source
stringlengths
3
86
python
stringlengths
75
1.04M
data_loader.py
import numpy as np import time import random import torch.nn as nn import torch import math import os import sys sys.path.insert(0, 'data_util') import pickle from torch.multiprocessing import Process, Queue from torch.autograd import Variable from formula import NodeType, Node from utils import split_list COMM_OP = {"/\\:c", "\\/:c", "+:c", "*:c", "==:c", "|-:c"} # Special treatment for |- # Input data format # [onehot, index1, index2, mat] # onehot: Tensor (num_nodes*input_dim) one hot from dict # index1: Long Tensor (num_pairs) (source) # index2: Long Tensor (num_pairs) (target) # mat: Tensor for index add (num_nodes * num_pairs) class DataLoader(object): def __init__(self, formula_path, dict_path, separate_conj_stmt=False, binary=False, part_no=-1, part_total=0, file_list=None, deepmath=False, norename=False, filter_abelian=False, compatible=False): # part_no, part_total: will not shuffle. self.formula_path = formula_path self.dict_path = dict_path self.maxsize = 500 # maxsize for async queue self.iter_ = 0 # epoch. Legacy reason for its name self.total_in_epoch = -1 # conj, stmt pairs supply in current epoch. self.total_iter = -1 # total iteration self.rename = not norename if not os.path.exists(dict_path): self.dict = self.build_dictionary() else: self.dict = torch.load(dict_path) self.queue = Queue(self.maxsize) self.reader = Process(target=self.read) self.dict_size = len(self.dict.keys()) self.separate_conj_stmt = separate_conj_stmt self.binary = binary self.part_no = part_no self.part_total = part_total if file_list is None: file_list = os.listdir(self.formula_path) if part_total != 0: file_list.sort() file_list = split_list(file_list, part_total, part_no) else: if part_total != 0: file_list = split_list(file_list, part_total, part_no) self.file_list = file_list self.deepmath = deepmath self.filter_abelian = filter_abelian self.compatible = compatible def start_reader(self): self.reader.daemon = True self.reader.start() def next_batch(self): # [conjecture, statement, label, conj_binary, stmt_binary] data = self.queue.get() if data is None: self.iter_ += 1 self.total_in_epoch = 0 else: self.total_in_epoch += 1 self.total_iter += 1 return data def build_dictionary(self): def _deter_name(node): node_name = node.name if node.type == NodeType.VAR: node_name = 'VAR' elif node.type == NodeType.VARFUNC: node_name == 'VARFUNC' return node_name files = os.listdir(self.formula_path) tokens = set({}) dicts = {} for i, a_file in enumerate(files): with open(os.path.join(self.formula_path, a_file), 'rb') as f: print('Loading file {}/{}'.format(i + 1, len(files))) dataset = pickle.load(f) for j, pair in enumerate(dataset): print('Processing pair {}/{}'.format(j + 1, len(dataset))) if self.rename: tokens.update([_deter_name(x) for x in pair[1]]) tokens.update([_deter_name(x) for x in pair[2]]) else: tokens.update([x.name for x in pair[1]]) tokens.update([x.name for x in pair[2]]) for i, x in enumerate(tokens): dicts[x] = i dicts['UNKNOWN'] = len(dicts) if 'VAR' not in dicts: dicts['VAR'] = len(dicts) if 'VARFUNC' not in dicts: dicts['VARFUNC'] = len(dicts) torch.save(dicts, self.dict_path) return dicts def _decide_name(self, node): node_name = node.name if self.rename: if node.type == NodeType.VAR: node_name = 'VAR' elif node.type == NodeType.VARFUNC: node_name == 'VARFUNC' if node_name not in self.dict: node_name = 'UNKNOWN' return node_name def generate_one_sentence(self, sentence): # Undirected graph # index1 starts, index2 ends index1 = [] index2 = [] onehot_collect = [] id2pos = {node.id: i for i, node in enumerate(sentence)} for i, node in enumerate(sentence): for x in node.incoming: index1.append(id2pos[x.id]) index2.append(id2pos[node.id]) for x in node.outgoing: index1.append(id2pos[x.id]) index2.append(id2pos[node.id]) node_name = self._decide_name(node) onehot_collect.append(self.dict[node_name]) index1 = np.array(index1) index2 = np.array(index2) mat = np.zeros((len(sentence), len(index2)), dtype=np.float32) for x in sentence: mat[id2pos[x.id], index2 == id2pos[x.id]] = 1.0 / np.sum( index2 == id2pos[x.id]) if self.compatible: onehot = np.zeros((len(sentence), self.dict_size), dtype=np.float32) onehot[range(len(sentence)), onehot_collect] = 1 index1 = torch.from_numpy(index1) index2 = torch.from_numpy(index2) if self.compatible: onehot = torch.from_numpy(onehot) else: onehot = torch.LongTensor(onehot_collect) mat = torch.from_numpy(mat) return (onehot, index1, index2, mat) def directed_generate_one_sentence(self, sentence): # Distinguish in-edges and out-edges # index1 starts, index2 ends iindex1 = [] iindex2 = [] oindex1 = [] oindex2 = [] id2pos = {node.id: i for i, node in enumerate(sentence)} onehot_collect = [] for node in sentence: for x in node.incoming: iindex1.append(id2pos[x.id]) iindex2.append(id2pos[node.id]) for x in node.outgoing: oindex1.append(id2pos[node.id]) oindex2.append(id2pos[x.id]) node_name = self._decide_name(node) onehot_collect.append(self.dict[node_name]) # Incoming iindex1 = np.array(iindex1) iindex2 = np.array(iindex2) oindex1 = np.array(oindex1) oindex2 = np.array(oindex2) imat = np.zeros((len(sentence), len(iindex2)), dtype=np.float32) omat = np.zeros((len(sentence), len(oindex1)), dtype=np.float32) for x in sentence: imat[id2pos[x.id], iindex2 == id2pos[x.id]] = 1.0 / ( np.sum(oindex1 == id2pos[x.id]) + np.sum(iindex2 == id2pos[x.id])) # Outgoing for x in sentence: omat[id2pos[x.id], oindex1 == id2pos[x.id]] = 1.0 / ( np.sum(oindex1 == id2pos[x.id]) + np.sum(iindex2 == id2pos[x.id])) if self.compatible: onehot = np.zeros((len(sentence), self.dict_size), dtype=np.float32) onehot[range(len(sentence)), onehot_collect] = 1 iindex1 = torch.from_numpy(iindex1) iindex2 = torch.from_numpy(iindex2) oindex1 = torch.from_numpy(oindex1) oindex2 = torch.from_numpy(oindex2) if self.compatible: onehot = torch.from_numpy(onehot) else: onehot = torch.LongTensor(onehot_collect) imat = torch.from_numpy(imat) omat = torch.from_numpy(omat) return (onehot, iindex1, iindex2, imat, oindex1, oindex2, omat) def generate_one_sentence_binary(self, sentence): # directed graph index = [] id2pos = {node.id: i for i, node in enumerate(sentence)} for node in sentence: if len(node.outgoing) > 1 and not (self.filter_abelian and node.name in COMM_OP): for i, n1 in enumerate(node.outgoing): for n2 in node.outgoing[i + 1:]: index.append(id2pos[node.id]) index.append(id2pos[n1.id]) index.append(id2pos[n2.id]) if len(node.outgoing) > 1 and (self.filter_abelian and node.name == '|-:c'): for n1 in node.outgoing[1:]: index.append(id2pos[node.id]) index.append(id2pos[node.outgoing[0].id]) index.append(id2pos[n1.id]) index = np.array(index) mat = np.zeros((len(sentence), len(index)), dtype=np.float32) for x in sentence: f = index == id2pos[x.id] if np.sum(f) > 0: mat[id2pos[x.id], f] = 1.0 / np.sum(f) #print (index.shape, mat.shape) if index.shape[0] > 0: return (torch.from_numpy(index.reshape(-1, 3).T), torch.from_numpy(mat)) else: #print (index.shape, mat.shape) return (torch.Tensor(1), torch.Tensor(1)) def read(self): files = self.file_list while True: random.shuffle(files) for a_file in files: with open(os.path.join(self.formula_path, a_file), 'rb') as f: content = pickle.load(f) random.shuffle(content) for x in content: flag, conj, stmt = x if self.separate_conj_stmt: self.queue.put( (self.directed_generate_one_sentence(conj), self.directed_generate_one_sentence(stmt), flag)) elif self.binary: self.queue.put( (self.directed_generate_one_sentence(conj), self.directed_generate_one_sentence(stmt), flag, self.generate_one_sentence_binary(conj), self.generate_one_sentence_binary(stmt))) else: self.queue.put((self.generate_one_sentence(conj), self.generate_one_sentence(stmt), flag)) self.queue.put(None) def destruct(self): self.reader.terminate()
start_subscribers.py
from project.model.subscriber.baby_monitor_subscriber import BabyMonitorSubscriber from project.model.subscriber.smartphone_subscriber import SmartphoneSubscriber from project.model.subscriber.smart_tv_subscriber import SmartTvSubscriber from multiprocessing import Process from time import sleep subscriber_list = [] subscriber_list.append(BabyMonitorSubscriber()) subscriber_list.append(SmartphoneSubscriber('babymonitor')) subscriber_list.append(SmartphoneSubscriber('smart_tv')) subscriber_list.append(SmartTvSubscriber()) # execute process_list = [] for sub in subscriber_list: process = Process(target=sub.run) process.start() process_list.append(process) sleep(1)
collect.py
# Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import json import logging import sys import threading import time from os_performance_tools.collectors import _delta from os_performance_tools.collectors import mysql from os_performance_tools.collectors import queues from subunit import v2 as subunit_v2 mysql_data = {} queues_data = {} def get_mysql(): global mysql_data mysql_data = mysql.collect() def get_queues(): global queues_data queues_data = queues.collect() def main(argv=None, stdout=None): if stdout is None: stdout = sys.stdout if argv is None: argv = sys.argv parser = argparse.ArgumentParser(argv[0]) parser.add_argument('--loglevel', default=logging.INFO) parser.add_argument('--delta', help="Path to json file to read previous " "values from") parser.add_argument('--subunit', nargs='?', default=None, const='counters.json', help="Wrap the json output in a subunit stream. If an " "argument is passed used that as the filename, " "otherwise 'counters.json' will be used") parser.add_argument('--output', help="Write JSON here. Does not disable " "stdout.") parser.add_argument('--meta-prefix', help="Set a prefix in __meta__") args = parser.parse_args(argv[1:]) logging.basicConfig( format='%(asctime)-15s %(levelname)s %(threadName)s: %(message)s') log = logging.getLogger() log.setLevel(args.loglevel) getmysql = threading.Thread(name='mysql', target=get_mysql) getqueues = threading.Thread(name='queues', target=get_queues) getmysql.start() getqueues.start() log.debug('waiting for threads') getmysql.join() getqueues.join() log.debug('threads all returned') meta = {'unixtime': time.time()} if args.meta_prefix: meta['prefix'] = args.meta_prefix collected = { '__meta__': meta, 'mysql': mysql_data, 'queues': queues_data, } if args.delta: collected = _delta.delta_with_file(args.delta, collected) content = json.dumps(collected, indent=1, sort_keys=True).encode('utf-8') if args.subunit is not None: file_name = args.subunit or 'counters.json' stream = subunit_v2.StreamResultToBytes(stdout) stream.startTestRun() stream.status(file_name=file_name, file_bytes=content, mime_type='application/json') stream.stopTestRun() else: stdout.write(content) stdout.write(b"\n") if args.output: with open(args.output, 'wb') as output: output.write(content) output.write(b"\n") if __name__ == '__main__': main()
agent.py
from __future__ import annotations import asyncio import io import json import time from threading import Thread from typing import Dict, IO, Iterator, List, Optional, Tuple import aiohttp import requests from botovod.agents import Agent, Attachment, Chat, Keyboard, Location, Message from .types import (TelegramAttachment, TelegramCallback, TelegramChat, TelegramInlineKeyboard, TelegramKeyboard, TelegramMessage, TelegramUser) class Requester: BASE_URL = "https://api.telegram.org/bot{token}/{method}" FILE_URL = "https://api.telegram.org/file/bot{token}/{path}" def __init__(self, logger): self.logger = logger def do_method(self, token: str, method: str, payload: Optional[dict] = None, files: Optional[Dict[str, IO]] = None): url = self.BASE_URL.format(token=token, method=method) response = requests.post(url, data=payload, files=files) data = response.json() if data["ok"]: return data["result"] async def a_do_method(self, token: str, method: str, payload: Optional[dict] = None, files: Optional[Dict[str, IO]] = None): url = self.BASE_URL.format(token=token, method=method) if payload is not None and files is not None: payload.update(files) async with aiohttp.ClientSession() as session: async with session.post(url, data=payload) as response: data = await response.json() if data["ok"]: return data["result"] def get_file(self, token: str, path: str): url = self.FILE_URL.format(token=token, path=path) response = requests.get(url) response.raise_for_status() return response.content async def a_get_file(self, token: str, path: str): url = self.FILE_URL.format(token=token, path=path) async with aiohttp.ClientSession(raist_for_status=True) as session: async with session.get(url) as response: return await response.read() class TelegramAgent(Agent): WEBHOOK = "webhook" POLLING = "polling" def __init__(self, token: str, method: str = POLLING, delay: int = 5, webhook_url: Optional[str] = None, certificate_path: Optional[str] = None): super().__init__() self.requester = Requester(logger=self.logger) self.token = token self.method = method if method == self.POLLING: self.delay = delay self.thread = None elif webhook_url is None: raise ValueError("Need set webhook_url") else: self.webhook_url = webhook_url self.certificate_path = certificate_path self.last_update = 0 def start(self): self.set_webhook() self.running = True if self.method == self.POLLING: self.thread = Thread(target=self.polling) self.thread.start() self.logger.info("Started %s by %s.", self.name, self.method) self.thread.join() async def a_start(self): await self.a_set_webhook() self.running = True if self.method == self.POLLING: asyncio.get_running_loop().create_task(self.a_polling()) self.logger.info("Started %s by %s.", self.name, self.method) def stop(self): if self.method == self.POLLING: self.thread.join() self.thread = None self.running = False self.logger.info("Agent %s stopped.", self.name) async def a_stop(self): self.running = False self.logger.info("Agent %s stopped.", self.name) def parser(self, headers: Dict[str, str], body: str) -> List[Tuple[Chat, Message]]: update = json.loads(body) messages = [] if update["update_id"] <= self.last_update: return messages self.last_update = update["update_id"] if "message" in update: chat = TelegramChat.parse(agent=self, data=update["message"]["chat"]) message = TelegramMessage.parse(data=update["message"], agent=self) messages.append((chat, message)) if "callback_query" in update: data = update["callback_query"] if "message" in data: chat = TelegramChat.parse(agent=self, data=data["message"]["chat"]) else: chat = TelegramUser.parse(agent=self, data=data["from"]) message = TelegramCallback.parse(data=update["callback_query"]) messages.append((chat, message)) return messages async def a_parser(self, headers: Dict[str, str], body: str) -> List[Tuple[Chat, Agent]]: update = json.loads(body) messages = [] if update["update_id"] <= self.last_update: return messages self.last_update = update["update_id"] if "message" in update: chat = TelegramChat.parse(agent=self, data=update["message"]["chat"]) message = await TelegramMessage.a_parse(data=update["message"], agent=self) messages.append((chat, message)) if "callback_query" in update: data = update["callback_query"] if "message" in data: chat = TelegramChat.parse(agent=self, data=data["message"]["chat"]) else: chat = TelegramUser.parse(agent=self, data=data["from"]) message = TelegramCallback.parse(data=update["callback_query"]) messages.append((chat, message)) return messages def responser(self, headers: Dict[str, str], body: str) -> Tuple[int, Dict[str, str], str]: return 200, {}, "" async def a_responser(self, headers: Dict[str, str], body: str) -> Tuple[int, Dict[str, str], str]: return self.responser(headers=headers, body=body) def polling(self): while self.running: try: payload = {"offset": self.last_update + 1} if self.last_update > 0 else {} updates = self.requester.do_method(token=self.token, method="getUpdates", payload=payload) for update in updates: self.listen(headers={}, body=json.dumps(update), **self.botovod._items) except Exception: self.logger.exception("Got exception") finally: time.sleep(self.delay) async def a_polling(self): while self.running: try: payload = {"offset": self.last_update + 1} if self.last_update > 0 else {} updates = await self.requester.a_do_method(token=self.token, method="getUpdates", payload=payload) for update in updates: await self.a_listen(headers={}, body=json.dumps(update), **self.botovod._items) except Exception: self.logger.exception("Got exception") finally: await asyncio.sleep(self.delay) def set_webhook(self): payload = {} files = {} if self.method == self.WEBHOOK: payload["url"] = self.webhook_url if self.certificate_path is not None: files["certificate"] = open(self.certificate_path) try: self.requester.do_method(token=self.token, method="setWebhook", payload=payload, files=files) finally: if files: files["certificate"].close() self.logger.info("Set %s webhook.", self.name) async def a_set_webhook(self): payload = {} files = {} if self.method == self.WEBHOOK: payload["url"] = self.webhook_url if self.certificate_path is not None: files["certificate"] = open(self.certificate_path) try: await self.requester.a_do_method(token=self.token, method="setWebhook", payload=payload, files=files) finally: if files: files["certificate"].close() self.logger.info("Set %s webhook.", self.name) def get_webhook_info(self): return self.requester.do_method(token=self.token, method="getWebhookInfo") async def a_get_webhook_info(self): return await self.requester.a_do_method(token=self.token, method="getWebhookInfo") def get_me(self): data = self.requester.do_method(token=self.token, method="getMe") if data is not None: return TelegramUser.parse(agent=self, data=data) async def a_get_me(self): data = await self.requester.a_do_method(token=self.token, method="getMe") if data is not None: return TelegramUser.parse(agent=self, data=data) def send_message(self, chat: Chat, text: Optional[str] = None, images: Iterator[Attachment] = (), audios: Iterator[Attachment] = (), documents: Iterator[Attachment] = (), videos: Iterator[Attachment] = (), locations: Iterator[Location] = (), keyboard: Optional[Keyboard] = None, html: bool = False, markdown: bool = False, web_preview: bool = True, notification: bool = True, reply: Optional[Message] = None, remove_keyboard: bool = False): messages = [] if text is not None: payload = { "chat_id": chat.id, "text": text, "disable_web_page_preview": not web_preview, "disable_notification": not notification, } if keyboard is not None: if hasattr(keyboard, "render"): payload["reply_markup"] = keyboard.render() else: payload["reply_markup"] = TelegramKeyboard.default_render(keyboard) elif remove_keyboard: payload["reply_markup"] = '{"remove_keyboard": true}' if html: payload["parse_mode"] = "HTML" elif markdown: payload["parse_mode"] = "Markdown" if reply is not None: payload["reply_to_message_id"] = reply.raw["id"] data = self.requester.do_method(token=self.token, method="sendMessage", payload=payload) if data is not None: messages.append(TelegramMessage.parse(data)) for image in images: message = self.send_photo(chat, image, keyboard=keyboard, remove_keyboard=remove_keyboard) if message is not None: messages.append(message) for audio in audios: message = self.send_audio(chat, audio, keyboard=keyboard, remove_keyboard=remove_keyboard) if message is not None: messages.append(message) for document in documents: message = self.send_document(chat, document, keyboard=keyboard, remove_keyboard=remove_keyboard) if message is not None: messages.append(message) for video in videos: message = self.send_video(chat, video, keyboard=keyboard, remove_keyboard=remove_keyboard) if message is not None: messages.append(message) for location in locations: message = self.send_location(chat, location, keyboard=keyboard, remove_keyboard=remove_keyboard) if message is not None: messages.append(message) return messages async def a_send_message(self, chat: Chat, text: Optional[str] = None, images: Iterator[Attachment] = (), audios: Iterator[Attachment] = (), documents: Iterator[Attachment] = (), videos: Iterator[Attachment] = (), locations: Iterator[Location] = (), keyboard: Optional[Keyboard] = None, html: bool = False, markdown: bool = False, web_preview: bool = True, notification: bool = True, reply: Optional[Message] = None, remove_keyboard: bool = False): messages = [] if text is not None: payload = { "chat_id": chat.id, "text": text, "disable_web_page_preview": not web_preview, "disable_notification": not notification, } if keyboard is not None: if hasattr(keyboard, "render"): payload["reply_markup"] = keyboard.render() else: payload["reply_markup"] = TelegramKeyboard.default_render(keyboard) elif remove_keyboard: payload["reply_markup"] = '{"remove_keyboard": true}' if html: payload["parse_mode"] = "HTML" elif markdown: payload["parse_mode"] = "Markdown" if reply is not None: payload["reply_to_message_id"] = reply.raw["id"] data = await self.requester.a_do_method(token=self.token, method="sendMessage", payload=payload) if data is not None: messages.append(TelegramMessage.parse(data)) for image in images: message = await self.a_send_photo(chat, image, keyboard=keyboard, remove_keyboard=remove_keyboard) if message is not None: messages.append(message) for audio in audios: message = await self.a_send_audio(chat, audio, keyboard=keyboard, remove_keyboard=remove_keyboard) if message is not None: messages.append(message) for document in documents: message = await self.a_send_document(chat, document, keyboard=keyboard, remove_keyboard=remove_keyboard) if message is not None: messages.append(message) for video in videos: message = await self.a_send_video(chat, video, keyboard=keyboard, remove_keyboard=remove_keyboard) if message is not None: messages.append(message) for location in locations: message = await self.a_send_location(chat, location, keyboard=keyboard, remove_keyboard=remove_keyboard) if message is not None: messages.append(message) return messages def send_attachment(self, type: str, chat: Chat, attachment: Attachment, keyboard: Optional[Keyboard] = None, remove_keyboard: bool = False): attachment_data = TelegramAttachment.render(attachment) payload = {"chat_id": chat.id} files = {} if isinstance(attachment_data, io.IOBase): files = {type: attachment_data} else: payload[type] = attachment_data if keyboard is not None: if hasattr(keyboard, "render"): payload["reply_markup"] = keyboard.render() else: payload["reply_markup"] = TelegramKeyboard.default_render(keyboard) elif remove_keyboard: payload["reply_markup"] = '{"remove_keyboard": true}' data = self.requester.do_method(token=self.token, method="send"+type.capitalize(), payload=payload, files=files) if data is not None: return TelegramMessage.parse(data) async def a_send_attachment(self, type: str, chat: Chat, attachment: Attachment, keyboard: Optional[Keyboard] = None, remove_keyboard: bool = False): attachment_data = await TelegramAttachment.a_render(attachment) payload = {"chat_id": chat.id} files = {} if isinstance(attachment_data, io.IOBase): files = {type: attachment_data} else: payload[type] = attachment_data if keyboard is not None: if hasattr(keyboard, "render"): payload["reply_markup"] = keyboard.render() else: payload["reply_markup"] = TelegramKeyboard.default_render(keyboard) elif remove_keyboard: payload["reply_markup"] = '{"remove_keyboard": true}' data = await self.requester.a_do_method(token=self.token, method="send"+type.capitalize(), payload=payload, files=files) if data is not None: return await TelegramMessage.a_parse(data) def send_photo(self, chat: Chat, image: Attachment, keyboard: Optional[Keyboard] = None, remove_keyboard: bool = False): return self.send_attachment( type="photo", chat=chat, attachment=image, keyboard=keyboard, remove_keyboard=remove_keyboard, ) async def a_send_photo(self, chat: Chat, image: Attachment, keyboard: Optional[Keyboard] = None, remove_keyboard: bool = False): return await self.a_send_attachment( type="photo", chat=chat, attachment=image, keyboard=keyboard, remove_keyboard=remove_keyboard, ) def send_audio(self, chat: Chat, audio: Attachment, keyboard: Optional[Keyboard] = None, remove_keyboard: bool = False): return self.send_attachment( type="audio", chat=chat, attachment=audio, keyboard=keyboard, remove_keyboard=remove_keyboard, ) async def a_send_audio(self, chat: Chat, audio: Attachment, keyboard: Optional[Keyboard] = None, remove_keyboard: bool = False): return await self.a_send_attachment( type="audio", chat=chat, attachment=audio, keyboard=keyboard, remove_keyboard=remove_keyboard, ) def send_document(self, chat: Chat, document: Attachment, keyboard: Optional[Keyboard] = None, remove_keyboard: bool = False): return self.send_attachment( type="document", chat=chat, attachment=document, keyboard=keyboard, remove_keyboard=remove_keyboard, ) async def a_send_document(self, chat: Chat, document: Attachment, keyboard: Optional[Keyboard] = None, remove_keyboard: bool = False): return await self.a_send_attachment( type="document", chat=chat, attachment=document, keyboard=keyboard, remove_keyboard=remove_keyboard, ) def send_video(self, chat: Chat, video: Attachment, keyboard: Optional[Keyboard] = None, remove_keyboard: bool = False): return self.send_attachment( type="video", chat=chat, attachment=video, keyboard=keyboard, remove_keyboard=remove_keyboard, ) async def a_send_video(self, chat: Chat, video: Attachment, keyboard: Optional[Keyboard] = None, remove_keyboard: bool = False): return await self.a_send_attachment( type="video", chat=chat, attachment=video, keyboard=keyboard, remove_keyboard=remove_keyboard, ) def send_location(self, chat: Chat, location: Location, keyboard: Optional[Keyboard] = None, remove_keyboard: bool = True): payload = { "chat_id": chat.id, "longitude": location.longitude, "latitude": location.latitude, } if keyboard is not None: if hasattr(keyboard, "render"): payload["reply_markup"] = keyboard.render() else: payload["reply_markup"] = TelegramKeyboard.default_render(keyboard) elif remove_keyboard: payload["reply_markup"] = '{"remove_keyboard": true}' data = self.requester.do_method(token=self.token, method="sendLocation", payload=payload) if data is not None: return TelegramMessage.parse(data) async def a_send_location(self, chat: Chat, location: Location, keyboard: Optional[Keyboard] = None, remove_keyboard: bool = False): payload = { "chat_id": chat.id, "longitude": location.longitude, "latitude": location.latitude, } if keyboard is not None: if hasattr(keyboard, "render"): payload["reply_markup"] = keyboard.render() else: payload["reply_markup"] = TelegramKeyboard.default_render(keyboard) elif remove_keyboard: payload["reply_markup"] = '{"remove_keyboard": true}' data = await self.requester.a_do_method(token=self.token, method="sendLocation", payload=payload) if data is not None: return await TelegramMessage.a_parse(data) def get_file(self, file_id: int): data = self.requester.do_method( token=self.token, method="getFile", payload={"file_id": file_id}, ) return TelegramAttachment.parse(data, agent=self) async def a_get_file(self, file_id: int): data = await self.requester.a_do_method( token=self.token, method="getFile", payload={"file_id": file_id}, ) return await TelegramAttachment.a_parse(data, agent=self) def edit_message_text(self, chat: Chat, message: TelegramMessage, text: str, keyboard: Optional[TelegramInlineKeyboard] = None, html: bool = False, markdown: bool = False, web_preview: bool = True): payload = { "chat_id": chat.id, "message_id": message.raw["id"], "text": text, "disable_web_page_preview": not web_preview, } if keyboard is not None: payload["reply_markup"] = keyboard.render() if html: payload["parse_mode"] = "HTML" elif markdown: payload["parse_mode"] = "Markdown" self.requester.do_method(token=self.token, method="editMessageText", payload=payload) async def a_edit_message_text(self, chat: Chat, message: TelegramMessage, text: str, keyboard: Optional[TelegramInlineKeyboard] = None, html: bool = False, markdown: bool = False, web_preview: bool = True): payload = { "chat_id": chat.id, "message_id": message.raw["id"], "text": text, "disable_web_page_preview": not web_preview, } if keyboard is not None: payload["reply_markup"] = keyboard.render() if html: payload["parse_mode"] = "HTML" elif markdown: payload["parse_mode"] = "Markdown" await self.requester.a_do_method( token=self.token, method="editMessageText", payload=payload, ) def edit_message_caption(self, chat: Chat, message: TelegramMessage, caption: str, keyboard: Optional[TelegramInlineKeyboard] = None, html: bool = False, markdown: bool = False): payload = {"chat_id": chat.id, "message_id": message.raw["id"], "caption": caption} if keyboard is not None: payload["reply_markup"] = keyboard.render() if html: payload["parse_mode"] = "HTML" elif markdown: payload["parse_mode"] = "Markdown" self.requester.do_method(token=self.token, method="editMessageCaption", payload=payload) async def a_edit_message_caption(self, chat: Chat, message: TelegramMessage, caption: str, keyboard: Optional[TelegramInlineKeyboard] = None, html: bool = False, markdown: bool = False): payload = {"chat_id": chat.id, "message_id": message.raw["id"], "caption": caption} if keyboard is not None: payload["reply_markup"] = keyboard.render() if html: payload["parse_mode"] = "HTML" elif markdown: payload["parse_mode"] = "Markdown" await self.requester.a_do_method(token=self.token, method="editMessageCaption", payload=payload) def edit_message_media(self, chat: Chat, message: TelegramMessage, media: Attachment, type: str, thumb: Optional[Attachment] = None, caption: Optional[str] = None, markdown: bool = False, html: bool = False, keyboard: Optional[TelegramInlineKeyboard] = None, **raw): attachment_data = TelegramAttachment.render(media) thumb_data = TelegramAttachment(thumb) if thumb else None payload = {"chat_id": chat.id, "message_id": message.id} media_payload = {"type": type} files = {} if isinstance(attachment_data, io.IOBase): files["media"] = attachment_data else: media_payload["media"] = attachment_data if isinstance(thumb_data, io.IOBase): files["thumb"] = thumb_data else: media_payload["thumb"] = thumb_data if caption is not None: media_payload["caption"] = caption if markdown: media_payload["parse_mode"] = "Markdown" elif html: media_payload["parse_mode"] = "HTML" media_payload.update(raw) if keyboard is not None: payload["reply_markup"] = keyboard.render() payload["media"] = json.dumps(media_payload) self.requester.do_method(token=self.token, method="editMessageMedia", payload=payload, files=files) async def a_edit_message_media(self, chat: Chat, message: TelegramMessage, media: Attachment, type: str, thumb: Optional[Attachment] = None, caption: Optional[str] = None, markdown: bool = False, html: bool = False, keyboard: Optional[TelegramInlineKeyboard] = None, **raw): attachment_data = await TelegramAttachment.a_render(media) thumb_data = await TelegramAttachment.a_render(thumb) if thumb else None payload = {"chat_id": chat.id, "message_id": message.id} media_payload = {"type": type, "media": attachment_data} files = {} if isinstance(attachment_data, io.IOBase): files["media"] = attachment_data else: media_payload["media"] = attachment_data if isinstance(thumb_data, io.IOBase): files["thumb"] = thumb_data elif thumb_data: media_payload["thumb"] = thumb_data if caption: media_payload["caption"] = caption if markdown: media_payload["parse_mode"] = "Markdown" elif html: media_payload["parse_mode"] = "HTML" media_payload.update(raw) if keyboard: payload["reply_markup"] = keyboard.render() payload["media"] = json.dumps(media_payload) await self.requester.a_do_method(token=self.token, method="edtMessageMedia", payload=payload, files=files) def edit_message_image(self, chat: Chat, message: TelegramMessage, image: Attachment, caption: Optional[str] = None, markdown: bool = False, html: bool = False, keyboard: Optional[TelegramInlineKeyboard] = None): return self.edit_message_media(chat=chat, message=message, media=image, type="photo", caption=caption, markdown=markdown, html=html, keyboard=keyboard) async def a_edit_message_image(self, chat: Chat, message: TelegramMessage, image: Attachment, caption: Optional[str] = None, markdown: bool = False, html: bool = False, keyboard: Optional[TelegramInlineKeyboard] = None): return await self.a_edit_message_media(chat=chat, message=message, media=image, type="photo", caption=caption, markdown=markdown, html=html, keyboard=keyboard) def edit_message_video(self, chat: Chat, message: TelegramMessage, video: Attachment, thumb: Optional[Attachment] = None, caption: Optional[str] = None, markdown: bool = False, html: bool = False, width: Optional[int] = None, height: Optional[int] = None, duration: Optional[int] = None, supports_streaming: Optional[bool] = None, keyboard: Optional[TelegramInlineKeyboard] = None): data = {} if width: data["width"] = width if height: data["height"] = height if duration: data["duration"] = duration if supports_streaming: data["supports_streaming"] = supports_streaming return self.edit_message_media(chat=chat, message=message, media=video, type="video", thumb=thumb, caption=caption, markdown=markdown, html=html, keyboard=keyboard, **data) async def a_edit_message_video(self, chat: Chat, message: TelegramMessage, video: Attachment, thumb: Optional[Attachment] = None, caption: Optional[str] = None, markdown: bool = False, html: bool = False, width: Optional[int] = None, height: Optional[int] = None, duration: Optional[int] = None, supports_streaming: Optional[bool] = None, keyboard: Optional[TelegramInlineKeyboard] = None): data = {} if width: data["width"] = width if height: data["height"] = height if duration: data["duration"] = duration if supports_streaming: data["supports_streaming"] = supports_streaming return await self.a_edit_message_media(chat=chat, message=message, media=video, type="video", thumb=thumb, caption=caption, markdown=markdown, html=html, keyboard=keyboard, **data) def edit_message_animation(self, chat: Chat, message: TelegramMessage, animation: Attachment, thumb: Optional[Attachment] = None, caption: Optional[str] = None, markdown: bool = False, html: bool = False, width: Optional[int] = None, height: Optional[int] = None, duration: Optional[int] = None, keyboard: Optional[TelegramInlineKeyboard] = None): data = {} if width is not None: data["width"] = width if height is not None: data["height"] = height if duration is not None: data["duration"] = duration return self.edit_message_media(chat=chat, message=message, media=animation, type="animation", thumb=thumb, caption=caption, markdown=markdown, html=html, keyboard=keyboard, **data) async def a_edit_message_animation(self, chat: Chat, message: TelegramMessage, animation: Attachment, thumb: Optional[Attachment] = None, caption: Optional[str] = None, markdown: bool = False, html: bool = False, width: Optional[int] = None, height: Optional[int] = None, duration: Optional[int] = None, keyboard: Optional[TelegramInlineKeyboard] = None): data = {} if width is not None: data["width"] = width if height is not None: data["height"] = height if duration is not None: data["duration"] = duration return await self.a_edit_message_media(chat=chat, message=message, media=animation, type="animation", thumb=thumb, caption=caption, markdown=markdown, html=html, keyboard=keyboard, **data) def edit_message_audio(self, chat: Chat, message: TelegramMessage, audio: Attachment, thumb: Optional[Attachment] = None, caption: Optional[str] = None, markdown: bool = False, html: bool = False, duration: Optional[int] = None, performer: Optional[str] = None, title: Optional[str] = None, keyboard: Optional[TelegramInlineKeyboard] = None): data = {} if duration is not None: data["duration"] = duration if performer is not None: data["performer"] = performer if title is not None: data["title"] = title return self.edit_message_media(chat=chat, message=message, media=audio, type="audio", thumb=thumb, caption=caption, markdown=markdown, html=html, keyboard=keyboard, **data) async def a_edit_message_audio(self, chat: Chat, message: TelegramMessage, audio: Attachment, thumb: Optional[Attachment] = None, caption: Optional[str] = None, markdown: bool = False, html: bool = False, duration: Optional[int] = None, performer: Optional[str] = None, title: Optional[str] = None, keyboard: Optional[TelegramInlineKeyboard] = None): data = {} if duration is not None: data["duration"] = duration if performer is not None: data["performer"] = performer if title is not None: data["title"] = title return await self.a_edit_message_media(chat=chat, message=message, media=audio, type="audio", thumb=thumb, caption=caption, markdown=markdown, html=html, keyboard=keyboard, **data) def edit_message_document(self, chat: Chat, message: TelegramMessage, document: Attachment, thumb: Optional[Attachment] = None, caption: Optional[str] = None, markdown: bool = False, html: bool = False, keyboard: Optional[TelegramInlineKeyboard] = None): return self.edit_message_media(chat=chat, message=message, media=document, type="document", thumb=thumb, caption=caption, markdown=markdown, html=html, keyboard=keyboard) async def a_edit_message_document(self, chat: Chat, message: TelegramMessage, document: Attachment, thumb: Optional[Attachment] = None, caption: Optional[str] = None, markdown: bool = False, html: bool = False, keyboard: Optional[TelegramInlineKeyboard] = None): return await self.a_edit_message_media(chat=chat, message=message, media=document, type="document", thumb=thumb, caption=caption, markdown=markdown, html=html, keyboard=keyboard) def edit_message_keyboard(self, chat: Chat, message: TelegramMessage, keyboard: TelegramInlineKeyboard): payload = { "chat_id": chat.id, "message_id": message.raw["id"], "reply_markup": keyboard.render(), } self.requester.do_method(token=self.token, method="editMessageReplyMarkup", payload=payload) async def a_edit_message_keyboard(self, chat: Chat, message: TelegramMessage, keyboard: TelegramInlineKeyboard): payload = { "chat_id": chat.id, "message_id": message.raw["id"], "reply_markup": keyboard.render(), } await self.requester.a_do_method(token=self.token, method="editMessageReplyMarkup", payload=payload) def delete_message(self, chat: Chat, message: TelegramMessage): payload = {"chat_id": chat.id, "message_id": message.raw["id"]} self.requester.do_method(token=self.token, method="deleteMessage", payload=payload) async def a_delete_message(self, chat: Chat, message: TelegramMessage): payload = {"chat_id": chat.id, "message_id": message.raw["id"]} await self.requester.a_do_method(token=self.token, method="deleteMessage", payload=payload) def send_chat_action(self, chat: Chat, action: str): payload = {"chat_id": chat.id, "action": action} self.requester.do_method(token=self.token, method="sendChatAction", payload=payload) async def a_send_chat_action(self, chat: Chat, action: str): payload = {"chat_id": chat.id, "action": action} await self.requester.a_do_method(token=self.token, method="sendChatAction", payload=payload) def send_sticker(self, chat: Chat, sticker: Attachment, keyboard: Optional[Keyboard] = None, remove_keyboard: bool = False): return self.send_attachment( type="sticker", chat=chat, attachment=sticker, keyboard=keyboard, remove_keyboard=remove_keyboard, ) async def a_send_sticker(self, chat: Chat, sticker: Attachment, keyboard: Optional[Keyboard] = None, remove_keyboard: bool = False): return await self.a_send_attachment( type="sticker", chat=chat, attachment=sticker, keyboard=keyboard, remove_keyboard=remove_keyboard, ) """ def get_me(self): pass def forward_message(self, to_chat, from_chat, message): pass def send_voice(self, chat, audio, **args): url = self.url % (self.token, "sendVoice") data = {"chat_id": chat.id} data.extend(**args) if hasattr(audio, "id") and not audio.id is None: data["voice"] = audio.id response = requests.post(url, data=data) elif not audio.url is None: data["voice"] = audio.url response = requests.post(url, data=data) elif not audio.file_path is None: with open(audio.file_path) as f: response = requests.post(url, data=data, files={"voice": f}) def send_venue(self, chat, location, title, address, **args): url = self.url % (self.token, "sendLocation") data = {"chat_id": chat.id, "longitude": location.longitude, "latitude": location.latitude, "title": title, "address": address} data.extend(**args) response = requests.post(url, data=data) def send_contact(self, chat, attachment): pass def send_chat_action(self, chat, action): pass def get_user_profile_photo(self, user_id): pass def kick_chat_member(self, chat, user_id): pass def unban_chat_member(self, chat, user_id): pass def answer_callback_query(self, callback_query): pass def edit_message_text(self, message, text): pass def edit_message_caption(self, message, text): pass def edit_message_reply_markup(self): pass """
accumulators.py
# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """ >>> from pyspark.context import SparkContext >>> sc = SparkContext('local', 'test') >>> a = sc.accumulator(1) >>> a.value 1 >>> a.value = 2 >>> a.value 2 >>> a += 5 >>> a.value 7 >>> sc.accumulator(1.0).value 1.0 >>> sc.accumulator(1j).value 1j >>> rdd = sc.parallelize([1,2,3]) >>> def f(x): ... global a ... a += x >>> rdd.foreach(f) >>> a.value 13 >>> b = sc.accumulator(0) >>> def g(x): ... b.add(x) >>> rdd.foreach(g) >>> b.value 6 >>> from pyspark.accumulators import AccumulatorParam >>> class VectorAccumulatorParam(AccumulatorParam): ... def zero(self, value): ... return [0.0] * len(value) ... def addInPlace(self, val1, val2): ... for i in range(len(val1)): ... val1[i] += val2[i] ... return val1 >>> va = sc.accumulator([1.0, 2.0, 3.0], VectorAccumulatorParam()) >>> va.value [1.0, 2.0, 3.0] >>> def g(x): ... global va ... va += [x] * 3 >>> rdd.foreach(g) >>> va.value [7.0, 8.0, 9.0] >>> rdd.map(lambda x: a.value).collect() # doctest: +IGNORE_EXCEPTION_DETAIL Traceback (most recent call last): ... Py4JJavaError:... >>> def h(x): ... global a ... a.value = 7 >>> rdd.foreach(h) # doctest: +IGNORE_EXCEPTION_DETAIL Traceback (most recent call last): ... Py4JJavaError:... >>> sc.accumulator([1.0, 2.0, 3.0]) # doctest: +IGNORE_EXCEPTION_DETAIL Traceback (most recent call last): ... TypeError:... """ import sys import select import struct if sys.version < '3': import SocketServer else: import socketserver as SocketServer import threading from pyspark.serializers import read_int, PickleSerializer __all__ = ['Accumulator', 'AccumulatorParam'] pickleSer = PickleSerializer() # Holds accumulators registered on the current machine, keyed by ID. This is then used to send # the local accumulator updates back to the driver program at the end of a task. _accumulatorRegistry = {} def _deserialize_accumulator(aid, zero_value, accum_param): from pyspark.accumulators import _accumulatorRegistry # If this certain accumulator was deserialized, don't overwrite it. if aid in _accumulatorRegistry: return _accumulatorRegistry[aid] else: accum = Accumulator(aid, zero_value, accum_param) accum._deserialized = True _accumulatorRegistry[aid] = accum return accum class Accumulator(object): """ A shared variable that can be accumulated, i.e., has a commutative and associative "add" operation. Worker tasks on a Spark cluster can add values to an Accumulator with the C{+=} operator, but only the driver program is allowed to access its value, using C{value}. Updates from the workers get propagated automatically to the driver program. While C{SparkContext} supports accumulators for primitive data types like C{int} and C{float}, users can also define accumulators for custom types by providing a custom L{AccumulatorParam} object. Refer to the doctest of this module for an example. """ def __init__(self, aid, value, accum_param): """Create a new Accumulator with a given initial value and AccumulatorParam object""" from pyspark.accumulators import _accumulatorRegistry self.aid = aid self.accum_param = accum_param self._value = value self._deserialized = False _accumulatorRegistry[aid] = self def __reduce__(self): """Custom serialization; saves the zero value from our AccumulatorParam""" param = self.accum_param return (_deserialize_accumulator, (self.aid, param.zero(self._value), param)) @property def value(self): """Get the accumulator's value; only usable in driver program""" if self._deserialized: raise Exception("Accumulator.value cannot be accessed inside tasks") return self._value @value.setter def value(self, value): """Sets the accumulator's value; only usable in driver program""" if self._deserialized: raise Exception("Accumulator.value cannot be accessed inside tasks") self._value = value def add(self, term): """Adds a term to this accumulator's value""" self._value = self.accum_param.addInPlace(self._value, term) def __iadd__(self, term): """The += operator; adds a term to this accumulator's value""" self.add(term) return self def __str__(self): return str(self._value) def __repr__(self): return "Accumulator<id=%i, value=%s>" % (self.aid, self._value) class AccumulatorParam(object): """ Helper object that defines how to accumulate values of a given type. """ def zero(self, value): """ Provide a "zero value" for the type, compatible in dimensions with the provided C{value} (e.g., a zero vector) """ raise NotImplementedError def addInPlace(self, value1, value2): """ Add two values of the accumulator's data type, returning a new value; for efficiency, can also update C{value1} in place and return it. """ raise NotImplementedError class AddingAccumulatorParam(AccumulatorParam): """ An AccumulatorParam that uses the + operators to add values. Designed for simple types such as integers, floats, and lists. Requires the zero value for the underlying type as a parameter. """ def __init__(self, zero_value): self.zero_value = zero_value def zero(self, value): return self.zero_value def addInPlace(self, value1, value2): value1 += value2 return value1 # Singleton accumulator params for some standard types INT_ACCUMULATOR_PARAM = AddingAccumulatorParam(0) FLOAT_ACCUMULATOR_PARAM = AddingAccumulatorParam(0.0) COMPLEX_ACCUMULATOR_PARAM = AddingAccumulatorParam(0.0j) class _UpdateRequestHandler(SocketServer.StreamRequestHandler): """ This handler will keep polling updates from the same socket until the server is shutdown. """ def handle(self): from pyspark.accumulators import _accumulatorRegistry auth_token = self.server.auth_token def poll(func): while not self.server.server_shutdown: # Poll every 1 second for new data -- don't block in case of shutdown. r, _, _ = select.select([self.rfile], [], [], 1) if self.rfile in r: if func(): break def accum_updates(): num_updates = read_int(self.rfile) for _ in range(num_updates): (aid, update) = pickleSer._read_with_length(self.rfile) _accumulatorRegistry[aid] += update # Write a byte in acknowledgement self.wfile.write(struct.pack("!b", 1)) return False def authenticate_and_accum_updates(): received_token = self.rfile.read(len(auth_token)) if isinstance(received_token, bytes): received_token = received_token.decode("utf-8") if (received_token == auth_token): accum_updates() # we've authenticated, we can break out of the first loop now return True else: raise Exception( "The value of the provided token to the AccumulatorServer is not correct.") if auth_token is not None: # first we keep polling till we've received the authentication token poll(authenticate_and_accum_updates) # now we've authenticated if needed, don't need to check for the token anymore poll(accum_updates) class AccumulatorServer(SocketServer.TCPServer): def __init__(self, server_address, RequestHandlerClass, auth_token): SocketServer.TCPServer.__init__(self, server_address, RequestHandlerClass) self.auth_token = auth_token """ A simple TCP server that intercepts shutdown() in order to interrupt our continuous polling on the handler. """ server_shutdown = False def shutdown(self): self.server_shutdown = True SocketServer.TCPServer.shutdown(self) self.server_close() def _start_update_server(auth_token): """Start a TCP server to receive accumulator updates in a daemon thread, and returns it""" server = AccumulatorServer(("localhost", 0), _UpdateRequestHandler, auth_token) thread = threading.Thread(target=server.serve_forever) thread.daemon = True thread.start() return server if __name__ == "__main__": import doctest (failure_count, test_count) = doctest.testmod() if failure_count: sys.exit(-1)
simpleimp.py
#*****************************************************************************# #* Copyright (c) 2004-2008, SRI International. *# #* All rights reserved. *# #* *# #* Redistribution and use in source and binary forms, with or without *# #* modification, are permitted provided that the following conditions are *# #* met: *# #* * Redistributions of source code must retain the above copyright *# #* notice, this list of conditions and the following disclaimer. *# #* * Redistributions in binary form must reproduce the above copyright *# #* notice, this list of conditions and the following disclaimer in the *# #* documentation and/or other materials provided with the distribution. *# #* * Neither the name of SRI International nor the names of its *# #* contributors may be used to endorse or promote products derived from *# #* this software without specific prior written permission. *# #* *# #* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS *# #* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT *# #* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR *# #* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT *# #* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, *# #* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT *# #* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, *# #* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY *# #* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT *# #* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE *# #* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. *# #*****************************************************************************# #* "$Revision:: 201 $" *# #* "$HeadURL:: https://svn.ai.sri.com/projects/spark/trunk/spark/src/spar#$" *# #*****************************************************************************# from __future__ import generators import inspect import operator from spark.internal.version import * from spark.internal.exception import LowError, Failure, ExceptionFailure, LocatedError, MessageFailure, CapturedError from spark.internal.common import NEWPM, DEBUG from spark.internal.parse.basicvalues import ConstructibleValue, installConstructor import threading from spark.pylang.implementation import Imp, FunImpInt, PredImpInt, PersistablePredImpInt, ActImpInt from spark.internal.repr.taskexpr import SUCCESS, TFrame from spark.internal.common import NO_SOLUTIONS, ONE_SOLUTION, SOLVED, NOT_SOLVED from spark.internal.repr.procedure import ProcedureInt from spark.internal.parse.usagefuns import * debug = DEBUG(__name__)#.on() #from spark.mode import RequiredMode, ALL_EVALUABLE_CALL_MODE #from spark.set import IBITS, bitmap_indices def make_callable(x): if callable(x): return x elif inspect.isclass(x): # Java classes mistakenly fail callable return x else: raise LowError("Cannot coerce %r to something that is callable", x) class _Basic(ConstructibleValue): __slots__ = ( "_function", "_modeString", "_sym", "_both_indices", "_input_indices", "_rest_mode", "_nrequired", "_output_indices", "_output_range", "_input_agent_p", #"_optargs_mode", ) def __init__(self, mode, fun): ConstructibleValue.__init__(self) # Mode string is of the form [A]?[+?-]+[*]? #print "New Basic:", mode, fun self._modeString = mode if mode.startswith("A"): # fun takes the agent as an argument self._input_agent_p = True io = mode[1:] else: self._input_agent_p = False io = mode self._input_indices = [] self._both_indices = [] self._output_indices = [] if io.endswith("*"): if not (io[-2:] in ("+*","-*","?*")): raise AssertionError, \ "Repeated mode must be one of +, ?, or -: %s" % mode self._rest_mode = io[-2] io = io[:-2] elif len(io) > 1 and io[-2] == "*": # allow *+ stlye rest mode declaration if not (io[-2:] in ("*+", "*-", "*?")): raise AssertionError, \ "Repeated mode must be one of +, ?, or -: %s" % mode self._rest_mode = io[-1] io = io[:-2] else: self._rest_mode = None self._nrequired = len(io) for i in range(len(io)): char = io[i] if char == "+": # This is an input parameter self._input_indices.append(i) elif char == "-": # This is an output parameter self._output_indices.append(i) elif char == "?": # Acts as both an input and an output self._input_indices.append(i) self._output_indices.append(i) self._both_indices.append(i) else: raise LowError("The mode string %r is not valid", mode) self._function = make_callable(fun) self._output_range = range(len(self._output_indices)) self._sym = None def valid_mode_p(self, agent, bindings, zexpr): # # DNM - THIS IS A DREADFUL HACK NEEDED UNTIL WE DELAY DECL EVALUATION # from spark.internal.repr.varbindings import NULL_BINDINGS # if bindings == NULL_BINDINGS: # return True for i in self._input_indices: if not (i in self._both_indices or termEvalP(agent, bindings, zexpr[i])): return False if self._rest_mode == "-": i = self._nrequired limit = len(zexpr) while i < limit: if not termEvalP(agent, bindings, zexpr[i]): return False i = i + 1 return True def generate_args(self, agent, bindings, zexpr): "Returns a list of the input argument values" # should check arity as well if not self.valid_mode_p(agent, bindings, zexpr): raise LowError("Required argument is not bound") args = [termEvalOpt(agent, bindings, zexpr[i]) \ for i in self._input_indices] if self._rest_mode in ("+", "?"): # accumulate rest arguments i = self._nrequired limit = len(zexpr) while i < limit: args.append(termEvalOpt(agent, bindings, zexpr[i])) i = i + 1 if self._input_agent_p: args.insert(0, agent) # prepend agent return args def bind_result(self, agent, bindings, zexpr, result): if result is None: # None does not matching anything return False output_indices = self._output_indices has_rest_output = self._rest_mode in ("?", "-") l = len(output_indices) if l > 1 or has_rest_output: # Treat result as a tuple of values if not (operator.isSequenceType(result)): raise AssertionError, \ "Python function should return a sequence but returned %r instead"%(result,) minOut = len(self._output_range) actualOut = len(result) if has_rest_output: if actualOut < minOut: raise LocatedError(zexpr, "Expecting python function to return at least %s elements, not %r"%(minOut, result)) else: if actualOut != minOut: raise LocatedError(zexpr, "Expecting python function to return exactly %s elements, not %r"%(minOut, result)) for i in self._output_range: if not termMatch(agent, bindings, zexpr[output_indices[i]], result[i]): return False if has_rest_output: limit = len(zexpr) i = self._nrequired offset = i - len(self._output_indices) while i < limit: if termEvalP(agent, bindings, zexpr[i]): pass # No need to match the argument elif not termMatch(agent, bindings, zexpr[i], result[i-offset]): return False i = i+1 return True elif l == 1: # Exactly one output parameter # Treat result as a value return termMatch(agent, bindings, zexpr[output_indices[0]], result) elif result: # l == 0, no output parameters return True else: return False def setDecl(self, decl): symbol = decl and decl.asSymbol() if not (self._sym is None or self._sym == symbol): raise AssertionError, \ "Attempting to rename a named object %r"%self self._sym = symbol def __call__(self, decl): self.setDecl(decl) return self def constructor_args(self): return [self._modeString, self._function] cvcategory = "B" def cvname(self): if self._sym: return self._sym.id else: return "" constructor_mode = "VI" def function_name(self): f = self._function from spark.lang.builtin import PythonProxyRaw, Method if isinstance(f, PythonProxyRaw): return "function "+f._PythonProxyModName + "." + f._PythonProxyVarName elif isinstance(f, Method): return "method ."+f._methodname else: return "function ?" ################################################################ # Functions class BasicFun(_Basic, FunImpInt): __slots__ = () def __init__(self, mode, fun): _Basic.__init__(self, mode, fun) if self._output_indices: #len(self._output_indices) > 0: raise LowError("Mode string %r is not valid for a function", mode) def call(self, agent, bindings, zexpr): args = self.generate_args(agent, bindings, zexpr) return self._function(*args) def match_inverse(self, agent, bindings, zexpr, obj): raise LowError("Trying to match non-invertible function") installConstructor(BasicFun) class ReversibleFun(BasicFun): __slots__ = ( "_inverse", ) def __init__(self, mode, fun, inverse): BasicFun.__init__(self, mode, fun) self._inverse = make_callable(inverse) def match_inverse(self, agent, bindings, zexpr, obj): inverse = self._inverse # If the function requires the agent, so will the inverse if self._input_agent_p: result = self._inverse(agent, obj) else: result = self._inverse(obj) # A None result indicates no match if result == None: return False # Identify number of inputs parameters to function num_fixed_input_args = len(self._input_indices) if self._rest_mode is not None \ or num_fixed_input_args > 1: # may be multiple # Result should be a tuple length = len(result) if length != len(zexpr): return False i = 0 while i < length: if not termMatch(agent, bindings, zexpr[i], result[i]): return False i += 1 return True elif num_fixed_input_args == 1: # exactly one # Result should be a value return termMatch(agent, bindings, zexpr[0], result) else: # exactly 0 # result should be a Boolean return result def constructor_args(self): return BasicFun.constructor_args(self) + [self._inverse] constructor_mode = "VII" installConstructor(ReversibleFun) ################################################################ # Predicates class BasicPred(_Basic, PredImpInt): """Implements a predicate via a function that returns None or a solution""" __slots__ = () def solution(self, agent, bindings, zexpr): result = self._function(*self.generate_args(agent, bindings, zexpr)) debug("BasicPred function returned %r", result) if result is not None: if self.bind_result(agent, bindings, zexpr, result): debug("BasicPred solution %r", result) return SOLVED return NOT_SOLVED # def find_solutions(self, agent, bindings, zexpr): # result = self._function(*self.generate_args(agent, bindings, zexpr)) # debug("BasicPred function returned %r", result) # if result is not None: # if self.bind_result(agent, bindings, zexpr, result): # debug("BasicPred solution %r", result) # bindings.bfound_solution(agent, zexpr) installConstructor(BasicPred) class BasicPredSequence(_Basic, PredImpInt): """Implements a predicate via a function that returns a sequence of solutions""" __slots__ = () def solution(self, agent, bindings, zexpr): result = self._function(*self.generate_args(agent, bindings, zexpr)) debug("BasicPredSequence function returned %r", result) # Should check for None for res in result: if self.bind_result(agent, bindings, zexpr, res): debug("BasicPredSequence solution %r", res) return SOLVED return NOT_SOLVED def solutions(self, agent, bindings, zexpr): result = self._function(*self.generate_args(agent, bindings, zexpr)) debug("BasicPredSequence function returned %r", result) # Should check for None for res in result: if self.bind_result(agent, bindings, zexpr, res): debug("BasicPredSequence solution %r", res) yield SOLVED # def find_solutions(self, agent, bindings, zexpr): # result = self._function(*self.generate_args(agent, bindings, zexpr)) # debug("BasicPredSequence function returned %r", result) # # Should check for None # for res in result: # if self.bind_result(agent, bindings, zexpr, res): # debug("BasicPredSequence solution %r", res) # bindings.bfound_solution(agent, zexpr) installConstructor(BasicPredSequence) ################################################################ class MultiModalPred(PredImpInt): """A predicate implementation that is based on other implementations""" __slots__ = ( "_imps", "_sym", ) def __init__(self, *imps): self._imps = imps self._sym = None def valid_mode_p(self, agent, bindings, zexpr): for imp in self._imps: if imp.valid_mode_p(agent, bindings, zexpr): return True return False def solution(self, agent, bindings, zexpr): for imp in self._imps: if imp.valid_mode_p(agent, bindings, zexpr): return imp.solution(agent, bindings, zexpr) raise LowError("Calling predicate with invalid mode") def solutions(self, agent, bindings, zexpr): for imp in self._imps: if imp.valid_mode_p(agent, bindings, zexpr): return imp.solutions(agent, bindings, zexpr) raise LowError("Calling predicate with invalid mode") # def find_solutions(self, agent, bindings, zexpr): # for imp in self._imps: # if imp.valid_mode_p(agent, bindings, zexpr): # imp.find_solutions(agent, bindings, zexpr) # return # raise LowError("Calling predicate with invalid mode") def setDecl(self, decl): symbol = decl and decl.asSymbol() if not (self._sym is None or self._sym == symbol): raise AssertionError, \ "Attempting to rename a named object %r"%self self._sym = symbol for imp in self._imps: imp(decl) def __call__(self, decl): self.setDecl(decl) return self ################################################################ # Actions #@-timing# from spark.internal.timer import TIMER #@-# T_tfcont = TIMER.newRecord("tfcont") #@-# T_genargs = TIMER.newRecord("genargs") #@-# T_callfn = TIMER.newRecord("callfn") #@-# T_processresult = TIMER.newRecord("processresult") class BasicImpTFrame(TFrame): __slots__ = ( "_basicact", "_bindings", "_zexpr", ) def cvname(self): return self._basicact.cvname() def __init__(self, name, event, basicact, bindings, zexpr): TFrame.__init__(self, name, event) self._basicact = basicact self._bindings = bindings self._zexpr = zexpr def constructor_args(self): return TFrame.constructor_args(self) + [self._basicact, self._bindings, self._zexpr] constructor_mode = "VIIIV" def tfcont(self, agent): #@-timing# T_tfcont.start() try: #debug("Creating args for %r", self) #@-timing# T_genargs.start() args = self._basicact.generate_args(agent, self._bindings, self._zexpr) #@-timing# T_genargs.stop() #debug("Calling %r on %r", self._basicact._function, args) #@-timing# T_callfn.start() val = self._basicact._function(*args) #@-timing# T_callfn.stop() except LocatedError, e: errid = NEWPM.displayError() #@-timing# T_callfn.stop() #@-timing# T_processresult.start() self.process_exception(agent, e, errid) #@-timing# T_processresult.stop() #@-timing# T_tfcont.stop() return except AnyException, e: errid = NEWPM.displayError() #@-timing# T_callfn.stop() #@-timing# T_processresult.start() # TODO: work out if this is the right way to handle this case new_err = CapturedError(self._zexpr, errid, "executing") self.process_exception(agent, new_err, errid) #@-timing# T_processresult.stop() #@-timing# T_tfcont.stop() return #@-timing# T_processresult.start() self.process_result(agent, val) #@-timing# T_processresult.stop() #@-timing# T_tfcont.stop() def process_exception(self, agent, e, errid): result = e if not isinstance(e, Failure): result = ExceptionFailure(self, e, errid) #print "Setting result=", result self.tf_set_completed(agent, result) def process_result(self, agent, val): if not self._basicact._output_indices: # i.e., length == 0: # Note that a function returning None is treated as SUCCESS if val is False: result = MessageFailure(self, "%s implementing action returned False"%self._basicact.function_name()) elif isinstance(val, Failure): result = val else: result = SUCCESS elif self._basicact.bind_result(agent, self._bindings, self._zexpr, val): result = SUCCESS elif val == None: result = MessageFailure(self, "%s implementing action returned None" %self._basicact.function_name()) else: try: raise Exception("%s implementing action returned a value %r that does not match the output params %r"%(self._basicact.function_name(), val, self._basicact._output_indices)) except AnyException, e: errid = NEWPM.displayError() #@-timing# T_callfn.stop() #@-timing# T_processresult.start() # TODO: work out if this is the right way to handle this case new_err = CapturedError(self._zexpr, errid, "executing") self.process_exception(agent, new_err, errid) return #print "Setting result=", result self.tf_set_completed(agent, result) installConstructor(BasicImpTFrame) class BasicAct(_Basic, ActImpInt): __slots__ = () tframe_class = BasicImpTFrame def tframes(self, agent, event, bindings, zexpr): name = "%s.%d"%(self._sym, agent.nextid()) return [self.tframe_class(name, event, self, bindings, zexpr)] installConstructor(BasicAct) #@-timing# T_ThreadImpTFrameInit = TIMER.newRecord("ThreadImpTFrameInit") class ThreadImpTFrame(BasicImpTFrame): __slots__ = ( "_thread_event", "_thread_result", "_thread_exception", "_agent_to_do_flag", "_errid", ) def __init__(self, name, event, threadact, bindings, zexpr): BasicImpTFrame.__init__(self, name, event, threadact, bindings, zexpr) self._thread_event = None def state_args(self): return (0,) def set_state(self, agent, ignore): self.tf_set_completed(agent, MessageFailure(self, "ThreadImpTFrame cannot be resumed")) def tfcont(self, agent): #debug("ThreadImpTFrame tfcont") #@-timing# T_tfcont.start() te = self._thread_event if te is None: #print "Starting thread" #@-timing# T_genargs.start() args = self._basicact.generate_args(agent, self._bindings, self._zexpr) #@-timing# T_genargs.stopstart(T_callfn) self._thread_event = threading.Event() self._thread_result = None self._thread_exception = None self._agent_to_do_flag = agent._something_to_do_event #debug("ThreadImpTFrame starting thread") threading.Thread(target=self.run, args=args).start() #THREAD_POOL.startDaemonThread(target=self.run, args=args) #@-timing# T_callfn.stop() elif te.isSet(): #@-timing# T_processresult.start() #print "Noticed thread finished" if self._thread_exception: #debug("ThreadImpTFrame processing exception %s", self._thread_exception) self.process_exception(agent, self._thread_exception, self._errid) else: #debug("ThreadImpTFrame processing result %s", self._thread_result) self.process_result(agent, self._thread_result) #@-timing# T_processresult.stop() #debug("ThreadImpTFrame tfcont return not waiting") else: #print "Waiting for thread" #debug("ThreadImpTFrame tfcont return waiting") #return None pass #@-timing# T_tfcont.stop() def run(self, *args): try: #print " Starting fun" self._thread_result = self._basicact._function(*args) #print " Finished fun" except AnyException, e: #print " Exception in fun" errid = NEWPM.displayError() self._thread_exception = e self._errid = errid self._thread_event.set() self._agent_to_do_flag.set() installConstructor(ThreadImpTFrame) class ThreadAct(BasicAct): __slots__ = () tframe_class = ThreadImpTFrame installConstructor(ThreadAct) ################################################################ # What follows should be removed once things that depend upon it are fixed ################################################################ class SimpleProcedureInstance(TFrame): __slots__ = ( "_procedure", "_bindings", # should be able to get from event "_zexpr", # should be able to get from event "_features", ) def __init__(self, name, procedure, event, bindings, zexpr): TFrame.__init__(self, name, event) self._procedure = procedure self._bindings = bindings self._zexpr = zexpr self._features = () def constructor_args(self): [name, event] = TFrame.constructor_args(self) return [name, self._procedure, event, self._bindings, self._zexpr] constructor_mode = "VIIIV" def tfcont(self, agent): result = self._procedure.execute(agent,self._event,self._bindings,self._zexpr) if not (result is SUCCESS or isinstance(result, Failure)): raise LowError(\ """execute method of procedure returned something that was neither SUCCESS of a Failure instance procedure: %s return value: %s""", self._procedure, result) self.tf_set_completed(agent, result) def features(self, agent): return self._features installConstructor(SimpleProcedureInstance) class SimpleProcedure(ProcedureInt): __slots__ = ( "_name", ) def __init__(self, name): self._name = name def name(self): return self._name def append_tframes(self, agent, event, bindings, zexpr, list): if self.applicable(agent, event, bindings, zexpr): name = "%s.%d"%(self._name, agent.nextid()) list.append(SimpleProcedureInstance(name, self, event, bindings, zexpr)) def applicable(self, agent, event, bindings, zexpr): return True # default precondition def execute(self, agent, event, bindings, zexpr): raise LowError("execute method not defined for %r", self) def __str__(self): return self.__class__.__name__ + "." + self._name def __repr__(self): return self.__class__.__name__ + "." + self._name ################################################################ # class ThreadProcedureInstance(TFrame): # __slots__ = ( # "_procedure", # "_bindings", # should be able to get from event # "_zexpr", # should be able to get from event # "_thread_event", # "_thread_result", # "_thread_exception", # ) # def __init__(self, name, procedure, event, bindings, zexpr): # TFrame.__init__(self, name, event) # self._procedure = procedure # self._bindings = bindings # self._zexpr = zexpr # self._thread_event = None # self._thread_result = None # self._thread_exception = None # def tfcont(self, agent): # te = self._thread_event # try: # if te is None: # thread not started # data = self._procedure.prologue(agent,self._event,self._bindings,self._zexpr) # te = threading.Event() # self._thread_event = te # #print "STARTING te.isSet() =", te.isSet() # thread = threading.Thread(target=self._threadrun, \ # args=(agent, data), name="Thread") # thread.start() # elif te.isSet(): # thread complete # #print "FINISHED te.isSet() =", te.isSet() # if self._thread_exception: # raise self._thread_exception # DNM - maybe re-raise # result = self._procedure.epilogue(agent, self._event, self._bindings, self._zexpr, self._thread_result) # if not (result is SUCCESS or isinstance(result, Failure)): raise AssertionError # self.tf_set_completed(agent, result) # else: # #print "WAITING te.isSet() =", te.isSet(), self._procedure # return NOCHANGE # except Failure, failure: # self.tf_set_completed(agent, failure) # except AnyException, e: # pm.setprint() # self.tf_set_completed(agent, ExceptionFailure(self, e)) # return None # def _threadrun(self, agent, data): # try: # self._thread_result = self._procedure.threadrun(data) # except AnyException, e: # self._thread_exception = ExceptionFailure(self, e) # pm.setprint() # #print "THREAD COMPLETED" # self._thread_event.set() # agent._something_to_do_event.set() # class ThreadProcedure(object, ProcedureInt): # __slots__ = ( # "_name", # ) # def __init__(self, name): # self._name = name # def name(self): # return self._name # def append_tframes(self, agent, event, bindings, zexpr, list): # if self.applicable(agent, event, bindings, zexpr): # name = "%s.%d"%(self._name, agent.nextid()) # list.append(ThreadProcedureInstance(name, self, event, bindings, zexpr)) # def applicable(self, agent, event, bindings, zexpr): # return True # default precondition # def prologue(self, agent, event, bindings, zexpr): # return None # def threadrun(self, prologue_data): # raise LowError("threadrun method not implemented for %r", self) # def epilogue(self, agent, event, bindings, zexpr, threadrun_result): # return threadrun_result class ProcedureActImp(ActImpInt): """An action that is implemented by executing a fixed procedure""" def __init__(self, procedure): if not (isinstance(procedure, ProcedureInt)): raise AssertionError self._procedure = procedure def __call__(self, symbol): self._symbol = symbol return self def tframes(self, agent, event, bindings, zexpr): tframes = [] self._procedure.append_tframes(agent, event, bindings, zexpr, tframes) return tframes ################################################################ class CounterImp(Imp, PersistablePredImpInt): #NOTE: single agent implementation (SINGLEAGENT). easy to make multiagent __slots__ = ('counter') def __init__(self, decl): Imp.__init__(self, decl) self.counter = 0 #PERSIST def persist_arity_or_facts(self, ignore_agent): return [[self.counter]] def resume_conclude(self, agent, bindings, zexpr): self.counter = termEvalErr(agent, bindings, zexpr[0]) def solution(self, agent, bindings, zexpr): if len(zexpr) != 1: raise zexpr.error("Invalid arity -- counters have arity of 1") if self.counter is not None and \ termMatch(agent, bindings, zexpr[0], self.counter): return SOLVED else: return NOT_SOLVED # def find_solutions(self, agent, bindings, zexpr): # if len(zexpr) != 1: # raise zexpr.error("Invalid arity -- counters have arity of 1") # if self.counter is not None and \ # termMatch(agent, bindings, zexpr[0], self.counter): # bindings.bfound_solution(agent, zexpr) def conclude(self, agent, bindings, zexpr): """Conclude this predicate and return whether the database has been changed.""" if len(zexpr) != 1: raise zexpr.error("Invalid arity -- counters have arity of 1") self.counter = termEvalErr(agent, bindings, zexpr[0]) def retractall(self, agent, bindings, zexpr): """Retract anything matching this predicate and return whether the datadase has been changed.""" raise zexpr.error("Cannot retractall on a counter implementation") # ################################################################ # # ThreadPool # # # # source of threads that can be reused # # # import Queue # class ThreadPool(object): # __slots__ = ( # "idleWorkerThreadsQueue", # ) # def __init__(self, maxsize=0): # self.idleWorkerThreadsQueue = Queue.Queue(maxsize) # def startDaemonThread(self, target=None, name=None, args={}, kwargs={}): # "Take an idle WorkerThread from the pool and run target function on the given args. Create a new _WorkerThread if necessary." # queue = self.idleWorkerThreadsQueue # try: # workerThread = queue.get(False) # #print "Taking", workerThread, "from", queue # except Queue.Empty: # workerThread = _WorkerThread() # #print "Creating new", workerThread # workerThread.setDaemon(True) # workerThread.start() # workerThread.invokeRun(queue, target, name, args, kwargs) # def killIdleWorkerThreads(self, leave=0): # queue = self.idleWorkerThreadsQueue # while queue.qsize() > leave: # try: # workerThread = queue.get(False) # except Queue.Empty: # return # workerThread.killIdleWorkerThread() # THREAD_POOL = ThreadPool(0) # Allow an unlimited number of idle threads # class _WorkerThread(threading.Thread): # __slots__ = ( # "workLock", # Lock to say work is available # "oldname", # original name of thread # "idleWorkerThreadsQueue", # queue to put self on when idle # "target", # runnable object # "name", # name to use # "args", # args to use # "kwargs", # keyword args to use # ) # def __init__(self): # threading.Thread.__init__(self) # self.workLock = threading.Lock() # self.workLock.acquire() # invokeRun will release this Lock # self.oldname = self.getName() # self._reset() # def _reset(self): # self.setName(self.oldname) # self.idleWorkerThreadsQueue = None # self.target = None # self.name = None # self.args = None # self.kwargs = None # def run(self): # terminate = False # while not terminate: # terminate = self.performRun() # def performRun(self): # "Acquire lock, and perform the target function. Return Ture if thread should exit." # self.workLock.acquire() # wait until something to do # # Check if we should die # idleWorkerThreadsQueue = self.idleWorkerThreadsQueue # if idleWorkerThreadsQueue is None: # #print "Killing", self # return True # # call the target function # #print "Using", self, "to run", self.target # if self.name is not None: # self.setName(self.name) # try: # self.target(*self.args, **self.kwargs) # except: # print "Exception in WorkerThread", self.getName() # errid = NEWPM.displayError() # # reset self and go back on the idle queue # self._reset() # #print "Putting", self, "back on", idleWorkerThreadsQueue # try: # idleWorkerThreadsQueue.put_nowait(self) # except Queue.Full: # #print "Idle _WorkerThread Queue is full, kill _WorkerThread instead" # return True # return False # def invokeRun(self, queue, target, name, args, kwargs): # if self.workLock.acquire(False): raise AssertionError, \ # "Trying to call _WorkerThread.invokeRun with workLock unlocked" # if queue is None: raise AssertionError, \ # "Must supply a Queue to return _WorkerThread to when done" # if target is None: raise AssertionError, \ # "Must supply a target function to execute" # self.idleWorkerThreadsQueue = queue # self.target = target # self.name = name # self.args = args # self.kwargs = kwargs # self.workLock.release() # def killIdleWorkerThread(self): # "Kill off this _WorkerThread" # if self.target is not None: raise AssertionError, \ # "Cannot kill a _WorkerThread that is current executing something" # self.idleWorkerThreadsQueue = None # self.workLock.release() # ONE_WORKER_THREAD = _WorkerThread()
chrome_test_server_spawner.py
# Copyright 2013 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """A "Test Server Spawner" that handles killing/stopping per-test test servers. It's used to accept requests from the device to spawn and kill instances of the chrome test server on the host. """ import BaseHTTPServer import json import logging import os import select import struct import subprocess import sys import threading import time import urlparse import constants import ports # Path that are needed to import necessary modules when launching a testserver. os.environ['PYTHONPATH'] = os.environ.get('PYTHONPATH', '') + (':%s:%s:%s:%s:%s' % (os.path.join(constants.DIR_SOURCE_ROOT, 'third_party'), os.path.join(constants.DIR_SOURCE_ROOT, 'third_party', 'tlslite'), os.path.join(constants.DIR_SOURCE_ROOT, 'third_party', 'pyftpdlib', 'src'), os.path.join(constants.DIR_SOURCE_ROOT, 'net', 'tools', 'testserver'), os.path.join(constants.DIR_SOURCE_ROOT, 'sync', 'tools', 'testserver'))) SERVER_TYPES = { 'http': '', 'ftp': '-f', 'sync': '', # Sync uses its own script, and doesn't take a server type arg. 'tcpecho': '--tcp-echo', 'udpecho': '--udp-echo', } # The timeout (in seconds) of starting up the Python test server. TEST_SERVER_STARTUP_TIMEOUT = 10 def _WaitUntil(predicate, max_attempts=5): """Blocks until the provided predicate (function) is true. Returns: Whether the provided predicate was satisfied once (before the timeout). """ sleep_time_sec = 0.025 for attempt in xrange(1, max_attempts): if predicate(): return True time.sleep(sleep_time_sec) sleep_time_sec = min(1, sleep_time_sec * 2) # Don't wait more than 1 sec. return False def _CheckPortStatus(port, expected_status): """Returns True if port has expected_status. Args: port: the port number. expected_status: boolean of expected status. Returns: Returns True if the status is expected. Otherwise returns False. """ return _WaitUntil(lambda: ports.IsHostPortUsed(port) == expected_status) def _CheckDevicePortStatus(adb, port): """Returns whether the provided port is used.""" return _WaitUntil(lambda: ports.IsDevicePortUsed(adb, port)) def _GetServerTypeCommandLine(server_type): """Returns the command-line by the given server type. Args: server_type: the server type to be used (e.g. 'http'). Returns: A string containing the command-line argument. """ if server_type not in SERVER_TYPES: raise NotImplementedError('Unknown server type: %s' % server_type) if server_type == 'udpecho': raise Exception('Please do not run UDP echo tests because we do not have ' 'a UDP forwarder tool.') return SERVER_TYPES[server_type] class TestServerThread(threading.Thread): """A thread to run the test server in a separate process.""" def __init__(self, ready_event, arguments, adb, tool, forwarder, build_type): """Initialize TestServerThread with the following argument. Args: ready_event: event which will be set when the test server is ready. arguments: dictionary of arguments to run the test server. adb: instance of AndroidCommands. tool: instance of runtime error detection tool. forwarder: instance of Forwarder. build_type: 'Release' or 'Debug'. """ threading.Thread.__init__(self) self.wait_event = threading.Event() self.stop_flag = False self.ready_event = ready_event self.ready_event.clear() self.arguments = arguments self.adb = adb self.tool = tool self.test_server_process = None self.is_ready = False self.host_port = self.arguments['port'] assert isinstance(self.host_port, int) self._test_server_forwarder = forwarder # The forwarder device port now is dynamically allocated. self.forwarder_device_port = 0 # Anonymous pipe in order to get port info from test server. self.pipe_in = None self.pipe_out = None self.command_line = [] self.build_type = build_type def _WaitToStartAndGetPortFromTestServer(self): """Waits for the Python test server to start and gets the port it is using. The port information is passed by the Python test server with a pipe given by self.pipe_out. It is written as a result to |self.host_port|. Returns: Whether the port used by the test server was successfully fetched. """ assert self.host_port == 0 and self.pipe_out and self.pipe_in (in_fds, _, _) = select.select([self.pipe_in, ], [], [], TEST_SERVER_STARTUP_TIMEOUT) if len(in_fds) == 0: logging.error('Failed to wait to the Python test server to be started.') return False # First read the data length as an unsigned 4-byte value. This # is _not_ using network byte ordering since the Python test server packs # size as native byte order and all Chromium platforms so far are # configured to use little-endian. # TODO(jnd): Change the Python test server and local_test_server_*.cc to # use a unified byte order (either big-endian or little-endian). data_length = os.read(self.pipe_in, struct.calcsize('=L')) if data_length: (data_length,) = struct.unpack('=L', data_length) assert data_length if not data_length: logging.error('Failed to get length of server data.') return False port_json = os.read(self.pipe_in, data_length) if not port_json: logging.error('Failed to get server data.') return False logging.info('Got port json data: %s', port_json) port_json = json.loads(port_json) if port_json.has_key('port') and isinstance(port_json['port'], int): self.host_port = port_json['port'] return _CheckPortStatus(self.host_port, True) logging.error('Failed to get port information from the server data.') return False def _GenerateCommandLineArguments(self): """Generates the command line to run the test server. Note that all options are processed by following the definitions in testserver.py. """ if self.command_line: return # The following arguments must exist. type_cmd = _GetServerTypeCommandLine(self.arguments['server-type']) if type_cmd: self.command_line.append(type_cmd) self.command_line.append('--port=%d' % self.host_port) # Use a pipe to get the port given by the instance of Python test server # if the test does not specify the port. if self.host_port == 0: (self.pipe_in, self.pipe_out) = os.pipe() self.command_line.append('--startup-pipe=%d' % self.pipe_out) self.command_line.append('--host=%s' % self.arguments['host']) data_dir = self.arguments['data-dir'] or 'chrome/test/data' if not os.path.isabs(data_dir): data_dir = os.path.join(constants.DIR_SOURCE_ROOT, data_dir) self.command_line.append('--data-dir=%s' % data_dir) # The following arguments are optional depending on the individual test. if self.arguments.has_key('log-to-console'): self.command_line.append('--log-to-console') if self.arguments.has_key('auth-token'): self.command_line.append('--auth-token=%s' % self.arguments['auth-token']) if self.arguments.has_key('https'): self.command_line.append('--https') if self.arguments.has_key('cert-and-key-file'): self.command_line.append('--cert-and-key-file=%s' % os.path.join( constants.DIR_SOURCE_ROOT, self.arguments['cert-and-key-file'])) if self.arguments.has_key('ocsp'): self.command_line.append('--ocsp=%s' % self.arguments['ocsp']) if self.arguments.has_key('https-record-resume'): self.command_line.append('--https-record-resume') if self.arguments.has_key('ssl-client-auth'): self.command_line.append('--ssl-client-auth') if self.arguments.has_key('tls-intolerant'): self.command_line.append('--tls-intolerant=%s' % self.arguments['tls-intolerant']) if self.arguments.has_key('ssl-client-ca'): for ca in self.arguments['ssl-client-ca']: self.command_line.append('--ssl-client-ca=%s' % os.path.join(constants.DIR_SOURCE_ROOT, ca)) if self.arguments.has_key('ssl-bulk-cipher'): for bulk_cipher in self.arguments['ssl-bulk-cipher']: self.command_line.append('--ssl-bulk-cipher=%s' % bulk_cipher) def run(self): logging.info('Start running the thread!') self.wait_event.clear() self._GenerateCommandLineArguments() command = constants.DIR_SOURCE_ROOT if self.arguments['server-type'] == 'sync': command = [os.path.join(command, 'sync', 'tools', 'testserver', 'sync_testserver.py')] + self.command_line else: command = [os.path.join(command, 'net', 'tools', 'testserver', 'testserver.py')] + self.command_line logging.info('Running: %s', command) self.process = subprocess.Popen(command) if self.process: if self.pipe_out: self.is_ready = self._WaitToStartAndGetPortFromTestServer() else: self.is_ready = _CheckPortStatus(self.host_port, True) if self.is_ready: self._test_server_forwarder.Run( [(0, self.host_port)], self.tool, '127.0.0.1') # Check whether the forwarder is ready on the device. self.is_ready = False device_port = self._test_server_forwarder.DevicePortForHostPort( self.host_port) if device_port and _CheckDevicePortStatus(self.adb, device_port): self.is_ready = True self.forwarder_device_port = device_port # Wake up the request handler thread. self.ready_event.set() # Keep thread running until Stop() gets called. _WaitUntil(lambda: self.stop_flag, max_attempts=sys.maxint) if self.process.poll() is None: self.process.kill() self._test_server_forwarder.UnmapDevicePort(self.forwarder_device_port) self.process = None self.is_ready = False if self.pipe_out: os.close(self.pipe_in) os.close(self.pipe_out) self.pipe_in = None self.pipe_out = None logging.info('Test-server has died.') self.wait_event.set() def Stop(self): """Blocks until the loop has finished. Note that this must be called in another thread. """ if not self.process: return self.stop_flag = True self.wait_event.wait() class SpawningServerRequestHandler(BaseHTTPServer.BaseHTTPRequestHandler): """A handler used to process http GET/POST request.""" def _SendResponse(self, response_code, response_reason, additional_headers, contents): """Generates a response sent to the client from the provided parameters. Args: response_code: number of the response status. response_reason: string of reason description of the response. additional_headers: dict of additional headers. Each key is the name of the header, each value is the content of the header. contents: string of the contents we want to send to client. """ self.send_response(response_code, response_reason) self.send_header('Content-Type', 'text/html') # Specify the content-length as without it the http(s) response will not # be completed properly (and the browser keeps expecting data). self.send_header('Content-Length', len(contents)) for header_name in additional_headers: self.send_header(header_name, additional_headers[header_name]) self.end_headers() self.wfile.write(contents) self.wfile.flush() def _StartTestServer(self): """Starts the test server thread.""" logging.info('Handling request to spawn a test server.') content_type = self.headers.getheader('content-type') if content_type != 'application/json': raise Exception('Bad content-type for start request.') content_length = self.headers.getheader('content-length') if not content_length: content_length = 0 try: content_length = int(content_length) except: raise Exception('Bad content-length for start request.') logging.info(content_length) test_server_argument_json = self.rfile.read(content_length) logging.info(test_server_argument_json) assert not self.server.test_server_instance ready_event = threading.Event() self.server.test_server_instance = TestServerThread( ready_event, json.loads(test_server_argument_json), self.server.adb, self.server.tool, self.server.forwarder, self.server.build_type) self.server.test_server_instance.setDaemon(True) self.server.test_server_instance.start() ready_event.wait() if self.server.test_server_instance.is_ready: self._SendResponse(200, 'OK', {}, json.dumps( {'port': self.server.test_server_instance.forwarder_device_port, 'message': 'started'})) logging.info('Test server is running on port: %d.', self.server.test_server_instance.host_port) else: self.server.test_server_instance.Stop() self.server.test_server_instance = None self._SendResponse(500, 'Test Server Error.', {}, '') logging.info('Encounter problem during starting a test server.') def _KillTestServer(self): """Stops the test server instance.""" # There should only ever be one test server at a time. This may do the # wrong thing if we try and start multiple test servers. if not self.server.test_server_instance: return port = self.server.test_server_instance.host_port logging.info('Handling request to kill a test server on port: %d.', port) self.server.test_server_instance.Stop() # Make sure the status of test server is correct before sending response. if _CheckPortStatus(port, False): self._SendResponse(200, 'OK', {}, 'killed') logging.info('Test server on port %d is killed', port) else: self._SendResponse(500, 'Test Server Error.', {}, '') logging.info('Encounter problem during killing a test server.') self.server.test_server_instance = None def do_POST(self): parsed_path = urlparse.urlparse(self.path) action = parsed_path.path logging.info('Action for POST method is: %s.', action) if action == '/start': self._StartTestServer() else: self._SendResponse(400, 'Unknown request.', {}, '') logging.info('Encounter unknown request: %s.', action) def do_GET(self): parsed_path = urlparse.urlparse(self.path) action = parsed_path.path params = urlparse.parse_qs(parsed_path.query, keep_blank_values=1) logging.info('Action for GET method is: %s.', action) for param in params: logging.info('%s=%s', param, params[param][0]) if action == '/kill': self._KillTestServer() elif action == '/ping': # The ping handler is used to check whether the spawner server is ready # to serve the requests. We don't need to test the status of the test # server when handling ping request. self._SendResponse(200, 'OK', {}, 'ready') logging.info('Handled ping request and sent response.') else: self._SendResponse(400, 'Unknown request', {}, '') logging.info('Encounter unknown request: %s.', action) class SpawningServer(object): """The class used to start/stop a http server.""" def __init__(self, test_server_spawner_port, adb, tool, forwarder, build_type): logging.info('Creating new spawner on port: %d.', test_server_spawner_port) self.server = BaseHTTPServer.HTTPServer(('', test_server_spawner_port), SpawningServerRequestHandler) self.server.adb = adb self.server.tool = tool self.server.forwarder = forwarder self.server.test_server_instance = None self.server.build_type = build_type def _Listen(self): logging.info('Starting test server spawner') self.server.serve_forever() def Start(self): """Starts the test server spawner.""" listener_thread = threading.Thread(target=self._Listen) listener_thread.setDaemon(True) listener_thread.start() def Stop(self): """Stops the test server spawner. Also cleans the server state. """ self.CleanupState() self.server.shutdown() def CleanupState(self): """Cleans up the spawning server state. This should be called if the test server spawner is reused, to avoid sharing the test server instance. """ if self.server.test_server_instance: self.server.test_server_instance.Stop() self.server.test_server_instance = None
sim.py
#!/usr/bin/env python3 import csv import numpy import multiprocessing def sigmoid(x): return 1.0/(1.0+numpy.exp(-(x-5.0))) def sim_func(q,alpha1,alpha2,Nalpha1,Nalpha2): #parameters time_pitch=1.0 #ms save_pitch=10 save_pitch_weight=1000 simlen_sec=900.0 simlen=int(simlen_sec*1000.0/time_pitch) tauL=10.0 #ms phi=80.0/1000.0 phi_input=80.0/1000.0 alpha_som=alpha1 alpha_dnd=alpha2 beta_som=0.0 beta_dnd=0.0 gamma=1.0 c0=70.0 eta_som=0.2 eta_dnd=0.2 taudeltaW=1.0*1000.0 #ms tau_mean=60.0*1000.0 eta_Wdecay=1e-7 Wnoise_amp=5e-3/numpy.sqrt(time_pitch) som_input_num=50 dnd_input_num=som_input_num+0 group1_num=10 input_src_num=4 tau_input=10.0 #ms input_amp=0.1/numpy.sqrt(time_pitch) noise_amp=0.1/numpy.sqrt(time_pitch) Winit=5.0 Wmin=0.0 E0=0.05 #variables x=0.0 y=0.0 Ex=E0 Ey=E0 input_src=numpy.zeros(input_src_num) som_input_current=numpy.zeros(som_input_num) dnd_input_current=numpy.zeros(dnd_input_num) som_inputPSC=numpy.zeros(som_input_num) dnd_inputPSC=numpy.zeros(dnd_input_num) deltaWsom=numpy.zeros(som_input_num) deltaWdnd=numpy.zeros(dnd_input_num) Wsom=Winit*(numpy.random.rand(som_input_num)) Wdnd=Winit*(numpy.random.rand(dnd_input_num)) som_src=numpy.zeros([som_input_num, input_src_num]) som_src[:group1_num, 0]=1.0 som_src[group1_num:, 2]=1.0 dnd_src=numpy.zeros([dnd_input_num, input_src_num]) dnd_src[:group1_num,0]=1.0 dnd_src[group1_num:,3]=1.0 #simulation for t in range(simlen): time_sec=float(t)*time_pitch/1000.0 #if time_sec==int(time_sec): # print(time_sec,"sec") #source signal input_src=input_src+time_pitch*(-input_src/tau_input+input_amp*numpy.random.randn(input_src_num)) #inputs som_input_current+=time_pitch*(-som_input_current/tauL+som_src@input_src+noise_amp*numpy.random.randn(som_input_num)) dnd_input_current+=time_pitch*(-dnd_input_current/tauL+dnd_src@input_src+noise_amp*numpy.random.randn(dnd_input_num)) som_input=phi_input*sigmoid(som_input_current) dnd_input=phi_input*sigmoid(dnd_input_current) som_inputPSC+=time_pitch*(-som_inputPSC/tauL+som_input) dnd_inputPSC+=time_pitch*(-dnd_inputPSC/tauL+dnd_input) #dynamics xprev=x+0.0 yprev=y+0.0 Isom=Wsom@som_inputPSC Idnd=Wdnd@dnd_inputPSC x=sigmoid(Isom+beta_som*yprev) y=sigmoid(Idnd+beta_dnd*xprev) z=(1.0+gamma*y)*phi*x #plasticity #som Wsom+=time_pitch*(eta_som*deltaWsom+Wnoise_amp*numpy.random.randn(som_input_num)-eta_Wdecay*Wsom) Wsom[Wsom<Wmin]=Wmin xamp=(1.0-alpha_som)*x+alpha_som*x*y theta_som=c0*Ex*Ex deltaWsom+=time_pitch*(-deltaWsom+(xamp*(xamp-theta_som))*(1.0-x)*som_inputPSC)/taudeltaW #dnd Wdnd+=time_pitch*(eta_dnd*deltaWdnd+Wnoise_amp*numpy.random.randn(dnd_input_num)-eta_Wdecay*Wdnd) Wdnd[Wdnd<Wmin]=Wmin yamp=(1.0-alpha_dnd)*y+alpha_dnd*x*y theta_dnd=c0*Ey*Ey deltaWdnd+=time_pitch*(-deltaWdnd+(yamp*(yamp-theta_dnd))*(1.0-y)*dnd_inputPSC)/taudeltaW Ex+=time_pitch*(-Ex+xamp)/tau_mean Ey+=time_pitch*(-Ey+yamp)/tau_mean wdif_som=numpy.sum(Wsom[:group1_num])-numpy.sum(Wsom[group1_num:]) wdif_dnd=numpy.sum(Wdnd[:group1_num])-numpy.sum(Wdnd[group1_num:]) q.put((Nalpha1,Nalpha2,wdif_som,wdif_dnd)) if __name__=="__main__": alpha1=numpy.arange(0.0,1.0,0.1) alpha2=numpy.arange(0.0,1.0,0.1) max_process=40 que=multiprocessing.Queue() process_arr=[] results=[] process_num=0 for i in range(len(alpha1)): for j in range(len(alpha2)): print(alpha1[i],alpha2[j]) process_arr.append(multiprocessing.Process(target=sim_func, args=(que,alpha1[i],alpha2[j],i,j))) process_arr[-1].start() process_num+=1 if process_num>=max_process: for k in range(process_num): process_arr[k].join() for k in range(process_num): tmp=que.get() results.append(tmp) process_arr.clear() process_num=0 for i in range(process_num): process_arr[i].join() for k in range(process_num): tmp=que.get() results.append(tmp) numpy.savetxt("alpha_som.csv", alpha1, delimiter=",") numpy.savetxt("alpha_dnd.csv", alpha2, delimiter=",") numpy.savetxt("wdif.csv", results, delimiter=",")
cronjobs.py
#!/usr/bin/env python """Cron management classes.""" from __future__ import absolute_import from __future__ import division from __future__ import unicode_literals import logging import sys import threading import time from future.utils import iterkeys from grr_response_core import config from grr_response_core.lib import rdfvalue from grr_response_core.lib import registry from grr_response_core.lib.rdfvalues import protodict as rdf_protodict from grr_response_core.lib.util import compatibility from grr_response_core.lib.util import random from grr_response_core.stats import stats_collector_instance from grr_response_server import access_control from grr_response_server import aff4 from grr_response_server import cronjobs from grr_response_server import data_store from grr_response_server import flow from grr_response_server import master from grr_response_server import queue_manager from grr_response_server.rdfvalues import cronjobs as rdf_cronjobs from grr_response_server.rdfvalues import flow_runner as rdf_flow_runner from grr_response_server.rdfvalues import hunts as rdf_hunts class Error(Exception): pass class CronManager(object): """CronManager is used to schedule/terminate cron jobs.""" CRON_JOBS_PATH = rdfvalue.RDFURN("aff4:/cron") def CreateJob(self, cron_args=None, job_id=None, token=None, enabled=True): """Creates a cron job that runs given flow with a given frequency. Args: cron_args: A protobuf of type rdf_cronjobs.CreateCronJobArgs. job_id: Use this job_id instead of an autogenerated unique name (used for system cron jobs - we want them to have well-defined persistent name). token: Security token used for data store access. enabled: If False, the job object will be created, but will be disabled. Returns: Name of the cron job created. """ if not job_id: uid = random.UInt16() job_id = "%s_%s" % (cron_args.flow_name, uid) flow_runner_args = rdf_flow_runner.FlowRunnerArgs( flow_name="CreateAndRunGenericHuntFlow") flow_args = rdf_hunts.CreateGenericHuntFlowArgs() flow_args.hunt_args.flow_args = cron_args.flow_args flow_args.hunt_args.flow_runner_args.flow_name = cron_args.flow_name flow_args.hunt_runner_args = cron_args.hunt_runner_args flow_args.hunt_runner_args.hunt_name = "GenericHunt" create_cron_args = rdf_cronjobs.CreateCronJobFlowArgs( description=cron_args.description, periodicity=cron_args.frequency, flow_runner_args=flow_runner_args, flow_args=flow_args, allow_overruns=cron_args.allow_overruns, lifetime=cron_args.lifetime) cron_job_urn = self.CRON_JOBS_PATH.Add(job_id) with aff4.FACTORY.Create( cron_job_urn, aff4_type=CronJob, mode="rw", token=token, force_new_version=False) as cron_job: # If the cronjob was already present we don't want to overwrite the # original start_time. existing_cron_args = cron_job.Get(cron_job.Schema.CRON_ARGS) if existing_cron_args and existing_cron_args.start_time: create_cron_args.start_time = existing_cron_args.start_time if create_cron_args != existing_cron_args: cron_job.Set(cron_job.Schema.CRON_ARGS(create_cron_args)) cron_job.Set(cron_job.Schema.DISABLED(not enabled)) return job_id def ListJobs(self, token=None): """Returns a list of all currently running cron jobs.""" job_root = aff4.FACTORY.Open(self.CRON_JOBS_PATH, token=token) return [urn.Basename() for urn in job_root.ListChildren()] def ReadJob(self, job_id, token=None): job_urn = self.CRON_JOBS_PATH.Add(job_id) return aff4.FACTORY.Open( job_urn, aff4_type=CronJob, token=token, age=aff4.ALL_TIMES) def ReadJobs(self, token=None): job_urns = [self.CRON_JOBS_PATH.Add(job_id) for job_id in self.ListJobs()] return aff4.FACTORY.MultiOpen( job_urns, aff4_type=CronJob, token=token, age=aff4.ALL_TIMES) def ReadJobRuns(self, job_id, token=None): job_urn = self.CRON_JOBS_PATH.Add(job_id) fd = aff4.FACTORY.Open(job_urn, token=token) return list(fd.OpenChildren()) def EnableJob(self, job_id, token=None): """Enable cron job with the given URN.""" job_urn = self.CRON_JOBS_PATH.Add(job_id) cron_job = aff4.FACTORY.Open( job_urn, mode="rw", aff4_type=CronJob, token=token) cron_job.Set(cron_job.Schema.DISABLED(0)) cron_job.Close() def DisableJob(self, job_id, token=None): """Disable cron job with the given URN.""" job_urn = self.CRON_JOBS_PATH.Add(job_id) cron_job = aff4.FACTORY.Open( job_urn, mode="rw", aff4_type=CronJob, token=token) cron_job.Set(cron_job.Schema.DISABLED(1)) cron_job.Close() def DeleteJob(self, job_id, token=None): """Deletes cron job with the given URN.""" job_urn = self.CRON_JOBS_PATH.Add(job_id) aff4.FACTORY.Delete(job_urn, token=token) def RunOnce(self, token=None, force=False, names=None): """Tries to lock and run cron jobs. Args: token: security token force: If True, force a run names: List of job names to run. If unset, run them all """ names = names or self.ListJobs(token=token) urns = [self.CRON_JOBS_PATH.Add(name) for name in names] for cron_job_urn in urns: try: with aff4.FACTORY.OpenWithLock( cron_job_urn, blocking=False, token=token, lease_time=600) as cron_job: try: logging.info("Running cron job: %s", cron_job.urn) cron_job.Run(force=force) except Exception as e: # pylint: disable=broad-except logging.exception("Error processing cron job %s: %s", cron_job.urn, e) stats_collector_instance.Get().IncrementCounter( "cron_internal_error") except aff4.LockError: pass def DeleteOldRuns(self, job, cutoff_timestamp=None, token=None): """Deletes flows initiated by the job that are older than specified.""" if cutoff_timestamp is None: raise ValueError("cutoff_timestamp can't be None") child_flows = list(job.ListChildren(age=cutoff_timestamp)) with queue_manager.QueueManager(token=token) as queuemanager: queuemanager.MultiDestroyFlowStates(child_flows) aff4.FACTORY.MultiDelete(child_flows, token=token) return len(child_flows) def GetCronManager(): if data_store.RelationalDBReadEnabled(category="cronjobs"): return cronjobs.CronManager() return CronManager() class SystemCronFlow(flow.GRRFlow): """SystemCronFlows are scheduled automatically on workers startup.""" frequency = rdfvalue.Duration("1d") lifetime = rdfvalue.Duration("20h") allow_overruns = False # Jobs that are broken, or are under development can be disabled using # the "enabled" attribute. These jobs won't get scheduled automatically, # and will get paused if they were scheduled before. enabled = True __abstract = True # pylint: disable=g-bad-name def _ValidateState(self): # For normal flows it's a bug to write an empty state, here it's ok. pass @property def disabled(self): raise ValueError("Disabled flag is deprecated, use enabled instead.") @disabled.setter def disabled(self, _): raise ValueError("Disabled flag is deprecated, use enabled instead.") class StateReadError(Error): pass class StateWriteError(Error): pass class StatefulSystemCronFlow(SystemCronFlow): """SystemCronFlow that keeps a permanent state between iterations.""" __abstract = True @property def cron_job_urn(self): return CronManager.CRON_JOBS_PATH.Add(self.__class__.__name__) def ReadCronState(self): # TODO(amoser): This is pretty bad, there is no locking for state. try: cron_job = aff4.FACTORY.Open( self.cron_job_urn, aff4_type=CronJob, token=self.token) res = cron_job.Get(cron_job.Schema.STATE_DICT) if res: return flow.AttributedDict(res.ToDict()) return flow.AttributedDict() except aff4.InstantiationError as e: raise StateReadError(e) def WriteCronState(self, state): if not state: return try: with aff4.FACTORY.OpenWithLock( self.cron_job_urn, aff4_type=CronJob, token=self.token) as cron_job: cron_job.Set(cron_job.Schema.STATE_DICT(state)) except aff4.InstantiationError as e: raise StateWriteError(e) def ScheduleSystemCronFlows(names=None, token=None): """Schedule all the SystemCronFlows found.""" if data_store.RelationalDBReadEnabled(category="cronjobs"): return cronjobs.ScheduleSystemCronJobs(names=names) errors = [] for name in config.CONFIG["Cron.disabled_system_jobs"]: try: cls = registry.AFF4FlowRegistry.FlowClassByName(name) except ValueError: errors.append("No such flow: %s." % name) continue if not issubclass(cls, SystemCronFlow): errors.append("Disabled system cron job name doesn't correspond to " "a flow inherited from SystemCronFlow: %s" % name) if names is None: names = iterkeys(registry.AFF4FlowRegistry.FLOW_REGISTRY) for name in names: cls = registry.AFF4FlowRegistry.FlowClassByName(name) if not issubclass(cls, SystemCronFlow): continue cron_args = rdf_cronjobs.CreateCronJobFlowArgs( periodicity=cls.frequency, lifetime=cls.lifetime, allow_overruns=cls.allow_overruns) cron_args.flow_runner_args.flow_name = name if cls.enabled: enabled = name not in config.CONFIG["Cron.disabled_system_jobs"] else: enabled = False job_urn = CronManager.CRON_JOBS_PATH.Add(name) with aff4.FACTORY.Create( job_urn, aff4_type=CronJob, mode="rw", token=token, force_new_version=False) as cron_job: # If the cronjob was already present we don't want to overwrite the # original start_time. existing_cron_args = cron_job.Get(cron_job.Schema.CRON_ARGS) if cron_args != existing_cron_args: cron_job.Set(cron_job.Schema.CRON_ARGS(cron_args)) cron_job.Set(cron_job.Schema.DISABLED(not enabled)) if errors: raise ValueError( "Error(s) while parsing Cron.disabled_system_jobs: %s" % errors) class CronWorker(object): """CronWorker runs a thread that periodically executes cron jobs.""" def __init__(self, thread_name="grr_cron", sleep=60 * 5): self.thread_name = thread_name self.sleep = sleep # SetUID is required to write cronjobs under aff4:/cron/ self.token = access_control.ACLToken( username="GRRCron", reason="Implied.").SetUID() def _RunLoop(self): ScheduleSystemCronFlows(token=self.token) while True: if not master.MASTER_WATCHER.IsMaster(): time.sleep(self.sleep) continue try: GetCronManager().RunOnce(token=self.token) except Exception as e: # pylint: disable=broad-except logging.error("CronWorker uncaught exception: %s", e) time.sleep(self.sleep) def Run(self): """Runs a working thread and waits for it to finish.""" self.RunAsync().join() def RunAsync(self): """Runs a working thread and returns immediately.""" self.running_thread = threading.Thread( name=self.thread_name, target=self._RunLoop) self.running_thread.daemon = True self.running_thread.start() return self.running_thread class CronJob(aff4.AFF4Volume): """AFF4 object corresponding to cron jobs.""" class SchemaCls(aff4.AFF4Volume.SchemaCls): """Schema for CronJob AFF4 object.""" CRON_ARGS = aff4.Attribute("aff4:cron/args", rdf_cronjobs.CreateCronJobFlowArgs, "This cron jobs' arguments.") DISABLED = aff4.Attribute( "aff4:cron/disabled", rdfvalue.RDFBool, "If True, don't run this job.", versioned=False) CURRENT_FLOW_URN = aff4.Attribute( "aff4:cron/current_flow_urn", rdfvalue.RDFURN, "URN of the currently running flow corresponding to this cron job.", versioned=False, lock_protected=True) LAST_RUN_TIME = aff4.Attribute( "aff4:cron/last_run", rdfvalue.RDFDatetime, "The last time this cron job ran.", "last_run", versioned=False, lock_protected=True) LAST_RUN_STATUS = aff4.Attribute( "aff4:cron/last_run_status", rdf_cronjobs.CronJobRunStatus, "Result of the last flow", lock_protected=True, creates_new_object_version=False) STATE_DICT = aff4.Attribute( "aff4:cron/state_dict", rdf_protodict.AttributedDict, "Cron flow state that is kept between iterations", lock_protected=True, versioned=False) def IsRunning(self): """Returns True if there's a currently running iteration of this job.""" current_urn = self.Get(self.Schema.CURRENT_FLOW_URN) if not current_urn: return False try: current_flow = aff4.FACTORY.Open( urn=current_urn, aff4_type=flow.GRRFlow, token=self.token, mode="r") except aff4.InstantiationError: # This isn't a flow, something went really wrong, clear it out. logging.error("Unable to open cron job run: %s", current_urn) self.DeleteAttribute(self.Schema.CURRENT_FLOW_URN) self.Flush() return False return current_flow.GetRunner().IsRunning() def DueToRun(self): """Called periodically by the cron daemon, if True Run() will be called. Returns: True if it is time to run based on the specified frequency. """ if self.Get(self.Schema.DISABLED): return False cron_args = self.Get(self.Schema.CRON_ARGS) last_run_time = self.Get(self.Schema.LAST_RUN_TIME) now = rdfvalue.RDFDatetime.Now() # Its time to run. if (last_run_time is None or now > cron_args.periodicity.Expiry(last_run_time)): # Not due to start yet. if now < cron_args.start_time: return False # Do we allow overruns? if cron_args.allow_overruns: return True # No currently executing job - lets go. if self.Get(self.Schema.CURRENT_FLOW_URN) is None: return True return False def StopCurrentRun(self, reason="Cron lifetime exceeded."): current_flow_urn = self.Get(self.Schema.CURRENT_FLOW_URN) if current_flow_urn: flow.GRRFlow.TerminateAFF4Flow( current_flow_urn, reason=reason, token=self.token) self.Set( self.Schema.LAST_RUN_STATUS, rdf_cronjobs.CronJobRunStatus( status=rdf_cronjobs.CronJobRunStatus.Status.TIMEOUT)) self.DeleteAttribute(self.Schema.CURRENT_FLOW_URN) self.Flush() def KillOldFlows(self): """Disable cron flow if it has exceeded CRON_ARGS.lifetime. Returns: bool: True if the flow is was killed. """ if not self.IsRunning(): return False start_time = self.Get(self.Schema.LAST_RUN_TIME) lifetime = self.Get(self.Schema.CRON_ARGS).lifetime elapsed = rdfvalue.RDFDatetime.Now() - start_time if lifetime and elapsed > lifetime: self.StopCurrentRun() stats_collector_instance.Get().IncrementCounter( "cron_job_timeout", fields=[self.urn.Basename()]) stats_collector_instance.Get().RecordEvent( "cron_job_latency", elapsed.seconds, fields=[self.urn.Basename()]) return True return False def Run(self, force=False): """Do the actual work of the Cron. Will first check if DueToRun is True. CronJob object must be locked (i.e. opened via OpenWithLock) for Run() to be called. Args: force: If True, the job will run no matter what (i.e. even if DueToRun() returns False). Raises: LockError: if the object is not locked. """ if not self.locked: raise aff4.LockError("CronJob must be locked for Run() to be called.") self.KillOldFlows() # If currently running flow has finished, update our state. current_flow_urn = self.Get(self.Schema.CURRENT_FLOW_URN) if current_flow_urn: current_flow = aff4.FACTORY.Open(current_flow_urn, token=self.token) runner = current_flow.GetRunner() if not runner.IsRunning(): if runner.context.state == rdf_flow_runner.FlowContext.State.ERROR: self.Set( self.Schema.LAST_RUN_STATUS, rdf_cronjobs.CronJobRunStatus( status=rdf_cronjobs.CronJobRunStatus.Status.ERROR)) stats_collector_instance.Get().IncrementCounter( "cron_job_failure", fields=[self.urn.Basename()]) else: self.Set( self.Schema.LAST_RUN_STATUS, rdf_cronjobs.CronJobRunStatus( status=rdf_cronjobs.CronJobRunStatus.Status.OK)) start_time = self.Get(self.Schema.LAST_RUN_TIME) elapsed = time.time() - start_time.AsSecondsSinceEpoch() stats_collector_instance.Get().RecordEvent( "cron_job_latency", elapsed, fields=[self.urn.Basename()]) self.DeleteAttribute(self.Schema.CURRENT_FLOW_URN) self.Flush() if not force and not self.DueToRun(): return # Make sure the flow is created with cron job as a parent folder. cron_args = self.Get(self.Schema.CRON_ARGS) cron_args.flow_runner_args.base_session_id = self.urn flow_urn = flow.StartAFF4Flow( runner_args=cron_args.flow_runner_args, args=cron_args.flow_args, token=self.token, sync=False) self.Set(self.Schema.CURRENT_FLOW_URN, flow_urn) self.Set(self.Schema.LAST_RUN_TIME, rdfvalue.RDFDatetime.Now()) self.Flush() class CronHook(registry.InitHook): """Init hook for cron job metrics.""" pre = [aff4.AFF4InitHook, master.MasterInit] def RunOnce(self): """Main CronHook method.""" # Start the cron thread if configured to. if config.CONFIG["Cron.active"]: self.cron_worker = CronWorker() self.cron_worker.RunAsync() class LegacyCronJobAdapterMixin(object): """Mixin used by DualDBSystemCronJob decorator to generate legacy classes.""" def Start(self): self.Run() def DualDBSystemCronJob(legacy_name=None, stateful=False): """Decorator that creates AFF4 and RELDB cronjobs from a given mixin.""" def Decorator(cls): """Decorator producing 2 classes: legacy style one and a new style one.""" if not legacy_name: raise ValueError("legacy_name has to be provided") # Legacy cron jobs have different base classes depending on whether they're # stateful or not. if stateful: aff4_base_cls = StatefulSystemCronFlow else: aff4_base_cls = SystemCronFlow # Make sure that we're dealing with a true mixin to avoid subtle errors. if issubclass(cls, cronjobs.SystemCronJobBase): raise ValueError("Mixin class shouldn't inherit from SystemCronJobBase") if issubclass(cls, aff4_base_cls): raise ValueError( "Mixin class shouldn't inherit from %s" % aff4_base_cls.__name__) # Generate legacy class. Register it within the module as it's not going # to be returned from the decorator. aff4_cls = compatibility.MakeType( legacy_name, (cls, LegacyCronJobAdapterMixin, aff4_base_cls), {}) module = sys.modules[cls.__module__] setattr(module, legacy_name, aff4_cls) # Generate new class. No need to register it in the module (like the legacy # one) since it will replace the original decorated class. reldb_cls = compatibility.MakeType( compatibility.GetName(cls), (cls, cronjobs.SystemCronJobBase), {}) return reldb_cls return Decorator
test_mcrouter_basic.py
# Copyright (c) 2015, Facebook, Inc. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. An additional grant # of patent rights can be found in the PATENTS file in the same directory. from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals from threading import Thread import time from mcrouter.test.MCProcess import McrouterClient, Memcached from mcrouter.test.McrouterTestCase import McrouterTestCase class TestMcrouterBasic(McrouterTestCase): config = './mcrouter/test/mcrouter_test_basic_1_1_1.json' extra_args = [] def setUp(self): # The order here corresponds to the order of hosts in the .json self.mc = self.add_server(Memcached()) def get_mcrouter(self, additional_args=[]): return self.add_mcrouter( self.config, extra_args=self.extra_args + additional_args) def test_basic_lease(self): mcr = self.get_mcrouter() result = mcr.leaseGet("testkey") real_token = result["token"] self.assertNotEqual(real_token, None) result["value"] = "newvalue" result["token"] = 42000 self.assertFalse(mcr.leaseSet("testkey", result)) result["token"] = real_token self.assertTrue(mcr.leaseSet("testkey", result)) result2 = mcr.leaseGet("testkey") self.assertEqual(result2["token"], None) self.assertEqual(result2["value"], "newvalue") # Test stale stored: lease-get followed by a delete result = mcr.leaseGet("newtestkey") self.assertFalse(mcr.delete("newtestkey")) self.assertTrue(mcr.leaseSet("newtestkey", result, is_stalestored=True)) def test_invalid_key(self): """ Tests behavior when mcrouter routes keys which have prefixes that are not in the config. """ mcr = self.get_mcrouter() invalid_key = '/blah/bloh/key' self.assertFalse(mcr.set(invalid_key, 'value')) self.assertEqual(mcr.get(invalid_key), "SERVER_ERROR local error") def test_stats_deadlock(self): mcr = self.get_mcrouter(['--proxy-threads=8']) def run_client(fail, port): mc = McrouterClient(port) mc.connect() for i in range(1000): s = mc.stats() if not s: fail[0] = True return f = [False] ts = [Thread(target=run_client, args=(f, mcr.port)) for i in range(8)] [t.start() for t in ts] [t.join() for t in ts] self.assertFalse(f[0]) def test_basic_cas(self): mcr = self.get_mcrouter() self.assertIsNone(mcr.cas('key', 'value', 1)) self.assertIsNone(mcr.gets('key')) self.assertTrue(mcr.add('key', 'value')) ret = mcr.gets('key') self.assertIsNotNone(ret) old_cas = ret['cas'] self.assertEqual(ret['value'], 'value') self.assertTrue(mcr.cas('key', 'value2', ret["cas"])) ret = mcr.gets('key') self.assertEqual(ret['value'], 'value2') self.assertNotEqual(old_cas, ret['cas']) self.assertTrue(mcr.set('key', 'value2')) self.assertFalse(mcr.cas('key', 'value3', ret['cas'])) self.assertEqual(mcr.gets('key')['value'], 'value2') def test_shutdown(self): mcr = self.get_mcrouter() mcr.shutdown() time.sleep(2) self.assertFalse(mcr.is_alive()) def test_set_exptime(self): mcr = self.get_mcrouter() # positive self.assertTrue(mcr.set('key', 'value', exptime=10)) self.assertEqual(mcr.get('key'), 'value') # negative self.assertTrue(mcr.set('key', 'value', exptime=-10)) self.assertIsNone(mcr.get('key')) # future: year 2033 self.assertTrue(mcr.set('key', 'value', exptime=2000000000)) self.assertEqual(mcr.get('key'), 'value') # past self.assertTrue(mcr.set('key', 'value', exptime=1432250000)) self.assertIsNone(mcr.get('key')) class TestMcrouterInvalidRoute(McrouterTestCase): config = './mcrouter/test/mcrouter_test_basic_1_1_1.json' extra_args = ['--send-invalid-route-to-default'] def setUp(self): # The order here corresponds to the order of hosts in the .json self.mc = self.add_server(Memcached()) def get_mcrouter(self, additional_args=[]): return self.add_mcrouter( self.config, extra_args=self.extra_args + additional_args) def test_basic_invalid_route(self): mcr = self.get_mcrouter() self.assertTrue(mcr.set("key", "value")) self.assertEqual(mcr.get("key"), "value") self.assertTrue(mcr.set("/././key", "value2")) self.assertEqual(mcr.get("/././key"), "value2") self.assertEqual(mcr.get("/f/f/key"), "value2") self.assertEqual(mcr.get("/test/test/key"), "value2") self.assertEqual(mcr.get("key"), "value2") self.assertTrue(mcr.set("/a/a/key", "value3")) self.assertEqual(mcr.get("/a/a/key"), "value3") self.assertEqual(mcr.get("key"), "value3") self.assertTrue(mcr.set("/*/a/key", "value4")) self.assertEqual(mcr.get("/a/a/key"), "value4") self.assertEqual(mcr.get("key"), "value4") self.assertTrue(mcr.set("/*/*/key", "value4")) self.assertEqual(mcr.get("/a/a/key"), "value4") self.assertEqual(mcr.get("key"), "value4") class TestMcrouterBasic2(McrouterTestCase): config = './mcrouter/test/mcrouter_test_basic_2_1_1.json' extra_args = [] def setUp(self): # The order here corresponds to the order of hosts in the .json self.mc1 = self.add_server(Memcached()) self.mc2 = self.add_server(Memcached()) def get_mcrouter(self, additional_args=[]): return self.add_mcrouter( self.config, '/a/a/', extra_args=self.extra_args + additional_args) def test_prefix_routing(self): mcr = self.get_mcrouter() # first test default routing prefix self.mc1.set("cluster1_key", "cluster1") self.assertEqual(mcr.get("cluster1_key"), "cluster1") # next set to a remote cluster mcr.set("/b/b/cluster2_key_router", "cluster2_router") self.assertEqual(self.mc2.get("cluster2_key_router"), "cluster2_router") # try fetching a value from a remote cluster self.mc2.set("cluster2_key", "cluster2") self.assertEqual(self.mc2.get("cluster2_key"), "cluster2") self.assertEqual(mcr.get("/b/b/cluster2_key"), "cluster2") def test_delete(self): mcr = self.get_mcrouter() mcr.set('foobarbizbang', 'some_value') self.assertTrue(mcr.delete('foobarbizbang')) self.assertFalse(mcr.delete('foobarbizbang2')) self.assertTrue(mcr.set('hello', 'world')) self.assertEqual(mcr.get('hello'), 'world') def test_malformed_umbrella_length(self): mcr = self.get_mcrouter() # Send an umbrella request with a malformed length, and check that we # get something back from the server (i.e. that it doesn't crash) mcr.socket.settimeout(10) mcr.socket.send('}}\x00\x01\x00\x00\x00\x00') data = mcr.socket.recv(1024) self.assertTrue(data) # else hang def test_use_big_value(self): mcr = self.get_mcrouter(['--big-value-split-threshold=100']) reply = mcr.get('__mcrouter__.route_handles(get,test)') self.assertEqual(reply.count('big-value'), 1) def test_no_big_value(self): mcr = self.get_mcrouter() reply = mcr.get('__mcrouter__.route_handles(get,test)') self.assertNotIn('big-value', reply) def test_enable_logging_route(self): mcr = self.get_mcrouter(['--enable-logging-route']) reply = mcr.get('__mcrouter__.route_handles(get,test)') self.assertEqual(reply.count('logging'), 1) def test_no_logging_route(self): mcr = self.get_mcrouter() reply = mcr.get('__mcrouter__.route_handles(get,test)') self.assertNotIn('logging', reply) class TestBasicAllSync(McrouterTestCase): config = './mcrouter/test/test_basic_all_sync.json' extra_args = [] def setUp(self): # The order here corresponds to the order of hosts in the .json self.mc1 = self.add_server(Memcached()) self.mc2 = self.add_server(Memcached()) self.mc3 = self.add_server(Memcached()) def get_mcrouter(self): return self.add_mcrouter(self.config, extra_args=self.extra_args) def test_basic_all_sync(self): """ Tests that the responses are being aggregated and the most awful (based on the awfulness map) is begin returned """ mcr = self.get_mcrouter() # set key in three cluster self.mc1.set("key", "value") self.mc2.set("key", "value") self.mc3.set("key", "value") self.assertEqual(self.mc1.get("key"), "value") self.assertEqual(self.mc2.get("key"), "value") self.assertEqual(self.mc3.get("key"), "value") self.assertEqual(mcr.get("key"), "value") # delete will return True on DELETED # will return False on NOT_FOUND # perform a delete and check the response # the aggregated response should be DELETED self.assertTrue(mcr.delete("key")) # set key in only one cluster self.mc1.set("key", "value") self.assertEqual(self.mc1.get("key"), "value") # the aggregated response should be NOT_FOUND self.assertFalse(mcr.delete("key")) class TestBasicAllFirst(McrouterTestCase): config = './mcrouter/test/test_basic_all_first.json' extra_args = [] def setUp(self): # The order here corresponds to the order of hosts in the .json self.mc1 = self.add_server(Memcached()) self.mc2 = self.add_server(Memcached()) self.mc3 = self.add_server(Memcached()) def get_mcrouter(self): return self.add_mcrouter(self.config, extra_args=self.extra_args) def test_basic_all_first(self): """ Tests that the first non-tko response is returned """ mcr = self.get_mcrouter() self.mc1.terminate() self.assertTrue(mcr.set("key", "value")) self.assertEqual(mcr.get("key"), "value") class TestBasicAllMajority(McrouterTestCase): config = './mcrouter/test/test_basic_all_majority.json' extra_args = [] def setUp(self): # The order here corresponds to the order of hosts in the .json self.mc1 = self.add_server(Memcached()) self.mc2 = self.add_server(Memcached()) self.mc3 = self.add_server(Memcached()) self.mc4 = self.add_server(Memcached()) def get_mcrouter(self): return self.add_mcrouter(self.config, extra_args=self.extra_args) def test_basic_all_majority(self): """ Tests that the majority response (ties broken by awfulness) is being returned """ mcr = self.get_mcrouter() # set key in four cluster self.mc1.set("key", "value") self.mc2.set("key", "value") self.mc3.set("key", "value") self.mc4.set("key", "value") self.assertEqual(self.mc1.get("key"), "value") self.assertEqual(self.mc2.get("key"), "value") self.assertEqual(self.mc3.get("key"), "value") self.assertEqual(self.mc4.get("key"), "value") self.assertEqual(mcr.get("key"), "value") # perform a delete and check the response # the majority response should be DELETED self.assertTrue(mcr.delete("key")) # make sure all deletes complete (otherwise they can race # with the sets below) time.sleep(1) # set key in three clusters self.assertTrue(self.mc1.set("key", "value")) self.assertTrue(self.mc2.set("key", "value")) self.assertTrue(self.mc3.set("key", "value")) self.assertEqual(self.mc1.get("key"), "value") self.assertEqual(self.mc2.get("key"), "value") self.assertEqual(self.mc3.get("key"), "value") # the majority response should be DELETED self.assertTrue(mcr.delete("key")) # make sure all deletes complete (otherwise they can race # with the sets below) time.sleep(1) # set key in only one clusters self.mc1.set("key", "value") self.assertEqual(self.mc1.get("key"), "value") # the majority response should be NOT_FOUND self.assertFalse(mcr.delete("key")) # make sure all deletes complete (otherwise they can race # with the sets below) time.sleep(1) # set key in two out of four clusters self.mc1.set("key", "value") self.mc2.set("key", "value") self.assertEqual(self.mc1.get("key"), "value") self.assertEqual(self.mc2.get("key"), "value") # the majority response should be NOT_FOUND # since it is sorted by awfulness map self.assertFalse(mcr.delete("key")) class TestBasicFailover(McrouterTestCase): config = './mcrouter/test/test_basic_failover.json' extra_args = [] def setUp(self): # The order here corresponds to the order of hosts in the .json self.mc1 = self.add_server(Memcached()) self.mc2 = self.add_server(Memcached()) def get_mcrouter(self): return self.add_mcrouter(self.config, extra_args=self.extra_args) def test_failover(self): """ Tests that the failover path works. """ # default path is mctestc01 mcr = self.get_mcrouter() # Go through the default route and verify a get. self.assertTrue(self.mc1.set("key", "value")) self.assertEqual(mcr.get("key"), "value") self.mc1.terminate() # Go through the failover now. # We assert twice since in the first call mcrouter will discover # a tko host and it short circuits the second time. self.assertEqual(mcr.get("key"), None) self.assertEqual(mcr.get("key"), None) # Set in the failover and check. self.assertTrue(self.mc2.set("key", "value")) self.assertEqual(mcr.get("key"), "value") self.assertEqual(mcr.get("key"), "value") def test_failover_negative_exptime(self): mcr = self.get_mcrouter() # Go through the default route and verify a get. self.assertTrue(mcr.set("key", "value", exptime=0)) self.assertEqual(mcr.get("key"), "value") # Exptime using negative value: past self.assertTrue(mcr.set("key", "value", exptime=-10)) self.assertIsNone(mcr.get("key")) self.mc1.terminate() # Go through the failover now. # We assert twice since in the first call mcrouter will discover # a tko host and it short circuits the second time. self.assertEqual(mcr.get("key"), None) self.assertEqual(mcr.get("key"), None) # Check get failover still works self.assertTrue(self.mc2.set("key", "value")) self.assertEqual(mcr.get("key"), "value") # Exptime using negative value: past self.assertTrue(mcr.set("key", "value", exptime=-10)) self.assertIsNone(mcr.get("key")) class TestBasicFailoverOverride(McrouterTestCase): config = './mcrouter/test/test_basic_failover_override.json' extra_args = [] def setUp(self): # The order here corresponds to the order of hosts in the .json self.mc1 = self.add_server(Memcached()) self.mc2 = self.add_server(Memcached()) def get_mcrouter(self): return self.add_mcrouter(self.config, extra_args=self.extra_args) def test_failover_override(self): """ Tests that the failover overrides work. """ mcr = self.get_mcrouter() # See that failovers are disabled for cluster1 self.mc1.terminate() self.assertEqual(mcr.set("key1", "value1"), None) self.assertEqual(mcr.get("key1"), None) self.assertEqual(mcr.get("key1"), None) # Check get failover still works self.assertTrue(self.mc2.set("key2", "value2")) self.assertEqual(mcr.get("key2"), "value2") self.assertEqual(mcr.get("key2"), "value2") class TestMcrouterBasicL1L2(McrouterTestCase): config = './mcrouter/test/test_basic_l1_l2.json' config_ncache = './mcrouter/test/test_basic_l1_l2_ncache.json' extra_args = [] def setUp(self): # The order here corresponds to the order of hosts in the .json self.l1 = self.add_server(Memcached()) self.l2 = self.add_server(Memcached()) def get_mcrouter(self, config): return self.add_mcrouter(config, extra_args=self.extra_args) def test_l1_l2_get(self): """ Tests that gets using l1/l2 caching and result upgrading is working """ mcr = self.get_mcrouter(self.config) # get a non-existent key self.assertFalse(mcr.get("key1")) # set keys in only l1 pool self.l1.set("key1", "value1") self.assertEqual(self.l1.get("key1"), "value1") # perform a get and check the response self.assertTrue(mcr.get("key1"), "value1") # set key only in l2 pool self.l2.set("key2", "value2") self.assertEqual(self.l2.get("key2"), "value2") self.assertEqual(self.l1.get("key2"), None) # perform a get and check the response self.assertEqual(mcr.get("key2"), "value2") # perform the same get until it gets upgraded to l1 # if the test gets stuck in an infinite loop here upgrading results is # not working while self.l1.get("key2") != "value2": self.assertEqual(mcr.get("key2"), "value2") def test_l1_l2_get_l1_down(self): """ Tests that gets using l1/l2 caching is working when l1 is down """ mcr = self.get_mcrouter(self.config) # set key in l1 and l2 pools self.l1.set("key1", "value1") self.l2.set("key1", "value1") self.assertEqual(self.l1.get("key1"), "value1") self.assertEqual(self.l2.get("key1"), "value1") # terminate the l1 pool self.l1.terminate() # we should still be able to get from l2 self.assertEqual(mcr.get("key1"), "value1") def test_l1_l2_get_l2_down(self): """ Tests that gets using l1/l2 caching is working when l2 is down """ mcr = self.get_mcrouter(self.config) # set key in l1 and l2 pools self.l1.set("key1", "value1") self.l2.set("key1", "value1") self.assertEqual(self.l1.get("key1"), "value1") self.assertEqual(self.l2.get("key1"), "value1") # terminate the l2 regional pool self.l2.terminate() # we should still be able to get from l1 self.assertTrue(mcr.get("key1"), "value1") # terminate l1 pool as well self.l1.terminate() # we should get nothing back self.assertFalse(mcr.get("key1")) def test_l1_l2_get_ncache(self): mcr = self.get_mcrouter(self.config_ncache) # get a non-existent key self.assertFalse(mcr.get("key1")) time.sleep(1) self.assertEqual(self.l1.get("key1"), "ncache") self.assertTrue(self.l2.set("key1", "value1")) self.assertFalse(mcr.get("key1")) self.assertFalse(mcr.get("key1")) self.assertFalse(mcr.get("key1")) self.assertFalse(mcr.get("key1")) self.assertFalse(mcr.get("key1")) time.sleep(1) self.assertEqual(mcr.get("key1"), "value1") self.assertEqual(self.l1.get("key1"), "value1")
tx_recv_interactive.py
#!/usr/bin/env python # # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # from __future__ import print_function import sys import threading from proton.reactor import ApplicationEvent, Container, EventInjector from proton.handlers import MessagingHandler, TransactionHandler class TxRecv(MessagingHandler, TransactionHandler): def __init__(self): super(TxRecv, self).__init__(prefetch=0, auto_accept=False) def on_start(self, event): self.container = event.container self.conn = self.container.connect("localhost:5672") self.receiver = self.container.create_receiver(self.conn, "examples") self.container.declare_transaction(self.conn, handler=self, settle_before_discharge=True) self.transaction = None def on_message(self, event): print(event.message.body) self.transaction.accept(event.delivery) def on_transaction_declared(self, event): self.transaction = event.transaction print("transaction declared") def on_transaction_committed(self, event): print("transaction committed") self.container.declare_transaction(self.conn, handler=self) def on_transaction_aborted(self, event): print("transaction aborted") self.container.declare_transaction(self.conn, handler=self) def on_commit(self, event): self.transaction.commit() def on_abort(self, event): self.transaction.abort() def on_fetch(self, event): self.receiver.flow(1) def on_quit(self, event): c = self.receiver.connection self.receiver.close() c.close() try: reactor = Container(TxRecv()) events = EventInjector() reactor.selectable(events) thread = threading.Thread(target=reactor.run) thread.daemon=True thread.start() print("Enter 'fetch', 'commit' or 'abort'") while True: line = sys.stdin.readline() if line: events.trigger(ApplicationEvent(line.strip())) else: break except KeyboardInterrupt: pass
p_executer.py
# -*- encoding: utf-8 -*- ''' Current module: pyrunner.p_executer Rough version history: v1.0 Original version to use v1.1 add 'launch_mobile' function v2.1 reconstitute this module with unittest and support mutil runner ******************************************************************** @AUTHOR: Administrator-Bruce Luo(罗科峰) MAIL: lkf20031988@163.com RCS: rtsf.p_executer,v 2.1 2018年9月2日 FROM: 2015年5月11日 ******************************************************************** ====================================================================== UI and Web Http automation frame for python. ''' import unittest,sys,os import multiprocessing,threading from functools import partial from rtsf.p_applog import logger from rtsf.p_tracer import Tracer from rtsf.p_testcase import YamlCaseLoader,parse_project_data from rtsf import p_testcase, p_compat,p_exception class TestCase(unittest.TestCase): """ create a testcase. """ def __init__(self, test_runner, testcase_dict, variables): super(TestCase, self).__init__() self.test_runner = test_runner self.testcase_dict = testcase_dict.copy() self.variables = variables def runTest(self): """ run testcase and check result. """ self.test_runner._run_test(self.testcase_dict, self.variables) class TestSuite(unittest.TestSuite): """ create test suite with a testset, it may include one or several testcases. each suite should initialize a separate Runner() with testset config. @param (dict) testset { "name": "testset description", "project": { "name": "project name", "module": "testset description" "data":[ {'csv': 'username_password.csv', 'by': 'Sequential'}, {'csv': 'devices.csv', 'by': 'Sequential'} ] }, "cases": [ { "name": "testcase description", "tester": "", # optional "responsible": "", # optional "pre_command": [], # optional "steps": [], "post_command": {}, # optional "verify": [] # optional }, testcase12 ] } """ def __init__(self, testset, runner_cls): super(TestSuite, self).__init__() file_path = testset.get("file_path") project = testset.get("project") testcases = testset.get("cases", []) project_data = project.pop("data",[]) test_runner = self.test_runner = runner_cls() if not isinstance(test_runner._default_devices, (list, tuple)): raise TypeError("_default_devices not a list or tuple.") test_runner.init_runner(parser = p_testcase.TestCaseParser(file_path = file_path), tracers = {device:Tracer(device_id = device, dir_name = os.path.dirname(os.path.abspath(file_path))) for device in test_runner._default_devices}, projinfo = project ) for data_variables_dict in parse_project_data(project_data, file_path) or [{}]: for testcase_dict in testcases: self._add_test_to_suite(testcase_dict["name"], test_runner, testcase_dict, data_variables_dict) def _add_test_to_suite(self, testcase_name, test_runner, testcase_dict, variables): if p_compat.is_py3: TestCase.runTest.__doc__ = testcase_name else: TestCase.runTest.__func__.__doc__ = testcase_name test = TestCase(test_runner, testcase_dict, variables) [self.addTest(test) for _ in range(int(testcase_dict.get("times", 1)))] @property def tests(self): return self._tests class TaskSuite(unittest.TestSuite): """ create task suite with specified testcase path. each task suite may include one or several test suite. """ def __init__(self, testsets, runner_cls): """ @params testsets (dict/list): testset or list of testset testset_dict or [ testset_dict_1, testset_dict_2, { "name": "desc1", "config": {}, "api": {}, "testcases": [testcase11, testcase12] } ] mapping (dict): passed in variables mapping, it will override variables in config block """ super(TaskSuite, self).__init__() if not testsets: raise p_exception.TestcaseNotFound if isinstance(testsets, dict): testsets = [testsets] self.suite_list = [] for testset in testsets: suite = TestSuite(testset, runner_cls) self.addTest(suite) self.suite_list.append(suite) @property def tasks(self): return self.suite_list def init_test_suite(path_or_testsets, runner_cls): if not p_testcase.is_testsets(path_or_testsets): YamlCaseLoader.load_dependencies(path_or_testsets) testsets = YamlCaseLoader.load_files(path_or_testsets) else: testsets = path_or_testsets return TaskSuite(testsets, runner_cls) class TestRunner(object): def __init__(self, **kwargs): """ initialize test runner @param (dict) kwargs: key-value arguments used to initialize TextTestRunner """ runner_cls = kwargs.pop("runner", Runner) if not callable(runner_cls) and not isinstance(runner_cls(), Runner): raise p_exception.InstanceTypeError("Invalid runner, must be instance of Runner.") self._runner_cls = runner_cls self.runner = unittest.TextTestRunner(**kwargs) def run(self, path_or_testsets): """ start to run test with varaibles mapping @param path_or_testsets: YAML/JSON testset file path or testset list path: path could be in several type - absolute/relative file path - absolute/relative folder path - list/set container with file(s) and/or folder(s) testsets: testset or list of testset - (dict) testset_dict - (list) list of testset_dict [ testset_dict_1, testset_dict_2 ] """ try: self._task_suite =init_test_suite(path_or_testsets, self._runner_cls) except p_exception.TestcaseNotFound: logger.log_error("Testcases not found in {}".format(path_or_testsets)) sys.exit(1) self.text_test_result = self.runner.run(self._task_suite) return self def gen_html_report(self): html_report = [] for suite in self._task_suite.tasks: proj_name = suite.test_runner.proj_info["name"] reporters = suite.test_runner.tracers.values() for reporter in reporters: html_report.extend(reporter.generate_html_report(proj_name, proj_module=None)) return html_report class Runner(object): def __init__(self): ''' @note: maybe override variables _default_devices -> list type; to genrate tracer map, format is `{device_id: tracer_obj}` e.g. default {"":tracer_obj} use to generate report for local host; {"192.168.0.1:5555":tracer_obj1, "192.168.0.2:5555":tracer_obj2} use to generate report for remote host if run with mutilple process _default_drivers -> list type; to define driver map, format is `(device_id: driver)` e.g. default ("", None) use to run case with a driver; [("192.168.0.1:5555":selenium_driver), ("192.168.0.2:5555":appium_driver), ...] use for multiple process to run case with specified drivers ''' self._default_devices = [""] self._default_drivers = [("",None)] self._local_driver = True def init_runner(self, parser, tracers, projinfo): ''' initial some instances for preparing to run test case @note: should not override @param parser: instance of TestCaseParser @param tracers: dict type for the instance of Tracer. Such as {"":tracer_obj} or {"192.168.0.1:5555":tracer_obj1, "192.168.0.2:5555":tracer_obj2} @param proj_info: dict type of test case. use like: self.proj_info["module"], self.proj_info["name"] yaml case like: - project: name: xxx module: xxxx dict case like: {"project": {"name": xxx, "module": xxxx}} ''' self.parser = parser self.tracers = tracers self.proj_info = projinfo def run_test(self, testcase_dict, variables, driver_map): ''' define how to run a case. override this method @param testcase_dice: yaml case @param driver_map: device id map to a driver ''' fn, _ = driver_map reporter = self.tracers[fn] parser = self.parser parser.update_binded_variables(variables) case_name = parser.eval_content_with_bind_actions(testcase_dict.get("name",u'rtsf')) reporter.start(self.proj_info["module"], case_name, testcase_dict.get("responsible",u"rock feng"), testcase_dict.get("tester",u"rock feng")) reporter.log_debug(u"===== run_test\n\t{}".format(testcase_dict)) reporter.section(u"------------section ok") reporter.step(u"step ok") reporter.normal(u"normal ok") reporter.stop() return reporter def _run_test(self, testcase_dict, variables={}): ''' guide the running case @param testcase_dice: yaml case @param variables: dict type; this is defined the variables for the data-driven test e.g. default {} use to run case without data-driven {"username":"test1","password":"123456"} ''' if self._local_driver: self.run_test(testcase_dict, variables, self._default_drivers[0]) else: self._drivers = [] self._run_grid_multithread(partial(self.run_test, testcase_dict, variables), self._default_drivers) def _run_grid_multiprocess(self, func, iterables): ''' running case with mutil process to support selenium grid-mode(multiple web) and appium grid-mode(multiple devices). @param func: function object @param iterables: iterable objects ''' multiprocessing.freeze_support() pool = multiprocessing.Pool() pool_tracers = pool.map(func, iterables) pool.close() pool.join() # 传递给 pool.map的 实例对象,内存地址发生变化, 因此,这里在运行结束后,重新定义 self.tracers self.tracers = dict(zip(self._default_devices, pool_tracers)) def _run_grid_multithread(self, func, iterables): ''' running case with mutil process to support selenium grid-mode(multiple web) and appium grid-mode(multiple devices). @param func: function object @param iterables: iterable objects ''' f = lambda x: threading.Thread(target = func,args = (x,)) threads = map(f, iterables) for thread in threads: thread.setDaemon(True) thread.start() thread.join()
__init__.py
#!/usr/bin/env python # Software License Agreement (BSD License) # # Copyright (c) 2012, Fraunhofer FKIE/US, Alexander Tiderko # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following # disclaimer in the documentation and/or other materials provided # with the distribution. # * Neither the name of Fraunhofer nor the names of its # contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS # FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE # COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, # INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, # BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT # LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN # ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. import argparse import os import roslib.network import rospy import socket import subprocess import sys import threading from master_discovery_fkie.common import get_hostname from node_manager_fkie.common import get_ros_home, masteruri_from_ros from node_manager_fkie.file_watcher import FileWatcher from node_manager_fkie.history import History from node_manager_fkie.master_view_proxy import LaunchArgsSelectionRequest from node_manager_fkie.name_resolution import NameResolution from node_manager_fkie.progress_queue import InteractionNeededError from node_manager_fkie.screen_handler import ScreenHandler, ScreenSelectionRequest, NoScreenOpenLogRequest from node_manager_fkie.settings import Settings from node_manager_fkie.ssh_handler import SSHhandler, AuthenticationRequest from node_manager_fkie.start_handler import StartException, AdvRunCfg from node_manager_fkie.start_handler import StartHandler, BinarySelectionRequest PKG_NAME = 'node_manager_fkie' __author__ = "Alexander Tiderko (Alexander.Tiderko@fkie.fraunhofer.de)" __copyright__ = "Copyright (c) 2012 Alexander Tiderko, Fraunhofer FKIE/US" __license__ = "BSD" __version__ = "unknown" # git describe --tags --dirty --always __date__ = "unknown" # git log -1 --date=iso # PYTHONVER = (2, 7, 1) # if sys.version_info < PYTHONVER: # print 'For full scope of operation this application requires python version > %s, current: %s' % (str(PYTHONVER), sys.version_info) HOSTS_CACHE = dict() ''' the cache directory to store the results of tests for local hosts. @see: L{is_local()} ''' _LOCK = threading.RLock() _MAIN_FORM = None _SETTINGS = None _SSH_HANDLER = None _SCREEN_HANDLER = None _START_HANDLER = None _NAME_RESOLUTION = None _HISTORY = None _FILE_WATCHER = None _FILE_WATCHER_PARAM = None _QAPP = None def settings(): ''' @return: The global settings @rtype: L{Settings} ''' return _SETTINGS def ssh(): ''' @return: The SSH handler to handle the SSH connections @rtype: L{SSHhandler} ''' return _SSH_HANDLER def screen(): ''' @return: The screen handler to the screens. @rtype: L{ScreenHandler} @see: U{http://linuxwiki.de/screen} ''' return _SCREEN_HANDLER def starter(): ''' @return: The start handler to handle the start of new ROS nodes on local or remote machines. @rtype: L{StartHandler} ''' return _START_HANDLER def nameres(): ''' @return: The name resolution object translate the the name to the host or ROS master URI. @rtype: L{NameResolution} ''' return _NAME_RESOLUTION def history(): ''' @return: The history of entered parameter. @rtype: L{History} ''' return _HISTORY def filewatcher(): ''' @return: The file watcher object with all loaded configuration files. @rtype: L{FileWatcher} ''' return _FILE_WATCHER def file_watcher_param(): ''' @return: The file watcher object with all configuration files referenced by parameter value. @rtype: L{FileWatcher} ''' return _FILE_WATCHER_PARAM def get_ros_hostname(url): ''' Returns the host name used in a url, if it is a name. If it is an IP an empty string will be returned. @return: host or '' if url is an IP or invalid @rtype: C{str} ''' return NameResolution.get_ros_hostname(url) def is_local(hostname, wait=False): ''' Test whether the given host name is the name of the local host or not. @param hostname: the name or IP of the host @type hostname: C{str} @return: C{True} if the hostname is local or None @rtype: C{bool} @raise Exception: on errors while resolving host ''' if hostname is None: return True with _LOCK: if hostname in HOSTS_CACHE: if isinstance(HOSTS_CACHE[hostname], threading.Thread): return False return HOSTS_CACHE[hostname] try: socket.inet_aton(hostname) local_addresses = ['localhost'] + roslib.network.get_local_addresses() # check 127/8 and local addresses result = hostname.startswith('127.') or hostname in local_addresses with _LOCK: HOSTS_CACHE[hostname] = result return result except socket.error: # the hostname must be resolved => do it in a thread if wait: result = __is_local(hostname) return result else: thread = threading.Thread(target=__is_local, args=((hostname,))) thread.daemon = True with _LOCK: HOSTS_CACHE[hostname] = thread thread.start() return False def __is_local(hostname): ''' Test the hostname whether it is local or not. Uses socket.gethostbyname(). ''' try: machine_addr = socket.gethostbyname(hostname) except socket.gaierror: with _LOCK: HOSTS_CACHE[hostname] = False return False local_addresses = ['localhost'] + roslib.network.get_local_addresses() # check 127/8 and local addresses result = machine_addr.startswith('127.') or machine_addr in local_addresses with _LOCK: HOSTS_CACHE[hostname] = result return result def detect_version(): ''' Try to detect the current version from git, installed VERSION/DATE files or package.xml ''' try: global __version__ global __date__ pkg_path = roslib.packages.get_pkg_dir(PKG_NAME) if pkg_path is not None and os.path.isfile("%s/VERSION" % pkg_path): try: with open("%s/VERSION" % pkg_path) as f: version = f.read() __version__ = version.strip() with open("%s/DATE" % pkg_path) as f: datetag = f.read().split() if datetag: __date__ = datetag[0] except Exception as err: print >> sys.stderr, "version detection error: %s" % err elif os.path.isdir("%s/../.git" % settings().PACKAGE_DIR): try: os.chdir(settings().PACKAGE_DIR) ps = subprocess.Popen(args=['git', 'describe', '--tags', '--dirty', '--always'], stdin=None, stdout=subprocess.PIPE, stderr=None) output = ps.stdout.read() ps.wait() __version__ = output.strip() ps = subprocess.Popen(args=['git', 'show', '-s', '--format=%ci'], stdin=None, stdout=subprocess.PIPE, stderr=None) output = ps.stdout.read().split() if output: __date__ = output[0] ps.wait() except Exception as err: print >> sys.stderr, "version detection error: %s" % err else: import xml.dom import xml.dom.minidom as dom ppath = roslib.packages.find_resource(PKG_NAME, 'package.xml') if ppath: doc = dom.parse(ppath[0]) version_tags = doc.getElementsByTagName("version") if version_tags: version = version_tags[0].firstChild.data __version__ = version else: print >> sys.stderr, "version detection: no version tag in package.xml found!" else: print >> sys.stderr, "version detection: package.xml not found!" except Exception as err: print >> sys.stderr, "version detection error: %s" % err def finish(*arg): ''' Callback called on exit of the ros node. ''' # close all ssh sessions if _SSH_HANDLER is not None: _SSH_HANDLER.close() # save the launch history if _HISTORY is not None: try: _HISTORY.storeAll() except Exception as err: print >> sys.stderr, "Error while store history: %s" % err from node_manager_fkie.main_window import MainWindow # stop all threads in the main window if isinstance(_MAIN_FORM, MainWindow): _MAIN_FORM.finish() if _QAPP is not None: _QAPP.exit() def set_terminal_name(name): ''' Change the terminal name. @param name: New name of the terminal @type name: C{str} ''' sys.stdout.write("\x1b]2;%s\x07" % name) def set_process_name(name): ''' Change the process name. @param name: New process name @type name: C{str} ''' try: from ctypes import cdll, byref, create_string_buffer libc = cdll.LoadLibrary('libc.so.6') buff = create_string_buffer(len(name) + 1) buff.value = name libc.prctl(15, byref(buff), 0, 0, 0) except: pass def init_settings(): global _SETTINGS _SETTINGS = Settings() def init_globals(masteruri): ''' :return: True if the masteruri referred to localhost :rtype: bool ''' # initialize the global handler global _SSH_HANDLER global _SCREEN_HANDLER global _START_HANDLER global _NAME_RESOLUTION global _HISTORY global _FILE_WATCHER global _FILE_WATCHER_PARAM _SSH_HANDLER = SSHhandler() _SCREEN_HANDLER = ScreenHandler() _START_HANDLER = StartHandler() _NAME_RESOLUTION = NameResolution() _HISTORY = History() _FILE_WATCHER = FileWatcher() _FILE_WATCHER_PARAM = FileWatcher() # test where the roscore is running (local or remote) __is_local('localhost') # fill cache return __is_local(get_hostname(masteruri)) # fill cache def init_arg_parser(): parser = argparse.ArgumentParser() parser.add_argument("--version", action="version", version="%s %s" % ("%(prog)s", __version__)) parser.add_argument("-f", "--file", nargs=1, help="loads the given file as default on start") parser.add_argument("-m", "--muri", nargs=1, default='', help="starts ROS master with given URI, usefull on hosts " "with multiple interfaces. ROS_HOSTNAME will be set " "to the host of this URI, but only if it is not an IP.") group = parser.add_argument_group('echo') group.add_argument("--echo", nargs=2, help="starts an echo dialog instead of node manager", metavar=('name', 'type')) group.add_argument("--hz", action="store_true", help="shows only the Hz value instead of topic content in echo dialog") group.add_argument("--ssh", action="store_true", help="connects via SSH") return parser def init_echo_dialog(prog_name, masteruri, topic_name, topic_type, hz=False, use_ssh=False): ''' Intialize the environment to start an echo window. ''' # start ROS-Master, if not currently running # StartHandler._prepareROSMaster(masteruri) name = '%s_echo' % prog_name rospy.init_node(name, anonymous=True, log_level=rospy.INFO) set_terminal_name(name) set_process_name(name) from node_manager_fkie.echo_dialog import EchoDialog global _SSH_HANDLER _SSH_HANDLER = SSHhandler() return EchoDialog(topic_name, topic_type, hz, masteruri, use_ssh=use_ssh) def init_main_window(prog_name, masteruri, launch_files=[]): ''' Intialize the environment to start Node Manager. ''' # start ROS-Master, if not currently running StartHandler._prepareROSMaster(masteruri) # setup the loglevel try: log_level = getattr(rospy, rospy.get_param('/%s/log_level' % prog_name, "INFO")) except Exception as err: print("Error while set the log level: %s\n->INFO level will be used!" % err) log_level = rospy.INFO rospy.init_node(prog_name, anonymous=False, log_level=log_level) set_terminal_name(prog_name) set_process_name(prog_name) from node_manager_fkie.main_window import MainWindow local_master = init_globals(masteruri) return MainWindow(launch_files, not local_master, launch_files) # %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% # %%%%%%%%%%%%% MAIN %%%%%%%% # %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% def main(name): ''' Start the NodeManager or EchoDialog. :param name: the name propagated to the rospy.init_node() :type name: str ''' try: from python_qt_binding.QtGui import QApplication except: try: from python_qt_binding.QtWidgets import QApplication except: print >> sys.stderr, "please install 'python_qt_binding' package!!" sys.exit(-1) init_settings() detect_version() parser = init_arg_parser() args = rospy.myargv(argv=sys.argv) parsed_args = parser.parse_args(args[1:]) if parsed_args.muri: masteruri = parsed_args.muri[0] hostname = NameResolution.get_ros_hostname(masteruri) os.environ['ROS_MASTER_URI'] = masteruri if hostname: os.environ['ROS_HOSTNAME'] = hostname masteruri = settings().masteruri() # Initialize Qt global _QAPP _QAPP = QApplication(sys.argv) # decide to show main or echo dialog global _MAIN_FORM try: if parsed_args.echo: _MAIN_FORM = init_echo_dialog(name, masteruri, parsed_args.echo[0], parsed_args.echo[1], parsed_args.hz, parsed_args.ssh) else: _MAIN_FORM = init_main_window(name, masteruri, parsed_args.file) except Exception as err: sys.exit("%s" % err) exit_code = 0 # resize and show the qt window if not rospy.is_shutdown(): # change path for access to the images of descriptions os.chdir(settings().PACKAGE_DIR) # _MAIN_FORM.resize(1024, 720) screen_size = QApplication.desktop().availableGeometry() if (_MAIN_FORM.size().width() >= screen_size.width() or _MAIN_FORM.size().height() >= screen_size.height() - 24): _MAIN_FORM.showMaximized() else: _MAIN_FORM.show() exit_code = -1 rospy.on_shutdown(finish) exit_code = _QAPP.exec_() return exit_code
manager.py
#!/usr/bin/env python3 import os import time import sys import fcntl import errno import signal import shutil import subprocess import datetime import textwrap from typing import Dict, List from selfdrive.swaglog import cloudlog, add_logentries_handler from common.basedir import BASEDIR, PARAMS from common.android import ANDROID WEBCAM = os.getenv("WEBCAM") is not None sys.path.append(os.path.join(BASEDIR, "pyextra")) os.environ['BASEDIR'] = BASEDIR TOTAL_SCONS_NODES = 1140 prebuilt = os.path.exists(os.path.join(BASEDIR, 'prebuilt')) # Create folders needed for msgq try: os.mkdir("/dev/shm") except FileExistsError: pass except PermissionError: print("WARNING: failed to make /dev/shm") if ANDROID: os.chmod("/dev/shm", 0o777) def unblock_stdout(): # get a non-blocking stdout child_pid, child_pty = os.forkpty() if child_pid != 0: # parent # child is in its own process group, manually pass kill signals signal.signal(signal.SIGINT, lambda signum, frame: os.kill(child_pid, signal.SIGINT)) signal.signal(signal.SIGTERM, lambda signum, frame: os.kill(child_pid, signal.SIGTERM)) fcntl.fcntl(sys.stdout, fcntl.F_SETFL, fcntl.fcntl(sys.stdout, fcntl.F_GETFL) | os.O_NONBLOCK) while True: try: dat = os.read(child_pty, 4096) except OSError as e: if e.errno == errno.EIO: break continue if not dat: break try: sys.stdout.write(dat.decode('utf8')) except (OSError, IOError, UnicodeDecodeError): pass # os.wait() returns a tuple with the pid and a 16 bit value # whose low byte is the signal number and whose high byte is the exit satus exit_status = os.wait()[1] >> 8 os._exit(exit_status) if __name__ == "__main__": unblock_stdout() if __name__ == "__main__" and ANDROID: from common.spinner import Spinner from common.text_window import TextWindow else: from common.spinner import FakeSpinner as Spinner from common.text_window import FakeTextWindow as TextWindow import importlib import traceback from multiprocessing import Process # Run scons spinner = Spinner() spinner.update("0") if not prebuilt: for retry in [True, False]: # run scons env = os.environ.copy() env['SCONS_PROGRESS'] = "1" env['SCONS_CACHE'] = "1" nproc = os.cpu_count() j_flag = "" if nproc is None else "-j%d" % (nproc - 1) scons = subprocess.Popen(["scons", j_flag], cwd=BASEDIR, env=env, stderr=subprocess.PIPE) compile_output = [] # Read progress from stderr and update spinner while scons.poll() is None: try: line = scons.stderr.readline() # type: ignore if line is None: continue line = line.rstrip() prefix = b'progress: ' if line.startswith(prefix): i = int(line[len(prefix):]) if spinner is not None: spinner.update("%d" % (70.0 * (i / TOTAL_SCONS_NODES))) elif len(line): compile_output.append(line) print(line.decode('utf8', 'replace')) except Exception: pass if scons.returncode != 0: # Read remaining output r = scons.stderr.read().split(b'\n') # type: ignore compile_output += r if retry: print("scons build failed, cleaning in") for i in range(3, -1, -1): print("....%d" % i) time.sleep(1) subprocess.check_call(["scons", "-c"], cwd=BASEDIR, env=env) shutil.rmtree("/tmp/scons_cache") else: # Build failed log errors errors = [line.decode('utf8', 'replace') for line in compile_output if any([err in line for err in [b'error: ', b'not found, needed by target']])] error_s = "\n".join(errors) add_logentries_handler(cloudlog) cloudlog.error("scons build failed\n" + error_s) # Show TextWindow error_s = "\n \n".join(["\n".join(textwrap.wrap(e, 65)) for e in errors]) with TextWindow("Openpilot failed to build\n \n" + error_s) as t: t.wait_for_exit() exit(1) else: break import cereal import cereal.messaging as messaging from common.params import Params import selfdrive.crash as crash from selfdrive.registration import register from selfdrive.version import version, dirty from selfdrive.loggerd.config import ROOT from selfdrive.launcher import launcher from common import android from common.apk import update_apks, pm_apply_packages, start_offroad from common.manager_helpers import print_cpu_usage ThermalStatus = cereal.log.ThermalData.ThermalStatus # comment out anything you don't want to run managed_processes = { "thermald": "selfdrive.thermald.thermald", "uploader": "selfdrive.loggerd.uploader", # delete able "deleter": "selfdrive.loggerd.deleter", # delete able "controlsd": "selfdrive.controls.controlsd", "plannerd": "selfdrive.controls.plannerd", "radard": "selfdrive.controls.radard", "dmonitoringd": "selfdrive.controls.dmonitoringd", "ubloxd": ("selfdrive/locationd", ["./ubloxd"]), "loggerd": ("selfdrive/loggerd", ["./loggerd"]), # delete able "logmessaged": "selfdrive.logmessaged", # delete able "locationd": "selfdrive.locationd.locationd", "tombstoned": "selfdrive.tombstoned", "logcatd": ("selfdrive/logcatd", ["./logcatd"]), # delete able "proclogd": ("selfdrive/proclogd", ["./proclogd"]), "boardd": ("selfdrive/boardd", ["./boardd"]), # not used directly "pandad": "selfdrive.pandad", "ui": ("selfdrive/ui", ["./ui"]), "calibrationd": "selfdrive.locationd.calibrationd", "paramsd": ("selfdrive/locationd", ["./paramsd"]), "camerad": ("selfdrive/camerad", ["./camerad"]), "sensord": ("selfdrive/sensord", ["./sensord"]), "clocksd": ("selfdrive/clocksd", ["./clocksd"]), "gpsd": ("selfdrive/sensord", ["./gpsd"]), "updated": "selfdrive.updated", # delete able "dmonitoringmodeld": ("selfdrive/modeld", ["./dmonitoringmodeld"]), "modeld": ("selfdrive/modeld", ["./modeld"]), "driverview": "selfdrive.controls.lib.driverview", # delete able "appd": "selfdrive.kyd.appd.appd", } daemon_processes = { "manage_athenad": ("selfdrive.athena.manage_athenad", "AthenadPid"), } running: Dict[str, Process] = {} def get_running(): return running # due to qualcomm kernel bugs SIGKILLing camerad sometimes causes page table corruption unkillable_processes = ['camerad'] # processes to end with SIGINT instead of SIGTERM interrupt_processes: List[str] = [] # processes to end with SIGKILL instead of SIGTERM kill_processes = ['sensord', 'paramsd'] # processes to end if thermal conditions exceed Green parameters green_temp_processes = ['uploader'] persistent_processes = [ 'thermald', 'logmessaged', 'ui', 'uploader', ] if ANDROID: persistent_processes += [ 'logcatd', 'tombstoned', 'updated', 'deleter', 'appd', ] car_started_processes = [ 'controlsd', 'plannerd', 'loggerd', 'radard', 'dmonitoringd', 'calibrationd', 'paramsd', 'camerad', 'modeld', 'proclogd', 'ubloxd', 'locationd', ] if WEBCAM: car_started_processes += [ 'dmonitoringmodeld', ] if ANDROID: car_started_processes += [ 'sensord', 'clocksd', 'gpsd', 'dmonitoringmodeld', ] def register_managed_process(name, desc, car_started=False): global managed_processes, car_started_processes, persistent_processes print("registering %s" % name) managed_processes[name] = desc if car_started: car_started_processes.append(name) else: persistent_processes.append(name) # ****************** process management functions ****************** def nativelauncher(pargs, cwd): # exec the process os.chdir(cwd) # because when extracted from pex zips permissions get lost -_- os.chmod(pargs[0], 0o700) os.execvp(pargs[0], pargs) def start_managed_process(name): if name in running or name not in managed_processes: return proc = managed_processes[name] if isinstance(proc, str): cloudlog.info("starting python %s" % proc) running[name] = Process(name=name, target=launcher, args=(proc,)) else: pdir, pargs = proc cwd = os.path.join(BASEDIR, pdir) cloudlog.info("starting process %s" % name) running[name] = Process(name=name, target=nativelauncher, args=(pargs, cwd)) running[name].start() def start_daemon_process(name): params = Params() proc, pid_param = daemon_processes[name] pid = params.get(pid_param, encoding='utf-8') if pid is not None: try: os.kill(int(pid), 0) with open(f'/proc/{pid}/cmdline') as f: if proc in f.read(): # daemon is running return except (OSError, FileNotFoundError): # process is dead pass cloudlog.info("starting daemon %s" % name) proc = subprocess.Popen(['python', '-m', proc], stdin=open('/dev/null', 'r'), stdout=open('/dev/null', 'w'), stderr=open('/dev/null', 'w'), preexec_fn=os.setpgrp) params.put(pid_param, str(proc.pid)) def prepare_managed_process(p): proc = managed_processes[p] if isinstance(proc, str): # import this python cloudlog.info("preimporting %s" % proc) importlib.import_module(proc) elif os.path.isfile(os.path.join(BASEDIR, proc[0], "Makefile")): # build this process cloudlog.info("building %s" % (proc,)) try: subprocess.check_call(["make", "-j4"], cwd=os.path.join(BASEDIR, proc[0])) except subprocess.CalledProcessError: # make clean if the build failed cloudlog.warning("building %s failed, make clean" % (proc, )) subprocess.check_call(["make", "clean"], cwd=os.path.join(BASEDIR, proc[0])) subprocess.check_call(["make", "-j4"], cwd=os.path.join(BASEDIR, proc[0])) def join_process(process, timeout): # Process().join(timeout) will hang due to a python 3 bug: https://bugs.python.org/issue28382 # We have to poll the exitcode instead t = time.time() while time.time() - t < timeout and process.exitcode is None: time.sleep(0.001) def kill_managed_process(name): if name not in running or name not in managed_processes: return cloudlog.info("killing %s" % name) if running[name].exitcode is None: if name in interrupt_processes: os.kill(running[name].pid, signal.SIGINT) elif name in kill_processes: os.kill(running[name].pid, signal.SIGKILL) else: running[name].terminate() join_process(running[name], 5) if running[name].exitcode is None: if name in unkillable_processes: cloudlog.critical("unkillable process %s failed to exit! rebooting in 15 if it doesn't die" % name) join_process(running[name], 15) if running[name].exitcode is None: cloudlog.critical("FORCE REBOOTING PHONE!") os.system("date >> /sdcard/unkillable_reboot") os.system("reboot") raise RuntimeError else: cloudlog.info("killing %s with SIGKILL" % name) os.kill(running[name].pid, signal.SIGKILL) running[name].join() cloudlog.info("%s is dead with %d" % (name, running[name].exitcode)) del running[name] def cleanup_all_processes(signal, frame): cloudlog.info("caught ctrl-c %s %s" % (signal, frame)) if ANDROID: pm_apply_packages('disable') for name in list(running.keys()): kill_managed_process(name) cloudlog.info("everything is dead") # ****************** run loop ****************** def manager_init(should_register=True): if should_register: reg_res = register() if reg_res: dongle_id = reg_res else: raise Exception("server registration failed") else: dongle_id = "c"*16 # set dongle id cloudlog.info("dongle id is " + dongle_id) os.environ['DONGLE_ID'] = dongle_id cloudlog.info("dirty is %d" % dirty) if not dirty: os.environ['CLEAN'] = '1' cloudlog.bind_global(dongle_id=dongle_id, version=version, dirty=dirty, is_eon=True) crash.bind_user(id=dongle_id) crash.bind_extra(version=version, dirty=dirty, is_eon=True) os.umask(0) try: os.mkdir(ROOT, 0o777) except OSError: pass # ensure shared libraries are readable by apks if ANDROID: os.chmod(BASEDIR, 0o755) os.chmod(os.path.join(BASEDIR, "cereal"), 0o755) os.chmod(os.path.join(BASEDIR, "cereal", "libmessaging_shared.so"), 0o755) def manager_thread(): # now loop thermal_sock = messaging.sub_sock('thermal') if os.getenv("GET_CPU_USAGE"): proc_sock = messaging.sub_sock('procLog', conflate=True) cloudlog.info("manager start") cloudlog.info({"environ": os.environ}) params = Params() EnableDriverMonitoring = int(params.get('OpkrEnableDriverMonitoring')) EnableLogger = int(params.get('OpkrEnableLogger')) if not EnableDriverMonitoring: car_started_processes.remove( 'dmonitoringd' ) car_started_processes.remove( 'dmonitoringmodeld' ) if not EnableLogger: car_started_processes.remove( 'loggerd' ) persistent_processes.remove( 'logmessaged' ) persistent_processes.remove( 'uploader' ) persistent_processes.remove( 'logcatd' ) persistent_processes.remove( 'updated' ) persistent_processes.remove( 'deleter' ) else: # save boot log subprocess.call(["./loggerd", "--bootlog"], cwd=os.path.join(BASEDIR, "selfdrive/loggerd")) # start daemon processes for p in daemon_processes: start_daemon_process(p) # start persistent processes for p in persistent_processes: start_managed_process(p) # start offroad if ANDROID: pm_apply_packages('enable') start_offroad() if os.getenv("NOBOARD") is None: start_managed_process("pandad") if os.getenv("BLOCK") is not None: for k in os.getenv("BLOCK").split(","): del managed_processes[k] logger_dead = False start_t = time.time() first_proc = None while 1: msg = messaging.recv_sock(thermal_sock, wait=True) # heavyweight batch processes are gated on favorable thermal conditions if msg.thermal.thermalStatus >= ThermalStatus.yellow: for p in green_temp_processes: if p in persistent_processes: kill_managed_process(p) else: for p in green_temp_processes: if p in persistent_processes: start_managed_process(p) if msg.thermal.freeSpace < 0.1: logger_dead = True if msg.thermal.started and "driverview" not in running: for p in car_started_processes: if p == "loggerd" and logger_dead: kill_managed_process(p) else: start_managed_process(p) else: logger_dead = False for p in reversed(car_started_processes): kill_managed_process(p) # this is ugly if "driverview" not in running and params.get("IsDriverViewEnabled") == b"1": start_managed_process("driverview") elif "driverview" in running and params.get("IsDriverViewEnabled") == b"0": kill_managed_process("driverview") # check the status of all processes, did any of them die? running_list = ["%s%s\u001b[0m" % ("\u001b[32m" if running[p].is_alive() else "\u001b[31m", p) for p in running] cloudlog.debug(' '.join(running_list)) # Exit main loop when uninstall is needed if params.get("DoUninstall", encoding='utf8') == "1": break if os.getenv("GET_CPU_USAGE"): dt = time.time() - start_t # Get first sample if dt > 30 and first_proc is None: first_proc = messaging.recv_sock(proc_sock) # Get last sample and exit if dt > 90: last_proc = messaging.recv_sock(proc_sock, wait=True) cleanup_all_processes(None, None) sys.exit(print_cpu_usage(first_proc, last_proc)) def manager_prepare(spinner=None): # build all processes os.chdir(os.path.dirname(os.path.abspath(__file__))) # Spinner has to start from 70 here total = 100.0 if prebuilt else 30.0 for i, p in enumerate(managed_processes): if spinner is not None: spinner.update("%d" % ((100.0 - total) + total * (i + 1) / len(managed_processes),)) prepare_managed_process(p) def uninstall(): cloudlog.warning("uninstalling") with open('/cache/recovery/command', 'w') as f: f.write('--wipe_data\n') # IPowerManager.reboot(confirm=false, reason="recovery", wait=true) android.reboot(reason="recovery") def main(): os.environ['PARAMS_PATH'] = PARAMS # the flippening! os.system('LD_LIBRARY_PATH="" content insert --uri content://settings/system --bind name:s:user_rotation --bind value:i:1') # disable bluetooth os.system('service call bluetooth_manager 8') params = Params() params.manager_start() default_params = [ ("CommunityFeaturesToggle", "0"), ("CompletedTrainingVersion", "0"), ("IsRHD", "0"), ("IsMetric", "0"), ("RecordFront", "0"), ("HasAcceptedTerms", "0"), ("HasCompletedSetup", "0"), ("IsUploadRawEnabled", "1"), ("IsLdwEnabled", "1"), ("IsGeofenceEnabled", "-1"), ("SpeedLimitOffset", "0"), ("LongitudinalControl", "0"), ("LimitSetSpeed", "0"), ("LimitSetSpeedNeural", "0"), ("LastUpdateTime", datetime.datetime.utcnow().isoformat().encode('utf8')), ("OpenpilotEnabledToggle", "1"), ("LaneChangeEnabled", "1"), ("IsDriverViewEnabled", "0"), ("IsOpenpilotViewEnabled", "0"), ("OpkrAutoShutdown", "0"), ("OpkrAutoScreenOff", "0"), ("OpkrUIBrightness", "0"), ("OpkrEnableDriverMonitoring", "1"), ("OpkrEnableLogger", "0"), ("OpkrEnableGetoffAlert", "1"), ("OpkrEnableLearner", "1"), ("OpkrAutoResume", "1"), ("OpkrTraceSet", "1"), ("OpkrWhoisDriver", "0"), ("OpkrTuneStartAt", "0"), ("OpkrAccelProfile", "0"), #악셀프로파일 0:미사용, 1:브드럽게,2:보통,3:빠르게 ("OpkrAutoLanechangedelay", "0"), ("OpkrRunMixplorer", "0"), ("OpkrRunQuickedit", "0"), ("OpkrRunSoftkey", "0"), ("OpkrRunNavigation", "0"), ("OpkrBootNavigation", "0"), ("FingerprintIssuedFix", "0"), ] # set unset params for k, v in default_params: if params.get(k) is None: params.put(k, v) # is this chffrplus? if os.getenv("PASSIVE") is not None: params.put("Passive", str(int(os.getenv("PASSIVE")))) if params.get("Passive") is None: raise Exception("Passive must be set to continue") if ANDROID: update_apks() manager_init() manager_prepare(spinner) spinner.close() if os.getenv("PREPAREONLY") is not None: return # SystemExit on sigterm signal.signal(signal.SIGTERM, lambda signum, frame: sys.exit(1)) try: manager_thread() except SystemExit: raise except Exception: traceback.print_exc() crash.capture_exception() finally: cleanup_all_processes(None, None) if params.get("DoUninstall", encoding='utf8') == "1": uninstall() if __name__ == "__main__": try: main() except Exception: add_logentries_handler(cloudlog) cloudlog.exception("Manager failed to start") # Show last 3 lines of traceback error = traceback.format_exc(3) error = "Manager failed to start\n \n" + error with TextWindow(error) as t: t.wait_for_exit() raise # manual exit because we are forked sys.exit(0)
Device.py
# -*- coding: utf-8 -*- """ This file contains functions that are capable to access internal device information and features. -SSHFS information -Username -Shared directory -File access -Capability -Linux and iOS -Bluetooth -Camera -Battery -Camera access """ from selenium import webdriver from geopy.geocoders import Nominatim from selenium.common.exceptions import NoSuchWindowException import getpass import os import json import requests import sys import facebook import urllib import threading, time import threading utf8_convert = {'ğ':'g', 'Ğ':'G', 'ç':'c', 'Ç':'C', 'ş':'s', 'Ş':'S', 'ı':'i', 'İ':'I', 'ö':'o', 'Ö':'O', 'Ü':'U', 'ü':'u'} unidict = {k.decode('utf8'): v.decode('utf8') for k, v in utf8_convert.items()} def convert(let): if let in unidict.keys(): return unidict[let] else: return let def string_normalizer(strr): return ''.join([convert(i) for i in strr]) def get_location(): send_url = "http://ip-api.com/json" response = requests.get(send_url) data = json.loads(response.text) geolocator = Nominatim() location = geolocator.reverse(str(data["lat"]) + " , " + str(data["lon"])) return json.dumps({'location': location.address}) def get_sshfs_info(rootdir='/../shared'): """ Returns ssh-username and shared directory in json """ user_name = getpass.getuser() path = os.getcwd() + rootdir direc = {'username': user_name, 'path': path} return json.dumps(direc) def get_directory_structure(dict=None, rootdir='../shared'): """ Return directory structure in format { "Dirname": directory_name, "SubDirs": [list_of_subfolder], "File": [ { "filename": file_name "path: absolute_path }, .... ] """ if not os.path.isfile(rootdir): try: dict["DirName"] = rootdir.split('/')[-1] n_dic = {"DirName": '', "SubDirs": [], "Files": []} for f in os.listdir(rootdir): if not os.path.isfile(os.path.join(rootdir, f)): subfolder = os.path.join(rootdir, f) n_dic = get_directory_structure(dict=n_dic, rootdir=subfolder) if os.path.isdir(subfolder): dict["SubDirs"].append(n_dic) else: # f_name = rootdir.split('/')[-1] f_name = f dict["Files"].append({"filename": f_name, "path": os.path.abspath(rootdir)}) except Exception as e: print 'Error occurred: ', str(e) return dict def create_virtual_filesystem(dict=None, path='./deneme'): """ Creating a meta directory structure from dictionary """ path = os.path.join(os.getcwd(), path) try: dir_name = dict['DirName'] dir_path = os.path.join(path, dir_name) os.mkdir(dir_path) for f in dict['Files']: f_name = f['filename'] f_path = os.path.join(dir_path, f_name) fdesc = open(f_path, 'wb') fdesc.close() for d in dict['SubDirs']: create_virtual_filesystem(dict=d, path=dir_path) except Exception as e: print 'Error occurred: ', str(e) def get_file(path): """ Returns requested file descriptor """ try: requested_file = (open(path, "rb")).read() return requested_file except Exception as e: print e def get_capability(platform='Darwin'): """ Returns platform specific capabilities in json """ def formatter(cap): if cap != '': return (cap[:-1]).split(': ')[-1] else: return 'NOT FOUND' try: if platform == 'Darwin': command_list = { 'model_name': 'system_profiler SPHardwareDataType | grep "Model Identifier"', 'camera': 'system_profiler SPCameraDataType | grep "Model ID"', 'charge_remaining': 'system_profiler SPPowerDataType | grep "Charge Remaining"', 'charge_full': 'system_profiler SPPowerDataType | grep "Full Charge Capacity"', 'bluetooth_addr': 'system_profiler SPBluetoothDataType | grep "Address"', 'bluetooth_le': 'system_profiler SPBluetoothDataType | grep "Bluetooth Low Energy Supported"', } model_name = formatter(os.popen(command_list['model_name']).read()) camera = formatter(os.popen(command_list['camera']).read()) charge_remaining = formatter(os.popen(command_list['charge_remaining']).read()) charge_full = formatter(os.popen(command_list['charge_full']).read()) bluetooth_addr = formatter(os.popen(command_list['bluetooth_addr']).read()) bluetooth_le = formatter(os.popen(command_list['bluetooth_le']).read()) charge = (int((int(charge_remaining)/float(charge_full))*100)) elif platform == 'Linux': model_name_command = 'cat /sys/devices/virtual/dmi/id/product_name' model_name = os.popen(model_name_command).read()[:-1] battery_dir = os.popen('upower -e | grep BAT0').read()[:-1] charge_command = 'upower -i ' + battery_dir + ' | grep percentage' charge = os.popen(charge_command).read()[:-2].split(': ')[-1] bluetooth_addr_command = 'hciconfig | grep BD' bluetooth_addr = os.popen(bluetooth_addr_command).read()[13:30] # Works with 1 camera. Command returns list of all cameras. camera_command = 'for I in /sys/class/video4linux/*; do cat $I/name; done' camera = os.popen(camera_command).read()[:-1] bluetooth_le = "NOT FOUND" elif platform == 'Windows': txt = open("WindowsDependencies/capabilities.txt") capabilitiesJson = txt.read() dictionary = json.loads(capabilitiesJson) model_name = dictionary["model_name"] charge = dictionary["charge"] bluetooth_addr = dictionary["bluetooth_addr"] camera = dictionary["camera"] bluetooth_le = dictionary["bluetooth_le"] except Exception as e: print e dict = { "model_name": model_name, "camera": camera, "charge": charge, "bluetooth_addr": bluetooth_addr, "bluetooth_le": bluetooth_le, "sensors": [], "type": "desktop" } return str(dict) def get_camera_webrtc(browser='FIREFOX', room_id=''): """ Returns WebRTC roomd id for online webcam session For client, it only connects to room For server, it generates a room and connect to it """ if browser == 'FIREFOX': address = "http://apprtc.appspot.com/r/" + room_id # address = "http://app.rtc/r/" + room_id profile = webdriver.FirefoxProfile() profile.set_preference('media.navigator.permission.disabled', True) profile.update_preferences() driver = webdriver.Firefox(profile) driver.get(address) driver.find_element_by_id('confirm-join-button').click() def facebook_login(app_key='OBFUSCATED', scope='user_friends'): auth_url = 'https://www.facebook.com/dialog/oauth?client_id=%s&redirect_uri=%s&response_type=token&scope=%s' \ % (urllib.quote(app_key), 'https://www.facebook.com/connect/login_success.html', urllib.quote(scope)) try: profile = webdriver.FirefoxProfile() profile.set_preference('webdriver.load.strategy', 'unstable') driver = webdriver.Firefox(profile) driver.set_page_load_timeout(5) driver.get(auth_url) st = time.time() is_login = True if 'dialog' not in driver.current_url: is_login = False while 'dialog' in driver.current_url and is_login: if time.time() - st > 60: is_login = False break if is_login: raw_token = driver.current_url token = raw_token[raw_token.index('=') + 1:raw_token.index('&')] driver.close() graph = facebook.GraphAPI(access_token=token, version='2.2') return graph driver.close() return 'NOT SUCCESSFUL' except NoSuchWindowException: print 'Error occured during Facebook login: Browser is closed.' except Exception as e: print 'Error occured during Facebook login: ', str(e) """ TODO: Need thread otherwise it blocks main app def facebook_login(scope='user_friends'): t = threading.Thread(target=facebook_login_body) t.start() """
testprogram.py
#! /usr/bin/python3 # The MIT License (MIT) # # Copyright(c) 2021, Damien Feneyrou <dfeneyrou@gmail.com> # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files(the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions : # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import sys import time import math import threading import asyncio # If palanteer module is not found, it imports the stub (in ./tools) which defines all APIs as no-op # This way, a program can be distributed without any Palanteer installation requirement try: from palanteer import * except ModuleNotFoundError: from palanteer_stub import * # This file is a test program with multiple purposes: # - show an example of Python instrumentation # - have a way to measure speed performance in a specific case # - be a part of Palanteer internal tests, by using all instrumentation APIs and features # ======================= # Random number generator # ======================= class RandomLCM: def __init__(self): self.lastValue = 14695981039346656037 self.mx = threading.Lock() @plFunction def get(self, minValue, maxValue): plLockWait("Random generator") self.mx.acquire() plLockState("Random generator", True) generatedNumber = int( minValue + (self._next() * (maxValue - minValue) / (1 << 32)) ) plLockState("Random generator", False) self.mx.release() plData("Number", generatedNumber) return generatedNumber def _next(self): # It is a really dummy random generator x = self.lastValue x ^= x << 13 x ^= x >> 17 x ^= x << 5 self.lastValue = ((self.lastValue ^ x) * 1099511628211) & 0x7FFFFFFFFFFFFFFF return x & 0xFFFFFFFF # ============================== # Global context # ============================== class GroupSynchro: def __init__(self, name): self.name = "%ssynchro" % name.replace("/", " ") self.mx = threading.Lock() self.cv = threading.Condition(self.mx) self.message = None globalSharedMx = threading.Lock() globalRandomGenerator = RandomLCM() # ============= # Crash helpers # ============= def crashSubContractor(crashKind): if crashKind == 0: printf("%d", 1 / zero) elif crashKind == 1: a = range(5)[6] elif crashKind == 2: assert 0, "This is an assertion-based crash" % (zero, crashKind) elif crashKind == 3: sys.exit(1) def doCrash_Please(crashKind): crashSubContractor(crashKind) # =================================== # Functions of the "associated" task # =================================== def busyWait(kRoundQty): cosSum = 14.0 for i in range(100 * kRoundQty): cosSum += math.cos(0.1 * i) return cosSum # Thread entry point def associatedTask(synchro, crashKind): plDeclareThread(threading.current_thread().name) dummyValue = 0.0 iterationNbr = 0 while 1: # Wait for an order to do something plLockWait(synchro.name) synchro.mx.acquire() synchro.cv.wait_for(lambda x=synchro: synchro.message != None) plLockState(synchro.name, True) # Get the command from the "control" thread of the group command, synchro.message = synchro.message, None plLockState(synchro.name, False) synchro.mx.release() if command == "stop": break # End of thread # Marker of a great event if iterationNbr == 4: plMarker("important", "5th iteration reached!") # Do something plBegin("SomeWork") dummyValue += busyWait(globalRandomGenerator.get(1500, 4000)) # Crash if required if crashKind >= 0 and iterationNbr == 3: doCrash_Please(crashKind) # Crash at 3rd iteration if crash required iterationNbr += 1 plEnd("SomeWork") plBegin("Final result") plData("Dummy value", dummyValue) plEnd("Final result") # ============================== # Functions of the "control" task # ============================== @plFunction def otherSubTask(taskNbr, iterNbr): plData("taskNbr", taskNbr) plData("iterNbr", iterNbr) # Allocate something dummyAlloc = [1] * globalRandomGenerator.get(1000, 5000) # Compute something dummyValue = busyWait(globalRandomGenerator.get(500, 1000)) # Deallocate (no real effect in Python as objects go back to internal object pools) dummyAlloc = None plBegin("doSomethingUseful") dummyValue += busyWait(globalRandomGenerator.get(100, 500)) for i in range((7 * taskNbr * iterNbr) % 3): plBegin("Partial work") dummyValue += busyWait(globalRandomGenerator.get(100, 500)) plEnd("Partial work") plEnd("doSomethingUseful") # Log something visual x = 0.2 * (0.25 * taskNbr + iterNbr) + 0.1 plData("exp(x)/x", math.exp(x) / x) return dummyValue @plFunction def subTaskUsingSharedResource(taskNbr, iterNbr): fruits = ["apple", "orange", "durian", "banana", "grenada"] vegetables = ["carrot", "onion", "bean", "patato"] plData( "input value##hexa", taskNbr ) # This "hexa" unit is special, this integer value will be displayed in hexadecimal on viewer # Compute something dummyValue = busyWait(150) # Allocate something dummyAlloc = [1] * globalRandomGenerator.get(100, 500) superList = [] for i in range(5000): plBegin("Add fruit") superList.append(fruits[(taskNbr + i * 7) % 5]) plEnd() plData("Last one", superList[-1]) plData( "Ingredient for the soup##ingredient", vegetables[(taskNbr + iterNbr * 7) % 4] ) # The unit is declared as "ingredient" # Log something visual plData( "Computation output##parsec", math.cos(1.5 * (0.25 * taskNbr + iterNbr)) ) # The unit is declared as "parsec" return dummyValue # Thread entry point @plFunction def controlTask(synchro, durationMultipler): someStrings = ["Even", "Odd"] plDeclareThread(threading.current_thread().name) iterationQty = 10 * durationMultipler dummyValue = 0 allocationList = [] plFreezePoint() for iterNbr in range(iterationQty): if globalRandomGenerator.get(0, 100) >= 45: # Allocate a new list allocationList.append([1] * globalRandomGenerator.get(2000, 10000)) else: # Deallocate if allocationList: del allocationList[0] # Wait a bit time.sleep(0.001 * globalRandomGenerator.get(20, 60)) # Prepare the work plBegin("Iteration") plData("iterNbr", iterNbr) plData("iterationQty", iterationQty) # Dynamic but still external string compatible markers plMarker("Count", someStrings[iterNbr % 2]) taskQty = globalRandomGenerator.get(1, 4) dummyValue += busyWait(globalRandomGenerator.get(500, 2500)) for taskNbr in range(taskQty): plBegin("Task") plData("Task number", taskNbr) # Work with some shared resource dummyValue += busyWait(globalRandomGenerator.get(300, 1000)) plLockWait("Shared resource") globalSharedMx.acquire() plLockState("Shared resource", True) dummyValue += subTaskUsingSharedResource(taskNbr, iterNbr) plLockState("Shared resource", False) globalSharedMx.release() dummyValue += busyWait(globalRandomGenerator.get(10, 200)) dummyValue += otherSubTask(taskNbr, iterNbr) plEnd("Task") # Send a signal to the associated task synchro.mx.acquire() synchro.message = ( "stop" if (iterNbr == iterationQty - 1) else "work, lazy thread!" ) plLockNotify(synchro.name) synchro.cv.notify() synchro.mx.release() plEnd("Iteration") plBegin("Final result") plData("Dummy value", dummyValue) plEnd("Final result") # End of the thread # ============================== # AsyncIO worker task # ============================== async def baseFunc(): busyWait(globalRandomGenerator.get(10, 25)) await asyncio.sleep(0.01 * globalRandomGenerator.get(1, 3)) busyWait(globalRandomGenerator.get(10, 25)) await asyncio.sleep(0.01 * globalRandomGenerator.get(1, 3)) async def loadTexture(): await baseFunc() async def updateParticules(): await baseFunc() async def animateChainsaw(): await baseFunc() async def skeletonInterpolation(): await baseFunc() async def fogOfWarGeneration(): await baseFunc() async def freeArenaMemoryPools(): await baseFunc() async def asyncRunner(): jobKinds = ( loadTexture, updateParticules, animateChainsaw, skeletonInterpolation, fogOfWarGeneration, freeArenaMemoryPools, ) for i in range(30): await jobKinds[globalRandomGenerator.get(0, len(jobKinds))]() time.sleep(0.01) async def asyncWaitAllTasks(): await asyncio.gather(*(asyncRunner() for i in range(3))) def asyncWorkerTask(): asyncio.run(asyncWaitAllTasks()) # ============================== # CLI handlers # ============================== def delayedAssertThread(condValue): plDeclareThread("Crash thread") time.sleep(1.0) assert condValue, "Assertion called by CLI" return 0 def cliHandlerAsyncAssert(condValue): threading.Thread(target=lambda x=condValue: delayedAssertThread(x)).start() return 0 def cliHandlerCreateMarker(msg): plMarker("test_marker", msg) return 0 def cliHandlerPoetryGetter(): return 0, "To bug, or not to bug, that is the question" def cliHandlerWithParameters(param1, param2, param3): # "Complex" handling in order to stimulate important parts of the API if param1 <= -1000: return ( 1, "This text will not be erased\nError: Very negative first parameter. Not great.", ) elif param1 <= -100: return 1, "Error: Mildly negative first parameter. Not great." elif param1 <= 0: return 1, "Error: First parameter shall be strictly positive (%d seen)" % param1 # Build the response response = "Strictly positive integer value is: %d\n" % param1 response += "Float value is: %f\n" % param2 response += "String value is: %s\n" % param3 return 0, response def cliHandlerQuit(): sys.exit(0) # ============================== # Event collection program # ============================== def collectInterestingData( mode, buildName, durationMultiplier, serverPort, with_c_calls, threadGroupQty, crashKind, ): # Start the logging startSec = time.time() if mode != "inactive": plInitAndStart( "Python example", record_filename="example_record.pltraw" if mode == "file storage" else None, build_name=buildName, server_port=serverPort, with_c_calls=with_c_calls, ) # Give a name to this thread (after the library initialization) plDeclareThread("Main") # CLI registration # On purpose *after* the call to plInitAndStart in order to better test the freeze point. # Reminder: it is recommended to register them *before* the Palanteer initialization in order to remove any race condition # in remote script about calling a not yet registered CLI after connection plRegisterCli( cliHandlerWithParameters, "test::parameters", "first=int second_param=float third=string", "Uses the 3 types of parameters", ) plRegisterCli( cliHandlerWithParameters, "test::parametersDft", "first=int[[31415926]] second_param=float[[-3.14159265359]] third=string[[no string provided]] fourth=int[[0]]", "Uses the 3 types of parameters with default values and a 4th one", ) plRegisterCli( cliHandlerAsyncAssert, "async_assert", "condvalue=int", "Call asynchronously an assertion with the provided value after a 1s timeout", ) plRegisterCli( cliHandlerCreateMarker, "test::marker", "msg=string", "Create a marker with the provided string", ) plRegisterCli(cliHandlerPoetryGetter, "get_poetry", "", "Returns some poetry.") plRegisterCli(cliHandlerQuit, "quit", "", "Exit the program") # Freeze points just before starting, and in particular after declaring all CLIs (so that they can be used at this point) # These steps are used by Palanter testing plFreezePoint() plBegin("Freeze control test") plData("Freeze", "Before first freeze") plFreezePoint() plData("Freeze", "After first freeze") plFreezePoint() plData("Freeze", "After second freeze") plEnd("Freeze control test") # Launch some active threads threadGroupNames = [ "", "Workers/", "Real time/", "Database Cluster/", "Helpers/", "Engine/", "Compute Grid/", "Hub/", "Idlers/", ] crashThreadGroupNbr = ( None if crashKind == None else int(time.time()) % threadGroupQty ) # Random selection of the thread which shall crash controlThreadList = [] for threadGroupNbr in range(threadGroupQty): groupName = threadGroupNames[threadGroupNbr] groupSynchro = GroupSynchro(groupName) t1 = threading.Thread( name="%sControl" % groupName, target=lambda grp=groupSynchro, durMult=durationMultiplier: controlTask( grp, durMult ), ) t2 = threading.Thread( name="%sAssociate" % groupName, target=lambda grp=groupSynchro, ck=crashKind if crashThreadGroupNbr == threadGroupNbr else -1: associatedTask( grp, ck ), ) t1.start() t2.start() controlThreadList.append(t1) controlThreadList.append(t2) # Add some asynchronous jobs (virtual threads / green threads) tAsync = threading.Thread(target=asyncWorkerTask) tAsync.start() controlThreadList.append(tAsync) # Wait for threads completion for t in controlThreadList: t.join() # Join order does not matter plMarker("Threading", "All tasks are completed! Joy!") # Stop the recording plStopAndUninit() # Display the statistics durationSec = time.time() - startSec print("Statistics:") print(" Execution time: %d ms" % (1000.0 * durationSec)) # ========================= # Performance evaluation # ========================= def evaluatePerformance(mode, buildName, durationMultipler, serverPort): # Start the logging if mode != "inactive": plInitAndStart( "Python perf example", record_filename="example_record.pltraw" if mode == "file storage" else None, build_name=buildName, server_port=serverPort, ) # Give a name to this thread (after the library initialization) plDeclareThread("Main") iterationQty = 250000 # 4 events per loop loopQty = iterationQty * durationMultipler startCollectSec = time.time() # Logging in loop, 4 events per cycle for i in range(loopQty): plBegin("TestLoop") plData("Iteration", i) plData("Still to go", loopQty - i - 1) plEnd("TestLoop") endCollectSec = time.time() plStopAndUninit() endSendingSec = time.time() # Console display print( "Collection duration : %.2f ms for %d events" % (1000.0 * (endCollectSec - startCollectSec), loopQty * 4.0) ) print( "Collection unit cost: %.0f ns" % (1e9 * (endCollectSec - startCollectSec) / (loopQty * 4.0)) ) print( "Processing duration : %.2f ms (w/ %s)" % ( 1000.0 * (endSendingSec - startCollectSec), "disk file writing" if mode == "file storage" else "transmission and server processing", ) ) print( "Processing rate : %.3f million event/s" % (4e-6 * loopQty / (endSendingSec - startCollectSec)) ) # ========================= # Main # ========================= def displayUsage(): print("\nUsage: %s <parameter> [options]" % sys.argv[0]) print(" Palanteer Python instrumentation test program") print("") print(" Parameter:") print(" 'collect' : Data collection") print(" 'crash-assert' : Data collection with a planned failed assertion") print(" 'crash-zerodiv': Data collection with a planned zero division") print(" 'crash-segv' : Data collection with a planned seg fault") print(" 'crash-abort' : Data collection with a planned abort call") print(" 'perf' : Estimation of the logging performances in a loop") print("") print(" Options to selection the collection mode (exclusive):") print(" <Default>: Use remote Palanteer connection") print(" '-f' : Save the record in a file 'example_record.plt'") print(" '-n' : No data collection (event recording not enabled at run time)") print(" '-c' : Do profile the C functions") print("") print(" Options to configure the program behavior:") print( " '-t <1-9> : Defines the quantity of groups of threads (2 threads per group)" ) print(" '-l' : Run time length multiplier (default is 1)") print( " '-b <name>' : Provide a build name for the current program (default is none)" ) print(" '--port <port>': Use the provided socket port (default is 59059)") print("") print("To start, you can try this (and look at the testProgram.cpp code too):") print( " %s perf -f (no need for palanteer, events are stored in the file example_record.plt) " % sys.argv[0] ) print( " %s collect -c (no need for palanteer, events are displayed on console) " % sys.argv[0] ) print( " %s collect (requires the prior launch of 'palanteer' viewer) " % sys.argv[0] ) def main(): # Command line parsing and program behavior selection doDisplayUsage, doEstimateCost, crashKind = False, False, None # Get the main type of execution if len(sys.argv) > 1: if sys.argv[1] == "collect": pass elif sys.argv[1] == "perf": doEstimateCost = True elif sys.argv[1] == "crash-zerodiv": crashKind = 0 elif sys.argv[1] == "crash-segv": crashKind = 1 elif sys.argv[1] == "crash-assert": crashKind = 2 elif sys.argv[1] == "crash-abort": crashKind = 3 else: doDisplayUsage = True else: doDisplayUsage = True # Get the options mode, buildName, serverPort, with_c_calls, threadGroupQty, durationMultiplier = ( "connected", None, 59059, False, 1, 1, ) argCount = 2 while not doDisplayUsage and argCount < len(sys.argv): w = sys.argv[argCount] if w in ["-n", "--n"]: mode = "inactive" elif w in ["-f", "--f"]: mode = "file storage" elif w in ["-c", "--c"]: with_c_calls = True elif w in ["-b", "--b"] and argCount + 1 < len(sys.argv): buildName = sys.argv[argCount + 1] argCount += 1 print("Build name is: %s" % buildName) elif w == "--port" and argCount + 1 < len(sys.argv): serverPort = int(sys.argv[argCount + 1]) argCount += 1 print("Socket port: %d" % serverPort) elif w in ["-t", "--t"] and argCount + 1 < len(sys.argv): threadGroupQty = int(sys.argv[argCount + 1]) argCount += 1 print("Thread group qty: %d" % threadGroupQty) elif w in ["-l", "--l"] and argCount + 1 < len(sys.argv): durationMultiplier = int(sys.argv[argCount + 1]) argCount += 1 print("Duration multiplier: %d" % durationMultiplier) else: print("Error: unknown argument '%s'" % sys.argv[argCount]) doDisplayUsage = True argCount += 1 # Sanity checks if threadGroupQty <= 0 or durationMultiplier <= 0: doDisplayUsage = True # Display usage and quit if doDisplayUsage: displayUsage() sys.exit(1) print("Mode '%s'" % mode) if doEstimateCost: # Estimate the cost of the logging evaluatePerformance(mode, buildName, durationMultiplier, serverPort) else: # Collect events for a multi-threaded test program # The purposes are: # - to show an example of instrumentation # - to test all instrumentation APIs collectInterestingData( mode, buildName, durationMultiplier, serverPort, with_c_calls, threadGroupQty, crashKind, ) sys.exit(0) # Bootstrap if __name__ == "__main__": main()
conftest.py
import sys from http.server import HTTPServer from threading import Event from threading import Thread import pytest from library.python.envoy_requests.common.engine import Engine from test.python.echo_server import EchoServerHandler @pytest.fixture(scope="session") def http_server_url(): Engine.build() ip = "127.0.0.1" port = 9876 kill_server = Event() def _run_http_server(): server = HTTPServer((ip, port), EchoServerHandler) server.timeout = 0.25 while True: if kill_server.is_set(): break try: server.handle_request() except Exception as e: print(f"Encountered exception: {str(e)}", file=sys.stderr) server = Thread(target=_run_http_server) server.start() yield f"http://{ip}:{port}/" kill_server.set() server.join()
test_util.py
#!/usr/bin/env python # -*- coding: utf-8 -*- # Copyright 2017 theloop, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """util functions for unittest""" import leveldb import logging import multiprocessing import os import random import time from sys import platform import grpc import loopchain import loopchain.utils as util from loopchain import configure as conf from loopchain.baseservice import ObjectManager, StubManager from loopchain.components import SingletonMetaClass from loopchain.blockchain import Transaction from loopchain.container import ScoreService from loopchain.peer import PeerService, PeerAuthorization from loopchain.protos import loopchain_pb2, loopchain_pb2_grpc from loopchain.radiostation import RadioStationService util.set_log_level_debug() def run_peer_server(port, radiostation_port=conf.PORT_RADIOSTATION, group_id=None, score=None): ObjectManager().peer_service = PeerService(group_id, conf.IP_RADIOSTATION, radiostation_port) if score is not None: ObjectManager().peer_service.set_chain_code(score) conf.DEFAULT_SCORE_REPOSITORY_PATH = \ os.path.join(os.path.dirname(__file__), '..', '..', 'resources', 'test_score_repository') try: ObjectManager().peer_service.serve(port, conf.DEFAULT_SCORE_PACKAGE) except FileNotFoundError: logging.debug("Score Load Fail") # test 코드 실행 위치에 따라서(use IDE or use console) 경로 문제가 발생 할 수 있다. # ObjectManager().peer_service.serve(port, score_path) def run_black_peer_server(port, radiostation_port=conf.PORT_RADIOSTATION, group_id=None): ObjectManager().peer_service = BlackService(group_id, conf.IP_RADIOSTATION, radiostation_port) conf.DEFAULT_SCORE_REPOSITORY_PATH = \ os.path.join(os.path.dirname(__file__), '..', '..', 'resources', 'test_score_repository') try: ObjectManager().peer_service.serve(port) except FileNotFoundError: # test 코드 실행 위치에 따라서(use IDE or use console) 경로 문제가 발생 할 수 있다. ObjectManager().peer_service.serve(port, "loopchain/default") def run_radio_station(port): RadioStationService().serve(port) def run_score_server(port): ScoreService(port) def run_peer_server_as_process(port, radiostation_port=conf.PORT_RADIOSTATION, group_id=None, score=None): process = multiprocessing.Process(target=run_peer_server, args=(port, radiostation_port, group_id, score,)) process.start() time.sleep(1) return process def run_peer_server_as_process_and_stub(port, radiostation_port=conf.PORT_RADIOSTATION, group_id=None, score=None): process = run_peer_server_as_process(port, radiostation_port, group_id, score) channel = grpc.insecure_channel('localhost:' + str(port)) stub = loopchain_pb2_grpc.PeerServiceStub(channel) util.request_server_in_time(stub.GetStatus, loopchain_pb2.StatusRequest(request="")) return process, stub def run_peer_server_as_process_and_stub_manager( port, radiostation_port=conf.PORT_RADIOSTATION, group_id=None, score=None): process = run_peer_server_as_process(port, radiostation_port, group_id, score) stub_manager = StubManager.get_stub_manager_to_server( 'localhost:' + str(port), loopchain_pb2_grpc.PeerServiceStub) return process, stub_manager def run_black_peer_server_as_process(port, radiostation_port=conf.PORT_RADIOSTATION, group_id=None): process = multiprocessing.Process(target=run_black_peer_server, args=(port, radiostation_port, group_id,)) process.start() time.sleep(1) return process def run_black_peer_server_as_process_and_stub(port, radiostation_port=conf.PORT_RADIOSTATION, group_id=None): process = run_black_peer_server_as_process(port, radiostation_port, group_id) channel = grpc.insecure_channel('localhost:' + str(port)) stub = loopchain_pb2_grpc.PeerServiceStub(channel) return process, stub def run_radio_station_as_process(port): process = multiprocessing.Process(target=run_radio_station, args=(port,)) process.start() time.sleep(1) return process def run_radio_station_as_process_and_stub_manager(port): process = run_radio_station_as_process(port) stub_manager = StubManager.get_stub_manager_to_server( 'localhost:' + str(port), loopchain_pb2_grpc.RadioStationStub) util.request_server_in_time(stub_manager.stub.GetStatus, loopchain_pb2.StatusRequest(request="")) return process, stub_manager def run_radio_station_as_process_and_stub(port): process = run_radio_station_as_process(port) channel = grpc.insecure_channel('localhost:' + str(port)) stub = loopchain_pb2_grpc.RadioStationStub(channel) util.request_server_in_time(stub.GetStatus, loopchain_pb2.StatusRequest(request="")) return process, stub def run_score_server_as_process(port): process = multiprocessing.Process(target=run_score_server, args=(port,)) process.start() time.sleep(1) return process def print_testname(testname): print("\n======================================================================") print("Test %s Start" % testname) print("======================================================================") def make_level_db(db_name=""): db_default_path = './' + (db_name, "db_test")[db_name == ""] db_path = db_default_path blockchain_db = None retry_count = 0 while blockchain_db is None and retry_count < conf.MAX_RETRY_CREATE_DB: try: blockchain_db = leveldb.LevelDB(db_path, create_if_missing=True) logging.debug("make level db path: " + db_path) except leveldb.LevelDBError: db_path = db_default_path + str(retry_count) retry_count += 1 return blockchain_db def close_open_python_process(): # ubuntu patch if platform == "darwin": os.system("pkill -f python") os.system("pkill -f Python") else: os.system("pgrep -f python | tail -$((`pgrep -f python | wc -l` - 1)) | xargs kill -9") def clean_up_temp_db_files(kill_process=True): module_root_path = os.path.dirname(loopchain.__file__) + "/.." if kill_process: close_open_python_process() os.system(f'rm -rf $(find {module_root_path} -name db_*)') os.system(f'rm -rf $(find {module_root_path} -name *test_db*)') os.system(f'rm -rf $(find {module_root_path} -name *_block)') os.system("rm -rf ./testcase/db_*") os.system("rm -rf ./storage/db_*") os.system("rm -rf chaindb_*") os.system("rm -rf ./blockchain_db*") os.system("rm -rf ./testcase/chaindb_*") os.system("rm -rf sample_score") os.system("rm -rf ./testcase/sample_score") os.system("rm -rf certificate_db") os.system("rm -rf ./resources/test_score_deploy") os.system("rm -rf ./resources/test_score_repository/loopchain") time.sleep(1) def create_basic_tx(peer_id: str, peer_auth: PeerAuthorization) -> Transaction: """ create basic tx data is "{args:[]}" :param peer_id: peer_id :param peer_auth: :return: transaction """ tx = Transaction() tx.put_meta('peer_id', peer_id) tx.put_data("{args:[]}") tx.sign_hash(peer_auth) return tx def create_peer_auth() -> PeerAuthorization: peer_auth = PeerAuthorization(public_file=conf.PUBLIC_PATH, pri_file=conf.PRIVATE_PATH, cert_pass=conf.DEFAULT_PW) return peer_auth class TestServerManager(metaclass=SingletonMetaClass): """ """ def __init__(self): self.__test_port_diff = random.randrange(1, 30) * -50 self.__radiostation_port = conf.PORT_RADIOSTATION + self.__test_port_diff # rs and peer info is tuple (process, stub_manager, port) self.__rs_info = () self.__peer_info = {} # {num:peer_info} self.__score = None def start_servers(self, peer_count, score=None): """Start BlockChain network rs and peer :param peer_count: num of peers but 0 means start only RS. :return: """ logging.debug("TestServerManager start servers") self.__score = score # run radio station process, stub_manager = run_radio_station_as_process_and_stub_manager(self.__radiostation_port) self.__rs_info = (process, stub_manager, self.__radiostation_port) time.sleep(2) for i in range(peer_count): peer_port = conf.PORT_PEER + (i * 7) + self.__test_port_diff process, stub_manager = run_peer_server_as_process_and_stub_manager( peer_port, self.__radiostation_port, score=score) self.__peer_info[i] = (process, stub_manager, peer_port) time.sleep(2) def stop_all_server(self): for i in self.__peer_info: self.__peer_info[i][1].call_in_times( "Stop", loopchain_pb2.StopRequest(reason="TestServerManager"), conf.GRPC_TIMEOUT) self.__rs_info[1].call_in_times( "Stop", loopchain_pb2.StopRequest(reason="TestServerManager"), conf.GRPC_TIMEOUT) time.sleep(2) for i in self.__peer_info: self.__peer_info[i][0].join() self.__rs_info[0].join() def stop_peer(self, num): self.__peer_info[num][1].call_in_times( "Stop", loopchain_pb2.StopRequest(reason="TestServerManager"), conf.GRPC_TIMEOUT) time.sleep(2) self.__peer_info[num][0].join() def start_peer(self, num): peer_port = conf.PORT_PEER + (num * 7) + self.__test_port_diff process, stub_manager = run_peer_server_as_process_and_stub_manager( peer_port, self.__radiostation_port, score=self.__score) self.__peer_info[num] = (process, stub_manager, peer_port) time.sleep(1) def start_black_peers(self, peer_count): pass def add_peer(self): num = 0 return num def add_black_peer(self): num = 0 return num def get_stub_rs(self): return self.__rs_info[1].stub def get_stub_peer(self, num=0): return self.__peer_info[num][1].stub def get_port_rs(self): return self.__radiostation_port def get_port_peer(self, num): return self.__peer_info[num][2] def status(self): """ :return: json object for ServerManager status """ pass
script_animations.py
import random, time, sys, string, threading, os, queue from alive_progress import alive_bar def repeated_guesses(target): chars = string.ascii_letters + string.digits + ' ' current_guess = len(target) * ['*'] for count, char in enumerate(target): while current_guess[count] != char: current_guess[count] = random.choice(chars) sys.stdout.write(str("\rCracking : "+''.join(current_guess))) # slight pause to make readable time.sleep(0.005) sys.stdout.flush() print ("\n") def bar_thing(): for x in progress_list: with alive_bar(x) as bar: for i in range(progress_to_be_done): time.sleep(.005) bar() if __name__ == '__main__': print("Enter Password") password = input("> ") password_length = len(password) factorial = 13 if int(password_length) >= 1: for i in range (1,int(password_length)+1): factorial = factorial * i cpu_num = os.cpu_count() progress_to_be_done = round(factorial / cpu_num) progress_list = [progress_to_be_done] * cpu_num th0 = threading.Thread(target=repeated_guesses, args=(password,)) th1 = threading.Thread(target=bar_thing)
player.py
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Author: omi # @Date: 2014-07-15 15:48:27 # @Last Modified by: omi # @Last Modified time: 2015-01-30 18:05:08 ''' 网易云音乐 Player ''' # Let's make some noise import subprocess import threading import time import os import random import re from ui import Ui from storage import Storage from api import NetEase from cache import Cache from config import Config import logger log = logger.getLogger(__name__) class Player(object): def __init__(self): self.config = Config() self.ui = Ui() self.popen_handler = None # flag stop, prevent thread start self.playing_flag = False self.pause_flag = False self.process_length = 0 self.process_location = 0 self.process_first = False self.storage = Storage() self.info = self.storage.database['player_info'] self.songs = self.storage.database['songs'] self.playing_id = -1 self.cache = Cache() self.notifier = self.config.get_item('notifier') self.mpg123_parameters = self.config.get_item('mpg123_parameters') self.end_callback = None self.playing_song_changed_callback = None def popen_recall(self, onExit, popenArgs): ''' Runs the given args in subprocess.Popen, and then calls the function onExit when the subprocess completes. onExit is a callable object, and popenArgs is a lists/tuple of args that would give to subprocess.Popen. ''' def runInThread(onExit, arg): para = ['mpg123', '-R'] para[1:1] = self.mpg123_parameters self.popen_handler = subprocess.Popen(para, stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE) self.popen_handler.stdin.write('V ' + str(self.info[ 'playing_volume']) + '\n') if arg: self.popen_handler.stdin.write('L ' + arg + '\n') else: self.next_idx() onExit() return self.process_first = True while True: if self.playing_flag is False: break strout = self.popen_handler.stdout.readline() if re.match('^\@F.*$', strout): process_data = strout.split(' ') process_location = float(process_data[4]) if self.process_first: self.process_length = process_location self.process_first = False self.process_location = 0 else: self.process_location = self.process_length - process_location # NOQA continue elif strout[:2] == '@E': # get a alternative url from new api sid = popenArgs['song_id'] new_url = NetEase().songs_detail_new_api([sid])[0]['url'] if new_url is None: log.warning(('Song {} is unavailable ' 'due to copyright issue').format(sid)) break log.warning( 'Song {} is not compatible with old api.'.format(sid)) popenArgs['mp3_url'] = new_url self.popen_handler.stdin.write('\nL ' + new_url + '\n') self.popen_handler.stdout.readline() elif strout == '@P 0\n': self.popen_handler.stdin.write('Q\n') self.popen_handler.kill() break if self.playing_flag: self.next_idx() onExit() return def getLyric(): if 'lyric' not in self.songs[str(self.playing_id)].keys(): self.songs[str(self.playing_id)]['lyric'] = [] if len(self.songs[str(self.playing_id)]['lyric']) > 0: return netease = NetEase() lyric = netease.song_lyric(self.playing_id) if lyric == [] or lyric == '未找到歌词': return lyric = lyric.split('\n') self.songs[str(self.playing_id)]['lyric'] = lyric return def gettLyric(): if 'tlyric' not in self.songs[str(self.playing_id)].keys(): self.songs[str(self.playing_id)]['tlyric'] = [] if len(self.songs[str(self.playing_id)]['tlyric']) > 0: return netease = NetEase() tlyric = netease.song_tlyric(self.playing_id) if tlyric == [] or tlyric == '未找到歌词翻译': return tlyric = tlyric.split('\n') self.songs[str(self.playing_id)]['tlyric'] = tlyric return def cacheSong(song_id, song_name, artist, song_url): def cacheExit(song_id, path): self.songs[str(song_id)]['cache'] = path self.cache.add(song_id, song_name, artist, song_url, cacheExit) self.cache.start_download() if 'cache' in popenArgs.keys() and os.path.isfile(popenArgs['cache']): thread = threading.Thread(target=runInThread, args=(onExit, popenArgs['cache'])) else: thread = threading.Thread(target=runInThread, args=(onExit, popenArgs['mp3_url'])) cache_thread = threading.Thread( target=cacheSong, args=(popenArgs['song_id'], popenArgs['song_name'], popenArgs[ 'artist'], popenArgs['mp3_url'])) cache_thread.start() thread.start() lyric_download_thread = threading.Thread(target=getLyric, args=()) lyric_download_thread.start() tlyric_download_thread = threading.Thread(target=gettLyric, args=()) tlyric_download_thread.start() # returns immediately after the thread starts return thread def get_playing_id(self): return self.playing_id def recall(self): if self.info['idx'] >= len(self.info[ 'player_list']) and self.end_callback is not None: log.debug('Callback') self.end_callback() if self.info['idx'] < 0 or self.info['idx'] >= len(self.info[ 'player_list']): self.info['idx'] = 0 self.stop() return self.playing_flag = True self.pause_flag = False item = self.songs[self.info['player_list'][self.info['idx']]] self.ui.build_playinfo(item['song_name'], item['artist'], item['album_name'], item['quality'], time.time()) if self.notifier: self.ui.notify('Now playing', item['song_name'], item['album_name'], item['artist']) self.playing_id = item['song_id'] self.popen_recall(self.recall, item) def generate_shuffle_playing_list(self): del self.info['playing_list'][:] for i in range(0, len(self.info['player_list'])): self.info['playing_list'].append(i) random.shuffle(self.info['playing_list']) self.info['ridx'] = 0 def new_player_list(self, type, title, datalist, offset): self.info['player_list_type'] = type self.info['player_list_title'] = title self.info['idx'] = offset del self.info['player_list'][:] del self.info['playing_list'][:] self.info['ridx'] = 0 for song in datalist: self.info['player_list'].append(str(song['song_id'])) if str(song['song_id']) not in self.songs.keys(): self.songs[str(song['song_id'])] = song else: database_song = self.songs[str(song['song_id'])] if (database_song['song_name'] != song['song_name'] or database_song['quality'] != song['quality']): self.songs[str(song['song_id'])] = song def append_songs(self, datalist): for song in datalist: self.info['player_list'].append(str(song['song_id'])) if str(song['song_id']) not in self.songs.keys(): self.songs[str(song['song_id'])] = song else: database_song = self.songs[str(song['song_id'])] cond = any([database_song[k] != song[k] for k in ('song_name', 'quality', 'mp3_url')]) if cond: if 'cache' in self.songs[str(song['song_id'])].keys(): song['cache'] = self.songs[str(song['song_id'])][ 'cache'] self.songs[str(song['song_id'])] = song if len(datalist) > 0 and self.info['playing_mode'] == 3 or self.info[ 'playing_mode'] == 4: self.generate_shuffle_playing_list() def play_and_pause(self, idx): # if same playlists && idx --> same song :: pause/resume it if self.info['idx'] == idx: if self.pause_flag: self.resume() else: self.pause() else: self.info['idx'] = idx # if it's playing if self.playing_flag: self.switch() # start new play else: self.recall() # play another def switch(self): self.stop() # wait process be killed time.sleep(0.1) self.recall() def stop(self): if self.playing_flag and self.popen_handler: self.playing_flag = False self.popen_handler.stdin.write('Q\n') try: self.popen_handler.kill() except OSError as e: log.error(e) return def pause(self): if not self.playing_flag and not self.popen_handler: return self.pause_flag = True self.popen_handler.stdin.write('P\n') item = self.songs[self.info['player_list'][self.info['idx']]] self.ui.build_playinfo(item['song_name'], item['artist'], item['album_name'], item['quality'], time.time(), pause=True) def resume(self): self.pause_flag = False self.popen_handler.stdin.write('P\n') item = self.songs[self.info['player_list'][self.info['idx']]] self.ui.build_playinfo(item['song_name'], item['artist'], item['album_name'], item['quality'], time.time()) self.playing_id = item['song_id'] def _swap_song(self): plist = self.info['playing_list'] now_songs = plist.index(self.info['idx']) plist[0], plist[now_songs] = plist[now_songs], plist[0] def _is_idx_valid(self): return 0 <= self.info['idx'] < len(self.info['player_list']) def _inc_idx(self): if self.info['idx'] < len(self.info['player_list']): self.info['idx'] += 1 def _dec_idx(self): if self.info['idx'] > 0: self.info['idx'] -= 1 def _need_to_shuffle(self): playing_list = self.info['playing_list'] ridx = self.info['ridx'] idx = self.info['idx'] if ridx >= len(playing_list) or playing_list[ridx] != idx: return True else: return False def next_idx(self): if not self._is_idx_valid(): self.stop() return playlist_len = len(self.info['player_list']) playinglist_len = len(self.info['playing_list']) # Playing mode. 0 is ordered. 1 is orderde loop. # 2 is single song loop. 3 is single random. 4 is random loop if self.info['playing_mode'] == 0: self._inc_idx() elif self.info['playing_mode'] == 1: self.info['idx'] = (self.info['idx'] + 1) % playlist_len elif self.info['playing_mode'] == 2: self.info['idx'] = self.info['idx'] elif self.info['playing_mode'] == 3 or self.info['playing_mode'] == 4: if self._need_to_shuffle(): self.generate_shuffle_playing_list() playinglist_len = len(self.info['playing_list']) # When you regenerate playing list # you should keep previous song same. try: self._swap_song() except Exception as e: log.error(e) self.info['ridx'] += 1 # Out of border if self.info['playing_mode'] == 4: self.info['ridx'] %= playinglist_len if self.info['ridx'] >= playinglist_len: self.info['idx'] = playlist_len else: self.info['idx'] = self.info['playing_list'][self.info['ridx']] else: self.info['idx'] += 1 if self.playing_song_changed_callback is not None: self.playing_song_changed_callback() def next(self): self.stop() time.sleep(0.01) self.next_idx() self.recall() def prev_idx(self): if not self._is_idx_valid(): self.stop() return playlist_len = len(self.info['player_list']) playinglist_len = len(self.info['playing_list']) # Playing mode. 0 is ordered. 1 is orderde loop. # 2 is single song loop. 3 is single random. 4 is random loop if self.info['playing_mode'] == 0: self._dec_idx() elif self.info['playing_mode'] == 1: self.info['idx'] = (self.info['idx'] - 1) % playlist_len elif self.info['playing_mode'] == 2: self.info['idx'] = self.info['idx'] elif self.info['playing_mode'] == 3 or self.info['playing_mode'] == 4: if self._need_to_shuffle(): self.generate_shuffle_playing_list() playinglist_len = len(self.info['playing_list']) self.info['ridx'] -= 1 if self.info['ridx'] < 0: if self.info['playing_mode'] == 3: self.info['ridx'] = 0 else: self.info['ridx'] %= playinglist_len self.info['idx'] = self.info['playing_list'][self.info['ridx']] else: self.info['idx'] -= 1 if self.playing_song_changed_callback is not None: self.playing_song_changed_callback() def prev(self): self.stop() time.sleep(0.01) self.prev_idx() self.recall() def shuffle(self): self.stop() time.sleep(0.01) self.info['playing_mode'] = 3 self.generate_shuffle_playing_list() self.info['idx'] = self.info['playing_list'][self.info['ridx']] self.recall() def volume_up(self): self.info['playing_volume'] = self.info['playing_volume'] + 7 if (self.info['playing_volume'] > 100): self.info['playing_volume'] = 100 if not self.playing_flag: return self.popen_handler.stdin.write('V ' + str(self.info[ 'playing_volume']) + '\n') def volume_down(self): self.info['playing_volume'] = self.info['playing_volume'] - 7 if (self.info['playing_volume'] < 0): self.info['playing_volume'] = 0 if not self.playing_flag: return self.popen_handler.stdin.write('V ' + str(self.info[ 'playing_volume']) + '\n') def update_size(self): try: self.ui.update_size() item = self.songs[self.info['player_list'][self.info['idx']]] if self.playing_flag: self.ui.build_playinfo(item['song_name'], item['artist'], item['album_name'], item['quality'], time.time()) if self.pause_flag: self.ui.build_playinfo(item['song_name'], item['artist'], item['album_name'], item['quality'], time.time(), pause=True) except Exception as e: log.error(e) pass def cacheSong1time(self, song_id, song_name, artist, song_url): def cacheExit(song_id, path): self.songs[str(song_id)]['cache'] = path self.cache.enable = False self.cache.enable = True self.cache.add(song_id, song_name, artist, song_url, cacheExit) self.cache.start_download()
kbsync.py
# Keyboard Synchronization import arachnoid as ara #import win32api, win32con from pynput import keyboard import os, sys print('PID: {}'.format(ara.get_pid())) IP_ADDR = '192.168.1.94'#'43.33' PORT_NUMBER = 5555 #KB_LAYOUT = win32api.GetKeyboardLayout() ''' def get_key_strokes(from_=0, to=250): return list(filter(lambda key: win32api.GetAsyncKeyState(key), range(from_, to))) def simple_key_press(key): win32api.keybd_event(key, 0, 0, 0) ara.time.sleep(.05) win32api.keybd_event(key, 0, win32con.KEYEVENTF_KEYUP, 0) def hold_key_press(keys): # press keys in order (e.g. control + shift + a) for key in keys: win32api.keybd_event(key, 0, 0, 0) ara.time.sleep(.05) # release keys in reverse order for key in keys[::-1]: win32api.keybd_event(key, 0, win32con.KEYEVENTF_KEYUP, 0) ara.time.sleep(.1) def change_keyboard_layout(layout): win32api.LoadKeyboardLayout(layout, 1) ''' def on_press(key): global server if type(key) == keyboard.Key: key_code = key.value.vk else: assert type(key) == keyboard.KeyCode key_code = key.vk server.tasks.append(b'<KEY-PRESS %i>' % key_code) #print('pressed {}'.format(key_code)) def on_release(key): global server if key == keyboard.Key.esc: return False #key_code = key.vk #server.tasks.append(b'<KEY-RELEASE %i>' % key_code) if not server.alive: return False def simple_key_press(key_code): key = keyboard.KeyCode(key_code) controller.press(key) def sync_keyboard_client(client): open('OK Flag.txt', 'w').write('1') special_values = vars(keyboard.Key) while client.alive and 'OK Flag.txt' in os.listdir(): if client.tasks: msg = client.tasks[0] client.tasks.pop(0) else: msg = client.bempty_flag client.client.sendall(b'<>') response = client.client.recv(client.max_buffer_size) if response != client.bempty_flag: response = response.decode('utf8') tag = response[1:response.index(' ')] if tag == 'KEY-PRESS': key_code = int(response[10:-1]) simple_key_press(key_code) #print('pressing key {}'.format(key_code)) # elif tag == 'KEY-COMBO': ... else: print('Unkown tag: {}'.format(tag)) def client_side(): client = ara.Spider(ip=IP_ADDR, port=PORT_NUMBER, verbose=1) client.connect() thread = ara.Thread(target=client.loop2) thread.start() thread2 = ara.Thread(target=sync_keyboard_client, args=(client,)) thread2.start() input('stop') thread.join() thread2.join() os.system('taskkill /f /pid {}'.format(ara.get_pid())) def server_side(): global server server = ara.Web(host=IP_ADDR, port=PORT_NUMBER, verbose=1) server.tasks = [] server.init() def read_keyboard_info(server): if server.tasks: return server.tasks.pop(0) else: None ''' def send_keyboard_info(server): # send mouse info to server global last_pos MAX_KEY_CHUNK_SIZE = 30 # one key is defined by a group of n key, up to MAX_KEY_CHUNK_SIZE times the same key while True: key_strokes = get_key_strokes() if key_strokes: chunk_size = 0 last_key_stroke = key_strokes[0] server.tasks.append(b'<KEY-PRESS %i>' % last_key_stroke) print('counted {} times {} key'.format(key_strokes.count(last_key_stroke), last_key_stroke)) for key in key_strokes: if key == last_key_stroke: chunk_size += 1 else: server.tasks.append(b'<KEY-PRESS %i>' % key) last_key_stroke = key chunk_size = 0 if chunk_size >= MAX_KEY_CHUNK_SIZE: # >= because if the next one is not last_key_stroke, the ky won't repeat. So, the key repeats only if chunk_size > MAX_KEY_CHUNK_SIZE (next iteration, if key == last_key_stroke) chunk_size = 0 ara.time.sleep(.01) ''' def send_keyboard_info(): with keyboard.Listener( on_press=on_press, on_release=on_release) as listener: listener.join() thread = ara.Thread(target=lambda : server.start(read_f=lambda : read_keyboard_info(server))) thread2 = ara.Thread(target=send_keyboard_info) thread.start() thread2.start() input('stop') os.system('taskkill /f /pid {}'.format(ara.get_pid())) if __name__ == '__main__': if sys.argv[-1] == 'server': server_side() elif sys.argv[-1] == 'client': controller = keyboard.Controller() client_side() else: raise ValueError('Unkown value for mouse sync role...')
python_cheatsheet.py
import sys import math import random import threading import time from functools import reduce # ----- INTRO ----- # Python tutorial from Derek Banas # Python files end with the extension .py # Print to the console # Python statements terminate with a newline print("Hello World") # Accept user input and store it in a variable # name = input("What is your name ") # print("Hi ", name) # If you want to extend a statement to multiple # lines you can use parentheses or \ v1 = ( 1 + 2 + 3 ) v1 = 1 + 2 \ + 3 # Put multiple statements on 1 line v1 = 5; v1 = v1 - 1 """ Multi-line Comment """ # ----- VARIABLES ----- # Variables are names assigned to values # The 1st character must be _ or a letter # Then you can use letters, numbers or _ # Variable names are type sensitive v2 = 1 V2 = 2 # v1 is different from V1 # You can assign multiple variables v3 = v4 = 20 # ----- DATA TYPES ----- # Data in Python is dynamically typed and that # data type can change # All data is an object which I cover later # The basic types are integers, floats, # complex numbers, strings, booleans # Python doesn't have a character type # How to get the type print(type(10)) # There is no limit to the size of integers # This is a way to get a practical max size print(sys.maxsize) # Floats are values with decimal values # This is how to get a max float print(sys.float_info.max) # But, they are accurate to 15 digits f1 = 1.1111111111111111 f2 = 1.1111111111111111 f3 = f1 + f2 print(f3) # Complex numbers are [real part]+[imaginary part] cn1 = 5 + 6j # Booleans are either True or False b1 = True # Strings are surrounded by ' or " str1 = "Escape Sequences \' \t \" \\ and \n" str2 = '''Triple quoted strings can contain ' and "''' # You can cast to different types with int, float, # str, chr print("Cast ", type(int(5.4))) # to int print("Cast 2 ", type(str(5.4))) # to string print("Cast 3 ", type(chr(97))) # to string print("Cast 4 ", type(ord('a'))) # to int # ----- OUTPUT ----- # You can define a separator for print print(12, 21, 1974, sep='/') # Eliminate newline print("No Newline", end='') # String formatting %e for exponent print("\n%04d %s %.2f %c" % (1, "Derek", 1.234, 'A')) # ----- MATH ----- print("5 + 2 =", 5 + 2) print("5 - 2 =", 5 - 2) print("5 * 2 =", 5 * 2) print("5 / 2 =", 5 / 2) print("5 % 2 =", 5 % 2) print("5 ** 2 =", 5 ** 2) print("5 // 2 =", 5 // 2) # Shortcuts i1 = 2 i1 += 1 print("i1 ", i1) # Math Functions print("abs(-1) ", abs(-1)) print("max(5, 4) ", max(5, 4)) print("min(5, 4) ", min(5, 4)) print("pow(2, 2) ", pow(2, 2)) print("ceil(4.5) ", math.ceil(4.5)) print("floor(4.5) ", math.floor(4.5)) print("round(4.5) ", round(4.5)) print("exp(1) ", math.exp(1)) # e**x print("log(e) ", math.log(math.exp(1))) print("log(100) ", math.log(100, 10)) # Base 10 Log print("sqrt(100) ", math.sqrt(100)) print("sin(0) ", math.sin(0)) print("cos(0) ", math.cos(0)) print("tan(0) ", math.tan(0)) print("asin(0) ", math.asin(0)) print("acos(0) ", math.acos(0)) print("atan(0) ", math.atan(0)) print("sinh(0) ", math.sinh(0)) print("cosh(0) ", math.cosh(0)) print("tanh(0) ", math.tanh(0)) print("asinh(0) ", math.asinh(0)) print("acosh(pi) ", math.acosh(math.pi)) print("atanh(0) ", math.atanh(0)) print("hypot(0) ", math.hypot(10, 10)) # sqrt(x*x + y*y) print("radians(0) ", math.radians(0)) print("degrees(pi) ", math.degrees(math.pi)) # Generate a random int print("Random", random.randint(1, 101)) # ----- NaN & inf ----- # inf is infinity print(math.inf > 0) # NaN is used to represent a number that can't # be defined print(math.inf - math.inf) # ----- CONDITIONALS ----- # Comparison Operators : < > <= >= == != # if, else & elif execute different code depending # on conditions age = 30 if age > 21: # Python uses indentation to define all the # code that executes if the above is true print("You can drive a tractor trailer") elif age >= 16: print("You can drive a car") else: print("You can't drive") # Make more complex conditionals with logical operators # Logical Operators : and or not if age < 5: print("Stay Home") elif (age >= 5) and (age <= 6): print("Kindergarten") elif (age > 6) and (age <= 17): print("Grade %d", (age - 5)) else: print("College") # Ternary operator in Python # condition_true if condition else condition_false canVote = True if age >= 18 else False # ----- STRINGS ----- # Raw strings ignore escape sequences print(r"I'll be ignored \n") # Combine strings with + print("Hello " + "You") # Get string length str3 = "Hello You" print("Length ", len(str3)) # Character at index print("1st ", str3[0]) # Last character print("Last ", str3[-1]) # 1st 3 chrs print("1st 3 ", str3[0:3]) # Start, up to not including # Get every other character print("Every Other ", str3[0:-1:2]) # Last is a step # You can't change an index value like this # str3[0] = "a" because strings are immutable # (Can't Change) # You could do this str3 = str3.replace("Hello", "Goodbye") print(str3) # You could also slice front and back and replace # what you want to change str3 = str3[:8] + "y" + str3[9:] print(str3) # Test if string in string print("you" in str3) # Test if not in print("you" not in str3) # Find first index for match or -1 print("You Index ", str3.find("you")) # Trim white space from right and left # also lstrip and rstrip print(" Hello ".strip()) # Convert a list into a string and separate with # spaces print(" ".join(["Some", "Words"])) # Convert string into a list with a defined separator # or delimiter print("A, string".split(", ")) # Formatted output with f-string int1 = int2 = 5 print(f'{int1} + {int2} = {int1 + int2}') # To lower and upper case print("A String".lower()) print("A String".upper()) # Is letter or number print("abc123".isalnum()) # Is characters print("abc".isalpha()) # Is numbers print("abc".isdigit()) # ----- LISTS ----- # Lists can contain mutable pieces of data of # varying data types or even functions l1 = [1, 3.14, "Derek", True] # Get length print("Length ", len(l1)) # Get value at index print("1st", l1[0]) print("Last", l1[-1]) # Change value l1[0] = 2 # Change multiple values l1[2:4] = ["Bob", False] # Insert at index without deleting # Also l1.insert(2, "Paul") l1[2:2] = ["Paul", 9] # Add to end (Also l1.extend([5, 6])) l2 = l1 + ["Egg", 4] # Remove a value l2.remove("Paul") # Remove at index l2.pop(0) print("l2", l2) # Add to beginning (Also l1.append([5, 6])) l2 = ["Egg", 4] + l1 # Multidimensional list l3 = [[1, 2], [3, 4]] print("[1, 1]", l3[1][1]) # Does value exist print("1 Exists", (1 in l1)) # Min & Max print("Min ", min([1, 2, 3])) print("Max ", max([1, 2, 3])) # Slice out parts print("1st 2", l1[0:2]) print("Every Other ", l1[0:-1:2]) print("Reverse ", l1[::-1]) # ----- LOOPS ----- # While : Execute while condition is True w1 = 1 while w1 < 5: print(w1) w1 += 1 w2 = 0 while w2 <= 20: if w2 % 2 == 0: print(w2) elif w2 == 9: # Forces the loop to end all together break else: # Shorthand for i = i + 1 w2 += 1 # Skips to the next iteration of the loop continue w2 += 1 # Cycle through list l4 = [1, 3.14, "Derek", True] while len(l4): print(l4.pop(0)) # For Loop # Allows you to perform an action a set number of times # Range performs the action 10 times 0 - 9 # end="" eliminates newline for x in range(0, 10): print(x, ' ', end="") print('\n') # Cycle through list l4 = [1, 3.14, "Derek", True] for x in l4: print(x) # You can also define a list of numbers to # cycle through for x in [2, 4, 6]: print(x) # You can double up for loops to cycle through lists num_list = [[1, 2, 3], [10, 20, 30], [100, 200, 300]] # ----- ITERATORS ----- # You can pass an object to iter() which returns # an iterator which allows you to cycle l5 = [6, 9, 12] itr = iter(l5) print(next(itr)) # Grab next value # ----- RANGES ----- # The range() function creates integer iterables print(list(range(0, 5))) # You can define step print(list(range(0, 10, 2))) for x in range(0, 3): for y in range(0, 3): print(num_list[x][y]) # ----- TUPLES ----- # Tuples are just like lists except they are # immutable t1 = (1, 3.14, "Derek", False) # Get length print("Length ", len(t1)) # Get value / values print("1st", t1[0]) print("Last", t1[-1]) print("1st 2", t1[0:2]) print("Every Other ", t1[0:-1:2]) print("Reverse ", t1[::-1]) # Everything you can do with lists you can do with # tuples as long as you don't change values # ----- DICTIONARIES ----- # Dictionaries are lists of key / value pairs # Keys and values can use any data type # Duplicate keys aren't allowed heroes = { "Superman": "Clark Kent", "Batman": "Bruce Wayne" } villains = dict([ ("Lex Luthor", "Lex Luthor"), ("Loki", "Loki") ]) print("Length", len(heroes)) # Get value by key # Also heroes.get("Superman") print(heroes["Superman"]) # Add more heroes["Flash"] = "Barry Allan" # Change a value heroes["Flash"] = "Barry Allen" # Get list of tuples print(list(heroes.items())) # Get list of keys and values print(list(heroes.keys())) print(list(heroes.values())) # Delete del heroes["Flash"] # Remove a key and return it print(heroes.pop("Batman")) # Search for key print("Superman" in heroes) # Cycle through a dictionary for k in heroes: print(k) for v in heroes.values(): print(v) # Formatted print with dictionary mapping d1 = {"name": "Bread", "price": .88} print("%(name)s costs $%(price).2f" % d1) # ----- SETS ----- # Sets are lists that are unordered, unique # and while values can change those values # must be immutable s1 = set(["Derek", 1]) s2 = {"Paul", 1} # Size print("Length", len(s2)) # Join sets s3 = s1 | s2 print(s3) # Add value s3.add("Doug") # Remove value s3.discard("Derek") # Remove random value print("Random", s3.pop()) # Add values in s2 to s3 s3 |= s2 # Return common values (You can include multiple # sets as attributes) print(s1.intersection(s2)) # All unique values print(s1.symmetric_difference(s2)) # Values in s1 but not in s2 print(s1.difference(s2)) # Clear values s3.clear() # Frozen sets can't be edited s4 = frozenset(["Paul", 7]) # ----- FUNCTIONS ----- # Functions provide code reuse, organization # and much more # Add 2 values using 1 as default # You can define the data type using function # annotations def get_sum(num1: int = 1, num2: int = 1): return num1 + num2 print(get_sum(5, 4)) # Accept multiple values def get_sum2(*args): sum = 0 for arg in args: sum += arg return sum print(get_sum2(1, 2, 3, 4)) # Return multiple values def next_2(num): return num + 1, num + 2 i1, i2 = next_2(5) print(i1, i2) # A function that makes a function that # multiplies by the given value def mult_by(num): # You can create anonymous (unnamed functions) # with lambda return lambda x: x * num print("3 * 5 =", (mult_by(3)(5))) # Pass a function to a function def mult_list(list, func): for x in list: print(func(x)) mult_by_4 = mult_by(4) mult_list(list(range(0, 5)), mult_by_4) # Create list of functions power_list = [lambda x: x ** 2, lambda x: x ** 3, lambda x: x ** 4] # ----- MAP ----- # Map is used to execute a function on a list one_to_4 = range(1, 5) times2 = lambda x: x * 2 print(list(map(times2, one_to_4))) # ----- FILTER ----- # Filter selects items based on a function # Print out the even values from a list print(list(filter((lambda x: x % 2 == 0), range(1, 11)))) # ----- REDUCE ----- # Reduce receives a list and returns a single # result # Add up the values in a list print(reduce((lambda x, y: x + y), range(1, 6))) # ----- EXCEPTION HANDLING ----- # You can handle errors that would otherwise # crash your program # By giving the while a value of True it will # cycle until a break is reached while True: # If we expect an error can occur surround # potential error with try try: number = int(input("Please enter a number : ")) break # The code in the except block provides # an error message to set things right # We can either target a specific error # like ValueError except ValueError: print("You didn't enter a number") # We can target all other errors with a # default except: print("An unknown error occurred") print("Thank you for entering a number") # ----- FILE IO ----- # We can save and read data from files # We start the code with with which guarantees # the file will be closed if the program crashes # mode w overwrites file # mode a appends # File Operators: # 'r' - read file # 'w' - write file # 'a' - append file with open("mydata.txt", mode="w", encoding="utf-8") \ as myFile: # You can write to the file with write # It doesn't add a newline myFile.write("Some random text\nMore random text\nAnd some more") # Open a file for reading with open("mydata.txt", encoding="utf-8") as myFile: # Use read() to get everything at once print(myFile.read()) # Find out if the file is closed print(myFile.closed) # using with operator # reading from text file all lines with auto closing using with with open("test.txt") as f: lines = f.readlines() # reading a complete text file content to a string with open("test.txt") as f: lines = f.read() f.close() # get line by line of the text file to a string variable with open("test.txt") as f: for line in f: print(line) # write a list to a file lines = ['Readme', 'How to write text files in Python'] with open("test2.txt", 'w') as f: f.write('\n'.join(lines)) # note: '\n'.join(lines) handles the new line break in the file # ----- CLASSES OBJECTS ----- # Real world objects have # attributes : height, weight # capabilities : run, eat # Classes are blueprints for creating objects class Square: # init is used to set values for each Square def __init__(self, height="0", width="0"): self.height = height self.width = width # This is the getter # self is used to refer to an object that # we don't possess a name for @property def height(self): print("Retrieving the height") # Put a __ before this private field return self.__height # This is the setter @height.setter def height(self, value): # We protect the height from receiving # a bad value if value.isdigit(): # Put a __ before this private field self.__height = value else: print("Please only enter numbers for height") # This is the getter @property def width(self): print("Retrieving the width") return self.__width # This is the setter @width.setter def width(self, value): if value.isdigit(): self.__width = value else: print("Please only enter numbers for width") def get_area(self): return int(self.__width) * int(self.__height) # Create a Square object square = Square() square.height = "10" square.width = "10" print("Area", square.get_area()) # ----- INHERITANCE & POLYMORPHISM----- # When a class inherits from another it gets all # its fields and methods and can change as needed class Animal: def __init__(self, name="unknown", weight=0): self.__name = name self.__weight = weight @property def name(self, name): self.__name = name def make_noise(self): return "Grrrrr" # Used to cast to a string type def __str__(self): return "{} is a {} and says {}".format (self.__name, type(self).__name__, self.make_noise()) # Magic methods are used for operator # overloading # Here I'll define how to evaluate greater # than between 2 Animal objects def __gt__(self, animal2): if self.__weight > animal2.__weight: return True else: return False # Other Magic Methods # __eq__ : Equal # __ne__ : Not Equal # __lt__ : Less Than # __gt__ : Greater Than # __le__ : Less Than or Equal # __ge__ : Greater Than or Equal # __add__ : Addition # __sub__ : Subtraction # __mul__ : Multiplication # __div__ : Division # __mod__ : Modulus # Dog inherits everything from Animal class Dog(Animal): def __init__(self, name="unknown", owner="unknown", weight=0): # Have the super class handle initializing Animal.__init__(self, name, weight) self.__owner = owner # Overwrite str def __str__(self): # How to call super class methods return super().__str__() + " and is owned by " + \ self.__owner animal = Animal("Spot", 100) print(animal) dog = Dog("Bowser", "Bob", 150) print(dog) # Test the magic method print(animal > dog) # Polymorphism in Python works differently from # other languages in that functions accept any # object and expect that object to provide the # needed method # This isn't something to dwell on. Just know # that if you call on a method for an object # that the method just needs to exist for # that object to work. # ----- THREADS ----- # Threads are blocks of code that takes turns # executing def execute_thread(i): # strftime or string formatted time allows you to # define how the time is displayed. # You could include the date with # strftime("%Y-%m-%d %H:%M:%S", gmtime()) # Print when the thread went to sleep print("Thread {} sleeps at {}".format(i, time.strftime("%H:%M:%S", time.gmtime()))) # Generate a random sleep period of between 1 and # 5 seconds rand_sleep_time = random.randint(1, 5) # Pauses execution of code in this function for # a few seconds time.sleep(rand_sleep_time) # Print out info after the sleep time print("Thread {} stops sleeping at {}".format(i, time.strftime("%H:%M:%S", time.gmtime()))) for i in range(10): # Each time through the loop a Thread object is created # You pass it the function to execute and any # arguments to pass to that method # The arguments passed must be a sequence which # is why we need the comma with 1 argument thread = threading.Thread(target=execute_thread, args=(i,)) thread.start() # Display active threads # The extra 1 is this for loop executing in the main # thread print("Active Threads :", threading.activeCount()) # Returns a list of all active thread objects print("Thread Objects :", threading.enumerate()) # Regular expressions allow you to locate and change # strings in very powerful ways. # They work in almost exactly the same way in every # programming language as well. # ----- REGEX (Regular Expressions) ------- # Regular Expressions (Regex) are used to # 1. Search for a specific string in a large amount of data # 2. Verify that a string has the proper format (Email, Phone #) # 3. Find a string and replace it with another string # 4. Format data into the proper form for importing for example # import the Regex module import re # ---------- Was a Match Found ---------- # Search for ape in the string if re.search("ape", "The ape was at the apex"): print("There is an ape") # ---------- Get All Matches ---------- # findall() returns a list of matches # . is used to match any 1 character or space allApes = re.findall("ape.", "The ape was at the apex") for i in allApes: print(i) # finditer returns an iterator of matching objects # You can use span to get the location theStr = "The ape was at the apex" for i in re.finditer("ape.", theStr): # Span returns a tuple locTuple = i.span() print(locTuple) # Slice the match out using the tuple values print(theStr[locTuple[0]:locTuple[1]]) # Here I'll show you how to work with SQLite databases # in Python # A database makes it easy for you to organize your # data for storage and fast searching import sqlite3 import sys import csv def printDB(): # To retrieve data from a table use SELECT followed # by the items to retrieve and the table to # retrieve from try: result = theCursor.execute("SELECT id, FName, LName, Age, Address, Salary, HireDate FROM Employees") # You receive a list of lists that hold the result for row in result: print("ID :", row[0]) print("FName :", row[1]) print("LName :", row[2]) print("Age :", row[3]) print("Address :", row[4]) print("Salary :", row[5]) print("HireDate :", row[6]) except sqlite3.OperationalError: print("The Table Doesn't Exist") except: print("Couldn't Retrieve Data From Database") # ---------- END OF FUNCTIONS ---------- # connect() will open an SQLite database, or if it # doesn't exist it will create it # The file appears in the same directory as this # Python file db_conn = sqlite3.connect('test.db') print("Database Created") # A cursor is used to traverse the records of a result theCursor = db_conn.cursor() # execute() executes a SQL command # We organize our data in tables by defining their # name and the data type for the data # We define the table name # A primary key is a unique value that differentiates # each row of data in our table # The primary key will auto increment each time we # add a new Employee # If a piece of data is marked as NOT NULL, that means # it must have a value to be valid # NULL is NULL and stands in for no value # INTEGER is an integer # TEXT is a string of variable length # REAL is a float # BLOB is used to store binary data # You can delete a table if it exists like this # db_conn.execute("DROP TABLE IF EXISTS Employees") # db_conn.commit() try: db_conn.execute("CREATE TABLE Employees(ID INTEGER PRIMARY KEY AUTOINCREMENT NOT NULL, FName TEXT NOT NULL, LName TEXT NOT NULL, Age INT NOT NULL, Address TEXT, Salary REAL, HireDate TEXT);") db_conn.commit() print("Table Created") except sqlite3.OperationalError: print("Table couldn't be Created") # To insert data into a table we use INSERT INTO # followed by the table name and the item name # and the data to assign to those items db_conn.execute("INSERT INTO Employees (FName, LName, Age, Address, Salary, HireDate)" "VALUES ('Derek', 'Banas', 41, '123 Main St', '500,000', date('now'))") db_conn.commit() print("Employee Entered") # Print out all the data in the database printDB() # Closes the database connection db_conn.close() # ——- myfunc.py ——- # ---------- RECURSIVE FUNCTIONS ---------- # A function that refers to itself is a recursive function # Calculating factorials is commonly done with a recursive # function 3! = 3 * 2 * 1 def factorial(num): # Every recursive function must contain a condition # when it ceases to call itself if num <= 1: return 1 else: result = num * factorial(num - 1) return result # 1st : result = 4 * factorial(3) = 4 * 6 = 24 # 2nd : result = 3 * factorial(2) = 3 * 2 = 6 # 3rd : result = 2 * factorial(1) = 2 * 1 = 2 # ——— MODULES ——— import myfunc print(myfunc.factorial(4)) # OR from myfunc import factorial print(factorial(4)) # ——— GUI DEVELOPMENT WITH TKINTER ——— from tkinter import * from tkinter import ttk class Calculator: # Stores the current value to display in the entry calc_value = 0.0 # Will define if this was the last math button clicked div_trigger = False mult_trigger = False add_trigger = False sub_trigger = False # Called anytime a number button is pressed def button_press(self, value): # Get the current value in the entry entry_val = self.number_entry.get() # Put the new value to the right of it # If it was 1 and 2 is pressed it is now 12 # Otherwise the new number goes on the left entry_val += value # Clear the entry box self.number_entry.delete(0, "end") # Insert the new value going from left to right self.number_entry.insert(0, entry_val) # Returns True or False if the string is a float def isfloat(self, str_val): try: # If the string isn't a float float() will throw a # ValueError float(str_val) # If there is a value you want to return use return return True except ValueError: return False # Handles logic when math buttons are pressed def math_button_press(self, value): # Only do anything if entry currently contains a number if self.isfloat(str(self.number_entry.get())): # make false to cancel out previous math button click self.add_trigger = False self.sub_trigger = False self.mult_trigger = False self.div_trigger = False # Get the value out of the entry box for the calculation self.calc_value = float(self.entry_value.get()) # Set the math button click so when equals is clicked # that function knows what calculation to use if value == "/": print("/ Pressed") self.div_trigger = True elif value == "*": print("* Pressed") self.mult_trigger = True elif value == "+": print("+ Pressed") self.add_trigger = True else: print("- Pressed") self.sub_trigger = True # Clear the entry box self.number_entry.delete(0, "end") # Performs a mathematical operation by taking the value before # the math button is clicked and the current value. Then perform # the right calculation by checking what math button was clicked # last def equal_button_press(self): # Make sure a math button was clicked if self.add_trigger or self.sub_trigger or self.mult_trigger or self.div_trigger: if self.add_trigger: solution = self.calc_value + float(self.entry_value.get()) elif self.sub_trigger: solution = self.calc_value - float(self.entry_value.get()) elif self.mult_trigger: solution = self.calc_value * float(self.entry_value.get()) else: solution = self.calc_value / float(self.entry_value.get()) print(self.calc_value, " ", float(self.entry_value.get())," ", solution) # Clear the entry box self.number_entry.delete(0, "end") self.number_entry.insert(0, solution) def __init__(self, root): # Will hold the changing value stored in the entry self.entry_value = StringVar(root, value="") # Define title for the app root.title("Calculator") # Defines the width and height of the window root.geometry("430x220") # Block resizing of Window root.resizable(width=False, height=False) # Customize the styling for the buttons and entry style = ttk.Style() style.configure("TButton", font="Serif 15", padding=10) style.configure("TEntry", font="Serif 18",padding=10) # Create the text entry box self.number_entry = ttk.Entry(root, textvariable=self.entry_value, width=50) self.number_entry.grid(row=0, columnspan=4) # ----- 1st Row ----- self.button7 = ttk.Button(root, text="7", command=lambda: self.button_press('7')).grid(row=1, column=0) self.button8 = ttk.Button(root, text="8", command=lambda: self.button_press('8')).grid(row=1, column=1) self.button9 = ttk.Button(root, text="9", command=lambda: self.button_press('9')).grid(row=1, column=2) self.button_div = ttk.Button(root, text="/", command=lambda: self.math_button_press('/')).grid(row=1, column=3) # ----- 2nd Row ----- self.button4 = ttk.Button(root, text="4", command=lambda: self.button_press('4')).grid(row=2, column=0) self.button5 = ttk.Button(root, text="5", command=lambda: self.button_press('5')).grid(row=2, column=1) self.button6 = ttk.Button(root, text="6", command=lambda: self.button_press('6')).grid(row=2, column=2) self.button_mult = ttk.Button(root, text="*", command=lambda: self.math_button_press('*')).grid(row=2, column=3) # ----- 3rd Row ----- self.button1 = ttk.Button(root, text="1", command=lambda: self.button_press('1')).grid(row=3, column=0) self.button2 = ttk.Button(root, text="2", command=lambda: self.button_press('2')).grid(row=3, column=1) self.button3 = ttk.Button(root, text="3", command=lambda: self.button_press('3')).grid(row=3, column=2) self.button_add = ttk.Button(root, text="+", command=lambda: self.math_button_press('+')).grid(row=3, column=3) # ----- 4th Row ----- self.button_clear = ttk.Button(root, text="AC", command=lambda: self.button_press('AC')).grid(row=4, column=0) self.button0 = ttk.Button(root, text="0", command=lambda: self.button_press('0')).grid(row=4, column=1) self.button_equal = ttk.Button(root, text="=", command=lambda: self.equal_button_press()).grid(row=4, column=2) self.button_sub = ttk.Button(root, text="-", command=lambda: self.math_button_press('-')).grid(row=4, column=3) # Get the root window object root = Tk() # Create the calculator calc = Calculator(root) # Run the app until exited root.mainloop() # ---- DATE TIME ------ from datetime import date today = date.today() # dd/mm/YY d1 = today.strftime("%d/%m/%Y") print("d1 =", d1) # Textual month, day and year d2 = today.strftime("%B %d, %Y") print("d2 =", d2) # mm/dd/y d3 = today.strftime("%m/%d/%y") print("d3 =", d3) # Month abbreviation, day and year d4 = today.strftime("%b-%d-%Y") print("d4 =", d4) from datetime import datetime # datetime object containing current date and time now = datetime.now() print("now =", now) # dd/mm/YY H:M:S dt_string = now.strftime("%d/%m/%Y %H:%M:%S") print("date and time =", dt_string) # ---- ZIP -------- import zipfile, os from pathlib import Path # archiving data to a new zip archive myPath = Path("../") / "from" print(myPath) # use "w" for new and "a" to append to a zip archive newZip = zipfile.ZipFile(Path("/Users/stephan_wink/Downloads") / "example.zip", "w") for folderName, subfolders, filenames in os.walk(Path.cwd()): print(f"The current folder is: {folderName}") for filename in filenames: print(f"Zipping file: {filename}") newZip.write(filename, compress_type=zipfile.ZIP_DEFLATED) newZip.close() # archive information print(newZip.namelist()) fileName = newZip.namelist()[0] # file information info = newZip.getinfo(fileName) print(info.file_size) # original file size print(info.compress_size) # compressed file size print(info.compress_type) # compression type # ----- ARG Parse ----- # commandline argument parsing # example 1 import argparse parser = argparse.ArgumentParser() parser.parse_args() #this results in the following: #$ python3 prog.py --help #usage: prog.py [-h] #options: # -h, --help show this help message and exit #--------------------------------------------------------------- # example 2 import argparse parser = argparse.ArgumentParser() parser.add_argument("echo", help="echo the string you use here") args = parser.parse_args() print(args.echo) #this results in the following: #$ python3 prog.py #usage: prog.py [-h] echo #prog.py: error: the following arguments are required: echo #$ python3 prog.py --help #usage: prog.py [-h] echo #positional arguments: # echo echo the string you use here #options: # -h, --help show this help message and exit #$ python3 prog.py foo #foo #--------------------------------------------------------------- # example 3 import argparse parser = argparse.ArgumentParser(description = "this is the description of the program") parser.add_argument("-e", "--emul", help="emulation mode active", action="store_true") parser.add_argument("-i", "--input", type=str, help="input file") parser.add_argument("-o", "--output", type=str, help="output file") parser.add_argument("-t", "--target", type=str, help="target selection") args = parser.parse_args() if args.emul: print("emulation mode on") if args.input: print(args.input) if args.output: print(args.output) if args.target: print(args.target) #this results in the following output: #stephan_wink@winkste-mbp scripts % python3 cc_argparse.py -e -i "c:\input" -o "c:\output" -t "x86" #emulation mode on #c:\input #c:\output #x86 # --- Path / Pathlib / OS ----- # special directories # "./" -> current directory # "../" -> one folder up (parent directory) from pathlib import Path # connect pathes with the "/" operator p = Path('spam') / 'bacon' / 'egg' # Note: one item has to be of class Path # How to join a path structure always OS system conform var = os.path.join(os.getcwd(), 'temp', 'file.txt') print(var) #T his can also be splitted again print(os.path.split(var)) # getting the current working directory Path.cwd() # getting the home directory Path.home() # items of a path p = Path.cwd() / "test" / "spam.c" print(f"Path: {p}") print(f"Anchor: {p.anchor}") print(f"Parent: {p.parent}") print(f"Parents: {p.parents[0]}, {p.parents[1]}") print(f"Stem: {p.stem}") print(f"Suffix: {p.suffix}") print(f"Drive: {p.drive}") # glob function to search in folders, search can use # * for any, or ? for one character placeholder: *.?x? # matches .exe, .txt l = list(Path.cwd().glob('*.py')) # checking if path or files exist: p = Path.cwd() / "test" / "spam.c" p.exists() # true if path exists p.is_file() # true if exists and is file p.is_dir() # true if exists and is folder import os # changing the working directory os.chdir("../") # create a new directory os.mkdir("./test") # Note: generates "FileExistsError" exception if the file already # exists. # check that a path is absolute Path.cwd().is_absolute() # == True Path("../").is_absolute() # == False # separation of path in dir and file(base) print(f"OS Base: {os.path.basename(p)}") print(f"Dir: {os.path.dirname(p)}") # separation of dir and file in a tuple os.path.split(p) # the os related separator print(os.sep) # list all elements in a folder os.listdir(Path.pwd()) # here the current folder # this can be used to iterate it # get the size of a file os.path.getsize(Path.pwd() / "file.txt") # Calculating the size of a folder print(os.path.getsize(os.getcwd())) # --- SHUTIL ---- import shutil, os from pathlib import Path # copy one file to another location and renames it p = Path.cwd() src = Path("../") / "from" / "test.txt" dest = Path("../") / "to" / "copytest2.txt" shutil.copy(src, dest) # moves the file to another location and renames it shutil.move(src, dest) # copy a complete folder to a different location p = Path.cwd() src = Path("../") / "from" dest = Path("../") / "to" / "copytest_backup" shutil.copytree(src, dest) # methods for PERMANENTLY deleting files and folders os.unlink(src) # will delete the file src os.rmdir(src) # will delete the folder at src, folder must be empty shutil.rmtree(src) # will remove the folder and all files # --- send2trash ---- # delete files # send files to trash using send2trash import send2trash p = Path.cwd() src = Path("../") / "from" / "test.txt" send2trash.send2trash(src) # walking a folder and its subfolders with os.walk function import os from pathlib import Path src = Path.cwd() for folderName, subfolders, filenames in os.walk(src): print(f"The current folder is: {folderName}") for subfolder in subfolders: print(f"SUBFOLDER OF {folderName}: {subfolder}") for filename in filenames: print(f"FILE INSIDE {folderName}: {filename}") print("") # ---- SHELVE ------ # import shelve from standard library import shelve # using the with operator with shelve.open('test') as db: db['color'] = 'blue, no yelloowwwww!' # deleting a key and data from a shelve file with shelve.open('test') as db: del db['color'] # deleting all keys in a shelve file with shelve.open('test') as db: db.clear() # open a new or existing shelve file: sf = shelve.open("test") # add any parameter with a key to the shelve file sf["l"] = ["one", "two", "three"] # list all keys stored in a shelve file list(sf.keys()) # read parameter from shelve file using the key: lr= sf["l"] # close the shelve file sf.close() # --- pretty print / pprint ---- # import the pretty print module import pprint # define the data you want to make available as python file ml = [{'name:': "Tim"}, {'name:': "Tobi"}] # open the new file f = open("test.py", 'w') # write the data to the python file using pprint pformat function f.write("names = " + pprint.pformat(ml) + '\n') # close the python file f.close() # --- pyinputplus / improved user input --- #pip install pyinputplus import pyinputplus as pyip # input for a string value help(pyip.inputStr) resp = pyip.inputStr("Enter string: ") #input for a number value help(pyip.inputNum) resp = pyip.inputNum("Enter number: ") #check range, accepted entries: 4,5 resp = pyip.inputNum("Enter number: ", min=4, lessThan=6) #check range, accepted entries: 4,5 resp = pyip.inputNum("Enter number: ", max=5, greaterThan=3) #for input as optional, use argument blank=True resp = pyip.inputNum("Enter number: ", blank=True) # limit, timeout and default resp = pyip.inputNum(">", min=3, limit=2, default=3) # without "default", an exception will be raised! resp = pyip.inputNum(">", min=3, timeout=2, default=3) #input for a password value help(pyip.inputPassword) resp = pyip.inputPassword("Enter PWD: ") #input for a password value help(pyip.inputPassword) resp = pyip.inputPassword("Enter PWD: ") #guided inputs thru menu or choice resp = pyip.inputMenu(['cat', 'dog', 'moose'], numbered=True) resp = pyip.inputChoice(['cat', 'dog', 'moose']) #yes,no decision check response = pyip.inputYesNo('Do you want to erase (y/n)? ') # clipboard with pyperclip import pyperclip # copy to clipboard pyperclip.copy('The text to be copied to the clipboard.') # get from clipboard var = pyperclip.paste() # --- CALL/EXECUTE/RUN other programs from python ----- import os # ussing the os.system function, this has got several limitations os.system("python scripts/zipper.py") # using the os.popen function dir = os.popen("ls").readlines() print(dir) # using the subprocess function import subprocess x = subprocess.Popen(['touch', 'xyz']) print(x) # <subprocess.Popen object at 0x7f29882f6f50> x.poll() print(x.returncode) # pipe the output of the process process = subprocess.Popen(['ls','-l'], stdout=subprocess.PIPE) print(process.stdout.read()) # wait for the subprocess to finish process.wait()
plot_from_pp_geop_height_pot_temp_and_wind_diff_mean_state.py
""" Load pp, plot and save 8km difference """ import os, sys #%matplotlib inline #%pylab inline import matplotlib #matplotlib.use('Agg') # Must be before importing matplotlib.pyplot or pylab! from matplotlib import rc from matplotlib.font_manager import FontProperties from matplotlib import rcParams from mpl_toolkits.basemap import Basemap rc('font', family = 'serif', serif = 'cmr10') rc('text', usetex=True) rcParams['text.usetex']=True rcParams['text.latex.unicode']=True rcParams['font.family']='serif' rcParams['font.serif']='cmr10' import matplotlib.pyplot as plt #from matplotlib import figure import matplotlib as mpl import matplotlib.cm as mpl_cm import numpy as np import iris import iris.coords as coords import iris.quickplot as qplt import iris.plot as iplt import iris.coord_categorisation import iris.unit as unit import cartopy.crs as ccrs import cartopy.io.img_tiles as cimgt import matplotlib.ticker as mticker from cartopy.mpl.gridliner import LONGITUDE_FORMATTER, LATITUDE_FORMATTER import datetime from mpl_toolkits.basemap import cm import imp from textwrap import wrap import re import iris.analysis.cartography import math from dateutil import tz #import multiprocessing as mp import gc import types import scipy.interpolate import pdb save_path='/nfs/a90/eepdw/Figures/EMBRACE/' model_name_convert_title = imp.load_source('util', '/nfs/see-fs-01_users/eepdw/python_scripts/modules/model_name_convert_title.py') model_name_convert_legend = imp.load_source('util', '/nfs/see-fs-01_users/eepdw/python_scripts/modules/model_name_convert_legend.py') unrotate = imp.load_source('util', '/nfs/see-fs-01_users/eepdw/python_scripts/modules/unrotate_pole.py') pp_file_contourf = 'temp_on_p_levs_mean' pp_file_contour ='408_on_p_levs_mean' plot_diag='temp' #plot_diags=['sp_hum'] plot_levels = [925] #experiment_ids = ['dkmbq', 'dklyu'] experiment_ids = ['djzny', 'djznw', 'djznq', 'djzns', 'dklwu', 'dklzq'] # All minus large 2 #Experiment_ids = ['djzny', 'djznq', 'djzns', 'dkjxq', 'dklyu', 'dkmbq', 'dklwu', 'dklzq', 'dkbhu', 'djznu', 'dkhgu' ] # All 12 #experiment_ids = ['djzny', 'djznq', 'djzns', 'dkjxq', 'dklwu', 'dklzq', 'dkbhu',] # All 12 #experiment_ids = ['dkbhu', 'dkjxq'] #experiment_ids = ['dkmbq', 'dklyu', 'djznw', 'djzny', 'djznq', 'djzns', 'dklwu', 'dklzq'] # All minus large 2 #experiment_ids = ['dklyu, dkmgw'] experiment_ids = ['dkmgw', 'dklyu'] #experiment_ids = ['dklyu'] diff_id='dkmbq' #min_contour = 0 #max_contour = 3 #tick_interval=0.3 #clevs = np.linspace(min_contour, max_contour,64) #cmap=cm.s3pcpn_l cmap = plt.cm.RdBu_r #ticks = (np.arange(min_contour, max_contour+tick_interval,tick_interval)) pp_file_path = '/nfs/a90/eepdw/Data/EMBRACE/' degs_crop_top = 1.7 degs_crop_bottom = 2.5 from iris.coord_categorisation import add_categorised_coord # def add_hour_of_day(cube, coord, name='hour'): # add_categorised_coord(cube, name, coord, # lambda coord, x: coord.units.num2date(x).hour) figprops = dict(figsize=(8,8), dpi=100) #cmap=cm.s3pcpn_l un = unit.Unit('hours since 1970-01-01 00:00:00',calendar='gregorian') dx, dy = 10, 10 divisor=10 # for lat/lon rounding lon_high = 101.866 lon_low = 64.115 lat_high = 33. lat_low =-6.79 lon_low_tick=lon_low -(lon_low%divisor) lon_high_tick=math.ceil(lon_high/divisor)*divisor lat_low_tick=lat_low - (lat_low%divisor) lat_high_tick=math.ceil(lat_high/divisor)*divisor def main(): for p_level in plot_levels: # Set pressure height contour min/max if p_level == 925: clev_min = -72. clev_max = 72. elif p_level == 850: clev_min = -72. clev_max = 72. elif p_level == 700: clev_min = -72. clev_max = 72. elif p_level == 500: clev_min = -72. clev_max = 72. else: print 'Contour min/max not set for this pressure level' # Set potential temperature min/max if p_level == 925: clevpt_min = -3. clevpt_max = 3. elif p_level == 850: clevpt_min = -3. clevpt_max = 3. elif p_level == 700: clevpt_min = -3. clevpt_max = 3. elif p_level == 500: clevpt_min = -3. clevpt_max = 3. else: print 'Potential temperature min/max not set for this pressure level' # Set specific humidity min/max if p_level == 925: clevsh_min = -0.0025 clevsh_max = 0.0025 elif p_level == 850: clevsh_min = -0.0025 clevsh_max = 0.0025 elif p_level == 700: clevsh_min = -0.0025 clevsh_max = 0.0025 elif p_level == 500: clevsh_min = -0.0025 clevsh_max = 0.0025 else: print 'Specific humidity min/max not set for this pressure level' #clevs_col = np.arange(clev_min, clev_max) clevs_lin = np.arange(clev_min, clev_max, 4.) p_level_constraint = iris.Constraint(pressure=p_level) #for plot_diag in plot_diags: for experiment_id in experiment_ids: expmin1 = experiment_id[:-1] diffmin1 = diff_id[:-1] pfile = '/nfs/a90/eepdw/Data/EMBRACE/%s/%s/%s_%s.pp' % (expmin1, experiment_id, experiment_id, pp_file_contourf) pfile_diff = '/nfs/a90/eepdw/Data/EMBRACE/%s/%s/%s_%s.pp' % (diffmin1, diff_id, diff_id, pp_file_contourf) pcube_contourf = iris.load_cube(pfile, p_level_constraint) #pcube_contourf=iris.analysis.maths.multiply(pcube_contourf,3600) pcube_contourf_diff = iris.load_cube(pfile_diff, p_level_constraint) #pcube_contourf_diff=iris.analysis.maths.multiply(pcube_contourf_diff,3600) #pdb.set_trace() height_pp_file = '%s_%s.pp' % (experiment_id, pp_file_contour) height_pfile = '%s%s/%s/%s' % (pp_file_path, expmin1, experiment_id, height_pp_file) height_pp_file_diff = '%s_%s.pp' % (diff_id, pp_file_contour) height_pfile_diff = '%s%s/%s/%s' % (pp_file_path, diffmin1, diff_id, height_pp_file_diff) pcube_contour = iris.load_cube(height_pfile, p_level_constraint) pcube_contour_diff = iris.load_cube(height_pfile_diff, p_level_constraint) #pdb.set_trace() pcube_contourf=pcube_contourf-pcube_contourf_diff pcube_contour=pcube_contour-pcube_contour_diff del pcube_contourf_diff, pcube_contour_diff #pdb.set_trace() #time_coords = pcube_contourf.coord('time') #iris.coord_categorisation.add_day_of_year(pcube_contourf, time_coords, name='day_of_year') #time_coords = pcube_contour.coord('time') #iris.coord_categorisation.add_day_of_year(pcube_contour, time_coords, name='day_of_year') fu = '/nfs/a90/eepdw/Data/EMBRACE/%s/%s/%s_30201_mean.pp' \ % (expmin1, experiment_id, experiment_id) fu_diff = '/nfs/a90/eepdw/Data/EMBRACE/%s/%s/%s_30201_mean.pp' \ % (diffmin1, diff_id, diff_id) #pdb.set_trace() u_wind,v_wind = iris.load(fu, p_level_constraint) u_wind_diff,v_wind_diff = iris.load(fu_diff, p_level_constraint) u_wind = u_wind - u_wind_diff v_wind = v_wind - v_wind_diff del u_wind_diff, v_wind_diff for t, time_cube in enumerate(pcube_contourf.slices(['grid_latitude', 'grid_longitude'])): #pdb.set_trace() #height_cube_slice = pcube_contour.extract(iris.Constraint(day_of_year=time_cube.coord('day_of_year').points)) height_cube_slice = pcube_contour u_wind_slice = u_wind v_wind_slice = v_wind #pdb.set_trace() # Get time of averagesfor plot title #h = un.num2date(np.array(time_cube.coord('time').points, dtype=float)[0]).strftime('%d%b') #Convert to India time # from_zone = tz.gettz('UTC') # to_zone = tz.gettz('Asia/Kolkata') # h_utc = un.num2date(np.array(time_cube.coord('day_of_year').points, dtype=float)[0]).replace(tzinfo=from_zone) # h_local = h_utc.astimezone(to_zone).strftime('%H%M') ### Winds cs_w = u_wind_slice.coord_system('CoordSystem') lat_w = u_wind_slice.coord('grid_latitude').points lon_w = u_wind_slice.coord('grid_longitude').points lons_w, lats_w = np.meshgrid(lon_w, lat_w) lons_w,lats_w = iris.analysis.cartography.unrotate_pole(lons_w,lats_w, cs_w.grid_north_pole_longitude, cs_w.grid_north_pole_latitude) lon_w=lons_w[0] lat_w=lats_w[:,0] ### Regrid winds to 2 degree spacing lat_wind_1deg = np.arange(lat_low,lat_high, 2) lon_wind_1deg = np.arange(lon_low,lon_high, 2) #pdb.set_trace() lons_wi, lats_wi = np.meshgrid(lon_wind_1deg, lat_wind_1deg) fl_la_lo = (lats_w.flatten(),lons_w.flatten()) p_levs = u_wind_slice.coord('pressure').points sc = np.searchsorted(p_levs, p_level) u = scipy.interpolate.griddata(fl_la_lo, u_wind_slice.data.flatten(), (lats_wi, lons_wi), method='linear') v = scipy.interpolate.griddata(fl_la_lo, v_wind_slice.data.flatten(), (lats_wi, lons_wi), method='linear') ################################### # PLOT ############################################## fig = plt.figure(**figprops) #cmap=plt.cm.RdBu_r ax = plt.axes(projection=ccrs.PlateCarree(), extent=(lon_low,lon_high,lat_low+degs_crop_bottom,lat_high-degs_crop_top)) m =\ Basemap(llcrnrlon=lon_low,llcrnrlat=lat_low,urcrnrlon=lon_high,urcrnrlat=lat_high, rsphere = 6371229) #pdb.set_trace() # lat = pcube_contourf.coord('grid_latitude').points # lon = pcube_contourf.coord('grid_longitude').points # cs = cube.coord_system('CoordSystem') # lons, lats = np.meshgrid(lon, lat) # lons, lats = iris.analysis.cartography.unrotate_pole\ # (lons,lats, cs.grid_north_pole_longitude, cs.grid_north_pole_latitude) # x,y = m(lons,lats) #x_w,y_w = m(lons_wi, lats_wi) if plot_diag=='temp': min_contour = clevpt_min max_contour = clevpt_max cb_label='K' main_title='8km Explicit model (dklyu) minus 8km parametrised model geopotential height (grey contours), potential temperature (colours),\ and wind (vectors)' tick_interval=2 clev_number=max_contour-min_contour+1 elif plot_diag=='sp_hum': min_contour = clevsh_min max_contour = clevsh_max cb_label='kg/kg' main_title='8km Explicit model (dklyu) minus 8km parametrised model geopotential height (grey contours), specific humidity (colours),\ and wind (vectors)' tick_interval=0.002 clev_number=max_contour-min_contour+0.001 clevs = np.linspace(min_contour, max_contour, clev_number) clevs = np.linspace(min_contour, max_contour, 32) #clevs=np.linspace(-10.,10.,32) # #clevs = np.linspace(-3, 3, 32) # cont = plt.contourf(x,y,time_cube.data, clevs, cmap=cmap, extend='both') #cont = iplt.contourf(time_cube, clevs, cmap=cmap, extend='both') lat = time_cube.coord('grid_latitude').points lon = time_cube.coord('grid_longitude').points lons, lats = np.meshgrid(lon, lat) cs = time_cube.coord_system('CoordSystem') lons,lats = iris.analysis.cartography.unrotate_pole(lons,lats, cs.grid_north_pole_longitude, cs.grid_north_pole_latitude) cont = plt.contourf(lons, lats, time_cube.data, clevs, cmap=cmap, extend='both') #pdb.set_trace() cs_lin = plt.contour(lons, lats, height_cube_slice.data, clevs_lin,colors='#262626',linewidths=1.) plt.clabel(cs_lin, fontsize=14, fmt='%d', color='black') #del time_cube #plt.clabel(cont, fmt='%d') #ax.stock_img() ax.coastlines(resolution='110m', color='#262626') gl = ax.gridlines(draw_labels=True,linewidth=0.5, color='#262626', alpha=0.5, linestyle='--') gl.xlabels_top = False gl.ylabels_right = False #gl.xlines = False dx, dy = 10, 10 gl.xlocator = mticker.FixedLocator(range(int(lon_low_tick),int(lon_high_tick)+dx,dx)) gl.ylocator = mticker.FixedLocator(range(int(lat_low_tick),int(lat_high_tick)+dy,dy)) gl.xformatter = LONGITUDE_FORMATTER gl.yformatter = LATITUDE_FORMATTER gl.xlabel_style = {'size': 12, 'color':'#262626'} #gl.xlabel_style = {'color': '#262626', 'weight': 'bold'} gl.ylabel_style = {'size': 12, 'color':'#262626'} x_w,y_w = m(lons_wi, lats_wi) wind = m.quiver(x_w,y_w, u, v,scale=75, color='#262626' ) qk = plt.quiverkey(wind, 0.1, 0.1, 1, '5 m/s', labelpos='W') cbar = fig.colorbar(cont, orientation='horizontal', pad=0.05, extend='both') cbar.set_label('%s' % cb_label, fontsize=10, color='#262626') cbar.set_label(time_cube.units, fontsize=10, color='#262626') cbar.set_ticks(np.arange(min_contour, max_contour+tick_interval,tick_interval)) ticks = (np.arange(min_contour, max_contour+tick_interval,tick_interval)) cbar.set_ticklabels(['${%.1f}$' % i for i in ticks]) cbar.ax.tick_params(labelsize=10, color='#262626') #main_title='Mean Rainfall for EMBRACE Period -%s UTC (%s IST)' % (h, h_local) #main_title=time_cube.standard_name.title().replace('_',' ') #model_info = re.sub(r'[(\']', ' ', model_info) #model_info = re.sub(r'[\',)]', ' ', model_info) #print model_info file_save_name = '%s_minus_%s_%s_and_%s_%s_hPa_geop_height_and_wind' \ % (experiment_id, diff_id, pp_file_contour, pp_file_contourf, p_level) save_dir = '%s%s/%s_and_%s' % (save_path, experiment_id, pp_file_contour, pp_file_contourf) if not os.path.exists('%s' % save_dir): os.makedirs('%s' % (save_dir)) #plt.show() plt.title('%s-%s' % (str(model_name_convert_legend.main(experiment_id)), str(model_name_convert_legend.main(diff_id)))) fig.savefig('%s/%s.png' % (save_dir, file_save_name), format='png', bbox_inches='tight') #fig.savefig('%s/%s_short_title.png' % (save_dir, file_save_name) , format='png', bbox_inches='tight') #plt.show() #model_info=re.sub('(.{68} )', '\\1\n', str(model_name_convert_title.main(experiment_id)), 0, re.DOTALL) #plt.title('\n'.join(wrap('%s\n%s' % (main_title, model_info), 1000,replace_whitespace=False)), fontsize=16) #fig.savefig('%s/%s.png' % (save_dir, file_save_name), format='png', bbox_inches='tight') fig.clf() plt.close() #del time_cube gc.collect() if __name__ == '__main__': main() #proc=mp.Process(target=worker) #proc.daemon=True #proc.start() #proc.join()
parallel.py
# Parallel implementation for sampling a multi-order echelle spectrum. Because the likelihood # calculation is independent for each order, the runtime is essentially constant regardless # of how large a spectral range is used. # Additionally, one could use this to fit multiple stars at once. import argparse parser = argparse.ArgumentParser(prog="parallel.py", description="Run Starfish" " fitting model in parallel.") parser.add_argument("input", help="*.yaml file specifying parameters.") parser.add_argument("-r", "--run_index", help="Which run (of those running " "concurrently) is this? All data will be written into this directory, " "overwriting any that exists.") parser.add_argument("-p", "--perturb", type=float, help="Randomly perturb the " "starting position of the chain, as a multiple of the jump parameters.") args = parser.parse_args() from multiprocessing import Process, Pipe import os import numpy as np from Starfish.model import StellarSampler, NuisanceSampler from Starfish.spectrum import DataSpectrum, Mask, ChebyshevSpectrum from Starfish.grid_tools import SPEX, TRES from Starfish.emulator import Emulator import Starfish.constants as C from Starfish.covariance import get_dense_C, make_k_func from scipy.special import j1 from scipy.interpolate import InterpolatedUnivariateSpline from scipy.linalg import cho_factor, cho_solve from numpy.linalg import slogdet from astropy.stats.funcs import sigma_clip import gc import logging from itertools import chain from collections import deque from operator import itemgetter import yaml import shutil f = open(args.input) config = yaml.load(f) f.close() outdir = config['outdir'] name = config['name'] base = outdir + name + "run{:0>2}/" # This code is necessary for multiple simultaneous runs on odyssey # so that different runs do not write into the same output directory if args.run_index == None: run_index = 0 while os.path.exists(base.format(run_index)) and (run_index < 40): print(base.format(run_index), "exists") run_index += 1 outdir = base.format(run_index) else: run_index = args.run_index outdir = base.format(run_index) #Delete this outdir, if it exists if os.path.exists(outdir): print("Deleting", outdir) shutil.rmtree(outdir) print("Creating ", outdir) os.makedirs(outdir) # Determine how many filenames are in config['data']. Always load as a list, even len == 1. # If there are multiple datasets, this list will be longer than length 1 data = config["data"] if type(data) != list: data = [data] print("loading data spectra {}".format(data)) orders = config["orders"] #list of which orders to fit order_ids = np.arange(len(orders)) DataSpectra = [DataSpectrum.open(data_file, orders=orders) for data_file in data] # Number of different data sets we are fitting. Used for indexing purposes. spectra = np.arange(len(DataSpectra)) INSTRUMENTS = {"TRES": TRES, "SPEX": SPEX} #Instruments are provided as one per dataset Instruments = [INSTRUMENTS[key]() for key in config["instruments"]] masks = config.get("mask", None) if masks is not None: for mask, dataSpec in zip(masks, DataSpectra): myMask = Mask(mask, orders=orders) dataSpec.add_mask(myMask.masks) for model_number in range(len(DataSpectra)): for order in config['orders']: order_dir = "{}{}/{}".format(outdir, model_number, order) print("Creating ", order_dir) os.makedirs(order_dir) # Copy yaml file to outdir for archiving purposes shutil.copy(args.input, outdir + "/input.yaml") # Set up the logger logging.basicConfig(format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", filename="{}log.log".format( outdir), level=logging.DEBUG, filemode="w", datefmt='%m/%d/%Y %I:%M:%S %p') def perturb(startingDict, jumpDict, factor=3.): ''' Given a starting parameter dictionary loaded from a config file, perturb the values as a multiple of the jump distribution. This is designed so that not all chains start at exactly the same place. Modifies the startingDict ''' for key in startingDict.keys(): startingDict[key] += factor * np.random.normal(loc=0, scale=jumpDict[key]) stellar_Starting = config['stellar_params'] stellar_tuple = C.dictkeys_to_tuple(stellar_Starting) # go through each item in stellar_tuple, and assign the appropriate covariance to it stellar_MH_cov = np.array([float(config["stellar_jump"][key]) for key in stellar_tuple])**2 \ * np.identity(len(stellar_Starting)) fix_logg = config.get("fix_logg", None) # Updating specific covariances to speed mixing if config["use_cov"]: stellar_cov = config["stellar_cov"] factor = stellar_cov["factor"] stellar_MH_cov[0, 1] = stellar_MH_cov[1, 0] = stellar_cov['temp_logg'] * factor stellar_MH_cov[0, 2] = stellar_MH_cov[2, 0] = stellar_cov['temp_Z'] * factor stellar_MH_cov[1, 2] = stellar_MH_cov[2, 1] = stellar_cov['logg_Z'] * factor if fix_logg is None: stellar_MH_cov[0, 5] = stellar_MH_cov[5, 0] = stellar_cov['temp_logOmega'] * factor else: stellar_MH_cov[0, 4] = stellar_MH_cov[4, 0] = stellar_cov['temp_logOmega'] * factor def info(title): ''' Print process information useful for debugging. ''' print(title) print('module name:', __name__) if hasattr(os, 'getppid'): # only available on Unix print('parent process:', os.getppid()) print('process id:', os.getpid()) class OrderModel: def __init__(self, debug=False): ''' This object contains all of the variables necessary for the partial lnprob calculation for one echelle order. It is designed to first be instantiated within the main processes and then forked to other subprocesses. Once operating in the subprocess, the variables specific to the order are loaded with an `INIT` message call, which tells which key to initialize on in the `self.initialize()`. ''' self.lnprob = -np.inf self.lnprob_last = -np.inf self.func_dict = {"INIT": self.initialize, "DECIDE": self.decide_stellar, "INST": self.instantiate, "LNPROB": self.stellar_lnprob, "GET_LNPROB": self.get_lnprob, "FINISH": self.finish } self.debug = debug def initialize(self, key): ''' Initialize the OrderModel to the correct chunk of data (echelle order). :param key: (spectrum_id, order_id) :param type: (int, int) This should only be called after all subprocess have been forked. ''' self.id = key self.spectrum_id, self.order_id = self.id self.logger.info("Initializing model on Spectrum {}, order {}.".format(self.spectrum_id, self.order_id)) self.instrument = Instruments[self.spectrum_id] self.DataSpectrum = DataSpectra[self.spectrum_id] self.wl = self.DataSpectrum.wls[self.order_id] self.fl = self.DataSpectrum.fls[self.order_id] self.sigma = self.DataSpectrum.sigmas[self.order_id] self.npoints = len(self.wl) self.mask = self.DataSpectrum.masks[self.order_id] self.order = self.DataSpectrum.orders[self.order_id] self.logger = logging.getLogger("{} {}".format(self.__class__.__name__, self.order)) if self.debug: self.logger.setLevel(logging.DEBUG) else: self.logger.setLevel(logging.INFO) self.npoly = config["cheb_degree"] self.ChebyshevSpectrum = ChebyshevSpectrum(self.DataSpectrum, self.order_id, npoly=self.npoly) self.resid_deque = deque(maxlen=500) #Deque that stores the last residual spectra, for averaging self.counter = 0 self.Emulator = Emulator.open(config["PCA_path"]) # Returns mu and var vectors self.Emulator.determine_chunk_log(self.wl) # Truncates the grid to this wl format, power of 2 pg = self.Emulator.PCAGrid self.wl_FFT = pg.wl self.ncomp = pg.ncomp self.PCOMPS = np.vstack((pg.flux_mean[np.newaxis,:], pg.flux_std[np.newaxis,:], pg.pcomps)) self.min_v = self.Emulator.min_v self.ss = np.fft.rfftfreq(len(self.wl_FFT), d=self.min_v) self.ss[0] = 0.01 # junk so we don't get a divide by zero error self.pcomps = np.empty((self.ncomp, self.npoints)) self.flux_mean = np.empty((self.npoints,)) self.flux_std = np.empty((self.npoints,)) self.mus, self.vars = None, None self.C_GP = None self.data_mat = None self.sigma_matrix = self.sigma**2 * np.eye(self.npoints) self.prior = 0.0 # Modified and set by NuisanceSampler.lnprob self.nregions = 0 self.exceptions = [] #TODO: perturb #if args.perturb: #perturb(stellar_Starting, config["stellar_jump"], factor=args.perturb) cheb_MH_cov = float(config["cheb_jump"])**2 * np.ones((self.npoly,)) cheb_tuple = ("logc0",) # add in new coefficients for i in range(1, self.npoly): cheb_tuple += ("c{}".format(i),) # set starting position to 0 cheb_Starting = {k:0.0 for k in cheb_tuple} # Design cov starting cov_Starting = config['cov_params'] cov_tuple = C.dictkeys_to_cov_global_tuple(cov_Starting) cov_MH_cov = np.array([float(config["cov_jump"][key]) for key in cov_tuple])**2 nuisance_MH_cov = np.diag(np.concatenate((cheb_MH_cov, cov_MH_cov))) nuisance_starting = {"cheb": cheb_Starting, "cov": cov_Starting, "regions":{}} # Because this initialization is happening on the subprocess, I think # the random state should be fine. # Update the outdir based upon id self.noutdir = outdir + "{}/{}/".format(self.spectrum_id, self.order) # Create the nuisance parameter sampler to run independently self.sampler = NuisanceSampler(OrderModel=self, starting_param_dict=nuisance_starting, cov=nuisance_MH_cov, debug=True, outdir=self.noutdir, order=self.order) self.p0 = self.sampler.p0 # Udpate the nuisance parameters to the starting values so that we at # least have a self.data_mat self.logger.info("Updating nuisance parameter data products to starting values.") self.update_nuisance(nuisance_starting) self.lnprob = None def instantiate(self, *args): ''' Clear the old NuisanceSampler, instantiate the regions using the stored residual spectra, and create a new NuisanceSampler. ''' # threshold for sigma clipping sigma=config["sigma_clip"] # array that specifies if a pixel is already covered. # to start, it should be all False covered = np.zeros((self.npoints,), dtype='bool') #average all of the spectra in the deque together residual_array = np.array(self.resid_deque) if len(self.resid_deque) == 0: raise RuntimeError("No residual spectra stored yet.") else: residuals = np.average(residual_array, axis=0) # run the sigma_clip algorithm until converged, and we've identified the outliers filtered_data = sigma_clip(residuals, sig=sigma, iters=None) mask = filtered_data.mask wl = self.wl sigma0 = config['region_priors']['sigma0'] logAmp = config["region_params"]["logAmp"] sigma = config["region_params"]["sigma"] # Sort in decreasing strength of residual self.nregions = 0 regions = {} region_mus = {} for w, resid in sorted(zip(wl[mask], np.abs(residuals[mask])), key=itemgetter(1), reverse=True): if w in wl[covered]: continue else: # check to make sure region is not *right* at the edge of the echelle order if w <= np.min(wl) or w >= np.max(wl): continue else: # instantiate region and update coverage # Default amp and sigma values regions[self.nregions] = {"logAmp":logAmp, "sigma":sigma, "mu":w} region_mus[self.nregions] = w # for evaluating the mu prior self.nregions += 1 # determine the stretch of wl covered by this new region ind = (wl >= (w - sigma0)) & (wl <= (w + sigma0)) # update the covered regions covered = covered | ind # Take the current nuisance positions as a starting point, and add the regions starting_dict = self.sampler.params.copy() starting_dict["regions"] = regions region_mus = np.array([region_mus[i] for i in range(self.nregions)]) # Setup the priors region_priors = config["region_priors"] region_priors.update({"mus":region_mus}) prior_params = {"regions":region_priors} # do all this crap again cheb_MH_cov = float(config["cheb_jump"])**2 * np.ones((self.npoly,)) cov_MH_cov = np.array([float(config["cov_jump"][key]) for key in self.sampler.cov_tup])**2 region_MH_cov = [float(config["region_jump"][key])**2 for key in C.cov_region_parameters] regions_MH_cov = np.array([region_MH_cov for i in range(self.nregions)]).flatten() nuisance_MH_cov = np.diag(np.concatenate((cheb_MH_cov, cov_MH_cov, regions_MH_cov))) print(starting_dict) print("cov shape {}".format(nuisance_MH_cov.shape)) # Initialize a new sampler, replacing the old one self.sampler = NuisanceSampler(OrderModel=self, starting_param_dict=starting_dict, cov=nuisance_MH_cov, debug=True, outdir=self.noutdir, prior_params=prior_params, order=self.order) self.p0 = self.sampler.p0 # Update the nuisance parameters to the starting values so that we at least have a self.data_mat print("Updating nuisance parameter data products to starting values.") self.update_nuisance(starting_dict) self.lnprob = self.evaluate() # To speed up convergence, try just doing a bunch of nuisance runs before # going into the iteration pattern print("Doing nuisance burn-in for {} samples".format(config["nuisance_burn"])) self.independent_sample(config["nuisance_burn"]) def get_lnprob(self, *args): ''' Return the *current* value of lnprob. Intended to be called from the master process (StellarSampler.sample), to query the child processes for their current value of lnprob. ''' return self.lnprob def stellar_lnprob(self, params): ''' Update the model to the parameters and then evaluate the lnprob. Intended to be called from the master process via the command "LNPROB". ''' try: self.update_stellar(params) lnp = self.evaluate() # Also sets self.lnprob to new value return lnp except C.ModelError: self.logger.debug("ModelError in stellar parameters, sending back -np.inf {}".format(params)) return -np.inf def evaluate(self): ''' Return the lnprob using the current version of the DataCovariance matrix and other intermediate products. ''' self.lnprob_last = self.lnprob X = (self.ChebyshevSpectrum.k * self.flux_std * np.eye(self.npoints)).dot(self.pcomps.T) CC = X.dot(self.C_GP.dot(X.T)) + self.data_mat R = self.fl - self.ChebyshevSpectrum.k * self.flux_mean - X.dot(self.mus) try: factor, flag = cho_factor(CC) except np.linalg.LinAlgError as e: self.logger.debug("self.sampler.params are {}".format(self.sampler.params)) raise C.ModelError("Can't Cholesky factor {}".format(e)) logdet = np.sum(2 * np.log((np.diag(factor)))) self.lnprob = -0.5 * (np.dot(R, cho_solve((factor, flag), R)) + logdet) + self.prior if self.counter % 100 == 0: self.resid_deque.append(R) self.counter += 1 return self.lnprob def revert_stellar(self): ''' Revert the status of the model from a rejected stellar proposal. ''' self.logger.debug("Reverting stellar parameters") self.lnprob = self.lnprob_last self.flux_mean = self.flux_mean_last self.flux_std = self.flux_std_last self.pcomps = self.pcomps_last self.mus, self.vars = self.mus_last, self.vars_last self.C_GP = self.C_GP_last def update_stellar(self, params): ''' Update the model to the current stellar parameters. ''' self.logger.debug("Updating stellar parameters to {}".format(params)) # Store the current accepted values before overwriting with new proposed values. self.flux_mean_last = self.flux_mean self.flux_std_last = self.flux_std self.pcomps_last = self.pcomps self.mus_last, self.vars_last = self.mus, self.vars self.C_GP_last = self.C_GP #TODO: Possible speedups: # 1. Store the PCOMPS pre-FFT'd # Shift the velocity vz = params["vz"] # Local, shifted copy wl_FFT = self.wl_FFT * np.sqrt((C.c_kms + vz) / (C.c_kms - vz)) # FFT and convolve operations vsini = params["vsini"] if vsini < 0.2: raise C.ModelError("vsini must be positive") FF = np.fft.rfft(self.PCOMPS, axis=1) # Determine the stellar broadening kernel ub = 2. * np.pi * vsini * self.ss sb = j1(ub) / ub - 3 * np.cos(ub) / (2 * ub ** 2) + 3. * np.sin(ub) / (2 * ub ** 3) # set zeroth frequency to 1 separately (DC term) sb[0] = 1. # institute velocity and instrumental taper FF_tap = FF * sb # do ifft pcomps_full = np.fft.irfft(FF_tap, len(wl_FFT), axis=1) # Spectrum resample operations if min(self.wl) < min(wl_FFT) or max(self.wl) > max(wl_FFT): raise RuntimeError("Data wl grid ({:.2f},{:.2f}) must fit within the range of wl_FFT ({" ":.2f},{:.2f})".format(min(self.wl), max(self.wl), min(wl_FFT), max(wl_FFT))) # Take the output from the FFT operation (pcomps_full), and stuff them # into respective data products for lres, hres in zip(chain([self.flux_mean, self.flux_std], self.pcomps), pcomps_full): interp = InterpolatedUnivariateSpline(wl_FFT, hres, k=5) lres[:] = interp(self.wl) del interp gc.collect() # Adjust flux_mean and flux_std by Omega Omega = 10**params["logOmega"] self.flux_mean *= Omega self.flux_std *= Omega # Now update the parameters from the emulator pars = np.array([params["temp"], params["logg"], params["Z"]]) # If pars are outside the grid, Emulator will raise C.ModelError self.mus, self.vars = self.Emulator(pars) self.C_GP = self.vars * np.eye(self.ncomp) def decide_stellar(self, yes): ''' Interpret the decision from the master process to either revert the stellar model (rejected parameters) or move on (accepted parameters). ''' if yes: # accept and move on self.logger.debug("Deciding to accept stellar parameters") else: # revert and move on self.logger.debug("Deciding to revert stellar parameters") self.revert_stellar() # Proceed with independent sampling self.independent_sample(1) def update_nuisance(self, params): ''' Update the nuisance parameters and data covariance matrix. :param params: large dictionary containing cheb, cov, and regions ''' self.logger.debug("Updating nuisance parameters to {}".format(params)) # Read off the Chebyshev parameters and update self.ChebyshevSpectrum.update(params["cheb"]) # Create the full data covariance matrix. l = params["cov"]["l"] sigAmp = params["cov"]["sigAmp"] # Check to make sure the global covariance parameters make sense if sigAmp < 0.1: raise C.ModelError("sigAmp shouldn't be lower than 0.1, something is wrong.") max_r = 6.0 * l # [km/s] # Check all regions, take the max if self.nregions > 0: regions = params["regions"] keys = sorted(regions) sigmas = np.array([regions[key]["sigma"] for key in keys]) #km/s #mus = np.array([regions[key]["mu"] for key in keys]) max_reg = 4.0 * np.max(sigmas) #If this is a larger distance than the global length, replace it max_r = max_reg if max_reg > max_r else max_r #print("Max_r now set by regions {}".format(max_r)) # print("max_r is {}".format(max_r)) # Create a partial function which returns the proper element. k_func = make_k_func(params) # Store the previous data matrix in case we want to revert later self.data_mat_last = self.data_mat self.data_mat = get_dense_C(self.wl, k_func=k_func, max_r=max_r) + sigAmp*self.sigma_matrix def revert_nuisance(self, *args): ''' Revert all products from the nuisance parameters, including the data covariance matrix. ''' self.logger.debug("Reverting nuisance parameters") self.lnprob = self.lnprob_last self.ChebyshevSpectrum.revert() self.data_mat = self.data_mat_last def clear_resid_deque(self): ''' Clear the accumulated residual spectra. ''' self.resid_deque.clear() def independent_sample(self, niter): ''' Do the independent sampling specific to this echelle order, using the attached self.sampler (NuisanceSampler). :param niter: number of iterations to complete before returning to master process. ''' self.logger.debug("Beginning independent sampling on nuisance parameters") if self.lnprob: # If we have a current value, pass it to the sampler self.p0, self.lnprob, state = self.sampler.run_mcmc(pos0=self.p0, N=niter, lnprob0=self.lnprob) else: # Otherwise, start from the beginning self.p0, self.lnprob, state = self.sampler.run_mcmc(pos0=self.p0, N=niter) self.logger.debug("Finished independent sampling on nuisance parameters") # Don't return anything to the master process. def finish(self, *args): ''' Wrap up the sampling and write the samples to disk. ''' print(self.sampler.acceptance_fraction) print(self.sampler.acor) self.sampler.write() self.sampler.plot() # triangle_plot=True print("There were {} exceptions.".format(len(self.exceptions))) # print out the values of each region key. for exception in self.exceptions: regions = exception["regions"] keys = sorted(regions) for key in keys: print(regions[key]) cov = exception["cov"] print(cov) print("\n\n") def brain(self, conn): ''' The infinite loop of the subprocess, which continues to listen for messages on the pipe. ''' self.conn = conn alive = True while alive: #Keep listening for messages put on the Pipe alive = self.interpret() #Once self.interpret() returns `False`, this loop will die. self.conn.send("DEAD") def interpret(self): ''' Interpret the messages being put into the Pipe, and do something with them. Messages are always sent in a 2-arg tuple (fname, arg) Right now we only expect one function and one argument but this could be generalized to **args. ''' #info("brain") fname, arg = self.conn.recv() # Waits here to receive a new message self.logger.debug("{} received message {}".format(os.getpid(), (fname, arg))) func = self.func_dict.get(fname, False) if func: response = func(arg) else: self.logger.info("Given an unknown function {}, assuming kill signal.".format(fname)) return False # Functions only return a response other than None when they want them # communicated back to the master process. # Some commands sent to the child processes do not require a response # to the main process. if response: self.logger.debug("{} sending back {}".format(os.getpid(), response)) self.conn.send(response) return True # We create one OrderModel in the main process. When the process forks, each # subprocess now has its own independent OrderModel instance. # Then, each forked model will be customized using an INIT command passed # through the PIPE. model = OrderModel(debug=True) # Comment out these following lines to profile # Fork a subprocess for each key: (spectra, order) pconns = {} # Parent connections cconns = {} # Child connections ps = {} for spectrum in spectra: for order_id in order_ids: pconn, cconn = Pipe() key = (spectrum, order_id) pconns[key], cconns[key] = pconn, cconn p = Process(target=model.brain, args=(cconn,)) p.start() ps[key] = p # Initialize all of the orders to a specific DataSpectrum and echelle order for key, pconn in pconns.items(): pconn.send(("INIT", key)) # From here on, this script operates on the master process only. if args.perturb: perturb(stellar_Starting, config["stellar_jump"], factor=args.perturb) def profile_code(): ''' Test hook designed to be used by cprofile or kernprof. Does not include any network latency from communicating or synchronizing between processes because we run on just one process. ''' #Evaluate one complete iteration from delivery of stellar parameters from master process #Master proposal stellar_Starting.update({"logg":4.29}) model.stellar_lnprob(stellar_Starting) #Assume we accepted model.decide_stellar(True) #Right now, assumes Kurucz order 23 def main(): # Uncomment these lines to profile # #Initialize the current model for profiling purposes # model.initialize((0, 0)) # import cProfile # cProfile.run("profile_code()", "prof") # import sys; sys.exit() mySampler = StellarSampler(pconns=pconns, starting_param_dict=stellar_Starting, cov=stellar_MH_cov, outdir=outdir, debug=True, fix_logg=fix_logg) mySampler.run_mcmc(mySampler.p0, config['burn_in']) #mySampler.reset() self.logger.info("Instantiating Regions") # Now that we are burned in, instantiate any regions for key, pconn in pconns.items(): pconn.send(("INST", None)) mySampler.run_mcmc(mySampler.p0, config['samples']) print(mySampler.acceptance_fraction) print(mySampler.acor) mySampler.write() mySampler.plot() #triangle_plot = True # Kill all of the orders for pconn in pconns.values(): pconn.send(("FINISH", None)) pconn.send(("DIE", None)) # Join on everything and terminate for p in ps.values(): p.join() p.terminate() import sys;sys.exit() if __name__=="__main__": main() # All subprocesses will inherit pipe file descriptors created in the master process. # http://www.pushingbits.net/posts/python-multiprocessing-with-pipes/ # thus, to really close a pipe, you need to close it in every subprocess.
AddSquaresMultiThreadingMany.py
import time, os import threading as th import multiprocessing as mp import random #Create 18 random numbers NUMBEROFNUMBERS = 8 def square_number(idx, number, results): pid = os.getpid() threadName = th.current_thread().name processName = mp.current_process().name #Print Starting Statement print(f"{pid} * {processName} * {threadName} ---> Starting....") #Multiply Numbers Together results[idx]=number*number #Waste time counting to a very large number ;) n=5000000 while n>0: n -= 1 #Print ending statement print(f"{pid} * {processName} * {threadName} ---> Finished. Square is: ", str(number * number)) if __name__=="__main__": #Start Timer start = time.time() #Numebr List To Proces NUMBERLIST = [] #Create random number to process for i in range(0,NUMBEROFNUMBERS): n = random.randint(1,10) NUMBERLIST.append(n) #Store details of each job ready to run jobs = [] #Create Empty Array For Results results = mp.Array('i', len(NUMBERLIST)) #Calculate the Square of Each Number for idx, num in enumerate(NUMBERLIST): p = mp.Process(target=square_number, args=(idx, num, results)) p.start() jobs.append(p) #Wait for all processes to complete for p in jobs: p.join() #Output Sum of Squares print("Sum of Squares is: ", sum(results[:])) #Stop Timer end = time.time() #Output Total Time print('Time taken in seconds -', end - start)
bot.py
import os import re import time from functools import wraps from threading import Thread from slackclient import SlackClient import redis as _redis from hermes.util import Util class Bot: default_config = { "SLACK_TOKEN": os.environ.get("SLACK_TOKEN"), "REDIS_HOST": os.environ.get("REDIS_HOST", "localhost"), "REDIS_PORT": int(os.environ.get("REDIS_PORT", 6379)), "REDIS_DB": int(os.environ.get("REDIS_DB", 0)), } def __init__(self, config={}): self.commands = {} self.jobs = {} self.regexes = {} self.config = self.default_config if not self.config["SLACK_TOKEN"]: raise Exception("SLACK_TOKEN must be set") self.slack_client = SlackClient(self.config["SLACK_TOKEN"]) self.connect_redis() self.util = Util(self) self.util.update_users() self.util.update_channels() def connect_redis(self): self.redis = _redis.StrictRedis( host=self.config["REDIS_HOST"], port=self.config["REDIS_PORT"], db=self.config["REDIS_DB"], ) def _job_runner(self): while True: for timer in self.jobs.keys(): if time.time() % timer == 0: for job in self.jobs[timer]: try: job() except Exception as e: print(f"Error: {e}") time.sleep(1) def run(self): """Run the bot Creates a worker thread for jobs, then connects to Slack's RTM API """ self.job_runner = Thread(target=self._job_runner) self.job_runner.start() if self.slack_client.rtm_connect(with_team_state=False, auto_reconnect=True): while True: for event in self.slack_client.rtm_read(): if event["type"] == "message" and "text" in event: if event.get("subtype") != "bot_message": # Process the message. words = event.get("text").split() # Command mode, find a matching command. if words and words[0].startswith("!"): command = self.commands.get(words[0][1:]) if command: try: command( event, words[1:] if len(words) > 1 else [] ) except Exception as e: print(f"Error: {e}") for regex in self.regexes: matches = re.findall(regex, " ".join(words)) if matches: for match in matches: if not match: # Throw away empty matches continue try: self.regexes[regex](event, match) except Exception as e: print(f"Error: {e}") def register_command(self, name, f): print(f"Registering command: {name}") self.commands[name] = f def command(self): """Defines a command function. Command functions take two arguments: - the slack event itself - a (possibly empty) list of arguments. """ def decorator(f): register_command(f.__name__, f) return f return decorator def require_perm(self, level): def decorate(func): @wraps(func) def wrapper(*args, **kwargs): if self.util.get_perm(args[0].get("user", "")) >= level: return func(*args, **kwargs) else: channel = args[0].get("channel", "") if channel: self.slack_client.api_call( "chat.postMessage", channel=channel, text="You aren't allowed to do that.", as_user=True, ) return lambda args, kwargs: None return wrapper return decorate def register_job(self, timer, f): print(f"Registering job {f.__name__} to run every {timer} seconds") self.jobs.setdefault(timer, []).append(f) def job(self, timer): """Defines a job function Job functions run, roughly, on a timer. """ def decorator(f): self.jobs.register_job(timer, f) return f return decorator def register_regex(self, regex, f): print(f"Registering regex {regex}") self.regexes[regex] = f def regex(self, regex): """Defines a regex function These are like command functions, and take two arguments: - the slack event itself - a single string containing the matched string For a single event, this may be called multiple times with multiple matches. """ def decorator(f): self.register_regex(regex, f) return f return decorator
pool_thread.py
from multiprocessing import Pool import datetime et = datetime.datetime.now() # def f(x): # return x*x # if __name__ == '__main__': # p = Pool(5) # print(p.map(f, [1, 2, 3])) #from __future__ import print_function # from multiprocessing import Process # import os # def info(title): # print (title) # print ('module name:', __name__) # if hasattr(os, 'getppid'): # only available on Unix # print ('parent process:', os.getppid()) # print ('process id:', os.getpid()) # def f(name): # info('function f') # print ('hello', name) # if __name__ == '__main__': # info('main line') # p = Process(target=f, args=('bob',)) # p.start() # p.join() # from multiprocessing import Process, Queue # def f(q): # q.put([42, None, 'hello']) # if __name__ == '__main__': # q = Queue() # p = Process(target=f, args=(q,)) # p.start() # print (q.get()) # prints "[42, None, 'hello']" # p.join() # from multiprocessing import Process, Lock # def f(l, i): # global K,LOCK # l.acquire() # K = K+i # print(K) # l.release() # if __name__ == '__main__': # global K # K = 0 # lock = Lock() # LOCK = 1 # for num in range(3): # Process(target=f, args=(lock, num)).start() # print("K = ",K) # print("\nMicro-Seconds : ",(et-datetime.datetime.now()).microseconds) # print("K = ",K)
__init__.py
# # Copyright (C) 2018-2019 Nippon Telegraph and Telephone Corporation. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. from grpc import aio from . import taish_pb2 from . import taish_pb2_grpc import asyncio from queue import Queue from threading import Thread import time import functools import inspect from typing import Any, Optional DEFAULT_SERVER_ADDRESS = "localhost" DEFAULT_SERVER_PORT = "50051" def is_async_func(func: Any) -> bool: if inspect.iscoroutinefunction(func): return True if isinstance(func, functools.partial): return is_async_func(func.func) return False def set_default_serialize_option(req): req.serialize_option.human = True req.serialize_option.value_only = True req.serialize_option.json = False class TAIException(Exception): def __init__(self, code, msg): self.code = code self.msg = msg def check_metadata(metadata): code = int(metadata.get("tai-status-code", 0)) if code: msg = metadata.get("tai-status-msg", "") raise TAIException(code, msg) class TAIObject(object): def __init__(self, client, object_type, obj): self.client = client self.object_type = object_type self.obj = obj @property def oid(self): return self.obj.oid def list_attribute_metadata(self): return self.client.list_attribute_metadata(self.object_type, self.oid) def get_attribute_metadata(self, attr): return self.client.get_attribute_metadata(self.object_type, attr, oid=self.oid) def get_attribute_capability(self, attr, json=False): return self.client.get_attribute_capability(self.oid, attr, json) def set(self, attr_id, value): return self.client.set(self.object_type, self.oid, attr_id, value) def set_multiple(self, attributes): return self.client.set_multiple(self.object_type, self.oid, attributes) def get(self, attr_id, with_metadata=False, value=None, json=False): return self.client.get( self.object_type, self.oid, attr_id, with_metadata, value, json ) def get_multiple(self, attributes, with_metadata=False, json=False): return self.client.get_multiple( self.object_type, self.oid, attributes, with_metadata, json ) def monitor(self, attr_id, callback, json=False): return self.client.monitor(self, attr_id, callback, json) class NetIf(TAIObject): def __init__(self, client, obj, module): super().__init__(client, taish_pb2.NETIF, obj) self._module = module @property def module(self): return self._module @property def index(self): return self.obj.index class HostIf(TAIObject): def __init__(self, client, obj, module): super().__init__(client, taish_pb2.HOSTIF, obj) self._module = module @property def module(self): return self._module @property def index(self): return self.obj.index class Module(TAIObject): def __init__(self, client, obj): super().__init__(client, taish_pb2.MODULE, obj) @property def netifs(self): return [NetIf(self.client, obj, self) for obj in self.obj.netifs] @property def hostifs(self): return [HostIf(self.client, obj, self) for obj in self.obj.hostifs] @property def present(self): return self.obj.present @property def location(self): return self.obj.location def _get_if(self, index, objs, cls): for obj in objs: if obj.index == index: return cls(self.client, obj, self) return None def get_netif(self, index=0): obj = self._get_if(index, self.obj.netifs, NetIf) if not obj: raise TAIException(-1, f"netif {index} not found") return obj def get_hostif(self, index=0): obj = self._get_if(index, self.obj.hostifs, HostIf) if not obj: raise TAIException(-1, f"hostif {index} not found") return obj async def create_netif(self, index=0, attrs=None): if attrs is None: attrs = [] attrs.append(("index", index)) await self.client.create(taish_pb2.NETIF, attrs, self.oid) self.obj = (await self.client.list())[self.location] return self.get_netif(index) async def create_hostif(self, index=0, attrs=None): if attrs is None: attrs = [] attrs.append(("index", index)) await self.client.create(taish_pb2.HOSTIF, attrs, self.oid) self.obj = (await self.client.list())[self.location] return self.get_hostif(index) class AsyncClient(object): def __init__(self, address=DEFAULT_SERVER_ADDRESS, port=DEFAULT_SERVER_PORT): self.channel = aio.insecure_channel(f"{address}:{port}") self.stub = taish_pb2_grpc.TAIStub(self.channel) async def close(self): await self.channel.close() async def __aenter__(self): return self async def __aexit__(self, exc_type, exc_value, traceback): await self.close() async def list(self): req = taish_pb2.ListModuleRequest() ret = {} async for res in self.stub.ListModule(req): ret[res.module.location] = Module(self, res.module) return ret async def list_attribute_metadata(self, object_type, oid=0, location=""): req = taish_pb2.ListAttributeMetadataRequest() req.object_type = object_type req.oid = oid req.location = location return [res.metadata async for res in self.stub.ListAttributeMetadata(req)] async def get_attribute_capability(self, oid, attr, json=False): if type(attr) == int: attr_id = attr elif type(attr) == str: meta = await self.get_attribute_metadata(0, attr, oid=oid) attr_id = meta.attr_id else: attr_id = attr.attr_id req = taish_pb2.GetAttributeCapabilityRequest() set_default_serialize_option(req) req.oid = oid req.attr_id = attr_id req.serialize_option.json = json c = self.stub.GetAttributeCapability(req) res = await c check_metadata(await c.trailing_metadata()) return res.capability async def get_attribute_metadata(self, object_type, attr, oid=0, location=""): req = taish_pb2.GetAttributeMetadataRequest() req.object_type = object_type req.oid = oid req.location = location set_default_serialize_option(req) if type(attr) == int: req.attr_id = attr elif type(attr) == str: req.attr_name = attr else: raise Exception("invalid argument") c = self.stub.GetAttributeMetadata(req) res = await c check_metadata(await c.trailing_metadata()) return res.metadata async def get_module(self, location): req = taish_pb2.ListModuleRequest() ret = {} async for res in self.stub.ListModule(req): m = res.module if m.location != location: continue if not m.present: raise TAIException(-1, f"module {location} not present") if not m.oid: raise TAIException(-1, f"module {location} not created yet") return Module(self, m) raise TAIException(-1, f"no module {location} found") async def create_module(self, location, attrs=None): if attrs is None: attrs = [] attrs.append(("location", location)) await self.create(taish_pb2.MODULE, attrs) return await self.get_module(location) async def create(self, object_type, attrs, module_id=0): if module_id != 0: location = await self.get(taish_pb2.MODULE, module_id, "location") else: for attr in attrs: key, value = attr if key == "location": location = value break else: raise TAIException(0xE, "mandatory-attribute-missing") if type(object_type) == str: if object_type == "module": object_type = taish_pb2.MODULE elif object_type == "netif": object_type = taish_pb2.NETIF elif object_type == "hostif": object_type = taish_pb2.HOSTIF req = taish_pb2.CreateRequest() req.object_type = object_type req.module_id = module_id set_default_serialize_option(req) for attr in attrs: attr_id, value = attr meta = await self.get_attribute_metadata( object_type, attr_id, location=location ) attr_id = meta.attr_id a = taish_pb2.Attribute() a.attr_id = attr_id a.value = str(value) req.attrs.append(a) c = self.stub.Create(req) res = await c check_metadata(await c.trailing_metadata()) return res.oid async def remove(self, oid): req = taish_pb2.RemoveRequest() req.oid = oid c = self.stub.Remove(req) res = await c check_metadata(await c.trailing_metadata()) async def set(self, object_type, oid, attr_id, value): return await self.set_multiple(object_type, oid, [(attr_id, value)]) async def set_multiple(self, object_type, oid, attributes): req = taish_pb2.SetAttributeRequest() req.oid = oid for attr in attributes: attr_id = attr[0] if type(attr_id) == int: pass elif type(attr_id) == str: metadata = await self.get_attribute_metadata( object_type, attr_id, oid=oid ) attr_id = metadata.attr_id else: attr_id = attr_id.attr_id a = taish_pb2.Attribute() a.attr_id = attr_id a.value = str(attr[1]) req.attributes.append(a) set_default_serialize_option(req) c = self.stub.SetAttribute(req) await c check_metadata(await c.trailing_metadata()) async def get( self, object_type, oid, attr, with_metadata=False, value=None, json=False ): v = await self.get_multiple( object_type, oid, [(attr, value)], with_metadata, json ) return v[0] async def get_multiple( self, object_type, oid, attributes, with_metadata=False, json=False ): req = taish_pb2.GetAttributeRequest() req.oid = oid for attr in attributes: value = None if type(attr) == tuple: value = attr[1] attr = attr[0] attr_id = attr if type(attr) == int: if with_metadata: meta = await self.get_attribute_metadata( object_type, attr_id, oid=oid ) elif type(attr) == str: meta = await self.get_attribute_metadata(object_type, attr, oid=oid) attr_id = meta.attr_id else: attr_id = attr.attr_id meta = attr if value: a.value = str(value) a = taish_pb2.Attribute() a.attr_id = attr_id req.attributes.append(a) set_default_serialize_option(req) req.serialize_option.json = json c = self.stub.GetAttribute(req) res = await c check_metadata(await c.trailing_metadata()) ret = [] for attr in res.attributes: value = attr.value if with_metadata: ret.append((value, meta)) else: ret.append(value) return ret async def monitor(self, obj, attr_id, callback, json=False): m = await self.get_attribute_metadata(obj.object_type, attr_id, oid=obj.oid) if m.usage != "<notification>": raise Exception( "the type of attribute {} is not notification".format(attr_id) ) req = taish_pb2.MonitorRequest() req.oid = obj.oid req.notification_attr_id = m.attr_id set_default_serialize_option(req) req.serialize_option.json = json c = self.stub.Monitor(req) async for msg in c: if is_async_func(callback): await callback(obj, m, msg) else: callback(obj, m, msg) async def set_log_level(self, l, api="unspecified"): if l == "debug": level = taish_pb2.DEBUG elif l == "info": level = taish_pb2.INFO elif l == "notice": level = taish_pb2.NOTICE elif l == "warn": level = taish_pb2.WARN elif l == "error": level = taish_pb2.ERROR elif l == "critical": level = taish_pb2.CRITICAL else: raise Exception( "invalid log level: {}. choose from [debug, info, notice, warn, error, critical]".format( l ) ) if api == "module": api = taish_pb2.MODULE_API elif api == "netif": api = taish_pb2.NETIF_API elif api == "hostif": api = taish_pb2.HOSTIF_API elif api == "unspecified": api = taish_pb2.UNSPECIFIED_API else: raise Exception( "invalid api type. choose from [module, netif, hostif, unspecified]" ) req = taish_pb2.SetLogLevelRequest() req.level = level req.api = api await self.stub.SetLogLevel(req) class Client(object): def __init__(self, addr=DEFAULT_SERVER_ADDRESS, port=DEFAULT_SERVER_PORT): self.in_q = Queue() self.out_q = Queue() self.t = Thread(target=self.loop, args=(addr, port)) self.t.daemon = True self.t.start() self.addr = addr self.port = port def loop(self, addr, port): async def _loop(): c = AsyncClient(addr, port) while True: i = self.in_q.get() if i == None: return fname, args, kwargs = i try: f = getattr(c, fname) ret = await f(*args, **kwargs) except Exception as e: ret = e if isinstance(ret, TAIObject): ret.client = self self.out_q.put(ret) asyncio.run(_loop()) def close(self): self.in_q.put(None) self.t.join() def monitor(self, *args, **kwargs): try: c = AsyncClient(self.addr, self.port) loop = asyncio.get_event_loop() task = loop.create_task(c.monitor(*args, **kwargs)) return loop.run_forever() except KeyboardInterrupt: task.cancel() def __getattr__(self, name): def f(*args, **kwargs): self.in_q.put((name, args, kwargs)) ret = self.out_q.get() if isinstance(ret, Exception): raise ret return ret f.__name__ = name return f
utils.py
# From http://www.pyimagesearch.com/2015/12/21/increasing-webcam-fps-with-python-and-opencv/ import cv2 from threading import Thread class WebcamVideoStream: def __init__(self, src, width, height): # initialize the video camera stream and read the first frame # from the stream src = -1 self.stream = cv2.VideoCapture(src) self.stream.set(cv2.CAP_PROP_FRAME_WIDTH, width) self.stream.set(cv2.CAP_PROP_FRAME_HEIGHT, height) (self.grabbed, self.frame) = self.stream.read() # initialize the variable used to indicate if the thread should # be stopped self.stopped = False def start(self): # start the thread to read frames from the video stream Thread(target=self.update, args=()).start() return self def update(self): # keep looping infinitely until the thread is stopped while True: # if the thread indicator variable is set, stop the thread if self.stopped: return # otherwise, read the next frame from the stream (self.grabbed, self.frame) = self.stream.read() def read(self): # return the frame most recently read return self.frame def stop(self): # indicate that the thread should be stopped self.stopped = True
ue_mac.py
""" Copyright 2020 The Magma Authors. This source code is licensed under the BSD-style license found in the LICENSE file in the root directory of this source tree. Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import threading from typing import List from ryu.controller import ofp_event from ryu.controller.handler import MAIN_DISPATCHER, set_ev_cls from ryu.lib.packet import packet from ryu.lib.packet import ether_types, dhcp from ryu.ofproto.inet import IPPROTO_TCP, IPPROTO_UDP from lte.protos.pipelined_pb2 import FlowResponse, SetupFlowsResult, \ UEMacFlowRequest from magma.pipelined.app.base import MagmaController, ControllerType from magma.pipelined.app.inout import INGRESS from magma.pipelined.directoryd_client import update_record from magma.pipelined.imsi import encode_imsi, decode_imsi from magma.pipelined.openflow import flows from magma.pipelined.app.ipfix import IPFIXController from magma.pipelined.bridge_util import BridgeTools from magma.pipelined.openflow.exceptions import MagmaOFError from magma.pipelined.openflow.magma_match import MagmaMatch from magma.pipelined.openflow.registers import IMSI_REG, load_passthrough class UEMacAddressController(MagmaController): """ UE MAC Address Controller This controller controls table 0 which is the first table every packet touches. It matches on UE MAC address and sets IMSI metadata """ APP_NAME = "ue_mac" APP_TYPE = ControllerType.SPECIAL def __init__(self, *args, **kwargs): super(UEMacAddressController, self).__init__(*args, **kwargs) self.tbl_num = self._service_manager.get_table_num(self.APP_NAME) self.next_table = \ self._service_manager.get_table_num(INGRESS) self.arpd_controller_fut = kwargs['app_futures']['arpd'] self.arp_contoller = None self._loop = kwargs['loop'] self._datapath = None tbls = self._service_manager.allocate_scratch_tables(self.APP_NAME, 2) self._passthrough_set_tbl = tbls[0] self._dhcp_learn_scratch = tbls[1] self._li_port = None self._imsi_set_tbl_num = \ self._service_manager.INTERNAL_IMSI_SET_TABLE_NUM self._ipfix_sample_tbl_num = \ self._service_manager.INTERNAL_IPFIX_SAMPLE_TABLE_NUM self._app_set_tbl_num = self._service_manager.INTERNAL_APP_SET_TABLE_NUM if 'li_local_iface' in kwargs['config']: self._li_port = \ BridgeTools.get_ofport(kwargs['config']['li_local_iface']) self._dpi_port = \ BridgeTools.get_ofport(kwargs['config']['dpi']['mon_port']) def initialize_on_connect(self, datapath): self.delete_all_flows(datapath) self._datapath = datapath self._install_default_flows() def cleanup_on_disconnect(self, datapath): self.delete_all_flows(datapath) def handle_restart(self, ue_requests: List[UEMacFlowRequest] ) -> SetupFlowsResult: """ Setup current check quota flows. """ # TODO Potentially we can run a diff logic but I don't think there is # benefit(we don't need stats here) self.delete_all_flows(self._datapath) self._install_default_flows() for ue_req in ue_requests: self.add_ue_mac_flow(ue_req.sid.id, ue_req.mac_addr) self._loop.call_soon_threadsafe(self._setup_arp, ue_requests) self.init_finished = True return SetupFlowsResult(result=SetupFlowsResult.SUCCESS) def _setup_arp(self, ue_requests: List[UEMacFlowRequest]): if self.arp_contoller or self.arpd_controller_fut.done(): if not self.arp_contoller: self.arp_contoller = self.arpd_controller_fut.result() self.arp_contoller.handle_restart(ue_requests) def delete_all_flows(self, datapath): flows.delete_all_flows_from_table(datapath, self.tbl_num) flows.delete_all_flows_from_table(datapath, self._passthrough_set_tbl) flows.delete_all_flows_from_table(datapath, self._dhcp_learn_scratch) flows.delete_all_flows_from_table(datapath, self._imsi_set_tbl_num) def add_ue_mac_flow(self, sid, mac_addr): # TODO report add flow result back to sessiond if self._datapath is None: return FlowResponse(result=FlowResponse.FAILURE) uplink_match = MagmaMatch(eth_src=mac_addr) self._add_resubmit_flow(sid, uplink_match, priority=flows.UE_FLOW_PRIORITY, next_table=self._passthrough_set_tbl) downlink_match = MagmaMatch(eth_dst=mac_addr) self._add_resubmit_flow(sid, downlink_match, priority=flows.UE_FLOW_PRIORITY, next_table=self._passthrough_set_tbl) # For handling internal ipfix pkt sampling if self._service_manager.is_app_enabled(IPFIXController.APP_NAME): self._add_resubmit_flow(sid, uplink_match, priority=flows.UE_FLOW_PRIORITY, tbl_num=self._imsi_set_tbl_num, next_table=self._ipfix_sample_tbl_num) self._add_resubmit_flow(sid, downlink_match, priority=flows.UE_FLOW_PRIORITY, tbl_num=self._imsi_set_tbl_num, next_table=self._ipfix_sample_tbl_num) return FlowResponse(result=FlowResponse.SUCCESS) def delete_ue_mac_flow(self, sid, mac_addr): # TODO report add flow result back to sessiond if self._datapath is None: return uplink_match = MagmaMatch(eth_src=mac_addr) self._delete_resubmit_flow(sid, uplink_match) downlink_match = MagmaMatch(eth_dst=mac_addr) self._delete_resubmit_flow(sid, downlink_match) if self._service_manager.is_app_enabled(IPFIXController.APP_NAME): self._delete_resubmit_flow(sid, uplink_match, tbl_num=self._imsi_set_tbl_num) self._delete_resubmit_flow(sid, downlink_match, tbl_num=self._imsi_set_tbl_num) def add_arp_response_flow(self, imsi, yiaddr, chaddr): if self.arp_contoller or self.arpd_controller_fut.done(): if not self.arp_contoller: self.arp_contoller = self.arpd_controller_fut.result() self.arp_contoller.add_ue_arp_flows(self._datapath, yiaddr, chaddr) self.logger.debug("From DHCP learn: IMSI %s, has ip %s and mac %s", imsi, yiaddr, chaddr) # Associate IMSI to IPv4 addr in directory service threading.Thread(target=update_record, args=(str(imsi), yiaddr)).start() else: self.logger.error("ARPD controller not ready, ARP learn FAILED") def _add_resubmit_flow(self, sid, match, action=None, priority=flows.DEFAULT_PRIORITY, next_table=None, tbl_num=None): parser = self._datapath.ofproto_parser if action is None: actions = [] else: actions = [action] if next_table is None: next_table = self.next_table if tbl_num is None: tbl_num = self.tbl_num # Add IMSI metadata if sid: actions.append(parser.NXActionRegLoad2(dst=IMSI_REG, value=encode_imsi(sid))) flows.add_resubmit_next_service_flow(self._datapath, tbl_num, match, actions=actions, priority=priority, resubmit_table=next_table) def _delete_resubmit_flow(self, sid, match, action=None, tbl_num=None): parser = self._datapath.ofproto_parser if action is None: actions = [] else: actions = [action] if tbl_num is None: tbl_num = self.tbl_num # Add IMSI metadata actions.append( parser.NXActionRegLoad2(dst=IMSI_REG, value=encode_imsi(sid))) flows.delete_flow(self._datapath, tbl_num, match, actions=actions) def _add_dns_passthrough_flows(self): parser = self._datapath.ofproto_parser # Set so packet skips enforcement and send to egress action = load_passthrough(parser) # Install UDP flows for DNS ulink_match_udp = MagmaMatch(eth_type=ether_types.ETH_TYPE_IP, ip_proto=IPPROTO_UDP, udp_dst=53) self._add_resubmit_flow(None, ulink_match_udp, action, flows.PASSTHROUGH_PRIORITY, tbl_num=self._passthrough_set_tbl) dlink_match_udp = MagmaMatch(eth_type=ether_types.ETH_TYPE_IP, ip_proto=IPPROTO_UDP, udp_src=53) self._add_resubmit_flow(None, dlink_match_udp, action, flows.PASSTHROUGH_PRIORITY, tbl_num=self._passthrough_set_tbl) # Install TCP flows for DNS ulink_match_tcp = MagmaMatch(eth_type=ether_types.ETH_TYPE_IP, ip_proto=IPPROTO_TCP, tcp_dst=53) self._add_resubmit_flow(None, ulink_match_tcp, action, flows.PASSTHROUGH_PRIORITY, tbl_num=self._passthrough_set_tbl) dlink_match_tcp = MagmaMatch(eth_type=ether_types.ETH_TYPE_IP, ip_proto=IPPROTO_TCP, tcp_src=53) self._add_resubmit_flow(None, dlink_match_tcp, action, flows.PASSTHROUGH_PRIORITY, tbl_num=self._passthrough_set_tbl) # Install TCP flows for DNS over tls ulink_match_tcp = MagmaMatch(eth_type=ether_types.ETH_TYPE_IP, ip_proto=IPPROTO_TCP, tcp_dst=853) self._add_resubmit_flow(None, ulink_match_tcp, action, flows.PASSTHROUGH_PRIORITY, tbl_num=self._passthrough_set_tbl) dlink_match_tcp = MagmaMatch(eth_type=ether_types.ETH_TYPE_IP, ip_proto=IPPROTO_TCP, tcp_src=853) self._add_resubmit_flow(None, dlink_match_tcp, action, flows.PASSTHROUGH_PRIORITY, tbl_num=self._passthrough_set_tbl) def _add_dhcp_passthrough_flows(self): ofproto, parser = self._datapath.ofproto, self._datapath.ofproto_parser # Set so packet skips enforcement controller action = load_passthrough(parser) uplink_match = MagmaMatch(eth_type=ether_types.ETH_TYPE_IP, ip_proto=IPPROTO_UDP, udp_src=68, udp_dst=67) self._add_resubmit_flow(None, uplink_match, action, flows.PASSTHROUGH_PRIORITY, tbl_num=self._passthrough_set_tbl) downlink_match = MagmaMatch(eth_type=ether_types.ETH_TYPE_IP, ip_proto=IPPROTO_UDP, udp_src=67, udp_dst=68) # Set so triggers packetin and we can learn the ip to do arp response self._add_resubmit_flow(None, downlink_match, action, flows.PASSTHROUGH_PRIORITY, next_table=self._dhcp_learn_scratch, tbl_num=self._passthrough_set_tbl) # Install default flow for dhcp learn scratch flows.add_output_flow(self._datapath, self._dhcp_learn_scratch, match=MagmaMatch(), actions=[], priority=flows.PASSTHROUGH_PRIORITY, output_port=ofproto.OFPP_CONTROLLER, copy_table=self.next_table, max_len=ofproto.OFPCML_NO_BUFFER) def _add_uplink_arp_allow_flow(self): arp_match = MagmaMatch(eth_type=ether_types.ETH_TYPE_ARP) flows.add_resubmit_next_service_flow(self._datapath, self.tbl_num, arp_match, actions=[], priority=flows.DEFAULT_PRIORITY, resubmit_table=self.next_table) @set_ev_cls(ofp_event.EventOFPPacketIn, MAIN_DISPATCHER) def _learn_arp_entry(self, ev): """ Learn action to process PacketIn DHCP packets, dhcp ack packets will be used to learn the ARP entry for the UE to install rules in the arp table. The DHCP packets will then be sent thorugh the pipeline. """ msg = ev.msg if self._dhcp_learn_scratch != msg.table_id: # Intended for other application return try: encoded_imsi = _get_encoded_imsi_from_packetin(msg) # Decode the imsi to properly save in directoryd imsi = decode_imsi(encoded_imsi) except MagmaOFError as e: # No packet direction, but intended for this table self.logger.error("Error obtaining IMSI from pkt-in: %s", e) return pkt = packet.Packet(msg.data) dhcp_header = pkt.get_protocols(dhcp.dhcp)[0] # DHCP yiaddr is the client(UE) ip addr # chaddr is the client mac address self.add_arp_response_flow(imsi, dhcp_header.yiaddr, dhcp_header.chaddr) def _install_default_flows(self): """ Install default flows """ # Allows arp packets from uplink(no eth dst set) to go to the arp table self._add_uplink_arp_allow_flow() self._add_dhcp_passthrough_flows() self._add_dns_passthrough_flows() self._add_resubmit_flow(None, MagmaMatch(), priority=flows.MINIMUM_PRIORITY, tbl_num=self._passthrough_set_tbl) if self._service_manager.is_app_enabled(IPFIXController.APP_NAME): self._add_resubmit_flow(None, MagmaMatch(in_port=self._dpi_port), priority=flows.PASSTHROUGH_PRIORITY, next_table=self._app_set_tbl_num) if self._li_port: match = MagmaMatch(in_port=self._li_port) flows.add_resubmit_next_service_flow(self._datapath, self.tbl_num, match, actions=[], priority=flows.DEFAULT_PRIORITY, resubmit_table=self.next_table) # TODO We might want a default drop all rule with min priority, but # adding it breakes all unit tests for this controller(needs work) def _get_encoded_imsi_from_packetin(msg): """ Retrieve encoded imsi from the Packet-In message, or raise an exception if it doesn't exist. """ imsi = msg.match.get(IMSI_REG) if imsi is None: raise MagmaOFError('IMSI not found in OFPMatch') return imsi
mavlink_gcs_tests_master.py
# mavlink_camera_tests.py # # Air Cam Pro 2021 # This is tests for python mavlink for camera control # It uses snippets and code from the sources given below # REV 1.1 23-12-2021 1700 # # Mark Jacobsen # mark@syriaairlift.org # # example mavlink GUI # https://github.com/markdjacobsen/hellomav # # Joystick readers and mavlink over UDP # https://github.com/Smolyarov/u2/blob/master/tools/joystick/joy2mavlink.py # https://gist.github.com/wwj718/8ebd3dcae6d04f869cf256069ba0dd42 # https://habr.com/ru/post/130788/ # # This is a simple demonstration of how to begin building a ground control station (GCS) # in Python using a GUI. It allows a user to select a serial port and baud rate, connect # to a MAVLINK device, then send a command to arm the motor. Note that this does not # include any exception handling. # # The GUI is built using wxPython. MAVLINK communication is done through the pymavlink # library. # Acknowledgements: # Thank you to Andrew Tridgell, the mastermind behind pymavlink and MAVProxy # Thread code from http://stackoverflow.com/questions/730645/python-wxpython-doing-work-continuously-in-the-background # Serial port code taken from http://stackoverflow.com/questions/12090503/listing-available-com-ports-with-python # UDP http://snakeproject.ru/rubric/article.php?art=python_udp_network_server_client # AirCamPro :- 21/10/21 support android kivy serial driver # # when you install pymavlink you also need to use mavgen to generate the libraries # instructions are shown here # https://mavlink.io/en/mavgen_python/ # https://github.com/ArduPilot/pymavlink/blob/master/mavutil.py # ref to multi-threading using asyncio # # https://python-scripts.com/sleep#threading-event # vasile.buldumac@ati.utm.md # # sudo apt-get install python3-dev python3-opencv python3-wxgtk4.0 python3-pip python3-matplotlib python3-lxml # sudo apt-get install libxml++2.6-dev # sudo pip install dronekit # ================== Compatible Joysticks ========================================= # X-Box 360 Controller (name: "Xbox 360 Controller") # Playstation 4 Controller (name: "PS4 Controller") # X-Box 360 Controller (name: "Controller (XBOX 360 For Windows)") # from pymavlink import mavutil # ref:- https://www.ardusub.com/developers/pymavlink.html import wx import sys, serial, glob, threading # for serial message out packing import struct # this is included for android serial and to detect the android platform using kivy # ref:- https://github.com/frmdstryr/kivy-android-serial # install kivy with the following in your conda environment # conda install kivy -c conda-forge #`from kivy.utils import platform # from kvserial.driver import CdcAcmSerialPort # to list ports using the serial library from serial.tools import list_ports BUTTON_CONNECT = 10 BUTTON_ARM = 20 # ethernet UDP communication and joystick # # python3 -m pip install -U pygame --user import socket import pygame JOYSTICK_UDP_PORT = 14556 JOY_SCALE = 1000 MAX_SCALE = 32767 X_MAX = MAX_SCALE Y_MAX = MAX_SCALE MAV_TARGET = 110 MAV_SOURCE = 30 # import pymavlink.dialects.v10.lapwing as mavlink # this is a custom dialect which i cant find from mavlink_python_libs import com1 as commonV1 import com1 as mavdefs import math import time from mypymavlink import mavutilcust as custommav # # multithreading control via asyncio # import asyncio import time # ============== control Raspberry Pi IO =============== # sudo apt-get install rpi.gpio # #import RPi.GPIO as GPIO # to use Raspberry Pi board pin numbers #GPIO.setmode(GPIO.BOARD) # set up the GPIO channels - one input and one output here #GPIO.setup(11, GPIO.IN) #GPIO.setup(12, GPIO.OUT) #--------------------------------------------------------------------------- class fifo(object): def __init__(self): self.buf = [] def write(self, data): self.buf += data return len(data) def read(self): return self.buf.pop(0) # Create a wx.Frame object for the interface class MAVFrame(): RCV_COMMAND = mavutil.mavlink.MAV_CMD_REQUEST_MESSAGE RPM2 = 0 ACK_RESULT = 0 DEFAULT_SYS_ID = 1 # camera informations (default camera routines will retrieve this) time_boot_ms = 1213 firmware_version = 12 focal_length = 11 sensor_size_h = 300 sensor_size_v = 400 flags = 4 resolution_h = 300 resolution_v = 400 cam_definition_version = 2 vendor_name = "sony" model_name = "alpha750" lens_id = 1 cam_definition_uri = "http://10.0.2.51/cam_defs" # camera settings mode_id = 3 # Camera mode zoomLevel = 7 # Current zoom level (0.0 to 100.0, NaN if not known)*/ focusLevel = 9 # storage informations total_capacity = 1.2 # [MiB] Total capacity. If storage is not ready (STORAGE_STATUS_READY) value will be ignored. used_capacity = 1.1 # [MiB] Used capacity. If storage is not ready (STORAGE_STATUS_READY) value will be ignored. available_capacity = 0.1 # [MiB] Available storage capacity. If storage is not ready (STORAGE_STATUS_READY) value will be ignored. read_speed = 0.67 # [MiB/s] Read speed. write_speed = 0.76 # [MiB/s] Write speed. storage_id = 1 # Storage ID (1 for first, 2 for second, etc.) storage_count = 2 # Number of storage devices status = mavutil.mavlink.STORAGE_STATUS_READY # camera capture status image_interval = 3.3 # [s] Image capture interval recording_time_ms = 10000 # [ms] Time since recording started available_capacity = 0.34 # [MiB] Available storage capacity. image_status = 1 # Current status of image capturing (0: idle, 1: capture in progress, 2: interval set but idle, 3: interval set and capture in progress) video_status = 1 # Current status of video capturing (0: idle, 1: capture in progress) image_count = 11 # video stream framerate = 30.0 # [Hz] Frame rate. bitrate = 3000 # [bits/s] Bit rate. flags = 3 # Bitmap of stream status flags. resolution_h = 300 # [pix] Horizontal resolution. resolution_v = 400 # [pix] Vertical resolution. rotation = 90 # [deg] Video image rotation clockwise. hfov = 45 # [deg] Horizontal Field of view. stream_id = 2 # Video Stream ID (1 for first, 2 for second, etc.) count = 4 # Number of streams available. type = mavutil.mavlink.VIDEO_STREAM_TYPE_MPEG_TS_H264 # Type of stream. videoname = "vid_001" video_uri = "http://10.0.0.56/vids/001.mov" # camera image captured time_utc = 667700 # [us] Timestamp (time since UNIX epoch) in UTC. 0 for unknown. lat = 30 # [degE7] Latitude where image was taken lon = 40 # [degE7] Longitude where capture was taken alt = 11 # [mm] Altitude (MSL) where image was taken relative_alt = 12 # [mm] Altitude above ground q = [1,0,0,0] # Quaternion of camera orientation (w, x, y, z order, zero-rotation is 0, 0, 0, 0) image_index = 4 # Zero based index of this image (image count since armed -1) camera_id = 1 # Camera ID (1 for first, 2 for second, etc.) capture_result = 1 # Boolean indicating success (1) or failure (0) while capturing this image. file_url = "http://10.1.2.3/img/1.jpg" ACK_ERROR = 0 errRCV_COMMAND = 0 errRPM2 = 0 # task control flag task_control_1 = 0 # global constants GOT_ERROR = 1 GOT_SUCCESS = 2 GOT_BAD = 3 GOT_UNFORMAT = 4 # used to decide what is being requested from the calling (GCS) station type_of_msg = 0 def __del__(self): class_name = self.__class__.__name__ print('{} Deleted'.format(class_name)) def on_click_connect(self,e): #""" #Process a click on the CONNECT button #Attempt to connect to the MAV using the specified port and baud rate, #then subscribe a function called check_heartbeat that will listen for #a heartbeat message, as well as a function that will print all incoming #MAVLink messages to the console. #""" port = self.cb_port.GetValue() baud = int(self.cb_baud.GetValue()) self.textOutput.AppendText("Connecting to " + port + " at " + str(baud) + " baud\n") self.master = mavutil.mavlink_connection(port, baud=baud) self.thread = threading.Thread(target=self.process_messages) self.thread.setDaemon(True) self.thread.start() self.master.message_hooks.append(self.check_heartbeat) self.master.message_hooks.append(self.check_rcv_data_msg) self.master.message_hooks.append(self.log_message) print("Connecting to " + port + " at " + str(baud) + "baud") self.textOutput.AppendText("Waiting for APM heartbeat\n") return def on_click_arm(self,e): #""" #Process a click on the ARM button #Send an arm message to the MAV, then subscribe a function called #check_arm_ack that will listen for a positive confirmation of arming. # """ self.textOutput.AppendText("Arming motor\n") print("******arming motor*********") self.master.arducopter_arm() self.master.message_hooks.append(self.check_arm_ack) def log_message(self,caller,msg): if msg.get_type() != 'BAD_DATA': print(str(msg)) return def process_messages(self): #""" #This runs continuously. The mavutil.recv_match() function will call mavutil.post_message() #any time a new message is received, and will notify all functions in the master.message_hooks list. #""" while True: msg = self.master.recv_match(blocking=True) if not msg: return if msg.get_type() == "BAD_DATA": if mavutil.all_printable(msg.data): sys.stdout.write(msg.data) sys.stdout.flush() def check_heartbeat(self,caller,msg): #""" #Listens for a heartbeat message #Once this function is subscribed to the dispatcher, it listens to every #incoming MAVLINK message and watches for a 'HEARTBEAT' message. Once #that message is received, the function updates the GUI and then # unsubscribes itself. #" "" if msg.get_type() == 'HEARTBEAT': self.textOutput.AppendText("Heartbeat received from APM (system %u component %u)\n" % (self.master.target_system, self.master.target_component)) self.master.message_hooks.remove(self.check_heartbeat) def check_arm_ack(self, caller, msg): #""" #Listens for confirmation of motor arming #Once this function is subscribed to the dispatcher, it listens to every #incomign MAVLINK message and watches for the "Motor armed!" confirmation. #Once the message is received, teh function updates the GUI and then #unsubscribes itself. #""" if msg.get_type() == 'STATUSTEXT': if "Throttle armed" in msg.text: self.textOutput.AppendText("Motor armed!") self.master.message_hooks.remove(self.check_arm_ack) def check_rcv_data_msg(self, msg): if msg.get_type() == 'RC_CHANNELS': self.textOutput.AppendText("RC Channel message (system %u component %u)\n" % (self.master.target_system, self.master.target_component)) self.textOutput.AppendText("chan1 %u chan2 %u)\n" % (self.master.chan1_raw, self.master.chan2_raw)) self.master.message_hooks.remove(self.check_rcv_data_msg) elif msg.get_type() == 'COMMAND_LONG': self.textOutput.AppendText("Long message received (system %u component %u)\n" % (self.master.target_system, self.master.target_component)) self.textOutput.AppendText("Command %u p1 %u p2 %u p3 %u p4 %u \n" % (self.master.command, self.master.param1, self.master.param2, self.master.param3, self.master.param4)) self.textOutput.AppendText("p5 %u p6 %u p7 %u \n" % (self.master.param5, self.master.param6, self.master.param7)) self.master.message_hooks.remove(self.check_rcv_data_msg) elif msg.get_type() == 'CAMERA_IMAGE_CAPTURED': self.textOutput.AppendText("Cam Cap message received (system %u component %u)\n" % (self.master.target_system, self.master.target_component)) self.textOutput.AppendText("lat %u lon %u alt %u\n" % (self.master.lat, self.master.lon, self.master.alt)) self.textOutput.AppendText("URL %u)\n" % (self.master.file_url)) self.master.message_hooks.remove(self.check_rcv_data_msg) def OnClose(self, e): self._mgr.UnInit() self.Close() def serial_ports(self): #"""Lists all available serial ports #:raises EnvironmentError: # On unsupported or unknown platforms #:returns: # A list of available serial ports #""" if 'ANDROID_BOOTLOGO' in os.environ: # detect android first as if using sys alone, it returns linux #if platform == 'android': using kivy instead ports = '/dev/ttyACM0' else: if sys.platform.startswith('win'): ports = ['COM' + str(i + 1) for i in range(256)] elif sys.platform.startswith('linux') or sys.platform.startswith('linux2') or sys.platform.startswith('cygwin'): # check this shows /dev/ttyAMA0 on raspberry pi. # this is to exclude your current terminal "/dev/tty" ports = glob.glob('/dev/tty[A-Za-z]*') elif sys.platform.startswith('darwin'): # apple mac support if using darwin ports = glob.glob('/dev/tty.*') else: ports = list_ports.comports() # Outputs list of available serial ports should do the rest e.g. riscos atheos os2 freebsd aix etc if len(ports) == 0: raise EnvironmentError('Unsupported platform') result = [] for port in ports: if 'ANDROID_BOOTLOGO' in os.environ: # device android s = CdcAcmSerialPort(port) s.close() result.append(port) else: try: s = serial.Serial(port) s.close() result.append(port) except (OSError, serial.SerialException): pass return result def print_red(self,text,value): print("\033[31m %s : %6.3f"%(text,value)) def print_yellow(self,text,value): print("\033[33m %s : %6.3f"%(text,value)) def print_2_yellow(self,text,value1,value2): print("\033[33m %s : %6.3f %6.3f"%(text,value1,value2)) def print_3_yellow(self,text,value1,value2,value3): print("\033[33m %s : %6.3f %6.3f %6.3f"%(text,value1,value2,value3)) def print_3_blue(self,text,value1,value2,value3): print("\033[33m %s %6.3f %6.3f %6.3f"%(text,value1,value2,value3)) def print_blue(self,text,value): print("\033[34m %s : %6.3f"%(text,value)) def joystickInit(self): # Set the width and height of the screen [width,height] size = [500, 700] screen = pygame.display.set_mode(size) pygame.display.set_caption("----- My test of mavlink and joystick -----") pygame.init() # Used to manage how fast the screen updates clock = pygame.time.Clock() # Initialize the joysticks pygame.joystick.init() joystick = pygame.joystick.Joystick(0) joystick.init() # Get ready to print textPrint = TextPrint() def initUDPSocket(self,bind): sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) # bind the socket if this is a server (pass bind==1) if bind == 1: host = 'localhost' port = JOYSTICK_UDP_PORT sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) addr = (host,port) sock.bind(addr) sock.setblocking(0) return sock def closeUDPSocket(self,udp_socket): udp_socket.close() def serverReadUDPSocket(self,udp_socket,port): conn, addr = udp_socket.recvfrom(port) return conn,addr def clientReadUDPSocket(self,udp_socket,port): dataV = udp_socket.recvfrom(port) return dataV def joyMavlinkInit(self): mav = mavutil.mavlink.MAVLink(fifo()) mav.srcSystem = MAV_SOURCE # set to master def blockMouseDown(self,block_flag): if block_flag: pygame.event.set_blocked(MOUSEBUTTONDOWN) else: pygame.event.set_allowed(MOUSEBUTTONDOWN) def blockMouseUp(self,block_flag): if block_flag: pygame.event.set_blocked(MOUSEBUTTONUP) else: pygame.event.set_allowed(MOUSEBUTTONUP) def checkMouseDwnBlock(self): print ('MOUSEBUTTONDOWN is block: ', pygame.event.get_blocked(MOUSEBUTTONDOWN)) def checkMouseUpBlock(self): print ('MOUSEBUTTONUP is block: ', pygame.event.get_blocked(MOUSEBUTTONUP)) def write_mav_serial_data(self, serial, x ): serial.write(struct.pack(x)) def write_pack_serial_data(self, serial, x, y, z, roll, pitch, yaw): serial.write(struct.pack('<chhhhhh', 'S',x, y, z, roll, pitch, yaw)) def test_linear(self, serial, lenght=200, times=1000, delta=0.05): for angle in xrange(1, times, 5): a = angle * math.pi / 180 self.write_serial_data(serial, int(lenght * math.cos(a)), int(lenght * math.sin(a)),0,0,0,0) time.sleep(delta) self.write_serial_data(serial, 0,0,0,0,0,0) def test_angles(self, serial, lenght=200, times=1000, delta=0.05): for angle in xrange(1, times, 5): a = angle * math.pi / 180 self.write_serial_data(0, 0,0,0,int(30 * math.cos(a)),int(30 * math.sin(-a))) time.sleep(delta) self.write_serial_data(serial, 0,0,0,0,0,0) def test_yaw(self, serial, lenght=200, times=1000, delta=0.05): for angle in xrange(1, times, 5): a = angle * math.pi / 180 self.write_serial_data(serial, int(lenght * math.cos(a)),0,0,int(30 * math.sin(a)),0,0) time.sleep(delta) self.write_serial_data(serial, 0,0,0,0,0,0) def processJoystickSendMavlink(self,sock): msgbuf = None # -------- Main Program Loop ----------- while done == False: btns = 0 thrust = 0.0 rudder = 0.0 # EVENT PROCESSING STEP for event in pygame.event.get(): # User did something screen.fill(WHITE) textPrint.reset() # Possible joystick actions: JOYAXISMOTION JOYBALLMOTION JOYBUTTONDOWN JOYBUTTONUP JOYHATMOTION # QUIT - none # ACTIVEEVENT - gain, state # KEYDOWN - unicode, key, mod # KEYUP - key, mod # MOUSEMOTION - pos, rel, buttons # MOUSEBUTTONUP - pos, button # MOUSEBUTTONDOWN - pos, button # JOYAXISMOTION - joy, axis, value # JOYBALLMOTION - joy, ball, rel # JOYHATMOTION - joy, hat, value # JOYBUTTONUP - joy, button # JOYBUTTONDOWN - joy, button # VIDEORESIZE - size, w, h # VIDEOEXPOSE - none # USEREVENT – code if event.type == pygame.QUIT: done=True elif event.type == pygame.MOUSEBUTTONDOWN: print_2_yellow("Mouse button down pressed.",event.button,event.pos) elif event.type == pygame.MOUSEBUTTONUP: print_2_yellow("Mouse button up pressed.",event.button,event.pos) elif event.type == pygame.JOYBUTTONDOWN: print_2_yellow("Joystick button down pressed.",event.button,event.joy) elif event.type == pygame.JOYBUTTONUP: print_2_yellow("Joystick button up released.",event.button,event.joy) elif event.type == pygame.JOYAXISMOTION: print_3_yellow("Joystick axis motion.",event.joy,event.axis,event.value) elif event.type == pygame.JOYBALLMOTION: print_3_yellow("Joystick ball motion.",event.joy,event.ball,event.rel) elif event.type == pygame.JOYHATMOTION: print_3_yellow("Joystick hat motion",event.joy,event.hat,event.value) elif event.type == pygame.VIDEORESIZE: print_3_blue("video re-size.",event.size,event.w,event.h) elif event.type == pygame.KEYDOWN: print_3_yellow("key down ",event.unicode,event.key,event.mod) elif event.type == pygame.KEYUP: print_2_yellow("key up ",event.key,event.mod) # Get the name from the OS for the controller/joystick name = joystick.get_name() print("Joystick name: {}".format(name) ) # get the buttons buttons = joystick.get_numbuttons() for i in range( buttons ): button = joystick.get_button( i ) print( "Button {:>2} value: {}".format(i,button) ) # get the hats # Hat switch. All or nothing for direction, not like joysticks. # Value comes back in an array. hats = joystick.get_numhats() print( "Number of hats: {}".format(hats) ) textPrint.indent() for i in range( hats ): hat = joystick.get_hat( i ) print( "Hat {} value: {}".format(i, str(hat)) ) # Getting available devices for id in range(pygame.joystick.get_count()): print( "devices list : %u %d %s" % (id, pygame.joystick.Joystick(id).get_name())) # Get thrust and break first # mix 2 shifts in single channels thr = (joystick.get_axis(5) + 1) / 2 brk = -(joystick.get_axis(2) + 1) / 2 thrust = thr + brk print_yellow("Thrust value ",thrust) # this is the x axis rudder = joystick.get_axis(0) print_blue("Rudder value ",rudder) # now collect all buttons btns = 0 for i in range(joystick.get_numbuttons()): btns |= joystick.get_button(i) << i # Usually axis run in pairs, up/down for one, and left/right for # the other. axes = joystick.get_numaxes() print( "Number of axes: {}".format(axes) ) textPrint.indent() for i in range( axes ): axis = joystick.get_axis( i ) print( "Axis {} value: {:>6.3f}".format(i, axis) ) textPrint.unindent() # Update events in pygame pygame.event.pump() # pack acquired data and throw it to socket msg = mavutil.mavlink.MAVLink_manual_control_message( target = MAV_TARGET, x = X_MAX, y = Y_MAX, z = round(thrust*JOY_SCALE), r = round(rudder*JOY_SCALE), buttons = btns) msgbuf = msg.pack(mav) try: jid = joystick.get_instance_id() except AttributeError: # get_instance_id() is an SDL2 method jid = joystick.get_id() print( "Joystick {}".format(jid)) try: guid = joystick.get_guid() except AttributeError: # get_guid() is an SDL2 method pass else: print("GUID: {}".format(guid)) # Limit to 20 frames per second clock.tick(25) if msgbuf: # send the message on the UDP Port sock.sendto(msgbuf, ('', JOYSTICK_UDP_PORT)) # send the message on serial # write_mav_serial_data(serial, msgbuf) # Close the window and quit. # If you forget this line, the program will 'hang' # on exit if running from IDLE. pygame.joystick.quit() pygame.quit() # make a mavlink connection using mavutil like ardusub does.... # # Create the connection and return it for use with the other functions # def makeMAVlinkConn(self): try: the_conection = mavutil.mavlink_connection('tcp:10.0.2.51:5760',autoreconnect=True, source_system=mavutil.mavlink.MAV_COMP_ID_CAMERA, source_component=mavutil.mavlink.MAV_COMP_ID_AUTOPILOT1) return the_conection,True except Exception as err_msg: print("Failed to connect : %s" % (err_msg)) return the_conection,False def makeNewMAVlinkConn(self,id): try: the_conection = mavutil.mavlink_connection('tcp:10.0.2.51:5760',autoreconnect=True, source_system=id, source_component=mavutil.mavlink.MAV_COMP_ID_AUTOPILOT1) return the_conection,True except Exception as err_msg: print("Failed to connect : %s" % (err_msg)) return the_conection,False # Send heartbeat from a GCS (types are define as enum in the dialect file). # def mavlink_send_GCS_heartbeat(self, the_conection): print(" heartbeat.............................. %s\n"%(mavutil.mavlink.MAV_TYPE_CAMERA)) the_conection.mav.heartbeat_send(mavutil.mavlink.MAV_TYPE_CAMERA, mavutil.mavlink.MAV_AUTOPILOT_INVALID, 0, 0, mavutil.mavlink.MAV_STATE_ACTIVE) # Send heartbeat from a MAVLink application. # def mavlink_send_OBC_heartbeat2(self, the_connection): mavutil.mavlink.heartbeat_send(mavutil.mavlink.MAV_TYPE_CAMERA, mavutil.mavlink.MAV_AUTOPILOT_GENERIC, 0, 0, 0) # Receive heartbeat from a MAVLink application. # def mavlink_rcv_heartbeat(self, the_connection): the_connection.wait_heartbeat() # Sets a value to the rc channel # def mavlink_set_rc_channel_pwm(self, the_connection, channel_id, pwm=1500): #""" Set RC channel pwm value #Args: # channel_id (TYPE): Channel ID # pwm (int, optional): Channel pwm value 1100-1900 #""" if channel_id < 1 or channel_id > 18: print("Channel does not exist.") return # Mavlink 2 supports up to 18 channels: # https://mavlink.io/en/messages/common.html#RC_CHANNELS_OVERRIDE rc_channel_values = [65535 for _ in range(18)] rc_channel_values[channel_id - 1] = pwm # target_system # target_component # RC channel list, in microseconds. the_connection.mav.rc_channels_override_send( the_connection.target_system, the_connection.target_component, *rc_channel_values ) # drives a gimbal axis controller to the pitch roll yaw specified # def gimbal_move_to( self, the_connection, tilt, roll=0, pan=0): #""" #Moves gimbal to given position #Args: # tilt (float): tilt angle in centidegrees (0 is forward) # roll (float, optional): pan angle in centidegrees (0 is forward) # pan (float, optional): pan angle in centidegrees (0 is forward) #""" the_connection.mav.command_long_send(the_connection.target_system, the_connection.target_component, mavutil.mavlink.MAV_CMD_DO_MOUNT_CONTROL, 1, tilt, roll, pan, 0, 0, 0, mavutil.mavlink.MAV_MOUNT_MODE_MAVLINK_TARGETING) def mavlink10(self,connID): # '''return True if using MAVLink 1.0 or later''' return float(connID.WIRE_PROTOCOL_VERSION) >= 1 def mavlink20(self,connID): # '''return True if using MAVLink 2.0 or later''' return float(connID.WIRE_PROTOCOL_VERSION) >= 2 def mavlink_set_relay(self, the_connection, relay_pin=0, state=True): # Set relay_pin to value of state #if self.mavlink10(): the_connection.mav.command_long_send( the_connection.target_system, # target_system the_connection.target_component, # target_component mavutil.mavlink.MAV_CMD_DO_SET_RELAY, # command 0, # Confirmation relay_pin, # Relay Number int(state), # state (1 to indicate arm) 0, # param3 (all other params meaningless) 0, # param4 0, # param5 0, # param6 0) # param7 #else: # print("Setting relays not supported.") # ref:- https://mavlink.io/en/messages/common.html#MAV_CMD def mavlink_video_stop_capture(self, the_connection, streamNo): #if self.mavlink10(): the_connection.mav.command_long_send( the_connection.target_system, # target_system the_connection.target_component, # target_component mavutil.mavlink.MAV_CMD_VIDEO_STOP_CAPTURE, # command 0, # Confirmation streamNo, # stream number 0, # param2 0, # param3 0, # param4 0, # param5 0, # param6 0) # param7 def mavlink_video_start_capture(self, the_connection, streamNo, freq): #if self.mavlink10(): the_connection.mav.command_long_send( the_connection.target_system, # target_system the_connection.target_component, # target_component mavutil.mavlink.MAV_CMD_VIDEO_START_CAPTURE, # command 0, # Confirmation streamNo, # stream number freq, # param2 0, # param3 0, # param4 0, # param5 0, # param6 0) # param7 def mavlink_image_stop_capture(self, the_connection): #if self.mavlink10(): the_connection.mav.command_long_send( the_connection.target_system, # target_system the_connection.target_component, # target_component mavutil.mavlink.MAV_CMD_IMAGE_STOP_CAPTURE, # command 0, # Confirmation 0, # param1 0, # param2 0, # param3 0, # param4 0, # param5 0, # param6 0) # param7 def mavlink_image_start_capture(self, the_connection, interval, totalImages, seqNo): #if self.mavlink10(): the_connection.mav.command_long_send( the_connection.target_system, # target_system the_connection.target_component, # target_component mavutil.mavlink.MAV_CMD_IMAGE_START_CAPTURE, # command 0, # Confirmation 0, # param1 interval, # Desired elapsed time between two consecutive pictures (in seconds) totalImages, # Total number of images to capture. 0 to capture forever/until MAV_CMD_IMAGE_STOP_CAPTURE. seqNo, # Capture sequence number starting from 1. This is only valid for single-capture (param3 == 1), otherwise set to 0. Increment the capture ID for each capture command to prevent double captures when a command is re-transmitted 0, # param5 0, # param6 0) # param7 def mavlink_video_stop_streaming(self, the_connection, streamNo): #if self.mavlink10(): the_connection.mav.command_long_send( the_connection.target_system, # target_system the_connection.target_component, # target_component mavutil.mavlink.MAV_CMD_VIDEO_STOP_STREAMING, # command 0, # Confirmation streamNo, # stream number 0, # param2 0, # param3 0, # param4 0, # param5 0, # param6 0) # param7 def mavlink_video_start_streaming(self, the_connection, streamNo): #if self.mavlink10(): the_connection.mav.command_long_send( the_connection.target_system, # target_system the_connection.target_component, # target_component mavutil.mavlink.MAV_CMD_VIDEO_START_STREAMING, # command 0, # Confirmation streamNo, # stream number 0, # param2 0, # param3 0, # param4 0, # param5 0, # param6 0) # param7 # suitable variables to drive CamMode # MAV_CAMERA_MODE_IMAGE = 0 MAV_CAMERA_MODE_VIDEO = 1 MAV_CAMERA_MODE_IMAGE_SURVEY = 2 def mavlink_video_set_camera_mode(self, the_connection, camMode): #if self.mavlink10(): the_connection.mav.command_long_send( the_connection.target_system, # target_system the_connection.target_component, # target_component mavutil.mavlink.MAV_CMD_SET_CAMERA_MODE, # command 0, # Confirmation 0, # param1 CamMode, # param2 0, # param3 0, # param4 0, # param5 0, # param6 0) # param7 # suitable variables to drive CamZoomType # MAV_ZOOM_TYPE_STEP = 0 # Zoom one step increment (-1 for wide, 1 for tele) MAV_ZOOM_TYPE_CONTINUOUS = 1 # Continuous zoom up/down until stopped (-1 for wide, 1 for tele, 0 to stop zooming) MAV_ZOOM_TYPE_RANGE = 2 # Zoom value as proportion of full camera range (a value between 0.0 and 100.0) MAV_ZOOM_TYPE_FOCAL_LENGTH = 3 # Zoom value/variable focal length in milimetres def mavlink_video_set_camera_zoom(self, the_connection, camZoomType, camZoomValue): #if self.mavlink10(): the_connection.mav.command_long_send( the_connection.target_system, # target_system the_connection.target_component, # target_component mavutil.mavlink.MAV_CMD_SET_CAMERA_MODE, # command 0, # Confirmation CamZoomType, # param1 CamZoomValue, # param2 0, # param3 0, # param4 0, # param5 0, # param6 0) # param7 MAV_FOCUS_TYPE_STEP = 0 # Focus one step increment (-1 for focusing in, 1 for focusing out towards infinity). MAV_FOCUS_TYPE_CONTINUOUS = 1 # Continuous focus up/down until stopped (-1 for focusing in, 1 for focusing out towards infinity, 0 to stop focusing) MAV_FOCUS_TYPE_RANGE = 2 # Focus value as proportion of full camera focus range (a value between 0.0 and 100.0) MAV_FOCUS_TYPE_METERS = 3 # Focus value in metres def mavlink_video_set_camera_focus(self, the_connection, camFocusType, camFocusValue): #if self.mavlink10(): try: the_connection.mav.command_long_send( the_connection.target_system, # target_system the_connection.target_component, # target_component mavdefs.MAV_CMD_SET_CAMERA_FOCUS, # command 0, # Confirmation camFocusType, # param1 camFocusValue, # param2 0, # param3 0, # param4 0, # param5 0, # param6 0) # param7 except Exception as err_msg: print("Failed to send message to set focus : %s" % (err_msg)) def mavlink_do_digicam_configure(self, the_connection, camMode, camShutterSpeed, camAperture, camISO, camExposure, camCommandIdentity, camEngineCutOff): #if self.mavlink10(): try: the_connection.mav.command_long_send( the_connection.target_system, # target_system the_connection.target_component, # target_component mavutil.mavlink.MAV_CMD_DO_DIGICAM_CONFIGURE, # command 0, # Confirmation camMode, # param1 camShutterSpeed, # param2 camAperture, # param3 camISO, # param4 camExposure, # param5 camCommandIdentity, # param6 camEngineCutOff) # param7 except Exception as err_msg: print("Failed to send message to configure digicam : %s" % (err_msg)) def mavlink_do_digicam_control(self, the_connection, camSessionControl, camZoomAbsolute, camZoomRelative, camFocus, camShootCommand, camCommandIdentity, camShotID): #if self.mavlink10(): try: the_connection.mav.command_long_send( the_connection.target_system, # target_system the_connection.target_component, # target_component mavutil.mavlink.MAV_CMD_DO_DIGICAM_CONTROL, # command 0, # Confirmation camSessionControl, # param1 camZoomAbsolute, # param2 camZoomRelative, # param3 camFocus, # param4 camShootCommand, # param5 camCommandIdentity, # param6 camShotID) # param7 except Exception as err_msg: print("Failed to send do_digicam_control : %s" % (err_msg)) def mavlink_do_video_control(self, the_connection, camID, camTransmission, camInterval, camRecording): #if self.mavlink10(): try: the_connection.mav.command_long_send( the_connection.target_system, # target_system the_connection.target_component, # target_component mavutil.mavlink.MAV_CMD_DO_CONTROL_VIDEO, # command 0, # Confirmation camID, # param1 camTransmission, # param2 camInterval, # param3 camRecording, # param4 0, # param5 0, # param6 0) # param7 except Exception as err_msg: print("Failed to send do_video_control : %s" % (err_msg)) def mavlink_get_camera_settings(self, the_connection): #if self.mavlink10(): try: the_connection.mav.command_long_send( the_connection.target_system, # target_system the_connection.target_component, # target_component mavutil.mavlink.MAV_CMD_REQUEST_CAMERA_SETTINGS, # command 0, # Confirmation 1, # param1 0, # param2 0, # param3 0, # param4 0, # param5 0, # param6 0) # param7 except Exception as err_msg: print("Failed to send command long for camera_settings : %s" % (err_msg)) def mavlink_get_new_camera_data(self, the_connection): #if self.mavlink10(): print("MAV_CMD_REQUEST message sent to sys %s comp 100"%(the_connection.target_system)) #the_connection.target_component, # target_component try: the_connection.mav.command_long_send( the_connection.target_system, # target_system 100, # target_component mavutil.mavlink.MAV_CMD_REQUEST_MESSAGE, # command 0, # Confirmation 259, # param1 0, # param2 0, # param3 0, # param4 0, # param5 0, # param6 0) # param7 print("sent the camera data........................ request") except Exception as err_msg: print("Failed to send command long for camera_information : %s" % (err_msg)) def mavlink_get_storage_info(self, the_connection, StoId): #if self.mavlink10(): try: the_connection.mav.command_long_send( the_connection.target_system, # target_system the_connection.target_component, # target_component mavutil.mavlink.MAV_CMD_REQUEST_STORAGE_INFORMATION, # command 0, # Confirmation StoId, # param1 1, # param2 0, # param3 0, # param4 0, # param5 0, # param6 0) # param7 except Exception as err_msg: print("Failed to send command long for storage_information : %s" % (err_msg)) def mavlink_get_capture_status(self, the_connection): #if self.mavlink10(): try: the_connection.mav.command_long_send( the_connection.target_system, # target_system the_connection.target_component, # target_component mavutil.mavlink.MAV_CMD_REQUEST_CAMERA_CAPTURE_STATUS, # command 0, # Confirmation 1, # param1 0, # param2 0, # param3 0, # param4 0, # param5 0, # param6 0) # param7 except Exception as err_msg: print("Failed to send command long for capture_status_information : %s" % (err_msg)) def mavlink_get_stream_info(self, the_connection): #if self.mavlink10(): try: the_connection.mav.command_long_send( the_connection.target_system, # target_system the_connection.target_component, # target_component mavutil.mavlink.MAV_CMD_REQUEST_VIDEO_STREAM_INFORMATION, # command 0, # Confirmation 1, # param1 0, # param2 0, # param3 0, # param4 0, # param5 0, # param6 0) # param7 except Exception as err_msg: print("Failed to send command long for video_stream_information : %s" % (err_msg)) def mavlink_reset_camera(self, the_connection): #if self.mavlink10(): try: the_connection.mav.command_long_send( the_connection.target_system, # target_system the_connection.target_component, # target_component mavutil.mavlink.MAV_CMD_RESET_CAMERA_SETTINGS, # command 0, # Confirmation 1, # param1 0, # param2 0, # param3 0, # param4 0, # param5 0, # param6 0) # param7 except Exception as err_msg: print("Failed to send command long for reset_camera : %s" % (err_msg)) def mavlink_set_camera_trig_interval(self, the_connection, camTriggerCycle, camShutterIntegration): #if self.mavlink10(): try: the_connection.mav.command_long_send( the_connection.target_system, # target_system the_connection.target_component, # target_component mavutil.mavlink.MAV_CMD_DO_SET_CAM_TRIGG_INTERVAL, # command 0, # Confirmation camTriggerCycle, # param1 camShutterIntegration, # param2 0, # param3 0, # param4 0, # param5 0, # param6 0) # param7 except Exception as err_msg: print("Failed to send command long for camera_trig_interval : %s" % (err_msg)) def mavlink_set_camera_to_quaternion(self, the_connection, q1, q2, q3, q4): #if self.mavlink10(): the_connection.mav.command_long_send( the_connection.target_system, # target_system the_connection.target_component, # target_component mavutil.mavlink.MAV_CMD_DO_MOUNT_CONTROL_QUAT, # command 0, # Confirmation q1, # param1 q2, # param2 q3, # param3 q4, # param4 0, # param5 0, # param6 0) # param7 def mavlink_send_camera_information(self, the_connection): #if self.mavlink10(): the_connection.mav.camera_information_send( the_connection.target_system, # target_system the_connection.target_component, # target_component mavutil.mavlink.MAV_CMD_CAMERA_INFORMATION, # command self.time_boot_ms, self.firmware_version, self.focal_length, self.sensor_size_h, self.sensor_size_v, self.flags, self.resolution_h, self.resolution_v, self.cam_definition_version, self.vendor_name, self.model_name, self.lens_id, self.cam_definition_uri) def mavlink_send_camera_settings(self, the_connection): #if self.mavlink10(): the_connection.mav.camera_settings_send( the_connection.target_system, # target_system the_connection.target_component, # target_component mavutil.mavlink.MAV_CMD_CAMERA_SETTINGS, # command self.time_boot_ms, self.mode_id, # Camera mode self.zoomLevel, # Current zoom level (0.0 to 100.0, NaN if not known)*/ self.focusLevel) def mavlink_send_storage_information(self, the_connection): #if self.mavlink10(): the_connection.mav.storage_information_send( the_connection.target_system, # target_system the_connection.target_component, # target_component mavutil.mavlink.MAV_CMD_STORAGE_INFORMATION, # command self.time_boot_ms, self.total_capacity, # [MiB] Total capacity. If storage is not ready (STORAGE_STATUS_READY) value will be ignored. self.used_capacity, # [MiB] Used capacity. If storage is not ready (STORAGE_STATUS_READY) value will be ignored. self.available_capacity, # [MiB] Available storage capacity. If storage is not ready (STORAGE_STATUS_READY) value will be ignored. self.read_speed, # [MiB/s] Read speed. self.write_speed, # [MiB/s] Write speed. self.storage_id, # Storage ID (1 for first, 2 for second, etc.) self.storage_count, # Number of storage devices self.status) def mavlink_send_camera_capture_status(self, the_connection): #if self.mavlink10(): the_connection.mav.camera_capture_status_send( the_connection.target_system, # target_system the_connection.target_component, # target_component mavutil.mavlink.MAV_CMD_CAMERA_CAPTURE_STATUS, # command self.time_boot_ms, # [ms] Timestamp (time since system boot).*/ self.image_interval, # [s] Image capture interval*/ self.recording_time_ms, # [ms] Time since recording started*/ self.available_capacity, # [MiB] Available storage capacity.*/ self.image_status, # Current status of image capturing (0: idle, 1: capture in progress, 2: interval set but idle, 3: interval set and capture in progress)*/ self.video_status, # Current status of video capturing (0: idle, 1: capture in progress)*/ self.image_count) def mavlink_send_video_stream_information(self, the_connection): #if self.mavlink10(): the_connection.mav.video_stream_information_send( the_connection.target_system, # target_system the_connection.target_component, # target_component mavutil.mavlink.MAV_CMD_VIDEO_STREAM_INFORMATION, # command self.framerate, #/*< [Hz] Frame rate. self.bitrate, #/*< [bits/s] Bit rate. self.flags, #/*< Bitmap of stream status flags. self.resolution_h, #/*< [pix] Horizontal resolution. self.resolution_v, #/*< [pix] Vertical resolution. self.rotation, #/*< [deg] Video image rotation clockwise. self.hfov, #/*< [deg] Horizontal Field of view. self.stream_id, #/*< Video Stream ID (1 for first, 2 for second, etc.) self.count, #/*< Number of streams available. self.type, #/*< Type of stream. self.videoname, self.video_uri) def mavlink_send_camera_image_captured(self, the_connection): #if self.mavlink10(): the_connection.mav.video_stream_information_send( the_connection.target_system, # target_system the_connection.target_component, # target_component mavutil.mavlink.MAV_CMD_CAMERA_IMAGE_CAPTURED, # command self.time_utc, # [us] Timestamp (time since UNIX epoch) in UTC. 0 for unknown. self.time_boot_ms, # [ms] Timestamp (time since system boot). self.lat, # [degE7] Latitude where image was taken self.lon, # [degE7] Longitude where capture was taken self.alt, # [mm] Altitude (MSL) where image was taken self.relative_alt, # [mm] Altitude above ground self.q[0], # Quaternion of camera orientation (w, x, y, z order, zero-rotation is 0, 0, 0, 0) self.q[1], self.q[2], self.q[3], self.image_index, # Zero based index of this image (image count since armed -1) self.camera_id, # Camera ID (1 for first, 2 for second, etc.) self.capture_result, # Boolean indicating success (1) or failure (0) while capturing this image. self.file_url) # process the incoming messages received # def process_messages_from_connection(self, the_connection): #""" #This runs continuously. The mavutil.recv_match() function will call mavutil.post_message() #any time a new message is received, and will notify all functions in the master.message_hooks list. #""" loop = 4 while loop >= 1: print("im receiving.............") # wait heartbeat (only the GCS does this ) # m = the_connection.recv_match(type="HEARTBEAT", blocking=True, timeout=5) # # you can also use type lists like this # type=['COMMAND_LONG,RC_CHANNELS'] # msg = the_connection.recv_match(blocking=True, timeout=5) if ( the_connection.target_system == msg.get_srcSystem() ): # check this and eliminate spurious messages if needed print(f"data read {msg.get_type()}") print(f"connection {the_connection.target_system} == {msg.get_srcSystem()}") last_timestamp = msg._timestamp if not msg: return if msg.get_type() == "BAD_DATA": self.ACK_ERROR = self.GOT_BAD self.errRCV_COMMAND = 0 self.errRPM2 = 0 if mavutil.all_printable(msg.data): sys.stdout.write(msg.data) sys.stdout.flush() elif msg.get_type() == 'COMMAND_ACK': print("========================= ACK RECEIVED ======================================== cmd=%s res=%s" % (msg.command,msg.result)) elif msg.get_type() == 'RC_CHANNELS': print("RC Channel message (system %u component %u)\n" % (the_connection.target_system, the_connection.target_component)) elif msg.get_type() == 'COMMAND_LONG': print("Long message received (system %u component %u)\n" % (the_connection.target_system, the_connection.target_component)) print("Command %u p1 %u p2 %u p3 %u p4 %u \n" % (msg.command, msg.param1, msg.param2, msg.param3, msg.param4)) print("p5 %u p6 %u p7 %u \n" % (msg.param5, msg.param6, msg.param7)) if (self.ACK_RESULT == 0): self.RCV_COMMAND = msg.command if (self.RCV_COMMAND == mavutil.mavlink.MAV_CMD_REQUEST_MESSAGE): self.RPM2 = msg.param1 if (self.RPM2 == mavutil.mavlink.CAMERA_INFORMATION): #camera_information self.type_of_msg = 6500 elif (self.RPM2 == mavutil.mavlink.CAMERA_SETTINGS): #camera_settings self.type_of_msg = 6501 elif (self.RPM2 == mavutil.mavlink.STORAGE_INFORMATION): #storage information self.type_of_msg = 6502 elif (self.RPM2 == mavutil.mavlink.CAMERA_CAPTURE_STATUS): #camera capture status self.type_of_msg = 6503 elif (self.RPM2 == mavutil.mavlink.MAVLINK_MSG_ID_CAMERA_IMAGE_CAPTURED): #retrieve lost images self.type_of_msg = 6504 self.Got_Param1 = the_connection.param2 elif (self.RPM2 == 269): #video stream self.type_of_msg = 6505 else: self.type_of_msg = 0 elif (self.RCV_COMMAND == mavutil.mavlink.MAV_CMD_DO_SET_RELAY): self.type_of_msg = mavutil.mavlink.MAV_CMD_DO_SET_RELAY; self.Got_Param1 = msg.param1 self.Got_Param2 = the_connection.param2 elif (self.RCV_COMMAND == mavutil.mavlink. MAV_CMD_VIDEO_START_CAPTURE): self.type_of_msg = mavutil.mavlink.MAV_CMD_VIDEO_START_CAPTURE; self.Got_Param1 = msg.param1 elif (self.RCV_COMMAND == mavutil.mavlink. MAV_CMD_VIDEO_STOP_CAPTURE): self.type_of_msg = mavutil.mavlink.MAV_CMD_VIDEO_START_CAPTURE; self.Got_Param1 = msg.param1 elif (self.RCV_COMMAND == mavutil.mavlink.MAV_CMD_IMAGE_START_CAPTURE): self.type_of_msg = mavutil.mavlink.MAV_CMD_IMAGE_START_CAPTURE; self.Got_Param1 = msg.param2 self.Got_Param2 = msg.param3 self.Got_Param3 = msg.param4 elif (self.RCV_COMMAND == mavutil.mavlink.MAV_CMD_IMAGE_STOP_CAPTURE): self.type_of_msg = mavutil.mavlink.MAV_CMD_IMAGE_STOP_CAPTURE; self.Got_Param1 = msg.param3 self.Got_Param2 = msg.param4 elif (self.RCV_COMMAND == mavutil.mavlink.MAV_CMD_VIDEO_START_STREAMING): self.type_of_msg = mavutil.mavlink.MAV_CMD_VIDEO_START_STREAMING; self.Got_Param1 = msg.param1 elif (self.RCV_COMMAND == mavutil.mavlink.MAV_CMD_VIDEO_STOP_STREAMING): self.type_of_msg = MAV_CMD_VIDEO_STOP_STREAMING; self.Got_Param1 = msg.param1 elif (self.RCV_COMMAND == mavutil.mavlink.MAV_CMD_SET_CAMERA_MODE): self.type_of_msg = mavutil.mavlink.MAV_CMD_SET_CAMERA_MODE; self.Got_Param1 = msg.param2 elif (self.RCV_COMMAND == mavdefs.MAV_CMD_SET_CAMERA_ZOOM): self.type_of_msg = mavdefs.MAV_CMD_SET_CAMERA_ZOOM; self.Got_Param1 = msg.param1 self.Got_Param2 = msg.param2 self.Got_Param3 = msg.param3 elif (self.RCV_COMMAND == mavdefs.MAV_CMD_SET_CAMERA_FOCUS): self.type_of_msg = mavdefs.MAV_CMD_SET_CAMERA_FOCUS; self.Got_Param1 = msg.param1 self.Got_Param2 = msg.param2 elif (self.RCV_COMMAND == mavdefs.MAV_CMD_DO_DIGICAM_CONFIGURE): self.type_of_msg = mavdefs.MAV_CMD_DO_DIGICAM_CONFIGURE; self.Got_Param1 = msg.param1 self.Got_Param2 = msg.param2 self.Got_Param3 = msg.param3 self.Got_Param4 = msg.param4 self.Got_Param5 = msg.param5 self.Got_Param6 = msg.param6 self.Got_Param7 = msg.param7 elif (self.RCV_COMMAND == mavdefs.MAV_CMD_DO_DIGICAM_CONTROL): self.type_of_msg = mavdefs.MAV_CMD_DO_DIGICAM_CONTROL; self.Got_Param1 = msg.param1 self.Got_Param2 = msg.param2 self.Got_Param3 = msg.param3 self.Got_Param4 = msg.param4 self.Got_Param5 = msg.param5 self.Got_Param6 = msg.param6 self.Got_Param7 = msg.param7 print("DO DIGICAM CONTROL") elif (self.RCV_COMMAND == mavdefs.MAV_CMD_DO_CONTROL_VIDEO): self.type_of_msg = mavdefs.MAV_CMD_DO_CONTROL_VIDEO; self.Got_Param1 = msg.param1 self.Got_Param2 = msg.param2 self.Got_Param3 = msg.param3 self.Got_Param4 = msg.param4 elif (self.RCV_COMMAND == mavdefs.MAV_CMD_DO_SET_CAM_TRIGG_INTERVAL): self.type_of_msg = mavdefs.MAV_CMD_DO_SET_CAM_TRIGG_INTERVAL; self.Got_Param1 = msg.param1 self.Got_Param2 = msg.param2 elif (self.RCV_COMMAND == mavdefs.MAV_CMD_RESET_CAMERA_SETTINGS): self.type_of_msg = mavdefs.MAV_CMD_RESET_CAMERA_SETTINGS; self.Got_Param1 = msg.param1 self.Got_Param2 = msg.param2 elif (self.RCV_COMMAND == mavdefs.MAV_CMD_DO_MOUNT_CONTROL_QUAT): self.type_of_msg = mavdefs.MAV_CMD_DO_MOUNT_CONTROL_QUAT; self.Got_Param1 = msg.param1 self.Got_Param2 = msg.param2 self.Got_Param3 = msg.param3 self.Got_Param4 = msg.param4 elif (self.RCV_COMMAND == mavdefs.MAV_CMD_DO_GIMBAL_MANAGER_PITCHYAW): self.type_of_msg = mavdefs.MAV_CMD_DO_GIMBAL_MANAGER_PITCHYAW; self.Got_Param1 = msg.param1 self.Got_Param2 = msg.param2 self.Got_Param3 = msg.param3 self.Got_Param4 = msg.param4 self.Got_Param5 = msg.param5 self.Got_Param6 = msg.param6 elif (self.RCV_COMMAND == mavdefs.MAV_CMD_DO_TRIGGER_CONTROL): self.type_of_msg = mavdefs.MAV_CMD_DO_TRIGGER_CONTROL; self.Got_Param1 = msg.param1 self.Got_Param2 = msg.param2 self.Got_Param3 = msg.param3 elif (self.RCV_COMMAND == 2004): # MAV_CMD_CAMERA_TRACK_POINT=2004 self.type_of_msg = 2004; self.Got_Param1 = msg.param1 self.Got_Param2 = msg.param2 self.Got_Param3 = msg.param3 elif (self.RCV_COMMAND == 2005): # MAV_CMD_CAMERA_TRACK_RECTANGLE=2005 self.type_of_msg = 2005; self.Got_Param1 = msg.param1 self.Got_Param2 = msg.param2 self.Got_Param3 = msg.param3 elif (self.RCV_COMMAND == 2010): # MAV_CMD_CAMERA_STOP_TRACKING=2010 self.type_of_msg = 2010; elif (self.RCV_COMMAND == mavdefs.MAV_CMD_STORAGE_FORMAT): self.type_of_msg = mavdefs.MAV_CMD_STORAGE_FORMAT; self.Got_Param1 = msg.param1 self.Got_Param2 = msg.param2 else: self.RPM2 = 0 self.type_of_msg = self.RCV_COMMAND self.ACK_RESULT = mavutil.mavlink.MAV_RESULT_ACCEPTED else: self.ACK_ERROR = self.GOT_ERROR self.errRCV_COMMAND = msg.command self.errRPM2 = msg.param1 elif msg.get_type() == 'CAMERA_IMAGE_CAPTURED': print("Cam Cap message received (system %u component %u)\n" % (the_connection.target_system, the_connection.target_component)) print("lat %u lon %u alt %u\n" % (msg.lat, msg.lon, msg.alt)) print("URL %u)\n" % (msg.file_url)) elif msg.get_type() == 'GPS_RAW_INT': the_connection.mav.gps_raw_int_send( 1000, 1, 22, 21, 1, 3, 1, 2, 3, 5) elif msg.get_type() == 'CAMERA_FEEDBACK': print("Camera Feedback") the_connection.mav.camera_feedback_send( 1000, 1, 1, 22, 21, 10, 30, 21, 2, 3, 5, 2, 3) elif msg.get_type() == 'REQUEST_DATA_STREAM': print("REQUEST DATA STREAM :: start %u id %u req_rte %u\n" % (msg.start_stop, msg.req_stream_id, msg.req_message_rate)) elif msg.get_type() == 'STATUSTEXT': print("STATUSTEXT :: text %s " % (msg.text)) elif msg.get_type() == 'HEARTBEAT': print("HEARTBEAT :: src %s type %s auto %s sys %s" % (msg.get_srcSystem(), msg.type,msg.autopilot,msg.system_status)) elif msg.get_type() == 'CAMERA_INFORMATION': print("CAMERA INFO WAS GOT: url is %s\n" % (msg.cam_definition_uri)) elif msg.get_type() == 'VIDEO_STREAM_INFORMATION': print("VID INFO :: %s\n" % (msg.uri)) else: print(f"unsupported command :: {msg.get_type()}") #time.sleep(0.05) loop = loop - 1 def mavlink_send_ack_command(self, the_connection, cmd, rpm2, pro, res): #if self.mavlink10(): the_connection.mav.command_ack_send( the_connection.target_system, # target_system the_connection.target_component, # target_component cmd, # command rpm2, # result_param2 pro, # progress res) # result def raspberry_pi3_set_relay(self, rNum, rState): #if self.mavlink10(): if (rNum == 12): # only relay we defined at the top if (rState == True): GPIO.output(rNum, GPIO.HIGH) else: GPIO.output(rNum, GPIO.LOW) return True else: return False # ----------- for sony api to camera ----------------------------------- # # ref :- https://github.com/petabite/libsonyapi # # on raspberry pi os you might need this first # sudo apt-get install python3-pip # sudo apt-get install python3-setuptools # # git clone https://github.com/petabite/libsonyapi.git # cd libsonyapi # python setup.py install # import numpy as np from libsonyapi.camera import Camera from libsonyapi.actions import Actions # ----------- for image saving ----------------------------------------- from PIL import Image import queue lifo_queue = queue.LifoQueue(maxsize=20) fifo_queue = queue.Queue(maxsize=20) class pySony(): # connect to the sony camera and print all info # def createCameraInstance(self): camera = Camera() camera_info = camera.info() print(camera_info) print(Camera.do("getAvailableApiList")['result']) print(camera.name) print(camera.api_version) return camera def startMovieRec(self,camera): res = camera.do(Actions.startMovieRec) return res def stopMovieRec(self,camera): res = camera.do(Actions.stopMovieRec) return res def takeOnePicture(self,camera): res = camera.do(Actions.actTakePicture) # take a picture if res.get('result') is not None: print("Result", res) def saveOnePicture(self,camera): res = camera.do(Actions.actTakePicture) if res.get('result') is not None: stopLiveView() photo_path = res['result'][0][0] photo_name = photo_path.split('/')[-1] im = Image.open(requests.get(photo_path, stream=True).raw) im.save('images/' + photo_name) lifo_queue.put(photo_name) fifo_queue.put(photo_name) return photo_path def getLastPicture(self,camera): return lifo_queue.get() def getFirstPicture(self,camera): return fifo_queue.get() def listAllPictures(self): while not fifo.empty(): print(fifo.get(), end=' ') def startLiveView(self,camera): res = camera.do(Actions.startLiveview) print("Liveview", res) return res def stopLiveView(self,camera): res = camera.do(Actions.stopLiveview) print("Liveview", res) return res def startRecMode(self,camera): res = camera.do(Actions.startRecMode) print("Rec Mode ", res) return res def stopRecMode(): res = camera.do(Actions.stopRecMo) print("Rec Mode ", res) return res def startContShooting(self,camera): res = camera.do(Actions.startContShooting) print("Cont Shooting ", res) return res def stopContShooting(self,camera): res = camera.do(Actions.stopContShooting) print("Cont Shooting ", res) return res def startMovieRec(self,camera): res = camera.do(Actions.startMovieRec) print("Movie ", res) return res def stopMovieRec(self,camera): res = camera.do(Actions.stopMovieRec) print("Movie ", res) return res def startAudioRec(self,camera): res = camera.do(Actions.startAudioRec) print("Audio ", res) return res def stopAudioRec(self,camera): res = camera.do(Actions.stopAudioRec) print("Audio ", res) return res # ----------- micaSense RedEye Camera ----------------------------------- # # # # # for http request # # if you have minimal you might need sudo apt install libpython2.7-stdlib #pip install requests import requests import json class redEye(): HTTP_SUCCESS_RETURN = 200 # Functions # #def print_myJson( self, cap_data ): # if (cap_data.status_code == self.HTTP_SUCCESS_RETURN): # print cap_data.json() # else: # print "http REST API error" # Post a message to the camera commanding a capture, block until complete # def redEyeCapture( self ): capture_params = { 'store_capture' : True, 'block' : True } capture_data = requests.post("http://192.168.10.254/capture", json=capture_params) #print_myJson( capture_data ) return cap_data.status_code # # Send the Camera Request # async def sendCameraRequest(fm, cID, sleep=0): print("sending the camera request 2") fm.mavlink_get_new_camera_data(cID) print("sending the camera request 3") while sleep > 0: await asyncio.sleep(1) print(f'{sleep} seconds') sleep -= 1 # # Send the Stream Info Request # async def sendStreamInfoRequest(fm, cID, sleep=0): fm.mavlink_get_stream_info(cID) while sleep > 0: await asyncio.sleep(1) print(f'{sleep} seconds') sleep -= 1 # # Send the Capture Status Request # async def sendCapStatusRequest(fm, cID, sleep=0): fm.mavlink_get_capture_status(cID) while sleep > 0: await asyncio.sleep(1) print(f'{sleep} seconds') sleep -= 1 # # Send the Camera Settings Request # async def sendCamSettingsRequest(fm, cID, sleep=0): fm.mavlink_get_camera_settings(cID) while sleep > 0: await asyncio.sleep(1) print(f'{sleep} seconds') sleep -= 1 # # Send the Storage Info Request # async def sendStorageInfoRequest(fm, cID, sID=1, sleep=0): fm.mavlink_get_storage_info(cID, sID) while sleep > 0: await asyncio.sleep(1) print(f'{sleep} seconds') sleep -= 1 # # Send the Video Info Request # async def sendVideoControlRequest(fm, cID, camID, camTransmission=1, camInterval=2, camRecording=3, sleep=0): fm.mavlink_do_video_control(cID, camID, camTransmission, camInterval, camRecording) while sleep > 0: await asyncio.sleep(1) print(f'{sleep} seconds') sleep -= 1 # # Send the Camera Trig Request # async def sendCamTrigRequest(fm, cID, camTriggerCycle=5, camShutterIntegration=4, sleep=0): fm.mavlink_set_camera_trig_interval(cID, camTriggerCycle, camShutterIntegration) while sleep > 0: await asyncio.sleep(1) print(f'{sleep} seconds') sleep -= 1 # # Send the Reset Cam Request # async def sendResetCamRequest(fm, cID, sleep=0): fm.mavlink_reset_camera(cID) while sleep > 0: await asyncio.sleep(1) print(f'{sleep} seconds') sleep -= 1 # # Send the video focus # async def sendVideoFocusRequest(fm, cID, camFocusType=9, camFocusValue=300, sleep=0): fm.mavlink_video_set_camera_focus(cID, camFocusType, camFocusValue) while sleep > 0: await asyncio.sleep(1) print(f'{sleep} seconds') sleep -= 1 # # Send the digicam configure # async def sendDigiCamConfigureRequest(fm, cID, camMode=2, camShutterSpeed=3, camAperture=4, camISO=5, camExposure=6, camCommandIdentity=7, camEngineCutOff=8, sleep=0): fm.mavlink_do_digicam_configure(cID, camMode, camShutterSpeed, camAperture, camISO, camExposure, camCommandIdentity, camEngineCutOff) while sleep > 0: await asyncio.sleep(1) print(f'{sleep} seconds') sleep -= 1 # # Send the digicam control # async def sendDigiCamControlRequest(fm, cID, camSessionControl=11, camZoomAbsolute=12, camZoomRelative=13, camFocus=14, camShootCommand=15, camCommandIdentity=16, camShotID=666, sleep=0): fm.mavlink_do_digicam_control(cID, camSessionControl, camZoomAbsolute, camZoomRelative, camFocus, camShootCommand, camCommandIdentity, camShotID) while sleep > 0: await asyncio.sleep(1) print(f'{sleep} seconds') sleep -= 1 # # The continuos reading thread # async def readMavlinkIncomingData(fm, cID): fm.process_messages_from_connection(cID) # # The ACK send thread # async def sendMavlinkAckData(fm, cID, sleep, cmd, rpm2, pro, res): fm.mavlink_send_ack_command(cID, cmd, rpm2, pro, res) while sleep > 0: await asyncio.sleep(1) print(f'{sleep} seconds') sleep -= 1 # # The handle with ACK an error during collection that might happen during the send, its told to come again later or its wrong # async def execptionMavlinkErrorAckData(fm, cID): while fm.task_control_1 > 0: await asyncio.sleep(1) if (fm.ACK_ERROR == fm.GOT_ERROR): fm.mavlink_send_ack_command(cID, fm.errRCV_COMMAND, fm.errRPM2, 0, mavutil.mavlink.MAV_RESULT_TEMPORARILY_REJECTED) fm.ACK_ERROR = 0 fm.errRCV_COMMAND = 0 fm.errRPM2 = 0 elif (fm.ACK_ERROR == fm.GOT_BAD): fm.mavlink_send_ack_command(cID, fm.errRCV_COMMAND, fm.errRPM2, 0, mavutil.mavlink.MAV_RESULT_FAILED) fm.ACK_ERROR = 0 # # The MSG send thread # async def processMavlinkMessageData(fm, cID, sleep, sonycam=0, caminst=0, redeyecam=0 ): # define what is sent in param1 myRedEyeCamera = 1 mySonyCamera = 2 mySonyCameraContShoot = 3 if (fm.type_of_msg == 65000): # ## TODO :: Add the cmera retrieval class cam_data_result = fm.getCameraInfomationFromCam() # cam_data_result = fm.GOT_SUCCESS if (cam_data_result == fm.GOT_SUCCESS): fm.mavlink_send_camera_information(cID) fm.ACK_RESULT = mavutil.mavlink.MAV_RESULT_IN_PROGRESS else: fm.ACK_RESULT = mavutil.mavlink.MAV_RESULT_FAILED elif (fm.type_of_msg == 65001): # ## TODO :: Add the cmera retrieval class cam_data_result = fm.getCameraSettingsFromCam() # cam_data_result = fm.GOT_SUCCESS if (cam_data_result == fm.GOT_SUCCESS): fm.mavlink_send_camera_settings(cID) fm.ACK_RESULT = mavutil.mavlink.MAV_RESULT_IN_PROGRESS else: fm.ACK_RESULT = mavutil.mavlink.MAV_RESULT_FAILED elif (fm.type_of_msg == 65002): # ## TODO :: Add the cmera retrieval class cam_data_result = fm.getStorageInfomationFromCam() # cam_data_result = fm.GOT_SUCCESS if (cam_data_result == fm.GOT_SUCCESS): fm.mavlink_send_storage_information(cID) fm.ACK_RESULT = mavutil.mavlink.MAV_RESULT_IN_PROGRESS elif (fm.cam_data_result == fm.GOT_UNFORMAT): fm.mavlink_send_storage_information(cID) fm.ACK_RESULT = mavutil.mavlink.MAV_RESULT_FAILED else: fm.ACK_RESULT = mavutil.mavlink.MAV_RESULT_FAILED elif (fm.type_of_msg == 65003): # ## TODO :: Add the cmera retrieval class cam_data_result = fm.getCameraCaptureStatusFromCam() # cam_data_result = fm.GOT_SUCCESS if (cam_data_result == fm.GOT_SUCCESS): fm.mavlink_send_camera_capture_status(cID) fm.ACK_RESULT = mavutil.mavlink.MAV_RESULT_IN_PROGRESS else: fm.ACK_RESULT = mavutil.mavlink.MAV_RESULT_FAILED elif (fm.type_of_msg == 65004): # ## TODO :: Add the cmera retrieval class cam_data_result = fm.getCameraCaptureInformationFromCam(self.Got_Param1) # cam_data_result = fm.GOT_SUCCESS if (cam_data_result == fm.GOT_SUCCESS): fm.mavlink_send_camera_capture_information(cID) fm.ACK_RESULT = mavutil.mavlink.MAV_RESULT_IN_PROGRESS else: fm.ACK_RESULT = mavutil.mavlink.MAV_RESULT_FAILED elif (fm.type_of_msg == 65005): # ## TODO :: Add the cmera retrieval class cam_data_result = fm.getVideoStreamInformationFromCam() # cam_data_result = fm.GOT_SUCCESS if (cam_data_result == fm.GOT_SUCCESS): fm.mavlink_send_video_stream_information(cID) fm.ACK_RESULT = mavutil.mavlink.MAV_RESULT_IN_PROGRESS else: fm.ACK_RESULT = mavutil.mavlink.MAV_RESULT_FAILED elif (fm.type_of_msg == mavutil.mavlink.MAV_CMD_DO_SET_RELAY): # ## Sets the relay No passed from the mavlink command to the state requested # relay_data_result = fm.raspberry_pi3_set_relay(fm.Got_Param1,fm.Got_Param2) if (relay_data_result == True): fm.ACK_RESULT = mavutil.mavlink.MAV_RESULT_IN_PROGRESS else: fm.ACK_RESULT = mavutil.mavlink.MAV_RESULT_FAILED elif (fm.type_of_msg == mavutil.mavlink.MAV_CMD_VIDEO_STOP_CAPTURE): # # ## TODO :: add the camera control # # if (self.Got_Param1 == mySonyCamera): # cam_action_result = sonycam.stopMovieRec(caminst) # if not cam_action_result.find("OK") == -1: # cam_action_result = fm.GOT_SUCCESS # cam_action_result = fm.GOT_SUCCESS if (cam_action_result == fm.GOT_SUCCESS): fm.ACK_RESULT = mavutil.mavlink.MAV_RESULT_IN_PROGRESS else: fm.ACK_RESULT = mavutil.mavlink.MAV_RESULT_FAILED elif (fm.type_of_msg == mavutil.mavlink.MAV_CMD_VIDEO_START_CAPTURE): # # ## TODO :: add the camera control # # if (self.Got_Param1 == mySonyCamera): # cam_action_result = sonycam.startMovieRec(caminst) # if not cam_action_result.find("OK") == -1: # cam_action_result = fm.GOT_SUCCESS # cam_action_result = fm.GOT_SUCCESS if (cam_action_result == fm.GOT_SUCCESS): fm.ACK_RESULT = mavutil.mavlink.MAV_RESULT_IN_PROGRESS else: fm.ACK_RESULT = mavutil.mavlink.MAV_RESULT_FAILED elif (fm.type_of_msg == mavutil.mavlink.MAV_CMD_IMAGE_START_CAPTURE): # # ## TODO :: add the camera control # # if (self.Got_Param1 == myRedEyeCamera): # cam_action_result = redeyecam.redEyeCapture() # if (cam_action_result == redeyecam.HTTP_SUCCESS_RETURN): # cam_action_result = fm.GOT_SUCCESS # elif (self.Got_Param1 == mySonyCamera): # cam_action_result = sonycam.saveOnePicture(caminst) # if not cam_action_result.find("OK") == -1: # cam_action_result = fm.GOT_SUCCESS # elif (self.Got_Param1 == mySonyCameraContShoot): # cam_action_result = sonycam.startContShooting(caminst) # if not cam_action_result.find("OK") == -1: # cam_action_result = fm.GOT_SUCCESS # cam_action_result = fm.GOT_SUCCESS if (cam_action_result == fm.GOT_SUCCESS): fm.ACK_RESULT = mavutil.mavlink.MAV_RESULT_IN_PROGRESS else: fm.ACK_RESULT = mavutil.mavlink.MAV_RESULT_FAILED elif (fm.type_of_msg == mavutil.mavlink.MAV_CMD_IMAGE_STOP_CAPTURE): # # ## TODO :: add the camera control # # if (self.Got_Param1 == mySonyCameraContShoot): # cam_action_result = sonycam.stopContShooting(caminst) # if not cam_action_result.find("OK") == -1: # cam_action_result = fm.GOT_SUCCESS # cam_action_result = fm.GOT_SUCCESS if (cam_action_result == fm.GOT_SUCCESS): fm.ACK_RESULT = mavutil.mavlink.MAV_RESULT_IN_PROGRESS else: fm.ACK_RESULT = mavutil.mavlink.MAV_RESULT_FAILED elif (fm.type_of_msg == mavutil.mavlink.MAV_CMD_VIDEO_STOP_STREAMING): # # ## TODO :: add the camera control # # if (self.Got_Param1 == mySonyCam): # cam_action_result = sonycam.stopLiveView(caminst) # if not cam_action_result.find("OK") == -1: # cam_action_result = fm.GOT_SUCCESS # cam_action_result = fm.GOT_SUCCESS if (cam_action_result == fm.GOT_SUCCESS): fm.ACK_RESULT = mavutil.mavlink.MAV_RESULT_IN_PROGRESS else: fm.ACK_RESULT = mavutil.mavlink.MAV_RESULT_FAILED elif (fm.type_of_msg == mavutil.mavlink.MAV_CMD_VIDEO_START_STREAMING): # ## Sets the relay No passed from the mavlink command to the state requested # ## TODO :: add the camera control # # if (self.Got_Param1 == mySonyCam): # cam_action_result = sonycam.startLiveView(caminst) # if not cam_action_result.find("OK") == -1: # cam_action_result = fm.GOT_SUCCESS # cam_action_result = fm.GOT_SUCCESS if (cam_action_result == fm.GOT_SUCCESS): fm.ACK_RESULT = mavutil.mavlink.MAV_RESULT_IN_PROGRESS else: fm.ACK_RESULT = mavutil.mavlink.MAV_RESULT_FAILED elif (fm.type_of_msg == mavutil.mavlink.MAV_CMD_SET_CAMERA_MODE): # ## Sets the relay No passed from the mavlink command to the state requested # ## TODO :: add the camera control # # cam_action_result = fm.GOT_SUCCESS if (cam_action_result == fm.GOT_SUCCESS): fm.ACK_RESULT = mavutil.mavlink.MAV_RESULT_IN_PROGRESS else: fm.ACK_RESULT = mavutil.mavlink.MAV_RESULT_FAILED elif (fm.type_of_msg == mavutil.mavlink.MAV_CMD_SET_CAMERA_ZOOM): # ## Sets the relay No passed from the mavlink command to the state requested # ## TODO :: add the camera control # # cam_action_result = fm.GOT_SUCCESS if (cam_action_result == fm.GOT_SUCCESS): fm.ACK_RESULT = mavutil.mavlink.MAV_RESULT_IN_PROGRESS else: fm.ACK_RESULT = mavutil.mavlink.MAV_RESULT_FAILED elif (fm.type_of_msg == mavutil.mavlink.MAV_CMD_SET_CAMERA_FOCUS): # ## Sets the relay No passed from the mavlink command to the state requested # ## TODO :: add the camera control # # cam_action_result = fm.GOT_SUCCESS if (cam_action_result == fm.GOT_SUCCESS): fm.ACK_RESULT = mavutil.mavlink.MAV_RESULT_IN_PROGRESS else: fm.ACK_RESULT = mavutil.mavlink.MAV_RESULT_FAILED elif (fm.type_of_msg == mavutil.mavlink.MAV_CMD_DO_DIGICAM_CONFIGURE): # ## Sets the relay No passed from the mavlink command to the state requested # ## TODO :: add the camera control # # cam_action_result = fm.GOT_SUCCESS if (cam_action_result == fm.GOT_SUCCESS): fm.ACK_RESULT = mavutil.mavlink.MAV_RESULT_IN_PROGRESS else: fm.ACK_RESULT = mavutil.mavlink.MAV_RESULT_FAILED elif (fm.type_of_msg == mavutil.mavlink.MAV_CMD_DO_DIGICAM_CONTROL): # ## Sets the relay No passed from the mavlink command to the state requested # ## TODO :: add the camera control # # cam_action_result = fm.GOT_SUCCESS if (cam_action_result == fm.GOT_SUCCESS): fm.ACK_RESULT = mavutil.mavlink.MAV_RESULT_IN_PROGRESS else: fm.ACK_RESULT = mavutil.mavlink.MAV_RESULT_FAILED elif (fm.type_of_msg == mavutil.mavlink.MAV_CMD_DO_CONTROL_VIDEO): # ## Sets the relay No passed from the mavlink command to the state requested # ## TODO :: add the camera control # # cam_action_result = fm.GOT_SUCCESS if (cam_action_result == fm.GOT_SUCCESS): fm.ACK_RESULT = mavutil.mavlink.MAV_RESULT_IN_PROGRESS else: fm.ACK_RESULT = mavutil.mavlink.MAV_RESULT_FAILED elif (fm.type_of_msg == mavutil.mavlink.MAV_CMD_DO_SET_CAM_TRIGG_INTERVAL): # ## Sets the relay No passed from the mavlink command to the state requested # ## TODO :: add the camera control # # cam_action_result = fm.GOT_SUCCESS if (cam_action_result == fm.GOT_SUCCESS): fm.ACK_RESULT = mavutil.mavlink.MAV_RESULT_IN_PROGRESS else: fm.ACK_RESULT = mavutil.mavlink.MAV_RESULT_FAILED elif (fm.type_of_msg == mavutil.mavlink.MAV_CMD_RESET_CAMERA_SETTINGS): # ## Sets the relay No passed from the mavlink command to the state requested # ## TODO :: add the camera control # # cam_action_result = fm.GOT_SUCCESS if (cam_action_result == fm.GOT_SUCCESS): fm.ACK_RESULT = mavutil.mavlink.MAV_RESULT_IN_PROGRESS else: fm.ACK_RESULT = mavutil.mavlink.MAV_RESULT_FAILED elif (fm.type_of_msg == mavutil.mavlink.MAV_CMD_DO_MOUNT_CONTROL_QUAT): # ## Sets the relay No passed from the mavlink command to the state requested # ## TODO :: add the camera control # # cam_action_result = fm.GOT_SUCCESS if (cam_action_result == fm.GOT_SUCCESS): fm.ACK_RESULT = mavutil.mavlink.MAV_RESULT_IN_PROGRESS else: fm.ACK_RESULT = mavutil.mavlink.MAV_RESULT_FAILED elif (fm.type_of_msg == mavutil.mavlink.MAV_CMD_DO_GIMBAL_MANAGER_PITCHYAW): # ## Sets the relay No passed from the mavlink command to the state requested # ## TODO :: add the camera control # # cam_action_result = fm.GOT_SUCCESS if (cam_action_result == fm.GOT_SUCCESS): fm.ACK_RESULT = mavutil.mavlink.MAV_RESULT_IN_PROGRESS else: fm.ACK_RESULT = mavutil.mavlink.MAV_RESULT_FAILED elif (fm.type_of_msg == mavutil.mavlink.MAV_CMD_DO_TRIGGER_CONTROL): # ## Sets the relay No passed from the mavlink command to the state requested # ## TODO :: add the camera control # # cam_action_result = fm.GOT_SUCCESS if (cam_action_result == fm.GOT_SUCCESS): fm.ACK_RESULT = mavutil.mavlink.MAV_RESULT_IN_PROGRESS else: fm.ACK_RESULT = mavutil.mavlink.MAV_RESULT_FAILED elif (fm.type_of_msg == 2004): # ## Sets the relay No passed from the mavlink command to the state requested # ## TODO :: add the camera control # # cam_action_result = fm.GOT_SUCCESS if (cam_action_result == fm.GOT_SUCCESS): fm.ACK_RESULT = mavutil.mavlink.MAV_RESULT_IN_PROGRESS else: fm.ACK_RESULT = mavutil.mavlink.MAV_RESULT_FAILED elif (fm.type_of_msg == 2005): # ## Sets the relay No passed from the mavlink command to the state requested # ## TODO :: add the camera control # # cam_action_result = fm.GOT_SUCCESS if (cam_action_result == fm.GOT_SUCCESS): fm.ACK_RESULT = mavutil.mavlink.MAV_RESULT_IN_PROGRESS else: fm.ACK_RESULT = mavutil.mavlink.MAV_RESULT_FAILED elif (fm.type_of_msg == 2010): # ## Sets the relay No passed from the mavlink command to the state requested # ## TODO :: add the camera control # # cam_action_result = fm.GOT_SUCCESS if (cam_action_result == fm.GOT_SUCCESS): fm.ACK_RESULT = mavutil.mavlink.MAV_RESULT_IN_PROGRESS else: fm.ACK_RESULT = mavutil.mavlink.MAV_RESULT_FAILED elif (fm.type_of_msg == mavutil.mavlink.MAV_CMD_STORAGE_FORMAT): # ## Sets the relay No passed from the mavlink command to the state requested # ## TODO :: add the camera control # # cam_action_result = fm.GOT_SUCCESS if (cam_action_result == fm.GOT_SUCCESS): fm.ACK_RESULT = mavutil.mavlink.MAV_RESULT_IN_PROGRESS else: fm.ACK_RESULT = mavutil.mavlink.MAV_RESULT_FAILED while sleep > 0: await asyncio.sleep(1) print(f'{sleep} seconds') sleep -= 1 fm.task_control_1 = 0 # # The main thread to run this is the camera receiver client # async def main(): frame = MAVFrame() state = False while (state == False): try: cID,state = frame.makeMAVlinkConn() except Exception as e: print("Error Trap :: ", e.__class__, " occurred.") # wait heartbeat # look for the camera # state = False xx = 1 while xx == 1: print("receiving....") m = cID.recv_match(type="HEARTBEAT", blocking=True, timeout=5) id = m.get_srcSystem() print("got a heart..... %s type %s "%(id,m.type)) #if ((( m.autopilot == mavutil.mavlink.MAV_AUTOPILOT_INVALID ) and ( m.type == mavutil.mavlink.MAV_TYPE_CAMERA )) and (id == mavutil.mavlink.MAV_COMP_ID_CAMERA)) : if (( m.autopilot == mavutil.mavlink.MAV_AUTOPILOT_INVALID ) and ( m.type == mavutil.mavlink.MAV_TYPE_CAMERA )) : xx = 2 frame.RCV_COMMAND = 0 frame.RPM2 = 0 frame.ACK_RESULT = 0 #read_task_1 = asyncio.create_task(readMavlinkIncomingData(frame, cID)) print("started reader") while True: read_task_1 = asyncio.create_task(readMavlinkIncomingData(frame, cID)) #await read_task_1 print(f"Started in main : {time.strftime('%X')}") snd_task_1 = asyncio.create_task(sendCameraRequest(frame, cID, 1)) print("................................. sending camera request ....................................................................") await snd_task_1 #snd_task_2 = asyncio.create_task(sendStreamInfoRequest(frame, cID, 1)) #print("................................. sending stream request ....................................................................") #await snd_task_2 #snd_task_3 = asyncio.create_task(sendCapStatusRequest(frame, cID, 1)) #print("................................. sending cap status request ....................................................................") #await snd_task_3 #snd_task_4 = asyncio.create_task(sendCamSettingsRequest(frame, cID, 1)) #print("................................. sending cam settings request ....................................................................") #await snd_task_4 #snd_task_5 = asyncio.create_task(sendStorageInfoRequest(frame, cID, 8, 1)) #print("................................. sending storage info request ....................................................................") #await snd_task_5 #snd_task_6 = asyncio.create_task(sendVideoControlRequest(frame, cID, 1, 2, 3, 1)) #print("................................. sending video control request ....................................................................") #await snd_task_6 #snd_task_7 = asyncio.create_task(sendCamTrigRequest(frame, cID, 15, 14, 1)) #print("................................. sending cam trigg request ....................................................................") #await snd_task_7 #snd_task_8 = asyncio.create_task(sendResetCamRequest(frame, cID, 1)) #print("................................. sending cam reset camera request ....................................................................") #await snd_task_8 #snd_task_9 = asyncio.create_task(sendVideoFocusRequest(frame, cID, 9, 300, 1)) #print("................................. sending video focus request ....................................................................") #await snd_task_9 #snd_task_10 = asyncio.create_task(sendDigiCamConfigureRequest(frame, cID, 12, 13, 14, 15, 16, 17, 18, 1)) #print("................................. sending digi cam configure request ....................................................................") #await snd_task_10 #snd_task_11 = asyncio.create_task(sendDigiCamControlRequest(frame, cID, 211, 212, 213, 214, 215, 216, 666, 1)) #print("................................. sending digi cam control request ....................................................................") #await snd_task_11 read_task_1.cancel() print(f"Ended: {time.strftime('%X')}") if __name__ == '__main__': # Create our wxPython application and show our frame # This is the mavlink test reader it should activate the thread upon click # # app = wx.App() # frame = MAVFrame(None) # frame.Show() # app.MainLoop() # This is joystick test application to send over UDP port joystick position # # frame = MAVFrame(None) # frame.joystickInit() # udpS = frame.initUDPSocket() # frame.joyMavlinkInit() # frame.processJoystickSendMavlink(udpS) # frame.closeUDPSocket(udpS) # # This is an example sending app for mavlink camera control messages going out # # frame = MAVFrame() # connID = frame.makeMAVlinkConn() # print("connect %s"%(connID)) # frame.mavlink_send_GCS_heartbeat(connID) # frame.mavlink_reset_camera(connID) # frame.mavlink_video_set_camera_focus(connID, frame.MAV_FOCUS_TYPE_METERS, 1.5) # frame.mavlink_image_start_capture(connID, 0.5, 2, 1) # frame.mavlink_image_stop_capture(connID) # frame.process_messages_from_connection(connID) ## # # ===================== Main Multi-Thread send/rcv Task ============================ # asyncio.run(main())
test_distributed_sampling.py
import dgl import unittest import os from dgl.data import CitationGraphDataset from dgl.distributed import sample_neighbors, find_edges from dgl.distributed import partition_graph, load_partition, load_partition_book import sys import multiprocessing as mp import numpy as np import backend as F import time from utils import get_local_usable_addr from pathlib import Path import pytest from scipy import sparse as spsp from dgl.distributed import DistGraphServer, DistGraph def start_server(rank, tmpdir, disable_shared_mem, graph_name): g = DistGraphServer(rank, "rpc_ip_config.txt", 1, 1, tmpdir / (graph_name + '.json'), disable_shared_mem=disable_shared_mem) g.start() def start_sample_client(rank, tmpdir, disable_shared_mem): gpb = None if disable_shared_mem: _, _, _, gpb, _, _, _ = load_partition(tmpdir / 'test_sampling.json', rank) dgl.distributed.initialize("rpc_ip_config.txt") dist_graph = DistGraph("test_sampling", gpb=gpb) try: sampled_graph = sample_neighbors(dist_graph, [0, 10, 99, 66, 1024, 2008], 3) except Exception as e: print(e) sampled_graph = None dgl.distributed.exit_client() return sampled_graph def start_find_edges_client(rank, tmpdir, disable_shared_mem, eids): gpb = None if disable_shared_mem: _, _, _, gpb, _, _, _ = load_partition(tmpdir / 'test_find_edges.json', rank) dgl.distributed.initialize("rpc_ip_config.txt") dist_graph = DistGraph("test_find_edges", gpb=gpb) try: u, v = find_edges(dist_graph, eids) except Exception as e: print(e) u, v = None, None dgl.distributed.exit_client() return u, v def check_rpc_sampling(tmpdir, num_server): ip_config = open("rpc_ip_config.txt", "w") for _ in range(num_server): ip_config.write('{}\n'.format(get_local_usable_addr())) ip_config.close() g = CitationGraphDataset("cora")[0] g.readonly() print(g.idtype) num_parts = num_server num_hops = 1 partition_graph(g, 'test_sampling', num_parts, tmpdir, num_hops=num_hops, part_method='metis', reshuffle=False) pserver_list = [] ctx = mp.get_context('spawn') for i in range(num_server): p = ctx.Process(target=start_server, args=(i, tmpdir, num_server > 1, 'test_sampling')) p.start() time.sleep(1) pserver_list.append(p) time.sleep(3) sampled_graph = start_sample_client(0, tmpdir, num_server > 1) print("Done sampling") for p in pserver_list: p.join() src, dst = sampled_graph.edges() assert sampled_graph.number_of_nodes() == g.number_of_nodes() assert np.all(F.asnumpy(g.has_edges_between(src, dst))) eids = g.edge_ids(src, dst) assert np.array_equal( F.asnumpy(sampled_graph.edata[dgl.EID]), F.asnumpy(eids)) def check_rpc_find_edges_shuffle(tmpdir, num_server): ip_config = open("rpc_ip_config.txt", "w") for _ in range(num_server): ip_config.write('{}\n'.format(get_local_usable_addr())) ip_config.close() g = CitationGraphDataset("cora")[0] g.readonly() num_parts = num_server partition_graph(g, 'test_find_edges', num_parts, tmpdir, num_hops=1, part_method='metis', reshuffle=True) pserver_list = [] ctx = mp.get_context('spawn') for i in range(num_server): p = ctx.Process(target=start_server, args=(i, tmpdir, num_server > 1, 'test_find_edges')) p.start() time.sleep(1) pserver_list.append(p) orig_nid = F.zeros((g.number_of_nodes(),), dtype=F.int64) orig_eid = F.zeros((g.number_of_edges(),), dtype=F.int64) for i in range(num_server): part, _, _, _, _, _, _ = load_partition(tmpdir / 'test_find_edges.json', i) orig_nid[part.ndata[dgl.NID]] = part.ndata['orig_id'] orig_eid[part.edata[dgl.EID]] = part.edata['orig_id'] time.sleep(3) eids = F.tensor(np.random.randint(g.number_of_edges(), size=100)) u, v = g.find_edges(orig_eid[eids]) du, dv = start_find_edges_client(0, tmpdir, num_server > 1, eids) du = orig_nid[du] dv = orig_nid[dv] assert F.array_equal(u, du) assert F.array_equal(v, dv) #@unittest.skipIf(os.name == 'nt', reason='Do not support windows yet') #@unittest.skipIf(dgl.backend.backend_name == 'tensorflow', reason='Not support tensorflow for now') @unittest.skip('Only support partition with shuffle') def test_rpc_sampling(): import tempfile os.environ['DGL_DIST_MODE'] = 'distributed' with tempfile.TemporaryDirectory() as tmpdirname: check_rpc_sampling(Path(tmpdirname), 2) def check_rpc_sampling_shuffle(tmpdir, num_server): ip_config = open("rpc_ip_config.txt", "w") for _ in range(num_server): ip_config.write('{}\n'.format(get_local_usable_addr())) ip_config.close() g = CitationGraphDataset("cora")[0] g.readonly() num_parts = num_server num_hops = 1 partition_graph(g, 'test_sampling', num_parts, tmpdir, num_hops=num_hops, part_method='metis', reshuffle=True) pserver_list = [] ctx = mp.get_context('spawn') for i in range(num_server): p = ctx.Process(target=start_server, args=(i, tmpdir, num_server > 1, 'test_sampling')) p.start() time.sleep(1) pserver_list.append(p) time.sleep(3) sampled_graph = start_sample_client(0, tmpdir, num_server > 1) print("Done sampling") for p in pserver_list: p.join() orig_nid = F.zeros((g.number_of_nodes(),), dtype=F.int64) orig_eid = F.zeros((g.number_of_edges(),), dtype=F.int64) for i in range(num_server): part, _, _, _, _, _, _ = load_partition(tmpdir / 'test_sampling.json', i) orig_nid[part.ndata[dgl.NID]] = part.ndata['orig_id'] orig_eid[part.edata[dgl.EID]] = part.edata['orig_id'] src, dst = sampled_graph.edges() src = orig_nid[src] dst = orig_nid[dst] assert sampled_graph.number_of_nodes() == g.number_of_nodes() assert np.all(F.asnumpy(g.has_edges_between(src, dst))) eids = g.edge_ids(src, dst) eids1 = orig_eid[sampled_graph.edata[dgl.EID]] assert np.array_equal(F.asnumpy(eids1), F.asnumpy(eids)) def create_random_hetero(): num_nodes = {'n1': 1010, 'n2': 1000, 'n3': 1020} etypes = [('n1', 'r1', 'n2'), ('n1', 'r2', 'n3'), ('n2', 'r3', 'n3')] edges = {} for etype in etypes: src_ntype, _, dst_ntype = etype arr = spsp.random(num_nodes[src_ntype], num_nodes[dst_ntype], density=0.001, format='coo', random_state=100) edges[etype] = (arr.row, arr.col) g = dgl.heterograph(edges, num_nodes) g.nodes['n1'].data['feat'] = F.ones((g.number_of_nodes('n1'), 10), F.float32, F.cpu()) return g def start_hetero_sample_client(rank, tmpdir, disable_shared_mem): gpb = None if disable_shared_mem: _, _, _, gpb, _, _, _ = load_partition(tmpdir / 'test_sampling.json', rank) dgl.distributed.initialize("rpc_ip_config.txt") dist_graph = DistGraph("test_sampling", gpb=gpb) assert 'feat' in dist_graph.nodes['n1'].data assert 'feat' not in dist_graph.nodes['n2'].data assert 'feat' not in dist_graph.nodes['n3'].data if gpb is None: gpb = dist_graph.get_partition_book() try: nodes = {'n3': [0, 10, 99, 66, 124, 208]} sampled_graph = sample_neighbors(dist_graph, nodes, 3) nodes = gpb.map_to_homo_nid(nodes['n3'], 'n3') block = dgl.to_block(sampled_graph, nodes) block.edata[dgl.EID] = sampled_graph.edata[dgl.EID] except Exception as e: print(e) block = None dgl.distributed.exit_client() return block, gpb def check_rpc_hetero_sampling_shuffle(tmpdir, num_server): ip_config = open("rpc_ip_config.txt", "w") for _ in range(num_server): ip_config.write('{}\n'.format(get_local_usable_addr())) ip_config.close() g = create_random_hetero() num_parts = num_server num_hops = 1 partition_graph(g, 'test_sampling', num_parts, tmpdir, num_hops=num_hops, part_method='metis', reshuffle=True) pserver_list = [] ctx = mp.get_context('spawn') for i in range(num_server): p = ctx.Process(target=start_server, args=(i, tmpdir, num_server > 1, 'test_sampling')) p.start() time.sleep(1) pserver_list.append(p) time.sleep(3) block, gpb = start_hetero_sample_client(0, tmpdir, num_server > 1) print("Done sampling") for p in pserver_list: p.join() orig_nid_map = F.zeros((g.number_of_nodes(),), dtype=F.int64) orig_eid_map = F.zeros((g.number_of_edges(),), dtype=F.int64) for i in range(num_server): part, _, _, _, _, _, _ = load_partition(tmpdir / 'test_sampling.json', i) F.scatter_row_inplace(orig_nid_map, part.ndata[dgl.NID], part.ndata['orig_id']) F.scatter_row_inplace(orig_eid_map, part.edata[dgl.EID], part.edata['orig_id']) src, dst = block.edges() # These are global Ids after shuffling. shuffled_src = F.gather_row(block.srcdata[dgl.NID], src) shuffled_dst = F.gather_row(block.dstdata[dgl.NID], dst) shuffled_eid = block.edata[dgl.EID] # Get node/edge types. etype, _ = gpb.map_to_per_etype(shuffled_eid) src_type, _ = gpb.map_to_per_ntype(shuffled_src) dst_type, _ = gpb.map_to_per_ntype(shuffled_dst) etype = F.asnumpy(etype) src_type = F.asnumpy(src_type) dst_type = F.asnumpy(dst_type) # These are global Ids in the original graph. orig_src = F.asnumpy(F.gather_row(orig_nid_map, shuffled_src)) orig_dst = F.asnumpy(F.gather_row(orig_nid_map, shuffled_dst)) orig_eid = F.asnumpy(F.gather_row(orig_eid_map, shuffled_eid)) etype_map = {g.get_etype_id(etype):etype for etype in g.etypes} etype_to_eptype = {g.get_etype_id(etype):(src_ntype, dst_ntype) for src_ntype, etype, dst_ntype in g.canonical_etypes} for e in np.unique(etype): src_t = src_type[etype == e] dst_t = dst_type[etype == e] assert np.all(src_t == src_t[0]) assert np.all(dst_t == dst_t[0]) # Check the node Ids and edge Ids. orig_src1, orig_dst1 = g.find_edges(orig_eid[etype == e], etype=etype_map[e]) assert np.all(F.asnumpy(orig_src1) == orig_src[etype == e]) assert np.all(F.asnumpy(orig_dst1) == orig_dst[etype == e]) # Check the node types. src_ntype, dst_ntype = etype_to_eptype[e] assert np.all(src_t == g.get_ntype_id(src_ntype)) assert np.all(dst_t == g.get_ntype_id(dst_ntype)) # Wait non shared memory graph store @unittest.skipIf(os.name == 'nt', reason='Do not support windows yet') @unittest.skipIf(dgl.backend.backend_name == 'tensorflow', reason='Not support tensorflow for now') @pytest.mark.parametrize("num_server", [1, 2]) def test_rpc_sampling_shuffle(num_server): import tempfile os.environ['DGL_DIST_MODE'] = 'distributed' with tempfile.TemporaryDirectory() as tmpdirname: check_rpc_sampling_shuffle(Path(tmpdirname), num_server) check_rpc_hetero_sampling_shuffle(Path(tmpdirname), num_server) def check_standalone_sampling(tmpdir, reshuffle): g = CitationGraphDataset("cora")[0] num_parts = 1 num_hops = 1 partition_graph(g, 'test_sampling', num_parts, tmpdir, num_hops=num_hops, part_method='metis', reshuffle=reshuffle) os.environ['DGL_DIST_MODE'] = 'standalone' dgl.distributed.initialize("rpc_ip_config.txt") dist_graph = DistGraph("test_sampling", part_config=tmpdir / 'test_sampling.json') sampled_graph = sample_neighbors(dist_graph, [0, 10, 99, 66, 1024, 2008], 3) src, dst = sampled_graph.edges() assert sampled_graph.number_of_nodes() == g.number_of_nodes() assert np.all(F.asnumpy(g.has_edges_between(src, dst))) eids = g.edge_ids(src, dst) assert np.array_equal( F.asnumpy(sampled_graph.edata[dgl.EID]), F.asnumpy(eids)) dgl.distributed.exit_client() @unittest.skipIf(os.name == 'nt', reason='Do not support windows yet') @unittest.skipIf(dgl.backend.backend_name == 'tensorflow', reason='Not support tensorflow for now') def test_standalone_sampling(): import tempfile os.environ['DGL_DIST_MODE'] = 'standalone' with tempfile.TemporaryDirectory() as tmpdirname: check_standalone_sampling(Path(tmpdirname), False) check_standalone_sampling(Path(tmpdirname), True) def start_in_subgraph_client(rank, tmpdir, disable_shared_mem, nodes): gpb = None dgl.distributed.initialize("rpc_ip_config.txt") if disable_shared_mem: _, _, _, gpb, _, _, _ = load_partition(tmpdir / 'test_in_subgraph.json', rank) dist_graph = DistGraph("test_in_subgraph", gpb=gpb) try: sampled_graph = dgl.distributed.in_subgraph(dist_graph, nodes) except Exception as e: print(e) sampled_graph = None dgl.distributed.exit_client() return sampled_graph def check_rpc_in_subgraph_shuffle(tmpdir, num_server): ip_config = open("rpc_ip_config.txt", "w") for _ in range(num_server): ip_config.write('{}\n'.format(get_local_usable_addr())) ip_config.close() g = CitationGraphDataset("cora")[0] g.readonly() num_parts = num_server partition_graph(g, 'test_in_subgraph', num_parts, tmpdir, num_hops=1, part_method='metis', reshuffle=True) pserver_list = [] ctx = mp.get_context('spawn') for i in range(num_server): p = ctx.Process(target=start_server, args=(i, tmpdir, num_server > 1, 'test_in_subgraph')) p.start() time.sleep(1) pserver_list.append(p) nodes = [0, 10, 99, 66, 1024, 2008] time.sleep(3) sampled_graph = start_in_subgraph_client(0, tmpdir, num_server > 1, nodes) for p in pserver_list: p.join() orig_nid = F.zeros((g.number_of_nodes(),), dtype=F.int64) orig_eid = F.zeros((g.number_of_edges(),), dtype=F.int64) for i in range(num_server): part, _, _, _, _, _, _ = load_partition(tmpdir / 'test_in_subgraph.json', i) orig_nid[part.ndata[dgl.NID]] = part.ndata['orig_id'] orig_eid[part.edata[dgl.EID]] = part.edata['orig_id'] src, dst = sampled_graph.edges() src = orig_nid[src] dst = orig_nid[dst] assert sampled_graph.number_of_nodes() == g.number_of_nodes() assert np.all(F.asnumpy(g.has_edges_between(src, dst))) subg1 = dgl.in_subgraph(g, orig_nid[nodes]) src1, dst1 = subg1.edges() assert np.all(np.sort(F.asnumpy(src)) == np.sort(F.asnumpy(src1))) assert np.all(np.sort(F.asnumpy(dst)) == np.sort(F.asnumpy(dst1))) eids = g.edge_ids(src, dst) eids1 = orig_eid[sampled_graph.edata[dgl.EID]] assert np.array_equal(F.asnumpy(eids1), F.asnumpy(eids)) @unittest.skipIf(os.name == 'nt', reason='Do not support windows yet') @unittest.skipIf(dgl.backend.backend_name == 'tensorflow', reason='Not support tensorflow for now') def test_rpc_in_subgraph(): import tempfile os.environ['DGL_DIST_MODE'] = 'distributed' with tempfile.TemporaryDirectory() as tmpdirname: check_rpc_in_subgraph_shuffle(Path(tmpdirname), 2) if __name__ == "__main__": import tempfile with tempfile.TemporaryDirectory() as tmpdirname: os.environ['DGL_DIST_MODE'] = 'standalone' check_standalone_sampling(Path(tmpdirname), True) check_standalone_sampling(Path(tmpdirname), False) os.environ['DGL_DIST_MODE'] = 'distributed' check_rpc_sampling(Path(tmpdirname), 2) check_rpc_sampling(Path(tmpdirname), 1) check_rpc_find_edges_shuffle(Path(tmpdirname), 2) check_rpc_find_edges_shuffle(Path(tmpdirname), 1) check_rpc_in_subgraph_shuffle(Path(tmpdirname), 2) check_rpc_sampling_shuffle(Path(tmpdirname), 1) check_rpc_sampling_shuffle(Path(tmpdirname), 2) check_rpc_hetero_sampling_shuffle(Path(tmpdirname), 1) check_rpc_hetero_sampling_shuffle(Path(tmpdirname), 2)
my_module.py
import os import rospy import rospkg import threading from qt_gui.plugin import Plugin from python_qt_binding import loadUi from python_qt_binding import QtWidgets from std_msgs.msg import Bool class MyPlugin(Plugin): def __init__(self, context): super(MyPlugin, self).__init__(context) # Give QObjects reasonable names self.setObjectName('MyPlugin') # Process standalone plugin command-line arguments from argparse import ArgumentParser parser = ArgumentParser() # Add argument(s) to the parser. parser.add_argument("-q", "--quiet", action="store_true", dest="quiet", help="Put plugin in silent mode") args, unknowns = parser.parse_known_args(context.argv()) if not args.quiet: print 'arguments: ', args print 'unknowns: ', unknowns # Create QWidget self._widget = QtWidgets.QWidget() # Get path to UI file which should be in the "resource" folder of this package ui_file = os.path.join(rospkg.RosPack().get_path('robot_rqt_plugin'), 'resource', 'MyPlugin.ui') # Extend the widget with all attributes and children from UI file loadUi(ui_file, self._widget) # Give QObjects reasonable names self._widget.setObjectName('MyPluginUi') # Show _widget.windowTitle on left-top of each plugin (when # it's set in _widget). This is useful when you open multiple # plugins at once. Also if you open multiple instances of your # plugin at once, these lines add number to make it easy to # tell from pane to pane. if context.serial_number() > 1: self._widget.setWindowTitle(self._widget.windowTitle() + (' (%d)' % context.serial_number())) # Add widget to the user interface context.add_widget(self._widget) # Sets up the functions to be called on clicking on buttons self._widget.hard_stop.clicked[bool].connect(self._hardstop) self._widget.soft_stop.clicked[bool].connect(self._softstop) self._widget.control.clicked[bool].connect(self._switchmode) # Sets up the variables and the text label self.mode_val = False self.soft_stop = False self.decide_text() # Sets the topics and the publishing rate self.control_publisher = rospy.Publisher("control_mode", Bool, queue_size=0) self.stop_publisher = rospy.Publisher("soft_stop", Bool, queue_size=0) self.rate = rospy.Rate(10) # Starts a thread to run in parallel publishing messages threading.Thread(target=self.publish_manually).start() def _hardstop(self): # Kills all the running nodes os.system("rosnode kill -a") # Updates the text label self._widget.hard.setText('All nodes killed') def _softstop(self): # Changes the value of the soft_stop variable # False means not stopped and True means stopped self.soft_stop = not self.soft_stop # Updates the text labels self.decide_text() def _switchmode(self): # Changes the value of the mode_val variable # False means automatic and True means manual self.mode_val = not self.mode_val # Updates the text labels self.decide_text() def publish_manually(self): # Runs till killed while not rospy.is_shutdown(): # Publishes the value of the variables to the topics self.stop_publisher.publish(Bool(self.soft_stop)) self.control_publisher.publish(Bool(self.mode_val)) # Publishes at the set rate self.rate.sleep() def decide_text(self): # Sets the value for the text labels self._widget.mode.setText(['Manual' if self.mode_val else 'Automatic'][0]) self._widget.soft.setText(['Enabled' if self.soft_stop else 'Disabled'][0]) # def shutdown_plugin(self): # # unregister all publishers here # pass # # def save_settings(self, plugin_settings, instance_settings): # # save intrinsic configuration, usually using: # # instance_settings.set_value(k, v) # pass # # def restore_settings(self, plugin_settings, instance_settings): # # restore intrinsic configuration, usually using: # # v = instance_settings.value(k) # pass
main3.py
import tensorflow as tf from gym import wrappers import make_env import numpy as np import random from ReplayMemory import ReplayMemory from ExplorationNoise import OrnsteinUhlenbeckActionNoise as OUNoise from actorcriticv2 import ActorNetwork,CriticNetwork #from actorcriticv1 import Brain, Worker from Train import train # from Distributed_Train import * import argparse from keras.models import load_model import os import threading, queue, time class Brain(object): def __init__(self, modelFolder): self.actors = None self.critics = None self.ave_n = None self.env_n = None self.modelFolder = modelFolder def update(self): global global_step, global_step_max while not coord.should_stop(): if global_step < global_step_max: update_event.wait() # print("Brain working!") #global global_queue s_batch, a_batch, r_batch, d_batch, s2_batch = [], [], [], [], [] for i in range(global_queue.qsize()): data = global_queue.get() s_batch.append(data[0]) a_batch.append(data[1]) r_batch.append(data[2]) d_batch.append(data[3]) s2_batch.append(data[4]) s_batch = np.array(s_batch) a_batch = np.array(a_batch) r_batch = np.array(r_batch) d_batch = np.array(d_batch) s2_batch = np.array(s2_batch) # print("batch size:", s_batch.shape, s2_batch.shape) action_dims_done = 0 for i in range(self.ave_n): actor = self.actors[i] critic = self.critics[i] if True: a = [] for j in range(self.ave_n): state_batch_j = np.asarray([x for x in s_batch[:,j]]) #batch processing will be much more efficient even though reshaping will have to be done a.append(self.actors[j].predict_target(state_batch_j)) a_temp = np.transpose(np.asarray(a),(1,0,2)) a_for_critic = np.asarray([x.flatten() for x in a_temp]) s2_batch_i = np.asarray([x for x in s2_batch[:,i]]) # Checked till this point, should be fine. targetQ = critic.predict_target(s2_batch_i,a_for_critic) # Should work, probably yi = [] for k in range(int(args['minibatch_size'])): if d_batch[:,i][k]: yi.append(r_batch[:,i][k]) else: yi.append(r_batch[:,i][k] + critic.gamma*targetQ[k]) s_batch_i = np.asarray([x for x in s_batch[:,i]]) critic.train(s_batch_i,np.asarray([x.flatten() for x in a_batch[:, 0: self.ave_n, :]]),np.asarray(yi)) actions_pred = [] for j in range(self.ave_n): state_batch_j = np.asarray([x for x in s2_batch[:,j]]) actions_pred.append(self.actors[j].predict(state_batch_j)) # Should work till here, roughly, probably a_temp = np.transpose(np.asarray(actions_pred),(1,0,2)) a_for_critic_pred = np.asarray([x.flatten() for x in a_temp]) s_batch_i = np.asarray([x for x in s_batch[:,i]]) grads = critic.action_gradients(s_batch_i,a_for_critic_pred)[:,action_dims_done:action_dims_done + actor.action_dim] actor.train(s_batch_i,grads) actor.update_target() critic.update_target() action_dims_done = action_dims_done + actor.action_dim # Only DDPG agent for i in range(self.ave_n, self.env_n): actor = self.actors[i] critic = self.critics[i] if True: s_batch_i = np.asarray([x for x in s_batch[:,i]]) action = np.asarray(actor.predict_target(s_batch_i)) action_for_critic = np.asarray([x.flatten() for x in action]) s2_batch_i = np.asarray([x for x in s2_batch[:, i]]) targetQ = critic.predict_target(s2_batch_i, action_for_critic) y_i = [] for k in range(int(args['minibatch_size'])): # If ep is end if d_batch[:, i][k]: y_i.append(r_batch[:, i][k]) else: y_i.append(r_batch[:, i][k] + critic.gamma * targetQ[k]) s_batch_i= np.asarray([x for x in s_batch[:, i]]) critic.train(s_batch_i, np.asarray([x.flatten() for x in a_batch[:, i]]), np.asarray(y_i)) action_for_critic_pred = actor.predict(s2_batch_i) gradients = critic.action_gradients(s_batch_i, action_for_critic_pred)[:, :] actor.train(s_batch_i, gradients) actor.update_target() critic.update_target() global_step += 1 if global_step % (100*50) == 0 and global_step != 0: directory = self.modelFolder + "ep" + str(global_step) + "/" if not os.path.exists(directory): os.makedirs(directory) print("Starting saving model weights to folder every 200 episodes") for i in range(self.env_n): # saveModel(actors[i], i, args["modelFolder"]) saveWeights(self.actors[i], i, directory) print("Model weights saved to folder") update_event.clear() # updating finished rolling_event.set() ########################### ##### WORKER ######## ########################### class Worker(object): # init def __init__(self, wid, n, max_episode_len, batch_size, seed, noise): self.wid = wid self.env = make_env.make_env("simple_tag") print("Initiate worker ", wid) self.env.seed(int(seed)) self.brain = brain self.agent_num = n self.max_episode_len = max_episode_len self.batch_size = batch_size self.noise = noise def work(self): global global_step_max, global_step while not coord.should_stop(): s = self.env.reset() episode_reward = np.zeros((self.agent_num,)) start = time.time() # print("env", s[0]) for stp in range(200): if not rolling_event.is_set(): rolling_event.wait() # self.env.render() actions = [] global graph with graph.as_default(): # print("s0:", s[0]) for i in range(self.agent_num): # print("Taking actions") actor = self.brain.actors[i] # print("wid:", self.wid, " actor!", i) state_input = np.reshape(s[i],(-1,actor.state_dim)) # print(state_input) actions.append(actor.act(state_input, self.noise[i]()).reshape(actor.action_dim,)) s2, r, done, _ = self.env.step(actions) episode_reward += r if global_queue.qsize() < self.batch_size: global_queue.put([s, actions, r, done, s2]) # global_step += 1 s = s2 episode_reward += r if stp == self.max_episode_len - 1: if self.wid == 0: showAveReward(self.wid, episode_reward, self.agent_num, stp, start) break if global_queue.qsize() > self.batch_size - 1: rolling_event.clear() update_event.set() if global_step >= global_step_max: coord.request_stop() break def build_summaries(n): losses = [tf.Variable(0.) for i in range(n)] for i in range(n): tf.summary.scalar("Loss_Agent" + str(i), losses[i]) summary_vars = losses summary_ops = tf.summary.merge_all() return summary_ops, summary_vars def getFromQueue(): s_batch, a_batch, r_batch, d_batch, s2_batch = [], [], [], [], [] for i in range(global_queue.qsize()): data = global_queue.get() s_batch.append(data[0]) a_batch.append(data[1]) r_batch.append(data[2]) d_batch.append(data[3]) s2_batch.append(data[4]) return s_batch, a_batch, r_batch, d_batch, s2_batch class Controller(object): def __init__(self): self.update_event = update_event self.rolling_event = rolling_event self.update_event.clear() self.rolling_event.set() self.coord = tf.train.Coordinator() def distributed_train(sess, env, args, actors, critics, noise, ave_n): # callbacks = [] # train_names = ['train_loss', 'train_mae'] # callback = TensorBoard(args['summary_dir']) for actor in actors: actor.update_target() for critic in critics: critic.update_target() worker_num = 4 global update_event, rolling_event update_event.clear() rolling_event.set() brain.actors = actors brain.critics = critics brain.ave_n = ave_n brain.env_n = env.n workers = [Worker(i, env.n, 200, 64, 1234+i, noise) for i in range(worker_num)] global_queue = queue.Queue() threads = [] for worker in workers: t = threading.Thread(target=worker.work, args=()) threads.append(t) threads.append(threading.Thread(target=brain.update, args=())) for t in threads: t.start() #time.sleep(0.2) # print("before worker") coord.join(threads) def saveModel(actor, i, pathToSave): actor.mainModel.save(pathToSave + str(i) + ".h5") def saveWeights(actor, i, pathToSave): actor.mainModel.save_weights(pathToSave + str(i) + "_weights.h5") def showReward(episode_reward, n, ep, start): reward_string = "" for re in episode_reward: reward_string += " {:5.2f} ".format(re) print ('|Episode: {:4d} | Time: {:2d} | Rewards: {:s}'.format(ep, int(time.time() - start), reward_string)) def showAveReward(wid, episode_reward, n, ep, start): reward_string = "" for re in episode_reward: reward_string += " {:5.2f} ".format(re / ep) global global_step print ('Global step: {:6.0f} | Worker: {:d} | Rewards: {:s}'.format(global_step, wid, reward_string)) def write_log(callback, names, logs, batch_no): for name, value in zip(names, logs): summary = tf.Summary() summary_value = summary.value.add() summary_value.simple_value = value summary_value.tag = name callback.writer.add_summary(summary, batch_no) callback.writer.flush() def main(args): if not os.path.exists(args["modelFolder"]): os.makedirs(args["modelFolder"]) if not os.path.exists(args["summary_dir"]): os.makedirs(args["summary_dir"]) #with tf.device("/gpu:0"): # MADDPG for Ave Agent # DDPG for Good Agent with tf.Session() as sess: env = make_env.make_env('simple_tag') np.random.seed(int(args['random_seed'])) tf.set_random_seed(int(args['random_seed'])) env.seed(int(args['random_seed'])) #with tf.device('/cpu:0'): #if args["runTest"]: #run() #import sys #sys.exit("test over!") # Calculate good and ave agents number ave_n = 0 good_n = 0 for i in env.agents: if i.adversary: ave_n += 1 else: good_n += 1 print("adversary ", ave_n, "target ", good_n) # print("ave_n", ave_n) n = env.n actors = [] critics = [] brains = [] exploration_noise = [] observation_dim = [] action_dim = [] total_action_dim = 0 # Aversary Agents action spaces for i in range(ave_n): total_action_dim = total_action_dim + env.action_space[i].n print("total_action_dim", total_action_dim) for i in range(n): observation_dim.append(env.observation_space[i].shape[0]) action_dim.append(env.action_space[i].n) # assuming discrete action space here -> otherwise change to something like env.action_space[i].shape[0] actors.append(ActorNetwork(sess,observation_dim[i],action_dim[i],float(args['actor_lr']),float(args['tau']))) # critics.append(CriticNetwork(sess,n,observation_dim[i],total_action_dim,float(args['critic_lr']),float(args['tau']),float(args['gamma']))) if i < ave_n: #MADDPG - centralized Critic critics.append(CriticNetwork(sess,n,observation_dim[i],total_action_dim,float(args['critic_lr']),float(args['tau']),float(args['gamma']))) else: # DDPG critics.append(CriticNetwork(sess,n,observation_dim[i],action_dim[i],float(args['critic_lr']),float(args['tau']),float(args['gamma']))) exploration_noise.append(OUNoise(mu = np.zeros(action_dim[i]))) """ print("Test predict") s = env.reset() # print(s[0]) actions = [] for index in range(len(actors)): state_input = np.reshape(s[index],(-1,actors[index].state_dim)) actions.append(actors[index].predict(state_input)) actors[index].predict_target(state_input) actions1 = actions[:ave_n] actions2 = actions[ave_n:] a_temp1 = np.transpose(np.asarray(actions1),(1,0,2)) a_for_critic1 = np.asarray([x.flatten() for x in a_temp1]) a_temp2 = np.transpose(np.asarray(actions2),(1,0,2)) a_for_critic2 = np.asarray([x.flatten() for x in a_temp2]) for index in range(len(critics)): state_input = np.reshape(s[index],(-1,actors[index].state_dim)) if index < ave_n: critics[index].predict_target(state_input, a_for_critic1) #critics[index].predict(state_input, a_for_critic1) else: critics[index].predict_target(state_input, a_for_critic2) #critics[index].predict(state_input, a_for_critic2) """ # if args['use_gym_monitor']: # if not args['render_env']: # envMonitor = wrappers.Monitor(env, args['monitor_dir'], video_callable=False, force=True) # else: # envMonitor = wrappers.Monitor(env, args['monitor_dir'], force=True) # n brains if False: for i in range(n): observation_dim.append(env.observation_space[i].shape[0]) action_dim.append(env.action_space[i].n) brains.apppen(Brain(sess, observation_dim[i], action_dim[i], float(args['actor_lr']), float(args['tau']), \ observation_dim[i], total_action_dim, float(args['critic_lr']), float(args['tau']),float(args['gamma']))) exploration_noise.append(OUNoise(mu = np.zeros(action_dim[i]))) # learn() if args["runTest"]: # , force=True # env = wrappers.Monitor(env, args["monitor_dir"], force=True) for i in range(n): # load model actors[i].mainModel.load_weights(args["modelFolder"]+str(i)+'_weights'+'.h5') # episode 4754 import time # time.sleep(3) for ep in range(10): s = env.reset() reward = 0.0 for step in range(200): time.sleep(0.01) env.render() actions = [] for i in range(env.n): state_input = np.reshape(s[i],(-1,env.observation_space[i].shape[0])) noise = OUNoise(mu = np.zeros(5)) # predict_action = actors[i].predict(state_input) #+ exploration_noise[i]() # actions.append(predict_action.reshape(env.action_space[i].n,)) # +noise() actions.append((actors[i].predict(np.reshape(s[i],(-1, actors[i].mainModel.input_shape[1])))).reshape(actors[i].mainModel.output_shape[1],)) #print("{}".format(actions)) s, r, d, s2 = env.step(actions) for i in range(env.n): reward += r[i] if np.all(d): break print("Episode: {:d} | Reward: {:f}".format(ep, reward)) env.close() import sys sys.exit("test over!") if False: import time # , force=True # env = wrappers.Monitor(env, args["monitor_dir"], force=True) for ep in range(10): # load model s = env.reset() for j in range(env.n): actors[j].mainModel.load_weights(args["modelFolder"]+ str(j) +'_weights'+'.h5') for step in range(300): reward = 0.0 # time.sleep(0.05) env.render() actions = [] for i in range(env.n): state_input = np.reshape(s[i],(-1,env.observation_space[i].shape[0])) noise = OUNoise(mu = np.zeros(5)) # predict_action = actors[i].predict(state_input) #+ exploration_noise[i]() # actions.append(predict_action.reshape(env.action_space[i].n,)) # +noise() actions.append((actors[i].predict(np.reshape(s[i],(-1, actors[i].mainModel.input_shape[1])))).reshape(actors[i].mainModel.output_shape[1],)) s, r, d, s2 = env.step(actions) for i in range(env.n): reward += r[i] if np.all(d): break print("Episode: {:d} | Reward: {:f}".format(ep, reward)) else: if True: train(sess,env,args,actors,critics,exploration_noise, ave_n) else: global graph, global_queue, update_event, rolling_event, global_step_max, global_step, coord, brain graph = tf.get_default_graph() global_queue = queue.Queue() update_event, rolling_event = threading.Event(), threading.Event() global_step_max, global_step = 200*1000, 0 coord = tf.train.Coordinator() brain = Brain(args["modelFolder"]) distributed_train(sess, env, args, actors, critics, exploration_noise, ave_n) #if args['use_gym_monitor']: # envMonitor.monitor.close() # Training stop def run(): env = make_env.make_env('simple_tag') n = env.n exploration_noise = [] actors = [] for i in range(n): # load model actors.append(load_model(args["modelFolder"] + str(i) + ".h5")) exploration_noise.append(OUNoise(mu = np.zeros(env.action_space[i].n))) # test for 100 episode noise = OUNoise(mu = np.zeros(5)) import time for ep in range(50): s = env.reset() #if ep == 0: #print([i.state.p_pos for i in env.world.borders]) reward = 0.0 for step in range(100): # time.sleep(0.05) env.render() actions = [] for i in range(env.n): state_input = np.reshape(s[i],(-1,env.observation_space[i].shape[0])) predict_action = actors[i].predict(state_input) #+ noise() actions.append(predict_action.reshape(env.action_space[i].n,)) s, r, d, s2 = env.step(actions) for i in range(env.n): reward += r[i] if np.all(d): break print("Episode: {:5.2f} | Reward: {:f}".format(ep, reward)) if __name__ == '__main__': parser = argparse.ArgumentParser(description='provide arguments for DDPG agent') # agent parameters parser.add_argument('--actor-lr', help='actor network learning rate', default=0.0001) parser.add_argument('--critic-lr', help='critic network learning rate', default=0.001) parser.add_argument('--gamma', help='discount factor for critic updates', default=0.99) parser.add_argument('--tau', help='soft target update parameter', default=0.01) parser.add_argument('--buffer-size', help='max size of the replay buffer', default=1000000) parser.add_argument('--minibatch-size', help='size of minibatch for minibatch-SGD', default=64) # run parameters #parser.add_argument('--env', help='choose the gym env- tested on {Pendulum-v0}', default='MountainCarContinuous-v0') parser.add_argument('--random-seed', help='random seed for repeatability', default=1234) parser.add_argument('--max-episodes', help='max num of episodes to do while training', default=10000) parser.add_argument('--max-episode-len', help='max length of 1 episode', default=200) parser.add_argument('--render-env', help='render the gym env', action='store_true') parser.add_argument('--use-gym-monitor', help='record gym results', action='store_true') parser.add_argument('--monitor-dir', help='directory for storing gym results', default='./results/videos/video1') parser.add_argument('--summary-dir', help='directory for storing tensorboard info', default='./results/3vs1_hard/tfdata/') parser.add_argument('--modelFolder', help='the folder which saved model data', default="./results/3vs1_hard/weights/") parser.add_argument('--runTest', help='use saved model to run', default=True) parser.set_defaults(render_env=False) parser.set_defaults(use_gym_monitor=False) args = vars(parser.parse_args()) #pp.pprint(args) ## Distributed main(args)
main.queue.py
from time import sleep import threading from storage_mysqldb import connect_db, create_table, insert_db from input_thread import getPatientInfo, readSensorData import alert_system import output import queue def getAllInfo(): while True: sleep(2) # get data PatientInfo = getPatientInfo() SensorData = readSensorData(PatientInfo) # putting data into queues. patientInfoQueue.put(PatientInfo) sensorDataQueue.put(SensorData) alertQueue.put(SensorData) def manageDatabase(): while True: PatientInfo = patientInfoQueue.get() SensorData = sensorDataQueue.get() # insert data from the queues to database. insert_db(db, PatientInfo, SensorData) print("Insert data successful") def alert(): while True: SensorData = alertQueue.get() # output alert messages alert_json = alert_system.alertCheck(SensorData) patient1 = output.patient() patient1.recieveFromAlert(alert_json) patient1.send_alert_to_UI() db = connect_db() create_table(db) # only use this for the first time patientInfoQueue = queue.Queue() sensorDataQueue = queue.Queue() alertQueue = queue.Queue() threadGetInfo = threading.Thread(target=getAllInfo) threadManageDatabase = threading.Thread(target=manageDatabase) threadAlert = threading.Thread(target=alert) threadGetInfo.start() threadManageDatabase.start() threadAlert.start()
load_test_client.py
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """A loadtest script which sends request via GRPC to TF inference server.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import base64 import io import json import threading import time import grpc import numpy as np from PIL import Image import queue as Queue from ratelimiter import RateLimiter import requests import tensorflow as tf from tensorflow_serving.apis import predict_pb2 from tensorflow_serving.apis import prediction_service_pb2_grpc tf.app.flags.DEFINE_integer('num_requests', 20, 'Total # of requests sent.') tf.app.flags.DEFINE_integer('qps', 4, 'Desired client side request QPS') tf.app.flags.DEFINE_float('request_timeout', 300.0, 'Timeout for inference request.') tf.app.flags.DEFINE_string('model_name', '', 'Name of the model being served on the ModelServer') tf.app.flags.DEFINE_string( 'tpu', '', 'Inference server ip address and port (grpc://<tpu_ip_address>:8470) or' 'the name of the Cloud TPU for Cluster Resolvers. If it is a tpu name, it' 'will be resolved to ip address and port. Otherwise, the provided (proxy)' 'ip address and port will be directly used.') tf.app.flags.DEFINE_boolean('grpc', True, 'True if gRPC, False if REST.') tf.app.flags.DEFINE_string('image_path', '', 'The path of local image.') tf.app.flags.DEFINE_string('input_name', 'input', 'The name of the model input tensor.') tf.app.flags.DEFINE_string('image_format', 'jpeg', 'The image format for generated image (png, jpeg)') tf.app.flags.DEFINE_integer('batch_size', 8, 'Per request batch size.') tf.app.flags.DEFINE_integer('image_size', 224, 'Height and width of the image (square image).') tf.app.flags.DEFINE_integer('channels', 3, 'Load image number of channels.') tf.app.flags.DEFINE_string( 'api_key', '', 'API Key for ESP service if authenticating external requests.') FLAGS = tf.app.flags.FLAGS class Worker(object): """A loadtest worker which sends RPC request.""" __slot__ = ('_id', '_request', '_stub', '_queue', '_success', '_start_time', '_end_time', '_qps', '_num_requests', '_metadata') def __init__(self, index, request, stub, queue, qps, num_requests, metadata): self._id = index self._request = request self._stub = stub self._queue = queue self._qps = qps self._num_requests = num_requests self._success = None self._start_time = None self._end_time = None self._metadata = metadata def start(self): """Start to send request.""" def _callback(resp_future): """Callback for aynchronous inference request sent.""" exception = resp_future.exception() if exception: self._success = False tf.logging.error(exception) else: self._success = True self._end_time = time.time() self._queue.get() self._queue.task_done() processed_count = self._num_requests - self._queue.qsize() if processed_count % self._qps == 0: tf.logging.info('received {} responses'.format(processed_count)) def _send_rpc(): self._start_time = time.time() resp_future = self._stub.Predict.future(self._request, FLAGS.request_timeout, metadata=self._metadata) resp_future.add_done_callback(_callback) _send_rpc() def cancel(self): self._rpc.StartCancel() @property def success_count(self): return int(self._success) @property def error_count(self): return int(not self._success) @property def latency(self): if not (self._start_time and self._end_time): raise Exception('Request is not complete yet.') return self._end_time - self._start_time def run_grpc_load_test(num_requests, qps, request, stub): """Loadtest the server gRPC endpoint with constant QPS. Args: num_requests: The total number of requests. qps: The number of requests being sent per second. request: The PredictRequest proto. stub: The model server stub to which send inference requests. """ metadata = [] if FLAGS.api_key: metadata.append(('x-api-key', FLAGS.api_key)) rate_limiter = RateLimiter(max_calls=qps, period=1) q = Queue.Queue() for i in range(num_requests): q.put(i) workers = [] start = time.time() for i in range(num_requests): worker = Worker(i, request, stub, q, qps, num_requests, metadata) workers.append(worker) if i % qps == 0: tf.logging.info('sent {} requests.'.format(i)) with rate_limiter: worker.start() # block until all workers are done q.join() acc_time = time.time() - start success_count = 0 error_count = 0 latency = [] for w in workers: success_count += w.success_count error_count += w.error_count latency.append(w.latency) tf.logging.info('num_qps:{} requests/second: {} #success:{} #error:{} ' 'latencies: [p50:{:.5f} p90:{:.5f} p99:{:.5f}]'.format( qps, num_requests / acc_time, success_count, error_count, np.percentile(latency, 50), np.percentile(latency, 90), np.percentile(latency, 99))) def generate_image(): array = np.uint8( np.random.rand(FLAGS.image_size, FLAGS.image_size, FLAGS.channels) * 255) pil_image = Image.fromarray(array) image_io = io.BytesIO() pil_image.save(image_io, format=FLAGS.image_format) return image_io.getvalue() def get_image_payload(): image = None if FLAGS.image_path: tf.logging.info('Building request with image: {}'.format(FLAGS.image_path)) image = open(FLAGS.image_path, 'rb').read() else: tf.logging.info('Generating fake image with shape=[{},{},{}]'.format( FLAGS.image_size, FLAGS.image_size, FLAGS.channels)) image = generate_image() return image def generate_grpc_request(): """Generate gRPC inference request with payload.""" request = predict_pb2.PredictRequest() request.model_spec.name = FLAGS.model_name request.model_spec.signature_name = 'serving_default' image = get_image_payload() request.inputs[FLAGS.input_name].CopyFrom( tf.contrib.util.make_tensor_proto( [image] * FLAGS.batch_size, shape=[FLAGS.batch_size])) return request def run_rest_load_test(num_requests, qps, server_ip, payload): """Run inference load test against REST endpoint.""" address = 'http://{}/v1/models/{}:predict'.format(server_ip, FLAGS.model_name) # List appends are thread safe success = [] error = [] latency = [] def _make_rest_call(): """Send REST POST request to Tensorflow Serving endpoint.""" start_time = time.time() resp = requests.post(address, data=payload) latency.append(time.time() - start_time) if len(latency) % qps == 0: tf.logging.info('received {} responses.'.format(len(latency))) if resp.status_code == 200: success.append(1) else: tf.logging.error(resp.json()) error.append(1) resp.close() rate_limiter = RateLimiter(max_calls=qps, period=1) start_time = time.time() thread_lst = [] for i in range(num_requests): with rate_limiter: thread = threading.Thread(target=_make_rest_call) thread_lst.append(thread) thread.start() if i % qps == 0: tf.logging.info('sent {} requests.'.format(i)) for thread in thread_lst: thread.join() acc_time = time.time() - start_time tf.logging.info('num_qps:{} requests/second: {} #success:{} #error:{} ' 'latencies: [p50:{:.5f} p90:{:.5f} p99:{:.5f}]'.format( qps, num_requests / acc_time, sum(success), sum(error), np.percentile(latency, 50), np.percentile(latency, 90), np.percentile(latency, 99))) def generate_rest_payload(): """Generate REST inference request's payload.""" encoded_image = base64.encodestring(get_image_payload()) inputs = [{'b64': encoded_image}] * FLAGS.batch_size payload = json.dumps({ 'signature_name': 'serving_default', 'inputs': inputs, }) return payload def main(argv): del argv tpu_address = FLAGS.tpu if not any(pref in FLAGS.tpu for pref in ['http://', 'grpc://']): tpu_address = tf.contrib.cluster_resolver.TPUClusterResolver( FLAGS.tpu).master() tpu_address = '{}:{}'.format(tpu_address[:-len(':1234')], '8470' if FLAGS.grpc else '8473') tpu_address = tpu_address[len('abcd://'):] tf.logging.info('ModelServer at: {}'.format(tpu_address)) if FLAGS.grpc: grpc_channel = grpc.insecure_channel(tpu_address) stub = prediction_service_pb2_grpc.PredictionServiceStub(grpc_channel) run_grpc_load_test(FLAGS.num_requests, FLAGS.qps, generate_grpc_request(), stub) else: payload = generate_rest_payload() run_rest_load_test(FLAGS.num_requests, FLAGS.qps, tpu_address, payload) if __name__ == '__main__': tf.logging.set_verbosity(tf.logging.INFO) tf.app.run(main)
gps3threaded.py
#!/usr/bin/env python3.5 # coding=utf-8 """Threaded gps3 client""" from __future__ import print_function from threading import Thread from time import sleep try: # This kludge to get around imports with files and directories the same name. import gps3 # Python 3 except ImportError: from . import gps3 # Python 2 __author__ = 'Moe' __copyright__ = 'Copyright 2016 Moe' __license__ = 'MIT' __version__ = '0.2.3' HOST = '127.0.0.1' # gpsd GPSD_PORT = 2947 # defaults PROTOCOL = 'json' # " class GPS3mechanism(object): """Create threaded data stream as updated object attributes """ def __init__(self): self.socket = gps3.GPSDSocket() self.data_stream = gps3.DataStream() def stream_data(self, host=HOST, port=GPSD_PORT, enable=True, gpsd_protocol=PROTOCOL, devicepath=None): """ Connect and command, point and shoot, flail and bail """ self.socket.connect(host, port) self.socket.watch(enable, gpsd_protocol, devicepath) def unpack_data(self, usnap=.2): # 2/10th second sleep between empty requests """ Iterates over socket response and unpacks values of object attributes. Sleeping here has the greatest response to cpu cycles short of blocking sockets """ for new_data in self.socket: if new_data: self.data_stream.unpack(new_data) else: sleep(usnap) # Sleep in seconds after an empty look up. def run_thread(self, usnap=.2, daemon=True): """run thread with data """ # self.stream_data() # Unless other changes are made this would limit to localhost only. try: gps3_data_thread = Thread(target=self.unpack_data, args={usnap: usnap}, daemon=daemon) except TypeError: # threading.Thread() only accepts daemon argument in Python 3.3 gps3_data_thread = Thread(target=self.unpack_data, args={usnap: usnap}) gps3_data_thread.setDaemon(daemon) gps3_data_thread.start() def stop(self): """ Stop as much as possible, as gracefully as possible, if possible. """ self.stream_data(enable=False) # Stop data stream, thread is on its own so far. print('Process stopped by user') print('Good bye.') # You haven't gone anywhere, re-start it all with 'self.stream_data()' if __name__ == '__main__': from misc import add_args args = add_args() gps3_thread = GPS3mechanism() # The thread triumvirate gps3_thread.stream_data(host=args.host, port=args.port, gpsd_protocol=args.gpsd_protocol) gps3_thread.run_thread(usnap=.2) # Throttle sleep between empty lookups in seconds defaults = 0.2 of a second. seconds_nap = int(args.seconds_nap) # Threaded Demo loop 'seconds_nap' is not the same as 'usnap' while True: for nod in range(0, seconds_nap): print('{:.0%} wait period of {} seconds'.format(nod / seconds_nap, seconds_nap), end='\r') sleep(1) print('\nGPS3 Thread still functioning at {}'.format(gps3_thread.data_stream.TPV['time'])) print('Lat:{} Lon:{} Speed:{} Course:{}\n'.format(gps3_thread.data_stream.TPV['lat'], gps3_thread.data_stream.TPV['lon'], gps3_thread.data_stream.TPV['speed'], gps3_thread.data_stream.TPV['track'])) # ###### # END
app.py
from flask import Flask, render_template, request, redirect, url_for, jsonify from dataclasses import dataclass from flask_sqlalchemy import SQLAlchemy import pyperclip import psutil import time import json from datetime import datetime from multiprocessing import Process, Value from hashlib import sha256 import signal import sys app = Flask(__name__) app.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite:///clippy.db' db = SQLAlchemy(app) @dataclass class ClipboardItem(db.Model): id: int text: str length: int location: str date: str id = db.Column(db.Integer, primary_key=True) text = db.Column(db.String(9999), nullable=False) length = db.Column(db.Integer, nullable=False) location = db.Column(db.String(2083)) date = db.Column(db.DateTime, nullable=False, default=datetime.now()) def get_hash(text): return sha256(text.encode('utf-8')).hexdigest() def listen(text): while True: check = pyperclip.paste().strip() if check != text: text = check print("Copying Text...") add(text) time.sleep(0.5) @app.route('/') def index(): # items = ClipboardItem.query.all() items = ClipboardItem.query.order_by(ClipboardItem.date.desc()).all() # json_items = jsonify(items) return render_template('index.html', items=items) # json_data = jsonify(items) # return jsonify(json_data.get_data(as_text=True)) @app.route('/json') def post_json(): # items = ClipboardItem.query.all() items = ClipboardItem.query.order_by(ClipboardItem.date.desc()).all() return jsonify(items) def add(text): for _ in db.session.execute("SELECT * FROM clipboard_item WHERE text =:text", {"text":text }): # db.session.execute("DELETE FROM clipboard_item WHERE text =:text", {"text":text }) print("Action Blocked: Entry Exists...") break else: print('Inserting Entry...') dummy = ClipboardItem(text=text, length=len(text), location="null", date=datetime.now()) db.session.add(dummy) db.session.commit() # dummy = ClipboardItem(text=text, length=len(text), location="null", date=datetime.now()) # db.session.add(dummy) # db.session.commit() @app.route('/deleteAll', methods=['POST']) def removeAll(): print("Deleting All Entries...") db.session.execute('DELETE FROM clipboard_item') db.session.commit() return redirect(url_for('index')) @app.route('/itemAction', methods=['POST']) def item_actions(): if request.method == "POST": # I. Delete Individual Item if request.form.get('action') and request.form.get('action')[:10] == 'deleteitem': print("Deleting Entry ID {} ...".format(request.form.get('action')[10:])) db.session.execute("DELETE FROM clipboard_item where id =:id", {"id":int(request.form.get('action')[10:]) }) # II. Delete Selected Items elif request.form.getlist("copy_id"): print("Deleting Selected Entries...") print(request.form.getlist("copy_id")) ClipboardItem.query.filter(ClipboardItem.id.in_(request.form.getlist("copy_id"))).delete(synchronize_session=False) db.session.commit() return redirect(url_for('index')) @app.route('/toggle') def toggle_listen(): if p.status() == "stopped": print("Resuming Listen...") p.resume() else: print("Pausing Listen...") p.suspend() return redirect(url_for('index')) def signal_handler(sig, frame): print("Closing Application...") if p and p.status() == "stopped": p.resume() sys.exit(0) if __name__ == "__main__": listener = Process(target=listen, args=(pyperclip.paste().strip(),)) listener.start() signal.signal(signal.SIGINT, signal_handler) p = psutil.Process(listener.pid) app.run(debug=True, use_reloader=False) listener.join()
mainwindow.py
# -*- coding: utf-8 -*- # # Copyright © Spyder Project Contributors # Licensed under the terms of the MIT License # (see spyder/__init__.py for details) """ Spyder, the Scientific Python Development Environment ===================================================== Developped and maintained by the Spyder Project Contributors Copyright © Spyder Project Contributors Licensed under the terms of the MIT License (see spyder/__init__.py for details) """ # ============================================================================= # Stdlib imports # ============================================================================= from __future__ import print_function import errno import gc import logging import os import os.path as osp import re import signal import socket import subprocess import sys import threading import traceback import importlib logger = logging.getLogger(__name__) #============================================================================== # Keeping a reference to the original sys.exit before patching it #============================================================================== ORIGINAL_SYS_EXIT = sys.exit #============================================================================== # Check requirements #============================================================================== from spyder import requirements requirements.check_path() requirements.check_qt() requirements.check_spyder_kernels() #============================================================================== # Windows only: support for hiding console window when started with python.exe #============================================================================== set_attached_console_visible = None is_attached_console_visible = None set_windows_appusermodelid = None if os.name == 'nt': from spyder.utils.windows import (set_attached_console_visible, is_attached_console_visible, set_windows_appusermodelid) #============================================================================== # Qt imports #============================================================================== from qtpy import API, PYQT5 from qtpy.compat import from_qvariant from qtpy.QtCore import (QByteArray, QCoreApplication, QPoint, QSize, Qt, QThread, QTimer, QUrl, Signal, Slot, qInstallMessageHandler) from qtpy.QtGui import QColor, QDesktopServices, QIcon, QKeySequence, QPixmap from qtpy.QtWidgets import (QAction, QApplication, QDockWidget, QMainWindow, QMenu, QMessageBox, QShortcut, QSplashScreen, QStyleFactory, QWidget, QDesktopWidget) # Avoid a "Cannot mix incompatible Qt library" error on Windows platforms from qtpy import QtSvg # analysis:ignore # Avoid a bug in Qt: https://bugreports.qt.io/browse/QTBUG-46720 from qtpy import QtWebEngineWidgets # analysis:ignore # For issue 7447 try: from qtpy.QtQuick import QQuickWindow, QSGRendererInterface except Exception: QQuickWindow = QSGRendererInterface = None # To catch font errors in QtAwesome from qtawesome.iconic_font import FontError #============================================================================== # Proper high DPI scaling is available in Qt >= 5.6.0. This attibute must # be set before creating the application. #============================================================================== from spyder.config.main import CONF if hasattr(Qt, 'AA_EnableHighDpiScaling'): QCoreApplication.setAttribute(Qt.AA_EnableHighDpiScaling, CONF.get('main', 'high_dpi_scaling')) #============================================================================== # Create our QApplication instance here because it's needed to render the # splash screen created below #============================================================================== from spyder.utils.qthelpers import qapplication, MENU_SEPARATOR from spyder.config.base import get_image_path MAIN_APP = qapplication() if PYQT5: APP_ICON = QIcon(get_image_path("spyder.svg")) else: APP_ICON = QIcon(get_image_path("spyder.png")) MAIN_APP.setWindowIcon(APP_ICON) #============================================================================== # Create splash screen out of MainWindow to reduce perceived startup time. #============================================================================== from spyder.config.base import _, get_image_path, DEV, running_under_pytest if not running_under_pytest(): SPLASH = QSplashScreen(QPixmap(get_image_path('splash.svg'))) SPLASH_FONT = SPLASH.font() SPLASH_FONT.setPixelSize(10) SPLASH.setFont(SPLASH_FONT) SPLASH.show() SPLASH.showMessage(_("Initializing..."), Qt.AlignBottom | Qt.AlignCenter | Qt.AlignAbsolute, QColor(Qt.white)) QApplication.processEvents() else: SPLASH = None #============================================================================== # Local utility imports #============================================================================== from spyder import (__version__, __project_url__, __forum_url__, __trouble_url__, __website_url__, get_versions) from spyder.config.base import (get_conf_path, get_module_source_path, STDERR, get_debug_level, MAC_APP_NAME, get_home_dir, running_in_mac_app, get_module_path, reset_config_files) from spyder.config.main import OPEN_FILES_PORT from spyder.config.utils import IMPORT_EXT, is_gtk_desktop from spyder.app.cli_options import get_options from spyder import dependencies from spyder.py3compat import (is_text_string, to_text_string, PY3, qbytearray_to_str, configparser as cp) from spyder.utils import encoding, programs from spyder.utils import icon_manager as ima from spyder.utils.programs import is_module_installed from spyder.utils.misc import select_port, getcwd_or_home, get_python_executable from spyder.plugins.help.utils.sphinxify import CSS_PATH, DARK_CSS_PATH from spyder.config.gui import is_dark_font_color #============================================================================== # Local gui imports #============================================================================== # NOTE: Move (if possible) import's of widgets and plugins exactly where they # are needed in MainWindow to speed up perceived startup time (i.e. the time # from clicking the Spyder icon to showing the splash screen). try: from spyder.utils.environ import WinUserEnvDialog except ImportError: WinUserEnvDialog = None # analysis:ignore from spyder.utils.qthelpers import (create_action, add_actions, get_icon, add_shortcut_to_tooltip, create_module_bookmark_actions, create_program_action, DialogManager, create_python_script_action, file_uri) from spyder.config.gui import get_shortcut from spyder.otherplugins import get_spyderplugins_mods from spyder.app import tour #============================================================================== # Third-party library imports #============================================================================== import qdarkstyle #============================================================================== # Get the cwd before initializing WorkingDirectory, which sets it to the one # used in the last session #============================================================================== CWD = getcwd_or_home() #============================================================================== # Utility functions #============================================================================== def get_python_doc_path(): """ Return Python documentation path (Windows: return the PythonXX.chm path if available) """ if os.name == 'nt': doc_path = osp.join(sys.prefix, "Doc") if not osp.isdir(doc_path): return python_chm = [path for path in os.listdir(doc_path) if re.match(r"(?i)Python[0-9]{3,6}.chm", path)] if python_chm: return file_uri(osp.join(doc_path, python_chm[0])) else: vinf = sys.version_info doc_path = '/usr/share/doc/python%d.%d/html' % (vinf[0], vinf[1]) python_doc = osp.join(doc_path, "index.html") if osp.isfile(python_doc): return file_uri(python_doc) def set_opengl_implementation(option): """ Set the OpenGL implementation used by Spyder. See issue 7447 for the details. """ if option == 'software': QCoreApplication.setAttribute(Qt.AA_UseSoftwareOpenGL) if QQuickWindow is not None: QQuickWindow.setSceneGraphBackend(QSGRendererInterface.Software) elif option == 'desktop': QCoreApplication.setAttribute(Qt.AA_UseDesktopOpenGL) if QQuickWindow is not None: QQuickWindow.setSceneGraphBackend(QSGRendererInterface.OpenGL) elif option == 'gles': QCoreApplication.setAttribute(Qt.AA_UseOpenGLES) if QQuickWindow is not None: QQuickWindow.setSceneGraphBackend(QSGRendererInterface.OpenGL) def setup_logging(cli_options): """Setup logging with cli options defined by the user.""" if cli_options.debug_info or get_debug_level() > 0: levels = {2: logging.INFO, 3: logging.DEBUG} log_level = levels[get_debug_level()] log_format = '%(asctime)s [%(levelname)s] [%(name)s] -> %(message)s' if cli_options.debug_output == 'file': log_file = 'spyder-debug.log' else: log_file = None logging.basicConfig(level=log_level, format=log_format, filename=log_file, filemode='w+') def qt_message_handler(msg_type, msg_log_context, msg_string): """ Qt warning messages are intercepted by this handler. On some operating systems, warning messages might be displayed even if the actual message does not apply. This filter adds a blacklist for messages that are being printed for no apparent reason. Anything else will get printed in the internal console. In DEV mode, all messages are printed. """ BLACKLIST = [ 'QMainWidget::resizeDocks: all sizes need to be larger than 0', ] if DEV or msg_string not in BLACKLIST: print(msg_string) # spyder: test-skip qInstallMessageHandler(qt_message_handler) # ============================================================================= # Dependencies # ============================================================================= QDARKSTYLE_REQVER = '>=2.6.4' dependencies.add("qdarkstyle", _("Dark style for the entire interface"), required_version=QDARKSTYLE_REQVER) #============================================================================== # Main Window #============================================================================== class MainWindow(QMainWindow): """Spyder main window""" DOCKOPTIONS = QMainWindow.AllowTabbedDocks|QMainWindow.AllowNestedDocks CURSORBLINK_OSDEFAULT = QApplication.cursorFlashTime() SPYDER_PATH = get_conf_path('path') SPYDER_NOT_ACTIVE_PATH = get_conf_path('not_active_path') BOOKMARKS = ( ('Python2', "https://docs.python.org/2/index.html", _("Python2 documentation")), ('Python3', "https://docs.python.org/3/index.html", _("Python3 documentation")), ('numpy', "https://docs.scipy.org/doc/", _("Numpy and Scipy documentation")), ('matplotlib', "https://matplotlib.org/contents.html", _("Matplotlib documentation")), ('PyQt5', "http://pyqt.sourceforge.net/Docs/PyQt5/", _("PyQt5 Reference Guide")), ('PyQt5', "http://pyqt.sourceforge.net/Docs/PyQt5/class_reference.html", _("PyQt5 API Reference")), ('winpython', "https://winpython.github.io/", _("WinPython")) ) DEFAULT_LAYOUTS = 4 # Signals restore_scrollbar_position = Signal() all_actions_defined = Signal() sig_pythonpath_changed = Signal() sig_open_external_file = Signal(str) sig_resized = Signal("QResizeEvent") # Related to interactive tour sig_moved = Signal("QMoveEvent") # Related to interactive tour sig_layout_setup_ready = Signal(object) # Related to default layouts def __init__(self, options=None): QMainWindow.__init__(self) qapp = QApplication.instance() if PYQT5: # Enabling scaling for high dpi qapp.setAttribute(Qt.AA_UseHighDpiPixmaps) self.default_style = str(qapp.style().objectName()) self.dialog_manager = DialogManager() self.init_workdir = options.working_directory self.profile = options.profile self.multithreaded = options.multithreaded self.new_instance = options.new_instance self.open_project = options.project self.window_title = options.window_title logger.info("Start of MainWindow constructor") def signal_handler(signum, frame=None): """Handler for signals.""" sys.stdout.write('Handling signal: %s\n' % signum) sys.stdout.flush() QApplication.quit() if os.name == "nt": try: import win32api win32api.SetConsoleCtrlHandler(signal_handler, True) except ImportError: pass else: signal.signal(signal.SIGTERM, signal_handler) if not DEV: # Make spyder quit when presing ctrl+C in the console # In DEV Ctrl+C doesn't quit, because it helps to # capture the traceback when spyder freezes signal.signal(signal.SIGINT, signal_handler) # Use a custom Qt stylesheet if sys.platform == 'darwin': spy_path = get_module_source_path('spyder') img_path = osp.join(spy_path, 'images') mac_style = open(osp.join(spy_path, 'app', 'mac_stylesheet.qss')).read() mac_style = mac_style.replace('$IMAGE_PATH', img_path) self.setStyleSheet(mac_style) # Shortcut management data self.shortcut_data = [] # Loading Spyder path self.path = [] self.not_active_path = [] self.project_path = [] if osp.isfile(self.SPYDER_PATH): self.path, _x = encoding.readlines(self.SPYDER_PATH) self.path = [name for name in self.path if osp.isdir(name)] if osp.isfile(self.SPYDER_NOT_ACTIVE_PATH): self.not_active_path, _x = \ encoding.readlines(self.SPYDER_NOT_ACTIVE_PATH) self.not_active_path = \ [name for name in self.not_active_path if osp.isdir(name)] self.remove_path_from_sys_path() self.add_path_to_sys_path() # Plugins self.console = None self.workingdirectory = None self.editor = None self.explorer = None self.help = None self.onlinehelp = None self.projects = None self.outlineexplorer = None self.historylog = None self.ipyconsole = None self.variableexplorer = None self.plots = None self.findinfiles = None self.thirdparty_plugins = [] # Tour # TODO: Should I consider it a plugin?? or? self.tour = None self.tours_available = None # File switcher self.fileswitcher = None # Check for updates Thread and Worker, refereces needed to prevent # segfaulting self.check_updates_action = None self.thread_updates = None self.worker_updates = None self.give_updates_feedback = True # Preferences from spyder.preferences.appearance import AppearanceConfigPage from spyder.preferences.general import MainConfigPage from spyder.preferences.shortcuts import ShortcutsConfigPage from spyder.preferences.runconfig import RunConfigPage from spyder.preferences.maininterpreter import MainInterpreterConfigPage from spyder.preferences.languageserver import LSPManagerConfigPage self.general_prefs = [MainConfigPage, AppearanceConfigPage, ShortcutsConfigPage, MainInterpreterConfigPage, RunConfigPage, LSPManagerConfigPage] self.prefs_index = None self.prefs_dialog_size = None # Quick Layouts and Dialogs from spyder.preferences.layoutdialog import (LayoutSaveDialog, LayoutSettingsDialog) self.dialog_layout_save = LayoutSaveDialog self.dialog_layout_settings = LayoutSettingsDialog # Actions self.lock_interface_action = None self.show_toolbars_action = None self.close_dockwidget_action = None self.undo_action = None self.redo_action = None self.copy_action = None self.cut_action = None self.paste_action = None self.selectall_action = None self.maximize_action = None self.fullscreen_action = None # Menu bars self.file_menu = None self.file_menu_actions = [] self.edit_menu = None self.edit_menu_actions = [] self.search_menu = None self.search_menu_actions = [] self.source_menu = None self.source_menu_actions = [] self.run_menu = None self.run_menu_actions = [] self.debug_menu = None self.debug_menu_actions = [] self.consoles_menu = None self.consoles_menu_actions = [] self.projects_menu = None self.projects_menu_actions = [] self.tools_menu = None self.tools_menu_actions = [] self.external_tools_menu = None # We must keep a reference to this, # otherwise the external tools menu is lost after leaving setup method self.external_tools_menu_actions = [] self.view_menu = None self.plugins_menu = None self.plugins_menu_actions = [] self.toolbars_menu = None self.help_menu = None self.help_menu_actions = [] # Status bar widgets self.mem_status = None self.cpu_status = None # Toolbars self.visible_toolbars = [] self.toolbarslist = [] self.main_toolbar = None self.main_toolbar_actions = [] self.file_toolbar = None self.file_toolbar_actions = [] self.edit_toolbar = None self.edit_toolbar_actions = [] self.search_toolbar = None self.search_toolbar_actions = [] self.source_toolbar = None self.source_toolbar_actions = [] self.run_toolbar = None self.run_toolbar_actions = [] self.debug_toolbar = None self.debug_toolbar_actions = [] self.layout_toolbar = None self.layout_toolbar_actions = [] if running_under_pytest(): # Show errors in internal console when testing. CONF.set('main', 'show_internal_errors', False) # Set window title self.set_window_title() if set_windows_appusermodelid != None: res = set_windows_appusermodelid() logger.info("appusermodelid: %s", res) # Setting QTimer if running in travis test_travis = os.environ.get('TEST_CI_APP', None) if test_travis is not None: global MAIN_APP timer_shutdown_time = 30000 self.timer_shutdown = QTimer(self) self.timer_shutdown.timeout.connect(MAIN_APP.quit) self.timer_shutdown.start(timer_shutdown_time) # Showing splash screen self.splash = SPLASH if CONF.get('main', 'current_version', '') != __version__: CONF.set('main', 'current_version', __version__) # Execute here the actions to be performed only once after # each update (there is nothing there for now, but it could # be useful some day...) # List of satellite widgets (registered in add_dockwidget): self.widgetlist = [] # Flags used if closing() is called by the exit() shell command self.already_closed = False self.is_starting_up = True self.is_setting_up = True self.interface_locked = CONF.get('main', 'panes_locked') self.floating_dockwidgets = [] self.window_size = None self.window_position = None self.state_before_maximizing = None self.current_quick_layout = None self.previous_layout_settings = None # TODO: related to quick layouts self.last_plugin = None self.fullscreen_flag = None # isFullscreen does not work as expected # The following flag remember the maximized state even when # the window is in fullscreen mode: self.maximized_flag = None # The following flag is used to restore window's geometry when # toggling out of fullscreen mode in Windows. self.saved_normal_geometry = None # To keep track of the last focused widget self.last_focused_widget = None self.previous_focused_widget = None # Server to open external files on a single instance # This is needed in order to handle socket creation problems. # See issue 4132 if os.name == 'nt': try: self.open_files_server = socket.socket(socket.AF_INET, socket.SOCK_STREAM, socket.IPPROTO_TCP) except OSError as e: self.open_files_server = None QMessageBox.warning(None, "Spyder", _("An error occurred while creating a socket needed " "by Spyder. Please, try to run as an Administrator " "from cmd.exe the following command and then " "restart your computer: <br><br><span " "style=\'color: #555555\'><b>netsh winsock reset" "</b></span><br>")) else: self.open_files_server = socket.socket(socket.AF_INET, socket.SOCK_STREAM, socket.IPPROTO_TCP) # Apply preferences self.apply_settings() # To set all dockwidgets tabs to be on top (in case we want to do it # in the future) # self.setTabPosition(Qt.AllDockWidgetAreas, QTabWidget.North) logger.info("End of MainWindow constructor") #---- Window setup def create_toolbar(self, title, object_name, iconsize=24): """Create and return toolbar with *title* and *object_name*""" toolbar = self.addToolBar(title) toolbar.setObjectName(object_name) toolbar.setIconSize(QSize(iconsize, iconsize)) self.toolbarslist.append(toolbar) return toolbar def setup(self): """Setup main window""" logger.info("*** Start of MainWindow setup ***") logger.info("Applying theme configuration...") ui_theme = CONF.get('appearance', 'ui_theme') color_scheme = CONF.get('appearance', 'selected') if ui_theme == 'dark': dark_qss = qdarkstyle.load_stylesheet_from_environment() self.setStyleSheet(dark_qss) self.statusBar().setStyleSheet(dark_qss) css_path = DARK_CSS_PATH elif ui_theme == 'automatic': if not is_dark_font_color(color_scheme): dark_qss = qdarkstyle.load_stylesheet_from_environment() self.setStyleSheet(dark_qss) self.statusBar().setStyleSheet(dark_qss) css_path = DARK_CSS_PATH else: css_path = CSS_PATH else: css_path = CSS_PATH logger.info("Creating core actions...") self.close_dockwidget_action = create_action( self, icon=ima.icon('close_pane'), text=_("Close current pane"), triggered=self.close_current_dockwidget, context=Qt.ApplicationShortcut ) self.register_shortcut(self.close_dockwidget_action, "_", "Close pane") self.lock_interface_action = create_action( self, _("Lock panes and toolbars"), toggled=self.toggle_lock, context=Qt.ApplicationShortcut) self.register_shortcut(self.lock_interface_action, "_", "Lock unlock panes") # custom layouts shortcuts self.toggle_next_layout_action = create_action(self, _("Use next layout"), triggered=self.toggle_next_layout, context=Qt.ApplicationShortcut) self.toggle_previous_layout_action = create_action(self, _("Use previous layout"), triggered=self.toggle_previous_layout, context=Qt.ApplicationShortcut) self.register_shortcut(self.toggle_next_layout_action, "_", "Use next layout") self.register_shortcut(self.toggle_previous_layout_action, "_", "Use previous layout") # File switcher shortcuts self.file_switcher_action = create_action( self, _('File switcher...'), icon=ima.icon('filelist'), tip=_('Fast switch between files'), triggered=self.open_fileswitcher, context=Qt.ApplicationShortcut) self.register_shortcut(self.file_switcher_action, context="_", name="File switcher") self.symbol_finder_action = create_action( self, _('Symbol finder...'), icon=ima.icon('symbol_find'), tip=_('Fast symbol search in file'), triggered=self.open_symbolfinder, context=Qt.ApplicationShortcut) self.register_shortcut(self.symbol_finder_action, context="_", name="symbol finder", add_sc_to_tip=True) self.file_toolbar_actions = [self.file_switcher_action, self.symbol_finder_action] def create_edit_action(text, tr_text, icon): textseq = text.split(' ') method_name = textseq[0].lower()+"".join(textseq[1:]) action = create_action(self, tr_text, icon=icon, triggered=self.global_callback, data=method_name, context=Qt.WidgetShortcut) self.register_shortcut(action, "Editor", text) return action self.undo_action = create_edit_action('Undo', _('Undo'), ima.icon('undo')) self.redo_action = create_edit_action('Redo', _('Redo'), ima.icon('redo')) self.copy_action = create_edit_action('Copy', _('Copy'), ima.icon('editcopy')) self.cut_action = create_edit_action('Cut', _('Cut'), ima.icon('editcut')) self.paste_action = create_edit_action('Paste', _('Paste'), ima.icon('editpaste')) self.selectall_action = create_edit_action("Select All", _("Select All"), ima.icon('selectall')) self.edit_menu_actions = [self.undo_action, self.redo_action, None, self.cut_action, self.copy_action, self.paste_action, self.selectall_action] namespace = None logger.info("Creating toolbars...") # File menu/toolbar self.file_menu = self.menuBar().addMenu(_("&File")) self.file_toolbar = self.create_toolbar(_("File toolbar"), "file_toolbar") # Edit menu/toolbar self.edit_menu = self.menuBar().addMenu(_("&Edit")) self.edit_toolbar = self.create_toolbar(_("Edit toolbar"), "edit_toolbar") # Search menu/toolbar self.search_menu = self.menuBar().addMenu(_("&Search")) self.search_toolbar = self.create_toolbar(_("Search toolbar"), "search_toolbar") # Source menu/toolbar self.source_menu = self.menuBar().addMenu(_("Sour&ce")) self.source_toolbar = self.create_toolbar(_("Source toolbar"), "source_toolbar") # Run menu/toolbar self.run_menu = self.menuBar().addMenu(_("&Run")) self.run_toolbar = self.create_toolbar(_("Run toolbar"), "run_toolbar") # Debug menu/toolbar self.debug_menu = self.menuBar().addMenu(_("&Debug")) self.debug_toolbar = self.create_toolbar(_("Debug toolbar"), "debug_toolbar") # Consoles menu/toolbar self.consoles_menu = self.menuBar().addMenu(_("C&onsoles")) self.consoles_menu.aboutToShow.connect( self.update_execution_state_kernel) # Projects menu self.projects_menu = self.menuBar().addMenu(_("&Projects")) self.projects_menu.aboutToShow.connect(self.valid_project) # Tools menu self.tools_menu = self.menuBar().addMenu(_("&Tools")) # View menu self.view_menu = self.menuBar().addMenu(_("&View")) # Help menu self.help_menu = self.menuBar().addMenu(_("&Help")) # Status bar status = self.statusBar() status.setObjectName("StatusBar") status.showMessage(_("Welcome to Spyder!"), 5000) logger.info("Creating Tools menu...") # Tools + External Tools prefs_action = create_action(self, _("Pre&ferences"), icon=ima.icon('configure'), triggered=self.edit_preferences, context=Qt.ApplicationShortcut) self.register_shortcut(prefs_action, "_", "Preferences", add_sc_to_tip=True) spyder_path_action = create_action(self, _("PYTHONPATH manager"), None, icon=ima.icon('pythonpath'), triggered=self.path_manager_callback, tip=_("Python Path Manager"), menurole=QAction.ApplicationSpecificRole) reset_spyder_action = create_action( self, _("Reset Spyder to factory defaults"), triggered=self.reset_spyder) self.tools_menu_actions = [prefs_action, spyder_path_action] if WinUserEnvDialog is not None: winenv_action = create_action(self, _("Current user environment variables..."), icon='win_env.png', tip=_("Show and edit current user environment " "variables in Windows registry " "(i.e. for all sessions)"), triggered=self.win_env) self.tools_menu_actions.append(winenv_action) self.tools_menu_actions += [MENU_SEPARATOR, reset_spyder_action] # External Tools submenu self.external_tools_menu = QMenu(_("External Tools")) self.external_tools_menu_actions = [] # WinPython control panel self.wp_action = create_action(self, _("WinPython control panel"), icon=get_icon('winpython.svg'), triggered=lambda: programs.run_python_script('winpython', 'controlpanel')) if os.name == 'nt' and is_module_installed('winpython'): self.external_tools_menu_actions.append(self.wp_action) # Qt-related tools additact = [] for name in ("designer-qt4", "designer"): qtdact = create_program_action(self, _("Qt Designer"), name) if qtdact: break for name in ("linguist-qt4", "linguist"): qtlact = create_program_action(self, _("Qt Linguist"), "linguist") if qtlact: break args = ['-no-opengl'] if os.name == 'nt' else [] for act in (qtdact, qtlact): if act: additact.append(act) if additact and is_module_installed('winpython'): self.external_tools_menu_actions += [None] + additact # Guidata and Sift logger.info("Creating guidata and sift entries...") gdgq_act = [] # Guidata and Guiqwt don't support PyQt5 yet and they fail # with an AssertionError when imported using those bindings # (see issue 2274) try: from guidata import configtools from guidata import config # analysis:ignore guidata_icon = configtools.get_icon('guidata.svg') guidata_act = create_python_script_action(self, _("guidata examples"), guidata_icon, "guidata", osp.join("tests", "__init__")) gdgq_act += [guidata_act] except: pass try: from guidata import configtools from guiqwt import config # analysis:ignore guiqwt_icon = configtools.get_icon('guiqwt.svg') guiqwt_act = create_python_script_action(self, _("guiqwt examples"), guiqwt_icon, "guiqwt", osp.join("tests", "__init__")) if guiqwt_act: gdgq_act += [guiqwt_act] sift_icon = configtools.get_icon('sift.svg') sift_act = create_python_script_action(self, _("Sift"), sift_icon, "guiqwt", osp.join("tests", "sift")) if sift_act: gdgq_act += [sift_act] except: pass if gdgq_act: self.external_tools_menu_actions += [None] + gdgq_act # Maximize current plugin self.maximize_action = create_action(self, '', triggered=self.maximize_dockwidget, context=Qt.ApplicationShortcut) self.register_shortcut(self.maximize_action, "_", "Maximize pane") self.__update_maximize_action() # Fullscreen mode self.fullscreen_action = create_action(self, _("Fullscreen mode"), triggered=self.toggle_fullscreen, context=Qt.ApplicationShortcut) self.register_shortcut(self.fullscreen_action, "_", "Fullscreen mode", add_sc_to_tip=True) # Main toolbar self.main_toolbar_actions = [self.maximize_action, self.fullscreen_action, None, prefs_action, spyder_path_action] self.main_toolbar = self.create_toolbar(_("Main toolbar"), "main_toolbar") # Internal console plugin logger.info("Loading internal console...") from spyder.plugins.console.plugin import Console self.console = Console(self, namespace, exitfunc=self.closing, profile=self.profile, multithreaded=self.multithreaded, message=_("Spyder Internal Console\n\n" "This console is used to report application\n" "internal errors and to inspect Spyder\n" "internals with the following commands:\n" " spy.app, spy.window, dir(spy)\n\n" "Please don't use it to run your code\n\n")) self.console.register_plugin() # Language Server Protocol Client initialization self.set_splash(_("Starting Language Server Protocol manager...")) from spyder.plugins.editor.lsp.manager import LSPManager self.lspmanager = LSPManager(self) # Working directory plugin logger.info("Loading working directory...") from spyder.plugins.workingdirectory.plugin import WorkingDirectory self.workingdirectory = WorkingDirectory(self, self.init_workdir, main=self) self.workingdirectory.register_plugin() self.toolbarslist.append(self.workingdirectory.toolbar) # Help plugin if CONF.get('help', 'enable'): self.set_splash(_("Loading help...")) from spyder.plugins.help.plugin import Help self.help = Help(self, css_path=css_path) self.help.register_plugin() # Outline explorer widget if CONF.get('outline_explorer', 'enable'): self.set_splash(_("Loading outline explorer...")) from spyder.plugins.outlineexplorer.plugin import OutlineExplorer self.outlineexplorer = OutlineExplorer(self) self.outlineexplorer.register_plugin() # Editor plugin self.set_splash(_("Loading editor...")) from spyder.plugins.editor.plugin import Editor self.editor = Editor(self) self.editor.register_plugin() # Start LSP client self.set_splash(_("Launching LSP Client for Python...")) self.lspmanager.start_client(language='python') # Populating file menu entries quit_action = create_action(self, _("&Quit"), icon=ima.icon('exit'), tip=_("Quit"), triggered=self.console.quit, context=Qt.ApplicationShortcut) self.register_shortcut(quit_action, "_", "Quit") restart_action = create_action(self, _("&Restart"), icon=ima.icon('restart'), tip=_("Restart"), triggered=self.restart, context=Qt.ApplicationShortcut) self.register_shortcut(restart_action, "_", "Restart") self.file_menu_actions += [self.file_switcher_action, self.symbol_finder_action, None, restart_action, quit_action] self.set_splash("") # Namespace browser self.set_splash(_("Loading namespace browser...")) from spyder.plugins.variableexplorer.plugin import VariableExplorer self.variableexplorer = VariableExplorer(self) self.variableexplorer.register_plugin() # Figure browser self.set_splash(_("Loading figure browser...")) from spyder.plugins.plots.plugin import Plots self.plots = Plots(self) self.plots.register_plugin() # History log widget if CONF.get('historylog', 'enable'): self.set_splash(_("Loading history plugin...")) from spyder.plugins.history.plugin import HistoryLog self.historylog = HistoryLog(self) self.historylog.register_plugin() # IPython console self.set_splash(_("Loading IPython console...")) from spyder.plugins.ipythonconsole.plugin import IPythonConsole self.ipyconsole = IPythonConsole(self, css_path=css_path) self.ipyconsole.register_plugin() # Explorer if CONF.get('explorer', 'enable'): self.set_splash(_("Loading file explorer...")) from spyder.plugins.explorer.plugin import Explorer self.explorer = Explorer(self) self.explorer.register_plugin() # Online help widget try: # Qt >= v4.4 from spyder.plugins.onlinehelp.plugin import OnlineHelp except ImportError: # Qt < v4.4 OnlineHelp = None # analysis:ignore if CONF.get('onlinehelp', 'enable') and OnlineHelp is not None: self.set_splash(_("Loading online help...")) self.onlinehelp = OnlineHelp(self) self.onlinehelp.register_plugin() # Project explorer widget self.set_splash(_("Loading project explorer...")) from spyder.plugins.projects.plugin import Projects self.projects = Projects(self) self.projects.register_plugin() self.project_path = self.projects.get_pythonpath(at_start=True) # Find in files if CONF.get('find_in_files', 'enable'): from spyder.plugins.findinfiles.plugin import FindInFiles self.findinfiles = FindInFiles(self) self.findinfiles.register_plugin() # Load other plugins (former external plugins) # TODO: Use this bucle to load all internall plugins and remove # duplicated code other_plugins = ['breakpoints', 'profiler', 'pylint'] for plugin_name in other_plugins: if CONF.get(plugin_name, 'enable'): module = importlib.import_module( 'spyder.plugins.{}'.format(plugin_name)) plugin = module.PLUGIN_CLASS(self) if plugin.check_compatibility()[0]: self.thirdparty_plugins.append(plugin) plugin.register_plugin() # Third-party plugins self.set_splash(_("Loading third-party plugins...")) for mod in get_spyderplugins_mods(): try: plugin = mod.PLUGIN_CLASS(self) if plugin.check_compatibility()[0]: self.thirdparty_plugins.append(plugin) plugin.register_plugin() except Exception as error: print("%s: %s" % (mod, str(error)), file=STDERR) traceback.print_exc(file=STDERR) self.set_splash(_("Setting up main window...")) # Help menu trouble_action = create_action(self, _("Troubleshooting..."), triggered=self.trouble_guide) dep_action = create_action(self, _("Dependencies..."), triggered=self.show_dependencies, icon=ima.icon('advanced')) report_action = create_action(self, _("Report issue..."), icon=ima.icon('bug'), triggered=self.report_issue) support_action = create_action(self, _("Spyder support..."), triggered=self.google_group) self.check_updates_action = create_action(self, _("Check for updates..."), triggered=self.check_updates) # Spyder documentation spyder_doc = 'https://docs.spyder-ide.org/' doc_action = create_action(self, _("Spyder documentation"), icon=ima.icon('DialogHelpButton'), triggered=lambda: programs.start_file(spyder_doc)) self.register_shortcut(doc_action, "_", "spyder documentation") if self.help is not None: tut_action = create_action(self, _("Spyder tutorial"), triggered=self.help.show_tutorial) else: tut_action = None shortcuts_action = create_action(self, _("Shortcuts Summary"), shortcut="Meta+F1", triggered=self.show_shortcuts_dialog) #----- Tours self.tour = tour.AnimatedTour(self) self.tours_menu = QMenu(_("Interactive tours"), self) self.tour_menu_actions = [] # TODO: Only show intro tour for now. When we are close to finish # 3.0, we will finish and show the other tour self.tours_available = tour.get_tours(0) for i, tour_available in enumerate(self.tours_available): self.tours_available[i]['last'] = 0 tour_name = tour_available['name'] def trigger(i=i, self=self): # closure needed! return lambda: self.show_tour(i) temp_action = create_action(self, tour_name, tip="", triggered=trigger()) self.tour_menu_actions += [temp_action] self.tours_menu.addActions(self.tour_menu_actions) self.help_menu_actions = [doc_action, tut_action, shortcuts_action, self.tours_menu, MENU_SEPARATOR, trouble_action, report_action, dep_action, self.check_updates_action, support_action, MENU_SEPARATOR] # Python documentation if get_python_doc_path() is not None: pydoc_act = create_action(self, _("Python documentation"), triggered=lambda: programs.start_file(get_python_doc_path())) self.help_menu_actions.append(pydoc_act) # IPython documentation if self.help is not None: ipython_menu = QMenu(_("IPython documentation"), self) intro_action = create_action(self, _("Intro to IPython"), triggered=self.ipyconsole.show_intro) quickref_action = create_action(self, _("Quick reference"), triggered=self.ipyconsole.show_quickref) guiref_action = create_action(self, _("Console help"), triggered=self.ipyconsole.show_guiref) add_actions(ipython_menu, (intro_action, guiref_action, quickref_action)) self.help_menu_actions.append(ipython_menu) # Windows-only: documentation located in sys.prefix/Doc ipm_actions = [] def add_ipm_action(text, path): """Add installed Python module doc action to help submenu""" # QAction.triggered works differently for PySide and PyQt path = file_uri(path) if not API == 'pyside': slot=lambda _checked, path=path: programs.start_file(path) else: slot=lambda path=path: programs.start_file(path) action = create_action(self, text, icon='%s.png' % osp.splitext(path)[1][1:], triggered=slot) ipm_actions.append(action) sysdocpth = osp.join(sys.prefix, 'Doc') if osp.isdir(sysdocpth): # exists on Windows, except frozen dist. for docfn in os.listdir(sysdocpth): pt = r'([a-zA-Z\_]*)(doc)?(-dev)?(-ref)?(-user)?.(chm|pdf)' match = re.match(pt, docfn) if match is not None: pname = match.groups()[0] if pname not in ('Python', ): add_ipm_action(pname, osp.join(sysdocpth, docfn)) # Installed Python modules submenu (Windows only) if ipm_actions: pymods_menu = QMenu(_("Installed Python modules"), self) add_actions(pymods_menu, ipm_actions) self.help_menu_actions.append(pymods_menu) # Online documentation web_resources = QMenu(_("Online documentation"), self) webres_actions = create_module_bookmark_actions(self, self.BOOKMARKS) webres_actions.insert(2, None) webres_actions.insert(5, None) webres_actions.insert(8, None) add_actions(web_resources, webres_actions) self.help_menu_actions.append(web_resources) # Qt assistant link if sys.platform.startswith('linux') and not PYQT5: qta_exe = "assistant-qt4" else: qta_exe = "assistant" qta_act = create_program_action(self, _("Qt documentation"), qta_exe) if qta_act: self.help_menu_actions += [qta_act, None] # About Spyder about_action = create_action(self, _("About %s...") % "Spyder", icon=ima.icon('MessageBoxInformation'), triggered=self.about) self.help_menu_actions += [MENU_SEPARATOR, about_action] # Status bar widgets from spyder.widgets.status import MemoryStatus, CPUStatus self.mem_status = MemoryStatus(self, status) self.cpu_status = CPUStatus(self, status) self.apply_statusbar_settings() # ----- View # View menu self.plugins_menu = QMenu(_("Panes"), self) self.toolbars_menu = QMenu(_("Toolbars"), self) self.quick_layout_menu = QMenu(_("Window layouts"), self) self.quick_layout_set_menu() self.view_menu.addMenu(self.plugins_menu) # Panes add_actions(self.view_menu, (self.lock_interface_action, self.close_dockwidget_action, self.maximize_action, MENU_SEPARATOR)) self.show_toolbars_action = create_action(self, _("Show toolbars"), triggered=self.show_toolbars, context=Qt.ApplicationShortcut) self.register_shortcut(self.show_toolbars_action, "_", "Show toolbars") self.view_menu.addMenu(self.toolbars_menu) self.view_menu.addAction(self.show_toolbars_action) add_actions(self.view_menu, (MENU_SEPARATOR, self.quick_layout_menu, self.toggle_previous_layout_action, self.toggle_next_layout_action, MENU_SEPARATOR, self.fullscreen_action)) if set_attached_console_visible is not None: cmd_act = create_action(self, _("Attached console window (debugging)"), toggled=set_attached_console_visible) cmd_act.setChecked(is_attached_console_visible()) add_actions(self.view_menu, (MENU_SEPARATOR, cmd_act)) # Adding external tools action to "Tools" menu if self.external_tools_menu_actions: external_tools_act = create_action(self, _("External Tools")) external_tools_act.setMenu(self.external_tools_menu) self.tools_menu_actions += [None, external_tools_act] # Filling out menu/toolbar entries: add_actions(self.file_menu, self.file_menu_actions) add_actions(self.edit_menu, self.edit_menu_actions) add_actions(self.search_menu, self.search_menu_actions) add_actions(self.source_menu, self.source_menu_actions) add_actions(self.run_menu, self.run_menu_actions) add_actions(self.debug_menu, self.debug_menu_actions) add_actions(self.consoles_menu, self.consoles_menu_actions) add_actions(self.projects_menu, self.projects_menu_actions) add_actions(self.tools_menu, self.tools_menu_actions) add_actions(self.external_tools_menu, self.external_tools_menu_actions) add_actions(self.help_menu, self.help_menu_actions) add_actions(self.main_toolbar, self.main_toolbar_actions) add_actions(self.file_toolbar, self.file_toolbar_actions) add_actions(self.edit_toolbar, self.edit_toolbar_actions) add_actions(self.search_toolbar, self.search_toolbar_actions) add_actions(self.source_toolbar, self.source_toolbar_actions) add_actions(self.debug_toolbar, self.debug_toolbar_actions) add_actions(self.run_toolbar, self.run_toolbar_actions) # Apply all defined shortcuts (plugins + 3rd-party plugins) self.apply_shortcuts() # Emitting the signal notifying plugins that main window menu and # toolbar actions are all defined: self.all_actions_defined.emit() # Window set-up logger.info("Setting up window...") self.setup_layout(default=False) # Show and hide shortcuts in menus for Mac. # This is a workaround because we can't disable shortcuts # by setting context=Qt.WidgetShortcut there if sys.platform == 'darwin': for name in ['file', 'edit', 'search', 'source', 'run', 'debug', 'projects', 'tools', 'plugins']: menu_object = getattr(self, name + '_menu') menu_object.aboutToShow.connect( lambda name=name: self.show_shortcuts(name)) menu_object.aboutToHide.connect( lambda name=name: self.hide_shortcuts(name)) if self.splash is not None: self.splash.hide() # Enabling tear off for all menus except help menu if CONF.get('main', 'tear_off_menus'): for child in self.menuBar().children(): if isinstance(child, QMenu) and child != self.help_menu: child.setTearOffEnabled(True) # Menu about to show for child in self.menuBar().children(): if isinstance(child, QMenu): try: child.aboutToShow.connect(self.update_edit_menu) child.aboutToShow.connect(self.update_search_menu) except TypeError: pass logger.info("*** End of MainWindow setup ***") self.is_starting_up = False def post_visible_setup(self): """Actions to be performed only after the main window's `show` method was triggered""" self.restore_scrollbar_position.emit() # [Workaround for Issue 880] # QDockWidget objects are not painted if restored as floating # windows, so we must dock them before showing the mainwindow, # then set them again as floating windows here. for widget in self.floating_dockwidgets: widget.setFloating(True) # In MacOS X 10.7 our app is not displayed after initialized (I don't # know why because this doesn't happen when started from the terminal), # so we need to resort to this hack to make it appear. if running_in_mac_app(): idx = __file__.index(MAC_APP_NAME) app_path = __file__[:idx] subprocess.call(['open', app_path + MAC_APP_NAME]) # Server to maintain just one Spyder instance and open files in it if # the user tries to start other instances with # $ spyder foo.py if (CONF.get('main', 'single_instance') and not self.new_instance and self.open_files_server): t = threading.Thread(target=self.start_open_files_server) t.setDaemon(True) t.start() # Connect the window to the signal emmited by the previous server # when it gets a client connected to it self.sig_open_external_file.connect(self.open_external_file) # Create Plugins and toolbars submenus self.create_plugins_menu() self.create_toolbars_menu() # Update toolbar visibility status self.toolbars_visible = CONF.get('main', 'toolbars_visible') self.load_last_visible_toolbars() # Update lock status self.lock_interface_action.setChecked(self.interface_locked) # Hide Internal Console so that people don't use it instead of # the External or IPython ones if self.console.dockwidget.isVisible() and DEV is None: self.console.toggle_view_action.setChecked(False) self.console.dockwidget.hide() # Show Help and Consoles by default plugins_to_show = [self.ipyconsole] if self.help is not None: plugins_to_show.append(self.help) for plugin in plugins_to_show: if plugin.dockwidget.isVisible(): plugin.dockwidget.raise_() # Show history file if no console is visible if not self.ipyconsole.isvisible: self.historylog.add_history(get_conf_path('history.py')) if self.open_project: self.projects.open_project(self.open_project) else: # Load last project if a project was active when Spyder # was closed self.projects.reopen_last_project() # If no project is active, load last session if self.projects.get_active_project() is None: self.editor.setup_open_files() # Check for spyder updates if DEV is None and CONF.get('main', 'check_updates_on_startup'): self.give_updates_feedback = False self.check_updates(startup=True) # Show dialog with missing dependencies self.report_missing_dependencies() # Raise the menuBar to the top of the main window widget's stack # (Fixes issue 3887) self.menuBar().raise_() self.is_setting_up = False def set_window_title(self): """Set window title.""" if DEV is not None: title = u"Spyder %s (Python %s.%s)" % (__version__, sys.version_info[0], sys.version_info[1]) else: title = u"Spyder (Python %s.%s)" % (sys.version_info[0], sys.version_info[1]) if get_debug_level(): title += u" [DEBUG MODE %d]" % get_debug_level() if self.window_title is not None: title += u' -- ' + to_text_string(self.window_title) if self.projects is not None: path = self.projects.get_active_project_path() if path: path = path.replace(get_home_dir(), u'~') title = u'{0} - {1}'.format(path, title) self.base_title = title self.setWindowTitle(self.base_title) def report_missing_dependencies(self): """Show a QMessageBox with a list of missing hard dependencies""" missing_deps = dependencies.missing_dependencies() if missing_deps: QMessageBox.critical(self, _('Error'), _("<b>You have missing dependencies!</b>" "<br><br><tt>%s</tt><br><br>" "<b>Please install them to avoid this message.</b>" "<br><br>" "<i>Note</i>: Spyder could work without some of these " "dependencies, however to have a smooth experience when " "using Spyder we <i>strongly</i> recommend you to install " "all the listed missing dependencies.<br><br>" "Failing to install these dependencies might result in bugs. " "Please be sure that any found bugs are not the direct " "result of missing dependencies, prior to reporting a new " "issue." ) % missing_deps, QMessageBox.Ok) def load_window_settings(self, prefix, default=False, section='main'): """Load window layout settings from userconfig-based configuration with *prefix*, under *section* default: if True, do not restore inner layout""" get_func = CONF.get_default if default else CONF.get window_size = get_func(section, prefix+'size') prefs_dialog_size = get_func(section, prefix+'prefs_dialog_size') if default: hexstate = None else: hexstate = get_func(section, prefix+'state', None) pos = get_func(section, prefix+'position') # It's necessary to verify if the window/position value is valid # with the current screen. See issue 3748 width = pos[0] height = pos[1] screen_shape = QApplication.desktop().geometry() current_width = screen_shape.width() current_height = screen_shape.height() if current_width < width or current_height < height: pos = CONF.get_default(section, prefix+'position') is_maximized = get_func(section, prefix+'is_maximized') is_fullscreen = get_func(section, prefix+'is_fullscreen') return hexstate, window_size, prefs_dialog_size, pos, is_maximized, \ is_fullscreen def get_window_settings(self): """Return current window settings Symetric to the 'set_window_settings' setter""" window_size = (self.window_size.width(), self.window_size.height()) is_fullscreen = self.isFullScreen() if is_fullscreen: is_maximized = self.maximized_flag else: is_maximized = self.isMaximized() pos = (self.window_position.x(), self.window_position.y()) prefs_dialog_size = (self.prefs_dialog_size.width(), self.prefs_dialog_size.height()) hexstate = qbytearray_to_str(self.saveState()) return (hexstate, window_size, prefs_dialog_size, pos, is_maximized, is_fullscreen) def set_window_settings(self, hexstate, window_size, prefs_dialog_size, pos, is_maximized, is_fullscreen): """Set window settings Symetric to the 'get_window_settings' accessor""" self.setUpdatesEnabled(False) self.window_size = QSize(window_size[0], window_size[1]) # width,height self.prefs_dialog_size = QSize(prefs_dialog_size[0], prefs_dialog_size[1]) # width,height self.window_position = QPoint(pos[0], pos[1]) # x,y self.setWindowState(Qt.WindowNoState) self.resize(self.window_size) self.move(self.window_position) # Window layout if hexstate: self.restoreState( QByteArray().fromHex( str(hexstate).encode('utf-8')) ) # [Workaround for Issue 880] # QDockWidget objects are not painted if restored as floating # windows, so we must dock them before showing the mainwindow. for widget in self.children(): if isinstance(widget, QDockWidget) and widget.isFloating(): self.floating_dockwidgets.append(widget) widget.setFloating(False) # Is fullscreen? if is_fullscreen: self.setWindowState(Qt.WindowFullScreen) self.__update_fullscreen_action() # Is maximized? if is_fullscreen: self.maximized_flag = is_maximized elif is_maximized: self.setWindowState(Qt.WindowMaximized) self.setUpdatesEnabled(True) def save_current_window_settings(self, prefix, section='main', none_state=False): """Save current window settings with *prefix* in the userconfig-based configuration, under *section*""" win_size = self.window_size prefs_size = self.prefs_dialog_size CONF.set(section, prefix+'size', (win_size.width(), win_size.height())) CONF.set(section, prefix+'prefs_dialog_size', (prefs_size.width(), prefs_size.height())) CONF.set(section, prefix+'is_maximized', self.isMaximized()) CONF.set(section, prefix+'is_fullscreen', self.isFullScreen()) pos = self.window_position CONF.set(section, prefix+'position', (pos.x(), pos.y())) self.maximize_dockwidget(restore=True)# Restore non-maximized layout if none_state: CONF.set(section, prefix + 'state', None) else: qba = self.saveState() CONF.set(section, prefix + 'state', qbytearray_to_str(qba)) CONF.set(section, prefix+'statusbar', not self.statusBar().isHidden()) def tabify_plugins(self, first, second): """Tabify plugin dockwigdets""" self.tabifyDockWidget(first.dockwidget, second.dockwidget) # --- Layouts def setup_layout(self, default=False): """Setup window layout""" prefix = 'window' + '/' settings = self.load_window_settings(prefix, default) hexstate = settings[0] self.first_spyder_run = False if hexstate is None: # First Spyder execution: self.setWindowState(Qt.WindowMaximized) self.first_spyder_run = True self.setup_default_layouts('default', settings) # Now that the initial setup is done, copy the window settings, # except for the hexstate in the quick layouts sections for the # default layouts. # Order and name of the default layouts is found in config.py section = 'quick_layouts' get_func = CONF.get_default if default else CONF.get order = get_func(section, 'order') # restore the original defaults if reset layouts is called if default: CONF.set(section, 'active', order) CONF.set(section, 'order', order) CONF.set(section, 'names', order) for index, name, in enumerate(order): prefix = 'layout_{0}/'.format(index) self.save_current_window_settings(prefix, section, none_state=True) # store the initial layout as the default in spyder prefix = 'layout_default/' section = 'quick_layouts' self.save_current_window_settings(prefix, section, none_state=True) self.current_quick_layout = 'default' # Regenerate menu self.quick_layout_set_menu() self.set_window_settings(*settings) for plugin in (self.widgetlist + self.thirdparty_plugins): try: plugin.initialize_plugin_in_mainwindow_layout() except Exception as error: print("%s: %s" % (plugin, str(error)), file=STDERR) traceback.print_exc(file=STDERR) def setup_default_layouts(self, index, settings): """Setup default layouts when run for the first time.""" self.setUpdatesEnabled(False) first_spyder_run = bool(self.first_spyder_run) # Store copy if first_spyder_run: self.set_window_settings(*settings) else: if self.last_plugin: if self.last_plugin.ismaximized: self.maximize_dockwidget(restore=True) if not (self.isMaximized() or self.maximized_flag): self.showMaximized() min_width = self.minimumWidth() max_width = self.maximumWidth() base_width = self.width() self.setFixedWidth(base_width) # IMPORTANT: order has to be the same as defined in the config file MATLAB, RSTUDIO, VERTICAL, HORIZONTAL = range(self.DEFAULT_LAYOUTS) # Define widgets locally editor = self.editor console_ipy = self.ipyconsole console_int = self.console outline = self.outlineexplorer explorer_project = self.projects explorer_file = self.explorer explorer_variable = self.variableexplorer plots = self.plots history = self.historylog finder = self.findinfiles help_plugin = self.help helper = self.onlinehelp plugins = self.thirdparty_plugins # Stored for tests global_hidden_widgets = [finder, console_int, explorer_project, helper] + plugins global_hidden_toolbars = [self.source_toolbar, self.edit_toolbar, self.search_toolbar] # Layout definition # -------------------------------------------------------------------- # Layouts are organized by columns, each column is organized by rows. # Widths have to add 1.0 (except if hidden), height per column has to # add 1.0 as well # Spyder Default Initial Layout s_layout = { 'widgets': [ # Column 0 [[explorer_project]], # Column 1 [[editor]], # Column 2 [[outline]], # Column 3 [[help_plugin, explorer_variable, plots, # Row 0 helper, explorer_file, finder] + plugins, [console_int, console_ipy, history]] # Row 1 ], 'width fraction': [0.05, # Column 0 width 0.55, # Column 1 width 0.05, # Column 2 width 0.45], # Column 3 width 'height fraction': [[1.0], # Column 0, row heights [1.0], # Column 1, row heights [1.0], # Column 2, row heights [0.46, 0.54]], # Column 3, row heights 'hidden widgets': [outline] + global_hidden_widgets, 'hidden toolbars': [], } # RStudio r_layout = { 'widgets': [ # column 0 [[editor], # Row 0 [console_ipy, console_int]], # Row 1 # column 1 [[explorer_variable, plots, history, # Row 0 outline, finder] + plugins, [explorer_file, explorer_project, # Row 1 help_plugin, helper]] ], 'width fraction': [0.55, # Column 0 width 0.45], # Column 1 width 'height fraction': [[0.55, 0.45], # Column 0, row heights [0.55, 0.45]], # Column 1, row heights 'hidden widgets': [outline] + global_hidden_widgets, 'hidden toolbars': [], } # Matlab m_layout = { 'widgets': [ # column 0 [[explorer_file, explorer_project], [outline]], # column 1 [[editor], [console_ipy, console_int]], # column 2 [[explorer_variable, plots, finder] + plugins, [history, help_plugin, helper]] ], 'width fraction': [0.10, # Column 0 width 0.45, # Column 1 width 0.45], # Column 2 width 'height fraction': [[0.55, 0.45], # Column 0, row heights [0.55, 0.45], # Column 1, row heights [0.55, 0.45]], # Column 2, row heights 'hidden widgets': global_hidden_widgets, 'hidden toolbars': [], } # Vertically split v_layout = { 'widgets': [ # column 0 [[editor], # Row 0 [console_ipy, console_int, explorer_file, # Row 1 explorer_project, help_plugin, explorer_variable, plots, history, outline, finder, helper] + plugins] ], 'width fraction': [1.0], # Column 0 width 'height fraction': [[0.55, 0.45]], # Column 0, row heights 'hidden widgets': [outline] + global_hidden_widgets, 'hidden toolbars': [], } # Horizontally split h_layout = { 'widgets': [ # column 0 [[editor]], # Row 0 # column 1 [[console_ipy, console_int, explorer_file, # Row 0 explorer_project, help_plugin, explorer_variable, plots, history, outline, finder, helper] + plugins] ], 'width fraction': [0.55, # Column 0 width 0.45], # Column 1 width 'height fraction': [[1.0], # Column 0, row heights [1.0]], # Column 1, row heights 'hidden widgets': [outline] + global_hidden_widgets, 'hidden toolbars': [] } # Layout selection layouts = { 'default': s_layout, RSTUDIO: r_layout, MATLAB: m_layout, VERTICAL: v_layout, HORIZONTAL: h_layout, } layout = layouts[index] # Remove None from widgets layout widgets_layout = layout['widgets'] widgets_layout_clean = [] for column in widgets_layout: clean_col = [] for row in column: clean_row = [w for w in row if w is not None] if clean_row: clean_col.append(clean_row) if clean_col: widgets_layout_clean.append(clean_col) # Flatten widgets list widgets = [] for column in widgets_layout_clean: for row in column: for widget in row: widgets.append(widget) # Make every widget visible for widget in widgets: widget.toggle_view(True) widget.toggle_view_action.setChecked(True) # We use both directions to ensure proper update when moving from # 'Horizontal Split' to 'Spyder Default' # This also seems to help on random cases where the display seems # 'empty' for direction in (Qt.Vertical, Qt.Horizontal): # Arrange the widgets in one direction for idx in range(len(widgets) - 1): first, second = widgets[idx], widgets[idx+1] if first is not None and second is not None: self.splitDockWidget(first.dockwidget, second.dockwidget, direction) # Arrange the widgets in the other direction for column in widgets_layout_clean: for idx in range(len(column) - 1): first_row, second_row = column[idx], column[idx+1] self.splitDockWidget(first_row[0].dockwidget, second_row[0].dockwidget, Qt.Vertical) # Tabify for column in widgets_layout_clean: for row in column: for idx in range(len(row) - 1): first, second = row[idx], row[idx+1] self.tabify_plugins(first, second) # Raise front widget per row row[0].dockwidget.show() row[0].dockwidget.raise_() # Set dockwidget widths width_fractions = layout['width fraction'] if len(width_fractions) > 1: _widgets = [col[0][0].dockwidget for col in widgets_layout] self.resizeDocks(_widgets, width_fractions, Qt.Horizontal) # Set dockwidget heights height_fractions = layout['height fraction'] for idx, column in enumerate(widgets_layout_clean): if len(column) > 1: _widgets = [row[0].dockwidget for row in column] self.resizeDocks(_widgets, height_fractions[idx], Qt.Vertical) # Hide toolbars hidden_toolbars = global_hidden_toolbars + layout['hidden toolbars'] for toolbar in hidden_toolbars: if toolbar is not None: toolbar.close() # Hide widgets hidden_widgets = layout['hidden widgets'] for widget in hidden_widgets: if widget is not None: widget.dockwidget.close() if first_spyder_run: self.first_spyder_run = False else: self.setMinimumWidth(min_width) self.setMaximumWidth(max_width) if not (self.isMaximized() or self.maximized_flag): self.showMaximized() self.setUpdatesEnabled(True) self.sig_layout_setup_ready.emit(layout) return layout @Slot() def toggle_previous_layout(self): """ """ self.toggle_layout('previous') @Slot() def toggle_next_layout(self): """ """ self.toggle_layout('next') def toggle_layout(self, direction='next'): """ """ get = CONF.get names = get('quick_layouts', 'names') order = get('quick_layouts', 'order') active = get('quick_layouts', 'active') if len(active) == 0: return layout_index = ['default'] for name in order: if name in active: layout_index.append(names.index(name)) current_layout = self.current_quick_layout dic = {'next': 1, 'previous': -1} if current_layout is None: # Start from default current_layout = 'default' if current_layout in layout_index: current_index = layout_index.index(current_layout) else: current_index = 0 new_index = (current_index + dic[direction]) % len(layout_index) self.quick_layout_switch(layout_index[new_index]) def quick_layout_set_menu(self): """ """ get = CONF.get names = get('quick_layouts', 'names') order = get('quick_layouts', 'order') active = get('quick_layouts', 'active') ql_actions = [] ql_actions = [create_action(self, _('Spyder Default Layout'), triggered=lambda: self.quick_layout_switch('default'))] for name in order: if name in active: index = names.index(name) # closure required so lambda works with the default parameter def trigger(i=index, self=self): return lambda: self.quick_layout_switch(i) qli_act = create_action(self, name, triggered=trigger()) # closure above replaces the following which stopped working # qli_act = create_action(self, name, triggered=lambda i=index: # self.quick_layout_switch(i) ql_actions += [qli_act] self.ql_save = create_action(self, _("Save current layout"), triggered=lambda: self.quick_layout_save(), context=Qt.ApplicationShortcut) self.ql_preferences = create_action(self, _("Layout preferences"), triggered=lambda: self.quick_layout_settings(), context=Qt.ApplicationShortcut) self.ql_reset = create_action(self, _('Reset to spyder default'), triggered=self.reset_window_layout) self.register_shortcut(self.ql_save, "_", "Save current layout") self.register_shortcut(self.ql_preferences, "_", "Layout preferences") ql_actions += [None] ql_actions += [self.ql_save, self.ql_preferences, self.ql_reset] self.quick_layout_menu.clear() add_actions(self.quick_layout_menu, ql_actions) if len(order) == 0: self.ql_preferences.setEnabled(False) else: self.ql_preferences.setEnabled(True) @Slot() def reset_window_layout(self): """Reset window layout to default""" answer = QMessageBox.warning(self, _("Warning"), _("Window layout will be reset to default settings: " "this affects window position, size and dockwidgets.\n" "Do you want to continue?"), QMessageBox.Yes | QMessageBox.No) if answer == QMessageBox.Yes: self.setup_layout(default=True) def quick_layout_save(self): """Save layout dialog""" get = CONF.get set_ = CONF.set names = get('quick_layouts', 'names') order = get('quick_layouts', 'order') active = get('quick_layouts', 'active') dlg = self.dialog_layout_save(self, names) if dlg.exec_(): name = dlg.combo_box.currentText() if name in names: answer = QMessageBox.warning(self, _("Warning"), _("Layout <b>%s</b> will be \ overwritten. Do you want to \ continue?") % name, QMessageBox.Yes | QMessageBox.No) index = order.index(name) else: answer = True if None in names: index = names.index(None) names[index] = name else: index = len(names) names.append(name) order.append(name) # Always make active a new layout even if it overwrites an inactive # layout if name not in active: active.append(name) if answer: self.save_current_window_settings('layout_{}/'.format(index), section='quick_layouts') set_('quick_layouts', 'names', names) set_('quick_layouts', 'order', order) set_('quick_layouts', 'active', active) self.quick_layout_set_menu() def quick_layout_settings(self): """Layout settings dialog""" get = CONF.get set_ = CONF.set section = 'quick_layouts' names = get(section, 'names') order = get(section, 'order') active = get(section, 'active') dlg = self.dialog_layout_settings(self, names, order, active) if dlg.exec_(): set_(section, 'names', dlg.names) set_(section, 'order', dlg.order) set_(section, 'active', dlg.active) self.quick_layout_set_menu() def quick_layout_switch(self, index): """Switch to quick layout number *index*""" section = 'quick_layouts' try: settings = self.load_window_settings('layout_{}/'.format(index), section=section) (hexstate, window_size, prefs_dialog_size, pos, is_maximized, is_fullscreen) = settings # The defaults layouts will always be regenerated unless there was # an overwrite, either by rewriting with same name, or by deleting # and then creating a new one if hexstate is None: # The value for hexstate shouldn't be None for a custom saved # layout (ie, where the index is greater than the number of # defaults). See issue 6202. if index != 'default' and index >= self.DEFAULT_LAYOUTS: QMessageBox.critical( self, _("Warning"), _("Error opening the custom layout. Please close" " Spyder and try again. If the issue persists," " then you must use 'Reset to Spyder default' " "from the layout menu.")) return self.setup_default_layouts(index, settings) except cp.NoOptionError: QMessageBox.critical(self, _("Warning"), _("Quick switch layout #%s has not yet " "been defined.") % str(index)) return # TODO: is there any real use in calling the previous layout # setting? # self.previous_layout_settings = self.get_window_settings() self.set_window_settings(*settings) self.current_quick_layout = index # make sure the flags are correctly set for visible panes for plugin in (self.widgetlist + self.thirdparty_plugins): action = plugin.toggle_view_action action.setChecked(plugin.dockwidget.isVisible()) # --- Show/Hide toolbars def _update_show_toolbars_action(self): """Update the text displayed in the menu entry.""" if self.toolbars_visible: text = _("Hide toolbars") tip = _("Hide toolbars") else: text = _("Show toolbars") tip = _("Show toolbars") self.show_toolbars_action.setText(text) self.show_toolbars_action.setToolTip(tip) def save_visible_toolbars(self): """Saves the name of the visible toolbars in the .ini file.""" toolbars = [] for toolbar in self.visible_toolbars: toolbars.append(toolbar.objectName()) CONF.set('main', 'last_visible_toolbars', toolbars) def get_visible_toolbars(self): """Collects the visible toolbars.""" toolbars = [] for toolbar in self.toolbarslist: if toolbar.toggleViewAction().isChecked(): toolbars.append(toolbar) self.visible_toolbars = toolbars def load_last_visible_toolbars(self): """Loads the last visible toolbars from the .ini file.""" toolbars_names = CONF.get('main', 'last_visible_toolbars', default=[]) if toolbars_names: dic = {} for toolbar in self.toolbarslist: dic[toolbar.objectName()] = toolbar toolbars = [] for name in toolbars_names: if name in dic: toolbars.append(dic[name]) self.visible_toolbars = toolbars else: self.get_visible_toolbars() self._update_show_toolbars_action() @Slot() def show_toolbars(self): """Show/Hides toolbars.""" value = not self.toolbars_visible CONF.set('main', 'toolbars_visible', value) if value: self.save_visible_toolbars() else: self.get_visible_toolbars() for toolbar in self.visible_toolbars: toolbar.toggleViewAction().setChecked(value) toolbar.setVisible(value) self.toolbars_visible = value self._update_show_toolbars_action() # --- Other def update_execution_state_kernel(self): """Handle execution state of the current console.""" try: self.ipyconsole.update_execution_state_kernel() except AttributeError: return def valid_project(self): """Handle an invalid active project.""" try: path = self.projects.get_active_project_path() except AttributeError: return if bool(path): if not self.projects.is_valid_project(path): if path: QMessageBox.critical( self, _('Error'), _("<b>{}</b> is no longer a valid Spyder project! " "Since it is the current active project, it will " "be closed automatically.").format(path)) self.projects.close_project() def free_memory(self): """Free memory after event.""" gc.collect() def plugin_focus_changed(self): """Focus has changed from one plugin to another""" self.update_edit_menu() self.update_search_menu() def show_shortcuts(self, menu): """Show action shortcuts in menu""" for element in getattr(self, menu + '_menu_actions'): if element and isinstance(element, QAction): if element._shown_shortcut is not None: element.setShortcut(element._shown_shortcut) def hide_shortcuts(self, menu): """Hide action shortcuts in menu""" for element in getattr(self, menu + '_menu_actions'): if element and isinstance(element, QAction): if element._shown_shortcut is not None: element.setShortcut(QKeySequence()) def get_focus_widget_properties(self): """Get properties of focus widget Returns tuple (widget, properties) where properties is a tuple of booleans: (is_console, not_readonly, readwrite_editor)""" from spyder.plugins.editor.widgets.editor import TextEditBaseWidget from spyder.plugins.ipythonconsole.widgets import ControlWidget widget = QApplication.focusWidget() textedit_properties = None if isinstance(widget, (TextEditBaseWidget, ControlWidget)): console = isinstance(widget, ControlWidget) not_readonly = not widget.isReadOnly() readwrite_editor = not_readonly and not console textedit_properties = (console, not_readonly, readwrite_editor) return widget, textedit_properties def update_edit_menu(self): """Update edit menu""" widget, textedit_properties = self.get_focus_widget_properties() if textedit_properties is None: # widget is not an editor/console return # !!! Below this line, widget is expected to be a QPlainTextEdit # instance console, not_readonly, readwrite_editor = textedit_properties # Editor has focus and there is no file opened in it if not console and not_readonly and not self.editor.is_file_opened(): return # Disabling all actions to begin with for child in self.edit_menu.actions(): child.setEnabled(False) self.selectall_action.setEnabled(True) # Undo, redo self.undo_action.setEnabled( readwrite_editor \ and widget.document().isUndoAvailable() ) self.redo_action.setEnabled( readwrite_editor \ and widget.document().isRedoAvailable() ) # Copy, cut, paste, delete has_selection = widget.has_selected_text() self.copy_action.setEnabled(has_selection) self.cut_action.setEnabled(has_selection and not_readonly) self.paste_action.setEnabled(not_readonly) # Comment, uncomment, indent, unindent... if not console and not_readonly: # This is the editor and current file is writable for action in self.editor.edit_menu_actions: action.setEnabled(True) def update_search_menu(self): """Update search menu""" # Disabling all actions except the last one # (which is Find in files) to begin with for child in self.search_menu.actions()[:-1]: child.setEnabled(False) widget, textedit_properties = self.get_focus_widget_properties() if textedit_properties is None: # widget is not an editor/console return # !!! Below this line, widget is expected to be a QPlainTextEdit # instance console, not_readonly, readwrite_editor = textedit_properties # Find actions only trigger an effect in the Editor if not console: for action in self.search_menu.actions(): try: action.setEnabled(True) except RuntimeError: pass # Disable the replace action for read-only files self.search_menu_actions[3].setEnabled(readwrite_editor) def create_plugins_menu(self): order = ['editor', 'ipython_console', 'variable_explorer', 'help', 'plots', None, 'explorer', 'outline_explorer', 'project_explorer', 'find_in_files', None, 'historylog', 'profiler', 'breakpoints', 'pylint', None, 'onlinehelp', 'internal_console', None] for plugin in self.widgetlist: action = plugin.toggle_view_action action.setChecked(plugin.dockwidget.isVisible()) try: name = plugin.CONF_SECTION pos = order.index(name) except ValueError: pos = None if pos is not None: order[pos] = action else: order.append(action) actions = order[:] for action in order: if type(action) is str: actions.remove(action) self.plugins_menu_actions = actions add_actions(self.plugins_menu, actions) def create_toolbars_menu(self): order = ['file_toolbar', 'run_toolbar', 'debug_toolbar', 'main_toolbar', 'Global working directory', None, 'search_toolbar', 'edit_toolbar', 'source_toolbar'] for toolbar in self.toolbarslist: action = toolbar.toggleViewAction() name = toolbar.objectName() try: pos = order.index(name) except ValueError: pos = None if pos is not None: order[pos] = action else: order.append(action) add_actions(self.toolbars_menu, order) def createPopupMenu(self): menu = QMenu('', self) actions = self.help_menu_actions[:3] + \ [None, self.help_menu_actions[-1]] add_actions(menu, actions) return menu def set_splash(self, message): """Set splash message""" if self.splash is None: return if message: logger.info(message) self.splash.show() self.splash.showMessage(message, Qt.AlignBottom | Qt.AlignCenter | Qt.AlignAbsolute, QColor(Qt.white)) QApplication.processEvents() def closeEvent(self, event): """closeEvent reimplementation""" if self.closing(True): event.accept() else: event.ignore() def resizeEvent(self, event): """Reimplement Qt method""" if not self.isMaximized() and not self.fullscreen_flag: self.window_size = self.size() QMainWindow.resizeEvent(self, event) # To be used by the tour to be able to resize self.sig_resized.emit(event) def moveEvent(self, event): """Reimplement Qt method""" if not self.isMaximized() and not self.fullscreen_flag: self.window_position = self.pos() QMainWindow.moveEvent(self, event) # To be used by the tour to be able to move self.sig_moved.emit(event) def hideEvent(self, event): """Reimplement Qt method""" try: for plugin in (self.widgetlist + self.thirdparty_plugins): if plugin.isAncestorOf(self.last_focused_widget): plugin.visibility_changed(True) QMainWindow.hideEvent(self, event) except RuntimeError: QMainWindow.hideEvent(self, event) def change_last_focused_widget(self, old, now): """To keep track of to the last focused widget""" if (now is None and QApplication.activeWindow() is not None): QApplication.activeWindow().setFocus() self.last_focused_widget = QApplication.focusWidget() elif now is not None: self.last_focused_widget = now self.previous_focused_widget = old def closing(self, cancelable=False): """Exit tasks""" if self.already_closed or self.is_starting_up: return True if cancelable and CONF.get('main', 'prompt_on_exit'): reply = QMessageBox.critical(self, 'Spyder', 'Do you really want to exit?', QMessageBox.Yes, QMessageBox.No) if reply == QMessageBox.No: return False prefix = 'window' + '/' self.save_current_window_settings(prefix) if CONF.get('main', 'single_instance') and self.open_files_server: self.open_files_server.close() for plugin in (self.widgetlist + self.thirdparty_plugins): plugin.close_window() if not plugin.closing_plugin(cancelable): return False self.dialog_manager.close_all() if self.toolbars_visible: self.save_visible_toolbars() self.lspmanager.shutdown() self.already_closed = True return True def add_dockwidget(self, child): """Add QDockWidget and toggleViewAction""" dockwidget, location = child.create_dockwidget() if CONF.get('main', 'vertical_dockwidget_titlebars'): dockwidget.setFeatures(dockwidget.features()| QDockWidget.DockWidgetVerticalTitleBar) self.addDockWidget(location, dockwidget) self.widgetlist.append(child) @Slot() def close_current_dockwidget(self): widget = QApplication.focusWidget() for plugin in (self.widgetlist + self.thirdparty_plugins): if plugin.isAncestorOf(widget): plugin.toggle_view_action.setChecked(False) break def toggle_lock(self, value): """Lock/Unlock dockwidgets and toolbars""" self.interface_locked = value CONF.set('main', 'panes_locked', value) # Apply lock to panes for plugin in (self.widgetlist + self.thirdparty_plugins): if self.interface_locked: if plugin.dockwidget.isFloating(): plugin.dockwidget.setFloating(False) plugin.dockwidget.setTitleBarWidget(QWidget()) else: plugin.dockwidget.set_title_bar() # Apply lock to toolbars for toolbar in self.toolbarslist: if self.interface_locked: toolbar.setMovable(False) else: toolbar.setMovable(True) def __update_maximize_action(self): if self.state_before_maximizing is None: text = _("Maximize current pane") tip = _("Maximize current pane") icon = ima.icon('maximize') else: text = _("Restore current pane") tip = _("Restore pane to its original size") icon = ima.icon('unmaximize') self.maximize_action.setText(text) self.maximize_action.setIcon(icon) self.maximize_action.setToolTip(tip) @Slot() @Slot(bool) def maximize_dockwidget(self, restore=False): """Shortcut: Ctrl+Alt+Shift+M First call: maximize current dockwidget Second call (or restore=True): restore original window layout""" if self.state_before_maximizing is None: if restore: return # Select plugin to maximize self.state_before_maximizing = self.saveState() focus_widget = QApplication.focusWidget() for plugin in (self.widgetlist + self.thirdparty_plugins): plugin.dockwidget.hide() if plugin.isAncestorOf(focus_widget): self.last_plugin = plugin # Only plugins that have a dockwidget are part of widgetlist, # so last_plugin can be None after the above "for" cycle. # For example, this happens if, after Spyder has started, focus # is set to the Working directory toolbar (which doesn't have # a dockwidget) and then you press the Maximize button if self.last_plugin is None: # Using the Editor as default plugin to maximize self.last_plugin = self.editor # Maximize last_plugin self.last_plugin.dockwidget.toggleViewAction().setDisabled(True) self.setCentralWidget(self.last_plugin) self.last_plugin.ismaximized = True # Workaround to solve an issue with editor's outline explorer: # (otherwise the whole plugin is hidden and so is the outline explorer # and the latter won't be refreshed if not visible) self.last_plugin.show() self.last_plugin.visibility_changed(True) if self.last_plugin is self.editor: # Automatically show the outline if the editor was maximized: self.addDockWidget(Qt.RightDockWidgetArea, self.outlineexplorer.dockwidget) self.outlineexplorer.dockwidget.show() else: # Restore original layout (before maximizing current dockwidget) self.last_plugin.dockwidget.setWidget(self.last_plugin) self.last_plugin.dockwidget.toggleViewAction().setEnabled(True) self.setCentralWidget(None) self.last_plugin.ismaximized = False self.restoreState(self.state_before_maximizing) self.state_before_maximizing = None self.last_plugin.get_focus_widget().setFocus() self.__update_maximize_action() def __update_fullscreen_action(self): if self.fullscreen_flag: icon = ima.icon('window_nofullscreen') else: icon = ima.icon('window_fullscreen') if is_text_string(icon): icon = get_icon(icon) self.fullscreen_action.setIcon(icon) @Slot() def toggle_fullscreen(self): if self.fullscreen_flag: self.fullscreen_flag = False if os.name == 'nt': self.setWindowFlags( self.windowFlags() ^ (Qt.FramelessWindowHint | Qt.WindowStaysOnTopHint)) self.setGeometry(self.saved_normal_geometry) self.showNormal() if self.maximized_flag: self.showMaximized() else: self.maximized_flag = self.isMaximized() self.fullscreen_flag = True self.saved_normal_geometry = self.normalGeometry() if os.name == 'nt': # Due to limitations of the Windows DWM, compositing is not # handled correctly for OpenGL based windows when going into # full screen mode, so we need to use this workaround. # See Issue #4291. self.setWindowFlags(self.windowFlags() | Qt.FramelessWindowHint | Qt.WindowStaysOnTopHint) screen_number = QDesktopWidget().screenNumber(self) if screen_number < 0: screen_number = 0 r = QApplication.desktop().screenGeometry(screen_number) self.setGeometry( r.left() - 1, r.top() - 1, r.width() + 2, r.height() + 2) self.showNormal() else: self.showFullScreen() self.__update_fullscreen_action() def add_to_toolbar(self, toolbar, widget): """Add widget actions to toolbar""" actions = widget.toolbar_actions if actions is not None: add_actions(toolbar, actions) @Slot() def about(self): """Create About Spyder dialog with general information.""" versions = get_versions() # Show Git revision for development version revlink = '' if versions['revision']: rev = versions['revision'] revlink = " (<a href='https://github.com/spyder-ide/spyder/"\ "commit/%s'>Commit: %s</a>)" % (rev, rev) msgBox = QMessageBox(self) msgBox.setText( """ <b>Spyder {spyder_ver}</b> {revision} <br>The Scientific Python Development Environment | <a href="{website_url}">Spyder-IDE.org</a> <br>Copyright &copy; 2009-2019 Spyder Project Contributors and <a href="{github_url}/blob/master/AUTHORS.txt">others</a> <br>Distributed under the terms of the <a href="{github_url}/blob/master/LICENSE.txt">MIT License</a>. <p>Created by Pierre Raybaut; current maintainer is Carlos Cordoba. <br>Developed by the <a href="{github_url}/graphs/contributors">international Spyder community</a>. <br>Many thanks to all the Spyder beta testers and dedicated users. <p>For help with Spyder errors and crashes, please read our <a href="{trouble_url}">Troubleshooting Guide</a>, and for bug reports and feature requests, visit our <a href="{github_url}">Github site</a>. For project discussion, see our <a href="{forum_url}">Google Group</a>. <p>This project is part of a larger effort to promote and facilitate the use of Python for scientific and engineering software development. The popular Python distributions <a href="https://www.anaconda.com/download/">Anaconda</a> and <a href="https://winpython.github.io/">WinPython</a> also contribute to this plan. <p>Python {python_ver} {bitness}-bit | Qt {qt_ver} | {qt_api} {qt_api_ver} | {os_name} {os_ver} <small><p>Certain source files under other compatible permissive licenses and/or originally by other authors. Spyder 3 theme icons derived from <a href="https://fontawesome.com/">Font Awesome</a> 4.7 (&copy; 2016 David Gandy; SIL OFL 1.1) and <a href="http://materialdesignicons.com/">Material Design</a> (&copy; 2014 Austin Andrews; SIL OFL 1.1). Most Spyder 2 theme icons sourced from the <a href="https://www.everaldo.com">Crystal Project iconset</a> (&copy; 2006-2007 Everaldo Coelho; LGPL 2.1+). Other icons from <a href="http://p.yusukekamiyamane.com/">Yusuke Kamiyamane</a> (&copy; 2013 Yusuke Kamiyamane; CC-BY 3.0), the <a href="http://www.famfamfam.com/lab/icons/silk/">FamFamFam Silk icon set</a> 1.3 (&copy; 2006 Mark James; CC-BY 2.5), and the <a href="https://www.kde.org/">KDE Oxygen icons</a> (&copy; 2007 KDE Artists; LGPL 3.0+).</small> <p>See the <a href="{github_url}/blob/master/NOTICE.txt">NOTICE</a> file for full legal information. """ .format(spyder_ver=versions['spyder'], revision=revlink, website_url=__website_url__, github_url=__project_url__, trouble_url=__trouble_url__, forum_url=__forum_url__, python_ver=versions['python'], bitness=versions['bitness'], qt_ver=versions['qt'], qt_api=versions['qt_api'], qt_api_ver=versions['qt_api_ver'], os_name=versions['system'], os_ver=versions['release']) ) msgBox.setWindowTitle(_("About %s") % "Spyder") msgBox.setStandardButtons(QMessageBox.Ok) from spyder.config.gui import is_dark_interface if PYQT5: if is_dark_interface(): icon_filename = "spyder.svg" else: icon_filename = "spyder_dark.svg" else: if is_dark_interface(): icon_filename = "spyder.png" else: icon_filename = "spyder_dark.png" app_icon = QIcon(get_image_path(icon_filename)) msgBox.setIconPixmap(app_icon.pixmap(QSize(64, 64))) msgBox.setTextInteractionFlags( Qt.LinksAccessibleByMouse | Qt.TextSelectableByMouse) msgBox.exec_() @Slot() def show_dependencies(self): """Show Spyder's Dependencies dialog box""" from spyder.widgets.dependencies import DependenciesDialog dlg = DependenciesDialog(self) dlg.set_data(dependencies.DEPENDENCIES) dlg.exec_() def render_issue(self, description='', traceback=''): """Render issue before sending it to Github""" # Get component versions versions = get_versions() # Get git revision for development version revision = '' if versions['revision']: revision = versions['revision'] # Make a description header in case no description is supplied if not description: description = "### What steps reproduce the problem?" # Make error section from traceback and add appropriate reminder header if traceback: error_section = ("### Traceback\n" "```python-traceback\n" "{}\n" "```".format(traceback)) else: error_section = '' issue_template = """\ ## Description {description} {error_section} ## Versions * Spyder version: {spyder_version} {commit} * Python version: {python_version} * Qt version: {qt_version} * {qt_api_name} version: {qt_api_version} * Operating System: {os_name} {os_version} ### Dependencies ``` {dependencies} ``` """.format(description=description, error_section=error_section, spyder_version=versions['spyder'], commit=revision, python_version=versions['python'], qt_version=versions['qt'], qt_api_name=versions['qt_api'], qt_api_version=versions['qt_api_ver'], os_name=versions['system'], os_version=versions['release'], dependencies=dependencies.status()) return issue_template @Slot() def report_issue(self, body=None, title=None, open_webpage=False): """Report a Spyder issue to github, generating body text if needed.""" if body is None: from spyder.widgets.reporterror import SpyderErrorDialog report_dlg = SpyderErrorDialog(self, is_report=True) report_dlg.show() else: if open_webpage: if PY3: from urllib.parse import quote else: from urllib import quote # analysis:ignore from qtpy.QtCore import QUrlQuery url = QUrl(__project_url__ + '/issues/new') query = QUrlQuery() query.addQueryItem("body", quote(body)) if title: query.addQueryItem("title", quote(title)) url.setQuery(query) QDesktopServices.openUrl(url) @Slot() def trouble_guide(self): """Open Spyder troubleshooting guide in a web browser.""" url = QUrl(__trouble_url__) QDesktopServices.openUrl(url) @Slot() def google_group(self): """Open Spyder Google Group in a web browser.""" url = QUrl(__forum_url__) QDesktopServices.openUrl(url) @Slot() def global_callback(self): """Global callback""" widget = QApplication.focusWidget() action = self.sender() callback = from_qvariant(action.data(), to_text_string) from spyder.plugins.editor.widgets.editor import TextEditBaseWidget from spyder.plugins.ipythonconsole.widgets import ControlWidget if isinstance(widget, (TextEditBaseWidget, ControlWidget)): getattr(widget, callback)() else: return def redirect_internalshell_stdio(self, state): if state: self.console.shell.interpreter.redirect_stds() else: self.console.shell.interpreter.restore_stds() def open_external_console(self, fname, wdir, args, interact, debug, python, python_args, systerm, post_mortem=False): """Open external console""" if systerm: # Running script in an external system terminal try: if CONF.get('main_interpreter', 'default'): executable = get_python_executable() else: executable = CONF.get('main_interpreter', 'executable') programs.run_python_script_in_terminal( fname, wdir, args, interact, debug, python_args, executable) except NotImplementedError: QMessageBox.critical(self, _("Run"), _("Running an external system terminal " "is not supported on platform %s." ) % os.name) def execute_in_external_console(self, lines, focus_to_editor): """ Execute lines in IPython console and eventually set focus to the Editor. """ console = self.ipyconsole console.switch_to_plugin() console.execute_code(lines) if focus_to_editor: self.editor.switch_to_plugin() def open_file(self, fname, external=False): """ Open filename with the appropriate application Redirect to the right widget (txt -> editor, spydata -> workspace, ...) or open file outside Spyder (if extension is not supported) """ fname = to_text_string(fname) ext = osp.splitext(fname)[1] if encoding.is_text_file(fname): self.editor.load(fname) elif self.variableexplorer is not None and ext in IMPORT_EXT: self.variableexplorer.import_data(fname) elif not external: fname = file_uri(fname) programs.start_file(fname) def open_external_file(self, fname): """ Open external files that can be handled either by the Editor or the variable explorer inside Spyder. """ fname = encoding.to_unicode_from_fs(fname) if osp.isfile(fname): self.open_file(fname, external=True) elif osp.isfile(osp.join(CWD, fname)): self.open_file(osp.join(CWD, fname), external=True) # ---- PYTHONPATH management, etc. def get_spyder_pythonpath(self): """Return Spyder PYTHONPATH""" active_path = [p for p in self.path if p not in self.not_active_path] return active_path + self.project_path def add_path_to_sys_path(self): """Add Spyder path to sys.path""" for path in reversed(self.get_spyder_pythonpath()): sys.path.insert(1, path) def remove_path_from_sys_path(self): """Remove Spyder path from sys.path""" for path in self.path + self.project_path: while path in sys.path: sys.path.remove(path) @Slot() def path_manager_callback(self): """Spyder path manager""" from spyder.widgets.pathmanager import PathManager self.remove_path_from_sys_path() project_path = self.projects.get_pythonpath() dialog = PathManager(self, self.path, project_path, self.not_active_path, sync=True) dialog.redirect_stdio.connect(self.redirect_internalshell_stdio) dialog.exec_() self.add_path_to_sys_path() try: encoding.writelines(self.path, self.SPYDER_PATH) # Saving path encoding.writelines(self.not_active_path, self.SPYDER_NOT_ACTIVE_PATH) except EnvironmentError: pass self.sig_pythonpath_changed.emit() def pythonpath_changed(self): """Projects PYTHONPATH contribution has changed""" self.remove_path_from_sys_path() self.project_path = self.projects.get_pythonpath() self.add_path_to_sys_path() self.sig_pythonpath_changed.emit() @Slot() def win_env(self): """Show Windows current user environment variables""" self.dialog_manager.show(WinUserEnvDialog(self)) #---- Preferences def apply_settings(self): """Apply settings changed in 'Preferences' dialog box""" qapp = QApplication.instance() # Set 'gtk+' as the default theme in Gtk-based desktops # Fixes Issue 2036 if is_gtk_desktop() and ('GTK+' in QStyleFactory.keys()): try: qapp.setStyle('gtk+') except: pass else: style_name = CONF.get('appearance', 'windows_style', self.default_style) style = QStyleFactory.create(style_name) if style is not None: style.setProperty('name', style_name) qapp.setStyle(style) default = self.DOCKOPTIONS if CONF.get('main', 'vertical_tabs'): default = default|QMainWindow.VerticalTabs if CONF.get('main', 'animated_docks'): default = default|QMainWindow.AnimatedDocks self.setDockOptions(default) self.apply_panes_settings() self.apply_statusbar_settings() if CONF.get('main', 'use_custom_cursor_blinking'): qapp.setCursorFlashTime(CONF.get('main', 'custom_cursor_blinking')) else: qapp.setCursorFlashTime(self.CURSORBLINK_OSDEFAULT) def apply_panes_settings(self): """Update dockwidgets features settings""" for plugin in (self.widgetlist + self.thirdparty_plugins): features = plugin.FEATURES if CONF.get('main', 'vertical_dockwidget_titlebars'): features = features | QDockWidget.DockWidgetVerticalTitleBar plugin.dockwidget.setFeatures(features) plugin.update_margins() def apply_statusbar_settings(self): """Update status bar widgets settings""" show_status_bar = CONF.get('main', 'show_status_bar') self.statusBar().setVisible(show_status_bar) if show_status_bar: for widget, name in ((self.mem_status, 'memory_usage'), (self.cpu_status, 'cpu_usage')): if widget is not None: widget.setVisible(CONF.get('main', '%s/enable' % name)) widget.set_interval(CONF.get('main', '%s/timeout' % name)) else: return @Slot() def edit_preferences(self): """Edit Spyder preferences""" from spyder.preferences.configdialog import ConfigDialog dlg = ConfigDialog(self) dlg.size_change.connect(self.set_prefs_size) if self.prefs_dialog_size is not None: dlg.resize(self.prefs_dialog_size) for PrefPageClass in self.general_prefs: widget = PrefPageClass(dlg, main=self) widget.initialize() dlg.add_page(widget) for plugin in [self.workingdirectory, self.editor, self.projects, self.ipyconsole, self.historylog, self.help, self.variableexplorer, self.onlinehelp, self.explorer, self.findinfiles ]+self.thirdparty_plugins: if plugin is not None: try: widget = plugin.create_configwidget(dlg) if widget is not None: dlg.add_page(widget) except Exception: traceback.print_exc(file=sys.stderr) if self.prefs_index is not None: dlg.set_current_index(self.prefs_index) dlg.show() dlg.check_all_settings() dlg.pages_widget.currentChanged.connect(self.__preference_page_changed) dlg.exec_() def __preference_page_changed(self, index): """Preference page index has changed""" self.prefs_index = index def set_prefs_size(self, size): """Save preferences dialog size""" self.prefs_dialog_size = size #---- Shortcuts def register_shortcut(self, qaction_or_qshortcut, context, name, add_sc_to_tip=False): """ Register QAction or QShortcut to Spyder main application, with shortcut (context, name, default) """ self.shortcut_data.append( (qaction_or_qshortcut, context, name, add_sc_to_tip) ) def apply_shortcuts(self): """Apply shortcuts settings to all widgets/plugins""" toberemoved = [] for index, (qobject, context, name, add_sc_to_tip) in enumerate(self.shortcut_data): keyseq = QKeySequence( get_shortcut(context, name) ) try: if isinstance(qobject, QAction): if sys.platform == 'darwin' and \ qobject._shown_shortcut == 'missing': qobject._shown_shortcut = keyseq else: qobject.setShortcut(keyseq) if add_sc_to_tip: add_shortcut_to_tooltip(qobject, context, name) elif isinstance(qobject, QShortcut): qobject.setKey(keyseq) except RuntimeError: # Object has been deleted toberemoved.append(index) for index in sorted(toberemoved, reverse=True): self.shortcut_data.pop(index) @Slot() def show_shortcuts_dialog(self): from spyder.widgets.shortcutssummary import ShortcutsSummaryDialog dlg = ShortcutsSummaryDialog(None) dlg.exec_() # -- Open files server def start_open_files_server(self): self.open_files_server.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) port = select_port(default_port=OPEN_FILES_PORT) CONF.set('main', 'open_files_port', port) self.open_files_server.bind(('127.0.0.1', port)) self.open_files_server.listen(20) while 1: # 1 is faster than True try: req, dummy = self.open_files_server.accept() except socket.error as e: # See Issue 1275 for details on why errno EINTR is # silently ignored here. eintr = errno.WSAEINTR if os.name == 'nt' else errno.EINTR # To avoid a traceback after closing on Windows if e.args[0] == eintr: continue # handle a connection abort on close error enotsock = (errno.WSAENOTSOCK if os.name == 'nt' else errno.ENOTSOCK) if e.args[0] in [errno.ECONNABORTED, enotsock]: return raise fname = req.recv(1024) fname = fname.decode('utf-8') self.sig_open_external_file.emit(fname) req.sendall(b' ') # ---- Quit and restart, and reset spyder defaults @Slot() def reset_spyder(self): """ Quit and reset Spyder and then Restart application. """ answer = QMessageBox.warning(self, _("Warning"), _("Spyder will restart and reset to default settings: <br><br>" "Do you want to continue?"), QMessageBox.Yes | QMessageBox.No) if answer == QMessageBox.Yes: self.restart(reset=True) @Slot() def restart(self, reset=False): """ Quit and Restart Spyder application. If reset True it allows to reset spyder on restart. """ # Get start path to use in restart script spyder_start_directory = get_module_path('spyder') restart_script = osp.join(spyder_start_directory, 'app', 'restart.py') # Get any initial argument passed when spyder was started # Note: Variables defined in bootstrap.py and spyder/app/start.py env = os.environ.copy() bootstrap_args = env.pop('SPYDER_BOOTSTRAP_ARGS', None) spyder_args = env.pop('SPYDER_ARGS') # Get current process and python running spyder pid = os.getpid() python = sys.executable # Check if started with bootstrap.py if bootstrap_args is not None: spyder_args = bootstrap_args is_bootstrap = True else: is_bootstrap = False # Pass variables as environment variables (str) to restarter subprocess env['SPYDER_ARGS'] = spyder_args env['SPYDER_PID'] = str(pid) env['SPYDER_IS_BOOTSTRAP'] = str(is_bootstrap) env['SPYDER_RESET'] = str(reset) if DEV: if os.name == 'nt': env['PYTHONPATH'] = ';'.join(sys.path) else: env['PYTHONPATH'] = ':'.join(sys.path) # Build the command and popen arguments depending on the OS if os.name == 'nt': # Hide flashing command prompt startupinfo = subprocess.STARTUPINFO() startupinfo.dwFlags |= subprocess.STARTF_USESHOWWINDOW shell = False else: startupinfo = None shell = True command = '"{0}" "{1}"' command = command.format(python, restart_script) try: if self.closing(True): subprocess.Popen(command, shell=shell, env=env, startupinfo=startupinfo) self.console.quit() except Exception as error: # If there is an error with subprocess, Spyder should not quit and # the error can be inspected in the internal console print(error) # spyder: test-skip print(command) # spyder: test-skip # ---- Interactive Tours def show_tour(self, index): """Show interactive tour.""" self.maximize_dockwidget(restore=True) frames = self.tours_available[index] self.tour.set_tour(index, frames, self) self.tour.start_tour() # ---- Global File Switcher def open_fileswitcher(self, symbol=False): """Open file list management dialog box.""" if self.fileswitcher is not None and \ self.fileswitcher.is_visible: self.fileswitcher.hide() self.fileswitcher.is_visible = False return if symbol: self.fileswitcher.plugin = self.editor self.fileswitcher.set_search_text('@') else: self.fileswitcher.set_search_text('') self.fileswitcher.show() self.fileswitcher.is_visible = True def open_symbolfinder(self): """Open symbol list management dialog box.""" self.open_fileswitcher(symbol=True) def add_to_fileswitcher(self, plugin, tabs, data, icon): """Add a plugin to the File Switcher.""" if self.fileswitcher is None: from spyder.widgets.fileswitcher import FileSwitcher self.fileswitcher = FileSwitcher(self, plugin, tabs, data, icon) else: self.fileswitcher.add_plugin(plugin, tabs, data, icon) self.fileswitcher.sig_goto_file.connect( plugin.get_current_tab_manager().set_stack_index) # ---- Check for Spyder Updates def _check_updates_ready(self): """Called by WorkerUpdates when ready""" from spyder.widgets.helperwidgets import MessageCheckBox # feedback` = False is used on startup, so only positive feedback is # given. `feedback` = True is used when after startup (when using the # menu action, and gives feeback if updates are, or are not found. feedback = self.give_updates_feedback # Get results from worker update_available = self.worker_updates.update_available latest_release = self.worker_updates.latest_release error_msg = self.worker_updates.error url_r = __project_url__ + '/releases' url_i = 'https://docs.spyder-ide.org/installation.html' # Define the custom QMessageBox box = MessageCheckBox(icon=QMessageBox.Information, parent=self) box.setWindowTitle(_("Spyder updates")) box.set_checkbox_text(_("Check for updates on startup")) box.setStandardButtons(QMessageBox.Ok) box.setDefaultButton(QMessageBox.Ok) # Adjust the checkbox depending on the stored configuration section, option = 'main', 'check_updates_on_startup' check_updates = CONF.get(section, option) box.set_checked(check_updates) if error_msg is not None: msg = error_msg box.setText(msg) box.set_check_visible(False) box.exec_() check_updates = box.is_checked() else: if update_available: anaconda_msg = '' if 'Anaconda' in sys.version or 'conda-forge' in sys.version: anaconda_msg = _("<hr><b>IMPORTANT NOTE:</b> It seems " "that you are using Spyder with " "<b>Anaconda/Miniconda</b>. Please " "<b>don't</b> use <code>pip</code> to " "update it as that will probably break " "your installation.<br><br>" "Instead, please wait until new conda " "packages are available and use " "<code>conda</code> to perform the " "update.<hr>") msg = _("<b>Spyder %s is available!</b> <br><br>Please use " "your package manager to update Spyder or go to our " "<a href=\"%s\">Releases</a> page to download this " "new version. <br><br>If you are not sure how to " "proceed to update Spyder please refer to our " " <a href=\"%s\">Installation</a> instructions." "") % (latest_release, url_r, url_i) msg += '<br>' + anaconda_msg box.setText(msg) box.set_check_visible(True) box.exec_() check_updates = box.is_checked() elif feedback: msg = _("Spyder is up to date.") box.setText(msg) box.set_check_visible(False) box.exec_() check_updates = box.is_checked() # Update checkbox based on user interaction CONF.set(section, option, check_updates) # Enable check_updates_action after the thread has finished self.check_updates_action.setDisabled(False) # Provide feeback when clicking menu if check on startup is on self.give_updates_feedback = True @Slot() def check_updates(self, startup=False): """ Check for spyder updates on github releases using a QThread. """ from spyder.workers.updates import WorkerUpdates # Disable check_updates_action while the thread is working self.check_updates_action.setDisabled(True) if self.thread_updates is not None: self.thread_updates.terminate() self.thread_updates = QThread(self) self.worker_updates = WorkerUpdates(self, startup=startup) self.worker_updates.sig_ready.connect(self._check_updates_ready) self.worker_updates.sig_ready.connect(self.thread_updates.quit) self.worker_updates.moveToThread(self.thread_updates) self.thread_updates.started.connect(self.worker_updates.start) self.thread_updates.start() # --- For OpenGL def _test_setting_opengl(self, option): """Get the current OpenGL implementation in use""" if option == 'software': return QCoreApplication.testAttribute(Qt.AA_UseSoftwareOpenGL) elif option == 'desktop': return QCoreApplication.testAttribute(Qt.AA_UseDesktopOpenGL) elif option == 'gles': return QCoreApplication.testAttribute(Qt.AA_UseOpenGLES) #============================================================================== # Utilities to create the 'main' function #============================================================================== def initialize(): """Initialize Qt, patching sys.exit and eventually setting up ETS""" # This doesn't create our QApplication, just holds a reference to # MAIN_APP, created above to show our splash screen as early as # possible app = qapplication() # --- Set application icon app.setWindowIcon(APP_ICON) #----Monkey patching QApplication class FakeQApplication(QApplication): """Spyder's fake QApplication""" def __init__(self, args): self = app # analysis:ignore @staticmethod def exec_(): """Do nothing because the Qt mainloop is already running""" pass from qtpy import QtWidgets QtWidgets.QApplication = FakeQApplication # ----Monkey patching sys.exit def fake_sys_exit(arg=[]): pass sys.exit = fake_sys_exit # ----Monkey patching sys.excepthook to avoid crashes in PyQt 5.5+ if PYQT5: def spy_excepthook(type_, value, tback): sys.__excepthook__(type_, value, tback) sys.excepthook = spy_excepthook # Removing arguments from sys.argv as in standard Python interpreter sys.argv = [''] # Selecting Qt4 backend for Enthought Tool Suite (if installed) try: from enthought.etsconfig.api import ETSConfig ETSConfig.toolkit = 'qt4' except ImportError: pass return app class Spy(object): """ Inspect Spyder internals Attributes: app Reference to main QApplication object window Reference to spyder.MainWindow widget """ def __init__(self, app, window): self.app = app self.window = window def __dir__(self): return list(self.__dict__.keys()) +\ [x for x in dir(self.__class__) if x[0] != '_'] def versions(self): return get_versions() def run_spyder(app, options, args): """ Create and show Spyder's main window Start QApplication event loop """ #TODO: insert here # Main window main = MainWindow(options) try: main.setup() except BaseException: if main.console is not None: try: main.console.shell.exit_interpreter() except BaseException: pass raise main.show() main.post_visible_setup() if main.console: main.console.shell.interpreter.namespace['spy'] = \ Spy(app=app, window=main) # Open external files passed as args if args: for a in args: main.open_external_file(a) # Don't show icons in menus for Mac if sys.platform == 'darwin': QCoreApplication.setAttribute(Qt.AA_DontShowIconsInMenus, True) # Open external files with our Mac app if running_in_mac_app(): app.sig_open_external_file.connect(main.open_external_file) # To give focus again to the last focused widget after restoring # the window app.focusChanged.connect(main.change_last_focused_widget) if not running_under_pytest(): app.exec_() return main #============================================================================== # Main #============================================================================== def main(): """Main function""" # **** For Pytest **** # We need to create MainWindow **here** to avoid passing pytest # options to Spyder if running_under_pytest(): try: from unittest.mock import Mock except ImportError: from mock import Mock # Python 2 options = Mock() options.working_directory = None options.profile = False options.multithreaded = False options.new_instance = False options.project = None options.window_title = None options.opengl_implementation = None options.debug_info = None options.debug_output = None if CONF.get('main', 'opengl') != 'automatic': option = CONF.get('main', 'opengl') set_opengl_implementation(option) app = initialize() window = run_spyder(app, options, None) return window # **** Collect command line options **** # Note regarding Options: # It's important to collect options before monkey patching sys.exit, # otherwise, argparse won't be able to exit if --help option is passed options, args = get_options() # **** Set OpenGL implementation to use **** if options.opengl_implementation: option = options.opengl_implementation set_opengl_implementation(option) else: if CONF.get('main', 'opengl') != 'automatic': option = CONF.get('main', 'opengl') set_opengl_implementation(option) # **** Handle hide_console option **** if options.show_console: print("(Deprecated) --show console does nothing, now the default " " behavior is to show the console, use --hide-console if you " "want to hide it") if set_attached_console_visible is not None: set_attached_console_visible(not options.hide_console or options.reset_config_files or options.reset_to_defaults or options.optimize or bool(get_debug_level())) # **** Set debugging info **** setup_logging(options) # **** Create the application **** app = initialize() # **** Handle other options **** if options.reset_config_files: # <!> Remove all configuration files! reset_config_files() return elif options.reset_to_defaults: # Reset Spyder settings to defaults CONF.reset_to_defaults(save=True) return elif options.optimize: # Optimize the whole Spyder's source code directory import spyder programs.run_python_script(module="compileall", args=[spyder.__path__[0]], p_args=['-O']) return # **** Show crash dialog **** if CONF.get('main', 'crash', False) and not DEV: CONF.set('main', 'crash', False) if SPLASH is not None: SPLASH.hide() QMessageBox.information( None, "Spyder", "Spyder crashed during last session.<br><br>" "If Spyder does not start at all and <u>before submitting a " "bug report</u>, please try to reset settings to defaults by " "running Spyder with the command line option '--reset':<br>" "<span style=\'color: #555555\'><b>spyder --reset</b></span>" "<br><br>" "<span style=\'color: #ff5555\'><b>Warning:</b></span> " "this command will remove all your Spyder configuration files " "located in '%s').<br><br>" "If Spyder still fails to launch, you should consult our " "comprehensive <b><a href=\"%s\">Troubleshooting Guide</a></b>, " "which when followed carefully solves the vast majority of " "crashes; also, take " "the time to search for <a href=\"%s\">known bugs</a> or " "<a href=\"%s\">discussions</a> matching your situation before " "submitting a report to our <a href=\"%s\">issue tracker</a>. " "Your feedback will always be greatly appreciated." "" % (get_conf_path(), __trouble_url__, __project_url__, __forum_url__, __project_url__)) # **** Create main window **** mainwindow = None try: mainwindow = run_spyder(app, options, args) except FontError as fontError: QMessageBox.information(None, "Spyder", "Spyder was unable to load the <i>Spyder 3</i> " "icon theme. That's why it's going to fallback to the " "theme used in Spyder 2.<br><br>" "For that, please close this window and start Spyder again.") CONF.set('appearance', 'icon_theme', 'spyder 2') except BaseException: CONF.set('main', 'crash', True) import traceback traceback.print_exc(file=STDERR) traceback.print_exc(file=open('spyder_crash.log', 'w')) if mainwindow is None: # An exception occured if SPLASH is not None: SPLASH.hide() return ORIGINAL_SYS_EXIT() if __name__ == "__main__": main()
exposition.py
#!/usr/bin/python from __future__ import unicode_literals import base64 import os import socket import sys import threading from contextlib import closing from wsgiref.simple_server import make_server, WSGIRequestHandler from prometheus_client import core from prometheus_client import openmetrics try: from BaseHTTPServer import BaseHTTPRequestHandler, HTTPServer from SocketServer import ThreadingMixIn from urllib2 import build_opener, Request, HTTPHandler from urllib import quote_plus from urlparse import parse_qs, urlparse except ImportError: # Python 3 from http.server import BaseHTTPRequestHandler, HTTPServer from socketserver import ThreadingMixIn from urllib.request import build_opener, Request, HTTPHandler from urllib.parse import quote_plus, parse_qs, urlparse CONTENT_TYPE_LATEST = str('text/plain; version=0.0.4; charset=utf-8') '''Content type of the latest text format''' PYTHON26_OR_OLDER = sys.version_info < (2, 7) def make_wsgi_app(registry=core.REGISTRY): '''Create a WSGI app which serves the metrics from a registry.''' def prometheus_app(environ, start_response): params = parse_qs(environ.get('QUERY_STRING', '')) r = registry encoder, content_type = choose_encoder(environ.get('HTTP_ACCEPT')) if 'name[]' in params: r = r.restricted_registry(params['name[]']) output = encoder(r) status = str('200 OK') headers = [(str('Content-type'), content_type)] start_response(status, headers) return [output] return prometheus_app class _SilentHandler(WSGIRequestHandler): """WSGI handler that does not log requests.""" def log_message(self, format, *args): """Log nothing.""" def start_wsgi_server(port, addr='', registry=core.REGISTRY): """Starts a WSGI server for prometheus metrics as a daemon thread.""" app = make_wsgi_app(registry) httpd = make_server(addr, port, app, handler_class=_SilentHandler) t = threading.Thread(target=httpd.serve_forever) t.daemon = True t.start() def generate_latest(registry=core.REGISTRY): '''Returns the metrics from the registry in latest text format as a string.''' output = [] for metric in registry.collect(): mname = metric.name mtype = metric.type # Munging from OpenMetrics into Prometheus format. if mtype == 'counter': mname = mname + '_total' elif mtype == 'info': mname = mname + '_info' mtype = 'gauge' elif mtype == 'stateset': mtype = 'gauge' elif mtype == 'gaugehistogram': # A gauge histogram is really a gauge, # but this captures the strucutre better. mtype = 'histogram' elif mtype == 'unknown': mtype = 'untyped' output.append('# HELP {0} {1}'.format( mname, metric.documentation.replace('\\', r'\\').replace('\n', r'\n'))) output.append('\n# TYPE {0} {1}\n'.format(mname, mtype)) for s in metric.samples: if s.name == metric.name + '_created': continue # Ignore OpenMetrics specific sample. TODO: Make these into a gauge. if s.labels: labelstr = '{{{0}}}'.format(','.join( ['{0}="{1}"'.format( k, v.replace('\\', r'\\').replace('\n', r'\n').replace('"', r'\"')) for k, v in sorted(s.labels.items())])) else: labelstr = '' timestamp = '' if s.timestamp is not None: # Convert to milliseconds. timestamp = ' {0:d}'.format(int(float(s.timestamp) * 1000)) output.append('{0}{1} {2}{3}\n'.format( s.name, labelstr, core._floatToGoString(s.value), timestamp)) return ''.join(output).encode('utf-8') def choose_encoder(accept_header): accept_header = accept_header or '' for accepted in accept_header.split(','): if accepted == 'text/openmetrics; version=0.0.1': return (openmetrics.exposition.generate_latest, openmetrics.exposition.CONTENT_TYPE_LATEST) return (generate_latest, CONTENT_TYPE_LATEST) class MetricsHandler(BaseHTTPRequestHandler): """HTTP handler that gives metrics from ``core.REGISTRY``.""" registry = core.REGISTRY def do_GET(self): registry = self.registry params = parse_qs(urlparse(self.path).query) encoder, content_type = choose_encoder(self.headers.get('Accept')) if 'name[]' in params: registry = registry.restricted_registry(params['name[]']) try: output = encoder(registry) except: self.send_error(500, 'error generating metric output') raise self.send_response(200) self.send_header('Content-Type', content_type) self.end_headers() self.wfile.write(output) def log_message(self, format, *args): """Log nothing.""" @staticmethod def factory(registry): """Returns a dynamic MetricsHandler class tied to the passed registry. """ # This implementation relies on MetricsHandler.registry # (defined above and defaulted to core.REGISTRY). # As we have unicode_literals, we need to create a str() # object for type(). cls_name = str('MetricsHandler') MyMetricsHandler = type(cls_name, (MetricsHandler, object), {"registry": registry}) return MyMetricsHandler class _ThreadingSimpleServer(ThreadingMixIn, HTTPServer): """Thread per request HTTP server.""" def start_http_server(port, addr='', registry=core.REGISTRY): """Starts an HTTP server for prometheus metrics as a daemon thread""" CustomMetricsHandler = MetricsHandler.factory(registry) httpd = _ThreadingSimpleServer((addr, port), CustomMetricsHandler) t = threading.Thread(target=httpd.serve_forever) t.daemon = True t.start() def write_to_textfile(path, registry): '''Write metrics to the given path. This is intended for use with the Node exporter textfile collector. The path must end in .prom for the textfile collector to process it.''' tmppath = '%s.%s.%s' % (path, os.getpid(), threading.current_thread().ident) with open(tmppath, 'wb') as f: f.write(generate_latest(registry)) # rename(2) is atomic. os.rename(tmppath, path) def default_handler(url, method, timeout, headers, data): '''Default handler that implements HTTP/HTTPS connections. Used by the push_to_gateway functions. Can be re-used by other handlers.''' def handle(): request = Request(url, data=data) request.get_method = lambda: method for k, v in headers: request.add_header(k, v) resp = build_opener(HTTPHandler).open(request, timeout=timeout) if resp.code >= 400: raise IOError("error talking to pushgateway: {0} {1}".format( resp.code, resp.msg)) return handle def basic_auth_handler(url, method, timeout, headers, data, username=None, password=None): '''Handler that implements HTTP/HTTPS connections with Basic Auth. Sets auth headers using supplied 'username' and 'password', if set. Used by the push_to_gateway functions. Can be re-used by other handlers.''' def handle(): '''Handler that implements HTTP Basic Auth. ''' if username is not None and password is not None: auth_value = '{0}:{1}'.format(username, password).encode('utf-8') auth_token = base64.b64encode(auth_value) auth_header = b'Basic ' + auth_token headers.append(['Authorization', auth_header]) default_handler(url, method, timeout, headers, data)() return handle def push_to_gateway( gateway, job, registry, grouping_key=None, timeout=30, handler=default_handler): '''Push metrics to the given pushgateway. `gateway` the url for your push gateway. Either of the form 'http://pushgateway.local', or 'pushgateway.local'. Scheme defaults to 'http' if none is provided `job` is the job label to be attached to all pushed metrics `registry` is an instance of CollectorRegistry `grouping_key` please see the pushgateway documentation for details. Defaults to None `timeout` is how long push will attempt to connect before giving up. Defaults to 30s, can be set to None for no timeout. `handler` is an optional function which can be provided to perform requests to the 'gateway'. Defaults to None, in which case an http or https request will be carried out by a default handler. If not None, the argument must be a function which accepts the following arguments: url, method, timeout, headers, and content May be used to implement additional functionality not supported by the built-in default handler (such as SSL client certicates, and HTTP authentication mechanisms). 'url' is the URL for the request, the 'gateway' argument described earlier will form the basis of this URL. 'method' is the HTTP method which should be used when carrying out the request. 'timeout' requests not successfully completed after this many seconds should be aborted. If timeout is None, then the handler should not set a timeout. 'headers' is a list of ("header-name","header-value") tuples which must be passed to the pushgateway in the form of HTTP request headers. The function should raise an exception (e.g. IOError) on failure. 'content' is the data which should be used to form the HTTP Message Body. This overwrites all metrics with the same job and grouping_key. This uses the PUT HTTP method.''' _use_gateway('PUT', gateway, job, registry, grouping_key, timeout, handler) def pushadd_to_gateway( gateway, job, registry, grouping_key=None, timeout=30, handler=default_handler): '''PushAdd metrics to the given pushgateway. `gateway` the url for your push gateway. Either of the form 'http://pushgateway.local', or 'pushgateway.local'. Scheme defaults to 'http' if none is provided `job` is the job label to be attached to all pushed metrics `registry` is an instance of CollectorRegistry `grouping_key` please see the pushgateway documentation for details. Defaults to None `timeout` is how long push will attempt to connect before giving up. Defaults to 30s, can be set to None for no timeout. `handler` is an optional function which can be provided to perform requests to the 'gateway'. Defaults to None, in which case an http or https request will be carried out by a default handler. See the 'prometheus_client.push_to_gateway' documentation for implementation requirements. This replaces metrics with the same name, job and grouping_key. This uses the POST HTTP method.''' _use_gateway('POST', gateway, job, registry, grouping_key, timeout, handler) def delete_from_gateway( gateway, job, grouping_key=None, timeout=30, handler=default_handler): '''Delete metrics from the given pushgateway. `gateway` the url for your push gateway. Either of the form 'http://pushgateway.local', or 'pushgateway.local'. Scheme defaults to 'http' if none is provided `job` is the job label to be attached to all pushed metrics `grouping_key` please see the pushgateway documentation for details. Defaults to None `timeout` is how long delete will attempt to connect before giving up. Defaults to 30s, can be set to None for no timeout. `handler` is an optional function which can be provided to perform requests to the 'gateway'. Defaults to None, in which case an http or https request will be carried out by a default handler. See the 'prometheus_client.push_to_gateway' documentation for implementation requirements. This deletes metrics with the given job and grouping_key. This uses the DELETE HTTP method.''' _use_gateway('DELETE', gateway, job, None, grouping_key, timeout, handler) def _use_gateway(method, gateway, job, registry, grouping_key, timeout, handler): gateway_url = urlparse(gateway) if not gateway_url.scheme or (PYTHON26_OR_OLDER and gateway_url.scheme not in ['http', 'https']): gateway = 'http://{0}'.format(gateway) url = '{0}/metrics/job/{1}'.format(gateway, quote_plus(job)) data = b'' if method != 'DELETE': data = generate_latest(registry) if grouping_key is None: grouping_key = {} url += ''.join( '/{0}/{1}'.format(quote_plus(str(k)), quote_plus(str(v))) for k, v in sorted(grouping_key.items())) handler( url=url, method=method, timeout=timeout, headers=[('Content-Type', CONTENT_TYPE_LATEST)], data=data, )() def instance_ip_grouping_key(): '''Grouping key with instance set to the IP Address of this host.''' with closing(socket.socket(socket.AF_INET, socket.SOCK_DGRAM)) as s: s.connect(('localhost', 0)) return {'instance': s.getsockname()[0]}
agent.py
# Copyright 2022 The Flax Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Agent utilities, incl. choosing the move and running in separate process.""" import collections import functools import multiprocessing from typing import Any, Callable import flax import jax import numpy as np import env_utils @functools.partial(jax.jit, static_argnums=0) def policy_action( apply_fn: Callable[..., Any], params: flax.core.frozen_dict.FrozenDict, state: np.ndarray): """Forward pass of the network. Args: params: the parameters of the actor-critic model module: the actor-critic model state: the input for the forward pass Returns: out: a tuple (log_probabilities, values) """ out = apply_fn({'params': params}, state) return out ExpTuple = collections.namedtuple( 'ExpTuple', ['state', 'action', 'reward', 'value', 'log_prob', 'done']) class RemoteSimulator: """Wrap functionality for an agent emulating Atari in a separate process. An object of this class is created for every agent. """ def __init__(self, game: str): """Start the remote process and create Pipe() to communicate with it.""" parent_conn, child_conn = multiprocessing.Pipe() self.proc = multiprocessing.Process( target=rcv_action_send_exp, args=(child_conn, game)) self.proc.daemon = True self.conn = parent_conn self.proc.start() def rcv_action_send_exp(conn, game: str): """Run the remote agents. Receive action from the main learner, perform one step of simulation and send back collected experience. """ env = env_utils.create_env(game, clip_rewards=True) while True: obs = env.reset() done = False # Observations fetched from Atari env need additional batch dimension. state = obs[None, ...] while not done: conn.send(state) action = conn.recv() obs, reward, done, _ = env.step(action) next_state = obs[None, ...] if not done else None experience = (state, action, reward, done) conn.send(experience) if done: break state = next_state
views.py
import logging import re import subprocess import os import sys import traceback import time import json import copy import random import numpy as np import pandas as pd import math import base64 import urllib3 import hashlib from io import BytesIO from datetime import datetime, timedelta from threading import Thread, Lock from urllib.parse import urlencode, urlparse, urlunparse, parse_qs from elasticsearch_dsl import Search from django.http import HttpResponse, JsonResponse from django.shortcuts import render_to_response, redirect from django.template import RequestContext from django.db.models import Count, Sum, F, Value, FloatField, Q, DateTimeField from django.views.decorators.csrf import csrf_exempt from django.views.decorators.cache import never_cache from django.utils import timezone from django.utils.cache import patch_response_headers from django.core.cache import cache from django.conf import settings as djangosettings from django.db import connection from django.template.loaders.app_directories import get_app_template_dirs from django.template.defaulttags import register from django.template.context_processors import csrf from core import chainsql import core.constants as const import core.Customrenderer as Customrenderer from core.common.utils import getPrefix, getContextVariables from core.settings import defaultDatetimeFormat from core.pandajob.SQLLookups import CastDate from core.pandajob.models import Jobsactive4, Jobsdefined4, Jobswaiting4, Jobsarchived4, Jobsarchived, \ GetRWWithPrioJedi3DAYS, RemainedEventsPerCloud3dayswind, CombinedWaitActDefArch4, PandaJob from core.schedresource.models import Schedconfig, SchedconfigJson from core.common.models import Filestable4 from core.common.models import Datasets from core.common.models import FilestableArch from core.common.models import Users from core.common.models import Jobparamstable from core.common.models import JobsStatuslog from core.common.models import Logstable from core.common.models import Jobsdebug from core.common.models import Cloudconfig from core.common.models import Incidents from core.common.models import Pandalog from core.common.models import JediJobRetryHistory from core.common.models import JediTasks from core.common.models import JediTasksOrdered from core.common.models import TasksStatusLog from core.common.models import GetEventsForTask from core.common.models import JediEvents from core.common.models import JediDatasets from core.common.models import JediDatasetContents from core.common.models import JediWorkQueue from core.oauth.models import BPUser from core.compare.modelsCompare import ObjectsComparison from core.filebrowser.ruciowrapper import ruciowrapper from core.settings.local import dbaccess from core.settings.local import PRODSYS from core.settings.local import GRAFANA from core.settings.config import DEPLOYMENT, DB_N_MAX_IN_QUERY, PRMON_LOGS_DIRECTIO_LOCATION from core.libs.TaskProgressPlot import TaskProgressPlot from core.libs.UserProfilePlot import UserProfilePlot from core.libs.TasksErrorCodesAnalyser import TasksErrorCodesAnalyser from core.oauth.utils import login_customrequired from core.utils import is_json_request, extensibleURL, complete_request, is_wildcards, removeParam from core.libs.dropalgorithm import insert_dropped_jobs_to_tmp_table, drop_job_retries from core.libs.cache import getCacheEntry, setCacheEntry, set_cache_timeout, getCacheData from core.libs.exlib import insert_to_temp_table, get_tmp_table_name, create_temporary_table from core.libs.exlib import is_timestamp, get_file_info, convert_bytes, convert_hs06, dictfetchall from core.libs.eventservice import event_summary_for_task from core.libs.task import input_summary_for_task, datasets_for_task, \ get_task_params, humanize_task_params, get_hs06s_summary_for_task, cleanTaskList, get_task_flow_data, \ get_datasets_for_tasklist from core.libs.task import get_dataset_locality, is_event_service_task, \ get_prod_slice_by_taskid, get_task_timewindow, get_task_time_archive_flag, get_logs_by_taskid, task_summary_dict, \ wg_task_summary from core.libs.job import is_event_service, get_job_list, calc_jobs_metrics, add_job_category, \ job_states_count_by_param, is_job_active, get_job_queuetime, get_job_walltime, \ getSequentialRetries, getSequentialRetries_ES, getSequentialRetries_ESupstream, is_debug_mode, clean_job_list from core.libs.eventservice import job_suppression from core.libs.jobmetadata import addJobMetadata from core.libs.error import errorInfo, getErrorDescription, get_job_error_desc from core.libs.site import get_pq_metrics from core.libs.bpuser import get_relevant_links, filterErrorData from core.libs.user import prepare_user_dash_plots, get_panda_user_stats, humanize_metrics from core.libs.elasticsearch import create_esatlas_connection, get_payloadlog from core.libs.sqlcustom import escape_input, preprocess_wild_card_string from core.libs.datetimestrings import datetime_handler, parse_datetime from core.libs.jobconsumers import reconstruct_job_consumers from core.libs.DateEncoder import DateEncoder from core.libs.DateTimeEncoder import DateTimeEncoder from core.pandajob.summary_error import errorSummaryDict, get_error_message_summary from core.pandajob.summary_task import task_summary, job_summary_for_task, job_summary_for_task_light, \ get_job_state_summary_for_tasklist, get_top_memory_consumers from core.pandajob.summary_site import cloud_site_summary, vo_summary, site_summary_dict from core.pandajob.summary_wg import wg_summary from core.pandajob.summary_wn import wn_summary from core.pandajob.summary_os import objectstore_summary from core.pandajob.summary_user import user_summary_dict from core.pandajob.utils import job_summary_dict from core.iDDS.algorithms import checkIfIddsTask from core.dashboards.jobsummaryregion import get_job_summary_region, prepare_job_summary_region, prettify_json_output from core.dashboards.jobsummarynucleus import get_job_summary_nucleus, prepare_job_summary_nucleus, get_world_hs06_summary from core.dashboards.eventservice import get_es_job_summary_region, prepare_es_job_summary_region from core.schedresource.utils import get_pq_atlas_sites, get_panda_queues, get_basic_info_for_pqs, \ get_panda_resource, get_pq_clouds, get_pq_object_store_path inilock = Lock() DateTimeField.register_lookup(CastDate) try: hostname = subprocess.getoutput('hostname') if hostname.find('.') > 0: hostname = hostname[:hostname.find('.')] except: hostname = '' cloudList = ['CA', 'CERN', 'DE', 'ES', 'FR', 'IT', 'ND', 'NL', 'RU', 'TW', 'UK', 'US'] statelist = ['pending', 'defined', 'waiting', 'assigned', 'throttled', 'activated', 'sent', 'starting', 'running', 'holding', 'transferring', 'merging', 'finished', 'failed', 'cancelled', 'closed'] sitestatelist = ['defined', 'waiting', 'assigned', 'throttled', 'activated', 'sent', 'starting', 'running', 'holding', 'merging', 'transferring', 'finished', 'failed', 'cancelled', 'closed'] eventservicestatelist = ['ready', 'sent', 'running', 'finished', 'cancelled', 'discarded', 'done', 'failed', 'fatal','merged', 'corrupted'] taskstatelist = ['registered', 'defined', 'assigning', 'ready', 'pending', 'scouting', 'scouted', 'running', 'prepared', 'done', 'failed', 'finished', 'aborting', 'aborted', 'finishing', 'topreprocess', 'preprocessing', 'tobroken', 'broken', 'toretry', 'toincexec', 'rerefine'] taskstatelist_short = ['reg', 'def', 'assgn', 'rdy', 'pend', 'scout', 'sctd', 'run', 'prep', 'done', 'fail', 'finish', 'abrtg', 'abrtd', 'finishg', 'toprep', 'preprc', 'tobrok', 'broken', 'retry', 'incexe', 'refine'] taskstatedict = [] for i in range(0, len(taskstatelist)): tsdict = {'state': taskstatelist[i], 'short': taskstatelist_short[i]} taskstatedict.append(tsdict) errorcodelist = [ {'name': 'brokerage', 'error': 'brokerageerrorcode', 'diag': 'brokerageerrordiag'}, {'name': 'ddm', 'error': 'ddmerrorcode', 'diag': 'ddmerrordiag'}, {'name': 'exe', 'error': 'exeerrorcode', 'diag': 'exeerrordiag'}, {'name': 'jobdispatcher', 'error': 'jobdispatchererrorcode', 'diag': 'jobdispatchererrordiag'}, {'name': 'pilot', 'error': 'piloterrorcode', 'diag': 'piloterrordiag'}, {'name': 'sup', 'error': 'superrorcode', 'diag': 'superrordiag'}, {'name': 'taskbuffer', 'error': 'taskbuffererrorcode', 'diag': 'taskbuffererrordiag'}, {'name': 'transformation', 'error': 'transexitcode', 'diag': None}, ] _logger = logging.getLogger('bigpandamon') notcachedRemoteAddress = ['188.184.185.129', '188.184.116.46'] LAST_N_HOURS_MAX = 0 # JOB_LIMIT = 0 # TFIRST = timezone.now() # TLAST = timezone.now() - timedelta(hours=2400) PLOW = 1000000 PHIGH = -1000000 standard_fields = ['processingtype', 'computingsite', 'jobstatus', 'prodsourcelabel', 'produsername', 'jeditaskid', 'workinggroup', 'transformation', 'cloud', 'homepackage', 'inputfileproject', 'inputfiletype', 'attemptnr', 'specialhandling', 'priorityrange', 'reqid', 'minramcount', 'eventservice', 'jobsubstatus', 'nucleus','gshare', 'resourcetype'] standard_sitefields = ['region', 'gocname', 'nickname', 'status', 'tier', 'comment_field', 'cloud', 'allowdirectaccess', 'allowfax', 'copytool', 'faxredirector', 'retry', 'timefloor'] standard_taskfields = [ 'workqueue_id', 'tasktype', 'superstatus', 'status', 'corecount', 'taskpriority', 'currentpriority', 'username', 'transuses', 'transpath', 'workinggroup', 'processingtype', 'cloud', 'campaign', 'project', 'stream', 'tag', 'reqid', 'ramcount', 'nucleus', 'eventservice', 'gshare', 'container_name', 'attemptnr', 'site'] standard_errorfields = ['cloud', 'computingsite', 'eventservice', 'produsername', 'jeditaskid', 'jobstatus', 'processingtype', 'prodsourcelabel', 'specialhandling', 'taskid', 'transformation', 'workinggroup', 'reqid', 'computingelement'] VONAME = {'atlas': 'ATLAS', 'bigpanda': 'BigPanDA', 'htcondor': 'HTCondor', 'core': 'LSST', '': ''} VOMODE = ' ' @register.filter(takes_context=True) def get_count(dict, key): return dict[key]['count'] @register.filter(takes_context=True) def get_tk(dict, key): return dict[key]['tk'] @register.filter(takes_context=True) def get_item(dictionary, key): return dictionary.get(key) @register.simple_tag(takes_context=True) def get_renderedrow(context, **kwargs): if kwargs['type']=="world_nucleussummary": kwargs['statelist'] = statelist return Customrenderer.world_nucleussummary(context, kwargs) if kwargs['type']=="world_computingsitesummary": kwargs['statelist'] = statelist return Customrenderer.world_computingsitesummary(context, kwargs) if kwargs['type'] == "region_sitesummary": kwargs['statelist'] = statelist return Customrenderer.region_sitesummary(context, kwargs) def initRequest(request, callselfmon=True): global VOMODE, ENV, hostname ENV = {} VOMODE = '' if dbaccess['default']['ENGINE'].find('oracle') >= 0: VOMODE = 'atlas' # VOMODE = 'devtest' request.session['req_init_time'] = time.time() request.session['IS_TESTER'] = False if VOMODE == 'atlas': if "MELLON_SAML_RESPONSE" in request.META and base64.b64decode(request.META['MELLON_SAML_RESPONSE']): if "ADFS_FULLNAME" in request.META: request.session['ADFS_FULLNAME'] = request.META['ADFS_FULLNAME'] if "ADFS_EMAIL" in request.META: request.session['ADFS_EMAIL'] = request.META['ADFS_EMAIL'] if "ADFS_FIRSTNAME" in request.META: request.session['ADFS_FIRSTNAME'] = request.META['ADFS_FIRSTNAME'] if "ADFS_LASTNAME" in request.META: request.session['ADFS_LASTNAME'] = request.META['ADFS_LASTNAME'] if "ADFS_LOGIN" in request.META: request.session['ADFS_LOGIN'] = request.META['ADFS_LOGIN'] user = None try: user = BPUser.objects.get(username=request.session['ADFS_LOGIN']) request.session['IS_TESTER'] = user.is_tester request.session['USER_ID'] = user.id except BPUser.DoesNotExist: user = BPUser.objects.create_user(username=request.session['ADFS_LOGIN'], email=request.session['ADFS_EMAIL'], first_name=request.session['ADFS_FIRSTNAME'], last_name=request.session['ADFS_LASTNAME']) user.set_unusable_password() user.save() # if VOMODE == 'devtest': # request.session['ADFS_FULLNAME'] = '' # request.session['ADFS_EMAIL'] = '' # request.session['ADFS_FIRSTNAME'] = '' # request.session['ADFS_LASTNAME'] = '' # request.session['ADFS_LOGIN'] = '' # # user = None # user = BPUser.objects.get(username=request.session['ADFS_LOGIN']) # request.session['IS_TESTER'] = user.is_tester # request.user = user # print("IP Address for debug-toolbar: " + request.META['REMOTE_ADDR']) viewParams = {} # if not 'viewParams' in request.session: request.session['viewParams'] = viewParams # creating a dict in session to store long urls as it will not be saved to session storage # Session is NOT modified, because this alters sub dict request.session['urls_cut'] = {} url = request.get_full_path() u = urlparse(url) query = parse_qs(u.query) query.pop('timestamp', None) try: u = u._replace(query=urlencode(query, True)) except UnicodeEncodeError: data = { 'errormessage': 'Error appeared while encoding URL!' } return False, render_to_response('errorPage.html', data, content_type='text/html') request.session['urls_cut']['notimestampurl'] = urlunparse(u) + ('&' if len(query) > 0 else '?') notimerangeurl = extensibleURL(request) timerange_params = [ 'days', 'hours', 'date_from', 'date_to', 'endtimerange', 'endtime_from', 'endtime_to', 'earlierthan', 'earlierthandays' ] for trp in timerange_params: notimerangeurl = removeParam(notimerangeurl, trp, mode='extensible') request.session['urls_cut']['notimerangeurl'] = notimerangeurl if 'timerange' in request.session: del request.session['timerange'] #if 'USER' in os.environ and os.environ['USER'] != 'apache': # request.session['debug'] = True if 'debug' in request.GET and request.GET['debug'] == 'insider': request.session['debug'] = True djangosettings.DEBUG = True elif djangosettings.DEBUG is True: request.session['debug'] = True else: request.session['debug'] = False djangosettings.DEBUG = False if len(hostname) > 0: request.session['hostname'] = hostname #self monitor if callselfmon: initSelfMonitor(request) # Set default page lifetime in the http header, for the use of the front end cache set_cache_timeout(request) # Is it an https connection with a legit cert presented by the user? if 'SSL_CLIENT_S_DN' in request.META or 'HTTP_X_SSL_CLIENT_S_DN' in request.META: if 'SSL_CLIENT_S_DN' in request.META: request.session['userdn'] = request.META['SSL_CLIENT_S_DN'] else: request.session['userdn'] = request.META['HTTP_X_SSL_CLIENT_S_DN'] userrec = Users.objects.filter(dn__startswith=request.session['userdn']).values() if len(userrec) > 0: request.session['username'] = userrec[0]['name'] if DEPLOYMENT == 'ORACLE_ATLAS': VOMODE = 'atlas' request.session['viewParams']['MON_VO'] = 'ATLAS' else: VOMODE = DEPLOYMENT #request.session['viewParams']['MON_VO'] = DEPLOYMENT # remove xurls from session if it is kept from previous requests if 'xurls' in request.session: try: del request.session['xurls'] except: pass requestParams = {} request.session['requestParams'] = requestParams allowedemptyparams = ('json', 'snap', 'dt', 'dialogs', 'pandaids', 'workersstats', 'keephtml') if request.method == 'POST': for p in request.POST: if p in ('csrfmiddlewaretoken',): continue pval = request.POST[p] pval = pval.replace('+', ' ') request.session['requestParams'][p.lower()] = pval else: for p in request.GET: pval = request.GET[p] ####if injection### if 'script' in pval.lower() and ('</' in pval.lower() or '/>' in pval.lower()): data = { 'viewParams': request.session['viewParams'], 'requestParams': request.session['requestParams'], "errormessage": "Illegal value '%s' for %s" % (pval, p), } return False, render_to_response('errorPage.html', data, content_type='text/html') pval = pval.replace('+', ' ') pval = pval.replace("\'", '') if p.lower() != 'batchid': # Special requester exception pval = pval.replace('#', '') ## is it int, if it's supposed to be? if p.lower() in ( 'days', 'hours', 'limit', 'display_limit', 'taskid', 'jeditaskid', 'jobsetid', 'reqid', 'corecount', 'taskpriority', 'priority', 'attemptnr', 'statenotupdated', 'tasknotupdated', 'corepower', 'wansourcelimit', 'wansinklimit', 'nqueue', 'nodes', 'queuehours', 'memory', 'maxtime', 'space', 'maxinputsize', 'timefloor', 'depthboost', 'idlepilotsupression', 'pilotlimit', 'transferringlimit', 'cachedse', 'stageinretry', 'stageoutretry', 'maxwdir', 'minmemory', 'maxmemory', 'minrss', 'maxrss', 'mintime', 'nlastnightlies'): try: requestVal = request.GET[p] if '|' in requestVal: values = requestVal.split('|') for value in values: i = int(value) elif requestVal == 'Not specified': # allow 'Not specified' value for int parameters i = requestVal else: i = int(requestVal) except: data = { 'viewParams': request.session['viewParams'], 'requestParams': request.session['requestParams'], "errormessage": "Illegal value '%s' for %s" % (pval, p), } return False, render_to_response('errorPage.html', data, content_type='text/html') if p.lower() in ('date_from', 'date_to'): try: requestVal = request.GET[p] i = parse_datetime(requestVal) except: data = { 'viewParams': request.session['viewParams'], 'requestParams': request.session['requestParams'], "errormessage": "Illegal value '%s' for %s" % (pval, p), } return False, render_to_response('errorPage.html', data, content_type='text/html') if p.lower() not in allowedemptyparams and len(pval) == 0: data = { 'viewParams': request.session['viewParams'], 'requestParams': request.session['requestParams'], "errormessage": "Empty value '%s' for %s" % (pval, p), } return False, render_to_response('errorPage.html', data, content_type='text/html') if p.lower() in ('jobname', 'taskname', ) and len(pval) > 0 and ('%' in pval or '%s' in pval): data = { 'viewParams': request.session['viewParams'], 'requestParams': request.session['requestParams'], "errormessage": "Use * symbol for pattern search instead of % for {}".format(p), } return False, render_to_response('errorPage.html', data, content_type='text/html') request.session['requestParams'][p.lower()] = pval return True, None def setupView(request, opmode='', hours=0, limit=-99, querytype='job', wildCardExt=False): viewParams = {} if not 'viewParams' in request.session: request.session['viewParams'] = viewParams extraQueryString = '(1=1) ' extraQueryFields = [] # params that goes directly to the wildcards processing LAST_N_HOURS_MAX = 0 for paramName, paramVal in request.session['requestParams'].items(): try: request.session['requestParams'][paramName] = urllib.unquote(paramVal) except: request.session['requestParams'][paramName] = paramVal excludeJobNameFromWildCard = True if 'jobname' in request.session['requestParams']: if is_wildcards(request.session['requestParams']['jobname']): excludeJobNameFromWildCard = False processor_type = request.session['requestParams'].get('processor_type', None) if processor_type: if processor_type.lower() == 'cpu': extraQueryString += " AND (cmtconfig not like '%%gpu%%')" if processor_type.lower() == 'gpu': extraQueryString += " AND (cmtconfig like '%%gpu%%')" if 'site' in request.session['requestParams'] and ( request.session['requestParams']['site'] == 'hpc' or not is_wildcards(request.session['requestParams']['site'])): extraQueryFields.append('site') wildSearchFields = [] if querytype == 'job': for field in Jobsactive4._meta.get_fields(): if field.get_internal_type() == 'CharField': if not (field.name == 'jobstatus' or field.name == 'modificationhost' or (excludeJobNameFromWildCard and field.name == 'jobname')): wildSearchFields.append(field.name) if querytype == 'task': for field in JediTasks._meta.get_fields(): if field.get_internal_type() == 'CharField': if not (field.name == 'modificationhost' or field.name in extraQueryFields): wildSearchFields.append(field.name) deepquery = False fields = standard_fields if 'limit' in request.session['requestParams']: request.session['JOB_LIMIT'] = int(request.session['requestParams']['limit']) elif limit != -99 and limit > 0: request.session['JOB_LIMIT'] = limit elif VOMODE == 'atlas': request.session['JOB_LIMIT'] = 20000 else: request.session['JOB_LIMIT'] = 10000 if VOMODE == 'atlas': LAST_N_HOURS_MAX = 12 else: LAST_N_HOURS_MAX = 7 * 24 if VOMODE == 'atlas': if 'cloud' not in fields: fields.append('cloud') if 'atlasrelease' not in fields: fields.append('atlasrelease') if 'produsername' in request.session['requestParams'] or 'jeditaskid' in request.session[ 'requestParams'] or 'user' in request.session['requestParams']: if 'jobsetid' not in fields: fields.append('jobsetid') if ('hours' not in request.session['requestParams']) and ( 'days' not in request.session['requestParams']) and ( 'jobsetid' in request.session['requestParams'] or 'taskid' in request.session[ 'requestParams'] or 'jeditaskid' in request.session['requestParams']): ## Cases where deep query is safe. Unless the time depth is specified in URL. if 'hours' not in request.session['requestParams'] and 'days' not in request.session['requestParams']: deepquery = True else: if 'jobsetid' in fields: fields.remove('jobsetid') else: fields.append('vo') if hours > 0: ## Call param overrides default hours, but not a param on the URL LAST_N_HOURS_MAX = hours ## For site-specific queries, allow longer time window if 'batchid' in request.session['requestParams'] and (hours is None or hours == 0): LAST_N_HOURS_MAX = 12 if 'computingsite' in request.session['requestParams'] and hours is None: LAST_N_HOURS_MAX = 12 if 'jobtype' in request.session['requestParams'] and request.session['requestParams']['jobtype'] == 'eventservice': LAST_N_HOURS_MAX = 2 * 24 ## hours specified in the URL takes priority over the above if 'hours' in request.session['requestParams']: LAST_N_HOURS_MAX = int(request.session['requestParams']['hours']) if 'days' in request.session['requestParams']: LAST_N_HOURS_MAX = int(request.session['requestParams']['days']) * 24 ## Exempt single-job, single-task etc queries from time constraint if 'hours' not in request.session['requestParams'] and 'days' not in request.session['requestParams']: if 'jeditaskid' in request.session['requestParams']: deepquery = True if 'taskid' in request.session['requestParams']: deepquery = True if 'pandaid' in request.session['requestParams']: deepquery = True if 'jobname' in request.session['requestParams']: deepquery = True #if 'batchid' in request.session['requestParams']: deepquery = True if deepquery: opmode = 'notime' hours = LAST_N_HOURS_MAX = 24 * 180 request.session['JOB_LIMIT'] = 999999 if opmode != 'notime': if LAST_N_HOURS_MAX <= 72 and not ('date_from' in request.session['requestParams'] or 'date_to' in request.session['requestParams'] or 'earlierthan' in request.session['requestParams'] or 'earlierthandays' in request.session['requestParams']): request.session['viewParams']['selection'] = ", last %s hours" % LAST_N_HOURS_MAX else: request.session['viewParams']['selection'] = ", last %d days" % (float(LAST_N_HOURS_MAX) / 24.) # if JOB_LIMIT < 999999 and JOB_LIMIT > 0: # viewParams['selection'] += ", <font style='color:#FF8040; size=-1'>Warning: limit %s per job table</font>" % JOB_LIMIT request.session['viewParams']['selection'] += ". <b>Params:</b> " # if 'days' not in requestParams: # viewParams['selection'] += "hours=%s" % LAST_N_HOURS_MAX # else: # viewParams['selection'] += "days=%s" % int(LAST_N_HOURS_MAX/24) if request.session['JOB_LIMIT'] < 100000 and request.session['JOB_LIMIT'] > 0: request.session['viewParams']['selection'] += " <b>limit=</b>%s" % request.session['JOB_LIMIT'] else: request.session['viewParams']['selection'] = "" for param in request.session['requestParams']: if request.session['requestParams'][param] == 'None': continue if request.session['requestParams'][param] == '': continue if param == 'display_limit': continue if param == 'sortby': continue if param == 'timestamp': continue if param == 'limit' and request.session['JOB_LIMIT'] > 0: continue request.session['viewParams']['selection'] += " <b>%s=</b>%s " % ( param, request.session['requestParams'][param]) startdate = None if 'date_from' in request.session['requestParams']: startdate = parse_datetime(request.session['requestParams']['date_from']) if not startdate: startdate = timezone.now() - timedelta(hours=LAST_N_HOURS_MAX) # startdate = startdate.strftime(defaultDatetimeFormat) enddate = None endtime__castdate__range = None if 'endtimerange' in request.session['requestParams']: endtimerange = request.session['requestParams']['endtimerange'].split('|') endtime__castdate__range = [parse_datetime(endtimerange[0]).strftime(defaultDatetimeFormat), parse_datetime(endtimerange[1]).strftime(defaultDatetimeFormat)] if 'date_to' in request.session['requestParams']: enddate = parse_datetime(request.session['requestParams']['date_to']) if 'earlierthan' in request.session['requestParams']: enddate = timezone.now() - timedelta(hours=float(request.session['requestParams']['earlierthan'])) # enddate = enddate.strftime(defaultDatetimeFormat) if 'earlierthandays' in request.session['requestParams']: enddate = timezone.now() - timedelta(hours=float(request.session['requestParams']['earlierthandays']) * 24) # enddate = enddate.strftime(defaultDatetimeFormat) if enddate == None: enddate = timezone.now() # .strftime(defaultDatetimeFormat) request.session['noenddate'] = True else: request.session['noenddate'] = False if request.path.startswith('/running'): query = {} else: if not endtime__castdate__range: query = { 'modificationtime__castdate__range': [startdate.strftime(defaultDatetimeFormat), enddate.strftime(defaultDatetimeFormat)]} else: query = { 'endtime__castdate__range': [endtime__castdate__range[0], endtime__castdate__range[1]]} request.session['TFIRST'] = startdate # startdate[:18] request.session['TLAST'] = enddate # enddate[:18] request.session['PLOW'] = 1000000 request.session['PHIGH'] = -1000000 ### Add any extensions to the query determined from the URL #query['vo'] = 'atlas' #for vo in ['atlas', 'core']: # if 'HTTP_HOST' in request.META and request.META['HTTP_HOST'].startswith(vo): # query['vo'] = vo for param in request.session['requestParams']: if param in ('hours', 'days'): continue elif param == 'cloud' and request.session['requestParams'][param] == 'All': continue elif param == 'workinggroup': if request.session['requestParams'][param] and not is_wildcards(request.session['requestParams'][param]): query[param] = request.session['requestParams'][param] elif param == 'harvesterinstance' or param == 'harvesterid': val = request.session['requestParams'][param] if val == 'Not specified': extraQueryString += " AND ((schedulerid not like 'harvester%%') or (schedulerid = '') or (schedulerid is null))" elif val == 'all': query['schedulerid__startswith'] = 'harvester' else: query['schedulerid'] = 'harvester-'+val elif param == 'schedulerid': if 'harvester-*' in request.session['requestParams'][param]: query['schedulerid__startswith'] = 'harvester' else: val = request.session['requestParams'][param] query['schedulerid__startswith'] = val elif param == 'priorityrange': mat = re.match('([0-9]+)\:([0-9]+)', request.session['requestParams'][param]) if mat: plo = int(mat.group(1)) phi = int(mat.group(2)) query['currentpriority__gte'] = plo query['currentpriority__lte'] = phi elif param == 'jobsetrange': mat = re.match('([0-9]+)\:([0-9]+)', request.session['requestParams'][param]) if mat: plo = int(mat.group(1)) phi = int(mat.group(2)) query['jobsetid__gte'] = plo query['jobsetid__lte'] = phi elif param == 'user' or param == 'username' or param == 'produsername': if querytype == 'job': query['produsername__icontains'] = request.session['requestParams'][param].strip() elif param in ('project',) and querytype == 'task': val = request.session['requestParams'][param] query['taskname__istartswith'] = val elif param in ('outputfiletype',) and querytype != 'task': val = request.session['requestParams'][param] query['destinationdblock__icontains'] = val elif param in ('stream',) and querytype == 'task': val = request.session['requestParams'][param] query['taskname__icontains'] = val elif param == 'harvesterid': val = escape_input(request.session['requestParams'][param]) values = val.split(',') query['harvesterid__in'] = values elif param in ('tag',): val = request.session['requestParams'][param] query['taskname__endswith'] = val elif param == 'reqid_from': val = int(request.session['requestParams'][param]) query['reqid__gte'] = val elif param == 'reqid_to': val = int(request.session['requestParams'][param]) query['reqid__lte'] = val elif param == 'processingtype' and '|' not in request.session['requestParams'][param] and '*' not in request.session['requestParams'][param] and '!' not in request.session['requestParams'][param]: val = request.session['requestParams'][param] query['processingtype'] = val elif param == 'mismatchedcloudsite' and request.session['requestParams'][param] == 'true': listOfCloudSitesMismatched = cache.get('mismatched-cloud-sites-list') if (listOfCloudSitesMismatched is None) or (len(listOfCloudSitesMismatched) == 0): request.session['viewParams'][ 'selection'] += " <b>The query can not be processed because list of mismatches is not found. Please visit %s/dash/production/?cloudview=region page and then try again</b>" % \ request.session['hostname'] else: for count, cloudSitePair in enumerate(listOfCloudSitesMismatched): extraQueryString += 'AND ( ( (cloud=\'%s\') and (computingsite=\'%s\') ) ' % ( cloudSitePair[1], cloudSitePair[0]) if (count < (len(listOfCloudSitesMismatched) - 1)): extraQueryString += ' OR ' extraQueryString += ')' elif param == 'pilotversion' and request.session['requestParams'][param]: val = request.session['requestParams'][param] if val == 'Not specified': extraQueryString += ' AND ( (pilotid not like \'%%|%%\') or (pilotid is null) )' else: query['pilotid__endswith'] = val elif param == 'durationmin' and request.session['requestParams'][param]: try: durationrange = request.session['requestParams'][param].split('-') except: continue if durationrange[0] == '0' and durationrange[1] == '0': extraQueryString += ' AND ( (endtime is NULL and starttime is null) ) ' else: extraQueryString += """ AND ( (endtime is not NULL and starttime is not null and (endtime - starttime) * 24 * 60 > {} and (endtime - starttime) * 24 * 60 < {} ) or (endtime is NULL and starttime is not null and (CAST(sys_extract_utc(SYSTIMESTAMP) AS DATE) - starttime) * 24 * 60 > {} and (CAST(sys_extract_utc(SYSTIMESTAMP) AS DATE) - starttime) * 24 * 60 < {} ) ) """.format(str(durationrange[0]), str(durationrange[1]), str(durationrange[0]), str(durationrange[1])) elif param == 'neventsrange' and request.session['requestParams'][param]: try: neventsrange = request.session['requestParams'][param].split('-') except: continue if neventsrange and len(neventsrange) == 2: query['nevents__gte'] = neventsrange[0] query['nevents__lte'] = neventsrange[1] elif param == 'errormessage': errfield_map_dict = {} for errcode in errorcodelist: if errcode['name'] != 'transformation': errfield_map_dict[errcode['error']] = errcode['diag'] for parname in request.session['requestParams']: if parname in errfield_map_dict.keys(): query[errfield_map_dict[parname]] = request.session['requestParams'][param] elif param == 'container_name' and request.session['requestParams']['container_name'] == 'all': extraQueryString += " AND (container_name IS NOT NULL ) " # remove from wildcard search fields wildSearchFields.remove('container_name') # add a new no_container_name xurl to request session if 'xurl' not in request.session: request.session['xurls'] = {} request.session['xurls']['container_name'] = removeParam(extensibleURL(request), 'container_name', mode='extensible') continue elif param == 'reqtoken': data = getCacheData(request, request.session['requestParams']['reqtoken']) if data is not None: if 'pandaid' in data: pid = data['pandaid'] if pid.find(',') >= 0: pidl = pid.split(',') query['pandaid__in'] = pidl else: query['pandaid'] = int(pid) elif 'jeditaskid' in data: tid = data['jeditaskid'] if tid.find(',') >= 0: tidl = tid.split(',') query['jeditaskid__in'] = tidl else: query['jeditaskid'] = int(tid) else: return 'reqtoken', None, None if querytype == 'task': if param == 'category': if request.session['requestParams'][param] == 'group production': query['workinggroup__icontains'] = 'GP_' elif request.session['requestParams'][param] == 'production': query['tasktype'] = 'prod' query['workinggroup__icontains'] = 'AP_' elif request.session['requestParams'][param] == 'group analysis': query['tasktype'] = 'anal' query['workinggroup__isnull'] = False extraQueryString += " AND username not in ('artprod', 'atlevind', 'gangarbt') " elif request.session['requestParams'][param] == 'user analysis': query['tasktype'] = 'anal' query['workinggroup__isnull'] = True extraQueryString += " AND username not in ('artprod', 'atlevind', 'gangarbt') " elif request.session['requestParams'][param] == 'service': query['username__in'] = ('artprod', 'atlevind', 'gangarbt') for field in JediTasks._meta.get_fields(): # for param in requestParams: if param == field.name: if request.session['requestParams'][param] == 'Not specified': extraQueryString += " AND ( {0} is NULL or {0} = '' ) ".format(param) extraQueryFields.append(param) continue if param == 'ramcount': if 'GB' in request.session['requestParams'][param]: leftlimit, rightlimit = (request.session['requestParams'][param]).split('-') rightlimit = rightlimit[:-2] query['%s__range' % param] = (int(leftlimit) * 1000, int(rightlimit) * 1000 - 1) else: query[param] = int(request.session['requestParams'][param]) elif param == 'transpath': query['%s__endswith' % param] = request.session['requestParams'][param] elif param == 'tasktype': ttype = request.session['requestParams'][param] if ttype.startswith('anal'): ttype = 'anal' elif ttype.startswith('prod'): ttype = 'prod' query[param] = ttype elif param == 'jeditaskid': val = escape_input(request.session['requestParams'][param]) values = val.split('|') query['jeditaskid__in'] = values elif param == 'status': val = escape_input(request.session['requestParams'][param]) if '*' not in val and '|' not in val and '!' not in val: values = val.split(',') query['status__in'] = values elif param == 'superstatus': val = escape_input(request.session['requestParams'][param]) values = val.split('|') query['superstatus__in'] = values elif param == 'reqid': val = escape_input(request.session['requestParams'][param]) if val.find('|') >= 0: values = val.split('|') values = [int(val) for val in values] query['reqid__in'] = values else: query['reqid'] = int(val) elif param == 'site': if request.session['requestParams'][param] != 'hpc' and param in extraQueryFields: query['site__contains'] = request.session['requestParams'][param] elif param == 'eventservice': if request.session['requestParams'][param] == 'eventservice' or \ request.session['requestParams'][param] == '1': query['eventservice'] = 1 else: query['eventservice'] = 0 else: if (param not in wildSearchFields): query[param] = request.session['requestParams'][param] else: if param == 'jobtype': jobtype = request.session['requestParams']['jobtype'] if jobtype.startswith('anal'): query['prodsourcelabel__in'] = ['panda', 'user', 'rc_alrb', 'rc_test2'] query['transformation__startswith'] = 'http' elif jobtype.startswith('prod'): query['prodsourcelabel__in'] = ['managed', 'prod_test', 'ptest', 'rc_alrb', 'rc_test2'] query['transformation__endswith'] = '.py' elif jobtype == 'groupproduction': query['prodsourcelabel'] = 'managed' query['workinggroup__isnull'] = False elif jobtype == 'eventservice': query['eventservice'] = 1 elif jobtype == 'esmerge': query['eventservice'] = 2 elif jobtype == 'test' or jobtype.find('test') >= 0: query['produsername'] = 'gangarbt' for field in Jobsactive4._meta.get_fields(): if param == field.name: if request.session['requestParams'][param] == 'Not specified': extraQueryString += " AND ( {0} is NULL or {0} = '' ) ".format(param) extraQueryFields.append(param) continue if param == 'minramcount': if 'GB' in request.session['requestParams'][param]: leftlimit, rightlimit = (request.session['requestParams'][param]).split('-') rightlimit = rightlimit[:-2] query['%s__range' % param] = (int(leftlimit) * 1000, int(rightlimit) * 1000 - 1) else: query[param] = int(request.session['requestParams'][param]) elif param == 'specialhandling' and not '*' in request.session['requestParams'][param]: query['specialhandling__contains'] = request.session['requestParams'][param] elif param == 'prodsourcelabel': query['prodsourcelabel'] = request.session['requestParams'][param] elif param == 'reqid': val = escape_input(request.session['requestParams'][param]) if val.find('|') >= 0: values = val.split('|') values = [int(val) for val in values] query['reqid__in'] = values else: query['reqid'] = int(val) elif param == 'transformation' or param == 'transpath': # we cut the transformation path and show only tail query[param + '__contains'] = request.session['requestParams'][param].replace('*', '') elif param == 'modificationhost' and request.session['requestParams'][param].find('@') < 0: paramQuery = request.session['requestParams'][param] if paramQuery[0] == '*': paramQuery = paramQuery[1:] if paramQuery[-1] == '*': paramQuery = paramQuery[:-1] query['%s__contains' % param] = paramQuery elif param == 'jeditaskid' or param == 'taskid': val = escape_input(request.session['requestParams'][param]) if '|' in val: values = val.split('|') values = [int(val) for val in values] query[param + '__in'] = values else: query[param] = int(val) elif param == 'pandaid': try: pid = request.session['requestParams']['pandaid'] if pid.find(',') >= 0: pidl = pid.split(',') query['pandaid__in'] = pidl else: query['pandaid'] = int(pid) except: query['jobname'] = request.session['requestParams']['pandaid'] elif param == 'jobstatus' and request.session['requestParams'][param] == 'finished' \ and (('mode' in request.session['requestParams'] and request.session['requestParams']['mode'] == 'eventservice') or ( 'jobtype' in request.session['requestParams'] and request.session['requestParams'][ 'jobtype'] == 'eventservice')): query['jobstatus__in'] = ('finished', 'cancelled') elif param == 'jobstatus': val = escape_input(request.session['requestParams'][param]) values = val.split('|') if '|' in val else val.split(',') query['jobstatus__in'] = values elif param == 'eventservice': if '|' in request.session['requestParams'][param]: paramsstr = request.session['requestParams'][param] paramsstr = paramsstr.replace('eventservice', '1') paramsstr = paramsstr.replace('esmerge', '2') paramsstr = paramsstr.replace('clone', '3') paramsstr = paramsstr.replace('cojumbo', '5') paramsstr = paramsstr.replace('jumbo', '4') paramvalues = paramsstr.split('|') try: paramvalues = [int(p) for p in paramvalues] except: paramvalues = [] query['eventservice__in'] = paramvalues else: if request.session['requestParams'][param] == 'esmerge' or request.session['requestParams'][ param] == '2': query['eventservice'] = 2 elif request.session['requestParams'][param] == 'clone' or request.session['requestParams'][ param] == '3': query['eventservice'] = 3 elif request.session['requestParams'][param] == 'jumbo' or request.session['requestParams'][ param] == '4': query['eventservice'] = 4 elif request.session['requestParams'][param] == 'cojumbo' or request.session['requestParams'][ param] == '5': query['eventservice'] = 5 elif request.session['requestParams'][param] == 'eventservice' or \ request.session['requestParams'][param] == '1': query['eventservice'] = 1 extraQueryString += " AND not specialhandling like \'%%sc:%%\' " elif request.session['requestParams'][param] == 'not2': extraQueryString += ' AND (eventservice != 2) ' elif request.session['requestParams'][param] == 'all': query['eventservice__isnull'] = False continue else: query['eventservice__isnull'] = True elif param == 'corecount' and request.session['requestParams'][param] == '1': extraQueryString += ' AND (corecount = 1 or corecount is NULL) ' elif param == 'resourcetype' and request.session['requestParams'][param]: if '|' in request.session['requestParams'][param]: rtypes = request.session['requestParams'][param].split('|') query['resourcetype__in'] = rtypes else: query['resourcetype'] = request.session['requestParams'][param] else: if (param not in wildSearchFields): query[param] = request.session['requestParams'][param] if 'region' in request.session['requestParams']: region = request.session['requestParams']['region'] pq_clouds = get_pq_clouds() siteListForRegion = [] for sn, rn in pq_clouds.items(): if rn == region: siteListForRegion.append(str(sn)) query['computingsite__in'] = siteListForRegion if opmode in ['analysis', 'production'] and querytype == 'job': if opmode.startswith('analy'): query['prodsourcelabel__in'] = ['panda', 'user'] elif opmode.startswith('prod'): query['prodsourcelabel__in'] = ['managed'] if wildCardExt == False: return query try: extraQueryString += ' AND ' except NameError: extraQueryString = '' # wild cards handling wildSearchFields = (set(wildSearchFields) & set(list(request.session['requestParams'].keys()))) # filter out fields that already in query dict wildSearchFields1 = set() for currenfField in wildSearchFields: if not (currenfField.lower() == 'transformation'): if not ((currenfField.lower() == 'cloud') & ( any(card.lower() == 'all' for card in request.session['requestParams'][currenfField].split('|')))): if not any(currenfField in key for key, value in query.items()) and currenfField not in extraQueryFields: wildSearchFields1.add(currenfField) wildSearchFields = wildSearchFields1 for i_field, field_name in enumerate(wildSearchFields, start=1): extraQueryString += '(' wildCardsOr = request.session['requestParams'][field_name].split('|') if not ((field_name.lower() == 'cloud') & (any(card.lower() == 'all' for card in wildCardsOr))): for i_or, card_or in enumerate(wildCardsOr, start=1): if ',' in card_or: extraQueryString += '(' wildCardsAnd = card_or.split(',') for i_and, card_and in enumerate(wildCardsAnd, start=1): extraQueryString += preprocess_wild_card_string(card_and, field_name) if i_and < len(wildCardsAnd): extraQueryString += ' AND ' extraQueryString += ')' else: extraQueryString += preprocess_wild_card_string(card_or, field_name) if i_or < len(wildCardsOr): extraQueryString += ' OR ' extraQueryString += ')' if i_field < len(wildSearchFields): extraQueryString += ' AND ' if 'jobparam' in request.session['requestParams']: jobParWildCards = request.session['requestParams']['jobparam'].split('|') jobParCountCards = len(jobParWildCards) jobParCurrentCardCount = 1 extraJobParCondition = '(' for card in jobParWildCards: extraJobParCondition += preprocess_wild_card_string(escape_input(card), 'JOBPARAMETERS') if (jobParCurrentCardCount < jobParCountCards): extraJobParCondition += ' OR ' jobParCurrentCardCount += 1 extraJobParCondition += ')' pandaIDs = [] jobParamQuery = {'modificationtime__castdate__range': [ startdate.strftime(defaultDatetimeFormat), enddate.strftime(defaultDatetimeFormat)]} jobs = Jobparamstable.objects.filter(**jobParamQuery).extra(where=[extraJobParCondition]).values('pandaid') for values in jobs: pandaIDs.append(values['pandaid']) query['pandaid__in'] = pandaIDs if extraQueryString.endswith(' AND '): extraQueryString = extraQueryString[:-5] if (len(extraQueryString) < 2): extraQueryString = '1=1' return (query, extraQueryString, LAST_N_HOURS_MAX) # def cleanJobList(request, jobl, mode='nodrop', doAddMeta=False): # if 'mode' in request.session['requestParams'] and request.session['requestParams']['mode'] == 'drop': mode = 'drop' # # if 'fields' in request.session['requestParams']: # fieldsStr = request.session['requestParams']['fields'] # fields = fieldsStr.split("|") # if 'metastruct' in fields: # doAddMeta = True # # errorCodes = get_job_error_desc() # pq_clouds = get_pq_clouds() # # if doAddMeta: # jobs = addJobMetadata(jobl) # else: # jobs = jobl # for job in jobs: # if is_event_service(job): # if 'jobmetrics' in job: # pat = re.compile('.*mode\=([^\s]+).*HPCStatus\=([A-Za-z0-9]+)') # mat = pat.match(job['jobmetrics']) # if mat: # job['jobmode'] = mat.group(1) # job['substate'] = mat.group(2) # pat = re.compile('.*coreCount\=([0-9]+)') # mat = pat.match(job['jobmetrics']) # if mat: # job['corecount'] = mat.group(1) # if 'jobsubstatus' in job and job['jobstatus'] == 'closed' and job['jobsubstatus'] == 'toreassign': # job['jobstatus'] += ':' + job['jobsubstatus'] # if 'eventservice' in job: # if is_event_service(job) and job['eventservice'] == 1: # job['eventservice'] = 'eventservice' # elif is_event_service(job) and job['eventservice'] == 2: # job['eventservice'] = 'esmerge' # elif job['eventservice'] == 3: # job['eventservice'] = 'clone' # elif is_event_service(job) and job['eventservice'] == 4: # job['eventservice'] = 'jumbo' # elif job['eventservice'] == 5: # job['eventservice'] = 'cojumbo' # else: # job['eventservice'] = 'ordinary' # if 'destinationdblock' in job and job['destinationdblock']: # ddbfields = job['destinationdblock'].split('.') # if len(ddbfields) == 6 and ddbfields[0] != 'hc_test': # job['outputfiletype'] = ddbfields[4] # elif len(ddbfields) >= 7: # job['outputfiletype'] = ddbfields[6] # # else: # # job['outputfiletype'] = None # # print job['destinationdblock'], job['outputfiletype'], job['pandaid'] # # try: # job['homecloud'] = pq_clouds[job['computingsite']] # except: # job['homecloud'] = None # if 'produsername' in job and not job['produsername']: # if ('produserid' in job) and job['produserid']: # job['produsername'] = job['produserid'] # else: # job['produsername'] = 'Unknown' # if job['transformation']: job['transformation'] = job['transformation'].split('/')[-1] # # job['errorinfo'] = errorInfo(job, errorCodes=errorCodes) # # job['jobinfo'] = '' # if is_event_service(job): # if 'taskbuffererrordiag' in job and job['taskbuffererrordiag'] is None: # job['taskbuffererrordiag'] = '' # if 'taskbuffererrordiag' in job and len(job['taskbuffererrordiag']) > 0: # job['jobinfo'] = job['taskbuffererrordiag'] # elif 'specialhandling' in job and job['specialhandling'] == 'esmerge': # job['jobinfo'] = 'Event service merge job. ' # elif 'eventservice' in job and job['eventservice'] == 'jumbo': # job['jobinfo'] = 'Jumbo job. ' # else: # job['jobinfo'] = 'Event service job. ' # # if is_debug_mode(job): # job['jobinfo'] += 'Real-time logging is activated for this job.' # # job['duration'] = "" # job['durationsec'] = 0 # # if job['jobstatus'] in ['finished','failed','holding']: # if 'endtime' in job and 'starttime' in job and job['starttime']: # starttime = job['starttime'] # if job['endtime']: # endtime = job['endtime'] # else: # endtime = timezone.now() # # duration = max(endtime - starttime, timedelta(seconds=0)) # ndays = duration.days # strduration = str(timedelta(seconds=duration.seconds)) # job['duration'] = "%s:%s" % (ndays, strduration) # job['durationsec'] = ndays * 24 * 3600 + duration.seconds # job['durationmin'] = round((ndays * 24 * 3600 + duration.seconds)/60) # # # durationmin for active jobs = now - starttime, for non-started = 0 # if not 'durationmin' in job: # if 'starttime' in job and job['starttime'] is not None and 'endtime' in job and job['endtime'] is None: # endtime = timezone.now() # starttime = job['starttime'] # duration = max(endtime - starttime, timedelta(seconds=0)) # ndays = duration.days # job['durationmin'] = round((ndays * 24 * 3600 + duration.seconds)/60) # else: # job['durationmin'] = 0 # # job['waittime'] = "" # # if job['jobstatus'] in ['running','finished','failed','holding','cancelled','transferring']: # if 'creationtime' in job and 'starttime' in job and job['creationtime']: # creationtime = job['creationtime'] # if job['starttime']: # starttime = job['starttime'] # elif job['jobstatus'] in ('finished', 'failed', 'closed', 'cancelled'): # starttime = job['modificationtime'] # else: # starttime = datetime.now() # wait = starttime - creationtime # ndays = wait.days # strwait = str(timedelta(seconds=wait.seconds)) # job['waittime'] = "%s:%s" % (ndays, strwait) # if 'currentpriority' in job: # plo = int(job['currentpriority']) - int(job['currentpriority']) % 100 # phi = plo + 99 # job['priorityrange'] = "%d:%d" % (plo, phi) # if 'jobsetid' in job and job['jobsetid']: # plo = int(job['jobsetid']) - int(job['jobsetid']) % 100 # phi = plo + 99 # job['jobsetrange'] = "%d:%d" % (plo, phi) # if 'corecount' in job and job['corecount'] is None: # job['corecount'] = 1 # if 'maxpss' in job and isinstance(job['maxpss'], int) and ( # 'actualcorecount' in job and isinstance(job['actualcorecount'], int) and job['actualcorecount'] > 0): # job['maxpssgbpercore'] = round(job['maxpss']/1024./1024./job['actualcorecount'], 2) # # if ('cpuconsumptiontime' in job and job['cpuconsumptiontime'] and job['cpuconsumptiontime'] > 0) and ( # 'actualcorecount' in job and job['actualcorecount'] is not None and job['actualcorecount'] > 0) and ( # 'durationsec' in job and job['durationsec'] is not None and job['durationsec'] > 0): # job['cpuefficiency'] = round(100.0 * job['cpuconsumptiontime'] / job['durationsec'] / job['actualcorecount'], 2) # # # drop duplicate jobs # droplist = [] # job1 = {} # newjobs = [] # for job in jobs: # pandaid = job['pandaid'] # dropJob = 0 # if pandaid in job1: # ## This is a duplicate. Drop it. # dropJob = 1 # else: # job1[pandaid] = 1 # if (dropJob == 0): # newjobs.append(job) # jobs = newjobs # # # find max and min values of priority and modificationtime for current selection of jobs # global PLOW, PHIGH # PLOW = 1000000 # PHIGH = -1000000 # for job in jobs: # if job['modificationtime'] > request.session['TLAST']: request.session['TLAST'] = job['modificationtime'] # if job['modificationtime'] < request.session['TFIRST']: request.session['TFIRST'] = job['modificationtime'] # if job['currentpriority'] > PHIGH: PHIGH = job['currentpriority'] # if job['currentpriority'] < PLOW: PLOW = job['currentpriority'] # jobs = sorted(jobs, key=lambda x: x['modificationtime'], reverse=True) # # _logger.debug('job list cleaned') # return jobs def mainPage(request): valid, response = initRequest(request) if not valid: return response setupView(request) debuginfo = None if request.session['debug']: debuginfo = "<h2>Debug info</h2>" from django.conf import settings for name in dir(settings): debuginfo += "%s = %s<br>" % (name, getattr(settings, name)) debuginfo += "<br>******* Environment<br>" for env in os.environ: debuginfo += "%s = %s<br>" % (env, os.environ[env]) if not is_json_request(request): del request.session['TFIRST'] del request.session['TLAST'] data = { 'prefix': getPrefix(request), 'request': request, 'viewParams': request.session['viewParams'], 'requestParams': request.session['requestParams'], 'debuginfo': debuginfo, 'built': datetime.now().strftime("%H:%M:%S"), } data.update(getContextVariables(request)) response = render_to_response('core-mainPage.html', data, content_type='text/html') patch_response_headers(response, cache_timeout=request.session['max_age_minutes'] * 60) return response else: return HttpResponse('json', content_type='text/html') def helpPage(request): valid, response = initRequest(request) if not valid: return response setupView(request) del request.session['TFIRST'] del request.session['TLAST'] acronyms = { 'panda': 'PanDA', 'art': 'ART', 'api': 'API', 'qa': 'Q&A', 'idds': 'iDDS', 'gs': 'Global Shares', 'wn': 'WN', } # find all help templates template_files = [] for template_dir in (tuple(djangosettings.TEMPLATES[0]['DIRS']) + get_app_template_dirs('templates')): for dir, dirnames, filenames in os.walk(template_dir): for filename in filenames: if filename.endswith('Help.html'): template_files.append(filename) template_files = sorted(list(set(template_files))) # group by object camel_case_regex = "(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])" help_template_dict = {} for tfn in template_files: tfn_words = re.split(camel_case_regex, tfn) tfn_words_humanized = [] for w in tfn_words: if w.lower() in acronyms: tfn_words_humanized.append(acronyms[w.lower()]) else: tfn_words_humanized.append(w.title()) if tfn_words[0] not in help_template_dict: help_template_dict[tfn_words[0]] = { 'key': tfn_words[0], 'template_names': [], 'anchor': tfn_words[0], 'title': tfn_words_humanized[0], } help_template_dict[tfn_words[0]]['template_names'].append({ 'name': tfn, 'title': ' '.join([word for word in tfn_words_humanized[:-1]]), 'anchor': tfn.replace('.html', '') }) help_template_list = list(help_template_dict.values()) # move introduction help to the beginning help_template_list.insert(0, help_template_list.pop(min([i for i, d in enumerate(help_template_list) if d['key'].lower() == 'introduction']))) if not is_json_request(request): data = { 'prefix': getPrefix(request), 'request': request, 'viewParams': request.session['viewParams'], 'requestParams': request.session['requestParams'], 'built': datetime.now().strftime("%H:%M:%S"), 'templates': help_template_list, } response = render_to_response('help.html', data, content_type='text/html') patch_response_headers(response, cache_timeout=request.session['max_age_minutes'] * 60) return response else: return HttpResponse('json', content_type='text/html') def jobParamList(request): idlist = [] if 'pandaid' in request.session['requestParams']: idstring = request.session['requestParams']['pandaid'] idstringl = idstring.split(',') for pid in idstringl: idlist.append(int(pid)) query = {'pandaid__in': idlist} jobparams = Jobparamstable.objects.filter(**query).values() if is_json_request(request): return HttpResponse(json.dumps(jobparams, cls=DateEncoder), content_type='application/json') else: return HttpResponse('not supported', content_type='text/html') @login_customrequired def jobList(request, mode=None, param=None): valid, response = initRequest(request) if not valid: return response dkey = digkey(request) thread = None # Here we try to get data from cache data = getCacheEntry(request, "jobList") if data is not None: data = json.loads(data) if 'istestmonitor' in request.session['requestParams'] and request.session['requestParams']['istestmonitor'] == 'yes': return HttpResponse(json.dumps(data, cls=DateEncoder), content_type='application/json') data['request'] = request if data['eventservice'] == True: response = render_to_response('jobListES.html', data, content_type='text/html') else: response = render_to_response('jobList.html', data, content_type='text/html') _logger.info('Rendered template with data from cache: {}'.format(time.time() - request.session['req_init_time'])) patch_response_headers(response, cache_timeout=request.session['max_age_minutes'] * 60) return response if 'dump' in request.session['requestParams'] and request.session['requestParams']['dump'] == 'parameters': return jobParamList(request) is_job_meta_required = False if 'fields' in request.session['requestParams'] and request.session['requestParams']['fields'] and 'metastruct' in request.session['requestParams']['fields']: is_job_meta_required = True eventservice = False if 'jobtype' in request.session['requestParams'] and request.session['requestParams']['jobtype'] == 'eventservice': eventservice = True if 'eventservice' in request.session['requestParams'] and ( request.session['requestParams']['eventservice'] == 'eventservice' or request.session['requestParams'][ 'eventservice'] == '1' or request.session['requestParams']['eventservice'] == '4' or request.session['requestParams']['eventservice'] == 'jumbo'): eventservice = True elif 'eventservice' in request.session['requestParams'] and ( '1' in request.session['requestParams']['eventservice'] or '2' in request.session['requestParams']['eventservice'] or '4' in request.session['requestParams']['eventservice'] or '5' in request.session['requestParams']['eventservice']): eventservice = True elif 'jeditaskid' in request.session['requestParams'] and request.session['requestParams']['jeditaskid']: try: jeditaskid = int(request.session['requestParams']['jeditaskid']) except: jeditaskid = None if jeditaskid: eventservice = is_event_service_task(jeditaskid) noarchjobs = False if 'noarchjobs' in request.session['requestParams'] and request.session['requestParams']['noarchjobs'] == '1': noarchjobs = True warning = {} extraquery_files = ' ' if 'fileid' in request.session['requestParams'] or 'ecstate' in request.session['requestParams']: if 'fileid' in request.session['requestParams'] and request.session['requestParams']['fileid']: fileid = request.session['requestParams']['fileid'] else: fileid = None if 'datasetid' in request.session['requestParams'] and request.session['requestParams']['datasetid']: datasetid = request.session['requestParams']['datasetid'] else: datasetid = None if 'jeditaskid' in request.session['requestParams'] and request.session['requestParams']['jeditaskid']: jeditaskid = request.session['requestParams']['jeditaskid'] else: jeditaskid = None if 'tk' in request.session['requestParams'] and request.session['requestParams']['tk']: tk = request.session['requestParams']['tk'] del request.session['requestParams']['tk'] else: tk = None if jeditaskid and datasetid and fileid: extraquery_files += """ pandaid in ( (select pandaid from atlas_panda.filestable4 where jeditaskid = {} and datasetid in ( {} ) and fileid = {} ) union all (select pandaid from atlas_pandaarch.filestable_arch where jeditaskid = {} and datasetid in ( {} ) and fileid = {} ) ) """.format(jeditaskid, datasetid, fileid, jeditaskid, datasetid, fileid) if 'ecstate' in request.session['requestParams'] and tk and datasetid: extraquery_files += """ pandaid in ( (select pandaid from atlas_panda.filestable4 where jeditaskid = {} and datasetid in ( {} ) and fileid in (select id from atlas_pandabigmon.TMP_IDS1DEBUG where TRANSACTIONKEY={}) ) union all (select pandaid from atlas_pandaarch.filestable_arch where jeditaskid = {} and datasetid in ( {} ) and fileid in (select id from atlas_pandabigmon.TMP_IDS1DEBUG where TRANSACTIONKEY={}) ) ) """.format(jeditaskid, datasetid, tk, jeditaskid, datasetid, tk) elif 'jeditaskid' in request.session['requestParams'] and 'datasetid' in request.session['requestParams']: fileid = None if 'datasetid' in request.session['requestParams'] and request.session['requestParams']['datasetid']: datasetid = request.session['requestParams']['datasetid'] else: datasetid = None if 'jeditaskid' in request.session['requestParams'] and request.session['requestParams']['jeditaskid']: jeditaskid = request.session['requestParams']['jeditaskid'] else: jeditaskid = None if datasetid and jeditaskid: extraquery_files += """ pandaid in ( (select pandaid from atlas_panda.filestable4 where jeditaskid = {} and datasetid = {} ) union all (select pandaid from atlas_pandaarch.filestable_arch where jeditaskid = {} and datasetid = {}) ) """.format(jeditaskid, datasetid, jeditaskid, datasetid) else: fileid = None extraquery_tasks = ' ' if 'taskname' in request.session['requestParams'] and 'username' in request.session['requestParams']: taskname = request.session['requestParams']['taskname'] taskusername = request.session['requestParams']['username'] if taskname.find('*') != -1: taskname = taskname.replace('*', '%%') if taskusername.find('*') != -1: taskusername = taskusername.replace('*', '%%') extraquery_tasks += """ jeditaskid in ( select jeditaskid from atlas_panda.jedi_tasks where taskname like '{}' and username like '{}' ) """.format(taskname, taskusername) _logger.debug('Specific params processing: {}'.format(time.time() - request.session['req_init_time'])) query, wildCardExtension, LAST_N_HOURS_MAX = setupView(request, wildCardExt=True) _logger.debug('Setup view: {}'.format(time.time() - request.session['req_init_time'])) if len(extraquery_files) > 1: wildCardExtension += ' AND ' + extraquery_files if len(extraquery_tasks) > 1: wildCardExtension += ' AND ' + extraquery_tasks if query == 'reqtoken' and wildCardExtension is None and LAST_N_HOURS_MAX is None: data = { 'desc': 'Request token is not found or data is outdated. Please reload the original page.', } return render_to_response('message.html', data, content_type='text/html') jobs = [] if is_json_request(request): values = [f.name for f in Jobsactive4._meta.get_fields()] else: values = [ 'corecount', 'jobsubstatus', 'produsername', 'cloud', 'computingsite', 'cpuconsumptiontime', 'jobstatus', 'transformation', 'prodsourcelabel', 'specialhandling', 'vo', 'modificationtime', 'pandaid', 'atlasrelease', 'jobsetid', 'processingtype', 'workinggroup', 'jeditaskid', 'taskid', 'currentpriority', 'creationtime', 'starttime', 'endtime', 'brokerageerrorcode', 'brokerageerrordiag', 'ddmerrorcode', 'ddmerrordiag', 'exeerrorcode', 'exeerrordiag', 'jobdispatchererrorcode', 'jobdispatchererrordiag', 'piloterrorcode', 'piloterrordiag', 'superrorcode', 'superrordiag', 'taskbuffererrorcode', 'taskbuffererrordiag', 'transexitcode', 'destinationse', 'homepackage', 'inputfileproject', 'inputfiletype', 'attemptnr', 'maxattempt', 'jobname', 'computingelement', 'proddblock', 'destinationdblock', 'reqid', 'minramcount', 'statechangetime', 'nevents', 'jobmetrics', 'noutputdatafiles', 'parentid', 'actualcorecount', 'schedulerid', 'pilotid', 'commandtopilot', 'cmtconfig', 'maxpss'] if not eventservice: values.extend(['avgvmem', 'maxvmem', 'maxrss']) if DEPLOYMENT != "POSTGRES": values.append('nucleus') values.append('eventservice') values.append('gshare') values.append('resourcetype') values.append('container_name') totalJobs = 0 showTop = 0 if 'limit' in request.session['requestParams']: request.session['JOB_LIMIT'] = int(request.session['requestParams']['limit']) JOB_LIMIT = request.session['JOB_LIMIT'] job_final_states = ['finished', 'failed', 'cancelled', 'closed', 'merging'] harvesterjobstatus = '' from core.harvester.views import getHarvesterJobs, getCeHarvesterJobs if 'jobstatus' in request.session['requestParams']: harvesterjobstatus = request.session['requestParams']['jobstatus'] if 'transferringnotupdated' in request.session['requestParams']: jobs = stateNotUpdated(request, state='transferring', values=values, wildCardExtension=wildCardExtension) elif 'statenotupdated' in request.session['requestParams']: jobs = stateNotUpdated(request, values=values, wildCardExtension=wildCardExtension) elif 'harvesterinstance' in request.session['requestParams'] and 'workerid' in request.session['requestParams']: jobs = getHarvesterJobs(request, instance=request.session['requestParams']['harvesterinstance'], workerid=request.session['requestParams']['workerid'], jobstatus=harvesterjobstatus, fields=values) elif 'harvesterid' in request.session['requestParams'] and 'workerid' in request.session['requestParams']: jobs = getHarvesterJobs(request, instance=request.session['requestParams']['harvesterid'], workerid=request.session['requestParams']['workerid'], jobstatus=harvesterjobstatus, fields=values) elif ('harvesterinstance' not in request.session['requestParams'] and 'harvesterid' not in request.session['requestParams']) and 'workerid' in request.session['requestParams']: jobs = getHarvesterJobs(request, workerid=request.session['requestParams']['workerid'], jobstatus=harvesterjobstatus, fields=values) elif 'harvesterce' in request.session['requestParams']: jobs = getCeHarvesterJobs(request, computingelment=request.session['requestParams']['harvesterce']) else: # exclude time from query for DB tables with active jobs etquery = copy.deepcopy(query) if ('modificationtime__castdate__range' in etquery and len(set(['date_to', 'hours']).intersection(request.session['requestParams'].keys())) == 0) or ( 'jobstatus' in request.session['requestParams'] and is_job_active(request.session['requestParams']['jobstatus'])): del etquery['modificationtime__castdate__range'] warning['notimelimit'] = "no time window limiting was applied for active jobs in this selection" jobs.extend(Jobsdefined4.objects.filter(**etquery).extra(where=[wildCardExtension])[:JOB_LIMIT].values(*values)) jobs.extend(Jobsactive4.objects.filter(**etquery).extra(where=[wildCardExtension])[:JOB_LIMIT].values(*values)) jobs.extend(Jobswaiting4.objects.filter(**etquery).extra(where=[wildCardExtension])[:JOB_LIMIT].values(*values)) jobs.extend(Jobsarchived4.objects.filter(**query).extra(where=[wildCardExtension])[:JOB_LIMIT].values(*values)) listJobs = [Jobsarchived4, Jobsactive4, Jobswaiting4, Jobsdefined4] if not noarchjobs: queryFrozenStates = [] if 'jobstatus' in request.session['requestParams']: queryFrozenStates = list(set(request.session['requestParams']['jobstatus'].split('|')).intersection(job_final_states)) # hard limit is set to 20K if 'jobstatus' not in request.session['requestParams'] or len(queryFrozenStates) > 0: if 'limit' not in request.session['requestParams']: if 'jeditaskid' not in request.session['requestParams']: request.session['JOB_LIMIT'] = 20000 JOB_LIMIT = 20000 showTop = 1 else: request.session['JOB_LIMIT'] = 200000 JOB_LIMIT = 200000 else: request.session['JOB_LIMIT'] = int(request.session['requestParams']['limit']) JOB_LIMIT = int(request.session['requestParams']['limit']) if 'modificationtime__castdate__range' in query and ( (datetime.now() - datetime.strptime(query['modificationtime__castdate__range'][0], defaultDatetimeFormat)).days > 2 or (datetime.now() - datetime.strptime(query['modificationtime__castdate__range'][1], defaultDatetimeFormat)).days > 2): if 'jeditaskid' in request.session['requestParams'] or (is_json_request(request) and ( 'fulllist' in request.session['requestParams'] and request.session['requestParams']['fulllist'] == 'true')): del query['modificationtime__castdate__range'] archJobs = Jobsarchived.objects.filter(**query).extra(where=[wildCardExtension])[:JOB_LIMIT].values(*values) listJobs.append(Jobsarchived) totalJobs = len(archJobs) jobs.extend(archJobs) if not is_json_request(request): thread = Thread(target=totalCount, args=(listJobs, query, wildCardExtension, dkey)) thread.start() else: thread = None _logger.info('Got jobs: {}'.format(time.time() - request.session['req_init_time'])) # If the list is for a particular JEDI task, filter out the jobs superseded by retries taskids = {} for job in jobs: if 'jeditaskid' in job: taskids[job['jeditaskid']] = 1 # if ES -> nodrop by default dropmode = True if 'mode' in request.session['requestParams'] and request.session['requestParams']['mode'] == 'drop': dropmode = True if ('mode' in request.session['requestParams'] and request.session['requestParams']['mode'] == 'nodrop') or eventservice: dropmode = False isReturnDroppedPMerge = False if 'processingtype' in request.session['requestParams'] and request.session['requestParams']['processingtype'] == 'pmerge': isReturnDroppedPMerge = True droplist = [] droppedPmerge = set() cntStatus = [] if dropmode and (len(taskids) == 1): jobs, droplist, droppedPmerge = drop_job_retries(jobs, list(taskids.keys())[0], is_return_dropped_jobs= isReturnDroppedPMerge) _logger.debug('Done droppping if was requested: {}'.format(time.time() - request.session['req_init_time'])) # get attempts of file if fileid in request params files_attempts_dict = {} files_attempts = [] if fileid: if fileid and jeditaskid and datasetid: fquery = {} fquery['pandaid__in'] = [job['pandaid'] for job in jobs if len(jobs) > 0] fquery['fileid'] = fileid files_attempts.extend(Filestable4.objects.filter(**fquery).values('pandaid', 'attemptnr')) files_attempts.extend(FilestableArch.objects.filter(**fquery).values('pandaid', 'attemptnr')) if len(files_attempts) > 0: files_attempts_dict = dict(zip([f['pandaid'] for f in files_attempts], [ff['attemptnr'] for ff in files_attempts])) jfquery = {'jeditaskid': jeditaskid, 'datasetid': datasetid, 'fileid': fileid} jedi_file = JediDatasetContents.objects.filter(**jfquery).values('attemptnr', 'maxattempt', 'failedattempt', 'maxfailure') if jedi_file and len(jedi_file) > 0: jedi_file = jedi_file[0] if len(files_attempts_dict) > 0: for job in jobs: if job['pandaid'] in files_attempts_dict: job['fileattemptnr'] = files_attempts_dict[job['pandaid']] else: job['fileattemptnr'] = None if jedi_file and 'maxattempt' in jedi_file: job['filemaxattempts'] = jedi_file['maxattempt'] _logger.debug('Got file attempts: {}'.format(time.time() - request.session['req_init_time'])) jobs = clean_job_list(request, jobs, do_add_metadata=is_job_meta_required, do_add_errorinfo=True) _logger.debug('Cleaned job list: {}'.format(time.time() - request.session['req_init_time'])) jobs = reconstruct_job_consumers(jobs) _logger.debug('Reconstructed consumers: {}'.format(time.time() - request.session['req_init_time'])) njobs = len(jobs) jobtype = '' if 'jobtype' in request.session['requestParams']: jobtype = request.session['requestParams']['jobtype'] elif '/analysis' in request.path: jobtype = 'analysis' elif '/production' in request.path: jobtype = 'production' if 'display_limit' in request.session['requestParams']: if int(request.session['requestParams']['display_limit']) > njobs: display_limit = njobs else: display_limit = int(request.session['requestParams']['display_limit']) url_nolimit = removeParam(request.get_full_path(), 'display_limit') else: display_limit = 1000 url_nolimit = request.get_full_path() njobsmax = display_limit if 'sortby' in request.session['requestParams']: sortby = request.session['requestParams']['sortby'] if sortby == 'create-ascending': jobs = sorted(jobs, key=lambda x:x['creationtime'] if not x['creationtime'] is None else datetime(1900, 1, 1)) if sortby == 'create-descending': jobs = sorted(jobs, key=lambda x:x['creationtime'] if not x['creationtime'] is None else datetime(1900, 1, 1), reverse=True) if sortby == 'time-ascending': jobs = sorted(jobs, key=lambda x:x['modificationtime'] if not x['modificationtime'] is None else datetime(1900, 1, 1)) if sortby == 'time-descending': jobs = sorted(jobs, key=lambda x:x['modificationtime'] if not x['modificationtime'] is None else datetime(1900, 1, 1), reverse=True) if sortby == 'statetime': jobs = sorted(jobs, key=lambda x:x['statechangetime'] if not x['statechangetime'] is None else datetime(1900, 1, 1), reverse=True) elif sortby == 'priority': jobs = sorted(jobs, key=lambda x:x['currentpriority'] if not x['currentpriority'] is None else 0, reverse=True) elif sortby == 'attemptnr': jobs = sorted(jobs, key=lambda x: x['attemptnr'], reverse=True) elif sortby == 'duration-ascending': jobs = sorted(jobs, key=lambda x: x['durationsec']) elif sortby == 'duration-descending': jobs = sorted(jobs, key=lambda x: x['durationsec'], reverse=True) elif sortby == 'duration': jobs = sorted(jobs, key=lambda x: x['durationsec']) elif sortby == 'PandaID': jobs = sorted(jobs, key=lambda x: x['pandaid'], reverse=True) elif fileid: sortby = "fileattemptnr-descending" jobs = sorted(jobs, key=lambda x: x['fileattemptnr'], reverse=True) elif 'computingsite' in request.session['requestParams']: sortby = 'time-descending' jobs = sorted(jobs, key=lambda x: x['modificationtime'] if x['modificationtime'] is not None else datetime(1900, 1, 1), reverse=True) else: sortby = "attemptnr-descending,pandaid-descending" jobs = sorted(jobs, key=lambda x: [-x['attemptnr'],-x['pandaid']]) _logger.debug('Sorted joblist: {}'.format(time.time() - request.session['req_init_time'])) taskname = '' if 'jeditaskid' in request.session['requestParams'] and '|' not in request.session['requestParams']['jeditaskid']: taskname = getTaskName('jeditaskid', request.session['requestParams']['jeditaskid']) if 'taskid' in request.session['requestParams'] and '|' not in request.session['requestParams']['taskid']: taskname = getTaskName('jeditaskid', request.session['requestParams']['taskid']) if 'produsername' in request.session['requestParams']: user = request.session['requestParams']['produsername'] elif 'user' in request.session['requestParams']: user = request.session['requestParams']['user'] else: user = None _logger.debug('Got task and user names: {}'.format(time.time() - request.session['req_init_time'])) # show warning or not if njobs <= request.session['JOB_LIMIT']: showwarn = 0 else: showwarn = 1 # Sort in order to see the most important tasks sumd, esjobdict = job_summary_dict(request, jobs, standard_fields+['corecount', 'noutputdatafiles', 'actualcorecount', 'schedulerid', 'pilotversion', 'computingelement', 'container_name', 'nevents']) if sumd: for item in sumd: if item['field'] == 'jeditaskid': item['list'] = sorted(item['list'], key=lambda k: k['kvalue'], reverse=True) _logger.debug('Built standard params attributes summary: {}'.format(time.time() - request.session['req_init_time'])) if 'jeditaskid' in request.session['requestParams']: if len(jobs) > 0: for job in jobs: if 'maxvmem' in job: if type(job['maxvmem']) is int and job['maxvmem'] > 0: job['maxvmemmb'] = "%0.2f" % (job['maxvmem'] / 1000.) job['avgvmemmb'] = "%0.2f" % (job['avgvmem'] / 1000.) if 'maxpss' in job: if type(job['maxpss']) is int and job['maxpss'] > 0: job['maxpss'] = "%0.2f" % (job['maxpss'] / 1024.) testjobs = False if 'prodsourcelabel' in request.session['requestParams'] and request.session['requestParams']['prodsourcelabel'].lower().find('test') >= 0: testjobs = True errsByCount, _, _, _, errdSumd, _ = errorSummaryDict(request, jobs, testjobs, output=['errsByCount', 'errdSumd']) _logger.debug('Built error summary: {}'.format(time.time() - request.session['req_init_time'])) errsByMessage = get_error_message_summary(jobs) _logger.debug('Built error message summary: {}'.format(time.time() - request.session['req_init_time'])) if not is_json_request(request): # Here we getting extended data for list of jobs to be shown jobsToShow = jobs[:njobsmax] from core.libs import exlib try: jobsToShow = exlib.fileList(jobsToShow) except Exception as e: _logger.error(e) _logger.debug( 'Got file info for list of jobs to be shown: {}'.format(time.time() - request.session['req_init_time'])) # Getting PQ status for for list of jobs to be shown pq_dict = get_panda_queues() for job in jobsToShow: if job['computingsite'] in pq_dict: job['computingsitestatus'] = pq_dict[job['computingsite']]['status'] job['computingsitecomment'] = pq_dict[job['computingsite']]['comment'] _logger.debug('Got extra params for sites: {}'.format(time.time() - request.session['req_init_time'])) # closing thread for counting total jobs in DB without limiting number of rows selection if thread is not None: try: thread.join() jobsTotalCount = sum(tcount[dkey]) _logger.debug(dkey) _logger.debug(tcount[dkey]) del tcount[dkey] _logger.debug(tcount) _logger.info("Total number of jobs in DB: {}".format(jobsTotalCount)) except: jobsTotalCount = -1 else: jobsTotalCount = -1 listPar = [] for key, val in request.session['requestParams'].items(): if key not in ('limit', 'display_limit'): listPar.append(key + '=' + str(val)) if len(listPar) > 0: urlParametrs = '&'.join(listPar) + '&' else: urlParametrs = None _logger.info(listPar) del listPar if math.fabs(njobs - jobsTotalCount) < 1000 or jobsTotalCount == -1: jobsTotalCount = None else: jobsTotalCount = int(math.ceil((jobsTotalCount + 10000) / 10000) * 10000) _logger.debug('Total jobs count thread finished: {}'.format(time.time() - request.session['req_init_time'])) # datetime type -> str in order to avoid encoding errors on template datetime_job_param_names = ['creationtime', 'modificationtime', 'starttime', 'statechangetime', 'endtime'] for job in jobsToShow: for dtp in datetime_job_param_names: if job[dtp]: job[dtp] = job[dtp].strftime(defaultDatetimeFormat) # comparison of objects isincomparisonlist = False clist = [] if request.user.is_authenticated and request.user.is_tester: cquery = {} cquery['object'] = 'job' cquery['userid'] = request.user.id try: jobsComparisonList = ObjectsComparison.objects.get(**cquery) except ObjectsComparison.DoesNotExist: jobsComparisonList = None if jobsComparisonList: try: clist = json.loads(jobsComparisonList.comparisonlist) newlist = [] for ce in clist: try: ceint = int(ce) newlist.append(ceint) except: pass clist = newlist except: clist = [] _logger.debug('Got comparison job list for user: {}'.format(time.time() - request.session['req_init_time'])) # set up google flow diagram flowstruct = buildGoogleFlowDiagram(request, jobs=jobs) _logger.debug('Built google flow diagram: {}'.format(time.time() - request.session['req_init_time'])) xurl = extensibleURL(request) time_locked_url = removeParam(removeParam(xurl, 'date_from', mode='extensible'), 'date_to', mode='extensible') + \ 'date_from=' + request.session['TFIRST'].strftime('%Y-%m-%dT%H:%M') + \ '&date_to=' + request.session['TLAST'].strftime('%Y-%m-%dT%H:%M') nodurminurl = removeParam(xurl, 'durationmin', mode='extensible') nosorturl = removeParam(xurl, 'sortby', mode='extensible') nosorturl = removeParam(nosorturl, 'display_limit', mode='extensible') #xurl = removeParam(nosorturl, 'mode', mode='extensible') xurl = nosorturl # check if there are jobs exceeding timewindow and add warning message if math.floor((request.session['TLAST'] - request.session['TFIRST']).total_seconds()) > LAST_N_HOURS_MAX * 3600: warning['timelimitexceeding'] = """ Some of jobs in this listing are outside of the default 'last {} hours' time window, because this limit was applied to jobs in final state only. Please explicitly add &hours=N to URL, if you want to force applying the time window limit on active jobs also.""".format(LAST_N_HOURS_MAX) _logger.debug('Extra data preporation done: {}'.format(time.time() - request.session['req_init_time'])) data = { 'prefix': getPrefix(request), 'errsByCount': errsByCount, 'errsByMessage': json.dumps(errsByMessage), 'errdSumd': errdSumd, 'request': request, 'viewParams': request.session['viewParams'], 'requestParams': request.session['requestParams'], 'jobList': jobsToShow, 'jobtype': jobtype, 'njobs': njobs, 'user': user, 'sumd': sumd, 'xurl': xurl, 'xurlnopref': xurl[5:], 'droplist': droplist, 'ndrops': len(droplist) if len(droplist) > 0 else (- len(droppedPmerge)), 'tfirst': request.session['TFIRST'].strftime(defaultDatetimeFormat), 'tlast': request.session['TLAST'].strftime(defaultDatetimeFormat), 'plow': request.session['PLOW'], 'phigh': request.session['PHIGH'], 'showwarn': showwarn, 'joblimit': request.session['JOB_LIMIT'], 'limit': JOB_LIMIT, 'totalJobs': totalJobs, 'showTop': showTop, 'url_nolimit': url_nolimit, 'display_limit': display_limit, 'sortby': sortby, 'nosorturl': nosorturl, 'nodurminurl': nodurminurl, 'time_locked_url': time_locked_url, 'taskname': taskname, 'flowstruct': flowstruct, 'eventservice': eventservice, 'jobsTotalCount': jobsTotalCount, 'requestString': urlParametrs, 'built': datetime.now().strftime("%H:%M:%S"), 'clist': clist, 'warning': warning, } data.update(getContextVariables(request)) setCacheEntry(request, "jobList", json.dumps(data, cls=DateEncoder), 60 * 20) _logger.debug('Cache was set: {}'.format(time.time() - request.session['req_init_time'])) if eventservice: response = render_to_response('jobListES.html', data, content_type='text/html') else: response = render_to_response('jobList.html', data, content_type='text/html') _logger.info('Rendered template: {}'.format(time.time() - request.session['req_init_time'])) request = complete_request(request) patch_response_headers(response, cache_timeout=request.session['max_age_minutes'] * 60) return response else: del request.session['TFIRST'] del request.session['TLAST'] if 'datasets' in request.session['requestParams']: for job in jobs: files = [] pandaid = job['pandaid'] files.extend(JediDatasetContents.objects.filter(jeditaskid=job['jeditaskid'], pandaid=pandaid).values()) ninput = 0 dsquery = Q() counter = 0 if len(files) > 0: for f in files: if f['type'] == 'input': ninput += 1 f['fsizemb'] = "%0.2f" % (f['fsize'] / 1000000.) f['DSQuery'] = {'jeditaskid': job['jeditaskid'], 'datasetid': f['datasetid']} dsquery = dsquery | Q(Q(jeditaskid=job['jeditaskid']) & Q(datasetid=f['datasetid'])) counter += 1 if counter == 30: break dsets = JediDatasets.objects.filter(dsquery).extra( select={"dummy1": '/*+ INDEX_RS_ASC(ds JEDI_DATASETS_PK) */ 1 '}).values() if len(dsets) > 0: for ds in dsets: for file in files: if 'DSQuery' in file and file['DSQuery']['jeditaskid'] == ds['jeditaskid'] and \ file['DSQuery']['datasetid'] == ds['datasetid']: file['dataset'] = ds['datasetname'] del file['DSQuery'] files.extend(Filestable4.objects.filter(jeditaskid=job['jeditaskid'], pandaid=pandaid).values()) if len(files) == 0: files.extend(FilestableArch.objects.filter(jeditaskid=job['jeditaskid'], pandaid=pandaid).values()) if len(files) > 0: for f in files: if 'creationdate' not in f: f['creationdate'] = f['modificationtime'] if 'fileid' not in f: f['fileid'] = f['row_id'] if 'datasetname' not in f and 'dataset' in f: f['datasetname'] = f['dataset'] if 'modificationtime' in f: f['oldfiletable'] = 1 if 'destinationdblock' in f and f['destinationdblock'] is not None: f['destinationdblock_vis'] = f['destinationdblock'].split('_')[-1] files = sorted(files, key=lambda x: x['type']) nfiles = len(files) logfile = {} for file in files: if file['type'] == 'log': logfile['lfn'] = file['lfn'] logfile['guid'] = file['guid'] if 'destinationse' in file: logfile['site'] = file['destinationse'] else: logfilerec = Filestable4.objects.filter(pandaid=pandaid, lfn=logfile['lfn']).values() if len(logfilerec) == 0: logfilerec = FilestableArch.objects.filter(pandaid=pandaid, lfn=logfile['lfn']).values() if len(logfilerec) > 0: logfile['site'] = logfilerec[0]['destinationse'] logfile['guid'] = logfilerec[0]['guid'] logfile['scope'] = file['scope'] file['fsize'] = int(file['fsize'] / 1000000) job['datasets'] = files _logger.info('Got dataset and file info if requested: {}'.format(time.time() - request.session['req_init_time'])) if 'fields' in request.session['requestParams'] and len(jobs) > 0: fields = request.session['requestParams']['fields'].split(',') fields = (set(fields) & set(jobs[0].keys())) if 'pandaid' not in fields: list(fields).append('pandaid') for job in jobs: for field in list(job.keys()): if field in fields: pass else: del job[field] data = { "selectionsummary": sumd, "jobs": jobs, "errsByCount": errsByCount, } # cache json response for particular usage (HC test monitor for RU) if 'istestmonitor' in request.session['requestParams'] and request.session['requestParams']['istestmonitor'] == 'yes': setCacheEntry(request, "jobList", json.dumps(data, cls=DateEncoder), 60 * 10) response = HttpResponse(json.dumps(data, cls=DateEncoder), content_type='application/json') patch_response_headers(response, cache_timeout=request.session['max_age_minutes'] * 60) return response @never_cache def descendentjoberrsinfo(request): valid, response = initRequest(request) if not valid: return response data = {} job_pandaid = job_jeditaskid = -1 if 'pandaid' in request.session['requestParams']: job_pandaid = int(request.session['requestParams']['pandaid']) if 'jeditaskid' in request.session['requestParams']: job_jeditaskid = int(request.session['requestParams']['jeditaskid']) if (job_pandaid == -1) or (job_jeditaskid == -1): data = {"error": "no pandaid or jeditaskid supplied"} del request.session['TFIRST'] del request.session['TLAST'] return HttpResponse(json.dumps(data, cls=DateTimeEncoder), content_type='application/json') query = setupView(request, hours=365 * 24) jobs = [] jobs.extend(Jobsdefined4.objects.filter(**query).values()) jobs.extend(Jobsactive4.objects.filter(**query).values()) jobs.extend(Jobswaiting4.objects.filter(**query).values()) jobs.extend(Jobsarchived4.objects.filter(**query).values()) if len(jobs) == 0: jobs.extend(Jobsarchived.objects.filter(**query).values()) if len(jobs) == 0: del request.session['TFIRST'] del request.session['TLAST'] data = {"error": "job not found"} return HttpResponse(json.dumps(data, cls=DateTimeEncoder), content_type='application/json') job = jobs[0] countOfInvocations = [] if not is_event_service(job): retryquery = {} retryquery['jeditaskid'] = job['jeditaskid'] retryquery['oldpandaid'] = job['pandaid'] retries = JediJobRetryHistory.objects.filter(**retryquery).order_by('newpandaid').reverse().values() pretries = getSequentialRetries(job['pandaid'], job['jeditaskid'], countOfInvocations) else: retryquery = {} retryquery['jeditaskid'] = job['jeditaskid'] retryquery['oldpandaid'] = job['jobsetid'] retryquery['relationtype'] = 'jobset_retry' retries = JediJobRetryHistory.objects.filter(**retryquery).order_by('newpandaid').reverse().values() pretries = getSequentialRetries_ES(job['pandaid'], job['jobsetid'], job['jeditaskid'], countOfInvocations) query = {'jeditaskid': job_jeditaskid} jobslist = [] for retry in pretries: jobslist.append(retry['oldpandaid']) for retry in retries: jobslist.append(retry['oldpandaid']) query['pandaid__in'] = jobslist jobs = [] jobs.extend(Jobsdefined4.objects.filter(**query).values()) jobs.extend(Jobsactive4.objects.filter(**query).values()) jobs.extend(Jobswaiting4.objects.filter(**query).values()) jobs.extend(Jobsarchived4.objects.filter(**query).values()) jobs.extend(Jobsarchived.objects.filter(**query).values()) jobs = clean_job_list(request, jobs, do_add_metadata=False, do_add_errorinfo=True) errors = {} for job in jobs: errors[job['pandaid']] = job['errorinfo'] response = render_to_response('jobDescentErrors.html', {'errors': errors}, content_type='text/html') request = complete_request(request) return response def eventsInfo(request, mode=None, param=None): if not 'jeditaskid' in request.GET: data = {} return HttpResponse(json.dumps(data, cls=DateEncoder), content_type='application/json') jeditaskid = request.GET['jeditaskid'] cur = connection.cursor() cur.execute( "select sum(decode(c.startevent,NULL,c.nevents,endevent-startevent+1)) nevents,c.status from atlas_panda.jedi_datasets d,atlas_panda.jedi_dataset_contents c where d.jeditaskid=c.jeditaskid and d.datasetid=c.datasetid and d.jeditaskid=%s and d.type in ('input','pseudo_input') and d.masterid is null group by c.status;" % ( jeditaskid)) events = cur.fetchall() cur.close() data = {} for ev in events: data[ev[1]] = ev[0] data['jeditaskid'] = jeditaskid return HttpResponse(json.dumps(data, cls=DateEncoder), content_type='application/json') @login_customrequired @csrf_exempt def jobInfo(request, pandaid=None, batchid=None, p2=None, p3=None, p4=None): valid, response = initRequest(request) if not valid: return response # Here we try to get cached data data = getCacheEntry(request, "jobInfo") # data = None if data is not None: data = json.loads(data) data['request'] = request if data['eventservice'] is True: response = render_to_response('jobInfoES.html', data, content_type='text/html') else: response = render_to_response('jobInfo.html', data, content_type='text/html') patch_response_headers(response, cache_timeout=request.session['max_age_minutes'] * 60) return response eventservice = False query = setupView(request, hours=365 * 24) jobid = '' if 'creator' in request.session['requestParams']: ## Find the job that created the specified file. fquery = {} fquery['lfn'] = request.session['requestParams']['creator'] fquery['type'] = 'output' fileq = [] fileq.extend(Filestable4.objects.filter(**fquery).values('pandaid', 'type', 'status')) if len(fileq) > 0: try: pandaid = next(filei['pandaid'] for filei in fileq if filei['status'] != 'failed') except: pandaid = None if not pandaid or len(fileq) == 0: fileq.extend(FilestableArch.objects.filter(**fquery).values('pandaid', 'type', 'status')) if fileq and len(fileq) > 0: try: pandaid = next(filei['pandaid'] for filei in fileq if filei['status'] != 'failed') except: pandaid = None if pandaid: jobid = pandaid try: query['pandaid'] = int(pandaid) except: query['jobname'] = pandaid if batchid: jobid = batchid query['batchid'] = batchid if 'pandaid' in request.session['requestParams']: try: pandaid = int(request.session['requestParams']['pandaid']) except ValueError: pandaid = 0 jobid = pandaid query['pandaid'] = pandaid elif 'batchid' in request.session['requestParams']: batchid = request.session['requestParams']['batchid'] jobid = "'" + batchid + "'" query['batchid'] = batchid elif 'jobname' in request.session['requestParams']: jobid = request.session['requestParams']['jobname'] query['jobname'] = jobid jobs = [] if pandaid or batchid: startdate = timezone.now() - timedelta(hours=LAST_N_HOURS_MAX) jobs.extend(Jobsdefined4.objects.filter(**query).values()) jobs.extend(Jobsactive4.objects.filter(**query).values()) jobs.extend(Jobswaiting4.objects.filter(**query).values()) jobs.extend(Jobsarchived4.objects.filter(**query).values()) if len(jobs) == 0: try: del query['modificationtime__castdate__range'] except: pass jobs.extend(Jobsarchived.objects.filter(**query).values()) jobs = clean_job_list(request, jobs, do_add_metadata=True, do_add_errorinfo=True) if len(jobs) == 0: data = { 'prefix': getPrefix(request), 'viewParams': request.session['viewParams'], 'requestParams': request.session['requestParams'], 'pandaid': pandaid, 'job': None, 'jobid': jobid, } response = render_to_response('jobInfo.html', data, content_type='text/html') request = complete_request(request) patch_response_headers(response, cache_timeout=request.session['max_age_minutes'] * 60) return response job = {} colnames = [] columns = [] harvesterInfo = {} rucioUserName = [] if 'produserid' in jobs[0]: if 'prodsourcelabel' in jobs[0] and jobs[0]['prodsourcelabel'] == 'user': dn = jobs[0]['produserid'] try: CNs = dn.split("/CN=") if len(CNs) > 1: int(CNs[-1]) dn = dn[:-(len(CNs[-1])+4)] except ValueError: pass rw = ruciowrapper() rucioUserName = rw.getRucioAccountByDN(dn) if len(rucioUserName) > 1: rucio_username_unique = {} for un in rucioUserName: if isinstance(un, dict): if 'rucio_account' in un and un['rucio_account']: rucio_username_unique[un['rucio_account']] = 1 elif isinstance(un, str): rucio_username_unique[un] = 1 rucioUserName = list(rucio_username_unique.keys()) else: rucioUserName = [jobs[0]['produserid']] job = {} try: job = jobs[0] except IndexError: _logger.info('No job found for: {}'.format(jobid)) tquery = {} tquery['jeditaskid'] = job['jeditaskid'] tquery['storagetoken__isnull'] = False storagetoken = JediDatasets.objects.filter(**tquery).values('storagetoken') if storagetoken: job['destinationse'] = storagetoken[0]['storagetoken'] pandaid = job['pandaid'] if 'pandaid' in job else -1 colnames = job.keys() colnames = sorted(colnames) produsername = '' for k in colnames: if is_timestamp(k): try: val = job[k].strftime(defaultDatetimeFormat) except: val = job[k] else: val = job[k] if job[k] == None: val = '' continue pair = {'name': k, 'value': val} columns.append(pair) if k == 'produsername': produsername = job[k] # get Harvester info if 'core.harvester' in djangosettings.INSTALLED_APPS: from core.harvester.utils import isHarvesterJob job['harvesterInfo'] = isHarvesterJob(job['pandaid']) if 'harvesterInfo' in job and job['harvesterInfo'] and len(job['harvesterInfo']) > 0: job['harvesterInfo'] = job['harvesterInfo'][0] else: job['harvesterInfo'] = {} try: # Check for logfile extracts logs = Logstable.objects.filter(pandaid=pandaid) if logs: logextract = logs[0].log1 else: logextract = None except: traceback.print_exc(file=sys.stderr) logextract = None files = [] fileids = [] typeFiles = {} fileSummary = '' inputFilesSize = 0 panda_queues = get_panda_queues() computeSvsAtlasS = get_pq_atlas_sites() if 'nofiles' not in request.session['requestParams']: # Get job files. First look in JEDI datasetcontents _logger.info("Pulling file info") files.extend(Filestable4.objects.filter(pandaid=pandaid).order_by('type').values()) if len(files) == 0: files.extend(FilestableArch.objects.filter(pandaid=pandaid).order_by('type').values()) ninput = 0 noutput = 0 npseudo_input = 0 if len(files) > 0: dquery = {} dquery['datasetid__in'] = [f['datasetid'] for f in files] dsets = JediDatasets.objects.filter(**dquery).values('datasetid', 'datasetname') datasets_dict = {ds['datasetid']: ds['datasetname'] for ds in dsets} for f in files: f['destination'] = ' ' if f['type'] == 'input': ninput += 1 inputFilesSize += f['fsize'] / 1048576. if f['type'] in typeFiles: typeFiles[f['type']] += 1 else: typeFiles[f['type']] = 1 if f['type'] == 'output': noutput += 1 if len(jobs[0]['jobmetrics']) > 0: for s in jobs[0]['jobmetrics'].split(' '): if 'logBucketID' in s: logBucketID = int(s.split('=')[1]) if logBucketID in [45, 41, 105, 106, 42, 61, 103, 2, 82, 101, 117, 115]: # Bucket Codes for S3 destination f['destination'] = 'S3' if f['type'] == 'pseudo_input': npseudo_input += 1 f['fsizemb'] = round(convert_bytes(f['fsize'], output_unit='MB'), 2) if f['datasetid'] in datasets_dict: f['datasetname'] = datasets_dict[f['datasetid']] if f['scope'] + ":" in f['datasetname']: f['ruciodatasetname'] = f['datasetname'].split(":")[1] else: f['ruciodatasetname'] = f['datasetname'] if job['computingsite'] in panda_queues: if job['computingsite'] in ('CERN-P1'): f['ddmsite'] = panda_queues[job['computingsite']]['gocname'] else: f['ddmsite'] = computeSvsAtlasS.get(job['computingsite'], "") if 'dst' in f['destinationdblocktoken']: parced = f['destinationdblocktoken'].split("_") f['ddmsite'] = parced[0][4:] f['dsttoken'] = parced[1] files = [x for x in files if x['destination'] != 'S3'] if len(typeFiles) > 0: inputFilesSize = "%0.2f" % inputFilesSize for i in typeFiles: fileSummary += str(i) + ': ' + str(typeFiles[i]) if i == 'input': fileSummary += ', size: ' + inputFilesSize + ' (MB)' fileSummary += '; ' fileSummary = fileSummary[:-2] if len(files) > 0: for f in files: if 'creationdate' not in f: f['creationdate'] = f['modificationtime'] if 'fileid' not in f: f['fileid'] = f['row_id'] if 'datasetname' not in f: if f['scope']+":" in f['dataset']: f['datasetname'] = f['dataset'] f['ruciodatasetname'] = f['dataset'].split(":")[1] else: f['datasetname'] = f['dataset'] f['ruciodatasetname'] = f['dataset'] if 'modificationtime' in f: f['oldfiletable'] = 1 if 'destinationdblock' in f and f['destinationdblock'] is not None: f['destinationdblock_vis'] = f['destinationdblock'].split('_')[-1] fileids.append(f['fileid']) dcquery = {} dcquery['pandaid'] = pandaid dcquery['fileid__in'] = fileids dcfiles = JediDatasetContents.objects.filter(**dcquery).values() dcfilesDict = {} if len(dcfiles) > 0: for dcf in dcfiles: dcfilesDict[dcf['fileid']] = dcf files = sorted(files, key=lambda x: x['type']) nfiles = len(files) inputfiles = [] logfile = {} for file in files: if file['type'] == 'log': logfile['lfn'] = file['lfn'] logfile['guid'] = file['guid'] if 'destinationse' in file: logfile['site'] = file['destinationse'] else: logfilerec = Filestable4.objects.filter(pandaid=pandaid, lfn=logfile['lfn']).values() if len(logfilerec) == 0: logfilerec = FilestableArch.objects.filter(pandaid=pandaid, lfn=logfile['lfn']).values() if len(logfilerec) > 0: logfile['site'] = logfilerec[0]['destinationse'] logfile['guid'] = logfilerec[0]['guid'] logfile['scope'] = file['scope'] logfile['fileid'] = file['fileid'] file['fsize'] = int(file['fsize']) if file['type'] == 'input': file['attemptnr'] = dcfilesDict[file['fileid']]['attemptnr'] if file['fileid'] in dcfilesDict else file['attemptnr'] file['maxattempt'] = dcfilesDict[file['fileid']]['maxattempt'] if file['fileid'] in dcfilesDict else None inputfiles.append({'jeditaskid': file['jeditaskid'], 'datasetid': file['datasetid'], 'fileid': file['fileid']}) if 'pilotid' in job and job['pilotid'] and job['pilotid'].startswith('http') and '{' not in job['pilotid']: stdout = job['pilotid'].split('|')[0] if stdout.endswith('pilotlog.txt'): stdlog = stdout.replace('pilotlog.txt', 'payload.stdout') stderr = stdout.replace('pilotlog.txt', 'payload.stderr') stdjdl = None else: stderr = stdout.replace('.out', '.err') stdlog = stdout.replace('.out', '.log') stdjdl = stdout.replace('.out', '.jdl') stdlog = stdout.replace('.out', '.log') elif len(job['harvesterInfo']) > 0 and 'batchlog' in job['harvesterInfo'] and job['harvesterInfo']['batchlog']: stdlog = job['harvesterInfo']['batchlog'] stderr = stdlog.replace('.log', '.err') stdout = stdlog.replace('.log', '.out') stdjdl = stdlog.replace('.log', '.jdl') else: stdout = stderr = stdlog = stdjdl = None # Check for object store based log oslogpath = None pq_object_store_paths = get_pq_object_store_path() if 'computingsite' in job and job['computingsite'] in pq_object_store_paths: ospath = pq_object_store_paths[job['computingsite']] if 'lfn' in logfile: if ospath.endswith('/'): oslogpath = ospath + logfile['lfn'] else: oslogpath = ospath + '/' + logfile['lfn'] # Check for debug info debugmode = is_debug_mode(job) debugstdout = None if debugmode: if 'showdebug' in request.session['requestParams']: debugstdoutrec = Jobsdebug.objects.filter(pandaid=pandaid).values() if len(debugstdoutrec) > 0: if 'stdout' in debugstdoutrec[0]: debugstdout = debugstdoutrec[0]['stdout'] # Get job parameters _logger.info("getting job parameters") jobparamrec = Jobparamstable.objects.filter(pandaid=pandaid) jobparams = None if len(jobparamrec) > 0: jobparams = jobparamrec[0].jobparameters # else: # jobparamrec = JobparamstableArch.objects.filter(pandaid=pandaid) # if len(jobparamrec) > 0: # jobparams = jobparamrec[0].jobparameters esjobstr = '' evtable = [] if is_event_service(job): # for ES jobs, prepare the event table esjobdict = {} for s in eventservicestatelist: esjobdict[s] = 0 evalues = 'fileid', 'datasetid', 'def_min_eventid', 'def_max_eventid', 'processed_upto_eventid', 'status', 'job_processid', 'attemptnr', 'eventoffset' evtable.extend(JediEvents.objects.filter(pandaid=job['pandaid']).order_by('-def_min_eventid').values(*evalues)) for evrange in evtable: evrange['status'] = eventservicestatelist[evrange['status']] esjobdict[evrange['status']] += evrange['def_max_eventid'] - evrange['def_min_eventid'] + 1 evrange['attemptnr'] = 10 - evrange['attemptnr'] esjobstr = '' for s in esjobdict: if esjobdict[s] > 0: esjobstr += " {} ({}) ".format(s, esjobdict[s]) else: evtable = [] # jobset info jobsetinfo = {} if ('jobset' in request.session['requestParams'] or is_event_service(job)) and 'jobsetid' in job and job['jobsetid'] > 0: jobs = [] jsquery = { 'jobsetid': job['jobsetid'], 'produsername': job['produsername'], } jvalues = ['pandaid', 'prodsourcelabel', 'processingtype', 'transformation', 'eventservice', 'jobstatus'] jobs.extend(Jobsdefined4.objects.filter(**jsquery).values(*jvalues)) jobs.extend(Jobsactive4.objects.filter(**jsquery).values(*jvalues)) jobs.extend(Jobswaiting4.objects.filter(**jsquery).values(*jvalues)) jobs.extend(Jobsarchived4.objects.filter(**jsquery).values(*jvalues)) jobs.extend(Jobsarchived.objects.filter(**jsquery).values(*jvalues)) jobs = add_job_category(jobs) job_summary_list = job_states_count_by_param(jobs, param='category') for row in job_summary_list: jobsetinfo[row['value']] = sum([jss['count'] for jss in row['job_state_counts']]) # For CORE, pick up parameters from jobparams if VOMODE == 'core' or ('vo' in job and job['vo'] == 'core'): coreData = {} if jobparams: coreParams = re.match( '.*PIPELINE_TASK\=([a-zA-Z0-9]+).*PIPELINE_PROCESSINSTANCE\=([0-9]+).*PIPELINE_STREAM\=([0-9\.]+)', jobparams) if coreParams: coreData['pipelinetask'] = coreParams.group(1) coreData['processinstance'] = coreParams.group(2) coreData['pipelinestream'] = coreParams.group(3) else: coreData = None if 'jobstatus' in job and (job['jobstatus'] == 'failed' or job['jobstatus'] == 'holding'): errorinfo = getErrorDescription(job) if len(errorinfo) > 0: job['errorinfo'] = errorinfo if 'transformation' in job and job['transformation'] is not None and job['transformation'].startswith('http'): job['transformation'] = "<a href='%s'>%s</a>" % (job['transformation'], job['transformation'].split('/')[-1]) if 'metastruct' in job: job['metadata'] = json.dumps(job['metastruct'], sort_keys=True, indent=4, separators=(',', ': ')) if job['creationtime']: creationtime = job['creationtime'] now = datetime.now() tdelta = now - creationtime job['days_since_creation'] = int(tdelta.days) + 1 isincomparisonlist = False clist = [] if request.user.is_authenticated and request.user.is_tester: cquery = {} cquery['object'] = 'job' cquery['userid'] = request.user.id try: jobsComparisonList = ObjectsComparison.objects.get(**cquery) except ObjectsComparison.DoesNotExist: jobsComparisonList = None if jobsComparisonList: try: clist = json.loads(jobsComparisonList.comparisonlist) newlist = [] for ce in clist: try: ceint = int(ce) newlist.append(ceint) except: pass clist = newlist except: clist = [] if job['pandaid'] in clist: isincomparisonlist = True # if it is ART test, get test name art_test = [] if 'core.art' in djangosettings.INSTALLED_APPS and DEPLOYMENT == 'ORACLE_ATLAS': try: from core.art.modelsART import ARTTests except ImportError: _logger.exception('Failed to import ARTTests model') artqueue = {'pandaid': pandaid} art_test.extend(ARTTests.objects.filter(**artqueue).values()) # datetime type -> str in order to avoid encoding errors on template datetime_job_param_names = ['creationtime', 'modificationtime', 'starttime', 'statechangetime', 'endtime'] datetime_file_param_names = ['creationdate', 'modificationtime'] if job: for dtp in datetime_job_param_names: if job[dtp]: job[dtp] = job[dtp].strftime(defaultDatetimeFormat) for f in files: for fp, fpv in f.items(): if fp in datetime_file_param_names and fpv is not None: f[fp] = f[fp].strftime(defaultDatetimeFormat) if fpv is None: f[fp] = '' prmon_logs = {} if PRMON_LOGS_DIRECTIO_LOCATION and job.get('jobstatus') in ('finished', 'failed'): prmon_logs['prmon_summary'] = PRMON_LOGS_DIRECTIO_LOCATION.format(queue_name = job.get('computingsite'), panda_id = pandaid) + \ '/memory_monitor_summary.json' prmon_logs['prmon_details'] = PRMON_LOGS_DIRECTIO_LOCATION.format(queue_name = job.get('computingsite'), panda_id = pandaid) + \ '/memory_monitor_output.txt' if not is_json_request(request): del request.session['TFIRST'] del request.session['TLAST'] data = { 'prefix': getPrefix(request), 'request': request, 'viewParams': request.session['viewParams'], 'requestParams': request.session['requestParams'], 'pandaid': pandaid, 'job': job, 'columns': columns, 'arttest': art_test, 'files': files, 'nfiles': nfiles, 'logfile': logfile, 'oslogpath': oslogpath, 'stdout': stdout, 'stderr': stderr, 'stdlog': stdlog, 'stdjdl': stdjdl, 'jobparams': jobparams, 'jobid': jobid, 'coreData': coreData, 'logextract': logextract, 'eventservice': is_event_service(job), 'evtable': evtable[:1000], 'debugmode': debugmode, 'debugstdout': debugstdout, 'jobsetinfo': jobsetinfo, 'esjobstr': esjobstr, 'fileSummary': fileSummary, 'built': datetime.now().strftime("%H:%M:%S"), 'produsername': produsername, 'isincomparisonlist': isincomparisonlist, 'clist': clist, 'inputfiles': inputfiles, 'rucioUserName': rucioUserName, 'prmon_logs': prmon_logs } data.update(getContextVariables(request)) setCacheEntry(request, "jobInfo", json.dumps(data, cls=DateEncoder), 60 * 20) if is_event_service(job): response = render_to_response('jobInfoES.html', data, content_type='text/html') else: response = render_to_response('jobInfo.html', data, content_type='text/html') patch_response_headers(response, cache_timeout=request.session['max_age_minutes'] * 60) return response elif is_json_request(request): del request.session['TFIRST'] del request.session['TLAST'] dsfiles = [] if len(evtable) > 0: fileids = {} for evrange in evtable: fileids[int(evrange['fileid'])] = {} flist = [] for f in fileids: flist.append(f) dsfiles.extend(JediDatasetContents.objects.filter(fileid__in=flist).values()) data = { 'files': files, 'job': job, 'dsfiles': dsfiles, } return HttpResponse(json.dumps(data, cls=DateTimeEncoder), content_type='application/json') else: del request.session['TFIRST'] del request.session['TLAST'] return HttpResponse('not understood', content_type='text/html') @never_cache def get_job_relationships(request, pandaid=-1): """ Getting job relationships in both directions: downstream (further retries); upstream (past retries). """ valid, response = initRequest(request) if not valid: return response direction = '' if 'direction' in request.session['requestParams'] and request.session['requestParams']['direction']: direction = request.session['requestParams']['direction'] job = {} jobs = [] jquery = { 'pandaid': pandaid, } jvalues = ['pandaid', 'jeditaskid', 'jobsetid', 'specialhandling', 'eventservice'] jobs.extend(Jobsdefined4.objects.filter(**jquery).values(*jvalues)) jobs.extend(Jobsactive4.objects.filter(**jquery).values(*jvalues)) jobs.extend(Jobswaiting4.objects.filter(**jquery).values(*jvalues)) jobs.extend(Jobsarchived4.objects.filter(**jquery).values(*jvalues)) if len(jobs) == 0: jobs.extend(Jobsarchived.objects.filter(**jquery).values(*jvalues)) try: job = jobs[0] except IndexError: _logger.exception('No job found with pandaid: {}'.format(pandaid)) message = '' job_relationships = [] countOfInvocations = [] # look for job retries if 'jeditaskid' in job and job['jeditaskid'] and job['jeditaskid'] > 0: if direction == 'downstream': retries = [] if not is_event_service(job): retryquery = { 'jeditaskid': job['jeditaskid'], 'oldpandaid': job['pandaid'], } job_relationships.extend(JediJobRetryHistory.objects.filter(**retryquery).order_by('newpandaid').reverse().values()) else: job_relationships = getSequentialRetries_ESupstream(job['pandaid'], job['jobsetid'], job['jeditaskid'], countOfInvocations) elif direction == 'upstream': if not is_event_service(job): job_relationships = getSequentialRetries(job['pandaid'], job['jeditaskid'], countOfInvocations) else: job_relationships = getSequentialRetries_ES(job['pandaid'], job['jobsetid'], job['jeditaskid'], countOfInvocations) else: message = 'Wrong direction provided, it should be up or down stream.' else: job_relationships = None countOfInvocations = len(countOfInvocations) data = { 'retries': job_relationships, 'direction': direction, 'message': message, 'countOfInvocations': countOfInvocations, } response = render_to_response('jobRelationships.html', data, content_type='text/html') patch_response_headers(response, cache_timeout=-1) return response @login_customrequired def userList(request): valid, response = initRequest(request) if not valid: return response # Here we try to get cached data data = getCacheEntry(request, "userList") # data = None if data is not None: data = json.loads(data) data['request'] = request response = render_to_response('userList.html', data, content_type='text/html') patch_response_headers(response, cache_timeout=request.session['max_age_minutes'] * 60) return response nhours = 90 * 24 setupView(request, hours=nhours, limit=-99) if VOMODE == 'atlas': view = 'database' else: view = 'dynamic' if 'view' in request.session['requestParams']: view = request.session['requestParams']['view'] sumd = [] jobsumd = [] userdb = [] userdbl = [] userstats = {} if view == 'database': startdate = timezone.now() - timedelta(hours=nhours) startdate = startdate.strftime(defaultDatetimeFormat) query = {'lastmod__gte': startdate} userdb.extend(Users.objects.filter(**query).values()) anajobs = 0 n1000 = 0 n10k = 0 nrecent3 = 0 nrecent7 = 0 nrecent30 = 0 nrecent90 = 0 ## Move to a list of dicts and adjust CPU unit for u in userdb: u['latestjob'] = u['lastmod'] udict = {} udict['name'] = u['name'] udict['njobsa'] = u['njobsa'] if u['njobsa'] is not None else 0 udict['cpua1'] = round(u['cpua1'] / 3600.) if u['cpua1'] is not None else 0 udict['cpua7'] = round(u['cpua7'] / 3600.) if u['cpua7'] is not None else 0 udict['cpup1'] = round(u['cpup1'] / 3600.) if u['cpup1'] is not None else 0 udict['cpup7'] = round(u['cpup7'] / 3600.) if u['cpup7'] is not None else 0 if u['latestjob']: udict['latestjob'] = u['latestjob'].strftime(defaultDatetimeFormat) udict['lastmod'] = u['lastmod'].strftime(defaultDatetimeFormat) userdbl.append(udict) if u['njobsa'] is not None: if u['njobsa'] > 0: anajobs += u['njobsa'] if u['njobsa'] >= 1000: n1000 += 1 if u['njobsa'] >= 10000: n10k += 1 if u['latestjob'] is not None: latest = timezone.now() - u['latestjob'] if latest.days < 4: nrecent3 += 1 if latest.days < 8: nrecent7 += 1 if latest.days < 31: nrecent30 += 1 if latest.days < 91: nrecent90 += 1 userstats['anajobs'] = anajobs userstats['n1000'] = n1000 userstats['n10k'] = n10k userstats['nrecent3'] = nrecent3 userstats['nrecent7'] = nrecent7 userstats['nrecent30'] = nrecent30 userstats['nrecent90'] = nrecent90 else: if VOMODE == 'atlas': nhours = 12 else: nhours = 7 * 24 query = setupView(request, hours=nhours, limit=999999) # looking into user analysis jobs only query['prodsourcelabel'] = 'user' # dynamically assemble user summary info values = ('eventservice', 'produsername', 'cloud', 'computingsite', 'cpuconsumptiontime', 'jobstatus', 'transformation', 'prodsourcelabel', 'specialhandling', 'vo', 'pandaid', 'starttime', 'endtime', 'modificationtime', 'atlasrelease', 'processingtype', 'workinggroup', 'currentpriority', 'container_name', 'cmtconfig') jobs = [] jobs.extend(Jobsdefined4.objects.filter(**query).values(*values)) jobs.extend(Jobsactive4.objects.filter(**query).values(*values)) jobs.extend(Jobswaiting4.objects.filter(**query).values(*values)) jobs.extend(Jobsarchived4.objects.filter(**query).values(*values)) jobs = clean_job_list(request, jobs, do_add_metadata=False, do_add_errorinfo=False) sumd = user_summary_dict(jobs) for user in sumd: if user['dict']['latest']: user['dict']['latest'] = user['dict']['latest'].strftime(defaultDatetimeFormat) sumparams = ['jobstatus', 'prodsourcelabel', 'specialhandling', 'transformation', 'processingtype', 'workinggroup', 'priorityrange'] if VOMODE == 'atlas': sumparams.append('atlasrelease') else: sumparams.append('vo') jobsumd = job_summary_dict(request, jobs, sumparams)[0] if not is_json_request(request): data = { 'request': request, 'viewParams': request.session['viewParams'], 'requestParams': request.session['requestParams'], 'xurl': extensibleURL(request), 'url': request.path, 'sumd': sumd, 'jobsumd': jobsumd, 'userdb': userdbl, 'userstats': userstats, 'tfirst': request.session['TFIRST'].strftime(defaultDatetimeFormat), 'tlast': request.session['TLAST'].strftime(defaultDatetimeFormat), 'plow': request.session['PLOW'], 'phigh': request.session['PHIGH'], 'built': datetime.now().strftime("%H:%M:%S"), } data.update(getContextVariables(request)) setCacheEntry(request, "userList", json.dumps(data, cls=DateEncoder), 60 * 20) response = render_to_response('userList.html', data, content_type='text/html') request = complete_request(request) patch_response_headers(response, cache_timeout=request.session['max_age_minutes'] * 60) return response else: request = complete_request(request) return HttpResponse(json.dumps(sumd), content_type='application/json') @login_customrequired def userInfo(request, user=''): valid, response = initRequest(request) if not valid: return response fullname = '' login = '' userQueryTask = None userQueryJobs = None if user == '': if 'user' in request.session['requestParams']: user = request.session['requestParams']['user'] if 'produsername' in request.session['requestParams']: user = request.session['requestParams']['produsername'] # Here we serve only personal user pages. No user parameter specified if user == '': if request.user.is_authenticated: login = user = request.user.username fullname = request.user.first_name.replace('\'', '') + ' ' + request.user.last_name userQueryTask = Q(username=login) | Q(username__startswith=fullname) userQueryJobs = Q(produsername=login) | Q(produsername__startswith=fullname) if 'days' in request.session['requestParams']: days = int(request.session['requestParams']['days']) else: days = 7 if 'sortby' in request.session['requestParams'] and request.session['requestParams']['sortby']: sortby = request.session['requestParams']['sortby'] else: sortby = None requestParams = {} for param in request.session['requestParams']: requestParams[escape_input(param.strip())] = escape_input(request.session['requestParams'][param.strip()].strip()) request.session['requestParams'] = requestParams # Tasks owned by the user query = setupView(request, hours=days*24, limit=999999, querytype='task') if userQueryTask is None: query['username__icontains'] = user.strip() tasks = JediTasks.objects.filter(**query).values() else: tasks = JediTasks.objects.filter(**query).filter(userQueryTask).values() _logger.info('Got {} tasks: {}'.format(len(tasks), time.time() - request.session['req_init_time'])) tasks = cleanTaskList(tasks, sortby=sortby, add_datasets_info=True) _logger.info('Cleaned tasks and loading datasets info: {}'.format(time.time() - request.session['req_init_time'])) # consumed cpu hours stats for a user if len(tasks) > 0: panda_user_name = list(set([t['username'] for t in tasks]))[0] else: panda_user_name = fullname if fullname != '' else user.strip() userstats = get_panda_user_stats(panda_user_name) _logger.info('Got user statistics: {}'.format(time.time() - request.session['req_init_time'])) # getting most relevant links based on visit statistics links = {} if request.user.is_authenticated and ( 'user' not in request.session['requestParams'] and 'produsername' not in request.session['requestParams']): userids = BPUser.objects.filter(email=request.user.email).values('id') userid = userids[0]['id'] fields = { 'job': copy.deepcopy(standard_fields), 'task': copy.deepcopy(standard_taskfields), 'site': copy.deepcopy(standard_sitefields), } links = get_relevant_links(userid, fields) # new user dashboard if 'view' in request.session['requestParams'] and request.session['requestParams']['view'] == 'dash': if query and 'modificationtime__castdate__range' in query: request.session['timerange'] = query['modificationtime__castdate__range'] plots = prepare_user_dash_plots(tasks) # put list of tasks to cache for further usage tk_taskids = random.randrange(100000000) setCacheEntry(request, tk_taskids, json.dumps(tasks, cls=DateTimeEncoder), 60 * 30, isData=True) metrics_total = {} if userstats: metrics_total['cpua7'] = userstats['cpua7'] if 'cpua7' in userstats else 0 metrics_total['cpup7'] = userstats['cpup7'] if 'cpup7' in userstats else 0 metrics_total = humanize_metrics(metrics_total) if is_json_request(request): pass else: timestamp_vars = ['modificationtime', 'statechangetime', 'starttime', 'creationdate', 'resquetime', 'endtime', 'lockedtime', 'frozentime', 'ttcpredictiondate', 'ttcrequested'] for task in tasks: for tp in task: if tp in timestamp_vars and task[tp] is not None: task[tp] = task[tp].strftime(defaultDatetimeFormat) if task[tp] is None: task[tp] = '' if task[tp] is True: task[tp] = 'true' if task[tp] is False: task[tp] = 'false' xurl = extensibleURL(request) data = { 'request': request, 'viewParams': request.session['viewParams'], 'requestParams': request.session['requestParams'], 'timerange': request.session['timerange'], 'built': datetime.now().strftime("%H:%M:%S"), 'tk': tk_taskids, 'xurl': xurl, 'user': user, 'links': links, 'ntasks': len(tasks), 'plots': plots, 'metrics': metrics_total, 'userstats': userstats, } response = render_to_response('userDash.html', data, content_type='text/html') patch_response_headers(response, cache_timeout=request.session['max_age_minutes'] * 60) return response else: if 'display_limit_tasks' not in request.session['requestParams']: display_limit_tasks = 100 else: display_limit_tasks = int(request.session['requestParams']['display_limit_tasks']) ntasksmax = display_limit_tasks url_nolimit_tasks = removeParam(extensibleURL(request), 'display_limit_tasks', mode='extensible') + "display_limit_tasks=" + str(len(tasks)) tasks = getTaskScoutingInfo(tasks, ntasksmax) _logger.info('Tasks scouting info loaded: {}'.format(time.time() - request.session['req_init_time'])) ntasks = len(tasks) tasksumd = task_summary_dict(request, tasks) _logger.info('Tasks summary generated: {}'.format(time.time() - request.session['req_init_time'])) # Jobs limit = 5000 query, extra_query_str, LAST_N_HOURS_MAX = setupView(request, hours=72, limit=limit, querytype='job', wildCardExt=True) jobs = [] values = 'eventservice', 'produsername', 'cloud', 'computingsite', 'cpuconsumptiontime', 'jobstatus', 'transformation', 'prodsourcelabel', 'specialhandling', 'vo', 'modificationtime', 'pandaid', 'atlasrelease', 'jobsetid', 'processingtype', 'workinggroup', 'jeditaskid', 'taskid', 'currentpriority', 'creationtime', 'starttime', 'endtime', 'brokerageerrorcode', 'brokerageerrordiag', 'ddmerrorcode', 'ddmerrordiag', 'exeerrorcode', 'exeerrordiag', 'jobdispatchererrorcode', 'jobdispatchererrordiag', 'piloterrorcode', 'piloterrordiag', 'superrorcode', 'superrordiag', 'taskbuffererrorcode', 'taskbuffererrordiag', 'transexitcode', 'homepackage', 'inputfileproject', 'inputfiletype', 'attemptnr', 'jobname', 'proddblock', 'destinationdblock', 'container_name', 'cmtconfig' if userQueryJobs is None: query['produsername__icontains'] = user.strip() jobs.extend(Jobsdefined4.objects.filter(**query).extra(where=[extra_query_str])[:request.session['JOB_LIMIT']].values(*values)) jobs.extend(Jobsactive4.objects.filter(**query).extra(where=[extra_query_str])[:request.session['JOB_LIMIT']].values(*values)) jobs.extend(Jobswaiting4.objects.filter(**query).extra(where=[extra_query_str])[:request.session['JOB_LIMIT']].values(*values)) jobs.extend(Jobsarchived4.objects.filter(**query).extra(where=[extra_query_str])[:request.session['JOB_LIMIT']].values(*values)) if len(jobs) == 0 or (len(jobs) < limit and LAST_N_HOURS_MAX > 72): jobs.extend(Jobsarchived.objects.filter(**query).extra(where=[extra_query_str])[:request.session['JOB_LIMIT']].values(*values)) else: jobs.extend(Jobsdefined4.objects.filter(**query).filter(userQueryJobs).extra(where=[extra_query_str])[:request.session['JOB_LIMIT']].values(*values)) jobs.extend(Jobsactive4.objects.filter(**query).filter(userQueryJobs).extra(where=[extra_query_str])[:request.session['JOB_LIMIT']].values(*values)) jobs.extend(Jobswaiting4.objects.filter(**query).filter(userQueryJobs).extra(where=[extra_query_str])[:request.session['JOB_LIMIT']].values(*values)) jobs.extend(Jobsarchived4.objects.filter(**query).filter(userQueryJobs).extra(where=[extra_query_str])[:request.session['JOB_LIMIT']].values(*values)) # Here we go to an archive. Separation OR condition is done to enforce Oracle to perform indexed search. if len(jobs) == 0 or (len(jobs) < limit and LAST_N_HOURS_MAX > 72): query['produsername__startswith'] = user.strip() #.filter(userQueryJobs) archjobs = [] # This two filters again to force Oracle search archjobs.extend(Jobsarchived.objects.filter(**query).filter(Q(produsername=user.strip())).extra(where=[extra_query_str])[:request.session['JOB_LIMIT']].values(*values)) if len(archjobs) > 0: jobs = jobs+archjobs elif len(fullname) > 0: #del query['produsername'] query['produsername__startswith'] = fullname jobs.extend(Jobsarchived.objects.filter(**query).extra(where=[extra_query_str])[:request.session['JOB_LIMIT']].values(*values)) jobs = clean_job_list(request, jobs, do_add_metadata=False, do_add_errorinfo=True) # Divide up jobs by jobset and summarize jobsets = {} for job in jobs: if 'jobsetid' not in job or job['jobsetid'] == None: continue if job['jobsetid'] not in jobsets: jobsets[job['jobsetid']] = {} jobsets[job['jobsetid']]['jobsetid'] = job['jobsetid'] jobsets[job['jobsetid']]['jobs'] = [] jobsets[job['jobsetid']]['jobs'].append(job) for jobset in jobsets: jobsets[jobset]['sum'] = jobStateSummary(jobsets[jobset]['jobs']) jobsets[jobset]['njobs'] = len(jobsets[jobset]['jobs']) tfirst = timezone.now() tlast = timezone.now() - timedelta(hours=2400) plow = 1000000 phigh = -1000000 for job in jobsets[jobset]['jobs']: if job['modificationtime'] > tlast: tlast = job['modificationtime'] if job['modificationtime'] < tfirst: tfirst = job['modificationtime'] if job['currentpriority'] > phigh: phigh = job['currentpriority'] if job['currentpriority'] < plow: plow = job['currentpriority'] jobsets[jobset]['tfirst'] = tfirst.strftime(defaultDatetimeFormat) jobsets[jobset]['tlast'] = tlast.strftime(defaultDatetimeFormat) jobsets[jobset]['plow'] = plow jobsets[jobset]['phigh'] = phigh jobsetl = [] jsk = jobsets.keys() jsk = sorted(jsk, reverse=True) for jobset in jsk: jobsetl.append(jobsets[jobset]) njobsmax = len(jobs) if 'display_limit_jobs' in request.session['requestParams'] and int( request.session['requestParams']['display_limit_jobs']) < len(jobs): display_limit_jobs = int(request.session['requestParams']['display_limit_jobs']) else: display_limit_jobs = 100 njobsmax = display_limit_jobs url_nolimit_jobs = removeParam(extensibleURL(request), 'display_limit_jobs', mode='extensible') + 'display_limit_jobs=' + str(len(jobs)) sumd = user_summary_dict(jobs) if not is_json_request(request): flist = ['jobstatus', 'prodsourcelabel', 'processingtype', 'specialhandling', 'transformation', 'jobsetid', 'jeditaskid', 'computingsite', 'cloud', 'workinggroup', 'homepackage', 'inputfileproject', 'inputfiletype', 'attemptnr', 'priorityrange', 'jobsetrange'] if VOMODE != 'atlas': flist.append('vo') else: flist.append('atlasrelease') jobsumd, esjobssumd = job_summary_dict(request, jobs, flist) njobsetmax = 100 xurl = extensibleURL(request) nosorturl = removeParam(xurl, 'sortby', mode='extensible') timestamp_vars = ['modificationtime', 'statechangetime', 'starttime', 'creationdate', 'resquetime', 'endtime', 'lockedtime', 'frozentime', 'ttcpredictiondate'] for task in tasks: for tp in task: if tp in timestamp_vars and task[tp] is not None: task[tp] = task[tp].strftime(defaultDatetimeFormat) if task[tp] is None: task[tp] = '' timestamp_vars = ['modificationtime', 'creationtime'] for job in jobs: for tsv in timestamp_vars: if tsv in job and job[tsv]: job[tsv] = job[tsv].strftime(defaultDatetimeFormat) data = { 'request': request, 'viewParams': request.session['viewParams'], 'requestParams': request.session['requestParams'], 'xurl': xurl, 'nosorturl': nosorturl, 'user': panda_user_name, 'sumd': sumd, 'jobsumd': jobsumd, 'jobList': jobs[:njobsmax], 'njobs': len(jobs), 'display_limit_jobs': display_limit_jobs, 'url_nolimit_jobs': url_nolimit_jobs, 'query': query, 'userstats': userstats, 'tfirst': request.session['TFIRST'].strftime(defaultDatetimeFormat), 'tlast': request.session['TLAST'].strftime(defaultDatetimeFormat), 'plow': request.session['PLOW'], 'phigh': request.session['PHIGH'], 'jobsets': jobsetl[:njobsetmax - 1], 'njobsetmax': njobsetmax, 'njobsets': len(jobsetl), 'url_nolimit_tasks': url_nolimit_tasks, 'display_limit_tasks': display_limit_tasks, 'tasks': tasks[:ntasksmax], 'ntasks': ntasks, 'tasksumd': tasksumd, 'built': datetime.now().strftime("%H:%M:%S"), 'links': links, } data.update(getContextVariables(request)) response = render_to_response('userInfo.html', data, content_type='text/html') request = complete_request(request) patch_response_headers(response, cache_timeout=request.session['max_age_minutes'] * 60) return response else: request = complete_request(request) resp = sumd return HttpResponse(json.dumps(resp, default=datetime_handler), content_type='application/json') def userDashApi(request, agg=None): """ :param agg: str: type of aggregation to return :return: JSON """ valid, response = initRequest(request) if not valid: return response AVAILABLE_AGGS = ['initial', 'cons_plots', 'overall_errors'] data = {'msg': '', 'data': {}} if agg is None or agg not in AVAILABLE_AGGS: data['msg'] += 'ERROR! Invalid agg passed.' return HttpResponse(json.dumps(data, default=datetime_handler), content_type='application/json') tk = None if 'tk' in request.session['requestParams'] and request.session['requestParams']['tk']: tk = int(request.session['requestParams']['tk']) else: data['msg'] += 'ERROR! Invalid transaction key passed. Please try to reload the page.' return HttpResponse(json.dumps(data, default=datetime_handler), content_type='application/json') # getting top errors by task and metrics for labels if agg == 'initial': # get taskids from cache tasks_str = getCacheEntry(request, tk, isData=True) if tasks_str is not None: tasks = json.loads(tasks_str) else: tasks = [] _logger.info('Got {} tasks from cache: {}'.format(len(tasks), time.time() - request.session['req_init_time'])) # jobs summary jquery = { 'jobstatus__in': ['finished', 'failed', ], 'jeditaskid__in': [t['jeditaskid'] for t in tasks if 'jeditaskid' in t] } err_fields = [ 'brokerageerrorcode', 'brokerageerrordiag', 'ddmerrorcode', 'ddmerrordiag', 'exeerrorcode', 'exeerrordiag', 'jobdispatchererrorcode', 'jobdispatchererrordiag', 'piloterrorcode', 'piloterrordiag', 'superrorcode', 'superrordiag', 'taskbuffererrorcode', 'taskbuffererrordiag', 'transexitcode', 'produsername' ] jobs = get_job_list(jquery, values=err_fields) _logger.info('Got jobs: {}'.format(time.time() - request.session['req_init_time'])) errs_by_code, _, _, errs_by_task, _, _ = errorSummaryDict(request, jobs, False, flist=[], sortby='count') errs_by_task_dict = {} for err in errs_by_task: if err['name'] not in errs_by_task_dict: errs_by_task_dict[err['name']] = err _logger.info('Got error summaries: {}'.format(time.time() - request.session['req_init_time'])) metrics = calc_jobs_metrics(jobs, group_by='jeditaskid') _logger.info('Calculated jobs metrics: {}'.format(time.time() - request.session['req_init_time'])) for t in tasks: for metric in metrics: if t['jeditaskid'] in metrics[metric]['group_by']: t['job_' + metric] = metrics[metric]['group_by'][t['jeditaskid']] else: t['job_' + metric] = '' if t['jeditaskid'] in errs_by_task_dict and t['superstatus'] != 'done': link_jobs_base = '/jobs/?mode=nodrop&jeditaskid={}&'.format(t['jeditaskid']) t['top_errors'] = '<br>'.join( ['<a href="{}{}={}">{}</a> [{}] "{}"'.format( link_jobs_base, err['codename'], err['codeval'], err['count'], err['error'], err['diag'] ) for err in errs_by_task_dict[t['jeditaskid']]['errorlist']][:2]) else: t['top_errors'] = -1 _logger.info('Jobs metrics added to tasks: {}'.format(time.time() - request.session['req_init_time'])) # prepare relevant metrics to show metrics_total = {m: v['total'] for m, v in metrics.items() if 'total' in v} metrics_total = humanize_metrics(metrics_total) data['data']['metrics'] = metrics_total data['data']['tasks_metrics'] = tasks # prepare data for datatable task_list_table_headers = [ 'jeditaskid', 'attemptnr', 'tasktype', 'taskname', 'nfiles', 'nfilesfinished', 'nfilesfailed', 'pctfinished', 'superstatus', 'status', 'age', 'job_queuetime', 'job_walltime', 'job_maxpss_per_actualcorecount', 'job_efficiency', 'job_attemptnr', 'errordialog', 'job_failed', 'top_errors', ] tasks_to_show = [] for t in tasks: tmp_list = [] for h in task_list_table_headers: if h in t: tmp_list.append(t[h]) else: tmp_list.append("-") tasks_to_show.append(tmp_list) data['data']['tasks_metrics'] = tasks_to_show return HttpResponse(json.dumps(data, default=datetime_handler), content_type='application/json') @login_customrequired def siteList(request): valid, response = initRequest(request) if not valid: return response # Here we try to get cached data data = getCacheEntry(request, "siteList") if data is not None: data = json.loads(data) data['request'] = request response = render_to_response('siteList.html', data, content_type='text/html') patch_response_headers(response, cache_timeout=request.session['max_age_minutes'] * 60) return response for param in request.session['requestParams']: request.session['requestParams'][param] = escape_input(request.session['requestParams'][param]) setupView(request, opmode='notime') query = {} ### Add any extensions to the query determined from the URL if VOMODE == 'core': query['siteid__contains'] = 'CORE' prod = False extraParCondition = '1=1' for param in request.session['requestParams']: if param == 'category' and request.session['requestParams'][param] == 'multicloud': query['multicloud__isnull'] = False if param == 'category' and request.session['requestParams'][param] == 'analysis': query['siteid__contains'] = 'ANALY' if param == 'category' and request.session['requestParams'][param] == 'test': query['siteid__icontains'] = 'test' if param == 'category' and request.session['requestParams'][param] == 'production': prod = True if param == 'catchall': wildCards = request.session['requestParams'][param].split('|') countCards = len(wildCards) currentCardCount = 1 extraParCondition = '(' for card in wildCards: extraParCondition += preprocess_wild_card_string(escape_input(card), 'catchall') if (currentCardCount < countCards): extraParCondition += ' OR ' currentCardCount += 1 extraParCondition += ')' for field in Schedconfig._meta.get_fields(): if param == field.name and not (param == 'catchall'): query[param] = escape_input(request.session['requestParams'][param]) siteres = Schedconfig.objects.filter(**query).exclude(cloud='CMS').extra(where=[extraParCondition]).values() mcpres = Schedconfig.objects.filter(status='online').exclude(cloud='CMS').exclude(siteid__icontains='test').values( 'siteid', 'multicloud', 'cloud').order_by('siteid') sites = [] for site in siteres: if 'category' in request.session['requestParams'] and request.session['requestParams'][ 'category'] == 'multicloud': if (site['multicloud'] == 'None') or (not re.match('[A-Z]+', site['multicloud'])): continue sites.append(site) if 'sortby' in request.session['requestParams'] and request.session['requestParams']['sortby'] == 'maxmemory': sites = sorted(sites, key=lambda x: -x['maxmemory']) elif 'sortby' in request.session['requestParams'] and request.session['requestParams']['sortby'] == 'maxtime': sites = sorted(sites, key=lambda x: -x['maxtime']) elif 'sortby' in request.session['requestParams'] and request.session['requestParams']['sortby'] == 'gocname': sites = sorted(sites, key=lambda x: x['gocname']) else: sites = sorted(sites, key=lambda x: x['siteid']) if prod: newsites = [] for site in sites: if site['siteid'].find('ANALY') >= 0: pass elif site['siteid'].lower().find('test') >= 0: pass else: newsites.append(site) sites = newsites for site in sites: if site['maxtime'] and (site['maxtime'] > 0): site['maxtime'] = "%.1f" % (float(site['maxtime']) / 3600.) site['space'] = "%d" % (site['space'] / 1000.) if VOMODE == 'atlas' and ( len(request.session['requestParams']) == 0 or 'cloud' in request.session['requestParams']): clouds = Cloudconfig.objects.filter().exclude(name='CMS').exclude(name='OSG').values() clouds = sorted(clouds, key=lambda x: x['name']) mcpsites = {} for cloud in clouds: cloud['display'] = True if 'cloud' in request.session['requestParams'] and request.session['requestParams']['cloud'] != cloud[ 'name']: cloud['display'] = False mcpsites[cloud['name']] = [] for site in sites: if site['siteid'] == cloud['tier1']: cloud['space'] = site['space'] cloud['tspace'] = site['tspace'].strftime("%m-%d %H:%M") for site in mcpres: mcpclouds = site['multicloud'].split(',') if cloud['name'] in mcpclouds or cloud['name'] == site['cloud']: sited = {} sited['name'] = site['siteid'] sited['cloud'] = site['cloud'] if site['cloud'] == cloud['name']: sited['type'] = 'home' else: sited['type'] = 'mcp' mcpsites[cloud['name']].append(sited) cloud['mcpsites'] = '' for s in mcpsites[cloud['name']]: if s['type'] == 'home': cloud['mcpsites'] += "<b>%s</b> " % s['name'] else: cloud['mcpsites'] += "%s " % s['name'] if cloud['modtime']: cloud['modtime'] = cloud['modtime'].strftime("%m-%d %H:%M") else: clouds = None xurl = extensibleURL(request) nosorturl = removeParam(xurl, 'sortby', mode='extensible') if not is_json_request(request): sumd = site_summary_dict(sites, VOMODE=VOMODE) del request.session['TFIRST'] del request.session['TLAST'] data = { 'request': request, 'viewParams': request.session['viewParams'], 'requestParams': request.session['requestParams'], 'sites': sites, 'clouds': clouds, 'sumd': sumd, 'xurl': xurl, 'nosorturl': nosorturl, 'built': datetime.now().strftime("%H:%M:%S"), } if 'cloud' in request.session['requestParams']: data['mcpsites'] = mcpsites[ request.session['requestParams']['cloud']] # data.update(getContextVariables(request)) ##self monitor setCacheEntry(request, "siteList", json.dumps(data, cls=DateEncoder), 60 * 20) response = render_to_response('siteList.html', data, content_type='text/html') patch_response_headers(response, cache_timeout=request.session['max_age_minutes'] * 60) return response else: del request.session['TFIRST'] del request.session['TLAST'] resp = sites return HttpResponse(json.dumps(resp, cls=DateEncoder), content_type='application/json') @login_customrequired def siteInfo(request, site=''): valid, response = initRequest(request) if not valid: return response if site == '' and 'site' in request.session['requestParams']: site = request.session['requestParams']['site'] setupView(request) query = {'siteid__iexact': site} sites = Schedconfig.objects.filter(**query) colnames = [] try: siterec = sites[0] colnames = siterec.get_all_fields() if sites[0].lastmod: sites[0].lastmod = sites[0].lastmod.strftime(defaultDatetimeFormat) except IndexError: siterec = None if len(sites) > 1: for queue in sites: if queue['lastmod']: queue['lastmod'] = queue['lastmod'].strftime(defaultDatetimeFormat) # get data from new schedconfig_json table panda_queue = [] pqquery = {'pandaqueue': site} panda_queues = SchedconfigJson.objects.filter(**pqquery).values() panda_queue_type = None if len(panda_queues) > 0: panda_queue_dict = json.loads(panda_queues[0]['data']) panda_queue_type = panda_queue_dict['type'] for par, val in panda_queue_dict.items(): val = ', '.join([str(subpar) + ' = ' + str(subval) for subpar, subval in val.items()]) if isinstance(val, dict) else val panda_queue.append({'param': par, 'value': val}) panda_queue = sorted(panda_queue, key=lambda x: x['param']) HPC = False njobhours = 12 try: if siterec.catchall.find('HPC') >= 0: HPC = True njobhours = 48 except AttributeError: pass panda_resource = get_panda_resource(siterec) if not is_json_request(request): attrs = [] if siterec: attrs.append({'name': 'GOC name', 'value': siterec.gocname}) if HPC: attrs.append( {'name': 'HPC', 'value': 'This is a High Performance Computing (HPC) supercomputer queue'}) if siterec.catchall and siterec.catchall.find('log_to_objectstore') >= 0: attrs.append({'name': 'Object store logs', 'value': 'Logging to object store is enabled'}) if siterec.objectstore and len(siterec.objectstore) > 0: fields = siterec.objectstore.split('|') nfields = len(fields) for nf in range(0, len(fields)): if nf == 0: attrs.append({'name': 'Object store location', 'value': fields[0]}) else: fields2 = fields[nf].split('^') if len(fields2) > 1: ostype = fields2[0] ospath = fields2[1] attrs.append({'name': 'Object store %s path' % ostype, 'value': ospath}) if siterec.nickname != site: attrs.append({'name': 'Queue (nickname)', 'value': siterec.nickname}) if len(sites) > 1: attrs.append({'name': 'Total queues for this site', 'value': len(sites)}) attrs.append({'name': 'Status', 'value': siterec.status}) if siterec.comment_field and len(siterec.comment_field) > 0: attrs.append({'name': 'Comment', 'value': siterec.comment_field}) attrs.append({'name': 'Cloud', 'value': siterec.cloud}) if siterec.multicloud and len(siterec.multicloud) > 0: attrs.append({'name': 'Multicloud', 'value': siterec.multicloud}) attrs.append({'name': 'Tier', 'value': siterec.tier}) attrs.append({'name': 'DDM endpoint', 'value': siterec.ddm}) attrs.append({'name': 'Max rss', 'value': "%.1f GB" % (float(siterec.maxrss) / 1000.)}) attrs.append({'name': 'Min rss', 'value': "%.1f GB" % (float(siterec.minrss) / 1000.)}) if siterec.maxtime > 0: attrs.append({'name': 'Maximum time', 'value': "%.1f hours" % (float(siterec.maxtime) / 3600.)}) attrs.append({'name': 'Space', 'value': "%d TB as of %s" % ((float(siterec.space) / 1000.), siterec.tspace.strftime('%m-%d %H:%M'))}) attrs.append({'name': 'Last modified', 'value': "%s" % (siterec.lastmod.strftime('%Y-%m-%d %H:%M'))}) # get calculated metrics try: metrics = get_pq_metrics(siterec.nickname) except Exception as ex: metrics = {} _logger.exception('Failed to get metrics for {}\n {}'.format(siterec.nickname, ex)) if len(metrics) > 0: for pq, m_dict in metrics.items(): for m in m_dict: colnames.append({'label': m, 'name': m, 'value': m_dict[m]}) del request.session['TFIRST'] del request.session['TLAST'] data = { 'request': request, 'viewParams': request.session['viewParams'], 'site': siterec, 'panda_resource': panda_resource, 'queues': sites, 'colnames': colnames, 'attrs': attrs, 'name': site, 'pq_type': panda_queue_type, 'njobhours': njobhours, 'built': datetime.now().strftime("%H:%M:%S"), 'pandaqueue': panda_queue, } data.update(getContextVariables(request)) response = render_to_response('siteInfo.html', data, content_type='text/html') patch_response_headers(response, cache_timeout=request.session['max_age_minutes'] * 60) return response else: del request.session['TFIRST'] del request.session['TLAST'] return HttpResponse(json.dumps(panda_queue), content_type='application/json') @login_customrequired def wnInfo(request, site, wnname='all'): """ Give worker node level breakdown of site activity. Spot hot nodes, error prone nodes. """ valid, response = initRequest(request) if not valid: return response jobs_url = '?computingsite={}&mode=nodrop'.format(site) if 'hours' in request.session['requestParams']: hours = int(request.session['requestParams']['hours']) elif 'days' in request.session['requestParams']: hours = 24*int(request.session['requestParams']['days']) elif 'date_from' in request.session['requestParams'] and 'date_to' in request.session['requestParams']: hours = 0 else: hours = 12 jobs_url += '&hours={}'.format(hours) exclude_params = ['timestamp', 'wnname', ] for p, v in request.session['requestParams'].items(): if p not in exclude_params: jobs_url += '&{}={}'.format(p, v) panda_queues = get_panda_queues() if site and site not in panda_queues: data = { 'request': request, 'viewParams': request.session['viewParams'], 'requestParams': request.session['requestParams'], 'alert': {'title': 'This site does not exist!', 'message': 'There is no {} registered in the system, please check spelling.'.format(site)}, 'built': datetime.now().strftime("%H:%M:%S"), } response = render_to_response('wnInfo.html', data, content_type='text/html') patch_response_headers(response, cache_timeout=request.session['max_age_minutes'] * 60) return response # Here we try to get cached data data = getCacheEntry(request, "wnInfo") if data is not None: data = json.loads(data) data['request'] = request response = render_to_response('wnInfo.html', data, content_type='text/html') patch_response_headers(response, cache_timeout=request.session['max_age_minutes'] * 60) return response errthreshold = 15 wnname_rgx = None if 'wnname' in request.session['requestParams'] and request.session['requestParams']['wnname']: wnname_rgx = request.session['requestParams']['wnname'] query = setupView(request, hours=hours, limit=999999) if wnname != 'all': query['modificationhost__endswith'] = wnname elif wnname_rgx is not None: query['modificationhost__contains'] = wnname_rgx.replace('*', '') query['computingsite'] = site fullsummary, plots_data = wn_summary(wnname, query) if 'sortby' in request.session['requestParams']: if request.session['requestParams']['sortby'] in sitestatelist: fullsummary = sorted(fullsummary, key=lambda x: x['states'][request.session['requestParams']['sortby']] if not isinstance(x['states'][request.session['requestParams']['sortby']], dict) else x['states'][request.session['requestParams']['sortby']]['count'], reverse=True) elif request.session['requestParams']['sortby'] == 'pctfail': fullsummary = sorted(fullsummary, key=lambda x: x['pctfail'], reverse=True) # Remove None wn from failed jobs plot if it is in system, add warning banner warning = {} if 'None' in plots_data['failed']: warning['message'] = '%i failed jobs are excluded from "Failed jobs per WN slot" plot because of None value of modificationhost.' % (plots_data['failed']['None']) try: del plots_data['failed']['None'] except: pass wnPlotFailedL = sorted([[k, v] for k, v in plots_data['failed'].items()], key=lambda x: x[0]) kys = plots_data['finished'].keys() kys = sorted(kys) wnPlotFinishedL = [] for k in kys: wnPlotFinishedL.append([k, plots_data['finished'][k]]) if not is_json_request(request): xurl = extensibleURL(request) del request.session['TFIRST'] del request.session['TLAST'] data = { 'request': request, 'viewParams': request.session['viewParams'], 'requestParams': request.session['requestParams'], 'url': request.path, 'xurl': xurl, 'jurl': jobs_url, 'site': site, 'wnname': wnname, 'user': None, 'summary': fullsummary, 'wnPlotFailed': wnPlotFailedL, 'wnPlotFinished': wnPlotFinishedL, 'hours': hours, 'errthreshold': errthreshold, 'warning': warning, 'built': datetime.now().strftime("%H:%M:%S"), } response = render_to_response('wnInfo.html', data, content_type='text/html') setCacheEntry(request, "wnInfo", json.dumps(data, cls=DateEncoder), 60 * 20) patch_response_headers(response, cache_timeout=request.session['max_age_minutes'] * 60) return response else: del request.session['TFIRST'] del request.session['TLAST'] data = { 'url': request.path, 'site': site, 'wnname': wnname, 'user': None, 'summary': fullsummary, 'wnPlotFailed': wnPlotFailedL, 'wnPlotFinished': wnPlotFinishedL, 'hours': hours, 'errthreshold': errthreshold, 'built': datetime.now().strftime("%H:%M:%S"), } return HttpResponse(json.dumps(data, cls=DateTimeEncoder), content_type='application/json') # https://github.com/PanDAWMS/panda-jedi/blob/master/pandajedi/jedicore/JediCoreUtils.py def getEffectiveFileSize(fsize, startEvent, endEvent, nEvents): inMB = 1024 * 1024 if fsize in [None, 0]: # use dummy size for pseudo input effectiveFsize = inMB elif nEvents != None and startEvent != None and endEvent != None: # take event range into account effectiveFsize = np.long(float(fsize) * float(endEvent - startEvent + 1) / float(nEvents)) else: effectiveFsize = fsize # use dummy size if input is too small if effectiveFsize == 0: effectiveFsize = inMB # in MB effectiveFsize = float(effectiveFsize) / inMB # return return effectiveFsize def calculateRWwithPrio_JEDI(query): # query = {} retRWMap = {} retNREMJMap = {} values = ['jeditaskid', 'datasetid', 'modificationtime', 'cloud', 'nrem', 'walltime', 'fsize', 'startevent', 'endevent', 'nevents'] ###TODO Rework it if 'schedulerid' in query.keys(): del query['schedulerid'] elif 'schedulerid__startswith' in query.keys(): del query['schedulerid__startswith'] progressEntries = [] progressEntries.extend(GetRWWithPrioJedi3DAYS.objects.filter(**query).values(*values)) allCloudsRW = 0; allCloudsNREMJ = 0; if len(progressEntries) > 0: for progrEntry in progressEntries: if progrEntry['fsize'] != None: effectiveFsize = getEffectiveFileSize(progrEntry['fsize'], progrEntry['startevent'], progrEntry['endevent'], progrEntry['nevents']) tmpRW = progrEntry['nrem'] * effectiveFsize * progrEntry['walltime'] if not progrEntry['cloud'] in retRWMap: retRWMap[progrEntry['cloud']] = 0 retRWMap[progrEntry['cloud']] += tmpRW allCloudsRW += tmpRW if not progrEntry['cloud'] in retNREMJMap: retNREMJMap[progrEntry['cloud']] = 0 retNREMJMap[progrEntry['cloud']] += progrEntry['nrem'] allCloudsNREMJ += progrEntry['nrem'] retRWMap['All'] = allCloudsRW retNREMJMap['All'] = allCloudsNREMJ for cloudName, rwValue in retRWMap.items(): retRWMap[cloudName] = int(rwValue / 24 / 3600) return retRWMap, retNREMJMap @login_customrequired def dashboard(request, view='all'): valid, response = initRequest(request) if not valid: return response # if it is region|cloud view redirect to new dash cloudview = 'region' if 'cloudview' in request.session['requestParams']: cloudview = request.session['requestParams']['cloudview'] if view == 'analysis': cloudview = 'region' elif view != 'production' and view != 'all': cloudview = 'N/A' if ('version' not in request.session['requestParams'] or request.session['requestParams']['version'] != 'old') \ and view in ('all', 'production', 'analysis') and cloudview in ('region', 'world') \ and 'es' not in request.session['requestParams'] and 'mode' not in request.session['requestParams'] \ and not is_json_request(request): # do redirect if cloudview == 'world': return redirect('/dash/world/') elif cloudview == 'region': if view == 'production': return redirect('/dash/region/?jobtype=prod&splitby=jobtype') elif view == 'analysis': return redirect('/dash/region/?jobtype=analy&splitby=jobtype') elif view == 'all': return redirect('/dash/region/') # data = getCacheEntry(request, "dashboard", skipCentralRefresh=True) data = getCacheEntry(request, "dashboard") if data is not None: data = json.loads(data) data['request'] = request template = data['template'] response = render_to_response(template, data, content_type='text/html') patch_response_headers(response, cache_timeout=request.session['max_age_minutes'] * 60) return response taskdays = 3 if dbaccess['default']['ENGINE'].find('oracle') >= 0: VOMODE = 'atlas' else: VOMODE = '' if VOMODE != 'atlas': hours = 24 * taskdays else: hours = 12 hoursSinceUpdate = 36 estailtojobslinks = '' extra = "(1=1)" if view == 'production': if 'es' in request.session['requestParams'] and request.session['requestParams']['es'].upper() == 'TRUE': extra = "(not eventservice is null and eventservice in (1, 5) and not specialhandling like '%%sc:%%')" estailtojobslinks = '&eventservice=eventservice' elif 'es' in request.session['requestParams'] and request.session['requestParams']['es'].upper() == 'FALSE': extra = "(not (not eventservice is null and eventservice in (1, 5) and not specialhandling like '%%sc:%%'))" elif 'esmerge' in request.session['requestParams'] and request.session['requestParams'][ 'esmerge'].upper() == 'TRUE': extra = "(not eventservice is null and eventservice=2 and not specialhandling like '%%sc:%%')" estailtojobslinks = '&eventservice=2' noldtransjobs, transclouds, transrclouds = stateNotUpdated(request, state='transferring', hoursSinceUpdate=hoursSinceUpdate, count=True, wildCardExtension=extra) elif view == 'analysis': hours = 3 noldtransjobs = 0 transclouds = [] transrclouds = [] else: hours = 12 noldtransjobs = 0 transclouds = [] transrclouds = [] errthreshold = 10 query = setupView(request, hours=hours, limit=999999, opmode=view) if 'mode' in request.session['requestParams'] and request.session['requestParams']['mode'] == 'task': return dashTasks(request, hours, view) if VOMODE != 'atlas': sortby = 'name' if 'sortby' in request.session['requestParams']: sortby = request.session['requestParams']['sortby'] vosummary = vo_summary(query, sortby=sortby) else: if view == 'production': errthreshold = 5 elif view == 'analysis': errthreshold = 15 else: errthreshold = 10 vosummary = [] if view == 'production' and (cloudview == 'world' or cloudview == 'cloud'): # cloud view is the old way of jobs distributing; # just to avoid redirecting if 'modificationtime__castdate__range' in query: query = {'modificationtime__castdate__range': query['modificationtime__castdate__range']} else: query = {} values = ['nucleus', 'computingsite', 'jobstatus'] worldJobsSummary = [] estailtojobslinks = '' if 'days' in request.session['requestParams']: hours = int(request.session['requestParams']['days'])*24 if 'hours' in request.session['requestParams']: hours = int(request.session['requestParams']['hours']) extra = '(1=1)' if view == 'production': query['tasktype'] = 'prod' elif view == 'analysis': query['tasktype'] = 'anal' if 'es' in request.session['requestParams'] and request.session['requestParams']['es'].upper() == 'TRUE': query['es__in'] = [1, 5] estailtojobslinks = '&eventservice=eventservice|cojumbo' extra = job_suppression(request) if 'es' in request.session['requestParams'] and request.session['requestParams']['es'].upper() == 'FALSE': query['es'] = 0 # This is done for compartibility with /jobs/ results excludedTimeQuery = copy.deepcopy(query) jobsarch4statuses = ['finished', 'failed', 'cancelled', 'closed'] if ('modificationtime__castdate__range' in excludedTimeQuery and not 'date_to' in request.session['requestParams']): del excludedTimeQuery['modificationtime__castdate__range'] worldJobsSummary.extend(CombinedWaitActDefArch4.objects.filter(**excludedTimeQuery).values(*values).extra(where=[extra]).exclude(isarchive=1).annotate(countjobsinstate=Count('jobstatus')).annotate(counteventsinstate=Sum('nevents'))) worldJobsSummary.extend(CombinedWaitActDefArch4.objects.filter(**query).values(*values).extra(where=[extra]).exclude(isarchive=0).annotate(countjobsinstate=Count('jobstatus')).annotate(counteventsinstate=Sum('nevents'))) nucleus = {} statelist1 = statelist # del statelist1[statelist1.index('jclosed')] # del statelist1[statelist1.index('pending')] if len(worldJobsSummary) > 0: for jobs in worldJobsSummary: if jobs['nucleus'] in nucleus: if jobs['computingsite'] in nucleus[jobs['nucleus']]: nucleus[jobs['nucleus']][jobs['computingsite']][jobs['jobstatus']] += jobs['countjobsinstate'] if (jobs['jobstatus'] in ('finished','failed','merging')): nucleus[jobs['nucleus']][jobs['computingsite']]['events'+ jobs['jobstatus']] += jobs['counteventsinstate'] else: nucleus[jobs['nucleus']][jobs['computingsite']] = {} for state in statelist1: nucleus[jobs['nucleus']][jobs['computingsite']][state] = 0 if (state in ('finished', 'failed','merging')): nucleus[jobs['nucleus']][jobs['computingsite']]['events'+ state] = 0 nucleus[jobs['nucleus']][jobs['computingsite']][jobs['jobstatus']] = jobs['countjobsinstate'] if (state in ('finished', 'failed', 'merging')): nucleus[jobs['nucleus']][jobs['computingsite']]['events'+ state] = jobs['counteventsinstate'] else: nucleus[jobs['nucleus']] = {} nucleus[jobs['nucleus']][jobs['computingsite']] = {} for state in statelist1: nucleus[jobs['nucleus']][jobs['computingsite']][state] = 0 if (state in ('finished', 'failed', 'merging')): nucleus[jobs['nucleus']][jobs['computingsite']]['events'+ state] = 0 nucleus[jobs['nucleus']][jobs['computingsite']][jobs['jobstatus']] = jobs['countjobsinstate'] if (state in ('finished', 'failed', 'merging')): nucleus[jobs['nucleus']][jobs['computingsite']]['events'+ jobs['jobstatus']] = jobs['counteventsinstate'] nucleusSummary = {} for nucleusInfo in nucleus: nucleusSummary[nucleusInfo] = {} for site in nucleus[nucleusInfo]: for state in nucleus[nucleusInfo][site]: if state in nucleusSummary[nucleusInfo]: nucleusSummary[nucleusInfo][state] += nucleus[nucleusInfo][site][state] else: nucleusSummary[nucleusInfo][state] = nucleus[nucleusInfo][site][state] if not is_json_request(request): xurl = extensibleURL(request) nosorturl = removeParam(xurl, 'sortby', mode='extensible') if 'TFIRST' in request.session: del request.session['TFIRST'] if 'TLAST' in request.session: del request.session['TLAST'] data = { 'request': request, 'viewParams': request.session['viewParams'], 'requestParams': request.session['requestParams'], 'url': request.path, 'nucleuses': nucleus, 'nucleussummary': nucleusSummary, 'statelist': statelist1, 'xurl': xurl, 'estailtojobslinks':estailtojobslinks, 'nosorturl': nosorturl, 'user': None, 'hours': hours, 'template': 'worldjobs.html', 'built': datetime.now().strftime("%m-%d %H:%M:%S"), } # self monitor response = render_to_response('worldjobs.html', data, content_type='text/html') setCacheEntry(request, "dashboard", json.dumps(data, cls=DateEncoder), 60 * 30) patch_response_headers(response, cache_timeout=request.session['max_age_minutes'] * 60) return response else: data = { 'nucleuses': nucleus, 'nucleussummary': nucleusSummary, 'statelist': statelist1, } return HttpResponse(json.dumps(data, cls=DateEncoder), content_type='application/json') elif view == 'objectstore': mObjectStores, mObjectStoresSummary = objectstore_summary(request, hours=hours) data = { 'mObjectStoresSummary': mObjectStoresSummary, 'mObjectStores': mObjectStores, 'viewParams': request.session['viewParams'], 'statelist': sitestatelist + ["closed"], 'template': 'dashObjectStore.html', 'built': datetime.now().strftime("%m-%d %H:%M:%S"), } response = render_to_response('dashObjectStore.html', data, content_type='text/html') setCacheEntry(request, "dashboard", json.dumps(data, cls=DateEncoder), 60 * 25) patch_response_headers(response, cache_timeout=request.session['max_age_minutes'] * 60) return response else: notime = True if len({'date_to', 'hours'}.intersection(request.session['requestParams'].keys())) > 0: notime = False fullsummary = cloud_site_summary(query, extra=extra, view=view, cloudview=cloudview, notime=notime) cloudTaskSummary = wg_task_summary(request, fieldname='cloud', view=view, taskdays=taskdays) jobsLeft = {} rw = {} if dbaccess['default']['ENGINE'].find('oracle') >= 0: rwData, nRemJobs = calculateRWwithPrio_JEDI(query) for cloud in fullsummary: if cloud['name'] in nRemJobs.keys(): jobsLeft[cloud['name']] = nRemJobs[cloud['name']] if cloud['name'] in rwData.keys(): rw[cloud['name']] = rwData[cloud['name']] if not is_json_request(request) or 'keephtml' in request.session['requestParams']: xurl = extensibleURL(request) nosorturl = removeParam(xurl, 'sortby', mode='extensible') del request.session['TFIRST'] del request.session['TLAST'] data = { 'request': request, 'viewParams': request.session['viewParams'], 'requestParams': request.session['requestParams'], 'url': request.path, 'xurl': xurl, 'nosorturl': nosorturl, 'user': None, 'summary': fullsummary, 'vosummary': vosummary, 'view': view, 'mode': 'site', 'cloudview': cloudview, 'hours': hours, 'errthreshold': errthreshold, 'cloudTaskSummary': cloudTaskSummary, 'taskstates': taskstatedict, 'taskdays': taskdays, 'estailtojobslinks':estailtojobslinks, 'noldtransjobs': noldtransjobs, 'transclouds': transclouds, 'transrclouds': transrclouds, 'hoursSinceUpdate': hoursSinceUpdate, 'jobsLeft': jobsLeft, 'rw': rw, 'template': 'dashboard.html', 'built': datetime.now().strftime("%H:%M:%S"), } # self monitor response = render_to_response('dashboard.html', data, content_type='text/html') setCacheEntry(request, "dashboard", json.dumps(data, cls=DateEncoder), 60 * 60) patch_response_headers(response, cache_timeout=request.session['max_age_minutes'] * 60) return response else: del request.session['TFIRST'] del request.session['TLAST'] data = { 'summary': fullsummary, 'vosummary': vosummary, 'view': view, 'mode': 'site', 'cloudview': cloudview, 'hours': hours, 'errthreshold': errthreshold, 'cloudTaskSummary': cloudTaskSummary, 'taskstates': taskstatedict, 'taskdays': taskdays, 'noldtransjobs': noldtransjobs, 'transclouds': transclouds, 'transrclouds': transrclouds, 'hoursSinceUpdate': hoursSinceUpdate, 'jobsLeft': jobsLeft, 'rw': rw, 'built': datetime.now().strftime("%H:%M:%S"), } return HttpResponse(json.dumps(data, cls=DateEncoder), content_type='application/json') @login_customrequired def dashRegion(request): """ A new job summary dashboard for regions that allows to split jobs in Grand Unified Queue by analy|prod and resource types Regions column order: region, status, job type, resource type, Njobstotal, [Njobs by status] Queues column order: queue name, type [GU, U, Simple], region, status, job type, resource type, Njobstotal, [Njobs by status] :param request: request :return: HTTP response """ valid, response = initRequest(request) if not valid: return response if request.path.startswith('/new/dash/'): return redirect(request.get_full_path().replace('/new/dash/', '/dash/region/')) # Here we try to get cached data data = getCacheEntry(request, "JobSummaryRegion") # data = None if data is not None: data = json.loads(data) data['request'] = request response = render_to_response('JobSummaryRegion.html', data, content_type='text/html') patch_response_headers(response, cache_timeout=request.session['max_age_minutes'] * 60) return response if 'splitby' in request.session['requestParams'] and request.session['requestParams']['splitby']: split_by = request.session['requestParams']['splitby'] else: split_by = None if 'region' in request.session['requestParams'] and request.session['requestParams']['region']: region = request.session['requestParams']['region'] else: region = 'all' if 'jobtype' in request.session['requestParams'] and request.session['requestParams']['jobtype']: jobtype = request.session['requestParams']['jobtype'] else: jobtype = 'all' if 'resourcetype' in request.session['requestParams'] and request.session['requestParams']['resourcetype']: resourcetype = request.session['requestParams']['resourcetype'] else: resourcetype = 'all' jquery, extra_str, hours = setupView(request, limit=9999999, querytype='job', wildCardExt=True) # add queue related request params to query dict if 'queuetype' in request.session['requestParams'] and request.session['requestParams']['queuetype']: jquery['queuetype'] = request.session['requestParams']['queuetype'] if 'queuestatus' in request.session['requestParams'] and request.session['requestParams']['queuestatus']: jquery['queuestatus'] = request.session['requestParams']['queuestatus'] if 'site' in request.session['requestParams'] and request.session['requestParams']['site'] != 'all': jquery['queuegocname'] = request.session['requestParams']['site'] # get job summary data jsr_queues_dict, jsr_regions_dict = get_job_summary_region(jquery, extra=extra_str, region=region, jobtype=jobtype, resourcetype=resourcetype, split_by=split_by) if is_json_request(request): extra_info_params = ['links', ] extra_info = {ep: False for ep in extra_info_params} if 'extra' in request.session['requestParams'] and 'links' in request.session['requestParams']['extra']: extra_info['links'] = True jsr_queues_dict, jsr_regions_dict = prettify_json_output(jsr_queues_dict, jsr_regions_dict, hours=hours, extra=extra_info) data = { 'regions': jsr_regions_dict, 'queues': jsr_queues_dict, } dump = json.dumps(data, cls=DateEncoder) return HttpResponse(dump, content_type='application/json') else: # transform dict to list and filter out rows depending on split by request param jsr_queues_list, jsr_regions_list = prepare_job_summary_region(jsr_queues_dict, jsr_regions_dict, split_by=split_by) # prepare lists of unique values for drop down menus select_params_dict = {} select_params_dict['queuetype'] = sorted(list(set([pq[1] for pq in jsr_queues_list]))) select_params_dict['queuestatus'] = sorted(list(set([pq[3] for pq in jsr_queues_list]))) pq_info_basic = get_basic_info_for_pqs([]) unique_sites_dict = {} for pq in pq_info_basic: if pq['site'] not in unique_sites_dict: unique_sites_dict[pq['site']] = pq['region'] select_params_dict['site'] = sorted([{'site': site, 'region': reg} for site, reg in unique_sites_dict.items()], key=lambda x: x['site']) select_params_dict['region'] = sorted(list(set([reg for site, reg in unique_sites_dict.items()]))) xurl = request.get_full_path() if xurl.find('?') > 0: xurl += '&' else: xurl += '?' # overwrite view selection params view_params_str = '<b>Manually entered params</b>: ' supported_params = {f.verbose_name: '' for f in PandaJob._meta.get_fields()} interactive_params = ['hours', 'days', 'date_from', 'date_to', 'timestamp', 'queuetype', 'queuestatus', 'jobtype', 'resourcetype', 'splitby', 'region', 'site'] for pn, pv in request.session['requestParams'].items(): if pn not in interactive_params and pn in supported_params: view_params_str += '<b>{}=</b>{} '.format(str(pn), str(pv)) request.session['viewParams']['selection'] = view_params_str if not view_params_str.endswith(': ') else '' request.session['timerange'] = jquery['modificationtime__castdate__range'] data = { 'request': request, 'viewParams': request.session['viewParams'], 'requestParams': request.session['requestParams'], 'timerange': request.session['timerange'], 'built': datetime.now().strftime("%H:%M:%S"), 'hours': hours, 'xurl': xurl, 'selectParams': select_params_dict, 'jobstates': statelist, 'regions': jsr_regions_list, 'queues': jsr_queues_list, 'show': 'all', } response = render_to_response('JobSummaryRegion.html', data, content_type='text/html') setCacheEntry(request, "JobSummaryRegion", json.dumps(data, cls=DateEncoder), 60 * 20) patch_response_headers(response, cache_timeout=request.session['max_age_minutes'] * 60) return response @login_customrequired def dashNucleus(request): valid, response = initRequest(request) if not valid: return response # Here we try to get cached data data = getCacheEntry(request, "JobSummaryNucleus") # data = None if data is not None: data = json.loads(data) data['request'] = request response = render_to_response('JobSummaryNucleus.html', data, content_type='text/html') patch_response_headers(response, cache_timeout=request.session['max_age_minutes'] * 60) return response if 'hours' in request.session['requestParams'] and request.session['requestParams']['hours']: hours = int(request.session['requestParams']['hours']) else: hours = 12 query, extra, nhours = setupView(request, hours=hours, limit=999999, wildCardExt=True) # get summary data jsn_nucleus_dict, jsn_satellite_dict = get_job_summary_nucleus( query, extra=extra, job_states_order=copy.deepcopy(statelist), hs06s=True ) get_world_hs06_summary(query, extra=extra) if is_json_request(request): data = { 'nucleuses': jsn_satellite_dict, 'nucleussummary': jsn_nucleus_dict, 'statelist': copy.deepcopy(statelist), 'built': datetime.now().strftime(defaultDatetimeFormat), } return HttpResponse(json.dumps(data, cls=DateEncoder), content_type='application/json') else: # convert dict -> list jsn_nucleus_list, jsn_satellite_list = prepare_job_summary_nucleus( jsn_nucleus_dict, jsn_satellite_dict, job_states_order=copy.deepcopy(statelist) ) xurl = request.get_full_path() if xurl.find('?') > 0: xurl += '&' else: xurl += '?' # overwrite view selection params view_params_str = '<b>Params</b>: ' supported_params = {f.verbose_name: '' for f in PandaJob._meta.get_fields()} for pn, pv in request.session['requestParams'].items(): if pn in supported_params: view_params_str += '<b>{}=</b>{} '.format(str(pn), str(pv)) request.session['viewParams']['selection'] = view_params_str if not view_params_str.endswith(': ') else '' request.session['timerange'] = query['modificationtime__castdate__range'] data = { 'request': request, 'viewParams': request.session['viewParams'], 'requestParams': request.session['requestParams'], 'timerange': request.session['timerange'], 'built': datetime.now().strftime("%H:%M:%S"), 'jobstates': statelist, 'show': 'all', 'hours': hours, 'xurl': xurl, 'nuclei': jsn_nucleus_list, 'satellites': jsn_satellite_list, } response = render_to_response('JobSummaryNucleus.html', data, content_type='text/html') setCacheEntry(request, "JobSummaryNucleus", json.dumps(data, cls=DateEncoder), 60 * 20) patch_response_headers(response, cache_timeout=request.session['max_age_minutes'] * 60) return response @login_customrequired def dashES(request): """ A new ES job summary dashboard :param request: request :return: HTTP response """ valid, response = initRequest(request) if not valid: return response # Here we try to get cached data data = getCacheEntry(request, "JobSummaryRegion") # data = None if data is not None: data = json.loads(data) data['request'] = request response = render_to_response('EventService.html', data, content_type='text/html') patch_response_headers(response, cache_timeout=request.session['max_age_minutes'] * 60) return response if 'splitby' in request.session['requestParams'] and request.session['requestParams']['splitby']: split_by = request.session['requestParams']['splitby'] else: split_by = None if 'hours' in request.session['requestParams'] and request.session['requestParams']['hours']: hours = int(request.session['requestParams']['hours']) else: hours = 12 jquery, wildCardExtension, LAST_N_HOURS_MAX = setupView(request, hours=hours, limit=9999999, querytype='job', wildCardExt=True) # add queue related request params to pqquery dict pqquery = dict() if 'queuetype' in request.session['requestParams'] and request.session['requestParams']['queuetype']: pqquery['queuetype'] = request.session['requestParams']['queuetype'] if 'queuestatus' in request.session['requestParams'] and request.session['requestParams']['queuestatus']: pqquery['queuestatus'] = request.session['requestParams']['queuestatus'] # get job summary data jsr_queues_dict, jsr_regions_dict = get_es_job_summary_region(jquery, extra=wildCardExtension, pqquery=pqquery) if is_json_request(request): extra_info_params = ['links', ] extra_info = {ep: False for ep in extra_info_params} if 'extra' in request.session['requestParams'] and 'links' in request.session['requestParams']['extra']: extra_info['links'] = True jsr_queues_dict, jsr_regions_dict = prettify_json_output(jsr_queues_dict, jsr_regions_dict, hours=hours, extra=extra_info) data = { 'regions': jsr_regions_dict, 'queues': jsr_queues_dict, } dump = json.dumps(data, cls=DateEncoder) return HttpResponse(dump, content_type='application/json') else: # transform dict to list and filter out rows depending on split by request param jsr_queues_list, jsr_regions_list = prepare_es_job_summary_region(jsr_queues_dict, jsr_regions_dict, split_by=split_by) # prepare lists of unique values for drop down menus select_params_dict = {} select_params_dict['region'] = sorted(list(set([r[0] for r in jsr_regions_list]))) select_params_dict['queuetype'] = sorted(list(set([pq[1] for pq in jsr_queues_list]))) select_params_dict['queuestatus'] = sorted(list(set([pq[3] for pq in jsr_queues_list]))) xurl = request.get_full_path() if xurl.find('?') > 0: xurl += '&' else: xurl += '?' # overwrite view selection params view_params_str = '<b>Manually entered params</b>: ' supported_params = {f.verbose_name: '' for f in PandaJob._meta.get_fields()} interactive_params = ['hours', 'days', 'date_from', 'date_to', 'timestamp', 'queuetype', 'queuestatus', 'jobtype', 'resourcetype', 'splitby', 'region'] for pn, pv in request.session['requestParams'].items(): if pn not in interactive_params and pn in supported_params: view_params_str += '<b>{}=</b>{} '.format(str(pn), str(pv)) request.session['viewParams']['selection'] = view_params_str if not view_params_str.endswith(': ') else '' request.session['timerange'] = jquery['modificationtime__castdate__range'] data = { 'request': request, 'viewParams': request.session['viewParams'], 'requestParams': request.session['requestParams'], 'timerange': request.session['timerange'], 'built': datetime.now().strftime("%H:%M:%S"), 'hours': hours, 'xurl': xurl, 'selectParams': select_params_dict, 'jobstates': statelist, 'regions': jsr_regions_list, 'queues': jsr_queues_list, 'show': 'all', } response = render_to_response('EventService.html', data, content_type='text/html') setCacheEntry(request, "EventService", json.dumps(data, cls=DateEncoder), 60 * 20) patch_response_headers(response, cache_timeout=request.session['max_age_minutes'] * 60) return response @login_customrequired def dashAnalysis(request): return dashboard(request, view='analysis') @login_customrequired def dashProduction(request): return dashboard(request, view='production') @login_customrequired def dashObjectStore(request): return dashboard(request, view='objectstore') def dashTasks(request, hours, view='production'): valid, response = initRequest(request) if not valid: return response if view == 'production': errthreshold = 5 else: errthreshold = 15 if 'days' in request.session['requestParams']: taskdays = int(request.session['requestParams']['days']) else: taskdays = 7 hours = taskdays * 24 query = setupView(request, hours=hours, limit=999999, opmode=view, querytype='task') cloudTaskSummary = wg_task_summary(request, fieldname='cloud', view=view, taskdays=taskdays) # taskJobSummary = dashTaskSummary(request, hours, view) not particularly informative taskJobSummary = [] if 'display_limit' in request.session['requestParams']: try: display_limit = int(request.session['requestParams']['display_limit']) except: display_limit = 300 else: display_limit = 300 cloudview = 'cloud' if 'cloudview' in request.session['requestParams']: cloudview = request.session['requestParams']['cloudview'] if view == 'analysis': cloudview = 'region' elif view != 'production': cloudview = 'N/A' fullsummary = cloud_site_summary(query, view=view, cloudview=cloudview) jobsLeft = {} rw = {} rwData, nRemJobs = calculateRWwithPrio_JEDI(query) for cloud in fullsummary: leftCount = 0 if cloud['name'] in nRemJobs.keys(): jobsLeft[cloud['name']] = nRemJobs[cloud['name']] if cloud['name'] in rwData.keys(): rw[cloud['name']] = rwData[cloud['name']] if not is_json_request(request): xurl = extensibleURL(request) nosorturl = removeParam(xurl, 'sortby', mode='extensible') del request.session['TFIRST'] del request.session['TLAST'] data = { 'request': request, 'viewParams': request.session['viewParams'], 'requestParams': request.session['requestParams'], 'url': request.path, 'xurl': xurl, 'nosorturl': nosorturl, 'user': None, 'view': view, 'mode': 'task', 'hours': hours, 'errthreshold': errthreshold, 'cloudTaskSummary': cloudTaskSummary, 'taskstates': taskstatedict, 'taskdays': taskdays, 'taskJobSummary': taskJobSummary[:display_limit], 'display_limit': display_limit, 'jobsLeft': jobsLeft, 'estailtojobslinks': '', 'rw': rw, 'template': 'dashboard.html', 'built': datetime.now().strftime("%H:%M:%S"), } setCacheEntry(request, "dashboard", json.dumps(data, cls=DateEncoder), 60 * 60) response = render_to_response('dashboard.html', data, content_type='text/html') patch_response_headers(response, cache_timeout=request.session['max_age_minutes'] * 60) return response else: del request.session['TFIRST'] del request.session['TLAST'] remainingEvents = RemainedEventsPerCloud3dayswind.objects.values('cloud', 'nrem') remainingEventsSet = {} for remev in remainingEvents: remainingEventsSet[remev['cloud']] = remev['nrem'] data = { 'jobsLeft': jobsLeft, 'remainingWeightedEvents': remainingEventsSet, } return HttpResponse(json.dumps(data), content_type='application/json') def taskESExtendedInfo(request): if 'jeditaskid' in request.GET: jeditaskid = int(request.GET['jeditaskid']) else: return HttpResponse("Not jeditaskid supplied", content_type='text/html') eventsdict=[] equery = {'jeditaskid': jeditaskid} eventsdict.extend( JediEvents.objects.filter(**equery).values('status').annotate(count=Count('status')).order_by('status')) for state in eventsdict: state['statusname'] = eventservicestatelist[state['status']] estaskstr = '' for s in eventsdict: estaskstr += " %s(%s) " % (s['statusname'], s['count']) return HttpResponse(estaskstr, content_type='text/html') @login_customrequired def getCSRFToken(request): c = {} user = request.user if user.is_authenticated: c.update(csrf(request)) return render_to_response("csrftoken.html", c) else: resp = {"detail": "User not authenticated. Please login to bigpanda"} dump = json.dumps(resp, cls=DateEncoder) response = HttpResponse(dump, content_type='application/json') return response @login_customrequired @csrf_exempt def taskList(request): valid, response = initRequest(request) if not valid: return response thread = None dkey = digkey(request) # Here we try to get cached data data = getCacheEntry(request, "taskList") #data = None if data is not None: data = json.loads(data) data['request'] = request if data['eventservice'] == True: response = render_to_response('taskListES.html', data, content_type='text/html') else: response = render_to_response('taskList.html', data, content_type='text/html') patch_response_headers(response, cache_timeout=request.session['max_age_minutes'] * 60) return response if 'limit' in request.session['requestParams']: limit = int(request.session['requestParams']['limit']) else: limit = 5000 if 'sortby' in request.session['requestParams'] and request.session['requestParams']['sortby'] == 'pctfailed': limit = 50000 if 'tasktype' in request.session['requestParams'] and request.session['requestParams']['tasktype'].startswith( 'anal'): hours = 3 * 24 else: hours = 7 * 24 sortby = "jeditaskid-desc" if 'sortby' in request.session['requestParams'] and request.session['requestParams']['sortby']: sortby = request.session['requestParams']['sortby'] eventservice = False if 'eventservice' in request.session['requestParams'] and ( request.session['requestParams']['eventservice'] == 'eventservice' or request.session['requestParams'][ 'eventservice'] == '1'): eventservice = True hours = 7 * 24 extraquery = '' if 'hashtag' in request.session['requestParams']: hashtagsrt = request.session['requestParams']['hashtag'] if ',' in hashtagsrt: hashtaglistquery = ''.join("'" + ht + "' ," for ht in hashtagsrt.split(',')) elif '|' in hashtagsrt: hashtaglistquery = ''.join("'" + ht + "' ," for ht in hashtagsrt.split('|')) else: hashtaglistquery = "'" + request.session['requestParams']['hashtag'] + "'" hashtaglistquery = hashtaglistquery[:-1] if hashtaglistquery[-1] == ',' else hashtaglistquery extraquery = """JEDITASKID IN ( SELECT HTT.TASKID FROM ATLAS_DEFT.T_HASHTAG H, ATLAS_DEFT.T_HT_TO_TASK HTT WHERE JEDITASKID = HTT.TASKID AND H.HT_ID = HTT.HT_ID AND H.HASHTAG IN ( %s ))""" % (hashtaglistquery) if 'tape' in request.session['requestParams']: extraquery = """JEDITASKID IN (SELECT TASKID FROM ATLAS_DEFT.t_production_task where PRIMARY_INPUT in (select DATASET FROM ATLAS_DEFT.T_DATASET_STAGING) )""" query, wildCardExtension, LAST_N_HOURS_MAX = setupView(request, hours=hours, limit=9999999, querytype='task', wildCardExt=True) tmpTableName = get_tmp_table_name() if 'jeditaskid__in' in query: taskl = query['jeditaskid__in'] if len(taskl) > DB_N_MAX_IN_QUERY: transactionKey = insert_to_temp_table(taskl) selectTail = """jeditaskid in (SELECT tmp.id FROM %s tmp where TRANSACTIONKEY=%i)""" % (tmpTableName, transactionKey) extraquery = selectTail if len(extraquery) == 0 else extraquery + ' AND ' + selectTail del query['jeditaskid__in'] if 'modificationtime__castdate__range' in query: del query['modificationtime__castdate__range'] if len(extraquery) > 0: if len(wildCardExtension) > 0: wildCardExtension += ' AND ( ' + extraquery + ' )' else: wildCardExtension = extraquery listTasks = [] if 'statenotupdated' in request.session['requestParams']: tasks = taskNotUpdated(request, query, wildCardExtension) else: #wildCardExtension = "(((UPPER(taskname) LIKE UPPER('%%.%%')) AND (UPPER(taskname) LIKE UPPER('%%mc%%')) AND (UPPER(taskname) LIKE UPPER('%%.CAOD_HIGG5D1.%%')) AND (UPPER(taskname) LIKE UPPER('%%.32-07-8/'))))" tasks = JediTasksOrdered.objects.filter(**query).extra(where=[wildCardExtension])[:limit].values() listTasks.append(JediTasksOrdered) if (not (('HTTP_ACCEPT' in request.META) and (request.META.get('HTTP_ACCEPT') in ('application/json'))) and ( 'json' not in request.session['requestParams'])): pass thread = Thread(target=totalCount, args=(listTasks, query, wildCardExtension, dkey)) thread.start() else: thread = None # Getting hashtags for task selection taskl = [] for task in tasks: taskl.append(task['jeditaskid']) error_codes_analyser = TasksErrorCodesAnalyser() error_codes_analyser.schedule_preprocessing(tasks) transactionKey = insert_to_temp_table(taskl) # For tasks plots setCacheEntry(request, transactionKey, taskl, 60 * 20, isData=True) if DEPLOYMENT == 'ORACLE_ATLAS': new_cur = connection.cursor() new_cur.execute( """ select htt.TASKID, LISTAGG(h.hashtag, ',') within GROUP (order by htt.taskid) as hashtags from ATLAS_DEFT.T_HASHTAG h, ATLAS_DEFT.T_HT_TO_TASK htt , %s tmp where TRANSACTIONKEY=%i and h.ht_id = htt.ht_id and tmp.id = htt.taskid GROUP BY htt.TASKID """ % (tmpTableName, transactionKey) ) taskhashtags = dictfetchall(new_cur) else: taskhashtags = [] datasetstage = [] if 'tape' in request.session['requestParams']: stagesource = '' if 'stagesource' in request.session['requestParams'] and request.session['requestParams']['stagesource']!='Unknown': stagesource = " and t1.SOURCE_RSE='" + request.session['requestParams']['stagesource'].strip().replace("'","''")+"\'" elif 'stagesource' in request.session['requestParams'] and request.session['requestParams']['stagesource']=='Unknown': stagesource = ' and t1.SOURCE_RSE is null' new_cur.execute( """ SELECT t1.DATASET, t1.STATUS, t1.STAGED_FILES, t1.START_TIME, t1.END_TIME, t1.RSE, t1.TOTAL_FILES, t1.UPDATE_TIME, t1.SOURCE_RSE, t2.TASKID FROM ATLAS_DEFT.T_DATASET_STAGING t1 INNER join ATLAS_DEFT.T_ACTION_STAGING t2 on t1.DATASET_STAGING_ID=t2.DATASET_STAGING_ID %s and taskid in (SELECT tmp.id FROM %s tmp where TRANSACTIONKEY=%i) """ % (stagesource, tmpTableName, transactionKey) ) datasetstage = dictfetchall(new_cur) taskslistfiltered = set() for datasetstageitem in datasetstage: taskslistfiltered.add(datasetstageitem['TASKID']) if datasetstageitem['START_TIME']: datasetstageitem['START_TIME'] = datasetstageitem['START_TIME'].strftime(defaultDatetimeFormat) else: datasetstageitem['START_TIME'] = '' if datasetstageitem['END_TIME']: datasetstageitem['END_TIME'] = datasetstageitem['END_TIME'].strftime(defaultDatetimeFormat) else: datasetstageitem['END_TIME'] = '' if not datasetstageitem['SOURCE_RSE']: datasetstageitem['SOURCE_RSE'] = 'Unknown' if datasetstageitem['UPDATE_TIME']: datasetstageitem['UPDATE_TIME'] = datasetstageitem['UPDATE_TIME'].strftime(defaultDatetimeFormat) else: datasetstageitem['UPDATE_TIME'] = '' if 'stagesource' in request.session['requestParams']: newtasks = [] newtaskl = [] for task in tasks: if task['jeditaskid'] in taskslistfiltered: newtaskl.append(task['jeditaskid']) newtasks.append(task) tasks = newtasks taskl = newtaskl eventInfoDict = {} if eventservice: #we get here events data tquery = {} tasksEventInfo = GetEventsForTask.objects.filter(**tquery).extra( where=["JEDITASKID in (SELECT ID FROM %s WHERE TRANSACTIONKEY=%i)" % (tmpTableName, transactionKey)]).values('jeditaskid', 'totevrem', 'totev') # We do it because we intermix raw and queryset queries. With next new_cur.execute tasksEventInfo cleares for tasksEventInfoItem in tasksEventInfo: listItem = {} listItem["jeditaskid"] = tasksEventInfoItem["jeditaskid"] listItem["totevrem"] = tasksEventInfoItem["totevrem"] listItem["totev"] = tasksEventInfoItem["totev"] eventInfoDict[tasksEventInfoItem["jeditaskid"]] = listItem taskids = {} for taskid in taskhashtags: taskids[taskid['TASKID']] = taskid['HASHTAGS'] # Filtering tasks if there are a few hashtahgs with 'AND' operand in query if 'hashtagsrt' in locals() and ',' in hashtagsrt: thashtags = hashtagsrt.split(',') newtasks = [] for task in tasks: if task['jeditaskid'] in taskids.keys(): if all(ht+',' in taskids[task['jeditaskid']]+',' for ht in thashtags): newtasks.append(task) tasks = newtasks hashtags = [] for task in tasks: # Forming hashtag list for summary attribute table if task['jeditaskid'] in taskids.keys(): task['hashtag'] = taskids[task['jeditaskid']] for hashtag in taskids[task['jeditaskid']].split(','): if hashtag not in hashtags: hashtags.append(hashtag) if eventservice: # Addind event data if task['jeditaskid'] in eventInfoDict.keys(): task['eventsData'] = eventInfoDict[task['jeditaskid']] if len(hashtags) > 0: hashtags = sorted(hashtags, key=lambda h: h.lower()) tasks = cleanTaskList(tasks, sortby=sortby, add_datasets_info=True) ntasks = len(tasks) nmax = ntasks # if 'display_limit' in request.session['requestParams']: # and int(request.session['requestParams']['display_limit']) < nmax: # display_limit = int(request.session['requestParams']['display_limit']) # nmax = display_limit # url_nolimit = removeParam(request.get_full_path(), 'display_limit') # else: # display_limit = 300 # nmax = display_limit # url_nolimit = request.get_full_path() if 'display_limit' not in request.session['requestParams']: display_limit = 100 nmax = display_limit url_nolimit = request.get_full_path() + "&display_limit=" + str(nmax) else: display_limit = int(request.session['requestParams']['display_limit']) nmax = display_limit url_nolimit = request.get_full_path() + "&display_limit=" + str(nmax) # from django.db import connection # print 'SQL query:', connection.queries tasks = getTaskScoutingInfo(tasks, nmax) if 'tape' in request.session['requestParams'] and len(datasetstage)>0: datasetRSEsHash = {} for dataset in datasetstage: datasetRSEsHash[dataset['TASKID']] = dataset['SOURCE_RSE'] for task in tasks: task['stagesource'] = datasetRSEsHash.get(task['jeditaskid'], 'Unknown') ## For event service, pull the jobs and event ranges doESCalc = False if eventservice and doESCalc: taskl = [] for task in tasks: taskl.append(task['jeditaskid']) jquery = {} jquery['jeditaskid__in'] = taskl jobs = [] jobs.extend(Jobsactive4.objects.filter(**jquery).values('pandaid', 'jeditaskid')) jobs.extend(Jobsarchived4.objects.filter(**jquery).values('pandaid', 'jeditaskid')) taskdict = {} for job in jobs: taskdict[job['pandaid']] = job['jeditaskid'] estaskdict = {} esjobs = [] for job in jobs: esjobs.append(job['pandaid']) random.seed() if dbaccess['default']['ENGINE'].find('oracle') >= 0: tmpTableName = "ATLAS_PANDABIGMON.TMP_IDS1" else: tmpTableName = "TMP_IDS1" tk_es_jobs = random.randrange(1000000) # connection.enter_transaction_management() new_cur = connection.cursor() executionData = [] for id in esjobs: executionData.append((id, tk_es_jobs)) query = """INSERT INTO """ + tmpTableName + """(ID,TRANSACTIONKEY) VALUES (%s, %s)""" new_cur.executemany(query, executionData) # connection.commit() new_cur.execute( """ SELECT /*+ dynamic_sampling(TMP_IDS1 0) cardinality(TMP_IDS1 10) INDEX_RS_ASC(ev JEDI_EVENTS_PANDAID_STATUS_IDX) NO_INDEX_FFS(ev JEDI_EVENTS_PK) NO_INDEX_SS(ev JEDI_EVENTS_PK) */ PANDAID,STATUS FROM ATLAS_PANDA.JEDI_EVENTS ev, %s WHERE TRANSACTIONKEY=%i AND PANDAID = ID """ % (tmpTableName, tk_es_jobs) ) evtable = dictfetchall(new_cur) for ev in evtable: taskid = taskdict[ev['PANDAID']] if taskid not in estaskdict: estaskdict[taskid] = {} for s in eventservicestatelist: estaskdict[taskid][s] = 0 evstat = eventservicestatelist[ev['STATUS']] estaskdict[taskid][evstat] += 1 for task in tasks: taskid = task['jeditaskid'] if taskid in estaskdict: estaskstr = '' for s in estaskdict[taskid]: if estaskdict[taskid][s] > 0: estaskstr += " %s(%s) " % (s, estaskdict[taskid][s]) task['estaskstr'] = estaskstr ## set up google flow diagram flowstruct = buildGoogleFlowDiagram(request, tasks=tasks) xurl = extensibleURL(request) nosorturl = removeParam(xurl, 'sortby', mode='extensible') nohashtagurl = removeParam(xurl, 'hashtag', mode='extensible') nohashtagurl = removeParam(xurl, 'hashtag', mode='extensible') noerrordialogurl = removeParam(xurl, 'hashtag', mode='errordialog') if thread!=None: try: thread.join() tasksTotalCount = sum(tcount[dkey]) print (dkey) print (tcount[dkey]) del tcount[dkey] print (tcount) print (tasksTotalCount) except: tasksTotalCount = -1 else: tasksTotalCount = -1 listPar = [] for key, val in request.session['requestParams'].items(): if (key != 'limit' and key != 'display_limit'): listPar.append(key + '=' + str(val)) if len(listPar) > 0: urlParametrs = '&'.join(listPar) + '&' else: urlParametrs = None print (listPar) del listPar if (math.fabs(ntasks - tasksTotalCount) < 1000 or tasksTotalCount == -1): tasksTotalCount = None else: tasksTotalCount = int(math.ceil((tasksTotalCount + 10000) / 10000) * 10000) tasksToShow = tasks[:nmax] for task in tasksToShow: if task['creationdate']: task['creationdate'] = task['creationdate'].strftime(defaultDatetimeFormat) if task['modificationtime']: task['modificationtime'] = task['modificationtime'].strftime(defaultDatetimeFormat) if task['starttime']: task['starttime'] = task['starttime'].strftime(defaultDatetimeFormat) if task['statechangetime']: task['statechangetime'] = task['statechangetime'].strftime(defaultDatetimeFormat) if task['ttcrequested']: task['ttcrequested'] = task['ttcrequested'].strftime(defaultDatetimeFormat) error_summary_table = error_codes_analyser.get_errors_table() error_summary_table = json.dumps(error_summary_table, cls=DateEncoder) if is_json_request(request): # Add datasets info to the json dump tasks = get_datasets_for_tasklist(tasks) # getting jobs metadata if it is requested in URL [ATLASPANDA-492] if 'extra' in request.session['requestParams'] and 'metastruct' in request.session['requestParams']['extra']: jeditaskids = list(set([task['jeditaskid'] for task in tasks])) MAX_N_TASKS = 100 # protection against DB overloading if len(jeditaskids) <= MAX_N_TASKS: job_pids = [] jobQuery = { 'jobstatus__in': ['finished', 'failed', 'transferring', 'merging', 'cancelled', 'closed', 'holding'], 'jeditaskid__in': jeditaskids } job_pids.extend(Jobsarchived4.objects.filter(**jobQuery).values('pandaid', 'jeditaskid', 'jobstatus', 'creationtime')) job_pids.extend(Jobsarchived.objects.filter(**jobQuery).values('pandaid', 'jeditaskid', 'jobstatus', 'creationtime')) if len(job_pids) > 0: jobs = addJobMetadata(job_pids) taskMetadata = {} for job in jobs: if not job['jeditaskid'] in taskMetadata: taskMetadata[job['jeditaskid']] = {} if 'metastruct' in job: taskMetadata[job['jeditaskid']][job['pandaid']] = job['metastruct'] for task in tasks: if task['jeditaskid'] in taskMetadata: task['jobs_metadata'] = taskMetadata[task['jeditaskid']] if 'extra' in request.session['requestParams'] and 'jobstatecount' in request.session['requestParams']['extra']: js_count_bytask_dict = get_job_state_summary_for_tasklist(tasks) for task in tasks: if task['jeditaskid'] in js_count_bytask_dict: task['job_state_count'] = js_count_bytask_dict[task['jeditaskid']] else: task['job_state_count'] = {} dump = json.dumps(tasks, cls=DateEncoder) del request.session return JsonResponse(tasks, encoder=DateEncoder, safe=False) else: sumd = task_summary_dict(request, tasks, copy.deepcopy(standard_taskfields) + ['stagesource'] if 'tape' in request.session['requestParams'] else copy.deepcopy(standard_taskfields)) del request.session['TFIRST'] del request.session['TLAST'] data = { 'request': request, 'viewParams': request.session['viewParams'], 'requestParams': request.session['requestParams'], 'tasks': tasksToShow, 'datasetstage': json.dumps(datasetstage, cls=DateEncoder), 'ntasks': ntasks, 'sumd': sumd, 'hashtags': hashtags, 'xurl': xurl, 'nosorturl': nosorturl, 'nohashtagurl': nohashtagurl, 'noerrordialogurl':noerrordialogurl, 'url_nolimit': url_nolimit, 'display_limit': nmax, 'flowstruct': flowstruct, 'eventservice': eventservice, 'requestString': urlParametrs, 'tasksTotalCount': tasksTotalCount, 'built': datetime.now().strftime("%H:%M:%S"), 'idtasks': transactionKey, 'error_summary_table': error_summary_table } setCacheEntry(request, "taskList", json.dumps(data, cls=DateEncoder), 60 * 20) if eventservice: response = render_to_response('taskListES.html', data, content_type='text/html') else: response = render_to_response('taskList.html', data, content_type='text/html') patch_response_headers(response, cache_timeout=request.session['max_age_minutes'] * 60) return response @never_cache def killtasks(request): valid, response = initRequest(request) if not valid: return response taskid = -1 action = -1 if 'task' in request.session['requestParams']: taskid = int(request.session['requestParams']['task']) if 'action' in request.session['requestParams']: action = int(request.session['requestParams']['action']) prodsysHost = None prodsysToken = None prodsysUrl = None username = None fullname = None if 'prodsysHost' in PRODSYS: prodsysHost = PRODSYS['prodsysHost'] if 'prodsysToken' in PRODSYS: prodsysToken = PRODSYS['prodsysToken'] if action == 0: prodsysUrl = '/prodtask/task_action_ext/finish/' elif action == 1: prodsysUrl = '/prodtask/task_action_ext/abort/' else: resp = {"detail": "Action is not recognized"} dump = json.dumps(resp, cls=DateEncoder) response = HttpResponse(dump, content_type='application/json') return response cern_auth_provider = None user = request.user # TODO # temporary while both old and new CERN auth supported if user.is_authenticated and user.social_auth is not None: if len(user.social_auth.filter(provider='cernauth2')) > 0: cern_auth_provider = 'cernauth2' elif len(user.social_auth.filter(provider='cernoidc')) > 0: cern_auth_provider = 'cernoidc' if cern_auth_provider and user.social_auth.get(provider=cern_auth_provider).extra_data is not None and ( 'username' in user.social_auth.get(provider=cern_auth_provider).extra_data): username = user.social_auth.get(provider=cern_auth_provider).extra_data['username'] fullname = user.social_auth.get(provider=cern_auth_provider).extra_data['name'] else: resp = {"detail": "User not authenticated. Please login to BigPanDAmon with CERN"} dump = json.dumps(resp, cls=DateEncoder) response = HttpResponse(dump, content_type='application/json') return response if action == 1: postdata = {"username": username, "task": taskid, "userfullname": fullname} else: postdata = {"username": username, "task": taskid, "parameters": [1], "userfullname": fullname} headers = { 'Content-Type':'application/json', 'Accept': 'application/json', 'Authorization': 'Token ' + prodsysToken } conn = urllib3.HTTPSConnectionPool(prodsysHost, timeout=100) resp = None # if request.session['IS_TESTER']: resp = conn.urlopen('POST', prodsysUrl, body=json.dumps(postdata, cls=DateEncoder), headers=headers, retries=1, assert_same_host=False) # else: # resp = {"detail": "You are not allowed to test. Sorry"} # dump = json.dumps(resp, cls=DateEncoder) # response = HttpResponse(dump, mimetype='text/plain') # return response if resp and len(resp.data) > 0: try: resp = json.loads(resp.data) if resp['result'] == "FAILED": resp['detail'] = 'Result:' + resp['result'] + ' with reason:' + resp['exception'] elif resp['result'] == "OK": resp['detail'] = 'Action peformed successfully, details: ' + resp['details'] except: resp = {"detail": "prodsys responce could not be parced"} else: resp = {"detail": "Error with sending request to prodsys"} dump = json.dumps(resp, cls=DateEncoder) response = HttpResponse(dump, content_type='application/json') return response def getTaskScoutingInfo(tasks, nmax): taskslToBeDisplayed = tasks[:nmax] tasksIdToBeDisplayed = [task['jeditaskid'] for task in taskslToBeDisplayed] tquery = {} tmpTableName = get_tmp_table_name() transactionKey = random.randrange(1000000) new_cur = connection.cursor() if DEPLOYMENT == "POSTGRES": create_temporary_table(new_cur, tmpTableName) executionData = [] for id in tasksIdToBeDisplayed: executionData.append((id, transactionKey)) query = """INSERT INTO """ + tmpTableName + """(ID,TRANSACTIONKEY) VALUES (%s, %s)""" new_cur.executemany(query, executionData) tasksEventInfo = GetEventsForTask.objects.filter(**tquery).extra( where=["JEDITASKID in (SELECT ID FROM %s WHERE TRANSACTIONKEY=%i)" % (tmpTableName, transactionKey)]).values('jeditaskid', 'totevrem', 'totev') #We do it because we intermix raw and queryset queries. With next new_cur.execute tasksEventInfo cleares tasksEventInfoList = [] for tasksEventInfoItem in tasksEventInfo: listItem = {} listItem["jeditaskid"] = tasksEventInfoItem["jeditaskid"] listItem["totevrem"] = tasksEventInfoItem["totevrem"] listItem["totev"] = tasksEventInfoItem["totev"] tasksEventInfoList.append(listItem) tasksEventInfoList.reverse() failedInScouting = JediDatasets.objects.filter(**tquery).extra(where=["NFILESFAILED > NFILESTOBEUSED AND JEDITASKID in (SELECT ID FROM %s WHERE TRANSACTIONKEY=%i)" % (tmpTableName, transactionKey) ]).values('jeditaskid') taskStatuses = dict((task['jeditaskid'], task['status']) for task in tasks) failedInScouting = [item['jeditaskid'] for item in failedInScouting if (taskStatuses[item['jeditaskid']] in ('failed', 'broken'))] # scoutingHasCritFailures tquery['nfilesfailed__gt'] = 0 scoutingHasCritFailures = JediDatasets.objects.filter(**tquery).extra( where=["JEDITASKID in (SELECT ID FROM %s WHERE TRANSACTIONKEY=%i)" % (tmpTableName, transactionKey)]).values('jeditaskid') scoutingHasCritFailures = [item['jeditaskid'] for item in scoutingHasCritFailures if (taskStatuses[item['jeditaskid']] in ('scouting'))] transactionKey = random.randrange(1000000) executionData = [] for id in scoutingHasCritFailures: executionData.append((id, transactionKey)) query = """INSERT INTO """ + tmpTableName + """(ID,TRANSACTIONKEY) VALUES (%s, %s)""" new_cur.executemany(query, executionData) tquery = {} tquery['nfilesfailed'] = 0 scoutingHasNonCritFailures = JediDatasets.objects.filter(**tquery).extra( where=["JEDITASKID in (SELECT ID FROM %s WHERE TRANSACTIONKEY=%i)" % (tmpTableName, transactionKey)]).values('jeditaskid') scoutingHasNonCritFailures = [item['jeditaskid'] for item in scoutingHasNonCritFailures if ( taskStatuses[item['jeditaskid']] == 'scouting' and item['jeditaskid'] not in scoutingHasCritFailures)] transactionKey = random.randrange(1000000) executionData = [] for id in scoutingHasNonCritFailures: executionData.append((id, transactionKey)) query = """INSERT INTO """ + tmpTableName + """(ID,TRANSACTIONKEY) VALUES (%s, %s)""" new_cur.executemany(query, executionData) tquery = {} tquery['relationtype'] = 'retry' scoutingHasNonCritFailures = JediJobRetryHistory.objects.filter(**tquery).extra( where=["JEDITASKID in (SELECT ID FROM %s WHERE TRANSACTIONKEY=%i)" % (tmpTableName, transactionKey)]).values('jeditaskid') scoutingHasNonCritFailures = [item['jeditaskid'] for item in scoutingHasNonCritFailures] for task in taskslToBeDisplayed: correspondendEventInfo = [] if tasksEventInfoList and len(tasksEventInfoList) > 0: correspondendEventInfo = [item for item in tasksEventInfoList if item["jeditaskid"]==task['jeditaskid']] #filter(lambda n: n.get('jeditaskid') == task['jeditaskid'], tasksEventInfo) if len(correspondendEventInfo) > 0: task['totevrem'] = int(correspondendEventInfo[0]['totevrem']) task['totev'] = correspondendEventInfo[0]['totev'] else: task['totevrem'] = 0 task['totev'] = 0 if (task['jeditaskid'] in failedInScouting): task['failedscouting'] = True if (task['jeditaskid'] in scoutingHasCritFailures): task['scoutinghascritfailures'] = True if (task['jeditaskid'] in scoutingHasNonCritFailures): task['scoutinghasnoncritfailures'] = True return tasks def getErrorSummaryForEvents(request): valid, response = initRequest(request) if not valid: return response data = {} eventsErrors = [] print ('getting error summary for events') if 'jeditaskid' in request.session['requestParams']: jeditaskid = int(request.session['requestParams']['jeditaskid']) else: data = {"error": "no jeditaskid supplied"} return HttpResponse(json.dumps(data, cls=DateTimeEncoder), status=404, content_type='application/json') if 'mode' in request.session['requestParams']: mode = request.session['requestParams']['mode'] else: mode = 'drop' transactionKey = None if 'tk' in request.session['requestParams'] and request.session['requestParams']['tk']: try: transactionKey = int(request.session['requestParams']['tk']) transactionKey = transactionKey if transactionKey > 0 else None except: _logger.debug('Transaction key is not integer, pass it as None') transactionKeyDJ = None if 'tkdj' in request.session['requestParams'] and request.session['requestParams']['tkdj']: try: transactionKeyDJ = int(request.session['requestParams']['tkdj']) transactionKeyDJ = transactionKeyDJ if transactionKeyDJ > 0 else None except: _logger.debug('Transaction key DJ is not integer, pass it as None') equery = {} equery['jeditaskid']=jeditaskid equery['error_code__isnull'] = False if mode == 'drop': eventsErrors = [] if dbaccess['default']['ENGINE'].find('oracle') >= 0: tmpTableName = "ATLAS_PANDABIGMON.TMP_IDS1DEBUG" else: tmpTableName = "TMP_IDS1DEBUG" new_cur = connection.cursor() if transactionKey: eequery = """ select error_code, sum(neventsinjob) as nevents, sum(nerrorsinjob) as nerrors, count(pandaid) as njobs, LISTAGG(case when aff <= 10 then pandaid end,',' ) WITHIN group (order by error_code, aff) as pandaidlist from ( select pandaid, error_code, neventsinjob, nerrorsinjob, row_number() over (partition by error_code ORDER BY neventsinjob desc) as aff from ( (select pandaid, error_code, sum(DEF_MAX_EVENTID-DEF_MIN_EVENTID+1) as neventsinjob, count(*) as nerrorsinjob from ATLAS_PANDA.Jedi_events where jeditaskid={} and ERROR_CODE is not null group by error_code, pandaid ) e join (select ID from {} where TRANSACTIONKEY={} ) j on e.pandaid = j.ID)) group by error_code""".format(jeditaskid, tmpTableName, transactionKey) elif transactionKeyDJ: eequery = """ select error_code, sum(neventsinjob) as nevents, sum(nerrorsinjob) as nerrors, count(pandaid) as njobs, LISTAGG(case when aff <= 10 then pandaid end,',' ) WITHIN group (order by error_code, aff) as pandaidlist from ( select pandaid, error_code, neventsinjob, nerrorsinjob, row_number() over (partition by error_code ORDER BY neventsinjob desc) as aff from ( (select pandaid, error_code, sum(DEF_MAX_EVENTID-DEF_MIN_EVENTID+1) as neventsinjob, count(*) as nerrorsinjob from ATLAS_PANDA.Jedi_events where jeditaskid={} and ERROR_CODE is not null and pandaid not in ( select ID from {} where TRANSACTIONKEY={} ) group by error_code, pandaid ) e )) group by error_code""".format(jeditaskid, tmpTableName, transactionKeyDJ) else: data = {"error": "no failed events found"} return HttpResponse(json.dumps(data, cls=DateTimeEncoder), content_type='application/json') new_cur.execute(eequery) eventsErrorsUP = dictfetchall(new_cur) elif mode == 'nodrop': # eventsErrors = JediEvents.objects.filter(**equery).values('error_code').annotate(njobs=Count('pandaid',distinct=True),nevents=Sum('def_max_eventid', field='def_max_eventid-def_min_eventid+1')) new_cur = connection.cursor() new_cur.execute( """select error_code, sum(neventsinjob) as nevents, sum(nerrorsinjob) as nerrors , count(pandaid) as njobs, LISTAGG(case when aff <= 10 then pandaid end,',' ) WITHIN group (order by error_code, aff) as pandaidlist from (select pandaid, error_code, sum(DEF_MAX_EVENTID-DEF_MIN_EVENTID+1) as neventsinjob, count(*) as nerrorsinjob, row_number() over (partition by error_code ORDER BY sum(DEF_MAX_EVENTID-DEF_MIN_EVENTID+1) desc) as aff from ATLAS_PANDA.Jedi_events where jeditaskid=%i and ERROR_CODE is not null group by error_code, pandaid) group by error_code """ % (jeditaskid) ) eventsErrorsUP = dictfetchall(new_cur) else: data = {"error": "wrong mode specified"} return HttpResponse(json.dumps(data, cls=DateTimeEncoder), content_type='application/json') for error in eventsErrorsUP: line = dict() for key, value in error.items(): line[key.lower()] = value eventsErrors.append(line) error_codes = get_job_error_desc() for eventserror in eventsErrors: try: eventserror['error_code'] = int(eventserror['error_code']) if eventserror['error_code'] in error_codes['piloterrorcode'].keys(): eventserror['error_description'] = error_codes['piloterrorcode'][eventserror['error_code']] else: eventserror['error_description'] = '' except: eventserror['error_description'] = '' if eventserror['pandaidlist'] and len(eventserror['pandaidlist']) > 0: eventserror['pandaidlist'] = eventserror['pandaidlist'].split(',') data = {'errors': eventsErrors} response = render_to_response('eventsErrorSummary.html', data, content_type='text/html') patch_response_headers(response, cache_timeout=request.session['max_age_minutes'] * 60) return response def getBrokerageLog(request): iquery = {} iquery['type'] = 'prod_brokerage' iquery['name'] = 'panda.mon.jedi' if 'taskid' in request.session['requestParams']: iquery['message__startswith'] = request.session['requestParams']['taskid'] if 'jeditaskid' in request.session['requestParams']: iquery['message__icontains'] = "jeditaskid=%s" % request.session['requestParams']['jeditaskid'] if 'hours' not in request.session['requestParams']: hours = 72 else: hours = int(request.session['requestParams']['hours']) startdate = timezone.now() - timedelta(hours=hours) startdate = startdate.strftime(defaultDatetimeFormat) enddate = timezone.now().strftime(defaultDatetimeFormat) iquery['bintime__range'] = [startdate, enddate] records = Pandalog.objects.filter(**iquery).order_by('bintime').reverse()[:request.session['JOB_LIMIT']].values() sites = {} for record in records: message = records['message'] print (message) def taskprofileplot(request): jeditaskid = 0 if 'jeditaskid' in request.GET: jeditaskid = int(request.GET['jeditaskid']) image = None if jeditaskid != 0: dp = TaskProgressPlot() image = dp.get_task_profile(taskid=jeditaskid) if image is not None: return HttpResponse(image, content_type="image/png") else: return HttpResponse('') # response = HttpResponse(content_type="image/jpeg") # red.save(response, "JPEG") # return response def taskESprofileplot(request): jeditaskid = 0 if 'jeditaskid' in request.GET: jeditaskid = int(request.GET['jeditaskid']) image = None if jeditaskid != 0: dp = TaskProgressPlot() image = dp.get_es_task_profile(taskid=jeditaskid) if image is not None: return HttpResponse(image, content_type="image/png") else: return HttpResponse('') # response = HttpResponse(content_type="image/jpeg") # red.save(response, "JPEG") # return response @login_customrequired def taskProfile(request, jeditaskid=0): """A wrapper page for task profile plot""" valid, response = initRequest(request) if not valid: return response try: jeditaskid = int(jeditaskid) except ValueError: msg = 'Provided jeditaskid: {} is not valid, it must be numerical'.format(jeditaskid) _logger.exception(msg) response = HttpResponse(json.dumps(msg), status=400) if jeditaskid > 0: task_profile = TaskProgressPlot() task_profile_start = task_profile.get_task_start(taskid=jeditaskid) if 'starttime' in task_profile_start: request.session['viewParams']['selection'] = ', started at ' + task_profile_start['starttime'].strftime(defaultDatetimeFormat) else: msg = 'A task with provided jeditaskid does not exist'.format(jeditaskid) _logger.exception(msg) response = HttpResponse(json.dumps(msg), status=400) else: msg = 'Not valid jeditaskid provided: {}'.format(jeditaskid) _logger.exception(msg) response = HttpResponse(json.dumps(msg), status=400) data = { 'request': request, 'requestParams': request.session['requestParams'], 'viewParams': request.session['viewParams'], 'jeditaskid': jeditaskid, } response = render_to_response('taskProgressMonitor.html', data, content_type='text/html') patch_response_headers(response, cache_timeout=request.session['max_age_minutes'] * 60) return response # @login_customrequired @never_cache def taskProfileData(request, jeditaskid=0): """A view that returns data for task profile plot""" valid, response = initRequest(request) if not valid: return response try: jeditaskid = int(jeditaskid) except ValueError: msg = 'Provided jeditaskid: {} is not valid, it must be numerical'.format(jeditaskid) _logger.exception(msg) response = HttpResponse(json.dumps(msg), status=400) if 'jobtype' in request.session['requestParams'] and request.session['requestParams']['jobtype']: request_job_types = request.session['requestParams']['jobtype'].split(',') else: request_job_types = None if 'jobstatus' in request.session['requestParams'] and request.session['requestParams']['jobstatus']: request_job_states = request.session['requestParams']['jobstatus'].split(',') else: request_job_states = None if 'progressunit' in request.session['requestParams'] and request.session['requestParams']['progressunit']: request_progress_unit = request.session['requestParams']['progressunit'] else: request_progress_unit = 'jobs' # get raw profile data if jeditaskid > 0: task_profile = TaskProgressPlot() task_profile_dict = task_profile.get_raw_task_profile_full(taskid=jeditaskid) else: msg = 'Not valid jeditaskid provided: {}'.format(jeditaskid) _logger.exception(msg) response = HttpResponse(json.dumps(msg), status=400) # filter raw data corresponding to request params if request_job_types is not None and len(request_job_types) > 0: for jt, values in task_profile_dict.items(): if jt not in request_job_types: task_profile_dict[jt] = [] if request_job_states is not None and len(request_job_states) > 0: for jt, values in task_profile_dict.items(): temp = [] for v in values: if v['jobstatus'] in request_job_states: temp.append(v) task_profile_dict[jt] = temp # convert raw data to format acceptable by chart.js library job_time_names = ['end', 'start', 'creation'] job_types = ['build', 'run', 'merge'] job_states = ['finished', 'failed', 'closed', 'cancelled'] colors = { 'creation': {'finished': 'RGBA(162,198,110,1)', 'failed': 'RGBA(255,176,176,1)', 'closed': 'RGBA(214,214,214,1)', 'cancelled': 'RGBA(255,227,177,1)'}, 'start': {'finished': 'RGBA(70,181,117,0.8)', 'failed': 'RGBA(235,0,0,0.8)', 'closed': 'RGBA(100,100,100,0.8)', 'cancelled': 'RGBA(255,165,0,0.8)'}, 'end': {'finished': 'RGBA(2,115,0,0.8)', 'failed': 'RGBA(137,0,0,0.8)', 'closed': 'RGBA(0,0,0,0.8)', 'cancelled': 'RGBA(157,102,0,0.8)'}, } markers = {'build': 'triangle', 'run': 'circle', 'merge': 'crossRot'} order_mpx = { 'creation': 1, 'start': 2, 'end': 3, 'finished': 7, 'failed': 6, 'closed': 5, 'cancelled': 4, } order_dict = {} for jtn in job_time_names: for js in job_states: order_dict[jtn+'_'+js] = order_mpx[js] * order_mpx[jtn] task_profile_data_dict = {} for jt in job_types: if len(task_profile_dict[jt]) > 0: for js in list(set(job_states) & set([r['jobstatus'] for r in task_profile_dict[jt]])): for jtmn in job_time_names: task_profile_data_dict['_'.join((jtmn, js, jt))] = { 'name': '_'.join((jtmn, js, jt)), 'label': jtmn.capitalize() + ' time of a ' + js + ' ' + jt + ' job', 'pointRadius': round(1 + 3.0 * math.exp(-0.0004*len(task_profile_dict[jt]))), 'backgroundColor': colors[jtmn][js], 'borderColor': colors[jtmn][js], 'pointStyle': markers[jt], 'data': [], } for jt in job_types: if jt in task_profile_dict: rdata = task_profile_dict[jt] for r in rdata: for jtn in job_time_names: task_profile_data_dict['_'.join((jtn, r['jobstatus'], jt))]['data'].append({ 't': r[jtn].strftime(defaultDatetimeFormat), 'y': r['indx'] if request_progress_unit == 'jobs' else r['nevents'], 'label': r['pandaid'], }) # deleting point groups if data is empty group_to_remove = [] for group in task_profile_data_dict: if len(task_profile_data_dict[group]['data']) == 0: group_to_remove.append(group) for group in group_to_remove: try: del task_profile_data_dict[group] except: _logger.info('failed to remove key from dict') # dict -> list task_profile_data = [v for k, v in task_profile_data_dict.items()] data = {'plotData': task_profile_data, 'error': ''} return HttpResponse(json.dumps(data, cls=DateEncoder), content_type='application/json') @login_customrequired def userProfile(request, username=""): """A wrapper page for task profile plot""" valid, response = initRequest(request) if not valid: return response try: username = str(username) except ValueError: msg = 'Provided username: {} is not valid, it must be string'.format(username) _logger.exception(msg) response = HttpResponse(json.dumps(msg), status=400) return response if len(username) > 0: query = setupView(request, hours=24 * 7, querytype='task', wildCardExt=False) query['username__icontains'] = username.strip() tasks = JediTasks.objects.filter(**query).values('jeditaskid') if len(list(tasks)) > 0: msg = 'The username exist: {}'.format(username) else: msg = 'The username do not exist or no tasks found: {}'.format(username) response = HttpResponse(json.dumps(msg), status=400) return response if query and 'modificationtime__castdate__range' in query: request.session['timerange'] = query['modificationtime__castdate__range'] else: msg = 'Not valid username provided: {}'.format(username) _logger.exception(msg) response = HttpResponse(json.dumps(msg), status=400) return response data = { 'request': request, 'requestParams': request.session['requestParams'], 'viewParams': request.session['viewParams'], 'username': username, 'timerange': request.session['timerange'], } response = render_to_response('userProfile.html', data, content_type='text/html') patch_response_headers(response, cache_timeout=request.session['max_age_minutes'] * 60) return response @never_cache def userProfileData(request): """A view that returns data for task profile plot""" valid, response = initRequest(request) if not valid: return response # Here we try to get cached data data = getCacheEntry(request, "userProfileData", isData=True) data = None if data is not None: data = json.loads(data) return HttpResponse(json.dumps(data, cls=DateEncoder), content_type='application/json') if 'username' in request.session['requestParams'] and request.session['requestParams']['username']: username = str(request.session['requestParams']['username']) else: msg = 'No username provided: {} is not valid, it must be string' _logger.warning(msg) response = HttpResponse(json.dumps(msg), status=400) return response if 'jobtype' in request.session['requestParams'] and request.session['requestParams']['jobtype']: request_job_types = request.session['requestParams']['jobtype'].split(',') else: request_job_types = None if 'jobstatus' in request.session['requestParams'] and request.session['requestParams']['jobstatus']: request_job_states = request.session['requestParams']['jobstatus'].split(',') if 'active' in request.session['requestParams']['jobstatus']: # replace active with list of real job states request.session['requestParams']['jobstatus'] = request.session['requestParams']['jobstatus'].replace( 'active', ','.join(list(set(const.JOB_STATES) - set(const.JOB_STATES_FINAL)))) else: request_job_states = None # get raw profile data if len(username) > 0: query = setupView(request, hours=24 * 7, querytype='job', wildCardExt=False) user_Dataprofile = UserProfilePlot(username) user_Dataprofile_dict = user_Dataprofile.get_raw_data_profile_full(query) else: msg = 'Not valid username provided: {}'.format(username) _logger.exception(msg) response = HttpResponse(json.dumps(msg), status=400) # filter raw data corresponding to request params if request_job_types is not None and len(request_job_types) > 0: for jt, values in user_Dataprofile_dict.items(): if jt not in request_job_types: user_Dataprofile_dict[jt] = [] if request_job_states is not None and len(request_job_states) > 0: for jt, values in user_Dataprofile_dict.items(): temp = [] for v in values: if v['jobstatus'] in request_job_states: temp.append(v) user_Dataprofile_dict[jt] = temp # convert raw data to format acceptable by chart.js library job_time_names = ['end', 'start', 'creation'] job_types = ['build', 'run', 'merge'] job_states = ['active', 'finished', 'failed', 'closed', 'cancelled'] colors = { 'creation': {'active': 'RGBA(0,169,255,0.75)', 'finished': 'RGBA(162,198,110,0.75)', 'failed': 'RGBA(255,176,176,0.75)', 'closed': 'RGBA(214,214,214,0.75)', 'cancelled': 'RGBA(255,227,177,0.75)'}, 'start': {'active': 'RGBA(0,85,183,0.75)', 'finished': 'RGBA(70,181,117,0.8)', 'failed': 'RGBA(235,0,0,0.75)', 'closed': 'RGBA(100,100,100,0.75)', 'cancelled': 'RGBA(255,165,0,0.75)'}, 'end': {'active': 'RGBA(0,0,141,0.75)', 'finished': 'RGBA(0,100,0,0.75)', 'failed': 'RGBA(137,0,0,0.75)', 'closed': 'RGBA(0,0,0,0.75)', 'cancelled': 'RGBA(157,102,0,0.75)'}, } markers = {'build': 'triangle', 'run': 'circle', 'merge': 'crossRot'} order_mpx = { 'creation': 1, 'start': 2, 'end': 3, 'finished': 4, 'failed': 3, 'closed': 2, 'cancelled': 1, 'active': 5, } order_dict = {} for jtn in job_time_names: for js in job_states: order_dict[jtn+'_'+js] = order_mpx[js] * order_mpx[jtn] user_Dataprofile_data_dict = {} for jt in job_types: if len(user_Dataprofile_dict[jt]) > 0: for js in list(set(job_states) & set([r['jobstatus'] for r in user_Dataprofile_dict[jt]])): for jtmn in job_time_names: user_Dataprofile_data_dict['_'.join((jtmn, js, jt))] = { 'name': '_'.join((jtmn, js, jt)), 'label': jtmn.capitalize() + ' time of a ' + js + ' ' + jt + ' job', 'pointRadius': round(1 + 4.0 * math.exp(-0.0004*len(user_Dataprofile_dict[jt]))), 'backgroundColor': colors[jtmn][js], 'borderColor': colors[jtmn][js], 'pointStyle': markers[jt], 'data': [], } for jt in job_types: if jt in user_Dataprofile_dict: rdata = user_Dataprofile_dict[jt] for r in rdata: for jtn in job_time_names: if jtn in r and r[jtn] is not None: user_Dataprofile_data_dict['_'.join((jtn, r['jobstatus'], jt))]['data'].append({ 't': r[jtn].strftime(defaultDatetimeFormat), 'y': r['indx'], 'label': r['pandaid'], }) # deleting point groups if data is empty group_to_remove = [] for group in user_Dataprofile_data_dict: if len(user_Dataprofile_data_dict[group]['data']) == 0: group_to_remove.append(group) for group in group_to_remove: try: del user_Dataprofile_data_dict[group] except: _logger.info('failed to remove key from dict') # dict -> list user_Dataprofile_data = [v for k, v in user_Dataprofile_data_dict.items()] data = {'plotData': user_Dataprofile_data, 'error': ''} setCacheEntry(request, "userProfileData", json.dumps(data, cls=DateEncoder), 60 * 30, isData=True) return HttpResponse(json.dumps(data, cls=DateEncoder), content_type='application/json') @login_customrequired def taskInfo(request, jeditaskid=0): try: jeditaskid = int(jeditaskid) except: jeditaskid = re.findall("\d+", jeditaskid) jdtstr = "" for jdt in jeditaskid: jdtstr = jdtstr+str(jdt) return redirect('/task/'+jdtstr) valid, response = initRequest(request) if not valid: return response # return json for dataTables if dt in request params if 'dt' in request.session['requestParams'] and 'tkiec' in request.session['requestParams']: tkiec = request.session['requestParams']['tkiec'] data = getCacheEntry(request, tkiec, isData=True) return HttpResponse(data, content_type='application/json') # Here we try to get cached data. We get any cached data is available data = getCacheEntry(request, "taskInfo", skipCentralRefresh=True) # temporarily turn off caching # data = None if data is not None: data = json.loads(data) if data is not None: doRefresh = False # check the build date of cached data, since data structure changed on 2021-03-22 and # we need to refresh cached data for ended tasks which we store for 1 month if 'built' in data and data['built'] is not None: try: builtDate = datetime.strptime('2021-'+data['built'], defaultDatetimeFormat) if builtDate < datetime.strptime('2021-03-22 14:00:00', defaultDatetimeFormat): doRefresh = True except: doRefresh = True # We still want to refresh tasks if request came from central crawler and task not in the frozen state if (('REMOTE_ADDR' in request.META) and (request.META['REMOTE_ADDR'] in notcachedRemoteAddress) and data['task'] and data['task']['status'] not in ['broken', 'aborted']): doRefresh = True # we check here whether task status didn't changed for both (user or crawler request) if data['task'] and data['task']['status'] and data['task']['status'] in ['done', 'finished', 'failed']: if 'jeditaskid' in request.session['requestParams']: jeditaskid = int( request.session['requestParams']['jeditaskid']) if jeditaskid != 0: query = {'jeditaskid': jeditaskid} values = ['status', 'superstatus', 'modificationtime'] tasks = JediTasks.objects.filter(**query).values(*values)[:1] if len(tasks) > 0: task = tasks[0] if (task['status'] == data['task']['status'] and task['superstatus'] == data['task']['superstatus'] and task['modificationtime'].strftime(defaultDatetimeFormat) == data['task']['modificationtime']): doRefresh = False else: doRefresh = True else: doRefresh = True # doRefresh = True if not doRefresh: data['request'] = request if data['eventservice']: if 'version' not in request.session['requestParams'] or ( 'version' in request.session['requestParams'] and request.session['requestParams']['version'] != 'old'): response = render_to_response('taskInfoESNew.html', data, content_type='text/html') else: response = render_to_response('taskInfoES.html', data, content_type='text/html') else: response = render_to_response('taskInfo.html', data, content_type='text/html') patch_response_headers(response, cache_timeout=request.session['max_age_minutes'] * 60) return response if 'taskname' in request.session['requestParams'] and request.session['requestParams']['taskname'].find('*') >= 0: return taskList(request) setupView(request, hours=365 * 24, limit=999999999, querytype='task') tasks = [] warning = {} if 'jeditaskid' in request.session['requestParams']: jeditaskid = int(request.session['requestParams']['jeditaskid']) mode = 'drop' if 'mode' in request.session['requestParams']: mode = request.session['requestParams']['mode'] # if no jeditaskid provided, try to find by task name if jeditaskid < 1: if 'taskname' in request.session['requestParams']: querybyname = {'taskname': request.session['requestParams']['taskname']} tasks.extend(JediTasks.objects.filter(**querybyname).values()) if len(tasks) > 0: jeditaskid = tasks[0]['jeditaskid'] else: return redirect('/tasks/') # getting task info taskrec = None query = {'jeditaskid': jeditaskid} extra = '(1=1)' tasks.extend(JediTasks.objects.filter(**query).values()) tasks = cleanTaskList(tasks, add_datasets_info=False) try: taskrec = tasks[0] except IndexError: _logger.exception('No task with jeditaskid={} found'.format(jeditaskid)) data = { 'request': request, 'viewParams': request.session['viewParams'], 'requestParams': request.session['requestParams'], 'columns': None, } return render_to_response('taskInfo.html', data, content_type='text/html') eventservice = False if 'eventservice' in taskrec and (taskrec['eventservice'] == 1 or taskrec['eventservice'] == 'eventservice'): eventservice = True mode = 'nodrop' # nodrop only for tasks older than 2 years if get_task_timewindow(taskrec, format_out='datetime')[0] <= datetime.now() - timedelta(days=365*3): warning['dropmode'] = """The drop mode is unavailable since the data of job retries was cleaned up. The data shown on the page is in nodrop mode.""" mode = 'nodrop' warning['archive'] = "The jobs data is moved to the archive, so the links to jobs page is unavailable" # iDDS section task_type = checkIfIddsTask(taskrec) idds_info = None if task_type == 'hpo': mode = 'nodrop' idds_info = {'task_type': 'hpo'} else: idds_info = {'task_type': 'idds'} # prepare ordered list of task params columns = [] for k, val in taskrec.items(): if is_timestamp(k): try: val = taskrec[k].strftime(defaultDatetimeFormat) except: val = str(taskrec[k]) if val is None: val = '-' # do not add params with empty value continue pair = {'name': k, 'value': val} columns.append(pair) columns = sorted(columns, key=lambda x: x['name'].lower()) # get task params taskparams = get_task_params(jeditaskid) _logger.info('Got task info: {}'.format(time.time() - request.session['req_init_time'])) # load logtxt logtxt = None if taskrec and taskrec['errordialog']: mat = re.match('^.*"([^"]+)"', taskrec['errordialog']) if mat: errurl = mat.group(1) cmd = "curl -s -f --compressed '{}'".format(errurl) logout = subprocess.getoutput(cmd) if len(logout) > 0: loglist = (logout.splitlines())[::-1] logtxt = '\n'.join(loglist) _logger.info("Loaded error log using '{}': {}".format(cmd, time.time() - request.session['req_init_time'])) # get datasets list and containers dsets, dsinfo = datasets_for_task(jeditaskid) if taskrec: taskrec['dsinfo'] = dsinfo taskrec['totev'] = dsinfo['neventsTot'] taskrec['totevproc'] = dsinfo['neventsUsedTot'] taskrec['pctfinished'] = (100 * taskrec['totevproc'] / taskrec['totev']) if (taskrec['totev'] > 0) else '' taskrec['totevhs06'] = round(dsinfo['neventsTot'] * convert_hs06(taskrec['cputime'], taskrec['cputimeunit'])) if (taskrec['cputime'] and taskrec['cputimeunit'] and dsinfo['neventsTot'] > 0) else None taskrec['totevoutput'] = dsinfo['neventsOutput'] if 'neventsOutput' in dsinfo else 0 # get input and output containers inctrs = [] outctrs = [] if 'dsForIN' in taskparams and taskparams['dsForIN'] and isinstance(taskparams['dsForIN'], str): inctrs = [{ 'containername': cin, 'nfiles': 0, 'nfilesfinished': 0, 'nfilesfailed': 0, 'pct': 0 } for cin in taskparams['dsForIN'].split(',')] # fill the list of input containers with progress info for inc in inctrs: for ds in dsets: if ds['containername'] == inc['containername']: inc['nfiles'] += ds['nfiles'] if ds['nfiles'] else 0 inc['nfilesfinished'] += ds['nfilesfinished'] if ds['nfilesfinished'] else 0 inc['nfilesfailed'] += ds['nfilesfailed'] if ds['nfilesfailed'] else 0 inc['pct'] = math.floor(100.0*inc['nfilesfinished']/inc['nfiles']) if ds['nfiles'] and ds['nfiles'] > 0 else inc['pct'] outctrs.extend(list(set([ds['containername'] for ds in dsets if ds['type'] in ('output', 'log') and ds['containername']]))) # get dataset locality if DEPLOYMENT == 'ORACLE_ATLAS': dataset_locality = get_dataset_locality(jeditaskid) else: dataset_locality = {} for ds in dsets: if jeditaskid in dataset_locality and ds['datasetid'] in dataset_locality[jeditaskid]: ds['rse'] = ', '.join([item['rse'] for item in dataset_locality[jeditaskid][ds['datasetid']]]) _logger.info("Loading datasets info: {}".format(time.time() - request.session['req_init_time'])) # getBrokerageLog(request) # get sum of hs06sec grouped by status # creating a jquery with timewindow jquery = copy.deepcopy(query) jquery['modificationtime__castdate__range'] = get_task_timewindow(taskrec, format_out='str') if DEPLOYMENT != 'POSTGRES': hs06sSum = get_hs06s_summary_for_task(jquery) else: hs06sSum = {} _logger.info("Loaded sum of hs06sec grouped by status: {}".format(time.time() - request.session['req_init_time'])) eventssummary = [] if eventservice: # insert dropped jobs to temporary table if drop mode transactionKeyDJ = -1 if mode == 'drop': extra, transactionKeyDJ = insert_dropped_jobs_to_tmp_table(query, extra) _logger.info("Inserting dropped jobs: {}".format(time.time() - request.session['req_init_time'])) _logger.info('tk of dropped jobs: {}'.format(transactionKeyDJ)) # getting events summary for a ES task taskrec['totevproc_evst'] = 0 equery = copy.deepcopy(query) # set timerange for better use of partitioned JOBSARCHIVED equery['creationdate__range'] = get_task_timewindow(taskrec, format_out='str') eventssummary = event_summary_for_task(mode, equery, tk_dj=transactionKeyDJ) for entry in eventssummary: if 'count' in entry and 'totev' in taskrec and taskrec['totev'] > 0: entry['pct'] = round(entry['count'] * 100. / taskrec['totev'], 2) else: entry['pct'] = 0 status = entry.get("statusname", "-") if status in ['finished', 'done', 'merged']: taskrec['totevproc_evst'] += entry.get("count", 0) # update task dict in data with more accurate events data if taskrec: taskrec['pcttotevproc_evst'] = round(100. * taskrec['totevproc_evst'] / taskrec['totev'], 2) if taskrec['totev'] > 0 else '' taskrec['pctfinished'] = round(100. * taskrec['totevproc'] / taskrec['totev'], 2) if taskrec['totev'] > 0 else '' _logger.info("Events states summary: {}".format(time.time() - request.session['req_init_time'])) # get corecount and normalized corecount values ccquery = { 'jeditaskid': jeditaskid, 'jobstatus': 'running', } accsum = Jobsactive4.objects.filter(**ccquery).aggregate(accsum=Sum('actualcorecount')) naccsum = Jobsactive4.objects.filter(**ccquery).aggregate( naccsum=Sum(F('actualcorecount') * F('hs06') / F('corecount') / Value(10), output_field=FloatField())) taskrec['accsum'] = accsum['accsum'] if 'accsum' in accsum else 0 taskrec['naccsum'] = naccsum['naccsum'] if 'naccsum' in naccsum else 0 _logger.info("Loaded corecount and normalized corecount: {}".format(time.time() - request.session['req_init_time'])) # update taskrec dict if taskrec: if 'tasktype' in taskrec and taskrec['tasktype']: tmcj_list = get_top_memory_consumers(taskrec) if len(tmcj_list) > 0 and len([True for job in tmcj_list if job['maxrssratio'] >= 1]) > 0: warning['memoryleaksuspicion'] = {} warning['memoryleaksuspicion']['message'] = 'Some jobs in this task consumed a lot of memory. ' warning['memoryleaksuspicion']['message'] += 'We suspect there might be memory leaks or some misconfiguration.' warning['memoryleaksuspicion']['jobs'] = tmcj_list if task_type is not None and idds_info is not None: for itn in idds_info: if itn in idds_info and isinstance(idds_info[itn], datetime): idds_info[itn] = idds_info[itn].strftime(defaultDatetimeFormat) taskrec['idds_info'] = idds_info if 'ticketsystemtype' in taskrec and taskrec['ticketsystemtype'] == '' and taskparams is not None: if 'ticketID' in taskparams: taskrec['ticketid'] = taskparams['ticketID'] if 'ticketSystemType' in taskparams: taskrec['ticketsystemtype'] = taskparams['ticketSystemType'] if 'creationdate' in taskrec: taskrec['kibanatimefrom'] = taskrec['creationdate'].strftime("%Y-%m-%dT%H:%M:%SZ") else: taskrec['kibanatimefrom'] = None if taskrec['status'] in ['cancelled', 'failed', 'broken', 'aborted', 'finished', 'done']: taskrec['kibanatimeto'] = taskrec['modificationtime'].strftime("%Y-%m-%dT%H:%M:%SZ") else: taskrec['kibanatimeto'] = datetime.now().strftime("%Y-%m-%dT%H:%M:%SZ") if len(set([ds['storagetoken'] for ds in dsets if 'storagetoken' in ds and ds['storagetoken']])) > 0: taskrec['destination'] = list(set([ds['storagetoken'] for ds in dsets if ds['storagetoken']]))[0] elif taskrec['cloud'] == 'WORLD': taskrec['destination'] = taskrec['nucleus'] if hs06sSum: taskrec['totevprochs06'] = int(hs06sSum['finished']) if 'finished' in hs06sSum else None taskrec['failedevprochs06'] = int(hs06sSum['failed']) if 'failed' in hs06sSum else None taskrec['currenttotevhs06'] = int(hs06sSum['total']) if 'total' in hs06sSum else None taskrec['brokerage'] = 'prod_brokerage' if taskrec['tasktype'] == 'prod' else 'analy_brokerage' if DEPLOYMENT == 'ORACLE_ATLAS': taskrec['slice'] = get_prod_slice_by_taskid(jeditaskid) if taskrec['tasktype'] == 'prod' else None # datetime type -> str in order to avoid encoding errors in template datetime_task_param_names = ['creationdate', 'modificationtime', 'starttime', 'statechangetime', 'ttcrequested'] datetime_dataset_param_names = ['statechecktime', 'creationtime', 'modificationtime'] if taskrec: for dtp in datetime_task_param_names: if taskrec[dtp]: taskrec[dtp] = taskrec[dtp].strftime(defaultDatetimeFormat) for dset in dsets: for dsp, dspv in dset.items(): if dsp in datetime_dataset_param_names and dspv is not None: dset[dsp] = dset[dsp].strftime(defaultDatetimeFormat) if dspv is None: dset[dsp] = '' try: del request.session['TFIRST'] del request.session['TLAST'] except: _logger.exception('Failed to delete TFIRST and TLAST from request session') if is_json_request(request): del tasks del columns data = { 'task': taskrec, 'taskparams': taskparams, 'datasets': dsets, } return HttpResponse(json.dumps(data, cls=DateEncoder), content_type='application/json') else: taskparams, jobparams = humanize_task_params(taskparams) furl = request.get_full_path() nomodeurl = extensibleURL(request, removeParam(furl, 'mode')) # decide on data caching time [seconds] cacheexpiration = 60 * 20 # second/minute * minutes if taskrec and 'status' in taskrec and taskrec['status'] in const.TASK_STATES_FINAL and ( 'dsinfo' in taskrec and 'nfiles' in taskrec['dsinfo'] and isinstance(taskrec['dsinfo']['nfiles'], int) and taskrec['dsinfo']['nfiles'] > 10000): cacheexpiration = 3600 * 24 * 31 # we store such data a month data = { 'request': request, 'viewParams': request.session['viewParams'], 'requestParams': request.session['requestParams'], 'furl': furl, 'nomodeurl': nomodeurl, 'mode': mode, 'task': taskrec, 'taskparams': taskparams, 'jobparams': jobparams, 'columns': columns, 'jeditaskid': jeditaskid, 'logtxt': logtxt, 'datasets': dsets, 'inctrs': inctrs, 'outctrs': outctrs, 'vomode': VOMODE, 'eventservice': eventservice, 'built': datetime.now().strftime("%m-%d %H:%M:%S"), 'warning': warning, } data.update(getContextVariables(request)) if eventservice: data['eventssummary'] = eventssummary if 'version' not in request.session['requestParams'] or ( 'version' in request.session['requestParams'] and request.session['requestParams']['version'] != 'old'): # prepare input-centric ES taskInfo _logger.info("This is input-centric ES taskInfo request") # get input files state summary transactionKeyIEC = -1 ifs_summary = [] inputfiles_list, ifs_summary, ifs_tk = input_summary_for_task(taskrec, dsets) # Putting list of inputs IDs to tmp table for connection with jobList for tk, ids_list in ifs_tk.items(): tk = insert_to_temp_table(ids_list, tk) # Putting list of inputs to cache separately for dataTables plugin transactionKeyIEC = random.randrange(100000000) setCacheEntry(request, transactionKeyIEC, json.dumps(inputfiles_list, cls=DateTimeEncoder), 60 * 30, isData=True) _logger.info("Inputs states summary: {}".format(time.time() - request.session['req_init_time'])) # get lighted job summary jobsummarylight, jobsummarylightsplitted = job_summary_for_task_light(taskrec) _logger.info("Loaded lighted job summary: {}".format(time.time() - request.session['req_init_time'])) data['iecsummary'] = ifs_summary data['tkiec'] = transactionKeyIEC data['jobsummarylight'] = jobsummarylight data['jobsummarylightsplitted'] = jobsummarylightsplitted data['tkdj'] = transactionKeyDJ setCacheEntry(request, "taskInfo", json.dumps(data, cls=DateEncoder), cacheexpiration) response = render_to_response('taskInfoESNew.html', data, content_type='text/html') else: _logger.info("This old style ES taskInfo request") # getting job summary and plots plotsDict, jobsummary, scouts, metrics = job_summary_for_task( jquery, '(1=1)', mode=mode, task_archive_flag=get_task_time_archive_flag(get_task_timewindow(taskrec, format_out='datatime'))) data['jobsummary'] = jobsummary data['plotsDict'] = plotsDict data['jobscoutids'] = scouts setCacheEntry(request, "taskInfo", json.dumps(data, cls=DateEncoder), cacheexpiration) response = render_to_response('taskInfoES.html', data, content_type='text/html') else: _logger.info("This is ordinary non-ES task") # getting job summary and plots plotsDict, jobsummary, scouts, metrics = job_summary_for_task( jquery, '(1=1)', mode=mode, task_archive_flag=get_task_time_archive_flag(get_task_timewindow(taskrec, format_out='datatime'))) data['jobsummary'] = jobsummary data['plotsDict'] = plotsDict data['jobscoutids'] = scouts data['task'].update(metrics) setCacheEntry(request, "taskInfo", json.dumps(data, cls=DateEncoder), cacheexpiration) response = render_to_response('taskInfo.html', data, content_type='text/html') _logger.info('Rendered template: {}'.format(time.time() - request.session['req_init_time'])) patch_response_headers(response, cache_timeout=request.session['max_age_minutes'] * 60) return response @login_customrequired def taskInfoNew(request, jeditaskid=0): try: jeditaskid = int(jeditaskid) except: jeditaskid = re.findall("\d+", jeditaskid) jdtstr = "" for jdt in jeditaskid: jdtstr = jdtstr+str(jdt) return redirect('/task/'+jdtstr) valid, response = initRequest(request) if not valid: return response if 'jeditaskid' in request.session['requestParams']: jeditaskid = int(request.session['requestParams']['jeditaskid']) if jeditaskid < 0: return redirect('/tasks/') if 'taskname' in request.session['requestParams'] and request.session['requestParams']['taskname'].find('*') >= 0: return taskList(request) # return json for dataTables if dt in request params if 'dt' in request.session['requestParams'] and 'tkiec' in request.session['requestParams']: tkiec = request.session['requestParams']['tkiec'] data = getCacheEntry(request, tkiec, isData=True) return HttpResponse(data, content_type='application/json') # Here we try to get cached data. We get any cached data is available data = getCacheEntry(request, "taskInfoNew", skipCentralRefresh=True) # data = None if data is not None: data = json.loads(data) # Temporary protection if 'built' in data: ### TO DO it should be fixed try: builtDate = datetime.strptime('2021-'+data['built'], defaultDatetimeFormat) if builtDate < datetime.strptime('2020-09-28 11:00:00', defaultDatetimeFormat): data = None setCacheEntry(request, "taskInfoNew", json.dumps(data, cls=DateEncoder), 1) except: pass doRefresh = False # We still want to refresh tasks if request came from central crawler and task not in the frozen state if (('REMOTE_ADDR' in request.META) and (request.META['REMOTE_ADDR'] in notcachedRemoteAddress) and data['task'] and data['task']['status'] not in ['broken', 'aborted']): doRefresh = True # we check here whether task status didn't changed for both (user or crawler request) if data is not None and data['task'] and data['task']['status'] and data['task']['status'] in ['done', 'finished', 'failed']: if 'jeditaskid' in request.session['requestParams']: jeditaskid = int(request.session['requestParams']['jeditaskid']) if jeditaskid != 0: query = {'jeditaskid': jeditaskid} values = ['status', 'superstatus', 'modificationtime'] tasks = JediTasks.objects.filter(**query).values(*values)[:1] if len(tasks) > 0: task = tasks[0] if (task['status'] == data['task']['status'] and task['superstatus'] == data['task']['superstatus'] and task['modificationtime'].strftime(defaultDatetimeFormat) == data['task']['modificationtime']): doRefresh = False else: doRefresh = True else: doRefresh = True # temp turning on refresh of all tasks to rewrite cache # doRefresh = True if not doRefresh: data['request'] = request if data['eventservice']: response = render_to_response('taskInfoESNew.html', data, content_type='text/html') else: response = render_to_response('taskInfo.html', data, content_type='text/html') patch_response_headers(response, cache_timeout=request.session['max_age_minutes'] * 60) return response setupView(request, hours=365 * 24, limit=999999999, querytype='task') mode = 'nodrop' if 'mode' in request.session['requestParams'] and request.session['requestParams']['mode'] == 'drop': mode = 'drop' eventservice = False warning = {} taskrec = None query = {'jeditaskid': jeditaskid} extra = '(1=1)' tasks = JediTasks.objects.filter(**query).values() try: taskrec = tasks[0] except IndexError: _logger.exception('No task with jeditaskid={} found'.format(jeditaskid)) data = { 'request': request, 'viewParams': request.session['viewParams'], 'requestParams': request.session['requestParams'], 'columns': None, } return render_to_response('taskInfoESNew.html', data, content_type='text/html') _logger.info('Got task info: {}'.format(time.time() - request.session['req_init_time'])) if 'eventservice' in taskrec and taskrec['eventservice'] == 1: eventservice = True if not eventservice: return redirect('/task/' + str(jeditaskid)) # prepare ordered list of task params columns = [] for k, val in taskrec.items(): if is_timestamp(k): try: val = taskrec[k].strftime(defaultDatetimeFormat) except: val = str(taskrec[k]) if val is None: val = '-' # do not add params with empty value continue pair = {'name': k, 'value': val} columns.append(pair) columns = sorted(columns, key=lambda x: x['name'].lower()) # get task params taskparams = get_task_params(jeditaskid) # insert dropped jobs to temporary table if drop mode transactionKeyDJ = -1 if mode == 'drop': extra, transactionKeyDJ = insert_dropped_jobs_to_tmp_table(query, extra) _logger.info("Inserting dropped jobs: {}".format(time.time() - request.session['req_init_time'])) _logger.info('tk of dropped jobs: {}'.format(transactionKeyDJ)) # get datasets info dsets, dsinfo = datasets_for_task(jeditaskid) if taskrec: taskrec['dsinfo'] = dsinfo taskrec['totev'] = dsinfo['neventsTot'] taskrec['totevproc'] = dsinfo['neventsUsedTot'] taskrec['totevhs06'] = dsinfo['neventsTot'] * taskrec['cputime'] if (taskrec['cputime'] is not None and dsinfo['neventsTot'] > 0) else None taskrec['totevoutput'] = dsinfo['neventsOutput'] if 'neventsOutput' in dsinfo else 0 # get input and output containers inctrs = [] outctrs = [] if taskparams and 'dsForIN' in taskparams: inctrs = [taskparams['dsForIN'], ] outctrs.extend(list(set([ds['containername'] for ds in dsets if ds['type'] in ('output', 'log') and ds['containername']]))) # get dataset locality dataset_locality = get_dataset_locality(jeditaskid) for ds in dsets: if jeditaskid in dataset_locality and ds['datasetid'] in dataset_locality[jeditaskid]: ds['rse'] = ', '.join([item['rse'] for item in dataset_locality[jeditaskid][ds['datasetid']]]) _logger.info("Loading datasets info: {}".format(time.time() - request.session['req_init_time'])) # get event state summary neventsProcTot = 0 event_summary_list = [] if eventservice: event_summary_list = event_summary_for_task(mode, query, tk_dj=transactionKeyDJ) for entry in event_summary_list: entry['pct'] = round(entry['count'] * 100. / taskrec['totev'], 2) if 'totev' in taskrec and taskrec['totev'] > 0 and 'count' in entry else 0 status = entry.get("statusname", "-") if status in ['finished', 'done', 'merged']: neventsProcTot += entry.get("count", 0) _logger.info("Events states summary: {}".format(time.time() - request.session['req_init_time'])) if taskrec: taskrec['totevproc_evst'] = neventsProcTot taskrec['pcttotevproc_evst'] = round(100. * neventsProcTot / taskrec['totev'],2) if (taskrec['totev'] > 0) else '' taskrec['pctfinished'] = round(100 * taskrec['totevproc'] / taskrec['totev'],2) if (taskrec['totev'] > 0) else '' # get input files state summary transactionKeyIEC = -1 ifs_summary = [] if eventservice: # getting inputs states summary inputfiles_list, ifs_summary, ifs_tk = input_summary_for_task(taskrec, dsets) # Putting list of inputs IDs to tmp table for connection with jobList for tk, ids_list in ifs_tk.items(): tk = insert_to_temp_table(ids_list, tk) # Putting list of inputs to cache separately for dataTables plugin transactionKeyIEC = random.randrange(100000000) setCacheEntry(request, transactionKeyIEC, json.dumps(inputfiles_list, cls=DateTimeEncoder), 60 * 30, isData=True) _logger.info("Inputs states summary: {}".format(time.time() - request.session['req_init_time'])) # get lighted job summary jobsummarylight, jobsummarylightsplitted = job_summary_for_task_light(taskrec) _logger.info("Loaded lighted job summary: {}".format(time.time() - request.session['req_init_time'])) # get sum of hs06sec grouped by status # creating a jquery with timewindow jquery = copy.deepcopy(query) jquery['modificationtime__castdate__range'] = get_task_timewindow(taskrec, format_out='str') hs06sSum = get_hs06s_summary_for_task(jquery) _logger.info("Loaded sum of hs06sec grouped by status: {}".format(time.time() - request.session['req_init_time'])) # get corecount and normalized corecount values ccquery = {} ccquery['jeditaskid'] = jeditaskid ccquery['jobstatus'] = 'running' accsum = Jobsactive4.objects.filter(**ccquery).aggregate(accsum=Sum('actualcorecount')) naccsum = Jobsactive4.objects.filter(**ccquery).aggregate(naccsum=Sum(F('actualcorecount')*F('hs06')/F('corecount')/Value(10), output_field=FloatField())) _logger.info("Loaded corecount and normalized corecount: {}".format(time.time() - request.session['req_init_time'])) # load logtxt logtxt = None if taskrec and taskrec['errordialog']: mat = re.match('^.*"([^"]+)"', taskrec['errordialog']) if mat: errurl = mat.group(1) cmd = "curl -s -f --compressed '{}'".format(errurl) logout = subprocess.getoutput(cmd) if len(logout) > 0: loglist = (logout.splitlines())[::-1] logtxt = '\n'.join(loglist) _logger.info("Loaded error log using '{}': {}".format(cmd, time.time() - request.session['req_init_time'])) # update taskrec dict if taskrec: if 'ticketsystemtype' in taskrec and taskrec['ticketsystemtype'] == '' and taskparams is not None: if 'ticketID' in taskparams: taskrec['ticketid'] = taskparams['ticketID'] if 'ticketSystemType' in taskparams: taskrec['ticketsystemtype'] = taskparams['ticketSystemType'] if 'creationdate' in taskrec: taskrec['kibanatimefrom'] = taskrec['creationdate'].strftime("%Y-%m-%dT%H:%M:%SZ") else: taskrec['kibanatimefrom'] = None if taskrec['status'] in ['cancelled', 'failed', 'broken', 'aborted', 'finished', 'done']: taskrec['kibanatimeto'] = taskrec['modificationtime'].strftime("%Y-%m-%dT%H:%M:%SZ") else: taskrec['kibanatimeto'] = datetime.now().strftime("%Y-%m-%dT%H:%M:%SZ") if len(set([ds['storagetoken'] for ds in dsets if 'storagetoken' in ds and ds['storagetoken']])) > 0: taskrec['destination'] = list(set([ds['storagetoken'] for ds in dsets if ds['storagetoken']]))[0] elif taskrec['cloud'] == 'WORLD': taskrec['destination'] = taskrec['nucleus'] if hs06sSum: taskrec['totevprochs06'] = int(hs06sSum['finished']) if 'finished' in hs06sSum else None taskrec['failedevprochs06'] = int(hs06sSum['failed']) if 'failed' in hs06sSum else None taskrec['currenttotevhs06'] = int(hs06sSum['total']) if 'total' in hs06sSum else None taskrec['brokerage'] = 'prod_brokerage' if taskrec['tasktype'] == 'prod' else 'analy_brokerage' taskrec['accsum'] = accsum['accsum'] if 'accsum' in accsum else 0 taskrec['naccsum'] = naccsum['naccsum'] if 'naccsum' in naccsum else 0 taskrec['slice'] = get_prod_slice_by_taskid(jeditaskid) # datetime type -> str in order to avoid encoding cached on template datetime_task_param_names = ['creationdate', 'modificationtime', 'starttime', 'statechangetime', 'ttcrequested'] datetime_dataset_param_names = ['statechecktime', 'creationtime', 'modificationtime'] if taskrec: for dtp in datetime_task_param_names: if taskrec[dtp]: taskrec[dtp] = taskrec[dtp].strftime(defaultDatetimeFormat) for dset in dsets: for dsp, dspv in dset.items(): if dsp in datetime_dataset_param_names and dspv is not None: dset[dsp] = dset[dsp].strftime(defaultDatetimeFormat) if dspv is None: dset[dsp] = '' try: del request.session['TFIRST'] del request.session['TLAST'] except: _logger.exception('Failed to delete TFIRST and TLAST from request session') if is_json_request(request): del tasks del columns data = { 'task': taskrec, 'taskparams': taskparams, 'datasets': dsets, } return HttpResponse(json.dumps(data, cls=DateEncoder), content_type='application/json') else: taskparams, jobparams = humanize_task_params(taskparams) furl = request.get_full_path() nomodeurl = extensibleURL(request, removeParam(furl, 'mode')) data = { 'furl': furl, 'nomodeurl': nomodeurl, 'mode': mode, 'request': request, 'viewParams': request.session['viewParams'], 'requestParams': request.session['requestParams'], 'task': taskrec, 'taskparams': taskparams, 'jobparams': jobparams, 'columns': columns, 'jobsummarylight': jobsummarylight, 'jobsummarylightsplitted': jobsummarylightsplitted, 'eventssummary': event_summary_list, 'jeditaskid': jeditaskid, 'logtxt': logtxt, 'datasets': dsets, 'inctrs': inctrs, 'outctrs': outctrs, 'vomode': VOMODE, 'eventservice': eventservice, 'tkdj': transactionKeyDJ, 'tkiec': transactionKeyIEC, 'iecsummary': ifs_summary, 'built': datetime.now().strftime("%m-%d %H:%M:%S"), 'warning': warning, } data.update(getContextVariables(request)) cacheexpiration = 60*20 # second/minute * minutes if taskrec and 'status' in taskrec: totaljobs = 0 for state in jobsummarylight: totaljobs += state['count'] if taskrec['status'] in ['broken', 'aborted', 'done', 'finished', 'failed'] and totaljobs > 5000: cacheexpiration = 3600*24*31 # we store such data a month setCacheEntry(request, "taskInfoNew", json.dumps(data, cls=DateEncoder), cacheexpiration) if eventservice: response = render_to_response('taskInfoESNew.html', data, content_type='text/html') else: response = render_to_response('taskInfo.html', data, content_type='text/html') patch_response_headers(response, cache_timeout=request.session['max_age_minutes'] * 60) return response def getEventsDetails(request, mode='drop', jeditaskid=0): """ A view for ES task Info page to get events details in different states """ valid, response = initRequest(request) if not valid: return response tmpTableName = 'ATLAS_PANDABIGMON.TMP_IDS1DEBUG' if 'jeditaskid' in request.session['requestParams'] and request.session['requestParams']['jeditaskid']: jeditaskid = request.session['requestParams']['jeditaskid'] try: jeditaskid = int(jeditaskid) except: return HttpResponse(status=404) extrastr = '' if mode == 'drop': if 'tkd' in request.session['requestParams'] and request.session['requestParams']['tkd']: transactionKey = request.session['requestParams']['tkd'] extrastr += " AND pandaid not in ( select id from {0} where TRANSACTIONKEY = {1})".format(tmpTableName, transactionKey) else: return HttpResponse(status=404) sqlRequest = """ select /*+ INDEX_RS_ASC(e JEDI_EVENTS_PK) NO_INDEX_FFS(e JEDI_EVENTS_PK) */ j.computingsite, j.COMPUTINGELEMENT,e.objstore_id,e.status,count(e.status) as nevents from atlas_panda.jedi_events e join (select computingsite, computingelement,pandaid from ATLAS_PANDA.JOBSARCHIVED4 where jeditaskid={} {} UNION select computingsite, computingelement,pandaid from ATLAS_PANDAARCH.JOBSARCHIVED where jeditaskid={} {} ) j on (e.jeditaskid={} and e.pandaid=j.pandaid) group by j.computingsite, j.COMPUTINGELEMENT, e.objstore_id, e.status""".format(jeditaskid, extrastr, jeditaskid, extrastr, jeditaskid) cur = connection.cursor() cur.execute(sqlRequest) ossummary = cur.fetchall() cur.close() ossummarynames = ['computingsite', 'computingelement', 'objectstoreid', 'statusindex', 'nevents'] objectStoreDict = [dict(zip(ossummarynames, row)) for row in ossummary] for row in objectStoreDict: row['statusname'] = eventservicestatelist[row['statusindex']] return HttpResponse(json.dumps(objectStoreDict, cls=DateEncoder), content_type='application/json') def taskchain(request): valid, response = initRequest(request) jeditaskid = -1 if 'jeditaskid' in request.session['requestParams']: jeditaskid = int(request.session['requestParams']['jeditaskid']) if jeditaskid == -1: data = {"error": "no jeditaskid supplied"} return HttpResponse(json.dumps(data, cls=DateTimeEncoder), content_type='application/json') new_cur = connection.cursor() taskChainSQL = "SELECT * FROM table(ATLAS_PANDABIGMON.GETTASKSCHAIN_TEST(%i))" % jeditaskid new_cur.execute(taskChainSQL) taskChain = new_cur.fetchall() results = ["".join(map(str, r)) for r in taskChain] ts = "".join(results) data = { 'viewParams': request.session['viewParams'], 'taskChain': ts, 'jeditaskid': jeditaskid } response = render_to_response('taskchain.html', data, content_type='text/html') patch_response_headers(response, cache_timeout=request.session['max_age_minutes'] * 60) return response def ganttTaskChain(request): from django.db import connections valid, response = initRequest(request) jeditaskid = -1 if 'jeditaskid' in request.session['requestParams']: jeditaskid = int(request.session['requestParams']['jeditaskid']) if jeditaskid == -1: data = {"error": "no jeditaskid supplied"} return HttpResponse(json.dumps(data, cls=DateTimeEncoder), content_type='application/json') new_cur = connections["deft_adcr"].cursor() sql_request_str = chainsql.query.replace('%i', str(jeditaskid)) new_cur.execute(sql_request_str) results = new_cur.fetchall() results_list = ["".join(map(str, r)) for r in results] results_str = results_list[0].replace("\n", "") substr_end = results_str.index(">") data = { 'viewParams': request.session['viewParams'], 'ganttTaskChain': results_str[substr_end+1:], 'jeditaskid': jeditaskid, 'request': request, } response = render_to_response('ganttTaskChain.html', data, content_type='text/html') patch_response_headers(response, cache_timeout=request.session['max_age_minutes'] * 60) return response def getJobSummaryForTask(request, jeditaskid=-1): valid, response = initRequest(request) if not valid: return response try: jeditaskid = int(jeditaskid) except: return HttpResponse(status=404) if jeditaskid == -1: return HttpResponse(status=404) # possible values of infotype are jobssummary, plots, scouts. Provided type will be returned, other put in cache. if 'infotype' in request.session['requestParams'] and request.session['requestParams']['infotype']: infotype = request.session['requestParams']['infotype'] else: return HttpResponse(status=404) if 'es' in request.session['requestParams'] and request.session['requestParams']['es'] == 'True': es = True else: es = False if 'mode' in request.session['requestParams'] and request.session['requestParams']['mode'] == 'drop': mode = 'drop' else: mode = 'nodrop' data = getCacheEntry(request, "jobSummaryForTask"+str(jeditaskid)+mode, isData=True) data = None if data is not None: data = json.loads(data) data['request'] = request if infotype == 'jobsummary': response = render_to_response('jobSummaryForTask.html', data, content_type='text/html') elif infotype == 'scouts': response = render_to_response('scoutsForTask.html', data, content_type='text/html') elif infotype == 'plots': response = HttpResponse(json.dumps(data['plotsDict'], cls=DateEncoder), content_type='application/json') else: response = HttpResponse(status=404) return response extra = '(1=1)' query = { 'jeditaskid': jeditaskid, } if mode == 'drop': start = time.time() extra, transactionKeyDJ = insert_dropped_jobs_to_tmp_table(query, extra) end = time.time() _logger.info("Inserting dropped jobs: {} sec".format(end - start)) _logger.debug('tk of dropped jobs: {}'.format(transactionKeyDJ)) # pass mode='nodrop' as we already took dropping into account in extra query str plotsDict, jobsummary, jobScoutIDs, metrics = job_summary_for_task(query, extra=extra, mode='nodrop') alldata = { 'jeditaskid': jeditaskid, 'request': request, 'jobsummary': jobsummary, 'jobScoutIDs': jobScoutIDs, 'plotsDict': plotsDict, } setCacheEntry(request, 'jobSummaryForTask'+str(jeditaskid)+mode, json.dumps(alldata, cls=DateEncoder), 60 * 10, isData=True) if infotype == 'jobsummary': data = { 'jeditaskid': jeditaskid, 'mode': mode, 'jobsummary': jobsummary, } response = render_to_response('jobSummaryForTask.html', data, content_type='text/html') elif infotype == 'scouts': data = { 'jeditaskid': jeditaskid, 'jobscoutids': jobScoutIDs, } response = render_to_response('scoutsForTask.html', data, content_type='text/html') elif infotype == 'plots': response = HttpResponse(json.dumps(plotsDict, cls=DateEncoder), content_type='application/json') else: response = HttpResponse(status=204) if response: patch_response_headers(response, cache_timeout=request.session['max_age_minutes'] * 60) return response def jobStateSummary(jobs): global statelist statecount = {} for state in statelist: statecount[state] = 0 for job in jobs: statecount[job['jobstatus']] += 1 return statecount def taskFlowDiagram(request, jeditaskid=-1): """ Prepare data for task flow chart :param request: :param jeditaskid: :return: """ data = {'data': ''} try: jeditaskid = int(jeditaskid) except: jeditaskid = 0 _logger.exception('jeditaskid={} must be int'.format(jeditaskid)) if jeditaskid < 0: data['error'] = 'No jeditaskid provided' elif jeditaskid == 0: data['error'] = 'Not valid jeditaskid provided' else: data['data'] = get_task_flow_data(jeditaskid) response = HttpResponse(json.dumps(data, cls=DateEncoder), content_type='application/json') return response def getTaskName(tasktype, taskid): taskname = '' if tasktype == 'taskid': taskname = '' elif tasktype == 'jeditaskid' and taskid and taskid != 'None': tasks = JediTasks.objects.filter(jeditaskid=taskid).values('taskname') if len(tasks) > 0: taskname = tasks[0]['taskname'] return taskname tcount = {} lock = Lock() def totalCount(panJobList, query, wildCardExtension, dkey): print ('Thread started') lock.acquire() try: tcount.setdefault(dkey,[]) for panJob in panJobList: wildCardExtension = wildCardExtension.replace('%20', ' ') wildCardExtension = wildCardExtension.replace('%2520', ' ') wildCardExtension = wildCardExtension.replace('%252540', '@') wildCardExtension = wildCardExtension.replace('%2540', '@') wildCardExtension = wildCardExtension.replace('+', ' ') wildCardExtension = wildCardExtension.replace('%', ' ') tcount[dkey].append(panJob.objects.filter(**query).extra(where=[wildCardExtension]).count()) finally: lock.release() print ('Thread finished') def digkey (rq): sk = rq.session.session_key qt = rq.session['qtime'] if sk is None: sk = random.randrange(1000000) hashkey = hashlib.sha256((str(sk) + ' ' + qt).encode('utf-8')) return hashkey.hexdigest() @login_customrequired def errorSummary(request): start_time = time.time() valid, response = initRequest(request) thread = None dkey = digkey(request) if not valid: return response _logger.info('Initialized request: {}'.format(time.time() - request.session['req_init_time'])) # Here we try to get cached data data = getCacheEntry(request, "errorSummary") if data is not None: _logger.info('Got cached data: {}'.format(time.time() - request.session['req_init_time'])) data = json.loads(data) data['request'] = request # Filtering data due to user settings # if 'ADFS_LOGIN' in request.session and request.session['ADFS_LOGIN'] and 'IS_TESTER' in request.session and request.session['IS_TESTER']: if request.user.is_authenticated and request.user.is_tester: data = filterErrorData(request, data) if data['errHist']: for list in data['errHist']: try: list[0] = datetime.strptime(list[0],"%Y-%m-%dT%H:%M:%S") except: pass _logger.info('Processed cached data: {}'.format(time.time() - request.session['req_init_time'])) response = render_to_response('errorSummary.html', data, content_type='text/html') _logger.info('Rendered template from cached data: {}'.format(time.time() - request.session['req_init_time'])) patch_response_headers(response, cache_timeout=request.session['max_age_minutes'] * 60) return response testjobs = False if 'prodsourcelabel' in request.session['requestParams'] and request.session['requestParams']['prodsourcelabel'].lower().find('test') >= 0: testjobs = True jobtype = '' if 'jobtype' in request.session['requestParams']: jobtype = request.session['requestParams']['jobtype'] elif '/analysis' in request.path: jobtype = 'analysis' elif '/production' in request.path: jobtype = 'production' elif testjobs: jobtype = 'rc_test' if jobtype == '': hours = 3 limit = 100000 elif jobtype.startswith('anal'): hours = 6 limit = 100000 elif 'JOB_LIMIT' in request.session: hours = 6 limit = request.session['JOB_LIMIT'] else: hours = 12 limit = 100000 if 'hours' in request.session['requestParams']: hours = int(request.session['requestParams']['hours']) if 'limit' in request.session['requestParams']: limit = int(request.session['requestParams']['limit']) if 'display_limit' in request.session['requestParams']: display_limit = int(request.session['requestParams']['display_limit']) else: display_limit = 9999999 xurlsubst = extensibleURL(request) xurlsubstNoSite = xurlsubst # Preprocess request to cover all sites for cloud to view jobs assigned to the World if ('cloud' in request.session['requestParams']) and ('computingsite' not in request.session['requestParams']) and ( request.session['requestParams']['cloud'] != 'WORLD') and ( '|' not in request.session['requestParams']['cloud']): cloud = request.session['requestParams']['cloud'] del request.session['requestParams']['cloud'] panda_queues = get_panda_queues() sites = set([site['site'] for site in panda_queues.values() if site['cloud'] == cloud]) siteStr = "" for site in sites: siteStr += "|" + site siteStr = siteStr[1:] request.session['requestParams']['computingsite'] = siteStr # this substitution is nessessary to propagate update in the xurl updatedRequest = "" updatedRequestNoSite = "" for param in request.session['requestParams']: updatedRequest += '&' + param + '=' + request.session['requestParams'][param] if param != 'computingsite': updatedRequestNoSite += '&' + param + '=' + request.session['requestParams'][param] updatedRequest = updatedRequest[1:] updatedRequestNoSite = updatedRequestNoSite[1:] xurlsubst = '/errors/?' + updatedRequest + '&' xurlsubstNoSite = '/errors/?' + updatedRequestNoSite + '&' _logger.info('Processed specific params: {}'.format(time.time() - request.session['req_init_time'])) query, wildCardExtension, LAST_N_HOURS_MAX = setupView(request, hours=hours, limit=limit, wildCardExt=True) _logger.info('Finished set up view: {}'.format(time.time() - request.session['req_init_time'])) if not testjobs and 'jobstatus' not in request.session['requestParams']: query['jobstatus__in'] = ['failed', 'holding'] jobs = [] values = ( 'eventservice', 'produsername', 'produserid', 'pandaid', 'cloud', 'computingsite', 'cpuconsumptiontime', 'jobstatus', 'transformation', 'prodsourcelabel', 'specialhandling', 'vo', 'modificationtime', 'atlasrelease', 'jobsetid', 'processingtype', 'workinggroup', 'jeditaskid', 'taskid', 'starttime', 'endtime', 'brokerageerrorcode', 'brokerageerrordiag', 'ddmerrorcode', 'ddmerrordiag', 'exeerrorcode', 'exeerrordiag', 'jobdispatchererrorcode', 'jobdispatchererrordiag', 'piloterrorcode', 'piloterrordiag', 'superrorcode', 'superrordiag', 'taskbuffererrorcode', 'taskbuffererrordiag', 'transexitcode', 'destinationse', 'currentpriority', 'computingelement', 'gshare', 'reqid', 'actualcorecount', 'computingelement' ) if testjobs: jobs.extend( Jobsdefined4.objects.filter(**query).extra(where=[wildCardExtension])[:limit].values(*values)) jobs.extend( Jobswaiting4.objects.filter(**query).extra(where=[wildCardExtension])[:limit].values(*values)) listJobs = Jobsactive4, Jobsarchived4, Jobsdefined4, Jobswaiting4 jobs.extend( Jobsactive4.objects.filter(**query).extra(where=[wildCardExtension])[:limit].values(*values)) jobs.extend( Jobsarchived4.objects.filter(**query).extra(where=[wildCardExtension])[:limit].values(*values)) if (((datetime.now() - datetime.strptime(query['modificationtime__castdate__range'][0], "%Y-%m-%d %H:%M:%S")).days > 1) or \ ((datetime.now() - datetime.strptime(query['modificationtime__castdate__range'][1], "%Y-%m-%d %H:%M:%S")).days > 1)): jobs.extend( Jobsarchived.objects.filter(**query).extra(where=[wildCardExtension])[:limit].values( *values)) listJobs = Jobsactive4, Jobsarchived4, Jobsdefined4, Jobswaiting4, Jobsarchived if not is_json_request(request): thread = Thread(target=totalCount, args=(listJobs, query, wildCardExtension, dkey)) thread.start() else: thread = None _logger.info('Got jobs: {}'.format(time.time() - request.session['req_init_time'])) jobs = clean_job_list(request, jobs, do_add_metadata=False, do_add_errorinfo=True) _logger.info('Cleaned jobs list: {}'.format(time.time() - request.session['req_init_time'])) error_message_summary = get_error_message_summary(jobs) _logger.info('Prepared new error message summary: {}'.format(time.time() - request.session['req_init_time'])) njobs = len(jobs) # Build the error summary. errsByCount, errsBySite, errsByUser, errsByTask, sumd, errHist = errorSummaryDict(request, jobs, testjobs, errHist=True) _logger.info('Error summary built: {}'.format(time.time() - request.session['req_init_time'])) # Build the state summary and add state info to site error summary notime = False # behave as it used to before introducing notime for dashboards. Pull only 12hrs. statesummary = cloud_site_summary(query, extra=wildCardExtension, view=jobtype, cloudview='region', notime=notime) sitestates = {} savestates = ['finished', 'failed', 'cancelled', 'holding', ] for cloud in statesummary: for site in cloud['sites']: sitename = cloud['sites'][site]['name'] sitestates[sitename] = {} for s in savestates: sitestates[sitename][s] = cloud['sites'][site]['states'][s]['count'] sitestates[sitename]['pctfail'] = cloud['sites'][site]['pctfail'] for site in errsBySite: sitename = site['name'] if sitename in sitestates: for s in savestates: if s in sitestates[sitename]: site[s] = sitestates[sitename][s] if 'pctfail' in sitestates[sitename]: site['pctfail'] = sitestates[sitename]['pctfail'] _logger.info('Built errors by site summary: {}'.format(time.time() - request.session['req_init_time'])) taskname = '' if not testjobs: # Build the task state summary and add task state info to task error summary taskstatesummary = task_summary(query, limit=limit, view=jobtype) _logger.info('Prepared data for errors by task summary: {}'.format(time.time() - request.session['req_init_time'])) taskstates = {} for task in taskstatesummary: taskid = task['taskid'] taskstates[taskid] = {} for s in savestates: taskstates[taskid][s] = task['states'][s]['count'] if 'pctfail' in task: taskstates[taskid]['pctfail'] = task['pctfail'] for task in errsByTask: taskid = task['name'] if taskid in taskstates: for s in savestates: if s in taskstates[taskid]: task[s] = taskstates[taskid][s] if 'pctfail' in taskstates[taskid]: task['pctfail'] = taskstates[taskid]['pctfail'] if 'jeditaskid' in request.session['requestParams']: taskname = getTaskName('jeditaskid', request.session['requestParams']['jeditaskid']) _logger.info('Built errors by task summary: {}'.format(time.time() - request.session['req_init_time'])) if 'sortby' in request.session['requestParams']: sortby = request.session['requestParams']['sortby'] else: sortby = 'alpha' flowstruct = buildGoogleFlowDiagram(request, jobs=jobs) _logger.info('Built google diagram: {}'.format(time.time() - request.session['req_init_time'])) if thread is not None: try: thread.join() jobsErrorsTotalCount = sum(tcount[dkey]) print(dkey) print(tcount[dkey]) del tcount[dkey] print(tcount) print(jobsErrorsTotalCount) except: jobsErrorsTotalCount = -1 else: jobsErrorsTotalCount = -1 _logger.info('Finished thread counting total number of jobs: {}'.format(time.time() - request.session['req_init_time'])) listPar =[] for key, val in request.session['requestParams'].items(): if (key!='limit' and key!='display_limit'): listPar.append(key + '=' + str(val)) if len(listPar)>0: urlParametrs = '&'.join(listPar)+'&' else: urlParametrs = None print (listPar) del listPar if (math.fabs(njobs-jobsErrorsTotalCount)<1000): jobsErrorsTotalCount = None else: jobsErrorsTotalCount = int(math.ceil((jobsErrorsTotalCount+10000)/10000)*10000) _logger.info('Formed list of params: {}'.format(time.time() - request.session['req_init_time'])) if (not (('HTTP_ACCEPT' in request.META) and (request.META.get('HTTP_ACCEPT') in ('application/json'))) and ( 'json' not in request.session['requestParams'])): nosorturl = removeParam(request.get_full_path(), 'sortby') xurl = extensibleURL(request) time_locked_url = removeParam(removeParam(xurl, 'date_from', mode='extensible'), 'date_to', mode='extensible') + \ 'date_from=' + request.session['TFIRST'].strftime('%Y-%m-%dT%H:%M') + \ '&date_to=' + request.session['TLAST'].strftime('%Y-%m-%dT%H:%M') jobsurl = xurlsubst.replace('/errors/', '/jobs/') jobsurlNoSite = xurlsubstNoSite.replace('/errors/', '') TFIRST = request.session['TFIRST'].strftime(defaultDatetimeFormat) TLAST = request.session['TLAST'].strftime(defaultDatetimeFormat) del request.session['TFIRST'] del request.session['TLAST'] _logger.info('Extra data preparation for template: {}'.format(time.time() - request.session['req_init_time'])) data = { 'prefix': getPrefix(request), 'request': request, 'viewParams': request.session['viewParams'], 'requestParams': request.session['requestParams'], 'requestString': urlParametrs, 'jobtype': jobtype, 'njobs': njobs, 'hours': LAST_N_HOURS_MAX, 'limit': limit, 'user': None, 'xurl': xurl, 'xurlsubst': xurlsubst, 'xurlsubstNoSite': xurlsubstNoSite, 'jobsurlNoSite': jobsurlNoSite, 'jobsurl': jobsurl, 'nosorturl': nosorturl, 'time_locked_url': time_locked_url, 'errsByCount': errsByCount, 'errsBySite': errsBySite[:display_limit] if len(errsBySite) > display_limit else errsBySite, 'errsByUser': errsByUser[:display_limit] if len(errsByUser) > display_limit else errsByUser, 'errsByTask': errsByTask[:display_limit] if len(errsByTask) > display_limit else errsByTask, 'sumd': sumd, 'errHist': errHist, 'errsByMessage': json.dumps(error_message_summary), 'tfirst': TFIRST, 'tlast': TLAST, 'sortby': sortby, 'taskname': taskname, 'flowstruct': flowstruct, 'jobsErrorsTotalCount': jobsErrorsTotalCount, 'display_limit': display_limit, 'built': datetime.now().strftime("%H:%M:%S"), } data.update(getContextVariables(request)) setCacheEntry(request, "errorSummary", json.dumps(data, cls=DateEncoder), 60 * 20) _logger.info('Set cache: {}'.format(time.time() - request.session['req_init_time'])) # Filtering data due to user settings if request.user.is_authenticated and request.user.is_tester: data = filterErrorData(request, data) response = render_to_response('errorSummary.html', data, content_type='text/html') _logger.info('Rendered template: {}'.format(time.time() - request.session['req_init_time'])) patch_response_headers(response, cache_timeout=request.session['max_age_minutes'] * 60) return response elif 'fields' in request.session['requestParams'] and request.session['requestParams']['fields']: del request.session['TFIRST'] del request.session['TLAST'] fields = request.session['requestParams']['fields'].split(',') data = {} if 'jobSummary' in fields: data['jobSummary'] = sumd if 'errsByCount' in fields: data['errsByCount'] = errsByCount if 'errsBySite' in fields: data['errsBySite'] = errsBySite if 'errsByUser' in fields: data['errsByUser'] = errsByUser if 'errsByTask' in fields: data['errsByTask'] = errsByTask return HttpResponse(json.dumps(data), content_type='application/json') else: del request.session['TFIRST'] del request.session['TLAST'] resp = [] for job in jobs: resp.append({'pandaid': job['pandaid'], 'status': job['jobstatus'], 'prodsourcelabel': job['prodsourcelabel'], 'produserid': job['produserid']}) return HttpResponse(json.dumps(resp), content_type='application/json') @login_customrequired def incidentList(request): valid, response = initRequest(request) if not valid: return response # Here we try to get cached data data = getCacheEntry(request, "incidents") if data is not None: data = json.loads(data) data['request'] = request response = render_to_response('incidents.html', data, content_type='text/html') patch_response_headers(response, cache_timeout=request.session['max_age_minutes'] * 60) return response if 'days' in request.session['requestParams']: hours = int(request.session['requestParams']['days']) * 24 else: if 'hours' not in request.session['requestParams']: hours = 24 * 3 else: hours = int(request.session['requestParams']['hours']) setupView(request, hours=hours, limit=9999999) pq_clouds = get_pq_clouds() iquery = {} cloudQuery = Q() startdate = timezone.now() - timedelta(hours=hours) startdate = startdate.strftime(defaultDatetimeFormat) enddate = timezone.now().strftime(defaultDatetimeFormat) iquery['at_time__range'] = [startdate, enddate] if 'site' in request.session['requestParams']: iquery['description__contains'] = 'queue=%s' % request.session['requestParams']['site'] if 'category' in request.session['requestParams']: iquery['description__startswith'] = '%s:' % request.session['requestParams']['category'] if 'comment' in request.session['requestParams']: iquery['description__contains'] = '%s' % request.session['requestParams']['comment'] if 'notifier' in request.session['requestParams']: iquery['description__contains'] = 'DN=%s' % request.session['requestParams']['notifier'] if 'cloud' in request.session['requestParams']: sites = [site for site, cloud in pq_clouds.items() if cloud == request.session['requestParams']['cloud']] for site in sites: cloudQuery = cloudQuery | Q(description__contains='queue=%s' % site) incidents = [] incidents.extend(Incidents.objects.filter(**iquery).filter(cloudQuery).order_by('at_time').reverse().values()) sumd = {} pars = {} incHist = {} for inc in incidents: desc = inc['description'] desc = desc.replace(' ', ' ') parsmat = re.match('^([a-z\s]+):\s+queue=([^\s]+)\s+DN=(.*)\s\s\s*([A-Za-z^ \.0-9]*)$', desc) tm = inc['at_time'] tm = tm - timedelta(minutes=tm.minute % 30, seconds=tm.second, microseconds=tm.microsecond) if not tm in incHist: incHist[tm] = 0 incHist[tm] += 1 if parsmat: pars['category'] = parsmat.group(1) pars['site'] = parsmat.group(2) pars['notifier'] = parsmat.group(3) pars['type'] = inc['typekey'] if pars['site'] in pq_clouds: pars['cloud'] = pq_clouds[pars['site']] if parsmat.group(4): pars['comment'] = parsmat.group(4) else: parsmat = re.match('^([A-Za-z\s]+):.*$', desc) if parsmat: pars['category'] = parsmat.group(1) else: pars['category'] = desc[:10] for p in pars: if p not in sumd: sumd[p] = {} sumd[p]['param'] = p sumd[p]['vals'] = {} if pars[p] not in sumd[p]['vals']: sumd[p]['vals'][pars[p]] = {} sumd[p]['vals'][pars[p]]['name'] = pars[p] sumd[p]['vals'][pars[p]]['count'] = 0 sumd[p]['vals'][pars[p]]['count'] += 1 ## convert incident components to URLs. Easier here than in the template. if 'site' in pars: inc['description'] = re.sub('queue=[^\s]+', 'queue=<a href="%ssite=%s">%s</a>' % ( extensibleURL(request), pars['site'], pars['site']), inc['description']) inc['at_time'] = inc['at_time'].strftime(defaultDatetimeFormat) ## convert to ordered lists suml = [] for p in sumd: itemd = {} itemd['param'] = p iteml = [] kys = sumd[p]['vals'].keys() kys.sort(key=lambda y: y.lower()) for ky in kys: iteml.append({'kname': ky, 'kvalue': sumd[p]['vals'][ky]['count']}) itemd['list'] = iteml suml.append(itemd) suml = sorted(suml, key=lambda x: x['param'].lower()) kys = incHist.keys() kys = sorted(kys) incHistL = [] for k in kys: incHistL.append([k, incHist[k]]) del request.session['TFIRST'] del request.session['TLAST'] if (not (('HTTP_ACCEPT' in request.META) and (request.META.get('HTTP_ACCEPT') in ('application/json'))) and ( 'json' not in request.session['requestParams'])): data = { 'request': request, 'viewParams': request.session['viewParams'], 'requestParams': request.session['requestParams'], 'user': None, 'incidents': incidents, 'sumd': suml, 'incHist': incHistL, 'xurl': extensibleURL(request), 'hours': hours, 'ninc': len(incidents), 'built': datetime.now().strftime("%H:%M:%S"), } setCacheEntry(request, "incidents", json.dumps(data, cls=DateEncoder), 60 * 20) response = render_to_response('incidents.html', data, content_type='text/html') patch_response_headers(response, cache_timeout=request.session['max_age_minutes'] * 60) return response else: clearedInc = [] for inc in incidents: entry = {} entry['at_time'] = inc['at_time'].isoformat() entry['typekey'] = inc['typekey'] entry['description'] = inc['description'] clearedInc.append(entry) jsonResp = json.dumps(clearedInc) return HttpResponse(jsonResp, content_type='application/json') def esatlasPandaLoggerJson(request): valid, response = initRequest(request) if not valid: return response connection = create_esatlas_connection() s = Search(using=connection, index='atlas_jedilogs-*') s.aggs.bucket('jediTaskID', 'terms', field='jediTaskID', size=1000)\ .bucket('type', 'terms', field='fields.type.keyword') \ .bucket('logLevel', 'terms', field='logLevel.keyword') res = s.execute() print('query completed') jdListFinal = [] for agg in res['aggregations']['jediTaskID']['buckets']: name = agg['key'] for types in agg['type']['buckets']: type = types['key'] for levelnames in types['logLevel']['buckets']: jdlist = {} levelname = levelnames['key'] jdlist['jediTaskID'] = str(name) jdlist['Type'] = type jdlist['LevelName'] = levelname jdlist['Count'] = levelnames['doc_count'] jdListFinal.append(jdlist) return HttpResponse(json.dumps(jdListFinal), content_type='application/json') def esatlasPandaLogger(request): valid, response = initRequest(request) if not valid: return response connection = create_esatlas_connection() today = time.strftime("%Y.%m.%d") pandaDesc = { "panda.log.RetrialModule": ["cat1","Retry module to apply rules on failed jobs"], "panda.log.Serveraccess": ["cat2","Apache request log"], "panda.log.Servererror": ["cat2","Apache errors"], "panda.log.PilotRequests": ["cat2", "Pilot requests"], "panda.log.Entry": ["cat2","Entry point to the PanDA server"], "panda.log.UserIF": ["cat2", "User interface"], "panda.log.DBProxy": ["cat2", "Filtered messages of DB interactions"], "panda.log.Adder": ["cat3", "Add output files to datasets and trigger output aggregation"], "panda.log.Finisher": ["cat3", "Finalization procedures for jobs"], "panda.log.Closer": ["cat3", "Close internal datasets once all associated jobs are done"], "panda.log.Setupper": ["cat3", "Setup internal datasets for data transfers"], "panda.log.copyArchive": ["cat3", "Various actions, such as kill and poll based on timeout parameters"], "panda.log.DynDataDistributer": ["cat3", "PD2P"], "panda.log.Activator": ["cat3", "Activates jobs based on input transfers"], "panda.log.datasetManager": ["cat3", "Manages datasets states"], "panda.log.Watcher": ["cat3", "Watchdog for jobs, e.g. lost heartbeat"], "panda.log.broker": ["cat4", "Brokerage"], "panda.log.runRebro": ["cat4", "Identifies jobs to rebroker"], "panda.log.prioryMassage": ["cat4", "Priority management for user jobs"], "panda.log.Initializer": ["cat8", "Initializes connections to the DB"], "panda.log.ConBridge": ["cat5", "DB connections"], "panda.log.ProcessLimiter": ["cat6", "Limit number of forked processes in PanDA"], "panda.log.Utils": ["cat8", "Aux functions"], "panda.log.Notifier": ["cat7", "User email notification agent"], "panda.log.Panda": ["cat8", "Some messages are redirected here"], } pandaCat = ['cat1', 'cat2', 'cat3', 'cat4', 'cat5', 'cat6', 'cat7', 'cat8'] jediDesc = { "panda.log.AtlasProdTaskBroker": ["cat1","Production task brokerage"], "panda.log.TaskBroker": ["cat7","Task brokerage factory"], "panda.log.AtlasProdJobBroker": ["cat1","Production job brokerage"], "panda.log.AtlasAnalJobBroker": ["cat1", "Analysis job brokerage"], "panda.log.JobBroker": ["cat7","Job brokerage factory"], "panda.log.AtlasProdJobThrottler": ["cat2", "Throttles generation of production jobs based on defined limits"], "panda.log.JobThrottler": ["cat7", "Job throttler factory"], "panda.log.JobGenerator": ["cat2", "Generates job for a task"], "panda.log.JobSplitter": ["cat2", "Job splitter, used by the job generator"], "panda.log.TaskRefiner": ["cat3", "Generates tasks in JEDI from definitions found in DEFT"], "panda.log.TaskSetupper": ["cat7", "Procedures for task setup. Base class"], "panda.log.AtlasTaskSetupper": ["cat3", "ATLAS procedures for task setup"], "panda.log.TaskCommando": ["cat3", "Executes task commands from DEFT"], "panda.log.PostProcessor": ["cat3", "Post processes tasks"], "panda.log.Activator": ["cat4", "Activates jobs based on DDM messages"], "panda.log.Closer": ["cat4", "Closes internal datasets once all associated jobs are done"], "panda.log.ContentsFeeder": ["cat4", "Feeds file contents for tasks"], "panda.log.AtlasDDMClient": ["cat4", "DDM client"], "panda.log.AtlasProdWatchDog": ["cat5", "Production task watchdog"], "panda.log.AtlasAnalWatchDog": ["cat5", "Analysis task watchdog"], "panda.log.WatchDog": ["cat5", "Watchdog"], "panda.log.JediDBProxy": ["cat6", "Filtered JEDI DB interactions"], "panda.log.TaskBuffer": ["cat7", "PanDA server task buffer"], "panda.log.JediTaskBuffer": ["cat7", "JEDI task buffer"], "panda.log.DBProxyPool": ["cat7", "DB connection pool interactions"], } jediCat = ['cat1','cat2','cat3','cat4','cat5','cat6','cat7'] indices = ['atlas_pandalogs-', 'atlas_jedilogs-'] panda = {} jedi = {} for index in indices: s = Search(using=connection, index=index + str(today)) s.aggs.bucket('logName', 'terms', field='logName.keyword', size=1000) \ .bucket('type', 'terms', field='fields.type.keyword', size=1000) \ .bucket('logLevel', 'terms', field='logLevel.keyword') res = s.execute() if index == "atlas_pandalogs-": for cat in pandaCat: panda[cat] = {} for agg in res['aggregations']['logName']['buckets']: if agg['key'] not in pandaDesc: pandaDesc[agg['key']] = [list(panda.keys())[-1], "New log type. No description"] cat = pandaDesc[agg['key']][0] name = agg['key'] panda[cat][name] = {} for types in agg['type']['buckets']: type = types['key'] panda[cat][name][type] = {} for levelnames in types['logLevel']['buckets']: levelname = levelnames['key'] panda[cat][name][type][levelname] = {} panda[cat][name][type][levelname]['logLevel'] = levelname panda[cat][name][type][levelname]['lcount'] = str(levelnames['doc_count']) elif index == "atlas_jedilogs-": for cat in jediCat: jedi[cat] = {} for agg in res['aggregations']['logName']['buckets']: if agg['key'] not in jediDesc: jediDesc[agg['key']] = [list(jedi.keys())[-1], "New log type. No description"] cat = jediDesc[agg['key']][0] name = agg['key'] jedi[cat][name] = {} for types in agg['type']['buckets']: type = types['key'] jedi[cat][name][type] = {} for levelnames in types['logLevel']['buckets']: levelname = levelnames['key'] jedi[cat][name][type][levelname] = {} jedi[cat][name][type][levelname]['logLevel'] = levelname jedi[cat][name][type][levelname]['lcount'] = str(levelnames['doc_count']) data = { 'request': request, 'viewParams': request.session['viewParams'], 'requestParams': request.session['requestParams'], 'user': None, 'panda': panda, 'pandadesc':pandaDesc, 'jedi': jedi, 'jedidesc':jediDesc, 'time': time.strftime("%Y-%m-%d"), } if (not (('HTTP_ACCEPT' in request.META) and (request.META.get('HTTP_ACCEPT') in ('application/json'))) and ( 'json' not in request.session['requestParams'])): response = render_to_response('esatlasPandaLogger.html', data, content_type='text/html') return response def pandaLogger(request): valid, response = initRequest(request) if not valid: return response getrecs = False iquery = {} if 'category' in request.session['requestParams']: iquery['name'] = request.session['requestParams']['category'] getrecs = True if 'type' in request.session['requestParams']: val = escape_input(request.session['requestParams']['type']) iquery['type__in'] = val.split('|') getrecs = True if 'level' in request.session['requestParams']: iquery['levelname'] = request.session['requestParams']['level'].upper() getrecs = True if 'taskid' in request.session['requestParams']: iquery['message__startswith'] = request.session['requestParams']['taskid'] getrecs = True if 'jeditaskid' in request.session['requestParams']: iquery['message__icontains'] = "jeditaskid=%s" % request.session['requestParams']['jeditaskid'] getrecs = True if 'site' in request.session['requestParams']: iquery['message__icontains'] = "site=%s " % request.session['requestParams']['site'] getrecs = True if 'pandaid' in request.session['requestParams']: iquery['pid'] = request.session['requestParams']['pandaid'] getrecs = True if 'hours' not in request.session['requestParams']: if getrecs: hours = 72 else: hours = 24 else: hours = int(request.session['requestParams']['hours']) setupView(request, hours=hours, limit=9999999) startdate = timezone.now() - timedelta(hours=hours) startdate = startdate.strftime(defaultDatetimeFormat) if 'startdate' in request.session['requestParams'] and len(request.session['requestParams']['startdate']) > 1: startdate = request.session['requestParams']['startdate'] enddate = timezone.now().strftime(defaultDatetimeFormat) if 'enddate' in request.session['requestParams'] and len(request.session['requestParams']['startdate']) > 1: enddate = request.session['requestParams']['enddate'] iquery['bintime__range'] = [startdate, enddate] print (iquery) counts = Pandalog.objects.filter(**iquery).values('name', 'type', 'levelname').annotate( Count('levelname')).order_by('name', 'type', 'levelname') if getrecs: records = Pandalog.objects.filter(**iquery).order_by('bintime').reverse()[ :request.session['JOB_LIMIT']].values() ## histogram of logs vs. time, for plotting logHist = {} for r in records: r['message'] = r['message'].replace('<', '') r['message'] = r['message'].replace('>', '') r['levelname'] = r['levelname'].lower() tm = r['bintime'] tm = tm - timedelta(minutes=tm.minute % 30, seconds=tm.second, microseconds=tm.microsecond) if not tm in logHist: logHist[tm] = 0 logHist[tm] += 1 kys = logHist.keys() kys = sorted(kys) logHistL = [] for k in kys: logHistL.append([k, logHist[k]]) else: records = None logHistL = None logs = {} totcount = 0 for inc in counts: name = inc['name'] type = inc['type'] level = inc['levelname'] count = inc['levelname__count'] totcount += count if name not in logs: logs[name] = {} logs[name]['name'] = name logs[name]['count'] = 0 logs[name]['types'] = {} logs[name]['count'] += count if type not in logs[name]['types']: logs[name]['types'][type] = {} logs[name]['types'][type]['name'] = type logs[name]['types'][type]['count'] = 0 logs[name]['types'][type]['levels'] = {} logs[name]['types'][type]['count'] += count if level not in logs[name]['types'][type]['levels']: logs[name]['types'][type]['levels'][level] = {} logs[name]['types'][type]['levels'][level]['name'] = level.lower() logs[name]['types'][type]['levels'][level]['count'] = 0 logs[name]['types'][type]['levels'][level]['count'] += count ## convert to ordered lists logl = [] for l in logs: itemd = {} itemd['name'] = logs[l]['name'] itemd['types'] = [] for t in logs[l]['types']: logs[l]['types'][t]['levellist'] = [] for v in logs[l]['types'][t]['levels']: logs[l]['types'][t]['levellist'].append(logs[l]['types'][t]['levels'][v]) logs[l]['types'][t]['levellist'] = sorted(logs[l]['types'][t]['levellist'], key=lambda x: x['name']) typed = {} typed['name'] = logs[l]['types'][t]['name'] itemd['types'].append(logs[l]['types'][t]) itemd['types'] = sorted(itemd['types'], key=lambda x: x['name']) logl.append(itemd) logl = sorted(logl, key=lambda x: x['name']) del request.session['TFIRST'] del request.session['TLAST'] data = { 'request': request, 'viewParams': request.session['viewParams'], 'requestParams': request.session['requestParams'], 'user': None, 'logl': logl, 'records': records, 'ninc': totcount, 'logHist': logHistL, 'xurl': extensibleURL(request), 'hours': hours, 'getrecs': getrecs, 'built': datetime.now().strftime("%H:%M:%S"), } if (not (('HTTP_ACCEPT' in request.META) and (request.META.get('HTTP_ACCEPT') in ('application/json'))) and ( 'json' not in request.session['requestParams'])): response = render_to_response('pandaLogger.html', data, content_type='text/html') patch_response_headers(response, cache_timeout=request.session['max_age_minutes'] * 60) return response if (('HTTP_ACCEPT' in request.META) and (request.META.get('HTTP_ACCEPT') in ('text/json', 'application/json'))) or ( 'json' in request.session['requestParams']): resp = data return HttpResponse(json.dumps(resp, cls=DateEncoder), content_type='application/json') # def percentile(N, percent, key=lambda x:x): # """ # Find the percentile of a list of values. # # @parameter N - is a list of values. Note N MUST BE already sorted. # @parameter percent - a float value from 0.0 to 1.0. # @parameter key - optional key function to compute value from each element of N. # # @return - the percentile of the values # """ # if not N: # return None # k = (len(N)-1) * percent # f = math.floor(k) # c = math.ceil(k) # if f == c: # return key(N[int(k)]) # d0 = key(N[int(f)]) * (c-k) # d1 = key(N[int(c)]) * (k-f) # return d0+d1 def ttc(request): valid, response = initRequest(request) if not valid: return response data = {} jeditaskid = -1 if 'jeditaskid' in request.session['requestParams']: jeditaskid = int(request.session['requestParams']['jeditaskid']) if jeditaskid == -1: data = {"error": "no jeditaskid supplied"} return HttpResponse(json.dumps(data, cls=DateTimeEncoder), content_type='application/json') query = {'jeditaskid': jeditaskid} task = JediTasks.objects.filter(**query).values('jeditaskid', 'taskname', 'workinggroup', 'tasktype', 'processingtype', 'ttcrequested', 'starttime', 'endtime', 'creationdate', 'status') if len(task) == 0: data = {"error": ("jeditaskid " + str(jeditaskid) + " does not exist")} return HttpResponse(json.dumps(data, cls=DateTimeEncoder), content_type='application/json') taskrec = task[0] if taskrec['tasktype'] != 'prod' or taskrec['ttcrequested'] == None: data = {"error": "TTC for this type of task has not implemented yet"} return HttpResponse(json.dumps(data, cls=DateTimeEncoder), content_type='application/json') if taskrec['ttcrequested']: taskrec['ttc'] = taskrec['ttcrequested'] taskevents = GetEventsForTask.objects.filter(**query).values('jeditaskid', 'totev', 'totevrem') taskev = None if len(taskevents) > 0: taskev = taskevents[0] cur = connection.cursor() cur.execute("SELECT * FROM table(ATLAS_PANDABIGMON.GETTASKPROFILE('%s'))" % taskrec['jeditaskid']) taskprofiled = cur.fetchall() cur.close() keys = ['endtime', 'starttime', 'nevents', 'njob'] taskprofile = [{'endtime': taskrec['starttime'], 'starttime': taskrec['starttime'], 'nevents': 0, 'njob': 0}] taskprofile = taskprofile + [dict(zip(keys, row)) for row in taskprofiled] maxt = (taskrec['ttc'] - taskrec['starttime']).days * 3600 * 24 + (taskrec['ttc'] - taskrec['starttime']).seconds neventsSum = 0 for job in taskprofile: job['ttccoldline'] = 100. - ((job['endtime'] - taskrec['starttime']).days * 3600 * 24 + ( job['endtime'] - taskrec['starttime']).seconds) * 100 / float(maxt) job['endtime'] = job['endtime'].strftime("%Y-%m-%d %H:%M:%S") job['ttctime'] = job['endtime'] job['starttime'] = job['starttime'].strftime("%Y-%m-%d %H:%M:%S") neventsSum += job['nevents'] if taskev and taskev['totev'] > 0: job['tobedonepct'] = 100. - neventsSum * 100. / taskev['totev'] else: job['tobedonepct'] = None taskprofile.insert(len(taskprofile), {'endtime': taskprofile[len(taskprofile) - 1]['endtime'], 'starttime': taskprofile[len(taskprofile) - 1]['starttime'], 'ttctime': taskrec['ttc'].strftime("%Y-%m-%d %H:%M:%S"), 'tobedonepct': taskprofile[len(taskprofile) - 1]['tobedonepct'], 'ttccoldline': 0}) progressForBar = [] if taskev['totev'] > 0: taskrec['percentage'] = ((neventsSum) * 100 / taskev['totev']) else: taskrec['percentage'] = None if taskrec['percentage'] != None: taskrec['percentageok'] = taskrec['percentage'] - 5 else: taskrec['percentageok'] = None if taskrec['status'] == 'running': taskrec['ttcbasedpercentage'] = ((datetime.now() - taskrec['starttime']).days * 24 * 3600 + ( datetime.now() - taskrec['starttime']).seconds) * 100 / ( (taskrec['ttcrequested'] - taskrec['creationdate']).days * 24 * 3600 + ( taskrec['ttcrequested'] - taskrec['creationdate']).seconds) if datetime.now() < \ taskrec[ 'ttc'] else 100 progressForBar = [100, taskrec['percentage'], taskrec['ttcbasedpercentage']] if taskrec['ttc']: taskrec['ttc'] = taskrec['ttc'].strftime(defaultDatetimeFormat) if taskrec['creationdate']: taskrec['creationdate'] = taskrec['creationdate'].strftime(defaultDatetimeFormat) if taskrec['starttime']: taskrec['starttime'] = taskrec['starttime'].strftime(defaultDatetimeFormat) if taskrec['endtime']: taskrec['endtime'] = taskrec['endtime'].strftime(defaultDatetimeFormat) data = { 'request': request, 'task': taskrec, 'progressForBar': progressForBar, 'profile': taskprofile, 'built': datetime.now().strftime("%H:%M:%S"), } response = render_to_response('ttc.html', data, content_type='text/html') patch_response_headers(response, cache_timeout=request.session['max_age_minutes'] * 60) return response #@cache_page(60 * 20) @login_customrequired def workingGroups(request): valid, response = initRequest(request) if not valid: return response # Here we try to get cached data data = getCacheEntry(request, "workingGroups") if data is not None: data = json.loads(data) data['request'] = request response = render_to_response('workingGroups.html', data, content_type='text/html') patch_response_headers(response, cache_timeout=request.session['max_age_minutes'] * 60) return response taskdays = 3 if dbaccess['default']['ENGINE'].find('oracle') >= 0: VOMODE = 'atlas' else: VOMODE = '' if VOMODE != 'atlas': days = 30 else: days = taskdays errthreshold = 15 hours = days * 24 query = setupView(request, hours=hours, limit=999999) query['workinggroup__isnull'] = False # WG task summary tasksummary = wg_task_summary(request, view='working group', taskdays=taskdays) # WG job summary if 'workinggroup' in request.session['requestParams'] and request.session['requestParams']['workinggroup']: query['workinggroup'] = request.session['requestParams']['workinggroup'] wgsummary = wg_summary(query) if not is_json_request(request): xurl = extensibleURL(request) del request.session['TFIRST'] del request.session['TLAST'] data = { 'request': request, 'viewParams': request.session['viewParams'], 'requestParams': request.session['requestParams'], 'url': request.path, 'xurl': xurl, 'user': None, 'wgsummary': wgsummary, 'taskstates': taskstatedict, 'tasksummary': tasksummary, 'hours': hours, 'days': days, 'errthreshold': errthreshold, 'built': datetime.now().strftime("%H:%M:%S"), } setCacheEntry(request, "workingGroups", json.dumps(data, cls=DateEncoder), 60 * 20) response = render_to_response('workingGroups.html', data, content_type='text/html') patch_response_headers(response, cache_timeout=request.session['max_age_minutes'] * 60) return response else: del request.session['TFIRST'] del request.session['TLAST'] resp = [] return HttpResponse(json.dumps(resp), content_type='application/json') @login_customrequired def datasetInfo(request): valid, response = initRequest(request) if not valid: return response setupView(request, hours=365 * 24, limit=999999999) query = {} dsets = [] dsrec = None colnames = [] columns = [] if 'datasetname' in request.session['requestParams']: dataset = request.session['requestParams']['datasetname'] query['datasetname'] = request.session['requestParams']['datasetname'] elif 'datasetid' in request.session['requestParams']: dataset = request.session['requestParams']['datasetid'] query['datasetid'] = request.session['requestParams']['datasetid'] else: dataset = None if 'jeditaskid' in request.session['requestParams']: query['jeditaskid'] = int(request.session['requestParams']['jeditaskid']) if dataset: dsets = JediDatasets.objects.filter(**query).values() if len(dsets) == 0: startdate = timezone.now() - timedelta(hours=30 * 24) startdate = startdate.strftime(defaultDatetimeFormat) enddate = timezone.now().strftime(defaultDatetimeFormat) query = {'modificationdate__range': [startdate, enddate]} if 'datasetname' in request.session['requestParams']: query['name'] = request.session['requestParams']['datasetname'] elif 'datasetid' in request.session['requestParams']: query['vuid'] = request.session['requestParams']['datasetid'] moredsets = Datasets.objects.filter(**query).values() if len(moredsets) > 0: dsets = moredsets for ds in dsets: ds['datasetname'] = ds['name'] ds['creationtime'] = ds['creationdate'].strftime(defaultDatetimeFormat) ds['modificationtime'] = ds['modificationdate'].strftime(defaultDatetimeFormat) ds['nfiles'] = ds['numberfiles'] ds['datasetid'] = ds['vuid'] if len(dsets) > 0: dsrec = dsets[0] dataset = dsrec['datasetname'] colnames = dsrec.keys() colnames = sorted(colnames) for k in colnames: if is_timestamp(k): try: val = dsrec[k].strftime(defaultDatetimeFormat) except: val = dsrec[k] else: val = dsrec[k] if dsrec[k] == None: val = '' continue pair = {'name': k, 'value': val} columns.append(pair) del request.session['TFIRST'] del request.session['TLAST'] if (not (('HTTP_ACCEPT' in request.META) and (request.META.get('HTTP_ACCEPT') in ('application/json'))) and ( 'json' not in request.session['requestParams'])): data = { 'request': request, 'viewParams': request.session['viewParams'], 'requestParams': request.session['requestParams'], 'dsrec': dsrec, 'datasetname': dataset, 'columns': columns, 'built': datetime.now().strftime("%H:%M:%S"), } data.update(getContextVariables(request)) response = render_to_response('datasetInfo.html', data, content_type='text/html') patch_response_headers(response, cache_timeout=request.session['max_age_minutes'] * 60) return response else: return HttpResponse(json.dumps(dsrec, cls=DateEncoder), content_type='application/json') @login_customrequired def datasetList(request): valid, response = initRequest(request) if not valid: return response setupView(request, hours=365 * 24, limit=999999999) query = {} extrastr = '(1=1)' if 'datasetname' in request.session['requestParams']: query['datasetname__icontains'] = request.session['requestParams']['datasetname'] if ':' not in request.session['requestParams']['datasetname'] else request.session['requestParams']['datasetname'].split(':')[1] if 'containername' in request.session['requestParams']: query['datasetname'] = request.session['requestParams']['containername'] if 'jeditaskid' in request.session['requestParams']: query['jeditaskid'] = int(request.session['requestParams']['jeditaskid']) dsets = [] if len(query) > 0 or len(extrastr) > 5: dsets = JediDatasets.objects.filter(**query).extra(where=[extrastr]).values() dsets = sorted(dsets, key=lambda x: x['datasetname'].lower()) del request.session['TFIRST'] del request.session['TLAST'] if not is_json_request(request): # redirect to datasetInfo if only one dataset found if len(dsets) == 1: return redirect('/datasetInfo/?datasetname=' + dsets[0]['datasetname']) timestamp_vars = ['modificationtime', 'statechangetime', 'starttime', 'creationdate', 'resquetime', 'endtime', 'lockedtime', 'frozentime', 'creationtime', 'statechecktime'] for ds in dsets: for p in ds: if p in timestamp_vars and ds[p] is not None: ds[p] = ds[p].strftime(defaultDatetimeFormat) if ds[p] is None: ds[p] = '' if ds[p] is True: ds[p] = 'true' if ds[p] is False: ds[p] = 'false' data = { 'request': request, 'viewParams': request.session['viewParams'], 'requestParams': request.session['requestParams'], 'datasets': dsets, 'built': datetime.now().strftime("%H:%M:%S"), } data.update(getContextVariables(request)) response = render_to_response('datasetList.html', data, content_type='text/html') patch_response_headers(response, cache_timeout=request.session['max_age_minutes'] * 60) return response else: return HttpResponse(json.dumps(dsets, cls=DateEncoder), content_type='application/json') @login_customrequired def fileInfo(request): valid, response = initRequest(request) if not valid: return response files = [] frec = None columns = [] tquery = setupView(request, hours=365 * 24, limit=999999999, wildCardExt=False) query = {'creationdate__castdate__range': tquery['modificationtime__castdate__range']} if 'filename' in request.session['requestParams']: file = request.session['requestParams']['filename'] query['lfn'] = request.session['requestParams']['filename'] elif 'lfn' in request.session['requestParams']: file = request.session['requestParams']['lfn'] query['lfn'] = request.session['requestParams']['lfn'] elif 'fileid' in request.session['requestParams']: file = request.session['requestParams']['fileid'] query['fileid'] = request.session['requestParams']['fileid'] elif 'guid' in request.session['requestParams']: file = request.session['requestParams']['guid'] query['guid'] = request.session['requestParams']['guid'] else: file = None if 'pandaid' in request.session['requestParams'] and request.session['requestParams']['pandaid'] != '': query['pandaid'] = request.session['requestParams']['pandaid'] if 'jeditaskid' in request.session['requestParams'] and request.session['requestParams']['jeditaskid'] != '': query['jeditaskid'] = request.session['requestParams']['jeditaskid'] if 'scope' in request.session['requestParams']: query['scope'] = request.session['requestParams']['scope'] if 'datasetid' in request.session['requestParams']: query['datasetid'] = request.session['requestParams']['datasetid'] if file or ('pandaid' in query and query['pandaid'] is not None) or ('jeditaskid' in query and query['jeditaskid'] is not None): files = JediDatasetContents.objects.filter(**query).values() if len(files) == 0: fquery = {k: v for k, v in query.items() if k != 'creationdate__castdate__range' } fquery['modificationtime__castdate__range'] = tquery['modificationtime__castdate__range'] morefiles = Filestable4.objects.filter(**fquery).values() if len(morefiles) == 0: morefiles = FilestableArch.objects.filter(**fquery).values() if len(morefiles) > 0: files = morefiles for f in files: f['creationdate'] = f['modificationtime'] f['fileid'] = f['row_id'] f['datasetname'] = f['dataset'] f['oldfiletable'] = 1 if len(files) > 0: # get dataset names for files dids = list(set([f['datasetid'] for f in files])) dquery = {} extra = ' (1=1) ' if len(dids) < DB_N_MAX_IN_QUERY: dquery['datasetid__in'] = dids else: random.seed() transactionKey = random.randrange(1000000) tmpTableName = get_tmp_table_name() insert_to_temp_table(dids, transactionKey) extra += 'AND DATASETID in (SELECT ID FROM {} WHERE TRANSACTIONKEY={})'.format(tmpTableName, transactionKey) datasets = JediDatasets.objects.filter(**dquery).extra(where=[extra]).values('datasetname', 'datasetid') dataset_names_dict = {} for d in datasets: dataset_names_dict[d['datasetid']] = d['datasetname'] for f in files: f['fsizemb'] = "%0.2f" % (f['fsize'] / 1000000.) if 'datasetid' in f and f['datasetid'] in dataset_names_dict and dataset_names_dict[f['datasetid']]: f['datasetname'] = dataset_names_dict[f['datasetid']] else: f['datasetname'] = '' # filter out files if dataset name in request params if 'datasetname' in request.session['requestParams'] and request.session['requestParams']['datasetname']: files = [f for f in files if f['datasetname'] == request.session['requestParams']['datasetname']] files = sorted(files, key=lambda x: x['pandaid'] if x['pandaid'] is not None else False, reverse=True) frec = files[0] file = frec['lfn'] colnames = frec.keys() colnames = sorted(colnames) for k in colnames: if is_timestamp(k): try: val = frec[k].strftime(defaultDatetimeFormat) except: val = frec[k] else: val = frec[k] if frec[k] is None: val = '' continue pair = {'name': k, 'value': val} columns.append(pair) for f in files: f['startevent'] = f['startevent'] + 1 if 'startevent' in f and f['startevent'] is not None else -1 f['endevent'] = f['endevent'] + 1 if 'endevent' in f and f['endevent'] is not None else -1 for p in ('maxattempt', 'attemptnr', 'pandaid'): f[p] = f[p] if p in f and f[p] is not None else -1 if 'creationdate' in f and f['creationdate'] is not None: f['creationdate'] = f['creationdate'].strftime(defaultDatetimeFormat) if not is_json_request(request): del request.session['TFIRST'] del request.session['TLAST'] if frec and 'creationdate' in frec and frec['creationdate'] is None: frec['creationdate'] = frec['creationdate'].strftime(defaultDatetimeFormat) files_list = [] plot_data = [] if len(files) > 0: # filter files params for a table file_param_names = [ 'lfn', 'datasetname', 'jeditaskid', 'pandaid', 'type', 'status', 'procstatus', 'creationdate', 'startevent', 'endevent', 'attemptnr', 'maxattempt' ] files_list = [{k: v for k, v in f.items() if k in file_param_names} for f in files] # prepare data for a plot plot_data = { 'data': [], 'options': { 'timeFormat': '%Y-%m-%d', 'labels': ['Date', 'Number of occurrences, daily'] } } df = pd.DataFrame([{'creationdate': f['creationdate'], 'pandaid': f['pandaid']} for f in files_list]) df['creationdate'] = pd.to_datetime(df['creationdate']) df = df.groupby(pd.Grouper(freq='1D', key='creationdate')).count() plot_data['data'] = [df.reset_index()['creationdate'].tolist(), df['pandaid'].values.tolist()] plot_data['data'][0] = [t.strftime('%Y-%m-%d') for t in plot_data['data'][0]] plot_data['data'][0].insert(0, plot_data['options']['labels'][0]) plot_data['data'][1].insert(0, plot_data['options']['labels'][1]) data = { 'request': request, 'viewParams': request.session['viewParams'], 'requestParams': request.session['requestParams'], 'frec': frec, 'files': files_list, 'filename': file, 'columns': columns, 'built': datetime.now().strftime("%H:%M:%S"), 'plotData': plot_data, } data.update(getContextVariables(request)) response = render_to_response('fileInfo.html', data, RequestContext(request)) patch_response_headers(response, cache_timeout=request.session['max_age_minutes'] * 60) return response else: data = { 'frec': frec, 'files': files, 'filename': file, 'columns': columns, } return HttpResponse(json.dumps(data, cls=DateEncoder), content_type='application/json') @login_customrequired def fileList(request): valid, response = initRequest(request) if not valid: return response setupView(request, hours=365 * 24, limit=999999999) query = {} files = [] defaultlimit = 1000 frec = None colnames = [] columns = [] datasetname = '' datasetid = 0 #### It's dangerous when dataset name is not unique over table if 'datasetname' in request.session['requestParams']: datasetname = request.session['requestParams']['datasetname'] dsets = JediDatasets.objects.filter(datasetname=datasetname).values() if len(dsets) > 0: datasetid = dsets[0]['datasetid'] elif 'datasetid' in request.session['requestParams']: datasetid = request.session['requestParams']['datasetid'] dsets = JediDatasets.objects.filter(datasetid=datasetid).values() if len(dsets) > 0: datasetname = dsets[0]['datasetname'] else: data = { 'viewParams': request.session['viewParams'], 'requestParams': request.session['requestParams'], "errormessage": "No datasetid or datasetname was provided", } return render_to_response('errorPage.html', data, content_type='text/html') extraparams = '' if 'procstatus' in request.session['requestParams'] and request.session['requestParams']['procstatus']: query['procstatus'] = request.session['requestParams']['procstatus'] extraparams += '&procstatus=' + request.session['requestParams']['procstatus'] dataset = [] nfilestotal = 0 nfilesunique = 0 if int(datasetid) > 0: query['datasetid'] = datasetid nfilestotal = JediDatasetContents.objects.filter(**query).count() nfilesunique = JediDatasetContents.objects.filter(**query).values('lfn').distinct().count() del request.session['TFIRST'] del request.session['TLAST'] if (not (('HTTP_ACCEPT' in request.META) and (request.META.get('HTTP_ACCEPT') in ('application/json'))) and ( 'json' not in request.session['requestParams'])): xurl = extensibleURL(request) data = { 'request': request, 'viewParams': request.session['viewParams'], 'requestParams': request.session['requestParams'], 'limit': defaultlimit, 'datasetid': datasetid, 'nfilestotal': nfilestotal, 'nfilesunique': nfilesunique, 'extraparams': extraparams, 'datasetname': datasetname, 'built': datetime.now().strftime("%H:%M:%S"), } data.update(getContextVariables(request)) response = render_to_response('fileList.html', data, content_type='text/html') patch_response_headers(response, cache_timeout=request.session['max_age_minutes'] * 60) return response else: return HttpResponse(json.dumps(files), content_type='application/json') def loadFileList(request, datasetid=-1): valid, response = initRequest(request) if not valid: return response setupView(request, hours=365 * 24, limit=999999999) query = {} files = [] limit = 1000 if 'limit' in request.session['requestParams']: limit = int(request.session['requestParams']['limit']) if 'procstatus' in request.session['requestParams'] and request.session['requestParams']['procstatus']: query['procstatus'] = request.session['requestParams']['procstatus'] sortOrder = 'lfn' if int(datasetid) > 0: query['datasetid'] = datasetid files.extend(JediDatasetContents.objects.filter(**query).values().order_by(sortOrder)[:limit]) pandaids = [] for f in files: pandaids.append(f['pandaid']) query = {} extra_str = '(1=1)' files_ft = [] files_ft_dict = {} if len(pandaids) > DB_N_MAX_IN_QUERY: tk = insert_to_temp_table(pandaids) extra_str = 'pandaid in (select id from {} where transactionkey={} )'.format(get_tmp_table_name(), tk) else: query['pandaid__in'] = pandaids # JEDITASKID, DATASETID, FILEID files_ft.extend( Filestable4.objects.filter(**query).extra(where=[extra_str]).values('fileid', 'dispatchdblock', 'scope', 'destinationdblock')) if len(files_ft) == 0: files_ft.extend( FilestableArch.objects.filter(**query).extra(where=[extra_str]).values('fileid', 'dispatchdblock', 'scope', 'destinationdblock')) if len(files_ft) > 0: for f in files_ft: files_ft_dict[f['fileid']] = f for f in files: f['fsizemb'] = "%0.2f" % (f['fsize'] / 1000000.) ruciolink_base = 'https://rucio-ui.cern.ch/did?scope=' f['ruciolink'] = '' if f['fileid'] in files_ft_dict: name_param = '' if len(files_ft_dict[f['fileid']]['dispatchdblock']) > 0: name_param = 'dispatchdblock' elif len(files_ft_dict[f['fileid']]['destinationdblock']) > 0: name_param = 'destinationdblock' if len(name_param) > 0: if files_ft_dict[f['fileid']][name_param].startswith(files_ft_dict[f['fileid']]['scope']): ruciolink_base += files_ft_dict[f['fileid']]['scope'] else: ruciolink_base += files_ft_dict[f['fileid']][name_param].split('.')[0] f['ruciolink'] = ruciolink_base + '&name=' + files_ft_dict[f['fileid']][name_param] f['creationdatecut'] = f['creationdate'].strftime('%Y-%m-%d') f['creationdate'] = f['creationdate'].strftime(defaultDatetimeFormat) dump = json.dumps(files, cls=DateEncoder) return HttpResponse(dump, content_type='application/json') @login_customrequired def workQueues(request): valid, response = initRequest(request) data = getCacheEntry(request, "workQueues") if data is not None: data = json.loads(data) data['request'] = request response = render_to_response('workQueues.html', data, content_type='text/html') patch_response_headers(response, cache_timeout=request.session['max_age_minutes'] * 60) return response if not valid: return response setupView(request, hours=180 * 24, limit=9999999) query = {} for param in request.session['requestParams']: for field in JediWorkQueue._meta.get_fields(): if param == field.name: query[param] = request.session['requestParams'][param] queues = [] queues.extend(JediWorkQueue.objects.filter(**query).order_by('queue_type', 'queue_order').values()) del request.session['TFIRST'] del request.session['TLAST'] if (not (('HTTP_ACCEPT' in request.META) and (request.META.get('HTTP_ACCEPT') in ('application/json'))) and ( 'json' not in request.session['requestParams'])): data = { 'request': request, 'viewParams': request.session['viewParams'], 'requestParams': request.session['requestParams'], 'queues': queues, 'xurl': extensibleURL(request), 'built': datetime.now().strftime("%H:%M:%S"), } response = render_to_response('workQueues.html', data, content_type='text/html') setCacheEntry(request, "workQueues", json.dumps(data, cls=DateEncoder), 60 * 20) patch_response_headers(response, cache_timeout=request.session['max_age_minutes'] * 60) return response else: return HttpResponse(json.dumps(queues), content_type='application/json') def stateNotUpdated(request, state='transferring', hoursSinceUpdate=36, values=standard_fields, count=False, wildCardExtension='(1=1)'): valid, response = initRequest(request) if not valid: return response query = setupView(request, opmode='notime', limit=99999999) pq_clouds = get_pq_clouds() if 'jobstatus' in request.session['requestParams']: state = request.session['requestParams']['jobstatus'] if 'transferringnotupdated' in request.session['requestParams']: hoursSinceUpdate = int(request.session['requestParams']['transferringnotupdated']) if 'statenotupdated' in request.session['requestParams']: hoursSinceUpdate = int(request.session['requestParams']['statenotupdated']) moddate = timezone.now() - timedelta(hours=hoursSinceUpdate) moddate = moddate.strftime(defaultDatetimeFormat) mindate = timezone.now() - timedelta(hours=24 * 30) mindate = mindate.strftime(defaultDatetimeFormat) query['statechangetime__lte'] = moddate # query['statechangetime__gte'] = mindate query['jobstatus'] = state if count: jobs = [] jobs.extend( Jobsactive4.objects.filter(**query).extra(where=[wildCardExtension]).values('cloud', 'computingsite', 'jobstatus').annotate( Count('jobstatus'))) jobs.extend( Jobsdefined4.objects.filter(**query).extra(where=[wildCardExtension]).values('cloud', 'computingsite', 'jobstatus').annotate( Count('jobstatus'))) jobs.extend( Jobswaiting4.objects.filter(**query).extra(where=[wildCardExtension]).values('cloud', 'computingsite', 'jobstatus').annotate( Count('jobstatus'))) ncount = 0 perCloud = {} perRCloud = {} for cloud in cloudList: perCloud[cloud] = 0 perRCloud[cloud] = 0 for job in jobs: site = job['computingsite'] if site in pq_clouds: cloud = pq_clouds[site] if not cloud in perCloud: perCloud[cloud] = 0 perCloud[cloud] += job['jobstatus__count'] cloud = job['cloud'] if not cloud in perRCloud: perRCloud[cloud] = 0 perRCloud[cloud] += job['jobstatus__count'] ncount += job['jobstatus__count'] perCloudl = [] for c in perCloud: pcd = {'name': c, 'count': perCloud[c]} perCloudl.append(pcd) perCloudl = sorted(perCloudl, key=lambda x: x['name']) perRCloudl = [] for c in perRCloud: pcd = {'name': c, 'count': perRCloud[c]} perRCloudl.append(pcd) perRCloudl = sorted(perRCloudl, key=lambda x: x['name']) return ncount, perCloudl, perRCloudl else: jobs = [] jobs.extend(Jobsactive4.objects.filter(**query).extra(where=[wildCardExtension]).values(*values)) jobs.extend(Jobsdefined4.objects.filter(**query).extra(where=[wildCardExtension]).values(*values)) jobs.extend(Jobswaiting4.objects.filter(**query).extra(where=[wildCardExtension]).values(*values)) return jobs def taskNotUpdated(request, query, state='submitted', hoursSinceUpdate=36, values=[], count=False, wildCardExtension='(1=1)'): valid, response = initRequest(request) if not valid: return response # query = setupView(request, opmode='notime', limit=99999999) if 'status' in request.session['requestParams']: state = request.session['requestParams']['status'] if 'statenotupdated' in request.session['requestParams']: hoursSinceUpdate = int( request.session['requestParams']['statenotupdated']) moddate = timezone.now() - timedelta(hours=hoursSinceUpdate) moddate = moddate.strftime(defaultDatetimeFormat) mindate = timezone.now() - timedelta(hours=24 * 30) mindate = mindate.strftime(defaultDatetimeFormat) query['statechangetime__lte'] = moddate # query['statechangetime__gte'] = mindate query['status'] = state job = '' if count: tasks = JediTasks.objects.filter(**query).extra(where=[wildCardExtension]).values('name', 'status').annotate( Count('status')) statecounts = {} for s in taskstatelist: statecounts[s] = {} statecounts[s]['count'] = 0 statecounts[s]['name'] = s ncount = 0 for task in tasks: state = task['status'] statecounts[state]['count'] += task['status__count'] ncount += job['status__count'] return ncount, statecounts else: tasks = JediTasks.objects.filter(**query).extra(where=[wildCardExtension]).values() return tasks def buildGoogleFlowDiagram(request, jobs=[], tasks=[]): ## set up google flow diagram if 'requestParams' not in request.session or 'flow' not in request.session['requestParams']: return None flowstruct = {} if len(jobs) > 0: flowstruct['maxweight'] = len(jobs) flowrows = buildGoogleJobFlow(jobs) elif len(tasks) > 0: flowstruct['maxweight'] = len(tasks) flowrows = buildGoogleTaskFlow(request, tasks) else: return None flowstruct['columns'] = [['string', 'From'], ['string', 'To'], ['number', 'Weight']] flowstruct['rows'] = flowrows[:3000] return flowstruct def buildGoogleJobFlow(jobs): cloudd = {} mcpcloudd = {} mcpshownd = {} errd = {} errshownd = {} sited = {} statd = {} errcountd = {} sitecountd = {} siteshownd = {} ptyped = {} ptypecountd = {} ptypeshownd = {} for job in jobs: errinfo = errorInfo(job, nchars=40, mode='string') jobstatus = job['jobstatus'] for js in ('finished', 'holding', 'merging', 'running', 'cancelled', 'transferring', 'starting'): if jobstatus == js: errinfo = js if errinfo not in errcountd: errcountd[errinfo] = 0 errcountd[errinfo] += 1 cloud = job['homecloud'] mcpcloud = job['cloud'] ptype = job['processingtype'] if ptype not in ptypecountd: ptypecountd[ptype] = 0 ptypecountd[ptype] += 1 site = job['computingsite'] if site not in sitecountd: sitecountd[site] = 0 sitecountd[site] += 1 if cloud not in cloudd: cloudd[cloud] = {} if site not in cloudd[cloud]: cloudd[cloud][site] = 0 cloudd[cloud][site] += 1 if mcpcloud not in mcpcloudd: mcpcloudd[mcpcloud] = {} if cloud not in mcpcloudd[mcpcloud]: mcpcloudd[mcpcloud][cloud] = 0 mcpcloudd[mcpcloud][cloud] += 1 if jobstatus not in errd: errd[jobstatus] = {} if errinfo not in errd[jobstatus]: errd[jobstatus][errinfo] = 0 errd[jobstatus][errinfo] += 1 if site not in sited: sited[site] = {} if errinfo not in sited[site]: sited[site][errinfo] = 0 sited[site][errinfo] += 1 if jobstatus not in statd: statd[jobstatus] = {} if errinfo not in statd[jobstatus]: statd[jobstatus][errinfo] = 0 statd[jobstatus][errinfo] += 1 if ptype not in ptyped: ptyped[ptype] = {} if errinfo not in ptyped[ptype]: ptyped[ptype][errinfo] = 0 ptyped[ptype][errinfo] += 1 flowrows = [] for mcpcloud in mcpcloudd: for cloud in mcpcloudd[mcpcloud]: n = mcpcloudd[mcpcloud][cloud] if float(n) / len(jobs) > 0.0: mcpshownd[mcpcloud] = 1 flowrows.append(["%s MCP" % mcpcloud, cloud, n]) othersited = {} othersiteErrd = {} for cloud in cloudd: if cloud not in mcpshownd: continue for e in cloudd[cloud]: n = cloudd[cloud][e] if float(sitecountd[e]) / len(jobs) > .01: siteshownd[e] = 1 flowrows.append([cloud, e, n]) else: flowrows.append([cloud, 'Other sites', n]) othersited[e] = n # for jobstatus in errd: # for errinfo in errd[jobstatus]: # flowrows.append( [ errinfo, jobstatus, errd[jobstatus][errinfo] ] ) for e in errcountd: if float(errcountd[e]) / len(jobs) > .01: errshownd[e] = 1 for site in sited: nother = 0 for e in sited[site]: n = sited[site][e] if site in siteshownd: sitename = site else: sitename = "Other sites" if e in errshownd: errname = e else: errname = 'Other errors' flowrows.append([sitename, errname, n]) if errname not in othersiteErrd: othersiteErrd[errname] = 0 othersiteErrd[errname] += n # for e in othersiteErrd: # if e in errshownd: # flowrows.append( [ 'Other sites', e, othersiteErrd[e] ] ) for ptype in ptyped: if float(ptypecountd[ptype]) / len(jobs) > .05: ptypeshownd[ptype] = 1 ptname = ptype else: ptname = "Other processing types" for e in ptyped[ptype]: n = ptyped[ptype][e] if e in errshownd: flowrows.append([e, ptname, n]) else: flowrows.append(['Other errors', ptname, n]) return flowrows def buildGoogleTaskFlow(request, tasks): analysis = False if 'requestParams' in request.session: analysis = 'tasktype' in request.session['requestParams'] and request.session['requestParams'][ 'tasktype'].startswith('anal') ptyped = {} reqd = {} statd = {} substatd = {} trfd = {} filestatd = {} cloudd = {} reqsized = {} reqokd = {} ## count the reqid's. Use only the biggest (in file count) if too many. for task in tasks: if not analysis and 'deftreqid' not in task: continue req = int(task['reqid']) dsinfo = task['dsinfo'] nfiles = dsinfo['nfiles'] if req not in reqsized: reqsized[req] = 0 reqsized[req] += nfiles ## Veto requests that are all done etc. if task['superstatus'] != 'done': reqokd[req] = 1 if not analysis: for req in reqsized: # de-prioritize requests not specifically OK'd for inclusion if req not in reqokd: reqsized[req] = 0 nmaxreq = 10 if len(reqsized) > nmaxreq: reqkeys = reqsized.keys() reqsortl = sorted(reqkeys, key=reqsized.__getitem__, reverse=True) reqsortl = reqsortl[:nmaxreq - 1] else: reqsortl = reqsized.keys() for task in tasks: ptype = task['processingtype'] # if 'jedireqid' not in task: continue req = int(task['reqid']) if not analysis and req not in reqsortl: continue stat = task['superstatus'] substat = task['status'] # trf = task['transpath'] trf = task['taskname'] cloud = task['cloud'] if cloud == '': cloud = 'No cloud assigned' dsinfo = task['dsinfo'] nfailed = dsinfo['nfilesfailed'] nfinished = dsinfo['nfilesfinished'] nfiles = dsinfo['nfiles'] npending = nfiles - nfailed - nfinished if ptype not in ptyped: ptyped[ptype] = {} if req not in ptyped[ptype]: ptyped[ptype][req] = 0 ptyped[ptype][req] += nfiles if req not in reqd: reqd[req] = {} if stat not in reqd[req]: reqd[req][stat] = 0 reqd[req][stat] += nfiles if trf not in trfd: trfd[trf] = {} if stat not in trfd[trf]: trfd[trf][stat] = 0 trfd[trf][stat] += nfiles if stat not in statd: statd[stat] = {} if substat not in statd[stat]: statd[stat][substat] = 0 statd[stat][substat] += nfiles if substat not in substatd: substatd[substat] = {} if 'finished' not in substatd[substat]: for filestat in ('finished', 'failed', 'pending'): substatd[substat][filestat] = 0 substatd[substat]['finished'] += nfinished substatd[substat]['failed'] += nfailed substatd[substat]['pending'] += npending if cloud not in cloudd: cloudd[cloud] = {} if 'finished' not in cloudd[cloud]: for filestat in ('finished', 'failed', 'pending'): cloudd[cloud][filestat] = 0 cloudd[cloud]['finished'] += nfinished cloudd[cloud]['failed'] += nfailed cloudd[cloud]['pending'] += npending flowrows = [] if analysis: ## Don't include request, task for analysis for trf in trfd: for stat in trfd[trf]: n = trfd[trf][stat] flowrows.append([trf, 'Task %s' % stat, n]) else: for ptype in ptyped: for req in ptyped[ptype]: n = ptyped[ptype][req] flowrows.append([ptype, 'Request %s' % req, n]) for req in reqd: for stat in reqd[req]: n = reqd[req][stat] flowrows.append(['Request %s' % req, 'Task %s' % stat, n]) for stat in statd: for substat in statd[stat]: n = statd[stat][substat] flowrows.append(['Task %s' % stat, 'Substatus %s' % substat, n]) for substat in substatd: for filestat in substatd[substat]: if filestat not in substatd[substat]: continue n = substatd[substat][filestat] flowrows.append(['Substatus %s' % substat, 'File status %s' % filestat, n]) for cloud in cloudd: for filestat in cloudd[cloud]: if filestat not in cloudd[cloud]: continue n = cloudd[cloud][filestat] flowrows.append(['File status %s' % filestat, cloud, n]) return flowrows def g4exceptions(request): valid, response = initRequest(request) setupView(request, hours=365 * 24, limit=999999999) if 'hours' in request.session['requestParams']: hours = int(request.session['requestParams']['hours']) else: hours = 3 query, wildCardExtension, LAST_N_HOURS_MAX = setupView(request, hours=hours, wildCardExt=True) query['jobstatus__in'] = ['failed', 'holding'] query['exeerrorcode'] = 68 query['exeerrordiag__icontains'] = 'G4 exception' values = 'pandaid', 'atlasrelease', 'exeerrorcode', 'exeerrordiag', 'jobstatus', 'transformation' jobs = [] jobs.extend( Jobsactive4.objects.filter(**query).extra(where=[wildCardExtension])[:request.session['JOB_LIMIT']].values( *values)) jobs.extend( Jobsarchived4.objects.filter(**query).extra(where=[wildCardExtension])[:request.session['JOB_LIMIT']].values( *values)) if (((datetime.now() - datetime.strptime(query['modificationtime__castdate__range'][0], "%Y-%m-%d %H:%M:%S")).days > 1) or \ ((datetime.now() - datetime.strptime(query['modificationtime__castdate__range'][1], "%Y-%m-%d %H:%M:%S")).days > 1)): jobs.extend( Jobsarchived.objects.filter(**query).extra(where=[wildCardExtension])[:request.session['JOB_LIMIT']].values( *values)) if 'amitag' in request.session['requestParams']: if dbaccess['default']['ENGINE'].find('oracle') >= 0: tmpTableName = "ATLAS_PANDABIGMON.TMP_IDS1" else: tmpTableName = "TMP_IDS1" transactionKey = random.randrange(1000000) # connection.enter_transaction_management() new_cur = connection.cursor() for job in jobs: new_cur.execute("INSERT INTO %s(ID,TRANSACTIONKEY) VALUES (%i,%i)" % ( tmpTableName, job['pandaid'], transactionKey)) # Backend dependable # connection.commit() new_cur.execute( "SELECT JOBPARAMETERS, PANDAID FROM ATLAS_PANDA.JOBPARAMSTABLE WHERE PANDAID in (SELECT ID FROM %s WHERE TRANSACTIONKEY=%i)" % ( tmpTableName, transactionKey)) mrecs = dictfetchall(new_cur) # connection.commit() # connection.leave_transaction_management() jobsToRemove = set() for rec in mrecs: acceptJob = True parameters = rec['JOBPARAMETERS'].read() tagName = "--AMITag" startPos = parameters.find(tagName) if startPos == -1: acceptJob = False endPos = parameters.find(" ", startPos) AMITag = parameters[startPos + len(tagName) + 1:endPos] if AMITag != request.session['requestParams']['amitag']: acceptJob = False if acceptJob == False: jobsToRemove.add(rec['PANDAID']) jobs = filter(lambda x: not x['pandaid'] in jobsToRemove, jobs) jobs = addJobMetadata(jobs) errorFrequency = {} errorJobs = {} for job in jobs: if (job['metastruct']['executor'][0]['logfileReport']['countSummary']['FATAL'] > 0): message = job['metastruct']['executor'][0]['logfileReport']['details']['FATAL'][0]['message'] exceptMess = message[message.find("G4Exception :") + 14: message.find("issued by :") - 1] if exceptMess not in errorFrequency: errorFrequency[exceptMess] = 1 else: errorFrequency[exceptMess] += 1 if exceptMess not in errorJobs: errorJobs[exceptMess] = [] errorJobs[exceptMess].append(job['pandaid']) else: errorJobs[exceptMess].append(job['pandaid']) resp = {'errorFrequency': errorFrequency, 'errorJobs': errorJobs} del request.session['TFIRST'] del request.session['TLAST'] return HttpResponse(json.dumps(resp), content_type='application/json') def initSelfMonitor(request): import psutil if 'hostname' in request.session: server = request.session['hostname'] else: server = '-' if 'HTTP_X_FORWARDED_FOR' in request.META: remote = request.META['HTTP_X_FORWARDED_FOR'] else: remote = request.META['REMOTE_ADDR'] urlProto = request.META['wsgi.url_scheme'] if 'HTTP_X_FORWARDED_PROTO' in request.META: urlProto = request.META['HTTP_X_FORWARDED_PROTO'] urlProto = str(urlProto) + "://" try: urls = urlProto + request.META['SERVER_NAME'] + request.META['REQUEST_URI'] except: if 'SERVER_PORT' in request.META: port =':' + request.META['SERVER_PORT'] else: port = '' if 'PATH_INFO' in request.META: path = request.META['PATH_INFO'] else: path='' if 'QUERY_STRING' in request.META and request.META['QUERY_STRING']!="": qstring= '?'+request.META['QUERY_STRING'] else: qstring ='' urls = urlProto + request.META['SERVER_NAME'] + port + path + qstring print (urls) qtime = str(timezone.now()) load = psutil.cpu_percent(interval=1) mem = psutil.virtual_memory().percent if 'HTTP_REFERER' in request.META: refferer = request.META['HTTP_REFERER'] else: refferer = '-' if 'HTTP_USER_AGENT' in request.META: useragent = request.META['HTTP_USER_AGENT'] else: useragent = '-' request.session["qtime"] = qtime request.session["load"] = load request.session["remote"] = remote request.session["mem"] = mem request.session["urls"] = urls request.session["refferer"] = refferer request.session["useragent"] = useragent from PIL import Image import urllib.request import io whitelist = ["triumf.ca", "cern.ch"] def image(request): if ('url' in request.GET): param = request.build_absolute_uri() url = param[param.index("=")+1:len(param)] for urlw in whitelist: pattern = "^((http[s]?):\/)?\/?([^:\/\s]+"+urlw+")" urlConfim = re.findall(pattern,url) if (len(urlConfim)>0): break if (len(urlConfim)==0): return redirect('/static/images/22802286-denied-red-grunge-stamp.png') try: data = getCacheEntry(request, "imagewrap") if data is not None: data = base64.b64decode(data) response = HttpResponse(data, content_type='image/jpg') patch_response_headers(response, cache_timeout=10 * 60) return response else: with urllib.request.urlopen(url) as fd: image_file = io.BytesIO(fd.read()) im = Image.open(image_file) rgb_im = im.convert('RGB') response = HttpResponse(content_type='image/jpg') rgb_im.save(response, "JPEG") byte_io = BytesIO() rgb_im.save(byte_io, 'JPEG') data = base64.b64encode(byte_io.getvalue()) setCacheEntry(request, "imagewrap", data, 60 * 10) patch_response_headers(response, cache_timeout=10 * 60) return response except Exception as ex: print(ex) return redirect('/static/images/404-not-found-site.gif') else: return redirect('/static/images/error_z0my4n.png') def grafana_image(request): if ('url' in request.GET): param = request.build_absolute_uri() url = param[param.index("=")+1:len(param)] for urlw in whitelist: pattern = "^((http[s]?):\/)?\/?([^:\/\s]+"+urlw+")" urlConfim = re.findall(pattern,url) if (len(urlConfim) > 0): break if (len(urlConfim) == 0): return redirect('/static/images/22802286-denied-red-grunge-stamp.png') try: data = getCacheEntry(request, "grafanaimagewrap") if data is not None: data = base64.b64decode(data) response = HttpResponse(data, content_type='image/jpg') patch_response_headers(response, cache_timeout=10 * 60) return response if 'Authorization' in GRAFANA: grafana_token = GRAFANA['Authorization'] import requests headers = {"Authorization": grafana_token} r = requests.get(url, headers=headers) r.raise_for_status() with io.BytesIO(r.content) as f: with Image.open(f) as img: rgb_im = img.convert('RGB') response = HttpResponse(content_type='image/jpg') rgb_im.save(response, "JPEG") byte_io = BytesIO() rgb_im.save(byte_io, 'JPEG') data = base64.b64encode(byte_io.getvalue()) setCacheEntry(request, "grafanaimagewrap", data, 60 * 60) return response except Exception as ex: return redirect('/static/images/404-not-found-site.gif') else: return redirect('/static/images/error_z0my4n.png') def handler500(request): response = render_to_response('500.html', {}, context_instance=RequestContext(request)) response.status_code = 500 return response def getBadEventsForTask(request): if 'jeditaskid' in request.GET: jeditaskid = int(request.GET['jeditaskid']) else: return HttpResponse("Not jeditaskid supplied", content_type='text/html') mode = 'drop' if 'mode' in request.GET and request.GET['mode'] == 'nodrop': mode = 'nodrop' data = [] cursor = connection.cursor() plsql = """select DATASETID, ERROR_CODE, RTRIM(XMLAGG(XMLELEMENT(E,DEF_MIN_EVENTID,',').EXTRACT('//text()') ORDER BY DEF_MIN_EVENTID).GetClobVal(),',') as bb, RTRIM(XMLAGG(XMLELEMENT(E,PANDAID,',').EXTRACT('//text()') ORDER BY PANDAID).GetClobVal(),',') AS PANDAIDS, count(*) from atlas_panda.jedi_events where jeditaskid=%d and attemptnr = 1 group by DATASETID, ERROR_CODE """ % jeditaskid if mode == 'drop': plsql = """select DATASETID, ERROR_CODE, RTRIM(XMLAGG(XMLELEMENT(E,DEF_MIN_EVENTID,',').EXTRACT('//text()') ORDER BY DEF_MIN_EVENTID).GetClobVal(),',') as bb, RTRIM(XMLAGG(XMLELEMENT(E,PANDAID,',').EXTRACT('//text()') ORDER BY PANDAID).GetClobVal(),',') AS PANDAIDS, count(*) from atlas_panda.jedi_events where jeditaskid=%d and attemptnr = 1 and PANDAID IN (SELECT PANDAID FROM ATLAS_PANDA.JEDI_DATASET_CONTENTS where jeditaskid=%d and type in ('input', 'pseudo_input')) group by DATASETID, ERROR_CODE """ % (jeditaskid, jeditaskid) cursor.execute(plsql) evtable = cursor.fetchall() errorCodes = get_job_error_desc() for row in evtable: dataitem = {} dataitem['DATASETID'] = row[0] dataitem['ERROR_CODE'] = (errorCodes['piloterrorcode'][row[1]] + " (" +str(row[1])+ ")") if row[1] in errorCodes['piloterrorcode'] else row[1] dataitem['EVENTS'] = list(set( str(row[2].read()).split(',') )) if not row[2] is None else None dataitem['PANDAIDS'] = list(set( str(row[3].read()).split(',') )) if not row[3] is None else None if dataitem['EVENTS']: dataitem['EVENTS'] = sorted(dataitem['EVENTS']) dataitem['COUNT'] = row[4] data.append(dataitem) cursor.close() return HttpResponse(json.dumps(data, cls=DateTimeEncoder), content_type='application/json') def getEventsChunks(request): if 'jeditaskid' in request.GET: jeditaskid = int(request.GET['jeditaskid']) else: return HttpResponse("Not jeditaskid supplied", content_type='text/html') # We reconstruct here jobsets retries sqlRequest = """SELECT OLDPANDAID, NEWPANDAID, MAX(LEV) as LEV, MIN(PTH) as PTH FROM ( SELECT OLDPANDAID, NEWPANDAID, LEVEL as LEV, CONNECT_BY_ISLEAF as IL, SYS_CONNECT_BY_PATH(OLDPANDAID, ',') PTH FROM ( SELECT OLDPANDAID, NEWPANDAID FROm ATLAS_PANDA.JEDI_JOB_RETRY_HISTORY WHERE JEDITASKID=%s and RELATIONTYPE='jobset_retry')t1 CONNECT BY OLDPANDAID=PRIOR NEWPANDAID )t2 GROUP BY OLDPANDAID, NEWPANDAID;""" % str(jeditaskid) cur = connection.cursor() cur.execute(sqlRequest) datasetsChunks = cur.fetchall() cur.close() jobsetretries = {} eventsChunks = [] for datasetsChunk in datasetsChunks: jobsetretries[datasetsChunk[1]] = datasetsChunk[3].split(',')[1:] eventsChunksValues = 'lfn', 'attemptnr', 'startevent', 'endevent', 'pandaid', 'status', 'jobsetid', 'failedattempt', 'maxfailure', 'maxattempt' queryChunks = {'jeditaskid': jeditaskid, 'startevent__isnull': False, 'type': 'input'} eventsChunks.extend( JediDatasetContents.objects.filter(**queryChunks).order_by('attemptnr').reverse().values(*eventsChunksValues)) for eventsChunk in eventsChunks: if eventsChunk['jobsetid'] in jobsetretries: eventsChunk['prevAttempts'] = jobsetretries[eventsChunk['jobsetid']] eventsChunk['attemptnrDS'] = len(jobsetretries[eventsChunk['jobsetid']]) else: eventsChunk['prevAttempts'] = [] eventsChunk['attemptnrDS'] = 0 return HttpResponse(json.dumps(eventsChunks, cls=DateTimeEncoder), content_type='application/json') @never_cache def getJobStatusLog(request, pandaid = None): """ A view to asynchronously load job states changes history :param request: :param pandaid: :return: json contained job states changes history """ valid, response = initRequest(request) if not valid: return response try: pandaid = int(pandaid) except: HttpResponse(status=404, content_type='text/html') squery = {} squery['pandaid'] = pandaid statusLog = [] statusLog.extend(JobsStatuslog.objects.filter(**squery).order_by('modiftime_extended').values()) mtimeparam = 'modiftime_extended' if len(statusLog) > 0 and None in set([sl['modiftime_extended'] for sl in statusLog]): mtimeparam = 'modificationtime' statusLog = sorted(statusLog, key=lambda x: x[mtimeparam]) if len(statusLog) > 0: for c, item in enumerate(statusLog): if c < len(statusLog)-1: if statusLog[c+1][mtimeparam] is not None and statusLog[c][mtimeparam] is not None: duration = statusLog[c+1][mtimeparam] - statusLog[c][mtimeparam] ndays = duration.days strduration = str(timedelta(seconds=duration.seconds)) statusLog[c]['duration'] = "%s:%s" % (ndays, strduration) else: statusLog[c]['duration'] = "---" else: statusLog[c]['duration'] = "---" for sl in statusLog: sl['modiftime_str'] = sl[mtimeparam].strftime(defaultDatetimeFormat) if sl[mtimeparam] is not None else "---" if is_json_request(request): response = JsonResponse(statusLog, safe=False) else: response = render_to_response('jobStatusLog.html', {'statusLog': statusLog}, content_type='text/html') patch_response_headers(response, cache_timeout=request.session['max_age_minutes'] * 60) return response @never_cache def getTaskStatusLog(request, jeditaskid=None): """ A view to asynchronously load task states changes history :param request: :param jeditaskid: :return: json contained task states changes history """ valid, response = initRequest(request) if not valid: return response try: jeditaskid = int(jeditaskid) except: HttpResponse(status=404, content_type='text/html') mtimeparam = 'modificationtime' squery = {} squery['jeditaskid'] = jeditaskid statusLog = [] statusLog.extend(TasksStatusLog.objects.filter(**squery).order_by(mtimeparam).values()) if len(statusLog) > 0: for c, item in enumerate(statusLog): if c < len(statusLog)-1: if statusLog[c+1][mtimeparam] is not None and statusLog[c][mtimeparam] is not None: duration = statusLog[c+1][mtimeparam] - statusLog[c][mtimeparam] ndays = duration.days strduration = str(timedelta(seconds=duration.seconds)) statusLog[c]['duration'] = "%s:%s" % (ndays, strduration) else: statusLog[c]['duration'] = "---" else: statusLog[c]['duration'] = "---" for sl in statusLog: sl['modiftime_str'] = sl[mtimeparam].strftime(defaultDatetimeFormat) if sl[mtimeparam] is not None else "---" if is_json_request(request): response = HttpResponse(json.dumps(statusLog, cls=DateEncoder), content_type='application/json') else: response = render_to_response('taskStatusLog.html', {'statusLog': statusLog}, content_type='text/html') patch_response_headers(response, cache_timeout=request.session['max_age_minutes'] * 60) return response @never_cache def getTaskLogs(request, jeditaskid=None): """ A view to asynchronously load task logs from ElasticSearch storage :param request: :param jeditaskid: :return: json """ valid, response = initRequest(request) if not valid: return response try: jeditaskid = int(jeditaskid) except: HttpResponse(status=404, content_type='text/html') tasklogs = get_logs_by_taskid(jeditaskid) response = HttpResponse(json.dumps(tasklogs, cls=DateEncoder), content_type='application/json') # if is_json_request(request): # response = HttpResponse(json.dumps(tasklogs, cls=DateEncoder), content_type='application/json') # else: # HttpResponse(status=404, content_type='text/html') return response ### API ### def getSites(request): if request.is_ajax(): try: q = request.GET.get('term', '') sites = Schedconfig.objects.filter(siteid__icontains=q).exclude(cloud='CMS').values("siteid") results = [] for site in sites: results.append(site['siteid']) data = json.dumps(results) except: data = 'fail' else: data = 'fail' mimetype = 'application/json' return HttpResponse(data, mimetype) @never_cache def get_hc_tests(request): """ API for getting list of HammerCloud Tests :param request: :return: JSON response """ valid, response = initRequest(request) if not valid: return response jobs = [] tests = [] panda_queues = [] pilot_timings_names = ['timegetjob', 'timestagein', 'timepayload', 'timestageout', 'timetotal_setup'] error_fields = [ 'brokerageerrorcode', 'brokerageerrordiag', 'ddmerrorcode', 'ddmerrordiag', 'exeerrorcode', 'exeerrordiag', 'jobdispatchererrorcode', 'jobdispatchererrordiag', 'piloterrorcode', 'piloterrordiag', 'superrorcode', 'superrordiag', 'taskbuffererrorcode', 'taskbuffererrordiag', 'transexitcode', ] fields = [ 'pandaid', 'produsername', 'prodsourcelabel', 'processingtype', 'transformation', 'atlasrelease', 'proddblock', 'destinationdblock', 'destinationse', 'homepackage', 'inputfileproject', 'inputfiletype', 'jobname', 'cloud', 'nucleus', 'computingsite', 'computingelement', 'gshare', 'schedulerid', 'pilotid', 'jobstatus', 'creationtime', 'starttime', 'endtime', 'statechangetime', 'modificationtime', 'actualcorecount', 'minramcount', 'maxvmem', 'maxpss', 'maxrss', 'cpuconsumptiontime', 'nevents', 'hs06sec', 'noutputdatafiles', 'resourcetype', 'eventservice', 'transformation', 'modificationhost', 'batchid' ] jvalues = ['pilottiming',] jvalues.extend(fields) jvalues.extend(error_fields) query, wildCardExtension, LAST_N_HOURS_MAX = setupView(request, wildCardExt=True) query['produsername'] = 'gangarbt' query['cloud'] = 'RU' excluded_time_query = copy.deepcopy(query) if 'modificationtime__castdate__range' in excluded_time_query: del excluded_time_query['modificationtime__castdate__range'] # we change time param from modificationtime to : timeparamname = 'statechangetime' if 'modificationtime__castdate__range' in query: query[timeparamname + '__castdate__range'] = query['modificationtime__castdate__range'] del query['modificationtime__castdate__range'] is_archive_only = False is_archive = False timerange = [parse_datetime(mt) for mt in query[timeparamname + '__castdate__range']] if timerange[0] < datetime.utcnow()-timedelta(days=4) and timerange[1] < datetime.utcnow()-timedelta(days=4): is_archive_only = True if timerange[0] < datetime.utcnow() - timedelta(days=3): is_archive = True if not is_archive_only: jobs.extend(Jobsdefined4.objects.filter(**excluded_time_query).extra(where=[wildCardExtension]).values(*jvalues)) jobs.extend(Jobsactive4.objects.filter(**excluded_time_query).extra(where=[wildCardExtension]).values(*jvalues)) jobs.extend(Jobswaiting4.objects.filter(**excluded_time_query).extra(where=[wildCardExtension]).values(*jvalues)) jobs.extend(Jobsarchived4.objects.filter(**query).extra(where=[wildCardExtension]).values(*jvalues)) if is_archive_only or is_archive: jobs.extend(Jobsarchived.objects.filter(**query).extra(where=[wildCardExtension]).values(*jvalues)) _logger.info('Got jobs: {}'.format(time.time() - request.session['req_init_time'])) panda_queues_info = get_panda_queues() _logger.info('Got PQ info: {}'.format(time.time() - request.session['req_init_time'])) # getting input file info for jobs try: jobs = get_file_info(jobs, type='input', is_archive=is_archive) except: _logger.warning('Failed to get info of input files') _logger.info('Got input file info for jobs: {}'.format(time.time() - request.session['req_init_time'])) errorCodes = get_job_error_desc() for job in jobs: test = {} test['errorinfo'] = errorInfo(job, errorCodes=errorCodes) try: hctestid = job['destinationdblock'].split('.')[2][2:] except: hctestid = None test['hctestid'] = hctestid try: pilot_timings = [int(pti) for pti in job['pilottiming'].split('|')] except: pilot_timings = [0] * 5 test.update(dict(zip(pilot_timings_names, pilot_timings))) test['inputfilename'] = job['inputfilename'] if 'inputfilename' in job else None test['inputfilesizemb'] = round(job['inputfilesize'] / 1000000., 2) if 'inputfilesize' in job and isinstance(job['inputfilesize'], int) else None wallclocktime = get_job_walltime(job) queuetime = get_job_queuetime(job) if wallclocktime is not None: test['wallclocktime'] = wallclocktime if wallclocktime > 0: test['cpuefficiency'] = round(job['cpuconsumptiontime']/test['wallclocktime'], 3) else: test['cpuefficiency'] = 0 else: test['wallclocktime'] = 0 test['cpuefficiency'] = 0 if queuetime is not None: test['queuetime'] = queuetime else: test['queuetime'] = 0 for f in fields: test[f] = job[f] if 'computingsite' in job and job['computingsite'] in panda_queues_info: for f in ('siteid', 'gocname', 'status', 'cloud', 'tier', 'corepower'): if f in panda_queues_info[job['computingsite']]: if f == 'gocname': test['site'] = panda_queues_info[job['computingsite']][f] else: test[f] = panda_queues_info[job['computingsite']][f] tests.append(test) data = {'tests': tests} response = HttpResponse(json.dumps(data, cls=DateEncoder), content_type='application/json') return response @csrf_exempt def getPayloadLog(request): """ A view to asynchronously load pilot logs from ElasticSearch storage by pandaid or taskid :param request: :param id: :return: json """ valid, response = initRequest(request) connection = create_esatlas_connection() if not valid: return response mode = 'pandaid' log_content = {} if request.POST and "pandaid" in request.POST: try: id = int(request.POST['pandaid']) start_var = int(request.POST['start']) length_var = int(request.POST['length']) draw_var = int(request.POST['draw']) sort = request.POST['order[0][dir]'] search_string = request.POST['search[value]'] except: HttpResponse(status=404, content_type='text/html') else: HttpResponse(status=404, content_type='text/html') payloadlog, job_running_flag, total = get_payloadlog(id, connection, start=start_var, length=length_var, mode=mode, sort=sort, search_string=search_string) log_content['payloadlog'] = payloadlog log_content['flag'] = job_running_flag log_content['recordsTotal'] = total log_content['recordsFiltered'] = total log_content['draw'] = draw_var response = HttpResponse(json.dumps(log_content, cls=DateEncoder), content_type='application/json') return response
__init__.py
""" The ``python_function`` model flavor serves as a default model interface for MLflow Python models. Any MLflow Python model is expected to be loadable as a ``python_function`` model. In addition, the ``mlflow.pyfunc`` module defines a generic :ref:`filesystem format <pyfunc-filesystem-format>` for Python models and provides utilities for saving to and loading from this format. The format is self contained in the sense that it includes all necessary information for anyone to load it and use it. Dependencies are either stored directly with the model or referenced via a Conda environment. The ``mlflow.pyfunc`` module also defines utilities for creating custom ``pyfunc`` models using frameworks and inference logic that may not be natively included in MLflow. See :ref:`pyfunc-create-custom`. .. _pyfunc-inference-api: ************* Inference API ************* Python function models are loaded as an instance of :py:class:`PyFuncModel <mlflow.pyfunc.PyFuncModel>`, which is an MLflow wrapper around the model implementation and model metadata (MLmodel file). You can score the model by calling the :py:func:`predict() <mlflow.pyfunc.PyFuncModel.predict>` method, which has the following signature:: predict( model_input: [pandas.DataFrame, numpy.ndarray, scipy.sparse.(csc.csc_matrix | csr.csr_matrix), List[Any], Dict[str, Any]] ) -> [numpy.ndarray | pandas.(Series | DataFrame) | List] All PyFunc models will support `pandas.DataFrame` as input and DL PyFunc models will also support tensor inputs in the form of Dict[str, numpy.ndarray] (named tensors) and `numpy.ndarrays` (unnamed tensors). .. _pyfunc-filesystem-format: ***************** Filesystem format ***************** The Pyfunc format is defined as a directory structure containing all required data, code, and configuration:: ./dst-path/ ./MLmodel: configuration <code>: code packaged with the model (specified in the MLmodel file) <data>: data packaged with the model (specified in the MLmodel file) <env>: Conda environment definition (specified in the MLmodel file) The directory structure may contain additional contents that can be referenced by the ``MLmodel`` configuration. .. _pyfunc-model-config: MLModel configuration ##################### A Python model contains an ``MLmodel`` file in **python_function** format in its root with the following parameters: - loader_module [required]: Python module that can load the model. Expected as module identifier e.g. ``mlflow.sklearn``, it will be imported using ``importlib.import_module``. The imported module must contain a function with the following signature:: _load_pyfunc(path: string) -> <pyfunc model implementation> The path argument is specified by the ``data`` parameter and may refer to a file or directory. The model implementation is expected to be an object with a ``predict`` method with the following signature:: predict( model_input: [pandas.DataFrame, numpy.ndarray, scipy.sparse.(csc.csc_matrix | csr.csr_matrix), List[Any], Dict[str, Any]] ) -> [numpy.ndarray | pandas.(Series | DataFrame) | List] - code [optional]: Relative path to a directory containing the code packaged with this model. All files and directories inside this directory are added to the Python path prior to importing the model loader. - data [optional]: Relative path to a file or directory containing model data. The path is passed to the model loader. - env [optional]: Relative path to an exported Conda environment. If present this environment should be activated prior to running the model. - Optionally, any additional parameters necessary for interpreting the serialized model in ``pyfunc`` format. .. rubric:: Example :: tree example/sklearn_iris/mlruns/run1/outputs/linear-lr :: ├── MLmodel ├── code │   ├── sklearn_iris.py │ ├── data │   └── model.pkl └── mlflow_env.yml :: cat example/sklearn_iris/mlruns/run1/outputs/linear-lr/MLmodel :: python_function: code: code data: data/model.pkl loader_module: mlflow.sklearn env: mlflow_env.yml main: sklearn_iris .. _pyfunc-create-custom: ****************************** Creating custom Pyfunc models ****************************** MLflow's persistence modules provide convenience functions for creating models with the ``pyfunc`` flavor in a variety of machine learning frameworks (scikit-learn, Keras, Pytorch, and more); however, they do not cover every use case. For example, you may want to create an MLflow model with the ``pyfunc`` flavor using a framework that MLflow does not natively support. Alternatively, you may want to build an MLflow model that executes custom logic when evaluating queries, such as preprocessing and postprocessing routines. Therefore, ``mlflow.pyfunc`` provides utilities for creating ``pyfunc`` models from arbitrary code and model data. The :meth:`save_model()` and :meth:`log_model()` methods are designed to support multiple workflows for creating custom ``pyfunc`` models that incorporate custom inference logic and artifacts that the logic may require. An `artifact` is a file or directory, such as a serialized model or a CSV. For example, a serialized TensorFlow graph is an artifact. An MLflow model directory is also an artifact. .. _pyfunc-create-custom-workflows: Workflows ######### :meth:`save_model()` and :meth:`log_model()` support the following workflows: 1. Programmatically defining a new MLflow model, including its attributes and artifacts. Given a set of artifact URIs, :meth:`save_model()` and :meth:`log_model()` can automatically download artifacts from their URIs and create an MLflow model directory. In this case, you must define a Python class which inherits from :class:`~PythonModel`, defining ``predict()`` and, optionally, ``load_context()``. An instance of this class is specified via the ``python_model`` parameter; it is automatically serialized and deserialized as a Python class, including all of its attributes. 2. Interpreting pre-existing data as an MLflow model. If you already have a directory containing model data, :meth:`save_model()` and :meth:`log_model()` can import the data as an MLflow model. The ``data_path`` parameter specifies the local filesystem path to the directory containing model data. In this case, you must provide a Python module, called a `loader module`. The loader module defines a ``_load_pyfunc()`` method that performs the following tasks: - Load data from the specified ``data_path``. For example, this process may include deserializing pickled Python objects or models or parsing CSV files. - Construct and return a pyfunc-compatible model wrapper. As in the first use case, this wrapper must define a ``predict()`` method that is used to evaluate queries. ``predict()`` must adhere to the :ref:`pyfunc-inference-api`. The ``loader_module`` parameter specifies the name of your loader module. For an example loader module implementation, refer to the `loader module implementation in mlflow.keras <https://github.com/mlflow/mlflow/blob/ 74d75109aaf2975f5026104d6125bb30f4e3f744/mlflow/keras.py#L157-L187>`_. .. _pyfunc-create-custom-selecting-workflow: Which workflow is right for my use case? ######################################## We consider the first workflow to be more user-friendly and generally recommend it for the following reasons: - It automatically resolves and collects specified model artifacts. - It automatically serializes and deserializes the ``python_model`` instance and all of its attributes, reducing the amount of user logic that is required to load the model - You can create Models using logic that is defined in the ``__main__`` scope. This allows custom models to be constructed in interactive environments, such as notebooks and the Python REPL. You may prefer the second, lower-level workflow for the following reasons: - Inference logic is always persisted as code, rather than a Python object. This makes logic easier to inspect and modify later. - If you have already collected all of your model data in a single location, the second workflow allows it to be saved in MLflow format directly, without enumerating constituent artifacts. """ import importlib import signal import sys import numpy as np import os import pandas import yaml from copy import deepcopy import logging import tempfile import threading import collections import subprocess from typing import Any, Union, List, Dict, Iterator, Tuple import mlflow import mlflow.pyfunc.model from mlflow.models import Model, ModelSignature, ModelInputExample from mlflow.models.model import MLMODEL_FILE_NAME from mlflow.models.utils import _save_example from mlflow.pyfunc.model import ( # pylint: disable=unused-import PythonModel, PythonModelContext, get_default_conda_env, ) from mlflow.pyfunc.model import get_default_pip_requirements from mlflow.tracking.artifact_utils import _download_artifact_from_uri from mlflow.types import DataType, Schema, TensorSpec from mlflow.types.utils import clean_tensor_type from mlflow.utils import PYTHON_VERSION, get_major_minor_py_version from mlflow.utils.annotations import deprecated from mlflow.utils.file_utils import _copy_file_or_tree, write_to from mlflow.utils.model_utils import ( _get_flavor_configuration, _validate_and_copy_code_paths, _add_code_from_conf_to_system_path, ) from mlflow.utils.environment import ( _validate_env_arguments, _process_pip_requirements, _process_conda_env, _CONDA_ENV_FILE_NAME, _REQUIREMENTS_FILE_NAME, _CONSTRAINTS_FILE_NAME, ) from mlflow.utils.docstring_utils import format_docstring, LOG_MODEL_PARAM_DOCS from mlflow.exceptions import MlflowException from mlflow.tracking._model_registry import DEFAULT_AWAIT_MAX_SLEEP_SECONDS from mlflow.protos.databricks_pb2 import ( INVALID_PARAMETER_VALUE, RESOURCE_ALREADY_EXISTS, RESOURCE_DOES_NOT_EXIST, ) from scipy.sparse import csc_matrix, csr_matrix from mlflow.utils.requirements_utils import ( _check_requirement_satisfied, _parse_requirements, ) from mlflow.utils import find_free_port from mlflow.utils.nfs_on_spark import get_nfs_cache_root_dir FLAVOR_NAME = "python_function" MAIN = "loader_module" CODE = "code" DATA = "data" ENV = "env" PY_VERSION = "python_version" _logger = logging.getLogger(__name__) PyFuncInput = Union[pandas.DataFrame, np.ndarray, csc_matrix, csr_matrix, List[Any], Dict[str, Any]] PyFuncOutput = Union[pandas.DataFrame, pandas.Series, np.ndarray, list] def add_to_model(model, loader_module, data=None, code=None, env=None, **kwargs): """ Add a ``pyfunc`` spec to the model configuration. Defines ``pyfunc`` configuration schema. Caller can use this to create a valid ``pyfunc`` model flavor out of an existing directory structure. For example, other model flavors can use this to specify how to use their output as a ``pyfunc``. NOTE: All paths are relative to the exported model root directory. :param model: Existing model. :param loader_module: The module to be used to load the model. :param data: Path to the model data. :param code: Path to the code dependencies. :param env: Conda environment. :param req: pip requirements file. :param kwargs: Additional key-value pairs to include in the ``pyfunc`` flavor specification. Values must be YAML-serializable. :return: Updated model configuration. """ params = deepcopy(kwargs) params[MAIN] = loader_module params[PY_VERSION] = PYTHON_VERSION if code: params[CODE] = code if data: params[DATA] = data if env: params[ENV] = env return model.add_flavor(FLAVOR_NAME, **params) def _load_model_env(path): """ Get ENV file string from a model configuration stored in Python Function format. Returned value is a model-relative path to a Conda Environment file, or None if none was specified at model save time """ return _get_flavor_configuration(model_path=path, flavor_name=FLAVOR_NAME).get(ENV, None) def _enforce_mlflow_datatype(name, values: pandas.Series, t: DataType): """ Enforce the input column type matches the declared in model input schema. The following type conversions are allowed: 1. object -> string 2. int -> long (upcast) 3. float -> double (upcast) 4. int -> double (safe conversion) 5. np.datetime64[x] -> datetime (any precision) 6. object -> datetime Any other type mismatch will raise error. """ if values.dtype == object and t not in (DataType.binary, DataType.string): values = values.infer_objects() if t == DataType.string and values.dtype == object: # NB: the object can contain any type and we currently cannot cast to pandas Strings # due to how None is cast return values # NB: Comparison of pandas and numpy data type fails when numpy data type is on the left hand # side of the comparison operator. It works, however, if pandas type is on the left hand side. # That is because pandas is aware of numpy. if t.to_pandas() == values.dtype or t.to_numpy() == values.dtype: # The types are already compatible => conversion is not necessary. return values if t == DataType.binary and values.dtype.kind == t.binary.to_numpy().kind: # NB: bytes in numpy have variable itemsize depending on the length of the longest # element in the array (column). Since MLflow binary type is length agnostic, we ignore # itemsize when matching binary columns. return values if t == DataType.datetime and values.dtype.kind == t.to_numpy().kind: # NB: datetime values have variable precision denoted by brackets, e.g. datetime64[ns] # denotes nanosecond precision. Since MLflow datetime type is precision agnostic, we # ignore precision when matching datetime columns. return values if t == DataType.datetime and values.dtype == object: # NB: Pyspark date columns get converted to object when converted to a pandas # DataFrame. To respect the original typing, we convert the column to datetime. try: return values.astype(np.datetime64, errors="raise") except ValueError: raise MlflowException( "Failed to convert column {0} from type {1} to {2}.".format(name, values.dtype, t) ) numpy_type = t.to_numpy() if values.dtype.kind == numpy_type.kind: is_upcast = values.dtype.itemsize <= numpy_type.itemsize elif values.dtype.kind == "u" and numpy_type.kind == "i": is_upcast = values.dtype.itemsize < numpy_type.itemsize elif values.dtype.kind in ("i", "u") and numpy_type == np.float64: # allow (u)int => double conversion is_upcast = values.dtype.itemsize <= 6 else: is_upcast = False if is_upcast: return values.astype(numpy_type, errors="raise") else: # NB: conversion between incompatible types (e.g. floats -> ints or # double -> float) are not allowed. While supported by pandas and numpy, # these conversions alter the values significantly. def all_ints(xs): return all([pandas.isnull(x) or int(x) == x for x in xs]) hint = "" if ( values.dtype == np.float64 and numpy_type.kind in ("i", "u") and values.hasnans and all_ints(values) ): hint = ( " Hint: the type mismatch is likely caused by missing values. " "Integer columns in python can not represent missing values and are therefore " "encoded as floats. The best way to avoid this problem is to infer the model " "schema based on a realistic data sample (training dataset) that includes missing " "values. Alternatively, you can declare integer columns as doubles (float64) " "whenever these columns may have missing values. See `Handling Integers With " "Missing Values <https://www.mlflow.org/docs/latest/models.html#" "handling-integers-with-missing-values>`_ for more details." ) raise MlflowException( "Incompatible input types for column {0}. " "Can not safely convert {1} to {2}.{3}".format(name, values.dtype, numpy_type, hint) ) def _enforce_tensor_spec( values: Union[np.ndarray, csc_matrix, csr_matrix], tensor_spec: TensorSpec ): """ Enforce the input tensor shape and type matches the provided tensor spec. """ expected_shape = tensor_spec.shape actual_shape = values.shape actual_type = values.dtype if isinstance(values, np.ndarray) else values.data.dtype if len(expected_shape) != len(actual_shape): raise MlflowException( "Shape of input {0} does not match expected shape {1}.".format( actual_shape, expected_shape ) ) for expected, actual in zip(expected_shape, actual_shape): if expected == -1: continue if expected != actual: raise MlflowException( "Shape of input {0} does not match expected shape {1}.".format( actual_shape, expected_shape ) ) if clean_tensor_type(actual_type) != tensor_spec.type: raise MlflowException( "dtype of input {0} does not match expected dtype {1}".format( values.dtype, tensor_spec.type ) ) return values def _enforce_col_schema(pfInput: PyFuncInput, input_schema: Schema): """Enforce the input columns conform to the model's column-based signature.""" if input_schema.has_input_names(): input_names = input_schema.input_names() else: input_names = pfInput.columns[: len(input_schema.inputs)] input_types = input_schema.input_types() new_pfInput = pandas.DataFrame() for i, x in enumerate(input_names): new_pfInput[x] = _enforce_mlflow_datatype(x, pfInput[x], input_types[i]) return new_pfInput def _enforce_tensor_schema(pfInput: PyFuncInput, input_schema: Schema): """Enforce the input tensor(s) conforms to the model's tensor-based signature.""" if input_schema.has_input_names(): if isinstance(pfInput, dict): new_pfInput = dict() for col_name, tensor_spec in zip(input_schema.input_names(), input_schema.inputs): if not isinstance(pfInput[col_name], np.ndarray): raise MlflowException( "This model contains a tensor-based model signature with input names," " which suggests a dictionary input mapping input name to a numpy" " array, but a dict with value type {0} was found.".format( type(pfInput[col_name]) ) ) new_pfInput[col_name] = _enforce_tensor_spec(pfInput[col_name], tensor_spec) elif isinstance(pfInput, pandas.DataFrame): new_pfInput = dict() for col_name, tensor_spec in zip(input_schema.input_names(), input_schema.inputs): new_pfInput[col_name] = _enforce_tensor_spec( np.array(pfInput[col_name], dtype=tensor_spec.type), tensor_spec ) else: raise MlflowException( "This model contains a tensor-based model signature with input names, which" " suggests a dictionary input mapping input name to tensor, but an input of" " type {0} was found.".format(type(pfInput)) ) else: if isinstance(pfInput, pandas.DataFrame): new_pfInput = _enforce_tensor_spec(pfInput.to_numpy(), input_schema.inputs[0]) elif isinstance(pfInput, (np.ndarray, csc_matrix, csr_matrix)): new_pfInput = _enforce_tensor_spec(pfInput, input_schema.inputs[0]) else: raise MlflowException( "This model contains a tensor-based model signature with no input names," " which suggests a numpy array input, but an input of type {0} was" " found.".format(type(pfInput)) ) return new_pfInput def _enforce_schema(pfInput: PyFuncInput, input_schema: Schema): """ Enforces the provided input matches the model's input schema, For signatures with input names, we check there are no missing inputs and reorder the inputs to match the ordering declared in schema if necessary. Any extra columns are ignored. For column-based signatures, we make sure the types of the input match the type specified in the schema or if it can be safely converted to match the input schema. For tensor-based signatures, we make sure the shape and type of the input matches the shape and type specified in model's input schema. """ if not input_schema.is_tensor_spec(): if isinstance(pfInput, (list, np.ndarray, dict)): try: pfInput = pandas.DataFrame(pfInput) except Exception as e: raise MlflowException( "This model contains a column-based signature, which suggests a DataFrame" " input. There was an error casting the input data to a DataFrame:" " {0}".format(str(e)) ) if not isinstance(pfInput, pandas.DataFrame): raise MlflowException( "Expected input to be DataFrame or list. Found: %s" % type(pfInput).__name__ ) if input_schema.has_input_names(): # make sure there are no missing columns input_names = input_schema.input_names() expected_cols = set(input_names) actual_cols = set() if len(expected_cols) == 1 and isinstance(pfInput, np.ndarray): # for schemas with a single column, match input with column pfInput = {input_names[0]: pfInput} actual_cols = expected_cols elif isinstance(pfInput, pandas.DataFrame): actual_cols = set(pfInput.columns) elif isinstance(pfInput, dict): actual_cols = set(pfInput.keys()) missing_cols = expected_cols - actual_cols extra_cols = actual_cols - expected_cols # Preserve order from the original columns, since missing/extra columns are likely to # be in same order. missing_cols = [c for c in input_names if c in missing_cols] extra_cols = [c for c in actual_cols if c in extra_cols] if missing_cols: raise MlflowException( "Model is missing inputs {0}." " Note that there were extra inputs: {1}".format(missing_cols, extra_cols) ) elif not input_schema.is_tensor_spec(): # The model signature does not specify column names => we can only verify column count. num_actual_columns = len(pfInput.columns) if num_actual_columns < len(input_schema.inputs): raise MlflowException( "Model inference is missing inputs. The model signature declares " "{0} inputs but the provided value only has " "{1} inputs. Note: the inputs were not named in the signature so we can " "only verify their count.".format(len(input_schema.inputs), num_actual_columns) ) return ( _enforce_tensor_schema(pfInput, input_schema) if input_schema.is_tensor_spec() else _enforce_col_schema(pfInput, input_schema) ) class PyFuncModel: """ MLflow 'python function' model. Wrapper around model implementation and metadata. This class is not meant to be constructed directly. Instead, instances of this class are constructed and returned from :py:func:`load_model() <mlflow.pyfunc.load_model>`. ``model_impl`` can be any Python object that implements the `Pyfunc interface <https://mlflow.org/docs/latest/python_api/mlflow.pyfunc.html#pyfunc-inference-api>`_, and is returned by invoking the model's ``loader_module``. ``model_meta`` contains model metadata loaded from the MLmodel file. """ def __init__(self, model_meta: Model, model_impl: Any): if not hasattr(model_impl, "predict"): raise MlflowException("Model implementation is missing required predict method.") if not model_meta: raise MlflowException("Model is missing metadata.") self._model_meta = model_meta self._model_impl = model_impl def predict(self, data: PyFuncInput) -> PyFuncOutput: """ Generate model predictions. If the model contains signature, enforce the input schema first before calling the model implementation with the sanitized input. If the pyfunc model does not include model schema, the input is passed to the model implementation as is. See `Model Signature Enforcement <https://www.mlflow.org/docs/latest/models.html#signature-enforcement>`_ for more details." :param data: Model input as one of pandas.DataFrame, numpy.ndarray, scipy.sparse.(csc.csc_matrix | csr.csr_matrix), List[Any], or Dict[str, numpy.ndarray] :return: Model predictions as one of pandas.DataFrame, pandas.Series, numpy.ndarray or list. """ input_schema = self.metadata.get_input_schema() if input_schema is not None: data = _enforce_schema(data, input_schema) return self._model_impl.predict(data) @property def metadata(self): """Model metadata.""" if self._model_meta is None: raise MlflowException("Model is missing metadata.") return self._model_meta def __repr__(self): info = {} if self._model_meta is not None: if hasattr(self._model_meta, "run_id") and self._model_meta.run_id is not None: info["run_id"] = self._model_meta.run_id if ( hasattr(self._model_meta, "artifact_path") and self._model_meta.artifact_path is not None ): info["artifact_path"] = self._model_meta.artifact_path info["flavor"] = self._model_meta.flavors[FLAVOR_NAME]["loader_module"] return yaml.safe_dump({"mlflow.pyfunc.loaded_model": info}, default_flow_style=False) def _warn_dependency_requirement_mismatches(model_path): """ Inspects the model's dependencies and prints a warning if the current Python environment doesn't satisfy them. """ req_file_path = os.path.join(model_path, _REQUIREMENTS_FILE_NAME) if not os.path.exists(req_file_path): return try: mismatch_infos = [] for req in _parse_requirements(req_file_path, is_constraint=False): req_line = req.req_str mismatch_info = _check_requirement_satisfied(req_line) if mismatch_info is not None: mismatch_infos.append(str(mismatch_info)) if len(mismatch_infos) > 0: mismatch_str = " - " + "\n - ".join(mismatch_infos) warning_msg = ( "Detected one or more mismatches between the model's dependencies and the current " f"Python environment:\n{mismatch_str}" ) _logger.warning(warning_msg) except Exception as e: _logger.warning( f"Encountered an unexpected error ({repr(e)}) while detecting model dependency " "mismatches. Set logging level to DEBUG to see the full traceback." ) _logger.debug("", exc_info=True) def load_model( model_uri: str, suppress_warnings: bool = False, dst_path: str = None ) -> PyFuncModel: """ Load a model stored in Python function format. :param model_uri: The location, in URI format, of the MLflow model. For example: - ``/Users/me/path/to/local/model`` - ``relative/path/to/local/model`` - ``s3://my_bucket/path/to/model`` - ``runs:/<mlflow_run_id>/run-relative/path/to/model`` - ``models:/<model_name>/<model_version>`` - ``models:/<model_name>/<stage>`` - ``mlflow-artifacts:/path/to/model`` For more information about supported URI schemes, see `Referencing Artifacts <https://www.mlflow.org/docs/latest/concepts.html# artifact-locations>`_. :param suppress_warnings: If ``True``, non-fatal warning messages associated with the model loading process will be suppressed. If ``False``, these warning messages will be emitted. :param dst_path: The local filesystem path to which to download the model artifact. This directory must already exist. If unspecified, a local output path will be created. """ local_path = _download_artifact_from_uri(artifact_uri=model_uri, output_path=dst_path) if not suppress_warnings: _warn_dependency_requirement_mismatches(local_path) model_meta = Model.load(os.path.join(local_path, MLMODEL_FILE_NAME)) conf = model_meta.flavors.get(FLAVOR_NAME) if conf is None: raise MlflowException( 'Model does not have the "{flavor_name}" flavor'.format(flavor_name=FLAVOR_NAME), RESOURCE_DOES_NOT_EXIST, ) model_py_version = conf.get(PY_VERSION) if not suppress_warnings: _warn_potentially_incompatible_py_version_if_necessary(model_py_version=model_py_version) _add_code_from_conf_to_system_path(local_path, conf, code_key=CODE) data_path = os.path.join(local_path, conf[DATA]) if (DATA in conf) else local_path model_impl = importlib.import_module(conf[MAIN])._load_pyfunc(data_path) return PyFuncModel(model_meta=model_meta, model_impl=model_impl) @deprecated("mlflow.pyfunc.load_model", 1.0) def load_pyfunc(model_uri, suppress_warnings=False): """ Load a model stored in Python function format. :param model_uri: The location, in URI format, of the MLflow model. For example: - ``/Users/me/path/to/local/model`` - ``relative/path/to/local/model`` - ``s3://my_bucket/path/to/model`` - ``runs:/<mlflow_run_id>/run-relative/path/to/model`` - ``models:/<model_name>/<model_version>`` - ``models:/<model_name>/<stage>`` - ``mlflow-artifacts:/path/to/model`` For more information about supported URI schemes, see `Referencing Artifacts <https://www.mlflow.org/docs/latest/concepts.html# artifact-locations>`_. :param suppress_warnings: If ``True``, non-fatal warning messages associated with the model loading process will be suppressed. If ``False``, these warning messages will be emitted. """ return load_model(model_uri, suppress_warnings) def _warn_potentially_incompatible_py_version_if_necessary(model_py_version=None): """ Compares the version of Python that was used to save a given model with the version of Python that is currently running. If a major or minor version difference is detected, logs an appropriate warning. """ if model_py_version is None: _logger.warning( "The specified model does not have a specified Python version. It may be" " incompatible with the version of Python that is currently running: Python %s", PYTHON_VERSION, ) elif get_major_minor_py_version(model_py_version) != get_major_minor_py_version(PYTHON_VERSION): _logger.warning( "The version of Python that the model was saved in, `Python %s`, differs" " from the version of Python that is currently running, `Python %s`," " and may be incompatible", model_py_version, PYTHON_VERSION, ) def _get_or_create_model_cache_dir(): nfs_root_dir = get_nfs_cache_root_dir() if nfs_root_dir is not None: # In databricks, the '/local_disk0/.ephemeral_nfs' is mounted as NFS disk # the data stored in the disk is shared with all remote nodes. root_dir = os.path.join(nfs_root_dir, "models") os.makedirs(root_dir, exist_ok=True) tmp_model_dir = tempfile.mkdtemp(dir=root_dir) # TODO: register deleting tmp_model_dir handler when exit else: import atexit import shutil tmp_model_dir = tempfile.mkdtemp() atexit.register(shutil.rmtree, tmp_model_dir, ignore_errors=True) return tmp_model_dir _MLFLOW_SERVER_OUTPUT_TAIL_LINES_TO_KEEP = 200 def spark_udf(spark, model_uri, result_type="double", env_manager="local"): """ A Spark UDF that can be used to invoke the Python function formatted model. Parameters passed to the UDF are forwarded to the model as a DataFrame where the column names are ordinals (0, 1, ...). On some versions of Spark (3.0 and above), it is also possible to wrap the input in a struct. In that case, the data will be passed as a DataFrame with column names given by the struct definition (e.g. when invoked as my_udf(struct('x', 'y')), the model will get the data as a pandas DataFrame with 2 columns 'x' and 'y'). If a model contains a signature, the UDF can be called without specifying column name arguments. In this case, the UDF will be called with column names from signature, so the evaluation dataframe's column names must match the model signature's column names. The predictions are filtered to contain only the columns that can be represented as the ``result_type``. If the ``result_type`` is string or array of strings, all predictions are converted to string. If the result type is not an array type, the left most column with matching type is returned. NOTE: Inputs of type ``pyspark.sql.types.DateType`` are not supported on earlier versions of Spark (2.4 and below). .. code-block:: python :caption: Example from pyspark.sql.functions import struct predict = mlflow.pyfunc.spark_udf(spark, "/my/local/model") df.withColumn("prediction", predict(struct("name", "age"))).show() :param spark: A SparkSession object. :param model_uri: The location, in URI format, of the MLflow model with the :py:mod:`mlflow.pyfunc` flavor. For example: - ``/Users/me/path/to/local/model`` - ``relative/path/to/local/model`` - ``s3://my_bucket/path/to/model`` - ``runs:/<mlflow_run_id>/run-relative/path/to/model`` - ``models:/<model_name>/<model_version>`` - ``models:/<model_name>/<stage>`` - ``mlflow-artifacts:/path/to/model`` For more information about supported URI schemes, see `Referencing Artifacts <https://www.mlflow.org/docs/latest/concepts.html# artifact-locations>`_. :param result_type: the return type of the user-defined function. The value can be either a ``pyspark.sql.types.DataType`` object or a DDL-formatted type string. Only a primitive type or an array ``pyspark.sql.types.ArrayType`` of primitive type are allowed. The following classes of result type are supported: - "int" or ``pyspark.sql.types.IntegerType``: The leftmost integer that can fit in an ``int32`` or an exception if there is none. - "long" or ``pyspark.sql.types.LongType``: The leftmost long integer that can fit in an ``int64`` or an exception if there is none. - ``ArrayType(IntegerType|LongType)``: All integer columns that can fit into the requested size. - "float" or ``pyspark.sql.types.FloatType``: The leftmost numeric result cast to ``float32`` or an exception if there is none. - "double" or ``pyspark.sql.types.DoubleType``: The leftmost numeric result cast to ``double`` or an exception if there is none. - ``ArrayType(FloatType|DoubleType)``: All numeric columns cast to the requested type or an exception if there are no numeric columns. - "string" or ``pyspark.sql.types.StringType``: The leftmost column converted to ``string``. - ``ArrayType(StringType)``: All columns converted to ``string``. :param env_manager: The environment manager to use in order to create the software environment for model inference. Default value is ``local``, The following values are supported: - ``conda``: (Recommended) Use Conda to restore the software environment that was used to train the model. Note that environment is only restored in the context of the PySpark UDF; the software environment outside of the UDF is unaffected. - ``local``: Use the current Python environment for model inference, which may differ from the environment used to train the model and may lead to errors or invalid predictions. :return: Spark UDF that applies the model's ``predict`` method to the data and returns a type specified by ``result_type``, which by default is a double. """ # Scope Spark import to this method so users don't need pyspark to use non-Spark-related # functionality. import functools from mlflow.pyfunc.spark_model_cache import SparkModelCache from mlflow.utils._spark_utils import _SparkDirectoryDistributor from pyspark.sql.functions import pandas_udf from pyspark.sql.types import _parse_datatype_string from pyspark.sql.types import ( ArrayType, DataType as SparkDataType, StructType as SparkStructType, ) from pyspark.sql.types import DoubleType, IntegerType, FloatType, LongType, StringType from mlflow.models.cli import _get_flavor_backend if env_manager not in ["local", "conda"]: raise MlflowException( f"Illegal env_manager value '{env_manager}'.", error_code=INVALID_PARAMETER_VALUE ) # Check whether spark is in local or local-cluster mode # this case all executors and driver share the same filesystem is_spark_in_local_mode = spark.conf.get("spark.master").startswith("local") # TODO: # change `should_use_nfs` to be get_nfs_cache_root_dir() is not None # when NFS optimization added. should_use_nfs = False should_use_spark_to_broadcast_file = not (is_spark_in_local_mode or should_use_nfs) if not isinstance(result_type, SparkDataType): result_type = _parse_datatype_string(result_type) elem_type = result_type if isinstance(elem_type, ArrayType): elem_type = elem_type.elementType supported_types = [IntegerType, LongType, FloatType, DoubleType, StringType] if not any([isinstance(elem_type, x) for x in supported_types]): raise MlflowException( message="Invalid result_type '{}'. Result type can only be one of or an array of one " "of the following types: {}".format(str(elem_type), str(supported_types)), error_code=INVALID_PARAMETER_VALUE, ) local_model_path = _download_artifact_from_uri( artifact_uri=model_uri, output_path=_get_or_create_model_cache_dir() ) if env_manager == "local": # Assume spark executor python environment is the same with spark driver side. _warn_dependency_requirement_mismatches(local_model_path) _logger.warning( 'Calling `spark_udf()` with `env_manager="local"` does not recreate the same ' "environment that was used during training, which may lead to errors or inaccurate " 'predictions. We recommend specifying `env_manager="conda"`, which automatically ' "recreates the environment that was used to train the model and performs inference " "in the recreated environment." ) else: _logger.info( "This UDF will use Conda to recreate the model's software environment for inference. " "This may take extra time during execution." ) if not sys.platform.startswith("linux"): # TODO: support killing mlflow server launched in UDF task when spark job canceled # for non-linux system. # https://stackoverflow.com/questions/53208/how-do-i-automatically-destroy-child-processes-in-windows _logger.warning( "In order to run inference code in restored python environment, PySpark UDF " "processes spawn MLflow Model servers as child processes. Due to system " "limitations with handling SIGKILL signals, these MLflow Model server child " "processes cannot be cleaned up if the Spark Job is canceled." ) if not should_use_spark_to_broadcast_file: # Prepare restored environment in driver side if possible. if env_manager == "conda": _get_flavor_backend(local_model_path, no_conda=False, install_mlflow=False).prepare_env( model_uri=local_model_path ) # Broadcast local model directory to remote worker if needed. if should_use_spark_to_broadcast_file: archive_path = SparkModelCache.add_local_model(spark, local_model_path) model_metadata = Model.load(os.path.join(local_model_path, MLMODEL_FILE_NAME)) def _predict_row_batch(predict_fn, args): input_schema = model_metadata.get_input_schema() pdf = None for x in args: if type(x) == pandas.DataFrame: if len(args) != 1: raise Exception( "If passing a StructType column, there should be only one " "input column, but got %d" % len(args) ) pdf = x if pdf is None: args = list(args) if input_schema is None: names = [str(i) for i in range(len(args))] else: names = input_schema.input_names() if len(args) > len(names): args = args[: len(names)] if len(args) < len(names): raise MlflowException( "Model input is missing columns. Expected {0} input columns {1}," " but the model received only {2} unnamed input columns" " (Since the columns were passed unnamed they are expected to be in" " the order specified by the schema).".format(len(names), names, len(args)) ) pdf = pandas.DataFrame(data={names[i]: x for i, x in enumerate(args)}, columns=names) result = predict_fn(pdf) if not isinstance(result, pandas.DataFrame): result = pandas.DataFrame(data=result) elem_type = result_type.elementType if isinstance(result_type, ArrayType) else result_type if type(elem_type) == IntegerType: result = result.select_dtypes( [np.byte, np.ubyte, np.short, np.ushort, np.int32] ).astype(np.int32) elif type(elem_type) == LongType: result = result.select_dtypes([np.byte, np.ubyte, np.short, np.ushort, int]) elif type(elem_type) == FloatType: result = result.select_dtypes(include=(np.number,)).astype(np.float32) elif type(elem_type) == DoubleType: result = result.select_dtypes(include=(np.number,)).astype(np.float64) if len(result.columns) == 0: raise MlflowException( message="The the model did not produce any values compatible with the requested " "type '{}'. Consider requesting udf with StringType or " "Arraytype(StringType).".format(str(elem_type)), error_code=INVALID_PARAMETER_VALUE, ) if type(elem_type) == StringType: result = result.applymap(str) if type(result_type) == ArrayType: return pandas.Series(result.to_numpy().tolist()) else: return result[result.columns[0]] result_type_hint = ( pandas.DataFrame if isinstance(result_type, SparkStructType) else pandas.Series ) @pandas_udf(result_type) def udf( iterator: Iterator[Tuple[Union[pandas.Series, pandas.DataFrame], ...]] ) -> Iterator[result_type_hint]: # importing here to prevent circular import from mlflow.pyfunc.scoring_server.client import ScoringServerClient # Note: this is a pandas udf function in iteration style, which takes an iterator of # tuple of pandas.Series and outputs an iterator of pandas.Series. scoring_server_proc = None # TODO: Support virtual env. # # TODO: For conda/virtualenv restored env cases, # For each individual python process (driver side), create individual and temporary # conda env dir / virtualenv env dir and when process exit, # delete the temporary env dir. # The reason is # 1. env dir might be a large size directory and cleaning it when process exit # help saving disk space. # 2. We have conda package cache dir and pip cache dir which are shared across all # python processes which help reducing downloading time. # 3. Avoid race conditions related issues. # # TODO: # For NFS available case, set conda env dir / virtualenv env dir in sub-directory under # NFS directory, and in spark driver side prepare restored env once, and then all # spark UDF tasks running on spark workers can skip re-creating the restored env. if env_manager == "conda": server_port = find_free_port() if should_use_spark_to_broadcast_file: local_model_path_on_executor = _SparkDirectoryDistributor.get_or_extract( archive_path ) # Call "prepare_env" in advance in order to reduce scoring server launch time. # So that we can use a shorter timeout when call `client.wait_server_ready`, # otherwise we have to set a long timeout for `client.wait_server_ready` time, # this prevents spark UDF task failing fast if other exception raised when scoring # server launching. _get_flavor_backend( local_model_path_on_executor, no_conda=False, install_mlflow=False ).prepare_env(model_uri=local_model_path_on_executor) else: local_model_path_on_executor = local_model_path # launch scoring server # TODO: adjust timeout for server requests handler. scoring_server_proc = _get_flavor_backend( local_model_path_on_executor, no_conda=False, workers=1, install_mlflow=False ).serve( model_uri=local_model_path_on_executor, port=server_port, host="127.0.0.1", enable_mlserver=False, synchronous=False, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, ) server_tail_logs = collections.deque(maxlen=_MLFLOW_SERVER_OUTPUT_TAIL_LINES_TO_KEEP) def server_redirect_log_thread_func(child_stdout): for line in child_stdout: if isinstance(line, bytes): decoded = line.decode() else: decoded = line server_tail_logs.append(decoded) sys.stdout.write("[model server] " + decoded) server_redirect_log_thread = threading.Thread( target=server_redirect_log_thread_func, args=(scoring_server_proc.stdout,) ) server_redirect_log_thread.setDaemon(True) server_redirect_log_thread.start() client = ScoringServerClient("127.0.0.1", server_port) try: client.wait_server_ready(timeout=90, scoring_server_proc=scoring_server_proc) except Exception: err_msg = "During spark UDF task execution, mlflow model server failed to launch. " if len(server_tail_logs) == _MLFLOW_SERVER_OUTPUT_TAIL_LINES_TO_KEEP: err_msg += ( f"Last {_MLFLOW_SERVER_OUTPUT_TAIL_LINES_TO_KEEP} " "lines of MLflow model server output:\n" ) else: err_msg += "MLflow model server output:\n" err_msg += "".join(server_tail_logs) raise MlflowException(err_msg) def batch_predict_fn(pdf): return client.invoke(pdf) elif env_manager == "local": if should_use_spark_to_broadcast_file: loaded_model, _ = SparkModelCache.get_or_load(archive_path) else: loaded_model = mlflow.pyfunc.load_model(local_model_path) def batch_predict_fn(pdf): return loaded_model.predict(pdf) try: for input_batch in iterator: # If the UDF is called with only multiple arguments, # the `input_batch` is a tuple which composes of several pd.Series/pd.DataFrame # objects. # If the UDF is called with only one argument, # the `input_batch` instance will be an instance of `pd.Series`/`pd.DataFrame`, if isinstance(input_batch, (pandas.Series, pandas.DataFrame)): # UDF is called with only one argument row_batch_args = (input_batch,) else: row_batch_args = input_batch yield _predict_row_batch(batch_predict_fn, row_batch_args) finally: if scoring_server_proc is not None: os.kill(scoring_server_proc.pid, signal.SIGTERM) udf.metadata = model_metadata @functools.wraps(udf) def udf_with_default_cols(*args): if len(args) == 0: input_schema = model_metadata.get_input_schema() if input_schema and len(input_schema.inputs) > 0: if input_schema.has_input_names(): input_names = input_schema.input_names() return udf(*input_names) else: raise MlflowException( message="Cannot apply udf because no column names specified. The udf " "expects {} columns with types: {}. Input column names could not be " "inferred from the model signature (column names not found).".format( len(input_schema.inputs), input_schema.inputs, ), error_code=INVALID_PARAMETER_VALUE, ) else: raise MlflowException( "Attempting to apply udf on zero columns because no column names were " "specified as arguments or inferred from the model signature.", error_code=INVALID_PARAMETER_VALUE, ) else: return udf(*args) return udf_with_default_cols @format_docstring(LOG_MODEL_PARAM_DOCS.format(package_name="scikit-learn")) def save_model( path, loader_module=None, data_path=None, code_path=None, conda_env=None, mlflow_model=None, python_model=None, artifacts=None, signature: ModelSignature = None, input_example: ModelInputExample = None, pip_requirements=None, extra_pip_requirements=None, **kwargs, ): """ save_model(path, loader_module=None, data_path=None, code_path=None, conda_env=None,\ mlflow_model=Model(), python_model=None, artifacts=None) Save a Pyfunc model with custom inference logic and optional data dependencies to a path on the local filesystem. For information about the workflows that this method supports, please see :ref:`"workflows for creating custom pyfunc models" <pyfunc-create-custom-workflows>` and :ref:`"which workflow is right for my use case?" <pyfunc-create-custom-selecting-workflow>`. Note that the parameters for the second workflow: ``loader_module``, ``data_path`` and the parameters for the first workflow: ``python_model``, ``artifacts``, cannot be specified together. :param path: The path to which to save the Python model. :param loader_module: The name of the Python module that is used to load the model from ``data_path``. This module must define a method with the prototype ``_load_pyfunc(data_path)``. If not ``None``, this module and its dependencies must be included in one of the following locations: - The MLflow library. - Package(s) listed in the model's Conda environment, specified by the ``conda_env`` parameter. - One or more of the files specified by the ``code_path`` parameter. :param data_path: Path to a file or directory containing model data. :param code_path: A list of local filesystem paths to Python file dependencies (or directories containing file dependencies). These files are *prepended* to the system path before the model is loaded. :param conda_env: {{ conda_env }} :param mlflow_model: :py:mod:`mlflow.models.Model` configuration to which to add the **python_function** flavor. :param python_model: An instance of a subclass of :class:`~PythonModel`. This class is serialized using the CloudPickle library. Any dependencies of the class should be included in one of the following locations: - The MLflow library. - Package(s) listed in the model's Conda environment, specified by the ``conda_env`` parameter. - One or more of the files specified by the ``code_path`` parameter. Note: If the class is imported from another module, as opposed to being defined in the ``__main__`` scope, the defining module should also be included in one of the listed locations. :param artifacts: A dictionary containing ``<name, artifact_uri>`` entries. Remote artifact URIs are resolved to absolute filesystem paths, producing a dictionary of ``<name, absolute_path>`` entries. ``python_model`` can reference these resolved entries as the ``artifacts`` property of the ``context`` parameter in :func:`PythonModel.load_context() <mlflow.pyfunc.PythonModel.load_context>` and :func:`PythonModel.predict() <mlflow.pyfunc.PythonModel.predict>`. For example, consider the following ``artifacts`` dictionary:: { "my_file": "s3://my-bucket/path/to/my/file" } In this case, the ``"my_file"`` artifact is downloaded from S3. The ``python_model`` can then refer to ``"my_file"`` as an absolute filesystem path via ``context.artifacts["my_file"]``. If ``None``, no artifacts are added to the model. :param signature: :py:class:`ModelSignature <mlflow.models.ModelSignature>` describes model input and output :py:class:`Schema <mlflow.types.Schema>`. The model signature can be :py:func:`inferred <mlflow.models.infer_signature>` from datasets with valid model input (e.g. the training dataset with target column omitted) and valid model output (e.g. model predictions generated on the training dataset), for example: .. code-block:: python from mlflow.models.signature import infer_signature train = df.drop_column("target_label") predictions = ... # compute model predictions signature = infer_signature(train, predictions) :param input_example: Input example provides one or several instances of valid model input. The example can be used as a hint of what data to feed the model. The given example can be a Pandas DataFrame where the given example will be serialized to json using the Pandas split-oriented format, or a numpy array where the example will be serialized to json by converting it to a list. Bytes are base64-encoded. :param pip_requirements: {{ pip_requirements }} :param extra_pip_requirements: {{ extra_pip_requirements }} """ _validate_env_arguments(conda_env, pip_requirements, extra_pip_requirements) mlflow_model = kwargs.pop("model", mlflow_model) if len(kwargs) > 0: raise TypeError("save_model() got unexpected keyword arguments: {}".format(kwargs)) if code_path is not None: if not isinstance(code_path, list): raise TypeError("Argument code_path should be a list, not {}".format(type(code_path))) first_argument_set = { "loader_module": loader_module, "data_path": data_path, } second_argument_set = { "artifacts": artifacts, "python_model": python_model, } first_argument_set_specified = any([item is not None for item in first_argument_set.values()]) second_argument_set_specified = any([item is not None for item in second_argument_set.values()]) if first_argument_set_specified and second_argument_set_specified: raise MlflowException( message=( "The following sets of parameters cannot be specified together: {first_set_keys}" " and {second_set_keys}. All parameters in one set must be `None`. Instead, found" " the following values: {first_set_entries} and {second_set_entries}".format( first_set_keys=first_argument_set.keys(), second_set_keys=second_argument_set.keys(), first_set_entries=first_argument_set, second_set_entries=second_argument_set, ) ), error_code=INVALID_PARAMETER_VALUE, ) elif (loader_module is None) and (python_model is None): msg = ( "Either `loader_module` or `python_model` must be specified. A `loader_module` " "should be a python module. A `python_model` should be a subclass of PythonModel" ) raise MlflowException(message=msg, error_code=INVALID_PARAMETER_VALUE) if os.path.exists(path): raise MlflowException( message="Path '{}' already exists".format(path), error_code=RESOURCE_ALREADY_EXISTS ) os.makedirs(path) if mlflow_model is None: mlflow_model = Model() if signature is not None: mlflow_model.signature = signature if input_example is not None: _save_example(mlflow_model, input_example, path) if first_argument_set_specified: return _save_model_with_loader_module_and_data_path( path=path, loader_module=loader_module, data_path=data_path, code_paths=code_path, conda_env=conda_env, mlflow_model=mlflow_model, pip_requirements=pip_requirements, extra_pip_requirements=extra_pip_requirements, ) elif second_argument_set_specified: return mlflow.pyfunc.model._save_model_with_class_artifacts_params( path=path, python_model=python_model, artifacts=artifacts, conda_env=conda_env, code_paths=code_path, mlflow_model=mlflow_model, pip_requirements=pip_requirements, extra_pip_requirements=extra_pip_requirements, ) @format_docstring(LOG_MODEL_PARAM_DOCS.format(package_name="scikit-learn")) def log_model( artifact_path, loader_module=None, data_path=None, code_path=None, conda_env=None, python_model=None, artifacts=None, registered_model_name=None, signature: ModelSignature = None, input_example: ModelInputExample = None, await_registration_for=DEFAULT_AWAIT_MAX_SLEEP_SECONDS, pip_requirements=None, extra_pip_requirements=None, ): """ Log a Pyfunc model with custom inference logic and optional data dependencies as an MLflow artifact for the current run. For information about the workflows that this method supports, see :ref:`Workflows for creating custom pyfunc models <pyfunc-create-custom-workflows>` and :ref:`Which workflow is right for my use case? <pyfunc-create-custom-selecting-workflow>`. You cannot specify the parameters for the second workflow: ``loader_module``, ``data_path`` and the parameters for the first workflow: ``python_model``, ``artifacts`` together. :param artifact_path: The run-relative artifact path to which to log the Python model. :param loader_module: The name of the Python module that is used to load the model from ``data_path``. This module must define a method with the prototype ``_load_pyfunc(data_path)``. If not ``None``, this module and its dependencies must be included in one of the following locations: - The MLflow library. - Package(s) listed in the model's Conda environment, specified by the ``conda_env`` parameter. - One or more of the files specified by the ``code_path`` parameter. :param data_path: Path to a file or directory containing model data. :param code_path: A list of local filesystem paths to Python file dependencies (or directories containing file dependencies). These files are *prepended* to the system path before the model is loaded. :param conda_env: {{ conda_env }} :param python_model: An instance of a subclass of :class:`~PythonModel`. This class is serialized using the CloudPickle library. Any dependencies of the class should be included in one of the following locations: - The MLflow library. - Package(s) listed in the model's Conda environment, specified by the ``conda_env`` parameter. - One or more of the files specified by the ``code_path`` parameter. Note: If the class is imported from another module, as opposed to being defined in the ``__main__`` scope, the defining module should also be included in one of the listed locations. :param artifacts: A dictionary containing ``<name, artifact_uri>`` entries. Remote artifact URIs are resolved to absolute filesystem paths, producing a dictionary of ``<name, absolute_path>`` entries. ``python_model`` can reference these resolved entries as the ``artifacts`` property of the ``context`` parameter in :func:`PythonModel.load_context() <mlflow.pyfunc.PythonModel.load_context>` and :func:`PythonModel.predict() <mlflow.pyfunc.PythonModel.predict>`. For example, consider the following ``artifacts`` dictionary:: { "my_file": "s3://my-bucket/path/to/my/file" } In this case, the ``"my_file"`` artifact is downloaded from S3. The ``python_model`` can then refer to ``"my_file"`` as an absolute filesystem path via ``context.artifacts["my_file"]``. If ``None``, no artifacts are added to the model. :param registered_model_name: This argument may change or be removed in a future release without warning. If given, create a model version under ``registered_model_name``, also creating a registered model if one with the given name does not exist. :param signature: :py:class:`ModelSignature <mlflow.models.ModelSignature>` describes model input and output :py:class:`Schema <mlflow.types.Schema>`. The model signature can be :py:func:`inferred <mlflow.models.infer_signature>` from datasets with valid model input (e.g. the training dataset with target column omitted) and valid model output (e.g. model predictions generated on the training dataset), for example: .. code-block:: python from mlflow.models.signature import infer_signature train = df.drop_column("target_label") predictions = ... # compute model predictions signature = infer_signature(train, predictions) :param input_example: Input example provides one or several instances of valid model input. The example can be used as a hint of what data to feed the model. The given example can be a Pandas DataFrame where the given example will be serialized to json using the Pandas split-oriented format, or a numpy array where the example will be serialized to json by converting it to a list. Bytes are base64-encoded. :param await_registration_for: Number of seconds to wait for the model version to finish being created and is in ``READY`` status. By default, the function waits for five minutes. Specify 0 or None to skip waiting. :param pip_requirements: {{ pip_requirements }} :param extra_pip_requirements: {{ extra_pip_requirements }} :return: A :py:class:`ModelInfo <mlflow.models.model.ModelInfo>` instance that contains the metadata of the logged model. """ return Model.log( artifact_path=artifact_path, flavor=mlflow.pyfunc, loader_module=loader_module, data_path=data_path, code_path=code_path, python_model=python_model, artifacts=artifacts, conda_env=conda_env, registered_model_name=registered_model_name, signature=signature, input_example=input_example, await_registration_for=await_registration_for, pip_requirements=pip_requirements, extra_pip_requirements=extra_pip_requirements, ) def _save_model_with_loader_module_and_data_path( path, loader_module, data_path=None, code_paths=None, conda_env=None, mlflow_model=None, pip_requirements=None, extra_pip_requirements=None, ): """ Export model as a generic Python function model. :param path: The path to which to save the Python model. :param loader_module: The name of the Python module that is used to load the model from ``data_path``. This module must define a method with the prototype ``_load_pyfunc(data_path)``. :param data_path: Path to a file or directory containing model data. :param code_paths: A list of local filesystem paths to Python file dependencies (or directories containing file dependencies). These files are *prepended* to the system path before the model is loaded. :param conda_env: Either a dictionary representation of a Conda environment or the path to a Conda environment yaml file. If provided, this decsribes the environment this model should be run in. :return: Model configuration containing model info. """ data = None if data_path is not None: model_file = _copy_file_or_tree(src=data_path, dst=path, dst_dir="data") data = model_file code_dir_subpath = _validate_and_copy_code_paths(code_paths, path) if mlflow_model is None: mlflow_model = Model() mlflow.pyfunc.add_to_model( mlflow_model, loader_module=loader_module, code=code_dir_subpath, data=data, env=_CONDA_ENV_FILE_NAME, ) mlflow_model.save(os.path.join(path, MLMODEL_FILE_NAME)) if conda_env is None: if pip_requirements is None: default_reqs = get_default_pip_requirements() # To ensure `_load_pyfunc` can successfully load the model during the dependency # inference, `mlflow_model.save` must be called beforehand to save an MLmodel file. inferred_reqs = mlflow.models.infer_pip_requirements( path, FLAVOR_NAME, fallback=default_reqs, ) default_reqs = sorted(set(inferred_reqs).union(default_reqs)) else: default_reqs = None conda_env, pip_requirements, pip_constraints = _process_pip_requirements( default_reqs, pip_requirements, extra_pip_requirements, ) else: conda_env, pip_requirements, pip_constraints = _process_conda_env(conda_env) with open(os.path.join(path, _CONDA_ENV_FILE_NAME), "w") as f: yaml.safe_dump(conda_env, stream=f, default_flow_style=False) # Save `constraints.txt` if necessary if pip_constraints: write_to(os.path.join(path, _CONSTRAINTS_FILE_NAME), "\n".join(pip_constraints)) # Save `requirements.txt` write_to(os.path.join(path, _REQUIREMENTS_FILE_NAME), "\n".join(pip_requirements)) return mlflow_model loader_template = """ import importlib import os import sys def load_pyfunc(): {update_path}return importlib.import_module('{main}')._load_pyfunc('{data_path}') """
openface_detector.py
import cv2 as cv import util import threading import detect_it_all_bot import time from faces_util import detect_faces from sklearn.svm import SVC from sklearn.preprocessing import LabelEncoder, Normalizer import openface_util import pandas as pd import numpy as np from scipy.spatial import distance class OpenfaceDetector(): def __init__(self, classifier_path: str, eye_classifier_path: str, model_path: str, labels_path, reps_path, cap: util.BufferlessVideoCapture, color=(255, 0, 0), minimum_probability: float = 0.5, cooldown: float = 30, img_dim: int = 96, visible: bool = False, cuda: bool = False, openface_dir: str = "/usr/local/lib/python3.9/dist-packages/openface"): self.running = True self.callback = self.log_callback self.face_classifier = cv.CascadeClassifier(classifier_path) self.eye_classifier = cv.CascadeClassifier(eye_classifier_path) self.net = openface_util.TorchNeuralNet( openface_dir, model_path, imgDim=img_dim, cuda=cuda) self.labels_path = labels_path self.reps_path = reps_path self.cap = cap self.color = color self.minimum_probability = minimum_probability self.cooldown = cooldown self.visible = visible self.users = set() self.user_cooldown = {} self.train() t = threading.Thread(target=self._run_detection) t.daemon = True t.start() def train(self): self.labels = pd.read_csv(self.labels_path, header=None)[0].to_list() self.le = LabelEncoder().fit(self.labels) num_classes = len(self.le.classes_) self.norm = Normalizer(norm='l2') print(f"Training for {num_classes} classes.") t0 = time.time() self.reps = pd.read_csv(self.reps_path, header=None).values self.reps = self.norm.transform(self.reps) labels_num = self.le.transform(self.labels) self.classifier = SVC(C=1, kernel='linear', probability=True) self.classifier.fit(self.reps, labels_num) took = time.time() - t0 print(f"Training took {took}") def log_callback(self, chat_id, detection_text, frame): print(f"{chat_id}: {detection_text}") def stop(self): self.running = False self.net.close() def _run_detection(self): while self.running: if len(self.users) > 0 or self.visible: frame = self.cap.read() faces = self.detect_in_frame(frame) if len(faces) > 0: detection_text = f"{len(faces)} faces detected." detected = False for face in faces: (x, y, w, h) = face["bbox"] #face_id = face["face_id"] name = face["name"] confidence = face["confidence"] if self.visible: text = f"{name}: {confidence:.2f}" cv.rectangle( frame, (x, y), (x + w, y + h), self.color, 2) cv.putText(frame, text, (x, y - 5), cv.FONT_HERSHEY_SIMPLEX, 0.5, self.color, 1) detected = False # detected or probability >= self.minimum_probability if detected: for user_id in self.users: if self.user_cooldown[user_id] < time.time(): self.user_cooldown[user_id] = time.time( ) + self.cooldown self.callback(user_id, detection_text, frame) if self.visible: cv.imshow('openface', frame) cv.waitKey(1) def detect_in_frame(self, frame): recognized_faces = [] faces = detect_faces(frame, self.face_classifier, self.eye_classifier, desired_face_width=96, desired_face_height=96,) for face in faces: rep = self.net.forward(face.mat) rep = self.norm.transform(rep.reshape(1, -1)) predictions = self.classifier.predict_proba(rep).ravel() #(distance, name) = self.get_closest(rep) max_i = np.argmax(predictions) name = self.le.inverse_transform([max_i])[0] confidence = predictions[max_i] recognized_faces.append({ "bbox": face.bbox, "name": name, "face_id": max_i, "confidence": confidence, }) return recognized_faces def get_closest(self, frame_rep): distances = [] for i, rep in enumerate(self.reps): d = np.dot(frame_rep, rep) name = self.labels[i] distances.append((d, name)) distances = sorted(distances, reverse=True, key=lambda v: v[0]) print() for d in distances: print(d) print() (d, name) = distances[0] return (d, name) def describe(self): return f""" This is a OpenCV cascade classifier to detect faces and Openface to recognize faces. Just send '/detect' and we are ready. """ def detect(self, user_id, args): self.users.add(user_id) self.user_cooldown[user_id] = 0 return f"Detection in progress." def main(): parser = util.HelperParser( description='OpenCV cascade classifier and LBPH face recognizer.') parser.add_argument('-k', '--token', required=True, help='The telegram bot token.') parser.add_argument('-p', '--password', required=True, help='The telegram bot client password.') parser.add_argument('-c', '--classifier', required=True, help='The classifier to be used.') parser.add_argument('-e', '--eye_classifier', required=True, help='The eye classifier to be used.') parser.add_argument('-t', '--torch_face_model', required=True, help='The torch network model to be used.') parser.add_argument('-l', '--labels', required=True, help='The labels path.') parser.add_argument('-s', '--representations', required=True, help='The representations path.') parser.add_argument('-d', '--cooldown', default=30, type=float, help='The cooldown after a detection in seconds. Default: 30') parser.add_argument('-m', '--minimum_probability', default=50, type=float, help='The minimum probability to accept a face as a match. Default: 50') parser.add_argument( '-u', '--url', help='The stream name (can be an url or the device name).') parser.add_argument('-v', '--visible', default=False, type=bool, help='Show detect window. Default: False') args = parser.parse_args() cap = util.BufferlessVideoCapture(args.url) if not cap.isOpened(): print("Cannot open stream") exit() else: print("Stream opened") args = parser.parse_args() detector = OpenfaceDetector( args.classifier, args.eye_classifier, args.torch_face_model, args.labels, args.representations, cap, minimum_probability=args.minimum_probability, cooldown=args.cooldown, visible=args.visible, ) bot = detect_it_all_bot.DetectItAllBot(args.token, args.password, detector) detector.callback = bot.detection_callback def stop(): cap.release() detector.stop() bot.stop() killer = util.GracefulKiller() killer.exit_func = stop bot.start() if __name__ == "__main__": main()
tray_log.py
# (C) unresolved-external@singu-lair.com released under the MIT license (see LICENSE) import copy import datetime import os import threading import time import win32con import win32gui import common def threaded_function(thread_data, thread_static): while not thread_data.stop: update_hwnd = None with thread_static.lock: if thread_static.queue: thread_static.memlog.extend(thread_static.queue) #for message in thread_static.queue: # with open('gw2-addon-updater.log', 'a') as logfile: # logfile.write('{}\n'.format(message)) del thread_static.queue[:] if len(thread_static.memlog) > thread_static.memmax: del thread_static.memlog[:(len(thread_static.memlog)-thread_static.memmax)] update_hwnd = thread_static.hWnd if update_hwnd is not None: win32gui.SendMessage(update_hwnd, win32con.WM_COMMAND, common.commands.UPDATE_LOG, 0) time.sleep(0.01) class thread_data_type: stop = False class thread_static_type: lock = threading.Lock() queue = [] memlog = [] memmax = 1000 hWnd = None class log: thread = None thread_data = None thread_static = thread_static_type() def start(self): if self.thread is not None: return self.thread_data = thread_data_type() self.thread = threading.Thread(name = 'MemLogThread', target = threaded_function, args = (self.thread_data, self.thread_static)) self.thread.start() def stop(self): if self.thread is None: return if self.thread_data is None: return self.thread_data.stop = True self.thread = None def bind_hwnd(self, hWnd): with self.thread_static.lock: self.thread_static.hWnd = hWnd def log(self, message, info = False): with self.thread_static.lock: self.thread_static.queue.append(message) def log_ln(self, message, info = False): self.log(message.rstrip('\r\n')) def log_ts(self, message, info = False): self.log_ln('{}: {}'.format(datetime.datetime.fromtimestamp(int(time.time())), message)) def extract(self): with self.thread_static.lock: log = copy.deepcopy(self.thread_static.memlog) return log
platform.py
#!/usr/bin/env python # -*- coding: utf-8 -*- # # Copyright 2018-2021 Accenture Technology # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import asyncio import concurrent.futures import os import sys import signal import time import threading import uuid from asyncio import QueueEmpty from queue import Queue, Empty from mercury.system.config_util import ConfigReader from mercury.system.connector import NetworkConnector from mercury.system.distributed_trace import DistributedTrace from mercury.system.diskqueue import ElasticQueue from mercury.system.logger import LoggingService from mercury.system.models import EventEnvelope, AppException, TraceInfo from mercury.system.singleton import Singleton from mercury.system.utility import Utility, FunctionType from mercury.system.throttle import Throttle class ServiceQueue: def __init__(self, loop, executor, queue, route, user_function, total_instances): self.platform = Platform() self.util = Utility() self.log = self.platform.log queue_dir = self.util.normalize_path(self.platform.work_dir + "/queues/" + self.platform.get_origin()) self.disk_queue = ElasticQueue(queue_dir=queue_dir, queue_id=route) self._loop = loop self._executor = executor self.queue = queue self.route = route self.user_function = user_function self.ready_queue = asyncio.Queue(loop=self._loop) self.worker_list = dict() self._peek_worker = None self._buffering = True self._interceptor = total_instances == 0 self._singleton = True if total_instances < 1 else False self._loop.create_task(self.listen(total_instances)) def peek_next_worker(self): if self._peek_worker is None: self._peek_worker = self._fetch_next_worker() return self._peek_worker def get_next_worker(self): if self._peek_worker is not None: result = self._peek_worker self._peek_worker = None return result return self._fetch_next_worker() def _fetch_next_worker(self): try: worker_number = self.ready_queue.get_nowait() if worker_number: self.ready_queue.task_done() return worker_number except QueueEmpty: return None def send_to_worker(self, item): worker_number = self.get_next_worker() if worker_number: wq = self.worker_list[worker_number] if wq: wq.put_nowait(item) else: self.log.error("Event for " + self.route + " dropped because worker #"+str(worker_number) + "not found") else: self.log.error("Event for " + self.route + " dropped because there are no workers available") async def listen(self, total_instances): # create concurrent workers and total = 1 if self._singleton else total_instances for i in range(total): instance_number = i + 1 worker_queue = asyncio.Queue(loop=self._loop) self.worker_list[instance_number] = worker_queue WorkerQueue(self._loop, self._executor, self.queue, worker_queue, self.route, self.user_function, instance_number, self._singleton, self._interceptor) # populate the ready queue with an initial set of worker numbers await self.queue.put(instance_number) route_type = 'PRIVATE' if self.platform.route_is_private(self.route) else 'PUBLIC' # minimize logging for temporary inbox that starts with the "r" prefix if self._interceptor and self.util.is_inbox(self.route): self.log.debug(route_type+' ' + self.route + " with " + str(total) + " instance" + ('s' if total > 1 else '') + " started") else: self.log.info(route_type+' ' + self.route + " with " + str(total) + " instance" + ('s' if total > 1 else '')+" started") # listen for incoming events while True: event = await self.queue.get() self.queue.task_done() if event is None: break else: if isinstance(event, int): # ready signal from a worker await self.ready_queue.put(event) if self._buffering: buffered = self.disk_queue.read() if buffered: self.send_to_worker(buffered) else: # nothing buffered in disk queue self._buffering = False self.disk_queue.close() if isinstance(event, dict): # it is a data item if self._buffering: # Once buffering is started, continue to spool items to disk to guarantee items in order await self.disk_queue.write(event) else: w = self.peek_next_worker() if w: # Nothing buffered in disk queue. Find a worker to receive the item. self.send_to_worker(event) else: # start buffered because there are no available workers self._buffering = True await self.disk_queue.write(event) # tell workers to stop for i in self.worker_list: wq = self.worker_list[i] wq.put_nowait(None) # destroy disk queue self.disk_queue.destroy() # minimize logging for temporary inbox that starts with the "r" prefix if self._interceptor and self.util.is_inbox(self.route): self.log.debug(self.route + " stopped") else: self.log.info(self.route + " stopped") class WorkerQueue: DISTRIBUTED_TRACING = "distributed.tracing" def __init__(self, loop, executor, manager_queue, worker_queue, route, user_function, instance, singleton, interceptor): self.platform = Platform() self.log = self.platform.log self._loop = loop self._executor = executor self.manager_queue = manager_queue self.worker_queue = worker_queue self.route = route # trace all routes except ws.outgoing self.tracing = route != 'ws.outgoing' self.user_function = user_function self.instance = instance self.singleton = singleton self.interceptor = interceptor self._loop.create_task(self.listen()) self.log.debug(route + " #" + str(self.instance) + " started") async def listen(self): while True: event = await self.worker_queue.get() self.worker_queue.task_done() if event is None: break else: # Execute the user function in parallel if self.interceptor: self._loop.run_in_executor(self._executor, self.handle_event, event, 0) elif self.singleton: self._loop.run_in_executor(self._executor, self.handle_event, event, -1) else: self._loop.run_in_executor(self._executor, self.handle_event, event, self.instance) self.log.debug(self.route + " #" + str(self.instance) + " stopped") def handle_event(self, event, instance): headers = dict() if 'headers' not in event else event['headers'] body = None if 'body' not in event else event['body'] result = None error_code = None error_msg = None # start distributed tracing if the event contains trace_id and trace_path if 'trace_id' in event and 'trace_path' in event: self.platform.start_tracing(self.route, trace_id=event['trace_id'], trace_path=event['trace_path']) else: self.platform.start_tracing(self.route) # execute user function begin = end = time.time() try: if instance == 0: # service is an interceptor. e.g. inbox for RPC call self.user_function(EventEnvelope().from_map(event)) elif instance == -1: # service is a singleton result = self.user_function(headers, body) else: # service with multiple instances result = self.user_function(headers, body, instance) end = time.time() except AppException as e: error_code = e.get_status() error_msg = e.get_message() except ValueError as e: error_code = 400 error_msg = str(e) except Exception as e: error_code = 500 error_msg = str(e) # execution time is rounded to 3 decimal points exec_time = round((end - begin) * 1000, 3) if error_code: if 'reply_to' in event: # set exception as result result = EventEnvelope().set_status(error_code).set_body(error_msg) else: self.log.warn( "Unhandled exception for " + self.route + " - code=" + str(error_code) + ", message=" + error_msg) # # interceptor should not send regular response because it will forward the request to another function. # However, if error_code exists, the system will send the exception response. # This allows interceptor to simply throw exception to indicate an error case. # if 'reply_to' in event and (error_code or not self.interceptor): reply_to = event['reply_to'] # in case this is a RPC call from within if reply_to.startswith('->'): reply_to = reply_to[2:] response = EventEnvelope().set_to(reply_to) if not error_code: response.set_exec_time(exec_time) if 'extra' in event: response.set_extra(event['extra']) if 'cid' in event: response.set_correlation_id(event['cid']) if 'trace_id' in event and 'trace_path' in event: response.set_trace(event['trace_id'], event['trace_path']) if isinstance(result, EventEnvelope): for h in result.get_headers(): response.set_header(h, result.get_header(h)) response.set_body(result.get_body()) response.set_status(result.get_status()) else: response.set_body(result) try: self.platform.send_event(response.set_from(self.route)) except Exception as e: self.log.warn("Event dropped because "+str(e)) # send tracing info to distributed trace logger trace_info = self.platform.stop_tracing() if self.tracing and trace_info is not None and isinstance(trace_info, TraceInfo) \ and trace_info.get_id() is not None and trace_info.get_path() is not None: dt = EventEnvelope().set_to(self.DISTRIBUTED_TRACING).set_body(trace_info.get_annotations()) dt.set_header('origin', self.platform.get_origin()) dt.set_header('id', trace_info.get_id()).set_header('path', trace_info.get_path()) dt.set_header('service', self.route).set_header('start', trace_info.get_start_time()) if 'from' in event: dt.set_header('from', event['from']) if not error_code: dt.set_header('success', 'true') dt.set_header('exec_time', exec_time) else: dt.set_header('success', 'false') dt.set_header('status', error_code) dt.set_header('exception', error_msg) self.platform.send_event(dt) self._loop.call_soon_threadsafe(self._ack) def _ack(self): self.manager_queue.put_nowait(self.instance) class Inbox: def __init__(self, platform): self.begin = time.time() self.temp_route = 'r.' + (''.join(str(uuid.uuid4()).split('-'))) self.inbox_queue = Queue() self.platform = platform self.platform.register(self.temp_route, self.listener, 1, is_private=True) # inbox is an interceptor service which must be defined with the parameter "envelope" as below def listener(self, event: EventEnvelope): event.set_round_trip((time.time() - self.begin) * 1000) self.inbox_queue.put(event) def get_route(self): return self.temp_route def get_queue(self): return self.inbox_queue def close(self): self.platform.release(self.temp_route) @Singleton class Platform: SERVICE_QUERY = 'system.service.query' def __init__(self, work_dir: str = None, log_file: str = None, log_level: str = None, max_threads: int = None, network_connector: str = None): if sys.version_info.major < 3: python_version = str(sys.version_info.major)+"."+str(sys.version_info.minor) raise RuntimeError("Requires python 3.6 and above. Actual: "+python_version) self.util = Utility() self.origin = 'py'+(''.join(str(uuid.uuid4()).split('-'))) self.config = ConfigReader() my_log_file = log_file if log_file is not None else self.config.get_property('log.filename') my_log_level = log_level if log_level is not None else self.config.get_property('log.level') self._max_threads = max_threads if max_threads is not None else self.config.get('max.threads') self.work_dir = work_dir if work_dir is not None else self.config.get_property('work.directory') self.log = LoggingService(log_dir=self.util.normalize_path(self.work_dir + "/log"), log_file=my_log_file, log_level=my_log_level).get_logger() self._loop = asyncio.new_event_loop() # DO NOT CHANGE 'distributed.trace.processor' which is an optional user defined trace aggregator my_tracer = DistributedTrace(self, 'distributed.trace.processor') my_nc = network_connector if network_connector is not None else self.config.get_property('network.connector') self._cloud = NetworkConnector(self, my_tracer, self._loop, my_nc, self.origin) self._function_queues = dict() self._executor = concurrent.futures.ThreadPoolExecutor(max_workers=self._max_threads) self.log.info("Concurrent thread pool = "+str(self._max_threads)) # # Before we figure out how to solve blocking file I/O, we will regulate event output rate. # my_test_dir = self.util.normalize_path(self.work_dir + "/test") if not os.path.exists(my_test_dir): os.makedirs(my_test_dir) self._throttle = Throttle(self.util.normalize_path(my_test_dir + "/to_be_deleted"), log=self.log) self._seq = 0 self.util.cleanup_dir(my_test_dir) self.log.debug("Estimated processing rate is "+format(self._throttle.get_tps(), ',d') + " events per second for this computer") self.running = True self.stopped = False # distributed trace sessions self._traces = {} # start event loop in a new thread to avoid blocking the main thread def main_event_loop(): self.log.info("Event system started") self._loop.run_forever() self.log.info("Event system stopped") self._loop.close() threading.Thread(target=main_event_loop).start() def get_origin(self): """ get the origin ID of this application instance :return: origin ID """ return self.origin def get_trace_id(self) -> str: """ get trace ID for a transaction :return: trace ID """ trace_info = self.get_trace() return trace_info.get_id() if trace_info is not None else None def get_trace(self) -> TraceInfo: """ get trace info for a transaction :return: """ thread_id = threading.get_ident() return self._traces[thread_id] if thread_id in self._traces else None def annotate_trace(self, key: str, value: str): """ Annotate a trace at a point of a transaction :param key: any key :param value: any value :return: """ trace_info = self.get_trace() if trace_info is not None and isinstance(trace_info, TraceInfo): trace_info.annotate(key, value) def start_tracing(self, route: str, trace_id: str = None, trace_path: str = None): """ IMPORTANT: This method is reserved for system use. DO NOT call this from a user application. :param route: route name :param trace_id: id :param trace_path: path such as URI :return: None """ thread_id = threading.get_ident() self._traces[thread_id] = TraceInfo(route, trace_id, trace_path) def stop_tracing(self): """ IMPORTANT: This method is reserved for system use. DO NOT call this from a user application. :return: TraceInfo """ thread_id = threading.get_ident() if thread_id in self._traces: trace_info = self.get_trace() self._traces.pop(thread_id) return trace_info def run_forever(self): """ Tell the platform to run in the background until user presses CTL-C or the application is stopped by admin :return: None """ def graceful_shutdown(signum, frame): self.log.warn("Control-C detected" if signal.SIGINT == signum else "KILL signal detected") self.running = False if threading.current_thread() is threading.main_thread(): signal.signal(signal.SIGTERM, graceful_shutdown) signal.signal(signal.SIGINT, graceful_shutdown) # keep the main thread running so CTL-C can be detected self.log.info("To stop this application, press Control-C") while self.running: time.sleep(0.1) # exit forever loop and ask platform to end event loop self.stop() else: raise ValueError('Unable to register Control-C and KILL signals because this is not the main thread') def register(self, route: str, user_function: any, total_instances: int, is_private: bool = False) -> None: """ Register a user function :param route: ID of the function :param user_function: the lambda function given by you :param total_instances: 1 for singleton or more for concurrency :param is_private: true if internal function within this application instance :return: """ self.util.validate_service_name(route) if not isinstance(total_instances, int): raise ValueError("Expect total_instances to be int, actual: "+str(type(total_instances))) if total_instances < 1: raise ValueError("total_instances must be at least 1") if total_instances > self._max_threads: raise ValueError("total_instances must not exceed max threads of "+str(self._max_threads)) function_type = self.util.get_function_type(user_function) if function_type == FunctionType.NOT_SUPPORTED: raise ValueError("Function signature should be (headers: dict, body: any, instance: int) or " + "(headers: dict, body: any) or (event: EventEnvelope)") if route in self._function_queues: self.log.warn(route+" will be reloaded") self.release(route) queue = asyncio.Queue(loop=self._loop) if function_type == FunctionType.INTERCEPTOR: self._function_queues[route] = {'queue': queue, 'private': is_private, 'instances': 1} ServiceQueue(self._loop, self._executor, queue, route, user_function, 0) elif function_type == FunctionType.REGULAR: self._function_queues[route] = {'queue': queue, 'private': is_private, 'instances': total_instances} ServiceQueue(self._loop, self._executor, queue, route, user_function, total_instances) else: # function_type == FunctionType.SINGLETON self._function_queues[route] = {'queue': queue, 'private': is_private, 'instances': 1} ServiceQueue(self._loop, self._executor, queue, route, user_function, -1) # advertise the new route to the network if self._cloud.is_ready() and not is_private: self._cloud.send_payload({'type': 'add', 'route': route}) def cloud_ready(self): return self._cloud.is_ready() def release(self, route: str) -> None: # this will un-register a route if not isinstance(route, str): raise ValueError("Expect route to be str, actual: "+str(type(route))) if route not in self._function_queues: raise ValueError("route "+route+" not found") # advertise the deleted route to the network if self._cloud.is_ready() and self.route_is_private(route): self._cloud.send_payload({'type': 'remove', 'route': route}) self._remove_route(route) def has_route(self, route: str) -> bool: if not isinstance(route, str): raise ValueError("Expect route to be str, actual: "+str(type(route))) return route in self._function_queues def get_routes(self, options: str = 'all'): result = list() if 'public' == options: for route in self._function_queues: if not self.route_is_private(route): result.append(route) return result elif 'private' == options: for route in self._function_queues: if self.route_is_private(route): result.append(route) return result elif 'all' == options: return list(self._function_queues.keys()) else: return result def route_is_private(self, route: str) -> bool: config = self._function_queues[route] if config and 'private' in config: return config['private'] else: return False def route_instances(self, route: str) -> int: config = self._function_queues[route] if config and 'instances' in config: return config['instances'] else: return 0 def parallel_request(self, events: list, timeout_seconds: float): timeout_value = self.util.get_float(timeout_seconds) if timeout_value <= 0: raise ValueError("timeout value in seconds must be positive number") if not isinstance(events, list): raise ValueError("events must be a list of EventEnvelope") if len(events) == 0: raise ValueError("event list is empty") if len(events) == 1: result = list() result.append(self.request(events[0], timeout_value)) return result for evt in events: if not isinstance(evt, EventEnvelope): raise ValueError("events must be a list of EventEnvelope") # retrieve distributed tracing info if any trace_info = self.get_trace() # emulate RPC inbox = Inbox(self) temp_route = inbox.get_route() inbox_queue = inbox.get_queue() try: for evt in events: # restore distributed tracing info from current thread if trace_info: if trace_info.get_route() is not None and evt.get_from() is None: evt.set_from(trace_info.get_route()) if trace_info.get_id() is not None and trace_info.get_path() is not None: evt.set_trace(trace_info.get_id(), trace_info.get_path()) route = evt.get_to() evt.set_reply_to(temp_route, me=True) if route in self._function_queues: self._loop.call_soon_threadsafe(self._send, route, evt.to_map()) else: if self._cloud.is_connected(): self._cloud.send_payload({'type': 'event', 'event': evt.to_map()}) else: raise ValueError("route " + route + " not found") total_requests = len(events) result_list = list() while True: try: # wait until all response events are delivered to the inbox result_list.append(inbox_queue.get(True, timeout_value)) if len(result_list) == len(events): return result_list except Empty: raise TimeoutError('Requests timeout for '+str(round(timeout_value, 3))+" seconds. Expect: " + str(total_requests) + " responses, actual: " + str(len(result_list))) finally: inbox.close() def request(self, event: EventEnvelope, timeout_seconds: float): timeout_value = self.util.get_float(timeout_seconds) if timeout_value <= 0: raise ValueError("timeout value in seconds must be positive number") if not isinstance(event, EventEnvelope): raise ValueError("event object must be an EventEnvelope") # restore distributed tracing info from current thread trace_info = self.get_trace() if trace_info: if trace_info.get_route() is not None and event.get_from() is None: event.set_from(trace_info.get_route()) if trace_info.get_id() is not None and trace_info.get_path() is not None: event.set_trace(trace_info.get_id(), trace_info.get_path()) # emulate RPC inbox = Inbox(self) temp_route = inbox.get_route() inbox_queue = inbox.get_queue() try: route = event.get_to() event.set_reply_to(temp_route, me=True) if route in self._function_queues: self._loop.call_soon_threadsafe(self._send, route, event.to_map()) else: if self._cloud.is_connected(): self._cloud.send_payload({'type': 'event', 'event': event.to_map()}) else: raise ValueError("route " + route + " not found") # wait until response event is delivered to the inbox return inbox_queue.get(True, timeout_value) except Empty: raise TimeoutError('Route '+event.get_to()+' timeout for '+str(round(timeout_value, 3))+" seconds") finally: inbox.close() def send_event(self, event: EventEnvelope, broadcast=False) -> None: if not isinstance(event, EventEnvelope): raise ValueError("event object must be an EventEnvelope class") # restore distributed tracing info from current thread trace_info = self.get_trace() if trace_info: if trace_info.get_route() is not None and event.get_from() is None: event.set_from(trace_info.get_route()) if trace_info.get_id() is not None and trace_info.get_path() is not None: event.set_trace(trace_info.get_id(), trace_info.get_path()) # regulate rate for best performance self._seq += 1 self._throttle.regulate_rate(self._seq) route = event.get_to() if broadcast: event.set_broadcast(True) reply_to = event.get_reply_to() if reply_to: target = reply_to[2:] if reply_to.startswith('->') else reply_to if route == target: raise ValueError("route and reply_to must not be the same") if route in self._function_queues: if event.is_broadcast() and self._cloud.is_connected(): self._cloud.send_payload({'type': 'event', 'event': event.to_map()}) else: self._loop.call_soon_threadsafe(self._send, route, event.to_map()) else: if self._cloud.is_connected(): self._cloud.send_payload({'type': 'event', 'event': event.to_map()}) else: raise ValueError("route "+route+" not found") def exists(self, routes: any): if isinstance(routes, str): single_route = routes if self.has_route(single_route): return True if self.cloud_ready(): event = EventEnvelope() event.set_to(self.SERVICE_QUERY).set_header('type', 'find').set_header('route', single_route) result = self.request(event, 8.0) if isinstance(result, EventEnvelope): if result.get_body() is not None: return result.get_body() if isinstance(routes, list): if len(routes) > 0: remote_routes = list() for r in routes: if not self.has_route(r): remote_routes.append(r) if len(remote_routes) == 0: return True if self.cloud_ready(): # tell service query to use the route list in body event = EventEnvelope() event.set_to(self.SERVICE_QUERY).set_header('type', 'find') event.set_header('route', '*').set_body(routes) result = self.request(event, 8.0) if isinstance(result, EventEnvelope) and result.get_body() is not None: return result.get_body() return False def _remove_route(self, route): if route in self._function_queues: self._send(route, None) self._function_queues.pop(route) def _send(self, route, event): if route in self._function_queues: config = self._function_queues[route] if 'queue' in config: config['queue'].put_nowait(event) def connect_to_cloud(self): self._loop.run_in_executor(self._executor, self._cloud.start_connection) def stop(self): # # to allow user application to invoke the "stop" method from a registered service, # the system must start a new thread so that the service can finish first. # if not self.stopped: self.log.info('Bye') # guarantee this stop function to execute only once self.stopped = True # exit the run_forever loop if any self.running = False # in case the calling function has just send an event asynchronously time.sleep(0.5) threading.Thread(target=self._bye).start() def _bye(self): def stopping(): route_list = [] for route in self.get_routes(): route_list.append(route) for route in route_list: self._remove_route(route) self._loop.create_task(full_stop()) async def full_stop(): # give time for registered services to stop await asyncio.sleep(1.0) queue_dir = self.util.normalize_path(self.work_dir + "/queues/" + self.get_origin()) self.util.cleanup_dir(queue_dir) self._loop.stop() self._cloud.close_connection(1000, 'bye', stop_engine=True) self._loop.call_soon_threadsafe(stopping)
Hiwin_RT605_ArmCommand_Socket_20190627164143.py
#!/usr/bin/env python3 # license removed for brevity import rospy import os import numpy as np from std_msgs.msg import String from ROS_Socket.srv import * from ROS_Socket.msg import * from std_msgs.msg import Int32MultiArray import math import enum pos_feedback_times = 0 mode_feedback_times = 0 msg_feedback = 1 #接收策略端命令 用Socket傳輸至控制端電腦 import socket ##多執行序 import threading import time import sys import matplotlib as plot import HiwinRA605_socket_TCPcmd as TCP import HiwinRA605_socket_Taskcmd as Taskcmd Socket = 0 data = '0' #設定傳輸資料初始值 Arm_feedback = 1 #假設手臂忙碌 NAME = 'socket_server' ##------------class pos------- class point(): def __init__(self, x, y, z, pitch, roll, yaw): self.x = x self.y = y self.z = z self.pitch = pitch self.roll = roll self.yaw = yaw pos = point(0,36.8,11.35,-90,0,0) ##------------class socket_cmd--------- class socket_data(): def __init__(self, grip, setvel, ra, delay, setboth, action,Speedmode): self.grip = grip self.setvel = setvel self.ra = ra self.delay = delay self.setboth = setboth self.action = action self.Speedmode = Speedmode socket_cmd = socket_data(0,0,0,0,0,0,0) ##-----------switch define------------## class switch(object): def __init__(self, value): self.value = value self.fall = False def __iter__(self): """Return the match method once, then stop""" yield self.match raise StopIteration def match(self, *args): """Indicate whether or not to enter a case suite""" if self.fall or not args: return True elif self.value in args: # changed for v1.5, see below self.fall = True return True else: return False ##-----------client feedback arm state---------- class StateFeedback(): def _init_(self,ArmState,SentFlag): self.ArmState = ArmState self.SentFlag = SentFlag state_feedback = StateFeedback(False,False) def point_data(x,y,z,pitch,roll,yaw): ##接收策略端傳送位姿資料 pos.x = x pos.y = y pos.z = z pos.pitch = pitch pos.roll = roll pos.yaw = yaw ##----------Arm Mode-------------### def Arm_Mode(action,grip,ra,setvel,setboth): ##接收策略端傳送手臂模式資料 global arm_mode_flag socket_cmd.action = action socket_cmd.grip = grip socket_cmd.ra = ra socket_cmd.setvel = setvel socket_cmd.setboth = setboth arm_mode_flag = True Socket_command() ##-------Arm Speed Mode------------### def Speed_Mode(speedmode): ##接收策略端傳送手臂模式資料 global speed_mode_flag socket_cmd.Speedmode = speedmode # def Grip_Mode(req): ##接收策略端傳送夾爪動作資料 # socket_cmd.grip = int('%s'%req.grip) # return(1) def socket_talker(): ##創建Server node pub = rospy.Publisher('chatter', Int32MultiArray, queue_size=10) rospy.init_node(NAME) rate = rospy.Rate(10) # 10hz while not rospy.is_shutdown(): # hello_str = "hello world %s" % rospy.get_time() state = Int32MultiArray() state.data = 1 # rospy.loginfo(state) pub.publish(state) rate.sleep() # a = rospy.Service('arm_mode',arm_mode, Arm_Mode) ##server arm mode data # s = rospy.Service('arm_pos',arm_data, point_data) ##server arm point data # b = rospy.Service('speed_mode',speed_mode, Speed_Mode) ##server speed mode data #c = rospy.Service('grip_mode',grip_mode, Grip_Mode) ##server grip mode data print ("Ready to connect") #rospy.spin() ## spin one ##------------server 端 end------- ##----------socket 封包傳輸--------------## ##---------------socket 傳輸手臂命令----------------- def Socket_command(): global arm_mode_flag,speed_mode_flag,point_data_flag if arm_mode_flag == True: arm_mode_flag = False for case in switch(socket_cmd.action): #-------PtP Mode-------- if case(Taskcmd.Action_Type.PtoP): for case in switch(socket_cmd.setboth): if case(Taskcmd.Ctrl_Mode.CTRL_POS): data = TCP.SetPtoP(socket_cmd.grip,Taskcmd.RA.ABS,Taskcmd.Ctrl_Mode.CTRL_POS,pos.x,pos.y,pos.z,pos.pitch,pos.roll,pos.yaw,socket_cmd.setvel) break if case(Taskcmd.Ctrl_Mode.CTRL_EULER): data = TCP.SetPtoP(socket_cmd.grip,Taskcmd.RA.ABS,Taskcmd.Ctrl_Mode.CTRL_EULER,pos.x,pos.y,pos.z,pos.pitch,pos.roll,pos.yaw,socket_cmd.setvel) break if case(Taskcmd.Ctrl_Mode.CTRL_BOTH): data = TCP.SetPtoP(socket_cmd.grip,Taskcmd.RA.ABS,Taskcmd.Ctrl_Mode.CTRL_BOTH,pos.x,pos.y,pos.z,pos.pitch,pos.roll,pos.yaw,socket_cmd.setvel) break break #-------Line Mode-------- if case(Taskcmd.Action_Type.Line): for case in switch(socket_cmd.setboth): if case(Taskcmd.Ctrl_Mode.CTRL_POS): data = TCP.SetLine(socket_cmd.grip,Taskcmd.RA.ABS,Taskcmd.Ctrl_Mode.CTRL_POS,pos.x,pos.y,pos.z,pos.pitch,pos.roll,pos.yaw,socket_cmd.setvel) break if case(Taskcmd.Ctrl_Mode.CTRL_EULER): data = TCP.SetLine(socket_cmd.grip,Taskcmd.RA.ABS,Taskcmd.Ctrl_Mode.CTRL_EULER,pos.x,pos.y,pos.z,pos.pitch,pos.roll,pos.yaw,socket_cmd.setvel ) break if case(Taskcmd.Ctrl_Mode.CTRL_BOTH): data = TCP.SetLine(socket_cmd.grip,Taskcmd.RA.ABS,Taskcmd.Ctrl_Mode.CTRL_BOTH,pos.x,pos.y,pos.z,pos.pitch,pos.roll,pos.yaw,socket_cmd.setvel ) break break #-------設定手臂速度-------- if case(Taskcmd.Action_Type.SetVel): data = TCP.SetVel(socket_cmd.grip, socket_cmd.setvel) break #-------設定手臂Delay時間-------- if case(Taskcmd.Action_Type.Delay): data = TCP.SetDelay(socket_cmd.grip,0) break #-------設定手臂急速&安全模式-------- if case(Taskcmd.Action_Type.Mode): data = TCP.Set_SpeedMode(socket_cmd.grip,socket_cmd.Speedmode) break socket_cmd.action= 5 ##切換初始mode狀態 Socket.send(data.encode('utf-8'))#socket傳送for python to translate str # Socket_sent_flag = True # socket_client_sent_flag(Socket_sent_flag) ##-----------socket client-------- def socket_client(): global Socket,Arm_feedback,data,Socket_sent_flag try: Socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM) Socket.connect(('192.168.0.1', 8080))#iclab 5 & iclab hiwin #s.connect(('192.168.1.102', 8080))#iclab computerx except socket.error as msg: print(msg) sys.exit(1) print('Connection has been successful') print(Socket.recv(1024)) while 1: feedback_str = Socket.recv(1024) #手臂端傳送手臂狀態 if str(feedback_str[2]) == '48':# F 手臂為Ready狀態準備接收下一個運動指令 state_feedback.ArmState = False # Arm_feedback = 0 # socket_client_arm_state(Arm_feedback) #print("isbusy false") if str(feedback_str[2]) == '49':# T 手臂為忙碌狀態無法執行下一個運動指令 state_feedback.ArmState = True # Arm_feedback = 1 # socket_client_arm_state(Arm_feedback) #print("isbusy true") if str(feedback_str[2]) == '54':# 6 策略完成 state_feedback.ArmState = 6 # Arm_feedback = 6 # socket_client_arm_state(Arm_feedback) print("shutdown") #確認傳送旗標 if str(feedback_str[4]) == '48':#回傳0 false state_feedback.SentFlag = False # Socket_sent_flag = False # socket_client_sent_flag(Socket_sent_flag) if str(feedback_str[4]) == '49':#回傳1 true state_feedback.SentFlag = True # Socket_sent_flag = True # socket_client_sent_flag(Socket_sent_flag) ##---------------socket 傳輸手臂命令 end----------------- if Arm_feedback == Taskcmd.Arm_feedback_Type.shutdown: break rospy.on_shutdown(myhook) Socket.close() ##-----------socket client end-------- ##-------------socket 封包傳輸 end--------------## ## 多執行緒 def thread_test(): socket_client() ## 多執行序 end def myhook(): print ("shutdown time!") if __name__ == '__main__': socket_cmd.action = 5##切換初始mode狀態 t = threading.Thread(target=thread_test) t.start() # 開啟多執行緒 try: socket_talker() except rospy.ROSInterruptException: pass t.join()
story.py
import web import disk from bs4 import BeautifulSoup from urllib.parse import urlparse, urljoin import itertools import threading import re import datetime import dateutil.parser import math import statistics def words_of_entries(entries): words = 0 for p in entries: words += len(p.get_text().split()) return words class PageInfo: def __init__(self, date, words, next): self.date = date self.words = words self.next = next class StoryInfo: def __init__(self, name, url, color, contentclass, dateclass, validationclass, validationtext, validationinvert, nextlinkclass, nextlinktext, contentblockbegin, contentblockend, domains, zerolength, finished, overridestart, posterityonly): self.name = name self.url = url self.color = '#' + color self.contentclass = contentclass self.dateclass = dateclass self.validationclass = validationclass self.validationtext = validationtext self.validationinvert = validationinvert self.nextlinkclass = nextlinkclass self.nextlinktext = nextlinktext self.contentblockbegin = contentblockbegin self.contentblockend = contentblockend self.domains = domains self.zerolength = zerolength self.finished = finished self.overridestart = overridestart self.posterityonly = posterityonly self.data = None; def words_total(self): return sum(page.words for page in self.data.pages) def contentblock_crop(self, blocks): if self.contentblockend != 0: return blocks[self.contentblockbegin:-self.contentblockend] elif self.contentblockbegin != 0: return blocks[self.contentblockbegin:] else: return blocks def statstart(self): return dateutil.parser.parse(self.overridestart) if self.overridestart is not None else self.data.pages[0].date def words_per_week(self, weeks_to_average): return self.smoothed_worker(weeks_to_average, sum, True) def words_per_post(self, weeks_to_average): return self.smoothed_worker(weeks_to_average, self.meanornull, False) def meanornull(self, input): data = list(input) if len(data) > 0: return statistics.mean(data) else: return 0 # this is wrong, for now def posts_per_week(self, weeks_to_average): return self.smoothed_worker(weeks_to_average, lambda data: sum(1 if words > 0 else 0 for words in data), True) def smoothed_worker(self, weeks_to_average, func, per_week): week_length = 7 average_size = week_length * weeks_to_average start = self.statstart() results = [] for center in [start + datetime.timedelta(days = x) for x in range(0, (self.data.pages[-1].date - start).days)]: rstart = center - datetime.timedelta(days = average_size / 2) rend = center + datetime.timedelta(days = average_size / 2) rstartweeks = math.floor((center - max(rstart, self.statstart())).days / 7) rendweeks = math.floor((min(rend, self.data.pages[-1].date) - center).days / 7) rstart = center - datetime.timedelta(days = rstartweeks * 7) rend = center + datetime.timedelta(days = rendweeks * 7) if per_week: divisor = (rend - rstart).days / 7 else: divisor = 1 results += [(center, func(page.words for page in self.data.pages if page.date > rstart and page.date <= rend) / divisor)] return results class StoryData: def __init__(self): self.pages = [] def handle_page(url, story): page, err = web.simple_get(url) if page is None: raise RuntimeError(f'Page {url} failed to download: {err}') html = BeautifulSoup(page, 'html.parser') if story.dateclass is not None: date = dateutil.parser.parse(html.select_one(story.dateclass).get_text()) else: date = None words = words_of_entries(story.contentblock_crop(html.select(story.contentclass))) if words <= 0 and url not in story.zerolength: raise RuntimeError(f'Zero words detected in chapter {url}; that is never right') for link in html.select(story.nextlinkclass): if re.match(story.nextlinktext, link.text.strip()): if link.has_attr('href'): next = link['href'] elif link.has_attr('onclick'): # fanfiction.net buttons next = re.match("self.location='(.*)'", link['onclick']).group(1) else: continue if urlparse(next).netloc in story.domains: next = urljoin(url, next) break else: next = None # it's weirdly common to just link "next" back to the epilogue, so let's catch that if next == url: next = None if story.validationclass != None: validated = False for element in html.select(story.validationclass): validated = validated or re.match(story.validationtext, element.get_text().strip()) if story.validationinvert: validated = not validated else: validated = True print(f'{url}, {date}: {words}, {next}' + (" (SKIPPED)" if not validated else "")) return PageInfo(date, words, next), validated def handle_story(story): # we can be passed a string, so let's just convert that to a story if isinstance(story, str): story = disk.db()[story] # get rid of the last page, just in case it's changed (we expect this) if len(story.data.pages) > 0: with disk.cache_lock(): story.data.pages.pop() # either use the final next if available, or the base URL if len(story.data.pages) > 0: url = story.data.pages[-1].next else: url = story.url while url != None: page, validated = handle_page(url, story) url = page.next if validated: with disk.cache_lock(): story.data.pages += [page] disk.save_cache(optional = True) def handle_stories(allowthreads): if allowthreads: threads = [] for id, story in disk.db().items(): threads.append(threading.Thread(target = lambda: handle_story(story))) threads[-1].start() for thread in threads: thread.join() else: for id, story in disk.db().items(): handle_story(story) disk.save_cache()
test_forward.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=import-self, invalid-name, unused-argument """ Tensorflow testcases ==================== This article is a test script to test tensorflow operator with Relay. """ from __future__ import print_function import threading import numpy as np import pytest try: import tensorflow.compat.v1 as tf except ImportError: import tensorflow as tf from tensorflow.python.framework import constant_op from tensorflow.python.framework import graph_util from tensorflow.python.ops import nn_ops from tensorflow.python.ops import nn from tensorflow.python.ops import array_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import variable_scope from tensorflow.python.ops import variables from tensorflow.python.ops import init_ops from tensorflow.python.framework import function from tensorflow.python.framework import ops from tensorflow.python.framework import dtypes from tensorflow.python.ops import gen_functional_ops from distutils.version import LooseVersion import tvm from tvm import te from tvm import relay import tvm.relay.testing.tf as tf_testing from tvm.runtime.vm import VirtualMachine from packaging import version as package_version import tvm.testing ####################################################################### # Generic run functions for TVM & tensorflow # ------------------------------------------ def convert_to_list(x): if not isinstance(x, list): x = [x] return x tf_dtypes = { "float32": tf.float32, "float16": tf.float16, "float64": tf.float64, "int32": tf.int32, "uint8": tf.uint8, "int8": tf.int8, "int16": tf.int16, "uint16": tf.uint16, "int64": tf.int64, } def vmobj_to_list(o): if isinstance(o, tvm.nd.NDArray): return [o.asnumpy()] elif isinstance(o, tvm.runtime.container.ADT): result = [] for f in o: result.extend(vmobj_to_list(f)) return result elif isinstance(o, tvm.relay.backend.interpreter.ConstructorValue): if o.constructor.name_hint == "Cons": tl = vmobj_to_list(o.fields[1]) hd = vmobj_to_list(o.fields[0]) hd.extend(tl) return hd elif o.constructor.name_hint == "Nil": return [] elif "tensor_nil" in o.constructor.name_hint: return [0] elif "tensor" in o.constructor.name_hint: return [o.fields[0].asnumpy()] else: raise RuntimeError("Unknown object type: %s" % o.constructor.name_hint) else: raise RuntimeError("Unknown object type: %s" % type(o)) def run_tvm_graph( graph_def, input_data, input_node, num_output=1, target="llvm", out_names=None, opt_level=3, mode="graph_runtime", cuda_layout="NCHW", layout=None, disabled_pass=None, ignore_in_shape=False, serialize=False, ): """ Generic function to compile on relay and execute on tvm """ input_data = convert_to_list(input_data) input_node = convert_to_list(input_node) if target == "cuda": layout = cuda_layout target_host = None if ignore_in_shape: shape_dict = None else: shape_dict = { e: i.shape if hasattr(i, "shape") else () for e, i in zip(input_node, input_data) } mod, params = relay.frontend.from_tensorflow( graph_def, layout=layout, shape=shape_dict, outputs=out_names ) ctx = tvm.context(target, 0) if mode == "debug": ex = relay.create_executor(mode, mod=mod, ctx=tvm.cpu(), target="llvm") inputs = [] for param in mod["main"].params: found = False for i, n in enumerate(input_node): if n == param.name_hint: found = True inputs.append(tvm.nd.array(input_data[i])) break # Interpreter doesn't bind constants, so still need to find in params if not found: inputs.append(tvm.nd.array(params[param.name_hint])) result = ex.evaluate()(*inputs) return vmobj_to_list(result) elif mode == "vm": with tvm.transform.PassContext(opt_level=opt_level, disabled_pass=disabled_pass): print(mod["main"]) mod = relay.transform.InferType()(mod) vm_exec = relay.vm.compile(mod, target="llvm", params=params) if serialize: code, lib = vm_exec.save() vm_exec = tvm.runtime.vm.Executable.load_exec(code, lib) vm = VirtualMachine(vm_exec, tvm.cpu()) inputs = {} for e, i in zip(input_node, input_data): inputs[e] = tvm.nd.array(i) result = vm.invoke("main", **inputs) return vmobj_to_list(result) else: with tvm.transform.PassContext(opt_level=opt_level, disabled_pass=disabled_pass): graph, lib, params = relay.build(mod, target, target_host, params) from tvm.contrib import graph_runtime m = graph_runtime.create(graph, lib, ctx) # set inputs for e, i in zip(input_node, input_data): if e != "": m.set_input(e, tvm.nd.array(i)) m.set_input(**params) # execute m.run() # get outputs assert out_names is None or num_output == len( out_names ), "out_names: {} num_output: {}".format(out_names, num_output) tvm_output_list = [m.get_output(i).asnumpy() for i in range(num_output)] return tvm_output_list def run_tf_graph(sess, input_data, input_node, output_node): """ Generic function to execute tensorflow """ input_data = convert_to_list(input_data) input_node = convert_to_list(input_node) output_node = convert_to_list(output_node) tensor = [sess.graph.get_tensor_by_name(output_name) for output_name in output_node] input_dict = {e: input_data[i] for i, e in enumerate(input_node)} if len(input_node) == 1 and input_node[0] == "": output_data = sess.run(tensor) else: output_data = sess.run(tensor, input_dict) return output_data def compare_tf_with_tvm( in_data, in_name, out_name, init_global_variables=False, no_gpu=False, opt_level=3, mode="graph_runtime", cuda_layout="NCHW", add_shapes_to_graph_def=True, ): """Generic function to generate and compare tensorflow and TVM output""" def name_without_num(name): return name.split(":")[0] if ":" in name else name out_name = convert_to_list(out_name) out_node = [name_without_num(name) for name in out_name] in_data = convert_to_list(in_data) in_name = convert_to_list(in_name) in_node = [name_without_num(name) for name in in_name] with tf.Session() as sess: if init_global_variables: sess.run(variables.global_variables_initializer()) final_graph_def = ( tf_testing.AddShapesToGraphDef(sess, out_node) if add_shapes_to_graph_def else tf.get_default_graph().as_graph_def() ) tf_output = run_tf_graph(sess, in_data, in_name, out_name) for device in ["llvm", "cuda"]: ctx = tvm.context(device, 0) if not tvm.testing.device_enabled(device): print("Skip because %s is not enabled" % device) continue if no_gpu and device == "cuda": continue tvm_output = run_tvm_graph( final_graph_def, in_data, in_node, target=device, out_names=out_name, num_output=len(out_name), opt_level=opt_level, mode=mode, cuda_layout=cuda_layout, ) # since the names from tensorflow and relay runs are not exactly same, # first len(tf_output) will be compared for i in range(len(tf_output)): if not isinstance(tf_output[i], np.ndarray): assert len(tvm_output[i].shape) == 0 tvm.testing.assert_allclose(tf_output[i], tvm_output[i], atol=1e-5, rtol=1e-5) sess.close() def is_gpu_available(): from tensorflow.python.client import device_lib local_device_protos = device_lib.list_local_devices() gpu_list = [x.name for x in local_device_protos if x.device_type == "GPU"] if len(gpu_list) > 0: print("Tensorflow GPU:", gpu_list) return True else: return False ####################################################################### # Pooling # ------- def _test_pooling_iteration(input_shape, **kwargs): """ One iteration of pool operation with given shapes and attributes """ x = -np.arange(np.prod(input_shape), dtype=np.float32).reshape(input_shape) - 1 with tf.Graph().as_default(): in_data = array_ops.placeholder(shape=input_shape, dtype="float32") nn_ops.pool(in_data, **kwargs) if kwargs["pooling_type"] == "MAX": out_name = "max_pool:0" else: out_name = "avg_pool:0" compare_tf_with_tvm(x, "Placeholder:0", out_name) def _test_pooling(input_shape, **kwargs): _test_pooling_iteration(input_shape, **kwargs) if is_gpu_available(): if len(input_shape) == 4: input_shape = [input_shape[ii] for ii in (0, 3, 1, 2)] kwargs["data_format"] = "NCHW" _test_pooling_iteration(input_shape, **kwargs) @tvm.testing.uses_gpu def test_forward_pooling(): """ Pooling """ # TensorFlow only supports NDHWC for max_pool3d on CPU for pool_type in ["AVG", "MAX"]: # NDHWC is the default layout for max_pool3d and avg_pool3d in TensorFlow _test_pooling( input_shape=[1, 3, 32, 32, 32], window_shape=[2, 2, 2], padding="VALID", pooling_type=pool_type, dilation_rate=[1, 1, 1], strides=[2, 2, 2], ) _test_pooling( input_shape=[1, 3, 32, 32, 32], window_shape=[1, 1, 1], padding="SAME", pooling_type=pool_type, dilation_rate=[1, 1, 1], strides=[1, 1, 1], ) _test_pooling( input_shape=[1, 3, 32, 32, 32], window_shape=[2, 2, 2], padding="SAME", pooling_type=pool_type, dilation_rate=[1, 1, 1], strides=[2, 2, 2], ) # test cases for max_pool3d & avg_pool3d with layout NCDHW # TensorFlow pool3d doesn't support NCDHW on cpu if is_gpu_available(): _test_pooling( input_shape=[1, 3, 32, 32, 32], window_shape=[1, 1, 1], padding="SAME", pooling_type=pool_type, dilation_rate=[1, 1, 1], strides=[1, 1, 1], data_format="NCDHW", ) _test_pooling( input_shape=[1, 3, 32, 32, 32], window_shape=[2, 2, 2], padding="VALID", pooling_type=pool_type, dilation_rate=[1, 1, 1], strides=[2, 2, 2], data_format="NCDHW", ) _test_pooling( input_shape=[2, 9, 10, 2], window_shape=[1, 1], padding="SAME", pooling_type=pool_type, dilation_rate=[1, 1], strides=[1, 1], ) _test_pooling( input_shape=[2, 10, 9, 2], window_shape=[1, 1], padding="SAME", pooling_type=pool_type, dilation_rate=[1, 1], strides=[1, 1], ) _test_pooling( input_shape=[2, 9, 10, 2], window_shape=[2, 1], padding="SAME", pooling_type=pool_type, dilation_rate=[1, 1], strides=[1, 1], ) _test_pooling( input_shape=[2, 10, 9, 2], window_shape=[2, 3], padding="SAME", pooling_type=pool_type, dilation_rate=[1, 1], strides=[2, 1], ) # Tests involving SpaceToBatchND _test_pooling( input_shape=[1, 1, 2, 1], window_shape=[1, 1], padding="VALID", pooling_type=pool_type, dilation_rate=[1, 2], ) _test_pooling( input_shape=[1, 2, 1], window_shape=[1], padding="VALID", pooling_type=pool_type, dilation_rate=[2], ) ####################################################################### # Convolution # ----------- def _test_convolution( opname, tensor_in_sizes, filter_in_sizes, dilations, strides, padding, data_format, deconv_output_shape=[], add_shapes_to_graph_def=True, ): """ One iteration of convolution with given shapes and attributes """ total_size_1 = np.prod(tensor_in_sizes) total_size_2 = np.prod(filter_in_sizes) # Initializes the input tensor with array containing incrementing # numbers from 1. data_array = [f * 1.0 for f in range(1, total_size_1 + 1)] filter_array = [f * 1.0 for f in range(1, total_size_2 + 1)] with tf.Graph().as_default(): in_data = array_ops.placeholder(shape=tensor_in_sizes, dtype="float32") in_filter = constant_op.constant(filter_array, shape=filter_in_sizes, dtype="float32") if data_format == "NHWC": strides = [1] + strides + [1] dilations = [1] + dilations + [1] else: strides = [1, 1] + strides dilations = [1, 1] + dilations if opname == "conv": nn_ops.conv2d( in_data, in_filter, strides=strides, dilations=dilations, padding=padding, data_format=data_format, ) compare_tf_with_tvm( np.reshape(data_array, tensor_in_sizes).astype("float32"), "Placeholder:0", "Conv2D:0", add_shapes_to_graph_def=add_shapes_to_graph_def, ) elif opname == "conv_transpose": nn_ops.conv2d_transpose( in_data, in_filter, output_shape=deconv_output_shape, strides=strides, padding=padding, data_format=data_format, ) compare_tf_with_tvm( np.reshape(data_array, tensor_in_sizes).astype("float32"), "Placeholder:0", "conv2d_transpose:0", add_shapes_to_graph_def=add_shapes_to_graph_def, ) else: nn_ops.depthwise_conv2d_native( in_data, in_filter, strides=strides, dilations=dilations, padding=padding, data_format=data_format, ) compare_tf_with_tvm( np.reshape(data_array, tensor_in_sizes).astype("float32"), "Placeholder:0", "DepthwiseConv2dNative:0", add_shapes_to_graph_def=add_shapes_to_graph_def, ) @tvm.testing.uses_gpu def test_forward_convolution(): if is_gpu_available(): _test_convolution("conv", [4, 176, 8, 8], [1, 1, 176, 32], [1, 1], [1, 1], "SAME", "NCHW") _test_convolution("conv", [4, 19, 17, 17], [3, 3, 19, 19], [1, 1], [2, 2], "VALID", "NCHW") _test_convolution("conv", [4, 124, 17, 17], [1, 1, 124, 19], [1, 1], [1, 1], "SAME", "NCHW") _test_convolution("conv", [4, 12, 17, 17], [3, 3, 12, 32], [1, 1], [2, 2], "VALID", "NCHW") _test_convolution( "depthwise", [4, 176, 8, 8], [1, 1, 176, 1], [1, 1], [1, 1], "SAME", "NCHW" ) _test_convolution( "depthwise", [4, 19, 17, 17], [3, 3, 19, 1], [1, 1], [2, 2], "VALID", "NCHW" ) _test_convolution( "depthwise", [4, 124, 17, 17], [1, 1, 124, 1], [1, 1], [1, 1], "SAME", "NCHW" ) _test_convolution( "depthwise", [4, 12, 17, 17], [3, 3, 12, 1], [1, 1], [2, 2], "VALID", "NCHW" ) _test_convolution( "depthwise", [4, 12, 17, 17], [3, 3, 12, 2], [1, 1], [2, 2], "VALID", "NCHW" ) _test_convolution( "conv_transpose", [4, 32, 8, 8], [1, 1, 176, 32], [1, 1], [1, 1], "SAME", "NCHW", [4, 176, 8, 8], ) _test_convolution( "conv_transpose", [4, 32, 8, 8], [2, 2, 176, 32], [1, 1], [1, 1], "SAME", "NCHW", [4, 176, 8, 8], ) _test_convolution( "conv_transpose", [4, 32, 8, 8], [2, 2, 176, 32], [1, 1], [2, 2], "SAME", "NCHW", [4, 176, 15, 15], ) _test_convolution( "conv_transpose", [4, 32, 8, 8], [3, 3, 176, 32], [1, 1], [1, 1], "SAME", "NCHW", [4, 176, 8, 8], ) _test_convolution( "conv_transpose", [4, 32, 8, 8], [3, 3, 176, 32], [1, 1], [2, 2], "SAME", "NCHW", [4, 176, 15, 15], ) _test_convolution( "conv_transpose", [4, 32, 8, 8], [3, 3, 176, 32], [1, 1], [2, 2], "SAME", "NCHW", [4, 176, 16, 16], ) _test_convolution( "conv_transpose", [4, 19, 8, 8], [3, 3, 19, 19], [1, 1], [2, 2], "VALID", "NCHW", [4, 19, 17, 17], ) _test_convolution( "conv_transpose", [4, 19, 17, 17], [1, 1, 124, 19], [1, 1], [1, 1], "SAME", "NCHW", [4, 124, 17, 17], ) _test_convolution( "conv_transpose", [4, 19, 17, 17], [3, 3, 124, 19], [1, 1], [1, 1], "SAME", "NCHW", [4, 124, 17, 17], ) _test_convolution( "conv_transpose", [4, 32, 8, 8], [3, 3, 12, 32], [1, 1], [2, 2], "VALID", "NCHW", [4, 12, 17, 17], ) # kernel 2x2, strides (2,2) _test_convolution( "conv_transpose", [4, 19, 8, 8], [2, 2, 19, 19], [1, 1], [2, 2], "VALID", "NCHW", [4, 19, 16, 16], ) _test_convolution( "conv_transpose", [4, 32, 8, 8], [2, 2, 12, 32], [1, 1], [2, 2], "VALID", "NCHW", [4, 12, 16, 16], ) # output channel is 1 _test_convolution( "conv_transpose", [1, 19, 8, 8], [1, 1, 1, 19], [1, 1], [1, 1], "VALID", "NCHW", [1, 1, 8, 8], ) _test_convolution("conv", [4, 8, 8, 176], [1, 1, 176, 32], [1, 1], [1, 1], "SAME", "NHWC") _test_convolution("conv", [4, 17, 17, 19], [3, 3, 19, 19], [1, 1], [2, 2], "VALID", "NHWC") _test_convolution("conv", [4, 17, 17, 124], [1, 1, 124, 19], [1, 1], [1, 1], "SAME", "NHWC") _test_convolution("conv", [4, 17, 17, 12], [3, 3, 12, 32], [1, 1], [2, 2], "VALID", "NHWC") _test_convolution( "conv", [4, 17, 17, 12], [3, 3, 12, 32], [1, 1], [2, 2], "VALID", "NHWC", add_shapes_to_graph_def=False, ) _test_convolution("depthwise", [4, 8, 8, 176], [1, 1, 176, 1], [1, 1], [1, 1], "SAME", "NHWC") _test_convolution("depthwise", [4, 17, 17, 19], [3, 3, 19, 1], [1, 1], [2, 2], "VALID", "NHWC") _test_convolution("depthwise", [4, 17, 17, 124], [1, 1, 124, 1], [1, 1], [1, 1], "SAME", "NHWC") _test_convolution("depthwise", [4, 17, 17, 12], [3, 3, 12, 1], [1, 1], [2, 2], "VALID", "NHWC") _test_convolution("depthwise", [4, 17, 17, 12], [3, 3, 12, 2], [1, 1], [2, 2], "VALID", "NHWC") _test_convolution( "depthwise", [4, 17, 17, 12], [3, 3, 12, 2], [1, 1], [2, 2], "VALID", "NHWC", add_shapes_to_graph_def=False, ) _test_convolution( "conv_transpose", [4, 8, 8, 32], [1, 1, 176, 32], [1, 1], [1, 1], "SAME", "NHWC", [4, 8, 8, 176], ) _test_convolution( "conv_transpose", [4, 8, 8, 32], [2, 2, 176, 32], [1, 1], [1, 1], "SAME", "NHWC", [4, 8, 8, 176], ) _test_convolution( "conv_transpose", [4, 8, 8, 32], [2, 2, 176, 32], [1, 1], [2, 2], "SAME", "NHWC", [4, 15, 15, 176], ) _test_convolution( "conv_transpose", [4, 8, 8, 32], [3, 3, 176, 32], [1, 1], [1, 1], "SAME", "NHWC", [4, 8, 8, 176], ) _test_convolution( "conv_transpose", [4, 8, 8, 32], [3, 3, 176, 32], [1, 1], [2, 2], "SAME", "NHWC", [4, 15, 15, 176], ) _test_convolution( "conv_transpose", [4, 8, 8, 32], [3, 3, 176, 32], [1, 1], [2, 2], "SAME", "NHWC", [4, 16, 16, 176], ) _test_convolution( "conv_transpose", [4, 8, 8, 19], [3, 3, 19, 19], [1, 1], [2, 2], "VALID", "NHWC", [4, 17, 17, 19], ) _test_convolution( "conv_transpose", [4, 17, 17, 19], [1, 1, 124, 19], [1, 1], [1, 1], "SAME", "NHWC", [4, 17, 17, 124], ) _test_convolution( "conv_transpose", [4, 17, 17, 19], [3, 3, 124, 19], [1, 1], [1, 1], "SAME", "NHWC", [4, 17, 17, 124], ) _test_convolution( "conv_transpose", [4, 8, 8, 32], [3, 3, 12, 32], [1, 1], [2, 2], "VALID", "NHWC", [4, 17, 17, 12], ) # kernel 2x2, strides (2,2) _test_convolution( "conv_transpose", [4, 8, 8, 19], [2, 2, 19, 19], [1, 1], [2, 2], "VALID", "NHWC", [4, 16, 16, 19], ) _test_convolution( "conv_transpose", [4, 8, 8, 32], [2, 2, 12, 32], [1, 1], [2, 2], "VALID", "NHWC", [4, 16, 16, 12], ) # output channel is 1 _test_convolution( "conv_transpose", [1, 8, 8, 19], [1, 1, 1, 19], [1, 1], [1, 1], "VALID", "NHWC", [1, 8, 8, 1], ) # Test without adding shapes to graph def _test_convolution( "conv_transpose", [4, 8, 8, 32], [1, 1, 176, 32], [1, 1], [1, 1], "SAME", "NHWC", [4, 8, 8, 176], add_shapes_to_graph_def=False, ) ####################################################################### # Convolution3D # ------------- def _test_convolution3d( opname, tensor_in_sizes, filter_in_sizes, dilations, strides, padding, data_format, deconv_output_shape=[], add_shapes_to_graph_def=True, ): """ One iteration of 3D convolution with given shapes and attributes """ total_size_1 = np.prod(tensor_in_sizes) total_size_2 = np.prod(filter_in_sizes) # Initializes the input tensor with array containing incrementing # numbers from 1. data_array = [f * 1.0 for f in range(1, total_size_1 + 1)] filter_array = [f * 1.0 for f in range(1, total_size_2 + 1)] with tf.Graph().as_default(): in_data = array_ops.placeholder(shape=tensor_in_sizes, dtype="float32") in_filter = constant_op.constant(filter_array, shape=filter_in_sizes, dtype="float32") if data_format == "NDHWC": strides = [1] + strides + [1] dilations = [1] + dilations + [1] else: strides = [1, 1] + strides dilations = [1, 1] + dilations if opname == "conv": nn_ops.conv3d( in_data, in_filter, strides=strides, dilations=dilations, padding=padding, data_format=data_format, ) compare_tf_with_tvm( np.reshape(data_array, tensor_in_sizes).astype("float32"), "Placeholder:0", "Conv3D:0", cuda_layout="NCDHW", add_shapes_to_graph_def=add_shapes_to_graph_def, ) @tvm.testing.uses_gpu def test_forward_convolution3d(): if is_gpu_available(): _test_convolution3d( "conv", [4, 176, 8, 8, 8], [1, 1, 1, 176, 32], [1, 1, 1], [1, 1, 1], "SAME", "NCDHW" ) _test_convolution3d( "conv", [4, 19, 17, 17, 17], [3, 3, 3, 19, 19], [1, 1, 1], [2, 2, 2], "VALID", "NCDHW" ) _test_convolution3d( "conv", [4, 124, 17, 17, 17], [1, 1, 1, 124, 19], [1, 1, 1], [1, 1, 1], "SAME", "NCDHW" ) _test_convolution3d( "conv", [4, 12, 17, 17, 17], [3, 3, 3, 12, 32], [1, 1, 1], [2, 2, 2], "VALID", "NCDHW" ) _test_convolution3d( "conv", [4, 8, 8, 8, 176], [1, 1, 1, 176, 32], [1, 1, 1], [1, 1, 1], "SAME", "NDHWC" ) _test_convolution3d( "conv", [4, 17, 17, 17, 19], [3, 3, 3, 19, 19], [1, 1, 1], [2, 2, 2], "VALID", "NDHWC" ) _test_convolution3d( "conv", [4, 17, 17, 17, 124], [1, 1, 1, 124, 19], [1, 1, 1], [1, 1, 1], "SAME", "NDHWC" ) _test_convolution3d( "conv", [4, 17, 17, 17, 12], [3, 3, 3, 12, 32], [1, 1, 1], [2, 2, 2], "VALID", "NDHWC" ) # Test without adding shapes to graph def _test_convolution3d( "conv", [4, 17, 17, 17, 12], [3, 3, 3, 12, 32], [1, 1, 1], [2, 2, 2], "VALID", "NDHWC", add_shapes_to_graph_def=False, ) ####################################################################### # Convolution3D Transpose # ----------------------- def _test_convolution3d_transpose( data_shape, filter_shape, strides, padding, output_shape, data_format="NCDHW", add_shapes_to_graph_def=True, ): """ One iteration of 3D convolution transpose with given shapes and attributes """ dtype = "float32" data_array = np.random.uniform(size=data_shape).astype(dtype) filter_array = np.random.uniform(size=filter_shape).astype(dtype) if data_format == "NDHWC": strides = [1] + strides + [1] else: strides = [1, 1] + strides with tf.Graph().as_default(): in_data = array_ops.placeholder(shape=data_shape, dtype=dtype) in_filter = constant_op.constant(filter_array, shape=filter_shape, dtype=dtype) nn_ops.conv3d_transpose( in_data, in_filter, output_shape=output_shape, strides=strides, padding=padding, data_format=data_format, ) compare_tf_with_tvm( data_array, "Placeholder:0", "conv3d_transpose:0", cuda_layout="NDHWC", add_shapes_to_graph_def=add_shapes_to_graph_def, ) @tvm.testing.uses_gpu def test_forward_convolution3d_transpose(): if is_gpu_available(): _test_convolution3d_transpose( data_shape=[1, 10, 8, 8, 8], filter_shape=[1, 1, 1, 6, 10], strides=[1, 1, 1], padding="VALID", output_shape=[1, 6, 8, 8, 8], ) _test_convolution3d_transpose( data_shape=[4, 9, 8, 8, 8], filter_shape=[1, 1, 1, 6, 9], strides=[1, 1, 1], padding="VALID", output_shape=[4, 6, 8, 8, 8], ) _test_convolution3d_transpose( data_shape=[1, 3, 8, 8, 8], filter_shape=[1, 1, 1, 6, 3], strides=[2, 2, 2], padding="SAME", output_shape=[1, 6, 15, 15, 15], ) _test_convolution3d_transpose( data_shape=[1, 16, 8, 8, 8], filter_shape=[3, 3, 3, 6, 16], strides=[3, 3, 3], padding="VALID", output_shape=[1, 6, 24, 24, 24], ) _test_convolution3d_transpose( data_shape=[1, 8, 8, 8, 10], filter_shape=[1, 1, 1, 6, 10], strides=[1, 1, 1], padding="VALID", output_shape=[1, 8, 8, 8, 6], data_format="NDHWC", ) _test_convolution3d_transpose( data_shape=[4, 8, 8, 8, 9], filter_shape=[1, 1, 1, 6, 9], strides=[1, 1, 1], padding="VALID", output_shape=[4, 8, 8, 8, 6], data_format="NDHWC", ) _test_convolution3d_transpose( data_shape=[1, 8, 8, 8, 3], filter_shape=[1, 1, 1, 6, 3], strides=[2, 2, 2], padding="SAME", output_shape=[1, 15, 15, 15, 6], data_format="NDHWC", ) _test_convolution3d_transpose( data_shape=[1, 8, 8, 8, 16], filter_shape=[3, 3, 3, 6, 16], strides=[3, 3, 3], padding="VALID", output_shape=[1, 24, 24, 24, 6], data_format="NDHWC", ) # Test without adding shapes to graph def _test_convolution3d_transpose( data_shape=[1, 8, 8, 8, 16], filter_shape=[3, 3, 3, 6, 16], strides=[3, 3, 3], padding="VALID", output_shape=[1, 24, 24, 24, 6], data_format="NDHWC", add_shapes_to_graph_def=False, ) ####################################################################### # BiasAdd # ----------- def _test_biasadd(tensor_in_sizes, data_format): """ One iteration of biasadd with given shapes and attributes """ total_size_1 = 1 for s in tensor_in_sizes: total_size_1 *= s tensor_bias_sizes = [tensor_in_sizes[1]] if data_format == "NCHW" else [tensor_in_sizes[3]] total_size_2 = tensor_bias_sizes[0] # Initializes the input tensor with array containing incrementing # numbers from 1. data_array = [f * 1.0 for f in range(1, total_size_1 + 1)] bias_array = [f * 1.0 for f in range(1, total_size_2 + 1)] with tf.Graph().as_default(): in_data = array_ops.placeholder(shape=tensor_in_sizes, dtype="float32") in_bias = constant_op.constant(bias_array, shape=tensor_bias_sizes, dtype="float32") nn_ops.bias_add(in_data, in_bias, data_format=data_format) compare_tf_with_tvm( np.reshape(data_array, tensor_in_sizes).astype("float32"), "Placeholder:0", "BiasAdd:0" ) @tvm.testing.uses_gpu def test_forward_biasadd(): if is_gpu_available(): _test_biasadd([4, 176, 8, 8], "NCHW") _test_biasadd([1, 100, 1, 1], "NCHW") _test_biasadd([4, 19, 17, 17], "NCHW") _test_biasadd([4, 124, 3, 3], "NCHW") _test_biasadd([4, 8, 8, 176], "NHWC") _test_biasadd([1, 1, 1, 100], "NHWC") _test_biasadd([4, 17, 17, 19], "NHWC") _test_biasadd([4, 3, 3, 124], "NHWC") def _test_forward_where(input_shape): with tf.Graph().as_default(): dtype = tf.float32 t = tf.constant( np.random.choice([0, 1, -2, 3, -1, 0.1, -0.2], size=input_shape).astype(dtype.name) ) out = tf.where(t) compare_tf_with_tvm([], [], out.name, mode="debug") compare_tf_with_tvm([], [], out.name, mode="vm") def test_forward_argwhere(): _test_forward_where((5,)) _test_forward_where((5, 5)) _test_forward_where((5, 5, 5)) _test_forward_where((5, 5, 5, 5)) _test_forward_where((5, 5, 5, 5, 5)) ####################################################################### # SpaceToBatchND # -------------- def _test_space_to_batch_nd(input_shape, block_shape, paddings, dtype="int32"): data = np.random.uniform(0, 5, size=input_shape).astype(dtype) with tf.Graph().as_default(): in_data = tf.placeholder(shape=input_shape, dtype=dtype) out = tf.space_to_batch_nd(in_data, block_shape, paddings) compare_tf_with_tvm(data, in_data.name, out.name) def _test_space_to_batch_nd_infer_paddings(input_shape, block_shape, dtype="int32"): data = np.random.uniform(0, 5, size=input_shape).astype(dtype) padding_np = np.array([0, 1]).astype(np.int32).reshape((1, 2)) with tf.Graph().as_default(): in_data = tf.placeholder(shape=input_shape, dtype=dtype) const1 = tf.constant(padding_np, dtype=tf.int32) # make paddings an input to tf.transpose, but not an input to the graph, # so it can be extracted with infer_value_simulated paddings = tf.reverse(const1, axis=[-1]) out = tf.space_to_batch_nd(in_data, block_shape, paddings) compare_tf_with_tvm(data, in_data.name, out.name) def test_forward_space_to_batch_nd(): # test cases: https://www.tensorflow.org/api_docs/cc/class/tensorflow/ops/space-to-batch-n-d _test_space_to_batch_nd(input_shape=[1, 2, 2, 1], block_shape=[2, 2], paddings=[[0, 0], [0, 0]]) _test_space_to_batch_nd(input_shape=[1, 2, 2, 3], block_shape=[2, 2], paddings=[[0, 0], [0, 0]]) _test_space_to_batch_nd(input_shape=[1, 4, 4, 1], block_shape=[2, 2], paddings=[[0, 0], [0, 0]]) _test_space_to_batch_nd( input_shape=[2, 2, 4, 1], block_shape=[2, 2], paddings=[[0, 0], [2, 0]], dtype="int64" ) # pylint: disable=line-too-long # https://github.com/tensorflow/tensorflow/blob/24f578/tensorflow/python/kernel_tests/spacetobatch_op_test.py _test_space_to_batch_nd(input_shape=[2, 3], block_shape=[2], paddings=[[1, 0]], dtype="float32") _test_space_to_batch_nd( input_shape=[2, 3, 2], block_shape=[2], paddings=[[1, 0]], dtype="float64" ) _test_space_to_batch_nd_infer_paddings(input_shape=[2, 3, 2], block_shape=[2]) ####################################################################### # BatchToSpaceND # -------------- def _test_batch_to_space_nd(input_shape, block_shape, crops, dtype="int32"): data = np.random.uniform(0, 5, size=input_shape).astype(dtype) with tf.Graph().as_default(): in_data = tf.placeholder(shape=input_shape, dtype=dtype) out = tf.batch_to_space_nd(in_data, block_shape, crops) compare_tf_with_tvm(data, in_data.name, out.name) def test_forward_batch_to_space_nd(): # test cases: https://www.tensorflow.org/api_docs/cc/class/tensorflow/ops/batch-to-space-n-d _test_batch_to_space_nd(input_shape=[4, 1, 1, 1], block_shape=[2, 2], crops=[[0, 0], [0, 0]]) _test_batch_to_space_nd(input_shape=[4, 1, 1, 3], block_shape=[2, 2], crops=[[0, 0], [0, 0]]) _test_batch_to_space_nd(input_shape=[4, 2, 2, 1], block_shape=[2, 2], crops=[[0, 0], [0, 0]]) _test_batch_to_space_nd( input_shape=[8, 1, 3, 1], block_shape=[2, 2], crops=[[0, 0], [2, 0]], dtype="int64" ) # pylint: disable=line-too-long # https://github.com/tensorflow/tensorflow/blob/24f578/tensorflow/python/kernel_tests/batchtospace_op_test.py _test_batch_to_space_nd( input_shape=[18, 2, 1, 2], block_shape=[2, 3], crops=[[1, 1], [0, 0]], dtype="float32" ) _test_batch_to_space_nd( input_shape=[20, 5, 8, 7], block_shape=[2, 2], crops=[[1, 1], [1, 1]], dtype="float64" ) ####################################################################### # Reshape # ------- def _test_reshape(data, out_shape): """ One iteration of reshape operation with given data and out shape """ with tf.Graph().as_default(): in_data = array_ops.placeholder(shape=data.shape, dtype=data.dtype) array_ops.reshape(in_data, out_shape) compare_tf_with_tvm(data, "Placeholder:0", "Reshape:0") def _test_reshape_with_call(): """ relay.expr.Call as shape """ data = np.zeros((6, 4, 2)) with tf.Graph().as_default(): in_data = array_ops.placeholder(shape=data.shape, dtype=data.dtype) out_shape = tf.constant([1, 2, 3], dtype="int32") out_shape = tf.multiply(out_shape, 2) array_ops.reshape(in_data, out_shape) compare_tf_with_tvm(data, "Placeholder:0", "Reshape:0") def _test_reshape_like(data, shape_like): """ A special case for reshape. """ with tf.Graph().as_default(): in_data = array_ops.placeholder(shape=data.shape, dtype=data.dtype) in_shape_like = array_ops.placeholder(shape=shape_like.shape, dtype=data.dtype) out_shape = array_ops.shape(in_shape_like) array_ops.reshape(in_data, out_shape) compare_tf_with_tvm(data, "Placeholder:0", "Reshape:0") def _test_reshape_symbolic(data, a_data, b_data): with tf.Graph().as_default(): in_data = array_ops.placeholder(shape=data.shape, dtype=data.dtype) a = array_ops.placeholder(shape=a_data.shape, dtype=a_data.dtype) b = array_ops.placeholder(shape=b_data.shape, dtype=b_data.dtype) newshape = tf.add(a, b) out = array_ops.reshape(in_data, newshape) for mode in ["debug", "vm"]: compare_tf_with_tvm( [data, a_data, b_data], [in_data.name, a.name, b.name], out.name, mode=mode ) def test_forward_reshape(): _test_reshape(np.arange(6.0), [2, 3]) _test_reshape(np.arange(6), [-1, 2]) _test_reshape(np.arange(6), [3, -1]) _test_reshape(np.arange(6), [-1]) _test_reshape_with_call() _test_reshape_like(np.zeros((3, 6)), np.zeros((9, 2))) _test_reshape_symbolic(np.arange(6.0), np.array([2, 0]), np.array([0, 3])) _test_reshape_symbolic(np.arange(6), np.array([-1, 0]), np.array([0, 2])) _test_reshape_symbolic(np.arange(6), np.array([3, 0]), np.array([3, -1])) _test_reshape_symbolic(np.arange(6), np.array([0]), np.array([-1])) ####################################################################### # DepthToSpace # ------------ def _test_depthtospace(data, block_size): """ One iteration of depth_to_space operation with given data and block size """ with tf.Graph().as_default(): in_data = array_ops.placeholder(shape=data.shape, dtype=data.dtype) array_ops.depth_to_space(in_data, block_size) compare_tf_with_tvm(data, "Placeholder:0", "DepthToSpace:0") def test_forward_depthtospace(): _test_depthtospace(np.random.normal(size=[1, 32, 32, 4]), 2) _test_depthtospace(np.random.normal(size=[1, 16, 8, 32]), 4) ####################################################################### # SpaceToDepth # ------------ def _test_spacetodepth(data, block_size): """ One iteration of space_to_depth operation with given data and block size """ with tf.Graph().as_default(): in_data = array_ops.placeholder(shape=data.shape, dtype=data.dtype) array_ops.space_to_depth(in_data, block_size) compare_tf_with_tvm(data, "Placeholder:0", "SpaceToDepth:0") def test_forward_spacetodepth(): _test_spacetodepth(np.random.normal(size=[1, 32, 32, 4]), 2) _test_spacetodepth(np.random.normal(size=[1, 16, 8, 32]), 4) ####################################################################### # Squeeze # ------- def _test_squeeze(data, squeeze_dims=None): """ One iteration of squeeze """ if squeeze_dims is None: squeeze_dims = [] with tf.Graph().as_default(): in_data = array_ops.placeholder(shape=data.shape, dtype=data.dtype) if squeeze_dims: array_ops.squeeze(in_data, squeeze_dims) else: array_ops.squeeze(in_data) compare_tf_with_tvm(data, "Placeholder:0", "Squeeze:0") def test_forward_squeeze(): """ Squeeze """ # Nothing to squeeze. _test_squeeze(np.arange(2).reshape((2))) _test_squeeze(np.arange(6).reshape((2, 3))) # Squeeze the middle element away. _test_squeeze(np.arange(4).reshape((2, 1, 2))) # Squeeze on both ends. _test_squeeze(np.arange(6).reshape((1, 2, 1, 3, 1))) # Positive squeeze dim index. _test_squeeze(np.arange(6).reshape((1, 2, 1, 3, 1)), [0]) _test_squeeze(np.arange(6).reshape((1, 2, 1, 3, 1)), [2, 4]) _test_squeeze(np.arange(6).reshape((1, 2, 1, 3, 1)), [0, 4, 2]) # Negative squeeze dim index. _test_squeeze(np.arange(6).reshape((1, 2, 1, 3, 1)), [-1]) _test_squeeze(np.arange(6).reshape((1, 2, 1, 3, 1)), [-3, -5]) _test_squeeze(np.arange(6).reshape((1, 2, 1, 3, 1)), [-3, -5, -1]) ####################################################################### # TensorArray # ----------- def test_tensor_array_write_read(): def run(dtype_str, infer_shape, element_shape): with tf.Graph().as_default(): dtype = tf_dtypes[dtype_str] np_data = np.array([[1.0, 2.0], [3.0, 4.0]]).astype(dtype_str) in_data = [np_data, np_data] t1 = tf.constant(np_data, dtype=dtype) t2 = tf.constant(np_data, dtype=dtype) ta1 = tf.TensorArray( dtype=dtype, size=2, infer_shape=infer_shape, element_shape=element_shape ) ta2 = ta1.write(0, t1) ta3 = ta2.write(1, t2) out = ta3.read(0) g = tf.get_default_graph() compare_tf_with_tvm([], [], "TensorArrayReadV3:0", mode="vm") for dtype in ["float32", "int8"]: run(dtype, False, None) run(dtype, False, tf.TensorShape([None, 2])) run(dtype, True, None) def test_tensor_array_scatter(): def run(dtype_str, infer_shape): with tf.Graph().as_default(): dtype = tf_dtypes[dtype_str] if infer_shape: element_shape = tf.TensorShape([tf.Dimension(None)]) else: element_shape = None t = tf.constant(np.array([[1.0], [2.0], [3.0]]).astype(dtype_str), dtype=dtype) indices = tf.constant([2, 1, 0]) ta1 = tf.TensorArray( dtype=dtype, size=3, infer_shape=infer_shape, element_shape=element_shape ) ta2 = ta1.scatter(indices, t) out0 = ta2.read(0) out1 = ta2.read(1) out2 = ta2.read(2) g = tf.get_default_graph() compare_tf_with_tvm([], [], ["TensorArrayReadV3:0"], mode="vm") compare_tf_with_tvm([], [], ["TensorArrayReadV3_1:0"], mode="vm") compare_tf_with_tvm([], [], ["TensorArrayReadV3_2:0"], mode="vm") for dtype in ["float32", "int8"]: run(dtype, False) run(dtype, True) def test_tensor_array_gather(): def run(dtype_str, infer_shape): with tf.Graph().as_default(): dtype = tf_dtypes[dtype_str] t = tf.constant(np.array([[1.0], [2.0], [3.0]]).astype(dtype_str)) scatter_indices = tf.constant([2, 1, 0]) gather_indices = tf.constant([1, 2]) ta1 = tf.TensorArray(dtype=dtype, size=3, infer_shape=infer_shape) ta2 = ta1.scatter(scatter_indices, t) t1 = ta2.gather(gather_indices) g = tf.get_default_graph() compare_tf_with_tvm([], [], ["TensorArrayGatherV3:0"], mode="vm") for dtype in ["float32", "int8"]: run(dtype, True) def test_tensor_array_split(): def run(dtype_str, infer_shape): with tf.Graph().as_default(): dtype = tf_dtypes[dtype_str] t = tf.constant( np.array([[1.0], [2.0], [3.0], [4.0], [5.0], [6.0], [7.0], [8.0]]).astype( dtype_str ), dtype=dtype, ) split_length = tf.constant([2, 2, 2, 2], dtype=tf.int32) ta1 = tf.TensorArray(dtype=dtype, size=4, infer_shape=infer_shape) ta2 = ta1.split(t, split_length) out0 = ta2.read(0) out1 = ta2.read(1) out2 = ta2.read(2) out3 = ta2.read(3) g = tf.get_default_graph() compare_tf_with_tvm([], [], ["TensorArrayReadV3:0"], mode="debug") compare_tf_with_tvm([], [], ["TensorArrayReadV3_1:0"], mode="debug") compare_tf_with_tvm([], [], ["TensorArrayReadV3_2:0"], mode="debug") compare_tf_with_tvm([], [], ["TensorArrayReadV3_3:0"], mode="debug") for dtype in ["float32", "int8"]: run(dtype, False) run(dtype, True) def test_tensor_array_concat(): def run(dtype_str, infer_shape): with tf.Graph().as_default(): dtype = tf_dtypes[dtype_str] t = tf.constant( np.array([[1.0], [2.0], [3.0], [4.0], [5.0], [6.0], [7.0], [8.0]]).astype( dtype_str ), dtype=dtype, ) split_length = tf.constant([2, 2, 2, 2], dtype=tf.int32) ta1 = tf.TensorArray(dtype=dtype, size=4, infer_shape=infer_shape) ta2 = ta1.split(t, split_length) t = ta2.concat() out = tf.identity(t) compare_tf_with_tvm([], [], ["Identity:0"], mode="debug") for dtype in ["float32", "int8"]: run(dtype, False) run(dtype, True) def test_tensor_array_size(): if package_version.parse(tf.VERSION) >= package_version.parse("1.15.0"): pytest.skip("Needs fixing for tflite >= 1.15.0") def run(dtype_str, infer_shape): with tf.Graph().as_default(): dtype = tf_dtypes[dtype_str] np_data = np.array([[1.0, 2.0], [3.0, 4.0]]).astype(dtype_str) in_data = [np_data, np_data] t1 = tf.constant(np_data, dtype=dtype) t2 = tf.constant(np_data, dtype=dtype) ta1 = tf.TensorArray(dtype=dtype, size=2, infer_shape=infer_shape) ta2 = ta1.write(0, t1) ta3 = ta2.write(1, t2) out = ta3.size() g = tf.get_default_graph() compare_tf_with_tvm([], [], "TensorArraySizeV3:0", mode="debug") for dtype in ["float32", "int8"]: run(dtype, False) run(dtype, True) def test_tensor_array_stack(): def run(dtype_str, infer_shape): if package_version.parse(tf.VERSION) >= package_version.parse("1.15.0"): pytest.skip("Needs fixing for tflite >= 1.15.0") with tf.Graph().as_default(): dtype = tf_dtypes[dtype_str] t = tf.constant(np.array([[1.0], [2.0], [3.0]]).astype(dtype_str)) scatter_indices = tf.constant([2, 1, 0]) ta1 = tf.TensorArray(dtype=dtype, size=3, infer_shape=infer_shape) ta2 = ta1.scatter(scatter_indices, t) t1 = ta2.stack() print(t1) g = tf.get_default_graph() compare_tf_with_tvm([], [], ["TensorArrayStack/TensorArrayGatherV3:0"], mode="vm") for dtype in ["float32", "int8"]: run(dtype, True) def test_tensor_array_unstack(): def run(dtype_str, input_shape, infer_shape): if package_version.parse(tf.VERSION) >= package_version.parse("1.15.0"): pytest.skip("Needs fixing for tflite >= 1.15.0") with tf.Graph().as_default(): dtype = tf_dtypes[dtype_str] t = tf.constant(np.random.choice([0, 1, 2, 3], size=input_shape).astype(dtype.name)) ta1 = tf.TensorArray(dtype=dtype, infer_shape=infer_shape, size=input_shape[0]) ta2 = ta1.unstack(t) out0 = ta2.size() out1 = ta2.read(0) compare_tf_with_tvm([], [], "TensorArraySizeV3:0", mode="debug") compare_tf_with_tvm([], [], "TensorArrayReadV3:0", mode="debug") for dtype in ["float32", "int8"]: run(dtype, (5,), False) run(dtype, (5, 5), True) run(dtype, (5, 5, 5), False) run(dtype, (5, 5, 5, 5), True) ####################################################################### # ConcatV2 # -------- def _test_concat_v2(shape1, shape2, dim): """ One iteration of ConcatV2 """ with tf.Graph().as_default(): dtype = "float32" in1 = tf.placeholder(shape=shape1, dtype=dtype, name="in1") in2 = tf.placeholder(shape=shape2, dtype=dtype, name="in2") array_ops.concat_v2([in1, in2], dim) np_data1 = np.random.uniform(size=shape1).astype(dtype) np_data2 = np.random.uniform(size=shape2).astype(dtype) compare_tf_with_tvm([np_data1, np_data2], ["in1:0", "in2:0"], "ConcatV2:0") def test_forward_concat_v2(): if tf.__version__ < LooseVersion("1.4.1"): return _test_concat_v2([2, 3], [2, 3], 0) _test_concat_v2([10, 3, 5], [2, 3, 5], 0) _test_concat_v2([2, 3], [2, 3], 1) _test_concat_v2([5, 8], [5, 4], 1) _test_concat_v2([2, 8, 5], [2, 8, 6], -1) ####################################################################### # Sigmoid # ------- def _test_sigmoid(data): """ One iteration of sigmoid """ with tf.Graph().as_default(): in_data = array_ops.placeholder(shape=data.shape, dtype=data.dtype) sigmoid_out = math_ops.sigmoid(in_data) compare_tf_with_tvm(data, "Placeholder:0", "Sigmoid:0") def test_forward_sigmoid(): """ Sigmoid """ _test_sigmoid(np.random.uniform(size=(3, 4, 4, 3)).astype("float32")) ####################################################################### # Argmin/Argmax # ------------- def _test_argx(func, data, **kwargs): with tf.Graph().as_default(): inp = array_ops.placeholder(shape=data.shape, dtype=data.dtype, name="c0") func(inp, name="argx0", **kwargs) compare_tf_with_tvm(data, "c0:0", "argx0:0") def test_forward_argminmax(): for output_type in [tf.int64, tf.int32]: for axis in [None, 0, 1, 2]: data = np.random.uniform(size=(8, 4, 9)).astype("float32") _test_argx(tf.argmax, data=data, axis=axis, output_type=output_type) _test_argx(tf.argmin, data=data, axis=axis, output_type=output_type) ####################################################################### # Variable # -------- def _test_variable(data): """ One iteration of a variable """ tf.reset_default_graph() with tf.Graph().as_default(): input_op = array_ops.placeholder(shape=data.shape, dtype=data.dtype) input_tensor = array_ops.reshape(input_op, data.shape) size = input_tensor.shape.dims[1] with variable_scope.variable_scope("linear", reuse=None): w = variable_scope.get_variable("w", shape=[size, size], dtype=input_tensor.dtype) math_ops.matmul(input_tensor, w) compare_tf_with_tvm(data, "Placeholder:0", "MatMul:0", init_global_variables=True) def test_forward_variable(): """Variable type op test""" _test_variable(np.random.uniform(size=(32, 100)).astype("float32")) @tvm.testing.parametrize_targets("llvm", "cuda") def test_read_variable_op(target, ctx): """ Read Variable op test """ tf.reset_default_graph() data = np.random.uniform(size=(32, 100)).astype("float32") input_tensor = array_ops.placeholder(shape=data.shape, dtype=data.dtype) size = input_tensor.shape.dims[1] var_data = np.random.uniform(-5, 5, size=[size, size]).astype(np.float32) input_var = tf.Variable(var_data, name="var1", use_resource=True) math_ops.matmul(input_tensor, input_var) out_name = ["MatMul:0"] out_node = ["MatMul"] in_name = ["Placeholder:0"] in_node = ["Placeholder"] in_data = [data] with tf.Session() as sess: sess.run(variables.global_variables_initializer()) final_graph_def = sess.graph.as_graph_def(add_shapes=True) tf_output = run_tf_graph(sess, in_data, in_name, out_name) shape_dict = {e: i.shape for e, i in zip(in_name, in_data)} with pytest.raises(Exception) as execinfo: mod, params = relay.frontend.from_tensorflow( final_graph_def, layout=None, shape=shape_dict, outputs=None ) assert execinfo.value.args[0].startswith("Graph is not frozen. Provide a frozen graph") # Now convert the variables to constant and run inference on the converted graph final_graph_def = tf.graph_util.convert_variables_to_constants( sess, sess.graph.as_graph_def(add_shapes=True), out_node, ) tvm_output = run_tvm_graph( final_graph_def, in_data, in_node, target=target, out_names=out_name, num_output=len(out_name), ) for i in range(len(tf_output)): tvm.testing.assert_allclose(tf_output[i], tvm_output[i], atol=1e-4, rtol=1e-5) sess.close() ####################################################################### # MatMul, BatchMatMul, BatchMatMulV2 # ---------------------------------- def _test_matmul(i, j, k, dtype, outer=None): """ One iteration of matmul """ A_shape_init = [i, j] B_shape_init = [j, k] for transpose_a in [False, True]: for transpose_b in [False, True]: outer = outer or [] A_shape = outer + (A_shape_init[::-1] if transpose_a else A_shape_init) B_shape = outer + (B_shape_init[::-1] if transpose_b else B_shape_init) with tf.Graph().as_default(): A = tf.placeholder(shape=A_shape, dtype=dtype, name="A") B = tf.placeholder(shape=B_shape, dtype=dtype, name="B") result = tf.matmul(A, B, transpose_a=transpose_a, transpose_b=transpose_b) A_np = np.random.uniform(high=5.0, size=A_shape).astype(dtype) B_np = np.random.uniform(high=5.0, size=B_shape).astype(dtype) compare_tf_with_tvm([A_np, B_np], [A.name, B.name], result.name) def test_forward_matmul(): """ MatMul op test""" _test_matmul(1, 3, 6, "int32") _test_matmul(5, 3, 1, "float64") def _test_batch_matmul(A_shape, B_shape, dtype, adjoint_a=False, adjoint_b=False): with tf.Graph().as_default(): A = tf.placeholder(shape=A_shape, dtype=dtype, name="A") B = tf.placeholder(shape=B_shape, dtype=dtype, name="B") result = tf.matmul(A, B, adjoint_a=adjoint_a, adjoint_b=adjoint_b, name="batchmatmul") A_np = np.random.uniform(high=5.0, size=A_shape).astype(dtype) B_np = np.random.uniform(high=5.0, size=B_shape).astype(dtype) compare_tf_with_tvm([A_np, B_np], [A.name, B.name], result.name) def test_forward_batch_matmul(): """ TF op BatchMatMul, BatchMatMulV2 test""" _test_batch_matmul((3, 5, 4), (3, 4, 5), "int32") _test_batch_matmul((3, 5, 4), (3, 4, 5), "float32", True, True) _test_batch_matmul((3, 5, 4), (3, 5, 4), "int32", True, False) _test_batch_matmul((3, 5, 4), (3, 5, 4), "float32", False, True) _test_batch_matmul((2, 3, 4, 5, 6), (2, 3, 4, 6, 5), "int32") _test_batch_matmul((1, 2, 3, 4, 5, 6), (1, 2, 3, 4, 6, 5), "float32", True, True) _test_batch_matmul((3, 4, 5, 6), (3, 4, 5, 6), "int32", True, False) _test_batch_matmul((2, 3, 4, 2, 3, 4, 5, 6), (2, 3, 4, 2, 3, 4, 5, 6), "float32", False, True) ####################################################################### # SparseTensorDenseMatMul # ---------------------------------- def _test_sparse_dense_matmul(indices, values, A_inp_shape, B_inp_shape, dtype, flip=False): """ One iteration of sparse_dense_matmul """ for adjoint_a in [False, True]: for adjoint_b in [False, True]: A_shape = A_inp_shape[::-1] if adjoint_a else A_inp_shape B_shape = B_inp_shape[::-1] if adjoint_b else B_inp_shape with tf.Graph().as_default(): A_sp = tf.sparse.SparseTensor(indices=indices, values=values, dense_shape=A_shape) B = tf.placeholder(shape=B_shape, dtype=dtype, name="B") if flip: result = tf.sparse.sparse_dense_matmul( B, A_sp, adjoint_a=adjoint_b, adjoint_b=adjoint_a ) else: result = tf.sparse.sparse_dense_matmul( A_sp, B, adjoint_a=adjoint_a, adjoint_b=adjoint_b ) B_np = np.random.uniform(high=5.0, size=B_shape).astype(dtype) compare_tf_with_tvm([B_np], [B.name], result.name) def test_forward_sparse_dense_matmul(): """ sparse_dense_matmul op test""" ################################################################### # # In order to create a SparseTensor, it requires 3 input as below: # SparseTensor(indices=[[0, 0], [1, 2]], values=[1, 2], dense_shape=[3, 4]) # # Above Sparse can be represented in Dense as below : # [[1, 0, 0, 0] # [0, 0, 2, 0] # [0, 0, 0, 0]] # # ------------------------------------------------------------------ _test_sparse_dense_matmul([[0, 0], [1, 2]], [4.0, 8.0], [3, 4], [4, 3], "float32") _test_sparse_dense_matmul([[0, 0], [1, 2]], [4.0, 8.0], [3, 3], [3, 3], "float32") _test_sparse_dense_matmul([[0, 0], [1, 3], [4, 3]], [3.0, 6.0, 9.0], [5, 5], [5, 5], "float32") _test_sparse_dense_matmul([[0, 0], [1, 3], [4, 3]], [3.0, 6.0, 9.0], [7, 9], [9, 5], "float32") _test_sparse_dense_matmul([[0, 0], [1, 2]], [4.0, 8.0], [4, 3], [3, 4], "float32", True) _test_sparse_dense_matmul([[0, 0], [1, 2]], [4.0, 8.0], [3, 3], [3, 3], "float32", True) _test_sparse_dense_matmul( [[0, 0], [1, 3], [4, 3]], [3.0, 6.0, 9.0], [5, 5], [5, 5], "float32", True ) _test_sparse_dense_matmul( [[0, 0], [1, 3], [4, 3]], [3.0, 6.0, 9.0], [9, 5], [7, 9], "float32", True ) ####################################################################### # StridedSlice # ------------ def _test_stridedslice( ip_shape, begin, end, stride, dtype, begin_mask=0, end_mask=0, new_axis_mask=0, shrink_axis_mask=0, ellipsis_mask=0, ): """ One iteration of a Stridedslice """ tf.reset_default_graph() np_data = np.random.uniform(size=ip_shape).astype(dtype) with tf.Graph().as_default(): if len(ip_shape) == 0: in_data = tf.constant(np_data, dtype) else: in_data = tf.placeholder(dtype, ip_shape, name="in_data") tf.strided_slice( in_data, begin, end, stride, begin_mask=begin_mask, end_mask=end_mask, new_axis_mask=new_axis_mask, shrink_axis_mask=shrink_axis_mask, ellipsis_mask=ellipsis_mask, name="strided_slice", ) if len(ip_shape) == 0: compare_tf_with_tvm(None, "", "strided_slice:0") else: compare_tf_with_tvm(np_data, "in_data:0", "strided_slice:0") def test_forward_stridedslice(): """test StridedSlice""" _test_stridedslice([], [0], [0], [1], "float32", new_axis_mask=1) _test_stridedslice([2], [1], [1], [1], "float32", shrink_axis_mask=1) _test_stridedslice([2, 1], [0], [1], [1], "float32", shrink_axis_mask=1) _test_stridedslice([2, 3, 4], [0], [1], [1], "float32", shrink_axis_mask=8) _test_stridedslice([3, 4, 3], [1, -1, 0], [4, -5, 3], [2, -1, 1], "float32") _test_stridedslice([3, 4, 3], [1, 0], [4, 3], [2, 1], "float32", ellipsis_mask=8) _test_stridedslice([3, 4, 3], [1, 0], [4, 2], [2, 1], "float32", ellipsis_mask=2) _test_stridedslice([3, 4, 5, 3], [1, 0], [4, 2], [2, 1], "float32", ellipsis_mask=2) _test_stridedslice([3, 4, 5, 3], [1, 0, 1], [4, 2, 2], [2, 1, 1], "float32", ellipsis_mask=2) _test_stridedslice([3, 4, 3], [1, 1, 0], [4, 4, 2], [2, 1, 1], "float32", new_axis_mask=5) _test_stridedslice( [3, 4, 3], [1, 1, 1], [4, 4, 1], [2, 1, 1], "float32", ellipsis_mask=2, new_axis_mask=4 ) _test_stridedslice( [6, 4, 5], [1, 1, 1], [6, 3, 4], [2, 1, 1], "float32", ellipsis_mask=2, new_axis_mask=5 ) _test_stridedslice( [3, 4, 3], [1, 1, 2], [4, 4, 3], [2, 1, 1], "float32", ellipsis_mask=4, new_axis_mask=2 ) _test_stridedslice( [3, 4, 3], [1, 1, 2], [4, 4, 3], [2, 1, 1], "float32", ellipsis_mask=2, new_axis_mask=3 ) _test_stridedslice( [3, 4, 3], [1, 1, 0], [4, 4, 1], [2, 1, 1], "float32", ellipsis_mask=2, new_axis_mask=3 ) _test_stridedslice( [3, 4, 3], [1, 1, 2], [4, 4, 3], [2, 1, 1], "float32", ellipsis_mask=2, new_axis_mask=2 ) _test_stridedslice((3, 4), [1, 0], [4, 4], [1, 1], "float32", shrink_axis_mask=2) _test_stridedslice( [3, 4, 3], [1, 1, 0], [4, 4, 3], [2, 1, 1], "float32", shrink_axis_mask=2, new_axis_mask=2 ) _test_stridedslice( [3, 4, 3], [1, 1, 0], [4, 4, 3], [2, 1, 1], "float32", shrink_axis_mask=1, new_axis_mask=2 ) _test_stridedslice( [3, 4, 3], [1, 1, 0], [4, 4, 3], [2, 1, 1], "float32", shrink_axis_mask=2, new_axis_mask=1 ) _test_stridedslice( [3, 4, 5, 4, 5, 6], [0, 0], [2, 3], [1, 1], "float32", shrink_axis_mask=5, new_axis_mask=1 ) _test_stridedslice( [3, 4, 5, 4, 5, 6], [0, 0, 1, 2, 1], [2, 3, 4, 5, 3], [1, 1, 2, 2, 1], "float32", shrink_axis_mask=5, new_axis_mask=1, ellipsis_mask=2, begin_mask=8, end_mask=8, ) _test_stridedslice( [3, 4, 5, 4, 5, 6], [0, 0, 1, 2, 1], [2, 3, 4, 5, 3], [1, 1, 2, 2, 1], "float32", shrink_axis_mask=8, new_axis_mask=1, ellipsis_mask=2, begin_mask=5, end_mask=5, ) _test_stridedslice( [3, 4, 5, 4, 5, 6], [0, 0, 1, 2, 1], [2, 3, 4, 5, 3], [1, 1, 2, 2, 1], "float32", shrink_axis_mask=16, new_axis_mask=1, ellipsis_mask=2, begin_mask=5, end_mask=5, ) _test_stridedslice( [3, 4, 5, 4, 5, 6], [1, 2, 0, -3], [4, 5, 3, 3], [2, 2, 1, 1], "float32", shrink_axis_mask=8, new_axis_mask=1, ellipsis_mask=2, begin_mask=5, end_mask=8, ) _test_stridedslice( [1, 13, 13, 3, 2], [0, 0], [1, 1], [1, -1], "float32", ellipsis_mask=1, begin_mask=2, end_mask=2, ) ####################################################################### # FloorDiv, RealDiv # ----------------- def _test_forward_divide(ip_shape, dtype): np_numer = np.random.uniform(-100, 100, size=ip_shape).astype(dtype) np_denomin = np.random.uniform(1, 100, size=ip_shape).astype(dtype) tf.reset_default_graph() with tf.Graph().as_default(): numerator = tf.placeholder(dtype, ip_shape, name="numer") denominator = tf.placeholder(dtype, ip_shape, name="denomin") tf.math.divide(numerator, denominator, name="RealDiv") compare_tf_with_tvm([np_numer, np_denomin], ["numer:0", "denomin:0"], "RealDiv:0") def _test_forward_floordiv(ip_shape, dtype): np_numer = np.random.uniform(1, 100, size=ip_shape).astype(dtype) tf.reset_default_graph() with tf.Graph().as_default(): numerator = tf.placeholder(dtype, ip_shape, name="numer") tf.math.floordiv(numerator, tf.constant(5, dtype=dtype), name="FloorDiv") compare_tf_with_tvm([np_numer], ["numer:0"], "FloorDiv:0") def test_forward_divide(): """test FloorDiv, RealDiv""" _test_forward_divide((4,), "int32") _test_forward_divide((4, 3, 7), "float32") _test_forward_floordiv((4, 3, 7), "float32") _test_forward_floordiv((4, 3, 7), "int32") ####################################################################### # FloorMod # -------- def _test_forward_floormod(in_shape, if_shape, dtype): np_numer = np.random.uniform(1, 100, size=in_shape).astype(dtype) np_factor = np.random.uniform(1, 100, size=if_shape).astype(dtype) tf.reset_default_graph() with tf.Graph().as_default(): numerator = tf.placeholder(dtype, in_shape, name="numer") factor = tf.placeholder(dtype, if_shape, name="factor") tf.floormod(numerator, factor, name="FloorMod") compare_tf_with_tvm([np_numer, np_factor], ["numer:0", "factor:0"], "FloorMod:0") def test_forward_floormod(): """test FloorMod""" _test_forward_floormod((10,), (10,), "float32") _test_forward_floormod((8, 2), (1,), "float32") _test_forward_floormod((4, 3, 7), (4, 3, 7), "float32") _test_forward_floormod((4, 3, 7), (4, 3, 7), "int32") ####################################################################### # TruncateMod # ----------- def _test_forward_truncatemod(ip_shape, dtype): np_data_1 = np.random.uniform(-100, 100, size=ip_shape).astype(dtype) np_data_2 = np.random.uniform(1, 10, size=ip_shape).astype(dtype) tf.reset_default_graph() with tf.Graph().as_default(): in_data_1 = tf.placeholder(dtype, ip_shape, name="in_data_1") in_data_2 = tf.placeholder(dtype, ip_shape, name="in_data_2") tf.truncatemod(in_data_1, in_data_2, name="truncatemod") compare_tf_with_tvm([np_data_1, np_data_2], ["in_data_1:0", "in_data_2:0"], "truncatemod:0") def test_forward_truncatemod(): """test TruncateMod""" _test_forward_truncatemod((4, 3, 7), "int32") ####################################################################### # Gather, GatherV2 # -------------------------- def _test_gather(ip_shape, indice_shape, indice_value, axis, dtype): """ One iteration of a GatherV2 """ tf.reset_default_graph() with tf.Graph().as_default(): in_data = tf.placeholder(dtype, ip_shape, name="in_data") indices = tf.placeholder("int32", indice_shape, name="indices") out = tf.gather(in_data, indices, axis=axis) np_data = np.random.uniform(1, 10, size=ip_shape).astype(dtype) def _fill_indices(indice_value): indices = np.array(ip_shape, dtype=dtype) if isinstance(indice_value, int): indices = np.array([indice_value], dtype="int32") else: indices = np.asarray(indice_value, dtype="int32") return indices np_indices = _fill_indices(indice_value) compare_tf_with_tvm([np_data, np_indices], ["in_data:0", "indices:0"], out.name) def test_forward_gather(): """test Gather/GatherV2 layer""" _test_gather((4,), (1,), 1, 0, "int32") _test_gather((4,), (1,), 1, 0, "float32") _test_gather((1, 4), (1,), [0], 0, "int32") _test_gather((4,), (1, 2, 2), [[[1, 0], [0, 1]]], 0, "float32") _test_gather((2, 2), (1, 2, 2), [[[1, 0], [0, 1]]], 0, "int32") _test_gather((2, 2), (1, 2, 2), [[[1, 0], [0, 1]]], 1, "int32") _test_gather((2, 2), (1, 2, 2), [[[1, 0], [0, 1]]], 0, "float32") _test_gather((3, 3, 3), (1, 1, 2), [[[1, 0]]], 0, "int32") _test_gather((3, 3, 3), (1, 1, 2), [[[1, 0]]], 2, "int32") _test_gather((4, 3, 5, 6), (1, 4), [[2, 1, 0, 0]], 0, "float32") ####################################################################### # GatherND # -------------------------- def _test_gather_nd(ip_shape, indice_value, dtype): """test operator GatherNd""" np_data = np.random.uniform(1, 100, size=ip_shape).astype(dtype) tf.reset_default_graph() with tf.Graph().as_default(): in_data = tf.placeholder(dtype, ip_shape, name="in_data") tf.gather_nd(in_data, indices=indice_value, name="gather_nd") compare_tf_with_tvm([np_data], ["in_data:0"], "gather_nd:0") def test_forward_gather_nd(): """test operator GatherNd""" _test_gather_nd((2, 2), [[0, 0], [1, 1]], "float32") _test_gather_nd((2, 2, 2), [[1, 0, 0], [0, 0, 0]], "float32") _test_gather_nd((4,), [1], "float32") _test_gather_nd((4,), [1], "int32") _test_gather_nd((1, 4), [0, 3], "int32") _test_gather_nd((2, 2), [[[1, 0], [0, 1]]], "int32") _test_gather_nd((2, 2), [[[1, 0], [0, 1]]], "float32") _test_gather_nd((3, 3, 3), [[[1, 0]]], "int32") _test_gather_nd((3, 3, 3), [[[1, 0]]], "int32") _test_gather_nd((4, 3, 5, 6), [[2, 1, 0, 0]], "float32") _test_gather_nd((3, 3, 3), [[[2, 1]]], "int32") ####################################################################### # BiasAdd # ------- def test_forward_bias_add(): """test Op BiasAdd""" def check_bias_add(lh_shpae, rh_shape, dtype): tf.reset_default_graph() lh_data = np.random.uniform(size=lh_shpae).astype(dtype) rh_data = np.random.uniform(size=rh_shape).astype(dtype) with tf.Graph().as_default(): lft_data = tf.placeholder(dtype, name="lft_data") rgt_data = tf.placeholder(dtype, name="rgt_data") tf.nn.bias_add(lft_data, rgt_data, name="BiasAdd") compare_tf_with_tvm([lh_data, rh_data], ["lft_data:0", "rgt_data:0"], "BiasAdd:0") check_bias_add((10, 8, 16, 32), (32,), dtype="int32") check_bias_add((10, 20), (20,), dtype="float32") ####################################################################### # Split # ----- def _test_split(in_shape, axis, num_or_size_splits, dtype): np_data = np.random.uniform(-5, 5, size=in_shape).astype(dtype) """ One iteration of a Split """ tf.reset_default_graph() with tf.Graph().as_default(): in_data = tf.placeholder(dtype, in_shape, name="in_data") num_split = ( len(num_or_size_splits) if isinstance(num_or_size_splits, list) else num_or_size_splits ) split = tf.split(in_data, num_or_size_splits, axis=axis) relu = [tf.nn.relu(i) for i in split] compare_tf_with_tvm([np_data], ["in_data:0"], [n.name for n in relu]) # and now test together with concat tf.reset_default_graph() with tf.Graph().as_default(): in_data = tf.placeholder(dtype, in_shape, name="in_data") splitted = tf.split(in_data, num_or_size_splits, axis=axis) concat = tf.concat(splitted, axis) compare_tf_with_tvm([np_data], "in_data:0", concat.name) def test_forward_split(): """test split layer""" # rank 1 _test_split((3,), 0, 1, "float32") _test_split((3,), 0, 3, "float32") _test_split((6,), 0, 3, "float32") # rank 2 _test_split((6, 2), 0, 3, "float32") _test_split((2, 6), 1, 6, "float32") # rank 3 _test_split((6, 2, 4), 0, 2, "int32") _test_split((2, 6, 4), 1, 3, "float32") _test_split((2, 4, 6), 2, 1, "float32") # rank 4 _test_split((6, 1, 3, 5), 0, 3, "float32") _test_split((1, 6, 3, 5), 1, 3, "float32") _test_split((1, 3, 6, 5), 2, 3, "float32") _test_split((1, 3, 5, 6), 3, 3, "float32") # split along negative axis _test_split((6, 1, 3, 5), -4, 3, "float32") _test_split((1, 6, 3, 5), -3, 3, "float32") _test_split((1, 3, 6, 5), -2, 3, "float32") _test_split((1, 3, 5, 6), -1, 3, "float32") # size_splits list _test_split((6,), 0, [1, 2, 3], "int32") _test_split((3, 6, 4), -2, [1, 4, 1], "float32") ###################################################################### # TopKV2 # ------ def _test_forward_top_k_v2(in_shape, k): np_data = np.random.uniform(-100, 100, size=in_shape).astype("float32") tf.reset_default_graph() with tf.Graph().as_default(): in_data = tf.placeholder("float32", in_shape, name="in_data") tf.math.top_k(in_data, k, name="TopK") compare_tf_with_tvm([np_data], ["in_data:0"], "TopK:0") def test_forward_top_k_v2(): _test_forward_top_k_v2((3,), 1) _test_forward_top_k_v2((3,), 3) _test_forward_top_k_v2((3, 5, 7), 3) _test_forward_top_k_v2((3, 5, 7), 3) ####################################################################### # Unstack # ------- def _test_unstack(ip_shape, axis, dtype): np_data = np.random.uniform(-5, 5, size=ip_shape).astype(dtype) tf.reset_default_graph() with tf.Graph().as_default(): in_data = tf.placeholder(dtype, ip_shape, name="in_data") unstack = tf.unstack(in_data, axis=axis) compare_tf_with_tvm([np_data], ["in_data:0"], [n.name for n in unstack]) tf.reset_default_graph() with tf.Graph().as_default(): in_data = tf.placeholder(dtype, ip_shape, name="in_data") tf.stack(tf.unstack(in_data, axis=axis), axis=axis) compare_tf_with_tvm([np_data], ["in_data:0"], "stack:0") def test_forward_unstack(): """test unstack layer""" _test_unstack((6,), 0, "int32") _test_unstack((2, 6), 1, "float64") # negative axis _test_unstack((1, 4), -1, "int32") _test_unstack((3, 6, 4), -2, "float32") ####################################################################### # Tile # ---- def _test_tile(in_shape, multiples, dtype): np_data = np.random.uniform(-5, 5, size=in_shape).astype(dtype) tf.reset_default_graph() with tf.Graph().as_default(): in_data = tf.placeholder(dtype, in_shape, name="in_data") tf.tile(in_data, multiples=multiples, name="tile") compare_tf_with_tvm([np_data], ["in_data:0"], "tile:0") def test_forward_tile(): """test Tile""" _test_tile((2,), (3,), "int32") _test_tile((2, 2), (2, 3), "float32") _test_tile((2, 4, 6), (6, 7, 8), "float64") ####################################################################### # ClipByValue # ----------- def _test_forward_clip_by_value(ip_shape, clip_value_min, clip_value_max, dtype): tf.reset_default_graph() with tf.Graph().as_default(): in_data = tf.placeholder(dtype, ip_shape, name="in_data") tf.clip_by_value(in_data, clip_value_min, clip_value_max, name="ClipByValue") np_data = np.random.uniform(-100, 100, size=ip_shape).astype(dtype) compare_tf_with_tvm([np_data], ["in_data:0"], "ClipByValue:0") def test_forward_clip_by_value(): """test ClipByValue op""" if tf.__version__ < LooseVersion("1.9"): _test_forward_clip_by_value((4,), 0.1, 5.0, "float32") _test_forward_clip_by_value((4, 4), 1, 5, "int32") ####################################################################### # Multi Input to graph # -------------------- def test_forward_multi_input(): with tf.Graph().as_default(): in1 = tf.placeholder(tf.int32, shape=[3, 3], name="in1") in2 = tf.placeholder(tf.int32, shape=[3, 3], name="in2") in3 = tf.placeholder(tf.int32, shape=[3, 3], name="in3") in4 = tf.placeholder(tf.int32, shape=[3, 3], name="in4") out1 = tf.add(in1, in2, name="out1") out2 = tf.subtract(in3, in4, name="out2") out = tf.multiply(out1, out2, name="out") in_data = np.arange(9, dtype="int32").reshape([3, 3]) compare_tf_with_tvm( [in_data, in_data, in_data, in_data], ["in1:0", "in2:0", "in3:0", "in4:0"], "out:0" ) ####################################################################### # Multi Output to Graph # --------------------- def test_forward_multi_output(): with tf.Graph().as_default(): in1 = tf.placeholder(tf.int32, shape=[3, 3], name="in1") in2 = tf.placeholder(tf.int32, shape=[3, 3], name="in2") in3 = tf.placeholder(tf.int32, shape=[3, 3], name="in3") in4 = tf.placeholder(tf.int32, shape=[3, 3], name="in4") out1 = tf.add(in1, in2, name="out1") out2 = tf.subtract(in3, in4, name="out2") in_data = np.arange(9, dtype="int32").reshape([3, 3]) in_data = [in_data] * 4 in_name = ["in1:0", "in2:0", "in3:0", "in4:0"] out_name = ["out1:0", "out2:0"] out_node = [out.strip(":0") for out in out_name] in_node = [inp.strip(":0") for inp in in_name] with tf.Session() as sess: final_graph_def = tf.graph_util.convert_variables_to_constants( sess, sess.graph.as_graph_def(add_shapes=True), out_node, ) tf_output = run_tf_graph(sess, in_data, in_name, out_name) tvm_output = run_tvm_graph( final_graph_def, in_data, in_node, target="llvm", out_names=out_node, num_output=2 ) for i in range(len(tf_output)): tvm.testing.assert_allclose(tf_output[i], tvm_output[i], atol=1e-5, rtol=1e-5) ####################################################################### # Resize Bilinear, Nearest_Neighbor # --------------------------------- def _test_resize_bilinear(in_shape, to_shape, align_corners): """ One iteration of resize bilinear """ data = np.random.uniform(size=in_shape).astype("float32") shape_data = np.array(to_shape).astype("int32") with tf.Graph().as_default(): in_data = array_ops.placeholder(shape=data.shape, dtype=data.dtype) shape_data = constant_op.constant( shape_data, shape=shape_data.shape, dtype=shape_data.dtype ) tf.image.resize_bilinear(in_data, shape_data, align_corners=align_corners) compare_tf_with_tvm(data, "Placeholder:0", "ResizeBilinear:0") def _test_resize_bilinear_from_tensor(in_shape, align_corners): """One iteration of resize bilinear with non-constant output shape, requires value inference to get proper output shape.""" data = np.random.uniform(size=in_shape).astype("float32") with tf.Graph().as_default(): in_data = array_ops.placeholder( shape=[in_shape[0], None, None, in_shape[3]], dtype=data.dtype ) to_shape = tf.shape(in_data)[1:3] tf.image.resize_bilinear(in_data, to_shape, align_corners=align_corners) compare_tf_with_tvm(data, "Placeholder:0", "ResizeBilinear:0") def _test_resize_nearest_neighbor(in_shape, to_shape): """ One iteration of resize nearest neighbor """ data = np.random.uniform(size=in_shape).astype("float32") shape_data = np.array(to_shape).astype("int32") with tf.Graph().as_default(): in_data = array_ops.placeholder(shape=data.shape, dtype=data.dtype) shape_data = constant_op.constant( shape_data, shape=shape_data.shape, dtype=shape_data.dtype ) tf.image.resize_nearest_neighbor(in_data, shape_data, name="resize_nearest_neighbor") compare_tf_with_tvm(data, "Placeholder:0", "resize_nearest_neighbor:0") def _test_resize_nearest_neighbor_dynamic_shape(in_shape, scale): """ One iteration of resize nearest neighbor for graph with dynamic input shape """ data = np.random.uniform(size=in_shape).astype("float32") with tf.Graph().as_default(): in_data = array_ops.placeholder(shape=None, dtype=data.dtype) # multiply input shape by scale factor new_shape = tf.shape(in_data)[1:3] * tf.constant(scale, dtype=tf.int32) tf.image.resize_nearest_neighbor(in_data, new_shape, name="resize_nearest_neighbor") compare_tf_with_tvm(data, "Placeholder:0", "resize_nearest_neighbor:0") def test_forward_resize(): """ Resize Bilinear, Nearest_Neighbor """ # TF default layout is NHWC _test_resize_bilinear((4, 32, 32, 3), [50, 50], False) _test_resize_bilinear((6, 32, 32, 3), [20, 20], True) _test_resize_bilinear_from_tensor((4, 32, 32, 3), False) _test_resize_bilinear_from_tensor((6, 50, 50, 3), True) _test_resize_nearest_neighbor((6, 32, 32, 3), [20, 20]) _test_resize_nearest_neighbor_dynamic_shape((1, 16, 16, 3), scale=[2, 2]) ####################################################################### # BroadcastTo # ----------- def _test_broadcast_to(in_shape, to_shape): """ One iteration of broadcast_to""" data = np.random.uniform(size=in_shape).astype("float32") shape_data = np.array(to_shape).astype("int32") with tf.Graph().as_default(): in_data = array_ops.placeholder(shape=data.shape, dtype=data.dtype) shape_data = constant_op.constant( shape_data, shape=shape_data.shape, dtype=shape_data.dtype ) tf.broadcast_to(in_data, shape_data) compare_tf_with_tvm(data, "Placeholder:0", "BroadcastTo:0", opt_level=0) def _test_broadcast_to_from_tensor(in_shape): """ One iteration of broadcast_to with unknown shape at graph build""" data = np.random.uniform(size=in_shape).astype("float32") with tf.Graph().as_default(): in_data = array_ops.placeholder(shape=[None], dtype=data.dtype) shape_data = tf.multiply(tf.shape(in_data), 32) tf.broadcast_to(in_data, shape_data) compare_tf_with_tvm(data, "Placeholder:0", "BroadcastTo:0") def test_forward_broadcast_to(): """ Resize Bilinear """ _test_broadcast_to((4, 1, 32, 32), [4, 8, 32, 32]) _test_broadcast_to((6, 32, 32, 1), [6, 32, 32, 16]) _test_broadcast_to_from_tensor((1)) ####################################################################### # Fill # ---- def _test_fill(in_shape): """ Use the fill op to create a tensor of ones with non-constant shape.""" with tf.Graph().as_default(): tf.ones(shape=in_shape, dtype="float32") compare_tf_with_tvm(in_shape, [], "ones:0", opt_level=1) def _test_fill_from_tensor(in_shape): """Use the fill op to create a tensor of ones with non-constant shape. Some extra ops need to be added here to prevent the graph from being fully constant and folded away.""" data = np.random.uniform(size=in_shape).astype("float32") with tf.Graph().as_default(): in_data = array_ops.placeholder( shape=[in_shape[0], in_shape[1], None, None], dtype=data.dtype ) x = tf.ones(shape=2 * tf.shape(in_data), dtype=data.dtype) y = tf.math.add(in_data, tf.reduce_mean(x), name="out1") compare_tf_with_tvm(data, "Placeholder:0", "out1:0") def _test_fill_symbolic_inputs(in_shape_data, in_value_data, dtype): with tf.Graph().as_default(): in_shape = tf.placeholder(shape=[in_shape_data.shape[0]], dtype=in_shape_data.dtype) in_value = tf.placeholder(shape=(), dtype=dtype) out = tf.fill(in_shape, in_value) for mode in ["debug", "vm"]: compare_tf_with_tvm( [in_shape_data, in_value_data], [in_shape.name, in_value.name], out.name, mode=mode ) def test_forward_fill(): """ Resize Bilinear """ _test_fill((32)) _test_fill((6, 32, 64, 64)) _test_fill_from_tensor((6, 32, 64, 64)) _test_fill_symbolic_inputs(np.array((2,)), np.int32(9), tf.int32) _test_fill_symbolic_inputs(np.array((2, 3)), 9, tf.int64) _test_fill_symbolic_inputs(np.array((2, 3, 4)), np.float32(9.0), tf.float32) ####################################################################### # Crop to bounding box # -------------------- def _test_crop(in_shape, off_h, off_w, tar_h, tar_w): """ Crop to bounding box """ data = np.random.uniform(size=in_shape).astype("float32") with tf.Graph().as_default(): in_data = array_ops.placeholder(shape=data.shape, dtype=data.dtype) tf.image.crop_to_bounding_box(in_data, off_h, off_w, tar_h, tar_w) compare_tf_with_tvm(data, "Placeholder:0", "crop_to_bounding_box/Slice:0") def test_forward_crop(): """ Crop to bounding box """ _test_crop((1, 224, 224, 3), 20, 20, 120, 120) ####################################################################### # CropAndResize # ------------- def _test_forward_crop_and_resize( img_shape, boxes, box_idx, crop_size, extrapolation_value=0.0, method="bilinear", dtype="float32", ): image = np.random.uniform(0, 10, size=img_shape).astype(dtype) tf.reset_default_graph() with tf.Graph().as_default(): in_data = array_ops.placeholder(dtype, image.shape, name="in_data") tf.image.crop_and_resize( in_data, boxes=boxes, box_ind=box_idx, crop_size=crop_size, method=method, extrapolation_value=extrapolation_value, name="crop_and_resize", ) compare_tf_with_tvm([image], ["in_data:0"], "crop_and_resize:0") def test_forward_crop_and_resize(): """ CropAndResize """ _test_forward_crop_and_resize([1, 6, 6, 3], [[0, 0, 1, 1]], [0], [3, 3]) _test_forward_crop_and_resize([1, 6, 6, 3], [[0, 0, 1, 1]], [0], [3, 3], 0.2) _test_forward_crop_and_resize([1, 6, 6, 3], [[0, 0, 1, 1]], [0], [3, 3], 0.2, "nearest") _test_forward_crop_and_resize([1, 11, 11, 3], [[0.3, 0.3, 1, 1]], [0], [21, 21]) _test_forward_crop_and_resize([1, 41, 41, 3], [[0.2, 0.4, 0.8, 0.8]], [0], [21, 11]) _test_forward_crop_and_resize([1, 100, 100, 3], [[0, 0, 0.9, 0.9]], [0], [30, 30]) _test_forward_crop_and_resize([1, 224, 224, 3], [[0.1, 0.2, 1, 1]], [0], [9, 9]) _test_forward_crop_and_resize([1, 249, 249, 3], [[0, 0, 1, 1]], [0], [9, 9]) _test_forward_crop_and_resize([1, 201, 301, 3], [[0.2, 0.3, 0.7, 0.8]], [0], [51, 51]) _test_forward_crop_and_resize( img_shape=[10, 11, 11, 3], boxes=[[0, 0, 0.9, 0.9], [0.2, 0.2, 0.8, 0.8]], box_idx=[0, 1], crop_size=[5, 5], ) _test_forward_crop_and_resize( img_shape=[20, 576, 576, 3], boxes=[[0, 0, 1, 1], [0, 0, 0.8, 0.8], [0.1, 0.2, 0.9, 1], [0.2, 0, 1, 1]], box_idx=[1, 0, 2, 3], crop_size=[24, 24], extrapolation_value=0.3, ) _test_forward_crop_and_resize( img_shape=[20, 229, 229, 3], boxes=[[0, 0, 0.9, 0.9], [0.3, 0.3, 1, 1], [0.2, 0.1, 0.7, 0.8], [0, 0, 1, 1]], box_idx=[3, 0, 2, 1], crop_size=[58, 58], extrapolation_value=0.2, method="nearest", ) ####################################################################### # Non Max Suppression # ------------------- def _test_forward_nms_v3( bx_shape, score_shape, iou_threshold, score_threshold, out_size, dtype="float32" ): boxes = np.random.uniform(0, 10, size=bx_shape).astype(dtype) scores = np.random.uniform(size=score_shape).astype(dtype) max_output_size = np.int32(out_size) tf.reset_default_graph() in_data_1 = tf.placeholder(dtype, boxes.shape, name="in_data_1") in_data_2 = tf.placeholder(dtype, scores.shape, name="in_data_2") in_data_3 = tf.placeholder(tf.int32, name="in_data_3") tf.image.non_max_suppression( boxes=in_data_1, scores=in_data_2, max_output_size=in_data_3, iou_threshold=iou_threshold, score_threshold=score_threshold, name="nms", ) compare_tf_with_tvm( [boxes, scores, max_output_size], ["in_data_1:0", "in_data_2:0", "in_data_3:0"], "nms/NonMaxSuppressionV3:0", mode="vm", ) compare_tf_with_tvm( [boxes, scores, max_output_size], ["in_data_1:0", "in_data_2:0", "in_data_3:0"], "nms/NonMaxSuppressionV3:0", mode="debug", ) def _test_forward_nms_v4( bx_shape, score_shape, iou_threshold, score_threshold, out_size, dtype="float32" ): boxes = np.random.uniform(0, 10, size=bx_shape).astype(dtype) scores = np.random.uniform(size=score_shape).astype(dtype) max_output_size = np.int32(out_size) tf.reset_default_graph() in_data_1 = tf.placeholder(dtype, boxes.shape, name="in_data_1") in_data_2 = tf.placeholder(dtype, scores.shape, name="in_data_2") in_data_3 = tf.placeholder(tf.int32, name="in_data_3") indices_padded, num_valid = tf.image.non_max_suppression_padded( boxes=in_data_1, scores=in_data_2, max_output_size=in_data_3, iou_threshold=iou_threshold, score_threshold=score_threshold, name="nms", pad_to_max_output_size=True, ) num_valid = tf.reshape(num_valid, shape=(-1,)) indices_padded = tf.reshape(indices_padded, shape=(-1,)) tf.slice(indices_padded, tf.constant([0]), num_valid, name="SlicedIndices") compare_tf_with_tvm( [boxes, scores, max_output_size], ["in_data_1:0", "in_data_2:0", "in_data_3:0"], ["nms/NonMaxSuppressionV4:1", "SlicedIndices:0"], mode="vm", ) compare_tf_with_tvm( [boxes, scores, max_output_size], ["in_data_1:0", "in_data_2:0", "in_data_3:0"], ["nms/NonMaxSuppressionV4:1", "SlicedIndices:0"], mode="debug", ) def _test_forward_nms_v5( bx_shape, score_shape, iou_threshold, score_threshold, out_size, dtype="float32" ): boxes = np.random.uniform(0, 10, size=bx_shape).astype(dtype) scores = np.random.uniform(size=score_shape).astype(dtype) max_output_size = np.int32(out_size) tf.reset_default_graph() in_data_1 = tf.placeholder(dtype, boxes.shape, name="in_data_1") in_data_2 = tf.placeholder(dtype, scores.shape, name="in_data_2") in_data_3 = tf.placeholder(tf.int32, name="in_data_3") tf.image.non_max_suppression_with_scores( boxes=in_data_1, scores=in_data_2, max_output_size=in_data_3, iou_threshold=iou_threshold, score_threshold=score_threshold, name="nms", ) compare_tf_with_tvm( [boxes, scores, max_output_size], ["in_data_1:0", "in_data_2:0", "in_data_3:0"], ["nms/NonMaxSuppressionV5:0", "nms/NonMaxSuppressionV5:1"], mode="vm", ) def test_forward_nms(): """ NonMaxSuppressionV3,5 """ for _test_forward_nms in [_test_forward_nms_v3, _test_forward_nms_v5]: _test_forward_nms((5, 4), (5,), 0.7, 0.5, 5) _test_forward_nms((20, 4), (20,), 0.5, 0.6, 10) _test_forward_nms((1000, 4), (1000,), 0.3, 0.7, 1000) _test_forward_nms((2000, 4), (2000,), 0.4, 0.6, 7) ####################################################################### # LSTM # ---- def _test_lstm_cell(batch_size, num_hidden, num_layers, forget_bias, dtype): """ One iteration of a LSTM cell """ tf.reset_default_graph() input_size = num_hidden input_data = np.full((batch_size, input_size), 1.0, dtype=dtype) in_state_c = np.full((batch_size, num_hidden), 0.1, dtype=dtype) in_state_h = np.full((batch_size, num_hidden), 0.1, dtype=dtype) def _get_tensorflow_output(): with tf.Session() as sess: with variable_scope.variable_scope( "root", initializer=init_ops.constant_initializer(0.5) ): m0 = tf.placeholder(dtype, [batch_size, num_hidden], name="m0") m1 = tf.placeholder(dtype, [batch_size, num_hidden], name="m1") x = tf.placeholder(shape=(batch_size, input_size), dtype=dtype, name="input") g, ((out_m0, out_m1)) = tensorflow.contrib.rnn.LSTMBlockCell( num_hidden, forget_bias=forget_bias )(x, (m0, m1)) sess.run([variables.global_variables_initializer()]) res = sess.run( [g, out_m0, out_m1], { x.name: np.array([[1.0, 1.0]]), m0.name: in_state_c, m1.name: in_state_h, }, ) graph_def = sess.graph.as_graph_def(add_shapes=True) final_graph_def = graph_util.convert_variables_to_constants( sess, graph_def, ["root/lstm_cell/LSTMBlockCell"] ) return final_graph_def, res graph_def, tf_out = _get_tensorflow_output() tvm_output = run_tvm_graph( graph_def, [input_data, in_state_c, in_state_h], ["root/input", "root/m0", "root/m1"], num_output=7, ) assert isinstance(tvm_output, list) tvm.testing.assert_allclose(tf_out[0], tvm_output[6], rtol=1e-3, atol=1e-3) tvm.testing.assert_allclose(tf_out[1], tvm_output[1], rtol=1e-3, atol=1e-3) def test_forward_lstm(): """test LSTM block cell""" if package_version.parse(tf.VERSION) < package_version.parse("2.0.0"): # in 2.0, tf.contrib.rnn.LSTMBlockCell is removed _test_lstm_cell(1, 2, 1, 0.5, "float32") ####################################################################### # Pack # --- def _test_pack(axis, shape, **kwargs): a = np.arange(np.prod(shape), dtype=np.float32).reshape(shape) b = np.arange(np.prod(shape), dtype=np.float32).reshape(shape) with tf.Graph().as_default(): tf_a = array_ops.placeholder(shape=shape, dtype="float32", name="pl_a") tf_b = array_ops.placeholder(shape=shape, dtype="float32", name="pl_b") tf_c = tf.stack([tf_a, tf_b], axis=axis, **kwargs) assert tf_c.op.op_def.name == "Pack", "tf.stack() is expected to produce 'Pack' operation" compare_tf_with_tvm([a, b], ["pl_a:0", "pl_b:0"], "stack:0") def test_forward_pack(): for axis in range(-3, 3): _test_pack(axis, [3, 2, 1]) for axis in range(-1, 1): _test_pack(axis, [3]) _test_pack(0, []) ####################################################################### # Unpack # ------ def _test_forward_unpack(in_shape, axis, dtype): """test operator Unpack""" np_data = np.random.uniform(-100, 100, size=in_shape).astype(dtype) tf.reset_default_graph() with tf.Graph().as_default(): in_data = tf.placeholder(dtype, in_shape, name="in_data") tf.unstack(in_data, axis=axis, name="Unpack") compare_tf_with_tvm([np_data], ["in_data:0"], "Unpack:0") def test_forward_unpack(): _test_forward_unpack((3,), 0, "int32") _test_forward_unpack((3,), -1, "int16") _test_forward_unpack((21, 23, 3), 2, "float32") ####################################################################### # Range # ----- def test_forward_range(): """test operator Range""" for dtype in [tf.int32, tf.int64]: tf.reset_default_graph() with tf.Graph().as_default(): tf.range(1, 18, 3, name="range", dtype=dtype) compare_tf_with_tvm([], [], "range:0") """test type assignment for operator Range""" tf.reset_default_graph() with tf.Graph().as_default(): tf.range(1, 256 + 1, 1, dtype=tf.float32) compare_tf_with_tvm([], [], "range:0") ####################################################################### # Pad # --- def _test_pad(input_shape, paddings, mode, **kwargs): """ One iteration of pad operation with given shape""" x = np.arange(np.prod(input_shape), dtype=np.float32).reshape(input_shape) with tf.Graph().as_default(): in_data = array_ops.placeholder(shape=input_shape, dtype="float32") pad_values = constant_op.constant(paddings) pad = tf.pad(in_data, paddings=pad_values, mode=mode, **kwargs) if mode == "CONSTANT": if "constant_values" in kwargs: out_name = "PadV2:0" else: out_name = "Pad:0" else: out_name = "MirrorPad:0" compare_tf_with_tvm(x, "Placeholder:0", out_name) def test_forward_pad(): """ Pad """ _test_pad((2, 3), [[1, 1], [2, 2]], mode="CONSTANT") _test_pad((2, 3), [[1, 1], [2, 2]], mode="CONSTANT", constant_values=1.0) _test_pad((2, 3), [[1, 1], [2, 2]], mode="SYMMETRIC") _test_pad((2, 3), [[1, 1], [2, 2]], mode="REFLECT") ####################################################################### # Logical operators # -------------------- def test_logical_and(): with tf.Graph().as_default(): in1 = tf.placeholder(tf.bool, shape=[1, 4, 4, 3], name="in1") in2 = tf.placeholder(tf.bool, shape=[1, 4, 4, 3], name="in2") out = tf.logical_and(in1, in2, name="out") in_data1 = np.random.choice(a=[False, True], size=(1, 4, 4, 3)).astype("bool") in_data2 = np.random.choice(a=[False, True], size=(1, 4, 4, 3)).astype("bool") compare_tf_with_tvm([in_data1, in_data2], ["in1:0", "in2:0"], "out:0") def test_logical_or(): with tf.Graph().as_default(): in1 = tf.placeholder(tf.bool, shape=[1, 4, 4, 3], name="in1") in2 = tf.placeholder(tf.bool, shape=[1, 4, 4, 3], name="in2") out = tf.logical_or(in1, in2, name="out") in_data1 = np.random.choice(a=[False, True], size=(1, 4, 4, 3)).astype("bool") in_data2 = np.random.choice(a=[False, True], size=(1, 4, 4, 3)).astype("bool") compare_tf_with_tvm([in_data1, in_data2], ["in1:0", "in2:0"], "out:0") def test_logical_xor(): with tf.Graph().as_default(): in1 = tf.placeholder(tf.bool, shape=[1, 4, 4, 3], name="in1") in2 = tf.placeholder(tf.bool, shape=[1, 4, 4, 3], name="in2") out = tf.logical_xor(in1, in2, name="out") in_data1 = np.random.choice(a=[False, True], size=(1, 4, 4, 3)).astype("bool") in_data2 = np.random.choice(a=[False, True], size=(1, 4, 4, 3)).astype("bool") compare_tf_with_tvm([in_data1, in_data2], ["in1:0", "in2:0"], "out:0") def test_logical_not(): with tf.Graph().as_default(): in1 = tf.placeholder(tf.bool, shape=[1, 4, 4, 3], name="in1") out = tf.logical_not(in1, name="out") in_data1 = np.random.choice(a=[False, True], size=(1, 4, 4, 3)).astype("bool") compare_tf_with_tvm(in_data1, "in1:0", "out:0") def test_forward_logical(): test_logical_and() test_logical_or() test_logical_xor() test_logical_not() ####################################################################### # Where, Select # ------------- def test_forward_where(): """ Where: return elements depending on conditions""" with tf.Graph().as_default(): with tf.Session() as sess: input1 = tf.placeholder(tf.int32, shape=[1, 4, 4, 3], name="input1") input2 = tf.placeholder(tf.int32, shape=[1, 4, 4, 3], name="input2") mask = input1 > input2 tf.where(mask, input1 + 1, input2 * 2) in_data1 = np.random.uniform(0, 10, size=(1, 4, 4, 3)).astype("uint32") in_data2 = np.random.uniform(0, 10, size=(1, 4, 4, 3)).astype("uint32") compare_tf_with_tvm([in_data1, in_data2], ["input1:0", "input2:0"], "Select:0") ####################################################################### # Inception V3 # ------------ def test_forward_inception_v3(): """test inception V3 model""" with tf.Graph().as_default(): graph_def = tf_testing.get_workload( "InceptionV3/inception_v3_2016_08_28_frozen-with_shapes.pb" ) # Call the utility to import the graph definition into default graph. graph_def = tf_testing.ProcessGraphDefParam(graph_def) data = np.random.uniform(size=(1, 299, 299, 3)).astype("float32") with tf.Session() as sess: tf_output = run_tf_graph(sess, data, "input:0", "InceptionV3/Predictions/Reshape_1:0") tvm_output = run_tvm_graph(graph_def, data, "input") tvm.testing.assert_allclose(tf_output[0], tvm_output[0], rtol=1e-5, atol=1e-5) ####################################################################### # Inception V1 # ------------ def test_forward_inception_v1(): """test inception V1 model""" with tf.Graph().as_default(): graph_def = tf_testing.get_workload("InceptionV1/classify_image_graph_def-with_shapes.pb") # Call the utility to import the graph definition into default graph. graph_def = tf_testing.ProcessGraphDefParam(graph_def) # Build an image from random data. from PIL import Image from tvm.contrib import utils img_array = np.random.uniform(size=(1, 600, 600, 3)).astype("uint8") img = Image.frombuffer("RGB", (600, 600), img_array.tostring(), "raw", "RGB", 0, 1) temp = utils.tempdir() img_path = temp.relpath("tf-test.jpg") img.save(img_path) import os.path if not tf.gfile.Exists(os.path.join(img_path)): tf.logging.fatal("File does not exist %s", img_path) data = tf.gfile.FastGFile(os.path.join(img_path), "rb").read() temp.remove() # Extract tensorflow decoded image frame for tvm input with tf.Session() as sess: tvm_data = run_tf_graph(sess, data, "DecodeJpeg/contents:0", "DecodeJpeg:0") with tf.Session() as sess: tf_output = run_tf_graph(sess, data, "DecodeJpeg/contents:0", "softmax:0") tvm_output = run_tvm_graph(graph_def, tvm_data, "DecodeJpeg/contents") tvm.testing.assert_allclose(tf_output[0], tvm_output[0], rtol=1e-5, atol=1e-5) ####################################################################### # Mobilenet # --------- def test_forward_mobilenet(): """test mobilenet model""" # MobilenetV2 with tf.Graph().as_default(): graph_def = tf_testing.get_workload( "https://storage.googleapis.com/mobilenet_v2/checkpoints/mobilenet_v2_1.4_224.tgz", "mobilenet_v2_1.4_224_frozen.pb", ) # Call the utility to import the graph definition into default graph. graph_def = tf_testing.ProcessGraphDefParam(graph_def) data = np.random.uniform(size=(1, 224, 224, 3)).astype("float32") out_node = "MobilenetV2/Predictions/Reshape_1" with tf.Session() as sess: # Add shapes to the graph. graph_def = tf_testing.AddShapesToGraphDef(sess, out_node) tf_output = run_tf_graph(sess, data, "input:0", out_node + ":0") tvm_output = run_tvm_graph(graph_def, data, "input") tvm.testing.assert_allclose( np.squeeze(tvm_output[0]), np.squeeze(tf_output[0]), rtol=1e-5, atol=1e-5 ) ####################################################################### # ResnetV2 # -------- @tvm.testing.requires_gpu def test_forward_resnetv2(): """test resnet model""" if is_gpu_available(): with tf.Graph().as_default(): graph_def = tf_testing.get_workload( "ResnetV2/resnet-20180601_resnet_v2_imagenet-shapes.pb" ) # Call the utility to import the graph definition into default graph. graph_def = tf_testing.ProcessGraphDefParam(graph_def) data = np.random.uniform(size=(128, 224, 224, 3)).astype("float32") out_node = "ArgMax" with tf.Session() as sess: tf_output = run_tf_graph(sess, data, "input_tensor:0", out_node + ":0") for device in ["llvm", "cuda"]: ctx = tvm.context(device, 0) if not tvm.testing.device_enabled(device): print("Skip because %s is not enabled" % device) continue tvm_output = run_tvm_graph( graph_def, data, "input_tensor", len(tf_output), target=device ) tvm.testing.assert_allclose( np.squeeze(tvm_output[0]), np.squeeze(tf_output[0]), rtol=1e-5, atol=1e-5 ) ####################################################################### # SSD # --- def _test_ssd_impl(): """Test SSD with backbone MobileNet V1""" with tf.Graph().as_default(): graph_def = tf_testing.get_workload( "object_detection/ssd_mobilenet_v1_ppn_shared_" "box_predictor_300x300_coco14_sync_2018_07_03.pb" ) # Call the utility to import the graph definition into default graph. graph_def = tf_testing.ProcessGraphDefParam(graph_def) data = np.random.uniform(0.0, 255.0, size=(1, 512, 512, 3)).astype("uint8") in_node = "image_tensor" out_node = ["detection_boxes", "detection_scores", "detection_classes"] with tf.Session() as sess: tf_output = run_tf_graph( sess, data, "{}:0".format(in_node), ["{}:0".format(oname) for oname in out_node] ) # TODO(kevinthesun): enable gpu test when VM heterogeneous execution is ready. for device in ["llvm"]: ctx = tvm.context(device, 0) if not tvm.testing.device_enabled(device): print("Skip because %s is not enabled" % device) continue tvm_output = run_tvm_graph( graph_def, data, in_node, len(out_node), target=device, layout="NCHW", out_names=out_node, mode="vm", disabled_pass=["FoldScaleAxis"], serialize=True, ) for i in range(len(out_node)): tvm.testing.assert_allclose(tvm_output[i], tf_output[i], rtol=1e-3, atol=1e-3) def test_forward_ssd(): run_thread = threading.Thread(target=_test_ssd_impl, args=()) old_stack_size = threading.stack_size(100 * 1024 * 1024) run_thread.start() run_thread.join() threading.stack_size(old_stack_size) ####################################################################### # Placeholder # ----------- def test_forward_placeholder(): """test a simple pb with Placeholder node in the end of GraphDef""" with tf.Graph().as_default(): graph_def = tf_testing.get_workload("Custom/placeholder.pb") # Call the utility to import the graph definition into default graph. graph_def = tf_testing.ProcessGraphDefParam(graph_def) data = np.random.uniform(size=(1, 224, 224, 3)).astype("float32") out_node = "mul" with tf.Session() as sess: # Add shapes to the graph. graph_def = tf_testing.AddShapesToGraphDef(sess, out_node) tf_output = run_tf_graph(sess, data, "Placeholder:0", out_node + ":0") tvm_output = run_tvm_graph(graph_def, data, "Placeholder") tvm.testing.assert_allclose( np.squeeze(tvm_output[0]), np.squeeze(tf_output[0]), rtol=1e-5, atol=1e-5 ) ####################################################################### # PTB # --- try: # Load contrib for running ptb model in tf version before 2.0 import tensorflow.contrib except: pass def test_forward_ptb(): """test ptb model""" config = tf_testing.get_config() num_steps = config.num_steps num_hidden = config.hidden_size num_layers = config.num_layers batch_size = config.batch_size vocab_size = config.vocab_size out_sample_shape = (batch_size, vocab_size) out_state_shape = (batch_size, num_hidden) # Sample input inpt = "we have no useful information on" cnt_sample = 20 def _pretty_print(items, is_char_model, id2word): if not is_char_model: return " ".join([id2word[x] for x in items]) else: return "".join([id2word[x] for x in items]).replace("_", " ") def _get_tvm_graph_module(graph_def): # Cell inputs 'c and 'h' consist of all layers values shape_dict = {"Model/Placeholder": (batch_size, num_steps)} mod, params = relay.frontend.from_tensorflow( graph_def, shape=shape_dict, outputs=[ "Model/Softmax:0", "Model/RNN/RNN/multi_rnn_cell/cell_0/lstm_cell/LSTMBlockCell:1", "Model/RNN/RNN/multi_rnn_cell/cell_0/lstm_cell/LSTMBlockCell:6", "Model/RNN/RNN/multi_rnn_cell/cell_0/lstm_cell/LSTMBlockCell_1:1", "Model/RNN/RNN/multi_rnn_cell/cell_0/lstm_cell/LSTMBlockCell_1:6", ], ) target = "llvm" with tvm.transform.PassContext(opt_level=0): graph, lib, params = relay.build(mod, target, params=params) from tvm.contrib import graph_runtime ctx = tvm.cpu(0) return params, graph_runtime.create(graph, lib, ctx) def _do_tvm_sample(model, data, in_states, params, num_samples): """Sampled from the model""" samples = [] state = in_states sample = None def _get_sample(data, state): input_data = np.full((batch_size, num_steps), data, dtype="int32") model.set_input("Model/Placeholder", tvm.nd.array(input_data.astype("int32"))) model.set_input( "Model/MultiRNNCellZeroState/LSTMBlockCellZeroState/zeros", tvm.nd.array(state[0].astype("float32")), ) model.set_input( "Model/MultiRNNCellZeroState/LSTMBlockCellZeroState/zeros_1", tvm.nd.array(state[1].astype("float32")), ) model.set_input( "Model/MultiRNNCellZeroState/LSTMBlockCellZeroState_1/zeros", tvm.nd.array(state[2].astype("float32")), ) model.set_input( "Model/MultiRNNCellZeroState/LSTMBlockCellZeroState_1/zeros_1", tvm.nd.array(state[3].astype("float32")), ) model.set_input(**params) model.run() tvm_output = model.get_output(0, tvm.nd.empty(out_sample_shape, "float32")).asnumpy() state_output = [] for i in range(4): state_output.append( model.get_output(i + 1, tvm.nd.empty(out_state_shape, "float32")).asnumpy() ) sample = tf_testing.pick_from_weight(tvm_output[0]) return sample, state_output for x in data: sample, state = _get_sample(x, state) if sample is not None: samples.append(sample) else: samples.append(0) k = 1 while k < num_samples: sample, state = _get_sample(samples[-1], state) samples.append(sample) k += 1 return samples, state with tf.Graph().as_default(): word_to_id, id_to_word, graph_def = tf_testing.get_workload_ptb() vocab_size = len(word_to_id) # Call the utility to import the graph definition into default graph. graph_def = tf_testing.ProcessGraphDefParam(graph_def) sess = tf.Session() # TVM graph module creation params, m = _get_tvm_graph_module(graph_def) # Create 10 predicted statments of 20 words cnt_stm = 0 while cnt_stm < 10: cnt_stm += 1 in_state = [np.full((batch_size, num_hidden), 0, dtype="float32")] * 2 * num_layers seed_for_sample = inpt.split() tvm_samples, tvm_state = _do_tvm_sample( m, [word_to_id[word] for word in seed_for_sample], in_state, params, cnt_sample ) tvm_sample_str = _pretty_print(tvm_samples, False, id_to_word) tf_samples, tf_state = tf_testing.do_tf_sample( sess, [word_to_id[word] for word in seed_for_sample], in_state, cnt_sample ) tf_sample_str = _pretty_print(tf_samples, False, id_to_word) inpt = tvm_sample_str tvm.testing.assert_allclose(tf_samples, tvm_samples, rtol=1e-5, atol=1e-5) assert tvm_sample_str == tf_sample_str ####################################################################### # LRN (Local Response Normalization) # ---------------------------------- def _test_lrn(ishape, size, axis, bias, alpha, beta): """ testing local response normalization """ lrn_depth_radius = size / 2 inp_array = np.random.uniform(size=ishape).astype(np.float32) with tf.Graph().as_default(): in1 = tf.placeholder(shape=inp_array.shape, dtype=inp_array.dtype, name="lrn0_data") nn_ops.local_response_normalization( in1, name="lrn", depth_radius=lrn_depth_radius, bias=bias, alpha=alpha, beta=beta ) compare_tf_with_tvm(inp_array, "lrn0_data:0", "lrn:0") def test_forward_lrn(): _test_lrn((1, 3, 20, 20), 3, 1, 1.0, 1.0, 0.5) ####################################################################### # l2_normalize # ------------ def _test_l2_normalize(ishape, eps, axis): """ testing l2 normalize (uses max, sum, square, sqrt frontend operators)""" inp_array = np.random.uniform(size=ishape).astype(np.float32) with tf.Graph().as_default(): in1 = tf.placeholder(shape=inp_array.shape, dtype=inp_array.dtype) nn.l2_normalize(in1, axis=axis, epsilon=eps, name=None, dim=None) compare_tf_with_tvm(inp_array, "Placeholder:0", "l2_normalize:0") def test_forward_l2_normalize(): _test_l2_normalize((1, 3, 20, 20), 0.001, (0,)) ####################################################################### # transpose # --------- def _test_forward_transpose(ishape, axes=None): data = np.random.uniform(size=ishape).astype(np.float32) with tf.Graph().as_default(): in1 = tf.placeholder(shape=data.shape, dtype=data.dtype, name="transpose_data") if axes is None: tf.transpose(in1) else: tf.transpose(in1, perm=axes) compare_tf_with_tvm(data, "transpose_data:0", "transpose:0") def _test_forward_tranapose_axes_input(ishape, axes): data = np.random.uniform(size=ishape).astype(np.float32) axes_np = np.array(axes).astype(np.int32) with tf.Graph().as_default(): in1 = tf.placeholder(shape=data.shape, dtype=data.dtype, name="transpose_data") const1 = tf.constant(axes_np, dtype=tf.int32) # make axes an input to tf.transpose, but not an input to the graph, # so it can be extracted with infer_value_simulated axes = tf.reverse(const1, axis=[-1]) tf.transpose(in1, axes) compare_tf_with_tvm([data], ["transpose_data:0"], "transpose:0") def test_forward_transpose(): _test_forward_transpose((2, 3, 4), (1, 2, 0)) _test_forward_transpose((2, 3, 4)) _test_forward_transpose((7, 8, 8, 10)) _test_forward_transpose((2, 3, 4), (1, 2, 0)) _test_forward_transpose((2, 3, 4), (0, 1, 2)) _test_forward_transpose((2, 3, 4, 5), (3, 0, 1, 2)) _test_forward_tranapose_axes_input((2, 3, 4), (1, 2, 0)) _test_forward_tranapose_axes_input((2, 3, 4, 5), (3, 0, 1, 2)) def _test_forward_slice_operation_input(input_value, begin_value, size_value): input_data = np.array(input_value, dtype=np.float32) with tf.Graph().as_default(): input_tensor = tf.placeholder(shape=input_data.shape, dtype=input_data.dtype, name="input") tf.slice(input_tensor, begin_value, size_value, name="slice_output") compare_tf_with_tvm([input_data], ["input:0"], "slice_output:0") def test_forward_slice(): _test_forward_slice_operation_input([1, 1], [0], [2]) _test_forward_slice_operation_input([0, 1, 2, 3], [3], [-1]) _test_forward_slice_operation_input( [[0, 1, 2, 3], [4, 5, 6, 7]], begin_value=[0, 1], size_value=[-1, -1] ) def test_forward_ceil(): ishape = (1, 3, 10, 10) inp_array = np.random.uniform(size=ishape).astype(np.float32) with tf.Graph().as_default(): in1 = tf.placeholder(shape=inp_array.shape, dtype=inp_array.dtype) tf.ceil(in1) compare_tf_with_tvm(inp_array, "Placeholder:0", "Ceil:0") def test_forward_floor(): ishape = (1, 3, 10, 10) inp_array = np.random.uniform(size=ishape).astype(np.float32) with tf.Graph().as_default(): in1 = tf.placeholder(shape=inp_array.shape, dtype=inp_array.dtype) tf.floor(in1) compare_tf_with_tvm(inp_array, "Placeholder:0", "Floor:0") def test_forward_relu(): ishape = (1, 3, 10, 10) inp_array = np.random.uniform(-5, 5, size=ishape).astype(np.float32) for mode in ["graph_runtime", "vm"]: with tf.Graph().as_default(): in1 = tf.placeholder(shape=inp_array.shape, dtype=inp_array.dtype) tf.nn.relu(in1) compare_tf_with_tvm(inp_array, "Placeholder:0", "Relu:0", mode=mode) def test_forward_leaky_relu(): ishape = (1, 3, 10, 10) inp_array = np.random.uniform(-5, 5, size=ishape).astype(np.float32) for mode in ["graph_runtime", "vm"]: with tf.Graph().as_default(): in1 = tf.placeholder(shape=inp_array.shape, dtype=inp_array.dtype) tf.nn.leaky_relu(in1, alpha=0.4) compare_tf_with_tvm(inp_array, "Placeholder:0", "LeakyRelu:0", mode=mode) def test_forward_elu(): ishape = (1, 3, 10, 10) inp_array = np.random.uniform(-5, 5, size=ishape).astype(np.float32) with tf.Graph().as_default(): in1 = tf.placeholder(shape=inp_array.shape, dtype=inp_array.dtype) tf.nn.elu(in1) compare_tf_with_tvm(inp_array, "Placeholder:0", "Elu:0") def test_forward_selu(): ishape = (1, 3, 10, 10) inp_array = np.random.uniform(-5, 5, size=ishape).astype(np.float32) with tf.Graph().as_default(): in1 = tf.placeholder(shape=inp_array.shape, dtype=inp_array.dtype) tf.nn.selu(in1) compare_tf_with_tvm(inp_array, "Placeholder:0", "Selu:0") def test_forward_tanh(): ishape = (1, 3, 10, 10) inp_array = np.random.uniform(-5, 5, size=ishape).astype(np.float32) with tf.Graph().as_default(): in1 = tf.placeholder(shape=inp_array.shape, dtype=inp_array.dtype) tf.nn.tanh(in1) compare_tf_with_tvm(inp_array, "Placeholder:0", "Tanh:0") ####################################################################### # Softmax # ------- def test_forward_softmax(): """test operator Softmax """ def check_softmax(in_shape, axis, dtype): np_data = np.random.uniform(-100, 100, size=in_shape).astype(dtype) tf.reset_default_graph() with tf.Graph().as_default(): in_data = tf.placeholder(dtype, in_shape, name="in_data") tf.nn.softmax(in_data, axis=axis, name="Softmax") compare_tf_with_tvm([np_data], ["in_data:0"], "Softmax:0") check_softmax((2, 3, 5), 2, "float32") check_softmax((2, 3, 5), -1, "float32") ####################################################################### # Tensor # ------ def test_forward_round(): """test Round""" np_data = np.random.uniform(-10, 10, size=(5, 7)).astype(np.float32) tf.reset_default_graph() with tf.Graph().as_default(): in_data = tf.placeholder(tf.float32, (5, 7), name="in_data") tf.round(in_data, name="round") compare_tf_with_tvm([np_data], ["in_data:0"], "round:0") def test_forward_abs(): """test operator Abs""" np_data = np.random.uniform(1, 100, size=(9, 11)).astype(np.float32) tf.reset_default_graph() with tf.Graph().as_default(): in_data = tf.placeholder(tf.float32, (9, 11), name="in_data") tf.math.abs(in_data, name="abs") compare_tf_with_tvm([np_data], ["in_data:0"], "abs:0") def _test_forward_zeros_like(in_shape, dtype): np_data = np.random.uniform(-10, 10, size=in_shape).astype(dtype) tf.reset_default_graph() with tf.Graph().as_default(): in_data = tf.placeholder(dtype, in_shape, name="in_data") tf.zeros_like(in_data, name="zeros_like") compare_tf_with_tvm([np_data], ["in_data:0"], "zeros_like:0") def test_forward_zeros_like(): if tf.__version__ < LooseVersion("1.2"): _test_forward_zeros_like((2, 3), "int32") _test_forward_zeros_like((2, 3, 5), "int8") _test_forward_zeros_like((2, 3, 5, 7), "uint16") _test_forward_zeros_like((2, 3, 11), "float32") _test_forward_zeros_like((2, 3, 11), "float64") def test_forward_squared_difference(): ishape = (1, 3, 10, 14) inp_array_a = np.random.uniform(-5, 5, size=ishape).astype(np.float32) inp_array_b = np.random.uniform(-5, 5, size=ishape).astype(np.float32) with tf.Graph().as_default(): in1 = tf.placeholder(shape=inp_array_a.shape, dtype=inp_array_a.dtype, name="in1") in2 = tf.placeholder(shape=inp_array_b.shape, dtype=inp_array_b.dtype, name="in2") out = tf.math.squared_difference(in1, in2) compare_tf_with_tvm([inp_array_a, inp_array_b], [in1.name, in2.name], out.name) def _test_forward_reverse_v2(in_shape, axis, dtype): np_data = np.random.uniform(-10, 10, size=in_shape).astype(dtype) tf.reset_default_graph() with tf.Graph().as_default(): in_data = tf.placeholder(dtype, in_shape, name="in_data") tf.reverse(in_data, axis=[axis], name="reverse") compare_tf_with_tvm([np_data], ["in_data:0"], "reverse:0") def test_forward_reverse_v2(): """test ReverseV2""" _test_forward_reverse_v2((2, 3), 0, "int32") _test_forward_reverse_v2((2, 3, 5), 2, "float32") _test_forward_reverse_v2((2, 3, 5, 7), 1, "float32") _test_forward_reverse_v2((2, 3, 5), -1, "float64") _test_forward_reverse_v2((2, 3, 5), -3, "float64") def test_forward_sign(): """test Sign""" np_data = np.random.uniform(-10, 10, size=(5, 7, 11)).astype(np.float32) tf.reset_default_graph() with tf.Graph().as_default(): in_data = tf.placeholder(tf.float32, (5, 7, 11), name="in_data") tf.sign(in_data, name="sign") compare_tf_with_tvm([np_data], ["in_data:0"], "sign:0") def test_forward_square(): """test operator Square """ np_data = np.random.uniform(1, 100, size=(2, 3, 5)).astype(np.float32) tf.reset_default_graph() with tf.Graph().as_default(): in_data = tf.placeholder(tf.float32, (2, 3, 5), name="in_data") tf.square(in_data, name="square") compare_tf_with_tvm([np_data], ["in_data:0"], "square:0") def test_forward_pow_exp(): """test Pow and Exp """ np_in1 = np.random.uniform(-2, 2, size=(5, 7, 11)).astype(np.float32) np_in2 = np.random.uniform(-2, 2, size=(5, 7, 11)).astype(np.float32) tf.reset_default_graph() with tf.Graph().as_default(): in1 = tf.placeholder(tf.float32, (5, 7, 11), name="in1") in2 = tf.placeholder(tf.float32, (5, 7, 11), name="in2") out1 = tf.pow(in1, in2, name="pow") out = tf.exp(in1, name="exp") compare_tf_with_tvm([np_in1, np_in2], ["in1:0", "in2:0"], "pow:0") compare_tf_with_tvm([np_in1], ["in1:0"], "exp:0") def test_forward_unary(): def _test_forward_unary(op, a_min=1, a_max=5, dtype=np.float32): """test unary operators""" np_data = np.random.uniform(a_min, a_max, size=(2, 3, 5)).astype(dtype) tf.reset_default_graph() with tf.Graph().as_default(): in_data = tf.placeholder(dtype, (2, 3, 5), name="in_data") out = op(in_data) compare_tf_with_tvm([np_data], ["in_data:0"], out.name) _test_forward_unary(tf.acos, -1, 1) _test_forward_unary(tf.asin, -1, 1) _test_forward_unary(tf.atanh, -1, 1) _test_forward_unary(tf.sinh) _test_forward_unary(tf.cosh) _test_forward_unary(tf.acosh) _test_forward_unary(tf.asinh) _test_forward_unary(tf.atan) _test_forward_unary(tf.sin) _test_forward_unary(tf.cos) _test_forward_unary(tf.tan) _test_forward_unary(tf.tanh) _test_forward_unary(tf.erf) _test_forward_unary(tf.log) _test_forward_unary(tf.log1p) def test_forward_atan2(): """test operator tan """ tf.disable_eager_execution() np_data_1 = np.random.uniform(1, 100, size=(2, 3, 5)).astype(np.float32) np_data_2 = np.random.uniform(1, 100, size=(2, 3, 5)).astype(np.float32) tf.reset_default_graph() in_data_1 = tf.placeholder(tf.float32, (2, 3, 5), name="in_data_1") in_data_2 = tf.placeholder(tf.float32, (2, 3, 5), name="in_data_2") tf.atan2(in_data_1, in_data_2, name="atan2") compare_tf_with_tvm([np_data_1, np_data_2], ["in_data_1:0", "in_data_2:0"], "atan2:0") def test_forward_expm1(): """test operator expm1 """ def _test_forward_expm1(shape): tf.disable_eager_execution() np_data = np.random.uniform(1, 10, size=shape).astype(np.float32) tf.reset_default_graph() in_data = tf.placeholder(tf.float32, shape, name="in_data") tf.expm1(in_data, name="expm1") compare_tf_with_tvm([np_data], ["in_data:0"], "expm1:0") _test_forward_expm1([1, 100]) _test_forward_expm1([1, 10, 10]) _test_forward_expm1([2, 5, 2, 5]) def test_forward_softsign(): """test operator softsign """ def _test_forward_softsign(shape): tf.disable_eager_execution() np_data = np.random.uniform(1, 100, size=shape).astype(np.float32) tf.reset_default_graph() in_data = tf.placeholder(tf.float32, shape, name="in_data") tf.nn.softsign(in_data, name="softsign") compare_tf_with_tvm([np_data], ["in_data:0"], "softsign:0") _test_forward_softsign([1, 100]) _test_forward_softsign([1, 10, 10]) _test_forward_softsign([2, 5, 2, 5]) def test_forward_rint(): """test operator rint """ def _test_forward_rint(shape): tf.disable_eager_execution() np_data = np.random.uniform(-100, 100, size=shape).astype(np.float32) tf.reset_default_graph() in_data = tf.placeholder(tf.float32, shape, name="in_data") tf.math.rint(in_data, name="rint") compare_tf_with_tvm([np_data], ["in_data:0"], "rint:0") _test_forward_rint([100]) _test_forward_rint([1, 100]) _test_forward_rint([1, 10, 10]) _test_forward_rint([2, 5, 2, 5]) def test_forward_negative(): """test tf operator Neg """ np_data = np.random.uniform(-100, 255, size=(224, 224, 3)).astype(np.float32) tf.reset_default_graph() with tf.Graph().as_default(): in_data = tf.placeholder(tf.float32, (224, 224, 3), name="in_data") tf.negative(in_data, name="negative") compare_tf_with_tvm([np_data], ["in_data:0"], "negative:0") def test_forward_log_softmax(): """test operator LogSoftmax""" np_data = np.random.uniform(1, 100, size=(9, 11)).astype(np.float32) tf.reset_default_graph() with tf.Graph().as_default(): in_data = tf.placeholder(tf.float32, (9, 11), name="in_data") tf.math.log_softmax(in_data, name="LogSoftmax") compare_tf_with_tvm([np_data], ["in_data:0"], "LogSoftmax:0") def test_forward_softplus(): """test operator Softplus""" np_data = np.random.uniform(1, 10, size=(2, 3, 5)).astype(np.float32) tf.reset_default_graph() with tf.Graph().as_default(): in_data = tf.placeholder(tf.float32, (2, 3, 5), name="in_data") tf.nn.softplus(in_data, name="softplus") compare_tf_with_tvm([np_data], ["in_data:0"], "softplus:0") def test_forward_rsqrt(): """test Rsqrt """ np_data = np.random.uniform(1, 100, size=(5, 7, 11)).astype(np.float32) tf.reset_default_graph() with tf.Graph().as_default(): in_data = tf.placeholder(tf.float32, (5, 7, 11), name="in_data") tf.rsqrt(in_data, name="rsqrt") compare_tf_with_tvm([np_data], ["in_data:0"], "rsqrt:0") def test_forward_sqrt(): """test Sqrt """ np_data = np.random.uniform(1, 100, size=(5, 7, 11)).astype(np.float32) tf.reset_default_graph() with tf.Graph().as_default(): in_data = tf.placeholder(tf.float32, (5, 7, 11), name="in_data") tf.sqrt(in_data, name="sqrt") compare_tf_with_tvm([np_data], ["in_data:0"], "sqrt:0") def _test_forward_right_shift(in_shape, dtype): """test operator RightShift""" lh_data = np.random.randint(1, 3, size=in_shape).astype(dtype) rh_data = np.random.randint(1, 8, size=in_shape).astype(dtype) tf.reset_default_graph() with tf.Graph().as_default(): lft_data = tf.placeholder(dtype, in_shape, name="lft_data") rgt_data = tf.placeholder(dtype, in_shape, name="rgt_data") tf.bitwise.right_shift(lft_data, rgt_data, name="RightShift") compare_tf_with_tvm([lh_data, rh_data], ["lft_data:0", "rgt_data:0"], "RightShift:0") def test_forward_right_shift(): _test_forward_right_shift((7,), "int32") _test_forward_right_shift((3, 11), "int16") def _test_forward_left_shift(in_shape, dtype): """test operator LeftShift""" lh_data = np.random.randint(100, 1000000, size=in_shape).astype(dtype) rh_data = np.random.randint(1, 3, size=in_shape).astype(dtype) tf.reset_default_graph() with tf.Graph().as_default(): lft_data = tf.placeholder(dtype, in_shape, name="lft_data") rgt_data = tf.placeholder(dtype, in_shape, name="rgt_data") tf.bitwise.left_shift(lft_data, rgt_data, name="LeftShift") compare_tf_with_tvm([lh_data, rh_data], ["lft_data:0", "rgt_data:0"], "LeftShift:0") def test_forward_left_shift(): _test_forward_left_shift((10,), "int32") _test_forward_left_shift((224, 224, 3), "int16") ####################################################################### # Mean # ---- def test_forward_mean(): def check_mean(ishape, **kwargs): inp_array = np.random.uniform(size=ishape).astype(np.float32) with tf.Graph().as_default(): in1 = tf.placeholder(shape=inp_array.shape, dtype=inp_array.dtype) tf.keras.backend.mean(in1, **kwargs) compare_tf_with_tvm(inp_array, "Placeholder:0", "Mean:0", no_gpu=True) check_mean((10, 8, 16, 32)) check_mean((10, 8, 16, 32), axis=(2, 3)) check_mean((10, 8, 16, 32), axis=(1, 2), keepdims=True) ####################################################################### # Size # ---- def test_forward_size(): def check_size(ishape): np_input = np.random.uniform(size=ishape).astype(np.float32) # if all dimensions are constant, TF will optimize away size operator into constant tf_input_shape = list(np_input.shape) tf_input_shape[0] = None with tf.Graph().as_default(): input = tf.placeholder(shape=tf_input_shape, dtype=np_input.dtype, name="input") tf.size(input, name="size") compare_tf_with_tvm([np_input], ["input:0"], "size:0") check_size((10, 8, 16, 32)) check_size((10,)) ####################################################################### # All, Any, Max, Min, Prod, variance, std, logsumexp, euclidean_norm # ------------------------------------------------------------------ def test_forward_reduce(): def _check_op(tf_op, ishape, axis, keepdims, dtype="float32"): tf.reset_default_graph() if dtype == "bool": np_data = np.random.choice([True, False], size=ishape) else: np_data = np.random.uniform(size=ishape).astype(dtype) if tf_op == tf.math.reduce_prod: axis = 1 np_data = np_data.reshape(1, -1) with tf.Graph().as_default(): in_data = tf.placeholder(dtype, name="in_data") reduce_op = tf_op(in_data, axis=axis, keepdims=keepdims, name="reduce_std") compare_tf_with_tvm([np_data], ["in_data:0"], reduce_op.name) def _test_math_op(op, dtypes=["int32", "float32"]): for dtype in dtypes: _check_op(op, (3, 10), axis=(-1), keepdims=False, dtype=dtype) _check_op(op, (8, 16, 32), axis=(-1), keepdims=False, dtype=dtype) _check_op(op, (1, 8, 8, 3), axis=(2, 3), keepdims=True, dtype=dtype) _check_op(op, (2, 3, 10, 10), axis=(1, 2), keepdims=True, dtype=dtype) _test_math_op(tf.math.reduce_all, dtypes=["bool"]) _test_math_op(tf.math.reduce_any, dtypes=["bool"]) _test_math_op(tf.math.reduce_max) _test_math_op(tf.math.reduce_min) _test_math_op(tf.math.reduce_prod) _test_math_op(tf.math.reduce_variance, dtypes=["float32"]) _test_math_op(tf.math.reduce_std, dtypes=["float32"]) _test_math_op(tf.math.reduce_logsumexp, dtypes=["float32"]) if package_version.parse(tf.VERSION) >= package_version.parse("1.15.0"): _test_math_op(tf.math.reduce_euclidean_norm) ####################################################################### # Relational operators # -------------------- def _test_forward_rel_op(data, func): with tf.Graph().as_default(): in1 = tf.placeholder(shape=data[0].shape, dtype=data[0].dtype, name="in1") in2 = tf.placeholder(shape=data[1].shape, dtype=data[1].dtype, name="in2") op = func(in1, in2, name="op") out = tf.cast(op, tf.int32, name="out1") compare_tf_with_tvm([data[0], data[1]], ["in1:0", "in2:0"], "out1:0") def test_forward_rel_ops(): t1 = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) t2 = np.array([[9, 8, 7], [6, 5, 4], [3, 2, 1]]) _test_forward_rel_op([t1, t2], math_ops.less) _test_forward_rel_op([t1, t2], math_ops.greater) _test_forward_rel_op([t1, t2], math_ops.less_equal) _test_forward_rel_op([t1, t2], math_ops.greater_equal) _test_forward_rel_op([t1, t2], math_ops.equal) _test_forward_rel_op([t1, t2], math_ops.not_equal) ####################################################################### # ExpandDims # ---------- def _test_forward_expand_dims(data, axis): with tf.Graph().as_default(): in1 = tf.placeholder(shape=data.shape, dtype=data.dtype, name="in1") out = tf.expand_dims(in1, axis) compare_tf_with_tvm([data], [in1.name], out.name) def test_forward_expand_dims(): _test_forward_expand_dims(np.int32(1), 0) _test_forward_expand_dims(np.array([1]), 0) _test_forward_expand_dims(np.array([1]), -1) _test_forward_expand_dims(np.array([[1], [2]]), 0) _test_forward_expand_dims(np.array([[1], [2]]), 1) _test_forward_expand_dims(np.array([[1], [2]]), -1) ####################################################################### # Maximum, Minimum # ---------------- def test_forward_maximum(): """test Op Maximum""" def check_maximum(lh_shape, rh_shape, dtype): tf.reset_default_graph() lh_data = np.random.uniform(size=lh_shape).astype(dtype) rh_data = np.random.uniform(size=rh_shape).astype(dtype) with tf.Graph().as_default(): lft_data = tf.placeholder(dtype, name="lft_data") rgt_data = tf.placeholder(dtype, name="rgt_data") tf.math.maximum(lft_data, rgt_data, name="maximum") compare_tf_with_tvm([lh_data, rh_data], ["lft_data:0", "rgt_data:0"], "maximum:0") check_maximum((10, 8, 16, 32), (1,), dtype="int32") check_maximum((10, 8, 16, 32), (10, 8, 16, 32), dtype="float32") def test_forward_minimum(): """test Op Minimum""" def check_minimum(lh_shape, rh_shape, dtype): tf.reset_default_graph() lh_data = np.random.uniform(size=lh_shape).astype(dtype) rh_data = np.random.uniform(size=rh_shape).astype(dtype) with tf.Graph().as_default(): lft_data = tf.placeholder(dtype, name="lft_data") rgt_data = tf.placeholder(dtype, name="rgt_data") tf.math.minimum(lft_data, rgt_data, name="minimum") compare_tf_with_tvm([lh_data, rh_data], ["lft_data:0", "rgt_data:0"], "minimum:0") check_minimum((10, 8, 16, 32), (1,), dtype="int32") check_minimum((10, 8, 16, 32), (10, 8, 16, 32), dtype="float32") ####################################################################### # PlaceholderWithDefault # ---------------------- def test_placeholder(): with tf.Graph().as_default(): in_data1 = np.random.uniform(-5, 5, size=(3, 4, 5)).astype(np.float32) var1 = tf.Variable(in_data1, name="in1") var2 = array_ops.placeholder_with_default(var1, None, name="place1") in_data2 = np.random.uniform(-5, 5, size=(3, 4, 5)).astype(np.float32) place1 = array_ops.placeholder(shape=in_data1.shape, dtype=in_data1.dtype, name="in2") out1 = tf.math.add(var1, var2, name="out1") out2 = tf.math.add(out1, place1, name="out2") compare_tf_with_tvm( [in_data1, in_data2], ["place1:0", "in2:0"], "out2:0", init_global_variables=True ) ####################################################################### # OneHot # ---------------------- def _test_forward_one_hot(indices_shape, depth, on_value, off_value, axis, out_dtype): inp_array1 = np.random.randint(0, 5, size=indices_shape) with tf.Graph().as_default(): in1 = tf.placeholder(shape=inp_array1.shape, dtype=inp_array1.dtype) out = tf.one_hot(in1, depth, on_value, off_value, axis, dtype=out_dtype) compare_tf_with_tvm(inp_array1, in1.name, out.name) def test_forward_one_hot(): _test_forward_one_hot((3,), 3, 1, 0, -1, "int32") _test_forward_one_hot((3,), 3, 1.0, 0.0, -1, "float32") _test_forward_one_hot((2, 2), 5, 2, -2, 0, "int32") _test_forward_one_hot((2, 2), 5, 0.5, -0.5, 1, "float32") _test_forward_one_hot((3, 2, 4, 5), 6, 1, 0, 1, "int32") _test_forward_one_hot((3, 2, 4, 5), 6, 1.0, 0.0, 0, "float32") ####################################################################### # AddN # ---------------------- def _test_forward_add_n(inputs): tf.reset_default_graph() with tf.Graph().as_default(): temp = [] for each in inputs: temp.append(tf.placeholder(shape=each.shape, dtype=each.dtype)) output = tf.add_n(temp) compare_tf_with_tvm([each for each in inputs], [each.name for each in temp], output.name) def test_forward_add_n(): x = np.random.randint(1, 100, size=(3, 3, 3), dtype=np.int32) y = np.random.randint(1, 100, size=(3, 3, 3), dtype=np.int32) z = np.random.randint(1, 100, size=(3, 3, 3), dtype=np.int32) m, n, o = x.astype(np.float32), y.astype(np.float32), z.astype(np.float32) in0 = x in1 = [x, y] in2 = (x, y, z) in3 = m in4 = [m, n] in5 = (m, n, o) _test_forward_add_n(in0) _test_forward_add_n(in1) _test_forward_add_n(in2) _test_forward_add_n(in3) _test_forward_add_n(in4) _test_forward_add_n(in5) ####################################################################### # Sharing params case # ---------------------- def test_sharing_node(): """Test the sharing params case.""" np_data = np.random.uniform(size=(2, 2, 2)).astype("float32") with tf.Graph().as_default(): in_data = tf.placeholder(tf.float32, shape=(2, 2, 2), name="in_data") axis = tf.constant([-1], dtype=tf.int32, name="axis") mean0 = tf.reduce_mean(in_data, axis=axis, keepdims=False, name="mean0") mean1 = tf.reduce_mean(in_data, axis=axis, keepdims=False, name="mean1") out = tf.add(mean0, mean1, name="out") compare_tf_with_tvm([np_data], ["in_data:0"], "out:0") ####################################################################### # Unravel Index # ---------------------- def _test_forward_unravel_index(inputs): tf.reset_default_graph() with tf.Graph().as_default(): temp = [] for each in inputs: temp.append(tf.placeholder(shape=each.shape, dtype=each.dtype)) output = tf.unravel_index(temp[0], temp[1]) compare_tf_with_tvm([each for each in inputs], [each.name for each in temp], output.name) def _test_forward_unravel_index_scalar(x, y, dtype="int32"): tf.reset_default_graph() with tf.Graph().as_default(): indices_1 = constant_op.constant(x, dtype=dtype) dims_1 = constant_op.constant(y, dtype=dtype) out_1 = array_ops.unravel_index(indices_1, dims_1) compare_tf_with_tvm([], [], out_1.name) def test_forward_unravel_index(): x = np.array([0, 1, 2, 3]) y = np.array([2, 2]) _test_forward_unravel_index([x, y]) x = np.array([0, 1, 2, 5]) y = np.array([2, 3]) _test_forward_unravel_index([x, y]) x = np.array([0, 1, 2, 5]) y = np.array([6]) _test_forward_unravel_index([x, y]) x = np.array([102, 300, 16]) y = np.array([10, 10, 9, 6]) _test_forward_unravel_index([x, y]) x = np.array([100]) y = np.array([10, 10, 9, 6]) _test_forward_unravel_index([x, y]) # Test scalar input _test_forward_unravel_index_scalar(13, [1, 4, 5, 2]) ####################################################################### # Dilation2d # ---------------------- def _test_dilation2d(tensor_in_sizes, filter_in_sizes, strides, dilations, padding): """ One iteration of dilation2d with given shapes and attributes """ total_size_1 = np.prod(tensor_in_sizes) total_size_2 = np.prod(filter_in_sizes) # Initializes the input tensor with array containing incrementing # numbers from 1. data_array = [f * 1.0 for f in range(1, total_size_1 + 1)] filter_array = [f * 1.0 for f in range(1, total_size_2 + 1)] with tf.Graph().as_default(): in_data = array_ops.placeholder(shape=tensor_in_sizes, dtype="float32") in_filter = constant_op.constant(filter_array, shape=filter_in_sizes, dtype="float32") nn_ops.dilation2d(in_data, in_filter, strides=strides, rates=dilations, padding=padding) compare_tf_with_tvm( np.reshape(data_array, tensor_in_sizes).astype("float32"), "Placeholder:0", "Dilation2D:0", no_gpu=True, ) def test_forward_dilation(): _test_dilation2d([1, 18, 18, 32], [4, 4, 32], [1, 1, 1, 1], [1, 2, 1, 1], "VALID") _test_dilation2d([1, 15, 15, 32], [4, 4, 32], [1, 1, 1, 1], [1, 2, 1, 1], "SAME") _test_dilation2d([1, 5, 5, 1], [2, 2, 1], [1, 1, 1, 1], [1, 1, 1, 1], "VALID") _test_dilation2d([1, 5, 5, 1], [3, 3, 1], [1, 1, 1, 1], [1, 2, 2, 1], "VALID") _test_dilation2d([1, 5, 5, 3], [3, 3, 3], [1, 1, 1, 1], [1, 1, 1, 1], "SAME") _test_dilation2d([1, 28, 28, 3], [5, 5, 3], [1, 2, 2, 1], [1, 1, 1, 1], "VALID") _test_dilation2d([1, 224, 224, 10], [8, 8, 10], [1, 1, 1, 1], [1, 1, 1, 1], "VALID") _test_dilation2d([1, 18, 18, 32], [4, 4, 32], [1, 1, 1, 1], [1, 2, 1, 1], "SAME") _test_dilation2d([1, 15, 15, 32], [4, 4, 32], [1, 1, 1, 1], [1, 2, 1, 1], "VALID") _test_dilation2d([1, 5, 5, 1], [7, 2, 1], [1, 3, 1, 1], [1, 1, 1, 1], "SAME") _test_dilation2d([1, 5, 5, 1], [3, 4, 1], [1, 2, 1, 1], [1, 2, 2, 1], "SAME") _test_dilation2d([1, 5, 5, 3], [3, 3, 3], [1, 1, 4, 1], [1, 1, 1, 1], "VALID") _test_dilation2d([1, 28, 28, 3], [5, 6, 3], [1, 1, 2, 1], [1, 1, 1, 1], "SAME") _test_dilation2d([1, 224, 224, 10], [8, 8, 10], [1, 3, 1, 1], [1, 1, 1, 1], "SAME") _test_dilation2d([1, 3, 3, 1], [2, 2, 1], [1, 1, 1, 1], [1, 2, 2, 1], "SAME") _test_dilation2d([1, 3, 3, 1], [2, 2, 1], [1, 1, 1, 1], [1, 1, 2, 1], "VALID") def _test_identityn(data_np_list): with tf.Graph().as_default(): data_tensors = [] data_tensors_name = [] for index, data_np in enumerate(data_np_list): tensor_name = f"data_{index}" data_tensors_name.append(tensor_name + ":0") data_tensors.append( tf.placeholder(shape=data_np.shape, dtype=str(data_np.dtype), name=tensor_name) ) output = tf.identity_n(data_tensors) output_names = [out.name for out in output] compare_tf_with_tvm( data_np_list, data_tensors_name, output_names, ) @pytest.mark.parametrize( "data_np_list", [ ( [ np.array([[1, 1], [0, 3], [0, 1], [2, 0], [3, 1]], dtype=np.int64), np.array([1, 2, 3, 4, 5], dtype=np.int64), np.array([5, 6], dtype=np.int64), ] ), ( [ np.array([[1, 1], [0, 3], [2, 0], [3, 1]], dtype=np.int64), np.array([1, 2, 3, 4], dtype=np.int64), np.array([5, 6], dtype=np.int64), np.array([True, False, True]), ] ), ( [ np.array([]), np.array([[]]), ] ), ], ) def test_forward_identityn(data_np_list): _test_identityn(data_np_list) ####################################################################### # Sparse To Dense # --------------- def _test_sparse_to_dense(sparse_indices, sparse_values, default_value, output_shape): with tf.Graph().as_default(): indices = tf.placeholder( shape=sparse_indices.shape, dtype=str(sparse_indices.dtype), name="indices" ) values = tf.placeholder( shape=sparse_values.shape, dtype=str(sparse_values.dtype), name="values" ) oshape = tf.constant(output_shape, shape=output_shape.shape, dtype=str(output_shape.dtype)) if default_value == None: output = tf.sparse_to_dense(indices, oshape, values) compare_tf_with_tvm( [sparse_indices, sparse_values], ["indices:0", "values:0"], output.name ) else: dv = tf.placeholder(shape=(), dtype=str(default_value.dtype), name="default_value") output = tf.sparse_to_dense(indices, oshape, values, dv) compare_tf_with_tvm( [sparse_indices, sparse_values, default_value], ["indices:0", "values:0", "default_value:0"], output.name, ) def test_forward_sparse_to_dense(): # scalar _test_sparse_to_dense( sparse_indices=np.int32(1), sparse_values=np.int32(3), default_value=np.int32(0), output_shape=np.array([5]).astype("int32"), ) # vector _test_sparse_to_dense( sparse_indices=np.array([0, 1, 4]).astype("int32"), sparse_values=np.array([3, 3, 3]).astype("int32"), default_value=np.int32(0), output_shape=np.array([5]).astype("int32"), ) # vector nXd _test_sparse_to_dense( sparse_indices=np.array([[0, 0], [1, 2]]).astype("int32"), sparse_values=np.array([1, 2]).astype("int32"), default_value=np.int32(0), output_shape=np.array([3, 4]).astype("int32"), ) _test_sparse_to_dense( sparse_indices=np.array([[0, 0, 0], [1, 2, 3]]).astype("int32"), sparse_values=np.array([1, 2]).astype("int32"), default_value=np.int32(4), output_shape=np.array([2, 3, 4]).astype("int32"), ) # floats _test_sparse_to_dense( sparse_indices=np.array([0, 1, 4]).astype("int32"), sparse_values=np.array([3.1, 3.1, 3.1]).astype("float32"), default_value=np.float32(3.5), output_shape=np.array([5]).astype("int32"), ) # default value not specified _test_sparse_to_dense( sparse_indices=np.array([0, 1, 4]).astype("int32"), sparse_values=np.array([3.1, 3.1, 3.1]).astype("float32"), default_value=None, output_shape=np.array([5]).astype("int32"), ) ####################################################################### # infinity ops # ------------ def _verify_infiniteness_ops(tf_op, name): """test operator infinity ops""" # Only float types are allowed in Tensorflow for isfinite and isinf # float16 is failing on cuda tf_dtypes = ["float32", "float64"] for tf_dtype in tf_dtypes: shape = (8, 8) data = np.random.uniform(size=shape).astype(tf_dtype) data.ravel()[np.random.choice(data.size, int(data.size * 0.5), replace=False)] = np.infty data.ravel()[np.random.choice(data.size, int(data.size * 0.5), replace=False)] = np.nan tf.reset_default_graph() in_data = tf.placeholder(tf_dtype, shape, name="in_data") tf_op(in_data, name=name) compare_tf_with_tvm([data], ["in_data:0"], "{}:0".format(name)) def test_forward_isinf(): _verify_infiniteness_ops(tf.is_inf, "isinf") def test_forward_isfinite(): _verify_infiniteness_ops(tf.is_finite, "isfinite") def test_forward_isnan(): _verify_infiniteness_ops(tf.is_nan, "isnan") def _test_spop_placeholder_without_shape_info(): with tf.Graph().as_default(): @function.Defun(*[tf.int32] * 2) def Forward(x, y): print(x.name) print(y.name) b = tf.add(x, y) return b pl1 = tf.placeholder(tf.int32, name="pl1") pl2 = tf.placeholder(tf.int32, name="pl2") pl3 = tf.placeholder(tf.int32, name="pl3") data = np.array([[-1, 1], [2, -2]], dtype=np.int32) data2 = np.array([[-2, 3], [4, -6]], dtype=np.int32) data3 = np.array([[-2, 3], [4, -6]], dtype=np.int32) z1 = gen_functional_ops.StatefulPartitionedCall(args=[pl1, pl2], Tout=[tf.int32], f=Forward) z2 = z1 + pl3 compare_tf_with_tvm( [data, data2, data3], ["pl1:0", "pl2:0", "pl3:0"], ["StatefulPartitionedCall:0", z2.name], mode="vm", init_global_variables=True, ) def _test_spop_placeholder_with_shape_and_default_value(): with tf.Graph().as_default(): data = np.ones([1], dtype=int).astype(np.int32) dataVar = tf.Variable(data, shape=data.shape) pl1 = array_ops.placeholder_with_default(dataVar, shape=data.shape, name="pl1") tpl = tf.convert_to_tensor(pl1, dtype=tf.int32) @function.Defun(*[tf.int32]) def pl_with_default(pl): return tf.expand_dims(tf.multiply(pl, pl), 0) z = gen_functional_ops.StatefulPartitionedCall( args=[tpl], Tout=[tf.int32], f=pl_with_default ) compare_tf_with_tvm( data, ["pl1:0"], "StatefulPartitionedCall:0", mode="vm", init_global_variables=True ) def _test_spop_placeholder_numpy_arange_feed(): with tf.Graph().as_default(): t1 = tf.placeholder(tf.int32, (3, 3, 3), "t1") t1_data = np.arange(27, dtype=np.int32).reshape((3, 3, 3)) t2 = tf.placeholder(tf.int32, (3, 3, 3), "t2") t2_data = np.arange(27, dtype=np.int32).reshape((3, 3, 3)) @tf.function def add(x, y): return tf.add(x, y, "add_t1_t2") t3 = add(t1, t2) compare_tf_with_tvm( [t1_data, t2_data], ["t1:0", "t2:0"], [t3.name], mode="vm", init_global_variables=True ) def _test_spop_placeholder_numpy_array_feed(): with tf.Graph().as_default(): t1_data = np.array([[-1, 1, 3], [2, -2, 4], [2, -3, 14]], dtype=np.int32) t2_data = np.array([[-2, 1, 2], [12, -2, 14], [12, -3, 4]], dtype=np.int32) t1 = tf.placeholder(tf.int32, name="t1") t2 = tf.placeholder(tf.int32, name="t2") @tf.function def add(x, y): return tf.add(x, y, "add_t1_t2") t3 = add(t1, t2) compare_tf_with_tvm( [t1_data, t2_data], ["t1:0", "t2:0"], [t3.name], mode="vm", init_global_variables=True ) def _test_spop_function_invocation_basic(): with tf.Graph().as_default(): def fun1(a): return tf.multiply(a, a) def fun2(b): return tf.multiply(b, 10) @tf.function def fun3(x, y): x = fun2(x) y = fun1(y) z = tf.add(x, y) return z t3 = fun3(tf.constant(10.5), tf.constant(20.4)) compare_tf_with_tvm([], [], [t3.name], mode="vm", init_global_variables=True) def _test_spop_function_invocation_nested(): with tf.Graph().as_default(): t1 = tf.placeholder(tf.int32, (3, 3, 3), name="t1") t1_data = np.arange(27, dtype=np.int32).reshape((3, 3, 3)) t2 = tf.placeholder(tf.int32, name="t2") t2_data = np.arange(27, dtype=np.int32).reshape((3, 3, 3)) @tf.function def myfunc(x, y): return tf.add(x, y, "myfunc") @tf.function def myfunc2(x, y): z = myfunc(x, y) l = myfunc(z, y) m = myfunc(l, z) return tf.add(l, m, "myfunc2") res1 = myfunc(t1, t2) res2 = myfunc2(res1, t1) compare_tf_with_tvm( [t1_data, t2_data], ["t1:0", "t2:0"], [res2.name], mode="vm", init_global_variables=True ) def _test_spop_function_invocation_no_autograph(): with tf.Graph().as_default(): @tf.function(autograph=False) def fun1(a): return tf.multiply(a, a) @tf.function(autograph=False) def fun2(b): return tf.multiply(b, 10) @tf.function def fun3(x, y): x = fun2(x) y = fun1(y) z = tf.add(x, y) return z t3 = fun3(tf.constant(10.5), tf.constant(20.4)) compare_tf_with_tvm([], [], [t3.name], mode="vm", init_global_variables=True) def _test_spop_function_invocation_defun(): with tf.Graph().as_default(): def fun1(a): return tf.multiply(a, a) def fun2(b): return tf.multiply(b, b) @function.Defun(dtypes.float32, dtypes.float32, func_name="Fun3") def fun3(x, y): x = fun2(x) y = fun1(y) z = tf.add(x, y) return z op = gen_functional_ops.StatefulPartitionedCall( args=[tf.constant(10.5), tf.constant(20.4)], Tout=[dtypes.float32], f=fun3, name="SpopFnInvocation", ) compare_tf_with_tvm([], [], "SpopFnInvocation:0", mode="vm", init_global_variables=True) def _test_spop_arithmetic(): with tf.Graph().as_default(): @function.Defun(*[dtypes.int32] * 3) def arithmetic(m, x, c): z = tf.add(tf.multiply(m, x), c) return z m = tf.constant(10) x = tf.constant(20) c = tf.constant(2) spopFn = gen_functional_ops.StatefulPartitionedCall( args=[m, x, c], Tout=[tf.int32], f=arithmetic ) compare_tf_with_tvm( [], [], "StatefulPartitionedCall:0", mode="vm", init_global_variables=True ) def _test_spop_control_flow(): with tf.Graph().as_default(): @function.Defun(*[dtypes.float32] * 2) def Body1(x, y): with ops.device("/job:localhost/replica:0/task:0/device:CPU:0"): z = math_ops.multiply(x, y) i = 0 while i < 10: i += 1 if i == 5: continue z = math_ops.multiply(x, y * i) return z op = gen_functional_ops.StatefulPartitionedCall( args=[constant_op.constant(32.0), constant_op.constant(100.0)], Tout=[dtypes.float32], f=Body1, ) compare_tf_with_tvm( [], [], "StatefulPartitionedCall:0", mode="vm", init_global_variables=True ) def _test_spop_variables(): with tf.Graph().as_default(): const1 = tf.constant(10) const2 = tf.constant(20) var1 = tf.Variable(const1, dtype=tf.int32) var2 = tf.Variable(const2, dtype=tf.int32) @function.Defun(tf.int32, tf.int32) def Forward(x, y): return tf.multiply(x, y) z = gen_functional_ops.StatefulPartitionedCall( args=[var1, var2], Tout=[tf.int32], f=Forward ) compare_tf_with_tvm( [], [], "StatefulPartitionedCall:0", init_global_variables=True, mode="vm" ) def _test_spop_constants(): with tf.Graph().as_default(): @function.Defun(*[dtypes.int32] * 2) def constantsFn(x, y): vv = tf.constant([2, 3, 4], name="vv") z = tf.add(vv + x, y) return z a = tf.constant(20000, name="a") b = tf.constant(40000, name="b") spopFn = gen_functional_ops.StatefulPartitionedCall( args=[a, b], Tout=[tf.int32], f=constantsFn ) compare_tf_with_tvm( [], [], "StatefulPartitionedCall:0", mode="vm", init_global_variables=True ) def _test_spop_stateful(): # This test case is to test that TVM rejects any TF stateful operations # (including Resource Variables) except StatefulPartitionedCall/PartitionedCall # (as these two operators can still be used as container graphs to execute # "stateless" operations internally. tf.reset_default_graph() with tf.Graph().as_default(): @tf.function def FunctionWithStatefulOp_One(i): b = tf.random.uniform(shape=[2, 4], maxval=10, dtype=tf.float32, seed=10) y = tf.multiply(b, i) return y @tf.function def FunctionWithStatefulOp(m, n): a = tf.random.uniform(shape=[2, 4], maxval=10, dtype=tf.float32, seed=10) x = tf.multiply(a, m) y = FunctionWithStatefulOp_One(n) z = tf.multiply(x, y) return z op = FunctionWithStatefulOp(constant_op.constant(1.0), constant_op.constant(2.0)) with pytest.raises(Exception) as execinfo: compare_tf_with_tvm([], [], [op.name], init_global_variables=True, mode="vm") assert execinfo.value.args[0].startswith("The following operators are not implemented") def _test_spop_device_assignment(): # This test case is to test that TVM rejects inconsistent device assignment # while using StatefulPartitionedCall/PartitionedCall operators which in case of TVM will # be used as container graphs to internally execute "stateless" operations. tf.reset_default_graph() with tf.Graph().as_default(): def fun1(a): with ops.device("/GPU:0"): return tf.multiply(a, a) def fun2(b): with ops.device("/job:localhost/replica:0/task:0/device:CPU:1"): return tf.multiply(b, b) @function.Defun(dtypes.float32, dtypes.float32, func_name="Fun3") def fun3(x, y): with ops.device("/CPU:0"): x = fun2(x) with ops.device("/job:localhost/replica:0/task:0/device:CPU:2"): y = fun1(y) with ops.device("/job:localhost/replica:0/task:0/device:CPU:3"): z = tf.add(x, y) return z op = gen_functional_ops.StatefulPartitionedCall( args=[tf.constant(10.5), tf.constant(20.4)], Tout=[dtypes.float32], f=fun3 ) with pytest.raises(Exception) as execinfo: compare_tf_with_tvm( [], [], "StatefulPartitionedCall:0", mode="vm", init_global_variables=True ) assert execinfo.value.args[0].startswith("Found inconsistent Device assignment") def _test_spop_resource_variables(): # This test case is to test that TVM rejects any graph containing # resource variables with StatefulPartitionedOp. tf.reset_default_graph() with tf.Graph().as_default(): const1 = tf.constant(10) const2 = tf.constant(20) var1 = tf.Variable(const1, dtype=tf.int32, use_resource=True) var2 = tf.Variable(const2, dtype=tf.int32, use_resource=True) @tf.function def resourceVariablesTest(x, y): return tf.multiply(x, y) op = resourceVariablesTest(var1, var2) with pytest.raises(Exception) as execinfo: compare_tf_with_tvm( [], [], "StatefulPartitionedCall:0", mode="vm", init_global_variables=True ) assert execinfo.value.args[0].startswith("Graph is not frozen." " Provide a frozen graph") def test_forward_spop(): _test_spop_stateful() _test_spop_device_assignment() _test_spop_resource_variables() # Placeholder test cases _test_spop_placeholder_without_shape_info() _test_spop_placeholder_with_shape_and_default_value() _test_spop_placeholder_numpy_arange_feed() _test_spop_placeholder_numpy_array_feed() # Function Invocation test cases _test_spop_function_invocation_basic() _test_spop_function_invocation_nested() _test_spop_function_invocation_no_autograph() _test_spop_function_invocation_defun() # Test cases for various other TF constructs _test_spop_arithmetic() _test_spop_control_flow() _test_spop_variables() _test_spop_constants() ####################################################################### # Dynamic input shape # ------------------- def test_forward_dynamic_input_shape(): tf.reset_default_graph() with tf.Graph().as_default(): data = tf.placeholder(tf.float32, name="data", shape=(None,)) out = data + 1 np_data = np.random.uniform(size=(2,)).astype("float32") out_name = "add" with tf.Session() as sess: graph_def = tf_testing.AddShapesToGraphDef(sess, out_name) tf_output = run_tf_graph(sess, np_data, "data:0", ["{}:0".format(out_name)]) # TODO(kevinthesun): enable gpu test when VM heterogeneous execution is ready. for device in ["llvm"]: ctx = tvm.context(device, 0) if not tvm.testing.device_enabled(device): print("Skip because %s is not enabled" % device) continue tvm_output = run_tvm_graph( graph_def, np_data, ["data"], 1, target=device, layout="NCHW", out_names=[out_name], mode="vm", ignore_in_shape=True, ) tvm.testing.assert_allclose(tvm_output[0], tf_output[0], rtol=1e-5, atol=1e-5) def test_forward_dynmaic_rnn_lstmblockcell(): if package_version.parse(tf.VERSION) >= package_version.parse("2.0.0"): return total_series_length = 50000 truncated_backprop_length = 15 state_size = 4 echo_step = 3 batch_size = 5 num_layers = 5 def generateData(): x = np.array(np.random.choice(2, total_series_length, p=[0.5, 0.5])) y = np.roll(x, echo_step) y[0:echo_step] = 0 x = x.reshape((batch_size, -1)) # The first index changing slowest, subseries as rows y = y.reshape((batch_size, -1)) return (x, y) batchX_placeholder = tf.placeholder(tf.float32, [batch_size, truncated_backprop_length]) init_state = tf.placeholder(tf.float32, [num_layers, 2, batch_size, state_size]) state_per_layer_list = tf.unstack(init_state, axis=0) rnn_tuple_state = tuple( [ tf.nn.rnn_cell.LSTMStateTuple( state_per_layer_list[idx][0], state_per_layer_list[idx][1] ) for idx in range(num_layers) ] ) # Forward passes def lstm_cell(): return tensorflow.contrib.rnn.LSTMBlockCell(state_size) cell = tf.nn.rnn_cell.MultiRNNCell( [lstm_cell() for _ in range(num_layers)], state_is_tuple=True ) states_series, current_state = tf.nn.dynamic_rnn( cell, tf.expand_dims(batchX_placeholder, -1), initial_state=rnn_tuple_state ) with tf.Session() as sess: sess.run(tf.global_variables_initializer()) x, y = generateData() _current_state = np.zeros((num_layers, 2, batch_size, state_size)) start_idx = 0 end_idx = start_idx + truncated_backprop_length batchX = x[:, start_idx:end_idx] # Save current state for TVM current_state_tvm = _current_state _current_state, _states_series = sess.run( [current_state, states_series], feed_dict={batchX_placeholder: batchX, init_state: _current_state}, ) # Organize results and corresponding names tf_output = [_states_series] for c in _current_state: tf_output.append(c.c) tf_output.append(c.h) name = [states_series.name.split(":")[0]] for t in current_state: name.append(t.c.name.split(":")[0]) name.append(t.h.name.split(":")[0]) graph_def = sess.graph.as_graph_def(add_shapes=True) final_graph_def = graph_util.convert_variables_to_constants(sess, graph_def, name) tvm_output = run_tvm_graph( final_graph_def, [batchX.astype("float32"), current_state_tvm.astype("float32")], ["Placeholder", "Placeholder_1"], out_names=name, num_output=len(name), mode="vm", disabled_pass=["FoldScaleAxis"], ) # Compare result for i in range(len(tf_output)): tvm.testing.assert_allclose(tf_output[i], tvm_output[i], atol=1e-5, rtol=1e-5) if __name__ == "__main__": pytest.main([__file__])
build_imagenet_data.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # Copyright 2021 Giovanni Dispoto # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Converts ImageNet data to TFRecords file format with Example protos. The raw ImageNet data set is expected to reside in JPEG files located in the following directory structure. data_dir/n01440764/ILSVRC2012_val_00000293.JPEG data_dir/n01440764/ILSVRC2012_val_00000543.JPEG ... where 'n01440764' is the unique synset label associated with these images. The training data set consists of 1000 sub-directories (i.e. labels) each containing 1200 JPEG images for a total of 1.2M JPEG images. The evaluation data set consists of 1000 sub-directories (i.e. labels) each containing 50 JPEG images for a total of 50K JPEG images. This TensorFlow script converts the training and evaluation data into a sharded data set consisting of 1024 and 128 TFRecord files, respectively. train_directory/train-00000-of-01024 train_directory/train-00001-of-01024 ... train_directory/train-00127-of-01024 and validation_directory/validation-00000-of-00128 validation_directory/validation-00001-of-00128 ... validation_directory/validation-00127-of-00128 Each validation TFRecord file contains ~390 records. Each training TFREcord file contains ~1250 records. Each record within the TFRecord file is a serialized Example proto. The Example proto contains the following fields: image/encoded: string containing JPEG encoded image in RGB colorspace image/height: integer, image height in pixels image/width: integer, image width in pixels image/colorspace: string, specifying the colorspace, always 'RGB' image/channels: integer, specifying the number of channels, always 3 image/format: string, specifying the format, always'JPEG' image/filename: string containing the basename of the image file e.g. 'n01440764_10026.JPEG' or 'ILSVRC2012_val_00000293.JPEG' image/class/label: integer specifying the index in a classification layer. The label ranges from [1, 1000] where 0 is not used. image/class/synset: string specifying the unique ID of the label, e.g. 'n01440764' image/class/text: string specifying the human-readable version of the label e.g. 'red fox, Vulpes vulpes' image/object/bbox/xmin: list of integers specifying the 0+ human annotated bounding boxes image/object/bbox/xmax: list of integers specifying the 0+ human annotated bounding boxes image/object/bbox/ymin: list of integers specifying the 0+ human annotated bounding boxes image/object/bbox/ymax: list of integers specifying the 0+ human annotated bounding boxes image/object/bbox/label: integer specifying the index in a classification layer. The label ranges from [1, 1000] where 0 is not used. Note this is always identical to the image label. Note that the length of xmin is identical to the length of xmax, ymin and ymax for each example. Running this script using 16 threads may take around ~2.5 hours on a HP Z420. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from datetime import datetime import os import random import sys import threading import numpy as np from six.moves import xrange # pylint: disable=redefined-builtin import tensorflow as tf import argparse parser = argparse.ArgumentParser() parser.add_argument('--train_directory', default = '/tmp/', help = 'Training data directory') parser.add_argument('--validation_directory', default = '/tmp/', help = 'Validation data directory') parser.add_argument('--output_directory', default = '/tmp/', help = 'Output data directory') parser.add_argument('--train_shards', default = 1024, help = 'Number of shards in training TFRecord files.') parser.add_argument('--validation_shards', default = 128, help = 'Number of shards in validation TFRecord files.') parser.add_argument('--num_threads', default = 8, type = int, help = 'Number of threads to preprocess the images.') # The labels file contains a list of valid labels are held in this file. # Assumes that the file contains entries as such: # n01440764 # n01443537 # n01484850 # where each line corresponds to a label expressed as a synset. We map # each synset contained in the file to an integer (based on the alphabetical # ordering). See below for details. parser.add_argument('--labels_file', default = 'imagenet_lsvrc_2015_synsets.txt', help = 'Labels file') # This file containing mapping from synset to human-readable label. # Assumes each line of the file looks like: # # n02119247 black fox # n02119359 silver fox # n02119477 red fox, Vulpes fulva # # where each line corresponds to a unique mapping. Note that each line is # formatted as <synset>\t<human readable label>. parser.add_argument('--imagenet_metadata_file', default = 'imagenet_metadata.txt', help = 'ImageNet metadata file') # This file is the output of process_bounding_box.py # Assumes each line of the file looks like: # # n00007846_64193.JPEG,0.0060,0.2620,0.7545,0.9940 # # where each line corresponds to one bounding box annotation associated # with an image. Each line can be parsed as: # # <JPEG file name>, <xmin>, <ymin>, <xmax>, <ymax> # # Note that there might exist mulitple bounding box annotations associated # with an image file. parser.add_argument('--bounding_box_file', default = './imagenet_2012_bounding_boxes.csv', help = 'Bounding box file') args = parser.parse_args() def _int64_feature(value): """Wrapper for inserting int64 features into Example proto.""" if not isinstance(value, list): value = [value] return tf.train.Feature(int64_list=tf.train.Int64List(value=value)) def _float_feature(value): """Wrapper for inserting float features into Example proto.""" if not isinstance(value, list): value = [value] return tf.train.Feature(float_list=tf.train.FloatList(value=value)) def _bytes_feature(value): """Wrapper for inserting bytes features into Example proto.""" return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value])) def _convert_to_example(filename, image_buffer, label, synset, human, bbox, height, width): """Build an Example proto for an example. Args: filename: string, path to an image file, e.g., '/path/to/example.JPG' image_buffer: string, JPEG encoding of RGB image label: integer, identifier for the ground truth for the network synset: string, unique WordNet ID specifying the label, e.g., 'n02323233' human: string, human-readable label, e.g., 'red fox, Vulpes vulpes' bbox: list of bounding boxes; each box is a list of integers specifying [xmin, ymin, xmax, ymax]. All boxes are assumed to belong to the same label as the image label. height: integer, image height in pixels width: integer, image width in pixels Returns: Example proto """ xmin = [] ymin = [] xmax = [] ymax = [] for b in bbox: assert len(b) == 4 # pylint: disable=expression-not-assigned [l.append(point) for l, point in zip([xmin, ymin, xmax, ymax], b)] # pylint: enable=expression-not-assigned colorspace = 'RGB' channels = 3 image_format = 'JPEG' example = tf.train.Example(features=tf.train.Features(feature={ 'image/height': _int64_feature(height), 'image/width': _int64_feature(width), 'image/colorspace': _bytes_feature(colorspace.encode('utf-8')), 'image/channels': _int64_feature(channels), 'image/class/label': _int64_feature(label), 'image/class/synset': _bytes_feature(synset.encode('utf-8')), 'image/class/text': _bytes_feature(human.encode('utf-8')), 'image/object/bbox/xmin': _float_feature(xmin), 'image/object/bbox/xmax': _float_feature(xmax), 'image/object/bbox/ymin': _float_feature(ymin), 'image/object/bbox/ymax': _float_feature(ymax), 'image/object/bbox/label': _int64_feature([label] * len(xmin)), 'image/format': _bytes_feature(image_format.encode('utf-8')), 'image/filename': _bytes_feature(os.path.basename(filename).encode('utf-8')), 'image/encoded': _bytes_feature(image_buffer)})) return example class ImageCoder(object): """Helper class that provides TensorFlow image coding utilities.""" def __init__(self): # Create a single Session to run all image coding calls. #self._sess = tf.Session() # Initializes function that converts PNG to JPEG data. self._png_data = "PNG" #image = tf.image.decode_png(image_data, channels=3) #self._png_to_jpeg = tf.image.encode_jpeg(image, format='rgb', quality=100) # Initializes function that converts CMYK JPEG data to RGB JPEG data. self._cmyk_data = "CMYK" #image = tf.image.decode_jpeg(self._cmyk_data, channels=0) #self._cmyk_to_rgb = tf.image.encode_jpeg(image, format='rgb', quality=100) # Initializes function that decodes RGB JPEG data. self._decode_jpeg_data = "JPEG" #self._decode_jpeg = tf.image.decode_jpeg(self._decode_jpeg_data, channels=3) print("") def png_to_jpeg(self, image_data): feed_dict={self._png_data: tf.image.decode_png(image_data, channels=3)} return tf.image.decode_png(image_data, channels=3) def cmyk_to_rgb(self, image_data): feed_dict={self._cmyk_data: tf.image.decode_jpeg(image_data, channels=0)} return tf.image.decode_png(image_data, channels=0) def decode_jpeg(self, image_data): image = feed_dict = {self._decode_jpeg_data: tf.image.decode_jpeg(image_data, channels=3)} image = tf.image.decode_jpeg(image_data, channels=3) assert len(image.shape) == 3 assert image.shape[2] == 3 return image def _is_png(filename): """Determine if a file contains a PNG format image. Args: filename: string, path of the image file. Returns: boolean indicating if the image is a PNG. """ # File list from: # https://groups.google.com/forum/embed/?place=forum/torch7#!topic/torch7/fOSTXHIESSU return 'n02105855_2933.JPEG' in filename def _is_cmyk(filename): """Determine if file contains a CMYK JPEG format image. Args: filename: string, path of the image file. Returns: boolean indicating if the image is a JPEG encoded with CMYK color space. """ # File list from: # https://github.com/cytsai/ilsvrc-cmyk-image-list blacklist = ['n01739381_1309.JPEG', 'n02077923_14822.JPEG', 'n02447366_23489.JPEG', 'n02492035_15739.JPEG', 'n02747177_10752.JPEG', 'n03018349_4028.JPEG', 'n03062245_4620.JPEG', 'n03347037_9675.JPEG', 'n03467068_12171.JPEG', 'n03529860_11437.JPEG', 'n03544143_17228.JPEG', 'n03633091_5218.JPEG', 'n03710637_5125.JPEG', 'n03961711_5286.JPEG', 'n04033995_2932.JPEG', 'n04258138_17003.JPEG', 'n04264628_27969.JPEG', 'n04336792_7448.JPEG', 'n04371774_5854.JPEG', 'n04596742_4225.JPEG', 'n07583066_647.JPEG', 'n13037406_4650.JPEG'] return filename.split('/')[-1] in blacklist def _process_image(filename, coder): """Process a single image file. Args: filename: string, path to an image file e.g., '/path/to/example.JPG'. coder: instance of ImageCoder to provide TensorFlow image coding utils. Returns: image_buffer: string, JPEG encoding of RGB image. height: integer, image height in pixels. width: integer, image width in pixels. """ # Read the image file. image_data = tf.io.gfile.GFile(filename, 'rb').read() # Clean the dirty data. if _is_png(filename): # 1 image is a PNG. print('Converting PNG to JPEG for %s' % filename) image_data = coder.png_to_jpeg(image_data) elif _is_cmyk(filename): # 22 JPEG images are in CMYK colorspace. print('Converting CMYK to RGB for %s' % filename) image_data = coder.cmyk_to_rgb(image_data) # Decode the RGB JPEG. image = coder.decode_jpeg(image_data) # Check that image converted to RGB assert len(image.shape) == 3 height = image.shape[0] width = image.shape[1] assert image.shape[2] == 3 return image_data, height, width def _process_image_files_batch(coder, thread_index, ranges, name, filenames, synsets, labels, humans, bboxes, num_shards): """Processes and saves list of images as TFRecord in 1 thread. Args: coder: instance of ImageCoder to provide TensorFlow image coding utils. thread_index: integer, unique batch to run index is within [0, len(ranges)). ranges: list of pairs of integers specifying ranges of each batches to analyze in parallel. name: string, unique identifier specifying the data set filenames: list of strings; each string is a path to an image file synsets: list of strings; each string is a unique WordNet ID labels: list of integer; each integer identifies the ground truth humans: list of strings; each string is a human-readable label bboxes: list of bounding boxes for each image. Note that each entry in this list might contain from 0+ entries corresponding to the number of bounding box annotations for the image. num_shards: integer number of shards for this data set. """ # Each thread produces N shards where N = int(num_shards / num_threads). # For instance, if num_shards = 128, and the num_threads = 2, then the first # thread would produce shards [0, 64). num_threads = len(ranges) assert not num_shards % num_threads num_shards_per_batch = int(num_shards / num_threads) shard_ranges = np.linspace(ranges[thread_index][0], ranges[thread_index][1], num_shards_per_batch + 1).astype(int) num_files_in_thread = ranges[thread_index][1] - ranges[thread_index][0] counter = 0 for s in xrange(num_shards_per_batch): # Generate a sharded version of the file name, e.g. 'train-00002-of-00010' shard = thread_index * num_shards_per_batch + s output_filename = '%s-%.5d-of-%.5d.tfrecord' % (name, shard, num_shards) output_file = os.path.join(args.output_directory, output_filename) writer = tf.io.TFRecordWriter(output_file) shard_counter = 0 files_in_shard = np.arange(shard_ranges[s], shard_ranges[s + 1], dtype=int) for i in files_in_shard: filename = filenames[i] label = labels[i] synset = synsets[i] human = humans[i] bbox = bboxes[i] image_buffer, height, width = _process_image(filename, coder) example = _convert_to_example(filename, image_buffer, label, synset, human, bbox, height, width) writer.write(example.SerializeToString()) shard_counter += 1 counter += 1 if not counter % 1000: print('%s [thread %d]: Processed %d of %d images in thread batch.' % (datetime.now(), thread_index, counter, num_files_in_thread)) sys.stdout.flush() writer.close() print('%s [thread %d]: Wrote %d images to %s' % (datetime.now(), thread_index, shard_counter, output_file)) sys.stdout.flush() shard_counter = 0 print('%s [thread %d]: Wrote %d images to %d shards.' % (datetime.now(), thread_index, counter, num_files_in_thread)) sys.stdout.flush() def _process_image_files(name, filenames, synsets, labels, humans, bboxes, num_shards): """Process and save list of images as TFRecord of Example protos. Args: name: string, unique identifier specifying the data set filenames: list of strings; each string is a path to an image file synsets: list of strings; each string is a unique WordNet ID labels: list of integer; each integer identifies the ground truth humans: list of strings; each string is a human-readable label bboxes: list of bounding boxes for each image. Note that each entry in this list might contain from 0+ entries corresponding to the number of bounding box annotations for the image. num_shards: integer number of shards for this data set. """ assert len(filenames) == len(synsets) assert len(filenames) == len(labels) assert len(filenames) == len(humans) assert len(filenames) == len(bboxes) args = parser.parse_args() # Break all images into batches with a [ranges[i][0], ranges[i][1]]. spacing = np.linspace(0, len(filenames), args.num_threads + 1).astype(np.int) ranges = [] threads = [] for i in xrange(len(spacing) - 1): ranges.append([spacing[i], spacing[i+1]]) # Launch a thread for each batch. print('Launching %d threads for spacings: %s' % (args.num_threads, ranges)) sys.stdout.flush() # Create a mechanism for monitoring when all threads are finished. coord = tf.train.Coordinator() # Create a generic TensorFlow-based utility for converting all image codings. coder = ImageCoder() threads = [] for thread_index in xrange(len(ranges)): args = (coder, thread_index, ranges, name, filenames, synsets, labels, humans, bboxes, num_shards) t = threading.Thread(target=_process_image_files_batch, args=args) t.start() threads.append(t) # Wait for all the threads to terminate. coord.join(threads) print('%s: Finished writing all %d images in data set.' % (datetime.now(), len(filenames))) sys.stdout.flush() def _find_image_files(data_dir, labels_file): """Build a list of all images files and labels in the data set. Args: data_dir: string, path to the root directory of images. Assumes that the ImageNet data set resides in JPEG files located in the following directory structure. data_dir/n01440764/ILSVRC2012_val_00000293.JPEG data_dir/n01440764/ILSVRC2012_val_00000543.JPEG where 'n01440764' is the unique synset label associated with these images. labels_file: string, path to the labels file. The list of valid labels are held in this file. Assumes that the file contains entries as such: n01440764 n01443537 n01484850 where each line corresponds to a label expressed as a synset. We map each synset contained in the file to an integer (based on the alphabetical ordering) starting with the integer 1 corresponding to the synset contained in the first line. The reason we start the integer labels at 1 is to reserve label 0 as an unused background class. Returns: filenames: list of strings; each string is a path to an image file. synsets: list of strings; each string is a unique WordNet ID. labels: list of integer; each integer identifies the ground truth. """ print('Determining list of input files and labels from %s.' % data_dir) challenge_synsets = [ l.strip() for l in tf.io.gfile.GFile(labels_file, 'r').readlines() ] labels = [] filenames = [] synsets = [] # Leave label index 0 empty as a background class. label_index = 1 # Construct the list of JPEG files and labels. for synset in challenge_synsets: jpeg_file_path = '%s/%s/*.JPEG' % (data_dir, synset) matching_files = tf.io.gfile.glob(jpeg_file_path) labels.extend([label_index] * len(matching_files)) synsets.extend([synset] * len(matching_files)) filenames.extend(matching_files) if not label_index % 100: print('Finished finding files in %d of %d classes.' % ( label_index, len(challenge_synsets))) label_index += 1 # Shuffle the ordering of all image files in order to guarantee # random ordering of the images with respect to label in the # saved TFRecord files. Make the randomization repeatable. shuffled_index = list(range(len(filenames))) random.seed(12345) random.shuffle(shuffled_index) filenames = [filenames[i] for i in shuffled_index] synsets = [synsets[i] for i in shuffled_index] labels = [labels[i] for i in shuffled_index] print('Found %d JPEG files across %d labels inside %s.' % (len(filenames), len(challenge_synsets), data_dir)) return filenames, synsets, labels def _find_human_readable_labels(synsets, synset_to_human): """Build a list of human-readable labels. Args: synsets: list of strings; each string is a unique WordNet ID. synset_to_human: dict of synset to human labels, e.g., 'n02119022' --> 'red fox, Vulpes vulpes' Returns: List of human-readable strings corresponding to each synset. """ humans = [] for s in synsets: assert s in synset_to_human, ('Failed to find: %s' % s) humans.append(synset_to_human[s]) return humans def _find_image_bounding_boxes(filenames, image_to_bboxes): """Find the bounding boxes for a given image file. Args: filenames: list of strings; each string is a path to an image file. image_to_bboxes: dictionary mapping image file names to a list of bounding boxes. This list contains 0+ bounding boxes. Returns: List of bounding boxes for each image. Note that each entry in this list might contain from 0+ entries corresponding to the number of bounding box annotations for the image. """ num_image_bbox = 0 bboxes = [] for f in filenames: basename = os.path.basename(f) if basename in image_to_bboxes: bboxes.append(image_to_bboxes[basename]) num_image_bbox += 1 else: bboxes.append([]) print('Found %d images with bboxes out of %d images' % ( num_image_bbox, len(filenames))) return bboxes def _process_dataset(name, directory, num_shards, synset_to_human, image_to_bboxes): """Process a complete data set and save it as a TFRecord. Args: name: string, unique identifier specifying the data set. directory: string, root path to the data set. num_shards: integer number of shards for this data set. synset_to_human: dict of synset to human labels, e.g., 'n02119022' --> 'red fox, Vulpes vulpes' image_to_bboxes: dictionary mapping image file names to a list of bounding boxes. This list contains 0+ bounding boxes. """ filenames, synsets, labels = _find_image_files(directory, args.labels_file) humans = _find_human_readable_labels(synsets, synset_to_human) bboxes = _find_image_bounding_boxes(filenames, image_to_bboxes) _process_image_files(name, filenames, synsets, labels, humans, bboxes, num_shards) def _build_synset_lookup(imagenet_metadata_file): """Build lookup for synset to human-readable label. Args: imagenet_metadata_file: string, path to file containing mapping from synset to human-readable label. Assumes each line of the file looks like: n02119247 black fox n02119359 silver fox n02119477 red fox, Vulpes fulva where each line corresponds to a unique mapping. Note that each line is formatted as <synset>\t<human readable label>. Returns: Dictionary of synset to human labels, such as: 'n02119022' --> 'red fox, Vulpes vulpes' """ lines = tf.io.gfile.GFile(imagenet_metadata_file, 'r').readlines() synset_to_human = {} for l in lines: if l: parts = l.strip().split('\t') assert len(parts) == 2 synset = parts[0] human = parts[1] synset_to_human[synset] = human return synset_to_human def _build_bounding_box_lookup(bounding_box_file): """Build a lookup from image file to bounding boxes. Args: bounding_box_file: string, path to file with bounding boxes annotations. Assumes each line of the file looks like: n00007846_64193.JPEG,0.0060,0.2620,0.7545,0.9940 where each line corresponds to one bounding box annotation associated with an image. Each line can be parsed as: <JPEG file name>, <xmin>, <ymin>, <xmax>, <ymax> Note that there might exist mulitple bounding box annotations associated with an image file. This file is the output of process_bounding_boxes.py. Returns: Dictionary mapping image file names to a list of bounding boxes. This list contains 0+ bounding boxes. """ lines = tf.io.gfile.GFile(bounding_box_file, 'r').readlines() images_to_bboxes = {} num_bbox = 0 num_image = 0 for l in lines: if l: parts = l.split(',') assert len(parts) == 5, ('Failed to parse: %s' % l) filename = parts[0] xmin = float(parts[1]) ymin = float(parts[2]) xmax = float(parts[3]) ymax = float(parts[4]) box = [xmin, ymin, xmax, ymax] if filename not in images_to_bboxes: images_to_bboxes[filename] = [] num_image += 1 images_to_bboxes[filename].append(box) num_bbox += 1 print('Successfully read %d bounding boxes ' 'across %d images.' % (num_bbox, num_image)) return images_to_bboxes def main(): assert not args.train_shards % args.num_threads, ( 'Please make the args.num_threads commensurate with args.train_shards') assert not args.validation_shards % args.num_threads, ( 'Please make the args.num_threads commensurate with ' 'args.validation_shards') print('Saving results to %s' % args.output_directory) # Build a map from synset to human-readable label. synset_to_human = _build_synset_lookup(args.imagenet_metadata_file) image_to_bboxes = _build_bounding_box_lookup(args.bounding_box_file) # Run it! _process_dataset('validation', args.validation_directory, args.validation_shards, synset_to_human, image_to_bboxes) _process_dataset('train', args.train_directory, args.train_shards, synset_to_human, image_to_bboxes) if __name__ == '__main__': main()
scheduler.py
import time import multiprocessing from loguru import logger from proxypool.components.getter import Getter from proxypool.components.tester import Tester from proxypool.components.server import app from proxypool.setting import TESTER_ENABLED, GETTER_ENABLED, SERVER_ENABLED, TESTER_CYCLE, GETTER_CYCLE, API_HOST, \ API_PORT, API_THREADED, LOGGER_ENABLED, LOGGER_FILE, LOGGER_LEVEL, LOGGER_FORMAT, LOGGER_ROTATION, LOGGER_RETENTION tester_process, getter_process, server_process = None, None, None class Scheduler: """ 调度模块 """ def run_getter(self, cycle=GETTER_CYCLE): """ 获取代理 """ getter = Getter() loop = 0 while True: logger.debug(f'getter loop {loop} start...') getter.run() loop += 1 time.sleep(cycle) def run_tester(self, cycle=TESTER_CYCLE): """ 测试代理 """ tester = Tester() loop = 0 while True: logger.debug(f'tester loop {loop} start...') tester.run() loop += 1 time.sleep(cycle) def run_server(self): """ 开启API接口 """ app.run(host=API_HOST, port=API_PORT, threaded=API_THREADED) def run(self): global tester_process, getter_process, server_process try: logger.info('starting proxypool...') if TESTER_ENABLED: tester_process = multiprocessing.Process(target=self.run_tester) logger.info(f'starting tester, pid {tester_process.pid}...') tester_process.start() if GETTER_ENABLED: getter_process = multiprocessing.Process(target=self.run_getter) logger.info(f'starting getter, pid{getter_process.pid}...') getter_process.start() if SERVER_ENABLED: server_process = multiprocessing.Process(target=self.run_server) logger.info(f'starting getter, pid{server_process.pid}...') server_process.start() if TESTER_ENABLED: tester_process.join() if GETTER_ENABLED: getter_process.join() if SERVER_ENABLED: server_process.join() except KeyboardInterrupt: logger.info('received keyboard interrupt signal') tester_process.terminate() getter_process.terminate() server_process.terminate() finally: if TESTER_ENABLED: tester_process.join() if GETTER_ENABLED: getter_process.join() if SERVER_ENABLED: server_process.join() logger.info(f'tester is {"alive" if tester_process.is_alive() else "dead"}') logger.info(f'getter is {"alive" if getter_process.is_alive() else "dead"}') logger.info(f'server is {"alive" if server_process.is_alive() else "dead"}') logger.info('proxys terminated') if __name__ == '__main__': if LOGGER_ENABLED: logger.add(LOGGER_FILE, level=LOGGER_LEVEL, format=LOGGER_FORMAT, retention=LOGGER_RETENTION, rotation=LOGGER_ROTATION) scheduler = Scheduler() scheduler.run()
server.py
#Code adapted from optional lecture import socket import threading from queue import Queue from Database.DatabaseManager import * HOST = "localhost" # put your IP address here if playing on multiple computers PORT = 50011 BACKLOG = 3 server = socket.socket(socket.AF_INET, socket.SOCK_STREAM) server.bind((HOST,PORT)) server.listen(BACKLOG) setOffline() print("Looking for connections!") def handleClient(client, serverChannel, cID, clientele): client.setblocking(1) msg = "" while True: try: msg += client.recv(10).decode("UTF-8") command = msg.split("\n") while (len(command) > 1): readyMsg = command[0] msg = "\n".join(command[1:]) serverChannel.put(str(cID) + " " + readyMsg) command = msg.split("\n") except: # we failed return def serverThread(clientele, serverChannel): while True: msg = serverChannel.get(True, None) msgList = msg.split(" ") senderID = msgList[0] instruction = msgList[1] details = " ".join(msgList[2:]) if (details != ""): for cID in clientele: if cID != senderID: sendMsg = instruction + " " + senderID + " " + details + "\n" clientele[cID].send(sendMsg.encode()) serverChannel.task_done() clientele = dict() playerNum = 0 serverChannel = Queue(100) threading.Thread(target = serverThread, args = (clientele, serverChannel)).start() mics = ["1", "2"] while True: client, address = server.accept() # myID is the key to the client in the clientele dictionary myID = playerNum myMic = mics[playerNum] toRemove = [] for cID in clientele: try: print (repr(cID), repr(playerNum)) clientele[cID].send(("newPlayer %s\n" % myID).encode()) client.send(("newPlayer %s\n" % cID).encode()) except: toRemove.append(cID) continue for removal in toRemove: del clientele[removal] clientele[myID] = client client.send(("myIDis %s \n" % myID).encode()) client.send(("myMicIs %s \n" % myMic).encode()) print("connection recieved from %s" % myID + str(myMic)) threading.Thread(target = handleClient, args = (client ,serverChannel, myID, clientele)).start() playerNum += 1
__init__.py
import redis import sys import time from hoocron_plugin import HoocronHookBase from threading import Thread from queue import Queue, Empty class RedisHook(HoocronHookBase): def __init__(self): self.th = None self.redis_path = None self.redis_list = None self.redis = None # Redis connection self.sleep = 1 self.jobs = list() self.q = None self.execute_q = None def add_argument_group(self, parser): def_redis_path = 'localhost:6379' def_redis_list = 'hook' g = parser.add_argument_group('Redis hook') g.add_argument('--redis', metavar='JOB', default=list(), action='append') g.add_argument('--redis-db', metavar='DB', type=int, default=0, help='redis db number') g.add_argument('--redis-path', metavar='SOCKET', default=def_redis_path, help=f'Path to redis def: {def_redis_path}') g.add_argument('--redis-list', metavar='KEY', default=def_redis_list, help='name of redis key to call hooks def: {def_redis_list}') def configure(self, jobs, args): self.db = args.redis_db self.redis_path = args.redis_path self.redis_list = args.redis_list self.sleep = args.sleep for name in args.redis: try: j = jobs[name] except KeyError: print("ERROR: Not found job", name) sys.exit(1) self.jobs.append(j) def empty(self): return not bool(self.jobs) def thread(self): while True: try: cmd = self.q.get_nowait() if cmd == 'stop': print("redis hook stopped") return except Empty: pass request = self.redis.lpop(self.redis_list) if request is None: time.sleep(self.sleep) else: for j in self.jobs: if j.name == request: self.execute_q.put((j, 'redis')) def running(self): return bool(self.th) def start(self, execute_q): if self.jobs: self.redis = self.get_redis() self.q = Queue() self.execute_q = execute_q self.th = Thread(target = self.thread, args = () ) self.th.start() print(f"started redis thread, watch list {self.redis_list!r}") else: print("Warning: do not start cron because no jobs assigned") def stop(self): print("stop redis hook") self.q.put('stop') def get_redis(self): if self.redis_path.startswith('/'): path = self.redis_path host = None port = None print(f"connect to redis over unix socket: {path}") else: host, port = self.redis_path.split(':') path = None print(f"connect to redis over network: {host}:{port}") return redis.Redis( db=self.db, unix_socket_path=path, host=host, port=port, decode_responses=True) hooks = [ RedisHook() ]
thread_handler.py
from ezeeai.core.runner import Runner import time import psutil from multiprocessing import Process, Queue from ..utils.sys_ops import find_free_port, change_checkpoints from ..config import config_reader import threading import logging import subprocess logging.basicConfig(level=logging.DEBUG, format='[%(levelname)s] (%(threadName)-10s) %(message)s', ) class ThreadHandler: def __init__(self): self._processes = {} self._ports = {} self._return_queue = Queue() def _get_runner(self, all_params_config): return Runner(all_params_config) def add_port(self, username, config_file, port): self._ports[username + '_' + config_file] = port def get_port(self, username, config_file): return self._ports[username + '_' + config_file] def tensor_board_thread(self, config_file, port): config_path = config_reader.read_config(config_file).all()['checkpoint_dir'] logging.debug('Starting tensor board') time.sleep(3) pro = "tensorboard --host=0.0.0.0 --logdir=" + config_path + " --port=" + port subprocess.call(pro, shell=True) logging.debug('Exiting tensor board') def run_tensor_board(self, username, config_file): if not username + '_' + config_file in self._ports.keys(): try: port = find_free_port() self.add_port(username, config_file, port) name = 'tensorboard-' + str(port) tboard_thread = threading.Thread(name=name, target=self.tensor_board_thread, args=(config_file, port)) tboard_thread.setDaemon(True) tboard_thread.start() except ValueError: logging.error('No free port found.') def run_thread(self, all_params_config): runner = self._get_runner(all_params_config) runner.run() def predict_thread(self, all_params_config, new_features, all=False): runner = self._get_runner(all_params_config) self._return_queue.put(runner.predict(new_features, all)) def predict_test_thread(self, all_params_config, test_file): runner = self._get_runner(all_params_config) self._return_queue.put(runner.predict_test(test_file)) def explain_thread(self, all_params_config, explain_params): runner = self._get_runner(all_params_config) self._return_queue.put(runner.explain(explain_params)) def pause_threads(self, username): p = self._processes[username]['process'] if username in self._processes.keys() else None if not isinstance(p, str) and p: pid = p.pid parent = psutil.Process(pid) for child in parent.children(recursive=True): child.kill() parent.kill() del self._processes[username] return True def check_running(self, username): if username in self._processes.keys(): return self._processes[username]['process'].is_alive(), self._processes[username]['config_file'] return False, None def run_estimator(self, all_params_config, username, config_file): r_thread = Process( target=self.run_thread, args=(all_params_config,), name='run') r_thread.daemon = True r_thread.start() self._processes[username] = {'process': r_thread, 'config_file': config_file} def predict_estimator(self, all_params_config, features, all=False): r_thread = Process(target=self.predict_thread, args=(all_params_config, features, all), name='predict') r_thread.daemon = True r_thread.start() final_pred = self._return_queue.get() r_thread.join() return final_pred def predict_test_estimator(self, all_params_config, features): r_thread = Process(target=self.predict_test_thread, args=(all_params_config, features), name='test') r_thread.daemon = True r_thread.start() final_pred = self._return_queue.get() r_thread.join() return final_pred def explain_estimator(self, all_params_config, explain_params): r_thread = Process(target=self.explain_thread, args=(all_params_config, explain_params), name='explain') r_thread.daemon = True r_thread.start() exp = self._return_queue.get() r_thread.join() return exp def handle_request(self, option, all_params_config, username, resume_from, config_file): if option == 'run': if resume_from != '': change_checkpoints(all_params_config, resume_from) self.run_estimator(all_params_config, username, config_file) elif option == 'pause': self.pause_threads(username) else: raise ValueError("Invalid option")
observer.py
import threading import mutex import rospy from diagnostic_msgs.msg import DiagnosticArray, DiagnosticStatus class Observer(object): def __init__(self, name, loop_rate_hz=1): self._name = name self._rate = rospy.Rate(loop_rate_hz) self._seq = 1 self._lock = threading.Lock() self._thread = threading.Thread( target=self._run) self._thread.daemon = True self._stop_event = threading.Event() self._pub_diag = rospy.Publisher( '/diagnostics', DiagnosticArray, queue_size=10) def __del__(self): if Observer: print("{} stopped".format(self._name)) # Every derived class needs to override this def generate_diagnostics(self): msg = DiagnosticArray() return msg def _run(self): while not rospy.is_shutdown() and not self._stopped(): diag_msg = DiagnosticArray() diag_msg.header.stamp = rospy.get_rostime() status_msgs = self.generate_diagnostics() diag_msg.status.extend(status_msgs) self._pub_diag.publish(diag_msg) self._seq += 1 self._rate.sleep() def start(self): print("starting {}...".format(self._name)) self._thread.start() def stop(self): self._lock.acquire() self._stop_event.set() self._lock.release() def _stopped(self): self._lock.acquire() isSet = self._stop_event.isSet() self._lock.release() return isSet class ServiceObserver(Observer): def __init__(self, name, service_name=None, service_type=None, loop_rate_hz=1): super(ServiceObserver, self).__init__(name, loop_rate_hz) self.name = service_name self.type = service_type self.client = None try: self.start_service() except: print("{} service not started".format(self.name)) super.__del__() def start_service(self): try: rospy.wait_for_service(self.name, timeout=1.0) self.client = rospy.ServiceProxy(self.name, self.type) print("Service '" + self.name + "' added of type" + str(self.type)) except rospy.ServiceException as exc: print("Service {} is not running: ".format(self.name) + str(exc)) def generate_diagnostics(self): try: resp = self.client.call() except rospy.ServiceException as exc: print("Service {} did not process request: ".format( self.name) + str(exc)) status_msg = self.diagnostics_from_response(resp) return status_msg # Every derived class needs to override this def diagnostics_from_response(self, response): msg = DiagnosticArray() return msg class TopicObserver(Observer): def __init__(self, name, loop_rate_hz, topics): super(TopicObserver, self).__init__(name, loop_rate_hz) self._topics = topics self._id = "" self._num_topics = len(topics) # Every derived class needs to override this def calculate_attr(self, msgs): # do calculations return DiagnosticStatus() def generate_diagnostics(self): msgs = [] received_all = True for topic, topic_type in self._topics: try: msgs.append(rospy.wait_for_message(topic, topic_type)) except rospy.ROSException as exc: print("Topic {} is not found: ".format(topic) + str(exc)) received_all = False break status_msgs = list() status_msg = DiagnosticStatus() if received_all: status_msg = self.calculate_attr(msgs) status_msgs.append(status_msg) return status_msgs
elasticsearch-stress-test.py
#!/usr/bin/env python # # Stress test tool for elasticsearch # Written by Roi Rav-Hon @ Logz.io (roi@logz.io) # import signal import sys # Using argparse to parse cli arguments import argparse # Import threading essentials from threading import Lock, Thread, Condition, Event # For randomizing import string from random import randint, choice # To get the time import time # For misc import sys # For json operations import json # Try and import elasticsearch try: from opensearchpy import OpenSearch except: print("Could not import elasticsearch..") print("Try: pip install elasticsearch") sys.exit(1) import urllib3 urllib3.disable_warnings() # Set a parser object parser = argparse.ArgumentParser() # Adds all params parser.add_argument("--es_address", nargs='+', help="The address of your cluster (no protocol or port)", required=True) parser.add_argument("--indices", type=int, help="The number of indices to write to for each ip", required=True) parser.add_argument("--documents", type=int, help="The number different documents to write for each ip", required=True) parser.add_argument("--clients", type=int, help="The number of clients to write from for each ip", required=True) parser.add_argument("--seconds", type=int, help="The number of seconds to run for each ip", required=True) parser.add_argument("--number-of-shards", type=int, default=3, help="Number of shards per index (default 3)") parser.add_argument("--number-of-replicas", type=int, default=1, help="Number of replicas per index (default 1)") parser.add_argument("--bulk-size", type=int, default=1000, help="Number of document per request (default 1000)") parser.add_argument("--max-fields-per-document", type=int, default=100, help="Max number of fields in each document (default 100)") parser.add_argument("--max-size-per-field", type=int, default=1000, help="Max content size per field (default 1000") parser.add_argument("--no-cleanup", default=False, action='store_true', help="Don't delete the indices upon finish") parser.add_argument("--stats-frequency", type=int, default=30, help="Number of seconds to wait between stats prints (default 30)") parser.add_argument("--not-green", dest="green", action="store_false", help="Script doesn't wait for the cluster to be green") parser.set_defaults(green=True) parser.add_argument("--ca-file", dest="cafile", default="", help="Path to your certificate file") parser.add_argument("--no-verify", default=False, dest="no_verify", action="store_true", help="Do not verify certificate") parser.add_argument("--username", dest="auth_username", default="", help="HTTP authentication Username") parser.add_argument("--password", dest="auth_password", default="", help="HTTP authentication Password") # Parse the arguments args = parser.parse_args() # Set variables from argparse output (for readability) NUMBER_OF_INDICES = args.indices NUMBER_OF_DOCUMENTS = args.documents NUMBER_OF_CLIENTS = args.clients NUMBER_OF_SECONDS = args.seconds NUMBER_OF_SHARDS = args.number_of_shards NUMBER_OF_REPLICAS = args.number_of_replicas BULK_SIZE = args.bulk_size MAX_FIELDS_PER_DOCUMENT = args.max_fields_per_document MAX_SIZE_PER_FIELD = args.max_size_per_field NO_CLEANUP = args.no_cleanup STATS_FREQUENCY = args.stats_frequency WAIT_FOR_GREEN = args.green CA_FILE = args.cafile VERIFY_CERTS = not args.no_verify AUTH_USERNAME = args.auth_username AUTH_PASSWORD = args.auth_password # timestamp placeholder STARTED_TIMESTAMP = 0 # Placeholders success_bulks = 0 failed_bulks = 0 total_size = 0 indices = [] documents = [] documents_templates = [] es = None # Will hold the elasticsearch session # Thread safe success_lock = Lock() fail_lock = Lock() size_lock = Lock() shutdown_event = Event() # Helper functions def increment_success(): # First, lock success_lock.acquire() global success_bulks try: # Increment counter success_bulks += 1 finally: # Just in case # Release the lock success_lock.release() def increment_failure(): # First, lock fail_lock.acquire() global failed_bulks try: # Increment counter failed_bulks += 1 finally: # Just in case # Release the lock fail_lock.release() def increment_size(size): # First, lock size_lock.acquire() try: # Using globals here global total_size # Increment counter total_size += size finally: # Just in case # Release the lock size_lock.release() def has_timeout(STARTED_TIMESTAMP): # Match to the timestamp if (STARTED_TIMESTAMP + NUMBER_OF_SECONDS) > int(time.time()): return False return True # Just to control the minimum value globally (though its not configurable) def generate_random_int(max_size): try: return randint(1, max_size) except: print("Not supporting {0} as valid sizes!".format(max_size)) sys.exit(1) # Generate a random string with length of 1 to provided param def generate_random_string(max_size): return ''.join(choice(string.ascii_lowercase) for _ in range(generate_random_int(max_size))) # Create a document template def generate_document(): temp_doc = {} # Iterate over the max fields for _ in range(generate_random_int(MAX_FIELDS_PER_DOCUMENT)): # Generate a field, with random content temp_doc[generate_random_string(10)] = generate_random_string(MAX_SIZE_PER_FIELD) # Return the created document return temp_doc def fill_documents(documents_templates): # Generating 10 random subsets for _ in range(10): # Get the global documents global documents # Get a temp document temp_doc = choice(documents_templates) # Populate the fields for field in temp_doc: temp_doc[field] = generate_random_string(MAX_SIZE_PER_FIELD) documents.append(temp_doc) def client_worker(es, indices, STARTED_TIMESTAMP): # Running until timeout while (not has_timeout(STARTED_TIMESTAMP)) and (not shutdown_event.is_set()): curr_bulk = "" # Iterate over the bulk size for _ in range(BULK_SIZE): # Generate the bulk operation curr_bulk += "{0}\n".format(json.dumps({"index": {"_index": choice(indices), "_type": "stresstest"}})) curr_bulk += "{0}\n".format(json.dumps(choice(documents))) try: # Perform the bulk operation es.bulk(body=curr_bulk) # Adding to success bulks increment_success() # Adding to size (in bytes) increment_size(sys.getsizeof(str(curr_bulk))) except: # Failed. incrementing failure increment_failure() def generate_clients(es, indices, STARTED_TIMESTAMP): # Clients placeholder temp_clients = [] # Iterate over the clients count for _ in range(NUMBER_OF_CLIENTS): temp_thread = Thread(target=client_worker, args=[es, indices, STARTED_TIMESTAMP]) temp_thread.daemon = True # Create a thread and push it to the list temp_clients.append(temp_thread) # Return the clients return temp_clients def generate_documents(): # Documents placeholder temp_documents = [] # Iterate over the clients count for _ in range(NUMBER_OF_DOCUMENTS): # Create a document and push it to the list temp_documents.append(generate_document()) # Return the documents return temp_documents def generate_indices(es): # Placeholder temp_indices = [] # Iterate over the indices count for _ in range(NUMBER_OF_INDICES): # Generate the index name temp_index = generate_random_string(16) # Push it to the list temp_indices.append(temp_index) try: # And create it in ES with the shard count and replicas es.indices.create(index=temp_index, body={"settings": {"number_of_shards": NUMBER_OF_SHARDS, "number_of_replicas": NUMBER_OF_REPLICAS}}) except Exception as e: print("Could not create index. Is your cluster ok?") print(e) sys.exit(1) # Return the indices return temp_indices def cleanup_indices(es, indices): # Iterate over all indices and delete those for curr_index in indices: try: # Delete the index es.indices.delete(index=curr_index, ignore=[400, 404]) except: print("Could not delete index: {0}. Continue anyway..".format(curr_index)) def print_stats(STARTED_TIMESTAMP): # Calculate elpased time elapsed_time = (int(time.time()) - STARTED_TIMESTAMP) # Calculate size in MB size_mb = total_size / 1024 / 1024 # Protect division by zero if elapsed_time == 0: mbs = 0 else: mbs = size_mb / float(elapsed_time) # Print stats to the user print("Elapsed time: {0} seconds".format(elapsed_time)) print("Successful bulks: {0} ({1} documents)".format(success_bulks, (success_bulks * BULK_SIZE))) print("Failed bulks: {0} ({1} documents)".format(failed_bulks, (failed_bulks * BULK_SIZE))) print("Indexed approximately {0} MB which is {1:.2f} MB/s".format(size_mb, mbs)) print("") def print_stats_worker(STARTED_TIMESTAMP): # Create a conditional lock to be used instead of sleep (prevent dead locks) lock = Condition() # Acquire it lock.acquire() # Print the stats every STATS_FREQUENCY seconds while (not has_timeout(STARTED_TIMESTAMP)) and (not shutdown_event.is_set()): # Wait for timeout lock.wait(STATS_FREQUENCY) # To avoid double printing if not has_timeout(STARTED_TIMESTAMP): # Print stats print_stats(STARTED_TIMESTAMP) def main(): clients = [] all_indices = [] auth = None context = None # Set the timestamp STARTED_TIMESTAMP = int(time.time()) for esaddress in args.es_address: print("") print("Starting initialization of {0}".format(esaddress)) try: # Initiate the elasticsearch session # We increase the timeout here from the default value (10 seconds) # to ensure we wait for requests to finish even if the cluster is overwhelmed # and it takes a bit longer to process one bulk. if CA_FILE: context = create_ssl_context(cafile=CA_FILE) if AUTH_USERNAME and AUTH_PASSWORD: auth = (AUTH_USERNAME, AUTH_PASSWORD) es = OpenSearch( esaddress, http_auth=auth, verify_certs=VERIFY_CERTS, ssl_context=context, timeout=60) except Exception as e: print("Could not connect to elasticsearch!") print(e) sys.exit(1) # Generate docs documents_templates = generate_documents() fill_documents(documents_templates) print("Done!") print("Creating indices.. ") indices = generate_indices(es) all_indices.extend(indices) try: #wait for cluster to be green if nothing else is set if WAIT_FOR_GREEN: es.cluster.health(wait_for_status='green', master_timeout='600s', timeout='600s') except Exception as e: print("Cluster timeout....") print("Cleaning up created indices.. "), cleanup_indices(es, indices) continue print("Generating documents and workers.. ") # Generate the clients clients.extend(generate_clients(es, indices, STARTED_TIMESTAMP)) print("Done!") print("Starting the test. Will print stats every {0} seconds.".format(STATS_FREQUENCY)) print("The test would run for {0} seconds, but it might take a bit more " "because we are waiting for current bulk operation to complete. \n".format(NUMBER_OF_SECONDS)) # Run the clients! for d in clients: d.start() # Create and start the print stats thread stats_thread = Thread(target=print_stats_worker, args=[STARTED_TIMESTAMP]) stats_thread.daemon = True stats_thread.start() for c in clients: while c.is_alive(): try: c.join(timeout=0.1) except KeyboardInterrupt: print("") print("Ctrl-c received! Sending kill to threads...") shutdown_event.set() # set loop flag true to get into loop flag = True while flag: #sleep 2 secs that we don't loop to often sleep(2) # set loop flag to false. If there is no thread still alive it will stay false flag = False # loop through each running thread and check if it is alive for t in threading.enumerate(): # if one single thread is still alive repeat the loop if t.isAlive(): flag = True print("Cleaning up created indices.. "), cleanup_indices(es, all_indices) print("\nTest is done! Final results:") print_stats(STARTED_TIMESTAMP) # Cleanup, unless we are told not to if not NO_CLEANUP: print("Cleaning up created indices.. "), cleanup_indices(es, all_indices) print("Done!") # # Main runner try: main() except Exception as e: print("Got unexpected exception. probably a bug, please report it.") print("") print(e.message) print("") sys.exit(1)
treasury_service.py
import config import account_helper import node_rpc_helper import os import json from bottle import post, request, response, get, route, static_file from threading import Thread import requests def setHeaders(): response.content_type = 'application/json' response.headers['Access-Control-Allow-Origin'] = '*' response.headers['Access-Control-Allow-Methods'] = 'PUT, GET, POST, DELETE, OPTIONS' response.headers['Access-Control-Allow-Headers'] = 'Origin, Accept, Content-Type, X-Requested-With, X-CSRF-Token' @route('/treasury/send', method='OPTIONS') def sendOptions(): setHeaders() return "OK" # Example: curl -d "{'pool_account_id': 'FaucetPool', 'pool_account_password': 'some_password', 'dest_account': 'mik_1naij1wkner3gb6j4o1tsf4me3zz8q9t1km9wnm5qzmnycfa44t8tkbq4srs', 'amount': '1', 'unique_id': '1234500017', 'callback': 'http://localhost:8090/treasury/sample-send-callback'}" http://localhost:8090/treasury/send @route('/treasury/send', method='POST') def send(): global config setHeaders() if config['treasury_service.enabled'] != 'true': return {"error": "service not enabled"} postdata = request.body.read().decode('utf8') #print("postdata ", postdata) postjson = json.loads(postdata.replace("'", '"')) #print("postjson ", postjson) pool_account_id = postjson["pool_account_id"] pool_account_password = postjson["pool_account_password"] dest_account = postjson["dest_account"] amount = postjson["amount"] unique_id = postjson["unique_id"] callback = '' if 'callback' in postjson: callback = postjson['callback'] #print("dest_account ", dest_account, " amount ", amount, " id ", unique_id) if (pool_account_id not in config["treasury_service.account"]) or (pool_account_password != config["treasury_service.account"][pool_account_id]["password"]): return {"error": "source account not found or wrong password"} src_account = config["treasury_service.account"][pool_account_id]["account"] src_walletid = config["treasury_service.account"][pool_account_id]["walletid"] #print("src_account ", src_account, " walletid ", src_walletid) max_amount = min(500000, float(config["treasury_service.max_amount"])) min_amount = max(0.000000001, float(config["treasury_service.min_amount"])) if callback == '': # no callback, sync resp = sendIntern(src_account, src_walletid, dest_account, amount, unique_id, max_amount, min_amount) #print("resp ", resp) return resp else: # callback, do send asynchronously, with callback at the end sendAsync(src_account, src_walletid, dest_account, amount, unique_id, max_amount, min_amount, callback) return { 'id': unique_id, # block_hash is not yet available 'callback': callback } def sendIntern(src_account, src_walletid, dest_account, amount, unique_id, max_amount, min_amount): # exclude send to self if src_account == dest_account: return {"error": "Send to self is invalid"} amountFloat = 0 try: amountFloat = float(amount) except: return {"error": "Invalid amount"} if (amountFloat > max_amount): return {"error": "Amount too high (max " + str(max_amount) + ")"} if (amountFloat < min_amount): return {"error": "Amount too small (min " + str(min_amount) + ")"} #if (amountFloat == 1.2345): # return {"error": "Refused due to test"} # debug: retrieve balance src_orig_balance = node_rpc_helper.getAccountBalance(src_account) print("sendIntern: orig src balance", src_orig_balance) resp = node_rpc_helper.doSend(src_walletid, src_account, dest_account, amount, unique_id) print("sendIntern: send complete, amount ", amount, "dest", dest_account) if 'error' in resp: return resp if 'block' not in resp: return {"error": "no block in response"} return { "id": unique_id, "amount": amount, "block_hash": resp['block'] } def sendInternWithCallback(src_account, src_walletid, dest_account, amount, unique_id, max_amount, min_amount, callback): result = sendIntern(src_account, src_walletid, dest_account, amount, unique_id, max_amount, min_amount) invokeSendCallback(callback, result, unique_id) def invokeSendCallback(callback, result, id): # include ID in callback always if 'id' not in result: result['id'] = id print('Invoking send callback', callback, 'with result data', result) postdata = json.dumps(result) response = requests.post(callback, data=postdata) print(response.url, response.text[:200]) def sendAsync(src_account, src_walletid, dest_account, amount, unique_id, max_amount, min_amount, callback): #print("Doing send in background") t = Thread(target=sendInternWithCallback, args=(src_account, src_walletid, dest_account, amount, unique_id, max_amount, min_amount, callback)) t.start() # Sample send callback, used for testing # Example: curl -d "{'id': '1234500017', 'amount': '3', 'block_hash': 'D70BB005723EF4AE3850861FB8819628CD101EE1F3A4FF40808213EB5B99FECF'}" http://localhost:8090/treasury/sample-send-callback @route('/treasury/sample-send-callback', method='POST') def sample_send_callback(): global config setHeaders() if config['treasury_service.enabled'] != 'true': return {"error": "service not enabled"} postdata = request.body.read().decode('utf8') #print("postdata ", postdata) postjson = json.loads(postdata.replace("'", '"')) #print("postjson ", postjson) id = '' if 'id' in postjson: id = postjson['id'] if 'error' in postjson: print('Send callback', 'id', id, 'ERROR', postjson['error']) else: amount = 0 if 'amount' in postjson: amount = postjson['amount'] block_hash = '' if 'block_hash' in postjson: block_hash = postjson['block_hash'] print('Send callback', 'id', id, 'amount', amount, 'block_hash', block_hash) config = config.readConfig()
swift_t.py
''' Sample Executor for integration with SwiftT. This follows the model used by `EMEWS <http://www.mcs.anl.gov/~wozniak/papers/Cancer2_2016.pdf>`_ to some extent. ''' from concurrent.futures import Future import logging import uuid import threading import queue import multiprocessing as mp from ipyparallel.serialize import pack_apply_message, unpack_apply_message from ipyparallel.serialize import serialize_object, deserialize_object from parsl.executors.base import ParslExecutor logger = logging.getLogger(__name__) BUFFER_THRESHOLD = 1024*1024 ITEM_THRESHOLD = 1024 def runner(incoming_q, outgoing_q): ''' This is a function that mocks the Swift-T side. It listens on the the incoming_q for tasks and posts returns on the outgoing_q Args: - incoming_q (Queue object) : The queue to listen on - outgoing_q (Queue object) : Queue to post results on The messages posted on the incoming_q will be of the form : { "task_id" : <uuid.uuid4 string>, "buffer" : serialized buffer containing the fn, args and kwargs } If ``None`` is received, the runner will exit. Response messages should be of the form: { "task_id" : <uuid.uuid4 string>, "result" : serialized buffer containing result "exception" : serialized exception object } On exiting the runner will post ``None`` to the outgoing_q ''' logger.debug("[RUNNER] Starting") def execute_task(bufs): ''' Deserialize the buf, and execute the task. Returns the serialized result/exception ''' all_names = dir(__builtins__) user_ns = locals() user_ns.update( {'__builtins__' : {k : getattr(__builtins__, k) for k in all_names} } ) f, args, kwargs = unpack_apply_message(bufs, user_ns, copy=False) fname = getattr(f, '__name__', 'f') prefix = "parsl_" fname = prefix+"f" argname = prefix+"args" kwargname = prefix+"kwargs" resultname = prefix+"result" user_ns.update({ fname : f, argname : args, kwargname : kwargs, resultname : resultname }) code = "{0} = {1}(*{2}, **{3})".format(resultname, fname, argname, kwargname) try: print("[RUNNER] Executing : {0}".format(code)) exec(code, user_ns, user_ns) except Exception as e: logger.warning("Caught errors but will not handled %s", e) raise e else : #print("Done : {0}".format(locals())) print("[RUNNER] Result : {0}".format(user_ns.get(resultname))) return user_ns.get(resultname) while True : try: # Blocking wait on the queue msg = incoming_q.get(block=True, timeout=10) #logger.debug("[RUNNER] Got message : %s", msg) except queue.Empty: # Handle case where no items were on queue logger.debug("[RUNNER] got nothing") except IOError as ioerror: logger.debug("[RUNNER] broken pipe, error: %s", ioerror) try: # Attempt to send a stop notification to the management thread outgoing_q.put(None) except Exception : pass break except Exception as e: logger.debug("[RUNNER] caught unknown exception : %s", e) else: # Handle received message if not msg : # Empty message is a die request logger.debug("[RUNNER] Received exit request") outgoing_q.put(None) break else: # Received a valid message, handle it logger.debug("[RUNNER] Got a valid task : %s", msg["task_id"]) try: response_obj = execute_task(msg['buffer']) response = {"task_id" : msg["task_id"], "result" : serialize_object(response_obj)} logger.warning("[RUNNER] Returing result : %s", deserialize_object(response["result"]) ) except Exception as e: logger.debug("[RUNNER] Caught task exception") response = {"task_id" : msg["task_id"], "exception" : serialize_object(e)} outgoing_q.put(response) logger.debug("[RUNNER] Terminating") class TurbineExecutor(ParslExecutor): ''' The Turbine executor. Bypass the Swift/T language and run on top off the Turbine engines in an MPI environment. Here's a simple diagram .. code:: python | Data | Executor | IPC | External Process(es) | Flow | | | Task | Kernel | | | +----->|-------->|------------>|outgoing_q -|-> Worker_Process | | | | | | | Parsl<---Fut-| | | | result exception ^ | | | | | | | | | Q_mngmnt | | V V | | | Thread<--|incoming_q<-|--- +---------+ | | | | | | | | | | | | +----update_fut-----+ ''' def _queue_management_worker(self): ''' The queue management worker is responsible for listening to the incoming_q for task status messages and updating tasks with results/exceptions/updates It expects the following messages: { "task_id" : <task_id> "result" : serialized result object, if task succeeded ... more tags could be added later } { "task_id" : <task_id> "exception" : serialized exception object, on failure } We don't support these yet, but they could be added easily as heartbeat. { "task_id" : <task_id> "cpu_stat" : <> "mem_stat" : <> "io_stat" : <> "started" : tstamp } The None message is a die request. None ''' while True: logger.debug("[MTHREAD] Management thread active") try: msg = self.incoming_q.get(block=True, timeout=1) except queue.Empty as e: # timed out. pass except IOError as e: logger.debug("[MTHREAD] caught broken queue : %s : errno:%s", e, e.errno) return except Exception as e: logger.debug("[MTHREAD] caught unknown exception : %s", e) pass else: if msg is None: logger.debug("[MTHREAD] Got None") return else: logger.debug("[MTHREAD] Got message : %s", msg) task_fut = self.tasks[msg['task_id']] if 'result' in msg: result, _ = deserialize_object(msg['result']) task_fut.set_result(result) elif 'exception' in msg: exception, _ = deserialize_object(msg['exception']) task_fut.set_exception(exception) if not self.isAlive: break # When the executor gets lost, the weakref callback will wake up # the queue management thread. def weakref_cb(self, q=None): ''' We do not use this yet ''' q.put(None) def _start_queue_management_thread(self): ''' Method to start the management thread as a daemon. Checks if a thread already exists, then starts it. Could be used later as a restart if the management thread dies. ''' logging.debug("In _start %s", "*"*40) if self._queue_management_thread is None: logging.debug("Starting management thread ") self._queue_management_thread = threading.Thread (target=self._queue_management_worker) self._queue_management_thread.daemon = True self._queue_management_thread.start() else: logging.debug("Management thread already exists, returning") def shutdown(self): ''' Shutdown method, to kill the threads and workers. ''' self.isAlive = False logging.debug("Waking management thread") self.incoming_q.put(None) # Wake up the thread self._queue_management_thread.join() # Force join logging.debug("Exiting thread") self.worker.join() return True def __init__ (self, swift_attribs=None): ''' Initialize the thread pool Trying to implement the emews model. Kwargs: - swift_attribs : Takes a dict of swift attribs. Fot future. ''' logger.debug("In __init__") self.mp_manager = mp.Manager() self.outgoing_q = self.mp_manager.Queue() self.incoming_q = self.mp_manager.Queue() self.isAlive = True self._queue_management_thread = None self._start_queue_management_thread() logger.debug("Created management thread : %s", self._queue_management_thread) self.worker = mp.Process(target=runner, args = (self.outgoing_q, self.incoming_q)) self.worker.start() logger.debug("Created worker : %s", self.worker) self.tasks = {} def submit (self, func, *args, **kwargs): ''' Submits work to the the outgoing_q, an external process listens on this queue for new work. This method is simply pass through and behaves like a submit call as described here `Python docs: <https://docs.python.org/3/library/concurrent.futures.html#concurrent.futures.ThreadPoolExecutor>`_ Args: - func (callable) : Callable function - *args (list) : List of arbitrary positional arguments. Kwargs: - **kwargs (dict) : A dictionary of arbitrary keyword args for func. Returns: Future ''' task_id = uuid.uuid4() logger.debug("Before pushing to queue : func:%s func_args:%s", func, args) self.tasks[task_id] = Future() fn_buf = pack_apply_message(func, args, kwargs, buffer_threshold=1024*1024, item_threshold=1024) msg = {"task_id" : task_id, "buffer" : fn_buf } # Post task to the the outgoing queue self.outgoing_q.put(msg) # Return the future return self.tasks[task_id] def scale_out (self, workers=1): ''' Scales out the number of active workers by 1 This method is notImplemented for threads and will raise the error if called. This would be nice to have, and can be done Raises: NotImplemented exception ''' raise NotImplementedError def scale_in (self, workers=1): ''' Scale in the number of active workers by 1 This method is notImplemented for threads and will raise the error if called. Raises: NotImplemented exception ''' raise NotImplementedError if __name__ == "__main__" : print("Start") turb_x = TurbineExecutor() print("Done")
server.py
# Copyright (c) Microsoft Corporation. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import abc import asyncio import contextlib import gzip import mimetypes import socket import threading from contextlib import closing from http import HTTPStatus import greenlet from OpenSSL import crypto from twisted.internet import reactor, ssl from twisted.web import http from playwright.path_utils import get_file_dirname from playwright.sync_base import dispatcher_fiber _dirname = get_file_dirname() def _find_free_port(): with closing(socket.socket(socket.AF_INET, socket.SOCK_STREAM)) as s: s.bind(("", 0)) s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) return s.getsockname()[1] class Server: protocol = "http" def __init__(self): self.PORT = _find_free_port() self.EMPTY_PAGE = f"{self.protocol}://localhost:{self.PORT}/empty.html" self.PREFIX = f"{self.protocol}://localhost:{self.PORT}" self.CROSS_PROCESS_PREFIX = f"{self.protocol}://127.0.0.1:{self.PORT}" # On Windows, this list can be empty, reporting text/plain for scripts. mimetypes.add_type("text/html", ".html") mimetypes.add_type("text/css", ".css") mimetypes.add_type("application/javascript", ".js") mimetypes.add_type("image/png", ".png") mimetypes.add_type("font/woff2", ".woff2") def __repr__(self) -> str: return self.PREFIX @abc.abstractmethod def listen(self, factory): pass def start(self): request_subscribers = {} auth = {} csp = {} routes = {} gzip_routes = set() self.request_subscribers = request_subscribers self.auth = auth self.csp = csp self.routes = routes self.gzip_routes = gzip_routes static_path = _dirname / "assets" class TestServerHTTPHandler(http.Request): def process(self): request = self self.post_body = request.content.read().decode() request.content.seek(0, 0) uri = request.uri.decode() if request_subscribers.get(uri): request_subscribers[uri].set_result(request) request_subscribers.pop(uri) if auth.get(uri): authorization_header = request.requestHeaders.getRawHeaders( "authorization" ) creds_correct = False if authorization_header: creds_correct = auth.get(uri) == ( request.getUser(), request.getPassword(), ) if not creds_correct: request.setHeader( b"www-authenticate", 'Basic realm="Secure Area"' ) request.setResponseCode(HTTPStatus.UNAUTHORIZED) request.finish() return if csp.get(uri): request.setHeader(b"Content-Security-Policy", csp[uri]) if routes.get(uri): routes[uri](request) return file_content = None try: file_content = ( static_path / request.path.decode()[1:] ).read_bytes() except (FileNotFoundError, IsADirectoryError): request.setResponseCode(HTTPStatus.NOT_FOUND) if file_content: request.setHeader("Content-Type", mimetypes.guess_type(uri)[0]) if uri in gzip_routes: request.setHeader("Content-Encoding", "gzip") request.write(gzip.compress(file_content)) else: request.write(file_content) self.setResponseCode(HTTPStatus.OK) self.finish() class MyHttp(http.HTTPChannel): requestFactory = TestServerHTTPHandler class MyHttpFactory(http.HTTPFactory): protocol = MyHttp self.listen(MyHttpFactory()) async def wait_for_request(self, path): if path in self.request_subscribers: return await self.request_subscribers[path] future = asyncio.Future() self.request_subscribers[path] = future return await future @contextlib.contextmanager def expect_request(self, path): future = asyncio.create_task(self.wait_for_request(path)) class CallbackValue: def __init__(self) -> None: self._value = None @property def value(self): return self._value g_self = greenlet.getcurrent() cb_wrapper = CallbackValue() def done_cb(task): cb_wrapper._value = future.result() g_self.switch() future.add_done_callback(done_cb) yield cb_wrapper while not future.done(): dispatcher_fiber.switch() def set_auth(self, path: str, username: str, password: str): self.auth[path] = (username, password) def set_csp(self, path: str, value: str): self.csp[path] = value def reset(self): self.request_subscribers.clear() self.auth.clear() self.csp.clear() self.gzip_routes.clear() self.routes.clear() def set_route(self, path, callback): self.routes[path] = callback def enable_gzip(self, path): self.gzip_routes.add(path) def set_redirect(self, from_, to): def handle_redirect(request): request.setResponseCode(HTTPStatus.FOUND) request.setHeader("location", to) request.finish() self.set_route(from_, handle_redirect) class HTTPServer(Server): def listen(self, factory): reactor.listenTCP(self.PORT, factory) class HTTPSServer(Server): protocol = "https" def listen(self, factory): cert = ssl.PrivateCertificate.fromCertificateAndKeyPair( ssl.Certificate.loadPEM( (_dirname / "testserver" / "cert.pem").read_bytes() ), ssl.KeyPair.load( (_dirname / "testserver" / "key.pem").read_bytes(), crypto.FILETYPE_PEM ), ) contextFactory = cert.options() reactor.listenSSL(self.PORT, factory, contextFactory) class TestServer: def __init__(self) -> None: self.server = HTTPServer() self.https_server = HTTPSServer() def start(self) -> None: self.server.start() self.https_server.start() self.thread = threading.Thread( target=lambda: reactor.run(installSignalHandlers=0) ) self.thread.start() def stop(self) -> None: reactor.stop() self.thread.join() def reset(self) -> None: self.server.reset() self.https_server.reset() test_server = TestServer()
Translator.py
import asyncio import json import os import shutil import threading import zipfile import aiohttp import requests from Util import Configuration, GearbotLogging, Emoji LANGS = dict() BOT = None def initialize(bot_in): global BOT BOT = bot_in load_translations() def load_translations(): directory = os.fsencode("lang") for file in os.listdir(directory): filename = os.fsdecode(file) if filename.endswith(".json"): with open(f"lang/{filename}", encoding="UTF-8") as lang: LANGS[filename[:-5]] = json.load(lang) def assemble(emoji, key, location, **kwargs): return f"{Emoji.get_chat_emoji(emoji)} {translate(key, location, **kwargs)}" def translate(key, location, **kwargs): lid = None if location is not None: if hasattr(location, "guild"): location = location.guild if location is not None and hasattr(location, "id"): lid = location.id else: lid = location if lid is None: lang_key = "en_US" else: lang_key = Configuration.get_var(lid, "LANG") if key in LANGS[lang_key].keys(): try: return LANGS[lang_key][key].format(**kwargs) except (KeyError, ValueError): GearbotLogging.error(f"Corrupt translation detected in {lang_key}: {key}\n```\n{LANGS[lang_key][key]}```") if key in LANGS["en_US"].keys(): return LANGS["en_US"][key].format(**kwargs) return key async def update(): message = await GearbotLogging.bot_log(f"{Emoji.get_chat_emoji('REFRESH')} Updating translations") crowdin_data = Configuration.get_master_var("CROWDIN") session: aiohttp.ClientSession = BOT.aiosession async with session.get(f"https://api.crowdin.com/api/project/Gearbot/export?login={crowdin_data['login']}&account-key={crowdin_data['key']}&json",) as reply: if reply.status is not 200: await GearbotLogging.bot_log(f"{Emoji.get_chat_emoji('WARNING')} Crowdin api error, got response code {reply.status}") else: response = await reply.json() if response["success"]["status"] == "built": # only update translations if we actually got a new build, should be every time though unless this runs 2x within 30 mins for some reason async with session.get( f"https://api.crowdin.com/api/project/Gearbot/download/all.zip?login={crowdin_data['login']}&account-key={crowdin_data['key']}") as reply: data = await reply.read() with open("zip.zip", "wb") as file: file.write(data) with zipfile.ZipFile("zip.zip", "r") as archive: tempdir = os.path.abspath("temp") if os.path.isdir(tempdir): shutil.rmtree(tempdir, ignore_errors=True) os.mkdir(tempdir) archive.extractall("temp") for entry in archive.filelist: if not entry.filename.endswith(".json"): continue filename =entry.filename[-10:] if os.path.isfile(os.path.abspath(f"lang/{filename}")): os.remove(os.path.abspath(f"lang/{filename}")) archive.extract(entry, tempdir) os.rename(os.path.abspath(f"temp/{entry.filename}"), os.path.abspath(f"lang/{filename}")) shutil.rmtree("temp", ignore_errors=True) load_translations() await message.edit(content=f"{Emoji.get_chat_emoji('YES')} Translations have been updated") else: await message.edit(content=f"{Emoji.get_chat_emoji('WARNING')} Crowdin build status was `{response['success']['status']}`, no translation update required") async def upload(): if Configuration.get_master_var("CROWDIN", None) is None: return message = await GearbotLogging.bot_log(f"{Emoji.get_chat_emoji('REFRESH')} Uploading translation file") t = threading.Thread(target=upload_file) t.start() while t.is_alive(): await asyncio.sleep(1) await message.edit(content=f"{Emoji.get_chat_emoji('YES')} Translations file has been uploaded") def upload_file(): data = {'files[master/lang/en_US.json]': open('lang/en_US.json', 'r')} crowdin_data = Configuration.get_master_var("CROWDIN") requests.post(f"https://api.crowdin.com/api/project/gearbot/update-file?login={crowdin_data['login']}&account-key={crowdin_data['key']}&json", files=data)
test_cymj.py
import pytest from numbers import Number from io import BytesIO, StringIO import numpy as np from numpy.testing import assert_array_equal, assert_array_almost_equal from mujoco_py import (MjSim, MjSimPool, load_model_from_xml, load_model_from_path, MjSimState, ignore_mujoco_warnings, load_model_from_mjb) from mujoco_py import const, cymj from mujoco_py.tests.utils import compare_imgs import scipy.misc from threading import Thread, Event from multiprocessing import get_context import sys BASIC_MODEL_XML = """ <mujoco> <worldbody> <light name="light1" diffuse=".5 .5 .5" pos="0 0 3" dir="0 0 -1"/> <camera name="camera1" pos="3 0 0" zaxis="1 0 0" /> <camera name="camera2" pos="4 0 0" zaxis="1 0 0" /> <geom name="geom1" pos="0.5 0.4 0.3" type="plane" size="1 1 0.1" rgba=".9 0 0 1"/> <body pos="0 0 1" name="body1"> <joint name="joint1" type="free"/> <geom name="geom2" pos="0 1 0" type="box" size=".1 .2 .3" rgba="0 .9 0 1"/> <site name="site1" pos="1 0 0" size="0.1" type="sphere"/> <site name="sensorsurf" pos="0 0.045 0" size=".03 .03 .03" type="ellipsoid" rgba="0.3 0.2 0.1 0.3"/> </body> <body pos="1 0 0" name="mocap1" mocap="true"> <geom conaffinity="0" contype="0" pos="0 0 0" size="0.01 0.01 0.01" type="box"/> </body> </worldbody> <sensor> <touch name="touchsensor" site="sensorsurf" /> </sensor> </mujoco> """ def test_nested(): model = load_model_from_xml(BASIC_MODEL_XML) model.vis.global_.fovy model.vis.quality.shadowsize def test_mj_sim_basics(): model = load_model_from_xml(BASIC_MODEL_XML) sim = MjSim(model, nsubsteps=2) sim.reset() sim.step() sim.reset() sim.forward() @pytest.mark.requires_rendering def test_arrays_of_objs(): model = load_model_from_xml(BASIC_MODEL_XML) sim = MjSim(model) sim.forward() renderer = cymj.MjRenderContext(sim, offscreen=True) assert len(renderer.scn.camera) == 2, "Expecting scn.camera to be available" def test_model_save_load(): model = load_model_from_xml(BASIC_MODEL_XML) xml_from_model = model.get_xml() model_from_xml = load_model_from_xml(xml_from_model) assert(xml_from_model == model_from_xml.get_xml()) mjb_from_model = model.get_mjb() model_from_mjb = load_model_from_mjb(mjb_from_model) assert(mjb_from_model == model_from_mjb.get_mjb()) def test_sim_save(): model = load_model_from_xml(BASIC_MODEL_XML) assert model.nkey == 0 sim = MjSim(model) with StringIO() as f: sim.save(f) f.seek(0) loaded_model = load_model_from_xml(f.read()) assert loaded_model.nkey == 1 with BytesIO() as f: sim.save(f, format='mjb') f.seek(0) loaded_model = load_model_from_mjb(f.read()) assert loaded_model.nkey == 1 def test_mj_sim_buffers(): model = load_model_from_xml(BASIC_MODEL_XML) # test no callback sim = MjSim(model, nsubsteps=2) assert(sim.udd_state == {}) sim.step() assert(sim.udd_state == {}) # test with callback foo = 10 d = {"foo": foo, "foo_2": np.array([foo, foo])} def udd_callback(sim): return d sim = MjSim(model, nsubsteps=2, udd_callback=udd_callback) assert(sim.udd_state is not None) assert(sim.udd_state["foo"] == foo) assert(sim.udd_state["foo_2"].shape[0] == 2) assert(sim.udd_state["foo_2"][0] == foo) foo = 11 d = {"foo": foo, "foo_2": np.array([foo, foo])} sim.step() assert(sim.udd_state is not None) assert(sim.udd_state["foo"] == foo) assert(sim.udd_state["foo_2"][0] == foo) d = {} with pytest.raises(AssertionError): sim.step() d = {"foo": foo, "foo_2": np.array([foo, foo]), "foo_3": foo} with pytest.raises(AssertionError): sim.step() d = {"foo": foo, "foo_2": np.array([foo, foo, foo])} with pytest.raises(AssertionError): sim.step() d = {"foo": "haha", "foo_2": np.array([foo, foo, foo])} with pytest.raises(AssertionError): sim.step() def test_mj_sim_pool_buffers(): model = load_model_from_xml(BASIC_MODEL_XML) foo = 10 def udd_callback(sim): return {"foo": foo} sims = [MjSim(model, udd_callback=udd_callback) for _ in range(2)] sim_pool = MjSimPool(sims, nsubsteps=2) for i in range(len(sim_pool.sims)): assert(sim_pool.sims[i].udd_state is not None) assert(sim_pool.sims[i].udd_state["foo"] == 10) foo = 11 sim_pool.step() for i in range(len(sim_pool.sims)): assert(sim_pool.sims[i].udd_state is not None) assert(sim_pool.sims[i].udd_state["foo"] == 11) def test_mj_sim_pool_basics(): model = load_model_from_xml(BASIC_MODEL_XML) sims = [MjSim(model) for _ in range(2)] sim_pool = MjSimPool(sims, nsubsteps=2) sim_pool.reset() sim_pool.step() sim_pool.forward() def test_data_attribute_getters(): model = load_model_from_xml(BASIC_MODEL_XML) sim = MjSim(model) sim.forward() assert_array_equal(sim.data.get_body_xpos("body1"), [0, 0, 1]) with pytest.raises(ValueError): sim.data.get_body_xpos("body_foo") with pytest.raises(RuntimeError): sim.data.get_xpos("body1") assert len(sim.data.get_body_xquat("body1")) == 4 assert_array_equal(sim.data.get_body_xmat("body1").shape, (3, 3)) # At (0, 1, 1) since the geom is displaced in the body assert_array_equal(sim.data.get_body_xipos("body1"), [0, 1, 1]) assert_array_equal(sim.data.get_site_xpos("site1"), [1, 0, 1]) assert_array_equal(sim.data.get_site_xmat("site1").shape, (3, 3)) assert_array_equal(sim.data.get_geom_xpos("geom1"), [0.5, 0.4, 0.3]) assert_array_equal(sim.data.get_geom_xpos("geom2"), [0, 1, 1]) assert_array_equal(sim.data.get_geom_xmat("geom2").shape, (3, 3)) assert_array_equal(sim.data.get_light_xpos("light1"), [0, 0, 3]) assert_array_equal(sim.data.get_light_xdir("light1"), [0, 0, -1]) assert_array_equal(sim.data.get_camera_xpos("camera1"), [3, 0, 0]) assert_array_equal(sim.data.get_camera_xmat("camera1").shape, (3, 3)) assert_array_equal(sim.data.get_joint_xaxis("joint1"), [0, 0, 1]) assert_array_equal(sim.data.get_joint_xanchor("joint1"), [0, 0, 1]) def test_joint_qpos_qvel_ops(): model = load_model_from_xml(BASIC_MODEL_XML) sim = MjSim(model) sim.forward() # Test setting one with a list sim.data.set_joint_qpos("joint1", [1, 2, 3, 1, 0, 0, 0]) # And the other with an np.ndarray sim.data.set_joint_qvel("joint1", np.array([1, 2, 3, 0.1, 0.1, 0.1])) sim.forward() assert_array_equal(sim.data.get_joint_qpos( "joint1"), [1, 2, 3, 1, 0, 0, 0]) assert_array_equal(sim.data.get_joint_qvel( "joint1"), [1, 2, 3, 0.1, 0.1, 0.1]) def test_mocap_ops(): model = load_model_from_xml(BASIC_MODEL_XML) sim = MjSim(model) sim.forward() assert_array_equal(sim.data.get_body_xpos("mocap1"), [1, 0, 0]) assert_array_equal(sim.data.get_mocap_pos("mocap1"), [1, 0, 0]) assert_array_equal(sim.data.get_mocap_quat("mocap1"), [1, 0, 0, 0]) new_pos = [2, 1, 1] new_quat = [0.707107, 0.707107, 0, 0] sim.data.set_mocap_pos("mocap1", new_pos) sim.data.set_mocap_quat("mocap1", new_quat) sim.forward() assert_array_equal(sim.data.get_mocap_pos("mocap1"), new_pos) assert_array_almost_equal(sim.data.get_mocap_quat("mocap1"), new_quat) assert_array_equal(sim.data.get_body_xpos("mocap1"), new_pos) assert_array_almost_equal(sim.data.get_body_xquat("mocap1"), new_quat) assert_array_almost_equal(sim.data.get_body_xmat("mocap1"), [[1, 0, 0], [0, 0, -1], [0, 1, 0]]) def test_sim_state(): model = load_model_from_xml(BASIC_MODEL_XML) foo = 10 d = {"foo": foo, "foo_array": np.array([foo, foo, foo]), "foo_2darray": np.reshape(np.array([foo, foo, foo, foo]), (2, 2)), } def udd_callback(sim): return d sim = MjSim(model, nsubsteps=2, udd_callback=udd_callback) state = sim.get_state() assert np.array_equal(state.time, sim.data.time) assert np.array_equal(state.qpos, sim.data.qpos) assert np.array_equal(state.qvel, sim.data.qvel) assert np.array_equal(state.act, sim.data.act) for k in state.udd_state.keys(): if (isinstance(state.udd_state[k], Number)): assert state.udd_state[k] == sim.udd_state[k] else: assert np.array_equal(state.udd_state[k], sim.udd_state[k]) # test flatten, unflatten a = state.flatten() assert len(a) == (1 + sim.model.nq + sim.model.nv + sim.model.na + 8) state2 = MjSimState.from_flattened(a, sim) assert np.array_equal(state.time, sim.data.time) assert np.array_equal(state.qpos, sim.data.qpos) assert np.array_equal(state.qvel, sim.data.qvel) assert np.array_equal(state.act, sim.data.act) for k in state2.udd_state.keys(): if (isinstance(state2.udd_state[k], Number)): assert state2.udd_state[k] == sim.udd_state[k] else: assert np.array_equal(state2.udd_state[k], sim.udd_state[k]) assert state2 == state assert not state2 != state # test equality with deleting keys state2 = state2._replace(udd_state={"foo": foo}) assert state2 != state assert not (state2 == state) # test equality with changing contents of array state2 = state2._replace( udd_state={"foo": foo, "foo_array": np.array([foo, foo + 1])}) assert state2 != state assert not (state2 == state) # test equality with adding keys d2 = dict(d) d2.update({"not_foo": foo}) state2 = state2._replace(udd_state=d2) assert state2 != state assert not (state2 == state) # test defensive copy sim.set_state(state) state.qpos[0] = -1 assert not np.array_equal(state.qpos, sim.data.qpos) state3 = sim.get_state() state3.qpos[0] = -1 assert not np.array_equal(state3.qpos, sim.data.qpos) state3.udd_state["foo_array"][0] = -1 assert not np.array_equal( state3.udd_state["foo_array"], sim.udd_state["foo_array"]) # test no callback sim = MjSim(model, nsubsteps=2) state = sim.get_state() print("state.udd_state = %s" % state.udd_state) assert state.udd_state == {} # test flatten, unflatten a = state.flatten() assert len(a) == 1 + sim.model.nq + sim.model.nv + sim.model.na state2 = MjSimState.from_flattened(a, sim) assert np.array_equal(state.time, sim.data.time) assert np.array_equal(state.qpos, sim.data.qpos) assert np.array_equal(state.qvel, sim.data.qvel) assert np.array_equal(state.act, sim.data.act) assert state.udd_state == sim.udd_state def test_mj_warning_raises(): ''' Test that MuJoCo warnings cause exceptions. ''' # Two boxes on a plane need more than 1 contact (nconmax) xml = ''' <mujoco> <size nconmax="1"/> <worldbody> <geom type="plane" size="1 1 0.1"/> <body pos="1 0 1"> <joint type="free"/> <geom size="1"/> </body> <body pos="0 1 1"> <joint type="free"/> <geom size="1"/> </body> </worldbody> </mujoco> ''' model = load_model_from_xml(xml) sim = MjSim(model) sim.reset() with pytest.raises(Exception): # This should raise an exception due to the mujoco warning callback sim.step() def test_ignore_mujoco_warnings(): # Two boxes on a plane need more than 1 contact (nconmax) xml = ''' <mujoco> <size nconmax="1"/> <worldbody> <geom type="plane" size="1 1 0.1"/> <body pos="1 0 1"> <joint type="free"/> <geom size="1"/> </body> <body pos="0 1 1"> <joint type="free"/> <geom size="1"/> </body> </worldbody> </mujoco> ''' model = load_model_from_xml(xml) sim = MjSim(model) sim.reset() with ignore_mujoco_warnings(): # This should raise an exception due to the mujoco warning callback, # but it's suppressed by the context manager. sim.step() sim.reset() with pytest.raises(Exception): # test to make sure previous warning callback restored. sim.step() def test_jacobians(): xml = """ <mujoco> <worldbody> <body name="body1" pos="0 0 0"> <joint axis="1 0 0" name="a" pos="0 0 0" type="hinge"/> <geom name="geom1" pos="0 0 0" size="1.0"/> <body name="body2" pos="0 0 1"> <joint name="b" axis="1 0 0" pos="0 0 1" type="hinge"/> <geom name="geom2" pos="1 1 1" size="0.5"/> <site name="target" size="0.1"/> </body> </body> </worldbody> <actuator> <motor joint="a"/> <motor joint="b"/> </actuator> </mujoco> """ model = load_model_from_xml(xml) sim = MjSim(model) sim.reset() # After reset jacobians are all zeros target_jacp = np.zeros(3 * sim.model.nv) sim.data.get_site_jacp('target', jacp=target_jacp) np.testing.assert_allclose(target_jacp, np.zeros(3 * sim.model.nv)) # After first forward, jacobians are real sim.forward() sim.data.get_site_jacp('target', jacp=target_jacp) target_test = np.array([0, 0, -1, 1, 0, 0]) np.testing.assert_allclose(target_jacp, target_test) # Should be unchanged after steps (zero action) for _ in range(2): sim.step() sim.forward() sim.data.get_site_jacp('target', jacp=target_jacp) assert np.linalg.norm(target_jacp - target_test) < 1e-3 # Apply a very large action, ensure jacobian unchanged after step sim.reset() sim.forward() sim.data.ctrl[:] = np.ones(sim.model.nu) * 1e9 sim.step() sim.data.get_site_jacp('target', jacp=target_jacp) np.testing.assert_allclose(target_jacp, target_test) # After large action, ensure jacobian changed after forward sim.forward() sim.data.get_site_jacp('target', jacp=target_jacp) assert not np.allclose(target_jacp, target_test) # Test the `site_jacp` property, which gets all at once np.testing.assert_allclose(target_jacp, sim.data.site_jacp[0]) # Test not passing in array sim.reset() sim.forward() target_jacp = sim.data.get_site_jacp('target') np.testing.assert_allclose(target_jacp, target_test) # Test passing in bad array (long instead of double) target_jacp = np.zeros(3 * sim.model.nv, dtype=np.long) with pytest.raises(ValueError): sim.data.get_site_jacp('target', jacp=target_jacp) # Test rotation jacobian - like above but 'jacr' instead of 'jacp' # After reset jacobians are all zeros sim.reset() target_jacr = np.zeros(3 * sim.model.nv) sim.data.get_site_jacr('target', jacr=target_jacr) np.testing.assert_allclose(target_jacr, np.zeros(3 * sim.model.nv)) # After first forward, jacobians are real sim.forward() sim.data.get_site_jacr('target', jacr=target_jacr) target_test = np.array([1, 1, 0, 0, 0, 0]) # Test allocating dedicated array target_jacr = sim.data.get_site_jacr('target') np.testing.assert_allclose(target_jacr, target_test) # Test the batch getter (all sites at once) np.testing.assert_allclose(target_jacr, sim.data.site_jacr[0]) # Test passing in bad array target_jacr = np.zeros(3 * sim.model.nv, dtype=np.long) with pytest.raises(ValueError): sim.data.get_site_jacr('target', jacr=target_jacr) def test_xvelp(): # xvelp = positional velocity in world frame xml = """ <mujoco> <worldbody> <body name="body1" pos="0 0 0"> <joint name="a" axis="1 0 0" pos="0 0 0" type="slide"/> <geom name="geom1" pos="0 0 0" size="1.0"/> <body name="body2" pos="0 0 1"> <joint name="b" axis="1 0 0" pos="0 0 1" type="slide"/> <geom name="geom2" pos="0 0 0" size="0.5"/> <site name="site1" size="0.1"/> </body> </body> </worldbody> <actuator> <motor joint="a"/> <motor joint="b"/> </actuator> </mujoco> """ model = load_model_from_xml(xml) sim = MjSim(model) sim.reset() sim.forward() # Check that xvelp starts out at zero (since qvel is zero) site1_xvelp = sim.data.get_site_xvelp('site1') np.testing.assert_allclose(site1_xvelp, np.zeros(3)) # Push the base body and step forward to get it moving sim.data.ctrl[0] = 1e9 sim.step() sim.forward() # Check that the first body has nonzero xvelp body1_xvelp = sim.data.get_body_xvelp('body1') assert not np.allclose(body1_xvelp, np.zeros(3)) # Check that the second body has zero xvelp (still) body2_xvelp = sim.data.get_body_xvelp('body2') np.testing.assert_allclose(body2_xvelp, np.zeros(3)) # Check that this matches the batch (gathered) getter property np.testing.assert_allclose(body2_xvelp, sim.data.body_xvelp[2]) def test_xvelr(): # xvelr = rotational velocity in world frame xml = """ <mujoco> <worldbody> <body name="body1" pos="0 0 0"> <joint name="a" axis="1 0 0" pos="0 0 0" type="hinge"/> <geom name="geom1" pos="0 0 0" size="0.3"/> <body name="body2" pos="0 0 1"> <joint name="b" axis="1 0 0" pos="0 0 0" type="hinge"/> <geom name="geom2" pos="0 0 0" size="0.3"/> <site name="site1" size="0.1"/> </body> </body> </worldbody> <actuator> <motor joint="a"/> <motor joint="b"/> </actuator> </mujoco> """ model = load_model_from_xml(xml) sim = MjSim(model) sim.reset() sim.forward() # Check that xvelr starts out at zero (since qvel is zero) site1_xvelr = sim.data.get_site_xvelr('site1') np.testing.assert_allclose(site1_xvelr, np.zeros(3)) # Push the base body and step forward to get it moving sim.data.ctrl[0] = 1e9 sim.step() sim.forward() # Check that the first body has nonzero xvelr body1_xvelr = sim.data.get_body_xvelr('body1') assert not np.allclose(body1_xvelr, np.zeros(3)) # Check that the second body has zero xvelr (still) body2_xvelr = sim.data.get_body_xvelr('body2') np.testing.assert_allclose(body2_xvelr, np.zeros(3)) # Check that this matches the batch (gathered) getter property np.testing.assert_allclose(body2_xvelr, sim.data.body_xvelr[2]) @pytest.mark.requires_rendering def test_rendering(): model = load_model_from_xml(BASIC_MODEL_XML) sim = MjSim(model) sim.forward() img, depth = sim.render(200, 200, depth=True) assert img.shape == (200, 200, 3) compare_imgs(img, 'test_rendering.freecam.png') depth = (depth - np.min(depth)) / (np.max(depth) - np.min(depth)) depth = np.asarray(depth * 255, dtype=np.uint8) assert depth.shape == (200, 200) compare_imgs(depth, 'test_rendering.freecam.depth.png') img = sim.render(100, 100, camera_name="camera1") assert img.shape == (100, 100, 3) compare_imgs(img, 'test_rendering.camera1.png') img = sim.render(200, 100, camera_name="camera1") assert img.shape == (100, 200, 3) compare_imgs(img, 'test_rendering.camera1.narrow.png') render_context = sim.render_contexts[0] render_context.add_marker(size=np.array([.4, .5, .6]), pos=np.array([.4, .5, .6]), rgba=np.array([.7, .8, .9, 1.0]), label="mark") img = sim.render(200, 200, camera_name="camera1") assert img.shape == (200, 200, 3) compare_imgs(img, 'test_rendering_markers.camera1.png') @pytest.mark.requires_rendering def test_rendering_failing(): model = load_model_from_xml(BASIC_MODEL_XML) sim = MjSim(model) sim.forward() sim.render(100, 100) render_context = sim.render_contexts[0] render_context.add_marker(size=np.array([.4, .5, .6]), pos=np.array([.4, .5, .6]), rgba=np.array([.7, .8, .9, 1.0]), label="blaaaa") img = sim.render(200, 200, camera_name="camera1") assert img.shape == (200, 200, 3) try: compare_imgs(img, 'test_rendering_markers.camera1.png') assert False except Exception as e: pass @pytest.mark.requires_rendering def test_viewercontext(): model = load_model_from_xml(BASIC_MODEL_XML) sim = MjSim(model) sim.forward() renderer = cymj.MjRenderContext(sim, offscreen=True) renderer.add_marker(type=const.GEOM_SPHERE, size=np.ones(3) * 0.1, pos=np.zeros(3), mat=np.eye(3).flatten(), rgba=np.ones(4), label="mark") @pytest.mark.requires_rendering def test_many_sims_rendering(): model = load_model_from_xml(BASIC_MODEL_XML) sims = [MjSim(model) for _ in range(5)] pool = MjSimPool(sims) pool.forward() for sim in sims: img, depth = sim.render(200, 200, depth=True) assert img.shape == (200, 200, 3) compare_imgs(img, 'test_rendering.freecam.png') def test_xml_from_path(): model = load_model_from_path("mujoco_py/tests/test.xml") sim = MjSim(model) xml = model.get_xml() assert xml.find("blabla") > -1, "include should be embeeded" assert xml.find("include") == - \ 1, "include should be parsed and not present" def test_sensors(): model = load_model_from_xml(BASIC_MODEL_XML) sim = MjSim(model) sim.model.sensor_names sim.data.get_sensor("touchsensor") @pytest.mark.requires_rendering @pytest.mark.skipif("Darwin" not in sys.platform, reason="Only Darwin code is thread safe.") def test_concurrent_rendering(): '''Best-effort testing that concurrent multi-threaded rendering works. The test has no guarantees around being deterministic, but if it fails you know something is wrong with concurrent rendering. If it passes, things are probably working.''' err = None def func(sim, event): event.wait() sim.data.qpos[:] = 0.0 sim.forward() img1 = sim.render(width=40, height=40, camera_name="camera1") img2 = sim.render(width=40, height=40, camera_name="camera2") try: assert np.sum(img1[:]) == 23255 assert np.sum(img2[:]) == 12007 except Exception as e: nonlocal err err = e model = load_model_from_xml(BASIC_MODEL_XML) sim = MjSim(model) sim.render(100, 100) event = Event() threads = [] for _ in range(100): thread = Thread(target=func, args=(sim, event)) threads.append(thread) thread.start() event.set() for thread in threads: thread.join() assert err is None, "Exception: %s" % (str(err)) @pytest.mark.requires_rendering def test_high_res(): model = load_model_from_xml(BASIC_MODEL_XML) sim = MjSim(model) sim.forward() img = sim.render(1000, 1000) img = scipy.misc.imresize(img, (200, 200, 3)) assert img.shape == (200, 200, 3) compare_imgs(img, 'test_rendering.freecam.png') @pytest.mark.skipif(sys.platform.startswith("win"), reason="This test fails on windows.") def test_multiprocess(): ''' Tests for importing mujoco_py from multiple processes. ''' ctx = get_context('spawn') processes = [] times = 3 queue = ctx.Queue() for idx in range(3): processes.append(ctx.Process(target=import_process, args=(queue, ))) for p in processes: p.start() for p in processes: p.join() for _ in range(times): assert queue.get(), "One of processes failed." def import_process(queue): try: from mujoco_py import builder mjpro_path, key_path = builder.discover_mujoco() builder.load_cython_ext(mjpro_path) except Exception as e: queue.put(False) else: queue.put(True)
cartwrap.py
import subprocess import io from threading import Thread from queue import Queue import re import math def reader(pipe, pipe_name, queue): try: with pipe: for line in iter(pipe.readline, b''): queue.put((pipe_name, line)) finally: queue.put(None) # This function invokes the C code to calculate a cartogram for a given gen and area input. # It returns a generator that yields its output on stdout and stderr in the format: # # source, line # # where source is a string (either 'stdout' or 'stderr'), and line is a string. # # It takes as input: # # area_data: A string containing appropriately formated area data # gen_file: A string containing the path to the appropriate .gen file # cartogram_executable: A string containg the path to the C code executable def generate_cartogram(area_data, gen_file, cartogram_executable, world=False): flag = '-s' if world == True: flag = '-sw' cartogram_process = subprocess.Popen([ cartogram_executable, '-g', gen_file, flag ],stdin=subprocess.PIPE,stdout=subprocess.PIPE,stderr=subprocess.PIPE,bufsize=1) q = Queue() Thread(target=reader,args=[cartogram_process.stdout, "stdout", q]).start() Thread(target=reader,args=[cartogram_process.stderr, "stderr", q]).start() cartogram_process.stdin.write(str.encode(area_data)) cartogram_process.stdin.close() for _ in range(2): for source, line in iter(q.get, None): yield source,line #output, errors = cartogram_process.communicate(bytes(area_data, 'UTF-8')) #return io.StringIO(output.decode())
e2e.py
""" This is an end to end release test automation script used to kick off periodic release tests, running on Anyscale. The tool leverages app configs and compute templates. Calling this script will run a single release test. Example: python e2e.py --test-config ~/ray/release/xgboost_tests/xgboost_tests.yaml --test-name tune_small The following steps are then performed: 1. It will look up the test tune_small in the file xgboost_tests.yaml 2. It will fetch the specified app config and compute template and register those with anyscale (if they don’t exist yet) 3. It waits until the app config is built 4. It then kicks off the script defined in the run block 5. When the script is finished, it will fetch the latest logs, the full log output, and any artifacts specified in the artifacts block. 6. The full logs and artifacts will be stored in a s3 bucket 7. It will also fetch the json file specified in the run block as results. This is the file where you should write your metrics to. 8. All results are then stored in a database. Specifically it will store the following fields: - Timestamp - Test name - Status (finished, error, timeout, invalid) - Last logs (50 lines) - results (see above) - artifacts (links to s3 files) Then the script exits. If an error occurs at any time, a fail result is written to the database. Exit codes ---------- The script exits with code 0 on success, i.e. if the test has been run end to end without failures and the subsequent results checks have passed. In all other cases, an exit code > 0 is returned. Exit code 1 is the general failure exit code returned by Python when we encounter an error that isn't caught by the rest of the script. Generally, we try to catch errors as they occur, and return a specific exit code that can be used in automation tools to e.g. retry a test when nodes didn't come up in time. These exit codes are defined in the ``ExitCode`` enum below. Writing a new release test -------------------------- Each release test requires the following: 1. It has to be added in a release test yaml file, describing meta information about the test (e.g. name, command to run, timeout) 2. You need an app config yaml 3. You need a compute template yaml 4. You need to define a command to run. This is usually a python script. The command should accept (or ignore) a single optional `--smoke-test` argument. Usually the command should write its result metrics to a json file. The json filename is available in the TEST_OUTPUT_JSON env variable. 5. Add your test in release/.buildkite/build_pipeline.py. The script will have access to these environment variables: "RAY_ADDRESS": os.environ.get("RAY_ADDRESS", "auto") "TEST_OUTPUT_JSON": results_json_filename "IS_SMOKE_TEST": "1" if smoke_test else "0" For an example, take a look at the XGBoost test suite: https://github.com/ray-project/ray/blob/master/release/xgboost_tests/xgboost_tests.yaml These all use the same app configs and similar compute templates. This means that app configs can be re-used across runs and only have to be built ones. App configs and compute templates can interpret environment variables. A notable one is the `RAY_WHEELS` variable which points to the wheels that should be tested (e.g. latest master wheels). You might want to include something like this in your `post_build_cmds`: - pip3 install -U {{ env["RAY_WHEELS"] | default("ray") }} If you want to force rebuilds, consider using something like - echo {{ env["TIMESTAMP"] }} so that your app configs changes each time the script is executed. If you only want to trigger rebuilds once per day, use `DATESTAMP` instead: - echo {{ env["DATESTAMP"] }} Local testing ------------- Make sure to set these environment variables: - ANYSCALE_CLI_TOKEN (should contain your anyscale credential token) - ANYSCALE_PROJECT (should point to a project ID you have access to) A test can then be run like this: python e2e.py --test-config ~/ray/release/xgboost_tests/xgboost_tests.yaml --test-name tune_small Using Compilation on Product + App Config Override -------------------------------------------------- For quick iteration when debugging a release test, go/compile-on-product allows you to easily modify and recompile Ray, such that the recompilation happens within an app build step and can benefit from a warm Bazel cache. See go/compile-on-product for more information. After kicking off the app build, you can give the app config ID to this script as an app config override, where the indicated app config will be used instead of the app config given in the test config. E.g., running python e2e.py --test-config ~/ray/benchmarks/benchmark_tests.yaml --test-name=single_node --app-config-id-override=apt_TBngEXXXrhipMXgexVcrpC9i would run the single_node benchmark test with the apt_TBngEXXXrhipMXgexVcrpC9i app config instead of the app config given in ~/ray/benchmarks/benchmark_tests.yaml. If the build for the app config is still in progress, the script will wait until it completes, same as for a locally defined app config. Running on Head Node vs Running with Anyscale Connect ----------------------------------------------------- By default release tests run their drivers on the head node. Support is being added to run release tests that execute the driver as a subprocess and run the workload on Anyscale product via Anyscale connect. Note that when the driver in the test is a subprocess of releaser, releaser cannot be terminated before the test finishes. Other known feature gaps when running with Anyscale connect: - Kicking off a test or checking progress is not supported. - Downloading / uploading logs and artifacts are unsupported. - Logs from remote may not have finished streaming, before the driver exits. Long running tests ------------------ Long running tests can be kicked off with by adding the --kick-off-only parameters to the e2e script. The status can then be checked with the --check command. Long running test sessions will be terminated after `timeout` seconds, after which the latest result in the TEST_OUTPUT_JSON will be reported. Thus, long running release tests should update this file periodically. There are also two config options to configure behavior. The `time_key` is needed to track the latest update of the TEST_OUTPUT_JSON and should contain a floating point number (usually `time.time()`). The `max_update_delay` then specified the maximum time in seconds that can be passed without an update to the results json. If the output file hasn't been updated in e.g. 60 seconds, this could indicate that the command is stale/frozen, and thus should fail. Release test yaml example ------------------------- - name: example owner: mail: "kai@anyscale.com" # Currently not used slack: "@tune-team" # Currentl not used cluster: app_config: app_config.yaml # Relative to the release test yaml compute_template: tpl_cpu.yaml run: timeout: 600 # in seconds prepare: python wait_cluster.py 4 600 # prepare cmd to run before test script: python workloads/train.py # actual release test command # Only needed for long running test time_key: last_update # Key in the results json indicating current time max_update_delay: 30 # If state hasn't been updated in 30s, terminate # This block is optional artifacts: # Artifact name: location on head node - detailed_output: detailed_output.csv # This block is optional. If present, the contents will be # deep updated for smoke testing smoke_test: cluster: compute_template: tpl_cpu_smoketest.yaml """ # noqa: E501 import argparse import enum import boto3 import collections import copy import datetime import hashlib import jinja2 import json import logging import multiprocessing import os import requests import shutil import subprocess import sys import re import tempfile import time from queue import Empty from typing import Any, Dict, Optional, Tuple, List import yaml import anyscale import anyscale.conf from anyscale.api import instantiate_api_client from anyscale.controllers.session_controller import SessionController from anyscale.sdk.anyscale_client.sdk import AnyscaleSDK logger = logging.getLogger() logger.setLevel(logging.INFO) handler = logging.StreamHandler(stream=sys.stdout) formatter = logging.Formatter(fmt="[%(levelname)s %(asctime)s] " "%(filename)s: %(lineno)d " "%(message)s") handler.setFormatter(formatter) logger.addHandler(handler) def getenv_default(key: str, default: Optional[str] = None): """Return environment variable with default value""" # If the environment variable is set but "", still return default return os.environ.get(key, None) or default GLOBAL_CONFIG = { "ANYSCALE_USER": getenv_default("ANYSCALE_USER", "release-automation@anyscale.com"), "ANYSCALE_HOST": getenv_default("ANYSCALE_HOST", "https://beta.anyscale.com"), "ANYSCALE_CLI_TOKEN": getenv_default("ANYSCALE_CLI_TOKEN"), "ANYSCALE_CLOUD_ID": getenv_default( "ANYSCALE_CLOUD_ID", "cld_4F7k8814aZzGG8TNUGPKnc"), # anyscale_default_cloud "ANYSCALE_PROJECT": getenv_default("ANYSCALE_PROJECT", ""), "RAY_VERSION": getenv_default("RAY_VERSION", "1.9.0"), "RAY_REPO": getenv_default("RAY_REPO", "https://github.com/ray-project/ray.git"), "RAY_BRANCH": getenv_default("RAY_BRANCH", "master"), "RELEASE_AWS_BUCKET": getenv_default("RELEASE_AWS_BUCKET", "ray-release-automation-results"), "RELEASE_AWS_LOCATION": getenv_default("RELEASE_AWS_LOCATION", "dev"), "RELEASE_AWS_DB_NAME": getenv_default("RELEASE_AWS_DB_NAME", "ray_ci"), "RELEASE_AWS_DB_TABLE": getenv_default("RELEASE_AWS_DB_TABLE", "release_test_result"), "RELEASE_AWS_DB_SECRET_ARN": getenv_default( "RELEASE_AWS_DB_SECRET_ARN", "arn:aws:secretsmanager:us-west-2:029272617770:secret:" "rds-db-credentials/cluster-7RB7EYTTBK2EUC3MMTONYRBJLE/ray_ci-MQN2hh", ), "RELEASE_AWS_DB_RESOURCE_ARN": getenv_default( "RELEASE_AWS_DB_RESOURCE_ARN", "arn:aws:rds:us-west-2:029272617770:cluster:ci-reporting", ), "RELEASE_RESULTS_DIR": getenv_default("RELEASE_RESULTS_DIR", "/tmp/ray_release_test_artifacts"), "DATESTAMP": str(datetime.datetime.now().strftime("%Y%m%d")), "TIMESTAMP": str(int(datetime.datetime.now().timestamp())), "EXPIRATION_1D": str((datetime.datetime.now() + datetime.timedelta(days=1)).strftime("%Y-%m-%d")), "EXPIRATION_2D": str((datetime.datetime.now() + datetime.timedelta(days=2)).strftime("%Y-%m-%d")), "EXPIRATION_3D": str((datetime.datetime.now() + datetime.timedelta(days=3)).strftime("%Y-%m-%d")), "REPORT_RESULT": getenv_default("REPORT_RESULT", ""), } REPORT_S = 30 RETRY_MULTIPLIER = 2 class ExitCode(enum.Enum): UNSPECIFIED = 2 UNKNOWN = 3 RUNTIME_ERROR = 4 COMMAND_ERROR = 5 COMMAND_TIMEOUT = 6 PREPARE_TIMEOUT = 7 FILESYNC_TIMEOUT = 8 SESSION_TIMEOUT = 9 PREPARE_ERROR = 10 APPCONFIG_BUILD_ERROR = 11 INFRA_ERROR = 12 def exponential_backoff_retry(f, retry_exceptions, initial_retry_delay_s, max_retries): retry_cnt = 0 retry_delay_s = initial_retry_delay_s while True: try: return f() except retry_exceptions as e: retry_cnt += 1 if retry_cnt > max_retries: raise logger.info(f"Retry function call failed due to {e} " f"in {retry_delay_s} seconds...") time.sleep(retry_delay_s) retry_delay_s *= RETRY_MULTIPLIER def maybe_fetch_api_token(): if GLOBAL_CONFIG["ANYSCALE_CLI_TOKEN"] is None: logger.info( "Missing ANYSCALE_CLI_TOKEN, retrieving from AWS secrets store") # NOTE(simon) This should automatically retrieve # release-automation@anyscale.com's anyscale token GLOBAL_CONFIG["ANYSCALE_CLI_TOKEN"] = boto3.client( "secretsmanager", region_name="us-west-2" ).get_secret_value( SecretId="arn:aws:secretsmanager:us-west-2:029272617770:secret:" "release-automation/" "anyscale-token20210505220406333800000001-BcUuKB")["SecretString"] class PrepareCommandRuntimeError(RuntimeError): pass class ReleaseTestRuntimeError(RuntimeError): pass class ReleaseTestInfraError(ReleaseTestRuntimeError): pass class ReleaseTestTimeoutError(ReleaseTestRuntimeError): pass class SessionTimeoutError(ReleaseTestTimeoutError): pass class FileSyncTimeoutError(ReleaseTestTimeoutError): pass class CommandTimeoutError(ReleaseTestTimeoutError): pass class PrepareCommandTimeoutError(ReleaseTestTimeoutError): pass # e.g., App config failure. class AppConfigBuildFailure(RuntimeError): pass class State: def __init__(self, state: str, timestamp: float, data: Any): self.state = state self.timestamp = timestamp self.data = data sys.path.insert(0, anyscale.ANYSCALE_RAY_DIR) def anyscale_project_url(project_id: str): return f"{GLOBAL_CONFIG['ANYSCALE_HOST']}" \ f"/o/anyscale-internal/projects/{project_id}" \ f"/?tab=session-list" def anyscale_session_url(project_id: str, session_id: str): return f"{GLOBAL_CONFIG['ANYSCALE_HOST']}" \ f"/o/anyscale-internal/projects/{project_id}" \ f"/clusters/{session_id}" def anyscale_compute_tpl_url(compute_tpl_id: str): return f"{GLOBAL_CONFIG['ANYSCALE_HOST']}" \ f"/o/anyscale-internal/configurations/cluster-computes" \ f"/{compute_tpl_id}" def anyscale_app_config_build_url(build_id: str): return f"{GLOBAL_CONFIG['ANYSCALE_HOST']}" \ f"/o/anyscale-internal/configurations/app-config-details" \ f"/{build_id}" def wheel_url(ray_version, git_branch, git_commit): return f"https://s3-us-west-2.amazonaws.com/ray-wheels/" \ f"{git_branch}/{git_commit}/" \ f"ray-{ray_version}-cp37-cp37m-manylinux2014_x86_64.whl" def wheel_exists(ray_version, git_branch, git_commit): url = wheel_url(ray_version, git_branch, git_commit) return requests.head(url).status_code == 200 def commit_or_url(commit_or_url: str) -> str: if commit_or_url.startswith("http"): url = None # Directly return the S3 url if "s3" in commit_or_url and "amazonaws.com" in commit_or_url: url = commit_or_url # Resolve the redirects for buildkite artifacts # This is needed because otherwise pip won't recognize the file name. elif "buildkite.com" in commit_or_url and "artifacts" in commit_or_url: url = requests.head(commit_or_url, allow_redirects=True).url if url is not None: # Extract commit from url so that we can do the # commit sanity check later. p = re.compile("/([a-f0-9]{40})/") m = p.search(url) if m is not None: os.environ["RAY_COMMIT"] = m.group(1) return url # Else, assume commit os.environ["RAY_COMMIT"] = commit_or_url return wheel_url(GLOBAL_CONFIG["RAY_VERSION"], GLOBAL_CONFIG["RAY_BRANCH"], commit_or_url) def get_latest_commits(repo: str, branch: str = "master") -> List[str]: cur = os.getcwd() with tempfile.TemporaryDirectory() as tmpdir: os.chdir(tmpdir) clone_cmd = [ "git", "clone", "--filter=tree:0", "--no-checkout", # "--single-branch", # "--depth=10", f"--branch={branch}", repo, tmpdir, ] log_cmd = [ "git", "log", "-n", "10", "--pretty=format:%H", ] subprocess.check_output(clone_cmd) commits = subprocess.check_output(log_cmd).decode( sys.stdout.encoding).split("\n") os.chdir(cur) return commits def find_ray_wheels(repo: str, branch: str, version: str): url = None commits = get_latest_commits(repo, branch) logger.info(f"Latest 10 commits for branch {branch}: {commits}") for commit in commits: if wheel_exists(version, branch, commit): url = wheel_url(version, branch, commit) os.environ["RAY_WHEELS"] = url os.environ["RAY_COMMIT"] = commit logger.info( f"Found wheels URL for Ray {version}, branch {branch}: " f"{url}") break return url def populate_wheels_sanity_check(commit: Optional[str] = None): if not commit: cmd = ("python -c 'import ray; print(" "\"No commit sanity check available, but this is the " "Ray wheel commit:\", ray.__commit__)'") else: cmd = (f"python -c 'import ray; " f"assert ray.__commit__ == \"{commit}\", ray.__commit__'") os.environ["RAY_WHEELS_SANITY_CHECK"] = cmd def _check_stop(stop_event: multiprocessing.Event, timeout_type: str): if stop_event.is_set(): if timeout_type == "prepare_command": raise PrepareCommandTimeoutError( "Process timed out in the prepare command stage.") if timeout_type == "command": raise CommandTimeoutError( "Process timed out while running a command.") elif timeout_type == "file_sync": raise FileSyncTimeoutError( "Process timed out while syncing files.") elif timeout_type == "session": raise SessionTimeoutError( "Process timed out while starting a session.") else: assert False, "Unexpected timeout type." def _deep_update(d, u): for k, v in u.items(): if isinstance(v, collections.abc.Mapping): d[k] = _deep_update(d.get(k, {}), v) else: d[k] = v return d def _dict_hash(dt: Dict[Any, Any]) -> str: json_str = json.dumps(dt, sort_keys=True, ensure_ascii=True) sha = hashlib.sha256() sha.update(json_str.encode()) return sha.hexdigest() def _load_config(local_dir: str, config_file: Optional[str]) -> Optional[Dict]: if not config_file: return None config_path = os.path.join(local_dir, config_file) with open(config_path, "rt") as f: # Todo: jinja2 render content = f.read() env = copy.deepcopy(os.environ) env.update(GLOBAL_CONFIG) content = jinja2.Template(content).render(env=env) return yaml.safe_load(content) def _wrap_app_config_pip_installs(app_config: Dict[Any, Any]): """Wrap pip package install in quotation marks""" if app_config.get("python", {}).get("pip_packages"): new_pip_packages = [] for pip_package in app_config["python"]["pip_packages"]: new_pip_packages.append(f"\"{pip_package}\"") app_config["python"]["pip_packages"] = new_pip_packages def has_errored(result: Dict[Any, Any]) -> bool: return result.get("status", "invalid") != "finished" def maybe_get_alert_for_result(result_dict: Dict[str, Any]) -> Optional[str]: # If we get a result dict, check if any alerts should be raised from alert import SUITE_TO_FN, default_handle_result logger.info("Checking if results are valid...") # Copy dict because we modify kwargs here handle_result_kwargs = result_dict.copy() handle_result_kwargs["created_on"] = None test_suite = handle_result_kwargs.get("test_suite", None) handle_fn = SUITE_TO_FN.get(test_suite, None) if not handle_fn: logger.warning(f"No handle for suite {test_suite}") alert = default_handle_result(**handle_result_kwargs) else: alert = handle_fn(**handle_result_kwargs) return alert def report_result(test_suite: str, test_name: str, status: str, last_logs: str, results: Dict[Any, Any], artifacts: Dict[Any, Any], category: str): now = datetime.datetime.utcnow() rds_data_client = boto3.client("rds-data", region_name="us-west-2") schema = GLOBAL_CONFIG["RELEASE_AWS_DB_TABLE"] sql = ( f"INSERT INTO {schema} " f"(created_on, test_suite, test_name, status, last_logs, " f"results, artifacts, category) " f"VALUES (:created_on, :test_suite, :test_name, :status, :last_logs, " f":results, :artifacts, :category)") parameters = [{ "name": "created_on", "typeHint": "TIMESTAMP", "value": { "stringValue": now.strftime("%Y-%m-%d %H:%M:%S") }, }, { "name": "test_suite", "value": { "stringValue": test_suite } }, { "name": "test_name", "value": { "stringValue": test_name } }, { "name": "status", "value": { "stringValue": status } }, { "name": "last_logs", "value": { "stringValue": last_logs } }, { "name": "results", "typeHint": "JSON", "value": { "stringValue": json.dumps(results) }, }, { "name": "artifacts", "typeHint": "JSON", "value": { "stringValue": json.dumps(artifacts) }, }, { "name": "category", "value": { "stringValue": category } }] # Default boto3 call timeout is 45 seconds. retry_delay_s = 64 MAX_RDS_RETRY = 3 exponential_backoff_retry( lambda: rds_data_client.execute_statement( database=GLOBAL_CONFIG["RELEASE_AWS_DB_NAME"], parameters=parameters, secretArn=GLOBAL_CONFIG["RELEASE_AWS_DB_SECRET_ARN"], resourceArn=GLOBAL_CONFIG["RELEASE_AWS_DB_RESOURCE_ARN"], schema=schema, sql=sql), retry_exceptions=rds_data_client.exceptions.StatementTimeoutException, initial_retry_delay_s=retry_delay_s, max_retries=MAX_RDS_RETRY) logger.info("Result has been persisted to the database") def log_results_and_artifacts(result: Dict): results = result.get("results", {}) if results: msg = "Observed the following results:\n\n" for key, val in results.items(): msg += f" {key} = {val}\n" else: msg = "Did not find any results." logger.info(msg) artifacts = result.get("artifacts", {}) if artifacts: msg = "Saved the following artifacts:\n\n" for key, val in artifacts.items(): msg += f" {key} = {val}\n" else: msg = "Did not find any artifacts." logger.info(msg) def _cleanup_session(sdk: AnyscaleSDK, session_id: str): if session_id: # Just trigger a request. No need to wait until session shutdown. sdk.terminate_session( session_id=session_id, terminate_session_options={}) def search_running_session(sdk: AnyscaleSDK, project_id: str, session_name: str) -> Optional[str]: session_id = None logger.info(f"Looking for existing session with name {session_name}") result = sdk.search_sessions( project_id=project_id, sessions_query=dict(name=dict(equals=session_name))) if len(result.results) > 0 and result.results[0].state == "Running": logger.info("Found existing session.") session_id = result.results[0].id return session_id def find_cloud_by_name(sdk: AnyscaleSDK, cloud_name: str, _repeat: bool = True) -> Optional[str]: cloud_id = None logger.info(f"Looking up cloud with name `{cloud_name}`. ") paging_token = None while not cloud_id: result = sdk.search_clouds( clouds_query=dict( paging=dict(count=50, paging_token=paging_token))) paging_token = result.metadata.next_paging_token for res in result.results: if res.name == cloud_name: cloud_id = res.id logger.info( f"Found cloud with name `{cloud_name}` as `{cloud_id}`") break if not paging_token or cloud_id or not len(result.results): break return cloud_id def create_or_find_compute_template( sdk: AnyscaleSDK, project_id: str, compute_tpl: Dict[Any, Any], _repeat: bool = True) -> Tuple[Optional[str], Optional[str]]: compute_tpl_id = None compute_tpl_name = None if compute_tpl: # As of Anyscale 0.4.1, it is an error to use the same compute template # name within the same organization, between different projects. compute_tpl_name = f"{project_id}/compute/{_dict_hash(compute_tpl)}" logger.info(f"Tests uses compute template " f"with name {compute_tpl_name}. Looking up existing " f"templates.") paging_token = None while not compute_tpl_id: result = sdk.search_compute_templates( dict( project_id=project_id, name=dict(equals=compute_tpl_name), include_anonymous=True), paging_token=paging_token) paging_token = result.metadata.next_paging_token for res in result.results: if res.name == compute_tpl_name: compute_tpl_id = res.id logger.info( f"Template already exists with ID {compute_tpl_id}") break if not paging_token: break if not compute_tpl_id: logger.info(f"Compute template not found. " f"Creating with name {compute_tpl_name}.") try: result = sdk.create_compute_template( dict( name=compute_tpl_name, project_id=project_id, config=compute_tpl)) compute_tpl_id = result.result.id except Exception as e: if _repeat: logger.warning( f"Got exception when trying to create compute " f"template: {e}. Sleeping for 10 seconds and then " f"try again once...") time.sleep(10) return create_or_find_compute_template( sdk=sdk, project_id=project_id, compute_tpl=compute_tpl, _repeat=False) raise e logger.info(f"Compute template created with ID {compute_tpl_id}") return compute_tpl_id, compute_tpl_name def create_or_find_app_config( sdk: AnyscaleSDK, project_id: str, app_config: Dict[Any, Any], _repeat: bool = True) -> Tuple[Optional[str], Optional[str]]: app_config_id = None app_config_name = None if app_config: app_config_name = f"{project_id}-{_dict_hash(app_config)}" logger.info(f"Test uses an app config with hash {app_config_name}. " f"Looking up existing app configs with this name.") paging_token = None while not app_config_id: result = sdk.list_app_configs( project_id=project_id, count=50, paging_token=paging_token) paging_token = result.metadata.next_paging_token for res in result.results: if res.name == app_config_name: app_config_id = res.id logger.info( f"App config already exists with ID {app_config_id}") break if not paging_token or app_config_id: break if not app_config_id: logger.info("App config not found. Creating new one.") try: result = sdk.create_app_config( dict( name=app_config_name, project_id=project_id, config_json=app_config)) app_config_id = result.result.id except Exception as e: if _repeat: logger.warning( f"Got exception when trying to create app " f"config: {e}. Sleeping for 10 seconds and then " f"try again once...") time.sleep(10) return create_or_find_app_config( sdk=sdk, project_id=project_id, app_config=app_config, _repeat=False) raise e logger.info(f"App config created with ID {app_config_id}") return app_config_id, app_config_name def run_bash_script(local_dir: str, bash_script: str): previous_dir = os.getcwd() bash_script_local_dir = os.path.dirname(bash_script) file_name = os.path.basename(bash_script) full_local_dir = os.path.join(local_dir, bash_script_local_dir) os.chdir(full_local_dir) subprocess.run("./" + file_name, shell=True, check=True) os.chdir(previous_dir) def install_app_config_packages(app_config: Dict[Any, Any]): os.environ.update(app_config.get("env_vars", {})) packages = app_config["python"]["pip_packages"] for package in packages: subprocess.check_output(["pip", "install", "-U", package], text=True) def install_matching_ray(): wheel = os.environ.get("RAY_WHEELS", None) if not wheel: return assert "manylinux2014_x86_64" in wheel, wheel if sys.platform == "darwin": platform = "macosx_10_15_intel" elif sys.platform == "win32": platform = "win_amd64" else: platform = "manylinux2014_x86_64" wheel = wheel.replace("manylinux2014_x86_64", platform) subprocess.check_output(["pip", "uninstall", "-y", "ray"], text=True) subprocess.check_output(["pip", "install", "-U", wheel], text=True) def wait_for_build_or_raise(sdk: AnyscaleSDK, app_config_id: Optional[str]) -> Optional[str]: if not app_config_id: return None # Fetch build build_id = None last_status = None result = sdk.list_builds(app_config_id) for build in sorted(result.results, key=lambda b: b.created_at): build_id = build.id last_status = build.status if build.status == "failed": continue if build.status == "succeeded": logger.info(f"Link to app config build: " f"{anyscale_app_config_build_url(build_id)}") return build_id if last_status == "failed": raise AppConfigBuildFailure("App config build failed.") if not build_id: raise AppConfigBuildFailure("No build found for app config.") # Build found but not failed/finished yet completed = False start_wait = time.time() next_report = start_wait + REPORT_S logger.info(f"Waiting for build {build_id} to finish...") logger.info(f"Track progress here: " f"{anyscale_app_config_build_url(build_id)}") while not completed: now = time.time() if now > next_report: logger.info(f"... still waiting for build {build_id} to finish " f"({int(now - start_wait)} seconds) ...") next_report = next_report + REPORT_S result = sdk.get_build(build_id) build = result.result if build.status == "failed": raise AppConfigBuildFailure( f"App config build failed. Please see " f"{anyscale_app_config_build_url(build_id)} for details") if build.status == "succeeded": logger.info("Build succeeded.") return build_id completed = build.status not in ["in_progress", "pending"] if completed: raise AppConfigBuildFailure( f"Unknown build status: {build.status}. Please see " f"{anyscale_app_config_build_url(build_id)} for details") time.sleep(1) return build_id def run_job(cluster_name: str, compute_tpl_name: str, cluster_env_name: str, job_name: str, min_workers: str, script: str, script_args: List[str], env_vars: Dict[str, str], autosuspend: int) -> Tuple[int, str]: # Start cluster and job address = f"anyscale://{cluster_name}?autosuspend={autosuspend}" logger.info(f"Starting job {job_name} with Ray address: {address}") env = copy.deepcopy(os.environ) env.update(GLOBAL_CONFIG) env.update(env_vars) env["RAY_ADDRESS"] = address env["RAY_JOB_NAME"] = job_name env["RAY_RELEASE_MIN_WORKERS"] = str(min_workers) proc = subprocess.Popen( script.split(" ") + script_args, env=env, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, text=True) proc.stdout.reconfigure(line_buffering=True) logs = "" for line in proc.stdout: logs += line sys.stdout.write(line) proc.wait() return proc.returncode, logs def create_and_wait_for_session( sdk: AnyscaleSDK, stop_event: multiprocessing.Event, session_name: str, session_options: Dict[Any, Any], project_id: str, ) -> str: # Create session logger.info(f"Creating session {session_name}") result = sdk.create_session(session_options) session_id = result.result.id # Trigger session start logger.info(f"Starting session {session_name} ({session_id})") session_url = anyscale_session_url( project_id=GLOBAL_CONFIG["ANYSCALE_PROJECT"], session_id=session_id) logger.info(f"Link to session: {session_url}") result = sdk.start_session(session_id, start_session_options={}) sop_id = result.result.id completed = result.result.completed # Wait for session logger.info(f"Waiting for session {session_name}...") start_wait = time.time() next_report = start_wait + REPORT_S while not completed: # Sleep 1 sec before next check. time.sleep(1) session_operation_response = sdk.get_session_operation( sop_id, _request_timeout=30) session_operation = session_operation_response.result completed = session_operation.completed _check_stop(stop_event, "session") now = time.time() if now > next_report: logger.info(f"... still waiting for session {session_name} " f"({int(now - start_wait)} seconds) ...") next_report = next_report + REPORT_S result = sdk.get_session(session_id) if not result.result.state != "Active": raise ReleaseTestInfraError( f"Cluster did not come up - most likely the nodes are currently " f"not available. Please check the cluster startup logs: " f"{anyscale_session_url(project_id, session_id)}") return session_id def run_session_command(sdk: AnyscaleSDK, session_id: str, cmd_to_run: str, result_queue: multiprocessing.Queue, env_vars: Dict[str, str], state_str: str = "CMD_RUN") -> Tuple[str, int]: full_cmd = " ".join(f"{k}={v}" for k, v in env_vars.items()) + " " + cmd_to_run logger.info(f"Running command in session {session_id}: \n" f"{full_cmd}") session_url = anyscale_session_url( project_id=GLOBAL_CONFIG["ANYSCALE_PROJECT"], session_id=session_id) logger.info(f"Link to session: {session_url}") result_queue.put(State(state_str, time.time(), None)) result = sdk.create_session_command( dict(session_id=session_id, shell_command=full_cmd)) scd_id = result.result.id return scd_id, result def wait_for_session_command_to_complete(create_session_command_result, sdk: AnyscaleSDK, scd_id: str, stop_event: multiprocessing.Event, state_str: str = "CMD_RUN"): result = create_session_command_result completed = result.result.finished_at is not None start_wait = time.time() next_report = start_wait + REPORT_S while not completed: # Sleep 1 sec before next check. time.sleep(1) result = exponential_backoff_retry( lambda: sdk.get_session_command(session_command_id=scd_id), retry_exceptions=Exception, initial_retry_delay_s=10, max_retries=3) completed = result.result.finished_at if state_str == "CMD_RUN": _check_stop(stop_event, "command") elif state_str == "CMD_PREPARE": _check_stop(stop_event, "prepare_command") now = time.time() if now > next_report: logger.info(f"... still waiting for command to finish " f"({int(now - start_wait)} seconds) ...") next_report = next_report + REPORT_S status_code = result.result.status_code runtime = time.time() - start_wait if status_code != 0: if state_str == "CMD_RUN": raise RuntimeError( f"Command returned non-success status: {status_code}") elif state_str == "CMD_PREPARE": raise PrepareCommandRuntimeError( f"Prepare command returned non-success status: {status_code}") return status_code, runtime def get_command_logs(session_controller: SessionController, scd_id: str, lines: int = 50): result = exponential_backoff_retry( lambda: session_controller.api_client.get_execution_logs_api_v2_session_commands_session_command_id_execution_logs_get( # noqa: E501 session_command_id=scd_id, start_line=-1 * lines, end_line=0), retry_exceptions=Exception, initial_retry_delay_s=10, max_retries=3) return result.result.lines def get_remote_json_content( temp_dir: str, session_name: str, remote_file: Optional[str], session_controller: SessionController, ): if not remote_file: logger.warning("No remote file specified, returning empty dict") return {} local_target_file = os.path.join(temp_dir, ".tmp.json") session_controller.pull( session_name=session_name, source=remote_file, target=local_target_file) with open(local_target_file, "rt") as f: return json.load(f) def get_local_json_content(local_file: Optional[str], ): if not local_file: logger.warning("No local file specified, returning empty dict") return {} with open(local_file, "rt") as f: return json.load(f) def pull_artifacts_and_store_in_cloud( temp_dir: str, logs: str, session_name: str, test_name: str, artifacts: Optional[Dict[Any, Any]], session_controller: SessionController, ): output_log_file = os.path.join(temp_dir, "output.log") with open(output_log_file, "wt") as f: f.write(logs) bucket = GLOBAL_CONFIG["RELEASE_AWS_BUCKET"] location = f"{GLOBAL_CONFIG['RELEASE_AWS_LOCATION']}" \ f"/{session_name}/{test_name}" saved_artifacts = {} s3_client = boto3.client("s3") s3_client.upload_file(output_log_file, bucket, f"{location}/output.log") saved_artifacts["output.log"] = f"s3://{bucket}/{location}/output.log" # Download artifacts if artifacts: for name, remote_file in artifacts.items(): logger.info(f"Downloading artifact `{name}` from " f"{remote_file}") local_target_file = os.path.join(temp_dir, name) session_controller.pull( session_name=session_name, source=remote_file, target=local_target_file) # Upload artifacts to s3 s3_client.upload_file(local_target_file, bucket, f"{location}/{name}") saved_artifacts[name] = f"s3://{bucket}/{location}/{name}" return saved_artifacts def find_session_by_test_name( sdk: AnyscaleSDK, session_controller: SessionController, temp_dir: str, state_json: str, project_id: str, test_name: str, ) -> Optional[Tuple[str, str, Dict[Any, Any]]]: paging_token = None while True: # Will break if paging_token is None after first search result = sdk.search_sessions( project_id=project_id, sessions_query=dict( name=dict(contains=test_name), state_filter=["Running"], paging=dict(count=20, paging_token=paging_token))) for session in result.results: logger.info(f"Found sessions {session.name}") if not session.name.startswith(test_name): continue try: session_state = get_remote_json_content( temp_dir=temp_dir, session_name=session.name, remote_file=state_json, session_controller=session_controller) except Exception as exc: raise RuntimeError(f"Could not get remote json content " f"for session {session.name}") from exc if session_state.get("test_name") == test_name: return session.id, session.name, session_state session_token = result.metadata.next_paging_token if not session_token: return None def get_latest_running_command_id(sdk: AnyscaleSDK, session_id: str ) -> Tuple[Optional[str], Optional[bool]]: scd_id = None paging_token = None success = None while not scd_id: result = sdk.list_session_commands( session_id=session_id, paging_token=paging_token) paging_token = result.metadata.next_paging_token for cmd in result.results: if not scd_id: scd_id = cmd.id completed = cmd.finished_at is not None if completed: if success is None: success = True success = success and cmd.status_code == 0 if not completed: return cmd.id, None return scd_id, success or False def run_test_config( local_dir: str, project_id: str, test_name: str, test_config: Dict[Any, Any], commit_url: str, session_name: str = None, smoke_test: bool = False, no_terminate: bool = False, kick_off_only: bool = False, check_progress: bool = False, upload_artifacts: bool = True, keep_results_dir: bool = False, app_config_id_override: Optional[str] = None, ) -> Dict[Any, Any]: """ Returns: Dict with the following entries: status (str): One of [finished, error, timeout] command_link (str): Link to command (Anyscale web UI) last_logs (str): Last logs (excerpt) to send to owner artifacts (dict): Dict of artifacts Key: Name Value: S3 URL """ stop_event = multiprocessing.Event() result_queue = multiprocessing.Queue() if not session_name: session_name = f"{test_name}_{int(time.time())}" temp_dir = tempfile.mkdtemp() # Result and state files results_json = test_config["run"].get("results", None) if results_json is None: results_json = "/tmp/release_test_out.json" state_json = test_config["run"].get("state", None) if state_json is None: state_json = "/tmp/release_test_state.json" env_vars = { "RAY_ADDRESS": os.environ.get("RAY_ADDRESS", "auto"), "TEST_OUTPUT_JSON": results_json, "TEST_STATE_JSON": state_json, "IS_SMOKE_TEST": "1" if smoke_test else "0", } with open(os.path.join(local_dir, ".anyscale.yaml"), "wt") as f: f.write(f"project_id: {project_id}") os.chdir(local_dir) # Setup interface # Unfortunately, there currently seems to be no great way to # transfer files with the Anyscale SDK. # So we use the session controller instead. sdk = AnyscaleSDK(auth_token=GLOBAL_CONFIG["ANYSCALE_CLI_TOKEN"]) session_controller = SessionController( api_client=instantiate_api_client( cli_token=GLOBAL_CONFIG["ANYSCALE_CLI_TOKEN"], host=GLOBAL_CONFIG["ANYSCALE_HOST"], ), anyscale_api_client=sdk.api_client, ) cloud_id = test_config["cluster"].get("cloud_id", None) cloud_name = test_config["cluster"].get("cloud_name", None) if cloud_id and cloud_name: raise RuntimeError( f"You can't supply both a `cloud_name` ({cloud_name}) and a " f"`cloud_id` ({cloud_id}) in the test cluster configuration. " f"Please provide only one.") elif cloud_name and not cloud_id: cloud_id = find_cloud_by_name(sdk, cloud_name) if not cloud_id: raise RuntimeError( f"Couldn't find cloud with name `{cloud_name}`.") else: cloud_id = cloud_id or GLOBAL_CONFIG["ANYSCALE_CLOUD_ID"] # Overwrite global config so that `_load_config` sets the correct cloud GLOBAL_CONFIG["ANYSCALE_CLOUD_ID"] = cloud_id cluster_config_rel_path = test_config["cluster"].get( "cluster_config", None) cluster_config = _load_config(local_dir, cluster_config_rel_path) app_config_rel_path = test_config["cluster"].get("app_config", None) app_config = _load_config(local_dir, app_config_rel_path) compute_tpl_rel_path = test_config["cluster"].get("compute_template", None) compute_tpl = _load_config(local_dir, compute_tpl_rel_path) timeout = test_config["run"].get("timeout", 1800) if "RELEASE_OVERRIDE_TIMEOUT" in os.environ: previous_timeout = timeout timeout = int(os.environ.get("RELEASE_OVERRIDE_TIMEOUT", str(timeout))) logger.warning(f"Release test timeout override: {timeout} " f"(would have been {previous_timeout})") # If a test is long running, timeout does not mean it failed is_long_running = test_config["run"].get("long_running", False) build_id_override = None if test_config["run"].get("use_connect"): autosuspend_mins = test_config["run"].get("autosuspend_mins", 5) assert not kick_off_only, \ "Unsupported for running with Anyscale connect." if app_config_id_override is not None: logger.info( "Using connect and an app config override, waiting until " "build finishes so we can fetch the app config in order to " "install its pip packages locally.") build_id_override = wait_for_build_or_raise( sdk, app_config_id_override) response = sdk.get_cluster_environment_build(build_id_override) app_config = response.result.config_json install_app_config_packages(app_config) install_matching_ray() elif "autosuspend_mins" in test_config["run"]: raise ValueError( "'autosuspend_mins' is only supported if 'use_connect' is True.") # Only wrap pip packages after we installed the app config packages _wrap_app_config_pip_installs(app_config) # Add information to results dict def _update_results(results: Dict): if "last_update" in results: results["last_update_diff"] = time.time() - results["last_update"] if smoke_test: results["smoke_test"] = True def _process_finished_command(session_controller: SessionController, scd_id: str, results: Optional[Dict] = None, runtime: int = None, commit_url: str = None, session_url: str = None): logger.info("Command finished successfully.") if results_json: results = results or get_remote_json_content( temp_dir=temp_dir, session_name=session_name, remote_file=results_json, session_controller=session_controller, ) else: results = {"passed": 1} _update_results(results) if scd_id: try: logs = get_command_logs(session_controller, scd_id, test_config.get("log_lines", 50)) except Exception as e: raise ReleaseTestInfraError( f"Could not fetch command logs: {e}. This is an " f"infrastructure error on the Anyscale side.") else: logs = "No command found to fetch logs for" if upload_artifacts: saved_artifacts = pull_artifacts_and_store_in_cloud( temp_dir=temp_dir, logs=logs, # Also save logs in cloud session_name=session_name, test_name=test_name, artifacts=test_config.get("artifacts", {}), session_controller=session_controller, ) logger.info("Fetched results and stored on the cloud. Returning.") else: saved_artifacts = {} logger.info("Usually I would have fetched the results and " "artifacts and stored them on S3.") # Add these metadata here to avoid changing SQL schema. results["_runtime"] = runtime results["_session_url"] = session_url results["_commit_url"] = commit_url results["_stable"] = test_config.get("stable", True) result_queue.put( State( "END", time.time(), { "status": "finished", "last_logs": logs, "results": results, "artifacts": saved_artifacts, }, )) # When running the test script in client mode, the finish command is a # completed local process. def _process_finished_client_command(returncode: int, logs: str): if upload_artifacts: saved_artifacts = pull_artifacts_and_store_in_cloud( temp_dir=temp_dir, logs=logs, # Also save logs in cloud session_name=session_name, test_name=test_name, artifacts=None, session_controller=None, ) logger.info("Stored results on the cloud. Returning.") else: saved_artifacts = {} logger.info("Usually I would have fetched the results and " "artifacts and stored them on S3.") if results_json: results = get_local_json_content(local_file=results_json, ) else: results = { "passed": int(returncode == 0), } results["returncode"] = returncode _update_results(results) result_queue.put( State( "END", time.time(), { "status": "finished", "last_logs": logs, "results": results, "artifacts": saved_artifacts, }, )) def _run(logger): # These values will be set as the test runs. session_url = None runtime = None anyscale.conf.CLI_TOKEN = GLOBAL_CONFIG["ANYSCALE_CLI_TOKEN"] test_uses_ray_connect = test_config["run"].get("use_connect") session_id = None scd_id = None try: # First, look for running sessions session_id = search_running_session(sdk, project_id, session_name) compute_tpl_name = None app_config_id = app_config_id_override app_config_name = None build_id = build_id_override if not session_id: logger.info("No session found.") # Start session session_options = dict( name=session_name, project_id=project_id) if cluster_config is not None: logging.info("Starting session with cluster config") cluster_config_str = json.dumps(cluster_config) session_options["cluster_config"] = cluster_config_str session_options["cloud_id"] = cloud_id session_options["uses_app_config"] = False else: logging.info("Starting session with app/compute config") # Find/create compute template compute_tpl_id, compute_tpl_name = \ create_or_find_compute_template( sdk, project_id, compute_tpl) logger.info(f"Link to compute template: " f"{anyscale_compute_tpl_url(compute_tpl_id)}") # Find/create app config if app_config_id is None: ( app_config_id, app_config_name, ) = create_or_find_app_config(sdk, project_id, app_config) else: logger.info( f"Using override app config {app_config_id}") app_config_name = sdk.get_app_config( app_config_id).result.name if build_id is None: # We might have already retrieved the build ID when # installing app config packages locally if using # connect, so only get the build ID if it's not set. build_id = wait_for_build_or_raise(sdk, app_config_id) session_options["compute_template_id"] = compute_tpl_id session_options["build_id"] = build_id session_options["uses_app_config"] = True # Start session session_id = create_and_wait_for_session( sdk=sdk, stop_event=stop_event, session_name=session_name, session_options=session_options, project_id=project_id, ) prepare_command = test_config["run"].get("prepare") # Write test state json test_state_file = os.path.join(local_dir, "test_state.json") with open(test_state_file, "wt") as f: json.dump({ "start_time": time.time(), "test_name": test_name }, f) if prepare_command or not test_uses_ray_connect: if test_uses_ray_connect: logger.info("Found a prepare command, so pushing it " "to the session.") # Rsync up logger.info("Syncing files to session...") session_controller.push( session_name=session_name, source=None, target=None, config=None, all_nodes=False, ) logger.info("Syncing test state to session...") session_controller.push( session_name=session_name, source=test_state_file, target=state_json, config=None, all_nodes=False, ) session_url = anyscale_session_url( project_id=GLOBAL_CONFIG["ANYSCALE_PROJECT"], session_id=session_id) _check_stop(stop_event, "file_sync") # Optionally run preparation command if prepare_command: logger.info( f"Running preparation command: {prepare_command}") scd_id, result = run_session_command( sdk=sdk, session_id=session_id, cmd_to_run=prepare_command, result_queue=result_queue, env_vars=env_vars, state_str="CMD_PREPARE") _, _ = wait_for_session_command_to_complete( result, sdk=sdk, scd_id=scd_id, stop_event=stop_event, state_str="CMD_PREPARE") if test_uses_ray_connect: script_args = test_config["run"].get("args", []) if smoke_test: script_args += ["--smoke-test"] min_workers = 0 for node_type in compute_tpl["worker_node_types"]: min_workers += node_type["min_workers"] # Build completed, use job timeout result_queue.put(State("CMD_RUN", time.time(), None)) returncode, logs = run_job( cluster_name=session_name, compute_tpl_name=compute_tpl_name, cluster_env_name=app_config_name, job_name=session_name, min_workers=min_workers, script=test_config["run"]["script"], script_args=script_args, env_vars=env_vars, autosuspend=autosuspend_mins) _process_finished_client_command(returncode, logs) return # Run release test command cmd_to_run = test_config["run"]["script"] + " " args = test_config["run"].get("args", []) if args: cmd_to_run += " ".join(args) + " " if smoke_test: cmd_to_run += " --smoke-test" scd_id, result = run_session_command( sdk=sdk, session_id=session_id, cmd_to_run=cmd_to_run, result_queue=result_queue, env_vars=env_vars, state_str="CMD_RUN") if not kick_off_only: _, runtime = wait_for_session_command_to_complete( result, sdk=sdk, scd_id=scd_id, stop_event=stop_event, state_str="CMD_RUN") _process_finished_command( session_controller=session_controller, scd_id=scd_id, runtime=runtime, session_url=session_url, commit_url=commit_url) else: result_queue.put( State("END", time.time(), { "status": "kickoff", "last_logs": "" })) except (ReleaseTestTimeoutError, Exception) as e: logger.error(e, exc_info=True) logs = str(e) if scd_id is not None: try: logs = logs + "; Command logs:" + get_command_logs( session_controller, scd_id, test_config.get("log_lines", 50)) except Exception as e2: logger.error(e2, exc_info=True) # Long running tests are "finished" successfully when # timed out if isinstance(e, ReleaseTestTimeoutError) and is_long_running: _process_finished_command( session_controller=session_controller, scd_id=scd_id) else: runtime = None if isinstance(e, CommandTimeoutError): error_type = "timeout" runtime = 0 exit_code = ExitCode.COMMAND_TIMEOUT elif isinstance(e, PrepareCommandTimeoutError): error_type = "infra_timeout" runtime = None exit_code = ExitCode.PREPARE_TIMEOUT elif isinstance(e, FileSyncTimeoutError): error_type = "infra_timeout" runtime = None exit_code = ExitCode.FILESYNC_TIMEOUT elif isinstance(e, SessionTimeoutError): error_type = "infra_timeout" runtime = None exit_code = ExitCode.SESSION_TIMEOUT elif isinstance(e, PrepareCommandRuntimeError): error_type = "infra_timeout" runtime = None exit_code = ExitCode.PREPARE_ERROR elif isinstance(e, AppConfigBuildFailure): error_type = "infra_timeout" runtime = None exit_code = ExitCode.APPCONFIG_BUILD_ERROR elif isinstance(e, ReleaseTestInfraError): error_type = "infra_error" exit_code = ExitCode.INFRA_ERROR elif isinstance(e, RuntimeError): error_type = "runtime_error" runtime = 0 exit_code = ExitCode.RUNTIME_ERROR else: error_type = "unknown timeout" runtime = None exit_code = ExitCode.UNKNOWN # Add these metadata here to avoid changing SQL schema. results = {} results["_runtime"] = runtime results["_session_url"] = session_url results["_commit_url"] = commit_url results["_stable"] = test_config.get("stable", True) result_queue.put( State( "END", time.time(), { "status": error_type, "last_logs": logs, "results": results, "exit_code": exit_code.value })) finally: if no_terminate: logger.warning( "`no_terminate` is set to True, so the session will " "*not* be terminated!") else: _cleanup_session(sdk, session_id) def _check_progress(logger): anyscale.conf.CLI_TOKEN = GLOBAL_CONFIG["ANYSCALE_CLI_TOKEN"] should_terminate = False session_id = None scd_id = None try: existing_session = find_session_by_test_name( sdk=sdk, session_controller=session_controller, temp_dir=temp_dir, state_json=state_json, project_id=project_id, test_name=test_name) if existing_session is None: logger.info(f"Found no existing session for {test_name}") result_queue.put( State("END", time.time(), { "status": "nosession", "last_logs": "" })) return session_id, session_name, session_state = existing_session logger.info(f"Found existing session for {test_name}: " f"{session_name}") scd_id, success = get_latest_running_command_id( sdk=sdk, session_id=session_id) latest_result = get_remote_json_content( temp_dir=temp_dir, session_name=session_name, remote_file=results_json, session_controller=session_controller, ) # Fetch result json and check if it has been updated recently result_time_key = test_config["run"].get("time_key", None) maximum_update_delay = test_config["run"].get( "max_update_delay", None) if result_time_key and maximum_update_delay: last_update = latest_result.get(result_time_key, None) if not last_update: result_queue.put( State( "END", time.time(), { "status": "error", "last_logs": f"Test did not store " f"{result_time_key} in the " f"results json." })) return delay = time.time() - last_update logger.info(f"Last update was at {last_update:.2f}. " f"This was {delay:.2f} seconds ago " f"(maximum allowed: {maximum_update_delay})") if delay > maximum_update_delay: raise RuntimeError( f"Test did not update the results json within " f"the last {maximum_update_delay} seconds.") if time.time() - session_state["start_time"] > timeout: # Long running test reached timeout logger.info( f"Test command reached timeout after {timeout} seconds") _process_finished_command( session_controller=session_controller, scd_id=scd_id, results=latest_result) should_terminate = True elif success: logger.info("All commands finished.") _process_finished_command( session_controller=session_controller, scd_id=scd_id, results=latest_result) should_terminate = True else: rest_time = timeout - time.time() + session_state["start_time"] logger.info(f"Test command should continue running " f"for {rest_time} seconds") result_queue.put( State("END", time.time(), { "status": "kickoff", "last_logs": "Test is still running" })) except Exception as e: logger.error(e, exc_info=True) logs = str(e) if scd_id is not None: try: logs = get_command_logs(session_controller, scd_id, test_config.get("log_lines", 50)) logs += f"\n{str(e)}" except Exception as e2: logger.error(e2, exc_info=True) result_queue.put( State("END", time.time(), { "status": "error", "last_logs": logs })) should_terminate = True finally: if should_terminate: logger.warning("Terminating session") _cleanup_session(sdk, session_id) if not check_progress: process = multiprocessing.Process(target=_run, args=(logger, )) else: process = multiprocessing.Process( target=_check_progress, args=(logger, )) build_timeout = test_config["run"].get("build_timeout", 1800) prepare_timeout = test_config["run"].get("prepare_timeout", timeout) project_url = anyscale_project_url( project_id=GLOBAL_CONFIG["ANYSCALE_PROJECT"]) logger.info(f"Link to project: {project_url}") msg = f"This will now run test {test_name}." if smoke_test: msg += " This is a smoke test." if is_long_running: msg += " This is a long running test." logger.info(msg) logger.info(f"Starting process with timeout {timeout} " f"(prepare timeout {prepare_timeout}, " f"build timeout {build_timeout})") process.start() # The timeout time will be updated after the build finished # Build = App config + compute template build and session start timeout_time = time.time() + build_timeout result = {} while process.is_alive(): try: state: State = result_queue.get(timeout=1) except (Empty, TimeoutError): if time.time() > timeout_time: stop_event.set() logger.warning("Process timed out.") if not is_long_running: logger.warning("Terminating process in 10 seconds.") time.sleep(10) logger.warning("Terminating process now.") process.terminate() else: logger.info("Process is long running. Give 2 minutes to " "fetch result and terminate.") start_terminate = time.time() while time.time( ) < start_terminate + 120 and process.is_alive(): time.sleep(1) if process.is_alive(): logger.warning("Terminating forcefully now.") process.terminate() else: logger.info("Long running results collected.") break continue if not isinstance(state, State): raise RuntimeError(f"Expected `State` object, got {result}") if state.state == "CMD_PREPARE": # Reset timeout after build finished timeout_time = state.timestamp + prepare_timeout if state.state == "CMD_RUN": # Reset timeout after prepare command or build finished timeout_time = state.timestamp + timeout elif state.state == "END": result = state.data break while not result_queue.empty(): state = result_queue.get_nowait() result = state.data logger.info("Final check if everything worked.") try: result.setdefault("status", "error (status not found)") except (TimeoutError, Empty): result = {"status": "timeout", "last_logs": "Test timed out."} logger.info(f"Final results: {result}") log_results_and_artifacts(result) if not keep_results_dir: logger.info(f"Removing results dir {temp_dir}") shutil.rmtree(temp_dir) else: # Write results.json with open(os.path.join(temp_dir, "results.json"), "wt") as fp: json.dump(result, fp) out_dir = os.path.expanduser(GLOBAL_CONFIG["RELEASE_RESULTS_DIR"]) logger.info(f"Moving results dir {temp_dir} to persistent location " f"{out_dir}") shutil.rmtree(out_dir, ignore_errors=True) shutil.copytree(temp_dir, out_dir) logger.info(f"Dir contents: {os.listdir(out_dir)}") return result def run_test(test_config_file: str, test_name: str, project_id: str, commit_url: str, category: str = "unspecified", smoke_test: bool = False, no_terminate: bool = False, kick_off_only: bool = False, check_progress: bool = False, report: bool = True, keep_results_dir: bool = False, session_name: Optional[str] = None, app_config_id_override=None) -> Dict[str, Any]: with open(test_config_file, "rt") as f: test_configs = yaml.safe_load(f) test_config_dict = {} for test_config in test_configs: name = test_config.pop("name") test_config_dict[name] = test_config if test_name not in test_config_dict: raise ValueError( f"Test with name `{test_name}` not found in test config file " f"at `{test_config_file}`.") test_config = test_config_dict[test_name] if smoke_test and "smoke_test" in test_config: smoke_test_config = test_config.pop("smoke_test") test_config = _deep_update(test_config, smoke_test_config) local_dir = os.path.dirname(test_config_file) if "local_dir" in test_config: # local_dir is relative to test_config_file local_dir = os.path.join(local_dir, test_config["local_dir"]) if test_config["run"].get("use_connect"): assert not kick_off_only, \ "--kick-off-only is unsupported when running with " \ "Anyscale connect." assert not check_progress, \ "--check is unsupported when running with Anyscale connect." if test_config.get("artifacts", {}): logger.error( "Saving artifacts are not yet supported when running with " "Anyscale connect.") # Perform necessary driver side setup. driver_setup_script = test_config.get("driver_setup", None) if driver_setup_script: run_bash_script(local_dir, driver_setup_script) result = run_test_config( local_dir, project_id, test_name, test_config, commit_url, session_name=session_name, smoke_test=smoke_test, no_terminate=no_terminate, kick_off_only=kick_off_only, check_progress=check_progress, upload_artifacts=report, keep_results_dir=keep_results_dir, app_config_id_override=app_config_id_override) status = result.get("status", "invalid") if kick_off_only: if status != "kickoff": raise RuntimeError("Error kicking off test.") logger.info("Kicked off test. It's now up to the `--check` " "part of the script to track its process.") return {} else: # `--check` or no kick off only if status == "nosession": logger.info(f"No running session found for test {test_name}, so " f"assuming everything is fine.") return {} if status == "kickoff": logger.info(f"Test {test_name} is still running.") return {} last_logs = result.get("last_logs", "No logs.") test_suite = os.path.basename(test_config_file).replace(".yaml", "") report_kwargs = dict( test_suite=test_suite, test_name=test_name, status=status, last_logs=last_logs, results=result.get("results", {}), artifacts=result.get("artifacts", {}), category=category, ) if not has_errored(result): # Check if result are met if test succeeded alert = maybe_get_alert_for_result(report_kwargs) if alert: # If we get an alert, the test failed. logger.error(f"Alert has been raised for " f"{test_suite}/{test_name} " f"({category}): {alert}") result["status"] = "error (alert raised)" report_kwargs["status"] = "error (alert raised)" # For printing/reporting to the database report_kwargs["last_logs"] = alert last_logs = alert else: logger.info(f"No alert raised for test " f"{test_suite}/{test_name} " f"({category}) - the test successfully passed!") if report: try: report_result(**report_kwargs) except Exception as e: # On database error the test should still pass # Todo: flag somewhere else? logger.error(f"Error persisting results to database: {e}") else: logger.info(f"Usually I would now report the following results:\n" f"{report_kwargs}") if has_errored(result): # If the script terminates due to an uncaught error, it # will return exit code 1, so we use 2 per default to # catch these cases. exit_code = result.get("exit_code", ExitCode.UNSPECIFIED.value) logger.error(last_logs) sys.exit(exit_code) return report_kwargs if __name__ == "__main__": parser = argparse.ArgumentParser( description=__doc__, formatter_class=argparse.RawDescriptionHelpFormatter) parser.add_argument( "--test-config", type=str, required=True, help="Test config file") parser.add_argument("--test-name", type=str, help="Test name in config") parser.add_argument( "--ray-wheels", required=False, type=str, help="URL to ray wheels") parser.add_argument( "--no-terminate", action="store_true", default=False, help="Don't terminate session after failure") parser.add_argument( "--report", action="store_true", default=False, help="Do not report any results or upload to S3") parser.add_argument( "--kick-off-only", action="store_true", default=False, help="Kick off only (don't wait for command to finish)") parser.add_argument( "--check", action="store_true", default=False, help="Check (long running) status") parser.add_argument( "--keep-results-dir", action="store_true", default=False, help="Keep results in directory (named RELEASE_RESULTS_DIR), e.g. " "for Buildkite artifact upload.") parser.add_argument( "--category", type=str, default="unspecified", help="Category name, e.g. `release-1.3.0` (will be saved in database)") parser.add_argument( "--smoke-test", action="store_true", help="Finish quickly for testing") parser.add_argument( "--session-name", required=False, type=str, help="Name of the session to run this test.") parser.add_argument( "--app-config-id-override", required=False, type=str, help=("An app config ID, which will override the test config app " "config.")) args, _ = parser.parse_known_args() if not GLOBAL_CONFIG["ANYSCALE_PROJECT"]: raise RuntimeError( "You have to set the ANYSCALE_PROJECT environment variable!") ray_wheels = args.ray_wheels or os.environ.get("RAY_WHEELS", "") maybe_fetch_api_token() if ray_wheels: logger.info(f"Using Ray wheels provided from URL/commit: " f"{ray_wheels}") url = commit_or_url(str(ray_wheels)) logger.info(f"Resolved url link is: {url}") # Overwrite with actual URL os.environ["RAY_WHEELS"] = url elif not args.check: url = find_ray_wheels( GLOBAL_CONFIG["RAY_REPO"], GLOBAL_CONFIG["RAY_BRANCH"], GLOBAL_CONFIG["RAY_VERSION"], ) if not url: raise RuntimeError(f"Could not find wheels for " f"Ray {GLOBAL_CONFIG['RAY_VERSION']}, " f"branch {GLOBAL_CONFIG['RAY_BRANCH']}") # RAY_COMMIT is set by commit_or_url and find_ray_wheels populate_wheels_sanity_check(os.environ.get("RAY_COMMIT", "")) test_config_file = os.path.abspath(os.path.expanduser(args.test_config)) # Override it from the global variable. report = GLOBAL_CONFIG["REPORT_RESULT"] if report.lower() == "1" or report.lower() == "true": report = True else: report = args.report run_test( test_config_file=test_config_file, test_name=args.test_name, project_id=GLOBAL_CONFIG["ANYSCALE_PROJECT"], commit_url=url, category=args.category, smoke_test=args.smoke_test, no_terminate=args.no_terminate or args.kick_off_only, kick_off_only=args.kick_off_only, check_progress=args.check, report=report, session_name=args.session_name, keep_results_dir=args.keep_results_dir, app_config_id_override=args.app_config_id_override, )
python.thread.py
import threading import time event = threading.Event() def lighter(): count = 0 event.clear() # 初始者为绿灯 while True: if 5 < count <= 10: event.clear() # 红灯,清除标志位 print("red light is on... ") elif count > 10: event.set() # 绿灯,设置标志位 count = 0 else: print("green light is on... ") time.sleep(1) count += 1 def car(name): while True: if event.is_set(): # 判断是否设置了标志位 print('[%s] running.....' % name) time.sleep(1) else: print('[%s] sees red light,waiting...' % name) event.wait() print('[%s] green light is on,start going...' % name) startTime = time.time() light = threading.Thread(target=lighter,) light.start() car = threading.Thread(target=car, args=('Car',)) car.start() endTime = time.time() print('Time Cost:', endTime-startTime) # sudo py-spy record -o python.thread.svg -- python python.thread.py
wait_for_topics.py
# Copyright 2021 Open Source Robotics Foundation, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import random import string from threading import Event from threading import Thread import rclpy from rclpy.executors import SingleThreadedExecutor from rclpy.node import Node class WaitForTopics: """ Wait to receive messages on supplied topics. Example usage: -------------- from std_msgs.msg import String # Method 1, using the 'with' keyword def method_1(): topic_list = [('topic_1', String), ('topic_2', String)] with WaitForTopics(topic_list, timeout=5.0): # 'topic_1' and 'topic_2' received at least one message each print('Given topics are receiving messages !') # Method 2, calling wait() and shutdown() manually def method_2(): topic_list = [('topic_1', String), ('topic_2', String)] wait_for_topics = WaitForTopics(topic_list, timeout=5.0) assert wait_for_topics.wait() print('Given topics are receiving messages !') print(wait_for_topics.topics_not_received()) # Should be an empty set print(wait_for_topics.topics_received()) # Should be {'topic_1', 'topic_2'} wait_for_topics.shutdown() """ def __init__(self, topic_tuples, timeout=5.0): self.topic_tuples = topic_tuples self.timeout = timeout self.__ros_context = rclpy.Context() rclpy.init(context=self.__ros_context) self.__ros_executor = SingleThreadedExecutor(context=self.__ros_context) self._prepare_ros_node() # Start spinning self.__running = True self.__ros_spin_thread = Thread(target=self._spin_function) self.__ros_spin_thread.start() def _prepare_ros_node(self): node_name = '_test_node_' +\ ''.join(random.choices(string.ascii_uppercase + string.digits, k=10)) self.__ros_node = _WaitForTopicsNode(name=node_name, node_context=self.__ros_context) self.__ros_executor.add_node(self.__ros_node) def _spin_function(self): while self.__running: self.__ros_executor.spin_once(1.0) def wait(self): self.__ros_node.start_subscribers(self.topic_tuples) return self.__ros_node.msg_event_object.wait(self.timeout) def shutdown(self): self.__running = False self.__ros_spin_thread.join() self.__ros_node.destroy_node() rclpy.shutdown(context=self.__ros_context) def topics_received(self): """Topics that received at least one message.""" return self.__ros_node.received_topics def topics_not_received(self): """Topics that did not receive any messages.""" return self.__ros_node.expected_topics - self.__ros_node.received_topics def __enter__(self): if not self.wait(): raise RuntimeError('Did not receive messages on these topics: ', self.topics_not_received()) return self def __exit__(self, exep_type, exep_value, trace): if exep_type is not None: raise Exception('Exception occured, value: ', exep_value) self.shutdown() class _WaitForTopicsNode(Node): """Internal node used for subscribing to a set of topics.""" def __init__(self, name='test_node', node_context=None): super().__init__(node_name=name, context=node_context) self.msg_event_object = Event() def start_subscribers(self, topic_tuples): self.subscriber_list = [] self.expected_topics = {name for name, _ in topic_tuples} self.received_topics = set() for topic_name, topic_type in topic_tuples: # Create a subscriber self.subscriber_list.append( self.create_subscription( topic_type, topic_name, self.callback_template(topic_name), 10 ) ) def callback_template(self, topic_name): def topic_callback(data): if topic_name not in self.received_topics: self.get_logger().debug('Message received for ' + topic_name) self.received_topics.add(topic_name) if self.received_topics == self.expected_topics: self.msg_event_object.set() return topic_callback
test_collection_count.py
import pdb import pytest import logging import itertools from time import sleep import threading from multiprocessing import Process from milvus import IndexType, MetricType from utils import * dim = 128 index_file_size = 10 add_time_interval = 3 tag = "1970-01-01" nb = 6000 class TestCollectionCount: """ params means different nb, the nb value may trigger merge, or not """ @pytest.fixture( scope="function", params=[ 1, 5000, 20000, ], ) def add_vectors_nb(self, request): yield request.param """ generate valid create_index params """ @pytest.fixture( scope="function", params=gen_simple_index() ) def get_simple_index(self, request, connect): if str(connect._cmd("mode")[1]) == "CPU": if request.param["index_type"] == IndexType.IVF_SQ8H: pytest.skip("sq8h not support in cpu mode") if request.param["index_type"] == IndexType.IVF_PQ: pytest.skip("Skip PQ Temporary") return request.param def test_collection_rows_count(self, connect, collection, add_vectors_nb): ''' target: test collection rows_count is correct or not method: create collection and add vectors in it, assert the value returned by count_collection method is equal to length of vectors expected: the count is equal to the length of vectors ''' nb = add_vectors_nb vectors = gen_vectors(nb, dim) res = connect.add_vectors(collection_name=collection, records=vectors) connect.flush([collection]) status, res = connect.count_collection(collection) assert res == nb def test_collection_rows_count_partition(self, connect, collection, add_vectors_nb): ''' target: test collection rows_count is correct or not method: create collection, create partition and add vectors in it, assert the value returned by count_collection method is equal to length of vectors expected: the count is equal to the length of vectors ''' nb = add_vectors_nb vectors = gen_vectors(nb, dim) status = connect.create_partition(collection, tag) assert status.OK() res = connect.add_vectors(collection_name=collection, records=vectors, partition_tag=tag) connect.flush([collection]) status, res = connect.count_collection(collection) assert res == nb def test_collection_rows_count_multi_partitions_A(self, connect, collection, add_vectors_nb): ''' target: test collection rows_count is correct or not method: create collection, create partitions and add vectors in it, assert the value returned by count_collection method is equal to length of vectors expected: the count is equal to the length of vectors ''' new_tag = "new_tag" nb = add_vectors_nb vectors = gen_vectors(nb, dim) status = connect.create_partition(collection, tag) status = connect.create_partition(collection, new_tag) assert status.OK() res = connect.add_vectors(collection_name=collection, records=vectors) connect.flush([collection]) status, res = connect.count_collection(collection) assert res == nb def test_collection_rows_count_multi_partitions_B(self, connect, collection, add_vectors_nb): ''' target: test collection rows_count is correct or not method: create collection, create partitions and add vectors in one of the partitions, assert the value returned by count_collection method is equal to length of vectors expected: the count is equal to the length of vectors ''' new_tag = "new_tag" nb = add_vectors_nb vectors = gen_vectors(nb, dim) status = connect.create_partition(collection, tag) status = connect.create_partition(collection, new_tag) assert status.OK() res = connect.add_vectors(collection_name=collection, records=vectors, partition_tag=tag) connect.flush([collection]) status, res = connect.count_collection(collection) assert res == nb def test_collection_rows_count_multi_partitions_C(self, connect, collection, add_vectors_nb): ''' target: test collection rows_count is correct or not method: create collection, create partitions and add vectors in one of the partitions, assert the value returned by count_collection method is equal to length of vectors expected: the collection count is equal to the length of vectors ''' new_tag = "new_tag" nb = add_vectors_nb vectors = gen_vectors(nb, dim) status = connect.create_partition(collection, tag) status = connect.create_partition(collection, new_tag) assert status.OK() res = connect.add_vectors(collection_name=collection, records=vectors, partition_tag=tag) res = connect.add_vectors(collection_name=collection, records=vectors, partition_tag=new_tag) connect.flush([collection]) status, res = connect.count_collection(collection) assert res == nb * 2 def test_collection_rows_count_after_index_created(self, connect, collection, get_simple_index): ''' target: test count_collection, after index have been created method: add vectors in db, and create index, then calling count_collection with correct params expected: count_collection raise exception ''' index_param = get_simple_index["index_param"] index_type = get_simple_index["index_type"] nb = 100 vectors = gen_vectors(nb, dim) res = connect.add_vectors(collection_name=collection, records=vectors) connect.flush([collection]) connect.create_index(collection, index_type, index_param) status, res = connect.count_collection(collection) assert res == nb @pytest.mark.level(2) def test_count_without_connection(self, collection, dis_connect): ''' target: test count_collection, without connection method: calling count_collection with correct params, with a disconnected instance expected: count_collection raise exception ''' with pytest.raises(Exception) as e: status = dis_connect.count_collection(collection) def test_collection_rows_count_no_vectors(self, connect, collection): ''' target: test collection rows_count is correct or not, if collection is empty method: create collection and no vectors in it, assert the value returned by count_collection method is equal to 0 expected: the count is equal to 0 ''' collection_name = gen_unique_str() param = {'collection_name': collection_name, 'dimension': dim, 'index_file_size': index_file_size} connect.create_collection(param) status, res = connect.count_collection(collection) assert res == 0 # TODO: enable @pytest.mark.level(2) @pytest.mark.timeout(20) def _test_collection_rows_count_multiprocessing(self, connect, collection, args): ''' target: test collection rows_count is correct or not with multiprocess method: create collection and add vectors in it, assert the value returned by count_collection method is equal to length of vectors expected: the count is equal to the length of vectors ''' nq = 2 vectors = gen_vectors(nq, dim) res = connect.add_vectors(collection_name=collection, records=vectors) time.sleep(add_time_interval) def rows_count(milvus): status, res = milvus.count_collection(collection) logging.getLogger().info(status) assert res == nq process_num = 8 processes = [] for i in range(process_num): milvus = get_milvus(args["ip"], args["port"], handler=args["handler"]) p = Process(target=rows_count, args=(milvus, )) processes.append(p) p.start() logging.getLogger().info(p) for p in processes: p.join() def test_collection_rows_count_multi_collections(self, connect): ''' target: test collection rows_count is correct or not with multiple collections of L2 method: create collection and add vectors in it, assert the value returned by count_collection method is equal to length of vectors expected: the count is equal to the length of vectors ''' nq = 100 vectors = gen_vectors(nq, dim) collection_list = [] for i in range(20): collection_name = gen_unique_str() collection_list.append(collection_name) param = {'collection_name': collection_name, 'dimension': dim, 'index_file_size': index_file_size, 'metric_type': MetricType.L2} connect.create_collection(param) res = connect.add_vectors(collection_name=collection_name, records=vectors) connect.flush(collection_list) for i in range(20): status, res = connect.count_collection(collection_list[i]) assert status.OK() assert res == nq class TestCollectionCountIP: """ params means different nb, the nb value may trigger merge, or not """ @pytest.fixture( scope="function", params=[ 1, 5000, 20000, ], ) def add_vectors_nb(self, request): yield request.param """ generate valid create_index params """ @pytest.fixture( scope="function", params=gen_simple_index() ) def get_simple_index(self, request, connect): if str(connect._cmd("mode")[1]) == "CPU": if request.param["index_type"] == IndexType.IVF_SQ8H: pytest.skip("sq8h not support in CPU mode") if request.param["index_type"] == IndexType.IVF_PQ: pytest.skip("Skip PQ Temporary") return request.param def test_collection_rows_count(self, connect, ip_collection, add_vectors_nb): ''' target: test collection rows_count is correct or not method: create collection and add vectors in it, assert the value returned by count_collection method is equal to length of vectors expected: the count is equal to the length of vectors ''' nb = add_vectors_nb vectors = gen_vectors(nb, dim) res = connect.add_vectors(collection_name=ip_collection, records=vectors) connect.flush([ip_collection]) status, res = connect.count_collection(ip_collection) assert res == nb def test_collection_rows_count_after_index_created(self, connect, ip_collection, get_simple_index): ''' target: test count_collection, after index have been created method: add vectors in db, and create index, then calling count_collection with correct params expected: count_collection raise exception ''' index_param = get_simple_index["index_param"] index_type = get_simple_index["index_type"] nb = 100 vectors = gen_vectors(nb, dim) res = connect.add_vectors(collection_name=ip_collection, records=vectors) connect.flush([ip_collection]) connect.create_index(ip_collection, index_type, index_param) status, res = connect.count_collection(ip_collection) assert res == nb @pytest.mark.level(2) def test_count_without_connection(self, ip_collection, dis_connect): ''' target: test count_collection, without connection method: calling count_collection with correct params, with a disconnected instance expected: count_collection raise exception ''' with pytest.raises(Exception) as e: status = dis_connect.count_collection(ip_collection) def test_collection_rows_count_no_vectors(self, connect, ip_collection): ''' target: test collection rows_count is correct or not, if collection is empty method: create collection and no vectors in it, assert the value returned by count_collection method is equal to 0 expected: the count is equal to 0 ''' collection_name = gen_unique_str("test_collection") param = {'collection_name': collection_name, 'dimension': dim, 'index_file_size': index_file_size} connect.create_collection(param) status, res = connect.count_collection(ip_collection) assert res == 0 # TODO: enable @pytest.mark.timeout(60) def _test_collection_rows_count_multiprocessing(self, connect, ip_collection, args): ''' target: test collection rows_count is correct or not with multiprocess method: create collection and add vectors in it, assert the value returned by count_collection method is equal to length of vectors expected: the count is equal to the length of vectors ''' nq = 2 vectors = gen_vectors(nq, dim) res = connect.add_vectors(collection_name=ip_collection, records=vectors) time.sleep(add_time_interval) def rows_count(milvus): status, res = milvus.count_collection(ip_collection) logging.getLogger().info(status) assert res == nq process_num = 8 processes = [] for i in range(process_num): milvus = get_milvus(args["ip"], args["port"], handler=args["handler"]) p = Process(target=rows_count, args=(milvus,)) processes.append(p) p.start() logging.getLogger().info(p) for p in processes: p.join() def test_collection_rows_count_multi_collections(self, connect): ''' target: test collection rows_count is correct or not with multiple collections of IP method: create collection and add vectors in it, assert the value returned by count_collection method is equal to length of vectors expected: the count is equal to the length of vectors ''' nq = 100 vectors = gen_vectors(nq, dim) collection_list = [] for i in range(20): collection_name = gen_unique_str('test_collection_rows_count_multi_collections') collection_list.append(collection_name) param = {'collection_name': collection_name, 'dimension': dim, 'index_file_size': index_file_size, 'metric_type': MetricType.IP} connect.create_collection(param) res = connect.add_vectors(collection_name=collection_name, records=vectors) connect.flush(collection_list) for i in range(20): status, res = connect.count_collection(collection_list[i]) assert status.OK() assert res == nq class TestCollectionCountJAC: """ params means different nb, the nb value may trigger merge, or not """ @pytest.fixture( scope="function", params=[ 1, 5000, 20000, ], ) def add_vectors_nb(self, request): yield request.param """ generate valid create_index params """ @pytest.fixture( scope="function", params=gen_simple_index() ) def get_jaccard_index(self, request, connect): logging.getLogger().info(request.param) if request.param["index_type"] == IndexType.IVFLAT or request.param["index_type"] == IndexType.FLAT: return request.param else: pytest.skip("Skip index Temporary") def test_collection_rows_count(self, connect, jac_collection, add_vectors_nb): ''' target: test collection rows_count is correct or not method: create collection and add vectors in it, assert the value returned by count_collection method is equal to length of vectors expected: the count is equal to the length of vectors ''' nb = add_vectors_nb tmp, vectors = gen_binary_vectors(nb, dim) res = connect.add_vectors(collection_name=jac_collection, records=vectors) connect.flush([jac_collection]) status, res = connect.count_collection(jac_collection) assert res == nb def test_collection_rows_count_after_index_created(self, connect, jac_collection, get_jaccard_index): ''' target: test count_collection, after index have been created method: add vectors in db, and create index, then calling count_collection with correct params expected: count_collection raise exception ''' nb = 100 index_param = get_jaccard_index["index_param"] index_type = get_jaccard_index["index_type"] tmp, vectors = gen_binary_vectors(nb, dim) res = connect.add_vectors(collection_name=jac_collection, records=vectors) connect.flush([jac_collection]) connect.create_index(jac_collection, index_type, index_param) status, res = connect.count_collection(jac_collection) assert res == nb @pytest.mark.level(2) def test_count_without_connection(self, jac_collection, dis_connect): ''' target: test count_collection, without connection method: calling count_collection with correct params, with a disconnected instance expected: count_collection raise exception ''' with pytest.raises(Exception) as e: status = dis_connect.count_collection(jac_collection) def test_collection_rows_count_no_vectors(self, connect, jac_collection): ''' target: test collection rows_count is correct or not, if collection is empty method: create collection and no vectors in it, assert the value returned by count_collection method is equal to 0 expected: the count is equal to 0 ''' collection_name = gen_unique_str("test_collection") param = {'collection_name': collection_name, 'dimension': dim, 'index_file_size': index_file_size} connect.create_collection(param) status, res = connect.count_collection(jac_collection) assert res == 0 def test_collection_rows_count_multi_collections(self, connect): ''' target: test collection rows_count is correct or not with multiple collections of IP method: create collection and add vectors in it, assert the value returned by count_collection method is equal to length of vectors expected: the count is equal to the length of vectors ''' nq = 100 tmp, vectors = gen_binary_vectors(nq, dim) collection_list = [] for i in range(20): collection_name = gen_unique_str('test_collection_rows_count_multi_collections') collection_list.append(collection_name) param = {'collection_name': collection_name, 'dimension': dim, 'index_file_size': index_file_size, 'metric_type': MetricType.JACCARD} connect.create_collection(param) res = connect.add_vectors(collection_name=collection_name, records=vectors) connect.flush(collection_list) for i in range(20): status, res = connect.count_collection(collection_list[i]) assert status.OK() assert res == nq class TestCollectionCountBinary: """ params means different nb, the nb value may trigger merge, or not """ @pytest.fixture( scope="function", params=[ 1, 5000, 20000, ], ) def add_vectors_nb(self, request): yield request.param """ generate valid create_index params """ @pytest.fixture( scope="function", params=gen_simple_index() ) def get_hamming_index(self, request, connect): logging.getLogger().info(request.param) if request.param["index_type"] == IndexType.IVFLAT or request.param["index_type"] == IndexType.FLAT: return request.param else: pytest.skip("Skip index Temporary") @pytest.fixture( scope="function", params=gen_simple_index() ) def get_substructure_index(self, request, connect): logging.getLogger().info(request.param) if request.param["index_type"] == IndexType.FLAT: return request.param else: pytest.skip("Skip index Temporary") @pytest.fixture( scope="function", params=gen_simple_index() ) def get_superstructure_index(self, request, connect): logging.getLogger().info(request.param) if request.param["index_type"] == IndexType.FLAT: return request.param else: pytest.skip("Skip index Temporary") def test_collection_rows_count(self, connect, ham_collection, add_vectors_nb): ''' target: test collection rows_count is correct or not method: create collection and add vectors in it, assert the value returned by count_collection method is equal to length of vectors expected: the count is equal to the length of vectors ''' nb = add_vectors_nb tmp, vectors = gen_binary_vectors(nb, dim) res = connect.add_vectors(collection_name=ham_collection, records=vectors) connect.flush([ham_collection]) status, res = connect.count_collection(ham_collection) assert res == nb def test_collection_rows_count_substructure(self, connect, substructure_collection, add_vectors_nb): ''' target: test collection rows_count is correct or not method: create collection and add vectors in it, assert the value returned by count_collection method is equal to length of vectors expected: the count is equal to the length of vectors ''' nb = add_vectors_nb tmp, vectors = gen_binary_vectors(nb, dim) res = connect.add_vectors(collection_name=substructure_collection, records=vectors) connect.flush([substructure_collection]) status, res = connect.count_collection(substructure_collection) assert res == nb def test_collection_rows_count_superstructure(self, connect, superstructure_collection, add_vectors_nb): ''' target: test collection rows_count is correct or not method: create collection and add vectors in it, assert the value returned by count_collection method is equal to length of vectors expected: the count is equal to the length of vectors ''' nb = add_vectors_nb tmp, vectors = gen_binary_vectors(nb, dim) res = connect.add_vectors(collection_name=superstructure_collection, records=vectors) connect.flush([superstructure_collection]) status, res = connect.count_collection(superstructure_collection) assert res == nb def test_collection_rows_count_after_index_created(self, connect, ham_collection, get_hamming_index): ''' target: test count_collection, after index have been created method: add vectors in db, and create index, then calling count_collection with correct params expected: count_collection raise exception ''' nb = 100 index_type = get_hamming_index["index_type"] index_param = get_hamming_index["index_param"] tmp, vectors = gen_binary_vectors(nb, dim) res = connect.add_vectors(collection_name=ham_collection, records=vectors) connect.flush([ham_collection]) connect.create_index(ham_collection, index_type, index_param) status, res = connect.count_collection(ham_collection) assert res == nb def test_collection_rows_count_after_index_created_substructure(self, connect, substructure_collection, get_substructure_index): ''' target: test count_collection, after index have been created method: add vectors in db, and create index, then calling count_collection with correct params expected: count_collection raise exception ''' nb = 100 index_type = get_substructure_index["index_type"] index_param = get_substructure_index["index_param"] tmp, vectors = gen_binary_vectors(nb, dim) res = connect.add_vectors(collection_name=substructure_collection, records=vectors) connect.flush([substructure_collection]) connect.create_index(substructure_collection, index_type, index_param) status, res = connect.count_collection(substructure_collection) assert res == nb def test_collection_rows_count_after_index_created_superstructure(self, connect, superstructure_collection, get_superstructure_index): ''' target: test count_collection, after index have been created method: add vectors in db, and create index, then calling count_collection with correct params expected: count_collection raise exception ''' nb = 100 index_type = get_superstructure_index["index_type"] index_param = get_superstructure_index["index_param"] tmp, vectors = gen_binary_vectors(nb, dim) res = connect.add_vectors(collection_name=superstructure_collection, records=vectors) connect.flush([superstructure_collection]) connect.create_index(superstructure_collection, index_type, index_param) status, res = connect.count_collection(superstructure_collection) assert res == nb @pytest.mark.level(2) def test_count_without_connection(self, ham_collection, dis_connect): ''' target: test count_collection, without connection method: calling count_collection with correct params, with a disconnected instance expected: count_collection raise exception ''' with pytest.raises(Exception) as e: status = dis_connect.count_collection(ham_collection) def test_collection_rows_count_no_vectors(self, connect, ham_collection): ''' target: test collection rows_count is correct or not, if collection is empty method: create collection and no vectors in it, assert the value returned by count_collection method is equal to 0 expected: the count is equal to 0 ''' collection_name = gen_unique_str("test_collection") param = {'collection_name': collection_name, 'dimension': dim, 'index_file_size': index_file_size} connect.create_collection(param) status, res = connect.count_collection(ham_collection) assert res == 0 def test_collection_rows_count_multi_collections(self, connect): ''' target: test collection rows_count is correct or not with multiple collections of IP method: create collection and add vectors in it, assert the value returned by count_collection method is equal to length of vectors expected: the count is equal to the length of vectors ''' nq = 100 tmp, vectors = gen_binary_vectors(nq, dim) collection_list = [] for i in range(20): collection_name = gen_unique_str('test_collection_rows_count_multi_collections') collection_list.append(collection_name) param = {'collection_name': collection_name, 'dimension': dim, 'index_file_size': index_file_size, 'metric_type': MetricType.HAMMING} connect.create_collection(param) res = connect.add_vectors(collection_name=collection_name, records=vectors) connect.flush(collection_list) for i in range(20): status, res = connect.count_collection(collection_list[i]) assert status.OK() assert res == nq class TestCollectionCountTANIMOTO: """ params means different nb, the nb value may trigger merge, or not """ @pytest.fixture( scope="function", params=[ 1, 5000, 20000, ], ) def add_vectors_nb(self, request): yield request.param """ generate valid create_index params """ @pytest.fixture( scope="function", params=gen_simple_index() ) def get_tanimoto_index(self, request, connect): logging.getLogger().info(request.param) if request.param["index_type"] == IndexType.IVFLAT or request.param["index_type"] == IndexType.FLAT: return request.param else: pytest.skip("Skip index Temporary") def test_collection_rows_count(self, connect, tanimoto_collection, add_vectors_nb): ''' target: test collection rows_count is correct or not method: create collection and add vectors in it, assert the value returned by count_collection method is equal to length of vectors expected: the count is equal to the length of vectors ''' nb = add_vectors_nb tmp, vectors = gen_binary_vectors(nb, dim) res = connect.add_vectors(collection_name=tanimoto_collection, records=vectors) connect.flush([tanimoto_collection]) status, res = connect.count_collection(tanimoto_collection) assert status.OK() assert res == nb
postfix_message_info.py
import collections import re import os import time import king_phisher.plugins as plugin_opts import king_phisher.server.database.manager as db_manager import king_phisher.server.database.models as db_models import king_phisher.server.fs_utilities as fs_utilities import king_phisher.server.plugins as plugins import king_phisher.server.signals as signals import king_phisher.utilities as utilities EXAMPLE_CONFIG = """\ log_file: /var/log/mail.log """ #Reduce debuging log lines L96:L98 #LOG_LINE_BLACKLIST = ['connect from localhost', 'disconnect from localhost', 'daemon started --'] def get_modified_time(path): return os.stat(path).st_mtime class LogInformation(object): __slots__ = ('message_id', 'statuses', 'message_details') def __init__(self, message_id): self.message_id = message_id self.statuses = collections.deque() self.message_details = None @property def message_status(self): if not self.statuses: return None return self.statuses[-1] class Plugin(plugins.ServerPlugin): authors = ['Skyler Knecht'] classifiers = ['Plugin :: Server'] title = 'Postfix Message Information' description = """ A plugin that analyzes message information from the postfix logs to provide King Phisher clients message status and detail information. """ homepage = 'https://github.com/securestate/king-phisher-plugins' version = '1.0.1' req_min_version = '1.14.0b1' options = [ plugin_opts.OptionString( name='log_file', description='Location of the log file to parse through for information.', default='/var/log/mail.log' ) ] def initialize(self): log_file = self.config['log_file'] setuid_username = self.root_config.get('server.setuid_username') if setuid_username and not fs_utilities.access(log_file, mode=os.R_OK, user=setuid_username): self.logger.error('permissions error, invalid access to {}'.format(log_file)) return False signals.server_initialized.connect(self.on_server_initialized) self.logger.info('{} has been initialized.'.format(self.title)) return True def on_server_initialized(self, server): self._worker_thread = utilities.Thread(target=self.check_file_change, args=(self.config['log_file'],)) self._worker_thread.start() def finalize(self): self._worker_thread.stop() self._worker_thread.join() def check_file_change(self, file): old_modified_time = get_modified_time(file) old_file_contents = self.get_file_contents(file) while self._worker_thread.stop_flag.is_clear(): new_modified_time = get_modified_time(file) if old_modified_time < new_modified_time: new_file_contents = self.get_file_contents(file) self.post_to_database(self.parse_logs(new_file_contents)) old_modified_time = new_modified_time time.sleep(5) @staticmethod def get_file_contents(path): with open(path, 'r') as file_h: return file_h.readlines() def parse_logs(self, log_lines): results = {} for line_number, line in enumerate(log_lines, 1): log_id = re.search(r'postfix/[a-z]+\[\d+\]:\s+(?P<log_id>[0-9A-Z]{7,12}):\s+', line) if not log_id: # check blacklist strings to not spam log files # if not any(string in line for string in LOG_LINE_BLACKLIST): # self.logger.warning('failed to parse postfix log line: ' + str(line_number)) continue log_id = log_id.group('log_id') message_id = re.search(r'message-id=<(?P<mid>[0-9A-Za-z]{12,20})@', line) status = re.search(r'status=(?P<status>[a-z]+)\s', line) details = re.search(r'status=[a-z]+\s\((?P<details>.+)\)', line) if log_id not in results and message_id: results[log_id] = LogInformation(message_id=message_id.group('mid')) if log_id in results and status: results[log_id].statuses.append(status.group('status')) if log_id in results and details: results[log_id].message_details = details.group('details') return results @staticmethod def post_to_database(results): session = db_manager.Session for log_info in results.values(): if not log_info.message_status: continue message = session.query(db_models.Message).filter_by(id=log_info.message_id).first() if message: message.delivery_status = log_info.message_status message.delivery_details = log_info.message_details session.add(message) session.commit()
process_level.py
#!/usr/bin/python2 # TODO # - Dont assume WGS84, instead read from input layer. # - Find a better way to separate different same object type with multiple # geometry types. import subprocess import multiprocessing as mp from osgeo import osr from osgeo import ogr import sys import fnmatch import os import time import math import socket import itertools rundir = "/opt/data/chart-installation/data_files_conversion/" def send_progress(socket, min, max, current): if socket: s = "p:min={},max={},current={}\n".format(min, max, current) try: r = socket.sendall(s) except: print("Error sending progress information") def process(level, source_path, output_path, progress_address=None, debug=None): s = None if progress_address: try: host, port = progress_address.split(":") s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) s.connect((host, int(port))) except: print("Error Creating socket") print("CL{} | Starting processing".format(level)) # setup OGR environment options os.environ["OGR_S57_OPTIONS"] = "SPLIT_MULTIPOINT=ON,ADD_SOUNDG_DEPTH=ON,RECODE_BY_DSSI=ON" input_driver = "S57" output_driver = "ESRI Shapefile" output_path = os.path.join(output_path, str(level)) result = {} os.makedirs(output_path) files = glob(source_path, level) driver = ogr.GetDriverByName(input_driver) send_progress(s, 0, 5, 0) print("CL{} | Merging S57 features".format(level)) for f in files: # print f[:-4] datasource = driver.Open(f, 0) for layer in datasource: srs = osr.SpatialReference() srs.ImportFromEPSG(4326) # dont assume WGS84! objtype = layer.GetName() for feature in layer: # need to find a better way to separate different geometry # types(Point,polygon,line etc.) with same objectcode(eg. # SOUNDG) dtype = feature_datatype_name(feature) if not dtype: continue key = objtype + "-" + dtype if key not in result: result[key] = [] result[key].append(feature) <<<<<<< HEAD send_progress(s,0,5,2) ======= send_progress(s, 0, 5, 2) >>>>>>> Automatically fix a bunch of pep8 issues out_driver = ogr.GetDriverByName(output_driver) # dont assume WGS84 srs = osr.SpatialReference() srs.ImportFromEPSG(4326) print("CL{} | Creating output shape files".format(level)) out_files = [] for key in result: objtype, geom_type = key.split("-") out_filename = get_name(geom_type, level, objtype) out_files.append(out_filename) filepath = os.path.join(output_path, out_filename) featuresToFile(result[key], output_driver, filepath, srs, key) send_progress(s, 0, 5, 3) # PROCESS SOME OF THE LAYERS (SOUNDG, WRECKS and UWTROC) print("CL{} | Preprocessing".format(level)) # SOUNDG print("CL{} | Preprocessing soundg".format(level)) # get the soundg file path try: soundgs = [os.path.join(output_path, f) for f in out_files if "SOUNDG" in f][0] dsrc = ogr.Open(soundgs, 1) layer = dsrc.GetLayer() # add WHOLE NUM and FRACNUM fields add_fields(layer, [("WHOLE_NUM", ogr.OFTInteger), ("FRAC_NUM", ogr.OFTInteger)]) # fill the WHOLE_NUM and FRAC_NUM fields fill_fields(layer, [("WHOLE_NUM", fill_preproc_value_whole, ("DEPTH",)), ("FRAC_NUM", fill_preproc_value_frac, ("DEPTH",))]) except IndexError: print("CL{} | WARNING {} is not available in data sources file".format( level, dataset)) # WRECKS print("CL{} | Preprocessing wrecks".format(level)) # get the wrecks file path try: wrecks = [os.path.join(output_path, f) for f in out_files if "WRECKS" in f][0] dsrc = ogr.Open(wrecks, 1) layer = dsrc.GetLayer() # add WHOLE NUM and FRACNUM fields add_fields(layer, [("WHOLE_NUM", ogr.OFTInteger), ("FRAC_NUM", ogr.OFTInteger)]) # fill the WHOLE_NUM and FRAC_NUM fields fill_fields(layer, [("WHOLE_NUM", fill_preproc_value_whole, ("VALSOU",)), ("FRAC_NUM", fill_preproc_value_frac, ("VALSOU",))]) except IndexError: print("CL{} | WARNING {} is not available in data sources file".format( level, dataset)) # UWTROC print("CL{} | Preprocessing uwtroc".format(level)) # get the uwtroc file path try: uwtroc = [os.path.join(output_path, f) for f in out_files if "UWTROC" in f][0] dsrc = ogr.Open(uwtroc, 1) layer = dsrc.GetLayer() # add WHOLE NUM and FRACNUM fields add_fields(layer, [("WHOLE_NUM", ogr.OFTInteger), ("FRAC_NUM", ogr.OFTInteger)]) # fill the WHOLE_NUM and FRAC_NUM fields fill_fields(layer, [("WHOLE_NUM", fill_preproc_value_whole, ("VALSOU",)), ("FRAC_NUM", fill_preproc_value_frac, ("VALSOU",))]) except IndexError: print("CL{} | WARNING {} is not available in data sources file".format( level, dataset)) # SBDARE print("CL{} | Preprocessing sbdare".format(level)) sbdares = [os.path.join(output_path, f) for f in out_files if "SBDARE" in f] for sbdare in sbdares: dsrc = ogr.Open(sbdare, 1) layer = dsrc.GetLayer() # Add SEABED field for seabed material add_fields(layer, [("SEABED", ogr.OFTString)]) # Fill the seabed material column with text <<<<<<< HEAD fill_fields(layer,[("SEABED", fill_seabed, ())]) ======= fill_fields(layer, [("SEABED", fill_seabed, ())]) >>>>>>> Automatically fix a bunch of pep8 issues # MIPARE print("CL{} | Preprocessing mipare".format(level)) # get the file mipare = [os.path.join(output_path, f) for f in out_files if ("MIPARE" in f) and ("poly" in f)] for m in mipare: <<<<<<< HEAD subprocess.call(os.path.join(os.getcwd(), "preproc_MIPARE.sh {}").format(m[:-4]), shell=True) ======= subprocess.call(os.path.join( os.getcwd(), "preproc_MIPARE.sh {}").format(m[:-4]), shell=True) >>>>>>> Automatically fix a bunch of pep8 issues # RESARE print("CL{} | Preprocessing resare".format(level)) mipare = [os.path.join(output_path, f) for f in out_files if ("RESARE" in f) and ("poly" in f)] for m in mipare: subprocess.call(os.path.join( os.getcwd(), "preproc_RESARE.sh {}").format(m[:-4]), shell=True) # run shptree on the created shapefiles print("CL{} | Indexing files".format(level)) send_progress(s, 0, 5, 4) processes = [] for f in out_files: processes.append(mp.Process( target=shptree, args=(output_path + "/" + f,))) # start for p in processes: p.start() # join for p in processes: p.join() send_progress(s, 0, 5, 5) print("CL{} | Done".format(level)) if s: s.close() return <<<<<<< HEAD ======= >>>>>>> Automatically fix a bunch of pep8 issues def glob(source_path, CL): # Get all S57 basefiles (ending with .000) for a specific zoom level and # return a list with the full path to all those files. matches = [] for root, dirnames, filenames in os.walk(source_path): for filename in fnmatch.filter(filenames, '??{CL}*.000'.format(CL=CL)): matches.append(root + "/" + filename) return matches def shptree(f): subprocess.call("shptree {} 1>/dev/null".format(f), shell=True) def add_fields(layer, fielddefs): # fielddefs = [(new_field_name, data_type),...] # for fielddef in fielddefs: layer.CreateField(ogr.FieldDefn(fielddef[0], fielddef[1])) def fill_preproc_value_whole(feature, depth_field): depth = feature.GetField(depth_field) if depth == None: return None return abs(int(depth)) def fill_preproc_value_frac(feature, depth_field): depth = feature.GetField(depth_field) if depth == None: return None whole = feature.GetField("WHOLE_NUM") frac = int(round(10 * (depth - math.floor(depth)))) if depth < 0: return 10 - frac else: return frac <<<<<<< HEAD ======= >>>>>>> Automatically fix a bunch of pep8 issues def fill_seabed(feature): natsur_dic = { 4: "S", 1: "M", 2: "Cy", 3: "Si", 5: "St", 6: "G", 7: "P", 8: "Cb", 9: "R", 18: "Bo", 14: "Co", 17: "Sh" } natqua_dic = { 1: "f", 2: "m", 3: "c", 4: "bk", 5: "sy", 6: "so", 7: "sf", 8: "v", 9: "ca", 10: "h" } # natsur = seabed material natsur = feature.GetField("NATSUR") if natsur is not None: try: natsur = [int(n) for n in natsur.split(",")] except: print("ERROR: while processing natsur (%s)" % natsur) else: natsur = [] # natqua = seabed structure natqua = feature.GetField("NATQUA") if natqua is not None: try: natqua = [int(n) for n in natqua.split(",")] except: print("ERROR: while processing natqua (%s)" % natqua) else: natqua = [] <<<<<<< HEAD ======= >>>>>>> Automatically fix a bunch of pep8 issues # Merge the two seabed type columns if natqua is not None: data = itertools.zip_longest(natsur, natqua) res = [] # build up the res list with strings to be merged to create the final text for d in data: natqua = d[1] natsur = d[0] if natsur is None: natsur = "" if natqua is None: natqua = "" if natsur in natsur_dic: natsur_str = natsur_dic[natsur] else: natsur_str = "" if natqua in natqua_dic: natqua_str = natqua_dic[natqua] else: natqua_str = "" a = natqua_str + natsur_str res.append(a) return ".".join(res) def fill_fields(layer, fieldinfos): # Fills the fields of all features in layer. Fieldinfo says which fields to # change and to what. # fieldinfo = [("Field_name_to_fill", function that takes a feature as first # argument and returns the value to fill, optional extra args), ...] for feature in layer: for fieldinfo in fieldinfos: field_name = fieldinfo[0] func = fieldinfo[1] args = fieldinfo[2] data = func(feature, *args) if data == None: feature.UnsetField(field_name) else: feature.SetField(field_name, data) layer.SetFeature(feature) def feature_datatype(feature): # returns the geometry datatype (point, line, polygon) of the feature geomref = feature.GetGeometryRef() if geomref: return geomref.GetGeometryType() else: return None def feature_datatype_name(feature): # returns the name of the geometry datatype of the feature geomref = feature.GetGeometryRef() if geomref: return geomref.GetGeometryName() else: return None def get_name(geom_type, level, objtype): # returns the final filename of the a feature if geom_type == "POLYGON": geom_type = "poly" elif geom_type == "LINESTRING": geom_type = "line" else: geom_type = geom_type.lower() return "CL{}-{}-{}.shp".format(level, geom_type, objtype) def featuresToFile(features, dst_drv, dst_name, dst_srs, layer_name=None, geomtype=None, overwrite=True): if not features: # features is empty list print("No Features Created") return drv = ogr.GetDriverByName(dst_drv) if drv is None: print("Driver not available ({})".format(dst_drv)) return dsrc = drv.CreateDataSource(dst_name) if dsrc is None: print("DataSource creation failed") return if not geomtype: f0 = features[0] geomref = features[0].GetGeometryRef() if geomref is not None: geomtype = geomref.GetGeometryType() else: return layer = dsrc.CreateLayer(layer_name, srs=dst_srs, geom_type=geomtype) # Create the fields for the new file for i in range(features[0].GetFieldCount()): fieldDef = features[0].GetFieldDefnRef(i) if "List" in ogr.GetFieldTypeName(fieldDef.GetType()): t = ogr.GetFieldTypeName(fieldDef.GetType())[:-4] if t == "String": fieldDef = ogr.FieldDefn(fieldDef.GetName(), ogr.OFTString) elif t == "Integer": fieldDef = ogr.FieldDefn(fieldDef.GetName(), ogr.OFTInteger) layer.CreateField(fieldDef) # print layer_name for feature in features: layer.CreateFeature(feature)
find_spots_server.py
from __future__ import annotations import http.server as server_base import json import logging import multiprocessing import sys import time import urllib.parse import libtbx.phil from cctbx import uctbx from dxtbx.model.experiment_list import ExperimentListFactory from libtbx.introspection import number_of_processors from dials.algorithms.indexing import indexer from dials.algorithms.integration.integrator import create_integrator from dials.algorithms.profile_model.factory import ProfileModelFactory from dials.algorithms.spot_finding import per_image_analysis from dials.array_family import flex from dials.command_line.find_spots import phil_scope as find_spots_phil_scope from dials.command_line.index import phil_scope as index_phil_scope from dials.command_line.integrate import phil_scope as integrate_phil_scope from dials.util import Sorry, show_mail_handle_errors from dials.util.options import ArgumentParser logger = logging.getLogger("dials.command_line.find_spots_server") help_message = """\ A client/server version of dials.find_spots with additional analysis including estimation of resolution limits. Intended for quick feedback of image quality during grid scans and data collections. On the server machine:: dials.find_spots_server [nproc=8] [port=1234] On the client machine:: dials.find_spots_client [host=hostname] [port=1234] [nproc=8] /path/to/image.cbf The client will return a short xml string indicating the number of spots found and several estimates of the resolution limit. e.g.:: <response> <image>/path/to/image_0001.cbf</image> <spot_count>352</spot_count> <spot_count_no_ice>263</spot_count_no_ice> <d_min>1.46</d_min> <d_min_method_1>1.92</d_min_method_1> <d_min_method_2>1.68</d_min_method_2> <total_intensity>56215</total_intensity> </response> * ``spot_count`` is the total number of spots found in given image * ``spot_count_no_ice`` is the number of spots found excluding those at resolutions where ice rings may be found * ``d_min_method_1`` is equivalent to distl's resolution estimate method 1 * ``d_min_method_2`` is equivalent to distl's resolution estimate method 2 * ``total_intensity`` is the total intensity of all strong spots excluding those at resolutions where ice rings may be found Any valid ``dials.find_spots`` parameter may be passed to ``dials.find_spots_client``, e.g.:: dials.find_spots_client /path/to/image.cbf min_spot_size=2 d_min=2 To stop the server:: dials.find_spots_client stop [host=hostname] [port=1234] """ stop = False def _filter_by_resolution(experiments, reflections, d_min=None, d_max=None): reflections.centroid_px_to_mm(experiments) reflections.map_centroids_to_reciprocal_space(experiments) d_star_sq = flex.pow2(reflections["rlp"].norms()) reflections["d"] = uctbx.d_star_sq_as_d(d_star_sq) # Filter based on resolution if d_min is not None: selection = reflections["d"] >= d_min reflections = reflections.select(selection) logger.debug(f"Selected {len(reflections)} reflections with d >= {d_min:f}") # Filter based on resolution if d_max is not None: selection = reflections["d"] <= d_max reflections = reflections.select(selection) logger.debug(f"Selected {len(reflections)} reflections with d <= {d_max:f}") return reflections def work(filename, cl=None): if cl is None: cl = [] phil_scope = libtbx.phil.parse( """\ ice_rings { filter = True .type = bool width = 0.004 .type = float(value_min=0.0) } index = False .type = bool integrate = False .type = bool indexing_min_spots = 10 .type = int(value_min=1) """ ) interp = phil_scope.command_line_argument_interpreter() params, unhandled = interp.process_and_fetch( cl, custom_processor="collect_remaining" ) filter_ice = params.extract().ice_rings.filter ice_rings_width = params.extract().ice_rings.width index = params.extract().index integrate = params.extract().integrate indexing_min_spots = params.extract().indexing_min_spots interp = find_spots_phil_scope.command_line_argument_interpreter() phil_scope, unhandled = interp.process_and_fetch( unhandled, custom_processor="collect_remaining" ) logger.info("The following spotfinding parameters have been modified:") logger.info(find_spots_phil_scope.fetch_diff(source=phil_scope).as_str()) params = phil_scope.extract() # no need to write the hot mask in the server/client params.spotfinder.write_hot_mask = False experiments = ExperimentListFactory.from_filenames([filename]) if params.spotfinder.scan_range and len(experiments) > 1: # This means we've imported a sequence of still image: select # only the experiment, i.e. image, we're interested in ((start, end),) = params.spotfinder.scan_range experiments = experiments[start - 1 : end] # Avoid overhead of calculating per-pixel resolution masks in spotfinding # and instead perform post-filtering of spot centroids by resolution d_min = params.spotfinder.filter.d_min d_max = params.spotfinder.filter.d_max params.spotfinder.filter.d_min = None params.spotfinder.filter.d_max = None t0 = time.perf_counter() reflections = flex.reflection_table.from_observations(experiments, params) if d_min or d_max: reflections = _filter_by_resolution( experiments, reflections, d_min=d_min, d_max=d_max ) t1 = time.perf_counter() logger.info("Spotfinding took %.2f seconds", t1 - t0) imageset = experiments.imagesets()[0] reflections.centroid_px_to_mm(experiments) reflections.map_centroids_to_reciprocal_space(experiments) stats = per_image_analysis.stats_for_reflection_table( reflections, filter_ice=filter_ice, ice_rings_width=ice_rings_width )._asdict() t2 = time.perf_counter() logger.info("Resolution analysis took %.2f seconds", t2 - t1) if index and stats["n_spots_no_ice"] > indexing_min_spots: logging.basicConfig(stream=sys.stdout, level=logging.INFO) interp = index_phil_scope.command_line_argument_interpreter() phil_scope, unhandled = interp.process_and_fetch( unhandled, custom_processor="collect_remaining" ) logger.info("The following indexing parameters have been modified:") index_phil_scope.fetch_diff(source=phil_scope).show() params = phil_scope.extract() if ( imageset.get_goniometer() is not None and imageset.get_scan() is not None and imageset.get_scan().is_still() ): imageset.set_goniometer(None) imageset.set_scan(None) try: idxr = indexer.Indexer.from_parameters( reflections, experiments, params=params ) indexing_results = [] idxr.index() indexed_sel = idxr.refined_reflections.get_flags( idxr.refined_reflections.flags.indexed ) indexed_sel &= ~( idxr.refined_reflections.get_flags( idxr.refined_reflections.flags.centroid_outlier ) ) for i_expt, expt in enumerate(idxr.refined_experiments): sel = idxr.refined_reflections["id"] == i_expt sel &= indexed_sel indexing_results.append( { "crystal": expt.crystal.to_dict(), "n_indexed": sel.count(True), "fraction_indexed": sel.count(True) / sel.size(), } ) stats["lattices"] = indexing_results stats["n_indexed"] = indexed_sel.count(True) stats["fraction_indexed"] = indexed_sel.count(True) / len(reflections) except Exception as e: logger.error(e) stats["error"] = str(e) finally: t3 = time.perf_counter() logger.info("Indexing took %.2f seconds", t3 - t2) if integrate and "lattices" in stats: interp = integrate_phil_scope.command_line_argument_interpreter() phil_scope, unhandled = interp.process_and_fetch( unhandled, custom_processor="collect_remaining" ) logger.error("The following integration parameters have been modified:") integrate_phil_scope.fetch_diff(source=phil_scope).show() params = phil_scope.extract() try: params.profile.gaussian_rs.min_spots = 0 experiments = idxr.refined_experiments reference = idxr.refined_reflections predicted = flex.reflection_table.from_predictions_multi( experiments, dmin=params.prediction.d_min, dmax=params.prediction.d_max, margin=params.prediction.margin, force_static=params.prediction.force_static, ) matched, reference, unmatched = predicted.match_with_reference( reference ) assert len(matched) == len(predicted) assert matched.count(True) <= len(reference) if matched.count(True) == 0: raise Sorry( """ Invalid input for reference reflections. Zero reference spots were matched to predictions """ ) elif matched.count(True) != len(reference): logger.info("") logger.info("*" * 80) logger.info( "Warning: %d reference spots were not matched to predictions", len(reference) - matched.count(True), ) logger.info("*" * 80) logger.info("") # Compute the profile model experiments = ProfileModelFactory.create(params, experiments, reference) # Compute the bounding box predicted.compute_bbox(experiments) # Create the integrator integrator = create_integrator(params, experiments, predicted) # Integrate the reflections reflections = integrator.integrate() # print len(reflections) stats["integrated_intensity"] = flex.sum( reflections["intensity.sum.value"] ) except Exception as e: logger.error(e) stats["error"] = str(e) finally: t4 = time.perf_counter() logger.info("Integration took %.2f seconds", t4 - t3) return stats class handler(server_base.BaseHTTPRequestHandler): def do_GET(self): """Respond to a GET request.""" if self.path == "/Ctrl-C": self.send_response(200) self.end_headers() global stop stop = True return filename = self.path.split(";")[0] params = self.path.split(";")[1:] # If we're passing a url through, then unquote and ignore leading / if "%3A//" in filename: filename = urllib.parse.unquote(filename[1:]) d = {"image": filename} try: stats = work(filename, params) d.update(stats) response = 200 except Exception as e: d["error"] = str(e) response = 500 self.send_response(response) self.send_header("Content-type", "application/json") self.end_headers() response = json.dumps(d).encode() self.wfile.write(response) def serve(httpd): try: while not stop: httpd.handle_request() except KeyboardInterrupt: pass phil_scope = libtbx.phil.parse( """\ nproc = Auto .type = int(value_min=1) port = 1701 .type = int(value_min=1) """ ) def main(nproc, port): server_class = server_base.HTTPServer httpd = server_class(("", port), handler) print(time.asctime(), "Serving %d processes on port %d" % (nproc, port)) for j in range(nproc - 1): proc = multiprocessing.Process(target=serve, args=(httpd,)) proc.daemon = True proc.start() serve(httpd) httpd.server_close() print(time.asctime(), "done") @show_mail_handle_errors() def run(args=None): usage = "dials.find_spots_server [options]" # Python 3.8 on macOS... needs fork if sys.hexversion >= 0x3080000 and sys.platform == "darwin": multiprocessing.set_start_method("fork") parser = ArgumentParser(usage=usage, phil=phil_scope, epilog=help_message) params, options = parser.parse_args(args, show_diff_phil=True) if params.nproc is libtbx.Auto: params.nproc = number_of_processors(return_value_if_unknown=-1) main(params.nproc, params.port) if __name__ == "__main__": run()
managers.py
# # Module providing the `SyncManager` class for dealing # with shared objects # # multiprocessing/managers.py # # Copyright (c) 2006-2008, R Oudkerk # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # # 1. Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # 2. Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # 3. Neither the name of author nor the names of any contributors may be # used to endorse or promote products derived from this software # without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS # OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) # HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT # LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY # OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF # SUCH DAMAGE. # __all__ = [ 'BaseManager', 'SyncManager', 'BaseProxy', 'Token' ] # # Imports # import os import sys import weakref import threading import array import Queue from traceback import format_exc from multiprocessing import Process, current_process, active_children, Pool, util, connection from multiprocessing.process import AuthenticationString from multiprocessing.forking import exit, Popen, assert_spawning, ForkingPickler from multiprocessing.util import Finalize, info try: from cPickle import PicklingError except ImportError: from pickle import PicklingError # # Register some things for pickling # def reduce_array(a): return array.array, (a.typecode, a.tostring()) ForkingPickler.register(array.array, reduce_array) view_types = [type(getattr({}, name)()) for name in ('items','keys','values')] # # Type for identifying shared objects # class Token(object): ''' Type to uniquely indentify a shared object ''' __slots__ = ('typeid', 'address', 'id') def __init__(self, typeid, address, id): (self.typeid, self.address, self.id) = (typeid, address, id) def __getstate__(self): return (self.typeid, self.address, self.id) def __setstate__(self, state): (self.typeid, self.address, self.id) = state def __repr__(self): return 'Token(typeid=%r, address=%r, id=%r)' % \ (self.typeid, self.address, self.id) # # Function for communication with a manager's server process # def dispatch(c, id, methodname, args=(), kwds={}): ''' Send a message to manager using connection `c` and return response ''' c.send((id, methodname, args, kwds)) kind, result = c.recv() if kind == '#RETURN': return result raise convert_to_error(kind, result) def convert_to_error(kind, result): if kind == '#ERROR': return result elif kind == '#TRACEBACK': assert type(result) is str return RemoteError(result) elif kind == '#UNSERIALIZABLE': assert type(result) is str return RemoteError('Unserializable message: %s\n' % result) else: return ValueError('Unrecognized message type') class RemoteError(Exception): def __str__(self): return ('\n' + '-'*75 + '\n' + str(self.args[0]) + '-'*75) # # Functions for finding the method names of an object # def all_methods(obj): ''' Return a list of names of methods of `obj` ''' temp = [] for name in dir(obj): func = getattr(obj, name) if hasattr(func, '__call__'): temp.append(name) return temp def public_methods(obj): ''' Return a list of names of methods of `obj` which do not start with '_' ''' return [name for name in all_methods(obj) if name[0] != '_'] # # Server which is run in a process controlled by a manager # class Server(object): ''' Server class which runs in a process controlled by a manager object ''' public = ['shutdown', 'create', 'accept_connection', 'get_methods', 'debug_info', 'number_of_objects', 'dummy', 'incref', 'decref'] def __init__(self, registry, address, authkey, serializer): assert isinstance(authkey, bytes) self.registry = registry self.authkey = AuthenticationString(authkey) Listener, Client = listener_client[serializer] # do authentication later self.listener = Listener(address=address, backlog=16) self.address = self.listener.address self.id_to_obj = {'0': (None, ())} self.id_to_refcount = {} self.mutex = threading.RLock() self.stop = 0 def serve_forever(self): ''' Run the server forever ''' current_process()._manager_server = self try: try: while 1: try: c = self.listener.accept() except (OSError, IOError): continue t = threading.Thread(target=self.handle_request, args=(c,)) t.daemon = True t.start() except (KeyboardInterrupt, SystemExit): pass finally: self.stop = 999 self.listener.close() def handle_request(self, c): ''' Handle a new connection ''' funcname = result = request = None try: connection.deliver_challenge(c, self.authkey) connection.answer_challenge(c, self.authkey) request = c.recv() ignore, funcname, args, kwds = request assert funcname in self.public, '%r unrecognized' % funcname func = getattr(self, funcname) except Exception: msg = ('#TRACEBACK', format_exc()) else: try: result = func(c, *args, **kwds) except Exception: msg = ('#TRACEBACK', format_exc()) else: msg = ('#RETURN', result) try: c.send(msg) except Exception, e: try: c.send(('#TRACEBACK', format_exc())) except Exception: pass util.info('Failure to send message: %r', msg) util.info(' ... request was %r', request) util.info(' ... exception was %r', e) c.close() def serve_client(self, conn): ''' Handle requests from the proxies in a particular process/thread ''' util.debug('starting server thread to service %r', threading.current_thread().name) recv = conn.recv send = conn.send id_to_obj = self.id_to_obj while not self.stop: try: methodname = obj = None request = recv() ident, methodname, args, kwds = request obj, exposed, gettypeid = id_to_obj[ident] if methodname not in exposed: raise AttributeError( 'method %r of %r object is not in exposed=%r' % (methodname, type(obj), exposed) ) function = getattr(obj, methodname) try: res = function(*args, **kwds) except Exception, e: msg = ('#ERROR', e) else: typeid = gettypeid and gettypeid.get(methodname, None) if typeid: rident, rexposed = self.create(conn, typeid, res) token = Token(typeid, self.address, rident) msg = ('#PROXY', (rexposed, token)) else: msg = ('#RETURN', res) except AttributeError: if methodname is None: msg = ('#TRACEBACK', format_exc()) else: try: fallback_func = self.fallback_mapping[methodname] result = fallback_func( self, conn, ident, obj, *args, **kwds ) msg = ('#RETURN', result) except Exception: msg = ('#TRACEBACK', format_exc()) except EOFError: util.debug('got EOF -- exiting thread serving %r', threading.current_thread().name) sys.exit(0) except Exception: msg = ('#TRACEBACK', format_exc()) try: try: send(msg) except Exception, e: send(('#UNSERIALIZABLE', repr(msg))) except Exception, e: util.info('exception in thread serving %r', threading.current_thread().name) util.info(' ... message was %r', msg) util.info(' ... exception was %r', e) conn.close() sys.exit(1) def fallback_getvalue(self, conn, ident, obj): return obj def fallback_str(self, conn, ident, obj): return str(obj) def fallback_repr(self, conn, ident, obj): return repr(obj) fallback_mapping = { '__str__':fallback_str, '__repr__':fallback_repr, '#GETVALUE':fallback_getvalue } def dummy(self, c): pass def debug_info(self, c): ''' Return some info --- useful to spot problems with refcounting ''' self.mutex.acquire() try: result = [] keys = self.id_to_obj.keys() keys.sort() for ident in keys: if ident != '0': result.append(' %s: refcount=%s\n %s' % (ident, self.id_to_refcount[ident], str(self.id_to_obj[ident][0])[:75])) return '\n'.join(result) finally: self.mutex.release() def number_of_objects(self, c): ''' Number of shared objects ''' return len(self.id_to_obj) - 1 # don't count ident='0' def shutdown(self, c): ''' Shutdown this process ''' try: try: util.debug('manager received shutdown message') c.send(('#RETURN', None)) if sys.stdout != sys.__stdout__: util.debug('resetting stdout, stderr') sys.stdout = sys.__stdout__ sys.stderr = sys.__stderr__ util._run_finalizers(0) for p in active_children(): util.debug('terminating a child process of manager') p.terminate() for p in active_children(): util.debug('terminating a child process of manager') p.join() util._run_finalizers() util.info('manager exiting with exitcode 0') except: import traceback traceback.print_exc() finally: exit(0) def create(self, c, typeid, *args, **kwds): ''' Create a new shared object and return its id ''' self.mutex.acquire() try: callable, exposed, method_to_typeid, proxytype = \ self.registry[typeid] if callable is None: assert len(args) == 1 and not kwds obj = args[0] else: obj = callable(*args, **kwds) if exposed is None: exposed = public_methods(obj) if method_to_typeid is not None: assert type(method_to_typeid) is dict exposed = list(exposed) + list(method_to_typeid) ident = '%x' % id(obj) # convert to string because xmlrpclib # only has 32 bit signed integers util.debug('%r callable returned object with id %r', typeid, ident) self.id_to_obj[ident] = (obj, set(exposed), method_to_typeid) if ident not in self.id_to_refcount: self.id_to_refcount[ident] = 0 # increment the reference count immediately, to avoid # this object being garbage collected before a Proxy # object for it can be created. The caller of create() # is responsible for doing a decref once the Proxy object # has been created. self.incref(c, ident) return ident, tuple(exposed) finally: self.mutex.release() def get_methods(self, c, token): ''' Return the methods of the shared object indicated by token ''' return tuple(self.id_to_obj[token.id][1]) def accept_connection(self, c, name): ''' Spawn a new thread to serve this connection ''' threading.current_thread().name = name c.send(('#RETURN', None)) self.serve_client(c) def incref(self, c, ident): self.mutex.acquire() try: self.id_to_refcount[ident] += 1 finally: self.mutex.release() def decref(self, c, ident): self.mutex.acquire() try: assert self.id_to_refcount[ident] >= 1 self.id_to_refcount[ident] -= 1 if self.id_to_refcount[ident] == 0: del self.id_to_obj[ident], self.id_to_refcount[ident] util.debug('disposing of obj with id %r', ident) finally: self.mutex.release() # # Class to represent state of a manager # class State(object): __slots__ = ['value'] INITIAL = 0 STARTED = 1 SHUTDOWN = 2 # # Mapping from serializer name to Listener and Client types # listener_client = { 'pickle' : (connection.Listener, connection.Client), 'xmlrpclib' : (connection.XmlListener, connection.XmlClient) } # # Definition of BaseManager # class BaseManager(object): ''' Base class for managers ''' _registry = {} _Server = Server def __init__(self, address=None, authkey=None, serializer='pickle'): if authkey is None: authkey = current_process().authkey self._address = address # XXX not final address if eg ('', 0) self._authkey = AuthenticationString(authkey) self._state = State() self._state.value = State.INITIAL self._serializer = serializer self._Listener, self._Client = listener_client[serializer] def __reduce__(self): return type(self).from_address, \ (self._address, self._authkey, self._serializer) def get_server(self): ''' Return server object with serve_forever() method and address attribute ''' assert self._state.value == State.INITIAL return Server(self._registry, self._address, self._authkey, self._serializer) def connect(self): ''' Connect manager object to the server process ''' Listener, Client = listener_client[self._serializer] conn = Client(self._address, authkey=self._authkey) dispatch(conn, None, 'dummy') self._state.value = State.STARTED def start(self, initializer=None, initargs=()): ''' Spawn a server process for this manager object ''' assert self._state.value == State.INITIAL if initializer is not None and not hasattr(initializer, '__call__'): raise TypeError('initializer must be a callable') # pipe over which we will retrieve address of server reader, writer = connection.Pipe(duplex=False) # spawn process which runs a server self._process = Process( target=type(self)._run_server, args=(self._registry, self._address, self._authkey, self._serializer, writer, initializer, initargs), ) ident = ':'.join(str(i) for i in self._process._identity) self._process.name = type(self).__name__ + '-' + ident self._process.start() # get address of server writer.close() self._address = reader.recv() reader.close() # register a finalizer self._state.value = State.STARTED self.shutdown = util.Finalize( self, type(self)._finalize_manager, args=(self._process, self._address, self._authkey, self._state, self._Client), exitpriority=0 ) @classmethod def _run_server(cls, registry, address, authkey, serializer, writer, initializer=None, initargs=()): ''' Create a server, report its address and run it ''' if initializer is not None: initializer(*initargs) # create server server = cls._Server(registry, address, authkey, serializer) # inform parent process of the server's address writer.send(server.address) writer.close() # run the manager util.info('manager serving at %r', server.address) server.serve_forever() def _create(self, typeid, *args, **kwds): ''' Create a new shared object; return the token and exposed tuple ''' assert self._state.value == State.STARTED, 'server not yet started' conn = self._Client(self._address, authkey=self._authkey) try: id, exposed = dispatch(conn, None, 'create', (typeid,)+args, kwds) finally: conn.close() return Token(typeid, self._address, id), exposed def join(self, timeout=None): ''' Join the manager process (if it has been spawned) ''' self._process.join(timeout) def _debug_info(self): ''' Return some info about the servers shared objects and connections ''' conn = self._Client(self._address, authkey=self._authkey) try: return dispatch(conn, None, 'debug_info') finally: conn.close() def _number_of_objects(self): ''' Return the number of shared objects ''' conn = self._Client(self._address, authkey=self._authkey) try: return dispatch(conn, None, 'number_of_objects') finally: conn.close() def __enter__(self): return self def __exit__(self, exc_type, exc_val, exc_tb): self.shutdown() @staticmethod def _finalize_manager(process, address, authkey, state, _Client): ''' Shutdown the manager process; will be registered as a finalizer ''' if process.is_alive(): util.info('sending shutdown message to manager') try: conn = _Client(address, authkey=authkey) try: dispatch(conn, None, 'shutdown') finally: conn.close() except Exception: pass process.join(timeout=0.2) if process.is_alive(): util.info('manager still alive') if hasattr(process, 'terminate'): util.info('trying to `terminate()` manager process') process.terminate() process.join(timeout=0.1) if process.is_alive(): util.info('manager still alive after terminate') state.value = State.SHUTDOWN try: del BaseProxy._address_to_local[address] except KeyError: pass address = property(lambda self: self._address) @classmethod def register(cls, typeid, callable=None, proxytype=None, exposed=None, method_to_typeid=None, create_method=True): ''' Register a typeid with the manager type ''' if '_registry' not in cls.__dict__: cls._registry = cls._registry.copy() if proxytype is None: proxytype = AutoProxy exposed = exposed or getattr(proxytype, '_exposed_', None) method_to_typeid = method_to_typeid or \ getattr(proxytype, '_method_to_typeid_', None) if method_to_typeid: for key, value in method_to_typeid.items(): assert type(key) is str, '%r is not a string' % key assert type(value) is str, '%r is not a string' % value cls._registry[typeid] = ( callable, exposed, method_to_typeid, proxytype ) if create_method: def temp(self, *args, **kwds): util.debug('requesting creation of a shared %r object', typeid) token, exp = self._create(typeid, *args, **kwds) proxy = proxytype( token, self._serializer, manager=self, authkey=self._authkey, exposed=exp ) conn = self._Client(token.address, authkey=self._authkey) dispatch(conn, None, 'decref', (token.id,)) return proxy temp.__name__ = typeid setattr(cls, typeid, temp) # # Subclass of set which get cleared after a fork # class ProcessLocalSet(set): def __init__(self): util.register_after_fork(self, lambda obj: obj.clear()) def __reduce__(self): return type(self), () # # Definition of BaseProxy # class BaseProxy(object): ''' A base for proxies of shared objects ''' _address_to_local = {} _mutex = util.ForkAwareThreadLock() def __init__(self, token, serializer, manager=None, authkey=None, exposed=None, incref=True): BaseProxy._mutex.acquire() try: tls_idset = BaseProxy._address_to_local.get(token.address, None) if tls_idset is None: tls_idset = util.ForkAwareLocal(), ProcessLocalSet() BaseProxy._address_to_local[token.address] = tls_idset finally: BaseProxy._mutex.release() # self._tls is used to record the connection used by this # thread to communicate with the manager at token.address self._tls = tls_idset[0] # self._idset is used to record the identities of all shared # objects for which the current process owns references and # which are in the manager at token.address self._idset = tls_idset[1] self._token = token self._id = self._token.id self._manager = manager self._serializer = serializer self._Client = listener_client[serializer][1] if authkey is not None: self._authkey = AuthenticationString(authkey) elif self._manager is not None: self._authkey = self._manager._authkey else: self._authkey = current_process().authkey if incref: self._incref() util.register_after_fork(self, BaseProxy._after_fork) def _connect(self): util.debug('making connection to manager') name = current_process().name if threading.current_thread().name != 'MainThread': name += '|' + threading.current_thread().name conn = self._Client(self._token.address, authkey=self._authkey) dispatch(conn, None, 'accept_connection', (name,)) self._tls.connection = conn def _callmethod(self, methodname, args=(), kwds={}): ''' Try to call a method of the referrent and return a copy of the result ''' try: conn = self._tls.connection except AttributeError: util.debug('thread %r does not own a connection', threading.current_thread().name) self._connect() conn = self._tls.connection conn.send((self._id, methodname, args, kwds)) kind, result = conn.recv() if kind == '#RETURN': return result elif kind == '#PROXY': exposed, token = result proxytype = self._manager._registry[token.typeid][-1] token.address = self._token.address proxy = proxytype( token, self._serializer, manager=self._manager, authkey=self._authkey, exposed=exposed ) conn = self._Client(token.address, authkey=self._authkey) dispatch(conn, None, 'decref', (token.id,)) return proxy raise convert_to_error(kind, result) def _getvalue(self): ''' Get a copy of the value of the referent ''' return self._callmethod('#GETVALUE') def _incref(self): conn = self._Client(self._token.address, authkey=self._authkey) dispatch(conn, None, 'incref', (self._id,)) util.debug('INCREF %r', self._token.id) self._idset.add(self._id) state = self._manager and self._manager._state self._close = util.Finalize( self, BaseProxy._decref, args=(self._token, self._authkey, state, self._tls, self._idset, self._Client), exitpriority=10 ) @staticmethod def _decref(token, authkey, state, tls, idset, _Client): idset.discard(token.id) # check whether manager is still alive if state is None or state.value == State.STARTED: # tell manager this process no longer cares about referent try: util.debug('DECREF %r', token.id) conn = _Client(token.address, authkey=authkey) dispatch(conn, None, 'decref', (token.id,)) except Exception, e: util.debug('... decref failed %s', e) else: util.debug('DECREF %r -- manager already shutdown', token.id) # check whether we can close this thread's connection because # the process owns no more references to objects for this manager if not idset and hasattr(tls, 'connection'): util.debug('thread %r has no more proxies so closing conn', threading.current_thread().name) tls.connection.close() del tls.connection def _after_fork(self): self._manager = None try: self._incref() except Exception, e: # the proxy may just be for a manager which has shutdown util.info('incref failed: %s' % e) def __reduce__(self): kwds = {} if Popen.thread_is_spawning(): kwds['authkey'] = self._authkey if getattr(self, '_isauto', False): kwds['exposed'] = self._exposed_ return (RebuildProxy, (AutoProxy, self._token, self._serializer, kwds)) else: return (RebuildProxy, (type(self), self._token, self._serializer, kwds)) def __deepcopy__(self, memo): return self._getvalue() def __repr__(self): return '<%s object, typeid %r at %s>' % \ (type(self).__name__, self._token.typeid, '0x%x' % id(self)) def __str__(self): ''' Return representation of the referent (or a fall-back if that fails) ''' try: return self._callmethod('__repr__') except Exception: return repr(self)[:-1] + "; '__str__()' failed>" # # Function used for unpickling # def RebuildProxy(func, token, serializer, kwds): ''' Function used for unpickling proxy objects. If possible the shared object is returned, or otherwise a proxy for it. ''' server = getattr(current_process(), '_manager_server', None) if server and server.address == token.address: return server.id_to_obj[token.id][0] else: incref = ( kwds.pop('incref', True) and not getattr(current_process(), '_inheriting', False) ) return func(token, serializer, incref=incref, **kwds) # # Functions to create proxies and proxy types # def MakeProxyType(name, exposed, _cache={}): ''' Return a proxy type whose methods are given by `exposed` ''' exposed = tuple(exposed) try: return _cache[(name, exposed)] except KeyError: pass dic = {} for meth in exposed: exec '''def %s(self, *args, **kwds): return self._callmethod(%r, args, kwds)''' % (meth, meth) in dic ProxyType = type(name, (BaseProxy,), dic) ProxyType._exposed_ = exposed _cache[(name, exposed)] = ProxyType return ProxyType def AutoProxy(token, serializer, manager=None, authkey=None, exposed=None, incref=True): ''' Return an auto-proxy for `token` ''' _Client = listener_client[serializer][1] if exposed is None: conn = _Client(token.address, authkey=authkey) try: exposed = dispatch(conn, None, 'get_methods', (token,)) finally: conn.close() if authkey is None and manager is not None: authkey = manager._authkey if authkey is None: authkey = current_process().authkey ProxyType = MakeProxyType('AutoProxy[%s]' % token.typeid, exposed) proxy = ProxyType(token, serializer, manager=manager, authkey=authkey, incref=incref) proxy._isauto = True return proxy # # Types/callables which we will register with SyncManager # class Namespace(object): def __init__(self, **kwds): self.__dict__.update(kwds) def __repr__(self): items = self.__dict__.items() temp = [] for name, value in items: if not name.startswith('_'): temp.append('%s=%r' % (name, value)) temp.sort() return 'Namespace(%s)' % str.join(', ', temp) class Value(object): def __init__(self, typecode, value, lock=True): self._typecode = typecode self._value = value def get(self): return self._value def set(self, value): self._value = value def __repr__(self): return '%s(%r, %r)'%(type(self).__name__, self._typecode, self._value) value = property(get, set) def Array(typecode, sequence, lock=True): return array.array(typecode, sequence) # # Proxy types used by SyncManager # class IteratorProxy(BaseProxy): # XXX remove methods for Py3.0 and Py2.6 _exposed_ = ('__next__', 'next', 'send', 'throw', 'close') def __iter__(self): return self def __next__(self, *args): return self._callmethod('__next__', args) def next(self, *args): return self._callmethod('next', args) def send(self, *args): return self._callmethod('send', args) def throw(self, *args): return self._callmethod('throw', args) def close(self, *args): return self._callmethod('close', args) class AcquirerProxy(BaseProxy): _exposed_ = ('acquire', 'release') def acquire(self, blocking=True): return self._callmethod('acquire', (blocking,)) def release(self): return self._callmethod('release') def __enter__(self): return self._callmethod('acquire') def __exit__(self, exc_type, exc_val, exc_tb): return self._callmethod('release') class ConditionProxy(AcquirerProxy): # XXX will Condition.notfyAll() name be available in Py3.0? _exposed_ = ('acquire', 'release', 'wait', 'notify', 'notify_all') def wait(self, timeout=None): return self._callmethod('wait', (timeout,)) def notify(self): return self._callmethod('notify') def notify_all(self): return self._callmethod('notify_all') class EventProxy(BaseProxy): _exposed_ = ('is_set', 'set', 'clear', 'wait') def is_set(self): return self._callmethod('is_set') def set(self): return self._callmethod('set') def clear(self): return self._callmethod('clear') def wait(self, timeout=None): return self._callmethod('wait', (timeout,)) class NamespaceProxy(BaseProxy): _exposed_ = ('__getattribute__', '__setattr__', '__delattr__') def __getattr__(self, key): if key[0] == '_': return object.__getattribute__(self, key) callmethod = object.__getattribute__(self, '_callmethod') return callmethod('__getattribute__', (key,)) def __setattr__(self, key, value): if key[0] == '_': return object.__setattr__(self, key, value) callmethod = object.__getattribute__(self, '_callmethod') return callmethod('__setattr__', (key, value)) def __delattr__(self, key): if key[0] == '_': return object.__delattr__(self, key) callmethod = object.__getattribute__(self, '_callmethod') return callmethod('__delattr__', (key,)) class ValueProxy(BaseProxy): _exposed_ = ('get', 'set') def get(self): return self._callmethod('get') def set(self, value): return self._callmethod('set', (value,)) value = property(get, set) BaseListProxy = MakeProxyType('BaseListProxy', ( '__add__', '__contains__', '__delitem__', '__delslice__', '__getitem__', '__getslice__', '__len__', '__mul__', '__reversed__', '__rmul__', '__setitem__', '__setslice__', 'append', 'count', 'extend', 'index', 'insert', 'pop', 'remove', 'reverse', 'sort', '__imul__' )) # XXX __getslice__ and __setslice__ unneeded in Py3.0 class ListProxy(BaseListProxy): def __iadd__(self, value): self._callmethod('extend', (value,)) return self def __imul__(self, value): self._callmethod('__imul__', (value,)) return self DictProxy = MakeProxyType('DictProxy', ( '__contains__', '__delitem__', '__getitem__', '__len__', '__setitem__', 'clear', 'copy', 'get', 'has_key', 'items', 'keys', 'pop', 'popitem', 'setdefault', 'update', 'values' )) ArrayProxy = MakeProxyType('ArrayProxy', ( '__len__', '__getitem__', '__setitem__', '__getslice__', '__setslice__' )) # XXX __getslice__ and __setslice__ unneeded in Py3.0 PoolProxy = MakeProxyType('PoolProxy', ( 'apply', 'apply_async', 'close', 'imap', 'imap_unordered', 'join', 'map', 'map_async', 'terminate' )) PoolProxy._method_to_typeid_ = { 'apply_async': 'AsyncResult', 'map_async': 'AsyncResult', 'imap': 'Iterator', 'imap_unordered': 'Iterator' } # # Definition of SyncManager # class SyncManager(BaseManager): ''' Subclass of `BaseManager` which supports a number of shared object types. The types registered are those intended for the synchronization of threads, plus `dict`, `list` and `Namespace`. The `multiprocessing.Manager()` function creates started instances of this class. ''' SyncManager.register('Queue', Queue.Queue) SyncManager.register('JoinableQueue', Queue.Queue) SyncManager.register('Event', threading.Event, EventProxy) SyncManager.register('Lock', threading.Lock, AcquirerProxy) SyncManager.register('RLock', threading.RLock, AcquirerProxy) SyncManager.register('Semaphore', threading.Semaphore, AcquirerProxy) SyncManager.register('BoundedSemaphore', threading.BoundedSemaphore, AcquirerProxy) SyncManager.register('Condition', threading.Condition, ConditionProxy) SyncManager.register('Pool', Pool, PoolProxy) SyncManager.register('list', list, ListProxy) SyncManager.register('dict', dict, DictProxy) SyncManager.register('Value', Value, ValueProxy) SyncManager.register('Array', Array, ArrayProxy) SyncManager.register('Namespace', Namespace, NamespaceProxy) # types returned by methods of PoolProxy SyncManager.register('Iterator', proxytype=IteratorProxy, create_method=False) SyncManager.register('AsyncResult', create_method=False)
threading.py
"""A threading based handler. The :class:`SequentialThreadingHandler` is intended for regular Python environments that use threads. .. warning:: Do not use :class:`SequentialThreadingHandler` with applications using asynchronous event loops (like gevent). Use the :class:`~kazoo.handlers.gevent.SequentialGeventHandler` instead. """ from __future__ import absolute_import import atexit import logging import select import socket import threading import time try: import Queue except ImportError: # pragma: nocover import queue as Queue from kazoo.handlers.utils import create_tcp_socket, create_tcp_connection # sentinel objects _NONE = object() _STOP = object() log = logging.getLogger(__name__) class TimeoutError(Exception): pass class AsyncResult(object): """A one-time event that stores a value or an exception""" def __init__(self, handler): self._handler = handler self.value = None self._exception = _NONE self._condition = threading.Condition() self._callbacks = [] def ready(self): """Return true if and only if it holds a value or an exception""" return self._exception is not _NONE def successful(self): """Return true if and only if it is ready and holds a value""" return self._exception is None @property def exception(self): if self._exception is not _NONE: return self._exception def set(self, value=None): """Store the value. Wake up the waiters.""" with self._condition: self.value = value self._exception = None for callback in self._callbacks: self._handler.completion_queue.put( lambda: callback(self) ) self._condition.notify_all() def set_exception(self, exception): """Store the exception. Wake up the waiters.""" with self._condition: self._exception = exception for callback in self._callbacks: self._handler.completion_queue.put( lambda: callback(self) ) self._condition.notify_all() def get(self, block=True, timeout=None): """Return the stored value or raise the exception. If there is no value raises TimeoutError. """ with self._condition: if self._exception is not _NONE: if self._exception is None: return self.value raise self._exception elif block: self._condition.wait(timeout) if self._exception is not _NONE: if self._exception is None: return self.value raise self._exception # if we get to this point we timeout raise TimeoutError() def get_nowait(self): """Return the value or raise the exception without blocking. If nothing is available, raises TimeoutError """ return self.get(block=False) def wait(self, timeout=None): """Block until the instance is ready.""" with self._condition: self._condition.wait(timeout) return self._exception is not _NONE def rawlink(self, callback): """Register a callback to call when a value or an exception is set""" with self._condition: # Are we already set? Dispatch it now if self.ready(): self._handler.completion_queue.put( lambda: callback(self) ) return if callback not in self._callbacks: self._callbacks.append(callback) def unlink(self, callback): """Remove the callback set by :meth:`rawlink`""" with self._condition: if self.ready(): # Already triggered, ignore return if callback in self._callbacks: self._callbacks.remove(callback) class SequentialThreadingHandler(object): """Threading handler for sequentially executing callbacks. This handler executes callbacks in a sequential manner. A queue is created for each of the callback events, so that each type of event has its callback type run sequentially. These are split into two queues, one for watch events and one for async result completion callbacks. Each queue type has a thread worker that pulls the callback event off the queue and runs it in the order the client sees it. This split helps ensure that watch callbacks won't block session re-establishment should the connection be lost during a Zookeeper client call. Watch and completion callbacks should avoid blocking behavior as the next callback of that type won't be run until it completes. If you need to block, spawn a new thread and return immediately so callbacks can proceed. .. note:: Completion callbacks can block to wait on Zookeeper calls, but no other completion callbacks will execute until the callback returns. """ name = "sequential_threading_handler" timeout_exception = TimeoutError sleep_func = staticmethod(time.sleep) queue_impl = Queue.Queue queue_empty = Queue.Empty def __init__(self): """Create a :class:`SequentialThreadingHandler` instance""" self.callback_queue = self.queue_impl() self.completion_queue = self.queue_impl() self._running = False self._state_change = threading.Lock() self._workers = [] def _create_thread_worker(self, queue): def thread_worker(): # pragma: nocover while True: try: func = queue.get() try: if func is _STOP: break func() except Exception: log.exception("Exception in worker queue thread") finally: queue.task_done() except self.queue_empty: continue t = threading.Thread(target=thread_worker) # Even though these should be joined, it's possible stop might # not issue in time so we set them to daemon to let the program # exit anyways t.daemon = True t.start() return t def start(self): """Start the worker threads.""" with self._state_change: if self._running: return # Spawn our worker threads, we have # - A callback worker for watch events to be called # - A completion worker for completion events to be called for queue in (self.completion_queue, self.callback_queue): w = self._create_thread_worker(queue) self._workers.append(w) self._running = True atexit.register(self.stop) def stop(self): """Stop the worker threads and empty all queues.""" with self._state_change: if not self._running: return self._running = False for queue in (self.completion_queue, self.callback_queue): queue.put(_STOP) self._workers.reverse() while self._workers: worker = self._workers.pop() worker.join() # Clear the queues self.callback_queue = self.queue_impl() self.completion_queue = self.queue_impl() if hasattr(atexit, "unregister"): atexit.unregister(self.stop) def select(self, *args, **kwargs): return select.select(*args, **kwargs) def socket(self): return create_tcp_socket(socket) def create_connection(self, *args, **kwargs): return create_tcp_connection(socket, *args, **kwargs) def event_object(self): """Create an appropriate Event object""" return threading.Event() def lock_object(self): """Create a lock object""" return threading.Lock() def rlock_object(self): """Create an appropriate RLock object""" return threading.RLock() def async_result(self): """Create a :class:`AsyncResult` instance""" return AsyncResult(self) def spawn(self, func, *args, **kwargs): t = threading.Thread(target=func, args=args, kwargs=kwargs) t.daemon = True t.start() return t def dispatch_callback(self, callback): """Dispatch to the callback object The callback is put on separate queues to run depending on the type as documented for the :class:`SequentialThreadingHandler`. """ self.callback_queue.put(lambda: callback.func(*callback.args))
__init__.py
# !/usr/bin/env python # -*- coding: utf-8 -*- # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # # NextionDisplay Version 0.0.9.6 # Assembled by JamFfm # # sudo pip install pyserial # install serial, unlikely you have to # # install it because usually it is already installed # python -m serial.tools.list_ports # List all ports in command-box # dmesg | grep tty # List serial Connections from modules import cbpi, fermenter, app import time import serial import socket # ip adr import fcntl # ip adr import struct # ip adr from time import strftime # Time display from time import sleep import threading DEBUG = False # toggle writing of debug information in the app.log TERMINATOR = bytearray([0xFF, 0xFF, 0xFF]) liste = [] listetarget = [] FERMLISTE = [] FERMLISTETARGET = [] global max_value_old max_value_old = 0 global min_value_old min_value_old = 0 global fmax_value_old fmax_value_old = 0 global fmin_value_old fmin_value_old = 0 def nx_setsys(ser, sysvar, value): # Set system variables. sysvar as text. example: sysvar='dim' # Possible commands: 'bkcmd', 'dp', 'dim', 'dims', 'baud', 'bauds', 'ussp', 'thsp', 'thup', 'delay', 'sleep' # see instruction set of NEXTION device to see possible values for each system variable setdisplay = ('%s=%s' % (sysvar, str(value))) if DEBUG: cbpi.app.logger.info('NextionDisplay - nx_setsys:%s' % setdisplay) ser.write(setdisplay) ser.write(TERMINATOR) def writingDigittoNextion(ser, kettleID=1): unit = "°" + str(set_nextion_unit()) ctemp = currenttemp_float(kettleID) # Current Temperature in text field TextDigitTxt2 = ("%6.2f%s" % (ctemp, unit)) # UTF8° = U+00B0 textCurrTemp2 = str(TextDigitTxt2) # if DEBUG: cbpi.app.logger.info('NextionDisplay - digit CurrTempTxt.txt:%s' % (textCurrTemp2)) NextionwriteString(ser, "CurrTempTxt", textCurrTemp2) # Target Temp in Text Field TextDigitTxt3 = ("%6.2f%s" % (float(TempTargTemp(kettleID)), unit)) textCurrTemp3 = str(TextDigitTxt3) # if DEBUG: cbpi.app.logger.info('NextionDisplay - TargTempTxt.txt:%s' % (textCurrTemp3)) NextionwriteString(ser, "TargetTempTxt", textCurrTemp3) # Current Kettlename in text field kname = kettlename(kettleID) textname = "Temperature of %s" % kname NextionwriteString(ser, "t3", textname) def writing_multi_to_nextion(ser): unit = ("°" + str(set_nextion_unit())) NextionwriteString(ser, "unitMBrew", str(unit)) stepnameMTxt = restname() NextionwriteString(ser, "StepnameMTxt", stepnameMTxt) for x in range(1, 5): try: kettle_name_field = "KettlenMTxt" + str(x) KettlenMTxt = kettlename(x) current_temp_field = "CurrMTemp" + str(x) CurrMTemp = ("%6.2f%s" % (currenttemp_float(x), "°")) target_temp_field = "TarTempMTxt" + str(x) TarTempMTxt = ("%6.2f%s" % (targettemp_float(x), "°")) heater_status_field = "heaterstatusM" + str(x) NextionwriteString(ser, kettle_name_field, KettlenMTxt) NextionwriteString(ser, current_temp_field, CurrMTemp) NextionwriteString(ser, target_temp_field, TarTempMTxt) if heater_status(x) == "on": if DEBUG: cbpi.app.logger.info("NextionDisplay - writing_multi_to_nextion: heater status on") Nextionshowhideobject(ser, heater_status_field, "on") else: Nextionshowhideobject(ser, heater_status_field, "off") except: if DEBUG: cbpi.app.logger.info("NextionDisplay - writing_multi_to_nextion: no Kettle %s found" % x) heater_status_field = "heaterstatusM" + str(x) Nextionshowhideobject(ser, heater_status_field, "off") pass pass time_remaining(ser) # attention the name of the textfield is defined in the function currently "remBrewTime") val = multiprogressbarvalue() Nextionprogressbar(ser, "RemainTimeMBar", val) def Nextionshowhideobject(ser, objectname, onoff): if onoff == "on": onoff = 1 elif onoff == "off": onoff = 0 else: cbpi.app.logger.info("NextionDisplay - Nextionshowhideobject onoff is not on or off: %s" % onoff) if onoff == 1 or onoff == 0: command = ('vis %s,%s' % (objectname, onoff)) ser.write(command) ser.write(TERMINATOR) pass def multiprogressbarvalue(): s = cbpi.cache.get("active_step") if DEBUG: cbpi.app.logger.info('NextionDisplay - multiprogressbarvalue: %s' % s) try: if s.timer_end is not None: val = int(100 - (((s.timer_end - time.time()) * 100) / (s.timer*60))) if DEBUG: cbpi.app.logger.info('NextionDisplay - multiprogressbarvalue: %s%s' % (val, "%")) return val else: if DEBUG: cbpi.app.logger.info('NextionDisplay - multiprogressbarvalue: no timer running') return 0 pass except: if DEBUG: cbpi.app.logger.info('NextionDisplay - multiprogressbarvalue: no active step ') return 0 pass pass def Nextionprogressbar(ser, barname, val): try: command = ("%s.val=%s" % (barname, str(val))) if DEBUG: cbpi.app.logger.info('NextionDisplay - Nextionprogressbar command Txt:%s' % command) ser.write(command) ser.write(TERMINATOR) except: cbpi.app.logger.info('NextionDisplay - Nextionprogressbar can not convert val into string: %s' % command) pass def NextionwriteString(ser, TextLableName, string): """ :param ser: name of the serial connection :param TextLableName: name of the "textlable" on the Nextion :param string: the "string" to write in this lable use like NextionwriteString(ser, "TextLabelName", "string") """ command = ('%s.txt="%s"' % (TextLableName, string)) # if DEBUG: cbpi.app.logger.info('NextionDisplay - command Txt:%s' % command) ser.write(command) ser.write(TERMINATOR) def NextionwriteWave(ser, WaveID, Channnel, intValue): command = ('add %s,%s,%s' % (WaveID, Channnel, intValue)) # if DEBUG: cbpi.app.logger.info('NextionDisplay - command Wave:%s' % command) ser.write(command) ser.write(TERMINATOR) def NextionwriteNumber(ser, NumberLableName, integer): command = ('%s.val=%s' % (NumberLableName, integer)) # if DEBUG: cbpi.app.logger.info('NextionDisplay - command Number:%s' % command) ser.write(command) ser.write(TERMINATOR) def NextionwriteClear(ser, WaveID, channel): command = ('cle %s,%s' % (WaveID, channel)) # if DEBUG: cbpi.app.logger.info('NextionDisplay - command Number:%s' % command) ser.write(command) ser.write(TERMINATOR) def Nextion_ref_wave(ser, stop_start): """ :param ser:name of the serial connection :param stop_start: ether "ref_stop" or "ref_star" use as: ref_wave(ser, "ref_stop") or ref_wave(ser, "ref_star") this is like a substitude of addt Nextion function stops and starts refresh of wave graph """ if stop_start == "ref_stop" or stop_start == "ref_star": command = stop_start ser.write(command) ser.write(TERMINATOR) else: cbpi.app.logger.info("NextionDisplay - ref_wave error: stop_start not ref_stop or ref_star: %s" % stop_start) pass def Nextion_refresh_wave(ser, waveid, channnel, amountofbytes, addtliste): """ not used anymore because addt function is not reliable, use ref_stop or ref_star instead :param ser: serial object :param waveid: id of the wave item on the Nextion as integer :param channnel: channel of wave as integer :param amountofbytes: amount of byte equal to amount of values to send as integer :param addtliste: name of the list if values to send as a list """ command = ('addt %s,%s,%s' % (waveid, channnel, amountofbytes)) # if DEBUG: cbpi.app.logger.info('NextionDisplay - command Wave:%s' % command) ser.write(command) ser.write(TERMINATOR) sleep(0.6) ser.write(addtliste) ser.write(TERMINATOR) def writewave(ser, kettleID=1, erase=False, rewrite=False, dubbleline=True): currenttemp = currenttemp_float(kettleID) targettemp = targettemp_float(kettleID) unit = set_nextion_unit() # Current Temperature in text field TextDigitTxt0 = ("%6.2f%s" % (currenttemp, ("°"+str(unit)))) textCurrTemp0 = str(TextDigitTxt0) NextionwriteString(ser, "CurrTempBrwTxt", textCurrTemp0) # Target Temp in Text Field TextDigitTxt1 = ("%6.2f%s" % (targettemp, ("°"+str(unit)))) textCurrTemp1 = str(TextDigitTxt1) NextionwriteString(ser, "TargTempBrwTxt", textCurrTemp1) # Current Kettlename in text field kettlen = kettlename(kettleID) NextionwriteString(ser, "KettleNameTxt", kettlen) # rest name restn = restname() NextionwriteString(ser, "RestNameTxt", restn) # remaining time of step time_remaining(ser) # build liste of current temp values if erase is True: del liste[:] elif len(liste) < 406: # the with of the wave object on Nextion if you change the wave-with this has to be adjusted liste.append(currenttemp) else: del liste[0] liste.append(currenttemp) # if DEBUG: cbpi.app.logger.info('NextionDisplay - TempListe bigger 407:%s' % (len(liste))) if DEBUG: cbpi.app.logger.info('NextionDisplay - TempListe len(liste):%s' % (len(liste))) # build liste of current targettemp values len(listetarget) can be different to len(liste) if erase is True: del listetarget[:] if len(listetarget) < 406: # the with of the wave object on # Nextion if you change the wave-with this has to be adjusted listetarget.append(targettemp) else: del listetarget[0] listetarget.append(targettemp) # if DEBUG: cbpi.app.logger.info('NextionDisplay - targetListe len(listetarget):%s' % (len(listetarget))) # min max labels for scale max_value = round((max(liste)+0.1), 1) min_value = round((min(liste)-0.1), 1) NextionwriteString(ser, "tmax", "%s%s" % (max_value, ("°"+str(unit)))) NextionwriteString(ser, "tmin", "%s%s" % (min_value, ("°"+str(unit)))) NextionwriteString(ser, "tavarage", "%s%s" % (round(((max_value+min_value)/2), 1), ("°"+str(unit)))) # get the scaling-factor offset = (max_value - min_value) xpixel = 202 # the height of the wave object on Nextion if you change the wave-height this has to be adjusted factor = (xpixel / offset) global min_value_old global max_value_old if max_value != max_value_old or min_value != min_value_old or rewrite is True: if DEBUG: cbpi.app.logger.info('NextionDisplay - rewrite') NextionwriteClear(ser, 1, 0) # BrewTemp NextionwriteClear(ser, 1, 1) # BrewTemp try to adjust thickness of line NextionwriteClear(ser, 1, 2) # TargetTemp NextionwriteClear(ser, 1, 3) # TargetTemp try to adjust thickness of line i = 0 Nextion_ref_wave(ser, "ref_stop") while i < len(liste): if DEBUG: cbpi.app.logger.info('NextionDisplay - liste:%s' % (liste[i])) digit = (round(float((liste[i] - min_value) * factor), 2)) digit2 = digit + 1 # try to adjust thickness of line string = (str(round(float(digit)))[:-2]) string2 = (str(round(float(digit2)))[:-2]) # try to adjust thickness of line NextionwriteWave(ser, 1, 0, string) if dubbleline: NextionwriteWave(ser, 1, 1, string2) # try to adjust thickness of line if DEBUG: cbpi.app.logger.info('NextionDisplay - dubbleline rewrite: %s' % dubbleline) # targettemp # if DEBUG: cbpi.app.logger.info('NextionDisplay - listetarget:%s' % (listetarget[i])) target = (round(float((listetarget[i] - min_value) * factor), 2)) target2 = target + 1 tstring = (str(round(float(target)))[:-2]) tstring2 = (str(round(float(target2)))[:-2]) if 0 < target < xpixel: # do not write target line if not in temp/screen range NextionwriteWave(ser, 1, 2, tstring) if dubbleline: NextionwriteWave(ser, 1, 3, tstring2) if DEBUG: cbpi.app.logger.info( 'NextionDisplay - listetarget[i], target, tstring: %s, %s, %s' % (listetarget[i], target, tstring)) pass if DEBUG: cbpi.app.logger.info('NextionDisplay - liste(i), digit, string: %s, %s, %s' % (liste[i], digit, string)) i += 1 Nextion_ref_wave(ser, "ref_star") else: digit = (round(float((currenttemp - min_value) * factor), 2)) digit2 = digit+1 # try to adjust thickness of line string = (str(round(float(digit)))[:-2]) string2 = (str(round(float(digit2)))[:-2]) # try to adjust thickness of line NextionwriteWave(ser, 1, 0, string) if dubbleline: NextionwriteWave(ser, 1, 1, string2) # try to adjust thickness of line if DEBUG: cbpi.app.logger.info('NextionDisplay - currenttemp, digit, string: %s, %s, %s' % (currenttemp, digit, string)) # target Temp target = (round(float((targettemp - min_value) * factor), 2)) target2 = target + 1 tstring = (str(round(float(target)))[:-2]) tstring2 = (str(round(float(target2)))[:-2]) # try to adjust thickness of line if 0 < target < xpixel: # do not write target line if not in temp/ screen range NextionwriteWave(ser, 1, 2, tstring) if dubbleline: NextionwriteWave(ser, 1, 3, tstring2) # try to adjust thickness of line if DEBUG: cbpi.app.logger.info( 'NextionDisplay - targettemp, target, tstring: %s, %s, %s' % (targettemp, target, tstring)) else: pass pass # if DEBUG: cbpi.app.logger.info('NextionDisplay - max and min value: %s, %s' % (max_value, min_value)) global max_value_old max_value_old = max_value global min_value_old min_value_old = min_value return None def writefermwave(ser, fermid=1, erase=False, frewrite=False, dubbleline=True): unit = set_nextion_unit() # Current Temperature in text field cfermtemp = currentfermtemp(fermid) TextDigitTxt0 = ("%6.2f%s" % (cfermtemp, ("°"+str(unit)))) textCurrTemp0 = str(TextDigitTxt0) NextionwriteString(ser, "CurFermTmpTxt", textCurrTemp0) # Target Temp in Text Field tfermtemp = targetfermtemp(fermid) TextDigitTxt1 = ("%6.2f%s" % (tfermtemp, ("°"+str(unit)))) textCurrTemp1 = str(TextDigitTxt1) NextionwriteString(ser, "targFermTmpTxt", textCurrTemp1) # Current Kettlename and beername in text field fermn = ferm_name(fermid) fbeername = ferm_beername(fermid) displayfername = ("%s, %s" % (fermn, fbeername)) NextionwriteString(ser, "FermNameTxt", displayfername) # rest name fstepname = fermstepname(fermid) NextionwriteString(ser, "FermStepName", fstepname) # remaining time of step fermtime_remaining(ser, fermid) # build liste of current temp values if erase is True: del FERMLISTE[:] elif len(FERMLISTE) < 406: # the with of the wave object on Nextion if you change the wave-with this has to be # adjusted FERMLISTE.append(cfermtemp) else: del FERMLISTE[0] FERMLISTE.append(cfermtemp) if DEBUG: cbpi.app.logger.info('NextionDisplay - fermTempListe len(liste):%s' % (len(FERMLISTE))) # build liste of current targettemp values len(listetarget) can be different to len(liste) if erase is True: del FERMLISTETARGET[:] if len(FERMLISTETARGET) < 406: # the with of the wave object on # Nextion if you change the wave with this has to be adjusted FERMLISTETARGET.append(tfermtemp) else: del FERMLISTETARGET[0] FERMLISTETARGET.append(tfermtemp) # if DEBUG: cbpi.app.logger.info('NextionDisplay - targetListe len(FERMLISTETARGET):%s' % (len(FERMLISTETARGET))) # min max labels for scale fmax_value = round((max(FERMLISTE)+0.1), 1) fmin_value = round((min(FERMLISTE)-0.1), 1) NextionwriteString(ser, "tfermmax", "%s%s" % (fmax_value, ("°"+str(unit)))) NextionwriteString(ser, "tfermmin", "%s%s" % (fmin_value, ("°"+str(unit)))) NextionwriteString(ser, "tfermavarage", "%s%s" % (round(((fmax_value+fmin_value)/2), 1), ("°"+str(unit)))) # get the scaling-factor offset = (fmax_value - fmin_value) xpixel = 202 # the height of the wave object on Nextion if you change the wave height this has to be adjusted ffactor = (xpixel / offset) global fmin_value_old global fmax_value_old if fmax_value != fmax_value_old or fmin_value != fmin_value_old or frewrite is True: if DEBUG: cbpi.app.logger.info('NextionDisplay - fermenter rewrite') NextionwriteClear(ser, 5, 0) # BrewTemp NextionwriteClear(ser, 5, 1) # BrewTemp bold line NextionwriteClear(ser, 5, 2) # TargetTemp NextionwriteClear(ser, 5, 3) # TargetTemp bold line i = 0 Nextion_ref_wave(ser, "ref_stop") while i < len(FERMLISTE): # if DEBUG: cbpi.app.logger.info('NextionDisplay - FERMLISTE:%s' % (FERMLISTE[i])) digit = (round(float((FERMLISTE[i] - fmin_value) * ffactor), 2)) digit2 = digit + 1 string = (str(round(float(digit)))[:-2]) string2 = (str(round(float(digit2)))[:-2]) NextionwriteWave(ser, 5, 0, string) if dubbleline: NextionwriteWave(ser, 5, 1, string2) # try to adjust thickness of line if DEBUG: cbpi.app.logger.info('NextionDisplay - dubbleline fermenter rewrite: %s' % dubbleline) # targettemp # if DEBUG: cbpi.app.logger.info('NextionDisplay - FERMLISTETARGET:%s' % (FERMLISTETARGET[i])) target = (round(float((FERMLISTETARGET[i] - fmin_value) * ffactor), 2)) targetbold = target + 1 tstring = (str(round(float(target)))[:-2]) tstringbold = (str(round(float(targetbold)))[:-2]) if 0 < target < xpixel: # do not write target line if not in temp/screen range NextionwriteWave(ser, 5, 2, tstring) if dubbleline: NextionwriteWave(ser, 5, 3, tstringbold) # try to adjust thickness of line if DEBUG: cbpi.app.logger.info( 'NextionDisplay - fermlistetarget[i], target, tstring: %s, %s, %s' % (FERMLISTETARGET[i], target, tstring)) pass if DEBUG: cbpi.app.logger.info('NextionDisplay - FERMLISTE(i), digit, string: %s, %s, %s' % (FERMLISTE[i], digit, string)) i += 1 Nextion_ref_wave(ser, "ref_star") else: digit = (round(float((cfermtemp - fmin_value) * ffactor), 2)) digitbold = digit + 1 if digit != 0: # prevent digit from becoming zero string = (str(round(float(digit)))[:-2]) stringbold = (str(round(float(digitbold)))[:-2]) NextionwriteWave(ser, 5, 0, string) if dubbleline: NextionwriteWave(ser, 5, 1, stringbold) pass if DEBUG: cbpi.app.logger.info('NextionDisplay - currentfermtemp, digit, string: %s, %s, %s' % (cfermtemp, digit, string)) # target Temp target = (round(float((tfermtemp - fmin_value) * ffactor), 2)) targetbold = target + 1 tstring = (str(round(float(target)))[:-2]) tstringbold = (str(round(float(targetbold)))[:-2]) if 0 < target < xpixel: # do not write target line if not in temp/ screen range NextionwriteWave(ser, 5, 2, tstring) if dubbleline: NextionwriteWave(ser, 5, 3, tstringbold) if DEBUG: cbpi.app.logger.info( 'NextionDisplay - targettemp, target, tstring: %s, %s, %s' % (tfermtemp, target, tstring)) else: pass pass # if DEBUG: cbpi.app.logger.info('NextionDisplay - max and min value: %s, %s' % (max_value, min_value)) global fmax_value_old fmax_value_old = fmax_value global fmin_value_old fmin_value_old = fmin_value return None def cbidecode(string): # if DEBUG: cbpi.app.logger.info('NextionDisplay - string:%s' % string) udata=string.encode("utf-8") asciidata=udata.decode("utf-8", "ignore") # if DEBUG: cbpi.app.logger.info('NextionDisplay - encoded_str:%s' % (asciidata)) return asciidata.encode("utf-8") def time_remaining(ser): s = cbpi.cache.get("active_step") try: if s.timer_end is not None: time_remain = time.strftime("%H:%M:%S", time.gmtime(s.timer_end - time.time())) if DEBUG: cbpi.app.logger.info('NextionDisplay - time_remaining:%s %s %s' % (s.timer_end, time.time(), s.timer)) NextionwriteString(ser, "remBrewTime", time_remain) else: NextionwriteString(ser, "remBrewTime", "") pass except: NextionwriteString(ser, "remBrewTime", "") pass def time_remaining1(ser): while True: s = cbpi.cache.get("active_step") try: if s.timer_end is not None: time_remain = time.strftime("%H:%M:%S", time.gmtime(s.timer_end - time.time())) if DEBUG: cbpi.app.logger.info('NextionDisplay - time_remaining:%s %s %s' % (s.timer_end, time.time(), s.timer)) NextionwriteString(ser, "remBrewTime", time_remain) else: NextionwriteString(ser, "remBrewTime", "") pass except: NextionwriteString(ser, "remBrewTime", "") pass pass # todo: seems not to be used def fermtime_remaining(ser, fermid): try: if cbpi.cache.get("fermenter_task")[(int(fermid))].timer_start is not None: ftimeremain = (cbpi.cache.get("fermenter_task").get(fermid).timer_start - time.time()) ftimeremain = interval(ftimeremain) # if DEBUG: cbpi.app.logger.info('NextionDisplay - fermstepname:%s' % ftimeremain) NextionwriteString(ser, "remainfer", ftimeremain) else: NextionwriteString(ser, "remainfer", "") pass except: NextionwriteString(ser, "remainfer", "") def set_nextion_unit(): try: nx_unit = cbpi.get_config_parameter("unit", None) return nx_unit except: pass pass def fermstepname(fermid): if is_fermenter_step_running() == "active": try: fstepname = cbpi.cache.get("fermenter_task")[(int(fermid))].name fstepname = cbidecode(fstepname) if DEBUG: cbpi.app.logger.info('NextionDisplay - fermstepname:%s' % fstepname) return fstepname except: if DEBUG: cbpi.app.logger.info('NextionDisplay - fermstepname not runnig?') return "error" pass else: return "no active ferm step" def is_fermenter_step_running(): for key, value2 in cbpi.cache["fermenter_task"].items(): if value2.state == "A": return "active" else: pass def currentfermtemp(fermid): # read the current temperature of fermenter with fermenter ID from parameters current_sensor_value_ferm = (cbpi.get_sensor_value(int(cbpi.cache.get("fermenter").get(fermid).sensor))) if DEBUG: cbpi.app.logger.info('NextionDisplay - currentfermtemp.txt:%s' % current_sensor_value_ferm) return current_sensor_value_ferm def targetfermtemp(fermid): # cbpi.app.logger.info("NEXTIONDisplay - Target Temp detect") current_sensor_value_temptargid = cbpi.cache.get("fermenter")[(int(fermid))].target_temp # targfermTemp = ("%6.2f" % (float(current_sensor_value_temptargid))) if DEBUG: cbpi.app.logger.info("NEXTIONDisplay - TargfermTemp: %s" % current_sensor_value_temptargid) return current_sensor_value_temptargid def currenttemp_float(kettleID): temp = float(Temp(kettleID)) return temp def targettemp_float(kettleID): targettemp = float(TempTargTemp(kettleID)) return targettemp def heater_status(kettleid): heater_of_kettle = int(cbpi.cache.get("kettle").get(kettleid).heater) heater_status_of_kettle = int(cbpi.cache.get("actors").get(heater_of_kettle).state) if heater_status_of_kettle == 1: return "on" else: return "off" pass def ferm_name(fermid): try: fname = ('%s' % cbpi.cache.get("fermenter").get(fermid).name) fname = cbidecode(fname) # if DEBUG: cbpi.app.logger.info('NextionDisplay - ferm_name:%s' % fname) return fname except: return "not found" pass def ferm_beername(fermid): try: beername = cbpi.cache.get("fermenter").get(fermid).brewname beername = cbidecode(beername) # if DEBUG: cbpi.app.logger.info('NextionDisplay - ferm_beername:%s' % beername) return beername except: return "not found" pass def kettlename(kettleID): brewkettlename = ('%s' % cbpi.cache.get("kettle").get(int(kettleID)).name) # if DEBUG: cbpi.app.logger.info('NextionDisplay - KettleNameTxt.txt:%s' % (brewkettlename)) brewkettlename = cbidecode(brewkettlename) # if DEBUG: cbpi.app.logger.info('NextionDisplay - decodeKettleNameTxt.txt:%s' % (brewkettlename)) return brewkettlename def restname(): s = cbpi.cache.get("active_step") if s is not None: try: brewrestname = s.name # if DEBUG: cbpi.app.logger.info('NextionDisplay - brewrestname:%s' % (brewrestname)) brewrestname = cbidecode(brewrestname) return brewrestname except: pass return "restart not detected" else: return "no active rest" pass def Temp(kkid): # if DEBUG: cbpi.app.logger.info("NEXTIONDisplay - Temp detect") current_sensor_value_id3 = (cbpi.get_sensor_value(int(cbpi.cache.get("kettle").get(int(kkid)).sensor))) curTemp = ("%6.2f" % (float(current_sensor_value_id3))) # if DEBUG: cbpi.app.logger.info("NEXTIONDisplay - Temp: %s" % (curTemp)) return curTemp def TempTargTemp(temptargid): # if DEBUG: cbpi.app.logger.info("NEXTIONDisplay - Target Temp detect") current_sensor_value_temptargid = cbpi.cache.get("kettle")[(int(temptargid))].target_temp targTemp = ("%6.2f" % (float(current_sensor_value_temptargid))) # if DEBUG: cbpi.app.logger.info("NEXTIONDisplay - TargTemp: %s" % (targTemp)) return targTemp def get_ip(interface): ip_addr = "Not connected" so = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) try: ip_addr = socket.inet_ntoa(fcntl.ioctl(so.fileno(), 0x8915, struct.pack('256s', interface[:15]))[20:24]) finally: pass return ip_addr def set_ip(): if get_ip('wlan0') != 'Not connected': ip = get_ip('wlan0') elif get_ip('eth0') != 'Not connected': ip = get_ip('eth0') elif get_ip('enxb827eb488a6e') != 'Not connected': ip = get_ip('enxb827eb488a6e') else: ip = 'Not connected' pass return ip def get_version_fo(path): version = "" try: if path is not "": fo = open(path, "r") else: fo = open("/home/pi/craftbeerpi3/config/version.yaml", "r") version = fo.read() fo.close() finally: return version def interval(seconds): """ gives back interval as tuple @return: (weeks, days, hours, minutes, seconds) formats string for fermtime_remaining returns the formatted string for text-field """ WEEK = 60 * 60 * 24 * 7 DAY = 60 * 60 * 24 HOUR = 60 * 60 MINUTE = 60 weeks = seconds // WEEK seconds = seconds % WEEK days = seconds // DAY seconds = seconds % DAY hours = seconds // HOUR seconds = seconds % HOUR minutes = seconds // MINUTE seconds = seconds % MINUTE if weeks >= 1: remaining_time = ("Week:%d Days:%d Hours:%02d:%02d" % (int(weeks), int(days), int(hours), int(minutes))) return remaining_time elif weeks == 0 and days >= 1: remaining_time = ("Days:%d Hours:%02d:%02d:%02d" % (int(days), int(hours), int(minutes), int(seconds))) return remaining_time elif weeks == 0 and days == 0: remaining_time = ("Hours:%02d:%02d:%02d" % (int(hours), int(minutes), int(seconds))) return remaining_time else: pass pass def set_parameter_kettleID(): kettleid = cbpi.get_config_parameter("NEXTION_Kettle_ID", None) if kettleid is None: kettleid = 1 cbpi.add_config_parameter("NEXTION_Kettle_ID", 1, "kettle", "Select kettle (Number), NO! CBPi reboot required") cbpi.app.logger.info("NEXTIONDisplay - KettleID added: %s" % kettleid) return kettleid def set_parameter_fermID(): fermid = cbpi.get_config_parameter("NEXTION_Fermenter_ID", None) if fermid is None: fermid = 1 cbpi.add_config_parameter("NEXTION_Fermenter_ID", 1, "number", "Select Fermenter (Number), NO! CBPi reboot required") cbpi.app.logger.info("NEXTIONDisplay - FermenterID added: %s" % fermid) return fermid def set_serial_port(): port = cbpi.get_config_parameter("NEXTION_Serial_Port", None) if port is None: port = "/dev/ttyUSB0" cbpi.add_config_parameter("NEXTION_Serial_Port", "/dev/ttyUSB0", "string", "Select the Serial Port, Windows like COM1, Linux like dev/ttyS0," " /dev/ttyAM0, /dev/ttyUSB0, etc.") cbpi.app.logger.info("TFTDisplay - NEXTION_Serial_Port added: %s" % port) return port def set_parameter_dubbleline(ser): dubbleline = cbpi.get_config_parameter("NEXTION_bold_line", None) if dubbleline is None: dubbleline = "on" cbpi.add_config_parameter("NEXTION_bold_line", "on", "select", "Select if chart is drawn in bold line or not, " "CBPi reboot recommended", ["on", "off"]) cbpi.app.logger.info("TFTDisplay - NEXTION_bold_line added: %s" % dubbleline) if dubbleline == "on": return True else: NextionwriteClear(ser, 1, 1) # BrewTemp try to adjust thickness of line # brew NextionwriteClear(ser, 1, 3) # BrewTemp try to adjust thickness of line # brew target NextionwriteClear(ser, 5, 1) # BrewTemp try to adjust thickness of line # ferment NextionwriteClear(ser, 5, 3) # BrewTemp try to adjust thickness of line # ferment target return False pass def set_time(ser): look_time = 1 # in seconds while True: timestr = ((strftime("%Y-%m-%d %H:%M:%S", time.localtime())).ljust(20)) NextionwriteString(ser, "t3start", timestr) # if DEBUG: cbpi.app.logger.info("NextionDisplay - thread set_time " + timestr) sleep(look_time) # showing time only every second <look_time> def detect_touch(ser, kettleID, dubbleline): look_touch = 1 # in seconds while True: touch = ser.read_until(TERMINATOR) if len(touch) != 0: istouch = hex(ord(touch[0])) if istouch == "0x65": cbpi.app.logger.info("NextionDisplay - touch: A button has been pushed %s" % istouch) pageID_touch = hex(ord(touch[1])) compID_touch = hex(ord(touch[2])) event_touch = hex(ord(touch[3])) cbpi.app.logger.info("NextionDisplay - page:%s, component:%s, event:%s" % (pageID_touch, compID_touch, event_touch)) # if pageID_touch == "0x1" and compID_touch == "0x10": if (pageID_touch == "0x1" or pageID_touch == "0x5") and compID_touch == "0x5": cbpi.app.logger.info("NextionDisplay - touch: Clearbutton of Brewpage pushed") writewave(ser, kettleID, erase=True, dubbleline=dubbleline) elif pageID_touch == "0x0" and compID_touch == "0x3": cbpi.app.logger.info("NextionDisplay - touch: Brewpage button pushed") if DEBUG: cbpi.app.logger.info("NextionDisplay - touch: dubbleline = %s" % dubbleline) writewave(ser, kettleID, erase=False, rewrite=True, dubbleline=dubbleline) elif (pageID_touch == "0x3" and compID_touch == "0x3") or (pageID_touch == "0x6" and compID_touch == "0x4"): cbpi.app.logger.info("NextionDisplay - touch: Clearbutton of Fermpage pushed") writefermwave(ser, erase=True) elif pageID_touch == "0x0" and compID_touch == "0x5": cbpi.app.logger.info("NextionDisplay - touch: Fermpage button pushed") writefermwave(ser, erase=False, frewrite=True) else: pass sleep(look_touch) # timeout the bigger the larger the chance of missing a push @cbpi.initalizer(order=3150) def initNextion(app): port = set_serial_port() time.sleep(3) ser = serial.Serial( port=port, baudrate=38400, parity=serial.PARITY_NONE, stopbits=serial.STOPBITS_ONE, bytesize=serial.EIGHTBITS, timeout=0.1 ) ser.reset_output_buffer() try: cbpi.app.logger.info("NEXTIONDisplay - NEXTION_KetteID: %s" % set_parameter_kettleID()) cbpi.app.logger.info("NEXTIONDisplay - NEXTION_Serial Port: %s" % port) cbpi.app.logger.info("NEXTIONDisplay - NEXTION_Fermenter_ID: %s" % set_parameter_fermID()) cbpi.app.logger.info("NEXTIONDisplay - NEXTION_bold_line: %s" % set_parameter_dubbleline(ser)) except: pass # nx_setsys(ser, 'bauds', 38400) # already set in display # nx_setsys(ser, 'bkcmd', 0) # already set in display # Time as thread t_timethread = threading.Thread(target=set_time, name='Time Display', args=(ser,)) t_timethread.start() cbpi.app.logger.info("NEXTIONDisplay - NEXTION init passed") # end of init @cbpi.backgroundtask(key="Nextionjob", interval=6) # 4 = 27 min, 5 = 33.8 min, 6 = 40.6 min def Nextionjob(api): # This is the main job kettleID = int(set_parameter_kettleID()) fermid = int(set_parameter_fermID()) dubbleline = set_parameter_dubbleline(ser) ip = set_ip() cbpi_version = "CBPi %s" % (get_version_fo("")) # for any reason the first value will be dropped so this is just fake and does nothing NextionwriteString(ser, "t1startfake", cbpi_version) NextionwriteString(ser, "t1start", cbpi_version) iptext = "IP: %s" % ip NextionwriteString(ser, "t2start", iptext) writing_multi_to_nextion(ser) writewave(ser, kettleID, dubbleline=dubbleline) writingDigittoNextion(ser, kettleID) writefermwave(ser, fermid, dubbleline=dubbleline) # THREAD - DETECT push buttons threadnames = threading.enumerate() # if DEBUG: cbpi.app.logger.info("NextionDisplay - names current thread %s" % threadnames) threadnames = str(threadnames) if "<Thread(read serial," in threadnames: # if DEBUG: cbpi.app.logger.info("NextionDisplay - thread read serial detected") pass else: t_serialread = threading.Thread(target=detect_touch, name='read serial', args=(ser, kettleID, dubbleline)) t_serialread.start() if DEBUG: cbpi.app.logger.info("NextionDisplay - threads Thread started") pass
parallel.py
#!/usr/bin/env python # -*- coding: utf-8 -*- # Copyright (c) 2012-2019 SoftBank Robotics. All rights reserved. # Use of this source code is governed by a BSD-style license (see the COPYING file). """ Parallel """ from __future__ import absolute_import from __future__ import unicode_literals from __future__ import print_function import threading import functools import collections def foreach(source, action, n_jobs=0): """ Parallel for If n_jobs == 0, there is no limit to the number of jobs, i.e. a thread is launched for each item in `source`. If n_jobs == 1, this is equivalent to: >>> for i in source: >>> action(i) """ if not n_jobs: _foreach_no_limit(source, action) elif n_jobs == 1: for item in source: action(item) else: _foreach_with_limit(source, action, n_jobs) def _foreach_worker(q, action): """ Foreach Worker """ while True: try: item = q.popleft() except IndexError: break action(item) def _foreach_with_limit(source, action, n_jobs): """ Foreach With Limit """ assert n_jobs >= 0 q = collections.deque() for item in source: q.append(item) threads = [threading.Thread(target=functools.partial(_foreach_worker, q, action)) for _ in range(n_jobs)] for t in threads: t.start() for t in threads: t.join() def _foreach_no_limit(source, action): """ Foreach No Limit """ threads = [ threading.Thread(target=functools.partial(action, item)) for item in source ] for t in threads: t.start() for t in threads: t.join()
FTP_photogrammetry_Client.py
''' * * FTP Client to pull images from FTP server * hosted on RPi for 3D image reconstruction. * * AUTHOR : Mohammad Odeh * DATE WRITTEN : Aug. 10th, 2018 Year of Our Lord * LAST CONTRIBUTION DATE : Aug. 14th, 2018 Year of Our Lord * ''' # Import modules from time import sleep # Add delays and wait times from threading import Thread # Use threads to free up main() from subprocess import Popen # Run batch script from within Python from ftplib import FTP # For file transfer import paho.mqtt.client as mqtt # For general communications # ************************************************************************ # ============================> DEFINE CLASS <============================ # ************************************************************************ class FTP_photogrammetery_Client( object ): def __init__( self, MQTT_broker_ip, username, password ): ''' Initialize class ''' self.MQTT_topics = { "IP_addr": "ftp/IP_addr", # For IP address communications "status" : "ftp/status" , # For handshakes communications "images" : "ftp/images" , # For image name communications "general": "ftp/general" } # For things that are not in any previous category self.FTP_server_ip = None # FTP IP address placeholder self.MQTT_client_setup( MQTT_broker_ip ) # Setup MQTT client self.USER, self.PASS = username, password # FTP Username and Password self.run() # Run program # ------------------------------------------------------------------------ def MQTT_client_setup( self, addr ): ''' Setup MQTT client ''' # Error handling in case MQTT communcation setup fails (1/2) try: self.client = mqtt.Client( client_id="Client", # Initialize MQTT client object clean_session=True ) # ... self.client.max_inflight_messages_set( 60 ) # Max number of messages that can be part of network flow at once self.client.max_queued_messages_set( 0 ) # Size 0 == unlimited self.client.will_set( self.MQTT_topics[ "status" ], # "Last Will" message. Sent when connection is "CONERR_CLNT", qos=1, retain=False ) # ...lost (aka, disconnect was not called) self.client.reconnect_delay_set( min_delay=1, # Min/max wait time in case of reconnection max_delay=2 ) # ... self.client.on_connect = self.on_connect # Assign callback functions self.client.on_message = self.on_message # ... self.client.connect( addr, port=1883, keepalive=60 ) # Connect to MQTT network self.t_client_loop=Thread(target=self.client_loop, args=()) # Start threaded MQTT data processing loop() self.t_client_loop.deamon = True # Allow program to shutdown even if thread is running self.t_client_loop.start() # ... sleep( 0.5 ) # Allow some time for connection to be established # Error handling in case MQTT communcation setup fails (2/2) except Exception as e: print( "Could NOT setup MQTT communications" ) # Indicate error type and arguments print( "Error Type : {}".format(type(e))) # ... print( "Error Arguments : {}".format(e.args) ) # ... sleep( 1.0 ) quit() # Shutdown entire program # ------------------------------------------------------------------------ def on_connect( self, client, userdata, flags, rc ): ''' Callback function for when connection is established/attempted. Prints connection status and subscribes to ftp/# topic on successful connection. ''' if ( rc == 0 ): # Upon successful connection print( "MQTT Connection Successful" ) # Subscribe to topic of choice self.client.subscribe( "ftp/#", qos=1 ) # ... elif( rc == 1 ): # Otherwise if connection failed print( "Connection Refused - Incorrect Protocol Version" ) # Troubleshoot elif( rc == 2 ): # Same ^ print( "Connection Refused - Invalid Client Identifier" ) # ... elif( rc == 3 ): print( "Connection Refused - Server Unavailable" ) elif( rc == 4 ): print( "Connection Refused - Bad Username or Password" ) elif( rc == 5 ): print( "Connection Refused - Not Authorized" ) else: print( "Troubleshoot RPi - Result Code {}".format(rc) ) print( "Terminating Program" ) quit() # ------------------------------------------------------------------------ def on_message( self, client, userdata, msg ): ''' Callback function for when a message is received. ''' if( msg.topic == self.MQTT_topics[ "IP_addr" ] ): # If we receive something on the IP topic inData = msg.payload.decode( "utf-8" ) # Decode payload if( len(inData) < 4 ): pass # Check it is a valid IP address else: # If IP address is valid self.FTP_server_ip = inData # Store IP address self.client.publish( self.MQTT_topics[ "status" ], # Send SOH to indicate that we are ready "SOH", qos=1, retain=False ) # ... print( "Using IP: {}\n".format(self.FTP_server_ip) ) # [INFO] ... elif( msg.topic == self.MQTT_topics[ "images" ] ): # If we receive something on the images topic img_name = msg.payload.decode( "utf-8" ) # Decode image name if( img_name == '' ): pass # If empty string (used to clear retained messages), pass else: self.get_file( img_name ) # Else, retrieve it from FTP folder on server elif( msg.topic == self.MQTT_topics[ "status" ] ): # If we receive something on the status topic status = msg.payload.decode( "utf-8" ) # Decode it and determine next action if( status == "EOT" ): # If end of transmission is indicated print( "Disconnectiong MQTT" ) , # [INFO] ... self.client.publish( self.MQTT_topics[ "status" ], # Send EOT to inform server to "EOT", qos=1, retain=False ) # ...shuwtdown MQTT client as self.loop = False # Set loop flag to FALSE sleep( 0.10 ) # Allow time for state of flag to change self.client.disconnect() # Disconnect MQTT client print( "...DONE!" ) # [INFO] ... else : pass else: pass # ------------------------------------------------------------------------ def client_loop( self ): ''' A simple, basic workaround for the MQTT's library stupid threaded implementation of loop() that doesn't really work. ''' self.loop = True # Boolean loop flag while( self.loop ): # Loop 43va while loop flag is TRUE self.client.loop( timeout=1.0 ) # Pool messages queue for new data # ------------------------------------------------------------------------ def get_file( self, file_name ): ''' Get file from FTP directory INPUT: - file_name: Name of file we want to get ''' print( "Retrieving {}".format(file_name) ) , # [INFO] ... localfile = r".\imgs\{}".format(file_name) # Specify image storage path with open( localfile, 'wb' ) as f: # Open file for writing self.ftp.retrbinary( "RETR "+file_name, # Retrieve file from FTP directory and copy f.write, 2048 ) # contents to localfile at 2048 bytes chunks print( "...DONE!" ) # [INFO] ... # ------------------------------------------------------------------------ def run( self ): ''' Main thread ''' sleep( 0.5 ) # Sleep for stability print( "Client Initialized" ) # [INFO] ... print( "Waiting for FTP IP address" ) # [INFO] ... cntr = 0 # Counter for displaying "waiting" dots while( self.FTP_server_ip is None ): # Wait until we get a vlid IP address sleep( 1 ) # ... print( '.' ) , # ... cntr += 1 # ... if( cntr == 15 ): # If we already printed 15 dots cntr = 0 # Reset counter print( '' ) # Start a new line if( cntr is not 0 ): print( '' ) # Start a new line print( "Client Ready\n" ) # [INFO] ... self.ftp = FTP( self.FTP_server_ip ) # Connect to host using default port self.ftp.login( FTP_USER, FTP_PASS ) # Login as a known user (NOT anonymous user) ## self.ftp.cwd( "/home/pi/FTP/" ) # Change current working directory to FTP directory (Raspbian) self.ftp.cwd( "./Pictures/" ) # Change current working directory to FTP directory (DietPi) ## self.ftp.retrlines( "LIST" ) # List contents of FTP directory (make sure things are working) while( self.loop ): # While we are still receiving data (images) sleep( 0.1 ) # Stay in loop to waste time print( "Running VisualSFM" ) , # [INFO] ... p = Popen( [r".\main.bat"] ) # Call batch file with VisualSFM commands stdout, stderr = p.communicate() # ... print( "...DONE!" ) # {INFO] ... # ************************************************************************ # ===========================> SETUP PROGRAM <=========================== # ************************************************************************ MQTT_IP_ADDRESS = "192.168.42.1" # IP address for MQTT broker ##FTP_USER, FTP_PASS = "pi", "raspberry" # FTP login credentials (Raspbian) FTP_USER, FTP_PASS = "dietpi", "dietpi" # FTP login credentials (DietPi) prog = FTP_photogrammetery_Client( MQTT_IP_ADDRESS, FTP_USER, FTP_PASS )# Start program
fifo.py
import threading import time mutex = threading.Semaphore(1) procesos = [['A', 'B', 'C', 'D', 'E'], [3, 5, 2, 5, 5], [0, 1, 3, 9, 12], [0, 0, 0, 0, 0]] resultados = [['T', 'E', 'P'], [0, 0, 0], [0, 0, 0]] tiempo_espera = procesos[2][0] tiempo_total = 0 def proceso(proc_actual): global procesos actual = procesos[0][proc_actual] print "Ah llegado el proceso %s" %actual dura_proceso(proc_actual) def dura_proceso(proc_actual): global procesos actual = procesos[0][proc_actual] tiempo_eje = procesos[1][proc_actual] mutex.acquire() tiempo_de_espera(proc_actual) print "Inicia ejecucion proceso %s" %actual time.sleep(tiempo_eje) print "Termina ejecuacion proceso %s" %actual mutex.release() def lanza_proceso(proc_actual): global procesos tiempo_actual = procesos[2][proc_actual] time.sleep(tiempo_actual) threading.Thread(target=proceso, args=[proc_actual]).start() def tiempo_de_espera(proc_actual): global tiempo_espera global tiempo_total tiempo_espera = tiempo_espera - procesos[2][proc_actual] print "El proceso %s espero %d segundos" %(procesos[0][proc_actual], tiempo_espera) procesos[3][proc_actual] = tiempo_espera tiempo_espera = tiempo_espera + procesos[2][proc_actual] tiempo_espera = tiempo_espera + procesos[1][proc_actual] for i in range(len(procesos[0])): threading.Thread(target=lanza_proceso, args=[i]).start() time.sleep(40) def promedio(): prom = 0 num_max = len(procesos[0]) for i in range (num_max): prom = prom + procesos[3][i] resultados[1][1] = prom prom = (float(prom) / 5.0) resultados[2][1] = prom def tiempo(): prom = 0 num_max = len(procesos[0]) for i in range (num_max): prom = prom + procesos[1][i] resultados[1][0] = prom + resultados[1][1] prom = prom + resultados[1][1] prom = (float(prom) / 5.0) resultados[2][0] = prom def penalizacion(): prom = 0 num_max = len(procesos[0]) for i in range (num_max): a = procesos[1][i] + procesos[3][i] a = (float(a) / procesos[1][i]) prom = prom + a resultados[1][2] = "{0:.2f}".format(prom) prom = (float(prom) / 5.0) resultados[2][2] = "{0:.2f}".format(prom) promedio() tiempo() penalizacion() print (resultados)
threads.py
# Sleeping doesn't block one complete process, it blocks one thread. By the POSIX/Linux/UNIX # definitions a process (for instance one python program) may include multiple threads which all # share the same memory, but behave like other processes would in all other ways. # This means processes are more seperated than threads are. # Pythons threading module includes way to run a function on another thread from threading import Thread import time # Define our function to be run by the threads def sleep_print(s): time.sleep(s) print(s) threads = [] for i in range(0, 4): # Create the thread. This thread will run target with args like target(args) th = Thread(target=sleep_print, args=(i,)) # Actually start the thread th.start() # append the thread to the threads list threads.append(th) # Wait for all threads to finish for th in threads: th.join() # TODO(side note about concurrency vs parallelism, thread types and threading models)
robotLibrary.py
# Copyright 2020 Jan Feitsma (Falcons) # SPDX-License-Identifier: Apache-2.0 #!/usr/bin/env python3 # # Python library for on-robot commands. import sys, os, signal import traceback import logging import readline from time import sleep import threading try: import EnvironmentField except: print("warning: EnvironmentField is not yet compatible with python3, joystick functionality won't work") import robotControlInterface # globals logging.basicConfig(level=logging.INFO) def printHelp(): print(helpText()) def helpText(): return """ most commands are blocking, which means you cannot type anything until it finished (TODO: implement ctrl-C to interrupt such blocking commands and return back to the prompt) COMMANDS: h / help / ? : show this help q / quit / shutdown : exit program ctrl-C : (TODO) interrupt running command stop : stop whatever robot is doing bh on|off : enable/disable ball handlers velocity vx vy vphi s : give a relative velocity setpoint (vx,vy,vphi) for s seconds move x y phi : move robot to (x,y,phi) using motionPlanning getBall : get the ball kick power height : (TODO) kick ball with given power (30..180) and optional height (0..180) pass x y : pass to (x,y) shoot x y [z] : straight shot at (x,y,z) lob x y [z] : lob shot at (x,y,z) keeper : start acting as keeper behavior name : perform a behavior """ class RobotLibrary(): def __init__(self, robotId, joystick=True): """ Setup the robot interface. """ self._robotId = robotId self._rci = robotControlInterface.RobotControlInterface(robotId) self._rci.connect() self._shutdown = False # Initialize joystickThread # daemon=True means thread is killed during shutdown of main thread, and not block main thread from shutdown if joystick: self._joystickThreadIsAlive = True self._joystickThread = threading.Thread(target=self._joystickThreadExecutor) self._joystickThread.setDaemon(True) self._joystickThread.start() else: self._joystickThreadIsAlive = False self._joystickThread = None self.initializeLogger() def initializeLogger(self): """ Setup the logging environment """ log = logging.getLogger() # root logger log.setLevel(logging.INFO) format_str = '%(asctime)s.%(msecs)03d - %(levelname)-8s - %(message)s' date_format = '%Y-%m-%dT%H:%M:%S' formatter = logging.Formatter(format_str, date_format) stream_handler = logging.StreamHandler() stream_handler.setFormatter(formatter) log.handlers = [] # clear log.addHandler(stream_handler) return logging.getLogger(__name__) def shutdown(self): """ Cleanup such that robot is in a good state to play (refbox). """ self._joystickThreadIsAlive = False # make all threads stop, see e.g. ballMonitor self._shutdown = True sleep(0.1) self._rci.disconnect() def prompt(self): """ Provide a prompt to users, so they can enter commands. """ logging.info("(enter h for help)") while True: try: # TODO: prepend with timestamp, nicely align with logging? s = input("enter command: ") except: logging.error("error while reading input") break if s in ["q", "quit", "shutdown"]: break try: self.parse(s) except: logging.warning("something went wrong while evaluating '%s'" % (s)) traceback.print_exc(file=sys.stdout) logging.info("shutting down ...") self.shutdown() def stop(self): self._rci.setMotionPlanningAction("STOP", 0.0, 0.0, 0.0, "NORMAL", False) self._rci.clearStimulation() self._rci.setRobotVelocity(0.0, 0.0, 0.0) def enableBallHandlers(self): self._rci.setBallHandlers(True) def disableBallHandlers(self): self._rci.setBallHandlers(False) def velocitySetpoint(self, vx, vy, vphi, duration): self._rci.setRobotPosVel("VEL_ONLY", 0.0, 0.0, 0.0, vx, vy, vphi, "NORMAL") # next line was old style, before VC was split out of PP, so no acc limiter: #self._rci.setRobotVelocity(0.0, 0.0, 0.0) sleep(duration) self.stop() def move(self, x, y, phi, motionType="NORMAL"): # TODO: is there still a use case to overrule (pp) tolerance limits? # pathPlanning tolerances might be configured a bit too tight for smooth testing bh = self._rci.getBallHandlersEnabled() # maintain current state self._rci.setMotionPlanningAction("MOVE", x, y, phi, motionType, bh) self._rci.blockUntilTPOverridePassedOrFailed() self.stop() def getBall(self): self._rci.setTeamplayAction("GET_BALL", {}) self._rci.blockUntilTPOverridePassedOrFailed() self.stop() def interceptBall(self): self._rci.setTeamplayAction("INTERCEPT_BALL", {}) self._rci.blockUntilTPOverridePassedOrFailed() self.stop() def passTo(self, x, y): self._rci.setMotionPlanningAction("PASS", x, y, 0.0, "NORMAL", True) self._rci.blockUntilTPOverridePassedOrFailed() self.stop() def shootAt(self, x, y, z): self._rci.setMotionPlanningAction("SHOOT", x, y, z, "NORMAL", True) self._rci.blockUntilTPOverridePassedOrFailed() self.stop() def lobShotAt(self, x, y, z): self._rci.setMotionPlanningAction("LOB", x, y, z, "NORMAL", True) self._rci.blockUntilTPOverridePassedOrFailed() self.stop() def kick(self, power, height=0.0): self._rci.setMotionPlanningAction("KICK", power, height, 0.0, "NORMAL", True) self._rci.blockUntilTPOverridePassedOrFailed() self.stop() def keeper(self): self.behavior("B_GOALKEEPER") def behavior(self, behaviorName, params={}): self._rci.setTeamplayBehavior(args[0], params) self._rci.blockUntilTPOverridePassedOrFailed() self._rci.clearStimulation() def parse(self, commandString): """ Parse given command string. """ logging.info("parsing command: '%s'" % (commandString)) # split string words = commandString.split() if len(words) == 0: return mode = words[0].lower() args = words[1:] # determine what to do, catch interrupts try: if mode in ['h', 'help', '?']: printHelp() elif mode in ['stop']: self.stop() elif mode in ['bh']: if len(args) == 1: if str(args[0]) == "on": self.enableBallHandlers() if str(args[0]) == "off": self.disableBallHandlers() elif mode in ['velocity']: vx = float(args[0]) vy = float(args[1]) vphi = float(args[2]) duration = float(args[3]) self.velocitySetpoint(vx, vy, vphi, duration) elif mode in ['move', 'target']: x = float(args[0]) y = float(args[1]) # phi not required, default to zero if len(args) > 2: phi = float(args[2]) else: phi = 0.0 self.move(x, y, phi) elif mode in ['getball']: if self._robotId == 1: logging.info("skipping: r1 can not grab ball") else: self.getBall() elif mode in ['pass']: x = float(args[0]) y = float(args[1]) self.passTo(x, y) elif mode in ['shoot']: x = float(args[0]) y = float(args[1]) # z not required, default to zero if len(args) > 2: z = float(args[2]) else: z = 0 self.shootAt(x, y, z) elif mode in ['lob']: x = float(args[0]) y = float(args[1]) # z not required, default to zero if len(args) > 2: z = float(args[2]) else: z = 0 self.lobShotAt(x, y, z) elif mode in ['kick']: power = float(args[0]) height = 0 if len(args) > 1: height = float(args[1]) self.kick(power, height) elif mode in ['keeper']: self.keeper() elif mode in ['behavior']: # allow parameters as key=value strings, for instance 'role=defenderMain' params = {} if len(args) > 1: for s in args[1:]: kv = s.split("=") if len(kv) == 2: params[kv[0]] = kv[1] self.behavior(args[0], params) elif mode in ['listscenarios']: print("Loaded scenarios are:") print(listScenarios()) print("\n To execute, type scenario <name>") elif mode in ['scenario']: # If no arguments given, prompt with a selection menu if len(args) == 0: # No argument given, prompt for the scenarios scenarios = listScenarios() scenarios.sort() idx = 1 print("Scenarios available for execution:") print("0: Cancel") for scenario in scenarios: print("%s: %s" % (idx, scenario)) idx += 1 userinput = input("Choose a scenario to run: ") if isinstance( userinput, ( int, long ) ): if int(userinput) > 0: runScenario( scenarios[int(userinput) - 1] ) # TODO Add support for arguments when prompting selection menu robot.restoreAllConfigs() else: # relay to scenario selector/executor runScenario(*args) # After running a scenario, restore all dynamic_reconfigure configs # We do this to reset the state of the robot after every scenario robot.restoreAllConfigs() else: logging.error("invalid or not-yet-implemented mode '%s'" % (mode)) """TODO except KeyboardInterruptException: # probably a blocking call was interrupted, ok to continue (if prompted) logging.warning("--interrupted--") return """ except: logging.warning("something went wrong while evaluating '%s'" % (commandString)) traceback.print_exc(file=sys.stdout) ################### # Joystick Thread # ################### # This thread is always running def _joystickThreadExecutor(self): while self._joystickThreadIsAlive: item = self._rci._robotControl._rtdb2Store.get(0, "JOYSTICK_CONTROL_" + str(self._robotId), timeout=False) # robotId = 0 = coach if item != None and item.age() < 1.0: self._rci.setBallHandlers(item.value[2]) self._rci.setRobotVelocity(item.value[1][0], item.value[1][1], item.value[1][2]) if item.value[4] > 0: self._rci.setMotionPlanningAction("KICK", item.value[4], item.value[3], 0.0, "NORMAL", True) self._rci.blockUntilTPOverridePassedOrFailed() self._rci.clearStimulation() action = item.value[5] # blocking actions if action == "getBall": self._rci.setTeamplayAction("GET_BALL", {}) self._rci.blockUntilTPOverridePassedOrFailed() self._rci.clearStimulation() elif action == "passToTeamMember": # TODO #passToTeamMember() pass elif action == "shootAtGoal": goalPos = EnvironmentField.cEnvironmentField.getInstance().getFieldPOI( EnvironmentField.P_OPP_GOALLINE_CENTER ) self._rci.setMotionPlanningAction("SHOOT", goalPos.x, goalPos.y, 0.7, "NORMAL", True) self._rci.blockUntilTPOverridePassedOrFailed() self._rci.clearStimulation() elif item != None and item.age() >= 1.0: # When the age > 1 second, clearStimulation and remove JOYSTICK_CONTROL such that the next tick the joystick code does not triggered (item == None) self._rci.clearStimulation() self._rci._robotControl._rtdb2Store.get_and_clear(0, "JOYSTICK_CONTROL_" + str(self._robotId)) # robotId = 0 = coach # Sleep to maintain 30Hz sleep(1.0 / 30.0)
batcher.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # Modifications Copyright 2017 Abigail See # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """This file contains code to process data into batches""" import queue as Queue from random import shuffle from threading import Thread import time import numpy as np import tensorflow as tf import data class Example(object): """Class representing a train/val/test example for text summarization.""" def __init__(self, article, abstract_sentences, vocab, hps): """Initializes the Example, performing tokenization and truncation to produce the encoder, decoder and target sequences, which are stored in self. Args: article: source text; a string. each token is separated by a single space. abstract_sentences: list of strings, one per abstract sentence. In each sentence, each token is separated by a single space. vocab: Vocabulary object hps: hyperparameters """ self.hps = hps # Get ids of special tokens start_decoding = vocab.word2id(data.START_DECODING) stop_decoding = vocab.word2id(data.STOP_DECODING) # Process the article article_words = article.split() if len(article_words) > hps.max_enc_steps: article_words = article_words[:hps.max_enc_steps] self.enc_len = len(article_words) # store the length after truncation but before padding self.enc_input = [vocab.word2id(w) for w in article_words] # list of word ids; OOVs are represented by the id for UNK token # Process the abstract abstract = ' '.join(abstract_sentences) # string abstract_words = abstract.split() # list of strings abs_ids = [vocab.word2id(w) for w in abstract_words] # list of word ids; OOVs are represented by the id for UNK token # Get the decoder input sequence and target sequence self.dec_input, self.target = self.get_dec_inp_targ_seqs(abs_ids, hps.max_dec_steps, start_decoding, stop_decoding) self.dec_len = len(self.dec_input) # If using pointer-generator mode, we need to store some extra info if hps.pointer_gen: # Store a version of the enc_input where in-article OOVs are represented by their temporary OOV id; also store the in-article OOVs words themselves self.enc_input_extend_vocab, self.article_oovs = data.article2ids(article_words, vocab) # Get a verison of the reference summary where in-article OOVs are represented by their temporary article OOV id abs_ids_extend_vocab = data.abstract2ids(abstract_words, vocab, self.article_oovs) # Overwrite decoder target sequence so it uses the temp article OOV ids _, self.target = self.get_dec_inp_targ_seqs(abs_ids_extend_vocab, hps.max_dec_steps, start_decoding, stop_decoding) # Store the original strings self.original_article = article self.original_abstract = abstract self.original_abstract_sents = abstract_sentences def get_dec_inp_targ_seqs(self, sequence, max_len, start_id, stop_id): """Given the reference summary as a sequence of tokens, return the input sequence for the decoder, and the target sequence which we will use to calculate loss. The sequence will be truncated if it is longer than max_len. The input sequence must start with the start_id and the target sequence must end with the stop_id (but not if it's been truncated). Args: sequence: List of ids (integers) max_len: integer start_id: integer stop_id: integer Returns: inp: sequence length <=max_len starting with start_id target: sequence same length as input, ending with stop_id only if there was no truncation """ inp = [start_id] + sequence[:] target = sequence[:] if len(inp) > max_len: # truncate inp = inp[:max_len] target = target[:max_len] # no end_token else: # no truncation target.append(stop_id) # end token assert len(inp) == len(target) return inp, target def pad_decoder_inp_targ(self, max_len, pad_id): """Pad decoder input and target sequences with pad_id up to max_len.""" while len(self.dec_input) < max_len: self.dec_input.append(pad_id) while len(self.target) < max_len: self.target.append(pad_id) def pad_encoder_input(self, max_len, pad_id): """Pad the encoder input sequence with pad_id up to max_len.""" while len(self.enc_input) < max_len: self.enc_input.append(pad_id) if self.hps.pointer_gen: while len(self.enc_input_extend_vocab) < max_len: self.enc_input_extend_vocab.append(pad_id) class Batch(object): """Class representing a minibatch of train/val/test examples for text summarization.""" def __init__(self, example_list, hps, vocab): """Turns the example_list into a Batch object. Args: example_list: List of Example objects hps: hyperparameters vocab: Vocabulary object """ self.pad_id = vocab.word2id(data.PAD_TOKEN) # id of the PAD token used to pad sequences self.init_encoder_seq(example_list, hps) # initialize the input to the encoder self.init_decoder_seq(example_list, hps) # initialize the input and targets for the decoder self.store_orig_strings(example_list) # store the original strings def init_encoder_seq(self, example_list, hps): """Initializes the following: self.enc_batch: numpy array of shape (batch_size, <=max_enc_steps) containing integer ids (all OOVs represented by UNK id), padded to length of longest sequence in the batch self.enc_lens: numpy array of shape (batch_size) containing integers. The (truncated) length of each encoder input sequence (pre-padding). self.enc_padding_mask: numpy array of shape (batch_size, <=max_enc_steps), containing 1s and 0s. 1s correspond to real tokens in enc_batch and target_batch; 0s correspond to padding. If hps.pointer_gen, additionally initializes the following: self.max_art_oovs: maximum number of in-article OOVs in the batch self.art_oovs: list of list of in-article OOVs (strings), for each example in the batch self.enc_batch_extend_vocab: Same as self.enc_batch, but in-article OOVs are represented by their temporary article OOV number. """ # Determine the maximum length of the encoder input sequence in this batch max_enc_seq_len = max([ex.enc_len for ex in example_list]) # Pad the encoder input sequences up to the length of the longest sequence for ex in example_list: ex.pad_encoder_input(max_enc_seq_len, self.pad_id) # Initialize the numpy arrays # Note: our enc_batch can have different length (second dimension) for each batch because we use dynamic_rnn for the encoder. self.enc_batch = np.zeros((hps.batch_size, max_enc_seq_len), dtype=np.int32) self.enc_lens = np.zeros((hps.batch_size), dtype=np.int32) self.enc_padding_mask = np.zeros((hps.batch_size, max_enc_seq_len), dtype=np.float32) # Fill in the numpy arrays for i, ex in enumerate(example_list): self.enc_batch[i, :] = ex.enc_input[:] self.enc_lens[i] = ex.enc_len for j in range(ex.enc_len): self.enc_padding_mask[i][j] = 1 # For pointer-generator mode, need to store some extra info if hps.pointer_gen: # Determine the max number of in-article OOVs in this batch self.max_art_oovs = max([len(ex.article_oovs) for ex in example_list]) # Store the in-article OOVs themselves self.art_oovs = [ex.article_oovs for ex in example_list] # Store the version of the enc_batch that uses the article OOV ids self.enc_batch_extend_vocab = np.zeros((hps.batch_size, max_enc_seq_len), dtype=np.int32) for i, ex in enumerate(example_list): self.enc_batch_extend_vocab[i, :] = ex.enc_input_extend_vocab[:] def init_decoder_seq(self, example_list, hps): """Initializes the following: self.dec_batch: numpy array of shape (batch_size, max_dec_steps), containing integer ids as input for the decoder, padded to max_dec_steps length. self.target_batch: numpy array of shape (batch_size, max_dec_steps), containing integer ids for the target sequence, padded to max_dec_steps length. self.dec_padding_mask: numpy array of shape (batch_size, max_dec_steps), containing 1s and 0s. 1s correspond to real tokens in dec_batch and target_batch; 0s correspond to padding. """ # Pad the inputs and targets for ex in example_list: ex.pad_decoder_inp_targ(hps.max_dec_steps, self.pad_id) # Initialize the numpy arrays. # Note: our decoder inputs and targets must be the same length for each batch (second dimension = max_dec_steps) because we do not use a dynamic_rnn for decoding. However I believe this is possible, or will soon be possible, with Tensorflow 1.0, in which case it may be best to upgrade to that. self.dec_batch = np.zeros((hps.batch_size, hps.max_dec_steps), dtype=np.int32) self.target_batch = np.zeros((hps.batch_size, hps.max_dec_steps), dtype=np.int32) self.dec_padding_mask = np.zeros((hps.batch_size, hps.max_dec_steps), dtype=np.float32) # Fill in the numpy arrays for i, ex in enumerate(example_list): self.dec_batch[i, :] = ex.dec_input[:] self.target_batch[i, :] = ex.target[:] for j in range(ex.dec_len): self.dec_padding_mask[i][j] = 1 def store_orig_strings(self, example_list): """Store the original article and abstract strings in the Batch object""" self.original_articles = [ex.original_article for ex in example_list] # list of lists self.original_abstracts = [ex.original_abstract for ex in example_list] # list of lists self.original_abstracts_sents = [ex.original_abstract_sents for ex in example_list] # list of list of lists class Batcher(object): """A class to generate minibatches of data. Buckets examples together based on length of the encoder sequence.""" BATCH_QUEUE_MAX = 100 # max number of batches the batch_queue can hold def __init__(self, data_path, vocab, hps, single_pass, abstract=None, article=None): """Initialize the batcher. Start threads that process the data into batches. Args: data_path: tf.Example filepattern. vocab: Vocabulary object hps: hyperparameters single_pass: If True, run through the dataset exactly once (useful for when you want to run evaluation on the dev or test set). Otherwise generate random batches indefinitely (useful for training). """ self._data_path = data_path self._vocab = vocab self._hps = hps self._single_pass = single_pass self._abstract = abstract self._article = article # Initialize a queue of Batches waiting to be used, and a queue of Examples waiting to be batched self._batch_queue = Queue.Queue(self.BATCH_QUEUE_MAX) self._example_queue = Queue.Queue(self.BATCH_QUEUE_MAX * self._hps.batch_size) # Different settings depending on whether we're in single_pass mode or not if single_pass: self._num_example_q_threads = 1 # just one thread, so we read through the dataset just once self._num_batch_q_threads = 1 # just one thread to batch examples self._bucketing_cache_size = 1 # only load one batch's worth of examples before bucketing; this essentially means no bucketing self._finished_reading = False # this will tell us when we're finished reading the dataset else: self._num_example_q_threads = 16 # num threads to fill example queue self._num_batch_q_threads = 4 # num threads to fill batch queue self._bucketing_cache_size = 100 # how many batches-worth of examples to load into cache before bucketing # Start the threads that load the queues self._example_q_threads = [] for _ in range(self._num_example_q_threads): self._example_q_threads.append(Thread(target=self.fill_example_queue)) self._example_q_threads[-1].daemon = True self._example_q_threads[-1].start() self._batch_q_threads = [] for _ in range(self._num_batch_q_threads): self._batch_q_threads.append(Thread(target=self.fill_batch_queue)) self._batch_q_threads[-1].daemon = True self._batch_q_threads[-1].start() # Start a thread that watches the other threads and restarts them if they're dead if not single_pass: # We don't want a watcher in single_pass mode because the threads shouldn't run forever self._watch_thread = Thread(target=self.watch_threads) self._watch_thread.daemon = True self._watch_thread.start() def next_batch(self): """Return a Batch from the batch queue. If mode='decode' then each batch contains a single example repeated beam_size-many times; this is necessary for beam search. Returns: batch: a Batch object, or None if we're in single_pass mode and we've exhausted the dataset. """ # If the batch queue is empty, print a warning if self._batch_queue.qsize() == 0: tf.logging.warning('Bucket input queue is empty when calling next_batch. Bucket queue size: %i, Input queue size: %i', self._batch_queue.qsize(), self._example_queue.qsize()) if self._single_pass and self._finished_reading: tf.logging.info("Finished reading dataset in single_pass mode.") return None batch = self._batch_queue.get() # get the next Batch return batch def fill_example_queue(self): """Reads data from file and processes into Examples which are then placed into the example queue.""" if self._abstract is not None and self._article is not None: input_gen = self.text_generator(data.example_generator2(self._abstract, self._article)) else: input_gen = self.text_generator(data.example_generator(self._data_path, self._single_pass)) while True: try: (article, abstract) = next(input_gen) # read the next example from file. article and abstract are both strings. except StopIteration: # if there are no more examples: tf.logging.info("The example generator for this example queue filling thread has exhausted data.") if self._single_pass: tf.logging.info("single_pass mode is on, so we've finished reading dataset. This thread is stopping.") self._finished_reading = True break else: raise Exception("single_pass mode is off but the example generator is out of data; error.") abstract_sentences = [sent.strip() for sent in data.abstract2sents(abstract)] # Use the <s> and </s> tags in abstract to get a list of sentences. example = Example(article, abstract_sentences, self._vocab, self._hps) # Process into an Example. self._example_queue.put(example) # place the Example in the example queue. def fill_batch_queue(self): """Takes Examples out of example queue, sorts them by encoder sequence length, processes into Batches and places them in the batch queue. In decode mode, makes batches that each contain a single example repeated. """ while True: if self._hps.mode != 'decode': # Get bucketing_cache_size-many batches of Examples into a list, then sort inputs = [] for _ in range(self._hps.batch_size * self._bucketing_cache_size): inputs.append(self._example_queue.get()) inputs = sorted(inputs, key=lambda inp: inp.enc_len) # sort by length of encoder sequence # Group the sorted Examples into batches, optionally shuffle the batches, and place in the batch queue. batches = [] for i in range(0, len(inputs), self._hps.batch_size): batches.append(inputs[i:i + self._hps.batch_size]) if not self._single_pass: shuffle(batches) for b in batches: # each b is a list of Example objects self._batch_queue.put(Batch(b, self._hps, self._vocab)) else: # beam search decode mode ex = self._example_queue.get() b = [ex for _ in range(self._hps.batch_size)] self._batch_queue.put(Batch(b, self._hps, self._vocab)) def watch_threads(self): """Watch example queue and batch queue threads and restart if dead.""" while True: time.sleep(60) for idx,t in enumerate(self._example_q_threads): if not t.is_alive(): # if the thread is dead tf.logging.error('Found example queue thread dead. Restarting.') new_t = Thread(target=self.fill_example_queue) self._example_q_threads[idx] = new_t new_t.daemon = True new_t.start() for idx,t in enumerate(self._batch_q_threads): if not t.is_alive(): # if the thread is dead tf.logging.error('Found batch queue thread dead. Restarting.') new_t = Thread(target=self.fill_batch_queue) self._batch_q_threads[idx] = new_t new_t.daemon = True new_t.start() def text_generator(self, example_generator): """Generates article and abstract text from tf.Example. Args: example_generator: a generator of tf.Examples from file. See data.example_generator""" while True: e = next(example_generator) # e is a tf.Example try: article_text = e.features.feature['article'].bytes_list.value[0].decode() # the article text was saved under the key 'article' in the data files abstract_text = e.features.feature['abstract'].bytes_list.value[0].decode() # the abstract text was saved under the key 'abstract' in the data files except ValueError: tf.logging.error('Failed to get article or abstract from example') continue if len(article_text)==0: # See https://github.com/abisee/pointer-generator/issues/1 tf.logging.warning('Found an example with empty article text. Skipping it.') else: yield (article_text, abstract_text)
stats.py
#!/usr/bin/env python3 # coding=utf-8 # # Python Script # # Copyleft © Manoel Vilela # # import pandas as pd # sudo pip install pandas import numpy as np # sudo pip install numpy from distutils.spawn import find_executable from optparse import OptionParser from os import path import os import time import itertools import threading import subprocess import re import sys import hashlib import fileinput import signal # # # Bulding classes # # SOLUTION_TIMEOUT_VALUE = 60 class TimeOutController: class TimeOut(Exception): pass def __init__(self, sec=SOLUTION_TIMEOUT_VALUE): signal.signal(signal.SIGALRM, self.raise_timeout) signal.alarm(sec) def cancel(self): signal.alarm(0) # disable alarm def raise_timeout(self, a, n): raise TimeOutController.TimeOut() class Checker(object): checked = [] def __init__(self, compiler, path): self.compiler = compiler.split() self.path = os.path.abspath(path) self.check() def check(self): binary = self.compiler[0] if binary not in self.checked and not find_executable(binary): raise EnvironmentError("{!r} not found. Do you have the compilers?".format(binary)) # noqa elif binary not in self.checked: self.checked += binary class Execute(Checker): """Interactive languages building""" def enter_dir(self): self.old_dir = os.getcwd() os.chdir(path.dirname(self.path)) def exit_dir(self): os.chdir(self.old_dir) def execute(self): self.enter_dir() before = time.time() args = self.compiler args += [self.path] try: toc = TimeOutController() program = subprocess.Popen(args, stdout=subprocess.PIPE) out, _ = program.communicate() except TimeOutController.TimeOut: out = b"TIMEOUT" program.kill() finally: toc.cancel() time_passed = time.time() - before self.exit_dir() return out, program.returncode, time_passed class Build(Checker): """For compiled languages: C++, C for example""" fout = "compiled.out" def compile(self): args = [self.compiler[0], self.path, "-o", self.output] + self.compiler[1:] program = subprocess.Popen(args, stdout=subprocess.PIPE) return program.wait() == 0 def execute(self): self.output = path.join(path.dirname(self.path), self.fout) if self.compile(): compiled = path.abspath(self.output) program = Execute("bash -c", "{}".format(compiled)) output = program.execute() os.remove(compiled) return output return b"compiles fails", EnvironmentError, 0 ERASE_LINE = "\x1b[2K" BUILD_SUPPORT = [ "Python", # you need python | pacman -Su python "Go", # you need golang | pacman -Su golang "Clojure", # you need clojure | pacman -Su clojure "CommonLisp", # you need clisp | pacman -Su clisp "Haskell", # you need ghc | pacman -Su ghc "Lua", # you need lua | pacman -Su lua5.3 "Ruby", # you need ruby | pacman -Su ruby "C", # you need gcc | pacman -Su gcc "C++", # you need | pacman -Su g++ "Elixir", # you need elixir | pacman -Su elixir "PHP", # you need php | pacman -Su php # "Swift", # you need swift | yaourt -Su swift # "Objective-C", # you need gcc-objc | pacman -Su gcc-objc "Scheme", "Racket", "Bash", # hmm, i think you already have this ] BUILD_FILES = ["stats.py", "stats.exs", "test", "add"] BUILD_MACHINE = { "Python": { "cmdline": "python3", "builder": Execute }, "Go": { "cmdline": "go run", "builder": Execute }, "Clojure": { "cmdline": "clojure", "builder": Execute }, "CommonLisp": { "cmdline": "sbcl --script", "builder": Execute }, "Racket": { "cmdline": "racket --script", "builder": Execute }, "Scheme": { "cmdline": "racket --script", "builder": Execute }, "Haskell": { "cmdline": "runhaskell", "builder": Execute }, "C": { "cmdline": "gcc -std=c99 -lm", "builder": Build }, "C++": { "cmdline": "g++ -std=c++0x", "builder": Build }, "Lua": { "cmdline": "lua", "builder": Execute }, "Ruby": { "cmdline": "ruby", "builder": Execute }, "Bash": { "cmdline": "bash", "builder": Execute }, "Elixir": { "cmdline": "elixir", "builder": Execute }, "Objective-C": { "cmdline": "gcc -Wall -lm -lobjc", "builder": Build }, "PHP": { "cmdline": "php", "builder": Execute }, "Swift": { "cmdline": "swift", "builder": Execute } } # CLI INTERFACE # -l (list languages with solutions) # -c (do count solutions) # -p (print the path) # -a all languages selected # -s language (search) # -b (build) # Examples of usage: # python stats.py --list # python stats.py --list --count # python stats.py --all --path # python stats.py --all --count # python stats.py -s Python -s Haskell -c # # # Cmdline parsing definitions # # def _callback(option, opt_str, value, parser): """ Used to parse several arguments for one option, knowing that arguments never start with a `-` and `--` """ assert value is None value = [] for arg in parser.rargs: # stop on --foo like options if arg[:2] == "--" and len(arg) > 2: break if arg[:1] == "-" and len(arg) > 1: break value.append(arg) del parser.rargs[:len(value)] setattr(parser.values, option.dest, value) parser = OptionParser() parser.add_option( "-l", "--list", help="Print a list of the languages whose have solutions", dest="list", action="store_true", default=False, ) parser.add_option( "-s", "--search", help="Choose the languages for print information", dest="search", action="append", default=[], nargs=1, ) parser.add_option( "-f", "--files", help="Receive a list of file paths to build them", dest="files", action="callback", callback=_callback, ) parser.add_option( "-c", "--count", help="Print the count of each solution", dest="count", action="store_true", default=False, ) parser.add_option( "-b", "--build", help="Execute the solutions and print each solution", dest="build", action="store_true", default=False, ) parser.add_option( "-p", "--path", help="Print the path of each solution", dest="path", action="store_true", default=False, ) parser.add_option( "-a", "--all", help="Select all the languages for search", dest="all", action="store_true", default=False, ) parser.add_option( "-m", "--blame", help="Show the slowest solutions that needs help", dest="blame", action="store_true", default=False, ) parser.add_option( "-g", "--graph", help="Make a cool graph with the final DataFrame data", dest="graph", action="store_true", default=False, ) parser.usage = "%prog [-s language] [-al] [-cpb] [--blame] [--files] [-g]" def walk_problems(root="."): """ Function: walk_problems Summary: Walking for repository to get each content of ProblemXXX Examples: Uniq behavior Returns: list of 3-uples of strings <list ("1", "2", "3"), ...> """ problem = re.compile("./Problem[0-9]{3}/") problems = [] for x in os.walk(root): if problem.match(x[0]) and "pycache" not in x[0]: problems.append(x) return problems def read_hashfile(fpath): """Read .hash based on fpath and clean the weird chars""" return open(fpath).read().strip(' -\n') def get_problem_hashes(): """ Function: get_problem_hashes Summary: Walking from each problem and return a tuple (problem_name, hash_content) Returns: list of tuples <problem_name: string, hash_content: string> """ hash_pattern = re.compile("./Problem[0-9]{3}") hashes = {} for file_tuple in os.walk("."): if hash_pattern.match(file_tuple[0]) and ".hash" in file_tuple[-1]: problem = file_tuple[0] hash_path = path.join(problem, '.hash') hash_content = read_hashfile(hash_path) hashes[problem.strip('./')] = hash_content return hashes def digest_answer(answer): clean_answer = answer.strip(' \n') return hashlib.md5(clean_answer.encode('utf-8')).hexdigest() def search_language(query, languages): """ Function: search_language Summary: Search for languages based on regex Examples: >>> search_language(["C"], ["C", "C++", "Python"]) ["C", "C++"] Attributes: @param (query): list of languages for search @param (languages): collections of languages normalized Returns: list of results as strings <list (string)> """ return set(query) & set(languages) def split_problem_language(path): """ Function: split_problem_language Summary: Get a path and split into problem and language Examples: >>> split_problem_language("./Problem001/Python") ["Problem001", "Python] Attributes: @param (path): path like ./Folder/Language Returns: [Problem, Language] <(string, string)> """ return path.strip("./").split("/") def is_solution(string): solution = re.compile("solution_+(?!out)") return solution.match(string) def parse_solutions(problems): """ Function: parse_solutions Summary: Organize the solutions of problems Examples: <NONE> Attributes: @param (problems): os.walk functions output Returns: problem:lang -> [solutions] <dict> """ map_solutions = {} for problem_path, dirs, files in problems: problem, lang = split_problem_language(problem_path) map_solutions.setdefault(problem, {}).setdefault(lang, []) for file in files: if is_solution(file): map_solutions[problem][lang].append(file) return map_solutions def load_dataframe(): """ Function: load_dataframe Summary: Load all solutions of repository at dataframe Examples: >>> df = load_dataframe()[] >>> py = df["Python"] Python Problem001 [solution_1.py, solution_2.py] Problem002 [solution_1.py] Problem003 [solution_1.py] Problem004 [solution_1.py] If you observe: (index + column_name) <- list_solutions -> filepaths! Returns: pd.DataFrame """ return pd.DataFrame.from_dict(parse_solutions(walk_problems()), "index") def solutions_paths(df, from_files=None): """ Function: load_filepaths Summary: Get each filepath of solutions based on pd.DataFrame Examples: >>> df = load_dataframe() >>> py = df[["CommonLisp"]] >>> load_filepaths(py) ["..."] Attributes: @param (df): pd.DataFrame Returns: list of file paths """ paths = [] if from_files: for problem, lang, s in from_files: paths.append((lang, path.join(problem, lang, s))) return paths for column in df.columns: solutions = df[df[column].notnull()][column] lang = solutions.name problems = solutions.index for problem in problems: p = ((lang, path.join(problem, lang, s)) for s in solutions[problem]) paths.extend(p) return paths def count_solutions(df, solutions=True): """ Function: count_solutions Summary: Count the number of solutions of each problem and language Examples: Iam tired... Attributes: @param (df): pd.DataFrame Returns: pd.DataFrame """ df = df.dropna(axis=1, how='all') # columns all nan df = df.dropna(how='all') # rows all nan df_ = pd.DataFrame() df_ = df.applymap(lambda x: len(x) if x is not np.NAN else 0) if len(df.columns) > 1 and solutions: df_["Solutions"] = df_[df_.columns].apply(tuple, axis=1).map(sum) df_ = df_[df_.Solutions > 0] return df_ def handle_files(files): """ Analyse files to return two lists : - solutions : list of files as 3-uple of strings that are more likely solutions on the format: (ProblemXXX, 'Lang', 'solution_x.y') - build_files : list of files that are more build files (stats.py, stats.exs, ...) """ solutions = [] build_files = [] for f in files: if f.count("/") == 2: solutions.append(tuple(f.split("/"))) elif f.count("/") == 1 and f.startswith("./"): dic = parse_solutions(walk_problems(f)) problem = list(dic.keys())[0] for lang in dic[problem]: for solution in dic[problem][lang]: solutions.append((problem, lang, solution)) elif f.count("/") == 0 and f in BUILD_FILES: build_files.append(f) return list(filter(lambda x: is_solution(x[2]), solutions)), build_files # docs? def spinner(control): animation = r"⣾⣽⣻⢿⡿⣟⣯" sys.stdout.write(3 * " ") for c in itertools.cycle(animation): current_time = time.time() - control.time message = "(" + c + ")" + " t: {:.2f}".format(current_time) sys.stdout.write(message) time.sleep(0.1) sys.stdout.write(len(message) * "\010") sys.stdout.flush() if control.done: break # need docs def choose_builder(lang, fpath): try: if lang in BUILD_MACHINE: builder = BUILD_MACHINE[lang]['builder'] cmdline = BUILD_MACHINE[lang]['cmdline'] b = builder(cmdline, fpath) else: raise Exception("Builder not configured for {!r}! Call the developer".format(lang)) # noqa except Exception as e: print("\n", e) os._exit(1) finally: return b # need docs def execute_builder(b): out, err, t = b.execute() answer = out.decode("utf-8").strip("\n") if err: print(err) os._exit(1) sys.stdout.write(ERASE_LINE) building = "\rBuilt {}: Answer: {}: {:.2f}s\n".format(b.path, answer, t) sys.stdout.write(building) sys.stdout.flush() return answer, t # need docs def build_result(df, ignore_errors=False, blame=False, only=()): class Control: # to handle the spinner time at each solution time = time.time() done = False control = Control() columns = ["Problem", "Language", "Time", "Answer", "Correct"] data = [] hashes = get_problem_hashes() spin_thread = threading.Thread(target=spinner, args=(control,)) spin_thread.start() _problems = only if only else solutions_paths(df) for lang, spath in _problems: if "slow" in spath and not blame: sys.stdout.write("\rIgnored {}: bad solution (slow).\n".format(spath)) # noqa continue if lang in BUILD_SUPPORT: sys.stdout.write("@Building next {}: {}".format(spath, 12 * ' ')) b = choose_builder(lang, spath) problem = split_problem_language(spath)[0] outtimed = False correct = False control.time = time.time() answer, t = execute_builder(b) outtimed = answer == "TIMEOUT" if (not outtimed) and problem in hashes: answer_hash = digest_answer(answer) correct = answer_hash == hashes[problem] data.append([problem, lang, t, answer, correct]) elif not ignore_errors: sys.stdout.write("\r{}: Don't have support yet for {!r}!\n".format(spath, lang)) # noqa sys.stdout.write("\r\n") sys.stdout.flush() control.done = True spin_thread.join() final_df = pd.DataFrame(data, columns=columns) return final_df.sort_values("Problem") def list_by_count(df): df_ = count_solutions(df, solutions=False) count = [sum(df_[lang]) for lang in df_.columns] table = pd.DataFrame(count, index=df_.columns, columns=["Solutions"]) return table.sort_values("Solutions", ascending=False) def blame_solutions(df): df_ = df.applymap( lambda solutions: [x for x in solutions if 'slow' in x] or np.NAN if solutions is not np.NAN else np.NAN ) return df_ # Problem015 -> 15 def remove_problem(df): df_ = df df_.Problem = df.Problem.map(lambda x: x.replace("Problem", "").strip('0')) return df_ def build_per_language(df): index = df.Problem.map(int).max() languages = set(df.Language) data = {lang: np.full(index, np.nan) for lang in languages} for _, row in df.iterrows(): data[row['Language']][int(row['Problem']) - 1] = row['Time'] df_ = pd.DataFrame(data, index=range(1, index + 1)).dropna(how='all') df_.index.name = 'Problems' return df_ def header(opts): return "Command: " + ' '.join([x.capitalize() for x in opts if opts[x]]) def handle_graph(df, options): import matplotlib.pyplot as plt import matplotlib cicle_colors = itertools.cycle(['b', 'r', 'g', 'y', 'k']) my_colors = itertools.islice(cicle_colors, None, len(df)) matplotlib.style.use('ggplot') if options.build: df = build_per_language(remove_problem(df)) df.plot() elif options.list and options.count: # Make a list by cycling through the colors you care about # to match the length of your data. df.plot(kind='barh', stacked=True, color=list(my_colors)) plt.show() def handle_options(options): df = load_dataframe() langs = {x.lower(): x for x in df.columns} query = [x.lower() for x in options.search] uncommited_solutions = [] uncommited_core_files = [] tbsolutions = [] count_ws = 0 # wrong solutions langs_selected = [langs[x] for x in search_language(query, langs)] if options.files: uncommited_solutions, uncommited_core_files = handle_files(options.files) if not uncommited_solutions and uncommited_core_files: sys.stdout.write( "\rForced to exit: No solutions to build\nChanged_core_files : \n {}".format( uncommited_core_files) ) sys.exit(0) tbsolutions = solutions_paths(df, from_files=uncommited_solutions) if options.all: langs_selected = [x for x in langs.values()] if options.blame: df = blame_solutions(df) if options.list: if options.count: df = list_by_count(df) elif options.path: langs_selected = [x for x in langs.values()] else: df = '\n'.join(sorted(df.dropna(axis=1, how='all').columns)) else: df = df[langs_selected] if options.count and not options.list: df = count_solutions(df) elif options.build: try: df = build_result(df[langs_selected], options.all, options.blame, only=tbsolutions) count_ws = list(df["Correct"]).count(False) correct_ratio = 1 - count_ws/len(df) if count_ws else 1 sys.stdout.write( "Correct solutions ratio : {0}% \n".format(correct_ratio * 100) ) except(SystemExit, KeyboardInterrupt): os._exit(1) elif options.path: df = '\n'.join(path for _, path in solutions_paths(df[langs_selected])) pd.set_option("display.max_rows", len(df)) print(df) if count_ws: sys.exit(1) if options.graph: handle_graph(df, options) def main(): options, _ = parser.parse_args() if not any(options.__dict__.values()): parser.print_help() os._exit(0) print(header(options.__dict__)) handle_options(options) if __name__ == "__main__": main()
__init__.py
#!/usr/bin/env python """ fs.tests: testcases for the fs module """ from __future__ import with_statement # Send any output from the logging module to stdout, so it will # be captured by nose and reported appropriately import sys import logging logging.basicConfig(level=logging.ERROR, stream=sys.stdout) from fs.base import * from fs.path import * from fs.errors import * from fs.filelike import StringIO import datetime import unittest import os import os.path import pickle import random import copy import time try: import threading except ImportError: import dummy_threading as threading import six from six import PY3, b class FSTestCases(object): """Base suite of testcases for filesystem implementations. Any FS subclass should be capable of passing all of these tests. To apply the tests to your own FS implementation, simply use FSTestCase as a mixin for your own unittest.TestCase subclass and have the setUp method set self.fs to an instance of your FS implementation. NB. The Filesystem being tested must have a capacity of at least 3MB. This class is designed as a mixin so that it's not detected by test loading tools such as nose. """ def check(self, p): """Check that a file exists within self.fs""" return self.fs.exists(p) def test_invalid_chars(self): """Check paths validate ok""" # Will have to be overriden selectively for custom validepath methods self.assertEqual(self.fs.validatepath(''), None) self.assertEqual(self.fs.validatepath('.foo'), None) self.assertEqual(self.fs.validatepath('foo'), None) self.assertEqual(self.fs.validatepath('foo/bar'), None) self.assert_(self.fs.isvalidpath('foo/bar')) def test_meta(self): """Checks getmeta / hasmeta are functioning""" # getmeta / hasmeta are hard to test, since there is no way to validate # the implementation's response meta_names = ["read_only", "network", "unicode_paths"] stupid_meta = 'thismetashouldnotexist!"r$$%^&&*()_+' self.assertRaises(NoMetaError, self.fs.getmeta, stupid_meta) self.assertFalse(self.fs.hasmeta(stupid_meta)) self.assertEquals(None, self.fs.getmeta(stupid_meta, None)) self.assertEquals(3.14, self.fs.getmeta(stupid_meta, 3.14)) for meta_name in meta_names: try: meta = self.fs.getmeta(meta_name) self.assertTrue(self.fs.hasmeta(meta_name)) except NoMetaError: self.assertFalse(self.fs.hasmeta(meta_name)) def test_root_dir(self): self.assertTrue(self.fs.isdir("")) self.assertTrue(self.fs.isdir("/")) # These may be false (e.g. empty dict) but mustn't raise errors self.fs.getinfo("") self.assertTrue(self.fs.getinfo("/") is not None) def test_getsyspath(self): try: syspath = self.fs.getsyspath("/") except NoSysPathError: pass else: self.assertTrue(isinstance(syspath, unicode)) syspath = self.fs.getsyspath("/", allow_none=True) if syspath is not None: self.assertTrue(isinstance(syspath, unicode)) def test_debug(self): str(self.fs) repr(self.fs) self.assert_(hasattr(self.fs, 'desc')) def test_open_on_directory(self): self.fs.makedir("testdir") try: f = self.fs.open("testdir") except ResourceInvalidError: pass except Exception: raise ecls = sys.exc_info()[0] assert False, "%s raised instead of ResourceInvalidError" % (ecls,) else: f.close() assert False, "ResourceInvalidError was not raised" def test_writefile(self): self.assertRaises(ResourceNotFoundError, self.fs.open, "test1.txt") f = self.fs.open("test1.txt", "wb") f.write(b("testing")) f.close() self.assertTrue(self.check("test1.txt")) f = self.fs.open("test1.txt", "rb") self.assertEquals(f.read(), b("testing")) f.close() f = self.fs.open("test1.txt", "wb") f.write(b("test file overwrite")) f.close() self.assertTrue(self.check("test1.txt")) f = self.fs.open("test1.txt", "rb") self.assertEquals(f.read(), b("test file overwrite")) f.close() def test_createfile(self): test = b('now with content') self.fs.createfile("test.txt") self.assert_(self.fs.exists("test.txt")) self.assertEqual(self.fs.getcontents("test.txt", "rb"), b('')) self.fs.setcontents("test.txt", test) self.fs.createfile("test.txt") self.assertEqual(self.fs.getcontents("test.txt", "rb"), test) self.fs.createfile("test.txt", wipe=True) self.assertEqual(self.fs.getcontents("test.txt", "rb"), b('')) def test_readline(self): text = b"Hello\nWorld\n" self.fs.setcontents('a.txt', text) with self.fs.open('a.txt', 'rb') as f: line = f.readline() self.assertEqual(line, b"Hello\n") def test_setcontents(self): # setcontents() should accept both a string... self.fs.setcontents("hello", b("world")) self.assertEquals(self.fs.getcontents("hello", "rb"), b("world")) # ...and a file-like object self.fs.setcontents("hello", StringIO(b("to you, good sir!"))) self.assertEquals(self.fs.getcontents( "hello", "rb"), b("to you, good sir!")) # setcontents() should accept both a string... self.fs.setcontents("hello", b("world"), chunk_size=2) self.assertEquals(self.fs.getcontents("hello", "rb"), b("world")) # ...and a file-like object self.fs.setcontents("hello", StringIO( b("to you, good sir!")), chunk_size=2) self.assertEquals(self.fs.getcontents( "hello", "rb"), b("to you, good sir!")) self.fs.setcontents("hello", b("")) self.assertEquals(self.fs.getcontents("hello", "rb"), b("")) def test_setcontents_async(self): # setcontents() should accept both a string... self.fs.setcontents_async("hello", b("world")).wait() self.assertEquals(self.fs.getcontents("hello", "rb"), b("world")) # ...and a file-like object self.fs.setcontents_async("hello", StringIO( b("to you, good sir!"))).wait() self.assertEquals(self.fs.getcontents("hello"), b("to you, good sir!")) self.fs.setcontents_async("hello", b("world"), chunk_size=2).wait() self.assertEquals(self.fs.getcontents("hello", "rb"), b("world")) # ...and a file-like object self.fs.setcontents_async("hello", StringIO( b("to you, good sir!")), chunk_size=2).wait() self.assertEquals(self.fs.getcontents( "hello", "rb"), b("to you, good sir!")) def test_isdir_isfile(self): self.assertFalse(self.fs.exists("dir1")) self.assertFalse(self.fs.isdir("dir1")) self.assertFalse(self.fs.isfile("a.txt")) self.fs.setcontents("a.txt", b('')) self.assertFalse(self.fs.isdir("dir1")) self.assertTrue(self.fs.exists("a.txt")) self.assertTrue(self.fs.isfile("a.txt")) self.assertFalse(self.fs.exists("a.txt/thatsnotadir")) self.fs.makedir("dir1") self.assertTrue(self.fs.isdir("dir1")) self.assertTrue(self.fs.exists("dir1")) self.assertTrue(self.fs.exists("a.txt")) self.fs.remove("a.txt") self.assertFalse(self.fs.exists("a.txt")) def test_listdir(self): def check_unicode(items): for item in items: self.assertTrue(isinstance(item, unicode)) self.fs.setcontents(u"a", b('')) self.fs.setcontents("b", b('')) self.fs.setcontents("foo", b('')) self.fs.setcontents("bar", b('')) # Test listing of the root directory d1 = self.fs.listdir() self.assertEqual(len(d1), 4) self.assertEqual(sorted(d1), [u"a", u"b", u"bar", u"foo"]) check_unicode(d1) d1 = self.fs.listdir("") self.assertEqual(len(d1), 4) self.assertEqual(sorted(d1), [u"a", u"b", u"bar", u"foo"]) check_unicode(d1) d1 = self.fs.listdir("/") self.assertEqual(len(d1), 4) check_unicode(d1) # Test listing absolute paths d2 = self.fs.listdir(absolute=True) self.assertEqual(len(d2), 4) self.assertEqual(sorted(d2), [u"/a", u"/b", u"/bar", u"/foo"]) check_unicode(d2) # Create some deeper subdirectories, to make sure their # contents are not inadvertantly included self.fs.makedir("p/1/2/3", recursive=True) self.fs.setcontents("p/1/2/3/a", b('')) self.fs.setcontents("p/1/2/3/b", b('')) self.fs.setcontents("p/1/2/3/foo", b('')) self.fs.setcontents("p/1/2/3/bar", b('')) self.fs.makedir("q") # Test listing just files, just dirs, and wildcards dirs_only = self.fs.listdir(dirs_only=True) files_only = self.fs.listdir(files_only=True) contains_a = self.fs.listdir(wildcard="*a*") self.assertEqual(sorted(dirs_only), [u"p", u"q"]) self.assertEqual(sorted(files_only), [u"a", u"b", u"bar", u"foo"]) self.assertEqual(sorted(contains_a), [u"a", u"bar"]) check_unicode(dirs_only) check_unicode(files_only) check_unicode(contains_a) # Test listing a subdirectory d3 = self.fs.listdir("p/1/2/3") self.assertEqual(len(d3), 4) self.assertEqual(sorted(d3), [u"a", u"b", u"bar", u"foo"]) check_unicode(d3) # Test listing a subdirectory with absoliute and full paths d4 = self.fs.listdir("p/1/2/3", absolute=True) self.assertEqual(len(d4), 4) self.assertEqual(sorted(d4), [u"/p/1/2/3/a", u"/p/1/2/3/b", u"/p/1/2/3/bar", u"/p/1/2/3/foo"]) check_unicode(d4) d4 = self.fs.listdir("p/1/2/3", full=True) self.assertEqual(len(d4), 4) self.assertEqual(sorted(d4), [u"p/1/2/3/a", u"p/1/2/3/b", u"p/1/2/3/bar", u"p/1/2/3/foo"]) check_unicode(d4) # Test that appropriate errors are raised self.assertRaises(ResourceNotFoundError, self.fs.listdir, "zebra") self.assertRaises(ResourceInvalidError, self.fs.listdir, "foo") def test_listdirinfo(self): def check_unicode(items): for (nm, info) in items: self.assertTrue(isinstance(nm, unicode)) def check_equal(items, target): names = [nm for (nm, info) in items] self.assertEqual(sorted(names), sorted(target)) self.fs.setcontents(u"a", b('')) self.fs.setcontents("b", b('')) self.fs.setcontents("foo", b('')) self.fs.setcontents("bar", b('')) # Test listing of the root directory d1 = self.fs.listdirinfo() self.assertEqual(len(d1), 4) check_equal(d1, [u"a", u"b", u"bar", u"foo"]) check_unicode(d1) d1 = self.fs.listdirinfo("") self.assertEqual(len(d1), 4) check_equal(d1, [u"a", u"b", u"bar", u"foo"]) check_unicode(d1) d1 = self.fs.listdirinfo("/") self.assertEqual(len(d1), 4) check_equal(d1, [u"a", u"b", u"bar", u"foo"]) check_unicode(d1) # Test listing absolute paths d2 = self.fs.listdirinfo(absolute=True) self.assertEqual(len(d2), 4) check_equal(d2, [u"/a", u"/b", u"/bar", u"/foo"]) check_unicode(d2) # Create some deeper subdirectories, to make sure their # contents are not inadvertantly included self.fs.makedir("p/1/2/3", recursive=True) self.fs.setcontents("p/1/2/3/a", b('')) self.fs.setcontents("p/1/2/3/b", b('')) self.fs.setcontents("p/1/2/3/foo", b('')) self.fs.setcontents("p/1/2/3/bar", b('')) self.fs.makedir("q") # Test listing just files, just dirs, and wildcards dirs_only = self.fs.listdirinfo(dirs_only=True) files_only = self.fs.listdirinfo(files_only=True) contains_a = self.fs.listdirinfo(wildcard="*a*") check_equal(dirs_only, [u"p", u"q"]) check_equal(files_only, [u"a", u"b", u"bar", u"foo"]) check_equal(contains_a, [u"a", u"bar"]) check_unicode(dirs_only) check_unicode(files_only) check_unicode(contains_a) # Test listing a subdirectory d3 = self.fs.listdirinfo("p/1/2/3") self.assertEqual(len(d3), 4) check_equal(d3, [u"a", u"b", u"bar", u"foo"]) check_unicode(d3) # Test listing a subdirectory with absoliute and full paths d4 = self.fs.listdirinfo("p/1/2/3", absolute=True) self.assertEqual(len(d4), 4) check_equal(d4, [u"/p/1/2/3/a", u"/p/1/2/3/b", u"/p/1/2/3/bar", u"/p/1/2/3/foo"]) check_unicode(d4) d4 = self.fs.listdirinfo("p/1/2/3", full=True) self.assertEqual(len(d4), 4) check_equal(d4, [u"p/1/2/3/a", u"p/1/2/3/b", u"p/1/2/3/bar", u"p/1/2/3/foo"]) check_unicode(d4) # Test that appropriate errors are raised self.assertRaises(ResourceNotFoundError, self.fs.listdirinfo, "zebra") self.assertRaises(ResourceInvalidError, self.fs.listdirinfo, "foo") def test_walk(self): self.fs.setcontents('a.txt', b('hello')) self.fs.setcontents('b.txt', b('world')) self.fs.makeopendir('foo').setcontents('c', b('123')) sorted_walk = sorted([(d, sorted(fs)) for (d, fs) in self.fs.walk()]) self.assertEquals(sorted_walk, [("/", ["a.txt", "b.txt"]), ("/foo", ["c"])]) # When searching breadth-first, shallow entries come first found_a = False for _, files in self.fs.walk(search="breadth"): if "a.txt" in files: found_a = True if "c" in files: break assert found_a, "breadth search order was wrong" # When searching depth-first, deep entries come first found_c = False for _, files in self.fs.walk(search="depth"): if "c" in files: found_c = True if "a.txt" in files: break assert found_c, "depth search order was wrong: " + \ str(list(self.fs.walk(search="depth"))) def test_walk_wildcard(self): self.fs.setcontents('a.txt', b('hello')) self.fs.setcontents('b.txt', b('world')) self.fs.makeopendir('foo').setcontents('c', b('123')) self.fs.makeopendir('.svn').setcontents('ignored', b('')) for dir_path, paths in self.fs.walk(wildcard='*.txt'): for path in paths: self.assert_(path.endswith('.txt')) for dir_path, paths in self.fs.walk(wildcard=lambda fn: fn.endswith('.txt')): for path in paths: self.assert_(path.endswith('.txt')) def test_walk_dir_wildcard(self): self.fs.setcontents('a.txt', b('hello')) self.fs.setcontents('b.txt', b('world')) self.fs.makeopendir('foo').setcontents('c', b('123')) self.fs.makeopendir('.svn').setcontents('ignored', b('')) for dir_path, paths in self.fs.walk(dir_wildcard=lambda fn: not fn.endswith('.svn')): for path in paths: self.assert_('.svn' not in path) def test_walkfiles(self): self.fs.makeopendir('bar').setcontents('a.txt', b('123')) self.fs.makeopendir('foo').setcontents('b', b('123')) self.assertEquals(sorted( self.fs.walkfiles()), ["/bar/a.txt", "/foo/b"]) self.assertEquals(sorted(self.fs.walkfiles( dir_wildcard="*foo*")), ["/foo/b"]) self.assertEquals(sorted(self.fs.walkfiles( wildcard="*.txt")), ["/bar/a.txt"]) def test_walkdirs(self): self.fs.makeopendir('bar').setcontents('a.txt', b('123')) self.fs.makeopendir('foo').makeopendir( "baz").setcontents('b', b('123')) self.assertEquals(sorted(self.fs.walkdirs()), [ "/", "/bar", "/foo", "/foo/baz"]) self.assertEquals(sorted(self.fs.walkdirs( wildcard="*foo*")), ["/", "/foo", "/foo/baz"]) def test_unicode(self): alpha = u"\N{GREEK SMALL LETTER ALPHA}" beta = u"\N{GREEK SMALL LETTER BETA}" self.fs.makedir(alpha) self.fs.setcontents(alpha + "/a", b('')) self.fs.setcontents(alpha + "/" + beta, b('')) self.assertTrue(self.check(alpha)) self.assertEquals(sorted(self.fs.listdir(alpha)), ["a", beta]) def test_makedir(self): check = self.check self.fs.makedir("a") self.assertTrue(check("a")) self.assertRaises( ParentDirectoryMissingError, self.fs.makedir, "a/b/c") self.fs.makedir("a/b/c", recursive=True) self.assert_(check("a/b/c")) self.fs.makedir("foo/bar/baz", recursive=True) self.assert_(check("foo/bar/baz")) self.fs.makedir("a/b/child") self.assert_(check("a/b/child")) self.assertRaises(DestinationExistsError, self.fs.makedir, "/a/b") self.fs.makedir("/a/b", allow_recreate=True) self.fs.setcontents("/a/file", b('')) self.assertRaises(ResourceInvalidError, self.fs.makedir, "a/file") def test_remove(self): self.fs.setcontents("a.txt", b('')) self.assertTrue(self.check("a.txt")) self.fs.remove("a.txt") self.assertFalse(self.check("a.txt")) self.assertRaises(ResourceNotFoundError, self.fs.remove, "a.txt") self.fs.makedir("dir1") self.assertRaises(ResourceInvalidError, self.fs.remove, "dir1") self.fs.setcontents("/dir1/a.txt", b('')) self.assertTrue(self.check("dir1/a.txt")) self.fs.remove("dir1/a.txt") self.assertFalse(self.check("/dir1/a.txt")) def test_removedir(self): check = self.check self.fs.makedir("a") self.assert_(check("a")) self.fs.removedir("a") self.assertRaises(ResourceNotFoundError, self.fs.removedir, "a") self.assert_(not check("a")) self.fs.makedir("a/b/c/d", recursive=True) self.assertRaises(DirectoryNotEmptyError, self.fs.removedir, "a/b") self.fs.removedir("a/b/c/d") self.assert_(not check("a/b/c/d")) self.fs.removedir("a/b/c") self.assert_(not check("a/b/c")) self.fs.removedir("a/b") self.assert_(not check("a/b")) # Test recursive removal of empty parent dirs self.fs.makedir("foo/bar/baz", recursive=True) self.fs.removedir("foo/bar/baz", recursive=True) self.assert_(not check("foo/bar/baz")) self.assert_(not check("foo/bar")) self.assert_(not check("foo")) self.fs.makedir("foo/bar/baz", recursive=True) self.fs.setcontents("foo/file.txt", b("please don't delete me")) self.fs.removedir("foo/bar/baz", recursive=True) self.assert_(not check("foo/bar/baz")) self.assert_(not check("foo/bar")) self.assert_(check("foo/file.txt")) # Ensure that force=True works as expected self.fs.makedir("frollic/waggle", recursive=True) self.fs.setcontents("frollic/waddle.txt", b("waddlewaddlewaddle")) self.assertRaises(DirectoryNotEmptyError, self.fs.removedir, "frollic") self.assertRaises( ResourceInvalidError, self.fs.removedir, "frollic/waddle.txt") self.fs.removedir("frollic", force=True) self.assert_(not check("frollic")) # Test removing unicode dirs kappa = u"\N{GREEK CAPITAL LETTER KAPPA}" self.fs.makedir(kappa) self.assert_(self.fs.isdir(kappa)) self.fs.removedir(kappa) self.assertRaises(ResourceNotFoundError, self.fs.removedir, kappa) self.assert_(not self.fs.isdir(kappa)) self.fs.makedir(pathjoin("test", kappa), recursive=True) self.assert_(check(pathjoin("test", kappa))) self.fs.removedir("test", force=True) self.assert_(not check("test")) def test_rename(self): check = self.check # test renaming a file in the same directory self.fs.setcontents("foo.txt", b("Hello, World!")) self.assert_(check("foo.txt")) self.fs.rename("foo.txt", "bar.txt") self.assert_(check("bar.txt")) self.assert_(not check("foo.txt")) # test renaming a directory in the same directory self.fs.makedir("dir_a") self.fs.setcontents("dir_a/test.txt", b("testerific")) self.assert_(check("dir_a")) self.fs.rename("dir_a", "dir_b") self.assert_(check("dir_b")) self.assert_(check("dir_b/test.txt")) self.assert_(not check("dir_a/test.txt")) self.assert_(not check("dir_a")) # test renaming a file into a different directory self.fs.makedir("dir_a") self.fs.rename("dir_b/test.txt", "dir_a/test.txt") self.assert_(not check("dir_b/test.txt")) self.assert_(check("dir_a/test.txt")) # test renaming a file into a non-existent directory self.assertRaises(ParentDirectoryMissingError, self.fs.rename, "dir_a/test.txt", "nonexistent/test.txt") def test_info(self): test_str = b("Hello, World!") self.fs.setcontents("info.txt", test_str) info = self.fs.getinfo("info.txt") self.assertEqual(info['size'], len(test_str)) self.fs.desc("info.txt") self.assertRaises(ResourceNotFoundError, self.fs.getinfo, "notafile") self.assertRaises( ResourceNotFoundError, self.fs.getinfo, "info.txt/inval") def test_infokeys(self): test_str = b("Hello, World!") self.fs.setcontents("info.txt", test_str) info = self.fs.getinfo("info.txt") for k, v in info.iteritems(): self.assertEqual(self.fs.getinfokeys('info.txt', k), {k: v}) test_info = {} if 'modified_time' in info: test_info['modified_time'] = info['modified_time'] if 'size' in info: test_info['size'] = info['size'] self.assertEqual(self.fs.getinfokeys('info.txt', 'size', 'modified_time'), test_info) self.assertEqual(self.fs.getinfokeys('info.txt', 'thiscantpossiblyexistininfo'), {}) def test_getsize(self): test_str = b("*") * 23 self.fs.setcontents("info.txt", test_str) size = self.fs.getsize("info.txt") self.assertEqual(size, len(test_str)) def test_movefile(self): check = self.check contents = b( "If the implementation is hard to explain, it's a bad idea.") def makefile(path): self.fs.setcontents(path, contents) def checkcontents(path): check_contents = self.fs.getcontents(path, "rb") self.assertEqual(check_contents, contents) return contents == check_contents self.fs.makedir("foo/bar", recursive=True) makefile("foo/bar/a.txt") self.assert_(check("foo/bar/a.txt")) self.assert_(checkcontents("foo/bar/a.txt")) self.fs.move("foo/bar/a.txt", "foo/b.txt") self.assert_(not check("foo/bar/a.txt")) self.assert_(check("foo/b.txt")) self.assert_(checkcontents("foo/b.txt")) self.fs.move("foo/b.txt", "c.txt") self.assert_(not check("foo/b.txt")) self.assert_(check("/c.txt")) self.assert_(checkcontents("/c.txt")) makefile("foo/bar/a.txt") self.assertRaises( DestinationExistsError, self.fs.move, "foo/bar/a.txt", "/c.txt") self.assert_(check("foo/bar/a.txt")) self.assert_(check("/c.txt")) self.fs.move("foo/bar/a.txt", "/c.txt", overwrite=True) self.assert_(not check("foo/bar/a.txt")) self.assert_(check("/c.txt")) def test_movedir(self): check = self.check contents = b( "If the implementation is hard to explain, it's a bad idea.") def makefile(path): self.fs.setcontents(path, contents) self.assertRaises(ResourceNotFoundError, self.fs.movedir, "a", "b") self.fs.makedir("a") self.fs.makedir("b") makefile("a/1.txt") makefile("a/2.txt") makefile("a/3.txt") self.fs.makedir("a/foo/bar", recursive=True) makefile("a/foo/bar/baz.txt") self.fs.movedir("a", "copy of a") self.assert_(self.fs.isdir("copy of a")) self.assert_(check("copy of a/1.txt")) self.assert_(check("copy of a/2.txt")) self.assert_(check("copy of a/3.txt")) self.assert_(check("copy of a/foo/bar/baz.txt")) self.assert_(not check("a/1.txt")) self.assert_(not check("a/2.txt")) self.assert_(not check("a/3.txt")) self.assert_(not check("a/foo/bar/baz.txt")) self.assert_(not check("a/foo/bar")) self.assert_(not check("a/foo")) self.assert_(not check("a")) self.fs.makedir("a") self.assertRaises( DestinationExistsError, self.fs.movedir, "copy of a", "a") self.fs.movedir("copy of a", "a", overwrite=True) self.assert_(not check("copy of a")) self.assert_(check("a/1.txt")) self.assert_(check("a/2.txt")) self.assert_(check("a/3.txt")) self.assert_(check("a/foo/bar/baz.txt")) def test_cant_copy_from_os(self): sys_executable = os.path.abspath(os.path.realpath(sys.executable)) self.assertRaises(FSError, self.fs.copy, sys_executable, "py.exe") def test_copyfile(self): check = self.check contents = b( "If the implementation is hard to explain, it's a bad idea.") def makefile(path, contents=contents): self.fs.setcontents(path, contents) def checkcontents(path, contents=contents): check_contents = self.fs.getcontents(path, "rb") self.assertEqual(check_contents, contents) return contents == check_contents self.fs.makedir("foo/bar", recursive=True) makefile("foo/bar/a.txt") self.assert_(check("foo/bar/a.txt")) self.assert_(checkcontents("foo/bar/a.txt")) # import rpdb2; rpdb2.start_embedded_debugger('password'); self.fs.copy("foo/bar/a.txt", "foo/b.txt") self.assert_(check("foo/bar/a.txt")) self.assert_(check("foo/b.txt")) self.assert_(checkcontents("foo/bar/a.txt")) self.assert_(checkcontents("foo/b.txt")) self.fs.copy("foo/b.txt", "c.txt") self.assert_(check("foo/b.txt")) self.assert_(check("/c.txt")) self.assert_(checkcontents("/c.txt")) makefile("foo/bar/a.txt", b("different contents")) self.assert_(checkcontents("foo/bar/a.txt", b("different contents"))) self.assertRaises( DestinationExistsError, self.fs.copy, "foo/bar/a.txt", "/c.txt") self.assert_(checkcontents("/c.txt")) self.fs.copy("foo/bar/a.txt", "/c.txt", overwrite=True) self.assert_(checkcontents("foo/bar/a.txt", b("different contents"))) self.assert_(checkcontents("/c.txt", b("different contents"))) def test_copydir(self): check = self.check contents = b( "If the implementation is hard to explain, it's a bad idea.") def makefile(path): self.fs.setcontents(path, contents) def checkcontents(path): check_contents = self.fs.getcontents(path) self.assertEqual(check_contents, contents) return contents == check_contents self.fs.makedir("a") self.fs.makedir("b") makefile("a/1.txt") makefile("a/2.txt") makefile("a/3.txt") self.fs.makedir("a/foo/bar", recursive=True) makefile("a/foo/bar/baz.txt") self.fs.copydir("a", "copy of a") self.assert_(check("copy of a/1.txt")) self.assert_(check("copy of a/2.txt")) self.assert_(check("copy of a/3.txt")) self.assert_(check("copy of a/foo/bar/baz.txt")) checkcontents("copy of a/1.txt") self.assert_(check("a/1.txt")) self.assert_(check("a/2.txt")) self.assert_(check("a/3.txt")) self.assert_(check("a/foo/bar/baz.txt")) checkcontents("a/1.txt") self.assertRaises(DestinationExistsError, self.fs.copydir, "a", "b") self.fs.copydir("a", "b", overwrite=True) self.assert_(check("b/1.txt")) self.assert_(check("b/2.txt")) self.assert_(check("b/3.txt")) self.assert_(check("b/foo/bar/baz.txt")) checkcontents("b/1.txt") def test_copydir_with_dotfile(self): check = self.check contents = b( "If the implementation is hard to explain, it's a bad idea.") def makefile(path): self.fs.setcontents(path, contents) self.fs.makedir("a") makefile("a/1.txt") makefile("a/2.txt") makefile("a/.hidden.txt") self.fs.copydir("a", "copy of a") self.assert_(check("copy of a/1.txt")) self.assert_(check("copy of a/2.txt")) self.assert_(check("copy of a/.hidden.txt")) self.assert_(check("a/1.txt")) self.assert_(check("a/2.txt")) self.assert_(check("a/.hidden.txt")) def test_readwriteappendseek(self): def checkcontents(path, check_contents): read_contents = self.fs.getcontents(path, "rb") self.assertEqual(read_contents, check_contents) return read_contents == check_contents test_strings = [b("Beautiful is better than ugly."), b("Explicit is better than implicit."), b("Simple is better than complex.")] all_strings = b("").join(test_strings) self.assertRaises(ResourceNotFoundError, self.fs.open, "a.txt", "r") self.assert_(not self.fs.exists("a.txt")) f1 = self.fs.open("a.txt", "wb") pos = 0 for s in test_strings: f1.write(s) pos += len(s) self.assertEqual(pos, f1.tell()) f1.close() self.assert_(self.fs.exists("a.txt")) self.assert_(checkcontents("a.txt", all_strings)) f2 = self.fs.open("b.txt", "wb") f2.write(test_strings[0]) f2.close() self.assert_(checkcontents("b.txt", test_strings[0])) f3 = self.fs.open("b.txt", "ab") # On win32, tell() gives zero until you actually write to the file # self.assertEquals(f3.tell(),len(test_strings[0])) f3.write(test_strings[1]) self.assertEquals(f3.tell(), len(test_strings[0])+len(test_strings[1])) f3.write(test_strings[2]) self.assertEquals(f3.tell(), len(all_strings)) f3.close() self.assert_(checkcontents("b.txt", all_strings)) f4 = self.fs.open("b.txt", "wb") f4.write(test_strings[2]) f4.close() self.assert_(checkcontents("b.txt", test_strings[2])) f5 = self.fs.open("c.txt", "wb") for s in test_strings: f5.write(s+b("\n")) f5.close() f6 = self.fs.open("c.txt", "rb") for s, t in zip(f6, test_strings): self.assertEqual(s, t+b("\n")) f6.close() f7 = self.fs.open("c.txt", "rb") f7.seek(13) word = f7.read(6) self.assertEqual(word, b("better")) f7.seek(1, os.SEEK_CUR) word = f7.read(4) self.assertEqual(word, b("than")) f7.seek(-9, os.SEEK_END) word = f7.read(7) self.assertEqual(word, b("complex")) f7.close() self.assertEqual(self.fs.getcontents("a.txt", "rb"), all_strings) def test_truncate(self): def checkcontents(path, check_contents): read_contents = self.fs.getcontents(path, "rb") self.assertEqual(read_contents, check_contents) return read_contents == check_contents self.fs.setcontents("hello", b("world")) checkcontents("hello", b("world")) self.fs.setcontents("hello", b("hi")) checkcontents("hello", b("hi")) self.fs.setcontents("hello", b("1234567890")) checkcontents("hello", b("1234567890")) with self.fs.open("hello", "rb+") as f: f.truncate(7) checkcontents("hello", b("1234567")) with self.fs.open("hello", "rb+") as f: f.seek(5) f.truncate() checkcontents("hello", b("12345")) def test_truncate_to_larger_size(self): with self.fs.open("hello", "wb") as f: f.truncate(30) self.assertEquals(self.fs.getsize("hello"), 30) # Some file systems (FTPFS) don't support both reading and writing if self.fs.getmeta('file.read_and_write', True): with self.fs.open("hello", "rb+") as f: f.seek(25) f.write(b("123456")) with self.fs.open("hello", "rb") as f: f.seek(25) self.assertEquals(f.read(), b("123456")) def test_write_past_end_of_file(self): if self.fs.getmeta('file.read_and_write', True): with self.fs.open("write_at_end", "wb") as f: f.seek(25) f.write(b("EOF")) with self.fs.open("write_at_end", "rb") as f: self.assertEquals(f.read(), b("\x00")*25 + b("EOF")) def test_with_statement(self): # This is a little tricky since 'with' is actually new syntax. # We use eval() to make this method safe for old python versions. import sys if sys.version_info[0] >= 2 and sys.version_info[1] >= 5: # A successful 'with' statement contents = "testing the with statement" code = "from __future__ import with_statement\n" code += "with self.fs.open('f.txt','wb-') as testfile:\n" code += " testfile.write(contents)\n" code += "self.assertEquals(self.fs.getcontents('f.txt', 'rb'),contents)" code = compile(code, "<string>", 'exec') eval(code) # A 'with' statement raising an error contents = "testing the with statement" code = "from __future__ import with_statement\n" code += "with self.fs.open('f.txt','wb-') as testfile:\n" code += " testfile.write(contents)\n" code += " raise ValueError\n" code = compile(code, "<string>", 'exec') self.assertRaises(ValueError, eval, code, globals(), locals()) self.assertEquals(self.fs.getcontents('f.txt', 'rb'), contents) def test_pickling(self): if self.fs.getmeta('pickle_contents', True): self.fs.setcontents("test1", b("hello world")) fs2 = pickle.loads(pickle.dumps(self.fs)) self.assert_(fs2.isfile("test1")) fs3 = pickle.loads(pickle.dumps(self.fs, -1)) self.assert_(fs3.isfile("test1")) else: # Just make sure it doesn't throw an exception fs2 = pickle.loads(pickle.dumps(self.fs)) def test_big_file(self): """Test handling of a big file (1MB)""" chunk_size = 1024 * 256 num_chunks = 4 def chunk_stream(): """Generate predictable-but-randomy binary content.""" r = random.Random(0) randint = r.randint int2byte = six.int2byte for _i in xrange(num_chunks): c = b("").join(int2byte(randint( 0, 255)) for _j in xrange(chunk_size//8)) yield c * 8 f = self.fs.open("bigfile", "wb") try: for chunk in chunk_stream(): f.write(chunk) finally: f.close() chunks = chunk_stream() f = self.fs.open("bigfile", "rb") try: try: while True: if chunks.next() != f.read(chunk_size): assert False, "bigfile was corrupted" except StopIteration: if f.read() != b(""): assert False, "bigfile was corrupted" finally: f.close() def test_settimes(self): def cmp_datetimes(d1, d2): """Test datetime objects are the same to within the timestamp accuracy""" dts1 = time.mktime(d1.timetuple()) dts2 = time.mktime(d2.timetuple()) return int(dts1) == int(dts2) d1 = datetime.datetime(2010, 6, 20, 11, 0, 9, 987699) d2 = datetime.datetime(2010, 7, 5, 11, 0, 9, 500000) self.fs.setcontents('/dates.txt', b('check dates')) # If the implementation supports settimes, check that the times # can be set and then retrieved try: self.fs.settimes('/dates.txt', d1, d2) except UnsupportedError: pass else: info = self.fs.getinfo('/dates.txt') self.assertTrue(cmp_datetimes(d1, info['accessed_time'])) self.assertTrue(cmp_datetimes(d2, info['modified_time'])) def test_removeroot(self): self.assertRaises(RemoveRootError, self.fs.removedir, "/") def test_zero_read(self): """Test read(0) returns empty string""" self.fs.setcontents('foo.txt', b('Hello, World')) with self.fs.open('foo.txt', 'rb') as f: self.assert_(len(f.read(0)) == 0) with self.fs.open('foo.txt', 'rt') as f: self.assert_(len(f.read(0)) == 0) # May be disabled - see end of file class ThreadingTestCases(object): """Testcases for thread-safety of FS implementations.""" # These are either too slow to be worth repeating, # or cannot possibly break cross-thread. _dont_retest = ("test_pickling", "test_multiple_overwrite",) __lock = threading.RLock() def _yield(self): # time.sleep(0.001) # Yields without a delay time.sleep(0) def _lock(self): self.__lock.acquire() def _unlock(self): self.__lock.release() def _makeThread(self, func, errors): def runThread(): try: func() except Exception: errors.append(sys.exc_info()) thread = threading.Thread(target=runThread) thread.daemon = True return thread def _runThreads(self, *funcs): check_interval = sys.getcheckinterval() sys.setcheckinterval(1) try: errors = [] threads = [self._makeThread(f, errors) for f in funcs] for t in threads: t.start() for t in threads: t.join() for (c, e, t) in errors: raise e, None, t finally: sys.setcheckinterval(check_interval) def test_setcontents_threaded(self): def setcontents(name, contents): f = self.fs.open(name, "wb") self._yield() try: f.write(contents) self._yield() finally: f.close() def thread1(): c = b("thread1 was 'ere") setcontents("thread1.txt", c) self.assertEquals(self.fs.getcontents("thread1.txt", 'rb'), c) def thread2(): c = b("thread2 was 'ere") setcontents("thread2.txt", c) self.assertEquals(self.fs.getcontents("thread2.txt", 'rb'), c) self._runThreads(thread1, thread2) def test_setcontents_threaded_samefile(self): def setcontents(name, contents): f = self.fs.open(name, "wb") self._yield() try: f.write(contents) self._yield() finally: f.close() def thread1(): c = b("thread1 was 'ere") setcontents("threads.txt", c) self._yield() self.assertEquals(self.fs.listdir("/"), ["threads.txt"]) def thread2(): c = b("thread2 was 'ere") setcontents("threads.txt", c) self._yield() self.assertEquals(self.fs.listdir("/"), ["threads.txt"]) def thread3(): c = b("thread3 was 'ere") setcontents("threads.txt", c) self._yield() self.assertEquals(self.fs.listdir("/"), ["threads.txt"]) try: self._runThreads(thread1, thread2, thread3) except ResourceLockedError: # that's ok, some implementations don't support concurrent writes pass def test_cases_in_separate_dirs(self): class TestCases_in_subdir(self.__class__, unittest.TestCase): """Run all testcases against a subdir of self.fs""" def __init__(this, subdir): super(TestCases_in_subdir, this).__init__("test_listdir") this.subdir = subdir for meth in dir(this): if not meth.startswith("test_"): continue if meth in self._dont_retest: continue if not hasattr(FSTestCases, meth): continue if self.fs.exists(subdir): self.fs.removedir(subdir, force=True) self.assertFalse(self.fs.isdir(subdir)) self.assertTrue(self.fs.isdir("/")) self.fs.makedir(subdir) self._yield() getattr(this, meth)() @property def fs(this): return self.fs.opendir(this.subdir) def check(this, p): return self.check(pathjoin(this.subdir, relpath(p))) def thread1(): TestCases_in_subdir("thread1") def thread2(): TestCases_in_subdir("thread2") def thread3(): TestCases_in_subdir("thread3") self._runThreads(thread1, thread2, thread3) def test_makedir_winner(self): errors = [] def makedir(): try: self.fs.makedir("testdir") except DestinationExistsError, e: errors.append(e) def makedir_noerror(): try: self.fs.makedir("testdir", allow_recreate=True) except DestinationExistsError, e: errors.append(e) def removedir(): try: self.fs.removedir("testdir") except (ResourceNotFoundError, ResourceLockedError), e: errors.append(e) # One thread should succeed, one should error self._runThreads(makedir, makedir) self.assertEquals(len(errors), 1) self.fs.removedir("testdir") # One thread should succeed, two should error errors = [] self._runThreads(makedir, makedir, makedir) if len(errors) != 2: raise AssertionError(errors) self.fs.removedir("testdir") # All threads should succeed errors = [] self._runThreads(makedir_noerror, makedir_noerror, makedir_noerror) self.assertEquals(len(errors), 0) self.assertTrue(self.fs.isdir("testdir")) self.fs.removedir("testdir") # makedir() can beat removedir() and vice-versa errors = [] self._runThreads(makedir, removedir) if self.fs.isdir("testdir"): self.assertEquals(len(errors), 1) self.assertFalse(isinstance(errors[0], DestinationExistsError)) self.fs.removedir("testdir") else: self.assertEquals(len(errors), 0) def test_concurrent_copydir(self): self.fs.makedir("a") self.fs.makedir("a/b") self.fs.setcontents("a/hello.txt", b("hello world")) self.fs.setcontents("a/guido.txt", b("is a space alien")) self.fs.setcontents("a/b/parrot.txt", b("pining for the fiords")) def copydir(): self._yield() self.fs.copydir("a", "copy of a") def copydir_overwrite(): self._yield() self.fs.copydir("a", "copy of a", overwrite=True) # This should error out since we're not overwriting self.assertRaises( DestinationExistsError, self._runThreads, copydir, copydir) self.assert_(self.fs.isdir('a')) self.assert_(self.fs.isdir('a')) copydir_overwrite() self.assert_(self.fs.isdir('a')) # This should run to completion and give a valid state, unless # files get locked when written to. try: self._runThreads(copydir_overwrite, copydir_overwrite) except ResourceLockedError: pass self.assertTrue(self.fs.isdir("copy of a")) self.assertTrue(self.fs.isdir("copy of a/b")) self.assertEqual(self.fs.getcontents( "copy of a/b/parrot.txt", 'rb'), b("pining for the fiords")) self.assertEqual(self.fs.getcontents( "copy of a/hello.txt", 'rb'), b("hello world")) self.assertEqual(self.fs.getcontents( "copy of a/guido.txt", 'rb'), b("is a space alien")) def test_multiple_overwrite(self): contents = [b("contents one"), b( "contents the second"), b("number three")] def thread1(): for i in xrange(30): for c in contents: self.fs.setcontents("thread1.txt", c) self.assertEquals(self.fs.getsize("thread1.txt"), len(c)) self.assertEquals(self.fs.getcontents( "thread1.txt", 'rb'), c) def thread2(): for i in xrange(30): for c in contents: self.fs.setcontents("thread2.txt", c) self.assertEquals(self.fs.getsize("thread2.txt"), len(c)) self.assertEquals(self.fs.getcontents( "thread2.txt", 'rb'), c) self._runThreads(thread1, thread2) # Uncomment to temporarily disable threading tests # class ThreadingTestCases(object): # _dont_retest = ()
api.py
import json import time import random import threading import signal import os from vk_api.http_util import HttpUtil from urllib.parse import urlparse, parse_qs from vk_api.logger import Logger from vk_api.tokenizer import Tokenizer class VkApi: def __init__(self, options): """ Создание объекта API :param options: """ self.commands = [] self.options = options self.authorize_url = "https://oauth.vk.com/authorize" self.redirect_uri = "http://oauth.vk.com/blank.html" self.action = "https://login.vk.com/?act=login&soft=1&utf8=1" self.method_action = "https://api.vk.com/method/" self.auth_config = { "client_id": self.options['client_id'], "redirect_uri": self.redirect_uri, "display": "mobile", "response_type": "token", "scope": self.options['scope'], "v": self.options['api_v'], "revoke": 1 } self.token = None self.logger = Logger.get_logger('vk_api') self.symbol_command = '@' self.symbol_answer = '#' signal.signal(signal.SIGINT, self.handler_signal) def get_token(self, api): """ Проверка на существование уже полученного токена Или его повторное получение, в случае его отсутствия :return: """ if 'token' not in self.options: token = Tokenizer('.token', api) token.token_init() else: self.logger.info('Авторизация черезе токен группы') self.set_token(self.options['token']) def set_token(self, token): """ Установка токена :param token: :return: """ if token: self.token = token else: self.logger.error('Проверьте настройки конфигурации!') exit() def login(self): """ Авторизация и получение токена API VK """ self.logger.log('Авторизация') http = HttpUtil() auth_page = http.get_parse(self.authorize_url, self.auth_config) form_el = {} for el in auth_page['parse'].find_all('input'): if 'name' in el.attrs and 'value' in el.attrs: form_el.update({el.attrs['name']: el.attrs['value']}) form_el.update({'email': self.options['login'], 'pass': self.options['password']}) response = http.parse(http.post(self.action, form_el)['content']) action = response.find('div', class_='form_item').form.attrs['action'] response_get_token = http.get(action) url_token = urlparse(response_get_token['url']) try: self.set_token(parse_qs(url_token.fragment, encoding='utf8')['access_token'][0]) except KeyError: self.logger.error(json.loads(response_get_token['content'])) if self.token is not None: self.logger.log('Авторизация завершена') else: self.logger.error('Ошибка авторизации') exit() def query(self, name, params): """ Выполнение запроса к API VK :param name: :param params: :return: """ http = HttpUtil() query_param = [] for k, v in params.items(): query_param.append(str(str(k) + "=" + str(v))) url = "https://api.vk.com/method/" + name + "?" + '&'.join(query_param) + \ "&access_token=" + self.token + "&v=" + self.options['api_v'] query = http.get(url) response = json.loads(query['content']) time.sleep(self.timeout()) if 'error' in response: return json.loads(query['content'])['error'] else: return json.loads(query['content'])['response'] def get_long_poll(self): """ Инициализация getLongPoll :return: """ pts = self.query('groups.getLongPollServer', {'group_id': self.options['group_id']}) return pts def get_ts(self, server, key, ts): """ Получение TS для API getLongPoll :param server: :param key: :param ts: :return: """ http = HttpUtil() url_server = server + '?act=a_check&key=' + key + '&ts=' + ts + '&wait=25' response = http.get(url_server) return json.loads(response['content']) def init_long_poll(self): """ Реализация getLongPool подключения :return: """ pts = self.get_long_poll() key = pts['key'] server = pts['server'] while True: pts = self.get_ts(server, key, pts['ts']) if 'updates' not in pts: pts = self.get_long_poll() key = pts['key'] server = pts['server'] else: self.middleware(pts['updates']) def long_poll(self): """ Инициализация и запуск процесса LongPoll :return: """ thread = threading.Thread(target=self.init_long_poll) thread.start() self.logger.info('Long pull запущен') def middleware(self, items): """ Обработчик поступающих событий :param items: :return: """ if items is not None: for item in items: thread = threading.Thread(target=self.thread_object, args=[self.is_command, item]) thread.start() def handler_signal(self, signal_proc, frame): """ Уничтожение процесса :param signal_proc: :param frame: :return: """ pid = os.getpid() os.kill(pid, signal.SIGKILL) def register_commands(self, *commands): """ Регистрация комманд :param commands: :return: """ for cmd in commands: command = cmd() self.commands.append({'name': command.name, 'event': command.event, 'result': command.result, 'filter': command.filter}) def register_symbol_command(self, symbol): """ Регистрация символа команды :param symbol: :return: """ self.symbol_command = symbol def register_symbol_answer(self, symbol): """ Регистрация символа ответа :param symbol: :return: """ self.symbol_answer = symbol def is_command(self, item): """ Проверка: является ли сообщение командой :param item: :return: """ for cmd in self.commands: event = item['type'] if event == cmd['event']: if cmd['filter'](item['object'], self.symbol_command, self.symbol_answer): resposne = cmd['result'](self, item) if resposne: self.replay(resposne, item) def replay(self, text, item): """ Ответ, если он предусмотрен командой :param text: :param item: :return: """ peer_id = item['object']['peer_id'] random_id = random.randint(11111111111, 99999999999) message = text self.query('messages.send', {'peer_id': peer_id, 'random_id': random_id, 'message': message, 'group_id': self.options['group_id']}) def timeout(self): """ Функция реализации таймаута :return: """ return self.options['max_timeout'] @staticmethod def thread_object(cmd, *args): """ Объект потока :param cmd: :param args: :return: """ cmd(*args) exit()
split_video.py
from multiprocessing.context import Process import os import glob from moviepy.editor import VideoFileClip path = "../GRID/" origin = "../video_org" file = "GRID_files.txt" def get_duration(filename): clip = VideoFileClip(filename) return clip.duration def run(origins, videos, dests): clips = [] for i in range(0, len(videos)): j = 0 rate = get_duration(origins[i]) n = int(rate / 3.3) pc = rate % 3.3 for j in range(0, n): base = j * 4 cmd = "ffmpeg -ss {} -i {} -r 29.97 -to {} -vcodec copy -acodec copy -async 1 -strict -2 {}.mp4 -y".format(base, origins[i], 3.3, os.path.join(dests[i], str(j))) clips.append(os.path.join(dests[i], str(j)) + '.mp4') os.system(cmd) base = n * 4 cmd = "ffmpeg -ss {} -i {} -r 29.97 -to {} -vcodec copy -acodec copy -async 1 -strict -2 {}.mp4 -y".format(base, origins[i], 3.3, os.path.join(dests[i], str(n))) clips.append(os.path.join(dests[i], str(n)) + '.mp4') os.system(cmd) with open(file, 'a') as f: for clip in clips: f.write(clip) f.write('\n') if(__name__ == '__main__'): files = glob.glob(origin + "/*.mp4") videos = [os.path.basename(file).replace(".mp4", "") for file in files] paths = [os.path.join(path, video + '/') for video in videos] for path in paths: if(not os.path.exists(path)): os.makedirs(path) processes = [] n_p = 1 for i in range(n_p): p = Process(target=run, args=(files, videos, paths)) p.start() processes.append(p) for p in processes: p.join()
massReport.py
from colored import fg, attr import requests import threading import time import random r = fg(241) # Setup color variables r2 = fg(255) b = fg(31) w = fg(15) def start(): token = input(f"\n {r2}[{b}?{r2}] Token: ") guildId = input(f" {r2}[{b}?{r2}] Server Id: ") channelId = input(f" {r2}[{b}?{r2}] Channel Id: ") messageId = input(f" {r2}[{b}?{r2}] Message Id: ") reason = input(f" {r2}[{b}?{r2}] Reason: ") headers = { "Content-Type" : "application/json", "Authorization" : token, "User-Agent" : "Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:87.0) Gecko/20100101 Firefox/87.0" } payload = {"guild_id" : guildId, "channel_id" : channelId, "message_id" : messageId, "reason" : reason} def report(): while True: response = requests.post( 'https://discord.com/api/v6/report', headers = headers, json = payload ) if response.status_code == 201: print(f" {r2}[{b}+{r2}] Report sent successfully") elif response.status_code == 429: print(f" {r2}[{b}!{r2}] Ratelimited, waiting 5 seconds") time.sleep(5) elif response.status_code == 401: print(f" {r2}[{b}!{r2}] Invalid token") return else: print(f" {r2}[{b}!{r2}] Unknown error: {response.status_code}") for i in range(500): threading.Thread(target = report).start() if __name__ == '__main__': start()
tst_flash.py
import RPi.GPIO as GPIO GPIO.setwarnings(False) GPIO.setmode(GPIO.BCM) from lib_utils import * from lib_leds import LEDS import time import threading leds = LEDS() threading.Thread(target=leds.flash).start() leds.flash_on() t_start = time.time() while time.time() - t_start < 60: time.sleep(0.5) leds.off() leds.terminate() GPIO.cleanup()
redshift.py
# pylint: disable=C0111,R0903 """Displays the current color temperature of redshift Requires the following executable: * redshift """ import threading import bumblebee.input import bumblebee.output import bumblebee.engine def is_terminated(): for thread in threading.enumerate(): if thread.name == "MainThread" and not thread.is_alive(): return True return False def get_redshift_value(widget): while True: if is_terminated(): return widget.get("condition").acquire() while True: try: widget.get("condition").wait(1) except RuntimeError: continue break widget.get("condition").release() try: res = bumblebee.util.execute("redshift -p") except Exception: res = "" widget.set("temp", "n/a") widget.set("transition", None) widget.set("state", "day") for line in res.split("\n"): line = line.lower() if "temperature" in line: widget.set("temp", line.split(" ")[2]) if "period" in line: state = line.split(" ")[1] if "day" in state: widget.set("state", "day") elif "night" in state: widget.set("state", "night") else: widget.set("state", "transition") widget.set("transition", " ".join(line.split(" ")[2:])) class Module(bumblebee.engine.Module): def __init__(self, engine, config): widget = bumblebee.output.Widget(full_text=self.text) super(Module, self).__init__(engine, config, widget) self._text = "" self._condition = threading.Condition() widget.set("condition", self._condition) self._thread = threading.Thread(target=get_redshift_value, args=(widget,)) self._thread.start() self._condition.acquire() self._condition.notify() self._condition.release() def text(self, widget): return "{}".format(self._text) def update(self, widgets): widget = widgets[0] self._condition.acquire() self._condition.notify() self._condition.release() temp = widget.get("temp", "n/a") self._text = temp transition = widget.get("transition", None) if transition: self._text = "{} {}".format(temp, transition) def state(self, widget): return widget.get("state", None) # vim: tabstop=8 expandtab shiftwidth=4 softtabstop=4
pserve.py
# (c) 2005 Ian Bicking and contributors; written for Paste # (http://pythonpaste.org) Licensed under the MIT license: # http://www.opensource.org/licenses/mit-license.php # # For discussion of daemonizing: # http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/278731 # # Code taken also from QP: http://www.mems-exchange.org/software/qp/ From # lib/site.py import atexit import ctypes import errno import logging import optparse import os import re import subprocess import sys import textwrap import threading import time import traceback from paste.deploy import loadserver from paste.deploy import loadapp from pyramid.compat import PY3 from pyramid.compat import WIN from pyramid.paster import setup_logging from pyramid.scripts.common import parse_vars MAXFD = 1024 if WIN and not hasattr(os, 'kill'): # pragma: no cover # py 2.6 on windows def kill(pid, sig=None): """kill function for Win32""" # signal is ignored, semibogus raise message kernel32 = ctypes.windll.kernel32 handle = kernel32.OpenProcess(1, 0, pid) if (0 == kernel32.TerminateProcess(handle, 0)): raise OSError('No such process %s' % pid) else: kill = os.kill def main(argv=sys.argv, quiet=False): command = PServeCommand(argv, quiet=quiet) return command.run() class DaemonizeException(Exception): pass class PServeCommand(object): usage = '%prog config_uri [start|stop|restart|status] [var=value]' description = """\ This command serves a web application that uses a PasteDeploy configuration file for the server and application. If start/stop/restart is given, then --daemon is implied, and it will start (normal operation), stop (--stop-daemon), or do both. You can also include variable assignments like 'http_port=8080' and then use %(http_port)s in your config files. """ default_verbosity = 1 parser = optparse.OptionParser( usage, description=textwrap.dedent(description) ) parser.add_option( '-n', '--app-name', dest='app_name', metavar='NAME', help="Load the named application (default main)") parser.add_option( '-s', '--server', dest='server', metavar='SERVER_TYPE', help="Use the named server.") parser.add_option( '--server-name', dest='server_name', metavar='SECTION_NAME', help=("Use the named server as defined in the configuration file " "(default: main)")) if hasattr(os, 'fork'): parser.add_option( '--daemon', dest="daemon", action="store_true", help="Run in daemon (background) mode") parser.add_option( '--pid-file', dest='pid_file', metavar='FILENAME', help=("Save PID to file (default to pyramid.pid if running in " "daemon mode)")) parser.add_option( '--log-file', dest='log_file', metavar='LOG_FILE', help="Save output to the given log file (redirects stdout)") parser.add_option( '--reload', dest='reload', action='store_true', help="Use auto-restart file monitor") parser.add_option( '--reload-interval', dest='reload_interval', default=1, help=("Seconds between checking files (low number can cause " "significant CPU usage)")) parser.add_option( '--monitor-restart', dest='monitor_restart', action='store_true', help="Auto-restart server if it dies") parser.add_option( '--status', action='store_true', dest='show_status', help="Show the status of the (presumably daemonized) server") parser.add_option( '-v', '--verbose', default=default_verbosity, dest='verbose', action='count', help="Set verbose level (default "+str(default_verbosity)+")") parser.add_option( '-q', '--quiet', action='store_const', const=0, dest='verbose', help="Suppress verbose output") if hasattr(os, 'setuid'): # I don't think these are available on Windows parser.add_option( '--user', dest='set_user', metavar="USERNAME", help="Set the user (usually only possible when run as root)") parser.add_option( '--group', dest='set_group', metavar="GROUP", help="Set the group (usually only possible when run as root)") parser.add_option( '--stop-daemon', dest='stop_daemon', action='store_true', help=('Stop a daemonized server (given a PID file, or default ' 'pyramid.pid file)')) _scheme_re = re.compile(r'^[a-z][a-z]+:', re.I) _reloader_environ_key = 'PYTHON_RELOADER_SHOULD_RUN' _monitor_environ_key = 'PASTE_MONITOR_SHOULD_RUN' possible_subcommands = ('start', 'stop', 'restart', 'status') def __init__(self, argv, quiet=False): self.options, self.args = self.parser.parse_args(argv[1:]) if quiet: self.options.verbose = 0 def out(self, msg): # pragma: no cover if self.options.verbose > 0: print(msg) def get_options(self): if (len(self.args) > 1 and self.args[1] in self.possible_subcommands): restvars = self.args[2:] else: restvars = self.args[1:] return parse_vars(restvars) def run(self): # pragma: no cover if self.options.stop_daemon: return self.stop_daemon() if not hasattr(self.options, 'set_user'): # Windows case: self.options.set_user = self.options.set_group = None # @@: Is this the right stage to set the user at? self.change_user_group( self.options.set_user, self.options.set_group) if not self.args: self.out('You must give a config file') return 2 app_spec = self.args[0] if (len(self.args) > 1 and self.args[1] in self.possible_subcommands): cmd = self.args[1] else: cmd = None if self.options.reload: if os.environ.get(self._reloader_environ_key): if self.options.verbose > 1: self.out('Running reloading file monitor') install_reloader(int(self.options.reload_interval), [app_spec]) # if self.requires_config_file: # watch_file(self.args[0]) else: return self.restart_with_reloader() if cmd not in (None, 'start', 'stop', 'restart', 'status'): self.out( 'Error: must give start|stop|restart (not %s)' % cmd) return 2 if cmd == 'status' or self.options.show_status: return self.show_status() if cmd == 'restart' or cmd == 'stop': result = self.stop_daemon() if result: if cmd == 'restart': self.out("Could not stop daemon; aborting") else: self.out("Could not stop daemon") return result if cmd == 'stop': return result self.options.daemon = True if cmd == 'start': self.options.daemon = True app_name = self.options.app_name vars = self.get_options() if not self._scheme_re.search(app_spec): app_spec = 'config:' + app_spec server_name = self.options.server_name if self.options.server: server_spec = 'egg:pyramid' assert server_name is None server_name = self.options.server else: server_spec = app_spec base = os.getcwd() if getattr(self.options, 'daemon', False): if not self.options.pid_file: self.options.pid_file = 'pyramid.pid' if not self.options.log_file: self.options.log_file = 'pyramid.log' # Ensure the log file is writeable if self.options.log_file: try: writeable_log_file = open(self.options.log_file, 'a') except IOError as ioe: msg = 'Error: Unable to write to log file: %s' % ioe raise ValueError(msg) writeable_log_file.close() # Ensure the pid file is writeable if self.options.pid_file: try: writeable_pid_file = open(self.options.pid_file, 'a') except IOError as ioe: msg = 'Error: Unable to write to pid file: %s' % ioe raise ValueError(msg) writeable_pid_file.close() if getattr(self.options, 'daemon', False): try: self.daemonize() except DaemonizeException as ex: if self.options.verbose > 0: self.out(str(ex)) return 2 if (self.options.monitor_restart and not os.environ.get(self._monitor_environ_key)): return self.restart_with_monitor() if self.options.pid_file: self.record_pid(self.options.pid_file) if self.options.log_file: stdout_log = LazyWriter(self.options.log_file, 'a') sys.stdout = stdout_log sys.stderr = stdout_log logging.basicConfig(stream=stdout_log) log_fn = app_spec if log_fn.startswith('config:'): log_fn = app_spec[len('config:'):] elif log_fn.startswith('egg:'): log_fn = None if log_fn: log_fn = os.path.join(base, log_fn) setup_logging(log_fn) server = self.loadserver(server_spec, name=server_name, relative_to=base, global_conf=vars) app = self.loadapp(app_spec, name=app_name, relative_to=base, global_conf=vars) if self.options.verbose > 0: if hasattr(os, 'getpid'): msg = 'Starting server in PID %i.' % os.getpid() else: msg = 'Starting server.' self.out(msg) def serve(): try: server(app) except (SystemExit, KeyboardInterrupt) as e: if self.options.verbose > 1: raise if str(e): msg = ' ' + str(e) else: msg = '' self.out('Exiting%s (-v to see traceback)' % msg) serve() def loadapp(self, app_spec, name, relative_to, **kw): # pragma: no cover return loadapp(app_spec, name=name, relative_to=relative_to, **kw) def loadserver(self, server_spec, name, relative_to, **kw):# pragma:no cover return loadserver( server_spec, name=name, relative_to=relative_to, **kw) def quote_first_command_arg(self, arg): # pragma: no cover """ There's a bug in Windows when running an executable that's located inside a path with a space in it. This method handles that case, or on non-Windows systems or an executable with no spaces, it just leaves well enough alone. """ if (sys.platform != 'win32' or ' ' not in arg): # Problem does not apply: return arg try: import win32api except ImportError: raise ValueError( "The executable %r contains a space, and in order to " "handle this issue you must have the win32api module " "installed" % arg) arg = win32api.GetShortPathName(arg) return arg def daemonize(self): # pragma: no cover pid = live_pidfile(self.options.pid_file) if pid: raise DaemonizeException( "Daemon is already running (PID: %s from PID file %s)" % (pid, self.options.pid_file)) if self.options.verbose > 0: self.out('Entering daemon mode') pid = os.fork() if pid: # The forked process also has a handle on resources, so we # *don't* want proper termination of the process, we just # want to exit quick (which os._exit() does) os._exit(0) # Make this the session leader os.setsid() # Fork again for good measure! pid = os.fork() if pid: os._exit(0) # @@: Should we set the umask and cwd now? import resource # Resource usage information. maxfd = resource.getrlimit(resource.RLIMIT_NOFILE)[1] if (maxfd == resource.RLIM_INFINITY): maxfd = MAXFD # Iterate through and close all file descriptors. for fd in range(0, maxfd): try: os.close(fd) except OSError: # ERROR, fd wasn't open to begin with (ignored) pass if (hasattr(os, "devnull")): REDIRECT_TO = os.devnull else: REDIRECT_TO = "/dev/null" os.open(REDIRECT_TO, os.O_RDWR) # standard input (0) # Duplicate standard input to standard output and standard error. os.dup2(0, 1) # standard output (1) os.dup2(0, 2) # standard error (2) def _remove_pid_file(self, written_pid, filename, verbosity): current_pid = os.getpid() if written_pid != current_pid: # A forked process must be exiting, not the process that # wrote the PID file return if not os.path.exists(filename): return with open(filename) as f: content = f.read().strip() try: pid_in_file = int(content) except ValueError: pass else: if pid_in_file != current_pid: msg = "PID file %s contains %s, not expected PID %s" self.out(msg % (filename, pid_in_file, current_pid)) return if verbosity > 0: self.out("Removing PID file %s" % filename) try: os.unlink(filename) return except OSError as e: # Record, but don't give traceback self.out("Cannot remove PID file: (%s)" % e) # well, at least lets not leave the invalid PID around... try: with open(filename, 'w') as f: f.write('') except OSError as e: self.out('Stale PID left in file: %s (%s)' % (filename, e)) else: self.out('Stale PID removed') def record_pid(self, pid_file): pid = os.getpid() if self.options.verbose > 1: self.out('Writing PID %s to %s' % (pid, pid_file)) with open(pid_file, 'w') as f: f.write(str(pid)) atexit.register(self._remove_pid_file, pid, pid_file, self.options.verbose) def stop_daemon(self): # pragma: no cover pid_file = self.options.pid_file or 'pyramid.pid' if not os.path.exists(pid_file): self.out('No PID file exists in %s' % pid_file) return 1 pid = read_pidfile(pid_file) if not pid: self.out("Not a valid PID file in %s" % pid_file) return 1 pid = live_pidfile(pid_file) if not pid: self.out("PID in %s is not valid (deleting)" % pid_file) try: os.unlink(pid_file) except (OSError, IOError) as e: self.out("Could not delete: %s" % e) return 2 return 1 for j in range(10): if not live_pidfile(pid_file): break import signal kill(pid, signal.SIGTERM) time.sleep(1) else: self.out("failed to kill web process %s" % pid) return 3 if os.path.exists(pid_file): os.unlink(pid_file) return 0 def show_status(self): # pragma: no cover pid_file = self.options.pid_file or 'pyramid.pid' if not os.path.exists(pid_file): self.out('No PID file %s' % pid_file) return 1 pid = read_pidfile(pid_file) if not pid: self.out('No PID in file %s' % pid_file) return 1 pid = live_pidfile(pid_file) if not pid: self.out('PID %s in %s is not running' % (pid, pid_file)) return 1 self.out('Server running in PID %s' % pid) return 0 def restart_with_reloader(self): # pragma: no cover self.restart_with_monitor(reloader=True) def restart_with_monitor(self, reloader=False): # pragma: no cover if self.options.verbose > 0: if reloader: self.out('Starting subprocess with file monitor') else: self.out('Starting subprocess with monitor parent') while 1: args = [self.quote_first_command_arg(sys.executable)] + sys.argv new_environ = os.environ.copy() if reloader: new_environ[self._reloader_environ_key] = 'true' else: new_environ[self._monitor_environ_key] = 'true' proc = None try: try: _turn_sigterm_into_systemexit() proc = subprocess.Popen(args, env=new_environ) exit_code = proc.wait() proc = None except KeyboardInterrupt: self.out('^C caught in monitor process') if self.options.verbose > 1: raise return 1 finally: if proc is not None: import signal try: kill(proc.pid, signal.SIGTERM) except (OSError, IOError): pass if reloader: # Reloader always exits with code 3; but if we are # a monitor, any exit code will restart if exit_code != 3: return exit_code if self.options.verbose > 0: self.out('%s %s %s' % ('-' * 20, 'Restarting', '-' * 20)) def change_user_group(self, user, group): # pragma: no cover if not user and not group: return import pwd, grp uid = gid = None if group: try: gid = int(group) group = grp.getgrgid(gid).gr_name except ValueError: import grp try: entry = grp.getgrnam(group) except KeyError: raise ValueError( "Bad group: %r; no such group exists" % group) gid = entry.gr_gid try: uid = int(user) user = pwd.getpwuid(uid).pw_name except ValueError: try: entry = pwd.getpwnam(user) except KeyError: raise ValueError( "Bad username: %r; no such user exists" % user) if not gid: gid = entry.pw_gid uid = entry.pw_uid if self.options.verbose > 0: self.out('Changing user to %s:%s (%s:%s)' % ( user, group or '(unknown)', uid, gid)) if gid: os.setgid(gid) if uid: os.setuid(uid) class LazyWriter(object): """ File-like object that opens a file lazily when it is first written to. """ def __init__(self, filename, mode='w'): self.filename = filename self.fileobj = None self.lock = threading.Lock() self.mode = mode def open(self): if self.fileobj is None: with self.lock: self.fileobj = open(self.filename, self.mode) return self.fileobj def close(self): fileobj = self.fileobj if fileobj is not None: fileobj.close() def __del__(self): self.close() def write(self, text): fileobj = self.open() fileobj.write(text) fileobj.flush() def writelines(self, text): fileobj = self.open() fileobj.writelines(text) fileobj.flush() def flush(self): self.open().flush() def live_pidfile(pidfile): # pragma: no cover """(pidfile:str) -> int | None Returns an int found in the named file, if there is one, and if there is a running process with that process id. Return None if no such process exists. """ pid = read_pidfile(pidfile) if pid: try: kill(int(pid), 0) return pid except OSError as e: if e.errno == errno.EPERM: return pid return None def read_pidfile(filename): if os.path.exists(filename): try: with open(filename) as f: content = f.read() return int(content.strip()) except (ValueError, IOError): return None else: return None def ensure_port_cleanup( bound_addresses, maxtries=30, sleeptime=2): # pragma: no cover """ This makes sure any open ports are closed. Does this by connecting to them until they give connection refused. Servers should call like:: ensure_port_cleanup([80, 443]) """ atexit.register(_cleanup_ports, bound_addresses, maxtries=maxtries, sleeptime=sleeptime) def _cleanup_ports( bound_addresses, maxtries=30, sleeptime=2): # pragma: no cover # Wait for the server to bind to the port. import socket import errno for bound_address in bound_addresses: for attempt in range(maxtries): sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) try: sock.connect(bound_address) except socket.error as e: if e.args[0] != errno.ECONNREFUSED: raise break else: time.sleep(sleeptime) else: raise SystemExit('Timeout waiting for port.') sock.close() def _turn_sigterm_into_systemexit(): # pragma: no cover """ Attempts to turn a SIGTERM exception into a SystemExit exception. """ try: import signal except ImportError: return def handle_term(signo, frame): raise SystemExit signal.signal(signal.SIGTERM, handle_term) def install_reloader(poll_interval=1, extra_files=None): # pragma: no cover """ Install the reloading monitor. On some platforms server threads may not terminate when the main thread does, causing ports to remain open/locked. The ``raise_keyboard_interrupt`` option creates a unignorable signal which causes the whole application to shut-down (rudely). """ mon = Monitor(poll_interval=poll_interval) if extra_files is None: extra_files = [] mon.extra_files.extend(extra_files) t = threading.Thread(target=mon.periodic_reload) t.setDaemon(True) t.start() class classinstancemethod(object): """ Acts like a class method when called from a class, like an instance method when called by an instance. The method should take two arguments, 'self' and 'cls'; one of these will be None depending on how the method was called. """ def __init__(self, func): self.func = func self.__doc__ = func.__doc__ def __get__(self, obj, type=None): return _methodwrapper(self.func, obj=obj, type=type) class _methodwrapper(object): def __init__(self, func, obj, type): self.func = func self.obj = obj self.type = type def __call__(self, *args, **kw): assert not 'self' in kw and not 'cls' in kw, ( "You cannot use 'self' or 'cls' arguments to a " "classinstancemethod") return self.func(*((self.obj, self.type) + args), **kw) class Monitor(object): # pragma: no cover """ A file monitor and server restarter. Use this like: ..code-block:: Python install_reloader() Then make sure your server is installed with a shell script like:: err=3 while test "$err" -eq 3 ; do python server.py err="$?" done or is run from this .bat file (if you use Windows):: @echo off :repeat python server.py if %errorlevel% == 3 goto repeat or run a monitoring process in Python (``pserve --reload`` does this). Use the ``watch_file(filename)`` function to cause a reload/restart for other non-Python files (e.g., configuration files). If you have a dynamic set of files that grows over time you can use something like:: def watch_config_files(): return CONFIG_FILE_CACHE.keys() add_file_callback(watch_config_files) Then every time the reloader polls files it will call ``watch_config_files`` and check all the filenames it returns. """ instances = [] global_extra_files = [] global_file_callbacks = [] def __init__(self, poll_interval): self.module_mtimes = {} self.keep_running = True self.poll_interval = poll_interval self.extra_files = list(self.global_extra_files) self.instances.append(self) self.file_callbacks = list(self.global_file_callbacks) def _exit(self): # use os._exit() here and not sys.exit() since within a # thread sys.exit() just closes the given thread and # won't kill the process; note os._exit does not call # any atexit callbacks, nor does it do finally blocks, # flush open files, etc. In otherwords, it is rude. os._exit(3) def periodic_reload(self): while True: if not self.check_reload(): self._exit() break time.sleep(self.poll_interval) def check_reload(self): filenames = list(self.extra_files) for file_callback in self.file_callbacks: try: filenames.extend(file_callback()) except: print( "Error calling reloader callback %r:" % file_callback) traceback.print_exc() for module in sys.modules.values(): try: filename = module.__file__ except (AttributeError, ImportError): continue if filename is not None: filenames.append(filename) for filename in filenames: try: stat = os.stat(filename) if stat: mtime = stat.st_mtime else: mtime = 0 except (OSError, IOError): continue if filename.endswith('.pyc') and os.path.exists(filename[:-1]): mtime = max(os.stat(filename[:-1]).st_mtime, mtime) if not filename in self.module_mtimes: self.module_mtimes[filename] = mtime elif self.module_mtimes[filename] < mtime: print("%s changed; reloading..." % filename) return False return True def watch_file(self, cls, filename): """Watch the named file for changes""" filename = os.path.abspath(filename) if self is None: for instance in cls.instances: instance.watch_file(filename) cls.global_extra_files.append(filename) else: self.extra_files.append(filename) watch_file = classinstancemethod(watch_file) def add_file_callback(self, cls, callback): """Add a callback -- a function that takes no parameters -- that will return a list of filenames to watch for changes.""" if self is None: for instance in cls.instances: instance.add_file_callback(callback) cls.global_file_callbacks.append(callback) else: self.file_callbacks.append(callback) add_file_callback = classinstancemethod(add_file_callback) watch_file = Monitor.watch_file add_file_callback = Monitor.add_file_callback # For paste.deploy server instantiation (egg:pyramid#wsgiref) def wsgiref_server_runner(wsgi_app, global_conf, **kw): # pragma: no cover from wsgiref.simple_server import make_server host = kw.get('host', '0.0.0.0') port = int(kw.get('port', 8080)) server = make_server(host, port, wsgi_app) print('Starting HTTP server on http://%s:%s' % (host, port)) server.serve_forever() # For paste.deploy server instantiation (egg:pyramid#cherrypy) def cherrypy_server_runner( app, global_conf=None, host='127.0.0.1', port=None, ssl_pem=None, protocol_version=None, numthreads=None, server_name=None, max=None, request_queue_size=None, timeout=None ): # pragma: no cover """ Entry point for CherryPy's WSGI server Serves the specified WSGI app via CherryPyWSGIServer. ``app`` The WSGI 'application callable'; multiple WSGI applications may be passed as (script_name, callable) pairs. ``host`` This is the ipaddress to bind to (or a hostname if your nameserver is properly configured). This defaults to 127.0.0.1, which is not a public interface. ``port`` The port to run on, defaults to 8080 for HTTP, or 4443 for HTTPS. This can be a string or an integer value. ``ssl_pem`` This an optional SSL certificate file (via OpenSSL) You can generate a self-signed test PEM certificate file as follows: $ openssl genrsa 1024 > host.key $ chmod 400 host.key $ openssl req -new -x509 -nodes -sha1 -days 365 \\ -key host.key > host.cert $ cat host.cert host.key > host.pem $ chmod 400 host.pem ``protocol_version`` The protocol used by the server, by default ``HTTP/1.1``. ``numthreads`` The number of worker threads to create. ``server_name`` The string to set for WSGI's SERVER_NAME environ entry. ``max`` The maximum number of queued requests. (defaults to -1 = no limit). ``request_queue_size`` The 'backlog' argument to socket.listen(); specifies the maximum number of queued connections. ``timeout`` The timeout in seconds for accepted connections. """ is_ssl = False if ssl_pem: port = port or 4443 is_ssl = True if not port: if ':' in host: host, port = host.split(':', 1) else: port = 8080 bind_addr = (host, int(port)) kwargs = {} for var_name in ('numthreads', 'max', 'request_queue_size', 'timeout'): var = locals()[var_name] if var is not None: kwargs[var_name] = int(var) from cherrypy import wsgiserver server = wsgiserver.CherryPyWSGIServer(bind_addr, app, server_name=server_name, **kwargs) if ssl_pem is not None: if not PY3: server.ssl_certificate = server.ssl_private_key = ssl_pem else: # creates wsgiserver.ssl_builtin as side-effect wsgiserver.get_ssl_adapter_class() server.ssl_adapter = wsgiserver.ssl_builtin.BuiltinSSLAdapter( ssl_pem, ssl_pem) if protocol_version: server.protocol = protocol_version try: protocol = is_ssl and 'https' or 'http' if host == '0.0.0.0': print('serving on 0.0.0.0:%s view at %s://127.0.0.1:%s' % (port, protocol, port)) else: print('serving on %s://%s:%s' % (protocol, host, port)) server.start() except (KeyboardInterrupt, SystemExit): server.stop() return server
main.py
# -*- coding: utf-8 -*- """ author: ZSAIm github: https://github.com/ZSAIm/iqiyi-parser """ import gui import wx, time, sys import GUIEventBinder import socket import threading import flow import handler from handler.logs import STDRedirect import io socket.setdefaulttimeout(3) def main(): threading.Thread(target=__main__).start() def __main__(): wx.CallAfter(flow.Entry.handle) def wait_thread(): """can't run while debugging""" main_thread = threading.main_thread() for i in threading.enumerate(): if i != main_thread: i.join() if __name__ == '__main__': # with open('error.log', 'a+') as ferr: # ferr.write('------------------------\n') # ferr.write('%s\n' % time.asctime(time.localtime(time.time()))) # ferr.write('------------------------\n') # sys.stderr = ferr gui.init() GUIEventBinder.init() sys.stdout = STDRedirect(sys.stdout) sys.stderr = STDRedirect(sys.stderr) main() gui.MainLoop() # handler.downloader.join() # wait_thread()
main.py
import requests, zlib, hashlib, json import time, threading import logging import random from multiprocessing.pool import ThreadPool from enum import Enum class GameConstants: RUBLES = '5449016a4bdc2d6f028b456f' DOLLARS = '5696686a4bdc2da3298b456a' EURO = '569668774bdc2da2298b4568' Therapist = '54cb57776803fa99248b456e' gasan = '590a3efd86f77437d351a25b' labKey = '5c94bbff86f7747ee735c08f' salewa = '544fb45d4bdc2dee738b4568' class FleaOffer: def __init__(self, offer: dict): self.offer = offer self.id = offer['_id'] self.user = dict() self.user['id'] = offer['user']['id'] self.user['nickname'] = offer['user']['nickname'] self.item_tpl = offer['items'][0]['_tpl'] self.count = offer['items'][0]['upd']['StackObjectsCount'] self.requirements = list() self.requirements = offer['requirements'] self.summary_cost = offer['summaryCost'] self.start_time = offer['startTime'] self.end_time = offer['endTime'] def __str__(self): return f'{self.user["nickname"]} - {self.summary_cost} - x{self.count}' def _repr_(self): return str(self) def remove_white_space(s): return s.replace(' ', '').replace('\n', '') class GameRequest: def __init__(self, url: str, data: str, cookies={}): self.request = requests.post(url, data, cookies=cookies) self.cookies = self.request.cookies.get_dict() def _get_content(self): return zlib.decompress(self.request.content).decode() def __str__(self): return self._get_content() def __repr__(self): return str(self) def get_json(self) -> dict: return json.loads(self._get_content()) class GameConnection: logger = logging.getLogger("GameConnection") logger.setLevel("DEBUG") cookies = None def __init__(self, email="", password="", cookies=''): self.logger.debug("Connecting to game") if cookies != '': self.cookies = {'PHPSESSID': cookies} else: self.email = email self.password = password self.cookies = self._get_cookies() self.logger.debug(f"Using cookies: {self.cookies}") def _get_cookies(self): loginReq = self._login() return loginReq.cookies def _login(self): if self.email == "" or self.password == "": raise ValueError("Email or password are invalid") device_id = "ENTER_YOUR_DEVICE_ID_HERE" major_v = "ENTER_MAJOR_GAME_VERSION_HERE" # eg. "0.11.7.3087" # minor_v = "bgkidft87ddd" data = dict() data['version'] = {} data['version']['major'] = major_v data['version']['backend'] = 6 data['device_id'] = device_id data['develop'] = True data['email'] = self.email data['pass'] = self.password req = self.prod_request('/client/game/login', json.dumps(data)) self.logger.debug("Login request: " + str(req)) # TODO: require Hardware code if login is done for the first time return req def _send_request(self, path, data): data = zlib.compress(remove_white_space(data).encode()) cookies = {} if self.cookies is not None: cookies = self.cookies req = GameRequest(path, data=data, cookies=cookies) return req def prod_request(self, path: str, data: str) -> GameRequest: return self._send_request("http://prod.escapefromtarkov.com" + path, data) def trading_request(self, path: str, data: str) -> GameRequest: return self._send_request("http://trading.escapefromtarkov.com" + path, data) def ragfair_request(self, path: str, data: str) -> GameRequest: return self._send_request("http://ragfair.escapefromtarkov.com" + path, data) class FleaBuyResult(Enum): OK = 0, BOUGHT = 1 OUTOFSPACE = 2 UNKNOWN = -1 class Game: logger = logging.getLogger("Game") logger.setLevel("DEBUG") profileLock = threading.Lock() def __init__(self, email="", password="", cookies=None): self.logger.debug("Initializing game") self.connection = GameConnection(email, password, cookies) self.keep_alive_thread = threading.Thread(target=self._keep_alive) self.keep_alive_thread.daemon = True self.keep_alive_thread.start() self.moneyStacks = {} self.PMC = None self.update_profile() self.connection.prod_request('/client/game/profile/select', json.dumps({'uid': self.PMC['_id']})) self.all_item_list = self.connection.prod_request('/client/items', '{}').get_json()['data'] """ Method running in separate thread. Sends alive req to server to keep cookies valid. """ def _keep_alive(self): while True: self.connection.prod_request('/client/game/keepalive', '') time.sleep(5 * 60) """ Reloads information about PMC, including money, inventory items etc. """ def update_profile(self): with self.profileLock: list_req = self.connection.prod_request("/client/game/profile/list", "{}") profile_list = list_req.get_json() for item in profile_list['data']: if item['Info']['LastTimePlayedAsSavage'] == 0: self.PMC = item self._inventory = dict() for item in self.PMC['Inventory']['items']: self._inventory[item['_id']] = item for currency in (GameConstants.RUBLES, GameConstants.DOLLARS, GameConstants.EURO): self.moneyStacks[currency] = {} for item_id, item in self._inventory.items(): for currency in (GameConstants.RUBLES, GameConstants.DOLLARS, GameConstants.EURO): if item['_tpl'] == currency: count = item['upd']['StackObjectsCount'] self.moneyStacks[currency][item_id] = count """ :return dictionary of pairs item_id -> item_desc """ def get_inventory(self): with self.profileLock: return self._inventory """ Returns money stack ids, which sum >= value """ def find_moneystack(self, money: int, currency=GameConstants.RUBLES) -> list: with self.profileLock: result = [] for (id, value) in self.moneyStacks[currency].items(): if value >= money: result.append((id, money)) break else: money -= value result.append((id, value)) return result """ Get inventory item ids by item template """ def inventory_items_ids(self, item_tpl: str) -> list: return [item['_id'] for item in self.PMC['Inventory']['items'] if item['_tpl'] == item_tpl] def get_traders_list(self): req = self.connection.trading_request('/client/trading/api/getTradersList', '') result = dict() for trader in req.get_json()['data']: result[trader['_id']] = trader return result def get_trader_assort(self, trader_id: str) -> list: req = self.connection.trading_request('/client/trading/api/getTraderAssort/' + trader_id, '') return req.get_json()['data'] def flea_find(self, limit=15, priceFrom=0, priceTo=0, removeBartering=True, removeMerchantOffers=True, item_tpl=''): data = { "page": 0, "limit": limit, "sortType": 5, "sortDirection": 0, "currency": 0, "priceFrom": priceFrom, "priceTo": priceTo, "quantityFrom": 0, "quantityTo": 0, "conditionFrom": 0, "conditionTo": 100, "oneHourExpiration": False, "onlyPrioritized": False, "removeBartering": removeBartering, "removeMerchantOffers": removeMerchantOffers, "onlyFunctional": True, "updateOfferCount": True, "handbookId": item_tpl, "linkedSearchId": "", "neededSearchId": "" } req = self.connection.ragfair_request('/client/ragfair/search', json.dumps(data)) # for item in req.get_json()['data']['offers']: offers = req.get_json()['data']['offers'] result = list() for offer in offers: result.append(FleaOffer(offer)) result.sort(key=lambda x: x.summary_cost) return result def flea_buy(self, offer: FleaOffer) -> FleaBuyResult: self.logger.info(f'------------ Buying {offer.id} x {offer.count} for {offer.summary_cost} ------------') spent_time = time.time() - offer.start_time start_from = 56 if spent_time < start_from: to_wait = start_from - spent_time self.logger.info(f"Need to wait {to_wait}") time.sleep(to_wait) while time.time() < offer.end_time: try: time.sleep(0.05) data = { "data": [ { "Action": "RagFairBuyOffer", "offerId": offer.id, "count": offer.count, "items": [] } ] } # TODO: support not only rubbles purchases stacks = self.find_moneystack(offer.summary_cost * offer.count, GameConstants.RUBLES) for stack in stacks: stack_info = dict() stack_info['id'] = stack[0] stack_info['count'] = stack[1] data['data'][0]['items'].append(stack_info) req = self.connection.prod_request('/client/game/profile/items/moving', json.dumps(data)) result_data = req.get_json() # still is not available if result_data['err'] in (228, 1512): continue if result_data['err'] == 1505: return FleaBuyResult.OUTOFSPACE # this means that transaction is okay if result_data['err'] == 0: self.update_profile() # offer was sold out if len(result_data['data']['badRequest']) > 0: return FleaBuyResult.BOUGHT # added new item to inventory elif len(result_data['data']['items'].keys()) > 0: return FleaBuyResult.OK print(result_data) return FleaBuyResult.UNKNOWN except Exception as e: self.logger.exception(str(e)) def get_stash_size(self): stash_id = self.PMC['Inventory']['stash'] stash_tpl = self.get_inventory()[stash_id]['tpl'] stash_props = self.all_item_list[stash_tpl]['_props']['Grids'][0]['_props'] return stash_props['cellsV'], stash_props['cellsH'] class FleaBuyThread(ThreadPool): def __init__(self, game: Game, offer: FleaOffer): super().__init__(processes=1) self.game = game self.offer = offer self.async_result = None def start(self): self.async_result = self.apply_async(self.game.flea_buy, [self.offer]) def is_ready(self): return self.async_result.ready() def get_result(self, timeout=None): return self.async_result.get(timeout) class TarkovBot: logger = logging.getLogger("TarkovBot") logger.setLevel("DEBUG") def __init__(self, email='', password='', cookies=''): FORMAT = '%(asctime)s: %(message)s' logging.basicConfig(format=FORMAT, ) self.logger.debug("Initializing bot") self.game = Game(email, password, cookies) def filter_inventory(self, item_tpl): inv = self.game.get_inventory() return list(filter(lambda x: x[1]['_tpl'] == item_tpl, inv.items())) def flea_market_buy(self, item_tpl: str, upper_price: int, offer_count=5, until_amount=None, delay_from=5, delay_to=10): if until_amount is None: until_amount = 1000 offer_container = list() offer_id_set = set() while len(self.filter_inventory(item_tpl)) < until_amount: try: container_copy = list(offer_container) for offer_thread in offer_container: if offer_thread.is_ready(): offer_id_set.remove(offer_thread.offer.id) container_copy.remove(offer_thread) result = offer_thread.get_result() offer = offer_thread.offer assert isinstance(offer, FleaOffer) if result == FleaBuyResult.OK: self.logger.info( f'------------ Successfully bought offer {offer.id}' f' for {offer.summary_cost} -----------' ) else: self.logger.info( f'------------ Failed to buy offer {offer.id} - {result} -----------' ) offer_container = container_copy if len(offer_container) < offer_count: new_offers = self.game.flea_find(limit=15, priceTo=upper_price, item_tpl=item_tpl) new_offers = [item for item in new_offers if item.id not in offer_id_set] if len(new_offers) != 0: can_add_count = offer_count - len(offer_container) self.logger.info(f'Found {len(new_offers)} offers. Can add {can_add_count}') for i in range(min(can_add_count, len(new_offers))): buy_thread = FleaBuyThread(self.game, new_offers[i]) buy_thread.start() offer_container.append(buy_thread) offer_id_set.add(new_offers[i].id) except KeyboardInterrupt as keyBoard: for offer_thread in offer_container: self.logger.debug(f"Terminating thread for {offer_thread.offer.id}") offer_thread.terminate() break except Exception as e: self.logger.exception(str(e)) finally: try: time.sleep(random.randint(delay_from, delay_to)) except KeyboardInterrupt as keyBoard: for offer_thread in offer_container: self.logger.debug(f"Terminating thread for {offer_thread.offer.id}") offer_thread.terminate() break """ Tries to free some space by merging and transfering ruble stacks """ def merge_all_rubles(self): all_rubles = sorted(list(bot.game.moneyStacks[GameConstants.RUBLES].items()), key=lambda x: x[1]) all_rubles = [item for item in all_rubles if item[1] != 500000] merge_data = [] for i in range(len(all_rubles)): itemI = list(all_rubles[i]) if itemI[1] == 500000: continue for j in range(i + 1, len(all_rubles)): itemJ = list(all_rubles[j]) # merge i to j if itemI[1] == 0 or itemJ[1] == 500000: continue can_merge = 500000 - itemJ[1] if itemI[1] > can_merge: itemI[1] -= can_merge itemJ[1] = 500000 merge_data.append([itemI[0], itemJ[0], can_merge]) else: itemJ[1] += itemI[1] itemI[1] = 0 merge_data.append([itemI[0], itemJ[0]]) all_rubles[i] = itemI all_rubles[j] = itemJ if itemI[1] == 0: break data = { 'data': [] } for merge in merge_data: if len(merge) == 2: d = {"Action":"Merge","item":merge[0],"with":merge[1]} else: d = {"Action":"Transfer","item":merge[0],"with":merge[1], 'count': merge[2]} data['data'].append(d) if len(data['data']) > 0: req = bot.game.connection.prod_request('/client/game/profile/items/moving', json.dumps(data)) print(req) bot.game.update_profile() email = "ENTER_YOUR_EMAIL_HERE" password = "ENTER_YOUR_PASSWORD_HASH_HERE" cookie = 'ENTER_COOKIE_IF_NEEDED_HERE' bot = TarkovBot(email=email, password=password, cookies=cookie)
AMTP.py
import socket import sys import threading class Message_from_server: def __init__(self,raw_message): lines = raw_message.split("\n") self.response_code = int(lines[0]) self.headers = {} for i in range(1,len(lines)): parts = lines[i].split(":") self.headers[parts[0].strip()] = parts[1].strip() class Message_to_server: def __init__(self,command, headers, protocol="AMTP/0.0"): self.command = command self.headers = headers self.protocol = protocol def __str__(self): header_block = "" for key in self.headers: header_block += key+": "+self.headers[key]+"\n" return self.protocol+" "+self.command+"\n"+header_block+"\n" class AMTP_client: def __init__(self,token, message_handler): self.message_handler = message_handler self.sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) server = ("localhost",1805) self.sock.connect(server) self.my_slot = -1 self.buffer = "" threading.Thread(target=self.read_thread).start() auth_require_message = Message_to_server("CLAIM",{"Role":"Player","Secret":token,"Identifier":"Auth"}) self.send(auth_require_message) print(auth_require_message) def send(self,msg: Message_to_server): self.sock.sendall(str(msg).encode()) def read_thread(self): while True: data = self.sock.recv(1024) self.buffer += data.decode() while "\n\n" in self.buffer: raw_message = self.buffer[:self.buffer.index("\n\n")] self.buffer = self.buffer[len(raw_message)+2:] try: self.on_message(raw_message) except: pass def on_message(self,raw_message): message = Message_from_server(raw_message) if "Identifier" in message.headers: if message.response_code == 9: print("Server requesting shutdown") sys.exit(0) if message.headers["Identifier"] == "Auth": if message.response_code == 0: self.my_slot = int(message.headers["Slot"]) print("Authentication successful: ",self.my_slot) else: print("ERROR: Authentication failed, exiting") sys.exit(1) if "ActionRequiredBy" in message.headers: arb_header = message.headers["ActionRequiredBy"] if arb_header == "*" or arb_header == str(self.my_slot): self.message_handler(message,True) else: self.message_handler(message,False) else: self.message_handler(message,False)
06_semaphore.py
import threading def worker(i, semaphore): assert isinstance(semaphore, threading.Semaphore) semaphore.acquire() print('Working', i) semaphore = threading.Semaphore(0) n_workers = 10 for i in range(n_workers): t = threading.Thread(target=worker, args=(i, semaphore,)) t.start() for i in range(n_workers): semaphore.release()
2.Multiprocessing.Lock.py
# -*- coding: utf-8 -*- import multiprocessing import sys def worker_with(lock, f): with lock: fs = open(f, 'a+') n = 10 while n > 1: fs.write("Lockd acquired via with\n") n -= 1 fs.close() def worker_no_with(lock, f): lock.acquire() try: fs = open(f, 'a+') n = 10 while n > 1: fs.write("Lock acquired directly\n") n -= 1 fs.close() finally: lock.release() if __name__ == "__main__": lock = multiprocessing.Lock() f = "file.txt" w = multiprocessing.Process(target = worker_with, args=(lock, f)) nw = multiprocessing.Process(target = worker_no_with, args=(lock, f)) w.start() nw.start() print "end"
hierarchy.py
# Copyright 2019 Sebastian Kahl # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Hierarchy Created on 16.08.2017 @author: skahl """ # Imports from __future__ in case we're running Python 2 from __future__ import division, print_function from __future__ import absolute_import, unicode_literals # system modules import threading from collections import deque # from Queue import Queue import sys import os # own modules from .configurator import Config from .visionlayer import VisionLayer from .motorcontrol import MotorControl from .sequencelayer import SequenceLayer from .clusterlayer import ClusterLayer from .toplayer import TopLayer from .realizations import Realizations from .goals import Goals from .ment_rule_parser import Parser from .ment import MetaCommunication from .functions import * # timing for information update from time import time class Hierarchy(object): def __init__(self, config): """ Initialize the hierarchy by a config list, containing name and type dictionaries. """ # logging setup self.logger = Logger('White', 'HPBU') self.log = self.logger.log self.error = self.logger.error # hierarchy layer setup self.is_stopped = False self.updates_enabled = False self.config = config self.layer_io = None self.layer_vision = None self.layer_between = [] self.layer_top = None self.update_delay = self.config.parameters['update_delay'] # seconds # optional interaction layer modules self.personmodel = None self.time_step = self.config.parameters['time_step'] # seconds self.update_info_delay = 0.1 # seconds TODO: decrease!! self.time_since_update = 0 self.last_time_info = time() # TODO: make use of self.config.parameters['memory_len'] # currently defaulting to 5 everywhere # hierarchy, possible modules layer_dict = { 'MotorControl': MotorControl, 'Vision': VisionLayer, 'Sequence': SequenceLayer, 'Cluster': ClusterLayer, 'Top': TopLayer, 'Realizations': Realizations, 'Goals': Goals } # load and parse PersonModel from xml, if parameter is given if self.config.parameters["personmodel_file"] is not "": personmodel_file = self.config.parameters["personmodel_file"] # if we are processing PersonModel knowledge for 'Seq' layer, load, parse and connect it self.log(1, "Loading PersonModel knowledge from xml...", personmodel_file) resource_path = os.environ.get('RESOURCE_PATH') # select xml-file specific parser parser_selector = Parser(filename=resource_path + os.sep + personmodel_file) parser = parser_selector.select_parser() # parse all available personmodels personmodels = parser.parse() if personmodels is not None and personmodels is not {}: # select the one personmodel identified in config by my_id my_id = self.config.parameters.get("my_id", None) if my_id in personmodels: personmodel = personmodels[my_id] personmodel.my_id = my_id self.log(1, "Selected PersonModel:\n", personmodel) self.personmodel = personmodel else: print(my_id) self.error("Configured my_id cannot be found in available PersonModels:", my_id) sys.exit(1) # if PersonModel was available, also try to configure a MetaCommunication object if self.personmodel is not None: meta_comm_queue = deque(maxlen=100) meta_communication = MetaCommunication(self.personmodel.my_id, self.personmodel.agents, meta_comm_queue) self.personmodel.set_meta_communication(meta_communication) # set PersonModel interaction_influence_mode parameter if self.config.parameters["interaction_influence_mode"] is not None: self.personmodel.interaction_influence_mode = self.config.parameters["interaction_influence_mode"] # load and parse configured layers for line in self.config.layers: layer = layer_dict[line['type']] if line['type'] in ['MotorControl']: self.layer_io = layer(line['name']) self.layer_io.set_logger(line['color']) self.layer_io.set_parameters(line['parameters'] if "parameters" in line else {}) # add global parameters to local layer parameters for key, val in self.config.parameters.items(): self.layer_io.params[key] = val # reference personmodel, if available self.layer_io.personmodel = self.personmodel # reference to hierarchy methods self.layer_io.hierarchy_sleep = self.hierarchy_sleep elif line['type'] in ['Top', 'Goals']: self.layer_top = layer(line['name']) self.layer_top.set_logger(line['color']) self.layer_top.set_parameters(line['parameters'] if "parameters" in line else {}) # add global parameters to local layer parameters for key, val in self.config.parameters.items(): self.layer_top.params[key] = val # reference personmodel, if available self.layer_top.personmodel = self.personmodel # reference to hierarchy methods self.layer_top.hierarchy_sleep = self.hierarchy_sleep if "filename" in line and line['filename'] is not None: """ loading routine to parse MENT-knowledge and load into hierarchy """ self.log(1, "Loading top layer knowledge from xml...", line['filename']) resource_path = os.environ.get('RESOURCE_PATH') # select xml-file specific parser parser_selector = Parser(filename=resource_path + os.sep + line['filename']) parser = parser_selector.select_parser() # parse _dict = parser.parse() # print(line['name'], "layer xml deserialization:", _dict) # load into layer structure num_hypos = len(_dict) for hypo_id, hypo in _dict.items(): self.layer_top.hypotheses.add_hypothesis_from_existing_repr(hypo, 1. / num_hypos) elif "Vision" == line['type']: self.layer_vision = layer(line['name']) self.layer_vision.set_logger(line['color']) self.layer_vision.set_parameters(line['parameters'] if "parameters" in line else {}) # add global parameters to local layer parameters for key, val in self.config.parameters.items(): self.layer_vision.params[key] = val # reference personmodel, if available self.layer_vision.personmodel = self.personmodel # reference to hierarchy methods self.layer_vision.hierarchy_sleep = self.hierarchy_sleep else: self.layer_between.append(layer(line['name'])) self.layer_between[-1].set_logger(line['color']) self.layer_between[-1].set_parameters(line['parameters'] if "parameters" in line else {}) # add global parameters to local layer parameters for key, val in self.config.parameters.items(): self.layer_between[-1].params[key] = val # reference personmodel, if available self.layer_between[-1].personmodel = self.personmodel # reference to hierarchy methods self.layer_between[-1].hierarchy_sleep = self.hierarchy_sleep if "filename" in line and line['filename'] is not None: """ loading routine to parse MENT-knowledge and load into hierarchy """ self.log(1, "Loading in-between layer knowledge from xml...", line['filename']) resource_path = os.environ.get('RESOURCE_PATH') # select xml-file specific parser parser_selector = Parser(filename=resource_path + os.sep + line['filename']) parser = parser_selector.select_parser() # parse _dict = parser.parse() # print(line['name'], "layer xml deserialization:", _dict) # load into layer structure num_hypos = len(_dict) for hypo_id, hypo in _dict.items(): self.layer_between[-1].hypotheses.add_hypothesis_from_existing_repr(hypo, 1. / num_hypos) if self.layer_io is None or self.layer_top is None: self.error("At least one layer of type 'MotorControl' and 'Top' have to be defined!") sys.exit(1) else: self.log(1, "Successfully set up the hierarchy with the following layers:") self.log(1, self.layer_top) [self.log(1, l) for l in self.layer_between[::-1]] self.log(1, self.layer_vision) self.log(1, self.layer_io) # mark top-layer as top-layer self.layer_top.is_top_layer = True """ loading routine to retrieve already learned layer knowledge from data storage """ if self.config.parameters["read_knowledge"]: self.log(1, "Restoring layer knowledge from data storage...") self.layer_top, self.layer_between, self.layer_io, self.layer_vision = self.config.restore_knowledge_from_storage(self.layer_top, self.layer_between, self.layer_io, self.layer_vision) """ Define influence, output and introspection necessities """ self.evidence_top_layer = None self.long_range_projection = {} self.lower_level_hypotheses = {} # prepare lower_level_hypotheses update house keeping lower_level = self.layer_vision for l in self.layer_between: self.lower_level_hypotheses[l.name] = lower_level.hypotheses lower_level = l self.lower_level_hypotheses[self.layer_top.name] = lower_level.hypotheses # prepare evidence update to next higher level house keeping self.evidences = {} self.evidences[self.layer_top.name] = [None, None, None] [self.evidences.update({l.name: [None, None, None]}) for l in self.layer_between] self.evidences[self.layer_io.name] = [None] """ Define multithreading necessities """ self.queue_input = deque(maxlen=100) self.queue_output = deque(maxlen=100) self.queue_info = deque(maxlen=100) self.queue_top_influence = deque(maxlen=100) self.queue_long_range_projection = deque(maxlen=100) # @profile def update(self): """ Full hierarchy update routine. This is a "prediction-first" update, so we update with the TopLayer first, traversing the hierarchy down until we reach the IOLayer. Send input via queue_input using dict {"input":your input} Quit the update thread using dict {"control":"quit"} in queue_input. Receive output via queue_output. """ # control prep control = "" # visualization information collection prep collected_info = {} # highly specialized variables to make sure realization intentions are stored in model info realizations_intention = None ################################# while control != "quit": # input prep input_proprioception = None input_vision = None input_meta = None # meta-communicative signals influence_top_layer = [None, None] prediction = [None, None] prunable = None long_range_projection = {} higher_layer_name = None lrp = None # highly specialized variables to make sure realization intentions are stored in model info realizations_intention_changed = False # Per-layer clean-up self.layer_top.clean_up() for layer in self.layer_between: layer.clean_up() self.layer_vision.clean_up() self.layer_io.clean_up() # timer self.time_since_update = time() - self.last_time_info # hierarchy update # Check queue for sensory input or control input # print("update input queue:", len(self.queue_input)) if len(self.queue_input) > 0: _input = self.queue_input.pop() _val = _input[list(_input.keys())[0]] if "control" in _val: control = _val["control"] if "proprioception" in _val: input_proprioception = _val["proprioception"] if "vision" in _val: # filter by attention on interaction partner agent if self.personmodel is not None: if "agent_name" in _val and _val["agent_name"] in [self.personmodel["me_focus"], self.personmodel["my_id"], None]: input_vision = _val["vision"] elif "agent_name" in _val: print("unfocused agent:", _val["agent_name"], "focus:", [self.personmodel["me_focus"], self.personmodel["my_id"], None]) else: print("received behavior from unknown agent") else: input_vision = _val["vision"] if "meta" in _val: input_meta = _val["meta"] if self.personmodel is not None: # todo: could be encapsulated in external comm_channel extending method self.personmodel.meta_communication.comm_channel.appendleft({"in": input_meta, "agent_name": _val["agent_name"]}) self.personmodel.meta_communication.rcv_meta() # Check queue for influencing top-layer input if len(self.queue_top_influence) > 0: _input = self.queue_top_influence.pop() if "input" in _input: influence_top_layer = _input["input"] # inhibit updates if necessary if not self.updates_enabled: sleep(0.1) else: # Check queue for outside long-range projection input if len(self.queue_long_range_projection) > 0: _lr = self.queue_long_range_projection.pop() for target, com in _lr.items(): long_range_projection[target] = com # print("\nlrp:", long_range_projection) # TopLayer update self.layer_top.receive_prediction(influence_top_layer) # from next higher layer, or external source self.layer_top.receive_long_range_projection(long_range_projection.get(self.layer_top.name, None)) self.layer_top.receive_lower_level_hypos(self.lower_level_hypotheses[self.layer_top.name]) self.layer_top.receive_evidence(self.evidences[self.layer_top.name]) self.layer_top.update() prediction = self.layer_top.send_prediction() prunable = self.layer_top.send_prunable() lrp = self.layer_top.send_long_range_projection() self.set_long_range_projection(lrp) higher_layer_name = self.layer_top.name # collect layer information for visualization if len(self.layer_top.hypotheses) > 0: collected_info[self.layer_top.name] = {"hypotheses": self.layer_top.hypotheses.dpd.tolist(), "free_energy": self.layer_top.free_energy, "precision": self.layer_top.K, "self": self.layer_top.self_estimate, "intention": str(self.layer_top.intention)} # Traverse the hierarchy in reverse order (top-down) for layer in self.layer_between[::-1]: # enable PersonModel influence in Seq layer if personmodel is available if layer.name == "Seq" and self.personmodel is not None: layer.personmodel_influence = True # enable PersonModel influence to allow prior knowledge to influence belief updates layer.receive_prediction(prediction) layer.receive_long_range_projection(long_range_projection.get(layer.name, None)) layer.receive_lower_level_hypos(self.lower_level_hypotheses[layer.name]) layer.receive_evidence(self.evidences[layer.name]) layer.receive_prunable(prunable) layer.update() self.lower_level_hypotheses[higher_layer_name] = layer.send_level_hypos() self.evidences[higher_layer_name] = layer.send_evidence() # store evidence dict by layer name on the fly higher_layer_name = layer.name # save this layer's name so that next lower layer knows where to send evidence prediction = layer.send_prediction() prunable = layer.send_prunable() lrp = layer.send_long_range_projection() self.set_long_range_projection(lrp) str_intention = str(layer.intention) # highly specialized realizations intention query if layer.name == "Realizations" and layer.intention is not None: if str_intention != realizations_intention: realizations_intention_changed = True realizations_intention = str_intention # collect layer information for visualization if len(layer.hypotheses) > 0: collected_info[layer.name] = {"hypotheses": layer.hypotheses.dpd.tolist(), "free_energy": layer.free_energy, "precision": layer.K, "self": layer.self_estimate, "intention": str_intention} # VisionLayer update (only receives visual updates and sends evidence to next higher layer) self.layer_vision.receive_prediction(prediction) self.layer_vision.receive_long_range_projection(long_range_projection.get(self.layer_vision.name, None)) self.layer_vision.receive_evidence(input_vision) # input from vision self.layer_vision.receive_prunable(prunable) self.layer_vision.update() # no predictions in this layer and new higher_layer_name for evidence self.evidences[higher_layer_name] = self.layer_vision.send_evidence() lrp = self.layer_vision.send_long_range_projection() self.lower_level_hypotheses[higher_layer_name] = self.layer_vision.send_level_hypos() self.set_long_range_projection(lrp) # collect layer information for visualization if len(self.layer_vision.hypotheses) > 0: collected_info[self.layer_vision.name] = {"hypotheses": self.layer_vision.hypotheses.dpd.tolist(), "free_energy": self.layer_vision.free_energy, "precision": self.layer_vision.K, "self": self.layer_vision.self_estimate, "intention": str(self.layer_vision.intention)} # motor update # IOLayer update (only receives proprioceptive updates and sends evidence to next higher layer, skipping VisionLayer) self.layer_io.receive_prediction(prediction) self.layer_io.receive_long_range_projection(long_range_projection.get(self.layer_io.name, None)) self.layer_io.receive_evidence(input_proprioception) # input from proprioception self.layer_io.receive_prunable(prunable) self.layer_io.update() lrp = self.layer_io.send_long_range_projection() self.set_long_range_projection(lrp) # no new higher_layer_name for evidence # self.evidences[higher_layer_name] = self.layer_io.send_evidence() # collect layer information for visualization if len(self.layer_io.hypotheses) > 0: collected_info[self.layer_io.name] = {"hypotheses": self.layer_io.hypotheses.dpd.tolist(), "free_energy": self.layer_io.free_energy, "precision": self.layer_io.K, "self": self.layer_io.self_estimate, "intention": str(self.layer_io.intention)} # output (active inference) prediction = self.layer_io.send_prediction() if prediction is not None and prediction[0] is not None: only_prediction = prediction[0] self.queue_output.appendleft({"angle": only_prediction}) # output of meta-communicative signals if self.personmodel is not None: comm_channel = self.personmodel.meta_communication.comm_channel if len(comm_channel) > 0: if "out" in comm_channel[-1]: # received a meta-communicative signal signal = comm_channel.pop()["out"] self.queue_output.appendleft({"meta": signal}) # communicative intention available in Realizations? # check time since info updates if self.time_since_update > self.update_info_delay or realizations_intention_changed: self.time_since_update = 0. self.last_time_info = time() # Collect Layer info and queue as info # self.log(0, "storing collected information") self.queue_info.appendleft(collected_info) # sleep a bit to save processor time sleep(self.update_delay) ################################# ################ finalize self.finalize() self.log(0, "... quit hierarchy update process.") def disable_updates(self): self.updates_enabled = False def enable_updates(self): self.updates_enabled = True def get_output(self): """ Return output from the hierarchy if there is some. """ if len(self.queue_output) > 0: return self.queue_output.pop() else: return None def set_input(self, uuid, _input): """ Put given input dict into the queue. A dict is expected with either a "control", "proprioception", or "vision" key. """ # source agent mustn't be this model, here, if meta-communication is going on if "control" in _input or "proprioception" in _input or "vision" in _input or\ ("meta" in _input and "agent_name" in _input and _input["agent_name"] != self.personmodel.my_id): if len(self.queue_input) > 0: _prior_input = self.queue_input[0] if uuid in _prior_input: new_input = _prior_input[uuid] new_input.update(_input) self.queue_input[0] = {uuid: new_input} else: self.queue_input.appendleft({uuid: _input}) # print("appended:", uuid) else: self.queue_input.appendleft({uuid: _input}) # print("no prior entries:", uuid) # print(len(self.queue_input), self.queue_input) return True else: self.error("A dict is expected with at least one of these keys: control, proprioception, vision, or meta") return False if len(self.queue_input) > 99: self.error("Input queue is full!") return False def set_topdown_influence(self, _input): """ Set a specific influence boost in the top-layer. """ if "input" in _input: self.queue_top_influence.appendleft(_input) else: self.error("A dict is expected with an 'input' key.") if len(self.queue_top_influence) > 99: self.error("Top-down influence queue is full!") def set_long_range_projection(self, _input): """ Set a specific input to a layer. Input expects a list of [layer_name, influence]. """ if _input is not None: if len(_input) > 0: self.queue_long_range_projection.appendleft(_input) else: self.error("A list is expected with structure [layer_name, influence].") if len(self.queue_top_influence) > 99: self.error("Long range projection queue is full!") def finalize(self): """ Call finalize method for each layer. """ self.layer_top.finalize() for layer in self.layer_between[::-1]: layer.finalize() self.layer_io.finalize() self.layer_vision.finalize() # signal hierarchy processing stopping self.is_stopped = True def print_report(self): """ Display a report on model statistics and content. """ self.log(0, "\n\n") self.log(0, "-" * 10, "Hierarchy output:") self.log(0, self.layer_top.print_out()) for layer in self.layer_between[::-1]: self.log(0, layer.print_out()) self.log(0, self.layer_io.print_out()) self.log(0, self.layer_vision.print_out()) def hierarchy_sleep(self, seconds): sleep(seconds) def run(self): """ Start the thread updating the hierarchy to have a non-blocking instance of the predictive hierarchy. """ update_thread = threading.Thread(target=self.update) update_thread.daemon = False update_thread.start() self.log(1, "Running hierarchy update process ...") def hierarchy_is_stopped(self): return self.is_stopped
_logs.py
from __future__ import annotations import itertools import logging import os import shlex import subprocess import sys import threading from datetime import datetime, timedelta from pathlib import Path from typing import Any, TextIO, cast import porcupine from porcupine import dirs log = logging.getLogger(__name__) FILENAME_FIRST_PART_FORMAT = "%Y-%m-%dT%H-%M-%S" # might be useful to grep something from old logs, but 30 days was way too much LOG_MAX_AGE_DAYS = 7 def _remove_old_logs() -> None: for path in Path(dirs.user_log_dir).glob("*.txt"): # support '<log dir>/<first_part>_<number>.txt' and '<log dir>/<firstpart>.txt' first_part = path.stem.split("_")[0] try: log_date = datetime.strptime(first_part, FILENAME_FIRST_PART_FORMAT) except ValueError: log.info(f"{path.parent} contains a file with an unexpected name: {path.name}") continue how_old = datetime.now() - log_date if how_old > timedelta(days=LOG_MAX_AGE_DAYS): log.info(f"{path} is more than {LOG_MAX_AGE_DAYS} days old, removing") path.unlink() def _run_command(command: str) -> None: try: output = subprocess.check_output(shlex.split(command), stderr=subprocess.STDOUT).decode( "utf-8", errors="replace" ) log.info(f"output from '{command}':\n{output}") except FileNotFoundError as e: log.info(f"cannot run '{command}': {e}") except (subprocess.CalledProcessError, OSError): log.warning(f"unexpected error when running '{command}'", exc_info=True) def _open_log_file() -> TextIO: timestamp = datetime.now().strftime(FILENAME_FIRST_PART_FORMAT) filenames = ( f"{timestamp}.txt" if i == 0 else f"{timestamp}_{i}.txt" for i in itertools.count() ) for filename in filenames: try: return (Path(dirs.user_log_dir) / filename).open("x", encoding="utf-8") except FileExistsError: continue assert False # makes mypy happy class _FilterThatDoesntHideWarnings(logging.Filter): def filter(self, record: logging.LogRecord) -> bool: return record.levelno >= logging.WARNING or super().filter(record) # verbose_logger can be: # - empty string (print everything) # - logger name (print only messages from that logger) # - None (only print errors) def setup(verbose_logger: str | None) -> None: handlers: list[logging.Handler] = [] log_file = _open_log_file() print(f"log file: {log_file.name}") file_handler = logging.StreamHandler(log_file) file_handler.setLevel(logging.DEBUG) file_handler.setFormatter( logging.Formatter("[%(asctime)s] %(name)s %(levelname)s: %(message)s") ) handlers.append(file_handler) if sys.stderr is not None: # not running in pythonw.exe, can also show something in terminal print_handler = logging.StreamHandler(sys.stderr) if verbose_logger is None: print_handler.setLevel(logging.WARNING) else: print_handler.setLevel(logging.DEBUG) print_handler.addFilter(_FilterThatDoesntHideWarnings(verbose_logger)) print_handler.setFormatter(logging.Formatter("%(name)s %(levelname)s: %(message)s")) handlers.append(print_handler) # don't know why level must be specified here logging.basicConfig(level=logging.DEBUG, handlers=handlers) porcupine_path = cast(Any, porcupine).__path__[0] log.debug(f"starting Porcupine {porcupine.__version__} from '{porcupine_path}'") log.debug(f"PID: {os.getpid()}") log.debug("running on Python %d.%d.%d from '%s'", *sys.version_info[:3], sys.executable) log.debug(f"sys.platform is {sys.platform!r}") if sys.platform != "win32": # lsb_release is a python script on ubuntu so running it takes # about 0.12 seconds on this system, i really want porcupine to # start as fast as possible _run_command("uname -a") threading.Thread(target=_run_command, args=["lsb_release -a"]).start() # don't fail to run if old logs can't be deleted for some reason try: _remove_old_logs() except OSError: log.exception("unexpected problem with removing old log files")
apd.py
#!/usr/bin/python import sys import time import argparse from datetime import datetime import socket import multiprocessing THREADS_NUMBER = 8 args = {} startupMessages = [] services = { 22: 'SSH', 80: 'HTTP', 443: 'HTTPS' } #TODO: This is an example list, read this from a file later def splitChunks(a, n): k, m = divmod(len(a), n) return (a[i*k+min(i, m):(i+1)*k+min(i+1, m)] for i in range(n)) def argparser(): global args global startupMessages # TODO: Full options like --timeout, --file parser = argparse.ArgumentParser(description='APD port scanner') parser.add_argument('TargetAdress', type=str, help='Target address') parser.add_argument('-T', type=int, help='Thread count (default: 8)', default=8) parser.add_argument('-t', type=float, help='Connection timeout (default: 1.0s)', default=1) parser.add_argument('-f', type=str, help='Output to filename', default='') parser.add_argument('-pS', type=int, help='Beginning of the port range to scan (default: 1)', default=1) parser.add_argument('-pE', type=int, help='Upper end of the port range to scan (default: 65535)', default=65535) parser.add_argument('-v', action=argparse.BooleanOptionalAction, help='Show verbose information') parser.add_argument('-vv', action=argparse.BooleanOptionalAction, help='Show debug information') parser.add_argument('--show-progress', default=False, action='store_true', help='Show progress') parser.add_argument('--no-logo', default=False, action='store_true', help='Disable ASCII-art at startup') args = parser.parse_args() startupMessages.append('[I] Connection timeout: {}s'.format(str(args.t))) if args.T != 8: startupMessages.append('[I] Thread count: {}'.format(str(args.T))) if args.f != '': startupMessages.append('[I] Outputting results to file: {}'.format(args.f)) if(args.v or args.vv) and args.show_progress: startupMessages.append("[!] Verbose / debug options (-v or -vv) and --show-progress aren't supported together. Progress is disabled.") args.show_progress = False if(args.pS < 1) or (args.pE > 65535): print("[-] Port range has to be within 1-65535. Cannot continue - exiting...") sys.exit() elif (args.pS > args.pE): print("[-} Beginning of the port range has to be lower or equal to upper end of the port range - exiting...") sys.exit() elif (args.pS != 1) and (args.pE != 65535): #DEFAULT VALUES / ALL PORT NUMBERS startupMessages.append('[I] Port range to scan: {}-{}'.format(str(args.pS),str(args.pE))) def verbprint(text): if args.v or args.vv: print(text) def debugprint(text): if args.vv: print(text) def printProgress(finishedPort, rangeBeginning, rangeEnding): if args.show_progress: currentIndex = finishedPort - rangeBeginning length = rangeEnding - rangeBeginning+1 print("Progress: {}%".format(str(int(float((currentIndex / length))*100))), end='\r') #TODO: This is one of the worst ways to calculate percentage def scan(addr, portRange, queue, isFirst): global args openports_thread = [] # LOCAL SCOPE rangeBeginning = portRange[0] rangeEnding = portRange[-1] try: for port in portRange: debugprint("[D] Initializing socket") soc = socket.socket(socket.AF_INET, socket.SOCK_STREAM) # TCP socket debugprint("[D] Setting socket timeout") # Set timeout to user option in args soc.settimeout(args.t) debugprint("[D] Connecting to port {}".format(str(port))) result = soc.connect_ex((addr,port)) if result == 0: openports_thread.append(port) if port in services: print("[*] Port {} is open - {} ".format(str(port), services[port])) #Whitespace because of the progress message length # TODO: Change showing progress to better way # SHOW PROGRESS if isFirst: printProgress(port, rangeBeginning, rangeEnding) else: print("[*] Port {} is open ".format(str(port))) # Whitespace because of progress message length # SHOW PROGRESS if isFirst: # SHOW PROGRESS printProgress(port, rangeBeginning, rangeEnding) else: if isFirst: printProgress(port, rangeBeginning, rangeEnding) verbprint("[!] Port {} is closed - {}".format(str(port), str(result))) queue.put(openports_thread) except socket.gaierror: #TODO: Fix multithread error (repeated 8 times) print("[-] Cannot resolve hostname: {}".format(str(addr))) sys.exit() except KeyboardInterrupt: pass def main(): openports = [] global startupMessages argparser() if not args.no_logo: print(" __\n ____ _____ ____/ /\n / __ `/ __ \/ __ / \n/ /_/ / /_/ / /_/ / \n\__,_/ .___/\__,_/ \n /_/ ") print("\n APD starting...")) # PRINT ALL WARNINGS try: if startupMessages: for message in startupMessages: print(message) # 1s delay allowing user to read message even if verbose or debug mode is enabled time.sleep(1) allPortsRanges = splitChunks(range(args.pS, args.pE+1), args.T) print("[*] Starting TCP scan on {} at {}".format(args.TargetAdress, str(datetime.now()))) jobs = [] queue = multiprocessing.Queue() isFirst = True for portRange in allPortsRanges: if list(portRange) == []: # Avoid division by zero error in show_progress if(args.T != 8): #TODO: Fix: hardcoded value to prevent from warning with default value print("[!] Ignoring user thread count: cannot start more threads than ports count") break if isFirst: jobs.append(multiprocessing.Process(target=scan, args=(args.TargetAdress, portRange, queue, True))) isFirst = False else: jobs.append(multiprocessing.Process(target=scan, args=(args.TargetAdress, portRange, queue, False))) jobs[-1].start() for job in jobs: job.join() # If job is already finished, .join() will return instantly openports = openports + list(queue.get()) # TODO: I think this is not the most optimal solution (we are calling queue.get() here 8 times) # Scan finished print("[+] Port scan on {} finished at {}".format(args.TargetAdress, str(datetime.now()))) # Create a string with open ports text_openports = " ".join(str(openport) for openport in openports) print("[+] All open ports: {}".format(text_openports)) # Save to file if args.f != '': try: output_file = open(args.f, "w") output_file.write(args.TargetAdress + ': ' + text_openports) print("[+] Output written to file: {}".format(args.f)) except Exception as e: print("[-] Cannot write output to file {}: {}".format(args.f, e)) except KeyboardInterrupt: print("\r[-] Cancelling scan: keyboard interrupt") sys.exit() if __name__ == "__main__": main()
a3c.py
import gym import multiprocessing import threading import numpy as np import os import shutil import matplotlib.pyplot as plt import tensorflow as tf #PARAMETERS OUTPUT_GRAPH = True # safe logs RENDER=True # render one worker LOG_DIR = './log' # savelocation for logs N_WORKERS = multiprocessing.cpu_count() # number of workers MAX_EP_STEP = 200 # maxumum number of steps per episode MAX_GLOBAL_EP = 2000 # total number of episodes GLOBAL_NET_SCOPE = 'Global_Net' UPDATE_GLOBAL_ITER = 10 # sets how often the global net is updated GAMMA = 0.90 # discount factor ENTROPY_BETA = 0.01 # entropy factor LR_A = 0.0001 # learning rate for actor LR_C = 0.001 # learning rate for critic # set environment GAME = 'Pendulum-v0' env = gym.make(GAME) env.reset() #if RENDER: # uncomment if rendering does not work # env.render() N_S = env.observation_space.shape[0] # number of states N_A = env.action_space.shape[0] # number of actions A_BOUND = [env.action_space.low, env.action_space.high] # action bounds # Network for the Actor Critic class ACNet(object): def __init__(self, scope, sess, globalAC=None): self.sess=sess self.actor_optimizer = tf.train.RMSPropOptimizer(LR_A, name='RMSPropA') # optimizer for the actor self.critic_optimizer = tf.train.RMSPropOptimizer(LR_C, name='RMSPropC') # optimizer for the critic if scope == GLOBAL_NET_SCOPE: # get global network with tf.variable_scope(scope): self.s = tf.placeholder(tf.float32, [None, N_S], 'S') # state self.a_params, self.c_params = self._build_net(scope)[-2:] # parameters of actor and critic net else: # local net, calculate losses with tf.variable_scope(scope): self.s = tf.placeholder(tf.float32, [None, N_S], 'S') # state self.a_his = tf.placeholder(tf.float32, [None, N_A], 'A') # action self.v_target = tf.placeholder(tf.float32, [None, 1], 'Vtarget') # v_target value mu, sigma, self.v, self.a_params, self.c_params = self._build_net(scope) # get mu and sigma of estimated action from neural net td = tf.subtract(self.v_target, self.v, name='TD_error') with tf.name_scope('c_loss'): self.c_loss = tf.reduce_mean(tf.square(td)) with tf.name_scope('wrap_a_out'): mu, sigma = mu * A_BOUND[1], sigma + 1e-4 normal_dist = tf.contrib.distributions.Normal(mu, sigma) with tf.name_scope('a_loss'): log_prob = normal_dist.log_prob(self.a_his) exp_v = log_prob * td entropy = normal_dist.entropy() # encourage exploration self.exp_v = ENTROPY_BETA * entropy + exp_v self.a_loss = tf.reduce_mean(-self.exp_v) with tf.name_scope('choose_a'): # use local params to choose action self.A = tf.clip_by_value(tf.squeeze(normal_dist.sample(1), axis=0), A_BOUND[0], A_BOUND[1]) # sample a action from distribution with tf.name_scope('local_grad'): self.a_grads = tf.gradients(self.a_loss, self.a_params) #calculate gradients for the network weights self.c_grads = tf.gradients(self.c_loss, self.c_params) with tf.name_scope('sync'): # update local and global network weights with tf.name_scope('pull'): self.pull_a_params_op = [l_p.assign(g_p) for l_p, g_p in zip(self.a_params, globalAC.a_params)] self.pull_c_params_op = [l_p.assign(g_p) for l_p, g_p in zip(self.c_params, globalAC.c_params)] with tf.name_scope('push'): self.update_a_op = self.actor_optimizer.apply_gradients(zip(self.a_grads, globalAC.a_params)) self.update_c_op = self.critic_optimizer.apply_gradients(zip(self.c_grads, globalAC.c_params)) def _build_net(self, scope): # neural network structure of the actor and critic w_init = tf.random_normal_initializer(0., .1) with tf.variable_scope('actor'): l_a = tf.layers.dense(self.s, 200, tf.nn.relu6, kernel_initializer=w_init, name='la') mu = tf.layers.dense(l_a, N_A, tf.nn.tanh, kernel_initializer=w_init, name='mu') # estimated action value sigma = tf.layers.dense(l_a, N_A, tf.nn.softplus, kernel_initializer=w_init, name='sigma') # estimated variance with tf.variable_scope('critic'): l_c = tf.layers.dense(self.s, 100, tf.nn.relu6, kernel_initializer=w_init, name='lc') v = tf.layers.dense(l_c, 1, kernel_initializer=w_init, name='v') # estimated value for state a_params = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope=scope + '/actor') c_params = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope=scope + '/critic') return mu, sigma, v, a_params, c_params def update_global(self, feed_dict): # run by a local self.sess.run([self.update_a_op, self.update_c_op], feed_dict) # local grads applies to global net def pull_global(self): # run by a local self.sess.run([self.pull_a_params_op, self.pull_c_params_op]) def choose_action(self, s): # run by a local s = s[np.newaxis, :] return self.sess.run(self.A, {self.s: s})[0] # worker class that inits own environment, trains on it and updloads weights to global net class Worker(object): def __init__(self, name, globalAC, sess): self.env = gym.make(GAME).unwrapped # make environment for each worker self.name = name self.AC = ACNet(name, sess, globalAC) # create ACNet for each worker self.sess=sess def work(self): global global_rewards, global_episodes total_step = 1 buffer_s, buffer_a, buffer_r = [], [], [] while not coord.should_stop() and global_episodes < MAX_GLOBAL_EP: s = self.env.reset() ep_r = 0 for ep_t in range(MAX_EP_STEP): if self.name == 'W_0' and RENDER: self.env.render() a = self.AC.choose_action(s) # estimate stochastic action based on policy s_, r, done, info = self.env.step(a) # make step in environment done = True if ep_t == MAX_EP_STEP - 1 else False ep_r += r # save actions, states and rewards in buffer buffer_s.append(s) buffer_a.append(a) buffer_r.append((r+8)/8) # normalize reward if total_step % UPDATE_GLOBAL_ITER == 0 or done: # update global and assign to local net if done: v_s_ = 0 # terminal else: v_s_ = self.sess.run(self.AC.v, {self.AC.s: s_[np.newaxis, :]})[0, 0] buffer_v_target = [] for r in buffer_r[::-1]: # reverse buffer r v_s_ = r + GAMMA * v_s_ buffer_v_target.append(v_s_) buffer_v_target.reverse() buffer_s, buffer_a, buffer_v_target = np.vstack(buffer_s), np.vstack(buffer_a), np.vstack(buffer_v_target) feed_dict = { self.AC.s: buffer_s, self.AC.a_his: buffer_a, self.AC.v_target: buffer_v_target, } self.AC.update_global(feed_dict) # actual training step, update global ACNet buffer_s, buffer_a, buffer_r = [], [], [] self.AC.pull_global() # get global parameters to local ACNet s = s_ total_step += 1 if done: if len(global_rewards) < 5: # record running episode reward global_rewards.append(ep_r) else: global_rewards.append(ep_r) global_rewards[-1] =(np.mean(global_rewards[-5:])) # smoothing print( self.name, "Ep:", global_episodes, "| Ep_r: %i" % global_rewards[-1], ) global_episodes += 1 break if __name__ == "__main__": global_rewards = [] global_episodes = 0 sess = tf.Session() with tf.device("/cpu:0"): global_ac = ACNet(GLOBAL_NET_SCOPE,sess) # we only need its params workers = [] # Create workers for i in range(N_WORKERS): i_name = 'W_%i' % i # worker name workers.append(Worker(i_name, global_ac,sess)) coord = tf.train.Coordinator() sess.run(tf.global_variables_initializer()) if OUTPUT_GRAPH: # write log file if os.path.exists(LOG_DIR): shutil.rmtree(LOG_DIR) tf.summary.FileWriter(LOG_DIR, sess.graph) worker_threads = [] for worker in workers: #start workers job = lambda: worker.work() t = threading.Thread(target=job) t.start() worker_threads.append(t) coord.join(worker_threads) # wait for termination of workers plt.plot(np.arange(len(global_rewards)), global_rewards) # plot rewards plt.xlabel('step') plt.ylabel('total moving reward') plt.show()
station_scan.py
from multiprocessing import Process class Station_Scan(): def __init__(self, settings, channels): self.config = settings self.channels = channels self.chanscan = Process(target=self.runscan) def scan(self): print("Channel Scan Requested by Client.") try: self.chanscan.start() except AssertionError: print("Channel Scan Already In Progress!") def runscan(self): self.channels.get_channels(forceupdate=True) print("Requested Channel Scan Complete.") def scanning(self): try: self.chanscan.join(timeout=0) return self.chanscan.is_alive() except AssertionError: return False
file_stream.py
import base64 import binascii import collections import itertools import logging import os import sys import random import requests import threading import time from typing import TYPE_CHECKING, Any, Dict, Iterator, List, Optional, Tuple import wandb from wandb import util from wandb import env import six from six.moves import queue from ..lib import file_stream_utils logger = logging.getLogger(__name__) Chunk = collections.namedtuple("Chunk", ("filename", "data")) if TYPE_CHECKING: from typing import Any, List, Dict class DefaultFilePolicy(object): def __init__(self, start_chunk_id=0): self._chunk_id = start_chunk_id def process_chunks(self, chunks): chunk_id = self._chunk_id self._chunk_id += len(chunks) return {"offset": chunk_id, "content": [c.data for c in chunks]} class JsonlFilePolicy(DefaultFilePolicy): def process_chunks(self, chunks): chunk_id = self._chunk_id # TODO: chunk_id is getting reset on each request... self._chunk_id += len(chunks) chunk_data = [] for chunk in chunks: if len(chunk.data) > util.MAX_LINE_BYTES: msg = "Metric data exceeds maximum size of {} ({})".format( util.to_human_size(util.MAX_LINE_BYTES), util.to_human_size(len(chunk.data)), ) wandb.termerror(msg, repeat=False) util.sentry_message(msg) else: chunk_data.append(chunk.data) return { "offset": chunk_id, "content": chunk_data, } class SummaryFilePolicy(DefaultFilePolicy): def process_chunks(self, chunks): data = chunks[-1].data if len(data) > util.MAX_LINE_BYTES: msg = "Summary data exceeds maximum size of {}. Dropping it.".format( util.to_human_size(util.MAX_LINE_BYTES) ) wandb.termerror(msg, repeat=False) util.sentry_message(msg) return False return {"offset": 0, "content": [data]} class StreamCRState: """There are two streams: stdout and stderr. We create two instances for each stream. An instance holds state about: found_cr: if a carriage return has been found in this stream. cr: most recent offset (line number) where we found \r. We update this offset with every progress bar update. last_normal: most recent offset without a \r in this stream. i.e the most recent "normal" line. """ found_cr: bool cr: Optional[int] last_normal: Optional[int] def __init__(self): self.found_cr = False self.cr = None self.last_normal = None class CRDedupeFilePolicy(DefaultFilePolicy): """File stream policy that removes characters that would be erased by carriage returns. This is what a terminal does. We use it for console output to reduce the amount of data we need to send over the network (eg. for progress bars), while preserving the output's appearance in the web app. CR stands for "carriage return", for the character \r. It tells the terminal to move the cursor back to the start of the current line. Progress bars (like tqdm) use \r repeatedly to overwrite a line with newer updates. This gives the illusion of the progress bar filling up in real-time. """ def __init__(self, start_chunk_id=0): super(CRDedupeFilePolicy, self).__init__(start_chunk_id=start_chunk_id) self._prev_chunk = None self.global_offset = 0 # cr refers to carriage return \r self.stderr = StreamCRState() self.stdout = StreamCRState() def get_consecutive_offsets(self, console: Dict) -> List[Any]: """ Args: console: Dict[int, str] which maps offsets (line numbers) to lines of text. It represents a mini version of our console dashboard on the UI. Returns: A list of intervals (we compress consecutive line numbers into an interval). Example: >>> console = {2: "", 3: "", 4: "", 5: "", 10: "", 11: "", 20: ""} >>> get_consecutive_offsets(console) [(2, 5), (10, 11), (20, 20)] """ offsets = sorted(list(console.keys())) intervals: List = [] for i, num in enumerate(offsets): if i == 0: intervals.append([num, num]) continue largest = intervals[-1][1] if num == largest + 1: intervals[-1][1] = num else: intervals.append([num, num]) return intervals def split_chunk(self, chunk: Chunk) -> Tuple[str, str]: """ Args: chunk: object with two fields: filename (str) & data (str) `chunk.data` is a str containing the lines we want. It usually contains \n or \r or both. `chunk.data` has two possible formats (for the two streams - stdout and stderr): - "2020-08-25T20:38:36.895321 this is my line of text\nsecond line\n" - "ERROR 2020-08-25T20:38:36.895321 this is my line of text\nsecond line\nthird\n" Here's another example with a carriage return \r. - "ERROR 2020-08-25T20:38:36.895321 \r progress bar\n" Returns: A 2-tuple of strings. First str is prefix, either "ERROR {timestamp} " or "{timestamp} ". Second str is the rest of the string. Example: >>> chunk = Chunk(filename="output.log", data="ERROR 2020-08-25T20:38 this is my line of text\n") >>> split_chunk(chunk) ("ERROR 2020-08-25T20:38 ", "this is my line of text\n") """ prefix = "" token, rest = chunk.data.split(" ", 1) if token == "ERROR": prefix += token + " " token, rest = rest.split(" ", 1) prefix += token + " " return prefix, rest def process_chunks(self, chunks: List) -> List[Dict]: """ Args: chunks: List of Chunk objects. See description of chunk above in `split_chunk(...)`. Returns: List[Dict]. Each dict in the list contains two keys: an `offset` which holds the line number and `content` which maps to a list of consecutive lines starting from that offset. `offset` here means global line number in our console on the UI. Example: >>> chunks = [ Chunk("output.log", "ERROR 2020-08-25T20:38 this is my line of text\nboom\n"), Chunk("output.log", "2020-08-25T20:38 this is test\n"), ] >>> process_chunks(chunks) [ {"offset": 0, "content": [ "ERROR 2020-08-25T20:38 this is my line of text\n", "ERROR 2020-08-25T20:38 boom\n", "2020-08-25T20:38 this is test\n" ] } ] """ # Dict[int->str], each offset (line number) mapped to a line. # Represents a mini-version of our console pane on the UI. console = {} sep = os.linesep for c in chunks: prefix, logs_str = self.split_chunk(c) logs = logs_str.split(sep) for line in logs: stream = self.stderr if prefix.startswith("ERROR ") else self.stdout if line.startswith("\r"): # line starting with \r will always overwrite a previous offset. offset = stream.cr if stream.found_cr else stream.last_normal or 0 stream.cr = offset stream.found_cr = True console[offset] = prefix + line[1:] + "\n" # Usually logs_str = "\r progress bar\n" for progress bar updates. # If instead logs_str = "\r progress bar\n text\n text\n", # treat this as the end of a progress bar and reset accordingly. if ( logs_str.count(sep) > 1 and logs_str.replace(sep, "").count("\r") == 1 ): stream.found_cr = False elif line: console[self.global_offset] = prefix + line + "\n" stream.last_normal = self.global_offset self.global_offset += 1 intervals = self.get_consecutive_offsets(console) ret = [] for (a, b) in intervals: ret.append({"offset": a, "content": [console[i] for i in range(a, b + 1)]}) return ret class BinaryFilePolicy(DefaultFilePolicy): def process_chunks(self, chunks): data = b"".join([c.data for c in chunks]) enc = base64.b64encode(data).decode("ascii") self._offset += len(data) return {"offset": self._offset, "content": enc, "encoding": "base64"} class FileStreamApi(object): """Pushes chunks of files to our streaming endpoint. This class is used as a singleton. It has a thread that serializes access to the streaming endpoint and performs rate-limiting and batching. TODO: Differentiate between binary/text encoding. """ Finish = collections.namedtuple("Finish", ("exitcode")) Preempting = collections.namedtuple("Preempting", ()) PushSuccess = collections.namedtuple("PushSuccess", ("artifact_id", "save_name")) HTTP_TIMEOUT = env.get_http_timeout(10) MAX_ITEMS_PER_PUSH = 10000 def __init__(self, api, run_id, start_time, settings=None): if settings is None: settings = dict() # NOTE: exc_info is set in thread_except_body context and readable by calling threads self._exc_info = None self._settings = settings self._api = api self._run_id = run_id self._start_time = start_time self._client = requests.Session() self._client.auth = ("api", api.api_key) self._client.timeout = self.HTTP_TIMEOUT self._client.headers.update( { "User-Agent": api.user_agent, "X-WANDB-USERNAME": env.get_username(), "X-WANDB-USER-EMAIL": env.get_user_email(), } ) self._file_policies = {} self._dropped_chunks = 0 self._queue = queue.Queue() self._thread = threading.Thread(target=self._thread_except_body) # It seems we need to make this a daemon thread to get sync.py's atexit handler to run, which # cleans this thread up. self._thread.name = "FileStreamThread" self._thread.daemon = True self._init_endpoint() def _init_endpoint(self): settings = self._api.settings() settings.update(self._settings) self._endpoint = "{base}/files/{entity}/{project}/{run}/file_stream".format( base=settings["base_url"], entity=settings["entity"], project=settings["project"], run=self._run_id, ) def start(self): self._init_endpoint() self._thread.start() def set_default_file_policy(self, filename, file_policy): """Set an upload policy for a file unless one has already been set.""" if filename not in self._file_policies: self._file_policies[filename] = file_policy def set_file_policy(self, filename, file_policy): self._file_policies[filename] = file_policy @property def heartbeat_seconds(self): # Defaults to 30 return self._api.dynamic_settings["heartbeat_seconds"] def rate_limit_seconds(self): run_time = time.time() - self._start_time if run_time < 60: return max(1, self.heartbeat_seconds / 15) elif run_time < 300: return max(2.5, self.heartbeat_seconds / 3) else: return max(5, self.heartbeat_seconds) def _read_queue(self): # called from the push thread (_thread_body), this does an initial read # that'll block for up to rate_limit_seconds. Then it tries to read # as much out of the queue as it can. We do this because the http post # to the server happens within _thread_body, and can take longer than # our rate limit. So next time we get a chance to read the queue we want # read all the stuff that queue'd up since last time. # # If we have more than MAX_ITEMS_PER_PUSH in the queue then the push thread # will get behind and data will buffer up in the queue. return util.read_many_from_queue( self._queue, self.MAX_ITEMS_PER_PUSH, self.rate_limit_seconds() ) def _thread_body(self): posted_data_time = time.time() posted_anything_time = time.time() ready_chunks = [] uploaded = set() finished = None while finished is None: items = self._read_queue() for item in items: if isinstance(item, self.Finish): finished = item elif isinstance(item, self.Preempting): request_with_retry( self._client.post, self._endpoint, json={ "complete": False, "preempting": True, "dropped": self._dropped_chunks, "uploaded": list(uploaded), }, ) uploaded = set() elif isinstance(item, self.PushSuccess): uploaded.add(item.save_name) else: # item is Chunk ready_chunks.append(item) cur_time = time.time() if ready_chunks and ( finished or cur_time - posted_data_time > self.rate_limit_seconds() ): posted_data_time = cur_time posted_anything_time = cur_time self._send(ready_chunks) ready_chunks = [] if cur_time - posted_anything_time > self.heartbeat_seconds: posted_anything_time = cur_time self._handle_response( request_with_retry( self._client.post, self._endpoint, json={ "complete": False, "failed": False, "dropped": self._dropped_chunks, "uploaded": list(uploaded), }, ) ) uploaded = set() # post the final close message. (item is self.Finish instance now) request_with_retry( self._client.post, self._endpoint, json={ "complete": True, "exitcode": int(finished.exitcode), "dropped": self._dropped_chunks, "uploaded": list(uploaded), }, ) def _thread_except_body(self): # TODO: Consolidate with internal_util.ExceptionThread try: self._thread_body() except Exception as e: exc_info = sys.exc_info() self._exc_info = exc_info logger.exception("generic exception in filestream thread") util.sentry_exc(exc_info, delay=True) raise e def _handle_response(self, response): """Logs dropped chunks and updates dynamic settings""" if isinstance(response, Exception): wandb.termerror( "Dropped streaming file chunk (see wandb/debug-internal.log)" ) logging.exception("dropped chunk %s" % response) self._dropped_chunks += 1 else: parsed: dict = None try: parsed = response.json() except Exception: pass if isinstance(parsed, dict): limits = parsed.get("limits") if isinstance(limits, dict): self._api.dynamic_settings.update(limits) def _send(self, chunks): # create files dict. dict of <filename: chunks> pairs where chunks is a list of # [chunk_id, chunk_data] tuples (as lists since this will be json). files = {} # Groupby needs group keys to be consecutive, so sort first. chunks.sort(key=lambda c: c.filename) for filename, file_chunks in itertools.groupby(chunks, lambda c: c.filename): file_chunks = list(file_chunks) # groupby returns iterator # Specific file policies are set by internal/sender.py self.set_default_file_policy(filename, DefaultFilePolicy()) files[filename] = self._file_policies[filename].process_chunks(file_chunks) if not files[filename]: del files[filename] for fs in file_stream_utils.split_files(files, max_bytes=util.MAX_LINE_BYTES): self._handle_response( request_with_retry( self._client.post, self._endpoint, json={"files": fs, "dropped": self._dropped_chunks}, retry_callback=self._api.retry_callback, ) ) def stream_file(self, path): name = path.split("/")[-1] with open(path) as f: self._send([Chunk(name, line) for line in f]) def enqueue_preempting(self): self._queue.put(self.Preempting()) def push(self, filename, data): """Push a chunk of a file to the streaming endpoint. Arguments: filename: Name of file that this is a chunk of. chunk_id: TODO: change to 'offset' chunk: File data. """ self._queue.put(Chunk(filename, data)) def push_success(self, artifact_id, save_name): """Notification that a file upload has been successfully completed Arguments: artifact_id: ID of artifact save_name: saved name of the uploaded file """ self._queue.put(self.PushSuccess(artifact_id, save_name)) def finish(self, exitcode): """Cleans up. Anything pushed after finish will be dropped. Arguments: exitcode: The exitcode of the watched process. """ self._queue.put(self.Finish(exitcode)) # TODO(jhr): join on a thread which exited with an exception is a noop, clean up this path self._thread.join() if self._exc_info: logger.error("FileStream exception", exc_info=self._exc_info) # reraising the original exception, will get recaught in internal.py for the sender thread six.reraise(*self._exc_info) MAX_SLEEP_SECONDS = 60 * 5 def request_with_retry(func, *args, **kwargs): """Perform a requests http call, retrying with exponential backoff. Arguments: func: An http-requesting function to call, like requests.post max_retries: Maximum retries before giving up. By default we retry 30 times in ~2 hours before dropping the chunk *args: passed through to func **kwargs: passed through to func """ max_retries = kwargs.pop("max_retries", 30) retry_callback = kwargs.pop("retry_callback", None) sleep = 2 retry_count = 0 while True: try: response = func(*args, **kwargs) response.raise_for_status() return response except ( requests.exceptions.ConnectionError, requests.exceptions.HTTPError, requests.exceptions.Timeout, ) as e: if isinstance(e, requests.exceptions.HTTPError): # Non-retriable HTTP errors. # # We retry 500s just to be cautious, and because the back end # returns them when there are infrastructure issues. If retrying # some request winds up being problematic, we'll change the # back end to indicate that it shouldn't be retried. if e.response is not None and e.response.status_code in { 400, 403, 404, 409, }: return e if retry_count == max_retries: return e retry_count += 1 delay = sleep + random.random() * 0.25 * sleep if isinstance(e, requests.exceptions.HTTPError) and ( e.response is not None and e.response.status_code == 429 ): err_str = "Filestream rate limit exceeded, retrying in {} seconds".format( delay ) if retry_callback: retry_callback(e.response.status_code, err_str) logger.info(err_str) else: pass logger.warning( "requests_with_retry encountered retryable exception: %s. func: %s, args: %s, kwargs: %s", e, func, args, kwargs, ) time.sleep(delay) sleep *= 2 if sleep > MAX_SLEEP_SECONDS: sleep = MAX_SLEEP_SECONDS except requests.exceptions.RequestException as e: error_message = "unknown error" try: error_message = response.json()["error"] # XXX clean this up except Exception: pass logger.error("requests_with_retry error: {}".format(error_message)) logger.exception( "requests_with_retry encountered unretryable exception: %s", e ) return e
TServer.py
# Copyright (c) Facebook, Inc. and its affiliates. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import logging import sys import os import threading if sys.version_info[0] >= 3: import queue Queue = queue else: import Queue import warnings from thrift.Thrift import TProcessor, TApplicationException from thrift.transport import TTransport from thrift.protocol import TBinaryProtocol from thrift.protocol.THeaderProtocol import THeaderProtocolFactory class TConnectionContext: def getPeerName(self): """Gets the address of the client. Returns: The equivalent value of socket.getpeername() on the client socket """ raise NotImplementedError class TRpcConnectionContext(TConnectionContext): """Connection context class for thrift RPC calls""" def __init__(self, client_socket, iprot=None, oprot=None): """Initializer. Arguments: client_socket: the TSocket to the client """ self._client_socket = client_socket self.iprot = iprot self.oprot = oprot def setProtocols(self, iprot, oprot): self.iprot = iprot self.oprot = oprot def getPeerName(self): """Gets the address of the client. Returns: Same value as socket.peername() for the TSocket """ return self._client_socket.getPeerName() def getSockName(self): """Gets the address of the server. Returns: Same value as socket.getsockname() for the TSocket """ return self._client_socket.getsockname() class TServerEventHandler: """Event handler base class. Override selected methods on this class to implement custom event handling """ def preServe(self, address): """Called before the server begins. Arguments: address: the address that the server is listening on """ pass def newConnection(self, context): """Called when a client has connected and is about to begin processing. Arguments: context: instance of TRpcConnectionContext """ pass def clientBegin(self, iprot, oprot): """Deprecated: Called when a new connection is made to the server. For all servers other than TNonblockingServer, this function is called whenever newConnection is called and vice versa. This is the old-style for event handling and is not supported for TNonblockingServer. New code should always use the newConnection method. """ pass def connectionDestroyed(self, context): """Called when a client has finished request-handling. Arguments: context: instance of TRpcConnectionContext """ pass class TServer: """Base interface for a server, which must have a serve method.""" """ constructors for all servers: 1) (processor, serverTransport) 2) (processor, serverTransport, transportFactory, protocolFactory) 3) (processor, serverTransport, inputTransportFactory, outputTransportFactory, inputProtocolFactory, outputProtocolFactory) Optionally, the handler can be passed instead of the processor, and a processor will be created automatically: 4) (handler, serverTransport) 5) (handler, serverTransport, transportFacotry, protocolFactory) 6) (handler, serverTransport, inputTransportFactory, outputTransportFactory, inputProtocolFactory, outputProtocolFactory) The attribute serverEventHandler (default: None) receives callbacks for various events in the server lifecycle. It should be set to an instance of TServerEventHandler. """ def __init__(self, *args): if (len(args) == 2): self.__initArgs__(args[0], args[1], TTransport.TTransportFactoryBase(), TTransport.TTransportFactoryBase(), TBinaryProtocol.TBinaryProtocolFactory(), TBinaryProtocol.TBinaryProtocolFactory()) elif (len(args) == 4): self.__initArgs__(args[0], args[1], args[2], args[2], args[3], args[3]) elif (len(args) == 6): self.__initArgs__(args[0], args[1], args[2], args[3], args[4], args[5]) def __initArgs__(self, processor, serverTransport, inputTransportFactory, outputTransportFactory, inputProtocolFactory, outputProtocolFactory): self.processor = self._getProcessor(processor) self.serverTransport = serverTransport self.inputTransportFactory = inputTransportFactory self.outputTransportFactory = outputTransportFactory self.inputProtocolFactory = inputProtocolFactory self.outputProtocolFactory = outputProtocolFactory self.serverEventHandler = TServerEventHandler() def _getProcessor(self, processor): """ Check if a processor is really a processor, or if it is a handler auto create a processor for it """ if isinstance(processor, TProcessor): return processor elif hasattr(processor, "_processor_type"): handler = processor return handler._processor_type(handler) else: raise TApplicationException( message="Could not detect processor type") def setServerEventHandler(self, handler): self.serverEventHandler = handler def _clientBegin(self, context, iprot, oprot): self.serverEventHandler.newConnection(context) self.serverEventHandler.clientBegin(iprot, oprot) def handle(self, client): itrans = self.inputTransportFactory.getTransport(client) otrans = self.outputTransportFactory.getTransport(client) iprot = self.inputProtocolFactory.getProtocol(itrans) if isinstance(self.inputProtocolFactory, THeaderProtocolFactory): oprot = iprot else: oprot = self.outputProtocolFactory.getProtocol(otrans) context = TRpcConnectionContext(client, iprot, oprot) self._clientBegin(context, iprot, oprot) try: while True: self.processor.process(iprot, oprot, context) except TTransport.TTransportException: pass except Exception as x: logging.exception(x) self.serverEventHandler.connectionDestroyed(context) itrans.close() otrans.close() def serve(self): pass class TSimpleServer(TServer): """Simple single-threaded server that just pumps around one transport.""" def __init__(self, *args): warnings.warn("TSimpleServer is deprecated. Please use one of " "Nonblocking, Twisted, or Gevent server instead.", DeprecationWarning) TServer.__init__(self, *args) def serve(self): self.serverTransport.listen() for name in self.serverTransport.getSocketNames(): self.serverEventHandler.preServe(name) while True: client = self.serverTransport.accept() self.handle(client) class TThreadedServer(TServer): """Threaded server that spawns a new thread per each connection.""" def __init__(self, *args, **kwargs): TServer.__init__(self, *args) self.daemon = kwargs.get("daemon", False) def serve(self): self.serverTransport.listen() for name in self.serverTransport.getSocketNames(): self.serverEventHandler.preServe(name) while True: try: client = self.serverTransport.accept() t = threading.Thread(target=self.handle, args=(client,)) t.daemon = self.daemon t.start() except KeyboardInterrupt: raise except Exception as x: logging.exception(x)
client.py
from sys import maxsize import threading import grpc import protobuffer_pb2 as game import protobuffer_pb2_grpc as rpc from engine_revised import Engine from queue import Queue address = 'localhost' port = 50051 class Client(): def __init__(self, id:str, engine: Engine): self.id = id self.engine = engine self.gotten_data = Queue(maxsize=0) with open('server.crt', 'rb') as f: trusted_certs = f.read() credentials = grpc.ssl_channel_credentials(root_certificates=trusted_certs) channel = grpc.secure_channel(address+':'+str(port), credentials) self.conn = rpc.GameServerStub(channel) #New listening thread for getting messages self.id_message = game.Id() self.id_message.id = self.id threading.Thread(target=self.__listen_for_messages, daemon=True).start() def __listen_for_messages(self): for data in self.conn.GameStream(self.id_message): #print(data) self.gotten_data.put(data) ''' print('- - - - - - - - - - -') all_items = self.engine.get_items_on_screen(self.id, data) self.engine.render_field(all_items) ''' def send_action(self, action): if action != '': n = game.Action() n.id = self.id n.direction = action print(f'Sending action: {action}') self.conn.GameAction(n) def get_high_scores(self): return self.conn.GameScores(game.Nothing()) if __name__ == '__main__': from sys import argv client = None if len(argv) == 2: client = Client(argv[1], Engine) else: client = Client('Thomas', Engine) for score in client.get_high_scores().scores: print(score.id, score.score)
miniterm.py
#!/home/sincgrid-ubuntu/Desktop/jupyterNotebook/PhySyncEnv/bin/python # # Very simple serial terminal # # This file is part of pySerial. https://github.com/pyserial/pyserial # (C)2002-2015 Chris Liechti <cliechti@gmx.net> # # SPDX-License-Identifier: BSD-3-Clause import codecs import os import sys import threading import serial from serial.tools.list_ports import comports from serial.tools import hexlify_codec # pylint: disable=wrong-import-order,wrong-import-position codecs.register(lambda c: hexlify_codec.getregentry() if c == 'hexlify' else None) try: raw_input except NameError: # pylint: disable=redefined-builtin,invalid-name raw_input = input # in python3 it's "raw" unichr = chr def key_description(character): """generate a readable description for a key""" ascii_code = ord(character) if ascii_code < 32: return 'Ctrl+{:c}'.format(ord('@') + ascii_code) else: return repr(character) # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - class ConsoleBase(object): """OS abstraction for console (input/output codec, no echo)""" def __init__(self): if sys.version_info >= (3, 0): self.byte_output = sys.stdout.buffer else: self.byte_output = sys.stdout self.output = sys.stdout def setup(self): """Set console to read single characters, no echo""" def cleanup(self): """Restore default console settings""" def getkey(self): """Read a single key from the console""" return None def write_bytes(self, byte_string): """Write bytes (already encoded)""" self.byte_output.write(byte_string) self.byte_output.flush() def write(self, text): """Write string""" self.output.write(text) self.output.flush() def cancel(self): """Cancel getkey operation""" # - - - - - - - - - - - - - - - - - - - - - - - - # context manager: # switch terminal temporary to normal mode (e.g. to get user input) def __enter__(self): self.cleanup() return self def __exit__(self, *args, **kwargs): self.setup() if os.name == 'nt': # noqa import msvcrt import ctypes class Out(object): """file-like wrapper that uses os.write""" def __init__(self, fd): self.fd = fd def flush(self): pass def write(self, s): os.write(self.fd, s) class Console(ConsoleBase): def __init__(self): super(Console, self).__init__() self._saved_ocp = ctypes.windll.kernel32.GetConsoleOutputCP() self._saved_icp = ctypes.windll.kernel32.GetConsoleCP() ctypes.windll.kernel32.SetConsoleOutputCP(65001) ctypes.windll.kernel32.SetConsoleCP(65001) self.output = codecs.getwriter('UTF-8')(Out(sys.stdout.fileno()), 'replace') # the change of the code page is not propagated to Python, manually fix it sys.stderr = codecs.getwriter('UTF-8')(Out(sys.stderr.fileno()), 'replace') sys.stdout = self.output self.output.encoding = 'UTF-8' # needed for input def __del__(self): ctypes.windll.kernel32.SetConsoleOutputCP(self._saved_ocp) ctypes.windll.kernel32.SetConsoleCP(self._saved_icp) def getkey(self): while True: z = msvcrt.getwch() if z == unichr(13): return unichr(10) elif z in (unichr(0), unichr(0x0e)): # functions keys, ignore msvcrt.getwch() else: return z def cancel(self): # CancelIo, CancelSynchronousIo do not seem to work when using # getwch, so instead, send a key to the window with the console hwnd = ctypes.windll.kernel32.GetConsoleWindow() ctypes.windll.user32.PostMessageA(hwnd, 0x100, 0x0d, 0) elif os.name == 'posix': import atexit import termios import fcntl class Console(ConsoleBase): def __init__(self): super(Console, self).__init__() self.fd = sys.stdin.fileno() self.old = termios.tcgetattr(self.fd) atexit.register(self.cleanup) if sys.version_info < (3, 0): self.enc_stdin = codecs.getreader(sys.stdin.encoding)(sys.stdin) else: self.enc_stdin = sys.stdin def setup(self): new = termios.tcgetattr(self.fd) new[3] = new[3] & ~termios.ICANON & ~termios.ECHO & ~termios.ISIG new[6][termios.VMIN] = 1 new[6][termios.VTIME] = 0 termios.tcsetattr(self.fd, termios.TCSANOW, new) def getkey(self): c = self.enc_stdin.read(1) if c == unichr(0x7f): c = unichr(8) # map the BS key (which yields DEL) to backspace return c def cancel(self): fcntl.ioctl(self.fd, termios.TIOCSTI, b'\0') def cleanup(self): termios.tcsetattr(self.fd, termios.TCSAFLUSH, self.old) else: raise NotImplementedError( 'Sorry no implementation for your platform ({}) available.'.format(sys.platform)) # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - class Transform(object): """do-nothing: forward all data unchanged""" def rx(self, text): """text received from serial port""" return text def tx(self, text): """text to be sent to serial port""" return text def echo(self, text): """text to be sent but displayed on console""" return text class CRLF(Transform): """ENTER sends CR+LF""" def tx(self, text): return text.replace('\n', '\r\n') class CR(Transform): """ENTER sends CR""" def rx(self, text): return text.replace('\r', '\n') def tx(self, text): return text.replace('\n', '\r') class LF(Transform): """ENTER sends LF""" class NoTerminal(Transform): """remove typical terminal control codes from input""" REPLACEMENT_MAP = dict((x, 0x2400 + x) for x in range(32) if unichr(x) not in '\r\n\b\t') REPLACEMENT_MAP.update( { 0x7F: 0x2421, # DEL 0x9B: 0x2425, # CSI }) def rx(self, text): return text.translate(self.REPLACEMENT_MAP) echo = rx class NoControls(NoTerminal): """Remove all control codes, incl. CR+LF""" REPLACEMENT_MAP = dict((x, 0x2400 + x) for x in range(32)) REPLACEMENT_MAP.update( { 0x20: 0x2423, # visual space 0x7F: 0x2421, # DEL 0x9B: 0x2425, # CSI }) class Printable(Transform): """Show decimal code for all non-ASCII characters and replace most control codes""" def rx(self, text): r = [] for c in text: if ' ' <= c < '\x7f' or c in '\r\n\b\t': r.append(c) elif c < ' ': r.append(unichr(0x2400 + ord(c))) else: r.extend(unichr(0x2080 + ord(d) - 48) for d in '{:d}'.format(ord(c))) r.append(' ') return ''.join(r) echo = rx class Colorize(Transform): """Apply different colors for received and echo""" def __init__(self): # XXX make it configurable, use colorama? self.input_color = '\x1b[37m' self.echo_color = '\x1b[31m' def rx(self, text): return self.input_color + text def echo(self, text): return self.echo_color + text class DebugIO(Transform): """Print what is sent and received""" def rx(self, text): sys.stderr.write(' [RX:{}] '.format(repr(text))) sys.stderr.flush() return text def tx(self, text): sys.stderr.write(' [TX:{}] '.format(repr(text))) sys.stderr.flush() return text # other ideas: # - add date/time for each newline # - insert newline after: a) timeout b) packet end character EOL_TRANSFORMATIONS = { 'crlf': CRLF, 'cr': CR, 'lf': LF, } TRANSFORMATIONS = { 'direct': Transform, # no transformation 'default': NoTerminal, 'nocontrol': NoControls, 'printable': Printable, 'colorize': Colorize, 'debug': DebugIO, } # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - def ask_for_port(): """\ Show a list of ports and ask the user for a choice. To make selection easier on systems with long device names, also allow the input of an index. """ sys.stderr.write('\n--- Available ports:\n') ports = [] for n, (port, desc, hwid) in enumerate(sorted(comports()), 1): sys.stderr.write('--- {:2}: {:20} {!r}\n'.format(n, port, desc)) ports.append(port) while True: port = raw_input('--- Enter port index or full name: ') try: index = int(port) - 1 if not 0 <= index < len(ports): sys.stderr.write('--- Invalid index!\n') continue except ValueError: pass else: port = ports[index] return port class Miniterm(object): """\ Terminal application. Copy data from serial port to console and vice versa. Handle special keys from the console to show menu etc. """ def __init__(self, serial_instance, echo=False, eol='crlf', filters=()): self.console = Console() self.serial = serial_instance self.echo = echo self.raw = False self.input_encoding = 'UTF-8' self.output_encoding = 'UTF-8' self.eol = eol self.filters = filters self.update_transformations() self.exit_character = 0x1d # GS/CTRL+] self.menu_character = 0x14 # Menu: CTRL+T self.alive = None self._reader_alive = None self.receiver_thread = None self.rx_decoder = None self.tx_decoder = None def _start_reader(self): """Start reader thread""" self._reader_alive = True # start serial->console thread self.receiver_thread = threading.Thread(target=self.reader, name='rx') self.receiver_thread.daemon = True self.receiver_thread.start() def _stop_reader(self): """Stop reader thread only, wait for clean exit of thread""" self._reader_alive = False if hasattr(self.serial, 'cancel_read'): self.serial.cancel_read() self.receiver_thread.join() def start(self): """start worker threads""" self.alive = True self._start_reader() # enter console->serial loop self.transmitter_thread = threading.Thread(target=self.writer, name='tx') self.transmitter_thread.daemon = True self.transmitter_thread.start() self.console.setup() def stop(self): """set flag to stop worker threads""" self.alive = False def join(self, transmit_only=False): """wait for worker threads to terminate""" self.transmitter_thread.join() if not transmit_only: if hasattr(self.serial, 'cancel_read'): self.serial.cancel_read() self.receiver_thread.join() def close(self): self.serial.close() def update_transformations(self): """take list of transformation classes and instantiate them for rx and tx""" transformations = [EOL_TRANSFORMATIONS[self.eol]] + [TRANSFORMATIONS[f] for f in self.filters] self.tx_transformations = [t() for t in transformations] self.rx_transformations = list(reversed(self.tx_transformations)) def set_rx_encoding(self, encoding, errors='replace'): """set encoding for received data""" self.input_encoding = encoding self.rx_decoder = codecs.getincrementaldecoder(encoding)(errors) def set_tx_encoding(self, encoding, errors='replace'): """set encoding for transmitted data""" self.output_encoding = encoding self.tx_encoder = codecs.getincrementalencoder(encoding)(errors) def dump_port_settings(self): """Write current settings to sys.stderr""" sys.stderr.write("\n--- Settings: {p.name} {p.baudrate},{p.bytesize},{p.parity},{p.stopbits}\n".format( p=self.serial)) sys.stderr.write('--- RTS: {:8} DTR: {:8} BREAK: {:8}\n'.format( ('active' if self.serial.rts else 'inactive'), ('active' if self.serial.dtr else 'inactive'), ('active' if self.serial.break_condition else 'inactive'))) try: sys.stderr.write('--- CTS: {:8} DSR: {:8} RI: {:8} CD: {:8}\n'.format( ('active' if self.serial.cts else 'inactive'), ('active' if self.serial.dsr else 'inactive'), ('active' if self.serial.ri else 'inactive'), ('active' if self.serial.cd else 'inactive'))) except serial.SerialException: # on RFC 2217 ports, it can happen if no modem state notification was # yet received. ignore this error. pass sys.stderr.write('--- software flow control: {}\n'.format('active' if self.serial.xonxoff else 'inactive')) sys.stderr.write('--- hardware flow control: {}\n'.format('active' if self.serial.rtscts else 'inactive')) sys.stderr.write('--- serial input encoding: {}\n'.format(self.input_encoding)) sys.stderr.write('--- serial output encoding: {}\n'.format(self.output_encoding)) sys.stderr.write('--- EOL: {}\n'.format(self.eol.upper())) sys.stderr.write('--- filters: {}\n'.format(' '.join(self.filters))) def reader(self): """loop and copy serial->console""" try: while self.alive and self._reader_alive: # read all that is there or wait for one byte data = self.serial.read(self.serial.in_waiting or 1) if data: if self.raw: self.console.write_bytes(data) else: text = self.rx_decoder.decode(data) for transformation in self.rx_transformations: text = transformation.rx(text) self.console.write(text) except serial.SerialException: self.alive = False self.console.cancel() raise # XXX handle instead of re-raise? def writer(self): """\ Loop and copy console->serial until self.exit_character character is found. When self.menu_character is found, interpret the next key locally. """ menu_active = False try: while self.alive: try: c = self.console.getkey() except KeyboardInterrupt: c = '\x03' if not self.alive: break if menu_active: self.handle_menu_key(c) menu_active = False elif c == self.menu_character: menu_active = True # next char will be for menu elif c == self.exit_character: self.stop() # exit app break else: #~ if self.raw: text = c for transformation in self.tx_transformations: text = transformation.tx(text) self.serial.write(self.tx_encoder.encode(text)) if self.echo: echo_text = c for transformation in self.tx_transformations: echo_text = transformation.echo(echo_text) self.console.write(echo_text) except: self.alive = False raise def handle_menu_key(self, c): """Implement a simple menu / settings""" if c == self.menu_character or c == self.exit_character: # Menu/exit character again -> send itself self.serial.write(self.tx_encoder.encode(c)) if self.echo: self.console.write(c) elif c == '\x15': # CTRL+U -> upload file self.upload_file() elif c in '\x08hH?': # CTRL+H, h, H, ? -> Show help sys.stderr.write(self.get_help_text()) elif c == '\x12': # CTRL+R -> Toggle RTS self.serial.rts = not self.serial.rts sys.stderr.write('--- RTS {} ---\n'.format('active' if self.serial.rts else 'inactive')) elif c == '\x04': # CTRL+D -> Toggle DTR self.serial.dtr = not self.serial.dtr sys.stderr.write('--- DTR {} ---\n'.format('active' if self.serial.dtr else 'inactive')) elif c == '\x02': # CTRL+B -> toggle BREAK condition self.serial.break_condition = not self.serial.break_condition sys.stderr.write('--- BREAK {} ---\n'.format('active' if self.serial.break_condition else 'inactive')) elif c == '\x05': # CTRL+E -> toggle local echo self.echo = not self.echo sys.stderr.write('--- local echo {} ---\n'.format('active' if self.echo else 'inactive')) elif c == '\x06': # CTRL+F -> edit filters self.change_filter() elif c == '\x0c': # CTRL+L -> EOL mode modes = list(EOL_TRANSFORMATIONS) # keys eol = modes.index(self.eol) + 1 if eol >= len(modes): eol = 0 self.eol = modes[eol] sys.stderr.write('--- EOL: {} ---\n'.format(self.eol.upper())) self.update_transformations() elif c == '\x01': # CTRL+A -> set encoding self.change_encoding() elif c == '\x09': # CTRL+I -> info self.dump_port_settings() #~ elif c == '\x01': # CTRL+A -> cycle escape mode #~ elif c == '\x0c': # CTRL+L -> cycle linefeed mode elif c in 'pP': # P -> change port self.change_port() elif c in 'sS': # S -> suspend / open port temporarily self.suspend_port() elif c in 'bB': # B -> change baudrate self.change_baudrate() elif c == '8': # 8 -> change to 8 bits self.serial.bytesize = serial.EIGHTBITS self.dump_port_settings() elif c == '7': # 7 -> change to 8 bits self.serial.bytesize = serial.SEVENBITS self.dump_port_settings() elif c in 'eE': # E -> change to even parity self.serial.parity = serial.PARITY_EVEN self.dump_port_settings() elif c in 'oO': # O -> change to odd parity self.serial.parity = serial.PARITY_ODD self.dump_port_settings() elif c in 'mM': # M -> change to mark parity self.serial.parity = serial.PARITY_MARK self.dump_port_settings() elif c in 'sS': # S -> change to space parity self.serial.parity = serial.PARITY_SPACE self.dump_port_settings() elif c in 'nN': # N -> change to no parity self.serial.parity = serial.PARITY_NONE self.dump_port_settings() elif c == '1': # 1 -> change to 1 stop bits self.serial.stopbits = serial.STOPBITS_ONE self.dump_port_settings() elif c == '2': # 2 -> change to 2 stop bits self.serial.stopbits = serial.STOPBITS_TWO self.dump_port_settings() elif c == '3': # 3 -> change to 1.5 stop bits self.serial.stopbits = serial.STOPBITS_ONE_POINT_FIVE self.dump_port_settings() elif c in 'xX': # X -> change software flow control self.serial.xonxoff = (c == 'X') self.dump_port_settings() elif c in 'rR': # R -> change hardware flow control self.serial.rtscts = (c == 'R') self.dump_port_settings() else: sys.stderr.write('--- unknown menu character {} --\n'.format(key_description(c))) def upload_file(self): """Ask user for filenname and send its contents""" sys.stderr.write('\n--- File to upload: ') sys.stderr.flush() with self.console: filename = sys.stdin.readline().rstrip('\r\n') if filename: try: with open(filename, 'rb') as f: sys.stderr.write('--- Sending file {} ---\n'.format(filename)) while True: block = f.read(1024) if not block: break self.serial.write(block) # Wait for output buffer to drain. self.serial.flush() sys.stderr.write('.') # Progress indicator. sys.stderr.write('\n--- File {} sent ---\n'.format(filename)) except IOError as e: sys.stderr.write('--- ERROR opening file {}: {} ---\n'.format(filename, e)) def change_filter(self): """change the i/o transformations""" sys.stderr.write('\n--- Available Filters:\n') sys.stderr.write('\n'.join( '--- {:<10} = {.__doc__}'.format(k, v) for k, v in sorted(TRANSFORMATIONS.items()))) sys.stderr.write('\n--- Enter new filter name(s) [{}]: '.format(' '.join(self.filters))) with self.console: new_filters = sys.stdin.readline().lower().split() if new_filters: for f in new_filters: if f not in TRANSFORMATIONS: sys.stderr.write('--- unknown filter: {}\n'.format(repr(f))) break else: self.filters = new_filters self.update_transformations() sys.stderr.write('--- filters: {}\n'.format(' '.join(self.filters))) def change_encoding(self): """change encoding on the serial port""" sys.stderr.write('\n--- Enter new encoding name [{}]: '.format(self.input_encoding)) with self.console: new_encoding = sys.stdin.readline().strip() if new_encoding: try: codecs.lookup(new_encoding) except LookupError: sys.stderr.write('--- invalid encoding name: {}\n'.format(new_encoding)) else: self.set_rx_encoding(new_encoding) self.set_tx_encoding(new_encoding) sys.stderr.write('--- serial input encoding: {}\n'.format(self.input_encoding)) sys.stderr.write('--- serial output encoding: {}\n'.format(self.output_encoding)) def change_baudrate(self): """change the baudrate""" sys.stderr.write('\n--- Baudrate: ') sys.stderr.flush() with self.console: backup = self.serial.baudrate try: self.serial.baudrate = int(sys.stdin.readline().strip()) except ValueError as e: sys.stderr.write('--- ERROR setting baudrate: {} ---\n'.format(e)) self.serial.baudrate = backup else: self.dump_port_settings() def change_port(self): """Have a conversation with the user to change the serial port""" with self.console: try: port = ask_for_port() except KeyboardInterrupt: port = None if port and port != self.serial.port: # reader thread needs to be shut down self._stop_reader() # save settings settings = self.serial.getSettingsDict() try: new_serial = serial.serial_for_url(port, do_not_open=True) # restore settings and open new_serial.applySettingsDict(settings) new_serial.rts = self.serial.rts new_serial.dtr = self.serial.dtr new_serial.open() new_serial.break_condition = self.serial.break_condition except Exception as e: sys.stderr.write('--- ERROR opening new port: {} ---\n'.format(e)) new_serial.close() else: self.serial.close() self.serial = new_serial sys.stderr.write('--- Port changed to: {} ---\n'.format(self.serial.port)) # and restart the reader thread self._start_reader() def suspend_port(self): """\ open port temporarily, allow reconnect, exit and port change to get out of the loop """ # reader thread needs to be shut down self._stop_reader() self.serial.close() sys.stderr.write('\n--- Port closed: {} ---\n'.format(self.serial.port)) do_change_port = False while not self.serial.is_open: sys.stderr.write('--- Quit: {exit} | p: port change | any other key to reconnect ---\n'.format( exit=key_description(self.exit_character))) k = self.console.getkey() if k == self.exit_character: self.stop() # exit app break elif k in 'pP': do_change_port = True break try: self.serial.open() except Exception as e: sys.stderr.write('--- ERROR opening port: {} ---\n'.format(e)) if do_change_port: self.change_port() else: # and restart the reader thread self._start_reader() sys.stderr.write('--- Port opened: {} ---\n'.format(self.serial.port)) def get_help_text(self): """return the help text""" # help text, starts with blank line! return """ --- pySerial ({version}) - miniterm - help --- --- {exit:8} Exit program --- {menu:8} Menu escape key, followed by: --- Menu keys: --- {menu:7} Send the menu character itself to remote --- {exit:7} Send the exit character itself to remote --- {info:7} Show info --- {upload:7} Upload file (prompt will be shown) --- {repr:7} encoding --- {filter:7} edit filters --- Toggles: --- {rts:7} RTS {dtr:7} DTR {brk:7} BREAK --- {echo:7} echo {eol:7} EOL --- --- Port settings ({menu} followed by the following): --- p change port --- 7 8 set data bits --- N E O S M change parity (None, Even, Odd, Space, Mark) --- 1 2 3 set stop bits (1, 2, 1.5) --- b change baud rate --- x X disable/enable software flow control --- r R disable/enable hardware flow control """.format(version=getattr(serial, 'VERSION', 'unknown version'), exit=key_description(self.exit_character), menu=key_description(self.menu_character), rts=key_description('\x12'), dtr=key_description('\x04'), brk=key_description('\x02'), echo=key_description('\x05'), info=key_description('\x09'), upload=key_description('\x15'), repr=key_description('\x01'), filter=key_description('\x06'), eol=key_description('\x0c')) # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - # default args can be used to override when calling main() from an other script # e.g to create a miniterm-my-device.py def main(default_port=None, default_baudrate=9600, default_rts=None, default_dtr=None): """Command line tool, entry point""" import argparse parser = argparse.ArgumentParser( description="Miniterm - A simple terminal program for the serial port.") parser.add_argument( "port", nargs='?', help="serial port name ('-' to show port list)", default=default_port) parser.add_argument( "baudrate", nargs='?', type=int, help="set baud rate, default: %(default)s", default=default_baudrate) group = parser.add_argument_group("port settings") group.add_argument( "--parity", choices=['N', 'E', 'O', 'S', 'M'], type=lambda c: c.upper(), help="set parity, one of {N E O S M}, default: N", default='N') group.add_argument( "--rtscts", action="store_true", help="enable RTS/CTS flow control (default off)", default=False) group.add_argument( "--xonxoff", action="store_true", help="enable software flow control (default off)", default=False) group.add_argument( "--rts", type=int, help="set initial RTS line state (possible values: 0, 1)", default=default_rts) group.add_argument( "--dtr", type=int, help="set initial DTR line state (possible values: 0, 1)", default=default_dtr) group.add_argument( "--ask", action="store_true", help="ask again for port when open fails", default=False) group = parser.add_argument_group("data handling") group.add_argument( "-e", "--echo", action="store_true", help="enable local echo (default off)", default=False) group.add_argument( "--encoding", dest="serial_port_encoding", metavar="CODEC", help="set the encoding for the serial port (e.g. hexlify, Latin1, UTF-8), default: %(default)s", default='UTF-8') group.add_argument( "-f", "--filter", action="append", metavar="NAME", help="add text transformation", default=[]) group.add_argument( "--eol", choices=['CR', 'LF', 'CRLF'], type=lambda c: c.upper(), help="end of line mode", default='CRLF') group.add_argument( "--raw", action="store_true", help="Do no apply any encodings/transformations", default=False) group = parser.add_argument_group("hotkeys") group.add_argument( "--exit-char", type=int, metavar='NUM', help="Unicode of special character that is used to exit the application, default: %(default)s", default=0x1d) # GS/CTRL+] group.add_argument( "--menu-char", type=int, metavar='NUM', help="Unicode code of special character that is used to control miniterm (menu), default: %(default)s", default=0x14) # Menu: CTRL+T group = parser.add_argument_group("diagnostics") group.add_argument( "-q", "--quiet", action="store_true", help="suppress non-error messages", default=False) group.add_argument( "--develop", action="store_true", help="show Python traceback on error", default=False) args = parser.parse_args() if args.menu_char == args.exit_char: parser.error('--exit-char can not be the same as --menu-char') if args.filter: if 'help' in args.filter: sys.stderr.write('Available filters:\n') sys.stderr.write('\n'.join( '{:<10} = {.__doc__}'.format(k, v) for k, v in sorted(TRANSFORMATIONS.items()))) sys.stderr.write('\n') sys.exit(1) filters = args.filter else: filters = ['default'] while True: # no port given on command line -> ask user now if args.port is None or args.port == '-': try: args.port = ask_for_port() except KeyboardInterrupt: sys.stderr.write('\n') parser.error('user aborted and port is not given') else: if not args.port: parser.error('port is not given') try: serial_instance = serial.serial_for_url( args.port, args.baudrate, parity=args.parity, rtscts=args.rtscts, xonxoff=args.xonxoff, do_not_open=True) if not hasattr(serial_instance, 'cancel_read'): # enable timeout for alive flag polling if cancel_read is not available serial_instance.timeout = 1 if args.dtr is not None: if not args.quiet: sys.stderr.write('--- forcing DTR {}\n'.format('active' if args.dtr else 'inactive')) serial_instance.dtr = args.dtr if args.rts is not None: if not args.quiet: sys.stderr.write('--- forcing RTS {}\n'.format('active' if args.rts else 'inactive')) serial_instance.rts = args.rts serial_instance.open() except serial.SerialException as e: sys.stderr.write('could not open port {}: {}\n'.format(repr(args.port), e)) if args.develop: raise if not args.ask: sys.exit(1) else: args.port = '-' else: break miniterm = Miniterm( serial_instance, echo=args.echo, eol=args.eol.lower(), filters=filters) miniterm.exit_character = unichr(args.exit_char) miniterm.menu_character = unichr(args.menu_char) miniterm.raw = args.raw miniterm.set_rx_encoding(args.serial_port_encoding) miniterm.set_tx_encoding(args.serial_port_encoding) if not args.quiet: sys.stderr.write('--- Miniterm on {p.name} {p.baudrate},{p.bytesize},{p.parity},{p.stopbits} ---\n'.format( p=miniterm.serial)) sys.stderr.write('--- Quit: {} | Menu: {} | Help: {} followed by {} ---\n'.format( key_description(miniterm.exit_character), key_description(miniterm.menu_character), key_description(miniterm.menu_character), key_description('\x08'))) miniterm.start() try: miniterm.join(True) except KeyboardInterrupt: pass if not args.quiet: sys.stderr.write("\n--- exit ---\n") miniterm.join() miniterm.close() # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - if __name__ == '__main__': main()