repo_name
stringlengths
6
97
path
stringlengths
3
341
text
stringlengths
8
1.02M
krzem5/Python-Ascii_Img_Converter
src/main.py
<filename>src/main.py from PIL import Image import numpy as np gscale1 = "$@B%8&WM#*oahkbdpqwmZO0QLCJUYXzcvunxrjft/\\|()1{}[]?-_+~<>i!lI;:,\"^`'. " gscale2 = '@%#*+=-:. ' def getAverageL(image): im = np.array(image) w,h = im.shape return np.average(im.reshape(w*h)) def covertImageToAscii(fileName, cols, scale, moreLevels): global gscale1, gscale2 image = Image.open(fileName).convert('L') W, H = image.size[0], image.size[1] print("input image dims: %d x %d" % (W, H)) w = W/cols h = w/scale rows = int(H/h) print("cols: %d, rows: %d" % (cols, rows)) print("tile dims: %d x %d" % (w, h)) if cols > W or rows > H: print("Image too small for specified cols!") exit(0) aimg = [] for j in range(rows): y1 = int(j*h) y2 = int((j+1)*h) if j == rows-1:y2 = H aimg.append("") for i in range(cols): x1 = int(i*w) x2 = int((i+1)*w) if i == cols-1:x2 = W img = image.crop((x1, y1, x2, y2)) avg = int(getAverageL(img)) if moreLevels:gsval = gscale1[int((avg*69)/255)] else:gsval = gscale2[int((avg*9)/255)] aimg[j] += gsval return aimg def main(): # imgFile=input('>FILE>') imgFile="img.jpg" outFile = 'out.txt' scale = 0.43 cols = 100 print('generating ASCII art...') aimg = covertImageToAscii(imgFile, cols, scale, False) with open(outFile, 'w') as f: for row in aimg:f.write(row + '\n') print("ASCII art written to %s" % outFile) if __name__ == '__main__': main()
pjcasas29/wavenet_vocoder_cqt
datasets/wavallinn.py
<reponame>pjcasas29/wavenet_vocoder_cqt from concurrent.futures import ProcessPoolExecutor from functools import partial import numpy as np import os import audio from nnmnkwii import preprocessing as P from hparams import hparams from os.path import exists, basename, splitext import librosa from glob import glob from os.path import join from skimage import io from wavenet_vocoder.util import is_mulaw_quantize, is_mulaw, is_raw def scale_minmax(X, min=0.0, max=1.0): X_std = (X - X.min()) / (X.max() - X.min()) X_scaled = X_std * (max - min) + min return X_scaled def build_from_path(in_dir, out_dir, num_workers=1, tqdm=lambda x: x): executor = ProcessPoolExecutor(max_workers=num_workers) futures = [] index = 1 src_files = sorted(glob(join(in_dir, "*.wav"))) for wav_path in src_files: futures.append(executor.submit( partial(_process_utterance, out_dir, index, wav_path, "dummy"))) index += 1 return [future.result() for future in tqdm(futures)] def _process_utterance(out_dir, index, wav_path, text): # Load the audio to a numpy array: wav = audio.load_wav(wav_path) # Trim begin/end silences # NOTE: the threshold was chosen for clean signals #wav, _ = librosa.effects.trim(wav, top_db=60, frame_length=2048, hop_length=512) #if hparams.highpass_cutoff > 0.0: # wav = audio.low_cut_filter(wav, hparams.sample_rate, hparams.highpass_cutoff) # Mu-law quantize if is_mulaw_quantize(hparams.input_type): # Trim silences in mul-aw quantized domain silence_threshold = 0 #if silence_threshold > 0: # [0, quantize_channels) # out = P.mulaw_quantize(wav, hparams.quantize_channels - 1) # start, end = audio.start_and_end_indices(out, silence_threshold) # wav = wav[start:end] constant_values = P.mulaw_quantize(0, hparams.quantize_channels - 1) out_dtype = np.int16 elif is_mulaw(hparams.input_type): # [-1, 1] constant_values = P.mulaw(0.0, hparams.quantize_channels - 1) out_dtype = np.float32 else: # [-1, 1] constant_values = 0.0 out_dtype = np.float32 # Compute a mel-scale spectrogram from the trimmed wav: # (N, D) mel_spectrogram = audio.logmelspectrogram(wav).astype(np.float32).T if hparams.global_gain_scale > 0: wav *= hparams.global_gain_scale # Time domain preprocessing if hparams.preprocess is not None and hparams.preprocess not in ["", "none"]: f = getattr(audio, hparams.preprocess) wav = f(wav) # Clip if np.abs(wav).max() > 1.0: print("""Warning: abs max value exceeds 1.0: {}""".format(np.abs(wav).max())) # ignore this sample return ("dummy", "dummy", -1, "dummy") wav = np.clip(wav, -1.0, 1.0) # Set waveform target (out) if is_mulaw_quantize(hparams.input_type): out = P.mulaw_quantize(wav, hparams.quantize_channels - 1) elif is_mulaw(hparams.input_type): out = P.mulaw(wav, hparams.quantize_channels - 1) else: out = wav #print(len(wav)) # zero pad # this is needed to adjust time resolution between audio and mel-spectrogram l, r = audio.pad_lr(out, hparams.fft_size, audio.get_hop_size()) if l > 0 or r > 0: out = np.pad(out, (l, r), mode="constant", constant_values=constant_values) N = mel_spectrogram.shape[0] assert len(out) >= N * audio.get_hop_size() # time resolution adjustment # ensure length of raw audio is multiple of hop_size so that we can use # transposed convolution to upsample out = out[:N * audio.get_hop_size()] assert len(out) % audio.get_hop_size() == 0 # Write the spectrograms to disk: name = splitext(basename(wav_path))[0] audio_filename = '%s-wave.npy' % (name) mel_filename = '%s-feats.npy' % (name) spectrogram = '%s-img.png' % (name) from PIL import Image np.save(os.path.join(out_dir, audio_filename), out.astype(out_dtype), allow_pickle=False) np.save(os.path.join(out_dir, mel_filename), mel_spectrogram.astype(np.float32), allow_pickle=False) print("mel_max: " + str(np.max(mel_spectrogram.astype(np.float32)))) print("mel_min: " + str(np.min(mel_spectrogram.astype(np.float32)))) print("mel_shape: " + str(mel_spectrogram.astype(np.float32).shape)) #Save as image img = audio.mel2png(mel_spectrogram.astype(np.float32)) #print("Shape of img before save : " + str(img.shape)) spec_path = os.path.join(out_dir, spectrogram) # save as PNG io.imsave(spec_path, img, check_contrast=False) #Image.fromarray(img).save(os.path.join(out_dir, spectrogram)) # Return a tuple describing this training example: mel_back = audio.png2mel(io.imread(spec_path)) #print("Shape of image after save: " + str(mel_back.shape)) #print("Subtraction: " + str(mel_back - mel_spectrogram)) return (audio_filename, mel_filename, N, text)
olganaumova2007/memory-card
my_memory_card.py
<filename>my_memory_card.py<gh_stars>0 #создай приложение для запоминания информации from PyQt5.QtCore import Qt #подключаем библеотеки from PyQt5.QtWidgets import QApplication,QWidget,QPushButton,QLabel,QVBoxLayout,QHBoxLayout,QRadioButton,QGroupBox,QButtonGroup#подключаем библиотеки и классы from random import shuffle #поключаем модули programma= QApplication([])#создаем оконое приложение glavnoe_okno=QWidget()#создаем главное окно glavnoe_okno.setWindowTitle('Тест') glavnoe_okno.move(900,70) glavnoe_okno.resize(400,200)#устанавливаем высоту и ширину glavnoe_okno.cur_question=-1 question_list=[] class Question():#создаем класс которая будет опредилять правильный ответ дал пользователь или нет def __init__(self,vopros,variant1,variant2,variant3,variant4): self.question=vopros self.right_answer=variant1 self.wrong1=variant2 self.wrong2=variant3 self.wrong3=variant4 def ask(q:Question):#создаем функцию vopros.setText(q.question) shuffle(answer)#здесь смешиваются ответы answer[0].setText(q.right_answer) answer[1].setText(q.wrong1) answer[2].setText(q.wrong2) answer[3].setText(q.wrong3) pravil.setText(q.right_answer) show_question()#вызываем функцию def next_question(): glavnoe_okno.cur_question+=1 if glavnoe_okno.cur_question > len(question_list): glavnoe_okno.cur_question=0 q=question_list[glavnoe_okno.cur_question] ask(q) def check_answer():#создаем функцию ''' если выбран какой-то вариант ответа, то надо проверить и показать панель ответов''' # если выбран кнопка answers[0], то установить в виджет resltat текст 'Правильно!' if answer[0].isChecked(): resltat.setText('Правильно') # иначе, установить 'Неверно!' else: resltat.setText('Не правильно') show_answer() # вызываем функцию show_answer def show_question():#создаем функцию buttonGroup.setExclusive(False) variant1.setChecked(False) variant2.setChecked(False) variant3.setChecked(False) variant4.setChecked(False) buttonGroup.setExclusive(True) gruppavopros.show()#показываем вопрос gruppaotvet.hide()#скрываем ответ knopka.setText('Ответить') def show_answer():#создаем функцию для того что бы показать правильный ответ gruppavopros.hide()#спрятать вопрос gruppaotvet.show()#показать ответ knopka.setText('Следующий вопрос') def start():#создаем функцию обработка клика по кнопке if knopka.text()=='Ответить': check_answer() # вызывать функцию проверки ответа else: next_question() vopros=QLabel('Какой национальности не существует')#создаем виджет вопрос gruppavopros=QGroupBox('Вариант ответа')#создаем виджет группу variant1=QRadioButton('Энцы') variant2=QRadioButton('Смурфы') variant3=QRadioButton('Чулымцы') variant4=QRadioButton('Алеуты') answer = [variant1,variant2,variant3,variant4] naprav_gruppa=QVBoxLayout() naprav_gruppa.addWidget(variant1) naprav_gruppa.addWidget(variant2) naprav_gruppa.addWidget(variant3) naprav_gruppa.addWidget(variant4) gruppavopros.setLayout(naprav_gruppa) buttonGroup=QButtonGroup() buttonGroup.addButton(variant1) buttonGroup.addButton(variant2) buttonGroup.addButton(variant3) buttonGroup.addButton(variant4) knopka=QPushButton('Ответить') gruppaotvet=QGroupBox('Результат')# resltat=QLabel('Правильно') pravil=QLabel('тут будет правильный ответ') gruppanapravotvet=QVBoxLayout() gruppanapravotvet.addWidget(resltat) gruppanapravotvet.addWidget(pravil)#ghb gruppaotvet.setLayout(gruppanapravotvet)#привязываем к направляющей gruppaotvet.hide()#скрытие группу ответа для скрытия вопроса glavnapr = QVBoxLayout() glavnapr.addWidget(vopros) glavnapr.addWidget(gruppavopros) glavnapr.addWidget(gruppaotvet) glavnapr.addWidget(knopka) glavnoe_okno.setLayout(glavnapr) knopka.clicked.connect(start) q1=Question('Какой национальности не существует?','Энцы','Смурфы','Чулымцы','Алеуты') q2=Question('2+5?','7','2','5','9') q3=Question('5+5?','10','4','676','0') q4=Question('567+3?','570','345','5689','569') question_list.append(q1) question_list.append(q2) question_list.append(q3) question_list.append(q4) next_question() glavnoe_okno.show() programma.exec_()
cq615/Joint-Motion-Estimation-and-Segmentation
main.py
<reponame>cq615/Joint-Motion-Estimation-and-Segmentation<filename>main.py import os, time, h5py, sys from models.seg_network import build_FCN_triple_branch from dataio.dataset import * from utils.metrics import * from dataio.data_generator import * from utils.visualise import * import lasagne.layers as L import lasagne import theano import theano.tensor as T if __name__ == '__main__': shift = 10 rotate = 10 scale = 0.1 intensity = 0.1 flip = False base_path = 'seg_flow' data_path = os.path.join(base_path, 'data') model_path = os.path.join(base_path, 'model') size = 192 n_class = 4 # Prepare theano variables image_var = T.tensor4('image') image_pred_var = T.tensor4('image_pred') label_var = T.itensor4('label') image_seg_var = T.tensor4('seg') # Compile the model (CNN one, to build RNN one, compile build_FCN_triple_branch_rnn and use sequence data) net = build_FCN_triple_branch(image_var, image_pred_var, image_seg_var, shape=(None, 1, size, size)) model_file = os.path.join(model_path, 'FCN_VGG16_sz192_joint_learn_ft_tmp.npz') with np.load(model_file) as f: param_values = [f['arr_%d' % i] for i in range(len(f.files))] L.set_all_param_values([net['out'], net['outs']], param_values) learning_rate = T.scalar('learning_rate') prediction = L.get_output(net['fr_st']) loc = L.get_output(net['out']) flow_loss = lasagne.objectives.squared_error(prediction, image_pred_var) flow_loss = flow_loss.mean() + 0.001 * huber_loss(loc) prediction_seg = L.get_output(net['outs']) loss_seg = categorical_crossentropy(prediction_seg, label_var) loss = flow_loss + 0.01 * loss_seg.mean() params = L.get_all_params(net['out'], trainable=True) updates = lasagne.updates.adam(loss, params, learning_rate, beta1=0.9, beta2=0.999, epsilon=1e-08) # Compile a function performing a training step on a mini-batch and returning the corresponding training loss train_fn_flow = theano.function([image_var, image_pred_var, image_seg_var, label_var, learning_rate], [loss, flow_loss, loss_seg.mean()], updates=updates, on_unused_input='ignore') params = lasagne.layers.get_all_params(net['outs'], trainable=True) updates = lasagne.updates.adam(loss, params, learning_rate, beta1=0.9, beta2=0.999, epsilon=1e-08) train_fn_seg = theano.function([image_var, image_pred_var, image_seg_var, label_var, learning_rate], [loss,flow_loss, loss_seg.mean()], updates=updates,on_unused_input='ignore') model_name = 'FCN_VGG16_sz{0}'.format(size) test_prediction = lasagne.layers.get_output(net['outs']) test_loss = categorical_crossentropy(test_prediction, label_var) test_acc = categorical_accuracy(test_prediction, label_var) test_dice_lv = categorical_dice(test_prediction, label_var, 1) test_dice_myo = categorical_dice(test_prediction, label_var, 2) test_dice_rv = categorical_dice(test_prediction, label_var, 3) # Compile a second function computing the testing loss and accuracy test_fn = theano.function([image_seg_var, label_var], [test_acc, test_dice_lv, test_dice_myo, test_dice_rv], on_unused_input='ignore') # Launch the training loop print("Starting training...") np.random.seed(100) start_time = time.time() table = [] num_epoch = 100 max_iter = 100 batch_size = 64 start = 1 lr = 1e-4 log_every = 100 data_train_path = 'train' test_image, test_label = load_dataset(os.path.join(data_path, 'test_UKBB2964_sz{0}_n100.h5'.format(size))) for epoch in range(start, start + num_epoch): # In each epoch, we do a full pass over the training data: start_time_epoch = time.time() train_loss = 0 train_loss_image = 0 train_loss_seg = 0 train_batches = 10 for t in range(max_iter): image, label = generate_batch(data_train_path, batch_size=6, img_size=192) image2, label2 = data_augmenter(image, label, shift=shift, rotate=rotate, scale=scale, intensity=intensity, flip=flip) label2_1hot = convert_to_1hot(label2, n_class) # Train motion estimation and segmentation iteratively. After pretraining, the network can be trained jointly. loss, loss_flow, loss_seg = train_fn_flow(image2[:, 0:1], image2[:, 1:], image2[:, 1:], label2_1hot, lr) loss, loss_flow, loss_seg = train_fn_seg(image2[:,0:1], image2[:,1:],image2[:,1:], label2_1hot, lr) # add warped segmentation loss #loss, loss_flow, loss_seg = train_fn_seg_warped(image2[:, 0:1], image2[:, 1:], image2[:, 0:1], label2_1hot,1e-6) train_loss += loss train_loss_image += loss_flow train_loss_seg += loss_seg train_batches += 1 if train_batches % log_every == 0: # # And a full pass over the testing data: test_loss = 0 test_acc = 0 test_dice_lv = 0 test_dice_myo = 0 test_dice_rv = 0 test_batches = 0 for image_test, label_test in iterate_minibatches(test_image, test_label, batch_size): label_1hot = convert_to_1hot(label_test, n_class) acc, dice_lv, dice_myo, dice_rv = test_fn(image_test, label_1hot) test_acc += acc test_dice_lv += dice_lv test_dice_myo += dice_myo test_dice_rv += dice_rv test_batches += 1 test_acc /= test_batches test_dice_lv /= test_batches test_dice_myo /= test_batches test_dice_rv /= test_batches # Then we print the results for this epoch: print("Epoch {} of {} took {:.3f}s".format(epoch, start + num_epoch - 1, time.time() - start_time_epoch)) # print(' learning rate:\t\t{:.8f}'.format(float(learning_rate.get_value()))) print(" training loss:\t\t{:.6f}".format(train_loss / train_batches)) print(" training loss flow: \t\t{:.6f}".format(train_loss_image / train_batches)) print(" training loss seg: \t\t{:.6f}".format(train_loss_seg / train_batches)) print(" testing accuracy:\t\t{:.2f} %".format(test_acc * 100)) print(" testing Dice LV:\t\t{:.6f}".format(test_dice_lv)) print(" testing Dice Myo:\t\t{:.6f}".format(test_dice_myo)) print(" testing Dice RV:\t\t{:.6f}".format(test_dice_rv)) np.savez(os.path.join(model_path, '{0}_joint_learn_ft_tmp.npz'.format(model_name, epoch)), *lasagne.layers.get_all_param_values([net['out'], net['outs']])) np.savez(os.path.join(model_path, '{0}_joint_learn_ft1_epoch{1:03d}.npz'.format(model_name, epoch)), *lasagne.layers.get_all_param_values([net['out'], net['outs']])) print("Training took {:.3f}s in total.".format(time.time() - start_time))
cq615/Joint-Motion-Estimation-and-Segmentation
dataio/dataset.py
<gh_stars>10-100 import os, time, h5py, sys import nibabel as nib import cv2 import numpy as np from scipy import ndimage def load_dataset(filename): f = h5py.File(filename, 'r') image = np.array(f['image']) label = np.array(f['label']) return image, label def convert_to_1hot(label, n_class): # Convert a label map (N x 1 x H x W) into a one-hot representation (N x C x H x W) label_swap = label.swapaxes(1, 3) label_flat = label_swap.flatten() n_data = len(label_flat) label_1hot = np.zeros((n_data, n_class), dtype='int16') label_1hot[range(n_data), label_flat] = 1 label_1hot = label_1hot.reshape((label_swap.shape[0], label_swap.shape[1], label_swap.shape[2], n_class)) label_1hot = label_1hot.swapaxes(1, 3) return label_1hot def convert_to_1hot_3d(label, n_class): # Convert a label map (N1XYZ) into a one-hot representation (NCXYZ) label_swap = label.swapaxes(1, 4) label_flat = label_swap.flatten() n_data = len(label_flat) label_1hot = np.zeros((n_data, n_class), dtype='int16') label_1hot[range(n_data), label_flat] = 1 label_1hot = label_1hot.reshape((label_swap.shape[0], label_swap.shape[1], label_swap.shape[2], label_swap.shape[3], n_class)) label_1hot = label_1hot.swapaxes(1, 4) return label_1hot def data_augmenter(image, label, shift=0.0, rotate=0.0, scale=0.0, intensity=0.0, flip=False): # Perform affine transformation on image and label, which are 4D tensors of dimension (N, C, X, Y). image2 = np.zeros(image.shape, dtype='float32') label2 = np.zeros(label.shape, dtype='int16') for i in range(image.shape[0]): # Random affine transformation using normal distributions shift_var = [np.clip(np.random.normal(), -3, 3) * shift, np.clip(np.random.normal(), -3, 3) * shift] rotate_var = np.clip(np.random.normal(), -3, 3) * rotate scale_var = 1 + np.clip(np.random.normal(), -3, 3) * scale intensity_var = 1 + np.clip(np.random.normal(), -3, 3) * intensity # Apply affine transformation (rotation + scale + shift) to training images row, col = image.shape[2:] M = cv2.getRotationMatrix2D((row / 2, col / 2), rotate_var, 1.0 / scale_var) M[:, 2] += shift_var for c in range(image.shape[1]): image2[i, c] = ndimage.interpolation.affine_transform(image[i, c], M[:, :2], M[:, 2], order=1) label2[i, 0] = ndimage.interpolation.affine_transform(label[i, 0], M[:, :2], M[:, 2], order=0) # Apply intensity variation image2[i, :] *= intensity_var # Apply random horizontal or vertical flipping if flip: if np.random.uniform() >= 0.5: image2[i, :] = image2[i, :, ::-1, :] label2[i, 0] = label2[i, 0, ::-1, :] else: image2[i, :] = image2[i, :, :, ::-1] label2[i, 0] = label2[i, 0, :, ::-1] return image2, label2 def data_augmenter_3d(image, label, shift=0.0, rotate=0.0, scale=0.0, intensity=0.0, flip=False): # Perform affine transformation on image and label, which are 4D tensors of dimension (N, C, X, Y). image2 = np.zeros(image.shape, dtype='float32') label2 = np.zeros(label.shape, dtype='int16') for i in range(image.shape[0]): # Random affine transformation using normal distributions shift_var = [np.clip(np.random.normal(), -3, 3) * shift, np.clip(np.random.normal(), -3, 3) * shift] rotate_var = np.clip(np.random.normal(), -3, 3) * rotate scale_var = 1 + np.clip(np.random.normal(), -3, 3) * scale intensity_var = 1 + np.clip(np.random.normal(), -3, 3) * intensity # Apply affine transformation (rotation + scale + shift) to training images row, col = image.shape[2:4] M = cv2.getRotationMatrix2D((row / 2, col / 2), rotate_var, 1.0 / scale_var) M[:, 2] += shift_var for z in range(image.shape[4]): image2[i, 0, :, :, z] = ndimage.interpolation.affine_transform(image[i, 0, :, :, z], M[:, :2], M[:, 2], order=1) label2[i, 0, :, :, z] = ndimage.interpolation.affine_transform(label[i, 0, :, :, z], M[:, :2], M[:, 2], order=0) # Apply intensity variation image2[i] *= intensity_var # Apply random horizontal or vertical flipping if flip: if np.random.uniform() >= 0.5: image2[i] = image2[i, :, ::-1, :] label2[i] = label2[i, :, ::-1, :] else: image2[i] = image2[i, :, :, ::-1] label2[i] = label2[i, :, :, ::-1] return image2, label2
cq615/Joint-Motion-Estimation-and-Segmentation
models/network.py
<filename>models/network.py # -*- coding: utf-8 -*- """ Created on Wed Jan 24 16:44:08 2018 @author: cq615 """ import theano import theano.tensor as T from theano.sandbox.cuda import dnn import lasagne import lasagne.layers as L from lasagne.layers.base import Layer from lasagne.utils import as_tuple from lasagne.layers.pool import pool_output_length import numpy as np from layers import * def Conv(incoming, num_filters, filter_size=3, stride=(1, 1), pad='same', W=lasagne.init.HeNormal(), b=None, nonlinearity=lasagne.nonlinearities.rectify, **kwargs): """ Overrides the default parameters for ConvLayer """ ensure_set_name('conv', kwargs) return L.Conv2DLayer(incoming, num_filters, filter_size, stride, pad, W=W, b=b, nonlinearity=nonlinearity, **kwargs) # Calculate the memory required for a network def memory_requirement(layer): # Data blobs sum = 0 for l in L.get_all_layers(layer): sum += np.prod(l.output_shape) float_len = 4 sum = (sum * float_len) / pow(2, 30) print('Memory for data blobs = {0:.3f}GB'.format(sum)) # Parameters sum = 0 for l in L.get_all_layers(layer): for p in l.get_params(): sum += np.prod(p.get_value().shape) print('Number of parameters = {0}'.format(sum)) sum = (sum * float_len) / pow(2, 30) print('Memory for parameters = {0:.3f}GB'.format(sum)) def bilinear_1d(sz): if sz % 2 == 0: raise NotImplementedError('`Bilinear kernel` requires odd filter size.') c = (sz + 1) / 2 h = np.array(range(1, c + 1) + range(c - 1, 0, -1)) h = h / float(c) return h def bilinear_2d(sz): W = np.ones((sz, sz)) h = bilinear_1d(sz) for i in range(sz): W[i, :] *= h for j in range(sz): W[:, j] *= h return W def set_conv_bilinear_weights(params, num_filters, filter_size): # Set weights [W, b] = params W_val = np.zeros((num_filters, num_filters, filter_size, filter_size), dtype=np.float32) for c in range(num_filters): W_val[c, c, :, :] = bilinear_2d(filter_size) b_val = np.zeros((num_filters,), dtype=np.float32) W.set_value(W_val) b.set_value(b_val) class BilinearUpsamplingLayer(Layer): """ 2D bilinear upsampling layer Performs 2D bilinear upsampling over the two trailing axes of a 4D or 5D input tensor. Parameters ---------- incoming : a :class:`Layer` instance or tuple The layer feeding into this layer, or the expected input shape. scale_factor : integer or iterable The scale factor in each dimension. If an integer, it is promoted to a square scale factor region. If an iterable, it should have two elements. **kwargs Any additional keyword arguments are passed to the :class:`Layer` superclass. """ def __init__(self, incoming, scale_factor, **kwargs): super(BilinearUpsamplingLayer, self).__init__(incoming, **kwargs) self.scale_factor = scale_factor if self.scale_factor < 1: raise ValueError('Scale factor must be >= 1, not {0}'.format(self.scale_factor)) def get_output_shape_for(self, input_shape): output_shape = list(input_shape) # copy / convert to mutable list if output_shape[2] is not None: output_shape[2] *= self.scale_factor if output_shape[3] is not None: output_shape[3] *= self.scale_factor return tuple(output_shape) def get_output_for(self, input, **kwargs): upscaled = input if self.scale_factor > 1: if input.ndim == 4: upscaled = T.nnet.abstract_conv.bilinear_upsampling(input=input, ratio=self.scale_factor) elif input.ndim == 5: # Swap dimension order from bcxyz to bczyx input_swap = input.swapaxes(2, 4) shape = input_swap.shape # Squeeze the first two dimensions so it becomes a 4D tensor # and 2D bilinear_upsampling can be applied. input_reshape = input_swap.reshape((shape[0] * shape[1], shape[2], shape[3], shape[4])) upscaled = T.nnet.abstract_conv.bilinear_upsampling(input=input_reshape, ratio=self.scale_factor) # Recover the 5D tensor shape upscaled_reshape = upscaled.reshape((shape[0], shape[1], shape[2], \ shape[3] * self.scale_factor, shape[4] * self.scale_factor)) upscaled = upscaled_reshape.swapaxes(2, 4) return upscaled class Conv3DDNNLayer(lasagne.layers.conv.BaseConvLayer): """ lasagne.layers.Conv3DDNNLayer(incoming, num_filters, filter_size, stride=(1, 1, 1), pad=0, untie_biases=False, W=lasagne.init.GlorotUniform(), b=lasagne.init.Constant(0.), nonlinearity=lasagne.nonlinearities.rectify, flip_filters=False, **kwargs) 3D convolutional layer Performs a 3D convolution on its input and optionally adds a bias and applies an elementwise nonlinearity. This implementation uses ``theano.sandbox.cuda.dnn.dnn_conv3d`` directly. Parameters ---------- incoming : a :class:`Layer` instance or a tuple The layer feeding into this layer, or the expected input shape. The output of this layer should be a 5D tensor, with shape ``(batch_size, num_input_channels, input_rows, input_columns, input_depth)``. num_filters : int The number of learnable convolutional filters this layer has. filter_size : int or iterable of int An integer or a 3-element tuple specifying the size of the filters. stride : int or iterable of int An integer or a 3-element tuple specifying the stride of the convolution operation. pad : int, iterable of int, 'full', 'same' or 'valid' (default: 0) By default, the convolution is only computed where the input and the filter fully overlap (a valid convolution). When ``stride=1``, this yields an output that is smaller than the input by ``filter_size - 1``. The `pad` argument allows you to implicitly pad the input with zeros, extending the output size. A single integer results in symmetric zero-padding of the given size on all borders, a tuple of three integers allows different symmetric padding per dimension. ``'full'`` pads with one less than the filter size on both sides. This is equivalent to computing the convolution wherever the input and the filter overlap by at least one position. ``'same'`` pads with half the filter size (rounded down) on both sides. When ``stride=1`` this results in an output size equal to the input size. Even filter size is not supported. ``'valid'`` is an alias for ``0`` (no padding / a valid convolution). Note that ``'full'`` and ``'same'`` can be faster than equivalent integer values due to optimizations by Theano. untie_biases : bool (default: False) If ``False``, the layer will have a bias parameter for each channel, which is shared across all positions in this channel. As a result, the `b` attribute will be a vector (1D). If True, the layer will have separate bias parameters for each position in each channel. As a result, the `b` attribute will be a 4D tensor. W : Theano shared variable, expression, numpy array or callable Initial value, expression or initializer for the weights. These should be a 5D tensor with shape ``(num_filters, num_input_channels, filter_rows, filter_columns, filter_depth)``. See :func:`lasagne.utils.create_param` for more information. b : Theano shared variable, expression, numpy array, callable or ``None`` Initial value, expression or initializer for the biases. If set to ``None``, the layer will have no biases. Otherwise, biases should be a 1D array with shape ``(num_filters,)`` if `untied_biases` is set to ``False``. If it is set to ``True``, its shape should be ``(num_filters, output_rows, output_columns, output_depth)`` instead. See :func:`lasagne.utils.create_param` for more information. nonlinearity : callable or None The nonlinearity that is applied to the layer activations. If None is provided, the layer will be linear. flip_filters : bool (default: False) Whether to flip the filters and perform a convolution, or not to flip them and perform a correlation. Flipping adds a bit of overhead, so it is disabled by default. In most cases this does not make a difference anyway because the filters are learned, but if you want to compute predictions with pre-trained weights, take care if they need flipping. **kwargs Any additional keyword arguments are passed to the `Layer` superclass. Attributes ---------- W : Theano shared variable or expression Variable or expression representing the filter weights. b : Theano shared variable or expression Variable or expression representing the biases. """ def __init__(self, incoming, num_filters, filter_size, stride=(1, 1, 1), pad=0, untie_biases=False, W=lasagne.init.GlorotUniform(), b=lasagne.init.Constant(0.), nonlinearity=lasagne.nonlinearities.rectify, flip_filters=False, convolution=dnn.dnn_conv3d, **kwargs): super(Conv3DDNNLayer, self).__init__(incoming, num_filters, filter_size, stride, pad, untie_biases, W, b, nonlinearity, flip_filters, n=3, **kwargs) self.convolution = convolution def convolve(self, input, **kwargs): # by default we assume 'cross', consistent with corrmm. conv_mode = 'conv' if self.flip_filters else 'cross' border_mode = self.pad if border_mode == 'same': border_mode = tuple(s // 2 for s in self.filter_size) conved = self.convolution(img=input, kerns=self.W, border_mode=border_mode, subsample=self.stride, conv_mode=conv_mode) return conved class Pool3DDNNLayer(Layer): """ 3D pooling layer Performs 3D mean- or max-pooling over the 3 trailing axes of a 5D input tensor. This is an alternative implementation which uses ``theano.sandbox.cuda.dnn.dnn_pool`` directly. Parameters ---------- incoming : a :class:`Layer` instance or tuple The layer feeding into this layer, or the expected input shape. pool_size : integer or iterable The length of the pooling region in each dimension. If an integer, it is promoted to a square pooling region. If an iterable, it should have two elements. stride : integer, iterable or ``None`` The strides between sucessive pooling regions in each dimension. If ``None`` then ``stride = pool_size``. pad : integer or iterable Number of elements to be added on each side of the input in each dimension. Each value must be less than the corresponding stride. ignore_border : bool (default: True) This implementation never includes partial pooling regions, so this argument must always be set to True. It exists only to make sure the interface is compatible with :class:`lasagne.layers.MaxPool2DLayer`. mode : string Pooling mode, one of 'max', 'average_inc_pad' or 'average_exc_pad'. Defaults to 'max'. **kwargs Any additional keyword arguments are passed to the :class:`Layer` superclass. Notes ----- The value used to pad the input is chosen to be less than the minimum of the input, so that the output of each pooling region always corresponds to some element in the unpadded input region. """ def __init__(self, incoming, pool_size, stride=None, pad=(0, 0, 0), ignore_border=True, mode='max', **kwargs): super(Pool3DDNNLayer, self).__init__(incoming, **kwargs) self.pool_size = as_tuple(pool_size, 3) if len(self.input_shape) != 5: raise ValueError("Tried to create a 3D pooling layer with " "input shape %r. Expected 5 input dimensions " "(batchsize, channels, 3 spatial dimensions)." % (self.input_shape,)) if stride is None: self.stride = self.pool_size else: self.stride = as_tuple(stride, 3) self.pad = as_tuple(pad, 3) self.mode = mode # The ignore_border argument is for compatibility with MaxPool2DLayer. # ignore_border=False is not supported. Borders are always ignored. self.ignore_border = ignore_border if not self.ignore_border: raise NotImplementedError("Pool3DDNNLayer does not support " "ignore_border=False.") def get_output_shape_for(self, input_shape): output_shape = list(input_shape) # copy / convert to mutable list output_shape[2] = pool_output_length(input_shape[2], pool_size=self.pool_size[0], stride=self.stride[0], pad=self.pad[0], ignore_border=self.ignore_border, ) output_shape[3] = pool_output_length(input_shape[3], pool_size=self.pool_size[1], stride=self.stride[1], pad=self.pad[1], ignore_border=self.ignore_border, ) output_shape[4] = pool_output_length(input_shape[4], pool_size=self.pool_size[2], stride=self.stride[2], pad=self.pad[2], ignore_border=self.ignore_border, ) return tuple(output_shape) def get_output_for(self, input, **kwargs): pooled = dnn.dnn_pool(input, self.pool_size, self.stride, self.mode, self.pad) return pooled class MaxPool3DDNNLayer(Pool3DDNNLayer): """ 3D max-pooling layer Performs 3D max-pooling over the three trailing axes of a 5D input tensor. """ def __init__(self, incoming, pool_size, stride=None, pad=(0, 0, 0), ignore_border=True, **kwargs): super(MaxPool3DDNNLayer, self).__init__(incoming, pool_size, stride, pad, ignore_border, mode='max', **kwargs) def softmax_4dtensor(x): e_x = T.exp(x - x.max(axis=1, keepdims=True)) e_x = e_x / e_x.sum(axis=1, keepdims=True) return e_x def build_FCN(image_var, shape=(None, 1, None, None), n_class=1, load_vgg=False): # Build fully-connected network for semantic segmentation only net = {} net['in'] = L.InputLayer(shape, image_var) net['conv1_1'] = L.batch_norm(L.Conv2DLayer(net['in'], filter_size=3, num_filters=64, pad='same')) net['conv1_2'] = L.batch_norm(L.Conv2DLayer(net['conv1_1'], filter_size=3, num_filters=64, pad='same')) net['conv2_1'] = L.batch_norm(L.Conv2DLayer(net['conv1_2'], stride=2, filter_size=3, num_filters=128, pad='same')) net['conv2_2'] = L.batch_norm(L.Conv2DLayer(net['conv2_1'], filter_size=3, num_filters=128, pad='same')) net['conv3_1'] = L.batch_norm(L.Conv2DLayer(net['conv2_2'], stride=2, filter_size=3, num_filters=256, pad='same')) net['conv3_2'] = L.batch_norm(L.Conv2DLayer(net['conv3_1'], filter_size=3, num_filters=256, pad='same')) net['conv3_3'] = L.batch_norm(L.Conv2DLayer(net['conv3_2'], filter_size=3, num_filters=256, pad='same')) net['conv4_1'] = L.batch_norm(L.Conv2DLayer(net['conv3_3'], stride=2, filter_size=3, num_filters=512, pad='same')) net['conv4_2'] = L.batch_norm(L.Conv2DLayer(net['conv4_1'], filter_size=3, num_filters=512, pad='same')) net['conv4_3'] = L.batch_norm(L.Conv2DLayer(net['conv4_2'], filter_size=3, num_filters=512, pad='same')) net['conv5_1'] = L.batch_norm(L.Conv2DLayer(net['conv4_3'], stride=2, filter_size=3, num_filters=512, pad='same')) net['conv5_2'] = L.batch_norm(L.Conv2DLayer(net['conv5_1'], filter_size=3, num_filters=512, pad='same')) net['conv5_3'] = L.batch_norm(L.Conv2DLayer(net['conv5_2'], filter_size=3, num_filters=512, pad='same')) net['out1'] = L.batch_norm(L.Conv2DLayer(net['conv1_2'], filter_size=3, num_filters=64, pad='same')) net['out2'] = L.batch_norm(L.Conv2DLayer(net['conv2_2'], filter_size=3, num_filters=64, pad='same')) net['out3'] = L.batch_norm(L.Conv2DLayer(net['conv3_3'], filter_size=3, num_filters=64, pad='same')) net['out4'] = L.batch_norm(L.Conv2DLayer(net['conv4_3'], filter_size=3, num_filters=64, pad='same')) net['out5'] = L.batch_norm(L.Conv2DLayer(net['conv5_3'], filter_size=3, num_filters=64, pad='same')) net['out2_up'] = BilinearUpsamplingLayer(net['out2'], scale_factor=2) net['out3_up'] = BilinearUpsamplingLayer(net['out3'], scale_factor=4) net['out4_up'] = BilinearUpsamplingLayer(net['out4'], scale_factor=8) net['out5_up'] = BilinearUpsamplingLayer(net['out5'], scale_factor=16) net['concat'] = L.ConcatLayer([net['out1'], net['out2_up'], net['out3_up'], net['out4_up'], net['out5_up']]) net['comb_1'] = L.Conv2DLayer(net['concat'], filter_size=1, num_filters=64, pad='same', nonlinearity=None) net['comb_2'] = L.batch_norm(L.Conv2DLayer(net['comb_1'], filter_size=1, num_filters=64, pad='same')) net['out'] = L.Conv2DLayer(net['comb_2'], filter_size=1, num_filters=n_class, pad='same', nonlinearity=softmax_4dtensor) # Initialise the weights for the combination layer so that concatenation is initially equivalent to summation print('Initialise the combination weights ...') W = np.zeros(net['comb_1'].get_params()[0].get_value().shape, dtype='float32') b = np.zeros(net['comb_1'].get_params()[1].get_value().shape, dtype='float32') for i in range(64): W[i, i::64] = 1.0 b[i] = 0.0 net['comb_1'].get_params()[0].set_value(W) net['comb_1'].get_params()[1].set_value(b) if load_vgg: # Initialise the convolutional layers using VGG16 weights print('Initialise the convolutional layers using VGG16 weights ...') with np.load('/vol/biomedic/users/wbai/data/deep_learning/VGG/VGG_ILSVRC_16_layers.npz') as f: vgg = f['vgg'][()] for layer_name in ['conv1_1', 'conv1_2', 'conv2_1', 'conv2_2', 'conv3_1', 'conv3_2', 'conv3_3', 'conv4_1', 'conv4_2', 'conv4_3', 'conv5_1', 'conv5_2', 'conv5_3']: # Since we apply batch_norm to the convolutional layer, each layer becomes Conv + BN + ReLU. # We need to find the original Conv layer by using .input_layer twice. # Also, batch_norm will remove the bias parameter b. Only W is kept. if layer_name == 'conv1_1': W_mean = np.mean(vgg[layer_name]['W'], axis=1, keepdims=True) net[layer_name].input_layer.input_layer.get_params()[0].set_value(np.repeat(W_mean, shape[1], axis=1)) else: net[layer_name].input_layer.input_layer.get_params()[0].set_value(vgg[layer_name]['W']) return net def build_FCN_triple_branch(image_var, image_pred_var, image_seg_var, shape=(None, 1, None, None), n_class=1, load_vgg=False): # Build fully-connected network for motion estimation and semantic segmentation net = {} # Siamese-style motion estimation brach net['in'] = L.InputLayer(shape, image_var) net['conv1_1'] = L.batch_norm(L.Conv2DLayer(net['in'], filter_size=3, num_filters=64, pad='same')) net['conv1_2'] = L.batch_norm(L.Conv2DLayer(net['conv1_1'], filter_size=3, num_filters=64, pad='same')) net['conv2_1'] = L.batch_norm(L.Conv2DLayer(net['conv1_2'], stride=2, filter_size=3, num_filters=128, pad='same')) net['conv2_2'] = L.batch_norm(L.Conv2DLayer(net['conv2_1'], filter_size=3, num_filters=128, pad='same')) net['conv3_1'] = L.batch_norm(L.Conv2DLayer(net['conv2_2'], stride=2, filter_size=3, num_filters=256, pad='same')) net['conv3_2'] = L.batch_norm(L.Conv2DLayer(net['conv3_1'], filter_size=3, num_filters=256, pad='same')) net['conv3_3'] = L.batch_norm(L.Conv2DLayer(net['conv3_2'], filter_size=3, num_filters=256, pad='same')) net['conv4_1'] = L.batch_norm(L.Conv2DLayer(net['conv3_3'], stride=2, filter_size=3, num_filters=512, pad='same')) net['conv4_2'] = L.batch_norm(L.Conv2DLayer(net['conv4_1'], filter_size=3, num_filters=512, pad='same')) net['conv4_3'] = L.batch_norm(L.Conv2DLayer(net['conv4_2'], filter_size=3, num_filters=512, pad='same')) net['conv5_1'] = L.batch_norm(L.Conv2DLayer(net['conv4_3'], stride=2, filter_size=3, num_filters=512, pad='same')) net['conv5_2'] = L.batch_norm(L.Conv2DLayer(net['conv5_1'], filter_size=3, num_filters=512, pad='same')) net['conv5_3'] = L.batch_norm(L.Conv2DLayer(net['conv5_2'], filter_size=3, num_filters=512, pad='same')) net['in_pred'] = L.InputLayer(shape, image_pred_var) net['conv1_1s'] = L.batch_norm(L.Conv2DLayer(net['in_pred'], W = net['conv1_1'].input_layer.input_layer.W, filter_size=3, num_filters=64, pad='same')) net['conv1_2s'] = L.batch_norm(L.Conv2DLayer(net['conv1_1s'], W = net['conv1_2'].input_layer.input_layer.W,filter_size=3, num_filters=64, pad='same')) net['conv2_1s'] = L.batch_norm(L.Conv2DLayer(net['conv1_2s'], W = net['conv2_1'].input_layer.input_layer.W,stride=2, filter_size=3, num_filters=128, pad='same')) net['conv2_2s'] = L.batch_norm(L.Conv2DLayer(net['conv2_1s'], W = net['conv2_2'].input_layer.input_layer.W,filter_size=3, num_filters=128, pad='same')) net['conv3_1s'] = L.batch_norm(L.Conv2DLayer(net['conv2_2s'], W = net['conv3_1'].input_layer.input_layer.W,stride=2, filter_size=3, num_filters=256, pad='same')) net['conv3_2s'] = L.batch_norm(L.Conv2DLayer(net['conv3_1s'], W = net['conv3_2'].input_layer.input_layer.W,filter_size=3, num_filters=256, pad='same')) net['conv3_3s'] = L.batch_norm(L.Conv2DLayer(net['conv3_2s'], W = net['conv3_3'].input_layer.input_layer.W,filter_size=3, num_filters=256, pad='same')) net['conv4_1s'] = L.batch_norm(L.Conv2DLayer(net['conv3_3s'], W = net['conv4_1'].input_layer.input_layer.W,stride=2, filter_size=3, num_filters=512, pad='same')) net['conv4_2s'] = L.batch_norm(L.Conv2DLayer(net['conv4_1s'], W = net['conv4_2'].input_layer.input_layer.W,filter_size=3, num_filters=512, pad='same')) net['conv4_3s'] = L.batch_norm(L.Conv2DLayer(net['conv4_2s'], W = net['conv4_3'].input_layer.input_layer.W,filter_size=3, num_filters=512, pad='same')) net['conv5_1s'] = L.batch_norm(L.Conv2DLayer(net['conv4_3s'], W = net['conv5_1'].input_layer.input_layer.W,stride=2, filter_size=3, num_filters=512, pad='same')) net['conv5_2s'] = L.batch_norm(L.Conv2DLayer(net['conv5_1s'], W = net['conv5_2'].input_layer.input_layer.W,filter_size=3, num_filters=512, pad='same')) net['conv5_3s'] = L.batch_norm(L.Conv2DLayer(net['conv5_2s'], W = net['conv5_3'].input_layer.input_layer.W,filter_size=3, num_filters=512, pad='same')) net['concat1'] = L.ConcatLayer([net['conv1_2'], net['conv1_2s']]) net['concat2'] = L.ConcatLayer([net['conv2_2'], net['conv2_2s']]) net['concat3'] = L.ConcatLayer([net['conv3_3'], net['conv3_3s']]) net['concat4'] = L.ConcatLayer([net['conv4_3'], net['conv4_3s']]) net['concat5'] = L.ConcatLayer([net['conv5_3'], net['conv5_3s']]) net['out1'] = L.batch_norm(L.Conv2DLayer(net['concat1'], filter_size=3, num_filters=64, pad='same')) net['out2'] = L.batch_norm(L.Conv2DLayer(net['concat2'], filter_size=3, num_filters=64, pad='same')) net['out3'] = L.batch_norm(L.Conv2DLayer(net['concat3'], filter_size=3, num_filters=64, pad='same')) net['out4'] = L.batch_norm(L.Conv2DLayer(net['concat4'], filter_size=3, num_filters=64, pad='same')) net['out5'] = L.batch_norm(L.Conv2DLayer(net['concat5'], filter_size=3, num_filters=64, pad='same')) net['out2_up'] = BilinearUpsamplingLayer(net['out2'], scale_factor=2) net['out3_up'] = BilinearUpsamplingLayer(net['out3'], scale_factor=4) net['out4_up'] = BilinearUpsamplingLayer(net['out4'], scale_factor=8) net['out5_up'] = BilinearUpsamplingLayer(net['out5'], scale_factor=16) net['concat'] = L.ConcatLayer([net['out1'], net['out2_up'], net['out3_up'], net['out4_up'], net['out5_up']]) net['comb_1'] = L.Conv2DLayer(net['concat'], filter_size=1, num_filters=64, pad='same', nonlinearity=None) net['comb_2'] = L.batch_norm(L.Conv2DLayer(net['comb_1'], filter_size=1, num_filters=64, pad='same')) net['out'] = L.Conv2DLayer(net['comb_2'], filter_size=1, num_filters=2, pad='same', nonlinearity=lasagne.nonlinearities.tanh) # Spatial Transformation (source to target) net['fr_st'] = OFLayer(net['in'],net['out'], name='fr_st') # Segmentation branch net['in_seg'] = L.InputLayer(shape, image_seg_var) net['conv1_1ss'] = L.batch_norm(L.Conv2DLayer(net['in_seg'], W = net['conv1_1'].input_layer.input_layer.W, filter_size=3, num_filters=64, pad='same')) net['conv1_2ss'] = L.batch_norm(L.Conv2DLayer(net['conv1_1ss'], W = net['conv1_2'].input_layer.input_layer.W,filter_size=3, num_filters=64, pad='same')) net['conv2_1ss'] = L.batch_norm(L.Conv2DLayer(net['conv1_2ss'], W = net['conv2_1'].input_layer.input_layer.W,stride=2, filter_size=3, num_filters=128, pad='same')) net['conv2_2ss'] = L.batch_norm(L.Conv2DLayer(net['conv2_1ss'], W = net['conv2_2'].input_layer.input_layer.W,filter_size=3, num_filters=128, pad='same')) net['conv3_1ss'] = L.batch_norm(L.Conv2DLayer(net['conv2_2ss'], W = net['conv3_1'].input_layer.input_layer.W,stride=2, filter_size=3, num_filters=256, pad='same')) net['conv3_2ss'] = L.batch_norm(L.Conv2DLayer(net['conv3_1ss'], W = net['conv3_2'].input_layer.input_layer.W,filter_size=3, num_filters=256, pad='same')) net['conv3_3ss'] = L.batch_norm(L.Conv2DLayer(net['conv3_2ss'], W = net['conv3_3'].input_layer.input_layer.W,filter_size=3, num_filters=256, pad='same')) net['conv4_1ss'] = L.batch_norm(L.Conv2DLayer(net['conv3_3ss'], W = net['conv4_1'].input_layer.input_layer.W,stride=2, filter_size=3, num_filters=512, pad='same')) net['conv4_2ss'] = L.batch_norm(L.Conv2DLayer(net['conv4_1ss'], W = net['conv4_2'].input_layer.input_layer.W,filter_size=3, num_filters=512, pad='same')) net['conv4_3ss'] = L.batch_norm(L.Conv2DLayer(net['conv4_2ss'], W = net['conv4_3'].input_layer.input_layer.W,filter_size=3, num_filters=512, pad='same')) net['conv5_1ss'] = L.batch_norm(L.Conv2DLayer(net['conv4_3ss'], W = net['conv5_1'].input_layer.input_layer.W,stride=2, filter_size=3, num_filters=512, pad='same')) net['conv5_2ss'] = L.batch_norm(L.Conv2DLayer(net['conv5_1ss'], W = net['conv5_2'].input_layer.input_layer.W,filter_size=3, num_filters=512, pad='same')) net['conv5_3ss'] = L.batch_norm(L.Conv2DLayer(net['conv5_2ss'], W = net['conv5_3'].input_layer.input_layer.W,filter_size=3, num_filters=512, pad='same')) net['out1s'] = L.batch_norm(L.Conv2DLayer(net['conv1_2ss'], filter_size=3, num_filters=64, pad='same')) net['out2s'] = L.batch_norm(L.Conv2DLayer(net['conv2_2ss'], filter_size=3, num_filters=64, pad='same')) net['out3s'] = L.batch_norm(L.Conv2DLayer(net['conv3_3ss'], filter_size=3, num_filters=64, pad='same')) net['out4s'] = L.batch_norm(L.Conv2DLayer(net['conv4_3ss'], filter_size=3, num_filters=64, pad='same')) net['out5s'] = L.batch_norm(L.Conv2DLayer(net['conv5_3ss'], filter_size=3, num_filters=64, pad='same')) net['out2s_up'] = BilinearUpsamplingLayer(net['out2s'], scale_factor=2) net['out3s_up'] = BilinearUpsamplingLayer(net['out3s'], scale_factor=4) net['out4s_up'] = BilinearUpsamplingLayer(net['out4s'], scale_factor=8) net['out5s_up'] = BilinearUpsamplingLayer(net['out5s'], scale_factor=16) net['concats'] = L.ConcatLayer([net['out1s'], net['out2s_up'], net['out3s_up'], net['out4s_up'], net['out5s_up']]) net['comb_1s'] = L.Conv2DLayer(net['concats'], filter_size=1, num_filters=64, pad='same', nonlinearity=None) net['comb_2s'] = L.batch_norm(L.Conv2DLayer(net['comb_1s'], filter_size=1, num_filters=64, pad='same')) net['outs'] = L.Conv2DLayer(net['comb_2s'], filter_size=1, num_filters=4, pad='same', nonlinearity=softmax_4dtensor) # warp source segmentation to target net['warped_outs'] = OFLayer(net['outs'],net['out'], name='fr_st') return net def build_FCN_triple_branch_rnn(image_var, image_pred_var, image_seg_var, shape=(None, 1, None, None, None), shape_seg = (None, 1, None, None), n_class=1, load_vgg=False): # Build network for joint motion estimation and segmentation with RNN net = {} net['in'] = L.InputLayer(shape, image_var) net['in'] = L.DimshuffleLayer(net['in'],(0,4,1,2,3)) shape = L.get_output_shape(net['in']) #shape=[batch_size, seq_size, num_channel, width, height] n_channel = shape[2] batchsize = shape[0] seqlen = shape[1] width = shape[3] height = shape[4] # Reshape sequence input to batches dimension for easy extracting features net['in'] = L.ReshapeLayer(net['in'], (-1, n_channel, width, height)) net['conv1_1'] = L.batch_norm(L.Conv2DLayer(net['in'], filter_size=3, num_filters=64, pad='same')) net['conv1_2'] = L.batch_norm(L.Conv2DLayer(net['conv1_1'], filter_size=3, num_filters=64, pad='same')) net['conv2_1'] = L.batch_norm(L.Conv2DLayer(net['conv1_2'], stride=2, filter_size=3, num_filters=128, pad='same')) net['conv2_2'] = L.batch_norm(L.Conv2DLayer(net['conv2_1'], filter_size=3, num_filters=128, pad='same')) net['conv3_1'] = L.batch_norm(L.Conv2DLayer(net['conv2_2'], stride=2, filter_size=3, num_filters=256, pad='same')) net['conv3_2'] = L.batch_norm(L.Conv2DLayer(net['conv3_1'], filter_size=3, num_filters=256, pad='same')) net['conv3_3'] = L.batch_norm(L.Conv2DLayer(net['conv3_2'], filter_size=3, num_filters=256, pad='same')) net['conv4_1'] = L.batch_norm(L.Conv2DLayer(net['conv3_3'], stride=2, filter_size=3, num_filters=512, pad='same')) net['conv4_2'] = L.batch_norm(L.Conv2DLayer(net['conv4_1'], filter_size=3, num_filters=512, pad='same')) net['conv4_3'] = L.batch_norm(L.Conv2DLayer(net['conv4_2'], filter_size=3, num_filters=512, pad='same')) net['conv5_1'] = L.batch_norm(L.Conv2DLayer(net['conv4_3'], stride=2, filter_size=3, num_filters=512, pad='same')) net['conv5_2'] = L.batch_norm(L.Conv2DLayer(net['conv5_1'], filter_size=3, num_filters=512, pad='same')) net['conv5_3'] = L.batch_norm(L.Conv2DLayer(net['conv5_2'], filter_size=3, num_filters=512, pad='same')) # somehow redundant, can be improved for efficiency net['in_pred'] = L.InputLayer(shape, image_pred_var) net['in_pred'] = L.DimshuffleLayer(net['in_pred'],(0,4,1,2,3)) net['in_pred'] = L.ReshapeLayer(net['in_pred'], (-1, n_channel, width, height)) net['conv1_1s'] = L.batch_norm(L.Conv2DLayer(net['in_pred'], W = net['conv1_1'].input_layer.input_layer.W, filter_size=3, num_filters=64, pad='same')) net['conv1_2s'] = L.batch_norm(L.Conv2DLayer(net['conv1_1s'], W = net['conv1_2'].input_layer.input_layer.W,filter_size=3, num_filters=64, pad='same')) net['conv2_1s'] = L.batch_norm(L.Conv2DLayer(net['conv1_2s'], W = net['conv2_1'].input_layer.input_layer.W,stride=2, filter_size=3, num_filters=128, pad='same')) net['conv2_2s'] = L.batch_norm(L.Conv2DLayer(net['conv2_1s'], W = net['conv2_2'].input_layer.input_layer.W,filter_size=3, num_filters=128, pad='same')) net['conv3_1s'] = L.batch_norm(L.Conv2DLayer(net['conv2_2s'], W = net['conv3_1'].input_layer.input_layer.W,stride=2, filter_size=3, num_filters=256, pad='same')) net['conv3_2s'] = L.batch_norm(L.Conv2DLayer(net['conv3_1s'], W = net['conv3_2'].input_layer.input_layer.W,filter_size=3, num_filters=256, pad='same')) net['conv3_3s'] = L.batch_norm(L.Conv2DLayer(net['conv3_2s'], W = net['conv3_3'].input_layer.input_layer.W,filter_size=3, num_filters=256, pad='same')) net['conv4_1s'] = L.batch_norm(L.Conv2DLayer(net['conv3_3s'], W = net['conv4_1'].input_layer.input_layer.W,stride=2, filter_size=3, num_filters=512, pad='same')) net['conv4_2s'] = L.batch_norm(L.Conv2DLayer(net['conv4_1s'], W = net['conv4_2'].input_layer.input_layer.W,filter_size=3, num_filters=512, pad='same')) net['conv4_3s'] = L.batch_norm(L.Conv2DLayer(net['conv4_2s'], W = net['conv4_3'].input_layer.input_layer.W,filter_size=3, num_filters=512, pad='same')) net['conv5_1s'] = L.batch_norm(L.Conv2DLayer(net['conv4_3s'], W = net['conv5_1'].input_layer.input_layer.W,stride=2, filter_size=3, num_filters=512, pad='same')) net['conv5_2s'] = L.batch_norm(L.Conv2DLayer(net['conv5_1s'], W = net['conv5_2'].input_layer.input_layer.W,filter_size=3, num_filters=512, pad='same')) net['conv5_3s'] = L.batch_norm(L.Conv2DLayer(net['conv5_2s'], W = net['conv5_3'].input_layer.input_layer.W,filter_size=3, num_filters=512, pad='same')) net['concat1'] = L.ConcatLayer([net['conv1_2'], net['conv1_2s']]) net['concat2'] = L.ConcatLayer([net['conv2_2'], net['conv2_2s']]) net['concat3'] = L.ConcatLayer([net['conv3_3'], net['conv3_3s']]) net['concat4'] = L.ConcatLayer([net['conv4_3'], net['conv4_3s']]) net['concat5'] = L.ConcatLayer([net['conv5_3'], net['conv5_3s']]) net['out1'] = L.batch_norm(L.Conv2DLayer(net['concat1'], filter_size=3, num_filters=64, pad='same')) net['out2'] = L.batch_norm(L.Conv2DLayer(net['concat2'], filter_size=3, num_filters=64, pad='same')) net['out3'] = L.batch_norm(L.Conv2DLayer(net['concat3'], filter_size=3, num_filters=64, pad='same')) net['out4'] = L.batch_norm(L.Conv2DLayer(net['concat4'], filter_size=3, num_filters=64, pad='same')) net['out5'] = L.batch_norm(L.Conv2DLayer(net['concat5'], filter_size=3, num_filters=64, pad='same')) net['out2_up'] = BilinearUpsamplingLayer(net['out2'], scale_factor=2) net['out3_up'] = BilinearUpsamplingLayer(net['out3'], scale_factor=4) net['out4_up'] = BilinearUpsamplingLayer(net['out4'], scale_factor=8) net['out5_up'] = BilinearUpsamplingLayer(net['out5'], scale_factor=16) net['concat'] = L.ConcatLayer([net['out1'], net['out2_up'], net['out3_up'], net['out4_up'], net['out5_up']]) net['comb_1'] = L.Conv2DLayer(net['concat'], filter_size=1, num_filters=64, pad='same', nonlinearity=None) net['comb_2'] = L.batch_norm(L.Conv2DLayer(net['comb_1'], filter_size=1, num_filters=64, pad='same')) net['comb_2_rshp'] = L.ReshapeLayer(net['comb_2'],(-1, seqlen, 64, width, height)) net['in_to_hid'] = L.Conv2DLayer(L.InputLayer((None, 64, width, height)), num_filters=2, filter_size=1, nonlinearity=None, name ='in_to_hid' ) net['hid_to_hid'] = L.Conv2DLayer(L.InputLayer(net['in_to_hid'].output_shape), num_filters=2, filter_size=1, nonlinearity=None, name = 'hid_to_hid') net['rec'] = L.CustomRecurrentLayer(net['comb_2_rshp'], net['in_to_hid'], net['hid_to_hid'],nonlinearity=lasagne.nonlinearities.tanh, name = 'rec') net['out'] = L.ReshapeLayer(net['rec'], (-1, 2, width, height)) #net['out'] = L.Conv2DLayer(net['comb_2'], filter_size=1, num_filters=2, pad='same', nonlinearity=lasagne.nonlinearities.tanh) net['fr_st'] = OFLayer(net['in'],net['out'], name='fr_st') net['fr_st'] = L.ReshapeLayer(net['fr_st'],(-1, seqlen, n_channel, width, height)) net['fr_st'] = L.DimshuffleLayer(net['fr_st'],(0,2,3,4,1)) net['in_seg'] = L.InputLayer(shape_seg, image_seg_var) # net['in_seg'] = L.DimshuffleLayer(net['in_seg'],(0,4,1,2,3)) # net['in_seg'] = L.ReshapeLayer(net['in_seg'], (-1, n_channel, width, height)) net['conv1_1ss'] = L.batch_norm(L.Conv2DLayer(net['in_seg'], W = net['conv1_1'].input_layer.input_layer.W, filter_size=3, num_filters=64, pad='same')) net['conv1_2ss'] = L.batch_norm(L.Conv2DLayer(net['conv1_1ss'], W = net['conv1_2'].input_layer.input_layer.W,filter_size=3, num_filters=64, pad='same')) net['conv2_1ss'] = L.batch_norm(L.Conv2DLayer(net['conv1_2ss'], W = net['conv2_1'].input_layer.input_layer.W,stride=2, filter_size=3, num_filters=128, pad='same')) net['conv2_2ss'] = L.batch_norm(L.Conv2DLayer(net['conv2_1ss'], W = net['conv2_2'].input_layer.input_layer.W,filter_size=3, num_filters=128, pad='same')) net['conv3_1ss'] = L.batch_norm(L.Conv2DLayer(net['conv2_2ss'], W = net['conv3_1'].input_layer.input_layer.W,stride=2, filter_size=3, num_filters=256, pad='same')) net['conv3_2ss'] = L.batch_norm(L.Conv2DLayer(net['conv3_1ss'], W = net['conv3_2'].input_layer.input_layer.W,filter_size=3, num_filters=256, pad='same')) net['conv3_3ss'] = L.batch_norm(L.Conv2DLayer(net['conv3_2ss'], W = net['conv3_3'].input_layer.input_layer.W,filter_size=3, num_filters=256, pad='same')) net['conv4_1ss'] = L.batch_norm(L.Conv2DLayer(net['conv3_3ss'], W = net['conv4_1'].input_layer.input_layer.W,stride=2, filter_size=3, num_filters=512, pad='same')) net['conv4_2ss'] = L.batch_norm(L.Conv2DLayer(net['conv4_1ss'], W = net['conv4_2'].input_layer.input_layer.W,filter_size=3, num_filters=512, pad='same')) net['conv4_3ss'] = L.batch_norm(L.Conv2DLayer(net['conv4_2ss'], W = net['conv4_3'].input_layer.input_layer.W,filter_size=3, num_filters=512, pad='same')) net['conv5_1ss'] = L.batch_norm(L.Conv2DLayer(net['conv4_3ss'], W = net['conv5_1'].input_layer.input_layer.W,stride=2, filter_size=3, num_filters=512, pad='same')) net['conv5_2ss'] = L.batch_norm(L.Conv2DLayer(net['conv5_1ss'], W = net['conv5_2'].input_layer.input_layer.W,filter_size=3, num_filters=512, pad='same')) net['conv5_3ss'] = L.batch_norm(L.Conv2DLayer(net['conv5_2ss'], W = net['conv5_3'].input_layer.input_layer.W,filter_size=3, num_filters=512, pad='same')) net['out1s'] = L.batch_norm(L.Conv2DLayer(net['conv1_2ss'], filter_size=3, num_filters=64, pad='same')) net['out2s'] = L.batch_norm(L.Conv2DLayer(net['conv2_2ss'], filter_size=3, num_filters=64, pad='same')) net['out3s'] = L.batch_norm(L.Conv2DLayer(net['conv3_3ss'], filter_size=3, num_filters=64, pad='same')) net['out4s'] = L.batch_norm(L.Conv2DLayer(net['conv4_3ss'], filter_size=3, num_filters=64, pad='same')) net['out5s'] = L.batch_norm(L.Conv2DLayer(net['conv5_3ss'], filter_size=3, num_filters=64, pad='same')) net['out2s_up'] = BilinearUpsamplingLayer(net['out2s'], scale_factor=2) net['out3s_up'] = BilinearUpsamplingLayer(net['out3s'], scale_factor=4) net['out4s_up'] = BilinearUpsamplingLayer(net['out4s'], scale_factor=8) net['out5s_up'] = BilinearUpsamplingLayer(net['out5s'], scale_factor=16) net['concats'] = L.ConcatLayer([net['out1s'], net['out2s_up'], net['out3s_up'], net['out4s_up'], net['out5s_up']]) net['comb_1s'] = L.Conv2DLayer(net['concats'], filter_size=1, num_filters=64, pad='same', nonlinearity=None) net['comb_2s'] = L.batch_norm(L.Conv2DLayer(net['comb_1s'], filter_size=1, num_filters=64, pad='same')) net['outs'] = L.Conv2DLayer(net['comb_2s'], filter_size=1, num_filters=4, pad='same', nonlinearity=softmax_4dtensor) net['warped_outs'] = OFLayer(net['outs'],net['out'], name='fr_st') #net['warped_outs'] = L.ReshapeLayer(net['warped_outs'],(-1, seqlen, n_channel, width, height)) #net['warped_outs'] = L.DimshuffleLayer(net['warped_outs'],(0,2,3,4,1)) return net def build_FCN_Siemese_flow(image_var, image_pred_var, shape=(None, 1, None, None), n_class=1, load_vgg=False): # Build fully-connected network for motion estimation only net = {} net['in'] = L.InputLayer(shape, image_var) net['conv1_1'] = L.batch_norm(L.Conv2DLayer(net['in'], filter_size=3, num_filters=64, pad='same')) net['conv1_2'] = L.batch_norm(L.Conv2DLayer(net['conv1_1'], filter_size=3, num_filters=64, pad='same')) net['conv2_1'] = L.batch_norm(L.Conv2DLayer(net['conv1_2'], stride=2, filter_size=3, num_filters=128, pad='same')) net['conv2_2'] = L.batch_norm(L.Conv2DLayer(net['conv2_1'], filter_size=3, num_filters=128, pad='same')) net['conv3_1'] = L.batch_norm(L.Conv2DLayer(net['conv2_2'], stride=2, filter_size=3, num_filters=256, pad='same')) net['conv3_2'] = L.batch_norm(L.Conv2DLayer(net['conv3_1'], filter_size=3, num_filters=256, pad='same')) net['conv3_3'] = L.batch_norm(L.Conv2DLayer(net['conv3_2'], filter_size=3, num_filters=256, pad='same')) net['conv4_1'] = L.batch_norm(L.Conv2DLayer(net['conv3_3'], stride=2, filter_size=3, num_filters=512, pad='same')) net['conv4_2'] = L.batch_norm(L.Conv2DLayer(net['conv4_1'], filter_size=3, num_filters=512, pad='same')) net['conv4_3'] = L.batch_norm(L.Conv2DLayer(net['conv4_2'], filter_size=3, num_filters=512, pad='same')) net['conv5_1'] = L.batch_norm(L.Conv2DLayer(net['conv4_3'], stride=2, filter_size=3, num_filters=512, pad='same')) net['conv5_2'] = L.batch_norm(L.Conv2DLayer(net['conv5_1'], filter_size=3, num_filters=512, pad='same')) net['conv5_3'] = L.batch_norm(L.Conv2DLayer(net['conv5_2'], filter_size=3, num_filters=512, pad='same')) net['in_pred'] = L.InputLayer(shape, image_pred_var) net['conv1_1s'] = L.batch_norm(L.Conv2DLayer(net['in_pred'], W = net['conv1_1'].input_layer.input_layer.W, filter_size=3, num_filters=64, pad='same')) net['conv1_2s'] = L.batch_norm(L.Conv2DLayer(net['conv1_1s'], W = net['conv1_2'].input_layer.input_layer.W,filter_size=3, num_filters=64, pad='same')) net['conv2_1s'] = L.batch_norm(L.Conv2DLayer(net['conv1_2s'], W = net['conv2_1'].input_layer.input_layer.W,stride=2, filter_size=3, num_filters=128, pad='same')) net['conv2_2s'] = L.batch_norm(L.Conv2DLayer(net['conv2_1s'], W = net['conv2_2'].input_layer.input_layer.W,filter_size=3, num_filters=128, pad='same')) net['conv3_1s'] = L.batch_norm(L.Conv2DLayer(net['conv2_2s'], W = net['conv3_1'].input_layer.input_layer.W,stride=2, filter_size=3, num_filters=256, pad='same')) net['conv3_2s'] = L.batch_norm(L.Conv2DLayer(net['conv3_1s'], W = net['conv3_2'].input_layer.input_layer.W,filter_size=3, num_filters=256, pad='same')) net['conv3_3s'] = L.batch_norm(L.Conv2DLayer(net['conv3_2s'], W = net['conv3_3'].input_layer.input_layer.W,filter_size=3, num_filters=256, pad='same')) net['conv4_1s'] = L.batch_norm(L.Conv2DLayer(net['conv3_3s'], W = net['conv4_1'].input_layer.input_layer.W,stride=2, filter_size=3, num_filters=512, pad='same')) net['conv4_2s'] = L.batch_norm(L.Conv2DLayer(net['conv4_1s'], W = net['conv4_2'].input_layer.input_layer.W,filter_size=3, num_filters=512, pad='same')) net['conv4_3s'] = L.batch_norm(L.Conv2DLayer(net['conv4_2s'], W = net['conv4_3'].input_layer.input_layer.W,filter_size=3, num_filters=512, pad='same')) net['conv5_1s'] = L.batch_norm(L.Conv2DLayer(net['conv4_3s'], W = net['conv5_1'].input_layer.input_layer.W,stride=2, filter_size=3, num_filters=512, pad='same')) net['conv5_2s'] = L.batch_norm(L.Conv2DLayer(net['conv5_1s'], W = net['conv5_2'].input_layer.input_layer.W,filter_size=3, num_filters=512, pad='same')) net['conv5_3s'] = L.batch_norm(L.Conv2DLayer(net['conv5_2s'], W = net['conv5_3'].input_layer.input_layer.W,filter_size=3, num_filters=512, pad='same')) net['concat1'] = L.ConcatLayer([net['conv1_2'], net['conv1_2s']]) net['concat2'] = L.ConcatLayer([net['conv2_2'], net['conv2_2s']]) net['concat3'] = L.ConcatLayer([net['conv3_3'], net['conv3_3s']]) net['concat4'] = L.ConcatLayer([net['conv4_3'], net['conv4_3s']]) net['concat5'] = L.ConcatLayer([net['conv5_3'], net['conv5_3s']]) net['out1'] = L.batch_norm(L.Conv2DLayer(net['concat1'], filter_size=3, num_filters=64, pad='same')) net['out2'] = L.batch_norm(L.Conv2DLayer(net['concat2'], filter_size=3, num_filters=64, pad='same')) net['out3'] = L.batch_norm(L.Conv2DLayer(net['concat3'], filter_size=3, num_filters=64, pad='same')) net['out4'] = L.batch_norm(L.Conv2DLayer(net['concat4'], filter_size=3, num_filters=64, pad='same')) net['out5'] = L.batch_norm(L.Conv2DLayer(net['concat5'], filter_size=3, num_filters=64, pad='same')) net['out2_up'] = BilinearUpsamplingLayer(net['out2'], scale_factor=2) net['out3_up'] = BilinearUpsamplingLayer(net['out3'], scale_factor=4) net['out4_up'] = BilinearUpsamplingLayer(net['out4'], scale_factor=8) net['out5_up'] = BilinearUpsamplingLayer(net['out5'], scale_factor=16) net['concat'] = L.ConcatLayer([net['out1'], net['out2_up'], net['out3_up'], net['out4_up'], net['out5_up']]) net['comb_1'] = L.Conv2DLayer(net['concat'], filter_size=1, num_filters=64, pad='same', nonlinearity=None) net['comb_2'] = L.batch_norm(L.Conv2DLayer(net['comb_1'], filter_size=1, num_filters=64, pad='same')) net['out'] = L.Conv2DLayer(net['comb_2'], filter_size=1, num_filters=2, pad='same', nonlinearity=lasagne.nonlinearities.tanh) net['fr_st'] = OFLayer(net['in'],net['out'], name='fr_st') # Initialise the weights for the combination layer so that concatenation is initially equivalent to summation print('Initialise the combination weights ...') W = np.zeros(net['comb_1'].get_params()[0].get_value().shape, dtype='float32') b = np.zeros(net['comb_1'].get_params()[1].get_value().shape, dtype='float32') for i in range(64): W[i, i::64] = 1.0 b[i] = 0.0 net['comb_1'].get_params()[0].set_value(W) net['comb_1'].get_params()[1].set_value(b) if load_vgg: # Initialise the convolutional layers using VGG16 weights print('Initialise the convolutional layers using VGG16 weights ...') with np.load('/vol/biomedic/users/wbai/data/deep_learning/VGG/VGG_ILSVRC_16_layers.npz') as f: vgg = f['vgg'][()] for layer_name in ['conv1_1', 'conv1_2', 'conv2_1', 'conv2_2', 'conv3_1', 'conv3_2', 'conv3_3', 'conv4_1', 'conv4_2', 'conv4_3', 'conv5_1', 'conv5_2', 'conv5_3']: # Since we apply batch_norm to the convolutional layer, each layer becomes Conv + BN + ReLU. # We need to find the original Conv layer by using .input_layer twice. # Also, batch_norm will remove the bias parameter b. Only W is kept. if layer_name == 'conv1_1': W_mean = np.mean(vgg[layer_name]['W'], axis=1, keepdims=True) net[layer_name].input_layer.input_layer.get_params()[0].set_value(np.repeat(W_mean, shape[1], axis=1)) else: net[layer_name].input_layer.input_layer.get_params()[0].set_value(vgg[layer_name]['W']) return net def build_FCN_Siemese_flow_rnn(image_var, image_pred_var, shape=(None, 1, None, None, None), n_class=1, load_vgg=False): # Build fully-connected network for motion estimation only with RNN component net = {} net['in'] = L.InputLayer(shape, image_var) net['in'] = L.DimshuffleLayer(net['in'],(0,4,1,2,3)) shape = L.get_output_shape(net['in']) #shape=[batch_size, seq_size, num_channel, width, height] n_channel = shape[2] batchsize = shape[0] seqlen = shape[1] width = shape[3] height = shape[4] net['in'] = L.ReshapeLayer(net['in'], (-1, n_channel, width, height)) net['conv1_1'] = L.batch_norm(L.Conv2DLayer(net['in'], filter_size=3, num_filters=64, pad='same')) net['conv1_2'] = L.batch_norm(L.Conv2DLayer(net['conv1_1'], filter_size=3, num_filters=64, pad='same')) net['conv2_1'] = L.batch_norm(L.Conv2DLayer(net['conv1_2'], stride=2, filter_size=3, num_filters=128, pad='same')) net['conv2_2'] = L.batch_norm(L.Conv2DLayer(net['conv2_1'], filter_size=3, num_filters=128, pad='same')) net['conv3_1'] = L.batch_norm(L.Conv2DLayer(net['conv2_2'], stride=2, filter_size=3, num_filters=256, pad='same')) net['conv3_2'] = L.batch_norm(L.Conv2DLayer(net['conv3_1'], filter_size=3, num_filters=256, pad='same')) net['conv3_3'] = L.batch_norm(L.Conv2DLayer(net['conv3_2'], filter_size=3, num_filters=256, pad='same')) net['conv4_1'] = L.batch_norm(L.Conv2DLayer(net['conv3_3'], stride=2, filter_size=3, num_filters=512, pad='same')) net['conv4_2'] = L.batch_norm(L.Conv2DLayer(net['conv4_1'], filter_size=3, num_filters=512, pad='same')) net['conv4_3'] = L.batch_norm(L.Conv2DLayer(net['conv4_2'], filter_size=3, num_filters=512, pad='same')) net['conv5_1'] = L.batch_norm(L.Conv2DLayer(net['conv4_3'], stride=2, filter_size=3, num_filters=512, pad='same')) net['conv5_2'] = L.batch_norm(L.Conv2DLayer(net['conv5_1'], filter_size=3, num_filters=512, pad='same')) net['conv5_3'] = L.batch_norm(L.Conv2DLayer(net['conv5_2'], filter_size=3, num_filters=512, pad='same')) net['in_pred'] = L.InputLayer(shape, image_pred_var) net['in_pred'] = L.DimshuffleLayer(net['in_pred'],(0,4,1,2,3)) net['in_pred'] = L.ReshapeLayer(net['in_pred'], (-1, n_channel, width, height)) net['conv1_1s'] = L.batch_norm(L.Conv2DLayer(net['in_pred'], W = net['conv1_1'].input_layer.input_layer.W, filter_size=3, num_filters=64, pad='same')) net['conv1_2s'] = L.batch_norm(L.Conv2DLayer(net['conv1_1s'], W = net['conv1_2'].input_layer.input_layer.W,filter_size=3, num_filters=64, pad='same')) net['conv2_1s'] = L.batch_norm(L.Conv2DLayer(net['conv1_2s'], W = net['conv2_1'].input_layer.input_layer.W,stride=2, filter_size=3, num_filters=128, pad='same')) net['conv2_2s'] = L.batch_norm(L.Conv2DLayer(net['conv2_1s'], W = net['conv2_2'].input_layer.input_layer.W,filter_size=3, num_filters=128, pad='same')) net['conv3_1s'] = L.batch_norm(L.Conv2DLayer(net['conv2_2s'], W = net['conv3_1'].input_layer.input_layer.W,stride=2, filter_size=3, num_filters=256, pad='same')) net['conv3_2s'] = L.batch_norm(L.Conv2DLayer(net['conv3_1s'], W = net['conv3_2'].input_layer.input_layer.W,filter_size=3, num_filters=256, pad='same')) net['conv3_3s'] = L.batch_norm(L.Conv2DLayer(net['conv3_2s'], W = net['conv3_3'].input_layer.input_layer.W,filter_size=3, num_filters=256, pad='same')) net['conv4_1s'] = L.batch_norm(L.Conv2DLayer(net['conv3_3s'], W = net['conv4_1'].input_layer.input_layer.W,stride=2, filter_size=3, num_filters=512, pad='same')) net['conv4_2s'] = L.batch_norm(L.Conv2DLayer(net['conv4_1s'], W = net['conv4_2'].input_layer.input_layer.W,filter_size=3, num_filters=512, pad='same')) net['conv4_3s'] = L.batch_norm(L.Conv2DLayer(net['conv4_2s'], W = net['conv4_3'].input_layer.input_layer.W,filter_size=3, num_filters=512, pad='same')) net['conv5_1s'] = L.batch_norm(L.Conv2DLayer(net['conv4_3s'], W = net['conv5_1'].input_layer.input_layer.W,stride=2, filter_size=3, num_filters=512, pad='same')) net['conv5_2s'] = L.batch_norm(L.Conv2DLayer(net['conv5_1s'], W = net['conv5_2'].input_layer.input_layer.W,filter_size=3, num_filters=512, pad='same')) net['conv5_3s'] = L.batch_norm(L.Conv2DLayer(net['conv5_2s'], W = net['conv5_3'].input_layer.input_layer.W,filter_size=3, num_filters=512, pad='same')) net['concat1'] = L.ConcatLayer([net['conv1_2'], net['conv1_2s']]) net['concat2'] = L.ConcatLayer([net['conv2_2'], net['conv2_2s']]) net['concat3'] = L.ConcatLayer([net['conv3_3'], net['conv3_3s']]) net['concat4'] = L.ConcatLayer([net['conv4_3'], net['conv4_3s']]) net['concat5'] = L.ConcatLayer([net['conv5_3'], net['conv5_3s']]) net['out1'] = L.batch_norm(L.Conv2DLayer(net['concat1'], filter_size=3, num_filters=64, pad='same')) net['out2'] = L.batch_norm(L.Conv2DLayer(net['concat2'], filter_size=3, num_filters=64, pad='same')) net['out3'] = L.batch_norm(L.Conv2DLayer(net['concat3'], filter_size=3, num_filters=64, pad='same')) net['out4'] = L.batch_norm(L.Conv2DLayer(net['concat4'], filter_size=3, num_filters=64, pad='same')) net['out5'] = L.batch_norm(L.Conv2DLayer(net['concat5'], filter_size=3, num_filters=64, pad='same')) net['out2_up'] = BilinearUpsamplingLayer(net['out2'], scale_factor=2) net['out3_up'] = BilinearUpsamplingLayer(net['out3'], scale_factor=4) net['out4_up'] = BilinearUpsamplingLayer(net['out4'], scale_factor=8) net['out5_up'] = BilinearUpsamplingLayer(net['out5'], scale_factor=16) net['concat'] = L.ConcatLayer([net['out1'], net['out2_up'], net['out3_up'], net['out4_up'], net['out5_up']]) net['comb_1'] = L.Conv2DLayer(net['concat'], filter_size=1, num_filters=64, pad='same', nonlinearity=None) net['comb_2'] = L.batch_norm(L.Conv2DLayer(net['comb_1'], filter_size=1, num_filters=64, pad='same')) net['comb_2_rshp'] = L.ReshapeLayer(net['comb_2'],(-1, seqlen, 64, width, height)) net['in_to_hid'] = L.Conv2DLayer(L.InputLayer((None, 64, width, height)), num_filters=2, filter_size=1, nonlinearity=None, name ='in_to_hid' ) net['hid_to_hid'] = L.Conv2DLayer(L.InputLayer(net['in_to_hid'].output_shape), num_filters=2, filter_size=1, nonlinearity=None, name = 'hid_to_hid') net['rec'] = L.CustomRecurrentLayer(net['comb_2_rshp'], net['in_to_hid'], net['hid_to_hid'],nonlinearity=lasagne.nonlinearities.tanh, name = 'rec') net['out'] = L.ReshapeLayer(net['rec'], (-1, 2, width, height)) #net['out'] = L.Conv2DLayer(net['comb_2'], filter_size=1, num_filters=2, pad='same', nonlinearity=lasagne.nonlinearities.tanh) net['fr_st'] = OFLayer(net['in'],net['out'], name='fr_st') net['fr_st'] = L.ReshapeLayer(net['fr_st'],(-1, seqlen, n_channel, width, height)) net['fr_st'] = L.DimshuffleLayer(net['fr_st'],(0,2,3,4,1)) return net
cq615/Joint-Motion-Estimation-and-Segmentation
pytorch_version/main_motion.py
import torch import torch.optim as optim from torch.autograd import Variable import torch.nn as nn import numpy as np from tqdm import tqdm from torch.utils.data import DataLoader from network import * from dataset import * from util import * import time import scipy.io import os import matplotlib.pyplot as plt import pdb def get_to_cuda(cuda): def to_cuda(tensor): return tensor.cuda() if cuda else tensor return to_cuda def convert_to_1hot(label, n_class): # Convert a label map (N x 1 x H x W) into a one-hot representation (N x C x H x W) label_swap = label.swapaxes(1, 3) label_flat = label_swap.flatten() n_data = len(label_flat) label_1hot = np.zeros((n_data, n_class), dtype='int16') label_1hot[range(n_data), label_flat] = 1 label_1hot = label_1hot.reshape((label_swap.shape[0], label_swap.shape[1], label_swap.shape[2], n_class)) label_1hot = label_1hot.swapaxes(1, 3) return label_1hot def categorical_dice(prediction, truth, k): # Dice overlap metric for label value k A = (np.argmax(prediction, axis=1) == k) B = (np.argmax(truth, axis=1) == k) return 2 * np.sum(A * B) / (np.sum(A) + np.sum(B)+0.001) def huber_loss(x): bsize, csize, height, width = x.size() d_x = torch.index_select(x, 3, torch.arange(1, width).cuda()) - torch.index_select(x, 3, torch.arange(width-1).cuda()) d_y = torch.index_select(x, 2, torch.arange(1, height).cuda()) - torch.index_select(x, 2, torch.arange(height-1).cuda()) err = torch.sum(torch.mul(d_x, d_x))/height + torch.sum(torch.mul(d_y, d_y))/width err /= bsize tv_err = torch.sqrt(0.01+err) return tv_err def freeze_layer(layer): for param in layer.parameters(): param.requires_grad = False def plot_grid(gridx, gridy, **kwargs): """ plot deformation grid """ for i in range(gridx.shape[0]): plt.plot(gridx[i,:], gridy[i,:], **kwargs) for i in range(gridx.shape[1]): plt.plot(gridx[:,i], gridy[:,i], **kwargs) def save_flow(x, pred, x_pred, flow): #print(flow.shape) x = x.data.cpu().numpy() pred = pred.data.cpu().numpy() x_pred = x_pred.data.cpu().numpy() flow = flow.data.cpu().numpy() * 96 flow = flow[:,:, 60:140, 40:120] X, Y = np.meshgrid(np.arange(0, 80, 2), np.arange(0, 80, 2)) plt.subplots(figsize=(6, 6)) plt.subplot(221) plt.imshow(x[5, 0, 60:140, 40:120], cmap='gray') plt.axis('off') plt.subplot(222) plt.imshow(pred[5, 0, 60:140, 40:120], cmap='gray') plt.axis('off') plt.subplot(223) plt.imshow(x_pred[5, 0, 60:140, 40:120], cmap='gray') plt.axis('off') plt.subplot(224) plt.imshow(x_pred[5, 0, 60:140, 40:120], cmap='gray') plt.quiver(X, Y, flow[5, 0, fc00:db20:35b:7399::5, ::2], -flow[5, 1, fc00:db20:35b:7399::5, ::2], scale_units='xy', scale=1, color='r') # plot_grid(X - flow[5, 0, fd00:c2b6:b24b:be67:2827:688d:e6a1:6a3b, ::6], # Y - flow[5, 1, fd00:c2b6:b24b:be67:2827:688d:e6a1:6a3b, ::6], # color='r', linewidth=0.5) plt.axis('off') plt.savefig('./models/flow_map.png') plt.close() lr = 1e-4 n_worker = 4 bs = 10 n_epoch = 100 model_save_path = './models/model_flow_tmp.pth' model = Registration_Net() print(model) # model.load_state_dict(torch.load(model_save_path)) model = model.cuda() optimizer = optim.Adam(filter(lambda p: p.requires_grad, model.parameters()),lr=lr) flow_criterion = nn.MSELoss() Tensor = torch.cuda.FloatTensor def train(epoch): model.train() epoch_loss = [] for batch_idx, batch in tqdm(enumerate(training_data_loader, 1), total=len(training_data_loader)): x, x_pred, x_gnd = batch x_c = Variable(x.type(Tensor)) x_predc = Variable(x_pred.type(Tensor)) optimizer.zero_grad() net = model(x_c, x_predc, x_c) flow_loss = flow_criterion(net['fr_st'], x_predc) + 0.01 * huber_loss(net['out']) flow_loss.backward() optimizer.step() epoch_loss.append(flow_loss.item()) if batch_idx % 50 == 0: print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format( epoch, batch_idx * len(x), len(training_data_loader.dataset), 100. * batch_idx / len(training_data_loader), np.mean(epoch_loss))) save_flow(x_c, x_predc, net['fr_st'], net['out']) # scipy.io.savemat(os.path.join('./models/flow_test.mat'), # mdict={'flow': net['out'].data.cpu().numpy()}) torch.save(model.state_dict(), model_save_path) print("Checkpoint saved to {}".format(model_save_path)) data_path = '../test' train_set = TrainDataset(data_path, transform=data_augment) # loading the data training_data_loader = DataLoader(dataset=train_set, num_workers=n_worker, batch_size=bs, shuffle=True) for epoch in range(0, n_epoch + 1): print('Epoch {}'.format(epoch)) start = time.time() train(epoch) end = time.time() print("training took {:.8f}".format(end-start))
cq615/Joint-Motion-Estimation-and-Segmentation
utils/visualise.py
<gh_stars>10-100 import numpy as np import matplotlib.pyplot as plt import os, sys def mask_color_img(img, mask): alpha = 0.5 rows, cols = img.shape # Construct a colour image to superimpose color_mask = np.zeros((rows, cols, 3)) color_mask[mask == 1] = [1, 0, 0] # Red block color_mask[mask == 2] = [0, 1, 0] # Green block color_mask[mask == 3] = [0, 0, 1] # Blue block # Construct RGB version of grey-level image img_color = np.dstack((img, img, img)) img_masked = img_color * 0.8 + np.double(color_mask) * 0.3 return img_masked def create_prediction_video(save_dir, img, pred, loc, seq_num): # create a video with joint prediction of ROI mask = np.argmax(pred, axis=1) img_mask_bank = [] for t in xrange(seq_num): img_mask = mask_color_img(img[0, t], mask[t]) img_mask_bank.append(img_mask) mask[mask == 1] = 0 mask[mask == 3] = 0 mask[mask == 2] = 1 mask = np.tile(mask[:, np.newaxis], (1, 2, 1, 1)) loc = loc * mask img_mask_bank = np.array(img_mask_bank) flow = loc[:, :, 60:140, 40:120] * 96 X, Y = np.meshgrid(np.arange(0, 80, 2), np.arange(0, 80, 2)) for t in xrange(seq_num): # meanu = np.mean(flow[t, 0]) # meanv = np.mean(flow[t, 1]) plt.imshow(img_mask_bank[t, 60:140, 40:120]) # mean_scale = np.sqrt(meanu ** 2 + meanv ** 2) * 200 plt.quiver(X, Y, -flow[t, 0, fdf8:f53e:61e4::18, ::2], flow[t, 1, fdf8:f53e:61e4::18, ::2], scale_units='xy', scale=1, color='y') plt.axis('off') plt.savefig(os.path.join(save_dir, 'test_%d.png'%t)) plt.close() image_dir = os.path.join(save_dir, 'test_%d.png') video_dir = os.path.join(save_dir, 'video.avi') #os.system('ffmpeg - f image2 - i {0} - vcodec mpeg4 - b 800k {1}'.format(image_dir, video_dir)) print("Done: images saved in {}".format(image_dir))
cq615/Joint-Motion-Estimation-and-Segmentation
test_prediction.py
""" Created on Mon Feb 12 17:52:19 2018 @author: cq615 """ import os, time, h5py, sys from models.seg_network import build_FCN_triple_branch_rnn from dataio.dataset import * from utils.metrics import * from dataio.data_generator import * from utils.visualise import * import lasagne.layers as L import matplotlib.pyplot as plt import theano import theano.tensor as T def tensor5(name=None, dtype=None): if dtype is None: dtype = theano.config.floatX type = T.TensorType(dtype, (False, )*5) return type(name) if __name__ == '__main__': data_test_path = 'test' save_dir = 'visualisation' seq_num = 50 n_class = 4 size = 192 # Build the network image_var = tensor5('image') image_pred_var = tensor5('image_pred') label_var = T.itensor4('label') image_seg_var = T.tensor4('image_seg') net = build_FCN_triple_branch_rnn(image_var, image_pred_var, image_seg_var, shape = (None,1,size, size, seq_num), shape_seg = (None, 1, size, size)) #model_file = 'model/FCN_VGG16_sz192_flow_simese_rnn_shared.npz' model_file = 'model/FCN_VGG16_sz192_triple_3d_rnn_warped_tmp.npz' with np.load(model_file) as f: param_values = [f['arr_%d' % i] for i in range(len(f.files))] L.set_all_param_values([net['out'],net['outs']], param_values) test_prediction = L.get_output(net['outs']) test_loc = L.get_output(net['out'], deterministic = True) test_fn = theano.function([image_var, image_pred_var, image_seg_var], [test_prediction, test_loc], on_unused_input='ignore') filename = [f for f in sorted(os.listdir(data_test_path))] for f_id in filename[1:2]: # Load the dataset print("Loading data...") img, seg = load_UKBB_test_data_3d(data_test_path, f_id, size) print("Starting testing...") # reshape input input_data_seg = np.reshape(img,(-1,size,size)) input_data_seg = input_data_seg[:,np.newaxis] input_data = np.transpose(img,(0,2,3,1)) input_data = np.expand_dims(input_data, axis=1) input_data_pred = np.tile(input_data[...,0:1],(1,1,1,1,input_data.shape[4])) start_time = time.time() pred, loc = test_fn(input_data_pred, input_data, input_data_seg) print("Multi-task prediction time:\t{:.2f}s".format(time.time()-start_time)) print("Creating a video for joint prediction...") create_prediction_video(save_dir, img, pred, loc, seq_num)
cq615/Joint-Motion-Estimation-and-Segmentation
pytorch_version/network.py
import torch import torch.nn as nn import torch.nn.functional as F import torch.nn.init as init from torch.autograd import Variable, grad import numpy as np import math def relu(): return nn.ReLU(inplace=True) def conv(in_channels, out_channels, kernel_size=3, stride=1, padding = 1, nonlinearity = relu): conv_layer = nn.Conv2d(in_channels = in_channels, out_channels= out_channels, kernel_size = kernel_size, stride = stride, padding = padding, bias = False) nn.init.xavier_uniform(conv_layer.weight, gain=np.sqrt(2.0)) nll_layer = nonlinearity() bn_layer = nn.BatchNorm2d(out_channels) # nn.init.constant_(bn_layer.weight, 1) # nn.init.constant_(bn_layer.bias, 0) layers = [conv_layer, bn_layer, nll_layer] return nn.Sequential(*layers) def conv_blocks_2(in_channels, out_channels, strides=1): conv1 = conv(in_channels, out_channels, stride = strides) conv2 = conv(out_channels, out_channels, stride=1) layers = [conv1, conv2] return nn.Sequential(*layers) def conv_blocks_3(in_channels, out_channels, strides=1): conv1 = conv(in_channels, out_channels, stride = strides) conv2 = conv(out_channels, out_channels, stride=1) conv3 = conv(out_channels, out_channels, stride=1) layers = [conv1, conv2, conv3] return nn.Sequential(*layers) def generate_grid(x, offset): x_shape = x.size() grid_w, grid_h = torch.meshgrid([torch.linspace(-1, 1, x_shape[2]), torch.linspace(-1, 1, x_shape[3])]) # (h, w) grid_w = grid_w.cuda().float() grid_h = grid_h.cuda().float() grid_w = nn.Parameter(grid_w, requires_grad=False) grid_h = nn.Parameter(grid_h, requires_grad=False) offset_h, offset_w = torch.split(offset, 1, 1) offset_w = offset_w.contiguous().view(-1, int(x_shape[2]), int(x_shape[3])) # (b*c, h, w) offset_h = offset_h.contiguous().view(-1, int(x_shape[2]), int(x_shape[3])) # (b*c, h, w) offset_w = grid_w + offset_w offset_h = grid_h + offset_h offsets = torch.stack((offset_h, offset_w), 3) return offsets class Registration_Net(nn.Module): """Deformable registration network with input from image space """ def __init__(self, n_ch=1): super(Registration_Net, self).__init__() self.conv_blocks = [conv_blocks_2(n_ch, 64), conv_blocks_2(64, 128, 2), conv_blocks_3(128, 256, 2), conv_blocks_3(256, 512, 2), conv_blocks_3(512, 512, 2)] self.conv = [] for in_filters in [128, 256, 512, 1024, 1024]: self.conv += [conv(in_filters, 64)] self.conv_blocks = nn.Sequential(*self.conv_blocks) self.conv = nn.Sequential(*self.conv) self.conv6 = nn.Conv2d(64 * 5, 64, 1) self.conv7 = conv(64, 64, 1, 1, 0) self.conv8 = nn.Conv2d(64, 2, 1) def forward(self, x, x_pred, x_img): # x: source image; x_pred: target image; x_img: source image or segmentation map net = {} net['conv0'] = x net['conv0s'] = x_pred for i in range(5): net['conv%d'% (i+1)] = self.conv_blocks[i](net['conv%d'%i]) net['conv%ds' % (i + 1)] = self.conv_blocks[i](net['conv%ds' % i]) net['concat%d'%(i+1)] = torch.cat((net['conv%d'% (i+1)], net['conv%ds' % (i + 1)]), 1) net['out%d'%(i+1)] = self.conv[i](net['concat%d'%(i+1)]) if i > 0: net['out%d_up'%(i+1)] = F.interpolate(net['out%d'%(i+1)], scale_factor=2**i, mode='bilinear', align_corners=True) net['concat'] = torch.cat((net['out1'], net['out2_up'], net['out3_up'], net['out4_up'], net['out5_up']), 1) net['comb_1'] = self.conv6(net['concat']) net['comb_2'] = self.conv7(net['comb_1']) net['out'] = torch.tanh(self.conv8(net['comb_2'])) net['grid'] = generate_grid(x_img, net['out']) net['fr_st'] = F.grid_sample(x_img, net['grid']) return net class Seg_Motion_Net(nn.Module): """Joint motion estimation and segmentation """ def __init__(self, n_ch=1): super(Seg_Motion_Net, self).__init__() self.conv_blocks = [conv_blocks_2(n_ch, 64), conv_blocks_2(64, 128, 2), conv_blocks_3(128, 256, 2), conv_blocks_3(256, 512, 2), conv_blocks_3(512, 512, 2)] self.conv = [] for in_filters in [128, 256, 512, 1024, 1024]: self.conv += [conv(in_filters, 64)] self.conv_blocks = nn.Sequential(*self.conv_blocks) self.conv = nn.Sequential(*self.conv) self.conv6 = nn.Conv2d(64 * 5, 64, 1) self.conv7 = conv(64, 64, 1, 1, 0) self.conv8 = nn.Conv2d(64, 2, 1) self.convs = [] for in_filters in [64, 128, 256, 512, 512]: self.convs += [conv(in_filters, 64)] self.convs = nn.Sequential(*self.convs) self.conv6s = nn.Conv2d(64*5,64,1) self.conv7s = conv(64,64,1,1,0) self.conv8s = nn.Conv2d(64,4,1) def forward(self, x, x_pred, x_img): # x: source image; x_pred: target image; x_img: image to be segmented # motion estimation branch net = {} net['conv0'] = x net['conv0s'] = x_pred for i in range(5): net['conv%d'% (i+1)] = self.conv_blocks[i](net['conv%d'%i]) net['conv%ds' % (i + 1)] = self.conv_blocks[i](net['conv%ds' % i]) net['concat%d'%(i+1)] = torch.cat((net['conv%d'% (i+1)], net['conv%ds' % (i + 1)]), 1) net['out%d'%(i+1)] = self.conv[i](net['concat%d'%(i+1)]) if i > 0: net['out%d_up'%(i+1)] = F.interpolate(net['out%d'%(i+1)], scale_factor=2**i, mode='bilinear', align_corners=True) net['concat'] = torch.cat((net['out1'], net['out2_up'], net['out3_up'], net['out4_up'], net['out5_up']), 1) net['comb_1'] = self.conv6(net['concat']) net['comb_2'] = self.conv7(net['comb_1']) net['out'] = torch.tanh(self.conv8(net['comb_2'])) net['grid'] = generate_grid(x_img, net['out']) net['fr_st'] = F.grid_sample(x_img, net['grid']) # segmentation branch net['conv0ss'] = x_img for i in range(5): net['conv%dss' % (i + 1)] = self.conv_blocks[i](net['conv%dss' % i]) net['out%ds' % (i+1)] = self.convs[i](net['conv%dss' % (i+1)]) if i > 0: net['out%ds_up'%(i+1)] = F.interpolate(net['out%ds'%(i+1)], scale_factor=2**i, mode='bilinear', align_corners=True) net['concats'] = torch.cat((net['out1s'], net['out2s_up'], net['out3s_up'], net['out4s_up'], net['out5s_up']), 1) net['comb_1s'] = self.conv6s(net['concats']) net['comb_2s'] = self.conv7s(net['comb_1s']) net['outs'] = self.conv8s(net['comb_2s']) net['outs_softmax'] = F.softmax(net['outs'], dim=1) # net['warped_outs'] = F.grid_sample(net['outs_softmax'], net['grid'], padding_mode='border') return net
cq615/Joint-Motion-Estimation-and-Segmentation
pytorch_version/dataset.py
<gh_stars>10-100 import torch.utils.data as data import numpy as np import datetime from os import listdir from os.path import join from util import * class TrainDataset(data.Dataset): def __init__(self, data_path, transform=None): super(TrainDataset, self).__init__() self.data_path = data_path self.filename = [f for f in sorted(listdir(self.data_path))] # data augmentation self.transform = transform def __getitem__(self, index): # update the seed to avoid workers sample the same augmentation parameters np.random.seed(datetime.datetime.now().second + datetime.datetime.now().microsecond) # load the nifti images input, target = load_data_3d(self.data_path, self.filename[index], size = 192) if self.transform: input, target = self.transform(input, target) image = input[0,:1] image_pred = input[0,1:] return image, image_pred, target[0,0] def __len__(self): return len(self.filename) class TestDataset(data.Dataset): def __init__(self, data_path, frame, transform=None): super(TestDataset, self).__init__() self.data_path = data_path self.filename = [f for f in sorted(listdir(self.data_path))] # data augmentation self.transform = transform self.frame = frame def __getitem__(self, index): # update the seed to avoid workers sample the same augmentation parameters #np.random.seed(datetime.datetime.now().second + datetime.datetime.now().microsecond) # load the nifti images input, target, dx = load_test_data(self.data_path, self.filename[index], self.frame, size = 192) if self.transform: input, target = self.transform(input, target) return input, target def __len__(self): return len(self.filename) class TestDataset_flow(data.Dataset): def __init__(self, data_path, transform=None): super(TestDataset_flow, self).__init__() self.data_path = data_path self.filename = [f for f in sorted(listdir(self.data_path))] # data augmentation self.transform = transform def __getitem__(self, index): # update the seed to avoid workers sample the same augmentation parameters #np.random.seed(datetime.datetime.now().second + datetime.datetime.now().microsecond) # load the nifti images input_ed, target_ed, dx = load_test_data(self.data_path, self.filename[index], 'ED', size=192) input_es, target_es, dx = load_test_data(self.data_path, self.filename[index], 'ES', size=192) # if self.transform: # input, target = self.transform(input, target) return input_ed, target_ed, input_es, target_es, dx def __len__(self): return len(self.filename)
cq615/Joint-Motion-Estimation-and-Segmentation
utils/seg_metrics.py
<reponame>cq615/Joint-Motion-Estimation-and-Segmentation<filename>utils/seg_metrics.py<gh_stars>10-100 # -*- coding: utf-8 -*- """ Created on Thu Feb 22 17:53:58 2018 @author: cq615 """ import numpy as np, cv2 def np_categorical_dice(pred, truth, k): # Dice overlap metric for label value k A = (pred == k).astype(np.float32) B = (truth == k).astype(np.float32) return 2 * np.sum(A * B) / (np.sum(A) + np.sum(B)) def distance_metric(seg_A, seg_B, dx, k): # Measure the distance errors between the contours of two segmentations # The manual contours are drawn on 2D slices. # We calculate contour to contour distance for each slice. table_md = [] table_hd = [] K, X, Y, Z = seg_A.shape for z in range(Z): # Binary mask at this slice slice_A = seg_A[k, :, :, z].astype(np.uint8) slice_B = seg_B[k, :, :, z].astype(np.uint8) # The distance is defined only when both contours exist on this slice if np.sum(slice_A) > 0 and np.sum(slice_B) > 0: # Find contours and retrieve all the points contours, _ = cv2.findContours(cv2.inRange(slice_A, 1, 1), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE) pts_A = contours[0] for i in range(1, len(contours)): pts_A = np.vstack((pts_A, contours[i])) contours, _ = cv2.findContours(cv2.inRange(slice_B, 1, 1), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE) pts_B = contours[0] for i in range(1, len(contours)): pts_B = np.vstack((pts_B, contours[i])) # Distance matrix between point sets M = np.zeros((len(pts_A), len(pts_B))) for i in range(len(pts_A)): for j in range(len(pts_B)): M[i, j] = np.linalg.norm(pts_A[i, 0] - pts_B[j, 0]) # Mean distance and hausdorff distance md = 0.5 * (np.mean(np.min(M, axis=0)) + np.mean(np.min(M, axis=1))) * dx hd = np.max([np.max(np.min(M, axis=0)), np.max(np.min(M, axis=1))]) * dx table_md += [md] table_hd += [hd] # Return the mean distance and Hausdorff distance across 2D slices mean_md = np.mean(table_md) if table_md else None mean_hd = np.mean(table_hd) if table_hd else None return mean_md, mean_hd
cq615/Joint-Motion-Estimation-and-Segmentation
utils/metrics.py
<reponame>cq615/Joint-Motion-Estimation-and-Segmentation import theano.tensor as T def categorical_crossentropy(prediction, truth): # prediction: label probability prediction, 4D tensor # truth: ground truth label map, 1-hot representation, 4D tensor return - T.mean(T.sum(truth * T.log(prediction), axis=1)) def weighted_categorical_crossentropy(prediction, truth, weight): # prediction: label probability prediction, 4D tensor # truth: ground truth label map, 1-hot representation, 4D tensor return - T.mean(T.sum((truth * T.log(prediction)) * weight, axis=1)) def categorical_accuracy(prediction, truth): A = T.argmax(prediction, axis=1, keepdims=True) B = T.argmax(truth, axis=1, keepdims=True) return T.mean(T.eq(A, B)) def categorical_dice(prediction, truth, k): # Dice overlap metric for label value k A = T.eq(T.argmax(prediction, axis=1, keepdims=True), k) B = T.eq(T.argmax(truth, axis=1, keepdims=True), k) return 2 * T.sum(A * B) / T.cast(T.sum(A) + T.sum(B), 'float32') def huber_loss(x): d_x = x[:,:,:,1:]-x[:,:,:,:-1] d_y = x[:,:,1:,:]-x[:,:,:-1,:] err = (d_x**2).sum()+(d_y**2).sum() err /= 20.0 tv_err = T.sqrt(0.01+err) return tv_err
cq615/Joint-Motion-Estimation-and-Segmentation
dataio/data_generator.py
import os, h5py,sys import nibabel as nib, numpy as np # A generator function using the keyword yield def iterate_minibatches(image, label, batch_size): assert len(image) == len(label) for start_idx in range(0, len(image) - batch_size + 1, batch_size): end_idx = start_idx + batch_size idx = slice(start_idx, end_idx) yield image[idx], label[idx] def crop_and_fill(img,size): img_new = np.zeros((img.shape[0],img.shape[1],size,size)) h = np.amin([size,img.shape[2]]) w = np.amin([size,img.shape[3]]) img_new[:,:,size//2-h//2:size//2+h//2,size//2-w//2:size//2+w//2]=img[:,:,img.shape[2]//2-h//2:img.shape[2]//2+h//2,img.shape[3]//2-w//2:img.shape[3]//2+w//2] return img_new def load_UKBB_train_data_3d(data_path, filename, size): # Load images and labels, save them into a hdf5 file nim = nib.load(os.path.join(data_path, filename, 'sa.nii.gz')) image = nim.get_data()[:, :, :, :] # generate random index for t and z dimension rand_t = np.random.randint(0,image.shape[3]) rand_z = np.random.randint(0,image.shape[2]) # preprocessing image_max = np.max(np.abs(image)) image /= image_max image_sa = image[...,rand_z, rand_t] image_sa = image_sa[np.newaxis, np.newaxis] # Read image and header information frame = np.random.choice(['ED','ES']) nim = nib.load(os.path.join(data_path, filename, 'sa_'+frame+'.nii.gz')) image = nim.get_data()[:, :, :] nim_seg = nib.load(os.path.join(data_path, filename, 'label_sa_'+frame+'.nii.gz')) seg = nim_seg.get_data()[:, :, :] image_frame = image[...,rand_z] image_frame /= image_max seg_frame = seg[...,rand_z] image_frame = image_frame[np.newaxis, np.newaxis] seg_frame = seg_frame[np.newaxis, np.newaxis] image_bank = np.concatenate((image_sa, image_frame), axis=1) image_bank = crop_and_fill(image_bank, size) seg_bank = crop_and_fill(seg_frame, size) image_bank = np.transpose(image_bank, (0, 1, 3, 2)) seg_bank = np.transpose(seg_bank, (0, 1, 3, 2)) # plt.subplot(211) # plt.imshow(image_bank[0,1],cmap='gray') # plt.subplot(212) # plt.imshow(seg_bank[0,0],cmap='gray') # plt.show() return image_bank, seg_bank def generate_batch(data_path, batch_size, img_size): filename = [f for f in sorted(os.listdir(data_path))] batch_num = np.random.randint(0,len(os.listdir(data_path)), batch_size) batch_filename = [filename[i] for i in batch_num] train_image=[] train_label=[] for f in batch_filename: img, seg = load_UKBB_train_data_3d(data_path, f, img_size) train_image.append(img) train_label.append(seg) train_image = np.concatenate(train_image) train_label = np.concatenate(train_label) return train_image, train_label def load_UKBB_test_data_3d(data_path, filename, size): # load UKBB dataset (only the mid-ventricular slice) nim = nib.load(os.path.join(data_path, filename, 'sa.nii.gz')) image = nim.get_data()[:, :, :, :] image_mid = image[:, :, int(round(image.shape[2] // 2.0))] image_mid = np.array(image_mid, dtype='float32') # preprocessing curr_data = image_mid pl, ph = np.percentile(curr_data, (.01, 99.99)) curr_data[curr_data < pl] = pl curr_data[curr_data > ph] = ph curr_data = (curr_data.astype(float) - pl) / (ph - pl) image_mid = curr_data nim_seg = nib.load(os.path.join(data_path, filename, 'label_sa_ED.nii.gz')) seg = nim_seg.get_data()[:, :, :] seg_mid = seg[:, :, int(round(seg.shape[2] // 2.0))] seg_mid = seg_mid[np.newaxis] image_bank = image_mid[np.newaxis] seg_bank = seg_mid[..., np.newaxis] image_bank = np.transpose(image_bank, (0, 3, 2, 1)) seg_bank = np.transpose(seg_bank, (0, 3, 2, 1)) image_bank = crop_and_fill(image_bank, size) seg_bank = crop_and_fill(seg_bank, size) seg_bank = np.array(seg_bank, dtype='int32') image_bank = np.array(image_bank, dtype='float32') return image_bank, seg_bank
cq615/Joint-Motion-Estimation-and-Segmentation
models/layers.py
import theano.tensor as T import lasagne from lasagne.layers import Layer import theano import numpy as np from lasagne.layers import MergeLayer, Conv2DLayer def ensure_set_name(default_name, kwargs): """Ensure that the parameters contain names. Be careful, kwargs need to be passed as a dictionary here Parameters ---------- default_name: string default name to set if neither name or pr is present, or if name is not present but pr is, the name becomes ``pr+default_name'' kwargs: dict keyword arguments given to functions Returns ------- kwargs: dict """ if 'name' not in kwargs: raise Warning("You need to name the layers, " "otherwise it simply won't work") global id_ctr if 'name' in kwargs and 'pr' in kwargs: kwargs['name'] = kwargs['pr']+kwargs['name'] elif 'name' not in kwargs and 'pr' in kwargs: idx = next(id_ctr) kwargs['name'] = kwargs['pr'] + default_name + '_g' + str(idx) elif 'name' not in kwargs: idx = next(id_ctr) kwargs['name'] = default_name + '_g' + str(idx) return kwargs def Conv(incoming, num_filters, filter_size=3, stride=(1, 1), pad='same', W=lasagne.init.HeNormal(), b=None, nonlinearity=lasagne.nonlinearities.rectify, **kwargs): """ Overrides the default parameters for ConvLayer """ ensure_set_name('conv', kwargs) return Conv2DLayer(incoming, num_filters, filter_size, stride, pad, W=W, b=b, nonlinearity=nonlinearity, **kwargs) def as_tuple(x, N, t=None): """ Coerce a value to a tuple of given length (and possibly given type). Parameters ---------- x : value or iterable N : integer length of the desired tuple t : type, optional required type for all elements Returns ------- tuple ``tuple(x)`` if `x` is iterable, ``(x,) * N`` otherwise. Raises ------ TypeError if `type` is given and `x` or any of its elements do not match it ValueError if `x` is iterable, but does not have exactly `N` elements """ try: X = tuple(x) except TypeError: X = (x,) * N if (t is not None) and not all(isinstance(v, t) for v in X): raise TypeError("expected a single value or an iterable " "of {0}, got {1} instead".format(t.__name__, x)) if len(X) != N: raise ValueError("expected a single value or an iterable " "with length {0}, got {1} instead".format(N, x)) return X class IdLayer(Layer): def get_output_for(self, input, **kwargs): return input class SumLayer(Layer): def get_output_for(self, input, **kwargs): return input.sum(axis=-1) def get_output_shape_for(self, input_shape): return input_shape[:-1] class SHLULayer(Layer): def get_output_for(self, input, **kwargs): return T.sgn(input) * T.maximum(input - 1, 0) class ResidualLayer(lasagne.layers.ElemwiseSumLayer): ''' Residual Layer, which just wraps around ElemwiseSumLayer ''' def __init__(self, incomings, **kwargs): ensure_set_name('res', kwargs) super(ResidualLayer, self).__init__(incomings, **kwargs) # store names input_names = [] for l in incomings: if isinstance(l, lasagne.layers.InputLayer): input_names.append(l.name if l.name else l.input_var.name) elif l.name: input_names.append(l.name) else: input_names.append(str(l)) self.input_names = input_names def get_output_for(self, inputs, **kwargs): return super(lasagne.layers.ElemwiseSumLayer, self).get_output_for(inputs, **kwargs) class OFLayer(MergeLayer): def __init__(self, incoming, localization_network, downsample_factor=1, border_mode='nearest', **kwargs): super(OFLayer, self).__init__( [incoming, localization_network], **kwargs) self.downsample_factor = as_tuple(downsample_factor, 2) self.border_mode = border_mode input_shp, loc_shp = self.input_shapes # loc_shp=(batch_size,2,height, width) # if loc_shp[-1] != 6 or len(loc_shp) != 2: # raise ValueError("The localization network must have " # "output shape: (batch_size, 6)") if len(input_shp) != 4: raise ValueError("The input network must have a 4-dimensional " "output shape: (batch_size, num_input_channels, " "input_rows, input_columns)") def get_output_shape_for(self, input_shapes): shape = input_shapes[0] factors = self.downsample_factor return (shape[:2] + tuple(None if s is None else int(s // f) for s, f in zip(shape[2:], factors))) def get_output_for(self, inputs, **kwargs): # see eq. (1) and sec 3.1 in [1] input, theta = inputs return _transform(theta, input, self.downsample_factor, self.border_mode) def _transform(theta, input, downsample_factor, border_mode): num_batch, num_channels, height, width = input.shape # theta = T.reshape(theta, (-1, 2, 3)) # grid of (x_t, y_t, 1), eq (1) in ref [1] out_height = T.cast(height // downsample_factor[0], 'int32') out_width = T.cast(width // downsample_factor[1], 'int32') grid = _meshgrid(out_height, out_width) # Transform A x (x_t, y_t, 1)^T -> (x_s, y_s) # T_g = T.dot(theta, grid) T_d = T.reshape(theta, (-1,2,out_height*out_width)) grid = grid.reshape((1,grid.shape[0], grid.shape[1])).repeat(T_d.shape[0],0) T_g = T_d+grid #T_g = (T_d+1) * grid; #T_g = T_d[:,2:,:] + T_g; x_s = T_g[:, 0] y_s = T_g[:, 1] x_s_flat = x_s.flatten() y_s_flat = y_s.flatten() # dimshuffle input to (bs, height, width, channels) input_dim = input.dimshuffle(0, 2, 3, 1) input_transformed = _interpolate( input_dim, x_s_flat, y_s_flat, out_height, out_width, border_mode) output = T.reshape( input_transformed, (num_batch, out_height, out_width, num_channels)) output = output.dimshuffle(0, 3, 1, 2) # dimshuffle to conv format return output def _interpolate(im, x, y, out_height, out_width, border_mode): # *_f are floats num_batch, height, width, channels = im.shape height_f = T.cast(height, theano.config.floatX) width_f = T.cast(width, theano.config.floatX) # scale coordinates from [-1, 1] to [0, width/height - 1] x = (x + 1) / 2 * (width_f - 1) y = (y + 1) / 2 * (height_f - 1) # obtain indices of the 2x2 pixel neighborhood surrounding the coordinates; # we need those in floatX for interpolation and in int64 for indexing. x0_f = T.floor(x) y0_f = T.floor(y) x1_f = x0_f + 1 y1_f = y0_f + 1 # for indexing, we need to take care of the border mode for outside pixels. if border_mode == 'nearest': x0 = T.clip(x0_f, 0, width_f - 1) x1 = T.clip(x1_f, 0, width_f - 1) y0 = T.clip(y0_f, 0, height_f - 1) y1 = T.clip(y1_f, 0, height_f - 1) elif border_mode == 'mirror': w = 2 * (width_f - 1) x0 = T.minimum(x0_f % w, -x0_f % w) x1 = T.minimum(x1_f % w, -x1_f % w) h = 2 * (height_f - 1) y0 = T.minimum(y0_f % h, -y0_f % h) y1 = T.minimum(y1_f % h, -y1_f % h) elif border_mode == 'wrap': x0 = T.mod(x0_f, width_f) x1 = T.mod(x1_f, width_f) y0 = T.mod(y0_f, height_f) y1 = T.mod(y1_f, height_f) else: raise ValueError("border_mode must be one of " "'nearest', 'mirror', 'wrap'") x0, x1, y0, y1 = (T.cast(v, 'int32') for v in (x0, x1, y0, y1)) # The input is [num_batch, height, width, channels]. We do the lookup in # the flattened input, i.e [num_batch*height*width, channels]. We need # to offset all indices to match the flat version dim2 = width dim1 = width*height base = T.repeat( T.arange(num_batch, dtype='int32')*dim1, out_height*out_width) base_y0 = base + y0*dim2 base_y1 = base + y1*dim2 idx_a = base_y0 + x0 idx_b = base_y1 + x0 idx_c = base_y0 + x1 idx_d = base_y1 + x1 # use indices to lookup pixels for all samples im_flat = im.reshape((-1, channels)) Ia = im_flat[idx_a] Ib = im_flat[idx_b] Ic = im_flat[idx_c] Id = im_flat[idx_d] # calculate interpolated values wa = ((x1_f-x) * (y1_f-y)).dimshuffle(0, 'x') wb = ((x1_f-x) * (y-y0_f)).dimshuffle(0, 'x') wc = ((x-x0_f) * (y1_f-y)).dimshuffle(0, 'x') wd = ((x-x0_f) * (y-y0_f)).dimshuffle(0, 'x') output = T.sum([wa*Ia, wb*Ib, wc*Ic, wd*Id], axis=0) return output def _linspace(start, stop, num): # Theano linspace. Behaves similar to np.linspace start = T.cast(start, theano.config.floatX) stop = T.cast(stop, theano.config.floatX) num = T.cast(num, theano.config.floatX) step = (stop-start)/(num-1) return T.arange(num, dtype=theano.config.floatX)*step+start def _meshgrid(height, width): # This function is the grid generator from eq. (1) in reference [1]. # It is equivalent to the following numpy code: # x_t, y_t = np.meshgrid(np.linspace(-1, 1, width), # np.linspace(-1, 1, height)) # ones = np.ones(np.prod(x_t.shape)) # grid = np.vstack([x_t.flatten(), y_t.flatten(), ones]) # It is implemented in Theano instead to support symbolic grid sizes. # Note: If the image size is known at layer construction time, we could # compute the meshgrid offline in numpy instead of doing it dynamically # in Theano. However, it hardly affected performance when we tried. x_t = T.dot(T.ones((height, 1)), _linspace(-1.0, 1.0, width).dimshuffle('x', 0)) y_t = T.dot(_linspace(-1.0, 1.0, height).dimshuffle(0, 'x'), T.ones((1, width))) x_t_flat = x_t.reshape((1, -1)) y_t_flat = y_t.reshape((1, -1)) # ones = T.ones_like(x_t_flat) # grid = T.concatenate([x_t_flat, y_t_flat, ones], axis=0) grid = T.concatenate([x_t_flat, y_t_flat], axis=0) return grid class SubpixelLayer(Layer): def __init__(self, incoming,r,c, **kwargs): super(SubpixelLayer, self).__init__(incoming, **kwargs) self.r=r # Upscale factor self.c=c # number of output channels def get_output_shape_for(self, input_shape): return (input_shape[0],self.c,self.r*input_shape[2],self.r*input_shape[3]) def get_output_for(self, input, deterministic=False, **kwargs): out = T.zeros((input.shape[0],self.output_shape[1],self.output_shape[2],self.output_shape[3])) for x in xrange(self.r): # loop across all feature maps belonging to this channel for y in xrange(self.r): out=T.set_subtensor(out[:,:,x::self.r,y::self.r],input[:,self.r*x+y::self.r*self.r,:,:]) return out class ScaleLayer(Layer): def __init__(self, incoming,r, **kwargs): super(ScaleLayer, self).__init__(incoming, **kwargs) self.r=r # Upscale factor def get_output_for(self, input, **kwargs): out = input*self.r return out class ZeroLayer(Layer): def __init__(self, incoming,r, **kwargs): super(ZeroLayer, self).__init__(incoming, **kwargs) self.r=r # Upscale factor def get_output_for(self, input, **kwargs): out = T.set_subtensor(input[T.abs_(input)<self.r],0.0) return out class ConvAggr(Layer): def __init__(self, incoming, num_channels, filter_size=3, stride=(1, 1), pad='same', W=lasagne.init.HeNormal(), b=None, **kwargs): ensure_set_name('conv_aggr', kwargs) super(ConvAggr, self).__init__(incoming, **kwargs) self.conv = Conv(incoming, num_channels, filter_size, stride, pad=pad, W=W, b=b, nonlinearity=None, **kwargs) # copy params self.params = self.conv.params.copy() def get_output_for(self, input, **kwargs): return self.conv.get_output_for(input) def get_output_shape_for(self, input_shape): return self.conv.get_output_shape_for(input_shape) class TileLayer(Layer): def __init__(self, incoming, **kwargs): super(TileLayer, self).__init__(incoming, **kwargs) def get_output_for(self, input, **kwargs): out = T.tile(input[...,input.shape[-1]/2:input.shape[-1]/2+1],(1,1,1,1,input.shape[-1])) return out class MC_prep(Layer): def __init__(self, incoming, **kwargs): super(MC_prep, self).__init__(incoming, **kwargs) def get_output_for(self, input, **kwargs): out = T.zeros((input.shape[-1], input.shape[1], input.shape[2], input.shape[3], input.shape[4])) out = T.set_subtensor(out[0:1],input) out = T.set_subtensor(out[1:2],T.concatenate([input[...,1:2], input[...,0:1], input[..., 2:3], input[..., 3:4], input[..., 4:]], axis = 4)) out = T.set_subtensor(out[2:3],T.concatenate([input[...,2:3], input[...,1:2], input[..., 3:4], input[..., 0:1], input[..., 4:]], axis = 4)) out = T.set_subtensor(out[3:4],T.concatenate([input[...,3:4], input[...,2:3], input[..., 4:], input[..., 1:2], input[..., 0:1]], axis = 4)) out = T.set_subtensor(out[4:5],T.concatenate([input[...,4:], input[...,3:4], input[..., 2:3], input[..., 1:2], input[..., 0:1]], axis = 4)) return out def get_output_shape_for(self, input_shape): return (input_shape[-1], input_shape[1], input_shape[2], input_shape[3], input_shape[4])
lanewinfield/robotpornaddict
porn.py
import httplib, urllib, base64, json from moviepy.editor import * from pytube import YouTube import os import urllib import urllib2 from bs4 import BeautifulSoup import random from random import randint from twython import Twython from gtts import gTTS def getDescription(img): headers = { # Request headers 'Content-Type': 'application/octet-stream', 'Ocp-Apim-Subscription-Key': '', # KEY FOR AZURE } params = urllib.urlencode({ # Request parameters # 'language': 'unk', # 'detectOrientation ': 'true', }) data = open(img, 'rb').read() conn = httplib.HTTPSConnection('api.projectoxford.ai') conn.request("POST", "/vision/v1.0/analyze?visualFeatures=Description%s" % params, data, headers) response = conn.getresponse() data = response.read() thejson = json.loads(data) conn.close() return thejson["description"]["captions"][0]["text"] def deleteOldVideo(): # DELETE OLD VIDEO try: os.remove('/home/brian/porn/input.mp4') print "input.mp4 deleted" except OSError: pass try: os.remove('/home/brian/porn/video1.mp4') print "video1.mp4 deleted" except OSError: pass try: os.remove('/home/brian/porn/video2.mp4') print "video2.mp4 deleted" except OSError: pass try: os.remove('/home/brian/porn/video3.mp4') print "video3.mp4 deleted" except OSError: pass deleteOldVideo() command = "/usr/local/bin/youtube-dl -o /home/brian/porn/input.mp4 http://pornhub.com/random" print command os.system(command) time_middle = int(VideoFileClip("/home/brian/porn/input.mp4").duration/2) time_beginning = int(VideoFileClip("/home/brian/porn/input.mp4").duration*0.2) time_end = int(VideoFileClip("/home/brian/porn/input.mp4").duration*0.8) command = "/home/brian/tobecontinued/ffmpeg-3.2-64bit-static/ffmpeg -i /home/brian/porn/input.mp4 -ss "+str(time_beginning)+" -t 5 /home/brian/porn/video1.mp4" print command os.system(command) command = "/home/brian/tobecontinued/ffmpeg-3.2-64bit-static/ffmpeg -i /home/brian/porn/input.mp4 -ss "+str(time_middle)+" -t 5 /home/brian/porn/video2.mp4" print command os.system(command) command = "/home/brian/tobecontinued/ffmpeg-3.2-64bit-static/ffmpeg -i /home/brian/porn/input.mp4 -ss "+str(time_end)+" -t 5 /home/brian/porn/video3.mp4" print command os.system(command) clip1 = VideoFileClip("/home/brian/porn/video1.mp4") clip2 = VideoFileClip("/home/brian/porn/video2.mp4") clip3 = VideoFileClip("/home/brian/porn/video3.mp4") smallclip1 = clip1.resize((11, 6)) smallclip2 = clip2.resize((11, 6)) smallclip3 = clip3.resize((11, 6)) regularclip1 = smallclip1.resize((1280, 720)) regularclip2 = smallclip2.resize((1280, 720)) regularclip3 = smallclip3.resize((1280, 720)) screensize = clip1.size clip1.save_frame("/home/brian/porn/frame1.png", t=0) clip2.save_frame("/home/brian/porn/frame2.png", t=0) clip3.save_frame("/home/brian/porn/frame3.png", t=0) descriptions = [getDescription("/home/brian/porn/frame1.png")+"?", getDescription("/home/brian/porn/frame2.png")+"?", getDescription("/home/brian/porn/frame3.png")+"?"] # AUDIO i = 1 for s in descriptions: tts = gTTS(text=s, lang='en') tts.save("/home/brian/porn/audio"+str(i)+".mp3") i = i+1 textclip1 = TextClip(descriptions[0], fontsize=70, color="white", method="caption", align="center", font="/home/brian/porn/InputSans-Black.ttf", size=[600, 950]).set_duration(5) textclip2 = TextClip(descriptions[1], fontsize=70, color="white", method="caption", align="center", font="/home/brian/porn/InputSans-Black.ttf", size=[600, 950]).set_duration(5) textclip3 = TextClip(descriptions[2], fontsize=70, color="white", method="caption", align="center", font="/home/brian/porn/InputSans-Black.ttf", size=[600, 950]).set_duration(5) audioclip1 = AudioFileClip("/home/brian/porn/audio1.mp3") audioclip2 = AudioFileClip("/home/brian/porn/audio2.mp3") audioclip3 = AudioFileClip("/home/brian/porn/audio3.mp3") concClip = concatenate_videoclips([regularclip1, regularclip2, regularclip3]) comp = CompositeAudioClip([concClip.audio.volumex(0.6),audioclip1.set_start(1),audioclip2.set_start(6),audioclip3.set_start(11)]) final_clip = CompositeVideoClip([concClip, textclip1.set_pos(('center', 'center')).set_start(0), textclip2.set_pos(('center', 'center')).set_start(5), textclip3.set_pos(('center', 'center')).set_start(10)]).set_audio(comp).set_duration(15) final_clip.write_videofile("/home/brian/porn/final.mp4",audio_codec='aac') # TWEET IT APP_KEY = '' APP_SECRET = '' ACCESS_KEY = ''#keep the quotes, replace this with your access token ACCESS_SECRET = ''#keep the quotes, replace this with your access token secret twitter = Twython(APP_KEY, APP_SECRET, ACCESS_KEY, ACCESS_SECRET) tweetCopy = descriptions[0] video = open('/home/brian/porn/final.mp4', 'rb') response = twitter.upload_video(media=video, media_type='video/mp4') twitter.update_status(status=tweetCopy, media_ids=[response['media_id']])
leafwind/twitch_analysis
app/handlers/get_signin_stats_handler.py
# -*- coding: utf-8 -*- import sqlite3 import numpy as np import pandas as pd import logging import time from datetime import datetime import json from collections import OrderedDict import math with open('config.json') as fp: CONFIG = json.load(fp) html_newline = '<br />' def h1(s): return "<h1>" + s + "</h1>" def h2(s): return "<h2>" + s + "</h2>" def ul(s): return "<ul>" + s + "</ul>" def li(s): return "<li>" + s + "</li>" def table(s, border=1, style=""): return "<table border=\'{}\' style=\'{}\'>".format(border, style) + s + "</table>" def th(s): return "<th>" + s + "</th>" def tr(s): return "<tr>" + s + "</tr>" def td(s): return "<td>" + str(s) + "</td>" def style_color(s, color='blue'): return "<span style='color:{}'>".format(color) + str(s) + "</span>" def get_signin_info(channel, user): global CONFIG signin_info = {} conn = sqlite3.connect(CONFIG['db']) signins = pd.read_sql_query("select 1 from signin where user=? and channel=?", conn, params=(user.lower(), channel)) count = len(signins) last_signin = pd.read_sql_query("select ts_day from signin where user=? and channel=? order by ts_day desc limit 1", conn, params=(user.lower(), channel)) if last_signin.empty: signin_info = { 'count': count, 'last_date': '{}'.format(time.strftime("%Y-%m-%d", time.gmtime(0))), 'last_date_ts_utc': 0, } else: signin_info = { 'count': count, 'last_date': '{}'.format(time.strftime("%Y-%m-%d", time.gmtime(last_signin['ts_day'] + 8 * 3600))), 'last_date_ts_utc': last_signin['ts_day'], } conn.close() return signin_info def get_signin_stats(channel, user, html=False): signin_info = get_signin_info(channel, user) if html: html_str = [] welcome_str = "Hi! ㄈ{} 已經累積簽到 {} 次,阿不就好棒棒(́◉◞౪◟◉‵)".format(style_color(user, 'blue'), style_color(signin_info['count'], 'red')) welcome_str = h2(welcome_str) html_str.append(welcome_str) welcome_str = "最近一次簽到在 {} 也就是{}".format(signin_info['last_date'], _decode_human_date(signin_info['last_date_ts_utc'])) welcome_str = h2(welcome_str) html_str.append(welcome_str) html_str = ''.join(html_str) return html_str else: return { 'count': signin_info['count'], 'last_date': signin_info['last_date'] } def _decode_human_date(ts_utc): last_date = datetime.utcfromtimestamp(ts_utc) now = datetime.utcnow() delta = now - last_date if delta.days == 0: return "今天" else: return " {} 天前".format(delta.days)
leafwind/twitch_analysis
app/main.py
from flask import Flask from flask import request from flask import jsonify import logging import requests import json import time import calendar from handlers.get_channel_stats_handler import get_stats, get_signin_ranking from handlers.get_signin_stats_handler import get_signin_stats application = Flask(__name__) application.config['PROPAGATE_EXCEPTIONS'] = True logging.basicConfig(filename='error.log',level=logging.DEBUG) with open('config.json') as fp: CONFIG = json.load(fp) client_id = CONFIG["client_id"] @application.route("/") def hello(): return "<h1 style='color:red'>Hello There!</h1>" ## set the project root directory as the static folder, you can set others. #app = Flask(__name__, static_url_path='') <EMAIL>('/js/<path:path>') #def send_js(path): # return send_from_directory('js', path) def h1(s): return "<h1>{}</h1>".format(s) @application.route('/signin_ranking/<channel>') def get_signin_ranking_handler(channel): result = get_signin_ranking(channel) return result @application.route('/signin', methods=['GET']) def _get_signin_status_hanlder(): user = request.args.get('user') channel = request.args.get('channel') result = get_signin_stats(channel, user, html=False) return jsonify(result) @application.route('/signin/<channel>/<user>') def get_signin_status_hanlder(channel, user): result = get_signin_stats(channel, user, html=True) return result @application.route('/follow/<channel>/<user>') def follow_status(channel, user): global client_id url = 'https://api.twitch.tv/kraken/users/{}/follows/channels/{}'.format(user, channel) headers = {'Accept': 'application/vnd.twitchtv.v3+json', 'Client-ID': client_id} r = requests.get(url, headers=headers) info = json.loads(r.text) if info.get('status', None) == 404: return h1("{} is not following {}".format(user, channel)) else: since = time.strptime(info['created_at'], "%Y-%m-%dT%H:%M:%S+00:00") since_ts = calendar.timegm(since) now = time.gmtime(time.time()) now_ts = calendar.timegm(now) diff_ts = now_ts - since_ts msg = "{} start following {} from <span style='color:red'>{}-{}-{}</span>, total <span style='color:blue'>{}</span> days".format(user, channel, since.tm_year, since.tm_mon, since.tm_mday, int(diff_ts / 86400)) msg = h1(msg) return msg @application.route('/<channel>/list_all_current_users') def get_all_users(channel): from twitch_utils import get_current_users all_users = get_current_users(channel) msg = "<br />".join(all_users) msg = h1(msg) return msg @application.route('/<channel>/stats') def get_stats_handler(channel): result = get_stats(channel) return result @application.route('/post/<int:post_id>') def show_post(post_id): return 'Post %d' % post_id #if __name__ == "__main__": # application.run(host='0.0.0.0')
leafwind/twitch_analysis
app/handlers/get_channel_stats_handler.py
<gh_stars>0 # -*- coding: utf-8 -*- import sqlite3 import numpy as np import pandas as pd import logging import time import json from collections import OrderedDict import math with open('config.json') as fp: CONFIG = json.load(fp) html_newline = '<br />' def h1(s): return "<h1>" + s + "</h1>" def h2(s): return "<h2>" + s + "</h2>" def ul(s): return "<ul>" + s + "</ul>" def li(s): return "<li>" + s + "</li>" def table(s, border=1, style=""): return "<table border=\'{}\' style=\'{}\'>".format(border, style) + s + "</table>" def th(s): return "<th>" + s + "</th>" def tr(s): return "<tr>" + s + "</tr>" def td(s): return "<td>" + s + "</td>" def style_color(s, color='blue'): return "<span style='color:{}'>".format(color) + s + "</span>" def get_stream_info(channel, n_top_chatters, n_top_msgs): global CONFIG stream_info = {} conn = sqlite3.connect(CONFIG['db']) streams = pd.read_sql_query("select id, game, created_at, end_at from stream where channel =\'{}\' order by created_at desc".format(channel), conn) popularity = pd.read_sql_query("select n_user, ts from channel_popularity where channel = \'{}\'".format(channel), conn) chat = pd.read_sql_query("select user, msg, ts from chat where channel = \'{}\'".format(channel), conn) for index, stream in streams.iterrows(): stream['end_at'] = stream['end_at'] if stream['end_at'] > 0 else int(time.time()) p = popularity[(popularity.ts >= stream['created_at']) & (popularity.ts <= stream['end_at'])] c = chat[(chat.ts >= stream['created_at']) & (chat.ts <= stream['end_at'])] n_total_chat = c['user'].count() def group_by_min(df, ind, col): return int(df[col].loc[ind]/60) chat_groupby_min = c['ts'].groupby(lambda x: group_by_min(c, x, 'ts')).count() max_chat_by_min = chat_groupby_min.max() mean_chat_by_min = chat_groupby_min.mean() std_chat_by_min = chat_groupby_min.std() created_at = stream['created_at'] end_at = stream['end_at'] max_user = p['n_user'].max() mean_user = p['n_user'].mean() unique_chat_user = c['user'].nunique() chat_groupby_user = c[['user', 'ts']].groupby('user', as_index=False).count() top_chatters = chat_groupby_user.nlargest(n_top_chatters, columns='ts')['user'].tolist() top_chatters = ", ".join(top_chatters) top_chatters = top_chatters.encode('utf-8') chat_groupby_msg = c[['msg', 'ts']].groupby('msg', as_index=False).count() top_msgs = chat_groupby_msg.nlargest(n_top_msgs, columns='ts')['msg'].tolist() top_msgs = ", ".join(top_msgs) top_msgs = top_msgs.encode('utf-8') stream_info[stream['id']] = { 'game': stream['game'].encode('utf-8'), 'created_at': '{}'.format(time.strftime("%Y-%m-%d %H:%M", time.gmtime(created_at + 8 * 3600))), 'end_at': '{}'.format(time.strftime("%Y-%m-%d %H:%M", time.gmtime(end_at + 8 * 3600))), 'duration_min': '{}'.format(int((end_at - created_at) / 60)), 'n_total_chat': str(n_total_chat), 'max_user': str(max_user), 'mean_user': 'nan' if math.isnan(mean_user) else str(int(mean_user)), 'unique_chat_user': str(unique_chat_user), 'interactivity': '{:.0%}'.format(1.0 * unique_chat_user / max_user), 'max_chat_by_min': str(max_chat_by_min), 'mean_chat_by_min': '{:.1f}'.format(mean_chat_by_min), 'cov_chat_by_min': '{:.0%}'.format(std_chat_by_min / mean_chat_by_min), 'top_chatters': top_chatters, 'top_msgs': top_msgs, } stream_info = OrderedDict(sorted(stream_info.items(), key=lambda t: t[1]["created_at"], reverse=True)) conn.close() return stream_info def get_signin_ranking(channel): global CONFIG stream_info = {} conn = sqlite3.connect(CONFIG['db']) result = pd.read_sql_query("select user, count(1) as count, strftime('%Y-%m-%d', datetime(max(ts_day), 'unixepoch')) as last_signin_date from signin where channel = \'{}\' group by user order by count(1) desc".format(channel), conn) header_translation = [ ('user', '使用者'), ('count', '簽到次數'), ('last_signin_date', '最後簽到日期') ] html_str = [] row = [] for header in header_translation: row.append(th(header[1])) html_str.append(tr("".join(row))) for index, log in result.iterrows(): row = [] for header in header_translation: value = str(log[header[0]]) row.append(td(value)) html_str.append(tr("".join(row))) html_str = table("".join(html_str), border=1, style="font-size:24px;") return html_str def get_stats(channel): header_translation = [ ('game', '遊戲名稱'), ('created_at', '開始時間'), ('end_at', '結束時間'), ('duration_min', '實況時間(分)'), ('n_total_chat', '總發言數量'), ('mean_chat_by_min', '平均每分鐘發言'), ('max_chat_by_min', '最大每分鐘發言'), ('mean_user', '平均觀眾'), ('max_user', '最多同時觀眾'), ('unique_chat_user', '不重複發言觀眾'), ('interactivity', '互動比例(發言/全部觀眾)'), ('cov_chat_by_min', '觀眾情緒起伏指數'), ('top_chatters', '最常發言觀眾'), ('top_msgs', '最多重複訊息'), ] stream_info = get_stream_info(channel, n_top_chatters=5, n_top_msgs=10) html_str = [] row = [] for header in header_translation: row.append(th(header[1])) html_str.append(tr("".join(row))) for _id in stream_info: row = [] for header in header_translation: row.append(td(stream_info[_id][header[0]])) html_str.append(tr("".join(row))) html_str = table("".join(html_str), border=1, style="font-size:24px;") return html_str def whatisthis(s): if isinstance(s, str): print "ordinary string: {}".format(s) elif isinstance(s, unicode): print "unicode string: {}".format(s.encode('utf-8')) else: print "not a string"
leafwind/twitch_analysis
app/twitch_utils.py
<filename>app/twitch_utils.py import requests USERLIST_API = "http://tmi.twitch.tv/group/user/{}/chatters" def get_current_users(ch, user_type='all'): url = USERLIST_API.format(ch) r = requests.get(url).json() if user_type == 'all': all_users = set(sum(r['chatters'].values(), [])) return all_users elif user_type in ['moderators', 'staff', 'admins', 'global_mods', 'viewers']: users = set(r['chatters'][user_type]) return users else: return set()
SKJNR/Face-Counting-
app.py
import cv2 # Get a reference to webcam cap = cv2.VideoCapture(0) # Create the haar cascade faceCascade = cv2.CascadeClassifier("haarcascade_frontalface_default.xml") while True: ret, frame = cap.read(0) gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) # Detect faces in the image faces = faceCascade.detectMultiScale( gray, scaleFactor=1.1, minNeighbors=5, minSize=(30, 30), flags = cv2.CASCADE_SCALE_IMAGE ) count=0 # Draw a rectangle around the faces for (x, y, w, h) in faces: cv2.rectangle(frame, (x, y), (x+w, y+h), (0, 255, 0), 2) count+=1 # Display count cv2.putText(frame, str(count), (70, 45), cv2.FONT_HERSHEY_SIMPLEX, 1, (0,0,255), 2) cv2.imshow('Video Face Detection', frame) if cv2.waitKey(1) & 0xFF == ord('q'): break # When everything is done, release the capture cap.release() cv2.destroyAllWindows()
SmileyJames/piecash
tests/test_transaction.py
<filename>tests/test_transaction.py # coding=utf-8 from __future__ import unicode_literals from collections import defaultdict from datetime import datetime, date, time from decimal import Decimal import pytest from piecash import Transaction, Split, GncImbalanceError, GncValidationError, Lot from test_helper import db_sqlite_uri, db_sqlite, new_book, new_book_USD, book_uri, book_basic, book_transactions # dummy line to avoid removing unused symbols a = db_sqlite_uri, db_sqlite, new_book, new_book_USD, book_uri, book_basic, book_transactions class TestTransaction_create_transaction(object): def test_create_basictransaction_neutraltime(self, book_basic): EUR = book_basic.commodities(namespace="CURRENCY") racc = book_basic.root_account a = book_basic.accounts(name="asset") e = book_basic.accounts(name="exp") tr = Transaction(currency=EUR, description=u"wire from Hélène", notes=u"on St-Eugène day", post_date=date(2014, 1, 1), splits=[ Split(account=a, value=100, memo=u"mémo asset"), Split(account=e, value=-100, memo=u"mémo exp"), ]) assert isinstance(tr.post_date, date) book_basic.flush() book_basic.validate() assert isinstance(tr.post_date, date) def test_create_basictransaction_validation_date(self, book_basic): EUR = book_basic.commodities(namespace="CURRENCY") racc = book_basic.root_account a = book_basic.accounts(name="asset") e = book_basic.accounts(name="exp") splits = [ Split(account=a, value=100, memo=u"mémo asset"), Split(account=e, value=-10, memo=u"mémo exp"), ] with pytest.raises(GncValidationError): tr = Transaction(currency=EUR, description=u"wire from Hélène", notes=u"on St-Eugène day", post_date=datetime(2014, 1, 1), enter_date=datetime(2014, 1, 1), splits=splits) with pytest.raises(GncValidationError): tr = Transaction(currency=EUR, description=u"wire from Hélène", notes=u"on St-Eugène day", post_date=datetime(2014, 1, 1), enter_date=time(10, 59, 00), splits=splits) with pytest.raises(GncValidationError): tr = Transaction(currency=EUR, description=u"wire from Hélène", notes=u"on St-Eugène day", post_date=date(2014, 1, 1), enter_date=date(2014, 1, 1), splits=splits) tr = Transaction(currency=EUR, description=u"wire from Hélène", notes=u"on St-Eugène day", post_date=None, enter_date=None, splits=splits) with pytest.raises(GncImbalanceError): book_basic.flush() book_basic.validate() def test_create_basictransaction(self, book_basic): EUR = book_basic.commodities(namespace="CURRENCY") racc = book_basic.root_account a = book_basic.accounts(name="asset") e = book_basic.accounts(name="exp") tr = Transaction(currency=EUR, description=u"wire from Hélène", notes=u"on St-Eugène day", post_date=date(2014, 1, 1), enter_date=datetime(2014, 1, 1), splits=[ Split(account=a, value=100, memo=u"mémo asset"), Split(account=e, value=-10, memo=u"mémo exp"), ]) # check issue with balance with pytest.raises(GncImbalanceError): book_basic.flush() book_basic.validate() # adjust balance Split(account=e, value=-90, memo="missing exp", transaction=tr) book_basic.flush() # check no issue with str assert str(tr) assert str(tr.splits) assert repr(tr) assert repr(tr.splits) assert tr.notes == u"on St-Eugène day" def test_create_basictransaction_splitfirst(self, book_basic): EUR = book_basic.commodities(namespace="CURRENCY") racc = book_basic.root_account a = book_basic.accounts(name="asset") e = book_basic.accounts(name="exp") s = Split(account=a, value=Decimal(1)) assert repr(s) def test_create_cdtytransaction(self, book_basic): EUR = book_basic.commodities(namespace="CURRENCY") racc = book_basic.root_account a = book_basic.accounts(name="asset") s = book_basic.accounts(name="broker") tr = Transaction(currency=EUR, description="buy stock", notes=u"on St-Eugène day", post_date=date(2014, 1, 2), enter_date=datetime(2014, 1, 3), splits=[ Split(account=a, value=100, memo=u"mémo asset"), Split(account=s, value=-90, memo=u"mémo brok"), ]) # check issue with quantity for broker split not defined with pytest.raises(GncValidationError): book_basic.validate() sb = tr.splits(account=s) sb.quantity = 15 # check issue with quantity not same sign as value with pytest.raises(GncValidationError): book_basic.validate() sb.quantity = -15 # verify imbalance issue with pytest.raises(GncImbalanceError): book_basic.validate() # adjust balance Split(account=a, value=-10, memo="missing asset corr", transaction=tr) book_basic.save() assert str(sb) assert str(sb) # changing currency of an existing transaction is not allowed tr.currency = book_basic.currencies(mnemonic="USD") with pytest.raises(GncValidationError): book_basic.validate() book_basic.cancel() # check sum of quantities are not balanced per commodity but values are d = defaultdict(lambda: Decimal(0)) for sp in tr.splits: assert sp.quantity == sp.value or sp.account != a d[sp.account.commodity] += sp.quantity d["cur"] += sp.value assert d["cur"] == 0 assert all([v != 0 for k, v in d.items() if k != "cur"]) def test_create_split_overflow(self, book_basic): a = book_basic.accounts(name="asset") # raise error as Transaction has a non CURRENCY commodity with pytest.raises(TypeError): sp = Split(account=a, value=1. / 3., quantity=10, memo=u"mémo asset") with pytest.raises(ValueError): sp = Split(account=a, value=Decimal(1) / Decimal(3), quantity=10, memo=u"mémo asset") sp = Split(account=a, value=Decimal(1234567890123455678), quantity=10, memo=u"mémo asset") with pytest.raises(ValueError): sp = Split(account=a, value=Decimal(1234567890123455678901234), quantity=10, memo=u"mémo asset") def test_create_cdtytransaction_cdtycurrency(self, book_basic): EUR = book_basic.commodities(namespace="CURRENCY") racc = book_basic.root_account a = book_basic.accounts(name="asset") s = book_basic.accounts(name="broker") tr = Transaction(currency=s.commodity, description="buy stock", notes=u"on St-Eugène day", post_date=date(2014, 1, 2), enter_date=datetime(2014, 1, 3), splits=[ Split(account=a, value=100, quantity=10, memo=u"mémo asset"), Split(account=s, value=-100, quantity=-10, memo=u"mémo brok"), ]) # raise error as Transaction has a non CURRENCY commodity with pytest.raises(GncValidationError): book_basic.validate() def test_create_cdtytransaction_tradingaccount(self, book_basic): EUR = book_basic.commodities(namespace="CURRENCY") racc = book_basic.root_account a = book_basic.accounts(name="asset") s = book_basic.accounts(name="broker") book_basic.use_trading_accounts = True tr = Transaction(currency=EUR, description="buy stock", notes=u"on St-Eugène day", post_date=date(2014, 1, 2), enter_date=datetime(2014, 1, 3), splits=[ Split(account=a, value=100, memo=u"mémo asset"), Split(account=s, value=-100, quantity=-15, memo=u"mémo brok"), ]) book_basic.validate() assert "{}".format(tr) == "Transaction<[EUR] 'buy stock' on 2014-01-02>" assert "{}".format(s) == "Account<asset:broker[ïoà]>" assert "{}".format(tr.splits(account=s)) == "Split<Account<asset:broker[ïoà]> -100 EUR [-15 ïoà]>" assert "{}".format(tr.splits(account=a)) == "Split<Account<asset[EUR]> 100 EUR>" # check sum of quantities are all balanced per commodity as values are d = defaultdict(lambda: Decimal(0)) for sp in tr.splits: assert sp.quantity == sp.value or sp.account != a d[sp.account.commodity] += sp.quantity d["cur"] += sp.value assert d["cur"] == 0 assert all([v == Decimal(0) for k, v in d.items() if k != "cur"]) # change existing quantity sp = tr.splits(memo=u"mémo brok") sp.quantity += 1 book_basic.validate() # check sum of quantities are all balanced per commodity as values are d = defaultdict(lambda: Decimal(0)) for sp in tr.splits: assert sp.quantity == sp.value or sp.account != a d[sp.account.commodity] += sp.quantity d["cur"] += sp.value assert d["cur"] == 0 assert all([v == Decimal(0) for k, v in d.items() if k != "cur"]) class TestTransaction_lots(object): def test_create_simpletlot_addsplits(self, book_basic): EUR = book_basic.commodities(namespace="CURRENCY") racc = book_basic.root_account a = book_basic.accounts(name="asset") s = book_basic.accounts(name="broker") l = Lot(title=u"test mé", account=s, notes=u"ïlya") for i, am in enumerate([45, -35, -20]): tr = Transaction(currency=EUR, description="trade stock", notes=u"àçö", post_date=date(2014, 1, 1 + i), enter_date=datetime(2014, 1, 1 + i), splits=[ Split(account=a, value=am * 10, memo=u"mémo asset"), Split(account=s, value=-am * 10, quantity=-am, memo=u"mémo brok", lot=l), ]) book_basic.flush() def test_create_simpletlot_initialsplits(self, book_basic): EUR = book_basic.commodities(namespace="CURRENCY") racc = book_basic.root_account a = book_basic.accounts(name="asset") s = book_basic.accounts(name="broker") sp = [] for i, am in enumerate([45, -35, -20]): tr = Transaction(currency=EUR, description="trade stock", notes=u"àçö", post_date=date(2014, 1, 1 + i), enter_date=datetime(2014, 1, 1 + i), splits=[ Split(account=a, value=am * 10, memo=u"mémo asset"), Split(account=s, value=-am * 10, quantity=-am, memo=u"mémo brok"), ]) sp.append(tr.splits(account=s)) l = Lot(title=u"test mé", account=s, notes=u"ïlya", splits=sp) book_basic.flush() def test_create_closedlot_addsplits(self, book_basic): EUR = book_basic.commodities(namespace="CURRENCY") racc = book_basic.root_account a = book_basic.accounts(name="asset") s = book_basic.accounts(name="broker") l = Lot(title=u"test mé", account=s, notes=u"ïlya") l.is_closed = 1 # raise valueerror as lot is closed with pytest.raises(ValueError): tr = Transaction(currency=EUR, description="trade stock", notes=u"àçö", post_date=date(2014, 1, 1), enter_date=datetime(2014, 1, 1), splits=[ Split(account=a, value=10, memo=u"mémo asset"), Split(account=s, value=- 10, quantity=-2, memo=u"mémo brok", lot=l), ]) def test_create_simplelot_inconsistentaccounts(self, book_basic): EUR = book_basic.commodities(namespace="CURRENCY") racc = book_basic.root_account a = book_basic.accounts(name="asset") s = book_basic.accounts(name="broker") l = Lot(title=u"test mé", account=a, notes=u"ïlya") # raise valueerror as split account not the same as lot account tr = Transaction(currency=EUR, description="trade stock", notes=u"àçö", post_date=date(2014, 1, 1), enter_date=datetime(2014, 1, 1), splits=[ Split(account=a, value=10, memo=u"mémo asset"), Split(account=s, value=- 10, quantity=-2, memo=u"mémo brok", lot=l), ]) with pytest.raises(ValueError): book_basic.validate() class TestTransaction_changes(object): def test_delete_existing_transaction(self, book_transactions): l = len(book_transactions.transactions) s = len(book_transactions.splits) tr = book_transactions.transactions(description="my revenue") book_transactions.delete(tr) book_transactions.save() nl = len(book_transactions.transactions) ns = len(book_transactions.splits) assert nl == l - 1 assert ns == s - 2 def test_change_cdty_split_price(self, book_transactions): tr = book_transactions.transactions(description="my purchase of stock") sp = tr.splits(account=book_transactions.accounts(name="broker")) assert len(book_transactions.prices) == 6 p = [p for p in book_transactions.prices if p.date.day == 29][0] p_expected = (sp.value / sp.quantity).quantize(Decimal("0.000001")) assert p.value == p_expected # changing the quantity of the split should NOT change the existing price sp.quantity = (5, 1) book_transactions.validate() p_not_expected = (sp.value / sp.quantity).quantize(Decimal("0.000001")) assert len(book_transactions.prices) == 6 assert p.value == p_expected assert p_expected != p_not_expected # changing the post date of the transaction of the split should create a new price tr.post_date = date(2015, 1, 29) book_transactions.validate() book_transactions.flush() assert len(book_transactions.prices) == 7
SmileyJames/piecash
piecash/core/factories.py
# coding=utf-8 from __future__ import unicode_literals from .._common import GnucashException from ..yahoo_client import get_latest_quote def create_stock_accounts(cdty, broker_account, income_account=None, income_account_types="D/CL/I"): """Create the multiple accounts used to track a single stock, ie: - broker_account/stock.mnemonic and the following accounts depending on the income_account_types argument - D = Income/Dividend Income/stock.mnemonic - CL = Income/Cap Gain (Long)/stock.mnemonic - CS = Income/Cap Gain (Short)/stock.mnemonic - I = Income/Interest Income/stock.mnemonic Args: broker_account (:class:`piecash.core.account.Account`): the broker account where the account holding the stock is to be created income_account (:class:`piecash.core.account.Account`): the income account where the accounts holding the income related to the stock are to be created income_account_types (str): "/" separated codes to drive the creation of income accounts Returns: :class:`piecash.core.account.Account`: a tuple with the account under the broker_account where the stock is held and the list of income accounts. """ if cdty.namespace == "CURRENCY": raise GnucashException("{} is a currency ! You can't create stock_accounts for currencies".format(cdty)) from .account import Account symbol = cdty.mnemonic try: acc = broker_account.children(name=symbol) except KeyError: acc = Account(symbol, "STOCK", cdty, broker_account) inc_accounts = [] if income_account: cur = cdty.base_currency for inc_acc in income_account_types.split("/"): sub_account_name = { "D": "Dividend Income", "CL": "Cap Gain (Long)", "CS": "Cap Gain (Short)", "I": "Interest Income", }[inc_acc] try: sub_acc = income_account.children(name=sub_account_name) except KeyError: sub_acc = Account(sub_account_name, "INCOME", cur.base_currency, income_account) try: cdty_acc = sub_acc.children(name=symbol) except KeyError: cdty_acc = Account(symbol, "INCOME", cur, sub_acc) inc_accounts.append(cdty_acc) return acc, inc_accounts def create_currency_from_ISO(isocode): """ Factory function to create a new currency from its ISO code Args: isocode (str): the ISO code of the currency (e.g. EUR for the euro) Returns: :class:`Commodity`: the currency as a commodity object """ from .commodity import Commodity # if self.get_session().query(Commodity).filter_by(isocode=isocode).first(): # raise GncCommodityError("Currency '{}' already exists".format(isocode)) from .currency_ISO import ISO_currencies cur = ISO_currencies.get(isocode) if cur is None: raise ValueError("Could not find the ISO code '{}' in the ISO table".format(isocode)) # create the currency cdty = Commodity(mnemonic=cur.mnemonic, fullname=cur.currency, fraction=10 ** int(cur.fraction), cusip=cur.cusip, namespace="CURRENCY", quote_flag=1, ) # self.gnc_session.add(cdty) return cdty def create_stock_from_symbol(symbol, book=None): """ Factory function to create a new stock from its symbol. The ISO code of the quoted currency of the stock is stored in the slot "quoted_currency". Args: symbol (str): the symbol for the stock (e.g. YHOO for the Yahoo! stock) Returns: :class:`Commodity`: the stock as a commodity object .. note:: The information is gathered from the yahoo-finance package The default currency in which the quote is traded is stored in a slot 'quoted_currency' .. todo:: use 'select * from yahoo.finance.sectors' and 'select * from yahoo.finance.industry where id ="sector_id"' to retrieve name of stocks and allow therefore the creation of a stock by giving its "stock name" (or part of it). This could also be used to retrieve all symbols related to the same company """ from .commodity import Commodity share = get_latest_quote(symbol) stock = Commodity(mnemonic=symbol, fullname=share.name, fraction=10000, namespace=share.exchange, quote_flag=1, quote_source="yahoo", quote_tz=share.timezone, ) if book: book.session.add(stock) return stock def single_transaction(post_date, enter_date, description, value, from_account, to_account): from . import Transaction, Split # currency is derived from "from_account" (as in GUI) currency = from_account.commodity # currency of other destination account should be identical (as only one value given) assert currency == to_account.commodity, "Commodities of accounts should be the same" tx = Transaction( currency=currency, post_date=post_date, enter_date=enter_date, description=description, splits=[ Split(account=from_account, value=-value), Split(account=to_account, value=value), ]) return tx
SmileyJames/piecash
piecash/core/book.py
<filename>piecash/core/book.py import warnings from collections import defaultdict from operator import attrgetter from sqlalchemy import Column, VARCHAR, ForeignKey from sqlalchemy.orm import relation, aliased, joinedload from sqlalchemy.orm.base import instance_state from sqlalchemy.orm.exc import NoResultFound from . import factories from .account import Account from .commodity import Commodity, Price from .transaction import Split, Transaction from .._common import CallableList, GnucashException from .._declbase import DeclarativeBaseGuid from ..business.invoice import Invoice from ..sa_extra import kvp_attribute class Book(DeclarativeBaseGuid): """ A Book represents a GnuCash document. It is created through one of the two factory functions :func:`create_book` and :func:`open_book`. Canonical use is as a context manager like (the book is automatically closed at the end of the with block):: with create_book() as book: ... .. note:: If you do not use the context manager, do not forget to close the session explicitly (``book.close()``) to release any lock on the file/DB. The book puts at disposal several attributes to access the main objects of the GnuCash document:: # to get the book and the root_account ra = book.root_account # to get the list of accounts, commodities or transactions for acc in book.accounts: # or book.commodities or book.transactions # do something with acc # to get a specific element of these lists EUR = book.commodities(namespace="CURRENCY", mnemonic="EUR") # to get a list of all objects of some class (even non core classes) budgets = book.get(Budget) # or a specific object budget = book.get(Budget, name="my first budget") You can check a session has changes (new, deleted, changed objects) by getting the ``book.is_saved`` property. To save or cancel changes, use ``book.save()`` or ``book.cancel()``:: # save a session if it is no saved (saving a unchanged session is a no-op) if not book.is_saved: book.save() Attributes: root_account (:class:`piecash.core.account.Account`): the root account of the book root_template (:class:`piecash.core.account.Account`): the root template of the book (usage not yet clear...) default_currency (:class:`piecash.core.commodity.Commodity`): the currency of the root account (=default currency of the book) uri (str): connection string of the book (set by the GncSession when accessing the book) session (:class:`sqlalchemy.orm.session.Session`): the sqlalchemy session encapsulating the book use_trading_accounts (bool): true if option "Use trading accounts" is enabled use_split_action_field (bool): true if option "Use Split Action Field for Number" is enabled RO_threshold_day (int): value of Day Threshold for Read-Only Transactions (red line) control_mode (list(str)) : list of allowed non-standard operations like : "allow-root-subaccounts" counter_customer (int) : counter for :class:`piecash.business.person.Customer` id (link to slot "counters/gncCustomer") counter_vendor (int) : counter for :class:`piecash.business.person.Vendor` id (link to slot "counters/gncVendor") counter_employee (int) : counter for :class:`piecash.business.person.Employee` id (link to slot "counters/gncEmployee") counter_invoice (int) : counter for :class:`piecash.business.invoice.Invoice` id (link to slot "counters/gncInvoice") counter_job (int) : counter for :class:`piecash.business.invoice.Job` id (link to slot "counters/gncJob") counter_bill (int) : counter for :class:`piecash.business.invoice.Bill` id (link to slot "counters/gncBill") counter_exp_voucher (int) : counter for :class:`piecash.business.invoice.Invoice` id (link to slot "counters/gncExpVoucher") counter_order (int) : counter for :class:`piecash.business.invoice.Order` id (link to slot "counters/gncOrder") business_company_phone (str): phone number of book company (link to slit "options/Business/Company Phone Number") business_company_email (str): email of book company (link to slit "options/Business/Company Email Address") business_company_contact (str): contact person of book company (link to slit "options/Business/Company Contact Person") business_company_ID (str): ID of book company (link to slit "options/Business/Company ID") business_company_name (str): name of book company (link to slit "options/Business/Company Name") business_company_address (str): address of book company (link to slit "options/Business/Company Address") business_company_website (str): website URL of book company (link to slit "options/Business/Company Website URL") """ __tablename__ = 'books' __table_args__ = {} # column definitions root_account_guid = Column('root_account_guid', VARCHAR(length=32), ForeignKey('accounts.guid'), nullable=False) root_template_guid = Column('root_template_guid', VARCHAR(length=32), ForeignKey('accounts.guid'), nullable=False) # relation definitions root_account = relation('Account', # back_populates='root_book', foreign_keys=[root_account_guid], ) root_template = relation('Account', foreign_keys=[root_template_guid]) uri = None session = None # link options to KVP use_trading_accounts = kvp_attribute("options/Accounts/Use Trading Accounts", from_gnc=lambda v: v == 't', to_gnc=lambda v: 't', default=False) use_split_action_field = kvp_attribute("options/Accounts/Use Split Action Field for Number", from_gnc=lambda v: v == 't', to_gnc=lambda v: 't' if v else 'f', default=False) RO_threshold_day = kvp_attribute("options/Accounts/Day Threshold for Read-Only Transactions (red line)", from_gnc=lambda v: int(v), to_gnc=lambda v: float(v), default=0) counter_customer = kvp_attribute("counters/gncCustomer", default=0) counter_vendor = kvp_attribute("counters/gncVendor", default=0) counter_employee = kvp_attribute("counters/gncEmployee", default=0) counter_invoice = kvp_attribute("counters/gncInvoice", default=0) counter_job = kvp_attribute("counters/gncJob", default=0) counter_bill = kvp_attribute("counters/gncBill", default=0) counter_exp_voucher = kvp_attribute("counters/gncExpVoucher", default=0) counter_order = kvp_attribute("counters/gncOrder", default=0) business_company_phone = kvp_attribute("options/Business/Company Phone Number", default="") business_company_email = kvp_attribute("options/Business/Company Email Address", default="") business_company_contact = kvp_attribute("options/Business/Company Contact Person", default="") business_company_ID = kvp_attribute("options/Business/Company ID", default="") business_company_name = kvp_attribute("options/Business/Company Name", default="") business_company_address = kvp_attribute("options/Business/Company Address", default="") business_company_website = kvp_attribute("options/Business/Company Website URL", default="") def __init__(self, root_account=None, root_template=None): self.root_account = root_account self.root_template = root_template def __unirepr__(self): return u"Book<{}>".format(self.uri) _control_mode = None @property def control_mode(self): if self._control_mode is None: self._control_mode = [] return self._control_mode @property def default_currency(self): return self.root_account.commodity @default_currency.setter def default_currency(self, value): assert isinstance(value, Commodity) and value.namespace == "CURRENCY" self.root_account.commodity = value @property def book(self): warnings.warn("deprecated", DeprecationWarning) return self def validate(self): Book.validate_book(self.session) @staticmethod def track_dirty(session, flush_context, instances): """ Record in session._all_changes the objects that have been modified before each flush """ for change, l in {"dirty": session.dirty, "new": session.new, "deleted": session.deleted}.items(): for obj in l: # retrieve the dictionnary of changes for the given obj attrs = session._all_changes.setdefault(id(obj), {}) # add the change of state to the list of state changes attrs.setdefault("STATE_CHANGES", []).append(change) attrs.setdefault("OBJECT", obj) # save old value of attr if not already saved # (if a value is changed multiple time, we keep only the first "old value") for k, v in instance_state(obj).committed_state.items(): if k not in attrs: attrs[k] = v @staticmethod def validate_book(session): session.flush() # identify object to validate txs = set() # iterate on all explicitly changes objects to see # if we need to add other objects for check for attrs in session._all_changes.values(): obj = attrs["OBJECT"] for o_to_validate in obj.object_to_validate(attrs["STATE_CHANGES"]): txs.add(o_to_validate) assert None not in txs, "No object should return None to validate. fix the code" # sort object from local to global (ensure Split checked before Transaction) from . import Account, Transaction, Split, Commodity sort_order = defaultdict(lambda: 20, {Account: 10, Transaction: 5, Split: 3, Commodity: 2}) txs = list(txs) txs.sort(key=lambda x: sort_order[type(x)]) # for each object, validate it for tx in txs: tx.validate() _trading_accounts = None def trading_account(self, cdty): """Return the trading account related to the commodity. If it does not exist and the option "Use Trading Accounts" is enabled, create it on the fly""" key = namespace, mnemonic = cdty.namespace, cdty.mnemonic if self._trading_accounts is None: self._trading_accounts = {} tacc = self._trading_accounts.get(key, None) if tacc: return tacc from .account import Account try: trading = self.root_account.children(name="Trading") except KeyError: trading = Account(name="Trading", type="TRADING", placeholder=1, commodity=self.default_currency, parent=self.root_account) try: nspc = trading.children(name=cdty.namespace) except KeyError: nspc = Account(name=namespace, type="TRADING", placeholder=1, commodity=self.default_currency, parent=trading) try: tacc = nspc.children(name=cdty.mnemonic) except KeyError: tacc = Account(name=mnemonic, type="TRADING", placeholder=0, commodity=cdty, parent=nspc) # self.flush() return tacc # add session alike functions def add(self, obj): """Add an object to the book (to be used if object not linked in any way to the book)""" self.session.add(obj) obj.on_book_add() def delete(self, obj): """Delete an object from the book (to remove permanently an object)""" self.session.delete(obj) def save(self): """Save the changes to the file/DB (=commit transaction) """ self.session.commit() def flush(self): """Flush the book""" self.session.flush() def cancel(self): """Cancel all the changes that have not been saved (=rollback transaction) """ self.session.rollback() @property def is_saved(self): """Save the changes to the file/DB (=commit transaction) """ return self.session.is_saved # add context manager that close the session when leaving def __enter__(self): return self def __exit__(self, exc_type, exc_val, exc_tb): self.close() def close(self): """Close a session. Any changes not yet saved are rolled back. Any lock on the file/DB is released. """ session = self.session # cancel pending changes session.rollback() # if self._acquire_lock: # # remove the lock # session.delete_lock() session.close() # add general getters for gnucash classes def get(self, cls, **kwargs): """ Generic getter for a GnuCash object in the `GncSession`. If no kwargs is given, it returns the list of all objects of type cls (uses the sqlalchemy session.query(cls).all()). Otherwise, it gets the unique object which attributes match the kwargs (uses the sqlalchemy session.query(cls).filter_by(\*\*kwargs).one() underneath):: # to get the first account with name="Income" inc_account = session.get(Account, name="Income") # to get all accounts accs = session.get(Account) Args: cls (class): the class of the object to retrieve (Account, Price, Budget,...) kwargs (dict): the attributes to filter on Returns: object: the unique object if it exists, raises exceptions otherwise """ if kwargs: try: return self.session.query(cls).filter_by(**kwargs).one() except NoResultFound: raise ValueError("Could not find a {}({})".format(cls.__name__, kwargs)) else: return self.session.query(cls) @property def transactions(self): """ gives easy access to all transactions in the book through a :class:`piecash.model_common.CallableList` of :class:`piecash.core.transaction.Transaction` """ from .transaction import Transaction return CallableList(self.session.query(Transaction)) @property def splits(self): """ gives easy access to all splits in the book through a :class:`piecash.model_common.CallableList` of :class:`piecash.core.transaction.Split` """ from .transaction import Split return CallableList(self.session.query(Split)) @property def accounts(self): """ gives easy access to all accounts in the book through a :class:`piecash.model_common.CallableList` of :class:`piecash.core.account.Account` """ from .account import Account return CallableList(self.session.query(Account).filter(Account.parent != None)) @property def commodities(self): """ gives easy access to all commodities in the book through a :class:`piecash.model_common.CallableList` of :class:`piecash.core.commodity.Commodity` """ from .commodity import Commodity return CallableList(self.session.query(Commodity)) @property def invoices(self): """ gives easy access to all commodities in the book through a :class:`piecash.model_common.CallableList` of :class:`piecash.core.commodity.Commodity` """ return CallableList(self.session.query(Invoice)) @property def currencies(self): """ gives easy access to all currencies in the book through a :class:`piecash.model_common.CallableList` of :class:`piecash.core.commodity.Commodity` """ from .commodity import Commodity def fallback(mnemonic): cur = factories.create_currency_from_ISO(isocode=mnemonic) self.add(cur) # self.flush() return cur cl = CallableList(self.session.query(Commodity).filter_by(namespace="CURRENCY")) cl.fallback = fallback return cl @property def prices(self): """ gives easy access to all prices in the book through a :class:`piecash.model_common.CallableList` of :class:`piecash.core.commodity.Price` """ from .commodity import Price return CallableList(self.session.query(Price)) @property def customers(self): """ gives easy access to all commodities in the book through a :class:`piecash.model_common.CallableList` of :class:`piecash.business.people.Customer` """ from ..business import Customer return CallableList(self.session.query(Customer)) @property def vendors(self): """ gives easy access to all commodities in the book through a :class:`piecash.model_common.CallableList` of :class:`piecash.business.people.Vendor` """ from ..business import Vendor return CallableList(self.session.query(Vendor)) @property def employees(self): """ gives easy access to all commodities in the book through a :class:`piecash.model_common.CallableList` of :class:`piecash.business.people.Employee` """ from ..business import Employee return CallableList(self.session.query(Employee)) @property def taxtables(self): """ gives easy access to all commodities in the book through a :class:`piecash.model_common.CallableList` of :class:`piecash.business.tax.Taxtable` """ from ..business import Taxtable return CallableList(self.session.query(Taxtable)) @property def query(self): """ proxy for the query function of the underlying sqlalchemy session """ return self.session.query def preload(self): # preload list of accounts accounts = self.session.query(Account).options(joinedload("splits").joinedload("transaction"), joinedload("children"), joinedload("commodity"), ).all() # load all splits splits = self.session.query(Split).join(Transaction).options( joinedload("account"), joinedload("lot")) \ .order_by(Transaction.post_date, Split.value).all() return accounts, splits def splits_df(self, additional_fields=None): """ Return a pandas DataFrame with all splits (:class:`piecash.core.commodity.Split`) from the book :parameters: :class:`list` :return: :class:`pandas.DataFrame` """ try: import pandas except ImportError: raise GnucashException("pandas is required to output dataframes") # Initialise default argument here additional_fields = additional_fields if additional_fields else [] # preload list of accounts accounts = self.session.query(Account).all() # preload list of commodities commodities = self.session.query(Commodity).filter(Commodity.namespace != "template").all() # preload list of transactions transactions = self.session.query(Transaction).all() # load all splits splits = self.session.query(Split).join(Transaction) \ .order_by(Transaction.post_date, Split.value).all() # build dataframe. Adds additional transaction.guid field. fields = ["guid", "value", "quantity", "memo", "transaction.guid", "transaction.description", "transaction.post_date", "transaction.currency.guid", "transaction.currency.mnemonic", "account.fullname", "account.commodity.guid", "account.commodity.mnemonic", ] + additional_fields fields_getter = [attrgetter(fld) for fld in fields] df_splits = pandas.DataFrame([[fg(sp) for fg in fields_getter] for sp in splits], columns=fields) df_splits = df_splits[df_splits["account.commodity.mnemonic"] != "template"] df_splits = df_splits.set_index("guid") return df_splits def prices_df(self): """ Return a pandas DataFrame with all prices (:class:`piecash.core.commodity.Price`) from the book :return: :class:`pandas.DataFrame` """ try: import pandas except ImportError: raise GnucashException("pandas is required to output dataframes") # preload list of commodities commodities = self.session.query(Commodity).all() # load all prices Currency = aliased(Commodity) prices = self.session.query(Price) \ .join(Commodity, Price.commodity) \ .join(Currency, Price.currency) \ .order_by(Commodity.mnemonic, Price.date, Currency.mnemonic).all() fields = ["date", "type", "value", "commodity.guid", "commodity.mnemonic", "currency.guid", "currency.mnemonic", ] fields_getter = [attrgetter(fld) for fld in fields] df_prices = pandas.DataFrame([[fg(pr) for fg in fields_getter] for pr in prices], columns=fields) return df_prices
SmileyJames/piecash
piecash/scripts/qif_export.py
<filename>piecash/scripts/qif_export.py #!/usr/local/bin/python """Basic script to export QIF. Heavily untested ...""" import sys # https://github.com/jemmyw/Qif/blob/master/QIF_references import click from piecash.scripts.cli import cli @cli.command() @click.argument('book', type=click.Path(exists=True)) @click.option('--output', type=click.File('w'), default="-", help="File to which to export the data (default=stdout)") def qif(book, output): """Export to QIF format. This scripts export a GnuCash BOOK to the QIF format. """ try: import qifparse.qif as _qif except ImportError: _qif = None print("You need to install the qifparse module ('pip install qifparse')") sys.exit() import piecash map_gnc2qif = { "CASH": 'Cash', "BANK": 'Bank', "RECEIVABLE": 'Bank', "PAYABLE": 'Ccard', "MUTUAL": 'Bank', "CREDIT": 'Ccard', "ASSET": 'Oth A', "LIABILITY": 'Oth L', "TRADING": 'Oth L', # 'Invoice', # Quicken for business only "STOCK": 'Invst', } with piecash.open_book(book, open_if_lock=True) as s: b = _qif.Qif() map = {} for acc in s.accounts: if acc.parent == s.book.root_template: continue elif acc.type in ["INCOME", "EXPENSE", "EQUITY"]: item = _qif.Category(name=acc.fullname, description=acc.description, expense=acc.type == "EXPENSE", income=acc.type == "INCOME" or acc.type == "EQUITY", ) b.add_category(item) elif acc.type in map_gnc2qif: actype = map_gnc2qif[acc.type] if actype=="Invst": # take parent account item = _qif.Account(name=acc.fullname, account_type=actype) else: item = _qif.Account(name=acc.fullname, account_type=actype) b.add_account(item) else: print("unknow {} for {}".format(acc.type, acc.fullname)) map[acc.fullname] = item # print(str(b)) def split_type(sp): qif_obj = map[sp.account.fullname] if isinstance(qif_obj, _qif.Account): return qif_obj.account_type else: return "Expense" if qif_obj.expense else "Income" def sort_split(sp): type = split_type(sp) if type=="Invst": return 1 elif type in ["Expense","Income"]: return 2 else: return 0 tpl = s.book.root_template for tr in s.transactions: if not tr.splits or len(tr.splits)<2: continue # split empty transactions if tr.splits[0].account.parent==tpl: continue # skip template transactions splits = sorted(tr.splits, key=sort_split) if all(sp.account.commodity.namespace == "CURRENCY" for sp in splits): sp1, sp2 = splits[:2] item = _qif.Transaction(date=tr.post_date, num=tr.num, payee=tr.description, amount=sp1.value, memo=sp1.memo, ) if isinstance(map[sp2.account.fullname], _qif.Account): item.to_account = sp2.account.fullname else: item.category = sp2.account.fullname if len(splits) > 2: for sp in splits[1:]: if isinstance(map[sp.account.fullname], _qif.Account): asp = _qif.AmountSplit(amount=-sp.value, memo=sp.memo, to_account=sp.account.fullname, ) else: asp = _qif.AmountSplit(amount=-sp.value, memo=sp.memo, category=sp.account.fullname, ) item.splits.append(asp) map[sp1.account.fullname].add_transaction(item, header="!Type:{}".format(map[sp1.account.fullname].account_type)) else: # match pattern of splits for an investment sp_account, sp_security, sp_others = splits[0], splits[1], splits[2:] assert split_type(sp_account) in ["Bank", "Cash"] assert split_type(sp_security) in ["Invst"] assert all(split_type(sp)=="Expense" for sp in sp_others) assert sp_security.account.parent.type=="BANK", "Security account has no parent STOCK account (aka a Brokerage account)" item = _qif.Investment(date=tr.post_date, action="Buy" if sp_security.quantity>0 else "Sell", security=sp_security.account.commodity.mnemonic, price=sp_security.value / sp_security.quantity, quantity=sp_security.quantity, amount=sp_security.value, commission=sum(sp.value for sp in sp_others), first_line=tr.description, to_account=sp_account.account.fullname, amount_transfer=abs(sp_account.value), ) map[sp_security.account.fullname]\ .add_transaction(item, header="!Type:{}".format(split_type(sp_security))) output.write(str(b))
SmileyJames/piecash
tests/test_commodity.py
# coding=utf-8 from __future__ import unicode_literals from datetime import date from decimal import Decimal import pytest from piecash import Price, Commodity, GnucashException from piecash.core.commodity import GncPriceError from test_helper import db_sqlite_uri, db_sqlite, new_book, new_book_USD, book_uri, book_basic, \ is_inmemory_sqlite, needweb # dummy line to avoid removing unused symbols a = db_sqlite_uri, db_sqlite, new_book, new_book_USD, book_uri, book_basic class TestCommodity_create_commodity(object): def test_create_commodity(self, book_basic): assert len(book_basic.commodities) == 2 cdty = Commodity(namespace="AMEX", mnemonic="APPLE", fullname="Apple", book=book_basic) book_basic.flush() assert len(book_basic.commodities) == 3 with pytest.raises(GnucashException): cdty.base_currency cdty["quoted_currency"] = "EUR" assert cdty.base_currency == book_basic.commodities(mnemonic="EUR") def test_create_commodity_uniqueness(self, book_basic): assert len(book_basic.commodities) == 2 cdty1 = Commodity(namespace="AMEX", mnemonic="APPLE", fullname="Apple", book=book_basic) cdty2 = Commodity(namespace="AMEX", mnemonic="APPLE", fullname="Apple", book=book_basic) with pytest.raises(ValueError): book_basic.save() def test_base_currency_commodity(self, book_basic): cdty = Commodity(namespace="AMEX", mnemonic="APPLE", fullname="Apple", book=book_basic) with pytest.raises(GnucashException): cdty.base_currency # should trigger creation of USD currency cdty["quoted_currency"] = "USD" assert cdty.base_currency.mnemonic == 'USD' book_basic.flush() assert cdty.base_currency == book_basic.currencies(mnemonic="USD") cdty["quoted_currency"] = "EUR" assert cdty.base_currency == book_basic.currencies(mnemonic="EUR") def test_base_currency_commodity_no_book(self, book_basic): cdty = Commodity(namespace="AMEX", mnemonic="APPLE", fullname="Apple") with pytest.raises(GnucashException): cdty.base_currency def test_base_currency_currency(self, book_basic): cdty = book_basic.currencies(mnemonic="USD") assert cdty.base_currency.mnemonic == "EUR" class TestCommodity_create_prices(object): def test_create_basicprice(self, book_basic): EUR = book_basic.commodities(namespace="CURRENCY") USD = book_basic.currencies(mnemonic="USD") p = Price(commodity=USD, currency=EUR, date=date(2014, 2, 22), value=Decimal('0.54321')) # check price exist np = USD.prices.first() assert np is p assert repr(p) == "Price<2014-02-22 : 0.54321 EUR/USD>" p2 = Price(commodity=USD, currency=EUR, date=date(2014, 2, 21), value=Decimal('0.12345')) book_basic.flush() assert p.value + p2.value == Decimal("0.66666") assert len(USD.prices.all()) == 2 def test_create_duplicateprice(self, book_basic): EUR = book_basic.commodities(namespace="CURRENCY") USD = book_basic.currencies(mnemonic="USD") p = Price(commodity=USD, currency=EUR, date=date(2014, 2, 22), value=Decimal('0.54321')) p1 = Price(commodity=USD, currency=EUR, date=date(2014, 2, 22), value=Decimal('0.12345')) book_basic.flush() assert USD.prices.filter_by(value=Decimal('0')).all() == [] assert USD.prices.filter_by(value=Decimal('0.12345')).one() == p1 with pytest.raises(ValueError): book_basic.validate() @needweb def test_update_currency_prices(self, book_basic): if not is_inmemory_sqlite(book_basic): print("skipping test for {}".format(book_basic)) return EUR = book_basic.default_currency with pytest.raises(GncPriceError): EUR.update_prices() USD = book_basic.currencies(mnemonic="USD") USD.update_prices() assert len(list(USD.prices)) < 7 assert (USD.prices.first() is None) or (USD.prices.first().commodity is USD) CAD = book_basic.currencies(mnemonic="CAD") CAD.update_prices() assert len(list(CAD.prices)) < 7 assert (CAD.prices.first() is None) or (CAD.prices.first().commodity is CAD) # redo update prices which should not bring new prices l = len(list(USD.prices)) USD.update_prices() assert len(list(USD.prices)) == l book_basic.validate() assert len(book_basic.prices) < 14 @needweb def test_update_stock_prices(self, book_basic): if not is_inmemory_sqlite(book_basic): print("skipping test for {}".format(book_basic)) return cdty = Commodity(mnemonic="AAPL", namespace="NASDAQ", fullname="Apple", book=book_basic) # cdty["quoted_currency"] = "USD" # assert cdty.get("quoted_currency") == "USD" cdty.update_prices() book_basic.flush() L = len(list(cdty.prices)) assert L < 7 cdty.update_prices() book_basic.flush() assert len(list(cdty.prices)) == L book_basic.validate() def test_price_update_on_commodity_no_book(self, book_basic): cdty = Commodity(namespace="AMEX", mnemonic="APPLE", fullname="Apple") with pytest.raises(GncPriceError): cdty.update_prices()
Snow-dash/tag_json
main.py
<filename>main.py #-------------------changeable var below------------------- originPath = '' #-----where is the file,will effect the output file's location pat=''#-----where you store the data\minecraft\tags folder in version.jar typeli=['blocks','items','entity_types','fluids','game_events']#------what tags type you want to output #-------------------changeable var above------------------- import os,json,sys sys.path.append(originPath + "\\slpp-23-master") os.chdir(originPath) from slpp import slpp as lua outjs=open('out.txt','w',encoding='utf-8') def sorteddict(dic): indic={} indic2={} for i in dic: indic[i]=dic[i] indic=sorted(indic) for i in indic: indic2[i]=dic[i] return indic2 dic={} dic['tag_ori']={} dic['tag']={} jsdic={} for root, dirs, files in os.walk(pat, topdown=False): loctp='' fix='' sub=root[len(pat)+1:] if '\\' in sub: loctp=sub.split('\\')[0] fix=sub.split('\\')[1]+'/' else: loctp=sub fix='' for fi in files: if loctp not in jsdic: jsdic[loctp]={} jsdic[loctp][fix+fi]=root+'\\'+fi for tp in typeli: if tp not in dic['tag_ori']: dic['tag_ori'][str(tp)]={} #dic['tag_ori'][tp][js]=[] l=jsdic[tp] for js in l: if js[0:-5] not in dic['tag_ori'][tp]: dic['tag_ori'][tp][js[0:-5]]=[] temp=open(jsdic[tp][js],'r') tjs=json.loads(temp.read()) for key in tjs['values']: if js[0:-5] not in dic['tag_ori'][tp]: dic['tag_ori'][tp][js[0:-5]]=[] dic['tag_ori'][tp][js[0:-5]].append(key) temp.close() #记录原始标签 write down origin tag tempdic={}#记录展开下级标签的标签->id对应关系 tag to ID for tp in typeli: l=jsdic[tp] for js in l: temp=open(jsdic[tp][js],'r') tjs=json.loads(temp.read()) if tp not in tempdic: tempdic[tp]={} tempdic[tp][js[0:-5]]=[] for key in tjs["values"]:#key:标签json记录的id或标签 #print(key) if '#' in key: temp2=open(pat+'\\'+tp+'\\'+key[11:]+'.json')#二级标签 tjs2=json.loads(temp2.read()) for key2 in tjs2["values"]: if '#' in key2: temp3=open(pat+'\\'+tp+'\\'+key2[11:]+'.json')#三级标签 tjs3=json.loads(temp3.read()) for key3 in tjs3["values"]: if '#' in key3: #print("标签迭代次数过多\n") temp4=open(pat+'\\'+tp+'\\'+key3[11:]+'.json')#四级标签 tjs4=json.loads(temp4.read()) for key4 in tjs4["values"]: if '#' in key4: print("标签迭代次数过多\n") else: tempdic[tp][js[0:-5]].append(key4[10:]) temp4.close() else: tempdic[tp][js[0:-5]].append(key3[10:]) temp3.close() else: tempdic[tp][js[0:-5]].append(key2[10:]) temp2.close() else: tempdic[tp][js[0:-5]].append(key[10:]) for tp in typeli: for tag in tempdic[tp]: if tp not in dic['tag']: dic['tag'][tp]={} dic['tag'][tp][tag]=sorted(list(set(tempdic[tp][tag])))#去重排序 MC-223843 #print(dic['tag'][tp][tag]) dic['tag'][tp]=sorteddict(dic['tag'][tp]) dic['ID']={} for tp in typeli: dic['ID'][tp]={} for tag in tempdic[tp]: for objid in tempdic[tp][tag]: if objid not in dic['ID'][tp]: dic['ID'][tp][objid]=[] dic['ID'][tp][objid].append(tag) for tp in typeli: for objid in dic['ID'][tp]: dic['ID'][tp][objid]=sorted(list(set(dic['ID'][tp][objid]))) outjs.write(lua.encode(dic)) outjs.close()
bguta/Malcolm-x-bot
malcolm_tweet.py
import config import malcolm_quotes as mx import IndexReader as ir charLim = 280 api = config.api() def main(): stuff = ir.main() pg = int(stuff[0]) qt = int(stuff[1]) txt = mx.getQuote(pg, qt) # print(txt) print("page: " + str(pg) + " Quote: " + str(qt)) tweets = shorten(txt) if(div(txt) > 1): if (not posted(tweets)): api.update_status(tweets.pop(0)) for tweet in tweets: ide = api.user_timeline(id=api.me().id, count=1)[0].id api.update_status(tweet, in_reply_to_status_id=ide) # print(tweet) else: main() else: if (not posted(tweets)): api.update_status(tweets[0]) # print(tweet[0]) else: main() def div(txt): if len(txt) > charLim: for i in range(1, 10): if (len(txt) // i < 280 and (len(txt) // i) % 280 >= 10): return i raise ValueError("WTF? how long is this quote") return 1 def shorten(txt): i = div(txt) letters = list(txt) ar = [] for j in range(i): q = j + 1 t = "".join(letters[j * len(letters) // i: q * len(letters) // i]) ar.append(t) return ar def posted(txts): tweets = [tweet.full_text for tweet in api.user_timeline( id=api.me().id, count=(10 ** 4), tweet_mode="extended")] for tweet in tweets: if eq(tweet, txts[0]): print("Already posted") return True return False def eq(tx1, tx2): if len(tx1) != len(tx2): return False if tx1 == tx2: return True return False
bguta/Malcolm-x-bot
malcolm_quotes.py
<reponame>bguta/Malcolm-x-bot import requests from bs4 import BeautifulSoup as bs import re url = "http://www.azquotes.com/author/9322-Malcolm_X?p=" # p must be between 1 and 32: this is the page # q must be between 1 and 25; this is the quote # this method returns a quote by malcolm x from the url def getQuote(p, q): if(p is 32): q = (q % 6) + 1 if(p < 1 or p > 32): p = 16 if(not(p is 32) and (q > 25 or q < 1)): q = 15 page = requests.get(url + str(p)) s = bs(page.content, "html.parser") qts = s.findAll("ul", {"class": "list-quotes"})[0].findAll("li") qt = re.sub(r"^\s+", " ", qts[q].text.strip(), flags=re.MULTILINE) qt = re.sub(r"\n Report", "", qt) qt = re.sub(r"\n", "", qt) qt = qt.split(". Malcolm X")[0] return qt
bguta/Malcolm-x-bot
dailyTimer.py
<filename>dailyTimer.py import time import malcolm_tweet import dropbox_ as dbx import random # this is the main function and scheduler day = 86400 def main(): dbx.download("index.txt", "index.txt") malcolm_tweet.main() dbx.upload("index.txt", "index.txt") def getTime(): return random.randint(day // 5, day) counter = 0 t = getTime() while True: time.sleep(1) if(counter % 3600 == 0): print("waiting...") counter += 1 if counter == t: main() counter = 0 t = getTime()
bguta/Malcolm-x-bot
IndexReader.py
<filename>IndexReader.py import re def look(): with open("index.txt", "r") as file: line = file.readline() ar = re.sub(r"\t", " ", line).split() return ar def write(p, q): with open("index.txt", "w") as file: file.write(str(p) + "\t" + str(q)) def main(): reset = False stuff = look() p = int(stuff[0]) q = int(stuff[1]) if(p is 32 and q is 6): reset = True if(q is 25 and p < 32): p += 1 if(not(p is 32)): q = (q % 25) + 1 else: q = (q % 6) + 1 if(reset is True): p = 1 write(p, q) return stuff
bguta/Malcolm-x-bot
config.py
# this is your twitter info # i removied mine but you can add yours and it will do the exact same thing import tweepy # your info consumer_key = consumer_secret = access_token = access_token_secret = def api(): auth = tweepy.OAuthHandler(consumer_key, consumer_secret) auth.set_access_token(access_token, access_token_secret) api = tweepy.API(auth) return api
bguta/Malcolm-x-bot
dropbox_.py
""" A module to read and write dropbox files and save them using dropbox """ import dropbox import os ac = "" # add your own access key for dropbox api dbx = dropbox.Dropbox(ac) def upload(source, output, large=False): """ @param source a file name e.g (test.txt). this is the file which is read @param output a file name for the output e.g (test.txt), this is the name as the file in dropbox """ with open(source, "rb") as file: if not large: dbx.files_upload(file.read(), "/" + output, mode=dropbox.files.WriteMode('overwrite')) else: with open(source, "rb") as f: # got this from ----> https://stackoverflow.com/a/43724479 file_size = os.path.getsize(source) CHUNK_SIZE = 4 * 1024 * 1024 upload_session_start_result = dbx.files_upload_session_start( f.read(CHUNK_SIZE)) cursor = dropbox.files.UploadSessionCursor(session_id=upload_session_start_result.session_id, offset=f.tell()) commit = dropbox.files.CommitInfo(path="/" + output, mode=dropbox.files.WriteMode('overwrite')) while f.tell() < file_size: if ((file_size - f.tell()) <= CHUNK_SIZE): dbx.files_upload_session_finish(f.read(CHUNK_SIZE), cursor, commit) else: dbx.files_upload_session_append(f.read(CHUNK_SIZE), cursor.session_id, cursor.offset) cursor.offset = f.tell() def download(source, output): """ @param source a file name e.g (test.txt). this is the file which is read in dropbox @param output a file name for the output e.g (test.txt), this is the name of the file to download """ meta, res = dbx.files_download("/" + source) with open(output, "wb") as file: file.write(res.content)
AdamIsrael/openmano
utils.py
<gh_stars>0 # -*- coding: utf-8 -*- ## # Copyright 2015 Telefónica Investigación y Desarrollo, S.A.U. # This file is part of openmano # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. # # For those usages not covered by the Apache License, Version 2.0 please # contact with: <EMAIL> ## ''' utils is a module that implements functions that are used by all openmano modules, dealing with aspects such as reading/writing files, formatting inputs/outputs for quick translation from dictionaries to appropriate database dictionaries, etc. ''' __author__="<NAME>, <NAME>" __date__ ="$08-sep-2014 12:21:22$" import datetime from jsonschema import validate as js_v, exceptions as js_e #from bs4 import BeautifulSoup def read_file(file_to_read): """Reads a file specified by 'file_to_read' and returns (True,<its content as a string>) in case of success or (False, <error message>) in case of failure""" try: f = open(file_to_read, 'r') read_data = f.read() f.close() except Exception,e: return (False, str(e)) return (True, read_data) def write_file(file_to_write, text): """Write a file specified by 'file_to_write' and returns (True,NOne) in case of success or (False, <error message>) in case of failure""" try: f = open(file_to_write, 'w') f.write(text) f.close() except Exception,e: return (False, str(e)) return (True, None) def format_in(http_response, schema): try: client_data = http_response.json() js_v(client_data, schema) #print "Input data: ", str(client_data) return True, client_data except js_e.ValidationError, exc: print "validate_in error, jsonschema exception ", exc.message, "at", exc.path return False, ("validate_in error, jsonschema exception ", exc.message, "at", exc.path) def remove_extra_items(data, schema): deleted=[] if type(data) is tuple or type(data) is list: for d in data: a= remove_extra_items(d, schema['items']) if a is not None: deleted.append(a) elif type(data) is dict: #TODO deal with patternProperties if 'properties' not in schema: return None for k in data.keys(): if k not in schema['properties'].keys(): del data[k] deleted.append(k) else: a = remove_extra_items(data[k], schema['properties'][k]) if a is not None: deleted.append({k:a}) if len(deleted) == 0: return None elif len(deleted) == 1: return deleted[0] else: return deleted #def format_html2text(http_content): # soup=BeautifulSoup(http_content) # text = soup.p.get_text() + " " + soup.pre.get_text() # return text def convert_bandwidth(data, reverse=False): '''Check the field bandwidth recursivelly and when found, it removes units and convert to number It assumes that bandwidth is well formed Attributes: 'data': dictionary bottle.FormsDict variable to be checked. None or empty is consideted valid 'reverse': by default convert form str to int (Mbps), if True it convert from number to units Return: None ''' if type(data) is dict: for k in data.keys(): if type(data[k]) is dict or type(data[k]) is tuple or type(data[k]) is list: convert_bandwidth(data[k], reverse) if "bandwidth" in data: try: value=str(data["bandwidth"]) if not reverse: pos = value.find("bps") if pos>0: if value[pos-1]=="G": data["bandwidth"] = int(data["bandwidth"][:pos-1]) * 1000 elif value[pos-1]=="k": data["bandwidth"]= int(data["bandwidth"][:pos-1]) / 1000 else: data["bandwidth"]= int(data["bandwidth"][:pos-1]) else: value = int(data["bandwidth"]) if value % 1000 == 0: data["bandwidth"]=str(value/1000) + " Gbps" else: data["bandwidth"]=str(value) + " Mbps" except: print "convert_bandwidth exception for type", type(data["bandwidth"]), " data", data["bandwidth"] return if type(data) is tuple or type(data) is list: for k in data: if type(k) is dict or type(k) is tuple or type(k) is list: convert_bandwidth(k, reverse) def convert_datetime2str(var): '''Converts a datetime variable to a string with the format '%Y-%m-%dT%H:%i:%s' It enters recursively in the dict var finding this kind of variables ''' if type(var) is dict: for k,v in var.items(): if type(v) is datetime.datetime: var[k]= v.strftime('%Y-%m-%dT%H:%M:%S') elif type(v) is dict or type(v) is list or type(v) is tuple: convert_datetime2str(v) if len(var) == 0: return True elif type(var) is list or type(var) is tuple: for v in var: convert_datetime2str(v) def convert_str2boolean(data, items): '''Check recursively the content of data, and if there is an key contained in items, convert value from string to boolean Done recursively Attributes: 'data': dictionary variable to be checked. None or empty is considered valid 'items': tuple of keys to convert Return: None ''' if type(data) is dict: for k in data.keys(): if type(data[k]) is dict or type(data[k]) is tuple or type(data[k]) is list: convert_str2boolean(data[k], items) if k in items: if type(data[k]) is str: if data[k]=="false" or data[k]=="False": data[k]=False elif data[k]=="true" or data[k]=="True": data[k]=True if type(data) is tuple or type(data) is list: for k in data: if type(k) is dict or type(k) is tuple or type(k) is list: convert_str2boolean(k, items) def check_valid_uuid(uuid): id_schema = {"type" : "string", "pattern": "^[a-fA-F0-9]{8}(-[a-fA-F0-9]{4}){3}-[a-fA-F0-9]{12}$"} try: js_v(uuid, id_schema) return True except js_e.ValidationError: return False
softlayer/ironic-inventory-integrator
ironic_inventory/common/exceptions.py
<filename>ironic_inventory/common/exceptions.py # -*- encoding: utf-8 -*- """Common exceptions for the inventory manager. """ class ExistingMACAddress(Exception): code = 409 message = u'A server with the MAC address %(address)s already exists.' def __init__(self, address, message=None, **kwargs): """ :param address: The conflicting MAC address. :param message: The exception message. Optional """ if not message: # Construct the default message. message = self.message % address super(ExistingMACAddress, self).__init__(message) class ExistingServerName(Exception): code = 409 message = u'A server using the name %(name)s already exists.' def __init__(self, name, message=None, **kwargs): """ :param name: :param message: :param kwargs: """ if not message: message = self.message % name super(ExistingServerName, self).__init__(message) class ExistingServer(Exception): code = 409 message = u'This server already exists.' def __init__(self): super(ExistingServer, self).__init__() class ServerNotFound(Exception): code = 404 message = u'The server %(identifier)s was not found.' def __init__(self, message=None, **kwargs): """ :param message: An overridden exception message. :param uuid: The server's uuid :param name: The server's name """ if not message: if kwargs.get('name'): message = self.message % kwargs['name'] elif kwargs.get('uuid'): message = self.message % kwargs['uuid'] else: message = u'The server was not found.' super(ServerNotFound, self).__init__(message) class ServerReserved(Exception): message = ('The server %(uuid) has an existing reservation, please remove' ' the reservation and retry.') def __init__(self, message=None, **kwargs): """ :param message: :param server_uuid: """ if not message: uuid = kwargs.get('server_uuid') if not uuid: message = ('The server has an existing reservation, please' ' remove and retry the operation.') else: message = self.message % uuid super(ServerReserved, self).__init__(message) class ServerNotReserved(Exception): message = 'The server %(server_uuid)s does not have a reservation.' def __init__(self, message=None, **kwargs): if not message: uuid = kwargs.get('server_uuid') if not uuid: message = 'The server does not have an existing reservation.' else: message = self.message % uuid super(ServerNotReserved, self).__init__(message) class ServerNotDeployed(Exception): message = 'The server %(uuid)s is not in a deployed state.' def __init__(self, message=None, **kwargs): """ :param message: A custom message. :param uuid: The server's uuid """ if not message: uuid = kwargs.get('uuid') if not uuid: message = 'The server is not in a deployed state.' else: message = self.message % uuid super(ServerNotDeployed, self).__init__(message)
softlayer/ironic-inventory-integrator
ironic_inventory/db/sqlalchemy/alembic/versions/4f310004f218_adding_initial_tables.py
"""Adding initial tables Revision ID: 4f310004f218 Revises: Create Date: 2015-10-23 16:08:21.396455 """ # revision identifiers, used by Alembic. revision = '4f310004f218' down_revision = None branch_labels = None depends_on = None from alembic import op import sqlalchemy as sa def upgrade(): ### commands auto generated by Alembic - please adjust! ### op.create_table('reservations', sa.Column('created_at', sa.DateTime(), nullable=True), sa.Column('updated_at', sa.DateTime(), nullable=True), sa.Column('id', sa.Integer(), nullable=False), sa.PrimaryKeyConstraint('id') ) op.create_table('servers', sa.Column('created_at', sa.DateTime(), nullable=True), sa.Column('updated_at', sa.DateTime(), nullable=True), sa.Column('id', sa.Integer(), nullable=False), sa.Column('uuid', sa.String(length=36), nullable=False), sa.Column('name', sa.String(), nullable=True), sa.Column('cpu_count', sa.Integer(), nullable=True), sa.Column('local_drive_capacity', sa.Integer(), nullable=True), sa.Column('psu_capacity', sa.Integer(), nullable=True), sa.Column('psu_size', sa.String(length=36), nullable=True), sa.Column('memory_mb', sa.Integer(), nullable=True), sa.Column('cpu_architecture', sa.String(), nullable=True), sa.Column('driver_name', sa.String(), nullable=True), sa.Column('deploy_kernel', sa.String(), nullable=True), sa.Column('deploy_ramdisk', sa.String(), nullable=True), sa.Column('ipmi_address', sa.String(), nullable=True), sa.Column('ipmi_password', sa.String(), nullable=True), sa.Column('impi_username', sa.String(), nullable=True), sa.Column('impi_priv_level', sa.String(), nullable=True), sa.Column('ipmi_mac_address', sa.String(), nullable=True), sa.Column('reservation_id', sa.Integer(), nullable=True), sa.Column('deployed', sa.Boolean(), nullable=True), sa.ForeignKeyConstraint(['reservation_id'], ['reservations.id'], ), sa.PrimaryKeyConstraint('id'), sa.UniqueConstraint('ipmi_mac_address', name='uniq_servers0impmimacaddress'), sa.UniqueConstraint('name', name='uniq_servers0name'), sa.UniqueConstraint('uuid', name='uniq_servers0uuid') ) ### end Alembic commands ### def downgrade(): ### commands auto generated by Alembic - please adjust! ### op.drop_table('servers') op.drop_table('reservations') ### end Alembic commands ###
softlayer/ironic-inventory-integrator
ironic_inventory/api/controllers/v1/server.py
# -*- encoding: utf-8 -*- import pecan from pecan import rest from wsme import types as wtypes from ironic_inventory.api.controllers.base import ApiBase from ironic_inventory.api.controllers.root import wsme_expose from ironic_inventory.db import api as dbapi from ironic_inventory.objects.server import ServerFields class Server(ApiBase): """API Representation of a Server. """ id = wtypes.StringType uuid = wtypes.StringType name = wtypes.StringType cpu_count = wtypes.IntegerType local_drive_capacity = wtypes.IntegerType psu_capacity = wtypes.IntegerType psu_size = wtypes.IntegerType memory_mb = wtypes.IntegerType cpu_architecture = wtypes.StringType ipmi_password = wtypes.StringType ipmi_username = wtypes.StringType ipmi_priv_level = wtypes.StringType ipmi_mac_address = wtypes.StringType reservation_id = wtypes.StringType deployed = wtypes.BinaryType def __init__(self, **kwargs): self.fields = [] for field in ServerFields: if not hasattr(self, field): continue self.fields.append(field) setattr(self, field, kwargs.get(field, wtypes.Unset)) @classmethod def from_dict(cls, **kwargs): server = cls( id=kwargs.get('id'), uuid=kwargs.get('uuid'), name=kwargs.get('name'), cpu_count=kwargs.get('cpu_count'), local_drive_capacity=kwargs.get('local_drive_capacity'), psu_capacity=kwargs.get('psu_capacity'), psu_size=kwargs.get('psu_size'), memory_mb=kwargs.get('memory_mb'), cpu_architecture=kwargs.get('cpu_architecture'), ipmi_password=kwargs.get('ipmi_password'), ipmi_username=kwargs.get('ipmi_username'), ipmi_priv_level=kwargs.get('ipmi_priv_level'), ipmi_mac_address=kwargs.get('ipmi_mac_address'), reservation_id=kwargs.get('reservation_id'), deployed=kwargs.get('deployed') ) return server class ServerCollection(ApiBase): servers = [Server] @classmethod def from_list_of_dicts(cls, server_list): """ :param server_list: :return: """ collection = cls() collection.servers = [ Server.from_dict(server.as_dict) for server in server_list] return collection class ServerController(rest.RestController): dbapi = dbapi.get_instance() @wsme_expose(Server, wtypes.StringType) def get_one(self, server_uuid): """Get a single server. :return: """ server = Server.from_dict( self.dbapi.get_server_by_uuid(server_uuid).as_dict()) return server @wsme_expose(ServerCollection, wtypes.StringType, int, wtypes.text, wtypes.text) def get_all(self): servers = self.dbapi.get_all_servers() return ServerCollection.from_list_of_dicts(servers) @wsme_expose(Server, body=Server, status_code=201) def post(self, server): """Create a new server. :param server: A server supplied via the request body. """ db_server = self.dbapi.add_server(pecan.request.contex, **server.as_dict()) return Server.from_dict(db_server.as_dict())
softlayer/ironic-inventory-integrator
ironic_inventory/api/controllers/v1/reservation.py
from pecan import rest from wsme import types as wtpes from ironic_inventory.api.controllers.base import ApiBase class Reservation(ApiBase): """API repersentation of a reservation.""" id = wtpes.IntegerType
softlayer/ironic-inventory-integrator
ironic_inventory/common/paths.py
# -*- encoding: utf-8 -*- """Common application path definitions and helper methods.""" import os from oslo_config import cfg path_opts = [ cfg.StrOpt('pybasedir', default=os.path.abspath(os.path.join(os.path.dirname(__file__), '../')), help=('Directory where the ironic inventory python module is' ' installed.')), cfg.StrOpt('bindir', default='$pybasedir/bin', help=('Directory where ironic inventory binaries are' ' installed.')), cfg.StrOpt('state_path', default='$pybasedir', help=("Top-level directory for maintaining the invenotry" " manager's state.")), ] CONF = cfg.CONF CONF.register_opts(path_opts) def basedir_def(*args): """Return an uninterpolated path relative to $pybasedir.""" return os.path.join('$pybasedir', *args) def bindir_def(*args): """Return an uninterpolated path relative to $bindir.""" return os.path.join('$bindir', *args) def state_path_def(*args): """Return an uninterpolated path relative to $state_path.""" return os.path.join('$state_path', *args) def basedir_rel(*args): """Return a path relative to $pybasedir.""" return os.path.join(CONF.pybasedir, *args) def bindir_rel(*args): """Return a path relative to $bindir.""" return os.path.join(CONF.bindir, *args) def state_path_rel(*args): """Return a path relative to $state_path.""" return os.path.join(CONF.state_path, *args)
softlayer/ironic-inventory-integrator
ironic_inventory/tests/db/__init__.py
<reponame>softlayer/ironic-inventory-integrator __author__ = 'chaustin'
softlayer/ironic-inventory-integrator
ironic_inventory/cmd/dbsync.py
# -*- encoding: utf-8 -*- import sys from oslo_config import cfg # from ironic_inventory.common import service # from ironic_inventory.db import migration CONF = cfg.CONF class DBCommand(object): pass def main(): valid_commands = { 'upgrade', 'downgrade', 'revision', 'version', 'stamp', 'create_schema' } service.prepare_service(sys.argv) CONF.command.func()
softlayer/ironic-inventory-integrator
ironic_inventory/db/sqlalchemy/base.py
<gh_stars>1-10 # -*- encoding: utf-8 -*- """Base definitions for SQLAlchemy and db specific configurations.""" from oslo_config import cfg from oslo_db import options as db_options from oslo_db.sqlalchemy import models as oslo_models from sqlalchemy.ext.declarative import declarative_base from ironic_inventory.common import paths sql_opts = [ cfg.StrOpt('mysql_engine', default='InnoDB', help='MySQL engine to use.') ] _DEFAULT_SQL_CONNECTION = 'sqlite:///' + paths.state_path_def('inventory.sqlite') db_options.set_defaults(cfg.CONF, _DEFAULT_SQL_CONNECTION, 'ironic.sqlite') class InventoryBase(oslo_models.TimestampMixin, oslo_models.ModelBase): """DeclarativeBaseImpl class for inventory objects. """ def as_dict(self): """Represent a SQLAlchemy declarative base model as a dict by introspecting it's columns. """ # Note(caustin): A dict. comprehension may be better here but, it is # unclear if the case of a empty table needs to be considered. model_dict = dict() for colum in self.__table__.columns: model_dict[colum.name] = self[colum.name] return model_dict def save(self, session=None): """Override ModelBase.save() to handle the case of session=None""" # Note(caustin): This may be indicative of a smell from the project's # layout. Look at refactoring the internal API to avoid this. import ironic_inventory.db.sqlalchemy.api as db_api if session is None: session = db_api.get_session() super(InventoryBase, self).save(session) DeclarativeBaseImpl = declarative_base(cls=InventoryBase)
softlayer/ironic-inventory-integrator
ironic_inventory/api/controllers/root.py
# -*- encoding: utf-8 -*- """ Root controller for web api. """ from pecan import rest from wsme import types as wtpes from ironic_inventory.api.controllers.base import wsme_expose class Version(object): """The version's ID""" id = wtpes.text @staticmethod def get_default(id): version = Version() version.id = id return version class Root(object): """The name of the API""" name = wtpes.text """The suported versions""" versions = [Version] """The default version""" default_version = Version @staticmethod def get_default(): """ :return: """ version_one = Version.get_default('v1') root = Root() root.name = "Ironic Inventory Manager" root.versions = [version_one] root.default_version = version_one return root class RootController(rest.RestController): @wsme_expose(Root) def get(self): return Root.get_default()
softlayer/ironic-inventory-integrator
ironic_inventory/db/sqlalchemy/models.py
<reponame>softlayer/ironic-inventory-integrator # -*- encoding: utf-8 -*- """ SQLAlchemy models for bare metal inventory management. """ from sqlalchemy import Column, Integer, String, Boolean, schema from sqlalchemy import ForeignKey, orm from ironic_inventory.db.sqlalchemy.base import DeclarativeBaseImpl from ironic_inventory.common import paths _DEFAULT_SQL_CONNECTION = 'sqlite:///' + paths.state_path_def('inventory.sqlite') class Server(DeclarativeBaseImpl): """Represents a Bare Metal Server.""" # TODO(caustin): Look at this table and normalize. __tablename__ = 'servers' __table_args__ = ( schema.UniqueConstraint('uuid', name='uniq_servers0uuid'), schema.UniqueConstraint('name', name='uniq_servers0name'), schema.UniqueConstraint('ipmi_mac_address', name='uniq_servers0impmimacaddress'),) # server information. id = Column(Integer, primary_key=True, autoincrement=True) uuid = Column(String(36), nullable=False) name = Column(String()) cpu_count = Column(Integer()) local_drive_capacity = Column(Integer()) psu_capacity = Column(Integer()) psu_size = Column(String(36)) memory_mb = Column(Integer()) cpu_architecture = Column(String(), default='x86_64') # Driver Information. driver_name = Column(String()) deploy_kernel = Column(String()) deploy_ramdisk = Column(String()) # IPMI Information. ipmi_address = Column(String()) ipmi_password = Column(String()) impi_username = Column(String()) impi_priv_level = Column(String(), default='OPERATOR') ipmi_mac_address = Column(String()) # Reservation Data reservation_id = Column(Integer, ForeignKey('reservations.id')) reservation = orm.relationship('Reservation', uselist=False, cascade='all, delete-orphan', single_parent=True) # Deployed Flag # Note(caustin): This may be better normalized. deployed = Column(Boolean(), default=False) class Reservation(DeclarativeBaseImpl): """Represents a reservation request for a server""" # Note(caustin): Using SQLAlchemy's method of declaring one-to-one # relationships. This may be better suited as an association table if # there is the need for additional information to be stored in this table. __tablename__ = 'reservations' id = Column(Integer(), primary_key=True, autoincrement=True)
softlayer/ironic-inventory-integrator
ironic_inventory/tests/test_units.py
from unittest import TestCase
softlayer/ironic-inventory-integrator
ironic_inventory/db/sqlalchemy/migration.py
# -*- encoding: utf-8 -*- """Database setup and migration commands.""" from oslo_config import cfg from stevedore import driver _IMPL = None def get_backend(): global _IMPL if not _IMPL: cfg.CONF.import_opt('backend', 'oslo_db.options', group='database') _IMPL = driver.DriverManager("ironic_inventory.database.migration_backend", cfg.CONF.database.backend).driver return _IMPL def upgrade(version=None): """Migrate the database to `version` or the most recent version.""" return get_backend().upgrade(version) def downgrade(version=None): return get_backend().downgrade(version) def version(): return get_backend().version() def stamp(version): return get_backend().stamp(version) def revision(message, autogenerate): return get_backend().revision(message, autogenerate) def create_schema(): return get_backend().create_schema()
softlayer/ironic-inventory-integrator
ironic_inventory/api/controllers/v1/__init__.py
from ironic_inventory.api.controllers.v1 import server
softlayer/ironic-inventory-integrator
ironic_inventory/db/sqlalchemy/api.py
# -*- encoding: utf-8 -*- """API/Interface to the SQLAlchemy backend. """ import copy from oslo_config import cfg from oslo_db import exception as db_exc from oslo_db.sqlalchemy import session as db_session from oslo_log import log from sqlalchemy.orm import exc as sqla_exc from ironic_inventory.common import exceptions from ironic_inventory.db import api from ironic_inventory.db.sqlalchemy import models CONF = cfg.CONF LOG = log.getLogger(__name__) _FACADE = None def _create_facade_lazily(): global _FACADE if _FACADE is None: _FACADE = db_session.EngineFacade.from_config(CONF) return _FACADE def get_engine(): facade = _create_facade_lazily() return facade.get_engine() def get_session(**kwargs): facade = _create_facade_lazily() return facade.get_session(**kwargs) def get_backend(): """ :return: """ return Connection() class Connection(api.Connection): def __init__(self): pass def _get_servers_query(self, kwargs): session = get_session() filters = copy.copy(kwargs) filters['reservation_id'] = None filters['deployed'] = False query = session.query(models.Server).filter_by(**filters) return query def _delete_reservation(self, reservation_id, server_uuid): session = get_session() with session.begin(): query = session.query(models.Reservation).filter_by(id=reservation_id) try: reservation = query.one() except sqla_exc.NoResultFound: # HACK(caustin): For now, swallow this exception. # in the very near future roll back the deployment of the # server raise and error . LOG.warn('Reservation for server being %(uuid)s deployed was not' 'found.', {'uuid': server_uuid}) session.delete(reservation) def add_server(self, **kwargs): """Adds a provisional server to the inventory. :param name: The Server's name or id. :param cpu_count: The number of CPUs in the server. :param chassis_drive_capacity: The drive capacity of the server's chassis. :param psu_capacity: The server's power supply capicity. :param chassis_size: The size of the server's chassis. :param memory: The server's memory in MB. :param local_drive_size: The size in GB of the local drive. :param driver_name: The name of the Ironic provisioning driver. :param deploy_kernel: The UUID of the deploy kernel. :param deploy_ramdisk: The UUID of the deploy ramdisk. :param ipmi_address: The IP Address of the IPMI interface. :param ipmi_password: The <PASSWORD>. :param impi_username: The User ID / name of the IPMI user. :param impi_priv_level: The IPMI Privilege Level of the user. :param ipmi_mac_address: The MAC Address of the IPMI interface. :param cpu_arch: The CPU Architecture. Defaults to 'x86_64' """ server = models.Server() server.update(kwargs) try: server.save() except db_exc.DBDuplicateEntry as exc: if 'ipmi_mac_address' in exc.columns: raise exceptions.ExistingMACAddress( address=kwargs['ipmi_mac_address']) if 'name' in exc.columns: raise exceptions.ExistingServerName(name=kwargs['name']) else: raise exceptions.ExistingServer() return server def remove_server(self, uuid): """Remove a server from the inventory pool. :param uuid: The server's uuid. """ session = get_session() with session.begin(): query = session.query(models.Server).filter_by(uuid=uuid) try: server = query.one() except sqla_exc.NoResultFound: raise exceptions.ServerNotFound(server_uuid=uuid) if server.reservation_id: # Don't delete servers with an existing reservation. raise exceptions.ServerReserved() query.delete() def get_all_servers(self): """Get all servers as a list. """ session = get_session() return session.query(models.Server).all() def get_matching_servers(self, **kwargs): """Return a list of servers that match the search parameters. :param cpu_count: The number of CPUs in the server. :param chassis_drive_capacity: The drive capacity of the server's chassis. :param psu_capacity: The server's power supply capicity. :param chassis_size: The size of the server's chassis. :param memory: The server's memory in MB. :param local_drive_size: The size in GB of the local drive. :param cpu_arch: The CPU Architecture. Defaults to 'x86_64' :return: list """ try: query = self._get_servers_query(kwargs) servers = query.all() for server in servers: self.reserve_server(server) except sqla_exc.NoResultFound: # Note(caustin): For now, I am considering the case where no match is # found to not be an exception. So, just return None. return None return servers def get_single_server_match(self, **kwargs): """Return a single server that matches the search parameters. :param cpu_count: The number of CPUs in the server. :param chassis_drive_capacity: The drive capacity of the server's chassis. :param psu_capacity: The server's power supply capicity. :param chassis_size: The size of the server's chassis. :param memory: The server's memory in MB. :param local_drive_size: The size in GB of the local drive. :param cpu_arch: The CPU Architecture. Defaults to 'x86_64' """ try: query = self._get_servers_query(kwargs) server = query.first() self.reserve_server(server) except sqla_exc.NoResultFound: # Note(caustin): For now, I consider the case where no server meeting # the critera is found to be non-exceptional. So, returning None in # this case. return None return server def get_server_by_uuid(self, server_id): """Get a server by it's uuid :param server_id: The server's uuid """ session = get_session() query = session.query(models.Server).filter_by(uuid=server_id) try: return query.one() except sqla_exc.NoResultFound: raise exceptions.ServerNotFound(uuid=server_id) def get_server_by_name(self, server_name): """Get a server by it's name. :param server_name: The server's unique name. """ session = get_session() query = session.query(models.Server).filter_by(name=server_name) try: return query.one() except sqla_exc.NoResultFound: raise exceptions.ServerNotFound(name=server_name) def update_server(self, server_uuid, **kwargs): """ :param server_uuid: :param kwargs: """ session = get_session() with session.begin(): query = session.query(models.Server).filter_by(uuid=server_uuid) try: # TODO (caustin): 'with_lockmode' has been superseded by # with_for_update in SQLAlchemy. Update and test when possible. server = query.with_lockmode('update').one() except sqla_exc.NoResultFound: raise exceptions.ServerNotFound(uuid=server_uuid) if server.reservation_id: # We probably shouldn't update a server that has an existing # reservation in place. raise exceptions.ServerReserved() server.update(kwargs) return server def reserve_server(self, server_instance): """Create a reservation for a server. :param server_instance: A server object. """ if server_instance.reservation_id: raise exceptions.ServerReserved(server_uuid=server_instance.uuid) reservation = models.Reservation() reservation.save() server_instance.update({'reservation_id': reservation.id}) server_instance.save() return server_instance def cancel_reservation(self, server_uuid): """Cancel a reservation for a server. """ server = self.get_server_by_uuid(self, server_uuid) reservation_id = server.reservation_id if not reservation_id: raise exceptions.ServerNotReserved(self, server_uuid=server_uuid) updated_server = self.update_server(self, server_uuid, **{'reservation_id': None}) self._delete_reservation(server.reservation_id, server_uuid) return updated_server def deploy_server(self, server_uuid, *args, **kwargs): """Mark a server as being used by an ironic node. :param server_instance: :param args: :param kwargs: :return: """ server = self.get_server_by_uuid(server_uuid) reservation_id = server.reservation_id if reservation_id: raise exceptions.ServerNotReserved(server_uuid) update_values = {'reservation_id': None, 'deployed': True} deployed_server = self.update_server(server_uuid, **update_values) self._delete_reservation(reservation_id, server_uuid) return deployed_server def return_server_to_pool(self, server_uuid, *args, **kwargs): """Returns a previously deployed server to the pool of available servers. :param server_uuid: :param args: :param kwargs: :return: """ session = get_session() with session.begin(): query = session.query(models.Server).filter_by(uuid=server_uuid) try: server = query.with_lockmode('update').one() except sqla_exc.NoResultFound: raise exceptions.ServerNotFound(uuid=server_uuid) if not server.deployed: raise exceptions.ServerNotDeployed(uuid=server_uuid) server.update({'deployed': False}) return server
softlayer/ironic-inventory-integrator
ironic_inventory/db/api.py
# -*- encoding: utf-8 -*- """Database API for CRUD on inventory servers. """ import abc import six from oslo_config import cfg from oslo_db import api as db_api _BACKEND_MAPPING = {'sqlalchemy': 'ironic_inventory.db.sqlalchemy.api'} IMPL = db_api.DBAPI.from_config(cfg.CONF, backend_mapping=_BACKEND_MAPPING, lazy=True) def get_instance(): return IMPL @six.add_metaclass(abc.ABCMeta) class Connection(object): @abc.abstractmethod def add_server(self, **kwargs): pass @abc.abstractmethod def remove_server(self, uuid): pass @abc.abstractmethod def get_all_servers(self): pass @abc.abstractmethod def get_matching_servers(self, **kwargs): pass @abc.abstractmethod def get_single_server_match(self, **kwargs): pass @abc.abstractmethod def get_server_by_uuid(self, server_id): pass @abc.abstractmethod def get_server_by_name(self, server_name): pass @abc.abstractmethod def update_server(self, server_uuid, **kwargs): pass @abc.abstractmethod def reserve_server(self, server_instance): pass @abc.abstractmethod def cancel_reservation(self, server_uuid): pass @abc.abstractmethod def deploy_server(self, server_uuid, *args, **kwargs): pass @abc.abstractmethod def return_server_to_pool(self, server_id, *args, **kwargs): pass
softlayer/ironic-inventory-integrator
ironic_inventory/api/config.py
<filename>ironic_inventory/api/config.py # -*- encoding: utf-8 -*- # Server Specific Configurations server = { 'port': '8090', 'host': '0.0.0.0' } # Pecan Application Configurations app = { 'root': 'ironic_inventory.api.controllers.root.RootController', 'modules': ['ironic_inventory.api'], 'static_root': '%(confdir)s/public', 'template_path': '%(confdir)s/ironic_inventory/templates', 'debug': True, } wsme = { 'debug': True, } logging = { 'root': {'level': 'INFO', 'handlers': ['console']}, 'loggers': { 'ironic_inventory': {'level': 'DEBUG', 'handlers': ['console']}, 'pecan': {'level': 'DEBUG', 'handlers': ['console']}, 'py.warnings': {'handlers': ['console']}, '__force_dict__': True }, 'handlers': { 'console': { 'level': 'DEBUG', 'class': 'logging.StreamHandler', 'formatter': 'color' } }, 'formatters': { 'simple': { 'format': ('%(asctime)s %(levelname)-5.5s [%(name)s]' '[%(threadName)s] %(message)s') }, 'color': { '()': 'pecan.log.ColorFormatter', 'format': ('%(asctime)s [%(padded_color_levelname)s] [%(name)s]' '[%(threadName)s] %(message)s'), '__force_dict__': True } } } # Custom Configurations must be in Python dictionary format:: # # foo = {'bar':'baz'} # # All configurations are accessible at:: # pecan.conf
softlayer/ironic-inventory-integrator
ironic_inventory/objects/server.py
<gh_stars>1-10 """A definition of the fields describing a server used in lieu of defining remotable objects""" ServerFields = frozenset(['id', 'uuid', 'name', 'cpu_count', 'local_drive_capacity', 'psu_capacity', 'psu_size', 'memory_mb', 'cpu_architecture', 'ipmi_password', 'ipmi_username', 'ipmi_priv_level', 'ipmi_mac_address', 'reservation_id', 'deployed'])
softlayer/ironic-inventory-integrator
ironic_inventory/api/hooks.py
# -*- encoding: utf-8 -*- """Pecan request hooks.""" from pecan import hooks from ironic_inventory.db import api as dbapi class SqlAlchemyHook(hooks.PecanHook): def before(self, state): state.request.dbapi = dbapi.get_instance()
softlayer/ironic-inventory-integrator
ironic_inventory/api/app.py
<reponame>softlayer/ironic-inventory-integrator import pecan from pecan import make_app from ironic_inventory.api import config def get_pecan_config(): """Load the pecan configuration file and return the config object""" config_file = config.__file__.replace('.pyc', '.py') return pecan.configuration.conf_from_file(config_file) def setup_app(config): pecan_config = get_pecan_config() app = make_app( pecan_config.app.root, static_root=pecan_config.app.static_root, debug=pecan_config.app.debug, force_canonical=getattr(pecan_config.app, 'force_canonical', True), ) return app
softlayer/ironic-inventory-integrator
ironic_inventory/api/controllers/base.py
<reponame>softlayer/ironic-inventory-integrator from wsme import types as wtypes from wsmeext import pecan as wsme_pecan __author__ = 'chaustin' class ApiBase(wtypes.Base): """A Base Object for handling serialization of objects from request """ def as_dict(self): return {field: getattr(self, field) for field in self.fields} def wsme_expose(*args, **kwargs): """Coerce the content type to json""" if 'rest_content_types' not in kwargs: kwargs['rest_content_types'] = ('json', ) return wsme_pecan.wsexpose(*args, **kwargs)
GabrielMazzuchello/Curso-Em-Video
Exercicios/ex013.py
<reponame>GabrielMazzuchello/Curso-Em-Video s = float(input('qual erá o salario do funcionario? R$')) aul = s * 15 / 100 print('o salario do funcionari que andes custava R${:.2f} agora com 15% de aumento custará R${:.2f}'.format(s, (s+aul)))
GabrielMazzuchello/Curso-Em-Video
Exercicios/ex045_GAME Pedra Papel e Tesoura.py
<filename>Exercicios/ex045_GAME Pedra Papel e Tesoura.py from random import randint from time import sleep itens = ('Pedra', 'Papel', 'Tesoura') # lista de itens computador = randint(0, 2) # o computador esta sorteando entre 0, 1 ou 2.. print(''' Suas opções [0] Pedra [1] Papel [2] Tesoura''') player = int(input('Qual é sua jogada? \n')) sleep(0.5) print('JO') sleep(0.5) print('KEN') sleep(0.5) print('PO') print('=--=' * 7) print('O computador jogou: {}{}{}'.format('\033[34m', itens[computador], '\033[m')) print('O jogador jogou: {}{}{}'.format('\033[31m', itens[player], '\033[m')) print('=--=' * 7) print() if computador == 0: # computador jogou PEDRA if player == 0: print('O jogo enpatou!') elif player == 1: print('Jogador vence!') elif player == 2: print('Computador vence!') else: print('Jogada invalida!!!') elif computador == 1: # computador jogou PAPEL if player == 1: print('o jogo enpatou!') elif player == 0: print('Computador vence!') elif player == 2: print('Jogador vence!') else: print('Jogada invalida!!!') elif computador == 2: # computador jogou TESOURA if player == 2: print('O jogo enpatou!') elif player == 1: print('Computador vence!') elif player == 0: print('Jogador vence') else: print('Jogada invalida!!!')
GabrielMazzuchello/Curso-Em-Video
SATC_exercicios/ex005.py
<reponame>GabrielMazzuchello/Curso-Em-Video A = float(input('Informe um valor numerico: ')) B = float(input('Informe outro valor numerico: ')) auxiliar = B B = A A = auxiliar print('o valor de A-{} e de B-{} '.format(A, B))
GabrielMazzuchello/Curso-Em-Video
Aulas/aula08a.py
<gh_stars>1-10 from math import sqrt numero1 = float(input('digite um numero')) raiz = sqrt(numero1) print('a raiz de {} é {:.2f}'.format(numero1, raiz))
GabrielMazzuchello/Curso-Em-Video
Exercicios/ex028.py
from random import randint numeroescolhido = randint(0, 5) escolha = int(input('Adivinhe o numero que o computador escolheu entre 0 e 5: ')) if numeroescolhido == escolha: print('parabens você acertou') else: print('Que pena você errou, Boa Sorte na proxima ') print('O numero era {}'.format(numeroescolhido))
GabrielMazzuchello/Curso-Em-Video
Exercicios/ex005.py
n1 = int(input('Digite um numero:')) cores = {'amarelo': '\033[33m', 'limpa': '\033[m', 'vermelha': '\033[31m'} print('analisando o valor {}{}{} o seu antecesor é {}{}{} e seu sucessor é {}{}{}'.format(cores['amarelo'], n1, cores['limpa'], cores['vermelha'], (n1-1), cores['limpa'], cores['vermelha'], (n1+1), cores['limpa']))
GabrielMazzuchello/Curso-Em-Video
Aulas/test.py
import math def raiz(): try: numero1 = float(input('Informe o numero para descobrir sua raiz: ')) resultado = math.sqrt(numero1) return resultado except ValueError: print('Somente numeros') def porcentagem(): try: numero1 = float(input('Informe a porcentagem: ')) numero2 = float(input('Informe o numero que deseja saber a porcentagem: ')) resultado = (numero2 / 100) * numero1 return resultado except ValueError: print('Somente numeros') def adicao(): resultado = numero1 + numero2 return resultado def subtracao(): resultado = numero1 - numero2 return resultado def multiplicacao(): resultado = numero1 * numero2 return resultado def divisao(): resultado = numero1 / numero2 return resultado def potenciacao(): resultado = math.pow(numero1, numero2) return resultado operacao = str(input('Informe a operação "+ - * / ** raiz ou %": ')).strip() if operacao == 'raiz': print('{:.2f}'.format(raiz())) elif operacao == '%': print(porcentagem()) else: if (operacao == '+') or (operacao == '-') or (operacao == '*') or (operacao == '/') or (operacao == '**'): try: numero1 = float(input('Informe o 1° numero: ')) numero2 = float(input('Informe o 2° numero: ')) if operacao == '+': print(adicao()) elif operacao == '-': print(subtracao()) elif operacao == '*': print(multiplicacao()) elif operacao == '/': print(divisao()) elif operacao == '**': print(potenciacao()) except ValueError: print('Somente numeros') else: print('Operação invalida')
GabrielMazzuchello/Curso-Em-Video
Exercicios/ex047_Contagem de pares.py
<filename>Exercicios/ex047_Contagem de pares.py from colorama import Fore from colorama import Style vetinpar = [] vetpar = [] for c in range(1, 51): if c % 2 == 0: vetinpar.append(c) else: vetpar.append(c) print('Os numeros ímpares são: {}{}{}'.format(Fore.LIGHTRED_EX, vetinpar, Style.RESET_ALL)) print('Os numeros pares são: {}{}{}'.format(Fore.LIGHTGREEN_EX, vetinpar, Style.RESET_ALL))
GabrielMazzuchello/Curso-Em-Video
Exercicios/ex049_Tabuada v.2.0.py
<filename>Exercicios/ex049_Tabuada v.2.0.py class cor: BLACK = '\033[30m' RED = '\033[91m' GREEN = '\033[92m' YELLOW = '\033[93m' BLUE = '\033[94m' PURPLE = '\033[95m' CYAN = '\033[96m' GRAY = '\33[37m' WHITE = '\033[97m' CLEAR = '\033[m' numero = int(input('Informe o numero da tabuada: ')) print('====={}Tabuada{}====='.format(cor.GREEN, cor.CLEAR)) for c in range(1, 11): print('{}{} X {}{} = {}{}{}'.format(cor.GREEN, numero, c, cor.CLEAR, cor.RED, (numero * c), cor.CLEAR))
GabrielMazzuchello/Curso-Em-Video
Exercicios/ex003.py
<gh_stars>1-10 n1 = int(input('digite um numero:')) n2 = int(input('digite outro:')) s = n1 + n2 cores = {'limpa': '\033[m', 'vermelho': '\033[0;31m', 'amarelo': '\033[0;33m'} print('a soma entre {}{}{} e {}{}{} corresponde {}{}'.format(cores['amarelo'], n1, cores['limpa'], cores['amarelo'], n2, cores['limpa'], cores['vermelho'], s, cores['limpa']))
GabrielMazzuchello/Curso-Em-Video
Exercicios/ex012.py
v = float(input('qual e o valor do seu produto? R$:')) d = v / 100 * 5 print('o valor do produto de R$:{} agora com 5% de desconto ficou R$:{:.2f}'.format(v, (v-d)))
GabrielMazzuchello/Curso-Em-Video
Aulas/aula07.py
<reponame>GabrielMazzuchello/Curso-Em-Video<gh_stars>1-10 n1 = int(input('Digite um valor: ')) n2 = int(input('Digite outro valor: ')) s = n1 + n2 m = n1 * n2 d = n1 / n2 di = n1 // n2 po = n1 ** n2 print('A soma de {} e {} é de {} a multiplicação é {} e a divisão {:.3f}'.format(n1, n2, s, m, d), end=' ') print('A divisão inteira vale {} e a potenciação é {}'.format(di, po))
GabrielMazzuchello/Curso-Em-Video
Aulas/aula011a.py
print('\033[0;31;40mOlá, Mundo!\033[m') print('\033[7;97mOlá, Mundo!\033[m')
GabrielMazzuchello/Curso-Em-Video
Exercicios/ex015.py
<reponame>GabrielMazzuchello/Curso-Em-Video<filename>Exercicios/ex015.py<gh_stars>1-10 di = int(input('quantos dias o carro foi alugado?')) km = float(input('quantos km o carro percorreu?')) total = (km * 0.15) + (di * 60) print('o aluguel do carro custou R${:.2f}'.format(total))
GabrielMazzuchello/Curso-Em-Video
Exercicios/ex031_Custo Da Viagem.py
<reponame>GabrielMazzuchello/Curso-Em-Video<gh_stars>1-10 distancia = float(input('informe a distancia da sua viagem (km)')) if distancia > 200: print('O valor de sua viagem custara R$:{:.2f}'.format(distancia*0.45)) else: print('O valor de sua viagem custará R$:{:.2f}'.format(distancia*0.50))
GabrielMazzuchello/Curso-Em-Video
SATC_exercicios/ex013.py
<reponame>GabrielMazzuchello/Curso-Em-Video<filename>SATC_exercicios/ex013.py vetcustos = [] vetprecos = [] for i in range(3): vetcustos.append(float(input('Informe o custo de um produto: '))) vetprecos.append(float(input('Informe o preço da vendo do produto: '))) if vetcustos[i] == vetprecos[i]: print('Não houve lucro e nem prejuiso') elif vetcustos[i] < vetprecos[i]: print('Houve lucro') else: print('houve prejuizo') print('custo: {}'.format(vetcustos)) print('venda: {}'.format(vetprecos))
GabrielMazzuchello/Curso-Em-Video
SATC_exercicios/ex015_Trabalho Modulo III.py
<filename>SATC_exercicios/ex015_Trabalho Modulo III.py vetpessoas = [] # vetor de pessoas def removerpaciente(): # função para remover os pacientes for i in range(len(vetpessoas)): print('Há pessoa da posição {}{}{} é {}{}{}'.format('\033[35m', i, '\033[m', '\033[31m', vetpessoas[i], '\033[m')) try: posicao = (int(input('Informe a posição que deseja remover: '))) if posicao < len(vetpessoas): vetpessoas.pop(posicao) else: print(' {}Opção invalida{} '.format('\033[31m', '\033[m')) except ValueError: limpar() print(' {}Somente numeros{} '.format('\033[31m', '\033[m')) def atendimento(vetpessoas): # função para o atendimento dos pacientes print('O paciente: {}{}{} está sendo chamado(a)'.format('\033[34m', vetpessoas[0], '\033[m')) vetpessoas.pop(0) def cadastro(): # função para cadastrar os pacientes vetpessoas.append(str(input('Informe o nome do paciente: '))) def limpar(): # função para 'limpar a tela' (15 linhas em branco) print("\n" * 20) while True: # menu de escolhas print('-=-' * 13) print('| {}1-{} Atendimento |'.format('\033[36m', '\033[m')) print('| {}2-{} Cadastro |'.format('\033[36m', '\033[m')) print('| {}3-{} Remover Usuario |'.format('\033[36m', '\033[m')) print('| {}4-{} Listagem |'.format('\033[36m', '\033[m')) print('| {}5-{} Sair |'.format('\033[36m', '\033[m')) print('-=-' * 13) opcao = str(input('')).strip() # variavel para receber a escolha do menu if opcao == '1': limpar() if len(vetpessoas) == 0: print(' {}A lista está vazia{} '.format('\033[31m', '\033[m')) else: atendimento(vetpessoas) # usado para chamar a função de atendimento elif opcao == '2': limpar() cadastro() limpar() # usado para chamar a função de cadastro elif opcao == '3': limpar() if len(vetpessoas) == 0: print(' {}A lista está vazia{} '.format('\033[31m', '\033[m')) else: removerpaciente() # usado para chamar a função de remover paciente elif opcao == '4': limpar() if len(vetpessoas) == 0: print(' {}A lista está vazia{} '.format('\033[31m', '\033[m')) else: for i in range(len(vetpessoas)): print('{}{}°{} pessoa é {}{}{}'.format('\033[34m', (i + 1), '\033[m', vetpessoas[i], '\033[31m', '\033[m')) # usado para mostrar a lista elif opcao == '5': print('{} Fim do programa!! {}'.format('\033[92:40m', '\033[m')) break # usado para fechar o programa else: limpar() print(' {}Opção invalida{} '.format('\033[31m', '\033[m')) # caso a opção informada não seja correspondente, retorna opção invalida
GabrielMazzuchello/Curso-Em-Video
Exercicios/ex030.py
numero = int(input('Informe um número INTEIRO: ')) if numero % 2 == 0: print('O numero {} e par'.format(numero)) else: print('O numero {} e inpar'.format(numero))
GabrielMazzuchello/Curso-Em-Video
Aulas/aula010.py
<filename>Aulas/aula010.py nota1 = float(input('digite a primeira nota: ')) nota2 = float(input('Digite a segunda nota: ')) media = (nota1 + nota2)/2 if media >= 6: print('Sua media é exelente!! {} '.format('\U0001F496')) else: print('Sua media é ruin ESTUDE MAIS {} '.format('\U0001F4A2')) # o codigo ->\U0001F4A2<- e o codigo ->\U0001F496<- são codigos de emoji
GabrielMazzuchello/Curso-Em-Video
SATC_exercicios/ex014.py
<gh_stars>1-10 # Desenvolva uma calculadora que possua um menu, tratamento de erro caso o usuario escolha uma operação invalida e utilize funções na mesma def calculadora(numero1, numero2, operacao): if operacao == '+': print(numero1 + numero2) elif operacao == '-': print(numero1 - numero2) elif operacao == '*': print(numero1 * numero2) elif operacao == '/': print(numero1 / numero2) else: print('Operação invalida Reinicie o programa!!') print('========================================') print('| Informe o primeiro numero |') print('| Informe a operação + - * / |') print('| Informe o segundo numero |') print('========================================') numero1 = float(input('')) operacao = str(input('')) numero2 = float(input('')) print('Resultado...') print(calculadora(numero1, numero2, operacao))
GabrielMazzuchello/Curso-Em-Video
Exercicios/ex023.py
<gh_stars>1-10 numero = int(input('Digite um numero: ')) u = numero // 1 % 10 d = numero // 10 % 10 c = numero // 100 % 10 m = numero // 1000 % 10 print('Analisando o numero: {}'.format(numero)) print('Unidade(s): {}'.format(u)) print('Desena(s): {}'.format(d)) print('Centena(s): {}'.format(c)) print('Milhar(es): {}'.format(m))
GabrielMazzuchello/Curso-Em-Video
Exercicios/ex027.py
<filename>Exercicios/ex027.py nome = str(input('Digite seu nome completo :')).strip() nome1 = nome.split() print('prazer em conheser(lo)!!') print('Seu primeiro nome é {}'.format(nome1[0])) print('Seu ultimo nome é {}'.format(nome1[len(nome1)-1]))
GabrielMazzuchello/Curso-Em-Video
SATC_exercicios/ex003.py
nome = str(input('Informe o seu nome: ')) salario = float(input('Informe seu salário fixo: ')) vendas = float(input('informe o total de vendas: ')) newsalario = salario + (salario * 15 / 100) print('Olá, {} seu salário fixo é R$:{:.2f} e o seu salário final desse mes é R$:{:.2f}'.format(nome, salario, newsalario))
GabrielMazzuchello/Curso-Em-Video
Exercicios/ex018.py
from math import radians, sin, cos, tan angulo = float(input('Digite o valor do angulo desejado: ')) print('') seno = sin(radians(angulo)) print('o seno do angulo {}° É> {:.2f}'.format(angulo, seno)) cosseno = cos(radians(angulo)) print('O cosseno do angulo {}° É> {:.2f}'.format(angulo, cosseno)) tangente = tan(radians(angulo)) print('À tangente o ângulo {}° É> {:.2f}'.format(angulo, tangente))
GabrielMazzuchello/Curso-Em-Video
Exercicios/ex020.py
from random import shuffle nome1 = input('Primeiro nome:') nome2 = input('Segundo nome:') nome3 = input('Terceiro nome:') nome4 = input('Quarto nome:') lista = [nome1, nome2, nome3, nome4] shuffle(lista) print("") print('A ordem de apresentação do trabalho será:') print(lista)
GabrielMazzuchello/Curso-Em-Video
Exercicios/ex021.py
import pygame pygame.mixer.init() pygame.mixer.music.load('ex021.mp3') pygame.mixer.music.play() input('=====Iniciado...=====')
GabrielMazzuchello/Curso-Em-Video
SATC_exercicios/ex010.py
<reponame>GabrielMazzuchello/Curso-Em-Video numero1 = float(input('Informe o primeiro numero: ')) numero2 = float(input('Informe o segundo numero: ')) if numero1 > numero2: print('O numero {} é maior'.format(numero1)) else: print('numero {} e maior'.format(numero2))
GabrielMazzuchello/Curso-Em-Video
Exercicios/ex010.py
<filename>Exercicios/ex010.py n1 = float(input('Quantos reais voce tem na carteira? R$')) print('Com R${} voce pode comprar U${:.2f} '.format(n1, (n1/5.20)))
GabrielMazzuchello/Curso-Em-Video
Aulas/aula09a.py
<filename>Aulas/aula09a.py frase = 'Curso em Video Python' dividido = frase.split() print(dividido[0])
GabrielMazzuchello/Curso-Em-Video
Exercicios/ex041_Classificando Atletas.py
<reponame>GabrielMazzuchello/Curso-Em-Video<gh_stars>1-10 from datetime import date nascimento = int(input('Informe o ano de nacimento: ')) ano = date.today().year idade = ano - nascimento print('') print('A idade do atleta é {} ano(S)'.format(idade)) if idade <= 9: print('A categoria do atleta é MIRIM') elif idade <= 14: print('A categoria do atleta é INFANTIL') elif idade <= 19: print('A categoria do atleta é JÚNIOR') elif idade <= 25: print('A categoria do atlrta é SÊNIOR') else: print('A categoria do atleta é MASTER')
GabrielMazzuchello/Curso-Em-Video
Exercicios/ex046_Contagem regressiva.py
<reponame>GabrielMazzuchello/Curso-Em-Video<filename>Exercicios/ex046_Contagem regressiva.py<gh_stars>1-10 from time import sleep print('Contagem regressiva para o lançamento dos fogos de artificios!!\n') for c in range(10, -1, -1): print('Contagem regreciva: {}'.format(c)) sleep(1) print('\nEstourando os fogos de artificio...') print('BOOOM BOOM BOMM...')
GabrielMazzuchello/Curso-Em-Video
Exercicios/ex026.py
frase = str(input('Digite uma frase ')).strip() print('Aparece {} vezes a letra A'.format(frase.upper().count('A'))) print('A primeira letra A apareseu na posição {}'.format(frase.find('A')+1)) print('A ultima letra A apareceu na posição {}'.format(frase.rfind('A')+1))
GabrielMazzuchello/Curso-Em-Video
SATC_exercicios/ex007.py
cores = {'vermelho': '\033[31m', 'limpa': '\033[m', 'verde': '\033[34m'} preco = float(input('informe o valor do seu produto:')) parcela = int(input('Informe em quantas vezes quer parcelar:')) print('') vetparcela = [] for i in range(parcela): vetparcela.append(preco / parcela) print('O valor de seu produto R$:{} parcelado em {} Vezes de R$:{}{:.2f}{} por parcela'.format(preco, parcela, cores['vermelho'], (preco/parcela), cores['limpa'])) print('') for i in range(parcela): print('A parcela N° {}{}{} De valor {}{:.2f}{}'.format(cores['verde'], i + 1, cores['limpa'], cores['vermelho'], vetparcela[i], cores['limpa']))
GabrielMazzuchello/Curso-Em-Video
Exercicios/ex056_Analisador completo.py
somaidade = 0 mediaidade = 0 idadevelho = 0 nomevelho = '' mulhernova = 0 for p in range(1, 5): print('------ {}° PESSOA ------') nome = str(input('Informe seu nome: ')).strip() idade = int(input('Informe sua idade: ')) sexo = str(input('informe seu Sexo [M/F]')).strip() somaidade += idade if p == 1 and sexo in 'Mm': idadevelho = idade nomevelho = nome if sexo in 'Mm' and idade > idadevelho: idadevelho = idade nomevelho = nome if sexo in 'Ff' and idade <= 20: mulhernova += 1 mediaidade = somaidade / 4 print('') print('A media de idade do grupo é de {} anos'.format(mediaidade)) print('O homen mais velho tem {} anos e su nome é {}'.format(idadevelho, nomevelho)) print('São {} mulher(es) com ou abaixo de 20 anos de idade!'.format(mulhernova))
GabrielMazzuchello/Curso-Em-Video
SATC_exercicios/ex004.py
<filename>SATC_exercicios/ex004.py nome = str(input('Informe o nome do aluno: ')) nota1 = float(input('Informe a 1° nota: ')) nota2 = float(input('Informe a 2° nota: ')) nota3 = float(input('Informe a 3° nota: ')) media = (nota1 + nota2 + nota3) / 3 print('A media do aluno: {} é de {:.2f}'.format(nome, media))
GabrielMazzuchello/Curso-Em-Video
Aulas/aula013.py
<filename>Aulas/aula013.py s = 0 for c in range(1, 5): num = int(input('Informe um numero: ')) s += num print('\nA soma total dos numeros foi de {}'.format(s))
GabrielMazzuchello/Curso-Em-Video
Aulas/arquivo de cores.py
class cor: BLACK = '\033[30m' RED = '\033[91m' GREEN = '\033[92m' YELLOW = '\033[93m' BLUE = '\033[94m' PURPLE = '\033[95m' CYAN = '\033[96m' GRAY = '\33[37m' WHITE = '\033[97m' CLEAR = '\033[m'
GabrielMazzuchello/Curso-Em-Video
Exercicios/ex054_Grupo da Maioridade.py
from datetime import date nascimento = [] for c in range(7): nascimento.append(int(input('Informe o ano que nasceu há {}° pessoa: '.format(c+1)))) for c in range(len(nascimento)): anoatual = date.today().year idade = anoatual - nascimento[c] if idade >= 18: print('\nVocê é MAIOR de idade! --> Sua idade {}'.format(idade)) else: print('\nVocê é MENOR de idade! --> Sua idade {}'.format(idade))
GabrielMazzuchello/Curso-Em-Video
Exercicios/ex050_Soma dos pares.py
soma = 0 for c in range(1, 7): numero = float(input('Informe o {}° número: '.format(c))) if numero % 2 == 0: soma = numero + soma print('A soma dos números pares digitados é : {}'.format(soma))
GabrielMazzuchello/Curso-Em-Video
Exercicios/ex009.py
<reponame>GabrielMazzuchello/Curso-Em-Video n1 = int(input('Digite o numero para ver sua tabuada:')) print('_' * 13) print(' {} X 1 = {:2}'.format(n1, (n1 * 1))) print(' {} X 2 = {:2}'.format(n1, (n1 * 2))) print(' {} X 3 = {:2}'.format(n1, (n1 * 3))) print(' {} X 4 = {:2}'.format(n1, (n1 * 4))) print(' {} X 5 = {:2}'.format(n1, (n1 * 5))) print(' {} X 6 = {:2}'.format(n1, (n1 * 6))) print(' {} X 7 = {:2}'.format(n1, (n1 * 7))) print(' {} X 8 = {:2}'.format(n1, (n1 * 8))) print(' {} X 9 = {:2}'.format(n1, (n1 * 9))) print(' {} X 10 = {}'.format(n1, (n1 * 10))) print('_' * 13)
GabrielMazzuchello/Curso-Em-Video
Exercicios/ex017.py
<filename>Exercicios/ex017.py from math import hypot catetoadijacente = float(input('determine o cateto adijacente: ')) catetooposto = float(input('derermine o cateto oposto: ')) hipotenusa = hypot(catetoadijacente, catetooposto) print('a hipotenusa mede {:.2f}'.format(hipotenusa)32)
GabrielMazzuchello/Curso-Em-Video
Aulas/aula08b.py
<reponame>GabrielMazzuchello/Curso-Em-Video import emoji print(emoji.emojize('olá,mundo :smiling_imp:', use_aliases=True))
GabrielMazzuchello/Curso-Em-Video
Exercicios/ex014.py
g = float(input('informe os graus °C')) print('a temperatura {}°C corresponde a {}°F'.format(g, (g * 9/5) + 32)) print('e tam bem corresponde ha {}°K'.format(g+273.15))
GabrielMazzuchello/Curso-Em-Video
Exercicios/ex007.py
<reponame>GabrielMazzuchello/Curso-Em-Video<filename>Exercicios/ex007.py n1 = float(input('qual é a primeira nota do aluno?')) n2 = float(input('qual e a segunda nota do aluno?')) print('a media entre {} e {} corresponde ha {}'.format(n1, n2, ((n1+n2)/2)))
GabrielMazzuchello/Curso-Em-Video
Exercicios/ex016.py
<gh_stars>1-10 import math numero1 = float(input('digite um numero: ')) print('o numero {} tem a parte inteira de {}'.format(numero1, (math.trunc(numero1))))
GabrielMazzuchello/Curso-Em-Video
Exercicios/ex001.py
<gh_stars>1-10 nome = input ('qual e seu nome? ') print('E um prazer em te conhecer {}{}{}'.format('\033[0;31m', nome, '\033[m'))