repo_name
stringlengths
6
97
path
stringlengths
3
341
text
stringlengths
8
1.02M
player1537-forks/spack
var/spack/repos/builtin/packages/dpcpp/package.py
# Copyright 2013-2022 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) import os from spack import * class Dpcpp(CMakePackage): """Data Parallel C++ compiler: Intel's implementation of SYCL programming model""" homepage = 'https://intel.github.io/llvm-docs/' git = 'https://github.com/intel/llvm.git' version('develop', branch='sycl') version('2021.09', commit='bd68232bb96386bf7649345c0557ba520e73c02d') maintainers = ['ravil-mobile'] variant('cuda', default=False, description='switch from OpenCL to CUDA') variant('rocm', default=False, description='switch from OpenCL to ROCm') variant('rocm-platform', default='AMD', values=('AMD', 'NVIDIA'), multi=False, description='choose ROCm backend') variant('openmp', default=False, description='build with OpenMP without target offloading') variant('esimd-cpu', default=False, description='build with ESIMD_CPU support') variant('assertions', default=False, description='build with assertions') variant('docs', default=False, description='build Doxygen documentation') variant('werror', default=False, description='treat warnings as errors') variant('shared', default=False, description='build shared libraries') variant('remangle_libclc', default=True, description='remangle libclc gen. variants') variant('lld', default=False, description='use LLD linker for build') depends_on('cmake@3.16.2:', type='build') depends_on('ninja@1.10.0:', type='build') depends_on('cuda@10.2.0:11.4.999', when='+cuda') # NOTE: AMD HIP needs to be tested; it will be done in the next update # depends_on('cuda@10.2.0:10.2.999', when='rocm-platform=NVIDIA', type='build') # depends_on('hip@4.0.0:', when='+rocm', type='build') root_cmakelists_dir = 'llvm' def cmake_args(self): llvm_external_projects = 'sycl;llvm-spirv;opencl;libdevice;xpti;xptifw' if '+openmp' in self.spec: llvm_external_projects += ';openmp' sycl_dir = os.path.join(self.stage.source_path, 'sycl') spirv_dir = os.path.join(self.stage.source_path, 'llvm-spirv') xpti_dir = os.path.join(self.stage.source_path, 'xpti') xptifw_dir = os.path.join(self.stage.source_path, 'xptifw') libdevice_dir = os.path.join(self.stage.source_path, 'libdevice') llvm_enable_projects = 'clang;' + llvm_external_projects libclc_targets_to_build = '' sycl_build_pi_rocm_platform = self.spec.variants['rocm-platform'].value if self.spec.satisfies('target=x86_64:'): llvm_targets_to_build = 'X86' elif self.spec.satisfies('target=aarch64:'): llvm_targets_to_build = 'ARM;AArch64' else: raise InstallError('target is not supported. ' 'This package only works on x86_64 or aarch64') is_cuda = '+cuda' in self.spec is_rocm = '+rocm' in self.spec if is_cuda or is_rocm: llvm_enable_projects += ';libclc' if is_cuda: llvm_targets_to_build += ';NVPTX' libclc_targets_to_build = 'nvptx64--;nvptx64--nvidiacl' if is_rocm: if sycl_build_pi_rocm_platform == 'AMD': llvm_targets_to_build += ';AMDGPU' libclc_targets_to_build += ';amdgcn--;amdgcn--amdhsa' elif sycl_build_pi_rocm_platform and not is_cuda: llvm_targets_to_build += ';NVPTX' libclc_targets_to_build += ';nvptx64--;nvptx64--nvidiacl' args = [ self.define_from_variant('LLVM_ENABLE_ASSERTIONS', 'assertions'), self.define('LLVM_TARGETS_TO_BUILD', llvm_targets_to_build), self.define('LLVM_EXTERNAL_PROJECTS', llvm_external_projects), self.define('LLVM_EXTERNAL_SYCL_SOURCE_DIR', sycl_dir), self.define('LLVM_EXTERNAL_LLVM_SPIRV_SOURCE_DIR', spirv_dir), self.define('LLVM_EXTERNAL_XPTI_SOURCE_DIR', xpti_dir), self.define('XPTI_SOURCE_DIR', xpti_dir), self.define('LLVM_EXTERNAL_XPTIFW_SOURCE_DIR', xptifw_dir), self.define('LLVM_EXTERNAL_LIBDEVICE_SOURCE_DIR', libdevice_dir), self.define('LLVM_ENABLE_PROJECTS', llvm_enable_projects), self.define('LIBCLC_TARGETS_TO_BUILD', libclc_targets_to_build), self.define_from_variant('SYCL_BUILD_PI_CUDA', 'cuda'), self.define_from_variant('SYCL_BUILD_PI_ROCM', 'rocm'), self.define('SYCL_BUILD_PI_ROCM_PLATFORM', sycl_build_pi_rocm_platform), self.define('LLVM_BUILD_TOOLS', True), self.define_from_variant('SYCL_ENABLE_WERROR', 'werror'), self.define('SYCL_INCLUDE_TESTS', True), self.define_from_variant('LIBCLC_GENERATE_REMANGLED_VARIANTS', 'remangle_libclc'), self.define_from_variant('LLVM_ENABLE_DOXYGEN', 'docs'), self.define_from_variant('LLVM_ENABLE_SPHINX', 'docs'), self.define_from_variant('BUILD_SHARED_LIBS', 'shared'), self.define('SYCL_ENABLE_XPTI_TRACING', 'ON'), self.define_from_variant('LLVM_ENABLE_LLD', 'lld'), self.define_from_variant('SYCL_BUILD_PI_ESIMD_CPU', 'esimd-cpu'), ] if is_cuda or (is_rocm and sycl_build_pi_rocm_platform == 'NVIDIA'): args.append( self.define('CUDA_TOOLKIT_ROOT_DIR', self.spec['cuda'].prefix) ) if '+openmp' in self.spec: omp_dir = os.path.join(self.stage.source_path, 'openmp') args.extend([ self.define('LLVM_EXTERNAL_OPENMP_SOURCE_DIR', omp_dir), self.define('OPENMP_ENABLE_LIBOMPTARGET', False), ]) if self.compiler.name == 'gcc': gcc_prefix = ancestor(self.compiler.cc, 2) args.append(self.define('GCC_INSTALL_PREFIX', gcc_prefix)) return args def setup_build_environment(self, env): if '+cuda' in self.spec: env.set('CUDA_LIB_PATH', '{0}/lib64/stubs'.format(self.spec['cuda'].prefix)) @run_after("install") def post_install(self): clang_cpp_path = os.path.join(self.spec.prefix.bin, 'clang++') dpcpp_path = os.path.join(self.spec.prefix.bin, 'dpcpp') real_clang_cpp_path = os.path.realpath(clang_cpp_path) os.symlink(real_clang_cpp_path, dpcpp_path) def setup_run_environment(self, env): bin_path = self.spec.prefix.bin for env_var_name, compiler in zip(['CC', 'CXX'], ['clang', 'clang++']): env.set(env_var_name, os.path.join(bin_path, compiler)) include_env_vars = ['C_INCLUDE_PATH', 'CPLUS_INCLUDE_PATH', 'INCLUDE'] for var in include_env_vars: env.prepend_path(var, self.prefix.include) env.prepend_path(var, self.prefix.include.sycl) sycl_build_pi_rocm_platform = self.spec.variants['rocm-platform'].value if '+cuda' in self.spec or sycl_build_pi_rocm_platform == 'NVIDIA': env.prepend_path('PATH', self.spec['cuda'].prefix.bin) env.set('CUDA_TOOLKIT_ROOT_DIR', self.spec['cuda'].prefix)
player1537-forks/spack
var/spack/repos/builtin/packages/butter/package.py
<reponame>player1537-forks/spack # Copyright 2013-2022 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) from spack import * class Butter(Package): """butter: Bowtie UTilizing iTerative placEment of Repetitive small rnas. A wrapper for bowtie to produce small RNA-seq alignments where multimapped small RNAs tend to be placed near regions of confidently high density.""" homepage = "https://github.com/MikeAxtell/butter" url = "https://github.com/MikeAxtell/butter/archive/v0.3.3.tar.gz" version('0.3.3', sha256='862cbe06d51fdefca18e5fe4cfa8e4df6ce92686ccbc389affe05b199ea9243b') depends_on('perl', type=('build', 'run')) depends_on('samtools') depends_on('bowtie') def install(self, spec, prefix): mkdirp(prefix.bin) install('butter', prefix.bin) install('bam2wig', prefix.bin)
player1537-forks/spack
var/spack/repos/builtin/packages/xsdk/package.py
<reponame>player1537-forks/spack # Copyright 2013-2022 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) import sys from copy import deepcopy from spack import * def xsdk_depends_on_accl(accl_name, accl_var, *args, **kwargs): if accl_name == 'cuda': accl_arch_name = 'cuda_arch' accl_arch_values = list(deepcopy(CudaPackage.cuda_arch_values)) elif accl_name == 'rocm': accl_arch_name = 'amdgpu_target' accl_arch_values = list(deepcopy(ROCmPackage.amdgpu_targets)) # require ~cuda when xsdk~cuda (and '?cuda' not used) usedep = 1 args_new = list(deepcopy(args)) if not isinstance(accl_var, list): accl_var = [accl_var] for idx, var in enumerate(accl_var): # skip variants starting with '?' so that # that that they are left unspecified by xsdk if not var.startswith('?'): args_new[0] += ' ~%s' % var else: accl_var[idx] = var.replace('?', '') # if '?cuda' skip adding '~cuda' dep if var == '?' + accl_name: usedep = 0 kwargs_new = deepcopy(kwargs) if 'when' in kwargs_new: kwargs_new['when'] += ' ~' + accl_name else: kwargs_new['when'] = '~' + accl_name if usedep: depends_on(*args_new, **kwargs_new) # require +cuda when xsdk+cuda, and match the arch for arch in accl_arch_values: args_new = list(deepcopy(args)) kwargs_new = deepcopy(kwargs) args_new[0] += '+%s %s=%s' % ('+'.join(accl_var), accl_arch_name, str(arch)) if 'when' in kwargs_new: kwargs_new['when'] += ' +%s %s=%s' % (accl_name, accl_arch_name, str(arch)) else: kwargs_new['when'] = '+%s %s=%s' % (accl_name, accl_arch_name, str(arch)) depends_on(*args_new, **kwargs_new) def xsdk_depends_on(spec, cuda_var='', rocm_var='', **kwargs): """ Wrapper for depends_on which can handle propagating cuda and rocm variants. Currently, it propagates +cuda_var when xsdk+cuda and rocm_var when xsdk+rocm. When xsdk~[cuda|rocm], then ~[cuda|rocm]_var is selected unless the variant string is prefixed with a '?' (see the tasmanian use below). When '?' prefix is used, then the variant is left unspecified. [cuda|rocm]_var can be an array of variant strings or just a single variant string. The spack '+' and '~' symbols should not appear in the strings. """ if bool(cuda_var): xsdk_depends_on_accl('cuda', cuda_var, spec, **kwargs) if bool(rocm_var): xsdk_depends_on_accl('rocm', rocm_var, spec, **kwargs) if not bool(cuda_var) and not bool(rocm_var): depends_on(spec, **kwargs) class Xsdk(BundlePackage, CudaPackage, ROCmPackage): """Xsdk is a suite of Department of Energy (DOE) packages for numerical simulation. This is a Spack bundle package that installs the xSDK packages """ homepage = "https://xsdk.info" maintainers = ['balay', 'luszczek', 'balos1'] version('develop') version('0.7.0') version('0.6.0') version('0.5.0', deprecated=True) version('0.4.0', deprecated=True) version('0.3.0', deprecated=True) variant('trilinos', default=True, description='Enable trilinos package build') variant('datatransferkit', default=True, description='Enable datatransferkit package build') variant('omega-h', default=True, description='Enable omega-h package build') variant('strumpack', default=True, description='Enable strumpack package build') variant('dealii', default=True, description='Enable dealii package build') variant('alquimia', default=True, description='Enable alquimia package build') variant('phist', default=True, description='Enable phist package build') variant('ginkgo', default=True, description='Enable ginkgo package build') variant('libensemble', default=True, description='Enable py-libensemble package build') variant('precice', default=(sys.platform != 'darwin'), description='Enable precice package build') variant('butterflypack', default=True, description='Enable butterflypack package build') variant('heffte', default=True, description='Enable heffte package build') variant('slate', default=True, description='Enable slate package build') variant('arborx', default=True, description='Enable ArborX build') xsdk_depends_on('hypre@develop+superlu-dist+shared', when='@develop', cuda_var='cuda') xsdk_depends_on('hypre@2.23.0+superlu-dist+shared', when='@0.7.0', cuda_var='cuda') xsdk_depends_on('hypre@2.20.0+superlu-dist+shared', when='@0.6.0') xsdk_depends_on('hypre@2.18.2+superlu-dist+shared', when='@0.5.0') xsdk_depends_on('hypre@2.15.1~internal-superlu', when='@0.4.0') xsdk_depends_on('hypre@2.12.1~internal-superlu', when='@0.3.0') xsdk_depends_on('mfem@develop+mpi+superlu-dist+petsc+sundials+examples+miniapps', when='@develop', cuda_var='cuda', rocm_var='rocm') xsdk_depends_on('mfem@4.3.0+mpi+superlu-dist+petsc+sundials+examples+miniapps', when='@0.7.0', cuda_var='cuda', rocm_var='rocm') xsdk_depends_on('mfem@4.2.0+mpi+superlu-dist+petsc+sundials+examples+miniapps', when='@0.6.0', cuda_var='cuda') xsdk_depends_on('mfem@4.0.1-xsdk+mpi~superlu-dist+petsc+sundials+examples+miniapps', when='@0.5.0') xsdk_depends_on('mfem@3.4.0+mpi+superlu-dist+petsc+sundials+examples+miniapps', when='@0.4.0') xsdk_depends_on('mfem@3.3.2+mpi+superlu-dist+petsc+sundials+examples+miniapps', when='@0.3.0') xsdk_depends_on('superlu-dist@develop', when='@develop') xsdk_depends_on('superlu-dist@7.1.1', when='@0.7.0') xsdk_depends_on('superlu-dist@6.4.0', when='@0.6.0') xsdk_depends_on('superlu-dist@6.1.1', when='@0.5.0') xsdk_depends_on('superlu-dist@6.1.0', when='@0.4.0') xsdk_depends_on('superlu-dist@5.2.2', when='@0.3.0') xsdk_depends_on('trilinos@develop+hypre+superlu-dist+hdf5~mumps+boost' + '~suite-sparse+tpetra+nox+ifpack2+zoltan+zoltan2+amesos2' + '~exodus~dtk+intrepid2+shards+stratimikos gotype=int' + ' cxxstd=14', when='@develop +trilinos') xsdk_depends_on('trilinos@13.2.0+hypre+superlu-dist+hdf5~mumps+boost' + '~suite-sparse+tpetra+nox+ifpack2+zoltan+zoltan2+amesos2' + '~exodus~dtk+intrepid2+shards+stratimikos gotype=int' + ' cxxstd=14', when='@0.7.0 +trilinos') xsdk_depends_on('trilinos@13.0.1+hypre+superlu-dist+hdf5~mumps+boost' + '~suite-sparse+tpetra+nox+ifpack2+zoltan+zoltan2+amesos2' + '~exodus~dtk+intrepid2+shards gotype=int' + ' cxxstd=11', when='@0.6.0 +trilinos') xsdk_depends_on('trilinos@12.18.1+hypre+superlu-dist+hdf5~mumps+boost' + '~suite-sparse+tpetra+nox+ifpack2+zoltan+zoltan2+amesos2' + '~exodus+dtk+intrepid2+shards', when='@0.5.0 +trilinos') xsdk_depends_on('trilinos@12.14.1+hypre+superlu-dist+hdf5~mumps+boost' + '~suite-sparse+tpetra+nox+ifpack2+zoltan+zoltan2+amesos2' + '~exodus+dtk+intrepid2+shards', when='@0.4.0 +trilinos') xsdk_depends_on('trilinos@12.12.1+hypre+superlu-dist+hdf5~mumps+boost' + '~suite-sparse~tpetra~ifpack2~zoltan~zoltan2~amesos2' '~exodus', when='@0.3.0 +trilinos') xsdk_depends_on('datatransferkit@master', when='@develop +trilinos +datatransferkit') dtk7ver = '3.1-rc2' if sys.platform == 'darwin' else '3.1-rc3' xsdk_depends_on('datatransferkit@' + dtk7ver, when='@0.7.0 +trilinos +datatransferkit') xsdk_depends_on('datatransferkit@3.1-rc2', when='@0.6.0 +trilinos +datatransferkit') xsdk_depends_on('petsc +trilinos', when='+trilinos @:0.6.0') xsdk_depends_on('petsc +batch', when='platform=cray @0.5.0:') xsdk_depends_on('petsc@main+mpi+hypre+superlu-dist+metis+hdf5~mumps+double~int64', when='@develop', cuda_var='cuda') xsdk_depends_on('petsc@3.16.1+mpi+hypre+superlu-dist+metis+hdf5~mumps+double~int64', when='@0.7.0', cuda_var='cuda') xsdk_depends_on('petsc@3.14.1+mpi+hypre+superlu-dist+metis+hdf5~mumps+double~int64', when='@0.6.0', cuda_var='cuda') xsdk_depends_on('petsc@3.12.1+mpi+hypre+superlu-dist+metis+hdf5~mumps+double~int64', when='@0.5.0') xsdk_depends_on('petsc@3.10.3+mpi+hypre+superlu-dist+metis+hdf5~mumps+double~int64', when='@0.4.0') xsdk_depends_on('petsc@3.8.2+mpi+hypre+superlu-dist+metis+hdf5~mumps+double~int64', when='@0.3.0') xsdk_depends_on('dealii +trilinos~adol-c', when='+trilinos +dealii') xsdk_depends_on('dealii ~trilinos', when='~trilinos +dealii') xsdk_depends_on('dealii@master~assimp~python~doc~gmsh+petsc+slepc+mpi~int64+hdf5' + '~netcdf+metis~sundials~ginkgo~symengine~nanoflann~simplex~arborx', when='@develop +dealii') xsdk_depends_on('dealii@9.3.2~assimp~python~doc~gmsh+petsc+slepc+mpi~int64+hdf5' + '~netcdf+metis~sundials~ginkgo~symengine~simplex~arborx', when='@0.7.0 +dealii') xsdk_depends_on('dealii@9.2.0~assimp~python~doc~gmsh+petsc+slepc+mpi~int64+hdf5' + '~netcdf+metis~sundials~ginkgo~symengine~simplex~arborx', when='@0.6.0 +dealii') xsdk_depends_on('dealii@9.1.1~assimp~python~doc~gmsh+petsc+slepc+mpi~int64+hdf5' + '~netcdf+metis~sundials~ginkgo~symengine', when='@0.5.0 +dealii') xsdk_depends_on('dealii@9.0.1~assimp~python~doc~gmsh+petsc~slepc+mpi~int64+hdf5' + '~netcdf+metis~ginkgo~symengine', when='@0.4.0 +dealii') xsdk_depends_on('pflotran@develop', when='@develop') xsdk_depends_on('pflotran@3.0.2', when='@0.7.0') xsdk_depends_on('pflotran@xsdk-0.6.0', when='@0.6.0') xsdk_depends_on('pflotran@xsdk-0.5.0', when='@0.5.0') xsdk_depends_on('pflotran@xsdk-0.4.0', when='@0.4.0') xsdk_depends_on('pflotran@xsdk-0.3.0', when='@0.3.0') xsdk_depends_on('alquimia@develop', when='@develop +alquimia') xsdk_depends_on('alquimia@1.0.9', when='@0.7.0 +alquimia') xsdk_depends_on('alquimia@xsdk-0.6.0', when='@0.6.0 +alquimia') xsdk_depends_on('alquimia@xsdk-0.5.0', when='@0.5.0 +alquimia ') xsdk_depends_on('alquimia@xsdk-0.4.0', when='@0.4.0 +alquimia') xsdk_depends_on('alquimia@xsdk-0.3.0', when='@0.3.0 +alquimia') xsdk_depends_on('sundials +trilinos', when='+trilinos @0.6.0:') xsdk_depends_on('sundials@develop~int64+hypre+petsc+superlu-dist', when='@develop', cuda_var='cuda', rocm_var='rocm') xsdk_depends_on('sundials@5.8.0~int64+hypre+petsc+superlu-dist', when='@0.7.0', cuda_var='cuda', rocm_var='rocm') xsdk_depends_on('sundials@5.5.0~int64+hypre+petsc+superlu-dist', when='@0.6.0', cuda_var='cuda') xsdk_depends_on('sundials@5.0.0~int64+hypre+petsc+superlu-dist', when='@0.5.0') xsdk_depends_on('sundials@3.2.1~int64+hypre', when='@0.4.0') xsdk_depends_on('sundials@3.1.0~int64+hypre', when='@0.3.0') xsdk_depends_on('plasma@develop:', when='@develop %gcc@6.0:') xsdk_depends_on('plasma@21.8.29:', when='@0.7.0 %gcc@6.0:') xsdk_depends_on('plasma@20.9.20:', when='@0.6.0 %gcc@6.0:') xsdk_depends_on('plasma@19.8.1:', when='@0.5.0 %gcc@6.0:') xsdk_depends_on('plasma@18.11.1:', when='@0.4.0 %gcc@6.0:') xsdk_depends_on('magma@master', when='@develop', cuda_var='?cuda', rocm_var='?rocm') xsdk_depends_on('magma@2.6.1', when='@0.7.0', cuda_var='?cuda', rocm_var='?rocm') xsdk_depends_on('magma@2.5.4', when='@0.6.0', cuda_var='?cuda') xsdk_depends_on('magma@2.5.1', when='@0.5.0', cuda_var='?cuda') xsdk_depends_on('magma@2.4.0', when='@0.4.0', cuda_var='?cuda') xsdk_depends_on('magma@2.2.0', when='@0.3.0', cuda_var='?cuda') xsdk_depends_on('amrex@develop+sundials', when='@develop %intel', cuda_var='cuda', rocm_var='rocm') xsdk_depends_on('amrex@develop+sundials', when='@develop %gcc', cuda_var='cuda', rocm_var='rocm') xsdk_depends_on('amrex@develop+sundials', when='@develop %cce', cuda_var='cuda', rocm_var='rocm') xsdk_depends_on('amrex@21.10+sundials', when='@0.7.0 %intel', cuda_var='cuda', rocm_var='rocm') xsdk_depends_on('amrex@21.10+sundials', when='@0.7.0 %gcc', cuda_var='cuda', rocm_var='rocm') xsdk_depends_on('amrex@21.10+sundials', when='@0.7.0 %cce', cuda_var='cuda', rocm_var='rocm') xsdk_depends_on('amrex@20.10', when='@0.6.0 %intel') xsdk_depends_on('amrex@20.10', when='@0.6.0 %gcc') xsdk_depends_on('amrex@19.08', when='@0.5.0 %intel') xsdk_depends_on('amrex@19.08', when='@0.5.0 %gcc') xsdk_depends_on('amrex@18.10.1', when='@0.4.0 %intel') xsdk_depends_on('amrex@18.10.1', when='@0.4.0 %gcc') xsdk_depends_on('slepc@main', when='@develop') xsdk_depends_on('slepc@3.16.0', when='@0.7.0') xsdk_depends_on('slepc@3.14.0', when='@0.6.0') xsdk_depends_on('slepc@3.12.0', when='@0.5.0') xsdk_depends_on('slepc@3.10.1', when='@0.4.0') xsdk_depends_on('omega-h +trilinos', when='+trilinos +omega-h') xsdk_depends_on('omega-h ~trilinos', when='~trilinos +omega-h') xsdk_depends_on('omega-h@main', when='@develop +omega-h') xsdk_depends_on('omega-h@9.34.1', when='@0.7.0 +omega-h') xsdk_depends_on('omega-h@9.32.5', when='@0.6.0 +omega-h') xsdk_depends_on('omega-h@9.29.0', when='@0.5.0 +omega-h') xsdk_depends_on('omega-h@9.19.1', when='@0.4.0 +omega-h') xsdk_depends_on('strumpack ~cuda', when='~cuda @0.6.0: +strumpack') xsdk_depends_on('strumpack@master~slate~openmp', when='@develop +strumpack') xsdk_depends_on('strumpack@6.1.0~slate~openmp', when='@0.7.0 +strumpack') xsdk_depends_on('strumpack@5.0.0~slate~openmp', when='@0.6.0 +strumpack') xsdk_depends_on('strumpack@3.3.0~slate~openmp', when='@0.5.0 +strumpack') xsdk_depends_on('strumpack@3.1.1~slate~openmp', when='@0.4.0 +strumpack') xsdk_depends_on('pumi@master', when='@develop') xsdk_depends_on('pumi@2.2.6', when='@0.7.0') xsdk_depends_on('pumi@2.2.5', when='@0.6.0') xsdk_depends_on('pumi@2.2.1', when='@0.5.0') xsdk_depends_on('pumi@2.2.0', when='@0.4.0') tasmanian_openmp = '~openmp' if sys.platform == 'darwin' else '+openmp' xsdk_depends_on('tasmanian@develop+xsdkflags+blas' + tasmanian_openmp, when='@develop', cuda_var=['cuda', '?magma'], rocm_var=['rocm', '?magma']) xsdk_depends_on('tasmanian@7.7+xsdkflags+mpi+blas' + tasmanian_openmp, when='@0.7.0', cuda_var=['cuda', '?magma']) xsdk_depends_on('tasmanian@7.3+xsdkflags+mpi+blas' + tasmanian_openmp, when='@0.6.0', cuda_var=['cuda', '?magma']) xsdk_depends_on('tasmanian@7.0+xsdkflags+mpi+blas' + tasmanian_openmp, when='@0.5.0', cuda_var=['cuda', '?magma']) xsdk_depends_on('tasmanian@6.0+xsdkflags+blas~openmp', when='@0.4.0', cuda_var=['cuda', '?magma']) xsdk_depends_on('arborx@master', when='@develop +arborx') xsdk_depends_on('arborx@1.1', when='@0.7.0 +arborx') # the Fortran 2003 bindings of phist require python@3:, but this # creates a conflict with other packages like petsc@main. Actually # these are type='build' dependencies, but spack reports a conflict anyway. # This will be fixed once the new concretizer becomes available # (says @adamjstewart) xsdk_depends_on('phist kernel_lib=tpetra', when='+trilinos +phist') xsdk_depends_on('phist kernel_lib=petsc', when='~trilinos +phist') xsdk_depends_on('phist@develop ~fortran ~scamac ~openmp ~host ~int64', when='@develop +phist') xsdk_depends_on('phist@1.9.5 ~fortran ~scamac ~openmp ~host ~int64', when='@0.7.0 +phist') xsdk_depends_on('phist@1.9.3 ~fortran ~scamac ~openmp ~host ~int64', when='@0.6.0 +phist') xsdk_depends_on('phist@1.8.0 ~fortran ~scamac ~openmp ~host ~int64', when='@0.5.0 +phist') xsdk_depends_on('phist@1.7.5 ~fortran ~scamac ~openmp ~host ~int64', when='@0.4.0 +phist') xsdk_depends_on('ginkgo@develop ~openmp', when='@develop +ginkgo', cuda_var='cuda', rocm_var='rocm') xsdk_depends_on('ginkgo@1.4.0 ~openmp', when='@0.7.0 +ginkgo', cuda_var='cuda', rocm_var='rocm') xsdk_depends_on('ginkgo@1.3.0 ~openmp', when='@0.6.0 +ginkgo', cuda_var='cuda') xsdk_depends_on('ginkgo@1.1.0 ~openmp', when='@0.5.0 +ginkgo') xsdk_depends_on('py-libensemble@develop+petsc4py', when='@develop +libensemble') xsdk_depends_on('py-petsc4py@main', when='@develop +libensemble') xsdk_depends_on('py-libensemble@0.8.0+petsc4py', when='@0.7.0 +libensemble') xsdk_depends_on('py-petsc4py@3.16.1', when='@0.7.0 +libensemble') xsdk_depends_on('py-libensemble@0.7.1+petsc4py', when='@0.6.0 +libensemble') xsdk_depends_on('py-petsc4py@3.14.0', when='@0.6.0 +libensemble') xsdk_depends_on('py-libensemble@0.5.2+petsc4py', when='@0.5.0 +libensemble') xsdk_depends_on('py-petsc4py@3.12.0', when='@0.5.0 +libensemble') xsdk_depends_on('precice ~petsc', when='platform=cray +precice') xsdk_depends_on('precice@develop', when='@develop +precice') xsdk_depends_on('precice@2.3.0', when='@0.7.0 +precice') xsdk_depends_on('precice@2.1.1', when='@0.6.0 +precice') xsdk_depends_on('precice@1.6.1', when='@0.5.0 +precice') xsdk_depends_on('butterflypack@master', when='@develop +butterflypack') xsdk_depends_on('butterflypack@2.0.0', when='@0.7.0 +butterflypack') xsdk_depends_on('butterflypack@1.2.1', when='@0.6.0 +butterflypack') xsdk_depends_on('butterflypack@1.1.0', when='@0.5.0 +butterflypack') xsdk_depends_on('heffte@develop+fftw', when='@develop +heffte', cuda_var=['cuda', '?magma'], rocm_var=['rocm', '?magma']) xsdk_depends_on('heffte@2.2.0+fftw', when='@0.7.0 +heffte', cuda_var=['cuda', '?magma'], rocm_var=['rocm', '?magma']) xsdk_depends_on('heffte@2.0.0+fftw', when='@0.6.0 +heffte', cuda_var=['cuda', '?magma']) xsdk_depends_on('slate@master', when='@develop +slate %gcc@6.0:', cuda_var='cuda') xsdk_depends_on('slate@2021.05.02', when='@0.7.0 +slate %gcc@6.0:', cuda_var='cuda') xsdk_depends_on('slate@2020.10.00', when='@0.6.0 +slate %gcc@6.0:', cuda_var='cuda')
player1537-forks/spack
var/spack/repos/builtin/packages/py-pmw-patched/package.py
<gh_stars>10-100 # Copyright 2013-2022 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) class PyPmwPatched(PythonPackage): """Schrodinger's Fork of Python megawidgets with essential patches applied. Pmw is a toolkit for building high-level compound widgets, or megawidgets, constructed using other widgets as component parts.""" homepage = "https://github.com/schrodinger/pmw-patched" git = "https://github.com/schrodinger/pmw-patched" version('02-10-2020', commit='<PASSWORD>')
player1537-forks/spack
var/spack/repos/builtin/packages/r-cli/package.py
# Copyright 2013-2022 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) from spack import * class RCli(RPackage): """Helpers for Developing Command Line Interfaces. A suite of tools to build attractive command line interfaces ('CLIs'), from semantic elements: headings, lists, alerts, paragraphs, etc. Supports custom themes via a 'CSS'-like language. It also contains a number of lower level 'CLI' elements: rules, boxes, trees, and 'Unicode' symbols with 'ASCII' alternatives. It integrates with the 'crayon' package to support 'ANSI' terminal colors.""" cran = "cli" version('3.2.0', sha256='cd5a1b754d09de33f088f25ecdb0494100f9a42bc0a66622bfd7d8ec5498e862') version('3.1.1', sha256='c8b3e6014ad60593ba21897255acfe90c0e3f98bd4f7e22c1f3acb2644cf54cf') version('3.1.0', sha256='c70a61830bf706a84c59eb74a809978846cee93742198ab4192742a5df1ace11') version('3.0.1', sha256='d89a25b6cd760e157605676e104ce65473a7d8d64c289efdd9640e949968b4fd') version('2.2.0', sha256='39a77af61724f8cc1f5117011e17bb2a488cbac61a7c112db078a675d3ac40b8') version('2.0.2', sha256='490834e5b80eb036befa0e150996bcab1c4d5d168c3d45209926e52d0d5413b6') version('1.1.0', sha256='4fc00fcdf4fdbdf9b5792faee8c7cf1ed5c4f45b1221d961332cda82dbe60d0a') version('1.0.1', sha256='ef80fbcde15760fd55abbf9413b306e3971b2a7034ab8c415fb52dc0088c5ee4') version('1.0.0', sha256='8fa3dbfc954ca61b8510f767ede9e8a365dac2ef95fe87c715a0f37d721b5a1d') depends_on('r@2.10:', type=('build', 'run')) depends_on('r-glue', type=('build', 'run'), when='@2:') depends_on('r-assertthat', type=('build', 'run'), when='@:2.3') depends_on('r-crayon@1.3.4:', type=('build', 'run'), when='@:2.2') depends_on('r-fansi', type=('build', 'run'), when='@2:2.2')
player1537-forks/spack
var/spack/repos/builtin/packages/r-vipor/package.py
# Copyright 2013-2022 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) from spack import * class RVipor(RPackage): """Plot Categorical Data Using Quasirandom Noise and Density Estimates. Generate a violin point plot, a combination of a violin/histogram plot and a scatter plot by offsetting points within a category based on their density using quasirandom noise.""" cran = "vipor" version('0.4.5', sha256='7d19251ac37639d6a0fed2d30f1af4e578785677df5e53dcdb2a22771a604f84') version('0.4.4', sha256='5abfd7869dae42ae2e4f52206c23433a43b485b1220685e445877ee5864a3f5c') depends_on('r@3.0.0:', type=('build', 'run'))
player1537-forks/spack
var/spack/repos/builtin/packages/r-geonames/package.py
<gh_stars>10-100 # Copyright 2013-2022 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) from spack import * class RGeonames(RPackage): """Interface to the "Geonames" Spatial Query Web Service. The web service at <https://www.geonames.org/> provides a number of spatial data queries, including administrative area hierarchies, city locations and some country postal code queries. A (free) username is required and rate limits exist.""" cran = "geonames" version('0.999', sha256='1dd7bbd82d9425d14eb36f8e5bf431feaccfe3b0c4e70bf38f44f13dfc59e17b') depends_on('r@2.2.0:', type=('build', 'run')) depends_on('r-rjson', type=('build', 'run'))
player1537-forks/spack
var/spack/repos/builtin/packages/r-rgexf/package.py
<filename>var/spack/repos/builtin/packages/r-rgexf/package.py # Copyright 2013-2022 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) from spack import * class RRgexf(RPackage): """Build, Import and Export GEXF Graph Files. Create, read and write GEXF (Graph Exchange XML Format) graph files (used in Gephi and others). Using the XML package, it allows the user to easily build/read graph files including attributes, GEXF viz attributes (such as color, size, and position), network dynamics (for both edges and nodes) and edge weighting. Users can build/handle graphs element-by-element or massively through data-frames, visualize the graph on a web browser through "sigmajs" (a javascript library) and interact with the igraph package.""" cran = "rgexf" version('0.16.2', sha256='6ee052b0de99d0c7492366b991d345a51b3d0cc890d10a68b8670e1bd4fc8201') version('0.16.0', sha256='2a671df9ac70cfefd4092754317cb28e32a33df345b80e1975bf838e838245ee') version('0.15.3', sha256='2e8a7978d1fb977318e6310ba65b70a9c8890185c819a7951ac23425c6dc8147') depends_on('r-xml', type=('build', 'run')) depends_on('r-igraph', type=('build', 'run')) depends_on('r-servr', type=('build', 'run'), when='@0.16.0:') depends_on('r-rook', type=('build', 'run'), when='@:0.15.3')
player1537-forks/spack
var/spack/repos/builtin/packages/mpilander/package.py
# Copyright 2013-2022 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) from spack import * class Mpilander(CMakePackage): """There can only be one (MPI process)!""" homepage = "https://github.com/MPILander/MPILander" git = "https://github.com/MPILander/MPILander.git" maintainers = ['ax3l'] version('develop', branch='master') # variant('cuda', default=False, description='Enable CUDA support') # variant( # 'schedulers', # description='List of supported schedulers', # values=('alps', 'lsf', 'tm', 'slurm', 'sge', 'loadleveler'), # multi=True # ) depends_on('cmake@3.9.2:', type='build') provides('mpi@:3.1') # compiler support conflicts('%gcc@:4.7') conflicts('%clang@:3.8') conflicts('%apple-clang@:7.4') conflicts('%intel@:16') def cmake_args(self): args = [ # tests and examples self.define('BUILD_TESTING', self.run_tests), self.define('BUILD_EXAMPLES', self.run_tests), ] return args
player1537-forks/spack
var/spack/repos/builtin/packages/dysco/package.py
<filename>var/spack/repos/builtin/packages/dysco/package.py<gh_stars>1-10 # Copyright 2013-2022 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) from spack import * class Dysco(CMakePackage): """Dysco is a compressing storage manager for Casacore mearement sets.""" homepage = "https://github.com/aroffringa/dysco" url = "https://github.com/aroffringa/dysco/archive/v1.2.tar.gz" version('1.2', sha256='dd992c5a13df67173aa1d3f6dc5df9b51b0bea2fe77bc08f5be7a839be741269') depends_on('casacore') depends_on('gsl') depends_on('boost+date_time+python')
player1537-forks/spack
var/spack/repos/builtin/packages/cppad/package.py
# Copyright 2013-2022 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) from spack import * class Cppad(CMakePackage): """A Package for Differentiation of C++ Algorithms.""" homepage = "https://www.coin-or.org/CppAD/" url = "http://www.coin-or.org/download/source/CppAD/cppad-20170114.gpl.tgz" git = "https://github.com/coin-or/CppAD.git" version('develop', branch='master') version('20170114', sha256='fa3980a882be2a668a7522146273a1b4f1d8dabe66ad4aafa8964c8c1fd6f957') def cmake_args(self): # This package does not obey CMAKE_INSTALL_PREFIX args = [ "-Dcppad_prefix=%s" % (self.prefix), "-Dcmake_install_docdir=share/cppad/doc" ] return args
player1537-forks/spack
var/spack/repos/builtin/packages/distcc/package.py
<reponame>player1537-forks/spack # Copyright 2013-2022 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) from spack import * class Distcc(AutotoolsPackage): """distcc is a program to distribute compilation of C or C++ code across several machines on a network.""" homepage = "https://github.com/distcc/distcc" url = "https://github.com/distcc/distcc/archive/v3.3.3.tar.gz" version('3.3.3', sha256='b7f37d314704fbaf006d747514ff6e4d0d722102ef7d2aea132f97cf170f5169') depends_on('popt') depends_on('libiberty') def autoreconf(self, spec, prefix): bash = which('bash') bash('./autogen.sh') def setup_run_environment(self, env): env.prepend_path('PATH', self.prefix.sbin)
player1537-forks/spack
var/spack/repos/builtin/packages/py-pyface/package.py
# Copyright 2013-2022 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) class PyPyface(PythonPackage): """The pyface project contains a toolkit-independent GUI abstraction layer, which is used to support the "visualization" features of the Traits package. Thus, you can write code in terms of the Traits API (views, items, editors, etc.), and let pyface and your selected toolkit and back-end take care of the details of displaying them.""" homepage = "https://docs.enthought.com/pyface" pypi = "pyface/pyface-6.1.2.tar.gz" version('7.3.0', sha256='a7031ec4cfff034affc822e47ff5e6c1a0272e576d79465cdbbe25f721740322') version('6.1.2', sha256='7c2ac3d5cbec85e8504b3b0b63e9307be12c6d710b46bae372ce6562d41f4fbc') variant('backend', default='pyqt5', description='Default backend', values=('wx', 'pyqt', 'pyqt5', 'pyside', 'pyside2'), multi=False) depends_on('py-setuptools', type='build') depends_on('py-importlib-metadata', when='@7.2:', type=('build', 'run')) depends_on('py-importlib-resources@1.1:', when='@7.2:', type=('build', 'run')) depends_on('py-traits@6.2:', when='@7.3:', type=('build', 'run')) depends_on('py-traits@6:', when='@7:', type=('build', 'run')) depends_on('py-traits', type=('build', 'run')) conflicts('backend=pyside', when='@7.3:') conflicts('backend=pyside2', when='@:6') # Backends with when('backend=wx'): depends_on('py-wxpython@4:', when='@7:', type=('build', 'run')) depends_on('py-wxpython@2.8.10:', type=('build', 'run')) depends_on('py-numpy', type=('build', 'run')) with when('backend=pyqt'): depends_on('py-pyqt4@4.10:', type=('build', 'run')) depends_on('py-pygments', type=('build', 'run')) with when('backend=pyqt5'): depends_on('py-pyqt5@5:', type=('build', 'run')) depends_on('py-pygments', type=('build', 'run')) with when('backend=pyside'): depends_on('py-pyside@1.2:', type=('build', 'run')) depends_on('py-pygments', type=('build', 'run')) with when('backend=pyside2'): depends_on('py-pyside2', type=('build', 'run')) depends_on('py-shiboken2', type=('build', 'run')) depends_on('py-pygments', type=('build', 'run'))
player1537-forks/spack
var/spack/repos/builtin/packages/openipmi/package.py
# Copyright 2013-2022 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) from spack import * class Openipmi(AutotoolsPackage): """The Open IPMI project aims to develop an open code base to allow access to platform information using Intelligent Platform Management Interface (IPMI).""" homepage = "https://sourceforge.net/projects/openipmi/" url = "https://sourceforge.net/projects/openipmi/files/OpenIPMI%202.0%20Library/OpenIPMI-2.0.29.tar.gz" version('2.0.29', sha256='2244124579afb14e569f34393e9ac61e658a28b6ffa8e5c0d2c1c12a8ce695cd') version('2.0.28', sha256='8e8b1de2a9a041b419133ecb21f956e999841cf2e759e973eeba9a36f8b40996') version('2.0.27', sha256='f3b1fafaaec2e2bac32fec5a86941ad8b8cb64543470bd6d819d7b166713d20b') depends_on('popt', type='link') depends_on('python', type=('build', 'link', 'run')) depends_on('perl', type=('build', 'link', 'run')) depends_on('termcap', type='link') depends_on('ncurses', type='link') depends_on('readline', type='link') patch('readline.patch', when='@2.0.27') def configure_args(self): args = ['LIBS=' + self.spec['ncurses'].libs.link_flags] return args def install(self, spec, prefix): make('install', parallel=False)
player1537-forks/spack
var/spack/repos/builtin/packages/r-reticulate/package.py
<reponame>player1537-forks/spack # Copyright 2013-2022 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) from spack import * class RReticulate(RPackage): """Interface to 'Python'. Interface to 'Python' modules, classes, and functions. When calling into 'Python', R data types are automatically converted to their equivalent 'Python' types. When values are returned from 'Python' to R they are converted back to R types. Compatible with all versions of 'Python' >= 2.7.""" cran = "reticulate" version('1.24', sha256='b918c5204916601f757ad0fc629b2ae1eabab7cdf7f6aa2e219d26e506d916cc') version('1.23', sha256='fea04a3ff33c71f1910d65000a93c6882180ca03f8657ee118ea9e79786c36d6') version('1.18', sha256='b33f855a58f446eefbe38df8a1a4865390f5d4ebd64b2c72266baaee64628513') version('1.15', sha256='47db3e9c9424263ade15287da8e74f6ba261a936b644b197dba6772853b7b50d') version('1.13', sha256='adbe41d556b667c4419d563680f8608a56b0f792b8bc427b3bf4c584ff819de3') depends_on('r@3.0:', type=('build', 'run')) depends_on('r-matrix', type=('build', 'run')) depends_on('r-rcpp@0.12.7:', type=('build', 'run', 'link')) depends_on('r-rcpptoml', type=('build', 'run', 'link'), when='@1.23:') depends_on('r-here', type=('build', 'run', 'link'), when='@1.23:') depends_on('r-jsonlite', type=('build', 'run')) depends_on('r-png', type=('build', 'run', 'link'), when='@1.23:') depends_on('r-rappdirs', type=('build', 'run'), when='@1.15:') depends_on('r-withr', type=('build', 'run', 'link'), when='@1.23:') depends_on('python@2.7.0:', type=('build', 'run'))
player1537-forks/spack
var/spack/repos/builtin/packages/py-meldmd/package.py
# Copyright 2013-2022 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) from spack import * class PyMeldmd(PythonPackage, CudaPackage): """MELD is a tool for inferring the structure of biomolecules from sparse, ambiguous, or noisy data.""" homepage = "http://meldmd.org/" url = "https://github.com/maccallumlab/meld/archive/refs/tags/0.4.20.tar.gz" version('0.4.20', sha256='8c8d2b713f8dc0ecc137d19945b3957e12063c8dda569696e47c8820eeac6c92') depends_on('python@3.6:', type=('build', 'run')) depends_on('py-setuptools', type='build') depends_on('amber') depends_on('openmm') depends_on('py-netcdf4', type=('build', 'run')) depends_on('py-numpy', type=('build', 'run')) depends_on('py-scipy', type=('build', 'run')) depends_on('py-scikit-learn', type=('build', 'run')) depends_on('py-parmed', type=('build', 'run')) depends_on('py-tqdm', type=('build', 'run')) depends_on('py-mpi4py', type=('build', 'run'))
player1537-forks/spack
var/spack/repos/builtin/packages/hpcx-mpi/package.py
# Copyright 2013-2022 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) import os class HpcxMpi(Package): """The HPC-X MPI implementation from NVIDIA/Mellanox based on OpenMPI. This package is for external specs only.""" homepage = "https://developer.nvidia.com/networking/hpc-x" maintainers = ['mwkrentel'] has_code = False provides('mpi') def install(self, spec, prefix): raise InstallError('HPC-X MPI is not buildable, it is for external ' 'specs only.') def setup_dependent_package(self, module, dependent_spec): # This works for AOCC (AMD), Intel and GNU. self.spec.mpicc = os.path.join(self.prefix.bin, 'mpicc') self.spec.mpicxx = os.path.join(self.prefix.bin, 'mpicxx') self.spec.mpif77 = os.path.join(self.prefix.bin, 'mpif77') self.spec.mpifc = os.path.join(self.prefix.bin, 'mpif90') def make_base_environment(self, prefix, env): env.set('MPICC', os.path.join(prefix.bin, 'mpicc')) env.set('MPICXX', os.path.join(prefix.bin, 'mpicxx')) env.set('MPIF77', os.path.join(prefix.bin, 'mpif77')) env.set('MPIF90', os.path.join(prefix.bin, 'mpif90')) env.prepend_path('LD_LIBRARY_PATH', prefix.lib) env.set('OPAL_PREFIX', prefix) def setup_dependent_build_environment(self, env, dependent_spec): self.make_base_environment(self.prefix, env) def setup_run_environment(self, env): self.make_base_environment(self.prefix, env)
player1537-forks/spack
var/spack/repos/builtin/packages/ppopen-math-vis/package.py
<gh_stars>10-100 # Copyright 2013-2022 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) from spack import * class PpopenMathVis(MakefilePackage): """ ppOpen-MATH/VIS is a set of libraries for parallel visualization. Capabilities of ppOpen-MATH/VIS (ver.0.2.0) are as follows: Using background voxels with adaptive mesh refinement (AMR). Single UCD file. Flat MPI parallel programming models. (OpenMP/MPI hybrid will be supported in the future). Can be called from programs written in both of Fortran 90 and C. Only FDM-type structured meshes are supported. """ homepage = "http://ppopenhpc.cc.u-tokyo.ac.jp/ppopenhpc/" git = "https://github.com/Post-Peta-Crest/ppOpenHPC.git" version('master', branch='MATH/VIS') depends_on('mpi') def edit(self, spec, prefix): makefile_in = FileFilter('Makefile.in') makefile_in.filter('mpifccpx', spec['mpi'].mpicc) makefile_in.filter('mpiFCCpx', spec['mpi'].mpicxx) makefile_in.filter('mpifrtpx', spec['mpi'].mpifc) makefile_in.filter('-Kfast', '-O3') makefile_in.filter(r'~/ppOpen-HPC/.*', prefix) mkdirp('include') mkdirp('lib') def install(self, spec, prefix): make('install') mkdir(join_path(prefix, 'examples')) copy_tree('examples', join_path(prefix, 'examples')) mkdir(join_path(prefix, 'doc')) copy_tree('doc', join_path(prefix, 'doc')) @property def libs(self): return find_libraries( ['libfppohvisfdm3d', 'libppohvisfdm3d'], root=self.prefix, shared=False, recursive=True)
player1537-forks/spack
var/spack/repos/builtin/packages/batctl/package.py
<reponame>player1537-forks/spack<gh_stars>10-100 # Copyright 2013-2022 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) from spack import * class Batctl(MakefilePackage): """B.A.T.M.A.N. advanced control and management tool""" homepage = "https://github.com/open-mesh-mirror/batctl" url = "https://github.com/open-mesh-mirror/batctl/archive/v2019.5.tar.gz" version('2019.5', sha256='ffe5857a33068ec174140c154610d76d833524d840a2fc2d1a15e16686213cad') version('2019.4', sha256='a3564eb9727335352dc0cfa2f2b29474c2c837384689ac5fcb387784a56e7685') version('2019.3', sha256='2bd93fa14925a8dc63a67e64266c8ccd2fa3ac44b10253d93e6f8a630350070c') version('2019.2', sha256='fb656208ff7d4cd8b1b422f60c9e6d8747302a347cbf6c199d7afa9b80f80ea3') depends_on('libnl') def install(self, spec, prefix): mkdirp(prefix.bin) install('batctl', prefix.bin)
player1537-forks/spack
var/spack/repos/builtin/packages/r-affyrnadegradation/package.py
# Copyright 2013-2022 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) from spack import * class RAffyrnadegradation(RPackage): """Analyze and correct probe positional bias in microarray data due to RNA degradation. The package helps with the assessment and correction of RNA degradation effects in Affymetrix 3' expression arrays. The parameter d gives a robust and accurate measure of RNA integrity. The correction removes the probe positional bias, and thus improves comparability of samples that are affected by RNA degradation.""" bioc = "AffyRNADegradation" version('1.40.0', commit='8539a91ee464d692a267bb17c91dc1ef9a231f41') version('1.36.0', commit='<KEY>') version('1.30.0', commit='620c464fb09248e1c7a122828eab59a4fb778cc1') version('1.28.0', commit='<KEY>') version('1.26.0', commit='6ab03ad624701464280bf7dfe345d200e846298a') version('1.24.0', commit='1f85f3da4720cef94623828713eb84d8accbcf8a') version('1.22.0', commit='0fa78f8286494711a239ded0ba587b0de47c15d3') depends_on('r@2.9.0:', type=('build', 'run')) depends_on('r-affy', type=('build', 'run'))
player1537-forks/spack
lib/spack/spack/build_systems/perl.py
<gh_stars>10-100 # Copyright 2013-2022 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) import inspect import os from llnl.util.filesystem import filter_file from spack.directives import extends from spack.package import PackageBase, run_after from spack.util.executable import Executable class PerlPackage(PackageBase): """Specialized class for packages that are built using Perl. This class provides four phases that can be overridden if required: 1. :py:meth:`~.PerlPackage.configure` 2. :py:meth:`~.PerlPackage.build` 3. :py:meth:`~.PerlPackage.check` 4. :py:meth:`~.PerlPackage.install` The default methods use, in order of preference: (1) Makefile.PL, (2) Build.PL. Some packages may need to override :py:meth:`~.PerlPackage.configure_args`, which produces a list of arguments for :py:meth:`~.PerlPackage.configure`. Arguments should not include the installation base directory. """ #: Phases of a Perl package phases = ['configure', 'build', 'install'] #: This attribute is used in UI queries that need to know the build #: system base class build_system_class = 'PerlPackage' #: Callback names for build-time test build_time_test_callbacks = ['check'] extends('perl') def configure_args(self): """Produces a list containing the arguments that must be passed to :py:meth:`~.PerlPackage.configure`. Arguments should not include the installation base directory, which is prepended automatically. :return: list of arguments for Makefile.PL or Build.PL """ return [] def configure(self, spec, prefix): """Runs Makefile.PL or Build.PL with arguments consisting of an appropriate installation base directory followed by the list returned by :py:meth:`~.PerlPackage.configure_args`. :raise RuntimeError: if neither Makefile.PL or Build.PL exist """ if os.path.isfile('Makefile.PL'): self.build_method = 'Makefile.PL' self.build_executable = inspect.getmodule(self).make elif os.path.isfile('Build.PL'): self.build_method = 'Build.PL' self.build_executable = Executable( os.path.join(self.stage.source_path, 'Build')) else: raise RuntimeError('Unknown build_method for perl package') if self.build_method == 'Makefile.PL': options = ['Makefile.PL', 'INSTALL_BASE={0}'.format(prefix)] elif self.build_method == 'Build.PL': options = ['Build.PL', '--install_base', prefix] options += self.configure_args() inspect.getmodule(self).perl(*options) # It is possible that the shebang in the Build script that is created from # Build.PL may be too long causing the build to fail. Patching the shebang # does not happen until after install so set '/usr/bin/env perl' here in # the Build script. @run_after('configure') def fix_shebang(self): if self.build_method == 'Build.PL': pattern = '#!{0}'.format(self.spec['perl'].command.path) repl = '#!/usr/bin/env perl' filter_file(pattern, repl, 'Build', backup=False) def build(self, spec, prefix): """Builds a Perl package.""" self.build_executable() # Ensure that tests run after build (if requested): run_after('build')(PackageBase._run_default_build_time_test_callbacks) def check(self): """Runs built-in tests of a Perl package.""" self.build_executable('test') def install(self, spec, prefix): """Installs a Perl package.""" self.build_executable('install') # Check that self.prefix is there after installation run_after('install')(PackageBase.sanity_check_prefix)
player1537-forks/spack
var/spack/repos/builtin/packages/libp11/package.py
# Copyright 2013-2022 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) from spack import * class Libp11(AutotoolsPackage): """The PKCS#11 API is an abstract API to perform operations on cryptographic objects such as private keys, without requiring access to the objects themselves. That is, it provides a logical separation of the keys from the operations. The PKCS #11 API is mainly used to access objects in smart cards and Hardware or Software Security Modules (HSMs). That is because in these modules the cryptographic keys are isolated in hardware or software and are not made available to the applications using them.""" homepage = "https://github.com/OpenSC/libp11/wiki" url = "https://github.com/OpenSC/libp11/archive/libp11-0.4.10.tar.gz" version('0.4.11', sha256='56d6149879bda379613d89adfd3486ce5a3c20af6c1e3f9e83d15d900ab9e4bc') version('0.4.10', sha256='123c1525fa7ce7a34060f9a4148a30717482c517a378f428b704459820c1bf35') version('0.4.9', sha256='9d1c76d74c21ca224f96204982097ebc6b956f645b2b0b5f9c502a20e9ffcfd8') version('0.4.8', sha256='acccd56b736942dfcc490d102d2cb2b6afa6b2e448dd1dc5a1b773eadb98f83d') depends_on('autoconf', type='build') depends_on('automake', type='build') depends_on('libtool', type='build') depends_on('pkgconfig', type='build') depends_on('openssl') def autoreconf(self, spec, prefix): bash = which('bash') bash('./bootstrap')
player1537-forks/spack
var/spack/repos/builtin/packages/py-pygpu/package.py
# Copyright 2013-2022 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) from spack import * class PyPygpu(PythonPackage): """Python packge for the libgpuarray C library.""" homepage = "https://github.com/Theano/libgpuarray" url = "https://github.com/Theano/libgpuarray/archive/v0.6.1.tar.gz" version('0.7.6', sha256='ad1c00dd47c3d36ee1708e5167377edbfcdb7226e837ef9c68b841afbb4a4f6a') version('0.7.5', sha256='39c4d2e743848be43c8819c736e089ae51b11aa446cc6ee05af945c2dfd63420') version('0.7.2', sha256='ef11ee6f8d62d53831277fd3dcab662aa770a5b5de2d30fe3018c4af959204da') version('0.7.1', sha256='4d0f9dd63b0595a8c04d8cee91b2619847c033b011c71d776caa784322382ed6') version('0.7.0', sha256='afe7907435dcbf78b3ea9b9f6c97e5a0d4a219a7170f5025ca0db1c289bb88df') version('0.6.9', sha256='689716feecb4e495f4d383ec1518cf3ba70a2a642a903cc445b6b6ffc119bc25') version('0.6.2', sha256='04756c6270c0ce3b91a9bf01be38c4fc743f5356acc18d9f807198021677bcc8') version('0.6.1', sha256='b2466311e0e3bacdf7a586bba0263f6d232bf9f8d785e91ddb447653741e6ea5') version('0.6.0', sha256='a58a0624e894475a4955aaea25e82261c69b4d22c8f15ec07041a4ba176d35af') depends_on('python', type=('build', 'link', 'run')) depends_on('libgpuarray@0.7.6', when='@0.7.6') depends_on('libgpuarray@0.7.5', when='@0.7.5') depends_on('libgpuarray') # not just build-time, requires pkg_resources depends_on('py-setuptools', type=('build', 'run')) depends_on('py-cython@0.25:', type=('build', 'run')) depends_on('py-numpy', type=('build', 'link', 'run')) depends_on('py-mako@0.7:', type=('build', 'run')) depends_on('py-six', type=('build', 'run'))
player1537-forks/spack
var/spack/repos/builtin/packages/mscgen/package.py
# Copyright 2013-2022 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) from spack import * class Mscgen(AutotoolsPackage): """Mscgen is a small program that parses Message Sequence Chart descriptions and produces PNG, SVG, EPS or server side image maps (ismaps) as the output.""" homepage = "https://www.mcternan.me.uk/mscgen/" url = "https://www.mcternan.me.uk/mscgen/software/mscgen-src-0.20.tar.gz" version('0.20', sha256='3c3481ae0599e1c2d30b7ed54ab45249127533ab2f20e768a0ae58d8551ddc23') depends_on('flex') depends_on('bison') depends_on('pkgconfig') depends_on('libgd')
player1537-forks/spack
var/spack/repos/builtin/packages/r-mco/package.py
# Copyright 2013-2022 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) from spack import * class RMco(RPackage): """Multiple Criteria Optimization Algorithms and Related Functions. A collection of function to solve multiple criteria optimization problems using genetic algorithms (NSGA-II). Also included is a collection of test functions.""" cran = "mco" version('1.15.6', sha256='17ebe279cb9c89b7cd8054ac50d3b657d2b10dadbc584b88da7e79c3a9680582') version('1.0-15.1', sha256='3c13ebc8c1f1bfa18f3f95b3998c57fde5259876e92456b6c6d4c59bef07c193') version('1.0-15', sha256='a25e3effbb6dcae735fdbd6c0bfc775e9fbbcc00dc00076b69c53fe250627055') depends_on('r@3.0.0:', type=('build', 'run'))
player1537-forks/spack
var/spack/repos/builtin/packages/py-nvidia-ml-py/package.py
<gh_stars>10-100 # Copyright 2013-2022 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) class PyNvidiaMlPy(PythonPackage): """Python Bindings for the NVIDIA Management Library.""" homepage = "https://www.nvidia.com/" pypi = "nvidia-ml-py/nvidia-ml-py-11.450.51.tar.gz" version('11.450.51', sha256='5aa6dd23a140b1ef2314eee5ca154a45397b03e68fd9ebc4f72005979f511c73') # pip silently replaces distutils with setuptools depends_on('py-setuptools', type='build')
player1537-forks/spack
var/spack/repos/builtin/packages/r3d/package.py
# Copyright 2013-2022 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) from spack import * class R3d(CMakePackage): """Fast, robust polyhedral intersections, analytic integration, and conservative voxelization.""" homepage = "https://github.com/devonmpowell/r3d" git = "https://github.com/devonmpowell/r3d.git" maintainers = ['raovgarimella', 'gaber'] version('master', branch='master') version('2021-03-16', commit='<PASSWORD>') version('2019-04-24', commit='<PASSWORD>', deprecated=True) version('2018-12-19', commit='<PASSWORD>', deprecated=True) version('2018-01-07', commit='<PASSWORD>', deprecated=True) variant("r3d_max_verts", default='0', description="Maximum number of vertices allowed in a polyhedron (versions 2021-03-10 or later)") # Bypass CMake for older builds variant("test", default=False, description="Build R3D regression tests (versions 2019-04-24 or earlier)") @when('@:2019-04-24') def cmake(self, spec, prefix): pass @when('@:2019-04-24') def build(self, spec, prefix): make_args = [ 'CC={0}'.format(spack_cc), ] make('libr3d.a', *make_args) if '+test' in spec: with working_dir('tests'): make('all', *make_args) @when('@:2019-04-24') def install(self, spec, prefix): # R3D does not have an install target so create our own here. mkdirp(prefix.include) my_headers = find('.', '*.h', recursive=False) for my_header in my_headers: install(my_header, prefix.include) mkdirp(prefix.lib) install('libr3d.a', prefix.lib) if '+test' in spec: with working_dir('tests'): # R3D does not have an install target so create our own here. mkdirp(prefix.test) install('r2d_unit_tests', prefix.test) install('r3d_unit_tests', prefix.test) install('rNd_unit_tests', prefix.test) # CMake support was added in 2021-03-10 @when('@2021-03-10:') def cmake_args(self): options = [] r3d_max_verts = self.spec.variants['r3d_max_verts'].value if (r3d_max_verts != '0'): options.append('-DR3D_MAX_VERTS=' + r3d_max_verts) if self.run_tests: options.append('-DENABLE_UNIT_TESTS=ON') else: options.append('-DENABLE_UNIT_TESTS=OFF') return options
player1537-forks/spack
var/spack/repos/builtin/packages/opencv/package.py
# Copyright 2013-2022 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) class Opencv(CMakePackage, CudaPackage): """OpenCV (Open Source Computer Vision Library) is an open source computer vision and machine learning software library.""" homepage = "https://opencv.org/" url = "https://github.com/opencv/opencv/archive/4.5.0.tar.gz" git = "https://github.com/opencv/opencv.git" maintainers = ["bvanessen", "adamjstewart", "glennpj"] version("master", branch="master") version( "4.5.4", sha256="c20bb83dd790fc69df9f105477e24267706715a9d3c705ca1e7f613c7b3bad3d", ) version( "4.5.2", sha256="ae258ed50aa039279c3d36afdea5c6ecf762515836b27871a8957c610d0424f8", ) version( "4.5.1", sha256="e27fe5b168918ab60d58d7ace2bd82dd14a4d0bd1d3ae182952c2113f5637513", ) version( "4.5.0", sha256="dde4bf8d6639a5d3fe34d5515eab4a15669ded609a1d622350c7ff20dace1907", ) version( "4.2.0", sha256="9ccb2192d7e8c03c58fee07051364d94ed7599363f3b0dce1c5e6cc11c1bb0ec", ) version( "4.1.2", sha256="385dd0a9c25e67ef0dd60e022d2a2d7b17e2f36819cf3cb46aa8cdff5c5282c9", ) version( "4.1.1", sha256="5de5d96bdfb9dad6e6061d70f47a0a91cee96bb35afb9afb9ecb3d43e243d217", ) version( "4.1.0", sha256="8f6e4ab393d81d72caae6e78bd0fd6956117ec9f006fba55fcdb88caf62989b7", ) version( "4.0.1", sha256="7b86a0ee804244e0c407321f895b15e4a7162e9c5c0d2efc85f1cadec4011af4", ) version( "4.0.0", sha256="3787b3cc7b21bba1441819cb00c636911a846c0392ddf6211d398040a1e4886c", ) version( "3.4.12", sha256="c8919dfb5ead6be67534bf794cb0925534311f1cd5c6680f8164ad1813c88d13", ) version( "3.4.6", sha256="e7d311ff97f376b8ee85112e2b536dbf4bdf1233673500175ed7cf21a0089f6d", ) version( "3.4.5", sha256="0c57d9dd6d30cbffe68a09b03f4bebe773ee44dc8ff5cd6eaeb7f4d5ef3b428e", ) version( "3.4.4", sha256="a35b00a71d77b484f73ec485c65fe56c7a6fa48acd5ce55c197aef2e13c78746", ) version( "3.4.3", sha256="4eef85759d5450b183459ff216b4c0fa43e87a4f6aa92c8af649f89336f002ec", ) version( "3.4.1", sha256="f1b87684d75496a1054405ae3ee0b6573acaf3dad39eaf4f1d66fdd7e03dc852", ) version( "3.4.0", sha256="678cc3d2d1b3464b512b084a8cca1fad7de207c7abdf2caa1fed636c13e916da", ) version( "3.3.1", sha256="5dca3bb0d661af311e25a72b04a7e4c22c47c1aa86eb73e70063cd378a2aa6ee", ) version( "3.3.0", sha256="<KEY>", ) contrib_vers = [ "3.3.0", "3.3.1", "3.4.0", "3.4.1", "3.4.3", "3.4.4", "3.4.5", "3.4.6", "3.4.12", "4.0.0", "4.0.1", "4.1.0", "4.1.1", "4.1.2", "4.2.0", "4.5.0", "4.5.1", "4.5.2", "4.5.4", ] for cv in contrib_vers: resource( name="contrib", git="https://github.com/opencv/opencv_contrib.git", tag="{0}".format(cv), when="@{0}".format(cv), ) # Patch to fix conflict between CUDA and OpenCV (reproduced with 3.3.0 # and 3.4.1) header file that have the same name. Problem is fixed in # the current development branch of OpenCV. See #8461 for more information. patch("dnn_cuda.patch", when="@3.3.0:3.4.1+cuda+dnn") patch("opencv3.2_cmake.patch", when="@3.2:3.4.1") # do not prepend system paths patch("cmake_no-system-paths.patch") patch("opencv4.1.1_clp_cmake.patch", when="@4.1.1:") patch("opencv4.0.0_clp_cmake.patch", when="@4.0.0:4.1.0") patch("opencv3.4.12_clp_cmake.patch", when="@3.4.12") patch("opencv3.3_clp_cmake.patch", when="@:3.4.6") patch("opencv3.4.4_cvv_cmake.patch", when="@3.4.4:") patch("opencv3.3_cvv_cmake.patch", when="@:3.4.3") # OpenCV prebuilt apps (variants) # Defined in `apps/*/CMakeLists.txt` using # `ocv_add_application(...)` apps = [ "annotation", "createsamples", "interactive-calibration", "model-diagnostics", "traincascade", "version", "visualisation", ] # app variants for app in apps: variant(app, default=False, description="Install {0} app".format(app)) # app conflicts with when("+annotation"): conflicts("~highgui") conflicts("~imgcodecs") conflicts("~imgproc") conflicts("~videoio") with when("+createsamples"): conflicts("~calib3d") conflicts("~features2d") conflicts("~highgui") conflicts("~imgcodecs") conflicts("~imgproc") conflicts("~objdetect") conflicts("~videoio") with when("+interactive-calibration"): conflicts("~calib3d") conflicts("~features2d") conflicts("~highgui") conflicts("~imgproc") conflicts("~videoio") with when("+model-diagnostics"): conflicts("~dnn") with when("+traincascade"): conflicts("~calib3d") conflicts("~features2d") conflicts("~highgui") conflicts("~imgcodecs") conflicts("~imgproc") conflicts("~objdetect") with when("+visualisation"): conflicts("~highgui") conflicts("~imgcodecs") conflicts("~imgproc") conflicts("~videoio") # OpenCV modules (variants) # Defined in `modules/*/CMakeLists.txt` using # `ocv_add_module(...)` and `ocv_define_module(...)` modules = [ "calib3d", "dnn", "features2d", "flann", "gapi", "highgui", "imgcodecs", "imgproc", "java", "java_bindings_generator", "ml", "objc", "objc_bindings_generator", "objdetect", "photo", "python2", "python3", "python_bindings_generator", "python_tests", "stitching", "ts", "video", "videoio", "world", ] # These need additional spack packages # js needs Emscripten modules_pending = [ "js", "js_bindings_generator", ] # module variants for mod in modules: # At least one of these modules must be enabled to build OpenCV variant(mod, default=False, description="Include opencv_{0} module".format(mod)) # module conflicts and dependencies with when("+calib3d"): conflicts("~features2d") conflicts("~flann") conflicts("~imgproc") with when("+dnn"): conflicts("~imgproc") conflicts("~protobuf") with when("+features2d"): conflicts("~imgproc") with when("+gapi"): conflicts("~ade") conflicts("~imgproc") with when("+highgui"): conflicts("~imgcodecs") conflicts("~imgproc") with when("+imgcodecs"): conflicts("~imgproc") with when("+java"): conflicts("~imgproc") conflicts("~java_bindings_generator") conflicts("~python2~python3") with when("+java_bindings_generator"): depends_on("java") depends_on("ant") with when("+objc"): conflicts("~imgproc") conflicts("~objc_bindings_generator") with when("+objc_bindings_generator"): conflicts("~imgproc") with when("+objdetect"): conflicts("~calib3d") conflicts("~dnn") conflicts("~imgproc") with when("+photo"): conflicts("~imgproc") with when("+python2"): conflicts("+python3") conflicts("~python_bindings_generator") depends_on("python@2.7:2.8", type=("build", "link", "run")) depends_on("py-setuptools", type="build") depends_on("py-numpy", type=("build", "run")) extends("python", when="+python2") with when("+python3"): conflicts("+python2") conflicts("~python_bindings_generator") depends_on("python@3.2:", type=("build", "link", "run")) depends_on("py-setuptools", type="build") depends_on("py-numpy", type=("build", "run")) extends("python", when="+python3") with when("+stitching"): conflicts("~calib3d") conflicts("~features2d") conflicts("~flann") conflicts("~imgproc") with when("+ts"): conflicts("~highgui") conflicts("~imgcodecs") conflicts("~imgproc") conflicts("~videoio") with when("+video"): conflicts("~imgproc") with when("+videoio"): conflicts("~ffmpeg") conflicts("~imgcodecs") conflicts("~imgproc") # OpenCV contrib modules (variants) contrib_modules = [ "alphamat", "aruco", "barcode", "bgsegm", "bioinspired", "ccalib", "cudaarithm", "cudabgsegm", "cudacodec", "cudafeatures2d", "cudafilters", "cudaimgproc", "cudalegacy", "cudaobjdetect", "cudaoptflow", "cudastereo", "cudawarping", "cudev", "cvv", "datasets", "dnn_objdetect", "dnn_superres", "dpm", "face", "freetype", "fuzzy", "hdf", "hfs", "img_hash", "intensity_transform", "line_descriptor", "matlab", "mcc", "optflow", "phase_unwrapping", "plot", "quality", "rapid", "reg", "rgbd", "saliency", "sfm", "shape", "stereo", "structured_light", "superres", "surface_matching", "text", "tracking", "videostab", "viz", "wechat_qrcode", "xfeatures2d", "ximgproc", "xobjdetect", "xphoto", ] contrib_modules_pending = [ "julia", # need a way to manage the installation prefix "ovis", # need ogre ] for mod in contrib_modules: variant( mod, default=False, description="Include opencv_{0} contrib module".format(mod), ) # contrib module conflicts and dependencies with when("+alphamat"): conflicts("~eigen") conflicts("~imgproc") with when("+aruco"): conflicts("~calib3d") conflicts("~imgproc") with when("+barcode"): conflicts("~dnn") conflicts("~imgproc") with when("+bgsegm"): conflicts("~calib3d") conflicts("~imgproc") conflicts("~video") with when("+ccalib"): conflicts("~calib3d") conflicts("~features2d") conflicts("~highgui") conflicts("~imgproc") with when("+cublas"): conflicts("~cuda") conflicts("~cudev") with when("+cuda"): conflicts("~cudev") with when("+cudaarithm"): conflicts("~cuda") conflicts("~cublas") conflicts("~cudev") conflicts("~cufft") with when("+cudabgsegm"): conflicts("~cuda") conflicts("~cudev") conflicts("~video") with when("+cudacodec"): conflicts("~cudev") conflicts("~videoio") with when("+cudafeatures2d"): conflicts("~cuda") conflicts("~cudafilters") conflicts("~cudawarping") conflicts("~cudev") conflicts("~features2d") with when("+cudafilters"): conflicts("~cuda") conflicts("~cudaarithm") conflicts("~cudev") conflicts("~imgproc") with when("+cudaimgproc"): conflicts("~cuda") conflicts("~cudev") conflicts("~imgproc") with when("+cudalegacy"): conflicts("~cuda") conflicts("~cudev") conflicts("~video") with when("+cudaobjdetect"): conflicts("~cuda") conflicts("~cudaarithm") conflicts("~cudawarping") conflicts("~cudev") conflicts("~objdetect") with when("+cudaoptflow"): conflicts("~cuda") conflicts("~cudaarithm") conflicts("~cudaimgproc") conflicts("~cudawarping") conflicts("~cudev") conflicts("~optflow") conflicts("~video") with when("+cudastereo"): conflicts("~calib3d") conflicts("~cuda") conflicts("~cudev") with when("+cudawarping"): conflicts("~cuda") conflicts("~cudev") conflicts("~imgproc") with when("+cudev"): conflicts("~cuda") with when("+cvv"): conflicts("~features2d") conflicts("~imgproc") conflicts("~qt") with when("+datasets"): conflicts("~flann") conflicts("~imgcodecs") conflicts("~ml") with when("+dnn_objdetect"): conflicts("~dnn") conflicts("~imgproc") with when("+dnn_superres"): conflicts("~dnn") conflicts("~imgproc") with when("+dpm"): conflicts("~imgproc") conflicts("~objdetect") with when("+face"): conflicts("~calib3d") conflicts("~imgproc") conflicts("~objdetect") conflicts("~photo") with when("+fuzzy"): conflicts("~imgproc") with when("+freetype"): conflicts("~imgproc") depends_on("freetype") depends_on("harfbuzz") with when("+hdf"): depends_on("hdf5") with when("+hfs"): with when("+cuda"): conflicts("~cudev") conflicts("~imgproc") with when("+img_hash"): conflicts("~imgproc") with when("+intensity_transform"): conflicts("~imgproc") with when("+line_descriptor"): conflicts("~imgproc") with when("+matlab"): conflicts("~python2~python3") depends_on("matlab") depends_on("py-jinja2") with when("+mcc"): conflicts("~calib3d") conflicts("~dnn") conflicts("~imgproc") with when("+optflow"): conflicts("~calib3d") conflicts("~flann") conflicts("~imgcodecs") conflicts("~imgproc") conflicts("~video") conflicts("~ximgproc") with when("+phase_unwrapping"): conflicts("~imgproc") with when("+plot"): conflicts("~imgproc") with when("+quality"): conflicts("~imgproc") conflicts("~ml") with when("+rapid"): conflicts("~calib3d") conflicts("~imgproc") with when("+reg"): conflicts("~imgproc") with when("+rgbd"): conflicts("~calib3d") conflicts("~eigen") conflicts("~imgproc") with when("+saliency"): conflicts("%intel") conflicts("~features2d") conflicts("~imgproc") with when("+sfm"): conflicts("~calib3d") conflicts("~eigen") conflicts("~features2d") conflicts("~imgcodecs") conflicts("~xfeatures2d") depends_on("ceres-solver") depends_on("gflags") depends_on("glog") with when("+shape"): conflicts("~calib3d") conflicts("~imgproc") with when("+stereo"): conflicts("~calib3d") conflicts("~features2d") conflicts("~imgproc") conflicts("~tracking") with when("+structured_light"): conflicts("~calib3d") conflicts("~imgproc") conflicts("~phase_unwrapping") with when("+superres"): with when("+cuda"): conflicts("~cudev") conflicts("~imgproc") conflicts("~optflow") conflicts("~video") with when("+surface_matching"): conflicts("~flann") with when("+text"): conflicts("~dnn") conflicts("~features2d") conflicts("~imgproc") conflicts("~ml") with when("+tracking"): conflicts("~imgproc") conflicts("~plot") conflicts("~video") with when("+videostab"): with when("+cuda"): conflicts("~cudev") conflicts("~calib3d") conflicts("~features2d") conflicts("~imgproc") conflicts("~photo") conflicts("~video") with when("+viz"): conflicts("~vtk") with when("+wechat_qrcode"): conflicts("~dnn") conflicts("~imgproc") depends_on("libiconv") with when("+xfeatures2d"): with when("+cuda"): conflicts("~cudev") conflicts("~calib3d") conflicts("~features2d") conflicts("~imgproc") with when("+ximgproc"): conflicts("~calib3d") conflicts("~imgcodecs") conflicts("~imgproc") conflicts("~video") with when("+xobjdetect"): conflicts("~imgcodecs") conflicts("~imgproc") conflicts("~objdetect") with when("+xphoto"): conflicts("~imgproc") conflicts("~photo") # Optional 3rd party components (variants) # Defined in `CMakeLists.txt` and `modules/gapi/cmake/init.cmake` # using `OCV_OPTION(WITH_* ...)` components = [ "1394", "ade", "android_mediandk", "android_native_camera", "avfoundation", "cap_ios", "carotene", "clp", "cpufeatures", "cublas", "cuda", "cudnn", "cufft", "directx", "dshow", "eigen", "ffmpeg", "gdal", "gtk", "hpx", "imgcodec_hdr", "imgcodec_pfm", "imgcodec_pxm", "imgcodec_sunraster", "ipp", "itt", "jasper", "jpeg", "lapack", "msmf", "msmf_dxva", "onnx", "opencl", "opencl_d3d11_nv", "openexr", "opengl", "openjpeg", "openmp", "plaidml", "png", "protobuf", "pthreads_pf", "qt", "quirc", "tbb", "tengine", "tesseract", "tiff", "v4l", "vtk", "vulcan", "webp", "win32ui", ] # These likely need additional spack packages components_pending = [ "aravis", "gdcm", "gphoto2", "gstreamer", "gtk_2_x", # deprecated in spack "halide", "inf_engine", "librealsense", "mfx", "ngraph", "nvcuvid", # disabled, details: https://github.com/opencv/opencv/issues/14850 "opencl_svm", "openclamdblas", "openclamdfft", "openni", "openni2", "openvx", "pvapi", "ueye", "va", "va_intel", "ximea", "xine", ] # components and modules with the same name # used in `def cmake_args(self)` component_and_module = ["freetype", "julia", "matlab"] for component in components: variant( component, default=False, description="Include {0} support".format(component), ) # Other (variants) variant("shared", default=True, description="Enables the build of shared libraries") variant("powerpc", default=False, description="Enable PowerPC for GCC") variant( "fast-math", default=False, description="Enable -ffast-math (not recommended for GCC 4.6.x)", ) variant("nonfree", default=False, description="Enable non-free algorithms") # Required (dependencies) depends_on("cmake@3.5.1:", type="build") depends_on("python@2.7:2.8,3.2:", type="build") depends_on("java", type="build") depends_on("zlib@1.2.3:") # Optional 3rd party components (dependencies) depends_on("clp", when="+clp") depends_on("cuda@6.5:", when="+cuda") depends_on("cuda@:10.2", when="@4.0:4.2+cuda") depends_on("cuda@:9.0", when="@3.3.1:3.4+cuda") depends_on("cuda@:8", when="@:3.3.0+cuda") depends_on("cudnn", when="+cudnn") depends_on("cudnn@:7.6", when="@4.0:4.2+cudnn") depends_on("cudnn@:7.3", when="@3.3.1:3.4+cudnn") depends_on("cudnn@:6", when="@:3.3.0+cudnn") depends_on("eigen", when="+eigen") depends_on("ffmpeg+avresample", when="+ffmpeg") depends_on("gdal", when="+gdal") depends_on("gtkplus", when="+gtk") depends_on("hpx", when="+hpx") depends_on("ipp", when="+ipp") depends_on("jasper", when="+jasper") depends_on("jpeg", when="+jpeg") depends_on("lapack", when="+lapack") depends_on("onnx", when="+onnx") depends_on("opencl", when="+opencl") depends_on("openexr", when="+openexr") depends_on("gl", when="+opengl") depends_on("openjpeg@2:", when="+openjpeg") depends_on("libpng", when="+png") depends_on("protobuf@3.5.0:", when="@3.4.1: +protobuf") depends_on("protobuf@3.1.0", when="@3.3.0:3.4.0 +protobuf") depends_on("qt@5:", when="+qt") depends_on("qt@5:+opengl", when="+qt+opengl") depends_on("tbb", when="+tbb") depends_on("libtiff+jpeg+libdeflate+lzma+zlib", when="+tiff") depends_on("vtk", when="+vtk") depends_on("libwebp", when="+webp") depends_on("tesseract", when="+tesseract") depends_on("leptonica", when="+tesseract") depends_on("libdc1394", when="+1394") # Optional 3rd party components (conflicts) # Defined in `CMakeLists.txt` and `modules/gapi/cmake/init.cmake` # using `OCV_OPTION(WITH_* ...)` conflicts("+android_mediandk", when="platform=darwin", msg="Android only") conflicts("+android_mediandk", when="platform=linux", msg="Android only") conflicts("+android_mediandk", when="platform=cray", msg="Android only") conflicts("+android_native_camera", when="platform=darwin", msg="Android only") conflicts("+android_native_camera", when="platform=linux", msg="Android only") conflicts("+android_native_camera", when="platform=cray", msg="Android only") conflicts("+avfoundation", when="platform=linux", msg="iOS/macOS only") conflicts("+avfoundation", when="platform=cray", msg="iOS/macOS only") conflicts("+cap_ios", when="platform=darwin", msg="iOS only") conflicts("+cap_ios", when="platform=linux", msg="iOS only") conflicts("+cap_ios", when="platform=cray", msg="iOS only") conflicts("+carotene", when="target=x86:", msg="ARM/AARCH64 only") conflicts("+carotene", when="target=x86_64:", msg="ARM/AARCH64 only") conflicts("+cpufeatures", when="platform=darwin", msg="Android only") conflicts("+cpufeatures", when="platform=linux", msg="Android only") conflicts("+cpufeatures", when="platform=cray", msg="Android only") conflicts("+cublas", when="~cuda") conflicts("+cudnn", when="~cuda") conflicts("+cufft", when="~cuda") conflicts("+directx", when="platform=darwin", msg="Windows only") conflicts("+directx", when="platform=linux", msg="Windows only") conflicts("+directx", when="platform=cray", msg="Windows only") conflicts("+dshow", when="platform=darwin", msg="Windows only") conflicts("+dshow", when="platform=linux", msg="Windows only") conflicts("+dshow", when="platform=cray", msg="Windows only") conflicts("+gtk", when="platform=darwin", msg="Linux only") conflicts("+ipp", when="target=aarch64:", msg="x86 or x86_64 only") conflicts("+jasper", when="+openjpeg") conflicts("+msmf", when="platform=darwin", msg="Windows only") conflicts("+msmf", when="platform=linux", msg="Windows only") conflicts("+msmf", when="platform=cray", msg="Windows only") conflicts("+msmf_dxva", when="platform=darwin", msg="Windows only") conflicts("+msmf_dxva", when="platform=linux", msg="Windows only") conflicts("+msmf_dxva", when="platform=cray", msg="Windows only") conflicts("+opencl_d3d11_nv", when="platform=darwin", msg="Windows only") conflicts("+opencl_d3d11_nv", when="platform=linux", msg="Windows only") conflicts("+opencl_d3d11_nv", when="platform=cray", msg="Windows only") conflicts("+opengl", when="~qt") conflicts("+tengine", when="platform=darwin", msg="Linux only") conflicts("+tengine", when="target=x86:", msg="ARM/AARCH64 only") conflicts("+tengine", when="target=x86_64:", msg="ARM/AARCH64 only") conflicts("+v4l", when="platform=darwin", msg="Linux only") conflicts("+win32ui", when="platform=darwin", msg="Windows only") conflicts("+win32ui", when="platform=linux", msg="Windows only") conflicts("+win32ui", when="platform=cray", msg="Windows only") def cmake_args(self): spec = self.spec args = [ self.define( "OPENCV_EXTRA_MODULES_PATH", join_path(self.stage.source_path, "opencv_contrib/modules"), ), self.define("BUILD_opencv_core", "on"), ] # OpenCV pre-built apps apps_list = [] for app in self.apps: if "+{0}".format(app) in spec: apps_list.append(app) if apps_list: args.append(self.define("BUILD_opencv_apps", "on")) args.append(self.define("OPENCV_INSTALL_APPS_LIST", ",".join(apps_list))) else: args.append(self.define("BUILD_opencv_apps", "off")) # OpenCV modules for mod in self.modules: args.append(self.define_from_variant("BUILD_opencv_" + mod, mod)) if mod in self.component_and_module: args.append(self.define_from_variant("WITH_" + mod.upper(), mod)) for mod in self.modules_pending: args.append(self.define("BUILD_opencv_" + mod, "off")) if mod in self.component_and_module: args.append(self.define("WITH_" + mod.upper(), "off")) # OpenCV contrib modules for mod in self.contrib_modules: args.append(self.define_from_variant("BUILD_opencv_" + mod, mod)) if mod in self.component_and_module: args.append(self.define_from_variant("WITH_" + mod.upper(), mod)) for mod in self.contrib_modules_pending: args.append(self.define("BUILD_opencv_" + mod, "off")) if mod in self.component_and_module: args.append(self.define("WITH_" + mod.upper(), "off")) # Optional 3rd party components for component in self.components: args.append( self.define_from_variant("WITH_" + component.upper(), component) ) for component in self.components_pending: args.append(self.define("WITH_" + component.upper(), "off")) # Other args.extend( [ self.define("ENABLE_CONFIG_VERIFICATION", True), self.define_from_variant("BUILD_SHARED_LIBS", "shared"), self.define("ENABLE_PRECOMPILED_HEADERS", False), self.define_from_variant("WITH_LAPACK", "lapack"), self.define_from_variant("ENABLE_POWERPC", "powerpc"), self.define_from_variant("ENABLE_FAST_MATH", "fast-math"), self.define_from_variant("OPENCV_ENABLE_NONFREE", "nonfree"), ] ) if "+cuda" in spec: if spec.variants["cuda_arch"].value[0] != "none": cuda_arch = spec.variants["cuda_arch"].value args.append(self.define("CUDA_ARCH_BIN", " ".join(cuda_arch))) # TODO: this CMake flag is deprecated if spec.target.family == "ppc64le": args.append(self.define("ENABLE_VSX", True)) # Media I/O zlib = spec["zlib"] args.extend( [ self.define("BUILD_ZLIB", False), self.define("ZLIB_LIBRARY", zlib.libs[0]), self.define("ZLIB_INCLUDE_DIR", zlib.headers.directories[0]), ] ) if "+png" in spec: libpng = spec["libpng"] args.extend( [ self.define("BUILD_PNG", False), self.define("PNG_LIBRARY", libpng.libs[0]), self.define("PNG_INCLUDE_DIR", libpng.headers.directories[0]), ] ) if "+jpeg" in spec: libjpeg = spec["jpeg"] args.extend( [ self.define("BUILD_JPEG", False), self.define("JPEG_LIBRARY", libjpeg.libs[0]), self.define("JPEG_INCLUDE_DIR", libjpeg.headers.directories[0]), ] ) if "+tiff" in spec: libtiff = spec["libtiff"] args.extend( [ self.define("BUILD_TIFF", False), self.define("TIFF_LIBRARY", libtiff.libs[0]), self.define("TIFF_INCLUDE_DIR", libtiff.headers.directories[0]), ] ) if "+jasper" in spec: jasper = spec["jasper"] args.extend( [ self.define("BUILD_JASPER", False), self.define("JASPER_LIBRARY", jasper.libs[0]), self.define("JASPER_INCLUDE_DIR", jasper.headers.directories[0]), ] ) if "+clp" in spec: clp = spec["clp"] args.extend( [ self.define("BUILD_CLP", False), self.define("CLP_LIBRARIES", clp.prefix.lib), self.define("CLP_INCLUDE_DIR", clp.headers.directories[0]), ] ) if "+onnx" in spec: onnx = spec["onnx"] args.extend( [ self.define("BUILD_ONNX", False), self.define("ORT_LIB", onnx.libs[0]), self.define("ORT_INCLUDE", onnx.headers.directories[0]), ] ) if "+tesseract" in spec: tesseract = spec["tesseract"] leptonica = spec["leptonica"] args.extend( [ self.define("Lept_LIBRARY", leptonica.libs[0]), self.define("Tesseract_LIBRARY", tesseract.libs[0]), self.define( "Tesseract_INCLUDE_DIR", tesseract.headers.directories[0] ), ] ) # Python python_exe = spec["python"].command.path python_lib = spec["python"].libs[0] python_include_dir = spec["python"].headers.directories[0] if "+python2" in spec: args.extend( [ self.define("PYTHON2_EXECUTABLE", python_exe), self.define("PYTHON2_LIBRARY", python_lib), self.define("PYTHON2_INCLUDE_DIR", python_include_dir), self.define("PYTHON3_EXECUTABLE", ""), ] ) elif "+python3" in spec: args.extend( [ self.define("PYTHON3_EXECUTABLE", python_exe), self.define("PYTHON3_LIBRARY", python_lib), self.define("PYTHON3_INCLUDE_DIR", python_include_dir), self.define("PYTHON2_EXECUTABLE", ""), ] ) else: args.extend( [ self.define("PYTHON2_EXECUTABLE", ""), self.define("PYTHON3_EXECUTABLE", ""), ] ) return args @property def libs(self): shared = "+shared" in self.spec return find_libraries( "libopencv_*", root=self.prefix, shared=shared, recursive=True )
player1537-forks/spack
var/spack/repos/builtin/packages/py-lazyarray/package.py
# Copyright 2013-2022 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) from spack import * class PyLazyarray(PythonPackage): """a Python package that provides a lazily-evaluated numerical array class, larray, based on and compatible with NumPy arrays.""" homepage = "https://lazyarray.readthedocs.io/en/latest/" pypi = "lazyarray/lazyarray-0.2.8.tar.gz" version('0.5.2', sha256='fe31804d82115ed7c382840a1708f498419ec1455cac084707ece9908310c7d1') version('0.5.1', sha256='76964dd1384a6d020ae0e70806983d15d8fcd731734063f716696ebe300ab0af') version('0.5.0', sha256='4cc4b54940def52fd96818a1c10528c4b7ecca77aa617d9e4fecfb42b51e73cf') version('0.4.0', sha256='837cfe001840be43339d4c10d0028a70a8b3c22be08b75429a38472cbf327976') version('0.3.4', sha256='357e80db7472c940ed3cab873544f2b7028f6ade8737adde2c91f91aeab2835a') version('0.3.3', sha256='c9df003af5e1007a28c4ec45f995662fd195590d5694ef7d4cfb028bc508f6ed') version('0.3.2', sha256='be980534c5950a976709085570f69be9534bdf0f3e5c21a9113de3ee2052683e') version('0.2.10', sha256='7a53f81b5f3a098c04003d2ad179fc197451fd96bc921510f8534c6af8cc8e19') version('0.2.8', sha256='aaee4e18117cc512de7a4e64522f37bc6f4bf125ecffdbdbf4e4e390fbdd9ba2') # Required versions come from doc/installation.txt or: # https://lazyarray.readthedocs.io/en/latest/installation.html#dependencies depends_on('python@2.7:3.9', type=('build', 'run'), when='@0.3:0.3.4') depends_on('python@3.4:3.9', type=('build', 'run'), when='@0.4:0.5.1') depends_on('python@3.6:', type=('build', 'run'), when='@0.5.2:') depends_on('py-numpy@1.3:', type=('build', 'run'), when='@:0.2.10^python@:2') depends_on('py-numpy@1.5:', type=('build', 'run'), when='@:0.2.10^python@3:') depends_on('py-numpy@1.8:', type=('build', 'run'), when='@0.3:0.3.4^python@:2') depends_on('py-numpy@1.12:', type=('build', 'run'), when='@0.3:0.5.1^python@3:') depends_on('py-numpy@1.13:', type=('build', 'run'), when='@0.5.2:') depends_on('py-setuptools', type='build')
player1537-forks/spack
var/spack/repos/builtin/packages/r-matrix/package.py
# Copyright 2013-2022 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) from spack import * class RMatrix(RPackage): """Sparse and Dense Matrix Classes and Methods. A rich hierarchy of matrix classes, including triangular, symmetric, and diagonal matrices, both dense and sparse and with pattern, logical and numeric entries. Numerous methods for and operations on these matrices, using 'LAPACK' and 'SuiteSparse' libraries.""" cran = "Matrix" version('1.4-0', sha256='c2b463702e4051b621f5e2b091a33f883f1caa97703d65f7a52b78caf81206f6') version('1.3-4', sha256='ab42179d44545e99bbdf44bb6d04cab051dd2aba552b1f6edd51ed71b55f6c39') version('1.3-3', sha256='f77ec8de43ae7bfa19dfdc7e76bfefbb21b3223dbc174423fcde70b44cf36a3b') version('1.3-2', sha256='950ba5d91018e711fd2743b3486a50dc47ae9c271389fce587792f0a9aab9531') version('1.2-17', sha256='db43e6f0196fd5dfd05a7e88cac193877352c60d771d4ec8772763e645723fcc') version('1.2-14', sha256='49a6403547b66675cb44c1afb04bb87130c054510cb2b94971435a826ab41396') version('1.2-11', sha256='ba8cd6565612552fe397e909721817b6cc0604a91299d56d118208006888dc0b') version('1.2-8', sha256='3cd2a187c45fc18a0766dc148b7f83dbf6f2163c256e887c41cbaa7c9a20dbb7') version('1.2-6', sha256='4b49b639b7bf612fa3d1c1b1c68125ec7859c8cdadae0c13f499f24099fd5f20') depends_on('r@3.0.1:', type=('build', 'run')) depends_on('r@3.2.0:', type=('build', 'run'), when='@1.2.13:') depends_on('r@3.6.0:', type=('build', 'run'), when='@1.3-2:') depends_on('r@3.5.0:', type=('build', 'run'), when='@1.3-3:') depends_on('r-lattice', type=('build', 'run'))
player1537-forks/spack
var/spack/repos/builtin/packages/julia/package.py
# Copyright 2013-2022 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) import os from spack import * from spack.version import ver def get_best_target(microarch, compiler_name, compiler_version): for compiler_entry in microarch.compilers[compiler_name]: if compiler_version.satisfies(ver(compiler_entry["versions"])): return compiler_entry.get("name", microarch.name) raise InstallError("Could not find a target architecture") class Julia(MakefilePackage): """The Julia Language: A fresh approach to technical computing""" homepage = "https://julialang.org" url = "https://github.com/JuliaLang/julia/releases/download/v1.7.0/julia-1.7.0.tar.gz" git = "https://github.com/JuliaLang/julia.git" maintainers = ['glennpj', 'vchuravy', 'haampie'] version('master', branch='master') version('1.7.2', sha256='0847943dd65001f3322b00c7dc4e12f56e70e98c6b798ccbd4f02d27ce161fef') version('1.7.1', sha256='17d298e50e4e3dd897246ccebd9f40ce5b89077fa36217860efaec4576aa718e') version('1.7.0', sha256='8e870dbef71bc72469933317a1a18214fd1b4b12f1080784af7b2c56177efcb4') version('1.6.5', sha256='b70ae299ff6b63a9e9cbf697147a48a31b4639476d1947cb52e4201e444f23cb') version('1.6.4', sha256='a4aa921030250f58015201e28204bff604a007defc5a379a608723e6bb1808d4') # We've deprecated these versions, so that we can remove them in Spack 0.18 # They are still available in Spack 0.17. Julia 0.17.0 is the first version that # can be built enitrely from Spack packages, without a network connection during # the build. for v in [ '1.6.3', '1.6.2', '1.6.1', '1.6.0', '1.5.4', '1.5.3', '1.5.2', '1.5.1', '1.5.0', '1.4.2', '1.4.1', '1.4.0', '1.3.1', '1.2.0', '1.1.1', '1.0.0', '0.6.2', '0.5.2', '0.5.1', '0.5.0', '0.4.7', '0.4.6', '0.4.5', '0.4.3' ]: version(v, deprecated=True) variant('precompile', default=True, description='Improve julia startup time') variant('openlibm', default=True, description='Use openlibm instead of libm') # Note, we just use link_llvm_dylib so that we not only get a libLLVM, # but also so that llvm-config --libfiles gives only the dylib. Without # it it also gives static libraries, and breaks Julia's build. depends_on('llvm targets=amdgpu,bpf,nvptx,webassembly version_suffix=jl +link_llvm_dylib ~internal_unwind') depends_on('libuv') with when('@1.7.0:1.7'): # libssh2.so.1, libpcre2-8.so.0, mbedtls.so.13, mbedcrypto.so.5, mbedx509.so.1 # openlibm.so.3, (todo: complete this list for upperbounds...) depends_on('llvm@12.0.1') depends_on('libuv@1.42.0') depends_on('mbedtls@2.24.0:2.24') depends_on('openlibm@0.7.0:0.7', when='+openlibm') depends_on('libblastrampoline@3.0.0:3') with when('@1.6.0:1.6'): # libssh2.so.1, libpcre2-8.so.0, mbedtls.so.13, mbedcrypto.so.5, mbedx509.so.1 # openlibm.so.3, (todo: complete this list for upperbounds...) depends_on('llvm@11.0.1') depends_on('libuv@1.39.0') depends_on('mbedtls@2.24.0:2.24') depends_on('openlibm@0.7.0:0.7', when='+openlibm') # Patches for llvm depends_on('llvm', patches='llvm7-symver-jlprefix.patch') depends_on('llvm', when='^llvm@11.0.1', patches=patch( 'https://raw.githubusercontent.com/spack/patches/0b543955683a903d711a3e95ff29a4ce3951ca13/julia/llvm-11.0.1-julia-1.6.patch', sha256='8866ee0595272b826b72d173301a2e625855e80680a84af837f1ed6db4657f42')) depends_on('llvm', when='^llvm@12.0.1', patches=patch( 'https://github.com/JuliaLang/llvm-project/compare/fed41342a82f5a3a9201819a82bf7a48313e296b...980d2f60a8524c5546397db9e8bbb7d6ea56c1b7.patch', sha256='10cb42f80c2eaad3e9c87cb818b6676f1be26737bdf972c77392d71707386aa4')) depends_on('llvm', when='^llvm@13.0.0', patches=patch( 'https://github.com/JuliaLang/llvm-project/compare/d7b669b3a30345cfcdb2fde2af6f48aa4b94845d...6ced34d2b63487a88184c3c468ceda166d10abba.patch', sha256='92f022176ab85ded517a9b7aa04df47e19a5def88f291e0c31100128823166c1')) # Patches for libuv depends_on('libuv', when='^libuv@1.39.0', patches=patch( 'https://raw.githubusercontent.com/spack/patches/b59ca193423c4c388254f528afabb906b5373162/julia/libuv-1.39.0.patch', sha256='f7c1e7341e89dc35dfd85435ba35833beaef575b997c3f978c27d0dbf805149b')) depends_on('libuv', when='^libuv@1.42.0', patches=patch( 'https://raw.githubusercontent.com/spack/patches/89b6d14eb1f3c3d458a06f1e06f7dda3ab67bd38/julia/libuv-1.42.0.patch', sha256='d9252fbe67ac8f15e15653f0f6b00dffa07ae1a42f013d4329d17d8b492b7cdb')) # patchelf 0.13 is required because the rpath patch uses --add-rpath depends_on('patchelf@0.13:', type='build') depends_on('perl', type='build') depends_on('libwhich', type='build') depends_on('blas') # note: for now openblas is fixed... depends_on('curl tls=mbedtls +nghttp2 +libssh2') depends_on('dsfmt@2.2.4:') # apparently 2.2.3->2.2.4 breaks API depends_on('gmp') depends_on('lapack') # note: for now openblas is fixed... depends_on('libblastrampoline', when='@1.7.0:') depends_on('libgit2') depends_on('libssh2 crypto=mbedtls') depends_on('mbedtls libs=shared') depends_on('mpfr') depends_on('nghttp2') depends_on('openblas +ilp64 symbol_suffix=64_') depends_on('openlibm', when='+openlibm') depends_on('p7zip') depends_on('pcre2') depends_on('suite-sparse +pic') depends_on('unwind') depends_on('utf8proc') depends_on('zlib +shared +pic +optimize') # Patches for julia patch('julia-1.6-system-libwhich-and-p7zip-symlink.patch', when='@1.6.0:1.6') patch('use-add-rpath.patch') # Fix gfortran abi detection https://github.com/JuliaLang/julia/pull/44026 patch('fix-gfortran.patch', when='@1.7.0:1.7.1') def patch(self): # The system-libwhich-libblastrampoline.patch causes a rebuild of docs as it # touches the main Makefile, so we reset the a/m-time to doc/_build's. f = os.path.join("doc", "_build", "html", "en", "index.html") if os.path.exists(f): time = (os.path.getatime(f), os.path.getmtime(f)) os.utime(os.path.join("base", "Makefile"), time) def setup_build_environment(self, env): # this is a bit ridiculous, but we are setting runtime linker paths to # dependencies so that libwhich can locate them. if ( self.spec.satisfies('platform=linux') or self.spec.satisfies('platform=cray') ): linker_var = 'LD_LIBRARY_PATH' elif self.spec.satisfies('platform=darwin'): linker_var = 'DYLD_FALLBACK_LIBRARY_PATH' else: return pkgs = [ 'curl', 'dsfmt', 'gmp', 'libgit2', 'libssh2', 'libunwind', 'mbedtls', 'mpfr', 'nghttp2', 'openblas', 'openlibm', 'pcre2', 'suite-sparse', 'utf8proc', 'zlib' ] if self.spec.satisfies('@1.7.0:'): pkgs.append('libblastrampoline') for pkg in pkgs: for dir in self.spec[pkg].libs.directories: env.prepend_path(linker_var, dir) def edit(self, spec, prefix): # TODO: use a search query for blas / lapack? libblas = os.path.splitext(spec['blas'].libs.basenames[0])[0] liblapack = os.path.splitext(spec['lapack'].libs.basenames[0])[0] # Host compiler target name march = get_best_target(spec.target, spec.compiler.name, spec.compiler.version) # LLVM compatible name for the JIT julia_cpu_target = get_best_target(spec.target, 'clang', spec['llvm'].version) options = [ 'prefix:={0}'.format(prefix), 'MARCH:={0}'.format(march), 'JULIA_CPU_TARGET:={0}'.format(julia_cpu_target), 'USE_BINARYBUILDER:=0', 'VERBOSE:=1', # Spack managed dependencies 'USE_SYSTEM_BLAS:=1', 'USE_SYSTEM_CSL:=1', 'USE_SYSTEM_CURL:=1', 'USE_SYSTEM_DSFMT:=1', 'USE_SYSTEM_GMP:=1', 'USE_SYSTEM_LAPACK:=1', 'USE_SYSTEM_LIBBLASTRAMPOLINE:=1', 'USE_SYSTEM_LIBGIT2:=1', 'USE_SYSTEM_LIBSSH2:=1', 'USE_SYSTEM_LIBSUITESPARSE:=1', # @1.7: 'USE_SYSTEM_SUITESPARSE:=1', # @:1.6 'USE_SYSTEM_LIBUNWIND:=1', 'USE_SYSTEM_LIBUV:=1', 'USE_SYSTEM_LIBWHICH:=1', 'USE_SYSTEM_LLVM:=1', 'USE_SYSTEM_MBEDTLS:=1', 'USE_SYSTEM_MPFR:=1', 'USE_SYSTEM_P7ZIP:=1', 'USE_SYSTEM_PATCHELF:=1', 'USE_SYSTEM_PCRE:=1', 'USE_SYSTEM_UTF8PROC:=1', 'USE_SYSTEM_ZLIB:=1', # todo: ilp depends on arch 'USE_BLAS64:=1', 'LIBBLASNAME:={0}'.format(libblas), 'LIBLAPACKNAME:={0}'.format(liblapack), 'override LIBUV:={0}'.format(spec['libuv'].libs.libraries[0]), 'override LIBUV_INC:={0}'.format(spec['libuv'].headers.directories[0]), 'override USE_LLVM_SHLIB:=1', # make rebuilds a bit faster for now, not sure if this should be kept 'JULIA_PRECOMPILE:={0}'.format( '1' if spec.variants['precompile'].value else '0'), ] # libm or openlibm? if spec.variants['openlibm'].value: options.append('USE_SYSTEM_LIBM=0') options.append('USE_SYSTEM_OPENLIBM=1') else: options.append('USE_SYSTEM_LIBM=1') options.append('USE_SYSTEM_OPENLIBM=0') with open('Make.user', 'w') as f: f.write('\n'.join(options) + '\n')
Brain-in-Vat/Aletheia
aletheia/mechanism_engine/scheduler.py
<reponame>Brain-in-Vat/Aletheia """to be down """ from mesa.time import BaseScheduler class Scheduler(object): def __init__(self): self.agents = {} def setp(self): for agent in self.agents.values(): agent.step() def add(self, agent): # self.agents.add(agent) self.agents[agent._id] = agent class RandomActivation(BaseScheduler): """A scheduler which activates each agent once per step, in random order, with the order reshuffled every step. This is equivalent to the NetLogo 'ask agents...' and is generally the default behavior for an ABM. Assumes that all agents have a step(model) method. """ def step(self) -> None: """Executes the step of all agents, one at a time, in random order. """ for agent in self.agent_buffer(shuffled=True): agent.step() self.steps += 1 self.time += 1
Brain-in-Vat/Aletheia
aletheia/scenario_search/ga.py
<filename>aletheia/scenario_search/ga.py from operator import itemgetter from random import randint # from runlocal import evaluate as run_evaluate import random from aletheia.settings import BASE_DIR import json import os import shutil import math class Gene: def __init__(self, **data): self.__dict__.update(data) self.size = len(data['data']) class GA: def __init__(self, **parameter) -> None: ''' bound: {(start, end): (up, down)}} example: ga = GA(10, {(1,11):(1,2)}, evaluate_func, result_path, NGEN, CXPB, MUTPB) ''' self.popsize = parameter['popsize'] self.bound = parameter['bound'] tmp = {} for key, value in self.bound.items(): if isinstance(key, tuple): for i in range(key[0], key[1]): tmp[i] = value elif isinstance(key, int): tmp[key] = value self.bound = tmp self.evaluate = parameter['evaluate'] self.result_path = parameter['result_path'] self.NGEN = parameter['NGEN'] self.CXPB = parameter['CXPB'] self.MUTPB = parameter['MUTPB'] self.init_the_group() def init_the_group(self): pop = [] for i in range(self.popsize): geneinfo = [ randint(self.bound[i][0], self.bound[i][1]) for i in range(len(self.bound)) ] fitness, measure = self.evaluate(geneinfo) pop.append({'Gene': Gene(data=geneinfo), 'fitness': fitness, 'measure': measure}) self.pop = pop self.bestindividual = self.selectBest(self.pop) if os.path.exists(self.result_path): if os.path.isfile(self.result_path): os.remove(self.result_path) elif os.isdir(self.result_path): shutil.rmtree(self.result_path) def selectBest(self, pop): s_inds = sorted(pop, key=itemgetter('fitness'), reverse=True) return s_inds[0] def selection(self, individuals, k): s_inds = sorted(individuals, key=itemgetter('fitness'), reverse=True) sum_fits = sum(abs(ind['fitness']) for ind in individuals) chosen = [] for i in range(k): u = random.random() * sum_fits sum_ = 0 for ind in s_inds: sum_ += abs(ind['fitness']) if sum_ >= u: chosen.append(ind) break chosen = sorted(chosen, key=itemgetter('fitness'), reverse=True) return chosen def crossoperate(self, offspring): dim = len(offspring[0]['Gene'].data) # Gene's data of first offspring chosen from the selected pop geninfo1 = offspring[0]['Gene'].data # Gene's data of second offspring chosen from the selected pop geninfo2 = offspring[1]['Gene'].data if dim == 1: pos1 = 1 pos2 = 1 else: # select a position in the range from 0 to dim-1, pos1 = random.randrange(1, dim) pos2 = random.randrange(1, dim) newoff1 = Gene(data=[]) # offspring1 produced by cross operation newoff2 = Gene(data=[]) # offspring2 produced by cross operation temp1 = [] temp2 = [] for i in range(dim): if min(pos1, pos2) <= i < max(pos1, pos2): temp2.append(geninfo2[i]) temp1.append(geninfo1[i]) else: temp2.append(geninfo1[i]) temp1.append(geninfo2[i]) newoff1.data = temp1 newoff2.data = temp2 return newoff1, newoff2 def mutation(self, crossoff, bound): dim = len(crossoff.data) if dim == 1: pos = 0 else: pos = random.randrange(0, dim) crossoff.data[pos] = random.randint(bound[pos][0], bound[pos][1]) return crossoff def save_gen(self, gen): with open(self.result_path, 'a', encoding='utf-8') as f: datas = { 'gen': gen, # 'pop': [data.] 'pop': [ {'Gene': x['Gene'].data, 'fitness': x['fitness'], 'measure':x['measure']} for x in self.pop ], 'best': {'Gene': self.bestindividual['Gene'].data, 'fitness': self.bestindividual['fitness'], 'measure': self.bestindividual['measure']} } datas = json.dumps(datas, ensure_ascii=False) f.write(datas + "\n") def GA_main(self): popsize = self.popsize print('Start of evolution') NGEN = self.NGEN CXPB = self.CXPB MUTPB = self.MUTPB for g in range(NGEN): print('############ Generation {} ############'.format(g)) self.save_gen(g) selectpop = self.selection(self.pop, popsize) nextoff = [] while len(nextoff) != popsize: if len(selectpop) < 2: print('debug') offspring = [selectpop.pop() for _ in range(2)] if random.random() < CXPB: crossoff1, crossoff2 = self.crossoperate(offspring) if random.random() < MUTPB: # mutate an individual with probability MUTPB muteoff1 = self.mutation(crossoff1, self.bound) muteoff2 = self.mutation(crossoff2, self.bound) # Evaluate the individuals fit_muteoff1, measure = self.evaluate( muteoff1.data) # Evaluate the individuals fit_muteoff2, measure = self.evaluate( muteoff2.data) nextoff.append( {'Gene': muteoff1, 'fitness': fit_muteoff1, 'measure': measure}) nextoff.append( {'Gene': muteoff2, 'fitness': fit_muteoff2, 'measure': measure}) else: fit_crossoff1, measure = self.evaluate( crossoff1.data) # Evaluate the individuals fit_crossoff2, measure = self.evaluate( crossoff2.data) nextoff.append( {'Gene': crossoff1, 'fitness': fit_crossoff1, 'measure': measure}) nextoff.append( {'Gene': crossoff2, 'fitness': fit_crossoff2, 'measure': measure}) else: nextoff.extend(offspring) self.pop = nextoff fits = [ind['fitness'] for ind in self.pop] best_ind = self.selectBest(self.pop) if best_ind['fitness'] > self.bestindividual['fitness']: self.bestindividual = best_ind print("Best individual found is {}, {}".format(self.bestindividual['Gene'].data, self.bestindividual['fitness'])) print(" Max fitness of current pop: {}".format(max(fits))) if __name__ == '__main__': CXPB, MUTPB, NGEN, popsize = 0.8, 0.4, 1000, 100 # popsize must be even number parameter = [CXPB, MUTPB, NGEN, popsize] run = GA(agent_number=116, popsize=1000) # run.GA_main() run.GA_draw(skip=False, sort=True)
Brain-in-Vat/Aletheia
aletheia/mechanism_engine/predict_markets/fpmm.py
<reponame>Brain-in-Vat/Aletheia from . import PredictMarket import math from enum import Enum class TokenType(Enum): yes_token = 'yes_token' no_token = 'no_token' class FPMM(PredictMarket): def __init__(self, fee=0.02, constant=100) -> None: super().__init__() self.proposal_map = {} self.fee = fee self.constant = constant def submit(self, agent, proposal): self.proposals.append(proposal) self.proposal_map[proposal._id] = proposal def buy(self, proposal_id, agent, token_type, amount): proposal = self.proposal_map[proposal_id] token_type = TokenType(token_type) val = 0 amount = (1 - self.fee) * amount if token_type == TokenType.yes_token: val = self.calc_price(proposal._id, amount, 0) proposal.yes_token += val elif token_type == TokenType.no_token: val = self.calc_price(proposal._id, 0, amount) proposal.no_token += val else: raise Exception('unknown token type') return amount def sell(self, proposal_id, agent, token_type, amount): proposal = self.proposal_map[proposal_id] token_type = TokenType(token_type) val = 0 if token_type == TokenType.yes_token: if amount > proposal.yes_token: return 0 val = (1 - self.fee)*self.calc_price(proposal._id, -amount, 0) proposal.yes_token -= amount elif token_type == TokenType.no_token: if amount > proposal.no_token: return 0 val = (1 - self.fee)*self.calc_price(proposal._id, 0, -amount) proposal.no_token -= amount else: raise Exception('unknown token type') return -val def calc_price(self, proposal_id, yes_token, no_token): """compute the price of current proposal """ proposal = self.proposal_map[proposal_id] p_w = proposal.yes_token p_l = proposal.no_token if proposal.state == 2: return yes_token elif proposal.state == 3: return no_token val = 0 # alpha = yes_token / p_w # belta = no_token / p_l if yes_token: delta_x = yes_token x_1 = p_w + delta_x delta_y = self.constant/x_1 - p_l val = delta_x + delta_y elif no_token: delta_x = no_token x_1 = p_l + delta_x delta_y = self.constant/x_1 - p_w val = delta_y + delta_x return val def calc_current_price(self, proposal_id, token_type): proposal = self.proposal_map[proposal_id] p_w = proposal.yes_token p_l = proposal.no_token # if proposal.state == 2 and token_type == 'yes': # return 1 # elif proposal.state == 2 and token_type == 'no': # return 0 # if proposal.state == 3 and token_type == 'yes': # return 0 # elif proposal.state == 3 and token_type == 'no': # return 1 # yes_part = math.exp(p_w/b) # no_part = math.exp(p_l/b) if token_type == 'yes': b = 1 - (p_w + p_l) delta_x = (b + math.sqrt(b*b + 4*p_l)) return 1 - delta_x/2 else: b = 1 - (p_w + p_l) delta_x = (b + math.sqrt(b*b + 4*p_w)) return 1 - delta_x/2
Brain-in-Vat/Aletheia
aletheia/mechanism_engine/predict_markets/__init__.py
class PredictMarket(object): def __init__(self) -> None: super().__init__() self.proposals = [] def buy(self, agent): pass def sell(self, agent): pass def observe(self, agent): pass
Brain-in-Vat/Aletheia
setup.py
<reponame>Brain-in-Vat/Aletheia import pathlib from setuptools import setup HERE = pathlib.Path(__file__).parent README = (HERE / "README.md").read_text() setup(name='aletheia', version='0.1', description='A compute governance tools', author='<NAME>', long_description=README, long_description_content_type='text/markdown', url='https://github.com/Brain-in-Vat/Aletheia', packages=['aletheia'], author_email="<EMAIL>", include_package_data=True, install_requires=['mesa', 'owlready2'], entry_points={ "console_scripts": [ "aletheia=aletheiacli.__main__:main" ] } )
Brain-in-Vat/Aletheia
aletheia/scenario_search/losspool.py
<gh_stars>0 import numpy as np from aletheia.scenario_search.loss import belief_loss, donate_loss, token_loss def futarchy_loss(expect, actual, origin, after, truth_index, false_index, alpha=0.05): return belief_loss(expect, actual) + alpha * token_loss(origin, after, truth_index, false_index) def qf_loss(expect, actual): return donate_loss(expect, actual)
Brain-in-Vat/Aletheia
aletheia/mechanism_engine/qf_futarchy/__init__.py
''' predict project in futarchy next round come out ''' from aletheia.mechanism_engine.predict_markets.lmsr import LMSRMarket from aletheia.mechanism_engine.qf import QuadraticFunding class QFFutarchy: def __init__(self, pass_ratio=0.8, projects=[0, 1]): self.projects = projects self.lmsr = LMSRMarket(self.projects) self.fee = 0.03 self.fee_pool = 0 self.round = 0 self.clr = QuadraticFunding() self.grant_history = [] self.history_market = [] self.history_clr = [] self.award_list = [] self.pass_ratio = pass_ratio self.pool = 0 def finish_round(self): result = {} prices = self.lmsr.price_calcs() prices = sorted(prices, key=lambda x: x[1], reverse=True) choice = [price[0] for price in prices] pass_indice = int(self.pass_ratio * len(self.projects)) self.lmsr.set_answer(choice[:pass_indice]) if self.history_market: last_market = self.history_market[-1] last_market.set_answer(choice) result['award_predict_winner'] = self.award_predict_winner() result['award_vote_winner'] = self.award_vote_winner() self.history_market.append(self.lmsr) self.compute_grants_from_market() self.lmsr = LMSRMarket(self.projects) # self.clr.grants = { # key:value for key,value in self.clr.grants.items() if key in choice # } self.grant_history.append(self.clr.clr_calcs()) result['cls_grants'] = self.clr.clr_calcs() self.history_clr.append(self.clr) self.clr = QuadraticFunding() return result def award_predict_winner(self): if len(self.award_list) == len(self.history_market): return {} last_market = self.history_market[-1] trades = last_market.trades answer = last_market.answer trades = {k: v for k, v in trades.items() if k in answer} users = {} for k, v in trades.items(): trades = v['trades'] for trade in trades: if trade['id'] in users: users[trade['id']] += trade['amount'] else: users[trade['id']] = trade['amount'] self.award_list.append(1) return users def compute_grants_from_market(self): last_market = self.lmsr trades = last_market.trades answer = last_market.answer trades = {k: v for k, v in trades.items() if k in answer} users = {} for k, v in trades.items(): trades = v['trades'] for trade in trades: if trade['id'] in users: users[trade['id']] += trade['amount'] else: users[trade['id']] = trade['amount'] for user_id, amount in users.items(): self.clr.grant(k, user_id, amount) def award_vote_winner(self): last_market = self.lmsr trades = last_market.trades answer = last_market.answer pool = last_market.pool trades = {k: v for k, v in trades.items() if k in answer} users = {} for k, v in trades.items(): trades = v['trades'] for trade in trades: if trade['id'] in users: users[trade['id']] += trade['amount'] else: users[trade['id']] = trade['amount'] total = sum(list(users.values())) users = { k: pool * (v / total) for k, v in users.items() } return users
Brain-in-Vat/Aletheia
aletheia/algorithm_analyze/futarchyqa.py
import dash import dash_core_components as dcc import dash_html_components as html import dash_bootstrap_components as dbc import plotly.express as px import pandas as pd from aletheia.settings import BASE_DIR import json import os import statistics import re app = dash.Dash(__name__, external_stylesheets=[dbc.themes.BOOTSTRAP]) result_path = os.path.join(BASE_DIR, 'tmp', 'result2.json') datas = [] with open(result_path, 'r') as f: # item = f.readline() for item in f.readlines(): one_data = json.loads(item) datas.append(one_data) total_df_dict = { 'Gen': [], 'Governance Loss': [], 'data_type': [] } for data in datas: gen = data['gen'] best = data['best']['fitness'] avg = [x['fitness'] for x in data['pop']] avg = statistics.mean(avg) total_df_dict['Gen'].append(gen) total_df_dict['Governance Loss'].append(avg) total_df_dict['data_type'].append('avg') total_df_dict['Gen'].append(gen) total_df_dict['Governance Loss'].append(best) total_df_dict['data_type'].append('best') total_df = pd.DataFrame(data=total_df_dict) total_fig = px.line(total_df, x='Gen', y='Governance Loss', color='data_type', title='The Governance Loss Changing Along the Iteration') best_data = datas[-1]['best'] best_data_loss_metric = best_data['measure']['loss_metric'] links = [] for data in datas: gen = data['gen'] best = data['best']['fitness'] avg = [x['fitness'] for x in data['pop']] avg = statistics.mean(avg) item = { 'name': 'Gen {}'.format(gen), 'href': '/gen_{}'.format(gen), 'best': best, 'avg': avg } links.append(item) new_links = [] for link in links: new_links.append(html.Br()) new_links.append(dcc.Link(link['name'], href=link['href'])) app.layout = html.Div( children=[ dcc.Location(id='url', refresh=False), dbc.Row(dbc.Col(html.H1(children='Algorithm Analyze', style={'textAlign': 'center'}))), dbc.Row(dbc.Col(html.Div(children=''' Analyze and visualize the result of Aletheia. ''', style={'textAlign': 'center'}))), dbc.Row( [ dbc.Col( dcc.Graph( id='example=graph', figure=total_fig), ), dbc.Col( html.Div( [ dbc.Card( [ dbc.CardBody( [ html.H4("The Biggest Loss Situation", className="card-title"), html.P( "Gonernance Loss : {}".format( best_data['fitness']), className="card-text", ), html.P("Grant Loss : {}".format( best_data_loss_metric['token_loss']), className='card-text'), html.P("Token Loss : {}".format( best_data_loss_metric['grant_loss']), className='card-text'), dcc.Link( "details", "best-button", href="/best") ] ), ], style={"width": "30rem"}, ) ] ), ) ], align='center'), dbc.Row(dbc.Col(html.Div(id='page-content', children=new_links))) ] ) index_page = html.Div(new_links) def get_index_page(page, size=100): start = (page - 1) * size end = page * size tmp_links = links[start:end] card_links = [] for link in tmp_links: card_content = [ dbc.CardHeader(link['name']), dbc.CardBody([ html.H5("Governance Loss", className="card-title"), html.P( "Biggest Loss : {}".format(link['best']), className="card-text", ), html.P( "Avg Loss : {}".format(link['avg']), className='card-text' ), dcc.Link('details', href=link['href']) ]) ] card_links.append(card_content) link_number = len(tmp_links) result = [] for i in range(1, 20): i_start = (i - 1) * 5 i_end = i * 5 if i_start >= link_number: break tmp_row = dbc.Row( [ dbc.Col(x) for x in card_links[i_start: i_end] ] ) result.append(tmp_row) next_page = page + 1 result.append(dbc.Row([ dbc.Col( [dcc.Link('Next Page', href='/top/page_{}'.format(next_page))], align='Right' ) ])) page = html.Div(result) return page def create_layout(gen, data, page, size=100): start = (page - 1) * size end = page * size pop = data['pop'] pop = pop[start:end] tmp_links = [] for index, item in enumerate(pop): tmp_links.append({ 'name': 'gen_{}_item_{}'.format(gen, index), 'href': '/gen_{}/item_{}'.format(gen, index), 'loss': item['fitness'], 'grant_loss': item['measure']['loss_metric']['grant_loss'], 'token_loss': item['measure']['loss_metric']['token_loss'] }) card_links = [] for link in tmp_links: card_content = [ dbc.CardHeader(link['name']), dbc.CardBody([ html.H5('Governance Loss'), html.P('Loss : {}'.format( link['loss']), className='card-text'), html.P('Grant Loss : {}'.format( link['grant_loss']), className='card-text'), html.P('Token Loss : {}'.format( link['token_loss']), className='card-text'), dcc.Link('details', href=link['href']) ]) ] card_links.append(card_content) link_number = len(tmp_links) result = [] for i in range(1, 20): i_start = (i - 1) * 5 i_end = i * 5 if i_start >= link_number: break tmp_row = dbc.Row( [ dbc.Col(x) for x in card_links[i_start: i_end] ] ) result.append(tmp_row) # tmp_links.append(html.Br()) # tmp_links.append(dcc.Link('gen_{}_item_{}'.format( # gen, index), href='/gen_{}/item_{}'.format(gen, index))) next_page = page + 1 result.append(dbc.Row([ dbc.Col( [dcc.Link('Next Page', href='/gen_{}/page_{}'.format(gen, next_page))], align='Right' ) ])) return html.Div(result) def create_detail_fig(data): gene = data['Gene'] agent_numer = int(len(gene) / 2) df_dict = { 'belief': [x for x in gene[:agent_numer]], 'tokens': [x for x in gene[agent_numer: agent_numer * 2]], 'id': [x for x in range(agent_numer)] } data_df = pd.DataFrame(data=df_dict) # data_fig = px.scatter(data_df, x='belief', y='tokens') data_fig = px.scatter(data_df, x='id', y='belief', size='tokens', size_max=60, title='Distribute of Belief and Tokens') clr_amount = {} data_results = data['measure']['results'] for data_result in data_results: cls_grants = data_result['cls_grants'] for cls_grant in cls_grants: index = cls_grant['id'] if index in clr_amount: # clr_amount[cls_grant['id']] += cls_grant['clr_amount'] clr_amount[index]['clr_amount'] += cls_grant['clr_amount'] clr_amount[index]['number_contributions'] += cls_grant['number_contributions'] clr_amount[index]['contribution_amount'] += cls_grant['contribution_amount'] else: clr_amount[index] = { 'clr_amount': cls_grant['clr_amount'], 'number_contributions': cls_grant['number_contributions'], 'contribution_amount': cls_grant['contribution_amount'] } clr_length = len(data_results) # clr_amount = {k: v/clr_length for k, v in clr_amount.items()} clr_amounts = [ { 'id': k, 'clr_amount': v['clr_amount']/clr_length, 'number_contributions': v['number_contributions'] / clr_length, 'contribution_amount': v['contribution_amount'] / clr_length } for k, v in clr_amount.items() ] clr_df_dict = { 'id': [], 'clr_amount': [], 'number_contributions': [], 'contribution_amount': [] } for clr_amount in clr_amounts: clr_df_dict['id'].append(clr_amount['id']) clr_df_dict['clr_amount'].append(clr_amount['clr_amount']) clr_df_dict['number_contributions'].append( clr_amount['number_contributions']) clr_df_dict['contribution_amount'].append( clr_amount['contribution_amount']) clr_df = pd.DataFrame(data=clr_df_dict) # clr_fig = px.bar(clr_df, x='id', y='clr_amount') clr_fig = px.bar(clr_df, x='id', y=[ 'clr_amount', 'contribution_amount'], title='Distribution of Grant Amount and Contribution Amount') ctr_number_dict = { 'id': [], 'number_contributions': [] } for clr_amount in clr_amounts: ctr_number_dict['id'].append(clr_amount['id']) ctr_number_dict['number_contributions'].append( clr_amount['number_contributions']) ctr_number_df = pd.DataFrame(data=ctr_number_dict) ctr_number_fig = px.bar(ctr_number_df, x='id', y='number_contributions', title='Distribution of Contribution Number') token_changed = data['measure']['token_changed'] token_changed_data = { 'id': [], 'value': [] } for index, value in enumerate(token_changed): # token_changed_data[index] = value token_changed_data['id'].append(index) token_changed_data['value'].append(value) token_changed_df = pd.DataFrame(data=token_changed_data) token_changed_fig = px.scatter( token_changed_df, x='id', y='value', title='Dsitribution of Token Benefit') page_layout = html.Div([ # html.H1('Agent Distribute'), dbc.Row(dbc.Col(html.H1('Agent Distribute'))), dbc.Row( [ dbc.Col( dcc.Graph( id='agents', figure=data_fig, style={'width': '100%'} ) ), dbc.Col( dcc.Graph( id='qf_amount', figure=clr_fig, style={'width': '100%'} ) ), ] ), dbc.Row( [ dbc.Col( dcc.Graph( id='token_changed', figure=token_changed_fig, style={'width': '100%'} ) ), dbc.Col( dcc.Graph( id='contribute_number', figure=ctr_number_fig, style={'width': '100%'} ) ) ]) ], style={'display': 'inline-block', 'width': '100%'}) return page_layout @app.callback(dash.dependencies.Output('page-content', 'children'), [dash.dependencies.Input('url', 'pathname')]) def display_page(pathname): # if pathname in []: # if re.match(pathname, 'gen_\d') if re.match('^/gen_\d+$', pathname): gen_id = re.findall('\d+', pathname) gen_id = int(gen_id[0]) data = datas[gen_id] return create_layout(gen_id, data, 1, 100) elif re.match('^/gen_\d+/item_\d+$', pathname): gen_ids = re.findall('\d+', pathname) gen_id = int(gen_ids[0]) data_id = int(gen_ids[1]) data = datas[gen_id] data = data['pop'][data_id] return create_detail_fig(data) elif pathname == '/best': return create_detail_fig(best_data) elif re.match('^/gen_\d+/page_\d+', pathname): gen_ids = re.findall('\d+', pathname) gen_id = int(gen_ids[0]) page = int(gen_ids[1]) data = datas[gen_id] return create_layout(gen_id, data, page, 100) elif re.match('^/top/page_\d+', pathname): gen_id = re.findall('\d+', pathname) page = int(gen_id[0]) return get_index_page(page) else: return get_index_page(1) if __name__ == '__main__': app.run_server(debug=False)
Brain-in-Vat/Aletheia
aletheia/examples/simpleqf.py
<reponame>Brain-in-Vat/Aletheia from mesa import Model from aletheia.mechanism_engine.scheduler import RandomActivation from mesa.datacollection import DataCollector from mesa.space import Grid from aletheia.mechanism_engine.predict_markets.lmsr import LMSRMarket from aletheia.mechanism_engine.qf import QuadraticFunding # from .agents.randomagent import RandomAgent from aletheia.examples.agents.randomagent import FixZLAgent, RandomAgent class QFModel(Model): def __init__(self, project_num = 10, beliefs=[], tokens=[], pass_ratio=0.9): self.qf = QuadraticFunding() self.schedule = RandomActivation(self) agent_ids = range(len(beliefs)) # todo add agents for agent_id, belief, token in zip(agent_ids, beliefs, tokens): agent = FixZLAgent(agent_id, self, token, belief) self.schedule.add(agent) # for i in range(10): # agent = RandomAgent(i, self, 10) # self.schedule.add(agent) self.projects = range(0, project_num) self.dead_line = 13 self.count = 0 self.running = True def step(self): self.schedule.step() if self.count >= self.dead_line: self.running = False self.count += 1 self.show() def show(self): result = self.qf.clr_calcs() print(result) def evaluate(code, agent_number=10, project_number=10): ''' code = [1, 2, 10..] ''' origin_beliefs = code[0, agent_number] beliefs = origin_beliefs tmp = [] for belief in beliefs: tmp_belief = {i:0 for i in range(project_number)} tmp_belief[belief] = 1 tmp.append(tmp_belief) tokens = code[agent_number : agent_number * 2] qfmodel = QFModel() while qfmodel.running: qfmodel.step() if __name__ == '__main__': qfmodel = QFModel() while qfmodel.running: qfmodel.step() # qfmodel.show()
Brain-in-Vat/Aletheia
aletheia/mechanism_engine/futarchy/__init__.py
<reponame>Brain-in-Vat/Aletheia from enum import Enum class BaseSystem(object): def __init__(self, states, governance): self.states = states self.governance = governance def update(self): pass class FutarchySystem(BaseSystem): """the origin futarchy system """ def __init__(self, forum=None): self.failed_proposals = [] self.activate_proposals = [] self.passed_proposals = [] self.forum = forum def update(self): """ update the system time to t + 1 """ pass def observe(self, agent_id): """ observe from the agent """ pass def propose(self, proposal, agent): pass class SimpleFutarchySystem(FutarchySystem): def __init__(self, forum=None, predict_market=None, duration=14): super().__init__(forum) self.predict_market = predict_market self.orders = [] self.time_stick = 0 self.day = 0 self.duration = duration # self.vote_actions = { # 'yes': [], # 'no': [] # } self.vote_actions = {} self.voted_agents = set() def update(self): self.time_stick += 1 def propose(self, proposal): proposal.time = self.day self.activate_proposals.append(proposal) self.predict_market.submit(-1, proposal) self.vote_actions[proposal._id] = { 'yes': [], 'no': [] } def vote(self, agent, proposal_id, vote_type): if agent.unique_id in self.voted_agents or agent.token < 1: return vote_action = self.vote_actions[proposal_id] if vote_type == 'yes': vote_action['yes'].append((agent.unique_id, agent.token)) elif vote_type == 'no': vote_action['no'].append((agent.unique_id, agent.token)) self.voted_agents.add(agent.unique_id) def step(self): # self.time_stick += 1 # self.day = int(self.time_stick/24) self.day += 1 remove_list = [] for proposal in self.activate_proposals: if self.day - proposal.time >= self.duration: # self.activate_proposals.remove(proposal) # remove_list.append(proposal) vote_action = self.vote_actions[proposal._id] yes_amount = sum(x[1] for x in vote_action['yes']) no_amount = sum(x[1] for x in vote_action['no']) if yes_amount > no_amount: proposal.state = 2 self.passed_proposals.append(proposal) else: proposal.state = 3 self.failed_proposals.append(proposal) for proposal in remove_list: self.activate_proposals.remove(proposal) def observe(self, agent): return self.activate_proposals
Brain-in-Vat/Aletheia
aletheia/mechanism_engine/qf/__init__.py
<filename>aletheia/mechanism_engine/qf/__init__.py from aletheia.mechanism_engine.qf.clr import run_clr_calcs class QuadraticFunding(object): def __init__(self, threshold=25, total_pot=5000): self.grants = { } self.threshold = threshold self.total_pot = total_pot def grant(self, project_id, user_id, contribution_amount): tmp = self.grants.get(project_id) if not tmp: self.grants[project_id] = { 'id': project_id, 'contributions': [] } tmp = self.grants[project_id] tmp['contributions'].append({user_id: contribution_amount}) def clr_calcs(self): grants = list(self.grants.values()) return run_clr_calcs(grants, self.threshold, self.total_pot)
Brain-in-Vat/Aletheia
aletheia/resources/zlagent.py
''' This is the python code part of zero intelligence agent. pre require: owlready2 mesa ''' from mesa.agent import Agent from owlready2 import set_datatype_iri, World, sync_reasoner_pellet agent_base = 'zlagent.owl' set_datatype_iri(float, 'http://www.w3.org/2001/XMLSchema#float') class ZLAgent(Agent): def __init__(self, kb_path, unique_id, model): super().__init__(unique_id, model) self.kb_path = kb_path if not self.kb_path: self.kb_path = agent_base self.world = World() self.onto = self.world.get_ontology(self.kb_path) self.onto.load() self.unique_id = unique_id self.model = model def think(self): """reason in kb using predefined rulers reason process dont introduce any new individuals """ try: with self.onto: sync_reasoner_pellet(self.world, infer_property_values=True, infer_data_property_values=True, debug=2) except Exception as e: print(e) self._replace_ready_property() def _replace_ready_property(self): # update goal individuals = self.onto.individuals() for individual in individuals: property_names = [ property._name for property in individual.get_properties()] update_paris = [] for property_name in property_names: if property_name.endswith('Ready'): update_paris.append((property_name, property_name[:-5])) if update_paris: for property_ready, property in update_paris: ready_value = eval('individual.' + property_ready) now_value = eval('individual.' + property) if not ready_value: continue if isinstance(ready_value, list): individual.__dict__[property_ready] = [] if isinstance(now_value, list): individual.__dict__[property] = ready_value else: individual.__dict__[property] = ready_value[0] else: individual.__dict__[property_ready] = None if isinstance(now_value, list): individual.__dict__[property] = [ready_value] else: individual.__dict__[property] = ready_value def observe(self): """ here update the knowlege of agent the zlagent focus on the trade price when they make descisions """ self.onto.noToken.currentPrice = 0.5 self.onto.yesToken.currentPrice = 0.5 self.onto.GNO.myBanlance = 10 self.onto.mySelf.myWealth = 10 def execute(self): """here u write the execute logical """ print('this agent is executing') pass def step(self): self.observe() self.think() self.execute() def print_beleif(self): """ """ pass def add_belief(self): pass if __name__ == '__main__': agent = ZLAgent(None, None, None) agent.step()
Brain-in-Vat/Aletheia
aletheia/examples/futarchyqf.py
<filename>aletheia/examples/futarchyqf.py<gh_stars>0 from aletheia.scenario_search.loss import belief_loss, token_loss from mesa import Model from aletheia.mechanism_engine.scheduler import RandomActivation from mesa.datacollection import DataCollector from mesa.space import Grid from aletheia.mechanism_engine.predict_markets.lmsr import LMSRMarket from aletheia.mechanism_engine.qf import QuadraticFunding from aletheia.mechanism_engine.qf_futarchy import QFFutarchy from aletheia.examples.agents.randomagent import RandomAgent, FixZLAgent from aletheia.scenario_search.ga import GA from aletheia.scenario_search.losspool import qf_loss, futarchy_loss from aletheia.settings import BASE_DIR import os class QFFutarchyModel(Model): def __init__(self, projects_num=10, beliefs=[], tokens=[], pass_ratio=0.8): # self.qf = QuadraticFunding() self.schedule = RandomActivation(self) # todo add agents agent_ids = range(len(beliefs)) for agent_id, belief, token in zip(agent_ids, beliefs, tokens): # agent = RandomAgent(i, self, 10) agent = FixZLAgent(agent_id, self, token, belief) self.schedule.add(agent) self.projects = range(0, projects_num) self.dead_line = 13 self.count = 0 self.running = True self.qf_futarchy = QFFutarchy( pass_ratio=pass_ratio, projects=self.projects) self.results = [] def step(self): for i in range(14): self.schedule.step() result = self.qf_futarchy.finish_round() self.results.append(result) award_vote_winner = result.get('award_vote_winner') if award_vote_winner: for k, v in award_vote_winner.items(): self.schedule.agents[k].award_token(v) award_predict_winner = result.get('award_predict_winner') if award_predict_winner: for k, v in award_predict_winner.items(): self.schedule.agents[k].award_brain_token(v) if self.count >= self.dead_line: self.running = False self.count += 1 def evaluate(code, agent_number=10, project_number=5): ''' code = [1, 2, 10..] ''' # project_number = max(code[:agent_number]) origin_beliefs = code[0: agent_number] beliefs = origin_beliefs tmp = [] for belief in beliefs: tmp_belief = {i: 0 for i in range(project_number)} tmp_belief[belief] = 1 tmp.append(tmp_belief) tokens = code[agent_number: agent_number * 2] qffutarchyModel = QFFutarchyModel(project_number, tmp, tokens) while qffutarchyModel.running: qffutarchyModel.step() # compute loss expect = [] tmp = {} for belief in beliefs: if belief not in tmp.keys(): tmp[belief] = 1 else: tmp[belief] += 1 beliefs = [(k, v) for k, v in tmp.items()] beliefs = sorted(beliefs, key=lambda x: x[1], reverse=True) beliefs = beliefs[: int((project_number + 1) * 0.9)] expect = [belief[0] for belief in beliefs] results = qffutarchyModel.results # print(results) avg_qf_loss = 0 for result in results: qf_result = result['cls_grants'] qf_result = [x['id'] for x in qf_result] qf_loss = belief_loss(expect, qf_result) avg_qf_loss += qf_loss avg_qf_loss = avg_qf_loss/len(results) truth_index = [] false_index = [] for index, belief in enumerate(origin_beliefs): if belief in expect: truth_index.append(index) else: false_index.append(index) agents = qffutarchyModel.schedule.agents origin = tokens after = [ a.token + a.brain_token for a in agents ] token_changed = [t2 - t1 for t1, t2 in zip(origin, after)] value2 = token_loss(origin, after, truth_index, false_index) loss_metric = { 'grant_loss': avg_qf_loss, 'token_loss': value2 } return avg_qf_loss + 0.05 * value2, {'results': results, 'token_changed': token_changed, 'loss_metric': loss_metric} def compute_experiment(result_path='result.json'): agent_number = 10 project_number = 5 run = GA( popsize=100, bound={(0, agent_number): (0, project_number - 1), (agent_number, 2*agent_number): (0, 200)}, evaluate=evaluate, result_path=os.path.join(BASE_DIR, 'tmp', result_path), NGEN=100, CXPB=0.8, MUTPB=0.4 ) run.GA_main() if __name__ == '__main__': compute_experiment('result2.json')
Brain-in-Vat/Aletheia
aletheia/settings.py
<filename>aletheia/settings.py import os BASE_DIR = os.path.dirname(__file__) # DOWNLOAD_URL = 'https://github.com/Brain-in-Vat/Aletheia/blob/main/resources' # DOWNLOAD_URL = 'https://raw.githubusercontent.com/Brain-in-Vat/Aletheia/blob/main/resources' # DOWNLOAD_URL = 'https://raw.githubusercontent.com/Brain-in-Vat/Aletheia/main/resources' DOWNLOAD_URL = 'https://raw.githubusercontent.com/Brain-in-Vat/Aletheia/main/aletheia/resources' # RULE_PATH = os.path.join(BASE_DIR, 'voting', 'resources', 'rules.json') # KNOWLEGE_PATH = os.path.join(BASE_DIR, 'voting', 'resources', 'AgentKnowlege.turtle') # GLOBAL_KNOWLEGE_PATH = os.path.join(BASE_DIR, 'voting', 'resources', 'GolbalKnowlege.owl') # INDIVIDUAL_KNOWLEGE_PATH = os.path.join(BASE_DIR, 'voting', 'resources', 'IndividualKnowlege') # AGENT_LIST_PATH = os.path.join(BASE_DIR, 'voting', 'resources', 'agents.json') # GLOBAL_KNOWLEGE_PATH = os.path.join(BASE_DIR, 'voting', 'resources', 'GolbalKnowlege.nt')
Brain-in-Vat/Aletheia
aletheia/mechanism_engine/futarchy/proposal.py
from enum import Enum import math class State(Enum): Init = 1 Pass = 2 Failed = 3 pass class Proposal(object): def __init__(self, _meta, _id, pos): self._meta = _meta self.state = 1 self._id = _id self.time = 0 self.passed = -1 self.pos = pos def update(self, state): self.state = state class FutarchyProposal(Proposal): def __init__(self, _meta, _id, pos, b_number): super().__init__(_meta, _id, pos) self.historys = {'1': {'yes_token': 0, 'no_token': 0}} self.prices = { 'Yes': 1, 'No': 1 } self.yes_token = 0 self.no_token = 0 self.b_number = b_number class FPMMProposal(Proposal): def __init__(self, _meta, _id, pos, constant): super().__init__(_meta, _id, pos) self.historys = {'1': {'yes_token': 0, 'no_token': 0}} self.prices = { 'Yes': 1, 'No': 1 } self.yes_token = math.sqrt(constant) self.no_token = math.sqrt(constant)
Brain-in-Vat/Aletheia
aletheia/scenario_search/loss.py
<filename>aletheia/scenario_search/loss.py import numpy as np def belief_loss(expect, actual): expect = set(expect) actual = set(actual) inter_set = expect & actual or_set = expect | actual return float(len(inter_set)/len(or_set)) def donate_loss(expect, actual): dist = np.sqrt(np.sum(np.square(expect - actual))) return dist def token_loss(origin, after, truth_index, false_index): truth_wealth = [[origin[index], after[index]] for index in truth_index] false_wealth = [[origin[index], after[index]] for index in false_index] if len(truth_wealth) == 0: value1 = 0 else: value1 = sum([x[0] - x[1] for x in truth_wealth])/len(truth_wealth) if len(false_wealth) == 0: value2 = 0 else: value2 = sum([x[0] - x[1] for x in false_wealth])/len(false_wealth) return value1 - value2
Brain-in-Vat/Aletheia
aletheia/agents/ontoagent.py
from owlready2 import get_ontology, default_world, sync_reasoner_pellet, World, set_datatype_iri import os from aletheia.settings import BASE_DIR from mesa import Agent, Model import random agent_base = os.path.join(BASE_DIR, 'resource', 'zlagent.owl') set_datatype_iri(float, "http://www.w3.org/2001/XMLSchema#float") class BaseAgent(Agent): def __init__(self, kb_path, unique_id: int, model: Model): super().__init__(unique_id, model) self.kb_path = kb_path if not self.kb_path: self.kb_path = agent_base self.world = World() self.onto = self.world.get_ontology(self.kb_path) self.onto.load() class OntoAgent(Agent): def __init__(self, kb_path, unique_id: int, model: Model, market, system, pos, wealth=10, token=10, strategy=1) -> None: super().__init__(unique_id, model) self.kb_path = kb_path if not self.kb_path: self.kb_path = agent_base self.world = World() self.onto = self.world.get_ontology(self.kb_path) self.onto.load() self.unique_id = unique_id self.model = model self.market = market self.system = system self.pos = pos self.wealth = wealth self.token = token self.strategy = strategy self.yes_token = 0 self.no_token = 0 self.voted = False self.init_myself() def set_proposal(self, proposal_id, expect): """init the proposal knowlege in one proposal simulation """ self.onto.proposal1.proposalId = proposal_id self.onto.proposal1.myExpectYes = float(expect) self.onto.proposal1.myExpectNo = float(1 - expect) self.onto.mySelf.currentProposal = self.onto.proposal1 def init_myself(self): self.onto.GNO.myBanlance = float(self.token) self.onto.mySelf.wealth = float(self.wealth) self.onto.spatialAddress.hasX = float(self.pos[0]) self.onto.spatialAddress.hasY = float(self.pos[1]) if self.strategy == 0: self.onto.mySelf.myStrategy = self.onto.onlyBuy else: self.onto.mySelf.myStrategy = self.onto.buyAndSell self.onto.marketSystem.hasFee = float(self.market.fee) def think(self): """reason in kb using predefined rulers reason process dont introduce any new individuals """ try: with self.onto: sync_reasoner_pellet(self.world, infer_property_values=True, infer_data_property_values=True, debug=2) except Exception as e: print(e) self._replace_ready_property() def _replace_ready_property(self): # update goal individuals = self.onto.individuals() for individual in individuals: property_names = [ property._name for property in individual.get_properties()] update_paris = [] for property_name in property_names: if property_name.endswith('Ready'): update_paris.append((property_name, property_name[:-5])) if update_paris: for property_ready, property in update_paris: ready_value = eval('individual.' + property_ready) now_value = eval('individual.' + property) if not ready_value: continue if isinstance(ready_value, list): individual.__dict__[property_ready] = [] if isinstance(now_value, list): individual.__dict__[property] = ready_value else: individual.__dict__[property] = ready_value[0] else: individual.__dict__[property_ready] = None if isinstance(now_value, list): individual.__dict__[property] = [ready_value] else: individual.__dict__[property] = ready_value def observe(self): proposals = self.system.observe(self) if proposals: target = proposals[0] else: target = None if not target: self.onto.mySelf.currentProposal = None return yes_prices = self.market.calc_price(target._id, 1, 0) no_prices = self.market.calc_price(target._id, 0, 1) self.onto.noToken.currentPrice = float(no_prices) self.onto.yesToken.currentPrice = float(yes_prices) self.onto.GNO.myBanlance = float(self.token) self.onto.mySelf.myWealth = float(self.wealth) def execute(self): def buy_yes_token(_id, amount): pay = self.market.calc_price(_id, amount, 0) if pay <= self.token: val = self.market.buy(_id, self.unique_id, 'yes_token', amount) self.yes_token += amount self.token -= val def buy_no_token(_id, amount): price = self.market.calc_price(_id, 0, amount) if price <= self.token: val = self.market.buy(_id, self.unique_id, 'no_token', amount) self.no_token += amount self.token -= val def sell_yes_token(_id, amount): if self.yes_token >= amount: val = self.market.sell( _id, self.unique_id, 'yes_token', amount) self.yes_token -= amount self.token -= val def sell_no_token(_id, amount): if self.no_token >= amount: val = self.market.sell(_id, self.unique_id, 'no_token', amount) self.no_token -= amount self.token -= val def vote_yes(_id, amount=None): self.system.vote(self, _id, 'yes') self.voted = True def vote_no(_id, amount=None): self.system.vote(self, _id, 'no') self.voted = True plan = self.onto.myPlan actions = plan.hasAction while actions: action = actions.pop(0) token = action.targetToken if action._name == 'buyYesToken': proposal = token.yesTokenOf _id = proposal.proposalId amount = action.buyAmount _func = buy_yes_token elif action._name == 'sellYesToken': proposal = token.yesTokenOf _id = proposal.proposalId amount = action.sellAmount _func = sell_yes_token elif action._name == 'buyNoToken': proposal = token.noTokenOf _id = proposal.proposalId amount = action.buyAmount _func = buy_no_token elif action._name == 'sellNoToken': proposal = token.noTokenOf _id = proposal.proposalId amount = action.sellAmount _func = sell_no_token elif action.name == 'voteYes': proposal = action.targetProposal _id = proposal.proposalId amount = 1 _func = vote_yes elif action.name == 'voteNo': proposal = action.targetProposal _id = proposal.proposalId amount = 1 _func = vote_no else: continue _func(_id, amount) self.wealth = self.token + self.no_token * \ self.market.calc_current_price(_id, 'no') + self.yes_token * \ self.market.calc_current_price(_id, 'yes') def step(self): print("agent {} started to thinking".format(self.unique_id)) self.observe() self.think() self.execute() if __name__ == '__main__': agent = OntoAgent(agent_base, 0, None, None, None, [0, 0]) agent.step() # agent2.step()
Brain-in-Vat/Aletheia
aletheia/examples/simplefutarchy.py
from mesa import Model from aletheia.mechanism_engine.scheduler import RandomActivation from mesa.datacollection import DataCollector from mesa.space import Grid from aletheia.mechanism_engine.predict_markets.lmsr import LMSR from aletheia.mechanism_engine.predict_markets.fpmm import FPMM from aletheia.mechanism_engine.futarchy.proposal import Proposal, FutarchyProposal, FPMMProposal from aletheia.mechanism_engine.futarchy import SimpleFutarchySystem from aletheia.agents.simpleagent import FutarchyBuyAgent, FutarchyBuyAndSellAgent, FutarchyRandomAgent import random class Futarchy(Model): """ """ def __init__(self, b_number, agent_number, kind1, kind2, kind3, times_per_day, fee=0.2, belief_rate=0.6, amm='lmsr') -> None: """ """ kinds = [kind1, kind2, kind3] # proposal = FutarchyProposal(None, 0, [], b_number) self.schedule = RandomActivation(self) if amm == 'lmsr': self.market = LMSR(fee=fee) proposal = FutarchyProposal(None, 0, [], b_number) else: self.market = FPMM(fee=fee, constant=100) proposal = FPMMProposal(None, 0, [], constant=100) self.current_proposal = proposal self.system = SimpleFutarchySystem( forum=None, predict_market=self.market) self.system.propose(proposal) self.grid = Grid(10, 10, torus=False) self.count = 0 self.agent_numer = sum(kinds) self.times_per_day = times_per_day for i in range(0, 10): for j in range(0, 10): if j + i*10 < kinds[0]: # agent = FutarchyRandomAgent(j+i*10, self, self.market, self.system, (i, j)) # agent = OntoAgent(None, j+i*10, self, # self.market, self.system, (i, j), strategy=0) if j+i*10 < kinds[0]*belief_rate: agent = FutarchyBuyAgent( j+i*10, self, self.market, self.system, (i, j), 1, token=2000) else: agent = FutarchyBuyAgent( j+i*10, self, self.market, self.system, (i, j), 0.0, token=2000) self.grid.place_agent(agent, (i, j)) self.schedule.add(agent) # agent.set_proposal(proposal._id, 1.0) elif j + i*10 < kinds[0] + kinds[1]: # agent = OntoAgent(None, j+i*10, self, # self.market, self.system, (i, j), strategy=1) if j + i*10 < kinds[0] + kinds[1]/3 + 1: agent = FutarchyBuyAndSellAgent( j+i*10, self, self.market, self.system, (i, j), 0.5, token=2000) else: agent = FutarchyBuyAndSellAgent( j+i*10, self, self.market, self.system, (i, j), 0.5, token=2000) self.grid.place_agent(agent, (i, j)) self.schedule.add(agent) # agent.set_proposal(proposal._id, 0.0) elif j + i*10 < kinds[0] + kinds[1] + kinds[2]: agent = FutarchyRandomAgent( j+i*10, self, self.market, self.system, (i, j), token=2000) self.grid.place_agent(agent, (i, j)) self.schedule.add(agent) else: continue self.running = True self.datacollector = DataCollector( { "yes_token_price": lambda m: self.count_type(m, m.market, 'yes'), "no_token_price": lambda m: self.count_type(m, m.market, 'no') } ) self.datacollector.collect(self) self.countcollector = DataCollector( { "vote_yes": lambda m: self.count_token(m, 'yes'), "vote_no": lambda m: self.count_token(m, 'no') } ) self.countcollector.collect(self) def step(self): # self.schedule.agents # index = self.count % self.agent_numer for i in range(self.times_per_day): index = random.randint(0, self.agent_numer - 1) current_agent = self.schedule.agents[index] current_agent.step() # self.schedule.step() self.datacollector.collect(self) self.countcollector.collect(self) # if self.count % (12*self.agent_numer) == 0 and self.count > 0: self.system.step() if self.count >= 13: self.running = False self.count += 1 @staticmethod def count_type(model, market, voter_condition): """ """ if not model.system.activate_proposals: return 0 proposal = model.system.activate_proposals[0] if voter_condition == 'yes': # val = market.calc_price(proposal._id, 1, 0) # val = proposal.yes_token val = market.calc_current_price(proposal._id, 'yes') else: # val = market.calc_price(proposal._id, 0, 1) val = market.calc_current_price(proposal._id, 'no') # val = proposal.no_token return val @staticmethod def count_token(model, voter_condition): """ """ # system = model.system # proposal_idk= model.current_proposal._id # if voter_condition == 'yes': # return len(system.vote_actions[proposal_id]['yes']) # else: # return len(system.vote_actions[proposal_id]['no']) count = 0 if voter_condition == 'yes': for voter in model.schedule.agents: count += voter.yes_token else: for voter in model.schedule.agents: count += voter.no_token return count
Brain-in-Vat/Aletheia
aletheia/aletheiacli.py
<filename>aletheia/aletheiacli.py import argparse from aletheia.agents import create_agent def process(args): if args.subparser == 'agent': if args.create: create_agent(args.agent_name, args.target_path) pass pass if __name__ == '__main__': parser = argparse.ArgumentParser() subparsers = parser.add_subparsers(dest='subparser') parser_agent = subparsers.add_parser('agent') parser_agent.add_argument( '-c', '--create', dest='create', default=False, help='create an agent', action='store_true' ) parser_agent.add_argument( '-n', '--name', dest='agent_name', default='zlagent', help='the name of agent to create' ) parser_agent.add_argument( '-p', '--path', dest='target_path', default='', help='the target path of created agent' ) args = parser.parse_args() process(args)
Brain-in-Vat/Aletheia
aletheia/agents/__init__.py
import os import sys from aletheia.settings import DOWNLOAD_URL import hashlib __all__ = ['download', 'ZLAGENT'] def _python2_env(): """function to check python version for compatibility handling""" if sys.version_info[0] < 3: return True else: return False def _python3_env(): """function to check python version for compatibility handling""" return not _python2_env() def download(download_url=None, filename_to_save=None): if download_url is None or download_url == '': print('[Agent][ERROR] - download URL missing for download()') return False if filename_to_save is None or filename_to_save == '': download_url_tokens = download_url.split('/') # if not given, use last part of url as filename to save if filename_to_save is None or filename_to_save == '': download_url_tokens = download_url.split('/') filename_to_save = download_url_tokens[-1] # delete existing file if exist to ensure freshness if os.path.isfile(filename_to_save): os.remove(filename_to_save) # handle case where url is invalid or has no content try: if _python2_env(): import urllib urllib.urlretrieve(download_url, filename_to_save) else: import urllib.request urllib.request.urlretrieve(download_url, filename_to_save) except Exception as e: print('[Agent][ERROR] - failed downloading from ' + download_url + '...') print(str(e)) return False # take the existence of downloaded file as success if os.path.isfile(filename_to_save): return True else: print('[Agent][ERROR] - failed downloading to ' + filename_to_save) return False ZLAGENT = 'zlagent' def create_agent(agent_name, path): download_url = DOWNLOAD_URL + '/' + agent_name + '.owl' download(download_url, path) download_url = DOWNLOAD_URL + '/' + agent_name + '.py' download(download_url, path) def gen_md5(path): md5_hash = hashlib.md5() a_file = open(path, 'rb') content = a_file.read() md5_hash.update(content) digest = md5_hash.hexdigest() return digest
Brain-in-Vat/Aletheia
aletheia/mechanism_engine/predict_markets/lmsr.py
<gh_stars>0 from . import PredictMarket import math from enum import Enum class TokenType(Enum): yes_token = 'yes_token' no_token = '<PASSWORD>token' class LMSRMarket(PredictMarket): def __init__(self, choices, b=300): self.choices = choices self.amounts = {choice: 0 for choice in choices} self.finished = False self.answer = [] self.trades = { choice: {'id': choice, 'trades': []} for choice in choices } self.fee = 0.03 self.b = b self.pool = 0 def set_answer(self, choices): self.answer = choices self.finished = True def buy(self, choice, amount, user_id): if choice not in self.choices: raise Exception('unknown choice') val = self.calc_price(choice, amount) self.amounts[choice] += amount fee = self.fee * amount self.pool += fee self.trades[choice]['trades'].append( {'id': user_id, 'amount': amount, 'fee': fee} ) return val def sell(self, choice, amount, user_id): if choice not in self.choices: raise Exception('unknown choice') val = self.calc_price(choice, -amount) self.amounts[choice] -= amount fee = self.fee * amount self.pool += fee self.trades[choice]['trades'].append( {'id': user_id, 'amount': -amount, 'fee': fee} ) return val def calc_price(self, choice, amount): if self.finished and choice in self.answer: return amount elif self.finished: return 0 tmp_amounts = {key: value for key,value in self.amounts.items()} tmp_amounts[choice] += amount c_n = self.b *math.log( sum([math.exp(x/self.b) for x in tmp_amounts.keys()]) ) c_p = self.b * math.log( sum([math.exp(x/self.b) for x in self.amounts.keys()]) ) val = c_n - c_p val = round(val, 2) return val def calc_current_price(self, choice): c_p = sum([math.exp(x/self.b) for x in self.amounts.values()]) return math.exp(self.amounts[choice]/self.b) / c_p def price_calcs(self): prices = [ (choice, self.calc_current_price(choice)) for choice in self.choices ] return prices class LMSR(PredictMarket): def __init__(self, fee=0.02) -> None: super().__init__() self.proposal_map = {} self.fee = fee def submit(self, agent, proposal): self.proposals.append(proposal) self.proposal_map[proposal._id] = proposal def buy(self, proposal_id, agent, token_type, amount): proposal = self.proposal_map[proposal_id] token_type = TokenType(token_type) val = 0 if token_type == TokenType.yes_token: val = (1 + self.fee)*self.calc_price(proposal._id, amount, 0) proposal.yes_token += amount elif token_type == TokenType.no_token: val = (1 + self.fee)*self.calc_price(proposal._id, 0, amount) proposal.no_token += amount else: raise Exception('unknown token type') return val def sell(self, proposal_id, agent, token_type, amount): proposal = self.proposal_map[proposal_id] token_type = TokenType(token_type) val = 0 if token_type == TokenType.yes_token: if amount > proposal.yes_token: return 0 val = (1 - self.fee)*self.calc_price(proposal._id, -amount, 0) proposal.yes_token -= amount elif token_type == TokenType.no_token: if amount > proposal.no_token: return 0 val = (1 - self.fee)*self.calc_price(proposal._id, -amount, 0) proposal.no_token -= amount else: raise Exception('unknown token type') return val def calc_price(self, proposal_id, yes_token, no_token): """compute the price of current proposal """ proposal = self.proposal_map[proposal_id] b = proposal.b_number p_w = proposal.yes_token p_l = proposal.no_token if proposal.state == 2: return yes_token elif proposal.state == 3: return no_token c_n = b * math.log(math.exp((p_w + yes_token)/b) + math.exp((p_l + no_token)/b)) c_p = b * math.log(math.exp(p_w/b) + math.exp(p_l/b)) val = c_n - c_p val = round(val, 2) return val def calc_current_price(self, proposal_id, token_type): proposal = self.proposal_map[proposal_id] b = proposal.b_number p_w = proposal.yes_token p_l = proposal.no_token # if proposal.state == 2 and token_type == 'yes': # return 1 # elif proposal.state == 2 and token_type == 'no': # return 0 # if proposal.state == 3 and token_type == 'yes': # return 0 # elif proposal.state == 3 and token_type == 'no': # return 1 yes_part = math.exp(p_w/b) no_part = math.exp(p_l/b) if token_type == 'yes': return yes_part / (yes_part + no_part) else: return no_part/(yes_part + no_part)
Brain-in-Vat/Aletheia
aletheia/agents/simpleagent.py
import math from mesa import Agent, Model import random # class Agent(object): # def __init__(self, _id, position, states): # self._id = _id # self.position = position # self.states = states class SpatialAgent(Agent): """ A Spatial Vote agent agent with x,y represents it's opinion """ def __init__(self, pos, model, system, forum, knowlege, _id=None): """ create a new voter Args: pos: the opinon position model: the model system: the simluated system forum: social concact net knowlege: knowlege represent of this agent _id: id each time, the agent will focus on one proposal """ self.pos = pos self.model = model self.system = system self.forum = forum self._id = _id self.unique_id = _id self.knowlege = knowlege self.like_threshold = 0.7 self.hate_threshold = 1 self.condition = 'Unknown' def observe(self, system): # infos = system.observe(self) proposals = system.get_activate_proposals() favorite_proposal = None shortest_distance = 10000 for proposal in proposals: if system.is_voted(self._id, proposal._id): continue else: dist = self.likes(proposal) if dist < shortest_distance: shortest_distance = dist favorite_proposal = proposal return favorite_proposal, dist def likes(self, proposal): x = self.pos y = proposal.pos sum_result = sum([math.pow(i-j, 2)for i, j in zip(x, y)]) dist = math.sqrt(sum_result) return dist def think(self): """this step, agent try to reason his belief, intent """ pass def check_intent(self): pass def update_intent(self): pass def check_plan(self): pass def execute_plan(self): """ """ def vote(amount): pass pass def step(self): print('voted') proposal, dist = self.observe(self.system) if proposal and dist < self.like_threshold: self.system.stack(0.1, self._id, proposal._id, 'yes') self.condition = 'Yes' elif proposal and dist > self.hate_threshold: self.system.stack(0.1, self._id, proposal._id, 'yes') self.condition = 'No' else: self.condition = 'Unknown' @property def x(self): return self.pos[0] @property def y(self): return self.pos[1] class FutarchyRandomAgent(Agent): def __init__(self, unique_id: int, model: Model, market, system, pos, token=10) -> None: super().__init__(unique_id, model) self.unique_id = unique_id self.model = model self.market = market self.system = system self.token = token self.no_token = 0 self.yes_token = 0 self.pos = pos self.wealth = self.token self.voted = False self.belief = 0.5 def set_type(self): self._type = 1 def step(self) -> None: proposals = self.system.observe(self) if proposals: target = proposals[0] else: return dice = random.random() val = 0 if dice < 0.25: price = self.market.calc_price(target._id, 1, 0) if price <= self.token: val = self.market.buy( target._id, self.unique_id, 'yes_token', 1) self.yes_token += 1 self.system.vote(self, target._id, 'yes') self.voted = True elif dice > 0.25 and dice < 0.5: if self.yes_token >= 1: val = self.market.sell( target._id, self.unique_id, 'yes_token', 1) self.yes_token -= 1 elif dice > 0.5 and dice < 0.75: if self.no_token >= 1: val = self.market.sell( target._id, self.unique_id, 'no_token', 1) self.no_token -= 1 elif dice > 0.75: price = self.market.calc_price(target._id, 0, 1) if price <= self.token: val = self.market.buy( target._id, self.unique_id, 'no_token', 1) self.no_token += 1 self.system.vote(self, target._id, 'no') self.voted = True self.token -= val self.wealth = self.token + self.no_token * self.market.calc_current_price(target._id, 'no') + \ self.yes_token * self.market.calc_current_price(target._id, 'yes') # self.wealth = self.token + self.no_token * self.market.calc_price(target._id, 0, 1) # self.wealth = self.token + self.yes_token * self.market.calc_price(target._id, 1, 0) # return super().step() class FutarchyBuyAgent(Agent): def __init__(self, unique_id: int, model: Model, market, system, pos, belief, join_time, token=10) -> None: super().__init__(unique_id, model) self.unique_id = unique_id self.model = model self.market = market self.system = system self.token = token self.no_token = 0 self.yes_token = 0 self.pos = pos self.wealth = self.token self.voted = False self.belief = belief self.join_time = join_time self.vote = 'unknown' self.init_token = token def set_type(self): self._type = 2 pass def step(self): if self.system.day < self.join_time: return proposals = self.system.observe(self) if proposals: target = proposals[0] else: return def buy_yes_token(_id, amount): pay = self.market.calc_price(_id, amount, 0) pay = (1 + self.market.fee)*pay if pay <= self.token: val = self.market.buy(_id, self.unique_id, 'yes_token', amount) self.yes_token += amount self.token -= val def buy_no_token(_id, amount): price = self.market.calc_price(_id, 0, amount) price = (1 + self.market.fee)*price if price <= self.token: val = self.market.buy(_id, self.unique_id, 'no_token', amount) self.no_token += amount self.token -= val def sell_yes_token(_id, amount): if self.yes_token >= amount: val = self.market.sell( _id, self.unique_id, 'yes_token', amount) self.yes_token -= amount self.token -= val def sell_no_token(_id, amount): if self.no_token >= amount: val = self.market.sell(_id, self.unique_id, 'no_token', amount) self.no_token -= amount self.token -= val def vote_yes(_id, amount=None): if not self.voted: self.system.vote(self, _id, 'yes') self.voted = True self.vote = 'yes' def vote_no(_id, amount=None): if not self.voted: self.system.vote(self, _id, 'no') self.voted = True self.vote = 'no' fee = self.market.fee yes_price = self.market.calc_current_price(target._id, 'yes') yes_cost = yes_price + yes_price*fee yes_sell = (1 - fee)*yes_price no_price = self.market.calc_current_price(target._id, 'no') no_cost = no_price + no_price*fee no_sell = (1-fee)*no_price if self.belief > 0.5: if yes_cost < self.belief: buy_yes_token(target._id, 1) # print('I amd {}, type buy, has token {},yes cost: {}, beleif: {}, action: buy yes'.format( # self.unique_id, self.token, yes_cost, self.belief)) elif self.belief < 0.5: if no_cost < 1 - self.belief: buy_no_token(target._id, 1) # print('I am {}, type buy, has token {}, yes cost: {}, beleif: {}, action: buy no'.format( # self.unique_id, self.token, no_cost, self.belief)) # print('current prices yes: {}, no: {}'.format(self.market.calc_current_price( # target._id, 'yes'), self.market.calc_current_price(target._id, 'no'))) if self.belief > 0.5: vote_yes(target._id, 1) elif self.belief < 0.5: vote_no(target._id, 1) # self.token -= val self.wealth = self.token + self.no_token * self.market.calc_current_price(target._id, 'no') + \ self.yes_token * self.market.calc_current_price(target._id, 'yes') # self.wealth = self.token + self.no_token * self.market.calc_price(target._id, 0, 1) # self.wealth = self.token + self.yes_token * self.market.calc_price(target._id, 1, 0) # return super().step() class FutarchyBuyAndSellAgent(FutarchyBuyAgent): def set_type(self): self._type = 3 def update_belief(self): proposals = self.system.observe(self) if proposals: target = proposals[0] else: return proposal_id = target._id # agent_number = self.model.agent_number if self.system.day >= 2: vote_action = self.system.vote_actions[target._id] yes_amount = sum(x[1] for x in vote_action['yes']) no_amount = sum(x[1] for x in vote_action['no']) if yes_amount + no_amount < self.model.agent_number/10: self.belief = 0.5 return self.belief = yes_amount / (yes_amount + no_amount) if self.belief > 0.55: self.belief = 1 elif self.belief < 0.45: self.belief = 0 else: self.belief = 0.5 def step(self): if self.system.day < self.join_time: return proposals = self.system.observe(self) if proposals: target = proposals[0] else: return self.update_belief() def buy_yes_token(_id, amount): pay = self.market.calc_price(_id, amount, 0) pay = (1 + self.market.fee)*pay if pay <= self.token: val = self.market.buy(_id, self.unique_id, 'yes_token', amount) self.yes_token += amount self.token -= val def buy_no_token(_id, amount): price = self.market.calc_price(_id, 0, amount) price = (1 + self.market.fee)*price if price <= self.token: val = self.market.buy(_id, self.unique_id, 'no_token', amount) self.no_token += amount self.token -= val def sell_yes_token(_id, amount): if self.yes_token >= amount: val = self.market.sell( _id, self.unique_id, 'yes_token', amount) self.yes_token -= amount self.token -= val def sell_no_token(_id, amount): if self.no_token >= amount: val = self.market.sell(_id, self.unique_id, 'no_token', amount) self.no_token -= amount self.token -= val def vote_yes(_id, amount=None): if not self.voted: self.system.vote(self, _id, 'yes') self.voted = True self.vote = 'yes' def vote_no(_id, amount=None): if not self.voted: self.system.vote(self, _id, 'no') self.voted = True self.vote = 'no' fee = self.market.fee yes_price = self.market.calc_current_price(target._id, 'yes') yes_cost = yes_price + yes_price*fee yes_sell = (1 - fee)*yes_price no_price = self.market.calc_current_price(target._id, 'no') no_cost = no_price + no_price*fee no_sell = (1-fee)*no_price if self.belief > 0.5: if yes_cost < self.belief: buy_yes_token(target._id, 1) # print('I am {}, type buy and sell, has token {}, yes cost: {}, beleif: {}, action: buy yes'.format( # self.unique_id, self.token, yes_cost, self.belief)) if yes_sell > self.belief: sell_yes_token(target._id, 1) # print('I am {}, type buy and sell, has token {}, yes sell: {}, beleif: {}, action: sell yes'.format( # self.unique_id, self.token, yes_sell, self.belief)) elif self.belief < 0.5: if no_cost < 1 - self.belief: buy_no_token(target._id, 1) # print('I am {}, type buy and sell, has token {}, no cost: {}, beleif: {}, action: buy no'.format( # self.unique_id, self.token, no_cost, self.belief)) if no_sell > 1 - self.belief: sell_no_token(target._id, 1) # print('I am {}, type buy and sell, has token {}, no sell: {}, beleif: {}, action: sell no'.format( # self.unique_id, self.token, no_sell, self.belief)) # print('current prices yes: {}, no: {}'.format(self.market.calc_current_price( # target._id, 'yes'), self.market.calc_current_price(target._id, 'no'))) if self.belief > 0.5: vote_yes(target._id, 1) elif self.belief < 0.5: vote_no(target._id, 1) # self.token -= val self.wealth = self.token + self.no_token * self.market.calc_current_price(target._id, 'no') + \ self.yes_token * self.market.calc_current_price(target._id, 'yes')
Brain-in-Vat/Aletheia
aletheia/tests/test_download.py
<filename>aletheia/tests/test_download.py<gh_stars>0 import os from agents import download, ZLAGENT, gen_md5 from settings import DOWNLOAD_URL, BASE_DIR zlagent_owl = os.path.join(BASE_DIR, 'resources', 'zlagent.owl') zlagent_py = os.path.join(BASE_DIR, 'resources', 'zlagent.py') a = gen_md5(zlagent_owl) print(a) b = gen_md5(zlagent_py) print(b)
Brain-in-Vat/Aletheia
aletheia/examples/agents/randomagent.py
<filename>aletheia/examples/agents/randomagent.py from mesa import Agent, Model import random class RandomAgent(Agent): def __init__(self, unique_id, model, token): super().__init__(unique_id, model) self.token = token self.model = model def donate(self): projects = self.model.projects project = random.choice(projects) if 'qf_futarchy' in dir(self.model): self.model.qf_futarchy.lmsr.buy(project, 1, self.unique_id) elif 'qf' in dir(self.model): self.model.qf.grant(project, self.unique_id, 1) def step(self): dice = random.random() if dice <= 0.5: self.donate() # fix agent """ the agent is controlled by simple zero aligent rules when the actual price is below his expect, it will buy it otherwise, it wont do anything """ class FixZLAgent(Agent): def __init__(self, unique_id, model, token, beliefs): super().__init__(unique_id, model) self.token = token self.model = model self.beliefs = beliefs self.grant = {} self.brain_token = 0 def award_token(self, token): self.token += token def award_brain_token(self, brain_token): self.brain_token += brain_token def donate(self): def buy(project): token_cost = self.model.qf_futarchy.lmsr.calc_price(project, 1) if self.token + self.brain_token > token_cost: self.model.qf_futarchy.lmsr.buy(project, 1, self.unique_id) if token_cost >= self.brain_token: self.brain_token -= token_cost else: token_cost = token_cost - self.brain_token self.brain_token = 0 self.token = self.token - token_cost def grant(project): grant_cost = self.beliefs[project] if self.token > self.beliefs[project]: self.token = self.token - grant_cost self.model.qf.grant(project, self.unique_id, self.beliefs[project]) projects = self.model.projects if 'qf_futarchy' in dir(self.model): for project in projects: if self.beliefs[project] > self.model.qf_futarchy.lmsr.calc_current_price(project): buy(project) elif 'qf' in dir(self.model): for project in projects: if self.grant[project] != True: # self.model.qf.grant(project, self.unique_id, self.beliefs[project]) grant(project) def step(self): dice = random.random() if dice <= 0.5: self.donate()
Brain-in-Vat/Aletheia
aletheia/algorithm_analyze/__init__.py
''' 1. 系统哪些状态需要展示给用户 a 地址相关的代币分布 b 治理损失函数的变化 c 治理相关的数据 可视化工具 https://altair-viz.github.io/gallery/scatter_tooltips.html https://seaborn.pydata.org/tutorial/relational.html mesa dash ''' ''' 共有的格式 私有的格式 ''' import dash import dash_core_components as dcc import dash_html_components as html from dash.dependencies import Input, Output import plotly.express as px df = px.data.iris() app = dash.Dash(__name__) app.layout = html.Div([ dcc.Graph(id="scatter-plot"), html.P("Petal Width:"), dcc.RangeSlider( id='range-slider', min=0, max=2.5, step=0.1, marks={0: '0', 2.5: '2.5'}, value=[0.5, 2] ), ]) @app.callback( Output("scatter-plot", "figure"), [Input("range-slider", "value")]) def update_bar_chart(slider_range): low, high = slider_range mask = (df['petal_width'] > low) & (df['petal_width'] < high) fig = px.scatter( df[mask], x="sepal_width", y="sepal_length", color="species", size='petal_length', hover_data=['petal_width']) return fig app.run_server(debug=True)
Brain-in-Vat/Aletheia
aletheia/mechanism_engine/__init__.py
<filename>aletheia/mechanism_engine/__init__.py from mesa import Model
JacOng17/serviceinnovationlab.github.io
.circleci/make-yaml.py
<gh_stars>1-10 #!/usr/bin/env python # Might need to run `python3 -m pip install pyyaml` if you get a ModuleNotFoundError: No module named 'yaml' import os import csv import yaml import collections csv_filename = os.environ['GS_CSV_FILE'] yaml_filename = os.environ['GS_YAML_FILE'] data = [] def represent_ordereddict(dumper, data): value = [] for item_key, item_value in data.items(): node_key = dumper.represent_data(item_key) node_value = dumper.represent_data(item_value) value.append((node_key, node_value)) return yaml.nodes.MappingNode(u'tag:yaml.org,2002:map', value) if __name__ == "__main__": yaml.add_representer(collections.OrderedDict, represent_ordereddict) yaml.explicit_start = True with open(csv_filename, "r") as csv_file: reader = csv.reader(csv_file, delimiter=",") for i, line in enumerate(reader): if i == 0: labels = line else: hash = collections.OrderedDict() column = 0 for label in labels: value = line[column] hash[label] = value column += 1 data.append(hash) with open(yaml_filename, 'w') as yaml_file: yaml.dump({'data': data}, yaml_file)
anorth/shadow-wall
InterviewPrepScripts/videoCapture_Serial.py
import numpy as np import cv2 import time import serial #ser = serial.Serial('/dev/ttyUSB0', 115200, timeout=1) ser = serial.Serial('/dev/ttyACM0', 115200, timeout=1) cap = cv2.VideoCapture(0) while(True): # Capture frame-by-frame ret, frame = cap.read() if frame == None: continue b,g,r = cv2.split(frame) b_new = cv2.resize(b,(10,10)) g_new = cv2.resize(g,(10,10)) r_new = cv2.resize(r,(10,10)) out = cv2.merge((b_new,g_new,r_new)) cv2.imshow('frame',out) # for byte in b_new: # ser.write(byte) if cv2.waitKey(1) & 0xFF == ord('q'): cap.release() cv2.destroyAllWindows() break # When everything done, release the capture cap.release() cv2.destroyAllWindows()
anorth/shadow-wall
Processing2Python/showMovie/recordVideo.py
import cv2 INTERNAL_CAMERA = 1 EXTERNAL_CAMERA = 0 PREVIEW_SIZE = (1920/2, 1080/2) filename = 'testRecordVideo_MakerSpace_withoutFilters_lightsOff.mp4' cap = cv2.VideoCapture(EXTERNAL_CAMERA) cap.set(cv2.cv.CV_CAP_PROP_FPS, 30) cap.set(cv2.cv.CV_CAP_PROP_FRAME_WIDTH, 1920) cap.set(cv2.cv.CV_CAP_PROP_FRAME_HEIGHT, 1080) frame_width = cap.get(cv2.cv.CV_CAP_PROP_FRAME_WIDTH) frame_height = cap.get(cv2.cv.CV_CAP_PROP_FRAME_HEIGHT) frame_rate = 30 fourcc = cv2.cv.CV_FOURCC(*'mp4v') out = cv2.VideoWriter(filename,fourcc,frame_rate, (int(1920),int(1080))) while (cap.isOpened()): have_frame, frame = cap.read() if have_frame: out.write(frame) #cv2.imshow('video frame',frame) cv2.imshow("video frame", cv2.resize(frame, PREVIEW_SIZE)) else: break key = cv2.waitKey(1) if key == 27: # exit on ESC break cap.release() out.release() cv2.destroyAllWindows()
anorth/shadow-wall
InterviewPrepScripts/serialOLD.py
import serial ser = serial.Serial(0) # open first serial port print ser.portstr # check which port was really used ser.write("hello") # write a string ser.close()
anorth/shadow-wall
Processing2Python/showMovie/imgproc.py
#!/usr/bin/env python import itertools import random from collections import Counter from showMovie.defish import create_fisher import cv2 import numpy as np from showMovie.helperFunctions import make_gamma_table from perspective_transform import four_point_transform THRESHOLD = int(255 * 0.7) MIN_CONTOUR_DIMENSION = 20 # In debug window pixels MORPH_KERNEL = np.ones((3, 3), np.uint8) COLOURS = colors = itertools.cycle([ (255, 100, 100), (255, 255, 100), (255, 100, 255), (100, 255, 100), (255, 100, 255), (100, 100, 255), ]) VERT_OFFSET = 20 TAN_THETA = np.tan(np.deg2rad(85)) # Observed framing of the camera I used RAW_HEIGHT = 1080 left_crop = 196+10 # Left black region to discard right_crop = 208+10 # Right black region to discard diameter = 1920 - (left_crop + right_crop) # Remaining horizontal diameter of projection vshift = 74 # Amount to vertically shift downwards to recenter top_margin = ((diameter - RAW_HEIGHT) / 2) + vshift # Top margin to add to create a square bottom_margin = ((diameter - RAW_HEIGHT) / 2) - vshift # Bottom margin to add # Processing time can be reduced by shrinking this, but it makes no difference until sending to # teensys is faster than ~50 ms DEFISHED_SIZE = 1080 DEFISHED_TOP_MARGIN = 308 # These are measured from post-fisheye image DEFISHED_BOTTOM_MARGIN = 209 # Length of the longer (top) side of pespective rect CROP_WIDTH = (DEFISHED_SIZE * 0.70) #.58 # Length of the shorter (bottom) side PERSPECTIVE_WIDTH = int(CROP_WIDTH * 0.54) #0.84 class Pipeline(object): def __init__(self, defish, bg=None): """ :param defish: whether to defish """ if defish: self.defisher = create_fisher((diameter,diameter), (DEFISHED_SIZE, DEFISHED_SIZE)) else: self.defisher = None self.bg = bg self.prev_drawn = None self.prev_grey_img = None self.flowstate = None def process(self, img, show_debug=False): # Simplify to grayscale for processing img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) is_color = False # Correct fisheye projection if self.defisher: img = img[0:RAW_HEIGHT, left_crop:-right_crop] img = cv2.copyMakeBorder(img, top_margin, bottom_margin, 0, 0, cv2.BORDER_CONSTANT) img = self.defisher.unwarp(img) img = correct_perspective(img) if self.bg: img = self.bg.process(img, show_debug) ### Analysis (in greyscale) img = morph_cleanup(img) # Threshold before contours # img = simple_threshold(img) #, or... img = adaptive_threshold(img) contours = find_contours(img) ### Drawing (in colour) if not is_color: img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) img = draw_contours(img, contours, self.prev_drawn) self.prev_drawn = img # draw_rectangles(img, contours) #better identifies individual contours - allows to easily detect 'bottom' of contour for future 'moving down the screen' # bottom_of_contour(img, contours) colors = get_draw_contours_colors(img, contours, self.prev_drawn) new_img = move_contour_y(img, contours, colors) #contours are a bit jumpy...apply smoothing, or lag new_img2 = enlarge_img(new_img) # new_img3 = draw_text(new_img2) if show_debug or True: cv2.imshow("debug", new_img) if show_debug or True: cv2.imshow("debug2", new_img2) return new_img2 class BackgroundRejecterMog(object): def __init__(self): # length_history = 100 # number_gaussian_mixtures = 6 # background_ratio = 0.9 # noise_strength_sigma = 1 self.fgbg = cv2.BackgroundSubtractorMOG()#history=200, nmixtures=6, backgroundRatio=0.1, noiseSigma=1) def process(self, frame, show_debug=False): fgmask = self.fgbg.apply(frame) if show_debug: cv2.imshow("bg", fgmask) frame = frame & fgmask return frame class BackgroundRejecterAvg(object): def __init__(self, frame=None): self.avg = np.float32(frame) if frame else None def process(self, frame, show_debug=False): if self.avg is None: self.avg = np.float32(frame) cv2.accumulateWeighted(frame, self.avg, 0.0010) res = cv2.convertScaleAbs(self.avg) if show_debug: cv2.imshow("bg", res) # Method 1: reject by subtraction. Avoids hard boundaries, only works well when background is dark. res = np.minimum(res, frame) frame = frame - res # Method 2: reject by masking. Leaves more information but creates hard "glow" boundaries at threshold # mask = np.abs(frame - res) > 10 # frame = np.where(mask, frame, 0) return frame def correct_perspective(img): # Crop and correct perspective topy = DEFISHED_TOP_MARGIN + 154 # Approx horizon - change if camera moves boty = DEFISHED_SIZE - (DEFISHED_BOTTOM_MARGIN + 40) # bottom of useful data topleftx = (DEFISHED_SIZE - CROP_WIDTH) / 2 toprightx = DEFISHED_SIZE - topleftx botleftx = (DEFISHED_SIZE - PERSPECTIVE_WIDTH) / 2 botrightx = DEFISHED_SIZE - botleftx # (TL, TR, BR, BL) pts = np.array([(topleftx, topy), (toprightx, topy), (botrightx, boty), (botleftx, boty)], dtype="float32") img = four_point_transform(img, pts) return img def morph_cleanup(img): ### Morphological cleanup # http://docs.opencv.org/3.0-beta/doc/py_tutorials/py_imgproc/py_morphological_ops/py_morphological_ops.html # http://stackoverflow.com/questions/29104091/morphological-reconstruction-in-opencv # img = cv2.erode(img, morph_kernel) # img = cv2.dilate(img, morph_kernel) # Morph open to remove noise img = cv2.morphologyEx(img, cv2.MORPH_OPEN, MORPH_KERNEL, iterations=1) # Morph close to fill dark holes img = cv2.morphologyEx(img, cv2.MORPH_CLOSE, MORPH_KERNEL, iterations=3) # Erode to define edges # img = cv2.erode(img, MORPH_KERNEL, iterations=2) # For cool fuzzy edge-style shadow, use gradient # img = cv2.morphologyEx(img, cv2.MORPH_GRADIENT, MORPH_KERNEL) return img def simple_threshold(img): # Ghibli style thresh = 12 ret, img = cv2.threshold(img, thresh, 255, cv2.THRESH_BINARY) return img def adaptive_threshold(img): # Simple low threshold first to remove some noise # ret, img = cv2.threshold(img, 5, 255, cv2.THRESH_BINARY) thresh_size = 111 thresh_c = -4 img = cv2.adaptiveThreshold(img, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, thresh_size, thresh_c) return img def find_contours(img): #when doing edge detection, remove/denoise image first, then apply Canny # img = cv2.GaussianBlur(img, (5, 5), 0) # edges = cv2.Canny(img, 100, 200) # Contours appropriate for filling with colour # edges = cv2.Canny(img, 5, 15) # edges = cv2.GaussianBlur(edges, (5, 5), 0) #consider blurring again, after edge detection # contours, hchy = cv2.findContours(edges, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE) contours, hch = cv2.findContours(img, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE) # Discard too-small contours def is_big_enough(cnt): x, y, w, h = cv2.boundingRect(cnt) return w > MIN_CONTOUR_DIMENSION or h > MIN_CONTOUR_DIMENSION contours = [c for c in contours if is_big_enough(c)] return contours def compute_flow(previmg, img, prevflow): pyramidScale = 0.5 # 0.5 is each layer half the size pyramidLevels = 3 windowSize = 10 # higher is faster, robust, blurrier iterations = 3 polySize = 5 # typically 5 or 7 polySigma = 1.2 # suggested 5->1.1, 7->1.5 gaussian = False if previmg is None: return None, None flags = 0 if gaussian: flags |= cv2.OPTFLOW_FARNEBACK_GAUSSIAN if prevflow is not None: flags |= cv2.OPTFLOW_USE_INITIAL_FLOW flow = cv2.calcOpticalFlowFarneback(previmg, img, pyramidScale, pyramidLevels, windowSize, iterations, polySize, polySigma, flags, prevflow) magMax = 8 mag, ang = cv2.cartToPolar(flow[..., 0], flow[..., 1]) mag = np.clip(mag, 0, magMax) hsv = np.zeros(img.shape+(3,), 'uint8') hsv[..., 0] = ang * 180 / np.pi / 2 # hue is angle hsv[..., 1] = 255 # full saturation hsv[..., 2] = mag * (255 / magMax) # value is magnitude rgb = cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR) return flow, rgb def draw_contours(img, contours, prev_drawn=None): # Draw and fill all contours drawn = np.zeros_like(img) for ctrIdx, ctr in enumerate(contours): color = (0, 0, 0) if prev_drawn is not None: # Randomly sample the bounding box of this contour in the previous image and use the most # common colour. x, y, w, h = cv2.boundingRect(ctr) prev_box = prev_drawn[y:y+h, x:x+w] # cv2.rectangle(drawn, (x, y), (x + w, y + h), (0, 255, 0), 1) color_counts = Counter() for _ in range(12): #Make this bigger for more domination by larger blobs xx = random.randrange(w) yy = random.randrange(h) color_counts[tuple(map(int, prev_box[yy, xx]))] += 1 color_counts[(0, 0, 0)] = 0 # Don't choose black if possible counted = sorted(((count, color) for color, count in color_counts.items()), reverse=True) color = counted[0][1] if color == (0, 0, 0): color = next(COLOURS) cv2.drawContours(drawn, contours, ctrIdx, color, thickness=-1) # -1 to fill return drawn def get_draw_contours_colors(img, contours, prev_drawn=None): # Draw and fill all contours colors = [] drawn = np.zeros_like(img) for ctrIdx, ctr in enumerate(contours): color = (0, 0, 0) if prev_drawn is not None: # Randomly sample the bounding box of this contour in the previous image and use the most # common colour. x, y, w, h = cv2.boundingRect(ctr) prev_box = prev_drawn[y:y+h, x:x+w] # cv2.rectangle(drawn, (x, y), (x + w, y + h), (0, 255, 0), 1) color_counts = Counter() for _ in range(12): #Make this bigger for more domination by larger blobs xx = random.randrange(w) yy = random.randrange(h) color_counts[tuple(map(int, prev_box[yy, xx]))] += 1 color_counts[(0, 0, 0)] = 0 # Don't choose black if possible counted = sorted(((count, color) for color, count in color_counts.items()), reverse=True) color = counted[0][1] if color == (0, 0, 0): color = next(COLOURS) cv2.drawContours(drawn, contours, ctrIdx, color, thickness=-1) # -1 to fill colors.append(color) return colors def local_max(img): kernel = np.ones((40, 40), np.uint8) mask = cv2.dilate(img, kernel) result = cv2.compare(img, mask, cv2.CMP_GE) return result def draw_rectangles(img, contours): #draw the bounding rectangles around contours for i, ctr in enumerate(contours): x, y, w, h = cv2.boundingRect(ctr) cv2.rectangle(img, (x, y), (x + w, y + h), (0, 255, 0), 2) def bottom_of_contour(img, contours, draw=False): bottom_x = [] bottom_y = [] #get the bounding rectangles around contours for i, ctr in enumerate(contours): x, y, w, h = cv2.boundingRect(ctr) bottom_x.append(x + w/2) bottom_y.append(y + h) if draw: cv2.circle(img,(int(bottom_x[i]),int(bottom_y[i])),3,(255,0,0)) return zip(bottom_x, bottom_y) def move_contour_y(img, contours, colors): height,width = img.shape[:2] new_img = np.zeros(img.shape, dtype=np.uint8) new_ctrs = [] bottom_ctrs = bottom_of_contour(img, contours, draw=False) if len(bottom_ctrs) == 0: return new_img (x_shifts, y_shifts) = zip(*bottom_ctrs) #x_positions = calc_contour_x_shift(x_shifts, width, height) for i, ctr in enumerate(contours): new_ctrs.append(ctr + (0, (height - VERT_OFFSET) - y_shifts[i])) #TODO - move contours in the x direction away from center, depending on how far away they are (pixel row) for idx, ctr in enumerate(new_ctrs): cv2.drawContours(new_img,new_ctrs,idx,colors[idx],thickness=cv2.cv.CV_FILLED) #TODO - plot smallest contours first, so that larger ones cover/overplot the smaller ones return new_img def calc_contour_x_shift(row_pixels, img_width, img_height): x_positions = [] for idx, row_pixel in enumerate(row_pixels): d = img_width - 2*img_height/TAN_THETA if row_pixel > (img_width/2): x_positions.append(row_pixel + (img_width/d)*row_pixel) else: x_positions.append(row_pixel - (img_width/d)*row_pixel) return x_positions def enlarge_img(img): h,w = img.shape[:2] #new_img = cv2.resize(img, (2*w, 2*h)) return img[150:h,0:w] def draw_text(img): cv2.putText(img,"#ShadowWall", (500,30), cv2.cv.CV_FONT_HERSHEY_SIMPLEX,1,(0,255,0),5,cv2.CV_AA) return img
anorth/shadow-wall
Processing2Python_old/showMovie/panel.py
from helperFunctions import percentage # def send_frame_to_led_panels(frame, num_ports, led_area, led_image, led_data, led_layout): # #Write the frame to panels # for i in range(0, num_ports): # #copy a portion of the movie's image to the LED image # xoffset = percentage(frame.width, led_area[i].x) # yoffset = percentage(frame.height, led_area[i].y) # xwidth = percentage(frame.width, led_area[i].width) # yheight = percentage(frame.height, led_area[i].height) # # led_image[i].copy(frame, xoffset, yoffset, xwidth, yheight, 0, 0, led_image[i].width, led_image[i].height) # # // convert the LED image to raw data # # byte[] ledData = new byte[(ledImage[i].width * ledImage[i].height * 3) + 3]; # # image2data(ledImage[i], ledData, ledLayout[i]); # # if (i == 0) { # # ledData[0] = '*'; // first Teensy is the frame sync master # # int usec = (int)((1000000.0 / TargetFrameRate) * 0.75); # # ledData[1] = (byte)(usec); // request the frame sync pulse # # ledData[2] = (byte)(usec >> 8); // at 75% of the frame time # # } else { # # ledData[0] = '%'; // others sync to the master board # # ledData[1] = 0; # # ledData[2] = 0; # # } # # // send the raw data to the LEDs :-) # # ledSerial[i].write(ledData); # # } # # } # # # // image2data converts an image to OctoWS2811's raw data format. # // The number of vertical pixels in the image must be a multiple # // of 8. The data array must be the proper size for the image. # void image2data(PImage image, byte[] data, boolean layout) { # int offset = 3; # int x, y, xbegin, xend, xinc, mask; # int linesPerPin = image.height / 8; # int pixel[] = new int[8]; # # for (y = 0; y < linesPerPin; y++) { # if ((y & 1) == (layout ? 0 : 1)) { # // even numbered rows are left to right # xbegin = 0; # xend = image.width; # xinc = 1; # } else { # // odd numbered rows are right to left # xbegin = image.width - 1; # xend = -1; # xinc = -1; # } # for (x = xbegin; x != xend; x += xinc) { # for (int i=0; i < 8; i++) { # // fetch 8 pixels from the image, 1 for each pin # pixel[i] = image.pixels[x + (y + linesPerPin * i) * image.width]; # pixel[i] = convert_RGB_2_GRB(pixel[i]); # // pixel[i] = pixel[i] % 20; # // pixel[i] = pixel[i] & 0x1F1F1F; # pixel[i] = pixel[i] & 0xf0f0f0; # pixel[i] = pixel[i] >> 4; # } # // convert 8 pixels to 24 bytes # for (mask = 0x800000; mask != 0; mask >>= 1) { # byte b = 0; # for (int i=0; i < 8; i++) { # if ((pixel[i] & mask) != 0) b |= (1 << i); # } # data[offset++] = b; # } # } # } # } # # int convert_RGB_2_GRB(int colour) { # int red = (colour & 0xFF0000) >> 16; # int green = (colour & 0x00FF00) >> 8; # int blue = (colour & 0x0000FF); # # red = gammaTable[red]; # green = gammaTable[green]; # blue = gammaTable[blue]; # # return (green << 16) | (red << 8) | (blue); # } # # // ask a Teensy board for its LED configuration, and set up the info for it. # void serialConfigure(String portName) { # if (numberOfPortsInUse >= MaximumNumberOfPorts) { # println("too many serial ports, please increase maxPorts"); # errorCount++; # return; # } # try { # ledSerial[numberOfPortsInUse] = new Serial(this, portName); # if (ledSerial[numberOfPortsInUse] == null) throw new NullPointerException(); # ledSerial[numberOfPortsInUse].write('?'); # } # catch (Throwable e) { # println("Serial port " + portName + " does not exist or is non-functional"); # errorCount++; # return; # } # delay(50); # String line = ledSerial[numberOfPortsInUse].readStringUntil(10); # if (line == null) { # println("Serial port " + portName + " readStringUntilis not responding."); # println("Is it really a Teensy 3.0 running VideoDisplay?"); # errorCount++; # return; # } # String param[] = line.split(","); # if (param.length != 12) { # println("Error: port " + portName + " did not respond to LED config query"); # errorCount++; # return; # } # // only store the info and increase numPorts if Teensy responds properly # ledImage[numberOfPortsInUse] = new PImage(Integer.parseInt(param[0]), Integer.parseInt(param[1]), RGB); # // Note: rows and cols are according to the teensy, which is configured to be mounted rotated π/2 # println("Panel", numberOfPortsInUse, "cols", param[0], "rows", param[1]); # ledArea[numberOfPortsInUse] = new Rectangle(Integer.parseInt(param[5]), Integer.parseInt(param[6]), # Integer.parseInt(param[7]), Integer.parseInt(param[8])); # println("xoff", param[5], "yoff", param[6], "width%", param[7], "height%", param[8]); # ledLayout[numberOfPortsInUse] = (Integer.parseInt(param[5]) == 0); # println("layout", param[5]); # numberOfPortsInUse++; # } # # // scale a number by a percentage, from 0 to 100 # int percentage(int num, int percent) { # double mult = percentageFloat(percent); # double output = num * mult; # return (int)output; # } # # // scale a number by the inverse of a percentage, from 0 to 100 # int percentageInverse(int num, int percent) { # double div = percentageFloat(percent); # double output = num / div; # return (int)output; # } # # // convert an integer from 0 to 100 to a float percentage # // from 0.0 to 1.0. Special cases for 1/3, 1/6, 1/7, etc # // are handled automatically to fix integer rounding. # double percentageFloat(int percent) { # if (percent == 33) return 1.0 / 3.0; # if (percent == 17) return 1.0 / 6.0; # if (percent == 14) return 1.0 / 7.0; # if (percent == 13) return 1.0 / 8.0; # if (percent == 11) return 1.0 / 9.0; # if (percent == 9) return 1.0 / 11.0; # if (percent == 8) return 1.0 / 12.0; # return (double)percent / 100.0; # }
anorth/shadow-wall
Processing2Python_old/showMovie/helperFunctions.py
import numpy as np import cv2 gamma = 1.7 gamma_table = [] def initialise_gamma_table(): for i in range(0, 256): gamma_table.append(int(np.power(i / 255.0, gamma) * 255.0 + 0.5)) # convert an integer from 0 to 100 to a float percentage # from 0.0 to 1.0. Special cases for 1/3, 1/6, 1/7, etc # are handled automatically to fix integer rounding. def percentage_float(percent): if percent == 33: return 1.0 / 3.0 if percent == 17: return 1.0 / 6.0 if percent == 14: return 1.0 / 7.0 if percent == 13: return 1.0 / 8.0 if percent == 11: return 1.0 / 9.0 if percent == 9: return 1.0 / 11.0 if percent == 8: return 1.0 / 12.0 return np.double(percent / 100.0) # scale a number by a percentage, from 0 to 100 def percentage(num, percent): mult = percentage_float(percent) return int(num * mult) # scale a number by the inverse of a percentage, from 0 to 100 def percentage_inverse(num, percent): div = percentage_float(percent) return int(num / div) def convert_rgb_2_bgr(color): red = (color & 0xFF0000) >> 16 green = (color & 0x00FF00) >> 8 blue = (color & 0x0000FF) red = gamma_table[red] green = gamma_table[green] blue = gamma_table[blue] return (green << 16) | (red << 8) | blue # image2data converts an image to OctoWS2811's raw data format. # The number of vertical pixels in the image must be a multiple # of 8. The data array must be the proper size for the image. def image_to_data(image, layout): byte_array = [] byte_array.insert(0, 0) byte_array.insert(1, 0) byte_array.insert(2, 0) # reserved values offset = 3 height, width, depth = image.shape print image.shape lines_per_pin = width / 8 pixel = [] for y in range(0, lines_per_pin): # if (y & 1) == (layout ? 0 : 1): # even numbered columns are left to right if (y & 1) == layout: ans = 0 else: ans = 1 if ans: xbegin = 0 xend = height # xend = image.width xinc = 1 else: # odd numbered rows are right to left xbegin = height - 1 # image.width - 1 xend = -1 xinc = -1 for x in range(xbegin, xend, xinc): for i in range(0, 8): # fetch 8 pixels from the image, 1 for each pin tmp = np.copy(image[x, (y + lines_per_pin * i), :]) tmp &= 0xF0F0F0 tmp >>= 4 pixel.append(tmp) # convert 8 pixels to 24 bytes for i in range(0, 8): byte_array.insert(offset, pixel[i][0]) byte_array.insert(offset + 1, pixel[i][1]) byte_array.insert(offset + 2, pixel[i][2]) offset += 3 # mask = 0x800000 # num_right_shifts = 6 # for i in range(0, num_right_shifts): # byte = 0 # for byte_count in range(0, 8): # if pixel[i] & mask != 0: # byte |= (1 << i) # # byte_array[offset] = byte # offset += 1 # mask >>= 1 print len(byte_array) return byte_array # because one of the panels is different from others, we need to compensate by inserting dummy columns def add_dummy_columns(image, idx_dummy_columns): r, g, b = cv2.split(image) height, width = r.shape for i in range(0, len(idx_dummy_columns)): r = np.insert(r, idx_dummy_columns[i], np.zeros(height), axis=1) g = np.insert(g, idx_dummy_columns[i], np.zeros(height), axis=1) b = np.insert(b, idx_dummy_columns[i], np.zeros(height), axis=1) return cv2.merge((b, g, r)) # merging as bgr so as not to call 'convert_rgb_2_bgr' def resize(frame, width, height, extra_columns_idxs): res = cv2.resize(frame, (width, height)) # check that res size is 180x120 if extra_columns_idxs is not None: res = add_dummy_columns(res, extra_columns_idxs) print res.shape # now image size should be 184x120 return res
anorth/shadow-wall
Processing2Python/showMovie/helperFunctions.py
import time import cv2 import numpy as np from bitarray import bitarray def make_gamma_table(g): return [int(((i / 255.0) ** g) * 255.0 + 0.5) for i in range(256)] def reverse_bits(x): result = 0 for i in xrange(8): if (x >> i) & 1: result |= 1 << (8 - 1 - i) return result led_gamma = 2.8#1.7 led_gamma_table = make_gamma_table(led_gamma) #[int(((i / 255.0) ** led_gamma) * 255.0 + 0.5) for i in range(256)] # Reduce LED intensity by discarding least significant bits led_gamma_table = [c >> 3 for c in led_gamma_table] led_table_np = np.array(led_gamma_table, dtype=np.uint8) # led_table_np_reversed = np.array([reverse_bits(i) for i in led_gamma_table], dtype=np.uint8) bitswap_table = np.array([reverse_bits(i) for i in range(256)], dtype=np.uint8) def bgr2grb(b, g, r): blue = led_gamma_table[b] green = led_gamma_table[g] red = led_gamma_table[r] return (green << 16) | (red << 8) | blue # image2data converts an image to OctoWS2811's raw data format. # The number of vertical pixels in the image must be a multiple # of 8. The data array must be the proper size for the image. def image_to_data_original(image, strip_layout_direction): byte_array = bytearray(11523) offset = 3 height, width, depth = image.shape image = cv2.flip(image,1) lines_per_pin = width / 8 for y in range(0, lines_per_pin): # Even strips are indexed forward, odd strips backwards. if y % 2 == strip_layout_direction: forward = 0 else: forward = 1 if forward: xbegin = 0 xend = height # xend = image.width xinc = 1 else: # odd numbered rows are right to left xbegin = height - 1 # image.width - 1 xend = -1 xinc = -1 #print 'xbeing: ' + str(xbegin) + ' xend: ' + str(xend) + ' xinc: ' + str(xinc) for x in range(xbegin, xend, xinc): pixels = [0] * 8 for i in range(0, 8): # fetch 8 pixels from the image, 1 for each strip pixel_channels = np.copy(image[x, (y + lines_per_pin * i), :]) pixels[i] = bgr2grb(pixel_channels[0], pixel_channels[1], pixel_channels[2]) # serialise 8 pixels to 24 bytes mask = 0x800000 while mask != 0: b = 0 for i in range(0, 8): if pixels[i] & mask != 0: b |= (1 << i) byte_array[offset] = b offset += 1 mask >>= 1 return byte_array mean_dur = 0.0105 def image_to_data_fast(image, strip_layout_direction): global mean_dur tstart = time.time() height, width, depth = image.shape image = cv2.flip(image,1) teensy_pins = 8 rows_per_pin = width / teensy_pins # The image is in BGR, roll the channel axis to get GRB image = np.roll(image, -1, axis=2) bit_chunks = [] for y in range(0, rows_per_pin): # Even strips are indexed forward, odd strips backwards. # Collect one pixel per teensy pin, 8 x 3 bytes (g, r, b), for each "height" row (1st dimension) if (y % 2) != strip_layout_direction: pixel_arrs = image[::, y:y + rows_per_pin * teensy_pins:rows_per_pin, :] else: pixel_arrs = image[::-1, y:y+rows_per_pin*teensy_pins:rows_per_pin, :] # Look up gamma-corrected LED values pixel_arrs = led_table_np[pixel_arrs] # Unpack to bits so we can re-order them pixel_bits_np = np.unpackbits(pixel_arrs) # Serialise pixels to 3 bytes per pin, 1 bit at a time. # The most significant bit for each pin goes first. # This relies on teensy_pins <= 8 so it fits in a byte. bit_chunks.append(pixel_bits_np.reshape((height, 8, 24)).transpose((0, 2, 1))) all_bits_np = np.zeros((24,), dtype=np.bool) all_bits_np = np.append(all_bits_np, bit_chunks) # Pack the bits back up packed = np.packbits(all_bits_np) packed = bitswap_table[packed] bytearr = bytearray(packed.tobytes()) # tend = time.time() # duration = (tend-tstart) # mean_dur = (mean_dur * 0.98) + (duration * 0.02) # print mean_dur*1000, duration*1000 # assert len(bytearr) == 11523 # not true for the last teensy return bytearr # because one of the panels is different from others, we need to compensate by inserting dummy columns def add_dummy_columns(image, idx_dummy_columns): b, g, r = cv2.split(image) height, width = r.shape for i in range(0, len(idx_dummy_columns)): b = np.insert(b, idx_dummy_columns[i], np.zeros(height), axis=1) g = np.insert(g, idx_dummy_columns[i], np.zeros(height), axis=1) r = np.insert(r, idx_dummy_columns[i], np.zeros(height), axis=1) return cv2.merge((b, g, r)) def resize(frame, width, height, extra_columns_idxs): res = cv2.resize(frame, (width, height)) # check that res size is 180x120 if extra_columns_idxs is not None: res = add_dummy_columns(res, extra_columns_idxs) # print res.shape # now image size should be 184x120 return res
anorth/shadow-wall
Processing2Python/showMovie/check_panel_time.py
import datetime START_TIME_HOUR = 18 MINUTES_PAST_HOUR = 50 END_TIME_HOUR = 23 #11pm def good_time_to_play(): now = datetime.datetime.now() # if now.day == 4: # return False if now.hour >= START_TIME_HOUR and now.hour < END_TIME_HOUR: return True else: return False
anorth/shadow-wall
Processing2Python/showMovie/movie2serial.py
#!/usr/bin/env python # -*- coding: utf-8 -*- import sys import numpy as np import cv2 import serial import glob import time from MyRectangle import MyRectangle import helperFunctions as hp from concurrent.futures import ThreadPoolExecutor from showMovie.imgproc import Pipeline, BackgroundRejecterMog, BackgroundRejecterAvg import check_panel_time from imgproc import draw_text FAKE_SERIAL = False DEFISH = True MAX_NUM_PORTS = 24 TARGET_FRAME_RATE = 30 TEENSY_SYNC = False CAPTURE_SIZE = (1920, 1080) PREVIEW_SIZE = (CAPTURE_SIZE[0]/2, CAPTURE_SIZE[1]/2) led_serial = [] led_image = [] led_area = [] led_layout = [] PANEL_WIDTH = 180 PANEL_HEIGHT = 120 DUMMY_COL_INDICES = list(range(24, 24+16, 4)) send_executor = ThreadPoolExecutor(1) is_writing = False FAKE_PORTS = ['/fake/1', '/fake/2', '/fake/3', '/fake/4', '/fake/5', '/fake/6'] class FakeSerial(object): def readline(self): return '120,32,0,0,0,152,0,32,120,0,0,0' def write(self, b): pass def close(self): pass # ask a Teensy board for its LED configuration, and set up the info for it. def serial_configure(port_name, port_num, fake=False): if port_num >= MAX_NUM_PORTS: print 'Too many serial ports, please increase maxPorts' return print 'Port name ' + port_name port = FakeSerial() if fake else serial.Serial(port_name, timeout=1) led_serial.append(port) if led_serial[port_num] is None: print 'portName: ', port_name, ' returned null' return time.sleep(500 / 1000.0) led_serial[port_num].write('?') line = led_serial[port_num].readline() print line if line is None: print 'Serial port ' + port_name + ' is not responding.' print 'Is it really a Teensy running VideoDisplay?' return params = line.split(",") if len(params) != 12: print 'Error: port ' + port_name + ' did not respond to LED config query' return # only store the info and increase numPorts if Teensy responds properly led_image.append(np.zeros((int(params[0]), int(params[1]), 3), np.uint8)) # Note: rows and cols are according to the teensy, which is configured to be mounted rotated π/2 #print 'Panel: ', port_num, ' cols: ', params[0], ' rows: ', params[1] rect = MyRectangle((int(params[5]), int(params[6])), int(params[7]), int(params[8])) led_area.append(rect) #print 'xoff: ', params[5], ' yoff: ', params[6], ' width: ', params[7], '%, height: ', params[8], '%' led_layout.append(int(params[2])) def initialise_serial_ports(fake=False): ports = FAKE_PORTS if fake else glob.glob('/dev/ttyACM*')#''/dev/tty.usbmodem*') print 'Serial Ports: ' print ports idx = -1 for idx, port in enumerate(ports): serial_configure(port, idx, fake=fake) return idx + 1 def close_all_ports(num_ports): for i in range(0, num_ports): led_serial[i].close() def send_frame_to_led_panels(frame, num_ports, show_debug=False): # Resize to exact dimensions of panels, adding in dummy columns frame = hp.resize(frame, PANEL_WIDTH, PANEL_HEIGHT, DUMMY_COL_INDICES) if show_debug: cv2.imshow("panels", frame) if is_writing: return # drop the frame that the panels can't keep up with # Write the frame to panels for teensy_idx in range(0, num_ports): # copy a portion of the movie's image to the LED image xoffset = led_area[teensy_idx].x yoffset = led_area[teensy_idx].y twidth = led_area[teensy_idx].width theight = led_area[teensy_idx].height # determine what portion of frame to send to given Teensy: led_image[teensy_idx] = frame[yoffset:yoffset + theight, xoffset:xoffset + twidth, :] led_data = hp.image_to_data_fast(led_image[teensy_idx], led_layout[teensy_idx]) # verify_led_data(teensy_idx, led_data) # send byte data to Teensys: if (not TEENSY_SYNC) or teensy_idx == 0: led_data[0] = '*' # first Teensy is the frame sync master usec = int((1000000.0 / TARGET_FRAME_RATE) * 0.75) led_data[1] = (usec) & 0xff # request the frame sync pulse led_data[2] = (usec >> 8) & 0xff # at 75% of the frame time else: led_data[0] = '%' # others sync to the master board led_data[1] = 0 led_data[2] = 0 def write(idx, data): global is_writing is_writing = True led_serial[idx].write(data) is_writing = False # write(teensy_idx, bytes(led_data)) send_executor.submit(write, teensy_idx, bytes(led_data)) def verify_led_data(teensy_idx, led_data): if teensy_idx > 4: return led_data_orig = hp.image_to_data_original(led_image[teensy_idx], led_layout[teensy_idx]) if led_data != led_data_orig: print(repr(led_data_orig)) print(repr(led_data)) # raise AssertionError def open_camera(): print "Opening capture from camera at", CAPTURE_SIZE cap = cv2.VideoCapture(0) cap.set(cv2.cv.CV_CAP_PROP_FPS, 30) cap.set(cv2.cv.CV_CAP_PROP_FRAME_WIDTH, CAPTURE_SIZE[0]) cap.set(cv2.cv.CV_CAP_PROP_FRAME_HEIGHT, CAPTURE_SIZE[1]) # cap.set(cv2.cv.CV_CAP_PROP_GAIN, 1) # cap.set(cv2.cv.CV_CAP_PROP_EXPOSURE, 1) return cap def open_file(path): print "Opening capture from", path cap = cv2.VideoCapture(path) cap.set(cv2.cv.CV_CAP_PROP_FPS, 30) return cap # Notes: # - consider reading in grayscale frame straight away def main(argv): filename = None if argv: filename = argv[0] needs_release = False if filename: cap = open_file(filename) else: cap = open_camera() needs_release = True if not cap.isOpened: print "Failed to open capture" return print "Initialising pipeline" pipeline = Pipeline(DEFISH, bg=BackgroundRejecterAvg()) print "Initialising serial ports" num_ports = initialise_serial_ports(fake=FAKE_SERIAL) print "Initialised", num_ports, "ports" # Open a preview window cv2.namedWindow("capture") cv2.namedWindow("debug") cv2.namedWindow("debug2") cv2.namedWindow("panels") # Run until no more frames run(cap, filename, num_ports, pipeline) cv2.destroyWindow("capture") cv2.destroyWindow("debug") cv2.destroyWindow("debug2") cv2.destroyWindow("panels") if needs_release: cap.release() #release camera # in case of some crash - set all LEDs to black before closing ports to Teensys send_black_frame(num_ports) time.sleep(1) send_black_frame(num_ports) send_executor.shutdown(wait=True) close_all_ports(num_ports) def run(cap, filename, num_ports, pipeline): tstart = time.time() have_frame, frame = cap.read() framecount = 1 # need to first draw all black frame: send_black_frame(num_ports) while have_frame: show_debug = framecount % (TARGET_FRAME_RATE/2) == 0 if show_debug: cv2.imshow("capture", cv2.resize(frame, PREVIEW_SIZE)) tprocstart = time.time() frame = pipeline.process(frame, show_debug) frame = cv2.flip(frame, 1) #draw_text(frame) tprocend = time.time() if check_panel_time.good_time_to_play(): send_frame_to_led_panels(frame, num_ports, show_debug) else: send_black_frame(num_ports) key = cv2.waitKey(1) if key == 27: # exit on ESC break tend = time.time() if show_debug: proc_duration = (tprocend - tprocstart) send_duration = (tend - tprocend) duration = (tend - tstart) print "Frame took", duration * 1000, "ms,", proc_duration * 1000, "proc,", \ send_duration * 1000, "send,", (1 / duration), "fps" tstart = time.time() have_frame, frame = cap.read() framecount += 1 if filename and not have_frame: framecount = 0 cap = open_file(filename) have_frame, frame = cap.read() return cap def send_black_frame(num_ports): black_frame = np.zeros((184, 120, 3), np.uint8) black_frame[:] = (0, 0, 0) send_frame_to_led_panels(black_frame, num_ports) if __name__ == "__main__": main(sys.argv[1:])
anorth/shadow-wall
InterviewPrepScripts/byteSerial.py
<filename>InterviewPrepScripts/byteSerial.py<gh_stars>1-10 import numpy as np import cv2 from time import sleep import serial #ser = serial.Serial('/dev/ttyUSB0', 115200, timeout=1) ser = serial.Serial('/dev/ttyACM1', 115200, timeout=1) byteR = (255,0,0) byteG = (0,255,0) byteB = (0,0,255) NUM_LEDS = 100 j = 0; while 1: tdata = ser.read() if tdata == 'a': print 'got an a!' print j if j == 0: for i in range(0,NUM_LEDS): ser.write(np.uint8(byteR)) ser.write(np.uint8(byteR)) ser.write(np.uint8(byteR)) j = 1 continue if j == 1: for i in range(0,NUM_LEDS): ser.write(np.uint8(byteG)) ser.write(np.uint8(byteG)) ser.write(np.uint8(byteG)) j = 2 continue if j == 2: for i in range(0,NUM_LEDS): ser.write(np.uint8(byteB)) ser.write(np.uint8(byteB)) ser.write(np.uint8(byteB)) j = 0 continue
anorth/shadow-wall
Processing2Python_old/showMovie/MyRectangle.py
<gh_stars>0 class MyRectangle(object): def __init__(self, top_corner, width, height): self.x = top_corner[0] self.y = top_corner[1] self.width = width self.height = height def get_bottom_right(self): d = self.x + self.width t = self.y + self.height return d, t
anorth/shadow-wall
PythonHelperScripts/genGammaCorrection.py
#!/usr/local/bin/python #Date created: 18-JAN-2016 #Author: NG #code pilfered from LadyAda! #https://learn.adafruit.com/led-tricks-gamma-correction/the-longer-fix #Purpose: This table remaps linear input values (the numbers we’d like to use; e.g. 127 = half brightness) to nonlinear gamma-corrected output values (numbers producing the desired effect on the LED; e.g. 36 = half brightness). #Great news, if we want an LED to appear at 'half' power, instead of writing '127' to the LED, we can write: table[127], which is 37! W00t for power saving :) import numpy as np import sys #get print without newline gamma = 2.8 max_in = 255 max_out = 255 table = [] tmp = 0 for i in range(0,max_in): if i > 0: sys.stdout.write(',') if np.mod(i,15) == 0: sys.stdout.write('\n ') tmp = np.uint8(np.round(pow(np.float32(i)/np.float(max_in),gamma) * max_out + 0.5)) table.append(tmp) sys.stdout.write(str(tmp))
anorth/shadow-wall
Processing2Python/showMovie/defish.py
#!/usr/bin/env python import cv2 import numpy as np FISH_FOV = 180.0 class Defisher(object): def __init__(self, src_size, dst_size, xmap, ymap): self.src_size = src_size self.dst_size = dst_size self.xmap = xmap self.ymap = ymap def unwarp(self, img): assert img.shape[0] == self.src_size[1] assert img.shape[1] == self.src_size[0] output = cv2.remap(img, self.xmap, self.ymap, cv2.INTER_LINEAR) return output def create_fisher(src_size, dst_size, hfovd=FISH_FOV, vfovd=FISH_FOV): Ws, Hs = src_size Wd, Hd = dst_size # Build the fisheye mapping map_x = np.zeros((Hd, Wd), np.float32) map_y = np.zeros((Hd, Wd), np.float32) vfov = (vfovd / 180.0) * np.pi hfov = (hfovd / 180.0) * np.pi vstart = ((180.0 - vfovd) / 180.00) * np.pi / 2.0 hstart = ((180.0 - hfovd) / 180.00) * np.pi / 2.0 count = 0 # need to scale to changed range from our # smaller cirlce traced by the fov xmax = np.sin(np.pi / 2.0) * np.cos(vstart) xmin = np.sin(np.pi / 2.0) * np.cos(vstart + vfov) xscale = xmax - xmin xoff = xscale / 2.0 zmax = np.cos(hstart) zmin = np.cos(hfov + hstart) zscale = zmax - zmin zoff = zscale / 2.0 # Fill in the map, this is slow but # we could probably speed it up # since we only calc it once, whatever for y in range(0, int(Hd)): theta = hstart + (hfov * ((float(y) / float(Hd)))) zp = ((np.cos(theta)) + zoff) / zscale # for x in range(0, int(Wd)): count = count + 1 phi = vstart + (vfov * ((float(x) / float(Wd)))) xp = ((np.sin(theta) * np.cos(phi)) + xoff) / zscale # xS = Ws - (xp * Ws) yS = Hs - (zp * Hs) map_x.itemset((y, x), int(xS)) map_y.itemset((y, x), int(yS)) return Defisher(src_size, dst_size, map_x, map_y)
anorth/shadow-wall
Processing2Python_old/showMovie/movie2serial.py
#!/usr/bin/env python # -*- coding: utf-8 -*- import numpy as np import cv2 import serial import glob import time from MyRectangle import MyRectangle import helperFunctions as hp cv2.namedWindow("preview") vc = cv2.VideoCapture() MaximumNumberOfPorts = 24 target_frame_rate = 30 led_serial = [] led_image = [] led_area = [] led_layout = [] panel_width_in_pixels = 180 panel_height_in_pixels = 120 idx_dummy_columns = np.array([147, 151, 155, 159]) # ask a Teensy board for its LED configuration, and set up the info for it. def serial_configure(port_name, port_num): if port_num >= MaximumNumberOfPorts: print 'Too many serial ports, please increase maxPorts' return print 'Port name ' + port_name led_serial.append(serial.Serial(port_name, timeout=1)) if led_serial[port_num] is None: print 'portName: ', port_name, ' returned null' return time.sleep(50 / 1000.0) # sleep for 50ms led_serial[port_num].write('?') line = led_serial[port_num].readline() print line if line is None: print 'Serial port ' + port_name + ' is not responding.' print 'Is it really a Teensy running VideoDisplay?' return params = line.split(",") if len(params) != 12: print 'Error: port ' + port_name + ' did not respond to LED config query' return # only store the info and increase numPorts if Teensy responds properly led_image.append(np.zeros((int(params[0]), int(params[1]), 3), np.uint8)) # Note: rows and cols are according to the teensy, which is configured to be mounted rotated π/2 print 'Panel: ', port_num, ' cols: ', params[0], ' rows: ', params[1] rect = MyRectangle((int(params[5]), int(params[6])), int(params[7]), int(params[8])) led_area.append(rect) print 'xoff: ', params[5], ' yoff: ', params[6], ' width: ', params[7], '%, height: ', params[8], '%' led_layout.append(int(params[2])) print 'laout: ', params[2] def initialise_serial_ports(): ports = glob.glob('/dev/tty.usbmodem*') print 'Serial Ports: ' print ports total_num_ports = 0 for idx, port in enumerate(ports): serial_configure(port, idx) total_num_ports += 1 print led_serial return total_num_ports def close_all_ports(num_ports): for i in range(0, num_ports): led_serial[i].close() # int initialiseProcessingPipeline(): # opencv = new OpenCV(this, WidthInPixels, HeightInPixels); # println("Using color?", opencv.getUseColor()); # //opencv.useGray(); # # blobDetector = new BlobDetection(WidthInPixels, HeightInPixels); # //BlobDetection.setConstants(5, 20, 60); # blobDetector.setThreshold(0.5); # blobDetector.setPosDiscrimination(true); // find highlights, not lowlights # } def send_frame_to_led_panels(frame, num_ports): # Write the frame to panels [height, width, depth] = frame.shape for teensy_idx in range(0, num_ports): # copy a portion of the movie's image to the LED image xoffset = led_area[teensy_idx].x yoffset = led_area[teensy_idx].y twidth = led_area[teensy_idx].width theight = led_area[teensy_idx].height print 'xoffset: ' + str(xoffset) print 'yoffset: ' + str(yoffset) print 'width: ' + str(twidth) print 'height: ' + str(theight) print 'start width: ' + str(xoffset) + ' end width: ' + str(xoffset + twidth) print 'start height: ' + str(yoffset) + ' end height: ' + str(yoffset + theight) print frame.shape # determine what portion of frame to send to given Teensy: # led_image[teensy_idx] = np.copy(frame[xoffset:xoffset+theight,yoffset:yoffset+twidth,:]) led_image[teensy_idx] = np.copy(frame[yoffset:yoffset + theight, xoffset:xoffset + twidth, :]) # convert the LED image to raw data byte[] print 'led_image[teensy_idx] ' + str(led_image[teensy_idx].shape) led_data = hp.image_to_data(led_image[teensy_idx], led_layout) # send byte data to Teensys: if teensy_idx == 0: led_data[0] = '*' # first Teensy is the frame sync master usec = int((1000000.0 / target_frame_rate) * 0.75) led_data[1] = (usec) & 0xff # request the frame sync pulse led_data[2] = (usec >> 8) & 0xff # at 75% of the frame time else: led_data[0] = '%' # others sync to the master board led_data[1] = 0 led_data[2] = 0 # and finally send the raw data to the LEDs print led_serial[teensy_idx] print led_data led_serial[teensy_idx].write(bytearray(led_data)) def main(): number_of_ports_in_use = initialise_serial_ports() print number_of_ports_in_use hp.initialise_gamma_table() # print hp.gamma_table # now capture frames from webcam: cv2.namedWindow("preview") vc = cv2.VideoCapture(0) if vc.isOpened(): # try to get the first frame rval, frame = vc.read() else: rval = False print 'Frame shape: ' + str(frame.shape) frame_count = 3 while rval and frame_count > 0: cv2.imshow("preview", frame) rval, frame = vc.read() cv2.imwrite('orig_frame.png', frame) # resize frame to exactly be the dimensions of LED panel new_frame = hp.resize(frame, panel_width_in_pixels, panel_height_in_pixels, idx_dummy_columns) new_frame = cv2.flip(new_frame, 1) cv2.imwrite('new_frame.png', new_frame) send_frame_to_led_panels(new_frame, number_of_ports_in_use) key = cv2.waitKey(20) if key == 27: # exit on ESC break frame_count -= 1 cv2.destroyWindow("preview") close_all_ports(number_of_ports_in_use) if __name__ == "__main__": main()
anorth/shadow-wall
InterviewPrepScripts/videoCapture.py
import numpy as np import cv2 import time start = time.time() end = start + 3 #show video for three seconds - I do this to make sure your stream doesn't get stuffed up by a bad exit. Remove in future. cap = cv2.VideoCapture(0) #while time.time() < end: # while(True): # Capture frame-by-frame ret, frame = cap.read() if frame == None: continue b,g,r = cv2.split(frame) b_new = cv2.resize(b,(10,10)) g_new = cv2.resize(g,(10,10)) r_new = cv2.resize(r,(10,10)) out = cv2.merge((b_new,g_new,r_new)) cv2.imshow('frame',out) if cv2.waitKey(1) & 0xFF == ord('q'): cap.release() cv2.destroyAllWindows() break # When everything done, release the capture cap.release() cv2.destroyAllWindows()
anorth/shadow-wall
InterviewPrepScripts/byteSerialVideo.py
<reponame>anorth/shadow-wall import numpy as np import cv2 from time import sleep import serial #ser = serial.Serial('/dev/ttyUSB0', 115200, timeout=1) ser = serial.Serial('/dev/ttyACM0', 115200, timeout=1) cap = cv2.VideoCapture(0) NUM_LEDS = 100 SEND_SERIAL = True while 1: ret,frame = cap.read() if frame == None: continue # b,g,r = cv2.split(frame) r,g,b = cv2.split(frame) b_new = cv2.resize(b,(10,10)) g_new = cv2.resize(g,(10,10)) r_new = cv2.resize(r,(10,10)) out = cv2.merge((b_new,g_new,r_new)) cv2.imshow('frame',out) b_send = np.array(b_new.flatten()) g_send = np.array(g_new.flatten()) r_send = np.array(r_new.flatten()) if SEND_SERIAL: tdata = ser.read() if tdata == 'a': print 'got an a!' #send frame for i in range(0,NUM_LEDS): colorBytes = (b_send[i]/2,g_send[i]/2,r_send[i]/2) # colorBytes = (255-b_send[i],255-g_send[i],255-r_send[i]) ser.write(np.uint8(colorBytes)) continue # for i in range(0,NUM_LEDS): # print np.uint8(b_send[i]) # print np.uint8(g_send[i]) # print np.uint8(r_send[i]) if cv2.waitKey(1) & 0xFF == ord('q'): # cap.release() # cv2.destroyAllWindows() break cap.release() cv2.destroyAllWindows()
EdilsonTarcio/funcao_maior_numero
maior_valor.py
<reponame>EdilsonTarcio/funcao_maior_numero def maior_valor(valores): return max(valores) def capturar_numeros(): lista_numeros = [] while True: numero = int(input("Informe um número inteiro ou zero para sair: ")) if numero == 0: break lista_numeros.append(numero) return maior_valor(lista_numeros) # Chamada da função print(f"Maior valor: {capturar_numeros()}")
wellcomecollection/aws_utils
tests/test_s3_utils.py
<filename>tests/test_s3_utils.py # -*- encoding: utf-8 -*- import boto3 from botocore.exceptions import ClientError import dateutil.parser from moto import mock_s3 import pytest from wellcome_aws_utils import s3_utils def s3_event(): return { "Records": [ { "eventVersion": "2.0", "eventSource": "aws:s3", "awsRegion": "us-east-1", "eventTime": "1970-01-01T00:00:00.000Z", "eventName": "event-type", "userIdentity": { "principalId": "CustomerID-who-caused-the-event" }, "requestParameters": { "sourceIPAddress": "ip-address-where-request-came-from" }, "responseElements": { "x-amz-request-id": "Amazon S3 generated request ID", "x-amz-id-2": "Amazon S3 host that processed the request" }, "s3": { "s3SchemaVersion": "1.0", "configurationId": "ID in bucket notification config", "bucket": { "name": "bucket-name", "ownerIdentity": { "principalId": "CustomerID-of-bucket-owner" }, "arn": "bucket-ARN" }, "object": { "key": "bucket-name", "size": 1234, "eTag": "object eTag", "versionId": "v2", "sequencer": "foo" } } } ] } class TestIsObject(object): @mock_s3 def test_detects_existing_object(self): client = boto3.client('s3') # Create a bucket and an object client.create_bucket(Bucket='bukkit') # First check we don't think the object exists assert not s3_utils.is_object(bucket='bukkit', key='myfile.txt') client.put_object( Bucket='bukkit', Key='myfile.txt', Body=b'hello world' ) # Now check we can detect its existence assert s3_utils.is_object(bucket='bukkit', key='myfile.txt') @mock_s3 def test_does_not_detect_missing_object(self): client = boto3.client('s3') client.create_bucket(Bucket='bukkit') assert not s3_utils.is_object(bucket='bukkit', key='doesnotexist.py') @mock_s3 def test_other_errors_are_raised(self): with pytest.raises(ClientError): s3_utils.is_object(bucket='notabukkit', key='forbidden.txt') class TestCopyObject(object): @mock_s3 def test_throws_error_if_src_does_not_exist(self): client = boto3.client('s3') client.create_bucket(Bucket='bukkit') with pytest.raises(ValueError) as err: s3_utils.copy_object( src_bucket='bukkit', src_key='doesnotexist.txt', dst_bucket='bukkit2', dst_key='doesnotexist.txt' ) assert 'Tried to copy missing object' in err.value.args[0] @mock_s3 def test_throws_error_if_dst_bucket_does_not_exist(self): client = boto3.client('s3') client.create_bucket(Bucket='bukkit') client.put_object(Bucket='bukkit', Key='f.txt', Body=b'hello world') with pytest.raises(ClientError): s3_utils.copy_object( src_bucket='bukkit', src_key='f.txt', dst_bucket='doesnotexistbukkit', dst_key='f.txt' ) @mock_s3 def test_copies_file_if_dst_key_does_not_exist(self): client = boto3.client('s3') client.create_bucket(Bucket='bukkit') client.create_bucket(Bucket='newbukkit') client.put_object(Bucket='bukkit', Key='f.txt', Body=b'hello world') s3_utils.copy_object( src_bucket='bukkit', src_key='f.txt', dst_bucket='newbukkit', dst_key='f.txt' ) assert s3_utils.is_object(bucket='newbukkit', key='f.txt') @pytest.mark.skip(reason=""" Blocked on https://github.com/spulec/moto/issues/1271 as versioning in moto doesn't work """) @mock_s3 @pytest.mark.parametrize('lazy, expected_version', [ (False, '1'), (True, '0'), ]) def test_copies_file_if_dst_key_exists_but_not_lazy( self, lazy, expected_version ): client = boto3.client('s3') # First create the same file in both buckets. We enable versioning # so we can check when files change. for b in ['bukkit', 'newbukkit']: client.create_bucket(Bucket=b) client.put_bucket_versioning( Bucket=b, VersioningConfiguration={'Status': 'Enabled'} ) client.put_object(Bucket=b, Key='f.txt', Body=b'hello world') resp = client.get_object(Bucket='newbukkit', Key='f.txt') assert resp['VersionId'] == '0' for _ in range(3): s3_utils.copy_object( src_bucket='bukkit', src_key='f.txt', dst_bucket='newbukkit', dst_key='f.txt' ) resp = client.get_object(Bucket='newbukkit', Key='f.txt') assert resp['VersionId'] == expected_version def test_parse_s3_event(): e = s3_event() parsed_events = s3_utils.parse_s3_record(e) expected_datetime = dateutil.parser.parse("1970-01-01T00:00:00.000Z") expected_events = [{ "event_name": "event-type", "event_time": expected_datetime, "bucket_name": "bucket-name", "object_key": "bucket-name", "size": 1234, "versionId": "v2" }] assert parsed_events == expected_events def test_s3_event_with_special_char_in_key(): # We've seen cases where the S3 event has a URL-quoted plus, and this # gets passed into the Lambda. Check we unpack it correctly. event = s3_event() event['Records'][0]['s3']['object']['key'] = 'foo%2Bbar' parsed_events = s3_utils.parse_s3_record(event) assert len(parsed_events) == 1 assert parsed_events[0]['object_key'] == 'foo+bar' @mock_s3 def test_write_objects_to_s3(): client = boto3.client('s3') client.create_bucket(Bucket='bukkit') s3_utils.write_objects_to_s3( bucket='bukkit', key='dicts.txt', objects=[{'a': 1, 'b': 2}, {'c': 3, 'd': 4}] ) assert s3_utils.is_object(bucket='bukkit', key='dicts.txt') body = client.get_object(Bucket='bukkit', Key='dicts.txt')['Body'].read() assert body == b'{"a":1,"b":2}\n{"c":3,"d":4}'
wellcomecollection/aws_utils
src/wellcome_aws_utils/dynamo_utils.py
<filename>src/wellcome_aws_utils/dynamo_utils.py # -*- encoding: utf-8 -*- def _is_capacity_different(x, desired_capacity): read_capacity_units = x['ProvisionedThroughput']['ReadCapacityUnits'] write_capacity_units = x['ProvisionedThroughput']['WriteCapacityUnits'] return ( read_capacity_units != desired_capacity ) or ( write_capacity_units != desired_capacity ) def change_dynamo_capacity(client, table_name, desired_capacity): """ Given the name of a DynamoDB table and a desired capacity, update the read/write capacity of the table and every secondary index. """ response = client.describe_table(TableName=table_name) filtered_gsis = filter( lambda x: _is_capacity_different(x, desired_capacity), response['Table']['GlobalSecondaryIndexes']) gsi_updates = list(map( lambda x: { 'Update': { 'IndexName': x['IndexName'], 'ProvisionedThroughput': { 'ReadCapacityUnits': desired_capacity, 'WriteCapacityUnits': desired_capacity } } }, filtered_gsis )) table_update = _is_capacity_different(response['Table'], desired_capacity) print(f'table_update: {table_update}') if gsi_updates and table_update: resp = client.update_table( TableName=table_name, ProvisionedThroughput={ 'ReadCapacityUnits': desired_capacity, 'WriteCapacityUnits': desired_capacity }, GlobalSecondaryIndexUpdates=gsi_updates ) elif gsi_updates: resp = client.update_table( TableName=table_name, GlobalSecondaryIndexUpdates=gsi_updates ) elif table_update: resp = client.update_table( TableName=table_name, ProvisionedThroughput={ 'ReadCapacityUnits': desired_capacity, 'WriteCapacityUnits': desired_capacity } ) else: return print(f'DynamoDB response = {resp!r}') assert resp['ResponseMetadata']['HTTPStatusCode'] == 200
wellcomecollection/aws_utils
tests/test_dynamo_event.py
<filename>tests/test_dynamo_event.py<gh_stars>0 # -*- encoding: utf-8 -*- from wellcome_aws_utils import dynamo_event event_source_arn = ( "arn:aws:dynamodb:us-east-1:123456789012:" "table/BarkTable/stream/2016-11-16T20:42:48.104" ) def create_insert_record(message): return { "ApproximateCreationDateTime": 1479499740, "Keys": { "Timestamp": { "S": "2016-11-18:12:09:36" }, "Username": { "S": "John Doe" } }, "NewImage": { "Timestamp": { "S": "2016-11-18:12:09:36" }, "Message": { "S": message }, "Username": { "S": "John Doe" } }, "SequenceNumber": "13021600000000001596893679", "SizeBytes": 112, "StreamViewType": "NEW_IMAGE" } def create_remove_record(message): return { "ApproximateCreationDateTime": 1479499740, "Keys": { "Timestamp": { "S": "2016-11-18:12:09:36" }, "Username": { "S": "John Doe" } }, "OldImage": { "Timestamp": { "S": "2016-11-18:12:09:36" }, "Message": { "S": message }, "Username": { "S": "John Doe" } }, "SequenceNumber": "13021600000000001596893679", "SizeBytes": 112, "StreamViewType": "OLD_IMAGE" } def create_modify_record(old_message, new_message): return { "ApproximateCreationDateTime": 1479499740, "Keys": { "Timestamp": { "S": "2016-11-18:12:09:36" }, "Username": { "S": "John Doe" } }, "OldImage": { "Timestamp": { "S": "2016-11-18:12:09:36" }, "Message": { "S": old_message }, "Username": { "S": "John Doe" } }, "NewImage": { "Timestamp": { "S": "2016-11-18:12:09:36" }, "Message": { "S": new_message }, "Username": { "S": "John Doe" } }, "SequenceNumber": "13021600000000001596893679", "SizeBytes": 112, "StreamViewType": "NEW_AND_OLD_IMAGES" } def create_modify_record_keys_only(): return { "ApproximateCreationDateTime": 1479499740, "Keys": { "Timestamp": { "S": "2016-11-18:12:09:36" }, "Username": { "S": "John Doe" } }, "SequenceNumber": "13021600000000001596893679", "SizeBytes": 112, "StreamViewType": "KEYS_ONLY" } def create_insert_event(message): return { "eventID": "7de3041dd709b024af6f29e4fa13d34c", "eventName": "INSERT", "eventVersion": "1.1", "eventSource": "aws:dynamodb", "awsRegion": "us-west-2", "dynamodb": create_insert_record(message), "eventSourceARN": event_source_arn } def create_remove_event(message): return { "eventID": "7de3041dd709b024af6f29e4fa13d34c", "eventName": "REMOVE", "eventVersion": "1.1", "eventSource": "aws:dynamodb", "awsRegion": "us-west-2", "dynamodb": create_remove_record(message), "eventSourceARN": event_source_arn } def create_modify_event(old_message, new_message): return { "eventID": "7de3041dd709b024af6f29e4fa13d34c", "eventName": "MODIFY", "eventVersion": "1.1", "eventSource": "aws:dynamodb", "awsRegion": "us-west-2", "dynamodb": create_modify_record(old_message, new_message), "eventSourceARN": event_source_arn } def create_modify_event_keys_only(): return { "eventID": "7de3041dd709b024af6f29e4fa13d34c", "eventName": "MODIFY", "eventVersion": "1.1", "eventSource": "aws:dynamodb", "awsRegion": "us-west-2", "dynamodb": create_modify_record_keys_only(), "eventSourceARN": event_source_arn } def test_get_source_arn(): dynamo_image = dynamo_event.DynamoEvent(create_insert_event('foo')) assert dynamo_image.event_source_arn == event_source_arn def test_insert_event(): dynamo_image = dynamo_event.DynamoEvent(create_insert_event('foo')) expected_image_with_deserialized_values = { 'Message': 'foo', 'Timestamp': '2016-11-18:12:09:36', 'Username': 'John Doe' } expected_image = { "Timestamp": { "S": "2016-11-18:12:09:36" }, "Message": { "S": 'foo' }, "Username": { "S": "John Doe" } } assert dynamo_image.new_image( deserialize_values=True ) == expected_image_with_deserialized_values assert dynamo_image.new_image() == expected_image def test_remove_event(): dynamo_image = dynamo_event.DynamoEvent(create_remove_event('foo')) expected_image_with_deserialized_values = { 'Message': 'foo', 'Timestamp': '2016-11-18:12:09:36', 'Username': 'John Doe' } expected_image = { "Timestamp": { "S": "2016-11-18:12:09:36" }, "Message": { "S": 'foo' }, "Username": { "S": "John Doe" } } assert dynamo_image.new_image(deserialize_values=True) is None assert dynamo_image.new_image() is None assert dynamo_image.old_image( deserialize_values=True ) == expected_image_with_deserialized_values assert dynamo_image.old_image() == expected_image def test_modify_event(): dynamo_image = dynamo_event.DynamoEvent(create_modify_event('foo', 'bar')) expected_old_image_with_deserialized_values = { 'Message': 'foo', 'Timestamp': '2016-11-18:12:09:36', 'Username': 'John Doe' } expected_old_image = { "Timestamp": { "S": "2016-11-18:12:09:36" }, "Message": { "S": 'foo' }, "Username": { "S": "<NAME>" } } expected_new_image_with_deserialized_values = { 'Message': 'bar', 'Timestamp': '2016-11-18:12:09:36', 'Username': 'John Doe' } expected_new_image = { "Timestamp": { "S": "2016-11-18:12:09:36" }, "Message": { "S": 'bar' }, "Username": { "S": "John Doe" } } assert dynamo_image.new_image( deserialize_values=True ) == expected_new_image_with_deserialized_values assert dynamo_image.new_image() == expected_new_image assert dynamo_image.old_image( deserialize_values=True ) == expected_old_image_with_deserialized_values assert dynamo_image.old_image() == expected_old_image def test_modify_event_keys_only(): dynamo_image = dynamo_event.DynamoEvent(create_modify_event_keys_only()) assert dynamo_image.new_image(deserialize_values=True) is None assert dynamo_image.new_image() is None assert dynamo_image.old_image(deserialize_values=True) is None assert dynamo_image.old_image() is None assert dynamo_image.keys(deserialize_values=True) == { 'Timestamp': '2016-11-18:12:09:36', 'Username': 'John Doe' } assert dynamo_image.keys() == { "Timestamp": { "S": "2016-11-18:12:09:36" }, "Username": { "S": "John Doe" } }
wellcomecollection/aws_utils
tests/test_sqs_utils.py
# -*- encoding: utf-8 -*- import logging import boto3 import daiquiri from moto import mock_sqs import pytest from wellcome_aws_utils import sqs_utils daiquiri.setup(level=logging.INFO) logger = daiquiri.getLogger(__name__) @pytest.fixture def queue_url(): with mock_sqs(): client = boto3.client('sqs') resp = client.create_queue(QueueName='TestQueue') logger.info('%r', resp) yield resp['QueueUrl'] client.delete_queue(QueueUrl=resp['QueueUrl']) @pytest.mark.parametrize('kwargs', [ {}, {'delete': False}, {'delete': True}, {'batch_size': 1}, {'batch_size': 10}, {'delete': True, 'batch_size': 2}, {'delete': False, 'batch_size': 7}, ]) def test_get_empty_queue_is_empty(queue_url, kwargs): assert list(sqs_utils.get_messages(queue_url, **kwargs)) == []
wellcomecollection/aws_utils
src/wellcome_aws_utils/ecs_utils.py
<gh_stars>0 # -*- encoding: utf-8 -*- import operator from botocore.exceptions import ClientError class EcsThrottleException(Exception): pass def identify_cluster_by_app_name(client, app_name): """ Given the name of one of our applications (e.g. api, calm_adapter), return the ARN of the cluster the task runs on. """ for cluster_arn in get_cluster_arns(client): for service_arn in get_service_arns(client, cluster_arn=cluster_arn): # The format of an ECS service ARN is: # # arn:aws:ecs:{aws_region}:{account_id}:service/{service_name} # # Our ECS cluster is configured so that the name of the ECS cluster # matches the name of the config in S3. It would be more robust # to use the describeService API, but this saves us a couple of # calls on our API quota so we skip it. _, service_name = service_arn.split('/') if service_name == app_name: return cluster_arn raise RuntimeError(f'Unable to find ECS cluster for {app_name}') def get_latest_task_definition(client, cluster, service): """ Given the name of a cluster and a service, return the ARN for its latest task definition. """ resp = client.describe_services(cluster=cluster, services=[service]) # The top-level structure of a describeServices API response is of the form # # { # "failures": [], # "services": [ # ... # ] # } # # Because we only asked for a description of a single service, we expect # there to only be a single service. services = resp['services'] assert len(services) == 1, resp service = services[0] # Within a 'service' description, the following structure is what we're # interested in: # # "deployments": [ # { # "createdAt": <date>, # "taskDefinition": <task definition ARN>, # "updatedAt": <date> # ... # }, # ... other running tasks # ], # # Each "deployment" corresponds to a running task, so we pick the # container with the most recent creation date. deployments = service['deployments'] assert len(deployments) > 0, resp newest_deployment = max(deployments, key=operator.itemgetter('createdAt')) return newest_deployment['taskDefinition'] def clone_task_definition(client, task_definition): """ Given a task definition ARN, clone the associated task. Returns the new task definition ARN. """ resp = client.describe_task_definition(taskDefinition=task_definition) taskDefinition = resp['taskDefinition'] # The task definition contains two key fields: "family" and # "containerDefinitions" which full describe the task. new_task = client.register_task_definition( family=taskDefinition['family'], taskRoleArn=taskDefinition['taskRoleArn'], containerDefinitions=taskDefinition['containerDefinitions'], volumes=taskDefinition['volumes'] ) return new_task['taskDefinition']['taskDefinitionArn'] def _name_from_arn(arn): return arn.split("/")[1] def _check_for_throttle_exception(f, *args, **kwargs): try: return f(*args, **kwargs) except ClientError as ex: if ex.response['Error']['Code'] == 'ThrottlingException': print(f'ThrottlingException: {ex}') raise EcsThrottleException(ex) else: raise def get_service_arns(ecs_client, cluster_arn): """ Given a cluster ARN, extracts the associated service ARNs. Returns a list of service ARNS. """ return _check_for_throttle_exception( ecs_client.list_services, cluster=_name_from_arn(cluster_arn) )['serviceArns'] def get_cluster_arns(ecs_client): """ Extract the list of cluster ARNs in this account. Returns a list of cluster ARNs. """ return _check_for_throttle_exception( ecs_client.list_clusters )['clusterArns'] def describe_cluster(ecs_client, cluster_arn): """ Given a cluster ARN attempts to find a matching cluster description. Returns a cluster description. """ return _check_for_throttle_exception( ecs_client.describe_clusters, clusters=[cluster_arn] )['clusters'][0] def describe_service(ecs_client, cluster_arn, service_arn): """ Given a cluster ARN and service ARN, attempts to find a matching service description. Returns a service description. """ return _check_for_throttle_exception( ecs_client.describe_services, cluster=_name_from_arn(cluster_arn), services=[_name_from_arn(service_arn)] )['services'][0] def run_task( ecs_client, cluster_name, task_definition, started_by, container_name="app", command=[]): """ Run a given command against a named container in a task definition on a particular cluster. Returns the response from calling run_task """ return ecs_client.run_task( cluster=cluster_name, taskDefinition=task_definition, overrides={ 'containerOverrides': [ { 'name': container_name, 'command': command }, ] }, count=1, startedBy=started_by, )
wellcomecollection/aws_utils
src/wellcome_aws_utils/__init__.py
# -*- encoding: utf-8 -*- from wellcome_aws_utils import ( deployment_utils, dynamo_utils, ecs_utils, s3_utils, sns_utils, sqs_utils, ) from wellcome_aws_utils.version import __version_info__, __version__ __all__ = [ '__version_info__', '__version__', 'deployment_utils', 'dynamo_utils', 'ecs_utils', 's3_utils', 'sns_utils', 'sqs_utils', ]
wellcomecollection/aws_utils
scripts/deploy.py
#!/usr/bin/env python # coding=utf-8 # # This file is part of Hypothesis, which may be found at # https://github.com/HypothesisWorks/hypothesis-python # # Most of this work is copyright (C) 2013-2017 <NAME> # (<EMAIL>), but it contains contributions by others. See # CONTRIBUTING.rst for a full list of people who may hold copyright, and # consult the git log if you need to determine who owns an individual # contribution. # # This Source Code Form is subject to the terms of the Mozilla Public License, # v. 2.0. If a copy of the MPL was not distributed with this file, You can # obtain one at http://mozilla.org/MPL/2.0/. # # END HEADER from __future__ import division, print_function, absolute_import import os import sys import shutil import subprocess import hypothesistooling as tools sys.path.append(os.path.dirname(__file__)) # noqa DIST = os.path.join(tools.ROOT, 'dist') PENDING_STATUS = ('started', 'created') if __name__ == '__main__': last_release = tools.latest_version() print('Current version: %s. Latest released version: %s' % ( tools.__version__, last_release )) HEAD = tools.hash_for_name('HEAD') MASTER = tools.hash_for_name('origin/master') print('Current head:', HEAD) print('Current master:', MASTER) on_master = tools.is_ancestor(HEAD, MASTER) has_release = tools.has_release() if has_release: print('Updating changelog and version') tools.update_for_pending_release() print('Building an sdist...') if os.path.exists(DIST): shutil.rmtree(DIST) subprocess.check_call([ sys.executable, 'setup.py', 'sdist', '--dist-dir', DIST, ]) if not on_master: print('Not deploying due to not being on master') sys.exit(0) if not has_release: print('Not deploying due to no release') sys.exit(0) if os.environ.get('TRAVIS_SECURE_ENV_VARS', None) != 'true': print("But we don't have the keys to do it") sys.exit(1) print('Decrypting secrets') # We'd normally avoid the use of shell=True, but this is more or less # intended as an opaque string that was given to us by Travis that happens # to be a shell command that we run, and there are a number of good reasons # this particular instance is harmless and would be high effort to # convert (principally: Lack of programmatic generation of the string and # extensive use of environment variables in it), so we're making an # exception here. subprocess.check_call( 'openssl aes-256-cbc -K $encrypted_83630750896a_key ' '-iv $encrypted_83630750896a_iv -in deploy_key.enc -out deploy_key -d', shell=True ) subprocess.check_call(['chmod', '400', 'deploy_key']) print('Release seems good. Pushing to GitHub now.') tools.create_tag_and_push() print('Now uploading to pypi.') subprocess.check_call([ sys.executable, '-m', 'twine', 'upload', '--username', os.environ['PYPI_USERNAME'], '--password', os.environ['PYPI_PASSWORD'], os.path.join(DIST, '*'), ]) sys.exit(0)
wellcomecollection/aws_utils
src/wellcome_aws_utils/reporting_utils.py
#!/usr/bin/env python # -*- encoding: utf-8 -*- """ get records from VHS, apply the transformation to them, and shove them into an elasticsearch index """ import json import boto3 import certifi from attr import attrs, attrib from elasticsearch import Elasticsearch from wellcome_aws_utils.lambda_utils import log_on_error def get_es_credentials(profile_name=None): session = boto3.session.Session(profile_name=profile_name) client = session.client( service_name='secretsmanager', region_name="eu-west-1" ) get_secret_value_response = client.get_secret_value( SecretId="prod/Elasticsearch/ReportingCredentials" ) secret = get_secret_value_response['SecretString'] return json.loads(secret) def dict_to_location(d): return ObjectLocation(**d) @attrs class ObjectLocation(object): namespace = attrib() path = attrib() @attrs class Record(object): id = attrib() version = attrib() payload = attrib(converter=dict_to_location) @attrs class ElasticsearchRecord(object): id = attrib() doc = attrib() def extract_sns_messages_from_event(event): keys_to_keep = ['id', 'version', 'payload'] for record in event["Records"]: try: full_message = json.loads(record["Sns"]["Message"]) except KeyError: # This could be a message from SQS rather than SNS so attempt to # decode the "body" of the message event = json.loads(record["body"]) for msg in extract_sns_messages_from_event(event): yield msg else: stripped_message = { k: v for k, v in full_message.items() if k in keys_to_keep } yield stripped_message def get_dynamo_record(dynamo_table, message): item = dynamo_table.get_item(Key={"id": message['id']}) return Record(**item["Item"]) def get_s3_objects_from_messages(dynamo_table, s3, messages): for message in messages: record = get_dynamo_record(dynamo_table, message) s3_object = s3.get_object( Bucket=record.payload.namespace, Key=record.payload.path ) yield record.id, s3_object def unpack_json_from_s3_objects(s3_objects): for id, s3_object in s3_objects: data = s3_object["Body"].read().decode("utf-8") yield id, json.loads(data) def transform_data_for_es(data, transform): for id, data_dict in data: yield ElasticsearchRecord( id=id, doc=transform(data_dict) ) @log_on_error def process_messages( event, transform, index, table_name, dynamodb=None, s3_client=None, es_client=None, credentials=None ): s3_client = s3_client or boto3.client("s3") dynamo_table = (dynamodb or boto3.resource("dynamodb")).Table(table_name) if credentials and not es_client: es_client = Elasticsearch( hosts=credentials["url"], use_ssl=True, ca_certs=certifi.where(), http_auth=(credentials['username'], credentials['password']) ) elif not es_client: raise ValueError( 'process_messages needs an elasticsearch client or a set of ' 'credentials to create one' ) _process_messages( event, transform, index, dynamo_table, s3_client, es_client ) def _process_messages( event, transform, index, dynamo_table, s3_client, es_client ): messages = extract_sns_messages_from_event(event) s3_objects = get_s3_objects_from_messages( dynamo_table, s3_client, messages ) data = unpack_json_from_s3_objects(s3_objects) es_records_to_send = transform_data_for_es(data, transform) for record in es_records_to_send: es_client.index( index=index, doc_type="_doc", id=record.id, body=json.dumps(record.doc) )
wellcomecollection/aws_utils
src/wellcome_aws_utils/sqs_utils.py
<gh_stars>0 # -*- encoding: utf-8 -*- import boto3 import daiquiri logger = daiquiri.getLogger(__name__) def get_messages(queue_url, delete=False, batch_size=10): """ Gets messages from an SQS queue. If ``delete`` is True, the messages are also deleted after they've been read. """ client = boto3.client('sqs') while True: # We batch message responses to reduce load on the SQS API. # Note: 10 is currently the most messages you can read at once. resp = client.receive_message( QueueUrl=queue_url, AttributeNames=['All'], MaxNumberOfMessages=batch_size ) # If there's nothing available, the queue is empty. Abort! try: logger.info( 'Received %d new messages from %s', len(resp['Messages']), queue_url) except KeyError: logger.info('No messages received from %s; aborting', queue_url) break # If we're deleting the messages ourselves, we don't need to send # the ReceiptHandle to the caller (it's only used for deleting). # If not, we send the entire response. if delete: for m in resp['Messages']: yield {k: v for k, v in m.items() if k != 'ReceiptHandle'} else: yield from resp['Messages'] # Now delete the messages from the queue, so they won't be read # on the next GET call. if delete: logger.info( 'Deleting %d messages from %s', len(resp['Messages']), queue_url) client.delete_message_batch( QueueUrl=queue_url, Entries=[ {'Id': m['MessageId'], 'ReceiptHandle': m['ReceiptHandle']} for m in resp['Messages'] ] )
wellcomecollection/aws_utils
src/wellcome_aws_utils/deployment_utils.py
<filename>src/wellcome_aws_utils/deployment_utils.py #!/usr/bin/env python # -*- encoding: utf-8 -*- """ Shared library to help surface ECS deployment information. """ import collections import datetime from wellcome_aws_utils.ecs_utils import ( get_cluster_arns, get_service_arns, describe_service ) Deployment = collections.namedtuple( 'Deployment', 'deployment_key deployment_status color created_at task_definition' ) DeploymentKey = collections.namedtuple('DeploymentKey', 'id service_arn') DATE_FORMAT = "%Y-%m-%dT%H:%M:%S.%fZ" def _create_deployment_tuple_from_item(item): item_date = datetime.datetime.strptime(item['created_at'], DATE_FORMAT) return Deployment( DeploymentKey(item['deployment_id'], item['service_arn']), item['deployment_status'], item['color'], item_date, item['task_definition'] ) def _create_deployment_tuple_from_ecs(service, deployment): """Takes AWS ECS API Service & Deployment, return Deployment namedtuple.""" deployment_status = deployment['status'] ongoing_deployment = len(service['deployments']) > 1 if ongoing_deployment and (deployment_status == "PRIMARY"): color = "green" else: color = "blue" return Deployment( DeploymentKey(deployment['id'], service['serviceArn']), deployment_status, color, deployment['createdAt'], deployment['taskDefinition'] ) def _get_service_deployments(ecs_client, cluster_arn, service_arn): service = describe_service(ecs_client, cluster_arn, service_arn) return [_create_deployment_tuple_from_ecs(service, deployment) for deployment in service['deployments']] def _get_date_string(date): return date.strftime(DATE_FORMAT) def delete_deployment_in_dynamo(table, deployment): return table.delete_item( Key={ 'deployment_id': deployment.deployment_key.id, 'service_arn': deployment.deployment_key.service_arn } ) def put_deployment_in_dynamo(table, deployment): return table.put_item( Item={ 'deployment_id': deployment.deployment_key.id, 'service_arn': deployment.deployment_key.service_arn, 'deployment_status': deployment.deployment_status, 'color': deployment.color, 'created_at': _get_date_string(deployment.created_at), 'task_definition': deployment.task_definition } ) def update_deployment_in_dynamo(table, deployment): return table.update_item( Key={ 'deployment_id': deployment.deployment_key.id, 'service_arn': deployment.deployment_key.service_arn }, UpdateExpression=""" SET deployment_status = :deployment_status, color = :color, created_at = :created_at, task_definition = :task_definition """, ExpressionAttributeValues={ ':deployment_status': deployment.deployment_status, ':color': deployment.color, ':created_at': _get_date_string(deployment.created_at), ':task_definition': deployment.task_definition } ) def get_deployments_from_dynamo(table): response = table.scan() return [_create_deployment_tuple_from_item(d) for d in response['Items']] def get_deployments_from_ecs(ecs_client): deployments = [] for cluster_arn in get_cluster_arns(ecs_client): for service_arn in get_service_arns(ecs_client, cluster_arn): service_deployments = _get_service_deployments( ecs_client, cluster_arn, service_arn) deployments += service_deployments return deployments
wellcomecollection/aws_utils
src/wellcome_aws_utils/lambda_utils.py
# -*- encoding: utf-8 import functools import sys def log_on_error(fn): @functools.wraps(fn) def wrapper(*args, **kwargs): try: return fn(*args, **kwargs) except Exception: print(f'args = {args!r}', file=sys.stderr) print(f'kwargs = {kwargs!r}', file=sys.stderr) raise return wrapper
wellcomecollection/aws_utils
src/wellcome_aws_utils/dynamo_event.py
<gh_stars>0 from enum import Enum from boto3.dynamodb.types import TypeDeserializer from wellcome_aws_utils.exceptions import UnWellcomeException def create_dynamo_events(event): for record in event['Records']: yield DynamoEvent(record) class DynamoEventType(Enum): REMOVE, INSERT, MODIFY = range(3) class DynamoEvent: def _set_event_type(self, record): if self.record['eventName'] == 'REMOVE': self.event_type = DynamoEventType.REMOVE elif self.record['eventName'] == 'INSERT': self.event_type = DynamoEventType.INSERT elif self.record['eventName'] == 'MODIFY': self.event_type = DynamoEventType.MODIFY else: raise UnWellcomeException( f'Unrecognised eventName found in {record}!' ) def __init__(self, record): self.record = record try: self._set_event_type(record) self.event_source_arn = record['eventSourceARN'] self._keys = record['dynamodb']['Keys'] self._new_image = record['dynamodb'].get('NewImage') self._old_image = record['dynamodb'].get('OldImage') except KeyError as e: raise UnWellcomeException( f'{e} not found in {record}!' ) @staticmethod def _deserialize_values(image): td = TypeDeserializer() return {k: td.deserialize(v) for k, v in image.items()} def keys(self, deserialize_values=False): if deserialize_values and self._keys: return DynamoEvent._deserialize_values(self._keys) return self._keys def new_image(self, deserialize_values=False): if deserialize_values and self._new_image: return DynamoEvent._deserialize_values(self._new_image) return self._new_image def old_image(self, deserialize_values=False): if deserialize_values and self._old_image: return DynamoEvent._deserialize_values(self._old_image) return self._old_image
wellcomecollection/aws_utils
scripts/hypothesistooling.py
<filename>scripts/hypothesistooling.py # coding=utf-8 # # This file is part of Hypothesis, which may be found at # https://github.com/HypothesisWorks/hypothesis-python # # Most of this work is copyright (C) 2013-2017 <NAME> # (<EMAIL>), but it contains contributions by others. See # CONTRIBUTING.rst for a full list of people who may hold copyright, and # consult the git log if you need to determine who owns an individual # contribution. # # This Source Code Form is subject to the terms of the Mozilla Public License, # v. 2.0. If a copy of the MPL was not distributed with this file, You can # obtain one at http://mozilla.org/MPL/2.0/. # # END HEADER from __future__ import division, print_function, absolute_import import os import re import sys import subprocess from datetime import datetime, timedelta def current_branch(): return subprocess.check_output([ 'git', 'rev-parse', '--abbrev-ref', 'HEAD' ]).decode('ascii').strip() def tags(): result = [t.decode('ascii') for t in subprocess.check_output([ 'git', 'tag' ]).split(b"\n")] assert len(set(result)) == len(result) return set(result) ROOT = subprocess.check_output([ 'git', 'rev-parse', '--show-toplevel']).decode('ascii').strip() SRC = os.path.join(ROOT, 'src') assert os.path.exists(SRC) __version__ = None __version_info__ = None VERSION_FILE = os.path.join(ROOT, 'src/wellcome_aws_utils/version.py') DOCS_CONF_FILE = os.path.join(ROOT, 'docs/conf.py') with open(VERSION_FILE) as o: exec(o.read()) assert __version__ is not None assert __version_info__ is not None def latest_version(): versions = [] for t in tags(): # All versions get tags but not all tags are versions (and there are # a large number of historic tags with a different format for versions) # so we parse each tag as a triple of ints (MAJOR, MINOR, PATCH) # and skip any tag that doesn't match that. assert t == t.strip() parts = t.split('.') if len(parts) != 3: continue try: v = tuple(map(int, parts)) except ValueError: continue versions.append((v, t)) _, latest = max(versions) assert latest in tags() return latest def hash_for_name(name): return subprocess.check_output([ 'git', 'rev-parse', name ]).decode('ascii').strip() def is_ancestor(a, b): check = subprocess.call([ 'git', 'merge-base', '--is-ancestor', a, b ]) assert 0 <= check <= 1 return check == 0 CHANGELOG_FILE = os.path.join(ROOT, 'docs', 'changes.rst') def changelog(): with open(CHANGELOG_FILE) as i: return i.read() def merge_base(a, b): return subprocess.check_output([ 'git', 'merge-base', a, b, ]).strip() def has_source_changes(version=None): if version is None: version = latest_version() # Check where we branched off from the version. We're only interested # in whether *we* introduced any source changes, so we check diff from # there rather than the diff to the other side. point_of_divergence = merge_base('HEAD', version) return subprocess.call([ 'git', 'diff', '--exit-code', point_of_divergence, 'HEAD', '--', SRC, ]) != 0 def git(*args): subprocess.check_call(('git',) + args) def create_tag_and_push(): assert __version__ not in tags() git('config', 'user.name', 'Travis CI on behalf of Wellcome') git('config', 'user.email', '<EMAIL>') git('config', 'core.sshCommand', 'ssh -i deploy_key') git( 'remote', 'add', 'ssh-origin', '<EMAIL>:wellcometrust/aws_utils.git' ) git('tag', __version__) subprocess.check_call(['git', 'push', 'ssh-origin', 'HEAD:master']) subprocess.check_call(['git', 'push', 'ssh-origin', '--tags']) def modified_files(): files = set() for command in [ ['git', 'diff', '--name-only', '--diff-filter=d', latest_version(), 'HEAD'], ['git', 'diff', '--name-only'] ]: diff_output = subprocess.check_output(command).decode('ascii') for line in diff_output.split('\n'): filepath = line.strip() if filepath: assert os.path.exists(filepath) files.add(filepath) return files RELEASE_FILE = os.path.join(ROOT, 'RELEASE.rst') def has_release(): return os.path.exists(RELEASE_FILE) CHANGELOG_BORDER = re.compile(r"^-+$") CHANGELOG_HEADER = re.compile(r"^\d+\.\d+\.\d+ - \d\d\d\d-\d\d-\d\d$") RELEASE_TYPE = re.compile(r"^RELEASE_TYPE: +(major|minor|patch)") MAJOR = 'major' MINOR = 'minor' PATCH = 'patch' VALID_RELEASE_TYPES = (MAJOR, MINOR, PATCH) def parse_release_file(): with open(RELEASE_FILE) as i: release_contents = i.read() release_lines = release_contents.split('\n') m = RELEASE_TYPE.match(release_lines[0]) if m is not None: release_type = m.group(1) if release_type not in VALID_RELEASE_TYPES: print('Unrecognised release type %r' % (release_type,)) sys.exit(1) del release_lines[0] release_contents = '\n'.join(release_lines).strip() else: print( 'RELEASE.rst does not start by specifying release type. The first ' 'line of the file should be RELEASE_TYPE: followed by one of ' 'major, minor, or patch, to specify the type of release that ' 'this is (i.e. which version number to increment). Instead the ' 'first line was %r' % (release_lines[0],) ) sys.exit(1) return release_type, release_contents def update_changelog_and_version(): global __version_info__ global __version__ with open(CHANGELOG_FILE) as i: contents = i.read() assert '\r' not in contents lines = contents.split('\n') assert contents == '\n'.join(lines) for i, l in enumerate(lines): if CHANGELOG_BORDER.match(l): assert CHANGELOG_HEADER.match(lines[i + 1]), repr(lines[i + 1]) assert CHANGELOG_BORDER.match(lines[i + 2]), repr(lines[i + 2]) beginning = '\n'.join(lines[:i]) rest = '\n'.join(lines[i:]) assert '\n'.join((beginning, rest)) == contents break release_type, release_contents = parse_release_file() new_version = list(__version_info__) bump = VALID_RELEASE_TYPES.index(release_type) new_version[bump] += 1 for i in range(bump + 1, len(new_version)): new_version[i] = 0 new_version = tuple(new_version) new_version_string = '.'.join(map(str, new_version)) __version_info__ = new_version __version__ = new_version_string for version_file in [VERSION_FILE, DOCS_CONF_FILE]: with open(version_file) as i: version_lines = i.read().split('\n') for i, l in enumerate(version_lines): if 'version_info' in l: version_lines[i] = '__version_info__ = %r' % (new_version,) break with open(version_file, 'w') as o: o.write('\n'.join(version_lines)) now = datetime.utcnow() date = max([ d.strftime('%Y-%m-%d') for d in (now, now + timedelta(hours=1)) ]) heading_for_new_version = ' - '.join((new_version_string, date)) border_for_new_version = '-' * len(heading_for_new_version) new_changelog_parts = [ beginning.strip(), '', border_for_new_version, heading_for_new_version, border_for_new_version, '', release_contents, '', rest ] with open(CHANGELOG_FILE, 'w') as o: o.write('\n'.join(new_changelog_parts)) def update_for_pending_release(): git('config', 'user.name', 'Travis CI on behalf of Wellcome') git('config', 'user.email', '<EMAIL>') update_changelog_and_version() git('rm', RELEASE_FILE) git('add', CHANGELOG_FILE, VERSION_FILE) git( 'commit', '-m', 'Bump version to %s and update changelog' % (__version__,) )
wellcomecollection/aws_utils
docs/build_api_reference.py
<filename>docs/build_api_reference.py #!/usr/bin/env python # -*- encoding: utf-8 -*- import os import subprocess import tempfile import textwrap from bs4 import BeautifulSoup working_dir = os.path.dirname(os.path.abspath(__file__)) os.chdir(working_dir) tmp_dir = tempfile.mkdtemp() subprocess.check_call(['sphinx-build', '-b', 'html', '.', tmp_dir]) html_doc = open(os.path.join(tmp_dir, 'api_src.html')).read() soup = BeautifulSoup(html_doc, 'html.parser') with open('api.rst', 'w') as f: f.write('.. This file is autogenerated; edits will be lost.\n') f.write(' To rebuild this file, run "tox -e check_api_docs".\n\n') f.write('API reference\n') f.write('=============\n\n') reference = soup.find('div', attrs={'id': 'api-reference'}) for section in reference.findAll('div', attrs={'class': 'section'}): title = section.find('h2') title.extract() f.write(title.contents[0] + '\n') f.write('*' * len(title.contents[0]) + '\n\n') f.write('.. raw:: html\n\n') f.write(textwrap.indent( text=''.join([str(s) for s in section.contents]).strip(), prefix=' ' * 4 )) id_span = section.find('span') id_span.extract() f.write('\n\n')
wellcomecollection/aws_utils
src/wellcome_aws_utils/sns_utils.py
# -*- encoding: utf-8 -*- import collections import datetime import decimal import json import logging import warnings from wellcome_aws_utils.exceptions import UnWellcomeException SNSEvent = collections.namedtuple('SNSEvent', 'subject message') logger = logging.getLogger(__name__) class EnhancedJSONEncoder(json.JSONEncoder): def default(self, obj): if isinstance(obj, datetime.datetime): return obj.isoformat() if isinstance(obj, decimal.Decimal): if float(obj).is_integer(): return int(obj) else: return float(obj) return json.JSONEncoder.default(self, obj) def publish_sns_message(sns_client, topic_arn, message, subject="default-subject"): """ Given a topic ARN and a series of key-value pairs, publish the key-value data to the SNS topic. """ response = sns_client.publish( TopicArn=topic_arn, MessageStructure='json', Message=json.dumps({ 'default': json.dumps( message, cls=EnhancedJSONEncoder ) }), Subject=subject ) if response['ResponseMetadata']['HTTPStatusCode'] == 200: logger.debug('SNS: sent notification %s', response["MessageId"]) else: raise RuntimeError(repr(response)) return response def extract_sns_messages_from_lambda_event(event): """ Extracts a JSON message from an SNS event sent to an AWS Lambda. :param event: An event sent to a Lambda from SNS. :returns: A generator of SNSEvent instances. """ if 'Records' not in event: raise UnWellcomeException(f'No records found in {event}') for record in event['Records']: if record['EventSource'] != 'aws:sns': raise UnWellcomeException(f'Invalid message source for {record}') try: subject = record['Sns']['Subject'] message = json.loads(record['Sns']['Message']) except KeyError as e: raise UnWellcomeException( f'Invalid message structure, missing {e} in {record}' ) yield SNSEvent(subject=subject, message=message) def extract_json_message(event): """ Extracts a JSON message from an SNS event sent to a lambda Deprecated in favour of extract_sns_messages_from_lambda_event """ warnings.warn( 'Deprecated in favour of extract_sns_messages_from_lambda_event', DeprecationWarning ) message = event['Records'][0]['Sns']['Message'] return json.loads(message)
wellcomecollection/aws_utils
tests/conftest.py
<reponame>wellcomecollection/aws_utils<gh_stars>0 # -*- encoding: utf-8 -*- import boto3 from moto import mock_sns, mock_sqs import pytest def pytest_runtest_setup(item): set_region() @pytest.fixture() def set_region(): # Without this, boto3 is complaining about not having a region defined # in tests (despite one being set in the Travis env variables and passed # into the image). # TODO: Investigate this properly. boto3.setup_default_session(region_name='eu-west-1') @pytest.fixture() def moto_start(set_region): mock_sns().start() mock_sqs().start() yield mock_sns().stop() mock_sqs().stop() @pytest.fixture() def sns_sqs(set_region, moto_start): fake_sns_client = boto3.client('sns') fake_sqs_client = boto3.client('sqs') queue_name = "test-queue" topic_name = "test-topic" print(f"Creating topic {topic_name} and queue {queue_name}") fake_sns_client.create_topic(Name=topic_name) response = fake_sns_client.list_topics() topic_arn = response["Topics"][0]['TopicArn'] queue = fake_sqs_client.create_queue(QueueName=queue_name) fake_sns_client.subscribe( TopicArn=topic_arn, Protocol="sqs", Endpoint=f"arn:aws:sqs:eu-west-1:123456789012:{queue_name}" ) yield topic_arn, queue['QueueUrl']
wellcomecollection/aws_utils
src/wellcome_aws_utils/s3_utils.py
<filename>src/wellcome_aws_utils/s3_utils.py # -*- encoding: utf-8 -*- import json from urllib.parse import unquote import boto3 from botocore.exceptions import ClientError import dateutil.parser def is_object(bucket, key): """ Checks if an object exists in S3. Returns True/False. :param bucket: Bucket of the object to check. :param key: Key of the object to check. """ client = boto3.client('s3') try: client.head_object(Bucket=bucket, Key=key) except ClientError as err: if err.response['Error']['Code'] == '404': return False else: raise else: return True def copy_object(src_bucket, src_key, dst_bucket, dst_key, lazy=False): """ Copy an object from one S3 bucket to another. :param src_bucket: Bucket of the source object. :param src_key: Key of the source object. :param dst_bucket: Bucket of the destination object. :param dst_key: Key of the destination object. :param lazy: Do a lazy copy. This means that the object will only be copied if the destination object does not exist, or exists but has a different ETag from the source object. """ client = boto3.client('s3') if not is_object(bucket=src_bucket, key=src_key): raise ValueError( f'Tried to copy missing object ({src_bucket}, {src_key})' ) def should_copy(): if not lazy: return True if not is_object(bucket=dst_bucket, key=dst_key): return True src_resp = client.head_object(Bucket=src_bucket, Key=src_key) dst_resp = client.head_object(Bucket=dst_bucket, Key=dst_key) return src_resp['ETag'] == dst_resp['ETag'] if should_copy(): return client.copy_object( CopySource={'Bucket': src_bucket, 'Key': src_key}, Bucket=dst_bucket, Key=dst_key ) def _extract_s3_event(record): event_datetime = dateutil.parser.parse(record["eventTime"]) return { "event_name": record["eventName"], "event_time": event_datetime, "bucket_name": record["s3"]["bucket"]["name"], "object_key": unquote(record["s3"]["object"]["key"]), "size": record["s3"]["object"]["size"], "versionId": record["s3"]["object"].get("versionId") } def parse_s3_record(event): """ Extracts a simple subset of an S3 update event. """ return [_extract_s3_event(record) for record in event["Records"]] def write_objects_to_s3(bucket, key, objects): """ Given an iterable of objects that can be serialised as JSON, serialise them as JSON, and write them to a file in S3, one per line. :param bucket: S3 bucket to upload the new file to. :param key: S3 key to upload the new file to. :param objects: An iterable of objects that can be serialised as JSON. """ # We use sort_keys=True to ensure deterministic results. The separators # flag allows us to write more compact JSON, which makes things faster! # See https://twitter.com/raymondh/status/842777864193769472 json_str = b'\n'.join([ json.dumps(m, sort_keys=True, separators=(',', ':')).encode('ascii') for m in objects ]) client = boto3.client('s3') client.put_object(Bucket=bucket, Key=key, Body=json_str) __all__ = [ 'is_object', 'copy_object', 'parse_s3_record', 'write_objects_to_s3', ]
wellcomecollection/aws_utils
tests/test_sns_utils.py
<gh_stars>0 # -*- encoding: utf-8 -*- from datetime import datetime import json import boto3 from wellcome_aws_utils import sns_utils def test_publish_sns_message(sns_sqs): sns_client = boto3.client('sns') sqs_client = boto3.client('sqs') topic_arn, queue_url = sns_sqs test_message = { 'string': 'a', 'number': 1, 'date': datetime.strptime( 'Jun 1 2005 1:33PM', '%b %d %Y %I:%M%p' ) } expected_decoded_message = { 'string': 'a', 'number': 1, 'date': '2005-06-01T13:33:00' } sns_utils.publish_sns_message(sns_client, topic_arn, test_message) messages = sqs_client.receive_message( QueueUrl=queue_url, MaxNumberOfMessages=1 ) message_body = messages['Messages'][0]['Body'] inner_message = json.loads(message_body)['Message'] actual_decoded_message = json.loads(inner_message) assert ( json.loads(actual_decoded_message['default']) == expected_decoded_message) def test_extract_json_message(): example_object = { "foo": "bar", "baz": ["bat", 0, 0.1, {"boo": "beep"}] } example_object_json = json.dumps(example_object) example_event = { "Records": [ { "Sns": { "Message": example_object_json } } ] } extracted_object = sns_utils.extract_json_message(example_event) assert example_object == extracted_object def test_extract_sns_messages_from_lambda_event(): expected_subject = 'my_subject' expected_message = { "foo": "bar", "baz": ["bat", 0, 0.1, {"boo": "beep"}] } expected_message_json = json.dumps(expected_message) example_event = { "Records": [ { "EventSource": 'aws:sns', "Sns": { "Message": expected_message_json, "Subject": expected_subject } } ] } actual_extracted_message = ( sns_utils.extract_sns_messages_from_lambda_event(example_event) ) assert list(actual_extracted_message) == [sns_utils.SNSEvent( message=expected_message, subject=expected_subject )]
wellcomecollection/aws_utils
tests/test_reporting_utils.py
import json import boto3 from moto import mock_s3, mock_dynamodb2 from unittest.mock import patch from wellcome_aws_utils.reporting_utils import process_messages def create_sns_message(id): return { "Records": [ { "Sns": { "Message": (f'{{"id":"{id}","version":1}}'), "MessageAttributes": {}, "MessageId": "0cf7d798-64c8-45a7-a7bf-a9ebc94d1108", "Type": "Notification", } } ] } def given_s3_has(s3_client, bucket, path, data): s3_client.put_object( ACL="public-read", Bucket=bucket, Key=path, Body=data, CacheControl="max-age=0", ContentType="application/json", ) def identity_transform(record): return record class TestReportingUtils(object): @mock_s3 @mock_dynamodb2 def test_saves_record_in_es(self): with patch('elasticsearch.Elasticsearch') as MockElasticsearch: id = "V0000001" mock_elasticsearch_client = MockElasticsearch() elasticsearch_index = "index" hybrid_data = '{"foo": "bar"}' path = "00/V0000001/0.json" bucket = "bukkit" s3_client = boto3.client('s3') s3_client.create_bucket(Bucket=bucket) given_s3_has( s3_client=s3_client, bucket=bucket, path=path, data=json.dumps(hybrid_data) ) table_name = 'vhs' dynamodb = boto3.resource('dynamodb') dynamodb.create_table( TableName=table_name, AttributeDefinitions=[{ "AttributeName": "id", "AttributeType": "S" }], KeySchema=[{ "AttributeName": "id", "KeyType": "HASH" }], ProvisionedThroughput={ "ReadCapacityUnits": 1, "WriteCapacityUnits": 1, } ) dynamodb.Table(table_name).put_item( Item={ "id": id, "version": 1, "payload": {"namespace": bucket, "path": path} } ) event = create_sns_message(id) process_messages( event, identity_transform, elasticsearch_index, table_name, dynamodb=dynamodb, s3_client=s3_client, es_client=mock_elasticsearch_client ) mock_elasticsearch_client.index.assert_called_once_with( body=json.dumps(hybrid_data), doc_type="_doc", id=id, index=elasticsearch_index )
wellcomecollection/aws_utils
setup.py
# -*- encoding: utf-8 -*- import os from setuptools import find_packages, setup def local_file(name): return os.path.relpath(os.path.join(os.path.dirname(__file__), name)) SOURCE = local_file('src') README = local_file('README.rst') # Assignment to placate pyflakes. The actual version is from the exec that # follows. __version__ = None with open(local_file('src/wellcome_aws_utils/version.py')) as o: exec(o.read()) assert __version__ is not None setup( name='wellcome_aws_utils', packages=find_packages(SOURCE), package_dir={'': SOURCE}, version=__version__, install_requires=[ 'boto3', 'daiquiri', 'python-dateutil', 'elasticsearch', 'attrs' ], python_requires='>=3.6', description='A collection of AWS utilities', long_description=open(README).read(), author='Well<NAME> (Digital Platform Team)', author_email='<EMAIL>', url='https://github.com/wellcometrust/aws_utils', keywords=['aws'], classifiers=[ 'Development Status :: 5 - Production/Stable', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3 :: Only', 'Topic :: Software Development', 'Topic :: Utilities', ], )
wellcomecollection/aws_utils
src/wellcome_aws_utils/exceptions.py
<filename>src/wellcome_aws_utils/exceptions.py # -*- encoding: utf-8 -*- class UnWellcomeException(Exception): """ Base exception for all exceptions raised by this library. """ pass
wellcomecollection/aws_utils
tests/test_ecs_utils.py
<reponame>wellcomecollection/aws_utils<filename>tests/test_ecs_utils.py<gh_stars>0 # -*- encoding: utf-8 -*- import json import boto3 from botocore.exceptions import ClientError from mock import Mock from moto import mock_ecs, mock_ec2 from moto.ec2 import utils as moto_ec2_utils import pytest from wellcome_aws_utils import ecs_utils cluster_name = 'my_cluster' service_name = 'my_service' def ecs_cluster(ecs_client): cluster_response = ecs_client.create_cluster(clusterName=cluster_name) cluster_arn = cluster_response['cluster']['clusterArn'] task_definition_response = ecs_client.register_task_definition( family='my_family', containerDefinitions=[] ) task_definition_arn = ( task_definition_response['taskDefinition']['taskDefinitionArn'] ) service_response = ecs_client.create_service( cluster='my_cluster', serviceName=service_name, taskDefinition=task_definition_arn, desiredCount=0 ) service_arn = service_response['service']['serviceArn'] return task_definition_arn, service_arn, cluster_arn @mock_ecs def test_get_cluster_arns(): ecs_client = boto3.client('ecs') _, _, cluster_arn = ecs_cluster(ecs_client) actual_cluster_list = ecs_utils.get_cluster_arns(ecs_client) assert actual_cluster_list == [cluster_arn] def test_get_cluster_arns_throws_EcsThrottleException(): mock_ecs_client = Mock() mock_ecs_client.list_clusters.side_effect = ClientError( error_response={ 'Error': { 'Code': 'ThrottlingException' } }, operation_name="foo" ) with pytest.raises(ecs_utils.EcsThrottleException): ecs_utils.get_cluster_arns(mock_ecs_client) @mock_ecs def test_get_service_arns(): ecs_client = boto3.client('ecs') _, service_arn, cluster_arn = ecs_cluster(ecs_client) actual_service_list = ( ecs_utils.get_service_arns(ecs_client, cluster_arn) ) assert actual_service_list == [service_arn] def test_get_service_arns_throws_EcsThrottleException(): mock_ecs_client = Mock() mock_ecs_client.list_services.side_effect = ClientError( error_response={'Error': { 'Code': 'ThrottlingException' }}, operation_name="foo" ) with pytest.raises(ecs_utils.EcsThrottleException): ecs_utils.get_service_arns(mock_ecs_client, 'foo/bar') @mock_ecs def test_describe_cluster(): ecs_client = boto3.client('ecs') _, service_arn, cluster_arn = ecs_cluster(ecs_client) actual_cluster_description = ecs_utils.describe_cluster( ecs_client, cluster_arn ) actual_cluster_arn = ( actual_cluster_description['clusterArn'] ) assert actual_cluster_arn == cluster_arn def test_describe_cluster_throws_EcsThrottleException(): mock_ecs_client = Mock() mock_ecs_client.describe_clusters.side_effect = ClientError( error_response={'Error': { 'Code': 'ThrottlingException' }}, operation_name="foo" ) with pytest.raises(ecs_utils.EcsThrottleException): ecs_utils.describe_cluster(mock_ecs_client, 'foo/bar') @mock_ecs def test_describe_service(): ecs_client = boto3.client('ecs') _, service_arn, cluster_arn = ecs_cluster(ecs_client) actual_service_description = ecs_utils.describe_service( ecs_client, cluster_arn, service_arn ) actual_service_arn = ( actual_service_description['serviceArn'] ) assert actual_service_arn == service_arn def test_describe_service_throws_EcsThrottleException(): mock_ecs_client = Mock() mock_ecs_client.describe_services.side_effect = ClientError( error_response={'Error': { 'Code': 'ThrottlingException' }}, operation_name="foo" ) with pytest.raises(ecs_utils.EcsThrottleException): ecs_utils.describe_service(mock_ecs_client, 'foo/bar', 'bat/baz') @mock_ec2 @mock_ecs def test_run_task(): ecs_client = boto3.client('ecs') ec2 = boto3.resource('ec2', region_name='us-east-1') cluster_response = ecs_client.create_cluster(clusterName=cluster_name) cluster_arn = cluster_response['cluster']['clusterArn'] test_instance = ec2.create_instances( ImageId="ami-1234abcd", MinCount=1, MaxCount=1, )[0] instance_id_document = json.dumps( moto_ec2_utils.generate_instance_identity_document(test_instance) ) ecs_client.register_container_instance( cluster=cluster_name, instanceIdentityDocument=instance_id_document ) task_definition_response = ecs_client.register_task_definition( family='my_family', containerDefinitions=[] ) task_definition_arn = ( task_definition_response['taskDefinition']['taskDefinitionArn'] ) started_by = "started_by" response = ecs_utils.run_task( ecs_client, cluster_name, task_definition_arn, started_by) assert len(response["failures"]) == 0 assert len(response["tasks"]) == 1 assert response["tasks"][0]["taskDefinitionArn"] == task_definition_arn assert response["tasks"][0]["clusterArn"] == cluster_arn assert response["tasks"][0]["startedBy"] == started_by
wellcomecollection/aws_utils
tests/test_lambda_utils.py
<gh_stars>0 # -*- encoding: utf-8 from wellcome_aws_utils import lambda_utils as lu @lu.log_on_error def return_2(): return 2 def test_log_on_error_preserves_return_value(): assert return_2() == 2
oleorhagen/mender-configure-module
tests/integration/install-mender-configure.py
<reponame>oleorhagen/mender-configure-module #!/usr/bin/env python3 # Copyright 2021 Northern.tech AS # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import os import tempfile from ext4_manipulator import get, put, extract_ext4, insert_ext4 def main(): img = "mender-image-full-cmdline-rofs-qemux86-64.uefiimg" # Extract ext4 image from img. rootfs = "%s.ext4" % img extract_ext4(img=img, rootfs=rootfs) # Install module put( local_path="mender-configure", remote_path="/usr/share/mender/modules/v3/mender-configure", rootfs=rootfs, remote_path_mkdir_p=True, ) # Install inventory script put( local_path="mender-inventory-mender-configure", remote_path="/usr/share/mender/inventory/mender-inventory-mender-configure", rootfs=rootfs, remote_path_mkdir_p=True, ) # create empty folder tf = tempfile.NamedTemporaryFile(delete=False) try: put( local_path=tf.name, remote_path="/var/lib/mender-configure/.empty-folder", rootfs=rootfs, remote_path_mkdir_p=True, ) finally: os.unlink(tf.name) # Put back ext4 image into img. insert_ext4(img=img, rootfs=rootfs) if __name__ == "__main__": main()
oleorhagen/mender-configure-module
tests/integration/tests/conftest.py
# Copyright 2021 Northern.tech AS # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import sys from os import path sys.path += [path.join(path.dirname(__file__), "..", "mender_integration")] import logging import random import filelock import pytest import urllib3 from mender_integration.testutils.infra.container_manager import docker_compose_manager from mender_integration.testutils.infra.device import MenderDevice from mender_integration.tests.MenderAPI import devauth, reset_mender_api from mender_test_containers.conftest import * from mender_test_containers.container_props import * from mender_integration.tests.conftest import pytest_exception_interact logging.getLogger("requests").setLevel(logging.CRITICAL) logging.getLogger("paramiko").setLevel(logging.CRITICAL) logging.getLogger("urllib3").setLevel(logging.CRITICAL) logging.getLogger("filelock").setLevel(logging.INFO) logging.getLogger("invoke").setLevel(logging.INFO) logging.basicConfig() logging.getLogger().setLevel(logging.DEBUG) urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning) collect_ignore = ["mender_integration"] docker_lock = filelock.FileLock("docker_lock") docker_compose_instance = "mender" + str(random.randint(0, 9999999)) inline_logs = False MenderTestQemux86_64RofsMenderConfigure = ContainerProps( image_name="mendersoftware/mender-client-qemu-rofs-mender-configure", append_mender_version=False, key_filename=path.join( path.dirname(path.realpath(__file__)), "../mender_test_containers/docker/ssh-keys/key", ), ) TEST_CONTAINER_LIST = [MenderTestQemux86_64RofsMenderConfigure] @pytest.fixture(scope="session", params=TEST_CONTAINER_LIST) def setup_test_container_props(request): return request.param @pytest.fixture(scope="session") def mender_version(): return "master" class DockerComposeStandardSetupOneConfigureRofsClient( docker_compose_manager.DockerComposeNamespace ): def __init__( self, extra_compose_file="../docker-compose.client.rofs.configure.yml" ): compose_files = docker_compose_manager.DockerComposeNamespace.QEMU_CLIENT_FILES compose_files += [ path.join( path.dirname(__file__), "../mender_integration/docker-compose.config.yml", ), path.join(path.dirname(__file__), extra_compose_file), ] docker_compose_manager.DockerComposeNamespace.__init__( self, name="mender", extra_files=compose_files ) @pytest.fixture(scope="function") def standard_setup_one_rofs_configure_client(request): env = DockerComposeStandardSetupOneConfigureRofsClient() request.addfinalizer(env.teardown) env.setup() env.device = MenderDevice(env.get_mender_clients()[0]) env.device.ssh_is_opened() reset_mender_api(env) devauth.accept_devices(1) return env