS') if account is None: account = acnt.get_by_account_nm(account_nm=name, fs_div='OFS') if account is not None: self.date = account.thstrm_dt self.reprt_code = account.reprt_code self.__setattr__(key, currency_to_int(account.thstrm_amount)) if '당기순' in account.account_nm.replace(' ', ''): od_service = OpenDartService() corp_code = od_service.get_corp_code_by_stock_code(account.stock_code) self.deficit_count = od_service.get_deficit_count(corp_code.corp_code, account.bsns_year) return self @staticmethod def __logger(): return CustomLogger.logger('automatic-posting', __name__) def calculate_flow_rate(self): """ 유동 비율: (유동자산 / 유동부채) * 100 Returns: FinanceData: """ try: self.flow_rate = round(self.current_assets / self.floating_debt * 100, 2) except ZeroDivisionError: logger = self.__logger() logger.debug('flow_rate:{} / {} * 100'.format(self.current_assets, self.floating_debt)) self.flow_rate = 0.0 return self def calculate_debt_rate(self): """ 부채비율: (부채총계 / 자산총계) * 100 Returns: FinanceData: """ try: self.debt_rate = round(self.total_debt / self.total_assets * 100, 2) except ZeroDivisionError: logger = self.__logger() logger.debug('debt_rate:{} / {} * 100'.format(self.total_debt, self.total_assets)) self.debt_rate = 0.0 return self def get_eps(self, issue_cnt: int) -> Union[int, float]: """ EPS: 당기순이익 / 발행주식수 Args: issue_cnt: 발행 주식 수 Returns: Union[int, float]: """ try: return round(self.net_income / issue_cnt, 2) except ZeroDivisionError: logger = self.__logger() logger.debug('eps: {} / {}'.format(self.net_income, issue_cnt)) return 0 def calculate_per(self, current_price: int, issue_cnt: int): """ PER: 주가 / EPS(순이익/발행주식수) Args: current_price: 현재가(주가) issue_cnt: 발행주식수 Returns: """ try: self.per = round(current_price / self.get_eps(issue_cnt), 2) except ZeroDivisionError: logger = self.__logger() logger.debug('per:{} / ({} / {})'.format(current_price, self.net_income, issue_cnt)) self.per = 0.0 return self def get_bps(self, issue_cnt) -> Union[int, float]: """ BPS: (자산총계 - 부채총계) / 발행주식수 Args: issue_cnt: Returns: Union[int, float] """ try: return round((self.current_assets - self.total_debt) / issue_cnt, 2) except ZeroDivisionError: logger = self.__logger() logger.debug('bps:({} - {}) / {})'.format(self.current_assets, self.total_debt, issue_cnt)) def calculate_pbr(self, current_price: int, issue_cnt: int): """ PBR: 주가 / BPS((자산총계 - 부채총계) / 발행주식수) Args: current_price: issue_cnt: Returns: """ try: self.pbr = round(current_price / self.get_bps(issue_cnt), 2) except ZeroDivisionError: logger = self.__logger() logger.debug( 'pbr:{} / (({} - {}) / {})'.format(current_price, self.current_assets, self.total_debt, issue_cnt)) self.pbr = 0.0 return self def calculate_roe(self, current_price: int, issue_cnt: int): """ ROE: PBR / PER Returns: """ try: if self.pbr and self.per: self.roe = round(self.pbr / self.per, 2) else: self.calculate_per(current_price, issue_cnt) self.calculate_pbr(current_price, issue_cnt) self.roe = round(self.pbr / self.per, 2) except ZeroDivisionError: logger = self.__logger() logger.debug( 'roe:({} / {}) * 100'.format(self.net_income, self.total_capital)) self.roe = 0.0 return self
miniyus/finance-data-auto-posting
fdap/app/opendart/report_code.py
<reponame>miniyus/finance-data-auto-posting from enum import Enum, unique @unique class ReportCode(Enum): Q1 = '11013' Q2 = '11012' Q3 = '11014' Q4 = '11011' @classmethod def get_by_str(cls, q: str) -> __name__: for k, v in cls.__members__.items(): if q == v.value: return v @classmethod def get_by_index(cls, i: int) -> __name__: for k, v in enumerate(cls.__members__.values()): if k + 1 == i: return v @classmethod def get_index(cls, q: str) -> int: for idx, v in enumerate(cls.__members__.values()): if v.value == q: return idx + 1 @classmethod def sub(cls, quarter: str, sub_num: int) -> __name__: has_attr = False for q in cls.__members__.values(): if quarter == q.value: has_attr = True if has_attr is False: raise AttributeError(quarter + ' has not attribute') if sub_num >= 4: remainder = sub_num % 4 return cls.sub(quarter, remainder) member_list = list(cls.__members__) rs = 0 for idx, member in enumerate(member_list): if cls.__members__[member].value == quarter: if idx == 0: if sub_num != 0: tmp = sub_num - 1 rs = (len(cls.__members__) - 1) - tmp else: rs = idx else: rs = idx - sub_num print(rs) return cls.__members__[member_list[rs]]
miniyus/finance-data-auto-posting
fdap/contracts/blog_client.py
from abc import ABC, abstractmethod from dataclasses import dataclass from fdap.app.client.client import Client from typing import Dict @dataclass(frozen=False) class BlogPostData(ABC): title: str content: str @dataclass(frozen=True) class BlogLoginInfo(ABC): login_id: str login_password: str class BlogResource(ABC, Client): access_token: str = None _resource: str _config: Dict[str, any] def __init__(self, host: str, config: Dict[str, any]): super().__init__(host) self._config = config def set_access_token(self, access_token: str): self.access_token = access_token class BlogPost(BlogResource): @abstractmethod def list(self): pass @abstractmethod def write(self, data: BlogPostData): pass @abstractmethod def modify(self, data: BlogPostData): pass @abstractmethod def attach(self, filename: str, content: str): pass class BlogEndPoint(ABC, Client): _end_point: str _resources: Dict[type, BlogResource] = {} _classes: Dict[str, type] = {} _config: Dict[str, any] = {} access_token: str = None def __init__(self, host: str, config: dict): super().__init__(host) self._config = config def set_resource(self, name: type, res: BlogResource): self._resources[name] = res return self def get_resource(self, name: type): return self._resources[name] def set_access_token(self, access_token: str): self.access_token = access_token for cls in self._classes.values(): resource = self.get_resource(cls) if isinstance(resource, BlogResource): resource.set_access_token(self.access_token) class BlogClient(ABC, Client): _end_points: Dict[type, BlogEndPoint] = {} _classes: Dict[str, type] = {} _config: Dict[str, any] = {} access_token: str def __init__(self, host: str, config: dict): super().__init__(host) self._config = config @abstractmethod def login(self, obj: object): pass def set_end_point(self, name: type, end_point: BlogEndPoint): self._end_points[name] = end_point return self def get_end_point(self, name: type = None): if name is None: return self._end_points if name in self._end_points: return self._end_points[name] return None def set_access_token(self, access_token: str): self.access_token = access_token for cls in self._classes.values(): end_point = self.get_end_point(cls) if isinstance(end_point, BlogEndPoint): end_point.set_access_token(self.access_token) class BlogLogin(BlogEndPoint): @abstractmethod def login(self, login_info: BlogLoginInfo): pass
miniyus/finance-data-auto-posting
fdap/app/autopost/parameters.py
<reponame>miniyus/finance-data-auto-posting from fdap.app.autopost.rotation import StockCondition from fdap.utils.data import BaseData from dataclasses import dataclass @dataclass class Parameters(BaseData): sector_name: str sector_code: str year: str quarter: int stock_condition: StockCondition
miniyus/finance-data-auto-posting
fdap/config/config.py
<filename>fdap/config/config.py from fdap.utils.util import config_json class Config: DATABASE: dict = config_json('database') KOAPY: dict = config_json('koapy') LOGGER: dict = config_json('logger') OPENDART: dict = config_json('opendart') TISTORY: dict = config_json('tistory') @classmethod def all(cls) -> dict: return { 'database': cls.DATABASE, 'koapy': cls.KOAPY, 'logger': cls.LOGGER, 'opendart': cls.OPENDART, 'tistory': cls.TISTORY } @classmethod def get(cls, name: str) -> dict: return cls.all()[name]
miniyus/finance-data-auto-posting
fdap/app/tistory/webdriver.py
from fdap.contracts.blog_client import BlogLoginInfo from fdap.contracts.webdriver import WebDriverHandler as Handler from fdap.utils.loggeradapter import LoggerAdapter from fdap.utils.util import get_query_str_dict from selenium.webdriver.common.by import By from selenium.webdriver.remote.webelement import WebElement from selenium.webdriver.remote.webdriver import WebDriver from dataclasses import dataclass import time import selenium.common.exceptions @dataclass() class CustomElement: by: str value: str action: str func: str = 'find_element' class WebDriverController: _history: list _web_driver: WebDriver def __init__(self, driver: WebDriver): self._web_driver = driver def add_element(self, element: CustomElement): class_method = getattr(WebDriver, element.func) obj = class_method(self._web_driver, element.by, element.value) if isinstance(obj, WebElement): obj_method = getattr(obj, element.action) self._history.append(obj_method(obj)) return self def add(self, func_name, **kwargs): class_method = getattr(WebDriver, func_name) self._history.append(class_method(self._web_driver, **kwargs)) return self def get_history(self): return self._history class CustomHandler(Handler): TYPES = [ 'element', 'function' ] FUNCS = [ 'find_element', 'get' ] _dynamic: list = [ { 'type': 'element', 'name': 'find_element', 'by': 'css selector', 'value': '.confirm', 'action': 'click' }, { 'type': 'function', 'name': 'get', 'args': { 'url': 'url' } } ] def __init__( self, web_driver: WebDriver, logger: LoggerAdapter, config_list: list = None, ): super().__init__(web_driver, logger) self._dynamic = config_list def handle(self): controller = WebDriverController(self._web_driver) for item in self._dynamic: if item['name'] not in self.FUNCS: self._logger.warning(f"{item['name']} is not support function") continue if item['type'] not in self.TYPES: self._logger.warning(f"{item['type']} is not support type") continue elif item['type'] == 'element': controller.add_element( CustomElement( by=item['by'], value=item['value'], action=item['action'], func=item['name'] ) ) else: controller.add(func_name=item['name'], **item['args']) return controller.get_history() class WebDriverHandler(Handler): _web_driver: WebDriver _logger: LoggerAdapter _config: dict _login_data: BlogLoginInfo def handle(self): try: element = self._web_driver.find_element(By.CSS_SELECTOR, self._config['confirm_btn']) element.click() except selenium.common.exceptions.NoSuchElementException as e: self._logger.warning('No Such Element 1: confirm_btn') self._logger.warning(e.msg) try: self._web_driver.find_element(By.CSS_SELECTOR, self._config['kakao_login_link']).click() self._logger.info('redirect kakao login: ' + self._web_driver.current_url) except selenium.common.exceptions.NoSuchElementException as e: self._logger.warning('fail redirect kakao login: ' + self._web_driver.current_url) self._logger.warning(e.msg) try: self._web_driver.get(self._web_driver.current_url) self._logger.info('request: ' + self._web_driver.current_url) except selenium.common.exceptions.NoSuchElementException as e: self._logger.warning(e.stacktrace) self._logger.info('sleep 3s') time.sleep(3) try: self._web_driver.find_element(By.CSS_SELECTOR, self._config['kakao_email_input']) \ .send_keys(self._login_data.login_id) self._logger.info('input email') time.sleep(1) self._web_driver.find_element(By.CSS_SELECTOR, self._config['kakao_pass_input']) \ .send_keys(self._login_data.login_password) self._logger.info('input password') self._web_driver.find_element(By.CSS_SELECTOR, self._config['kakao_login_submit']).click() self._logger.info('submit login form') self._logger.info('sleep 3s') time.sleep(3) except selenium.common.exceptions.NoSuchElementException as e: self._logger.warning(e.msg) try: self._web_driver.find_element(By.CSS_SELECTOR, self._config['confirm_btn']).click() self._logger.info('success login: ' + self._web_driver.current_url) except selenium.common.exceptions.NoSuchElementException as e: self._logger.warning('fail login: ' + self._web_driver.current_url) url = self._web_driver.current_url self._logger.info('close webdriver') return get_query_str_dict(url)
miniyus/finance-data-auto-posting
fdap/core/containter.py
from dependency_injector import containers, providers from fdap.app.kiwoom.kiwoom_service import KiwoomService from fdap.app.opendart.opendart_service import OpenDartService from fdap.app.refine.refine import Refine from fdap.database.database import db_session from fdap.app.repositories.post_repository import PostsRepository from fdap.app.tistory.tistory_client import TistoryClient, LoginInfo from fdap.app.autopost.autopost import AutoPost class Container(containers.DeclarativeContainer): config = providers.Configuration() # database database = providers.Singleton(db_session) # Services kiwoom_service = providers.Singleton( KiwoomService, _id=config.koapy.account.id, password=<PASSWORD> ) opendart_service = providers.Singleton( OpenDartService, url=config.opendart.api.url, api_key=config.opendart.api.api_key ) refine = providers.Singleton( Refine ) post_repository = providers.Singleton( PostsRepository, session=database ) tistory_login_info = providers.Singleton( LoginInfo, client_id=config.tistory.api.client_id, client_secret=config.tistory.api.client_secret, redirect_uri=config.tistory.api.redirect_uri, response_type=config.tistory.api.response_type, login_id=config.tistory.kakao.id, login_password=<PASSWORD>, state=config.tistory.api.state ) tistory_client = providers.Singleton( TistoryClient, host=config.tistory.api.url, config=config.tistory ) auto_post = providers.Singleton( AutoPost, kiwoom=kiwoom_service, opendart=opendart_service, refine=refine, tistory=tistory_client, repo=post_repository )
miniyus/finance-data-auto-posting
fdap/app/tistory/tistory_client.py
<filename>fdap/app/tistory/tistory_client.py import requests from typing import Union from fdap.utils.util import make_url from selenium import webdriver from fdap.definitions import ROOT_DIR from fdap.utils.customlogger import CustomLogger from fdap.app.tistory.tistory_data import * from fdap.app.tistory.webdriver import WebDriverHandler from fdap.contracts.blog_client import * class TistoryLogin(BlogLogin): _end_point = '/oauth' def __init__(self, host, config: dict): super().__init__(host=host, config=config['webdriver']) self._logger = CustomLogger.logger('automatic-posting', __name__) def login(self, login_info: LoginInfo) -> Union[None, dict]: res = self._authorize(login_info) if 'code' in res: self._logger.info('code: ' + res['code']) req = AccessTokenRequest( client_id=login_info.client_id, client_secret=login_info.client_secret, redirect_uri=login_info.redirect_uri, code=res['code'] ) token = self._access_token(req) else: self._logger.warning('fail issue token') return None [name, token] = token.split('=') self._logger.debug(name + ': ' + token) self.access_token = token return {name: self.access_token} def _access_token(self, req: AccessTokenRequest): self._logger.info('request access_token') method = self._end_point + '/access_token' url = make_url(self.get_host(), method, { 'client_id': req.client_id, 'client_secret': req.client_secret, 'redirect_uri': req.redirect_uri, 'code': req.code, 'grant_type': req.grant_type }) self._logger.debug(url) return self._set_response(requests.get(url, verify=False)) def _authorize(self, login_info: LoginInfo): options = webdriver.ChromeOptions() # options.add_argument('--headless') web_driver = webdriver.Chrome(executable_path=ROOT_DIR + '\\' + self._config['driver_name'], chrome_options=options) handler = WebDriverHandler( web_driver, self._logger, self._config, login_info ) url = self.get_host() method = self._end_point + '/authorize' url = make_url(url, method, { 'client_id': login_info.client_id, 'redirect_uri': login_info.redirect_uri, 'response_type': login_info.response_type, 'state': login_info.state }) return handler.run(url) class Post(BlogPost): blog_name: str _resource: str = '/post' _user_agent: Dict[str, str] = { 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/95.0.4638.54 Safari/537.36' } def __init__(self, host: str, config: Dict[str, any]): super().__init__(host=host, config=config['api']) self.blog_name = self._config['blog_name'] if self._config['user_agent'] is not None: self._user_agent = {'User-Agent': self._config['user_agent']} self._logger = CustomLogger.logger('automatic-posting', __name__) def list(self, page: int = 1): method = self._resource + '/list' url = make_url(self.get_host(), method, { 'access_token': self.access_token, 'blogName': self.blog_name, 'output': 'json', 'page': page }) self._logger.debug(url) return self._set_response(requests.get(url, verify=False)) def read(self, post_id: int): method = self._resource + '/read' url = make_url(self.get_host(), method, { 'access_token': self.access_token, 'blogName': self.blog_name, 'postId': post_id }) return self._set_response(requests.get(url, verify=False)) def write(self, post: BlogPostData): method = self._resource + '/write' post_data = post.__dict__ post_data.update({ 'access_token': self.access_token, 'blogName': self.blog_name, 'output': 'json' }) url = make_url(self.get_host(), method) return self._set_response(requests.post(url, data=post_data, headers=self._user_agent, verify=False)) def modify(self, obj: BlogPostData): pass def attach(self, filename: str, contents: bytes): method = self._resource + '/attach' files = {'uploadedfile': contents} url = make_url(self.get_host(), method, { 'access_token': self.access_token, 'blogName': self.blog_name, 'output': 'json' }) return self._set_response(requests.post(url, files=files, headers=self._user_agent, verify=False)) class Apis(BlogEndPoint): blog_name: str _end_point = '/apis' _classes = { 'post': Post } def __init__(self, host, config: Dict[str, any]): super().__init__(host, config) for name, cls in self._classes.items(): res = cls(host + self._end_point, config) self.set_resource(res.__class__, res) def set_post(self, post_api: Post): self.set_resource(post_api.__class__, post_api) return self def post(self) -> Post: return self.get_resource(self._classes['post']) class TistoryClient(BlogClient): _config: dict # 의존성 바인딩 # 정의된 클래스가 아니면 가져올 수 없다. # 해당 프로퍼티를 수정하여 다형성을 만족시킬 수 있다. _classes: Dict[str, type] = { 'login': TistoryLogin, 'apis': Apis } access_token: str = None def __init__(self, host: str, config: Dict[str, any]): super().__init__(host=host, config=config) self._config = config self._logger = CustomLogger.logger('automatic-posting', __name__) for name, cls in self._classes.items(): end_point = cls(host, config) self.set_end_point(end_point.__class__, end_point) def set_login(self, login: TistoryLogin): return self.set_end_point(login.__class__, login) def login(self, login_info: LoginInfo) -> Union[Dict[str, str], None]: login = self.get_end_point(self._classes['login']) if isinstance(login, BlogLogin): login.login(login_info) self.set_access_token(login.access_token) return {'access_token': self.access_token} return None def set_apis(self, apis: Apis): return self.set_end_point(apis.__class__, apis) def apis(self) -> Apis: return self.get_end_point(self._classes['apis'])
miniyus/finance-data-auto-posting
fdap/app/refine/__init__.py
# Resolve dependency injection # use: from fdap.app.refine import Refine def service(): from fdap.app.refine.refine import Refine return Refine()
miniyus/finance-data-auto-posting
fdap/app/autopost/__init__.py
# Resolve dependency injection # use: from fdap.app.autopost import AutoPost def service(): from fdap.app.autopost.autopost import AutoPost from fdap.app.kiwoom import service as kiwoom from fdap.app.opendart import service as opendart from fdap.app.refine import service as refine from fdap.app.tistory import service as tistory from fdap.app.repositories.post_repository import PostsRepository return AutoPost( kiwoom=kiwoom(), opendart=opendart(), refine=refine(), tistory=tistory(), repo=PostsRepository() )
miniyus/finance-data-auto-posting
fdap_manage/models.py
<gh_stars>0 from django.db import models # Create your models here. class Posts(models.Model): post_id = models.AutoField(primary_key=True) post_subject = models.CharField(max_length=255, null=False) post_contents = models.TextField(null=False) post_category = models.CharField(max_length=255, null=True) post_tags = models.CharField(max_length=255, null=True) post_sector = models.CharField(max_length=255, null=False) post_year = models.CharField(max_length=255, null=False) report_code = models.CharField(max_length=10, null=False) stock_condition = models.IntegerField(default=1, null=True) is_success = models.BooleanField(default=False, null=False) post_url = models.CharField(max_length=255, null=True) created_at = models.DateTimeField(null=True)
miniyus/finance-data-auto-posting
fdap/app/client/client.py
<reponame>miniyus/finance-data-auto-posting import requests import json from typing import Union from fdap.contracts.logging import Logging class Client(Logging): """ requests wrapper """ def __init__(self, host: str = None): """ Args: host(str): 요청할 웹 서버의 호스트정보(URL), ex) https://www.example.com """ super().__init__() self._host = host self._response = None self._error = {} def is_success(self) -> bool: """ 응답의 성공여부 확인 Returns: bool: 응답 상태 코드가 200번대이면 True, 아니면 False """ if self._response is None: return False elif isinstance(self._response, requests.Response): if self._response.status_code == requests.codes.ok: return True return False def _set_response(self, response: requests.Response) -> Union[str, dict]: """ 응답 객체 결과 등록 및 에러 유무 체크 Args: response(requests.Response): requests를 통해 받은 응답을 현재 wrapper에 등록하여 에러 체크 및 응답 결과를 json 혹은 text로 변환 Returns: Union[str, dict] """ self._response = response if self.is_success(): try: return self._response.json() except json.decoder.JSONDecodeError: return self._response.text else: self._error['status_code'] = self._response.status_code self._error['message'] = self._response.text return self._response.text def get_error(self) -> dict: """ _set_response 메서드에서 등록된 에러를 출력 Returns: dict: 'status_code': 응답 코드, 'message': 응답 메세지 """ return self._error def get_response(self) -> requests.Response: """ requests 패키지에서 받은 응답 객체 가져오기 Returns: requests.Response: 응답 객체 원본 """ return self._response def get_host(self) -> str: """ host 가져오기 getter Returns: str: ex) https://www.example.com """ return self._host def set_host(self, host: str): """ Args: host(str): 호스트 정보 입력 setter Returns: Client: """ self._host = host return self
AndyKhang404/noimport
noimport.py
import sys #No importing sys.path = [] sys.meta_path = [] for key in sys.modules.keys(): sys.modules[key] = None sys.builtin_module_names = [] sys.path_hooks = [] for key in sys.path_importer_cache.keys(): sys.path_importer_cache[key] = None
UBC-MDS/game_sales
src/platforms.py
import altair as alt import pandas as pd import numpy as np alt.data_transformers.disable_max_rows() sales = pd.read_csv("data/raw/vgsales.csv") def plotPlatforms(top_val, daterange): top_platforms = sales["Platform"].value_counts().head(int(top_val)).index.tolist() top_platforms_df = sales.query("Platform in @top_platforms").head(4900) top_platforms_df = top_platforms_df.loc[(top_platforms_df['Year'] > daterange[0]) & (top_platforms_df['Year'] < daterange[1])] chart = alt.Chart(top_platforms_df, title='Game Copies Sold by Platform').mark_bar().encode( x=alt.X("count()", title='Copies Sold (M)'), y=alt.Y("Platform", sort="-x") ) return chart.to_html()
SimonBoothroyd/beflow
beflow/services/coordinator/models.py
from typing import List, Optional from openff.bespokefit.schema.fitting import BespokeOptimizationSchema from pydantic import BaseModel, Field from beflow.services.coordinator.stages import StageType from beflow.utilities.typing import Status class CoordinatorGETStageStatus(BaseModel): stage_type: str = Field(..., description="") stage_status: Status = Field(..., description="") stage_error: Optional[str] = Field(..., description="") stage_ids: Optional[List[str]] = Field(..., description="") @classmethod def from_stage(cls, stage: StageType): stage_ids = stage.id if hasattr(stage, "id") else stage.ids if isinstance(stage_ids, str): stage_ids = [stage_ids] elif isinstance(stage_ids, dict): stage_ids = [ stage_id for dict_values in stage_ids.values() for stage_id in dict_values ] return CoordinatorGETStageStatus( stage_type=stage.type, stage_status=stage.status, stage_error=stage.error, stage_ids=stage_ids, ) class CoordinatorGETResponse(BaseModel): optimization_id: str = Field( ..., description="The ID associated with the bespoke optimization." ) smiles: str = Field(..., description="") stages: List[CoordinatorGETStageStatus] = Field(..., description="") @classmethod def from_task(cls, task: "CoordinatorTask"): stages = [ CoordinatorGETStageStatus.from_stage(stage) for stage in task.pending_stages + task.completed_stages ] if task.running_stage is not None: stages.insert( len(task.pending_stages), CoordinatorGETStageStatus.from_stage(task.running_stage), ) return CoordinatorGETResponse( optimization_id=task.id, smiles=task.input_schema.smiles, stages=stages, ) class CoordinatorPOSTBody(BaseModel): input_schema: BespokeOptimizationSchema = Field(..., description="") class CoordinatorPOSTResponse(BaseModel): optimization_id: str = Field( ..., description="The ID associated with the optimization." ) class CoordinatorTask(BaseModel): """An internal model that tracks a task (i.e. a bespoke optimization) that is being executed by the executor. """ id: str = Field(..., description="The unique ID associated with this task.") input_schema: BespokeOptimizationSchema = Field(..., description="") pending_stages: List[StageType] = Field(..., description="") running_stage: Optional[StageType] = Field(None, description="") completed_stages: List[StageType] = Field([], description="") @property def status(self) -> Status: if any(stage.status == "errored" for stage in self.completed_stages): return "errored" if len(self.pending_stages) > 0 or self.running_stage is not None: return "running" return "success"
SimonBoothroyd/beflow
beflow/tests/services/qcgenerator/test_app.py
from typing import List import numpy import pytest from celery.result import AsyncResult from openff.bespokefit.schema.tasks import HessianTask, OptimizationTask, Torsion1DTask from openff.toolkit.topology import Molecule from pydantic import parse_raw_as from qcelemental.models import AtomicResult, AtomicResultProperties, DriverEnum from qcelemental.models.common_models import Model, Provenance from beflow.services.qcgenerator import worker from beflow.services.qcgenerator.app import _retrieve_qc_result from beflow.services.qcgenerator.models import ( QCGeneratorGETResponse, QCGeneratorPOSTBody, QCGeneratorPOSTResponse, ) from beflow.tests.mocking.celery import mock_celery_task @pytest.fixture() def mock_atomic_result() -> AtomicResult: molecule: Molecule = Molecule.from_smiles("C") molecule.generate_conformers(n_conformers=1) return AtomicResult( molecule=molecule.to_qcschema(), driver=DriverEnum.hessian, model=Model(method="rdkit", basis=None), return_result=5.2, success=True, provenance=Provenance(creator="pytest"), properties=AtomicResultProperties(), ) @pytest.mark.parametrize( "task_status, task_result, expected_state", [ ("PENDING", {}, "waiting"), ("STARTED", {}, "running"), ("FAILURE", {"error_message": "error"}, "errored"), ], ) def test_retrieve_qc_result_pending_running_errored( redis_connection, monkeypatch, task_status, task_result, expected_state ): monkeypatch.setattr( AsyncResult, "_get_task_meta", lambda self: {"status": task_status, "result": task_result}, ) redis_connection.hset("qcgenerator:types", "1", "torsion1d") result = QCGeneratorGETResponse.parse_obj(_retrieve_qc_result("1", True)) assert result.qc_calc_status == expected_state assert result.qc_calc_result is None assert result.qc_calc_type == "torsion1d" assert result.qc_calc_id == "1" def test_retrieve_qc_result_success( qcgenerator_client, redis_connection, monkeypatch, mock_atomic_result ): monkeypatch.setattr( AsyncResult, "_get_task_meta", lambda self: {"status": "SUCCESS", "result": mock_atomic_result.json()}, ) redis_connection.hset("qcgenerator:types", "1", "hessian") result = QCGeneratorGETResponse.parse_obj(_retrieve_qc_result("1", True)) assert result.qc_calc_status == "success" assert result.qc_calc_result is not None assert result.qc_calc_type == "hessian" assert result.qc_calc_id == "1" assert result.qc_calc_result.driver == DriverEnum.hessian assert numpy.isclose(result.qc_calc_result.return_result, 5.2) def test_get_qc_result( qcgenerator_client, redis_connection, monkeypatch, mock_atomic_result ): monkeypatch.setattr( AsyncResult, "_get_task_meta", lambda self: {"status": "SUCCESS", "result": mock_atomic_result.json()}, ) redis_connection.hset("qcgenerator:types", "1", "hessian") request = qcgenerator_client.get("/qc-calc/1") request.raise_for_status() result = QCGeneratorGETResponse.parse_raw(request.text) assert result.qc_calc_status == "success" assert result.qc_calc_result is not None assert result.qc_calc_type == "hessian" assert result.qc_calc_id == "1" assert result.qc_calc_result.driver == DriverEnum.hessian assert numpy.isclose(result.qc_calc_result.return_result, 5.2) @pytest.mark.parametrize( "task, compute_function", [ ( Torsion1DTask( smiles="[CH2:1][CH2:2]", central_bond=(1, 2), program="rdkit", model=Model(method="uff", basis=None), ), "compute_torsion_drive", ), ( OptimizationTask( smiles="[CH2:1][CH2:2]", n_conformers=1, program="rdkit", model=Model(method="uff", basis=None), ), "compute_optimization", ), ( HessianTask( smiles="[CH2:1][CH2:2]", program="rdkit", model=Model(method="uff", basis=None), ), "compute_hessian", ), ], ) def test_post_qc_result( qcgenerator_client, redis_connection, monkeypatch, task, compute_function ): submitted_task_kwargs = mock_celery_task(worker, compute_function, monkeypatch) request = qcgenerator_client.post( "/qc-calc", data=QCGeneratorPOSTBody(input_schema=task).json() ) request.raise_for_status() assert submitted_task_kwargs["task_json"] == task.json() assert redis_connection.hget("qcgenerator:types", "1").decode() == task.type result = QCGeneratorPOSTResponse.parse_raw(request.text) assert result.qc_calc_id == "1" @pytest.mark.parametrize("include_result", [True, False]) def test_get_qc_results( qcgenerator_client, redis_connection, monkeypatch, mock_atomic_result, include_result, ): monkeypatch.setattr( AsyncResult, "_get_task_meta", lambda self: {"status": "SUCCESS", "result": mock_atomic_result.json()}, ) redis_connection.hset("qcgenerator:types", "1", "hessian") redis_connection.hset("qcgenerator:types", "2", "hessian") request = qcgenerator_client.get( f"/qc-calcs?ids=1&ids=2&results={str(include_result).lower()}" ) request.raise_for_status() results = parse_raw_as(List[QCGeneratorGETResponse], request.text) assert len(results) == 2 for i, result in enumerate(results): assert result.qc_calc_status == "success" assert (result.qc_calc_result is not None) == include_result assert result.qc_calc_type == "hessian" assert result.qc_calc_id == f"{i + 1}"
SimonBoothroyd/beflow
beflow/utilities/depiction.py
import functools from typing import Optional, Tuple IMAGE_UNAVAILABLE_SVG = """ <svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" style="isolation:isolate" viewBox="0 0 200 200" width="200pt" height="200pt"><defs><clipPath id="_clipPath_eSdCSpw1sB1xWp7flmMoZ0WjTPwPpzQh"><rect width="200" height="200"/></clipPath></defs><g clip-path="url(#_clipPath_eSdCSpw1sB1xWp7flmMoZ0WjTPwPpzQh)"><g clip-path="url(#_clipPath_LvpdWbrYj1cREqoXz8Lwbk3ZilfC6tg9)"><text transform="matrix(1,0,0,1,44.039,91.211)" style="font-family:'Open Sans';font-weight:400;font-size:30px;font-style:normal;fill:#000000;stroke:none;">Preview</text><text transform="matrix(1,0,0,1,17.342,132.065)" style="font-family:'Open Sans';font-weight:400;font-size:30px;font-style:normal;fill:#000000;stroke:none;">Unavailable</text></g><defs><clipPath id="_clipPath_LvpdWbrYj1cREqoXz8Lwbk3ZilfC6tg9"><rect x="0" y="0" width="166" height="81.709" transform="matrix(1,0,0,1,17,59.146)"/></clipPath></defs></g></svg> """ def _oe_smiles_to_image(smiles: str, highlight_atoms: Tuple[int]) -> str: from openeye import oechem, oedepict image = oedepict.OEImage(200, 200) opts = oedepict.OE2DMolDisplayOptions(200, 200, oedepict.OEScale_AutoScale) opts.SetAromaticStyle(oedepict.OEAromaticStyle_Circle) opts.SetMargins(5) oe_molecule = oechem.OEGraphMol() oechem.OESmilesToMol(oe_molecule, smiles) highlighted_atoms = [ atom for atom in oe_molecule.GetAtoms() if atom.GetMapIdx() > 0 and atom.GetMapIdx() in highlight_atoms ] for atom in oe_molecule.GetAtoms(): atom.SetMapIdx(0) oedepict.OEPrepareDepiction(oe_molecule) display = oedepict.OE2DMolDisplay(oe_molecule, opts) highlighted_set = oechem.OEAtomBondSet() for atom in highlighted_atoms: highlighted_set.AddAtom(atom) oedepict.OEAddHighlighting( display, oechem.OEColor(oechem.OELimeGreen), oedepict.OEHighlightStyle_BallAndStick, highlighted_set, ) oedepict.OERenderMolecule(image, display) svg_content = oedepict.OEWriteImageToString("svg", image) return svg_content.decode() def _rd_smiles_to_image(smiles: str, highlight_atoms: Tuple[int]) -> str: from rdkit import Chem from rdkit.Chem.Draw import rdMolDraw2D smiles_parser = Chem.rdmolfiles.SmilesParserParams() smiles_parser.removeHs = True rdkit_molecule = Chem.MolFromSmiles(smiles, smiles_parser) highlight_atom_indices = [ atom.GetIdx() for atom in rdkit_molecule.GetAtoms() if atom.GetAtomMapNum() in highlight_atoms ] for atom in rdkit_molecule.GetAtoms(): atom.SetAtomMapNum(0) if not rdkit_molecule.GetNumConformers(): Chem.rdDepictor.Compute2DCoords(rdkit_molecule) drawer = rdMolDraw2D.MolDraw2DSVG(200, 200, 150, 200) drawer.drawOptions().padding = 0.05 drawer.SetOffset(25, 0) drawer.DrawMolecule(rdkit_molecule, highlightAtoms=highlight_atom_indices) drawer.FinishDrawing() svg_content = drawer.GetDrawingText() return svg_content @functools.lru_cache(100000) def smiles_to_image(smiles: str, highlight_atoms: Optional[Tuple[int]] = None): highlight_atoms = tuple() if highlight_atoms is None else highlight_atoms try: return _oe_smiles_to_image(smiles, highlight_atoms) except (ModuleNotFoundError, ImportError): return _rd_smiles_to_image(smiles, highlight_atoms)
SimonBoothroyd/beflow
beflow/tests/services/optimizer/test_app.py
from celery.result import AsyncResult from openff.bespokefit.schema.fitting import BespokeOptimizationSchema from openff.bespokefit.schema.optimizers import ForceBalanceSchema from openff.bespokefit.schema.results import BespokeOptimizationResults from openff.fragmenter.fragment import WBOFragmenter from beflow.services.optimizer import worker from beflow.services.optimizer.models import ( OptimizerGETResponse, OptimizerPOSTBody, OptimizerPOSTResponse, ) from beflow.tests.mocking.celery import mock_celery_task def test_get_optimize(optimizer_client, redis_connection, monkeypatch): mock_optimization_result = BespokeOptimizationResults( provenance={}, status="running" ) monkeypatch.setattr( AsyncResult, "_get_task_meta", lambda self: {"status": "SUCCESS", "result": mock_optimization_result.json()}, ) request = optimizer_client.get("/optimizer/1") request.raise_for_status() result = OptimizerGETResponse.parse_raw(request.text) assert result.optimization_status == "success" assert result.optimization_result is not None assert result.optimization_id == "1" assert result.optimization_result.status == mock_optimization_result.status assert result.optimization_result.provenance == mock_optimization_result.provenance def test_post_optimize(optimizer_client, redis_connection, monkeypatch): submitted_task_kwargs = mock_celery_task(worker, "optimize", monkeypatch) input_schema = BespokeOptimizationSchema( smiles="CC", initial_force_field="openff-2.0.0.offxml", parameters=[], parameter_hyperparameters=[], fragmentation_engine=WBOFragmenter(), targets=[], optimizer=ForceBalanceSchema(max_iterations=1), ) request = optimizer_client.post( "/optimizer", data=OptimizerPOSTBody(input_schema=input_schema).json() ) request.raise_for_status() assert submitted_task_kwargs is not None assert submitted_task_kwargs["optimization_input_json"] == input_schema.json() result = OptimizerPOSTResponse.parse_raw(request.text) assert result.optimization_id == "1"
SimonBoothroyd/beflow
beflow/services/models.py
<reponame>SimonBoothroyd/beflow from typing import Optional from pydantic import BaseModel, Field class Error(BaseModel): type: str = Field(..., description="The type of exception that was raised.") message: str = Field(..., description="The message associated with the exception.") traceback: Optional[str] = Field( None, description="The traceback associated with the exception" )
SimonBoothroyd/beflow
beflow/utilities/typing.py
<reponame>SimonBoothroyd/beflow from typing_extensions import Literal Status = Literal["waiting", "running", "errored", "success"]
SimonBoothroyd/beflow
beflow/services/qcgenerator/models.py
from typing import Optional, Union from openff.bespokefit.schema.tasks import HessianTask, OptimizationTask, Torsion1DTask from pydantic import BaseModel, Field from qcelemental.models import AtomicResult, FailedOperation, OptimizationResult from qcengine.procedures.torsiondrive import TorsionDriveResult from typing_extensions import Literal from beflow.utilities.typing import Status class QCGeneratorBaseResponse(BaseModel): qc_calc_id: str = Field( ..., description="The ID associated with the QC calculation." ) qc_calc_type: Literal["torsion1d", "optimization", "hessian"] = Field( ..., description="The type of QC calculation being run." ) class QCGeneratorGETStatusResponse(BaseModel): qc_calc_status: Status = Field( "waiting", description="The status of the QC calculation." ) class QCGeneratorGETResultResponse(BaseModel): qc_calc_result: Optional[ Union[AtomicResult, OptimizationResult, TorsionDriveResult, FailedOperation] ] = Field(..., description="The result of the QC calculation if any was produced.") class QCGeneratorGETErrorResponse(BaseModel): qc_calc_error: Optional[str] = Field( ..., description="The error raised while running the QC calculation if any." ) class QCGeneratorGETResponse( QCGeneratorBaseResponse, QCGeneratorGETStatusResponse, QCGeneratorGETResultResponse, QCGeneratorGETErrorResponse, ): """The object model returned by a GET request.""" class QCGeneratorPOSTBody(BaseModel): input_schema: Union[HessianTask, OptimizationTask, Torsion1DTask] = Field( ..., description="The schema that fully defines the QC data to generate." ) class QCGeneratorPOSTResponse(QCGeneratorBaseResponse): """The object model returned by a POST request."""
SimonBoothroyd/beflow
beflow/services/fragmenter/models.py
<reponame>SimonBoothroyd/beflow from typing import List, Optional, Union from openff.fragmenter.fragment import ( FragmentationResult, PfizerFragmenter, WBOFragmenter, ) from pydantic import BaseModel, Field from beflow.utilities.typing import Status class FragmenterBaseResponse(BaseModel): fragmentation_id: str = Field( ..., description="The ID associated with the fragmentation." ) class FragmenterGETStatusResponse(BaseModel): fragmentation_status: Status = Field( "waiting", description="The status of the fragmentation." ) class FragmenterGETResultResponse(BaseModel): fragmentation_result: Optional[FragmentationResult] = Field( ..., description="The result of the fragmentation if any was produced." ) class FragmenterGETErrorResponse(BaseModel): fragmentation_error: Optional[str] = Field( ..., description="The error raised while fragmenting if any." ) class FragmenterGETResponse( FragmenterBaseResponse, FragmenterGETStatusResponse, FragmenterGETResultResponse, FragmenterGETErrorResponse, ): """The object model returned by a GET request.""" class FragmenterPOSTBody(BaseModel): """The object model expected by a POST request.""" cmiles: str = Field( ..., description="The CMILES representation of the molecule to fragment." ) fragmenter: Union[PfizerFragmenter, WBOFragmenter] = Field( ..., description="The fragmentation engine to use." ) target_bond_smarts: List[str] = Field( ..., description="A list of SMARTS patterns that should be used to identify the " "bonds within the parent molecule to grow fragments around. Each SMARTS pattern " "should include **two** indexed atoms that correspond to the two atoms involved " "in the central bond.", ) class FragmenterPOSTResponse(FragmenterBaseResponse): """The object model returned by a POST request."""
SimonBoothroyd/beflow
beflow/services/qcgenerator/worker.py
<reponame>SimonBoothroyd/beflow from typing import List import qcengine import redis from openff.bespokefit.schema.tasks import OptimizationTask, Torsion1DTask from openff.toolkit.topology import Molecule from qcelemental.models import AtomicResult from qcelemental.models.common_models import DriverEnum from qcelemental.models.procedures import ( OptimizationInput, OptimizationResult, OptimizationSpecification, QCInputSpecification, TDKeywords, TorsionDriveInput, TorsionDriveResult, ) from qcelemental.util import serialize from beflow.services import settings from beflow.utilities.celery import configure_celery_app redis_connection = redis.Redis( host=settings.BEFLOW_REDIS_ADDRESS, port=settings.BEFLOW_REDIS_PORT, db=settings.BEFLOW_REDIS_DB, ) celery_app = configure_celery_app("qcgenerator", redis_connection) @celery_app.task def compute_torsion_drive(task_json: str) -> TorsionDriveResult: """Runs a torsion drive using QCEngine.""" task = Torsion1DTask.parse_raw(task_json) molecule: Molecule = Molecule.from_smiles(task.smiles) # TODO: Ask Josh about multiple conformers. molecule.generate_conformers(n_conformers=1) map_to_atom_index = { map_index: atom_index for atom_index, map_index in molecule.properties["atom_map"].items() } index_2 = map_to_atom_index[task.central_bond[0]] index_3 = map_to_atom_index[task.central_bond[1]] index_1 = [ atom.molecule_atom_index for atom in molecule.atoms[index_2].bonded_atoms if atom.molecule_atom_index != index_3 ][0] index_4 = [ atom.molecule_atom_index for atom in molecule.atoms[index_3].bonded_atoms if atom.molecule_atom_index != index_2 ][0] del molecule.properties["atom_map"] input_schema = TorsionDriveInput( keywords=TDKeywords( dihedrals=[(index_1, index_2, index_3, index_4)], grid_spacing=[task.grid_spacing], dihedral_ranges=[task.scan_range], ), extras={ "canonical_isomeric_explicit_hydrogen_mapped_smiles": molecule.to_smiles( isomeric=True, explicit_hydrogens=True, mapped=True ) }, initial_molecule=molecule.to_qcschema(), input_specification=QCInputSpecification( model=task.model, driver=DriverEnum.gradient ), optimization_spec=OptimizationSpecification( procedure=task.optimization_spec.procedure, keywords={ "coordsys": "dlc", "maxiter": task.optimization_spec.max_iterations, "program": task.program, }, ), ) return_value = qcengine.compute_procedure( input_schema, "torsiondrive", raise_error=True ) if isinstance(return_value, TorsionDriveResult): return_value = TorsionDriveResult( **return_value.dict(exclude={"optimization_history", "stdout", "stderr"}), optimization_history={}, ) # noinspection PyTypeChecker return return_value.json() @celery_app.task def compute_optimization( task_json: str, ) -> List[OptimizationResult]: """Runs a set of geometry optimizations using QCEngine.""" task = OptimizationTask.parse_raw(task_json) molecule: Molecule = Molecule.from_smiles(task.smiles) molecule.generate_conformers(n_conformers=task.n_conformers) input_schemas = [ OptimizationInput( keywords={ "coordsys": "dlc", "maxiter": task.optimization_spec.max_iterations, "program": task.program, }, extras={ "canonical_isomeric_explicit_hydrogen_mapped_smiles": molecule.to_smiles( isomeric=True, explicit_hydrogens=True, mapped=True ) }, input_specification=QCInputSpecification( model=task.model, driver=DriverEnum.gradient ), initial_molecule=molecule.to_qcschema(conformer=i), ) for i in range(molecule.n_conformers) ] return_values = [] for input_schema in input_schemas: return_value = qcengine.compute_procedure( input_schema, task.optimization_spec.procedure, raise_error=True ) if isinstance(return_value, OptimizationResult): # Strip the extra **heavy** data return_value = OptimizationResult( **return_value.dict(exclude={"trajectory", "stdout", "stderr"}), trajectory=[], ) return_values.append(return_value) # noinspection PyTypeChecker return serialize(return_values, "json") @celery_app.task def compute_hessian(task_json: str) -> AtomicResult: """Runs a set of hessian evaluations using QCEngine.""" raise NotImplementedError()
SimonBoothroyd/beflow
beflow/tests/utilities/test_redis.py
<filename>beflow/tests/utilities/test_redis.py import os.path import shutil import pytest from redis import Redis from beflow.utilities.redis import is_redis_available, launch_redis def test_launch_redis(tmpdir): assert not is_redis_available("localhost", 1234) redis_process = launch_redis(port=1234, directory=str(tmpdir), persistent=True) assert is_redis_available("localhost", 1234) redis_connection = Redis(port=1234) assert redis_connection.get("test-key") is None redis_connection.set("test-key", "set") assert redis_connection.get("test-key") is not None redis_process.terminate() redis_process.wait() assert not is_redis_available("localhost", 1234) assert os.path.isfile(os.path.join(tmpdir, "redis.db")) def test_launch_redis_already_exists(tmpdir): assert not is_redis_available("localhost", 1234) redis_process = launch_redis(port=1234, directory=str(tmpdir), persistent=True) assert is_redis_available("localhost", 1234) with pytest.raises(RuntimeError, match="here is already a server running"): launch_redis(port=1234, directory=str(tmpdir)) redis_process.terminate() redis_process.wait() assert not is_redis_available("localhost", 1234) @pytest.mark.parametrize("missing_command", ["redis-server", "redis-cli"]) def test_launch_redis_missing_command(tmpdir, monkeypatch, missing_command): monkeypatch.setattr( shutil, "which", lambda x: None if x == missing_command else "some/path" ) redis_process = None with pytest.raises(RuntimeError, match=f"The `{missing_command}`"): redis_process = launch_redis(port=1234, directory=str(tmpdir)) if redis_process is not None: redis_process.terminate() redis_process.wait()
SimonBoothroyd/beflow
beflow/services/optimizer/app.py
<filename>beflow/services/optimizer/app.py<gh_stars>0 import json from fastapi import APIRouter from qcelemental.util import serialize from beflow.services import settings from beflow.services.optimizer import worker from beflow.services.optimizer.models import ( OptimizerGETResponse, OptimizerPOSTBody, OptimizerPOSTResponse, ) from beflow.utilities.celery import get_task_information router = APIRouter() @router.get("/" + settings.BEFLOW_OPTIMIZER_PREFIX + "/{optimization_id}") def get_optimization(optimization_id: str) -> OptimizerGETResponse: task_info = get_task_information(worker.celery_app, optimization_id) # noinspection PyTypeChecker return { "optimization_id": optimization_id, "optimization_status": task_info["status"], "optimization_result": task_info["result"], "optimization_error": json.dumps(task_info["error"]), } @router.post("/" + settings.BEFLOW_OPTIMIZER_PREFIX) def post_optimization(body: OptimizerPOSTBody) -> OptimizerPOSTResponse: # We use celery delay method in order to enqueue the task with the given # parameters task = worker.optimize.delay( optimization_input_json=serialize(body.input_schema, "json") ) return OptimizerPOSTResponse(optimization_id=task.id)
SimonBoothroyd/beflow
beflow/utilities/redis.py
import atexit import functools import shlex import shutil import subprocess import time from typing import IO, Optional, Union import redis def is_redis_available(host: str, port: int = 6379) -> bool: """Returns whether a server running on the local host on a particular port is available. """ redis_client = redis.Redis(host=host, port=port) try: redis_client.get("null") except (redis.exceptions.ConnectionError, redis.exceptions.BusyLoadingError): return False return True def _cleanup_redis(redis_process: subprocess.Popen): redis_process.terminate() def launch_redis( port: int = 6379, stderr_file: Optional[Union[IO, int]] = None, stdout_file: Optional[Union[IO, int]] = None, directory: Optional[str] = None, persistent: bool = True, ): redis_server_path = shutil.which("redis-server") if redis_server_path is None: raise RuntimeError( "The `redis-server` command could not be found. Please make sure `redis` is " "correctly installed." ) redis_cli_path = shutil.which("redis-cli") if redis_cli_path is None: raise RuntimeError( "The `redis-cli` command could not be found. Please make sure `redis` is " "correctly installed." ) if is_redis_available("localhost", port): raise RuntimeError(f"There is already a server running at localhost:{port}") redis_command = f"redis-server --port {str(port)} --dbfilename redis.db" if directory: redis_command = f"{redis_command} --dir {directory}" if persistent: redis_command = ( f"{redis_command} --save 900 1 --save 300 100 --save 60 200 --save 15 1000" ) redis_process = subprocess.Popen( shlex.split(redis_command), stderr=stderr_file, stdout=stdout_file ) atexit.register(functools.partial(_cleanup_redis, redis_process)) timeout = True for i in range(0, 60): if is_redis_available("localhost", port): timeout = False break time.sleep(1.0) if timeout: raise RuntimeError("The redis server failed to start.") return redis_process
SimonBoothroyd/beflow
beflow/services/optimizer/models.py
from typing import Optional from openff.bespokefit.schema.fitting import BespokeOptimizationSchema from openff.bespokefit.schema.results import BespokeOptimizationResults from pydantic import BaseModel, Field from beflow.utilities.typing import Status class OptimizerBaseResponse(BaseModel): optimization_id: str = Field( ..., description="The ID associated with the optimization." ) class OptimizerGETStatusResponse(BaseModel): optimization_status: Status = Field( "waiting", description="The status of the optimization." ) class OptimizerGETResultResponse(BaseModel): optimization_result: Optional[BespokeOptimizationResults] = Field( ..., description="The result of the optimization if any was produced." ) class OptimizerGETErrorResponse(BaseModel): optimization_error: Optional[str] = Field( ..., description="The error raised while optimizing if any." ) class OptimizerGETResponse( OptimizerBaseResponse, OptimizerGETStatusResponse, OptimizerGETResultResponse, OptimizerGETErrorResponse, ): """The object model returned by a GET request.""" class OptimizerPOSTBody(BaseModel): """The object model expected by a POST request.""" input_schema: BespokeOptimizationSchema = Field( ..., description="The schema that fully defines optimization to perform." ) class OptimizerPOSTResponse(OptimizerBaseResponse): """The object model returned by a POST request."""
SimonBoothroyd/beflow
beflow/services/settings.py
<gh_stars>0 from pydantic import BaseSettings class Settings(BaseSettings): BEFLOW_API_V1_STR: str = "/api/v1" BEFLOW_GATEWAY_PORT: int = 8000 BEFLOW_GATEWAY_LOG_LEVEL: str = "error" BEFLOW_REDIS_ADDRESS: str = "localhost" BEFLOW_REDIS_PORT: int = 6379 BEFLOW_REDIS_DB: int = 0 BEFLOW_COORDINATOR_PREFIX = "optimization" BEFLOW_COORDINATOR_ROUTER = "beflow.services.coordinator.app:router" BEFLOW_COORDINATOR_WORKER = "beflow.services.coordinator.worker:" BEFLOW_FRAGMENTER_PREFIX = "fragmenter" BEFLOW_FRAGMENTER_ROUTER = "beflow.services.fragmenter.app:router" BEFLOW_FRAGMENTER_WORKER = "beflow.services.fragmenter.worker" BEFLOW_QC_COMPUTE_PREFIX = "qc-calc" BEFLOW_QC_COMPUTE_ROUTER = "beflow.services.qcgenerator.app:router" BEFLOW_QC_COMPUTE_WORKER = "beflow.services.qcgenerator.worker" BEFLOW_OPTIMIZER_PREFIX = "optimizer" BEFLOW_OPTIMIZER_ROUTER = "beflow.services.optimizer.app:router" BEFLOW_OPTIMIZER_WORKER = "beflow.services.optimizer.worker"
SimonBoothroyd/beflow
examples/launch-executor.py
from openff.bespokefit.schema.data import BespokeQCData from openff.bespokefit.schema.fitting import BespokeOptimizationSchema from openff.bespokefit.schema.optimizers import ForceBalanceSchema from openff.bespokefit.schema.smirnoff import ( ProperTorsionHyperparameters, ProperTorsionSMIRKS, ) from openff.bespokefit.schema.targets import TorsionProfileTargetSchema from openff.bespokefit.schema.tasks import Torsion1DTaskSpec from openff.fragmenter.fragment import WBOFragmenter from openff.toolkit.topology import Molecule from qcelemental.models.common_models import Model from qcelemental.util import serialize from beflow.executor import BespokeExecutor def main(): smiles = Molecule.from_smiles("c1ccc(cc1)c2ccccc2").to_smiles(mapped=True) input_schema = BespokeOptimizationSchema( # Define the molecule to generate the bespoke parameters for. smiles=smiles, # and the initial force field to source most parameters from. initial_force_field="openff_unconstrained-2.0.0.offxml", # Define the bespoke parameters that should be created and trained. parameters=[ ProperTorsionSMIRKS( smirks="[*:1]~[#6X3:2]-[#6X3:3]~[*:4]", attributes={"k1"} ) ], parameter_hyperparameters=[ProperTorsionHyperparameters()], # fragmentation_engine=WBOFragmenter(), # Define the targets that the parameters should be trained to. targets=[ TorsionProfileTargetSchema( reference_data=BespokeQCData( spec=Torsion1DTaskSpec( program="rdkit", model=Model(method="uff", basis=None) ) ) ) ], optimizer=ForceBalanceSchema(max_iterations=1), ) with BespokeExecutor( n_fragmenter_workers=1, n_qc_compute_workers=4, n_optimizer_workers=1 ) as executor: optimization_id = executor.submit(input_schema) response = executor.wait_until_complete(optimization_id) with open("output.json", "w") as file: file.write(serialize(response, "json")) if __name__ == "__main__": main()
SimonBoothroyd/beflow
beflow/tests/__init__.py
<reponame>SimonBoothroyd/beflow<gh_stars>0 from contextlib import contextmanager import redis from beflow.services import settings try: from pytest_cov.embed import cleanup_on_sigterm except ImportError: pass else: cleanup_on_sigterm() @contextmanager def patch_settings(redis_connection: redis.Redis): old_settings = settings.copy(deep=True) settings.BEFLOW_REDIS_ADDRESS = redis_connection.connection_pool.connection_kwargs[ "host" ] settings.BEFLOW_REDIS_PORT = redis_connection.connection_pool.connection_kwargs[ "port" ] settings.BEFLOW_REDIS_DB = redis_connection.connection_pool.connection_kwargs["db"] yield settings.BEFLOW_REDIS_ADDRESS = old_settings.BEFLOW_REDIS_ADDRESS settings.BEFLOW_REDIS_PORT = old_settings.BEFLOW_REDIS_PORT settings.BEFLOW_REDIS_DB = old_settings.BEFLOW_REDIS_DB
SimonBoothroyd/beflow
beflow/services/coordinator/app.py
<reponame>SimonBoothroyd/beflow import asyncio import logging import os import pickle import signal import urllib.parse from typing import List, Optional from fastapi import APIRouter, HTTPException from fastapi.responses import Response from openff.toolkit.topology import Molecule from beflow.services import settings from beflow.services.coordinator import worker from beflow.services.coordinator.models import ( CoordinatorGETResponse, CoordinatorPOSTBody, CoordinatorPOSTResponse, CoordinatorTask, ) from beflow.services.coordinator.stages import ( FragmentationStage, OptimizationStage, QCGenerationStage, ) from beflow.utilities.depiction import smiles_to_image router = APIRouter() _logger = logging.getLogger(__name__) _worker_task: Optional[asyncio.Future] = None @router.get("/" + settings.BEFLOW_COORDINATOR_PREFIX + "/{optimization_id}") def get_optimization(optimization_id: str) -> CoordinatorGETResponse: """Retrieves a bespoke optimization that has been submitted to this server using its unique id.""" task_pickle = worker.redis_connection.get( f"coordinator:optimization:{optimization_id}" ) if task_pickle is None: raise HTTPException(status_code=404, detail=f"{optimization_id} not found") task = CoordinatorTask.parse_obj(pickle.loads(task_pickle)) return CoordinatorGETResponse.from_task(task) @router.post("/" + settings.BEFLOW_COORDINATOR_PREFIX) def post_optimization(body: CoordinatorPOSTBody) -> CoordinatorPOSTResponse: """Submit a bespoke optimization to be performed by the server.""" try: # Make sure the input SMILES does not have any atoms mapped as these may # cause issues for certain stages such as fragmentation. molecule = Molecule.from_smiles(body.input_schema.smiles) molecule.properties.pop("atom_map", None) body.input_schema.smiles = molecule.to_smiles(mapped=True) except BaseException: # TODO: Custom exception handling rather than 500 error. 400 / 402? raise task_id = worker.redis_connection.incr("coordinator:id-counter") task_key = f"coordinator:optimization:{task_id}" task = CoordinatorTask( id=task_id, input_schema=body.input_schema, pending_stages=[FragmentationStage(), QCGenerationStage(), OptimizationStage()], ) worker.redis_connection.set(task_key, pickle.dumps(task.dict())) worker.redis_connection.zadd("coordinator:optimizations", {task_key: task_id}) return CoordinatorPOSTResponse(optimization_id=task_id) @router.get("/" + settings.BEFLOW_COORDINATOR_PREFIX + "s") def get_optimizations(skip: int = 0, limit: int = 10) -> List[CoordinatorGETResponse]: """Retrieves all bespoke optimizations that have been submitted to this server.""" optimization_keys = worker.redis_connection.zrange( "coordinator:optimizations", skip * limit, (skip + 1) * limit - 1 ) response = [] for optimization_key in optimization_keys: task_pickle = worker.redis_connection.get(optimization_key) if task_pickle is None: raise HTTPException(status_code=404, detail=f"{optimization_key} not found") task = CoordinatorTask.parse_obj(pickle.loads(task_pickle)) response.append(CoordinatorGETResponse.from_task(task)) return response @router.get("/" + settings.BEFLOW_COORDINATOR_PREFIX + "/{optimization_id}/image") async def get_molecule_image(optimization_id: str): """Render the molecule associated with a particular bespoke optimization to an SVG file.""" task_pickle = worker.redis_connection.get( f"coordinator:optimization:{optimization_id}" ) if task_pickle is None: raise HTTPException(status_code=404, detail=f"{optimization_id} not found") task = CoordinatorTask.parse_obj(pickle.loads(task_pickle)) svg_content = smiles_to_image(urllib.parse.unquote(task.input_schema.smiles)) svg_response = Response(svg_content, media_type="image/svg+xml") return svg_response @router.on_event("startup") def startup(): main_loop = asyncio.get_event_loop() global _worker_task _worker_task = asyncio.ensure_future(worker.cycle(), loop=main_loop) def _handle_task_result(task: asyncio.Task) -> None: # noinspection PyBroadException try: task.result() except asyncio.CancelledError: pass except Exception: _logger.exception( "Exception raised by the main loop. This should never happen." ) os.kill(os.getpid(), signal.SIGINT) _worker_task.add_done_callback(_handle_task_result) @router.on_event("shutdown") def shutdown(): if _worker_task is not None: _worker_task.cancel()
SimonBoothroyd/beflow
beflow/tests/services/fragmenter/test_app.py
<reponame>SimonBoothroyd/beflow from celery.result import AsyncResult from openff.fragmenter.fragment import FragmentationResult, PfizerFragmenter from beflow.services.fragmenter import worker from beflow.services.fragmenter.models import ( FragmenterGETResponse, FragmenterPOSTBody, FragmenterPOSTResponse, ) from beflow.tests.mocking.celery import mock_celery_task def test_get_fragment(fragmenter_client, redis_connection, monkeypatch): mock_fragmentation_result = FragmentationResult( parent_smiles="[Ar:1]", fragments=[], provenance={"version": "mock"} ) monkeypatch.setattr( AsyncResult, "_get_task_meta", lambda self: {"status": "SUCCESS", "result": mock_fragmentation_result.json()}, ) request = fragmenter_client.get("/fragmenter/1") request.raise_for_status() result = FragmenterGETResponse.parse_raw(request.text) assert result.fragmentation_status == "success" assert result.fragmentation_result is not None assert result.fragmentation_id == "1" assert ( result.fragmentation_result.parent_smiles == mock_fragmentation_result.parent_smiles ) assert ( result.fragmentation_result.provenance == mock_fragmentation_result.provenance ) def test_post_fragment(fragmenter_client, redis_connection, monkeypatch): submitted_task_kwargs = mock_celery_task(worker, "fragment", monkeypatch) request = fragmenter_client.post( "/fragmenter", data=FragmenterPOSTBody( cmiles="[CH2:1]=[CH2:2]", fragmenter=PfizerFragmenter(), target_bond_smarts=["[#6:1]-[#6:2]"], ).json(), ) request.raise_for_status() assert submitted_task_kwargs is not None assert submitted_task_kwargs["cmiles"] == "[CH2:1]=[CH2:2]" assert submitted_task_kwargs["target_bond_smarts"] == ["[#6:1]-[#6:2]"] result = FragmenterPOSTResponse.parse_raw(request.text) assert result.fragmentation_id == "1"
SimonBoothroyd/beflow
beflow/services/__init__.py
<filename>beflow/services/__init__.py<gh_stars>0 from beflow.services.settings import Settings settings = Settings() __all__ = [settings]
SimonBoothroyd/beflow
beflow/tests/services/qcgenerator/test_worker.py
<gh_stars>0 import json import pytest from openff.bespokefit.schema.tasks import OptimizationTask, Torsion1DTask from openff.toolkit.topology import Molecule from qcelemental.models.common_models import Model from qcelemental.models.procedures import OptimizationResult, TorsionDriveResult from beflow.services.qcgenerator import worker def test_compute_torsion_drive(): task = Torsion1DTask( smiles="[CH3:1][CH3:2]", central_bond=(1, 2), grid_spacing=180, scan_range=(-180, 180), program="rdkit", model=Model(method="uff", basis=None), ) result_json = worker.compute_torsion_drive(task.json()) assert isinstance(result_json, str) result_dict = json.loads(result_json) assert isinstance(result_dict, dict) result = TorsionDriveResult.parse_obj(result_dict) assert result.success cmiles = result.final_molecules["180"].extras[ "canonical_isomeric_explicit_hydrogen_mapped_smiles" ] # Make sure a molecule can be created from CMILES final_molecule = Molecule.from_mapped_smiles(cmiles) assert Molecule.are_isomorphic(final_molecule, Molecule.from_smiles("CC"))[0] def test_compute_optimization(): task = OptimizationTask( smiles="CCCCC", n_conformers=2, program="rdkit", model=Model(method="uff", basis=None), ) result_json = worker.compute_optimization(task.json()) assert isinstance(result_json, str) result_dicts = json.loads(result_json) assert isinstance(result_dicts, list) assert 0 < len(result_dicts) <= 2 for result_dict in result_dicts: result = OptimizationResult.parse_obj(result_dict) assert result.success cmiles = result.final_molecule.extras[ "canonical_isomeric_explicit_hydrogen_mapped_smiles" ] # Make sure a molecule can be created from CMILES final_molecule = Molecule.from_mapped_smiles(cmiles) assert Molecule.are_isomorphic(final_molecule, Molecule.from_smiles("CCCCC")) @pytest.mark.parametrize( "compute_function, task", [ ( worker.compute_torsion_drive, Torsion1DTask( smiles="[CH2:1]=[CH2:2]", central_bond=(1, 2), grid_spacing=180, scan_range=(-180, 180), program="non-existent-program", model=Model(method="uff", basis=None), ), ), ( worker.compute_optimization, OptimizationTask( smiles="CCCCC", n_conformers=1, program="non-existent-program", model=Model(method="uff", basis=None), ), ), ], ) def test_compute_failure(compute_function, task, celery_worker): with pytest.raises(ValueError, match="non-existent-program"): compute_function(task.json())
SimonBoothroyd/beflow
beflow/executor.py
import functools import importlib import logging import multiprocessing import os import time from typing import Optional import celery import requests from openff.bespokefit.schema.fitting import BespokeOptimizationSchema from openff.utilities import temporary_cd from beflow.services import settings from beflow.services.coordinator.models import ( CoordinatorGETResponse, CoordinatorPOSTBody, CoordinatorPOSTResponse, ) from beflow.services.gateway import launch as launch_gateway from beflow.services.gateway import wait_for_gateway from beflow.utilities.celery import spawn_worker from beflow.utilities.redis import is_redis_available, launch_redis _logger = logging.getLogger(__name__) class BespokeExecutor: def __init__( self, n_fragmenter_workers: int = 0, n_qc_compute_workers: int = 0, n_optimizer_workers: int = 0, directory: str = "beflow-executor", launch_redis_if_unavailable: bool = True, ): self._n_fragmenter_workers = n_fragmenter_workers self._n_qc_compute_workers = n_qc_compute_workers self._n_optimizer_workers = n_optimizer_workers self._directory = directory self._launch_redis_if_unavailable = launch_redis_if_unavailable self._started = False self._gateway_process: Optional[multiprocessing.Process] = None def _launch_redis(self): if self._launch_redis_if_unavailable and not is_redis_available( host=settings.BEFLOW_REDIS_ADDRESS, port=settings.BEFLOW_REDIS_PORT ): redis_log_file = open("redis.log", "w") launch_redis(settings.BEFLOW_REDIS_PORT, redis_log_file, redis_log_file) def _launch_workers(self): for import_path, n_workers in { (settings.BEFLOW_FRAGMENTER_WORKER, self._n_fragmenter_workers), (settings.BEFLOW_QC_COMPUTE_WORKER, self._n_qc_compute_workers), (settings.BEFLOW_OPTIMIZER_WORKER, self._n_optimizer_workers), }: worker_module = importlib.import_module(import_path) worker_app = getattr(worker_module, "celery_app") assert isinstance(worker_app, celery.Celery), "workers must be celery based" spawn_worker(worker_app, concurrency=n_workers) def start(self, asynchronous=False): if self._started: raise RuntimeError("This executor is already running.") self._started = True if self._directory is not None and len(self._directory) > 0: os.makedirs(self._directory, exist_ok=True) with temporary_cd(self._directory): self._launch_redis() self._launch_workers() if asynchronous: self._gateway_process = multiprocessing.Process( target=functools.partial(launch_gateway, self._directory), daemon=True ) self._gateway_process.start() wait_for_gateway() else: launch_gateway(self._directory) def stop(self): if not self._started: raise ValueError("The executor is not running.") self._started = False if self._gateway_process is not None and self._gateway_process.is_alive(): self._gateway_process.terminate() self._gateway_process.join() def submit(self, input_schema: BespokeOptimizationSchema) -> str: assert self._started, "the executor is not running" request = requests.post( "http://127.0.0.1:8000/api/v1/optimization", data=CoordinatorPOSTBody(input_schema=input_schema).json(), ) return CoordinatorPOSTResponse.parse_raw(request.text).optimization_id def wait_until_complete( self, optimization_id: str, frequency: int = 10 ) -> CoordinatorGETResponse: while True: try: request = requests.get( f"http://127.0.0.1:8000/api/v1/optimization/{optimization_id}" ) request.raise_for_status() response = CoordinatorGETResponse.parse_raw(request.text) # TODO: Return the actual result if all( stage.stage_status == "success" for stage in response.stages ) or any(stage.stage_status == "errored" for stage in response.stages): return response time.sleep(frequency) except KeyboardInterrupt: break def __enter__(self): self.start(asynchronous=True) return self def __exit__(self, *args): self.stop()
SimonBoothroyd/beflow
beflow/services/fragmenter/app.py
import json from fastapi import APIRouter from fastapi.responses import Response from openff.fragmenter.depiction import _oe_render_fragment from openff.fragmenter.fragment import FragmentationResult from beflow.services import settings from beflow.services.fragmenter import worker from beflow.services.fragmenter.models import ( FragmenterGETResponse, FragmenterPOSTBody, FragmenterPOSTResponse, ) from beflow.utilities.celery import get_task_information from beflow.utilities.depiction import IMAGE_UNAVAILABLE_SVG router = APIRouter() @router.get("/" + settings.BEFLOW_FRAGMENTER_PREFIX + "/{fragmentation_id}") def get_fragment(fragmentation_id: str) -> FragmenterGETResponse: task_info = get_task_information(worker.celery_app, fragmentation_id) return FragmenterGETResponse( fragmentation_id=fragmentation_id, fragmentation_status=task_info["status"], fragmentation_result=task_info["result"], fragmentation_error=json.dumps(task_info["error"]), ) @router.post("/" + settings.BEFLOW_FRAGMENTER_PREFIX) def post_fragment(body: FragmenterPOSTBody) -> FragmenterPOSTResponse: # We use celery delay method in order to enqueue the task with the given # parameters task = worker.fragment.delay( cmiles=body.cmiles, fragmenter_json=body.fragmenter.json(), target_bond_smarts=body.target_bond_smarts, ) return FragmenterPOSTResponse(fragmentation_id=task.id) @router.get( "/" + settings.BEFLOW_FRAGMENTER_PREFIX + "/{fragmentation_id}/fragment/{fragment_id}/image" ) def get_fragment_image(fragmentation_id: str, fragment_id: int) -> Response: task_info = get_task_information(worker.celery_app, fragmentation_id) if task_info["status"] != "success": return Response(IMAGE_UNAVAILABLE_SVG, media_type="image/svg+xml") result = FragmentationResult.parse_obj(task_info["result"]) if 0 > fragment_id >= len(result.fragments): return Response(IMAGE_UNAVAILABLE_SVG, media_type="image/svg+xml") fragment = result.fragments[fragment_id] svg_content = _oe_render_fragment( result.parent_molecule, fragment.molecule, fragment.bond_indices, image_width=200, image_height=200, ) return Response(svg_content, media_type="image/svg+xml")
SimonBoothroyd/beflow
beflow/services/fragmenter/worker.py
from typing import List, Union import redis from openff.fragmenter.fragment import PfizerFragmenter, WBOFragmenter from pydantic import parse_raw_as from beflow.services import settings from beflow.utilities.celery import configure_celery_app redis_connection = redis.Redis( host=settings.BEFLOW_REDIS_ADDRESS, port=settings.BEFLOW_REDIS_PORT, db=settings.BEFLOW_REDIS_DB, ) celery_app = configure_celery_app("fragmenter", redis_connection) @celery_app.task def fragment(cmiles: str, fragmenter_json: str, target_bond_smarts: List[str]) -> str: from openff.toolkit.topology import Molecule fragmenter = parse_raw_as(Union[PfizerFragmenter, WBOFragmenter], fragmenter_json) molecule = Molecule.from_mapped_smiles(cmiles) return fragmenter.fragment(molecule, target_bond_smarts=target_bond_smarts).json()
SimonBoothroyd/beflow
beflow/tests/test_beflow.py
import importlib def test_importable(): importlib.import_module("beflow")
SimonBoothroyd/beflow
beflow/services/qcgenerator/__init__.py
<gh_stars>0 from beflow.services.qcgenerator.app import router __all__ = [router]
SimonBoothroyd/beflow
beflow/__init__.py
<reponame>SimonBoothroyd/beflow """ beflow A proof of concept refactoring of the OpenFF bespoke executor to use something closer to a microservice pattern. """ from ._version import get_versions versions = get_versions() __version__ = versions["version"] __git_revision__ = versions["full-revisionid"] del get_versions, versions
SimonBoothroyd/beflow
beflow/services/coordinator/stages.py
import abc import json from collections import defaultdict from typing import TYPE_CHECKING, Dict, List, Optional, Tuple, Union import httpx from chemper.graphs.cluster_graph import ClusterGraph from openff.bespokefit.schema.data import BespokeQCData, LocalQCData from openff.bespokefit.schema.fitting import BespokeOptimizationSchema from openff.bespokefit.schema.results import BespokeOptimizationResults from openff.bespokefit.schema.smirnoff import ProperTorsionSMIRKS, SMIRNOFFParameter from openff.bespokefit.schema.tasks import Torsion1DTask from openff.bespokefit.utilities.molecule import ( get_atom_symmetries, group_valence_by_symmetry, ) from openff.fragmenter.fragment import FragmentationResult from openff.fragmenter.utils import get_map_index from openff.toolkit.topology import Molecule from openff.toolkit.typing.engines.smirnoff import ForceField from pydantic import BaseModel, Field, parse_raw_as from qcelemental.models import AtomicResult, OptimizationResult from qcelemental.util import serialize from qcengine.procedures.torsiondrive import TorsionDriveResult from typing_extensions import Literal from beflow.services import settings from beflow.services.fragmenter.models import ( FragmenterGETResponse, FragmenterPOSTBody, FragmenterPOSTResponse, ) from beflow.services.optimizer.models import ( OptimizerGETResponse, OptimizerPOSTBody, OptimizerPOSTResponse, ) from beflow.services.qcgenerator.models import ( QCGeneratorGETResponse, QCGeneratorPOSTBody, QCGeneratorPOSTResponse, ) from beflow.utilities.typing import Status if TYPE_CHECKING: from beflow.services.coordinator.models import CoordinatorTask class _Stage(BaseModel, abc.ABC): type: Literal["base-stage"] = "base-stage" status: Status = Field("waiting", description="The status of this stage.") error: Optional[str] = Field( None, description="The error raised, if any, while running this stage." ) @abc.abstractmethod async def enter(self, task: "CoordinatorTask"): pass @abc.abstractmethod async def update(self): pass class FragmentationStage(_Stage): type: Literal["fragmentation"] = "fragmentation" id: Optional[str] = Field(None, description="") result: Optional[FragmentationResult] = Field(None, description="") @staticmethod def _generate_target_bond_smarts( smiles: str, parameters: List[SMIRNOFFParameter] ) -> List[str]: """Attempts to find all of the bonds in the molecule around which a bespoke torsion parameter is being trained.""" molecule = Molecule.from_mapped_smiles(smiles) all_central_bonds = { tuple(sorted(central_bond)) for parameter in parameters if isinstance(parameter, ProperTorsionSMIRKS) for (_, *central_bond, _) in molecule.chemical_environment_matches( parameter.smirks ) } grouped_central_bonds = group_valence_by_symmetry( molecule, sorted(all_central_bonds) ) unique_central_bonds = [group[0] for group in grouped_central_bonds.values()] target_bond_smarts = set() for central_bond in unique_central_bonds: molecule.properties["atom_map"] = { i: (j + 1) for j, i in enumerate(central_bond) } target_bond_smarts.add(molecule.to_smiles(mapped=True)) return sorted(target_bond_smarts) async def enter(self, task: "CoordinatorTask"): async with httpx.AsyncClient() as client: raw_response = await client.post( f"http://127.0.0.1:" f"{settings.BEFLOW_GATEWAY_PORT}" f"{settings.BEFLOW_API_V1_STR}/" f"{settings.BEFLOW_FRAGMENTER_PREFIX}", data=FragmenterPOSTBody( cmiles=task.input_schema.smiles, fragmenter=task.input_schema.fragmentation_engine, target_bond_smarts=self._generate_target_bond_smarts( task.input_schema.smiles, task.input_schema.parameters ), ).json(), ) if raw_response.status_code != 200: self.error = json.dumps(raw_response.text) self.status = "errored" return contents = raw_response.text post_response = FragmenterPOSTResponse.parse_raw(contents) self.id = post_response.fragmentation_id async def update(self): if self.status == "errored": return async with httpx.AsyncClient() as client: raw_response = await client.get( f"http://127.0.0.1:" f"{settings.BEFLOW_GATEWAY_PORT}" f"{settings.BEFLOW_API_V1_STR}/" f"{settings.BEFLOW_FRAGMENTER_PREFIX}/{self.id}" ) if raw_response.status_code != 200: self.error = json.dumps(raw_response.text) self.status = "errored" return contents = raw_response.text get_response = FragmenterGETResponse.parse_raw(contents) self.result = get_response.fragmentation_result self.error = get_response.fragmentation_error self.status = get_response.fragmentation_status class QCGenerationStage(_Stage): type: Literal["qc-generation"] = "qc-generation" ids: Optional[Dict[int, List[str]]] = Field(None, description="") results: Optional[ Dict[str, Union[AtomicResult, OptimizationResult, TorsionDriveResult]] ] = Field(None, description="") async def enter(self, task: "CoordinatorTask"): fragment_stage = next( iter( stage for stage in task.completed_stages if stage.type == "fragmentation" ), None, ) fragments = [] if fragment_stage is None else fragment_stage.result.fragments target_qc_tasks = defaultdict(list) for i, target in enumerate(task.input_schema.targets): if not isinstance(target.reference_data, BespokeQCData): continue if target.bespoke_task_type() == "torsion1d": target_qc_tasks[i].extend( Torsion1DTask( smiles=fragment.smiles, central_bond=fragment.bond_indices, **target.reference_data.spec.dict(), ) for fragment in fragments ) else: raise NotImplementedError() qc_calc_ids = defaultdict(set) async with httpx.AsyncClient() as client: for i, qc_tasks in target_qc_tasks.items(): for qc_task in qc_tasks: raw_response = await client.post( f"http://127.0.0.1:" f"{settings.BEFLOW_GATEWAY_PORT}" f"{settings.BEFLOW_API_V1_STR}/" f"{settings.BEFLOW_QC_COMPUTE_PREFIX}", data=QCGeneratorPOSTBody(input_schema=qc_task).json(), ) if raw_response.status_code != 200: self.error = json.dumps(raw_response.text) self.status = "errored" return response = QCGeneratorPOSTResponse.parse_raw(raw_response.text) qc_calc_ids[i].add(response.qc_calc_id) self.ids = {i: sorted(ids) for i, ids in qc_calc_ids.items()} async def update(self): if self.status == "errored": return async with httpx.AsyncClient() as client: id_query = "&ids=".join(qc_id for i in self.ids for qc_id in self.ids[i]) raw_response = await client.get( f"http://127.0.0.1:" f"{settings.BEFLOW_GATEWAY_PORT}" f"{settings.BEFLOW_API_V1_STR}/" f"{settings.BEFLOW_QC_COMPUTE_PREFIX}s?ids={id_query}" ) contents = raw_response.text if raw_response.status_code != 200: self.error = json.dumps(raw_response.text) self.status = "errored" return get_responses = parse_raw_as(List[QCGeneratorGETResponse], contents) statuses = {get_response.qc_calc_status for get_response in get_responses} errors = [ json.loads(get_response.qc_calc_error) for get_response in get_responses if get_response.qc_calc_error is not None ] self.error = json.dumps(errors) self.status = "running" if "errored" in statuses: self.status = "errored" elif statuses == {"waiting"}: self.status = "waiting" elif statuses == {"success"}: self.status = "success" self.results = { get_response.qc_calc_id: get_response.qc_calc_result for get_response in get_responses } class OptimizationStage(_Stage): type: Literal["optimization"] = "optimization" id: Optional[str] = Field( None, description="The id of the optimization associated with this stage." ) result: Optional[BespokeOptimizationResults] = Field( None, description="The result of the optimization." ) @staticmethod def _regenerate_torsion_parameters( original_parameters: List[SMIRNOFFParameter], fragmentation_result: FragmentationResult, ) -> List[Tuple[ProperTorsionSMIRKS, ProperTorsionSMIRKS]]: parent = fragmentation_result.parent_molecule parent_atom_symmetries = get_atom_symmetries(parent) parent_map_symmetries = { get_map_index(parent, i): parent_atom_symmetries[i] for i in range(parent.n_atoms) } fragments = [fragment.molecule for fragment in fragmentation_result.fragments] fragment_by_symmetry = { tuple( sorted(parent_map_symmetries[i] for i in result.bond_indices) ): fragment for fragment, result in zip(fragments, fragmentation_result.fragments) } assert len(fragment_by_symmetry) == len(fragmentation_result.fragments) fragment_map_to_atom_index = [ {j: i for i, j in fragment.properties.get("atom_map", {}).items()} for fragment in fragments ] return_value = [] for original_parameter in original_parameters: if not isinstance(original_parameter, ProperTorsionSMIRKS): continue matches = parent.chemical_environment_matches(original_parameter.smirks) matches = list( set( match if match[1] < match[2] else tuple(reversed(match)) for match in matches ) ) # Figure out which fragments need to be matched by this parameter and # update the parameter so it matches these AND the parent. match_symmetries = { tuple(sorted(parent_atom_symmetries[i] for i in match[1:3])) for match in matches } match_fragments = [ fragment_by_symmetry[match_symmetry] for match_symmetry in match_symmetries ] target_atoms = [matches] target_molecules = [parent] for fragment, map_to_atom_index in zip( match_fragments, fragment_map_to_atom_index ): match_atoms = [ tuple( map_to_atom_index.get(get_map_index(parent, i), None) for i in match ) for match in matches ] target_atoms.append( [ match for match in match_atoms if all(i is not None for i in match) ] ) if len(target_atoms) == 0: continue target_molecules.append(fragment) parameter = original_parameter.copy(deep=True) parameter.smirks = ClusterGraph( mols=[molecule.to_rdkit() for molecule in target_molecules], smirks_atoms_lists=target_atoms, layers="all", ).as_smirks(compress=False) return_value.append((original_parameter, parameter)) return return_value async def _regenerate_parameters( self, fragmentation_stage: FragmentationStage, input_schema: BespokeOptimizationSchema, ): initial_force_field = ForceField( input_schema.initial_force_field, allow_cosmetic_attributes=True ) torsion_parameters = self._regenerate_torsion_parameters( input_schema.parameters, fragmentation_stage.result ) torsion_handler = initial_force_field["ProperTorsions"] for original_parameter, new_parameter in torsion_parameters: force_field_parameter = torsion_handler.parameters[ original_parameter.smirks ] force_field_parameter.smirks = new_parameter.smirks input_schema.parameters = [ *[ parameter for parameter in input_schema.parameters if not isinstance(parameter, ProperTorsionSMIRKS) ], *[parameter for _, parameter in torsion_parameters], ] input_schema.initial_force_field = initial_force_field.to_string() @staticmethod async def _inject_bespoke_qc_data( qc_generation_stage: QCGenerationStage, input_schema: BespokeOptimizationSchema, ): for i, target in enumerate(input_schema.targets): local_qc_data = LocalQCData( qc_records=[ qc_generation_stage.results[result_id] for result_id in qc_generation_stage.ids[i] ] ) target.reference_data = local_qc_data async def enter(self, task: "CoordinatorTask"): completed_stages = {stage.type: stage for stage in task.completed_stages} input_schema = task.input_schema.copy(deep=True) # Regenerate any parameters that should target both the parent molecule and # its fragments fragmentation_stage: FragmentationStage = completed_stages["fragmentation"] # TODO: Move these methods onto the celery worker. try: await self._regenerate_parameters(fragmentation_stage, input_schema) except BaseException as e: self.status = "errored" self.error = json.dumps( f"Failed to generate SMIRKS patterns that match both the parent and " f"torsion fragments: {str(e)}" ) return # Map the generated QC results into a local QC data class and update the schema # to target these. qc_generation_stage: QCGenerationStage = completed_stages["qc-generation"] try: await self._inject_bespoke_qc_data(qc_generation_stage, input_schema) except BaseException as e: self.status = "errored" self.error = json.dumps( f"Failed to inject the bespoke QC data into the optimization " f"schema: {str(e)}" ) return async with httpx.AsyncClient() as client: raw_response = await client.post( f"http://127.0.0.1:" f"{settings.BEFLOW_GATEWAY_PORT}" f"{settings.BEFLOW_API_V1_STR}/" f"{settings.BEFLOW_OPTIMIZER_PREFIX}", data=serialize( OptimizerPOSTBody(input_schema=input_schema), encoding="json" ), ) if raw_response.status_code != 200: self.error = json.dumps(raw_response.text) self.status = "errored" return response = OptimizerPOSTResponse.parse_raw(raw_response.text) self.id = response.optimization_id async def update(self): if self.status == "errored": return async with httpx.AsyncClient() as client: raw_response = await client.get( f"http://127.0.0.1:" f"{settings.BEFLOW_GATEWAY_PORT}" f"{settings.BEFLOW_API_V1_STR}/" f"{settings.BEFLOW_OPTIMIZER_PREFIX}/{self.id}" ) contents = raw_response.text if raw_response.status_code != 200: self.error = json.dumps(raw_response.text) self.status = "errored" return get_response = OptimizerGETResponse.parse_raw(contents) self.result = get_response.optimization_result self.error = get_response.optimization_error self.status = get_response.optimization_status StageType = Union[FragmentationStage, QCGenerationStage, OptimizationStage]
SimonBoothroyd/beflow
beflow/services/optimizer/worker.py
from typing import Union import redis from openff.bespokefit.optimizers import get_optimizer from openff.bespokefit.schema.fitting import BespokeOptimizationSchema from pydantic import parse_raw_as from qcelemental.util import serialize from beflow.services import settings from beflow.utilities.celery import configure_celery_app redis_connection = redis.Redis( host=settings.BEFLOW_REDIS_ADDRESS, port=settings.BEFLOW_REDIS_PORT, db=settings.BEFLOW_REDIS_DB, ) celery_app = configure_celery_app("optimizer", redis_connection) @celery_app.task def optimize(optimization_input_json: str) -> str: input_schema = parse_raw_as( Union[BespokeOptimizationSchema], optimization_input_json ) optimizer = get_optimizer(input_schema.optimizer.type) result = optimizer.optimize(input_schema, keep_files=True) return serialize(result, encoding="json")
SimonBoothroyd/beflow
beflow/services/fragmenter/__init__.py
<filename>beflow/services/fragmenter/__init__.py from beflow.services.fragmenter.app import router __all__ = [router]
SimonBoothroyd/beflow
beflow/services/coordinator/__init__.py
from beflow.services.coordinator.app import router __all__ = [router]
SimonBoothroyd/beflow
beflow/services/optimizer/__init__.py
<gh_stars>0 from beflow.services.optimizer.app import router __all__ = [router]
SimonBoothroyd/beflow
beflow/tests/utilities/test_depiction.py
<gh_stars>0 import pytest from beflow.utilities.depiction import ( _oe_smiles_to_image, _rd_smiles_to_image, smiles_to_image, ) @pytest.mark.parametrize( "to_image", [_oe_smiles_to_image, _rd_smiles_to_image, smiles_to_image] ) def test_smiles_to_image(to_image): try: svg_contents = to_image("C", tuple()) except ModuleNotFoundError as e: pytest.skip(f"missing optional dependency - {e.name}") return assert len(svg_contents) > 0 and "svg" in svg_contents
SimonBoothroyd/beflow
beflow/tests/services/fragmenter/test_worker.py
import json from openff.fragmenter.fragment import FragmentationResult, PfizerFragmenter from openff.toolkit.topology import Molecule from beflow.services.fragmenter import worker def test_fragment(): molecule = Molecule.from_smiles("CCCCCC") result_json = worker.fragment( cmiles=molecule.to_smiles(mapped=True), fragmenter_json=PfizerFragmenter().json(), target_bond_smarts=["[#6]-[#6]-[#6:1]-[#6:2]-[#6]-[#6]"], ) assert isinstance(result_json, str) result_dict = json.loads(result_json) assert isinstance(result_dict, dict) result = FragmentationResult.parse_obj(result_dict) are_isomorphic, _ = Molecule.are_isomorphic( molecule, result.parent_molecule, return_atom_map=True ) assert are_isomorphic assert len(result.fragments) == 1 assert result.provenance["options"]["scheme"] == "Pfizer"
SimonBoothroyd/beflow
beflow/tests/services/optimizer/test_worker.py
<filename>beflow/tests/services/optimizer/test_worker.py import json from openff.bespokefit.optimizers import ForceBalanceOptimizer from openff.bespokefit.schema.fitting import BespokeOptimizationSchema from openff.bespokefit.schema.optimizers import ForceBalanceSchema from openff.bespokefit.schema.results import BespokeOptimizationResults from openff.fragmenter.fragment import WBOFragmenter from beflow.services.optimizer import worker def test_optimize(monkeypatch): input_schema = BespokeOptimizationSchema( smiles="CC", initial_force_field="openff-2.0.0.offxml", parameters=[], parameter_hyperparameters=[], fragmentation_engine=WBOFragmenter(), targets=[], optimizer=ForceBalanceSchema(max_iterations=1), ) input_schema_json = input_schema.json() expected_output = BespokeOptimizationResults( input_schema=input_schema, provenance={}, status="running" ) received_schema = None def mock_optimize(schema, keep_files=False): nonlocal received_schema received_schema = schema return expected_output monkeypatch.setattr(ForceBalanceOptimizer, "optimize", mock_optimize) result_json = worker.optimize(optimization_input_json=input_schema_json) assert isinstance(result_json, str) result_dict = json.loads(result_json) assert isinstance(result_dict, dict) result = BespokeOptimizationResults.parse_obj(result_dict) assert result.status == expected_output.status assert received_schema.json() == input_schema_json
SimonBoothroyd/beflow
beflow/tests/conftest.py
<filename>beflow/tests/conftest.py import subprocess import pytest import redis from beflow.utilities.redis import launch_redis @pytest.fixture(scope="session") def redis_session(tmpdir_factory): redis_exists_error = RuntimeError( "It looks like a redis server is already running with the test " "settings. Exiting early in-case this is a production redis server." ) try: connection = redis.Redis(port=5678, db=0) keys = connection.keys("*") assert len(keys) == 0 except redis.ConnectionError: pass except AssertionError: raise redis_exists_error else: raise redis_exists_error launch_redis( port=5678, stderr_file=subprocess.DEVNULL, stdout_file=subprocess.DEVNULL, persistent=False, directory=str(tmpdir_factory.mktemp("redis")), ) @pytest.fixture(scope="session") def redis_connection(redis_session) -> redis.Redis: return redis.Redis(port=5678, db=0) @pytest.fixture(scope="function", autouse=True) def reset_redis(redis_connection, monkeypatch): redis_connection.flushdb()
SimonBoothroyd/beflow
beflow/services/qcgenerator/app.py
import json from typing import List, Optional, Union from fastapi import APIRouter, Query from fastapi.responses import Response from openff.bespokefit.schema.tasks import HessianTask, OptimizationTask, Torsion1DTask from pydantic import parse_obj_as from qcelemental.models import AtomicResult, OptimizationResult from qcengine.procedures.torsiondrive import TorsionDriveResult from beflow.services import settings from beflow.services.qcgenerator import worker from beflow.services.qcgenerator.models import ( QCGeneratorGETResponse, QCGeneratorPOSTBody, QCGeneratorPOSTResponse, ) from beflow.utilities.celery import get_task_information from beflow.utilities.depiction import IMAGE_UNAVAILABLE_SVG, smiles_to_image router = APIRouter() def _retrieve_qc_result(qc_calc_id: str, results: bool) -> QCGeneratorGETResponse: qc_task_info = get_task_information(worker.celery_app, qc_calc_id) qc_calc_type = worker.redis_connection.hget("qcgenerator:types", qc_calc_id) # Because QCElemental models contain numpy arrays that aren't natively JSON # serializable we need to work with plain dicts of primitive types here. # noinspection PyTypeChecker return { "qc_calc_id": qc_calc_id, "qc_calc_status": qc_task_info["status"], "qc_calc_type": qc_calc_type.decode(), "qc_calc_result": None if not results else qc_task_info["result"], "qc_calc_error": json.dumps(qc_task_info["error"]), } @router.get("/" + settings.BEFLOW_QC_COMPUTE_PREFIX + "s") def get_qc_results( ids: Optional[List[str]] = Query(None), results: bool = True ) -> List[QCGeneratorGETResponse]: if ids is None: raise NotImplementedError() return [_retrieve_qc_result(qc_calc_id, results) for qc_calc_id in ids] @router.get("/" + settings.BEFLOW_QC_COMPUTE_PREFIX + "/{qc_calc_id}") def get_qc_result(qc_calc_id: str, results: bool = True) -> QCGeneratorGETResponse: return _retrieve_qc_result(qc_calc_id, results) @router.post("/" + settings.BEFLOW_QC_COMPUTE_PREFIX) def post_qc_result(body: QCGeneratorPOSTBody) -> QCGeneratorPOSTResponse: if isinstance(body.input_schema, Torsion1DTask): compute = worker.compute_torsion_drive elif isinstance(body.input_schema, OptimizationTask): compute = worker.compute_optimization elif isinstance(body.input_schema, HessianTask): compute = worker.compute_hessian else: raise NotImplementedError() task = compute.delay(task_json=body.input_schema.json()) worker.redis_connection.hset("qcgenerator:types", task.id, body.input_schema.type) return QCGeneratorPOSTResponse( qc_calc_id=task.id, qc_calc_type=body.input_schema.type ) @router.get("/" + settings.BEFLOW_QC_COMPUTE_PREFIX + "/{qc_calc_id}/image/molecule") def get_qc_result_molecule_image(qc_calc_id: str): task_info = get_task_information(worker.celery_app, qc_calc_id) if task_info["status"] != "success": return Response(IMAGE_UNAVAILABLE_SVG, media_type="image/svg+xml") qc_result = parse_obj_as( Union[TorsionDriveResult, OptimizationResult, AtomicResult], task_info["result"] ) if isinstance(qc_result, (OptimizationResult, TorsionDriveResult)): highlight_atoms = ( None if isinstance(qc_result, OptimizationResult) else tuple(i + 1 for i in qc_result.keywords["dihedrals"][0]) ) svg_content = smiles_to_image( qc_result.initial_molecule.extras[ "canonical_isomeric_explicit_hydrogen_mapped_smiles" ], highlight_atoms=highlight_atoms, ) elif isinstance(qc_result, AtomicResult): svg_content = smiles_to_image( qc_result.molecule.extras[ "canonical_isomeric_explicit_hydrogen_mapped_smiles" ] ) else: raise NotImplementedError() return Response(svg_content, media_type="image/svg+xml")
SimonBoothroyd/beflow
beflow/tests/services/test_gateway.py
import functools from multiprocessing import Process import pytest from beflow.services import settings from beflow.services.gateway import app, launch, wait_for_gateway def test_default_routes_loaded(): found_routes = [router.path for router in app.routes] assert all( route in found_routes for route in [ "/api/v1/fragmenter", "/api/v1/optimizer", "/api/v1/qc-calc", "/api/v1/optimization", ] ) @pytest.mark.parametrize("directory", [None, "."]) def test_launch(directory): process = Process(target=functools.partial(launch, directory)) process.start() wait_for_gateway() process.terminate() process.join() def test_wait_for_gateway_timeout(monkeypatch): monkeypatch.setattr(settings, "BEFLOW_GATEWAY_PORT", 111) with pytest.raises(RuntimeError, match="The gateway could not be reached"): wait_for_gateway(n_retries=1)
SimonBoothroyd/beflow
beflow/tests/utilities/test_celery.py
<reponame>SimonBoothroyd/beflow import functools import celery import pytest from celery import shared_task from beflow.tests.mocking.celery import mock_celery_result from beflow.utilities.celery import ( _spawn_worker, configure_celery_app, get_status, get_task_information, spawn_worker, ) @shared_task def mock_task_success(): return '{"key": "value"}' @shared_task def mock_task_error(): raise RuntimeError("mock error occured") @pytest.mark.parametrize( "task_result, expected_status", [ (mock_celery_result(status="PENDING"), "waiting"), (mock_celery_result(status="STARTED"), "running"), (mock_celery_result(status="RETRY"), "running"), (mock_celery_result(status="FAILURE"), "errored"), (mock_celery_result(status="SUCCESS"), "success"), ], ) def test_get_status(task_result, expected_status): assert get_status(task_result) == expected_status def test_configure_celery_app(redis_connection): celery_app = configure_celery_app( app_name="test-app-name", redis_connection=redis_connection, include=["beflow.services.fragmenter.worker"], ) assert isinstance(celery_app, celery.Celery) assert celery_app.main == "test-app-name" assert celery_app.conf.task_track_started is True assert celery_app.conf.task_default_queue == "test-app-name" assert ( celery_app.backend.client.connection_pool.connection_kwargs["port"] == redis_connection.connection_pool.connection_kwargs["port"] ) def test_spawn_no_worker(celery_app): assert spawn_worker(celery_app, concurrency=0) is None @pytest.mark.parametrize( "spawn_function", [_spawn_worker, functools.partial(spawn_worker, asynchronous=False)], ) def test_spawn_worker(spawn_function, celery_app, monkeypatch): started = False def mock_start(self): nonlocal started started = True monkeypatch.setattr(celery_app.Worker, "start", mock_start) spawn_function(celery_app, concurrency=1) assert started def test_get_task_information_success(celery_app, celery_worker): task_result = mock_task_success.delay() task_result.get(timeout=10) task_info = get_task_information(celery_app, task_result.id) assert task_info["id"] == task_result.id assert task_info["status"] == "success" assert task_info["error"] is None assert task_info["result"] == {"key": "value"} def test_get_task_information_error(celery_app, celery_worker): task_result = mock_task_error.delay() task_result.get(propagate=False, timeout=10) task_info = get_task_information(celery_app, task_result.id) assert task_info["id"] == task_result.id assert task_info["status"] == "errored" assert task_info["result"] is None assert task_info["error"]["type"] == "RuntimeError" assert task_info["error"]["message"] == "mock error occured" assert task_info["error"]["traceback"] is not None
Bruck1701/Windhoek-Weather-Bot
SensorReader.py
<filename>SensorReader.py import time import serial import sys from datetime import datetime import ast class ArduinoSensor: def __init__(self): self.ser = serial.Serial('/dev/ttyACM0',9600, timeout = 5) # listen for the input, exit if nothing received in timeout period def ReadInput(self): line="" dataframe_columns=['Temp','Hum','Vis','IR'] date_hour=datetime.now() while True: line =self.ser.readline().decode("utf-8") if len(line)!=0: if(line[0]=='{'): #print(line) frame_dict=ast.literal_eval(line) frame_dict['date']=date_hour #print(dict(frame_dict)) return(frame_dict)
Bruck1701/Windhoek-Weather-Bot
LambdaFunctions/subscriberDDB.py
<filename>LambdaFunctions/subscriberDDB.py<gh_stars>1-10 import json import boto3 import time import os from decimal import Decimal dynamodb = boto3.resource('dynamodb') table = dynamodb.Table(os.environ['TABLE_NAME']) def lambda_handler(event, context): ts = time.time() message_attrs = event['Records'][0]['Sns']['MessageAttributes'] print(ts) print(message_attrs) delta = 2592000 # ts+delta: 30 days from today response = table.put_item( Item={ 'timestamp': Decimal(str(ts)), 'expire_on': Decimal(str(ts+delta)), 'datetime': message_attrs['datetime']['Value'], 'temp': Decimal(message_attrs['temp']['Value']), 'hum': Decimal(message_attrs['hum']['Value']), 'ir': Decimal(message_attrs['ir']['Value']), 'vis': Decimal(message_attrs['vis']['Value']) } ) return 0
Bruck1701/Windhoek-Weather-Bot
Publisher.py
<reponame>Bruck1701/Windhoek-Weather-Bot import config import tweepy import datetime from SensorReader import ArduinoSensor import requests import boto3 def getWeatherDataAPI(): temp_data={} url = "https://api.openweathermap.org/data/2.5/weather?q=Windhoek,na&appid="+config.WEATHER_API response = requests.get(url) if "main" in response.json(): temp_data["temp"]= "{:.2f}".format((float(response.json()["main"]["temp"])- 273.15)) temp_data["pressure"] = response.json()["main"]["pressure"] temp_data["humidity"] = response.json()["main"]["humidity"] return temp_data return None if __name__ == "__main__": arduino = ArduinoSensor() data = arduino.ReadInput() api_data = getWeatherDataAPI() info = "" degree_sign= u'\N{DEGREE SIGN}' msg=f"[Windhoek/NA]: {datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')}\nSensor_Temp: {data['Temp']}{degree_sign}, Humidity: {data['Hum']}%\nCaptured_IR: {data['IR']}, Visible_Light: {data['Vis']}\n" msg+=f"\nOpenWeather_data: Temp: {api_data['temp']}{degree_sign}, Hum: {api_data['humidity']}%, Press: {api_data['pressure']}" client = boto3.client('sns') response = client.publish( TopicArn=config.TOPIC_ARN, Message=msg, Subject='Weather Data', MessageAttributes={ 'datetime': { 'DataType': 'String', 'StringValue': datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S') }, 'temp': { 'DataType': 'String', 'StringValue': str(data['Temp']) }, 'hum': { 'DataType': 'String', 'StringValue': str(data['Hum']) }, 'ir': { 'DataType': 'String', 'StringValue': str(data['IR']) }, 'vis': { 'DataType': 'String', 'StringValue': str(data['Vis']) } } ) print(response)
Bruck1701/Windhoek-Weather-Bot
LambdaFunctions/subscriberTwitter.py
<reponame>Bruck1701/Windhoek-Weather-Bot import json import boto3 import tweepy ssm = boto3.client('ssm',region_name='us-east-1') def lambda_handler(event, context): params = ssm.get_parameters(Names=['/wwbot-app/dev/twitter/api_key', '/wwbot-app/dev/twitter/api_secret_key', '/wwbot-app/dev/twitter/access_token', '/wwbot-app/dev/twitter/access_token_secret'], WithDecryption=True)['Parameters'] access_token = params[0]['Value'] access_token_secret = params[1]['Value'] api_key = params[2]['Value'] api_secret_key = params[3]['Value'] auth = tweepy.OAuthHandler(api_key, api_secret_key) auth.set_access_token(access_token, access_token_secret) con = tweepy.API(auth) message = event['Records'][0]['Sns']['Message'] con.update_status("☁️ "+message) return 0
piotrwolinski-intel/incubator-mxnet
tests/python/dnnl/subgraphs/test_fc_subgraph.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import mxnet as mx import pytest from subgraph_common import check_fusion, check_neg_fusion, check_neg_fusion_quantized, check_quantize from subgraph_common import CustomNormalInit, DATA_SHAPE, TailNegBlock from mxnet.contrib import quantization from mxnet.gluon import nn from mxnet.test_utils import assert_almost_equal_with_err fc_post_ops_list=['relu', 'sigmoid', 'log_sigmoid', 'mish', 'tanh', 'softrelu', 'gelu', 'elu', 'leaky', 'square', 'square_root', 'abs', 'exp', 'bounded_relu'] def test_float64_fallback(): dtype = 'float64' net = nn.Dense(units=3, dtype=dtype) in_data = mx.np.random.normal(size=[3,3,3,3], dtype=dtype) net.initialize() out = net(in_data) out.wait_to_read() assert in_data.dtype == out.dtype @mx.util.use_np @pytest.mark.parametrize('data_shape', DATA_SHAPE) @pytest.mark.parametrize('use_bias', [True, False]) @pytest.mark.parametrize('flatten', [True, False]) def test_single_fc(data_shape, use_bias, flatten): class SingleFC(nn.HybridBlock): def __init__(self, use_bias, flatten, **kwargs): super(SingleFC, self).__init__(**kwargs) self.fc = nn.Dense(units=64, use_bias=use_bias, flatten=flatten) def forward(self, x): return self.fc(x) attrs = {'fc': {}} net = SingleFC(use_bias, flatten) check_fusion(net, data_shape, attrs, check_quantization=flatten) @mx.util.use_np @pytest.mark.parametrize('data_shape', DATA_SHAPE) @pytest.mark.parametrize('use_bias', [True, False]) @pytest.mark.parametrize('flatten', [True, False]) @pytest.mark.parametrize('out_type', ['int8', 'auto']) @pytest.mark.parametrize('module', [mx.npx, mx.nd]) def test_fc_reshape(data_shape, use_bias, out_type, flatten, module): class FC_Reshape(nn.HybridBlock): def __init__(self, use_bias, flatten, **kwargs): super(FC_Reshape, self).__init__(**kwargs) self.fc = nn.Dense(units=64, use_bias=use_bias, flatten=flatten) def forward(self, x): out = self.fc(x) if module == mx.npx: attrs = {"newshape": (1,-1)} else: attrs = {"shape": (1,-1)} out = out.as_nd_ndarray() out = getattr(module, "reshape")(out, **attrs) return out.as_np_ndarray() net = FC_Reshape(use_bias, flatten) check_quantize(net, data_shape, out_type, name='fc') @mx.util.use_np @pytest.mark.parametrize('data_shape', DATA_SHAPE) @pytest.mark.parametrize('use_bias', [True, False]) @pytest.mark.parametrize('out_type', ['int8', 'auto']) @pytest.mark.parametrize('module', [mx.np, mx.nd]) def test_fc_transpose(data_shape, use_bias, out_type, module): class FC_Transpose(nn.HybridBlock): def __init__(self, use_bias, **kwargs): super(FC_Transpose, self).__init__(**kwargs) self.fc = nn.Dense(units=64, use_bias=use_bias) def forward(self, x): out = self.fc(x) if module == mx.nd: out = out.as_nd_ndarray() out = module.transpose(out) return out.as_np_ndarray() net = FC_Transpose(use_bias) check_quantize(net, data_shape, out_type, name='fc') @mx.util.use_np @pytest.mark.parametrize('data_shape', DATA_SHAPE) @pytest.mark.parametrize('use_bias', [True, False]) @pytest.mark.parametrize('flatten', [True, False]) @pytest.mark.parametrize('alg', fc_post_ops_list) def test_fc_eltwise(data_shape, use_bias, flatten, alg): # fc + eltwise fusion case class FCEltwise(nn.HybridBlock): def __init__(self, use_bias, flatten, alg, **kwargs): super(FCEltwise, self).__init__(**kwargs) self.fc = nn.Dense(units=64, use_bias=use_bias, flatten=flatten, weight_initializer=CustomNormalInit(mean=0.5, sigma=0.1, bounded=True) if alg == 'square_root' else None) #avoid calculating square root of negative values self.alg = alg def forward(self, x): if self.alg == 'square_root': x = abs(x) fc_out = self.fc(x) if self.alg in ['relu', 'sigmoid', 'log_sigmoid', 'mish', 'tanh', 'softrelu']: out = mx.npx.activation(fc_out, act_type=self.alg) elif self.alg in ['gelu', 'elu', 'leaky']: out = mx.npx.leaky_relu(fc_out, act_type=self.alg) elif self.alg == 'square': out = mx.np.square(fc_out) elif self.alg == 'square_root': out = mx.np.sqrt(fc_out) elif self.alg == 'abs': out = mx.np.abs(fc_out) elif self.alg == 'exp': out = mx.np.exp(fc_out) else: out = mx.np.clip(fc_out, 0, 1.0) return out attrs = {'fc': {'with_eltwise': 'true'}} net = FCEltwise(use_bias, flatten, alg) check_fusion(net, data_shape, attrs, check_quantization=flatten) @mx.util.use_np @pytest.mark.parametrize('data_shape', DATA_SHAPE) @pytest.mark.parametrize('use_bias', [True, False]) @pytest.mark.parametrize('flatten', [True, False]) def test_neg_fc_relu(data_shape, use_bias, flatten): # fc + relu can't be fusion case # eg.1 # fc -----------> relu # | # | # ---------------> [custom op] class NegFCReLU(nn.HybridBlock): def __init__(self, use_bias, flatten, **kwargs): super(NegFCReLU, self).__init__(**kwargs) self.fc = nn.Dense(units=64, use_bias=use_bias, flatten=flatten) self.act1 = nn.Activation('relu') self.act2 = nn.Activation('sigmoid') self.tail_neg = TailNegBlock() def forward(self, x): fc_out = self.fc(x) return self.tail_neg(self.act1(fc_out), self.act2(fc_out)) attrs, excluded_attrs = [], [] net = NegFCReLU(use_bias, flatten) check_neg_fusion(net, attrs, excluded_attrs, data_shape, name='fc') @mx.util.use_np @pytest.mark.parametrize('data_min,data_max,weight_min,weight_max', [ (-1, 1, 0, 0), (-1, 1, -1e-6, +1e-6), (0, 0, 1, 1), (-1e-6, +1e-6, -1, 1), (-1e-6, +1e-6, -1e-6, +1e-6), (0, 0, 0, 0) ]) def test_quantized_fc_bias_overflow(data_min, data_max, weight_min, weight_max): data_shape = (1, 32) data_nd = mx.np.random.uniform(data_min, data_max, size=data_shape, device=mx.cpu()) weight_nd = mx.np.random.uniform(weight_min, weight_max, size=[64, 32], device=mx.cpu()) bias_nd = mx.np.random.uniform(-1, +1, size=[64], device=mx.cpu()) class FCBiasOverflow(nn.HybridBlock): def __init__(self, dtype='float32', **kwargs): super(FCBiasOverflow, self).__init__(**kwargs) self.weight = mx.gluon.Parameter('weight', dtype=dtype, allow_deferred_init=True) self.bias = mx.gluon.Parameter('bias', dtype=dtype, allow_deferred_init=True) def forward(self, x): conv1 = mx.npx.fully_connected(x, num_hidden=64, weight=self.weight.data(x.device), no_bias=False, bias=self.bias.data(x.device)) return conv1 def infer_shape(self, x, *args): self.weight.shape = (64, x.shape[x.ndim-1]) self.bias.shape = (64,) net = FCBiasOverflow() net.initialize() net(data_nd) # dummy run net.weight.data()[:] = weight_nd net.bias.data()[:] = bias_nd out = net(data_nd) calib_data = mx.gluon.data.DataLoader(data_nd, batch_size=1) qnet = quantization.quantize_net(net, device=mx.cpu(), exclude_layers=None, exclude_operators=None, quantized_dtype='int8', calib_mode='naive', calib_data=calib_data, num_calib_batches=1, quantize_mode='full') out_quantized = qnet(data_nd) assert_almost_equal_with_err(out.asnumpy(), out_quantized.asnumpy(), rtol=1e-2, atol=1e-2, etol=0.01) @mx.util.use_np @pytest.mark.parametrize('data_shape', DATA_SHAPE) @pytest.mark.parametrize('flatten', [True, False]) def test_fc_int8_and_fp32_outputs(data_shape, flatten): # /---> Quantizable op # Input ---> FC -| # \---> Non quantizable op class MultiOutputFC(nn.HybridBlock): def __init__(self, **kwargs): super(MultiOutputFC, self).__init__(**kwargs) self.dense0 = nn.Dense(64, flatten=flatten) self.dense1 = nn.Dense(64, flatten=flatten) def forward(self, x): x = self.dense0(x) y = self.dense1(x) # quantizable z = mx.npx.softmax(x) # non quantizable return y + z attrs = {'fc': {}} net = MultiOutputFC() check_fusion(net, data_shape, attrs, check_quantization=flatten) @mx.util.use_np @pytest.mark.parametrize('identity_node', ['dropout', 'copy']) def test_fc_identity_eltwise(identity_node): class FCIdentityEltwise(nn.HybridBlock): def __init__(self, identity_node, **kwargs): super(FCIdentityEltwise, self).__init__(**kwargs) self.fc1 = nn.Dense(units=64, use_bias=False, weight_initializer=None, flatten=True) self.fc2 = nn.Dense(units=64, use_bias=False, weight_initializer=None, flatten=True) self.identity_node = identity_node def forward(self, x): out = self.fc1(x) if self.identity_node == 'copy': out = mx.np.copy(out) else: out = mx.npx.dropout(out) out = mx.npx.activation(out, act_type='relu') out = self.fc2(out) if self.identity_node == 'copy': out = mx.np.copy(out) else: out = mx.npx.dropout(out) out = mx.npx.activation(out, act_type='relu') return out data_shape = (64, 4, 10, 10) attrs = {'sg_onednn_fully_connected_eltwise_0' : {'with_eltwise': 'true'}, 'sg_onednn_fully_connected_eltwise_1' : {'with_eltwise': 'true'}} net = FCIdentityEltwise(identity_node) check_fusion(net, data_shape, attrs, check_quantization=False) def function_fc_add(data_shape, add_op, quantize_mode, fc_out_add, flatten, relu, out_type): class FCWithSumExample(nn.HybridBlock): def __init__(self, num_hidden, add_op, fc_out_add, **kwargs): super(FCWithSumExample, self).__init__(**kwargs) self.fca = nn.Dense(units=num_hidden, flatten=flatten) self.elemwise_add = (add_op == 'elemwise_add') self.fc_out_as_rhs = (fc_out_add == 'rhs') self.relu = (relu == 'leaky_relu') def forward(self, data1a, data2): fc_out = self.fca(data1a) if self.relu: fc_out = mx.npx.leaky_relu(fc_out, act_type='gelu') if self.fc_out_as_rhs: if self.elemwise_add: sum1 = mx.nd.elemwise_add(data2.as_nd_ndarray(), fc_out.as_nd_ndarray()).as_np_ndarray() else: sum1 = data2 + fc_out else: if self.elemwise_add: sum1 = mx.nd.elemwise_add(fc_out.as_nd_ndarray(), data2.as_nd_ndarray()).as_np_ndarray() else: sum1 = fc_out + data2 return sum1 attrs = {'fc': {'with_sum': 'true'}} if quantize_mode is not None: attrs['fc']['quantized'] = 'true' if quantize_mode == 'smart': attrs['fc']['enable_float_output'] = 'true' num_hidden=10 net = FCWithSumExample(num_hidden, add_op, fc_out_add) if flatten: data_shapes = [data_shape, (data_shape[0], num_hidden)] else: data_shapes = [data_shape, (*data_shape[0:-1], num_hidden)] check_fusion(net, data_shapes, attrs, out_types=[out_type], check_fp32_fusion=(quantize_mode is None), check_quantization=(quantize_mode is not None) and flatten, quantize_mode=quantize_mode) @mx.util.use_np @pytest.mark.parametrize('data_shape', DATA_SHAPE) @pytest.mark.parametrize('relu', ['noleaky_re', 'leaky_relu']) @pytest.mark.parametrize('flatten', ['flat', 'nofl']) @pytest.mark.parametrize('fc_out_add', ['lhs', 'rhs']) @pytest.mark.parametrize('add_op', ['elemwise_add']) def test_fc_add(data_shape, add_op, fc_out_add, flatten, relu): function_fc_add(data_shape, add_op, None, fc_out_add, flatten=='flat', relu, None) @mx.util.use_np @pytest.mark.seed(1234) # Seed set because the test is not robust enough to operate on random data @pytest.mark.parametrize('data_shape', DATA_SHAPE) @pytest.mark.parametrize('quantize_mode', ['full', 'smart']) @pytest.mark.parametrize('out_type', ['int8', 'auto']) @pytest.mark.parametrize('fc_out_add', ['lhs', 'rhs']) @pytest.mark.parametrize('add_op', ['elemwise_add']) def test_fc_add_quantized(data_shape, add_op, quantize_mode, fc_out_add, out_type): function_fc_add(data_shape, add_op, quantize_mode, fc_out_add, True, 'noleaky_re', out_type) class NegFCAdd(nn.HybridBlock): # # data --------------------------> 'add_op' ------------> # / \ # sg_oned_dnn_fully_connected ----> npi_add --> # \ / # npi_multiply_scalar --> def __init__(self, num_hidden, add_op, fc_out_add, scaled_fc_out, flatten, **kwargs): super(NegFCAdd, self).__init__(**kwargs) self.fca = nn.Dense(units=num_hidden, flatten=flatten) self.elemwise_add = (add_op == 'elemwise_add') self.fc_out_as_rhs = (fc_out_add == 'rhs') self.scaled_fc_out_as_rhs = (scaled_fc_out == 's_rhs') def forward(self, data1a, data2): fc_out = self.fca(data1a) scaled_fc_out = fc_out * 200.0 if self.fc_out_as_rhs: if self.elemwise_add: sum1 = mx.nd.elemwise_add(data2.as_nd_ndarray(), fc_out.as_nd_ndarray()).as_np_ndarray() else: sum1 = data2 + fc_out else: if self.elemwise_add: sum1 = mx.nd.elemwise_add(fc_out.as_nd_ndarray(), data2.as_nd_ndarray()).as_np_ndarray() else: sum1 = fc_out + data2 if self.scaled_fc_out_as_rhs: sum2 = sum1 + scaled_fc_out else: sum2 = scaled_fc_out + sum1 return sum2 @mx.util.use_np @pytest.mark.parametrize('add_op', ['elemwise_add']) @pytest.mark.parametrize('data_shape', [DATA_SHAPE[0]]) @pytest.mark.parametrize('flatten', ['flat', 'nofl']) @pytest.mark.parametrize('fc_out_add', ['lhs', 'rhs']) @pytest.mark.parametrize('scaled_fc_out', ['s_lhs', 's_rhs']) def test_neg_fc_add(data_shape, add_op, flatten, fc_out_add, scaled_fc_out): ''' Test if FullyConnected operator which output is not used for only one 'add_op' input is not fused. See NegFCAdd for used graph example ''' flatten = (flatten == 'flat') num_hidden = 10 net = NegFCAdd(num_hidden, add_op, fc_out_add, scaled_fc_out, flatten) if flatten: data_shapes = [data_shape, (data_shape[0], num_hidden)] else: data_shapes = [data_shape, (*data_shape[0:-1], num_hidden)] attrs = [] excluded_attrs = ['with_sum'] check_neg_fusion(net, attrs, excluded_attrs, data_shapes, name='fc') @mx.util.use_np @pytest.mark.parametrize('add_op', ['elemwise_add']) @pytest.mark.parametrize('data_shape', [DATA_SHAPE[1]]) @pytest.mark.parametrize('fc_out_add', ['lhs', 'rhs']) @pytest.mark.parametrize('scaled_fc_out', ['s_lhs', 's_rhs']) def test_neg_fc_add_quantized(data_shape, add_op, fc_out_add, scaled_fc_out): ''' Test if FullyConnected operator which output is not used for only one 'add_op' input is not fused for quantized model. See NegFCAdd for used graph example. ''' num_hidden = 10 net = NegFCAdd(num_hidden, add_op, fc_out_add, scaled_fc_out, True) data_shapes = [data_shape, (data_shape[0], num_hidden)] attrs = [] excluded_attrs = ['with_sum'] check_neg_fusion_quantized(net, attrs, excluded_attrs, data_shapes, name='fc')
piotrwolinski-intel/incubator-mxnet
tests/python/gpu/test_amp.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import sys from pathlib import Path curr_path = Path(__file__).resolve().parent sys.path.insert(0, str(curr_path.parent)) sys.path.insert(0, str(curr_path.parent/'unittest')) import mxnet as mx import pytest from mxnet import amp from mxnet.test_utils import set_default_device from mxnet.gluon import nn, rnn import amp.common as amp_common_tests from common import assert_raises_cudnn_not_satisfied AMP_DTYPE = 'float16' set_default_device(mx.gpu(0)) def test_fp16_coverage(): amp_common_tests.test_amp_coverage(AMP_DTYPE, 'FP16') @mx.util.use_np def test_fp16_basic_use(): amp_common_tests.test_amp_basic_use(AMP_DTYPE) @mx.util.use_np def test_fp16_offline_casting(): amp_common_tests.test_amp_offline_casting(AMP_DTYPE) @mx.util.use_np def test_fp16_offline_casting_shared_params(): amp_common_tests.test_amp_offline_casting_shared_params(AMP_DTYPE) @mx.util.use_np def test_fp16_fp32_ops_order_independence(): amp_common_tests.test_lp16_fp32_ops_order_independence(AMP_DTYPE) @mx.util.use_np def test_fp16_test_node_excluding(): amp_common_tests.test_amp_node_excluding(AMP_DTYPE) @pytest.mark.skip(reason='Error during waitall(). Tracked in #18099') @assert_raises_cudnn_not_satisfied(min_version='5.1.10') def test_amp_conversion_rnn(amp_tests): with mx.Device(mx.gpu(0)): model = nn.HybridSequential() model.add(rnn.LSTM(hidden_size=10, num_layers=2, bidirectional=True)) model.add(nn.Dense(2)) model.initialize() model.hybridize() out = model(mx.nd.ones((2, 3, 4))) new_model = amp.convert_hybrid_block(model) out2 = new_model(mx.nd.ones((2, 3, 4))) mx.test_utils.assert_almost_equal(out.asnumpy(), out2.asnumpy(), atol=1e-2, rtol=1e-2)
piotrwolinski-intel/incubator-mxnet
tests/python/amp/common.py
<reponame>piotrwolinski-intel/incubator-mxnet<filename>tests/python/amp/common.py # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import warnings import collections import mxnet as mx from mxnet import amp from mxnet.gluon import nn from mxnet.operator import get_all_registered_operators_grouped def test_amp_coverage(lp_dtype, lp_name): conditional = [item[0] for item in amp.list_conditional_fp32_ops(lp_dtype)] lp16_ops = amp.list_lp16_ops(lp_dtype) lp16_fp32_ops = amp.list_lp16_fp32_ops(lp_dtype) fp32_ops = amp.list_fp32_ops(lp_dtype) widest_ops = amp.list_widest_type_cast(lp_dtype) all_lp_lists = [lp16_ops, lp16_fp32_ops, fp32_ops, widest_ops, conditional] # Check for duplicates for op_list in all_lp_lists: ret = [op for op, count in collections.Counter(op_list).items() if count > 1] assert ret == [], "Elements " + str(ret) + " are duplicated in the AMP lists." all_lp_ops = [op for op_list in all_lp_lists for op in op_list] ret = [op for op, count in collections.Counter(all_lp_ops).items() if count > 1] assert ret == [], "Elements " + str(ret) + " exist in more than 1 AMP list." # Check the coverage covered_ops = set(all_lp_ops) all_mxnet_ops = get_all_registered_operators_grouped() required_ops = {op for op in all_mxnet_ops if not "backward" in op} extra_ops = covered_ops - required_ops assert not extra_ops, f"{len(extra_ops)} operators are not needed in the AMP lists: {sorted(extra_ops)}" guidelines = f"""Please follow these guidelines for choosing a proper list: - if your operator is not to be used in a computational graph (e.g. image manipulation operators, optimizers) or does not have inputs, put it in {lp_name.upper()}_FP32_FUNCS list, - if your operator requires FP32 inputs or is not safe to use with lower precision, put it in FP32_FUNCS list, - if your operator supports both FP32 and lower precision, has multiple inputs and expects all inputs to be of the same type, put it in WIDEST_TYPE_CASTS list, - if your operator supports both FP32 and lower precision and has either a single input or supports inputs of different type, put it in {lp_name.upper()}_FP32_FUNCS list, - if your operator is both safe to use in lower precision and it is highly beneficial to use it in lower precision, then put it in {lp_name.upper()}_FUNCS (this is unlikely for new operators) - If you are not sure which list to choose, FP32_FUNCS is the safest option""" missing_ops = required_ops - covered_ops if len(missing_ops) > 0: warnings.warn(f"{len(missing_ops)} operators {sorted(missing_ops)} do not exist in AMP lists " f"(in python/mxnet/amp/lists/symbol_{lp_name.lower()}.py) - please add them. \n{guidelines}") def test_amp_basic_use(lp_dtype): class TestNet(nn.HybridBlock): def __init__(self): super().__init__() self.fc1 = nn.Dense(4) self.fc2 = nn.Dense(4) def forward(self, x): x = self.fc1(x) x = self.fc2(x) return x.reshape((-1, 2, 2)) data_example = mx.np.random.uniform(-1, 1, (4, 4)) net = TestNet() net.initialize() net = amp.convert_hybrid_block(net, data_example, lp_dtype) lp16_casts = 1 # cast for network input lp16_casts += 2 # cast for weights and bias of `fc1` lp16_casts += 2 # cast for weights and bias of `fc2` other_casts = 1 # cast for the network output (from lp16 to f32) lp16_tensors = 1 # cast network input lp16_tensors += 3 # cast weights and bias of `fc1`, `fc1` output lp16_tensors += 3 # cast weights and bias of `fc2`, `fc2` output lp16_tensors += 1 # reshape output check_amp_net_stats(lp_dtype, net, data_example, lp16_tensors_num=lp16_tensors, lp16_casts_num=lp16_casts, other_casts_num=other_casts) def test_amp_offline_casting(lp_dtype): class TestNet(nn.HybridBlock): def __init__(self): super().__init__() self.lp16_op1 = nn.Conv2D(4, 3) self.lp16_op2 = nn.Conv2DTranspose(4, 3) self.fp32_op = nn.Dense(4) def forward(self, x): x = self.lp16_op1(x) x = self.lp16_op2(x) x = x.reshape(x.shape[0], -1) with nn.HybridBlock.OptConstraint.disable_amp(): x = self.fp32_op(x) return x net = TestNet() net.initialize() data_example = mx.np.random.uniform(-1, 1, (4, 3, 16, 16)) lp_net = amp.convert_hybrid_block(net, data_example, lp_dtype, cast_params_offline=True) check_amp_net_stats(lp_dtype, lp_net, data_example, lp16_tensors_num=4, lp16_casts_num=1, other_casts_num=1) for name, data in lp_net.collect_params().items(): assert mx.nd.get_dtype_name(data.dtype) == ('float32' if 'fp32_op' in name else lp_dtype) def test_amp_offline_casting_shared_params(lp_dtype): COMMON_SIZE = 4 class TestNet(nn.HybridBlock): def __init__(self): super().__init__() self.lp16_op1 = nn.Dense(COMMON_SIZE) self.lp16_op2 = nn.Dense(COMMON_SIZE) self.lp16_op2.share_parameters({'weight': self.lp16_op1.weight}) self.fp32_op = nn.Dense(COMMON_SIZE) self.fp32_op.share_parameters({'bias': self.lp16_op2.bias}) def forward(self, x): x = self.lp16_op1(x) x1 = self.lp16_op2(x) with nn.HybridBlock.OptConstraint.disable_amp(): x2 = self.fp32_op(x) x = mx.np.concat((x1, x2), axis=1) return x net = TestNet() net.initialize() data_example = mx.np.random.uniform(-1, 1, (4, COMMON_SIZE)) lp_net = amp.convert_hybrid_block(net, data_example, lp_dtype, cast_params_offline=True) check_amp_net_stats(lp_dtype, lp_net, data_example, lp16_tensors_num=4, lp16_casts_num=2, other_casts_num=2) for name, data in lp_net.collect_params().items(): assert mx.nd.get_dtype_name(data.dtype) == ('float32' if 'fp32_op' in name else lp_dtype) def test_lp16_fp32_ops_order_independence(lp_dtype): class TestNet(nn.HybridBlock): def __init__(self, lp16_fp32_is_first): super().__init__() if lp16_fp32_is_first: self.first = mx.npx.batch_flatten # lp16_fp32_op self.second = nn.Dense(4) else: self.first = nn.Dense(4) self.second = mx.npx.batch_flatten # lp16_fp32_op def forward(self, x): x = 2**x x1 = self.first(x) x2 = self.second(x) return x1, x2 data_example = mx.np.random.uniform(-1, 1, (4, 16)) for lp16_fp32_is_second in [False, True]: net = TestNet(lp16_fp32_is_second) net.initialize() net = amp.convert_hybrid_block(net, data_example, lp_dtype, cast_params_offline=True) check_amp_net_stats(lp_dtype, net, data_example, lp16_tensors_num=3, lp16_casts_num=1, other_casts_num=2) def test_amp_node_excluding(lp_dtype): DISABLE_AMP_ATTR_DICT = {'__opt_constraint__': str( mx.gluon.HybridBlock.OptConstraint.Flag.DisableAMP.value)} data = mx.sym.var('data') wei = mx.sym.var('weights') bias = mx.sym.var('bias') # manually excluded fc1 = mx.sym.FullyConnected(data, wei, bias, num_hidden=4, name='fc1', attr=DISABLE_AMP_ATTR_DICT) # to be excluded using the conversion API fc2 = mx.sym.FullyConnected(data, wei, bias, num_hidden=4, name='fc2') symnet = mx.sym.Group([fc1, fc2]) net = mx.gluon.SymbolBlock(symnet, [data]) net.initialize() # exclude only nodes with set attribute (only 1 node - `fc1`) data_example = mx.np.random.uniform(-1, 1, (4, 16)) net_1_excluded = amp.convert_hybrid_block(net, data_example, lp_dtype) lp16_tensors = 4 # cast `data`, weights and bias of `fc1`, `fc1` output lp16_casts = 3 # `data` cast, casts for weights and bias of `fc1` other_casts = 1 # cast for the network output (from lp16 to f32) check_amp_net_stats(lp_dtype, net_1_excluded, data_example, lp16_tensors_num=lp16_tensors, lp16_casts_num=lp16_casts, other_casts_num=other_casts) # exclude using the `excluded_sym_names` argument (both nodes) net_2_excluded = amp.convert_hybrid_block(net, data_example, lp_dtype, excluded_sym_names=['fc1', 'fc2']) check_amp_net_stats(lp_dtype, net_2_excluded, data_example, lp16_tensors_num=0, lp16_casts_num=0, other_casts_num=0) def check_amp_net_stats(lp_dtype, net, data_example, lp16_tensors_num, lp16_casts_num, other_casts_num): lp16_tensors = set() lp16_casts = set() other_casts = set() def inspect_output(tensor_name, op_name, tensor): dtype = mx.nd.get_dtype_name(tensor.dtype) if op_name == 'amp_cast': if dtype == lp_dtype: lp16_casts.add(tensor_name) else: other_casts.add(tensor_name) if dtype == lp_dtype: lp16_tensors.add(tensor_name) net.register_op_hook(inspect_output) net(data_example) assert len(lp16_tensors) == lp16_tensors_num, f'Bad lp16 tensors! Present tensors: {sorted(lp16_tensors)}' assert len(lp16_casts) == lp16_casts_num, f'Bad lp16 casts! Present casts: {sorted(lp16_casts)}' assert len(other_casts) == other_casts_num, f'Bad casts! Present casts: {sorted(other_casts)}'
piotrwolinski-intel/incubator-mxnet
python/mxnet/amp/lists/symbol_bf16.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # coding: utf-8 """Lists of functions whitelisted/blacklisted for automatic mixed precision in symbol API.""" from ...runtime import Features # Functions that should be cast to lower precision BF16_FUNCS = [ 'Convolution', 'Deconvolution', 'FullyConnected' ] if Features.instance.is_enabled('ONEDNN'): BF16_FUNCS.extend([ '_sg_onednn_conv', '_sg_onednn_fully_connected', '_sg_onednn_selfatt_qk', '_sg_onednn_selfatt_valatt' ]) # Functions that should not be casted, either because # they are irrelevant (not used in the network itself # like image transformations or optimizers) or they # are dtype neutral (can work in both bf16 and fp32) BF16_FP32_FUNCS = [ 'abs', 'BatchNorm', 'clip', 'Flatten', 'LRN', 'Pooling', 'relu', '_shuffle', 'sqrt', 'square', 'tanh', '_contrib_quantize_v2', ] # Functions that when running with Bfloat16, the params that still need float32. BF16_USE_FP32_PARAMS = { 'BatchNormWithReLU': ["", "gamma", "beta", "moving_mean", "moving_var"], 'BatchNorm': ["", "gamma", "beta", "moving_mean", "moving_var"], } # Functions that have to be cast to FP32 due to possible # overflows FP32_FUNCS = [ 'RNN', 'BilinearSampler', 'BlockGrad', 'Cast', 'cast_storage', 'Crop', 'Dropout', 'Embedding', 'GridGenerator', 'Pad', 'ROIPooling', 'Reshape', 'SequenceLast', 'SequenceMask', 'SequenceReverse', 'SliceChannel', 'SpatialTransformer', 'SwapAxis', 'UpSampling', '_CachedOp', '_CrossDeviceCopy', '_CustomFunction', '_NoGradient', '_adamw_update', '_arange', '_cond', '_contrib_interleaved_matmul_selfatt_qk', '_contrib_interleaved_matmul_selfatt_valatt', '_contrib_AdaptiveAvgPooling2D', '_contrib_BilinearResize2D', '_contrib_bipartite_matching', '_contrib_dequantize', '_contrib_div_sqrt_dim', '_contrib_boolean_mask', '_contrib_getnnz', '_contrib_gradientmultiplier', '_contrib_group_adagrad_update', '_contrib_index_array', '_contrib_index_copy', '_contrib_quadratic', '_contrib_quantize', '_contrib_quantize_asym', '_contrib_quantized_concat', '_contrib_quantized_conv', '_contrib_quantized_flatten', '_contrib_quantized_fully_connected', '_contrib_quantized_pooling', '_contrib_quantized_elemwise_add', '_contrib_quantized_act', '_contrib_quantized_rnn', '_image_crop', '_linspace', '_contrib_requantize', '_copy', '_copyto', '_cvcopyMakeBorder', '_cvimdecode', '_cvimread', '_cvimresize', '_div_scalar', '_equal_scalar', '_eye', '_foreach', '_while_loop', '_full', '_grad_add', '_greater_scalar', '_greater_equal_scalar', '_histogram', '_identity_with_attr_like_rhs', '_image_adjust_lighting', '_image_flip_left_right', '_image_flip_top_bottom', '_image_normalize', '_image_random_brightness', '_image_random_color_jitter', '_image_random_contrast', '_image_random_flip_left_right', '_image_random_flip_top_bottom', '_image_random_hue', '_image_random_lighting', '_image_random_saturation', '_image_resize', '_image_to_tensor', '_imdecode', '_lesser_scalar', '_lesser_equal_scalar', '_logical_and_scalar', '_logical_or_scalar', '_logical_xor_scalar', '_maximum_scalar', '_minimum_scalar', '_minus_scalar', '_mod_scalar', '_mp_adamw_update', '_mul_scalar', '_not_equal_scalar', '_onehot_encode', '_ones', '_plus_scalar', '_random_exponential', '_random_exponential_like', '_random_gamma', '_random_gamma_like', '_random_generalized_negative_binomial', '_random_generalized_negative_binomial_like', '_random_negative_binomial', '_random_negative_binomial_like', '_random_normal', '_random_normal_like', '_random_poisson', '_random_poisson_like', '_random_randint', '_random_uniform', '_random_uniform_like', '_ravel_multi_index', '_rminus_scalar', '_rmod_scalar', '_rnn_param_concat', '_sample_exponential', '_sample_gamma', '_sample_generalized_negative_binomial', '_sample_multinomial', '_sample_negative_binomial', '_sample_normal', '_sample_poisson', '_sample_uniform', '_sample_unique_zipfian', '_scatter_set_nd', '_set_value', '_slice_assign', '_slice_assign_scalar', '_sparse_adagrad_update', '_sparse_retain', '_split_v2', '_unravel_index', '_zeros', '_zeros_without_dtype', 'adam_update', 'all_finite', # 'amp_cast', # 'amp_multicast', 'arccosh', 'arcsinh', 'arctan', 'argmax', 'argmax_channel', 'argmin', 'batch_take', 'broadcast_axis', 'broadcast_like', 'broadcast_to', 'cbrt', 'ceil', 'cos', 'degrees', 'depth_to_space', 'diag', 'erf', 'expand_dims', 'fill_element_0index', 'fix', 'floor', 'ftml_update', 'ftrl_update', 'gather_nd', 'hard_sigmoid', 'logical_not', 'log_sigmoid', 'max', 'min', 'mish', 'mp_sgd_mom_update', 'mp_sgd_update', 'multi_all_finite', 'multi_mp_sgd_mom_update', 'multi_mp_sgd_update', 'multi_sgd_mom_update', 'multi_sgd_update', 'negative', 'one_hot', 'ones_like', 'pick', 'radians', 'repeat', 'reshape_like', 'reverse', 'rint', 'rmsprop_update', 'rmspropalex_update', 'round', 'scatter_nd', 'sgd_mom_update', 'sgd_update', 'shape_array', 'sigmoid', 'sign', 'signsgd_update', 'signum_update', 'sin', 'size_array', 'slice', 'slice_axis', 'slice_like', 'softsign', 'sort', 'space_to_depth', 'squeeze', 'take', 'tile', 'transpose', 'trunc', 'zeros_like', 'broadcast_mul', 'IdentityAttachKLSparseReg', 'arccos', 'arcsin', 'cosh', 'erfinv', 'sinh', 'tan', 'arctanh', # Exponents 'exp', 'expm1', 'log', 'log10', 'log2', 'log1p', # Powers 'broadcast_power', 'reciprocal', '_rdiv_scalar', 'rsqrt', 'rcbrt', '_power', '_power_scalar', '_rpower_scalar', '_hypot', '_hypot_scalar', 'broadcast_hypot', '_square_sum', '_contrib_hawkesll', # Reductions 'sum', 'nansum', 'prod', 'nanprod', 'mean', 'norm', 'softmin', 'khatri_rao', 'moments', # Misc 'gamma', 'gammaln', '_linalg_gelqf', '_linalg_gemm', '_linalg_gemm2', '_linalg_potrf', '_linalg_potri', '_linalg_sumlogdiag', '_linalg_syevd', '_linalg_syrk', '_linalg_trmm', '_linalg_trsm', '_linalg_makediag', '_linalg_extractdiag', '_linalg_maketrian', '_linalg_extracttrian', '_linalg_inverse', '_linalg_det', '_linalg_slogdet', '_NDArray', '_Native', '_contrib_count_sketch', '_contrib_SyncBatchNorm', '_contrib_fft', 'argsort', 'topk', # Neural network 'softmax', 'log_softmax', 'masked_softmax', 'masked_log_softmax', 'InstanceNorm', 'LayerNorm', 'GroupNorm', 'L2Normalization', 'SoftmaxActivation', 'softmax_cross_entropy', 'smooth_l1', 'MakeLoss', 'make_loss', 'Custom', 'CTCLoss', '_npx_deformable_convolution', '_contrib_DeformablePSROIPooling', ] # Functions that have to be cast to FP32 only for # some values of their parameters CONDITIONAL_FP32_FUNCS = [ ('Activation', 'act_type', ['softrelu']), ('LeakyReLU', 'act_type', ['elu', 'selu']), ] # Functions with multiple inputs, that need the same # type of all their inputs WIDEST_TYPE_CASTS = [ '_npi_add', 'Concat', '_equal', '_greater', '_greater_equal', '_lesser', '_lesser_equal', '_logical_and', '_logical_or', '_logical_xor', '_maximum', '_minimum', '_mod', '_not_equal', 'Correlation', 'add_n', 'batch_dot', 'broadcast_add', 'broadcast_div', 'broadcast_equal', 'broadcast_greater', 'broadcast_greater_equal', 'broadcast_lesser', 'broadcast_lesser_equal', 'broadcast_logical_and', 'broadcast_logical_or', 'broadcast_logical_xor', 'broadcast_maximum', 'broadcast_minimum', 'broadcast_mod', 'broadcast_not_equal', 'broadcast_sub', 'dot', 'elemwise_add', 'elemwise_div', 'elemwise_mul', 'elemwise_sub', 'stack', '_contrib_MultiBoxDetection', '_contrib_MultiBoxPrior', '_contrib_MultiBoxTarget', '_contrib_MultiProposal', '_contrib_PSROIPooling', '_contrib_Proposal', '_contrib_ROIAlign', '_contrib_box_iou', '_contrib_box_nms', '_contrib_dgl_adjacency', '_contrib_dgl_csr_neighbor_non_uniform_sample', '_contrib_dgl_csr_neighbor_uniform_sample', '_contrib_dgl_graph_compact', '_contrib_dgl_subgraph', '_contrib_edge_id', 'where', '_random_pdf_gamma', '_random_pdf_exponential', '_random_pdf_uniform', '_random_pdf_negative_binomial', '_random_pdf_generalized_negative_binomial', '_random_pdf_dirichlet', '_random_pdf_normal', '_random_pdf_poisson', ] LOSS_OUTPUT_FUNCTIONS = [ ]
piotrwolinski-intel/incubator-mxnet
tests/python/dnnl/subgraphs/test_amp_subgraph.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import json import mxnet as mx from mxnet import amp from mxnet.gluon import nn from mxnet.test_utils import assert_almost_equal from subgraph_common import SG_PASS_NAME, QUANTIZE_SG_PASS_NAME from test_matmul_subgraph import MultiHeadAttention import sys from pathlib import Path curr_path = Path(__file__).resolve().parent sys.path.insert(0, str(curr_path.parent.parent)) from amp.common import check_amp_net_stats AMP_SG_PASS_NAME = '<PASSWORD>' AMP_DTYPE = 'bfloat16' # Checks if amp (after the AMP_SG_PASS_NAME fuse) changes the name of tensors for calibration def check_amp_with_quantization(net, data_example, quantized_nodes): net.optimize_for(data_example, backend=QUANTIZE_SG_PASS_NAME) symnet = net.export(None)[0] nodes = {n['name'] for n in json.loads(symnet.tojson())['nodes'] if n['op'] != 'null'} quant_excluded_nodes = list(nodes - set(quantized_nodes)) _, calib_tensors1 = mx.contrib.quantization._quantize_symbol( symnet, mx.current_context(), excluded_symbols=quant_excluded_nodes) lp_net = amp.convert_hybrid_block(net, data_example, target_dtype=AMP_DTYPE, excluded_sym_names=quantized_nodes, cast_params_offline=True, device=mx.current_context()) lp_net.optimize_for(data_example, backend=AMP_SG_PASS_NAME) lp_symnet = lp_net.export(None, remove_amp_cast=False)[0] _, calib_tensors2 = mx.contrib.quantization._quantize_symbol( lp_symnet, mx.cpu(), excluded_symbols=quant_excluded_nodes) assert calib_tensors1 == calib_tensors2 def same_graph_structure(symnet_observed, symnet_expected, expected): nodes_obs = json.loads(symnet_observed.tojson(remove_amp_cast=False))['nodes'] nodes_exp = json.loads(symnet_expected.tojson(remove_amp_cast=False))['nodes'] assert (len(nodes_obs) == len(nodes_exp)) == expected for node_obs, node_exp in zip(nodes_obs, nodes_exp): if node_obs['op'] != node_exp['op'] or node_obs['inputs'] != node_exp['inputs']: assert expected == False break def check_amp_fuse(net, data_example, expected_sym=None, quantized_nodes=[], rtol=0.05): net.hybridize() out_ref = net(*data_example) net.optimize_for(data_example, backend=SG_PASS_NAME) # amp pass works only on oneDNN nodes lp_net = amp.convert_hybrid_block(net, data_example, target_dtype=AMP_DTYPE, excluded_sym_names=quantized_nodes, cast_params_offline=True, device=mx.current_context()) lp_net.optimize_for(data_example, backend=AMP_SG_PASS_NAME) out_lp_net = lp_net(*data_example) # check outputs out_ref = [out_ref] if not isinstance(out_ref, list) else out_ref out_lp_net = [out_lp_net] if not isinstance(out_ref, list) else out_lp_net for ref_out, lp_out in zip(out_ref, out_lp_net): assert_almost_equal(ref_out, lp_out, rtol=rtol, atol=1.0) # check graph if expected_sym is not None: lp_symnet = lp_net.export(None, remove_amp_cast=False)[0] same_graph_structure(lp_symnet, expected_sym, True) # check amp with quantization check_amp_with_quantization(net, data_example, quantized_nodes) @mx.util.use_np def test_amp_fc(): class TestNet(nn.HybridBlock): def __init__(self): super(TestNet, self).__init__() self.fc1 = nn.Dense(16) self.fc2 = nn.Dense(16) def forward(self, x): x = self.fc1(x) x = self.fc2(x) return x net = TestNet() net.initialize() exp_data = mx.symbol.Variable('data') exp_weight = [mx.symbol.Variable('weight{}'.format(i)) for i in range(2)] exp_bias = [mx.symbol.Variable('bias{}'.format(i)) for i in range(2)] exp_sym = mx.symbol.amp_cast(exp_data, dtype=AMP_DTYPE) for weight, bias in zip(exp_weight, exp_bias): exp_sym = mx.symbol.FullyConnected(exp_sym, weight, bias, num_hidden=1) exp_sym = exp_sym.get_backend_symbol(SG_PASS_NAME) data_example = mx.np.random.uniform(-1, 1, (1, 8)) check_amp_fuse(net, [data_example], exp_sym) check_amp_fuse(net, [data_example], exp_sym, ['sg_onednn_fully_connected_1']) @mx.util.use_np def test_amp_conv(): class TestNet(nn.HybridBlock): def __init__(self): super(TestNet, self).__init__() self.conv1 = nn.Conv2D(16, (3, 3)) self.conv2 = nn.Conv2D(16, (3, 3)) def forward(self, x): x = self.conv1(x) x = self.conv2(x) return x net = TestNet() net.initialize() data_example = mx.np.random.uniform(-1, 1, (1, 3, 8, 8)) exp_data = mx.symbol.Variable('data') exp_weight = [mx.symbol.Variable('weight{}'.format(i)) for i in range(2)] exp_bias = [mx.symbol.Variable('bias{}'.format(i)) for i in range(2)] exp_sym = mx.symbol.amp_cast(exp_data, dtype=AMP_DTYPE) for weight, bias in zip(exp_weight, exp_bias): exp_sym = mx.symbol.Convolution(exp_sym, weight, bias, kernel=(3, 3), num_filter=1) exp_sym = exp_sym.get_backend_symbol(SG_PASS_NAME) check_amp_fuse(net, [data_example], exp_sym) exp_sym = mx.symbol.amp_cast(exp_data, dtype=AMP_DTYPE) for weight, bias in zip(exp_weight, exp_bias): exp_sym = mx.symbol.Convolution(exp_sym, weight, bias, kernel=(3, 3), num_filter=1) exp_sym = exp_sym.get_backend_symbol(SG_PASS_NAME) check_amp_fuse(net, [data_example], exp_sym, ['sg_onednn_conv_1']) @mx.util.use_np def test_amp_transformers(): batch_size = 16 seq_length = 32 units = 8 num_heads = 8 in_data = mx.np.random.uniform(size=(batch_size, seq_length, units), dtype='float32') mask = mx.np.random.randint(0, 2, (batch_size, seq_length, seq_length), dtype='int32') net = MultiHeadAttention(units, num_heads) net.initialize() check_amp_fuse(net, [in_data, mask], None) check_amp_fuse(net, [in_data, mask], None, ['sg_onednn_fully_connected_0']) @mx.util.use_np def test_amp_concat(): class TestNet(nn.HybridBlock): def __init__(self): super(TestNet, self).__init__() self.fc1 = nn.Dense(16) self.fc2 = nn.Dense(16) self.fc2.share_parameters(self.fc1.collect_params()) def forward(self, x): x1 = self.fc1(x) x2 = self.fc2(x) x = mx.np.concat((x1, x2), axis=1) return x net = TestNet() net.initialize() data_example = mx.np.random.uniform(-1, 1, (1, 16)) exp_data = mx.symbol.Variable('data') exp_amp_data = mx.symbol.amp_cast(exp_data, dtype=AMP_DTYPE) exp_weight = mx.symbol.Variable('weight') exp_bias = mx.symbol.Variable('bias') exp_fc = [mx.symbol.FullyConnected(exp_amp_data, exp_weight, exp_bias, num_hidden=1) for _ in range(2)] exp_sym = mx.symbol.Concat(*exp_fc) exp_sym = mx.symbol.amp_cast(exp_sym, dtype='float32') exp_sym = exp_sym.get_backend_symbol(SG_PASS_NAME) check_amp_fuse(net, [data_example], exp_sym) amp_weight = mx.symbol.amp_cast(exp_weight, dtype=AMP_DTYPE) amp_bias = mx.symbol.amp_cast(exp_bias, dtype=AMP_DTYPE) exp_fc[0] = mx.symbol.FullyConnected(exp_amp_data, amp_weight, amp_bias, num_hidden=1) exp_fc[1] = mx.symbol.FullyConnected(exp_data, exp_weight, exp_bias, num_hidden=1) exp_sym = mx.symbol.Concat(*exp_fc) exp_sym = exp_sym.get_backend_symbol(SG_PASS_NAME) check_amp_fuse(net, [data_example], exp_sym, ['sg_onednn_fully_connected_1']) @mx.util.use_np def test_amp_fuse_with_branch(): class TestNet(nn.HybridBlock): def __init__(self, **kwargs): super(TestNet, self).__init__(**kwargs) self.fc1 = nn.Dense(16) self.fc2 = nn.Dense(16) def forward(self, x, *args): out = self.fc1(x) out1 = self.fc2(out) out1 = nn.Activation('relu')(out1) out2 = mx.npx.softmax(out) return out1, out2 net = TestNet() net.initialize() data_example = mx.np.ones((10,)) # |---> lp16_op_2 # lp16_op_1 ---| # |---> f32_amp_cast ---> f32_op # # `lp16_op_1` cannot fuse the `f32_amp_cast` node, since `lp16_op_2` already uses its lp16 output exp_data = mx.sym.Variable('data') exp_weight = [mx.symbol.Variable('weight{}'.format(i)) for i in range(2)] exp_bias = [mx.symbol.Variable('bias{}'.format(i)) for i in range(2)] amp_data = mx.sym.amp_cast(exp_data, dtype=AMP_DTYPE) lp16_op_1 = mx.sym.FullyConnected(amp_data, exp_weight[0], exp_bias[0], num_hidden=16) lp16_op_2 = mx.sym.FullyConnected(lp16_op_1, exp_weight[1], exp_bias[1], num_hidden=16) f32_amp_cast = mx.sym.amp_cast(lp16_op_1, dtype='float32') f32_op = mx.sym.softmax(f32_amp_cast) exp_sym = mx.sym.Group([lp16_op_2, f32_op]) exp_sym = exp_sym.get_backend_symbol(SG_PASS_NAME) check_amp_fuse(net, [data_example], exp_sym) def test_amp_excluding_after_graph_pass(): class TestNet(nn.HybridBlock): def __init__(self): super(TestNet, self).__init__() self.fc1 = nn.Dense(16) self.fc2 = nn.Dense(16) def forward(self, x): x = self.fc1(x) with nn.HybridBlock.OptConstraint.disable_amp(): x = self.fc2(x) return x data_example = mx.np.random.uniform(-1, 1, (1, 8)) net = TestNet() net.initialize() net_before = amp.convert_hybrid_block(net, data_example, AMP_DTYPE, cast_params_offline=True) check_amp_net_stats(AMP_DTYPE, net_before, data_example, lp16_tensors_num=2, lp16_casts_num=1, other_casts_num=1) net.optimize_for(data_example, backend=SG_PASS_NAME) # introduces new nodes net_after = amp.convert_hybrid_block(net, data_example, AMP_DTYPE, cast_params_offline=True) check_amp_net_stats(AMP_DTYPE, net_after, data_example, lp16_tensors_num=2, lp16_casts_num=1, other_casts_num=1)
piotrwolinski-intel/incubator-mxnet
tests/python/dnnl/test_amp.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import sys from pathlib import Path curr_path = Path(__file__).resolve().parent sys.path.insert(0, str(curr_path.parent)) import mxnet as mx import amp.common as amp_common_tests AMP_DTYPE = 'bfloat16' def test_bf16_coverage(): amp_common_tests.test_amp_coverage(AMP_DTYPE, 'BF16') @mx.util.use_np def test_bf16_basic_use(): amp_common_tests.test_amp_basic_use(AMP_DTYPE) @mx.util.use_np def test_bf16_offline_casting(): amp_common_tests.test_amp_offline_casting(AMP_DTYPE) @mx.util.use_np def test_bf16_offline_casting_shared_params(): amp_common_tests.test_amp_offline_casting_shared_params(AMP_DTYPE) @mx.util.use_np def test_bf16_fp32_ops_order_independence(): amp_common_tests.test_lp16_fp32_ops_order_independence(AMP_DTYPE) @mx.util.use_np def test_bf16_test_node_excluding(): amp_common_tests.test_amp_node_excluding(AMP_DTYPE)
CornellLenard/Deep-Learning-Course-Exercises
Exercise 06/exercise_code/hyperparameter_tuning.py
<filename>Exercise 06/exercise_code/hyperparameter_tuning.py import random from math import log10 from itertools import product from exercise_code.solver import Solver from exercise_code.networks.layer import Sigmoid, Relu from exercise_code.networks import (ClassificationNet, BCE, CrossEntropyFromLogits) ALLOWED_RANDOM_SEARCH_PARAMS = ["log", "int", "float", "item"] def grid_search(train_loader, val_loader, grid_search_spaces={ "learning_rate": [0.0001, 0.001, 0.01, 0.1], "reg": [1e-4, 1e-5, 1e-6] }, model_class=ClassificationNet, epochs=20, patience=5): """ A simple grid search based on nested loops to tune learning rate and regularization strengths. Keep in mind that you should not use grid search for higher-dimensional parameter tuning, as the search space explodes quickly. Required arguments: - train_loader: A generator object returning training data - val_loader: A generator object returning validation data Optional arguments: - grid_search_spaces: a dictionary where every key corresponds to a to-tune-hyper-parameter and every value contains a list of possible values. Our function will test all value combinations which can take quite a long time. If we don't specify a value here, we will use the default values of both our chosen model as well as our solver - model: our selected model for this exercise - epochs: number of epochs we are training each model - patience: if we should stop early in our solver Returns: - The best performing model - A list of all configurations and results """ configs = [] """ # Simple implementation with nested loops for lr in grid_search_spaces["learning_rate"]: for reg in grid_search_spaces["reg"]: configs.append({"learning_rate": lr, "reg": reg}) """ # More general implementation using itertools for instance in product(*grid_search_spaces.values()): configs.append(dict(zip(grid_search_spaces.keys(), instance))) return findBestConfig(train_loader, val_loader, configs, epochs, patience, model_class) def random_search(train_loader, val_loader, random_search_spaces={ "learning_rate": ([0.0001, 0.1], "log"), "hidden_size": ([100, 400], "int"), "activation": ([Sigmoid(), Relu()], "item"), }, model_class=ClassificationNet, num_search=20, epochs=20, patience=5): """ Samples N_SEARCH hyper parameter sets within the provided search spaces and returns the best model. See the grid search documentation above. Additional/different optional arguments: - random_search_spaces: similar to grid search but values are of the form (<list of values>, <mode as specified in ALLOWED_RANDOM_SEARCH_PARAMS>) - num_search: number of times we sample in each int/float/log list """ configs = [] for _ in range(num_search): configs.append(random_search_spaces_to_config(random_search_spaces)) return findBestConfig(train_loader, val_loader, configs, epochs, patience, model_class) def findBestConfig(train_loader, val_loader, configs, epochs, patience, model_class): """ Get a list of hyper-parameter configs for random search or grid search, trains a model on all configs and returns the one performing best on validation set """ best_val = None best_config = None best_model = None results = [] for i in range(len(configs)): print("\nEvaluating Config #{} [of {}]:\n".format((i+1), len(configs)), configs[i]) model = model_class(**configs[i]) solver = Solver(model, train_loader, val_loader, **configs[i]) solver.train(epochs=epochs, patience=patience) results.append(solver.best_model_stats) if not best_val or solver.best_model_stats["val_loss"] < best_val: best_val, best_model, best_config = solver.best_model_stats["val_loss"], model, configs[i] print("\nSearch done. Best Val Loss = {}".format(best_val)) print("Best Config:", best_config) return best_model, list(zip(configs, results)) def random_search_spaces_to_config(random_search_spaces): """" Takes search spaces for random search as input; samples accordingly from these spaces and returns the sampled hyper-params as a config-object, which will be used to construct solver & network """ config = {} for key, (rng, mode) in random_search_spaces.items(): if mode not in ALLOWED_RANDOM_SEARCH_PARAMS: print("'{}' is not a valid random sampling mode. " "Ignoring hyper-param '{}'".format(mode, key)) elif mode == "log": if rng[0] <= 0 or rng[-1] <= 0: print("Invalid value encountered for logarithmic sampling " "of '{}'. Ignoring this hyper param.".format(key)) continue sample = random.uniform(log10(rng[0]), log10(rng[-1])) config[key] = 10 ** sample elif mode == "int": config[key] = random.randint(rng[0], rng[-1]) elif mode == "float": config[key] = random.uniform(rng[0], rng[-1]) elif mode == "item": config[key] = random.choice(rng) return config
CornellLenard/Deep-Learning-Course-Exercises
Exercise 09/exercise_code/data/base_dataset.py
<gh_stars>0 """Dataset Base Class""" from torch.utils.data import Dataset from .download_utils import download_dataset class BaseDataset(Dataset): """ Abstract Dataset Base Class All subclasses must define __getitem__() and __len__() """ def __init__(self, root, download_url=None, force_download=False): self.root_path = root # The actual archive name should be all the text of the url after the # last '/'. if download_url is not None: dataset_zip_name = download_url[download_url.rfind('/')+1:] self.dataset_zip_name = dataset_zip_name download_dataset( url=download_url, data_dir=root, dataset_zip_name=dataset_zip_name, force_download=force_download, )