source
stringlengths
3
86
python
stringlengths
75
1.04M
backend.py
#!/usr/bin/env python3 # This script supports autocompletion with argcomplete: PYTHON_ARGCOMPLETE_OK from pyspimosim.base_model import create_parser_from_data_class, namespace_to_dataclass from pyspimosim import spimosim_server from dataclasses import dataclass import http.server import importlib import multiprocessing import sys import signal import os from dataclasses import dataclass import argparse import subprocess _script_dir = os.path.dirname(os.path.abspath(__file__)) sys.path.append(_script_dir) class HttpRequestHandler(http.server.CGIHTTPRequestHandler): extensions_map = { '': 'application/octet-stream', '.manifest': 'text/cache-manifest', '.html': 'text/html', '.png': 'image/png', '.jpg': 'image/jpg', '.svg': 'image/svg+xml', '.css': 'text/css', '.js':'application/x-javascript', '.wasm': 'application/wasm', '.json': 'application/json', '.xml': 'application/xml', } def log_message(self, format_str, *args): try: http_status = int(args[1]) if http_status >= 200 and http_status < 400: return except: pass super().log_message(format_str, *args) def start_http_server(model, www_root, listen_on): message = f"Webserver listens on http://{listen_on[0]}:{listen_on[1]}" if listen_on[0] == "0.0.0.0": try: own_ip = subprocess.run(["hostname", "-I"], stdout=subprocess.PIPE).stdout.decode("UTF-8").split(" ")[0] message = f"Webserver listens on http://{listen_on[0]}:{listen_on[1]}, try accessing via http://{own_ip}:{listen_on[1]}" except: pass print(message) os.chdir(www_root) os.environ["model"] = model httpd = http.server.HTTPServer(listen_on, HttpRequestHandler) try: httpd.serve_forever() except KeyboardInterrupt: pass def start_http_server_process(model, www_root, listen_on): process = multiprocessing.Process(target=start_http_server, args=(model, www_root, listen_on)) process.start() return process def load_classes(class_name): module = importlib.import_module(class_name) return getattr(module, 'Model'), getattr(module, 'ModelSettings') def stop(process): process.terminate() process.join() sys.exit(0) def get_model_names(dirname=None): if dirname is None: dirname = _script_dir for path in os.listdir(dirname): if not os.path.isdir(os.path.join(dirname, path)) and path.endswith("_model.py"): yield path[:-len(".py")] def get_models(dirname=None): models = {} for model in get_model_names(dirname): Model, ModelSettings = load_classes(model) models[model] = (Model, ModelSettings) return models class _HelpAction(argparse._HelpAction): def __call__(self, parser, namespace, values, option_string=None): parser.print_help() subparsers_actions = [ action for action in parser._actions if isinstance(action, argparse._SubParsersAction)] for subparsers_action in subparsers_actions: for choice, subparser in subparsers_action.choices.items(): print("\n\nHelp for model '{}'".format(choice)) print(subparser.format_help()) parser.exit() def get_parser(models, default_root=_script_dir+"/../../../"): parser = argparse.ArgumentParser(add_help=False, formatter_class=argparse.ArgumentDefaultsHelpFormatter) subparsers = parser.add_subparsers(title="Available models to run", dest="model", required=True) parser.add_argument("--www_root", "-W", default=default_root, help="Root directory for the web server") parser.add_argument("--www_address", "-A", default="0.0.0.0", help="IP address for the web server") parser.add_argument("--www_port", "-Q", default=8000, type=int, help="Port for the web server") parser.add_argument('--help', "-h", "-?", action=_HelpAction, help='Help') for model_name, (Model, ModelSettings) in models.items(): create_parser_from_data_class(ModelSettings, parser=subparsers.add_parser(model_name, formatter_class=argparse.ArgumentDefaultsHelpFormatter)) try: import argcomplete argcomplete.autocomplete(parser) except: pass # not fatal: bash completion is not available if argcomplete is not installed or fails return parser def start(args, models): Model, ModelSettings = models[args.model] model_settings = namespace_to_dataclass(ModelSettings, args, ignore=["model", "www_root", "www_address", "www_port"]) Model.prepare_environment(model_settings) process = start_http_server_process(args.model, args.www_root, (args.www_address, args.www_port)) signal.signal(signal.SIGINT, lambda sig, frame: stop(process)) signal.signal(signal.SIGTERM, lambda sig, frame: stop(process)) spimosim_server.start(Model, model_settings) if __name__ == "__main__": models = get_models() start(get_parser(models).parse_args(), models)
__init__.py
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license """ Logging utils """ import os import warnings from threading import Thread import pkg_resources as pkg import torch from torch.utils.tensorboard import SummaryWriter from utils.general import colorstr, emojis from utils.loggers.wandb.wandb_utils import WandbLogger from utils.plots import plot_images, plot_results from utils.torch_utils import de_parallel LOGGERS = ('csv', 'tb', 'wandb') # text-file, TensorBoard, Weights & Biases RANK = int(os.getenv('RANK', -1)) try: import wandb assert hasattr(wandb, '__version__') # verify package import not local dir if pkg.parse_version(wandb.__version__) >= pkg.parse_version('0.12.2') and RANK in [0, -1]: try: wandb_login_success = wandb.login(timeout=30) except wandb.errors.UsageError: # known non-TTY terminal issue wandb_login_success = False if not wandb_login_success: wandb = None except (ImportError, AssertionError): wandb = None class Loggers(): # YOLOv5 Loggers class def __init__(self, save_dir=None, weights=None, opt=None, hyp=None, logger=None, include=LOGGERS): self.save_dir = save_dir self.weights = weights self.opt = opt self.hyp = hyp self.logger = logger # for printing results to console self.include = include self.keys = ['train/box_loss', 'train/obj_loss', 'train/cls_loss', # train loss 'metrics/precision', 'metrics/recall', 'metrics/mAP_0.5', 'metrics/mAP_0.5:0.95', # metrics 'val/box_loss', 'val/obj_loss', 'val/cls_loss', # val loss 'x/lr0', 'x/lr1', 'x/lr2'] # params for k in LOGGERS: setattr(self, k, None) # init empty logger dictionary self.csv = True # always log to csv # Message if not wandb: prefix = colorstr('Weights & Biases: ') s = f"{prefix}run 'pip install wandb' to automatically track and visualize YOLOv5 🚀 runs (RECOMMENDED)" print(emojis(s)) # TensorBoard s = self.save_dir if 'tb' in self.include and not self.opt.evolve: prefix = colorstr('TensorBoard: ') self.logger.info(f"{prefix}Start with 'tensorboard --logdir {s.parent}', view at http://localhost:6006/") self.tb = SummaryWriter(str(s)) # W&B if wandb and 'wandb' in self.include: wandb_artifact_resume = isinstance(self.opt.resume, str) and self.opt.resume.startswith('wandb-artifact://') run_id = torch.load(self.weights).get('wandb_id') if self.opt.resume and not wandb_artifact_resume else None self.opt.hyp = self.hyp # add hyperparameters self.wandb = WandbLogger(self.opt, run_id) else: self.wandb = None def on_pretrain_routine_end(self): # Callback runs on pre-train routine end paths = self.save_dir.glob('*labels*.jpg') # training labels if self.wandb: self.wandb.log({"Labels": [wandb.Image(str(x), caption=x.name) for x in paths]}) def on_train_batch_end(self, ni, model, imgs, targets, paths, plots, sync_bn): # Callback runs on train batch end if plots: if ni == 0: if not sync_bn: # tb.add_graph() --sync known issue https://github.com/ultralytics/yolov5/issues/3754 with warnings.catch_warnings(): warnings.simplefilter('ignore') # suppress jit trace warning self.tb.add_graph(torch.jit.trace(de_parallel(model), imgs[0:1], strict=False), []) if ni < 3: f = self.save_dir / f'train_batch{ni}.jpg' # filename Thread(target=plot_images, args=(imgs, targets, paths, f), daemon=True).start() if self.wandb and ni == 10: files = sorted(self.save_dir.glob('train*.jpg')) self.wandb.log({'Mosaics': [wandb.Image(str(f), caption=f.name) for f in files if f.exists()]}) def on_train_epoch_end(self, epoch): # Callback runs on train epoch end if self.wandb: self.wandb.current_epoch = epoch + 1 def on_val_image_end(self, pred, predn, path, names, im): # Callback runs on val image end if self.wandb: self.wandb.val_one_image(pred, predn, path, names, im) def on_val_end(self): # Callback runs on val end if self.wandb: files = sorted(self.save_dir.glob('val*.jpg')) self.wandb.log({"Validation": [wandb.Image(str(f), caption=f.name) for f in files]}) def on_fit_epoch_end(self, vals, epoch, best_fitness, fi): # Callback runs at the end of each fit (train+val) epoch x = {k: v for k, v in zip(self.keys, vals)} # dict if self.csv: file = self.save_dir / 'results.csv' n = len(x) + 1 # number of cols s = '' if file.exists() else (('%20s,' * n % tuple(['epoch'] + self.keys)).rstrip(',') + '\n') # add header with open(file, 'a') as f: f.write(s + ('%20.5g,' * n % tuple([epoch] + vals)).rstrip(',') + '\n') if self.tb: for k, v in x.items(): self.tb.add_scalar(k, v, epoch) if self.wandb: self.wandb.log(x) self.wandb.end_epoch(best_result=best_fitness == fi) def on_model_save(self, last, epoch, final_epoch, best_fitness, fi): # Callback runs on model save event if self.wandb: if ((epoch + 1) % self.opt.save_period == 0 and not final_epoch) and self.opt.save_period != -1: self.wandb.log_model(last.parent, self.opt, epoch, fi, best_model=best_fitness == fi) def on_train_end(self, last, best, plots, epoch, results): # Callback runs on training end if plots: plot_results(file=self.save_dir / 'results.csv') # save results.png files = ['results.png', 'confusion_matrix.png', *(f'{x}_curve.png' for x in ('F1', 'PR', 'P', 'R'))] files = [(self.save_dir / f) for f in files if (self.save_dir / f).exists()] # filter if self.tb: import cv2 for f in files: self.tb.add_image(f.stem, cv2.imread(str(f))[..., ::-1], epoch, dataformats='HWC') if self.wandb: self.wandb.log({"Results": [wandb.Image(str(f), caption=f.name) for f in files]}) # Calling wandb.log. TODO: Refactor this into WandbLogger.log_model if not self.opt.evolve: wandb.log_artifact(str(best if best.exists() else last), type='model', name='run_' + self.wandb.wandb_run.id + '_model', aliases=['latest', 'best', 'stripped']) self.wandb.finish_run() else: self.wandb.finish_run() self.wandb = WandbLogger(self.opt)
test_io.py
import sys import gc import gzip import os import threading import time import warnings import io import re import pytest from pathlib import Path from tempfile import NamedTemporaryFile from io import BytesIO, StringIO from datetime import datetime import locale from multiprocessing import Process, Value from ctypes import c_bool import numpy as np import numpy.ma as ma from numpy.lib._iotools import ConverterError, ConversionWarning from numpy.compat import asbytes from numpy.ma.testutils import assert_equal from numpy.testing import ( assert_warns, assert_, assert_raises_regex, assert_raises, assert_allclose, assert_array_equal, temppath, tempdir, IS_PYPY, HAS_REFCOUNT, suppress_warnings, assert_no_gc_cycles, assert_no_warnings, break_cycles ) from numpy.testing._private.utils import requires_memory class TextIO(BytesIO): """Helper IO class. Writes encode strings to bytes if needed, reads return bytes. This makes it easier to emulate files opened in binary mode without needing to explicitly convert strings to bytes in setting up the test data. """ def __init__(self, s=""): BytesIO.__init__(self, asbytes(s)) def write(self, s): BytesIO.write(self, asbytes(s)) def writelines(self, lines): BytesIO.writelines(self, [asbytes(s) for s in lines]) IS_64BIT = sys.maxsize > 2**32 try: import bz2 HAS_BZ2 = True except ImportError: HAS_BZ2 = False try: import lzma HAS_LZMA = True except ImportError: HAS_LZMA = False def strptime(s, fmt=None): """ This function is available in the datetime module only from Python >= 2.5. """ if type(s) == bytes: s = s.decode("latin1") return datetime(*time.strptime(s, fmt)[:3]) class RoundtripTest: def roundtrip(self, save_func, *args, **kwargs): """ save_func : callable Function used to save arrays to file. file_on_disk : bool If true, store the file on disk, instead of in a string buffer. save_kwds : dict Parameters passed to `save_func`. load_kwds : dict Parameters passed to `numpy.load`. args : tuple of arrays Arrays stored to file. """ save_kwds = kwargs.get('save_kwds', {}) load_kwds = kwargs.get('load_kwds', {"allow_pickle": True}) file_on_disk = kwargs.get('file_on_disk', False) if file_on_disk: target_file = NamedTemporaryFile(delete=False) load_file = target_file.name else: target_file = BytesIO() load_file = target_file try: arr = args save_func(target_file, *arr, **save_kwds) target_file.flush() target_file.seek(0) if sys.platform == 'win32' and not isinstance(target_file, BytesIO): target_file.close() arr_reloaded = np.load(load_file, **load_kwds) self.arr = arr self.arr_reloaded = arr_reloaded finally: if not isinstance(target_file, BytesIO): target_file.close() # holds an open file descriptor so it can't be deleted on win if 'arr_reloaded' in locals(): if not isinstance(arr_reloaded, np.lib.npyio.NpzFile): os.remove(target_file.name) def check_roundtrips(self, a): self.roundtrip(a) self.roundtrip(a, file_on_disk=True) self.roundtrip(np.asfortranarray(a)) self.roundtrip(np.asfortranarray(a), file_on_disk=True) if a.shape[0] > 1: # neither C nor Fortran contiguous for 2D arrays or more self.roundtrip(np.asfortranarray(a)[1:]) self.roundtrip(np.asfortranarray(a)[1:], file_on_disk=True) def test_array(self): a = np.array([], float) self.check_roundtrips(a) a = np.array([[1, 2], [3, 4]], float) self.check_roundtrips(a) a = np.array([[1, 2], [3, 4]], int) self.check_roundtrips(a) a = np.array([[1 + 5j, 2 + 6j], [3 + 7j, 4 + 8j]], dtype=np.csingle) self.check_roundtrips(a) a = np.array([[1 + 5j, 2 + 6j], [3 + 7j, 4 + 8j]], dtype=np.cdouble) self.check_roundtrips(a) def test_array_object(self): a = np.array([], object) self.check_roundtrips(a) a = np.array([[1, 2], [3, 4]], object) self.check_roundtrips(a) def test_1D(self): a = np.array([1, 2, 3, 4], int) self.roundtrip(a) @pytest.mark.skipif(sys.platform == 'win32', reason="Fails on Win32") def test_mmap(self): a = np.array([[1, 2.5], [4, 7.3]]) self.roundtrip(a, file_on_disk=True, load_kwds={'mmap_mode': 'r'}) a = np.asfortranarray([[1, 2.5], [4, 7.3]]) self.roundtrip(a, file_on_disk=True, load_kwds={'mmap_mode': 'r'}) def test_record(self): a = np.array([(1, 2), (3, 4)], dtype=[('x', 'i4'), ('y', 'i4')]) self.check_roundtrips(a) @pytest.mark.slow def test_format_2_0(self): dt = [(("%d" % i) * 100, float) for i in range(500)] a = np.ones(1000, dtype=dt) with warnings.catch_warnings(record=True): warnings.filterwarnings('always', '', UserWarning) self.check_roundtrips(a) class TestSaveLoad(RoundtripTest): def roundtrip(self, *args, **kwargs): RoundtripTest.roundtrip(self, np.save, *args, **kwargs) assert_equal(self.arr[0], self.arr_reloaded) assert_equal(self.arr[0].dtype, self.arr_reloaded.dtype) assert_equal(self.arr[0].flags.fnc, self.arr_reloaded.flags.fnc) class TestSavezLoad(RoundtripTest): def roundtrip(self, *args, **kwargs): RoundtripTest.roundtrip(self, np.savez, *args, **kwargs) try: for n, arr in enumerate(self.arr): reloaded = self.arr_reloaded['arr_%d' % n] assert_equal(arr, reloaded) assert_equal(arr.dtype, reloaded.dtype) assert_equal(arr.flags.fnc, reloaded.flags.fnc) finally: # delete tempfile, must be done here on windows if self.arr_reloaded.fid: self.arr_reloaded.fid.close() os.remove(self.arr_reloaded.fid.name) @pytest.mark.skipif(not IS_64BIT, reason="Needs 64bit platform") @pytest.mark.slow def test_big_arrays(self): L = (1 << 31) + 100000 a = np.empty(L, dtype=np.uint8) with temppath(prefix="numpy_test_big_arrays_", suffix=".npz") as tmp: np.savez(tmp, a=a) del a npfile = np.load(tmp) a = npfile['a'] # Should succeed npfile.close() del a # Avoid pyflakes unused variable warning. def test_multiple_arrays(self): a = np.array([[1, 2], [3, 4]], float) b = np.array([[1 + 2j, 2 + 7j], [3 - 6j, 4 + 12j]], complex) self.roundtrip(a, b) def test_named_arrays(self): a = np.array([[1, 2], [3, 4]], float) b = np.array([[1 + 2j, 2 + 7j], [3 - 6j, 4 + 12j]], complex) c = BytesIO() np.savez(c, file_a=a, file_b=b) c.seek(0) l = np.load(c) assert_equal(a, l['file_a']) assert_equal(b, l['file_b']) def test_BagObj(self): a = np.array([[1, 2], [3, 4]], float) b = np.array([[1 + 2j, 2 + 7j], [3 - 6j, 4 + 12j]], complex) c = BytesIO() np.savez(c, file_a=a, file_b=b) c.seek(0) l = np.load(c) assert_equal(sorted(dir(l.f)), ['file_a','file_b']) assert_equal(a, l.f.file_a) assert_equal(b, l.f.file_b) def test_savez_filename_clashes(self): # Test that issue #852 is fixed # and savez functions in multithreaded environment def writer(error_list): with temppath(suffix='.npz') as tmp: arr = np.random.randn(500, 500) try: np.savez(tmp, arr=arr) except OSError as err: error_list.append(err) errors = [] threads = [threading.Thread(target=writer, args=(errors,)) for j in range(3)] for t in threads: t.start() for t in threads: t.join() if errors: raise AssertionError(errors) def test_not_closing_opened_fid(self): # Test that issue #2178 is fixed: # verify could seek on 'loaded' file with temppath(suffix='.npz') as tmp: with open(tmp, 'wb') as fp: np.savez(fp, data='LOVELY LOAD') with open(tmp, 'rb', 10000) as fp: fp.seek(0) assert_(not fp.closed) np.load(fp)['data'] # fp must not get closed by .load assert_(not fp.closed) fp.seek(0) assert_(not fp.closed) @pytest.mark.slow_pypy def test_closing_fid(self): # Test that issue #1517 (too many opened files) remains closed # It might be a "weak" test since failed to get triggered on # e.g. Debian sid of 2012 Jul 05 but was reported to # trigger the failure on Ubuntu 10.04: # http://projects.scipy.org/numpy/ticket/1517#comment:2 with temppath(suffix='.npz') as tmp: np.savez(tmp, data='LOVELY LOAD') # We need to check if the garbage collector can properly close # numpy npz file returned by np.load when their reference count # goes to zero. Python 3 running in debug mode raises a # ResourceWarning when file closing is left to the garbage # collector, so we catch the warnings. with suppress_warnings() as sup: sup.filter(ResourceWarning) # TODO: specify exact message for i in range(1, 1025): try: np.load(tmp)["data"] except Exception as e: msg = "Failed to load data from a file: %s" % e raise AssertionError(msg) finally: if IS_PYPY: gc.collect() def test_closing_zipfile_after_load(self): # Check that zipfile owns file and can close it. This needs to # pass a file name to load for the test. On windows failure will # cause a second error will be raised when the attempt to remove # the open file is made. prefix = 'numpy_test_closing_zipfile_after_load_' with temppath(suffix='.npz', prefix=prefix) as tmp: np.savez(tmp, lab='place holder') data = np.load(tmp) fp = data.zip.fp data.close() assert_(fp.closed) class TestSaveTxt: def test_array(self): a = np.array([[1, 2], [3, 4]], float) fmt = "%.18e" c = BytesIO() np.savetxt(c, a, fmt=fmt) c.seek(0) assert_equal(c.readlines(), [asbytes((fmt + ' ' + fmt + '\n') % (1, 2)), asbytes((fmt + ' ' + fmt + '\n') % (3, 4))]) a = np.array([[1, 2], [3, 4]], int) c = BytesIO() np.savetxt(c, a, fmt='%d') c.seek(0) assert_equal(c.readlines(), [b'1 2\n', b'3 4\n']) def test_1D(self): a = np.array([1, 2, 3, 4], int) c = BytesIO() np.savetxt(c, a, fmt='%d') c.seek(0) lines = c.readlines() assert_equal(lines, [b'1\n', b'2\n', b'3\n', b'4\n']) def test_0D_3D(self): c = BytesIO() assert_raises(ValueError, np.savetxt, c, np.array(1)) assert_raises(ValueError, np.savetxt, c, np.array([[[1], [2]]])) def test_structured(self): a = np.array([(1, 2), (3, 4)], dtype=[('x', 'i4'), ('y', 'i4')]) c = BytesIO() np.savetxt(c, a, fmt='%d') c.seek(0) assert_equal(c.readlines(), [b'1 2\n', b'3 4\n']) def test_structured_padded(self): # gh-13297 a = np.array([(1, 2, 3),(4, 5, 6)], dtype=[ ('foo', 'i4'), ('bar', 'i4'), ('baz', 'i4') ]) c = BytesIO() np.savetxt(c, a[['foo', 'baz']], fmt='%d') c.seek(0) assert_equal(c.readlines(), [b'1 3\n', b'4 6\n']) def test_multifield_view(self): a = np.ones(1, dtype=[('x', 'i4'), ('y', 'i4'), ('z', 'f4')]) v = a[['x', 'z']] with temppath(suffix='.npy') as path: path = Path(path) np.save(path, v) data = np.load(path) assert_array_equal(data, v) def test_delimiter(self): a = np.array([[1., 2.], [3., 4.]]) c = BytesIO() np.savetxt(c, a, delimiter=',', fmt='%d') c.seek(0) assert_equal(c.readlines(), [b'1,2\n', b'3,4\n']) def test_format(self): a = np.array([(1, 2), (3, 4)]) c = BytesIO() # Sequence of formats np.savetxt(c, a, fmt=['%02d', '%3.1f']) c.seek(0) assert_equal(c.readlines(), [b'01 2.0\n', b'03 4.0\n']) # A single multiformat string c = BytesIO() np.savetxt(c, a, fmt='%02d : %3.1f') c.seek(0) lines = c.readlines() assert_equal(lines, [b'01 : 2.0\n', b'03 : 4.0\n']) # Specify delimiter, should be overridden c = BytesIO() np.savetxt(c, a, fmt='%02d : %3.1f', delimiter=',') c.seek(0) lines = c.readlines() assert_equal(lines, [b'01 : 2.0\n', b'03 : 4.0\n']) # Bad fmt, should raise a ValueError c = BytesIO() assert_raises(ValueError, np.savetxt, c, a, fmt=99) def test_header_footer(self): # Test the functionality of the header and footer keyword argument. c = BytesIO() a = np.array([(1, 2), (3, 4)], dtype=int) test_header_footer = 'Test header / footer' # Test the header keyword argument np.savetxt(c, a, fmt='%1d', header=test_header_footer) c.seek(0) assert_equal(c.read(), asbytes('# ' + test_header_footer + '\n1 2\n3 4\n')) # Test the footer keyword argument c = BytesIO() np.savetxt(c, a, fmt='%1d', footer=test_header_footer) c.seek(0) assert_equal(c.read(), asbytes('1 2\n3 4\n# ' + test_header_footer + '\n')) # Test the commentstr keyword argument used on the header c = BytesIO() commentstr = '% ' np.savetxt(c, a, fmt='%1d', header=test_header_footer, comments=commentstr) c.seek(0) assert_equal(c.read(), asbytes(commentstr + test_header_footer + '\n' + '1 2\n3 4\n')) # Test the commentstr keyword argument used on the footer c = BytesIO() commentstr = '% ' np.savetxt(c, a, fmt='%1d', footer=test_header_footer, comments=commentstr) c.seek(0) assert_equal(c.read(), asbytes('1 2\n3 4\n' + commentstr + test_header_footer + '\n')) def test_file_roundtrip(self): with temppath() as name: a = np.array([(1, 2), (3, 4)]) np.savetxt(name, a) b = np.loadtxt(name) assert_array_equal(a, b) def test_complex_arrays(self): ncols = 2 nrows = 2 a = np.zeros((ncols, nrows), dtype=np.complex128) re = np.pi im = np.e a[:] = re + 1.0j * im # One format only c = BytesIO() np.savetxt(c, a, fmt=' %+.3e') c.seek(0) lines = c.readlines() assert_equal( lines, [b' ( +3.142e+00+ +2.718e+00j) ( +3.142e+00+ +2.718e+00j)\n', b' ( +3.142e+00+ +2.718e+00j) ( +3.142e+00+ +2.718e+00j)\n']) # One format for each real and imaginary part c = BytesIO() np.savetxt(c, a, fmt=' %+.3e' * 2 * ncols) c.seek(0) lines = c.readlines() assert_equal( lines, [b' +3.142e+00 +2.718e+00 +3.142e+00 +2.718e+00\n', b' +3.142e+00 +2.718e+00 +3.142e+00 +2.718e+00\n']) # One format for each complex number c = BytesIO() np.savetxt(c, a, fmt=['(%.3e%+.3ej)'] * ncols) c.seek(0) lines = c.readlines() assert_equal( lines, [b'(3.142e+00+2.718e+00j) (3.142e+00+2.718e+00j)\n', b'(3.142e+00+2.718e+00j) (3.142e+00+2.718e+00j)\n']) def test_complex_negative_exponent(self): # Previous to 1.15, some formats generated x+-yj, gh 7895 ncols = 2 nrows = 2 a = np.zeros((ncols, nrows), dtype=np.complex128) re = np.pi im = np.e a[:] = re - 1.0j * im c = BytesIO() np.savetxt(c, a, fmt='%.3e') c.seek(0) lines = c.readlines() assert_equal( lines, [b' (3.142e+00-2.718e+00j) (3.142e+00-2.718e+00j)\n', b' (3.142e+00-2.718e+00j) (3.142e+00-2.718e+00j)\n']) def test_custom_writer(self): class CustomWriter(list): def write(self, text): self.extend(text.split(b'\n')) w = CustomWriter() a = np.array([(1, 2), (3, 4)]) np.savetxt(w, a) b = np.loadtxt(w) assert_array_equal(a, b) def test_unicode(self): utf8 = b'\xcf\x96'.decode('UTF-8') a = np.array([utf8], dtype=np.unicode_) with tempdir() as tmpdir: # set encoding as on windows it may not be unicode even on py3 np.savetxt(os.path.join(tmpdir, 'test.csv'), a, fmt=['%s'], encoding='UTF-8') def test_unicode_roundtrip(self): utf8 = b'\xcf\x96'.decode('UTF-8') a = np.array([utf8], dtype=np.unicode_) # our gz wrapper support encoding suffixes = ['', '.gz'] if HAS_BZ2: suffixes.append('.bz2') if HAS_LZMA: suffixes.extend(['.xz', '.lzma']) with tempdir() as tmpdir: for suffix in suffixes: np.savetxt(os.path.join(tmpdir, 'test.csv' + suffix), a, fmt=['%s'], encoding='UTF-16-LE') b = np.loadtxt(os.path.join(tmpdir, 'test.csv' + suffix), encoding='UTF-16-LE', dtype=np.unicode_) assert_array_equal(a, b) def test_unicode_bytestream(self): utf8 = b'\xcf\x96'.decode('UTF-8') a = np.array([utf8], dtype=np.unicode_) s = BytesIO() np.savetxt(s, a, fmt=['%s'], encoding='UTF-8') s.seek(0) assert_equal(s.read().decode('UTF-8'), utf8 + '\n') def test_unicode_stringstream(self): utf8 = b'\xcf\x96'.decode('UTF-8') a = np.array([utf8], dtype=np.unicode_) s = StringIO() np.savetxt(s, a, fmt=['%s'], encoding='UTF-8') s.seek(0) assert_equal(s.read(), utf8 + '\n') @pytest.mark.parametrize("fmt", [u"%f", b"%f"]) @pytest.mark.parametrize("iotype", [StringIO, BytesIO]) def test_unicode_and_bytes_fmt(self, fmt, iotype): # string type of fmt should not matter, see also gh-4053 a = np.array([1.]) s = iotype() np.savetxt(s, a, fmt=fmt) s.seek(0) if iotype is StringIO: assert_equal(s.read(), u"%f\n" % 1.) else: assert_equal(s.read(), b"%f\n" % 1.) @pytest.mark.skipif(sys.platform=='win32', reason="files>4GB may not work") @pytest.mark.slow @requires_memory(free_bytes=7e9) def test_large_zip(self): def check_large_zip(memoryerror_raised): memoryerror_raised.value = False try: # The test takes at least 6GB of memory, writes a file larger # than 4GB. This tests the ``allowZip64`` kwarg to ``zipfile`` test_data = np.asarray([np.random.rand( np.random.randint(50,100),4) for i in range(800000)], dtype=object) with tempdir() as tmpdir: np.savez(os.path.join(tmpdir, 'test.npz'), test_data=test_data) except MemoryError: memoryerror_raised.value = True raise # run in a subprocess to ensure memory is released on PyPy, see gh-15775 # Use an object in shared memory to re-raise the MemoryError exception # in our process if needed, see gh-16889 memoryerror_raised = Value(c_bool) p = Process(target=check_large_zip, args=(memoryerror_raised,)) p.start() p.join() if memoryerror_raised.value: raise MemoryError("Child process raised a MemoryError exception") # -9 indicates a SIGKILL, probably an OOM. if p.exitcode == -9: pytest.xfail("subprocess got a SIGKILL, apparently free memory was not sufficient") assert p.exitcode == 0 class LoadTxtBase: def check_compressed(self, fopen, suffixes): # Test that we can load data from a compressed file wanted = np.arange(6).reshape((2, 3)) linesep = ('\n', '\r\n', '\r') for sep in linesep: data = '0 1 2' + sep + '3 4 5' for suffix in suffixes: with temppath(suffix=suffix) as name: with fopen(name, mode='wt', encoding='UTF-32-LE') as f: f.write(data) res = self.loadfunc(name, encoding='UTF-32-LE') assert_array_equal(res, wanted) with fopen(name, "rt", encoding='UTF-32-LE') as f: res = self.loadfunc(f) assert_array_equal(res, wanted) def test_compressed_gzip(self): self.check_compressed(gzip.open, ('.gz',)) @pytest.mark.skipif(not HAS_BZ2, reason="Needs bz2") def test_compressed_bz2(self): self.check_compressed(bz2.open, ('.bz2',)) @pytest.mark.skipif(not HAS_LZMA, reason="Needs lzma") def test_compressed_lzma(self): self.check_compressed(lzma.open, ('.xz', '.lzma')) def test_encoding(self): with temppath() as path: with open(path, "wb") as f: f.write('0.\n1.\n2.'.encode("UTF-16")) x = self.loadfunc(path, encoding="UTF-16") assert_array_equal(x, [0., 1., 2.]) def test_stringload(self): # umlaute nonascii = b'\xc3\xb6\xc3\xbc\xc3\xb6'.decode("UTF-8") with temppath() as path: with open(path, "wb") as f: f.write(nonascii.encode("UTF-16")) x = self.loadfunc(path, encoding="UTF-16", dtype=np.unicode_) assert_array_equal(x, nonascii) def test_binary_decode(self): utf16 = b'\xff\xfeh\x04 \x00i\x04 \x00j\x04' v = self.loadfunc(BytesIO(utf16), dtype=np.unicode_, encoding='UTF-16') assert_array_equal(v, np.array(utf16.decode('UTF-16').split())) def test_converters_decode(self): # test converters that decode strings c = TextIO() c.write(b'\xcf\x96') c.seek(0) x = self.loadfunc(c, dtype=np.unicode_, converters={0: lambda x: x.decode('UTF-8')}) a = np.array([b'\xcf\x96'.decode('UTF-8')]) assert_array_equal(x, a) def test_converters_nodecode(self): # test native string converters enabled by setting an encoding utf8 = b'\xcf\x96'.decode('UTF-8') with temppath() as path: with io.open(path, 'wt', encoding='UTF-8') as f: f.write(utf8) x = self.loadfunc(path, dtype=np.unicode_, converters={0: lambda x: x + 't'}, encoding='UTF-8') a = np.array([utf8 + 't']) assert_array_equal(x, a) class TestLoadTxt(LoadTxtBase): loadfunc = staticmethod(np.loadtxt) def setup(self): # lower chunksize for testing self.orig_chunk = np.lib.npyio._loadtxt_chunksize np.lib.npyio._loadtxt_chunksize = 1 def teardown(self): np.lib.npyio._loadtxt_chunksize = self.orig_chunk def test_record(self): c = TextIO() c.write('1 2\n3 4') c.seek(0) x = np.loadtxt(c, dtype=[('x', np.int32), ('y', np.int32)]) a = np.array([(1, 2), (3, 4)], dtype=[('x', 'i4'), ('y', 'i4')]) assert_array_equal(x, a) d = TextIO() d.write('M 64.0 75.0\nF 25.0 60.0') d.seek(0) mydescriptor = {'names': ('gender', 'age', 'weight'), 'formats': ('S1', 'i4', 'f4')} b = np.array([('M', 64.0, 75.0), ('F', 25.0, 60.0)], dtype=mydescriptor) y = np.loadtxt(d, dtype=mydescriptor) assert_array_equal(y, b) def test_array(self): c = TextIO() c.write('1 2\n3 4') c.seek(0) x = np.loadtxt(c, dtype=int) a = np.array([[1, 2], [3, 4]], int) assert_array_equal(x, a) c.seek(0) x = np.loadtxt(c, dtype=float) a = np.array([[1, 2], [3, 4]], float) assert_array_equal(x, a) def test_1D(self): c = TextIO() c.write('1\n2\n3\n4\n') c.seek(0) x = np.loadtxt(c, dtype=int) a = np.array([1, 2, 3, 4], int) assert_array_equal(x, a) c = TextIO() c.write('1,2,3,4\n') c.seek(0) x = np.loadtxt(c, dtype=int, delimiter=',') a = np.array([1, 2, 3, 4], int) assert_array_equal(x, a) def test_missing(self): c = TextIO() c.write('1,2,3,,5\n') c.seek(0) x = np.loadtxt(c, dtype=int, delimiter=',', converters={3: lambda s: int(s or - 999)}) a = np.array([1, 2, 3, -999, 5], int) assert_array_equal(x, a) def test_converters_with_usecols(self): c = TextIO() c.write('1,2,3,,5\n6,7,8,9,10\n') c.seek(0) x = np.loadtxt(c, dtype=int, delimiter=',', converters={3: lambda s: int(s or - 999)}, usecols=(1, 3,)) a = np.array([[2, -999], [7, 9]], int) assert_array_equal(x, a) def test_comments_unicode(self): c = TextIO() c.write('# comment\n1,2,3,5\n') c.seek(0) x = np.loadtxt(c, dtype=int, delimiter=',', comments=u'#') a = np.array([1, 2, 3, 5], int) assert_array_equal(x, a) def test_comments_byte(self): c = TextIO() c.write('# comment\n1,2,3,5\n') c.seek(0) x = np.loadtxt(c, dtype=int, delimiter=',', comments=b'#') a = np.array([1, 2, 3, 5], int) assert_array_equal(x, a) def test_comments_multiple(self): c = TextIO() c.write('# comment\n1,2,3\n@ comment2\n4,5,6 // comment3') c.seek(0) x = np.loadtxt(c, dtype=int, delimiter=',', comments=['#', '@', '//']) a = np.array([[1, 2, 3], [4, 5, 6]], int) assert_array_equal(x, a) def test_comments_multi_chars(self): c = TextIO() c.write('/* comment\n1,2,3,5\n') c.seek(0) x = np.loadtxt(c, dtype=int, delimiter=',', comments='/*') a = np.array([1, 2, 3, 5], int) assert_array_equal(x, a) # Check that '/*' is not transformed to ['/', '*'] c = TextIO() c.write('*/ comment\n1,2,3,5\n') c.seek(0) assert_raises(ValueError, np.loadtxt, c, dtype=int, delimiter=',', comments='/*') def test_skiprows(self): c = TextIO() c.write('comment\n1,2,3,5\n') c.seek(0) x = np.loadtxt(c, dtype=int, delimiter=',', skiprows=1) a = np.array([1, 2, 3, 5], int) assert_array_equal(x, a) c = TextIO() c.write('# comment\n1,2,3,5\n') c.seek(0) x = np.loadtxt(c, dtype=int, delimiter=',', skiprows=1) a = np.array([1, 2, 3, 5], int) assert_array_equal(x, a) def test_usecols(self): a = np.array([[1, 2], [3, 4]], float) c = BytesIO() np.savetxt(c, a) c.seek(0) x = np.loadtxt(c, dtype=float, usecols=(1,)) assert_array_equal(x, a[:, 1]) a = np.array([[1, 2, 3], [3, 4, 5]], float) c = BytesIO() np.savetxt(c, a) c.seek(0) x = np.loadtxt(c, dtype=float, usecols=(1, 2)) assert_array_equal(x, a[:, 1:]) # Testing with arrays instead of tuples. c.seek(0) x = np.loadtxt(c, dtype=float, usecols=np.array([1, 2])) assert_array_equal(x, a[:, 1:]) # Testing with an integer instead of a sequence for int_type in [int, np.int8, np.int16, np.int32, np.int64, np.uint8, np.uint16, np.uint32, np.uint64]: to_read = int_type(1) c.seek(0) x = np.loadtxt(c, dtype=float, usecols=to_read) assert_array_equal(x, a[:, 1]) # Testing with some crazy custom integer type class CrazyInt: def __index__(self): return 1 crazy_int = CrazyInt() c.seek(0) x = np.loadtxt(c, dtype=float, usecols=crazy_int) assert_array_equal(x, a[:, 1]) c.seek(0) x = np.loadtxt(c, dtype=float, usecols=(crazy_int,)) assert_array_equal(x, a[:, 1]) # Checking with dtypes defined converters. data = '''JOE 70.1 25.3 BOB 60.5 27.9 ''' c = TextIO(data) names = ['stid', 'temp'] dtypes = ['S4', 'f8'] arr = np.loadtxt(c, usecols=(0, 2), dtype=list(zip(names, dtypes))) assert_equal(arr['stid'], [b"JOE", b"BOB"]) assert_equal(arr['temp'], [25.3, 27.9]) # Testing non-ints in usecols c.seek(0) bogus_idx = 1.5 assert_raises_regex( TypeError, '^usecols must be.*%s' % type(bogus_idx), np.loadtxt, c, usecols=bogus_idx ) assert_raises_regex( TypeError, '^usecols must be.*%s' % type(bogus_idx), np.loadtxt, c, usecols=[0, bogus_idx, 0] ) def test_fancy_dtype(self): c = TextIO() c.write('1,2,3.0\n4,5,6.0\n') c.seek(0) dt = np.dtype([('x', int), ('y', [('t', int), ('s', float)])]) x = np.loadtxt(c, dtype=dt, delimiter=',') a = np.array([(1, (2, 3.0)), (4, (5, 6.0))], dt) assert_array_equal(x, a) def test_shaped_dtype(self): c = TextIO("aaaa 1.0 8.0 1 2 3 4 5 6") dt = np.dtype([('name', 'S4'), ('x', float), ('y', float), ('block', int, (2, 3))]) x = np.loadtxt(c, dtype=dt) a = np.array([('aaaa', 1.0, 8.0, [[1, 2, 3], [4, 5, 6]])], dtype=dt) assert_array_equal(x, a) def test_3d_shaped_dtype(self): c = TextIO("aaaa 1.0 8.0 1 2 3 4 5 6 7 8 9 10 11 12") dt = np.dtype([('name', 'S4'), ('x', float), ('y', float), ('block', int, (2, 2, 3))]) x = np.loadtxt(c, dtype=dt) a = np.array([('aaaa', 1.0, 8.0, [[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]])], dtype=dt) assert_array_equal(x, a) def test_str_dtype(self): # see gh-8033 c = ["str1", "str2"] for dt in (str, np.bytes_): a = np.array(["str1", "str2"], dtype=dt) x = np.loadtxt(c, dtype=dt) assert_array_equal(x, a) def test_empty_file(self): with suppress_warnings() as sup: sup.filter(message="loadtxt: Empty input file:") c = TextIO() x = np.loadtxt(c) assert_equal(x.shape, (0,)) x = np.loadtxt(c, dtype=np.int64) assert_equal(x.shape, (0,)) assert_(x.dtype == np.int64) def test_unused_converter(self): c = TextIO() c.writelines(['1 21\n', '3 42\n']) c.seek(0) data = np.loadtxt(c, usecols=(1,), converters={0: lambda s: int(s, 16)}) assert_array_equal(data, [21, 42]) c.seek(0) data = np.loadtxt(c, usecols=(1,), converters={1: lambda s: int(s, 16)}) assert_array_equal(data, [33, 66]) def test_dtype_with_object(self): # Test using an explicit dtype with an object data = """ 1; 2001-01-01 2; 2002-01-31 """ ndtype = [('idx', int), ('code', object)] func = lambda s: strptime(s.strip(), "%Y-%m-%d") converters = {1: func} test = np.loadtxt(TextIO(data), delimiter=";", dtype=ndtype, converters=converters) control = np.array( [(1, datetime(2001, 1, 1)), (2, datetime(2002, 1, 31))], dtype=ndtype) assert_equal(test, control) def test_uint64_type(self): tgt = (9223372043271415339, 9223372043271415853) c = TextIO() c.write("%s %s" % tgt) c.seek(0) res = np.loadtxt(c, dtype=np.uint64) assert_equal(res, tgt) def test_int64_type(self): tgt = (-9223372036854775807, 9223372036854775807) c = TextIO() c.write("%s %s" % tgt) c.seek(0) res = np.loadtxt(c, dtype=np.int64) assert_equal(res, tgt) def test_from_float_hex(self): # IEEE doubles and floats only, otherwise the float32 # conversion may fail. tgt = np.logspace(-10, 10, 5).astype(np.float32) tgt = np.hstack((tgt, -tgt)).astype(float) inp = '\n'.join(map(float.hex, tgt)) c = TextIO() c.write(inp) for dt in [float, np.float32]: c.seek(0) res = np.loadtxt(c, dtype=dt) assert_equal(res, tgt, err_msg="%s" % dt) def test_default_float_converter_no_default_hex_conversion(self): """ Ensure that fromhex is only used for values with the correct prefix and is not called by default. Regression test related to gh-19598. """ c = TextIO("a b c") with pytest.raises( ValueError, match="could not convert string to float" ): np.loadtxt(c) def test_default_float_converter_exception(self): """ Ensure that the exception message raised during failed floating point conversion is correct. Regression test related to gh-19598. """ c = TextIO("qrs tuv") # Invalid values for default float converter with pytest.raises( ValueError, match="could not convert string to float" ): np.loadtxt(c) def test_from_complex(self): tgt = (complex(1, 1), complex(1, -1)) c = TextIO() c.write("%s %s" % tgt) c.seek(0) res = np.loadtxt(c, dtype=complex) assert_equal(res, tgt) def test_complex_misformatted(self): # test for backward compatibility # some complex formats used to generate x+-yj a = np.zeros((2, 2), dtype=np.complex128) re = np.pi im = np.e a[:] = re - 1.0j * im c = BytesIO() np.savetxt(c, a, fmt='%.16e') c.seek(0) txt = c.read() c.seek(0) # misformat the sign on the imaginary part, gh 7895 txt_bad = txt.replace(b'e+00-', b'e00+-') assert_(txt_bad != txt) c.write(txt_bad) c.seek(0) res = np.loadtxt(c, dtype=complex) assert_equal(res, a) def test_universal_newline(self): with temppath() as name: with open(name, 'w') as f: f.write('1 21\r3 42\r') data = np.loadtxt(name) assert_array_equal(data, [[1, 21], [3, 42]]) def test_empty_field_after_tab(self): c = TextIO() c.write('1 \t2 \t3\tstart \n4\t5\t6\t \n7\t8\t9.5\t') c.seek(0) dt = {'names': ('x', 'y', 'z', 'comment'), 'formats': ('<i4', '<i4', '<f4', '|S8')} x = np.loadtxt(c, dtype=dt, delimiter='\t') a = np.array([b'start ', b' ', b'']) assert_array_equal(x['comment'], a) def test_unpack_structured(self): txt = TextIO("M 21 72\nF 35 58") dt = {'names': ('a', 'b', 'c'), 'formats': ('|S1', '<i4', '<f4')} a, b, c = np.loadtxt(txt, dtype=dt, unpack=True) assert_(a.dtype.str == '|S1') assert_(b.dtype.str == '<i4') assert_(c.dtype.str == '<f4') assert_array_equal(a, np.array([b'M', b'F'])) assert_array_equal(b, np.array([21, 35])) assert_array_equal(c, np.array([72., 58.])) def test_ndmin_keyword(self): c = TextIO() c.write('1,2,3\n4,5,6') c.seek(0) assert_raises(ValueError, np.loadtxt, c, ndmin=3) c.seek(0) assert_raises(ValueError, np.loadtxt, c, ndmin=1.5) c.seek(0) x = np.loadtxt(c, dtype=int, delimiter=',', ndmin=1) a = np.array([[1, 2, 3], [4, 5, 6]]) assert_array_equal(x, a) d = TextIO() d.write('0,1,2') d.seek(0) x = np.loadtxt(d, dtype=int, delimiter=',', ndmin=2) assert_(x.shape == (1, 3)) d.seek(0) x = np.loadtxt(d, dtype=int, delimiter=',', ndmin=1) assert_(x.shape == (3,)) d.seek(0) x = np.loadtxt(d, dtype=int, delimiter=',', ndmin=0) assert_(x.shape == (3,)) e = TextIO() e.write('0\n1\n2') e.seek(0) x = np.loadtxt(e, dtype=int, delimiter=',', ndmin=2) assert_(x.shape == (3, 1)) e.seek(0) x = np.loadtxt(e, dtype=int, delimiter=',', ndmin=1) assert_(x.shape == (3,)) e.seek(0) x = np.loadtxt(e, dtype=int, delimiter=',', ndmin=0) assert_(x.shape == (3,)) # Test ndmin kw with empty file. with suppress_warnings() as sup: sup.filter(message="loadtxt: Empty input file:") f = TextIO() assert_(np.loadtxt(f, ndmin=2).shape == (0, 1,)) assert_(np.loadtxt(f, ndmin=1).shape == (0,)) def test_generator_source(self): def count(): for i in range(10): yield "%d" % i res = np.loadtxt(count()) assert_array_equal(res, np.arange(10)) def test_bad_line(self): c = TextIO() c.write('1 2 3\n4 5 6\n2 3') c.seek(0) # Check for exception and that exception contains line number assert_raises_regex(ValueError, "3", np.loadtxt, c) def test_none_as_string(self): # gh-5155, None should work as string when format demands it c = TextIO() c.write('100,foo,200\n300,None,400') c.seek(0) dt = np.dtype([('x', int), ('a', 'S10'), ('y', int)]) np.loadtxt(c, delimiter=',', dtype=dt, comments=None) # Should succeed @pytest.mark.skipif(locale.getpreferredencoding() == 'ANSI_X3.4-1968', reason="Wrong preferred encoding") def test_binary_load(self): butf8 = b"5,6,7,\xc3\x95scarscar\n\r15,2,3,hello\n\r"\ b"20,2,3,\xc3\x95scar\n\r" sutf8 = butf8.decode("UTF-8").replace("\r", "").splitlines() with temppath() as path: with open(path, "wb") as f: f.write(butf8) with open(path, "rb") as f: x = np.loadtxt(f, encoding="UTF-8", dtype=np.unicode_) assert_array_equal(x, sutf8) # test broken latin1 conversion people now rely on with open(path, "rb") as f: x = np.loadtxt(f, encoding="UTF-8", dtype="S") x = [b'5,6,7,\xc3\x95scarscar', b'15,2,3,hello', b'20,2,3,\xc3\x95scar'] assert_array_equal(x, np.array(x, dtype="S")) def test_max_rows(self): c = TextIO() c.write('1,2,3,5\n4,5,7,8\n2,1,4,5') c.seek(0) x = np.loadtxt(c, dtype=int, delimiter=',', max_rows=1) a = np.array([1, 2, 3, 5], int) assert_array_equal(x, a) def test_max_rows_with_skiprows(self): c = TextIO() c.write('comments\n1,2,3,5\n4,5,7,8\n2,1,4,5') c.seek(0) x = np.loadtxt(c, dtype=int, delimiter=',', skiprows=1, max_rows=1) a = np.array([1, 2, 3, 5], int) assert_array_equal(x, a) c = TextIO() c.write('comment\n1,2,3,5\n4,5,7,8\n2,1,4,5') c.seek(0) x = np.loadtxt(c, dtype=int, delimiter=',', skiprows=1, max_rows=2) a = np.array([[1, 2, 3, 5], [4, 5, 7, 8]], int) assert_array_equal(x, a) def test_max_rows_with_read_continuation(self): c = TextIO() c.write('1,2,3,5\n4,5,7,8\n2,1,4,5') c.seek(0) x = np.loadtxt(c, dtype=int, delimiter=',', max_rows=2) a = np.array([[1, 2, 3, 5], [4, 5, 7, 8]], int) assert_array_equal(x, a) # test continuation x = np.loadtxt(c, dtype=int, delimiter=',') a = np.array([2,1,4,5], int) assert_array_equal(x, a) def test_max_rows_larger(self): #test max_rows > num rows c = TextIO() c.write('comment\n1,2,3,5\n4,5,7,8\n2,1,4,5') c.seek(0) x = np.loadtxt(c, dtype=int, delimiter=',', skiprows=1, max_rows=6) a = np.array([[1, 2, 3, 5], [4, 5, 7, 8], [2, 1, 4, 5]], int) assert_array_equal(x, a) class Testfromregex: def test_record(self): c = TextIO() c.write('1.312 foo\n1.534 bar\n4.444 qux') c.seek(0) dt = [('num', np.float64), ('val', 'S3')] x = np.fromregex(c, r"([0-9.]+)\s+(...)", dt) a = np.array([(1.312, 'foo'), (1.534, 'bar'), (4.444, 'qux')], dtype=dt) assert_array_equal(x, a) def test_record_2(self): c = TextIO() c.write('1312 foo\n1534 bar\n4444 qux') c.seek(0) dt = [('num', np.int32), ('val', 'S3')] x = np.fromregex(c, r"(\d+)\s+(...)", dt) a = np.array([(1312, 'foo'), (1534, 'bar'), (4444, 'qux')], dtype=dt) assert_array_equal(x, a) def test_record_3(self): c = TextIO() c.write('1312 foo\n1534 bar\n4444 qux') c.seek(0) dt = [('num', np.float64)] x = np.fromregex(c, r"(\d+)\s+...", dt) a = np.array([(1312,), (1534,), (4444,)], dtype=dt) assert_array_equal(x, a) @pytest.mark.parametrize("path_type", [str, Path]) def test_record_unicode(self, path_type): utf8 = b'\xcf\x96' with temppath() as str_path: path = path_type(str_path) with open(path, 'wb') as f: f.write(b'1.312 foo' + utf8 + b' \n1.534 bar\n4.444 qux') dt = [('num', np.float64), ('val', 'U4')] x = np.fromregex(path, r"(?u)([0-9.]+)\s+(\w+)", dt, encoding='UTF-8') a = np.array([(1.312, 'foo' + utf8.decode('UTF-8')), (1.534, 'bar'), (4.444, 'qux')], dtype=dt) assert_array_equal(x, a) regexp = re.compile(r"([0-9.]+)\s+(\w+)", re.UNICODE) x = np.fromregex(path, regexp, dt, encoding='UTF-8') assert_array_equal(x, a) def test_compiled_bytes(self): regexp = re.compile(b'(\\d)') c = BytesIO(b'123') dt = [('num', np.float64)] a = np.array([1, 2, 3], dtype=dt) x = np.fromregex(c, regexp, dt) assert_array_equal(x, a) def test_bad_dtype_not_structured(self): regexp = re.compile(b'(\\d)') c = BytesIO(b'123') with pytest.raises(TypeError, match='structured datatype'): np.fromregex(c, regexp, dtype=np.float64) #####-------------------------------------------------------------------------- class TestFromTxt(LoadTxtBase): loadfunc = staticmethod(np.genfromtxt) def test_record(self): # Test w/ explicit dtype data = TextIO('1 2\n3 4') test = np.genfromtxt(data, dtype=[('x', np.int32), ('y', np.int32)]) control = np.array([(1, 2), (3, 4)], dtype=[('x', 'i4'), ('y', 'i4')]) assert_equal(test, control) # data = TextIO('M 64.0 75.0\nF 25.0 60.0') descriptor = {'names': ('gender', 'age', 'weight'), 'formats': ('S1', 'i4', 'f4')} control = np.array([('M', 64.0, 75.0), ('F', 25.0, 60.0)], dtype=descriptor) test = np.genfromtxt(data, dtype=descriptor) assert_equal(test, control) def test_array(self): # Test outputting a standard ndarray data = TextIO('1 2\n3 4') control = np.array([[1, 2], [3, 4]], dtype=int) test = np.genfromtxt(data, dtype=int) assert_array_equal(test, control) # data.seek(0) control = np.array([[1, 2], [3, 4]], dtype=float) test = np.loadtxt(data, dtype=float) assert_array_equal(test, control) def test_1D(self): # Test squeezing to 1D control = np.array([1, 2, 3, 4], int) # data = TextIO('1\n2\n3\n4\n') test = np.genfromtxt(data, dtype=int) assert_array_equal(test, control) # data = TextIO('1,2,3,4\n') test = np.genfromtxt(data, dtype=int, delimiter=',') assert_array_equal(test, control) def test_comments(self): # Test the stripping of comments control = np.array([1, 2, 3, 5], int) # Comment on its own line data = TextIO('# comment\n1,2,3,5\n') test = np.genfromtxt(data, dtype=int, delimiter=',', comments='#') assert_equal(test, control) # Comment at the end of a line data = TextIO('1,2,3,5# comment\n') test = np.genfromtxt(data, dtype=int, delimiter=',', comments='#') assert_equal(test, control) def test_skiprows(self): # Test row skipping control = np.array([1, 2, 3, 5], int) kwargs = dict(dtype=int, delimiter=',') # data = TextIO('comment\n1,2,3,5\n') test = np.genfromtxt(data, skip_header=1, **kwargs) assert_equal(test, control) # data = TextIO('# comment\n1,2,3,5\n') test = np.loadtxt(data, skiprows=1, **kwargs) assert_equal(test, control) def test_skip_footer(self): data = ["# %i" % i for i in range(1, 6)] data.append("A, B, C") data.extend(["%i,%3.1f,%03s" % (i, i, i) for i in range(51)]) data[-1] = "99,99" kwargs = dict(delimiter=",", names=True, skip_header=5, skip_footer=10) test = np.genfromtxt(TextIO("\n".join(data)), **kwargs) ctrl = np.array([("%f" % i, "%f" % i, "%f" % i) for i in range(41)], dtype=[(_, float) for _ in "ABC"]) assert_equal(test, ctrl) def test_skip_footer_with_invalid(self): with suppress_warnings() as sup: sup.filter(ConversionWarning) basestr = '1 1\n2 2\n3 3\n4 4\n5 \n6 \n7 \n' # Footer too small to get rid of all invalid values assert_raises(ValueError, np.genfromtxt, TextIO(basestr), skip_footer=1) # except ValueError: # pass a = np.genfromtxt( TextIO(basestr), skip_footer=1, invalid_raise=False) assert_equal(a, np.array([[1., 1.], [2., 2.], [3., 3.], [4., 4.]])) # a = np.genfromtxt(TextIO(basestr), skip_footer=3) assert_equal(a, np.array([[1., 1.], [2., 2.], [3., 3.], [4., 4.]])) # basestr = '1 1\n2 \n3 3\n4 4\n5 \n6 6\n7 7\n' a = np.genfromtxt( TextIO(basestr), skip_footer=1, invalid_raise=False) assert_equal(a, np.array([[1., 1.], [3., 3.], [4., 4.], [6., 6.]])) a = np.genfromtxt( TextIO(basestr), skip_footer=3, invalid_raise=False) assert_equal(a, np.array([[1., 1.], [3., 3.], [4., 4.]])) def test_header(self): # Test retrieving a header data = TextIO('gender age weight\nM 64.0 75.0\nF 25.0 60.0') with warnings.catch_warnings(record=True) as w: warnings.filterwarnings('always', '', np.VisibleDeprecationWarning) test = np.genfromtxt(data, dtype=None, names=True) assert_(w[0].category is np.VisibleDeprecationWarning) control = {'gender': np.array([b'M', b'F']), 'age': np.array([64.0, 25.0]), 'weight': np.array([75.0, 60.0])} assert_equal(test['gender'], control['gender']) assert_equal(test['age'], control['age']) assert_equal(test['weight'], control['weight']) def test_auto_dtype(self): # Test the automatic definition of the output dtype data = TextIO('A 64 75.0 3+4j True\nBCD 25 60.0 5+6j False') with warnings.catch_warnings(record=True) as w: warnings.filterwarnings('always', '', np.VisibleDeprecationWarning) test = np.genfromtxt(data, dtype=None) assert_(w[0].category is np.VisibleDeprecationWarning) control = [np.array([b'A', b'BCD']), np.array([64, 25]), np.array([75.0, 60.0]), np.array([3 + 4j, 5 + 6j]), np.array([True, False]), ] assert_equal(test.dtype.names, ['f0', 'f1', 'f2', 'f3', 'f4']) for (i, ctrl) in enumerate(control): assert_equal(test['f%i' % i], ctrl) def test_auto_dtype_uniform(self): # Tests whether the output dtype can be uniformized data = TextIO('1 2 3 4\n5 6 7 8\n') test = np.genfromtxt(data, dtype=None) control = np.array([[1, 2, 3, 4], [5, 6, 7, 8]]) assert_equal(test, control) def test_fancy_dtype(self): # Check that a nested dtype isn't MIA data = TextIO('1,2,3.0\n4,5,6.0\n') fancydtype = np.dtype([('x', int), ('y', [('t', int), ('s', float)])]) test = np.genfromtxt(data, dtype=fancydtype, delimiter=',') control = np.array([(1, (2, 3.0)), (4, (5, 6.0))], dtype=fancydtype) assert_equal(test, control) def test_names_overwrite(self): # Test overwriting the names of the dtype descriptor = {'names': ('g', 'a', 'w'), 'formats': ('S1', 'i4', 'f4')} data = TextIO(b'M 64.0 75.0\nF 25.0 60.0') names = ('gender', 'age', 'weight') test = np.genfromtxt(data, dtype=descriptor, names=names) descriptor['names'] = names control = np.array([('M', 64.0, 75.0), ('F', 25.0, 60.0)], dtype=descriptor) assert_equal(test, control) def test_commented_header(self): # Check that names can be retrieved even if the line is commented out. data = TextIO(""" #gender age weight M 21 72.100000 F 35 58.330000 M 33 21.99 """) # The # is part of the first name and should be deleted automatically. with warnings.catch_warnings(record=True) as w: warnings.filterwarnings('always', '', np.VisibleDeprecationWarning) test = np.genfromtxt(data, names=True, dtype=None) assert_(w[0].category is np.VisibleDeprecationWarning) ctrl = np.array([('M', 21, 72.1), ('F', 35, 58.33), ('M', 33, 21.99)], dtype=[('gender', '|S1'), ('age', int), ('weight', float)]) assert_equal(test, ctrl) # Ditto, but we should get rid of the first element data = TextIO(b""" # gender age weight M 21 72.100000 F 35 58.330000 M 33 21.99 """) with warnings.catch_warnings(record=True) as w: warnings.filterwarnings('always', '', np.VisibleDeprecationWarning) test = np.genfromtxt(data, names=True, dtype=None) assert_(w[0].category is np.VisibleDeprecationWarning) assert_equal(test, ctrl) def test_names_and_comments_none(self): # Tests case when names is true but comments is None (gh-10780) data = TextIO('col1 col2\n 1 2\n 3 4') test = np.genfromtxt(data, dtype=(int, int), comments=None, names=True) control = np.array([(1, 2), (3, 4)], dtype=[('col1', int), ('col2', int)]) assert_equal(test, control) def test_file_is_closed_on_error(self): # gh-13200 with tempdir() as tmpdir: fpath = os.path.join(tmpdir, "test.csv") with open(fpath, "wb") as f: f.write(u'\N{GREEK PI SYMBOL}'.encode('utf8')) # ResourceWarnings are emitted from a destructor, so won't be # detected by regular propagation to errors. with assert_no_warnings(): with pytest.raises(UnicodeDecodeError): np.genfromtxt(fpath, encoding="ascii") def test_autonames_and_usecols(self): # Tests names and usecols data = TextIO('A B C D\n aaaa 121 45 9.1') with warnings.catch_warnings(record=True) as w: warnings.filterwarnings('always', '', np.VisibleDeprecationWarning) test = np.genfromtxt(data, usecols=('A', 'C', 'D'), names=True, dtype=None) assert_(w[0].category is np.VisibleDeprecationWarning) control = np.array(('aaaa', 45, 9.1), dtype=[('A', '|S4'), ('C', int), ('D', float)]) assert_equal(test, control) def test_converters_with_usecols(self): # Test the combination user-defined converters and usecol data = TextIO('1,2,3,,5\n6,7,8,9,10\n') test = np.genfromtxt(data, dtype=int, delimiter=',', converters={3: lambda s: int(s or - 999)}, usecols=(1, 3,)) control = np.array([[2, -999], [7, 9]], int) assert_equal(test, control) def test_converters_with_usecols_and_names(self): # Tests names and usecols data = TextIO('A B C D\n aaaa 121 45 9.1') with warnings.catch_warnings(record=True) as w: warnings.filterwarnings('always', '', np.VisibleDeprecationWarning) test = np.genfromtxt(data, usecols=('A', 'C', 'D'), names=True, dtype=None, converters={'C': lambda s: 2 * int(s)}) assert_(w[0].category is np.VisibleDeprecationWarning) control = np.array(('aaaa', 90, 9.1), dtype=[('A', '|S4'), ('C', int), ('D', float)]) assert_equal(test, control) def test_converters_cornercases(self): # Test the conversion to datetime. converter = { 'date': lambda s: strptime(s, '%Y-%m-%d %H:%M:%SZ')} data = TextIO('2009-02-03 12:00:00Z, 72214.0') test = np.genfromtxt(data, delimiter=',', dtype=None, names=['date', 'stid'], converters=converter) control = np.array((datetime(2009, 2, 3), 72214.), dtype=[('date', np.object_), ('stid', float)]) assert_equal(test, control) def test_converters_cornercases2(self): # Test the conversion to datetime64. converter = { 'date': lambda s: np.datetime64(strptime(s, '%Y-%m-%d %H:%M:%SZ'))} data = TextIO('2009-02-03 12:00:00Z, 72214.0') test = np.genfromtxt(data, delimiter=',', dtype=None, names=['date', 'stid'], converters=converter) control = np.array((datetime(2009, 2, 3), 72214.), dtype=[('date', 'datetime64[us]'), ('stid', float)]) assert_equal(test, control) def test_unused_converter(self): # Test whether unused converters are forgotten data = TextIO("1 21\n 3 42\n") test = np.genfromtxt(data, usecols=(1,), converters={0: lambda s: int(s, 16)}) assert_equal(test, [21, 42]) # data.seek(0) test = np.genfromtxt(data, usecols=(1,), converters={1: lambda s: int(s, 16)}) assert_equal(test, [33, 66]) def test_invalid_converter(self): strip_rand = lambda x: float((b'r' in x.lower() and x.split()[-1]) or (b'r' not in x.lower() and x.strip() or 0.0)) strip_per = lambda x: float((b'%' in x.lower() and x.split()[0]) or (b'%' not in x.lower() and x.strip() or 0.0)) s = TextIO("D01N01,10/1/2003 ,1 %,R 75,400,600\r\n" "L24U05,12/5/2003, 2 %,1,300, 150.5\r\n" "D02N03,10/10/2004,R 1,,7,145.55") kwargs = dict( converters={2: strip_per, 3: strip_rand}, delimiter=",", dtype=None) assert_raises(ConverterError, np.genfromtxt, s, **kwargs) def test_tricky_converter_bug1666(self): # Test some corner cases s = TextIO('q1,2\nq3,4') cnv = lambda s: float(s[1:]) test = np.genfromtxt(s, delimiter=',', converters={0: cnv}) control = np.array([[1., 2.], [3., 4.]]) assert_equal(test, control) def test_dtype_with_converters(self): dstr = "2009; 23; 46" test = np.genfromtxt(TextIO(dstr,), delimiter=";", dtype=float, converters={0: bytes}) control = np.array([('2009', 23., 46)], dtype=[('f0', '|S4'), ('f1', float), ('f2', float)]) assert_equal(test, control) test = np.genfromtxt(TextIO(dstr,), delimiter=";", dtype=float, converters={0: float}) control = np.array([2009., 23., 46],) assert_equal(test, control) def test_dtype_with_converters_and_usecols(self): dstr = "1,5,-1,1:1\n2,8,-1,1:n\n3,3,-2,m:n\n" dmap = {'1:1':0, '1:n':1, 'm:1':2, 'm:n':3} dtyp = [('e1','i4'),('e2','i4'),('e3','i2'),('n', 'i1')] conv = {0: int, 1: int, 2: int, 3: lambda r: dmap[r.decode()]} test = np.recfromcsv(TextIO(dstr,), dtype=dtyp, delimiter=',', names=None, converters=conv) control = np.rec.array([(1,5,-1,0), (2,8,-1,1), (3,3,-2,3)], dtype=dtyp) assert_equal(test, control) dtyp = [('e1','i4'),('e2','i4'),('n', 'i1')] test = np.recfromcsv(TextIO(dstr,), dtype=dtyp, delimiter=',', usecols=(0,1,3), names=None, converters=conv) control = np.rec.array([(1,5,0), (2,8,1), (3,3,3)], dtype=dtyp) assert_equal(test, control) def test_dtype_with_object(self): # Test using an explicit dtype with an object data = """ 1; 2001-01-01 2; 2002-01-31 """ ndtype = [('idx', int), ('code', object)] func = lambda s: strptime(s.strip(), "%Y-%m-%d") converters = {1: func} test = np.genfromtxt(TextIO(data), delimiter=";", dtype=ndtype, converters=converters) control = np.array( [(1, datetime(2001, 1, 1)), (2, datetime(2002, 1, 31))], dtype=ndtype) assert_equal(test, control) ndtype = [('nest', [('idx', int), ('code', object)])] with assert_raises_regex(NotImplementedError, 'Nested fields.* not supported.*'): test = np.genfromtxt(TextIO(data), delimiter=";", dtype=ndtype, converters=converters) # nested but empty fields also aren't supported ndtype = [('idx', int), ('code', object), ('nest', [])] with assert_raises_regex(NotImplementedError, 'Nested fields.* not supported.*'): test = np.genfromtxt(TextIO(data), delimiter=";", dtype=ndtype, converters=converters) def test_dtype_with_object_no_converter(self): # Object without a converter uses bytes: parsed = np.genfromtxt(TextIO("1"), dtype=object) assert parsed[()] == b"1" parsed = np.genfromtxt(TextIO("string"), dtype=object) assert parsed[()] == b"string" def test_userconverters_with_explicit_dtype(self): # Test user_converters w/ explicit (standard) dtype data = TextIO('skip,skip,2001-01-01,1.0,skip') test = np.genfromtxt(data, delimiter=",", names=None, dtype=float, usecols=(2, 3), converters={2: bytes}) control = np.array([('2001-01-01', 1.)], dtype=[('', '|S10'), ('', float)]) assert_equal(test, control) def test_utf8_userconverters_with_explicit_dtype(self): utf8 = b'\xcf\x96' with temppath() as path: with open(path, 'wb') as f: f.write(b'skip,skip,2001-01-01' + utf8 + b',1.0,skip') test = np.genfromtxt(path, delimiter=",", names=None, dtype=float, usecols=(2, 3), converters={2: np.compat.unicode}, encoding='UTF-8') control = np.array([('2001-01-01' + utf8.decode('UTF-8'), 1.)], dtype=[('', '|U11'), ('', float)]) assert_equal(test, control) def test_spacedelimiter(self): # Test space delimiter data = TextIO("1 2 3 4 5\n6 7 8 9 10") test = np.genfromtxt(data) control = np.array([[1., 2., 3., 4., 5.], [6., 7., 8., 9., 10.]]) assert_equal(test, control) def test_integer_delimiter(self): # Test using an integer for delimiter data = " 1 2 3\n 4 5 67\n890123 4" test = np.genfromtxt(TextIO(data), delimiter=3) control = np.array([[1, 2, 3], [4, 5, 67], [890, 123, 4]]) assert_equal(test, control) def test_missing(self): data = TextIO('1,2,3,,5\n') test = np.genfromtxt(data, dtype=int, delimiter=',', converters={3: lambda s: int(s or - 999)}) control = np.array([1, 2, 3, -999, 5], int) assert_equal(test, control) def test_missing_with_tabs(self): # Test w/ a delimiter tab txt = "1\t2\t3\n\t2\t\n1\t\t3" test = np.genfromtxt(TextIO(txt), delimiter="\t", usemask=True,) ctrl_d = np.array([(1, 2, 3), (np.nan, 2, np.nan), (1, np.nan, 3)],) ctrl_m = np.array([(0, 0, 0), (1, 0, 1), (0, 1, 0)], dtype=bool) assert_equal(test.data, ctrl_d) assert_equal(test.mask, ctrl_m) def test_usecols(self): # Test the selection of columns # Select 1 column control = np.array([[1, 2], [3, 4]], float) data = TextIO() np.savetxt(data, control) data.seek(0) test = np.genfromtxt(data, dtype=float, usecols=(1,)) assert_equal(test, control[:, 1]) # control = np.array([[1, 2, 3], [3, 4, 5]], float) data = TextIO() np.savetxt(data, control) data.seek(0) test = np.genfromtxt(data, dtype=float, usecols=(1, 2)) assert_equal(test, control[:, 1:]) # Testing with arrays instead of tuples. data.seek(0) test = np.genfromtxt(data, dtype=float, usecols=np.array([1, 2])) assert_equal(test, control[:, 1:]) def test_usecols_as_css(self): # Test giving usecols with a comma-separated string data = "1 2 3\n4 5 6" test = np.genfromtxt(TextIO(data), names="a, b, c", usecols="a, c") ctrl = np.array([(1, 3), (4, 6)], dtype=[(_, float) for _ in "ac"]) assert_equal(test, ctrl) def test_usecols_with_structured_dtype(self): # Test usecols with an explicit structured dtype data = TextIO("JOE 70.1 25.3\nBOB 60.5 27.9") names = ['stid', 'temp'] dtypes = ['S4', 'f8'] test = np.genfromtxt( data, usecols=(0, 2), dtype=list(zip(names, dtypes))) assert_equal(test['stid'], [b"JOE", b"BOB"]) assert_equal(test['temp'], [25.3, 27.9]) def test_usecols_with_integer(self): # Test usecols with an integer test = np.genfromtxt(TextIO(b"1 2 3\n4 5 6"), usecols=0) assert_equal(test, np.array([1., 4.])) def test_usecols_with_named_columns(self): # Test usecols with named columns ctrl = np.array([(1, 3), (4, 6)], dtype=[('a', float), ('c', float)]) data = "1 2 3\n4 5 6" kwargs = dict(names="a, b, c") test = np.genfromtxt(TextIO(data), usecols=(0, -1), **kwargs) assert_equal(test, ctrl) test = np.genfromtxt(TextIO(data), usecols=('a', 'c'), **kwargs) assert_equal(test, ctrl) def test_empty_file(self): # Test that an empty file raises the proper warning. with suppress_warnings() as sup: sup.filter(message="genfromtxt: Empty input file:") data = TextIO() test = np.genfromtxt(data) assert_equal(test, np.array([])) # when skip_header > 0 test = np.genfromtxt(data, skip_header=1) assert_equal(test, np.array([])) def test_fancy_dtype_alt(self): # Check that a nested dtype isn't MIA data = TextIO('1,2,3.0\n4,5,6.0\n') fancydtype = np.dtype([('x', int), ('y', [('t', int), ('s', float)])]) test = np.genfromtxt(data, dtype=fancydtype, delimiter=',', usemask=True) control = ma.array([(1, (2, 3.0)), (4, (5, 6.0))], dtype=fancydtype) assert_equal(test, control) def test_shaped_dtype(self): c = TextIO("aaaa 1.0 8.0 1 2 3 4 5 6") dt = np.dtype([('name', 'S4'), ('x', float), ('y', float), ('block', int, (2, 3))]) x = np.genfromtxt(c, dtype=dt) a = np.array([('aaaa', 1.0, 8.0, [[1, 2, 3], [4, 5, 6]])], dtype=dt) assert_array_equal(x, a) def test_withmissing(self): data = TextIO('A,B\n0,1\n2,N/A') kwargs = dict(delimiter=",", missing_values="N/A", names=True) test = np.genfromtxt(data, dtype=None, usemask=True, **kwargs) control = ma.array([(0, 1), (2, -1)], mask=[(False, False), (False, True)], dtype=[('A', int), ('B', int)]) assert_equal(test, control) assert_equal(test.mask, control.mask) # data.seek(0) test = np.genfromtxt(data, usemask=True, **kwargs) control = ma.array([(0, 1), (2, -1)], mask=[(False, False), (False, True)], dtype=[('A', float), ('B', float)]) assert_equal(test, control) assert_equal(test.mask, control.mask) def test_user_missing_values(self): data = "A, B, C\n0, 0., 0j\n1, N/A, 1j\n-9, 2.2, N/A\n3, -99, 3j" basekwargs = dict(dtype=None, delimiter=",", names=True,) mdtype = [('A', int), ('B', float), ('C', complex)] # test = np.genfromtxt(TextIO(data), missing_values="N/A", **basekwargs) control = ma.array([(0, 0.0, 0j), (1, -999, 1j), (-9, 2.2, -999j), (3, -99, 3j)], mask=[(0, 0, 0), (0, 1, 0), (0, 0, 1), (0, 0, 0)], dtype=mdtype) assert_equal(test, control) # basekwargs['dtype'] = mdtype test = np.genfromtxt(TextIO(data), missing_values={0: -9, 1: -99, 2: -999j}, usemask=True, **basekwargs) control = ma.array([(0, 0.0, 0j), (1, -999, 1j), (-9, 2.2, -999j), (3, -99, 3j)], mask=[(0, 0, 0), (0, 1, 0), (1, 0, 1), (0, 1, 0)], dtype=mdtype) assert_equal(test, control) # test = np.genfromtxt(TextIO(data), missing_values={0: -9, 'B': -99, 'C': -999j}, usemask=True, **basekwargs) control = ma.array([(0, 0.0, 0j), (1, -999, 1j), (-9, 2.2, -999j), (3, -99, 3j)], mask=[(0, 0, 0), (0, 1, 0), (1, 0, 1), (0, 1, 0)], dtype=mdtype) assert_equal(test, control) def test_user_filling_values(self): # Test with missing and filling values ctrl = np.array([(0, 3), (4, -999)], dtype=[('a', int), ('b', int)]) data = "N/A, 2, 3\n4, ,???" kwargs = dict(delimiter=",", dtype=int, names="a,b,c", missing_values={0: "N/A", 'b': " ", 2: "???"}, filling_values={0: 0, 'b': 0, 2: -999}) test = np.genfromtxt(TextIO(data), **kwargs) ctrl = np.array([(0, 2, 3), (4, 0, -999)], dtype=[(_, int) for _ in "abc"]) assert_equal(test, ctrl) # test = np.genfromtxt(TextIO(data), usecols=(0, -1), **kwargs) ctrl = np.array([(0, 3), (4, -999)], dtype=[(_, int) for _ in "ac"]) assert_equal(test, ctrl) data2 = "1,2,*,4\n5,*,7,8\n" test = np.genfromtxt(TextIO(data2), delimiter=',', dtype=int, missing_values="*", filling_values=0) ctrl = np.array([[1, 2, 0, 4], [5, 0, 7, 8]]) assert_equal(test, ctrl) test = np.genfromtxt(TextIO(data2), delimiter=',', dtype=int, missing_values="*", filling_values=-1) ctrl = np.array([[1, 2, -1, 4], [5, -1, 7, 8]]) assert_equal(test, ctrl) def test_withmissing_float(self): data = TextIO('A,B\n0,1.5\n2,-999.00') test = np.genfromtxt(data, dtype=None, delimiter=',', missing_values='-999.0', names=True, usemask=True) control = ma.array([(0, 1.5), (2, -1.)], mask=[(False, False), (False, True)], dtype=[('A', int), ('B', float)]) assert_equal(test, control) assert_equal(test.mask, control.mask) def test_with_masked_column_uniform(self): # Test masked column data = TextIO('1 2 3\n4 5 6\n') test = np.genfromtxt(data, dtype=None, missing_values='2,5', usemask=True) control = ma.array([[1, 2, 3], [4, 5, 6]], mask=[[0, 1, 0], [0, 1, 0]]) assert_equal(test, control) def test_with_masked_column_various(self): # Test masked column data = TextIO('True 2 3\nFalse 5 6\n') test = np.genfromtxt(data, dtype=None, missing_values='2,5', usemask=True) control = ma.array([(1, 2, 3), (0, 5, 6)], mask=[(0, 1, 0), (0, 1, 0)], dtype=[('f0', bool), ('f1', bool), ('f2', int)]) assert_equal(test, control) def test_invalid_raise(self): # Test invalid raise data = ["1, 1, 1, 1, 1"] * 50 for i in range(5): data[10 * i] = "2, 2, 2, 2 2" data.insert(0, "a, b, c, d, e") mdata = TextIO("\n".join(data)) kwargs = dict(delimiter=",", dtype=None, names=True) def f(): return np.genfromtxt(mdata, invalid_raise=False, **kwargs) mtest = assert_warns(ConversionWarning, f) assert_equal(len(mtest), 45) assert_equal(mtest, np.ones(45, dtype=[(_, int) for _ in 'abcde'])) # mdata.seek(0) assert_raises(ValueError, np.genfromtxt, mdata, delimiter=",", names=True) def test_invalid_raise_with_usecols(self): # Test invalid_raise with usecols data = ["1, 1, 1, 1, 1"] * 50 for i in range(5): data[10 * i] = "2, 2, 2, 2 2" data.insert(0, "a, b, c, d, e") mdata = TextIO("\n".join(data)) kwargs = dict(delimiter=",", dtype=None, names=True, invalid_raise=False) def f(): return np.genfromtxt(mdata, usecols=(0, 4), **kwargs) mtest = assert_warns(ConversionWarning, f) assert_equal(len(mtest), 45) assert_equal(mtest, np.ones(45, dtype=[(_, int) for _ in 'ae'])) # mdata.seek(0) mtest = np.genfromtxt(mdata, usecols=(0, 1), **kwargs) assert_equal(len(mtest), 50) control = np.ones(50, dtype=[(_, int) for _ in 'ab']) control[[10 * _ for _ in range(5)]] = (2, 2) assert_equal(mtest, control) def test_inconsistent_dtype(self): # Test inconsistent dtype data = ["1, 1, 1, 1, -1.1"] * 50 mdata = TextIO("\n".join(data)) converters = {4: lambda x: "(%s)" % x.decode()} kwargs = dict(delimiter=",", converters=converters, dtype=[(_, int) for _ in 'abcde'],) assert_raises(ValueError, np.genfromtxt, mdata, **kwargs) def test_default_field_format(self): # Test default format data = "0, 1, 2.3\n4, 5, 6.7" mtest = np.genfromtxt(TextIO(data), delimiter=",", dtype=None, defaultfmt="f%02i") ctrl = np.array([(0, 1, 2.3), (4, 5, 6.7)], dtype=[("f00", int), ("f01", int), ("f02", float)]) assert_equal(mtest, ctrl) def test_single_dtype_wo_names(self): # Test single dtype w/o names data = "0, 1, 2.3\n4, 5, 6.7" mtest = np.genfromtxt(TextIO(data), delimiter=",", dtype=float, defaultfmt="f%02i") ctrl = np.array([[0., 1., 2.3], [4., 5., 6.7]], dtype=float) assert_equal(mtest, ctrl) def test_single_dtype_w_explicit_names(self): # Test single dtype w explicit names data = "0, 1, 2.3\n4, 5, 6.7" mtest = np.genfromtxt(TextIO(data), delimiter=",", dtype=float, names="a, b, c") ctrl = np.array([(0., 1., 2.3), (4., 5., 6.7)], dtype=[(_, float) for _ in "abc"]) assert_equal(mtest, ctrl) def test_single_dtype_w_implicit_names(self): # Test single dtype w implicit names data = "a, b, c\n0, 1, 2.3\n4, 5, 6.7" mtest = np.genfromtxt(TextIO(data), delimiter=",", dtype=float, names=True) ctrl = np.array([(0., 1., 2.3), (4., 5., 6.7)], dtype=[(_, float) for _ in "abc"]) assert_equal(mtest, ctrl) def test_easy_structured_dtype(self): # Test easy structured dtype data = "0, 1, 2.3\n4, 5, 6.7" mtest = np.genfromtxt(TextIO(data), delimiter=",", dtype=(int, float, float), defaultfmt="f_%02i") ctrl = np.array([(0, 1., 2.3), (4, 5., 6.7)], dtype=[("f_00", int), ("f_01", float), ("f_02", float)]) assert_equal(mtest, ctrl) def test_autostrip(self): # Test autostrip data = "01/01/2003 , 1.3, abcde" kwargs = dict(delimiter=",", dtype=None) with warnings.catch_warnings(record=True) as w: warnings.filterwarnings('always', '', np.VisibleDeprecationWarning) mtest = np.genfromtxt(TextIO(data), **kwargs) assert_(w[0].category is np.VisibleDeprecationWarning) ctrl = np.array([('01/01/2003 ', 1.3, ' abcde')], dtype=[('f0', '|S12'), ('f1', float), ('f2', '|S8')]) assert_equal(mtest, ctrl) with warnings.catch_warnings(record=True) as w: warnings.filterwarnings('always', '', np.VisibleDeprecationWarning) mtest = np.genfromtxt(TextIO(data), autostrip=True, **kwargs) assert_(w[0].category is np.VisibleDeprecationWarning) ctrl = np.array([('01/01/2003', 1.3, 'abcde')], dtype=[('f0', '|S10'), ('f1', float), ('f2', '|S5')]) assert_equal(mtest, ctrl) def test_replace_space(self): # Test the 'replace_space' option txt = "A.A, B (B), C:C\n1, 2, 3.14" # Test default: replace ' ' by '_' and delete non-alphanum chars test = np.genfromtxt(TextIO(txt), delimiter=",", names=True, dtype=None) ctrl_dtype = [("AA", int), ("B_B", int), ("CC", float)] ctrl = np.array((1, 2, 3.14), dtype=ctrl_dtype) assert_equal(test, ctrl) # Test: no replace, no delete test = np.genfromtxt(TextIO(txt), delimiter=",", names=True, dtype=None, replace_space='', deletechars='') ctrl_dtype = [("A.A", int), ("B (B)", int), ("C:C", float)] ctrl = np.array((1, 2, 3.14), dtype=ctrl_dtype) assert_equal(test, ctrl) # Test: no delete (spaces are replaced by _) test = np.genfromtxt(TextIO(txt), delimiter=",", names=True, dtype=None, deletechars='') ctrl_dtype = [("A.A", int), ("B_(B)", int), ("C:C", float)] ctrl = np.array((1, 2, 3.14), dtype=ctrl_dtype) assert_equal(test, ctrl) def test_replace_space_known_dtype(self): # Test the 'replace_space' (and related) options when dtype != None txt = "A.A, B (B), C:C\n1, 2, 3" # Test default: replace ' ' by '_' and delete non-alphanum chars test = np.genfromtxt(TextIO(txt), delimiter=",", names=True, dtype=int) ctrl_dtype = [("AA", int), ("B_B", int), ("CC", int)] ctrl = np.array((1, 2, 3), dtype=ctrl_dtype) assert_equal(test, ctrl) # Test: no replace, no delete test = np.genfromtxt(TextIO(txt), delimiter=",", names=True, dtype=int, replace_space='', deletechars='') ctrl_dtype = [("A.A", int), ("B (B)", int), ("C:C", int)] ctrl = np.array((1, 2, 3), dtype=ctrl_dtype) assert_equal(test, ctrl) # Test: no delete (spaces are replaced by _) test = np.genfromtxt(TextIO(txt), delimiter=",", names=True, dtype=int, deletechars='') ctrl_dtype = [("A.A", int), ("B_(B)", int), ("C:C", int)] ctrl = np.array((1, 2, 3), dtype=ctrl_dtype) assert_equal(test, ctrl) def test_incomplete_names(self): # Test w/ incomplete names data = "A,,C\n0,1,2\n3,4,5" kwargs = dict(delimiter=",", names=True) # w/ dtype=None ctrl = np.array([(0, 1, 2), (3, 4, 5)], dtype=[(_, int) for _ in ('A', 'f0', 'C')]) test = np.genfromtxt(TextIO(data), dtype=None, **kwargs) assert_equal(test, ctrl) # w/ default dtype ctrl = np.array([(0, 1, 2), (3, 4, 5)], dtype=[(_, float) for _ in ('A', 'f0', 'C')]) test = np.genfromtxt(TextIO(data), **kwargs) def test_names_auto_completion(self): # Make sure that names are properly completed data = "1 2 3\n 4 5 6" test = np.genfromtxt(TextIO(data), dtype=(int, float, int), names="a") ctrl = np.array([(1, 2, 3), (4, 5, 6)], dtype=[('a', int), ('f0', float), ('f1', int)]) assert_equal(test, ctrl) def test_names_with_usecols_bug1636(self): # Make sure we pick up the right names w/ usecols data = "A,B,C,D,E\n0,1,2,3,4\n0,1,2,3,4\n0,1,2,3,4" ctrl_names = ("A", "C", "E") test = np.genfromtxt(TextIO(data), dtype=(int, int, int), delimiter=",", usecols=(0, 2, 4), names=True) assert_equal(test.dtype.names, ctrl_names) # test = np.genfromtxt(TextIO(data), dtype=(int, int, int), delimiter=",", usecols=("A", "C", "E"), names=True) assert_equal(test.dtype.names, ctrl_names) # test = np.genfromtxt(TextIO(data), dtype=int, delimiter=",", usecols=("A", "C", "E"), names=True) assert_equal(test.dtype.names, ctrl_names) def test_fixed_width_names(self): # Test fix-width w/ names data = " A B C\n 0 1 2.3\n 45 67 9." kwargs = dict(delimiter=(5, 5, 4), names=True, dtype=None) ctrl = np.array([(0, 1, 2.3), (45, 67, 9.)], dtype=[('A', int), ('B', int), ('C', float)]) test = np.genfromtxt(TextIO(data), **kwargs) assert_equal(test, ctrl) # kwargs = dict(delimiter=5, names=True, dtype=None) ctrl = np.array([(0, 1, 2.3), (45, 67, 9.)], dtype=[('A', int), ('B', int), ('C', float)]) test = np.genfromtxt(TextIO(data), **kwargs) assert_equal(test, ctrl) def test_filling_values(self): # Test missing values data = b"1, 2, 3\n1, , 5\n0, 6, \n" kwargs = dict(delimiter=",", dtype=None, filling_values=-999) ctrl = np.array([[1, 2, 3], [1, -999, 5], [0, 6, -999]], dtype=int) test = np.genfromtxt(TextIO(data), **kwargs) assert_equal(test, ctrl) def test_comments_is_none(self): # Github issue 329 (None was previously being converted to 'None'). with warnings.catch_warnings(record=True) as w: warnings.filterwarnings('always', '', np.VisibleDeprecationWarning) test = np.genfromtxt(TextIO("test1,testNonetherestofthedata"), dtype=None, comments=None, delimiter=',') assert_(w[0].category is np.VisibleDeprecationWarning) assert_equal(test[1], b'testNonetherestofthedata') with warnings.catch_warnings(record=True) as w: warnings.filterwarnings('always', '', np.VisibleDeprecationWarning) test = np.genfromtxt(TextIO("test1, testNonetherestofthedata"), dtype=None, comments=None, delimiter=',') assert_(w[0].category is np.VisibleDeprecationWarning) assert_equal(test[1], b' testNonetherestofthedata') def test_latin1(self): latin1 = b'\xf6\xfc\xf6' norm = b"norm1,norm2,norm3\n" enc = b"test1,testNonethe" + latin1 + b",test3\n" s = norm + enc + norm with warnings.catch_warnings(record=True) as w: warnings.filterwarnings('always', '', np.VisibleDeprecationWarning) test = np.genfromtxt(TextIO(s), dtype=None, comments=None, delimiter=',') assert_(w[0].category is np.VisibleDeprecationWarning) assert_equal(test[1, 0], b"test1") assert_equal(test[1, 1], b"testNonethe" + latin1) assert_equal(test[1, 2], b"test3") test = np.genfromtxt(TextIO(s), dtype=None, comments=None, delimiter=',', encoding='latin1') assert_equal(test[1, 0], u"test1") assert_equal(test[1, 1], u"testNonethe" + latin1.decode('latin1')) assert_equal(test[1, 2], u"test3") with warnings.catch_warnings(record=True) as w: warnings.filterwarnings('always', '', np.VisibleDeprecationWarning) test = np.genfromtxt(TextIO(b"0,testNonethe" + latin1), dtype=None, comments=None, delimiter=',') assert_(w[0].category is np.VisibleDeprecationWarning) assert_equal(test['f0'], 0) assert_equal(test['f1'], b"testNonethe" + latin1) def test_binary_decode_autodtype(self): utf16 = b'\xff\xfeh\x04 \x00i\x04 \x00j\x04' v = self.loadfunc(BytesIO(utf16), dtype=None, encoding='UTF-16') assert_array_equal(v, np.array(utf16.decode('UTF-16').split())) def test_utf8_byte_encoding(self): utf8 = b"\xcf\x96" norm = b"norm1,norm2,norm3\n" enc = b"test1,testNonethe" + utf8 + b",test3\n" s = norm + enc + norm with warnings.catch_warnings(record=True) as w: warnings.filterwarnings('always', '', np.VisibleDeprecationWarning) test = np.genfromtxt(TextIO(s), dtype=None, comments=None, delimiter=',') assert_(w[0].category is np.VisibleDeprecationWarning) ctl = np.array([ [b'norm1', b'norm2', b'norm3'], [b'test1', b'testNonethe' + utf8, b'test3'], [b'norm1', b'norm2', b'norm3']]) assert_array_equal(test, ctl) def test_utf8_file(self): utf8 = b"\xcf\x96" with temppath() as path: with open(path, "wb") as f: f.write((b"test1,testNonethe" + utf8 + b",test3\n") * 2) test = np.genfromtxt(path, dtype=None, comments=None, delimiter=',', encoding="UTF-8") ctl = np.array([ ["test1", "testNonethe" + utf8.decode("UTF-8"), "test3"], ["test1", "testNonethe" + utf8.decode("UTF-8"), "test3"]], dtype=np.unicode_) assert_array_equal(test, ctl) # test a mixed dtype with open(path, "wb") as f: f.write(b"0,testNonethe" + utf8) test = np.genfromtxt(path, dtype=None, comments=None, delimiter=',', encoding="UTF-8") assert_equal(test['f0'], 0) assert_equal(test['f1'], "testNonethe" + utf8.decode("UTF-8")) def test_utf8_file_nodtype_unicode(self): # bytes encoding with non-latin1 -> unicode upcast utf8 = u'\u03d6' latin1 = u'\xf6\xfc\xf6' # skip test if cannot encode utf8 test string with preferred # encoding. The preferred encoding is assumed to be the default # encoding of io.open. Will need to change this for PyTest, maybe # using pytest.mark.xfail(raises=***). try: encoding = locale.getpreferredencoding() utf8.encode(encoding) except (UnicodeError, ImportError): pytest.skip('Skipping test_utf8_file_nodtype_unicode, ' 'unable to encode utf8 in preferred encoding') with temppath() as path: with io.open(path, "wt") as f: f.write(u"norm1,norm2,norm3\n") f.write(u"norm1," + latin1 + u",norm3\n") f.write(u"test1,testNonethe" + utf8 + u",test3\n") with warnings.catch_warnings(record=True) as w: warnings.filterwarnings('always', '', np.VisibleDeprecationWarning) test = np.genfromtxt(path, dtype=None, comments=None, delimiter=',') # Check for warning when encoding not specified. assert_(w[0].category is np.VisibleDeprecationWarning) ctl = np.array([ ["norm1", "norm2", "norm3"], ["norm1", latin1, "norm3"], ["test1", "testNonethe" + utf8, "test3"]], dtype=np.unicode_) assert_array_equal(test, ctl) def test_recfromtxt(self): # data = TextIO('A,B\n0,1\n2,3') kwargs = dict(delimiter=",", missing_values="N/A", names=True) test = np.recfromtxt(data, **kwargs) control = np.array([(0, 1), (2, 3)], dtype=[('A', int), ('B', int)]) assert_(isinstance(test, np.recarray)) assert_equal(test, control) # data = TextIO('A,B\n0,1\n2,N/A') test = np.recfromtxt(data, dtype=None, usemask=True, **kwargs) control = ma.array([(0, 1), (2, -1)], mask=[(False, False), (False, True)], dtype=[('A', int), ('B', int)]) assert_equal(test, control) assert_equal(test.mask, control.mask) assert_equal(test.A, [0, 2]) def test_recfromcsv(self): # data = TextIO('A,B\n0,1\n2,3') kwargs = dict(missing_values="N/A", names=True, case_sensitive=True) test = np.recfromcsv(data, dtype=None, **kwargs) control = np.array([(0, 1), (2, 3)], dtype=[('A', int), ('B', int)]) assert_(isinstance(test, np.recarray)) assert_equal(test, control) # data = TextIO('A,B\n0,1\n2,N/A') test = np.recfromcsv(data, dtype=None, usemask=True, **kwargs) control = ma.array([(0, 1), (2, -1)], mask=[(False, False), (False, True)], dtype=[('A', int), ('B', int)]) assert_equal(test, control) assert_equal(test.mask, control.mask) assert_equal(test.A, [0, 2]) # data = TextIO('A,B\n0,1\n2,3') test = np.recfromcsv(data, missing_values='N/A',) control = np.array([(0, 1), (2, 3)], dtype=[('a', int), ('b', int)]) assert_(isinstance(test, np.recarray)) assert_equal(test, control) # data = TextIO('A,B\n0,1\n2,3') dtype = [('a', int), ('b', float)] test = np.recfromcsv(data, missing_values='N/A', dtype=dtype) control = np.array([(0, 1), (2, 3)], dtype=dtype) assert_(isinstance(test, np.recarray)) assert_equal(test, control) #gh-10394 data = TextIO('color\n"red"\n"blue"') test = np.recfromcsv(data, converters={0: lambda x: x.strip(b'\"')}) control = np.array([('red',), ('blue',)], dtype=[('color', (bytes, 4))]) assert_equal(test.dtype, control.dtype) assert_equal(test, control) def test_max_rows(self): # Test the `max_rows` keyword argument. data = '1 2\n3 4\n5 6\n7 8\n9 10\n' txt = TextIO(data) a1 = np.genfromtxt(txt, max_rows=3) a2 = np.genfromtxt(txt) assert_equal(a1, [[1, 2], [3, 4], [5, 6]]) assert_equal(a2, [[7, 8], [9, 10]]) # max_rows must be at least 1. assert_raises(ValueError, np.genfromtxt, TextIO(data), max_rows=0) # An input with several invalid rows. data = '1 1\n2 2\n0 \n3 3\n4 4\n5 \n6 \n7 \n' test = np.genfromtxt(TextIO(data), max_rows=2) control = np.array([[1., 1.], [2., 2.]]) assert_equal(test, control) # Test keywords conflict assert_raises(ValueError, np.genfromtxt, TextIO(data), skip_footer=1, max_rows=4) # Test with invalid value assert_raises(ValueError, np.genfromtxt, TextIO(data), max_rows=4) # Test with invalid not raise with suppress_warnings() as sup: sup.filter(ConversionWarning) test = np.genfromtxt(TextIO(data), max_rows=4, invalid_raise=False) control = np.array([[1., 1.], [2., 2.], [3., 3.], [4., 4.]]) assert_equal(test, control) test = np.genfromtxt(TextIO(data), max_rows=5, invalid_raise=False) control = np.array([[1., 1.], [2., 2.], [3., 3.], [4., 4.]]) assert_equal(test, control) # Structured array with field names. data = 'a b\n#c d\n1 1\n2 2\n#0 \n3 3\n4 4\n5 5\n' # Test with header, names and comments txt = TextIO(data) test = np.genfromtxt(txt, skip_header=1, max_rows=3, names=True) control = np.array([(1.0, 1.0), (2.0, 2.0), (3.0, 3.0)], dtype=[('c', '<f8'), ('d', '<f8')]) assert_equal(test, control) # To continue reading the same "file", don't use skip_header or # names, and use the previously determined dtype. test = np.genfromtxt(txt, max_rows=None, dtype=test.dtype) control = np.array([(4.0, 4.0), (5.0, 5.0)], dtype=[('c', '<f8'), ('d', '<f8')]) assert_equal(test, control) def test_gft_using_filename(self): # Test that we can load data from a filename as well as a file # object tgt = np.arange(6).reshape((2, 3)) linesep = ('\n', '\r\n', '\r') for sep in linesep: data = '0 1 2' + sep + '3 4 5' with temppath() as name: with open(name, 'w') as f: f.write(data) res = np.genfromtxt(name) assert_array_equal(res, tgt) def test_gft_from_gzip(self): # Test that we can load data from a gzipped file wanted = np.arange(6).reshape((2, 3)) linesep = ('\n', '\r\n', '\r') for sep in linesep: data = '0 1 2' + sep + '3 4 5' s = BytesIO() with gzip.GzipFile(fileobj=s, mode='w') as g: g.write(asbytes(data)) with temppath(suffix='.gz2') as name: with open(name, 'w') as f: f.write(data) assert_array_equal(np.genfromtxt(name), wanted) def test_gft_using_generator(self): # gft doesn't work with unicode. def count(): for i in range(10): yield asbytes("%d" % i) res = np.genfromtxt(count()) assert_array_equal(res, np.arange(10)) def test_auto_dtype_largeint(self): # Regression test for numpy/numpy#5635 whereby large integers could # cause OverflowErrors. # Test the automatic definition of the output dtype # # 2**66 = 73786976294838206464 => should convert to float # 2**34 = 17179869184 => should convert to int64 # 2**10 = 1024 => should convert to int (int32 on 32-bit systems, # int64 on 64-bit systems) data = TextIO('73786976294838206464 17179869184 1024') test = np.genfromtxt(data, dtype=None) assert_equal(test.dtype.names, ['f0', 'f1', 'f2']) assert_(test.dtype['f0'] == float) assert_(test.dtype['f1'] == np.int64) assert_(test.dtype['f2'] == np.int_) assert_allclose(test['f0'], 73786976294838206464.) assert_equal(test['f1'], 17179869184) assert_equal(test['f2'], 1024) def test_unpack_structured(self): # Regression test for gh-4341 # Unpacking should work on structured arrays txt = TextIO("M 21 72\nF 35 58") dt = {'names': ('a', 'b', 'c'), 'formats': ('S1', 'i4', 'f4')} a, b, c = np.genfromtxt(txt, dtype=dt, unpack=True) assert_equal(a.dtype, np.dtype('S1')) assert_equal(b.dtype, np.dtype('i4')) assert_equal(c.dtype, np.dtype('f4')) assert_array_equal(a, np.array([b'M', b'F'])) assert_array_equal(b, np.array([21, 35])) assert_array_equal(c, np.array([72., 58.])) def test_unpack_auto_dtype(self): # Regression test for gh-4341 # Unpacking should work when dtype=None txt = TextIO("M 21 72.\nF 35 58.") expected = (np.array(["M", "F"]), np.array([21, 35]), np.array([72., 58.])) test = np.genfromtxt(txt, dtype=None, unpack=True, encoding="utf-8") for arr, result in zip(expected, test): assert_array_equal(arr, result) assert_equal(arr.dtype, result.dtype) def test_unpack_single_name(self): # Regression test for gh-4341 # Unpacking should work when structured dtype has only one field txt = TextIO("21\n35") dt = {'names': ('a',), 'formats': ('i4',)} expected = np.array([21, 35], dtype=np.int32) test = np.genfromtxt(txt, dtype=dt, unpack=True) assert_array_equal(expected, test) assert_equal(expected.dtype, test.dtype) def test_squeeze_scalar(self): # Regression test for gh-4341 # Unpacking a scalar should give zero-dim output, # even if dtype is structured txt = TextIO("1") dt = {'names': ('a',), 'formats': ('i4',)} expected = np.array((1,), dtype=np.int32) test = np.genfromtxt(txt, dtype=dt, unpack=True) assert_array_equal(expected, test) assert_equal((), test.shape) assert_equal(expected.dtype, test.dtype) class TestPathUsage: # Test that pathlib.Path can be used def test_loadtxt(self): with temppath(suffix='.txt') as path: path = Path(path) a = np.array([[1.1, 2], [3, 4]]) np.savetxt(path, a) x = np.loadtxt(path) assert_array_equal(x, a) def test_save_load(self): # Test that pathlib.Path instances can be used with save. with temppath(suffix='.npy') as path: path = Path(path) a = np.array([[1, 2], [3, 4]], int) np.save(path, a) data = np.load(path) assert_array_equal(data, a) def test_save_load_memmap(self): # Test that pathlib.Path instances can be loaded mem-mapped. with temppath(suffix='.npy') as path: path = Path(path) a = np.array([[1, 2], [3, 4]], int) np.save(path, a) data = np.load(path, mmap_mode='r') assert_array_equal(data, a) # close the mem-mapped file del data if IS_PYPY: break_cycles() break_cycles() def test_save_load_memmap_readwrite(self): # Test that pathlib.Path instances can be written mem-mapped. with temppath(suffix='.npy') as path: path = Path(path) a = np.array([[1, 2], [3, 4]], int) np.save(path, a) b = np.load(path, mmap_mode='r+') a[0][0] = 5 b[0][0] = 5 del b # closes the file if IS_PYPY: break_cycles() break_cycles() data = np.load(path) assert_array_equal(data, a) def test_savez_load(self): # Test that pathlib.Path instances can be used with savez. with temppath(suffix='.npz') as path: path = Path(path) np.savez(path, lab='place holder') with np.load(path) as data: assert_array_equal(data['lab'], 'place holder') def test_savez_compressed_load(self): # Test that pathlib.Path instances can be used with savez. with temppath(suffix='.npz') as path: path = Path(path) np.savez_compressed(path, lab='place holder') data = np.load(path) assert_array_equal(data['lab'], 'place holder') data.close() def test_genfromtxt(self): with temppath(suffix='.txt') as path: path = Path(path) a = np.array([(1, 2), (3, 4)]) np.savetxt(path, a) data = np.genfromtxt(path) assert_array_equal(a, data) def test_recfromtxt(self): with temppath(suffix='.txt') as path: path = Path(path) with path.open('w') as f: f.write(u'A,B\n0,1\n2,3') kwargs = dict(delimiter=",", missing_values="N/A", names=True) test = np.recfromtxt(path, **kwargs) control = np.array([(0, 1), (2, 3)], dtype=[('A', int), ('B', int)]) assert_(isinstance(test, np.recarray)) assert_equal(test, control) def test_recfromcsv(self): with temppath(suffix='.txt') as path: path = Path(path) with path.open('w') as f: f.write(u'A,B\n0,1\n2,3') kwargs = dict(missing_values="N/A", names=True, case_sensitive=True) test = np.recfromcsv(path, dtype=None, **kwargs) control = np.array([(0, 1), (2, 3)], dtype=[('A', int), ('B', int)]) assert_(isinstance(test, np.recarray)) assert_equal(test, control) def test_gzip_load(): a = np.random.random((5, 5)) s = BytesIO() f = gzip.GzipFile(fileobj=s, mode="w") np.save(f, a) f.close() s.seek(0) f = gzip.GzipFile(fileobj=s, mode="r") assert_array_equal(np.load(f), a) # These next two classes encode the minimal API needed to save()/load() arrays. # The `test_ducktyping` ensures they work correctly class JustWriter: def __init__(self, base): self.base = base def write(self, s): return self.base.write(s) def flush(self): return self.base.flush() class JustReader: def __init__(self, base): self.base = base def read(self, n): return self.base.read(n) def seek(self, off, whence=0): return self.base.seek(off, whence) def test_ducktyping(): a = np.random.random((5, 5)) s = BytesIO() f = JustWriter(s) np.save(f, a) f.flush() s.seek(0) f = JustReader(s) assert_array_equal(np.load(f), a) def test_gzip_loadtxt(): # Thanks to another windows brokenness, we can't use # NamedTemporaryFile: a file created from this function cannot be # reopened by another open call. So we first put the gzipped string # of the test reference array, write it to a securely opened file, # which is then read from by the loadtxt function s = BytesIO() g = gzip.GzipFile(fileobj=s, mode='w') g.write(b'1 2 3\n') g.close() s.seek(0) with temppath(suffix='.gz') as name: with open(name, 'wb') as f: f.write(s.read()) res = np.loadtxt(name) s.close() assert_array_equal(res, [1, 2, 3]) def test_gzip_loadtxt_from_string(): s = BytesIO() f = gzip.GzipFile(fileobj=s, mode="w") f.write(b'1 2 3\n') f.close() s.seek(0) f = gzip.GzipFile(fileobj=s, mode="r") assert_array_equal(np.loadtxt(f), [1, 2, 3]) def test_npzfile_dict(): s = BytesIO() x = np.zeros((3, 3)) y = np.zeros((3, 3)) np.savez(s, x=x, y=y) s.seek(0) z = np.load(s) assert_('x' in z) assert_('y' in z) assert_('x' in z.keys()) assert_('y' in z.keys()) for f, a in z.items(): assert_(f in ['x', 'y']) assert_equal(a.shape, (3, 3)) assert_(len(z.items()) == 2) for f in z: assert_(f in ['x', 'y']) assert_('x' in z.keys()) @pytest.mark.skipif(not HAS_REFCOUNT, reason="Python lacks refcounts") def test_load_refcount(): # Check that objects returned by np.load are directly freed based on # their refcount, rather than needing the gc to collect them. f = BytesIO() np.savez(f, [1, 2, 3]) f.seek(0) with assert_no_gc_cycles(): np.load(f) f.seek(0) dt = [("a", 'u1', 2), ("b", 'u1', 2)] with assert_no_gc_cycles(): x = np.loadtxt(TextIO("0 1 2 3"), dtype=dt) assert_equal(x, np.array([((0, 1), (2, 3))], dtype=dt))
train_script.py
""" Train script for a single file Need to set the TPU address first: export XRT_TPU_CONFIG="localservice;0;localhost:51011" """ import torch.multiprocessing as mp import threading import time import random import sys import argparse import gzip import json import logging import tqdm import torch from torch import nn from torch.utils.data import DataLoader import torch import torch_xla import torch_xla.core import torch_xla.core.functions import torch_xla.core.xla_model as xm import torch_xla.distributed.xla_multiprocessing as xmp import torch_xla.distributed.parallel_loader as pl import os from shutil import copyfile from transformers import ( AdamW, AutoModel, AutoTokenizer, get_linear_schedule_with_warmup, set_seed, ) class AutoModelForSentenceEmbedding(nn.Module): def __init__(self, model_name, tokenizer, normalize=True): super(AutoModelForSentenceEmbedding, self).__init__() self.model = AutoModel.from_pretrained(model_name) self.normalize = normalize self.tokenizer = tokenizer def forward(self, **kwargs): model_output = self.model(**kwargs) embeddings = self.mean_pooling(model_output, kwargs['attention_mask']) if self.normalize: embeddings = torch.nn.functional.normalize(embeddings, p=2, dim=1) return embeddings def mean_pooling(self, model_output, attention_mask): token_embeddings = model_output[0] # First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) def save_pretrained(self, output_path): if xm.is_master_ordinal(): self.tokenizer.save_pretrained(output_path) self.model.config.save_pretrained(output_path) xm.save(self.model.state_dict(), os.path.join(output_path, "pytorch_model.bin")) def train_function(index, args, queue): tokenizer = AutoTokenizer.from_pretrained(args.model) model = AutoModelForSentenceEmbedding(args.model, tokenizer) ### Train Loop device = xm.xla_device() model = model.to(device) # Instantiate optimizer optimizer = AdamW(params=model.parameters(), lr=2e-5, correct_bias=True) lr_scheduler = get_linear_schedule_with_warmup( optimizer=optimizer, num_warmup_steps=500, num_training_steps=args.steps, ) # Now we train the model cross_entropy_loss = nn.CrossEntropyLoss() max_grad_norm = 1 model.train() for global_step in tqdm.trange(args.steps, disable=not xm.is_master_ordinal()): #### Get the batch data batch = queue.get() #print(index, "batch {}x{}".format(len(batch), ",".join([str(len(b)) for b in batch]))) if len(batch[0]) == 2: #(anchor, positive) text1 = tokenizer([b[0] for b in batch], return_tensors="pt", max_length=args.max_length, truncation=True, padding="max_length") text2 = tokenizer([b[1] for b in batch], return_tensors="pt", max_length=args.max_length, truncation=True, padding="max_length") ### Compute embeddings embeddings_a = model(**text1.to(device)) embeddings_b = model(**text2.to(device)) ### Gather all embedings embeddings_a = torch_xla.core.functions.all_gather(embeddings_a) embeddings_b = torch_xla.core.functions.all_gather(embeddings_b) ### Compute similarity scores 512 x 512 scores = torch.mm(embeddings_a, embeddings_b.transpose(0, 1)) * args.scale ### Compute cross-entropy loss labels = torch.tensor(range(len(scores)), dtype=torch.long, device=embeddings_a.device) # Example a[i] should match with b[i] ## Symmetric loss as in CLIP loss = (cross_entropy_loss(scores, labels) + cross_entropy_loss(scores.transpose(0, 1), labels)) / 2 else: #(anchor, positive, negative) text1 = tokenizer([b[0] for b in batch], return_tensors="pt", max_length=args.max_length, truncation=True, padding="max_length") text2 = tokenizer([b[1] for b in batch], return_tensors="pt", max_length=args.max_length, truncation=True, padding="max_length") text3 = tokenizer([b[2] for b in batch], return_tensors="pt", max_length=args.max_length, truncation=True, padding="max_length") embeddings_a = model(**text1.to(device)) embeddings_b1 = model(**text2.to(device)) embeddings_b2 = model(**text3.to(device)) embeddings_a = torch_xla.core.functions.all_gather(embeddings_a) embeddings_b1 = torch_xla.core.functions.all_gather(embeddings_b1) embeddings_b2 = torch_xla.core.functions.all_gather(embeddings_b2) embeddings_b = torch.cat([embeddings_b1, embeddings_b2]) ### Compute similarity scores 512 x 1024 scores = torch.mm(embeddings_a, embeddings_b.transpose(0, 1)) * args.scale ### Compute cross-entropy loss labels = torch.tensor(range(len(scores)), dtype=torch.long, device=embeddings_a.device) # Example a[i] should match with b[i] ## One-way loss loss = cross_entropy_loss(scores, labels) # Backward pass optimizer.zero_grad() loss.backward() torch.nn.utils.clip_grad_norm_(model.parameters(), max_grad_norm) xm.optimizer_step(optimizer, barrier=True) lr_scheduler.step() #Save model if (global_step+1) % args.save_steps == 0: output_path = os.path.join(args.output, str(global_step+1)) xm.master_print("save model: "+output_path) model.save_pretrained(output_path) output_path = os.path.join(args.output, "final") xm.master_print("save model final: "+ output_path) model.save_pretrained(output_path) def produce_data(args, queue, filepaths, dataset_indices): global_batch_size = args.batch_size*args.nprocs #Global batch size size_per_dataset = int(global_batch_size / args.datasets_per_batch) #How many datasets per batch num_same_dataset = int(size_per_dataset / args.batch_size) print("producer", "global_batch_size", global_batch_size) print("producer", "size_per_dataset", size_per_dataset) print("producer", "num_same_dataset", num_same_dataset) datasets = [] for filepath in filepaths: if "reddit_" in filepath: #Special dataset class for Reddit files data_obj = RedditDataset(filepath) else: data_obj = Dataset(filepath) datasets.append(iter(data_obj)) # Store if dataset is in a 2 col or 3 col format num_cols = {idx: len(next(dataset)) for idx, dataset in enumerate(datasets)} while True: texts_in_batch = set() batch_format = None #2 vs 3 col format for this batch #Add data from several sub datasets for _ in range(args.datasets_per_batch): valid_dataset = False #Check that datasets have the same 2/3 col format while not valid_dataset: data_idx = random.choice(dataset_indices) if batch_format is None: batch_format = num_cols[data_idx] valid_dataset = True else: #Check that this dataset has the same format valid_dataset = (batch_format == num_cols[data_idx]) #Get data from this dataset dataset = datasets[data_idx] for _ in range(num_same_dataset): for _ in range(args.nprocs): batch_device = [] #A batch for one device while len(batch_device) < args.batch_size: sample = next(dataset) in_batch = False for text in sample: if text in texts_in_batch: in_batch = True break if not in_batch: for text in sample: texts_in_batch.add(text) batch_device.append(sample) queue.put(batch_device) class RedditDataset: """ A class that handles the reddit data files """ def __init__(self, filepath): self.filepath = filepath def __iter__(self): while True: with gzip.open(self.filepath, "rt") as fIn: for line in fIn: data = json.loads(line) if "response" in data and "context" in data: yield [data["response"], data["context"]] class Dataset: """ A class that handles one dataset """ def __init__(self, filepath): self.filepath = filepath def __iter__(self): max_dataset_size = 10*1000*1000 #Cache small datasets in memory dataset = [] data_format = None while dataset is None or len(dataset) == 0: with gzip.open(self.filepath, "rt") as fIn: for line in fIn: data = json.loads(line) if isinstance(data, dict): data = data['texts'] if data_format is None: data_format = len(data) #Ensure that all entries are of the same 2/3 col format assert len(data) == data_format if dataset is not None: dataset.append(data) if len(dataset) >= max_dataset_size: dataset = None yield data # Data loaded. Now stream to the queue # Shuffle for each epoch while True: random.shuffle(dataset) for data in dataset: yield data if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument('--model', default='nreimers/MiniLM-L6-H384-uncased') parser.add_argument('--steps', type=int, default=2000) parser.add_argument('--save_steps', type=int, default=10000) parser.add_argument('--batch_size', type=int, default=64) parser.add_argument('--max_length', type=int, default=128) parser.add_argument('--nprocs', type=int, default=8) parser.add_argument('--datasets_per_batch', type=int, default=2, help="Number of datasets per batch") parser.add_argument('--scale', type=float, default=20, help="Use 20 for cossim, and 1 when you work with unnormalized embeddings with dot product") parser.add_argument('--data_folder', default="/data", help="Folder with your dataset files") parser.add_argument('data_config', help="A data_config.json file") parser.add_argument('output') args = parser.parse_args() # Ensure global batch size is divisble by data_sample_size assert (args.batch_size*args.nprocs) % args.datasets_per_batch == 0 logging.info("Output: "+args.output) if os.path.exists(args.output): print("Output folder already exists.") input("Continue?") # Write train script to output path os.makedirs(args.output, exist_ok=True) data_config_path = os.path.join(args.output, 'data_config.json') copyfile(args.data_config, data_config_path) train_script_path = os.path.join(args.output, 'train_script.py') copyfile(__file__, train_script_path) with open(train_script_path, 'a') as fOut: fOut.write("\n\n# Script was called via:\n#python " + " ".join(sys.argv)) #Load data config with open(args.data_config) as fIn: data_config = json.load(fIn) queue = mp.Queue(maxsize=100*args.nprocs) filepaths = [] dataset_indices = [] for idx, data in enumerate(data_config): filepaths.append(os.path.join(os.path.expanduser(args.data_folder), data['name'])) dataset_indices.extend([idx]*data['weight']) # Start producer p = mp.Process(target=produce_data, args=(args, queue, filepaths, dataset_indices)) p.start() # Run training print("Start processes:", args.nprocs) xmp.spawn(train_function, args=(args, queue), nprocs=args.nprocs, start_method='fork') print("Training done") print("It might be that not all processes exit automatically. In that case you must manually kill this process.") print("With 'pkill python' you can kill all remaining python processes") p.kill() exit() # Script was called via: #python train_many_data_files_v2.py --steps 1000000 --batch_size 128 --model nreimers/MiniLM-L6-H384-uncased train_data_configs/all_datasets_v4.json output/all_datasets_v4_MiniLM-L6-H384-uncased-batch128
__init__.py
import contextlib import copy import hashlib import itertools import json import tqdm import torchvision import pprint import os import pickle import shlex import subprocess import threading import time import numpy as np import pylab as plt import torch import pandas as pd from .. import haven_img as hi from .image_utils import * from .file_utils import * from .string_utils import * from .exp_utils import * from datetime import datetime from PIL import Image def get_function_from_file(): pass def create_command(base_command, args): """ args is the parser """ run_command = base_command arg_keys = vars(args).keys() assert "exp_group_list" in arg_keys assert "exp_id" in arg_keys assert "run_jobs" in arg_keys for a, v in vars(args).items(): if a == "exp_group_list" or a == "exp_id" or a == "run_jobs" or a == "reset": print("argument: %s ignored..." % a) continue run_command += " --%s %s" % (a, v) print("command: %s" % run_command) return run_command def mask_on_image(mask, image): from skimage.color import label2rgb from skimage.color import color_dict, colorlabel from skimage.segmentation import mark_boundaries default_colors = [ "red", "blue", "yellow", "magenta", "green", "indigo", "darkorange", "cyan", "pink", "yellowgreen", ] mask = mask.squeeze().astype(int) image = hi.image_as_uint8(image) / 255.0 labels = [l for l in np.unique(mask) if l < len(color_dict)] colors = default_colors + list(color_dict.keys())[len(default_colors) :] colors = np.array(colors)[labels] image_label_overlay = label2rgb( mask, image=f2l(image).squeeze().clip(0, 1), colors=colors, bg_label=0, bg_color=None, kind="overlay" ) return mark_boundaries(image_label_overlay, mask) def get_image(img, denorm=None, size=None, points=None, radius=10, mask=None, heatmap=None): return save_image(None, img, denorm, size, points, radius, mask, heatmap, return_image=True) def save_image( fname, img, denorm=None, size=None, points=None, radius=10, mask=None, heatmap=None, makedirs=True, return_image=False, nrow=8, ): """Save an image into a file. Parameters ---------- fname : str Name of the file img : [type] Image data. #TODO We asume it is.....?????? \in [0, 1]? Numpy? PIL? RGB? makedirs : bool, optional If enabled creates the folder for saving the file, by default True """ if not isinstance(img, torch.Tensor): if img.min() >= 0 and img.max() > 1: img = img / 255.0 img = torch.as_tensor(img) if img.ndim == 4: img = torchvision.utils.make_grid(img, nrow=nrow) if denorm: img = denormalize(img, mode=denorm) if points is not None: if isinstance(img, np.ndarray): img = torch.FloatTensor(img) img = img.squeeze() if img.ndim == 2: img = img[None].repeat(3, 1, 1) y_list, x_list = np.where(points.squeeze()) c_list = [] for y, x in zip(y_list, x_list): c_list += [points.squeeze()[y, x]] img = hi.points_on_image(y_list, x_list, img, radius=radius, c_list=c_list) if mask is not None: img = mask_on_image(mask, img) if img.dtype == "uint8": img = Image.fromarray(img) else: arr = f2l(t2n(img)).squeeze() # print(arr.shape) if size is not None: arr = Image.fromarray(arr) arr = arr.resize(size) arr = np.array(arr) img = Image.fromarray(np.uint8(arr * 255)) if return_image: return img if fname is not None: dirname = os.path.dirname(fname) if makedirs and dirname != "": os.makedirs(dirname, exist_ok=True) img.save(fname) def load_txt(fname): """Load the content of a txt file. Parameters ---------- fname : str File name Returns ------- list Content of the file. List containing the lines of the file """ with open(fname, "r", encoding="utf-8") as f: lines = f.readlines() return lines def save_txt(fname, lines): """Load the content of a txt file. Parameters ---------- fname : str File name Returns ------- list Content of the file. List containing the lines of the file """ with open(fname, "w", encoding="utf-8") as f: for l in lines: f.writelines(l) def torch_load(fname, map_location=None): """Load the content of a torch file. Parameters ---------- fname : str File name map_location : [type], optional Maping the loaded model to a specific device (i.e., CPU or GPU), this is needed if trained in CPU and loaded in GPU and viceversa, by default None Returns ------- [type] Loaded torch model """ obj = torch.load(fname, map_location=map_location) return obj def torch_save(fname, obj): """Save data in torch format. Parameters ---------- fname : str File name obj : [type] Data to save """ # Create folder os.makedirs(os.path.dirname(fname), exist_ok=True) # TODO: add makedirs parameter? # Define names of temporal files fname_tmp = fname + ".tmp" # TODO: Make the safe flag? torch.save(obj, fname_tmp) if os.path.exists(fname): os.remove(fname) os.rename(fname_tmp, fname) class Parallel: """Class for run a function in parallel.""" def __init__(self): """Constructor""" self.threadList = [] self.count = 0 self.thread_logs = [] def add(self, func, *args): """Add a function to run as a process. Parameters ---------- func : function Pointer to the function to parallelize args : list Arguments of the funtion to parallelize """ self.threadList += [threading.Thread(target=func, name="thread-%d" % self.count, args=args)] self.count += 1 def run(self): """Run the added functions in parallel""" for thread in tqdm.tqdm(self.threadList, desc="Starting threads", leave=False): thread.daemon = True thread.start() def close(self): """Finish: wait for all the functions to finish""" for thread in tqdm.tqdm(self.threadList, desc="Joining threads", leave=False): thread.join() def pretty_print_df(df): # wrap text for prettiness for c in df.columns: if df[c].dtype == "O": # df[c] = df[c].str.wrap(wrap_size) df[c] = df[c].apply(pprint.pformat) return df def flatten_column(result_dict): new_dict = {} for k, v in result_dict.items(): new_dict.update(flatten_dict(k, v)) result_dict = new_dict return result_dict def sort_df_columns(table, also_first=[]): first = ["exp_id", "job_state", "job_id", "restarts", "started_at"] first += also_first col_list = [] for col in first: if col in table.columns: col_list += [col] for col in table.columns: if col in first: continue col_list += [col] return table[col_list] def subprocess_call(cmd_string): """Run a terminal process. Parameters ---------- cmd_string : str Command to execute in the terminal Returns ------- [type] Error code or 0 if no error happened """ return subprocess.check_output(shlex.split(cmd_string), shell=False, stderr=subprocess.STDOUT).decode("utf-8") def copy_code(src_path, dst_path, verbose=1): """Copy the code. Typically, when you run an experiment, first you copy the code used to the experiment folder. This function copies the code using rsync terminal command. Parameters ---------- src_path : str Source code directory dst_path : str Destination code directory verbose : int, optional Verbosity level. If 0 does not print stuff, by default 1 Raises ------ ValueError [description] """ time.sleep(0.5) # TODO: Why? Why? if verbose: print(" > Copying code from %s to %s" % (src_path, dst_path)) # Create destination folder os.makedirs(dst_path, exist_ok=True) # Define the command for copying the code using rsync if os.path.exists(os.path.join(src_path, ".havenignore")): rsync_code = ( "rsync -av -r -q --delete-before --exclude='.*' --exclude-from=%s \ --exclude '__pycache__/' %s %s" % (os.path.join(src_path, ".havenignore"), src_path, dst_path) ) else: rsync_code = ( "rsync -av -r -q --delete-before --exclude='.*' \ --exclude '__pycache__/' %s %s" % (src_path, dst_path) ) # Run the command in the terminal try: subprocess_call(rsync_code) except subprocess.CalledProcessError as e: raise ValueError("Ping stdout output:\n", e.output) time.sleep(0.5) # TODO: Why? def zipdir(src_dirname, out_fname, include_list=None): """Compress a folder using ZIP. Parameters ---------- src_dirname : str Directory to compress out_fname : str File name of the compressed file include_list : list, optional List of files to include. If None, include all files in the folder, by default None """ import zipfile # TODO: Move to the beggining of the file # TODO: Do we need makedirs? # Create the zip file zipf = zipfile.ZipFile(out_fname, "w", zipfile.ZIP_DEFLATED) # ziph is zipfile handle for root, dirs, files in os.walk(src_dirname): for file in files: # Descard files if needed if include_list is not None and file not in include_list: continue abs_path = os.path.join(root, file) rel_path = fname_parent(abs_path) # TODO: fname_parent not defined print(rel_path) zipf.write(abs_path, rel_path) zipf.close() def zip_score_list(exp_list, savedir_base, out_fname, include_list=None): """Compress a list of experiments in zip. Parameters ---------- exp_list : list List of experiments to zip savedir_base : str Directory where the experiments from the list are saved out_fname : str File name for the zip file include_list : list, optional List of files to include. If None, include all files in the folder, by default None """ for exp_dict in exp_list: # TODO: This will zip only the last experiments, zipdir will overwritwe the previous file # Get the experiment id exp_id = hash_dict(exp_dict) # Zip folder zipdir(os.path.join(savedir_base, exp_id), out_fname, include_list=include_list) def time_to_montreal(fname=None, timezone="US/Eastern"): """Get time in Montreal zone. Returns ------- str Current date at the selected timezone in string format """ # Get time os.environ["TZ"] = timezone try: time.tzset() except: pass if fname: tstamp = os.path.getctime(fname) else: tstamp = time.time() time_str = datetime.fromtimestamp(tstamp).strftime("%I:%M %p (%b %d)") return time_str def time2mins(time_taken): """Convert time into minutes. Parameters ---------- time_taken : float Time in seconds Returns ------- float Minutes """ return time_taken / 60.0 def n2t(x, dtype="float"): # TODO: dtype is not used!! """Array or Numpy array to Pytorch tensor. Parameters ---------- x : array or Numpy array Data to transform dtype : [type] [description] Returns ------- Pytorch tensor x converted to pytorch tensor format """ if isinstance(x, (int, np.int64, float)): x = np.array([x]) if isinstance(x, np.ndarray): x = torch.from_numpy(x) return x def t2n(x): """Pytorch tensor to Numpy array. Parameters ---------- x : Pytorch tensor A Pytorch tensor to transform Returns ------- Numpy array x transformed to numpy array """ try: x = x.detach().cpu().numpy() except Exception: x = x return x def l2f(X): """Move the channels from the last dimension to the first dimension. Parameters ---------- X : Numpy array Tensor with the channel dimension at the last dimension Returns ------- Numpy array X transformed with the channel dimension at the first dimension """ if X.ndim == 3 and (X.shape[0] == 3 or X.shape[0] == 1): return X if X.ndim == 4 and (X.shape[1] == 3 or X.shape[1] == 1): return X if X.ndim == 4 and (X.shape[1] < X.shape[3]): return X # Move the channel dimension from the last position to the first one if X.ndim == 3: return np.transpose(X, (2, 0, 1)) if X.ndim == 4: return np.transpose(X, (0, 3, 1, 2)) return X def f2l(X): """Move the channels from the first dimension to the last dimension. ` Parameters ---------- X : Numpy array Tensor with the channel dimension at the first dimension Returns ------- Numpy array X transformed with the channel dimension at the last dimension """ if X.ndim == 3 and (X.shape[2] == 3 or X.shape[2] == 1): return X if X.ndim == 4 and (X.shape[3] == 3 or X.shape[3] == 1): return X # Move the channel dimension from the first position to the last one if X.ndim == 3: return np.transpose(X, (1, 2, 0)) if X.ndim == 4: return np.transpose(X, (0, 2, 3, 1)) return X def n2p(image): # TODO: Create p2n function and use it in get_image() """Numpy image to PIL image. Parameters ---------- image : Numpy array Input image in numpy format Returns ------- PIL image Input image converted into PIL format """ image = f2l(image.squeeze()) if image.max() <= 1: image = image * 255 return Image.fromarray(image.astype("uint8")) def _denorm(image, mu, var, bgr2rgb=False): """Denormalize an image. Parameters ---------- image : [type] Image to denormalize mu : [type] Mean used to normalize the image var : [type] Variance used to normalize the image bgr2rgb : bool, optional Whether to also convert from bgr 2 rgb, by default False Returns ------- [type] Denormalized image """ if image.ndim == 3: result = image * var[:, None, None] + mu[:, None, None] # TODO: Is it variance or std? if bgr2rgb: result = result[::-1] else: result = image * var[None, :, None, None] + mu[None, :, None, None] if bgr2rgb: result = result[:, ::-1] return result def denormalize(img, mode=0): # TODO: Remove the default value or set to a valid number, complete documentation """Denormalize an image. Parameters ---------- img : [type] Input image to denormalize mode : int or str, optional Predefined denormalizations, by default 0 If 1 or 'rgb'... If 2 or 'brg'..., If 3 or 'basic'... Else do nothing Returns ------- [type] Denormalized image """ # _img = t2n(img) # _img = _img.copy() image = t2n(img).copy().astype("float") if mode in [1, "rgb"]: mu = np.array([0.485, 0.456, 0.406]) var = np.array([0.229, 0.224, 0.225]) image = _denorm(image, mu, var) elif mode in [2, "bgr"]: mu = np.array([102.9801, 115.9465, 122.7717]) var = np.array([1, 1, 1]) image = _denorm(image, mu, var, bgr2rgb=True).clip(0, 255).round() elif mode in [3, "basic"]: mu = np.array([0.5, 0.5, 0.5]) var = np.array([0.5, 0.5, 0.5]) image = _denorm(image, mu, var) # TODO: Add a case for 0 or None and else raise an error exception. return image # def get_image(imgs, mask=None, label=False, enlarge=0, gray=False, denorm=0, # bbox_yxyx=None, annList=None, pretty=False, pointList=None, # **options): # TODO: Issam, can you document this? # """[summary] # Parameters # ---------- # imgs : [type] # [description] # mask : [type], optional # [description], by default None # label : bool, optional # [description], by default False # enlarge : int, optional # [description], by default 0 # gray : bool, optional # [description], by default False # denorm : int, optional # [description], by default 0 # bbox_yxyx : [type], optional # [description], by default None # annList : [type], optional # [description], by default None # pretty : bool, optional # [description], by default False # pointList : [type], optional # [description], by default None # Returns # ------- # [type] # [description] # """ # # TODO: Comment these transformations and make sure they are correct. Difficult to follow. # imgs = denormalize(imgs, mode=denorm) # if isinstance(imgs, Image.Image): # imgs = np.array(imgs) # if isinstance(mask, Image.Image): # mask = np.array(mask) # imgs = t2n(imgs).copy() # imgs = l2f(imgs) # if pointList is not None and len(pointList): # h, w = pointList[0]["h"], pointList[0]["w"] # mask_points = np.zeros((h, w)) # for p in pointList: # y, x = p["y"], p["x"] # mask_points[int(h*y), int(w*x)] = 1 # imgs = maskOnImage(imgs, mask_points, enlarge=1) # if pretty or annList is not None: # imgs = pretty_vis(imgs, annList, **options) # imgs = l2f(imgs) # if mask is not None and mask.sum() != 0: # imgs = maskOnImage(imgs, mask, enlarge) # if bbox_yxyx is not None: # _, _, h, w = imgs.shape # mask = bbox_yxyx_2_mask(bbox_yxyx, h, w) # imgs = maskOnImage(imgs, mask, enlarge=1) # # LABEL # elif (not gray) and (label or imgs.ndim == 2 or # (imgs.ndim == 3 and imgs.shape[0] != 3) or # (imgs.ndim == 4 and imgs.shape[1] != 3)): # imgs = label2Image(imgs) # if enlarge: # imgs = zoom(imgs, 11) # # Make sure it is 4-dimensional # if imgs.ndim == 3: # imgs = imgs[np.newaxis] # return imgs def show_image(fname): # TODO: Why the input is a filename instead of an image? """Load and image from hard disk and plot it. Parameters ---------- fname : str Name of an image to load and show """ ncols = 1 # TODO: Magic numbers nrows = 1 height = 12 width = 12 fig, axs = plt.subplots(nrows=nrows, ncols=ncols, figsize=(ncols * width, nrows * height)) if not hasattr(axs, "size"): # TODO: What is this? axs = [[axs]] for i in range(ncols): img = plt.imread(fname) axs[0][i].imshow(img) axs[0][i].set_axis_off() axs[0][i].set_title("%s" % (fname)) plt.axis("off") plt.tight_layout() plt.show() def shrink2roi(img, roi): """[summary] Parameters ---------- img : [type] [description] roi : [type] [description] Returns ------- [type] [description] """ ind = np.where(roi != 0) y_min = min(ind[0]) y_max = max(ind[0]) x_min = min(ind[1]) x_max = max(ind[1]) return img[y_min:y_max, x_min:x_max] @contextlib.contextmanager def random_seed(seed): """[summary] Parameters ---------- seed : [type] [description] """ state = np.random.get_state() np.random.seed(seed) try: yield finally: np.random.set_state(state) def is_subset(d1, d2, strict=False): """[summary] Parameters ---------- d1 : [type] [description] d2 : [type] [description] Returns ------- [type] [description] """ flag = True for k in d1: v1, v2 = d1.get(k), d2.get(k) # if both are values if not isinstance(v2, dict) and not isinstance(v1, dict): if v1 != v2: flag = False # if both are dicts elif isinstance(v2, dict) and isinstance(v1, dict): flag = is_subset(v1, v2) # if d1 is dict and not d2 elif isinstance(v1, dict) and not isinstance(v2, dict): flag = False # if d1 is not and d2 is dict elif not isinstance(v1, dict) and isinstance(v2, dict): flag = False if flag is False: break return flag def as_double_list(v): """[summary] Parameters ---------- v : [type] [description] Returns ------- [type] [description] """ if not isinstance(v, list) and not isinstance(v, np.ndarray): v = [v] if not isinstance(v[0], list) and not isinstance(v[0], np.ndarray): v = [v] return v def ignore_duplicates(list_of_dicts): # ensure no duplicates in exp_list dict_list = [] hash_list = set() for data_dict in list_of_dicts: dict_id = hash_dict(data_dict) if dict_id in hash_list: continue else: hash_list.add(dict_id) dict_list += [data_dict] return dict_list def filter_duplicates(list_of_dicts): # ensure no duplicates in exp_list tmp_list = [] hash_list = set() for data_dict in list_of_dicts: dict_id = hash_dict(data_dict) if dict_id in hash_list: continue else: hash_list.add(dict_id) tmp_list += [data_dict] return tmp_list def check_duplicates(list_of_dicts): # ensure no duplicates in exp_list hash_list = set() for data_dict in list_of_dicts: dict_id = hash_dict(data_dict) if dict_id in hash_list: raise ValueError("duplicated dictionary detected:\n%s" % pprint.pformat(data_dict)) else: hash_list.add(dict_id) def load_py(fname): """[summary] Parameters ---------- fname : [type] [description] Returns ------- [type] [description] """ import sys from importlib import reload from importlib import import_module if not os.path.exists(fname): raise ValueError("%s not found..." % fname) sys.path.append(os.path.dirname(fname)) name = os.path.split(fname)[-1].replace(".py", "") module = import_module(name) reload(module) sys.path.pop() return module def get_exp_list_from_ids(exp_id_list, savedir_base): exp_list = [] for exp_id in exp_id_list: exp_list += [load_json(os.path.join(savedir_base, exp_id, "exp_dict.json"))] return exp_list def flatten_dict(key_name, v_dict): if not isinstance(v_dict, dict): return {key_name: v_dict} leaf_dict = {} for k in v_dict: if key_name != "": k_new = key_name + "." + k else: k_new = k leaf_dict.update(flatten_dict(key_name=k_new, v_dict=v_dict[k])) return leaf_dict def get_diff_hparam(exp_list): df = pd.DataFrame([flatten_column(e) for e in exp_list]) return get_diff_columns(df, min_threshold=2, max_threshold="auto") def get_diff_columns(df, min_threshold=2, max_threshold="auto"): df.reset_index() if max_threshold == "auto": max_threshold = df.shape[0] if max_threshold < 0: max_threshold = df.shape[0] + max_threshold column_count = [] for column in df.columns: _set = set([str(v) for v in df[column].values]) column_count.append(len(_set)) indices = np.arange(len(df.columns)) column_count = np.array(column_count) indices = indices[(column_count >= min_threshold) & (column_count <= max_threshold)] diff_columns = [df.columns[i] for i in indices] return diff_columns def collate_fn(batch, mode="list"): if mode == "list": batch_dict = {} for k in batch[0]: batch_dict[k] = [] for i in range(len(batch)): batch_dict[k] += [batch[i][k]] return batch_dict elif mode == "default": return torch.utils.data.dataloader.default_collate(batch) def timeit(func, n_times=10, **args): for i in range(n_times): if i == 1: s = time.time() func(**args) print("time:", (time.time() - s) / (n_times - 1)) # Create Helper def make_binary_linear(n, d, margin, separable=True, seed=42): np.random.seed(seed) labels = [-1, 1] w = np.random.randn(d) w /= np.linalg.norm(w) p = np.random.randn(d - 1) l = (-p @ w[: d - 1]) / w[-1] p = np.append(p, [l]) v0 = p - margin * w v1 = p + margin * w yv = np.copy(labels) # Start generating points with rejection sampling X = [] y = [] for i in range(n - 2): s = 1 label = np.random.choice(labels) # Generate a random point with mean at the center xi = np.random.randn(d) xi = (xi / np.linalg.norm(xi)) * s dist = xi @ w while dist * label <= margin: u = v0 - v1 if label == -1 else v1 - v0 u /= np.linalg.norm(u) xi = xi + u xi = (xi / np.linalg.norm(xi)) * s dist = xi @ w X.append(xi) y.append(label) X = np.array(X).astype(float) y = np.array(y) # shuffle ind = np.random.permutation(n - 2) X = X[ind] y = y[ind] # Put the support vectors at the beginning X = np.r_[np.array([v0, v1]), X] y = np.r_[np.array(yv), y] if not separable: flip_ind = np.random.choice(n, int(n * 0.01)) y[flip_ind] = -y[flip_ind] y[y == -1] = 0 X = np.c_[np.ones(n), X] return X, y def get_split_torch_dataset(X, y, split): from sklearn.model_selection import train_test_split splits = train_test_split(X, y, test_size=0.2, shuffle=False, random_state=42) X_train, X_test, Y_train, Y_test = splits X_train, X_test = torch.FloatTensor(X_train), torch.FloatTensor(X_test) Y_train, Y_test = torch.LongTensor(Y_train), torch.LongTensor(Y_test) if split == "train": dataset = torch.utils.data.TensorDataset(X_train, Y_train) elif split == "val": dataset = torch.utils.data.TensorDataset(X_test, Y_test) dataset.n_input = X.shape[1] return dataset
python_instance.py
#!/usr/bin/env python # # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # # -*- encoding: utf-8 -*- """python_instance.py: Python Instance for running python functions """ import base64 import os import signal import time try: import Queue as queue except: import queue import threading import sys import re import pulsar import contextimpl import Function_pb2 import log import util import InstanceCommunication_pb2 from functools import partial from collections import namedtuple from function_stats import Stats Log = log.Log # Equivalent of the InstanceConfig in Java InstanceConfig = namedtuple('InstanceConfig', 'instance_id function_id function_version function_details max_buffered_tuples') # This is the message that the consumers put on the queue for the function thread to process InternalMessage = namedtuple('InternalMessage', 'message topic serde consumer') InternalQuitMessage = namedtuple('InternalQuitMessage', 'quit') DEFAULT_SERIALIZER = "serde.IdentitySerDe" PY3 = sys.version_info[0] >= 3 def base64ify(bytes_or_str): if PY3 and isinstance(bytes_or_str, str): input_bytes = bytes_or_str.encode('utf8') else: input_bytes = bytes_or_str output_bytes = base64.urlsafe_b64encode(input_bytes) if PY3: return output_bytes.decode('ascii') else: return output_bytes class PythonInstance(object): def __init__(self, instance_id, function_id, function_version, function_details, max_buffered_tuples, expected_healthcheck_interval, user_code, pulsar_client, secrets_provider, cluster_name): self.instance_config = InstanceConfig(instance_id, function_id, function_version, function_details, max_buffered_tuples) self.user_code = user_code self.queue = queue.Queue(max_buffered_tuples) self.log_topic_handler = None if function_details.logTopic is not None and function_details.logTopic != "": self.log_topic_handler = log.LogTopicHandler(str(function_details.logTopic), pulsar_client) self.pulsar_client = pulsar_client self.input_serdes = {} self.consumers = {} self.output_serde = None self.function_class = None self.function_purefunction = None self.producer = None self.execution_thread = None self.atmost_once = self.instance_config.function_details.processingGuarantees == Function_pb2.ProcessingGuarantees.Value('ATMOST_ONCE') self.atleast_once = self.instance_config.function_details.processingGuarantees == Function_pb2.ProcessingGuarantees.Value('ATLEAST_ONCE') self.auto_ack = self.instance_config.function_details.autoAck self.contextimpl = None self.last_health_check_ts = time.time() self.timeout_ms = function_details.source.timeoutMs if function_details.source.timeoutMs > 0 else None self.expected_healthcheck_interval = expected_healthcheck_interval self.secrets_provider = secrets_provider self.metrics_labels = [function_details.tenant, "%s/%s" % (function_details.tenant, function_details.namespace), function_details.name, instance_id, cluster_name, "%s/%s/%s" % (function_details.tenant, function_details.namespace, function_details.name)] self.stats = Stats(self.metrics_labels) def health_check(self): self.last_health_check_ts = time.time() health_check_result = InstanceCommunication_pb2.HealthCheckResult() health_check_result.success = True return health_check_result def process_spawner_health_check_timer(self): if time.time() - self.last_health_check_ts > self.expected_healthcheck_interval * 3: Log.critical("Haven't received health check from spawner in a while. Stopping instance...") os.kill(os.getpid(), signal.SIGKILL) sys.exit(1) def run(self): # Setup consumers and input deserializers mode = pulsar._pulsar.ConsumerType.Shared if self.instance_config.function_details.source.subscriptionType == Function_pb2.SubscriptionType.Value("FAILOVER"): mode = pulsar._pulsar.ConsumerType.Failover subscription_name = str(self.instance_config.function_details.tenant) + "/" + \ str(self.instance_config.function_details.namespace) + "/" + \ str(self.instance_config.function_details.name) properties = util.get_properties(util.getFullyQualifiedFunctionName( self.instance_config.function_details.tenant, self.instance_config.function_details.namespace, self.instance_config.function_details.name), self.instance_config.instance_id) for topic, serde in self.instance_config.function_details.source.topicsToSerDeClassName.items(): if not serde: serde_kclass = util.import_class(os.path.dirname(self.user_code), DEFAULT_SERIALIZER) else: serde_kclass = util.import_class(os.path.dirname(self.user_code), serde) self.input_serdes[topic] = serde_kclass() Log.debug("Setting up consumer for topic %s with subname %s" % (topic, subscription_name)) self.consumers[topic] = self.pulsar_client.subscribe( str(topic), subscription_name, consumer_type=mode, message_listener=partial(self.message_listener, self.input_serdes[topic]), unacked_messages_timeout_ms=int(self.timeout_ms) if self.timeout_ms else None, properties=properties ) for topic, consumer_conf in self.instance_config.function_details.source.inputSpecs.items(): if not consumer_conf.serdeClassName: serde_kclass = util.import_class(os.path.dirname(self.user_code), DEFAULT_SERIALIZER) else: serde_kclass = util.import_class(os.path.dirname(self.user_code), consumer_conf.serdeClassName) self.input_serdes[topic] = serde_kclass() Log.debug("Setting up consumer for topic %s with subname %s" % (topic, subscription_name)) if consumer_conf.isRegexPattern: self.consumers[topic] = self.pulsar_client.subscribe( re.compile(str(topic)), subscription_name, consumer_type=mode, message_listener=partial(self.message_listener, self.input_serdes[topic]), unacked_messages_timeout_ms=int(self.timeout_ms) if self.timeout_ms else None, properties=properties ) else: self.consumers[topic] = self.pulsar_client.subscribe( str(topic), subscription_name, consumer_type=mode, message_listener=partial(self.message_listener, self.input_serdes[topic]), unacked_messages_timeout_ms=int(self.timeout_ms) if self.timeout_ms else None, properties=properties ) function_kclass = util.import_class(os.path.dirname(self.user_code), self.instance_config.function_details.className) if function_kclass is None: Log.critical("Could not import User Function Module %s" % self.instance_config.function_details.className) raise NameError("Could not import User Function Module %s" % self.instance_config.function_details.className) try: self.function_class = function_kclass() except: self.function_purefunction = function_kclass self.contextimpl = contextimpl.ContextImpl(self.instance_config, Log, self.pulsar_client, self.user_code, self.consumers, self.secrets_provider, self.metrics_labels) # Now launch a thread that does execution self.execution_thread = threading.Thread(target=self.actual_execution) self.execution_thread.start() # start proccess spawner health check timer self.last_health_check_ts = time.time() if self.expected_healthcheck_interval > 0: timer = util.FixedTimer(self.expected_healthcheck_interval, self.process_spawner_health_check_timer, name="health-check-timer") timer.start() def actual_execution(self): Log.debug("Started Thread for executing the function") while True: try: msg = self.queue.get(True) if isinstance(msg, InternalQuitMessage): break Log.debug("Got a message from topic %s" % msg.topic) # deserialize message input_object = msg.serde.deserialize(msg.message.data()) # set current message in context self.contextimpl.set_current_message_context(msg.message, msg.topic) output_object = None self.saved_log_handler = None if self.log_topic_handler is not None: self.saved_log_handler = log.remove_all_handlers() log.add_handler(self.log_topic_handler) successfully_executed = False try: # get user function start time for statistic calculation self.stats.set_last_invocation(time.time()) # start timer for process time self.stats.process_time_start() if self.function_class is not None: output_object = self.function_class.process(input_object, self.contextimpl) else: output_object = self.function_purefunction.process(input_object) successfully_executed = True # stop timer for process time self.stats.process_time_end() except Exception as e: Log.exception("Exception while executing user method") self.stats.incr_total_user_exceptions(e) if self.log_topic_handler is not None: log.remove_all_handlers() log.add_handler(self.saved_log_handler) if successfully_executed: self.process_result(output_object, msg) self.stats.incr_total_processed_successfully() except Exception as e: Log.error("Uncaught exception in Python instance: %s" % e); self.stats.incr_total_sys_exceptions(e) def done_producing(self, consumer, orig_message, result, sent_message): if result == pulsar.Result.Ok and self.auto_ack and self.atleast_once: consumer.acknowledge(orig_message) def process_result(self, output, msg): if output is not None and self.instance_config.function_details.sink.topic != None and \ len(self.instance_config.function_details.sink.topic) > 0: if self.output_serde is None: self.setup_output_serde() if self.producer is None: self.setup_producer() # serialize function output output_bytes = self.output_serde.serialize(output) if output_bytes is not None: props = {"__pfn_input_topic__" : str(msg.topic), "__pfn_input_msg_id__" : base64ify(msg.message.message_id().serialize())} self.producer.send_async(output_bytes, partial(self.done_producing, msg.consumer, msg.message), properties=props) elif self.auto_ack and self.atleast_once: msg.consumer.acknowledge(msg.message) def setup_output_serde(self): if self.instance_config.function_details.sink.serDeClassName != None and \ len(self.instance_config.function_details.sink.serDeClassName) > 0: serde_kclass = util.import_class(os.path.dirname(self.user_code), self.instance_config.function_details.sink.serDeClassName) self.output_serde = serde_kclass() else: global DEFAULT_SERIALIZER serde_kclass = util.import_class(os.path.dirname(self.user_code), DEFAULT_SERIALIZER) self.output_serde = serde_kclass() def setup_producer(self): if self.instance_config.function_details.sink.topic != None and \ len(self.instance_config.function_details.sink.topic) > 0: Log.debug("Setting up producer for topic %s" % self.instance_config.function_details.sink.topic) self.producer = self.pulsar_client.create_producer( str(self.instance_config.function_details.sink.topic), block_if_queue_full=True, batching_enabled=True, batching_max_publish_delay_ms=1, # set send timeout to be infinity to prevent potential deadlock with consumer # that might happen when consumer is blocked due to unacked messages send_timeout_millis=0, max_pending_messages=100000, properties=util.get_properties(util.getFullyQualifiedFunctionName( self.instance_config.function_details.tenant, self.instance_config.function_details.namespace, self.instance_config.function_details.name), self.instance_config.instance_id) ) def message_listener(self, serde, consumer, message): # increment number of received records from source self.stats.incr_total_received() item = InternalMessage(message, message.topic_name(), serde, consumer) self.queue.put(item, True) if self.atmost_once and self.auto_ack: consumer.acknowledge(message) def get_and_reset_metrics(self): # First get any user metrics metrics = self.get_metrics() self.reset_metrics() return metrics def reset_metrics(self): self.stats.reset() self.contextimpl.reset_metrics() def get_metrics(self): total_received = self.stats.get_total_received() total_processed_successfully = self.stats.get_total_processed_successfully() total_user_exceptions = self.stats.get_total_user_exceptions() total_sys_exceptions = self.stats.get_total_sys_exceptions() avg_process_latency_ms = self.stats.get_avg_process_latency() last_invocation = self.stats.get_last_invocation() total_received_1min = self.stats.get_total_received_1min() total_processed_successfully_1min = self.stats.get_total_processed_successfully_1min() total_user_exceptions_1min = self.stats.get_total_user_exceptions_1min() total_sys_exceptions_1min = self.stats.get_total_sys_exceptions_1min() avg_process_latency_ms_1min = self.stats.get_avg_process_latency_1min() metrics_data = InstanceCommunication_pb2.MetricsData() # total metrics metrics_data.receivedTotal = int(total_received) if sys.version_info.major >= 3 else long(total_received) metrics_data.processedSuccessfullyTotal = int(total_processed_successfully) if sys.version_info.major >= 3 else long(total_processed_successfully) metrics_data.systemExceptionsTotal = int(total_sys_exceptions) if sys.version_info.major >= 3 else long(total_sys_exceptions) metrics_data.userExceptionsTotal = int(total_user_exceptions) if sys.version_info.major >= 3 else long(total_user_exceptions) metrics_data.avgProcessLatency = avg_process_latency_ms metrics_data.lastInvocation = int(last_invocation) if sys.version_info.major >= 3 else long(last_invocation) # 1min metrics metrics_data.receivedTotal_1min = int(total_received_1min) if sys.version_info.major >= 3 else long(total_received_1min) metrics_data.processedSuccessfullyTotal_1min = int( total_processed_successfully_1min) if sys.version_info.major >= 3 else long(total_processed_successfully_1min) metrics_data.systemExceptionsTotal_1min = int(total_sys_exceptions_1min) if sys.version_info.major >= 3 else long( total_sys_exceptions_1min) metrics_data.userExceptionsTotal_1min = int(total_user_exceptions_1min) if sys.version_info.major >= 3 else long( total_user_exceptions_1min) metrics_data.avgProcessLatency_1min = avg_process_latency_ms_1min # get any user metrics user_metrics = self.contextimpl.get_metrics() for metric_name, value in user_metrics.items(): metrics_data.userMetrics[metric_name] = value return metrics_data def add_system_metrics(self, metric_name, value, metrics): metrics.metrics[metric_name].count = value metrics.metrics[metric_name].sum = value metrics.metrics[metric_name].min = 0 metrics.metrics[metric_name].max = value def get_function_status(self): status = InstanceCommunication_pb2.FunctionStatus() status.running = True total_received = self.stats.get_total_received() total_processed_successfully = self.stats.get_total_processed_successfully() total_user_exceptions = self.stats.get_total_user_exceptions() total_sys_exceptions = self.stats.get_total_sys_exceptions() avg_process_latency_ms = self.stats.get_avg_process_latency() last_invocation = self.stats.get_last_invocation() status.numReceived = int(total_received) if sys.version_info.major >= 3 else long(total_received) status.numSuccessfullyProcessed = int(total_processed_successfully) if sys.version_info.major >= 3 else long(total_processed_successfully) status.numUserExceptions = int(total_user_exceptions) if sys.version_info.major >= 3 else long(total_user_exceptions) status.instanceId = self.instance_config.instance_id for ex, tm in self.stats.latest_user_exception: to_add = status.latestUserExceptions.add() to_add.exceptionString = ex to_add.msSinceEpoch = tm status.numSystemExceptions = int(total_sys_exceptions) if sys.version_info.major >= 3 else long(total_sys_exceptions) for ex, tm in self.stats.latest_sys_exception: to_add = status.latestSystemExceptions.add() to_add.exceptionString = ex to_add.msSinceEpoch = tm status.averageLatency = avg_process_latency_ms status.lastInvocationTime = int(last_invocation) if sys.version_info.major >= 3 else long(last_invocation) return status def join(self): self.queue.put(InternalQuitMessage(True), True) self.execution_thread.join() self.close() def close(self): Log.info("Closing python instance...") if self.producer: self.producer.close() if self.consumers: for consumer in self.consumers.values(): try: consumer.close() except: pass if self.pulsar_client: self.pulsar_client.close()
test_util.py
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== # pylint: disable=invalid-name """Test utils for tensorflow.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections from collections import OrderedDict import contextlib import functools import gc import itertools import math import os import random import re import tempfile import threading import unittest from absl.testing import parameterized import numpy as np import six _portpicker_import_error = None try: import portpicker # pylint: disable=g-import-not-at-top except ImportError as _error: _portpicker_import_error = _error portpicker = None # pylint: disable=g-import-not-at-top from google.protobuf import descriptor_pool from google.protobuf import text_format from tensorflow.core.framework import graph_pb2 from tensorflow.core.protobuf import rewriter_config_pb2 from tensorflow.python import pywrap_tensorflow from tensorflow.python import tf2 from tensorflow.python.client import device_lib from tensorflow.python.client import session from tensorflow.python.eager import context from tensorflow.python.eager import def_function from tensorflow.python.eager import tape from tensorflow.python.framework import device as pydev from tensorflow.python.framework import dtypes from tensorflow.python.framework import errors from tensorflow.python.framework import errors_impl from tensorflow.python.framework import importer from tensorflow.python.framework import ops from tensorflow.python.framework import random_seed from tensorflow.python.framework import sparse_tensor from tensorflow.python.framework import tensor_shape from tensorflow.python.framework import versions from tensorflow.python.ops import array_ops from tensorflow.python.ops import control_flow_util from tensorflow.python.ops.ragged import ragged_tensor from tensorflow.python.ops.ragged import ragged_tensor_value from tensorflow.python.ops import script_ops from tensorflow.python.ops import variables from tensorflow.python.platform import googletest from tensorflow.python.platform import tf_logging as logging from tensorflow.python.training import server_lib from tensorflow.python.util import compat from tensorflow.python.util import deprecation from tensorflow.python.util import nest from tensorflow.python.util import tf_decorator from tensorflow.python.util import tf_inspect from tensorflow.python.util.protobuf import compare from tensorflow.python.util.tf_export import tf_export # If the below import is made available through the BUILD rule, then this # function is overridden and will instead return True and cause Tensorflow # graphs to be compiled with XLA. def is_xla_enabled(): return False try: from tensorflow.python.framework.is_xla_test_true import is_xla_enabled # pylint: disable=g-import-not-at-top except: pass @tf_export("test.gpu_device_name") def gpu_device_name(): """Returns the name of a GPU device if available or the empty string.""" for x in device_lib.list_local_devices(): if x.device_type == "GPU" or x.device_type == "SYCL": return compat.as_str(x.name) return "" def assert_ops_in_graph(expected_ops, graph): """Assert all expected operations are found. Args: expected_ops: `dict<string, string>` of op name to op type. graph: Graph to check. Returns: `dict<string, node>` of node name to node. Raises: ValueError: If the expected ops are not present in the graph. """ actual_ops = {} gd = graph.as_graph_def() for node in gd.node: if node.name in expected_ops: if expected_ops[node.name] != node.op: raise ValueError("Expected op for node %s is different. %s vs %s" % (node.name, expected_ops[node.name], node.op)) actual_ops[node.name] = node if set(expected_ops.keys()) != set(actual_ops.keys()): raise ValueError("Not all expected ops are present. Expected %s, found %s" % (expected_ops.keys(), actual_ops.keys())) return actual_ops @tf_export("test.assert_equal_graph_def", v1=[]) def assert_equal_graph_def_v2(expected, actual): """Asserts that two `GraphDef`s are (mostly) the same. Compares two `GraphDef` protos for equality, ignoring versions and ordering of nodes, attrs, and control inputs. Node names are used to match up nodes between the graphs, so the naming of nodes must be consistent. This function ignores randomized attribute values that may appear in V2 checkpoints. Args: expected: The `GraphDef` we expected. actual: The `GraphDef` we have. Raises: AssertionError: If the `GraphDef`s do not match. TypeError: If either argument is not a `GraphDef`. """ assert_equal_graph_def(actual, expected, checkpoint_v2=True, hash_table_shared_name=True) @tf_export(v1=["test.assert_equal_graph_def"]) def assert_equal_graph_def_v1(actual, expected, checkpoint_v2=False, hash_table_shared_name=False): """Asserts that two `GraphDef`s are (mostly) the same. Compares two `GraphDef` protos for equality, ignoring versions and ordering of nodes, attrs, and control inputs. Node names are used to match up nodes between the graphs, so the naming of nodes must be consistent. Args: actual: The `GraphDef` we have. expected: The `GraphDef` we expected. checkpoint_v2: boolean determining whether to ignore randomized attribute values that appear in V2 checkpoints. hash_table_shared_name: boolean determining whether to ignore randomized shared_names that appear in HashTableV2 op defs. Raises: AssertionError: If the `GraphDef`s do not match. TypeError: If either argument is not a `GraphDef`. """ assert_equal_graph_def(actual, expected, checkpoint_v2, hash_table_shared_name) def assert_equal_graph_def(actual, expected, checkpoint_v2=False, hash_table_shared_name=False): if not isinstance(actual, graph_pb2.GraphDef): raise TypeError("Expected tf.GraphDef for actual, got %s" % type(actual).__name__) if not isinstance(expected, graph_pb2.GraphDef): raise TypeError("Expected tf.GraphDef for expected, got %s" % type(expected).__name__) if checkpoint_v2: _strip_checkpoint_v2_randomized(actual) _strip_checkpoint_v2_randomized(expected) if hash_table_shared_name: _strip_hash_table_shared_name(actual) _strip_hash_table_shared_name(expected) diff = pywrap_tensorflow.EqualGraphDefWrapper(actual.SerializeToString(), expected.SerializeToString()) if diff: raise AssertionError(compat.as_str(diff)) def assert_meta_graph_protos_equal(tester, a, b): """Compares MetaGraphDefs `a` and `b` in unit test class `tester`.""" # Carefully check the collection_defs tester.assertEqual(set(a.collection_def), set(b.collection_def)) collection_keys = a.collection_def.keys() for k in collection_keys: a_value = a.collection_def[k] b_value = b.collection_def[k] proto_type = ops.get_collection_proto_type(k) if proto_type: a_proto = proto_type() b_proto = proto_type() # Number of entries in the collections is the same tester.assertEqual( len(a_value.bytes_list.value), len(b_value.bytes_list.value)) for (a_value_item, b_value_item) in zip(a_value.bytes_list.value, b_value.bytes_list.value): a_proto.ParseFromString(a_value_item) b_proto.ParseFromString(b_value_item) tester.assertProtoEquals(a_proto, b_proto) else: tester.assertEquals(a_value, b_value) # Compared the fields directly, remove their raw values from the # proto comparison below. a.ClearField("collection_def") b.ClearField("collection_def") # Check the graph_defs. assert_equal_graph_def(a.graph_def, b.graph_def, checkpoint_v2=True) # Check graph_def versions (ignored by assert_equal_graph_def). tester.assertProtoEquals(a.graph_def.versions, b.graph_def.versions) # Compared the fields directly, remove their raw values from the # proto comparison below. a.ClearField("graph_def") b.ClearField("graph_def") tester.assertProtoEquals(a, b) # Matches attributes named via _SHARDED_SUFFIX in # tensorflow/python/training/saver.py _SHARDED_SAVE_OP_PATTERN = "_temp_[0-9a-z]{32}/part" def _strip_checkpoint_v2_randomized(graph_def): for node in graph_def.node: delete_keys = [] for attr_key in node.attr: attr_tensor_value = node.attr[attr_key].tensor if attr_tensor_value and len(attr_tensor_value.string_val) == 1: attr_tensor_string_value = attr_tensor_value.string_val[0] if (attr_tensor_string_value and re.match(_SHARDED_SAVE_OP_PATTERN, str(attr_tensor_string_value))): delete_keys.append(attr_key) for attr_key in delete_keys: del node.attr[attr_key] _TABLE_SHARED_NAME_PATTERN = r"hash_table_[0-9a-z\-]+" def _strip_hash_table_shared_name(graph_def): for node in graph_def.node: delete_keys = [] if node.op == "HashTableV2" and "shared_name" in node.attr: if re.match(_TABLE_SHARED_NAME_PATTERN, str(node.attr["shared_name"].s)): delete_keys.append("shared_name") for attr_key in delete_keys: del node.attr[attr_key] def IsGoogleCudaEnabled(): return pywrap_tensorflow.IsGoogleCudaEnabled() def IsBuiltWithROCm(): return pywrap_tensorflow.IsBuiltWithROCm() def GpuSupportsHalfMatMulAndConv(): return pywrap_tensorflow.GpuSupportsHalfMatMulAndConv() def IsMklEnabled(): return pywrap_tensorflow.IsMklEnabled() def InstallStackTraceHandler(): pywrap_tensorflow.InstallStacktraceHandler() def NHWCToNCHW(input_tensor): """Converts the input from the NHWC format to NCHW. Args: input_tensor: a 4- or 5-D tensor, or an array representing shape Returns: converted tensor or shape array """ # tensor dim -> new axis order new_axes = {4: [0, 3, 1, 2], 5: [0, 4, 1, 2, 3]} if isinstance(input_tensor, ops.Tensor): ndims = input_tensor.shape.ndims return array_ops.transpose(input_tensor, new_axes[ndims]) else: ndims = len(input_tensor) return [input_tensor[a] for a in new_axes[ndims]] def NHWCToNCHW_VECT_C(input_shape_or_tensor): """Transforms the input from the NHWC layout to NCHW_VECT_C layout. Note: Does not include quantization or type conversion steps, which should be applied afterwards. Args: input_shape_or_tensor: a 4- or 5-D tensor, or an array representing shape Returns: tensor or shape array transformed into NCHW_VECT_C Raises: ValueError: if last dimension of `input_shape_or_tensor` is not evenly divisible by 4. """ permutations = {5: [0, 3, 1, 2, 4], 6: [0, 4, 1, 2, 3, 5]} is_tensor = isinstance(input_shape_or_tensor, ops.Tensor) temp_shape = ( input_shape_or_tensor.shape.as_list() if is_tensor else input_shape_or_tensor) if temp_shape[-1] % 4 != 0: raise ValueError( "Last dimension of input must be evenly divisible by 4 to convert to " "NCHW_VECT_C.") temp_shape[-1] //= 4 temp_shape.append(4) permutation = permutations[len(temp_shape)] if is_tensor: t = array_ops.reshape(input_shape_or_tensor, temp_shape) return array_ops.transpose(t, permutation) else: return [temp_shape[a] for a in permutation] def NCHW_VECT_CToNHWC(input_shape_or_tensor): """Transforms the input from the NCHW_VECT_C layout to NHWC layout. Note: Does not include de-quantization or type conversion steps, which should be applied beforehand. Args: input_shape_or_tensor: a 5- or 6-D tensor, or an array representing shape Returns: tensor or shape array transformed into NHWC Raises: ValueError: if last dimension of `input_shape_or_tensor` is not 4. """ permutations = {5: [0, 2, 3, 1, 4], 6: [0, 2, 3, 4, 1, 5]} is_tensor = isinstance(input_shape_or_tensor, ops.Tensor) input_shape = ( input_shape_or_tensor.shape.as_list() if is_tensor else input_shape_or_tensor) if input_shape[-1] != 4: raise ValueError("Last dimension of NCHW_VECT_C must be 4.") permutation = permutations[len(input_shape)] nhwc_shape = [input_shape[a] for a in permutation[:-1]] nhwc_shape[-1] *= input_shape[-1] if is_tensor: t = array_ops.transpose(input_shape_or_tensor, permutation) return array_ops.reshape(t, nhwc_shape) else: return nhwc_shape def NCHWToNHWC(input_tensor): """Converts the input from the NCHW format to NHWC. Args: input_tensor: a 4- or 5-D tensor, or an array representing shape Returns: converted tensor or shape array """ # tensor dim -> new axis order new_axes = {4: [0, 2, 3, 1], 5: [0, 2, 3, 4, 1]} if isinstance(input_tensor, ops.Tensor): ndims = input_tensor.shape.ndims return array_ops.transpose(input_tensor, new_axes[ndims]) else: ndims = len(input_tensor) return [input_tensor[a] for a in new_axes[ndims]] def skip_if(condition): """Skips the decorated function if condition is or evaluates to True. Args: condition: Either an expression that can be used in "if not condition" statement, or a callable whose result should be a boolean. Returns: The wrapped function """ def real_skip_if(fn): def wrapper(*args, **kwargs): if callable(condition): skip = condition() else: skip = condition if not skip: return fn(*args, **kwargs) return wrapper return real_skip_if def enable_c_shapes(fn): """No-op. TODO(b/74620627): Remove this.""" return fn def with_c_shapes(cls): """No-op. TODO(b/74620627): Remove this.""" return cls def enable_control_flow_v2(fn): """Decorator for enabling CondV2 and WhileV2 on a test. Note this enables using CondV2 and WhileV2 after running the test class's setup/teardown methods. In addition to this, callers must import the while_v2 module in order to set the _while_v2 module in control_flow_ops. Args: fn: the function to be wrapped Returns: The wrapped function """ def wrapper(*args, **kwargs): enable_control_flow_v2_old = control_flow_util.ENABLE_CONTROL_FLOW_V2 control_flow_util.ENABLE_CONTROL_FLOW_V2 = True try: return fn(*args, **kwargs) finally: control_flow_util.ENABLE_CONTROL_FLOW_V2 = enable_control_flow_v2_old return wrapper def with_control_flow_v2(cls): """Adds methods that call original methods with WhileV2 and CondV2 enabled. Note this enables CondV2 and WhileV2 in new methods after running the test class's setup method. In addition to this, callers must import the while_v2 module in order to set the _while_v2 module in control_flow_ops. If a test function has _disable_control_flow_v2 attr set to True (using the @disable_control_flow_v2 decorator), the v2 function is not generated for it. Example: @test_util.with_control_flow_v2 class ControlFlowTest(test.TestCase): def testEnabledForV2(self): ... @test_util.disable_control_flow_v2("b/xyzabc") def testDisabledForV2(self): ... Generated class: class ControlFlowTest(test.TestCase): def testEnabledForV2(self): ... def testEnabledForV2WithControlFlowV2(self): // Enable V2 flags. testEnabledForV2(self) // Restore V2 flags. def testDisabledForV2(self): ... Args: cls: class to decorate Returns: cls with new test methods added """ if control_flow_util.ENABLE_CONTROL_FLOW_V2: return cls for name, value in cls.__dict__.copy().items(): if (callable(value) and name.startswith(unittest.TestLoader.testMethodPrefix) and not getattr(value, "_disable_control_flow_v2", False)): setattr(cls, name + "WithControlFlowV2", enable_control_flow_v2(value)) return cls def disable_control_flow_v2(unused_msg): """Decorator for a function in a with_control_flow_v2 enabled test class. Blocks the function from being run with v2 control flow ops. Args: unused_msg: Reason for disabling. Returns: The wrapped function with _disable_control_flow_v2 attr set to True. """ def wrapper(func): func._disable_control_flow_v2 = True return func return wrapper def assert_no_new_pyobjects_executing_eagerly(f): """Decorator for asserting that no new Python objects persist after a test. Runs the test multiple times executing eagerly, first as a warmup and then to let objects accumulate. The warmup helps ignore caches which do not grow as the test is run repeatedly. Useful for checking that there are no missing Py_DECREFs in the C exercised by a bit of Python. """ def decorator(self, **kwargs): """Warms up, gets an object count, runs the test, checks for new objects.""" with context.eager_mode(): gc.disable() # Run the test 2 times as warmup, in an attempt to fill up caches, which # should not grow as the test is run repeatedly below. # # TODO(b/117156879): Running warmup twice is black magic; we have seen # tests that fail with 1 warmup run, and pass with 2, on various versions # of python2.7.x. for _ in range(2): f(self, **kwargs) gc.collect() previous_count = len(gc.get_objects()) if ops.has_default_graph(): collection_sizes_before = { collection: len(ops.get_collection(collection)) for collection in ops.get_default_graph().collections } for _ in range(3): f(self, **kwargs) # Note that gc.get_objects misses anything that isn't subject to garbage # collection (C types). Collections are a common source of leaks, so we # test for collection sizes explicitly. if ops.has_default_graph(): for collection_key in ops.get_default_graph().collections: collection = ops.get_collection(collection_key) size_before = collection_sizes_before.get(collection_key, 0) if len(collection) > size_before: raise AssertionError( ("Collection %s increased in size from " "%d to %d (current items %s).") % (collection_key, size_before, len(collection), collection)) # Make sure our collection checks don't show up as leaked memory by # removing references to temporary variables. del collection del collection_key del size_before del collection_sizes_before gc.collect() # There should be no new Python objects hanging around. new_count = len(gc.get_objects()) # In some cases (specifacally on MacOS), new_count is somehow # smaller than previous_count. # Using plain assert because not all classes using this decorator # have assertLessEqual assert new_count <= previous_count, ( "new_count(%d) is not less than or equal to previous_count(%d)" % (new_count, previous_count)) gc.enable() return decorator def assert_no_new_tensors(f): """Decorator for asserting that no new Tensors persist after a test. Mainly useful for checking that code using the Python C API has correctly manipulated reference counts. Clears the caches that it knows about, runs the garbage collector, then checks that there are no Tensor or Tensor-like objects still around. This includes Tensors to which something still has a reference (e.g. from missing Py_DECREFs) and uncollectable cycles (i.e. Python reference cycles where one of the objects has __del__ defined). Args: f: The test case to run. Returns: The decorated test case. """ def decorator(self, **kwargs): """Finds existing Tensors, runs the test, checks for new Tensors.""" def _is_tensorflow_object(obj): try: return isinstance(obj, (ops.Tensor, variables.Variable, tensor_shape.Dimension, tensor_shape.TensorShape)) except ReferenceError: # If the object no longer exists, we don't care about it. return False tensors_before = set( id(obj) for obj in gc.get_objects() if _is_tensorflow_object(obj)) outside_executed_eagerly = context.executing_eagerly() # Run the test in a new graph so that collections get cleared when it's # done, but inherit the graph key so optimizers behave. outside_graph_key = ops.get_default_graph()._graph_key with ops.Graph().as_default(): ops.get_default_graph()._graph_key = outside_graph_key if outside_executed_eagerly: with context.eager_mode(): result = f(self, **kwargs) else: result = f(self, **kwargs) # Make an effort to clear caches, which would otherwise look like leaked # Tensors. context.context()._clear_caches() # pylint: disable=protected-access gc.collect() tensors_after = [ obj for obj in gc.get_objects() if _is_tensorflow_object(obj) and id(obj) not in tensors_before ] if tensors_after: raise AssertionError(("%d Tensors not deallocated after test: %s" % ( len(tensors_after), str(tensors_after), ))) return result return decorator def _find_reference_cycle(objects, idx): def get_ignore_reason(obj, blacklist): """Tests whether an object should be omitted from the dependency graph.""" if len(blacklist) > 100: return "<depth limit>" if tf_inspect.isframe(obj): if "test_util.py" in tf_inspect.getframeinfo(obj)[0]: return "<test code>" for b in blacklist: if b is obj: return "<test code>" if obj is blacklist: return "<test code>" return None # Note: this function is meant to help with diagnostics. Its output is purely # a human-readable representation, so you may freely modify it to suit your # needs. def describe(obj, blacklist, leaves_only=False): """Returns a custom human-readable summary of obj. Args: obj: the value to describe. blacklist: same as blacklist in get_ignore_reason. leaves_only: boolean flag used when calling describe recursively. Useful for summarizing collections. """ if get_ignore_reason(obj, blacklist): return "{}{}".format(get_ignore_reason(obj, blacklist), type(obj)) if tf_inspect.isframe(obj): return "frame: {}".format(tf_inspect.getframeinfo(obj)) elif tf_inspect.ismodule(obj): return "module: {}".format(obj.__name__) else: if leaves_only: return "{}, {}".format(type(obj), id(obj)) elif isinstance(obj, list): return "list({}): {}".format( id(obj), [describe(e, blacklist, leaves_only=True) for e in obj]) elif isinstance(obj, tuple): return "tuple({}): {}".format( id(obj), [describe(e, blacklist, leaves_only=True) for e in obj]) elif isinstance(obj, dict): return "dict({}): {} keys".format(id(obj), len(obj.keys())) elif tf_inspect.isfunction(obj): return "function({}) {}; globals ID: {}".format( id(obj), obj.__name__, id(obj.__globals__)) else: return "{}, {}".format(type(obj), id(obj)) def build_ref_graph(obj, graph, reprs, blacklist): """Builds a reference graph as <referrer> -> <list of refferents>. Args: obj: The object to start from. The graph will be built by recursively adding its referrers. graph: Dict holding the graph to be built. To avoid creating extra references, the graph holds object IDs rather than actual objects. reprs: Auxiliary structure that maps object IDs to their human-readable description. blacklist: List of objects to ignore. """ referrers = gc.get_referrers(obj) blacklist = blacklist + (referrers,) obj_id = id(obj) for r in referrers: if get_ignore_reason(r, blacklist) is None: r_id = id(r) if r_id not in graph: graph[r_id] = [] if obj_id not in graph[r_id]: graph[r_id].append(obj_id) build_ref_graph(r, graph, reprs, blacklist) reprs[r_id] = describe(r, blacklist) def find_cycle(el, graph, reprs, path): """Finds and prints a single cycle in the dependency graph.""" if el not in graph: return for r in graph[el]: if r in path: logging.error("Reference cycle sample:") for p in path + (r,): logging.error(reprs.get(p, "unknown object " + str(p))) return True else: if find_cycle(r, graph, reprs, path + (r,)): return True return False obj = objects[idx] graph = {} # referrer ID -> object ID reprs = {} # object ID -> description build_ref_graph(obj, graph, reprs, (objects, graph, reprs, get_ignore_reason, describe, build_ref_graph, find_cycle)) for k in graph: if find_cycle(k, graph, reprs, ()): return True return False def assert_no_garbage_created(f): """Test method decorator to assert that no garbage has been created. Note that this decorator sets DEBUG_SAVEALL, which in some Python interpreters cannot be un-set (i.e. will disable garbage collection for any other unit tests in the same file/shard). Args: f: The function to decorate. Returns: The decorated function. """ def decorator(self, **kwargs): """Sets DEBUG_SAVEALL, runs the test, and checks for new garbage.""" # Force-load `distribution_strategy_context` to prevent GC at # test time when using eager. Remove once b/117329403 is resolved. tape.distribution_strategy_context.get_strategy() gc.disable() previous_debug_flags = gc.get_debug() gc.set_debug(gc.DEBUG_SAVEALL) gc.collect() previous_garbage = len(gc.garbage) result = f(self, **kwargs) gc.collect() new_garbage = len(gc.garbage) if new_garbage > previous_garbage: logging.error( "The decorated test created work for Python's garbage collector, " "likely due to a reference cycle. New objects in cycle(s):") for i, obj in enumerate(gc.garbage[previous_garbage:]): try: logging.error("Object %d of %d", i, len(gc.garbage) - previous_garbage) def _safe_object_str(obj): return "<%s %d>" % (obj.__class__.__name__, id(obj)) logging.error(" Object type: %s", _safe_object_str(obj)) logging.error( " Referrer types: %s", ", ".join( [_safe_object_str(ref) for ref in gc.get_referrers(obj)])) logging.error( " Referent types: %s", ", ".join( [_safe_object_str(ref) for ref in gc.get_referents(obj)])) logging.error(" Object attribute names: %s", dir(obj)) logging.error(" Object __str__:") logging.error(obj) logging.error(" Object __repr__:") logging.error(repr(obj)) except Exception: # pylint: disable=broad-except logging.error("(Exception while printing object)") # When garbage is created, this call can help identify reference cycles, # which are typically the cause of such garbage. if new_garbage > previous_garbage: for i in range(previous_garbage, new_garbage): if _find_reference_cycle(gc.garbage, i): break # This will fail if any garbage has been created, typically because of a # reference cycle. self.assertEqual(previous_garbage, new_garbage) # TODO(allenl): Figure out why this debug flag reset doesn't work. It would # be nice to be able to decorate arbitrary tests in a large test suite and # not hold on to every object in other tests. gc.set_debug(previous_debug_flags) gc.enable() return result return decorator def _combine_named_parameters(**kwargs): """Generate combinations based on its keyword arguments. Two sets of returned combinations can be concatenated using +. Their product can be computed using `times()`. Args: **kwargs: keyword arguments of form `option=[possibilities, ...]` or `option=the_only_possibility`. Returns: a list of dictionaries for each combination. Keys in the dictionaries are the keyword argument names. Each key has one value - one of the corresponding keyword argument values. """ if not kwargs: return [OrderedDict()] sort_by_key = lambda k: k[0][0] kwargs = OrderedDict(sorted(kwargs.items(), key=sort_by_key)) first = list(kwargs.items())[0] rest = dict(list(kwargs.items())[1:]) rest_combined = _combine_named_parameters(**rest) key = first[0] values = first[1] if not isinstance(values, list): values = [values] combinations = [ OrderedDict(sorted(list(combined.items()) + [(key, v)], key=sort_by_key)) for v in values for combined in rest_combined ] return combinations def generate_combinations_with_testcase_name(**kwargs): """Generate combinations based on its keyword arguments using combine(). This function calls combine() and appends a testcase name to the list of dictionaries returned. The 'testcase_name' key is a required for named parameterized tests. Args: **kwargs: keyword arguments of form `option=[possibilities, ...]` or `option=the_only_possibility`. Returns: a list of dictionaries for each combination. Keys in the dictionaries are the keyword argument names. Each key has one value - one of the corresponding keyword argument values. """ combinations = _combine_named_parameters(**kwargs) named_combinations = [] for combination in combinations: assert isinstance(combination, OrderedDict) name = "".join([ "_{}_{}".format("".join(filter(str.isalnum, key)), "".join(filter(str.isalnum, str(value)))) for key, value in combination.items() ]) named_combinations.append( OrderedDict( list(combination.items()) + [("testcase_name", "_test{}".format(name))])) return named_combinations def run_all_in_graph_and_eager_modes(cls): """Execute all test methods in the given class with and without eager.""" base_decorator = run_in_graph_and_eager_modes for name, value in cls.__dict__.copy().items(): if callable(value) and name.startswith( unittest.TestLoader.testMethodPrefix) and not ( name.startswith("testSkipEager") or name.startswith("test_skip_eager") or name == "test_session"): setattr(cls, name, base_decorator(value)) return cls def build_as_function_and_v1_graph(func=None): """Run a test case in v1 graph mode and inside tf.function in eager mode. WARNING: This decorator can only be used in test cases that statically checks generated graph. Attempting to evaluate graph or function results via. session.run() or self.evaluate() will fail. WARNING: This decorator can only be used for test cases that inherit from absl.testing.parameterized.TestCase. Args: func: Test case function to be decorated. Returns: Decorated test case function. """ def decorator(f): if tf_inspect.isclass(f): raise ValueError( "`run_in_graph_mode_and_function` only supports test methods.") @parameterized.named_parameters(("_v1_graph", "v1_graph"), ("_function", "function")) @functools.wraps(f) def decorated(self, run_mode, *args, **kwargs): if run_mode == "v1_graph": with ops.Graph().as_default(): f(self, *args, **kwargs) elif run_mode == "function": @def_function.function def function_in_eager(): f(self, *args, **kwargs) # Create a new graph for the eagerly executed version of this test for # better isolation. graph_for_eager_test = ops.Graph() with graph_for_eager_test.as_default(), context.eager_mode(): function_in_eager() ops.dismantle_graph(graph_for_eager_test) else: return ValueError("Unknown run mode %s" % run_mode) return decorated if func is not None: return decorator(func) return decorator def run_in_graph_and_eager_modes(func=None, config=None, use_gpu=True, reset_test=True, assert_no_eager_garbage=False): """Execute the decorated test with and without enabling eager execution. This function returns a decorator intended to be applied to test methods in a `tf.test.TestCase` class. Doing so will cause the contents of the test method to be executed twice - once normally, and once with eager execution enabled. This allows unittests to confirm the equivalence between eager and graph execution (see `tf.compat.v1.enable_eager_execution`). For example, consider the following unittest: ```python class MyTests(tf.test.TestCase): @run_in_graph_and_eager_modes def test_foo(self): x = tf.constant([1, 2]) y = tf.constant([3, 4]) z = tf.add(x, y) self.assertAllEqual([4, 6], self.evaluate(z)) if __name__ == "__main__": tf.test.main() ``` This test validates that `tf.add()` has the same behavior when computed with eager execution enabled as it does when constructing a TensorFlow graph and executing the `z` tensor in a session. `deprecated_graph_mode_only`, `run_v1_only`, `run_v2_only`, and `run_in_graph_and_eager_modes` are available decorators for different v1/v2/eager/graph combinations. Args: func: function to be annotated. If `func` is None, this method returns a decorator the can be applied to a function. If `func` is not None this returns the decorator applied to `func`. config: An optional config_pb2.ConfigProto to use to configure the session when executing graphs. use_gpu: If True, attempt to run as many operations as possible on GPU. reset_test: If True, tearDown and SetUp the test case between the two executions of the test (once with and once without eager execution). assert_no_eager_garbage: If True, sets DEBUG_SAVEALL on the garbage collector and asserts that no extra garbage has been created when running the test with eager execution enabled. This will fail if there are reference cycles (e.g. a = []; a.append(a)). Off by default because some tests may create garbage for legitimate reasons (e.g. they define a class which inherits from `object`), and because DEBUG_SAVEALL is sticky in some Python interpreters (meaning that tests which rely on objects being collected elsewhere in the unit test file will not work). Additionally, checks that nothing still has a reference to Tensors that the test allocated. Returns: Returns a decorator that will run the decorated test method twice: once by constructing and executing a graph in a session and once with eager execution enabled. """ def decorator(f): if tf_inspect.isclass(f): raise ValueError( "`run_in_graph_and_eager_modes` only supports test methods. " "Did you mean to use `run_all_in_graph_and_eager_modes`?") def decorated(self, *args, **kwargs): try: with context.graph_mode(): with self.test_session(use_gpu=use_gpu, config=config): f(self, *args, **kwargs) except unittest.case.SkipTest: pass def run_eagerly(self, **kwargs): if not use_gpu: with ops.device("/device:CPU:0"): f(self, *args, **kwargs) else: f(self, *args, **kwargs) if assert_no_eager_garbage: ops.reset_default_graph() run_eagerly = assert_no_new_tensors( assert_no_garbage_created(run_eagerly)) if reset_test: # This decorator runs the wrapped test twice. # Reset the test environment between runs. self.tearDown() self._tempdir = None # Create a new graph for the eagerly executed version of this test for # better isolation. graph_for_eager_test = ops.Graph() with graph_for_eager_test.as_default(), context.eager_mode(): if reset_test: self.setUp() run_eagerly(self, **kwargs) ops.dismantle_graph(graph_for_eager_test) return decorated if func is not None: return decorator(func) return decorator def py_func_if_in_function(f): def decorated(*args, **kwds): if not ops.get_default_graph()._building_function: return f(*args, **kwds) tensor_args = [] tensor_indices = [] for i, arg in enumerate(args): if isinstance(arg, (ops.Tensor, variables.Variable)): tensor_args.append(arg) tensor_indices.append(i) def inner_f(*inner_tensor_args): my_args = list(args) for i, n in zip(tensor_indices, inner_tensor_args): my_args[i] = n return f(*my_args, **kwds) return script_ops.py_func(inner_f, tensor_args, []) return tf_decorator.make_decorator(f, decorated) def also_run_as_tf_function(f): """Runs the decorated test twice--once as is, once inside a tf.function. This allows you to run a test both in eager execution and inside a tf.function, exercising the two execution modes supported in tf 2.0. The test assertions are automatically done inside tf.py_funcs, and tf.function ensures that they run in the proper order and with the proper side effects. Currently variable creation is not supported in tests annotated with this decorator since it's tricky to ensure the variable doesn't get repeatedly created when retracing the tf.function. Args: f: the test method to be decorated Returns: The decorated test method, which will run both in eager and inside a tf.function. """ def decorated(*args, **kwds): def bound_f(): f(*args, **kwds) with context.eager_mode(): # Running in eager mode bound_f() # Running as TF function # TODO(b/121143941): Remove the autograph override. def_function.function(bound_f, autograph=False)() return decorated def deprecated_graph_mode_only(func=None): """Execute the decorated test in graph mode. This function returns a decorator intended to be applied to tests that are not compatible with eager mode. When this decorator is applied, the test body will be run in an environment where API calls construct graphs instead of executing eagerly. `deprecated_graph_mode_only`, `run_v1_only`, `run_v2_only`, and `run_in_graph_and_eager_modes` are available decorators for different v1/v2/eager/graph combinations. Args: func: function to be annotated. If `func` is None, this method returns a decorator the can be applied to a function. If `func` is not None this returns the decorator applied to `func`. Returns: Returns a decorator that will run the decorated test method in graph mode. """ def decorator(f): if tf_inspect.isclass(f): setup = f.__dict__.get("setUp") if setup is not None: setattr(f, "setUp", decorator(setup)) for name, value in f.__dict__.copy().items(): if (callable(value) and name.startswith(unittest.TestLoader.testMethodPrefix)): setattr(f, name, decorator(value)) return f def decorated(self, *args, **kwargs): if tf2.enabled(): with context.graph_mode(): return f(self, *args, **kwargs) else: return f(self, *args, **kwargs) return decorated if func is not None: return decorator(func) return decorator run_deprecated_v1 = deprecated_graph_mode_only def run_v1_only(reason, func=None): """Execute the decorated test only if running in v1 mode. This function is intended to be applied to tests that exercise v1 only functionality. If the test is run in v2 mode it will simply be skipped. `deprecated_graph_mode_only`, `run_v1_only`, `run_v2_only`, and `run_in_graph_and_eager_modes` are available decorators for different v1/v2/eager/graph combinations. Args: reason: string giving a reason for limiting the test to v1 only. func: function to be annotated. If `func` is None, this method returns a decorator the can be applied to a function. If `func` is not None this returns the decorator applied to `func`. Returns: Returns a decorator that will conditionally skip the decorated test method. """ if not isinstance(reason, str): raise ValueError("'reason' should be string, got {}".format(type(reason))) def decorator(f): if tf_inspect.isclass(f): # To skip an entire test suite class, we only decorate the setUp method # to skip all tests. There are cases when setUp is not defined (not # overridden in subclasses of TestCase, so not available in f.__dict__ # below). For those cases, we walk the method resolution order list and # pick the first setUp method we find (usually this should be the one in # the parent class since that's the TestCase class). for cls in type.mro(f): setup = cls.__dict__.get("setUp") if setup is not None: setattr(f, "setUp", decorator(setup)) break return f else: # If f is just a function, just create a decorator for it and return it def decorated(self, *args, **kwargs): if tf2.enabled(): self.skipTest(reason) return f(self, *args, **kwargs) return decorated if func is not None: return decorator(func) return decorator def run_v2_only(func=None): """Execute the decorated test only if running in v2 mode. This function is intended to be applied to tests that exercise v2 only functionality. If the test is run in v1 mode it will simply be skipped. `deprecated_graph_mode_only`, `run_v1_only`, `run_v2_only`, and `run_in_graph_and_eager_modes` are available decorators for different v1/v2/eager/graph combinations. Args: func: function to be annotated. If `func` is None, this method returns a decorator the can be applied to a function. If `func` is not None this returns the decorator applied to `func`. Returns: Returns a decorator that will conditionally skip the decorated test method. """ def decorator(f): if tf_inspect.isclass(f): raise ValueError("`run_v2_only` only supports test methods.") def decorated(self, *args, **kwargs): if not tf2.enabled(): self.skipTest("Test is only comptaible in v2") return f(self, *args, **kwargs) return decorated if func is not None: return decorator(func) return decorator def run_gpu_only(func=None): """Execute the decorated test only if a GPU is available. This function is intended to be applied to tests that require the presence of a GPU. If a GPU is absent, it will simply be skipped. Args: func: function to be annotated. If `func` is None, this method returns a decorator the can be applied to a function. If `func` is not None this returns the decorator applied to `func`. Returns: Returns a decorator that will conditionally skip the decorated test method. """ def decorator(f): if tf_inspect.isclass(f): raise ValueError("`run_gpu_only` only supports test methods.") def decorated(self, *args, **kwargs): if not is_gpu_available(): self.skipTest("Test requires GPU") return f(self, *args, **kwargs) return decorated if func is not None: return decorator(func) return decorator def run_cuda_only(func=None): """Execute the decorated test only if a GPU is available. This function is intended to be applied to tests that require the precense of a CUDA GPU. If a CUDA GPU is absent, it will simply be skipped. Args: func: function to be annotated. If `func` is None, this method returns a decorator the can be applied to a function. If `func` is not None this returns the decorator applied to `func`. Returns: Returns a decorator that will conditionally skip the decorated test method. """ def decorator(f): if tf_inspect.isclass(f): raise ValueError("`run_cuda_only` only supports test methods.") def decorated(self, *args, **kwargs): if not is_gpu_available(cuda_only=True): self.skipTest("Test requires CUDA GPU") return f(self, *args, **kwargs) return decorated if func is not None: return decorator(func) return decorator @tf_export("test.is_gpu_available") def is_gpu_available(cuda_only=False, min_cuda_compute_capability=None): """Returns whether TensorFlow can access a GPU. Warning: if a non-GPU version of the package is installed, the function would also return False. Use `tf.test.is_built_with_cuda` to validate if TensorFlow was build with CUDA support. Args: cuda_only: limit the search to CUDA GPUs. min_cuda_compute_capability: a (major,minor) pair that indicates the minimum CUDA compute capability required, or None if no requirement. Returns: True if a GPU device of the requested kind is available. """ def compute_capability_from_device_desc(device_desc): # TODO(jingyue): The device description generator has to be in sync with # this file. Another option is to put compute capability in # DeviceAttributes, but I avoided that to keep DeviceAttributes # target-independent. Reconsider this option when we have more things like # this to keep in sync. # LINT.IfChange match = re.search(r"compute capability: (\d+)\.(\d+)", device_desc) # LINT.ThenChange(//tensorflow/core/\ # common_runtime/gpu/gpu_device.cc) if not match: return 0, 0 return int(match.group(1)), int(match.group(2)) try: for local_device in device_lib.list_local_devices(): if local_device.device_type == "GPU": if (min_cuda_compute_capability is None or compute_capability_from_device_desc( local_device.physical_device_desc) >= min_cuda_compute_capability): return True if local_device.device_type == "SYCL" and not cuda_only: return True return False except errors_impl.NotFoundError as e: if not all(x in str(e) for x in ["CUDA", "not find"]): raise e else: logging.error(str(e)) return False @contextlib.contextmanager def device(use_gpu): """Uses gpu when requested and available.""" if use_gpu and is_gpu_available(): dev = "/device:GPU:0" else: dev = "/device:CPU:0" with ops.device(dev): yield @contextlib.contextmanager def use_gpu(): """Uses gpu when requested and available.""" with device(use_gpu=True): yield @contextlib.contextmanager def force_gpu(): """Force the gpu to be used.""" with ops.device("/device:GPU:0"): yield @contextlib.contextmanager def force_cpu(): """Force the cpu to be used.""" with ops.device("/device:CPU:0"): yield class CapturedWrites(object): """A utility class to load the captured writes made to a stream.""" def __init__(self, capture_location): self.capture_location = capture_location def contents(self): """Get the captured writes as a single string.""" with open(self.capture_location) as tmp_file: output_data = "".join(tmp_file.readlines()) return output_data class FakeEagerSession(object): """Fake session so tests that conditionally use placeholders can use eager. There are a number of tests that conditionally use placeholders for shape inference. The pattern is demonstrated here: ```python with self.cached_session() as sess: if static_shape: y = math_ops.matmul(x, ...) feed_dict = {} else: x_ph = array_ops.placeholder(...) y = math_ops.matmul(x_ph, ...) feed_dict = {x_ph: x} val = sess.run(y, feed_dict=feed_dict) ``` Since the feed_dict is empty when not using placeholders we should be able to call self.evaluate(), however this requires rewriting the test case. This class should be considered a stop-gap solution to get tests running with eager with minimal changes to the actual test. """ def __init__(self, test_case): self._test_case = test_case def run(self, fetches, *args, **kwargs): """Evalaute `fetches`. Fail if additional args are specified. Args: fetches: A Tensor or a nested list/tuple of Tensors. *args: Positional arguments **kwargs: Keyword arguments Raises: RuntimeError: If args or kwargs are specified. Returns: Tensors as numpy values. """ feed_dict = kwargs.pop("feed_dict", {}) if feed_dict: raise RuntimeError( "feed_dict is not supported when eager execution is enabled " "(in this case, sess.run(t) is shorthand for t.numpy()") if args or kwargs: raise RuntimeError( "Optional args are not supported when eager execution is enabled " "(in this case, sess.run(t) is shorthand for t.numpy()") return self._test_case.evaluate(fetches) class ErrorLoggingSession(session.Session): """Wrapper around a Session that logs errors in run().""" def run(self, *args, **kwargs): try: return super(ErrorLoggingSession, self).run(*args, **kwargs) except Exception as e: # pylint: disable=broad-except # Note: disable the logging for OutOfRangeError, which makes the output # of tf.data tests hard to read, because OutOfRangeError is used as the # signal completion if not isinstance(e, errors.OutOfRangeError): logging.error(str(e)) raise def use_deterministic_cudnn(func): """Disable autotuning during the call to this function. Some tests want to base assertions on a graph being isomorphic with a copy. To ensure this, this decorator disables autotuning. Args: func: Function to run with CUDNN autotuning turned off. Returns: Decorated function. """ def decorator(f): def decorated(self, *args, **kwargs): original_var = os.environ.get("TF_CUDNN_DETERMINISTIC", "") os.environ["TF_CUDNN_DETERMINISTIC"] = "true" result = f(self, *args, **kwargs) os.environ["TF_CUDNN_DETERMINISTIC"] = original_var return result return decorated if func is not None: return decorator(func) return decorator # The description is just for documentation purposes. def enable_tf_xla_constant_folding(description): if not isinstance(description, str): raise ValueError("'description' should be string, got {}".format( type(description))) def enable_tf_xla_constant_folding_impl(func): """Enable constant folding during the call to this function. Some tests fail without constant folding. Args: func: Function to run with constant folding turned on. Returns: Decorated function. """ def decorator(f): def decorated(self, *args, **kwargs): original_var = pywrap_tensorflow.TF_GetXlaConstantFoldingDisabled() pywrap_tensorflow.TF_SetXlaConstantFoldingDisabled(False) result = f(self, *args, **kwargs) pywrap_tensorflow.TF_SetXlaConstantFoldingDisabled(original_var) return result return decorated if func is not None: return decorator(func) return decorator return enable_tf_xla_constant_folding_impl # The description is just for documentation purposes. def disable_xla(description): def disable_xla_impl(func): """Execute the test method only if xla is not enabled.""" def decorator(func): def decorated(self, *args, **kwargs): if is_xla_enabled(): return else: return func(self, *args, **kwargs) return decorated if func is not None: return decorator(func) return decorator return disable_xla_impl def for_all_test_methods(decorator, *args, **kwargs): """Generate class-level decorator from given method-level decorator. It is expected for the given decorator to take some arguments and return a method that is then called on the test method to produce a decorated method. Args: decorator: The decorator to apply. *args: Positional arguments **kwargs: Keyword arguments Returns: Function that will decorate a given classes test methods with the decorator. """ def all_test_methods_impl(cls): """Apply decorator to all test methods in class.""" for name in dir(cls): value = getattr(cls, name) if callable(value) and name.startswith( "test") and (name != "test_session"): setattr(cls, name, decorator(*args, **kwargs)(value)) return cls return all_test_methods_impl # The description is just for documentation purposes. def no_xla_auto_jit(description): # pylint: disable=unused-argument def no_xla_auto_jit_impl(func): """This test is not intended to be run with XLA auto jit enabled.""" def decorator(func): def decorated(self, *args, **kwargs): if is_xla_enabled(): # Skip test if using XLA is forced. return else: return func(self, *args, **kwargs) return decorated if func is not None: return decorator(func) return decorator return no_xla_auto_jit_impl # The description is just for documentation purposes. def xla_allow_fallback(description): # pylint: disable=unused-argument def xla_allow_fallback_impl(func): """Allow fallback to TF even though testing xla.""" def decorator(func): def decorated(self, *args, **kwargs): if is_xla_enabled(): # Update the global XLABuildOpsPassFlags to enable lazy compilation, # which allows the compiler to fall back to TF classic. Remember the # old value so that we can reset it. old_value = pywrap_tensorflow.TF_SetXlaEnableLazyCompilation(True) result = func(self, *args, **kwargs) pywrap_tensorflow.TF_SetXlaEnableLazyCompilation(old_value) return result else: return func(self, *args, **kwargs) return decorated if func is not None: return decorator(func) return decorator return xla_allow_fallback_impl class EagerSessionWarner(object): def __getattr__(self, attr): raise AttributeError( "Trying to access properties or call methods on the result of " "self.session(), self.cached_session(), etc while eager execution " "is enabled. If you're porting this test case to TF 2.0, either " "adapt the test to work with eager execution or insert a call to " "tf.disable_eager_execution() in the main() function of this test " "file.") @tf_export("test.TestCase") class TensorFlowTestCase(googletest.TestCase): """Base class for tests that need to test TensorFlow.""" def __init__(self, methodName="runTest"): # pylint: disable=invalid-name super(TensorFlowTestCase, self).__init__(methodName) if is_xla_enabled(): pywrap_tensorflow.TF_SetXlaAutoJitMode("2") pywrap_tensorflow.TF_SetXlaMinClusterSize(1) pywrap_tensorflow.TF_SetXlaEnableLazyCompilation(False) # Constant folding secretly runs code on TF:Classic CPU, so we also # disable it here. pywrap_tensorflow.TF_SetXlaConstantFoldingDisabled(True) self._threads = [] self._tempdir = None self._cached_session = None def setUp(self): self._ClearCachedSession() random.seed(random_seed.DEFAULT_GRAPH_SEED) np.random.seed(random_seed.DEFAULT_GRAPH_SEED) # Note: The following line is necessary because some test methods may error # out from within nested graph contexts (e.g., via assertRaises and # assertRaisesRegexp), which may leave ops._default_graph_stack non-empty # under certain versions of Python. That would cause # ops.reset_default_graph() to throw an exception if the stack were not # cleared first. ops._default_graph_stack.reset() # pylint: disable=protected-access ops.reset_default_graph() random_seed.set_random_seed(random_seed.DEFAULT_GRAPH_SEED) # Reset summary writer in case another test used set_as_default() with their # summary writer. context.context().summary_writer = None # Avoiding calling setUp() for the poorly named test_session method. if self.id().endswith(".test_session"): self.skipTest("Not a test.") def tearDown(self): for thread in self._threads: thread.check_termination() self._ClearCachedSession() def _ClearCachedSession(self): if self._cached_session is not None: self._cached_session.close() self._cached_session = None def get_temp_dir(self): """Returns a unique temporary directory for the test to use. If you call this method multiple times during in a test, it will return the same folder. However, across different runs the directories will be different. This will ensure that across different runs tests will not be able to pollute each others environment. If you need multiple unique directories within a single test, you should use tempfile.mkdtemp as follows: tempfile.mkdtemp(dir=self.get_temp_dir()): Returns: string, the path to the unique temporary directory created for this test. """ if not self._tempdir: self._tempdir = tempfile.mkdtemp(dir=googletest.GetTempDir()) return self._tempdir @contextlib.contextmanager def captureWritesToStream(self, stream): """A context manager that captures the writes to a given stream. This context manager captures all writes to a given stream inside of a `CapturedWrites` object. When this context manager is created, it yields the `CapturedWrites` object. The captured contents can be accessed by calling `.contents()` on the `CapturedWrites`. For this function to work, the stream must have a file descriptor that can be modified using `os.dup` and `os.dup2`, and the stream must support a `.flush()` method. The default python sys.stdout and sys.stderr are examples of this. Note that this does not work in Colab or Jupyter notebooks, because those use alternate stdout streams. Example: ```python class MyOperatorTest(test_util.TensorFlowTestCase): def testMyOperator(self): input = [1.0, 2.0, 3.0, 4.0, 5.0] with self.captureWritesToStream(sys.stdout) as captured: result = MyOperator(input).eval() self.assertStartsWith(captured.contents(), "This was printed.") ``` Args: stream: The stream whose writes should be captured. This stream must have a file descriptor, support writing via using that file descriptor, and must have a `.flush()` method. Yields: A `CapturedWrites` object that contains all writes to the specified stream made during this context. """ stream.flush() fd = stream.fileno() tmp_file_path = tempfile.mktemp(dir=self.get_temp_dir()) tmp_file = open(tmp_file_path, "w") orig_fd = os.dup(fd) os.dup2(tmp_file.fileno(), fd) try: yield CapturedWrites(tmp_file_path) finally: tmp_file.close() os.dup2(orig_fd, fd) def _AssertProtoEquals(self, a, b, msg=None): """Asserts that a and b are the same proto. Uses ProtoEq() first, as it returns correct results for floating point attributes, and then use assertProtoEqual() in case of failure as it provides good error messages. Args: a: a proto. b: another proto. msg: Optional message to report on failure. """ if not compare.ProtoEq(a, b): compare.assertProtoEqual(self, a, b, normalize_numbers=True, msg=msg) def assertProtoEquals(self, expected_message_maybe_ascii, message, msg=None): """Asserts that message is same as parsed expected_message_ascii. Creates another prototype of message, reads the ascii message into it and then compares them using self._AssertProtoEqual(). Args: expected_message_maybe_ascii: proto message in original or ascii form. message: the message to validate. msg: Optional message to report on failure. """ msg = msg if msg else "" if isinstance(expected_message_maybe_ascii, type(message)): expected_message = expected_message_maybe_ascii self._AssertProtoEquals(expected_message, message) elif isinstance(expected_message_maybe_ascii, str): expected_message = type(message)() text_format.Merge( expected_message_maybe_ascii, expected_message, descriptor_pool=descriptor_pool.Default()) self._AssertProtoEquals(expected_message, message, msg=msg) else: assert False, ("Can't compare protos of type %s and %s. %s" % (type(expected_message_maybe_ascii), type(message), msg)) def assertProtoEqualsVersion( self, expected, actual, producer=versions.GRAPH_DEF_VERSION, min_consumer=versions.GRAPH_DEF_VERSION_MIN_CONSUMER, msg=None): expected = "versions { producer: %d min_consumer: %d };\n%s" % ( producer, min_consumer, expected) self.assertProtoEquals(expected, actual, msg=msg) def assertStartsWith(self, actual, expected_start, msg=None): """Assert that actual.startswith(expected_start) is True. Args: actual: str expected_start: str msg: Optional message to report on failure. """ if not actual.startswith(expected_start): fail_msg = "%r does not start with %r" % (actual, expected_start) fail_msg += " : %r" % (msg) if msg else "" self.fail(fail_msg) def _eval_tensor(self, tensor): if tensor is None: return None elif callable(tensor): return self._eval_helper(tensor()) else: try: if sparse_tensor.is_sparse(tensor): return sparse_tensor.SparseTensorValue(tensor.indices.numpy(), tensor.values.numpy(), tensor.dense_shape.numpy()) elif ragged_tensor.is_ragged(tensor): return ragged_tensor_value.RaggedTensorValue( tensor.values.numpy(), tensor.row_splits.numpy()) elif isinstance(tensor, ops.IndexedSlices): return ops.IndexedSlicesValue( values=tensor.values.numpy(), indices=tensor.indices.numpy(), dense_shape=tensor.dense_shape.numpy()) return tensor.numpy() except AttributeError as e: six.raise_from(ValueError("Unsupported type %s." % type(tensor)), e) def _eval_helper(self, tensors): if tensors is None: return None return nest.map_structure(self._eval_tensor, tensors) def evaluate(self, tensors): """Evaluates tensors and returns numpy values. Args: tensors: A Tensor or a nested list/tuple of Tensors. Returns: tensors numpy values. """ if context.executing_eagerly(): return self._eval_helper(tensors) else: sess = ops.get_default_session() if sess is None: with self.test_session() as sess: return sess.run(tensors) else: return sess.run(tensors) # pylint: disable=g-doc-return-or-yield @contextlib.contextmanager def session(self, graph=None, config=None, use_gpu=False, force_gpu=False): """Returns a TensorFlow Session for use in executing tests. Note that this will set this session and the graph as global defaults. Use the `use_gpu` and `force_gpu` options to control where ops are run. If `force_gpu` is True, all ops are pinned to `/device:GPU:0`. Otherwise, if `use_gpu` is True, TensorFlow tries to run as many ops on the GPU as possible. If both `force_gpu and `use_gpu` are False, all ops are pinned to the CPU. Example: ```python class MyOperatorTest(test_util.TensorFlowTestCase): def testMyOperator(self): with self.session(use_gpu=True): valid_input = [1.0, 2.0, 3.0, 4.0, 5.0] result = MyOperator(valid_input).eval() self.assertEqual(result, [1.0, 2.0, 3.0, 5.0, 8.0] invalid_input = [-1.0, 2.0, 7.0] with self.assertRaisesOpError("negative input not supported"): MyOperator(invalid_input).eval() ``` Args: graph: Optional graph to use during the returned session. config: An optional config_pb2.ConfigProto to use to configure the session. use_gpu: If True, attempt to run as many ops as possible on GPU. force_gpu: If True, pin all ops to `/device:GPU:0`. Yields: A Session object that should be used as a context manager to surround the graph building and execution code in a test case. """ if context.executing_eagerly(): yield EagerSessionWarner() else: with self._create_session(graph, config, force_gpu) as sess: with self._constrain_devices_and_set_default(sess, use_gpu, force_gpu): yield sess @contextlib.contextmanager def cached_session(self, graph=None, config=None, use_gpu=False, force_gpu=False): """Returns a TensorFlow Session for use in executing tests. This method behaves differently than self.session(): for performance reasons `cached_session` will by default reuse the same session within the same test. The session returned by this function will only be closed at the end of the test (in the TearDown function). Use the `use_gpu` and `force_gpu` options to control where ops are run. If `force_gpu` is True, all ops are pinned to `/device:GPU:0`. Otherwise, if `use_gpu` is True, TensorFlow tries to run as many ops on the GPU as possible. If both `force_gpu and `use_gpu` are False, all ops are pinned to the CPU. Example: ```python class MyOperatorTest(test_util.TensorFlowTestCase): def testMyOperator(self): with self.cached_session(use_gpu=True) as sess: valid_input = [1.0, 2.0, 3.0, 4.0, 5.0] result = MyOperator(valid_input).eval() self.assertEqual(result, [1.0, 2.0, 3.0, 5.0, 8.0] invalid_input = [-1.0, 2.0, 7.0] with self.assertRaisesOpError("negative input not supported"): MyOperator(invalid_input).eval() ``` Args: graph: Optional graph to use during the returned session. config: An optional config_pb2.ConfigProto to use to configure the session. use_gpu: If True, attempt to run as many ops as possible on GPU. force_gpu: If True, pin all ops to `/device:GPU:0`. Yields: A Session object that should be used as a context manager to surround the graph building and execution code in a test case. """ if context.executing_eagerly(): yield FakeEagerSession(self) else: sess = self._get_cached_session( graph, config, force_gpu, crash_if_inconsistent_args=True) with self._constrain_devices_and_set_default(sess, use_gpu, force_gpu) as cached: yield cached @contextlib.contextmanager @deprecation.deprecated(None, "Use `self.session()` or " "`self.cached_session()` instead.") def test_session(self, graph=None, config=None, use_gpu=False, force_gpu=False): """Use cached_session instead.""" if self.id().endswith(".test_session"): self.skipTest("Not a test.") if context.executing_eagerly(): yield None else: if graph is None: sess = self._get_cached_session( graph, config, force_gpu, crash_if_inconsistent_args=False) with self._constrain_devices_and_set_default(sess, use_gpu, force_gpu) as cached: yield cached else: with self.session(graph, config, use_gpu, force_gpu) as sess: yield sess # pylint: enable=g-doc-return-or-yield class _CheckedThread(object): """A wrapper class for Thread that asserts successful completion. This class should be created using the TensorFlowTestCase.checkedThread() method. """ def __init__(self, testcase, target, args=None, kwargs=None): """Constructs a new instance of _CheckedThread. Args: testcase: The TensorFlowTestCase for which this thread is being created. target: A callable object representing the code to be executed in the thread. args: A tuple of positional arguments that will be passed to target. kwargs: A dictionary of keyword arguments that will be passed to target. """ self._testcase = testcase self._target = target self._args = () if args is None else args self._kwargs = {} if kwargs is None else kwargs self._thread = threading.Thread(target=self._protected_run) self._exception = None self._is_thread_joined = False def _protected_run(self): """Target for the wrapper thread. Sets self._exception on failure.""" try: self._target(*self._args, **self._kwargs) except Exception as e: # pylint: disable=broad-except self._exception = e def start(self): """Starts the thread's activity. This must be called at most once per _CheckedThread object. It arranges for the object's target to be invoked in a separate thread of control. """ self._thread.start() def join(self): """Blocks until the thread terminates. Raises: self._testcase.failureException: If the thread terminates with due to an exception. """ self._is_thread_joined = True self._thread.join() if self._exception is not None: self._testcase.fail("Error in checkedThread: %s" % str(self._exception)) def is_alive(self): """Returns whether the thread is alive. This method returns True just before the run() method starts until just after the run() method terminates. Returns: True if the thread is alive, otherwise False. """ return self._thread.is_alive() def check_termination(self): """Returns whether the checked thread was properly used and did terminate. Every checked thread should be "join"ed after starting, and before the test tears down. If it is not joined, it is possible the thread will hang and cause flaky failures in tests. Raises: self._testcase.failureException: If check_termination was called before thread was joined. RuntimeError: If the thread is not terminated. This means thread was not joined with the main thread. """ if self._is_thread_joined: if self.is_alive(): raise RuntimeError( "Thread was not joined with main thread, and is still running " "when the test finished.") else: self._testcase.fail("A checked thread was not joined.") def checkedThread(self, target, args=None, kwargs=None): """Returns a Thread wrapper that asserts 'target' completes successfully. This method should be used to create all threads in test cases, as otherwise there is a risk that a thread will silently fail, and/or assertions made in the thread will not be respected. Args: target: A callable object to be executed in the thread. args: The argument tuple for the target invocation. Defaults to (). kwargs: A dictionary of keyword arguments for the target invocation. Defaults to {}. Returns: A wrapper for threading.Thread that supports start() and join() methods. """ ret = TensorFlowTestCase._CheckedThread(self, target, args, kwargs) self._threads.append(ret) return ret # pylint: enable=invalid-name @py_func_if_in_function def assertNear(self, f1, f2, err, msg=None): """Asserts that two floats are near each other. Checks that |f1 - f2| < err and asserts a test failure if not. Args: f1: A float value. f2: A float value. err: A float value. msg: An optional string message to append to the failure message. """ # f1 == f2 is needed here as we might have: f1, f2 = inf, inf self.assertTrue( f1 == f2 or math.fabs(f1 - f2) <= err, "%f != %f +/- %f%s" % (f1, f2, err, " (%s)" % msg if msg is not None else "")) @py_func_if_in_function def assertArrayNear(self, farray1, farray2, err, msg=None): """Asserts that two float arrays are near each other. Checks that for all elements of farray1 and farray2 |f1 - f2| < err. Asserts a test failure if not. Args: farray1: a list of float values. farray2: a list of float values. err: a float value. msg: Optional message to report on failure. """ self.assertEqual(len(farray1), len(farray2), msg=msg) for f1, f2 in zip(farray1, farray2): self.assertNear(float(f1), float(f2), err, msg=msg) def _NDArrayNear(self, ndarray1, ndarray2, err): return np.linalg.norm(ndarray1 - ndarray2) < err @py_func_if_in_function def assertNDArrayNear(self, ndarray1, ndarray2, err, msg=None): """Asserts that two numpy arrays have near values. Args: ndarray1: a numpy ndarray. ndarray2: a numpy ndarray. err: a float. The maximum absolute difference allowed. msg: Optional message to report on failure. """ self.assertTrue(self._NDArrayNear(ndarray1, ndarray2, err), msg=msg) def _GetNdArray(self, a): # If a is a tensor then convert it to ndarray if isinstance(a, ops.Tensor): if isinstance(a, ops._EagerTensorBase): a = a.numpy() else: a = self.evaluate(a) if not isinstance(a, np.ndarray): return np.array(a) return a def _assertArrayLikeAllClose(self, a, b, rtol=1e-6, atol=1e-6, msg=None): a = self._GetNdArray(a) b = self._GetNdArray(b) # When the array rank is small, print its contents. Numpy array printing is # implemented using inefficient recursion so prints can cause tests to # time out. if a.shape != b.shape and (b.ndim <= 3 or b.size < 500): shape_mismatch_msg = ("Shape mismatch: expected %s, got %s with contents " "%s.") % (a.shape, b.shape, b) else: shape_mismatch_msg = "Shape mismatch: expected %s, got %s." % (a.shape, b.shape) self.assertEqual(a.shape, b.shape, shape_mismatch_msg) msgs = [msg] if not np.allclose(a, b, rtol=rtol, atol=atol): # Adds more details to np.testing.assert_allclose. # # NOTE: numpy.allclose (and numpy.testing.assert_allclose) # checks whether two arrays are element-wise equal within a # tolerance. The relative difference (rtol * abs(b)) and the # absolute difference atol are added together to compare against # the absolute difference between a and b. Here, we want to # tell user which elements violate such conditions. cond = np.logical_or( np.abs(a - b) > atol + rtol * np.abs(b), np.isnan(a) != np.isnan(b)) if a.ndim: x = a[np.where(cond)] y = b[np.where(cond)] msgs.append("not close where = {}".format(np.where(cond))) else: # np.where is broken for scalars x, y = a, b msgs.append("not close lhs = {}".format(x)) msgs.append("not close rhs = {}".format(y)) msgs.append("not close dif = {}".format(np.abs(x - y))) msgs.append("not close tol = {}".format(atol + rtol * np.abs(y))) msgs.append("dtype = {}, shape = {}".format(a.dtype, a.shape)) # TODO(xpan): There seems to be a bug: # tensorflow/compiler/tests:binary_ops_test pass with float32 # nan even though the equal_nan is False by default internally. np.testing.assert_allclose( a, b, rtol=rtol, atol=atol, err_msg="\n".join(msgs), equal_nan=True) def _assertAllCloseRecursive(self, a, b, rtol=1e-6, atol=1e-6, path=None, msg=None): path = path or [] path_str = (("[" + "][".join([str(p) for p in path]) + "]") if path else "") msg = msg if msg else "" # Check if a and/or b are namedtuples. if hasattr(a, "_asdict"): a = a._asdict() if hasattr(b, "_asdict"): b = b._asdict() a_is_dict = isinstance(a, collections.Mapping) if a_is_dict != isinstance(b, collections.Mapping): raise ValueError("Can't compare dict to non-dict, a%s vs b%s. %s" % (path_str, path_str, msg)) if a_is_dict: self.assertItemsEqual( a.keys(), b.keys(), msg="mismatched keys: a%s has keys %s, but b%s has keys %s. %s" % (path_str, a.keys(), path_str, b.keys(), msg)) for k in a: path.append(k) self._assertAllCloseRecursive( a[k], b[k], rtol=rtol, atol=atol, path=path, msg=msg) del path[-1] elif isinstance(a, (list, tuple)): # Try to directly compare a, b as ndarrays; if not work, then traverse # through the sequence, which is more expensive. try: a_as_ndarray = self._GetNdArray(a) b_as_ndarray = self._GetNdArray(b) self._assertArrayLikeAllClose( a_as_ndarray, b_as_ndarray, rtol=rtol, atol=atol, msg="Mismatched value: a%s is different from b%s. %s" % (path_str, path_str, msg)) except (ValueError, TypeError) as e: if len(a) != len(b): raise ValueError( "Mismatched length: a%s has %d items, but b%s has %d items. %s" % (path_str, len(a), path_str, len(b), msg)) for idx, (a_ele, b_ele) in enumerate(zip(a, b)): path.append(str(idx)) self._assertAllCloseRecursive( a_ele, b_ele, rtol=rtol, atol=atol, path=path, msg=msg) del path[-1] # a and b are ndarray like objects else: try: self._assertArrayLikeAllClose( a, b, rtol=rtol, atol=atol, msg=("Mismatched value: a%s is different from b%s. %s" % (path_str, path_str, msg))) except TypeError as e: msg = ("Error: a%s has %s, but b%s has %s. %s" % (path_str, type(a), path_str, type(b), msg)) e.args = ((e.args[0] + " : " + msg,) + e.args[1:]) raise @py_func_if_in_function def assertAllClose(self, a, b, rtol=1e-6, atol=1e-6, msg=None): """Asserts that two structures of numpy arrays or Tensors, have near values. `a` and `b` can be arbitrarily nested structures. A layer of a nested structure can be a `dict`, `namedtuple`, `tuple` or `list`. Args: a: The expected numpy `ndarray`, or anything that can be converted into a numpy `ndarray` (including Tensor), or any arbitrarily nested of structure of these. b: The actual numpy `ndarray`, or anything that can be converted into a numpy `ndarray` (including Tensor), or any arbitrarily nested of structure of these. rtol: relative tolerance. atol: absolute tolerance. msg: Optional message to report on failure. Raises: ValueError: if only one of `a[p]` and `b[p]` is a dict or `a[p]` and `b[p]` have different length, where `[p]` denotes a path to the nested structure, e.g. given `a = [(1, 1), {'d': (6, 7)}]` and `[p] = [1]['d']`, then `a[p] = (6, 7)`. """ self._assertAllCloseRecursive(a, b, rtol=rtol, atol=atol, msg=msg) @py_func_if_in_function def assertAllCloseAccordingToType(self, a, b, rtol=1e-6, atol=1e-6, float_rtol=1e-6, float_atol=1e-6, half_rtol=1e-3, half_atol=1e-3, bfloat16_rtol=1e-2, bfloat16_atol=1e-2, msg=None): """Like assertAllClose, but also suitable for comparing fp16 arrays. In particular, the tolerance is reduced to 1e-3 if at least one of the arguments is of type float16. Args: a: the expected numpy ndarray or anything can be converted to one. b: the actual numpy ndarray or anything can be converted to one. rtol: relative tolerance. atol: absolute tolerance. float_rtol: relative tolerance for float32. float_atol: absolute tolerance for float32. half_rtol: relative tolerance for float16. half_atol: absolute tolerance for float16. bfloat16_rtol: relative tolerance for bfloat16. bfloat16_atol: absolute tolerance for bfloat16. msg: Optional message to report on failure. """ a = self._GetNdArray(a) b = self._GetNdArray(b) # types with lower tol are put later to overwrite previous ones. if (a.dtype == np.float32 or b.dtype == np.float32 or a.dtype == np.complex64 or b.dtype == np.complex64): rtol = max(rtol, float_rtol) atol = max(atol, float_atol) if a.dtype == np.float16 or b.dtype == np.float16: rtol = max(rtol, half_rtol) atol = max(atol, half_atol) if (a.dtype == dtypes.bfloat16.as_numpy_dtype or b.dtype == dtypes.bfloat16.as_numpy_dtype): rtol = max(rtol, bfloat16_rtol) atol = max(atol, bfloat16_atol) self.assertAllClose(a, b, rtol=rtol, atol=atol, msg=msg) @py_func_if_in_function def assertNotAllClose(self, a, b, **kwargs): """Assert that two numpy arrays, or Tensors, do not have near values. Args: a: the first value to compare. b: the second value to compare. **kwargs: additional keyword arguments to be passed to the underlying `assertAllClose` call. Raises: AssertionError: If `a` and `b` are unexpectedly close at all elements. """ try: self.assertAllClose(a, b, **kwargs) except AssertionError: return raise AssertionError("The two values are close at all elements") @py_func_if_in_function def assertAllEqual(self, a, b, msg=None): """Asserts that two numpy arrays or Tensors have the same values. Args: a: the expected numpy ndarray or anything can be converted to one. b: the actual numpy ndarray or anything can be converted to one. msg: Optional message to report on failure. """ msg = msg if msg else "" a = self._GetNdArray(a) b = self._GetNdArray(b) # Arbitrary bounds so that we don't print giant tensors. if (b.ndim <= 3 or b.size < 500): self.assertEqual( a.shape, b.shape, "Shape mismatch: expected %s, got %s." " Contents: %s. \n%s." % (a.shape, b.shape, b, msg)) else: self.assertEqual( a.shape, b.shape, "Shape mismatch: expected %s, got %s." " %s" % (a.shape, b.shape, msg)) same = (a == b) if (a.dtype in [ np.float16, np.float32, np.float64, dtypes.bfloat16.as_numpy_dtype ]): same = np.logical_or(same, np.logical_and(np.isnan(a), np.isnan(b))) msgs = [msg] if not np.all(same): # Adds more details to np.testing.assert_array_equal. diff = np.logical_not(same) if a.ndim: x = a[np.where(diff)] y = b[np.where(diff)] msgs.append("not equal where = {}".format(np.where(diff))) else: # np.where is broken for scalars x, y = a, b msgs.append("not equal lhs = {}".format(x)) msgs.append("not equal rhs = {}".format(y)) np.testing.assert_array_equal(a, b, err_msg="\n".join(msgs)) @py_func_if_in_function def assertAllGreater(self, a, comparison_target): """Assert element values are all greater than a target value. Args: a: The numpy `ndarray`, or anything that can be converted into a numpy `ndarray` (including Tensor). comparison_target: The target value of comparison. """ a = self._GetNdArray(a) self.assertGreater(np.min(a), comparison_target) @py_func_if_in_function def assertAllLess(self, a, comparison_target): """Assert element values are all less than a target value. Args: a: The numpy `ndarray`, or anything that can be converted into a numpy `ndarray` (including Tensor). comparison_target: The target value of comparison. """ a = self._GetNdArray(a) self.assertLess(np.max(a), comparison_target) @py_func_if_in_function def assertAllGreaterEqual(self, a, comparison_target): """Assert element values are all greater than or equal to a target value. Args: a: The numpy `ndarray`, or anything that can be converted into a numpy `ndarray` (including Tensor). comparison_target: The target value of comparison. """ a = self._GetNdArray(a) self.assertGreaterEqual(np.min(a), comparison_target) @py_func_if_in_function def assertAllLessEqual(self, a, comparison_target): """Assert element values are all less than or equal to a target value. Args: a: The numpy `ndarray`, or anything that can be converted into a numpy `ndarray` (including Tensor). comparison_target: The target value of comparison. """ a = self._GetNdArray(a) self.assertLessEqual(np.max(a), comparison_target) def _format_subscripts(self, subscripts, value, limit=10, indent=2): """Generate a summary of ndarray subscripts as a list of str. If limit == N, this method will print up to the first N subscripts on separate lines. A line of ellipses (...) will be appended at the end if the number of subscripts exceeds N. Args: subscripts: The tensor (np.ndarray) subscripts, of the same format as np.where()'s return value, i.e., a tuple of arrays with each array corresponding to a dimension. E.g., (array([1, 1]), array([0, 1])). value: (np.ndarray) value of the tensor. limit: (int) The maximum number of indices to print. indent: (int) Number of characters to indent at the beginning of each line. Returns: (list of str) the multi-line representation of the subscripts and values, potentially with omission at the end. """ lines = [] subscripts = np.transpose(subscripts) prefix = " " * indent for subscript in itertools.islice(subscripts, limit): lines.append(prefix + str(subscript) + " : " + str(value[tuple(subscript)])) if len(subscripts) > limit: lines.append(prefix + "...") return lines @py_func_if_in_function def assertAllInRange(self, target, lower_bound, upper_bound, open_lower_bound=False, open_upper_bound=False): """Assert that elements in a Tensor are all in a given range. Args: target: The numpy `ndarray`, or anything that can be converted into a numpy `ndarray` (including Tensor). lower_bound: lower bound of the range upper_bound: upper bound of the range open_lower_bound: (`bool`) whether the lower bound is open (i.e., > rather than the default >=) open_upper_bound: (`bool`) whether the upper bound is open (i.e., < rather than the default <=) Raises: AssertionError: if the value tensor does not have an ordered numeric type (float* or int*), or if there are nan values, or if any of the elements do not fall in the specified range. """ target = self._GetNdArray(target) if not (np.issubdtype(target.dtype, np.floating) or np.issubdtype(target.dtype, np.integer)): raise AssertionError( "The value of %s does not have an ordered numeric type, instead it " "has type: %s" % (target, target.dtype)) nan_subscripts = np.where(np.isnan(target)) if np.size(nan_subscripts): raise AssertionError( "%d of the %d element(s) are NaN. " "Subscripts(s) and value(s) of the NaN element(s):\n" % (len(nan_subscripts[0]), np.size(target)) + "\n".join(self._format_subscripts(nan_subscripts, target))) range_str = (("(" if open_lower_bound else "[") + str(lower_bound) + ", " + str(upper_bound) + (")" if open_upper_bound else "]")) violations = ( np.less_equal(target, lower_bound) if open_lower_bound else np.less( target, lower_bound)) violations = np.logical_or( violations, np.greater_equal(target, upper_bound) if open_upper_bound else np.greater(target, upper_bound)) violation_subscripts = np.where(violations) if np.size(violation_subscripts): raise AssertionError( "%d of the %d element(s) are outside the range %s. " % (len(violation_subscripts[0]), np.size(target), range_str) + "Subscript(s) and value(s) of the offending elements:\n" + "\n".join(self._format_subscripts(violation_subscripts, target))) @py_func_if_in_function def assertAllInSet(self, target, expected_set): """Assert that elements of a Tensor are all in a given closed set. Args: target: The numpy `ndarray`, or anything that can be converted into a numpy `ndarray` (including Tensor). expected_set: (`list`, `tuple` or `set`) The closed set that the elements of the value of `target` are expected to fall into. Raises: AssertionError: if any of the elements do not fall into `expected_set`. """ target = self._GetNdArray(target) # Elements in target that are not in expected_set. diff = np.setdiff1d(target.flatten(), list(expected_set)) if np.size(diff): raise AssertionError("%d unique element(s) are not in the set %s: %s" % (np.size(diff), expected_set, diff)) @py_func_if_in_function def assertDTypeEqual(self, target, expected_dtype): """Assert ndarray data type is equal to expected. Args: target: The numpy `ndarray`, or anything that can be converted into a numpy `ndarray` (including Tensor). expected_dtype: Expected data type. """ target = self._GetNdArray(target) if not isinstance(target, list): arrays = [target] for arr in arrays: self.assertEqual(arr.dtype, expected_dtype) # pylint: disable=g-doc-return-or-yield @contextlib.contextmanager def assertRaisesWithPredicateMatch(self, exception_type, expected_err_re_or_predicate): """Returns a context manager to enclose code expected to raise an exception. If the exception is an OpError, the op stack is also included in the message predicate search. Args: exception_type: The expected type of exception that should be raised. expected_err_re_or_predicate: If this is callable, it should be a function of one argument that inspects the passed-in exception and returns True (success) or False (please fail the test). Otherwise, the error message is expected to match this regular expression partially. Returns: A context manager to surround code that is expected to raise an exception. """ if callable(expected_err_re_or_predicate): predicate = expected_err_re_or_predicate else: def predicate(e): err_str = e.message if isinstance(e, errors.OpError) else str(e) op = e.op if isinstance(e, errors.OpError) else None while op is not None: err_str += "\nCaused by: " + op.name op = op._original_op # pylint: disable=protected-access logging.info("Searching within error strings: '%s' within '%s'", expected_err_re_or_predicate, err_str) return re.search(expected_err_re_or_predicate, err_str) try: yield self.fail(exception_type.__name__ + " not raised") except Exception as e: # pylint: disable=broad-except if not isinstance(e, exception_type) or not predicate(e): raise AssertionError("Exception of type %s: %s" % (str(type(e)), str(e))) # pylint: enable=g-doc-return-or-yield def assertRaisesOpError(self, expected_err_re_or_predicate): return self.assertRaisesWithPredicateMatch(errors.OpError, expected_err_re_or_predicate) def assertShapeEqual(self, np_array, tf_tensor, msg=None): """Asserts that a Numpy ndarray and a TensorFlow tensor have the same shape. Args: np_array: A Numpy ndarray or Numpy scalar. tf_tensor: A Tensor. msg: Optional message to report on failure. Raises: TypeError: If the arguments have the wrong type. """ if not isinstance(np_array, (np.ndarray, np.generic)): raise TypeError("np_array must be a Numpy ndarray or Numpy scalar") if not isinstance(tf_tensor, ops.Tensor): raise TypeError("tf_tensor must be a Tensor") self.assertAllEqual( np_array.shape, tf_tensor.get_shape().as_list(), msg=msg) def assertDeviceEqual(self, device1, device2, msg=None): """Asserts that the two given devices are the same. Args: device1: A string device name or TensorFlow `DeviceSpec` object. device2: A string device name or TensorFlow `DeviceSpec` object. msg: Optional message to report on failure. """ device1 = pydev.canonical_name(device1) device2 = pydev.canonical_name(device2) self.assertEqual( device1, device2, "Devices %s and %s are not equal. %s" % (device1, device2, msg)) # Fix Python 3 compatibility issues if six.PY3: # pylint: disable=invalid-name # Silence a deprecation warning assertRaisesRegexp = googletest.TestCase.assertRaisesRegex # assertItemsEqual is assertCountEqual as of 3.2. assertItemsEqual = googletest.TestCase.assertCountEqual # pylint: enable=invalid-name @contextlib.contextmanager def _constrain_devices_and_set_default(self, sess, use_gpu, force_gpu): """Set the session and its graph to global default and constrain devices.""" if context.executing_eagerly(): yield None else: with sess.graph.as_default(), sess.as_default(): if force_gpu: # Use the name of an actual device if one is detected, or # '/device:GPU:0' otherwise gpu_name = gpu_device_name() if not gpu_name: gpu_name = "/device:GPU:0" with sess.graph.device(gpu_name): yield sess elif use_gpu: yield sess else: with sess.graph.device("/device:CPU:0"): yield sess def _create_session(self, graph, config, force_gpu): """See session() for details.""" def prepare_config(config): """Returns a config for sessions. Args: config: An optional config_pb2.ConfigProto to use to configure the session. Returns: A config_pb2.ConfigProto object. """ # TODO(b/114333779): Enforce allow_soft_placement=False when # use_gpu=False. Currently many tests rely on the fact that any device # will be used even when a specific device is supposed to be used. allow_soft_placement = not force_gpu if config is None: config = context.context().config config.allow_soft_placement = allow_soft_placement elif not allow_soft_placement and config.allow_soft_placement: config_copy = context.context().config config = config_copy config.allow_soft_placement = False # Don't perform optimizations for tests so we don't inadvertently run # gpu ops on cpu config.graph_options.optimizer_options.opt_level = -1 # Disable Grappler constant folding since some tests & benchmarks # use constant input and become meaningless after constant folding. # DO NOT DISABLE GRAPPLER OPTIMIZERS WITHOUT CONSULTING WITH THE # GRAPPLER TEAM. config.graph_options.rewrite_options.constant_folding = ( rewriter_config_pb2.RewriterConfig.OFF) config.graph_options.rewrite_options.pin_to_host_optimization = ( rewriter_config_pb2.RewriterConfig.OFF) return config return ErrorLoggingSession(graph=graph, config=prepare_config(config)) def _get_cached_session(self, graph=None, config=None, force_gpu=False, crash_if_inconsistent_args=True): """See cached_session() for documentation.""" if self._cached_session is None: sess = self._create_session( graph=graph, config=config, force_gpu=force_gpu) self._cached_session = sess self._cached_graph = graph self._cached_config = config self._cached_force_gpu = force_gpu return sess else: if crash_if_inconsistent_args and self._cached_graph is not graph: raise ValueError("The graph used to get the cached session is " "different than the one that was used to create the " "session. Maybe create a new session with " "self.session()") if crash_if_inconsistent_args and self._cached_config is not config: raise ValueError("The config used to get the cached session is " "different than the one that was used to create the " "session. Maybe create a new session with " "self.session()") if crash_if_inconsistent_args and (self._cached_force_gpu is not force_gpu): raise ValueError( "The force_gpu value used to get the cached session is " "different than the one that was used to create the " "session. Maybe create a new session with " "self.session()") return self._cached_session @tf_export("test.create_local_cluster") def create_local_cluster(num_workers, num_ps, protocol="grpc", worker_config=None, ps_config=None): """Create and start local servers and return the associated `Server` objects. "PS" stands for "parameter server": a task responsible for storing and updating the model's parameters. Other tasks send updates to these parameters as they work on optimizing the parameters. This particular division of labor between tasks is not required, but is common for distributed training. Read more at https://www.tensorflow.org/guide/extend/architecture ![components](https://www.tensorflow.org/images/diag1.svg "components") Figure illustrates the interaction of these components. "/job:worker/task:0" and "/job:ps/task:0" are both tasks with worker services. Example: ```python workers, _ = tf.test.create_local_cluster(num_workers=2, num_ps=2) worker_sessions = [tf.compat.v1.Session(w.target) for w in workers] with tf.device("/job:ps/task:0"): ... with tf.device("/job:ps/task:1"): ... with tf.device("/job:worker/task:0"): ... with tf.device("/job:worker/task:1"): ... worker_sessions[0].run(...) ``` Args: num_workers: Number of worker servers to start. num_ps: Number of PS servers to start. protocol: Communication protocol. Allowed values are documented in the documentation of `tf.distribute.Server`. worker_config: (optional) `tf.ConfigProto` to initialize workers. Can be used to instantiate multiple devices etc. ps_config: (optional) `tf.ConfigProto` to initialize PS servers. Returns: A tuple `(worker_servers, ps_servers)`. `worker_servers` is a list of `num_workers` objects of type `tf.distribute.Server` (all running locally); and `ps_servers` is a list of `num_ps` objects of similar type. Raises: ImportError: if portpicker module was not found at load time """ if _portpicker_import_error: raise _portpicker_import_error # pylint: disable=raising-bad-type worker_ports = [portpicker.pick_unused_port() for _ in range(num_workers)] ps_ports = [portpicker.pick_unused_port() for _ in range(num_ps)] cluster_dict = { "worker": ["localhost:%s" % port for port in worker_ports], "ps": ["localhost:%s" % port for port in ps_ports] } cs = server_lib.ClusterSpec(cluster_dict) workers = [ server_lib.Server( cs, job_name="worker", protocol=protocol, task_index=ix, config=worker_config, start=True) for ix in range(num_workers) ] ps_servers = [ server_lib.Server( cs, job_name="ps", protocol=protocol, task_index=ix, config=ps_config, start=True) for ix in range(num_ps) ] return workers, ps_servers def get_node_def_from_graph(node_name, graph_def): """Returns the `NodeDef` instance for given node name in the graph def. This method explores only the NodeDefs in `graph_def.node`. Args: node_name: Name of the NodeDef to search for. graph_def: An instance of `GraphDef` proto. Returns: the `NodeDef` instance whose name field matches the given node_name or None. """ for node_def in graph_def.node: if node_def.name == node_name: return node_def return None def set_producer_version(graph, producer_version): """Sets graph.graph_def_versions.producer to `producer_version`.""" # The C API doesn't expose altering GraphDefVersions. We can indirectly set # it via import_graph_def though. graph_def = graph_pb2.GraphDef() graph_def.versions.producer = producer_version with graph.as_default(): importer.import_graph_def(graph_def) assert graph.graph_def_versions.producer, producer_version
cli.py
# encoding: utf-8 from __future__ import print_function import collections import csv import multiprocessing as mp import os import datetime import sys from pprint import pprint import re import itertools import json import logging from optparse import OptionConflictError import traceback from six import text_type from six.moves import input, xrange from six.moves.urllib.error import HTTPError from six.moves.urllib.parse import urljoin, urlparse from six.moves.urllib.request import urlopen import sqlalchemy as sa import routes import paste.script from paste.registry import Registry from paste.script.util.logging_config import fileConfig import click from ckan.config.middleware import make_app import ckan.logic as logic import ckan.model as model import ckan.include.rjsmin as rjsmin import ckan.include.rcssmin as rcssmin import ckan.plugins as p from ckan.common import config from ckan.common import asbool # This is a test Flask request context to be used internally. # Do not use it! _cli_test_request_context = None # NB No CKAN imports are allowed until after the config file is loaded. # i.e. do the imports in methods, after _load_config is called. # Otherwise loggers get disabled. def deprecation_warning(message=None): ''' Print a deprecation warning to STDERR. If ``message`` is given it is also printed to STDERR. ''' sys.stderr.write(u'WARNING: This function is deprecated.') if message: sys.stderr.write(u' ' + message.strip()) sys.stderr.write(u'\n') def error(msg): ''' Print an error message to STDOUT and exit with return code 1. ''' sys.stderr.write(msg) if not msg.endswith('\n'): sys.stderr.write('\n') sys.exit(1) def _parse_db_config(config_key=u'sqlalchemy.url'): db_config = model.parse_db_config(config_key) if not db_config: raise Exception( u'Could not extract db details from url: %r' % config[config_key] ) return db_config def user_add(args): '''Add new user if we use paster sysadmin add or paster user add ''' if len(args) < 1: error('Error: you need to specify the user name.') username = args[0] # parse args into data_dict data_dict = {'name': username} for arg in args[1:]: try: field, value = arg.split('=', 1) if field == 'sysadmin': value = asbool(value) data_dict[field] = value except ValueError: raise ValueError( 'Could not parse arg: %r (expected "<option>=<value>)"' % arg ) # Required while '@' not in data_dict.get('email', ''): print('Error: Invalid email address') data_dict['email'] = input('Email address: ').strip() if 'password' not in data_dict: data_dict['password'] = UserCmd.password_prompt() # Optional if 'fullname' in data_dict: data_dict['fullname'] = data_dict['fullname'].decode( sys.getfilesystemencoding() ) print('Creating user: %r' % username) try: import ckan.logic as logic import ckan.model as model site_user = logic.get_action('get_site_user')({ 'model': model, 'ignore_auth': True}, {} ) context = { 'model': model, 'session': model.Session, 'ignore_auth': True, 'user': site_user['name'], } user_dict = logic.get_action('user_create')(context, data_dict) pprint(user_dict) except logic.ValidationError as e: error(traceback.format_exc()) ## from http://code.activestate.com/recipes/577058/ MIT licence. ## Written by Trent Mick def query_yes_no(question, default="yes"): """Ask a yes/no question via input() and return their answer. "question" is a string that is presented to the user. "default" is the presumed answer if the user just hits <Enter>. It must be "yes" (the default), "no" or None (meaning an answer is required of the user). The "answer" return value is one of "yes" or "no". """ valid = {"yes": "yes", "y": "yes", "ye": "yes", "no": "no", "n": "no"} if default is None: prompt = " [y/n] " elif default == "yes": prompt = " [Y/n] " elif default == "no": prompt = " [y/N] " else: raise ValueError("invalid default answer: '%s'" % default) while 1: sys.stdout.write(question + prompt) choice = input().strip().lower() if default is not None and choice == '': return default elif choice in valid.keys(): return valid[choice] else: sys.stdout.write("Please respond with 'yes' or 'no' " "(or 'y' or 'n').\n") class MockTranslator(object): def gettext(self, value): return value def ugettext(self, value): return value def ungettext(self, singular, plural, n): if n > 1: return plural return singular def _get_config(config=None): from paste.deploy import appconfig if config: filename = os.path.abspath(config) config_source = '-c parameter' elif os.environ.get('CKAN_INI'): filename = os.environ.get('CKAN_INI') config_source = '$CKAN_INI' else: default_filename = 'development.ini' filename = os.path.join(os.getcwd(), default_filename) if not os.path.exists(filename): # give really clear error message for this common situation msg = 'ERROR: You need to specify the CKAN config (.ini) '\ 'file path.'\ '\nUse the --config parameter or set environment ' \ 'variable CKAN_INI or have {}\nin the current directory.' \ .format(default_filename) exit(msg) if not os.path.exists(filename): msg = 'Config file not found: %s' % filename msg += '\n(Given by: %s)' % config_source exit(msg) fileConfig(filename) return appconfig('config:' + filename) def load_config(config, load_site_user=True): conf = _get_config(config) assert 'ckan' not in dir() # otherwise loggers would be disabled # We have now loaded the config. Now we can import ckan for the # first time. from ckan.config.environment import load_environment load_environment(conf.global_conf, conf.local_conf) # Set this internal test request context with the configured environment so # it can be used when calling url_for from the CLI. global _cli_test_request_context app = make_app(conf.global_conf, **conf.local_conf) flask_app = app.apps['flask_app']._wsgi_app _cli_test_request_context = flask_app.test_request_context() registry = Registry() registry.prepare() import pylons registry.register(pylons.translator, MockTranslator()) site_user = None if model.user_table.exists() and load_site_user: # If the DB has already been initialized, create and register # a pylons context object, and add the site user to it, so the # auth works as in a normal web request c = pylons.util.AttribSafeContextObj() registry.register(pylons.c, c) site_user = logic.get_action('get_site_user')({'ignore_auth': True}, {}) pylons.c.user = site_user['name'] pylons.c.userobj = model.User.get(site_user['name']) ## give routes enough information to run url_for parsed = urlparse(conf.get('ckan.site_url', 'http://0.0.0.0')) request_config = routes.request_config() request_config.host = parsed.netloc + parsed.path request_config.protocol = parsed.scheme return site_user def paster_click_group(summary): '''Return a paster command click.Group for paster subcommands :param command: the paster command linked to this function from setup.py, used in help text (e.g. "datastore") :param summary: summary text used in paster's help/command listings (e.g. "Perform commands to set up the datastore") ''' class PasterClickGroup(click.Group): '''A click.Group that may be called like a paster command''' def __call__(self, ignored_command): sys.argv.remove(ignored_command) return super(PasterClickGroup, self).__call__( prog_name=u'paster ' + ignored_command, help_option_names=[u'-h', u'--help'], obj={}) @click.group(cls=PasterClickGroup) @click.option( '--plugin', metavar='ckan', help='paster plugin (when run outside ckan directory)') @click_config_option @click.pass_context def cli(ctx, plugin, config): ctx.obj['config'] = config cli.summary = summary cli.group_name = u'ckan' return cli # common definition for paster ... --config click_config_option = click.option( '-c', '--config', default=None, metavar='CONFIG', help=u'Config file to use (default: development.ini)') class CkanCommand(paste.script.command.Command): '''Base class for classes that implement CKAN paster commands to inherit.''' parser = paste.script.command.Command.standard_parser(verbose=True) parser.add_option('-c', '--config', dest='config', help='Config file to use.') parser.add_option('-f', '--file', action='store', dest='file_path', help="File to dump results to (if needed)") default_verbosity = 1 group_name = 'ckan' def _load_config(self, load_site_user=True): self.site_user = load_config(self.options.config, load_site_user) class ManageDb(CkanCommand): '''Perform various tasks on the database. db create - alias of db upgrade db init - create and put in default data db clean - clears db (including dropping tables) and search index db upgrade [version no.] - Data migrate db version - returns current version of data schema db create-from-model - create database from the model (indexes not made) db migrate-filestore - migrate all uploaded data from the 2.1 filesore. ''' summary = __doc__.split('\n')[0] usage = __doc__ max_args = None min_args = 1 def command(self): cmd = self.args[0] self._load_config(cmd != 'upgrade') import ckan.model as model import ckan.lib.search as search if cmd == 'init': model.repo.init_db() if self.verbose: print('Initialising DB: SUCCESS') elif cmd == 'clean' or cmd == 'drop': # remove any *.pyc version files to prevent conflicts v_path = os.path.join(os.path.dirname(__file__), '..', 'migration', 'versions', '*.pyc') import glob filelist = glob.glob(v_path) for f in filelist: os.remove(f) model.repo.clean_db() search.clear_all() if self.verbose: print('Cleaning DB: SUCCESS') elif cmd == 'upgrade': model.repo.upgrade_db(*self.args[1:]) elif cmd == 'downgrade': model.repo.downgrade_db(*self.args[1:]) elif cmd == 'version': self.version() elif cmd == 'create-from-model': model.repo.create_db() if self.verbose: print('Creating DB: SUCCESS') else: error('Command %s not recognized' % cmd) def version(self): from ckan.model import Session print(Session.execute('select version from ' 'migrate_version;').fetchall()) class SearchIndexCommand(CkanCommand): '''Creates a search index for all datasets Usage: search-index [-i] [-o] [-r] [-e] [-q] rebuild [dataset_name] - reindex dataset_name if given, if not then rebuild full search index (all datasets) search-index rebuild_fast - reindex using multiprocessing using all cores. This acts in the same way as rubuild -r [EXPERIMENTAL] search-index check - checks for datasets not indexed search-index show DATASET_NAME - shows index of a dataset search-index clear [dataset_name] - clears the search index for the provided dataset or for the whole ckan instance ''' summary = __doc__.split('\n')[0] usage = __doc__ max_args = 2 min_args = 0 def __init__(self, name): super(SearchIndexCommand, self).__init__(name) self.parser.add_option('-i', '--force', dest='force', action='store_true', default=False, help='Ignore exceptions when rebuilding the index') self.parser.add_option('-o', '--only-missing', dest='only_missing', action='store_true', default=False, help='Index non indexed datasets only') self.parser.add_option('-r', '--refresh', dest='refresh', action='store_true', default=False, help='Refresh current index (does not clear the existing one)') self.parser.add_option('-q', '--quiet', dest='quiet', action='store_true', default=False, help='Do not output index rebuild progress') self.parser.add_option('-e', '--commit-each', dest='commit_each', action='store_true', default=False, help= '''Perform a commit after indexing each dataset. This ensures that changes are immediately available on the search, but slows significantly the process. Default is false.''') def command(self): if not self.args: # default to printing help print(self.usage) return cmd = self.args[0] # Do not run load_config yet if cmd == 'rebuild_fast': self.rebuild_fast() return self._load_config() if cmd == 'rebuild': self.rebuild() elif cmd == 'check': self.check() elif cmd == 'show': self.show() elif cmd == 'clear': self.clear() else: print('Command %s not recognized' % cmd) def rebuild(self): from ckan.lib.search import rebuild, commit # BY default we don't commit after each request to Solr, as it is # a really heavy operation and slows things a lot if len(self.args) > 1: rebuild(self.args[1]) else: rebuild(only_missing=self.options.only_missing, force=self.options.force, refresh=self.options.refresh, defer_commit=(not self.options.commit_each), quiet=self.options.quiet) if not self.options.commit_each: commit() def check(self): from ckan.lib.search import check check() def show(self): from ckan.lib.search import show if not len(self.args) == 2: print('Missing parameter: dataset-name') return index = show(self.args[1]) pprint(index) def clear(self): from ckan.lib.search import clear, clear_all package_id = self.args[1] if len(self.args) > 1 else None if not package_id: clear_all() else: clear(package_id) def rebuild_fast(self): ### Get out config but without starting pylons environment #### conf = _get_config() ### Get ids using own engine, otherwise multiprocess will balk db_url = conf['sqlalchemy.url'] engine = sa.create_engine(db_url) package_ids = [] result = engine.execute("select id from package where state = 'active';") for row in result: package_ids.append(row[0]) def start(ids): ## load actual enviroment for each subprocess, so each have thier own ## sa session self._load_config() from ckan.lib.search import rebuild, commit rebuild(package_ids=ids) commit() def chunks(l, n): """ Yield n successive chunks from l. """ newn = int(len(l) / n) for i in xrange(0, n-1): yield l[i*newn:i*newn+newn] yield l[n*newn-newn:] processes = [] for chunk in chunks(package_ids, mp.cpu_count()): process = mp.Process(target=start, args=(chunk,)) processes.append(process) process.daemon = True process.start() for process in processes: process.join() class Notification(CkanCommand): '''Send out modification notifications. In "replay" mode, an update signal is sent for each dataset in the database. Usage: notify replay - send out modification signals ''' summary = __doc__.split('\n')[0] usage = __doc__ max_args = 1 min_args = 0 def command(self): self._load_config() from ckan.model import Session, Package, DomainObjectOperation from ckan.model.modification import DomainObjectModificationExtension if not self.args: # default to run cmd = 'replay' else: cmd = self.args[0] if cmd == 'replay': dome = DomainObjectModificationExtension() for package in Session.query(Package): dome.notify(package, DomainObjectOperation.changed) else: print('Command %s not recognized' % cmd) class RDFExport(CkanCommand): '''Export active datasets as RDF This command dumps out all currently active datasets as RDF into the specified folder. Usage: paster rdf-export /path/to/store/output ''' summary = __doc__.split('\n')[0] usage = __doc__ def command(self): self._load_config() if not self.args: # default to run print(RDFExport.__doc__) else: self.export_datasets(self.args[0]) def export_datasets(self, out_folder): ''' Export datasets as RDF to an output folder. ''' from ckan.common import config import ckan.model as model import ckan.logic as logic import ckan.lib.helpers as h # Create output folder if not exists if not os.path.isdir(out_folder): os.makedirs(out_folder) fetch_url = config['ckan.site_url'] user = logic.get_action('get_site_user')({'model': model, 'ignore_auth': True}, {}) context = {'model': model, 'session': model.Session, 'user': user['name']} dataset_names = logic.get_action('package_list')(context, {}) for dataset_name in dataset_names: dd = logic.get_action('package_show')(context, {'id': dataset_name}) if not dd['state'] == 'active': continue url = h.url_for('dataset.read', id=dd['name']) url = urljoin(fetch_url, url[1:]) + '.rdf' try: fname = os.path.join(out_folder, dd['name']) + ".rdf" try: r = urlopen(url).read() except HTTPError as e: if e.code == 404: error('Please install ckanext-dcat and enable the ' + '`dcat` plugin to use the RDF serializations') with open(fname, 'wb') as f: f.write(r) except IOError as ioe: sys.stderr.write(str(ioe) + "\n") class Sysadmin(CkanCommand): '''Gives sysadmin rights to a named user Usage: sysadmin - lists sysadmins sysadmin list - lists sysadmins sysadmin add USERNAME - make an existing user into a sysadmin sysadmin add USERNAME [FIELD1=VALUE1 FIELD2=VALUE2 ...] - creates a new user that is a sysadmin (prompts for password and email if not supplied). Field can be: apikey email fullname name (this will be the username) password sysadmin remove USERNAME - removes user from sysadmins ''' summary = __doc__.split('\n')[0] usage = __doc__ max_args = None min_args = 0 def command(self): self._load_config() cmd = self.args[0] if self.args else None if cmd is None or cmd == 'list': self.list() elif cmd == 'add': self.add() elif cmd == 'remove': self.remove() else: print('Command %s not recognized' % cmd) def list(self): import ckan.model as model print('Sysadmins:') sysadmins = model.Session.query(model.User).filter_by(sysadmin=True, state='active') print('count = %i' % sysadmins.count()) for sysadmin in sysadmins: print('%s name=%s email=%s id=%s' % ( sysadmin.__class__.__name__, sysadmin.name, sysadmin.email, sysadmin.id)) def add(self): import ckan.model as model if len(self.args) < 2: print('Need name of the user to be made sysadmin.') return username = self.args[1] user = model.User.by_name(text_type(username)) if not user: print('User "%s" not found' % username) makeuser = input('Create new user: %s? [y/n]' % username) if makeuser == 'y': user_add(self.args[1:]) user = model.User.by_name(text_type(username)) else: print('Exiting ...') return user.sysadmin = True model.Session.add(user) model.repo.commit_and_remove() print('Added %s as sysadmin' % username) def remove(self): import ckan.model as model if len(self.args) < 2: print('Need name of the user to be made sysadmin.') return username = self.args[1] user = model.User.by_name(text_type(username)) if not user: print('Error: user "%s" not found!' % username) return user.sysadmin = False model.repo.commit_and_remove() class UserCmd(CkanCommand): '''Manage users Usage: user - lists users user list - lists users user USERNAME - shows user properties user add USERNAME [FIELD1=VALUE1 FIELD2=VALUE2 ...] - add a user (prompts for email and password if not supplied). Field can be: apikey email fullname name (this will be the username) password user setpass USERNAME - set user password (prompts) user remove USERNAME - removes user from users user search QUERY - searches for a user name ''' summary = __doc__.split('\n')[0] usage = __doc__ max_args = None min_args = 0 def command(self): self._load_config() if not self.args: self.list() else: cmd = self.args[0] if cmd == 'add': self.add() elif cmd == 'remove': self.remove() elif cmd == 'search': self.search() elif cmd == 'setpass': self.setpass() elif cmd == 'list': self.list() else: self.show() def get_user_str(self, user): user_str = 'name=%s' % user.name if user.name != user.display_name: user_str += ' display=%s' % user.display_name return user_str def list(self): import ckan.model as model print('Users:') users = model.Session.query(model.User).filter_by(state='active') print('count = %i' % users.count()) for user in users: print(self.get_user_str(user)) def show(self): import ckan.model as model username = self.args[0] user = model.User.get(text_type(username)) print('User: \n', user) def setpass(self): import ckan.model as model if len(self.args) < 2: print('Need name of the user.') return username = self.args[1] user = model.User.get(username) print('Editing user: %r' % user.name) password = self.password_prompt() user.password = password model.repo.commit_and_remove() print('Done') def search(self): import ckan.model as model if len(self.args) < 2: print('Need user name query string.') return query_str = self.args[1] query = model.User.search(query_str) print('%i users matching %r:' % (query.count(), query_str)) for user in query.all(): print(self.get_user_str(user)) @classmethod def password_prompt(cls): import getpass password1 = None while not password1: password1 = getpass.getpass('Password: ') password2 = getpass.getpass('Confirm password: ') if password1 != password2: error('Passwords do not match') return password1 def add(self): user_add(self.args[1:]) def remove(self): import ckan.model as model if len(self.args) < 2: print('Need name of the user.') return username = self.args[1] p.toolkit.get_action('user_delete')( {'model': model, 'ignore_auth': True}, {'id': username}) print('Deleted user: %s' % username) class DatasetCmd(CkanCommand): '''Manage datasets Usage: dataset DATASET_NAME|ID - shows dataset properties dataset show DATASET_NAME|ID - shows dataset properties dataset list - lists datasets dataset delete [DATASET_NAME|ID] - changes dataset state to 'deleted' dataset purge [DATASET_NAME|ID] - removes dataset from db entirely ''' summary = __doc__.split('\n')[0] usage = __doc__ max_args = 3 min_args = 0 def command(self): self._load_config() if not self.args: print(self.usage) else: cmd = self.args[0] if cmd == 'delete': self.delete(self.args[1]) elif cmd == 'purge': self.purge(self.args[1]) elif cmd == 'list': self.list() elif cmd == 'show': self.show(self.args[1]) else: self.show(self.args[0]) def list(self): import ckan.model as model print('Datasets:') datasets = model.Session.query(model.Package) print('count = %i' % datasets.count()) for dataset in datasets: state = ('(%s)' % dataset.state) if dataset.state != 'active' else '' print('%s %s %s' % (dataset.id, dataset.name, state)) def _get_dataset(self, dataset_ref): import ckan.model as model dataset = model.Package.get(text_type(dataset_ref)) assert dataset, 'Could not find dataset matching reference: %r' % dataset_ref return dataset def show(self, dataset_ref): import pprint dataset = self._get_dataset(dataset_ref) pprint.pprint(dataset.as_dict()) def delete(self, dataset_ref): import ckan.model as model dataset = self._get_dataset(dataset_ref) old_state = dataset.state dataset.delete() model.repo.commit_and_remove() dataset = self._get_dataset(dataset_ref) print('%s %s -> %s' % (dataset.name, old_state, dataset.state)) def purge(self, dataset_ref): import ckan.logic as logic dataset = self._get_dataset(dataset_ref) name = dataset.name site_user = logic.get_action('get_site_user')({'ignore_auth': True}, {}) context = {'user': site_user['name']} logic.get_action('dataset_purge')( context, {'id': dataset_ref}) print('%s purged' % name) class Ratings(CkanCommand): '''Manage the ratings stored in the db Usage: ratings count - counts ratings ratings clean - remove all ratings ratings clean-anonymous - remove only anonymous ratings ''' summary = __doc__.split('\n')[0] usage = __doc__ max_args = 1 min_args = 1 def command(self): self._load_config() import ckan.model as model cmd = self.args[0] if cmd == 'count': self.count() elif cmd == 'clean': self.clean() elif cmd == 'clean-anonymous': self.clean(user_ratings=False) else: print('Command %s not recognized' % cmd) def count(self): import ckan.model as model q = model.Session.query(model.Rating) print("%i ratings" % q.count()) q = q.filter(model.Rating.user_id is None) print("of which %i are anonymous ratings" % q.count()) def clean(self, user_ratings=True): import ckan.model as model q = model.Session.query(model.Rating) print("%i ratings" % q.count()) if not user_ratings: q = q.filter(model.Rating.user_id is None) print("of which %i are anonymous ratings" % q.count()) ratings = q.all() for rating in ratings: rating.purge() model.repo.commit_and_remove() ## Used by the Tracking class _ViewCount = collections.namedtuple("ViewCount", "id name count") class Tracking(CkanCommand): '''Update tracking statistics Usage: tracking update [start_date] - update tracking stats tracking export FILE [start_date] - export tracking stats to a csv file ''' summary = __doc__.split('\n')[0] usage = __doc__ max_args = 3 min_args = 1 def command(self): self._load_config() import ckan.model as model engine = model.meta.engine cmd = self.args[0] if cmd == 'update': start_date = self.args[1] if len(self.args) > 1 else None self.update_all(engine, start_date) elif cmd == 'export': if len(self.args) <= 1: error(self.__class__.__doc__) output_file = self.args[1] start_date = self.args[2] if len(self.args) > 2 else None self.update_all(engine, start_date) self.export_tracking(engine, output_file) else: error(self.__class__.__doc__) def update_all(self, engine, start_date=None): if start_date: start_date = datetime.datetime.strptime(start_date, '%Y-%m-%d') else: # No date given. See when we last have data for and get data # from 2 days before then in case new data is available. # If no date here then use 2011-01-01 as the start date sql = '''SELECT tracking_date from tracking_summary ORDER BY tracking_date DESC LIMIT 1;''' result = engine.execute(sql).fetchall() if result: start_date = result[0]['tracking_date'] start_date += datetime.timedelta(-2) # convert date to datetime combine = datetime.datetime.combine start_date = combine(start_date, datetime.time(0)) else: start_date = datetime.datetime(2011, 1, 1) start_date_solrsync = start_date end_date = datetime.datetime.now() while start_date < end_date: stop_date = start_date + datetime.timedelta(1) self.update_tracking(engine, start_date) print('tracking updated for %s' % start_date) start_date = stop_date self.update_tracking_solr(engine, start_date_solrsync) def _total_views(self, engine): sql = ''' SELECT p.id, p.name, COALESCE(SUM(s.count), 0) AS total_views FROM package AS p LEFT OUTER JOIN tracking_summary AS s ON s.package_id = p.id GROUP BY p.id, p.name ORDER BY total_views DESC ''' return [_ViewCount(*t) for t in engine.execute(sql).fetchall()] def _recent_views(self, engine, measure_from): sql = ''' SELECT p.id, p.name, COALESCE(SUM(s.count), 0) AS total_views FROM package AS p LEFT OUTER JOIN tracking_summary AS s ON s.package_id = p.id WHERE s.tracking_date >= %(measure_from)s GROUP BY p.id, p.name ORDER BY total_views DESC ''' return [_ViewCount(*t) for t in engine.execute(sql, measure_from=str(measure_from)).fetchall()] def export_tracking(self, engine, output_filename): '''Write tracking summary to a csv file.''' HEADINGS = [ "dataset id", "dataset name", "total views", "recent views (last 2 weeks)", ] measure_from = datetime.date.today() - datetime.timedelta(days=14) recent_views = self._recent_views(engine, measure_from) total_views = self._total_views(engine) with open(output_filename, 'w') as fh: f_out = csv.writer(fh) f_out.writerow(HEADINGS) recent_views_for_id = dict((r.id, r.count) for r in recent_views) f_out.writerows([(r.id, r.name, r.count, recent_views_for_id.get(r.id, 0)) for r in total_views]) def update_tracking(self, engine, summary_date): PACKAGE_URL = '/dataset/' # clear out existing data before adding new sql = '''DELETE FROM tracking_summary WHERE tracking_date='%s'; ''' % summary_date engine.execute(sql) sql = '''SELECT DISTINCT url, user_key, CAST(access_timestamp AS Date) AS tracking_date, tracking_type INTO tracking_tmp FROM tracking_raw WHERE CAST(access_timestamp as Date)=%s; INSERT INTO tracking_summary (url, count, tracking_date, tracking_type) SELECT url, count(user_key), tracking_date, tracking_type FROM tracking_tmp GROUP BY url, tracking_date, tracking_type; DROP TABLE tracking_tmp; COMMIT;''' engine.execute(sql, summary_date) # get ids for dataset urls sql = '''UPDATE tracking_summary t SET package_id = COALESCE( (SELECT id FROM package p WHERE p.name = regexp_replace(' ' || t.url, '^[ ]{1}(/\w{2}){0,1}' || %s, '')) ,'~~not~found~~') WHERE t.package_id IS NULL AND tracking_type = 'page';''' engine.execute(sql, PACKAGE_URL) # update summary totals for resources sql = '''UPDATE tracking_summary t1 SET running_total = ( SELECT sum(count) FROM tracking_summary t2 WHERE t1.url = t2.url AND t2.tracking_date <= t1.tracking_date ) ,recent_views = ( SELECT sum(count) FROM tracking_summary t2 WHERE t1.url = t2.url AND t2.tracking_date <= t1.tracking_date AND t2.tracking_date >= t1.tracking_date - 14 ) WHERE t1.running_total = 0 AND tracking_type = 'resource';''' engine.execute(sql) # update summary totals for pages sql = '''UPDATE tracking_summary t1 SET running_total = ( SELECT sum(count) FROM tracking_summary t2 WHERE t1.package_id = t2.package_id AND t2.tracking_date <= t1.tracking_date ) ,recent_views = ( SELECT sum(count) FROM tracking_summary t2 WHERE t1.package_id = t2.package_id AND t2.tracking_date <= t1.tracking_date AND t2.tracking_date >= t1.tracking_date - 14 ) WHERE t1.running_total = 0 AND tracking_type = 'page' AND t1.package_id IS NOT NULL AND t1.package_id != '~~not~found~~';''' engine.execute(sql) def update_tracking_solr(self, engine, start_date): sql = '''SELECT package_id FROM tracking_summary where package_id!='~~not~found~~' and tracking_date >= %s;''' results = engine.execute(sql, start_date) package_ids = set() for row in results: package_ids.add(row['package_id']) total = len(package_ids) not_found = 0 print('%i package index%s to be rebuilt starting from %s' % (total, '' if total < 2 else 'es', start_date)) from ckan.lib.search import rebuild for package_id in package_ids: try: rebuild(package_id) except logic.NotFound: print("Error: package %s not found." % (package_id)) not_found += 1 except KeyboardInterrupt: print("Stopped.") return except: raise print('search index rebuilding done.' + (' %i not found.' % (not_found) if not_found else "")) class PluginInfo(CkanCommand): '''Provide info on installed plugins. ''' summary = __doc__.split('\n')[0] usage = __doc__ max_args = 0 min_args = 0 def command(self): self.get_info() def get_info(self): ''' print info about current plugins from the .ini file''' import ckan.plugins as p self._load_config() interfaces = {} plugins = {} for name in dir(p): item = getattr(p, name) try: if issubclass(item, p.Interface): interfaces[item] = {'class': item} except TypeError: pass for interface in interfaces: for plugin in p.PluginImplementations(interface): name = plugin.name if name not in plugins: plugins[name] = {'doc': plugin.__doc__, 'class': plugin, 'implements': []} plugins[name]['implements'].append(interface.__name__) for plugin in plugins: p = plugins[plugin] print(plugin + ':') print('-' * (len(plugin) + 1)) if p['doc']: print(p['doc']) print('Implements:') for i in p['implements']: extra = None if i == 'ITemplateHelpers': extra = self.template_helpers(p['class']) if i == 'IActions': extra = self.actions(p['class']) print(' %s' % i) if extra: print(extra) print() def actions(self, cls): ''' Return readable action function info. ''' actions = cls.get_actions() return self.function_info(actions) def template_helpers(self, cls): ''' Return readable helper function info. ''' helpers = cls.get_helpers() return self.function_info(helpers) def function_info(self, functions): ''' Take a dict of functions and output readable info ''' import inspect output = [] for function_name in functions: fn = functions[function_name] args_info = inspect.getargspec(fn) params = args_info.args num_params = len(params) if args_info.varargs: params.append('*' + args_info.varargs) if args_info.keywords: params.append('**' + args_info.keywords) if args_info.defaults: offset = num_params - len(args_info.defaults) for i, v in enumerate(args_info.defaults): params[i + offset] = params[i + offset] + '=' + repr(v) # is this a classmethod if so remove the first parameter if inspect.ismethod(fn) and inspect.isclass(fn.__self__): params = params[1:] params = ', '.join(params) output.append(' %s(%s)' % (function_name, params)) # doc string if fn.__doc__: bits = fn.__doc__.split('\n') for bit in bits: output.append(' %s' % bit) return ('\n').join(output) class CreateTestDataCommand(CkanCommand): '''Create test data in the database. Tests can also delete the created objects easily with the delete() method. create-test-data - annakarenina and warandpeace create-test-data search - realistic data to test search create-test-data gov - government style data create-test-data family - package relationships data create-test-data user - create a user 'tester' with api key 'tester' create-test-data translations - annakarenina, warandpeace, and some test translations of terms create-test-data vocabs - annakerenina, warandpeace, and some test vocabularies create-test-data hierarchy - hierarchy of groups ''' summary = __doc__.split('\n')[0] usage = __doc__ max_args = 1 min_args = 0 def command(self): self._load_config() from ckan.lib.create_test_data import CreateTestData if self.args: cmd = self.args[0] else: cmd = 'basic' if self.verbose: print('Creating %s test data' % cmd) if cmd == 'basic': CreateTestData.create_basic_test_data() elif cmd == 'user': CreateTestData.create_test_user() print('Created user %r with password %r and apikey %r' % ('tester', 'tester', 'tester')) elif cmd == 'search': CreateTestData.create_search_test_data() elif cmd == 'gov': CreateTestData.create_gov_test_data() elif cmd == 'family': CreateTestData.create_family_test_data() elif cmd == 'translations': CreateTestData.create_translations_test_data() elif cmd == 'vocabs': CreateTestData.create_vocabs_test_data() elif cmd == 'hierarchy': CreateTestData.create_group_hierarchy_test_data() else: print('Command %s not recognized' % cmd) raise NotImplementedError if self.verbose: print('Creating %s test data: Complete!' % cmd) class Profile(CkanCommand): '''Code speed profiler Provide a ckan url and it will make the request and record how long each function call took in a file that can be read by pstats.Stats (command-line) or runsnakerun (gui). Usage: profile URL [username] e.g. profile /data/search The result is saved in profile.data.search To view the profile in runsnakerun: runsnakerun ckan.data.search.profile You may need to install python module: cProfile ''' summary = __doc__.split('\n')[0] usage = __doc__ max_args = 2 min_args = 1 def _load_config_into_test_app(self): from paste.deploy import loadapp import paste.fixture if not self.options.config: msg = 'No config file supplied' raise self.BadCommand(msg) self.filename = os.path.abspath(self.options.config) if not os.path.exists(self.filename): raise AssertionError('Config filename %r does not exist.' % self.filename) fileConfig(self.filename) wsgiapp = loadapp('config:' + self.filename) self.app = paste.fixture.TestApp(wsgiapp) def command(self): self._load_config_into_test_app() import paste.fixture import cProfile import re url = self.args[0] if self.args[1:]: user = self.args[1] else: user = 'visitor' def profile_url(url): try: res = self.app.get(url, status=[200], extra_environ={'REMOTE_USER': user}) except paste.fixture.AppError: print('App error: ', url.strip()) except KeyboardInterrupt: raise except Exception: error(traceback.format_exc()) output_filename = 'ckan%s.profile' % re.sub('[/?]', '.', url.replace('/', '.')) profile_command = "profile_url('%s')" % url cProfile.runctx(profile_command, globals(), locals(), filename=output_filename) import pstats stats = pstats.Stats(output_filename) stats.sort_stats('cumulative') stats.print_stats(0.1) # show only top 10% of lines print('Only top 10% of lines shown') print('Written profile to: %s' % output_filename) class CreateColorSchemeCommand(CkanCommand): '''Create or remove a color scheme. After running this, you'll need to regenerate the css files. See paster's less command for details. color - creates a random color scheme color clear - clears any color scheme color <'HEX'> - uses as base color eg '#ff00ff' must be quoted. color <VALUE> - a float between 0.0 and 1.0 used as base hue color <COLOR_NAME> - html color name used for base color eg lightblue ''' summary = __doc__.split('\n')[0] usage = __doc__ max_args = 1 min_args = 0 rules = [ '@layoutLinkColor', '@mastheadBackgroundColor', '@btnPrimaryBackground', '@btnPrimaryBackgroundHighlight', ] # list of predefined colors color_list = { 'aliceblue': '#f0fff8', 'antiquewhite': '#faebd7', 'aqua': '#00ffff', 'aquamarine': '#7fffd4', 'azure': '#f0ffff', 'beige': '#f5f5dc', 'bisque': '#ffe4c4', 'black': '#000000', 'blanchedalmond': '#ffebcd', 'blue': '#0000ff', 'blueviolet': '#8a2be2', 'brown': '#a52a2a', 'burlywood': '#deb887', 'cadetblue': '#5f9ea0', 'chartreuse': '#7fff00', 'chocolate': '#d2691e', 'coral': '#ff7f50', 'cornflowerblue': '#6495ed', 'cornsilk': '#fff8dc', 'crimson': '#dc143c', 'cyan': '#00ffff', 'darkblue': '#00008b', 'darkcyan': '#008b8b', 'darkgoldenrod': '#b8860b', 'darkgray': '#a9a9a9', 'darkgrey': '#a9a9a9', 'darkgreen': '#006400', 'darkkhaki': '#bdb76b', 'darkmagenta': '#8b008b', 'darkolivegreen': '#556b2f', 'darkorange': '#ff8c00', 'darkorchid': '#9932cc', 'darkred': '#8b0000', 'darksalmon': '#e9967a', 'darkseagreen': '#8fbc8f', 'darkslateblue': '#483d8b', 'darkslategray': '#2f4f4f', 'darkslategrey': '#2f4f4f', 'darkturquoise': '#00ced1', 'darkviolet': '#9400d3', 'deeppink': '#ff1493', 'deepskyblue': '#00bfff', 'dimgray': '#696969', 'dimgrey': '#696969', 'dodgerblue': '#1e90ff', 'firebrick': '#b22222', 'floralwhite': '#fffaf0', 'forestgreen': '#228b22', 'fuchsia': '#ff00ff', 'gainsboro': '#dcdcdc', 'ghostwhite': '#f8f8ff', 'gold': '#ffd700', 'goldenrod': '#daa520', 'gray': '#808080', 'grey': '#808080', 'green': '#008000', 'greenyellow': '#adff2f', 'honeydew': '#f0fff0', 'hotpink': '#ff69b4', 'indianred ': '#cd5c5c', 'indigo ': '#4b0082', 'ivory': '#fffff0', 'khaki': '#f0e68c', 'lavender': '#e6e6fa', 'lavenderblush': '#fff0f5', 'lawngreen': '#7cfc00', 'lemonchiffon': '#fffacd', 'lightblue': '#add8e6', 'lightcoral': '#f08080', 'lightcyan': '#e0ffff', 'lightgoldenrodyellow': '#fafad2', 'lightgray': '#d3d3d3', 'lightgrey': '#d3d3d3', 'lightgreen': '#90ee90', 'lightpink': '#ffb6c1', 'lightsalmon': '#ffa07a', 'lightseagreen': '#20b2aa', 'lightskyblue': '#87cefa', 'lightslategray': '#778899', 'lightslategrey': '#778899', 'lightsteelblue': '#b0c4de', 'lightyellow': '#ffffe0', 'lime': '#00ff00', 'limegreen': '#32cd32', 'linen': '#faf0e6', 'magenta': '#ff00ff', 'maroon': '#800000', 'mediumaquamarine': '#66cdaa', 'mediumblue': '#0000cd', 'mediumorchid': '#ba55d3', 'mediumpurple': '#9370d8', 'mediumseagreen': '#3cb371', 'mediumslateblue': '#7b68ee', 'mediumspringgreen': '#00fa9a', 'mediumturquoise': '#48d1cc', 'mediumvioletred': '#c71585', 'midnightblue': '#191970', 'mintcream': '#f5fffa', 'mistyrose': '#ffe4e1', 'moccasin': '#ffe4b5', 'navajowhite': '#ffdead', 'navy': '#000080', 'oldlace': '#fdf5e6', 'olive': '#808000', 'olivedrab': '#6b8e23', 'orange': '#ffa500', 'orangered': '#ff4500', 'orchid': '#da70d6', 'palegoldenrod': '#eee8aa', 'palegreen': '#98fb98', 'paleturquoise': '#afeeee', 'palevioletred': '#d87093', 'papayawhip': '#ffefd5', 'peachpuff': '#ffdab9', 'peru': '#cd853f', 'pink': '#ffc0cb', 'plum': '#dda0dd', 'powderblue': '#b0e0e6', 'purple': '#800080', 'red': '#ff0000', 'rosybrown': '#bc8f8f', 'royalblue': '#4169e1', 'saddlebrown': '#8b4513', 'salmon': '#fa8072', 'sandybrown': '#f4a460', 'seagreen': '#2e8b57', 'seashell': '#fff5ee', 'sienna': '#a0522d', 'silver': '#c0c0c0', 'skyblue': '#87ceeb', 'slateblue': '#6a5acd', 'slategray': '#708090', 'slategrey': '#708090', 'snow': '#fffafa', 'springgreen': '#00ff7f', 'steelblue': '#4682b4', 'tan': '#d2b48c', 'teal': '#008080', 'thistle': '#d8bfd8', 'tomato': '#ff6347', 'turquoise': '#40e0d0', 'violet': '#ee82ee', 'wheat': '#f5deb3', 'white': '#ffffff', 'whitesmoke': '#f5f5f5', 'yellow': '#ffff00', 'yellowgreen': '#9acd32', } def create_colors(self, hue, num_colors=5, saturation=None, lightness=None): if saturation is None: saturation = 0.9 if lightness is None: lightness = 40 else: lightness *= 100 import math saturation -= math.trunc(saturation) print(hue, saturation) import colorsys ''' Create n related colours ''' colors = [] for i in xrange(num_colors): ix = i * (1.0/num_colors) _lightness = (lightness + (ix * 40))/100. if _lightness > 1.0: _lightness = 1.0 color = colorsys.hls_to_rgb(hue, _lightness, saturation) hex_color = '#' for part in color: hex_color += '%02x' % int(part * 255) # check and remove any bad values if not re.match('^\#[0-9a-f]{6}$', hex_color): hex_color = '#FFFFFF' colors.append(hex_color) return colors def command(self): hue = None saturation = None lightness = None public = config.get(u'ckan.base_public_folder') path = os.path.dirname(__file__) path = os.path.join(path, '..', public, 'base', 'less', 'custom.less') if self.args: arg = self.args[0] rgb = None if arg == 'clear': os.remove(path) print('custom colors removed.') elif arg.startswith('#'): color = arg[1:] if len(color) == 3: rgb = [int(x, 16) * 16 for x in color] elif len(color) == 6: rgb = [int(x, 16) for x in re.findall('..', color)] else: print('ERROR: invalid color') elif arg.lower() in self.color_list: color = self.color_list[arg.lower()][1:] rgb = [int(x, 16) for x in re.findall('..', color)] else: try: hue = float(self.args[0]) except ValueError: print('ERROR argument `%s` not recognised' % arg) if rgb: import colorsys hue, lightness, saturation = colorsys.rgb_to_hls(*rgb) lightness = lightness / 340 # deal with greys if not (hue == 0.0 and saturation == 0.0): saturation = None else: import random hue = random.random() if hue is not None: f = open(path, 'w') colors = self.create_colors(hue, saturation=saturation, lightness=lightness) for i in xrange(len(self.rules)): f.write('%s: %s;\n' % (self.rules[i], colors[i])) print('%s: %s;\n' % (self.rules[i], colors[i])) f.close print('Color scheme has been created.') print('Make sure less is run for changes to take effect.') class TranslationsCommand(CkanCommand): '''Translation helper functions trans js - generate the javascript translations trans mangle - mangle the zh_TW translations for testing ''' summary = __doc__.split('\n')[0] usage = __doc__ max_args = 1 min_args = 1 def command(self): self._load_config() from ckan.common import config from ckan.lib.i18n import build_js_translations ckan_path = os.path.join(os.path.dirname(__file__), '..') self.i18n_path = config.get('ckan.i18n_directory', os.path.join(ckan_path, 'i18n')) command = self.args[0] if command == 'mangle': self.mangle_po() elif command == 'js': build_js_translations() else: print('command not recognised') def mangle_po(self): ''' This will mangle the zh_TW translations for translation coverage testing. NOTE: This will destroy the current translations fot zh_TW ''' import polib pot_path = os.path.join(self.i18n_path, 'ckan.pot') po = polib.pofile(pot_path) # we don't want to mangle the following items in strings # %(...)s %s %0.3f %1$s %2$0.3f [1:...] {...} etc # sprintf bit after % spf_reg_ex = "\+?(0|'.)?-?\d*(.\d*)?[\%bcdeufosxX]" extract_reg_ex = '(\%\([^\)]*\)' + spf_reg_ex + \ '|\[\d*\:[^\]]*\]' + \ '|\{[^\}]*\}' + \ '|<[^>}]*>' + \ '|\%((\d)*\$)?' + spf_reg_ex + ')' for entry in po: msg = entry.msgid.encode('utf-8') matches = re.finditer(extract_reg_ex, msg) length = len(msg) position = 0 translation = u'' for match in matches: translation += '-' * (match.start() - position) position = match.end() translation += match.group(0) translation += '-' * (length - position) entry.msgstr = translation out_dir = os.path.join(self.i18n_path, 'zh_TW', 'LC_MESSAGES') try: os.makedirs(out_dir) except OSError: pass po.metadata['Plural-Forms'] = "nplurals=1; plural=0\n" out_po = os.path.join(out_dir, 'ckan.po') out_mo = os.path.join(out_dir, 'ckan.mo') po.save(out_po) po.save_as_mofile(out_mo) print('zh_TW has been mangled') class MinifyCommand(CkanCommand): '''Create minified versions of the given Javascript and CSS files. Usage: paster minify [--clean] PATH for example: paster minify ckan/public/base paster minify ckan/public/base/css/*.css paster minify ckan/public/base/css/red.css if the --clean option is provided any minified files will be removed. ''' summary = __doc__.split('\n')[0] usage = __doc__ min_args = 1 exclude_dirs = ['vendor'] def __init__(self, name): super(MinifyCommand, self).__init__(name) self.parser.add_option('--clean', dest='clean', action='store_true', default=False, help='remove any minified files in the path') def command(self): clean = getattr(self.options, 'clean', False) self._load_config() for base_path in self.args: if os.path.isfile(base_path): if clean: self.clear_minifyed(base_path) else: self.minify_file(base_path) elif os.path.isdir(base_path): for root, dirs, files in os.walk(base_path): dirs[:] = [d for d in dirs if not d in self.exclude_dirs] for filename in files: path = os.path.join(root, filename) if clean: self.clear_minifyed(path) else: self.minify_file(path) else: # Path is neither a file or a dir? continue def clear_minifyed(self, path): path_only, extension = os.path.splitext(path) if extension not in ('.css', '.js'): # This is not a js or css file. return if path_only.endswith('.min'): print('removing %s' % path) os.remove(path) def minify_file(self, path): '''Create the minified version of the given file. If the file is not a .js or .css file (e.g. it's a .min.js or .min.css file, or it's some other type of file entirely) it will not be minifed. :param path: The path to the .js or .css file to minify ''' import ckan.lib.fanstatic_resources as fanstatic_resources path_only, extension = os.path.splitext(path) if path_only.endswith('.min'): # This is already a minified file. return if extension not in ('.css', '.js'): # This is not a js or css file. return path_min = fanstatic_resources.min_path(path) source = open(path, 'r').read() f = open(path_min, 'w') if path.endswith('.css'): f.write(rcssmin.cssmin(source)) elif path.endswith('.js'): f.write(rjsmin.jsmin(source)) f.close() print("Minified file '{0}'".format(path)) class LessCommand(CkanCommand): '''Compile all root less documents into their CSS counterparts Usage: paster less ''' summary = __doc__.split('\n')[0] usage = __doc__ min_args = 0 def command(self): self._load_config() self.less() custom_css = { 'fuchsia': ''' @layoutLinkColor: #E73892; @footerTextColor: mix(#FFF, @layoutLinkColor, 60%); @footerLinkColor: @footerTextColor; @mastheadBackgroundColor: @layoutLinkColor; @btnPrimaryBackground: lighten(@layoutLinkColor, 10%); @btnPrimaryBackgroundHighlight: @layoutLinkColor; ''', 'green': ''' @layoutLinkColor: #2F9B45; @footerTextColor: mix(#FFF, @layoutLinkColor, 60%); @footerLinkColor: @footerTextColor; @mastheadBackgroundColor: @layoutLinkColor; @btnPrimaryBackground: lighten(@layoutLinkColor, 10%); @btnPrimaryBackgroundHighlight: @layoutLinkColor; ''', 'red': ''' @layoutLinkColor: #C14531; @footerTextColor: mix(#FFF, @layoutLinkColor, 60%); @footerLinkColor: @footerTextColor; @mastheadBackgroundColor: @layoutLinkColor; @btnPrimaryBackground: lighten(@layoutLinkColor, 10%); @btnPrimaryBackgroundHighlight: @layoutLinkColor; ''', 'maroon': ''' @layoutLinkColor: #810606; @footerTextColor: mix(#FFF, @layoutLinkColor, 60%); @footerLinkColor: @footerTextColor; @mastheadBackgroundColor: @layoutLinkColor; @btnPrimaryBackground: lighten(@layoutLinkColor, 10%); @btnPrimaryBackgroundHighlight: @layoutLinkColor; ''', } def less(self): ''' Compile less files ''' import subprocess command = ('npm', 'bin') process = subprocess.Popen( command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, universal_newlines=True) output = process.communicate() directory = output[0].strip() if not directory: raise error('Command "{}" returned nothing. Check that npm is ' 'installed.'.format(' '.join(command))) less_bin = os.path.join(directory, 'lessc') public = config.get(u'ckan.base_public_folder') root = os.path.join(os.path.dirname(__file__), '..', public, 'base') root = os.path.abspath(root) custom_less = os.path.join(root, 'less', 'custom.less') for color in self.custom_css: f = open(custom_less, 'w') f.write(self.custom_css[color]) f.close() self.compile_less(root, less_bin, color) f = open(custom_less, 'w') f.write('// This file is needed in order for `gulp build` to compile in less 1.3.1+\n') f.close() self.compile_less(root, less_bin, 'main') def compile_less(self, root, less_bin, color): print('compile %s.css' % color) import subprocess main_less = os.path.join(root, 'less', 'main.less') main_css = os.path.join(root, 'css', '%s.css' % color) command = (less_bin, main_less, main_css) process = subprocess.Popen( command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, universal_newlines=True) output = process.communicate() print(output) class FrontEndBuildCommand(CkanCommand): '''Creates and minifies css and JavaScript files Usage: paster front-end-build ''' summary = __doc__.split('\n')[0] usage = __doc__ min_args = 0 def command(self): self._load_config() # Less css cmd = LessCommand('less') cmd.options = self.options cmd.command() # js translation strings cmd = TranslationsCommand('trans') cmd.options = self.options cmd.args = ('js',) cmd.command() # minification cmd = MinifyCommand('minify') cmd.options = self.options public = config.get(u'ckan.base_public_folder') root = os.path.join(os.path.dirname(__file__), '..', public, 'base') root = os.path.abspath(root) ckanext = os.path.join(os.path.dirname(__file__), '..', '..', 'ckanext') ckanext = os.path.abspath(ckanext) cmd.args = (root, ckanext) cmd.command() class ViewsCommand(CkanCommand): '''Manage resource views. Usage: paster views create [options] [type1] [type2] ... Create views on relevant resources. You can optionally provide specific view types (eg `recline_view`, `image_view`). If no types are provided, the default ones will be used. These are generally the ones defined in the `ckan.views.default_views` config option. Note that on either case, plugins must be loaded (ie added to `ckan.plugins`), otherwise the command will stop. paster views clear [options] [type1] [type2] ... Permanently delete all views or the ones with the provided types. paster views clean Permanently delete views for all types no longer present in the `ckan.plugins` configuration option. ''' summary = __doc__.split('\n')[0] usage = __doc__ min_args = 1 def __init__(self, name): super(ViewsCommand, self).__init__(name) self.parser.add_option('-y', '--yes', dest='assume_yes', action='store_true', default=False, help='''Automatic yes to prompts. Assume "yes" as answer to all prompts and run non-interactively''') self.parser.add_option('-d', '--dataset', dest='dataset_id', action='append', help='''Create views on a particular dataset. You can use the dataset id or name, and it can be defined multiple times.''') self.parser.add_option('--no-default-filters', dest='no_default_filters', action='store_true', default=False, help='''Do not add default filters for relevant resource formats for the view types provided. Note that filters are not added by default anyway if an unsupported view type is provided or when using the `-s` or `-d` options.''') self.parser.add_option('-s', '--search', dest='search_params', action='store', default=False, help='''Extra search parameters that will be used for getting the datasets to create the resource views on. It must be a JSON object like the one used by the `package_search` API call. Supported fields are `q`, `fq` and `fq_list`. Check the documentation for examples. Not used when using the `-d` option.''') def command(self): self._load_config() if not self.args: print(self.usage) elif self.args[0] == 'create': view_plugin_types = self.args[1:] self.create_views(view_plugin_types) elif self.args[0] == 'clear': view_plugin_types = self.args[1:] self.clear_views(view_plugin_types) elif self.args[0] == 'clean': self.clean_views() else: print(self.usage) _page_size = 100 def _get_view_plugins(self, view_plugin_types, get_datastore_views=False): ''' Returns the view plugins that were succesfully loaded Views are provided as a list of ``view_plugin_types``. If no types are provided, the default views defined in the ``ckan.views.default_views`` will be created. Only in this case (when the default view plugins are used) the `get_datastore_views` parameter can be used to get also view plugins that require data to be in the DataStore. If any of the provided plugins could not be loaded (eg it was not added to `ckan.plugins`) the command will stop. Returns a list of loaded plugin names. ''' from ckan.lib.datapreview import (get_view_plugins, get_default_view_plugins ) log = logging.getLogger(__name__) view_plugins = [] if not view_plugin_types: log.info('No view types provided, using default types') view_plugins = get_default_view_plugins() if get_datastore_views: view_plugins.extend( get_default_view_plugins(get_datastore_views=True)) else: view_plugins = get_view_plugins(view_plugin_types) loaded_view_plugins = [view_plugin.info()['name'] for view_plugin in view_plugins] plugins_not_found = list(set(view_plugin_types) - set(loaded_view_plugins)) if plugins_not_found: error('View plugin(s) not found : {0}. '.format(plugins_not_found) + 'Have they been added to the `ckan.plugins` configuration' + ' option?') return loaded_view_plugins def _add_default_filters(self, search_data_dict, view_types): ''' Adds extra filters to the `package_search` dict for common view types It basically adds `fq` parameters that filter relevant resource formats for the view types provided. For instance, if one of the view types is `pdf_view` the following will be added to the final query: fq=res_format:"pdf" OR res_format:"PDF" This obviously should only be used if all view types are known and can be filtered, otherwise we want all datasets to be returned. If a non-filterable view type is provided, the search params are not modified. Returns the provided data_dict for `package_search`, optionally modified with extra filters. ''' from ckanext.imageview.plugin import DEFAULT_IMAGE_FORMATS from ckanext.textview.plugin import get_formats as get_text_formats from ckanext.datapusher.plugin import DEFAULT_FORMATS as \ datapusher_formats filter_formats = [] for view_type in view_types: if view_type == 'image_view': for _format in DEFAULT_IMAGE_FORMATS: filter_formats.extend([_format, _format.upper()]) elif view_type == 'text_view': formats = get_text_formats(config) for _format in itertools.chain.from_iterable(formats.values()): filter_formats.extend([_format, _format.upper()]) elif view_type == 'pdf_view': filter_formats.extend(['pdf', 'PDF']) elif view_type in ['recline_view', 'recline_grid_view', 'recline_graph_view', 'recline_map_view']: if datapusher_formats[0] in filter_formats: continue for _format in datapusher_formats: if '/' not in _format: filter_formats.extend([_format, _format.upper()]) else: # There is another view type provided so we can't add any # filter return search_data_dict filter_formats_query = ['+res_format:"{0}"'.format(_format) for _format in filter_formats] search_data_dict['fq_list'].append(' OR '.join(filter_formats_query)) return search_data_dict def _update_search_params(self, search_data_dict): ''' Update the `package_search` data dict with the user provided parameters Supported fields are `q`, `fq` and `fq_list`. If the provided JSON object can not be parsed the process stops with an error. Returns the updated data dict ''' log = logging.getLogger(__name__) if not self.options.search_params: return search_data_dict try: user_search_params = json.loads(self.options.search_params) except ValueError as e: error('Unable to parse JSON search parameters: {0}'.format(e)) if user_search_params.get('q'): search_data_dict['q'] = user_search_params['q'] if user_search_params.get('fq'): if search_data_dict['fq']: search_data_dict['fq'] += ' ' + user_search_params['fq'] else: search_data_dict['fq'] = user_search_params['fq'] if (user_search_params.get('fq_list') and isinstance(user_search_params['fq_list'], list)): search_data_dict['fq_list'].extend(user_search_params['fq_list']) def _search_datasets(self, page=1, view_types=[]): ''' Perform a query with `package_search` and return the result Results can be paginated using the `page` parameter ''' n = self._page_size search_data_dict = { 'q': '', 'fq': '', 'fq_list': [], 'include_private': True, 'rows': n, 'start': n * (page - 1), } if self.options.dataset_id: search_data_dict['q'] = ' OR '.join( ['id:{0} OR name:"{0}"'.format(dataset_id) for dataset_id in self.options.dataset_id] ) elif self.options.search_params: self._update_search_params(search_data_dict) elif not self.options.no_default_filters: self._add_default_filters(search_data_dict, view_types) if not search_data_dict.get('q'): search_data_dict['q'] = '*:*' query = p.toolkit.get_action('package_search')( {}, search_data_dict) return query def create_views(self, view_plugin_types=[]): from ckan.lib.datapreview import add_views_to_dataset_resources log = logging.getLogger(__name__) datastore_enabled = 'datastore' in config['ckan.plugins'].split() loaded_view_plugins = self._get_view_plugins(view_plugin_types, datastore_enabled) context = {'user': self.site_user['name']} page = 1 while True: query = self._search_datasets(page, loaded_view_plugins) if page == 1 and query['count'] == 0: error('No datasets to create resource views on, exiting...') elif page == 1 and not self.options.assume_yes: msg = ('\nYou are about to check {0} datasets for the ' + 'following view plugins: {1}\n' + ' Do you want to continue?') confirm = query_yes_no(msg.format(query['count'], loaded_view_plugins)) if confirm == 'no': error('Command aborted by user') if query['results']: for dataset_dict in query['results']: if not dataset_dict.get('resources'): continue views = add_views_to_dataset_resources( context, dataset_dict, view_types=loaded_view_plugins) if views: view_types = list({view['view_type'] for view in views}) msg = ('Added {0} view(s) of type(s) {1} to ' + 'resources from dataset {2}') log.debug(msg.format(len(views), ', '.join(view_types), dataset_dict['name'])) if len(query['results']) < self._page_size: break page += 1 else: break log.info('Done') def clear_views(self, view_plugin_types=[]): log = logging.getLogger(__name__) if not self.options.assume_yes: if view_plugin_types: msg = 'Are you sure you want to delete all resource views ' + \ 'of type {0}?'.format(', '.join(view_plugin_types)) else: msg = 'Are you sure you want to delete all resource views?' result = query_yes_no(msg, default='no') if result == 'no': error('Command aborted by user') context = {'user': self.site_user['name']} logic.get_action('resource_view_clear')( context, {'view_types': view_plugin_types}) log.info('Done') def clean_views(self): names = [] for plugin in p.PluginImplementations(p.IResourceView): names.append(str(plugin.info()['name'])) results = model.ResourceView.get_count_not_in_view_types(names) if not results: print('No resource views to delete') return print('This command will delete.\n') for row in results: print('%s of type %s' % (row[1], row[0])) result = query_yes_no('Do you want to delete these resource views:', default='no') if result == 'no': print('Not Deleting.') return model.ResourceView.delete_not_in_view_types(names) model.Session.commit() print('Deleted resource views.') class ConfigToolCommand(paste.script.command.Command): '''Tool for editing options in a CKAN config file paster config-tool <default.ini> <key>=<value> [<key>=<value> ...] paster config-tool <default.ini> -f <custom_options.ini> Examples: paster config-tool default.ini sqlalchemy.url=123 'ckan.site_title=ABC' paster config-tool default.ini -s server:main -e port=8080 paster config-tool default.ini -f custom_options.ini ''' parser = paste.script.command.Command.standard_parser(verbose=True) default_verbosity = 1 group_name = 'ckan' usage = __doc__ summary = usage.split('\n')[0] parser.add_option('-s', '--section', dest='section', default='app:main', help='Section of the config file') parser.add_option( '-e', '--edit', action='store_true', dest='edit', default=False, help='Checks the option already exists in the config file') parser.add_option( '-f', '--file', dest='merge_filepath', metavar='FILE', help='Supply an options file to merge in') def command(self): from ckan.lib import config_tool if len(self.args) < 1: self.parser.error('Not enough arguments (got %i, need at least 1)' % len(self.args)) config_filepath = self.args[0] if not os.path.exists(config_filepath): self.parser.error('Config filename %r does not exist.' % config_filepath) if self.options.merge_filepath: config_tool.config_edit_using_merge_file( config_filepath, self.options.merge_filepath) options = self.args[1:] if not (options or self.options.merge_filepath): self.parser.error('No options provided') if options: for option in options: if '=' not in option: error( 'An option does not have an equals sign: %r ' 'It should be \'key=value\'. If there are spaces ' 'you\'ll need to quote the option.\n' % option) try: config_tool.config_edit_using_option_strings( config_filepath, options, self.options.section, edit=self.options.edit) except config_tool.ConfigToolError as e: error(traceback.format_exc()) class JobsCommand(CkanCommand): '''Manage background jobs Usage: paster jobs worker [--burst] [QUEUES] Start a worker that fetches jobs from queues and executes them. If no queue names are given then the worker listens to the default queue, this is equivalent to paster jobs worker default If queue names are given then the worker listens to those queues and only those: paster jobs worker my-custom-queue Hence, if you want the worker to listen to the default queue and some others then you must list the default queue explicitly: paster jobs worker default my-custom-queue If the `--burst` option is given then the worker will exit as soon as all its queues are empty. paster jobs list [QUEUES] List currently enqueued jobs from the given queues. If no queue names are given then the jobs from all queues are listed. paster jobs show ID Show details about a specific job. paster jobs cancel ID Cancel a specific job. Jobs can only be canceled while they are enqueued. Once a worker has started executing a job it cannot be aborted anymore. paster jobs clear [QUEUES] Cancel all jobs on the given queues. If no queue names are given then ALL queues are cleared. paster jobs test [QUEUES] Enqueue a test job. If no queue names are given then the job is added to the default queue. If queue names are given then a separate test job is added to each of the queues. ''' summary = __doc__.split(u'\n')[0] usage = __doc__ min_args = 0 def __init__(self, *args, **kwargs): super(JobsCommand, self).__init__(*args, **kwargs) try: self.parser.add_option(u'--burst', action='store_true', default=False, help=u'Start worker in burst mode.') except OptionConflictError: # Option has already been added in previous call pass def command(self): self._load_config() try: cmd = self.args.pop(0) except IndexError: print(self.__doc__) sys.exit(0) if cmd == u'worker': self.worker() elif cmd == u'list': self.list() elif cmd == u'show': self.show() elif cmd == u'cancel': self.cancel() elif cmd == u'clear': self.clear() elif cmd == u'test': self.test() else: error(u'Unknown command "{}"'.format(cmd)) def worker(self): from ckan.lib.jobs import Worker Worker(self.args).work(burst=self.options.burst) def list(self): data_dict = { u'queues': self.args, } jobs = p.toolkit.get_action(u'job_list')({}, data_dict) for job in jobs: if job[u'title'] is None: job[u'title'] = '' else: job[u'title'] = u'"{}"'.format(job[u'title']) print(u'{created} {id} {queue} {title}'.format(**job)) def show(self): if not self.args: error(u'You must specify a job ID') id = self.args[0] try: job = p.toolkit.get_action(u'job_show')({}, {u'id': id}) except logic.NotFound: error(u'There is no job with ID "{}"'.format(id)) print(u'ID: {}'.format(job[u'id'])) if job[u'title'] is None: title = u'None' else: title = u'"{}"'.format(job[u'title']) print(u'Title: {}'.format(title)) print(u'Created: {}'.format(job[u'created'])) print(u'Queue: {}'.format(job[u'queue'])) def cancel(self): if not self.args: error(u'You must specify a job ID') id = self.args[0] try: p.toolkit.get_action(u'job_cancel')({}, {u'id': id}) except logic.NotFound: error(u'There is no job with ID "{}"'.format(id)) print(u'Cancelled job {}'.format(id)) def clear(self): data_dict = { u'queues': self.args, } queues = p.toolkit.get_action(u'job_clear')({}, data_dict) queues = (u'"{}"'.format(q) for q in queues) print(u'Cleared queue(s) {}'.format(u', '.join(queues))) def test(self): from ckan.lib.jobs import DEFAULT_QUEUE_NAME, enqueue, test_job for queue in (self.args or [DEFAULT_QUEUE_NAME]): job = enqueue(test_job, [u'A test job'], title=u'A test job', queue=queue) print(u'Added test job {} to queue "{}"'.format(job.id, queue))
htcondor_utils.py
#=== Imports =================================================== import re import time import threading import random import multiprocessing import tempfile import functools import traceback import xml.etree.ElementTree as ET try: import subprocess32 as subprocess except Exception: import subprocess try: from threading import get_ident except ImportError: from thread import get_ident import six from pandaharvester.harvestercore import core_utils from pandaharvester.harvesterconfig import harvester_config from pandaharvester.harvestercore.core_utils import SingletonWithID from pandaharvester.harvestercore.fifos import SpecialFIFOBase # condor python or command api try: import htcondor except ImportError: CONDOR_API = 'command' else: CONDOR_API = 'python' #=============================================================== #=== Definitions =============================================== # logger baseLogger = core_utils.setup_logger('htcondor_utils') # module level lock moduleLock = threading.Lock() # List of job ads required CONDOR_JOB_ADS_LIST = [ 'ClusterId', 'ProcId', 'JobStatus', 'LastJobStatus', 'JobStartDate', 'EnteredCurrentStatus', 'ExitCode', 'HoldReason', 'LastHoldReason', 'RemoveReason', 'harvesterWorkerID', ] # harvesterID harvesterID = harvester_config.master.harvester_id #=============================================================== #=== Functions ================================================= def synchronize(func): """ synchronize decorator """ @functools.wraps(func) def wrapper(*args, **kwargs): with moduleLock: return func(*args, **kwargs) return wrapper def _runShell(cmd): """ Run shell function """ cmd = str(cmd) p = subprocess.Popen(cmd.split(), shell=False, universal_newlines=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE) stdOut, stdErr = p.communicate() retCode = p.returncode return (retCode, stdOut, stdErr) def condor_job_id_from_workspec(workspec): """ Generate condor job id with schedd host from workspec """ batchid_str = str(workspec.batchID) # backward compatibility if workspec.batchID does not contain ProcId if '.' not in batchid_str: batchid_str += '.0' return '{0}#{1}'.format(workspec.submissionHost, batchid_str) def get_host_batchid_map(workspec_list): """ Get a dictionary of submissionHost: list of batchIDs from workspec_list return {submissionHost_1: {batchID_1_1, ...}, submissionHost_2: {...}, ...} """ host_batchid_map = {} for workspec in workspec_list: host = workspec.submissionHost batchid = workspec.batchID if batchid is None: continue batchid_str = str(batchid) # backward compatibility if workspec.batchID does not contain ProcId if '.' not in batchid_str: batchid_str += '.0' try: host_batchid_map[host].append(batchid_str) except KeyError: host_batchid_map[host] = [batchid_str] return host_batchid_map def get_batchid_from_job(job_ads_dict): """ Get batchID string from condor job dict """ batchid = '{0}.{1}'.format(job_ads_dict['ClusterId'], job_ads_dict['ProcId']) return batchid def get_job_id_tuple_from_batchid(batchid): """ Get tuple (ClusterId, ProcId) from batchID string """ batchid_str_list = str(batchid).split('.') clusterid = batchid_str_list[0] procid = batchid_str_list[1] if not procid: procid = 0 return (clusterid, procid) # def jdl_to_map(jdl): # """ # Transform jdl into dictionary # The "queue" line (e.g. "queue 1") will be omitted # """ # # FIXME: not containing "+" # ret_map = {} # for line in jdl.split('\n'): # match = re.search('^(.+) = (.+)$', line) # if match: # ret_map[match(1)] = match(2) # return ret_map def condor_submit_process(mp_queue, host, jdl_map_list): """ Function for new process to submit condor """ # initialization errStr = '' batchIDs_list = [] # parse schedd and pool name condor_schedd, condor_pool = None, None if host in ('LOCAL', 'None'): tmpLog.debug('submissionHost is {0}, treated as local schedd. Skipped'.format(host)) else: try: condor_schedd, condor_pool = host.split(',')[0:2] except ValueError: tmpLog.error('Invalid submissionHost: {0} . Skipped'.format(host)) # get schedd try: if condor_pool: collector = htcondor.Collector(condor_pool) else: collector = htcondor.Collector() if condor_schedd: scheddAd = collector.locate(htcondor.DaemonTypes.Schedd, condor_schedd) else: scheddAd = collector.locate(htcondor.DaemonTypes.Schedd) schedd = htcondor.Schedd(scheddAd) except Exception as e: errStr = 'create condor collector and schedd failed; {0}: {1}'.format(e.__class__.__name__, e) else: submit_obj = htcondor.Submit() try: with schedd.transaction() as txn: # TODO: Currently spool is not supported in htcondor.Submit ... submit_result = submit_obj.queue_with_itemdata(txn, 1, iter(jdl_map_list)) clusterid = submit_result.cluster() first_proc = submit_result.first_proc() num_proc = submit_result.num_procs() batchIDs_list.extend(['{0}.{1}'.format(clusterid, procid) for procid in range(first_proc, first_proc + num_proc)]) except RuntimeError as e: errStr = 'submission failed; {0}: {1}'.format(e.__class__.__name__, e) mp_queue.put((batchIDs_list, errStr)) #=============================================================== #=== Classes =================================================== # Condor queue cache fifo class CondorQCacheFifo(six.with_metaclass(SingletonWithID, SpecialFIFOBase)): global_lock_id = -1 def __init__(self, target, *args, **kwargs): name_suffix = target.split('.')[0] self.titleName = 'CondorQCache_{0}'.format(name_suffix) SpecialFIFOBase.__init__(self) def lock(self, score=None): lock_key = format(int(random.random() * 2**32), 'x') if score is None: score = time.time() retVal = self.putbyid(self.global_lock_id, lock_key, score) if retVal: return lock_key return None def unlock(self, key=None, force=False): peeked_tuple = self.peekbyid(id=self.global_lock_id) if peeked_tuple.score is None or peeked_tuple.item is None: return True elif force or self.decode(peeked_tuple.item) == key: self.delete([self.global_lock_id]) return True else: return False # Condor client class CondorClient(object): @classmethod def renew_session_and_retry(cls, func): """ If RuntimeError, call renew_session and retry """ # FIXME: currently hard-coded to_retry = True # Wrapper def wrapper(self, *args, **kwargs): # Make logger tmpLog = core_utils.make_logger(baseLogger, 'submissionHost={0}'.format(self.submissionHost), method_name='CondorClient.renew_session_if_error') func_name = func.__name__ try: self.schedd except AttributeError: if self.lock.acquire(False): is_renewed = self.renew_session() self.lock.release() if not is_renewed: errStr = 'failed to communicate with {0}'.format(self.submissionHost) tmpLog.error(errStr) tmpLog.debug('got RuntimeError: {0}'.format(e)) raise Exception(errStr) try: ret = func(self, *args, **kwargs) except RuntimeError as e: tmpLog.debug('got RuntimeError: {0}'.format(e)) if self.lock.acquire(False): is_renewed = self.renew_session() self.lock.release() if is_renewed: if to_retry: tmpLog.debug('condor session renewed. Retrying {0}'.format(func_name)) ret = func(self, *args, **kwargs) else: tmpLog.debug('condor session renewed') raise else: tmpLog.error('failed to renew condor session') raise else: tmpLog.debug('another thread is renewing condor session; skipped...') raise tmpLog.debug('done') return ret return wrapper def __init__(self, submissionHost, *args, **kwargs): self.submissionHost = submissionHost # Make logger tmpLog = core_utils.make_logger(baseLogger, 'submissionHost={0}'.format(self.submissionHost), method_name='CondorClient.__init__') # Initialize tmpLog.debug('Initializing client') self.lock = threading.Lock() self.condor_api = CONDOR_API self.condor_schedd = None self.condor_pool = None # Parse condor command remote options from workspec if self.submissionHost in ('LOCAL', 'None'): tmpLog.debug('submissionHost is {0}, treated as local schedd. Skipped'.format(self.submissionHost)) else: try: self.condor_schedd, self.condor_pool = self.submissionHost.split(',')[0:2] except ValueError: tmpLog.error('Invalid submissionHost: {0} . Skipped'.format(self.submissionHost)) # Use Python API or fall back to command if self.condor_api == 'python': try: self.secman = htcondor.SecMan() self.renew_session(init=True) except Exception as e: tmpLog.error('Error when using htcondor Python API. Exception {0}: {1}'.format(e.__class__.__name__, e)) raise tmpLog.debug('Initialized client') @synchronize def renew_session(self, retry=3, init=False): # Make logger tmpLog = core_utils.make_logger(baseLogger, 'submissionHost={0}'.format(self.submissionHost), method_name='CondorClient.renew_session') # Clear security session if not initialization if not init: tmpLog.info('Renew condor session') self.secman.invalidateAllSessions() # Recreate collector and schedd object i_try = 1 while i_try <= retry: try: tmpLog.info('Try {0}'.format(i_try)) if self.condor_pool: self.collector = htcondor.Collector(self.condor_pool) else: self.collector = htcondor.Collector() if self.condor_schedd: self.scheddAd = self.collector.locate(htcondor.DaemonTypes.Schedd, self.condor_schedd) else: self.scheddAd = self.collector.locate(htcondor.DaemonTypes.Schedd) self.schedd = htcondor.Schedd(self.scheddAd) tmpLog.info('Success') break except Exception as e: tmpLog.warning('Recreate condor collector and schedd failed: {0}'.format(e)) if i_try < retry: tmpLog.warning('Failed. Retry...') else: tmpLog.warning('Retry {0} times. Still failed. Skipped'.format(i_try)) return False i_try += 1 self.secman.invalidateAllSessions() time.sleep(3) # Sleep time.sleep(3) return True # Condor job query class CondorJobQuery(six.with_metaclass(SingletonWithID, CondorClient)): # class lock classLock = threading.Lock() # Query commands orig_comStr_list = [ 'condor_q -xml', 'condor_history -xml', ] # Bad text of redundant xml roots to eleminate from condor XML badtext = """ </classads> <?xml version="1.0"?> <!DOCTYPE classads SYSTEM "classads.dtd"> <classads> """ def __init__(self, cacheEnable=False, cacheRefreshInterval=None, useCondorHistory=True, *args, **kwargs): self.submissionHost = str(kwargs.get('id')) # Make logger tmpLog = core_utils.make_logger(baseLogger, 'submissionHost={0} thrid={1} oid={2}'.format(self.submissionHost, get_ident(), id(self)), method_name='CondorJobQuery.__init__') # Initialize with self.classLock: tmpLog.debug('Start') CondorClient.__init__(self, self.submissionHost, *args, **kwargs) # For condor_q cache self.cacheEnable = cacheEnable if self.cacheEnable: self.cache = ([], 0) self.cacheRefreshInterval = cacheRefreshInterval self.useCondorHistory = useCondorHistory tmpLog.debug('Initialize done') def get_all(self, batchIDs_list=[], allJobs=False): # Make logger tmpLog = core_utils.make_logger(baseLogger, 'submissionHost={0}'.format(self.submissionHost), method_name='CondorJobQuery.get_all') # Get all tmpLog.debug('Start') job_ads_all_dict = {} if self.condor_api == 'python': try: job_ads_all_dict = self.query_with_python(batchIDs_list, allJobs) except Exception as e: tmpLog.error('Exception {0}: {1}'.format(e.__class__.__name__, e)) raise else: job_ads_all_dict = self.query_with_command(batchIDs_list) return job_ads_all_dict def query_with_command(self, batchIDs_list=[]): # Make logger tmpLog = core_utils.make_logger(baseLogger, 'submissionHost={0}'.format(self.submissionHost), method_name='CondorJobQuery.query_with_command') # Start query tmpLog.debug('Start query') job_ads_all_dict = {} batchIDs_set = set(batchIDs_list) for orig_comStr in self.orig_comStr_list: # String of batchIDs batchIDs_str = ' '.join(list(batchIDs_set)) # Command if 'condor_q' in orig_comStr or ('condor_history' in orig_comStr and batchIDs_set): name_opt = '-name {0}'.format(self.condor_schedd) if self.condor_schedd else '' pool_opt = '-pool {0}'.format(self.condor_pool) if self.condor_pool else '' ids = batchIDs_str comStr = '{cmd} {name_opt} {pool_opt} {ids}'.format(cmd=orig_comStr, name_opt=name_opt, pool_opt=pool_opt, ids=ids) else: # tmpLog.debug('No batch job left to query in this cycle by this thread') continue tmpLog.debug('check with {0}'.format(comStr)) (retCode, stdOut, stdErr) = _runShell(comStr) if retCode == 0: # Command succeeded job_ads_xml_str = '\n'.join(str(stdOut).split(self.badtext)) if '<c>' in job_ads_xml_str: # Found at least one job # XML parsing xml_root = ET.fromstring(job_ads_xml_str) def _getAttribute_tuple(attribute_xml_element): # Attribute name _n = str(attribute_xml_element.get('n')) # Attribute value text _t = ' '.join(attribute_xml_element.itertext()) return (_n, _t) # Every batch job for _c in xml_root.findall('c'): job_ads_dict = dict() # Every attribute attribute_iter = map(_getAttribute_tuple, _c.findall('a')) job_ads_dict.update(attribute_iter) batchid = get_batchid_from_job(job_ads_dict) condor_job_id = '{0}#{1}'.format(self.submissionHost, batchid) job_ads_all_dict[condor_job_id] = job_ads_dict # Remove batch jobs already gotten from the list if batchid in batchIDs_set: batchIDs_set.discard(batchid) else: # Job not found tmpLog.debug('job not found with {0}'.format(comStr)) continue else: # Command failed errStr = 'command "{0}" failed, retCode={1}, error: {2} {3}'.format(comStr, retCode, stdOut, stdErr) tmpLog.error(errStr) if len(batchIDs_set) > 0: # Job unfound via both condor_q or condor_history, marked as unknown worker in harvester for batchid in batchIDs_set: condor_job_id = '{0}#{1}'.format(self.submissionHost, batchid) job_ads_all_dict[condor_job_id] = dict() tmpLog.info( 'Unfound batch jobs of submissionHost={0}: {1}'.format( self.submissionHost, ' '.join(list(batchIDs_set)) ) ) # Return return job_ads_all_dict @CondorClient.renew_session_and_retry def query_with_python(self, batchIDs_list=[], allJobs=False): # Make logger tmpLog = core_utils.make_logger(baseLogger, 'submissionHost={0}'.format(self.submissionHost), method_name='CondorJobQuery.query_with_python') # Start query tmpLog.debug('Start query') cache_fifo = CondorQCacheFifo(target=self.submissionHost, id='{0},{1}'.format(self.submissionHost, get_ident())) job_ads_all_dict = {} # make id sets batchIDs_set = set(batchIDs_list) clusterids_set = set([get_job_id_tuple_from_batchid(batchid)[0] for batchid in batchIDs_list]) # query from cache def cache_query(requirements=None, projection=CONDOR_JOB_ADS_LIST, timeout=60): # query from condor xquery and update cache to fifo def update_cache(lockInterval=90): tmpLog.debug('update_cache') # acquire lock with score timestamp score = time.time() - self.cacheRefreshInterval + lockInterval lock_key = cache_fifo.lock(score=score) if lock_key is not None: # acquired lock, update from condor schedd tmpLog.debug('got lock, updating cache') jobs_iter_orig = self.schedd.xquery(requirements=requirements, projection=projection) jobs_iter = [] for job in jobs_iter_orig: try: jobs_iter.append(dict(job)) except Exception as e: tmpLog.error('In updating cache schedd xquery; got exception {0}: {1} ; {2}'.format( e.__class__.__name__, e, repr(job))) timeNow = time.time() cache_fifo.put(jobs_iter, timeNow) self.cache = (jobs_iter, timeNow) # release lock retVal = cache_fifo.unlock(key=lock_key) if retVal: tmpLog.debug('done update cache and unlock') else: tmpLog.warning('cannot unlock... Maybe something wrong') return jobs_iter else: tmpLog.debug('cache fifo locked by other thread. Skipped') return None # remove invalid or outdated caches from fifo def cleanup_cache(timeout=60): tmpLog.debug('cleanup_cache') id_list = list() attempt_timestamp = time.time() n_cleanup = 0 while True: if time.time() > attempt_timestamp + timeout: tmpLog.debug('time is up when cleanup cache. Skipped') break peeked_tuple = cache_fifo.peek(skip_item=True) if peeked_tuple is None: tmpLog.debug('empty cache fifo') break elif peeked_tuple.score is not None \ and time.time() <= peeked_tuple.score + self.cacheRefreshInterval: tmpLog.debug('nothing expired') break elif peeked_tuple.id is not None: retVal = cache_fifo.delete([peeked_tuple.id]) if isinstance(retVal, int): n_cleanup += retVal else: # problematic tmpLog.warning('got nothing when cleanup cache, maybe problematic. Skipped') break tmpLog.debug('cleaned up {0} objects in cache fifo'.format(n_cleanup)) # start jobs_iter = tuple() try: attempt_timestamp = time.time() while True: if time.time() > attempt_timestamp + timeout: # skip cache_query if too long tmpLog.debug('cache_query got timeout ({0} seconds). Skipped '.format(timeout)) break # get latest cache peeked_tuple = cache_fifo.peeklast(skip_item=True) if peeked_tuple is not None and peeked_tuple.score is not None: # got something if peeked_tuple.id == cache_fifo.global_lock_id: if time.time() <= peeked_tuple.score + self.cacheRefreshInterval: # lock tmpLog.debug('got fifo locked. Wait and retry...') time.sleep(random.uniform(1, 5)) continue else: # expired lock tmpLog.debug('got lock expired. Clean up and retry...') cleanup_cache() continue elif time.time() <= peeked_tuple.score + self.cacheRefreshInterval: # got valid cache _obj, _last_update = self.cache if _last_update >= peeked_tuple.score: # valid local cache tmpLog.debug('valid local cache') jobs_iter = _obj else: # valid fifo cache tmpLog.debug('update local cache from fifo') peeked_tuple_with_item = cache_fifo.peeklast() if peeked_tuple_with_item is not None \ and peeked_tuple.id != cache_fifo.global_lock_id \ and peeked_tuple_with_item.item is not None: jobs_iter = cache_fifo.decode(peeked_tuple_with_item.item) self.cache = (jobs_iter, peeked_tuple_with_item.score) else: tmpLog.debug('peeked invalid cache fifo object. Wait and retry...') time.sleep(random.uniform(1, 5)) continue else: # cache expired tmpLog.debug('update cache in fifo') retVal = update_cache() if retVal is not None: jobs_iter = retVal cleanup_cache() break else: # no cache in fifo, check with size again if cache_fifo.size() == 0: if time.time() > attempt_timestamp + random.uniform(10, 30): # have waited for long enough, update cache tmpLog.debug('waited enough, update cache in fifo') retVal = update_cache() if retVal is not None: jobs_iter = retVal break else: # still nothing, wait time.sleep(2) continue except Exception as _e: tb_str = traceback.format_exc() tmpLog.error('Error querying from cache fifo; {0} ; {1}'.format(_e, tb_str)) return jobs_iter # query method options query_method_list = [self.schedd.xquery] if self.cacheEnable: query_method_list.insert(0, cache_query) if self.useCondorHistory: query_method_list.append(self.schedd.history) # Go for query_method in query_method_list: # Make requirements clusterids_str = ','.join(list(clusterids_set)) if query_method is cache_query or allJobs: requirements = 'harvesterID =?= "{0}"'.format(harvesterID) else: requirements = 'member(ClusterID, {{{0}}})'.format(clusterids_str) if allJobs: tmpLog.debug('Query method: {0} ; allJobs'.format(query_method.__name__)) else: tmpLog.debug('Query method: {0} ; clusterids: "{1}"'.format(query_method.__name__, clusterids_str)) # Query jobs_iter = query_method(requirements=requirements, projection=CONDOR_JOB_ADS_LIST) for job in jobs_iter: try: job_ads_dict = dict(job) except Exception as e: tmpLog.error('In doing schedd xquery or history; got exception {0}: {1} ; {2}'.format( e.__class__.__name__, e, repr(job))) batchid = get_batchid_from_job(job_ads_dict) condor_job_id = '{0}#{1}'.format(self.submissionHost, batchid) job_ads_all_dict[condor_job_id] = job_ads_dict # Remove batch jobs already gotten from the list if not allJobs: batchIDs_set.discard(batchid) if len(batchIDs_set) == 0 or allJobs: break # Remaining if not allJobs and len(batchIDs_set) > 0: # Job unfound via both condor_q or condor_history, marked as unknown worker in harvester for batchid in batchIDs_set: condor_job_id = '{0}#{1}'.format(self.submissionHost, batchid) job_ads_all_dict[condor_job_id] = dict() tmpLog.info( 'Unfound batch jobs of submissionHost={0}: {1}'.format( self.submissionHost, ' '.join(list(batchIDs_set)) ) ) # Return return job_ads_all_dict # Condor job submit class CondorJobSubmit(six.with_metaclass(SingletonWithID, CondorClient)): # class lock classLock = threading.Lock() def __init__(self, *args, **kwargs): self.submissionHost = str(kwargs.get('id')) # Make logger tmpLog = core_utils.make_logger(baseLogger, 'submissionHost={0} thrid={1} oid={2}'.format(self.submissionHost, get_ident(), id(self)), method_name='CondorJobSubmit.__init__') # Initialize tmpLog.debug('Start') self.lock = threading.Lock() CondorClient.__init__(self, self.submissionHost, *args, **kwargs) tmpLog.debug('Initialize done') def submit(self, jdl_list, use_spool=False): # Make logger tmpLog = core_utils.make_logger(baseLogger, 'submissionHost={0}'.format(self.submissionHost), method_name='CondorJobSubmit.submit') # Get all tmpLog.debug('Start') job_ads_all_dict = {} if self.condor_api == 'python': try: # TODO: submit_with_python will meet segfault or c++ error after many times of submission; need help from condor team # TODO: submit_with_python_proces has no such error but spawns some processes that will not terminate after harvester stops # TODO: Fall back to submit_with_command for now # retVal = self.submit_with_python(jdl_list, use_spool) # retVal = self.submit_with_python_proces(jdl_list, use_spool) retVal = self.submit_with_command(jdl_list, use_spool) except Exception as e: tmpLog.error('Exception {0}: {1}'.format(e.__class__.__name__, e)) raise else: retVal = self.submit_with_command(jdl_list, use_spool) return retVal def submit_with_command(self, jdl_list, use_spool=False, tmp_str='', keep_temp_sdf=False): # Make logger tmpLog = core_utils.make_logger(baseLogger, 'submissionHost={0}'.format(self.submissionHost), method_name='CondorJobSubmit.submit_with_command') # Initialize errStr = '' batchIDs_list = [] # make sdf temp file from jdls tmpFile = tempfile.NamedTemporaryFile(mode='w', delete=(not keep_temp_sdf), suffix='_{0}_cluster_submit.sdf'.format(tmp_str)) sdf_file = tmpFile.name tmpFile.write('\n\n'.join(jdl_list)) tmpFile.flush() # make condor remote options name_opt = '-name {0}'.format(self.condor_schedd) if self.condor_schedd else '' pool_opt = '-pool {0}'.format(self.condor_pool) if self.condor_pool else '' spool_opt = '-remote -spool' if use_spool and self.condor_schedd else '' # command comStr = 'condor_submit -single-cluster {spool_opt} {name_opt} {pool_opt} {sdf_file}'.format( sdf_file=sdf_file, name_opt=name_opt, pool_opt=pool_opt, spool_opt=spool_opt) # submit tmpLog.debug('submit with command: {0}'.format(comStr)) try: p = subprocess.Popen(comStr.split(), shell=False, universal_newlines=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE) # check return code stdOut, stdErr = p.communicate() retCode = p.returncode except Exception as e: stdOut = '' stdErr = core_utils.dump_error_message(tmpLog, no_message=True) retCode = 1 errStr = '{0}: {1}'.format(e.__class__.__name__, e) finally: tmpFile.close() tmpLog.debug('retCode={0}'.format(retCode)) if retCode == 0: # extract clusterid and n_jobs job_id_match = None for tmp_line_str in stdOut.split('\n'): job_id_match = re.search('^(\d+) job[(]s[)] submitted to cluster (\d+)\.$', tmp_line_str) if job_id_match: break if job_id_match is not None: n_jobs = int(job_id_match.group(1)) clusterid = job_id_match.group(2) batchIDs_list = ['{0}.{1}'.format(clusterid, procid) for procid in range(n_jobs)] tmpLog.debug('submitted {0} jobs: {1}'.format(n_jobs, ' '.join(batchIDs_list))) else: errStr = 'no job submitted: {0}'.format(errStr) tmpLog.error(errStr) else: tmpLog.error('submission failed: {0} ; {1}'.format(stdErr, errStr)) # Return return (batchIDs_list, errStr) @CondorClient.renew_session_and_retry def submit_with_python(self, jdl_list, use_spool=False): # Make logger tmpLog = core_utils.make_logger(baseLogger, 'submissionHost={0}'.format(self.submissionHost), method_name='CondorJobSubmit.submit_with_python') # Start tmpLog.debug('Start') # Initialize errStr = '' batchIDs_list = [] # Make list of jdl map with dummy submit objects jdl_map_list = [ dict(htcondor.Submit(jdl).items()) for jdl in jdl_list ] # Go submit_obj = htcondor.Submit() try: with self.schedd.transaction() as txn: # TODO: Currently spool is not supported in htcondor.Submit ... submit_result = submit_obj.queue_with_itemdata(txn, 1, iter(jdl_map_list)) clusterid = submit_result.cluster() first_proc = submit_result.first_proc() num_proc = submit_result.num_procs() batchIDs_list.extend(['{0}.{1}'.format(clusterid, procid) for procid in range(first_proc, first_proc + num_proc)]) except RuntimeError as e: errStr = '{0}: {1}'.format(e.__class__.__name__, e) tmpLog.error('submission failed: {0}'.format(errStr)) raise if batchIDs_list: n_jobs = len(batchIDs_list) tmpLog.debug('submitted {0} jobs: {1}'.format(n_jobs, ' '.join(batchIDs_list))) elif not errStr: tmpLog.error('submitted nothing') tmpLog.debug('Done') # Return return (batchIDs_list, errStr) def submit_with_python_process(self, jdl_list, use_spool=False): # Make logger tmpLog = core_utils.make_logger(baseLogger, 'submissionHost={0}'.format(self.submissionHost), method_name='CondorJobSubmit.submit_with_python_process') # Start tmpLog.debug('Start') # Make list of jdl map with dummy submit objects jdl_map_list = [ dict(htcondor.Submit(jdl).items()) for jdl in jdl_list ] # Go mp_queue = multiprocessing.Queue() mp_process = multiprocessing.Process(target=condor_submit_process, args=(mp_queue, self.submissionHost, jdl_map_list)) mp_process.daemon = True mp_process.start() (batchIDs_list, errStr) = mp_queue.get() mp_queue.close() mp_process.terminate() mp_process.join() if batchIDs_list: n_jobs = len(batchIDs_list) tmpLog.debug('submitted {0} jobs: {1}'.format(n_jobs, ' '.join(batchIDs_list))) elif not errStr: tmpLog.error('submitted nothing') tmpLog.debug('Done') # Return return (batchIDs_list, errStr) # Condor job remove class CondorJobManage(six.with_metaclass(SingletonWithID, CondorClient)): # class lock classLock = threading.Lock() def __init__(self, *args, **kwargs): self.submissionHost = str(kwargs.get('id')) # Make logger tmpLog = core_utils.make_logger(baseLogger, 'submissionHost={0} thrid={1} oid={2}'.format(self.submissionHost, get_ident(), id(self)), method_name='CondorJobManage.__init__') # Initialize tmpLog.debug('Start') self.lock = threading.Lock() CondorClient.__init__(self, self.submissionHost, *args, **kwargs) tmpLog.debug('Initialize done') def remove(self, batchIDs_list=[]): # Make logger tmpLog = core_utils.make_logger(baseLogger, 'submissionHost={0}'.format(self.submissionHost), method_name='CondorJobManage.remove') # Get all tmpLog.debug('Start') job_ads_all_dict = {} if self.condor_api == 'python': try: retVal = self.remove_with_python(batchIDs_list) except Exception as e: tmpLog.error('Exception {0}: {1}'.format(e.__class__.__name__, e)) raise else: retVal = self.remove_with_command(batchIDs_list) return retVal def remove_with_command(self, batchIDs_list=[]): # Make logger tmpLog = core_utils.make_logger(baseLogger, 'submissionHost={0}'.format(self.submissionHost), method_name='CondorJobManage.remove_with_command') # if workspec.batchID is None: # tmpLog.info('Found workerID={0} has submissionHost={1} batchID={2} . Cannot kill. Skipped '.format( # workspec.workerID, workspec.submissionHost, workspec.batchID)) # ret_list.append((True, '')) # # ## Parse condor remote options # name_opt, pool_opt = '', '' # if workspec.submissionHost is None or workspec.submissionHost == 'LOCAL': # pass # else: # try: # condor_schedd, condor_pool = workspec.submissionHost.split(',')[0:2] # except ValueError: # errStr = 'Invalid submissionHost: {0} . Skipped'.format(workspec.submissionHost) # tmpLog.error(errStr) # ret_list.append((False, errStr)) # name_opt = '-name {0}'.format(condor_schedd) if condor_schedd else '' # pool_opt = '-pool {0}'.format(condor_pool) if condor_pool else '' # # ## Kill command # comStr = 'condor_rm {name_opt} {pool_opt} {batchID}'.format(name_opt=name_opt, # pool_opt=pool_opt, # batchID=workspec.batchID) # (retCode, stdOut, stdErr) = _runShell(comStr) # if retCode != 0: # comStr = 'condor_q -l {name_opt} {pool_opt} {batchID}'.format(name_opt=name_opt, # pool_opt=pool_opt, # batchID=workspec.batchID) # (retCode, stdOut, stdErr) = _runShell(comStr) # if ('ClusterId = {0}'.format(workspec.batchID) in str(stdOut) \ # and 'JobStatus = 3' not in str(stdOut)) or retCode != 0: # ## Force to cancel if batch job not terminated first time # comStr = 'condor_rm -forcex {name_opt} {pool_opt} {batchID}'.format(name_opt=name_opt, # pool_opt=pool_opt, # batchID=workspec.batchID) # (retCode, stdOut, stdErr) = _runShell(comStr) # if retCode != 0: # ## Command failed to kill # errStr = 'command "{0}" failed, retCode={1}, error: {2} {3}'.format(comStr, retCode, stdOut, stdErr) # tmpLog.error(errStr) # ret_list.append((False, errStr)) # ## Found already killed # tmpLog.info('Found workerID={0} submissionHost={1} batchID={2} already killed'.format( # workspec.workerID, workspec.submissionHost, workspec.batchID)) # else: # tmpLog.info('Succeeded to kill workerID={0} submissionHost={1} batchID={2}'.format( # workspec.workerID, workspec.submissionHost, workspec.batchID)) raise NotImplementedError @CondorClient.renew_session_and_retry def remove_with_python(self, batchIDs_list=[]): # Make logger tmpLog = core_utils.make_logger(baseLogger, 'submissionHost={0}'.format(self.submissionHost), method_name='CondorJobManage.remove_with_python') # Start tmpLog.debug('Start') # Acquire class lock with self.classLock: tmpLog.debug('Got class lock') # Initialize ret_list = [] retMap = {} # Go n_jobs = len(batchIDs_list) act_ret = self.schedd.act(htcondor.JobAction.Remove, batchIDs_list) # Check if all jobs clear (off from schedd queue) is_all_clear = (n_jobs == act_ret['TotalAlreadyDone'] + act_ret['TotalNotFound'] + act_ret['TotalSuccess']) if act_ret and is_all_clear: tmpLog.debug('removed {0} jobs: {1}'.format(n_jobs, ','.join(batchIDs_list))) for batchid in batchIDs_list: condor_job_id = '{0}#{1}'.format(self.submissionHost, batchid) retMap[condor_job_id] = (True, '') else: tmpLog.error('job removal failed; batchIDs_list={0}, got: {1}'.format(batchIDs_list, act_ret)) # need to query queue for unterminated jobs not removed yet clusterids_set = set([ get_job_id_tuple_from_batchid(batchid)[0] for batchid in batchIDs_list ]) clusterids_str = ','.join(list(clusterids_set)) requirements = 'member(ClusterID, {{{0}}}) && JobStatus =!= 3 && JobStatus =!= 4'.format(clusterids_str) jobs_iter = self.schedd.xquery(requirements=requirements, projection=CONDOR_JOB_ADS_LIST) all_batchid_map = {} ok_batchid_list = [] ng_batchid_list = [] for job in jobs_iter: job_ads_dict = dict(job) batchid = get_batchid_from_job(job_ads_dict) all_batchid_map[batchid] = job_ads_dict for batchid in batchIDs_list: condor_job_id = '{0}#{1}'.format(self.submissionHost, batchid) if batchid in all_batchid_map: ng_batchid_list.append(batchid) retMap[condor_job_id] = (False, 'batchID={0} still unterminated in condor queue'.format(batchid)) else: ok_batchid_list.append(batchid) retMap[condor_job_id] = (True, '') tmpLog.debug('removed {0} jobs: {1} ; failed to remove {2} jobs: {3}'.format( len(ok_batchid_list), ','.join(ok_batchid_list), len(ng_batchid_list), ','.join(ng_batchid_list))) tmpLog.debug('Done') # Return return retMap #===============================================================
ping-aggregator-E16-server.py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import json import logging import psutil import subprocess import os import yaml from threading import Thread import srvdb import requests as orig_requests import time from flask import Flask from flask import request from two1.commands.config import Config from two1.wallet.two1_wallet import Wallet from two1.bitserv.flask import Payment from two1.bitrequests import BitTransferRequests # set up bitrequest client for BitTransfer requests wallet = Wallet() username = Config().username requests = BitTransferRequests(wallet, username) app = Flask(__name__) # app.debug = True # setup wallet wallet = Wallet() payment = Payment(app, wallet) # logging logger = logging.getLogger('werkzeug') # db handle db = srvdb.SrvDb("./ping-aggregator.db") def get_payment_amt(request): """ Return the amount of the request based on the number of nodes. """ # print(request.data) user_input = json.loads(request.data.decode('UTF-8')) cost = 1000 nodes = db.get_cheapest_nodes(user_input['nodes']) for node in nodes: cost = cost + node['price'] return cost @app.route('/', methods=['POST']) @payment.required(get_payment_amt) def ping(): """ Gets the cheapest X nodes running ping21 and runs them against the url specified. """ user_input = json.loads(request.data.decode('UTF-8')) if 'nodes' not in user_input: ret_obj = {'success': False, "message": "Missing nodes parameter in post data."} ret = json.dumps(ret_obj, indent=2) return (ret, 200, {'Content-length': len(ret), 'Content-type': 'application/json'}) if 'website' not in user_input: ret_obj = {'success': False, "message": "Missing website parameter in post data."} ret = json.dumps(ret_obj, indent=2) return (ret, 200, {'Content-length': len(ret), 'Content-type': 'application/json'}) # Get the amount of nodes the user requested + 10 in case one of them fails requested_count = user_input['nodes'] nodes = db.get_cheapest_nodes(requested_count + 10) # Iterate over the nodes returned from the DB vals = [] successful_requests = 0 for node in nodes: # If we have already found as many nodes as the user requested, bail out if successful_requests >= requested_count: break try: # Get the ping data from the node. # Use the uri from the user in the request. # Use the maxprice from the db (last time we saw it), so we don't get suckered. ret = requests.get(node['url'] + "?uri=" + user_input['website'], max_price=node['price']) # Get the json for the response ret_obj = ret.json() ret_obj['price_paid'] = node['price'] # Strip out sensitive info del ret_obj['server']['ip'] del ret_obj['server']['hostname'] # Save it off vals.append(ret_obj) # Update the success count successful_requests = successful_requests + 1 except Exception as err: logger.error("Failure: {0}".format(err)) ret = json.dumps(vals, indent=2) return (ret, 200, {'Content-length': len(ret), 'Content-type': 'application/json'}) def gather_ping_node_stats(): """ Iterates over nodes and updates the prices and status. """ while True: # Sleep for 8 hours before reloading the node stats time.sleep(60 * 60 * 8) nodes = db.get_node_ips() for node in nodes: logger.info("\n\nChecking for ping server on {}".format(node)) node_up = False # First try port 6002 url = "http://{}:6002/".format(node) manifest_url = url + "manifest" try: # If the manifest comes back, if it is running ping21 then it is up logger.info("Checking on port 6002 with url: {}".format(manifest_url)) manifest = orig_requests.get(manifest_url, timeout=1) logger.debug("Got back the manifest") if "ping21" in manifest.text: node_up = True logger.debug("Ping21 is running on 6002 on this node") else: logger.debug("Ping21 was not found in the manifest") except: node_up = False # Not found on standard node, see if it is running as a microservice if not node_up: url = "http://{}:8080/ping/".format(node) manifest_url = url + "manifest" try: # If the manifest comes back, if it is running ping21 then it is up logger.debug("Checking on port 8080") manifest = orig_requests.get(manifest_url, timeout=1) logger.debug("Got back the manifest") if "ping21" in manifest.text: node_up = True logger.debug("Ping21 is running on 8080 on this node") else: logger.debug("Ping21 was not found on this node") except: node_up = False # if we didn't find the ping21 service, mark the node as down if not node_up: logger.debug("Marking this node as down since Ping21 was not found") db.update_node(node, False, 0, "") continue # We found the node and it is running ping21, so hit the endpoint to get the price try: # If the manifest comes back, if it is running ping21 then it is up logger.debug("Getting ping url: {}".format(url)) ping_res = orig_requests.get(url) price = int(ping_res.headers['Price']) db.update_node(node, True, price, url) logger.debug("Updated the price from the endpoint: {}".format(price)) except Exception as err: logger.error("Failure: {0}".format(err)) db.update_node(node, False, 0, url) if __name__ == '__main__': import click @click.command() @click.option("-d", "--daemon", default=False, is_flag=True, help="Run in daemon mode.") @click.option("-l", "--log", default="ERROR", help="Logging level to use (DEBUG, INFO, WARNING, ERROR, CRITICAL)") def run(daemon, log): """ Run the service. """ # Set logging level numeric_level = getattr(logging, log.upper(), None) if not isinstance(numeric_level, int): raise ValueError('Invalid log level: %s' % log) logging.basicConfig(level=numeric_level) if daemon: pid_file = './ping-aggregator.pid' if os.path.isfile(pid_file): pid = int(open(pid_file).read()) os.remove(pid_file) try: p = psutil.Process(pid) p.terminate() except: pass try: p = subprocess.Popen(['python3', 'ping-aggregator-E16-server.py']) open(pid_file, 'w').write(str(p.pid)) except subprocess.CalledProcessError: raise ValueError("error starting ping-aggregator-E16-server.py daemon") else: # Start cleanup thread cleaner = Thread(target=gather_ping_node_stats, daemon=True) cleaner.start() print("Server running...") app.run(host='::', port=7018) run()
bak.client.py
#!/usr/bin/env python # # Copyright 2014 Huawei Technologies Co. Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """binary to deploy a cluster by compass client api.""" import os import re import sys import time import yaml import netaddr import requests import json import itertools import threading from collections import defaultdict from restful import Client import log as logging from oslo_config import cfg ROLE_UNASSIGNED = True ROLE_ASSIGNED = False LOG = logging.getLogger(__name__) CONF = cfg.CONF def byteify(input): if isinstance(input, dict): return dict([(byteify(key), byteify(value)) for key, value in input.iteritems()]) elif isinstance(input, list): return [byteify(element) for element in input] elif isinstance(input, unicode): return input.encode('utf-8') else: return input opts = [ cfg.StrOpt('expansion', help='is this an expansion?', default='false'), cfg.StrOpt('compass_server', help='compass server url', default='http://127.0.0.1/api'), cfg.StrOpt('compass_user_email', help='compass user email', default='admin@huawei.com'), cfg.StrOpt('compass_user_password', help='compass user password', default='admin'), cfg.StrOpt('switch_ips', help='comma seperated switch ips', default=''), cfg.StrOpt('switch_credential', help='comma separated <credential key>=<credential value>', default='version=2c,community=public'), cfg.IntOpt('switch_max_retries', help='max retries of poll switch', default=10), cfg.IntOpt('switch_retry_interval', help='interval to repoll switch', default=10), cfg.BoolOpt('poll_switches', help='if the client polls switches', default=True), cfg.StrOpt('machines', help='comma separated mac addresses of machines', default=''), cfg.StrOpt('subnets', help='comma seperated subnets', default=''), cfg.StrOpt('adapter_name', help='adapter name', default=''), cfg.StrOpt('adapter_os_pattern', help='adapter os name', default=r'^(?i)centos.*'), cfg.StrOpt('adapter_target_system_pattern', help='adapter target system name', default='^openstack$'), cfg.StrOpt('adapter_flavor_pattern', help='adapter flavor name', default='allinone'), cfg.StrOpt('cluster_name', help='cluster name', default='cluster1'), cfg.StrOpt('language', help='language', default='EN'), cfg.StrOpt('timezone', help='timezone', default='GMT'), cfg.StrOpt('http_proxy', help='http proxy', default=''), cfg.StrOpt('https_proxy', help='https proxy', default=''), cfg.StrOpt('no_proxy', help='no proxy', default=''), cfg.StrOpt('ntp_server', help='ntp server', default=''), cfg.StrOpt('dns_servers', help='dns servers', default=''), cfg.StrOpt('domain', help='domain', default=''), cfg.StrOpt('search_path', help='search path', default=''), cfg.StrOpt('local_repo_url', help='local repo url', default=''), cfg.StrOpt('default_gateway', help='default gateway', default=''), cfg.StrOpt('server_credential', help=( 'server credential formatted as ' '<username>=<password>' ), default='root=root'), cfg.StrOpt('os_config_json_file', help='json formatted os config file', default=''), cfg.StrOpt('service_credentials', help=( 'comma seperated service credentials formatted as ' '<servicename>:<username>=<password>,...' ), default=''), cfg.StrOpt('console_credentials', help=( 'comma seperated console credential formated as ' '<consolename>:<username>=<password>' ), default=''), cfg.StrOpt('hostnames', help='comma seperated hostname', default=''), cfg.StrOpt('host_networks', help=( 'semicomma seperated host name and its networks ' '<hostname>:<interface_name>=<ip>|<is_mgmt>|<is_promiscuous>,...' # noqa ), default=''), cfg.StrOpt('partitions', help=( 'comma seperated partitions ' '<partition name>=<partition_value>' ), default='tmp:percentage=10%,var:percentage=30%,home:percentage=30%'), # noqa cfg.StrOpt('network_mapping', help=( 'comma seperated network mapping ' '<network_type>=<interface_name>' ), default=''), cfg.StrOpt('package_config_json_file', help='json formatted os config file', default=''), cfg.StrOpt('host_roles', help=( 'semicomma separated host roles ' '<hostname>=<comma separated roles>' ), default=''), cfg.StrOpt('default_roles', help=( 'comma seperated default roles ' '<rolename>' ), default=''), cfg.IntOpt('action_timeout', help='action timeout in seconds', default=60), cfg.IntOpt('deployment_timeout', help='deployment timeout in minutes', default=60), cfg.IntOpt('progress_update_check_interval', help='progress update status check interval in seconds', default=60), cfg.StrOpt('dashboard_url', help='dashboard url', default=''), cfg.StrOpt('dashboard_link_pattern', help='dashboard link pattern', default=r'(?m)(http://\d+\.\d+\.\d+\.\d+:5000/v2\.0)'), cfg.StrOpt('cluster_vip', help='cluster ip address', default=''), cfg.StrOpt('enable_secgroup', help='enable security group', default='true'), cfg.StrOpt('enable_vpnaas', help='enable vpn as service', default='true'), cfg.StrOpt('enable_fwaas', help='enable firewall as service', default='true'), cfg.StrOpt('network_cfg', help='netowrk config file', default=''), cfg.StrOpt('neutron_cfg', help='netowrk config file', default=''), cfg.StrOpt('cluster_pub_vip', help='cluster ip address', default=''), cfg.StrOpt('cluster_prv_vip', help='cluster ip address', default=''), cfg.StrOpt('repo_name', help='repo name', default=''), cfg.StrOpt('deploy_type', help='deploy type', default='virtual'), cfg.StrOpt('deploy_flag', help='deploy flag', default='deploy'), cfg.StrOpt('rsa_file', help='ssh rsa key file', default=''), cfg.StrOpt('odl_l3_agent', help='odl l3 agent enable flag', default='Disable'), cfg.StrOpt('moon', help='moon enable flag', default='Disable'), cfg.StrOpt('onos_sfc', help='onos_sfc enable flag', default='Disable'), ] CONF.register_cli_opts(opts) def is_role_unassigned(role): return role def _load_config(config_filename): if not config_filename: return {} with open(config_filename) as config_file: content = config_file.read() return json.loads(content) class CompassClient(object): def __init__(self): LOG.info("xh: compass_server=%s" % CONF.compass_server) self.client = Client(CONF.compass_server) self.subnet_mapping = {} self.role_mapping = {} self.host_mapping = {} self.host_ips = defaultdict(list) self.host_roles = {} self.login() def is_ok(self, status): if status < 300 and status >= 200: return True def login(self): status, resp = self.client.get_token( CONF.compass_user_email, CONF.compass_user_password ) LOG.info( 'login status: %s, resp: %s', status, resp ) if self.is_ok(status): return resp["token"] else: raise Exception( 'failed to login %s with user %s', CONF.compass_server, CONF.compass_user_email ) def get_machines(self): status, resp = self.client.list_machines() if not self.is_ok(status): LOG.error( 'get all machines status: %s, resp: %s', status, resp) raise RuntimeError('failed to get machines') machines_to_add = list(set([ machine for machine in CONF.machines.split(',') if machine ])) machines_db = [str(m["mac"]) for m in resp] LOG.info( 'machines in db: %s\n to add: %s', machines_db, machines_to_add) if not set(machines_to_add).issubset(set(machines_db)): raise RuntimeError('unidentify machine to add') return [m["id"] for m in resp if str(m["mac"]) in machines_to_add] def list_clusters(self): status, resp = self.client.list_clusters(name=CONF.cluster_name) if not self.is_ok(status) or not resp: raise RuntimeError('failed to list cluster') cluster = resp[0] return cluster['id'] def get_adapter(self): """get adapter.""" status, resp = self.client.list_adapters(name=CONF.adapter_name) LOG.info( 'get all adapters status: %s, resp: %s', status, resp ) if not self.is_ok(status) or not resp: raise RuntimeError('failed to get adapters') os_re = re.compile(CONF.adapter_os_pattern) flavor_re = re.compile(CONF.adapter_flavor_pattern) adapter_id = None os_id = None flavor_id = None adapter = None adapter = resp[0] adapter_id = adapter['id'] for supported_os in adapter['supported_oses']: if not os_re or os_re.match(supported_os['name']): os_id = supported_os['os_id'] break if 'flavors' in adapter: for flavor in adapter['flavors']: if not flavor_re or flavor_re.match(flavor['name']): flavor_id = flavor['id'] break assert(os_id and flavor_id) return (adapter_id, os_id, flavor_id) def add_subnets(self): subnets = [ subnet for subnet in CONF.subnets.split(',') if subnet ] assert(subnets) subnet_mapping = {} _, subnets_in_db = self.client.list_subnets() for subnet in subnets: try: netaddr.IPNetwork(subnet) except: raise RuntimeError('subnet %s format is invalid' % subnet) if CONF.expansion == "false": status, resp = self.client.add_subnet(subnet) LOG.info('add subnet %s status %s response %s', subnet, status, resp) if not self.is_ok(status): raise RuntimeError('failed to add subnet %s' % subnet) subnet_mapping[resp['subnet']] = resp['id'] else: for subnet_in_db in subnets_in_db: if subnet == subnet_in_db['subnet']: subnet_mapping[subnet] = subnet_in_db['id'] self.subnet_mapping = subnet_mapping def add_cluster(self, adapter_id, os_id, flavor_id): """add a cluster.""" cluster_name = CONF.cluster_name assert(cluster_name) status, resp = self.client.add_cluster( cluster_name, adapter_id, os_id, flavor_id) if not self.is_ok(status): raise RuntimeError("add cluster failed") LOG.info('add cluster %s status: %s resp:%s', cluster_name, status, resp) if isinstance(resp, list): cluster = resp[0] else: cluster = resp cluster_id = cluster['id'] flavor = cluster.get('flavor', {}) roles = flavor.get('roles', []) for role in roles: if role.get('optional', False): self.role_mapping[role['name']] = ROLE_ASSIGNED else: self.role_mapping[role['name']] = ROLE_UNASSIGNED return cluster_id def add_cluster_hosts(self, cluster_id, machines): hostnames = [ hostname for hostname in CONF.hostnames.split(',') if hostname ] machines = machines[-len(hostnames):] assert(len(machines) == len(hostnames)) machines_dict = [] for machine_id, hostname in zip(machines, hostnames): machines_dict.append({ 'machine_id': machine_id, 'name': hostname }) # add hosts to the cluster. status, resp = self.client.add_hosts_to_cluster( cluster_id, {'machines': machines_dict}) LOG.info('add machines %s to cluster %s status: %s, resp: %s', machines_dict, cluster_id, status, resp) if not self.is_ok(status): raise RuntimeError("add host to cluster failed") for host in resp['hosts']: if host['hostname'] in hostnames: self.host_mapping[host['hostname']] = host['id'] if CONF.expansion == "false": assert(len(self.host_mapping) == len(machines)) def set_cluster_os_config(self, cluster_id): """set cluster os config.""" os_config = {} language = CONF.language timezone = CONF.timezone http_proxy = CONF.http_proxy https_proxy = CONF.https_proxy local_repo_url = CONF.local_repo_url repo_name = CONF.repo_name deploy_type = CONF.deploy_type if not https_proxy and http_proxy: https_proxy = http_proxy no_proxy = [ no_proxy for no_proxy in CONF.no_proxy.split(',') if no_proxy ] compass_server = CONF.compass_server if http_proxy: for hostname, ips in self.host_ips.items(): no_proxy.append(hostname) no_proxy.extend(ips) ntp_server = CONF.ntp_server or compass_server dns_servers = [ dns_server for dns_server in CONF.dns_servers.split(',') if dns_server ] if not dns_servers: dns_servers = [compass_server] domain = CONF.domain if not domain: raise Exception('domain is not defined') search_path = [ search_path for search_path in CONF.search_path.split(',') if search_path ] if not search_path: search_path = [domain] default_gateway = CONF.default_gateway if not default_gateway: raise Exception('default gateway is not defined') general_config = { 'language': language, 'timezone': timezone, 'ntp_server': ntp_server, 'dns_servers': dns_servers, 'default_gateway': default_gateway } if http_proxy: general_config['http_proxy'] = http_proxy if https_proxy: general_config['https_proxy'] = https_proxy if no_proxy: general_config['no_proxy'] = no_proxy if domain: general_config['domain'] = domain if search_path: general_config['search_path'] = search_path if local_repo_url: general_config['local_repo'] = local_repo_url if repo_name: general_config['repo_name'] = repo_name if deploy_type: general_config['deploy_type'] = deploy_type os_config["general"] = general_config server_credential = CONF.server_credential if '=' in server_credential: server_username, server_password = server_credential.split('=', 1) elif server_credential: server_username = server_password = server_credential else: server_username = 'root' server_password = 'root' os_config['server_credentials'] = { 'username': server_username, 'password': server_password } partitions = [ partition for partition in CONF.partitions.split(',') if partition ] partition_config = {} for partition in partitions: assert("=" in partition) partition_name, partition_value = partition.split('=', 1) partition_name = partition_name.strip() partition_value = partition_value.strip() assert(partition_name and partition_value) if partition_value.endswith('%'): partition_type = 'percentage' partition_value = int(partition_value[:-1]) else: partition_type = 'size' partition_config[partition_name] = { partition_type: partition_value } os_config['partition'] = partition_config """ os_config_filename = CONF.os_config_json_file if os_config_filename: util.merge_dict( os_config, _load_config(os_config_filename) ) """ status, resp = self.client.update_cluster_config( cluster_id, os_config=os_config) LOG.info( 'set os config %s to cluster %s status: %s, resp: %s', os_config, cluster_id, status, resp) if not self.is_ok(status): raise RuntimeError('failed to set os config %s to cluster %s' % (os_config, cluster_id)) def set_host_networking(self): """set cluster hosts networking.""" def get_subnet(ip_str): try: LOG.info("subnets: %s" % self.subnet_mapping.keys()) ip = netaddr.IPAddress(ip_str) for cidr, subnet_id in self.subnet_mapping.items(): subnet = netaddr.IPNetwork(cidr) if ip in subnet: return True, subnet_id LOG.info("ip %s not in %s" % (ip_str, cidr)) return False, None except: LOG.exception("ip addr %s is invalid" % ip_str) return False, None for host_network in CONF.host_networks.split(';'): hostname, networks_str = host_network.split(':', 1) hostname = hostname.strip() networks_str = networks_str.strip() assert(hostname in self.host_mapping) host_id = self.host_mapping[hostname] intf_list = networks_str.split(',') for intf_str in intf_list: interface, intf_properties = intf_str.split('=', 1) intf_properties = intf_properties.strip().split('|') assert(intf_properties) ip_str = intf_properties[0] status, subnet_id = get_subnet(ip_str) if not status: raise RuntimeError("ip addr %s is invalid" % ip_str) properties = dict([ (intf_property, True) for intf_property in intf_properties[1:] ]) LOG.info( 'add host %s interface %s ip %s network properties %s', hostname, interface, ip_str, properties) status, response = self.client.add_host_network( host_id, interface, ip=ip_str, subnet_id=subnet_id, **properties ) LOG.info( 'add host %s interface %s ip %s network properties %s ' 'status %s: %s', hostname, interface, ip_str, properties, status, response ) if not self.is_ok(status): raise RuntimeError("add host network failed") self.host_ips[hostname].append(ip_str) def set_cluster_package_config(self, cluster_id): """set cluster package config.""" package_config = {"security": {}} service_credentials = [ service_credential for service_credential in CONF.service_credentials.split(',') if service_credential ] service_credential_cfg = {} LOG.info( 'service credentials: %s', service_credentials ) for service_credential in service_credentials: if ':' not in service_credential: raise Exception( 'there is no : in service credential %s' % service_credential # noqa ) service_name, service_pair = service_credential.split(':', 1) if '=' not in service_pair: raise Exception( 'there is no = in service %s security' % service_name ) username, password = service_pair.split('=', 1) service_credential_cfg[service_name] = { 'username': username, 'password': password } console_credentials = [ console_credential for console_credential in CONF.console_credentials.split(',') if console_credential ] LOG.info( 'console credentials: %s', console_credentials ) console_credential_cfg = {} for console_credential in console_credentials: if ':' not in console_credential: raise Exception( 'there is no : in console credential %s' % console_credential # noqa ) console_name, console_pair = console_credential.split(':', 1) if '=' not in console_pair: raise Exception( 'there is no = in console %s security' % console_name ) username, password = console_pair.split('=', 1) console_credential_cfg[console_name] = { 'username': username, 'password': password } package_config["security"] = {"service_credentials": service_credential_cfg, # noqa "console_credentials": console_credential_cfg} # noqa network_mapping = dict([ network_pair.split('=', 1) for network_pair in CONF.network_mapping.split(',') if '=' in network_pair ]) package_config['network_mapping'] = network_mapping assert(os.path.exists(CONF.network_cfg)) network_cfg = yaml.load(open(CONF.network_cfg)) package_config["network_cfg"] = network_cfg assert(os.path.exists(CONF.neutron_cfg)) neutron_cfg = yaml.load(open(CONF.neutron_cfg)) package_config["neutron_config"] = neutron_cfg """ package_config_filename = CONF.package_config_json_file if package_config_filename: util.merge_dict( package_config, _load_config(package_config_filename) ) """ package_config['ha_proxy'] = {} if CONF.cluster_vip: package_config["ha_proxy"]["vip"] = CONF.cluster_vip package_config['enable_secgroup'] = (CONF.enable_secgroup == "true") package_config['enable_fwaas'] = (CONF.enable_fwaas == "true") package_config['enable_vpnaas'] = (CONF.enable_vpnaas == "true") package_config[ 'odl_l3_agent'] = "Enable" if CONF.odl_l3_agent == "Enable" else "Disable" # noqa package_config[ 'moon'] = "Enable" if CONF.moon == "Enable" else "Disable" package_config[ 'onos_sfc'] = "Enable" if CONF.onos_sfc == "Enable" else "Disable" status, resp = self.client.update_cluster_config( cluster_id, package_config=package_config) LOG.info( 'set package config %s to cluster %s status: %s, resp: %s', package_config, cluster_id, status, resp) if not self.is_ok(status): raise RuntimeError("set cluster package_config failed") def set_host_roles(self, cluster_id, host_id, roles): status, response = self.client.update_cluster_host( cluster_id, host_id, roles=roles) LOG.info( 'set cluster %s host %s roles %s status %s: %s', cluster_id, host_id, roles, status, response ) if not self.is_ok(status): raise RuntimeError("set host roles failed") for role in roles: if role in self.role_mapping: self.role_mapping[role] = ROLE_ASSIGNED def set_all_hosts_roles(self, cluster_id): for host_str in CONF.host_roles.split(';'): host_str = host_str.strip() hostname, roles_str = host_str.split('=', 1) assert(hostname in self.host_mapping) host_id = self.host_mapping[hostname] roles = [role.strip() for role in roles_str.split(',') if role] self.set_host_roles(cluster_id, host_id, roles) self.host_roles[hostname] = roles unassigned_hostnames = list(set(self.host_mapping.keys()) - set(self.host_roles.keys())) # noqa unassigned_roles = [role for role, status in self.role_mapping.items() if is_role_unassigned(status)] assert(len(unassigned_hostnames) >= len(unassigned_roles)) for hostname, role in map( None, unassigned_hostnames, unassigned_roles): host_id = self.host_mapping[hostname] self.set_host_roles(cluster_id, host_id, [role]) self.host_roles[hostname] = [role] unassigned_hostnames = list(set(self.host_mapping.keys()) - set(self.host_roles.keys())) # noqa if not unassigned_hostnames: return # assign default roles to unassigned hosts default_roles = [ role for role in CONF.default_roles.split(',') if role ] assert(default_roles) cycle_roles = itertools.cycle(default_roles) for hostname in unassigned_hostnames: host_id = self.host_mapping[hostname] roles = [cycle_roles.next()] self.set_host_roles(cluster_id, host_id, roles) self.host_roles[hostname] = roles def deploy_clusters(self, cluster_id): host_ids = self.host_mapping.values() status, response = self.client.review_cluster( cluster_id, review={'hosts': host_ids} ) LOG.info( 'review cluster %s hosts %s, status %s: %s', cluster_id, host_ids, status, response ) # TODO, what this doning? if not self.is_ok(status): raise RuntimeError("review cluster host failed") status, response = self.client.deploy_cluster( cluster_id, deploy={'hosts': host_ids} ) LOG.info( 'deploy cluster %s hosts %s status %s: %s', cluster_id, host_ids, status, response ) if not self.is_ok(status): raise RuntimeError("deploy cluster failed") def redeploy_clusters(self, cluster_id): status, response = self.client.redeploy_cluster( cluster_id ) if not self.is_ok(status): LOG.info( 'deploy cluster %s status %s: %s', cluster_id, status, response ) raise RuntimeError("redeploy cluster failed") def get_cluster_state(self, cluster_id): for _ in range(10): try: status, cluster_state = self.client.get_cluster_state( cluster_id) if self.is_ok(status): break except: status = 500 cluster_state = "" LOG.error("can not get cluster %s's state, try again" % cluster_id) time.sleep(6) return status, cluster_state def get_installing_progress(self, cluster_id): def _get_installing_progress(): """get intalling progress.""" deployment_timeout = time.time() + 60 * float(CONF.deployment_timeout) # noqa current_time = time.time while current_time() < deployment_timeout: status, cluster_state = self.get_cluster_state(cluster_id) if not self.is_ok(status): raise RuntimeError("can not get cluster state") elif cluster_state['state'] == 'SUCCESSFUL': LOG.info( 'get cluster %s state status %s: %s, successful', cluster_id, status, cluster_state ) break elif cluster_state['state'] == 'ERROR': raise RuntimeError( 'get cluster %s state status %s: %s, error', (cluster_id, status, cluster_state) ) time.sleep(5) if current_time() >= deployment_timeout: LOG.info("current_time=%s, deployment_timeout=%s" % (current_time(), deployment_timeout)) LOG.info("cobbler status:") os.system("docker exec -it compass-cobbler bash -c 'cobbler status'") raise RuntimeError("installation timeout") try: _get_installing_progress() finally: # do this twice, make sure process be killed kill_print_proc() kill_print_proc() def check_dashboard_links(self, cluster_id): dashboard_url = CONF.dashboard_url if not dashboard_url: LOG.info('no dashboarde url set') return dashboard_link_pattern = re.compile( CONF.dashboard_link_pattern) r = requests.get(dashboard_url, verify=False) r.raise_for_status() match = dashboard_link_pattern.search(r.text) if match: LOG.info( 'dashboard login page for cluster %s can be downloaded', cluster_id) else: msg = ( '%s failed to be downloaded\n' 'the context is:\n%s\n' ) % (dashboard_url, r.text) raise Exception(msg) def print_ansible_log(): os.system("docker exec compass-tasks bash -c \ 'while ! tail -f \ /var/ansible/run/%s-%s/ansible.log 2>/dev/null; do :; \ sleep 1; done'" % (CONF.adapter_name, CONF.cluster_name)) def kill_print_proc(): os.system( "ps aux|grep -v grep|grep -E 'ssh.+root@192.168.200.2'|awk '{print $2}'|xargs kill -9") # noqa def deploy(): if CONF.expansion == "false": client = CompassClient() machines = client.get_machines() LOG.info('machines are %s', machines) client.add_subnets() adapter_id, os_id, flavor_id = client.get_adapter() cluster_id = client.add_cluster(adapter_id, os_id, flavor_id) client.add_cluster_hosts(cluster_id, machines) client.set_host_networking() client.set_cluster_os_config(cluster_id) if flavor_id: client.set_cluster_package_config(cluster_id) client.set_all_hosts_roles(cluster_id) client.deploy_clusters(cluster_id) LOG.info("compass OS installtion is begin") threading.Thread(target=print_ansible_log).start() client.get_installing_progress(cluster_id) client.check_dashboard_links(cluster_id) else: client = CompassClient() machines = client.get_machines() LOG.info('machines are %s', machines) client.add_subnets() status, response = client.client.list_clusters() cluster_id = 1 for cluster in response: if cluster['name'] == CONF.cluster_name: cluster_id = cluster['id'] client.add_cluster_hosts(cluster_id, machines) client.set_host_networking() client.set_cluster_os_config(cluster_id) client.set_cluster_package_config(cluster_id) client.set_all_hosts_roles(cluster_id) client.deploy_clusters(cluster_id) threading.Thread(target=print_ansible_log).start() client.get_installing_progress(cluster_id) def redeploy(): client = CompassClient() cluster_id = client.list_clusters() client.redeploy_clusters(cluster_id) client.get_installing_progress(cluster_id) client.check_dashboard_links(cluster_id) def main(): if CONF.deploy_flag == "redeploy": redeploy() else: deploy() if __name__ == "__main__": CONF(args=sys.argv[1:]) main()
run.py
import os import time import torch import numpy as np import numpy.random as rd import multiprocessing as mp # from elegantrl.env import build_env from elegantrl.env import build_isaac_gym_env as build_env # todo isaac from elegantrl.replay import ReplayBuffer, ReplayBufferMP from elegantrl.evaluator import Evaluator """[ElegantRL.2021.09.09](https://github.com/AI4Finance-LLC/ElegantRL)""" class Arguments: def __init__(self, if_on_policy=False): self.env = None # the environment for training self.agent = None # Deep Reinforcement Learning algorithm '''Arguments for training''' self.gamma = 0.99 # discount factor of future rewards self.reward_scale = 2 ** 0 # an approximate target reward usually be closed to 256 self.learning_rate = 2 ** -15 # 2 ** -14 ~= 3e-5 self.soft_update_tau = 2 ** -8 # 2 ** -8 ~= 5e-3 self.if_on_policy = if_on_policy if self.if_on_policy: # (on-policy) self.net_dim = 2 ** 9 # the network width self.batch_size = self.net_dim * 2 # num of transitions sampled from replay buffer. self.repeat_times = 2 ** 3 # collect target_step, then update network self.target_step = 2 ** 12 # repeatedly update network to keep critic's loss small self.max_memo = self.target_step # capacity of replay buffer self.if_per_or_gae = False # GAE for on-policy sparse reward: Generalized Advantage Estimation. else: self.net_dim = 2 ** 8 # the network width self.batch_size = self.net_dim # num of transitions sampled from replay buffer. self.repeat_times = 2 ** 0 # repeatedly update network to keep critic's loss small self.target_step = 2 ** 10 # collect target_step, then update network self.max_memo = 2 ** 21 # capacity of replay buffer self.if_per_or_gae = False # PER for off-policy sparse reward: Prioritized Experience Replay. '''Arguments for device''' self.env_num = 1 # The Environment number for each worker. env_num == 1 means don't use VecEnv. self.worker_num = 2 # rollout workers number pre GPU (adjust it to get high GPU usage) self.thread_num = 8 # cpu_num for evaluate model, torch.set_num_threads(self.num_threads) self.visible_gpu = '0' # for example: os.environ['CUDA_VISIBLE_DEVICES'] = '0, 2,' self.random_seed = 0 # initialize random seed in self.init_before_training() '''Arguments for evaluate and save''' self.cwd = None # current work directory. None means set automatically self.if_remove = True # remove the cwd folder? (True, False, None:ask me) self.break_step = 2 ** 20 # break training after 'total_step > break_step' self.if_allow_break = True # allow break training when reach goal (early termination) self.eval_env = None # the environment for evaluating. None means set automatically. self.eval_gap = 2 ** 7 # evaluate the agent per eval_gap seconds self.eval_times1 = 2 ** 3 # number of times that get episode return in first self.eval_times2 = 2 ** 4 # number of times that get episode return in second self.eval_device_id = -1 # -1 means use cpu, >=0 means use GPU def init_before_training(self, if_main): np.random.seed(self.random_seed) torch.manual_seed(self.random_seed) torch.set_num_threads(self.thread_num) torch.set_default_dtype(torch.float32) os.environ['CUDA_VISIBLE_DEVICES'] = str(self.visible_gpu) '''env''' if self.env is None: raise RuntimeError(f'\n| Why env=None? For example:' f'\n| args.env = XxxEnv()' f'\n| args.env = str(env_name)' f'\n| args.env = build_env(env_name), from elegantrl.env import build_env') if not (isinstance(self.env, str) or hasattr(self.env, 'env_name')): raise RuntimeError('\n| What is env.env_name? use env=PreprocessEnv(env).') '''agent''' if self.agent is None: raise RuntimeError(f'\n| Why agent=None? Assignment `args.agent = AgentXXX` please.') if not hasattr(self.agent, 'init'): raise RuntimeError(f"\n| why hasattr(self.agent, 'init') == False" f'\n| Should be `agent=AgentXXX()` instead of `agent=AgentXXX`.') if self.agent.if_on_policy != self.if_on_policy: raise RuntimeError(f'\n| Why bool `if_on_policy` is not consistent?' f'\n| self.if_on_policy: {self.if_on_policy}' f'\n| self.agent.if_on_policy: {self.agent.if_on_policy}') '''cwd''' if self.cwd is None: agent_name = self.agent.__class__.__name__ env_name = getattr(self.env, 'env_name', self.env) self.cwd = f'./{agent_name}_{env_name}_{self.visible_gpu}' if if_main: # remove history according to bool(if_remove) if self.if_remove is None: self.if_remove = bool(input(f"| PRESS 'y' to REMOVE: {self.cwd}? ") == 'y') elif self.if_remove: import shutil shutil.rmtree(self.cwd, ignore_errors=True) print(f"| Remove cwd: {self.cwd}") os.makedirs(self.cwd, exist_ok=True) '''single processing training''' def train_and_evaluate(args, agent_id=0): args.init_before_training(if_main=True) env = build_env(args.env, if_print=False) '''init: Agent''' agent = args.agent agent.init(args.net_dim, env.state_dim, env.action_dim, args.learning_rate, args.if_per_or_gae, args.env_num) agent.save_or_load_agent(args.cwd, if_save=False) if env.env_num == 1: agent.states = [env.reset(), ] assert isinstance(agent.states[0], np.ndarray) assert agent.states[0].shape == (env.state_dim,) else: agent.states = env.reset() assert isinstance(agent.states, torch.Tensor) assert agent.states.shape == (env.env_num, env.state_dim) '''init Evaluator''' eval_env = args.eval_env if args.eval_env else build_env(env) evaluator = Evaluator(args.cwd, agent_id, agent.device, eval_env, args.eval_gap, args.eval_times1, args.eval_times2) evaluator.save_or_load_recoder(if_save=False) '''init ReplayBuffer''' if agent.if_on_policy: buffer = list() def update_buffer(_traj_list): buffer[:] = _traj_list[0] # (ten_state, ten_reward, ten_mask, ten_action, ten_noise) _step, _r_exp = get_step_r_exp(ten_reward=buffer[1]) return _step, _r_exp else: buffer = ReplayBuffer(max_len=args.max_memo, state_dim=env.state_dim, action_dim=1 if env.if_discrete else env.action_dim, if_use_per=args.if_per_or_gae) buffer.save_or_load_history(args.cwd, if_save=False) def update_buffer(_traj_list): ten_state, ten_other = _traj_list[0] buffer.extend_buffer(ten_state, ten_other) _steps, _r_exp = get_step_r_exp(ten_reward=ten_other[0]) # other = (reward, mask, action) return _steps, _r_exp """start training""" cwd = args.cwd gamma = args.gamma break_step = args.break_step batch_size = args.batch_size target_step = args.target_step repeat_times = args.repeat_times reward_scale = args.reward_scale if_allow_break = args.if_allow_break soft_update_tau = args.soft_update_tau del args '''init ReplayBuffer after training start''' if not agent.if_on_policy: if_load = buffer.save_or_load_history(cwd, if_save=False) if not if_load: traj_list = agent.explore_env(env, target_step, reward_scale, gamma) steps, r_exp = update_buffer(traj_list) evaluator.total_step += steps '''start training loop''' if_train = True while if_train: with torch.no_grad(): traj_list = agent.explore_env(env, target_step, reward_scale, gamma) steps, r_exp = update_buffer(traj_list) logging_tuple = agent.update_net(buffer, batch_size, repeat_times, soft_update_tau) with torch.no_grad(): temp = evaluator.evaluate_and_save(agent.act, steps, r_exp, logging_tuple) if_reach_goal, if_save = temp if_train = not ((if_allow_break and if_reach_goal) or evaluator.total_step > break_step or os.path.exists(f'{cwd}/stop')) print(f'| UsedTime: {time.time() - evaluator.start_time:>7.0f} | SavedDir: {cwd}') env.close() agent.save_or_load_agent(cwd, if_save=True) buffer.save_or_load_history(cwd, if_save=True) if not agent.if_on_policy else None evaluator.save_or_load_recoder(if_save=True) def get_step_r_exp(ten_reward): return len(ten_reward), ten_reward.mean().item() '''multiple processing training''' class PipeWorker: def __init__(self, env_num, worker_num): self.env_num = env_num self.worker_num = worker_num self.pipes = [mp.Pipe() for _ in range(worker_num)] self.pipe1s = [pipe[1] for pipe in self.pipes] def explore(self, agent): act_dict = agent.act.state_dict() for worker_id in range(self.worker_num): self.pipe1s[worker_id].send(act_dict) traj_lists = [pipe1.recv() for pipe1 in self.pipe1s] return traj_lists def run(self, args, comm_env, worker_id, learner_id): # print(f'| os.getpid()={os.getpid()} PipeExplore.run {learner_id}') args.init_before_training(if_main=False) '''init Agent''' env = build_env(args.env, if_print=False) agent = args.agent agent.init(args.net_dim, env.state_dim, env.action_dim, args.learning_rate, args.if_per_or_gae, args.env_num, learner_id) '''loop''' gamma = args.gamma target_step = args.target_step reward_scale = args.reward_scale del args if comm_env: env = comm_env agent.states = env.reset() else: agent.states = [env.reset(), ] with torch.no_grad(): while True: act_dict = self.pipes[worker_id][0].recv() agent.act.load_state_dict(act_dict) trajectory = agent.explore_env(env, target_step, reward_scale, gamma) self.pipes[worker_id][0].send(trajectory) def get_comm_data(agent): act = list(agent.act.parameters()) cri_optim = get_optim_parameters(agent.cri_optim) if agent.cri is agent.act: cri = None act_optim = None else: cri = list(agent.cri.parameters()) act_optim = get_optim_parameters(agent.act_optim) act_target = list(agent.act_target.parameters()) if agent.if_use_act_target else None cri_target = list(agent.cri_target.parameters()) if agent.if_use_cri_target else None return act, act_optim, cri, cri_optim, act_target, cri_target # data class PipeLearner: def __init__(self, learner_num): self.learner_num = learner_num self.round_num = int(np.log2(learner_num)) self.pipes = [mp.Pipe() for _ in range(learner_num)] pipes = [mp.Pipe() for _ in range(learner_num)] self.pipe0s = [pipe[0] for pipe in pipes] self.pipe1s = [pipe[1] for pipe in pipes] self.device_list = [torch.device(f'cuda:{i}') for i in range(learner_num)] if learner_num == 1: self.idx_l = None elif learner_num == 2: self.idx_l = [(1,), (0,), ] elif learner_num == 4: self.idx_l = [(1, 2), (0, 3), (3, 0), (2, 1), ] elif learner_num == 8: self.idx_l = [(1, 2, 4), (0, 3, 5), (3, 0, 6), (2, 1, 7), (5, 6, 0), (4, 7, 1), (7, 4, 2), (6, 5, 3), ] else: print(f"| LearnerPipe, ERROR: learner_num {learner_num} should in (1, 2, 4, 8)") exit() def comm_data(self, data, learner_id, round_id): if round_id == -1: learner_jd = self.idx_l[learner_id][round_id] self.pipes[learner_jd][0].send(data) return self.pipes[learner_id][1].recv() else: learner_jd = self.idx_l[learner_id][round_id] self.pipe0s[learner_jd].send(data) return self.pipe1s[learner_id].recv() def comm_network_optim(self, agent, learner_id): device = self.device_list[learner_id] for round_id in range(self.round_num): data = get_comm_data(agent) data = self.comm_data(data, learner_id, round_id) if data: avg_update_net(agent.act, data[0], device) avg_update_optim(agent.act_optim, data[1], device) if data[1] else None avg_update_net(agent.cri, data[2], device) if data[2] else None avg_update_optim(agent.cri_optim, data[3], device) avg_update_net(agent.act_target, data[4], device) if agent.if_use_act_target else None avg_update_net(agent.cri_target, data[5], device) if agent.if_use_cri_target else None def run(self, args, comm_eva, comm_exp, learner_id=0): # print(f'| os.getpid()={os.getpid()} PipeLearn.run, {learner_id}') args.init_before_training(if_main=learner_id == 0) # env = build_env(args.env, if_print=False) if_on_policy = args.if_on_policy '''init Agent''' agent = args.agent # agent.init(args.net_dim, env.state_dim, env.action_dim, # args.learning_rate, args.if_per_or_gae, args.env_num, learner_id) agent.init(args.net_dim, args.state_dim, args.action_dim, args.learning_rate, args.if_per_or_gae, args.env_num, learner_id) # todo isaac agent.save_or_load_agent(args.cwd, if_save=False) '''init ReplayBuffer''' if if_on_policy: buffer = list() def update_buffer(_traj_list): _traj_list = list(map(list, zip(*_traj_list))) _traj_list = [torch.cat(t, dim=0) for t in _traj_list] buffer[:] = _traj_list # (ten_state, ten_reward, ten_mask, ten_action, ten_noise) _step, _r_exp = get_step_r_exp(ten_reward=buffer[1]) return _step, _r_exp else: buffer_num = args.worker_num * args.env_num if self.learner_num > 1: buffer_num *= 2 # buffer = ReplayBufferMP(max_len=args.max_memo, state_dim=env.state_dim, # action_dim=1 if env.if_discrete else env.action_dim, # if_use_per=args.if_per_or_gae, # buffer_num=buffer_num, gpu_id=learner_id) buffer = ReplayBufferMP(max_len=args.max_memo, state_dim=args.state_dim, action_dim=1 if args.if_discrete else args.action_dim, if_use_per=args.if_per_or_gae, buffer_num=buffer_num, gpu_id=learner_id) # todo isaac buffer.save_or_load_history(args.cwd, if_save=False) def update_buffer(_traj_list): step_sum = 0 r_exp_sum = 0 for buffer_i, (ten_state, ten_other) in enumerate(_traj_list): buffer.buffers[buffer_i].extend_buffer(ten_state, ten_other) step_r_exp = get_step_r_exp(ten_reward=ten_other[:, 0]) # other = (reward, mask, action) step_sum += step_r_exp[0] r_exp_sum += step_r_exp[1] return step_sum, r_exp_sum / len(_traj_list) '''start training''' cwd = args.cwd batch_size = args.batch_size repeat_times = args.repeat_times soft_update_tau = args.soft_update_tau del args if_train = True while if_train: traj_lists = comm_exp.explore(agent) if self.learner_num > 1: data = self.comm_data(traj_lists, learner_id, round_id=-1) traj_lists.extend(data) traj_list = sum(traj_lists, list()) steps, r_exp = update_buffer(traj_list) del traj_lists logging_tuple = agent.update_net(buffer, batch_size, repeat_times, soft_update_tau) if self.learner_num > 1: self.comm_network_optim(agent, learner_id) if comm_eva: if_train, if_save = comm_eva.evaluate_and_save_mp(agent.act, steps, r_exp, logging_tuple) agent.save_or_load_agent(cwd, if_save=True) if not if_on_policy: print(f"| LearnerPipe.run: ReplayBuffer saving in {cwd}") buffer.save_or_load_history(cwd, if_save=True) class PipeEvaluator: def __init__(self): super().__init__() self.pipe0, self.pipe1 = mp.Pipe() def evaluate_and_save_mp(self, agent_act, steps, r_exp, logging_tuple): if self.pipe1.poll(): # if_evaluator_idle if_train, if_save = self.pipe1.recv() act_cpu_dict = {k: v.cpu() for k, v in agent_act.state_dict().items()} else: if_train, if_save = True, False act_cpu_dict = None self.pipe1.send((act_cpu_dict, steps, r_exp, logging_tuple)) return if_train, if_save def run(self, args, agent_id): # print(f'| os.getpid()={os.getpid()} PipeEvaluate.run {agent_id}') args.init_before_training(if_main=False) '''init: Agent''' # eval_env = args.eval_env if args.eval_env else build_env(env, if_print=False) eval_env = build_env(args.eval_env, if_print=False) # todo isaac env = eval_env agent = args.agent agent.init(args.net_dim, env.state_dim, env.action_dim, args.learning_rate, args.if_per_or_gae, args.env_num, agent_id=args.eval_device_id) agent.save_or_load_agent(args.cwd, if_save=False) act_cpu = agent.act act_cpu.eval() [setattr(param, 'requires_grad', False) for param in act_cpu.parameters()] '''init Evaluator''' evaluator = Evaluator(args.cwd, agent_id, agent.device, eval_env, args.eval_gap, args.eval_times1, args.eval_times2) evaluator.save_or_load_recoder(if_save=False) del agent del env '''loop''' cwd = args.cwd break_step = args.break_step if_allow_break = args.if_allow_break del args if_save = False if_train = True if_reach_goal = False with torch.no_grad(): while if_train: act_cpu_dict, steps, r_exp, logging_tuple = self.pipe0.recv() if act_cpu_dict: act_cpu.load_state_dict(act_cpu_dict) if_reach_goal, if_save = evaluator.evaluate_and_save(act_cpu, steps, r_exp, logging_tuple) else: evaluator.total_step += steps if_train = not ((if_allow_break and if_reach_goal) or evaluator.total_step > break_step or os.path.exists(f'{cwd}/stop')) self.pipe0.send((if_train, if_save)) print(f'| UsedTime: {time.time() - evaluator.start_time:>7.0f} | SavedDir: {cwd}') evaluator.save_or_load_recoder(if_save=True) class PipeVectorEnv: def __init__(self, args): self.env_num = args.env_num self.pipes = [mp.Pipe() for _ in range(self.env_num)] self.pipe0s = [pipe[0] for pipe in self.pipes] env = build_env(args.eval_env) self.max_step = env.max_step self.env_name = env.env_name self.state_dim = env.state_dim self.action_dim = env.action_dim self.action_max = env.action_max self.if_discrete = env.if_discrete self.target_return = env.target_return del env self.process = list() for env_id in range(args.env_num): self.process.append(mp.Process(target=self.run, args=(args, env_id))) args.random_seed += 1 # set different for each env # [p.start() for p in self.process] def reset(self): vec_state = [pipe0.recv() for pipe0 in self.pipe0s] return vec_state def step(self, vec_action): # pipe0_step for i in range(self.env_num): self.pipe0s[i].send(vec_action[i]) return [pipe0.recv() for pipe0 in self.pipe0s] # list of (state, reward, done) def run(self, args, env_id): np.random.seed(args.random_seed) env = build_env(args.eval_env, if_print=False) pipe1 = self.pipes[env_id][1] del args state = env.reset() pipe1.send(state) while True: action = pipe1.recv() state, reward, done, _ = env.step(action) pipe1.send((env.reset() if done else state, reward, done)) # def check(self): # vec_state = self.reset() # ten_state = np.array(vec_state) # print(ten_state.shape) # # vec_action = np.array(((0.0, 1.0, 0.0), # (0.0, 0.5, 0.0), # (0.0, 0.1, 0.0),))[:self.env_num] # assert self.env_num <= 3 # # trajectory_list = list() # for _ in range(8): # s_r_d_list = self.step(vec_action) # ten_state = np.array([s_r_d[0] for s_r_d in s_r_d_list]) # print(ten_state.shape) # trajectory_list.append(s_r_d_list) # # trajectory_list = list(map(list, zip(*trajectory_list))) # 2D-list transpose # print('| shape of trajectory_list:', len(trajectory_list), len(trajectory_list[0])) def train_and_evaluate_mp(args, agent_id=0): process = list() mp.set_start_method(method='spawn', force=True) # force all the multiprocessing to 'spawn' methods '''learner''' learner_num = get_num_learner(args.visible_gpu) learner_pipe = PipeLearner(learner_num) for learner_id in range(learner_num): '''evaluator''' if learner_id == learner_num - 1: evaluator_pipe = PipeEvaluator() process.append(mp.Process(target=evaluator_pipe.run, args=(args, agent_id))) else: evaluator_pipe = None '''explorer''' worker_pipe = PipeWorker(args.env_num, args.worker_num) for worker_id in range(args.worker_num): if args.env_num == 1: env_pipe = None else: env_pipe = PipeVectorEnv(args) process.extend(env_pipe.process) process.append(mp.Process(target=worker_pipe.run, args=(args, env_pipe, worker_id, learner_id))) process.append(mp.Process(target=learner_pipe.run, args=(args, evaluator_pipe, worker_pipe, learner_id))) [(p.start(), time.sleep(0.1)) for p in process] process[-1].join() process_safely_terminate(process) """Utils""" def get_num_learner(visible_gpu): assert isinstance(visible_gpu, str) # visible_gpu may in {'0', '1', '1,', '1,2', '1,2,'} visible_gpu = eval(visible_gpu) num_learner = 1 if isinstance(visible_gpu, int) else len(visible_gpu) return num_learner def process_safely_terminate(process): for p in process: try: p.kill() except OSError as e: print(e) pass def get_optim_parameters(optim): # for avg_update_optim() params_list = list() for params_dict in optim.state_dict()['state'].values(): params_list.extend([t for t in params_dict.values() if isinstance(t, torch.Tensor)]) return params_list def avg_update_optim(dst_optim, src_optim_param, device): for dst, src in zip(get_optim_parameters(dst_optim), src_optim_param): dst.data.copy_((dst.data + src.data.to(device)) * 0.5) # dst.data.copy_(src.data * tau + dst.data * (1 - tau)) def avg_update_net(dst_net, src_net_param, device): for dst, src in zip(dst_net.parameters(), src_net_param): dst.data.copy_((dst.data + src.data.to(device)) * 0.5)
slack.py
from slackclient import SlackClient import json import requests from threading import Thread from utils import* slack_token = 'YOUR-SLACK-TOKEN-HERE' slack_client = SlackClient(slack_token) #just for example allowedChannels = ['G7N3MRCCS','G7P2M4CCS'] #slack common utils def isIntenedMessage(event): try: j = event['subtype'] return False except: try: j = event['channel'] return True except: return False def isAllowedChannel(event,allowedChannels): try: return event['channel'] in allowedChannels except: return False def isDM(channel): try: return channel.startswith("D") except: return False def handle(event,triggerWord,callbacks,restrictions=None): ''' Handles all the incomming command messages. :param event: slack event (json/dict format) :param triggerWord: The word that triggers the command. (EX: !echo) :param restrictions: A list of booleans that give the command special rules. EX: has to be in a certain channel, said by a certain person, etc. :param callbacks: List of functions to call when the parameters are satisfied. :return: None ''' if restrictions == None: restrictions = [] if event['text'].startswith(f"!{triggerWord}") and False not in restrictions: try: context = event['text'].split(f"!{triggerWord} ")[1] except: context = "" for callback in callbacks: Thread(target=callback(context,event), daemon=True).start() def parseInput(events): for event in events: if event['type'] == 'message' and isIntenedMessage(event): try: handle(event,'echo',[echo],restrictions=[isAllowedChannel(event,allowedChannels)]) handle(event,'user',[findUserByID],restrictions=[isDM(event['channel'])]) except Exception as e: log(str(e),prefix="HANDLER ERROR",color='red') #Example slackbot functions def echo(context,event): Thread( target=slack_client.api_call, args=("chat.postMessage",), kwargs=dict( channel=event['channel'], text=context ), daemon=True ).start() def findUserByID(context,event): Thread( target=slack_client.api_call, args=("chat.postMessage",), kwargs=dict( channel=event['channel'], text=f"User: <@{context}>" ), daemon=True ).start() if __name__ == "__main__": if slack_client.rtm_connect(with_team_state=False): log("Bot connected and running!",prefix='SYSTEM',color='blue') # Read bot's user ID by calling Web API method `auth.test` id = slack_client.api_call("auth.test")["user_id"] while True: parseInput(slack_client.rtm_read()) else: log("Connection failed.",prefix='SYSTEM',color='red')
executor.py
import functools import json import logging import signal import time from threading import Event, Lock, Thread, Timer import os import pymesos as pm import cook import cook.io_helper as cio import cook.progress as cp import cook.subprocess as cs import cook.util as cu def get_task_id(task): """Retrieves the id of the task. Parameters ---------- task: dictionary The task Returns ------- the id of the task. """ return task['task_id']['value'] class StatusUpdater(object): """Sends status updates for the task.""" def __init__(self, driver, task_id): """ Parameters ---------- driver: MesosExecutorDriver The driver to send the status update to. task_id: dictionary The task whose status update to send. """ self.driver = driver self.lock = Lock() self.task_id = task_id self.terminal_states = {cook.TASK_ERROR, cook.TASK_FAILED, cook.TASK_FINISHED, cook.TASK_KILLED} self.terminal_status_sent = False def create_status(self, task_state, reason=None): """Creates a dictionary representing the task status. Parameters ---------- task_state: string The state of the task to report. reason: string The reason for the task state. Returns ------- a status dictionary that can be sent to the driver. """ task_status = {'state': task_state, 'task_id': {'value': self.task_id}, 'timestamp': time.time()} if reason: task_status['reason'] = reason return task_status def update_status(self, task_state, reason=None): """Sends the status using the driver. Parameters ---------- task_state: string The state of the task which will be sent to the driver. reason: string The reason for the task state. Returns ------- True if successfully sent the status update, else False. """ with self.lock: is_terminal_status = task_state in self.terminal_states if is_terminal_status and self.terminal_status_sent: logging.info('Terminal state for task already sent, dropping state {}'.format(task_state)) return False try: logging.info('Updating task state to {}'.format(task_state)) status = self.create_status(task_state, reason=reason) self.driver.sendStatusUpdate(status) self.terminal_status_sent = is_terminal_status return True except Exception: logging.exception('Unable to send task state {}'.format(task_state)) return False def send_message(driver, error_handler, message): """Sends the message, if it is smaller than the max length, using the driver. Note: This function must rethrow any OSError exceptions that it encounters. Parameters ---------- driver: MesosExecutorDriver The driver to send the message to. error_handler: fn(os_error) OSError exception handler for out of memory situations. message: dictionary The raw message to send. Returns ------- whether the message was successfully sent """ try: logging.info('Sending framework message {}'.format(message)) message_string = json.dumps(message).encode('utf8') encoded_message = pm.encode_data(message_string) driver.sendFrameworkMessage(encoded_message) logging.info('Sent framework message') return True except Exception as exception: if cu.is_out_of_memory_error(exception): error_handler(exception) else: logging.exception('Exception while sending message {}'.format(message)) return False def launch_task(task, environment): """Launches the task using the command available in the json map from the data field. Parameters ---------- task: dictionary The task to execute. environment: dictionary The task environment. Returns ------- When command is provided and a process can be started, the process launched. Else it logs the reason and returns None. """ try: data_string = pm.decode_data(task['data']).decode('utf8') data_json = json.loads(data_string) command = str(data_json['command']).strip() logging.info('Command: {}'.format(command)) return cs.launch_process(command, environment) except Exception: logging.exception('Error in launch_task') return None def await_process_completion(process, stop_signal, shutdown_grace_period_ms): """Awaits process completion. Also sets up the thread that will kill the process if stop_signal is set. Parameters ---------- process: subprocess.Popen The process to whose termination to wait on. stop_signal: Event Event that determines if the process was requested to terminate shutdown_grace_period_ms: int Grace period before forceful kill Returns ------- True if the process was killed, False if it terminated naturally. """ def process_stop_signal(): stop_signal.wait() # wait indefinitely for the stop_signal to be set if cs.is_process_running(process): logging.info('Executor has been instructed to terminate running task') cs.kill_process(process, shutdown_grace_period_ms) kill_thread = Thread(target=process_stop_signal, args=()) kill_thread.daemon = True kill_thread.start() # wait indefinitely for process to terminate (either normally or by being killed) process.wait() def await_reregister(reregister_signal, recovery_secs, *disconnect_signals): """Awaits reregistration on rerigster_signal, and notifies on stop_signal and disconnect_signal if not set. Parameters ---------- reregister_signal: Event Event that notifies on mesos agent reregistration recovery_secs: int Number of seconds to wait for reregistration. disconnect_signals: [Event] Events to notify if reregistration does not occur """ def await_reregister_thread(): reregister_signal.wait(recovery_secs) if reregister_signal.isSet(): logging.info("Reregistered with mesos agent. Not notifying on disconnect_signals") else: logging.warning( "Failed to reregister within {} seconds. Notifying disconnect_signals".format(recovery_secs)) for signal in disconnect_signals: signal.set() await_thread = Thread(target=await_reregister_thread, args=()) await_thread.daemon = True await_thread.start() def get_task_state(exit_code): """Interprets the exit_code and return the corresponding task status string Parameters ---------- exit_code: int An integer that represents the return code of the task. Returns ------- A task status string corresponding to the exit code. """ if exit_code > 0: return cook.TASK_FAILED elif exit_code < 0: return cook.TASK_KILLED else: return cook.TASK_FINISHED def set_environment(environment, key, value): """Updates an entry in the environment dictionary. Returns ------- Nothing. """ if key not in environment or environment[key] != value: logging.info('Setting process environment[{}]={}'.format(key, value)) environment[key] = value def retrieve_process_environment(config, task, os_environ): """Prepares the environment for the subprocess. The function also ensures that env[config.progress_output_env_variable] is set to config.progress_output_name. This protects against the scenario where the config.progress_output_env_variable was specified in the environment, but the progress output file was not specified. Parameters ---------- config: cook.config.ExecutorConfig The current executor config. task: dictionary The mesos task object os_environ: dictionary A dictionary representing the current environment. Returns ------- The environment dictionary for the subprocess. """ environment = dict(os_environ) task_env = {} mesos_task_variables = (task.get('executor', {}) .get('command', {}) .get('environment', {}) .get('variables', [])) for variable in mesos_task_variables: task_env[variable['name']] = variable['value'] for var in config.reset_vars: if var in task_env: environment[var] = task_env[var] elif var in environment: del environment[var] set_environment(environment, config.progress_output_env_variable, config.progress_output_name) return environment def output_task_completion(task_id, task_state): """Prints and logs the executor completion message.""" cio.print_and_log('Executor completed execution of {} (state={})'.format(task_id, task_state)) def os_error_handler(stop_signal, status_updater, os_error): """Exception handler for OSError. Parameters ---------- stop_signal: threading.Event Event that determines if the process was requested to terminate. status_updater: StatusUpdater Wrapper object that sends task status messages. os_error: OSError The current executor config. Returns ------- Nothing """ stop_signal.set() logging.exception('OSError generated, requesting process to terminate') reason = cook.REASON_CONTAINER_LIMITATION_MEMORY if cu.is_out_of_memory_error(os_error) else None status_updater.update_status(cook.TASK_FAILED, reason=reason) cu.print_memory_usage() def manage_task(driver, task, stop_signal, completed_signal, config): """Manages the execution of a task waiting for it to terminate normally or be killed. It also sends the task status updates, sandbox location and exit code back to the scheduler. Progress updates are tracked on a separate thread and are also sent to the scheduler. Setting the stop_signal will trigger termination of the task and associated cleanup. Returns ------- Nothing """ launched_process = None task_id = get_task_id(task) cio.print_and_log('Starting task {}'.format(task_id)) status_updater = StatusUpdater(driver, task_id) inner_os_error_handler = functools.partial(os_error_handler, stop_signal, status_updater) try: # not yet started to run the task status_updater.update_status(cook.TASK_STARTING) # Use MESOS_DIRECTORY instead of MESOS_SANDBOX, to report the sandbox location outside of the container sandbox_message = {'sandbox-directory': config.mesos_directory, 'task-id': task_id, 'type': 'directory'} send_message(driver, inner_os_error_handler, sandbox_message) environment = retrieve_process_environment(config, task, os.environ) launched_process = launch_task(task, environment) if launched_process: # task has begun running successfully status_updater.update_status(cook.TASK_RUNNING) cio.print_and_log('Forked command at {}'.format(launched_process.pid)) else: # task launch failed, report an error logging.error('Error in launching task') status_updater.update_status(cook.TASK_ERROR, reason=cook.REASON_TASK_INVALID) return task_completed_signal = Event() # event to track task execution completion sequence_counter = cp.ProgressSequenceCounter() send_progress_message = functools.partial(send_message, driver, inner_os_error_handler) max_message_length = config.max_message_length sample_interval_ms = config.progress_sample_interval_ms progress_updater = cp.ProgressUpdater(task_id, max_message_length, sample_interval_ms, send_progress_message) progress_termination_signal = Event() def launch_progress_tracker(progress_location, location_tag): progress_file_path = os.path.abspath(progress_location) logging.info('Location {} (absolute path={}) tagged as [tag={}]'.format( progress_location, progress_file_path, location_tag)) progress_tracker = cp.ProgressTracker(config, stop_signal, task_completed_signal, sequence_counter, progress_updater, progress_termination_signal, progress_location, location_tag, inner_os_error_handler) progress_tracker.start() return progress_tracker progress_locations = {config.progress_output_name: 'progress', config.stderr_file(): 'stderr', config.stdout_file(): 'stdout'} logging.info('Progress will be tracked from {} locations'.format(len(progress_locations))) progress_trackers = [launch_progress_tracker(l, progress_locations[l]) for l in progress_locations] await_process_completion(launched_process, stop_signal, config.shutdown_grace_period_ms) task_completed_signal.set() progress_termination_timer = Timer(config.shutdown_grace_period_ms / 1000.0, progress_termination_signal.set) progress_termination_timer.daemon = True progress_termination_timer.start() # propagate the exit code exit_code = launched_process.returncode cio.print_and_log('Command exited with status {} (pid: {})'.format(exit_code, launched_process.pid)) exit_message = {'exit-code': exit_code, 'task-id': task_id} send_message(driver, inner_os_error_handler, exit_message) # await progress updater termination if executor is terminating normally if not stop_signal.isSet(): logging.info('Awaiting completion of progress updaters') [progress_tracker.wait() for progress_tracker in progress_trackers] logging.info('Progress updaters completed') # force send the latest progress state if available [progress_tracker.force_send_progress_update() for progress_tracker in progress_trackers] # task either completed successfully or aborted with an error task_state = get_task_state(exit_code) output_task_completion(task_id, task_state) status_updater.update_status(task_state) except Exception as exception: if cu.is_out_of_memory_error(exception): inner_os_error_handler(exception) else: # task aborted with an error logging.exception('Error in executing task') output_task_completion(task_id, cook.TASK_FAILED) status_updater.update_status(cook.TASK_FAILED, reason=cook.REASON_EXECUTOR_TERMINATED) finally: # ensure completed_signal is set so driver can stop completed_signal.set() if launched_process and cs.is_process_running(launched_process): cs.send_signal(launched_process.pid, signal.SIGKILL) class CookExecutor(pm.Executor): """This class is responsible for launching the task sent by the scheduler. It implements the Executor methods.""" def __init__(self, stop_signal, config): self.completed_signal = Event() self.config = config self.disconnect_signal = Event() self.stop_signal = stop_signal self.reregister_signal = None def registered(self, driver, executor_info, framework_info, agent_info): logging.info('Executor registered executor={}, framework={}, agent={}'. format(executor_info['executor_id']['value'], framework_info['id'], agent_info['id']['value'])) env = os.environ if 'EXECUTOR_TEST_EXIT' in env: # When running in docker, if the container exits too quickly it's logged in mesos as container launch failed # instead of mesos executor terminated. This sleep ensures that we have the correct reason code for our # integration tests. time.sleep(5) exit_code = int(env['EXECUTOR_TEST_EXIT']) logging.warning('Exiting with code {} from EXECUTOR_TEST_EXIT environment variable'. format(exit_code)) os._exit(exit_code) def reregistered(self, driver, agent_info): logging.info('Executor re-registered agent={}'.format(agent_info)) if self.config.checkpoint: if self.reregister_signal is not None: logging.info('Executor checkpointing is enabled. Notifying on reregister_signal') self.reregister_signal.set() self.reregister_signal = None else: logging.error('Checkpointing is enabled but reregister_signal is None. Unable to notify!') def disconnected(self, driver): logging.info('Mesos requested executor to disconnect') if self.config.checkpoint: if self.reregister_signal is None: logging.info('Executor checkpointing is enabled. Waiting for agent recovery.') new_event = Event() self.reregister_signal = new_event await_reregister(new_event, self.config.recovery_timeout_ms / 1000, self.stop_signal, self.disconnect_signal) else: logging.info('Checkpointing is enabled. Already launched await_reregister thread.') else: logging.info('Executor checkpointing is not enabled. Terminating task.') self.disconnect_signal.set() self.stop_signal.set() def launchTask(self, driver, task): logging.info('Driver {} launching task {}'.format(driver, task)) stop_signal = self.stop_signal completed_signal = self.completed_signal config = self.config task_thread = Thread(target=manage_task, args=(driver, task, stop_signal, completed_signal, config)) task_thread.daemon = True task_thread.start() def killTask(self, driver, task_id): logging.info('Mesos requested executor to kill task {}'.format(task_id)) task_id_str = task_id['value'] if 'value' in task_id else task_id grace_period = os.environ.get('MESOS_EXECUTOR_SHUTDOWN_GRACE_PERIOD', '') cio.print_and_log('Received kill for task {} with grace period of {}'.format(task_id_str, grace_period)) cu.log_thread_stack_traces() self.stop_signal.set() def shutdown(self, driver): logging.info('Mesos requested executor to shutdown') self.stop_signal.set() def error(self, driver, message): logging.error(message) super().error(driver, message) def await_completion(self): """ Blocks until the internal flag completed_signal is set. The completed_signal Event is expected to be set by manage_task. """ logging.info('Waiting for CookExecutor to complete...') self.completed_signal.wait() logging.info('CookExecutor has completed') def await_disconnect(self): """ Blocks until the internal flag disconnect_signal is set or the disconnect grace period expires. The disconnect grace period is computed based on whether stop_signal is set. """ disconnect_grace_secs = cook.TERMINATE_GRACE_SECS if self.stop_signal.isSet() else cook.DAEMON_GRACE_SECS if not self.disconnect_signal.isSet(): logging.info('Waiting up to {} second(s) for CookExecutor to disconnect'.format(disconnect_grace_secs)) self.disconnect_signal.wait(disconnect_grace_secs) if not self.disconnect_signal.isSet(): logging.info('CookExecutor did not disconnect in {} seconds'.format(disconnect_grace_secs))
stress_test.py
# USAGE # python stress_test.py # import the necessary packages from threading import Thread import requests import time # initialize the Keras REST API endpoint URL along with the input # image path KERAS_REST_API_URL = "http://localhost:5000/predict" IMAGE_PATH = "jemma.jpg" # initialize the number of requests for the stress test along with # the sleep amount between requests NUM_REQUESTS = 500 SLEEP_COUNT = 0.05 def call_predict_endpoint(n): # load the input image and construct the payload for the request image = open(IMAGE_PATH, "rb").read() payload = {"input_file": image} # submit the request try: r = requests.post(KERAS_REST_API_URL, files=payload).json() # ensure the request was sucessful if r["success"]: print("[INFO] thread {} OK".format(n)) # otherwise, the request failed else: print("[INFO] thread {} FAILED".format(n)) except: print("[INFO] thread {} FAILED BAD connection".format(n)) # loop over the number of threads for i in range(0, NUM_REQUESTS): # start a new thread to call the API t = Thread(target=call_predict_endpoint, args=(i,)) t.daemon = True t.start() time.sleep(SLEEP_COUNT) print("[INFO] all request queued up" ) # insert a long sleep so we can wait until the server is finished # processing the images time.sleep(300)
gen_cleaned_megaface.py
# -*- coding: utf-8 -*- from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import traceback from easydict import EasyDict as edict import time import sys import numpy as np import argparse import struct import cv2 import multiprocessing import sklearn from sklearn.preprocessing import normalize import mxnet as mx from mxnet import ndarray as nd feature_dim = 512 feature_ext = 1 def put_feature(imgs, nets, out_put_list, q_exc): try: count = len(imgs) data = mx.nd.zeros(shape=(count * 2, 3, imgs[0].shape[1], imgs[0].shape[2])) for idx, img in enumerate(imgs): for flipid in [0, 1]: _img = nd.array(img) if flipid == 1: _img = _img[:, :, ::-1] data[count * flipid + idx] = _img F = [] for net in nets: db = mx.io.DataBatch(data=(data,)) net.model.forward(db, is_train=False) x = net.model.get_outputs()[0].asnumpy() embedding = x[0:count, :] + x[count:, :] embedding = sklearn.preprocessing.normalize(embedding) F.append(embedding) F = np.concatenate(F, axis=1) F = sklearn.preprocessing.normalize(F) for i, k in enumerate(out_put_list): q_work = q_exc[i % len(q_exc)] data = (F[i], k) while True: if q_work.full(): continue else: q_work.put(data) break except Exception as e: traceback.print_exc() print('det_img error:', e) for q in q_exc: q.put(None) return def write(args, q_exc): while True: data = q_exc.get() if data is None: break v= data[0] path, label = data[1][0], data[1][1] if label==1: feature = np.full( (feature_dim+feature_ext,), 100, dtype=np.float32) feature[0:feature_dim] = v else: feature = np.full((feature_dim + feature_ext,), 0, dtype=np.float32) feature[0:feature_dim] = v feature = list(feature) with open(path, 'wb') as f: f.write(struct.pack('4i', len(feature), 1, 4, 5)) f.write(struct.pack("%df" % len(feature), *feature)) def generate_output_dic(args, img_list): out_dic = {} mf_noise_map = {} for line in open(args.megaface_noises, 'r'): if line.startswith('#'): continue line = line.strip() _vec = line.split("\t") if len(_vec) > 1: line = _vec[1] mf_noise_map[line] = 1 print("Creating dictionary start") for line in img_list: clean_label = 0 line = [i.strip() for i in line.strip().split('\t')] img_path = line[-1] image_path = img_path.strip() _path = image_path.split('/') a_pre, a, b = _path[-3], _path[-2], _path[-1] dataset_out = os.path.join(args.output, args.dataset) out_dir = os.path.join(dataset_out, a_pre, a) out_path = os.path.join(out_dir, b + "_%s.bin" % (args.algo)) bb = '/'.join([a_pre, a, b]) if bb in mf_noise_map: clean_label = 1 out_dic[int(line[0])] = (out_path, clean_label) print("Creating dictionary end, the length of dictionary is", len(out_dic)) return out_dic def main(args): print(args) if len(args.gpu) == 1: gpuid = int(args.gpu) ctx = mx.gpu(gpuid) else: ctx = [mx.gpu(int(i)) for i in args.gpu.split(',')] nets = [] image_shape = [int(x) for x in args.image_size.split(',')] for model in args.model.split('|'): vec = model.split(',') assert len(vec) > 1 prefix = vec[0] epoch = int(vec[1]) print('loading', prefix, epoch) net = edict() net.ctx = ctx net.sym, net.arg_params, net.aux_params = mx.model.load_checkpoint(prefix, epoch) all_layers = net.sym.get_internals() net.sym = all_layers['{}fc1_output'.format(args.name_prefix)] net.model = mx.mod.Module(symbol=net.sym, context=net.ctx, label_names=None) net.model.bind(data_shapes=[('data', (args.batch_size, 3, image_shape[1], image_shape[2]))]) net.model.set_params(net.arg_params, net.aux_params) nets.append(net) with open(args.dataset_lst) as f: img_lst = f.readlines() dataset_dic = generate_output_dic(args, img_lst) total_nums = len(img_lst) i, j = total_nums // args.batch_size, total_nums % args.batch_size count = 0 q_exc = [multiprocessing.Queue(2048) for v in range(args.num_threads)] write_process = [multiprocessing.Process(target=write, args=(args, q_exc[v])) \ for v in range(args.num_threads)] for p in write_process: p.start() data_iter = mx.image.ImageIter(batch_size=args.batch_size, data_shape=(3, 112, 112), path_imgrec=args.rec_path, part_index=args.idx_path) data_iter.reset() while count <= i: start = time.time() batch = data_iter.next() data = batch.data[0] data.asnumpy() out_path_list = [] for value in batch.label[0]: idx = int(value.asnumpy()) out_path = dataset_dic.get(idx) out_path_list.append(out_path) if count == i and j != 0: out_path_list = out_path_list[:j] put_feature(data, nets, out_path_list, q_exc) elapse = time.time() - start print(count, '/', i, 'Total Time used:', elapse) count += 1 for q in q_exc: q.put(None) for p in write_process: p.join() def parse_arguments(argv): parser = argparse.ArgumentParser() parser.add_argument('--rec-path', type=str, help='', default='~/huya_face/face_datasets/megaface_data/eval_set/megaface.rec') parser.add_argument('--idx-path', type=str, help='', default='~/huya_face/face_datasets/megaface_data/eval_set/megaface.idx') parser.add_argument('--batch-size', type=int, help='', default=32) parser.add_argument('--image-size', type=str, help='', default='3,112,112') parser.add_argument('--gpu', type=str, help='', default=0) parser.add_argument('--num-threads', type=int, help='', default=16) parser.add_argument('--algo', type=str, help='', default='insightface') parser.add_argument('--dataset', type=str, help='', default='megaface') parser.add_argument('--dataset_lst', type=str, help='', default='~/huya_face/face_datasets/megaface_data/eval_set/megaface.lst') parser.add_argument('--output', type=str, help='', default='~/huya_face/feature_out_clean') parser.add_argument('--model', type=str, help='', default='~/huya_face/models/model-r100-ii/model,0') parser.add_argument('--megaface-noises', type=str, help='', default='~/huya_face/face_datasets/megaface_data/eval_set/megaface_noises.txt') parser.add_argument('--name_prefix', type=str, default='') return parser.parse_args(argv) if __name__ == '__main__': main(parse_arguments(sys.argv[1:]))
app.py
# -*- coding: utf-8 -*- from flask import Flask, render_template, request,session,abort from revisit_sayat import fayat # from flask_sslify import SSLify import uuid from threading import Thread from check import checkAll app = Flask(__name__) app.secret_key = 'hellowordl1' # sslify = SSLify(app, permanent=True) def random_alphanum(string_length=10): """Returns a random string of length string_length.""" random = str(uuid.uuid4()) # Convert UUID format to a Python string. random = random.upper() # Make all characters uppercase. random = random.replace("-","") # Remove the UUID '-'. return random[0:string_length] # Return the random string. @app.before_request def csrf_protect(): if request.method == "POST": token = session.pop('_csrf_token', None) if not token or token != request.form.get('_csrf_token'): abort(403) def generate_csrf_token(): if '_csrf_token' not in session: session['_csrf_token'] = random_alphanum(10) return session['_csrf_token'] app.jinja_env.globals['csrf_token'] = generate_csrf_token @app.route('/', methods=['GET', 'POST']) def index(): if request.method == 'POST': id = request.form['uid'] n = request.form['n'] text = request.form['feedback'] print id, n, text time = int(n) * 1500 #theek hai? print time if checkAll(uid=str(id), n=int(n), text=str(text)): print "OK" try: thread = Thread(target=fayat, args=(str(id), int(n), str(text))) thread.start() # fayat(userid=str(id),n=int(n),text=str(text)) return render_template('rocket.html', time=time, uid=str(id)) except: try: thread._stop() except: pass return '<script>alert("error");</script>' else: print "err?" return '''<script>alert("We had a problem processing your request! Possible reasons - User does not exist, feedback text length is greater than 200 or total flood rate is greater than 200. ;)"); var meta = document.createElement('meta'); meta.httpEquiv = "REFRESH"; meta.content = "0;URL=https://www.floodsayat.me"; document.getElementsByTagName('head')[0].appendChild(meta); </script>''' return render_template('index.html') @app.route('/test') def test(): return render_template('rocket.html', time=100000000,uid="test") @app.errorhandler(404) def page_not_found(e): return render_template('error.html'),404 @app.errorhandler(403) def page_not_found(e): return render_template('error.html'),403 @app.errorhandler(503) def page_not_found(e): return render_template('error.html'),503 if __name__ == "__main__": app.run(debug=False,threaded=True)
semglenny.py
# Copyright (c) Lenny Varghese and Unlock contributors. # All rights reserved. # Redistribution and use in source and binary forms, with or without modification, # are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # # 3. Neither the name of Unlock nor the names of its contributors may be used # to endorse or promote products derived from this software without # specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR # ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON # ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import numpy import threading import collections import struct import pyaudio import time class EMG: def __init__(self,numChans=2,sampleRate=44100,chunkSize=512,rmsWindows=5, rmsMax = numpy.ones((2,),dtype=numpy.float), rmsMin = numpy.zeros((2,),dtype=numpy.float)): self.sampleRate = sampleRate self.chunkSize = chunkSize self.numChans = numChans self.rmsWindows = rmsWindows self.rmsMax = rmsMax self.rmsMin = rmsMin self.rmsVals = rmsMin self.currScore = numpy.zeros((numChans,),dtype = numpy.float) # instantiate pyAudio and open a stream for recording self.p = pyaudio.PyAudio() self.theStream = self.p.open(format=pyaudio.paInt16, channels = self.numChans, rate = self.sampleRate, input = True, frames_per_buffer = self.chunkSize, start = False) # input_device_index=useDevice) # create the containers to store the acquired data # using deque because it's supposedly fast and can implement a circular # buffer efficiently self.rawData = collections.deque([]) self.rmsBuffer = collections.deque([],maxlen=rmsWindows) self.timeStamp = collections.deque([]) # other definitions: # to convert the wave stream data into an array self.convertSamplesFormat = ('%ih' % (self.rmsWindows*self.chunkSize* self.numChans) ) # this is supposed to just be a flag to control threads, don't know if # it will actually work like this or not self.isAcquiring = False #### handle the sound card and pyAudio stuff #### start_recording and stop_recording are just acting as a switch def start_recording(self): # start the stream print 'recording started' self.theStream.start_stream() # fill self.rmsBuffer with some bullshit for now print 'stream started' for q in range(0,5): self.rmsBuffer.append(self.theStream.read(self.chunkSize)) self.thr1 = threading.Thread(target=self.get_data) self.thr1.start() self.isAcquiring = True def stop_recording(self): self.isAcquiring = False time.sleep(0.1) self.theStream.close() self.p.terminate() def get_data(self): while True: if self.isAcquiring == False: break # record the data into the deque array dataIn = self.theStream.read(self.chunkSize) # append the deque buffers self.timeStamp.append(time.time()) self.rmsBuffer.append(dataIn) self.rawData.append(dataIn) # compute the rms and the normalized "score" self.compute_score() #### now do something with the acquired data def compute_score(self): dataString = ''.join(self.rmsBuffer) # unpack stream (16 bit) and convert to numpy array convertedData = numpy.array(struct.unpack(self.convertSamplesFormat, dataString), dtype=numpy.float)/(2.**15) # channel data is interleaved (1 2 3 4 1 2 3 4...), so you have to take it apart convertedData = convertedData.reshape(convertedData.size/self.numChans,self.numChans) self.rmsVals = ((convertedData**2).mean(0))**0.5 max_v = 0 min_v = 0 for val in self.rmsVals: if max_v < val: max_v = val if min_v > val: min_v = val # normalized(x_i) = (x_i - X_min) / (X_max - X_min) in range: code # this just converts the rms values into a normalized score, 0-1 to do # something with later # adjust according to min/max rms values #self.rmsVals[self.rmsVals < self.rmsMin] = ( # self.rmsMin[self.rmsVals < self.rmsMin]) # self.rmsVals[self.rmsVals > self.rmsMax] = ( # self.rmsMax[self.rmsVals > self.rmsMax]) # now get a percentage slope = 1 / (self.rmsMax-self.rmsMin) intercept = -1*self.rmsMin*slope self.currScore = slope*self.rmsVals+intercept
SwitchHelper.py
#!/usr/bin/env python # encoding: utf-8 # Copyright 2014 Xinyu, He <legendmohe@foxmail.com> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import threading import json import time import socket from util.thread import TimerThread from util.Res import Res from util.log import * class SwitchHelper: HEARTBEAT_RATE = 3 SOCKET_TIMEOUT = 5 RETRY_TIME = 3 SCAN_PORT = 48899 SWITCH_PORT = 8899 BOARDCAST_ADDRESS = "255.255.255.255" def __init__(self): init_json = Res.init("init.json") self.scan_ip = SwitchHelper.BOARDCAST_ADDRESS self.name2ip = init_json["switchs"] self._send_lock = threading.Lock() self.switchs = {} self._init_heartbeat() def _init_heartbeat(self): self._init_heartbeat_socket() self._send_hb_thread = threading.Thread(target=self._heartbeat_recv) self._send_hb_thread.daemon = True self._send_hb_thread.start() self._heartbeat_thread = TimerThread( interval=SwitchHelper.HEARTBEAT_RATE, target=self._heartbeat_send ) self._heartbeat_thread.start() def _init_heartbeat_socket(self): self._hb_sock = self._get_udp_socket() bind_address = ('0.0.0.0', SwitchHelper.SCAN_PORT) self._hb_sock.bind(bind_address) self._hb_sock.setsockopt(socket.SOL_SOCKET, socket.SO_BROADCAST, True) self._hb_sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, True) # self._hb_sock.settimeout(SwitchHelper.HEARTBEAT_RATE/2) def ip_for_name(self, name): return self.name2ip.get(name, None) def name_for_ip(self, ip): for name in self.name2ip: if self.name2ip[name] == ip: return name return None def send_open(self, target_ip): if not target_ip in self.switchs: ERROR("target_ip not exist: " + target_ip) return cmd = self._get_switch_cmd("ON") res = self._send_cmd(target_ip, cmd) INFO("send_open:%s" % res) if res == "+OK" or res == "+ok": self.switchs[target_ip]['status'] = "on" return res def send_close(self, target_ip): if not target_ip in self.switchs: ERROR("target_ip not exist: " + target_ip) return cmd = self._get_switch_cmd("OFF") res = self._send_cmd(target_ip, cmd) INFO("send_close:%s" % res) if res == "+OK" or res == "+ok": self.switchs[target_ip]['status'] = "off" return res def show_state(self, target_ip): if not target_ip in self.switchs: ERROR("target_ip not exist: " + target_ip) return None return self.switchs[target_ip]["status"] def show_info(self, target_ip): if not target_ip in self.switchs: ERROR("target_ip not exist: " + target_ip) return cmd = self._get_info_cmd() recv = self._send_cmd(target_ip, cmd) if recv is None or len(recv) == 0: return None info = recv[5:-1].split(",") return { "I": info[0] if len(info[0]) != 0 else "0", "U": info[1] if len(info[1]) != 0 else "0", "F": info[2] if len(info[2]) != 0 else "0", "P": info[3] if len(info[3]) != 0 else "0", "PQ": info[4] if len(info[4]) != 0 else "0", "E": info[5] if len(info[5]) != 0 else "0", "EQ": info[6] if len(info[6]) != 0 else "0", } def readable_info(self, info): if info is None or len(info) == 0: return "" I = "%.2f" % (float(info["I"])/100.0) + "A" U = "%.2f" % (float(info["U"])/100.0) + "V" F = "%.2f" % (float(info["F"])/100.0) + "Hz" P = "%.2f" % (float(info["P"])/10.0) + "W" PQ = info["P"] + "W" E = info["E"] + "WH" EQ = info["EQ"] + "WH" return "".join([ u"功率:%s " % P, u"电流:%s " % I, u"电压:%s " % U, # u"频率:%s " % F, # u"有功功率:%s " % P, # u"无功功率:%s " % PQ, # u"有功能量值:%s " % E, # u"无功能量值:%s" % EQ, ]) def _format_time(self): return time.strftime("%Y%m%d%H%M%S", time.localtime()) def _get_udp_socket(self): return socket.socket(socket.AF_INET, socket.SOCK_DGRAM) def _get_cmd_socket(self): return socket.socket(socket.AF_INET, socket.SOCK_STREAM) def _get_switch_cmd(self, action): return "AT+YZSWITCH=1,%s,%s\r\n" % (action, self._format_time()) def _get_info_cmd(self): return "AT+YZOUT\r\n" def _get_heartbeat_cmd(self): return 'YZ-RECOSCAN' def _send_cmd(self, target_ip, cmd): if target_ip is None or len(target_ip) == 0: ERROR("invaild target_ip.") return if cmd is None or len(cmd) == 0: ERROR("invaild switch cmd.") return with self._send_lock: # sock = self._get_cmd_socket() # sock.connect() INFO("Switch send command:%s to:%s" % (cmd, target_ip)) for i in range(0, SwitchHelper.RETRY_TIME): try: sock = socket.create_connection( (target_ip, SwitchHelper.SWITCH_PORT), SwitchHelper.SOCKET_TIMEOUT) time.sleep(0.5) sock.send(cmd) recv = sock.recv(512) sock.close() return recv.strip() except socket.timeout: ERROR("SwitchHelper cmd socket timeout.") except Exception, ex: ERROR(ex) return None def _heartbeat_send(self): # for ip in self.switchs: # self.switchs[ip]["status"] = "-1" sock = self._hb_sock address = (self.scan_ip, SwitchHelper.SCAN_PORT) sock.sendto(self._get_heartbeat_cmd(), address) DEBUG("send switch heartbeat to:%s" % (address, )) def _heartbeat_recv(self): sock = self._hb_sock while True: try: recv, address = sock.recvfrom(512) DEBUG("recv switch heartbeat:%s from:%s" % (recv, address)) status = recv.strip().split(',') if len(status) < 5: continue switch = {} switch["ip"] = status[0] switch["mac"] = status[1] switch["name"] = self.name_for_ip(status[0]) switch["status"] = "on" if status[4] == "1" else "off" self.switchs[switch["ip"]] = switch except socket.timeout: WARN("heartbeat timeout. ")
logger_test.py
# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """Tests for worker logging utilities.""" # pytype: skip-file from __future__ import absolute_import from __future__ import unicode_literals import json import logging import sys import threading import unittest from builtins import object from apache_beam.runners.worker import logger from apache_beam.runners.worker import statesampler from apache_beam.utils.counters import CounterFactory class PerThreadLoggingContextTest(unittest.TestCase): def thread_check_attribute(self, name): self.assertFalse(name in logger.per_thread_worker_data.get_data()) with logger.PerThreadLoggingContext(**{name: 'thread-value'}): self.assertEqual( logger.per_thread_worker_data.get_data()[name], 'thread-value') self.assertFalse(name in logger.per_thread_worker_data.get_data()) def test_per_thread_attribute(self): self.assertFalse('xyz' in logger.per_thread_worker_data.get_data()) with logger.PerThreadLoggingContext(xyz='value'): self.assertEqual(logger.per_thread_worker_data.get_data()['xyz'], 'value') thread = threading.Thread( target=self.thread_check_attribute, args=('xyz', )) thread.start() thread.join() self.assertEqual(logger.per_thread_worker_data.get_data()['xyz'], 'value') self.assertFalse('xyz' in logger.per_thread_worker_data.get_data()) def test_set_when_undefined(self): self.assertFalse('xyz' in logger.per_thread_worker_data.get_data()) with logger.PerThreadLoggingContext(xyz='value'): self.assertEqual(logger.per_thread_worker_data.get_data()['xyz'], 'value') self.assertFalse('xyz' in logger.per_thread_worker_data.get_data()) def test_set_when_already_defined(self): self.assertFalse('xyz' in logger.per_thread_worker_data.get_data()) with logger.PerThreadLoggingContext(xyz='value'): self.assertEqual(logger.per_thread_worker_data.get_data()['xyz'], 'value') with logger.PerThreadLoggingContext(xyz='value2'): self.assertEqual( logger.per_thread_worker_data.get_data()['xyz'], 'value2') self.assertEqual(logger.per_thread_worker_data.get_data()['xyz'], 'value') self.assertFalse('xyz' in logger.per_thread_worker_data.get_data()) class JsonLogFormatterTest(unittest.TestCase): SAMPLE_RECORD = { 'created': 123456.789, 'msecs': 789.654321, 'msg': '%s:%d:%.2f', 'args': ('xyz', 4, 3.14), 'levelname': 'WARNING', 'process': 'pid', 'thread': 'tid', 'name': 'name', 'filename': 'file', 'funcName': 'func', 'exc_info': None } SAMPLE_OUTPUT = { 'timestamp': { 'seconds': 123456, 'nanos': 789654321 }, 'severity': 'WARN', 'message': 'xyz:4:3.14', 'thread': 'pid:tid', 'job': 'jobid', 'worker': 'workerid', 'logger': 'name:file:func' } def create_log_record(self, **kwargs): class Record(object): def __init__(self, **kwargs): for k, v in kwargs.items(): setattr(self, k, v) return Record(**kwargs) def test_basic_record(self): formatter = logger.JsonLogFormatter(job_id='jobid', worker_id='workerid') record = self.create_log_record(**self.SAMPLE_RECORD) self.assertEqual(json.loads(formatter.format(record)), self.SAMPLE_OUTPUT) def execute_multiple_cases(self, test_cases): record = self.SAMPLE_RECORD output = self.SAMPLE_OUTPUT formatter = logger.JsonLogFormatter(job_id='jobid', worker_id='workerid') for case in test_cases: record['msg'] = case['msg'] record['args'] = case['args'] output['message'] = case['expected'] self.assertEqual( json.loads(formatter.format(self.create_log_record(**record))), output) def test_record_with_format_character(self): test_cases = [ { 'msg': '%A', 'args': (), 'expected': '%A' }, { 'msg': '%s', 'args': (), 'expected': '%s' }, { 'msg': '%A%s', 'args': ('xy'), 'expected': '%A%s with args (xy)' }, { 'msg': '%s%s', 'args': (1), 'expected': '%s%s with args (1)' }, ] self.execute_multiple_cases(test_cases) def test_record_with_arbitrary_messages(self): test_cases = [ { 'msg': ImportError('abc'), 'args': (), 'expected': 'abc' }, { 'msg': TypeError('abc %s'), 'args': ('def'), 'expected': 'abc def' }, ] self.execute_multiple_cases(test_cases) def test_record_with_per_thread_info(self): self.maxDiff = None tracker = statesampler.StateSampler('stage', CounterFactory()) statesampler.set_current_tracker(tracker) formatter = logger.JsonLogFormatter(job_id='jobid', worker_id='workerid') with logger.PerThreadLoggingContext(work_item_id='workitem'): with tracker.scoped_state('step', 'process'): record = self.create_log_record(**self.SAMPLE_RECORD) log_output = json.loads(formatter.format(record)) expected_output = dict(self.SAMPLE_OUTPUT) expected_output.update({ 'work': 'workitem', 'stage': 'stage', 'step': 'step' }) self.assertEqual(log_output, expected_output) statesampler.set_current_tracker(None) def test_nested_with_per_thread_info(self): self.maxDiff = None tracker = statesampler.StateSampler('stage', CounterFactory()) statesampler.set_current_tracker(tracker) formatter = logger.JsonLogFormatter(job_id='jobid', worker_id='workerid') with logger.PerThreadLoggingContext(work_item_id='workitem'): with tracker.scoped_state('step1', 'process'): record = self.create_log_record(**self.SAMPLE_RECORD) log_output1 = json.loads(formatter.format(record)) with tracker.scoped_state('step2', 'process'): record = self.create_log_record(**self.SAMPLE_RECORD) log_output2 = json.loads(formatter.format(record)) record = self.create_log_record(**self.SAMPLE_RECORD) log_output3 = json.loads(formatter.format(record)) statesampler.set_current_tracker(None) record = self.create_log_record(**self.SAMPLE_RECORD) log_output4 = json.loads(formatter.format(record)) self.assertEqual( log_output1, dict(self.SAMPLE_OUTPUT, work='workitem', stage='stage', step='step1')) self.assertEqual( log_output2, dict(self.SAMPLE_OUTPUT, work='workitem', stage='stage', step='step2')) self.assertEqual( log_output3, dict(self.SAMPLE_OUTPUT, work='workitem', stage='stage', step='step1')) self.assertEqual(log_output4, self.SAMPLE_OUTPUT) def test_exception_record(self): formatter = logger.JsonLogFormatter(job_id='jobid', worker_id='workerid') try: raise ValueError('Something') except ValueError: attribs = dict(self.SAMPLE_RECORD) attribs.update({'exc_info': sys.exc_info()}) record = self.create_log_record(**attribs) log_output = json.loads(formatter.format(record)) # Check if exception type, its message, and stack trace information are in. exn_output = log_output.pop('exception') self.assertNotEqual(exn_output.find('ValueError: Something'), -1) self.assertNotEqual(exn_output.find('logger_test.py'), -1) self.assertEqual(log_output, self.SAMPLE_OUTPUT) if __name__ == '__main__': logging.getLogger().setLevel(logging.INFO) unittest.main()
_simple_stubs_test.py
# Copyright 2020 The gRPC authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for Simple Stubs.""" # TODO(https://github.com/grpc/grpc/issues/21965): Run under setuptools. import os _MAXIMUM_CHANNELS = 10 _DEFAULT_TIMEOUT = 1.0 os.environ["GRPC_PYTHON_MANAGED_CHANNEL_EVICTION_SECONDS"] = "2" os.environ["GRPC_PYTHON_MANAGED_CHANNEL_MAXIMUM"] = str(_MAXIMUM_CHANNELS) os.environ["GRPC_PYTHON_DEFAULT_TIMEOUT_SECONDS"] = str(_DEFAULT_TIMEOUT) import contextlib import datetime import inspect import logging import sys import threading import time from typing import Callable, Optional import unittest import grpc import grpc.experimental from tests.unit import resources from tests.unit import test_common from tests.unit.framework.common import get_socket _REQUEST = b"0000" _CACHE_EPOCHS = 8 _CACHE_TRIALS = 6 _SERVER_RESPONSE_COUNT = 10 _CLIENT_REQUEST_COUNT = _SERVER_RESPONSE_COUNT _STRESS_EPOCHS = _MAXIMUM_CHANNELS * 10 _UNARY_UNARY = "/test/UnaryUnary" _UNARY_STREAM = "/test/UnaryStream" _STREAM_UNARY = "/test/StreamUnary" _STREAM_STREAM = "/test/StreamStream" _BLACK_HOLE = "/test/BlackHole" @contextlib.contextmanager def _env(key: str, value: str): os.environ[key] = value yield del os.environ[key] def _unary_unary_handler(request, context): return request def _unary_stream_handler(request, context): for _ in range(_SERVER_RESPONSE_COUNT): yield request def _stream_unary_handler(request_iterator, context): request = None for single_request in request_iterator: request = single_request return request def _stream_stream_handler(request_iterator, context): for request in request_iterator: yield request def _black_hole_handler(request, context): event = threading.Event() def _on_done(): event.set() context.add_callback(_on_done) while not event.is_set(): time.sleep(0.1) class _GenericHandler(grpc.GenericRpcHandler): def service(self, handler_call_details): if handler_call_details.method == _UNARY_UNARY: return grpc.unary_unary_rpc_method_handler(_unary_unary_handler) elif handler_call_details.method == _UNARY_STREAM: return grpc.unary_stream_rpc_method_handler(_unary_stream_handler) elif handler_call_details.method == _STREAM_UNARY: return grpc.stream_unary_rpc_method_handler(_stream_unary_handler) elif handler_call_details.method == _STREAM_STREAM: return grpc.stream_stream_rpc_method_handler(_stream_stream_handler) elif handler_call_details.method == _BLACK_HOLE: return grpc.unary_unary_rpc_method_handler(_black_hole_handler) else: raise NotImplementedError() def _time_invocation(to_time: Callable[[], None]) -> datetime.timedelta: start = datetime.datetime.now() to_time() return datetime.datetime.now() - start @contextlib.contextmanager def _server(credentials: Optional[grpc.ServerCredentials]): try: server = test_common.test_server() target = '[::]:0' if credentials is None: port = server.add_insecure_port(target) else: port = server.add_secure_port(target, credentials) server.add_generic_rpc_handlers((_GenericHandler(),)) server.start() yield port finally: server.stop(None) class SimpleStubsTest(unittest.TestCase): def assert_cached(self, to_check: Callable[[str], None]) -> None: """Asserts that a function caches intermediate data/state. To be specific, given a function whose caching behavior is deterministic in the value of a supplied string, this function asserts that, on average, subsequent invocations of the function for a specific string are faster than first invocations with that same string. Args: to_check: A function returning nothing, that caches values based on an arbitrary supplied string. """ initial_runs = [] cached_runs = [] for epoch in range(_CACHE_EPOCHS): runs = [] text = str(epoch) for trial in range(_CACHE_TRIALS): runs.append(_time_invocation(lambda: to_check(text))) initial_runs.append(runs[0]) cached_runs.extend(runs[1:]) average_cold = sum((run for run in initial_runs), datetime.timedelta()) / len(initial_runs) average_warm = sum((run for run in cached_runs), datetime.timedelta()) / len(cached_runs) self.assertLess(average_warm, average_cold) def assert_eventually(self, predicate: Callable[[], bool], *, timeout: Optional[datetime.timedelta] = None, message: Optional[Callable[[], str]] = None) -> None: message = message or (lambda: "Proposition did not evaluate to true") timeout = timeout or datetime.timedelta(seconds=10) end = datetime.datetime.now() + timeout while datetime.datetime.now() < end: if predicate(): break time.sleep(0.5) else: self.fail(message() + " after " + str(timeout)) def test_unary_unary_insecure(self): with _server(None) as port: target = f'localhost:{port}' response = grpc.experimental.unary_unary( _REQUEST, target, _UNARY_UNARY, channel_credentials=grpc.experimental. insecure_channel_credentials(), timeout=None) self.assertEqual(_REQUEST, response) def test_unary_unary_secure(self): with _server(grpc.local_server_credentials()) as port: target = f'localhost:{port}' response = grpc.experimental.unary_unary( _REQUEST, target, _UNARY_UNARY, channel_credentials=grpc.local_channel_credentials(), timeout=None) self.assertEqual(_REQUEST, response) def test_channels_cached(self): with _server(grpc.local_server_credentials()) as port: target = f'localhost:{port}' test_name = inspect.stack()[0][3] args = (_REQUEST, target, _UNARY_UNARY) kwargs = {"channel_credentials": grpc.local_channel_credentials()} def _invoke(seed: str): run_kwargs = dict(kwargs) run_kwargs["options"] = ((test_name + seed, ""),) grpc.experimental.unary_unary(*args, **run_kwargs) self.assert_cached(_invoke) def test_channels_evicted(self): with _server(grpc.local_server_credentials()) as port: target = f'localhost:{port}' response = grpc.experimental.unary_unary( _REQUEST, target, _UNARY_UNARY, channel_credentials=grpc.local_channel_credentials()) self.assert_eventually( lambda: grpc._simple_stubs.ChannelCache.get( )._test_only_channel_count() == 0, message=lambda: f"{grpc._simple_stubs.ChannelCache.get()._test_only_channel_count()} remain" ) def test_total_channels_enforced(self): with _server(grpc.local_server_credentials()) as port: target = f'localhost:{port}' for i in range(_STRESS_EPOCHS): # Ensure we get a new channel each time. options = (("foo", str(i)),) # Send messages at full blast. grpc.experimental.unary_unary( _REQUEST, target, _UNARY_UNARY, options=options, channel_credentials=grpc.local_channel_credentials()) self.assert_eventually( lambda: grpc._simple_stubs.ChannelCache.get( )._test_only_channel_count() <= _MAXIMUM_CHANNELS + 1, message=lambda: f"{grpc._simple_stubs.ChannelCache.get()._test_only_channel_count()} channels remain" ) def test_unary_stream(self): with _server(grpc.local_server_credentials()) as port: target = f'localhost:{port}' for response in grpc.experimental.unary_stream( _REQUEST, target, _UNARY_STREAM, channel_credentials=grpc.local_channel_credentials()): self.assertEqual(_REQUEST, response) def test_stream_unary(self): def request_iter(): for _ in range(_CLIENT_REQUEST_COUNT): yield _REQUEST with _server(grpc.local_server_credentials()) as port: target = f'localhost:{port}' response = grpc.experimental.stream_unary( request_iter(), target, _STREAM_UNARY, channel_credentials=grpc.local_channel_credentials()) self.assertEqual(_REQUEST, response) def test_stream_stream(self): def request_iter(): for _ in range(_CLIENT_REQUEST_COUNT): yield _REQUEST with _server(grpc.local_server_credentials()) as port: target = f'localhost:{port}' for response in grpc.experimental.stream_stream( request_iter(), target, _STREAM_STREAM, channel_credentials=grpc.local_channel_credentials()): self.assertEqual(_REQUEST, response) def test_default_ssl(self): _private_key = resources.private_key() _certificate_chain = resources.certificate_chain() _server_certs = ((_private_key, _certificate_chain),) _server_host_override = 'foo.test.google.fr' _test_root_certificates = resources.test_root_certificates() _property_options = (( 'grpc.ssl_target_name_override', _server_host_override, ),) cert_dir = os.path.join(os.path.dirname(resources.__file__), "credentials") cert_file = os.path.join(cert_dir, "ca.pem") with _env("GRPC_DEFAULT_SSL_ROOTS_FILE_PATH", cert_file): server_creds = grpc.ssl_server_credentials(_server_certs) with _server(server_creds) as port: target = f'localhost:{port}' response = grpc.experimental.unary_unary( _REQUEST, target, _UNARY_UNARY, options=_property_options) def test_insecure_sugar(self): with _server(None) as port: target = f'localhost:{port}' response = grpc.experimental.unary_unary(_REQUEST, target, _UNARY_UNARY, insecure=True) self.assertEqual(_REQUEST, response) def test_insecure_sugar_mutually_exclusive(self): with _server(None) as port: target = f'localhost:{port}' with self.assertRaises(ValueError): response = grpc.experimental.unary_unary( _REQUEST, target, _UNARY_UNARY, insecure=True, channel_credentials=grpc.local_channel_credentials()) def test_default_wait_for_ready(self): addr, port, sock = get_socket() sock.close() target = f'{addr}:{port}' channel = grpc._simple_stubs.ChannelCache.get().get_channel( target, (), None, True, None) rpc_finished_event = threading.Event() rpc_failed_event = threading.Event() server = None def _on_connectivity_changed(connectivity): nonlocal server if connectivity is grpc.ChannelConnectivity.TRANSIENT_FAILURE: self.assertFalse(rpc_finished_event.is_set()) self.assertFalse(rpc_failed_event.is_set()) server = test_common.test_server() server.add_insecure_port(target) server.add_generic_rpc_handlers((_GenericHandler(),)) server.start() channel.unsubscribe(_on_connectivity_changed) elif connectivity in (grpc.ChannelConnectivity.IDLE, grpc.ChannelConnectivity.CONNECTING): pass else: self.fail("Encountered unknown state.") channel.subscribe(_on_connectivity_changed) def _send_rpc(): try: response = grpc.experimental.unary_unary(_REQUEST, target, _UNARY_UNARY, timeout=None, insecure=True) rpc_finished_event.set() except Exception as e: rpc_failed_event.set() t = threading.Thread(target=_send_rpc) t.start() t.join() self.assertFalse(rpc_failed_event.is_set()) self.assertTrue(rpc_finished_event.is_set()) if server is not None: server.stop(None) def assert_times_out(self, invocation_args): with _server(None) as port: target = f'localhost:{port}' with self.assertRaises(grpc.RpcError) as cm: response = grpc.experimental.unary_unary(_REQUEST, target, _BLACK_HOLE, insecure=True, **invocation_args) self.assertEqual(grpc.StatusCode.DEADLINE_EXCEEDED, cm.exception.code()) def test_default_timeout(self): not_present = object() wait_for_ready_values = [True, not_present] timeout_values = [0.5, not_present] cases = [] for wait_for_ready in wait_for_ready_values: for timeout in timeout_values: case = {} if timeout is not not_present: case["timeout"] = timeout if wait_for_ready is not not_present: case["wait_for_ready"] = wait_for_ready cases.append(case) for case in cases: with self.subTest(**case): self.assert_times_out(case) if __name__ == "__main__": logging.basicConfig(level=logging.INFO) unittest.main(verbosity=2)
build_imagenet_data.py
# Copyright 2016 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Converts ImageNet data to TFRecords file format with Example protos. The raw ImageNet data set is expected to reside in JPEG files located in the following directory structure. data_dir/n01440764/ILSVRC2012_val_00000293.JPEG data_dir/n01440764/ILSVRC2012_val_00000543.JPEG ... where 'n01440764' is the unique synset label associated with these images. The training data set consists of 1000 sub-directories (i.e. labels) each containing 1200 JPEG images for a total of 1.2M JPEG images. The evaluation data set consists of 1000 sub-directories (i.e. labels) each containing 50 JPEG images for a total of 50K JPEG images. This TensorFlow script converts the training and evaluation data into a sharded data set consisting of 1024 and 128 TFRecord files, respectively. train_directory/train-00000-of-01024 train_directory/train-00001-of-01024 ... train_directory/train-00127-of-01024 and validation_directory/validation-00000-of-00128 validation_directory/validation-00001-of-00128 ... validation_directory/validation-00127-of-00128 Each validation TFRecord file contains ~390 records. Each training TFREcord file contains ~1250 records. Each record within the TFRecord file is a serialized Example proto. The Example proto contains the following fields: image/encoded: string containing JPEG encoded image in RGB colorspace image/height: integer, image height in pixels image/width: integer, image width in pixels image/colorspace: string, specifying the colorspace, always 'RGB' image/channels: integer, specifying the number of channels, always 3 image/format: string, specifying the format, always'JPEG' image/filename: string containing the basename of the image file e.g. 'n01440764_10026.JPEG' or 'ILSVRC2012_val_00000293.JPEG' image/class/label: integer specifying the index in a classification layer. The label ranges from [1, 1000] where 0 is not used. image/class/synset: string specifying the unique ID of the label, e.g. 'n01440764' image/class/text: string specifying the human-readable version of the label e.g. 'red fox, Vulpes vulpes' image/object/bbox/xmin: list of integers specifying the 0+ human annotated bounding boxes image/object/bbox/xmax: list of integers specifying the 0+ human annotated bounding boxes image/object/bbox/ymin: list of integers specifying the 0+ human annotated bounding boxes image/object/bbox/ymax: list of integers specifying the 0+ human annotated bounding boxes image/object/bbox/label: integer specifying the index in a classification layer. The label ranges from [1, 1000] where 0 is not used. Note this is always identical to the image label. Note that the length of xmin is identical to the length of xmax, ymin and ymax for each example. Running this script using 16 threads may take around ~2.5 hours on a HP Z420. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from datetime import datetime import os import random import sys import threading import numpy as np import tensorflow as tf data_dir = 'K:/ImageNet_object_localization/ILSVRC/Data/CLSLOC' tf.app.flags.DEFINE_string('train_directory', 'K:/ImageNet_object_localization/ILSVRC/Data/CLSLOC/train', 'Training data directory') tf.app.flags.DEFINE_string('validation_directory', 'K:/ImageNet_object_localization/ILSVRC/Data/CLSLOC/val', 'Validation data directory') tf.app.flags.DEFINE_string('output_directory', 'K:', 'Output data directory') tf.app.flags.DEFINE_integer('train_shards', 1024, 'Number of shards in training TFRecord files.') tf.app.flags.DEFINE_integer('validation_shards', 128, 'Number of shards in validation TFRecord files.') tf.app.flags.DEFINE_integer('num_threads', 8, 'Number of threads to preprocess the images.') # The labels file contains a list of valid labels are held in this file. # Assumes that the file contains entries as such: # n01440764 # n01443537 # n01484850 # where each line corresponds to a label expressed as a synset. We map # each synset contained in the file to an integer (based on the alphabetical # ordering). See below for details. tf.app.flags.DEFINE_string('labels_file', 'K:/ImageNet_object_localization/ILSVRC/Data/CLSLOC/imagenet_lsvrc_2015_synsets.txt', 'Labels file') # This file containing mapping from synset to human-readable label. # Assumes each line of the file looks like: # # n02119247 black fox # n02119359 silver fox # n02119477 red fox, Vulpes fulva # # where each line corresponds to a unique mapping. Note that each line is # formatted as <synset>\t<human readable label>. tf.app.flags.DEFINE_string('imagenet_metadata_file', 'K:/ImageNet_object_localization/ILSVRC/Data/CLSLOC/imagenet_metadata.txt', 'ImageNet metadata file') # This file is the output of process_bounding_box.py # Assumes each line of the file looks like: # # n00007846_64193.JPEG,0.0060,0.2620,0.7545,0.9940 # # where each line corresponds to one bounding box annotation associated # with an image. Each line can be parsed as: # # <JPEG file name>, <xmin>, <ymin>, <xmax>, <ymax> # # Note that there might exist mulitple bounding box annotations associated # with an image file. tf.app.flags.DEFINE_string('bounding_box_file', 'C:/Users/SpiderJaws/Desktop/process_bounding_boxes.csv', 'Bounding box file') FLAGS = tf.app.flags.FLAGS def _int64_feature(value): """Wrapper for inserting int64 features into Example proto.""" if not isinstance(value, list): value = [value] return tf.train.Feature(int64_list=tf.train.Int64List(value=value)) def _float_feature(value): """Wrapper for inserting float features into Example proto.""" if not isinstance(value, list): value = [value] return tf.train.Feature(float_list=tf.train.FloatList(value=value)) def _bytes_feature(value): """Wrapper for inserting bytes features into Example proto.""" return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value])) def _convert_to_example(filename, image_buffer, label, synset, human, bbox, height, width): """Build an Example proto for an example. Args: filename: string, path to an image file, e.g., '/path/to/example.JPG' image_buffer: string, JPEG encoding of RGB image label: integer, identifier for the ground truth for the network synset: string, unique WordNet ID specifying the label, e.g., 'n02323233' human: string, human-readable label, e.g., 'red fox, Vulpes vulpes' bbox: list of bounding boxes; each box is a list of integers specifying [xmin, ymin, xmax, ymax]. All boxes are assumed to belong to the same label as the image label. height: integer, image height in pixels width: integer, image width in pixels Returns: Example proto """ xmin = [] ymin = [] xmax = [] ymax = [] for b in bbox: assert len(b) == 4 # pylint: disable=expression-not-assigned [l.append(point) for l, point in zip([xmin, ymin, xmax, ymax], b)] # pylint: enable=expression-not-assigned colorspace = b'RGB' channels = 3 image_format = b'JPEG' example = tf.train.Example(features=tf.train.Features(feature={ 'image/height': _int64_feature(height), 'image/width': _int64_feature(width), 'image/colorspace': _bytes_feature(colorspace), 'image/channels': _int64_feature(channels), 'image/class/label': _int64_feature(label), 'image/class/synset': _bytes_feature(bytes(synset,'utf-8')), 'image/class/text': _bytes_feature(bytes(human,'utf-8')), 'image/object/bbox/xmin': _float_feature(xmin), 'image/object/bbox/xmax': _float_feature(xmax), 'image/object/bbox/ymin': _float_feature(ymin), 'image/object/bbox/ymax': _float_feature(ymax), 'image/object/bbox/label': _int64_feature([label] * len(xmin)), 'image/format': _bytes_feature(image_format), 'image/filename': _bytes_feature(bytes(os.path.basename(filename),'utf-8')), 'image/encoded': _bytes_feature(image_buffer)})) return example # 'image/filename': _bytes_feature(os.path.basename(filename)), class ImageCoder(object): """Helper class that provides TensorFlow image coding utilities.""" def __init__(self): # Create a single Session to run all image coding calls. self._sess = tf.Session() # Initializes function that converts PNG to JPEG data. self._png_data = tf.placeholder(dtype=tf.string) image = tf.image.decode_png(self._png_data, channels=3) self._png_to_jpeg = tf.image.encode_jpeg(image, format='rgb', quality=100) # Initializes function that converts CMYK JPEG data to RGB JPEG data. self._cmyk_data = tf.placeholder(dtype=tf.string) image = tf.image.decode_jpeg(self._cmyk_data, channels=0) self._cmyk_to_rgb = tf.image.encode_jpeg(image, format='rgb', quality=100) # Initializes function that decodes RGB JPEG data. self._decode_jpeg_data = tf.placeholder(dtype=tf.string) self._decode_jpeg = tf.image.decode_jpeg(self._decode_jpeg_data, channels=3) def png_to_jpeg(self, image_data): return self._sess.run(self._png_to_jpeg, feed_dict={self._png_data: image_data}) def cmyk_to_rgb(self, image_data): return self._sess.run(self._cmyk_to_rgb, feed_dict={self._cmyk_data: image_data}) def decode_jpeg(self, image_data): image = self._sess.run(self._decode_jpeg, feed_dict={self._decode_jpeg_data: image_data}) assert len(image.shape) == 3 assert image.shape[2] == 3 return image def _is_png(filename): """Determine if a file contains a PNG format image. Args: filename: string, path of the image file. Returns: boolean indicating if the image is a PNG. """ # File list from: # https://groups.google.com/forum/embed/?place=forum/torch7#!topic/torch7/fOSTXHIESSU return 'n02105855_2933.JPEG' in filename def _is_cmyk(filename): """Determine if file contains a CMYK JPEG format image. Args: filename: string, path of the image file. Returns: boolean indicating if the image is a JPEG encoded with CMYK color space. """ # File list from: # https://github.com/cytsai/ilsvrc-cmyk-image-list blacklist = ['n01739381_1309.JPEG', 'n02077923_14822.JPEG', 'n02447366_23489.JPEG', 'n02492035_15739.JPEG', 'n02747177_10752.JPEG', 'n03018349_4028.JPEG', 'n03062245_4620.JPEG', 'n03347037_9675.JPEG', 'n03467068_12171.JPEG', 'n03529860_11437.JPEG', 'n03544143_17228.JPEG', 'n03633091_5218.JPEG', 'n03710637_5125.JPEG', 'n03961711_5286.JPEG', 'n04033995_2932.JPEG', 'n04258138_17003.JPEG', 'n04264628_27969.JPEG', 'n04336792_7448.JPEG', 'n04371774_5854.JPEG', 'n04596742_4225.JPEG', 'n07583066_647.JPEG', 'n13037406_4650.JPEG'] return filename.split('/')[-1] in blacklist def _process_image(filename, coder): """Process a single image file. Args: filename: string, path to an image file e.g., '/path/to/example.JPG'. coder: instance of ImageCoder to provide TensorFlow image coding utils. Returns: image_buffer: string, JPEG encoding of RGB image. height: integer, image height in pixels. width: integer, image width in pixels. """ # Read the image file. image_data = tf.gfile.FastGFile(filename, 'rb').read() # Clean the dirty data. if _is_png(filename): # 1 image is a PNG. print('Converting PNG to JPEG for %s' % filename) image_data = coder.png_to_jpeg(image_data) elif _is_cmyk(filename): # 22 JPEG images are in CMYK colorspace. print('Converting CMYK to RGB for %s' % filename) image_data = coder.cmyk_to_rgb(image_data) # Decode the RGB JPEG. image = coder.decode_jpeg(image_data) # Check that image converted to RGB assert len(image.shape) == 3 height = image.shape[0] width = image.shape[1] assert image.shape[2] == 3 return image_data, height, width def _process_image_files_batch(coder, thread_index, ranges, name, filenames, synsets, labels, humans, bboxes, num_shards): """Processes and saves list of images as TFRecord in 1 thread. Args: coder: instance of ImageCoder to provide TensorFlow image coding utils. thread_index: integer, unique batch to run index is within [0, len(ranges)). ranges: list of pairs of integers specifying ranges of each batches to analyze in parallel. name: string, unique identifier specifying the data set filenames: list of strings; each string is a path to an image file synsets: list of strings; each string is a unique WordNet ID labels: list of integer; each integer identifies the ground truth humans: list of strings; each string is a human-readable label bboxes: list of bounding boxes for each image. Note that each entry in this list might contain from 0+ entries corresponding to the number of bounding box annotations for the image. num_shards: integer number of shards for this data set. """ # Each thread produces N shards where N = int(num_shards / num_threads). # For instance, if num_shards = 128, and the num_threads = 2, then the first # thread would produce shards [0, 64). num_threads = len(ranges) assert not num_shards % num_threads num_shards_per_batch = int(num_shards / num_threads) shard_ranges = np.linspace(ranges[thread_index][0], ranges[thread_index][1], num_shards_per_batch + 1).astype(int) num_files_in_thread = ranges[thread_index][1] - ranges[thread_index][0] counter = 0 for s in range(num_shards_per_batch): # Generate a sharded version of the file name, e.g. 'train-00002-of-00010' shard = thread_index * num_shards_per_batch + s output_filename = '%s-%.5d-of-%.5d' % (name, shard, num_shards) output_file = os.path.join(FLAGS.output_directory, output_filename) writer = tf.python_io.TFRecordWriter(output_file) shard_counter = 0 files_in_shard = np.arange(shard_ranges[s], shard_ranges[s + 1], dtype=int) for i in files_in_shard: filename = filenames[i] label = labels[i] synset = synsets[i] human = humans[i] bbox = bboxes[i] image_buffer, height, width = _process_image(filename, coder) example = _convert_to_example(filename, image_buffer, label, synset, human, bbox, height, width) writer.write(example.SerializeToString()) shard_counter += 1 counter += 1 if not counter % 1000: print('%s [thread %d]: Processed %d of %d images in thread batch.' % (datetime.now(), thread_index, counter, num_files_in_thread)) sys.stdout.flush() writer.close() print('%s [thread %d]: Wrote %d images to %s' % (datetime.now(), thread_index, shard_counter, output_file)) sys.stdout.flush() shard_counter = 0 print('%s [thread %d]: Wrote %d images to %d shards.' % (datetime.now(), thread_index, counter, num_files_in_thread)) sys.stdout.flush() def _process_image_files(name, filenames, synsets, labels, humans, bboxes, num_shards): """Process and save list of images as TFRecord of Example protos. Args: name: string, unique identifier specifying the data set filenames: list of strings; each string is a path to an image file synsets: list of strings; each string is a unique WordNet ID labels: list of integer; each integer identifies the ground truth humans: list of strings; each string is a human-readable label bboxes: list of bounding boxes for each image. Note that each entry in this list might contain from 0+ entries corresponding to the number of bounding box annotations for the image. num_shards: integer number of shards for this data set. """ assert len(filenames) == len(synsets) assert len(filenames) == len(labels) assert len(filenames) == len(humans) assert len(filenames) == len(bboxes) # Break all images into batches with a [ranges[i][0], ranges[i][1]]. spacing = np.linspace(0, len(filenames), FLAGS.num_threads + 1).astype(np.int) ranges = [] threads = [] for i in range(len(spacing) - 1): ranges.append([spacing[i], spacing[i+1]]) # Launch a thread for each batch. print('Launching %d threads for spacings: %s' % (FLAGS.num_threads, ranges)) sys.stdout.flush() # Create a mechanism for monitoring when all threads are finished. coord = tf.train.Coordinator() # Create a generic TensorFlow-based utility for converting all image codings. coder = ImageCoder() threads = [] for thread_index in range(len(ranges)): args = (coder, thread_index, ranges, name, filenames, synsets, labels, humans, bboxes, num_shards) t = threading.Thread(target=_process_image_files_batch, args=args) t.start() threads.append(t) # Wait for all the threads to terminate. coord.join(threads) print('%s: Finished writing all %d images in data set.' % (datetime.now(), len(filenames))) sys.stdout.flush() def _find_image_files(data_dir, labels_file): """Build a list of all images files and labels in the data set. Args: data_dir: string, path to the root directory of images. Assumes that the ImageNet data set resides in JPEG files located in the following directory structure. data_dir/n01440764/ILSVRC2012_val_00000293.JPEG data_dir/n01440764/ILSVRC2012_val_00000543.JPEG where 'n01440764' is the unique synset label associated with these images. labels_file: string, path to the labels file. The list of valid labels are held in this file. Assumes that the file contains entries as such: n01440764 n01443537 n01484850 where each line corresponds to a label expressed as a synset. We map each synset contained in the file to an integer (based on the alphabetical ordering) starting with the integer 1 corresponding to the synset contained in the first line. The reason we start the integer labels at 1 is to reserve label 0 as an unused background class. Returns: filenames: list of strings; each string is a path to an image file. synsets: list of strings; each string is a unique WordNet ID. labels: list of integer; each integer identifies the ground truth. """ print('Determining list of input files and labels from %s.' % data_dir) challenge_synsets = [l.strip() for l in tf.gfile.FastGFile(labels_file, 'r').readlines()] labels = [] filenames = [] synsets = [] # Leave label index 0 empty as a background class. label_index = 1 # Construct the list of JPEG files and labels. for synset in challenge_synsets: jpeg_file_path = '%s/%s/*.JPEG' % (data_dir, synset) matching_files = tf.gfile.Glob(jpeg_file_path) labels.extend([label_index] * len(matching_files)) synsets.extend([synset] * len(matching_files)) filenames.extend(matching_files) if not label_index % 100: print('Finished finding files in %d of %d classes.' % ( label_index, len(challenge_synsets))) label_index += 1 # Shuffle the ordering of all image files in order to guarantee # random ordering of the images with respect to label in the # saved TFRecord files. Make the randomization repeatable. shuffled_index = list(range(len(filenames))) random.seed(12345) random.shuffle(shuffled_index) filenames = [filenames[i] for i in shuffled_index] synsets = [synsets[i] for i in shuffled_index] labels = [labels[i] for i in shuffled_index] print('Found %d JPEG files across %d labels inside %s.' % (len(filenames), len(challenge_synsets), data_dir)) return filenames, synsets, labels def _find_human_readable_labels(synsets, synset_to_human): """Build a list of human-readable labels. Args: synsets: list of strings; each string is a unique WordNet ID. synset_to_human: dict of synset to human labels, e.g., 'n02119022' --> 'red fox, Vulpes vulpes' Returns: List of human-readable strings corresponding to each synset. """ humans = [] for s in synsets: assert s in synset_to_human, ('Failed to find: %s' % s) humans.append(synset_to_human[s]) return humans def _find_image_bounding_boxes(filenames, image_to_bboxes): """Find the bounding boxes for a given image file. Args: filenames: list of strings; each string is a path to an image file. image_to_bboxes: dictionary mapping image file names to a list of bounding boxes. This list contains 0+ bounding boxes. Returns: List of bounding boxes for each image. Note that each entry in this list might contain from 0+ entries corresponding to the number of bounding box annotations for the image. """ num_image_bbox = 0 bboxes = [] for f in filenames: basename = os.path.basename(f) if basename in image_to_bboxes: bboxes.append(image_to_bboxes[basename]) num_image_bbox += 1 else: bboxes.append([]) print('Found %d images with bboxes out of %d images' % ( num_image_bbox, len(filenames))) return bboxes def _process_dataset(name, directory, num_shards, synset_to_human, image_to_bboxes): """Process a complete data set and save it as a TFRecord. Args: name: string, unique identifier specifying the data set. directory: string, root path to the data set. num_shards: integer number of shards for this data set. synset_to_human: dict of synset to human labels, e.g., 'n02119022' --> 'red fox, Vulpes vulpes' image_to_bboxes: dictionary mapping image file names to a list of bounding boxes. This list contains 0+ bounding boxes. """ filenames, synsets, labels = _find_image_files(directory, FLAGS.labels_file) humans = _find_human_readable_labels(synsets, synset_to_human) bboxes = _find_image_bounding_boxes(filenames, image_to_bboxes) _process_image_files(name, filenames, synsets, labels, humans, bboxes, num_shards) def _build_synset_lookup(imagenet_metadata_file): """Build lookup for synset to human-readable label. Args: imagenet_metadata_file: string, path to file containing mapping from synset to human-readable label. Assumes each line of the file looks like: n02119247 black fox n02119359 silver fox n02119477 red fox, Vulpes fulva where each line corresponds to a unique mapping. Note that each line is formatted as <synset>\t<human readable label>. Returns: Dictionary of synset to human labels, such as: 'n02119022' --> 'red fox, Vulpes vulpes' """ lines = tf.gfile.FastGFile(imagenet_metadata_file, 'r').readlines() synset_to_human = {} for l in lines: if l: parts = l.strip().split('\t') assert len(parts) == 2 synset = parts[0] human = parts[1] synset_to_human[synset] = human return synset_to_human def _build_bounding_box_lookup(bounding_box_file): """Build a lookup from image file to bounding boxes. Args: bounding_box_file: string, path to file with bounding boxes annotations. Assumes each line of the file looks like: n00007846_64193.JPEG,0.0060,0.2620,0.7545,0.9940 where each line corresponds to one bounding box annotation associated with an image. Each line can be parsed as: <JPEG file name>, <xmin>, <ymin>, <xmax>, <ymax> Note that there might exist mulitple bounding box annotations associated with an image file. This file is the output of process_bounding_boxes.py. Returns: Dictionary mapping image file names to a list of bounding boxes. This list contains 0+ bounding boxes. """ lines = tf.gfile.FastGFile(bounding_box_file, 'r').readlines() images_to_bboxes = {} num_bbox = 0 num_image = 0 for l in lines: if l: parts = l.split(',') assert len(parts) == 5, ('Failed to parse: %s' % l) filename = parts[0] xmin = float(parts[1]) ymin = float(parts[2]) xmax = float(parts[3]) ymax = float(parts[4]) box = [xmin, ymin, xmax, ymax] if filename not in images_to_bboxes: images_to_bboxes[filename] = [] num_image += 1 images_to_bboxes[filename].append(box) num_bbox += 1 print('Successfully read %d bounding boxes ' 'across %d images.' % (num_bbox, num_image)) return images_to_bboxes def main(unused_argv): assert not FLAGS.train_shards % FLAGS.num_threads, ( 'Please make the FLAGS.num_threads commensurate with FLAGS.train_shards') assert not FLAGS.validation_shards % FLAGS.num_threads, ( 'Please make the FLAGS.num_threads commensurate with ' 'FLAGS.validation_shards') print('Saving results to %s' % FLAGS.output_directory) # Build a map from synset to human-readable label. synset_to_human = _build_synset_lookup(FLAGS.imagenet_metadata_file) image_to_bboxes = _build_bounding_box_lookup(FLAGS.bounding_box_file) # Run it! _process_dataset('validation', FLAGS.validation_directory, FLAGS.validation_shards, synset_to_human, image_to_bboxes) _process_dataset('train', FLAGS.train_directory, FLAGS.train_shards, synset_to_human, image_to_bboxes) if __name__ == '__main__': tf.app.run()
data.py
# THIS FILE IS FOR EXPERIMENTS, USE image_iter.py FOR NORMAL IMAGE LOADING. from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import random import logging import sys import numbers import math import sklearn import datetime import numpy as np import cv2 import mxnet as mx from mxnet import ndarray as nd #from . import _ndarray_internal as _internal #from mxnet._ndarray_internal import _cvimresize as imresize #from ._ndarray_internal import _cvcopyMakeBorder as copyMakeBorder from mxnet import io from mxnet import recordio sys.path.append(os.path.join(os.path.dirname(__file__), 'common')) import face_preprocess import multiprocessing logger = logging.getLogger() def pick_triplets_impl(q_in, q_out): more = True while more: deq = q_in.get() if deq is None: more = False else: embeddings, emb_start_idx, nrof_images, alpha = deq print('running', emb_start_idx, nrof_images, os.getpid()) for j in xrange(1,nrof_images): a_idx = emb_start_idx + j - 1 neg_dists_sqr = np.sum(np.square(embeddings[a_idx] - embeddings), 1) for pair in xrange(j, nrof_images): # For every possible positive pair. p_idx = emb_start_idx + pair pos_dist_sqr = np.sum(np.square(embeddings[a_idx]-embeddings[p_idx])) neg_dists_sqr[emb_start_idx:emb_start_idx+nrof_images] = np.NaN all_neg = np.where(np.logical_and(neg_dists_sqr-pos_dist_sqr<alpha, pos_dist_sqr<neg_dists_sqr))[0] # FaceNet selection #all_neg = np.where(neg_dists_sqr-pos_dist_sqr<alpha)[0] # VGG Face selecction nrof_random_negs = all_neg.shape[0] if nrof_random_negs>0: rnd_idx = np.random.randint(nrof_random_negs) n_idx = all_neg[rnd_idx] #triplets.append( (a_idx, p_idx, n_idx) ) q_out.put( (a_idx, p_idx, n_idx) ) #emb_start_idx += nrof_images print('exit',os.getpid()) class FaceImageIter(io.DataIter): def __init__(self, batch_size, data_shape, path_imgrec = None, shuffle=False, aug_list=None, mean = None, rand_mirror = False, cutoff = 0, c2c_threshold = 0.0, output_c2c = 0, c2c_mode = -10, limit = 0, ctx_num = 0, images_per_identity = 0, data_extra = None, hard_mining = False, triplet_params = None, coco_mode = False, mx_model = None, data_name='data', label_name='softmax_label', **kwargs): super(FaceImageIter, self).__init__() assert path_imgrec if path_imgrec: logging.info('loading recordio %s...', path_imgrec) path_imgidx = path_imgrec[0:-4]+".idx" self.imgrec = recordio.MXIndexedRecordIO(path_imgidx, path_imgrec, 'r') # pylint: disable=redefined-variable-type s = self.imgrec.read_idx(0) header, _ = recordio.unpack(s) self.idx2cos = {} self.idx2flag = {} self.idx2meancos = {} self.c2c_auto = False #if output_c2c or c2c_threshold>0.0 or c2c_mode>=-5: # path_c2c = os.path.join(os.path.dirname(path_imgrec), 'c2c') # print(path_c2c) # if os.path.exists(path_c2c): # for line in open(path_c2c, 'r'): # vec = line.strip().split(',') # idx = int(vec[0]) # self.idx2cos[idx] = float(vec[1]) # self.idx2flag[idx] = 1 # if len(vec)>2: # self.idx2flag[idx] = int(vec[2]) # else: # self.c2c_auto = True # self.c2c_step = 10000 print("header.flag", header) if header.flag>0: print('header0 label', header.label) self.header0 = (int(header.label[0]), int(header.label[1])) #assert(header.flag==1) self.imgidx = range(1, int(header.label[0])) if c2c_mode==0: imgidx2 = [] for idx in self.imgidx: c = self.idx2cos[idx] f = self.idx2flag[idx] if f!=1: continue imgidx2.append(idx) print('idx count', len(self.imgidx), len(imgidx2)) self.imgidx = imgidx2 elif c2c_mode==1: imgidx2 = [] tmp = [] for idx in self.imgidx: c = self.idx2cos[idx] f = self.idx2flag[idx] if f==1: imgidx2.append(idx) else: tmp.append( (idx, c) ) tmp = sorted(tmp, key = lambda x:x[1]) tmp = tmp[250000:300000] for _t in tmp: imgidx2.append(_t[0]) print('idx count', len(self.imgidx), len(imgidx2)) self.imgidx = imgidx2 elif c2c_mode==2: imgidx2 = [] tmp = [] for idx in self.imgidx: c = self.idx2cos[idx] f = self.idx2flag[idx] if f==1: imgidx2.append(idx) else: tmp.append( (idx, c) ) tmp = sorted(tmp, key = lambda x:x[1]) tmp = tmp[200000:300000] for _t in tmp: imgidx2.append(_t[0]) print('idx count', len(self.imgidx), len(imgidx2)) self.imgidx = imgidx2 elif c2c_mode==-2: imgidx2 = [] for idx in self.imgidx: c = self.idx2cos[idx] f = self.idx2flag[idx] if f==2: continue if c<0.73: continue imgidx2.append(idx) print('idx count', len(self.imgidx), len(imgidx2)) self.imgidx = imgidx2 elif c2c_threshold>0.0: imgidx2 = [] for idx in self.imgidx: c = self.idx2cos[idx] f = self.idx2flag[idx] if c<c2c_threshold: continue imgidx2.append(idx) print(len(self.imgidx), len(imgidx2)) self.imgidx = imgidx2 self.id2range = {} self.seq_identity = range(int(header.label[0]), int(header.label[1])) c2c_stat = [0,0] for identity in self.seq_identity: s = self.imgrec.read_idx(identity) header, _ = recordio.unpack(s) a,b = int(header.label[0]), int(header.label[1]) self.id2range[identity] = (a,b) count = b-a if count>=output_c2c: c2c_stat[1]+=1 else: c2c_stat[0]+=1 for ii in range(a,b): self.idx2flag[ii] = count if len(self.idx2cos)>0: m = 0.0 for ii in range(a,b): m+=self.idx2cos[ii] m/=(b-a) for ii in range(a,b): self.idx2meancos[ii] = m #self.idx2meancos[identity] = m print('id2range', len(self.id2range)) print(len(self.idx2cos), len(self.idx2meancos), len(self.idx2flag)) print('c2c_stat', c2c_stat) if limit>0 and limit<len(self.imgidx): random.seed(727) prob = float(limit)/len(self.imgidx) new_imgidx = [] new_ids = 0 for identity in self.seq_identity: s = self.imgrec.read_idx(identity) header, _ = recordio.unpack(s) a,b = int(header.label[0]), int(header.label[1]) found = False for _idx in range(a,b): if random.random()<prob: found = True new_imgidx.append(_idx) if found: new_ids+=1 self.imgidx = new_imgidx print('new ids', new_ids) random.seed(None) #random.Random(727).shuffle(self.imgidx) #self.imgidx = self.imgidx[0:limit] else: self.imgidx = list(self.imgrec.keys) if shuffle: self.seq = self.imgidx self.oseq = self.imgidx print(len(self.seq)) else: self.seq = None self.mean = mean self.nd_mean = None if self.mean: self.mean = np.array(self.mean, dtype=np.float32).reshape(1,1,3) self.nd_mean = mx.nd.array(self.mean).reshape((1,1,3)) self.check_data_shape(data_shape) self.provide_data = [(data_name, (batch_size,) + data_shape)] self.batch_size = batch_size self.data_shape = data_shape self.shuffle = shuffle self.image_size = '%d,%d'%(data_shape[1],data_shape[2]) self.rand_mirror = rand_mirror print('rand_mirror', rand_mirror) self.cutoff = cutoff #self.cast_aug = mx.image.CastAug() self.color_aug = mx.image.ColorJitterAug(0.4, 0.4, 0.4) self.ctx_num = ctx_num self.c2c_threshold = c2c_threshold self.output_c2c = output_c2c self.per_batch_size = int(self.batch_size/self.ctx_num) self.images_per_identity = images_per_identity if self.images_per_identity>0: self.identities = int(self.per_batch_size/self.images_per_identity) self.per_identities = self.identities self.repeat = 3000000.0/(self.images_per_identity*len(self.id2range)) self.repeat = int(self.repeat) print(self.images_per_identity, self.identities, self.repeat) self.data_extra = None if data_extra is not None: self.data_extra = nd.array(data_extra) self.provide_data = [(data_name, (batch_size,) + data_shape), ('extra', data_extra.shape)] self.hard_mining = hard_mining self.mx_model = mx_model if self.hard_mining: assert self.images_per_identity>0 assert self.mx_model is not None self.triplet_params = triplet_params self.triplet_mode = False self.coco_mode = coco_mode if len(label_name)>0: if output_c2c: self.provide_label = [(label_name, (batch_size,2))] else: self.provide_label = [(label_name, (batch_size,))] else: self.provide_label = [] print(self.provide_label[0][1]) if self.coco_mode: assert self.triplet_params is None assert self.images_per_identity>0 if self.triplet_params is not None: assert self.images_per_identity>0 assert self.mx_model is not None self.triplet_bag_size = self.triplet_params[0] self.triplet_alpha = self.triplet_params[1] self.triplet_max_ap = self.triplet_params[2] assert self.triplet_bag_size>0 assert self.triplet_alpha>=0.0 assert self.triplet_alpha<=1.0 self.triplet_mode = True self.triplet_oseq_cur = 0 self.triplet_oseq_reset() self.seq_min_size = self.batch_size*2 self.cur = 0 self.nbatch = 0 self.is_init = False self.times = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0] #self.reset() def ____pick_triplets(self, embeddings, nrof_images_per_class): emb_start_idx = 0 people_per_batch = len(nrof_images_per_class) nrof_threads = 8 q_in = multiprocessing.Queue() q_out = multiprocessing.Queue() processes = [multiprocessing.Process(target=pick_triplets_impl, args=(q_in, q_out)) \ for i in range(nrof_threads)] for p in processes: p.start() # VGG Face: Choosing good triplets is crucial and should strike a balance between # selecting informative (i.e. challenging) examples and swamping training with examples that # are too hard. This is achieve by extending each pair (a, p) to a triplet (a, p, n) by sampling # the image n at random, but only between the ones that violate the triplet loss margin. The # latter is a form of hard-negative mining, but it is not as aggressive (and much cheaper) than # choosing the maximally violating example, as often done in structured output learning. for i in xrange(people_per_batch): nrof_images = int(nrof_images_per_class[i]) job = (embeddings, emb_start_idx, nrof_images, self.triplet_alpha) emb_start_idx+=nrof_images q_in.put(job) for i in xrange(nrof_threads): q_in.put(None) print('joining') for p in processes: p.join() print('joined') q_out.put(None) triplets = [] more = True while more: triplet = q_out.get() if triplet is None: more = False else: triplets.append(triplets) np.random.shuffle(triplets) return triplets #cal pairwise dists on single gpu def _pairwise_dists(self, embeddings): nd_embedding = mx.nd.array(embeddings, mx.gpu(0)) pdists = [] for idx in xrange(embeddings.shape[0]): a_embedding = nd_embedding[idx] body = mx.nd.broadcast_sub(a_embedding, nd_embedding) body = body*body body = mx.nd.sum_axis(body, axis=1) ret = body.asnumpy() #print(ret.shape) pdists.append(ret) return pdists def pairwise_dists(self, embeddings): nd_embedding_list = [] for i in xrange(self.ctx_num): nd_embedding = mx.nd.array(embeddings, mx.gpu(i)) nd_embedding_list.append(nd_embedding) nd_pdists = [] pdists = [] for idx in xrange(embeddings.shape[0]): emb_idx = idx%self.ctx_num nd_embedding = nd_embedding_list[emb_idx] a_embedding = nd_embedding[idx] body = mx.nd.broadcast_sub(a_embedding, nd_embedding) body = body*body body = mx.nd.sum_axis(body, axis=1) nd_pdists.append(body) if len(nd_pdists)==self.ctx_num or idx==embeddings.shape[0]-1: for x in nd_pdists: pdists.append(x.asnumpy()) nd_pdists = [] return pdists def pick_triplets(self, embeddings, nrof_images_per_class): emb_start_idx = 0 triplets = [] people_per_batch = len(nrof_images_per_class) #self.time_reset() pdists = self.pairwise_dists(embeddings) #self.times[3] += self.time_elapsed() for i in xrange(people_per_batch): nrof_images = int(nrof_images_per_class[i]) for j in xrange(1,nrof_images): #self.time_reset() a_idx = emb_start_idx + j - 1 #neg_dists_sqr = np.sum(np.square(embeddings[a_idx] - embeddings), 1) neg_dists_sqr = pdists[a_idx] #self.times[3] += self.time_elapsed() for pair in xrange(j, nrof_images): # For every possible positive pair. p_idx = emb_start_idx + pair #self.time_reset() pos_dist_sqr = np.sum(np.square(embeddings[a_idx]-embeddings[p_idx])) #self.times[4] += self.time_elapsed() #self.time_reset() neg_dists_sqr[emb_start_idx:emb_start_idx+nrof_images] = np.NaN if self.triplet_max_ap>0.0: if pos_dist_sqr>self.triplet_max_ap: continue all_neg = np.where(np.logical_and(neg_dists_sqr-pos_dist_sqr<self.triplet_alpha, pos_dist_sqr<neg_dists_sqr))[0] # FaceNet selection #self.times[5] += self.time_elapsed() #self.time_reset() #all_neg = np.where(neg_dists_sqr-pos_dist_sqr<alpha)[0] # VGG Face selecction nrof_random_negs = all_neg.shape[0] if nrof_random_negs>0: rnd_idx = np.random.randint(nrof_random_negs) n_idx = all_neg[rnd_idx] triplets.append( (a_idx, p_idx, n_idx) ) emb_start_idx += nrof_images np.random.shuffle(triplets) return triplets def __pick_triplets(self, embeddings, nrof_images_per_class): emb_start_idx = 0 triplets = [] people_per_batch = len(nrof_images_per_class) for i in xrange(people_per_batch): nrof_images = int(nrof_images_per_class[i]) if nrof_images<2: continue for j in xrange(1,nrof_images): a_idx = emb_start_idx + j - 1 pcount = nrof_images-1 dists_a2all = np.sum(np.square(embeddings[a_idx] - embeddings), 1) #(N,) #print(a_idx, dists_a2all.shape) ba = emb_start_idx bb = emb_start_idx+nrof_images sorted_idx = np.argsort(dists_a2all) #print('assert', sorted_idx[0], a_idx) #assert sorted_idx[0]==a_idx #for idx in sorted_idx: # print(idx, dists_a2all[idx]) p2n_map = {} pfound = 0 for idx in sorted_idx: if idx==a_idx: #is anchor continue if idx<bb and idx>=ba: #is pos p2n_map[idx] = [dists_a2all[idx], []] #ap, [neg_list] pfound+=1 else: # is neg an = dists_a2all[idx] if pfound==pcount and len(p2n_map)==0: break to_del = [] for p_idx in p2n_map: v = p2n_map[p_idx] an_ap = an - v[0] if an_ap<self.triplet_alpha: v[1].append(idx) else: #output if len(v[1])>0: n_idx = random.choice(v[1]) triplets.append( (a_idx, p_idx, n_idx) ) to_del.append(p_idx) for _del in to_del: del p2n_map[_del] for p_idx,v in p2n_map.iteritems(): if len(v[1])>0: n_idx = random.choice(v[1]) triplets.append( (a_idx, p_idx, n_idx) ) emb_start_idx += nrof_images np.random.shuffle(triplets) return triplets def triplet_oseq_reset(self): #reset self.oseq by identities seq self.triplet_oseq_cur = 0 ids = [] for k in self.id2range: ids.append(k) random.shuffle(ids) self.oseq = [] for _id in ids: v = self.id2range[_id] _list = list(range(*v)) random.shuffle(_list) if len(_list)>self.images_per_identity: _list = _list[0:self.images_per_identity] self.oseq += _list print('oseq', len(self.oseq)) def time_reset(self): self.time_now = datetime.datetime.now() def time_elapsed(self): time_now = datetime.datetime.now() diff = time_now - self.time_now return diff.total_seconds() def select_triplets(self): self.seq = [] while len(self.seq)<self.seq_min_size: self.time_reset() embeddings = None bag_size = self.triplet_bag_size batch_size = self.batch_size #data = np.zeros( (bag_size,)+self.data_shape ) #label = np.zeros( (bag_size,) ) tag = [] #idx = np.zeros( (bag_size,) ) print('eval %d images..'%bag_size, self.triplet_oseq_cur) print('triplet time stat', self.times) if self.triplet_oseq_cur+bag_size>len(self.oseq): self.triplet_oseq_reset() print('eval %d images..'%bag_size, self.triplet_oseq_cur) self.times[0] += self.time_elapsed() self.time_reset() #print(data.shape) data = nd.zeros( self.provide_data[0][1] ) label = nd.zeros( self.provide_label[0][1] ) ba = 0 while True: bb = min(ba+batch_size, bag_size) if ba>=bb: break #_batch = self.data_iter.next() #_data = _batch.data[0].asnumpy() #print(_data.shape) #_label = _batch.label[0].asnumpy() #data[ba:bb,:,:,:] = _data #label[ba:bb] = _label for i in range(ba, bb): _idx = self.oseq[i+self.triplet_oseq_cur] s = self.imgrec.read_idx(_idx) header, img = recordio.unpack(s) img = self.imdecode(img) data[i-ba][:] = self.postprocess_data(img) label[i-ba][:] = header.label tag.append( ( int(header.label), _idx) ) #idx[i] = _idx db = mx.io.DataBatch(data=(data,), label=(label,)) self.mx_model.forward(db, is_train=False) net_out = self.mx_model.get_outputs() #print('eval for selecting triplets',ba,bb) #print(net_out) #print(len(net_out)) #print(net_out[0].asnumpy()) net_out = net_out[0].asnumpy() #print(net_out) #print('net_out', net_out.shape) if embeddings is None: embeddings = np.zeros( (bag_size, net_out.shape[1])) embeddings[ba:bb,:] = net_out ba = bb assert len(tag)==bag_size self.triplet_oseq_cur+=bag_size embeddings = sklearn.preprocessing.normalize(embeddings) self.times[1] += self.time_elapsed() self.time_reset() nrof_images_per_class = [1] for i in range(1, bag_size): if tag[i][0]==tag[i-1][0]: nrof_images_per_class[-1]+=1 else: nrof_images_per_class.append(1) triplets = self.pick_triplets(embeddings, nrof_images_per_class) # shape=(T,3) print('found triplets', len(triplets)) ba = 0 while True: bb = ba+self.per_batch_size//3 if bb>len(triplets): break _triplets = triplets[ba:bb] for i in range(3): for triplet in _triplets: _pos = triplet[i] _idx = tag[_pos][1] self.seq.append(_idx) ba = bb self.times[2] += self.time_elapsed() def triplet_reset(self): self.select_triplets() def hard_mining_reset(self): #import faiss from annoy import AnnoyIndex data = nd.zeros( self.provide_data[0][1] ) label = nd.zeros( self.provide_label[0][1] ) #label = np.zeros( self.provide_label[0][1] ) X = None ba = 0 batch_num = 0 while ba<len(self.oseq): batch_num+=1 if batch_num%10==0: print('loading batch',batch_num, ba) bb = min(ba+self.batch_size, len(self.oseq)) _count = bb-ba for i in range(_count): idx = self.oseq[i+ba] s = self.imgrec.read_idx(idx) header, img = recordio.unpack(s) img = self.imdecode(img) data[i][:] = self.postprocess_data(img) label[i][:] = header.label db = mx.io.DataBatch(data=(data,self.data_extra), label=(label,)) self.mx_model.forward(db, is_train=False) net_out = self.mx_model.get_outputs() embedding = net_out[0].asnumpy() nembedding = sklearn.preprocessing.normalize(embedding) if _count<self.batch_size: nembedding = nembedding[0:_count,:] if X is None: X = np.zeros( (len(self.id2range), nembedding.shape[1]), dtype=np.float32 ) nplabel = label.asnumpy() for i in range(_count): ilabel = int(nplabel[i]) #print(ilabel, ilabel.__class__) X[ilabel] += nembedding[i] ba = bb X = sklearn.preprocessing.normalize(X) d = X.shape[1] t = AnnoyIndex(d, metric='euclidean') for i in range(X.shape[0]): t.add_item(i, X[i]) print('start to build index') t.build(20) print(X.shape) k = self.per_identities self.seq = [] for i in range(X.shape[0]): nnlist = t.get_nns_by_item(i, k) assert nnlist[0]==i for _label in nnlist: assert _label<len(self.id2range) _id = self.header0[0]+_label v = self.id2range[_id] _list = range(*v) if len(_list)<self.images_per_identity: random.shuffle(_list) else: _list = np.random.choice(_list, self.images_per_identity, replace=False) for i in range(self.images_per_identity): _idx = _list[i%len(_list)] self.seq.append(_idx) #faiss_params = [20,5] #quantizer = faiss.IndexFlatL2(d) # the other index #index = faiss.IndexIVFFlat(quantizer, d, faiss_params[0], faiss.METRIC_L2) #assert not index.is_trained #index.train(X) #index.add(X) #assert index.is_trained #print('trained') #index.nprobe = faiss_params[1] #D, I = index.search(X, k) # actual search #print(I.shape) #self.seq = [] #for i in xrange(I.shape[0]): # #assert I[i][0]==i # for j in xrange(k): # _label = I[i][j] # assert _label<len(self.id2range) # _id = self.header0[0]+_label # v = self.id2range[_id] # _list = range(*v) # if len(_list)<self.images_per_identity: # random.shuffle(_list) # else: # _list = np.random.choice(_list, self.images_per_identity, replace=False) # for i in xrange(self.images_per_identity): # _idx = _list[i%len(_list)] # self.seq.append(_idx) def reset_c2c(self): self.select_triplets() for identity,v in self.id2range.iteritems(): _list = range(*v) for idx in _list: s = imgrec.read_idx(idx) ocontents.append(s) embeddings = None #print(len(ocontents)) ba = 0 while True: bb = min(ba+args.batch_size, len(ocontents)) if ba>=bb: break _batch_size = bb-ba _batch_size2 = max(_batch_size, args.ctx_num) data = nd.zeros( (_batch_size2,3, image_size[0], image_size[1]) ) label = nd.zeros( (_batch_size2,) ) count = bb-ba ii=0 for i in range(ba, bb): header, img = mx.recordio.unpack(ocontents[i]) img = mx.image.imdecode(img) img = nd.transpose(img, axes=(2, 0, 1)) data[ii][:] = img label[ii][:] = header.label ii+=1 while ii<_batch_size2: data[ii][:] = data[0][:] label[ii][:] = label[0][:] ii+=1 db = mx.io.DataBatch(data=(data,), label=(label,)) self.mx_model.forward(db, is_train=False) net_out = self.mx_model.get_outputs() net_out = net_out[0].asnumpy() model.forward(db, is_train=False) net_out = model.get_outputs() net_out = net_out[0].asnumpy() if embeddings is None: embeddings = np.zeros( (len(ocontents), net_out.shape[1])) embeddings[ba:bb,:] = net_out[0:_batch_size,:] ba = bb embeddings = sklearn.preprocessing.normalize(embeddings) embedding = np.mean(embeddings, axis=0, keepdims=True) embedding = sklearn.preprocessing.normalize(embedding) sims = np.dot(embeddings, embedding).flatten() assert len(sims)==len(_list) for i in range(len(_list)): _idx = _list[i] self.idx2cos[_idx] = sims[i] def reset(self): """Resets the iterator to the beginning of the data.""" print('call reset()') if self.c2c_auto: self.reset_c2c() self.cur = 0 if self.images_per_identity>0: if self.triplet_mode: self.triplet_reset() elif not self.hard_mining: self.seq = [] idlist = [] for _id,v in self.id2range.iteritems(): idlist.append((_id,range(*v))) for r in range(self.repeat): if r%10==0: print('repeat', r) if self.shuffle: random.shuffle(idlist) for item in idlist: _id = item[0] _list = item[1] #random.shuffle(_list) if len(_list)<self.images_per_identity: random.shuffle(_list) else: _list = np.random.choice(_list, self.images_per_identity, replace=False) for i in range(self.images_per_identity): _idx = _list[i%len(_list)] self.seq.append(_idx) else: self.hard_mining_reset() print('seq len', len(self.seq)) else: if self.shuffle: random.shuffle(list(self.seq)) if self.seq is None and self.imgrec is not None: self.imgrec.reset() def num_samples(self): return len(self.seq) def next_sample(self): """Helper function for reading in next sample.""" #set total batch size, for example, 1800, and maximum size for each people, for example 45 if self.seq is not None: while True: if self.cur >= len(self.seq): raise StopIteration idx = self.seq[self.cur] self.cur += 1 if self.imgrec is not None: s = self.imgrec.read_idx(idx) header, img = recordio.unpack(s) label = header.label if self.output_c2c: count = self.idx2flag[idx] if self.output_c2c==1: v = np.random.uniform(0.4, 0.5) elif self.output_c2c==2: v = np.random.uniform(0.4, 0.5) if count>=self.output_c2c: v = np.random.uniform(0.3, 0.4) elif self.output_c2c==3: v = (9.5 - math.log(2.0+count))/10.0 v = min(max(v, 0.3), 0.5) elif self.output_c2c==4: mu = 0.0 sigma = 0.1 mrange = [0.4,0.5] v = numpy.random.normal(mu, sigma) v = math.abs(v)*-1.0+mrange[1] v = max(v, mrange[0]) elif self.output_c2c==5: v = np.random.uniform(0.41, 0.51) if count>=175: v = np.random.uniform(0.37, 0.47) elif self.output_c2c==6: v = np.random.uniform(0.41, 0.51) if count>=175: v = np.random.uniform(0.38, 0.48) else: assert False label = [label, v] else: if not isinstance(label, numbers.Number): label = label[0] return label, img, None, None else: label, fname, bbox, landmark = self.imglist[idx] return label, self.read_image(fname), bbox, landmark else: s = self.imgrec.read() if s is None: raise StopIteration header, img = recordio.unpack(s) return header.label, img, None, None def brightness_aug(self, src, x): alpha = 1.0 + random.uniform(-x, x) src *= alpha return src def contrast_aug(self, src, x): alpha = 1.0 + random.uniform(-x, x) coef = np.array([[[0.299, 0.587, 0.114]]]) gray = src * coef gray = (3.0 * (1.0 - alpha) / gray.size) * np.sum(gray) src *= alpha src += gray return src def saturation_aug(self, src, x): alpha = 1.0 + random.uniform(-x, x) coef = np.array([[[0.299, 0.587, 0.114]]]) gray = src * coef gray = np.sum(gray, axis=2, keepdims=True) gray *= (1.0 - alpha) src *= alpha src += gray return src def color_aug(self, img, x): augs = [self.brightness_aug, self.contrast_aug, self.saturation_aug] random.shuffle(augs) for aug in augs: #print(img.shape) img = aug(img, x) #print(img.shape) return img def mirror_aug(self, img): _rd = random.randint(0,1) if _rd==1: for c in range(img.shape[2]): img[:,:,c] = np.fliplr(img[:,:,c]) return img def next(self): if not self.is_init: self.reset() self.is_init = True """Returns the next batch of data.""" #print('in next', self.cur, self.labelcur) self.nbatch+=1 batch_size = self.batch_size c, h, w = self.data_shape batch_data = nd.empty((batch_size, c, h, w)) if self.provide_label is not None: batch_label = nd.empty(self.provide_label[0][1]) i = 0 try: while i < batch_size: label, s, bbox, landmark = self.next_sample() _data = self.imdecode(s) if self.rand_mirror: _rd = random.randint(0,1) if _rd==1: _data = mx.ndarray.flip(data=_data, axis=1) if self.nd_mean is not None: _data = _data.astype('float32') _data -= self.nd_mean _data *= 0.0078125 if self.cutoff>0: centerh = random.randint(0, _data.shape[0]-1) centerw = random.randint(0, _data.shape[1]-1) half = self.cutoff//2 starth = max(0, centerh-half) endh = min(_data.shape[0], centerh+half) startw = max(0, centerw-half) endw = min(_data.shape[1], centerw+half) _data = _data.astype('float32') #print(starth, endh, startw, endw, _data.shape) _data[starth:endh, startw:endw, :] = 127.5 #_npdata = _data.asnumpy() #if landmark is not None: # _npdata = face_preprocess.preprocess(_npdata, bbox = bbox, landmark=landmark, image_size=self.image_size) #if self.rand_mirror: # _npdata = self.mirror_aug(_npdata) #if self.mean is not None: # _npdata = _npdata.astype(np.float32) # _npdata -= self.mean # _npdata *= 0.0078125 #nimg = np.zeros(_npdata.shape, dtype=np.float32) #nimg[self.patch[1]:self.patch[3],self.patch[0]:self.patch[2],:] = _npdata[self.patch[1]:self.patch[3], self.patch[0]:self.patch[2], :] #_data = mx.nd.array(nimg) data = [_data] try: self.check_valid_image(data) except RuntimeError as e: logging.debug('Invalid image, skipping: %s', str(e)) continue #print('aa',data[0].shape) data = self.augmentation_transform(data) #print('bb',data[0].shape) for datum in data: assert i < batch_size, 'Batch size must be multiples of augmenter output length' #print(datum.shape) batch_data[i][:] = self.postprocess_data(datum) if self.provide_label is not None: if not self.coco_mode: if len(batch_label.shape)==1: batch_label[i][:] = label else: for ll in range(batch_label.shape[1]): v = label[ll] if ll>0: #c2c = v #_param = [0.5, 0.4, 0.85, 0.75] #_a = (_param[1]-_param[0])/(_param[3]-_param[2]) #m = _param[1]+_a*(c2c-_param[3]) #m = min(_param[0], max(_param[1],m)) #v = math.cos(m) #v = v*v m = v v = math.cos(m) v = v*v #print('m', i,m,v) batch_label[i][ll] = v else: batch_label[i][:] = (i%self.per_batch_size)//self.images_per_identity i += 1 except StopIteration: if i<batch_size: raise StopIteration #print('next end', batch_size, i) _label = None if self.provide_label is not None: _label = [batch_label] if self.data_extra is not None: return io.DataBatch([batch_data, self.data_extra], _label, batch_size - i) else: return io.DataBatch([batch_data], _label, batch_size - i) def check_data_shape(self, data_shape): """Checks if the input data shape is valid""" if not len(data_shape) == 3: raise ValueError('data_shape should have length 3, with dimensions CxHxW') if not data_shape[0] == 3: raise ValueError('This iterator expects inputs to have 3 channels.') def check_valid_image(self, data): """Checks if the input data is valid""" if len(data[0].shape) == 0: raise RuntimeError('Data shape is wrong') def imdecode(self, s): """Decodes a string or byte string to an NDArray. See mx.img.imdecode for more details.""" img = mx.image.imdecode(s) #mx.ndarray return img def read_image(self, fname): """Reads an input image `fname` and returns the decoded raw bytes. Example usage: ---------- >>> dataIter.read_image('Face.jpg') # returns decoded raw bytes. """ with open(os.path.join(self.path_root, fname), 'rb') as fin: img = fin.read() return img def augmentation_transform(self, data): """Transforms input data with specified augmentation.""" for aug in self.auglist: data = [ret for src in data for ret in aug(src)] return data def postprocess_data(self, datum): """Final postprocessing step before image is loaded into the batch.""" return nd.transpose(datum, axes=(2, 0, 1)) class FaceImageIterList(io.DataIter): def __init__(self, iter_list): assert len(iter_list)>0 self.provide_data = iter_list[0].provide_data self.provide_label = iter_list[0].provide_label self.iter_list = iter_list self.cur_iter = None def reset(self): self.cur_iter.reset() def next(self): self.cur_iter = random.choice(self.iter_list) while True: try: ret = self.cur_iter.next() except StopIteration: self.cur_iter.reset() continue return ret
test_channel.py
#!/usr/bin/env python # # Server that will accept connections from a Vim channel. # Used by test_channel.vim. # # This requires Python 2.6 or later. from __future__ import print_function import json import socket import sys import time import threading try: # Python 3 import socketserver except ImportError: # Python 2 import SocketServer as socketserver class ThreadedTCPRequestHandler(socketserver.BaseRequestHandler): def setup(self): self.request.setsockopt(socket.IPPROTO_TCP, socket.TCP_NODELAY, 1) def handle(self): print("=== socket opened ===") while True: try: received = self.request.recv(4096).decode('utf-8') except socket.error: print("=== socket error ===") break except IOError: print("=== socket closed ===") break if received == '': print("=== socket closed ===") break print("received: {0}".format(received)) # We may receive two messages at once. Take the part up to the # newline, which should be after the matching "]". todo = received while todo != '': splitidx = todo.find('\n') if splitidx < 0: used = todo todo = '' else: used = todo[:splitidx] todo = todo[splitidx + 1:] if used != received: print("using: {0}".format(used)) try: decoded = json.loads(used) except ValueError: print("json decoding failed") decoded = [-1, ''] # Send a response if the sequence number is positive. if decoded[0] >= 0: if decoded[1] == 'hello!': # simply send back a string response = "got it" elif decoded[1] == 'malformed1': cmd = '["ex",":"]wrong!["ex","smi"]' print("sending: {0}".format(cmd)) self.request.sendall(cmd.encode('utf-8')) response = "ok" # Need to wait for Vim to give up, otherwise it # sometimes fails on OS X. time.sleep(0.2) elif decoded[1] == 'malformed2': cmd = '"unterminated string' print("sending: {0}".format(cmd)) self.request.sendall(cmd.encode('utf-8')) response = "ok" # Need to wait for Vim to give up, otherwise the double # quote in the "ok" response terminates the string. time.sleep(0.2) elif decoded[1] == 'malformed3': cmd = '["ex","missing ]"' print("sending: {0}".format(cmd)) self.request.sendall(cmd.encode('utf-8')) response = "ok" # Need to wait for Vim to give up, otherwise the ] # in the "ok" response terminates the list. time.sleep(0.2) elif decoded[1] == 'split': cmd = '["ex","let ' print("sending: {0}".format(cmd)) self.request.sendall(cmd.encode('utf-8')) time.sleep(0.01) cmd = 'g:split = 123"]' print("sending: {0}".format(cmd)) self.request.sendall(cmd.encode('utf-8')) response = "ok" elif decoded[1].startswith("echo "): # send back the argument response = decoded[1][5:] elif decoded[1] == 'make change': # Send two ex commands at the same time, before # replying to the request. cmd = '["ex","call append(\\"$\\",\\"added1\\")"]' cmd += '["ex","call append(\\"$\\",\\"added2\\")"]' print("sending: {0}".format(cmd)) self.request.sendall(cmd.encode('utf-8')) response = "ok" elif decoded[1] == 'bad command': cmd = '["ex","foo bar"]' print("sending: {0}".format(cmd)) self.request.sendall(cmd.encode('utf-8')) response = "ok" elif decoded[1] == 'do normal': # Send a normal command. cmd = '["normal","G$s more\u001b"]' print("sending: {0}".format(cmd)) self.request.sendall(cmd.encode('utf-8')) response = "ok" elif decoded[1] == 'eval-works': # Send an eval request. We ignore the response. cmd = '["expr","\\"foo\\" . 123", -1]' print("sending: {0}".format(cmd)) self.request.sendall(cmd.encode('utf-8')) response = "ok" elif decoded[1] == 'eval-special': # Send an eval request. We ignore the response. cmd = '["expr","\\"foo\x7f\x10\x01bar\\"", -2]' print("sending: {0}".format(cmd)) self.request.sendall(cmd.encode('utf-8')) response = "ok" elif decoded[1] == 'eval-getline': # Send an eval request. We ignore the response. cmd = '["expr","getline(3)", -3]' print("sending: {0}".format(cmd)) self.request.sendall(cmd.encode('utf-8')) response = "ok" elif decoded[1] == 'eval-fails': # Send an eval request that will fail. cmd = '["expr","xxx", -4]' print("sending: {0}".format(cmd)) self.request.sendall(cmd.encode('utf-8')) response = "ok" elif decoded[1] == 'eval-error': # Send an eval request that works but the result can't # be encoded. cmd = '["expr","function(\\"tr\\")", -5]' print("sending: {0}".format(cmd)) self.request.sendall(cmd.encode('utf-8')) response = "ok" elif decoded[1] == 'eval-bad': # Send an eval request missing the third argument. cmd = '["expr","xxx"]' print("sending: {0}".format(cmd)) self.request.sendall(cmd.encode('utf-8')) response = "ok" elif decoded[1] == 'an expr': # Send an expr request. cmd = '["expr","setline(\\"$\\", [\\"one\\",\\"two\\",\\"three\\"])"]' print("sending: {0}".format(cmd)) self.request.sendall(cmd.encode('utf-8')) response = "ok" elif decoded[1] == 'call-func': cmd = '["call","MyFunction",[1,2,3], 0]' print("sending: {0}".format(cmd)) self.request.sendall(cmd.encode('utf-8')) response = "ok" elif decoded[1] == 'redraw': cmd = '["redraw",""]' print("sending: {0}".format(cmd)) self.request.sendall(cmd.encode('utf-8')) response = "ok" elif decoded[1] == 'redraw!': cmd = '["redraw","force"]' print("sending: {0}".format(cmd)) self.request.sendall(cmd.encode('utf-8')) response = "ok" elif decoded[1] == 'empty-request': cmd = '[]' print("sending: {0}".format(cmd)) self.request.sendall(cmd.encode('utf-8')) response = "ok" elif decoded[1] == 'eval-result': # Send back the last received eval result. response = last_eval elif decoded[1] == 'call me': cmd = '[0,"we called you"]' print("sending: {0}".format(cmd)) self.request.sendall(cmd.encode('utf-8')) response = "ok" elif decoded[1] == 'call me again': cmd = '[0,"we did call you"]' print("sending: {0}".format(cmd)) self.request.sendall(cmd.encode('utf-8')) response = "" elif decoded[1] == 'send zero': cmd = '[0,"zero index"]' print("sending: {0}".format(cmd)) self.request.sendall(cmd.encode('utf-8')) response = "sent zero" elif decoded[1] == 'close me': print("closing") self.request.close() response = "" elif decoded[1] == 'wait a bit': time.sleep(0.2) response = "waited" elif decoded[1] == '!quit!': # we're done self.server.shutdown() return elif decoded[1] == '!crash!': # Crash! 42 / 0 else: response = "what?" if response == "": print("no response") else: encoded = json.dumps([decoded[0], response]) print("sending: {0}".format(encoded)) self.request.sendall(encoded.encode('utf-8')) # Negative numbers are used for "eval" responses. elif decoded[0] < 0: last_eval = decoded class ThreadedTCPServer(socketserver.ThreadingMixIn, socketserver.TCPServer): pass def writePortInFile(port): # Write the port number in Xportnr, so that the test knows it. f = open("Xportnr", "w") f.write("{0}".format(port)) f.close() def main(host, port, server_class=ThreadedTCPServer): # Wait half a second before opening the port to test waittime in ch_open(). # We do want to get the port number, get that first. We cannot open the # socket, guess a port is free. if len(sys.argv) >= 2 and sys.argv[1] == 'delay': port = 13684 writePortInFile(port) print("Wait for it...") time.sleep(0.5) server = server_class((host, port), ThreadedTCPRequestHandler) ip, port = server.server_address[0:2] # Start a thread with the server. That thread will then start a new thread # for each connection. server_thread = threading.Thread(target=server.serve_forever) server_thread.start() writePortInFile(port) print("Listening on port {0}".format(port)) # Main thread terminates, but the server continues running # until server.shutdown() is called. try: while server_thread.is_alive(): server_thread.join(1) except (KeyboardInterrupt, SystemExit): server.shutdown() if __name__ == "__main__": main("localhost", 0)
multiProcess.py
from scripts import camShow as cvShow, utilities as init, tesseract as runner from multiprocessing import process cvShow.defaultCam = init.getCamera() lang = init.pickLanguage() tesseractProcess = process.Process(target=runner.main(lang, cvShow.defaultCam)) tesseractProcess.daemon = True cameraProcess = process.Process(target=cvShow.show()) cameraProcess.daemon = True if __name__ == '__main__': cameraProcess.start() tesseractProcess.start()
main.py
import discord import os import random import requests import sys import threading import time import yaml from flask import Flask from threading import Thread app = Flask('') @app.route('/') def main(): return "Your Bot Is Ready" sys.path.append("./objection_engine") from deletion import Deletion from discord.ext import commands, tasks from message import Message from objection_engine.beans.comment import Comment from objection_engine.renderer import render_comment_list from render import Render, State from typing import List # Global Variables: renderQueue = [] deletionQueue = [] intents = discord.Intents.default() intents.members = True def loadConfig(): try: with open("config.yaml") as file: config = yaml.load(file, Loader=yaml.FullLoader) global token, prefix, deletionDelay token = config["token"].strip() if not token: raise Exception("The 'token' field is missing in the config file (config.yaml)!") prefix = config["prefix"].strip() if not prefix: raise Exception("The 'prefix' field is missing in the config file (config.yaml)!") deletionDelay = config["deletionDelay"].strip() if not deletionDelay: raise Exception("The 'deletionDelay' field is missing in the config file (config.yaml)!") return True except KeyError as keyErrorException: print(f"The mapping key {keyErrorException} is missing in the config file (config.yaml)!") except Exception as exception: print(exception) return False if not loadConfig(): exit() courtBot = commands.AutoShardedBot(command_prefix=prefix, Intents=intents) # Default 'help' command is removed, we will make our own courtBot.remove_command("help") currentActivityText = f"{prefix}help" async def changeActivity(newActivityText): try: global currentActivityText if currentActivityText == newActivityText: return else: newActivity = discord.Game(newActivityText) await courtBot.change_presence(activity=newActivity) currentActivityText = newActivityText print(f"Activity was changed to {currentActivityText}") except Exception as exception: print(f"Error: {exception}") def addToDeletionQueue(message: discord.Message): # Only if deletion delay is grater than 0, add it to the deletionQueue. if int(deletionDelay) > 0: newDeletion = Deletion(message, int(deletionDelay)) deletionQueue.append(newDeletion) @courtBot.event async def on_message(message): if message.author is courtBot.user or message.author.bot: return if message.channel.type is discord.ChannelType.private: embedResponse = discord.Embed(description="I won't process any messages via PM.\nIf you have any problems, please go to [the support server](https://discord.gg/pcS4MPbRDU).", color=0xff0000) await message.channel.send(embed=embedResponse) return await courtBot.process_commands(message) @courtBot.command() async def help(context): dummyAmount = random.randint(2, 20) helpEmbed = discord.Embed(description="Discord bot that turns message chains into ace attorney scenes (~~also handy for server arguments~~).", color=0x3366CC, footer="Do not include these symbols (\"<\" and \">\") when using this command") helpEmbed.set_author(name=courtBot.user.name, icon_url=courtBot.user.avatar_url) helpEmbed.add_field(name="How to use?", value=f" {prefix}render <number_of_messages>", inline=False) helpEmbed.add_field(name="Example", value=f"Turn the last {dummyAmount} messages into an ace attorney scene: {prefix}render {dummyAmount} ", inline=False) helpEmbed.add_field(name="Starting message", value="By default, the bot will **load the specified number of messages from the last message** (before using the command) going backwards, **if you want the message count to start from another message, reply to it when using the command**.", inline=False) helpMessage = await context.send(embed=helpEmbed) addToDeletionQueue(helpMessage) # This command is only for the bot owner, it will ignore everybody else @courtBot.command() @commands.is_owner() async def queue(context): filename = "queue.txt" with open(filename, 'w', encoding="utf-8") as queue: global renderQueue renderQueueSize = len(renderQueue) queue.write(f"There are {renderQueueSize} item(s) in the queue!\n") for positionInQueue, render in enumerate(iterable=renderQueue): queue.write(f"\n#{positionInQueue:04}\n") try: queue.write(f"Requested by: {render.getContext().author.name}#{render.getContext().author.discriminator}\n") except: pass try: queue.write(f"Number of messages: {len(render.getMessages())}\n") except: pass try: queue.write(f"Guild: {render.getFeedbackMessage().channel.guild.name}\n") except: pass try: queue.write(f"Channel: #{render.getFeedbackMessage().channel.name}\n") except: pass try: queue.write(f"State: {render.getStateString()}\n") except: pass await context.send(file=discord.File(filename)) clean([], filename) @courtBot.command() async def render(context, numberOfMessages: int): global renderQueue feedbackMessage = await context.send(content=" Fetching messages... ") try: if not (numberOfMessages in range(1, 21)): raise Exception("Currently, to ease queue times, the bot can only render a maximum of 20 messages. We're looking to increase that number soon enough.") # baseMessage is the message from which the specified number of messages will be fetch, not including itself baseMessage = context.message.reference.resolved if context.message.reference else context.message courtMessages = [] discordMessages = [] # If the render command was executed within a reply (baseMessage and context.Message aren't the same), we want # to append the message the user replied to (baseMessage) to the 'discordMessages' list and substract 1 from # 'numberOfMessages' that way we are taking the added baseMessage into consideration and avoid getting 1 extra message) if not baseMessage.id == context.message.id: numberOfMessages = numberOfMessages - 1 discordMessages.append(baseMessage) # This will append all messages to the already existing discordMessages, if the message was a reply it should already # include one message (the one it was replying to), if not: it will be empty at this point. discordMessages += await context.channel.history(limit=numberOfMessages, oldest_first=False, before=baseMessage).flatten() for discordMessage in discordMessages: message = Message(discordMessage) if message.text.strip(): courtMessages.insert(0, message.to_Comment()) if len(courtMessages) < 1: raise Exception("There should be at least one person in the conversation.") newRender = Render(State.QUEUED, context, feedbackMessage, courtMessages) renderQueue.append(newRender) except Exception as exception: exceptionEmbed = discord.Embed(description=exception, color=0xff0000) await feedbackMessage.edit(content="", embed=exceptionEmbed) addToDeletionQueue(feedbackMessage) @tasks.loop(seconds=1) async def deletionQueueLoop(): global deletionQueue deletionQueueSize = len(deletionQueue) # Delete message and remove from queue if remaining time is less than (or equal to) 0 if deletionQueueSize > 0: for index in reversed(range(deletionQueueSize)): if await deletionQueue[index].update(): deletionQueue.pop(index) @tasks.loop(seconds=5) async def renderQueueLoop(): global renderQueue renderQueueSize = len(renderQueue) await changeActivity(f"{prefix}help | queue: {renderQueueSize}") for positionInQueue, render in enumerate(iterable=renderQueue, start=1): try: if render.getState() == State.QUEUED: newFeedback = f""" Fetching messages... :white_check_mark:! Position in the queue: #{(positionInQueue)} """ await render.updateFeedback(newFeedback) if render.getState() == State.INPROGRESS: newFeedback = f""" Fetching messages... :white_check_mark:! Your video is being generated... """ await render.updateFeedback(newFeedback) if render.getState() == State.FAILED: newFeedback = f""" Fetching messages... :white_check_mark:! Your video is being generated... :x:! """ await render.updateFeedback(newFeedback) render.setState(State.DONE) if render.getState() == State.RENDERED: newFeedback = f""" Fetching messages... :white_check_mark:! Your video is being generated... :white_check_mark:! Uploading file to Discord... """ await render.updateFeedback(newFeedback) render.setState(State.UPLOADING) # If the file size is lower than the maximun file size allowed in this guild, upload it to Discord fileSize = os.path.getsize(render.getOutputFilename()) if fileSize < render.getContext().channel.guild.filesize_limit: await render.getContext().send(content=render.getContext().author.mention, file=discord.File(render.getOutputFilename())) render.setState(State.DONE) newFeedback = f""" Fetching messages... :white_check_mark:! Your video is being generated... :white_check_mark:! Uploading file to Discord... :white_check_mark:! """ await render.updateFeedback(newFeedback) else: try: newFeedback = f""" Fetching messages... :white_check_mark:! Your video is being generated... :white_check_mark:! Video file too big for you server! {round(fileSize/1000000, 2)} MB Trying to upload file to an external server... """ await render.updateFeedback(newFeedback) with open(render.getOutputFilename(), 'rb') as videoFile: files = {'files[]': (render.getOutputFilename(), videoFile)} response = requests.post('https://uguu.se/upload.php?output=text', files=files).content.decode("utf-8").strip() newFeedback = f""" Fetching messages... :white_check_mark:! Your video is being generated... :white_check_mark:! Video file too big for you server! {round(fileSize/1000000, 2)} MB Trying to upload file to an external server... :white_check_mark:! """ await render.updateFeedback(newFeedback) await render.getContext().send(content=f"{render.getContext().author.mention}\n{response}\n_This video will be deleted in 48 hours_") render.setState(State.DONE) except Exception as exception: newFeedback = f""" Fetching messages... :white_check_mark:! Your video is being generated... :white_check_mark:! Video file too big for you server! {round(fileSize/1000000, 2)} MB Trying to upload file to an external server... :x:! """ await render.updateFeedback(newFeedback) exceptionEmbed = discord.Embed(description=exception, color=0xff0000) exceptionMessage = await render.getContext().send(embed=exceptionEmbed) addToDeletionQueue(exceptionMessage) render.setState(State.DONE) except Exception as exception: print(f"Error: {exception}") try: render.setState(State.DONE) except: pass finally: if render.getState() == State.DONE: clean(render.getMessages(), render.getOutputFilename()) addToDeletionQueue(render.getFeedbackMessage()) # Remove from queue if state is DONE if renderQueueSize > 0: for index in reversed(range(renderQueueSize)): if renderQueue[index].getState() == State.DONE: renderQueue.pop(index) @courtBot.event async def on_ready(): global currentActivityText print("Bot is ready!") print(f"Logged in as {courtBot.user.name}#{courtBot.user.discriminator} ({courtBot.user.id})") currentActivityText = f"{prefix}help" renderQueueLoop.start() deletionQueueLoop.start() def clean(thread: List[Comment], filename): try: os.remove(filename) except Exception as exception: print(f"Error: {exception}") try: for comment in thread: if (comment.evidence_path is not None): os.remove(comment.evidente_path) except Exception as exception: print(f"Error: {exception}") def renderThread(): global renderQueue while True: time.sleep(2) try: for render in renderQueue: if render.getState() == State.QUEUED: render.setState(State.INPROGRESS) try: render_comment_list(render.getMessages(), render.getOutputFilename()) render.setState(State.RENDERED) except Exception as exception: print(f"Error: {exception}") render.setState(State.FAILED) finally: break except Exception as exception: print(f"Error: {exception}") backgroundThread = threading.Thread(target=renderThread, name="RenderThread") backgroundThread.start() courtBot.run(token) backgroundThread.join() def run(): app.run(host="0.0.0.0", port=8000) def keep_alive(): server = Thread(target=run) server.start() run() keep_alive()
receiverPubSubMultiprocessing_T1.py
"""pub_sub_receive.py -- receive OpenCV stream using PUB SUB.""" from parameters import ParticipantData from parameters import Parameters from parameters import OutsourceContract from parameters import Helperfunctions import json from merkletools import MerkleTools import sys import videoStramSubscriber as vss from nacl.signing import SigningKey from nacl.signing import VerifyKey import time import imagezmq import Responder as re from utilities.stats import MovingAverage import numpy as np import cv2 from PIL import Image # from absl.flags import FLAGS # from absl import app, flags, logging import os import multiprocessing as mp import cv2 # comment out below line to enable tensorflow outputs # os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' def inference(preprocess_queue, inference_queue): import tensorflow as tf import core.utils as utils from tensorflow.python.saved_model import tag_constants from tensorflow.compat.v1 import InteractiveSession from tensorflow.compat.v1 import ConfigProto from core.functions import count_objects, crop_objects from core.config import cfg from core.utils import read_class_names import os import random from core.yolov4 import filter_boxes tf.keras.backend.clear_session() input_size = Parameters.input_size model = OutsourceContract.model framework = Parameters.framework tiny = OutsourceContract.tiny weights = Parameters.weights iou = Parameters.iou score = Parameters.score physical_devices = tf.config.experimental.list_physical_devices('GPU') try: if len(physical_devices) > 0: tf.config.experimental.set_memory_growth(physical_devices[0], True) except: pass # configure gpu usage config = ConfigProto() config.gpu_options.allow_growth = True session = InteractiveSession(config=config) # load model if framework == 'tflite': interpreter = tf.lite.Interpreter(model_path=weights) else: saved_model_loaded = tf.saved_model.load( weights, tags=[tag_constants.SERVING]) # read in all class names from config class_names = utils.read_class_names(cfg.YOLO.CLASSES) count = Parameters.count info = Parameters.info crop = Parameters.crop while True: if not preprocess_queue.empty(): queueData = preprocess_queue.get() while not preprocess_queue.empty(): queueData = preprocess_queue.get() #preprocess_queue.task_done() images_data = queueData[0] name = queueData[1] original_image = queueData[2] #preprocess_queue.task_done() if framework == 'tflite': interpreter.allocate_tensors() input_details = interpreter.get_input_details() output_details = interpreter.get_output_details() interpreter.set_tensor(input_details[0]['index'], images_data) interpreter.invoke() pred = [interpreter.get_tensor( output_details[i]['index']) for i in range(len(output_details))] if model == 'yolov3' and tiny == True: boxes, pred_conf = filter_boxes( pred[1], pred[0], score_threshold=0.25, input_shape=tf.constant([input_size, input_size])) else: boxes, pred_conf = filter_boxes( pred[0], pred[1], score_threshold=0.25, input_shape=tf.constant([input_size, input_size])) else: infer = saved_model_loaded.signatures['serving_default'] batch_data = tf.constant(images_data) pred_bbox = infer(batch_data) for key, value in pred_bbox.items(): boxes = value[:, :, 0:4] pred_conf = value[:, :, 4:] boxes, scores, classes, valid_detections=tf.image.combined_non_max_suppression( boxes=tf.reshape(boxes, (tf.shape(boxes)[0], -1, 1, 4)), scores=tf.reshape( pred_conf, (tf.shape(pred_conf)[0], -1, tf.shape(pred_conf)[-1])), max_output_size_per_class=50, max_total_size=50, iou_threshold=iou, score_threshold=score ) # 1.2ms # format bounding boxes from normalized ymin, xmin, ymax, xmax ---> xmin, ymin, xmax, ymax original_h, original_w, _=original_image.shape bboxes=utils.format_boxes( boxes.numpy()[0], original_h, original_w) # 1ms #-> no tf needed # hold all detection data in one variable pred_bbox=[bboxes, scores.numpy()[0], classes.numpy()[0], valid_detections.numpy()[0]] # by default allow all classes in .names file allowed_classes=list(class_names.values()) # custom allowed classes (uncomment line below to allow detections for only people) # allowed_classes = ['person'] # if crop flag is enabled, crop each detection and save it as new image if crop: crop_path=os.path.join( os.getcwd(), 'detections', 'crop', image_name) try: os.mkdir(crop_path) except FileExistsError: pass crop_objects(cv2.cvtColor(original_image, cv2.COLOR_BGR2RGB), pred_bbox, crop_path, allowed_classes) if count: # count objects found counted_classes=count_objects( pred_bbox, by_class=False, allowed_classes=allowed_classes) # loop through dict and print for key, value in counted_classes.items(): print("Number of {}s: {}".format(key, value)) boxtext, image=utils.draw_bbox( original_image, pred_bbox, info, counted_classes, allowed_classes=allowed_classes) else: boxtext, image=utils.draw_bbox( original_image, pred_bbox, info, allowed_classes=allowed_classes) # 0.5ms image=Image.fromarray(image.astype(np.uint8)) # 0.3ms inference_queue.put((boxtext, image, name)) def preprocessing(preprocess_queue): vk = VerifyKey(OutsourceContract.public_key_outsourcer) input_size = Parameters.input_size merkle_tree_interval = OutsourceContract.merkle_tree_interval hostname = Parameters.ip_outsourcer # Use to receive from other computer port = Parameters.port_outsourcer minimum_receive_rate_from_contractor = Parameters.minimum_receive_rate_from_contractor contractHash = Helperfunctions.hashContract().encode('latin1') # configure video stream receiver receiver = vss.VideoStreamSubscriber(hostname, port) print('RPi Stream -> Receiver Initialized') old_imagecount = -1 while True: name, compressed = receiver.receive() if name == 'abort': sys.exit('Contract aborted by outsourcer according to custom') if (merkle_tree_interval == 0 and name[-1] != old_imagecount) or (merkle_tree_interval > 0 and name[-5] != old_imagecount): decompressedImage = cv2.imdecode( np.frombuffer(compressed, dtype='uint8'), -1) if merkle_tree_interval == 0: old_imagecount = name[-1] try: vk.verify(bytes(compressed) + contractHash + bytes(name[-2]) + bytes(name[-1]), bytes(name[:-2])) except: sys.exit( 'Contract aborted: Outsourcer signature does not match input. Possible Consquences for Outsourcer: Blacklist, Bad Review') # print(vrification_result) if name[-1] < (image_count-2)*minimum_receive_rate_from_contractor: sys.exit( 'Contract aborted: Outsourcer did not acknowledge enough ouputs. Possible Consquences for Outsourcer: Blacklist, Bad Review') else: old_imagecount = name[-5] # verify if signature matches image, contract hash, and image count, and number of intervals, and random number try: vk.verify(bytes(compressed) + contractHash + bytes(name[-5]) + bytes(name[-4]) + bytes(name[-3]) + bytes(name[-2]) + bytes(name[-1]), bytes(name[:-5])) except: sys.exit( 'Contract aborted: Outsourcer signature does not match input. Possible Consquences for Outsourcer: Blacklist, Bad Review') if name[-4] < (image_count-2)*minimum_receive_rate_from_contractor: sys.exit( 'Contract aborted: Outsourcer did not acknowledge enough ouputs. Possible Consquences for Outsourcer: Blacklist, Bad Review') outsorucer_signature = name[:-5] outsourcer_image_count = name[-5] outsourcer_number_of_outputs_received = name[-4] outsourcer_random_number = name[-3] outsourcer_interval_count = name[-2] outsourcer_time_to_challenge = bool(name[-1]) # region original_image = cv2.cvtColor(decompressedImage, cv2.COLOR_BGR2RGB) image_data = cv2.resize( original_image, (input_size, input_size)) # 0.4ms image_data = image_data / 255. # 2.53ms images_data = [] for i in range(1): images_data.append(image_data) images_data = np.asarray(images_data).astype(np.float32) # 3.15ms # endregion preprocess_queue.put((images_data, name, original_image)) # from object_detection.object_detection import Model # from utilities.render import Render # from ecdsa import VerifyingKey # from ecdsa import SigningKey # Helper class implementing an IO deamon thread def dummy(): while True: #print('jo') a = 0 def main(): # get paramters and contract details # print(contractHash) #preprocess_queue = queue.LifoQueue() #inference_queue = queue.LifoQueue() preprocess_queue = mp.Queue() inference_queue = mp.Queue() # postprocess_queue = Queue() p1 = mp.Process(target=inference, args= (preprocess_queue, inference_queue)) p2 = mp.Process(target=preprocessing, args=(preprocess_queue,)) #p1 = Process(target=dummy) #p2 = Process(target=dummy) # p3 = Process(target=Show_Image_mp, args=(Processed_frames, show, Final_frames)) p1.start() p2.start() # p3.start() sk = SigningKey(Parameters.private_key_contractor) contractHash = Helperfunctions.hashContract().encode('latin1') dont_show = Parameters.dont_show merkle_tree_interval = OutsourceContract.merkle_tree_interval hostname = Parameters.ip_outsourcer # Use to receive from other computer port = Parameters.port_outsourcer sendingPort = Parameters.sendingPort #import tensorflow as tf # time.sleep(1.0) # configure responder responder=re.Responder(hostname, sendingPort) # statistics info moving_average_points=50 # statistics moving_average_fps=MovingAverage(moving_average_points) moving_average_receive_time=MovingAverage(moving_average_points) moving_average_decompress_time=MovingAverage(moving_average_points) # moving_average_model_load_image_time = MovingAverage(moving_average_points) moving_average_img_preprocessing_time=MovingAverage( moving_average_points) moving_average_model_inference_time=MovingAverage(moving_average_points) moving_average_img_postprocessing_time=MovingAverage( moving_average_points) moving_average_reply_time=MovingAverage(moving_average_points) moving_average_image_show_time=MovingAverage(moving_average_points) moving_average_verify_image_sig_time=MovingAverage(moving_average_points) moving_average_response_signing_time=MovingAverage(moving_average_points) image_count=0 a=0 b=0 if merkle_tree_interval > 0: mt=MerkleTools() mtOld=MerkleTools() interval_count=0 mtOld_leaf_indices={} mt_leaf_indices={} # rendundancy_counter = 0 # rendundancy_counter2 = 0 current_challenge=1 merkle_root='' # stringsend = '' last_challenge=0 image_showed_time=time.perf_counter() # init while True: # start_time = time.perf_counter() if not inference_queue.empty(): queueData=inference_queue.get() while not inference_queue.empty(): queueData=inference_queue.get() start_time=image_showed_time # # boxes, scores, classes, valid_detections, name, original_image #queueData=inference_queue.get() #inference_queue.task_done() # boxes=queueData[0] # scores=queueData[1] # classes=queueData[2] # valid_detections=queueData[3] # name = queueData[4] # original_image = queueData[5] boxtext = queueData[0] image = queueData[1] name = queueData[2] if merkle_tree_interval > 0: outsorucer_signature=name[:-5] outsourcer_image_count=name[-5] outsourcer_number_of_outputs_received=name[-4] outsourcer_random_number=name[-3] outsourcer_interval_count=name[-2] outsourcer_time_to_challenge=bool(name[-1]) received_time = time.perf_counter() image_preprocessing_time=time.perf_counter() decompressed_time = time.perf_counter() verify_time = time.perf_counter() # inference # region # endregion model_inferenced_time=time.perf_counter() # image postprocessing # region h=time.perf_counter() # endregion if merkle_tree_interval == 0: boxtext='Image' + str(name[-2]) + ':;' + boxtext else: boxtext='Image' + str(outsourcer_image_count) + ':;' + boxtext image_postprocessing_time=time.perf_counter() # sign message ->need to add image_count/interval_count (for merkle tree sig), contract hash to output and verificaton if merkle_tree_interval == 0: # sig = sk.sign_deterministic(boxtext.encode('latin1')) sig=sk.sign(boxtext.encode('latin1') + contractHash).signature # sig = list(sig) sig=sig.decode('latin1') # send reply responder.respond(boxtext + ';--' + sig) else: # print(image_count) # add leafs dynamiclly to merkle tree mt.add_leaf(boxtext, True) # remember indices for challenge mt_leaf_indices[outsourcer_image_count]=image_count % merkle_tree_interval # print(image_count % merkle_tree_interval) response=boxtext # time to send a new merkle root # e.g. if inervall = 128 then all respones from 0-127 are added to the merkle tree if image_count > 1 and (image_count+1) % merkle_tree_interval == 0: # print(image_count) a=time.perf_counter() # rendundancy_counter = 2 mt.make_tree() merkle_root=mt.get_merkle_root() sig=sk.sign(merkle_root.encode( 'latin1') + bytes(interval_count) + contractHash).signature # sign merkle root # resond with merkle root response += ';--' + str(merkle_root) + \ ';--' + sig.decode('latin1') interval_count += 1 mtOld=mt # save old merkle tree for challenge # mtOld_leaf_indices.clear() # clear old indices mtOld_leaf_indices.clear() mtOld_leaf_indices=mt_leaf_indices.copy() # save old indices for challenge # print(mtOld_leaf_indices) mt_leaf_indices.clear() # clear for new indices # mt_leaf_indices = {} mt=MerkleTools() # construct new merkle tree for next interval te=time.perf_counter()-a # print('1', te, image_count) else: # if this is true then the outsourcer has not received the merkle root yet -> send again if interval_count > outsourcer_image_count: sig=sk.sign(merkle_root.encode( 'latin1') + bytes(interval_count) + contractHash).signature # sign merkle root response += ';--' + str(merkle_root) + \ ';--' + sig.decode('latin1') # print('2', image_count) else: # in this case outsourcer has confirmed to have recieved the merkle root # in this case outsourcer has sent a challenge to meet with the old merkle tree, give outsourcer 3 frames time to confirm challenge received before sending again if outsourcer_time_to_challenge and image_count - last_challenge > 3: last_challenge=image_count if outsourcer_random_number in mtOld_leaf_indices: # if challenge can be found, send proof back outsourcer_random_number_index=mtOld_leaf_indices[outsourcer_random_number] else: # if challenge index cannot be found return leaf 0 outsourcer_random_number_index=0 # print('proof index not found') proofs=mtOld.get_proof( outsourcer_random_number_index) stringsend='' for proof in proofs: stringsend += ';--' # indicate start of proof stringsend += proof.__str__() # send proof stringsend += ';--' # send leaf stringsend += mtOld.get_leaf( outsourcer_random_number_index) stringsend += ';--' stringsend += mtOld.get_merkle_root() # send root stringarr=[] stringarr=stringsend.split(';--') leaf_node=stringarr[-2] root_node=stringarr[-1] proof_string=stringarr[0:-2] # sign proof and contract details sig=sk.sign(str(stringarr[1:]).encode( 'latin1') + bytes(interval_count-1) + contractHash).signature # print(str(stringarr).encode('latin1') + bytes(interval_count-1) + contractHash) # print(stringarr) # attach signature response += ';--' + sig.decode('latin1') response += stringsend # attach challenge response to response # print('3', te, image_count) responder.respond(response) response_signing_time=time.perf_counter() # print(response_signing_time- image_postprocessing_time) replied_time=time.perf_counter() # display image if not dont_show: # image.show() image=cv2.cvtColor(np.array(image), cv2.COLOR_BGR2RGB) cv2.imshow('raspberrypi', image) if cv2.waitKey(1) == ord('q'): responder.respond('abort12345:6') sys.exit( 'Contract aborted: Contractor ended contract according to custom') image_showed_time=time.perf_counter() # statistics moving_average_fps.add(1 / (image_showed_time - start_time)) moving_average_receive_time.add(received_time - start_time) moving_average_decompress_time.add( decompressed_time - received_time) moving_average_verify_image_sig_time.add( verify_time - decompressed_time) moving_average_img_preprocessing_time.add( image_preprocessing_time - verify_time) moving_average_model_inference_time.add( model_inferenced_time - image_preprocessing_time) moving_average_img_postprocessing_time.add( image_postprocessing_time - model_inferenced_time) moving_average_response_signing_time.add( response_signing_time - image_postprocessing_time) # adjust for merkle root moving_average_reply_time.add(replied_time - response_signing_time) moving_average_image_show_time.add( image_showed_time - replied_time) total_time=moving_average_receive_time.get_moving_average() \ + moving_average_decompress_time.get_moving_average() \ + moving_average_verify_image_sig_time.get_moving_average() \ + moving_average_img_preprocessing_time.get_moving_average() \ + moving_average_model_inference_time.get_moving_average() \ + moving_average_img_postprocessing_time.get_moving_average() \ + moving_average_response_signing_time.get_moving_average() \ + moving_average_reply_time.get_moving_average() \ + moving_average_image_show_time.get_moving_average() if(image_count == 800): a=time.perf_counter() if(image_count == 1200): a=time.perf_counter() - a print(a) # terminal prints if image_count % 20 == 0: print(" total: %4.1fms (%4.1ffps) " " receiving %4.1f (%4.1f%%) " " decoding %4.1f (%4.1f%%) " " verifying %4.1f (%4.1f%%) " " preprocessing %4.1f (%4.1f%%) " " model inference %4.1f (%4.1f%%) " " postprocessing %4.1f (%4.1f%%) " " signing %4.1f (%4.1f%%) " " replying %4.1f (%4.1f%%) " " display %4.1f (%4.1f%%) " % ( 1000/moving_average_fps.get_moving_average(), moving_average_fps.get_moving_average(), moving_average_receive_time.get_moving_average()*1000, moving_average_receive_time.get_moving_average() / total_time * 100, moving_average_decompress_time.get_moving_average()*1000, moving_average_decompress_time.get_moving_average() / total_time * 100, moving_average_verify_image_sig_time.get_moving_average()*1000, moving_average_verify_image_sig_time.get_moving_average() / total_time * 100, moving_average_img_preprocessing_time.get_moving_average()*1000, moving_average_img_preprocessing_time.get_moving_average() / total_time * 100, moving_average_model_inference_time.get_moving_average()*1000, moving_average_model_inference_time.get_moving_average() / total_time * 100, moving_average_img_postprocessing_time.get_moving_average()*1000, moving_average_img_postprocessing_time.get_moving_average() / total_time * 100, moving_average_response_signing_time.get_moving_average()*1000, moving_average_response_signing_time.get_moving_average() / total_time * 100, moving_average_reply_time.get_moving_average() * 1000, moving_average_reply_time.get_moving_average() / total_time * 100, moving_average_image_show_time.get_moving_average()*1000, moving_average_image_show_time.get_moving_average() / total_time * 100,), end='\r') # counter image_count += 1 # except (KeyboardInterrupt, SystemExit): # print('Exit due to keyboard interrupt') # except Exception as ex: # print('Python error with no Exception handler:') # print('Traceback error:', ex) # traceback.print_exc() # finally: # receiver.close() # sys.exit() if __name__ == '__main__': # try: # app.run(main) # except SystemExit: # pass #app.run(main) main()
api_image_test.py
import contextlib import json import shutil import socket import tarfile import tempfile import threading import pytest import six from six.moves import BaseHTTPServer from six.moves import socketserver import docker from .base import BaseAPIIntegrationTest, BUSYBOX class ListImagesTest(BaseAPIIntegrationTest): def test_images(self): res1 = self.client.images(all=True) self.assertIn('Id', res1[0]) res10 = res1[0] self.assertIn('Created', res10) self.assertIn('RepoTags', res10) distinct = [] for img in res1: if img['Id'] not in distinct: distinct.append(img['Id']) self.assertEqual(len(distinct), self.client.info()['Images']) def test_images_quiet(self): res1 = self.client.images(quiet=True) self.assertEqual(type(res1[0]), six.text_type) class PullImageTest(BaseAPIIntegrationTest): def test_pull(self): try: self.client.remove_image('hello-world') except docker.errors.APIError: pass res = self.client.pull('hello-world') self.tmp_imgs.append('hello-world') self.assertEqual(type(res), six.text_type) self.assertGreaterEqual( len(self.client.images('hello-world')), 1 ) img_info = self.client.inspect_image('hello-world') self.assertIn('Id', img_info) def test_pull_streaming(self): try: self.client.remove_image('hello-world') except docker.errors.APIError: pass stream = self.client.pull('hello-world', stream=True, decode=True) self.tmp_imgs.append('hello-world') for chunk in stream: assert isinstance(chunk, dict) self.assertGreaterEqual( len(self.client.images('hello-world')), 1 ) img_info = self.client.inspect_image('hello-world') self.assertIn('Id', img_info) class CommitTest(BaseAPIIntegrationTest): def test_commit(self): container = self.client.create_container(BUSYBOX, ['touch', '/test']) id = container['Id'] self.client.start(id) self.tmp_containers.append(id) res = self.client.commit(id) self.assertIn('Id', res) img_id = res['Id'] self.tmp_imgs.append(img_id) img = self.client.inspect_image(img_id) self.assertIn('Container', img) self.assertTrue(img['Container'].startswith(id)) self.assertIn('ContainerConfig', img) self.assertIn('Image', img['ContainerConfig']) self.assertEqual(BUSYBOX, img['ContainerConfig']['Image']) busybox_id = self.client.inspect_image(BUSYBOX)['Id'] self.assertIn('Parent', img) self.assertEqual(img['Parent'], busybox_id) def test_commit_with_changes(self): cid = self.client.create_container(BUSYBOX, ['touch', '/test']) self.tmp_containers.append(cid) self.client.start(cid) img_id = self.client.commit( cid, changes=['EXPOSE 8000', 'CMD ["bash"]'] ) self.tmp_imgs.append(img_id) img = self.client.inspect_image(img_id) assert 'Container' in img assert img['Container'].startswith(cid['Id']) assert '8000/tcp' in img['Config']['ExposedPorts'] assert img['Config']['Cmd'] == ['bash'] class RemoveImageTest(BaseAPIIntegrationTest): def test_remove(self): container = self.client.create_container(BUSYBOX, ['touch', '/test']) id = container['Id'] self.client.start(id) self.tmp_containers.append(id) res = self.client.commit(id) self.assertIn('Id', res) img_id = res['Id'] self.tmp_imgs.append(img_id) self.client.remove_image(img_id, force=True) images = self.client.images(all=True) res = [x for x in images if x['Id'].startswith(img_id)] self.assertEqual(len(res), 0) class ImportImageTest(BaseAPIIntegrationTest): '''Base class for `docker import` test cases.''' TAR_SIZE = 512 * 1024 def write_dummy_tar_content(self, n_bytes, tar_fd): def extend_file(f, n_bytes): f.seek(n_bytes - 1) f.write(bytearray([65])) f.seek(0) tar = tarfile.TarFile(fileobj=tar_fd, mode='w') with tempfile.NamedTemporaryFile() as f: extend_file(f, n_bytes) tarinfo = tar.gettarinfo(name=f.name, arcname='testdata') tar.addfile(tarinfo, fileobj=f) tar.close() @contextlib.contextmanager def dummy_tar_stream(self, n_bytes): '''Yields a stream that is valid tar data of size n_bytes.''' with tempfile.NamedTemporaryFile() as tar_file: self.write_dummy_tar_content(n_bytes, tar_file) tar_file.seek(0) yield tar_file @contextlib.contextmanager def dummy_tar_file(self, n_bytes): '''Yields the name of a valid tar file of size n_bytes.''' with tempfile.NamedTemporaryFile(delete=False) as tar_file: self.write_dummy_tar_content(n_bytes, tar_file) tar_file.seek(0) yield tar_file.name def test_import_from_bytes(self): with self.dummy_tar_stream(n_bytes=500) as f: content = f.read() # The generic import_image() function cannot import in-memory bytes # data that happens to be represented as a string type, because # import_image() will try to use it as a filename and usually then # trigger an exception. So we test the import_image_from_data() # function instead. statuses = self.client.import_image_from_data( content, repository='test/import-from-bytes') result_text = statuses.splitlines()[-1] result = json.loads(result_text) self.assertNotIn('error', result) img_id = result['status'] self.tmp_imgs.append(img_id) def test_import_from_file(self): with self.dummy_tar_file(n_bytes=self.TAR_SIZE) as tar_filename: # statuses = self.client.import_image( # src=tar_filename, repository='test/import-from-file') statuses = self.client.import_image_from_file( tar_filename, repository='test/import-from-file') result_text = statuses.splitlines()[-1] result = json.loads(result_text) self.assertNotIn('error', result) self.assertIn('status', result) img_id = result['status'] self.tmp_imgs.append(img_id) def test_import_from_stream(self): with self.dummy_tar_stream(n_bytes=self.TAR_SIZE) as tar_stream: statuses = self.client.import_image( src=tar_stream, repository='test/import-from-stream') # statuses = self.client.import_image_from_stream( # tar_stream, repository='test/import-from-stream') result_text = statuses.splitlines()[-1] result = json.loads(result_text) self.assertNotIn('error', result) self.assertIn('status', result) img_id = result['status'] self.tmp_imgs.append(img_id) def test_import_image_from_data_with_changes(self): with self.dummy_tar_stream(n_bytes=500) as f: content = f.read() statuses = self.client.import_image_from_data( content, repository='test/import-from-bytes', changes=['USER foobar', 'CMD ["echo"]'] ) result_text = statuses.splitlines()[-1] result = json.loads(result_text) assert 'error' not in result img_id = result['status'] self.tmp_imgs.append(img_id) img_data = self.client.inspect_image(img_id) assert img_data is not None assert img_data['Config']['Cmd'] == ['echo'] assert img_data['Config']['User'] == 'foobar' def test_import_image_with_changes(self): with self.dummy_tar_file(n_bytes=self.TAR_SIZE) as tar_filename: statuses = self.client.import_image( src=tar_filename, repository='test/import-from-file', changes=['USER foobar', 'CMD ["echo"]'] ) result_text = statuses.splitlines()[-1] result = json.loads(result_text) assert 'error' not in result img_id = result['status'] self.tmp_imgs.append(img_id) img_data = self.client.inspect_image(img_id) assert img_data is not None assert img_data['Config']['Cmd'] == ['echo'] assert img_data['Config']['User'] == 'foobar' @contextlib.contextmanager def temporary_http_file_server(self, stream): '''Serve data from an IO stream over HTTP.''' class Handler(BaseHTTPServer.BaseHTTPRequestHandler): def do_GET(self): self.send_response(200) self.send_header('Content-Type', 'application/x-tar') self.end_headers() shutil.copyfileobj(stream, self.wfile) server = socketserver.TCPServer(('', 0), Handler) thread = threading.Thread(target=server.serve_forever) thread.setDaemon(True) thread.start() yield 'http://%s:%s' % (socket.gethostname(), server.server_address[1]) server.shutdown() @pytest.mark.skipif(True, reason="Doesn't work inside a container - FIXME") def test_import_from_url(self): # The crappy test HTTP server doesn't handle large files well, so use # a small file. tar_size = 10240 with self.dummy_tar_stream(n_bytes=tar_size) as tar_data: with self.temporary_http_file_server(tar_data) as url: statuses = self.client.import_image( src=url, repository='test/import-from-url') result_text = statuses.splitlines()[-1] result = json.loads(result_text) self.assertNotIn('error', result) self.assertIn('status', result) img_id = result['status'] self.tmp_imgs.append(img_id)
old_startracker.py
# startracker.py # by Umair Khan, from the Portland State Aerospace Society # based on OpenStarTracker from Andrew Tennenbaum at the University of Buffalo # openstartracker.org # Imports - built-ins import sys import time import threading import glob import random import logging # Imports - external import numpy as np import cv2 from pydbus.generic import signal from pydbus import SystemBus from gi.repository import GLib from systemd import journal # Imports - back-end import beast # Set up systemd logger # modified from https://medium.com/@trstringer/logging-to-systemd-in-python-45150662440a logger = logging.getLogger("org.OreSat.StarTracker") journald_handler = journal.JournalHandler() journald_handler.setFormatter(logging.Formatter('[%(levelname)s] %(message)s')) logger.addHandler(journald_handler) logger.setLevel(logging.DEBUG) # Solver class StarTracker: # Initialize everything def __init__(self): # Prepare constants self.P_MATCH_THRESH = 0.99 self.YEAR = 1991.25 self.SAMPLE_DIR = None self.MEDIAN_IMAGE = None self.S_DB = None self.SQ_RESULTS = None self.S_FILTERED = None self.C_DB = None # Startup sequence def startup(self, median_path, config_path, db_path, sample_dir = None): # Set the sample directory logger.info("Beginning startup sequence...") self.SAMPLE_DIR = sample_dir # Prepare star tracker self.MEDIAN_IMAGE = cv2.imread(median_path) logger.info("Loaded median image from {}".format(median_path)) beast.load_config(config_path) logger.info("Loaded configuration from {}".format(config_path)) self.S_DB = beast.star_db() self.S_DB.load_catalog(db_path, self.YEAR) logger.info("Loaded star database from {}".format(db_path)) self.SQ_RESULTS = beast.star_query(self.S_DB) self.SQ_RESULTS.kdmask_filter_catalog() self.SQ_RESULTS.kdmask_uniform_density(beast.cvar.REQUIRED_STARS) self.S_FILTERED = self.SQ_RESULTS.from_kdmask() logger.info("Filtered stars") self.C_DB = beast.constellation_db(self.S_FILTERED, 2 + beast.cvar.DB_REDUNDANCY, 0) logger.info("Startup sequence complete!") # Capture an image, or pull one from the sample directory def capture(self): # Pull from sample directory if self.SAMPLE_DIR != None: path = random.choice(glob.glob(self.SAMPLE_DIR + "*")) return path, cv2.imread(path) # Capture an image return None, None # See if an image is worth attempting to solve def preprocess(self, img): # Generate test parameters height, width, channels = img.shape total_pixels = height * width blur_check = int(total_pixels * 0.99996744) too_many_check = int(total_pixels * 0.99918619) # Convert and threshold the image img = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY) ret, threshold = cv2.threshold(img, 80, 255, cv2.THRESH_BINARY) # Count the number of black pixels in the thresholded image threshold_black = total_pixels - cv2.countNonZero(threshold) # Check the test values and return appropriate value if threshold_black > blur_check: blur = cv2.Laplacian(img, cv2.CV_64F).var() if blur != 0 and blur < 5: return "image too blurry" else: return "image contains too few stars" return 1 elif threshold_black < too_many_check: return "unsuitable image" return "good" # Solution function def solve(self, orig_img): # Keep track of solution time starttime = time.time() # Create and initialize variables img_stars = beast.star_db() match = None fov_db = None # Process the image for solving img = np.clip(orig_img.astype(np.int16) - self.MEDIAN_IMAGE, a_min = 0, a_max = 255).astype(np.uint8) img_grey = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY) # Remove areas of the image that don't meet our brightness threshold and then extract contours ret, thresh = cv2.threshold(img_grey, beast.cvar.THRESH_FACTOR * beast.cvar.IMAGE_VARIANCE, 255, cv2.THRESH_BINARY) thresh_contours, contours, hierarchy = cv2.findContours(thresh, 1, 2); # Process the contours for c in contours: M = cv2.moments(c) if M["m00"] > 0: # this is how the x and y position are defined by cv2 cx = M["m10"] / M["m00"] cy = M["m01"] / M["m00"] # see https://alyssaq.github.io/2015/computing-the-axes-or-orientation-of-a-blob/ for how to convert these into eigenvectors/values u20 = M["m20"] / M["m00"] - cx ** 2 u02 = M["m02"] / M["m00"] - cy ** 2 u11 = M["m11"] / M["m00"] - cx * cy # The center pixel is used as the approximation of the brightest pixel img_stars += beast.star(cx - beast.cvar.IMG_X / 2.0, cy - beast.cvar.IMG_Y / 2.0, float(cv2.getRectSubPix(img_grey, (1,1), (cx,cy))[0,0]), -1) # We only want to use the brightest MAX_FALSE_STARS + REQUIRED_STARS img_stars_n_brightest = img_stars.copy_n_brightest(beast.cvar.MAX_FALSE_STARS + beast.cvar.REQUIRED_STARS) img_const_n_brightest = beast.constellation_db(img_stars_n_brightest, beast.cvar.MAX_FALSE_STARS + 2, 1) lis = beast.db_match(self.C_DB, img_const_n_brightest) # Generate the match if lis.p_match > self.P_MATCH_THRESH and lis.winner.size() >= beast.cvar.REQUIRED_STARS: x = lis.winner.R11 y = lis.winner.R21 z = lis.winner.R31 r = beast.cvar.MAXFOV / 2 self.SQ_RESULTS.kdsearch(x, y, z, r, beast.cvar.THRESH_FACTOR * beast.cvar.IMAGE_VARIANCE) # Estimate density for constellation generation self.C_DB.results.kdsearch(x, y, z, r,beast.cvar.THRESH_FACTOR * beast.cvar.IMAGE_VARIANCE) fov_stars = self.SQ_RESULTS.from_kdresults() fov_db = beast.constellation_db(fov_stars, self.C_DB.results.r_size(), 1) self.C_DB.results.clear_kdresults() self.SQ_RESULTS.clear_kdresults() img_const = beast.constellation_db(img_stars, beast.cvar.MAX_FALSE_STARS + 2, 1) near = beast.db_match(fov_db, img_const) if near.p_match > self.P_MATCH_THRESH: match = near # Get solution -- for reference: # - dec - rotation about the y-axis # - ra - rotation about the z-axis # - ori - rotation about the camera axis if match is not None: match.winner.calc_ori() dec = match.winner.get_dec() ra = match.winner.get_ra() ori = match.winner.get_ori() else: dec, ra, ori = 0.0, 0.0, 0.0 # Calculate how long it took to process runtime = time.time() - starttime # Return solution return dec, ra, ori, time # Camera control def modify(self, mod_string): return 0 # Error processing def error(self, err_string): # Handle what we can handle, everything else will be ignored if err_string == "image too blurry": self.modify("more sharp") elif err_string == "image contains too few stars": self.modify("increase gain") # We always handle successfully return 0 # Server class StarTrackerServer: # XML definition dbus = """ <node> <interface name='org.OreSat.StarTracker'> <signal name='error'> <arg type='s' /> </signal> <property name='coor' type='(dddd)' access='read'> <annotation name="org.freedesktop.DBus.Property.EmitsChangedSignal" value="true" /> </property> <property name='filepath' type='s' access='read'> <annotation name="org.freedesktop.DBus.Property.EmitsChangedSignal" value="true" /> </property> </interface> </node> """ # Error signal error = signal() PropertiesChanged = signal() # Initialize properties and worker thread def __init__(self): # Properties self.dec = 0.0 self.ra = 0.0 self.ori = 0.0 self.l_solve = 0.0 self.t_solve = 0.0 self.p_solve = "" self.interface_name = "org.OreSat.StarTracker" # Set up star tracker solver self.st = StarTracker() self.st_thread = threading.Thread(target = self.star_tracker) self.st_lock = threading.Lock() self.st_running = True # Star tracker thread def star_tracker(self): # Keep going while we're running while (self.st_running): # Capture an image self.st_lock.acquire() self.p_solve, img = self.st.capture() # self.PropertiesChanged(self.interface_name, {"filepath": self.p_solve}, []) # Check the image check = self.st.preprocess(img) if check != "good": self.st.error(check) logger.warning(check + "(for {})".format(p_solve)) error(check) time.sleep(0.5) continue # Solve the image self.dec, self.ra, self.ori, self.l_solve = self.st.solve(img) # self.PropertiesChanged(self.interface_name, {"coor": self.dec}, []) #TODO need to handle the struct if self.dec == self.ra == self.ori == 0.0: self.st.error("bad solve") logger.error("bad solve (for {})".format(p_solve)) error("bad solve") time.sleep(0.5) continue # Update the solution timestamp self.t_solve = time.time() self.st_lock.release() # Send property signal self.PropertiesChanged(self.interface_name, {"filepath": self.p_solve}, []) time.sleep(0.5) # Start up solver and server def start(self, median_path, config_path, db_path, sample_dir = None): # Start up star tracker self.st.startup(median_path, config_path, db_path, sample_dir = sample_dir) time.sleep(20) self.st_thread.start() logger.info("Started worker thread") # Start up D-Bus server bus = SystemBus() loop = GLib.MainLoop() bus.publish(self.interface_name, self) try: logger.info("Starting D-Bus loop...") loop.run() except KeyboardInterrupt as e: loop.quit() logger.info("Ended D-Bus loop") self.end() # Stop threads in preparation to exit def end(self): self.st_running = False if self.st_thread.is_alive(): self.st_thread.join() # Coordinates @property def coor(self): self.st_lock.acquire() dec, ra, ori, t_solve = self.dec, self.ra, self.ori, self.t_solve self.st_lock.release() return (dec, ra, ori, t_solve) # Filepath of last solved image @property def filepath(self): self.st_lock.acquire() p_solve = self.p_solve self.st_lock.release() return p_solve ########## # Test if run independently if __name__ == "__main__": server = StarTrackerServer() db_root = "/usr/share/oresat-star-tracker/data/" data_root = db_root + "downsample/" server.start(data_root + "median_image.png", data_root + "calibration.txt", db_root + "hip_main.dat", sample_dir = data_root + "samples/")
demo3.py
""" 【多线程】多线程共享全局变量以及锁机制 2019/11/03 23:50 """ # TODO: 多线程共享全局变量的问题 """ 多线程都是在同一个进程中运行的。因此在进程中的全局变量所有线程都是可共享的。 这就造成了一个问题,因为线程执行的顺序是无序的。有可能会造成数据错误。 """ # TODO: 锁机制 """ 为了解决以上使用共享全局变量的问题。threading提供了一个Lock类, 这个类可以在某个线程访问某个变量的时候加锁,其他线程此时就不能进来, 直到当前线程处理完后,把锁释放了,其他线程才能进来处理。 加锁: gLock.acquire() 释放锁: gLock.release() """ import threading VALUE = 0 gLock = threading.Lock() def add_value(): global VALUE gLock.acquire() for x in range(100000): VALUE += 1 gLock.release() print(VALUE) def main(): for x in range(2): t = threading.Thread(target=add_value) t.start() if __name__ == '__main__': main()
task_queue.py
import sys import time import traceback import threading class TaskQueue: # ---------------------------------------- Task ----------------------------------------- class Task: def __init__(self, name: str): self.__name = name def __str__(self): return 'Task %s [%s]' % (self.name(), self.identity()) def name(self) -> str: return self.__name def status(self) -> int: # TODO: Waiting, Running, Finished, Canceled pass def run(self): pass def quit(self): pass def identity(self) -> str: pass # -------------------------------------- Observer --------------------------------------- class Observer: def __init__(self): pass def on_task_updated(self, task, change: str): pass # -------------------------------------- TaskQueue -------------------------------------- def __init__(self): self.__lock = threading.Lock() self.__quit_flag = True self.__observers = [] self.__task_queue = [] self.__task_thread = None self.__running_task = None self.__will_task = None def join(self, timeout: int): if self.__task_thread is not None: self.__task_thread.join(timeout) def quit(self): self.__lock.acquire() self.__quit_flag = True self.__clear_pending_task() self.__cancel_running_task() self.__lock.release() def start(self): if self.__task_thread is None or self.__task_thread.is_alive(): self.__quit_flag = False self.__task_thread = threading.Thread(target=self.__task_thread_entry) self.__task_thread.start() def is_busy(self) -> bool: return self.__running_task is not None or len(self.__task_queue) > 0 # -------------------------------- Task Related -------------------------------- def get_tasks(self, name: str or None, identity: str or None) -> [Task]: task_list = [] self.__lock.acquire() for task in self.__task_queue: if (name is None and identity is None) or \ (name is not None and task.name): task_list.append(task) if self.__running_task is not None: if identity is None or self.__running_task.identity() == identity: task_list.insert(0, self.__running_task) self.__lock.release() return task_list def append_task(self, task: Task, unique: bool = True) -> bool: print('Task queue -> append : ' + str(task)) self.__lock.acquire() if unique and (task.identity() is not None and len(self.__find_adapt_tasks(None, task.identity())) > 0): self.__lock.release() print('Task queue -> found duplicate, drop.') return False self.__task_queue.append(task) self.__lock.release() self.notify_task_updated(task, 'append') return True def insert_task(self, task: Task, index: int = 0, unique: bool = True): print('Task queue -> insert : ' + str(task)) self.__lock.acquire() if unique: self.__remove_pending_task(task.identity()) self.__check_cancel_running_task(task.identity()) if index >= len(self.__task_queue): self.__task_queue.append(task) else: self.__task_queue.insert(index, task) self.__lock.release() self.notify_task_updated(task, 'insert') def set_will_task(self, task: Task): self.__will_task = task def cancel_task(self, identity: str or None): self.__lock.acquire() if identity is None: self.__clear_pending_task() self.__cancel_running_task() else: self.__remove_pending_task(identity) self.__check_cancel_running_task(identity) self.__lock.release() self.notify_task_updated(None, 'canceled') def cancel_running_task(self): self.__lock.acquire() self.__cancel_running_task() self.__lock.release() self.notify_task_updated(None, 'canceled') def find_matching_tasks(self, name: str or None, identity: str or None) -> [Task]: self.__lock.acquire() tasks = self.__find_adapt_tasks(name, identity) self.__lock.release() return tasks # ------------------------------------ Observer ------------------------------------- def add_observer(self, ob: Observer): if ob not in self.__observers: self.__observers.append(ob) def notify_task_updated(self, task: Task, action: str): for ob in self.__observers: ob.on_task_updated(task, action) # ------------------------------------- private -------------------------------------- def __adapted_task(self, task: Task, name: str or None, identity: str or None) -> Task or None: adapt = True if task is not None: if name is not None and name != '': adapt = (adapt and (task.name() == name)) if identity is not None and identity != '': adapt = (adapt and (task.identity() == identity)) return task if adapt else None def __find_adapt_tasks(self, name: str or None, identity: str or None) -> [Task]: tasks = [] for task in self.__task_queue: if self.__adapted_task(task, name, identity): tasks.append(task) if self.__adapted_task(self.__running_task, name, identity): tasks.append(self.__running_task) return tasks def __remove_pending_task(self, identity): if identity is None: return task_queue = self.__task_queue.copy() for task in task_queue: if task.identity() == identity: self.__task_queue.remove(task) def __clear_pending_task(self): self.__task_queue.clear() def __check_cancel_running_task(self, identity: str or None): if identity is None or \ (self.__running_task is not None and self.__running_task.identity() == identity): self.__cancel_running_task() def __cancel_running_task(self): if self.__running_task is not None: self.__running_task.quit() # ----------------------------------- Thread Entry ----------------------------------- def __task_thread_entry(self): quit_thread = False while not quit_thread: self.__lock.acquire() if self.__quit_flag: quit_thread = True task = self.__will_task else: task = self.__task_queue.pop(0) if len(self.__task_queue) > 0 else None self.__running_task = task self.__lock.release() clock = time.time() if task is not None: try: print('Task queue -> start: ' + str(task)) self.notify_task_updated(task, 'started') task.run() except Exception as e: print('Task queue -> ' + str(task) + ' got exception:') print(e) finally: print('Task queue -> finish: %s, time spending: %.2f ms' % (str(task), (time.time() - clock) * 1000)) self.notify_task_updated(task, 'finished') self.__lock.acquire() self.__running_task = None self.__lock.release() else: time.sleep(0.1) # ---------------------------------------------------------------------------------------------------------------------- class TestTask(TaskQueue.Task): LOG_START = [] LOG_FINISH = [] @staticmethod def reset(): TestTask.LOG_START.clear() TestTask.LOG_FINISH.clear() def __init__(self, name: str, _id: str, delay: int): super(TestTask, self).__init__(name) self.__id = _id self.__delay = delay self.__quit_flag = False def run(self): TestTask.LOG_START.append(self.__id) print('Task %s started' % self.__id) slept = 0 while not self.__quit_flag and slept < self.__delay: time.sleep(0.1) slept += 0.1 TestTask.LOG_FINISH.append(self.__id) print('Task %s finished' % self.__id) def quit(self): self.__quit_flag = True def identity(self) -> str: return self.__id def test_basic_feature(): task_queue = TaskQueue() task_queue.start() TestTask.reset() task_a = TestTask('TaskA', 'task_a', 30) task_b = TestTask('TaskB', 'task_b', 4) task_c = TestTask('TaskB', 'task_c', 3) task_will = TestTask('TaskWill', 'will', 0) task_blocking = TestTask('TaskBlocking', 'task_blocking', 999) task_queue.append_task(task_a) task_queue.append_task(task_b) task_queue.append_task(task_c) task_queue.append_task(task_blocking) task_queue.set_will_task(task_will) assert task_queue.is_busy() time.sleep(1) assert 'task_a' in TestTask.LOG_START task_queue.cancel_running_task() time.sleep(1) assert 'task_a' in TestTask.LOG_FINISH assert task_queue.is_busy() time.sleep(1) assert 'task_b' in TestTask.LOG_START task_queue.cancel_task('task_c') assert 'task_b' not in TestTask.LOG_FINISH assert task_queue.is_busy() time.sleep(4) assert 'task_b' in TestTask.LOG_FINISH assert 'task_c' not in TestTask.LOG_START assert task_queue.is_busy() time.sleep(1) assert 'task_blocking' in TestTask.LOG_START assert task_queue.is_busy() task_queue.quit() task_queue.join(1) assert not task_queue.is_busy() assert 'task_blocking' in TestTask.LOG_FINISH assert 'will' in TestTask.LOG_START assert 'will' in TestTask.LOG_FINISH def test_entry() -> bool: test_basic_feature() return True def main(): test_entry() # ---------------------------------------------------------------------------------------------------------------------- def exception_hook(type, value, tback): # log the exception here print('Exception hook triggered.') print(type) print(value) print(tback) # then call the default handler sys.__excepthook__(type, value, tback) sys.excepthook = exception_hook if __name__ == "__main__": try: main() except Exception as e: print('Error =>', e) print('Error =>', traceback.format_exc()) exit() finally: pass
main.py
#libraraies from pytube import * import os from tkinter import * from tkinter.filedialog import * from tkinter.messagebox import * from threading import * file_size = 0 q= input("") if a == "shutdown": os.system("shutdown -s") #function progress to keep check of progress of function. def progress(stream=None, chunk=None, remaining=None): file_downloaded = (file_size-remaining) per = round((file_downloaded/file_size)*100, 1) dBtn.config(text=f'{per}% downloaded') #function start download to start the download of files def startDownload(): global file_size try: URL = urlField.get() dBtn.config(text='Please wait...') dBtn.config(state=DISABLED) path_save = askdirectory() if path_save is None: return ob = YouTube(URL, on_progress_callback=progress) strm = ob.streams[0] x = ob.description.split("|") file_size = strm.filesize dfile_size = file_size dfile_size /= 1000000 dfile_size = round(dfile_size, 2) label.config(text='Size: ' + str(dfile_size) + ' MB') label.pack(side=TOP, pady=10) desc.config(text=ob.title + '\n\n' + 'Label: ' + ob.author + '\n\n' + 'length: ' + str(round(ob.length/60, 1)) + ' mins\n\n' 'Views: ' + str(round(ob.views/1000000, 2)) + 'M') desc.pack(side=TOP, pady=10) strm.download(path_save, strm.title) dBtn.config(state=NORMAL) showinfo("Download Finished", 'Downloaded Successfully') urlField.delete(0, END) label.pack_forget() desc.pack_forget() dBtn.config(text='Start Download') except Exception as e: print(e) print('Error!!') def startDownloadthread(): thread = Thread(target=startDownload) thread.start() # main functions main = Tk() main.title("My YouTube Downloader") main.config(bg='#3498DB') main.iconbitmap('youtube-ios-app.ico') main.geometry("500x600") file = PhotoImage(file='photo.png') headingIcon = Label(main, image=file) headingIcon.pack(side=TOP) urlField = Entry(main, font=("Times New Roman", 18), justify=CENTER) urlField.pack(side=TOP, fill=X, padx=10, pady=15) dBtn = Button(main, text="Start Download", font=( "Times New Roman", 18), relief='ridge', activeforeground='red', command=startDownloadthread) dBtn.pack(side=TOP) label = Label(main, text='') desc = Label(main, text='') author = Label(main, text="@G.S.") author.config(font=("Courier", 44)) author.pack(side=BOTTOM) main.mainloop()
ftx.py
import os apikey = os.environ['key']#'IO7okj6AU7sgEKq4M_T2Ld-KO1VTXpSuq3WkfUF0' apisecret = os.environ['secret']#'1DMOnLSW3fk3SF8KVCbsKTTgqxSdl78tRZja_zQo' divisor=1000 abc = -937.0961358420444 abc = abc / 28 / 10 print(abc) import requests import math from datetime import timedelta import datetime import sys from threading import Timer import threading import linecache from time import sleep ts = [] import ccxt binance = ccxt.binance({'enableRateLimit': True, "options":{"defaultMarket":"futures"}, 'urls': {'api': { 'public': 'https://dapi.binance.com/dapi/v1', 'private': 'https://dapi.binance.com/dapi/v1',},} }) #print(dir(binance)) #sleep(1) SECONDS_IN_DAY = 3600 * 24 from cryptofeed import FeedHandler from cryptofeed import FeedHandler from cryptofeed.callback import BookCallback, TickerCallback, TradeCallback from cryptofeed.defines import TICKER_FUTURES, TICKER_OKS, BID, ASK, FUNDING, L2_BOOK, OPEN_INTEREST, TICKER, TRADES from cryptofeed.exchanges import OKEx, KrakenFutures, HuobiDM, BinanceFutures, FTX fh = FeedHandler() fundingwinners = [] from flask import Flask from flask_cors import CORS, cross_origin app = Flask(__name__) cors = CORS(app) app.config['CORS_HEADERS'] = 'Content-Type' from flask import jsonify import threading print(2) minArb = 0.015 print(minArb) minArb = minArb * 75 print(minArb) minArb = minArb * 365 print(minArb) premiumwinners = [] @app.route('/json') def summary(): global fundingwinners, premiumwinners return jsonify({'premiumwinners': premiumwinners, 'fundingwinners': fundingwinners}) def loop_in_thread(): fh.run() def loop_in_thread2(): app.run(host='0.0.0.0', port=8080) def PrintException(): if warmup == False: exc_type, exc_obj, tb = sys.exc_info() f = tb.tb_frame lineno = tb.tb_lineno filename = f.f_code.co_filename linecache.checkcache(filename) line = linecache.getline(filename, lineno, f.f_globals) string = 'EXCEPTION IN ({}, LINE {} "{}"): {}'.format(filename, lineno, line.strip(), exc_obj) if 'rder already queued for cancellatio' not in string: print (string) ##sleep(1) #if 'UNI' not in string: ##sleep(1) # if 'Account does not have enough margin for order' not in string: ##sleep(1) warmup = True def handle_function(): global warmup warmup = False print(warmup) thread = Timer(25,handle_function) thread.daemon = True thread.start() async def ticker(feed, pair, bid, ask, timestamp, ex): global mids #print(f'Ex?: {ex} Timestamp: {timestamp} Feed: {feed} Pair: {pair} Bid: {bid} Ask: {ask}') if 'OKEX' in feed.upper(): ex = 'ftx' if 'USDT' not in pair: name = pair.split('-')[0] if '-' not in pair: return dt = pair[-4:] if dt == 'SWAP': dt = 'PERP' #print(pair) else: return elif 'FTX' in feed: ex = 'ftx' name = pair.split('-')[0] if '-' not in pair: return dt = pair.split('-')[1] #print(dt) elif 'KRAKEN' in feed: if 'PI' in pair: p = pair.split('_')[1] name = p.replace('USD','').replace('XBT','BTC') dt = 'PERP' else: name = pair.split('_')[1].split('_')[0].replace('USD', '').replace('XBT', 'BTC') dt = pair[-4:] ex = 'kraken' elif 'BINANCE' in feed: #ETH-USD_200925 name = pair.split('-')[0] dt = pair[-4:] ex = 'binance' #print(dt) # print(feed + '-' + name + '-' + dt +': ' + str( 0.5 * ( float(bid) + float(ask)))) mids[ex][name + '-' + dt] = 0.5 * ( float(ask) + float(bid)) bids[ex][name + '-' + dt] = float(bid) asks[ex][name + '-' + dt] = float(ask) async def book(feed, pair, book, timestamp, receipt_timestamp): global mids hb = 0 la = 99999999999999 for bid in book[BID]: if bid > hb: hb = bid for ask in book[ASK]: if ask < la: la = ask #print(pair) dt = pair[-4:] name = pair.split('20'+dt)[0] #print(name) # if 'BTC' in name and lastex != feed and lastbtc != 0.5 * ( float(bid) + float(ask)): # lastex = feed # lastbtc = 0.5 * ( float(bid) + float(ask)) #print(feed + '-' + name + '-' + dt +': ' + str( 0.5 * ( float(bid) + float(ask)))) #print(pair) mids['huobi'][name + '-' + dt] = 0.5 * ( float(la) + float(hb)) #print(mids) #print(f'Timestamp: {timestamp} Feed: {feed} Pair: {pair} Book Bid Size is {len(book[BID])} Ask Size is {len(book[ASK])}') def cancelall(): try: try: ftx.privateDeleteOrders( ) except Exception as e: PrintException() except Exception as e: PrintException() arbwinnersavg = [] arbwinnersc = [] maxmax = 0 levs = {} trading = {} def doOrder(coin, direction, wantingcoin, prc, count, laste=[], postonly=True): if wantingcoin * mids['ftx'][coin] < 0.1: return try: #print(wantingcoin * mids['ftx'][coin]) f = ftx.createOrder( coin, 'limit', direction, wantingcoin, prc, {'postOnly': postonly}) print(f) except Exception as e: try: dummy_event.wait(timeout=((1/25)*1)) if 'Size too small' in str(e): laste.append('small') if len(laste) > 4: if laste[-1] == 'small' and laste[-3] == 'small' and laste[-5] == 'small' and laste[-2] == 'large' and laste[-4] == 'large': return #PrintException() return doOrder(coin, direction, wantingcoin * (3 * count), prc, count + 1, laste, postonly) elif 'Account does not have enough' in str(e): laste.append('large') if len(laste) > 4: if laste[-2] == 'small' and laste[-4] == 'small' and laste[-1] == 'large' and laste[-3] == 'large' and laste[-5] == 'large': return #PrintException() return doOrder(coin, direction, wantingcoin / (3 * count), prc, count + 1, laste, postonly) else: PrintException() except: PrintException() start_time = datetime.datetime.utcnow()- timedelta(hours = 0) SECONDS_IN_DAY = 3600 * 24 def output_status(): try: now = datetime.datetime.utcnow() days = ( now - start_time ).total_seconds() / SECONDS_IN_DAY print( '********************************************************************' ) #print( '%% Delta: %s%%'% round( self.get_pct_delta() / PCT, 1 )) #print( 'Total Delta (BTC): %s' % round( sum( self.deltas.values()), 2 )) #print_dict_of_dicts( { # k: { # 'BTC': self.deltas[ k ] # } for k in self.deltas.keys() # }, # roundto = 2, title = 'Deltas' ) #print(self.positions) print('Positions') for s in usdpos: if usdpos[s] > balance / 100 or usdpos[s] < -1 * balance / 50: print(s + ': $' + str(round(usdpos[s] * 100) / 100)) print('Skews') for s in skews: if skews[s] > balance / 100 or skews[s] < -1 * balance / 50: print(s + ': $' + str(round(skews[s] * 100) / 100)) print('Orders #') print(lenords) print( 'Start Time: %s' % start_time.strftime( '%Y-%m-%d %H:%M:%S' )) print( 'Current Time: %s' % now.strftime( '%Y-%m-%d %H:%M:%S' )) print( 'Days: %s' % round( days, 1 )) print( 'Hours: %s' % round( days * 24, 1 )) equity_usd = balance equity_btc = round(balance / mids['ftx']['BTC-PERP'] * 100000000) / 100000000 pnl_usd = equity_usd - firstbalance pnl_btc = equity_btc - firstbtc print( 'Equity ($): %7.2f' % equity_usd) print( 'P&L ($) %7.2f' % pnl_usd) print( 'Equity (BTC): %7.4f' % equity_btc) print( 'P&L (BTC) %7.4f' % pnl_btc) print('\nLeverage: ' + str(lev)) num = threading.active_count() print('Threads: ' + str(num) + ' out of ' + str(startnum * 3 + 1)) print('Percs') print(percs) t = 0 for r in percs: t = t + math.fabs(percs[r]) print('t result ' + str(t)) except: PrintException() """ print( '\nMean Loop Time: %s' % round( self.mean_looptime, 2 )) #self.cancelall() print( '' ) print(' ') days = ( datetime.utcnow() - self.start_time ).total_seconds() / SECONDS_IN_DAY print('Volumes Traded Projected Daily of Required (' + str(days) + ' days passed thus far...)') print('Equity: $' + str(round(self.equity_usd*100)/100)) btc = self.get_spot('BTC/USDT') print('btc') percent = self.equity_usd / btc volumes = [] tradet = 0 feest = 0 for pair in pairs: gettrades = self.getTrades(pair, 0, 0, 0) #print(gettrades) volume = (gettrades[0] / (gettrades[2])) feest = feest + gettrades[0] * 0.0002 tradet = tradet + volume * 30 printprint = True if pair in fifteens: volume = (volume / 15000) elif pair in tens: volume = (volume / 10000) elif pair in fives: volume = (volume / 5000) elif pair in threes: volume = (volume / 3000) else: printprint = False volume = (volume / 25000) volumes.append(volume) #print(volume) if printprint == True: print(pair + ': ' + str(round(volume*1000)/10) + '%' + ', (Real) USD traded: $' + str(round(gettrades[0]*100)/100) + ', fees paid: $' + str(round(gettrades[1] * 10000)/10000)) else: print('(Real) USD traded: $' + str(round(gettrades[0]*100)/100) + ', fees paid: $' + str(round(gettrades[1] * 10000)/10000)) volumes.sort() h = 100 for i in range(0,5): if volumes[-i] < h and volumes[-i] > 0: h = volumes[-i] if h > 1: h = 1 try: h = 1 / h except: h = 1 mult = h h = h * self.equity_usd print('Approx. traded volumes over 30 days: ' + str(tradet) + ', in BTC: ' + str(round(tradet/btc*1000)/1000)) print('Approx. Min Equity at 25x in USD to Achieve 100% Daily Requirements Across 6 Highest %s Above: $' + str(round(h * 100)/100)) diff = h / self.equity_usd print('That\'s ' + str(round(diff*100)/100) + 'x the balance now, bringing projected USD/month to: ' + str(round(tradet * diff * 100)/100) + ', and BTC: ' + str(round((tradet * diff / btc)* 100)/100)) apy = 365 / (gettrades[2]) pnl = (((self.equity_usd + feest) / self.equity_usd) -1) * 100 pnl2 = pnl * apy print('Now, if we were running in a trial mode of Binance Market Maker Program\'s Rebates, or if we had achieved these rates already, we would have earned $' + str(round(feest * 100)/100) + ' by now, or rather earning ' + str(round(pnl*1000)/1000) + '% PnL so far, or ' + str(round(pnl2*1000)/1000) + ' % Annual Percentage Yield!') btcneed = (((tradet * diff / btc) / 3000) ) if btcneed < 1 and btcneed != 0: h = h / btcneed print('For 3000 btc/month volumes, would make the equity minimum approx. $' + str(round(h * 100)/100)) """ lenords = {} def aThread(coin): while True: try: global skews, lenords #print(coin) dummy_event.wait(timeout=((1/25)*1)) ords = ftx.fetchOpenOrders( coin ) lenords[coin] = len(ords) #if len(ords) > 0: #print(coin + ' lenords: ' + str(len(ords)) + ' & lev: ' + str(levs[coin.split('-')[0]])) direction = 'buy' prc = bids['ftx'][coin] go = True print(wanting) #sleep(1000) if coin.split('-')[0] not in skews: skews[coin.split('-')[0]] = 0 for direction in ['buy', 'sell']: if direction == 'buy' and skews[coin.split('-')[0]] < -1 * balance * 0.75 or direction == 'sell' and skews[coin.split('-')[0]] > balance * 0.75: print('wowwwww market out yo ' + coin) #if 'ETH' in coin: #print(wanting[coin]) #trading[coin] = True amt = wanting[coin] if amt < 0: amt = amt * -1 if direction == 'buy': prc = asks['ftx'][coin] elif direction == 'sell': prc = bids['ftx'][coin] doOrder(coin, direction, amt, prc, 1, [], False) if coin in wanting: if go == True: wanting[coin] = (wanting[coin] / percs[coin.split('-')[0]]) * 3 if wanting[coin] < balance / 7: wanting[coin] = wanting[coin] * 2 # #sleep(1) try: #dummy_event.wait(timeout=((1/25)*1)) #ords = ftx.fetchOpenOrders( coin ) gogo = True for o in ords: if direction == o['info']['side'] and o['info']['future'] == coin: gogo = False qty = o['info']['remainingSize'] if qty < 0: qty = -1 * qty print(qty) #138 < 18 * 0.15 #if 'BTC' in coin: #print('skews n wanting ' + coin) #print(direction) #print(skews[coin.split('-')[0]]) #print(wanting[coin] * 0.15) ##sleep(1) if direction == 'sell' and -1 * balance / 4 < skews[coin.split('-')[0]] or direction == 'buy' and balance / 4 > skews[coin.split('-')[0]]: if prc != o['info']['price']: trading[coin] = True dummy_event.wait(timeout=((1/25)*1)) try: e = ftx.editOrder( o['info']['id'], coin, 'limit', direction, float(qty), prc, {'postOnly': True} ) except Exception as e: PrintException() try: e = ftx.cancelOrder(o['info']['id'], coin) except: abc=123 ##sleep(1) else: print(coin + ' skew bad on ' + direction) #print(e) print(wanting) #sleep(1000) #if 'ETH' in coin: #print(gogo) #print(direction) #print(skews[coin.split('-')[0]]) #print(wanting[coin] * 0.15 ) if gogo == True: if 'BTC' in coin: #print('skews n wanting ' + coin) #print(direction) #print(skews[coin.split('-')[0]]) #print(wanting[coin] * 0.15) if direction == 'sell' and -1 * balance / 4 < skews[coin.split('-')[0]] or direction == 'buy' and balance / 4 > skews[coin.split('-')[0]]: abc=123 else: print('can\'t ' + direction) ##sleep(10) if direction == 'sell' and -1 * balance / 4 > skews[coin.split('-')[0]] and direction == 'buy' and balance / 4 < skews[coin.split('-')[0]]: print('bad can\'t order!') dummy_event.wait(timeout=5) if direction == 'sell' and -1 * balance / 4 < skews[coin.split('-')[0]] or direction == 'buy' and balance / 4 > skews[coin.split('-')[0]]: #if 'ETH' in coin: #print(wanting[coin]) trading[coin] = True doOrder(coin, direction, wanting[coin], prc, 1) else: print(coin + ' skew bad on ' + direction) except: PrintException() except: PrintException() runtimefirst = True def doCheckTrading(): global trading, wanting, skews for coin in mids['ftx']: if coin.split('-')[0] in levs: try: if coin.split('-')[0] not in skews: skews[coin.split('-')[0]] = 0 direction = 'buy' prc = bids['ftx'][coin] go = False if coin in wanting: if wanting[coin] > 0: go = True #print('1') try: if skews[coin.split('-')[0]] > wanting[coin] * 0.15: #print('cancel2! ' + coin) #ords = ftx.fetchOpenOrders( coin ) gogo = True #for o in ords: #ftx.cancelOrder( o['info']['id'] , o['info']['future']) go = False except: PrintException() if wanting[coin] < 0: go = True #print('3') try: if skews[coin.split('-')[0]] < wanting[coin] * 0.15 * mids['ftx'][coin]: #ords = ftx.fetchOpenOrders( coin ) gogo = True #for o in ords: # ftx.cancelOrder( o['info']['id'] , o['info']['future']) #print('cancel! ' + coin) go = False except: PrintException() wanting[coin] = wanting[coin] * -1 direction = 'sell' prc = asks['ftx'][coin] if go == True: wanting[coin] = (wanting[coin] / levs[coin.split('-')[0]]) * 3 # #sleep(1) try: dummy_event.wait(timeout=((1/25)*1)) ords = ftx.fetchOpenOrders( coin ) lenords[coin] = len(ords) gogo = True for o in ords: if direction == o['info']['side'] and o['info']['future'] == coin: gogo = False qty = o['info']['remainingSize'] #138 < 18 * 0.15 #if 'BTC' in coin: #print('skews n wanting ' + coin) #print(direction) #print(skews[coin.split('-')[0]]) #print(wanting[coin] * 0.15) ##sleep(1) if direction == 'sell' and -1 * balance / 4 < skews[coin.split('-')[0]] or direction == 'buy' and balance / 4 > skews[coin.split('-')[0]]: if prc != o['info']['price']: trading[coin] = True #e = ftx.editOrder( o['info']['id'], coin, 'limit', direction, float(qty), prc, {'postOnly': True} ) ##sleep(1) else: print(coin + ' skew bad on ' + direction) #print(e) #if 'ETH' in coin: #print(gogo) #print(direction) #print(skews[coin.split('-')[0]]) #print(wanting[coin] * 0.15 ) if gogo == True: if direction == 'sell' and -1 * balance / 4 > skews[coin.split('-')[0]] and direction == 'buy' and balance / 4 < skews[coin.split('-')[0]]: print('bad can\'t order!') dummy_event.wait(timeout=5) if direction == 'sell' and -1 * balance / 4 < skews[coin.split('-')[0]] or direction == 'buy' and balance / 4 > skews[coin.split('-')[0]]: #if 'ETH' in coin: #print(wanting[coin]) trading[coin] = True #doOrder(coin, direction, wanting[coin], prc, 1) else: print(coin + ' skew bad on ' + direction) except: PrintException() except: PrintException() def doCalc(): index = 59 while True: try: #sleep(3) r = random.randint(0, 1000) if r <= 5: cancelall() global levs, premiumwinners, arbwinnersc, arbwinnersavg, maxmax, trading, ts, runtimefirst #dt_to_string = datetime.datetime.utcnow().strftime('%Y-%m-%d %H:%M:%S') #added = worksheet2.append_row([dt_to_string, '=VALUE(' + str((balance/firstbalance-1)*100) + ')'], 'USER_ENTERED') doCheckTrading() rans = [] toran = [] #print('w3') #print(wanting['BTC-0326']) #print(wanting['BTC-1225']) #print(wanting['BTC-PERP']) donecoins = [] print(len(wanting)) for w in wanting: toran.append(w) for i in range(0, len(toran)*4-1): ran = random.randint(0, len(toran)-1) coin = toran[ran] if coin not in donecoins: print(coin) donecoins.append(coin) t = threading.Thread(target=aThread, args=(coin,)) t.daemon = True ts.append(t) t.start() rans = [] donecoins = [] toran = [] for t in trading: if t in marketList: if trading[t] == False or result[t.split('-')[0]] <= 1: toran.append(t) for i in range(0, len(toran)*4-1): ran = random.randint(0, len(toran)-1) coin = toran[ran] if coin not in donecoins: donecoins.append(coin) #print(coin) if coin in marketList: t = threading.Thread(target=doMm, args=(coin,)) #t.daemon = True #ts.append(t) #t.start() done = False #sleep(5) num = threading.active_count() print('threads outside loop: ' + str(num) + ' out of ' + str(startnum * 3 + 1)) while done == False: #sleep(5) #print(num % 4) #print('threads: ' + str(num)) if num <= startnum * 3 + 1: done = True #for t in ts: # t.exit() ts = [] index = index + 1 if index >= 10: index = 0 output_status() sleep(1) sleep(1) except: PrintException() ftx = ccxt.ftx({ 'apiKey': apikey, 'secret': apisecret, 'enableRateLimit': True }) markets = ftx.fetchMarkets() marketList = [] for m in markets: if 'OIL' not in m['symbol'] and '-' in m['symbol']: marketList.append(m['symbol']) print(marketList) cancelall() sizeIncrements = {} r = requests.get('https://ftx.com/api/markets').json()['result'] for m in r: sizeIncrements[m['name']] = m['sizeIncrement'] markets = binance.fetchMarkets() futs = '200925' for m in markets: #print(m['id']) try: binance.dapiPrivatePostLeverage({'symbol': m['id'], 'leverage': 75}) except: abc=123 huobi = ccxt.huobipro({"urls": {'api':{'public': 'https://api.hbdm.com/swap-api', 'private': 'https://api.hbdm.com/swap-api'}}}) insts = binance.fetchMarkets() #print(insts[0]) bin_futures_all = insts funding = {} exchanges = ['binance', 'kraken', 'ftx', 'huobi', 'okex'] mids = {} bids = {} asks = {} for ex in exchanges: funding[ex] = {} mids[ex] = {} bids[ex] = {} asks[ex] = {} expis = {} futureends = ["_CW", "_NW", "_CQ", "_NQ"] precisions = {} ticksizes = {} rates = {} for ex in exchanges: rates[ex] = {} """ huobi = requests.get("https://api.hbdm.com/api/v1/contract_contract_info").json()['data'] huobis = [] dts = [] for market in huobi: #stri = str(huobi[market]) #if 'usd' in market['quoteId']: if market['symbol'] not in huobis: huobis.append(market['symbol']) dt = market['delivery_date'] expiry = datetime.datetime.strptime( dt, '%Y%m%d' ) #print(dt) dt = dt[-4:] if dt not in dts: dts.append(dt) now = datetime.datetime.utcnow() days = ( expiry - now ).total_seconds() / SECONDS_IN_DAY #print(days) expis[dt] = days #print(expis) #print(huobi[market]) bcontracts = [] pairs = requests.get('https://dapi.binance.com/dapi/v1/exchangeInfo').json() for symbol in pairs['symbols']: split = len(symbol['baseAsset']) #if 'BTC' in symbol['symbol']: #print(symbol['symbol']) normalized = symbol['symbol'][:split] + '-' + symbol['symbol'][split:] bcontracts.append(normalized) config = {TICKER: bcontracts} fh.add_feed(BinanceFutures(config=config, callbacks={TICKER: TickerCallback(ticker)})) ofuts = [] oswaps = [] swaps = requests.get('https://www.okex.com/api/swap/v3/instruments').json() futures = requests.get('https://www.okex.com/api/futures/v3/instruments').json() for s in swaps: oswaps.append(s['instrument_id']) for f in futures: ofuts.append(f['instrument_id']) config = {TICKER_OKS: oswaps ,TICKER_FUTURES: ofuts} fh.add_feed(OKEx(config=config, callbacks={TICKER_FUTURES: TickerCallback(ticker), TICKER_OKS: TickerCallback(ticker)})) #print(expis) takens = [] dts.sort() #print(dts) times = {"_CW": dts[0], "_NW": dts[1], "_CQ": dts[2], "_NQ": dts[3]} for fut in bin_futures_all: try: split = (fut['info']['symbol']).split('_')[1][-4:] expi = datetime.datetime.fromtimestamp(fut['info']['deliveryDate'] / 1000) now = datetime.datetime.utcnow() days = ( expi - now ).total_seconds() / SECONDS_IN_DAY #print(days) #print(days) expis[split] = days precisions[fut['info']['symbol']] = 1 ticksizes[fut['info']['symbol']] = 1 for precision in range(0, fut['info']['pricePrecision']): precisions[fut['info']['symbol']] = precisions[fut['info']['symbol']] / 10 ticksizes[fut['info']['symbol']]= ticksizes[fut['info']['symbol']] / 10 #print(fut['info']['symbol']) #print(ticksizes_binance[fut['info']['symbol']]) #print(precisions_binance[fut['info']['symbol']]) except: PrintException() ftx = requests.get("https://ftx.com/api/funding_rates").json()['result'] doneFtx = {} for rate in ftx: doneFtx[rate['future'].replace('-PERP', '')] = False for rate in ftx: if rate['future'].replace('-PERP', '') != 'BTC' and rate['future'].replace('-PERP', '') != 'ETH': if doneFtx[rate['future'].replace('-PERP', '')] == False: doneFtx[rate['future'].replace('-PERP', '')] = True rates['ftx'][rate['future'].replace('-PERP', '')] = rate['rate'] * 24 allfuts = [] expiries = {} hcontracts = [] for contract in huobis: for futureend in futureends: hcontracts.append(contract + futureend) config = {L2_BOOK: hcontracts} fh.add_feed(HuobiDM(config=config, callbacks={L2_BOOK: BookCallback(book)})) kcontracts = [] binance = requests.get("https://dapi.binance.com/dapi/v1/premiumIndex").json() #binance_f = requests.get("https://fapi.binance.com/fapi/v1/premiumIndex").json() kraken = requests.get("https://futures.kraken.com/derivatives/api/v3/tickers").json() for market in kraken['tickers']: if 'tag' in market: kcontracts.append(market['symbol'].upper()) #print(kcontracts) config = {TICKER: kcontracts} fh.add_feed(KrakenFutures(config=config, callbacks={TICKER: TickerCallback(ticker)})) """ fcontracts = [] ftxmarkets = requests.get("https://ftx.com/api/futures").json()['result'] for market in ftxmarkets: if 'MOVE' not in market['name'] and 'HASH' not in market['name'] and 'BERNIE' not in market['name'] and 'TRUMP' not in market['name'] and 'BIDEN' not in market['name'] and 'HASH' not in market['name'] and 'BLOOM' not in market['name'] and 'PETE' not in market['name'] and 'WARREN' not in market['name'] : fcontracts.append(market['name']) config = {TICKER: fcontracts} fh.add_feed(FTX(config=config, callbacks={TICKER: TickerCallback(ticker)})) #loop = asyncio.get_event_loop() t = threading.Thread(target=loop_in_thread, args=()) t.start() sleep(5) levs = {'EXCH': 0.37553863680201305, 'BTMX': 1.5414075400914378e-07, 'KNC': 6.504949311775132e-05, 'AMPL': 0.0003068704707663269, 'XRP': 0.0006384053495788409, 'ZEC': 0.013748364608799758, 'COMP': 0.0629017519054634, 'ETH': 2.0804287716760284, 'PAXG': 0.06948621343310857, 'FIL': 0.18360624334823186, 'OKB': 0.004431717207269474, 'SUSHI': 0.0007188568091976016, 'LINK': 0.10218120047799369, 'PRIV': 0.05535607927851392, 'EOS': 0.013079940586044732, 'LEO': 1.0682260698596705e-05, 'UNI': 0.006283060901768046, 'ATOM': 0.0039046197880313782, 'TRX': 4.467987974508902e-05, 'BNB': 0.07183256137756255, 'HNT': 1.960033017153904e-05, 'YFI': 2.0804287716760284, 'DEFI': 0.7226054407069601, 'AAVE': 0.011336436999694966, 'TRYB': 2.6519982646385847e-06, 'AVAX': 0.0013048080367771176, 'VET': 1.3166190327889263e-06, 'ALT': 0.5072715134352992, 'ADA': 0.00011662264337981375, 'TOMO': 7.651949823380968e-05, 'BTC': 2.0804287716760284, 'CREAM': 0.029009585298679273, 'DOT': 0.0069686083325276845, 'BCH': 0.8946385933299136, 'XTZ': 0.002295816002623051, 'ETC': 0.0006230217286083596, 'THETA': 0.000824750143370905, 'DOGE': 4.9580533201608386e-08, 'LTC': 0.21036516090203852, 'USDT': 0.00025816775330248843, 'XAUT': 0.05589805457579935, 'DMG': 8.515814764419041e-06, 'MTA': 3.780109516306997e-05, 'SHIT': 0.17053239923391053, 'MKR': 0.01108933548734965, 'CUSDT': 1.3594205858973971e-07, 'CHZ': 1.1212631509476283e-07, 'DRGN': 0.03747354727919051, 'MATIC': 3.849056292476446e-06, 'FLM': 2.4591184576301782e-05, 'BAL': 0.0009743637094156327, 'BSV': 0.6206267187197785, 'BRZ': 1.901169209272247e-06, 'HT': 0.0008406819850498995, 'MID': 0.3298700363253504, 'OMG': 0.0003251759801236203, 'NEO': 0.0024258124136339668, 'ALGO': 0.0002364707420270012, 'RUNE': 6.511742139383555e-05, 'UNISWAP': 0.41328401717525715, 'SXP': 0.002745614771531447, 'SOL': 0.00039568130566015446} for lev in levs: if levs[lev] == 0: levs[lev] = 1 dummy_event = threading.Event() levsdone = True def ohlcvs(): global levs, levsdone while True: try: cvs = {} for arb in mids['ftx']: if 'PERP' in arb: try: if 'PERP' in arb: dummy_event.wait(timeout=((1/25)*1)) ohlcvs = ftx.fetch_ohlcv(arb) vs = [] for ohlcv in ohlcvs: vs.append(ohlcv[-1] * ohlcv[-2]) #print(arb) #print(sum(vs)) if len(vs) > 0: cvs[arb.split('-')[0]] = (sum(vs)) else: cvs[arb.split('-')[0]] = 0 except Exception as e: print(e) t = 0 c = 0 maxi = 0 maxi2 = 0 maxi3 = 0 maxi4 = 0 for v in cvs: t = t + cvs[v] c = c + 1 if cvs[v] > maxi: maxi4 = maxi3 maxi3 = maxi2 maxi2 = maxi maxi = cvs[v] t = t - maxi - maxi2 - maxi3 - maxi4 avg = t / cw #print(avg) levs = {} newlist = {} t = 0 for v in cvs: if cvs[v] < maxi3: t = t + cvs[v] newlist[v] = cvs[v] #print(t) #print('average') #print(avg) maxlev = 0 for v in cvs: levs[v] = (5 * cvs[v] / t) if levs[v] > 10: levs[v] = 4.5 if levs[v] > 7: levs[v] = 3.5 if levs[v] > maxlev: maxlev = levs[v] levsnew = {} t = 0 for l in levs: t = t + levs[l] margin = ftx.privateGetAccount() # marg = 1 / margin['result']['openMarginFraction'] marg = 5 mult = 5 if marg > 20: #((20 / 20.53) * 20) / 2 mult = ((5 / marg) * 5) / 2 print('mult') print(mult) #sleep(1000) for l in levs: levsnew[l] = (levs[l] / t) * mult# edit to account for int rounddown of percs object later #levs = levsnew levsdone = True #print('levs') #print(levs) #levs['BTC'] = 10 #levs['ETH'] = 10 #newlevs = levs #percs2 = {} #for l in levs: # percs2[l] = levs[l] / maxlev # newlevs[l] = percs2[l] * 7.5 #levs = newlevs #for lev in levs: # if levs[lev] == 0: # levs[lev] = 1 print('levs') print(levs) except Exception as e: print(e) t = threading.Thread(target=ohlcvs, args=()) t.daemon = True ts.append(t) t.start() #t = threading.Thread(target=loop_in_thread2, args=()) #t.start() print(expis) import random, string import requests import math funding = {} exchanges = ['binance']#['binance', 'kraken', 'ftx', 'phemex', 'okex'] for ex in exchanges: funding[ex] = {} def randomword(length): letters = string.ascii_lowercase return ''.join(random.choice(letters) for i in range(length)) def doupdates(): global fundingwinners #todo: replace with dapi.binance.com/, and change all of the ccxt stuff in ccxt/binance.py to dapi.binance.com binance2 = requests.get('https://dapi.binance.com/dapi/v1/premiumIndex').json() for obj in binance2: try: funding['binance'][obj['symbol'].replace('USDT', '')] = float(obj['lastFundingRate']) * 3 except: abc=123 """ kraken = requests.get('https://futures.kraken.com/derivatives/api/v3/tickers').json()['tickers'] for obj in kraken: if 'tag' in obj: if obj['tag'] == 'perpetual': funding['kraken'][obj['pair'].replace('XBT','BTC').replace(':USD', '')] = float(obj['fundingRate']) * 3 ftx = requests.get('https://ftx.com/api/funding_rates').json()['result'] takenftx = [] for obj in ftx: if obj['future'].replace('-PERP','') not in takenftx: takenftx.append(obj['future'].replace('-PERP','')) funding['ftx'][obj['future'].replace('-PERP','')] = float(obj['rate']) * 24 phemproducts = requests.get('https://api.phemex.com/exchange/public/cfg/v2/products').json()['data']['products'] phemperps = [] for obj in phemproducts: if obj['type'] == 'Perpetual': phemperps.append(obj['symbol']) for perp in phemperps: phemex = requests.get('https://api.phemex.com/md/ticker/24hr?symbol=' + perp).json()['result'] funding['phemex'][perp.replace('USD', '')] = float(phemex['fundingRate'])/100000000*3 swaps = requests.get('https://www.okex.com/api/swap/v3/instruments').json() for s in swaps: okex = requests.get('https://www.okex.com/api/swap/v3/instruments/' + s['instrument_id'] + '/funding_time').json() funding['okex'][okex['instrument_id'].replace('-USDT-SWAP', '').replace('-USD-SWAP', '')] = float(okex['funding_rate']) * 3 """ rates = {} for ex in funding: rates[ex] = {} for coin in funding[ex]: rates[ex][coin] = [] for ex in funding: for coin in funding[ex]: rates[ex][coin].append(float(funding[ex][coin])) APRS = {} longshorts = {} for ex in rates: APRS[ex] = {} for coin in rates[ex]: maximum = max(rates[ex][coin]) minimum = min(rates[ex][coin]) # #print(coin) # #print(math.fabs(maximum) * 100) # #print(math.fabs(minimum) * 100) # #print(str(0.015*3)) # #print(' ') if math.fabs(maximum) > math.fabs(minimum): if (math.fabs(maximum) * 365 * 100 * 75 / 2) - minArb > 0: if maximum < 0: longshorts[coin] = 'long' else: longshorts[coin] = 'short' APRS[ex][coin] = (math.fabs(maximum) * 365 * 100 * 75 / 2) - minArb else: if (math.fabs(minimum) * 365 * 100 * 75 / 2) - minArb > 0: if minimum < 0: longshorts[coin] = 'long' else: longshorts[coin] = 'short' APRS[ex][coin] = (math.fabs(minimum) * 365 * 100 * 75 / 2) - minArb fundingwinners = [] t = 0 c = 0 for ex in APRS: maximum = 0 winner = "" for coin in APRS[ex]: if APRS[ex][coin] > 0 and 'LINK' in coin or 'BTC' in coin or 'ETH' in coin or 'ADA' in coin: t = t + APRS[ex][coin] c = c + 1 fundingwinners.append({'ex': ex, 'coin': coin, 'arb': APRS[ex][coin]}) # #print({'ex': ex, 'coin': coin, 'arb': APRS[ex][coin]}) #print('The Maximum funding opportunity on ' + ex + ' now is ' + winner + ' with ' + str(maximum) + '%!') percs = {} tobuy = {} for ex in APRS: maximum = 0 winner = "" for coin in APRS[ex]: if APRS[ex][coin] > 0 and 'LINK' in coin or 'BTC' in coin or 'ETH' in coin or 'ADA' in coin: percs[coin] = 1#APRS[ex][coin] / t #((1000000 * 0.66) * 75 /2) / 10 #((25 * 0.25 ) * 75 / 2) / 10 tobuy[coin] = ((balances[coin.split('_')[0].replace('USD', '')] * percs[coin]) * 75 / 2) / 10 tobuy[coin.replace('PERP', futs)] = tobuy[coin] * -1 elif 'LINK' in coin or 'BTC' in coin or 'ETH' in coin or 'ADA' in coin: tobuy[coin] = 0 tobuy[coin.replace('PERP', futs)] = 0 #print(percs) for coin in longshorts: if longshorts[coin] == 'short': try: tobuy[coin] = tobuy[coin] * -1 tobuy[coin.replace('PERP', futs)] = tobuy[coin.replace('PERP', futs)] * -1 except: abc=123 #print(tobuy) ##sleep(100) for coin in tobuy: #cancelall(coin) #-100 btc #-800 #100 #800 try: if math.fabs((tobuy[coin]) / (balances[coin.split('_')[0].replace('USD', '')] * 75)) > ((1/divisor) * 0.5) / 75: if 'BTC' in coin: tobuy[coin] = tobuy[coin] / 10 tobuy[coin] = tobuy[coin] - pos[coin] / 10 else: tobuy[coin] = tobuy[coin] - pos[coin] / 100 #print(tobuy) direction = 'BUY' if tobuy[coin] < 0: direction = 'SELL' tobuy[coin] = tobuy[coin] * -1 if tobuy[coin] != 0: #print(tobuy[coin]) bbo = mids['binance'][coin.replace('USD', '-USD')] #print(int(tobuy[coin] / divisor)) #print(tobuy[coin]) if direction == 'SELL': binance.dapiPrivatePostOrder( {'timeInForce': 'GTC', 'symbol': coin, 'side': direction, 'type': 'LIMIT', 'price': bbo['bid'], 'quantity': int(tobuy[coin] / divisor),"newClientOrderId": "x-v0tiKJjj-" + randomword(15)}) else: binance.dapiPrivatePostOrder( {'timeInForce': 'GTC', 'symbol': coin, 'side': direction, 'type': 'LIMIT', 'price': bbo['ask'], 'quantity': int(tobuy[coin] / divisor),"newClientOrderId": "x-v0tiKJjj-" + randomword(15)}) except: PrintException() #print(tobuy) balances = {} totrade = ['BTC', 'ETH', 'LINK', 'ADA'] pos = {} usdpos = {} skews = {} for t in totrade: balances[t] = 0 def updatePositions(): while True: try: #sleep(3) global positions, skews skewsnew = {} positions = ftx.privateGetPositions()['result'] for p in positions: name = p['future'] #if p['entryPrice'] is not None: # #print(p) skewsnew[p['future'].split('-')[0]] = 0 size = float(p['size']) if p['side'] == 'sell': size = size * -1 pos[p['future']] = size usdpos[p['future']] = float(p['cost']) for p in positions: size = float(p['cost']) #if p['side'] == 'sell': # size = size * -1 skewsnew[p['future'].split('-')[0]] = skewsnew[p['future'].split('-')[0]] + size skews = skewsnew for skew in skews: if skews[skew] > 0.75 * balance or skews[skew] < -0.75 * balance: print('skew ' + skew + ': ' + str(skews[skew])) #sleep(3) dummy_event.wait(timeout=((1/25)*1)) except: #sleep(9) PrintException() lev = 0 firstrun = True firstbalance = 0 firstbtc = 0 def updateBalance(): while True: try: #sleep(3) global firstrun, firstbalance, balance, lev, firstbtc bal2 = ftx.fetchBalance() newbal = 0 ##print(bal2) for coin in bal2['info']['result']: newbal = newbal + coin['usdValue'] t = 0 for pos in usdpos: t = t + math.fabs(usdpos[pos]) lev = t / newbal balance = newbal #print(balance) #print(lev) if firstrun == True and balance != 0 and mids['ftx']['BTC-PERP'] > 0: firstrun = False firstbalance = balance firstbtc = round(balance / mids['ftx']['BTC-PERP'] * 100000000) / 100000000 #if random.randint(0,100) <= 1: # print('balance: ' + str(balance)) #sleep(3) dummy_event.wait(timeout=((1/25)*1)) except: #sleep(10) PrintException() print(1) startnum = threading.active_count() t = threading.Thread(target=updateBalance, args=()) t.daemon = True ts.append(t) t.start() print(3) #sleep(1) t = threading.Thread(target=updatePositions, args=()) t.daemon = True ts.append(t) t.start() print(2) wanting = {} percs = {} def wantingThread(): global wanting, maxmax, trading, ts, runtimefirst, expis, result, percs while True: try: for ex in mids: for dt in mids[ex]: if dt.split('-')[1] not in expis: try: if 'PERP' in dt: expis[dt.split('-')[1]] = 30000 else: now = datetime.datetime.utcnow() expiry = datetime.datetime.strptime( '2021' + dt.split('-')[1], '%Y%m%d' ) days = ( expiry - now ).total_seconds() / SECONDS_IN_DAY #print(days) #print(dt.split('-')[1]) expis[dt.split('-')[1]] = days except: abc=123 try: if levsdone == True: dts = [] coins = [] tempmids = mids for ex in tempmids: for coin in tempmids[ex]: #print(coin) if coin.split('-')[1] not in dts: dts.append(coin.split('-')[1]) if coin.split('-')[0] not in coins: coins.append(coin.split('-')[0]) arbs = {} exes = {} #print(expis) for coin in coins: arbs[coin] = {} exes[coin] = {} for ex in tempmids: for dt in expis: arbs[coin][dt] = [] exes[coin][dt] = {} for coin in coins: for ex in tempmids: for dt in tempmids[ex]: try: exes[coin][dt.split('-')[1]][tempmids[ex][dt]] = ex except: abc=123 #PrintException() # print(dt) if coin in dt: try: if '-' in dt: if 'e' not in str(tempmids[ex][dt]): arbs[coin][dt.split('-')[1]].append(tempmids[ex][dt]) except: #PrintException() abc=123 perps = {} lalaexes = {} for coin in coins: for ex in tempmids: for dt in tempmids[ex]: # print(dt) if coin in dt and 'PERP' in dt: perps[coin] = tempmids[ex][dt] lalaexes[coin] = ex for coin in arbs: for dt in arbs[coin]: try: if '-' in dt: if 'e' not in str(perps[coin]): arbs[coin][dt].append(perps[coin]) exes[coin][dt][perps[coin]] = lalaexes[coin] except: # PrintException() PrintException() #print(exes) #print(arbs) #print(expis) thearbs = [] coinarbs = {} """ print('arbs') print(len(arbs)) print('expis') print(len(expis)) print('tempmids') print(len(tempmids['ftx'])) """ for coin in arbs: for dt in expis: if dt != 'PERP' and coin + '-PERP' in marketList: trading[coin + '-PERP'] = False trading[coin + '-' + dt] = False try: #print(len(arbs[coin][dt])) #if len(arbs[coin][dt]) > 0: minimum = tempmids['ftx'][coin + '-PERP'] #10900/10709 #pos long perp, neg short perp maximum = tempmids['ftx'][coin + '-' + dt] #pos short fut, neg long fut #pos long perp, neg short perp # if coin == 'BTC': ## #print(arbs[coin][dt]) # #print(maximum / minimum) thearb = ((((maximum / minimum)-1)*100)*365*levs[coin]) #1.1/1.05 = #print(thearb) #print(expis[dt]) #print('thearb of ' + coin + ' at ' + dt + ' in total ' + str(thearb)) thearb = thearb / expis[dt] coinarbs[thearb] = coin + '-' + dt #print(thearb) #print( ' ' ) #print(thearb) if thearb > 0.005 or thearb < -0.005: thearbs.append(thearb) else: thearbs.append(0) """ if thearb > 10 and coin != 'USDT': # print(exes[coin][dt]) thearbs.append({'exlong': exes[coin][dt][minimum], 'exshort': exes[coin][dt][maximum], 'coin': coin, 'thearb': thearb, 'dt': dt, 'arbscoindt': arbs[coin][dt]}) #print({'exlong': exes[coin][dt][minimum], 'exshort': exes[coin][dt][maximum], 'coin': coin, 'thearb': thearb, 'dt': dt, 'arbscoindt': arbs[coin][dt]}) """ # print('and after figuring out daily arb it\'s ' + str(thearb)) except Exception as e: if coin not in str(e): PrintException() abc=123#PrintException() t = 0 c = 0 #print('thearbs') #print(len(thearbs)) for arb in thearbs: t = t + math.fabs(arb) if arb != 0: c = c + 1 percs = {} result = {} wanting = {} if c > 0: avg = t / c c1 = c t = 0 c = 0 maxi = 0 t = 0 c = 0 maxi = 0 for arb in thearbs: if math.fabs(arb) > avg: #print(coinarbs[arb] + ' is a good coin no?') if arb > maxi: maxi = arb if arb > maxmax: maxmax = arb t = t + math.fabs(arb) c = c + 1 cvs = {} for arb in thearbs: if arb != 0: try: #if math.fabs(arb) > avg: percs[coinarbs[arb].split('-')[0]] = arb / t lev = coinarbs[arb].split('-')[0] percs[lev] = percs[lev] * 10 result[lev] = ((2 * percs[lev] + 2 * levs[lev]) / 4) * 10 if coinarbs[arb] in usdpos: #-0.3 * 10 * 100 + 360 #-0.16*400*10+1826=1186 #-0.16*400*10-266=-906 wanting[coinarbs[arb]] = percs[lev] * balance wanting[coinarbs[arb]] = wanting[coinarbs[arb]] * -1 wanting[coinarbs[arb]] = wanting[coinarbs[arb]] - usdpos[coinarbs[arb]] else: wanting[coinarbs[arb]] = percs[lev] * balance wanting[coinarbs[arb]] = wanting[coinarbs[arb]] * -1 if coinarbs[arb].split('-')[0] + '-PERP' in usdpos: wanting[coinarbs[arb].split('-')[0] + '-PERP'] = percs[lev] * balance - usdpos[coinarbs[arb].split('-')[0] + '-PERP'] else: wanting[coinarbs[arb].split('-')[0] + '-PERP'] = percs[lev] * balance """ else: if arb != 0: percs[coinarbs[arb].split('-')[0]] = 0 if coinarbs[arb] in usdpos: wanting[coinarbs[arb]] = -1 * usdpos[coinarbs[arb]] else: wanting[coinarbs[arb]] = 0 if coinarbs[arb].split('-')[0] + '-PERP' in usdpos: wanting[coinarbs[arb].split('-')[0] + '-PERP'] = -1 * usdpos[coinarbs[arb].split('-')[0] + '-PERP'] else: wanting[coinarbs[arb].split('-')[0] + '-PERP'] = 0 """ except: PrintException() for pos2 in usdpos: if pos2 not in wanting: if usdpos[pos2] != 0: wanting[pos2] = -1 * usdpos[pos2] #print(pos2) #print(wanting) ##sleep(10) #print('w1') #print(wanting['BTC-0326']) #print(wanting['BTC-1225']) #print(wanting['BTC-PERP']) #pos short fut, neg long fut #pos long perp, neg short perp for coin in wanting: wanting[coin] = wanting[coin] / mids['ftx'][coin] / (balance / 200) # round(0.1 * (0.1)) / 0.1 # abc = -937.0961358420444 # abc = abc / 28 / 10 # abc = ( round(abc * (0.1)) / 0.1) wanting[coin] = ( round(wanting[coin] * (1/sizeIncrements[coin])) / (1/sizeIncrements[coin])) lowers = {} counts = {} twanting = {} #print('w2') #print(wanting['BTC-0326']) #print(wanting['BTC-1225']) #print(wanting['BTC-PERP']) for arb in wanting: lowers[arb] = 999999999999999 counts[arb.split('-')[0]] = 0 twanting[arb] = 0 for arb in wanting: if 'PERP' not in arb: try: counts[arb.split('-')[0]] = counts[arb.split('-')[0]] + 1 twanting[arb.split('-')[0] + '-PERP'] = twanting[arb.split('-')[0] + '-PERP'] + wanting[arb] except: counts[arb.split('-')[0]] = 1 twanting[arb.split('-')[0] + '-PERP'] = 0 + wanting[arb] for arb in wanting: #print(arb) try: if counts[arb.split('-')[0]] == 2 and 'PERP' not in arb: wanting[arb] = wanting[arb] * mids['ftx'][arb] * (balance / 50) wanting[arb] = wanting[arb] + usdpos[arb] wanting[arb] = wanting[arb] * -1 twanting[arb] = wanting[arb] / 2 twanting[arb] = twanting[arb] - usdpos[arb] twanting[arb] = twanting[arb] * -1 twanting[arb] = twanting[arb] / mids['ftx'][arb] / (balance / 50) elif counts[arb.split('-')[0]] == 2 and 'PERP' in arb: wanting[arb.split('-')[0] + '-PERP'] = wanting[arb.split('-')[0] + '-PERP'] * mids['ftx'][arb.split('-')[0] + '-PERP'] * (balance / 50) wanting[arb.split('-')[0] + '-PERP'] = wanting[arb.split('-')[0] + '-PERP'] + usdpos[arb.split('-')[0] + '-PERP'] twanting[arb.split('-')[0] + '-PERP'] = wanting[arb.split('-')[0] + '-PERP'] / 2 wanting[arb.split('-')[0] + '-PERP'] = wanting[arb.split('-')[0] + '-PERP'] - usdpos[arb.split('-')[0] + '-PERP'] twanting[arb.split('-')[0] + '-PERP'] = twanting[arb.split('-')[0] + '-PERP'] / mids['ftx'][arb.split('-')[0] + '-PERP'] / (balance / 50) else: twanting[arb] = wanting[arb] twanting[arb] = round(twanting[arb] * (1/sizeIncrements[arb])) / (1/sizeIncrements[arb]) except: twanting[arb] = wanting[arb] wanting = twanting except: PrintException() #sleep(2) except: PrintException() #sleep(2) t = threading.Thread(target=wantingThread, args=()) t.daemon = True t.start() """ import gspread spreadsheetId = "1kJIZH2Ku2M_T_Grz6rGqMLfCrJhO_y-V77RCuMh4BeA" # Please set the Spreadsheet ID. sheetName = 'Sheet1' # Please set the sheet name. client = gspread.service_account(filename='../google.json') sh = client.open_by_key(spreadsheetId) worksheet = sh.worksheet("Sheet1") try: worksheet2 = sh.worksheet(apikey) except: sh.add_worksheet(apikey, 1, 2) worksheet2 = sh.worksheet(apikey) worksheet2.append_row(['datetime', 'balance']) """ #sleep(10) #sleep(2) #print(levs) ##sleep(1000) ##sleep(1000) #ohlcvs() def doMm(coin): global trading while True: try: try: if skews[coin.split('-')[0]] > 0: abc=123 except: skews[coin.split('-')[0]] = 0 for direction in ['buy', 'sell']: try: if direction == 'buy': prc = bids['ftx'][coin] else: prc = asks['ftx'][coin] except: abc=123 #ob = ftx.fetchOrderBook(coin, 1) #print(ob) dummy_event.wait(timeout=((1/25)*1)) ords = ftx.fetchOpenOrders( coin ) lenords[coin] = len(ords) gogo = True for o in ords: if direction == o['info']['side'] and o['info']['future'] == coin: gogo = False #if 'ETH' in coin: #print('edit') qty = o['info']['remainingSize'] if qty < 0: qty = -1 * qty print(qty) #138 < 18 * 0.15 ##sleep(1) try: if skews[coin.split('-')[0]] > 0: abc=123 except: skews[coin.split('-')[0]] = 0 if direction == 'sell' and -1 * balance / 80 < skews[coin.split('-')[0]] or direction == 'buy' and balance / 80 > skews[coin.split('-')[0]]: if prc != o['info']['price']: trading[coin] = True dummy_event.wait(timeout=((1/25)*1)) try: e = ftx.editOrder( o['info']['id'], coin, 'limit', direction, float(qty), prc, {'postOnly': True} ) except Exception as e: PrintException() try: e = ftx.cancelOrder(o['info']['id'], coin) except: abc=123 #if direction == 'buy': #if 'DEFI' in coin: #print(direction + ' mm edit ' + coin) #PrintException() #else: #if 'DEFI' in coin: #print('same price mm edit gogo false...') if gogo == True: try: try: if skews[coin.split('-')[0]] > 0: abc=123 except: skews[coin.split('-')[0]] = 0 if direction == 'sell' and -1 * balance / 80 < skews[coin.split('-')[0]] or direction == 'buy' and balance / 80 > skews[coin.split('-')[0]]: #print(10 / mids['ftx'][coin]) mm = doOrder(coin, direction, ((balance / 700)) / mids['ftx'][coin], prc, 1) #if direction == 'buy': #print('mm ' + coin) #print(mm) except Exception as e: if coin.split('-')[0] in str(e): mm = doOrder(coin, direction, 1 / mids['ftx'][coin], prc, 1) #if 'DEFI' in coin: #print(direction + ' mm ' + coin) except: PrintException() import sys print(0) ##sleep(1) #sleep(7) doCalc() ##sleep(1) ##sleep(20) #updateBalance() ##sleep(5) #doupdates() ##sleep(35) startnum = 0
test_dag_serialization.py
# # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """Unit tests for stringified DAGs.""" import copy import importlib import importlib.util import json import multiprocessing import os from datetime import datetime, timedelta from glob import glob from unittest import mock import pendulum import pytest from dateutil.relativedelta import FR, relativedelta from kubernetes.client import models as k8s from airflow.exceptions import SerializationError from airflow.hooks.base import BaseHook from airflow.kubernetes.pod_generator import PodGenerator from airflow.models import DAG, Connection, DagBag from airflow.models.baseoperator import BaseOperator, BaseOperatorLink from airflow.models.mappedoperator import MappedOperator from airflow.models.param import Param, ParamsDict from airflow.models.xcom import XCOM_RETURN_KEY, XCom from airflow.operators.bash import BashOperator from airflow.security import permissions from airflow.serialization.json_schema import load_dag_schema_dict from airflow.serialization.serialized_objects import ( SerializedBaseOperator, SerializedDAG, SerializedTaskGroup, ) from airflow.timetables.simple import NullTimetable, OnceTimetable from airflow.utils import timezone from airflow.utils.context import Context from airflow.utils.operator_resources import Resources from airflow.utils.task_group import TaskGroup from tests.test_utils.mock_operators import CustomOperator, GoogleLink, MockOperator from tests.test_utils.timetables import CustomSerializationTimetable, cron_timetable, delta_timetable executor_config_pod = k8s.V1Pod( metadata=k8s.V1ObjectMeta(name="my-name"), spec=k8s.V1PodSpec( containers=[ k8s.V1Container(name="base", volume_mounts=[k8s.V1VolumeMount(name="my-vol", mount_path="/vol/")]) ] ), ) serialized_simple_dag_ground_truth = { "__version": 1, "dag": { "default_args": { "__type": "dict", "__var": { "depends_on_past": False, "retries": 1, "retry_delay": {"__type": "timedelta", "__var": 300.0}, "max_retry_delay": {"__type": "timedelta", "__var": 600.0}, "sla": {"__type": "timedelta", "__var": 100.0}, }, }, "start_date": 1564617600.0, '_task_group': { '_group_id': None, 'prefix_group_id': True, 'children': {'bash_task': ('operator', 'bash_task'), 'custom_task': ('operator', 'custom_task')}, 'tooltip': '', 'ui_color': 'CornflowerBlue', 'ui_fgcolor': '#000', 'upstream_group_ids': [], 'downstream_group_ids': [], 'upstream_task_ids': [], 'downstream_task_ids': [], }, "is_paused_upon_creation": False, "_dag_id": "simple_dag", "doc_md": "### DAG Tutorial Documentation", "fileloc": None, "tasks": [ { "task_id": "bash_task", "owner": "airflow", "retries": 1, "retry_delay": 300.0, "max_retry_delay": 600.0, "sla": 100.0, "downstream_task_ids": [], "_inlets": [], "_is_dummy": False, "_outlets": [], "ui_color": "#f0ede4", "ui_fgcolor": "#000", "template_ext": ['.sh', '.bash'], "template_fields": ['bash_command', 'env'], "template_fields_renderers": {'bash_command': 'bash', 'env': 'json'}, "bash_command": "echo {{ task.task_id }}", "_task_type": "BashOperator", "_task_module": "airflow.operators.bash", "pool": "default_pool", "executor_config": { '__type': 'dict', '__var': { "pod_override": { '__type': 'k8s.V1Pod', '__var': PodGenerator.serialize_pod(executor_config_pod), } }, }, "doc_md": "### Task Tutorial Documentation", }, { "task_id": "custom_task", "retries": 1, "retry_delay": 300.0, "max_retry_delay": 600.0, "sla": 100.0, "downstream_task_ids": [], "_inlets": [], "_is_dummy": False, "_outlets": [], "_operator_extra_links": [{"tests.test_utils.mock_operators.CustomOpLink": {}}], "ui_color": "#fff", "ui_fgcolor": "#000", "template_ext": [], "template_fields": ['bash_command'], "template_fields_renderers": {}, "_task_type": "CustomOperator", "_task_module": "tests.test_utils.mock_operators", "pool": "default_pool", }, ], "schedule_interval": {"__type": "timedelta", "__var": 86400.0}, "timezone": "UTC", "_access_control": { "__type": "dict", "__var": { "test_role": { "__type": "set", "__var": [permissions.ACTION_CAN_READ, permissions.ACTION_CAN_EDIT], } }, }, "edge_info": {}, "dag_dependencies": [], "params": {}, }, } ROOT_FOLDER = os.path.realpath( os.path.join(os.path.dirname(os.path.realpath(__file__)), os.pardir, os.pardir) ) CUSTOM_TIMETABLE_SERIALIZED = { "__type": "tests.test_utils.timetables.CustomSerializationTimetable", "__var": {"value": "foo"}, } def make_example_dags(module_path): """Loads DAGs from a module for test.""" dagbag = DagBag(module_path) return dagbag.dags def make_simple_dag(): """Make very simple DAG to verify serialization result.""" with DAG( dag_id='simple_dag', default_args={ "retries": 1, "retry_delay": timedelta(minutes=5), "max_retry_delay": timedelta(minutes=10), "depends_on_past": False, "sla": timedelta(seconds=100), }, start_date=datetime(2019, 8, 1), is_paused_upon_creation=False, access_control={"test_role": {permissions.ACTION_CAN_READ, permissions.ACTION_CAN_EDIT}}, doc_md="### DAG Tutorial Documentation", ) as dag: CustomOperator(task_id='custom_task') BashOperator( task_id='bash_task', bash_command='echo {{ task.task_id }}', owner='airflow', executor_config={"pod_override": executor_config_pod}, doc_md="### Task Tutorial Documentation", ) return {'simple_dag': dag} def make_user_defined_macro_filter_dag(): """Make DAGs with user defined macros and filters using locally defined methods. For Webserver, we do not include ``user_defined_macros`` & ``user_defined_filters``. The examples here test: (1) functions can be successfully displayed on UI; (2) templates with function macros have been rendered before serialization. """ def compute_next_execution_date(dag, execution_date): return dag.following_schedule(execution_date) default_args = {'start_date': datetime(2019, 7, 10)} dag = DAG( 'user_defined_macro_filter_dag', default_args=default_args, user_defined_macros={ 'next_execution_date': compute_next_execution_date, }, user_defined_filters={'hello': lambda name: f'Hello {name}'}, catchup=False, ) BashOperator( task_id='echo', bash_command='echo "{{ next_execution_date(dag, execution_date) }}"', dag=dag, ) return {dag.dag_id: dag} def collect_dags(dag_folder=None): """Collects DAGs to test.""" dags = {} dags.update(make_simple_dag()) dags.update(make_user_defined_macro_filter_dag()) if dag_folder: if isinstance(dag_folder, (list, tuple)): patterns = dag_folder else: patterns = [dag_folder] else: patterns = [ "airflow/example_dags", "airflow/providers/*/example_dags", "airflow/providers/*/*/example_dags", ] for pattern in patterns: for directory in glob(f"{ROOT_FOLDER}/{pattern}"): dags.update(make_example_dags(directory)) # Filter subdags as they are stored in same row in Serialized Dag table dags = {dag_id: dag for dag_id, dag in dags.items() if not dag.is_subdag} return dags def get_timetable_based_simple_dag(timetable): """Create a simple_dag variant that uses timetable instead of schedule_interval.""" dag = collect_dags(["airflow/example_dags"])["simple_dag"] dag.timetable = timetable dag.schedule_interval = timetable.summary return dag def serialize_subprocess(queue, dag_folder): """Validate pickle in a subprocess.""" dags = collect_dags(dag_folder) for dag in dags.values(): queue.put(SerializedDAG.to_json(dag)) queue.put(None) @pytest.fixture() def timetable_plugin(monkeypatch): """Patch plugins manager to always and only return our custom timetable.""" from airflow import plugins_manager monkeypatch.setattr(plugins_manager, "initialize_timetables_plugins", lambda: None) monkeypatch.setattr( plugins_manager, "timetable_classes", {"tests.test_utils.timetables.CustomSerializationTimetable": CustomSerializationTimetable}, ) class TestStringifiedDAGs: """Unit tests for stringified DAGs.""" def setup_method(self): self.backup_base_hook_get_connection = BaseHook.get_connection BaseHook.get_connection = mock.Mock( return_value=Connection( extra=( '{' '"project_id": "mock", ' '"location": "mock", ' '"instance": "mock", ' '"database_type": "postgres", ' '"use_proxy": "False", ' '"use_ssl": "False"' '}' ) ) ) self.maxDiff = None def teardown_method(self): BaseHook.get_connection = self.backup_base_hook_get_connection def test_serialization(self): """Serialization and deserialization should work for every DAG and Operator.""" dags = collect_dags() serialized_dags = {} for _, v in dags.items(): dag = SerializedDAG.to_dict(v) SerializedDAG.validate_schema(dag) serialized_dags[v.dag_id] = dag # Compares with the ground truth of JSON string. self.validate_serialized_dag(serialized_dags['simple_dag'], serialized_simple_dag_ground_truth) @pytest.mark.parametrize( "timetable, serialized_timetable", [ ( cron_timetable("0 0 * * *"), { "__type": "airflow.timetables.interval.CronDataIntervalTimetable", "__var": {"expression": "0 0 * * *", "timezone": "UTC"}, }, ), ( CustomSerializationTimetable("foo"), CUSTOM_TIMETABLE_SERIALIZED, ), ], ) @pytest.mark.usefixtures("timetable_plugin") def test_dag_serialization_to_timetable(self, timetable, serialized_timetable): """Verify a timetable-backed schedule_interval is excluded in serialization.""" dag = get_timetable_based_simple_dag(timetable) serialized_dag = SerializedDAG.to_dict(dag) SerializedDAG.validate_schema(serialized_dag) expected = copy.deepcopy(serialized_simple_dag_ground_truth) del expected["dag"]["schedule_interval"] expected["dag"]["timetable"] = serialized_timetable self.validate_serialized_dag(serialized_dag, expected) def test_dag_serialization_unregistered_custom_timetable(self): """Verify serialization fails without timetable registration.""" dag = get_timetable_based_simple_dag(CustomSerializationTimetable("bar")) with pytest.raises(SerializationError) as ctx: SerializedDAG.to_dict(dag) message = ( "Failed to serialize DAG 'simple_dag': Timetable class " "'tests.test_utils.timetables.CustomSerializationTimetable' " "is not registered" ) assert str(ctx.value) == message def validate_serialized_dag(self, json_dag, ground_truth_dag): """Verify serialized DAGs match the ground truth.""" assert json_dag['dag']['fileloc'].split('/')[-1] == 'test_dag_serialization.py' json_dag['dag']['fileloc'] = None def sorted_serialized_dag(dag_dict: dict): """ Sorts the "tasks" list and "access_control" permissions in the serialised dag python dictionary. This is needed as the order of items should not matter but assertEqual would fail if the order of items changes in the dag dictionary """ dag_dict["dag"]["tasks"] = sorted(dag_dict["dag"]["tasks"], key=lambda x: sorted(x.keys())) dag_dict["dag"]["_access_control"]["__var"]["test_role"]["__var"] = sorted( dag_dict["dag"]["_access_control"]["__var"]["test_role"]["__var"] ) return dag_dict assert sorted_serialized_dag(ground_truth_dag) == sorted_serialized_dag(json_dag) def test_deserialization_across_process(self): """A serialized DAG can be deserialized in another process.""" # Since we need to parse the dags twice here (once in the subprocess, # and once here to get a DAG to compare to) we don't want to load all # dags. queue = multiprocessing.Queue() proc = multiprocessing.Process(target=serialize_subprocess, args=(queue, "airflow/example_dags")) proc.daemon = True proc.start() stringified_dags = {} while True: v = queue.get() if v is None: break dag = SerializedDAG.from_json(v) assert isinstance(dag, DAG) stringified_dags[dag.dag_id] = dag dags = collect_dags("airflow/example_dags") assert set(stringified_dags.keys()) == set(dags.keys()) # Verify deserialized DAGs. for dag_id in stringified_dags: self.validate_deserialized_dag(stringified_dags[dag_id], dags[dag_id]) def test_roundtrip_provider_example_dags(self): dags = collect_dags( [ "airflow/providers/*/example_dags", "airflow/providers/*/*/example_dags", ] ) # Verify deserialized DAGs. for dag in dags.values(): serialized_dag = SerializedDAG.from_json(SerializedDAG.to_json(dag)) self.validate_deserialized_dag(serialized_dag, dag) @pytest.mark.parametrize( "timetable", [cron_timetable("0 0 * * *"), CustomSerializationTimetable("foo")], ) @pytest.mark.usefixtures("timetable_plugin") def test_dag_roundtrip_from_timetable(self, timetable): """Verify a timetable-backed serialization can be deserialized.""" dag = get_timetable_based_simple_dag(timetable) roundtripped = SerializedDAG.from_json(SerializedDAG.to_json(dag)) self.validate_deserialized_dag(roundtripped, dag) def validate_deserialized_dag(self, serialized_dag, dag): """ Verify that all example DAGs work with DAG Serialization by checking fields between Serialized Dags & non-Serialized Dags """ fields_to_check = dag.get_serialized_fields() - { # Doesn't implement __eq__ properly. Check manually. 'timetable', 'timezone', # Need to check fields in it, to exclude functions. 'default_args', "_task_group", 'params', } for field in fields_to_check: assert getattr(serialized_dag, field) == getattr( dag, field ), f'{dag.dag_id}.{field} does not match' if dag.default_args: for k, v in dag.default_args.items(): if callable(v): # Check we stored _something_. assert k in serialized_dag.default_args else: assert ( v == serialized_dag.default_args[k] ), f'{dag.dag_id}.default_args[{k}] does not match' assert serialized_dag.timetable.summary == dag.timetable.summary assert serialized_dag.timetable.serialize() == dag.timetable.serialize() assert serialized_dag.timezone.name == dag.timezone.name for task_id in dag.task_ids: self.validate_deserialized_task(serialized_dag.get_task(task_id), dag.get_task(task_id)) def validate_deserialized_task( self, serialized_task, task, ): """Verify non-airflow operators are casted to BaseOperator.""" assert isinstance(serialized_task, SerializedBaseOperator) assert not isinstance(task, SerializedBaseOperator) assert isinstance(task, BaseOperator) # Every task should have a task_group property -- even if it's the DAG's root task group assert serialized_task.task_group fields_to_check = task.get_serialized_fields() - { # Checked separately '_task_type', 'subdag', # Type is excluded, so don't check it '_log', # List vs tuple. Check separately 'template_ext', 'template_fields', # We store the string, real dag has the actual code 'on_failure_callback', 'on_success_callback', 'on_retry_callback', # Checked separately 'resources', 'params', } assert serialized_task.task_type == task.task_type assert set(serialized_task.template_ext) == set(task.template_ext) assert set(serialized_task.template_fields) == set(task.template_fields) assert serialized_task.upstream_task_ids == task.upstream_task_ids assert serialized_task.downstream_task_ids == task.downstream_task_ids for field in fields_to_check: assert getattr(serialized_task, field) == getattr( task, field ), f'{task.dag.dag_id}.{task.task_id}.{field} does not match' if serialized_task.resources is None: assert task.resources is None or task.resources == [] else: assert serialized_task.resources == task.resources # Ugly hack as some operators override params var in their init if isinstance(task.params, ParamsDict): assert serialized_task.params.dump() == task.params.dump() # Check that for Deserialized task, task.subdag is None for all other Operators # except for the SubDagOperator where task.subdag is an instance of DAG object if task.task_type == "SubDagOperator": assert serialized_task.subdag is not None assert isinstance(serialized_task.subdag, DAG) else: assert serialized_task.subdag is None @pytest.mark.parametrize( "dag_start_date, task_start_date, expected_task_start_date", [ (datetime(2019, 8, 1, tzinfo=timezone.utc), None, datetime(2019, 8, 1, tzinfo=timezone.utc)), ( datetime(2019, 8, 1, tzinfo=timezone.utc), datetime(2019, 8, 2, tzinfo=timezone.utc), datetime(2019, 8, 2, tzinfo=timezone.utc), ), ( datetime(2019, 8, 1, tzinfo=timezone.utc), datetime(2019, 7, 30, tzinfo=timezone.utc), datetime(2019, 8, 1, tzinfo=timezone.utc), ), (pendulum.datetime(2019, 8, 1, tz='UTC'), None, pendulum.datetime(2019, 8, 1, tz='UTC')), ], ) def test_deserialization_start_date(self, dag_start_date, task_start_date, expected_task_start_date): dag = DAG(dag_id='simple_dag', start_date=dag_start_date) BaseOperator(task_id='simple_task', dag=dag, start_date=task_start_date) serialized_dag = SerializedDAG.to_dict(dag) if not task_start_date or dag_start_date >= task_start_date: # If dag.start_date > task.start_date -> task.start_date=dag.start_date # because of the logic in dag.add_task() assert "start_date" not in serialized_dag["dag"]["tasks"][0] else: assert "start_date" in serialized_dag["dag"]["tasks"][0] dag = SerializedDAG.from_dict(serialized_dag) simple_task = dag.task_dict["simple_task"] assert simple_task.start_date == expected_task_start_date def test_deserialization_with_dag_context(self): with DAG(dag_id='simple_dag', start_date=datetime(2019, 8, 1, tzinfo=timezone.utc)) as dag: BaseOperator(task_id='simple_task') # should not raise RuntimeError: dictionary changed size during iteration SerializedDAG.to_dict(dag) @pytest.mark.parametrize( "dag_end_date, task_end_date, expected_task_end_date", [ (datetime(2019, 8, 1, tzinfo=timezone.utc), None, datetime(2019, 8, 1, tzinfo=timezone.utc)), ( datetime(2019, 8, 1, tzinfo=timezone.utc), datetime(2019, 8, 2, tzinfo=timezone.utc), datetime(2019, 8, 1, tzinfo=timezone.utc), ), ( datetime(2019, 8, 1, tzinfo=timezone.utc), datetime(2019, 7, 30, tzinfo=timezone.utc), datetime(2019, 7, 30, tzinfo=timezone.utc), ), ], ) def test_deserialization_end_date(self, dag_end_date, task_end_date, expected_task_end_date): dag = DAG(dag_id='simple_dag', start_date=datetime(2019, 8, 1), end_date=dag_end_date) BaseOperator(task_id='simple_task', dag=dag, end_date=task_end_date) serialized_dag = SerializedDAG.to_dict(dag) if not task_end_date or dag_end_date <= task_end_date: # If dag.end_date < task.end_date -> task.end_date=dag.end_date # because of the logic in dag.add_task() assert "end_date" not in serialized_dag["dag"]["tasks"][0] else: assert "end_date" in serialized_dag["dag"]["tasks"][0] dag = SerializedDAG.from_dict(serialized_dag) simple_task = dag.task_dict["simple_task"] assert simple_task.end_date == expected_task_end_date @pytest.mark.parametrize( "serialized_timetable, expected_timetable", [ ({"__type": "airflow.timetables.simple.NullTimetable", "__var": {}}, NullTimetable()), ( { "__type": "airflow.timetables.interval.CronDataIntervalTimetable", "__var": {"expression": "@weekly", "timezone": "UTC"}, }, cron_timetable("0 0 * * 0"), ), ({"__type": "airflow.timetables.simple.OnceTimetable", "__var": {}}, OnceTimetable()), ( { "__type": "airflow.timetables.interval.DeltaDataIntervalTimetable", "__var": {"delta": 86400.0}, }, delta_timetable(timedelta(days=1)), ), (CUSTOM_TIMETABLE_SERIALIZED, CustomSerializationTimetable("foo")), ], ) @pytest.mark.usefixtures("timetable_plugin") def test_deserialization_timetable( self, serialized_timetable, expected_timetable, ): serialized = { "__version": 1, "dag": { "default_args": {"__type": "dict", "__var": {}}, "_dag_id": "simple_dag", "fileloc": __file__, "tasks": [], "timezone": "UTC", "timetable": serialized_timetable, }, } SerializedDAG.validate_schema(serialized) dag = SerializedDAG.from_dict(serialized) assert dag.timetable == expected_timetable def test_deserialization_timetable_unregistered(self): serialized = { "__version": 1, "dag": { "default_args": {"__type": "dict", "__var": {}}, "_dag_id": "simple_dag", "fileloc": __file__, "tasks": [], "timezone": "UTC", "timetable": CUSTOM_TIMETABLE_SERIALIZED, }, } SerializedDAG.validate_schema(serialized) with pytest.raises(ValueError) as ctx: SerializedDAG.from_dict(serialized) message = ( "Timetable class " "'tests.test_utils.timetables.CustomSerializationTimetable' " "is not registered" ) assert str(ctx.value) == message @pytest.mark.parametrize( "serialized_schedule_interval, expected_timetable", [ (None, NullTimetable()), ("@weekly", cron_timetable("0 0 * * 0")), ("@once", OnceTimetable()), ( {"__type": "timedelta", "__var": 86400.0}, delta_timetable(timedelta(days=1)), ), ], ) def test_deserialization_schedule_interval( self, serialized_schedule_interval, expected_timetable, ): """Test DAGs serialized before 2.2 can be correctly deserialized.""" serialized = { "__version": 1, "dag": { "default_args": {"__type": "dict", "__var": {}}, "_dag_id": "simple_dag", "fileloc": __file__, "tasks": [], "timezone": "UTC", "schedule_interval": serialized_schedule_interval, }, } SerializedDAG.validate_schema(serialized) dag = SerializedDAG.from_dict(serialized) assert dag.timetable == expected_timetable @pytest.mark.parametrize( "val, expected", [ (relativedelta(days=-1), {"__type": "relativedelta", "__var": {"days": -1}}), (relativedelta(month=1, days=-1), {"__type": "relativedelta", "__var": {"month": 1, "days": -1}}), # Every friday (relativedelta(weekday=FR), {"__type": "relativedelta", "__var": {"weekday": [4]}}), # Every second friday (relativedelta(weekday=FR(2)), {"__type": "relativedelta", "__var": {"weekday": [4, 2]}}), ], ) def test_roundtrip_relativedelta(self, val, expected): serialized = SerializedDAG._serialize(val) assert serialized == expected round_tripped = SerializedDAG._deserialize(serialized) assert val == round_tripped @pytest.mark.parametrize( "val, expected_val", [ (None, {}), ({"param_1": "value_1"}, {"param_1": "value_1"}), ({"param_1": {1, 2, 3}}, {"param_1": {1, 2, 3}}), ], ) def test_dag_params_roundtrip(self, val, expected_val): """ Test that params work both on Serialized DAGs & Tasks """ dag = DAG(dag_id='simple_dag', params=val) BaseOperator(task_id='simple_task', dag=dag, start_date=datetime(2019, 8, 1)) serialized_dag_json = SerializedDAG.to_json(dag) serialized_dag = json.loads(serialized_dag_json) assert "params" in serialized_dag["dag"] deserialized_dag = SerializedDAG.from_dict(serialized_dag) deserialized_simple_task = deserialized_dag.task_dict["simple_task"] assert expected_val == deserialized_dag.params.dump() assert expected_val == deserialized_simple_task.params.dump() def test_invalid_params(self): """ Test to make sure that only native Param objects are being passed as dag or task params """ class S3Param(Param): def __init__(self, path: str): schema = {"type": "string", "pattern": r"s3:\/\/(.+?)\/(.+)"} super().__init__(default=path, schema=schema) dag = DAG(dag_id='simple_dag', params={'path': S3Param('s3://my_bucket/my_path')}) with pytest.raises(SerializationError): SerializedDAG.to_dict(dag) dag = DAG(dag_id='simple_dag') BaseOperator( task_id='simple_task', dag=dag, start_date=datetime(2019, 8, 1), params={'path': S3Param('s3://my_bucket/my_path')}, ) @pytest.mark.parametrize( 'param', [ Param('my value', description='hello', schema={'type': 'string'}), Param('my value', description='hello'), Param(None, description=None), ], ) def test_full_param_roundtrip(self, param): """ Test to make sure that only native Param objects are being passed as dag or task params """ dag = DAG(dag_id='simple_dag', params={'my_param': param}) serialized_json = SerializedDAG.to_json(dag) serialized = json.loads(serialized_json) SerializedDAG.validate_schema(serialized) dag = SerializedDAG.from_dict(serialized) assert dag.params["my_param"] == param.value observed_param = dag.params.get_param('my_param') assert isinstance(observed_param, Param) assert observed_param.description == param.description assert observed_param.schema == param.schema @pytest.mark.parametrize( "val, expected_val", [ (None, {}), ({"param_1": "value_1"}, {"param_1": "value_1"}), ({"param_1": {1, 2, 3}}, {"param_1": {1, 2, 3}}), ], ) def test_task_params_roundtrip(self, val, expected_val): """ Test that params work both on Serialized DAGs & Tasks """ dag = DAG(dag_id='simple_dag') BaseOperator(task_id='simple_task', dag=dag, params=val, start_date=datetime(2019, 8, 1)) serialized_dag = SerializedDAG.to_dict(dag) if val: assert "params" in serialized_dag["dag"]["tasks"][0] else: assert "params" not in serialized_dag["dag"]["tasks"][0] deserialized_dag = SerializedDAG.from_dict(serialized_dag) deserialized_simple_task = deserialized_dag.task_dict["simple_task"] assert expected_val == deserialized_simple_task.params.dump() @pytest.mark.parametrize( ("bash_command", "serialized_links", "links"), [ pytest.param( "true", [{'tests.test_utils.mock_operators.CustomOpLink': {}}], {"Google Custom": "http://google.com/custom_base_link?search=true"}, id="non-indexed-link", ), pytest.param( ["echo", "true"], [ {'tests.test_utils.mock_operators.CustomBaseIndexOpLink': {'index': 0}}, {'tests.test_utils.mock_operators.CustomBaseIndexOpLink': {'index': 1}}, ], { "BigQuery Console #1": "https://console.cloud.google.com/bigquery?j=echo", "BigQuery Console #2": "https://console.cloud.google.com/bigquery?j=true", }, id="multiple-indexed-links", ), ], ) def test_extra_serialized_field_and_operator_links( self, bash_command, serialized_links, links, dag_maker ): """ Assert extra field exists & OperatorLinks defined in Plugins and inbuilt Operator Links. This tests also depends on GoogleLink() registered as a plugin in tests/plugins/test_plugin.py The function tests that if extra operator links are registered in plugin in ``operator_extra_links`` and the same is also defined in the Operator in ``BaseOperator.operator_extra_links``, it has the correct extra link. If CustomOperator is called with a string argument for bash_command it has a single link, if called with an array it has one link per element. We use this to test the serialization of link data. """ test_date = timezone.DateTime(2019, 8, 1, tzinfo=timezone.utc) with dag_maker(dag_id='simple_dag', start_date=test_date) as dag: CustomOperator(task_id='simple_task', bash_command=bash_command) serialized_dag = SerializedDAG.to_dict(dag) assert "bash_command" in serialized_dag["dag"]["tasks"][0] dag = SerializedDAG.from_dict(serialized_dag) simple_task = dag.task_dict["simple_task"] assert getattr(simple_task, "bash_command") == bash_command ######################################################### # Verify Operator Links work with Serialized Operator ######################################################### # Check Serialized version of operator link only contains the inbuilt Op Link assert serialized_dag["dag"]["tasks"][0]["_operator_extra_links"] == serialized_links # Test all the extra_links are set assert set(simple_task.extra_links) == {*links, 'airflow', 'github', 'google'} dr = dag_maker.create_dagrun(execution_date=test_date) (ti,) = dr.task_instances XCom.set( key='search_query', value=bash_command, task_id=simple_task.task_id, dag_id=simple_task.dag_id, run_id=dr.run_id, ) # Test Deserialized inbuilt link for name, expected in links.items(): link = simple_task.get_extra_links(ti, name) assert link == expected # Test Deserialized link registered via Airflow Plugin link = simple_task.get_extra_links(ti, GoogleLink.name) assert "https://www.google.com" == link def test_extra_operator_links_logs_error_for_non_registered_extra_links(self, caplog): """ Assert OperatorLinks not registered via Plugins and if it is not an inbuilt Operator Link, it can still deserialize the DAG (does not error) but just logs an error """ class TaskStateLink(BaseOperatorLink): """OperatorLink not registered via Plugins nor a built-in OperatorLink""" name = 'My Link' def get_link(self, operator, dttm): return 'https://www.google.com' class MyOperator(BaseOperator): """Just a DummyOperator using above defined Extra Operator Link""" operator_extra_links = [TaskStateLink()] def execute(self, context: Context): pass with DAG(dag_id='simple_dag', start_date=datetime(2019, 8, 1)) as dag: MyOperator(task_id='blah') serialized_dag = SerializedDAG.to_dict(dag) with caplog.at_level("ERROR", logger="airflow.serialization.serialized_objects"): SerializedDAG.from_dict(serialized_dag) expected_err_msg = ( "Operator Link class 'tests.serialization.test_dag_serialization.TaskStateLink' not registered" ) assert expected_err_msg in caplog.text class ClassWithCustomAttributes: """ Class for testing purpose: allows to create objects with custom attributes in one single statement. """ def __init__(self, **kwargs): for key, value in kwargs.items(): setattr(self, key, value) def __str__(self): return f"{self.__class__.__name__}({str(self.__dict__)})" def __repr__(self): return self.__str__() def __eq__(self, other): return self.__dict__ == other.__dict__ def __ne__(self, other): return not self.__eq__(other) @pytest.mark.parametrize( "templated_field, expected_field", [ (None, None), ([], []), ({}, {}), ("{{ task.task_id }}", "{{ task.task_id }}"), (["{{ task.task_id }}", "{{ task.task_id }}"]), ({"foo": "{{ task.task_id }}"}, {"foo": "{{ task.task_id }}"}), ({"foo": {"bar": "{{ task.task_id }}"}}, {"foo": {"bar": "{{ task.task_id }}"}}), ( [{"foo1": {"bar": "{{ task.task_id }}"}}, {"foo2": {"bar": "{{ task.task_id }}"}}], [{"foo1": {"bar": "{{ task.task_id }}"}}, {"foo2": {"bar": "{{ task.task_id }}"}}], ), ( {"foo": {"bar": {"{{ task.task_id }}": ["sar"]}}}, {"foo": {"bar": {"{{ task.task_id }}": ["sar"]}}}, ), ( ClassWithCustomAttributes( att1="{{ task.task_id }}", att2="{{ task.task_id }}", template_fields=["att1"] ), "ClassWithCustomAttributes(" "{'att1': '{{ task.task_id }}', 'att2': '{{ task.task_id }}', 'template_fields': ['att1']})", ), ( ClassWithCustomAttributes( nested1=ClassWithCustomAttributes( att1="{{ task.task_id }}", att2="{{ task.task_id }}", template_fields=["att1"] ), nested2=ClassWithCustomAttributes( att3="{{ task.task_id }}", att4="{{ task.task_id }}", template_fields=["att3"] ), template_fields=["nested1"], ), "ClassWithCustomAttributes(" "{'nested1': ClassWithCustomAttributes({'att1': '{{ task.task_id }}', " "'att2': '{{ task.task_id }}', 'template_fields': ['att1']}), " "'nested2': ClassWithCustomAttributes({'att3': '{{ task.task_id }}', 'att4': " "'{{ task.task_id }}', 'template_fields': ['att3']}), 'template_fields': ['nested1']})", ), ], ) def test_templated_fields_exist_in_serialized_dag(self, templated_field, expected_field): """ Test that templated_fields exists for all Operators in Serialized DAG Since we don't want to inflate arbitrary python objects (it poses a RCE/security risk etc.) we want check that non-"basic" objects are turned in to strings after deserializing. """ dag = DAG("test_serialized_template_fields", start_date=datetime(2019, 8, 1)) with dag: BashOperator(task_id="test", bash_command=templated_field) serialized_dag = SerializedDAG.to_dict(dag) deserialized_dag = SerializedDAG.from_dict(serialized_dag) deserialized_test_task = deserialized_dag.task_dict["test"] assert expected_field == getattr(deserialized_test_task, "bash_command") def test_dag_serialized_fields_with_schema(self): """ Additional Properties are disabled on DAGs. This test verifies that all the keys in DAG.get_serialized_fields are listed in Schema definition. """ dag_schema: dict = load_dag_schema_dict()["definitions"]["dag"]["properties"] # The parameters we add manually in Serialization needs to be ignored ignored_keys: set = { "is_subdag", "tasks", "has_on_success_callback", "has_on_failure_callback", "dag_dependencies", "params", } keys_for_backwards_compat: set = { "_concurrency", } dag_params: set = set(dag_schema.keys()) - ignored_keys - keys_for_backwards_compat assert set(DAG.get_serialized_fields()) == dag_params def test_operator_subclass_changing_base_defaults(self): assert ( BaseOperator(task_id='dummy').do_xcom_push is True ), "Precondition check! If this fails the test won't make sense" class MyOperator(BaseOperator): def __init__(self, do_xcom_push=False, **kwargs): super().__init__(**kwargs) self.do_xcom_push = do_xcom_push op = MyOperator(task_id='dummy') assert op.do_xcom_push is False blob = SerializedBaseOperator.serialize_operator(op) serialized_op = SerializedBaseOperator.deserialize_operator(blob) assert serialized_op.do_xcom_push is False def test_no_new_fields_added_to_base_operator(self): """ This test verifies that there are no new fields added to BaseOperator. And reminds that tests should be added for it. """ base_operator = BaseOperator(task_id="10") fields = {k: v for (k, v) in vars(base_operator).items() if k in BaseOperator.get_serialized_fields()} assert fields == { '_inlets': [], '_log': base_operator.log, '_outlets': [], '_pre_execute_hook': None, '_post_execute_hook': None, 'depends_on_past': False, 'downstream_task_ids': set(), 'do_xcom_push': True, 'doc': None, 'doc_json': None, 'doc_md': None, 'doc_rst': None, 'doc_yaml': None, 'email': None, 'email_on_failure': True, 'email_on_retry': True, 'execution_timeout': None, 'executor_config': {}, 'max_active_tis_per_dag': None, 'max_retry_delay': None, 'on_execute_callback': None, 'on_failure_callback': None, 'on_retry_callback': None, 'on_success_callback': None, 'owner': 'airflow', 'params': {}, 'pool': 'default_pool', 'pool_slots': 1, 'priority_weight': 1, 'queue': 'default', 'resources': None, 'retries': 0, 'retry_delay': timedelta(0, 300), 'retry_exponential_backoff': False, 'run_as_user': None, 'sla': None, 'task_id': '10', 'trigger_rule': 'all_success', 'wait_for_downstream': False, 'weight_rule': 'downstream', }, """ !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! ACTION NEEDED! PLEASE READ THIS CAREFULLY AND CORRECT TESTS CAREFULLY Some fields were added to the BaseOperator! Please add them to the list above and make sure that you add support for DAG serialization - you should add the field to `airflow/serialization/schema.json` - they should have correct type defined there. Note that we do not support versioning yet so you should only add optional fields to BaseOperator. !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! """ def test_operator_deserialize_old_names(self): blob = { "task_id": "custom_task", "_downstream_task_ids": ['foo'], "template_ext": [], "template_fields": ['bash_command'], "template_fields_renderers": {}, "_task_type": "CustomOperator", "_task_module": "tests.test_utils.mock_operators", "pool": "default_pool", "ui_color": "#fff", "ui_fgcolor": "#000", } SerializedDAG._json_schema.validate(blob, _schema=load_dag_schema_dict()['definitions']['operator']) serialized_op = SerializedBaseOperator.deserialize_operator(blob) assert serialized_op.downstream_task_ids == {'foo'} def test_task_resources(self): """ Test task resources serialization/deserialization. """ from airflow.operators.dummy import DummyOperator execution_date = datetime(2020, 1, 1) task_id = 'task1' with DAG("test_task_resources", start_date=execution_date) as dag: task = DummyOperator(task_id=task_id, resources={"cpus": 0.1, "ram": 2048}) SerializedDAG.validate_schema(SerializedDAG.to_dict(dag)) json_dag = SerializedDAG.from_json(SerializedDAG.to_json(dag)) deserialized_task = json_dag.get_task(task_id) assert deserialized_task.resources == task.resources assert isinstance(deserialized_task.resources, Resources) def test_task_group_serialization(self): """ Test TaskGroup serialization/deserialization. """ from airflow.operators.dummy import DummyOperator execution_date = datetime(2020, 1, 1) with DAG("test_task_group_serialization", start_date=execution_date) as dag: task1 = DummyOperator(task_id="task1") with TaskGroup("group234") as group234: _ = DummyOperator(task_id="task2") with TaskGroup("group34") as group34: _ = DummyOperator(task_id="task3") _ = DummyOperator(task_id="task4") task5 = DummyOperator(task_id="task5") task1 >> group234 group34 >> task5 dag_dict = SerializedDAG.to_dict(dag) SerializedDAG.validate_schema(dag_dict) json_dag = SerializedDAG.from_json(SerializedDAG.to_json(dag)) self.validate_deserialized_dag(json_dag, dag) serialized_dag = SerializedDAG.deserialize_dag(SerializedDAG.serialize_dag(dag)) assert serialized_dag.task_group.children assert serialized_dag.task_group.children.keys() == dag.task_group.children.keys() def check_task_group(node): try: children = node.children.values() except AttributeError: # Round-trip serialization and check the result expected_serialized = SerializedBaseOperator.serialize_operator(dag.get_task(node.task_id)) expected_deserialized = SerializedBaseOperator.deserialize_operator(expected_serialized) expected_dict = SerializedBaseOperator.serialize_operator(expected_deserialized) assert node assert SerializedBaseOperator.serialize_operator(node) == expected_dict return for child in children: check_task_group(child) check_task_group(serialized_dag.task_group) def test_deps_sorted(self): """ Tests serialize_operator, make sure the deps is in order """ from airflow.operators.dummy import DummyOperator from airflow.sensors.external_task import ExternalTaskSensor execution_date = datetime(2020, 1, 1) with DAG(dag_id="test_deps_sorted", start_date=execution_date) as dag: task1 = ExternalTaskSensor( task_id="task1", external_dag_id="external_dag_id", mode="reschedule", ) task2 = DummyOperator(task_id="task2") task1 >> task2 serialize_op = SerializedBaseOperator.serialize_operator(dag.task_dict["task1"]) deps = serialize_op["deps"] assert deps == [ 'airflow.ti_deps.deps.not_in_retry_period_dep.NotInRetryPeriodDep', 'airflow.ti_deps.deps.not_previously_skipped_dep.NotPreviouslySkippedDep', 'airflow.ti_deps.deps.prev_dagrun_dep.PrevDagrunDep', 'airflow.ti_deps.deps.ready_to_reschedule.ReadyToRescheduleDep', 'airflow.ti_deps.deps.trigger_rule_dep.TriggerRuleDep', ] def test_task_group_sorted(self): """ Tests serialize_task_group, make sure the list is in order """ from airflow.operators.dummy import DummyOperator from airflow.serialization.serialized_objects import SerializedTaskGroup """ start ╱ ╲ ╱ ╲ task_group_up1 task_group_up2 (task_up1) (task_up2) ╲ ╱ task_group_middle (task_middle) ╱ ╲ task_group_down1 task_group_down2 (task_down1) (task_down2) ╲ ╱ ╲ ╱ end """ execution_date = datetime(2020, 1, 1) with DAG(dag_id="test_task_group_sorted", start_date=execution_date) as dag: start = DummyOperator(task_id="start") with TaskGroup("task_group_up1") as task_group_up1: _ = DummyOperator(task_id="task_up1") with TaskGroup("task_group_up2") as task_group_up2: _ = DummyOperator(task_id="task_up2") with TaskGroup("task_group_middle") as task_group_middle: _ = DummyOperator(task_id="task_middle") with TaskGroup("task_group_down1") as task_group_down1: _ = DummyOperator(task_id="task_down1") with TaskGroup("task_group_down2") as task_group_down2: _ = DummyOperator(task_id="task_down2") end = DummyOperator(task_id='end') start >> task_group_up1 start >> task_group_up2 task_group_up1 >> task_group_middle task_group_up2 >> task_group_middle task_group_middle >> task_group_down1 task_group_middle >> task_group_down2 task_group_down1 >> end task_group_down2 >> end task_group_middle_dict = SerializedTaskGroup.serialize_task_group( dag.task_group.children["task_group_middle"] ) upstream_group_ids = task_group_middle_dict["upstream_group_ids"] assert upstream_group_ids == ['task_group_up1', 'task_group_up2'] upstream_task_ids = task_group_middle_dict["upstream_task_ids"] assert upstream_task_ids == ['task_group_up1.task_up1', 'task_group_up2.task_up2'] downstream_group_ids = task_group_middle_dict["downstream_group_ids"] assert downstream_group_ids == ['task_group_down1', 'task_group_down2'] task_group_down1_dict = SerializedTaskGroup.serialize_task_group( dag.task_group.children["task_group_down1"] ) downstream_task_ids = task_group_down1_dict["downstream_task_ids"] assert downstream_task_ids == ['end'] def test_edge_info_serialization(self): """ Tests edge_info serialization/deserialization. """ from airflow.operators.dummy import DummyOperator from airflow.utils.edgemodifier import Label with DAG("test_edge_info_serialization", start_date=datetime(2020, 1, 1)) as dag: task1 = DummyOperator(task_id="task1") task2 = DummyOperator(task_id="task2") task1 >> Label("test label") >> task2 dag_dict = SerializedDAG.to_dict(dag) SerializedDAG.validate_schema(dag_dict) json_dag = SerializedDAG.from_json(SerializedDAG.to_json(dag)) self.validate_deserialized_dag(json_dag, dag) serialized_dag = SerializedDAG.deserialize_dag(SerializedDAG.serialize_dag(dag)) assert serialized_dag.edge_info == dag.edge_info @pytest.mark.parametrize("mode", ["poke", "reschedule"]) def test_serialize_sensor(self, mode): from airflow.sensors.base import BaseSensorOperator class DummySensor(BaseSensorOperator): def poke(self, context: Context): return False op = DummySensor(task_id='dummy', mode=mode, poke_interval=23) blob = SerializedBaseOperator.serialize_operator(op) assert "deps" in blob serialized_op = SerializedBaseOperator.deserialize_operator(blob) assert op.deps == serialized_op.deps @pytest.mark.parametrize( "passed_success_callback, expected_value", [ ({"on_success_callback": lambda x: print("hi")}, True), ({}, False), ], ) def test_dag_on_success_callback_roundtrip(self, passed_success_callback, expected_value): """ Test that when on_success_callback is passed to the DAG, has_on_success_callback is stored in Serialized JSON blob. And when it is de-serialized dag.has_on_success_callback is set to True. When the callback is not set, has_on_success_callback should not be stored in Serialized blob and so default to False on de-serialization """ dag = DAG(dag_id='test_dag_on_success_callback_roundtrip', **passed_success_callback) BaseOperator(task_id='simple_task', dag=dag, start_date=datetime(2019, 8, 1)) serialized_dag = SerializedDAG.to_dict(dag) if expected_value: assert "has_on_success_callback" in serialized_dag["dag"] else: assert "has_on_success_callback" not in serialized_dag["dag"] deserialized_dag = SerializedDAG.from_dict(serialized_dag) assert deserialized_dag.has_on_success_callback is expected_value @pytest.mark.parametrize( "passed_failure_callback, expected_value", [ ({"on_failure_callback": lambda x: print("hi")}, True), ({}, False), ], ) def test_dag_on_failure_callback_roundtrip(self, passed_failure_callback, expected_value): """ Test that when on_failure_callback is passed to the DAG, has_on_failure_callback is stored in Serialized JSON blob. And when it is de-serialized dag.has_on_failure_callback is set to True. When the callback is not set, has_on_failure_callback should not be stored in Serialized blob and so default to False on de-serialization """ dag = DAG(dag_id='test_dag_on_failure_callback_roundtrip', **passed_failure_callback) BaseOperator(task_id='simple_task', dag=dag, start_date=datetime(2019, 8, 1)) serialized_dag = SerializedDAG.to_dict(dag) if expected_value: assert "has_on_failure_callback" in serialized_dag["dag"] else: assert "has_on_failure_callback" not in serialized_dag["dag"] deserialized_dag = SerializedDAG.from_dict(serialized_dag) assert deserialized_dag.has_on_failure_callback is expected_value @pytest.mark.parametrize( "object_to_serialized, expected_output", [ ( ['task_1', 'task_5', 'task_2', 'task_4'], ['task_1', 'task_5', 'task_2', 'task_4'], ), ( {'task_1', 'task_5', 'task_2', 'task_4'}, ['task_1', 'task_2', 'task_4', 'task_5'], ), ( ('task_1', 'task_5', 'task_2', 'task_4'), ['task_1', 'task_5', 'task_2', 'task_4'], ), ( { "staging_schema": [ {"key:": "foo", "value": "bar"}, {"key:": "this", "value": "that"}, "test_conf", ] }, { "staging_schema": [ {"__type": "dict", "__var": {"key:": "foo", "value": "bar"}}, { "__type": "dict", "__var": {"key:": "this", "value": "that"}, }, "test_conf", ] }, ), ( {"task3": "test3", "task2": "test2", "task1": "test1"}, {"task1": "test1", "task2": "test2", "task3": "test3"}, ), ( ('task_1', 'task_5', 'task_2', 3, ["x", "y"]), ['task_1', 'task_5', 'task_2', 3, ["x", "y"]], ), ], ) def test_serialized_objects_are_sorted(self, object_to_serialized, expected_output): """Test Serialized Sets are sorted while list and tuple preserve order""" serialized_obj = SerializedDAG._serialize(object_to_serialized) if isinstance(serialized_obj, dict) and "__type" in serialized_obj: serialized_obj = serialized_obj["__var"] assert serialized_obj == expected_output def test_params_upgrade(self): """when pre-2.2.0 param (i.e. primitive) is deserialized we convert to Param""" serialized = { "__version": 1, "dag": { "_dag_id": "simple_dag", "fileloc": '/path/to/file.py', "tasks": [], "timezone": "UTC", "params": {"none": None, "str": "str", "dict": {"a": "b"}}, }, } dag = SerializedDAG.from_dict(serialized) assert dag.params["none"] is None assert isinstance(dag.params.get_param("none"), Param) assert dag.params["str"] == "str" def test_params_serialize_default_2_2_0(self): """In 2.0.0, param ``default`` was assumed to be json-serializable objects and were not run though the standard serializer function. In 2.2.2 we serialize param ``default``. We keep this test only to ensure that params stored in 2.2.0 can still be parsed correctly.""" serialized = { "__version": 1, "dag": { "_dag_id": "simple_dag", "fileloc": '/path/to/file.py', "tasks": [], "timezone": "UTC", "params": {"str": {"__class": "airflow.models.param.Param", "default": "str"}}, }, } SerializedDAG.validate_schema(serialized) dag = SerializedDAG.from_dict(serialized) assert isinstance(dag.params.get_param("str"), Param) assert dag.params["str"] == "str" def test_params_serialize_default(self): serialized = { "__version": 1, "dag": { "_dag_id": "simple_dag", "fileloc": '/path/to/file.py', "tasks": [], "timezone": "UTC", "params": { "my_param": { "default": "a string value", "description": "hello", "schema": {"__var": {"type": "string"}, "__type": "dict"}, "__class": "airflow.models.param.Param", } }, }, } SerializedDAG.validate_schema(serialized) dag = SerializedDAG.from_dict(serialized) assert dag.params["my_param"] == "a string value" param = dag.params.get_param('my_param') assert isinstance(param, Param) assert param.description == 'hello' assert param.schema == {'type': 'string'} def test_kubernetes_optional(): """Serialisation / deserialisation continues to work without kubernetes installed""" def mock__import__(name, globals_=None, locals_=None, fromlist=(), level=0): if level == 0 and name.partition('.')[0] == 'kubernetes': raise ImportError("No module named 'kubernetes'") return importlib.__import__(name, globals=globals_, locals=locals_, fromlist=fromlist, level=level) with mock.patch('builtins.__import__', side_effect=mock__import__) as import_mock: # load module from scratch, this does not replace any already imported # airflow.serialization.serialized_objects module in sys.modules spec = importlib.util.find_spec("airflow.serialization.serialized_objects") module = importlib.util.module_from_spec(spec) spec.loader.exec_module(module) # if we got this far, the module did not try to load kubernetes, but # did it try to access airflow.kubernetes.*? imported_airflow = { c.args[0].split('.', 2)[1] for c in import_mock.call_args_list if c.args[0].startswith("airflow.") } assert "kubernetes" not in imported_airflow # pod loading is not supported when kubernetes is not available pod_override = { '__type': 'k8s.V1Pod', '__var': PodGenerator.serialize_pod(executor_config_pod), } with pytest.raises(RuntimeError): module.BaseSerialization.from_dict(pod_override) # basic serialization should succeed module.SerializedDAG.to_dict(make_simple_dag()["simple_dag"]) def test_mapped_operator_serde(): literal = [1, 2, {'a': 'b'}] real_op = BashOperator.partial(task_id='a', executor_config={'dict': {'sub': 'value'}}).expand( bash_command=literal ) serialized = SerializedBaseOperator._serialize(real_op) assert serialized == { '_is_dummy': False, '_is_mapped': True, '_task_module': 'airflow.operators.bash', '_task_type': 'BashOperator', 'downstream_task_ids': [], 'mapped_kwargs': { 'bash_command': [ 1, 2, {"__type": "dict", "__var": {'a': 'b'}}, ] }, 'partial_kwargs': { 'executor_config': { '__type': 'dict', '__var': { 'dict': {"__type": "dict", "__var": {'sub': 'value'}}, }, }, }, 'task_id': 'a', 'operator_extra_links': [], 'template_fields': ['bash_command', 'env'], 'template_ext': ['.sh', '.bash'], 'ui_color': '#f0ede4', 'ui_fgcolor': '#000', } op = SerializedBaseOperator.deserialize_operator(serialized) assert isinstance(op, MappedOperator) assert op.deps is MappedOperator.deps_for(BaseOperator) assert op.operator_class == "airflow.operators.bash.BashOperator" assert op.mapped_kwargs['bash_command'] == literal assert op.partial_kwargs['executor_config'] == {'dict': {'sub': 'value'}} def test_mapped_operator_xcomarg_serde(): from airflow.models.xcom_arg import XComArg with DAG("test-dag", start_date=datetime(2020, 1, 1)) as dag: task1 = BaseOperator(task_id="op1") mapped = MockOperator.partial(task_id='task_2').expand(arg2=XComArg(task1)) serialized = SerializedBaseOperator._serialize(mapped) assert serialized == { '_is_dummy': False, '_is_mapped': True, '_task_module': 'tests.test_utils.mock_operators', '_task_type': 'MockOperator', 'downstream_task_ids': [], 'mapped_kwargs': {'arg2': {'__type': 'xcomref', '__var': {'task_id': 'op1', 'key': 'return_value'}}}, 'partial_kwargs': {}, 'task_id': 'task_2', 'template_fields': ['arg1', 'arg2'], 'template_ext': [], 'operator_extra_links': [], 'ui_color': '#fff', 'ui_fgcolor': '#000', } op = SerializedBaseOperator.deserialize_operator(serialized) assert op.deps is MappedOperator.deps_for(BaseOperator) arg = op.mapped_kwargs['arg2'] assert arg.task_id == 'op1' assert arg.key == XCOM_RETURN_KEY serialized_dag: DAG = SerializedDAG.from_dict(SerializedDAG.to_dict(dag)) xcom_arg = serialized_dag.task_dict['task_2'].mapped_kwargs['arg2'] assert isinstance(xcom_arg, XComArg) assert xcom_arg.operator is serialized_dag.task_dict['op1'] def test_task_resources_serde(): """ Test task resources serialization/deserialization. """ from airflow.operators.dummy import DummyOperator execution_date = datetime(2020, 1, 1) task_id = 'task1' with DAG("test_task_resources", start_date=execution_date) as _: task = DummyOperator(task_id=task_id, resources={"cpus": 0.1, "ram": 2048}) serialized = SerializedBaseOperator._serialize(task) assert serialized['resources'] == { "cpus": {"name": "CPU", "qty": 0.1, "units_str": "core(s)"}, "disk": {"name": "Disk", "qty": 512, "units_str": "MB"}, "gpus": {"name": "GPU", "qty": 0, "units_str": "gpu(s)"}, "ram": {"name": "RAM", "qty": 2048, "units_str": "MB"}, } def test_mapped_decorator_serde(): from airflow.decorators import task from airflow.models.xcom_arg import XComArg from airflow.serialization.serialized_objects import _XComRef with DAG("test-dag", start_date=datetime(2020, 1, 1)) as dag: op1 = BaseOperator(task_id="op1") @task(retry_delay=30) def x(arg1, arg2, arg3): print(arg1, arg2, arg3) x.partial(arg1=[1, 2, {"a": "b"}]).expand(arg2={"a": 1, "b": 2}, arg3=XComArg(op1)) original = dag.get_task("x") serialized = SerializedBaseOperator._serialize(original) assert serialized == { '_is_dummy': False, '_is_mapped': True, '_task_module': 'airflow.decorators.python', '_task_type': '_PythonDecoratedOperator', 'downstream_task_ids': [], 'partial_kwargs': { 'op_args': [], 'op_kwargs': {'arg1': [1, 2, {"__type": "dict", "__var": {'a': 'b'}}]}, 'retry_delay': {'__type': 'timedelta', '__var': 30.0}, }, 'mapped_kwargs': {}, 'mapped_op_kwargs': { 'arg2': {"__type": "dict", "__var": {'a': 1, 'b': 2}}, 'arg3': {'__type': 'xcomref', '__var': {'task_id': 'op1', 'key': 'return_value'}}, }, 'operator_extra_links': [], 'ui_color': '#ffefeb', 'ui_fgcolor': '#000', 'task_id': 'x', 'template_ext': [], 'template_fields': ['op_args', 'op_kwargs'], } deserialized = SerializedBaseOperator.deserialize_operator(serialized) assert isinstance(deserialized, MappedOperator) assert deserialized.deps is MappedOperator.deps_for(BaseOperator) assert deserialized.upstream_task_ids == set() assert deserialized.downstream_task_ids == set() assert deserialized.mapped_op_kwargs == { "arg2": {"a": 1, "b": 2}, "arg3": _XComRef("op1", XCOM_RETURN_KEY), } assert deserialized.partial_kwargs == { "op_args": [], "op_kwargs": {"arg1": [1, 2, {"a": "b"}]}, "retry_delay": timedelta(seconds=30), } def test_mapped_task_group_serde(): execution_date = datetime(2020, 1, 1) literal = [1, 2, {'a': 'b'}] with DAG("test", start_date=execution_date) as dag: with TaskGroup("process_one", dag=dag).expand(literal) as process_one: BaseOperator(task_id='one') serialized = SerializedTaskGroup.serialize_task_group(process_one) assert serialized == { '_group_id': 'process_one', 'children': {'process_one.one': ('operator', 'process_one.one')}, 'downstream_group_ids': [], 'downstream_task_ids': [], 'prefix_group_id': True, 'tooltip': '', 'ui_color': 'CornflowerBlue', 'ui_fgcolor': '#000', 'upstream_group_ids': [], 'upstream_task_ids': [], 'mapped_arg': [ 1, 2, {"__type": "dict", "__var": {'a': 'b'}}, ], } with DAG("test", start_date=execution_date): SerializedTaskGroup.deserialize_task_group(serialized, None, dag.task_dict)
resubmit.py
import threading import time from automation.ena.ena_brokering import ENASubmission __author__ = 'Ahmed G. Ali' experiments = '''ahmed_a7a E-MTAB-3851''' # MAGE_8337 E-MTAB-94848373''' def reload_experiment(dir_name, accession): # conan = ConanPage(url=settings.CONAN_URL) # conan.login(login_email=settings.CONAN_LOGIN_EMAIL) # conan.unload_experiment(accession) # job_status = retrieve_job_status(accession) # while job_status != 'COMPLETED': # if job_status == 'FAILED': # break # raise Exception('%s Unload Failed' % accession) # time.sleep(30) # job_status = retrieve_job_status(accession) ena = ENASubmission(exp_dir=dir_name, accession=accession, skip_validation=True, new_alias='_resub', replace_idf=True) ena.submit_experiment() # conan.load_experiment(accession) # job_status = retrieve_job_status(accession) # while job_status != 'COMPLETED': # if job_status == 'FAILED': # raise Exception('Loading Failed') # time.sleep(30) # job_status = retrieve_job_status(accession) def main(): threads = [] for line in experiments.split('\n'): folder, acc = line.strip().split(' ') t = threading.Thread(target=reload_experiment, args=(folder, acc)) threads.append(t) t.daemon = False running = [] while True: while len(running) <= 3 and threads: t = threads.pop() t.start() running.append(t) time.sleep(5) if not running: break for t in running: if not t.is_alive(): print 'removing thread' running.remove(t) break print 'Running Threads: ', len(running) print 'pending Threads: ', len(threads) time.sleep(30) if __name__ == '__main__': main()
manager.py
#!/usr/bin/env python3 import datetime import importlib import os import sys import fcntl import errno import signal import shutil import subprocess import textwrap import time import traceback from multiprocessing import Process from typing import Dict, List from common.basedir import BASEDIR from common.spinner import Spinner from common.text_window import TextWindow from selfdrive.hardware import HARDWARE, EON, PC from selfdrive.swaglog import cloudlog, add_logentries_handler os.environ['BASEDIR'] = BASEDIR sys.path.append(os.path.join(BASEDIR, "pyextra")) from common.op_params import opParams from common.travis_checker import travis op_params = opParams() traffic_lights = op_params.get('traffic_lights') TOTAL_SCONS_NODES = 1040 WEBCAM = os.getenv("WEBCAM") is not None PREBUILT = os.path.exists(os.path.join(BASEDIR, 'prebuilt')) def unblock_stdout(): # get a non-blocking stdout child_pid, child_pty = os.forkpty() if child_pid != 0: # parent # child is in its own process group, manually pass kill signals signal.signal(signal.SIGINT, lambda signum, frame: os.kill(child_pid, signal.SIGINT)) signal.signal(signal.SIGTERM, lambda signum, frame: os.kill(child_pid, signal.SIGTERM)) fcntl.fcntl(sys.stdout, fcntl.F_SETFL, fcntl.fcntl(sys.stdout, fcntl.F_GETFL) | os.O_NONBLOCK) while True: try: dat = os.read(child_pty, 4096) except OSError as e: if e.errno == errno.EIO: break continue if not dat: break try: sys.stdout.write(dat.decode('utf8')) except (OSError, IOError, UnicodeDecodeError): pass # os.wait() returns a tuple with the pid and a 16 bit value # whose low byte is the signal number and whose high byte is the exit satus exit_status = os.wait()[1] >> 8 os._exit(exit_status) if __name__ == "__main__": unblock_stdout() from common.spinner import Spinner from common.text_window import TextWindow if not (os.system("python3 -m pip list | grep 'scipy' ") == 0): os.system("cd /data/openpilot/installer/scipy_installer/ && ./scipy_installer") # Run scons spinner = Spinner(noop=(__name__ != "__main__")) spinner.update("0") def build(): for retry in [True, False]: # run scons env = os.environ.copy() env['SCONS_PROGRESS'] = "1" env['SCONS_CACHE'] = "1" nproc = os.cpu_count() j_flag = "" if nproc is None else f"-j{nproc - 1}" scons = subprocess.Popen(["scons", j_flag], cwd=BASEDIR, env=env, stderr=subprocess.PIPE) compile_output = [] # Read progress from stderr and update spinner while scons.poll() is None: try: line = scons.stderr.readline() # type: ignore if line is None: continue line = line.rstrip() prefix = b'progress: ' if line.startswith(prefix): i = int(line[len(prefix):]) spinner.update("%d" % (70.0 * (i / TOTAL_SCONS_NODES))) elif len(line): compile_output.append(line) print(line.decode('utf8', 'replace')) except Exception: pass if scons.returncode != 0: # Read remaining output r = scons.stderr.read().split(b'\n') # type: ignore compile_output += r if retry: if not os.getenv("CI"): print("scons build failed, cleaning in") for i in range(3, -1, -1): print("....%d" % i) time.sleep(1) subprocess.check_call(["scons", "-c"], cwd=BASEDIR, env=env) shutil.rmtree("/tmp/scons_cache", ignore_errors=True) shutil.rmtree("/data/scons_cache", ignore_errors=True) else: print("scons build failed after retry") process = subprocess.check_output(['git', 'pull']) os.system('reboot') sys.exit(1) else: # Build failed log errors errors = [line.decode('utf8', 'replace') for line in compile_output if any([err in line for err in [b'error: ', b'not found, needed by target']])] error_s = "\n".join(errors) add_logentries_handler(cloudlog) cloudlog.error("scons build failed\n" + error_s) # Show TextWindow no_ui = __name__ != "__main__" error_s = "\n \n".join(["\n".join(textwrap.wrap(e, 65)) for e in errors]) with TextWindow("openpilot failed to build\n \n" + error_s, noop=no_ui) as t: t.wait_for_exit() process = subprocess.check_output(['git', 'pull']) os.system('reboot') exit(1) else: break if __name__ == "__main__" and not PREBUILT: build() import cereal import cereal.messaging as messaging from common.params import Params import selfdrive.crash as crash from selfdrive.registration import register from selfdrive.version import version, dirty from selfdrive.loggerd.config import ROOT from selfdrive.launcher import launcher from selfdrive.hardware.eon.apk import update_apks, pm_apply_packages, start_offroad # comment out anything you don't want to run managed_processes = { "thermald": "selfdrive.thermald.thermald", "trafficd": ("selfdrive/trafficd", ["./trafficd"]), "traffic_manager": "selfdrive.trafficd.traffic_manager", "uploader": "selfdrive.loggerd.uploader", "deleter": "selfdrive.loggerd.deleter", "controlsd": "selfdrive.controls.controlsd", "plannerd": "selfdrive.controls.plannerd", "radard": "selfdrive.controls.radard", "dmonitoringd": "selfdrive.monitoring.dmonitoringd", "ubloxd": ("selfdrive/locationd", ["./ubloxd"]), "loggerd": ("selfdrive/loggerd", ["./loggerd"]), "logmessaged": "selfdrive.logmessaged", "locationd": "selfdrive.locationd.locationd", "tombstoned": "selfdrive.tombstoned", "logcatd": ("selfdrive/logcatd", ["./logcatd"]), "proclogd": ("selfdrive/proclogd", ["./proclogd"]), "boardd": ("selfdrive/boardd", ["./boardd"]), # not used directly "pandad": "selfdrive.pandad", "ui": ("selfdrive/ui", ["./ui"]), "calibrationd": "selfdrive.locationd.calibrationd", "paramsd": "selfdrive.locationd.paramsd", "camerad": ("selfdrive/camerad", ["./camerad"]), "sensord": ("selfdrive/sensord", ["./sensord"]), "clocksd": ("selfdrive/clocksd", ["./clocksd"]), "gpsd": ("selfdrive/sensord", ["./gpsd"]), "updated": "selfdrive.updated", "dmonitoringmodeld": ("selfdrive/modeld", ["./dmonitoringmodeld"]), "modeld": ("selfdrive/modeld", ["./modeld"]), "mapd": ("selfdrive/mapd", ["./mapd.py"]), "rtshield": "selfdrive.rtshield", } daemon_processes = { "manage_athenad": ("selfdrive.athena.manage_athenad", "AthenadPid"), } running: Dict[str, Process] = {} def get_running(): return running # due to qualcomm kernel bugs SIGKILLing camerad sometimes causes page table corruption unkillable_processes = ['camerad'] # processes to end with SIGINT instead of SIGTERM interrupt_processes: List[str] = [] # processes to end with SIGKILL instead of SIGTERM kill_processes = ['sensord'] persistent_processes = [ 'thermald', 'logmessaged', 'ui', 'uploader', 'deleter', ] if not PC: persistent_processes += [ 'updated', 'logcatd', 'tombstoned', 'sensord', ] car_started_processes = [ 'controlsd', 'plannerd', 'loggerd', 'radard', 'calibrationd', 'paramsd', 'camerad', 'modeld', 'proclogd', 'ubloxd', 'mapd', 'locationd', 'clocksd', ] driver_view_processes = [ 'camerad', 'dmonitoringd', 'dmonitoringmodeld' ] if traffic_lights: car_started_processes += [ 'trafficd', 'traffic_manager', ] if not PC or WEBCAM: car_started_processes += [ 'ubloxd', 'dmonitoringd', 'dmonitoringmodeld', ] if EON: car_started_processes += [ 'gpsd', 'rtshield', ] def register_managed_process(name, desc, car_started=False): global managed_processes, car_started_processes, persistent_processes managed_processes[name] = desc if car_started: car_started_processes.append(name) else: persistent_processes.append(name) # ****************** process management functions ****************** def nativelauncher(pargs, cwd): # exec the process os.chdir(cwd) # because when extracted from pex zips permissions get lost -_- os.chmod(pargs[0], 0o700) os.execvp(pargs[0], pargs) def start_managed_process(name): if name in running or name not in managed_processes: return proc = managed_processes[name] if isinstance(proc, str): cloudlog.info("starting python %s" % proc) running[name] = Process(name=name, target=launcher, args=(proc,)) else: pdir, pargs = proc cwd = os.path.join(BASEDIR, pdir) cloudlog.info("starting process %s" % name) running[name] = Process(name=name, target=nativelauncher, args=(pargs, cwd)) running[name].start() def start_daemon_process(name): params = Params() proc, pid_param = daemon_processes[name] pid = params.get(pid_param, encoding='utf-8') if pid is not None: try: os.kill(int(pid), 0) with open(f'/proc/{pid}/cmdline') as f: if proc in f.read(): # daemon is running return except (OSError, FileNotFoundError): # process is dead pass cloudlog.info("starting daemon %s" % name) proc = subprocess.Popen(['python', '-m', proc], # pylint: disable=subprocess-popen-preexec-fn stdin=open('/dev/null', 'r'), stdout=open('/dev/null', 'w'), stderr=open('/dev/null', 'w'), preexec_fn=os.setpgrp) params.put(pid_param, str(proc.pid)) def prepare_managed_process(p, build=False): proc = managed_processes[p] if isinstance(proc, str): # import this python cloudlog.info("preimporting %s" % proc) importlib.import_module(proc) elif os.path.isfile(os.path.join(BASEDIR, proc[0], "SConscript")) and build: # build this process cloudlog.info("building %s" % (proc,)) try: subprocess.check_call(["scons", "u", "-j4", "."], cwd=os.path.join(BASEDIR, proc[0])) except subprocess.CalledProcessError: # clean and retry if the build failed cloudlog.warning("building %s failed, cleaning and retrying" % (proc, )) subprocess.check_call(["scons", "-u", "-c", "."], cwd=os.path.join(BASEDIR, proc[0])) subprocess.check_call(["scons", "-u", "-j4", "."], cwd=os.path.join(BASEDIR, proc[0])) def join_process(process, timeout): # Process().join(timeout) will hang due to a python 3 bug: https://bugs.python.org/issue28382 # We have to poll the exitcode instead t = time.time() while time.time() - t < timeout and process.exitcode is None: time.sleep(0.001) def kill_managed_process(name): if name not in running or name not in managed_processes: return cloudlog.info("killing %s" % name) if running[name].exitcode is None: if name in interrupt_processes: os.kill(running[name].pid, signal.SIGINT) elif name in kill_processes: os.kill(running[name].pid, signal.SIGKILL) else: running[name].terminate() join_process(running[name], 5) if running[name].exitcode is None: if name in unkillable_processes: cloudlog.critical("unkillable process %s failed to exit! rebooting in 15 if it doesn't die" % name) join_process(running[name], 15) if running[name].exitcode is None: cloudlog.critical("unkillable process %s failed to die!" % name) os.system("date >> /data/unkillable_reboot") os.sync() HARDWARE.reboot() raise RuntimeError else: cloudlog.info("killing %s with SIGKILL" % name) os.kill(running[name].pid, signal.SIGKILL) running[name].join() cloudlog.info("%s is dead with %d" % (name, running[name].exitcode)) del running[name] def cleanup_all_processes(signal, frame): cloudlog.info("caught ctrl-c %s %s" % (signal, frame)) if EON: pm_apply_packages('disable') for name in list(running.keys()): kill_managed_process(name) cloudlog.info("everything is dead") def send_managed_process_signal(name, sig): if name not in running or name not in managed_processes or \ running[name].exitcode is not None: return cloudlog.info(f"sending signal {sig} to {name}") os.kill(running[name].pid, sig) # ****************** run loop ****************** def manager_init(): # Create folders needed for msgq try: os.mkdir("/dev/shm") except FileExistsError: pass except PermissionError: print("WARNING: failed to make /dev/shm") # set dongle id reg_res = register() if reg_res: dongle_id = reg_res else: raise Exception("server registration failed") os.environ['DONGLE_ID'] = dongle_id if not dirty: os.environ['CLEAN'] = '1' cloudlog.bind_global(dongle_id=dongle_id, version=version, dirty=dirty, is_eon=True) crash.bind_user(id=dongle_id) crash.bind_extra(version=version, dirty=dirty, is_eon=True) os.umask(0) try: os.mkdir(ROOT, 0o777) except OSError: pass # ensure shared libraries are readable by apks if EON: os.chmod(BASEDIR, 0o755) os.chmod("/dev/shm", 0o777) os.chmod(os.path.join(BASEDIR, "cereal"), 0o755) os.chmod(os.path.join(BASEDIR, "cereal", "libmessaging_shared.so"), 0o755) def manager_thread(): shutdownd = Process(name="shutdorwnd",target=launcher,args=("selfdrive.shutdownd",)) shutdownd.start() cloudlog.info("manager start") cloudlog.info({"environ": os.environ}) params = Params() EnableLogger = int(params.get('OpkrEnableLogger')) if not EnableLogger: car_started_processes.remove( 'loggerd' ) persistent_processes.remove( 'logmessaged' ) persistent_processes.remove( 'uploader' ) persistent_processes.remove( 'logcatd' ) persistent_processes.remove( 'updated' ) persistent_processes.remove( 'deleter' ) persistent_processes.remove( 'tombstoned' ) else: # save boot log subprocess.call(["./loggerd", "--bootlog"], cwd=os.path.join(BASEDIR, "selfdrive/loggerd")) # start daemon processes for p in daemon_processes: start_daemon_process(p) # start persistent processes for p in persistent_processes: start_managed_process(p) # start offroad if EON: pm_apply_packages('enable') start_offroad() if os.getenv("NOBOARD") is None: start_managed_process("pandad") if os.getenv("BLOCK") is not None: for k in os.getenv("BLOCK").split(","): del managed_processes[k] started_prev = False logger_dead = False thermal_sock = messaging.sub_sock('thermal') while 1: msg = messaging.recv_sock(thermal_sock, wait=True) if msg.thermal.freeSpace < 0.05: logger_dead = True if msg.thermal.started: for p in car_started_processes: if p == "loggerd" and logger_dead: kill_managed_process(p) else: start_managed_process(p) else: logger_dead = False driver_view = params.get("IsDriverViewEnabled") == b"1" # TODO: refactor how manager manages processes for p in reversed(car_started_processes): if p not in driver_view_processes or not driver_view: kill_managed_process(p) for p in driver_view_processes: if driver_view: start_managed_process(p) else: kill_managed_process(p) # trigger an update after going offroad if started_prev: os.sync() send_managed_process_signal("updated", signal.SIGHUP) started_prev = msg.thermal.started # check the status of all processes, did any of them die? running_list = ["%s%s\u001b[0m" % ("\u001b[32m" if running[p].is_alive() else "\u001b[31m", p) for p in running] cloudlog.debug(' '.join(running_list)) # Exit main loop when uninstall is needed if params.get("DoUninstall", encoding='utf8') == "1": break def manager_prepare(spinner=None): # build all processes os.chdir(os.path.dirname(os.path.abspath(__file__))) process_cnt = len(managed_processes) loader_proc = [] params = Params() spinner_text = "dashcam" if params.get("Passive")=="1" else "프로세스" for n,p in enumerate(managed_processes): if os.getenv("PREPAREONLY") is None: loader_proc.append(subprocess.Popen(["./spinner", "{0} 로딩: {1}/{2} {3}".format(spinner_text, n+1, process_cnt, p)], cwd=os.path.join(BASEDIR, "selfdrive", "ui", "spinner"), close_fds=True)) prepare_managed_process(p) # end subprocesses here to stop screen flickering [loader_proc[pc].terminate() for pc in range(process_cnt) if loader_proc] def main(): params = Params() params.manager_start() default_params = [ ("CommunityFeaturesToggle", "0"), ("CompletedTrainingVersion", "0"), ("IsRHD", "0"), ("IsMetric", "1"), ("RecordFront", "0"), ("HasAcceptedTerms", "0"), ("HasCompletedSetup", "0"), ("IsUploadRawEnabled", "1"), ("IsLdwEnabled", "1"), ("IsGeofenceEnabled", "-1"), ("LimitSetSpeed", "0"), ("LimitSetSpeedNeural", "0"), ("LastUpdateTime", datetime.datetime.utcnow().isoformat().encode('utf8')), ("OpenpilotEnabledToggle", "1"), ("LaneChangeEnabled", "1"), ("IsDriverViewEnabled", "0"), ("IsOpenpilotViewEnabled", "0"), ("OpkrAutoShutdown", "2"), ("OpkrAutoScreenOff", "0"), ("OpkrUIBrightness", "0"), ("OpkrEnableDriverMonitoring", "1"), ("OpkrEnableLogger", "0"), ("OpkrEnableGetoffAlert", "1"), ("OpkrAutoResume", "1"), ("OpkrVariableCruise", "0"), ("OpkrLaneChangeSpeed", "60"), ("OpkrAutoLaneChangeDelay", "0"), ("OpkrSteerAngleCorrection", "0"), ("PutPrebuiltOn", "0"), ("FingerprintIssuedFix", "0"), ("LdwsCarFix", "0"), ("LateralControlMethod", "2"), ("CruiseStatemodeSelInit", "1"), ("InnerLoopGain", "30"), ("OuterLoopGain", "20"), ("TimeConstant", "10"), ("ActuatorEffectiveness", "15"), ("Scale", "1750"), ("LqrKi", "10"), ("DcGain", "30"), ("IgnoreZone", "0"), ("PidKp", "20"), ("PidKi", "40"), ("PidKf", "5"), ("CameraOffsetAdj", "60"), ("SteerRatioAdj", "140"), ("SteerActuatorDelayAdj", "35"), ("SteerRateCostAdj", "45"), ("SteerLimitTimerAdj", "40"), ("TireStiffnessFactorAdj", "85"), ("SteerMaxAdj", "380"), ("SteerMaxBaseAdj", "275"), ("SteerDeltaUpAdj", "3"), ("SteerDeltaDownAdj", "7"), ("SteerMaxvAdj", "10"), ("OpkrBatteryChargingControl", "1"), ("OpkrBatteryChargingMin", "70"), ("OpkrBatteryChargingMax", "80"), ("OpkrUiOpen", "0"), ("OpkrDriveOpen", "0"), ("OpkrTuneOpen", "0"), ("OpkrControlOpen", "0"), ("LeftCurvOffsetAdj", "0"), ("RightCurvOffsetAdj", "0"), ("DebugUi1", "0"), ("DebugUi2", "0"), ("OpkrBlindSpotDetect", "1"), ("OpkrMaxAngleLimit", "90"), ("OpkrAutoResumeOption", "1"), ("OpkrAngleOffsetSelect", "0"), ("OpkrSpeedLimitOffset", "0"), ("LimitSetSpeedCamera", "0"), ("OpkrLiveSteerRatio", "0"), ("OpkrVariableSteerMax", "1"), ("OpkrVariableSteerDelta", "0"), ] # set unset params for k, v in default_params: if params.get(k) is None: params.put(k, v) # is this dashcam? if os.getenv("PASSIVE") is not None: params.put("Passive", str(int(os.getenv("PASSIVE")))) if params.get("Passive") is None: raise Exception("Passive must be set to continue") if EON: update_apks() manager_init() manager_prepare(spinner) spinner.close() if os.getenv("PREPAREONLY") is not None: return # SystemExit on sigterm signal.signal(signal.SIGTERM, lambda signum, frame: sys.exit(1)) try: manager_thread() except Exception: traceback.print_exc() crash.capture_exception() finally: cleanup_all_processes(None, None) if params.get("DoUninstall", encoding='utf8') == "1": cloudlog.warning("uninstalling") HARDWARE.uninstall() if __name__ == "__main__": try: main() except Exception: add_logentries_handler(cloudlog) cloudlog.exception("Manager failed to start") # Show last 3 lines of traceback error = traceback.format_exc(-3) error = "Manager failed to start\n\n" + error with TextWindow(error) as t: t.wait_for_exit() process = subprocess.check_output(['git', 'pull']) os.system('reboot') raise # manual exit because we are forked sys.exit(0)
dewertokin.py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- #---------------------------------------------------------------------------- # Created By : https://github.com/mishnz # Created Date: 14/01/2022 # version ='1.0' # --------------------------------------------------------------------------- """ DewertOkin HE150 controller module for mqtt-bed https://github.com/karl0ss/mqtt-bed I recently purchased a "Napp" https://napp.co.nz/ bed and mattress. On arrival, the base is an "A.H. Beard" https://ahbeard.com/ base. Digging into the internals the Bluetooth chips identify themselves as "Okin" branded. The controller unit as a whole is branded as a DewertOkin HE150 https://dewertokin.hu/termek/he-150/ The DewertOkin Android application for this is "Comfort Enhancement 2" aka "Comfort Plus" https://play.google.com/store/apps/details?id=com.dewertokin.comfortplus Using this application I intercepted the Bluetooth codes. I moved from the depreciated pygatt to bluepy due to connectivity issues. The Bluetooth connection string for this bed uses "random" instead of "public" like the other beds. This module ended up being bigger than expected as the HE150 disconnects on a lack of connectivity and on other unknown conditions. The additional code manages a keepalive/heartbeat thread. This module is more verbose than the others to aid in debugging. Note: This module will work with some other "Okin"/"DewertOkin" models. """ # --------------------------------------------------------------------------- # Imports # --------------------------------------------------------------------------- import bluepy.btle as ble import time import threading class dewertokinBLEController: def __init__(self, addr): self.charWriteInProgress = False self.addr = addr self.commands = { "Flat Preset": "040210000000", "ZeroG Preset": "040200004000", "TV Position": "040200003000", "Quiet Sleep": "040200008000", "Memory 1": "040200001000", "Memory 2": "040200002000", "Underlight": "040200020000", "Lift Head": "040200000001", "Lower Head": "040200000002", "Lift Foot": "040200000004", "Lower Foot": "040200000008", # Note: Wave cycles "On High", "On Medium", "On Low", "Off" "Wave Massage Cycle": "040280000000", # Note: Head and Foot cycles "On Low, "On Medium", "On High", "Off" "Head Massage Cycle": "040200000800", "Foot Massage Cycle": "040200400000", "Massage Off": "040202000000", "Keepalive NOOP": "040200000000", } # Initialise the adapter and connect to the bed before we start waiting for messages. self.connectBed(ble) # Start the background polling/keepalive/heartbeat function. thread = threading.Thread(target=self.bluetoothPoller, args=()) thread.daemon = True thread.start() # There seem to be a lot of conditions that cause the bed to disconnect Bluetooth. # Here we use the value of 040200000000, which seems to be a noop. # This lets us poll the bed, detect a disconnection and reconnect before the user notices. def bluetoothPoller(self): while True: if self.charWriteInProgress is False: try: cmd = self.commands.get("Keepalive NOOP", None) self.device.writeCharacteristic(0x0013, bytes.fromhex(cmd), withResponse=True) print("Keepalive success!") except: print("Keepalive failed! (1/2)") try: # We perform a second keepalive check 0.5 seconds later before reconnecting. time.sleep(0.5) cmd = self.commands.get("Keepalive NOOP", None) self.device.writeCharacteristic(0x0013, bytes.fromhex(cmd), withResponse=True) print("Keepalive success!") except: # If both keepalives failed, we reconnect. print("Keepalive failed! (2/2)") self.connectBed(ble) else: # To minimise any chance of contention, we don't heartbeat if a charWrite is in progress. print("charWrite in progress, heartbeat skipped.") time.sleep(10) # Separate out the bed connection to an infinite loop that can be called on init (or a communications failure). def connectBed(self, ble): while True: try: print("Attempting to connect to bed.") self.device = ble.Peripheral(deviceAddr=self.addr, addrType='random') print("Connected to bed.") return except: pass print("Error connecting to bed, retrying in one second.") time.sleep(1) # Separate out the command handling. def sendCommand(self,name): cmd = self.commands.get(name, None) if cmd is None: # print, but otherwise ignore Unknown Commands. print("Unknown Command, ignoring.") return self.charWriteInProgress = True try: self.charWrite(cmd) except: print("Error sending command, attempting reconnect.") start = time.time() self.connectBed(ble) end = time.time() if ((end - start) < 5): try: self.charWrite(self, cmd) except: print("Command failed to transmit despite second attempt, dropping command.") else: print("Bluetooth reconnect took more than five seconds, dropping command.") self.charWriteInProgress = False # Separate charWrite function. def charWrite(self, cmd): print("Attempting to transmit command.") self.device.writeCharacteristic(0x0013, bytes.fromhex(cmd), withResponse=True) print("Command sent successfully.") return
bbox_regression.py
""" This file has functions about generating bounding box regression targets """ from __future__ import print_function import numpy as np import cv2 import threading import multiprocessing as mp from six.moves import queue from bbox_transform import bbox_overlaps, nonlinear_transform from rcnn.config import config bbox_transform = nonlinear_transform def compute_bbox_regression_targets(rois, overlaps, labels): """ given rois, overlaps, gt labels, compute bounding box regression targets :param rois: roidb[i]['boxes'] k * 4 :param overlaps: roidb[i]['max_overlaps'] k * 1 :param labels: roidb[i]['max_classes'] k * 1 :return: targets[i][class, dx, dy, dw, dh] k * 5 """ # Ensure ROIs are floats rois = rois.astype(np.float, copy=False) # Sanity check assert len(rois) == len(overlaps), '#rois != #max_overlaps' # Indices of ground-truth ROIs gt_inds = np.where(overlaps == 1)[0] assert len(gt_inds) > 0, 'zero ground truth rois' # Indices of examples for which we try to make predictions ex_inds = np.where(overlaps >= config.TRAIN.BBOX_REGRESSION_THRESH)[0] # Get IoU overlap between each ex ROI and gt ROI ex_gt_overlaps = bbox_overlaps(rois[ex_inds, :].astype(np.float32, copy=False), rois[gt_inds, :].astype(np.float32, copy=False)) # Find which gt ROI each ex ROI has max overlap with: # this will be the ex ROI's gt target gt_assignment = ex_gt_overlaps.argmax(axis=1) gt_rois = rois[gt_inds[gt_assignment], :] ex_rois = rois[ex_inds, :] targets = np.zeros((rois.shape[0], 5), dtype=np.float32) targets[ex_inds, 0] = labels[ex_inds] targets[ex_inds, 1:] = bbox_transform(ex_rois, gt_rois) return targets def add_bbox_regression_targets(roidb): """ given roidb, add ['bbox_targets'] and normalize bounding box regression targets :param roidb: roidb to be processed. must have gone through imdb.prepare_roidb :return: means, std variances of targets """ print('add bounding box regression targets') assert len(roidb) > 0 assert 'max_classes' in roidb[0] num_images = len(roidb) num_classes = config.NUM_CLASSES for im_i in range(num_images): rois = roidb[im_i]['boxes'] max_overlaps = roidb[im_i]['max_overlaps'] max_classes = roidb[im_i]['max_classes'] roidb[im_i]['bbox_targets'] = compute_bbox_regression_targets(rois, max_overlaps, max_classes) if config.TRAIN.BBOX_NORMALIZATION_PRECOMPUTED: # use fixed / precomputed means and stds instead of empirical values means = np.tile(np.array(config.TRAIN.BBOX_MEANS), (num_classes, 1)) stds = np.tile(np.array(config.TRAIN.BBOX_STDS), (num_classes, 1)) else: # compute mean, std values class_counts = np.zeros((num_classes, 1)) + 1e-14 sums = np.zeros((num_classes, 4)) squared_sums = np.zeros((num_classes, 4)) for im_i in range(num_images): targets = roidb[im_i]['bbox_targets'] for cls in range(1, num_classes): cls_indexes = np.where(targets[:, 0] == cls)[0] if cls_indexes.size > 0: class_counts[cls] += cls_indexes.size sums[cls, :] += targets[cls_indexes, 1:].sum(axis=0) squared_sums[cls, :] += (targets[cls_indexes, 1:] ** 2).sum(axis=0) means = sums / class_counts # var(x) = E(x^2) - E(x)^2 stds = np.sqrt(squared_sums / class_counts - means ** 2) # normalized targets for im_i in range(num_images): targets = roidb[im_i]['bbox_targets'] for cls in range(1, num_classes): cls_indexes = np.where(targets[:, 0] == cls)[0] roidb[im_i]['bbox_targets'][cls_indexes, 1:] -= means[cls, :] roidb[im_i]['bbox_targets'][cls_indexes, 1:] /= stds[cls, :] return means.ravel(), stds.ravel() def compute_mask_and_label(rois, instances, labels, ins_seg, flipped): if isinstance(ins_seg, str): ins_seg = cv2.imread(ins_seg, -1) if flipped: ins_seg = ins_seg[:, ::-1] n_rois = rois.shape[0] class_id = config.CLASS_ID mask_target = np.zeros((n_rois, 28, 28), dtype=np.int8) mask_label = np.zeros((n_rois, ), dtype=np.int8) # YuntaoChen: hack for double resize overflow rois[:, 0][rois[:, 0] < 0] = 0 for n in range(n_rois): target = ins_seg[int(rois[n, 1]): int(rois[n, 3]), int(rois[n, 0]): int(rois[n, 2])] ins_id = config.SEG_CODE * class_id[labels[n]] + instances[n] # YuntaoChen: hack for roi less than 1px if 0 not in target.shape: mask = np.zeros(target.shape) else: mask = np.zeros((1, 1)) idx = np.where(target == ins_id) mask[idx] = 1 mask = cv2.resize(mask, (28, 28), interpolation=cv2.INTER_NEAREST) mask_target[n] = mask mask_label[n] = labels[n] return mask_target, mask_label def compute_mask_and_label_fcn(rois, instances, labels, ins_seg, flipped): ins_seg_lvl = [] if isinstance(ins_seg, str): ins_seg = cv2.imread(ins_seg, -1) ins_seg_lvl.append(ins_seg) ins_seg_lvl.append(cv2.resize(ins_seg, dsize=None, fx=1.0/2, fy=1.0/2, interpolation=cv2.INTER_NEAREST)) ins_seg_lvl.append(cv2.resize(ins_seg, dsize=None, fx=1.0/4, fy=1.0/4, interpolation=cv2.INTER_NEAREST)) ins_seg_lvl.append(cv2.resize(ins_seg, dsize=None, fx=1.0/8, fy=1.0/8, interpolation=cv2.INTER_NEAREST)) if flipped: for ins_seg in ins_seg_lvl: ins_seg[...] = ins_seg[:, ::-1] n_rois = rois.shape[0] class_id = config.CLASS_ID mask_target = np.zeros((n_rois, 112, 112), dtype=np.int8) mask_label = np.zeros((n_rois, ), dtype=np.int8) for n in range(n_rois): x1, y1, x2, y2 = rois[n] long_side = max(x2 - x1, y2 - y1) if long_side <= 112: ins_seg = ins_seg_lvl[0] elif long_side <= 224: ins_seg = ins_seg_lvl[1] x1, y1, x2, y2 = x1/2, y1/2, x2/2, y2/2 elif long_side <= 448: ins_seg = ins_seg_lvl[2] x1, y1, x2, y2 = x1/4, y1/4, x2/4, y2/4 elif long_side <= 896: ins_seg = ins_seg_lvl[3] x1, y1, x2, y2 = x1/8, y1/8, x2/8, y2/8 else: # do not handle very large instance for now ins_seg = ins_seg_lvl[0] x1, y1, x2, y2 = 0, 0, 0, 0 x1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2) target = ins_seg[y1:y2, x1:x2] new_ins_id = config.SEG_CODE * class_id[labels[n]] + instances[n] mask = np.full(fill_value=-1, shape=(112, 112), dtype=np.int8) mask[0:(y2-y1), 0:(x2-x1)] = 0 idx = np.where(target == new_ins_id) mask[idx] = 1 mask_target[n] = mask mask_label[n] = labels[n] return mask_target, mask_label def compute_bbox_mask_targets_and_label(rois, instances, overlaps, labels, seg, flipped, for_maskfcn): """ given rois, overlaps, gt labels, seg, compute bounding box mask targets :param rois: roidb[i]['boxes'] k * 4 :param overlaps: roidb[i]['max_overlaps'] k * 1 :param labels: roidb[i]['max_classes'] k * 1 :return: targets[i][class, dx, dy, dw, dh] k * 5 """ # Ensure ROIs are floats rois = rois.astype(np.float32, copy=False) # Sanity check assert len(rois) == len(overlaps), 'number of proposal ROIs and max overlap with gt bbox does not match' fg_indexes = np.where(overlaps >= config.TRAIN.BBOX_REGRESSION_THRESH)[0] fg_rois = rois[fg_indexes, :] if for_maskfcn: mask_targets, mask_label = \ compute_mask_and_label_fcn(fg_rois, instances[fg_indexes], labels[fg_indexes], seg, flipped) else: mask_targets, mask_label = \ compute_mask_and_label(fg_rois, instances[fg_indexes], labels[fg_indexes], seg, flipped) return mask_targets, mask_label, fg_indexes def add_mask_targets(roidb, for_maskfcn=False): """ given roidb, add ['bbox_targets'] and normalize bounding box regression targets :param roidb: roidb to be processed. must have gone through imdb.prepare_roidb :return: means, std variances of targets """ assert len(roidb) > 0 assert 'max_classes' in roidb[0] if for_maskfcn: print('add bounding box mask targets for maskfcn') else: print('add bounding box mask targets for maskrcnn') num_images = len(roidb) # Multi threads processing im_quene = queue.Queue(maxsize=0) for im_i in range(num_images): im_quene.put(im_i) def process(): while not im_quene.empty(): im_i = im_quene.get() if im_i > 0 and im_i % 500 == 0: print("-----process img {}".format(im_i)) rois = roidb[im_i]['boxes'] max_instances = roidb[im_i]['ins_id'] max_overlaps = roidb[im_i]['max_overlaps'] max_classes = roidb[im_i]['max_classes'] ins_seg = roidb[im_i]['ins_seg'] flipped = roidb[im_i]['flipped'] # gather masks for fore ground rois only # masks are later reconstructed in sample_rois using # mask_targets + mask_labels + mask_inds roidb[im_i]['mask_targets'], roidb[im_i]['mask_labels'], roidb[im_i]['mask_inds'] = \ compute_bbox_mask_targets_and_label(rois, max_instances, max_overlaps, max_classes, ins_seg, flipped, for_maskfcn) threads = [threading.Thread(target=process, args=()) for _ in range(mp.cpu_count())] for t in threads: t.start() for t in threads: t.join() def add_consistent_targets(roidb): assert len(roidb) > 0 assert 'max_classes' in roidb[0] num_images = len(roidb) # Multi threads processing im_quene = queue.Queue(maxsize=0) for im_i in range(num_images): im_quene.put(im_i) def process(): while not im_quene.empty(): im_i = im_quene.get() if im_i > 0 and im_i % 500 == 0: print("-----process img {}".format(im_i)) rois = roidb[im_i]['boxes'] max_overlaps = roidb[im_i]['max_overlaps'] max_classes = roidb[im_i]['max_classes'] sem_seg = roidb[im_i]['sem_seg'] flipped = roidb[im_i]['flipped'] fg_inds = np.where(max_overlaps >= config.TRAIN.BBOX_REGRESSION_THRESH)[0] roidb[im_i]['consist_inds'] = fg_inds # gather masks for fore ground rois only # masks are later reconstructed in sample_rois using # mask_targets + mask_labels + mask_inds roidb[im_i]['consist_targets'], roidb[im_i]['consist_labels'], = \ compute_consist_mask_and_label_fcn(rois[fg_inds], max_classes[fg_inds], sem_seg, flipped) threads = [threading.Thread(target=process, args=()) for _ in range(mp.cpu_count())] for t in threads: t.start() for t in threads: t.join() def compute_consist_mask_and_label_fcn(rois, labels, sem_seg, flipped): sem_seg_lvl = [] if isinstance(sem_seg, str): sem_seg = cv2.imread(sem_seg, -1) sem_seg_lvl.append(sem_seg) sem_seg_lvl.append(cv2.resize(sem_seg, dsize=None, fx=1.0 / 2, fy=1.0 / 2, interpolation=cv2.INTER_NEAREST)) sem_seg_lvl.append(cv2.resize(sem_seg, dsize=None, fx=1.0 / 4, fy=1.0 / 4, interpolation=cv2.INTER_NEAREST)) sem_seg_lvl.append(cv2.resize(sem_seg, dsize=None, fx=1.0 / 8, fy=1.0 / 8, interpolation=cv2.INTER_NEAREST)) if flipped: for sem_seg in sem_seg_lvl: sem_seg[...] = sem_seg[:, ::-1] n_rois = rois.shape[0] class_id = config.CLASS_ID mask_target = np.zeros((n_rois, 112, 112), dtype=np.int8) mask_label = np.zeros((n_rois,), dtype=np.int8) for n in range(n_rois): x1, y1, x2, y2 = rois[n] long_side = max(x2 - x1, y2 - y1) if long_side <= 112: sem_seg = sem_seg_lvl[0] elif long_side <= 224: sem_seg = sem_seg_lvl[1] x1, y1, x2, y2 = x1 / 2, y1 / 2, x2 / 2, y2 / 2 elif long_side <= 448: sem_seg = sem_seg_lvl[2] x1, y1, x2, y2 = x1 / 4, y1 / 4, x2 / 4, y2 / 4 elif long_side <= 896: sem_seg = sem_seg_lvl[3] x1, y1, x2, y2 = x1 / 8, y1 / 8, x2 / 8, y2 / 8 else: # do not handle very large instance for now sem_seg = sem_seg_lvl[0] x1, y1, x2, y2 = 0, 0, 0, 0 x1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2) target = sem_seg[y1:y2, x1:x2] cls_id = class_id[labels[n]] mask = np.full(fill_value=-1, shape=(112, 112), dtype=np.int8) mask[0:(y2 - y1), 0:(x2 - x1)] = 0 idx = np.where(target == cls_id) mask[idx] = -1 mask_target[n] = mask mask_label[n] = labels[n] return mask_target, mask_label def expand_bbox_regression_targets(bbox_targets_data, num_classes): """ expand from 5 to 4 * num_classes; only the right class has non-zero bbox regression targets :param bbox_targets_data: [k * 5] :param num_classes: number of classes :return: bbox target processed [k * 4 num_classes] bbox_weights ! only foreground boxes have bbox regression computation! """ classes = bbox_targets_data[:, 0] # (num_rois, 4 * num_classes) bbox_targets = np.zeros((classes.size, 4 * num_classes), dtype=np.float32) bbox_weights = np.zeros(bbox_targets.shape, dtype=np.float32) # find all indexes where class is not background indexes = np.where(classes > 0)[0] for index in indexes: cls = classes[index] start = int(4 * cls) end = start + 4 bbox_targets[index, start:end] = bbox_targets_data[index, 1:] # each roi has 4*num_classes box targets, but only the gt class will have regression target value bbox_weights[index, start:end] = config.TRAIN.BBOX_WEIGHTS return bbox_targets, bbox_weights
test_request_safety.py
import threading import asyncio import aiohttp_jinja2 from urllib import request from aiohttp.test_utils import unittest_run_loop from ddtrace.pin import Pin from ddtrace.provider import DefaultContextProvider from ddtrace.contrib.aiohttp.patch import patch, unpatch from ddtrace.contrib.aiohttp.middlewares import trace_app from .utils import TraceTestCase from ... import assert_is_measured class TestAiohttpSafety(TraceTestCase): """ Ensure that if the ``AsyncioTracer`` is not properly configured, bad traces are produced but the ``Context`` object will not leak memory. """ def enable_tracing(self): # aiohttp TestCase with the wrong context provider trace_app(self.app, self.tracer) patch() Pin.override(aiohttp_jinja2, tracer=self.tracer) self.tracer.configure(context_provider=DefaultContextProvider()) def disable_tracing(self): unpatch() @unittest_run_loop @asyncio.coroutine def test_full_request(self): # it should create a root span when there is a handler hit # with the proper tags request = yield from self.client.request("GET", "/template/") assert 200 == request.status yield from request.text() # the trace is created traces = self.tracer.writer.pop_traces() assert 1 == len(traces) assert 2 == len(traces[0]) request_span = traces[0][0] template_span = traces[0][1] # request assert_is_measured(request_span) assert "aiohttp-web" == request_span.service assert "aiohttp.request" == request_span.name assert "GET /template/" == request_span.resource # template assert "aiohttp-web" == template_span.service assert "aiohttp.template" == template_span.name assert "aiohttp.template" == template_span.resource @unittest_run_loop @asyncio.coroutine def test_multiple_full_request(self): NUMBER_REQUESTS = 10 responses = [] # it should produce a wrong trace, but the Context must # be finished def make_requests(): url = self.client.make_url("/delayed/") response = request.urlopen(str(url)).read().decode("utf-8") responses.append(response) # blocking call executed in different threads ctx = self.tracer.get_call_context() threads = [threading.Thread(target=make_requests) for _ in range(NUMBER_REQUESTS)] for t in threads: t.start() # yield back to the event loop until all requests are processed while len(responses) < NUMBER_REQUESTS: yield from asyncio.sleep(0.001) for response in responses: assert "Done" == response for t in threads: t.join() # the trace is wrong but the Context is finished spans = self.tracer.writer.pop() assert NUMBER_REQUESTS == len(spans) assert 0 == len(ctx._trace)
feature_computation.py
import networkx as nx import pandas as pd import numpy as np import os import json import h5py import multiprocessing import pdb from sklearn import preprocessing # Oth Order Features def feature_matrix_0(disease_row, fold, disease_analyze, coexp_sim_matrix, go_genes_normalize): disease_prob = disease_score_matrix[fold, disease_row[disease_analyze],:] feature_mat = np.zeros((len(gene_nodes),4),dtype='float32') feature_mat[:,0] = disease_prob for gene in range(len(disease_prob)): coexp_score = coexp_sim_matrix[gene] go_score = go_genes_normalize[gene] disease_rwr = np.delete(disease_prob, gene) coexp_score = np.delete(coexp_score,gene) go_score = np.delete(go_score, gene) feature_mat[gene,1] = max(disease_rwr*coexp_score) feature_mat[gene,2] = max(disease_rwr*go_score) feature_mat[gene,3] = max(disease_rwr*go_score*coexp_score) return feature_mat # Higher Order Features def feature_matrix_1(disease_row, fold, disease_analyze, go_coexp, coexp_go, go_2nd_order, coexp_2nd_order): disease_prob = disease_score_matrix[fold, disease_row[disease_analyze],:] feature_mat = list() for gene in range(len(disease_prob)): go_coexp_score = go_coexp[gene] coexp_go_score = coexp_go[gene] go_2nd_score = go_2nd_order[gene] coexp_2nd_score = coexp_2nd_order[gene] go_coexp_score = np.delete(go_coexp_score, gene) coexp_go_score = np.delete(coexp_go_score,gene) go_2nd_score = np.delete(go_2nd_score, gene) coexp_2nd_score = np.delete(coexp_2nd_score, gene) disease_rwr = np.delete(disease_prob, gene) feature_mat.append(np.array([max(disease_rwr*go_coexp_score),max(disease_rwr*coexp_go_score),max(disease_rwr*go_2nd_score),max(disease_rwr*coexp_2nd_score)],dtype='float32')) feature_mat = np.array(feature_mat, dtype='float32') return feature_mat # 1st Order Matrix Multiplication def power_matrix_features(coexp_sim_matrix, go_genes_normalize): coexp_2nd_order = np.linalg.matrix_power(coexp_sim_matrix,2) go_2nd_order = np.linalg.matrix_power(go_genes_normalize,2) coexp_go = np.dot(coexp_sim_matrix, go_genes_normalize) go_coexp = np.dot(go_genes_normalize, coexp_sim_matrix) return (go_coexp, coexp_go, go_2nd_order, coexp_2nd_order) def parallel_disease(disease_row, disease, fold, coexp_matrix, go_genes_normalize, go_coexp, coexp_go, go_2nd_order, coexp_2nd_order): feature_mat = feature_matrix_0(disease_row, fold, disease, coexp_matrix, go_genes_normalize) feature_mat_2 = feature_matrix_1(disease_row, fold, disease, go_coexp, coexp_go, go_2nd_order, coexp_2nd_order) features = np.concatenate((feature_mat, feature_mat_2), axis=1) df = pd.DataFrame(features) df.to_csv(feat_directory + '/' + disease + '.txt', sep='\t', header=None) DATA_ROOT = '../CM-for-disease-gene-association/data/' with h5py.File(DATA_ROOT + 'random_walk_score.h5' ,'r') as hf: disease_score_matrix = hf.get('disease_probability') disease_score_matrix = np.array(disease_score_matrix, dtype='float32') coexp_sim_matrix = np.load(DATA_ROOT + 'Coexpression_score.npy').astype('float32') go_sim_matrix = np.load(DATA_ROOT + 'GO_similarity.npy').astype('float32') # Scale Matrix to range:[0,1] min_max_go_scaler = preprocessing.MinMaxScaler() go_sim_scaled_matrix = min_max_scaler.fit_transform(go_sim_matrix) min_max_co_scaler = preprocessing.MinMaxScaler() coexp_sim_scaled_matrix = min_max_scaler.fit_transform(coexp_sim_matrix) with open(DATA_ROOT + 'disgenet/train_disease_gene.dict','r') as f: train_disease_gene_map = json.load(f) with open(DATA_ROOT + 'disgenet/test_disease_gene.dict','r') as f: test_disease_gene_map = json.load(f) with open(DATA_ROOT + 'disgenet/gene_nodes.dict','r') as f: gene_nodes = json.load(f) with open(DATA_ROOT + 'disgenet/disease2id.dict','r') as f: disease2id = json.load(f) inv_gene_nodes = {v:n for n,v in gene_nodes.items()} feature_directory = DATA_ROOT + 'multi-modal-features/' nm_folds = 3 print('Computing Higher Order Coexpression and GO Matrix') go_coexp, coexp_go, go_2nd_order, coexp_2nd_order = power_matrix_features(coexp_sim_scaled_matrix, go_sim_scaled_matrix) for fold in range(nm_folds): feat_directory = feature_directory + feat + '/fold'+ str(fold) if len(os.listdir(feat_directory))<len(disease2id[str(fold)]): print('Creating Features, type: {} fold {} '.format(feat, fold)) disease_row = disease2id[str(fold)] processes = [multiprocessing.Process(target=parallel_disease, args=(disease_row, disease, fold, coexp_matrix, go_genes_normalize, go_coexp, coexp_go, go_2nd_order, coexp_2nd_order)) for disease in disease_row] for p in processes: p.start() for p in processes: p.join()
datasets.py
# Copyright 2019-2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """ This dataset module supports various formats of datasets, including ImageNet, TFData, MNIST, Cifar10/100, Manifest, MindRecord, and more. This module loads data with high performance and parses data precisely. Some of the operations that are provided to users to preprocess data include shuffle, batch, repeat, map, and zip. """ import atexit import builtins import glob import json import math import os import signal import stat import time import uuid import multiprocessing from multiprocessing.pool import RUN import queue from enum import Enum from functools import partial from importlib import import_module import sys import threading import copy import weakref import platform import psutil import numpy as np from scipy.io import loadmat from PIL import Image import mindspore._c_dataengine as cde from mindspore._c_expression import typing from mindspore.common import Tensor from mindspore import log as logger from mindspore.parallel._ps_context import _is_role_pserver, _is_role_sched from mindspore.parallel._utils import _get_device_num from mindspore.dataset.engine.offload import GetOffloadModel, op_to_model import mindspore.dataset.transforms.py_transforms as py_transforms from . import samplers from .iterators import DictIterator, TupleIterator, DummyIterator, check_iterator_cleanup, _set_iterator_cleanup, \ ITERATORS_LIST, _unset_iterator_cleanup from .queue import _SharedQueue from .validators import check_batch, check_shuffle, check_map, check_filter, check_repeat, check_skip, check_zip, \ check_rename, check_numpyslicesdataset, check_device_send, check_take, check_project, check_imagefolderdataset, \ check_mnist_cifar_dataset, check_manifestdataset, check_tfrecorddataset, check_vocdataset, check_cocodataset, \ check_celebadataset, check_minddataset, check_generatordataset, check_sync_wait, check_zip_dataset, \ check_add_column, check_textfiledataset, check_concat, check_random_dataset, check_split, \ check_bucket_batch_by_length, check_cluedataset, check_save, check_csvdataset, check_paddeddataset, \ check_tuple_iterator, check_dict_iterator, check_schema, check_to_device_send, check_flickr_dataset, \ check_sb_dataset, check_flowers102dataset, check_cityscapes_dataset, check_usps_dataset, check_div2k_dataset, \ check_sbu_dataset, check_qmnist_dataset, check_emnist_dataset, check_fake_image_dataset, check_places365_dataset, \ check_photo_tour_dataset, check_ag_news_dataset, check_dbpedia_dataset, check_lj_speech_dataset, \ check_yes_no_dataset from ..core.config import get_callback_timeout, _init_device_info, get_enable_shared_mem, get_num_parallel_workers, \ get_prefetch_size, get_auto_offload from ..core.datatypes import mstype_to_detype, mstypelist_to_detypelist from ..core.validator_helpers import replace_none from ..core.py_util_helpers import ExceptionHandler from ..transforms.py_transforms_util import FuncWrapper try: context = import_module("mindspore.context") except ModuleNotFoundError: context = None if platform.system().lower() == "darwin": multiprocessing.set_start_method("fork") class Shuffle(str, Enum): GLOBAL: str = "global" FILES: str = "files" INFILE: str = "infile" ShuffleToShuffleMode = {Shuffle.FILES: cde.ShuffleMode.FILES, Shuffle.GLOBAL: cde.ShuffleMode.GLOBAL, Shuffle.INFILE: cde.ShuffleMode.INFILE} def get_offloadable_ops(operations): """ Check if operations are supported by offload hardware accelerator. Args: operations: list of operations. Returns: Dictionary with boolean key for each operation for offload support. """ is_offloadable = {} if not isinstance(operations, list): operations = [operations] for op in operations: name = op.__class__.__name__ if name in op_to_model: is_offloadable[name] = True else: is_offloadable[name] = False return is_offloadable def check_offload_map(operations, output_columns): """ Check if operations are supported by offload hardware accelerator. If not, see if list of operations can be split into two: not offload supported and offload supported Args: operations: list of operations. output_columns: list of names assigned to the columns outputted by the last operation. Returns: bool, indicates whether to use offload hardware accelarator. bool, indicates whether list of map operations can be split. list, first group of non-offload supported operations. list, second group of offload supported operations. """ offloadable_ops = get_offloadable_ops(operations) offload = True can_split = False offload_ops = [] non_offload_ops = [] invalid_ops = [] for op in offloadable_ops: if offloadable_ops[op] is not True: offload = False invalid_ops.append(op) if not offload: logger.warning(("In map(), offload is set to True, but offload is not supported for the following " "operation(s): {}").format(*invalid_ops)) if output_columns: # Cannot split (currently), unsure which side of operations would alter the output columns logger.warning("Since output_columns is specified, the list of operations cannot be split. " "Unsure which operation(s) alter the columns. Setting offload to False.") else: # See if the map operator can be split and then offloaded size = len(offloadable_ops) idx = size split_idx = size op_names = list(offloadable_ops.keys()) for op_name in reversed(op_names): if not offloadable_ops[op_name]: # From reverse order, this op cannot be offloaded, therefore split here. split_idx = idx break idx = idx - 1 if split_idx == size: # The last op in the list cannot be offloaded, therefore nothing can be offloaded. # Nothing to split. logger.warning(("The last operation, {}, is not supported by offload, setting offload" " to False").format(op_names[split_idx - 1])) elif split_idx != 0: # There are at least 1 offloadable ops at the end of the list. # Split map() after the last non-offloadable op and only offload the second list of operations. can_split = True non_offload_ops = operations[:split_idx] offload_ops = operations[split_idx:] logger.warning(("The list of operations in map() can be split into two: {}, {}\n" "The second list of operations will be run with offload=True" ).format(op_names[:split_idx], op_names[split_idx:])) return offload, can_split, non_offload_ops, offload_ops def shuffle_to_shuffle_mode(shuffle): """ Shuffle Enum to Shuffle Mode Args: shuffle (Shuffle): shuffle flag to shuffle mode in C layer Returns: ShuffleMode, shuffle mode """ shuffle_mode = cde.ShuffleMode.GLOBAL # Global shuffle if not isinstance(shuffle, Shuffle): if shuffle is None or shuffle: shuffle_mode = cde.ShuffleMode.GLOBAL # Global shuffle else: shuffle_mode = cde.ShuffleMode.FALSE # No shuffle else: shuffle_mode = ShuffleToShuffleMode[shuffle] return shuffle_mode def shuffle_to_bool(shuffle): """ Shuffle Enum to bool Args: shuffle (Shuffle): shuffle flag to bool Returns: bool, True / False """ shuffle_bool = True if not isinstance(shuffle, Shuffle): if shuffle is None: shuffle_bool = None elif shuffle: shuffle_bool = True else: shuffle_bool = False else: shuffle_bool = True return shuffle_bool @check_zip def zip(datasets): """ Zip the datasets in the input tuple of datasets. Args: datasets (tuple of class Dataset): A tuple of datasets to be zipped together. The number of datasets must be more than 1. Returns: ZipDataset, dataset zipped. Raises: ValueError: If the number of datasets is 1. TypeError: If datasets is not a tuple. Examples: >>> # Create a dataset which is the combination of dataset_1 and dataset_2 >>> dataset = ds.zip((dataset_1, dataset_2)) """ if len(datasets) <= 1: raise ValueError( "Can't zip empty or just one dataset!") for dataset in datasets: if not isinstance(dataset, Dataset): raise TypeError("Invalid dataset, expected Dataset object, but got %s!" % type(dataset)) return ZipDataset(datasets) def _get_operator_process(): """ Inner implemented method, mainly for passing sub-process id in C layer Returns: dict, mapping dict of operator id and corresponding process id. """ global _OP_PROCESS process_info = _OP_PROCESS op_process = dict() keys = process_info.keys() fetched_all = True for key in keys: op_process[key] = list(process_info[key][1]) item_full = (len(process_info[key][1]) == process_info[key][0]) fetched_all = fetched_all and item_full return op_process, fetched_all def _set_dataset_permissions(file_name, num_files): """ set saved dataset files' permissions to 600 the rule of dataset filenames should be the same as those in C++. """ num_digits = len(str(num_files - 1)) if num_files == 1: paths = [file_name] else: paths = ["{}{}".format(file_name, str(x).rjust(num_digits, '0')) for x in range(num_files)] for item in paths: if os.path.exists(item): os.chmod(item, stat.S_IRUSR | stat.S_IWUSR) index_file = item + ".db" if os.path.exists(index_file): os.chmod(index_file, stat.S_IRUSR | stat.S_IWUSR) class Dataset: """ Abstract class to represent a dataset in DataEngine's data pipeline. This class is the base class of SourceDataset and Dataset, and represents a node in the data flow graph. Args: num_parallel_workers (int, optional): Number of workers to process the dataset in parallel (default=None). """ def __init__(self, children=None, num_parallel_workers=None, cache=None): # Note: children and parent are internal variables, not recommended for external using. self.children = replace_none(children, []) if isinstance(self.children, tuple): self.children = list(self.children) if not isinstance(self.children, list): self.children = [self.children] self.parent = [] for child in self.children: child.parent.append(weakref.ref(self)) self.num_parallel_workers = num_parallel_workers self.cache = cache self._device_iter = 0 self._input_indexs = () self.saved_output_types = None self.saved_output_shapes = None self.dynamic_setting = [False, None] self.saved_min_shapes = None self.saved_max_shapes = None self._col_names = None self.dataset_size = None self._batch_size = None self._num_classes = None self._repeat_count = None self._class_indexing = None self._sync = False def create_ir_tree(self): """ Internal method to build an IR tree. Returns: DatasetNode, the root node of the IR tree. Dataset, the root dataset of the IR tree. """ parent = self.parent self.parent = [] dataset = copy.deepcopy(self) global _OP_NAME _OP_NAME = Dataset._get_operator_id(dataset) ir_tree = dataset.parse_tree() self.parent = parent _init_device_info() return ir_tree, dataset def close_pool(self): """ Close multiprocessing pool in dataset. If you are familiar with multiprocessing library, you can regard this as a destructor for a processingPool object. """ if hasattr(self, 'process_pool') and self.process_pool is not None: self.process_pool.close() for child in self.children: child.close_pool() def notify_watchdog(self): """ Close watchdog thread in dataset. Now GeneratorDataset/map/batch will use a thread named watch_dog to monitor multiprocess, for get_dataset_size/output_shapes/output_types/get_col_name/num_classes, we need notify_watchdog to close watch_dog thread manually. """ if hasattr(self, 'sample_fn') and self.sample_fn is not None: if self.sample_fn.multi_process: self.sample_fn._abort_watchdog() # pylint: disable=W0212 if hasattr(self, 'watch_dog') and self.watch_dog is not None and hasattr(self, 'eot') and self.eot is not None: self._abort_watchdog() for child in self.children: child.notify_watchdog() @staticmethod def _get_operator_id(dataset): """ Internal method to iterate the tree and obtain op_id of each operator. Returns: Dataset, the root dataset of the tree. """ op_name = dict() generator_process = dict() op_name[str(dataset)] = 0 op_id = 1 def process_name(datasets, operator_id): if not datasets: return 0 temp = [] for item in datasets: for d in item.children: temp.append(d) op_name[str(d)] = operator_id if isinstance(d, GeneratorDataset) and d.sample_fn and d.sample_fn.pids: generator_process[operator_id] = [d.num_parallel_workers, set(d.sample_fn.pids)] operator_id = operator_id + 1 return process_name(temp, operator_id) process_name([dataset], op_id) if generator_process: global _OP_PROCESS _OP_PROCESS.update(generator_process) return op_name def parse_tree(self): """ Internal method to parse the API tree into an IR tree. Returns: DatasetNode, the root node of the IR tree. """ if len(self.parent) > 1: raise ValueError("The data pipeline is not a tree (i.e., one node has 2 consumers)") ir_children = [d.parse_tree() for d in self.children] # Bootstrap can only be performed on a copy of the original dataset node. # Bootstrap on original dataset node will make all iterators share the same process pool self.iterator_bootstrap() ir_node = self.parse(ir_children) ir_node = self.post_parse(ir_node) return ir_node def __safe_deepcopy__(self, memodict, exclude=()): if id(self) in memodict: return memodict[id(self)] cls = self.__class__ new_op = cls.__new__(cls) memodict[id(self)] = new_op for arg, value in self.__dict__.items(): if arg in exclude: setattr(new_op, arg, value) else: try: setattr(new_op, arg, copy.deepcopy(value, memodict)) except TypeError: setattr(new_op, arg, value) return new_op def iterator_bootstrap(self): pass @staticmethod def _noop_mode(): if _is_role_sched() or _is_role_pserver(): return True return False def __add__(self, datasets): return self.concat(datasets) def to_json(self, filename=""): """ Serialize a pipeline into JSON string and dump into file if filename is provided. Args: filename (str): filename of JSON file to be saved as. Returns: str, JSON string of the pipeline. """ ir_tree, _ = self.create_ir_tree() return json.loads(ir_tree.to_json(filename)) @check_bucket_batch_by_length def bucket_batch_by_length(self, column_names, bucket_boundaries, bucket_batch_sizes, element_length_function=None, pad_info=None, pad_to_bucket_boundary=False, drop_remainder=False): """ Bucket elements according to their lengths. Each bucket will be padded and batched when they are full. A length function is called on each row in the dataset. The row is then bucketed based on its length and bucket boundaries. When a bucket reaches its corresponding size specified in bucket_batch_sizes, the entire bucket will be padded according to pad_info, and then form a batch. Each batch will be full, except one special case: the last batch for each bucket may not be full. Args: column_names (list[str]): Columns passed to element_length_function. bucket_boundaries (list[int]): A list consisting of the upper boundaries of the buckets. Must be strictly increasing. If there are n boundaries, n+1 buckets are created: One bucket for [0, bucket_boundaries[0]), one bucket for [bucket_boundaries[i], bucket_boundaries[i+1]) for each 0<i<n-1, and last bucket for [bucket_boundaries[n-1], inf). bucket_batch_sizes (list[int]): A list consisting of the batch sizes for each bucket. Must contain len(bucket_boundaries)+1 elements. element_length_function (Callable, optional): A function that takes in M arguments where M = len(column_names) and returns an integer. If no value provided, parameter M the len(column_names) must be 1, and the size of the first dimension of that column will be taken as the length (default=None). pad_info (dict, optional): The information about how to batch each column. The key corresponds to the column name, and the value must be a tuple of 2 elements. The first element corresponds to the shape to pad to, and the second element corresponds to the value to pad with. If a column is not specified, then that column will be padded to the longest in the current batch, and 0 will be used as the padding value. Any None dimensions will be padded to the longest in the current batch, unless if pad_to_bucket_boundary is True. If no padding is wanted, set pad_info to None (default=None). pad_to_bucket_boundary (bool, optional): If True, will pad each None dimension in pad_info to the bucket_boundary minus 1. If there are any elements that fall into the last bucket, an error will occur (default=False). drop_remainder (bool, optional): If True, will drop the last batch for each bucket if it is not a full batch (default=False). Returns: BucketBatchByLengthDataset, dataset bucketed and batched by length. Examples: >>> # Create a dataset where certain counts rows are combined into a batch >>> # and drops the last incomplete batch if there is one. >>> import numpy as np >>> def generate_2_columns(n): ... for i in range(n): ... yield (np.array([i]), np.array([j for j in range(i + 1)])) >>> >>> column_names = ["col1", "col2"] >>> dataset = ds.GeneratorDataset(generate_2_columns(8), column_names) >>> bucket_boundaries = [5, 10] >>> bucket_batch_sizes = [2, 1, 1] >>> element_length_function = (lambda col1, col2: max(len(col1), len(col2))) >>> # Will pad col2 to shape [bucket_boundaries[i]] where i is the >>> # index of the bucket that is currently being batched. >>> pad_info = {"col2": ([None], -1)} >>> pad_to_bucket_boundary = True >>> dataset = dataset.bucket_batch_by_length(column_names, bucket_boundaries, ... bucket_batch_sizes, ... element_length_function, pad_info, ... pad_to_bucket_boundary) """ return BucketBatchByLengthDataset(self, column_names, bucket_boundaries, bucket_batch_sizes, element_length_function, pad_info, pad_to_bucket_boundary, drop_remainder) @check_batch def batch(self, batch_size, drop_remainder=False, num_parallel_workers=None, per_batch_map=None, input_columns=None, output_columns=None, column_order=None, pad_info=None, python_multiprocessing=False, max_rowsize=16): """ Combine batch_size number of consecutive rows into batches. For any child node, a batch is treated as a single row. For any column, all the elements within that column must have the same shape. If a per_batch_map callable is provided, it will be applied to the batches of tensors. Note: The order of using repeat and batch reflects the number of batches and per_batch_map. It is recommended that the repeat operation applied after the batch operation finished. Args: batch_size (int or function): The number of rows each batch is created with. An int or callable object which takes exactly 1 parameter, BatchInfo. drop_remainder (bool, optional): Determines whether or not to drop the last block whose data row number is less than batch size (default=False). If True, and if there are less than batch_size rows available to make the last batch, then those rows will be dropped and not propagated to the child node. num_parallel_workers (int, optional): Number of workers(threads) to process the dataset in parallel (default=None). per_batch_map (callable, optional): Per batch map callable. A callable which takes (list[Tensor], list[Tensor], ..., BatchInfo) as input parameters. Each list[Tensor] represents a batch of Tensors on a given column. The number of lists should match with number of entries in input_columns. The last parameter of the callable should always be a BatchInfo object. Per_batch_map should return (list[Tensor], list[Tensor], ...). The length of each list in output should be same as the input. output_columns is required if the number of output lists is different from input. input_columns (Union[str, list[str]], optional): List of names of the input columns. The size of the list should match with signature of per_batch_map callable (default=None). output_columns (Union[str, list[str]], optional): List of names assigned to the columns outputted by the last operation. This parameter is mandatory if len(input_columns) != len(output_columns). The size of this list must match the number of output columns of the last operation. (default=None, output columns will have the same name as the input columns, i.e., the columns will be replaced). column_order (Union[str, list[str]], optional): Specifies the list of all the columns you need in the whole dataset. The parameter is required when len(input_column) != len(output_column). Caution: the list here is not just the columns specified in parameter input_columns and output_columns. pad_info (dict, optional): Whether to perform padding on selected columns. pad_info={"col1":([224,224],0)} would pad column with name "col1" to a tensor of size [224,224] and fill the missing with 0 (default=None). python_multiprocessing (bool, optional): Parallelize Python function per_batch_map with multi-processing. This option could be beneficial if the function is computational heavy (default=False). max_rowsize(int, optional): Maximum size of row in MB that is used for shared memory allocation to copy data between processes. This is only used if python_multiprocessing is set to True (default=16). Returns: BatchDataset, dataset batched. Examples: >>> # Create a dataset where every 100 rows are combined into a batch >>> # and drops the last incomplete batch if there is one. >>> dataset = dataset.batch(100, True) >>> # resize image according to its batch number, if it's 5-th batch, resize to (5^2, 5^2) = (25, 25) >>> def np_resize(col, batchInfo): ... output = col.copy() ... s = (batchInfo.get_batch_num() + 1) ** 2 ... index = 0 ... for c in col: ... img = Image.fromarray(c.astype('uint8')).convert('RGB') ... img = img.resize((s, s), Image.ANTIALIAS) ... output[index] = np.array(img) ... index += 1 ... return (output,) >>> dataset = dataset.batch(batch_size=8, input_columns=["image"], per_batch_map=np_resize) """ return BatchDataset(self, batch_size, drop_remainder, num_parallel_workers, per_batch_map, input_columns, output_columns, column_order, pad_info, python_multiprocessing, max_rowsize) @check_sync_wait def sync_wait(self, condition_name, num_batch=1, callback=None): """ Add a blocking condition to the input Dataset. A synchronize action will be applied. Args: condition_name (str): The condition name that is used to toggle sending next row. num_batch (int): the number of batches without blocking at the start of each epoch. callback (function): The callback function that will be invoked when sync_update is called. Returns: SyncWaitDataset, dataset added a blocking condition. Raises: RuntimeError: If condition name already exists. Examples: >>> import numpy as np >>> def gen(): ... for i in range(100): ... yield (np.array(i),) >>> >>> class Augment: ... def __init__(self, loss): ... self.loss = loss ... ... def preprocess(self, input_): ... return input_ ... ... def update(self, data): ... self.loss = data["loss"] >>> >>> batch_size = 4 >>> dataset = ds.GeneratorDataset(gen, column_names=["input"]) >>> >>> aug = Augment(0) >>> dataset = dataset.sync_wait(condition_name="policy", callback=aug.update) >>> dataset = dataset.map(operations=[aug.preprocess], input_columns=["input"]) >>> dataset = dataset.batch(batch_size) >>> count = 0 >>> for data in dataset.create_dict_iterator(num_epochs=1, output_numpy=True): ... assert data["input"][0] == count ... count += batch_size ... data = {"loss": count} ... dataset.sync_update(condition_name="policy", data=data) """ return SyncWaitDataset(self, condition_name, num_batch, callback) @check_shuffle def shuffle(self, buffer_size): """ Randomly shuffles the rows of this dataset using the following policy: 1. Make a shuffle buffer that contains the first buffer_size rows. 2. Randomly select an element from the shuffle buffer to be the next row propagated to the child node. 3. Get the next row (if any) from the parent node and put it in the shuffle buffer. 4. Repeat steps 2 and 3 until there are no more rows left in the shuffle buffer. A random seed can be provided to be used on the first epoch. In every subsequent epoch, the seed is changed to a new one, randomly generated value. Args: buffer_size (int): The size of the buffer (must be larger than 1) for shuffling. Setting buffer_size equal to the number of rows in the entire dataset will result in a global shuffle. Returns: ShuffleDataset, dataset shuffled. Raises: RuntimeError: If exist sync operators before shuffle. Examples: >>> # dataset is an instance object of Dataset >>> # Optionally set the seed for the first epoch >>> ds.config.set_seed(58) >>> # Create a shuffled dataset using a shuffle buffer of size 4 >>> dataset = dataset.shuffle(4) """ return ShuffleDataset(self, buffer_size) def flat_map(self, func): """ Map `func` to each row in dataset and flatten the result. The specified `func` is a function that must take one 'Ndarray' as input and return a 'Dataset'. Args: func (function): A function that must take one 'Ndarray' as an argument and return a 'Dataset'. Returns: Dataset, dataset applied by the function. Examples: >>> # use NumpySlicesDataset as an example >>> dataset = ds.NumpySlicesDataset([[0, 1], [2, 3]]) >>> >>> def flat_map_func(array): ... # create a NumpySlicesDataset with the array ... dataset = ds.NumpySlicesDataset(array) ... # repeat the dataset twice ... dataset = dataset.repeat(2) ... return dataset >>> >>> dataset = dataset.flat_map(flat_map_func) >>> # [[0, 1], [0, 1], [2, 3], [2, 3]] Raises: TypeError: If `func` is not a function. TypeError: If `func` doesn't return a Dataset. """ dataset = None if not hasattr(func, '__call__'): logger.critical("func must be a function.") raise TypeError("func must be a function.") for row_data in self.create_tuple_iterator(output_numpy=True): if dataset is None: dataset = func(row_data) else: dataset += func(row_data) if not isinstance(dataset, Dataset): logger.critical("flat_map must return a Dataset object.") raise TypeError("flat_map must return a Dataset object.") return dataset @check_map def map(self, operations, input_columns=None, output_columns=None, column_order=None, num_parallel_workers=None, python_multiprocessing=False, cache=None, callbacks=None, max_rowsize=16, offload=None): """ Apply each operation in operations to this dataset. The order of operations is determined by the position of each operation in the operations parameter. operations[0] will be applied first, then operations[1], then operations[2], etc. Each operation will be passed one or more columns from the dataset as input, and zero or more columns will be outputted. The first operation will be passed the columns specified in input_columns as input. If there is more than one operator in operations, the outputted columns of the previous operation are used as the input columns for the next operation. The columns outputted by the very last operation will be assigned names specified by output_columns. Only the columns specified in column_order will be propagated to the child node. These columns will be in the same order as specified in column_order. Args: operations (Union[list[TensorOp], list[functions]]): List of operations to be applied on the dataset. Operations are applied in the order they appear in this list. input_columns (Union[str, list[str]], optional): List of the names of the columns that will be passed to the first operation as input. The size of this list must match the number of input columns expected by the first operator. (default=None, the first operation will be passed however many columns that are required, starting from the first column). output_columns (Union[str, list[str]], optional): List of names assigned to the columns outputted by the last operation. This parameter is mandatory if len(input_columns) != len(output_columns). The size of this list must match the number of output columns of the last operation. (default=None, output columns will have the same name as the input columns, i.e., the columns will be replaced). column_order (list[str], optional): Specifies the list of all the columns you need in the whole dataset. The parameter is required when len(input_column) != len(output_column). Caution: the list here is not just the columns specified in parameter input_columns and output_columns. num_parallel_workers (int, optional): Number of threads used to process the dataset in parallel (default=None, the value from the configuration will be used). python_multiprocessing (bool, optional): Parallelize Python operations with multiple worker processes. This option could be beneficial if the Python operation is computational heavy (default=False). cache (DatasetCache, optional): Use tensor caching service to speed up dataset processing. (default=None, which means no cache is used). callbacks (DSCallback, list[DSCallback], optional): List of Dataset callbacks to be called (Default=None). max_rowsize (int, optional): Maximum size of row in MB that is used for shared memory allocation to copy data between processes. This is only used if python_multiprocessing is set to True (Default=16). offload (bool, optional): Flag to indicate whether offload is used (Default=None). Returns: MapDataset, dataset after mapping operation. Examples: >>> # dataset is an instance of Dataset which has 2 columns, "image" and "label". >>> >>> # Define two operations, where each operation accepts 1 input column and outputs 1 column. >>> decode_op = c_vision.Decode(rgb=True) >>> random_jitter_op = c_vision.RandomColorAdjust(brightness=(0.8, 0.8), contrast=(1, 1), ... saturation=(1, 1), hue=(0, 0)) >>> >>> # 1) Simple map example. >>> >>> # Apply decode_op on column "image". This column will be replaced by the outputted >>> # column of decode_op. Since column_order is not provided, both columns "image" >>> # and "label" will be propagated to the child node in their original order. >>> dataset = dataset.map(operations=[decode_op], input_columns=["image"]) >>> >>> # Decode and rename column "image" to "decoded_image". >>> dataset = dataset.map(operations=[decode_op], input_columns=["image"], output_columns=["decoded_image"]) >>> >>> # Specify the order of the output columns. >>> dataset = dataset.map(operations=[decode_op], input_columns=["image"], ... output_columns=None, column_order=["label", "image"]) >>> >>> # Rename column "image" to "decoded_image" and also specify the order of the output columns. >>> dataset = dataset.map(operations=[decode_op], input_columns=["image"], ... output_columns=["decoded_image"], column_order=["label", "decoded_image"]) >>> >>> # Rename column "image" to "decoded_image" and keep only this column. >>> dataset = dataset.map(operations=[decode_op], input_columns=["image"], ... output_columns=["decoded_image"], column_order=["decoded_image"]) >>> >>> # A simple example for mapping pyfunc. Renaming columns and specifying column order >>> # work in the same way as the previous examples. >>> dataset = ds.NumpySlicesDataset(data=[[0, 1, 2]], column_names=["data"]) >>> dataset = dataset.map(operations=[(lambda x: x + 1)], input_columns=["data"]) >>> >>> # 2) Map example with more than one operation. >>> >>> # Create a dataset where the images are decoded, then randomly color jittered. >>> # decode_op takes column "image" as input and outputs one column. The column >>> # outputted by decode_op is passed as input to random_jitter_op. >>> # random_jitter_op will output one column. Column "image" will be replaced by >>> # the column outputted by random_jitter_op (the very last operation). All other >>> # columns are unchanged. Since column_order is not specified, the order of the >>> # columns will remain the same. >>> dataset = dataset.map(operations=[decode_op, random_jitter_op], input_columns=["image"]) >>> >>> # Rename the column outputted by random_jitter_op to "image_mapped". >>> # Specifying column order works in the same way as examples in 1). >>> dataset = dataset.map(operations=[decode_op, random_jitter_op], input_columns=["image"], ... output_columns=["image_mapped"]) >>> >>> # Map with multiple operations using pyfunc. Renaming columns and specifying column order >>> # work in the same way as examples in 1). >>> dataset = ds.NumpySlicesDataset(data=[[0, 1, 2]], column_names=["data"]) >>> dataset = dataset.map(operations=[(lambda x: x * x), (lambda x: x - 1)], input_columns=["data"], ... output_columns=["data_mapped"]) >>> >>> # 3) Example where number of input columns is not equal to number of output columns. >>> >>> # operations[0] is a lambda that takes 2 columns as input and outputs 3 columns. >>> # operations[1] is a lambda that takes 3 columns as input and outputs 1 column. >>> # operations[2] is a lambda that takes 1 column as input and outputs 4 columns. >>> # >>> # Note: The number of output columns of operation[i] must equal the number of >>> # input columns of operation[i+1]. Otherwise, this map call will also result >>> # in an error. >>> operations = [(lambda x, y: (x, x + y, x + y + 1)), ... (lambda x, y, z: x * y * z), ... (lambda x: (x % 2, x % 3, x % 5, x % 7))] >>> >>> # Note: Since the number of input columns is not the same as the number of >>> # output columns, the output_columns and column_order parameters must be >>> # specified. Otherwise, this map call will also result in an error. >>> >>> dataset = ds.NumpySlicesDataset(data=([[0, 1, 2]], [[3, 4, 5]]), column_names=["x", "y"]) >>> >>> # Propagate all columns to the child node in this order: >>> dataset = dataset.map(operations, input_columns=["x", "y"], ... output_columns=["mod2", "mod3", "mod5", "mod7"], ... column_order=["mod2", "mod3", "mod5", "mod7"]) >>> >>> # Propagate some columns to the child node in this order: >>> dataset = dataset.map(operations, input_columns=["x", "y"], ... output_columns=["mod2", "mod3", "mod5", "mod7"], ... column_order=["mod7", "mod3", "col2"]) """ can_split = False non_offload_ops = [] offload_ops = [] if offload is not None: offload_flag = offload else: offload_flag = get_auto_offload() if offload_flag: offload_flag, can_split, non_offload_ops, offload_ops = check_offload_map(operations, output_columns) if can_split: non_offload_map_ds = MapDataset(self, non_offload_ops, input_columns, output_columns, column_order, num_parallel_workers, python_multiprocessing, cache, callbacks, max_rowsize, offload=False) return MapDataset(non_offload_map_ds, offload_ops, input_columns, output_columns, column_order, num_parallel_workers, python_multiprocessing, cache, callbacks, max_rowsize, offload=True) return MapDataset(self, operations, input_columns, output_columns, column_order, num_parallel_workers, python_multiprocessing, cache, callbacks, max_rowsize, offload_flag) @check_filter def filter(self, predicate, input_columns=None, num_parallel_workers=None): """ Filter dataset by prediction. Note: If input_columns not provided or provided with empty, all columns will be used. Args: predicate (callable): Python callable which returns a boolean value. If False then filter the element. input_columns (Union[str, list[str]], optional): List of names of the input columns, when default=None, the predicate will be applied on all columns in the dataset. num_parallel_workers (int, optional): Number of workers to process the dataset in parallel (default=None). Returns: FilterDataset, dataset filtered. Examples: >>> # generator data(0 ~ 63) >>> # filter the data that greater than or equal to 11 >>> dataset = dataset.filter(predicate=lambda data: data < 11, input_columns = ["data"]) """ return FilterDataset(self, predicate, input_columns, num_parallel_workers) @check_repeat def repeat(self, count=None): """ Repeat this dataset `count` times. Repeat infinitely if the count is None or -1. Note: The order of using repeat and batch reflects the number of batches. It is recommended that the repeat operation is used after the batch operation. Args: count (int): Number of times the dataset is going to be repeated (default=None). Returns: RepeatDataset, dataset repeated. Examples: >>> # dataset is an instance object of Dataset >>> >>> # Create a dataset where the dataset is repeated for 50 epochs >>> dataset = dataset.repeat(50) >>> >>> # Create a dataset where each epoch is shuffled individually >>> dataset = dataset.shuffle(10) >>> dataset = dataset.repeat(50) >>> >>> # Create a dataset where the dataset is first repeated for >>> # 50 epochs before shuffling. The shuffle operator will treat >>> # the entire 50 epochs as one big dataset. >>> dataset = dataset.repeat(50) >>> dataset = dataset.shuffle(10) """ return RepeatDataset(self, count) @check_skip def skip(self, count): """ Skip the first N elements of this dataset. Args: count (int): Number of elements in the dataset to be skipped. Returns: SkipDataset, dataset that containing rows like origin rows subtract skipped rows. Examples: >>> # dataset is an instance object of Dataset >>> # Create a dataset which skips first 3 elements from data >>> dataset = dataset.skip(3) """ return SkipDataset(self, count) @check_take def take(self, count=-1): """ Takes at most given numbers of elements from the dataset. Note: 1. If count is greater than the number of elements in the dataset or equal to -1, all the elements in dataset will be taken. 2. The order of using take and batch matters. If take is before batch operation, then take given number of rows; otherwise take given number of batches. Args: count (int, optional): Number of elements to be taken from the dataset (default=-1). Returns: TakeDataset, dataset taken. Examples: >>> # dataset is an instance object of Dataset >>> # Create a dataset where the dataset includes 50 elements. >>> dataset = dataset.take(50) """ return TakeDataset(self, count) def _get_absolute_split_sizes(self, sizes): """ Internal method called by split to calculate absolute split sizes and to do some error checking after calculating absolute split sizes. Returns: int, absolute split sizes of the dataset. """ # Call get_dataset_size here and check input here because # don't want to call this once in check_split and another time in # here again dataset_size = self.get_dataset_size() if dataset_size is None or dataset_size <= 0: raise RuntimeError("dataset_size is unknown, unable to split.") if not isinstance(sizes, list): raise RuntimeError("sizes must be a list.") all_int = all(isinstance(item, int) for item in sizes) if all_int: sizes_sum = sum(sizes) if sizes_sum != dataset_size: raise RuntimeError("Sum of split sizes {} is not equal to dataset size {}." .format(sizes_sum, dataset_size)) return sizes absolute_sizes = [] for item in sizes: absolute_size = int(round(item * dataset_size)) if absolute_size == 0: raise RuntimeError("Split percentage {} is too small.".format(item)) absolute_sizes.append(absolute_size) absolute_sizes_sum = sum(absolute_sizes) # if we still need more rows, give them to the first split. # if we have too many rows, remove the extras from the first split that has # enough rows. size_difference = int(dataset_size - absolute_sizes_sum) if size_difference > 0: absolute_sizes[0] += size_difference else: for i, _ in enumerate(absolute_sizes): if absolute_sizes[i] + size_difference > 0: absolute_sizes[i] += size_difference break if sum(absolute_sizes) != dataset_size: raise RuntimeError("Sum of calculated split sizes {} is not equal to dataset size {}." .format(absolute_sizes_sum, dataset_size)) return absolute_sizes @check_split def split(self, sizes, randomize=True): """ Split the dataset into smaller, non-overlapping datasets. This is a general purpose split function which can be called from any operator in the pipeline. There is another, optimized split function, which will be called automatically if ds.split is called where ds is a MappableDataset. Args: sizes (Union[list[int], list[float]]): If a list of integers [s1, s2, …, sn] is provided, the dataset will be split into n datasets of size s1, size s2, …, size sn respectively. If the sum of all input sizes does not equal the original dataset size, an error will throw. If a list of floats [f1, f2, …, fn] is provided, all floats must be between 0 and 1 and must sum to 1, otherwise an error will throw. The dataset will be split into n Datasets of size round(f1*K), round(f2*K), …, round(fn*K) where K is the size of the original dataset. If after rounding: - Any size equals 0, an error will occur. - The sum of split sizes < K, the difference of K - sigma(round(fi * k)) will be added to the first split. - The sum of split sizes > K, the difference of sigma(round(fi * K)) - K will be removed from the first large enough split such that it will have at least 1 row after removing the difference. randomize (bool, optional): Determines whether or not to split the data randomly (default=True). If True, the data will be randomly split. Otherwise, each split will be created with consecutive rows from the dataset. Note: 1. Dataset cannot be sharded if split is going to be called. 2. It is strongly recommended to not shuffle the dataset, but use randomize=True instead. Shuffling the dataset may not be deterministic, which means the data in each split will be different in each epoch. Raises: RuntimeError: If get_dataset_size returns None or is not supported for this dataset. RuntimeError: If `sizes` is list of integers and sum of all elements in sizes does not equal the dataset size. RuntimeError: If `sizes` is list of float and there is a split with size 0 after calculations. RuntimeError: If the dataset is sharded prior to calling split. ValueError: If `sizes` is list of float and not all floats are between 0 and 1, or if the floats don't sum to 1. Returns: tuple(Dataset), a tuple of datasets that have been split. Examples: >>> # TextFileDataset is not a mappable dataset, so this non-optimized split will be called. >>> # Since many datasets have shuffle on by default, set shuffle to False if split will be called! >>> dataset = ds.TextFileDataset(text_file_dataset_dir, shuffle=False) >>> train_dataset, test_dataset = dataset.split([0.9, 0.1]) """ if self.is_shuffled(): logger.warning("Dataset is shuffled before split.") if self.is_sharded(): raise RuntimeError("Dataset should not be sharded before split.") absolute_sizes = self._get_absolute_split_sizes(sizes) splits = [] rows_to_skip = 0 for size in absolute_sizes: ds = copy.deepcopy(self) if randomize: # want to shuffle the same way every epoch before split # in alter_tree, shuffle buffer is minimum 10000, so use 10000 here ds = ds.shuffle(10000) ds.reshuffle_each_epoch = False if rows_to_skip > 0: ds = ds.skip(rows_to_skip) ds = ds.take(size) splits.append(ds) rows_to_skip += size return tuple(splits) @check_zip_dataset def zip(self, datasets): """ Zip the datasets in the sense of input tuple of datasets. Columns in the input datasets must have different name. Args: datasets (Union[tuple, class Dataset]): A tuple of datasets or a single class Dataset to be zipped together with this dataset. Returns: ZipDataset, dataset zipped. Examples: >>> # Create a dataset which is the combination of dataset and dataset_1 >>> dataset = dataset.zip(dataset_1) """ if isinstance(datasets, tuple): datasets = (self, *datasets) elif isinstance(datasets, Dataset): datasets = (self, datasets) else: raise TypeError("Invalid datasets, expected Dataset object or tuple of Dataset, but got %s!" % datasets) return ZipDataset(datasets) @check_concat def concat(self, datasets): """ Concatenate the dataset objects in the input list. Performing "+" operation on dataset objects can achieve the same effect. Note: The column name, and rank and type of the column data must be the same in the input datasets. Args: datasets (Union[list, class Dataset]): A list of datasets or a single class Dataset to be concatenated together with this dataset. Returns: ConcatDataset, dataset concatenated. Examples: >>> # Create a dataset by concatenating dataset_1 and dataset_2 with "+" operator >>> dataset = dataset_1 + dataset_2 >>> # Create a dataset by concatenating dataset_1 and dataset_2 with concat operation >>> dataset = dataset_1.concat(dataset_2) """ if isinstance(datasets, Dataset): datasets = [self] + [datasets] elif isinstance(datasets, list): datasets = [self] + datasets else: raise TypeError("Invalid datasets, expected Dataset object or list of Dataset, but got %s!" % datasets) return ConcatDataset(datasets) @check_rename def rename(self, input_columns, output_columns): """ Rename the columns in input datasets. Args: input_columns (Union[str, list[str]]): List of names of the input columns. output_columns (Union[str, list[str]]): List of names of the output columns. Returns: RenameDataset, dataset renamed. Examples: >>> # dataset is an instance object of Dataset >>> input_columns = ["input_col1", "input_col2", "input_col3"] >>> output_columns = ["output_col1", "output_col2", "output_col3"] >>> >>> # Create a dataset where input_col1 is renamed to output_col1, and >>> # input_col2 is renamed to output_col2, and input_col3 is renamed >>> # to output_col3. >>> dataset = dataset.rename(input_columns=input_columns, output_columns=output_columns) """ return RenameDataset(self, input_columns, output_columns) @check_project def project(self, columns): """ Project certain columns in input dataset. The specified columns will be selected from the dataset and passed into the pipeline with the order specified. The other columns are discarded. Args: columns(Union[str, list[str]]): List of names of the columns to project. Returns: ProjectDataset, dataset projected. Examples: >>> # dataset is an instance object of Dataset >>> columns_to_project = ["column3", "column1", "column2"] >>> >>> # Create a dataset that consists of column3, column1, column2 >>> # in that order, regardless of the original order of columns. >>> dataset = dataset.project(columns=columns_to_project) """ return ProjectDataset(self, columns) def build_vocab(self, columns, freq_range, top_k, special_tokens, special_first): """ Function to create a Vocab from source dataset Build a vocab from a dataset. This would collect all the unique words in a dataset and return a vocab which contains top_k most frequent words (if top_k is specified) Args: columns(Union[str, list[str]]): Column names to get words from. freq_range(tuple[int]): A tuple of integers (min_frequency, max_frequency). Words within the frequency range will be stored. Naturally 0 <= min_frequency <= max_frequency <= total_words. min_frequency/max_frequency can be set to default, which corresponds to 0/total_words separately. top_k(int): Number of words to be built into vocab. top_k most frequent words are taken. The top_k is taken after freq_range. If not enough top_k, all words will be taken special_tokens(list[str]): A list of strings, each one is a special token. special_first(bool): Whether special_tokens will be prepended/appended to vocab, If special_tokens is specified and special_first is set to default, special_tokens will be prepended. Returns: Vocab, vocab built from the dataset. Examples: >>> import numpy as np >>> >>> def gen_corpus(): ... # key: word, value: number of occurrences, reason for using letters is so their order is apparent ... corpus = {"Z": 4, "Y": 4, "X": 4, "W": 3, "U": 3, "V": 2, "T": 1} ... for k, v in corpus.items(): ... yield (np.array([k] * v, dtype='S'),) >>> column_names = ["column1"] >>> dataset = ds.GeneratorDataset(gen_corpus, column_names) >>> dataset = dataset.build_vocab(columns=["column1"], ... freq_range=(1, 10), top_k=5, ... special_tokens=["<pad>", "<unk>"], ... special_first=True) """ vocab = cde.Vocab() columns = replace_none(columns, []) if not isinstance(columns, list): columns = [columns] freq_range = replace_none(freq_range, (0, 9223372036854775807)) if freq_range[0] is None: freq_range = (0, freq_range[1]) if freq_range[1] is None: freq_range = (freq_range[0], 9223372036854775807) special_tokens = replace_none(special_tokens, []) top_k = replace_none(top_k, 9223372036854775807) ir_tree, api_tree = self.create_ir_tree() # vocab node vocab_node = cde.BuildVocabNode(ir_tree, vocab, columns, freq_range, top_k, special_tokens, special_first) runtime_context = cde.PythonRuntimeContext() runtime_context.Init() # build vocab consumer = cde.PythonBuildVocabConsumer() consumer.Init(vocab_node) runtime_context.AssignConsumer(consumer) consumer.Start() del api_tree return vocab def build_sentencepiece_vocab(self, columns, vocab_size, character_coverage, model_type, params): """ Function to create a SentencePieceVocab from source dataset Args: columns(list[str]): Column names to get words from. vocab_size(int): Vocabulary size. character_coverage(int): Percentage of characters covered by the model, must be between 0.98 and 1.0 Good defaults are: 0.9995 for languages with rich character sets like Japanese or Chinese character sets, and 1.0 for other languages with small character sets like English or Latin. model_type(SentencePieceModel): Model type. Choose from unigram (default), bpe, char, or word. The input sentence must be pretokenized when using word type. params(dict): Any extra optional parameters of sentencepiece library according to your raw data Returns: SentencePieceVocab, vocab built from the dataset. Examples: >>> from mindspore.dataset.text import SentencePieceModel >>> >>> # DE_C_INTER_SENTENCEPIECE_MODE is a mapping dict >>> from mindspore.dataset.text.utils import DE_C_INTER_SENTENCEPIECE_MODE >>> dataset = ds.TextFileDataset("/path/to/sentence/piece/vocab/file", shuffle=False) >>> dataset = dataset.build_sentencepiece_vocab(["text"], 5000, 0.9995, ... DE_C_INTER_SENTENCEPIECE_MODE[SentencePieceModel.UNIGRAM], ... {}) """ vocab = cde.SentencePieceVocab() ir_tree, api_tree = self.create_ir_tree() # vocab node vocab_node = cde.BuildSentenceVocabNode(ir_tree, vocab, columns, vocab_size, character_coverage, model_type, params) runtime_context = cde.PythonRuntimeContext() runtime_context.Init() # build vocab consumer = cde.PythonBuildVocabConsumer() consumer.Init(vocab_node) runtime_context.AssignConsumer(consumer) consumer.Start() del api_tree return vocab def apply(self, apply_func): """ Apply a function in this dataset. Args: apply_func (function): A function that must take one 'Dataset' as an argument and return a preprocessed 'Dataset'. Returns: Dataset, dataset applied by the function. Examples: >>> # dataset is an instance object of Dataset >>> >>> # Declare an apply_func function which returns a Dataset object >>> def apply_func(data): ... data = data.batch(2) ... return data >>> >>> # Use apply to call apply_func >>> dataset = dataset.apply(apply_func) Raises: TypeError: If apply_func is not a function. TypeError: If apply_func doesn't return a Dataset. """ if not hasattr(apply_func, '__call__'): raise TypeError("apply_func must be a function.") dataset = apply_func(self) if not isinstance(dataset, Dataset): raise TypeError("apply_func must return a dataset.") return dataset @check_device_send def device_que(self, send_epoch_end=True, create_data_info_queue=False): """ Return a transferred Dataset that transfers data through a device. Args: send_epoch_end (bool, optional): Whether to send end of sequence to device or not (default=True). create_data_info_queue (bool, optional): Whether to create queue which stores types and shapes of data or not(default=False). Note: If device is Ascend, features of data will be transferred one by one. The limitation of data transmission per time is 256M. Returns: TransferDataset, dataset for transferring. """ return self.to_device(send_epoch_end=send_epoch_end, create_data_info_queue=create_data_info_queue) @check_device_send def to_device(self, send_epoch_end=True, create_data_info_queue=False): """ Transfer data from CPU to GPU or Ascend or other devices. Args: send_epoch_end (bool, optional): Whether to send the end of sequence to device or not (default=True). create_data_info_queue (bool, optional): Whether to create queue which stores types and shapes of data or not(default=False). Note: If device is Ascend, features of data will be transferred one by one. The limitation of data transmission per second is 256M. Returns: TransferDataset, dataset for transferring. Raises: RuntimeError: If distribution file path is given but failed to read. """ return TransferDataset(self, send_epoch_end, create_data_info_queue) @check_save def save(self, file_name, num_files=1, file_type='mindrecord'): """ Save the dynamic data processed by the dataset pipeline in common dataset format. Supported dataset formats: 'mindrecord' only Implicit type casting exists when saving data as 'mindrecord'. The transform table shows how to do type casting. .. list-table:: Implicit Type Casting when Saving as 'mindrecord' :widths: 25 25 50 :header-rows: 1 * - Type in 'dataset' - Type in 'mindrecord' - Details * - bool - None - Not supported * - int8 - int32 - * - uint8 - bytes(1D uint8) - Drop dimension * - int16 - int32 - * - uint16 - int32 - * - int32 - int32 - * - uint32 - int64 - * - int64 - int64 - * - uint64 - None - Not supported * - float16 - float32 - * - float32 - float32 - * - float64 - float64 - * - string - string - Multi-dimensional string not supported Note: 1. To save the samples in order, set dataset's shuffle to False and num_files to 1. 2. Before calling the function, do not use batch operator, repeat operator or data augmentation operators with random attribute in map operator. 3. When array dimension is variable, one-dimensional arrays or multi-dimensional arrays with variable dimension 0 are supported. 4. Mindrecord does not support DE_UINT64, multi-dimensional DE_UINT8(drop dimension) nor multi-dimensional DE_STRING. Args: file_name (str): Path to dataset file. num_files (int, optional): Number of dataset files (default=1). file_type (str, optional): Dataset format (default='mindrecord'). """ ir_tree, api_tree = self.create_ir_tree() runtime_context = cde.PythonRuntimeContext() runtime_context.Init() consumer = cde.PythonSaveToDisk(file_name, num_files, file_type) consumer.Init(ir_tree) runtime_context.AssignConsumer(consumer) consumer.Save() _set_dataset_permissions(file_name, num_files) del api_tree @check_tuple_iterator def create_tuple_iterator(self, columns=None, num_epochs=-1, output_numpy=False, do_copy=True): """ Create an iterator over the dataset. The datatype retrieved back will be a list of ndarrays. To specify which columns to list and the order needed, use columns_list. If columns_list is not provided, the order of the columns will remain unchanged. Args: columns (list[str], optional): List of columns to be used to specify the order of columns (default=None, means all columns). num_epochs (int, optional): Maximum number of epochs that iterator can be iterated. (default=-1, iterator can be iterated infinite number of epochs) output_numpy (bool, optional): Whether or not to output NumPy datatype. If output_numpy=False, iterator will output MSTensor (default=False). do_copy (bool, optional): when output data type is mindspore.Tensor, use this param to select the conversion method, only take False for better performance (default=True). Returns: TupleIterator, tuple iterator over the dataset. Examples: >>> # dataset is an instance object of Dataset >>> iterator = dataset.create_tuple_iterator() >>> for item in iterator: ... # item is a list ... print(type(item)) ... break <class 'list'> """ if output_numpy is None: output_numpy = False if Dataset._noop_mode(): return DummyIterator(self, 'tuple') return TupleIterator(self, columns, num_epochs, output_numpy, do_copy) @check_dict_iterator def create_dict_iterator(self, num_epochs=-1, output_numpy=False): """ Create an iterator over the dataset. The data retrieved will be a dictionary datatype. The order of the columns in the dictionary may not be the same as the original order. Args: num_epochs (int, optional): Maximum number of epochs that iterator can be iterated (default=-1, iterator can be iterated infinite number of epochs). output_numpy (bool, optional): Whether or not to output NumPy datatype, if output_numpy=False, iterator will output MSTensor (default=False). Returns: DictIterator, dictionary iterator over the dataset. Examples: >>> # dataset is an instance object of Dataset >>> iterator = dataset.create_dict_iterator() >>> for item in iterator: ... # item is a dict ... print(type(item)) ... break <class 'dict'> """ if output_numpy is None: output_numpy = False if Dataset._noop_mode(): return DummyIterator(self, 'dict') return DictIterator(self, num_epochs, output_numpy) def __iter__(self): """Create an iterator over the dataset.""" return self.create_tuple_iterator(num_epochs=1) @property def input_indexs(self): """ Get Input Index Information Returns: tuple, tuple of the input index information. Examples: >>> # dataset is an instance object of Dataset >>> # set input_indexs >>> dataset.input_indexs = 10 >>> print(dataset.input_indexs) 10 """ if self._input_indexs != (): return self._input_indexs # find input_indexes of children children_input_index = [child.input_indexs for child in self.children] # in case of more than one child, return the first input_indexes for cix in children_input_index: if cix != (): return cix # if all children's input_indexes are () or the node is a leaf return self._input_indexs @input_indexs.setter def input_indexs(self, value): self._input_indexs = value def copy_batch_size(self, value): self._batch_size = value def _init_tree_getters(self): """ Get pipeline information. """ ir_tree, api_tree = self.create_ir_tree() runtime_context = cde.PythonRuntimeContext() runtime_context.Init() getter = cde.TreeGetters() getter.Init(ir_tree) runtime_context.AssignConsumer(getter) return getter, runtime_context, api_tree def __init_size_getter(self): """ Get pipeline information. """ ir_tree, api_tree = self.create_ir_tree() runtime_context = cde.PythonRuntimeContext() runtime_context.Init() getter = cde.DatasetSizeGetters() getter.Init(ir_tree) runtime_context.AssignConsumer(getter) return getter, runtime_context, api_tree def get_col_names(self): """ Return the names of the columns in dataset. Returns: list, list of column names in the dataset. Examples: >>> # dataset is an instance object of Dataset >>> col_names = dataset.get_col_names() """ if self._col_names is None: runtime_getter = self._init_tree_getters() self._col_names = runtime_getter[0].GetColumnNames() self.close_pool() runtime_getter[2].notify_watchdog() return self._col_names def output_shapes(self): """ Get the shapes of output data. Returns: list, list of shapes of each column. Examples: >>> # dataset is an instance object of Dataset >>> output_shapes = dataset.output_shapes() """ if self.saved_output_shapes is None: runtime_getter = self._init_tree_getters() self.saved_output_shapes = runtime_getter[0].GetOutputShapes() self.saved_output_types = runtime_getter[0].GetOutputTypes() self.close_pool() runtime_getter[2].notify_watchdog() if self.dynamic_setting[0]: self.saved_output_shapes, self.saved_min_shapes, self.saved_max_shapes = self._dynamic_output_shapes() return self.saved_output_shapes def output_types(self): """ Get the types of output data. Returns: list, list of data types. Examples: >>> # dataset is an instance object of Dataset >>> output_types = dataset.output_types() """ if self.saved_output_types is None: runtime_getter = self._init_tree_getters() self.saved_output_shapes = runtime_getter[0].GetOutputShapes() self.saved_output_types = runtime_getter[0].GetOutputTypes() self.close_pool() runtime_getter[2].notify_watchdog() if self.dynamic_setting[0]: self.saved_output_shapes, self.saved_min_shapes, self.saved_max_shapes = self._dynamic_output_shapes() return self.saved_output_types def get_dataset_size(self): """ Return the number of batches in an epoch. Returns: int, number of batches. Examples: >>> # dataset is an instance object of Dataset >>> dataset_size = dataset.get_dataset_size() """ if self.dataset_size is None: runtime_getter = self.__init_size_getter() self.dataset_size = runtime_getter[0].GetDatasetSize(False) self.close_pool() runtime_getter[2].notify_watchdog() return self.dataset_size def set_dynamic_columns(self, columns=None): """ Set dynamic shape information of source data, it should be set after the pipeline is defined. Args: columns (dict): A dict contains shape information of each column in dataset. The value of shape[i] is :py:obj:`None` indicates that the data length of shape[i] is dynamic. Examples: >>> import numpy as np >>> >>> def generator1(): >>> for i in range(1, 100): >>> yield np.ones((16, i, 83)), np.array(i) >>> >>> dataset = ds.GeneratorDataset(generator1, ["data1", "data2"]) >>> dataset.set_dynamic_columns(columns={"data1": [16, None, 83], "data2": []}) """ if not isinstance(columns, dict): raise TypeError("Pass a dict to set dynamic shape, example: {\"data1\": [16, None, 256]}") self.dynamic_setting[0] = True self.dynamic_setting[1] = columns def dynamic_min_max_shapes(self): """ Get minimum and maximum data length of dynamic source data, for dynamic graph compilation. Returns: lists, min_shapes, max_shapes of source data. Examples: >>> import numpy as np >>> >>> def generator1(): >>> for i in range(1, 100): >>> yield np.ones((16, i, 83)), np.array(i) >>> >>> dataset = ds.GeneratorDataset(generator1, ["data1", "data2"]) >>> dataset.set_dynamic_columns(columns={"data1": [16, None, 83], "data2": []}) >>> min_shapes, max_shapes = dataset.dynamic_min_max_shapes() """ if self.saved_min_shapes is None or self.saved_max_shapes is None: self.saved_output_shapes, self.saved_min_shapes, self.saved_max_shapes = self._dynamic_output_shapes() return self.saved_min_shapes, self.saved_max_shapes @staticmethod def __check_dynamic_column_name(dynamic_columns, dataset_columns): for column in dynamic_columns: if column not in dataset_columns: raise RuntimeError("dynamic column [" + column + "] does not match any column in dataset: " + str(dataset_columns)) @staticmethod def __check_dynamic_column_shape(data, col, dynamic_columns): shape_mismatch = "dynamic column [" + col + "] with shape " + str(dynamic_columns[col]) + \ " does not match dataset column [" + col + "] with shape " + str(list(data[col].shape)) if data[col].ndim != len(dynamic_columns[col]): raise RuntimeError(shape_mismatch) for dim in range(len(dynamic_columns[col])): if dynamic_columns[col][dim] is not None and dynamic_columns[col][dim] != data[col].shape[dim]: raise RuntimeError(shape_mismatch) def _dynamic_output_shapes(self): """ Get dynamic information of source data. Returns: lists, dynamic_shapes, min_shapes, max_shapes of source data. """ if not self.dynamic_setting[1]: raise RuntimeError("dynamic_columns is not set, call set_dynamic_columns() by final Dataset Op.") if self.saved_output_shapes is not None and self.saved_min_shapes is not None and \ self.saved_max_shapes is not None: return self.saved_output_shapes, self.saved_min_shapes, self.saved_max_shapes logger.warning("Calculating dynamic shape of input data, this will take a few minutes...") # Assume data1 shape is dynamic, data2 shape is fix # {"data1": [batch_size, None, feat_len], "data2": [batch_size, feat_len]} dynamic_columns = self.dynamic_setting[1] # ["data1", "data2"] dataset_columns = self.get_col_names() Dataset.__check_dynamic_column_name(dynamic_columns, dataset_columns) # Shape[1] of data1 is variable # {"data1": {(batch_size, 100, feat_len), (16, 200, 83)}, "data2": {(batch_size, feat_len)}} column_shape_set = {col: set() for col in dataset_columns} dataset_size_counter = 0 for data in self.create_dict_iterator(num_epochs=1, output_numpy=True): dataset_size_counter += 1 for col in data.keys(): if col in dynamic_columns: Dataset.__check_dynamic_column_shape(data, col, dynamic_columns) column_shape_set[col].add(tuple(data[col].shape)) # we get dataset_size after dryrun self.dataset_size = dataset_size_counter min_shapes, max_shapes, dynamic_shapes = list(), list(), list() for col, shape_set in column_shape_set.items(): if len(shape_set) > 1: if col not in dynamic_columns: raise RuntimeError("column [" + col + "] has dynamic shape but not set by set_dynamic_columns()" + ", shapes of [" + col + "]: " + str(list(shape_set))) shape_npy = np.array(list(shape_set)) max_shape = shape_npy.max(axis=0) min_shape = shape_npy.min(axis=0) # Set min shape to 1 due to unknown shuffle min_shape = np.where(np.equal(dynamic_columns[col], None), 1, min_shape) # Set dynamic dim to -1 for ME dynamic_shape = np.where(np.equal(dynamic_columns[col], None), -1, dynamic_columns[col]) max_shapes.append(max_shape.tolist()) min_shapes.append(min_shape.tolist()) dynamic_shapes.append(dynamic_shape.tolist()) else: # Also append fix shape to keep order of column shape fix_shape = list(list(shape_set)[0]) max_shapes.append(fix_shape) min_shapes.append(fix_shape) dynamic_shapes.append(fix_shape) if col in dynamic_columns: logger.warning("column [" + col + "] has no dynamic shape but set by set_dynamic_columns()") # Set min shape to 1 due to unknown shuffle min_shapes[-1] = np.where(np.equal(dynamic_columns[col], None), 1, fix_shape).tolist() # Set dynamic dim to -1 for ME dynamic_shapes[-1] = np.where(np.equal(dynamic_columns[col], None), -1, fix_shape).tolist() return dynamic_shapes, min_shapes, max_shapes def num_classes(self): """ Get the number of classes in a dataset. Returns: int, number of classes. Examples: >>> # dataset is an instance object of Dataset >>> num_classes = dataset.num_classes() """ if self._num_classes is None: runtime_getter = self._init_tree_getters() self._num_classes = runtime_getter[0].GetNumClasses() self.close_pool() runtime_getter[2].notify_watchdog() if self._num_classes == -1: return None return self._num_classes def get_sync_notifiers(self): if self.children: return self.children[0].get_sync_notifiers() return {} def disable_sync(self): if self.children: return self.children[0].disable_sync() return {} def is_sync(self): if self.children: return self.children[0].is_sync() return False def sync_update(self, condition_name, num_batch=None, data=None): """ Release a blocking condition and trigger callback with given data. Args: condition_name (str): The condition name that is used to toggle sending next row. num_batch (Union[int, None]): The number of batches (rows) that are released. When num_batch is None, it will default to the number specified by the sync_wait operator (default=None). data (Any): The data passed to the callback, user defined (default=None). """ if (not isinstance(num_batch, int) and num_batch is not None) or \ (isinstance(num_batch, int) and num_batch <= 0): # throwing exception, disable all sync_wait in pipeline self.disable_sync() raise RuntimeError("Sync_update batch size can only be positive integer, got : {}.".format(num_batch)) notifiers_dict = self.get_sync_notifiers() if not isinstance(condition_name, str): raise TypeError("Argument condition_name with value {} is not of type str, but got {}." .format(condition_name, type(condition_name))) if condition_name not in notifiers_dict: # throwing exception, disable all sync_wait in pipeline self.disable_sync() raise RuntimeError("Condition name not found.") if num_batch is not None: num_batch *= self.get_batch_size() notifiers_dict[condition_name](num_batch, data) def get_batch_size(self): """ Return the size of batch. Returns: int, the number of data in a batch. Examples: >>> # dataset is an instance object of Dataset >>> batch_size = dataset.get_batch_size() """ if self._batch_size is None: runtime_getter = self._init_tree_getters() self._batch_size = runtime_getter[0].GetBatchSize() if self._batch_size is None: self._batch_size = 1 return self._batch_size def get_repeat_count(self): """ Get the replication times in RepeatDataset (default is 1). Returns: int, the count of repeat. Examples: >>> # dataset is an instance object of Dataset >>> repeat_count = dataset.get_repeat_count() """ if self._repeat_count is None: runtime_getter = self._init_tree_getters() self._repeat_count = runtime_getter[0].GetRepeatCount() if self._repeat_count is None: self._repeat_count = 1 return self._repeat_count def get_class_indexing(self): """ Return the class index. Returns: dict, a str-to-int mapping from label name to index. dict, a str-to-list<int> mapping from label name to index for Coco ONLY. The second number in the list is used to indicate the super category. Examples: >>> # dataset is an instance object of Dataset >>> class_indexing = dataset.get_class_indexing() """ if self.children: return self.children[0].get_class_indexing() return {} def reset(self): """Reset the dataset for next epoch.""" def is_shuffled(self): """Returns True if the dataset or its children is shuffled.""" for input_dataset in self.children: if input_dataset.is_shuffled(): return True return False def is_sharded(self): """Returns True if the dataset or its children is sharded.""" for input_dataset in self.children: if input_dataset.is_sharded(): return True return False def parse(self, children=None): raise NotImplementedError("Dataset has to implement parse method.") def post_parse(self, ir_node): if self.cache: ir_node = ir_node.set_cache_client(self.cache.cache_client) if self.num_parallel_workers: ir_node = ir_node.set_num_workers(self.num_parallel_workers) return ir_node class SourceDataset(Dataset): """ Abstract class to represent a source dataset which produces content to the data pipeline. """ def __init__(self, num_parallel_workers=None, num_samples=None, shuffle=True, num_shards=None, shard_id=None, cache=None): super().__init__(num_parallel_workers=num_parallel_workers, cache=cache) self.num_samples = replace_none(num_samples, 0) self.num_shards = replace_none(num_shards, 1) self.shard_id = replace_none(shard_id, 0) if shuffle is not None and not isinstance(shuffle, (bool, Shuffle)): raise TypeError("shuffle must be of boolean or enum of 'Shuffle' values like 'Shuffle.GLOBAL' or " "'Shuffle.FILES' or 'Shuffle.INFILE'.") self.shuffle_flag = 2 # Global shuffle if not isinstance(shuffle, Shuffle): if shuffle is None or shuffle: self.shuffle_flag = 2 # Global shuffle else: self.shuffle_flag = 0 # No shuffle else: if shuffle == Shuffle.GLOBAL: self.shuffle_flag = 2 # Global shuffle elif shuffle == Shuffle.FILES: self.shuffle_flag = 1 # Files shuffle elif shuffle == Shuffle.INFILE: self.shuffle_flag = 3 # Infile shuffle def parse(self, children=None): raise NotImplementedError("Dataset has to implement parse method.") @staticmethod def _find_files(patterns): """ Utility function to search for files with the given glob patterns. Args: patterns (Union[str, list[str]]): String or list of patterns to be searched. Returns: list, list of files. """ if not isinstance(patterns, list): patterns = [patterns] file_list = [] unmatched_patterns = [] for pattern in patterns: matches = [match for match in glob.glob(pattern, recursive=True) if os.path.isfile(match)] if matches: file_list.extend(matches) else: unmatched_patterns.append(pattern) if unmatched_patterns: raise ValueError("The following patterns did not match any files: {}.".format(unmatched_patterns)) if file_list: # not empty return file_list raise ValueError("The list of path names matching the patterns is empty.") def is_shuffled(self): return self.shuffle_flag > 0 def is_sharded(self): if self.num_shards is not None: return self.num_shards > 1 return False class MappableDataset(SourceDataset): """ Abstract class to represent a source dataset which supports use of samplers. """ def parse(self, children=None): raise NotImplementedError("Dataset has to implement parse method.") def __init__(self, num_parallel_workers=None, sampler=None, num_samples=None, shuffle=None, num_shards=None, shard_id=None, cache=None): super().__init__(num_parallel_workers=num_parallel_workers, num_samples=num_samples, shuffle=shuffle, num_shards=num_shards, shard_id=shard_id, cache=cache) self.shuffle_flag = replace_none(shuffle, True) self.sampler = samplers.select_sampler(num_samples, sampler, shuffle, num_shards, shard_id) def add_sampler(self, new_sampler): """ Add a sampler for current dataset,. Args: new_sampler (Sampler): The sampler to be added as the parent sampler for current dataset. Examples: >>> # dataset is an instance object of Dataset >>> # use a DistributedSampler instead >>> new_sampler = ds.DistributedSampler(10, 2) >>> dataset.add_sampler(new_sampler) """ # note: By adding a sampler, the sampled IDs will flow to new_sampler # after first passing through the current samplers attached to this dataset. self.dataset_size = None new_sampler.add_child(self.sampler) self.sampler = new_sampler def use_sampler(self, new_sampler): """ Make the current dataset use the new_sampler provided by other API. Args: new_sampler (Sampler): The sampler to use for the current dataset. Examples: >>> # dataset is an instance object of Dataset >>> # use a DistributedSampler instead >>> new_sampler = ds.DistributedSampler(10, 2) >>> dataset.use_sampler(new_sampler) """ if new_sampler is None: raise TypeError("Input sampler can not be None.") if not isinstance(new_sampler, (samplers.BuiltinSampler, samplers.Sampler)): raise TypeError("Input sampler is not an instance of a sampler.") self.dataset_size = None self.sampler = self.sampler.child_sampler self.add_sampler(new_sampler) def is_shuffled(self): return self.sampler.is_shuffled() def is_sharded(self): return self.sampler.is_sharded() @check_split def split(self, sizes, randomize=True): """ Split the dataset into smaller, non-overlapping datasets. Args: sizes (Union[list[int], list[float]]): If a list of integers [s1, s2, …, sn] is provided, the dataset will be split into n datasets of size s1, size s2, …, size sn respectively. If the sum of all sizes does not equal the original dataset size, an error will occur. If a list of floats [f1, f2, …, fn] is provided, all floats must be between 0 and 1 and must sum to 1, otherwise an error will occur. The dataset will be split into n Datasets of size round(f1*K), round(f2*K), …, round(fn*K) where K is the size of the original dataset. If after rounding: - Any size equals 0, an error will occur. - The sum of split sizes < K, the difference will be added to the first split. - The sum of split sizes > K, the difference will be removed from the first large enough split such that it will have at least 1 row after removing the difference. randomize (bool, optional): Determines whether or not to split the data randomly (default=True). If True, the data will be randomly split. Otherwise, each split will be created with consecutive rows from the dataset. Note: 1. There is an optimized split function, which will be called automatically when the dataset that calls this function is a MappableDataset. 2. Dataset should not be sharded if split is going to be called. Instead, create a DistributedSampler and specify a split to shard after splitting. If the dataset is sharded after a split, it is strongly recommended setting the same seed in each instance of execution, otherwise each shard may not be part of the same split (see Examples). 3. It is strongly recommended to not shuffle the dataset, but use randomize=True instead. Shuffling the dataset may not be deterministic, which means the data in each split will be different in each epoch. Furthermore, if sharding occurs after split, each shard may not be part of the same split. Raises: RuntimeError: If get_dataset_size returns None or is not supported for this dataset. RuntimeError: If `sizes` is list of integers and sum of all elements in sizes does not equal the dataset size. RuntimeError: If `sizes` is list of float and there is a split with size 0 after calculations. RuntimeError: If the dataset is sharded prior to calling split. ValueError: If `sizes` is list of float and not all floats are between 0 and 1, or if the floats don't sum to 1. Returns: tuple(Dataset), a tuple of datasets that have been split. Examples: >>> # Since many datasets have shuffle on by default, set shuffle to False if split will be called! >>> dataset = ds.ImageFolderDataset(image_folder_dataset_dir, shuffle=False) >>> >>> # Set the seed, and tell split to use this seed when randomizing. >>> # This is needed because sharding will be done later >>> ds.config.set_seed(58) >>> train_dataset, test_dataset = dataset.split([0.9, 0.1]) >>> >>> # To shard the train dataset, use a DistributedSampler >>> train_sampler = ds.DistributedSampler(10, 2) >>> train_dataset.use_sampler(train_sampler) """ if self.is_shuffled(): logger.warning("Dataset is shuffled before split.") if self.is_sharded(): raise RuntimeError("Dataset should not be sharded before split.") absolute_sizes = self._get_absolute_split_sizes(sizes) splits = [] current_split_start_index = 0 for size in absolute_sizes: ds = copy.deepcopy(self) ds.dataset_size = None if randomize: # want to shuffle the same way every epoch before split, we are assuming # that the user will call set_seed random_sampler = samplers.RandomSampler() random_sampler.reshuffle_each_epoch = False ds.add_sampler(random_sampler) subset_sampler = samplers.SequentialSampler(current_split_start_index, size) ds.add_sampler(subset_sampler) # add sequential sampler, so that if user calls use_sampler, we will # get rid of the sequential sampler instead of something we need ds.add_sampler(samplers.SequentialSampler()) splits.append(ds) current_split_start_index += size return tuple(splits) class BucketBatchByLengthDataset(Dataset): """ The result of applying BucketBatchByLength operator to the input dataset. """ def __init__(self, input_dataset, column_names, bucket_boundaries, bucket_batch_sizes, element_length_function, pad_info, pad_to_bucket_boundary, drop_remainder): super().__init__(children=input_dataset) self.column_names = to_list(column_names) self.bucket_boundaries = replace_none(bucket_boundaries, []) self.bucket_batch_sizes = replace_none(bucket_batch_sizes, []) self.element_length_function = element_length_function self.pad_info = replace_none(pad_info, {}) self.pad_to_bucket_boundary = replace_none(pad_to_bucket_boundary, False) self.drop_remainder = replace_none(drop_remainder, False) def parse(self, children=None): return cde.BucketBatchByLengthNode(children[0], self.column_names, self.bucket_boundaries, self.bucket_batch_sizes, self.element_length_function, self.pad_info, self.pad_to_bucket_boundary, self.drop_remainder) class BatchDataset(Dataset): """ The result of applying Batch operator to the input dataset. Args: input_dataset (Dataset): Input Dataset to be batched. batch_size (Union[int, function]): The number of rows each batch is created with. An int or callable which takes exactly 1 parameter, BatchInfo. drop_remainder (bool, optional): Determines whether or not to drop the last possibly incomplete batch (default=False). If True, and if there are less than batch_size rows available to make the last batch, then those rows will be dropped and not propagated to the child node. num_parallel_workers (int, optional): Number of workers to process the dataset in parallel (default=None). per_batch_map (callable, optional): Per batch map callable. A callable which takes (list[Tensor], list[Tensor], ..., BatchInfo) as input parameters. Each list[Tensor] represents a batch of Tensors on a given column. The number of lists should match with number of entries in input_columns. The last parameter of the callable must always be a BatchInfo object. input_columns (Union[str, list[str]], optional): List of names of the input columns. The size of the list must match with signature of per_batch_map callable. output_columns (Union[str, list[str]], optional): List of names assigned to the columns outputted by the last operation. This parameter is mandatory if len(input_columns) != len(output_columns). The size of this list must match the number of output columns of the last operation. (default=None, output columns will have the same name as the input columns, i.e., the columns will be replaced). column_order (Union[str, list[str]], optional): Specifies the list of all the columns you need in the whole dataset. The parameter is required when len(input_column) != len(output_column). Caution: the list here is not just the columns specified in parameter input_columns and output_columns. pad_info (dict, optional): Whether to perform padding on selected columns. pad_info={"col1":([224,224],0)} will pad column with name "col1" to a tensor of size [224,224] and fill the missing with 0. max_rowsize(int, optional): Maximum size of row in MB that is used for shared memory allocation to copy data between processes. This is only used if python_multiprocessing is set to True (default=16). """ def __init__(self, input_dataset, batch_size, drop_remainder=False, num_parallel_workers=None, per_batch_map=None, input_columns=None, output_columns=None, column_order=None, pad_info=None, python_multiprocessing=False, max_rowsize=16): super().__init__(children=input_dataset, num_parallel_workers=num_parallel_workers) if BatchDataset._is_ancestor_of_repeat(input_dataset): logger.warning("Repeat is located before batch, data from two epochs can be batched together.") BatchDataset._update_batch_size_for_syncwait(input_dataset, batch_size) # if batch_size is callable, set batch_size to 1 and batch_size_func to that callable function self.batch_size = batch_size if not callable(batch_size) else 1 self.batch_size_func = None if not callable(batch_size) else batch_size self.drop_remainder = replace_none(drop_remainder, False) self.per_batch_map = per_batch_map self.input_columns = to_list(input_columns) self.output_columns = to_list(output_columns) self.column_order = to_list(column_order) self.pad = bool(pad_info is not None) self.pad_info = replace_none(pad_info, dict()) self.python_multiprocessing = python_multiprocessing self.process_pool = None self.hook = None self.pids = [] self.eot = None self.watch_dog = None self.max_rowsize = max_rowsize def parse(self, children=None): return cde.BatchNode(children[0], self.batch_size, self.drop_remainder, self.pad, self.input_columns, self.output_columns, self.column_order, self.batch_size_func, self.per_batch_map, self.pad_info) @staticmethod def _is_ancestor_of_repeat(dataset): """ Utility function to find the case where repeat is used before batch. Args: dataset (Dataset): Dataset to be checked. Returns: bool, whether repeat is used before batch. """ if isinstance(dataset, RepeatDataset): return True flag = False for input_dataset in dataset.children: flag = flag | BatchDataset._is_ancestor_of_repeat(input_dataset) return flag @staticmethod def _update_batch_size_for_syncwait(dataset, batch_size): """ Utility function to notify batch size to sync_wait. Args: dataset (Dataset): Dataset to be checked. batch_size (int): batch size to notify. """ if isinstance(dataset, SyncWaitDataset): dataset.update_sync_batch_size(batch_size) for input_dataset in dataset.children: BatchDataset._update_batch_size_for_syncwait(input_dataset, batch_size) def __deepcopy__(self, memodict): return self.__safe_deepcopy__(memodict, exclude=("per_batch_map", "batch_size_func", "__transfer_dataset__")) # Iterator bootstrap will be called on iterator construction. # A deep copy of Dataset object is created prior of iterator_bootstrap. # This method will create per iterator process pool and bind pyfunc execution to the pool. def iterator_bootstrap(self): """ Per iterator bootstrap callback. """ if self.python_multiprocessing: if self.per_batch_map is None: logger.warning("per_batch_map is None so python_multiprocessing does not work.") return arg_q_list = [] res_q_list = [] # If user didn't specify num_parallel_workers, set it to default if self.num_parallel_workers is not None: num_parallel = self.num_parallel_workers else: num_parallel = get_num_parallel_workers() if get_enable_shared_mem(): _check_shm_usage(num_parallel, 1, self.max_rowsize * self.batch_size, 2) for _ in range(num_parallel): arg_q_list.append(_SharedQueue(1, max_rowsize=self.max_rowsize * self.batch_size)) res_q_list.append(_SharedQueue(1, max_rowsize=self.max_rowsize * self.batch_size)) # Construct pool with the callable list # The callable list and _pyfunc_worker_init are used to pass lambda function in to subprocesses self.process_pool = multiprocessing.Pool(processes=num_parallel, initializer=_pyfunc_worker_init, initargs=([self.per_batch_map], arg_q_list, res_q_list)) idx = 0 global _OP_NAME, _OP_PROCESS, _LOCK op_id = _OP_NAME[str(self)] process_id = {op_id: [self.num_parallel_workers, set()]} # obtain process id from multiprocessing.pool for pool in self.process_pool._pool: # pylint: disable=W0212 process_id[op_id][1].add(pool.pid) self.pids.append(pool.pid) with _LOCK: _OP_PROCESS.update(process_id) # Wrap per_batch_map into _PythonCallable self.per_batch_map = _PythonCallable(self.per_batch_map, idx, self.process_pool, arg_q_list, res_q_list) self.hook = _ExceptHookHandler() # batch will launch a watch dog thread to monitoring sub processes self._launch_watch_dog() atexit.register(_mp_pool_exit_preprocess) # If Python version greater than 3.8, we need to close ThreadPool in atexit for unclean pool teardown. if sys.version_info >= (3, 8): atexit.register(self.process_pool.close) else: if self.per_batch_map is not None: self.per_batch_map = FuncWrapper(self.per_batch_map) def _launch_watch_dog(self): if platform.system().lower() != 'windows': self.eot = threading.Event() self.watch_dog = threading.Thread(target=_watch_dog, args=(self.eot, self.pids)) self.watch_dog.daemon = True self.watch_dog.start() def _abort_watchdog(self): if not self.eot.is_set(): self.eot.set() def __del__(self): if hasattr(self, 'process_pool') and self.process_pool is not None: self.process_pool.close() if hasattr(self, 'watch_dog') and self.watch_dog is not None and hasattr(self, 'eot') and self.eot is not None: self._abort_watchdog() class BatchInfo(cde.CBatchInfo): """ The information object associates with the current batch of tensors. """ def get_batch_num(self): """ Return the batch number of the current batch. """ return def get_epoch_num(self): """ Return the epoch number of the current batch. """ return class BlockReleasePair: """ The blocking condition class used by SyncWaitDataset. Args: init_release_rows (int): Number of lines to allow through the pipeline. callback (function): The callback function that will be called when release is called (default=None). """ def __init__(self, init_release_rows, callback=None): if isinstance(init_release_rows, int) and init_release_rows <= 0: raise ValueError("release_rows need to be greater than 0.") self.row_count = -init_release_rows self.cv = threading.Condition() self.callback = callback self.default_rows = init_release_rows self.disable = False def __deepcopy__(self, memodict): return self def reset(self): with self.cv: self.row_count = -self.default_rows self.cv.notify_all() def update_batched_size(self, batch_size): # sanity check if isinstance(batch_size, int) and batch_size <= 0: raise ValueError("batch_size need to be greater than 0.") # should only use before the pipeline creates self.row_count *= batch_size self.default_rows *= batch_size def block_func(self): """ Function for handing blocking condition. Returns: bool, True. """ with self.cv: # if disable is true, the always evaluate to true not_time_out = self.cv.wait_for(lambda: (self.row_count < 0 or self.disable), timeout=get_callback_timeout()) # time_out will be False if time out occurs if not not_time_out: logger.warning("Timeout happened in sync_wait, maybe dataset.sync_update(condition=...) " "is not added after dataset.create_dict_iterator(...), now disabling lock.") self.disable = True self.row_count += 1 return True def release_func(self, pass_rows=None, data=None): with self.cv: if pass_rows is None: pass_rows = self.default_rows self.row_count -= pass_rows if self.callback is not None: self.callback(data) self.cv.notify_all() def disable_lock(self): with self.cv: self.disable = True self.cv.notify_all() class SyncWaitDataset(Dataset): """ The result of adding a blocking condition to the input Dataset. Args: input_dataset (Dataset): Input dataset to apply flow control. num_batch (int): Number of batches without blocking at the start of each epoch. condition_name (str): Condition name that is used to toggle sending next row. callback (function): Callback function that will be invoked when sync_update is called (default=None). Raises: RuntimeError: If condition name already exists. """ def __init__(self, input_dataset, condition_name, num_batch, callback=None): super().__init__(children=input_dataset) # set to the default value, waiting for the batch to update it self._condition_name = condition_name if isinstance(num_batch, int) and num_batch <= 0: raise ValueError("num_batch need to be greater than 0.") self._pair = BlockReleasePair(num_batch, callback) if self._condition_name in self.children[0].get_sync_notifiers(): raise RuntimeError("Condition name is already in use.") logger.info("Please remember to add dataset.sync_update(condition=%s), otherwise hanging will result. " "If dataset.sync_update(condition=%s) has already been added, you can ignore the info.", condition_name, condition_name) def parse(self, children=None): return cde.SyncWaitNode(children[0], self._condition_name, self._pair.block_func) def get_sync_notifiers(self): return {**self.children[0].get_sync_notifiers(), **{self._condition_name: self._pair.release_func}} def is_sync(self): return True def update_sync_batch_size(self, batch_size): if isinstance(batch_size, int) and batch_size <= 0: raise ValueError("num_batch need to be greater than 0.") self._pair.update_batched_size(batch_size) def disable_sync(self): logger.info("Disabling Sync") self._pair.disable_lock() @staticmethod def _is_ancestor_of_batch(dataset): """ Utility function to find the case where sync_wait is used before batch. Args: dataset (Dataset): Dataset to be checked. Returns: bool, whether sync_wait is used before batch. """ if isinstance(dataset, BatchDataset): return True flag = False for input_dataset in dataset.children: flag = flag | SyncWaitDataset._is_ancestor_of_batch(input_dataset) return flag def iterator_bootstrap(self): self._pair.reset() class ShuffleDataset(Dataset): """ The result of applying Shuffle operator to the input Dataset. Args: input_dataset (Dataset): Input Dataset to be shuffled. buffer_size (int): Size of the buffer. Raises: RuntimeError: If exist sync operators before shuffle. """ def __init__(self, input_dataset, buffer_size): super().__init__(children=input_dataset) self.buffer_size = buffer_size self.reshuffle_each_epoch = True if self.is_sync(): raise RuntimeError("No shuffle after sync operators.") def parse(self, children=None): return cde.ShuffleNode(children[0], self.buffer_size, self.reshuffle_each_epoch) def is_shuffled(self): return True # This wait function is for cleaning zombie subprocesses def wait_pid(): """ This function is used by the main process to release subprocess resources. """ try: while True: child_pid, _ = os.waitpid(-1, os.WNOHANG) if child_pid == 0: break except OSError: # waitpid may be failed for some reasons so we ignore this error pass # Dataset need _watch_dog thread to monitoring fork multi-processing, # and thread can't be a member function otherwise python won't collect and release resources. def _watch_dog(eot, pids): """ This thread is for monitoring subprocesses forked by GeneratorDataset/map/batch """ while not eot.is_set(): subprocess_exit_num = 0 # Monitoring and count how many subprocesses already exit for pid in pids: try: p = psutil.Process(pid) if p.status() == psutil.STATUS_ZOMBIE: subprocess_exit_num += 1 except psutil.NoSuchProcess: subprocess_exit_num += 1 # If find subprocess exit, we will wait for 30s and do some waitpid operations if subprocess_exit_num > 0: start = time.time() while time.time() - start < 30: # We need to distinguishing get_dataset_size or train finished normally and hang scenario. # If get_dataset_size or train finished normally, _stop_subprocess can be execute and # self.need_abort can be set to True. If main process is hang in get(), self.need_abort # will never set to True, then we wait for 30s and kill main process if eot.is_set(): return # Sometimes subprocess may be zombie, so in 30s we can wait and do some useful tasks(waitpid). wait_pid() # multiprocessing.queue may hang in .get() forever when put() process was killed. # We have to exit main process otherwise main process will hang. logger.critical("The subprocess of dataset may exit unexpected or be killed, " "main process will exit.") os.kill(os.getpid(), signal.SIGTERM) # Pyfunc collection for multiprocess pyfunc # This global variable will only be used within subprocesses _GLOBAL_PYFUNC_LIST = [] _ARGS_QUEUE = [] _RET_QUEUE = [] _OP_NAME = dict() _OP_PROCESS = dict() _LOCK = threading.Lock() # Pyfunc worker init function # Python multiprocessing library forbid sending lambda function through pipe. # This init function allow us to add all Python function to a global collection and then fork afterwards. def _pyfunc_worker_init(pyfunc_list, args_queue, ret_queue): global _GLOBAL_PYFUNC_LIST global _ARGS_QUEUE global _RET_QUEUE _GLOBAL_PYFUNC_LIST = pyfunc_list _ARGS_QUEUE = args_queue _RET_QUEUE = ret_queue # Pyfunc worker execution function # All exceptions will be raised to main processes def _pyfunc_worker_exec(index, qid, *args): """ Internal function for call certain pyfunc in Python process. """ # Some threads in multiprocess.pool can't process sigint signal, # and will occur hang problem, so ctrl+c will pass to parent process. signal.signal(signal.SIGINT, signal.SIG_IGN) if qid != -1: # Pass arguments through the Queue instead of directly to remote process args = _ARGS_QUEUE[qid].get() try: r = _GLOBAL_PYFUNC_LIST[index](*args) except Exception: return ExceptionHandler(where="in map(or batch) worker and execute python function") if isinstance(r, tuple): _RET_QUEUE[qid].put(r) else: _RET_QUEUE[qid].put((r,)) return [qid] # not using shared memory for passing arguments, call function directly result = None try: result = _GLOBAL_PYFUNC_LIST[index](*args) except Exception: result = ExceptionHandler(where="in map(or batch) worker and execute python function") return result # PythonCallable wrapper for multiprocess pyfunc class _PythonCallable: """ Internal Python function wrapper for multiprocessing pyfunc. """ def __init__(self, py_callable, idx, pool=None, arg_q=None, res_q=None): # Original Python callable from user. self.py_callable = py_callable # Process pool created for current iterator. self.pool = pool # Python callable index for subprocess _GLOBAL_PYFUNC_LIST self.idx = idx if pool is not None: self.queuemap = {} self.arg_q = arg_q self.res_q = res_q self.next_queue = 0 def __call__(self, *args): if self._pool_is_running() and check_iterator_cleanup() is False: result, qid, ret = self._send(*args) if ret: return result # todo this check might be wrong while check_iterator_cleanup() is False: try: return self._receive(result, qid) except multiprocessing.TimeoutError: continue except KeyboardInterrupt: _set_iterator_cleanup() self.pool.close() self.pool.join() raise Exception("Multiprocess MapOp worker receives KeyboardInterrupt.") return (None,) # Invoke original Python callable in master process in case the pool is gone. return self.py_callable(*args) def to_json(self): return self.py_callable.to_json() def _send(self, *args): """ The map/batch operator will use multiprocessing-pool apply_async interface to execute python function in a sub process, apply_async will release GIL temporarily. For better performance, we use shared memory feature and pass shared queue instead of multiprocess args. """ ret = False qid = None if self.arg_q != []: tid = threading.get_ident() # Need to register each thread to use a different queue to send data to pool if not tid in self.queuemap: qid = self.next_queue self.next_queue = self.next_queue + 1 self.queuemap[tid] = qid else: qid = self.queuemap[tid] self.arg_q[qid].put(args) # This call will send the tensors along with Python callable index to the process pool. # Block, yield GIL. Current thread will reacquire GIL once result is returned. if self._pool_is_running() and check_iterator_cleanup() is False: result = self.pool.apply_async(_pyfunc_worker_exec, [self.idx, qid, []]) else: ret = True result = self.py_callable(*args) else: result = self.pool.apply_async(_pyfunc_worker_exec, [self.idx, -1, *args]) return result, qid, ret def _receive(self, result, qid): """ The map/batch operator will use multiprocessing-pool get interface to sync output data from a sub process, get interface will reacquire GIL. For better performance, we use shared memory feature and get data from shared queue directly. """ if self.arg_q != []: r = result.get(30) if isinstance(r, ExceptionHandler): r.reraise() if r[0] != qid: raise Exception("In PyCallable, got results from wrong thread") r = self.res_q[qid].get() return r r = result.get(30) if isinstance(r, ExceptionHandler): r.reraise() return r def _pool_is_running(self): # note here: the RUN state of python3.7 and python3.8 is different: # python3.7: RUN = 0 # python3.8: RUN = "RUN" # so we use self.pool._state == RUN instead and we can't use _state == 0 any more. if self.pool is not None and self.pool._state == RUN: # pylint: disable=W0212 return True return False def _mp_pool_exit_preprocess(): if check_iterator_cleanup() is False: # Set the iterator_cleanup flag to True before exiting, and wait 3s for all apply_async # applied to the multiprocessing task to prevent multiprocessing from hang when exiting _set_iterator_cleanup() time.sleep(3) class _ExceptHookHandler: def __init__(self): sys.excepthook = self.__handler_exception def __handler_exception(self, ex_type, value, tb): logger.critical("Uncaught exception: ", exc_info=(ex_type, value, tb)) _mp_pool_exit_preprocess() class MapDataset(Dataset): """ The result of applying the Map operator to the input Dataset. Args: input_dataset (Dataset): Input Dataset to be mapped. operations (TensorOp): A function mapping a nested structure of tensors to another nested structure of tensor (default=None). input_columns (Union[str, list[str]]): List of names of the input columns (default=None, the operations will be applied on the first columns in the dataset). The size of the list should match the number of inputs of the first operator. output_columns (Union[str, list[str]], optional): List of names of the output columns. The size of the list should match the number of outputs of the last operator (default=None, output columns will be the input columns, i.e., the columns will be replaced). column_order (list[str], optional): Specifies the list of all the columns you need in the whole dataset. The parameter is required when len(input_column) != len(output_column). Caution: the list here is not just the columns specified in parameter input_columns and output_columns. num_parallel_workers (int, optional): Number of workers to process the dataset in parallel (default=None). python_multiprocessing (bool, optional): Parallelize Python operations with multiple worker process. This option could be beneficial if the Python operation is computational heavy (default=False). cache (DatasetCache, optional): Use tensor caching service to speed up dataset processing. (default=None, which means no cache is used). callbacks (DSCallback, list[DSCallback], optional): List of Dataset callbacks to be called (Default=None) max_rowsize(int, optional): Maximum size of row in MB that is used for shared memory allocation to copy data between processes. This is only used if python_multiprocessing is set to True (default=16). offload (bool, optional): Flag to indicate whether offload is used (Default=False). Raises: ValueError: If len(input_columns) != len(output_columns) and column_order is not specified. """ def __init__(self, input_dataset, operations=None, input_columns=None, output_columns=None, column_order=None, num_parallel_workers=None, python_multiprocessing=False, cache=None, callbacks=None, max_rowsize=16, offload=False): super().__init__(children=input_dataset, num_parallel_workers=num_parallel_workers, cache=cache) self.operations = to_list(operations) self.operations = py_transforms.Compose.reduce(self.operations) self.input_columns = to_list(input_columns) self.output_columns = to_list(output_columns) self.column_order = replace_none(column_order, []) # If output_columns were not provided then use input_columns self.output_columns = self.input_columns if not self.output_columns else self.output_columns if self.input_columns and self.output_columns \ and len(self.input_columns) != len(self.output_columns) \ and not self.column_order: raise ValueError("When length of input_columns and output_columns are not equal," " column_order must be specified.") self.python_multiprocessing = python_multiprocessing self.process_pool = None self.hook = None self.pids = [] self.eot = None self.watch_dog = None self.callbacks = to_list(callbacks) self.max_rowsize = max_rowsize self.offload = offload def parse(self, children=None): operations = [] for op in self.operations: if op and getattr(op, 'parse', None): operations.append(op.parse()) else: operations.append(op) callbacks = [cb.create_runtime_obj() for cb in self.callbacks] return cde.MapNode(children[0], operations, self.input_columns, self.output_columns, self.column_order, callbacks, self.max_rowsize, self.offload) def __deepcopy__(self, memodict): return self.__safe_deepcopy__(memodict, exclude=("operations", "callbacks", "__transfer_dataset__")) # Iterator bootstrap will be called on iterator construction. # A deep copy of Dataset object is created prior of iterator_bootstrap. # This method will create per iterator process pool and bind pyfunc execution to the pool. def iterator_bootstrap(self): """ Per iterator bootstrap callback. """ if self.python_multiprocessing: iter_specific_operations = [] callable_list = [] arg_q_list = [] res_q_list = [] # If user didn't specify num_parallel_workers, set it to default num_parallel = get_num_parallel_workers() if self.num_parallel_workers is not None: num_parallel = self.num_parallel_workers if get_enable_shared_mem(): _check_shm_usage(num_parallel, 1, self.max_rowsize, 2) for _ in range(num_parallel): arg_q_list.append(_SharedQueue(1, max_rowsize=self.max_rowsize)) res_q_list.append(_SharedQueue(1, max_rowsize=self.max_rowsize)) # Pass #1, look for Python callables and build list for op in self.operations: # our c transforms is now callable and should not be run in Python multithreading if MapDataset.__operation_valid_for_multiprocessing(op): callable_list.append(op) if callable_list: # Construct pool with the callable list # The callable list and _pyfunc_worker_init are used to pass lambda function in to subprocesses self.process_pool = multiprocessing.Pool(processes=num_parallel, initializer=_pyfunc_worker_init, initargs=(callable_list, arg_q_list, res_q_list)) # Pass #2 idx = 0 global _OP_NAME, _OP_PROCESS, _LOCK op_id = _OP_NAME[str(self)] # obtain process id from multiprocessing.pool process_id = {op_id: [self.num_parallel_workers, set()]} for pool in self.process_pool._pool: # pylint: disable=W0212 process_id[op_id][1].add(pool.pid) self.pids.append(pool.pid) with _LOCK: _OP_PROCESS.update(process_id) for op in self.operations: # our c transforms is now callable and should not be run in Python multithreading if MapDataset.__operation_valid_for_multiprocessing(op): # Wrap Python callable into _PythonCallable iter_specific_operations.append(_PythonCallable(op, idx, self.process_pool, arg_q_list, res_q_list)) idx += 1 else: # CPP ops remain the same iter_specific_operations.append(op) self.operations = iter_specific_operations self.hook = _ExceptHookHandler() # Map multiprocessing will launch a watch dog thread for monitoring sub processes self._launch_watch_dog() atexit.register(_mp_pool_exit_preprocess) # If Python version greater than 3.8, we need to close ThreadPool in atexit for unclean pool teardown. if sys.version_info >= (3, 8): atexit.register(self.process_pool.close) @staticmethod def __operation_valid_for_multiprocessing(op): if callable(op) and str(op).find("c_transform") < 0: return True return False def _launch_watch_dog(self): if platform.system().lower() != 'windows': self.eot = threading.Event() self.watch_dog = threading.Thread(target=_watch_dog, args=(self.eot, self.pids)) self.watch_dog.daemon = True self.watch_dog.start() def _abort_watchdog(self): if not self.eot.is_set(): self.eot.set() def __del__(self): if hasattr(self, 'process_pool') and self.process_pool is not None: self.process_pool.close() self.process_pool.join() if hasattr(self, 'watch_dog') and self.watch_dog is not None and hasattr(self, 'eot') and self.eot is not None: self._abort_watchdog() class FilterDataset(Dataset): """ The result of applying filter predicate to the input Dataset. Args: input_dataset (Dataset): Input Dataset to be mapped. predicate (callable): Python callable which returns a boolean value. If False then filter the element. input_columns (Union[str, list[str]], optional): List of names of the input columns (default=None, the predicate will be applied to all columns in the dataset). num_parallel_workers (int, optional): Number of workers to process the dataset in parallel (default=None). """ def __init__(self, input_dataset, predicate, input_columns=None, num_parallel_workers=None): super().__init__(children=input_dataset, num_parallel_workers=num_parallel_workers) self.predicate = lambda *args: bool(predicate(*args)) self.input_columns = to_list(input_columns) def parse(self, children=None): return cde.FilterNode(children[0], self.predicate, self.input_columns) class RepeatDataset(Dataset): """ The result of applying Repeat operator to the input Dataset. Args: input_dataset (Dataset): Input Dataset to be repeated. count (int): Number of times the dataset will be repeated (default=-1, repeat indefinitely). """ def __init__(self, input_dataset, count): super().__init__(children=input_dataset) self.count = replace_none(count, -1) def parse(self, children=None): return cde.RepeatNode(children[0], self.count) class SkipDataset(Dataset): """ The result of applying Skip operator to the input Dataset. Args: input_dataset (Dataset): Input dataset to have elements skipped. count (int): Number of elements to be skipped in the dataset. """ def __init__(self, input_dataset, count): super().__init__(input_dataset) self.count = count def parse(self, children=None): return cde.SkipNode(children[0], self.count) class TakeDataset(Dataset): """ The result of applying Take operator to the input Dataset. Args: input_dataset (Dataset): Input Dataset to have elements taken from. count (int): Number of elements to be taken from the dataset. """ def __init__(self, input_dataset, count): super().__init__(children=input_dataset) self.count = count def parse(self, children=None): return cde.TakeNode(children[0], self.count) class ZipDataset(Dataset): """ The result of applying Zip operator to the input Dataset. Args: datasets (tuple): A tuple of datasets to be zipped together. Raises: TypeError: If dataset is not an instance of Dataset. """ def __init__(self, datasets): super().__init__(children=datasets) def parse(self, children=None): return cde.ZipNode(children) def is_sync(self): return any([c.is_sync() for c in self.children]) class ConcatDataset(Dataset): """ The result of applying concat dataset operator to the input Dataset. Args: datasets (list): A list of datasets to be concatenated together. Raises: TypeError: If dataset is not an instance of Dataset. ValueError: If there is no samples in the one of the datasets. """ def __init__(self, datasets): super().__init__(children=datasets) for dataset in datasets: if not isinstance(dataset, Dataset): raise TypeError("Invalid dataset, expected Dataset object, but got %s!" % type(dataset)) self.datasets = datasets self._sampler = samplers.SequentialSampler(num_samples=None) self.children_sizes_ = [c.get_dataset_size() for c in self.children] child_index = 0 for item in self.children_sizes_: if item == 0: raise ValueError("There are no samples in the dataset number %d. Please make sure there are " "valid samples in the dataset." % child_index) child_index += 1 # _children_flag_and_nums: A list of pair<int ,int>.The first element of pair is flag that characterizes # whether the data set is mappable. The second element of pair is length of the dataset self._children_flag_and_nums = [] # _children_start_end_index_: A list of pair<int ,int>.The elements of pair are used to characterize # the valid position of the dataset corresponding to the subscript when sampling self._children_start_end_index_ = [] for index, child in enumerate(self.children): tem_list = [-1, -1] self._children_start_end_index_.append(tem_list) dataset_len = self.children_sizes_[index] if isinstance(child, GeneratorDataset) and not hasattr(child.source, "__getitem__"): dataset_len = 0 self.children_sizes_[index] = 0 if isinstance(child, MappableDataset): self._children_flag_and_nums.append((0, dataset_len)) else: self._children_flag_and_nums.append((1, dataset_len)) def parse(self, children=None): return cde.ConcatNode(children, self._sampler, self._children_flag_and_nums, self._children_start_end_index_) def use_sampler(self, sampler): """ Set the distributedSampler to concat dataset Args: sampler (Sampler): The sampler to use for the current dataset. Currently supported: DistributedSampler. Raises: TypeError: If the sampler is not an instance of DistributedSampler ValueError: If the parameter shuffle of sampler is True ValueError: If the parameter NumSamples of sampler is not None. ValueError: If num_shards <=0. """ if not isinstance(sampler, samplers.DistributedSampler): raise TypeError("The parameter %s of concat must be DistributedSampler!" % sampler) if sampler.is_shuffled(): raise ValueError("The parameter shuffle of DistributedSampler must be False!") if sampler.num_shards <= 0: raise ValueError("The parameter num_shards of DistributedSampler must be positive int!") if sampler.get_num_samples() is not None: raise ValueError("The parameter num_samples of DistributedSampler is not support to be set!") self.dataset_size = None self._sampler = sampler cumulative_samples_nums = 0 for index, child in enumerate(self.children): if hasattr(child, 'sampler') and child.sampler.get_num_samples() is not None: raise ValueError("The parameter NumSamples of %s is not support to be set!" % child) if isinstance(child, BatchDataset): raise TypeError("The parameter %s of concat must not be BatchDataset!" % child) # if child is mappable and the length is greater than 0 if not self._children_flag_and_nums[index][0] and self._children_flag_and_nums[index][1]: tem_value = cumulative_samples_nums + self._children_flag_and_nums[index][1] if not self._children_flag_and_nums[index][1] >= sampler.num_shards: if tem_value < sampler.num_shards: self._children_start_end_index_[index][0] = cumulative_samples_nums self._children_start_end_index_[index][1] = tem_value else: self._children_start_end_index_[index][0] = cumulative_samples_nums self._children_start_end_index_[index][1] = tem_value % sampler.num_shards tem_sampler = copy.deepcopy(sampler) tem_sampler.set_offset(cumulative_samples_nums) child.use_sampler(tem_sampler) cumulative_samples_nums += self.children_sizes_[index] cumulative_samples_nums %= sampler.num_shards class RenameDataset(Dataset): """ The result of applying Rename operator to the input Dataset. Args: input_dataset (Dataset): Input Dataset to be Renamed. input_columns (Union[str, list[str]]): List of names of the input columns. output_columns (Union[str, list[str]]): List of names of the output columns. """ def __init__(self, input_dataset, input_columns, output_columns): super().__init__(children=input_dataset) self.input_column_names = to_list(input_columns) self.output_column_names = to_list(output_columns) def parse(self, children=None): return cde.RenameNode(children[0], self.input_column_names, self.output_column_names) def to_list(items): if items is None: return [] if isinstance(items, tuple): return list(items) if not isinstance(items, list): return [items] return items class ProjectDataset(Dataset): """ The result of applying Project operator to the input Dataset. Args: input_dataset (Dataset): Input Dataset to be Projected. columns (Union[str, list[str]]): List of names of the columns to project. """ def __init__(self, input_dataset, columns): super().__init__(children=input_dataset) self.columns = to_list(columns) def parse(self, children=None): return cde.ProjectNode(children[0], self.columns) class _ToDevice: """ Internal class to handle sending data to device. """ def __init__(self, dataset, num_epochs): ir_tree, self.api_tree = dataset.create_ir_tree() self._runtime_context = cde.PythonRuntimeContext() self._runtime_context.Init() self._to_device = cde.ToDevice(num_epochs) self._to_device.Init(ir_tree) self._runtime_context.AssignConsumer(self._to_device) ITERATORS_LIST.append(weakref.ref(self)) _unset_iterator_cleanup() def send(self): self._to_device.Send() def stop_send(self): """ send stop send signal to pipeline, it is used when end of sequence is sent at the epoch end. """ self._to_device.StopSend() def continue_send(self): """ send continue send signal to pipeline, it is used when end of sequence is sent at the epoch end. """ self._to_device.ContinueSend() def get_data_info(self): """ Get type and shape of current batch. """ return self._to_device.GetDataInfo() def release(self): """ Manually terminate Device Queue instead of relying on out of scope destruction. """ if hasattr(self, '_runtime_context') and self._runtime_context: if hasattr(self, '_to_device') and self._to_device: self._runtime_context.Terminate() del self._to_device del self._runtime_context def __deepcopy__(self, memodict): return self def get_offload_model(self): """ Get offload model containing removed offload ops from pipeline. """ offload_model = GetOffloadModel(self._to_device) return offload_model class TransferDataset(Dataset): """ The result of applying TDT operator to the input Dataset. Args: input_dataset (Dataset): Input Dataset to be transferred. send_epoch_end (bool, optional): Whether to send end of sequence to device or not (default=True). create_data_info_queue (bool, optional): Whether to create queue which stores types and shapes of data or not (default=False). Raises: TypeError: If device_type is empty. ValueError: If device_type is not 'Ascend', 'GPU' or 'CPU'. RuntimeError: If dataset is unknown. """ def __init__(self, input_dataset, send_epoch_end=True, create_data_info_queue=False): super().__init__(children=input_dataset) self.queue_name = str(uuid.uuid1()) self.device_type = context.get_context("device_target") if context else "CPU" self.device_id = context.get_context("device_id") if context else 0 self._send_epoch_end = replace_none(send_epoch_end, True) self._create_data_info_queue = create_data_info_queue self._to_device = None def parse(self, children=None): total_batch = 0 if hasattr(self.children[0], "__total_batch__"): total_batch = self.children[0].__total_batch__ return cde.TransferNode(children[0], self.queue_name, self.device_type, self.device_id, self._send_epoch_end, total_batch, self._create_data_info_queue) def create_dict_iterator(self, num_epochs=-1, output_numpy=False): raise RuntimeError("TransferDataset is not iterable.") def create_tuple_iterator(self, columns=None, num_epochs=-1, output_numpy=False, do_copy=True): raise RuntimeError("TransferDataset is not iterable.") def __iter__(self): raise RuntimeError("TransferDataset is not iterable.") def output_shapes(self): raise RuntimeError("TransferDataset does not support obtaining output_shapes.") def output_types(self): raise RuntimeError("TransferDataset does not support obtaining output_types.") @check_to_device_send def send(self, num_epochs=-1): """ Send to device """ if Dataset._noop_mode(): return if self._to_device is not None: del self._to_device self._to_device = _ToDevice(self, num_epochs) self._to_device.send() def stop_send(self): if self._to_device is not None: self._to_device.stop_send() def continue_send(self): if self._to_device is not None: self._to_device.continue_send() def get_data_info(self): """ Get type and shape of current batch """ if self._to_device is not None: return self._to_device.get_data_info() raise RuntimeError("Calling get_data_info with bad state.") def get_offload_model(self): if self._to_device is not None: return self._to_device.get_offload_model() raise RuntimeError("get_offload_model, _to_device is None") def release(self): """ Manually terminate Device Queue instead of relying on out of scope destruction. """ if self._to_device is not None: self._to_device.release() class RangeDataset(MappableDataset): """ A source dataset that reads and parses datasets stored on disk in a range. Args: start (int): Starting index. stop (int): Ending index. step (int): Step size in the range specified by start and stop. """ def __init__(self, start, stop, step): super().__init__() self.start = start self.stop = stop self.step = step def parse(self, children=None): raise NotImplementedError("Dataset has to implement parse method.") def is_shuffled(self): return False def is_sharded(self): return False def get_dataset_size(self): if self.dataset_size is None: self.dataset_size = math.ceil((self.stop - self.start) / self.step) return self.dataset_size class FashionMnistDataset(MappableDataset): """ A source dataset for reading and parsing the FASHION-MNIST dataset. The generated dataset has two columns :py:obj:`[image, label]`. The tensor of column :py:obj:`image` is of the uint8 type. The tensor of column :py:obj:`label` is a scalar of the uint32 type. Args: dataset_dir (str): Path to the root directory that contains the dataset. usage (str, optional): Usage of this dataset, can be `train`, `test` or `all`. `train` will read from 60,000 train samples, `test` will read from 10,000 test samples, `all` will read from all 70,000 samples. (default=None, will read all samples) num_samples (int, optional): The number of images to be included in the dataset (default=None, will read all images). num_parallel_workers (int, optional): Number of workers to read the data (default=None, will use value set in the config). shuffle (bool, optional): Whether or not to perform shuffle on the dataset (default=None, expected order behavior shown in the table). sampler (Sampler, optional): Object used to choose samples from the dataset (default=None, expected order behavior shown in the table). num_shards (int, optional): Number of shards that the dataset will be divided into (default=None). When this argument is specified, `num_samples` reflects the maximum sample number of per shard. shard_id (int, optional): The shard ID within `num_shards` (default=None). This argument can only be specified when `num_shards` is also specified. cache (DatasetCache, optional): Use tensor caching service to speed up dataset processing. (default=None, which means no cache is used). Raises: RuntimeError: If dataset_dir does not contain data files. RuntimeError: If num_parallel_workers exceeds the max thread numbers. RuntimeError: If sampler and shuffle are specified at the same time. RuntimeError: If sampler and sharding are specified at the same time. RuntimeError: If num_shards is specified but shard_id is None. RuntimeError: If shard_id is specified but num_shards is None. ValueError: If shard_id is invalid (< 0 or >= num_shards). Note: - This dataset can take in a `sampler`. `sampler` and `shuffle` are mutually exclusive. The table below shows what input arguments are allowed and their expected behavior. .. list-table:: Expected Order Behavior of Using `sampler` and `shuffle` :widths: 25 25 50 :header-rows: 1 * - Parameter `sampler` - Parameter `shuffle` - Expected Order Behavior * - None - None - random order * - None - True - random order * - None - False - sequential order * - Sampler object - None - order defined by sampler * - Sampler object - True - not allowed * - Sampler object - False - not allowed Examples: >>> fashion_mnist_dataset_dir = "/path/to/fashion_mnist_dataset_directory" >>> >>> # Read 3 samples from FASHIONMNIST dataset >>> dataset = ds.FashionMnistDataset(dataset_dir=fashion_mnist_dataset_dir, num_samples=3) >>> >>> # Note: In FASHIONMNIST dataset, each dictionary has keys "image" and "label" About Fashion-MNIST dataset: Fashion-MNIST is a dataset of Zalando's article images—consisting of a training set of 60,000 examples and a test set of 10,000 examples. Each example is a 28x28 grayscale image, associated with a label from 10 classes. We intend Fashion-MNIST to serve as a direct drop-in replacement for the original MNIST dataset for benchmarking machine learning algorithms. It shares the same image size and structure of training and testing splits. Here is the original Fashion-MNIST dataset structure. You can unzip the dataset files into this directory structure and read by MindSpore's API. .. code-block:: . └── fashionmnist_dataset_dir ├── t10k-images-idx3-ubyte ├── t10k-labels-idx1-ubyte ├── train-images-idx3-ubyte └── train-labels-idx1-ubyte Citation: .. code-block:: @online{xiao2017/online, author = {Han Xiao and Kashif Rasul and Roland Vollgraf}, title = {Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning Algorithms}, date = {2017-08-28}, year = {2017}, eprintclass = {cs.LG}, eprinttype = {arXiv}, eprint = {cs.LG/1708.07747}, } """ @check_mnist_cifar_dataset def __init__(self, dataset_dir, usage=None, num_samples=None, num_parallel_workers=None, shuffle=None, sampler=None, num_shards=None, shard_id=None, cache=None): super().__init__(num_parallel_workers=num_parallel_workers, sampler=sampler, num_samples=num_samples, shuffle=shuffle, num_shards=num_shards, shard_id=shard_id, cache=cache) self.dataset_dir = dataset_dir self.usage = replace_none(usage, "all") def parse(self, children=None): return cde.FashionMnistNode(self.dataset_dir, self.usage, self.sampler) class ImageFolderDataset(MappableDataset): """ A source dataset that reads images from a tree of directories. All images within one folder have the same label. The generated dataset has two columns: :py:obj:`[image, label]`. The tensor of column :py:obj:`image` is of the uint8 type. The tensor of column :py:obj:`label` is of a scalar of uint32 type. Args: dataset_dir (str): Path to the root directory that contains the dataset. num_samples (int, optional): The number of images to be included in the dataset (default=None, all images). num_parallel_workers (int, optional): Number of workers to read the data (default=None, set in the config). shuffle (bool, optional): Whether or not to perform shuffle on the dataset (default=None, expected order behavior shown in the table). sampler (Sampler, optional): Object used to choose samples from the dataset (default=None, expected order behavior shown in the table). extensions (list[str], optional): List of file extensions to be included in the dataset (default=None). class_indexing (dict, optional): A str-to-int mapping from folder name to index (default=None, the folder names will be sorted alphabetically and each class will be given a unique index starting from 0). decode (bool, optional): Decode the images after reading (default=False). num_shards (int, optional): Number of shards that the dataset will be divided into (default=None). When this argument is specified, `num_samples` reflects the maximum sample number of per shard. shard_id (int, optional): The shard ID within num_shards (default=None). This argument can only be specified when num_shards is also specified. cache (DatasetCache, optional): Use tensor caching service to speed up dataset processing. (default=None, which means no cache is used). Raises: RuntimeError: If dataset_dir does not contain data files. RuntimeError: If num_parallel_workers exceeds the max thread numbers. RuntimeError: If sampler and shuffle are specified at the same time. RuntimeError: If sampler and sharding are specified at the same time. RuntimeError: If num_shards is specified but shard_id is None. RuntimeError: If shard_id is specified but num_shards is None. RuntimeError: If class_indexing is not a dictionary. ValueError: If shard_id is invalid (< 0 or >= num_shards). Note: - The shape of the image column is [image_size] if decode flag is False, or [H,W,C] otherwise. - This dataset can take in a `sampler`. `sampler` and `shuffle` are mutually exclusive. The table below shows what input arguments are allowed and their expected behavior. .. list-table:: Expected Order Behavior of Using `sampler` and `shuffle` :widths: 25 25 50 :header-rows: 1 * - Parameter `sampler` - Parameter `shuffle` - Expected Order Behavior * - None - None - random order * - None - True - random order * - None - False - sequential order * - Sampler object - None - order defined by sampler * - Sampler object - True - not allowed * - Sampler object - False - not allowed Examples: >>> image_folder_dataset_dir = "/path/to/image_folder_dataset_directory" >>> >>> # 1) Read all samples (image files) in image_folder_dataset_dir with 8 threads >>> dataset = ds.ImageFolderDataset(dataset_dir=image_folder_dataset_dir, ... num_parallel_workers=8) >>> >>> # 2) Read all samples (image files) from folder cat and folder dog with label 0 and 1 >>> dataset = ds.ImageFolderDataset(dataset_dir=image_folder_dataset_dir, ... class_indexing={"cat":0, "dog":1}) >>> >>> # 3) Read all samples (image files) in image_folder_dataset_dir with extensions .JPEG and .png (case sensitive) >>> dataset = ds.ImageFolderDataset(dataset_dir=image_folder_dataset_dir, ... extensions=[".JPEG", ".png"]) About ImageFolderDataset: You can construct the following directory structure from your dataset files and read by MindSpore's API. .. code-block:: . └── image_folder_dataset_directory ├── class1 │ ├── 000000000001.jpg │ ├── 000000000002.jpg │ ├── ... ├── class2 │ ├── 000000000001.jpg │ ├── 000000000002.jpg │ ├── ... ├── class3 │ ├── 000000000001.jpg │ ├── 000000000002.jpg │ ├── ... ├── classN ├── ... """ @check_imagefolderdataset def __init__(self, dataset_dir, num_samples=None, num_parallel_workers=None, shuffle=None, sampler=None, extensions=None, class_indexing=None, decode=False, num_shards=None, shard_id=None, cache=None): super().__init__(num_parallel_workers=num_parallel_workers, sampler=sampler, num_samples=num_samples, shuffle=shuffle, num_shards=num_shards, shard_id=shard_id, cache=cache) self.dataset_dir = dataset_dir self.extensions = replace_none(extensions, []) self.class_indexing = replace_none(class_indexing, {}) self.decode = replace_none(decode, False) def parse(self, children=None): return cde.ImageFolderNode(self.dataset_dir, self.decode, self.sampler, self.extensions, self.class_indexing) class MnistDataset(MappableDataset): """ A source dataset for reading and parsing the MNIST dataset. The generated dataset has two columns :py:obj:`[image, label]`. The tensor of column :py:obj:`image` is of the uint8 type. The tensor of column :py:obj:`label` is a scalar of the uint32 type. Args: dataset_dir (str): Path to the root directory that contains the dataset. usage (str, optional): Usage of this dataset, can be `train`, `test` or `all` . `train` will read from 60,000 train samples, `test` will read from 10,000 test samples, `all` will read from all 70,000 samples. (default=None, will read all samples) num_samples (int, optional): The number of images to be included in the dataset (default=None, will read all images). num_parallel_workers (int, optional): Number of workers to read the data (default=None, will use value set in the config). shuffle (bool, optional): Whether or not to perform shuffle on the dataset (default=None, expected order behavior shown in the table). sampler (Sampler, optional): Object used to choose samples from the dataset (default=None, expected order behavior shown in the table). num_shards (int, optional): Number of shards that the dataset will be divided into (default=None). When this argument is specified, `num_samples` reflects the maximum sample number of per shard. shard_id (int, optional): The shard ID within `num_shards` (default=None). This argument can only be specified when `num_shards` is also specified. cache (DatasetCache, optional): Use tensor caching service to speed up dataset processing. (default=None, which means no cache is used). Raises: RuntimeError: If dataset_dir does not contain data files. RuntimeError: If num_parallel_workers exceeds the max thread numbers. RuntimeError: If sampler and shuffle are specified at the same time. RuntimeError: If sampler and sharding are specified at the same time. RuntimeError: If num_shards is specified but shard_id is None. RuntimeError: If shard_id is specified but num_shards is None. ValueError: If shard_id is invalid (< 0 or >= num_shards). Note: - This dataset can take in a `sampler`. `sampler` and `shuffle` are mutually exclusive. The table below shows what input arguments are allowed and their expected behavior. .. list-table:: Expected Order Behavior of Using `sampler` and `shuffle` :widths: 25 25 50 :header-rows: 1 * - Parameter `sampler` - Parameter `shuffle` - Expected Order Behavior * - None - None - random order * - None - True - random order * - None - False - sequential order * - Sampler object - None - order defined by sampler * - Sampler object - True - not allowed * - Sampler object - False - not allowed Examples: >>> mnist_dataset_dir = "/path/to/mnist_dataset_directory" >>> >>> # Read 3 samples from MNIST dataset >>> dataset = ds.MnistDataset(dataset_dir=mnist_dataset_dir, num_samples=3) >>> >>> # Note: In mnist_dataset dataset, each dictionary has keys "image" and "label" About MNIST dataset: The MNIST database of handwritten digits has a training set of 60,000 examples, and a test set of 10,000 examples. It is a subset of a larger set available from NIST. The digits have been size-normalized and centered in a fixed-size image. Here is the original MNIST dataset structure. You can unzip the dataset files into this directory structure and read by MindSpore's API. .. code-block:: . └── mnist_dataset_dir ├── t10k-images-idx3-ubyte ├── t10k-labels-idx1-ubyte ├── train-images-idx3-ubyte └── train-labels-idx1-ubyte Citation: .. code-block:: @article{lecun2010mnist, title = {MNIST handwritten digit database}, author = {LeCun, Yann and Cortes, Corinna and Burges, CJ}, journal = {ATT Labs [Online]}, volume = {2}, year = {2010}, howpublished = {http://yann.lecun.com/exdb/mnist} } """ @check_mnist_cifar_dataset def __init__(self, dataset_dir, usage=None, num_samples=None, num_parallel_workers=None, shuffle=None, sampler=None, num_shards=None, shard_id=None, cache=None): super().__init__(num_parallel_workers=num_parallel_workers, sampler=sampler, num_samples=num_samples, shuffle=shuffle, num_shards=num_shards, shard_id=shard_id, cache=cache) self.dataset_dir = dataset_dir self.usage = replace_none(usage, "all") def parse(self, children=None): return cde.MnistNode(self.dataset_dir, self.usage, self.sampler) class PhotoTourDataset(MappableDataset): """ A source dataset for reading and parsing the PhotoTour dataset. The generated dataset with different usage has different output columns. If train, the generated dataset has one column :py:obj:`[image]`, else three columns :py:obj:`[image1, image2, matches]`. The tensor of column :py:obj:`image`, :py:obj:`image1` and :py:obj:`image2` is of the uint8 type. The tensor of column :py:obj:`matches` is a scalar of the uint32 type. Args: dataset_dir (str): Path to the root directory that contains the dataset. name (str): Name of the dataset to load, should be one of 'notredame', 'yosemite', 'liberty', 'notredame_harris', 'yosemite_harris' or 'liberty_harris'. usage (str, optional): Usage of the dataset, can be `train` or `test` (Default=None, will be set to 'train'). When usage is `train`, number of samples for each `name` is {'notredame': 468159, 'yosemite': 633587, 'liberty': 450092, 'liberty_harris': 379587, 'yosemite_harris': 450912, 'notredame_harris': 325295}. When usage is `test`, will read 100,000 samples for testing. num_samples (int, optional): The number of images to be included in the dataset (default=None, will read all images). num_parallel_workers (int, optional): Number of workers to read the data (default=None, will use value set in the config). shuffle (bool, optional): Whether or not to perform shuffle on the dataset (default=None, expected order behavior shown in the table). sampler (Sampler, optional): Object used to choose samples from the dataset (default=None, expected order behavior shown in the table). num_shards (int, optional): Number of shards that the dataset will be divided into (default=None). When this argument is specified, `num_samples` reflects the max sample number of per shard. shard_id (int, optional): The shard ID within `num_shards` (default=None). This argument can only be specified when `num_shards` is also specified. cache (DatasetCache, optional): Use tensor caching service to speed up dataset processing. (default=None, which means no cache is used). Raises: RuntimeError: If dataset_dir does not contain data files. RuntimeError: If num_parallel_workers exceeds the max thread numbers. RuntimeError: If sampler and shuffle are specified at the same time. RuntimeError: If sampler and sharding are specified at the same time. RuntimeError: If num_shards is specified but shard_id is None. RuntimeError: If shard_id is specified but num_shards is None. ValueError: If dataset_dir is not exist. ValueError: If usage is not in ["train", "test"]. ValueError: If name is not in ["notredame", "yosemite", "liberty", "notredame_harris", "yosemite_harris", "liberty_harris"]. ValueError: If shard_id is invalid (< 0 or >= num_shards). Note: - This dataset can take in a sampler. `sampler` and `shuffle` are mutually exclusive. The table below shows what input arguments are allowed and their expected behavior. .. list-table:: Expected Order Behavior of Using 'sampler' and 'shuffle' :widths: 64 64 1 :header-rows: 1 * - Parameter `sampler` - Parameter `shuffle` - Expected Order Behavior * - None - None - random order * - None - True - random order * - None - False - sequential order * - Sampler object - None - order defined by sampler * - Sampler object - True - not allowed * - Sampler object - False - not allowed Examples: >>> # Read 3 samples from PhotoTour dataset. >>> dataset = ds.PhotoTourDataset(dataset_dir="/path/to/photo_tour_dataset_directory", ... name='liberty', usage='train', num_samples=3) >>> >>> # In PhotoTourDataset dataset, if usage is 'train', each dictionary has key "image", >>> # else has keys "image1" "image2" and "matches". About PhotoTour dataset: The data is taken from Photo Tourism reconstructions from Trevi Fountain (Rome), Notre Dame (Paris) and Half Dome (Yosemite). Each dataset consists of a series of corresponding patches, which are obtained by projecting 3D points from Photo Tourism reconstructions back into the original images. The dataset consists of 1024 x 1024 bitmap (.bmp) images, each containing a 16 x 16 array of image patches. Each patch is sampled as 64 x 64 grayscale, with a canonical scale and orientation. For details of how the scale and orientation is established, please see the paper. An associated metadata file info.txt contains the match information. Each row of info.txt corresponds to a separate patch, with the patches ordered from left to right and top to bottom in each bitmap image. The first number on each row of info.txt is the 3D point ID from which that patch was sampled -- patches with the same 3D point ID are projected from the same 3D point (into different images). The second number in info.txt corresponds to the image from which the patch was sampled, and is not used at present. You can unzip the original PhotoTour dataset files into this directory structure and read by MindSpore's API. .. code-block:: . └── photo_tour_dataset_directory ├── liberty/ │ ├── info.txt // two columns: 3D_point_ID, unused │ ├── m50_100000_100000_0.txt // seven columns: patch_ID1, 3D_point_ID1, unused1, │ │ // patch_ID2, 3D_point_ID2, unused2, unused3 │ ├── patches0000.bmp // 1024*1024 pixels, with 16 * 16 patches. │ ├── patches0001.bmp │ ├── ... ├── yosemite/ │ ├── ... ├── notredame/ │ ├── ... ├── liberty_harris/ │ ├── ... ├── yosemite_harris/ │ ├── ... ├── notredame_harris/ │ ├── ... Citation: .. code-block:: @INPROCEEDINGS{4269996, author={Winder, Simon A. J. and Brown, Matthew}, booktitle={2007 IEEE Conference on Computer Vision and Pattern Recognition}, title={Learning Local Image Descriptors}, year={2007}, volume={}, number={}, pages={1-8}, doi={10.1109/CVPR.2007.382971} } """ @check_photo_tour_dataset def __init__(self, dataset_dir, name, usage=None, num_samples=None, num_parallel_workers=None, shuffle=None, sampler=None, num_shards=None, shard_id=None, cache=None): super().__init__(num_parallel_workers=num_parallel_workers, sampler=sampler, num_samples=num_samples, shuffle=shuffle, num_shards=num_shards, shard_id=shard_id, cache=cache) self.dataset_dir = dataset_dir self.name = name self.usage = replace_none(usage, "train") def parse(self, children=None): return cde.PhotoTourNode(self.dataset_dir, self.name, self.usage, self.sampler) class Places365Dataset(MappableDataset): """ A source dataset for reading and parsing the Places365 dataset. The generated dataset has two columns :py:obj:`[image, label]`. The tensor of column :py:obj:`image` is of the uint8 type. The tensor of column :py:obj:`label` is a scalar of the uint32 type. Args: dataset_dir (str): Path to the root directory that contains the dataset. usage (str, optional): Usage of this dataset, can be `train-standard`, `train-challenge` or `val` (default=None, will be set to 'train-standard'). small (bool, optional): Use 256 * 256 images (True) or high resolution images (False) (default=False). decode (bool, optional): Decode the images after reading (default=True). num_samples (int, optional): The number of images to be included in the dataset (default=None, will read all images). num_parallel_workers (int, optional): Number of workers to read the data (default=None, will use value set in the config). shuffle (bool, optional): Whether or not to perform shuffle on the dataset (default=None, expected order behavior shown in the table). sampler (Sampler, optional): Object used to choose samples from the dataset (default=None, expected order behavior shown in the table). num_shards (int, optional): Number of shards that the dataset will be divided into (default=None). When this argument is specified, `num_samples` reflects the max sample number of per shard. shard_id (int, optional): The shard ID within `num_shards` (default=None). This argument can only be specified when `num_shards` is also specified. cache (DatasetCache, optional): Use tensor caching service to speed up dataset processing. (default=None, which means no cache is used). Raises: RuntimeError: If dataset_dir does not contain data files. RuntimeError: If num_parallel_workers exceeds the max thread numbers. RuntimeError: If sampler and shuffle are specified at the same time. RuntimeError: If sampler and sharding are specified at the same time. RuntimeError: If num_shards is specified but shard_id is None. RuntimeError: If shard_id is specified but num_shards is None. ValueError: If shard_id is invalid (< 0 or >= num_shards). ValueError: If usage is not in ["train-standard", "train-challenge", "val"]. ValueError: If shard_id is invalid (< 0 or >= num_shards). Note: - This dataset can take in a sampler. 'sampler' and 'shuffle' are mutually exclusive. The table below shows what input arguments are allowed and their expected behavior. .. list-table:: Expected Order Behavior of Using 'sampler' and 'shuffle' :widths: 25 25 50 :header-rows: 1 * - Parameter `sampler` - Parameter `shuffle` - Expected Order Behavior * - None - None - random order * - None - True - random order * - None - False - sequential order * - Sampler object - None - order defined by sampler * - Sampler object - True - not allowed * - Sampler object - False - not allowed Examples: >>> place365_dataset_dir = "/path/to/place365_dataset_directory" >>> >>> # Read 3 samples from Places365 dataset >>> dataset = ds.Places365Dataset(dataset_dir=place365_dataset_dir, usage='train-standard', ... small=True, decode=True, num_samples=3) >>> >>> # In places365 dataset, each dictionary has keys "image" and "label". About Places365 dataset: Convolutional neural networks (CNNs) trained on the Places2 Database can be used for scene recognition as well as generic deep scene features for visual recognition. The author releases the data of Places365-Standard and the data of Places365-Challenge to the public. Places365-Standard is the core set of Places2 Database, which has been used to train the Places365-CNNs. The author will add other kinds of annotation on the Places365-Standard in the future. Places365-Challenge is the competition set of Places2 Database, which has 6.2 million extra images compared to the Places365-Standard. The Places365-Challenge will be used for the Places Challenge 2016. You can unzip the original Places365 dataset files into this directory structure and read by MindSpore's API. .. code-block:: . └─├── categories_places365.txt ├── places365_train-standard.txt ├── places365_train-challenge.txt ├── val_large/ │ ├── Places365_val_00000001.jpg │ ├── Places365_val_00000002.jpg │ ├── Places365_val_00000003.jpg │ ├── ... ├── val_256/ │ ├── ... ├── data_large_standard/ │ ├── ... ├── data_256_standard/ │ ├── ... ├── data_large_challenge/ │ ├── ... ├── data_256_challenge / │ ├── ... Citation: .. code-block:: article{zhou2017places, title={Places: A 10 million Image Database for Scene Recognition}, author={Zhou, Bolei and Lapedriza, Agata and Khosla, Aditya and Oliva, Aude and Torralba, Antonio}, journal={IEEE Transactions on Pattern Analysis and Machine Intelligence}, year={2017}, publisher={IEEE} } """ @check_places365_dataset def __init__(self, dataset_dir, usage=None, small=True, decode=False, num_samples=None, num_parallel_workers=None, shuffle=None, sampler=None, num_shards=None, shard_id=None, cache=None): super().__init__(num_parallel_workers=num_parallel_workers, sampler=sampler, num_samples=num_samples, shuffle=shuffle, num_shards=num_shards, shard_id=shard_id, cache=cache) self.dataset_dir = os.path.abspath(dataset_dir) self.usage = replace_none(usage, "train-standard") self.small = small self.decode = decode def parse(self, children=None): return cde.Places365Node(self.dataset_dir, self.usage, self.small, self.decode, self.sampler) class QMnistDataset(MappableDataset): """ A source dataset for reading and parsing the QMNIST dataset. The generated dataset has two columns :py:obj:`[image, label]`. The tensor of column :py:obj:`image` is of the uint8 type. The tensor of column :py:obj:`label` is a scalar when `compat` is True else a tensor both of the uint32 type. Args: dataset_dir (str): Path to the root directory that contains the dataset. usage (str, optional): Usage of this dataset, can be `train`, `test`, `test10k`, `test50k`, `nist` or `all` (default=None, will read all samples). compat (bool, optional): Whether the label for each example is class number (compat=True) or the full QMNIST information (compat=False) (default=True). num_samples (int, optional): The number of images to be included in the dataset (default=None, will read all images). num_parallel_workers (int, optional): Number of workers to read the data (default=None, will use value set in the config). shuffle (bool, optional): Whether or not to perform shuffle on the dataset (default=None, expected order behavior shown in the table). sampler (Sampler, optional): Object used to choose samples from the dataset (default=None, expected order behavior shown in the table). num_shards (int, optional): Number of shards that the dataset will be divided into (default=None). When this argument is specified, `num_samples` reflects the maximum sample number of per shard. shard_id (int, optional): The shard ID within `num_shards` (default=None). This argument can only be specified when `num_shards` is also specified. cache (DatasetCache, optional): Use tensor caching service to speed up dataset processing. (default=None, which means no cache is used). Raises: RuntimeError: If dataset_dir does not contain data files. RuntimeError: If num_parallel_workers exceeds the max thread numbers. RuntimeError: If sampler and shuffle are specified at the same time. RuntimeError: If sampler and sharding are specified at the same time. RuntimeError: If num_shards is specified but shard_id is None. RuntimeError: If shard_id is specified but num_shards is None. ValueError: If shard_id is invalid (< 0 or >= num_shards). Note: - This dataset can take in a `sampler`. `sampler` and `shuffle` are mutually exclusive. The table below shows what input arguments are allowed and their expected behavior. .. list-table:: Expected Order Behavior of Using `sampler` and `shuffle` :widths: 25 25 50 :header-rows: 1 * - Parameter `sampler` - Parameter `shuffle` - Expected Order Behavior * - None - None - random order * - None - True - random order * - None - False - sequential order * - Sampler object - None - order defined by sampler * - Sampler object - True - not allowed * - Sampler object - False - not allowed Examples: >>> qmnist_dataset_dir = "/path/to/qmnist_dataset_directory" >>> >>> # Read 3 samples from QMNIST train dataset >>> dataset = ds.QMnistDataset(dataset_dir=qmnist_dataset_dir, num_samples=3) >>> >>> # Note: In QMNIST dataset, each dictionary has keys "image" and "label" About QMNIST dataset: The QMNIST dataset was generated from the original data found in the NIST Special Database 19 with the goal to match the MNIST preprocessing as closely as possible. Through an iterative process, researchers tried to generate an additional 50k images of MNIST-like data. They started with a reconstruction process given in the paper and used the Hungarian algorithm to find the best matches between the original MNIST samples and their reconstructed samples. Here is the original QMNIST dataset structure. You can unzip the dataset files into this directory structure and read by MindSpore's API. .. code-block:: . └── qmnist_dataset_dir ├── qmnist-train-images-idx3-ubyte ├── qmnist-train-labels-idx2-int ├── qmnist-test-images-idx3-ubyte ├── qmnist-test-labels-idx2-int ├── xnist-images-idx3-ubyte └── xnist-labels-idx2-int Citation: .. code-block:: @incollection{qmnist-2019, title = "Cold Case: The Lost MNIST Digits", author = "Chhavi Yadav and L\'{e}on Bottou",\ booktitle = {Advances in Neural Information Processing Systems 32}, year = {2019}, publisher = {Curran Associates, Inc.}, } """ @check_qmnist_dataset def __init__(self, dataset_dir, usage=None, compat=True, num_samples=None, num_parallel_workers=None, shuffle=None, sampler=None, num_shards=None, shard_id=None, cache=None): super().__init__(num_parallel_workers=num_parallel_workers, sampler=sampler, num_samples=num_samples, shuffle=shuffle, num_shards=num_shards, shard_id=shard_id, cache=cache) self.dataset_dir = dataset_dir self.usage = replace_none(usage, "all") self.compat = compat def parse(self, children=None): return cde.QMnistNode(self.dataset_dir, self.usage, self.compat, self.sampler) class MindDataset(MappableDataset): """ A source dataset for reading and parsing MindRecord dataset. The columns of generated dataset depend on the source MindRecord files. Args: dataset_file (Union[str, list[str]]): If dataset_file is a str, it represents for a file name of one component of a mindrecord source, other files with identical source in the same path will be found and loaded automatically. If dataset_file is a list, it represents for a list of dataset files to be read directly. columns_list (list[str], optional): List of columns to be read (default=None). num_parallel_workers (int, optional): The number of readers (default=None). shuffle (Union[bool, Shuffle level], optional): Perform reshuffling of the data every epoch (default=None, performs global shuffle). If shuffle is False, no shuffling will be performed; If shuffle is True, the behavior is the same as setting shuffle to be Shuffle.GLOBAL Otherwise, there are three levels of shuffling: - Shuffle.GLOBAL: Global shuffle of all rows of data in dataset. - Shuffle.FILES: Shuffle the file sequence but keep the order of data within each file. - Shuffle.INFILE: Keep the file sequence the same but shuffle the data within each file. num_shards (int, optional): Number of shards that the dataset will be divided into (default=None). When this argument is specified, 'num_samples' reflects the maximum sample number of per shard. shard_id (int, optional): The shard ID within num_shards (default=None). This argument can only be specified when num_shards is also specified. sampler (Sampler, optional): Object used to choose samples from the dataset (default=None, sampler is exclusive with shuffle and block_reader). Support list: SubsetRandomSampler, PkSampler, RandomSampler, SequentialSampler, DistributedSampler. padded_sample (dict, optional): Samples will be appended to dataset, where keys are the same as column_list. num_padded (int, optional): Number of padding samples. Dataset size plus num_padded should be divisible by num_shards. num_samples (int, optional): The number of samples to be included in the dataset (default=None, all samples). cache (DatasetCache, optional): Use tensor caching service to speed up dataset processing. (default=None, which means no cache is used). Raises: RuntimeError: If dataset_files are not valid or do not exist. RuntimeError: If num_parallel_workers exceeds the max thread numbers. RuntimeError: If num_shards is specified but shard_id is None. RuntimeError: If shard_id is specified but num_shards is None. ValueError: If shard_id is invalid (< 0 or >= num_shards). Note: - This dataset can take in a `sampler`. `sampler` and `shuffle` are mutually exclusive. The table below shows what input arguments are allowed and their expected behavior. .. list-table:: Expected Order Behavior of Using `sampler` and `shuffle` :widths: 25 25 50 :header-rows: 1 * - Parameter `sampler` - Parameter `shuffle` - Expected Order Behavior * - None - None - random order * - None - True - random order * - None - False - sequential order * - Sampler object - None - order defined by sampler * - Sampler object - True - not allowed * - Sampler object - False - not allowed Examples: >>> mind_dataset_dir = ["/path/to/mind_dataset_file"] # contains 1 or multiple MindRecord files >>> dataset = ds.MindDataset(dataset_file=mind_dataset_dir) """ def parse(self, children=None): return cde.MindDataNode(self.dataset_file, self.columns_list, self.sampler, self.new_padded_sample, self.num_padded, shuffle_to_shuffle_mode(self.shuffle_option)) @check_minddataset def __init__(self, dataset_file, columns_list=None, num_parallel_workers=None, shuffle=None, num_shards=None, shard_id=None, sampler=None, padded_sample=None, num_padded=None, num_samples=None, cache=None): super().__init__(num_parallel_workers=num_parallel_workers, sampler=sampler, num_samples=num_samples, shuffle=shuffle_to_bool(shuffle), num_shards=num_shards, shard_id=shard_id, cache=cache) if shuffle is not None and not isinstance(shuffle, (bool, Shuffle)): raise TypeError("shuffle must be of boolean or enum of 'Shuffle' values like 'Shuffle.GLOBAL' or " "'Shuffle.FILES' or 'Shuffle.INFILE'.") if num_samples and shuffle in (Shuffle.FILES, Shuffle.INFILE): raise ValueError("'Shuffle.FILES' or 'Shuffle.INFILE' and 'num_samples' " "cannot be specified at the same time.") self.shuffle_option = shuffle if isinstance(dataset_file, list): self.load_dataset = False else: self.load_dataset = True self.dataset_file = dataset_file self.columns_list = replace_none(columns_list, []) if shuffle is False: logger.warning("WARN: global shuffle is not used.") if sampler is not None: if isinstance(sampler, ( samplers.SubsetRandomSampler, samplers.SubsetSampler, samplers.PKSampler, samplers.DistributedSampler, samplers.RandomSampler, samplers.SequentialSampler)) is False: raise ValueError("The sampler is not supported yet.") self.padded_sample = padded_sample self.num_padded = replace_none(num_padded, 0) self.new_padded_sample = {} if padded_sample: for k, v in padded_sample.items(): if isinstance(v, np.ndarray): self.new_padded_sample[k] = v.tobytes() else: self.new_padded_sample[k] = v def _iter_fn(dataset, num_samples): """ Generator function wrapper for iterable dataset. """ if num_samples is not None and num_samples != 0: ds_iter = iter(dataset) for _ in range(num_samples): try: val = next(ds_iter) except StopIteration: return # convert output tensors to ndarrays yield _convert_row(val) else: for val in dataset: # convert output tensors to ndarrays yield _convert_row(val) def _generator_fn(generator, num_samples): """ Generator function wrapper for generator function dataset. """ if num_samples is not None and num_samples != 0: gen_iter = generator() for _ in range(num_samples): try: val = next(gen_iter) except StopIteration: return yield val else: gen_iter = generator() for val in gen_iter: yield val def _cpp_sampler_fn(sample_ids, dataset): """ Generator function wrapper for mappable dataset with cpp sampler. """ if not isinstance(sample_ids, np.ndarray): raise RuntimeError("Sample IDs are not in a numpy array.") if sample_ids.size == 0: raise RuntimeError("Sampler passed an empty sample IDs list.") for i in sample_ids: val = dataset[i] # convert output tensors to ndarrays yield _convert_row(val) def _cpp_sampler_fn_mp(sample_ids, sample_fn): """ Multiprocessing generator function wrapper for mappable dataset with cpp sampler. """ if not isinstance(sample_ids, np.ndarray): raise RuntimeError("Sample IDs are not in a numpy array.") if sample_ids.size == 0: raise RuntimeError("Sampler passed an empty sample IDs list.") return sample_fn.process(sample_ids) def _fill_worker_indices(workers, indices, idx): """ Worker index queue filler, fill worker index queue in round robin order. """ num_worker = len(workers) while idx < len(indices): try: workers[idx % num_worker].put(indices[idx]) idx += 1 except queue.Full: break return idx def _check_shm_usage(num_worker, queue_size, max_rowsize, num_queues=1): """ Check sufficient shared memory is available for shared memory queues when training in parallel mode. """ threshold_ratio = 0.8 if platform.system().lower() not in {"windows", "darwin"}: shm_estimate_usage = _get_device_num() * num_worker * num_queues * \ (queue_size + 2) * max_rowsize * 1024 * 1024 try: shm_available = psutil.disk_usage('/dev/shm').free if shm_estimate_usage >= threshold_ratio * shm_available: raise RuntimeError( "Insufficient shared memory available. Required: {}, Available: {}. " "The required memory can't exceed 80% of the available shared memory. " "Recommend to set_enable_shared_mem to False, reduce max_rowsize or reduce num_parallel_workers." .format(shm_estimate_usage, shm_available)) except FileNotFoundError: raise RuntimeError("Expected /dev/shm to exist.") def _convert_row(row): """ Convert Op return value to numpy """ value = [] if isinstance(row, dict): raise ValueError("Return value in user defined python function should be numpy array, but got dict.") # convert each column in row into numpy array for x in row: if isinstance(x, bytes): # got image bytes from a file value.append(np.frombuffer(x, np.uint8)) elif isinstance(x, Tensor): # got mindspore.Tensor value.append(x.asnumpy()) elif isinstance(x, dict): raise ValueError("Return value in user defined python function should be numpy array, but got dict.") else: value.append(np.array(x, copy=False)) return tuple(value) class SamplerFn: """ Multiprocessing or multithread generator function wrapper master process. """ def __init__(self, dataset, num_worker, multi_process, max_rowsize): self.workers = [] self.num_worker = num_worker self.multi_process = multi_process self.need_join = False self.ppid = os.getpid() self.pids = [] self.check_interval = 300 # the interval of check queue's size # Event for end of epoch if multi_process is True: try: self.eof = multiprocessing.Event() except Exception: raise RuntimeError("Init multiprocessing.Event() failed, This might be caused by insufficient shm," + " and the recommended shm size is at least 5 GB.") else: self.eof = threading.Event() # Create workers # get default queue size and adjust queuesize per worker if there are large # workers queue_size = get_prefetch_size() queue_size = min(queue_size, queue_size * 4 // num_worker) queue_size = max(2, queue_size) if multi_process and get_enable_shared_mem(): _check_shm_usage(num_worker, queue_size, max_rowsize) for _ in range(num_worker): if multi_process is True: try: worker = _GeneratorWorkerMp(dataset, self.eof, max_rowsize, queue_size) except Exception: raise RuntimeError("Init multiprocessing.Queue() failed, This might be caused by insufficient shm," + " and the recommended shm size is at least 5 GB.") worker.daemon = True # When multi processes fork a subprocess, the lock of the main process is copied to the subprocess, # which may cause deadlock. Therefore, the subprocess startup is performed in che initialization phase. # In this phase, the main process is not locked. worker.start() self.pids.append(worker.pid) self.need_join = True else: worker = _GeneratorWorkerMt(dataset, self.eof) worker.daemon = True self.workers.append(worker) if multi_process is True and platform.system().lower() != 'windows': self.eot = threading.Event() self.watch_dog = threading.Thread(target=_watch_dog, args=(self.eot, self.pids)) self.watch_dog.daemon = True self.watch_dog.start() def process(self, indices): """ The main process, start the child process or child thread, and fill the index queue. Get the result and return. """ for w in self.workers: # Check whether the queue of the subprocess is empty. if not w.queue_empty(): raise Exception("The queue of the subprocess is not empty.") # Start all workers if not w.is_alive(): w.start() # Fill initial index queues idx_cursor = 0 idx_cursor = _fill_worker_indices(self.workers, indices, idx_cursor) # Fetch results for i in range(len(indices)): if self.eof.is_set(): self._stop_subprocess() return if self.multi_process is True and not psutil.pid_exists(self.workers[i % self.num_worker].pid): self._stop_subprocess() return # Fetch result and put index try: # To avoid get timeout from queue, check the res_queue size. start_time = int(time.time()) wait_count = 1 while self.workers[i % self.num_worker].res_queue.empty(): time.sleep(0.1) cost_time = int(time.time()) - start_time if cost_time / self.check_interval >= wait_count: wait_count += 1 logger.warning("It has been waiting for " + str(cost_time) + "s because the multi " "thread/process of the generator generates data had been hung by gil lock.") result = self.workers[i % self.num_worker].get() if isinstance(result, ExceptionHandler): result.reraise() except queue.Empty: self._stop_subprocess() raise Exception("Generator worker process timeout.") except KeyboardInterrupt: self._stop_subprocess() raise Exception("Generator worker receives KeyboardInterrupt.") if self.eof.is_set(): self._stop_subprocess() return if idx_cursor < len(indices): idx_cursor = _fill_worker_indices(self.workers, indices, idx_cursor) yield _convert_row(result) def _stop_subprocess(self): # Only the main process can call join if self.need_join is True and self.ppid == os.getpid(): self.eof.set() self.need_join = False for w in self.workers: if psutil.pid_exists(w.pid): w.join() self._abort_watchdog() def _abort_watchdog(self): if hasattr(self, 'eot') and self.eot is not None and not self.eot.is_set(): self.eot.set() def __del__(self): self._stop_subprocess() def _subprocess_handle(eof, signum, frame): threading.Thread(target=eof.set()).start() def _generator_worker_loop(dataset, idx_queue, result_queue, eof, is_multiprocessing): """ Multithread or multiprocess generator worker process loop. """ if is_multiprocessing: signal.signal(signal.SIGTERM, partial(_subprocess_handle, eof)) while True: # Fetch index, block try: idx = idx_queue.get(timeout=1) except KeyboardInterrupt: if is_multiprocessing: eof.set() idx_queue.cancel_join_thread() result_queue.cancel_join_thread() raise Exception("Generator worker receives KeyboardInterrupt.") except queue.Empty: if eof.is_set(): if is_multiprocessing: idx_queue.cancel_join_thread() result_queue.cancel_join_thread() return # If end-of-file (eof) is not set, continue to get data from idx_queue continue if idx is None: # When the queue is out of scope from master process, a None item can be fetched from the queue. # Upon receiving None, worker process should check if eof is set. if not eof.is_set(): raise Exception("") return if eof.is_set(): if is_multiprocessing: idx_queue.cancel_join_thread() result_queue.cancel_join_thread() return # Fetch data, any exception from __getitem__ will terminate worker and timeout master process try: result = dataset[idx] except Exception: result = ExceptionHandler(where="in GeneratorDataset worker process") # Send data, block while True: try: result_queue.put(result, timeout=5) except KeyboardInterrupt: if is_multiprocessing: eof.set() idx_queue.cancel_join_thread() result_queue.cancel_join_thread() raise Exception("Generator worker receives KeyboardInterrupt.") except queue.Full: if eof.is_set(): if is_multiprocessing: idx_queue.cancel_join_thread() result_queue.cancel_join_thread() return # If eof is not set, continue to put data to result_queue continue break del result, idx class _GeneratorWorkerMt(threading.Thread): """ Worker process for multi-thread Generator. """ def __init__(self, dataset, eof): self.idx_queue = queue.Queue(16) self.res_queue = queue.Queue(16) super().__init__(target=_generator_worker_loop, args=(dataset, self.idx_queue, self.res_queue, eof, False)) def put(self, item): """ Put function for worker index queue. Never block. Raise queue.Full on failure. """ self.idx_queue.put_nowait(item) def get(self): """ Get function for worker result queue. Block with timeout. """ return self.res_queue.get(timeout=30) def queue_empty(self): if not self.idx_queue.empty(): logger.warning("idx_queue is not empty") return False if not self.res_queue.empty(): logger.warning("res_queue is not empty") return False return True class _GeneratorWorkerMp(multiprocessing.Process): """ Worker process for multiprocess Generator. """ def __init__(self, dataset, eof, max_rowsize, queue_size): self.idx_queue = multiprocessing.Queue(queue_size) if get_enable_shared_mem(): self.res_queue = _SharedQueue(queue_size, max_rowsize=max_rowsize) else: self.res_queue = multiprocessing.Queue(queue_size) self.idx_queue._joincancelled = True # pylint: disable=W0212 self.res_queue._joincancelled = True # pylint: disable=W0212 super().__init__(target=_generator_worker_loop, args=(dataset, self.idx_queue, self.res_queue, eof, True)) def put(self, item): """ Put function for worker index queue. Never block. Raise queue.Full on failure. """ self.idx_queue.put_nowait(item) def get(self): """ Get function for worker result queue. Block with timeout. """ # Relax 10s to 30s, since it sometimes will cause "Generator worker process timeout" # when we run too many iterators with infinite epoch(num_epoch=-1) return self.res_queue.get(timeout=30) def queue_empty(self): if not self.idx_queue.empty(): logger.warning("idx_queue is not empty.") return False if not self.res_queue.empty(): logger.warning("res_queue is not empty.") return False return True class GeneratorDataset(MappableDataset): """ A source dataset that generates data from Python by invoking Python data source each epoch. The column names and column types of generated dataset depend on Python data defined by users. Args: source (Union[Callable, Iterable, Random Accessible]): A generator callable object, an iterable Python object or a random accessible Python object. Callable source is required to return a tuple of NumPy arrays as a row of the dataset on source().next(). Iterable source is required to return a tuple of NumPy arrays as a row of the dataset on iter(source).next(). Random accessible source is required to return a tuple of NumPy arrays as a row of the dataset on source[idx]. column_names (Union[str, list[str]], optional): List of column names of the dataset (default=None). Users are required to provide either column_names or schema. column_types (list[mindspore.dtype], optional): List of column data types of the dataset (default=None). If provided, sanity check will be performed on generator output. schema (Union[Schema, str], optional): Path to the JSON schema file or schema object (default=None). Users are required to provide either column_names or schema. If both are provided, schema will be used. num_samples (int, optional): The number of samples to be included in the dataset (default=None, all images). num_parallel_workers (int, optional): Number of subprocesses used to fetch the dataset in parallel (default=1). shuffle (bool, optional): Whether or not to perform shuffle on the dataset. Random accessible input is required. (default=None, expected order behavior shown in the table). sampler (Union[Sampler, Iterable], optional): Object used to choose samples from the dataset. Random accessible input is required (default=None, expected order behavior shown in the table). num_shards (int, optional): Number of shards that the dataset will be divided into (default=None). Random accessible input is required. When this argument is specified, `num_samples` reflects the maximum sample number of per shard. shard_id (int, optional): The shard ID within num_shards (default=None). This argument must be specified only when num_shards is also specified. Random accessible input is required. python_multiprocessing (bool, optional): Parallelize Python operations with multiple worker process. This option could be beneficial if the Python operation is computational heavy (default=True). max_rowsize(int, optional): Maximum size of row in MB that is used for shared memory allocation to copy data between processes. This is only used if python_multiprocessing is set to True (default 6 MB). Raises: RuntimeError: If source raises an exception during execution. RuntimeError: If len of column_names does not match output len of source. RuntimeError: If num_parallel_workers exceeds the max thread numbers. RuntimeError: If sampler and shuffle are specified at the same time. RuntimeError: If sampler and sharding are specified at the same time. RuntimeError: If num_shards is specified but shard_id is None. RuntimeError: If shard_id is specified but num_shards is None. ValueError: If shard_id is invalid (< 0 or >= num_shards). Note: - This dataset can take in a `sampler`. `sampler` and `shuffle` are mutually exclusive. The table below shows what input arguments are allowed and their expected behavior. .. list-table:: Expected Order Behavior of Using `sampler` and `shuffle` :widths: 25 25 50 :header-rows: 1 * - Parameter `sampler` - Parameter `shuffle` - Expected Order Behavior * - None - None - random order * - None - True - random order * - None - False - sequential order * - Sampler object - None - order defined by sampler * - Sampler object - True - not allowed * - Sampler object - False - not allowed Examples: >>> import numpy as np >>> >>> # 1) Multidimensional generator function as callable input. >>> def generator_multidimensional(): ... for i in range(64): ... yield (np.array([[i, i + 1], [i + 2, i + 3]]),) >>> >>> dataset = ds.GeneratorDataset(source=generator_multidimensional, column_names=["multi_dimensional_data"]) >>> >>> # 2) Multi-column generator function as callable input. >>> def generator_multi_column(): ... for i in range(64): ... yield np.array([i]), np.array([[i, i + 1], [i + 2, i + 3]]) >>> >>> dataset = ds.GeneratorDataset(source=generator_multi_column, column_names=["col1", "col2"]) >>> >>> # 3) Iterable dataset as iterable input. >>> class MyIterable: ... def __init__(self): ... self._index = 0 ... self._data = np.random.sample((5, 2)) ... self._label = np.random.sample((5, 1)) ... ... def __next__(self): ... if self._index >= len(self._data): ... raise StopIteration ... else: ... item = (self._data[self._index], self._label[self._index]) ... self._index += 1 ... return item ... ... def __iter__(self): ... self._index = 0 ... return self ... ... def __len__(self): ... return len(self._data) >>> >>> dataset = ds.GeneratorDataset(source=MyIterable(), column_names=["data", "label"]) >>> >>> # 4) Random accessible dataset as random accessible input. >>> class MyAccessible: ... def __init__(self): ... self._data = np.random.sample((5, 2)) ... self._label = np.random.sample((5, 1)) ... ... def __getitem__(self, index): ... return self._data[index], self._label[index] ... ... def __len__(self): ... return len(self._data) >>> >>> dataset = ds.GeneratorDataset(source=MyAccessible(), column_names=["data", "label"]) >>> >>> # list, dict, tuple of Python is also random accessible >>> dataset = ds.GeneratorDataset(source=[(np.array(0),), (np.array(1),), (np.array(2),)], column_names=["col"]) """ @check_generatordataset def __init__(self, source, column_names=None, column_types=None, schema=None, num_samples=None, num_parallel_workers=1, shuffle=None, sampler=None, num_shards=None, shard_id=None, python_multiprocessing=True, max_rowsize=6): super().__init__(num_parallel_workers=num_parallel_workers, sampler=sampler, num_samples=num_samples, shuffle=shuffle, num_shards=num_shards, shard_id=shard_id) if isinstance(source, builtins.zip): # Although zip is iteratable, it does not have the feature of repeated iteration, so pass it to the array. self.source = [item for item in source] else: self.source = source self.prepared_source = None # source to be sent to C++ self.python_multiprocessing = python_multiprocessing self.column_names = to_list(column_names) if column_types is not None: self.column_types = mstypelist_to_detypelist(column_types) else: self.column_types = [] self.schema = schema if schema is not None: self.schema = schema if not isinstance(schema, Schema): self.schema = Schema(schema) # Move get dataset_size by len from parse to here, because self.source will # lose attribution of '__len__' after deepcopy. self.source_len = -1 # unknown if hasattr(self.source, "__len__"): self.source_len = len(self.source) self.max_rowsize = max_rowsize self.sample_fn = None def __deepcopy__(self, memodict): if id(self) in memodict: return memodict[id(self)] new_op = self.__safe_deepcopy__(memodict, exclude=("source", "__transfer_dataset__")) sample_fn = None if new_op.sampler is not None and hasattr(self.source, "__getitem__"): # The reason why there is a try catch here is because when the new op is being constructed with shared # memory enabled, there will be an exception thrown if there is not enough shared memory available if self.source_len == -1: raise RuntimeError("Attempt to construct a random access dataset, '__len__' method is required!") try: if new_op.num_parallel_workers > 1: self.__validate_memory_usage() sample_fn = SamplerFn(self.source, new_op.num_parallel_workers, self.python_multiprocessing, self.max_rowsize) new_op.prepared_source = (lambda sample_ids: _cpp_sampler_fn_mp(sample_ids, sample_fn)) else: new_op.prepared_source = (lambda sample_ids: _cpp_sampler_fn(sample_ids, self.source)) new_op.sample_fn = sample_fn except RuntimeError as e: raise Exception(str(e)) else: try: new_op.sampler = None new_op.sample_fn = sample_fn new_op.source_len = min(new_op.source_len, new_op.num_samples) if new_op.num_samples != 0 else new_op.source_len iter(self.source) except TypeError: # Use generator function if input callable new_op.prepared_source = (lambda: _generator_fn(self.source, new_op.num_samples)) else: # Use iterator function if input is iterable # Random accessible input is also iterable new_op.prepared_source = (lambda: _iter_fn(self.source, new_op.num_samples)) return new_op def is_shuffled(self): return self.sampler.is_shuffled() def is_sharded(self): return self.sampler.is_sharded() def parse(self, children=None): if self.schema is None: return cde.GeneratorNode(self.prepared_source, self.column_names, self.column_types, self.source_len, self.sampler, self.num_parallel_workers) schema = self.schema if isinstance(schema, Schema): schema = self.schema.cpp_schema return cde.GeneratorNode(self.prepared_source, schema, self.source_len, self.sampler, self.num_parallel_workers) def __validate_memory_usage(self): """ Check memory usage when mulit-processing mode, when 85% prompt warning and 100% raise error. """ if self.python_multiprocessing: # if use num_parallel_workers is to large when python_multiprocessing=True which would cause # OOM error get the num_shards valid_num_shards = 1 if isinstance(self.sampler, samplers.DistributedSampler): valid_num_shards = self.sampler.num_shards elif self.num_shards is not None: valid_num_shards = self.num_shards # get process memory usage process = psutil.Process(os.getpid()) process_memory = process.memory_info().rss sys_memory = psutil.virtual_memory().total total_memory_maybe_used = process_memory * (self.num_parallel_workers + 1) * valid_num_shards if total_memory_maybe_used / sys_memory > 0.85: valid_num_worker = math.floor(sys_memory * 0.85 / valid_num_shards / process_memory - 1) valid_num_worker = 1 if valid_num_worker <= 0 else valid_num_worker if total_memory_maybe_used / sys_memory > 1.0: info = "GeneratorDataset num_parallel_workers: " + str(self.num_parallel_workers) + \ " is too large which maybe cause a lot of memory occupation (>100%) during" \ " multi process running. Therefore, it is recommended to" \ " reduce num_parallel_workers to " + str(valid_num_worker) + " or smaller." raise RuntimeError(info) info = "GeneratorDataset num_parallel_workers: " + str(self.num_parallel_workers) + \ " is too large which maybe cause a lot of memory occupation (>85%) during multi " \ "process running. Therefore, it is recommended to reduce num_parallel_workers to " \ + str(valid_num_worker) + " or smaller." logger.warning(info) class TFRecordDataset(SourceDataset): """ A source dataset for reading and parsing datasets stored on disk in TFData format. The columns of generated dataset depend on the source TFRecord files. Args: dataset_files (Union[str, list[str]]): String or list of files to be read or glob strings to search for a pattern of files. The list will be sorted in a lexicographical order. schema (Union[str, Schema], optional): Path to the JSON schema file or schema object (default=None). If the schema is not provided, the meta data from the TFData file is considered the schema. columns_list (list[str], optional): List of columns to be read (default=None, read all columns). num_samples (int, optional): The number of samples (rows) to be included in the dataset (default=None). If num_samples is None and numRows(parsed from schema) does not exist, read the full dataset; If num_samples is None and numRows(parsed from schema) is greater than 0, read numRows rows; If both num_samples and numRows(parsed from schema) are greater than 0, read num_samples rows. num_parallel_workers (int, optional): Number of workers to read the data (default=None, number set in the config). shuffle (Union[bool, Shuffle level], optional): Perform reshuffling of the data every epoch (default=Shuffle.GLOBAL). If shuffle is False, no shuffling will be performed; If shuffle is True, the behavior is the same as setting shuffle to be Shuffle.GLOBAL Otherwise, there are two levels of shuffling: - Shuffle.GLOBAL: Shuffle both the files and samples. - Shuffle.FILES: Shuffle files only. num_shards (int, optional): Number of shards that the dataset will be divided into (default=None). When this argument is specified, `num_samples` reflects the maximum sample number of per shard. shard_id (int, optional): The shard ID within num_shards (default=None). This argument can only be specified when num_shards is also specified. shard_equal_rows (bool, optional): Get equal rows for all shards(default=False). If shard_equal_rows is false, number of rows of each shard may be not equal, and may lead to a failure in distributed training. When the number of samples of per TFRecord file are not equal, it is suggested to set to true. This argument should only be specified when num_shards is also specified. cache (DatasetCache, optional): Use tensor caching service to speed up dataset processing. (default=None, which means no cache is used). Raises: RuntimeError: If dataset_files are not valid or do not exist. RuntimeError: If num_parallel_workers exceeds the max thread numbers. RuntimeError: If num_shards is specified but shard_id is None. RuntimeError: If shard_id is specified but num_shards is None. ValueError: If shard_id is invalid (< 0 or >= num_shards). Examples: >>> from mindspore import dtype as mstype >>> >>> tfrecord_dataset_dir = ["/path/to/tfrecord_dataset_file"] # contains 1 or multiple TFRecord files >>> tfrecord_schema_file = "/path/to/tfrecord_schema_file" >>> >>> # 1) Get all rows from tfrecord_dataset_dir with no explicit schema. >>> # The meta-data in the first row will be used as a schema. >>> dataset = ds.TFRecordDataset(dataset_files=tfrecord_dataset_dir) >>> >>> # 2) Get all rows from tfrecord_dataset_dir with user-defined schema. >>> schema = ds.Schema() >>> schema.add_column(name='col_1d', de_type=mstype.int64, shape=[2]) >>> dataset = ds.TFRecordDataset(dataset_files=tfrecord_dataset_dir, schema=schema) >>> >>> # 3) Get all rows from tfrecord_dataset_dir with schema file. >>> dataset = ds.TFRecordDataset(dataset_files=tfrecord_dataset_dir, schema=tfrecord_schema_file) """ @check_tfrecorddataset def __init__(self, dataset_files, schema=None, columns_list=None, num_samples=None, num_parallel_workers=None, shuffle=Shuffle.GLOBAL, num_shards=None, shard_id=None, shard_equal_rows=False, cache=None): super().__init__(num_parallel_workers=num_parallel_workers, num_samples=num_samples, shuffle=shuffle, num_shards=num_shards, shard_id=shard_id, cache=cache) self.dataset_files = self._find_files(dataset_files) self.dataset_files.sort() self.schema = schema self.columns_list = replace_none(columns_list, []) self.shard_equal_rows = replace_none(shard_equal_rows, False) if self.schema is not None and (self.num_samples is None or self.num_samples == 0): self.num_samples = Schema.get_num_rows(self.schema) def parse(self, children=None): schema = self.schema.cpp_schema if isinstance(self.schema, Schema) else self.schema return cde.TFRecordNode(self.dataset_files, schema, self.columns_list, self.num_samples, self.shuffle_flag, self.num_shards, self.shard_id, self.shard_equal_rows) class ManifestDataset(MappableDataset): """ A source dataset for reading images from a Manifest file. The generated dataset has two columns: :py:obj:`[image, label]`. The tensor of column :py:obj:`image` is of the uint8 type. The tensor of column :py:obj:`label` is of a scalar of uint64 type. Args: dataset_file (str): File to be read. usage (str, optional): Acceptable usages include `train`, `eval` and `inference` (default= `train`). num_samples (int, optional): The number of images to be included in the dataset. (default=None, will include all images). num_parallel_workers (int, optional): Number of workers to read the data (default=None, will use value set in the config). shuffle (bool, optional): Whether to perform shuffle on the dataset (default=None, expected order behavior shown in the table). sampler (Sampler, optional): Object used to choose samples from the dataset (default=None, expected order behavior shown in the table). class_indexing (dict, optional): A str-to-int mapping from label name to index (default=None, the folder names will be sorted alphabetically and each class will be given a unique index starting from 0). decode (bool, optional): decode the images after reading (default=False). num_shards (int, optional): Number of shards that the dataset will be divided into (default=None). When this argument is specified, `num_samples` reflects the max number of samples per shard. shard_id (int, optional): The shard ID within `num_shards` (default=None). This argument can only be specified when `num_shards` is also specified. cache (DatasetCache, optional): Use tensor caching service to speed up dataset processing. (default=None, which means no cache is used). Raises: RuntimeError: If dataset_files are not valid or do not exist. RuntimeError: If num_parallel_workers exceeds the max thread numbers. RuntimeError: If sampler and shuffle are specified at the same time. RuntimeError: If sampler and sharding are specified at the same time. RuntimeError: If num_shards is specified but shard_id is None. RuntimeError: If shard_id is specified but num_shards is None. RuntimeError: If class_indexing is not a dictionary. ValueError: If shard_id is invalid (< 0 or >= num_shards). Note: - The shape of the image column is [image_size] if decode flag is False, or [H,W,C] otherwise. - This dataset can take in a `sampler`. `sampler` and `shuffle` are mutually exclusive. The table below shows what input arguments are allowed and their expected behavior. .. list-table:: Expected Order Behavior of Using `sampler` and `shuffle` :widths: 25 25 50 :header-rows: 1 * - Parameter `sampler` - Parameter `shuffle` - Expected Order Behavior * - None - None - random order * - None - True - random order * - None - False - sequential order * - Sampler object - None - order defined by sampler * - Sampler object - True - not allowed * - Sampler object - False - not allowed Examples: >>> manifest_dataset_dir = "/path/to/manifest_dataset_file" >>> >>> # 1) Read all samples specified in manifest_dataset_dir dataset with 8 threads for training >>> dataset = ds.ManifestDataset(dataset_file=manifest_dataset_dir, usage="train", num_parallel_workers=8) >>> >>> # 2) Read samples (specified in manifest_file.manifest) for shard 0 in a 2-way distributed training setup >>> dataset = ds.ManifestDataset(dataset_file=manifest_dataset_dir, num_shards=2, shard_id=0) """ @check_manifestdataset def __init__(self, dataset_file, usage="train", num_samples=None, num_parallel_workers=None, shuffle=None, sampler=None, class_indexing=None, decode=False, num_shards=None, shard_id=None, cache=None): super().__init__(num_parallel_workers=num_parallel_workers, sampler=sampler, num_samples=num_samples, shuffle=shuffle, num_shards=num_shards, shard_id=shard_id, cache=cache) self.dataset_file = dataset_file self.decode = replace_none(decode, False) self.usage = replace_none(usage, "train") self.class_indexing = replace_none(class_indexing, {}) def parse(self, children=None): return cde.ManifestNode(self.dataset_file, self.usage, self.sampler, self.class_indexing, self.decode) def get_class_indexing(self): """ Get the class index. Returns: dict, a str-to-int mapping from label name to index. Examples: >>> manifest_dataset_dir = "/path/to/manifest_dataset_file" >>> >>> dataset = ds.ManifestDataset(dataset_file=manifest_dataset_dir) >>> class_indexing = dataset.get_class_indexing() """ if self.class_indexing is None or not self.class_indexing: if self._class_indexing is None: runtime_getter = self._init_tree_getters() self._class_indexing = runtime_getter[0].GetClassIndexing() self.class_indexing = {} for pair in self._class_indexing: self.class_indexing[pair[0]] = pair[1][0] return self.class_indexing class AGNewsDataset(SourceDataset): """ A source dataset that reads and parses AG News datasets. The generated dataset has three columns: :py:obj:`[index, title, description]`. The tensor of column :py:obj:`index` is of the string type. The tensor of column :py:obj:`title` is of the string type. The tensor of column :py:obj:`description` is of the string type. Args: dataset_dir (str): Path to the root directory that contains the dataset. usage (str, optional): Acceptable usages include `train`, `test` and `all` (default=None, all samples). num_samples (int, optional): Number of samples (rows) to read (default=None, reads the full dataset). num_parallel_workers (int, optional): Number of workers to read the data (default=None, number set in the config). shuffle (Union[bool, Shuffle level], optional): Perform reshuffling of the data every epoch (default=Shuffle.GLOBAL). If shuffle is False, no shuffling will be performed; If shuffle is True, the behavior is the same as setting shuffle to be Shuffle.GLOBAL Otherwise, there are two levels of shuffling: - Shuffle.GLOBAL: Shuffle both the files and samples. - Shuffle.FILES: Shuffle files only. num_shards (int, optional): Number of shards that the dataset will be divided into (default=None). When this argument is specified, 'num_samples' reflects the max sample number of per shard. shard_id (int, optional): The shard ID within num_shards (default=None). This argument can only be specified when num_shards is also specified. cache (DatasetCache, optional): Use tensor caching service to speed up dataset processing. (default=None, which means no cache is used). Examples: >>> ag_news_dataset_dir = "/path/to/ag_news_dataset_file" >>> dataset = ds.AGNewsDataset(dataset_dir=ag_news_dataset_dir, usage='all') About AGNews dataset: AG is a collection of over 1 million news articles. The news articles were collected by ComeToMyHead from over 2,000 news sources in over 1 year of activity. ComeToMyHead is an academic news search engine that has been in operation since July 2004. The dataset is provided by academics for research purposes such as data mining (clustering, classification, etc.), information retrieval (ranking, searching, etc.), xml, data compression, data streaming, and any other non-commercial activities. AG's news topic classification dataset was constructed by selecting the four largest classes from the original corpus. Each class contains 30,000 training samples and 1,900 test samples. The total number of training samples in train.csv is 120,000 and the number of test samples in test.csv is 7,600. You can unzip the dataset files into the following structure and read by MindSpore's API: .. code-block:: . └── ag_news_dataset_dir ├── classes.txt ├── train.csv ├── test.csv └── readme.txt Citation: .. code-block:: @misc{zhang2015characterlevel, title={Character-level Convolutional Networks for Text Classification}, author={Xiang Zhang and Junbo Zhao and Yann LeCun}, year={2015}, eprint={1509.01626}, archivePrefix={arXiv}, primaryClass={cs.LG} } """ @check_ag_news_dataset def __init__(self, dataset_dir, usage=None, num_samples=None, num_parallel_workers=None, shuffle=Shuffle.GLOBAL, num_shards=None, shard_id=None, cache=None): super().__init__(num_parallel_workers=num_parallel_workers, num_samples=num_samples, shuffle=shuffle, num_shards=num_shards, shard_id=shard_id, cache=cache) self.dataset_dir = dataset_dir self.usage = replace_none(usage, "all") def parse(self, children=None): return cde.AGNewsNode(self.dataset_dir, self.usage, self.num_samples, self.shuffle_flag, self.num_shards, self.shard_id) class Cifar10Dataset(MappableDataset): """ A source dataset for reading and parsing Cifar10 dataset. This api only supports parsing Cifar10 file in binary version now. The generated dataset has two columns :py:obj:`[image, label]`. The tensor of column :py:obj:`image` is of the uint8 type. The tensor of column :py:obj:`label` is a scalar of the uint32 type. Args: dataset_dir (str): Path to the root directory that contains the dataset. usage (str, optional): Usage of this dataset, can be `train`, `test` or `all` . `train` will read from 50,000 train samples, `test` will read from 10,000 test samples, `all` will read from all 60,000 samples (default=None, all samples). num_samples (int, optional): The number of images to be included in the dataset (default=None, all images). num_parallel_workers (int, optional): Number of workers to read the data (default=None, number set in the config). shuffle (bool, optional): Whether to perform shuffle on the dataset (default=None, expected order behavior shown in the table). sampler (Sampler, optional): Object used to choose samples from the dataset (default=None, expected order behavior shown in the table). num_shards (int, optional): Number of shards that the dataset will be divided into (default=None). When this argument is specified, `num_samples` reflects the maximum sample number of per shard. shard_id (int, optional): The shard ID within num_shards (default=None). This argument can only be specified when num_shards is also specified. cache (DatasetCache, optional): Use tensor caching service to speed up dataset processing. (default=None, which means no cache is used). Raises: RuntimeError: If dataset_dir does not contain data files. RuntimeError: If num_parallel_workers exceeds the max thread numbers. RuntimeError: If sampler and shuffle are specified at the same time. RuntimeError: If sampler and sharding are specified at the same time. RuntimeError: If num_shards is specified but shard_id is None. RuntimeError: If shard_id is specified but num_shards is None. ValueError: If shard_id is invalid (< 0 or >= num_shards). Note: - This dataset can take in a `sampler`. `sampler` and `shuffle` are mutually exclusive. The table below shows what input arguments are allowed and their expected behavior. .. list-table:: Expected Order Behavior of Using `sampler` and `shuffle` :widths: 25 25 50 :header-rows: 1 * - Parameter `sampler` - Parameter `shuffle` - Expected Order Behavior * - None - None - random order * - None - True - random order * - None - False - sequential order * - Sampler object - None - order defined by sampler * - Sampler object - True - not allowed * - Sampler object - False - not allowed Examples: >>> cifar10_dataset_dir = "/path/to/cifar10_dataset_directory" >>> >>> # 1) Get all samples from CIFAR10 dataset in sequence >>> dataset = ds.Cifar10Dataset(dataset_dir=cifar10_dataset_dir, shuffle=False) >>> >>> # 2) Randomly select 350 samples from CIFAR10 dataset >>> dataset = ds.Cifar10Dataset(dataset_dir=cifar10_dataset_dir, num_samples=350, shuffle=True) >>> >>> # 3) Get samples from CIFAR10 dataset for shard 0 in a 2-way distributed training >>> dataset = ds.Cifar10Dataset(dataset_dir=cifar10_dataset_dir, num_shards=2, shard_id=0) >>> >>> # In CIFAR10 dataset, each dictionary has keys "image" and "label" About CIFAR-10 dataset: The CIFAR-10 dataset consists of 60000 32x32 colour images in 10 classes, with 6000 images per class. There are 50000 training images and 10000 test images. The 10 different classes represent airplanes, cars, birds, cats, deer, dogs, frogs, horses, ships, and trucks. Here is the original CIFAR-10 dataset structure. You can unzip the dataset files into the following directory structure and read by MindSpore's API. .. code-block:: . └── cifar-10-batches-bin ├── data_batch_1.bin ├── data_batch_2.bin ├── data_batch_3.bin ├── data_batch_4.bin ├── data_batch_5.bin ├── test_batch.bin ├── readme.html └── batches.meta.txt Citation: .. code-block:: @techreport{Krizhevsky09, author = {Alex Krizhevsky}, title = {Learning multiple layers of features from tiny images}, institution = {}, year = {2009}, howpublished = {http://www.cs.toronto.edu/~kriz/cifar.html} } """ @check_mnist_cifar_dataset def __init__(self, dataset_dir, usage=None, num_samples=None, num_parallel_workers=None, shuffle=None, sampler=None, num_shards=None, shard_id=None, cache=None): super().__init__(num_parallel_workers=num_parallel_workers, sampler=sampler, num_samples=num_samples, shuffle=shuffle, num_shards=num_shards, shard_id=shard_id, cache=cache) self.dataset_dir = dataset_dir self.usage = replace_none(usage, "all") def parse(self, children=None): return cde.Cifar10Node(self.dataset_dir, self.usage, self.sampler) class Cifar100Dataset(MappableDataset): """ A source dataset for reading and parsing Cifar100 dataset. The generated dataset has three columns :py:obj:`[image, coarse_label, fine_label]`. The tensor of column :py:obj:`image` is of the uint8 type. The tensor of column :py:obj:`coarse_label` and :py:obj:`fine_labels` are each a scalar of uint32 type. Args: dataset_dir (str): Path to the root directory that contains the dataset. usage (str, optional): Usage of this dataset, can be `train`, `test` or `all` . `train` will read from 50,000 train samples, `test` will read from 10,000 test samples, `all` will read from all 60,000 samples (default=None, all samples). num_samples (int, optional): The number of images to be included in the dataset (default=None, all images). num_parallel_workers (int, optional): Number of workers to read the data (default=None, number set in the config). shuffle (bool, optional): Whether to perform shuffle on the dataset (default=None, expected order behavior shown in the table). sampler (Sampler, optional): Object used to choose samples from the dataset (default=None, expected order behavior shown in the table). num_shards (int, optional): Number of shards that the dataset will be divided into (default=None). When this argument is specified, 'num_samples' reflects the maximum sample number of per shard. shard_id (int, optional): The shard ID within num_shards (default=None). This argument can only be specified when num_shards is also specified. cache (DatasetCache, optional): Use tensor caching service to speed up dataset processing. (default=None, which means no cache is used). Raises: RuntimeError: If dataset_dir does not contain data files. RuntimeError: If num_parallel_workers exceeds the max thread numbers. RuntimeError: If sampler and shuffle are specified at the same time. RuntimeError: If sampler and sharding are specified at the same time. RuntimeError: If num_shards is specified but shard_id is None. RuntimeError: If shard_id is specified but num_shards is None. ValueError: If shard_id is invalid (< 0 or >= num_shards). Note: - This dataset can take in a `sampler`. `sampler` and `shuffle` are mutually exclusive. The table below shows what input arguments are allowed and their expected behavior. .. list-table:: Expected Order Behavior of Using `sampler` and shuffle :widths: 25 25 50 :header-rows: 1 * - Parameter `sampler` - Parameter `shuffle` - Expected Order Behavior * - None - None - random order * - None - True - random order * - None - False - sequential order * - Sampler object - None - order defined by sampler * - Sampler object - True - not allowed * - Sampler object - False - not allowed Examples: >>> cifar100_dataset_dir = "/path/to/cifar100_dataset_directory" >>> >>> # 1) Get all samples from CIFAR100 dataset in sequence >>> dataset = ds.Cifar100Dataset(dataset_dir=cifar100_dataset_dir, shuffle=False) >>> >>> # 2) Randomly select 350 samples from CIFAR100 dataset >>> dataset = ds.Cifar100Dataset(dataset_dir=cifar100_dataset_dir, num_samples=350, shuffle=True) >>> >>> # In CIFAR100 dataset, each dictionary has 3 keys: "image", "fine_label" and "coarse_label" About CIFAR-100 dataset: This dataset is just like the CIFAR-10, except it has 100 classes containing 600 images each. There are 500 training images and 100 testing images per class. The 100 classes in the CIFAR-100 are grouped into 20 superclasses. Each image comes with a "fine" label (the class to which it belongs) and a "coarse" label (the superclass to which it belongs). Here is the original CIFAR-100 dataset structure. You can unzip the dataset files into the following directory structure and read by MindSpore's API. .. code-block:: . └── cifar-100-binary ├── train.bin ├── test.bin ├── fine_label_names.txt └── coarse_label_names.txt Citation: .. code-block:: @techreport{Krizhevsky09, author = {Alex Krizhevsky}, title = {Learning multiple layers of features from tiny images}, institution = {}, year = {2009}, howpublished = {http://www.cs.toronto.edu/~kriz/cifar.html} } """ @check_mnist_cifar_dataset def __init__(self, dataset_dir, usage=None, num_samples=None, num_parallel_workers=None, shuffle=None, sampler=None, num_shards=None, shard_id=None, cache=None): super().__init__(num_parallel_workers=num_parallel_workers, sampler=sampler, num_samples=num_samples, shuffle=shuffle, num_shards=num_shards, shard_id=shard_id, cache=cache) self.dataset_dir = dataset_dir self.usage = replace_none(usage, "all") def parse(self, children=None): return cde.Cifar100Node(self.dataset_dir, self.usage, self.sampler) class RandomDataset(SourceDataset): """ A source dataset that generates random data. Args: total_rows (int, optional): Number of samples for the dataset to generate (default=None, number of samples is random). schema (Union[str, Schema], optional): Path to the JSON schema file or schema object (default=None). If the schema is not provided, the random dataset generates a random schema. columns_list (list[str], optional): List of columns to be read (default=None, read all columns) num_samples (int, optional): The number of samples to be included in the dataset (default=None, all samples). num_parallel_workers (int, optional): Number of workers to read the data (default=None, number set in the config). cache (DatasetCache, optional): Use tensor caching service to speed up dataset processing. (default=None, which means no cache is used). shuffle (bool, optional): Whether or not to perform shuffle on the dataset (default=None, expected order behavior shown in the table). num_shards (int, optional): Number of shards that the dataset will be divided into (default=None). When this argument is specified, 'num_samples' reflects the maximum sample number of per shard. shard_id (int, optional): The shard ID within num_shards (default=None). This argument can only be specified when num_shards is also specified. """ @check_random_dataset def __init__(self, total_rows=None, schema=None, columns_list=None, num_samples=None, num_parallel_workers=None, cache=None, shuffle=None, num_shards=None, shard_id=None): super().__init__(num_parallel_workers=num_parallel_workers, num_samples=num_samples, shuffle=shuffle, num_shards=num_shards, shard_id=shard_id, cache=cache) self.total_rows = total_rows if schema is not None: self.total_rows = replace_none(total_rows, Schema.get_num_rows(schema)) self.schema = schema self.columns_list = replace_none(columns_list, []) def parse(self, children=None): schema = self.schema.cpp_schema if isinstance(self.schema, Schema) else self.schema return cde.RandomNode(self.total_rows, schema, self.columns_list) class Schema: """ Class to represent a schema of a dataset. Args: schema_file(str): Path of the schema file (default=None). Returns: Schema object, schema info about dataset. Raises: RuntimeError: If schema file failed to load. Examples: >>> from mindspore import dtype as mstype >>> >>> # Create schema; specify column name, mindspore.dtype and shape of the column >>> schema = ds.Schema() >>> schema.add_column(name='col1', de_type=mstype.int64, shape=[2]) """ @check_schema def __init__(self, schema_file=None): self.schema_file = replace_none(schema_file, "") self.cpp_schema = cde.SchemaObj(self.schema_file) @check_add_column def add_column(self, name, de_type, shape=None): """ Add new column to the schema. Args: name (str): The new name of the column. de_type (str): Data type of the column. shape (list[int], optional): Shape of the column (default=None, [-1] which is an unknown shape of rank 1). Raises: ValueError: If column type is unknown. """ if isinstance(de_type, typing.Type): de_type = mstype_to_detype(de_type) col_type = str(de_type) else: col_type = str(cde.DataType(de_type)) if shape is None: self.cpp_schema.add_column(name, col_type) else: self.cpp_schema.add_column(name, col_type, shape) def parse_columns(self, columns): """ Parse the columns and add it to self. Args: columns (Union[dict, list[dict], tuple[dict]]): Dataset attribute information, decoded from schema file. - list[dict], 'name' and 'type' must be in keys, 'shape' optional. - dict, columns.keys() as name, columns.values() is dict, and 'type' inside, 'shape' optional. Raises: RuntimeError: If failed to parse columns. RuntimeError: If column's name field is missing. RuntimeError: If column's type field is missing. Examples: >>> schema = Schema() >>> columns1 = [{'name': 'image', 'type': 'int8', 'shape': [3, 3]}, >>> {'name': 'label', 'type': 'int8', 'shape': [1]}] >>> schema.parse_columns(columns1) >>> columns2 = {'image': {'shape': [3, 3], 'type': 'int8'}, 'label': {'shape': [1], 'type': 'int8'}} >>> schema.parse_columns(columns2) """ self.cpp_schema.parse_columns(json.dumps(columns, indent=2)) def to_json(self): """ Get a JSON string of the schema. Returns: str, JSON string of the schema. """ return self.cpp_schema.to_json() def from_json(self, json_obj): """ Get schema file from JSON object. Args: json_obj(dictionary): Object of JSON parsed. Raises: RuntimeError: if there is unknown item in the object. RuntimeError: if dataset type is missing in the object. RuntimeError: if columns are missing in the object. """ self.cpp_schema.from_string(json.dumps(json_obj, indent=2)) def __str__(self): return self.to_json() @staticmethod def get_num_rows(schema): schema_obj = schema if not isinstance(schema_obj, Schema): schema_obj = Schema(schema_obj) return schema_obj.cpp_schema.get_num_rows() class USPSDataset(SourceDataset): """ A source dataset for reading and parsing the USPS dataset. The generated dataset has two columns: :py:obj:`[image, label]`. The tensor of column :py:obj:`image` is of the uint8 type. The tensor of column :py:obj:`label` is of a scalar of uint32 type. Args: dataset_dir (str): Path to the root directory that contains the dataset. usage (str, optional): Usage of this dataset, can be "train", "test" or "all". "train" will read from 7,291 train samples, "test" will read from 2,007 test samples, "all" will read from all 9,298 samples. (default=None, will read all samples) num_samples (int, optional): The number of images to be included in the dataset (default=None, will read all images). num_parallel_workers (int, optional): Number of workers to read the data (default=None, will use value set in the config). shuffle (Union[bool, Shuffle level], optional): Perform reshuffling of the data every epoch (default=Shuffle.GLOBAL). If shuffle is False, no shuffling will be performed; If shuffle is True, the behavior is the same as setting shuffle to be Shuffle.GLOBAL Otherwise, there are two levels of shuffling: - Shuffle.GLOBAL: Shuffle both the files and samples. - Shuffle.FILES: Shuffle files only. num_shards (int, optional): Number of shards that the dataset will be divided into (default=None). When this argument is specified, `num_samples` reflects the max sample number of per shard. shard_id (int, optional): The shard ID within `num_shards` (default=None). This argument can only be specified when `num_shards` is also specified. cache (DatasetCache, optional): Use tensor caching service to speed up dataset processing. (default=None, which means no cache is used). Raises: RuntimeError: If dataset_dir is not valid or does not exist or does not contain data files. RuntimeError: If num_parallel_workers exceeds the max thread numbers. RuntimeError: If sampler and shuffle are specified at the same time. RuntimeError: If sampler and sharding are specified at the same time. RuntimeError: If num_shards is specified but shard_id is None. RuntimeError: If shard_id is specified but num_shards is None. ValueError: If usage is invalid. ValueError: If shard_id is invalid (< 0 or >= num_shards). Examples: >>> usps_dataset_dir = "/path/to/usps_dataset_directory" >>> >>> # Read 3 samples from USPS dataset >>> dataset = ds.USPSDataset(dataset_dir=usps_dataset_dir, num_samples=3) >>> >>> # Note: In USPS dataset, each dictionary has keys "image" and "label" About USPS dataset: USPS is a digit dataset automatically scanned from envelopes by the U.S. Postal Service containing a total of 9,298 16×16 pixel grayscale samples. The images are centered, normalized and show a broad range of font styles. Here is the original USPS dataset structure. You can download and unzip the dataset files into this directory structure and read by MindSpore's API. .. code-block:: . └── usps_dataset_dir ├── usps ├── usps.t Citation: .. code-block:: @article{hull1994database, title={A database for handwritten text recognition research}, author={Hull, Jonathan J.}, journal={IEEE Transactions on pattern analysis and machine intelligence}, volume={16}, number={5}, pages={550--554}, year={1994}, publisher={IEEE} } """ @check_usps_dataset def __init__(self, dataset_dir, usage=None, num_samples=None, num_parallel_workers=None, shuffle=Shuffle.GLOBAL, num_shards=None, shard_id=None, cache=None): super().__init__(num_parallel_workers=num_parallel_workers, num_samples=num_samples, shuffle=shuffle, num_shards=num_shards, shard_id=shard_id, cache=cache) self.dataset_dir = dataset_dir self.usage = replace_none(usage, "all") def parse(self, children=None): return cde.USPSNode(self.dataset_dir, self.usage, self.num_samples, self.shuffle_flag, self.num_shards, self.shard_id) class VOCDataset(MappableDataset): """ A source dataset for reading and parsing VOC dataset. The generated dataset with different task setting has different output columns: - task = :py:obj:`Detection`, output columns: :py:obj:`[image, dtype=uint8]`, :py:obj:`[bbox, dtype=float32]`, \ :py:obj:`[label, dtype=uint32]`, :py:obj:`[difficult, dtype=uint32]`, :py:obj:`[truncate, dtype=uint32]`. - task = :py:obj:`Segmentation`, output columns: :py:obj:`[image, dtype=uint8]`, :py:obj:`[target,dtype=uint8]`. Args: dataset_dir (str): Path to the root directory that contains the dataset. task (str, optional): Set the task type of reading voc data, now only support `Segmentation` or `Detection` (default= `Segmentation`). usage (str, optional): Set the task type of ImageSets(default= `train`). If task is `Segmentation`, image and annotation list will be loaded in ./ImageSets/Segmentation/usage + ".txt"; If task is `Detection`, image and annotation list will be loaded in ./ImageSets/Main/usage + ".txt"; if task and usage are not set, image and annotation list will be loaded in ./ImageSets/Segmentation/train.txt as default. class_indexing (dict, optional): A str-to-int mapping from label name to index, only valid in `Detection` task (default=None, the folder names will be sorted alphabetically and each class will be given a unique index starting from 0). num_samples (int, optional): The number of images to be included in the dataset (default=None, all images). num_parallel_workers (int, optional): Number of workers to read the data (default=None, number set in the config). shuffle (bool, optional): Whether to perform shuffle on the dataset (default=None, expected order behavior shown in the table). decode (bool, optional): Decode the images after reading (default=False). sampler (Sampler, optional): Object used to choose samples from the dataset (default=None, expected order behavior shown in the table). num_shards (int, optional): Number of shards that the dataset will be divided into (default=None). When this argument is specified, `num_samples` reflects the maximum sample number of per shard. shard_id (int, optional): The shard ID within num_shards (default=None). This argument can only be specified when num_shards is also specified. cache (DatasetCache, optional): Use tensor caching service to speed up dataset processing. (default=None, which means no cache is used). extra_metadata(bool, optional): Flag to add extra meta-data to row. If True, an additional column named :py:obj:`[_meta-filename, dtype=string]` will be output at the end (default=False). Raises: RuntimeError: If dataset_dir does not contain data files. RuntimeError: If num_parallel_workers exceeds the max thread numbers. RuntimeError: If xml of Annotations is an invalid format. RuntimeError: If xml of Annotations loss attribution of `object`. RuntimeError: If xml of Annotations loss attribution of `bndbox`. RuntimeError: If sampler and shuffle are specified at the same time. RuntimeError: If sampler and sharding are specified at the same time. RuntimeError: If num_shards is specified but shard_id is None. RuntimeError: If shard_id is specified but num_shards is None. ValueError: If task is not equal 'Segmentation' or 'Detection'. ValueError: If task equal 'Segmentation' but class_indexing is not None. ValueError: If txt related to mode is not exist. ValueError: If shard_id is invalid (< 0 or >= num_shards). Note: - Column '[_meta-filename, dtype=string]' won't be output unless an explicit rename dataset op is added to remove the prefix('_meta-'). - This dataset can take in a `sampler`. `sampler` and `shuffle` are mutually exclusive. The table below shows what input arguments are allowed and their expected behavior. .. list-table:: Expected Order Behavior of Using `sampler` and `shuffle` :widths: 25 25 50 :header-rows: 1 * - Parameter `sampler` - Parameter `shuffle` - Expected Order Behavior * - None - None - random order * - None - True - random order * - None - False - sequential order * - Sampler object - None - order defined by sampler * - Sampler object - True - not allowed * - Sampler object - False - not allowed Examples: >>> voc_dataset_dir = "/path/to/voc_dataset_directory" >>> >>> # 1) Read VOC data for segmentation training >>> dataset = ds.VOCDataset(dataset_dir=voc_dataset_dir, task="Segmentation", usage="train") >>> >>> # 2) Read VOC data for detection training >>> dataset = ds.VOCDataset(dataset_dir=voc_dataset_dir, task="Detection", usage="train") >>> >>> # 3) Read all VOC dataset samples in voc_dataset_dir with 8 threads in random order >>> dataset = ds.VOCDataset(dataset_dir=voc_dataset_dir, task="Detection", usage="train", ... num_parallel_workers=8) >>> >>> # 4) Read then decode all VOC dataset samples in voc_dataset_dir in sequence >>> dataset = ds.VOCDataset(dataset_dir=voc_dataset_dir, task="Detection", usage="train", ... decode=True, shuffle=False) >>> >>> # In VOC dataset, if task='Segmentation', each dictionary has keys "image" and "target" >>> # In VOC dataset, if task='Detection', each dictionary has keys "image" and "annotation" About VOC dataset. The PASCAL Visual Object Classes (VOC) challenge is a benchmark in visual object category recognition and detection, providing the vision and machine learning communities with a standard dataset of images and annotation, and standard evaluation procedures. You can unzip the original VOC-2012 dataset files into this directory structure and read by MindSpore's API. .. code-block:: . └── voc2012_dataset_dir ├── Annotations │ ├── 2007_000027.xml │ ├── 2007_000032.xml │ ├── ... ├── ImageSets │ ├── Action │ ├── Layout │ ├── Main │ └── Segmentation ├── JPEGImages │ ├── 2007_000027.jpg │ ├── 2007_000032.jpg │ ├── ... ├── SegmentationClass │ ├── 2007_000032.png │ ├── 2007_000033.png │ ├── ... └── SegmentationObject ├── 2007_000032.png ├── 2007_000033.png ├── ... Citation: .. code-block:: @article{Everingham10, author = {Everingham, M. and Van~Gool, L. and Williams, C. K. I. and Winn, J. and Zisserman, A.}, title = {The Pascal Visual Object Classes (VOC) Challenge}, journal = {International Journal of Computer Vision}, volume = {88}, year = {2012}, number = {2}, month = {jun}, pages = {303--338}, biburl = {http://host.robots.ox.ac.uk/pascal/VOC/pubs/everingham10.html#bibtex}, howpublished = {http://host.robots.ox.ac.uk/pascal/VOC/voc2012/index.html} } """ @check_vocdataset def __init__(self, dataset_dir, task="Segmentation", usage="train", class_indexing=None, num_samples=None, num_parallel_workers=None, shuffle=None, decode=False, sampler=None, num_shards=None, shard_id=None, cache=None, extra_metadata=False): super().__init__(num_parallel_workers=num_parallel_workers, sampler=sampler, num_samples=num_samples, shuffle=shuffle, num_shards=num_shards, shard_id=shard_id, cache=cache) self.dataset_dir = dataset_dir self.task = replace_none(task, "Segmentation") self.usage = replace_none(usage, "train") self.class_indexing = replace_none(class_indexing, {}) self.decode = replace_none(decode, False) self.extra_metadata = extra_metadata def parse(self, children=None): return cde.VOCNode(self.dataset_dir, self.task, self.usage, self.class_indexing, self.decode, self.sampler, self.extra_metadata) def get_class_indexing(self): """ Get the class index. Returns: dict, a str-to-int mapping from label name to index. Examples: >>> voc_dataset_dir = "/path/to/voc_dataset_directory" >>> >>> dataset = ds.VOCDataset(dataset_dir=voc_dataset_dir) >>> class_indexing = dataset.get_class_indexing() """ if self.task != "Detection": raise NotImplementedError("Only 'Detection' support get_class_indexing.") if self.class_indexing is None or not self.class_indexing: if self._class_indexing is None: runtime_getter = self._init_tree_getters() self._class_indexing = runtime_getter[0].GetClassIndexing() self.class_indexing = {} for pair in self._class_indexing: self.class_indexing[pair[0]] = pair[1][0] return self.class_indexing class CocoDataset(MappableDataset): """ A source dataset for reading and parsing COCO dataset. CocoDataset supports four kinds of tasks, which are Object Detection, Keypoint Detection, Stuff Segmentation and Panoptic Segmentation of 2017 Train/Val/Test dataset. The generated dataset with different task setting has different output columns: - task = :py:obj:`Detection`, output columns: :py:obj:`[image, dtype=uint8]`, :py:obj:`[bbox, dtype=float32]`, \ :py:obj:`[category_id, dtype=uint32]`, :py:obj:`[iscrowd, dtype=uint32]`. - task = :py:obj:`Stuff`, output columns: :py:obj:`[image, dtype=uint8]`, :py:obj:`[segmentation,dtype=float32]`, \ :py:obj:`[iscrowd,dtype=uint32]`. - task = :py:obj:`Keypoint`, output columns: :py:obj:`[image, dtype=uint8]`, \ :py:obj:`[keypoints, dtype=float32]`, :py:obj:`[num_keypoints, dtype=uint32]`. - task = :py:obj:`Panoptic`, output columns: :py:obj:`[image, dtype=uint8]`, :py:obj:`[bbox, dtype=float32]`, \ :py:obj:`[category_id, dtype=uint32]`, :py:obj:`[iscrowd, dtype=uint32]`, :py:obj:`[area, dtype=uint32]`. Args: dataset_dir (str): Path to the root directory that contains the dataset. annotation_file (str): Path to the annotation JSON file. task (str, optional): Set the task type for reading COCO data. Supported task types: `Detection`, `Stuff`, `Panoptic` and `Keypoint` (default= `Detection`). num_samples (int, optional): The number of images to be included in the dataset (default=None, all images). num_parallel_workers (int, optional): Number of workers to read the data (default=None, number set in the configuration file). shuffle (bool, optional): Whether to perform shuffle on the dataset (default=None, expected order behavior shown in the table). decode (bool, optional): Decode the images after reading (default=False). sampler (Sampler, optional): Object used to choose samples from the dataset (default=None, expected order behavior shown in the table). num_shards (int, optional): Number of shards that the dataset will be divided into (default=None). When this argument is specified, `num_samples` reflects the maximum sample number of per shard. shard_id (int, optional): The shard ID within num_shards (default=None). This argument can only be specified when num_shards is also specified. cache (DatasetCache, optional): Use tensor caching service to speed up dataset processing. (default=None, which means no cache is used). extra_metadata(bool, optional): Flag to add extra meta-data to row. If True, an additional column will be output at the end :py:obj:`[_meta-filename, dtype=string]` (default=False). Raises: RuntimeError: If dataset_dir does not contain data files. RuntimeError: If num_parallel_workers exceeds the max thread numbers. RuntimeError: If sampler and shuffle are specified at the same time. RuntimeError: If sampler and sharding are specified at the same time. RuntimeError: If num_shards is specified but shard_id is None. RuntimeError: If shard_id is specified but num_shards is None. RuntimeError: If parse JSON file failed. ValueError: If task is not in [`Detection`, `Stuff`, `Panoptic`, `Keypoint`]. ValueError: If annotation_file is not exist. ValueError: If dataset_dir is not exist. ValueError: If shard_id is invalid (< 0 or >= num_shards). Note: - Column '[_meta-filename, dtype=string]' won't be output unless an explicit rename dataset op is added to remove the prefix('_meta-'). - CocoDataset doesn't support PKSampler. - This dataset can take in a `sampler`. `sampler` and `shuffle` are mutually exclusive. The table below shows what input arguments are allowed and their expected behavior. .. list-table:: Expected Order Behavior of Using `sampler` and `shuffle` :widths: 25 25 50 :header-rows: 1 * - Parameter `sampler` - Parameter `shuffle` - Expected Order Behavior * - None - None - random order * - None - True - random order * - None - False - sequential order * - Sampler object - None - order defined by sampler * - Sampler object - True - not allowed * - Sampler object - False - not allowed Examples: >>> coco_dataset_dir = "/path/to/coco_dataset_directory/images" >>> coco_annotation_file = "/path/to/coco_dataset_directory/annotation_file" >>> >>> # 1) Read COCO data for Detection task >>> dataset = ds.CocoDataset(dataset_dir=coco_dataset_dir, ... annotation_file=coco_annotation_file, ... task='Detection') >>> >>> # 2) Read COCO data for Stuff task >>> dataset = ds.CocoDataset(dataset_dir=coco_dataset_dir, ... annotation_file=coco_annotation_file, ... task='Stuff') >>> >>> # 3) Read COCO data for Panoptic task >>> dataset = ds.CocoDataset(dataset_dir=coco_dataset_dir, ... annotation_file=coco_annotation_file, ... task='Panoptic') >>> >>> # 4) Read COCO data for Keypoint task >>> dataset = ds.CocoDataset(dataset_dir=coco_dataset_dir, ... annotation_file=coco_annotation_file, ... task='Keypoint') >>> >>> # In COCO dataset, each dictionary has keys "image" and "annotation" About COCO dataset: COCO(Microsoft Common Objects in Context) is a large-scale object detection, segmentation, and captioning dataset with several features: Object segmentation, Recognition in context, Superpixel stuff segmentation, 330K images (>200K labeled), 1.5 million object instances, 80 object categories, 91 stuff categories, 5 captions per image, 250,000 people with keypoints. In contrast to the popular ImageNet dataset, COCO has fewer categories but more instances in per category. You can unzip the original COCO-2017 dataset files into this directory structure and read by MindSpore's API. .. code-block:: . └── coco_dataset_directory ├── train2017 │ ├── 000000000009.jpg │ ├── 000000000025.jpg │ ├── ... ├── test2017 │ ├── 000000000001.jpg │ ├── 000000058136.jpg │ ├── ... ├── val2017 │ ├── 000000000139.jpg │ ├── 000000057027.jpg │ ├── ... └── annotations ├── captions_train2017.json ├── captions_val2017.json ├── instances_train2017.json ├── instances_val2017.json ├── person_keypoints_train2017.json └── person_keypoints_val2017.json Citation: .. code-block:: @article{DBLP:journals/corr/LinMBHPRDZ14, author = {Tsung{-}Yi Lin and Michael Maire and Serge J. Belongie and Lubomir D. Bourdev and Ross B. Girshick and James Hays and Pietro Perona and Deva Ramanan and Piotr Doll{\'{a}}r and C. Lawrence Zitnick}, title = {Microsoft {COCO:} Common Objects in Context}, journal = {CoRR}, volume = {abs/1405.0312}, year = {2014}, url = {http://arxiv.org/abs/1405.0312}, archivePrefix = {arXiv}, eprint = {1405.0312}, timestamp = {Mon, 13 Aug 2018 16:48:13 +0200}, biburl = {https://dblp.org/rec/journals/corr/LinMBHPRDZ14.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } """ @check_cocodataset def __init__(self, dataset_dir, annotation_file, task="Detection", num_samples=None, num_parallel_workers=None, shuffle=None, decode=False, sampler=None, num_shards=None, shard_id=None, cache=None, extra_metadata=False): super().__init__(num_parallel_workers=num_parallel_workers, sampler=sampler, num_samples=num_samples, shuffle=shuffle, num_shards=num_shards, shard_id=shard_id, cache=cache) self.dataset_dir = dataset_dir self.annotation_file = annotation_file self.task = replace_none(task, "Detection") self.decode = replace_none(decode, False) self.extra_metadata = extra_metadata def parse(self, children=None): return cde.CocoNode(self.dataset_dir, self.annotation_file, self.task, self.decode, self.sampler, self.extra_metadata) def get_class_indexing(self): """ Get the class index. Returns: dict, a str-to-list<int> mapping from label name to index. Examples: >>> coco_dataset_dir = "/path/to/coco_dataset_directory/images" >>> coco_annotation_file = "/path/to/coco_dataset_directory/annotation_file" >>> >>> # Read COCO data for Detection task >>> dataset = ds.CocoDataset(dataset_dir=coco_dataset_dir, ... annotation_file=coco_annotation_file, ... task='Detection') >>> >>> class_indexing = dataset.get_class_indexing() """ if self.task not in {"Detection", "Panoptic"}: raise NotImplementedError("Only 'Detection' and 'Panoptic' support get_class_indexing.") if self._class_indexing is None: runtime_getter = self._init_tree_getters() self._class_indexing = dict(runtime_getter[0].GetClassIndexing()) return self._class_indexing class CelebADataset(MappableDataset): """ A source dataset for reading and parsing CelebA dataset. Only support to read `list_attr_celeba.txt` currently, which is the attribute annotations of the dataset. The generated dataset has two columns: :py:obj:`[image, attr]`. The tensor of column :py:obj:`image` is of the uint8 type. The tensor of column :py:obj:`attr` is of the uint32 type and one hot encoded. Args: dataset_dir (str): Path to the root directory that contains the dataset. num_parallel_workers (int, optional): Number of workers to read the data (default=None, will use value set in the config). shuffle (bool, optional): Whether to perform shuffle on the dataset (default=None). usage (str, optional): Specify the `train`, `valid`, `test` part or `all` parts of dataset (default= `all`, will read all samples). sampler (Sampler, optional): Object used to choose samples from the dataset (default=None). decode (bool, optional): decode the images after reading (default=False). extensions (list[str], optional): List of file extensions to be included in the dataset (default=None). num_samples (int, optional): The number of images to be included in the dataset (default=None, will include all images). num_shards (int, optional): Number of shards that the dataset will be divided into (default=None). When this argument is specified, `num_samples` reflects the maximum sample number of per shard. shard_id (int, optional): The shard ID within `num_shards` (default=None). This argument can only be specified when `num_shards` is also specified. cache (DatasetCache, optional): Use tensor caching service to speed up dataset processing. (default=None, which means no cache is used). Raises: RuntimeError: If dataset_dir does not contain data files. RuntimeError: If num_parallel_workers exceeds the max thread numbers. RuntimeError: If sampler and shuffle are specified at the same time. RuntimeError: If sampler and sharding are specified at the same time. RuntimeError: If num_shards is specified but shard_id is None. RuntimeError: If shard_id is specified but num_shards is None. ValueError: If shard_id is invalid (< 0 or >= num_shards). Note: - This dataset can take in a `sampler`. `sampler` and `shuffle` are mutually exclusive. The table below shows what input arguments are allowed and their expected behavior. .. list-table:: Expected Order Behavior of Using `sampler` and `shuffle` :widths: 25 25 50 :header-rows: 1 * - Parameter `sampler` - Parameter `shuffle` - Expected Order Behavior * - None - None - random order * - None - True - random order * - None - False - sequential order * - Sampler object - None - order defined by sampler * - Sampler object - True - not allowed * - Sampler object - False - not allowed Examples: >>> celeba_dataset_dir = "/path/to/celeba_dataset_directory" >>> >>> # Read 5 samples from CelebA dataset >>> dataset = ds.CelebADataset(dataset_dir=celeba_dataset_dir, usage='train', num_samples=5) >>> >>> # Note: In celeba dataset, each data dictionary owns keys "image" and "attr" About CelebA dataset: CelebFaces Attributes Dataset (CelebA) is a large-scale face attributes dataset with more than 200K celebrity images, each with 40 attribute annotations. The images in this dataset cover large pose variations and background clutter. CelebA has large diversities, large quantities, and rich annotations, including * 10,177 number of identities, * 202,599 number of face images, and * 5 landmark locations, 40 binary attributes annotations per image. The dataset can be employed as the training and test sets for the following computer vision tasks: face attribute recognition, face detection, landmark (or facial part) localization, and face editing & synthesis. Original CelebA dataset structure: .. code-block:: . └── CelebA ├── README.md ├── Img │ ├── img_celeba.7z │ ├── img_align_celeba_png.7z │ └── img_align_celeba.zip ├── Eval │ └── list_eval_partition.txt └── Anno ├── list_landmarks_celeba.txt ├── list_landmarks_align_celeba.txt ├── list_bbox_celeba.txt ├── list_attr_celeba.txt └── identity_CelebA.txt You can unzip the dataset files into the following structure and read by MindSpore's API. .. code-block:: . └── celeba_dataset_directory ├── list_attr_celeba.txt ├── 000001.jpg ├── 000002.jpg ├── 000003.jpg ├── ... Citation: .. code-block:: @article{DBLP:journals/corr/LiuLWT14, author = {Ziwei Liu and Ping Luo and Xiaogang Wang and Xiaoou Tang}, title = {Deep Learning Face Attributes in the Wild}, journal = {CoRR}, volume = {abs/1411.7766}, year = {2014}, url = {http://arxiv.org/abs/1411.7766}, archivePrefix = {arXiv}, eprint = {1411.7766}, timestamp = {Tue, 10 Dec 2019 15:37:26 +0100}, biburl = {https://dblp.org/rec/journals/corr/LiuLWT14.bib}, bibsource = {dblp computer science bibliography, https://dblp.org}, howpublished = {http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html} } """ @check_celebadataset def __init__(self, dataset_dir, num_parallel_workers=None, shuffle=None, usage='all', sampler=None, decode=False, extensions=None, num_samples=None, num_shards=None, shard_id=None, cache=None): super().__init__(num_parallel_workers=num_parallel_workers, sampler=sampler, num_samples=num_samples, shuffle=shuffle, num_shards=num_shards, shard_id=shard_id, cache=cache) self.dataset_dir = dataset_dir self.decode = replace_none(decode, False) self.extensions = replace_none(extensions, []) self.usage = replace_none(usage, "all") def parse(self, children=None): if self.usage != "all": dataset_dir = os.path.realpath(self.dataset_dir) partition_file = os.path.join(dataset_dir, "list_eval_partition.txt") if os.path.exists(partition_file) is False: raise RuntimeError("Partition file can not be found when usage is not 'all'.") return cde.CelebANode(self.dataset_dir, self.usage, self.sampler, self.decode, self.extensions) class CLUEDataset(SourceDataset): """ A source dataset that reads and parses CLUE datasets. Supported CLUE classification tasks: `AFQMC`, `TNEWS`, `IFLYTEK`, `CMNLI`, `WSC` and `CSL`. The generated dataset with different task setting has different output columns: - task = :py:obj:`AFQMC` - usage = :py:obj:`train`, output columns: :py:obj:`[sentence1, dtype=string]`, \ :py:obj:`[sentence2, dtype=string]`, :py:obj:`[label, dtype=string]`. - usage = :py:obj:`test`, output columns: :py:obj:`[id, dtype=uint8]`, \ :py:obj:`[sentence1, dtype=string]`, :py:obj:`[sentence2, dtype=string]`. - usage = :py:obj:`eval`, output columns: :py:obj:`[sentence1, dtype=string]`, \ :py:obj:`[sentence2, dtype=string]`, :py:obj:`[label, dtype=string]`. - task = :py:obj:`TNEWS` - usage = :py:obj:`train`, output columns: :py:obj:`[label, dtype=string]`, \ :py:obj:`[label_des, dtype=string]`, :py:obj:`[sentence, dtype=string]`, :py:obj:`[keywords, dtype=string]`. - usage = :py:obj:`test`, output columns: :py:obj:`[label, dtype=string]`, \ :py:obj:`[label_des, dtype=string]`, :py:obj:`[sentence, dtype=string]`, :py:obj:`[keywords, dtype=string]`. - usage = :py:obj:`eval`, output columns: :py:obj:`[label, dtype=string]`, \ :py:obj:`[label_des, dtype=string]`, :py:obj:`[sentence, dtype=string]`, :py:obj:`[keywords, dtype=string]`. - task = :py:obj:`IFLYTEK` - usage = :py:obj:`train`, output columns: :py:obj:`[label, dtype=string]`, \ :py:obj:`[label_des, dtype=string]`, :py:obj:`[sentence, dtype=string]`. - usage = :py:obj:`test`, output columns: :py:obj:`[id, dtype=string]`, \ :py:obj:`[sentence, dtype=string]`. - usage = :py:obj:`eval`, output columns: :py:obj:`[label, dtype=string]`, \ :py:obj:`[label_des, dtype=string]`, :py:obj:`[sentence, dtype=string]`. - task = :py:obj:`CMNLI` - usage = :py:obj:`train`, output columns: :py:obj:`[sentence1, dtype=string]`, \ :py:obj:`[sentence2, dtype=string]`, :py:obj:`[label, dtype=string]`. - usage = :py:obj:`test`, output columns: :py:obj:`[id, dtype=uint8]`, \ :py:obj:`[sentence1, dtype=string]`, :py:obj:`[sentence2, dtype=string]`. - usage = :py:obj:`eval`, output columns: :py:obj:`[sentence1, dtype=string]`, \ :py:obj:`[sentence2, dtype=string]`, :py:obj:`[label, dtype=string]`. - task = :py:obj:`WSC` - usage = :py:obj:`train`, output columns: :py:obj:`[span1_index, dtype=uint8]`, \ :py:obj:`[span2_index, dtype=uint8]`, :py:obj:`[span1_text, dtype=string]`, \ :py:obj:`[span2_text, dtype=string]`, :py:obj:`[idx, dtype=uint8]`, \ :py:obj:`[text, dtype=string]`, :py:obj:`[label, dtype=string]`. - usage = :py:obj:`test`, output columns: :py:obj:`[span1_index, dtype=uint8]`, \ :py:obj:`[span2_index, dtype=uint8]`, :py:obj:`[span1_text, dtype=string]`, \ :py:obj:`[span2_text, dtype=string]`, :py:obj:`[idx, dtype=uint8]`, :py:obj:`[text, dtype=string]`. - usage = :py:obj:`eval`, output columns: :py:obj:`[span1_index, dtype=uint8]`, \ :py:obj:`[span2_index, dtype=uint8]`, :py:obj:`[span1_text, dtype=string]`, \ :py:obj:`[span2_text, dtype=string]`, :py:obj:`[idx, dtype=uint8]`, \ :py:obj:`[text, dtype=string]`, :py:obj:`[label, dtype=string]`. - task = :py:obj:`CSL` - usage = :py:obj:`train`, output columns: :py:obj:`[id, dtype=uint8]`, \ :py:obj:`[abst, dtype=string]`, :py:obj:`[keyword, dtype=string]`, :py:obj:`[label, dtype=string]`. - usage = :py:obj:`test`, output columns: :py:obj:`[id, dtype=uint8]`, \ :py:obj:`[abst, dtype=string]`, :py:obj:`[keyword, dtype=string]`. - usage = :py:obj:`eval`, output columns: :py:obj:`[id, dtype=uint8]`, \ :py:obj:`[abst, dtype=string]`, :py:obj:`[keyword, dtype=string]`, :py:obj:`[label, dtype=string]`. Args: dataset_files (Union[str, list[str]]): String or list of files to be read or glob strings to search for a pattern of files. The list will be sorted in a lexicographical order. task (str, optional): The kind of task, one of `AFQMC`, `TNEWS`, `IFLYTEK`, `CMNLI`, `WSC` and `CSL`. (default=AFQMC). usage (str, optional): Specify the `train`, `test` or `eval` part of dataset (default="train"). num_samples (int, optional): The number of samples to be included in the dataset (default=None, will include all images). num_parallel_workers (int, optional): Number of workers to read the data (default=None, number set in the config). shuffle (Union[bool, Shuffle level], optional): Perform reshuffling of the data every epoch (default=Shuffle.GLOBAL). If shuffle is False, no shuffling will be performed; If shuffle is True, the behavior is the same as setting shuffle to be Shuffle.GLOBAL Otherwise, there are two levels of shuffling: - Shuffle.GLOBAL: Shuffle both the files and samples. - Shuffle.FILES: Shuffle files only. num_shards (int, optional): Number of shards that the dataset will be divided into (default=None). When this argument is specified, `num_samples` reflects the maximum sample number of per shard. shard_id (int, optional): The shard ID within num_shards (default=None). This argument can only be specified when num_shards is also specified. cache (DatasetCache, optional): Use tensor caching service to speed up dataset processing. (default=None, which means no cache is used). Raises: RuntimeError: If dataset_files are not valid or do not exist. RuntimeError: If num_parallel_workers exceeds the max thread numbers. RuntimeError: If num_shards is specified but shard_id is None. RuntimeError: If shard_id is specified but num_shards is None. Examples: >>> clue_dataset_dir = ["/path/to/clue_dataset_file"] # contains 1 or multiple clue files >>> dataset = ds.CLUEDataset(dataset_files=clue_dataset_dir, task='AFQMC', usage='train') About CLUE dataset: CLUE, a Chinese Language Understanding Evaluation benchmark. It contains multiple tasks, including single-sentence classification, sentence pair classification, and machine reading comprehension. You can unzip the dataset files into the following structure and read by MindSpore's API, such as afqmc dataset: .. code-block:: . └── afqmc_public ├── train.json ├── test.json └── dev.json Citation: .. code-block:: @article{CLUEbenchmark, title = {CLUE: A Chinese Language Understanding Evaluation Benchmark}, author = {Liang Xu, Xuanwei Zhang, Lu Li, Hai Hu, Chenjie Cao, Weitang Liu, Junyi Li, Yudong Li, Kai Sun, Yechen Xu, Yiming Cui, Cong Yu, Qianqian Dong, Yin Tian, Dian Yu, Bo Shi, Jun Zeng, Rongzhao Wang, Weijian Xie, Yanting Li, Yina Patterson, Zuoyu Tian, Yiwen Zhang, He Zhou, Shaoweihua Liu, Qipeng Zhao, Cong Yue, Xinrui Zhang, Zhengliang Yang, Zhenzhong Lan}, journal = {arXiv preprint arXiv:2004.05986}, year = {2020}, howpublished = {https://github.com/CLUEbenchmark/CLUE} } """ @check_cluedataset def __init__(self, dataset_files, task='AFQMC', usage='train', num_samples=None, num_parallel_workers=None, shuffle=Shuffle.GLOBAL, num_shards=None, shard_id=None, cache=None): super().__init__(num_parallel_workers=num_parallel_workers, num_samples=num_samples, shuffle=shuffle, num_shards=num_shards, shard_id=shard_id, cache=cache) self.dataset_files = self._find_files(dataset_files) self.usage = replace_none(usage, 'train') self.task = replace_none(task, 'AFQMC') def parse(self, children=None): return cde.CLUENode(self.dataset_files, self.task, self.usage, self.num_samples, self.shuffle_flag, self.num_shards, self.shard_id) class CSVDataset(SourceDataset): """ A source dataset that reads and parses comma-separated values (CSV) datasets. The columns of generated dataset depend on the source CSV files. Args: dataset_files (Union[str, list[str]]): String or list of files to be read or glob strings to search for a pattern of files. The list will be sorted in a lexicographical order. field_delim (str, optional): A string that indicates the char delimiter to separate fields (default=','). column_defaults (list, optional): List of default values for the CSV field (default=None). Each item in the list is either a valid type (float, int, or string). If this is not provided, treats all columns as string type. column_names (list[str], optional): List of column names of the dataset (default=None). If this is not provided, infers the column_names from the first row of CSV file. num_samples (int, optional): The number of samples to be included in the dataset (default=None, will include all images). num_parallel_workers (int, optional): Number of workers to read the data (default=None, number set in the config). shuffle (Union[bool, Shuffle level], optional): Perform reshuffling of the data every epoch (default=Shuffle.GLOBAL). If shuffle is False, no shuffling will be performed; If shuffle is True, the behavior is the same as setting shuffle to be Shuffle.GLOBAL Otherwise, there are two levels of shuffling: - Shuffle.GLOBAL: Shuffle both the files and samples. - Shuffle.FILES: Shuffle files only. num_shards (int, optional): Number of shards that the dataset will be divided into (default=None). When this argument is specified, `num_samples` reflects the maximum sample number of per shard. shard_id (int, optional): The shard ID within num_shards (default=None). This argument can only be specified when num_shards is also specified. cache (DatasetCache, optional): Use tensor caching service to speed up dataset processing. (default=None, which means no cache is used). Raises: RuntimeError: If dataset_files are not valid or do not exist. RuntimeError: If num_parallel_workers exceeds the max thread numbers. RuntimeError: If num_shards is specified but shard_id is None. RuntimeError: If shard_id is specified but num_shards is None. Examples: >>> csv_dataset_dir = ["/path/to/csv_dataset_file"] # contains 1 or multiple csv files >>> dataset = ds.CSVDataset(dataset_files=csv_dataset_dir, column_names=['col1', 'col2', 'col3', 'col4']) """ @check_csvdataset def __init__(self, dataset_files, field_delim=',', column_defaults=None, column_names=None, num_samples=None, num_parallel_workers=None, shuffle=Shuffle.GLOBAL, num_shards=None, shard_id=None, cache=None): super().__init__(num_parallel_workers=num_parallel_workers, num_samples=num_samples, shuffle=shuffle, num_shards=num_shards, shard_id=shard_id, cache=cache) self.dataset_files = self._find_files(dataset_files) self.dataset_files.sort() self.field_delim = replace_none(field_delim, ',') self.column_defaults = replace_none(column_defaults, []) self.column_names = replace_none(column_names, []) def parse(self, children=None): return cde.CSVNode(self.dataset_files, self.field_delim, self.column_defaults, self.column_names, self.num_samples, self.shuffle_flag, self.num_shards, self.shard_id) class SBUDataset(MappableDataset): """ A source dataset for reading and parsing the SBU dataset. The generated dataset has two columns :py:obj:`[image, caption]`. The tensor of column :py:obj:`image` is of the uint8 type. The tensor of column :py:obj:`caption` is of the string type. Args: dataset_dir (str): Path to the root directory that contains the dataset. decode (bool, optional): Decode the images after reading (default=False). num_samples (int, optional): The number of images to be included in the dataset (default=None, will read all images). num_parallel_workers (int, optional): Number of workers to read the data (default=None, will use value set in the config). shuffle (bool, optional): Whether or not to perform shuffle on the dataset (default=None, expected order behavior shown in the table). sampler (Sampler, optional): Object used to choose samples from the dataset (default=None, expected order behavior shown in the table). num_shards (int, optional): Number of shards that the dataset will be divided into (default=None). When this argument is specified, `num_samples` reflects the max sample number of per shard. shard_id (int, optional): The shard ID within `num_shards` (default=None). This argument can only be specified when `num_shards` is also specified. cache (DatasetCache, optional): Use tensor caching service to speed up dataset processing. (default=None, which means no cache is used). Raises: RuntimeError: If dataset_dir does not contain data files. RuntimeError: If num_parallel_workers exceeds the max thread numbers. RuntimeError: If sampler and shuffle are specified at the same time. RuntimeError: If sampler and sharding are specified at the same time. RuntimeError: If num_shards is specified but shard_id is None. RuntimeError: If shard_id is specified but num_shards is None. ValueError: If shard_id is invalid (< 0 or >= num_shards). Note: - This dataset can take in a sampler. 'sampler' and 'shuffle' are mutually exclusive. The table below shows what input arguments are allowed and their expected behavior. .. list-table:: Expected Order Behavior of Using 'sampler' and 'shuffle' :widths: 25 25 50 :header-rows: 1 * - Parameter 'sampler' - Parameter 'shuffle' - Expected Order Behavior * - None - None - random order * - None - True - random order * - None - False - sequential order * - Sampler object - None - order defined by sampler * - Sampler object - True - not allowed * - Sampler object - False - not allowed Examples: >>> sbu_dataset_dir = "/path/to/sbu_dataset_directory" >>> # Read 3 samples from SBU dataset >>> dataset = ds.SBUDataset(dataset_dir=sbu_dataset_dir, num_samples=3) About SBU dataset: SBU dataset is a large captioned photo collection. It contains one million images with associated visually relevant captions. You should manually download the images using official download.m by replacing 'urls{i}(24, end)' with 'urls{i}(24:1:end)' and keep the directory as below. .. code-block:: . └─ dataset_dir ├── SBU_captioned_photo_dataset_captions.txt ├── SBU_captioned_photo_dataset_urls.txt └── sbu_images ├── m_3326_3596303505_3ce4c20529.jpg ├── ...... └── m_2522_4182181099_c3c23ab1cc.jpg Citation: .. code-block:: @inproceedings{Ordonez:2011:im2text, Author = {Vicente Ordonez and Girish Kulkarni and Tamara L. Berg}, Title = {Im2Text: Describing Images Using 1 Million Captioned Photographs}, Booktitle = {Neural Information Processing Systems ({NIPS})}, Year = {2011}, } """ @check_sbu_dataset def __init__(self, dataset_dir, num_samples=None, num_parallel_workers=None, shuffle=None, decode=False, sampler=None, num_shards=None, shard_id=None, cache=None): super().__init__(num_parallel_workers=num_parallel_workers, sampler=sampler, num_samples=num_samples, shuffle=shuffle, num_shards=num_shards, shard_id=shard_id, cache=cache) self.dataset_dir = dataset_dir self.decode = replace_none(decode, False) def parse(self, children=None): return cde.SBUNode(self.dataset_dir, self.decode, self.sampler) class _Flowers102Dataset: """ Mainly for loading Flowers102 Dataset, and return one row each time. """ def __init__(self, dataset_dir, task, usage, decode): self.dataset_dir = os.path.realpath(dataset_dir) self.task = task self.usage = usage self.decode = decode if self.task == "Classification": self.column_names = ["image", "label"] else: self.column_names = ["image", "segmentation", "label"] labels_path = os.path.join(self.dataset_dir, "imagelabels.mat") setid_path = os.path.join(self.dataset_dir, "setid.mat") # minus one to transform 1~102 to 0 ~ 101 self.labels = (loadmat(labels_path)["labels"][0] - 1).astype(np.uint32) self.setid = loadmat(setid_path) if self.usage == 'train': self.indices = self.setid["trnid"][0].tolist() elif self.usage == 'test': self.indices = self.setid["tstid"][0].tolist() elif self.usage == 'valid': self.indices = self.setid["valid"][0].tolist() elif self.usage == 'all': self.indices = self.setid["trnid"][0].tolist() self.indices += self.setid["tstid"][0].tolist() self.indices += self.setid["valid"][0].tolist() else: raise ValueError("Input usage is not within the valid set of ['train', 'valid', 'test', 'all'].") def __getitem__(self, index): # range: 1 ~ 8189 image_path = os.path.join(self.dataset_dir, "jpg", "image_" + str(self.indices[index]).zfill(5) + ".jpg") if not os.path.exists(image_path): raise RuntimeError("Can not find image file: " + image_path) if self.decode is True: image = np.asarray(Image.open(image_path).convert("RGB")) else: image = np.fromfile(image_path, dtype=np.uint8) label = self.labels[self.indices[index] - 1] if self.task == "Segmentation": segmentation_path = \ os.path.join(self.dataset_dir, "segmim", "segmim_" + str(self.indices[index]).zfill(5) + ".jpg") if not os.path.exists(segmentation_path): raise RuntimeError("Can not find segmentation file: " + segmentation_path) if self.decode is True: segmentation = np.asarray(Image.open(segmentation_path).convert("RGB")) else: segmentation = np.fromfile(segmentation_path, dtype=np.uint8) return image, segmentation, label return image, label def __len__(self): return len(self.indices) class Flowers102Dataset(GeneratorDataset): """ A source dataset for reading and parsing Flowers102 dataset. The generated dataset has two columns :py:obj:`[image, label]` or three :py:obj:`[image, segmentation, label]`. The tensor of column :py:obj:`image` is of the uint8 type. The tensor of column :py:obj:`segmentation` is of the uint8 type. The tensor of column :py:obj:`label` is a scalar or a tensor of the uint32 type. Args: dataset_dir (str): Path to the root directory that contains the dataset. task (str): Specify the 'Classification' or 'Segmentation' task (default='Classification'). usage (str): Specify the 'train', 'valid', 'test' part or 'all' parts of dataset (default='all', will read all samples). num_samples (int, optional): The number of samples to be included in the dataset (default=None, all images). num_parallel_workers (int, optional): Number of subprocesses used to fetch the dataset in parallel (default=1). shuffle (bool, optional): Whether or not to perform shuffle on the dataset. Random accessible input is required. (default=None, expected order behavior shown in the table). decode (bool, optional): Whether or not to decode the images and segmentations after reading (default=False). sampler (Union[Sampler, Iterable], optional): Object used to choose samples from the dataset. Random accessible input is required (default=None, expected order behavior shown in the table). num_shards (int, optional): Number of shards that the dataset will be divided into (default=None). Random accessible input is required. When this argument is specified, 'num_samples' reflects the max sample number of per shard. shard_id (int, optional): The shard ID within num_shards (default=None). This argument must be specified only when num_shards is also specified. Random accessible input is required. Raises: RuntimeError: If dataset_dir does not contain data files. RuntimeError: If num_parallel_workers exceeds the max thread numbers. RuntimeError: If sampler and shuffle are specified at the same time. RuntimeError: If sampler and sharding are specified at the same time. RuntimeError: If num_shards is specified but shard_id is None. RuntimeError: If shard_id is specified but num_shards is None. ValueError: If shard_id is invalid (< 0 or >= num_shards). Note: - This dataset can take in a sampler. 'sampler' and 'shuffle' are mutually exclusive. The table below shows what input arguments are allowed and their expected behavior. .. list-table:: Expected Order Behavior of Using 'sampler' and 'shuffle' :widths: 25 25 50 :header-rows: 1 * - Parameter 'sampler' - Parameter 'shuffle' - Expected Order Behavior * - None - None - random order * - None - True - random order * - None - False - sequential order * - Sampler object - None - order defined by sampler * - Sampler object - True - not allowed * - Sampler object - False - not allowed Examples: >>> flowers102_dataset_dir = "/path/to/flowers102_dataset_directory" >>> dataset = ds.Flowers102Dataset(dataset_dir=flowers102_dataset_dir, ... task="Classification", ... usage="all", ... decode=True) About Flowers102 dataset: Flowers102 dataset consists of 102 flower categories. The flowers commonly occur in the United Kingdom. Each class consists of between 40 and 258 images. Here is the original Flowers102 dataset structure. You can unzip the dataset files into this directory structure and read by MindSpore's API. .. code-block:: . └── flowes102_dataset_dir ├── imagelabels.mat ├── setid.mat ├── jpg ├── image_00001.jpg ├── image_00002.jpg ├── ... ├── segmim ├── segmim_00001.jpg ├── segmim_00002.jpg ├── ... Citation: .. code-block:: @InProceedings{Nilsback08, author = "Maria-Elena Nilsback and Andrew Zisserman", title = "Automated Flower Classification over a Large Number of Classes", booktitle = "Indian Conference on Computer Vision, Graphics and Image Processing", month = "Dec", year = "2008", } """ @check_flowers102dataset def __init__(self, dataset_dir, task="Classification", usage="all", num_samples=None, num_parallel_workers=1, shuffle=None, decode=False, sampler=None, num_shards=None, shard_id=None): self.dataset_dir = os.path.realpath(dataset_dir) self.task = replace_none(task, "Classification") self.usage = replace_none(usage, "all") self.decode = replace_none(decode, False) dataset = _Flowers102Dataset(self.dataset_dir, self.task, self.usage, self.decode) super().__init__(dataset, column_names=dataset.column_names, num_samples=num_samples, num_parallel_workers=num_parallel_workers, shuffle=shuffle, sampler=sampler, num_shards=num_shards, shard_id=shard_id) def get_class_indexing(self): """ Get the class index. Returns: dict, a str-to-int mapping from label name to index. """ class_names = [ "pink primrose", "hard-leaved pocket orchid", "canterbury bells", "sweet pea", "english marigold", "tiger lily", "moon orchid", "bird of paradise", "monkshood", "globe thistle", "snapdragon", "colt's foot", "king protea", "spear thistle", "yellow iris", "globe-flower", "purple coneflower", "peruvian lily", "balloon flower", "giant white arum lily", "fire lily", "pincushion flower", "fritillary", "red ginger", "grape hyacinth", "corn poppy", "prince of wales feathers", "stemless gentian", "artichoke", "sweet william", "carnation", "garden phlox", "love in the mist", "mexican aster", "alpine sea holly", "ruby-lipped cattleya", "cape flower", "great masterwort", "siam tulip", "lenten rose", "barbeton daisy", "daffodil", "sword lily", "poinsettia", "bolero deep blue", "wallflower", "marigold", "buttercup", "oxeye daisy", "common dandelion", "petunia", "wild pansy", "primula", "sunflower", "pelargonium", "bishop of llandaff", "gaura", "geranium", "orange dahlia", "pink-yellow dahlia?", "cautleya spicata", "japanese anemone", "black-eyed susan", "silverbush", "californian poppy", "osteospermum", "spring crocus", "bearded iris", "windflower", "tree poppy", "gazania", "azalea", "water lily", "rose", "thorn apple", "morning glory", "passion flower", "lotus", "toad lily", "anthurium", "frangipani", "clematis", "hibiscus", "columbine", "desert-rose", "tree mallow", "magnolia", "cyclamen", "watercress", "canna lily", "hippeastrum", "bee balm", "ball moss", "foxglove", "bougainvillea", "camellia", "mallow", "mexican petunia", "bromelia", "blanket flower", "trumpet creeper", "blackberry lily" ] class_dict = {} for i, class_name in enumerate(class_names): class_dict[class_name] = i return class_dict class LJSpeechDataset(MappableDataset): """ A source dataset for reading and parsing LJSpeech dataset. The generated dataset has four columns :py:obj:`[waveform, sample_rate, transcription, normalized_transcript]`. The tensor of column :py:obj:`waveform` is a tensor of the float32 type. The tensor of column :py:obj:`sample_rate` is a scalar of the int32 type. The tensor of column :py:obj:`transcription` is a scalar of the string type. The tensor of column :py:obj:`normalized_transcript` is a scalar of the string type. Args: dataset_dir (str): Path to the root directory that contains the dataset. num_samples (int, optional): The number of audios to be included in the dataset (default=None, all audios). num_parallel_workers (int, optional): Number of workers to read the data (default=None, number set in the config). shuffle (bool, optional): Whether to perform shuffle on the dataset (default=None, expected order behavior shown in the table). sampler (Sampler, optional): Object used to choose samples from the dataset (default=None, expected order behavior shown in the table). num_shards (int, optional): Number of shards that the dataset will be divided into (default=None). When this argument is specified, `num_samples` reflects the maximum sample number of per shard. shard_id (int, optional): The shard ID within num_shards (default=None). This argument can only be specified when num_shards is also specified. cache (DatasetCache, optional): Use tensor caching service to speed up dataset processing. (default=None, which means no cache is used). Raises: RuntimeError: If dataset_dir does not contain data files. RuntimeError: If num_parallel_workers exceeds the max thread numbers. RuntimeError: If sampler and shuffle are specified at the same time. RuntimeError: If sampler and sharding are specified at the same time. RuntimeError: If num_shards is specified but shard_id is None. RuntimeError: If shard_id is specified but num_shards is None. ValueError: If shard_id is invalid (< 0 or >= num_shards). Note: - This dataset can take in a `sampler`. `sampler` and `shuffle` are mutually exclusive. The table below shows what input arguments are allowed and their expected behavior. .. list-table:: Expected Order Behavior of Using `sampler` and `shuffle` :widths: 25 25 50 :header-rows: 1 * - Parameter `sampler` - Parameter `shuffle` - Expected Order Behavior * - None - None - random order * - None - True - random order * - None - False - sequential order * - Sampler object - None - order defined by sampler * - Sampler object - True - not allowed * - Sampler object - False - not allowed Examples: >>> lj_speech_dataset_dir = "/path/to/lj_speech_dataset_directory" >>> >>> # 1) Get all samples from LJSPEECH dataset in sequence >>> dataset = ds.LJSpeechDataset(dataset_dir=lj_speech_dataset_dir, shuffle=False) >>> >>> # 2) Randomly select 350 samples from LJSPEECH dataset >>> dataset = ds.LJSpeechDataset(dataset_dir=lj_speech_dataset_dir, num_samples=350, shuffle=True) >>> >>> # 3) Get samples from LJSPEECH dataset for shard 0 in a 2-way distributed training >>> dataset = ds.LJSpeechDataset(dataset_dir=lj_speech_dataset_dir, num_shards=2, shard_id=0) >>> >>> # In LJSPEECH dataset, each dictionary has keys "waveform", "sample_rate", "transcription" >>> # and "normalized_transcript" About LJSPEECH dataset: This is a public domain speech dataset consisting of 13,100 short audio clips of a single speaker reading passages from 7 non-fiction books. A transcription is provided for each clip. Clips vary in length from 1 to 10 seconds and have a total length of approximately 24 hours. The texts were published between 1884 and 1964, and are in the public domain. The audio was recorded in 2016-17 by the LibriVox project and is also in the public domain. Here is the original LJSPEECH dataset structure. You can unzip the dataset files into the following directory structure and read by MindSpore's API. .. code-block:: . └── LJSpeech-1.1 ├── README ├── metadata.csv └── wavs ├── LJ001-0001.wav ├── LJ001-0002.wav ├── LJ001-0003.wav ├── LJ001-0004.wav ├── LJ001-0005.wav ├── LJ001-0006.wav ├── LJ001-0007.wav ├── LJ001-0008.wav ... ├── LJ050-0277.wav └── LJ050-0278.wav Citation: .. code-block:: @misc{lj_speech17, author = {Keith Ito and Linda Johnson}, title = {The LJ Speech Dataset}, howpublished = {url{https://keithito.com/LJ-Speech-Dataset}}, year = 2017 } """ @check_lj_speech_dataset def __init__(self, dataset_dir, num_samples=None, num_parallel_workers=None, shuffle=None, sampler=None, num_shards=None, shard_id=None, cache=None): super().__init__(num_parallel_workers=num_parallel_workers, sampler=sampler, num_samples=num_samples, shuffle=shuffle, num_shards=num_shards, shard_id=shard_id, cache=cache) self.dataset_dir = dataset_dir def parse(self, children=None): return cde.LJSpeechNode(self.dataset_dir, self.sampler) class TextFileDataset(SourceDataset): """ A source dataset that reads and parses datasets stored on disk in text format. The generated dataset has one column :py:obj:`[text]` with type string. Args: dataset_files (Union[str, list[str]]): String or list of files to be read or glob strings to search for a pattern of files. The list will be sorted in a lexicographical order. num_samples (int, optional): The number of samples to be included in the dataset (default=None, will include all images). num_parallel_workers (int, optional): Number of workers to read the data (default=None, number set in the config). shuffle (Union[bool, Shuffle level], optional): Perform reshuffling of the data every epoch (default=Shuffle.GLOBAL). If shuffle is False, no shuffling will be performed; If shuffle is True, the behavior is the same as setting shuffle to be Shuffle.GLOBAL Otherwise, there are two levels of shuffling: - Shuffle.GLOBAL: Shuffle both the files and samples. - Shuffle.FILES: Shuffle files only. num_shards (int, optional): Number of shards that the dataset will be divided into (default=None). When this argument is specified, `num_samples` reflects the maximum sample number of per shard. shard_id (int, optional): The shard ID within num_shards (default=None). This argument can only be specified when num_shards is also specified. cache (DatasetCache, optional): Use tensor caching service to speed up dataset processing. (default=None, which means no cache is used). Raises: RuntimeError: If dataset_files are not valid or do not exist. RuntimeError: If num_parallel_workers exceeds the max thread numbers. RuntimeError: If num_shards is specified but shard_id is None. RuntimeError: If shard_id is specified but num_shards is None. Examples: >>> text_file_dataset_dir = ["/path/to/text_file_dataset_file"] # contains 1 or multiple text files >>> dataset = ds.TextFileDataset(dataset_files=text_file_dataset_dir) """ @check_textfiledataset def __init__(self, dataset_files, num_samples=None, num_parallel_workers=None, shuffle=Shuffle.GLOBAL, num_shards=None, shard_id=None, cache=None): super().__init__(num_parallel_workers=num_parallel_workers, num_samples=num_samples, shuffle=shuffle, num_shards=num_shards, shard_id=shard_id, cache=cache) self.dataset_files = self._find_files(dataset_files) self.dataset_files.sort() def parse(self, children=None): return cde.TextFileNode(self.dataset_files, self.num_samples, self.shuffle_flag, self.num_shards, self.shard_id) class _NumpySlicesDataset: """ Mainly for dealing with several kinds of formats of Python data, and return one row each time. """ def __init__(self, data, column_list=None): self.column_list = None # Convert dict data into tuple if isinstance(data, dict): data = self.process_dict(data) if isinstance(data, tuple): self.data = () data_len = len(data) for i in range(data_len): self.data = self.data + (np.array(data[i]),) else: self.data = (np.array(data),) # check whether the data length in each column is equal data_len = [len(data_item) for data_item in self.data] if data_len[1:] != data_len[:-1]: raise ValueError("Data length in each column is not equal.") # Init column_name if column_list is not None: self.column_list = column_list elif self.column_list is None: self.column_list = [] column_num = len(self.data) for i in range(column_num): self.column_list.append("column_" + str(i)) def __getitem__(self, index): data_row = [d[index, ...] for d in self.data] data_res = tuple(data_row) return data_res def __len__(self): return len(self.data[0]) def process_dict(self, input_data): """ Convert the dict like data into tuple format, when input is a tuple of dicts then compose it into a dict first. """ # Convert pandas like dict(has "values" column) into General dict data_keys = list(input_data.keys()) data_col = input_data[data_keys[0]] if hasattr(data_col, "values"): new_dict = {} for key in data_keys: item1 = input_data.pop(key) new_dict[key] = item1.values input_data = new_dict # Convert the data in dict into tuple data = () keys = list(input_data.keys()) self.column_list = keys for key in keys: value = input_data[key] data = data + (list(value),) return data class NumpySlicesDataset(GeneratorDataset): """ Creates a dataset with given data slices, mainly for loading Python data into dataset. The column names and column types of generated dataset depend on Python data defined by users. Args: data (Union[list, tuple, dict]) Input of given data. Supported data types include: list, tuple, dict and other NumPy formats. Input data will be sliced along the first dimension and generate additional rows, if input is list, there will be one column in each row, otherwise there tends to be multi columns. Large data is not recommended to be loaded in this way as data is loading into memory. column_names (list[str], optional): List of column names of the dataset (default=None). If column_names is not provided, the output column names will be named as the keys of dict when the input data is a dict, otherwise they will be named like column_0, column_1 ... num_samples (int, optional): The number of samples to be included in the dataset (default=None, all samples). num_parallel_workers (int, optional): Number of subprocesses used to fetch the dataset in parallel (default=1). shuffle (bool, optional): Whether or not to perform shuffle on the dataset. Random accessible input is required. (default=None, expected order behavior shown in the table). sampler (Union[Sampler, Iterable], optional): Object used to choose samples from the dataset. Random accessible input is required (default=None, expected order behavior shown in the table). num_shards (int, optional): Number of shards that the dataset will be divided into (default=None). Random accessible input is required. When this argument is specified, `num_samples` reflects the max sample number of per shard. shard_id (int, optional): The shard ID within num_shards (default=None). This argument must be specified only when num_shards is also specified. Random accessible input is required. Note: - This dataset can take in a `sampler`. `sampler` and `shuffle` are mutually exclusive. The table below shows what input arguments are allowed and their expected behavior. .. list-table:: Expected Order Behavior of Using `sampler` and `shuffle` :widths: 25 25 50 :header-rows: 1 * - Parameter `sampler` - Parameter `shuffle` - Expected Order Behavior * - None - None - random order * - None - True - random order * - None - False - sequential order * - Sampler object - None - order defined by sampler * - Sampler object - True - not allowed * - Sampler object - False - not allowed Raises: RuntimeError: If len of column_names does not match output len of data. RuntimeError: If num_parallel_workers exceeds the max thread numbers. RuntimeError: If sampler and shuffle are specified at the same time. RuntimeError: If sampler and sharding are specified at the same time. RuntimeError: If num_shards is specified but shard_id is None. RuntimeError: If shard_id is specified but num_shards is None. ValueError: If shard_id is invalid (< 0 or >= num_shards). Examples: >>> # 1) Input data can be a list >>> data = [1, 2, 3] >>> dataset = ds.NumpySlicesDataset(data=data, column_names=["column_1"]) >>> >>> # 2) Input data can be a dictionary, and column_names will be its keys >>> data = {"a": [1, 2], "b": [3, 4]} >>> dataset = ds.NumpySlicesDataset(data=data) >>> >>> # 3) Input data can be a tuple of lists (or NumPy arrays), each tuple element refers to data in each column >>> data = ([1, 2], [3, 4], [5, 6]) >>> dataset = ds.NumpySlicesDataset(data=data, column_names=["column_1", "column_2", "column_3"]) >>> >>> # 4) Load data from CSV file >>> import pandas as pd >>> df = pd.read_csv(filepath_or_buffer=csv_dataset_dir[0]) >>> dataset = ds.NumpySlicesDataset(data=dict(df), shuffle=False) """ @check_numpyslicesdataset def __init__(self, data, column_names=None, num_samples=None, num_parallel_workers=1, shuffle=None, sampler=None, num_shards=None, shard_id=None): dataset = _NumpySlicesDataset(data, column_names) super().__init__(dataset, column_names=dataset.column_list, num_samples=num_samples, num_parallel_workers=num_parallel_workers, shuffle=shuffle, sampler=sampler, num_shards=num_shards, shard_id=shard_id) class _PaddedDataset: """ Mainly for combining false samples provided by users into a dataset. Args: padded_samples (list(dict)): Data provided by user to be added to the initial Dataset. """ def __init__(self, padded_samples): self.column_names = list(padded_samples[0].keys()) self.padded_samples = padded_samples def __getitem__(self, item): return (self.padded_samples[item][key] for key in self.column_names) def __len__(self): return len(self.padded_samples) class PaddedDataset(GeneratorDataset): """ Creates a dataset with filler data provided by user. Mainly used to add to the original data set and assign it to the corresponding shard. Args: padded_samples (list(dict)): Samples provided by user. Raises: TypeError: If padded_samples is not an instance of list. TypeError: If the element of padded_samples is not an instance of dict. ValueError: If the padded_samples is empty. Examples: >>> import numpy as np >>> data = [{'image': np.zeros(1, np.uint8)}, {'image': np.zeros(2, np.uint8)}] >>> dataset = ds.PaddedDataset(padded_samples=data) """ @check_paddeddataset def __init__(self, padded_samples): dataset = _PaddedDataset(padded_samples) super().__init__(dataset, column_names=dataset.column_names, num_shards=None, shard_id=None, shuffle=False) self._dataset_size = len(dataset.padded_samples) self.padded_samples = padded_samples class EMnistDataset(MappableDataset): """ A source dataset for reading and parsing the EMNIST dataset. The generated dataset has two columns :py:obj:`[image, label]`. The tensor of column :py:obj:`image` is of the uint8 type. The tensor of column :py:obj:`label` is a scalar of the uint32 type. Args: dataset_dir (str): Path to the root directory that contains the dataset. name (str): Name of splits for this dataset, can be "byclass", "bymerge", "balanced", "letters", "digits" or "mnist". usage (str, optional): Usage of this dataset, can be "train", "test" or "all". (default=None, will read all samples). num_samples (int, optional): The number of images to be included in the dataset (default=None, will read all images). num_parallel_workers (int, optional): Number of workers to read the data (default=None, will use value set in the config). shuffle (bool, optional): Whether or not to perform shuffle on the dataset (default=None, expected order behavior shown in the table). sampler (Sampler, optional): Object used to choose samples from the dataset (default=None, expected order behavior shown in the table). num_shards (int, optional): Number of shards that the dataset will be divided into (default=None). When this argument is specified, `num_samples` reflects the max sample number of per shard. shard_id (int, optional): The shard ID within `num_shards` (default=None). This argument can only be specified when `num_shards` is also specified. cache (DatasetCache, optional): Use tensor caching service to speed up dataset processing. (default=None, which means no cache is used). Raises: RuntimeError: If sampler and shuffle are specified at the same time. RuntimeError: If sampler and sharding are specified at the same time. RuntimeError: If num_shards is specified but shard_id is None. RuntimeError: If shard_id is specified but num_shards is None. ValueError: If shard_id is invalid (< 0 or >= num_shards). Note: - This dataset can take in a `sampler`. `sampler` and `shuffle` are mutually exclusive. The table below shows what input arguments are allowed and their expected behavior. .. list-table:: Expected Order Behavior of Using `sampler` and `shuffle` :widths: 25 25 50 :header-rows: 1 * - Parameter `sampler` - Parameter `shuffle` - Expected Order Behavior * - None - None - random order * - None - True - random order * - None - False - sequential order * - Sampler object - None - order defined by sampler * - Sampler object - True - not allowed * - Sampler object - False - not allowed Examples: >>> emnist_dataset_dir = "/path/to/emnist_dataset_directory" >>> >>> # Read 3 samples from EMNIST dataset >>> dataset = ds.EMnistDataset(dataset_dir=emnist_dataset_dir, name="mnist", num_samples=3) >>> >>> # Note: In emnist_dataset dataset, each dictionary has keys "image" and "label" About EMNIST dataset: The EMNIST dataset is a set of handwritten character digits derived from the NIST Special Database 19 and converted to a 28x28 pixel image format and dataset structure that directly matches the MNIST dataset. Further information on the dataset contents and conversion process can be found in the paper available at https://arxiv.org/abs/1702.05373v1. The numbers of characters and classes of each split of EMNIST are as follows: By Class: 814,255 characters and 62 unbalanced classes. By Merge: 814,255 characters and 47 unbalanced classes. Balanced: 131,600 characters and 47 balanced classes. Letters: 145,600 characters and 26 balanced classes. Digits: 280,000 characters and 10 balanced classes. MNIST: 70,000 characters and 10 balanced classes. Here is the original EMNIST dataset structure. You can unzip the dataset files into this directory structure and read by MindSpore's API. .. code-block:: . └── mnist_dataset_dir ├── emnist-mnist-train-images-idx3-ubyte ├── emnist-mnist-train-labels-idx1-ubyte ├── emnist-mnist-test-images-idx3-ubyte ├── emnist-mnist-test-labels-idx1-ubyte ├── ... Citation: .. code-block:: @article{cohen_afshar_tapson_schaik_2017, title = {EMNIST: Extending MNIST to handwritten letters}, DOI = {10.1109/ijcnn.2017.7966217}, journal = {2017 International Joint Conference on Neural Networks (IJCNN)}, author = {Cohen, Gregory and Afshar, Saeed and Tapson, Jonathan and Schaik, Andre Van}, year = {2017}, howpublished = {https://www.westernsydney.edu.au/icns/reproducible_research/ publication_support_materials/emnist} } """ @check_emnist_dataset def __init__(self, dataset_dir, name, usage=None, num_samples=None, num_parallel_workers=None, shuffle=None, sampler=None, num_shards=None, shard_id=None, cache=None): super().__init__(num_parallel_workers=num_parallel_workers, sampler=sampler, num_samples=num_samples, shuffle=shuffle, num_shards=num_shards, shard_id=shard_id, cache=cache) self.dataset_dir = dataset_dir self.name = name self.usage = replace_none(usage, "all") def parse(self, children=None): return cde.EMnistNode(self.dataset_dir, self.name, self.usage, self.sampler) class FakeImageDataset(MappableDataset): """ A source dataset for generating fake images. The generated dataset has two columns :py:obj:`[image, label]`. The tensor of column :py:obj:`image` is of the uint8 type. The tensor of column :py:obj:`label` is a scalar of the uint32 type. Args: num_images (int, optional): Number of images to generate in the dataset (default=1000). image_size (tuple, optional): Size of the fake image (default=(224, 224, 3)). num_classes (int, optional): Number of classes in the dataset (default=10). base_seed (int, optional): Offsets the index-based random seed used to generate each image (default=0). num_samples (int, optional): The number of images to be included in the dataset (default=None, will read all images). num_parallel_workers (int, optional): Number of workers to read the data (default=None, will use value set in the config). shuffle (bool, optional): Whether or not to perform shuffle on the dataset (default=None, expected order behavior shown in the table). sampler (Sampler, optional): Object used to choose samples from the dataset (default=None, expected order behavior shown in the table). num_shards (int, optional): Number of shards that the dataset will be divided into (default=None). When this argument is specified, `num_samples` reflects the max sample number of per shard. shard_id (int, optional): The shard ID within `num_shards` (default=None). This argument can only be specified when `num_shards` is also specified. cache (DatasetCache, optional): Use tensor caching service to speed up dataset processing. (default=None, which means no cache is used). Raises: RuntimeError: If num_parallel_workers exceeds the max thread numbers. RuntimeError: If sampler and shuffle are specified at the same time. RuntimeError: If sampler and sharding are specified at the same time. RuntimeError: If num_shards is specified but shard_id is None. RuntimeError: If shard_id is specified but num_shards is None. ValueError: If shard_id is invalid (< 0 or >= num_shards). Note: - This dataset can take in a sampler. 'sampler' and 'shuffle' are mutually exclusive. The table below shows what input arguments are allowed and their expected behavior. .. list-table:: Expected Order Behavior of Using 'sampler' and 'shuffle' :widths: 25 25 50 :header-rows: 1 * - Parameter 'sampler' - Parameter 'shuffle' - Expected Order Behavior * - None - None - random order * - None - True - random order * - None - False - sequential order * - Sampler object - None - order defined by sampler * - Sampler object - True - not allowed * - Sampler object - False - not allowed Examples: >>> # Read 3 samples from FakeImage dataset >>> dataset = ds.FakeImageDataset(num_images=1000, image_size=(224,224,3), ... num_classes=10, base_seed=0, num_samples=3) >>> >>> # Note: In FakeImage dataset, each dictionary has keys "image" and "label" """ @check_fake_image_dataset def __init__(self, num_images=1000, image_size=(224, 224, 3), num_classes=10, base_seed=0, num_samples=None, num_parallel_workers=None, shuffle=None, sampler=None, num_shards=None, shard_id=None, cache=None): super().__init__(num_parallel_workers=num_parallel_workers, sampler=sampler, num_samples=num_samples, shuffle=shuffle, num_shards=num_shards, shard_id=shard_id, cache=cache) self.num_images = num_images self.image_size = image_size self.num_classes = num_classes self.base_seed = base_seed def parse(self, children=None): return cde.FakeImageNode(self.num_images, self.image_size, self.num_classes, self.base_seed, self.sampler) class FlickrDataset(MappableDataset): """ A source dataset for reading and parsing Flickr8k and Flickr30k dataset. The generated dataset has two columns :py:obj:`[image, annotation]`. The tensor of column :py:obj:`image` is of the uint8 type. The tensor of column :py:obj:`annotation` is a tensor which contains 5 annotations string, such as ["a", "b", "c", "d", "e"]. Args: dataset_dir (str): Path to the root directory that contains the dataset. annotation_file (str): Path to the root directory that contains the annotation. num_samples (int, optional): The number of images to be included in the dataset. (default=None, all images). num_parallel_workers (int, optional): Number of workers to read the data (default=None, number set in the config). shuffle (bool, optional): Whether to perform shuffle on the dataset (default=None, expected order behavior shown in the table). decode (bool, optional): Decode the images after reading (default=False). sampler (Sampler, optional): Object used to choose samples from the dataset (default=None, expected order behavior shown in the table). num_shards (int, optional): Number of shards that the dataset will be divided into (default=None). When this argument is specified, `num_samples` reflects the max sample number of per shard. shard_id (int, optional): The shard ID within num_shards (default=None). This argument can only be specified when num_shards is also specified. cache (DatasetCache, optional): Use tensor caching service to speed up dataset processing. (default=None, which means no cache is used). Raises: RuntimeError: If dataset_dir is not valid or does not contain data files. RuntimeError: If num_parallel_workers exceeds the max thread numbers. RuntimeError: If sampler and shuffle are specified at the same time. RuntimeError: If sampler and sharding are specified at the same time. RuntimeError: If num_shards is specified but shard_id is None. RuntimeError: If shard_id is specified but num_shards is None. ValueError: If dataset_dir is not exist. ValueError: If annotation_file is not exist. ValueError: If shard_id is invalid (< 0 or >= num_shards). Note: - This dataset can take in a `sampler`. `sampler` and `shuffle` are mutually exclusive. The table below shows what input arguments are allowed and their expected behavior. .. list-table:: Expected Order Behavior of Using `sampler` and `shuffle` :widths: 25 25 50 :header-rows: 1 * - Parameter `sampler` - Parameter `shuffle` - Expected Order Behavior * - None - None - random order * - None - True - random order * - None - False - sequential order * - Sampler object - None - order defined by sampler * - Sampler object - True - not allowed * - Sampler object - False - not allowed Examples: >>> flickr_dataset_dir = "/path/to/flickr_dataset_directory" >>> annotation_file = "/path/to/flickr_annotation_file" >>> >>> # 1) Get all samples from FLICKR dataset in sequence >>> dataset = ds.FlickrDataset(dataset_dir=flickr_dataset_dir, ... annotation_file=annotation_file, ... shuffle=False) >>> >>> # 2) Randomly select 350 samples from FLICKR dataset >>> dataset = ds.FlickrDataset(dataset_dir=flickr_dataset_dir, ... annotation_file=annotation_file, ... num_samples=350, ... shuffle=True) >>> >>> # 3) Get samples from FLICKR dataset for shard 0 in a 2-way distributed training >>> dataset = ds.FlickrDataset(dataset_dir=flickr_dataset_dir, ... annotation_file=annotation_file, ... num_shards=2, ... shard_id=0) >>> >>> # In FLICKR dataset, each dictionary has keys "image" and "annotation" About Flickr8k dataset: The Flickr8k dataset consists of 8092 colour images. There are 40460 annotations in the Flickr8k.token.txt, each image has 5 annotations. You can unzip the dataset files into the following directory structure and read by MindSpore's API. .. code-block:: . └── Flickr8k ├── Flickr8k_Dataset │ ├── 1000268201_693b08cb0e.jpg │ ├── 1001773457_577c3a7d70.jpg │ ├── ... └── Flickr8k.token.txt Citation: .. code-block:: @article{DBLP:journals/jair/HodoshYH13, author = {Micah Hodosh and Peter Young and Julia Hockenmaier}, title = {Framing Image Description as a Ranking Task: Data, Models and Evaluation Metrics}, journal = {J. Artif. Intell. Res.}, volume = {47}, pages = {853--899}, year = {2013}, url = {https://doi.org/10.1613/jair.3994}, doi = {10.1613/jair.3994}, timestamp = {Mon, 21 Jan 2019 15:01:17 +0100}, biburl = {https://dblp.org/rec/journals/jair/HodoshYH13.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } About Flickr30k dataset: The Flickr30k dataset consists of 31783 colour images. There are 158915 annotations in the results_20130124.token, each image has 5 annotations. You can unzip the dataset files into the following directory structure and read by MindSpore's API. Citation: .. code-block:: . └── Flickr30k ├── flickr30k-images │ ├── 1000092795.jpg │ ├── 10002456.jpg │ ├── ... └── results_20130124.token .. code-block:: @article{DBLP:journals/tacl/YoungLHH14, author = {Peter Young and Alice Lai and Micah Hodosh and Julia Hockenmaier}, title = {From image descriptions to visual denotations: New similarity metrics for semantic inference over event descriptions}, journal = {Trans. Assoc. Comput. Linguistics}, volume = {2}, pages = {67--78}, year = {2014}, url = {https://tacl2013.cs.columbia.edu/ojs/index.php/tacl/article/view/229}, timestamp = {Wed, 17 Feb 2021 21:55:25 +0100}, biburl = {https://dblp.org/rec/journals/tacl/YoungLHH14.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } """ @check_flickr_dataset def __init__(self, dataset_dir, annotation_file, num_samples=None, num_parallel_workers=None, shuffle=None, decode=None, sampler=None, num_shards=None, shard_id=None, cache=None): super().__init__(num_parallel_workers=num_parallel_workers, sampler=sampler, num_samples=num_samples, shuffle=shuffle, num_shards=num_shards, shard_id=shard_id, cache=cache) self.dataset_dir = dataset_dir self.annotation_file = annotation_file self.decode = replace_none(decode, False) def parse(self, children=None): return cde.FlickrNode(self.dataset_dir, self.annotation_file, self.decode, self.sampler) class SBDataset(GeneratorDataset): """ A source dataset for reading and parsing Semantic Boundaries Dataset. The generated dataset has two columns: :py:obj:`[image, task]`. The tensor of column :py:obj:`image` is of the uint8 type. The tensor of column :py:obj:`task` contains 20 images of the uint8 type if `task` is `Boundaries` otherwise contains 1 image of the uint8 type. Args: dataset_dir (str): Path to the root directory that contains the dataset. task (str, optional): Acceptable tasks include `Boundaries` or `Segmentation` (default= `Boundaries`). usage (str, optional): Acceptable usages include `train`, `val`, `train_noval` and `all` (default= `all`). num_samples (int, optional): The number of images to be included in the dataset. (default=None, all images). num_parallel_workers (int, optional): Number of workers to read the data (default=None, number set in the config). shuffle (bool, optional): Whether to perform shuffle on the dataset (default=None, expected order behavior shown in the table). sampler (Sampler, optional): Object used to choose samples from the dataset (default=None, expected order behavior shown in the table). num_shards (int, optional): Number of shards that the dataset will be divided into (default=None). When this argument is specified, `num_samples` reflects the max sample number of per shard. shard_id (int, optional): The shard ID within num_shards (default=None). This argument can only be specified when num_shards is also specified. Raises: RuntimeError: If dataset_dir is not valid or does not contain data files. RuntimeError: If num_parallel_workers exceeds the max thread numbers. RuntimeError: If sampler and shuffle are specified at the same time. RuntimeError: If sampler and sharding are specified at the same time. RuntimeError: If num_shards is specified but shard_id is None. RuntimeError: If shard_id is specified but num_shards is None. ValueError: If dataset_dir is not exist. ValueError: If task is not in [`Boundaries`, `Segmentation`]. ValueError: If usage is not in [`train`, `val`, `train_noval`, `all`]. ValueError: If shard_id is invalid (< 0 or >= num_shards). Note: - This dataset can take in a sampler. `sampler` and `shuffle` are mutually exclusive. The table below shows what input arguments are allowed and their expected behavior. .. list-table:: Expected Order Behavior of Using `sampler` and `shuffle` :widths: 25 25 50 :header-rows: 1 * - Parameter `sampler` - Parameter `shuffle` - Expected Order Behavior * - None - None - random order * - None - True - random order * - None - False - sequential order * - Sampler object - None - order defined by sampler * - Sampler object - True - not allowed * - Sampler object - False - not allowed Examples: >>> sb_dataset_dir = "/path/to/sb_dataset_directory" >>> >>> # 1) Get all samples from Semantic Boundaries Dataset in sequence >>> dataset = ds.SBDataset(dataset_dir=sb_dataset_dir, shuffle=False) >>> >>> # 2) Randomly select 350 samples from Semantic Boundaries Dataset >>> dataset = ds.SBDataset(dataset_dir=sb_dataset_dir, num_samples=350, shuffle=True) >>> >>> # 3) Get samples from Semantic Boundaries Dataset for shard 0 in a 2-way distributed training >>> dataset = ds.SBDataset(dataset_dir=sb_dataset_dir, num_shards=2, shard_id=0) >>> >>> # In Semantic Boundaries Dataset, each dictionary has keys "image" and "task" About Semantic Boundaries Dataset: The Semantic Boundaries Dataset consists of 11355 colour images. There are 8498 images' name in the train.txt, 2857 images' name in the val.txt and 5623 images' name in the train_noval.txt. The category cls/ contains the Segmentation and Boundaries results of category-level, the category inst/ catains the Segmentation and Boundaries results of instance-level. You can unzip the dataset files into the following structure and read by MindSpore's API: .. code-block:: . └── benchmark_RELEASE ├── dataset ├── img │ ├── 2008_000002.jpg │ ├── 2008_000003.jpg │ ├── ... ├── cls │ ├── 2008_000002.mat │ ├── 2008_000003.mat │ ├── ... ├── inst │ ├── 2008_000002.mat │ ├── 2008_000003.mat │ ├── ... ├── train.txt └── val.txt .. code-block:: @InProceedings{BharathICCV2011, author = "Bharath Hariharan and Pablo Arbelaez and Lubomir Bourdev and Subhransu Maji and Jitendra Malik", title = "Semantic Contours from Inverse Detectors", booktitle = "International Conference on Computer Vision (ICCV)", year = "2011", """ @check_sb_dataset def __init__(self, dataset_dir, task='Boundaries', usage='all', num_samples=None, num_parallel_workers=1, shuffle=None, decode=None, sampler=None, num_shards=None, shard_id=None): dataset = _SBDataset(dataset_dir, task, usage, decode) super().__init__(dataset, column_names=dataset.column_list, num_samples=num_samples, num_parallel_workers=num_parallel_workers, shuffle=shuffle, sampler=sampler, num_shards=num_shards, shard_id=shard_id) class _SBDataset: """ Dealing with the data file with .mat extension, and return one row in tuple (image, task) each time. """ def __init__(self, dataset_dir, task, usage, decode): self.column_list = ['image', 'task'] self.task = task self.images_path = os.path.join(dataset_dir, 'img') self.cls_path = os.path.join(dataset_dir, 'cls') self._loadmat = loadmat self.categories = 20 self.decode = replace_none(decode, False) if usage == "all": image_names = [] for item in ["train", "val"]: usage_path = os.path.join(dataset_dir, item + '.txt') if not os.path.exists(usage_path): raise FileNotFoundError("SBDataset: {0} not found".format(usage_path)) with open(usage_path, 'r') as f: image_names += [x.strip() for x in f.readlines()] else: usage_path = os.path.join(dataset_dir, usage + '.txt') if not os.path.exists(usage_path): raise FileNotFoundError("SBDataset: {0} not found".format(usage_path)) with open(usage_path, 'r') as f: image_names = [x.strip() for x in f.readlines()] self.images = [os.path.join(self.images_path, i + ".jpg") for i in image_names] self.clss = [os.path.join(self.cls_path, i + ".mat") for i in image_names] if len(self.images) != len(self.clss): raise ValueError("SBDataset: images count not equal to cls count") self._get_data = self._get_boundaries_data if self.task == "Boundaries" else self._get_segmentation_data self._get_item = self._get_decode_item if self.decode else self._get_undecode_item def _get_boundaries_data(self, mat_path): mat_data = self._loadmat(mat_path) return np.concatenate([np.expand_dims(mat_data['GTcls'][0][self.task][0][i][0].toarray(), axis=0) for i in range(self.categories)], axis=0) def _get_segmentation_data(self, mat_path): mat_data = self._loadmat(mat_path) return Image.fromarray(mat_data['GTcls'][0][self.task][0]) def _get_decode_item(self, idx): return Image.open(self.images[idx]).convert('RGB'), self._get_data(self.clss[idx]) def _get_undecode_item(self, idx): return np.fromfile(self.images[idx], dtype=np.uint8), self._get_data(self.clss[idx]) def __len__(self): return len(self.images) def __getitem__(self, idx): return self._get_item(idx) class DeserializedDataset(Dataset): def __init__(self, input_obj): super().__init__() self.input_obj = input_obj def parse(self, children=None): if isinstance(self.input_obj, dict): json_str = json.dumps(self.input_obj) return cde.Dataset.from_json_string(json_str) return cde.Dataset.from_json_file(self.input_obj) class CityscapesDataset(MappableDataset): """ A source dataset for reading and parsing Cityscapes dataset. The generated dataset has two columns :py:obj:`[image, task]`. The tensor of column :py:obj:`image` is of the uint8 type. The tensor of column :py:obj:`task` is of the uint8 type if task is not 'polygon' otherwise task is a string tensor with serialize json. Args: dataset_dir (str): Path to the root directory that contains the dataset. usage (str): Acceptable usages include `train`, `test`, `val` or `all` if quality_mode is `fine` otherwise `train`, `train_extra`, `val` or `all` (default= `train`). quality_mode (str): Acceptable quality_modes include `fine` or `coarse` (default= `fine`). task (str): Acceptable tasks include `instance`, `semantic`, `polygon` or `color` (default= `instance`). num_samples (int, optional): The number of images to be included in the dataset. (default=None, all images). num_parallel_workers (int, optional): Number of workers to read the data (default=None, number set in the config). shuffle (bool, optional): Whether to perform shuffle on the dataset (default=None, expected order behavior shown in the table). decode (bool, optional): Decode the images after reading (default=False). sampler (Sampler, optional): Object used to choose samples from the dataset (default=None, expected order behavior shown in the table). num_shards (int, optional): Number of shards that the dataset will be divided into (default=None). When this argument is specified, `num_samples` reflects the max sample number of per shard. shard_id (int, optional): The shard ID within num_shards (default=None). This argument can only be specified when num_shards is also specified. cache (DatasetCache, optional): Use tensor caching service to speed up dataset processing. (default=None, which means no cache is used). Raises: RuntimeError: If dataset_dir is invalid or does not contain data files. RuntimeError: If num_parallel_workers exceeds the max thread numbers. RuntimeError: If sampler and shuffle are specified at the same time. RuntimeError: If sampler and sharding are specified at the same time. RuntimeError: If num_shards is specified but shard_id is None. RuntimeError: If shard_id is specified but num_shards is None. ValueError: If dataset_dir is not exist. ValueError: If task is invalid. ValueError: If quality_mode is invalid. ValueError: If usage is invalid. ValueError: If shard_id is invalid (< 0 or >= num_shards). Note: - This dataset can take in a `sampler`. `sampler` and `shuffle` are mutually exclusive. The table below shows what input arguments are allowed and their expected behavior. .. list-table:: Expected Order Behavior of Using `sampler` and `shuffle` :widths: 25 25 50 :header-rows: 1 * - Parameter `sampler` - Parameter `shuffle` - Expected Order Behavior * - None - None - random order * - None - True - random order * - None - False - sequential order * - Sampler object - None - order defined by sampler * - Sampler object - True - not allowed * - Sampler object - False - not allowed Examples: >>> cityscapes_dataset_dir = "/path/to/cityscapes_dataset_directory" >>> >>> # 1) Get all samples from Cityscapes dataset in sequence >>> dataset = ds.CityscapesDataset(dataset_dir=cityscapes_dataset_dir, task="instance", quality_mode="fine", ... usage="train", shuffle=False, num_parallel_workers=1) >>> >>> # 2) Randomly select 350 samples from Cityscapes dataset >>> dataset = ds.CityscapesDataset(dataset_dir=cityscapes_dataset_dir, num_samples=350, shuffle=True, ... num_parallel_workers=1) >>> >>> # 3) Get samples from Cityscapes dataset for shard 0 in a 2-way distributed training >>> dataset = ds.CityscapesDataset(dataset_dir=cityscapes_dataset_dir, num_shards=2, shard_id=0, ... num_parallel_workers=1) >>> >>> # In Cityscapes dataset, each dictionary has keys "image" and "task" About Cityscapes dataset: The Cityscapes dataset consists of 5000 colour images with high quality dense pixel annotations and 19998 colour images with coarser polygonal annotations in 50 cities. There are 30 classes in this dataset and the polygonal annotations include dense semantic segmentation and instance segmentation for vehicle and people. You can unzip the dataset files into the following directory structure and read by MindSpore's API. Taking the quality_mode of `fine` as an example. .. code-block:: . └── Cityscapes ├── leftImg8bit | ├── train | | ├── aachen | | | ├── aachen_000000_000019_leftImg8bit.png | | | ├── aachen_000001_000019_leftImg8bit.png | | | ├── ... | | ├── bochum | | | ├── ... | | ├── ... | ├── test | | ├── ... | ├── val | | ├── ... └── gtFine ├── train | ├── aachen | | ├── aachen_000000_000019_gtFine_color.png | | ├── aachen_000000_000019_gtFine_instanceIds.png | | ├── aachen_000000_000019_gtFine_labelIds.png | | ├── aachen_000000_000019_gtFine_polygons.json | | ├── aachen_000001_000019_gtFine_color.png | | ├── aachen_000001_000019_gtFine_instanceIds.png | | ├── aachen_000001_000019_gtFine_labelIds.png | | ├── aachen_000001_000019_gtFine_polygons.json | | ├── ... | ├── bochum | | ├── ... | ├── ... ├── test | ├── ... └── val ├── ... Citation: .. code-block:: @inproceedings{Cordts2016Cityscapes, title = {The Cityscapes Dataset for Semantic Urban Scene Understanding}, author = {Cordts, Marius and Omran, Mohamed and Ramos, Sebastian and Rehfeld, Timo and Enzweiler, Markus and Benenson, Rodrigo and Franke, Uwe and Roth, Stefan and Schiele, Bernt}, booktitle = {Proc. of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)}, year = {2016} } """ @check_cityscapes_dataset def __init__(self, dataset_dir, usage="train", quality_mode="fine", task="instance", num_samples=None, num_parallel_workers=None, shuffle=None, decode=None, sampler=None, num_shards=None, shard_id=None, cache=None): super().__init__(num_parallel_workers=num_parallel_workers, sampler=sampler, num_samples=num_samples, shuffle=shuffle, num_shards=num_shards, shard_id=shard_id, cache=cache) self.dataset_dir = dataset_dir self.task = task self.quality_mode = quality_mode self.usage = usage self.decode = replace_none(decode, False) def parse(self, children=None): return cde.CityscapesNode(self.dataset_dir, self.usage, self.quality_mode, self.task, self.decode, self.sampler) class DBpediaDataset(SourceDataset): """ A source dataset that reads and parses the DBpedia dataset. The generated dataset has three columns :py:obj:`[class, title, content]`. The tensor of column :py:obj:`class` is of the string type. The tensor of column :py:obj:`title` is of the string type. The tensor of column :py:obj:`content` is of the string type. Args: dataset_dir (str): Path to the root directory that contains the dataset. usage (str, optional): Usage of this dataset, can be `train`, `test` or `all`. `train` will read from 560,000 train samples, `test` will read from 70,000 test samples, `all` will read from all 630,000 samples (default=None, all samples). num_samples (int, optional): The number of samples to be included in the dataset (default=None, will include all text). num_parallel_workers (int, optional): Number of workers to read the data (default=None, number set in the config). shuffle (Union[bool, Shuffle level], optional): Perform reshuffling of the data every epoch (default=Shuffle.GLOBAL). If shuffle is False, no shuffling will be performed; If shuffle is True, the behavior is the same as setting shuffle to be Shuffle.GLOBAL; Otherwise, there are two levels of shuffling: - Shuffle.GLOBAL: Shuffle both the files and samples. - Shuffle.FILES: Shuffle files only. num_shards (int, optional): Number of shards that the dataset will be divided into (default=None). When this argument is specified, `num_samples` reflects the maximum sample number of per shard. shard_id (int, optional): The shard ID within num_shards (default=None). This argument can only be specified when num_shards is also specified. cache (DatasetCache, optional): Use tensor caching service to speed up dataset processing. (default=None, which means no cache is used). Raises: RuntimeError: If dataset_dir does not contain data files. RuntimeError: If num_parallel_workers exceeds the max thread numbers. RuntimeError: If num_shards is specified but shard_id is None. RuntimeError: If shard_id is specified but num_shards is None. ValueError: If shard_id is invalid (< 0 or >= num_shards). Examples: >>> dbpedia_dataset_dir = "/path/to/dbpedia_dataset_directory" >>> >>> # 1) Read 3 samples from DBpedia dataset >>> dataset = ds.DBpediaDataset(dataset_dir=dbpedia_dataset_dir, num_samples=3) >>> >>> # 2) Read train samples from DBpedia dataset >>> dataset = ds.DBpediaDataset(dataset_dir=dbpedia_dataset_dir, usage="train") About DBpedia dataset: The DBpedia dataset consists of 630,000 text samples in 14 classes, there are 560,000 samples in the train.csv and 70,000 samples in the test.csv. The 14 different classes represent Company, EducationaInstitution, Artist, Athlete, OfficeHolder, MeanOfTransportation, Building, NaturalPlace, Village, Animal, Plant, Album, Film, WrittenWork. Here is the original DBpedia dataset structure. You can unzip the dataset files into this directory structure and read by Mindspore's API. .. code-block:: . └── dbpedia_dataset_dir ├── train.csv ├── test.csv ├── classes.txt └── readme.txt .. code-block:: @article{DBpedia, title = {DBPedia Ontology Classification Dataset}, author = {Jens Lehmann, Robert Isele, Max Jakob, Anja Jentzsch, Dimitris Kontokostas, Pablo N. Mendes, Sebastian Hellmann, Mohamed Morsey, Patrick van Kleef, Sören Auer, Christian Bizer}, year = {2015}, howpublished = {http://dbpedia.org} } """ @check_dbpedia_dataset def __init__(self, dataset_dir, usage=None, num_samples=None, num_parallel_workers=None, shuffle=Shuffle.GLOBAL, num_shards=None, shard_id=None, cache=None): super().__init__(num_parallel_workers=num_parallel_workers, num_samples=num_samples, shuffle=shuffle, num_shards=num_shards, shard_id=shard_id, cache=cache) self.dataset_dir = dataset_dir self.usage = replace_none(usage, "all") def parse(self, children=None): return cde.DBpediaNode(self.dataset_dir, self.usage, self.num_samples, self.shuffle_flag, self.num_shards, self.shard_id) class DIV2KDataset(MappableDataset): """ A source dataset for reading and parsing DIV2KDataset dataset. The generated dataset has two columns :py:obj:`[hr_image, lr_image]`. The tensor of column :py:obj:`hr_image` is of the uint8 type. The tensor of column :py:obj:`lr_image` is of the uint8 type. Args: dataset_dir (str): Path to the root directory that contains the dataset. usage (str): Acceptable usages include `train`, `valid` or `all` (default= `train`). downgrade (str): Acceptable downgrades include `bicubic`, `unknown`, `mild`, `difficult` or `wild` (default= `bicubic`). scale (int): Acceptable scales include 2, 3, 4 or 8 (default=2). When `downgrade` is `bicubic`, scale can be 2, 3, 4, 8. When `downgrade` is `unknown`, scale can only be 2, 3, 4. When `downgrade` is `mild`, `difficult` or `wild`, scale can only be 4. num_samples (int, optional): The number of images to be included in the dataset. (default=None, all images). num_parallel_workers (int, optional): Number of workers to read the data (default=None, number set in the config). shuffle (bool, optional): Whether to perform shuffle on the dataset (default=None, expected order behavior shown in the table). decode (bool, optional): Decode the images after reading (default=False). sampler (Sampler, optional): Object used to choose samples from the dataset (default=None, expected order behavior shown in the table). num_shards (int, optional): Number of shards that the dataset will be divided into (default=None). When this argument is specified, `num_samples` reflects the max sample number of per shard. shard_id (int, optional): The shard ID within num_shards (default=None). This argument can only be specified when num_shards is also specified. cache (DatasetCache, optional): Use tensor caching service to speed up dataset processing. (default=None, which means no cache is used). Raises: RuntimeError: If dataset_dir is invalid or does not contain data files. RuntimeError: If num_parallel_workers exceeds the max thread numbers. RuntimeError: If sampler and shuffle are specified at the same time. RuntimeError: If sampler and sharding are specified at the same time. RuntimeError: If num_shards is specified but shard_id is None. RuntimeError: If shard_id is specified but num_shards is None. ValueError: If dataset_dir is not exist. ValueError: If usage is invalid. ValueError: If downgrade is invalid. ValueError: If scale is invalid. ValueError: If scale equal to 8 and downgrade not equal to `bicubic`. ValueError: If downgrade in [`mild`, `difficult`, `wild`] and scale not equal to 4. ValueError: If shard_id is invalid (< 0 or >= num_shards). Note: - This dataset can take in a `sampler`. `sampler` and `shuffle` are mutually exclusive. The table below shows what input arguments are allowed and their expected behavior. .. list-table:: Expected Order Behavior of Using `sampler` and `shuffle` :widths: 25 25 50 :header-rows: 1 * - Parameter `sampler` - Parameter `shuffle` - Expected Order Behavior * - None - None - random order * - None - True - random order * - None - False - sequential order * - Sampler object - None - order defined by sampler * - Sampler object - True - not allowed * - Sampler object - False - not allowed Examples: >>> div2k_dataset_dir = "/path/to/div2k_dataset_directory" >>> >>> # 1) Get all samples from DIV2K dataset in sequence >>> dataset = ds.DIV2KDataset(dataset_dir=div2k_dataset_dir, usage="train", scale=2, downgrade="bicubic", ... shuffle=False) >>> >>> # 2) Randomly select 350 samples from DIV2K dataset >>> dataset = ds.DIV2KDataset(dataset_dir=div2k_dataset_dir, usage="train", scale=2, downgrade="bicubic", ... num_samples=350, shuffle=True) >>> >>> # 3) Get samples from DIV2K dataset for shard 0 in a 2-way distributed training >>> dataset = ds.DIV2KDataset(dataset_dir=div2k_dataset_dir, usage="train", scale=2, downgrade="bicubic", ... num_shards=2, shard_id=0) >>> >>> # In DIV2K dataset, each dictionary has keys "hr_image" and "lr_image" About DIV2K dataset: The DIV2K dataset consists of 1000 2K resolution images, among which 800 images are for training, 100 images are for validation and 100 images are for testing. NTIRE 2017 and NTIRE 2018 include only training dataset and validation dataset. You can unzip the dataset files into the following directory structure and read by MindSpore's API. Take the training set as an example. .. code-block:: . └── DIV2K ├── DIV2K_train_HR | ├── 0001.png | ├── 0002.png | ├── ... ├── DIV2K_train_LR_bicubic | ├── X2 | | ├── 0001x2.png | | ├── 0002x2.png | | ├── ... | ├── X3 | | ├── 0001x3.png | | ├── 0002x3.png | | ├── ... | └── X4 | ├── 0001x4.png | ├── 0002x4.png | ├── ... ├── DIV2K_train_LR_unknown | ├── X2 | | ├── 0001x2.png | | ├── 0002x2.png | | ├── ... | ├── X3 | | ├── 0001x3.png | | ├── 0002x3.png | | ├── ... | └── X4 | ├── 0001x4.png | ├── 0002x4.png | ├── ... ├── DIV2K_train_LR_mild | ├── 0001x4m.png | ├── 0002x4m.png | ├── ... ├── DIV2K_train_LR_difficult | ├── 0001x4d.png | ├── 0002x4d.png | ├── ... ├── DIV2K_train_LR_wild | ├── 0001x4w.png | ├── 0002x4w.png | ├── ... └── DIV2K_train_LR_x8 ├── 0001x8.png ├── 0002x8.png ├── ... Citation: .. code-block:: @InProceedings{Agustsson_2017_CVPR_Workshops, author = {Agustsson, Eirikur and Timofte, Radu}, title = {NTIRE 2017 Challenge on Single Image Super-Resolution: Dataset and Study}, booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops}, url = "http://www.vision.ee.ethz.ch/~timofter/publications/Agustsson-CVPRW-2017.pdf", month = {July}, year = {2017} } """ @check_div2k_dataset def __init__(self, dataset_dir, usage="train", downgrade="bicubic", scale=2, num_samples=None, num_parallel_workers=None, shuffle=None, decode=None, sampler=None, num_shards=None, shard_id=None, cache=None): super().__init__(num_parallel_workers=num_parallel_workers, sampler=sampler, num_samples=num_samples, shuffle=shuffle, num_shards=num_shards, shard_id=shard_id, cache=cache) self.dataset_dir = dataset_dir self.usage = usage self.scale = scale self.downgrade = downgrade self.decode = replace_none(decode, False) def parse(self, children=None): return cde.DIV2KNode(self.dataset_dir, self.usage, self.downgrade, self.scale, self.decode, self.sampler) class YesNoDataset(MappableDataset): """ A source dataset for reading and parsing the YesNo dataset. The generated dataset has three columns :py:obj:`[waveform, sample_rate, labels]`. The tensor of column :py:obj:`waveform` is a vector of the float32 type. The tensor of column :py:obj:`sample_rate` is a scalar of the int32 type. The tensor of column :py:obj:`labels` is a scalar of the int32 type. Args: dataset_dir (str): Path to the root directory that contains the dataset. num_samples (int, optional): The number of images to be included in the dataset (default=None, will read all images). num_parallel_workers (int, optional): Number of workers to read the data (default=None, will use value set in the config). shuffle (bool, optional): Whether or not to perform shuffle on the dataset (default=None, expected order behavior shown in the table). sampler (Sampler, optional): Object used to choose samples from the dataset (default=None, expected order behavior shown in the table). num_shards (int, optional): Number of shards that the dataset will be divided into (default=None). When this argument is specified, `num_samples` reflects the maximum sample number of per shard. shard_id (int, optional): The shard ID within `num_shards` (default=None). This argument can only be specified when `num_shards` is also specified. cache (DatasetCache, optional): Use tensor caching service to speed up dataset processing (default=None, which means no cache is used). Raises: RuntimeError: If dataset_dir does not contain data files. RuntimeError: If num_parallel_workers exceeds the max thread numbers. RuntimeError: If sampler and shuffle are specified at the same time. RuntimeError: If sampler and sharding are specified at the same time. RuntimeError: If num_shards is specified but shard_id is None. RuntimeError: If shard_id is specified but num_shards is None. ValueError: If shard_id is invalid (< 0 or >= num_shards). Note: - This dataset can take in a `sampler`. `sampler` and `shuffle` are mutually exclusive. The table below shows what input arguments are allowed and their expected behavior. .. list-table:: Expected Order Behavior of Using `sampler` and `shuffle` :widths: 25 25 50 :header-rows: 1 * - Parameter `sampler` - Parameter `shuffle` - Expected Order Behavior * - None - None - random order * - None - True - random order * - None - False - sequential order * - Sampler object - None - order defined by sampler * - Sampler object - True - not allowed * - Sampler object - False - not allowed Examples: >>> yes_no_dataset_dir = "/path/to/yes_no_dataset_directory" >>> >>> # Read 3 samples from YesNo dataset >>> dataset = ds.YesNoDataset(dataset_dir=yes_no_dataset_dir, num_samples=3) >>> >>> # Note: In YesNo dataset, each dictionary has keys "waveform", "sample_rate", "label" About YesNo dataset: Yesno is an audio dataset consisting of 60 recordings of one individual saying yes or no in Hebrew; each recording is eight words long. It was created for the Kaldi audio project by an author who wishes to remain anonymous. Here is the original YesNo dataset structure. You can unzip the dataset files into this directory structure and read by MindSpore's API. .. code-block:: . └── yes_no_dataset_dir ├── 1_1_0_0_1_1_0_0.wav ├── 1_0_0_0_1_1_0_0.wav ├── 1_1_0_0_1_1_0_0.wav └──.... Citation: .. code-block:: @NetworkResource{Kaldi_audio_project, author = {anonymous}, url = "http://wwww.openslr.org/1/" } """ @check_yes_no_dataset def __init__(self, dataset_dir, num_samples=None, num_parallel_workers=None, shuffle=None, sampler=None, num_shards=None, shard_id=None, cache=None): super().__init__(num_parallel_workers=num_parallel_workers, sampler=sampler, num_samples=num_samples, shuffle=shuffle, num_shards=num_shards, shard_id=shard_id, cache=cache) self.dataset_dir = dataset_dir def parse(self, children=None): return cde.YesNoNode(self.dataset_dir, self.sampler)
pyminer.py
#!/usr/bin/python # # Copyright (c) 2011 The Bitcoin developers # Distributed under the MIT/X11 software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. # import time import json import pprint import hashlib import struct import re import base64 import httplib import sys from multiprocessing import Process ERR_SLEEP = 15 MAX_NONCE = 1000000L settings = {} pp = pprint.PrettyPrinter(indent=4) class BitcoinRPC: OBJID = 1 def __init__(self, host, port, username, password): authpair = "%s:%s" % (username, password) self.authhdr = "Basic %s" % (base64.b64encode(authpair)) self.conn = httplib.HTTPConnection(host, port, False, 30) def rpc(self, method, params=None): self.OBJID += 1 obj = { 'version' : '1.1', 'method' : method, 'id' : self.OBJID } if params is None: obj['params'] = [] else: obj['params'] = params self.conn.request('POST', '/', json.dumps(obj), { 'Authorization' : self.authhdr, 'Content-type' : 'application/json' }) resp = self.conn.getresponse() if resp is None: print "JSON-RPC: no response" return None body = resp.read() resp_obj = json.loads(body) if resp_obj is None: print "JSON-RPC: cannot JSON-decode body" return None if 'error' in resp_obj and resp_obj['error'] != None: return resp_obj['error'] if 'result' not in resp_obj: print "JSON-RPC: no result in object" return None return resp_obj['result'] def getblockcount(self): return self.rpc('getblockcount') def getwork(self, data=None): return self.rpc('getwork', data) def uint32(x): return x & 0xffffffffL def bytereverse(x): return uint32(( ((x) << 24) | (((x) << 8) & 0x00ff0000) | (((x) >> 8) & 0x0000ff00) | ((x) >> 24) )) def bufreverse(in_buf): out_words = [] for i in range(0, len(in_buf), 4): word = struct.unpack('@I', in_buf[i:i+4])[0] out_words.append(struct.pack('@I', bytereverse(word))) return ''.join(out_words) def wordreverse(in_buf): out_words = [] for i in range(0, len(in_buf), 4): out_words.append(in_buf[i:i+4]) out_words.reverse() return ''.join(out_words) class Miner: def __init__(self, id): self.id = id self.max_nonce = MAX_NONCE def work(self, datastr, targetstr): # decode work data hex string to binary static_data = datastr.decode('hex') static_data = bufreverse(static_data) # the first 76b of 80b do not change blk_hdr = static_data[:76] # decode 256-bit target value targetbin = targetstr.decode('hex') targetbin = targetbin[::-1] # byte-swap and dword-swap targetbin_str = targetbin.encode('hex') target = long(targetbin_str, 16) # pre-hash first 76b of block header static_hash = hashlib.sha256() static_hash.update(blk_hdr) for nonce in xrange(self.max_nonce): # encode 32-bit nonce value nonce_bin = struct.pack("<I", nonce) # hash final 4b, the nonce value hash1_o = static_hash.copy() hash1_o.update(nonce_bin) hash1 = hash1_o.digest() # sha256 hash of sha256 hash hash_o = hashlib.sha256() hash_o.update(hash1) hash = hash_o.digest() # quick test for winning solution: high 32 bits zero? if hash[-4:] != '\0\0\0\0': continue # convert binary hash to 256-bit Python long hash = bufreverse(hash) hash = wordreverse(hash) hash_str = hash.encode('hex') l = long(hash_str, 16) # proof-of-work test: hash < target if l < target: print time.asctime(), "PROOF-OF-WORK found: %064x" % (l,) return (nonce + 1, nonce_bin) else: print time.asctime(), "PROOF-OF-WORK false positive %064x" % (l,) # return (nonce + 1, nonce_bin) return (nonce + 1, None) def submit_work(self, rpc, original_data, nonce_bin): nonce_bin = bufreverse(nonce_bin) nonce = nonce_bin.encode('hex') solution = original_data[:152] + nonce + original_data[160:256] param_arr = [ solution ] result = rpc.getwork(param_arr) print time.asctime(), "--> Upstream RPC result:", result def iterate(self, rpc): work = rpc.getwork() if work is None: time.sleep(ERR_SLEEP) return if 'data' not in work or 'target' not in work: time.sleep(ERR_SLEEP) return time_start = time.time() (hashes_done, nonce_bin) = self.work(work['data'], work['target']) time_end = time.time() time_diff = time_end - time_start self.max_nonce = long( (hashes_done * settings['scantime']) / time_diff) if self.max_nonce > 0xfffffffaL: self.max_nonce = 0xfffffffaL if settings['hashmeter']: print "HashMeter(%d): %d hashes, %.2f Khash/sec" % ( self.id, hashes_done, (hashes_done / 1000.0) / time_diff) if nonce_bin is not None: self.submit_work(rpc, work['data'], nonce_bin) def loop(self): rpc = BitcoinRPC(settings['host'], settings['port'], settings['rpcuser'], settings['rpcpass']) if rpc is None: return while True: self.iterate(rpc) def miner_thread(id): miner = Miner(id) miner.loop() if __name__ == '__main__': if len(sys.argv) != 2: print "Usage: pyminer.py CONFIG-FILE" sys.exit(1) f = open(sys.argv[1]) for line in f: # skip comment lines m = re.search('^\s*#', line) if m: continue # parse key=value lines m = re.search('^(\w+)\s*=\s*(\S.*)$', line) if m is None: continue settings[m.group(1)] = m.group(2) f.close() if 'host' not in settings: settings['host'] = '127.0.0.1' if 'port' not in settings: settings['port'] = 6452 if 'threads' not in settings: settings['threads'] = 1 if 'hashmeter' not in settings: settings['hashmeter'] = 0 if 'scantime' not in settings: settings['scantime'] = 30L if 'rpcuser' not in settings or 'rpcpass' not in settings: print "Missing username and/or password in cfg file" sys.exit(1) settings['port'] = int(settings['port']) settings['threads'] = int(settings['threads']) settings['hashmeter'] = int(settings['hashmeter']) settings['scantime'] = long(settings['scantime']) thr_list = [] for thr_id in range(settings['threads']): p = Process(target=miner_thread, args=(thr_id,)) p.start() thr_list.append(p) time.sleep(1) # stagger threads print settings['threads'], "mining threads started" print time.asctime(), "Miner Starts - %s:%s" % (settings['host'], settings['port']) try: for thr_proc in thr_list: thr_proc.join() except KeyboardInterrupt: pass print time.asctime(), "Miner Stops - %s:%s" % (settings['host'], settings['port'])
sporf.py
#!/usr/bin/env python3 # Copyright (c) 2019, Richard Hughes All rights reserved. # Released under the BSD license. Please see LICENSE.md for more information. import sys import os import argparse import glob import threading import subprocess import urllib.parse from queue import Queue from datetime import datetime # Define command line arguments parms=argparse.ArgumentParser() parms.add_argument("-c", "--cmd", type=str, required=True, help="Command to execute") parms.add_argument("-f", "--file", type=str, required=True, help="Specify input file") parms.add_argument("-n", "--num_processes", type=int, required=False, default="32", help="Number of concurrent processes") parms.add_argument("-p", "--path", type=str, required=False, default=".", help="Specify location of input file") parms.add_argument("-t", "--test_only", required=False, action="store_true", help="Do not execute commands") args = vars(parms.parse_args()) # Globals cmdqueue=Queue() # Main processing def main(args): # Get current date and time timestamp = datetime.now() # Open file of parameters to populate command template lines = open(args['path'] + "/" + args['file'], "r") # Split input into parameters to build commend for line in lines: line=line.rstrip() parmlist=line.split("|") # Build command to execute cmdline=args['cmd'] for idx in range(len(parmlist)): cmdline=cmdline.replace("{NOW}", timestamp.strftime('%Y%m%d%H%M%S')) cmdline=cmdline.replace("{"+str(idx)+"}", parmlist[idx]) cmdline=cmdline.replace("{URL:"+str(idx)+"}", urllib.parse.quote(parmlist[idx]).replace("/","%2F")) # Append command to list cmdqueue.put(cmdline) # Process process(args['num_processes']) # Process command queue def process(num_processes): # Create new threads threadlist=[] for threadnum in range(num_processes): threadlist.append(threading.Thread(target=thread_function)) threadlist[threadnum].start() # Join threads for threadnum in range(num_processes): threadlist[threadnum].join() # Thread function def thread_function(): while not cmdqueue.empty(): if not cmdqueue.empty(): c=cmdqueue.get_nowait() if args['test_only']: print(c) else: # Use subprocess.call if Python version < 3.5 rc=0 if sys.version_info[0] < 5: rc=subprocess.call(c,shell=True) else: p=subprocess.run(c,shell=True) rc=p.returncode if not rc == 0: print("Return Code: " + str(rc) + " - " + c, file=sys.stderr) if __name__ == '__main__': # Execute main method main(args)
test_dialect_detection.py
# -*- coding: utf-8 -*- """ Integration tests for dialect detection. Author: G.J.J. van den Burg """ import argparse import chardet import clevercsv import gzip import json import multiprocessing import os import termcolor import warnings THIS_DIR = os.path.abspath(os.path.dirname(__file__)) SOURCE_DIR = os.path.join(THIS_DIR, "data") TEST_FILES = os.path.join(SOURCE_DIR, "files") TEST_DIALECTS = os.path.join(SOURCE_DIR, "dialects") LOG_SUCCESS = os.path.join(THIS_DIR, "success.log") LOG_ERROR = os.path.join(THIS_DIR, "error.log") LOG_FAILED = os.path.join(THIS_DIR, "failed.log") LOG_METHOD = os.path.join(THIS_DIR, "method.log") LOG_SUCCESS_PARTIAL = os.path.join(THIS_DIR, "success_partial.log") LOG_ERROR_PARTIAL = os.path.join(THIS_DIR, "error_partial.log") LOG_FAILED_PARTIAL = os.path.join(THIS_DIR, "failed_partial.log") LOG_METHOD_PARTIAL = os.path.join(THIS_DIR, "method_partial.log") TIMEOUT = 5 * 60 N_BYTES_PARTIAL = 10000 def log_result(name, kind, verbose, partial): table = { "error": (LOG_ERROR, LOG_ERROR_PARTIAL, "yellow"), "success": (LOG_SUCCESS, LOG_SUCCESS_PARTIAL, "green"), "failure": (LOG_FAILED, LOG_FAILED_PARTIAL, "red"), } outfull, outpartial, color = table.get(kind) fname = outpartial if partial else outfull with open(fname, "a") as fp: fp.write(name + "\n") if verbose: termcolor.cprint(name, color=color) def log_method(name, method, partial): fname = LOG_METHOD_PARTIAL if partial else LOG_METHOD with open(fname, "a") as fp: fp.write(f"{name},{method}\n") def worker(args, return_dict, **kwargs): det = clevercsv.Detector() filename, encoding, partial = args return_dict["error"] = False return_dict["dialect"] = None return_dict["method"] = None with gzip.open(filename, "rt", newline="", encoding=encoding) as fp: data = fp.read(N_BYTES_PARTIAL) if partial else fp.read() try: return_dict["dialect"] = det.detect(data, **kwargs) return_dict["method"] = det.method_ except clevercsv.Error: return_dict["error"] = True def run_with_timeout(args, kwargs, limit): manager = multiprocessing.Manager() return_dict = manager.dict() p = multiprocessing.Process( target=worker, args=(args, return_dict), kwargs=kwargs ) p.start() p.join(limit) if p.is_alive(): p.terminate() return None, True, None return return_dict["dialect"], return_dict["error"], return_dict["method"] def run_test(name, gz_filename, annotation, verbose=1, partial=False): if "encoding" in annotation: enc = annotation["encoding"] else: with gzip.open(gz_filename, "rb") as fid: enc = chardet.detect(fid.read())["encoding"] true_dialect = annotation["dialect"] dialect, error, method = run_with_timeout( (gz_filename, enc, partial), {"verbose": verbose > 1}, TIMEOUT ) if error: return log_result(name, "error", verbose, partial) if dialect is None: log_result(name, "failure", verbose, partial) elif dialect.delimiter != true_dialect["delimiter"]: log_result(name, "failure", verbose, partial) elif dialect.quotechar != true_dialect["quotechar"]: log_result(name, "failure", verbose, partial) elif dialect.escapechar != true_dialect["escapechar"]: log_result(name, "failure", verbose, partial) else: log_result(name, "success", verbose, partial) log_method(name, method, partial) def load_test_cases(): cases = [] for f in sorted(os.listdir(TEST_FILES)): base = f[: -len(".csv.gz")] dialect_file = os.path.join(TEST_DIALECTS, base + ".json") if not os.path.exists(dialect_file): continue filename = os.path.join(TEST_FILES, f) with open(dialect_file, "r") as fid: annotation = json.load(fid) if not annotation["filename"] == f[: -len(".gz")]: warnings.warn( "filename doesn't match! Input file: %s\nDialect file: %s" % (filename, dialect_file) ) continue if annotation["status"] == "skip": continue cases.append((base, filename, annotation)) return cases def clear_output_files(partial): files = { True: [ LOG_SUCCESS_PARTIAL, LOG_FAILED_PARTIAL, LOG_ERROR_PARTIAL, LOG_METHOD_PARTIAL, ], False: [LOG_SUCCESS, LOG_FAILED, LOG_ERROR, LOG_METHOD], } delete = lambda f: os.unlink(f) if os.path.exists(f) else None any(map(delete, files[partial])) def parse_args(): parser = argparse.ArgumentParser() parser.add_argument( "--partial", help="Run test with partial file data", action="store_true", ) parser.add_argument("-v", "--verbose", help="Be verbose", action="count") return parser.parse_args() def main(): args = parse_args() clear_output_files(args.partial) cases = load_test_cases() for name, gz_filename, annotation in cases: run_test( name, gz_filename, annotation, verbose=args.verbose, partial=args.partial, ) if __name__ == "__main__": main()
backsec.py
import os import stat import hashlib import ConfigParser import sqlite3 import shutil import time import datetime import gzip import json import sys import time import datetime import threading import argparse # RSA from Crypto.PublicKey import RSA # AES from hashlib import md5 from Crypto.Cipher import AES from Crypto import Random # Logs import logging # NOT USED NOW # import base64 # import codecs # import binascii #VSS windows if os.name == "nt": #vss import win32com.client import ctypes class BackSecClient: ''' config = { 'crypt': True, -> Cifrado si o no 'type' : 'local', -> tipo puede ser: local, direct, reverse 'compresion': True, -> Gzip compresion si o no } ''' config = { 'crypt': True, 'type': 'local', 'compresion': True, 'passwd': '', } paths = [] # paths a respaldar privatekey = "" publickey = "" logger = None def __init__(self, config={}, paths=[]): if config == {} or paths == []: self.loadConfig() else: self.config = config self.paths = paths def loadConfig(self): config = ConfigParser.ConfigParser() try: app_path = self.pathParser(os.path.dirname(os.path.abspath(__file__))) except NameError: # We are the main py2exe script, not a module app_path = self.pathParser(os.path.dirname(os.path.abspath(sys.argv[0]))) if not os.path.exists('{0}client.conf'.format(app_path)): app_path = self.pathParser(os.path.dirname(os.path.abspath(sys.argv[0]))) config.read('{0}client.conf'.format(app_path)) try: self.config['type'] = str(config.get('GENERAL', 'type')) if self.config['type'] == "local": self.paths = str(config.get('GENERAL', 'paths')).split(",") self.config['crypt'] = eval(config.get('GENERAL', 'crypt')) self.config['destination'] = config.get('GENERAL', 'destination') self.config['compresion'] = eval(config.get('GENERAL', 'compresion')) self.config['logs'] = eval(config.get('GENERAL', 'logs')) self.setInitialConfig() if self.config['crypt']: self.config['passwd'] = config.get('GENERAL', 'passwd') self.generateKeys() self.loadKeys() self.config['full'] = str(config.get('POLICY', 'full')) self.config['full'] = self.config['full'].split(",") self.config['incremental'] = str(config.get('POLICY', 'incremental')) self.config['incremental'] = self.config['incremental'].split(",") if self.config['logs']: self.setLogsOn(app_path) except Exception as e: sys.stdout.write("[!] An error happened loading the configuration\n") sys.stdout.write(str(e)) def setLogsOn(self, app_path): logging.basicConfig(filename='{0}backsec-log.log'.format(app_path), format='%(asctime)s,%(msecs)d-%(name)s-%(levelname)s %(message)s', datefmt='%H:%M:%S_%d-%m-%Y', level=logging.DEBUG) self.logger = logging.getLogger('backsec') self.logger.setLevel(logging.DEBUG) def writeLine(self, texto, logtype="info", output="std"): texto1 = texto if texto[len(texto) - 1] != "\n": texto1 = texto + "\n" if output == "err": sys.stderr.write(texto1) elif output==None: pass else: sys.stdout.write(texto1) if self.config['logs']: if self.logger == None: try: app_path = self.pathParser(os.path.dirname( os.path.abspath(__file__))) except NameError: # We are the main py2exe script, not a module app_path = self.pathParser(os.path.dirname( os.path.abspath(sys.argv[0]))) if not os.path.exists('{0}client.conf'.format(app_path)): app_path = self.pathParser(os.path.dirname(os.path.abspath(sys.argv[0]))) self.setLogsOn(app_path) if logtype == "warn": self.logger.warning(texto) elif logtype == "error": self.logger.error(texto) elif logtype == "crit": self.logger.critical(texto) elif logtype == "debug": self.logger.debug(texto) else: self.logger.info(texto) def md5(self, fname): try: hash_md5 = hashlib.md5() with open(fname, "rb") as f: for chunk in iter(lambda: f.read(4096), b""): hash_md5.update(chunk) return hash_md5.hexdigest() except: return "No-md5" def getFileInfo(self, filename, osname="linux"): try: fileinfo = os.stat(filename) if osname == "linux": modtime = fileinfo.st_mtime elif osname == "windows": modtime = 0 return { 'fsze': fileinfo.st_size, # 'accesstime': fileinfo.st_atime, # 'creationtime': fileinfo.st_ctime, 'mtime': modtime, 'uid': fileinfo.st_uid, 'gid': fileinfo.st_gid, 'mode': fileinfo.st_mode, } except Exception as e: # print e return { 'fsze': 0, # 'accesstime': 0, # 'creationtime': 0, 'mtime': 0, 'uid': 0, 'gid': 0, 'mode': 0, } def getFileList(self, path=""): filetree = [] filetree.append({"ori-path": path}) ext = "" self.writeLine("[-] Searching on {0}".format(path)) lastdirpath = "" for dirpath, dirname, files in os.walk(path): for directorio in dirname: atributes = self.getFileInfo(dirpath) atributes['type'] = "d" # directory filetree.append({'path': self.pathParser(dirpath) + \ directorio, 'attr': atributes}) for filea in files: if dirpath != lastdirpath: atributes = self.getFileInfo(dirpath) atributes['type'] = "d" # directory filetree.append({'path': dirpath, 'attr': atributes}) if filea.endswith(ext): filenpath = os.path.join(dirpath, filea) fileinfo = self.getFileInfo(filenpath) fileinfo['type'] = "f" # file filetree.append({'path': os.path.join( self.pathParser(dirpath), filea), 'attr': fileinfo}) lastdirpath = dirpath return filetree def getFileListAllPaths(self): filetree = [] for path in self.paths: tmpresult = self.getFileList(path) for fileres in tmpresult: filetree.append(fileres) return filetree def pathParser(self, path, endp=True): path = path.replace("\\c:\\", "\\") if ("\\" in path) or os.name == "nt": path = path.replace("/", "\\") if not endp or path.endswith("\\"): return path else: return path + "\\" if "/" in path: path = path.replace("\\", "/") if not endp or path.endswith("/"): return path else: return path + "/" def getLastDir(self, path): lastdir = "" arraytmp = [] if "\\" in path: arraytmp = path.split("\\") elif "/" in path: arraytmp = path.split("/") for directory in arraytmp: if directory == "": arraytmp.remove("") lastdir = arraytmp[len(arraytmp) - 1] return lastdir def setInitialConfig(self): self.config['destination'] = self.pathParser(self.config['destination']) if self.config['type'] == "local": self.config['localdb'] = self.pathParser(self.config['destination'] + "local.db",endp=False) if not os.path.exists(self.config['destination']): try: os.makedirs(self.config['destination']) except: sys.stderr.write("The application cannot create the directory " + self.config['destination']) if not os.path.exists(self.config['localdb']): shutil.copy("localtpl.sql", self.config['localdb']) def loadKeys(self): if os.path.exists("privatekey.pem") and os.path.exists("publickey.pem"): fpriv = open("privatekey.pem", 'r') fpub = open("publickey.pem", 'r') self.privatekey = fpriv.read() self.publickey = fpub.read() fpriv.close() fpub.close() else: self.writeLine("[!] An error happened charging the keys") def loadIndexFile(self, indexpath): try: f = gzip.open(indexpath, 'rb') data = f.read() f.close() data = data.replace("\\","\\\\") return json.loads(data) # except ValueError as error: except OSError as error: # except Exception as error: self.writeLine("[!] couldn't load index file '{0}'".format(indexpath), logtype="error") return [] def writeIndexFile(self, indexfile, indexcontent): try: indexcontent = str(indexcontent) indexcontent = indexcontent.replace(", u\"", ", \"") indexcontent = indexcontent.replace("{u\"", "{\"") indexcontent = indexcontent.replace(": u\"", ": \"") indexcontent = indexcontent.replace("L, \"gid\"", ", \"gid\"") indexcontent = indexcontent.replace("\\\\", "\\") findex = gzip.open(indexfile, 'wb') findex.write(indexcontent) findex.close() return True except: return False # compara el indice anterior con el nuevo (solo para indices nuevos) def compareLastIndex(self, lastindex, actualindex, islastafile=True, isactualafile=True): res = [] if islastafile: lastindexarr = self.loadIndexFile(lastindex) else: lastindexarr = lastindex if isactualafile: actualindexarr = self.loadIndexFile(actualindex) else: actualindexarr = actualindex for indexolditem in lastindexarr: if indexolditem.keys()[0] != "ori-path" and indexolditem.keys()[0] == "path": found = False for i in actualindexarr: if i.keys()[0] != "ori-path" and i['path'] == indexolditem['path']: found = True if indexolditem.keys()[1] == "attr" and i['attr'] != indexolditem['attr']: # print indexolditem['path'] res.append(i) if not found: deleted = indexolditem deleted['attr'] = {"status": "del"} res.append(deleted) # add ficheros nuevos for indexnewitem in actualindexarr: if indexnewitem.keys()[0] != "ori-path" and indexnewitem.keys()[0] == "path": found = False for i in lastindexarr: if i.keys()[0] != "ori-path" and i['path'] == indexnewitem['path']: found = True if not found: res.append(indexnewitem) # fin return res # Se lee la ruta original del lastindexarr y de actualindexarr y # se comprueba si existe cada path ahora, si no existe, se guarda una # anotacion como que se ha eliminado, se coprueba entre un index y otro # si varia el mode, el size o el usuario/grupo y mode(permisos) # Retorna el index del incremental def compareLastIndexRestore(self, lastindexes, actualindex, islindexarray=True): res = [] if islindexarray == False: lastindexes = [lastindexes] actualindexarr = self.loadIndexFile(actualindex) for item in actualindexarr: found = False for i in res: if i['path'] == item['path']: found = True if item.keys()[0] != 'ori-path' and not found: ifrom = actualindex.replace("/index.gz", "/files") ifrom = ifrom.replace("\index.gz", "\\files") item['from'] = ifrom res.append(item) for lastindex in lastindexes: lastindexarr = self.loadIndexFile(lastindex) for item in lastindexarr: if 'ori-path' not in item.keys(): found = False for i in res: if i['path'] == item['path']: found = True if not found: ifrom = lastindex.replace("/index.gz", "/files") ifrom = ifrom.replace("\index.gz", "\\files") item['from'] = ifrom res.append(item) return res def generateKeys(self): if not os.path.exists("privatekey.pem") or not os.path.exists("publickey.pem"): new_key = RSA.generate(4096) # generate RSA key that 4096 bits long # Export the Key in PEM format, the PEM extension contains ASCII encoding public_key = new_key.publickey().exportKey("PEM") private_key = new_key.exportKey("PEM") try: fprivkey = open("privatekey.pem", 'w') fpubkey = open("publickey.pem", 'w') fpubkey.write(public_key) fprivkey.write(private_key) finally: fpubkey.close() fprivkey.close() self.writeLine(public_key, logtype="info", output="std") self.writeLine(private_key, logtype="info", output="std") else: self.writeLine("[-] The keys exists") def encryptRSA(self, text, publickey): encryptor = RSA.importKey(publickey) global encriptedData # b64 = codecs.encode(binascii.b2a_base64(text),"base64") # encriptedData=encryptor.encrypt(b64[0:len(b64)-1], 0) encriptedData = encryptor.encrypt(text, 0) return encriptedData[0] def decryptRSA(self, text, privatekey): decryptor = RSA.importKey(privatekey) # dec = base64.b64decode( decryptor.decrypt(text) + "==" ) dec = decryptor.decrypt(text) return dec def encryptAES256(self, in_file, out_file, password, key_length=32): bs = AES.block_size salt = Random.new().read(bs - len('Salted__')) key, iv = self.derive_key_and_iv(password, salt, key_length, bs) cipher = AES.new(key, AES.MODE_CBC, iv) out_file.write('Salted__' + salt) finished = False while not finished: chunk = in_file.read(1024 * bs) if len(chunk) == 0 or len(chunk) % bs != 0: padding_length = (bs - len(chunk) % bs) or bs chunk += padding_length * chr(padding_length) finished = True out_file.write(cipher.encrypt(chunk)) def decryptAES256(self, in_file, out_file, password, key_length=32): bs = AES.block_size salt = in_file.read(bs)[len('Salted__'):] key, iv = self.derive_key_and_iv(password, salt, key_length, bs) cipher = AES.new(key, AES.MODE_CBC, iv) next_chunk = '' finished = False while not finished: chunk, next_chunk = next_chunk, cipher.decrypt(in_file.read(1024 * bs)) if len(next_chunk) == 0: padding_length = ord(chunk[-1]) chunk = chunk[:-padding_length] finished = True out_file.write(chunk) def derive_key_and_iv(self, password, salt, key_length, iv_length): d = d_i = '' while len(d) < key_length + iv_length: d_i = md5(d_i + password + salt).digest() d += d_i return d[:key_length], d[key_length:key_length + iv_length] def copyFileGzip(self, source, destination): fsource = open(source, "rb") if self.config['compresion']: fdest = gzip.open(destination, 'wb') else: fdest = open(destination, 'wb') try: if self.config['crypt']: self.encryptAES256(fsource, fdest, self.config['passwd']) else: byte = "128" while byte != "": byte = fsource.read(128) fdest.write(byte) finally: fsource.close() fdest.close() def restoreFileGzip(self, source, destination): fdest = open(destination, "wb") if self.config['compresion']: fsource = gzip.open(source, 'rb') else: fsource = open(source, 'rb') try: if self.config['crypt']: self.decryptAES256(fsource, fdest, self.config['passwd']) else: byte = "128" while byte != "": byte = fsource.read(128) fdest.write(byte) finally: fsource.close() fdest.close() def vssDelete(self,id): wcd = win32com.client.Dispatch("WbemScripting.SWbemLocator") wmi = wcd.ConnectServer(".", "root\cimv2") obj = wmi.ExecQuery( 'SELECT * FROM Win32_ShadowCopy WHERE ID="{0}"'.format(id) ) obj[0].Delete_() def findVSS(self,id=""): wcd = win32com.client.Dispatch("WbemScripting.SWbemLocator") wmi = wcd.ConnectServer(".", "root\cimv2") if id != "": obj = wmi.ExecQuery("SELECT * FROM win32_ShadowCopy WHERE id='{0}'".format(id)) return [x.DeviceObject for x in obj] else: return [] def getVssList(self): res = [] if os.name == "nt": wcd=win32com.client.Dispatch("WbemScripting.SWbemLocator") wmi=wcd.ConnectServer(".","root\cimv2") obj=wmi.ExecQuery("SELECT * FROM win32_ShadowCopy") res = [x.DeviceObject for x in obj] return res def vssCreate(self,unidad="c:\\"): if os.name == "nt": wmi=win32com.client.GetObject("winmgmts:\\\\.\\root\\cimv2:Win32_ShadowCopy") createmethod = wmi.Methods_("Create") createparams = createmethod.InParameters createparams.Properties_[1].value=unidad results = wmi.ExecMethod_("Create",createparams) return results.Properties_[1].value return [] def createLink(self, link, destino): #hacer mklink flags = {'directory':1,'file':0} ##res = ctypes.windll.kernel32.CreateSymbolicLinkW(link, destino, flags['directory']) ##return res csl = ctypes.windll.kernel32.CreateSymbolicLinkW csl.argtypes = (ctypes.c_wchar_p, ctypes.c_wchar_p, ctypes.c_uint32) csl.restype = ctypes.c_ubyte res = csl(link, destino, flags['directory']) #csl("c:\\shadow_C", "\\\\?\\GLOBALROOT\\Device\\HarddiskVolumeShadowCopy5\\", 1) return res def doVss(self,path): res = [path, []] if os.name == "nt": shadowlink = "shadow{0}".format(int( time.time() )) volunit = path[0:3] shadowlinkpath = "{0}{1}".format(volunit,shadowlink) vssid = self.vssCreate(volunit) self.createLink(shadowlinkpath,"{0}\\".format(self.findVSS(id=vssid)[0])) newpath = "{0}{1}{2}".format(volunit,shadowlink,path.replace(volunit,"\\")) res = [newpath,[vssid,shadowlinkpath]] return res def removeVssAndUmount(self,vssid,mountpoint): if os.name == "nt": os.rmdir(mountpoint) self.vssDelete(vssid) def doFullBackup(self): for path in self.paths: vssres = self.doVss(path) timestamp = int(time.time()) query = "INSERT INTO backups VALUES(null," + str(timestamp) + \ ",'full','" + path + "','started')" dbres = self.setDataToDB(self.config['localdb'], query) if dbres: self.writeLine("[-] Full backup '{0}' started".format(path)) else: self.writeLine("[-] Full backup '{0}' Failed".format(path), logtype="error") continue if path == "/": lastdir = self.getLastDir("/_ROOT_DIR_") + "/full_" + str(timestamp) else: lastdir = self.getLastDir(path) + "/full_" + str(timestamp) tmpdestination = self.pathParser(self.config['destination'] + lastdir) os.makedirs(tmpdestination + "files") bckindex = self.getFileList(path) self.writeIndexFile(tmpdestination + "index.gz", str(bckindex).replace("'", "\"")) for item in bckindex: try: if item['path'] != "": # Comprobamos que no es ori-path destpath = item['path'].replace(path, tmpdestination + "files/") destpath = self.pathParser(destpath, endp=False) # Cambiamos path el path del VSS item['path'] = item['path'].replace(path,vssres[0]) # Si es Directorio lo crea en destino if item['attr']['type'] == 'd': try: os.makedirs(destpath) except OSError: self.writeLine("\t[!] {0}".format(e), logtype="error") else: # Si es fichero copia el fichero con gzip: try: self.copyFileGzip(item['path'], destpath) except Exception as e: self.writeLine("\t[!] {0}".format(e), logtype="error") except KeyError as e: self.writeLine("\t[!] {0}".format(e), logtype="error") query = "UPDATE backups set status='completed' where datetime=" + \ str(timestamp) + " and type='full' and path='" + path + "'" + \ " and status='started'" dbres = self.setDataToDB(self.config['localdb'], query) if dbres: self.writeLine("[-] Full backup '{0}' Completed".format(path)) else: self.writeLine("[-] Full backup '{0}' Failed".format(path)) continue if len(vssres[1]) > 0: self.removeVssAndUmount(vssres[1][0], vssres[1][1]) def doIncrementalBackup(self): for path in self.paths: vssres = self.doVss(path) timestamp = int(time.time()) query = "INSERT INTO backups VALUES(null," + str(timestamp) + \ ",'incremental','" + path + "','started')" dbres = self.setDataToDB(self.config['localdb'], query) if dbres: self.writeLine("[-] Incremental backup '{0}' started".format(path)) else: self.writeLine("[-] Incremental backup '{0}' Failed".format(path)) continue if path == "/": lastdir = self.getLastDir("/_ROOT_DIR_") + "/incremental_" + str(timestamp) else: lastdir = self.getLastDir(path) + "/incremental_" + str(timestamp) tmpdestination = self.pathParser(self.config['destination'] + lastdir) os.makedirs(tmpdestination + "files") # Get last full backup index backups = self.getBackups(path, bcktype='full') lastfulldir = self.getLastDir(path) + "/full_" + str(backups[len(backups) - 1][1]) + "/" lastindex = self.config['destination'] + "/" + lastfulldir + "index.gz" # fin tmpindex = self.getFileList(path) bckindex = self.compareLastIndex(lastindex, tmpindex, isactualafile=False) self.writeIndexFile(tmpdestination + "index.gz", str(bckindex).replace("'", "\"")) for item in bckindex: try: if item['path'] != "": # Comprobamos que no es ori-path destpath = item['path'].replace(path, tmpdestination + "files/") destpath = self.pathParser(destpath, endp=False) # Cambiamos path el path del VSS item['path'] = item['path'].replace(path, vssres[0]) # Si es Directorio lo crea en destino if item['attr']['type'] == 'd': try: os.makedirs(destpath) except OSError as e: self.writeLine("\t[!] {0}".format(e), logtype="error") else: # Si es fichero copia el fichero con gzip: try: self.copyFileGzip(item['path'], destpath) except Exception as e: err = "\t[!] " + str(e) self.writeLine(err, logtype="error") except KeyError as e: self.writeLine("\t[!] {0}".format(e), logtype="error") query = "UPDATE backups set status='completed' where datetime=" + \ str(timestamp) + " and type='full' and path='" + path + "'" + \ " and status='started'" dbres = self.setDataToDB(self.config['localdb'], query) if dbres: self.writeLine("[-] Incremental backup '{0}' Completed".format(path)) else: self.writeLine("[-] Incremental backup '{0}' Failed".format(path)) continue if len(vssres[1]) > 0: self.removeVssAndUmount(vssres[1][0], vssres[1][1]) def restoreFull(self, backupidarr, pathdest, pathsource="/"): for backupid in backupidarr: query = "SELECT * FROM backups WHERE id={0}".format(backupid) dbres = self.getDataFromDB(self.config['localdb'], query) timestamp = dbres[0][1] path = dbres[0][3] if dbres != []: self.writeLine("[-] Full backup '{0}' restoring on {1} started\n".format(path, pathdest)) else: self.writeLine("[-] Full backup restore '{0}' Failed\n".format(path)) continue if path == "/" or path == "c:\\": lastdir = self.getLastDir("/_ROOT_DIR_") + "/full_" + str(timestamp) else: lastdir = self.getLastDir(path) + "/full_" + str(timestamp) tmpsource = self.pathParser(self.config['destination'] + lastdir) bckindex = self.loadIndexFile(tmpsource + "index.gz") destbase = self.pathParser(pathdest) for item in bckindex: try: if item['path'] != "": # Comprobamos que no es ori-path sourcepath = self.pathParser(item['path'].replace(path, tmpsource + "files/"), endp=False) sourcepath = sourcepath.replace("//", "/") sourcepath = sourcepath.replace("\\\\", "\\") letravol = ":\\" if item['path'][1:3] == ":\\": letravol = item['path'][0:3] destpath = destbase + item['path'].replace(letravol,"\\") destpath = destpath.replace("//", "/") destpath = destpath.replace("\\\\", "\\") destpath = self.pathParser(destpath, endp=False) # Si es Directorio lo crea en destino if item['attr']['type'] == 'd': try: os.makedirs(destpath) os.chmod(destpath, item['attr']['mode']) try: os.chown(destpath, item['attr']['uid'], item['attr']['gid']) except: pass except OSError: pass except Exception as e: self.writeLine("\t[!] {0}".format(str(e)), logtype="error") else: # Si es fichero copia el fichero con gzip: try: self.restoreFileGzip(sourcepath, destpath) os.chmod(destpath, item['attr']['mode']) try: os.chown(destpath, item['attr']['uid'], item['attr']['gid']) except: pass except Exception as e: self.writeLine("\t[!] {0}".format(str(e)), logtype="error") except KeyError: pass if dbres: self.writeLine("[-] Full backup '{0}' Restored".format(path)) else: self.writeLine("[-] Full backup '{0}' restore Failed".format(path)) continue # TODO ajustar errores de tipo de fichero y revisar el exception del copyfiles def restoreIncremental(self, backupid, pathdest, pathsource="/"): backupdata = self.getBackupIncremental(backupid[0]) destbase = self.pathParser(pathdest) indexesfilesarr = [] fusionedindex = [] if len(backupdata) > 0: lastindex = backupdata[0] backupdata.remove(lastindex) lastbckindexfile = self.getIndexFilePath(lastindex) path = lastindex[3] self.writeLine("[-] Incremental backup '{0}' restoring on {1} started".format(path, pathdest)) for data in backupdata: indexesfilesarr.append(self.getIndexFilePath(data)) fusionedindex = self.compareLastIndexRestore(indexesfilesarr, lastbckindexfile) #### for item in fusionedindex: try: if not "status" in item.keys() and item['path'] != "": # Comprobamos que no es ori-path tmpsource = item['from'] sourcepath = item['path'].replace(path, tmpsource) sourcepath = sourcepath.replace("//", "/") sourcepath = sourcepath.replace("\\\\", "\\") letravol = ":\\" if item['path'][1:3] == ":\\": letravol = item['path'][0:3] destpath = destbase + item['path'].replace(letravol, "\\") destpath = destpath.replace("//", "/") destpath = destpath.replace("\\\\", "\\") # print destpath # Si es Directorio lo crea en destino if item['attr']['type'] == 'd': try: os.makedirs(destpath) os.chmod(destpath, item['attr']['mode']) os.chown(destpath, item['attr']['uid'], item['attr']['gid']) except OSError: pass except AttributeError: pass else: # Si es fichero copia el fichero con gzip: try: self.restoreFileGzip(sourcepath, destpath) os.chmod(destpath, item['attr']['mode']) os.chown(destpath, item['attr']['uid'], item['attr']['gid']) except AttributeError: pass except Exception as e: self.writeLine("\t[!] " + str(e), logtype="error") except KeyError: pass self.writeLine("[-] Incremental backup '{0}' Restored".format(path)) else: self.writeLine("[!] Restore failed", logtype="error") exit() # 1- consultar en db el id del backup incremental -> getBackupIncremental(self,path,bckincrementalid) # 2- Consultar en db los datos del backup full anterior -> getBackupIncremental # 3- Comparar los index (hay que crear un metodo de # comparacion de indices para restores evitando que se tome # como eliminados los ficheros que no aparezcan en el segundo indice, # y tomando como eliminados los status:del) -> compareLastIndexRestore # 4- Restaurar la version mas actual de los ficheros evitando # restaurar eliminados en incremental pass # TODO restorefile def restoreOnceFileOfBackup(self, backupid, filepath, pathdest): query = "SELECT * FROM backups WHERE id={0}".format(backupid) dbres = self.getDataFromDB(self.config['localdb'], query) timestamp = dbres[0][1] path = dbres[0][3] if dbres != []: self.writeLine("[-] Full backup '{0}' restoring on {1} started\n".format(path, pathdest)) else: self.writeLine("[-] Full backup restore '{0}' Failed\n".format(path)) if path == "/" or path == "c:\\": lastdir = self.getLastDir("/_ROOT_DIR_") + "/full_" + str(timestamp) else: lastdir = self.getLastDir(path) + "/full_" + str(timestamp) tmpsource = self.pathParser(self.config['destination'] + lastdir) sourcepath = self.pathParser(filepath.replace(path, tmpsource + "files/"), endp=False) destbase = self.pathParser(pathdest) destpath = destbase + filepath destpath = destpath.replace("//", "/") destpath = destpath.replace("\\\\", "\\") destpath = self.pathParser(destpath, endp=False) self.restoreFileGzip(sourcepath, pathdest) def getIndexFilePath(self, data): # data es la fila de db backup path = data[3] if path == "/" or path == "c:\\": root = self.getLastDir("/_ROOT_DIR_") lastdir = "{0}/{1}_{2}".format(root, data[2], data[1]) else: pathparsed = self.getLastDir(path) lastdir = "{0}/{1}_{2}".format(pathparsed, data[2], data[1]) tmpsource = self.pathParser(self.config['destination'] + lastdir) + "index.gz" return tmpsource def setDataToDB(self, filename, query): try: con = sqlite3.connect(filename) cursor = con.cursor() cursor.execute(query) con.commit() con.close() return True except Exception: return False def getDataFromDB(self, filename, query): con = sqlite3.connect(filename) cursor = con.cursor() cursor.execute(query) res = cursor.fetchall() return res def getBackups(self, path, bcktype='full'): if bcktype == "all": bcktype = "%" query = "SELECT * FROM backups WHERE path='" + path + "' AND type like '" + \ bcktype + "' ORDER BY id" bcklist = self.getDataFromDB(self.config['localdb'], query) return bcklist def getBackupIncremental(self, bckincrementalid, path=""): if path != "": query = "SELECT * FROM backups WHERE path='{0}' AND type='full'" + \ " AND id<{1} ORDER BY id DESC LIMIT 1" query = query.format(path, bckincrementalid) else: query = "SELECT * FROM backups WHERE type='full' AND id<{0} ORDER BY id DESC LIMIT 1" query = query.format(bckincrementalid) bckres = [] bcklist = self.getDataFromDB(self.config['localdb'], query) if len(bcklist) > 0: query = "SELECT * FROM backups WHERE path='{0}' AND type='incremental'" + \ " AND id<={1} AND id>={2} ORDER BY id DESC LIMIT 1" query = query.format(bcklist[0][3], bckincrementalid, bcklist[0][0]) bcklisttmp = self.getDataFromDB(self.config['localdb'], query) for incremental in bcklisttmp: bckres.append(incremental) bckres.append(bcklist[0]) return bckres def getPaths(self): return self.paths def runBackups(self): self.writeLine("[-] Checking if is the time to do full backups") for full in self.config['full']: datetmp = full.split(" ") weekday = datetime.datetime.now().strftime("%a").lower() monday = datetime.datetime.now().strftime("%d").lower() time = datetime.datetime.now().strftime("%H:%M").lower() if (datetmp[0] == weekday or datetmp[0] == monday) and datetmp[1] == time: t1 = threading.Thread(target=self.doFullBackup(), args=(None,)) t1.start() self.writeLine("[-] Checking if is the time to do incremental backups\n") for incr in self.config['incremental']: datetmp = incr.split(" ") weekday = datetime.datetime.now().strftime("%a").lower() monday = datetime.datetime.now().strftime("%d").lower() time = datetime.datetime.now().strftime("%H:%M").lower() if (datetmp[0] == weekday or datetmp[0] == monday) and datetmp[1] == time: t1 = threading.Thread(target=self.doIncrementalBackup(), args=(None,)) t1.start() # >>> print "Or like this: " ,datetime.datetime.now().strftime("%a %y-%m-%d-%H-%M") # Or like this: Wed 17-11-08-02-44 def launchDaemon(self): timetowait = 50 while True: self.runBackups() self.writeLine("[-] Waiting {0} seconds to recheck".format(timetowait)) time.sleep(timetowait) def main(): bsc = BackSecClient() try: parser = argparse.ArgumentParser() subparsers = parser.add_subparsers(help='commands') # modo demonio dparser = subparsers.add_parser('daemon', help='Activate daemon mode') dparser.add_argument("daemon", action='store_true', default=True, help="Activate daemon mode") # Run policy once rpparser = subparsers.add_parser('runpolicy', help='Run backup policy one time') rpparser.add_argument('runpolicy', action='store_true', default=True, help='Run backup policy one time') rpparser.add_argument('--btype', '-BT', action='store', default='full', choices=('incremental', 'full'), help='Backup type (full or incremental)') # listar directorios gestionados ldparser = subparsers.add_parser('listdirs', help='List backup directories') ldparser.add_argument('listdirs', action='store_true', default=True, help='List backup directories') # List backups lbparser = subparsers.add_parser('listbackups', help='List backups') lbparser.add_argument('listbackups', action='store_true', default=True, help='List backups') lbparser.add_argument('directory', action='store', help='Backup source directory') lbparser.add_argument('--btype', '-BT', default='all', action='store', dest='btype', choices=('all', 'incremental', 'full'), help='Select backupt to find (full,incremental or all)') # restore backups # TODO hacer que se seleccione el tipo de backup en base a la bbdd sin necesidad de indicerlo rbparser = subparsers.add_parser('restore', help='Restore backups') rbparser.add_argument('restore', action='store_true', default=True, help='Restore backups') rbparser.add_argument('backupid', action='store', help='Backup id') rbparser.add_argument('destination', action='store', help='Restore destination directory') rbparser.add_argument('--btype', '-BT', default='all', action='store', dest='btype', choices=('incremental', 'full'), help='Select backupt to find (full,incremental)') # TODO restorefile # restore once file # TODO hacer que se seleccione el tipo de backup en base a la bbdd sin necesidad de indicerlo rbparser = subparsers.add_parser('restorefile', help='Restore once file') rbparser.add_argument('restorefile', action='store_true', default=True, help='Restore once file') rbparser.add_argument('backupid', action='store', help='Backup id') rbparser.add_argument('filepath', action='store', help='File path on the system') rbparser.add_argument('destination', action='store', help='Restore destination directory') rbparser.add_argument('--btype', '-BT', default='all', action='store', dest='btype', choices=('incremental', 'full'), help='Select backupt to find (full,incremental)') args = parser.parse_args() if 'daemon' in args and args.daemon: bsc.launchDaemon() elif 'listdirs' in args and args.listdirs: bsc.writeLine("[-] List the directories saved:\n") for direc in bsc.getPaths(): bsc.writeLine("\t{0}\n".format(direc)) elif 'listbackups' in args and args.listbackups: bsc.writeLine("[-] List the backups saved:\n") counter = 0 for direc in bsc.getBackups(args.directory, bcktype=args.btype): counter += 1 datet = datetime.datetime.fromtimestamp(int(direc[1])).strftime('%Y-%m-%d %H:%M:%S') bsc.writeLine("\t-{0}. {1} {2} {3} {4} (id: {5})\n".format(counter, direc[3], direc[2], datet, direc[4], direc[0])) elif 'runpolicy' in args and args.runpolicy: bsc.writeLine("[-] Running policy {0} one time:\n".format(args.btype)) if args.btype == "full": bsc.doFullBackup() elif args.btype == "incremental": bsc.doIncrementalBackup() elif 'restore' in args and args.restore: bsc.writeLine("[-] Running restore {0} one time:\n".format(args.btype)) if args.btype == "full": bsc.restoreFull([args.backupid], args.destination) elif args.btype == "incremental": bsc.restoreIncremental([args.backupid], args.destination) # TODO restorefile elif 'restorefile' in args and args.restorefile: bsc.writeLine("[-] Running restore {0} one time:\n".format(args.btype)) bsc.restoreOnceFileOfBackup(args.backupid, args.filepath, args.destination) except Exception as e: bsc.writeLine("[!] An error ocurred {0}".format(e), logtype="error") except KeyboardInterrupt: bsc.writeLine("[-] You have chosen exit\n") # if __name__ == "__main__": main() # TODO Hacer que el restore se haga full o incremental dependiendo del backup y no del usuario # TODO Sustituir write's por self.writeLine # TODO hacer que se pueda restaurar un fichero
socket_server.py
#!/usr/bin/env python # -*- coding: utf-8 -*- # pylint: disable = line-too-long """ @FIle:socket_server.py ~~~~~~~~~~~ :copyright: (c) 2020 by the Niyuhang. :license: BSD, see LICENSE for more details. """ import os import logging import re from socket import * from multiprocessing import Process def main(): # 开启socket链接 作为服务端 # 使用默认参数: # 地址簇 ipv4, family=AF_INET, # type=SOCK_STREAM server_socket = socket() # 设置socket 在四次挥手后立即关闭 并且立即释放资源 server_socket.setsockopt(SOL_SOCKET, SO_REUSEADDR, 1) # 绑定监听地址 (host, port) logging.info("服务启动了") server_socket.bind(("0.0.0.0", 8080)) server_socket.listen(128) # 最多可以监听128个连接 while True: # 监听请求 # 收到请求后会得到对应socket请求对方和请求的地址 # 并且利用这个socket和客户端进行信息传输 socket_client, client_addr = server_socket.accept() # 这个时候子进程会把主进程里面的变量复制一遍 只在一方修改的时候进行分离 # 由于子进程复制了这个socket_client 所以需要在主进程关闭socket this_process = Process(target=handle_request, args=(socket_client,)) this_process.start() socket_client.close() def handle_request(socket_client): """ 处理socket链接 :param socket_client: :return: """ logging.info("处理客户端请求了") recv_data = socket_client.recv(1024).decode("utf-8") # 1024表示本次接收的最大字节数 request_header_lines = recv_data.splitlines() # for line in request_header_lines: # print(line) if not request_header_lines: file_name = "index.html" else: file_name = get_the_file_name(request_header_lines[0]) or "index.html" try: # 返回浏览器数据 # 设置返回的头信息 header response_headers = "HTTP/1.2.1.2 200 OK\r\n" # 200 表示找到这个资源 response_headers += "\r\n" # 空一行与body隔开 # 设置内容body response_body = find_static_file_data(file_name) except: response_headers = "HTTP/1.2.1.2 404 NOT FOUND\r\n" # 404 response_headers += "\r\n" # 空一行与body隔开 response_body = "" # 合并返回的response数据 response = response_headers + response_body socket_client.send(response.encode()) socket_client.close() def get_the_file_name(path): """ 匹配到/路由后到空格前的路径 :param path: "GET / HTTP1.0" :return: """ pattern = re.compile(r"(?:[^/]+)/([^?\s]*)") res = pattern.match(path) if res: return res.groups()[0] def find_static_file_data(file_name: str): try: path = os.path.join(os.path.dirname(os.path.abspath(__file__)), "htmls", file_name) with open(path, "r") as f: return f.read() except Exception as e: raise ValueError(e) if __name__ == '__main__': main()
check_mongodb.bak.py
#!/usr/bin/env python #coding:utf-8 import os import sys import string import time import datetime import MySQLdb import pymongo import bson import logging import logging.config logging.config.fileConfig("etc/logger.ini") logger = logging.getLogger("wlblazers") path='./include' sys.path.insert(0,path) import functions as func from multiprocessing import Process; def check_mongodb(host,port,user,passwd,server_id,tags): try: connect = pymongo.Connection(host,int(port)) db = connect['admin'] db.authenticate(user,passwd) serverStatus=connect.admin.command(bson.son.SON([('serverStatus', 1), ('repl', 2)])) time.sleep(1) serverStatus_2=connect.admin.command(bson.son.SON([('serverStatus', 1), ('repl', 2)])) connect = 1 ok = int(serverStatus['ok']) version = serverStatus['version'] uptime = serverStatus['uptime'] connections_current = serverStatus['connections']['current'] connections_available = serverStatus['connections']['available'] globalLock_activeClients = serverStatus['globalLock']['activeClients']['total'] globalLock_currentQueue = serverStatus['globalLock']['currentQueue']['total'] indexCounters_accesses = serverStatus['indexCounters']['accesses'] indexCounters_hits = serverStatus['indexCounters']['hits'] indexCounters_misses = serverStatus['indexCounters']['misses'] indexCounters_resets = serverStatus['indexCounters']['resets'] indexCounters_missRatio = serverStatus['indexCounters']['missRatio'] #cursors_totalOpen = serverStatus['cursors']['totalOpen'] #cursors_timeOut = serverStatus['cursors']['timeOut'] dur_commits = serverStatus['dur']['commits'] dur_journaledMB = serverStatus['dur']['journaledMB'] dur_writeToDataFilesMB = serverStatus['dur']['writeToDataFilesMB'] dur_compression = serverStatus['dur']['compression'] dur_commitsInWriteLock = serverStatus['dur']['commitsInWriteLock'] dur_earlyCommits = serverStatus['dur']['earlyCommits'] dur_timeMs_dt = serverStatus['dur']['timeMs']['dt'] dur_timeMs_prepLogBuffer = serverStatus['dur']['timeMs']['prepLogBuffer'] dur_timeMs_writeToJournal = serverStatus['dur']['timeMs']['writeToJournal'] dur_timeMs_writeToDataFiles = serverStatus['dur']['timeMs']['writeToDataFiles'] dur_timeMs_remapPrivateView = serverStatus['dur']['timeMs']['remapPrivateView'] mem_bits = serverStatus['mem']['bits'] mem_resident = serverStatus['mem']['resident'] mem_virtual = serverStatus['mem']['virtual'] mem_supported = serverStatus['mem']['supported'] mem_mapped = serverStatus['mem']['mapped'] mem_mappedWithJournal = serverStatus['mem']['mappedWithJournal'] network_bytesIn_persecond = int(serverStatus_2['network']['bytesIn']) - int(serverStatus['network']['bytesIn']) network_bytesOut_persecond = int(serverStatus_2['network']['bytesOut']) - int(serverStatus['network']['bytesOut']) network_numRequests_persecond = int(serverStatus_2['network']['numRequests']) - int(serverStatus['network']['numRequests']) opcounters_insert_persecond = int(serverStatus_2['opcounters']['insert']) - int(serverStatus['opcounters']['insert']) opcounters_query_persecond = int(serverStatus_2['opcounters']['query']) - int(serverStatus['opcounters']['query']) opcounters_update_persecond = int(serverStatus_2['opcounters']['update']) - int(serverStatus['opcounters']['update']) opcounters_delete_persecond = int(serverStatus_2['opcounters']['delete']) - int(serverStatus['opcounters']['delete']) opcounters_command_persecond = int(serverStatus_2['opcounters']['command']) - int(serverStatus['opcounters']['command']) #replset try: repl=serverStatus['repl'] setName=repl['setName'] replset=1 if repl['secondary']== True: repl_role='secondary' repl_role_new='s' else: repl_role='master' repl_role_new='m' except: replset=0 repl_role='master' repl_role_new='m' pass ##################### insert data to mysql server############################# sql = "insert into mongodb_status(server_id,host,port,tags,connect,replset,repl_role,ok,uptime,version,connections_current,connections_available,globalLock_currentQueue,globalLock_activeClients,indexCounters_accesses,indexCounters_hits,indexCounters_misses,indexCounters_resets,indexCounters_missRatio,dur_commits,dur_journaledMB,dur_writeToDataFilesMB,dur_compression,dur_commitsInWriteLock,dur_earlyCommits,dur_timeMs_dt,dur_timeMs_prepLogBuffer,dur_timeMs_writeToJournal,dur_timeMs_writeToDataFiles,dur_timeMs_remapPrivateView,mem_bits,mem_resident,mem_virtual,mem_supported,mem_mapped,mem_mappedWithJournal,network_bytesIn_persecond,network_bytesOut_persecond,network_numRequests_persecond,opcounters_insert_persecond,opcounters_query_persecond,opcounters_update_persecond,opcounters_delete_persecond,opcounters_command_persecond) values(%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s);" param = (server_id,host,port,tags,connect,replset,repl_role,ok,uptime,version,connections_current,connections_available,globalLock_currentQueue,globalLock_activeClients,indexCounters_accesses,indexCounters_hits,indexCounters_misses,indexCounters_resets,indexCounters_missRatio,dur_commits,dur_journaledMB,dur_writeToDataFilesMB,dur_compression,dur_commitsInWriteLock,dur_earlyCommits,dur_timeMs_dt,dur_timeMs_prepLogBuffer,dur_timeMs_writeToJournal,dur_timeMs_writeToDataFiles,dur_timeMs_remapPrivateView,mem_bits,mem_resident,mem_virtual,mem_supported,mem_mapped,mem_mappedWithJournal,network_bytesIn_persecond,network_bytesOut_persecond,network_numRequests_persecond,opcounters_insert_persecond,opcounters_query_persecond,opcounters_update_persecond,opcounters_delete_persecond,opcounters_command_persecond) func.mysql_exec(sql,param) role='m' func.update_db_status_init(repl_role_new,version,host,port,tags) except Exception, e: logger_msg="check mongodb %s:%s : %s" %(host,port,e) logger.warning(logger_msg) try: connect=0 sql="insert into mongodb_status(server_id,host,port,tags,connect) values(%s,%s,%s,%s,%s)" param=(server_id,host,port,tags,connect) func.mysql_exec(sql,param) except Exception, e: logger.error(e) sys.exit(1) finally: sys.exit(1) finally: func.check_db_status(server_id,host,port,tags,'mongodb') sys.exit(1) def main(): func.mysql_exec("insert into mongodb_status_his SELECT *,LEFT(REPLACE(REPLACE(REPLACE(create_time,'-',''),' ',''),':',''),12) from mongodb_status;",'') func.mysql_exec('delete from mongodb_status;','') #get mongodb servers list servers = func.mysql_query('select id,host,port,username,password,tags from db_cfg_mongodb where is_delete=0 and monitor=1;') logger.info("check mongodb controller started.") if servers: plist = [] for row in servers: server_id=row[0] host=row[1] port=row[2] username=row[3] password=row[4] tags=row[5] p = Process(target = check_mongodb, args = (host,port,username,password,server_id,tags)) plist.append(p) p.start() for p in plist: p.join() else: logger.warning("check mongodb: not found any servers") logger.info("check mongodb controller finished.") if __name__=='__main__': main()
server.py
from arduinoToPi import * from piToDb import * import os def main(): print("Starting pi server...") print("Current directory: " + str(os.getcwd())) master_queue = Queue() # Note: we need a comma after the queue to indicate that we want a tuple, # rather than just an expression with parentheses around it. arduino_thread = Thread(target=arduino_main, args=(master_queue,)) db_thread = Thread(target=database_main, args=(master_queue,)) arduino_thread.start() db_thread.start() arduino_thread.join() db_thread.join() if __name__ == "__main__": main()
handlers.py
# Copyright 2001-2015 by Vinay Sajip. All Rights Reserved. # # Permission to use, copy, modify, and distribute this software and its # documentation for any purpose and without fee is hereby granted, # provided that the above copyright notice appear in all copies and that # both that copyright notice and this permission notice appear in # supporting documentation, and that the name of Vinay Sajip # not be used in advertising or publicity pertaining to distribution # of the software without specific, written prior permission. # VINAY SAJIP DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING # ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL # VINAY SAJIP BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR # ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER # IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT # OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. """ Additional handlers for the logging package for Python. The core package is based on PEP 282 and comments thereto in comp.lang.python. Copyright (C) 2001-2015 Vinay Sajip. All Rights Reserved. To use, simply 'import logging.handlers' and log away! """ import logging, socket, os, pickle, struct, time, re from stat import ST_DEV, ST_INO, ST_MTIME import queue try: import threading except ImportError: #pragma: no cover threading = None # # Some constants... # DEFAULT_TCP_LOGGING_PORT = 9020 DEFAULT_UDP_LOGGING_PORT = 9021 DEFAULT_HTTP_LOGGING_PORT = 9022 DEFAULT_SOAP_LOGGING_PORT = 9023 SYSLOG_UDP_PORT = 514 SYSLOG_TCP_PORT = 514 _MIDNIGHT = 24 * 60 * 60 # number of seconds in a day class BaseRotatingHandler(logging.FileHandler): """ Base class for handlers that rotate log files at a certain point. Not meant to be instantiated directly. Instead, use RotatingFileHandler or TimedRotatingFileHandler. """ def __init__(self, filename, mode, encoding=None, delay=False): """ Use the specified filename for streamed logging """ logging.FileHandler.__init__(self, filename, mode, encoding, delay) self.mode = mode self.encoding = encoding self.namer = None self.rotator = None def emit(self, record): """ Emit a record. Output the record to the file, catering for rollover as described in doRollover(). """ try: if self.shouldRollover(record): self.doRollover() logging.FileHandler.emit(self, record) except Exception: self.handleError(record) def rotation_filename(self, default_name): """ Modify the filename of a log file when rotating. This is provided so that a custom filename can be provided. The default implementation calls the 'namer' attribute of the handler, if it's callable, passing the default name to it. If the attribute isn't callable (the default is None), the name is returned unchanged. :param default_name: The default name for the log file. """ if not callable(self.namer): result = default_name else: result = self.namer(default_name) return result def rotate(self, source, dest): """ When rotating, rotate the current log. The default implementation calls the 'rotator' attribute of the handler, if it's callable, passing the source and dest arguments to it. If the attribute isn't callable (the default is None), the source is simply renamed to the destination. :param source: The source filename. This is normally the base filename, e.g. 'test.log' :param dest: The destination filename. This is normally what the source is rotated to, e.g. 'test.log.1'. """ if not callable(self.rotator): # Issue 18940: A file may not have been created if delay is True. if os.path.exists(source): os.rename(source, dest) else: self.rotator(source, dest) class RotatingFileHandler(BaseRotatingHandler): """ Handler for logging to a set of files, which switches from one file to the next when the current file reaches a certain size. """ def __init__(self, filename, mode='a', maxBytes=0, backupCount=0, encoding=None, delay=False): """ Open the specified file and use it as the stream for logging. By default, the file grows indefinitely. You can specify particular values of maxBytes and backupCount to allow the file to rollover at a predetermined size. Rollover occurs whenever the current log file is nearly maxBytes in length. If backupCount is >= 1, the system will successively create new files with the same pathname as the base file, but with extensions ".1", ".2" etc. appended to it. For example, with a backupCount of 5 and a base file name of "app.log", you would get "app.log", "app.log.1", "app.log.2", ... through to "app.log.5". The file being written to is always "app.log" - when it gets filled up, it is closed and renamed to "app.log.1", and if files "app.log.1", "app.log.2" etc. exist, then they are renamed to "app.log.2", "app.log.3" etc. respectively. If maxBytes is zero, rollover never occurs. """ # If rotation/rollover is wanted, it doesn't make sense to use another # mode. If for example 'w' were specified, then if there were multiple # runs of the calling application, the logs from previous runs would be # lost if the 'w' is respected, because the log file would be truncated # on each run. if maxBytes > 0: mode = 'a' BaseRotatingHandler.__init__(self, filename, mode, encoding, delay) self.maxBytes = maxBytes self.backupCount = backupCount def doRollover(self): """ Do a rollover, as described in __init__(). """ if self.stream: self.stream.close() self.stream = None if self.backupCount > 0: for i in range(self.backupCount - 1, 0, -1): sfn = self.rotation_filename("%s.%d" % (self.baseFilename, i)) dfn = self.rotation_filename("%s.%d" % (self.baseFilename, i + 1)) if os.path.exists(sfn): if os.path.exists(dfn): os.remove(dfn) os.rename(sfn, dfn) dfn = self.rotation_filename(self.baseFilename + ".1") if os.path.exists(dfn): os.remove(dfn) self.rotate(self.baseFilename, dfn) if not self.delay: self.stream = self._open() def shouldRollover(self, record): """ Determine if rollover should occur. Basically, see if the supplied record would cause the file to exceed the size limit we have. """ if self.stream is None: # delay was set... self.stream = self._open() if self.maxBytes > 0: # are we rolling over? msg = "%s\n" % self.format(record) self.stream.seek(0, 2) #due to non-posix-compliant Windows feature if self.stream.tell() + len(msg) >= self.maxBytes: return 1 return 0 class TimedRotatingFileHandler(BaseRotatingHandler): """ Handler for logging to a file, rotating the log file at certain timed intervals. If backupCount is > 0, when rollover is done, no more than backupCount files are kept - the oldest ones are deleted. """ def __init__(self, filename, when='h', interval=1, backupCount=0, encoding=None, delay=False, utc=False, atTime=None): BaseRotatingHandler.__init__(self, filename, 'a', encoding, delay) self.when = when.upper() self.backupCount = backupCount self.utc = utc self.atTime = atTime # Calculate the real rollover interval, which is just the number of # seconds between rollovers. Also set the filename suffix used when # a rollover occurs. Current 'when' events supported: # S - Seconds # M - Minutes # H - Hours # D - Days # midnight - roll over at midnight # W{0-6} - roll over on a certain day; 0 - Monday # # Case of the 'when' specifier is not important; lower or upper case # will work. if self.when == 'S': self.interval = 1 # one second self.suffix = "%Y-%m-%d_%H-%M-%S" self.extMatch = r"^\d{4}-\d{2}-\d{2}_\d{2}-\d{2}-\d{2}(\.\w+)?$" elif self.when == 'M': self.interval = 60 # one minute self.suffix = "%Y-%m-%d_%H-%M" self.extMatch = r"^\d{4}-\d{2}-\d{2}_\d{2}-\d{2}(\.\w+)?$" elif self.when == 'H': self.interval = 60 * 60 # one hour self.suffix = "%Y-%m-%d_%H" self.extMatch = r"^\d{4}-\d{2}-\d{2}_\d{2}(\.\w+)?$" elif self.when == 'D' or self.when == 'MIDNIGHT': self.interval = 60 * 60 * 24 # one day self.suffix = "%Y-%m-%d" self.extMatch = r"^\d{4}-\d{2}-\d{2}(\.\w+)?$" elif self.when.startswith('W'): self.interval = 60 * 60 * 24 * 7 # one week if len(self.when) != 2: raise ValueError("You must specify a day for weekly rollover from 0 to 6 (0 is Monday): %s" % self.when) if self.when[1] < '0' or self.when[1] > '6': raise ValueError("Invalid day specified for weekly rollover: %s" % self.when) self.dayOfWeek = int(self.when[1]) self.suffix = "%Y-%m-%d" self.extMatch = r"^\d{4}-\d{2}-\d{2}(\.\w+)?$" else: raise ValueError("Invalid rollover interval specified: %s" % self.when) self.extMatch = re.compile(self.extMatch, re.ASCII) self.interval = self.interval * interval # multiply by units requested if os.path.exists(filename): t = os.stat(filename)[ST_MTIME] else: t = int(time.time()) self.rolloverAt = self.computeRollover(t) def computeRollover(self, currentTime): """ Work out the rollover time based on the specified time. """ result = currentTime + self.interval # If we are rolling over at midnight or weekly, then the interval is already known. # What we need to figure out is WHEN the next interval is. In other words, # if you are rolling over at midnight, then your base interval is 1 day, # but you want to start that one day clock at midnight, not now. So, we # have to fudge the rolloverAt value in order to trigger the first rollover # at the right time. After that, the regular interval will take care of # the rest. Note that this code doesn't care about leap seconds. :) if self.when == 'MIDNIGHT' or self.when.startswith('W'): # This could be done with less code, but I wanted it to be clear if self.utc: t = time.gmtime(currentTime) else: t = time.localtime(currentTime) currentHour = t[3] currentMinute = t[4] currentSecond = t[5] currentDay = t[6] # r is the number of seconds left between now and the next rotation if self.atTime is None: rotate_ts = _MIDNIGHT else: rotate_ts = ((self.atTime.hour * 60 + self.atTime.minute)*60 + self.atTime.second) r = rotate_ts - ((currentHour * 60 + currentMinute) * 60 + currentSecond) if r < 0: # Rotate time is before the current time (for example when # self.rotateAt is 13:45 and it now 14:15), rotation is # tomorrow. r += _MIDNIGHT currentDay = (currentDay + 1) % 7 result = currentTime + r # If we are rolling over on a certain day, add in the number of days until # the next rollover, but offset by 1 since we just calculated the time # until the next day starts. There are three cases: # Case 1) The day to rollover is today; in this case, do nothing # Case 2) The day to rollover is further in the interval (i.e., today is # day 2 (Wednesday) and rollover is on day 6 (Sunday). Days to # next rollover is simply 6 - 2 - 1, or 3. # Case 3) The day to rollover is behind us in the interval (i.e., today # is day 5 (Saturday) and rollover is on day 3 (Thursday). # Days to rollover is 6 - 5 + 3, or 4. In this case, it's the # number of days left in the current week (1) plus the number # of days in the next week until the rollover day (3). # The calculations described in 2) and 3) above need to have a day added. # This is because the above time calculation takes us to midnight on this # day, i.e. the start of the next day. if self.when.startswith('W'): day = currentDay # 0 is Monday if day != self.dayOfWeek: if day < self.dayOfWeek: daysToWait = self.dayOfWeek - day else: daysToWait = 6 - day + self.dayOfWeek + 1 newRolloverAt = result + (daysToWait * (60 * 60 * 24)) if not self.utc: dstNow = t[-1] dstAtRollover = time.localtime(newRolloverAt)[-1] if dstNow != dstAtRollover: if not dstNow: # DST kicks in before next rollover, so we need to deduct an hour addend = -3600 else: # DST bows out before next rollover, so we need to add an hour addend = 3600 newRolloverAt += addend result = newRolloverAt return result def shouldRollover(self, record): """ Determine if rollover should occur. record is not used, as we are just comparing times, but it is needed so the method signatures are the same """ t = int(time.time()) if t >= self.rolloverAt: return 1 return 0 def getFilesToDelete(self): """ Determine the files to delete when rolling over. More specific than the earlier method, which just used glob.glob(). """ dirName, baseName = os.path.split(self.baseFilename) fileNames = os.listdir(dirName) result = [] prefix = baseName + "." plen = len(prefix) for fileName in fileNames: if fileName[:plen] == prefix: suffix = fileName[plen:] if self.extMatch.match(suffix): result.append(os.path.join(dirName, fileName)) result.sort() if len(result) < self.backupCount: result = [] else: result = result[:len(result) - self.backupCount] return result def doRollover(self): """ do a rollover; in this case, a date/time stamp is appended to the filename when the rollover happens. However, you want the file to be named for the start of the interval, not the current time. If there is a backup count, then we have to get a list of matching filenames, sort them and remove the one with the oldest suffix. """ if self.stream: self.stream.close() self.stream = None # get the time that this sequence started at and make it a TimeTuple currentTime = int(time.time()) dstNow = time.localtime(currentTime)[-1] t = self.rolloverAt - self.interval if self.utc: timeTuple = time.gmtime(t) else: timeTuple = time.localtime(t) dstThen = timeTuple[-1] if dstNow != dstThen: if dstNow: addend = 3600 else: addend = -3600 timeTuple = time.localtime(t + addend) dfn = self.rotation_filename(self.baseFilename + "." + time.strftime(self.suffix, timeTuple)) if os.path.exists(dfn): os.remove(dfn) self.rotate(self.baseFilename, dfn) if self.backupCount > 0: for s in self.getFilesToDelete(): os.remove(s) if not self.delay: self.stream = self._open() newRolloverAt = self.computeRollover(currentTime) while newRolloverAt <= currentTime: newRolloverAt = newRolloverAt + self.interval #If DST changes and midnight or weekly rollover, adjust for this. if (self.when == 'MIDNIGHT' or self.when.startswith('W')) and not self.utc: dstAtRollover = time.localtime(newRolloverAt)[-1] if dstNow != dstAtRollover: if not dstNow: # DST kicks in before next rollover, so we need to deduct an hour addend = -3600 else: # DST bows out before next rollover, so we need to add an hour addend = 3600 newRolloverAt += addend self.rolloverAt = newRolloverAt class WatchedFileHandler(logging.FileHandler): """ A handler for logging to a file, which watches the file to see if it has changed while in use. This can happen because of usage of programs such as newsyslog and logrotate which perform log file rotation. This handler, intended for use under Unix, watches the file to see if it has changed since the last emit. (A file has changed if its device or inode have changed.) If it has changed, the old file stream is closed, and the file opened to get a new stream. This handler is not appropriate for use under Windows, because under Windows open files cannot be moved or renamed - logging opens the files with exclusive locks - and so there is no need for such a handler. Furthermore, ST_INO is not supported under Windows; stat always returns zero for this value. This handler is based on a suggestion and patch by Chad J. Schroeder. """ def __init__(self, filename, mode='a', encoding=None, delay=False): logging.FileHandler.__init__(self, filename, mode, encoding, delay) self.dev, self.ino = -1, -1 self._statstream() def _statstream(self): if self.stream: sres = os.fstat(self.stream.fileno()) self.dev, self.ino = sres[ST_DEV], sres[ST_INO] def emit(self, record): """ Emit a record. First check if the underlying file has changed, and if it has, close the old stream and reopen the file to get the current stream. """ # Reduce the chance of race conditions by stat'ing by path only # once and then fstat'ing our new fd if we opened a new log stream. # See issue #14632: Thanks to John Mulligan for the problem report # and patch. try: # stat the file by path, checking for existence sres = os.stat(self.baseFilename) except FileNotFoundError: sres = None # compare file system stat with that of our stream file handle if not sres or sres[ST_DEV] != self.dev or sres[ST_INO] != self.ino: if self.stream is not None: # we have an open file handle, clean it up self.stream.flush() self.stream.close() self.stream = None # See Issue #21742: _open () might fail. # open a new file handle and get new stat info from that fd self.stream = self._open() self._statstream() logging.FileHandler.emit(self, record) class SocketHandler(logging.Handler): """ A handler class which writes logging records, in pickle format, to a streaming socket. The socket is kept open across logging calls. If the peer resets it, an attempt is made to reconnect on the next call. The pickle which is sent is that of the LogRecord's attribute dictionary (__dict__), so that the receiver does not need to have the logging module installed in order to process the logging event. To unpickle the record at the receiving end into a LogRecord, use the makeLogRecord function. """ def __init__(self, host, port): """ Initializes the handler with a specific host address and port. When the attribute *closeOnError* is set to True - if a socket error occurs, the socket is silently closed and then reopened on the next logging call. """ logging.Handler.__init__(self) self.host = host self.port = port if port is None: self.address = host else: self.address = (host, port) self.sock = None self.closeOnError = False self.retryTime = None # # Exponential backoff parameters. # self.retryStart = 1.0 self.retryMax = 30.0 self.retryFactor = 2.0 def makeSocket(self, timeout=1): """ A factory method which allows subclasses to define the precise type of socket they want. """ if self.port is not None: result = socket.create_connection(self.address, timeout=timeout) else: result = socket.socket(socket.AF_UNIX, socket.SOCK_STREAM) result.settimeout(timeout) try: result.connect(self.address) except OSError: result.close() # Issue 19182 raise return result def createSocket(self): """ Try to create a socket, using an exponential backoff with a max retry time. Thanks to Robert Olson for the original patch (SF #815911) which has been slightly refactored. """ now = time.time() # Either retryTime is None, in which case this # is the first time back after a disconnect, or # we've waited long enough. if self.retryTime is None: attempt = True else: attempt = (now >= self.retryTime) if attempt: try: self.sock = self.makeSocket() self.retryTime = None # next time, no delay before trying except OSError: #Creation failed, so set the retry time and return. if self.retryTime is None: self.retryPeriod = self.retryStart else: self.retryPeriod = self.retryPeriod * self.retryFactor if self.retryPeriod > self.retryMax: self.retryPeriod = self.retryMax self.retryTime = now + self.retryPeriod def send(self, s): """ Send a pickled string to the socket. This function allows for partial sends which can happen when the network is busy. """ if self.sock is None: self.createSocket() #self.sock can be None either because we haven't reached the retry #time yet, or because we have reached the retry time and retried, #but are still unable to connect. if self.sock: try: self.sock.sendall(s) except OSError: #pragma: no cover self.sock.close() self.sock = None # so we can call createSocket next time def makePickle(self, record): """ Pickles the record in binary format with a length prefix, and returns it ready for transmission across the socket. """ ei = record.exc_info if ei: # just to get traceback text into record.exc_text ... dummy = self.format(record) # See issue #14436: If msg or args are objects, they may not be # available on the receiving end. So we convert the msg % args # to a string, save it as msg and zap the args. d = dict(record.__dict__) d['msg'] = record.getMessage() d['args'] = None d['exc_info'] = None # Issue #25685: delete 'message' if present: redundant with 'msg' d.pop('message', None) s = pickle.dumps(d, 1) slen = struct.pack(">L", len(s)) return slen + s def handleError(self, record): """ Handle an error during logging. An error has occurred during logging. Most likely cause - connection lost. Close the socket so that we can retry on the next event. """ if self.closeOnError and self.sock: self.sock.close() self.sock = None #try to reconnect next time else: logging.Handler.handleError(self, record) def emit(self, record): """ Emit a record. Pickles the record and writes it to the socket in binary format. If there is an error with the socket, silently drop the packet. If there was a problem with the socket, re-establishes the socket. """ try: s = self.makePickle(record) self.send(s) except Exception: self.handleError(record) def close(self): """ Closes the socket. """ self.acquire() try: sock = self.sock if sock: self.sock = None sock.close() logging.Handler.close(self) finally: self.release() class DatagramHandler(SocketHandler): """ A handler class which writes logging records, in pickle format, to a datagram socket. The pickle which is sent is that of the LogRecord's attribute dictionary (__dict__), so that the receiver does not need to have the logging module installed in order to process the logging event. To unpickle the record at the receiving end into a LogRecord, use the makeLogRecord function. """ def __init__(self, host, port): """ Initializes the handler with a specific host address and port. """ SocketHandler.__init__(self, host, port) self.closeOnError = False def makeSocket(self): """ The factory method of SocketHandler is here overridden to create a UDP socket (SOCK_DGRAM). """ if self.port is None: family = socket.AF_UNIX else: family = socket.AF_INET s = socket.socket(family, socket.SOCK_DGRAM) return s def send(self, s): """ Send a pickled string to a socket. This function no longer allows for partial sends which can happen when the network is busy - UDP does not guarantee delivery and can deliver packets out of sequence. """ if self.sock is None: self.createSocket() self.sock.sendto(s, self.address) class SysLogHandler(logging.Handler): """ A handler class which sends formatted logging records to a syslog server. Based on Sam Rushing's syslog module: http://www.nightmare.com/squirl/python-ext/misc/syslog.py Contributed by Nicolas Untz (after which minor refactoring changes have been made). """ # from <linux/sys/syslog.h>: # ====================================================================== # priorities/facilities are encoded into a single 32-bit quantity, where # the bottom 3 bits are the priority (0-7) and the top 28 bits are the # facility (0-big number). Both the priorities and the facilities map # roughly one-to-one to strings in the syslogd(8) source code. This # mapping is included in this file. # # priorities (these are ordered) LOG_EMERG = 0 # system is unusable LOG_ALERT = 1 # action must be taken immediately LOG_CRIT = 2 # critical conditions LOG_ERR = 3 # error conditions LOG_WARNING = 4 # warning conditions LOG_NOTICE = 5 # normal but significant condition LOG_INFO = 6 # informational LOG_DEBUG = 7 # debug-level messages # facility codes LOG_KERN = 0 # kernel messages LOG_USER = 1 # random user-level messages LOG_MAIL = 2 # mail system LOG_DAEMON = 3 # system daemons LOG_AUTH = 4 # security/authorization messages LOG_SYSLOG = 5 # messages generated internally by syslogd LOG_LPR = 6 # line printer subsystem LOG_NEWS = 7 # network news subsystem LOG_UUCP = 8 # UUCP subsystem LOG_CRON = 9 # clock daemon LOG_AUTHPRIV = 10 # security/authorization messages (private) LOG_FTP = 11 # FTP daemon # other codes through 15 reserved for system use LOG_LOCAL0 = 16 # reserved for local use LOG_LOCAL1 = 17 # reserved for local use LOG_LOCAL2 = 18 # reserved for local use LOG_LOCAL3 = 19 # reserved for local use LOG_LOCAL4 = 20 # reserved for local use LOG_LOCAL5 = 21 # reserved for local use LOG_LOCAL6 = 22 # reserved for local use LOG_LOCAL7 = 23 # reserved for local use priority_names = { "alert": LOG_ALERT, "crit": LOG_CRIT, "critical": LOG_CRIT, "debug": LOG_DEBUG, "emerg": LOG_EMERG, "err": LOG_ERR, "error": LOG_ERR, # DEPRECATED "info": LOG_INFO, "notice": LOG_NOTICE, "panic": LOG_EMERG, # DEPRECATED "warn": LOG_WARNING, # DEPRECATED "warning": LOG_WARNING, } facility_names = { "auth": LOG_AUTH, "authpriv": LOG_AUTHPRIV, "cron": LOG_CRON, "daemon": LOG_DAEMON, "ftp": LOG_FTP, "kern": LOG_KERN, "lpr": LOG_LPR, "mail": LOG_MAIL, "news": LOG_NEWS, "security": LOG_AUTH, # DEPRECATED "syslog": LOG_SYSLOG, "user": LOG_USER, "uucp": LOG_UUCP, "local0": LOG_LOCAL0, "local1": LOG_LOCAL1, "local2": LOG_LOCAL2, "local3": LOG_LOCAL3, "local4": LOG_LOCAL4, "local5": LOG_LOCAL5, "local6": LOG_LOCAL6, "local7": LOG_LOCAL7, } #The map below appears to be trivially lowercasing the key. However, #there's more to it than meets the eye - in some locales, lowercasing #gives unexpected results. See SF #1524081: in the Turkish locale, #"INFO".lower() != "info" priority_map = { "DEBUG" : "debug", "INFO" : "info", "WARNING" : "warning", "ERROR" : "error", "CRITICAL" : "critical" } def __init__(self, address=('localhost', SYSLOG_UDP_PORT), facility=LOG_USER, socktype=None): """ Initialize a handler. If address is specified as a string, a UNIX socket is used. To log to a local syslogd, "SysLogHandler(address="/dev/log")" can be used. If facility is not specified, LOG_USER is used. If socktype is specified as socket.SOCK_DGRAM or socket.SOCK_STREAM, that specific socket type will be used. For Unix sockets, you can also specify a socktype of None, in which case socket.SOCK_DGRAM will be used, falling back to socket.SOCK_STREAM. """ logging.Handler.__init__(self) self.address = address self.facility = facility self.socktype = socktype if isinstance(address, str): self.unixsocket = True self._connect_unixsocket(address) else: self.unixsocket = False if socktype is None: socktype = socket.SOCK_DGRAM self.socket = socket.socket(socket.AF_INET, socktype) if socktype == socket.SOCK_STREAM: self.socket.connect(address) self.socktype = socktype self.formatter = None def _connect_unixsocket(self, address): use_socktype = self.socktype if use_socktype is None: use_socktype = socket.SOCK_DGRAM self.socket = socket.socket(socket.AF_UNIX, use_socktype) try: self.socket.connect(address) # it worked, so set self.socktype to the used type self.socktype = use_socktype except OSError: self.socket.close() if self.socktype is not None: # user didn't specify falling back, so fail raise use_socktype = socket.SOCK_STREAM self.socket = socket.socket(socket.AF_UNIX, use_socktype) try: self.socket.connect(address) # it worked, so set self.socktype to the used type self.socktype = use_socktype except OSError: self.socket.close() raise def encodePriority(self, facility, priority): """ Encode the facility and priority. You can pass in strings or integers - if strings are passed, the facility_names and priority_names mapping dictionaries are used to convert them to integers. """ if isinstance(facility, str): facility = self.facility_names[facility] if isinstance(priority, str): priority = self.priority_names[priority] return (facility << 3) | priority def close (self): """ Closes the socket. """ self.acquire() try: self.socket.close() logging.Handler.close(self) finally: self.release() def mapPriority(self, levelName): """ Map a logging level name to a key in the priority_names map. This is useful in two scenarios: when custom levels are being used, and in the case where you can't do a straightforward mapping by lowercasing the logging level name because of locale- specific issues (see SF #1524081). """ return self.priority_map.get(levelName, "warning") ident = '' # prepended to all messages append_nul = True # some old syslog daemons expect a NUL terminator def emit(self, record): """ Emit a record. The record is formatted, and then sent to the syslog server. If exception information is present, it is NOT sent to the server. """ try: msg = self.format(record) if self.ident: msg = self.ident + msg if self.append_nul: msg += '\000' # We need to convert record level to lowercase, maybe this will # change in the future. prio = '<%d>' % self.encodePriority(self.facility, self.mapPriority(record.levelname)) prio = prio.encode('utf-8') # Message is a string. Convert to bytes as required by RFC 5424 msg = msg.encode('utf-8') msg = prio + msg if self.unixsocket: try: self.socket.send(msg) except OSError: self.socket.close() self._connect_unixsocket(self.address) self.socket.send(msg) elif self.socktype == socket.SOCK_DGRAM: self.socket.sendto(msg, self.address) else: self.socket.sendall(msg) except Exception: self.handleError(record) class SMTPHandler(logging.Handler): """ A handler class which sends an SMTP email for each logging event. """ def __init__(self, mailhost, fromaddr, toaddrs, subject, credentials=None, secure=None, timeout=5.0): """ Initialize the handler. Initialize the instance with the from and to addresses and subject line of the email. To specify a non-standard SMTP port, use the (host, port) tuple format for the mailhost argument. To specify authentication credentials, supply a (username, password) tuple for the credentials argument. To specify the use of a secure protocol (TLS), pass in a tuple for the secure argument. This will only be used when authentication credentials are supplied. The tuple will be either an empty tuple, or a single-value tuple with the name of a keyfile, or a 2-value tuple with the names of the keyfile and certificate file. (This tuple is passed to the `starttls` method). A timeout in seconds can be specified for the SMTP connection (the default is one second). """ logging.Handler.__init__(self) if isinstance(mailhost, (list, tuple)): self.mailhost, self.mailport = mailhost else: self.mailhost, self.mailport = mailhost, None if isinstance(credentials, (list, tuple)): self.username, self.password = credentials else: self.username = None self.fromaddr = fromaddr if isinstance(toaddrs, str): toaddrs = [toaddrs] self.toaddrs = toaddrs self.subject = subject self.secure = secure self.timeout = timeout def getSubject(self, record): """ Determine the subject for the email. If you want to specify a subject line which is record-dependent, override this method. """ return self.subject def emit(self, record): """ Emit a record. Format the record and send it to the specified addressees. """ try: import smtplib from email.message import EmailMessage import email.utils port = self.mailport if not port: port = smtplib.SMTP_PORT smtp = smtplib.SMTP(self.mailhost, port, timeout=self.timeout) msg = EmailMessage() msg['From'] = self.fromaddr msg['To'] = ','.join(self.toaddrs) msg['Subject'] = self.getSubject(record) msg['Date'] = email.utils.localtime() msg.set_content(self.format(record)) if self.username: if self.secure is not None: smtp.ehlo() smtp.starttls(*self.secure) smtp.ehlo() smtp.login(self.username, self.password) smtp.send_message(msg) smtp.quit() except Exception: self.handleError(record) class NTEventLogHandler(logging.Handler): """ A handler class which sends events to the NT Event Log. Adds a registry entry for the specified application name. If no dllname is provided, win32service.pyd (which contains some basic message placeholders) is used. Note that use of these placeholders will make your event logs big, as the entire message source is held in the log. If you want slimmer logs, you have to pass in the name of your own DLL which contains the message definitions you want to use in the event log. """ def __init__(self, appname, dllname=None, logtype="Application"): logging.Handler.__init__(self) try: import win32evtlogutil, win32evtlog self.appname = appname self._welu = win32evtlogutil if not dllname: dllname = os.path.split(self._welu.__file__) dllname = os.path.split(dllname[0]) dllname = os.path.join(dllname[0], r'win32service.pyd') self.dllname = dllname self.logtype = logtype self._welu.AddSourceToRegistry(appname, dllname, logtype) self.deftype = win32evtlog.EVENTLOG_ERROR_TYPE self.typemap = { logging.DEBUG : win32evtlog.EVENTLOG_INFORMATION_TYPE, logging.INFO : win32evtlog.EVENTLOG_INFORMATION_TYPE, logging.WARNING : win32evtlog.EVENTLOG_WARNING_TYPE, logging.ERROR : win32evtlog.EVENTLOG_ERROR_TYPE, logging.CRITICAL: win32evtlog.EVENTLOG_ERROR_TYPE, } except ImportError: print("The Python Win32 extensions for NT (service, event "\ "logging) appear not to be available.") self._welu = None def getMessageID(self, record): """ Return the message ID for the event record. If you are using your own messages, you could do this by having the msg passed to the logger being an ID rather than a formatting string. Then, in here, you could use a dictionary lookup to get the message ID. This version returns 1, which is the base message ID in win32service.pyd. """ return 1 def getEventCategory(self, record): """ Return the event category for the record. Override this if you want to specify your own categories. This version returns 0. """ return 0 def getEventType(self, record): """ Return the event type for the record. Override this if you want to specify your own types. This version does a mapping using the handler's typemap attribute, which is set up in __init__() to a dictionary which contains mappings for DEBUG, INFO, WARNING, ERROR and CRITICAL. If you are using your own levels you will either need to override this method or place a suitable dictionary in the handler's typemap attribute. """ return self.typemap.get(record.levelno, self.deftype) def emit(self, record): """ Emit a record. Determine the message ID, event category and event type. Then log the message in the NT event log. """ if self._welu: try: id = self.getMessageID(record) cat = self.getEventCategory(record) type = self.getEventType(record) msg = self.format(record) self._welu.ReportEvent(self.appname, id, cat, type, [msg]) except Exception: self.handleError(record) def close(self): """ Clean up this handler. You can remove the application name from the registry as a source of event log entries. However, if you do this, you will not be able to see the events as you intended in the Event Log Viewer - it needs to be able to access the registry to get the DLL name. """ #self._welu.RemoveSourceFromRegistry(self.appname, self.logtype) logging.Handler.close(self) class HTTPHandler(logging.Handler): """ A class which sends records to a Web server, using either GET or POST semantics. """ def __init__(self, host, url, method="GET", secure=False, credentials=None, context=None): """ Initialize the instance with the host, the request URL, and the method ("GET" or "POST") """ logging.Handler.__init__(self) method = method.upper() if method not in ["GET", "POST"]: raise ValueError("method must be GET or POST") if not secure and context is not None: raise ValueError("context parameter only makes sense " "with secure=True") self.host = host self.url = url self.method = method self.secure = secure self.credentials = credentials self.context = context def mapLogRecord(self, record): """ Default implementation of mapping the log record into a dict that is sent as the CGI data. Overwrite in your class. Contributed by Franz Glasner. """ return record.__dict__ def emit(self, record): """ Emit a record. Send the record to the Web server as a percent-encoded dictionary """ try: import http.client, urllib.parse host = self.host if self.secure: h = http.client.HTTPSConnection(host, context=self.context) else: h = http.client.HTTPConnection(host) url = self.url data = urllib.parse.urlencode(self.mapLogRecord(record)) if self.method == "GET": if (url.find('?') >= 0): sep = '&' else: sep = '?' url = url + "%c%s" % (sep, data) h.putrequest(self.method, url) # support multiple hosts on one IP address... # need to strip optional :port from host, if present i = host.find(":") if i >= 0: host = host[:i] h.putheader("Host", host) if self.method == "POST": h.putheader("Content-type", "application/x-www-form-urlencoded") h.putheader("Content-length", str(len(data))) if self.credentials: import base64 s = ('%s:%s' % self.credentials).encode('utf-8') s = 'Basic ' + base64.b64encode(s).strip().decode('ascii') h.putheader('Authorization', s) h.endheaders() if self.method == "POST": h.send(data.encode('utf-8')) h.getresponse() #can't do anything with the result except Exception: self.handleError(record) class BufferingHandler(logging.Handler): """ A handler class which buffers logging records in memory. Whenever each record is added to the buffer, a check is made to see if the buffer should be flushed. If it should, then flush() is expected to do what's needed. """ def __init__(self, capacity): """ Initialize the handler with the buffer size. """ logging.Handler.__init__(self) self.capacity = capacity self.buffer = [] def shouldFlush(self, record): """ Should the handler flush its buffer? Returns true if the buffer is up to capacity. This method can be overridden to implement custom flushing strategies. """ return (len(self.buffer) >= self.capacity) def emit(self, record): """ Emit a record. Append the record. If shouldFlush() tells us to, call flush() to process the buffer. """ self.buffer.append(record) if self.shouldFlush(record): self.flush() def flush(self): """ Override to implement custom flushing behaviour. This version just zaps the buffer to empty. """ self.acquire() try: self.buffer = [] finally: self.release() def close(self): """ Close the handler. This version just flushes and chains to the parent class' close(). """ try: self.flush() finally: logging.Handler.close(self) class MemoryHandler(BufferingHandler): """ A handler class which buffers logging records in memory, periodically flushing them to a target handler. Flushing occurs whenever the buffer is full, or when an event of a certain severity or greater is seen. """ def __init__(self, capacity, flushLevel=logging.ERROR, target=None): """ Initialize the handler with the buffer size, the level at which flushing should occur and an optional target. Note that without a target being set either here or via setTarget(), a MemoryHandler is no use to anyone! """ BufferingHandler.__init__(self, capacity) self.flushLevel = flushLevel self.target = target def shouldFlush(self, record): """ Check for buffer full or a record at the flushLevel or higher. """ return (len(self.buffer) >= self.capacity) or \ (record.levelno >= self.flushLevel) def setTarget(self, target): """ Set the target handler for this handler. """ self.target = target def flush(self): """ For a MemoryHandler, flushing means just sending the buffered records to the target, if there is one. Override if you want different behaviour. The record buffer is also cleared by this operation. """ self.acquire() try: if self.target: for record in self.buffer: self.target.handle(record) self.buffer = [] finally: self.release() def close(self): """ Flush, set the target to None and lose the buffer. """ try: self.flush() finally: self.acquire() try: self.target = None BufferingHandler.close(self) finally: self.release() class QueueHandler(logging.Handler): """ This handler sends events to a queue. Typically, it would be used together with a multiprocessing Queue to centralise logging to file in one process (in a multi-process application), so as to avoid file write contention between processes. This code is new in Python 3.2, but this class can be copy pasted into user code for use with earlier Python versions. """ def __init__(self, queue): """ Initialise an instance, using the passed queue. """ logging.Handler.__init__(self) self.queue = queue def enqueue(self, record): """ Enqueue a record. The base implementation uses put_nowait. You may want to override this method if you want to use blocking, timeouts or custom queue implementations. """ self.queue.put_nowait(record) def prepare(self, record): """ Prepares a record for queuing. The object returned by this method is enqueued. The base implementation formats the record to merge the message and arguments, and removes unpickleable items from the record in-place. You might want to override this method if you want to convert the record to a dict or JSON string, or send a modified copy of the record while leaving the original intact. """ # The format operation gets traceback text into record.exc_text # (if there's exception data), and also puts the message into # record.message. We can then use this to replace the original # msg + args, as these might be unpickleable. We also zap the # exc_info attribute, as it's no longer needed and, if not None, # will typically not be pickleable. self.format(record) record.msg = record.message record.args = None record.exc_info = None return record def emit(self, record): """ Emit a record. Writes the LogRecord to the queue, preparing it for pickling first. """ try: self.enqueue(self.prepare(record)) except Exception: self.handleError(record) if threading: class QueueListener(object): """ This class implements an internal threaded listener which watches for LogRecords being added to a queue, removes them and passes them to a list of handlers for processing. """ _sentinel = None def __init__(self, queue, *handlers, respect_handler_level=False): """ Initialise an instance with the specified queue and handlers. """ self.queue = queue self.handlers = handlers self._stop = threading.Event() self._thread = None self.respect_handler_level = respect_handler_level def dequeue(self, block): """ Dequeue a record and return it, optionally blocking. The base implementation uses get. You may want to override this method if you want to use timeouts or work with custom queue implementations. """ return self.queue.get(block) def start(self): """ Start the listener. This starts up a background thread to monitor the queue for LogRecords to process. """ self._thread = t = threading.Thread(target=self._monitor) t.setDaemon(True) t.start() def prepare(self , record): """ Prepare a record for handling. This method just returns the passed-in record. You may want to override this method if you need to do any custom marshalling or manipulation of the record before passing it to the handlers. """ return record def handle(self, record): """ Handle a record. This just loops through the handlers offering them the record to handle. """ record = self.prepare(record) for handler in self.handlers: if not self.respect_handler_level: process = True else: process = record.levelno >= handler.level if process: handler.handle(record) def _monitor(self): """ Monitor the queue for records, and ask the handler to deal with them. This method runs on a separate, internal thread. The thread will terminate if it sees a sentinel object in the queue. """ q = self.queue has_task_done = hasattr(q, 'task_done') while not self._stop.isSet(): try: record = self.dequeue(True) if record is self._sentinel: break self.handle(record) if has_task_done: q.task_done() except queue.Empty: pass # There might still be records in the queue. while True: try: record = self.dequeue(False) if record is self._sentinel: break self.handle(record) if has_task_done: q.task_done() except queue.Empty: break def enqueue_sentinel(self): """ This is used to enqueue the sentinel record. The base implementation uses put_nowait. You may want to override this method if you want to use timeouts or work with custom queue implementations. """ self.queue.put_nowait(self._sentinel) def stop(self): """ Stop the listener. This asks the thread to terminate, and then waits for it to do so. Note that if you don't call this before your application exits, there may be some records still left on the queue, which won't be processed. """ self._stop.set() self.enqueue_sentinel() self._thread.join() self._thread = None
test_tune_restore.py
# coding: utf-8 import signal from collections import Counter import os import shutil import tempfile import time import unittest import skopt import numpy as np from hyperopt import hp from nevergrad.optimization import optimizerlib from zoopt import ValueType from hebo.design_space.design_space import DesignSpace as HEBODesignSpace import ray from ray import tune from ray.test_utils import recursive_fnmatch from ray.rllib import _register_all from ray.tune.callback import Callback from ray.tune.suggest.basic_variant import BasicVariantGenerator from ray.tune.suggest import ConcurrencyLimiter, Searcher from ray.tune.suggest.hyperopt import HyperOptSearch from ray.tune.suggest.dragonfly import DragonflySearch from ray.tune.suggest.bayesopt import BayesOptSearch from ray.tune.suggest.flaml import CFO from ray.tune.suggest.skopt import SkOptSearch from ray.tune.suggest.nevergrad import NevergradSearch from ray.tune.suggest.optuna import OptunaSearch, param as ot_param from ray.tune.suggest.sigopt import SigOptSearch from ray.tune.suggest.zoopt import ZOOptSearch from ray.tune.suggest.hebo import HEBOSearch from ray.tune.utils import validate_save_restore from ray.tune.utils._mock_trainable import MyTrainableClass class TuneRestoreTest(unittest.TestCase): def setUp(self): ray.init(num_cpus=1, num_gpus=0, local_mode=True) tmpdir = tempfile.mkdtemp() test_name = "TuneRestoreTest" tune.run( "PG", name=test_name, stop={"training_iteration": 1}, checkpoint_freq=1, local_dir=tmpdir, config={ "env": "CartPole-v0", "framework": "tf", }, ) logdir = os.path.expanduser(os.path.join(tmpdir, test_name)) self.logdir = logdir self.checkpoint_path = recursive_fnmatch(logdir, "checkpoint-1")[0] def tearDown(self): shutil.rmtree(self.logdir) ray.shutdown() _register_all() def testTuneRestore(self): self.assertTrue(os.path.isfile(self.checkpoint_path)) tune.run( "PG", name="TuneRestoreTest", stop={"training_iteration": 2}, # train one more iteration. checkpoint_freq=1, restore=self.checkpoint_path, # Restore the checkpoint config={ "env": "CartPole-v0", "framework": "tf", }, ) def testPostRestoreCheckpointExistence(self): """Tests that checkpoint restored from is not deleted post-restore.""" self.assertTrue(os.path.isfile(self.checkpoint_path)) tune.run( "PG", name="TuneRestoreTest", stop={"training_iteration": 2}, checkpoint_freq=1, keep_checkpoints_num=1, restore=self.checkpoint_path, config={ "env": "CartPole-v0", "framework": "tf", }, ) self.assertTrue(os.path.isfile(self.checkpoint_path)) class TuneInterruptionTest(unittest.TestCase): def setUp(self) -> None: # Wait up to five seconds for placement groups when starting a trial os.environ["TUNE_PLACEMENT_GROUP_WAIT_S"] = "5" # Block for results even when placement groups are pending os.environ["TUNE_TRIAL_STARTUP_GRACE_PERIOD"] = "0" def testExperimentInterrupted(self): import multiprocessing trainer_semaphore = multiprocessing.Semaphore() driver_semaphore = multiprocessing.Semaphore() class SteppingCallback(Callback): def on_step_end(self, iteration, trials, **info): driver_semaphore.release() # Driver should continue trainer_semaphore.acquire() # Wait until released def _run(local_dir): def _train(config): for i in range(7): tune.report(val=i) tune.run( _train, local_dir=local_dir, name="interrupt", callbacks=[SteppingCallback()]) local_dir = tempfile.mkdtemp() process = multiprocessing.Process(target=_run, args=(local_dir, )) process.daemon = False process.start() exp_dir = os.path.join(local_dir, "interrupt") # Skip first five steps for i in range(5): driver_semaphore.acquire() # Wait for callback trainer_semaphore.release() # Continue training driver_semaphore.acquire() experiment_state_file = None for file in os.listdir(exp_dir): if file.startswith("experiment_state"): experiment_state_file = os.path.join(exp_dir, file) break self.assertTrue(experiment_state_file) last_mtime = os.path.getmtime(experiment_state_file) # Now send kill signal os.kill(process.pid, signal.SIGINT) # Release trainer. It should handle the signal and try to # checkpoint the experiment trainer_semaphore.release() time.sleep(2) # Wait for checkpoint new_mtime = os.path.getmtime(experiment_state_file) self.assertNotEqual(last_mtime, new_mtime) shutil.rmtree(local_dir) class TuneFailResumeGridTest(unittest.TestCase): class FailureInjectorCallback(Callback): """Adds random failure injection to the TrialExecutor.""" def __init__(self, steps=20): self._step = 0 self.steps = steps def on_trial_start(self, trials, **info): self._step += 1 if self._step >= self.steps: print(f"Failing after step {self._step} with " f"{len(trials)} trials") raise RuntimeError class CheckStateCallback(Callback): """Checks state for the experiment initialization.""" def __init__(self, expected_trials=20): self.expected_trials = expected_trials self._checked = False def on_step_begin(self, iteration, trials, **kwargs): if not self._checked: assert len(trials) == self.expected_trials self._checked = True def setUp(self): self.logdir = tempfile.mkdtemp() os.environ["TUNE_GLOBAL_CHECKPOINT_S"] = "0" # Wait up to 1.5 seconds for placement groups when starting a trial os.environ["TUNE_PLACEMENT_GROUP_WAIT_S"] = "1.5" # Block for results even when placement groups are pending os.environ["TUNE_TRIAL_STARTUP_GRACE_PERIOD"] = "0" # Change back to local_mode=True after this is resolved: # https://github.com/ray-project/ray/issues/13932 ray.init(local_mode=False, num_cpus=2) from ray.tune import register_trainable register_trainable("trainable", MyTrainableClass) def tearDown(self): os.environ.pop("TUNE_GLOBAL_CHECKPOINT_S") shutil.rmtree(self.logdir) ray.shutdown() def testFailResumeGridSearch(self): os.environ["TUNE_MAX_PENDING_TRIALS_PG"] = "1" config = dict( num_samples=3, fail_fast=True, config={ "test": tune.grid_search([1, 2, 3]), "test2": tune.grid_search([1, 2, 3]), }, stop={"training_iteration": 2}, local_dir=self.logdir, verbose=1) with self.assertRaises(RuntimeError): tune.run( "trainable", callbacks=[self.FailureInjectorCallback()], **config) analysis = tune.run( "trainable", resume=True, callbacks=[self.CheckStateCallback()], **config) assert len(analysis.trials) == 27 test_counter = Counter([t.config["test"] for t in analysis.trials]) assert all(v == 9 for v in test_counter.values()) test2_counter = Counter([t.config["test2"] for t in analysis.trials]) assert all(v == 9 for v in test2_counter.values()) def testFailResumeWithPreset(self): os.environ["TUNE_MAX_PENDING_TRIALS_PG"] = "1" search_alg = BasicVariantGenerator(points_to_evaluate=[{ "test": -1, "test2": -1 }, { "test": -1 }, { "test2": -1 }]) config = dict( num_samples=3 + 3, # 3 preset, 3 samples fail_fast=True, config={ "test": tune.grid_search([1, 2, 3]), "test2": tune.grid_search([1, 2, 3]), }, stop={"training_iteration": 2}, local_dir=self.logdir, verbose=1) with self.assertRaises(RuntimeError): tune.run( "trainable", callbacks=[self.FailureInjectorCallback(5)], search_alg=search_alg, **config) analysis = tune.run( "trainable", resume=True, callbacks=[self.CheckStateCallback(expected_trials=5)], search_alg=search_alg, **config) assert len(analysis.trials) == 34 test_counter = Counter([t.config["test"] for t in analysis.trials]) assert test_counter.pop(-1) == 4 assert all(v == 10 for v in test_counter.values()) test2_counter = Counter([t.config["test2"] for t in analysis.trials]) assert test2_counter.pop(-1) == 4 assert all(v == 10 for v in test2_counter.values()) def testFailResumeAfterPreset(self): os.environ["TUNE_MAX_PENDING_TRIALS_PG"] = "1" search_alg = BasicVariantGenerator(points_to_evaluate=[{ "test": -1, "test2": -1 }, { "test": -1 }, { "test2": -1 }]) config = dict( num_samples=3 + 3, # 3 preset, 3 samples fail_fast=True, config={ "test": tune.grid_search([1, 2, 3]), "test2": tune.grid_search([1, 2, 3]), }, stop={"training_iteration": 2}, local_dir=self.logdir, verbose=1) with self.assertRaises(RuntimeError): tune.run( "trainable", callbacks=[self.FailureInjectorCallback(15)], search_alg=search_alg, **config) analysis = tune.run( "trainable", resume=True, callbacks=[self.CheckStateCallback(expected_trials=15)], search_alg=search_alg, **config) assert len(analysis.trials) == 34 test_counter = Counter([t.config["test"] for t in analysis.trials]) assert test_counter.pop(-1) == 4 assert all(v == 10 for v in test_counter.values()) test2_counter = Counter([t.config["test2"] for t in analysis.trials]) assert test2_counter.pop(-1) == 4 assert all(v == 10 for v in test2_counter.values()) def testMultiExperimentFail(self): os.environ["TUNE_MAX_PENDING_TRIALS_PG"] = "1" experiments = [] for i in range(3): experiments.append( tune.Experiment( run=MyTrainableClass, name="trainable", num_samples=2, config={ "test": tune.grid_search([1, 2, 3]), }, stop={"training_iteration": 1}, local_dir=self.logdir)) with self.assertRaises(RuntimeError): tune.run( experiments, callbacks=[self.FailureInjectorCallback(10)], fail_fast=True) analysis = tune.run( experiments, resume=True, callbacks=[self.CheckStateCallback(expected_trials=10)], fail_fast=True) assert len(analysis.trials) == 18 def testWarningLargeGrid(self): config = dict( num_samples=3, fail_fast=True, config={ "test": tune.grid_search(list(range(20))), "test2": tune.grid_search(list(range(20))), "test3": tune.grid_search(list(range(20))), "test4": tune.grid_search(list(range(20))), "test5": tune.grid_search(list(range(20))), }, stop={"training_iteration": 2}, local_dir=self.logdir, verbose=1) with self.assertWarnsRegex(UserWarning, "exceeds the serialization threshold"): with self.assertRaises(RuntimeError): tune.run( "trainable", callbacks=[self.FailureInjectorCallback(10)], **config) class TuneExampleTest(unittest.TestCase): def setUp(self): ray.init(num_cpus=2) def tearDown(self): ray.shutdown() _register_all() def testPBTKeras(self): from ray.tune.examples.pbt_tune_cifar10_with_keras import Cifar10Model from tensorflow.python.keras.datasets import cifar10 cifar10.load_data() validate_save_restore(Cifar10Model) validate_save_restore(Cifar10Model, use_object_store=True) def testPyTorchMNIST(self): from ray.tune.examples.mnist_pytorch_trainable import TrainMNIST from torchvision import datasets datasets.MNIST("~/data", train=True, download=True) validate_save_restore(TrainMNIST) validate_save_restore(TrainMNIST, use_object_store=True) def testHyperbandExample(self): from ray.tune.examples.hyperband_example import MyTrainableClass validate_save_restore(MyTrainableClass) validate_save_restore(MyTrainableClass, use_object_store=True) def testAsyncHyperbandExample(self): from ray.tune.utils.mock import MyTrainableClass validate_save_restore(MyTrainableClass) validate_save_restore(MyTrainableClass, use_object_store=True) class AutoInitTest(unittest.TestCase): def testTuneRestore(self): self.assertFalse(ray.is_initialized()) tune.run("__fake", name="TestAutoInit", stop={"training_iteration": 1}) self.assertTrue(ray.is_initialized()) def tearDown(self): ray.shutdown() _register_all() class AbstractWarmStartTest: def setUp(self): ray.init(num_cpus=1, local_mode=True) self.tmpdir = tempfile.mkdtemp() self.experiment_name = "results" def tearDown(self): shutil.rmtree(self.tmpdir) ray.shutdown() _register_all() def set_basic_conf(self): raise NotImplementedError() def run_part_from_scratch(self): np.random.seed(162) search_alg, cost = self.set_basic_conf() search_alg = ConcurrencyLimiter(search_alg, 1) results_exp_1 = tune.run( cost, num_samples=5, search_alg=search_alg, verbose=0, name=self.experiment_name, local_dir=self.tmpdir) checkpoint_path = os.path.join(self.tmpdir, "warmStartTest.pkl") search_alg.save(checkpoint_path) return results_exp_1, np.random.get_state(), checkpoint_path def run_from_experiment_restore(self, random_state): search_alg, cost = self.set_basic_conf() search_alg = ConcurrencyLimiter(search_alg, 1) search_alg.restore_from_dir( os.path.join(self.tmpdir, self.experiment_name)) results = tune.run( cost, num_samples=5, search_alg=search_alg, verbose=0, name=self.experiment_name, local_dir=self.tmpdir) return results def run_explicit_restore(self, random_state, checkpoint_path): np.random.set_state(random_state) search_alg2, cost = self.set_basic_conf() search_alg2 = ConcurrencyLimiter(search_alg2, 1) search_alg2.restore(checkpoint_path) return tune.run(cost, num_samples=5, search_alg=search_alg2, verbose=0) def run_full(self): np.random.seed(162) search_alg3, cost = self.set_basic_conf() search_alg3 = ConcurrencyLimiter(search_alg3, 1) return tune.run( cost, num_samples=10, search_alg=search_alg3, verbose=0) def testWarmStart(self): results_exp_1, r_state, checkpoint_path = self.run_part_from_scratch() results_exp_2 = self.run_explicit_restore(r_state, checkpoint_path) results_exp_3 = self.run_full() trials_1_config = [trial.config for trial in results_exp_1.trials] trials_2_config = [trial.config for trial in results_exp_2.trials] trials_3_config = [trial.config for trial in results_exp_3.trials] self.assertEqual(trials_1_config + trials_2_config, trials_3_config) def testRestore(self): results_exp_1, r_state, checkpoint_path = self.run_part_from_scratch() results_exp_2 = self.run_from_experiment_restore(r_state) results_exp_3 = self.run_full() trials_1_config = [trial.config for trial in results_exp_1.trials] trials_2_config = [trial.config for trial in results_exp_2.trials] trials_3_config = [trial.config for trial in results_exp_3.trials] self.assertEqual(trials_1_config + trials_2_config, trials_3_config) class HyperoptWarmStartTest(AbstractWarmStartTest, unittest.TestCase): def set_basic_conf(self): space = { "x": hp.uniform("x", 0, 10), "y": hp.uniform("y", -10, 10), "z": hp.uniform("z", -10, 0) } def cost(space, reporter): loss = space["x"]**2 + space["y"]**2 + space["z"]**2 reporter(loss=loss) search_alg = HyperOptSearch( space, metric="loss", mode="min", random_state_seed=5, n_initial_points=1, max_concurrent=1000 # Here to avoid breaking back-compat. ) return search_alg, cost class BayesoptWarmStartTest(AbstractWarmStartTest, unittest.TestCase): def set_basic_conf(self, analysis=None): space = {"width": (0, 20), "height": (-100, 100)} def cost(space, reporter): reporter(loss=(space["height"] - 14)**2 - abs(space["width"] - 3)) search_alg = BayesOptSearch( space, metric="loss", mode="min", analysis=analysis) return search_alg, cost def testBootStrapAnalysis(self): analysis = self.run_full() search_alg3, cost = self.set_basic_conf(analysis) search_alg3 = ConcurrencyLimiter(search_alg3, 1) tune.run(cost, num_samples=10, search_alg=search_alg3, verbose=0) class CFOWarmStartTest(AbstractWarmStartTest, unittest.TestCase): def set_basic_conf(self): space = { "height": tune.uniform(-100, 100), "width": tune.randint(0, 100), } def cost(param, reporter): reporter(loss=(param["height"] - 14)**2 - abs(param["width"] - 3)) search_alg = CFO( space=space, metric="loss", mode="min", seed=20, ) return search_alg, cost class SkoptWarmStartTest(AbstractWarmStartTest, unittest.TestCase): def set_basic_conf(self): optimizer = skopt.Optimizer([(0, 20), (-100, 100)]) previously_run_params = [[10, 0], [15, -20]] known_rewards = [-189, -1144] def cost(space, reporter): reporter(loss=(space["height"]**2 + space["width"]**2)) search_alg = SkOptSearch( optimizer, ["width", "height"], metric="loss", mode="min", max_concurrent=1000, # Here to avoid breaking back-compat. points_to_evaluate=previously_run_params, evaluated_rewards=known_rewards) return search_alg, cost class NevergradWarmStartTest(AbstractWarmStartTest, unittest.TestCase): def set_basic_conf(self): instrumentation = 2 parameter_names = ["height", "width"] optimizer = optimizerlib.OnePlusOne(instrumentation) def cost(space, reporter): reporter(loss=(space["height"] - 14)**2 - abs(space["width"] - 3)) search_alg = NevergradSearch( optimizer, parameter_names, metric="loss", mode="min", max_concurrent=1000, # Here to avoid breaking back-compat. ) return search_alg, cost class OptunaWarmStartTest(AbstractWarmStartTest, unittest.TestCase): def set_basic_conf(self): from optuna.samplers import TPESampler space = [ ot_param.suggest_uniform("width", 0, 20), ot_param.suggest_uniform("height", -100, 100) ] def cost(space, reporter): reporter(loss=(space["height"] - 14)**2 - abs(space["width"] - 3)) search_alg = OptunaSearch( space, sampler=TPESampler(seed=10), metric="loss", mode="min") return search_alg, cost class DragonflyWarmStartTest(AbstractWarmStartTest, unittest.TestCase): def set_basic_conf(self): from dragonfly.opt.gp_bandit import EuclideanGPBandit from dragonfly.exd.experiment_caller import EuclideanFunctionCaller from dragonfly import load_config def cost(space, reporter): height, width = space["point"] reporter(loss=(height - 14)**2 - abs(width - 3)) domain_vars = [{ "name": "height", "type": "float", "min": -10, "max": 10 }, { "name": "width", "type": "float", "min": 0, "max": 20 }] domain_config = load_config({"domain": domain_vars}) func_caller = EuclideanFunctionCaller( None, domain_config.domain.list_of_domains[0]) optimizer = EuclideanGPBandit(func_caller, ask_tell_mode=True) search_alg = DragonflySearch( optimizer, metric="loss", mode="min", max_concurrent=1000, # Here to avoid breaking back-compat. ) return search_alg, cost @unittest.skip("Skip because this doesn't seem to work.") def testWarmStart(self): pass @unittest.skip("Skip because this doesn't seem to work.") def testRestore(self): pass class SigOptWarmStartTest(AbstractWarmStartTest, unittest.TestCase): def set_basic_conf(self): space = [ { "name": "width", "type": "int", "bounds": { "min": 0, "max": 20 }, }, { "name": "height", "type": "int", "bounds": { "min": -100, "max": 100 }, }, ] def cost(space, reporter): reporter(loss=(space["height"] - 14)**2 - abs(space["width"] - 3)) # Unfortunately, SigOpt doesn't allow setting of random state. Thus, # we always end up with different suggestions, which is unsuitable # for the warm start test. Here we make do with points_to_evaluate, # and ensure that state is preserved over checkpoints and restarts. points = [ { "width": 5, "height": 20 }, { "width": 10, "height": -20 }, { "width": 15, "height": 30 }, { "width": 5, "height": -30 }, { "width": 10, "height": 40 }, { "width": 15, "height": -40 }, { "width": 5, "height": 50 }, { "width": 10, "height": -50 }, { "width": 15, "height": 60 }, { "width": 12, "height": -60 }, ] search_alg = SigOptSearch( space, name="SigOpt Example Experiment", max_concurrent=1, metric="loss", mode="min", points_to_evaluate=points) return search_alg, cost def testWarmStart(self): if "SIGOPT_KEY" not in os.environ: self.skipTest("No SigOpt API key found in environment.") return super().testWarmStart() def testRestore(self): if "SIGOPT_KEY" not in os.environ: self.skipTest("No SigOpt API key found in environment.") return super().testRestore() class ZOOptWarmStartTest(AbstractWarmStartTest, unittest.TestCase): def set_basic_conf(self): dim_dict = { "height": (ValueType.CONTINUOUS, [-100, 100], 1e-2), "width": (ValueType.DISCRETE, [0, 20], False) } def cost(param, reporter): reporter(loss=(param["height"] - 14)**2 - abs(param["width"] - 3)) search_alg = ZOOptSearch( algo="Asracos", # only support ASRacos currently budget=200, dim_dict=dim_dict, metric="loss", mode="min") return search_alg, cost class HEBOWarmStartTest(AbstractWarmStartTest, unittest.TestCase): def set_basic_conf(self): space_config = [ { "name": "width", "type": "num", "lb": 0, "ub": 20 }, { "name": "height", "type": "num", "lb": -100, "ub": 100 }, ] space = HEBODesignSpace().parse(space_config) def cost(param, reporter): reporter(loss=(param["height"] - 14)**2 - abs(param["width"] - 3)) search_alg = HEBOSearch( space=space, metric="loss", mode="min", random_state_seed=5) return search_alg, cost class SearcherTest(unittest.TestCase): class MockSearcher(Searcher): def __init__(self, data): self.data = data def save(self, path): with open(path, "w") as f: f.write(self.data) def restore(self, path): with open(path, "r") as f: self.data = f.read() def testSaveRestoreDir(self): tmpdir = tempfile.mkdtemp() original_data = "hello-its-me" searcher = self.MockSearcher(original_data) searcher.save_to_dir(tmpdir) searcher_2 = self.MockSearcher("no-its-not-me") searcher_2.restore_from_dir(tmpdir) assert searcher_2.data == original_data if __name__ == "__main__": import pytest import sys sys.exit(pytest.main(["-v", __file__] + sys.argv[1:]))
runtests.py
#!/usr/bin/env python from __future__ import print_function import atexit import base64 import os import sys import re import gc import heapq import locale import shutil import time import unittest import doctest import operator import subprocess import tempfile import traceback import warnings import zlib import glob from contextlib import contextmanager from collections import defaultdict try: import platform IS_PYPY = platform.python_implementation() == 'PyPy' IS_CPYTHON = platform.python_implementation() == 'CPython' except (ImportError, AttributeError): IS_CPYTHON = True IS_PYPY = False IS_PY2 = sys.version_info[0] < 3 from io import open as io_open try: from StringIO import StringIO except ImportError: from io import StringIO # doesn't accept 'str' in Py2 try: import cPickle as pickle except ImportError: import pickle try: import threading except ImportError: # No threads, no problems threading = None try: from unittest import SkipTest except ImportError: class SkipTest(Exception): # don't raise, only provided to allow except-ing it! pass def skip_test(reason): sys.stderr.write("Skipping test: %s\n" % reason) else: def skip_test(reason): raise SkipTest(reason) try: basestring except NameError: basestring = str WITH_CYTHON = True from distutils.command.build_ext import build_ext as _build_ext from distutils import sysconfig _to_clean = [] @atexit.register def _cleanup_files(): """ This is only used on Cygwin to clean up shared libraries that are unsafe to delete while the test suite is running. """ for filename in _to_clean: if os.path.isdir(filename): shutil.rmtree(filename, ignore_errors=True) else: try: os.remove(filename) except OSError: pass def get_distutils_distro(_cache=[]): if _cache: return _cache[0] # late import to accommodate for setuptools override from distutils.dist import Distribution distutils_distro = Distribution() if sys.platform == 'win32': # TODO: Figure out why this hackery (see https://thread.gmane.org/gmane.comp.python.cython.devel/8280/). config_files = distutils_distro.find_config_files() try: config_files.remove('setup.cfg') except ValueError: pass distutils_distro.parse_config_files(config_files) cfgfiles = distutils_distro.find_config_files() try: cfgfiles.remove('setup.cfg') except ValueError: pass distutils_distro.parse_config_files(cfgfiles) _cache.append(distutils_distro) return distutils_distro EXT_DEP_MODULES = { 'tag:numpy': 'numpy', 'tag:pythran': 'pythran', 'tag:setuptools': 'setuptools.sandbox', 'tag:asyncio': 'asyncio', 'tag:pstats': 'pstats', 'tag:posix': 'posix', 'tag:array': 'array', 'tag:coverage': 'Cython.Coverage', 'Coverage': 'Cython.Coverage', 'tag:ipython': 'IPython.testing.globalipapp', 'tag:jedi': 'jedi_BROKEN_AND_DISABLED', 'tag:test.support': 'test.support', # support module for CPython unit tests } def patch_inspect_isfunction(): import inspect orig_isfunction = inspect.isfunction def isfunction(obj): return orig_isfunction(obj) or type(obj).__name__ == 'cython_function_or_method' isfunction._orig_isfunction = orig_isfunction inspect.isfunction = isfunction def unpatch_inspect_isfunction(): import inspect try: orig_isfunction = inspect.isfunction._orig_isfunction except AttributeError: pass else: inspect.isfunction = orig_isfunction def def_to_cdef(source): ''' Converts the module-level def methods into cdef methods, i.e. @decorator def foo([args]): """ [tests] """ [body] becomes def foo([args]): """ [tests] """ return foo_c([args]) cdef foo_c([args]): [body] ''' output = [] skip = False def_node = re.compile(r'def (\w+)\(([^()*]*)\):').match lines = iter(source.split('\n')) for line in lines: if not line.strip(): output.append(line) continue if skip: if line[0] != ' ': skip = False else: continue if line[0] == '@': skip = True continue m = def_node(line) if m: name = m.group(1) args = m.group(2) if args: args_no_types = ", ".join(arg.split()[-1] for arg in args.split(',')) else: args_no_types = "" output.append("def %s(%s):" % (name, args_no_types)) line = next(lines) if '"""' in line: has_docstring = True output.append(line) for line in lines: output.append(line) if '"""' in line: break else: has_docstring = False output.append(" return %s_c(%s)" % (name, args_no_types)) output.append('') output.append("cdef %s_c(%s):" % (name, args)) if not has_docstring: output.append(line) else: output.append(line) return '\n'.join(output) def exclude_extension_in_pyver(*versions): def check(ext): return EXCLUDE_EXT if sys.version_info[:2] in versions else ext return check def exclude_extension_on_platform(*platforms): def check(ext): return EXCLUDE_EXT if sys.platform in platforms else ext return check def update_linetrace_extension(ext): ext.define_macros.append(('CYTHON_TRACE', 1)) return ext def update_numpy_extension(ext, set_api17_macro=True): import numpy from numpy.distutils.misc_util import get_info ext.include_dirs.append(numpy.get_include()) if set_api17_macro and getattr(numpy, '__version__', '') not in ('1.19.0', '1.19.1'): ext.define_macros.append(('NPY_NO_DEPRECATED_API', 'NPY_1_7_API_VERSION')) # We need the npymath library for numpy.math. # This is typically a static-only library. for attr, value in get_info('npymath').items(): getattr(ext, attr).extend(value) def update_gdb_extension(ext, _has_gdb=[None]): # We should probably also check for Python support. if not include_debugger: _has_gdb[0] = False if _has_gdb[0] is None: try: subprocess.check_call(["gdb", "--version"]) except (IOError, subprocess.CalledProcessError): _has_gdb[0] = False else: _has_gdb[0] = True if not _has_gdb[0]: return EXCLUDE_EXT return ext def update_openmp_extension(ext): ext.openmp = True language = ext.language if sys.platform == 'win32' and sys.version_info[:2] == (3,4): # OpenMP tests fail in appveyor in Py3.4 -> just ignore them, EoL of Py3.4 is early 2019... return EXCLUDE_EXT if language == 'cpp': flags = OPENMP_CPP_COMPILER_FLAGS else: flags = OPENMP_C_COMPILER_FLAGS if flags: compile_flags, link_flags = flags ext.extra_compile_args.extend(compile_flags.split()) ext.extra_link_args.extend(link_flags.split()) return ext elif sys.platform == 'win32': return ext return EXCLUDE_EXT def update_cpp11_extension(ext): """ update cpp11 extensions that will run on versions of gcc >4.8 """ gcc_version = get_gcc_version(ext.language) if gcc_version: compiler_version = gcc_version.group(1) if float(compiler_version) > 4.8: ext.extra_compile_args.append("-std=c++11") return ext clang_version = get_clang_version(ext.language) if clang_version: ext.extra_compile_args.append("-std=c++11") if sys.platform == "darwin": ext.extra_compile_args.append("-stdlib=libc++") ext.extra_compile_args.append("-mmacosx-version-min=10.7") return ext return EXCLUDE_EXT def get_cc_version(language): """ finds gcc version using Popen """ if language == 'cpp': cc = sysconfig.get_config_var('CXX') else: cc = sysconfig.get_config_var('CC') if not cc: from distutils import ccompiler cc = ccompiler.get_default_compiler() if not cc: return '' # For some reason, cc can be e.g. 'gcc -pthread' cc = cc.split()[0] # Force english output env = os.environ.copy() env['LC_MESSAGES'] = 'C' try: p = subprocess.Popen([cc, "-v"], stderr=subprocess.PIPE, env=env) except EnvironmentError: # Be compatible with Python 3 warnings.warn("Unable to find the %s compiler: %s: %s" % (language, os.strerror(sys.exc_info()[1].errno), cc)) return '' _, output = p.communicate() return output.decode(locale.getpreferredencoding() or 'ASCII', 'replace') def get_gcc_version(language): matcher = re.compile(r"gcc version (\d+\.\d+)").search return matcher(get_cc_version(language)) def get_clang_version(language): matcher = re.compile(r"clang(?:-|\s+version\s+)(\d+\.\d+)").search return matcher(get_cc_version(language)) def get_openmp_compiler_flags(language): """ As of gcc 4.2, it supports OpenMP 2.5. Gcc 4.4 implements 3.0. We don't (currently) check for other compilers. returns a two-tuple of (CFLAGS, LDFLAGS) to build the OpenMP extension """ gcc_version = get_gcc_version(language) if not gcc_version: if sys.platform == 'win32': return '/openmp', '' else: return None # not gcc - FIXME: do something about other compilers # gcc defines "__int128_t", assume that at least all 64 bit architectures have it global COMPILER_HAS_INT128 COMPILER_HAS_INT128 = getattr(sys, 'maxsize', getattr(sys, 'maxint', 0)) > 2**60 compiler_version = gcc_version.group(1) if compiler_version and compiler_version.split('.') >= ['4', '2']: return '-fopenmp', '-fopenmp' try: locale.setlocale(locale.LC_ALL, '') except locale.Error: pass COMPILER = None COMPILER_HAS_INT128 = False OPENMP_C_COMPILER_FLAGS = get_openmp_compiler_flags('c') OPENMP_CPP_COMPILER_FLAGS = get_openmp_compiler_flags('cpp') # Return this from the EXT_EXTRAS matcher callback to exclude the extension EXCLUDE_EXT = object() EXT_EXTRAS = { 'tag:numpy' : update_numpy_extension, 'tag:openmp': update_openmp_extension, 'tag:gdb': update_gdb_extension, 'tag:cpp11': update_cpp11_extension, 'tag:trace' : update_linetrace_extension, 'tag:bytesformat': exclude_extension_in_pyver((3, 3), (3, 4)), # no %-bytes formatting 'tag:no-macos': exclude_extension_on_platform('darwin'), 'tag:py3only': exclude_extension_in_pyver((2, 7)), } # TODO: use tags VER_DEP_MODULES = { # tests are excluded if 'CurrentPythonVersion OP VersionTuple', i.e. # (2,4) : (operator.lt, ...) excludes ... when PyVer < 2.4.x # The next line should start (3,); but this is a dictionary, so # we can only have one (3,) key. Since 2.7 is supposed to be the # last 2.x release, things would have to change drastically for this # to be unsafe... (2,999): (operator.lt, lambda x: x in ['run.special_methods_T561_py3', 'run.test_raisefrom', 'run.different_package_names', 'run.unicode_imports', # encoding problems on appveyor in Py2 'run.reimport_failure', # reimports don't do anything in Py2 ]), (3,): (operator.ge, lambda x: x in ['run.non_future_division', 'compile.extsetslice', 'compile.extdelslice', 'run.special_methods_T561_py2', ]), (3,3) : (operator.lt, lambda x: x in ['build.package_compilation', 'build.cythonize_pep420_namespace', 'run.yield_from_py33', 'pyximport.pyximport_namespace', 'run.qualname', ]), (3,4): (operator.lt, lambda x: x in ['run.py34_signature', 'run.test_unicode', # taken from Py3.7, difficult to backport ]), (3,4,999): (operator.gt, lambda x: x in ['run.initial_file_path', ]), (3,5): (operator.lt, lambda x: x in ['run.py35_pep492_interop', 'run.py35_asyncio_async_def', 'run.mod__spec__', 'run.pep526_variable_annotations', # typing module 'run.test_exceptions', # copied from Py3.7+ 'run.time_pxd', # _PyTime_GetSystemClock doesn't exist in 3.4 ]), } INCLUDE_DIRS = [ d for d in os.getenv('INCLUDE', '').split(os.pathsep) if d ] CFLAGS = os.getenv('CFLAGS', '').split() CCACHE = os.getenv('CYTHON_RUNTESTS_CCACHE', '').split() TEST_SUPPORT_DIR = 'testsupport' BACKENDS = ['c', 'cpp'] UTF8_BOM_BYTES = r'\xef\xbb\xbf'.encode('ISO-8859-1').decode('unicode_escape') def memoize(f): uncomputed = object() f._cache = {} def func(*args): res = f._cache.get(args, uncomputed) if res is uncomputed: res = f._cache[args] = f(*args) return res return func @memoize def parse_tags(filepath): tags = defaultdict(list) parse_tag = re.compile(r'#\s*(\w+)\s*:(.*)$').match with io_open(filepath, encoding='ISO-8859-1', errors='ignore') as f: for line in f: # ignore BOM-like bytes and whitespace line = line.lstrip(UTF8_BOM_BYTES).strip() if not line: if tags: break # assume all tags are in one block else: continue if line[0] != '#': break parsed = parse_tag(line) if parsed: tag, values = parsed.groups() if tag in ('coding', 'encoding'): continue if tag == 'tags': tag = 'tag' print("WARNING: test tags use the 'tag' directive, not 'tags' (%s)" % filepath) if tag not in ('mode', 'tag', 'ticket', 'cython', 'distutils', 'preparse'): print("WARNING: unknown test directive '%s' found (%s)" % (tag, filepath)) values = values.split(',') tags[tag].extend(filter(None, [value.strip() for value in values])) elif tags: break # assume all tags are in one block return tags list_unchanging_dir = memoize(lambda x: os.listdir(x)) # needs lambda to set function attribute @memoize def _list_pyregr_data_files(test_directory): is_data_file = re.compile('(?:[.](txt|pem|db|html)|^bad.*[.]py)$').search return ['__init__.py'] + [ filename for filename in list_unchanging_dir(test_directory) if is_data_file(filename)] def import_ext(module_name, file_path=None): if file_path: import imp return imp.load_dynamic(module_name, file_path) else: try: from importlib import invalidate_caches except ImportError: pass else: invalidate_caches() return __import__(module_name, globals(), locals(), ['*']) class build_ext(_build_ext): def build_extension(self, ext): try: try: # Py2.7+ & Py3.2+ compiler_obj = self.compiler_obj except AttributeError: compiler_obj = self.compiler if ext.language == 'c++': compiler_obj.compiler_so.remove('-Wstrict-prototypes') if CCACHE: compiler_obj.compiler_so = CCACHE + compiler_obj.compiler_so if getattr(ext, 'openmp', None) and compiler_obj.compiler_type == 'msvc': ext.extra_compile_args.append('/openmp') except Exception: pass _build_ext.build_extension(self, ext) class ErrorWriter(object): match_error = re.compile(r'(warning:)?(?:.*:)?\s*([-0-9]+)\s*:\s*([-0-9]+)\s*:\s*(.*)').match def __init__(self, encoding=None): self.output = [] self.encoding = encoding def write(self, value): if self.encoding: value = value.encode('ISO-8859-1').decode(self.encoding) self.output.append(value) def _collect(self): s = ''.join(self.output) results = {'errors': [], 'warnings': []} for line in s.splitlines(): match = self.match_error(line) if match: is_warning, line, column, message = match.groups() results['warnings' if is_warning else 'errors'].append((int(line), int(column), message.strip())) return [["%d:%d: %s" % values for values in sorted(results[key])] for key in ('errors', 'warnings')] def geterrors(self): return self._collect()[0] def getwarnings(self): return self._collect()[1] def getall(self): return self._collect() def close(self): pass # ignore, only to match file-like interface class Stats(object): def __init__(self, top_n=8): self.top_n = top_n self.test_counts = defaultdict(int) self.test_times = defaultdict(float) self.top_tests = defaultdict(list) def add_time(self, name, language, metric, t): self.test_counts[metric] += 1 self.test_times[metric] += t top = self.top_tests[metric] push = heapq.heappushpop if len(top) >= self.top_n else heapq.heappush # min-heap => pop smallest/shortest until longest times remain push(top, (t, name, language)) @contextmanager def time(self, name, language, metric): t = time.time() yield t = time.time() - t self.add_time(name, language, metric, t) def update(self, stats): # type: (Stats) -> None for metric, t in stats.test_times.items(): self.test_times[metric] += t self.test_counts[metric] += stats.test_counts[metric] top = self.top_tests[metric] for entry in stats.top_tests[metric]: push = heapq.heappushpop if len(top) >= self.top_n else heapq.heappush push(top, entry) def print_stats(self, out=sys.stderr): if not self.test_times: return lines = ['Times:\n'] for metric, t in sorted(self.test_times.items(), key=operator.itemgetter(1), reverse=True): count = self.test_counts[metric] top = self.top_tests[metric] lines.append("%-12s: %8.2f sec (%4d, %6.3f / run) - slowest: %s\n" % ( metric, t, count, t / count, ', '.join("'{2}:{1}' ({0:.2f}s)".format(*item) for item in heapq.nlargest(self.top_n, top)))) out.write(''.join(lines)) class TestBuilder(object): def __init__(self, rootdir, workdir, selectors, exclude_selectors, options, with_pyregr, languages, test_bugs, language_level, common_utility_dir, pythran_dir=None, default_mode='run', stats=None, add_embedded_test=False): self.rootdir = rootdir self.workdir = workdir self.selectors = selectors self.exclude_selectors = exclude_selectors self.annotate = options.annotate_source self.cleanup_workdir = options.cleanup_workdir self.cleanup_sharedlibs = options.cleanup_sharedlibs self.cleanup_failures = options.cleanup_failures self.with_pyregr = with_pyregr self.cython_only = options.cython_only self.doctest_selector = re.compile(options.only_pattern).search if options.only_pattern else None self.languages = languages self.test_bugs = test_bugs self.fork = options.fork self.language_level = language_level self.test_determinism = options.test_determinism self.common_utility_dir = common_utility_dir self.pythran_dir = pythran_dir self.default_mode = default_mode self.stats = stats self.add_embedded_test = add_embedded_test self.capture = options.capture def build_suite(self): suite = unittest.TestSuite() filenames = os.listdir(self.rootdir) filenames.sort() # TODO: parallelise I/O with a thread pool for the different directories once we drop Py2 support for filename in filenames: path = os.path.join(self.rootdir, filename) if os.path.isdir(path) and filename != TEST_SUPPORT_DIR: if filename == 'pyregr' and not self.with_pyregr: continue if filename == 'broken' and not self.test_bugs: continue suite.addTest( self.handle_directory(path, filename)) if (sys.platform not in ['win32'] and self.add_embedded_test # the embedding test is currently broken in Py3.8+, except on Linux. and (sys.version_info < (3, 8) or sys.platform != 'darwin')): # Non-Windows makefile. if [1 for selector in self.selectors if selector("embedded")] \ and not [1 for selector in self.exclude_selectors if selector("embedded")]: suite.addTest(unittest.makeSuite(EmbedTest)) return suite def handle_directory(self, path, context): workdir = os.path.join(self.workdir, context) if not os.path.exists(workdir): os.makedirs(workdir) suite = unittest.TestSuite() filenames = list_unchanging_dir(path) filenames.sort() for filename in filenames: filepath = os.path.join(path, filename) module, ext = os.path.splitext(filename) if ext not in ('.py', '.pyx', '.srctree'): continue if filename.startswith('.'): continue # certain emacs backup files if context == 'pyregr': tags = defaultdict(list) else: tags = parse_tags(filepath) fqmodule = "%s.%s" % (context, module) if not [ 1 for match in self.selectors if match(fqmodule, tags) ]: continue if self.exclude_selectors: if [1 for match in self.exclude_selectors if match(fqmodule, tags)]: continue mode = self.default_mode if tags['mode']: mode = tags['mode'][0] elif context == 'pyregr': mode = 'pyregr' if ext == '.srctree': if 'cpp' not in tags['tag'] or 'cpp' in self.languages: suite.addTest(EndToEndTest(filepath, workdir, self.cleanup_workdir, stats=self.stats, capture=self.capture)) continue # Choose the test suite. if mode == 'pyregr': if not filename.startswith('test_'): continue test_class = CythonPyregrTestCase elif mode == 'run': if module.startswith("test_"): test_class = CythonUnitTestCase else: test_class = CythonRunTestCase elif mode in ['compile', 'error']: test_class = CythonCompileTestCase else: raise KeyError('Invalid test mode: ' + mode) for test in self.build_tests(test_class, path, workdir, module, mode == 'error', tags): suite.addTest(test) if mode == 'run' and ext == '.py' and not self.cython_only and not filename.startswith('test_'): # additionally test file in real Python min_py_ver = [ (int(pyver.group(1)), int(pyver.group(2))) for pyver in map(re.compile(r'pure([0-9]+)[.]([0-9]+)').match, tags['tag']) if pyver ] if not min_py_ver or any(sys.version_info >= min_ver for min_ver in min_py_ver): suite.addTest(PureDoctestTestCase(module, os.path.join(path, filename), tags, stats=self.stats)) return suite def build_tests(self, test_class, path, workdir, module, expect_errors, tags): warning_errors = 'werror' in tags['tag'] expect_warnings = 'warnings' in tags['tag'] if expect_errors: if skip_c(tags) and 'cpp' in self.languages: languages = ['cpp'] else: languages = self.languages[:1] else: languages = self.languages if 'c' in languages and skip_c(tags): languages = list(languages) languages.remove('c') if 'cpp' in languages and 'no-cpp' in tags['tag']: languages = list(languages) languages.remove('cpp') if not languages: return [] language_levels = [2, 3] if 'all_language_levels' in tags['tag'] else [None] pythran_dir = self.pythran_dir if 'pythran' in tags['tag'] and not pythran_dir and 'cpp' in languages: import pythran.config try: pythran_ext = pythran.config.make_extension(python=True) except TypeError: # old pythran version syntax pythran_ext = pythran.config.make_extension() pythran_dir = pythran_ext['include_dirs'][0] preparse_list = tags.get('preparse', ['id']) tests = [ self.build_test(test_class, path, workdir, module, tags, language, language_level, expect_errors, expect_warnings, warning_errors, preparse, pythran_dir if language == "cpp" else None) for language in languages for preparse in preparse_list for language_level in language_levels ] return tests def build_test(self, test_class, path, workdir, module, tags, language, language_level, expect_errors, expect_warnings, warning_errors, preparse, pythran_dir): language_workdir = os.path.join(workdir, language) if not os.path.exists(language_workdir): os.makedirs(language_workdir) workdir = os.path.join(language_workdir, module) if preparse != 'id': workdir += '_%s' % (preparse,) if language_level: workdir += '_cy%d' % (language_level,) return test_class(path, workdir, module, tags, language=language, preparse=preparse, expect_errors=expect_errors, expect_warnings=expect_warnings, annotate=self.annotate, cleanup_workdir=self.cleanup_workdir, cleanup_sharedlibs=self.cleanup_sharedlibs, cleanup_failures=self.cleanup_failures, cython_only=self.cython_only, doctest_selector=self.doctest_selector, fork=self.fork, language_level=language_level or self.language_level, warning_errors=warning_errors, test_determinism=self.test_determinism, common_utility_dir=self.common_utility_dir, pythran_dir=pythran_dir, stats=self.stats) def skip_c(tags): if 'cpp' in tags['tag']: return True # We don't want to create a distutils key in the # dictionary so we check before looping. if 'distutils' in tags: for option in tags['distutils']: splitted = option.split('=') if len(splitted) == 2: argument, value = splitted if argument.strip() == 'language' and value.strip() == 'c++': return True return False def filter_stderr(stderr_bytes): """ Filter annoying warnings from output. """ if b"Command line warning D9025" in stderr_bytes: # MSCV: cl : Command line warning D9025 : overriding '/Ox' with '/Od' stderr_bytes = b'\n'.join( line for line in stderr_bytes.splitlines() if b"Command line warning D9025" not in line) return stderr_bytes class CythonCompileTestCase(unittest.TestCase): def __init__(self, test_directory, workdir, module, tags, language='c', preparse='id', expect_errors=False, expect_warnings=False, annotate=False, cleanup_workdir=True, cleanup_sharedlibs=True, cleanup_failures=True, cython_only=False, doctest_selector=None, fork=True, language_level=2, warning_errors=False, test_determinism=False, common_utility_dir=None, pythran_dir=None, stats=None): self.test_directory = test_directory self.tags = tags self.workdir = workdir self.module = module self.language = language self.preparse = preparse self.name = module if self.preparse == "id" else "%s_%s" % (module, preparse) self.expect_errors = expect_errors self.expect_warnings = expect_warnings self.annotate = annotate self.cleanup_workdir = cleanup_workdir self.cleanup_sharedlibs = cleanup_sharedlibs self.cleanup_failures = cleanup_failures self.cython_only = cython_only self.doctest_selector = doctest_selector self.fork = fork self.language_level = language_level self.warning_errors = warning_errors self.test_determinism = test_determinism self.common_utility_dir = common_utility_dir self.pythran_dir = pythran_dir self.stats = stats unittest.TestCase.__init__(self) def shortDescription(self): return "compiling (%s%s%s) %s" % ( self.language, "/cy2" if self.language_level == 2 else "/cy3" if self.language_level == 3 else "", "/pythran" if self.pythran_dir is not None else "", self.description_name() ) def description_name(self): return self.name def setUp(self): from Cython.Compiler import Options self._saved_options = [ (name, getattr(Options, name)) for name in ( 'warning_errors', 'clear_to_none', 'error_on_unknown_names', 'error_on_uninitialized', # 'cache_builtins', # not currently supported due to incorrect global caching ) ] self._saved_default_directives = list(Options.get_directive_defaults().items()) Options.warning_errors = self.warning_errors if sys.version_info >= (3, 4): Options._directive_defaults['autotestdict'] = False if not os.path.exists(self.workdir): os.makedirs(self.workdir) if self.workdir not in sys.path: sys.path.insert(0, self.workdir) def tearDown(self): from Cython.Compiler import Options for name, value in self._saved_options: setattr(Options, name, value) Options._directive_defaults = dict(self._saved_default_directives) unpatch_inspect_isfunction() try: sys.path.remove(self.workdir) except ValueError: pass try: del sys.modules[self.module] except KeyError: pass cleanup = self.cleanup_failures or self.success cleanup_c_files = WITH_CYTHON and self.cleanup_workdir and cleanup cleanup_lib_files = self.cleanup_sharedlibs and cleanup is_cygwin = sys.platform == 'cygwin' if os.path.exists(self.workdir): if cleanup_c_files and cleanup_lib_files and not is_cygwin: shutil.rmtree(self.workdir, ignore_errors=True) else: for rmfile in os.listdir(self.workdir): ext = os.path.splitext(rmfile)[1] if not cleanup_c_files: # Keep C, C++ files, header files, preprocessed sources # and assembly sources (typically the .i and .s files # are intentionally generated when -save-temps is given) if ext in (".c", ".cpp", ".h", ".i", ".ii", ".s"): continue if ext == ".html" and rmfile.startswith(self.module): continue is_shared_obj = ext in (".so", ".dll") if not cleanup_lib_files and is_shared_obj: continue try: rmfile = os.path.join(self.workdir, rmfile) if os.path.isdir(rmfile): shutil.rmtree(rmfile, ignore_errors=True) elif is_cygwin and is_shared_obj: # Delete later _to_clean.append(rmfile) else: os.remove(rmfile) except IOError: pass if cleanup_c_files and cleanup_lib_files and is_cygwin: # Finally, remove the work dir itself _to_clean.append(self.workdir) if cleanup_c_files and os.path.exists(self.workdir + '-again'): shutil.rmtree(self.workdir + '-again', ignore_errors=True) def runTest(self): self.success = False self.runCompileTest() self.success = True def runCompileTest(self): return self.compile( self.test_directory, self.module, self.workdir, self.test_directory, self.expect_errors, self.expect_warnings, self.annotate) def find_module_source_file(self, source_file): if not os.path.exists(source_file): source_file = source_file[:-1] return source_file def build_target_filename(self, module_name): target = '%s.%s' % (module_name, self.language) return target def related_files(self, test_directory, module_name): is_related = re.compile('%s_.*[.].*' % module_name).match return [filename for filename in list_unchanging_dir(test_directory) if is_related(filename)] def copy_files(self, test_directory, target_directory, file_list): if self.preparse and self.preparse != 'id': preparse_func = globals()[self.preparse] def copy(src, dest): with open(src) as fin: with open(dest, 'w') as fout: fout.write(preparse_func(fin.read())) else: # use symlink on Unix, copy on Windows try: copy = os.symlink except AttributeError: copy = shutil.copy join = os.path.join for filename in file_list: file_path = join(test_directory, filename) if os.path.exists(file_path): copy(file_path, join(target_directory, filename)) def source_files(self, workdir, module_name, file_list): return ([self.build_target_filename(module_name)] + [filename for filename in file_list if not os.path.isfile(os.path.join(workdir, filename))]) def split_source_and_output(self, test_directory, module, workdir): source_file = self.find_module_source_file(os.path.join(test_directory, module) + '.pyx') from Cython.Utils import detect_opened_file_encoding with io_open(source_file, 'rb') as f: # encoding is passed to ErrorWriter but not used on the source # since it is sometimes deliberately wrong encoding = detect_opened_file_encoding(f, default=None) with io_open(source_file, 'r', encoding='ISO-8859-1') as source_and_output: error_writer = warnings_writer = None out = io_open(os.path.join(workdir, module + os.path.splitext(source_file)[1]), 'w', encoding='ISO-8859-1') try: for line in source_and_output: if line.startswith("_ERRORS"): out.close() out = error_writer = ErrorWriter(encoding=encoding) elif line.startswith("_WARNINGS"): out.close() out = warnings_writer = ErrorWriter(encoding=encoding) else: out.write(line) finally: out.close() return (error_writer.geterrors() if error_writer else [], warnings_writer.geterrors() if warnings_writer else []) def run_cython(self, test_directory, module, targetdir, incdir, annotate, extra_compile_options=None): include_dirs = INCLUDE_DIRS + [os.path.join(test_directory, '..', TEST_SUPPORT_DIR)] if incdir: include_dirs.append(incdir) if self.preparse == 'id': source = self.find_module_source_file( os.path.join(test_directory, module + '.pyx')) else: self.copy_files(test_directory, targetdir, [module + '.pyx']) source = os.path.join(targetdir, module + '.pyx') target = os.path.join(targetdir, self.build_target_filename(module)) if extra_compile_options is None: extra_compile_options = {} if 'allow_unknown_names' in self.tags['tag']: from Cython.Compiler import Options Options.error_on_unknown_names = False try: CompilationOptions except NameError: from Cython.Compiler.Options import CompilationOptions from Cython.Compiler.Main import compile as cython_compile from Cython.Compiler.Options import default_options common_utility_include_dir = self.common_utility_dir options = CompilationOptions( default_options, include_path = include_dirs, output_file = target, annotate = annotate, use_listing_file = False, cplus = self.language == 'cpp', np_pythran = self.pythran_dir is not None, language_level = self.language_level, generate_pxi = False, evaluate_tree_assertions = True, common_utility_include_dir = common_utility_include_dir, **extra_compile_options ) cython_compile(source, options=options, full_module_name=module) def run_distutils(self, test_directory, module, workdir, incdir, extra_extension_args=None): cwd = os.getcwd() os.chdir(workdir) try: build_extension = build_ext(get_distutils_distro()) build_extension.include_dirs = INCLUDE_DIRS[:] if incdir: build_extension.include_dirs.append(incdir) build_extension.finalize_options() if COMPILER: build_extension.compiler = COMPILER ext_compile_flags = CFLAGS[:] if build_extension.compiler == 'mingw32': ext_compile_flags.append('-Wno-format') if extra_extension_args is None: extra_extension_args = {} related_files = self.related_files(test_directory, module) self.copy_files(test_directory, workdir, related_files) from distutils.core import Extension extension = Extension( module, sources=self.source_files(workdir, module, related_files), extra_compile_args=ext_compile_flags, **extra_extension_args ) if self.language == 'cpp': # Set the language now as the fixer might need it extension.language = 'c++' if 'distutils' in self.tags: from Cython.Build.Dependencies import DistutilsInfo from Cython.Utils import open_source_file pyx_path = os.path.join(self.test_directory, self.module + ".pyx") with open_source_file(pyx_path) as f: DistutilsInfo(f).apply(extension) if self.pythran_dir: from Cython.Build.Dependencies import update_pythran_extension update_pythran_extension(extension) # Compile with -DCYTHON_CLINE_IN_TRACEBACK=1 unless we have # the "traceback" tag if 'traceback' not in self.tags['tag']: extension.define_macros.append(("CYTHON_CLINE_IN_TRACEBACK", 1)) for matcher, fixer in list(EXT_EXTRAS.items()): if isinstance(matcher, str): # lazy init del EXT_EXTRAS[matcher] matcher = string_selector(matcher) EXT_EXTRAS[matcher] = fixer if matcher(module, self.tags): newext = fixer(extension) if newext is EXCLUDE_EXT: return skip_test("Test '%s' excluded due to tags '%s'" % ( self.name, ', '.join(self.tags.get('tag', '')))) extension = newext or extension if self.language == 'cpp': extension.language = 'c++' if IS_PY2: workdir = str(workdir) # work around type check in distutils that disallows unicode strings build_extension.extensions = [extension] build_extension.build_temp = workdir build_extension.build_lib = workdir build_extension.run() finally: os.chdir(cwd) try: get_ext_fullpath = build_extension.get_ext_fullpath except AttributeError: def get_ext_fullpath(ext_name, self=build_extension): # copied from distutils.command.build_ext (missing in Py2.[45]) fullname = self.get_ext_fullname(ext_name) modpath = fullname.split('.') filename = self.get_ext_filename(modpath[-1]) if not self.inplace: filename = os.path.join(*modpath[:-1]+[filename]) return os.path.join(self.build_lib, filename) package = '.'.join(modpath[0:-1]) build_py = self.get_finalized_command('build_py') package_dir = os.path.abspath(build_py.get_package_dir(package)) return os.path.join(package_dir, filename) return get_ext_fullpath(module) def compile(self, test_directory, module, workdir, incdir, expect_errors, expect_warnings, annotate): expected_errors = expected_warnings = errors = warnings = () if expect_errors or expect_warnings: expected_errors, expected_warnings = self.split_source_and_output( test_directory, module, workdir) test_directory = workdir if WITH_CYTHON: old_stderr = sys.stderr try: sys.stderr = ErrorWriter() with self.stats.time(self.name, self.language, 'cython'): self.run_cython(test_directory, module, workdir, incdir, annotate) errors, warnings = sys.stderr.getall() finally: sys.stderr = old_stderr if self.test_determinism and not expect_errors: workdir2 = workdir + '-again' os.mkdir(workdir2) self.run_cython(test_directory, module, workdir2, incdir, annotate) diffs = [] for file in os.listdir(workdir2): if (open(os.path.join(workdir, file)).read() != open(os.path.join(workdir2, file)).read()): diffs.append(file) os.system('diff -u %s/%s %s/%s > %s/%s.diff' % ( workdir, file, workdir2, file, workdir2, file)) if diffs: self.fail('Nondeterministic file generation: %s' % ', '.join(diffs)) tostderr = sys.__stderr__.write if expected_warnings or (expect_warnings and warnings): self._match_output(expected_warnings, warnings, tostderr) if 'cerror' in self.tags['tag']: if errors: tostderr("\n=== Expected C compile error ===\n") tostderr("\n=== Got Cython errors: ===\n") tostderr('\n'.join(errors)) tostderr('\n\n') raise RuntimeError('should have generated extension code') elif errors or expected_errors: self._match_output(expected_errors, errors, tostderr) return None so_path = None if not self.cython_only: from Cython.Utils import captured_fd, print_bytes from distutils.errors import CompileError, LinkError show_output = True get_stderr = get_stdout = None try: with captured_fd(1) as get_stdout: with captured_fd(2) as get_stderr: with self.stats.time(self.name, self.language, 'compile-%s' % self.language): so_path = self.run_distutils(test_directory, module, workdir, incdir) except Exception as exc: if ('cerror' in self.tags['tag'] and ((get_stderr and get_stderr()) or isinstance(exc, (CompileError, LinkError)))): show_output = False # expected C compiler failure else: raise else: if 'cerror' in self.tags['tag']: raise RuntimeError('should have failed C compile') finally: if show_output: stdout = get_stdout and get_stdout().strip() stderr = get_stderr and filter_stderr(get_stderr()).strip() if so_path and not stderr: # normal success case => ignore non-error compiler output stdout = None if stdout: print_bytes( stdout, header_text="\n=== C/C++ compiler output: =========\n", end=None, file=sys.__stderr__) if stderr: print_bytes( stderr, header_text="\n=== C/C++ compiler error output: ===\n", end=None, file=sys.__stderr__) if stdout or stderr: tostderr("\n====================================\n") return so_path def _match_output(self, expected_output, actual_output, write): try: for expected, actual in zip(expected_output, actual_output): self.assertEqual(expected, actual) if len(actual_output) < len(expected_output): expected = expected_output[len(actual_output)] self.assertEqual(expected, None) elif len(actual_output) > len(expected_output): unexpected = actual_output[len(expected_output)] self.assertEqual(None, unexpected) except AssertionError: write("\n=== Expected: ===\n") write('\n'.join(expected_output)) write("\n\n=== Got: ===\n") write('\n'.join(actual_output)) write('\n\n') raise class CythonRunTestCase(CythonCompileTestCase): def setUp(self): CythonCompileTestCase.setUp(self) from Cython.Compiler import Options Options.clear_to_none = False def description_name(self): return self.name if self.cython_only else "and running %s" % self.name def run(self, result=None): if result is None: result = self.defaultTestResult() result.startTest(self) try: self.setUp() try: self.success = False ext_so_path = self.runCompileTest() failures, errors, skipped = len(result.failures), len(result.errors), len(result.skipped) if not self.cython_only and ext_so_path is not None: self.run_tests(result, ext_so_path) if failures == len(result.failures) and errors == len(result.errors): # No new errors... self.success = True finally: check_thread_termination() except SkipTest as exc: result.addSkip(self, str(exc)) result.stopTest(self) except Exception: result.addError(self, sys.exc_info()) result.stopTest(self) try: self.tearDown() except Exception: pass def run_tests(self, result, ext_so_path): self.run_doctests(self.module, result, ext_so_path) def run_doctests(self, module_or_name, result, ext_so_path): def run_test(result): if isinstance(module_or_name, basestring): with self.stats.time(self.name, self.language, 'import'): module = import_ext(module_or_name, ext_so_path) else: module = module_or_name tests = doctest.DocTestSuite(module) if self.doctest_selector is not None: tests._tests[:] = [test for test in tests._tests if self.doctest_selector(test.id())] with self.stats.time(self.name, self.language, 'run'): tests.run(result) run_forked_test(result, run_test, self.shortDescription(), self.fork) def run_forked_test(result, run_func, test_name, fork=True): if not fork or sys.version_info[0] >= 3 or not hasattr(os, 'fork'): run_func(result) sys.stdout.flush() sys.stderr.flush() gc.collect() return # fork to make sure we do not keep the tested module loaded result_handle, result_file = tempfile.mkstemp() os.close(result_handle) child_id = os.fork() if not child_id: result_code = 0 try: try: tests = partial_result = None try: partial_result = PartialTestResult(result) run_func(partial_result) sys.stdout.flush() sys.stderr.flush() gc.collect() except Exception: result_code = 1 if partial_result is not None: if tests is None: # importing failed, try to fake a test class tests = _FakeClass( failureException=sys.exc_info()[1], _shortDescription=test_name, module_name=None) partial_result.addError(tests, sys.exc_info()) if partial_result is not None: with open(result_file, 'wb') as output: pickle.dump(partial_result.data(), output) except: traceback.print_exc() finally: try: sys.stderr.flush() except: pass try: sys.stdout.flush() except: pass os._exit(result_code) try: cid, result_code = os.waitpid(child_id, 0) module_name = test_name.split()[-1] # os.waitpid returns the child's result code in the # upper byte of result_code, and the signal it was # killed by in the lower byte if result_code & 255: raise Exception( "Tests in module '%s' were unexpectedly killed by signal %d, see test output for details." % ( module_name, result_code & 255)) result_code >>= 8 if result_code in (0,1): try: with open(result_file, 'rb') as f: PartialTestResult.join_results(result, pickle.load(f)) except Exception: raise Exception( "Failed to load test result from test in module '%s' after exit status %d," " see test output for details." % (module_name, result_code)) if result_code: raise Exception( "Tests in module '%s' exited with status %d, see test output for details." % ( module_name, result_code)) finally: try: os.unlink(result_file) except: pass class PureDoctestTestCase(unittest.TestCase): def __init__(self, module_name, module_path, tags, stats=None): self.tags = tags self.module_name = self.name = module_name self.module_path = module_path self.stats = stats unittest.TestCase.__init__(self, 'run') def shortDescription(self): return "running pure doctests in %s" % self.module_name def run(self, result=None): if result is None: result = self.defaultTestResult() loaded_module_name = 'pure_doctest__' + self.module_name result.startTest(self) try: self.setUp() import imp with self.stats.time(self.name, 'py', 'pyimport'): m = imp.load_source(loaded_module_name, self.module_path) try: with self.stats.time(self.name, 'py', 'pyrun'): doctest.DocTestSuite(m).run(result) finally: del m if loaded_module_name in sys.modules: del sys.modules[loaded_module_name] check_thread_termination() except Exception: result.addError(self, sys.exc_info()) result.stopTest(self) try: self.tearDown() except Exception: pass if 'mypy' in self.tags['tag']: try: from mypy import api as mypy_api except ImportError: pass else: with self.stats.time(self.name, 'py', 'mypy'): mypy_result = mypy_api.run([ self.module_path, '--ignore-missing-imports', '--follow-imports', 'skip', ]) if mypy_result[2]: self.fail(mypy_result[0]) is_private_field = re.compile('^_[^_]').match class _FakeClass(object): def __init__(self, **kwargs): self._shortDescription = kwargs.get('module_name') self.__dict__.update(kwargs) def shortDescription(self): return self._shortDescription try: # Py2.7+ and Py3.2+ from unittest.runner import _TextTestResult except ImportError: from unittest import _TextTestResult class PartialTestResult(_TextTestResult): def __init__(self, base_result): _TextTestResult.__init__( self, self._StringIO(), True, base_result.dots + base_result.showAll*2) def strip_error_results(self, results): for test_case, error in results: for attr_name in filter(is_private_field, dir(test_case)): if attr_name == '_dt_test': test_case._dt_test = _FakeClass( name=test_case._dt_test.name) elif attr_name != '_shortDescription': setattr(test_case, attr_name, None) def data(self): self.strip_error_results(self.failures) self.strip_error_results(self.errors) return (self.failures, self.errors, self.skipped, self.testsRun, self.stream.getvalue()) def join_results(result, data): """Static method for merging the result back into the main result object. """ failures, errors, skipped, tests_run, output = data if output: result.stream.write(output) result.errors.extend(errors) result.skipped.extend(skipped) result.failures.extend(failures) result.testsRun += tests_run join_results = staticmethod(join_results) class _StringIO(StringIO): def writeln(self, line): self.write("%s\n" % line) class CythonUnitTestCase(CythonRunTestCase): def shortDescription(self): return "compiling (%s) tests in %s" % (self.language, self.description_name()) def run_tests(self, result, ext_so_path): with self.stats.time(self.name, self.language, 'import'): module = import_ext(self.module, ext_so_path) tests = unittest.defaultTestLoader.loadTestsFromModule(module) with self.stats.time(self.name, self.language, 'run'): tests.run(result) class CythonPyregrTestCase(CythonRunTestCase): def setUp(self): CythonRunTestCase.setUp(self) from Cython.Compiler import Options Options.error_on_unknown_names = False Options.error_on_uninitialized = False Options._directive_defaults.update(dict( binding=True, always_allow_keywords=True, set_initial_path="SOURCEFILE")) patch_inspect_isfunction() def related_files(self, test_directory, module_name): return _list_pyregr_data_files(test_directory) def _run_unittest(self, result, *classes): """Run tests from unittest.TestCase-derived classes.""" valid_types = (unittest.TestSuite, unittest.TestCase) suite = unittest.TestSuite() for cls in classes: if isinstance(cls, str): if cls in sys.modules: suite.addTest(unittest.findTestCases(sys.modules[cls])) else: raise ValueError("str arguments must be keys in sys.modules") elif isinstance(cls, valid_types): suite.addTest(cls) else: suite.addTest(unittest.makeSuite(cls)) with self.stats.time(self.name, self.language, 'run'): suite.run(result) def _run_doctest(self, result, module): self.run_doctests(module, result, None) def run_tests(self, result, ext_so_path): try: from test import support except ImportError: # Python2.x from test import test_support as support def run_test(result): def run_unittest(*classes): return self._run_unittest(result, *classes) def run_doctest(module, verbosity=None): return self._run_doctest(result, module) backup = (support.run_unittest, support.run_doctest) support.run_unittest = run_unittest support.run_doctest = run_doctest try: try: sys.stdout.flush() # helps in case of crashes with self.stats.time(self.name, self.language, 'import'): module = import_ext(self.module, ext_so_path) sys.stdout.flush() # helps in case of crashes if hasattr(module, 'test_main'): # help 'doctest.DocFileTest' find the module path through frame inspection fake_caller_module_globals = { 'module': module, '__name__': module.__name__, } call_tests = eval( 'lambda: module.test_main()', fake_caller_module_globals, fake_caller_module_globals) call_tests() sys.stdout.flush() # helps in case of crashes except (unittest.SkipTest, support.ResourceDenied): result.addSkip(self, 'ok') finally: support.run_unittest, support.run_doctest = backup run_forked_test(result, run_test, self.shortDescription(), self.fork) class TestCodeFormat(unittest.TestCase): def __init__(self, cython_dir): self.cython_dir = cython_dir unittest.TestCase.__init__(self) def runTest(self): import pycodestyle config_file = os.path.join(self.cython_dir, "setup.cfg") if not os.path.exists(config_file): config_file = os.path.join(os.path.dirname(__file__), "setup.cfg") paths = [] for codedir in ['Cython', 'Demos', 'docs', 'pyximport', 'tests']: paths += glob.glob(os.path.join(self.cython_dir, codedir + "/**/*.py"), recursive=True) style = pycodestyle.StyleGuide(config_file=config_file) print("") # Fix the first line of the report. result = style.check_files(paths) self.assertEqual(result.total_errors, 0, "Found code style errors.") include_debugger = IS_CPYTHON def collect_unittests(path, module_prefix, suite, selectors, exclude_selectors): def file_matches(filename): return filename.startswith("Test") and filename.endswith(".py") def package_matches(dirname): return dirname == "Tests" loader = unittest.TestLoader() if include_debugger: skipped_dirs = [] else: skipped_dirs = ['Cython' + os.path.sep + 'Debugger' + os.path.sep] for dirpath, dirnames, filenames in os.walk(path): if dirpath != path and "__init__.py" not in filenames: skipped_dirs.append(dirpath + os.path.sep) continue skip = False for dir in skipped_dirs: if dirpath.startswith(dir): skip = True if skip: continue parentname = os.path.split(dirpath)[-1] if package_matches(parentname): for f in filenames: if file_matches(f): filepath = os.path.join(dirpath, f)[:-len(".py")] modulename = module_prefix + filepath[len(path)+1:].replace(os.path.sep, '.') if not any(1 for match in selectors if match(modulename)): continue if any(1 for match in exclude_selectors if match(modulename)): continue module = __import__(modulename) for x in modulename.split('.')[1:]: module = getattr(module, x) suite.addTests([loader.loadTestsFromModule(module)]) def collect_doctests(path, module_prefix, suite, selectors, exclude_selectors): def package_matches(dirname): if dirname == 'Debugger' and not include_debugger: return False return dirname not in ("Mac", "Distutils", "Plex", "Tempita") def file_matches(filename): filename, ext = os.path.splitext(filename) excludelist = ['libcython', 'libpython', 'test_libcython_in_gdb', 'TestLibCython'] return (ext == '.py' and not '~' in filename and not '#' in filename and not filename.startswith('.') and not filename in excludelist) import doctest for dirpath, dirnames, filenames in os.walk(path): for dir in list(dirnames): if not package_matches(dir): dirnames.remove(dir) for f in filenames: if file_matches(f): if not f.endswith('.py'): continue filepath = os.path.join(dirpath, f) if os.path.getsize(filepath) == 0: continue filepath = filepath[:-len(".py")] modulename = module_prefix + filepath[len(path)+1:].replace(os.path.sep, '.') if not [ 1 for match in selectors if match(modulename) ]: continue if [ 1 for match in exclude_selectors if match(modulename) ]: continue if 'in_gdb' in modulename: # These should only be imported from gdb. continue module = __import__(modulename) for x in modulename.split('.')[1:]: module = getattr(module, x) if hasattr(module, "__doc__") or hasattr(module, "__test__"): try: suite.addTest(doctest.DocTestSuite(module)) except ValueError: # no tests pass class EndToEndTest(unittest.TestCase): """ This is a test of build/*.srctree files, where srctree defines a full directory structure and its header gives a list of commands to run. """ cython_root = os.path.dirname(os.path.abspath(__file__)) def __init__(self, treefile, workdir, cleanup_workdir=True, stats=None, capture=True): self.name = os.path.splitext(os.path.basename(treefile))[0] self.treefile = treefile self.workdir = os.path.join(workdir, self.name) self.cleanup_workdir = cleanup_workdir self.stats = stats self.capture = capture cython_syspath = [self.cython_root] for path in sys.path: if path.startswith(self.cython_root) and path not in cython_syspath: # Py3 installation and refnanny build prepend their # fixed paths to sys.path => prefer that over the # generic one (cython_root itself goes last) cython_syspath.append(path) self.cython_syspath = os.pathsep.join(cython_syspath[::-1]) unittest.TestCase.__init__(self) def shortDescription(self): return "End-to-end %s" % self.name def setUp(self): from Cython.TestUtils import unpack_source_tree _, self.commands = unpack_source_tree(self.treefile, self.workdir, self.cython_root) self.old_dir = os.getcwd() os.chdir(self.workdir) def tearDown(self): if self.cleanup_workdir: for trial in range(5): try: shutil.rmtree(self.workdir) except OSError: time.sleep(0.1) else: break os.chdir(self.old_dir) def _try_decode(self, content): try: return content.decode() except UnicodeDecodeError: return content.decode('iso-8859-1') def runTest(self): self.success = False old_path = os.environ.get('PYTHONPATH') env = dict(os.environ) new_path = self.cython_syspath if old_path: new_path = new_path + os.pathsep + self.workdir + os.pathsep + old_path env['PYTHONPATH'] = new_path if not env.get("PYTHONIOENCODING"): env["PYTHONIOENCODING"] = sys.stdout.encoding or sys.getdefaultencoding() cmd = [] out = [] err = [] for command_no, command in enumerate(self.commands, 1): with self.stats.time('%s(%d)' % (self.name, command_no), 'c', 'etoe-build' if 'setup.py' in command else 'etoe-run'): if self.capture: p = subprocess.Popen(command, stderr=subprocess.PIPE, stdout=subprocess.PIPE, env=env) _out, _err = p.communicate() res = p.returncode else: p = subprocess.call(command, env=env) _out, _err = b'', b'' res = p cmd.append(command) out.append(_out) err.append(_err) if res == 0 and b'REFNANNY: ' in _out: res = -1 if res != 0: for c, o, e in zip(cmd, out, err): sys.stderr.write("%s\n%s\n%s\n\n" % ( c, self._try_decode(o), self._try_decode(e))) self.assertEqual(0, res, "non-zero exit status") self.success = True # TODO: Support cython_freeze needed here as well. # TODO: Windows support. class EmbedTest(unittest.TestCase): working_dir = "Demos/embed" def setUp(self): self.old_dir = os.getcwd() os.chdir(self.working_dir) os.system( "make PYTHON='%s' clean > /dev/null" % sys.executable) def tearDown(self): try: os.system( "make PYTHON='%s' clean > /dev/null" % sys.executable) except: pass os.chdir(self.old_dir) def test_embed(self): libname = sysconfig.get_config_var('LIBRARY') libdir = sysconfig.get_config_var('LIBDIR') if not os.path.isdir(libdir) or libname not in os.listdir(libdir): libdir = os.path.join(os.path.dirname(sys.executable), '..', 'lib') if not os.path.isdir(libdir) or libname not in os.listdir(libdir): libdir = os.path.join(libdir, 'python%d.%d' % sys.version_info[:2], 'config') if not os.path.isdir(libdir) or libname not in os.listdir(libdir): # report the error for the original directory libdir = sysconfig.get_config_var('LIBDIR') cython = os.path.abspath(os.path.join('..', '..', 'cython.py')) try: subprocess.check_output([ "make", "PYTHON='%s'" % sys.executable, "CYTHON='%s'" % cython, "LIBDIR1='%s'" % libdir, "paths", "test", ]) except subprocess.CalledProcessError as err: print(err.output.decode()) raise self.assertTrue(True) # :) def load_listfile(filename): # just re-use the FileListExclude implementation fle = FileListExcluder(filename) return list(fle.excludes) class MissingDependencyExcluder(object): def __init__(self, deps): # deps: { matcher func : module name } self.exclude_matchers = [] for matcher, module_name in deps.items(): try: module = __import__(module_name) except ImportError: self.exclude_matchers.append(string_selector(matcher)) print("Test dependency not found: '%s'" % module_name) else: version = self.find_dep_version(module_name, module) print("Test dependency found: '%s' version %s" % (module_name, version)) self.tests_missing_deps = [] def find_dep_version(self, name, module): try: version = module.__version__ except AttributeError: stdlib_dir = os.path.dirname(shutil.__file__) + os.sep module_path = getattr(module, '__file__', stdlib_dir) # no __file__? => builtin stdlib module if module_path.startswith(stdlib_dir): # stdlib module version = sys.version.partition(' ')[0] elif '.' in name: # incrementally look for a parent package with version name = name.rpartition('.')[0] return self.find_dep_version(name, __import__(name)) else: version = '?.?' return version def __call__(self, testname, tags=None): for matcher in self.exclude_matchers: if matcher(testname, tags): self.tests_missing_deps.append(testname) return True return False class VersionDependencyExcluder(object): def __init__(self, deps): # deps: { version : matcher func } from sys import version_info self.exclude_matchers = [] for ver, (compare, matcher) in deps.items(): if compare(version_info, ver): self.exclude_matchers.append(matcher) self.tests_missing_deps = [] def __call__(self, testname, tags=None): for matcher in self.exclude_matchers: if matcher(testname): self.tests_missing_deps.append(testname) return True return False class FileListExcluder(object): def __init__(self, list_file, verbose=False): self.verbose = verbose self.excludes = {} self._list_file = os.path.relpath(list_file) with open(list_file) as f: for line in f: line = line.strip() if line and line[0] != '#': self.excludes[line.split()[0]] = True def __call__(self, testname, tags=None): exclude = any(string_selector(ex)(testname) for ex in self.excludes) if exclude and self.verbose: print("Excluding %s because it's listed in %s" % (testname, self._list_file)) return exclude class TagsSelector(object): def __init__(self, tag, value): self.tag = tag self.value = value def __call__(self, testname, tags=None): if tags is None: return False else: return self.value in tags[self.tag] class RegExSelector(object): def __init__(self, pattern_string): try: self.regex_matches = re.compile(pattern_string, re.I|re.U).search except re.error: print('Invalid pattern: %r' % pattern_string) raise def __call__(self, testname, tags=None): return self.regex_matches(testname) def string_selector(s): if ':' in s: return TagsSelector(*s.split(':', 1)) else: return RegExSelector(s) class ShardExcludeSelector(object): # This is an exclude selector so it can override the (include) selectors. # It may not provide uniform distribution (in time or count), but is a # determanistic partition of the tests which is important. # Random seed to improve the hash distribution. _seed = base64.b64decode(b'2ged1EtsGz/GkisJr22UcLeP6n9XIaA5Vby2wM49Wvg=') def __init__(self, shard_num, shard_count): self.shard_num = shard_num self.shard_count = shard_count def __call__(self, testname, tags=None, _hash=zlib.crc32, _is_py2=IS_PY2): # Cannot use simple hash() here as shard processes might use different hash seeds. # CRC32 is fast and simple, but might return negative values in Py2. hashval = _hash(self._seed + testname) & 0x7fffffff if _is_py2 else _hash(self._seed + testname.encode()) return hashval % self.shard_count != self.shard_num class PendingThreadsError(RuntimeError): pass threads_seen = [] def check_thread_termination(ignore_seen=True): if threading is None: # no threading enabled in CPython return current = threading.current_thread() blocking_threads = [] for t in threading.enumerate(): if not t.is_alive() or t == current or t.name == 'time_stamper': continue t.join(timeout=2) if t.is_alive(): if not ignore_seen: blocking_threads.append(t) continue for seen in threads_seen: if t is seen: break else: threads_seen.append(t) blocking_threads.append(t) if not blocking_threads: return sys.stderr.write("warning: left-over threads found after running test:\n") for t in blocking_threads: sys.stderr.write('...%s\n' % repr(t)) raise PendingThreadsError("left-over threads found after running test") def subprocess_output(cmd): try: p = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.STDOUT) return p.communicate()[0].decode('UTF-8') except OSError: return '' def get_version(): from Cython.Compiler.Version import version as cython_version full_version = cython_version top = os.path.dirname(os.path.abspath(__file__)) if os.path.exists(os.path.join(top, '.git')): old_dir = os.getcwd() try: os.chdir(top) head_commit = subprocess_output(['git', 'rev-parse', 'HEAD']).strip() version_commit = subprocess_output(['git', 'rev-parse', cython_version]).strip() diff = subprocess_output(['git', 'diff', '--stat']).strip() if head_commit != version_commit: full_version += " " + head_commit if diff: full_version += ' + uncommitted changes' finally: os.chdir(old_dir) return full_version _orig_stdout, _orig_stderr = sys.stdout, sys.stderr def flush_and_terminate(status): try: _orig_stdout.flush() _orig_stderr.flush() finally: os._exit(status) def main(): global DISTDIR, WITH_CYTHON # Set an environment variable to the top directory os.environ['CYTHON_PROJECT_DIR'] = os.path.abspath(os.path.dirname(__file__)) DISTDIR = os.path.join(os.getcwd(), os.path.dirname(sys.argv[0])) from Cython.Compiler import DebugFlags args = [] for arg in sys.argv[1:]: if arg.startswith('--debug') and arg[2:].replace('-', '_') in dir(DebugFlags): setattr(DebugFlags, arg[2:].replace('-', '_'), True) else: args.append(arg) from optparse import OptionParser parser = OptionParser() parser.add_option("--no-cleanup", dest="cleanup_workdir", action="store_false", default=True, help="do not delete the generated C files (allows passing --no-cython on next run)") parser.add_option("--no-cleanup-sharedlibs", dest="cleanup_sharedlibs", action="store_false", default=True, help="do not delete the generated shared library files (allows manual module experimentation)") parser.add_option("--no-cleanup-failures", dest="cleanup_failures", action="store_false", default=True, help="enable --no-cleanup and --no-cleanup-sharedlibs for failed tests only") parser.add_option("--no-cython", dest="with_cython", action="store_false", default=True, help="do not run the Cython compiler, only the C compiler") parser.add_option("--compiler", dest="compiler", default=None, help="C compiler type") backend_list = ','.join(BACKENDS) parser.add_option("--backends", dest="backends", default=backend_list, help="select backends to test (default: %s)" % backend_list) parser.add_option("--no-c", dest="use_c", action="store_false", default=True, help="do not test C compilation backend") parser.add_option("--no-cpp", dest="use_cpp", action="store_false", default=True, help="do not test C++ compilation backend") parser.add_option("--no-unit", dest="unittests", action="store_false", default=True, help="do not run the unit tests") parser.add_option("--no-doctest", dest="doctests", action="store_false", default=True, help="do not run the doctests") parser.add_option("--no-file", dest="filetests", action="store_false", default=True, help="do not run the file based tests") parser.add_option("--no-pyregr", dest="pyregr", action="store_false", default=True, help="do not run the regression tests of CPython in tests/pyregr/") parser.add_option("--no-examples", dest="examples", action="store_false", default=True, help="Do not run the documentation tests in the examples directory.") parser.add_option("--no-code-style", dest="code_style", action="store_false", default=True, help="Do not run the code style (PEP8) checks.") parser.add_option("--cython-only", dest="cython_only", action="store_true", default=False, help="only compile pyx to c, do not run C compiler or run the tests") parser.add_option("--no-refnanny", dest="with_refnanny", action="store_false", default=True, help="do not regression test reference counting") parser.add_option("--no-fork", dest="fork", action="store_false", default=True, help="do not fork to run tests") parser.add_option("--sys-pyregr", dest="system_pyregr", action="store_true", default=False, help="run the regression tests of the CPython installation") parser.add_option("-x", "--exclude", dest="exclude", action="append", metavar="PATTERN", help="exclude tests matching the PATTERN") parser.add_option("--listfile", dest="listfile", action="append", help="specify a file containing a list of tests to run") parser.add_option("-j", "--shard_count", dest="shard_count", metavar="N", type=int, default=1, help="shard this run into several parallel runs") parser.add_option("--shard_num", dest="shard_num", metavar="K", type=int, default=-1, help="test only this single shard") parser.add_option("--profile", dest="profile", action="store_true", default=False, help="enable profiling of the tests") parser.add_option("-C", "--coverage", dest="coverage", action="store_true", default=False, help="collect source coverage data for the Compiler") parser.add_option("--coverage-xml", dest="coverage_xml", action="store_true", default=False, help="collect source coverage data for the Compiler in XML format") parser.add_option("--coverage-html", dest="coverage_html", action="store_true", default=False, help="collect source coverage data for the Compiler in HTML format") parser.add_option("-A", "--annotate", dest="annotate_source", action="store_true", default=True, help="generate annotated HTML versions of the test source files") parser.add_option("--no-annotate", dest="annotate_source", action="store_false", help="do not generate annotated HTML versions of the test source files") parser.add_option("-v", "--verbose", dest="verbosity", action="count", default=0, help="display test progress, pass twice to print test names") parser.add_option("-T", "--ticket", dest="tickets", action="append", help="a bug ticket number to run the respective test in 'tests/*'") parser.add_option("-k", dest="only_pattern", help="a regex pattern for selecting doctests and test functions in the test modules") parser.add_option("-3", dest="language_level", action="store_const", const=3, default=2, help="set language level to Python 3 (useful for running the CPython regression tests)'") parser.add_option("--xml-output", dest="xml_output_dir", metavar="DIR", help="write test results in XML to directory DIR") parser.add_option("--exit-ok", dest="exit_ok", default=False, action="store_true", help="exit without error code even on test failures") parser.add_option("--failfast", dest="failfast", default=False, action="store_true", help="stop on first failure or error") parser.add_option("--root-dir", dest="root_dir", default=os.path.join(DISTDIR, 'tests'), help=("Directory to look for the file based " "tests (the ones which are deactivated with '--no-file'.")) parser.add_option("--examples-dir", dest="examples_dir", default=os.path.join(DISTDIR, 'docs', 'examples'), help="Directory to look for documentation example tests") parser.add_option("--work-dir", dest="work_dir", default=os.path.join(os.getcwd(), 'TEST_TMP'), help="working directory") parser.add_option("--cython-dir", dest="cython_dir", default=os.getcwd(), help="Cython installation directory (default: use local source version)") parser.add_option("--debug", dest="for_debugging", default=False, action="store_true", help="configure for easier use with a debugger (e.g. gdb)") parser.add_option("--pyximport-py", dest="pyximport_py", default=False, action="store_true", help="use pyximport to automatically compile imported .pyx and .py files") parser.add_option("--watermark", dest="watermark", default=None, help="deterministic generated by string") parser.add_option("--use_common_utility_dir", default=False, action="store_true") parser.add_option("--use_formal_grammar", default=False, action="store_true") parser.add_option("--test_determinism", default=False, action="store_true", help="test whether Cython's output is deterministic") parser.add_option("--pythran-dir", dest="pythran_dir", default=None, help="specify Pythran include directory. This will run the C++ tests using Pythran backend for Numpy") parser.add_option("--no-capture", dest="capture", default=True, action="store_false", help="do not capture stdout, stderr in srctree tests. Makes pdb.set_trace interactive") parser.add_option("--limited-api", dest="limited_api", default=False, action="store_true", help="Compiles Cython using CPython's LIMITED_API") options, cmd_args = parser.parse_args(args) if options.with_cython and sys.version_info[0] >= 3: sys.path.insert(0, options.cython_dir) # requires glob with the wildcard. if sys.version_info < (3, 5) or cmd_args: options.code_style = False WITH_CYTHON = options.with_cython coverage = None if options.coverage or options.coverage_xml or options.coverage_html: if not WITH_CYTHON: options.coverage = options.coverage_xml = options.coverage_html = False elif options.shard_num == -1: print("Enabling coverage analysis") from coverage import coverage as _coverage coverage = _coverage(branch=True) coverage.erase() coverage.start() if options.xml_output_dir: shutil.rmtree(options.xml_output_dir, ignore_errors=True) if options.listfile: for listfile in options.listfile: cmd_args.extend(load_listfile(listfile)) if options.capture and not options.for_debugging: keep_alive_interval = 10 else: keep_alive_interval = None if options.shard_count > 1 and options.shard_num == -1: if "PYTHONIOENCODING" not in os.environ: # Make sure subprocesses can print() Unicode text. os.environ["PYTHONIOENCODING"] = sys.stdout.encoding or sys.getdefaultencoding() import multiprocessing pool = multiprocessing.Pool(options.shard_count) tasks = [(options, cmd_args, shard_num) for shard_num in range(options.shard_count)] error_shards = [] failure_outputs = [] # NOTE: create process pool before time stamper thread to avoid forking issues. total_time = time.time() stats = Stats() with time_stamper_thread(interval=keep_alive_interval): for shard_num, shard_stats, return_code, failure_output in pool.imap_unordered(runtests_callback, tasks): if return_code != 0: error_shards.append(shard_num) failure_outputs.append(failure_output) sys.stderr.write("FAILED (%s/%s)\n" % (shard_num, options.shard_count)) sys.stderr.write("ALL DONE (%s/%s)\n" % (shard_num, options.shard_count)) stats.update(shard_stats) pool.close() pool.join() total_time = time.time() - total_time sys.stderr.write("Sharded tests run in %d seconds (%.1f minutes)\n" % (round(total_time), total_time / 60.)) if error_shards: sys.stderr.write("Errors found in shards %s\n" % ", ".join([str(e) for e in error_shards])) for failure_output in zip(error_shards, failure_outputs): sys.stderr.write("\nErrors from shard %s:\n%s" % failure_output) return_code = 1 else: return_code = 0 else: with time_stamper_thread(interval=keep_alive_interval): _, stats, return_code, _ = runtests(options, cmd_args, coverage) if coverage: if options.shard_count > 1 and options.shard_num == -1: coverage.combine() coverage.stop() stats.print_stats(sys.stderr) if coverage: save_coverage(coverage, options) sys.stderr.write("ALL DONE\n") sys.stderr.flush() try: check_thread_termination(ignore_seen=False) except PendingThreadsError: # normal program exit won't kill the threads, do it the hard way here flush_and_terminate(return_code) else: sys.exit(return_code) @contextmanager def time_stamper_thread(interval=10): """ Print regular time stamps into the build logs to find slow tests. @param interval: time interval in seconds """ if not interval or interval < 0: # Do nothing yield return try: _xrange = xrange except NameError: _xrange = range import threading import datetime from time import sleep interval = _xrange(interval * 4) now = datetime.datetime.now stop = False # We capture stderr in some places. # => make sure we write to the real (original) stderr of the test runner. stderr = os.dup(2) def write(s): os.write(stderr, s if type(s) is bytes else s.encode('ascii')) def time_stamper(): while True: for _ in interval: if stop: return sleep(1./4) write('\n#### %s\n' % now()) thread = threading.Thread(target=time_stamper, name='time_stamper') thread.setDaemon(True) # Py2 ... thread.start() try: yield finally: stop = True thread.join() os.close(stderr) def configure_cython(options): global CompilationOptions, pyrex_default_options, cython_compile from Cython.Compiler.Options import \ CompilationOptions, \ default_options as pyrex_default_options from Cython.Compiler.Options import _directive_defaults as directive_defaults from Cython.Compiler import Errors Errors.LEVEL = 0 # show all warnings from Cython.Compiler import Options Options.generate_cleanup_code = 3 # complete cleanup code from Cython.Compiler import DebugFlags DebugFlags.debug_temp_code_comments = 1 pyrex_default_options['formal_grammar'] = options.use_formal_grammar if options.profile: directive_defaults['profile'] = True if options.watermark: import Cython.Compiler.Version Cython.Compiler.Version.watermark = options.watermark def save_coverage(coverage, options): if options.coverage: coverage.report(show_missing=0) if options.coverage_xml: coverage.xml_report(outfile="coverage-report.xml") if options.coverage_html: coverage.html_report(directory="coverage-report-html") def runtests_callback(args): options, cmd_args, shard_num = args options.shard_num = shard_num return runtests(options, cmd_args) def runtests(options, cmd_args, coverage=None): # faulthandler should be able to provide a limited traceback # in the event of a segmentation fault. Hopefully better than Travis # just keeping running until timeout. Only available on Python 3.3+ try: import faulthandler except ImportError: pass # OK - not essential else: faulthandler.enable() if sys.platform == "win32" and sys.version_info < (3, 6): # enable Unicode console output, if possible try: import win_unicode_console except ImportError: pass else: win_unicode_console.enable() WITH_CYTHON = options.with_cython ROOTDIR = os.path.abspath(options.root_dir) WORKDIR = os.path.abspath(options.work_dir) if WITH_CYTHON: configure_cython(options) xml_output_dir = options.xml_output_dir if options.shard_num > -1: WORKDIR = os.path.join(WORKDIR, str(options.shard_num)) if xml_output_dir: xml_output_dir = os.path.join(xml_output_dir, 'shard-%03d' % options.shard_num) # RUN ALL TESTS! UNITTEST_MODULE = "Cython" UNITTEST_ROOT = os.path.join(os.path.dirname(__file__), UNITTEST_MODULE) if WITH_CYTHON: if os.path.exists(WORKDIR): for path in os.listdir(WORKDIR): if path in ("support", "Cy3"): continue shutil.rmtree(os.path.join(WORKDIR, path), ignore_errors=True) if not os.path.exists(WORKDIR): os.makedirs(WORKDIR) if options.shard_num <= 0: sys.stderr.write("Python %s\n" % sys.version) sys.stderr.write("\n") if WITH_CYTHON: sys.stderr.write("Running tests against Cython %s\n" % get_version()) else: sys.stderr.write("Running tests without Cython.\n") if options.for_debugging: options.cleanup_workdir = False options.cleanup_sharedlibs = False options.fork = False if WITH_CYTHON and include_debugger: from Cython.Compiler.Options import default_options as compiler_default_options compiler_default_options['gdb_debug'] = True compiler_default_options['output_dir'] = os.getcwd() if IS_PYPY: if options.with_refnanny: sys.stderr.write("Disabling refnanny in PyPy\n") options.with_refnanny = False if options.with_refnanny: from pyximport.pyxbuild import pyx_to_dll libpath = pyx_to_dll(os.path.join("Cython", "Runtime", "refnanny.pyx"), build_in_temp=True, pyxbuild_dir=os.path.join(WORKDIR, "support")) sys.path.insert(0, os.path.split(libpath)[0]) CFLAGS.append("-DCYTHON_REFNANNY=1") if options.limited_api: CFLAGS.append("-DCYTHON_LIMITED_API=1") CFLAGS.append('-Wno-unused-function') if xml_output_dir and options.fork: # doesn't currently work together sys.stderr.write("Disabling forked testing to support XML test output\n") options.fork = False if WITH_CYTHON: sys.stderr.write("Using Cython language level %d.\n" % options.language_level) test_bugs = False if options.tickets: for ticket_number in options.tickets: test_bugs = True cmd_args.append('ticket:%s' % ticket_number) if not test_bugs: for selector in cmd_args: if selector.startswith('bugs'): test_bugs = True selectors = [ string_selector(r) for r in cmd_args ] verbose_excludes = selectors or options.verbosity >= 2 if not selectors: selectors = [ lambda x, tags=None: True ] # Check which external modules are not present and exclude tests # which depends on them (by prefix) missing_dep_excluder = MissingDependencyExcluder(EXT_DEP_MODULES) version_dep_excluder = VersionDependencyExcluder(VER_DEP_MODULES) exclude_selectors = [missing_dep_excluder, version_dep_excluder] # want to print msg at exit try: import IPython.core.release if list(IPython.core.release._ver) < [1, 0, 0]: raise ImportError except (ImportError, AttributeError, TypeError): exclude_selectors.append(RegExSelector('IPython')) try: raise ImportError("Jedi typer is currently broken, see GH#1845") import jedi if not ([0, 9] <= list(map(int, re.findall('[0-9]+', jedi.__version__ or '0')))): raise ImportError except (ImportError, AttributeError, TypeError): exclude_selectors.append(RegExSelector('Jedi')) if options.exclude: exclude_selectors += [ string_selector(r) for r in options.exclude ] if not COMPILER_HAS_INT128 or not IS_CPYTHON: exclude_selectors += [RegExSelector('int128')] if options.shard_num > -1: exclude_selectors.append(ShardExcludeSelector(options.shard_num, options.shard_count)) if not test_bugs: bug_files = [ ('bugs.txt', True), ('pypy_bugs.txt', IS_PYPY), ('pypy2_bugs.txt', IS_PYPY and IS_PY2), ('pypy_crash_bugs.txt', IS_PYPY), ('pypy_implementation_detail_bugs.txt', IS_PYPY), ('limited_api_bugs.txt', options.limited_api), ('windows_bugs.txt', sys.platform == 'win32'), ('cygwin_bugs.txt', sys.platform == 'cygwin') ] exclude_selectors += [ FileListExcluder(os.path.join(ROOTDIR, bugs_file_name), verbose=verbose_excludes) for bugs_file_name, condition in bug_files if condition ] global COMPILER if options.compiler: COMPILER = options.compiler selected_backends = [ name.strip() for name in options.backends.split(',') if name.strip() ] backends = [] for backend in selected_backends: if backend == 'c' and not options.use_c: continue elif backend == 'cpp' and not options.use_cpp: continue elif backend not in BACKENDS: sys.stderr.write("Unknown backend requested: '%s' not one of [%s]\n" % ( backend, ','.join(BACKENDS))) sys.exit(1) backends.append(backend) if options.shard_num <= 0: sys.stderr.write("Backends: %s\n" % ','.join(backends)) languages = backends if 'TRAVIS' in os.environ and sys.platform == 'darwin' and 'cpp' in languages: bugs_file_name = 'travis_macos_cpp_bugs.txt' exclude_selectors += [ FileListExcluder(os.path.join(ROOTDIR, bugs_file_name), verbose=verbose_excludes) ] if options.use_common_utility_dir: common_utility_dir = os.path.join(WORKDIR, 'utility_code') if not os.path.exists(common_utility_dir): os.makedirs(common_utility_dir) else: common_utility_dir = None sys.stderr.write("\n") test_suite = unittest.TestSuite() stats = Stats() if options.unittests: collect_unittests(UNITTEST_ROOT, UNITTEST_MODULE + ".", test_suite, selectors, exclude_selectors) if options.doctests: collect_doctests(UNITTEST_ROOT, UNITTEST_MODULE + ".", test_suite, selectors, exclude_selectors) if options.filetests and languages: filetests = TestBuilder(ROOTDIR, WORKDIR, selectors, exclude_selectors, options, options.pyregr, languages, test_bugs, options.language_level, common_utility_dir, options.pythran_dir, add_embedded_test=True, stats=stats) test_suite.addTest(filetests.build_suite()) if options.examples and languages: examples_workdir = os.path.join(WORKDIR, 'examples') for subdirectory in glob.glob(os.path.join(options.examples_dir, "*/")): filetests = TestBuilder(subdirectory, examples_workdir, selectors, exclude_selectors, options, options.pyregr, languages, test_bugs, options.language_level, common_utility_dir, options.pythran_dir, default_mode='compile', stats=stats) test_suite.addTest(filetests.build_suite()) if options.system_pyregr and languages: sys_pyregr_dir = os.path.join(sys.prefix, 'lib', 'python'+sys.version[:3], 'test') if not os.path.isdir(sys_pyregr_dir): sys_pyregr_dir = os.path.join(os.path.dirname(sys.executable), 'Lib', 'test') # source build if os.path.isdir(sys_pyregr_dir): filetests = TestBuilder(ROOTDIR, WORKDIR, selectors, exclude_selectors, options, True, languages, test_bugs, sys.version_info[0], common_utility_dir, stats=stats) sys.stderr.write("Including CPython regression tests in %s\n" % sys_pyregr_dir) test_suite.addTest(filetests.handle_directory(sys_pyregr_dir, 'pyregr')) if options.code_style and options.shard_num <= 0: try: import pycodestyle except ImportError: # Hack to make the exclusion visible. missing_dep_excluder.tests_missing_deps.append('TestCodeFormat') else: test_suite.addTest(TestCodeFormat(options.cython_dir)) if xml_output_dir: from Cython.Tests.xmlrunner import XMLTestRunner if not os.path.exists(xml_output_dir): try: os.makedirs(xml_output_dir) except OSError: pass # concurrency issue? test_runner = XMLTestRunner(output=xml_output_dir, verbose=options.verbosity > 0) if options.failfast: sys.stderr.write("--failfast not supported with XML runner\n") else: text_runner_options = {} if options.failfast: text_runner_options['failfast'] = True test_runner = unittest.TextTestRunner(verbosity=options.verbosity, **text_runner_options) if options.pyximport_py: from pyximport import pyximport pyximport.install(pyimport=True, build_dir=os.path.join(WORKDIR, '_pyximport'), load_py_module_on_import_failure=True, inplace=True) try: gc.set_debug(gc.DEBUG_UNCOLLECTABLE) except AttributeError: pass # not available on PyPy result = test_runner.run(test_suite) if common_utility_dir and options.shard_num < 0 and options.cleanup_workdir: shutil.rmtree(common_utility_dir) if missing_dep_excluder.tests_missing_deps: sys.stderr.write("Following tests excluded because of missing dependencies on your system:\n") for test in missing_dep_excluder.tests_missing_deps: sys.stderr.write(" %s\n" % test) if options.with_refnanny: import refnanny sys.stderr.write("\n".join([repr(x) for x in refnanny.reflog])) result_code = 0 if options.exit_ok else not result.wasSuccessful() if xml_output_dir: failure_output = "" else: failure_output = "".join(collect_failure_output(result)) return options.shard_num, stats, result_code, failure_output def collect_failure_output(result): """Extract test error/failure output from a TextTestResult.""" failure_output = [] for flavour, errors in (("ERROR", result.errors), ("FAIL", result.failures)): for test, err in errors: failure_output.append("%s\n%s: %s\n%s\n%s\n" % ( result.separator1, flavour, result.getDescription(test), result.separator2, err)) return failure_output if __name__ == '__main__': try: main() except Exception: traceback.print_exc() try: check_thread_termination(ignore_seen=False) except PendingThreadsError: # normal program exit won't kill the threads, do it the hard way here flush_and_terminate(1) sys.exit(1)
basic_ops.py
import json from random import choice, randint from threading import Thread from BucketLib.BucketOperations import BucketHelper from BucketLib.bucket import Bucket from Cb_constants import constants, CbServer, DocLoading from basetestcase import ClusterSetup from cb_tools.cbepctl import Cbepctl from cb_tools.cbstats import Cbstats from cb_tools.mc_stat import McStat from couchbase_helper.documentgenerator import doc_generator from couchbase_helper.durability_helper import DurabilityHelper from error_simulation.cb_error import CouchbaseError from mc_bin_client import MemcachedClient, MemcachedError from remote.remote_util import RemoteMachineShellConnection from sdk_client3 import SDKClient from sdk_exceptions import SDKException from table_view import TableView """ Capture basic get, set operations, also the meta operations. This is based on some 4.1.1 test which had separate bugs with incr and delete with meta and I didn't see an obvious home for them. This is small now but we will reactively add things These may be parameterized by: - full and value eviction - DGM and non-DGM """ class basic_ops(ClusterSetup): def setUp(self): super(basic_ops, self).setUp() self.create_bucket() self.doc_ops = self.input.param("doc_ops", "").split(";") self.observe_test = self.input.param("observe_test", False) # Scope/collection name can be default or create a random one to test self.scope_name = self.input.param("scope", CbServer.default_scope) self.collection_name = self.input.param("collection", CbServer.default_collection) # Create Scope/Collection with random names if not equal to default if self.scope_name != CbServer.default_scope: self.scope_name = self.bucket_util.get_random_name() self.bucket_util.create_scope(self.cluster.master, self.bucket_util.buckets[0], {"name": self.scope_name}) if self.collection_name != CbServer.default_collection: self.collection_name = self.bucket_util.get_random_name() self.bucket_util.create_collection(self.cluster.master, self.bucket_util.buckets[0], self.scope_name, {"name": self.collection_name, "num_items": self.num_items}) self.log.info("Using scope::collection - '%s::%s'" % (self.scope_name, self.collection_name)) # Update required num_items under default collection self.bucket_util.buckets[0] \ .scopes[self.scope_name] \ .collections[self.collection_name] \ .num_items = self.num_items self.durability_helper = DurabilityHelper( self.log, len(self.cluster.nodes_in_cluster), durability=self.durability_level, replicate_to=self.replicate_to, persist_to=self.persist_to) # Create sdk_clients for pool if self.sdk_client_pool: self.log.info("Creating SDK client pool") self.sdk_client_pool.create_clients( self.bucket_util.buckets[0], [self.cluster.master], req_clients=self.sdk_pool_capacity, compression_settings=self.sdk_compression) self.bucket_util.print_bucket_stats() self.log.info("==========Finished Basic_ops base setup========") def tearDown(self): super(basic_ops, self).tearDown() def do_basic_ops(self): KEY_NAME = 'key1' KEY_NAME2 = 'key2' self.log.info('Starting basic ops') default_bucket = self.bucket_util.get_all_buckets()[0] sdk_client = SDKClient([self.cluster.master], default_bucket, compression_settings=self.sdk_compression) # mcd = client.memcached(KEY_NAME) # MB-17231 - incr with full eviction rc = sdk_client.incr(KEY_NAME, delta=1) self.log.info('rc for incr: {0}'.format(rc)) # MB-17289 del with meta rc = sdk_client.set(KEY_NAME, 0, 0, json.dumps({'value': 'value2'})) self.log.info('set is: {0}'.format(rc)) # cas = rc[1] # wait for it to persist persisted = 0 while persisted == 0: opaque, rep_time, persist_time, persisted, cas = \ sdk_client.observe(KEY_NAME) try: rc = sdk_client.evict_key(KEY_NAME) except MemcachedError as exp: self.fail("Exception with evict meta - {0}".format(exp)) CAS = 0xabcd try: # key, exp, flags, seqno, cas rc = mcd.del_with_meta(KEY_NAME2, 0, 0, 2, CAS) except MemcachedError as exp: self.fail("Exception with del_with meta - {0}".format(exp)) # Reproduce test case for MB-28078 def do_setWithMeta_twice(self): mc = MemcachedClient(self.cluster.master.ip, constants.memcached_port) mc.sasl_auth_plain(self.cluster.master.rest_username, self.cluster.master.rest_password) mc.bucket_select('default') try: mc.setWithMeta('1', '{"Hello":"World"}', 3600, 0, 1, 0x1512a3186faa0000) except MemcachedError as error: self.log.info("<MemcachedError #%d ``%s''>" % (error.status, error.message)) self.fail("Error on First setWithMeta()") stats = mc.stats() self.log.info('curr_items: {0} and curr_temp_items:{1}' .format(stats['curr_items'], stats['curr_temp_items'])) self.sleep(5, "Wait before checking the stats") stats = mc.stats() self.log.info('curr_items: {0} and curr_temp_items:{1}' .format(stats['curr_items'], stats['curr_temp_items'])) try: mc.setWithMeta('1', '{"Hello":"World"}', 3600, 0, 1, 0x1512a3186faa0000) except MemcachedError as error: stats = mc.stats() self.log.info('After 2nd setWithMeta(), curr_items: {} ' 'and curr_temp_items: {}' .format(stats['curr_items'], stats['curr_temp_items'])) if int(stats['curr_temp_items']) == 1: self.fail("Error on second setWithMeta(), " "expected curr_temp_items to be 0") else: self.log.info("<MemcachedError #%d ``%s''>" % (error.status, error.message)) def generate_docs_bigdata(self, docs_per_day, start=0, document_size=1024000): return doc_generator(self.key, start, docs_per_day, key_size=self.key_size, doc_size=document_size, doc_type=self.doc_type, target_vbucket=self.target_vbucket, vbuckets=self.cluster_util.vbuckets, randomize_doc_size=self.randomize_doc_size, randomize_value=self.randomize_value) def test_doc_size(self): def check_durability_failures(): self.log.error(task.sdk_acked_curd_failed.keys()) self.log.error(task.sdk_exception_crud_succeed.keys()) self.assertTrue( len(task.sdk_acked_curd_failed) == 0, "Durability failed for docs: %s" % task.sdk_acked_curd_failed.keys()) self.assertTrue( len(task.sdk_exception_crud_succeed) == 0, "Durability failed for docs: %s" % task.sdk_acked_curd_failed.keys()) """ Basic tests for document CRUD operations using JSON docs """ doc_op = self.input.param("doc_op", None) def_bucket = self.bucket_util.buckets[0] ignore_exceptions = list() retry_exceptions = list() supported_d_levels = self.bucket_util.get_supported_durability_levels() # Stat validation reference variables verification_dict = dict() verification_dict["ops_create"] = 0 verification_dict["ops_update"] = 0 verification_dict["ops_delete"] = 0 verification_dict["rollback_item_count"] = 0 verification_dict["sync_write_aborted_count"] = 0 verification_dict["sync_write_committed_count"] = 0 if self.target_vbucket and type(self.target_vbucket) is not list: self.target_vbucket = [self.target_vbucket] self.log.info("Creating doc_generator..") # Load basic docs into bucket doc_create = doc_generator( self.key, 0, self.num_items, key_size=self.key_size, doc_size=self.doc_size, doc_type=self.doc_type, target_vbucket=self.target_vbucket, vbuckets=self.cluster_util.vbuckets, randomize_doc_size=self.randomize_doc_size, randomize_value=self.randomize_value) self.log.info("Loading {0} docs into the bucket: {1}" .format(self.num_items, def_bucket)) task = self.task.async_load_gen_docs( self.cluster, def_bucket, doc_create, DocLoading.Bucket.DocOps.CREATE, 0, batch_size=self.batch_size, process_concurrency=self.process_concurrency, replicate_to=self.replicate_to, persist_to=self.persist_to, durability=self.durability_level, compression=self.sdk_compression, timeout_secs=self.sdk_timeout, ryow=self.ryow, check_persistence=self.check_persistence, scope=self.scope_name, collection=self.collection_name, sdk_client_pool=self.sdk_client_pool) self.task.jython_task_manager.get_task_result(task) if self.ryow: check_durability_failures() # Retry doc_exception code self.log.info("Validating failed doc's (if any) exceptions") doc_op_info_dict = dict() doc_op_info_dict[task] = self.bucket_util.get_doc_op_info_dict( def_bucket, DocLoading.Bucket.DocOps.CREATE, exp=0, replicate_to=self.replicate_to, persist_to=self.persist_to, durability=self.durability_level, timeout=self.sdk_timeout, time_unit="seconds", ignore_exceptions=ignore_exceptions, retry_exceptions=retry_exceptions) self.bucket_util.verify_doc_op_task_exceptions(doc_op_info_dict, self.cluster, self.sdk_client_pool) if len(doc_op_info_dict[task]["unwanted"]["fail"].keys()) != 0: self.fail("Failures in retry doc CRUDs: {0}" .format(doc_op_info_dict[task]["unwanted"]["fail"])) self.log.info("Wait for ep_all_items_remaining to become '0'") self.bucket_util._wait_for_stats_all_buckets() # Update ref_val verification_dict["ops_create"] += \ self.num_items - len(task.fail.keys()) # Validate vbucket stats if self.durability_level in supported_d_levels: verification_dict["sync_write_committed_count"] += self.num_items failed = self.durability_helper.verify_vbucket_details_stats( def_bucket, self.cluster_util.get_kv_nodes(), vbuckets=self.cluster_util.vbuckets, expected_val=verification_dict) if failed: self.fail("Cbstat vbucket-details verification failed") # Verify initial doc load count self.log.info("Validating doc_count in buckets") self.bucket_util.validate_doc_count_as_per_collections(def_bucket) self.log.info("Creating doc_generator for doc_op") num_item_start_for_crud = int(self.num_items / 2) doc_update = doc_generator( self.key, 0, num_item_start_for_crud, key_size=self.key_size, doc_size=self.doc_size, doc_type=self.doc_type, target_vbucket=self.target_vbucket, vbuckets=self.cluster_util.vbuckets, mutate=1, randomize_doc_size=self.randomize_doc_size, randomize_value=self.randomize_value) if self.target_vbucket: mutation_doc_count = len(doc_update.doc_keys) else: mutation_doc_count = (doc_update.end - doc_update.start + len(task.fail.keys())) if doc_op == DocLoading.Bucket.DocOps.UPDATE: self.log.info("Performing 'update' mutation over the docs") task = self.task.async_load_gen_docs( self.cluster, def_bucket, doc_update, DocLoading.Bucket.DocOps.UPDATE, 0, batch_size=self.batch_size, process_concurrency=self.process_concurrency, replicate_to=self.replicate_to, persist_to=self.persist_to, durability=self.durability_level, compression=self.sdk_compression, timeout_secs=self.sdk_timeout, ryow=self.ryow, check_persistence=self.check_persistence, scope=self.scope_name, collection=self.collection_name, sdk_client_pool=self.sdk_client_pool) self.task.jython_task_manager.get_task_result(task) verification_dict["ops_update"] += mutation_doc_count if self.durability_level in supported_d_levels: verification_dict["sync_write_committed_count"] \ += mutation_doc_count if self.ryow: check_durability_failures() # Read all the values to validate update operation task = self.task.async_validate_docs( self.cluster, def_bucket, doc_update, DocLoading.Bucket.DocOps.UPDATE, 0, batch_size=self.batch_size, process_concurrency=self.process_concurrency, scope=self.scope_name, collection=self.collection_name, sdk_client_pool=self.sdk_client_pool) self.task.jython_task_manager.get_task_result(task) elif doc_op == DocLoading.Bucket.DocOps.DELETE: self.log.info("Performing 'delete' mutation over the docs") task = self.task.async_load_gen_docs( self.cluster, def_bucket, doc_update, DocLoading.Bucket.DocOps.DELETE, 0, batch_size=self.batch_size, process_concurrency=self.process_concurrency, replicate_to=self.replicate_to, persist_to=self.persist_to, durability=self.durability_level, compression=self.sdk_compression, timeout_secs=self.sdk_timeout, ryow=self.ryow, check_persistence=self.check_persistence, scope=self.scope_name, collection=self.collection_name, sdk_client_pool=self.sdk_client_pool) self.task.jython_task_manager.get_task_result(task) if self.collection_name is None: target_scope = CbServer.default_scope target_collection = CbServer.default_collection else: target_scope = self.scope_name target_collection = self.collection_name def_bucket \ .scopes[target_scope] \ .collections[target_collection] \ .num_items -= (self.num_items - num_item_start_for_crud) verification_dict["ops_delete"] += mutation_doc_count if self.durability_level in supported_d_levels: verification_dict["sync_write_committed_count"] \ += mutation_doc_count if self.ryow: check_durability_failures() # Read all the values to validate delete operation task = self.task.async_validate_docs( self.cluster, def_bucket, doc_update, DocLoading.Bucket.DocOps.DELETE, 0, batch_size=self.batch_size, process_concurrency=self.process_concurrency, sdk_client_pool=self.sdk_client_pool) self.task.jython_task_manager.get_task_result(task) else: self.log.warning("Unsupported doc_operation") self.log.info("Wait for ep_all_items_remaining to become '0'") self.bucket_util._wait_for_stats_all_buckets() failed = self.durability_helper.verify_vbucket_details_stats( def_bucket, self.cluster_util.get_kv_nodes(), vbuckets=self.cluster_util.vbuckets, expected_val=verification_dict) if failed: self.fail("Cbstat vbucket-details verification failed") self.log.info("Validating doc_count") self.bucket_util.validate_doc_count_as_per_collections(def_bucket) def test_large_doc_size(self): # bucket size=256MB, when Bucket gets filled 236MB then # test starts failing document size=2MB, No of docs = 221, # load 250 docs generate docs with size >= 1MB , See MB-29333 self.doc_size *= 1024*1024 gens_load = self.generate_docs_bigdata( docs_per_day=self.num_items, document_size=self.doc_size) for bucket in self.bucket_util.buckets: task = self.task.async_load_gen_docs( self.cluster, bucket, gens_load, DocLoading.Bucket.DocOps.CREATE, 0, batch_size=10, process_concurrency=8, replicate_to=self.replicate_to, persist_to=self.persist_to, durability=self.durability_level, compression=self.sdk_compression, timeout_secs=self.sdk_timeout, sdk_client_pool=self.sdk_client_pool) self.task.jython_task_manager.get_task_result(task) # check if all the documents(250) are loaded with default timeout self.bucket_util.verify_stats_all_buckets(self.num_items) def test_large_doc_20MB(self): # test reproducer for MB-29258, # Load a doc which is greater than 20MB # with compression enabled and check if it fails # check with compression_mode as active, passive and off val_error = SDKException.ValueTooLargeException gens_load = self.generate_docs_bigdata( docs_per_day=1, document_size=(self.doc_size * 1024000)) for bucket in self.bucket_util.buckets: task = self.task.async_load_gen_docs( self.cluster, bucket, gens_load, DocLoading.Bucket.DocOps.CREATE, 0, batch_size=10, process_concurrency=8, replicate_to=self.replicate_to, persist_to=self.persist_to, durability=self.durability_level, compression=self.sdk_compression, timeout_secs=self.sdk_timeout, sdk_client_pool=self.sdk_client_pool) self.task.jython_task_manager.get_task_result(task) if self.doc_size > 20: if len(task.fail.keys()) == 0: self.log_failure("No failures during large doc insert") for doc_id, doc_result in task.fail.items(): if val_error not in str(doc_result["error"]): self.log_failure("Invalid exception for key %s: %s" % (doc_id, doc_result)) else: if len(task.fail.keys()) != 0: self.log_failure("Failures during large doc insert") for bucket in self.bucket_util.buckets: if self.doc_size > 20: # failed with error "Data Too Big" when document size > 20MB self.bucket_util.verify_stats_all_buckets(0) else: self.bucket_util.verify_stats_all_buckets(1) gens_update = self.generate_docs_bigdata( docs_per_day=1, document_size=(21 * 1024000)) task = self.task.async_load_gen_docs( self.cluster, bucket, gens_update, DocLoading.Bucket.DocOps.UPDATE, 0, batch_size=10, process_concurrency=8, replicate_to=self.replicate_to, persist_to=self.persist_to, durability=self.durability_level, compression=self.sdk_compression, timeout_secs=self.sdk_timeout, sdk_client_pool=self.sdk_client_pool) self.task.jython_task_manager.get_task_result(task) if len(task.fail.keys()) != 1: self.log_failure("Large docs inserted for keys: %s" % task.fail.keys()) if len(task.fail.keys()) == 0: self.log_failure("No failures during large doc insert") for key, crud_result in task.fail.items(): if SDKException.ValueTooLargeException \ not in str(crud_result["error"]): self.log_failure("Unexpected error for key %s: %s" % (key, crud_result["error"])) for doc_id, doc_result in task.fail.items(): if val_error not in str(doc_result["error"]): self.log_failure("Invalid exception for key %s: %s" % (doc_id, doc_result)) self.bucket_util.verify_stats_all_buckets(1) self.validate_test_failure() def test_parallel_cruds(self): data_op_dict = dict() num_items = self.num_items half_of_num_items = self.num_items / 2 supported_d_levels = self.bucket_util.get_supported_durability_levels() exp_values_to_test = [0, 300, 10000, 12999] # Initial doc_loading initial_load = doc_generator(self.key, 0, self.num_items, doc_size=self.doc_size) task = self.task.async_load_gen_docs( self.cluster, self.bucket_util.buckets[0], initial_load, DocLoading.Bucket.DocOps.CREATE, 0, batch_size=100, process_concurrency=8, compression=self.sdk_compression, timeout_secs=self.sdk_timeout, sdk_client_pool=self.sdk_client_pool) self.task.jython_task_manager.get_task_result(task) # Create required doc_gens and doc_op task object for op_index, doc_op in enumerate(self.doc_ops): if doc_op == DocLoading.Bucket.DocOps.CREATE: num_items += half_of_num_items gen_start = self.num_items gen_end = self.num_items + half_of_num_items elif doc_op == DocLoading.Bucket.DocOps.DELETE: gen_start = 0 gen_end = half_of_num_items else: gen_start = half_of_num_items gen_end = self.num_items d_level = "" replicate_to = persist_to = 0 if self.observe_test: if self.num_replicas > 0: replicate_to = randint(1, self.num_replicas) persist_to = randint(0, self.num_replicas + 1) else: d_level = choice(supported_d_levels) doc_ttl = choice(exp_values_to_test) self.log.info("Doc_op %s, range (%d, %d), ttl=%s, " "replicate_to=%s, persist_to=%s, d_level=%s" % (doc_op, gen_start, gen_end, doc_ttl, replicate_to, persist_to, d_level)) # Required to handle similar doc_ops like create,create case dict_key = "%s_%s" % (doc_op, op_index) data_op_dict[dict_key] = dict() data_op_dict[dict_key]["doc_gen"] = doc_generator( self.key, gen_start, gen_end, doc_size=self.doc_size, mutation_type=doc_op) data_op_dict[dict_key]["task"] = self.task.async_load_gen_docs( self.cluster, self.bucket_util.buckets[0], data_op_dict[dict_key]["doc_gen"], doc_op, exp=doc_ttl, compression=self.sdk_compression, persist_to=persist_to, replicate_to=replicate_to, durability=d_level, timeout_secs=self.sdk_timeout, sdk_client_pool=self.sdk_client_pool, process_concurrency=1, batch_size=1, print_ops_rate=False, start_task=False, task_identifier="%s_%d" % (doc_op, op_index)) # Start all tasks for op_index, doc_op in enumerate(self.doc_ops): dict_key = "%s_%s" % (doc_op, op_index) self.task_manager.add_new_task(data_op_dict[dict_key]["task"]) # Wait for doc_ops to complete and validate final doc value result for op_index, doc_op in enumerate(self.doc_ops): dict_key = "%s_%s" % (doc_op, op_index) self.task_manager.get_task_result(data_op_dict[dict_key]["task"]) self.log.info("%s task completed" % doc_op) if data_op_dict[dict_key]["task"].fail: self.log_failure("Doc_loading failed for %s: %s" % (doc_op, data_op_dict[dict_key]["task"].fail)) elif doc_op in [DocLoading.Bucket.DocOps.CREATE, DocLoading.Bucket.DocOps.UPDATE, DocLoading.Bucket.DocOps.REPLACE, DocLoading.Bucket.DocOps.DELETE]: # Docs could have expired during CRUD, will get KEY_ENOENT if data_op_dict[dict_key]["task"].exp == exp_values_to_test[1]: continue suppress_err_tbl = False if doc_op == DocLoading.Bucket.DocOps.DELETE: suppress_err_tbl = True self.log.info("Validating %s results" % doc_op) # Read all the values to validate doc_operation values task = self.task.async_validate_docs( self.cluster, self.bucket_util.buckets[0], data_op_dict[dict_key]["doc_gen"], doc_op, 0, batch_size=self.batch_size, process_concurrency=self.process_concurrency, sdk_client_pool=self.sdk_client_pool, suppress_error_table=suppress_err_tbl) self.task.jython_task_manager.get_task_result(task) self.validate_test_failure() def test_diag_eval_curl(self): # Check if diag/eval can be done only by local host self.disable_diag_eval_on_non_local_host = \ self.input.param("disable_diag_eval_non_local", False) port = self.cluster.master.port # check if local host can work fine cmd = [] cmd_base = 'curl http://{0}:{1}@localhost:{2}/diag/eval ' \ .format(self.cluster.master.rest_username, self.cluster.master.rest_password, port) command = cmd_base + '-X POST -d \'os:cmd("env")\'' cmd.append(command) command = cmd_base + '-X POST ' \ '-d \'case file:read_file("/etc/passwd") ' \ 'of {ok, B} -> io:format("~p~n", ' \ '[binary_to_term(B)]) end.\'' cmd.append(command) shell = RemoteMachineShellConnection(self.cluster.master) for command in cmd: output, error = shell.execute_command(command) self.assertNotEquals("API is accessible from localhost only", output[0]) # Disable allow_nonlocal_eval if not self.disable_diag_eval_on_non_local_host: command = cmd_base + '-X POST -d \'ns_config:set(' \ 'allow_nonlocal_eval, true).\'' _, _ = shell.execute_command(command) # Check ip address on diag/eval will not work fine # when allow_nonlocal_eval is disabled cmd = [] cmd_base = 'curl http://{0}:{1}@{2}:{3}/diag/eval ' \ .format(self.cluster.master.rest_username, self.cluster.master.rest_password, self.cluster.master.ip, port) command = cmd_base + '-X POST -d \'os:cmd("env")\'' cmd.append(command) command = cmd_base + '-X POST ' \ '-d \'case file:read_file("/etc/passwd") ' \ 'of {ok, B} -> io:format("~p~n", ' \ '[binary_to_term(B)]) end.\'' cmd.append(command) for command in cmd: output, error = shell.execute_command(command) if self.disable_diag_eval_on_non_local_host: self.assertEquals("API is accessible from localhost only", output[0]) else: self.assertNotEquals("API is accessible from localhost only", output[0]) def test_MB_40967(self): """ 1. Load initial docs into the bucket 2. Perform continuous reads until get_cmd stats breaks in 'cbstats timings' command """ total_gets = 0 max_gets = 2500000000 bucket = self.bucket_util.buckets[0] doc_gen = doc_generator(self.key, 0, self.num_items, doc_size=1) create_task = self.task.async_load_gen_docs( self.cluster, bucket, doc_gen, DocLoading.Bucket.DocOps.CREATE, 0, batch_size=100, process_concurrency=self.process_concurrency, timeout_secs=self.sdk_timeout) self.task_manager.get_task_result(create_task) cbstat = dict() kv_nodes = self.cluster_util.get_kv_nodes() for node in kv_nodes: shell = RemoteMachineShellConnection(node) cbstat[node] = Cbstats(shell) self.log.info("Start doc_reads until total_gets cross: %s" % max_gets) read_task = self.task.async_continuous_doc_ops( self.cluster, bucket, doc_gen, op_type=DocLoading.Bucket.DocOps.READ, batch_size=self.batch_size, process_concurrency=self.process_concurrency, timeout_secs=self.sdk_timeout) self.sleep(60, "Wait for read task to start") while total_gets < max_gets: total_gets = 0 for node in kv_nodes: output, error = cbstat[node].get_timings(bucket.name) if error: self.log_failure("Error during cbstat timings: %s" % error) break get_cmd_found = False for line in output: if "get_cmd_" in line: if "get_cmd_mean" in line: break get_cmd_found = True if not get_cmd_found: self.log.error(output) self.log_failure("cbstat timings get_cmd stats not found") break vb_details = cbstat[node].vbucket_details(bucket.name) for _, vb_stats in vb_details.items(): total_gets += long(vb_stats["ops_get"]) if self.test_failure: break self.sleep(120, "Total_gets: %s, itr: %s" % (total_gets, read_task.itr_count)) read_task.end_task() self.task_manager.get_task_result(read_task) # Close all shell connections for node in kv_nodes: cbstat[node].shellConn.disconnect() self.validate_test_failure() def test_MB_41510(self): """ 1. Load initial docs into the bucket 2. Perform continuous reads 3. Perform 'mcstat reset' in parallel to the reads 4. Perform 'cbstats timings' command to read the current values 5. Validate there is no crash when stats are getting reset continuously """ def reset_mcstat(bucket_name): mc_stat = dict() for t_node in kv_nodes: shell_conn = RemoteMachineShellConnection(t_node) mc_stat[t_node] = McStat(shell_conn) while not stop_thread: for t_node in mc_stat.keys(): try: mc_stat[t_node].reset(bucket_name) except Exception as mcstat_err: self.log_failure(mcstat_err) if self.test_failure: break for t_node in mc_stat.keys(): mc_stat[t_node].shellConn.disconnect() def get_timings(bucket_name): cb_stat = dict() for t_node in kv_nodes: shell_conn = RemoteMachineShellConnection(t_node) cb_stat[t_node] = Cbstats(shell_conn) while not stop_thread: for t_node in cb_stat.keys(): try: cb_stat[t_node].get_timings(bucket_name) except Exception as cbstat_err: self.log_failure(cbstat_err) if self.test_failure: break for t_node in cb_stat.keys(): cb_stat[t_node].shellConn.disconnect() total_gets = 0 max_gets = 50000000 stop_thread = False bucket = self.bucket_util.buckets[0] cb_stat_obj = dict() kv_nodes = self.cluster_util.get_kv_nodes() for node in self.cluster_util.get_kv_nodes(): shell = RemoteMachineShellConnection(node) cb_stat_obj[node] = Cbstats(shell) doc_gen = doc_generator(self.key, 0, self.num_items, doc_size=1) create_task = self.task.async_load_gen_docs( self.cluster, bucket, doc_gen, DocLoading.Bucket.DocOps.CREATE, 0, batch_size=500, process_concurrency=self.process_concurrency, timeout_secs=self.sdk_timeout) self.task_manager.get_task_result(create_task) mc_stat_reset_thread = Thread(target=reset_mcstat, args=[bucket.name]) get_timings_thread = Thread(target=get_timings, args=[bucket.name]) mc_stat_reset_thread.start() get_timings_thread.start() read_task = self.task.async_continuous_doc_ops( self.cluster, bucket, doc_gen, op_type=DocLoading.Bucket.DocOps.READ, batch_size=self.batch_size, process_concurrency=self.process_concurrency, timeout_secs=self.sdk_timeout) while total_gets < max_gets: total_gets = 0 try: for node in cb_stat_obj.keys(): vb_details = cb_stat_obj[node].vbucket_details(bucket.name) for _, vb_stats in vb_details.items(): total_gets += long(vb_stats["ops_get"]) except Exception as err: self.log_failure(err) self.log.info("Total gets: %s" % total_gets) result = self.check_coredump_exist(self.servers, force_collect=True) if result is True: self.log_failure("Cb_logs validation failed") break elif self.test_failure: break self.sleep(60, "Wait before next check") stop_thread = True read_task.end_task() mc_stat_reset_thread.join() get_timings_thread.join() # Close all shell connections for node in cb_stat_obj.keys(): cb_stat_obj[node].shellConn.disconnect() self.validate_test_failure() def test_MB_41255(self): def create_docs_with_xattr(): value = {'val': 'a' * self.doc_size} xattr_kv = ["field", "value"] while not stop_loader: t_key = "%s-%s" % (self.key, self.num_items) crud_result = client.crud(DocLoading.Bucket.DocOps.CREATE, t_key, value, timeout=60) if crud_result["status"] is False: self.log_failure("Create key %s failed: %s" % (t_key, crud_result["error"])) break self.num_items += 1 client.crud("subdoc_insert", t_key, xattr_kv, xattr=True) nodes_data = dict() stop_loader = False non_resident_keys = list() non_resident_keys_len = 0 self.num_items = 0 max_keys_to_del = 250 self.active_resident_threshold = \ int(self.input.param("active_resident_threshold", 99)) bucket = self.bucket_util.buckets[0] for node in self.cluster_util.get_kv_nodes(): nodes_data[node] = dict() nodes_data[node]["shell"] = RemoteMachineShellConnection(node) nodes_data[node]["cbstats"] = Cbstats(nodes_data[node]["shell"]) nodes_data[node]["active_vbs"] = nodes_data[node][ "cbstats"].vbucket_list(bucket.name, "active") nodes_data[node]["replica_vbs"] = nodes_data[node][ "cbstats"].vbucket_list(bucket.name, "replica") bucket_helper = BucketHelper(self.cluster.master) client = SDKClient([self.cluster.master], bucket) self.log.info("Loading documents until %s%% DGM is achieved" % self.active_resident_threshold) dgm_thread = Thread(target=create_docs_with_xattr) dgm_thread.start() # Run doc_loading until the targeted DGM value is hit while not stop_loader: dgm_value = bucket_helper.fetch_bucket_stats(bucket.name)["op"][ "samples"]["vb_active_resident_items_ratio"][-1] if dgm_value <= self.active_resident_threshold: self.log.info("DGM value: %s" % dgm_value) stop_loader = True dgm_thread.join() self.log.info("Loaded %s documents" % self.num_items) # Wait for ep_engine_queue size to become '0' self.bucket_util._wait_for_stats_all_buckets() # Fetch evicted keys self.log.info("Fetching keys evicted from replica vbs") for doc_index in range(self.num_items): key = "%s-%s" % (self.key, doc_index) vb_for_key = self.bucket_util.get_vbucket_num_for_key(key) for node, n_data in nodes_data.items(): if vb_for_key in n_data["replica_vbs"]: stat = n_data["cbstats"].vkey_stat(bucket.name, key, vbucket_num=vb_for_key) if stat["is_resident"] == "false": non_resident_keys.append(key) non_resident_keys_len += 1 break if non_resident_keys_len >= max_keys_to_del: break self.log.info("Non-resident key count: %d" % non_resident_keys_len) # Start rebalance-out operation rebalance_out = self.task.async_rebalance( self.cluster.servers[0:self.nodes_init], [], [self.cluster.servers[-1]]) self.sleep(10, "Wait for rebalance to start") # Start deleting the evicted docs in parallel to rebalance task self.log.info("Deleting evicted keys") for key in non_resident_keys: result = client.crud(DocLoading.Bucket.DocOps.DELETE, key) if result["status"] is False: self.log_failure("Key %s deletion failed: %s" % (key, result["error"])) # Wait for rebalance to complete self.task_manager.get_task_result(rebalance_out) # Wait for ep_engine_queue size to become '0' self.bucket_util._wait_for_stats_all_buckets() # Trigger compaction self.bucket_util._run_compaction(number_of_times=1) # Read all deleted keys (include replica read) to validate for key in non_resident_keys: result = client.get_from_all_replicas(key) if result: self.log_failure("Key '%s' exists on %d replica(s)" % (key, len(result))) # Close SDK and shell connections client.close() for node in nodes_data.keys(): nodes_data[node]["shell"].disconnect() self.assertTrue(rebalance_out.result, "Rebalance_out failed") self.bucket_util.verify_stats_all_buckets(self.num_items - non_resident_keys_len) self.validate_test_failure() def test_MB_41405(self): """ 1. Pick random vbucket number 2. Create, Delete doc_keys and validate on_disk_deleted counter moves 3. Fetch bloom_filter_size during first delete op and run_compaction 4. Create-delete 10K more items and run compaction again 5. Make sure current bloom_filter_size is > the value during step#3 """ def validate_crud_result(op_type, doc_key, crud_result): if crud_result["status"] is False: self.log_failure("Key %s %s failed: %s" % (doc_key, op_type, crud_result["error"])) on_disk_deletes = 0 bloom_filter_size = None bucket = self.bucket_util.buckets[0] target_vb = choice(range(self.cluster_util.vbuckets)) vb_str = str(target_vb) doc_gen = doc_generator(self.key, 0, self.num_items, target_vbucket=[target_vb]) target_node = None nodes_data = dict() for node in self.cluster_util.get_kv_nodes(): nodes_data[node] = dict() nodes_data[node]["shell"] = RemoteMachineShellConnection(node) nodes_data[node]["cbstats"] = Cbstats(nodes_data[node]["shell"]) nodes_data[node]["active_vbs"] = nodes_data[node][ "cbstats"].vbucket_list(bucket.name, "active") if target_vb in nodes_data[node]["active_vbs"]: target_node = node # Open SDK client for doc_ops client = SDKClient([self.cluster.master], bucket) self.log.info("Testing using vbucket %s" % target_vb) while doc_gen.has_next(): key, val = doc_gen.next() vb_for_key = self.bucket_util.get_vbucket_num_for_key(key) # Create and delete a key result = client.crud(DocLoading.Bucket.DocOps.CREATE, key, val) validate_crud_result(DocLoading.Bucket.DocOps.CREATE, key, result) result = client.crud(DocLoading.Bucket.DocOps.DELETE, key, val) validate_crud_result(DocLoading.Bucket.DocOps.DELETE, key, result) on_disk_deletes += 1 # Wait for ep_queue_size to become zero self.bucket_util._wait_for_stats_all_buckets() dcp_vb_takeover_stats = nodes_data[target_node][ "cbstats"].dcp_vbtakeover(bucket.name, vb_for_key, key) if dcp_vb_takeover_stats["on_disk_deletes"] != on_disk_deletes: self.log_failure("Stat on_disk_deleted mismatch. " "Actual :: %s, Expected :: %s" % (dcp_vb_takeover_stats["on_disk_deletes"], on_disk_deletes)) # Record bloom filter and perform compaction for the first item if bloom_filter_size is None: vb_details_stats = nodes_data[target_node][ "cbstats"].vbucket_details(bucket.name) bloom_filter_size = \ vb_details_stats[vb_str]["bloom_filter_size"] self.log.info("Bloom filter size before compaction: %s" % bloom_filter_size) self.bucket_util._run_compaction(number_of_times=1) vb_details_stats = nodes_data[target_node][ "cbstats"].vbucket_details(bucket.name) bloom_filter_size_after_compaction = \ vb_details_stats[vb_str]["bloom_filter_size"] self.log.info("Bloom filter size after compaction: %s" % bloom_filter_size_after_compaction) # Create and delete 10K more items to validate bloom_filter_size doc_gen = doc_generator(self.key, self.num_items, self.num_items+10000, target_vbucket=[target_vb]) self.log.info("Loading 10K items for bloom_filter_size validation") while doc_gen.has_next(): key, val = doc_gen.next() # Create and delete a key client.crud(DocLoading.Bucket.DocOps.CREATE, key, val) client.crud(DocLoading.Bucket.DocOps.DELETE, key, val) # self.bucket_util._wait_for_stats_all_buckets() self.bucket_util._run_compaction(number_of_times=1) self.sleep(5, "Compaction complete") vb_details_stats = nodes_data[target_node][ "cbstats"].vbucket_details(bucket.name) bloom_filter_size_after_compaction = \ vb_details_stats[vb_str]["bloom_filter_size"] self.log.info("Bloom filter size after compaction: %s" % bloom_filter_size_after_compaction) if int(bloom_filter_size_after_compaction) <= int(bloom_filter_size): self.log_failure("Bloom filter init_size <= curr_size") # Close SDK and shell connections client.close() for node in nodes_data.keys(): nodes_data[node]["shell"].disconnect() self.validate_test_failure() def test_MB_43055(self): """ 1. Load till low_wm 2. Make non_io_threads=0 3. Load few more docs and so that we do exceed the high_wm, this schedules the item pager 4. Delete few docs to go below low_wm 5. Make non_io_threads=default. Now the item pager tries to run, but finds mem_used < low_wat so exits without paging anything, triggering the bug 6. Load docs to cross high_wm 7. Confirm that the item pager never runs successfully, even though the memory usage is back above the high watermark """ def perform_doc_op(op_type): start = self.num_items if op_type == DocLoading.Bucket.DocOps.DELETE: start = self.del_items doc_gen = doc_generator(self.key, start, start+load_batch, doc_size=self.doc_size) doc_op_task = self.task.async_load_gen_docs( self.cluster, bucket, doc_gen, op_type, timeout_secs=self.sdk_timeout, print_ops_rate=False, skip_read_on_error=True, suppress_error_table=True, batch_size=100, process_concurrency=8, sdk_client_pool=self.sdk_client_pool) self.task_manager.get_task_result(doc_op_task) self.bucket_util._wait_for_stats_all_buckets() if op_type == DocLoading.Bucket.DocOps.CREATE: self.num_items += load_batch elif op_type == DocLoading.Bucket.DocOps.DELETE: self.del_items += load_batch def display_bucket_water_mark_values(t_node): wm_tbl.rows = list() a_stats = nodes_data[t_node]["cbstat"].all_stats(bucket.name) wm_tbl.add_row(["High water_mark", a_stats["ep_mem_high_wat"], a_stats["ep_mem_high_wat_percent"]]) wm_tbl.add_row(["Low water_mark", a_stats["ep_mem_low_wat"], a_stats["ep_mem_low_wat_percent"]]) wm_tbl.add_row(["Num pager runs", a_stats["ep_num_pager_runs"], ""]) wm_tbl.add_row(["Memory Used", a_stats["mem_used"], ""]) wm_tbl.display("Memory stats") return a_stats stats = None nodes_data = dict() self.num_items = 0 self.del_items = 0 load_batch = 5000 # To provide little 'headroom' while loading/deleting docs in batches mem_buffer_gap = 10000 low_wm_reached = False high_wm_reached = False wm_tbl = TableView(self.log.info) bucket = self.bucket_util.buckets[0] wm_tbl.set_headers(["Stat", "Memory Val", "Percent"]) kv_nodes = self.cluster_util.get_kv_nodes() for node in kv_nodes: shell = RemoteMachineShellConnection(node) nodes_data[node] = dict() nodes_data[node]["shell"] = shell nodes_data[node]["cbstat"] = Cbstats(shell) nodes_data[node]["eviction_start"] = False nodes_data[node]["active_vbs"] = nodes_data[node][ "cbstat"].vbucket_list(bucket.name, "active") nodes_data[node]["replica_vbs"] = nodes_data[node][ "cbstat"].vbucket_list(bucket.name, "replica") target_node = choice(kv_nodes) cbepctl = Cbepctl(nodes_data[target_node]["shell"]) self.log.info("Loading till low_water_mark is reached") while not low_wm_reached: perform_doc_op(DocLoading.Bucket.DocOps.CREATE) stats = nodes_data[target_node]["cbstat"].all_stats(bucket.name) if int(stats["mem_used"]) > int(stats["ep_mem_low_wat"]): display_bucket_water_mark_values(target_node) self.log.info("Low water_mark reached") low_wm_reached = True if int(stats["ep_num_pager_runs"]) != 0: self.log_failure("ItemPager has run while loading") else: self.log.info("Setting num_nonio_threads=0") cbepctl.set(bucket.name, "flush_param", "num_nonio_threads", 0) self.log.info("Loading docs till high_water_mark is reached") while not high_wm_reached: perform_doc_op(DocLoading.Bucket.DocOps.CREATE) stats = nodes_data[target_node]["cbstat"].all_stats(bucket.name) if int(stats["mem_used"]) > int(stats["ep_mem_high_wat"]): display_bucket_water_mark_values(target_node) self.log.info("High water_mark reached") high_wm_reached = True if not high_wm_reached: self.log_failure("Failed to reach high_wm with the given load") if int(stats["ep_num_pager_runs"]) != 0: self.log_failure("ItemPager has run with non_io_threads=0") self.log.info("Delete docs until the mem_used goes below low_wm") low_wm_reached = False while not low_wm_reached and self.del_items < self.num_items: perform_doc_op(DocLoading.Bucket.DocOps.DELETE) stats = nodes_data[target_node]["cbstat"].all_stats(bucket.name) if int(stats["mem_used"]) < (int(stats["ep_mem_low_wat"]) - mem_buffer_gap): low_wm_reached = True display_bucket_water_mark_values(target_node) self.log.info("Low water_mark reached") if int(stats["ep_num_pager_runs"]) != 0: self.log_failure("ItemPager ran after del_op & non_io_threads=0") self.log.info("Setting num_nonio_threads=8") cbepctl.set(bucket.name, "flush_param", "num_nonio_threads", 8) self.sleep(10, "Wait after setting num_nonio_threads=8") stats = display_bucket_water_mark_values(target_node) if int(stats["ep_num_pager_runs"]) != 0: self.log_failure("ItemPager run with lower_wm levels") self.log.info("Loading docs till high_water_mark is reached") high_wm_reached = False while not high_wm_reached: perform_doc_op(DocLoading.Bucket.DocOps.CREATE) stats = nodes_data[target_node]["cbstat"].all_stats(bucket.name) if int(stats["mem_used"]) > (int(stats["ep_mem_high_wat"]) + mem_buffer_gap): high_wm_reached = True self.log.info("High water_mark reached") retry_count = 0 while retry_count < 5: retry_count += 1 stats = display_bucket_water_mark_values(target_node) if int(stats["ep_num_pager_runs"]) > 1: break self.sleep(1, "ep_num_pager_runs=%s, expected > 1" % stats["ep_num_pager_runs"]) else: self.log_failure("ItemPager not triggered with high_wm") elif int(stats["ep_num_pager_runs"]) > 5: high_wm_reached = True self.log.info("ep_num_pager_runs started running") # Closing all shell connections for node in nodes_data.keys(): nodes_data[node]["shell"].disconnect() self.validate_test_failure() def test_MB_42918(self): """ - Add item for some key - Stop persistence - Delete item - Do durable write with PersistMajority for same key - Doc get should return KEY_NOENT """ doc_val = {"field": "val"} bucket = self.bucket_util.buckets[0] shell = RemoteMachineShellConnection(self.cluster.master) cb_err = CouchbaseError(self.log, shell) client_1 = SDKClient([self.cluster.master], bucket) client_2 = SDKClient([self.cluster.master], bucket) # Perform create-delete to populate bloom-filter client_1.crud(DocLoading.Bucket.DocOps.CREATE, self.key, doc_val) self.bucket_util._wait_for_stats_all_buckets() client_1.crud(DocLoading.Bucket.DocOps.DELETE, self.key) self.bucket_util._wait_for_stats_all_buckets() self.bucket_util.verify_stats_all_buckets(0) # Create the document using async-write client_1.crud(DocLoading.Bucket.DocOps.CREATE, self.key, doc_val) self.bucket_util._wait_for_stats_all_buckets() self.bucket_util.verify_stats_all_buckets(1) # Stop persistence and delete te document cb_err.create(CouchbaseError.STOP_PERSISTENCE, bucket.name) self.sleep(2, "Wait after stop_persistence") client_1.crud(DocLoading.Bucket.DocOps.DELETE, self.key) # Get doc to make sure we see not_found exception result = client_1.crud(DocLoading.Bucket.DocOps.READ, self.key) if SDKException.DocumentNotFoundException not in str(result["error"]): self.log.info("Result: %s" % result) self.log_failure("Invalid exception with deleted_doc: %s" % result["error"]) # Perform sync-write to create doc prepare in hash-table create_thread = Thread( target=client_1.crud, args=[DocLoading.Bucket.DocOps.CREATE, self.key, doc_val], kwargs={"durability": Bucket.DurabilityLevel.PERSIST_TO_MAJORITY, "timeout": 15}) create_thread.start() self.sleep(5, "Wait to make sure prepare is generated") # Doc read should return not_found result = client_2.crud(DocLoading.Bucket.DocOps.READ, self.key) if SDKException.DocumentNotFoundException not in str(result["error"]): self.log.info("Result: %s" % result) self.log_failure("Invalid exception with prepared doc: %s" % result["error"]) result = client_2.get_from_all_replicas(self.key) if result: self.log_failure("Able to read deleted value: %s" % result) create_thread.join() cb_err.revert(CouchbaseError.STOP_MEMCACHED, bucket.name) # Close shell and SDK connections client_1.close() client_2.close() shell.disconnect() self.validate_test_failure() def test_MB_41942(self): """ 1. Load huge dataset into bucket with replica=1 2. Set doc_ttl for few docs on active node with persistence stopped 3. Kill memcached during loading 4. Set expiry pager to run during warmup 5. Kill memcached again such that kill happens before warmup completes 6. Validate high_seqno and uuid """ bucket = self.bucket_util.buckets[0] target_node = choice(self.cluster_util.get_kv_nodes()) self.log.info("Target node %s" % target_node.ip) shell = RemoteMachineShellConnection(target_node) cb_stat = Cbstats(shell) cb_error = CouchbaseError(self.log, shell) # Load initial data set into bucket self.log.info("Loading %s docs into bucket" % self.num_items) doc_gen = doc_generator(self.key, 0, self.num_items, doc_size=10000) load_task = self.task.async_load_gen_docs( self.cluster, bucket, doc_gen, DocLoading.Bucket.DocOps.CREATE, 0, batch_size=500, process_concurrency=8, replicate_to=self.replicate_to, persist_to=self.persist_to, durability=self.durability_level, compression=self.sdk_compression, timeout_secs=self.sdk_timeout, sdk_client_pool=self.sdk_client_pool, print_ops_rate=False) self.task_manager.get_task_result(load_task) self.bucket_util._wait_for_stats_all_buckets() self.durability_level = Bucket.DurabilityLevel.MAJORITY active_vbs = cb_stat.vbucket_list(bucket.name, vbucket_type="active") doc_gen = doc_generator(self.key, 0, 10000, doc_size=1, target_vbucket=active_vbs) # Load with doc_ttl set self.log.info("Setting doc_ttl=1 for %s docs" % 10000) load_task = self.task.async_load_gen_docs( self.cluster, bucket, doc_gen, DocLoading.Bucket.DocOps.UPDATE, exp=1, batch_size=2000, process_concurrency=5, durability=self.durability_level, timeout_secs=30, sdk_client_pool=self.sdk_client_pool, skip_read_on_error=True, print_ops_rate=False) self.task_manager.get_task_result(load_task) # Read task to trigger expiry_purger load_task = self.task.async_load_gen_docs( self.cluster, bucket, doc_gen, DocLoading.Bucket.DocOps.READ, batch_size=500, process_concurrency=8, timeout_secs=30, sdk_client_pool=self.sdk_client_pool, suppress_error_table=True, start_task=False, print_ops_rate=False) retry = 0 before_stats = None warmup_running = False # Kill memcached during ttl load cb_error.create(CouchbaseError.KILL_MEMCACHED) while not warmup_running and retry < 10: try: warmup_stats = cb_stat.warmup_stats(bucket.name) self.log.info("Current warmup state %s:%s" % (warmup_stats["ep_warmup_thread"], warmup_stats["ep_warmup_state"])) if warmup_stats["ep_warmup_thread"] != "complete": warmup_running = True while before_stats is None: before_stats = cb_stat.vbucket_details(bucket.name) self.log.info("Starting read task to trigger purger") self.task_manager.add_new_task(load_task) warmup_stats = cb_stat.warmup_stats(bucket.name) cb_error.create(CouchbaseError.KILL_MEMCACHED) self.log.info("Warmup state during mc_kill %s:%s" % (warmup_stats["ep_warmup_thread"], warmup_stats["ep_warmup_state"])) if warmup_stats["ep_warmup_thread"] == "complete": self.log_failure("Can't trust the outcome, " "bucket warmed_up before mc_kill") self.task_manager.get_task_result(load_task) except Exception: pass finally: retry += 1 self.sleep(0.3) while True: try: after_stats = cb_stat.vbucket_details(bucket.name) break except Exception: pass self.log.info("Validating high_seqno/uuid from vbucket-details") for vb_num, stats in before_stats.items(): t_stat = "high_seqno" pre_kill_stat = before_stats[vb_num] post_kill_stat = after_stats[vb_num] if int(pre_kill_stat[t_stat]) > int(post_kill_stat[t_stat]): self.log_failure("%s::%s - %s > %s" % (vb_num, t_stat, pre_kill_stat[t_stat], post_kill_stat[t_stat])) t_stat = "uuid" if vb_num in active_vbs \ and pre_kill_stat[t_stat] == post_kill_stat[t_stat]: self.log_failure("%s %s: %s == %s" % (vb_num, t_stat, pre_kill_stat[t_stat], post_kill_stat[t_stat])) shell.disconnect() self.validate_test_failure() def verify_stat(self, items, value="active"): mc = MemcachedClient(self.cluster.master.ip, constants.memcached_port) mc.sasl_auth_plain(self.cluster.master.rest_username, self.cluster.master.rest_password) mc.bucket_select('default') stats = mc.stats() self.assertEquals(stats['ep_compression_mode'], value) self.assertEquals(int(stats['ep_item_compressor_num_compressed']), items) self.assertNotEquals(int(stats['vb_active_itm_memory']), int(stats['vb_active_itm_memory_uncompressed'])) def test_compression_active_and_off(self): """ test reproducer for MB-29272, Load some documents with compression mode set to active get the cbstats change compression mode to off and wait for minimum 250ms Load some more documents and check the compression is not done epengine.basic_ops.basic_ops.test_compression_active_and_off,items=10000,compression_mode=active :return: """ # Load some documents with compression mode as active gen_create = doc_generator("eviction1_", start=0, end=self.num_items, key_size=self.key_size, doc_size=self.doc_size, doc_type=self.doc_type, vbuckets=self.cluster_util.vbuckets, randomize_doc_size=self.randomize_doc_size, randomize_value=self.randomize_value) gen_create2 = doc_generator("eviction2_", start=0, end=self.num_items, key_size=self.key_size, doc_size=self.doc_size, doc_type=self.doc_type, vbuckets=self.cluster_util.vbuckets, randomize_doc_size=self.randomize_doc_size, randomize_value=self.randomize_value) def_bucket = self.bucket_util.get_all_buckets()[0] task = self.task.async_load_gen_docs( self.cluster, def_bucket, gen_create, DocLoading.Bucket.DocOps.CREATE, 0, batch_size=10, process_concurrency=8, replicate_to=self.replicate_to, persist_to=self.persist_to, durability=self.durability_level, compression=self.sdk_compression, timeout_secs=self.sdk_timeout, sdk_client_pool=self.sdk_client_pool) self.task.jython_task_manager.get_task_result(task) self.bucket_util._wait_for_stats_all_buckets() self.bucket_util.verify_stats_all_buckets(self.num_items) remote = RemoteMachineShellConnection(self.cluster.master) for bucket in self.bucket_util.buckets: # change compression mode to off output, _ = remote.execute_couchbase_cli( cli_command='bucket-edit', cluster_host="localhost:8091", user=self.cluster.master.rest_username, password=self.cluster.master.rest_password, options='--bucket=%s --compression-mode off' % bucket.name) self.assertTrue(' '.join(output).find('SUCCESS') != -1, 'compression mode set to off') # sleep for 10 sec (minimum 250sec) self.sleep(10) # Load data and check stats to see compression # is not done for newly added data task = self.task.async_load_gen_docs( self.cluster, def_bucket, gen_create2, DocLoading.Bucket.DocOps.CREATE, 0, batch_size=10, process_concurrency=8, replicate_to=self.replicate_to, persist_to=self.persist_to, durability=self.durability_level, compression=self.sdk_compression, timeout_secs=self.sdk_timeout, sdk_client_pool=self.sdk_client_pool) self.task.jython_task_manager.get_task_result(task) self.bucket_util._wait_for_stats_all_buckets() self.bucket_util.verify_stats_all_buckets(self.num_items*2) def MB36948(self): node_to_stop = self.servers[0] self.log.info("Adding index/query node") self.task.rebalance([self.cluster.master], [self.servers[2]], [], services=["n1ql,index"]) self.log.info("Creating SDK client connection") client = SDKClient([self.cluster.master], self.bucket_util.buckets[0], compression_settings=self.sdk_compression) self.log.info("Stopping memcached on: %s" % node_to_stop) ssh_conn = RemoteMachineShellConnection(node_to_stop) err_sim = CouchbaseError(self.log, ssh_conn) err_sim.create(CouchbaseError.STOP_MEMCACHED) result = client.crud(DocLoading.Bucket.DocOps.CREATE, "abort1", "abort1_val") if not result["status"]: self.log_failure("Async SET failed") result = client.crud(DocLoading.Bucket.DocOps.UPDATE, "abort1", "abort1_val", durability=self.durability_level, timeout=3, time_unit="seconds") if result["status"]: self.log_failure("Sync write succeeded") if SDKException.DurabilityAmbiguousException not in result["error"]: self.log_failure("Invalid exception for sync_write: %s" % result) self.log.info("Resuming memcached on: %s" % node_to_stop) err_sim.revert(CouchbaseError.STOP_MEMCACHED) self.bucket_util._wait_for_stats_all_buckets() self.bucket_util.verify_stats_all_buckets(1) self.log.info("Closing ssh & SDK connections") ssh_conn.disconnect() client.close() self.validate_test_failure() def do_get_random_key(self): # MB-31548, get_Random key gets hung sometimes. mc = MemcachedClient(self.cluster.master.ip, constants.memcached_port) mc.sasl_auth_plain(self.cluster.master.rest_username, self.cluster.master.rest_password) mc.bucket_select('default') count = 0 while count < 1000000: count += 1 try: mc.get_random_key() except MemcachedError as error: self.fail("<MemcachedError #%d ``%s''>" % (error.status, error.message)) if count % 1000 == 0: self.log.info('The number of iteration is {}'.format(count))
test_arduino.py
import json import socket import threading import traceback from contextlib import ExitStack from time import sleep from typing import Dict import pytest from afancontrol.arduino import ( ArduinoConnection, ArduinoName, ArduinoPin, SetPWMCommand, pyserial_available, ) from afancontrol.pwmfan import ( ArduinoFanPWMRead, ArduinoFanPWMWrite, ArduinoFanSpeed, PWMValue, ) pytestmark = pytest.mark.skipif( not pyserial_available, reason="pyserial is not installed" ) class DummyArduino: """Emulate an Arduino board, i.e. the other side of the pyserial connection. Slightly mimics the Arduino program `micro.ino`. """ def __init__(self) -> None: s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) s.bind(("127.0.0.1", 0)) s.listen(1) listening_port = s.getsockname()[1] self.sock = s self.pyserial_url = "socket://127.0.0.1:%s" % listening_port self._lock = threading.Lock() self._loop_iteration_complete = threading.Event() self._first_loop_iteration_complete = threading.Event() self._disconnected = threading.Event() self._thread_error = threading.Event() self._is_connected = False self._inner_state_pwms = {"5": 255, "9": 255, "10": 255, "11": 255} self._inner_state_speeds = {"0": 0, "1": 0, "2": 0, "3": 0, "7": 0} def set_inner_state_pwms(self, pwms: Dict[str, int]) -> None: with self._lock: self._inner_state_pwms.update(pwms) if self.is_connected: self._loop_iteration_complete.clear() assert self._loop_iteration_complete.wait(5) is True def set_speeds(self, speeds: Dict[str, int]) -> None: with self._lock: self._inner_state_speeds.update(speeds) if self.is_connected: self._loop_iteration_complete.clear() assert self._loop_iteration_complete.wait(5) is True @property def inner_state_pwms(self): with self._lock: copy = self._inner_state_pwms.copy() return copy @property def is_connected(self): with self._lock: if not self._is_connected: return False assert self._first_loop_iteration_complete.wait(5) is True return True def wait_for_disconnected(self): assert self._disconnected.wait(5) is True def accept(self): client, _ = self.sock.accept() self.sock.close() # Don't accept any more connections with self._lock: self._is_connected = True threading.Thread(target=self._thread_run, args=(client,), daemon=True).start() def _thread_run(self, sock): sock.settimeout(0.001) command_buffer = bytearray() try: while True: # The code in this loop mimics the `loop` function # in the `micro.ino` program. try: command_buffer.extend(sock.recv(1024)) except socket.timeout: pass while len(command_buffer) >= 3: command_raw = command_buffer[:3] del command_buffer[:3] command = SetPWMCommand.parse(command_raw) with self._lock: self._inner_state_pwms[str(command.pwm_pin)] = command.pwm sock.sendall(self._make_status()) self._loop_iteration_complete.set() self._first_loop_iteration_complete.set() sleep(0.050) except (ConnectionResetError, BrokenPipeError): pass except Exception: traceback.print_exc() self._thread_error.set() finally: with self._lock: self._is_connected = False sock.close() self._disconnected.set() def _make_status(self): with self._lock: status = { "fan_inputs": self._inner_state_speeds, "fan_pwm": self._inner_state_pwms, } return (json.dumps(status) + "\n").encode("ascii") def ensure_no_errors_in_thread(self): assert self._thread_error.is_set() is not True @pytest.fixture def dummy_arduino(): return DummyArduino() def test_smoke(dummy_arduino): conn = ArduinoConnection(ArduinoName("test"), dummy_arduino.pyserial_url) fan_speed = ArduinoFanSpeed(conn, tacho_pin=ArduinoPin(3)) pwm_read = ArduinoFanPWMRead(conn, pwm_pin=ArduinoPin(9)) pwm_write = ArduinoFanPWMWrite(conn, pwm_pin=ArduinoPin(9)) dummy_arduino.set_inner_state_pwms({"9": 42}) with ExitStack() as stack: assert not dummy_arduino.is_connected stack.enter_context(fan_speed) stack.enter_context(pwm_read) stack.enter_context(pwm_write) dummy_arduino.accept() assert dummy_arduino.is_connected dummy_arduino.set_speeds({"3": 1200}) conn.wait_for_status() # required only for synchronization in the tests assert fan_speed.get_speed() == 1200 assert pwm_read.get() == 255 assert dummy_arduino.inner_state_pwms["9"] == 255 pwm_write.set(PWMValue(192)) dummy_arduino.set_speeds({"3": 998}) conn.wait_for_status() # required only for synchronization in the tests assert fan_speed.get_speed() == 998 assert pwm_read.get() == 192 assert dummy_arduino.inner_state_pwms["9"] == 192 dummy_arduino.wait_for_disconnected() assert dummy_arduino.inner_state_pwms["9"] == 255 assert not dummy_arduino.is_connected dummy_arduino.ensure_no_errors_in_thread()
c3po.py
# Copyright 2015-2018 CERN for the benefit of the ATLAS collaboration. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Authors: # - Thomas Beermann <thomas.beermann@cern.ch>, 2015-2017 # - Vincent Garonne <vgaronne@gmail.com>, 2017-2018 # - Hannes Hansen <hannes.jakob.hansen@cern.ch>, 2018-2019 # # PY3K COMPATIBLE ''' Dynamic data placement daemon. ''' import logging from datetime import datetime from hashlib import md5 from json import dumps try: from Queue import Queue except ImportError: from queue import Queue from sys import stdout from time import sleep from threading import Event, Thread from uuid import uuid4 from requests import post from requests.auth import HTTPBasicAuth from requests.exceptions import RequestException from rucio.client import Client from rucio.common.config import config_get, config_get_options from rucio.common.exception import RucioException from rucio.daemons.c3po.collectors.free_space import FreeSpaceCollector from rucio.daemons.c3po.collectors.jedi_did import JediDIDCollector from rucio.daemons.c3po.collectors.workload import WorkloadCollector logging.basicConfig(stream=stdout, level=getattr(logging, config_get('common', 'loglevel', raise_exception=False, default='DEBUG').upper()), format='%(asctime)s\t%(process)d\t%(levelname)s\t%(message)s') GRACEFUL_STOP = Event() def read_free_space(once=False, thread=0, waiting_time=1800): """ Thread to collect the space usage information for RSEs. """ free_space_collector = FreeSpaceCollector() timer = waiting_time while not GRACEFUL_STOP.is_set(): if timer < waiting_time: timer += 10 sleep(10) continue logging.info('collecting free space') free_space_collector.collect_free_space() timer = 0 def read_workload(once=False, thread=0, waiting_time=1800): """ Thread to collect the workload information from PanDA. """ workload_collector = WorkloadCollector() timer = waiting_time while not GRACEFUL_STOP.is_set(): if timer < waiting_time: timer += 10 sleep(10) continue logging.info('collecting workload') workload_collector.collect_workload() timer = 0 def print_workload(once=False, thread=0, waiting_time=600): """ Thread to regularly output the workload to logs for debugging. """ workload_collector = WorkloadCollector() timer = waiting_time while not GRACEFUL_STOP.is_set(): if timer < waiting_time: timer += 10 sleep(10) continue logging.info('Number of sites cached %d' % len(workload_collector.get_sites())) for site in workload_collector.get_sites(): logging.info('%s: %d / %d / %d' % (site, workload_collector.get_cur_jobs(site), workload_collector.get_avg_jobs(site), workload_collector.get_max_jobs(site))) timer = 0 def read_dids(once=False, thread=0, did_collector=None, waiting_time=60): """ Thread to collect DIDs for the placement algorithm. """ timer = waiting_time while not GRACEFUL_STOP.is_set(): if timer < waiting_time: timer += 10 sleep(10) continue did_collector.get_dids() timer = 0 def add_rule(client, did, src_rse, dst_rse): logging.debug('add rule for %s from %s to %s' % (did, src_rse, dst_rse)) r = client.add_replication_rule([did, ], 1, dst_rse, lifetime=604800, account='c3po', source_replica_expression=src_rse, activity='Data Brokering', asynchronous=True) logging.debug(r) def place_replica(once=False, thread=0, did_queue=None, waiting_time=100, dry_run=False, sampling=False, algorithms='t2_free_space_only_pop_with_network', datatypes='NTUP,DAOD', dest_rse_expr='type=DATADISK', max_bytes_hour=100000000000000, max_files_hour=100000, max_bytes_hour_rse=50000000000000, max_files_hour_rse=10000, min_popularity=8, min_recent_requests=5, max_replicas=5): """ Thread to run the placement algorithm to decide if and where to put new replicas. """ try: c3po_options = config_get_options('c3po') client = None if 'algorithms' in c3po_options: algorithms = config_get('c3po', 'algorithms') algorithms = algorithms.split(',') if not dry_run: if len(algorithms) != 1: logging.error('Multiple algorithms are only allowed in dry_run mode') return client = Client(auth_type='x509_proxy', account='c3po', creds={'client_proxy': '/opt/rucio/etc/ddmadmin.long.proxy'}) instances = {} for algorithm in algorithms: module_path = 'rucio.daemons.c3po.algorithms.' + algorithm module = __import__(module_path, globals(), locals(), ['PlacementAlgorithm']) instance = module.PlacementAlgorithm(datatypes, dest_rse_expr, max_bytes_hour, max_files_hour, max_bytes_hour_rse, max_files_hour_rse, min_popularity, min_recent_requests, max_replicas) instances[algorithm] = instance params = { 'dry_run': dry_run, 'sampling': sampling, 'datatypes': datatypes, 'dest_rse_expr': dest_rse_expr, 'max_bytes_hour': max_bytes_hour, 'max_files_hour': max_files_hour, 'max_bytes_hour_rse': max_bytes_hour_rse, 'max_files_hour_rse': max_files_hour_rse, 'min_recent_requests': min_recent_requests, 'min_popularity': min_popularity } instance_id = str(uuid4()).split('-')[0] elastic_url = config_get('c3po', 'elastic_url') elastic_index = config_get('c3po', 'elastic_index') ca_cert = False if 'ca_cert' in c3po_options: ca_cert = config_get('c3po', 'ca_cert') auth = False if ('elastic_user' in c3po_options) and ('elastic_pass' in c3po_options): auth = HTTPBasicAuth(config_get('c3po', 'elastic_user'), config_get('c3po', 'elastic_pass')) w = waiting_time while not GRACEFUL_STOP.is_set(): if w < waiting_time: w += 10 sleep(10) continue len_dids = did_queue.qsize() if len_dids > 0: logging.debug('(%s) %d did(s) in queue' % (instance_id, len_dids)) else: logging.debug('(%s) no dids in queue' % (instance_id)) for _ in range(0, len_dids): did = did_queue.get() for algorithm, instance in instances.items(): logging.info('(%s:%s) Retrieved %s:%s from queue. Run placement algorithm' % (algorithm, instance_id, did[0], did[1])) decision = instance.place(did) decision['@timestamp'] = datetime.utcnow().isoformat() decision['algorithm'] = algorithm decision['instance_id'] = instance_id decision['params'] = params create_rule = True if sampling and 'error_reason' not in decision: create_rule = bool(ord(md5(decision['did']).hexdigest()[-1]) & 1) decision['create_rule'] = create_rule # write the output to ES for further analysis index_url = elastic_url + '/' + elastic_index + '-' + datetime.utcnow().strftime('%Y-%m') + '/record/' try: if ca_cert: r = post(index_url, data=dumps(decision), verify=ca_cert, auth=auth) else: r = post(index_url, data=dumps(decision)) if r.status_code != 201: logging.error(r) logging.error('(%s:%s) could not write to ElasticSearch' % (algorithm, instance_id)) except RequestException as e: logging.error('(%s:%s) could not write to ElasticSearch' % (algorithm, instance_id)) logging.error(e) continue logging.debug(decision) if 'error_reason' in decision: logging.error('(%s:%s) The placement algorithm ran into an error: %s' % (algorithm, instance_id, decision['error_reason'])) continue logging.info('(%s:%s) Decided to place a new replica for %s on %s' % (algorithm, instance_id, decision['did'], decision['destination_rse'])) if (not dry_run) and create_rule: # DO IT! try: add_rule(client, {'scope': did[0], 'name': did[1]}, decision.get('source_rse'), decision.get('destination_rse')) except RucioException as e: logging.debug(e) w = 0 except Exception as e: logging.critical(e) def stop(signum=None, frame=None): """ Graceful exit. """ GRACEFUL_STOP.set() def run(once=False, threads=1, only_workload=False, dry_run=False, sampling=False, algorithms='t2_free_space_only_pop_with_network', datatypes='NTUP,DAOD', dest_rse_expr='type=DATADISK', max_bytes_hour=100000000000000, max_files_hour=100000, max_bytes_hour_rse=50000000000000, max_files_hour_rse=10000, min_popularity=8, min_recent_requests=5, max_replicas=5): """ Starts up the main thread """ logging.info('activating C-3PO') thread_list = [] try: if only_workload: logging.info('running in workload-collector-only mode') thread_list.append(Thread(target=read_workload, name='read_workload', kwargs={'thread': 0, 'waiting_time': 1800})) thread_list.append(Thread(target=print_workload, name='print_workload', kwargs={'thread': 0, 'waiting_time': 600})) else: logging.info('running in placement mode') did_queue = Queue() dc = JediDIDCollector(did_queue) thread_list.append(Thread(target=read_free_space, name='read_free_space', kwargs={'thread': 0, 'waiting_time': 1800})) thread_list.append(Thread(target=read_dids, name='read_dids', kwargs={'thread': 0, 'did_collector': dc})) thread_list.append(Thread(target=place_replica, name='place_replica', kwargs={'thread': 0, 'did_queue': did_queue, 'waiting_time': 10, 'algorithms': algorithms, 'dry_run': dry_run, 'sampling': sampling, 'datatypes': datatypes, 'dest_rse_expr': dest_rse_expr, 'max_bytes_hour': max_bytes_hour, 'max_files_hour': max_files_hour, 'max_bytes_hour_rse': max_bytes_hour_rse, 'max_files_hour_rse': max_files_hour_rse, 'min_popularity': min_popularity, 'min_recent_requests': min_recent_requests, 'max_replicas': max_replicas})) for t in thread_list: t.start() logging.info('waiting for interrupts') while len(thread_list) > 0: [t.join(timeout=3) for t in thread_list if t and t.isAlive()] except Exception as exception: logging.critical(exception)
server.py
from socket import * from threading import Thread debug = False # Global user list # Contains instances of the registered users registeredUsers = [] # USER CLASS # Defines an user # ip and username must be unique class User: username = "" ip = "" state = "busy" connectionStatus = False connectionSocket = "" def __init__(self, username): self.username = username def connnectSocket(self, connectionSocket): self.ip = connectionSocket.getpeername()[0] self.connectionSocket = connectionSocket self.connectionStatus = True def setState(self, newState): self.state = newState def tag(self): return self.username + '@' + self.ip def print(self): printStr = '----\n' + self.username + '\n' + self.ip + '\n' + self.state + '\n' + \ "Connected: " + str(self.connectionStatus) + '\n' + str(connectionSocket) + '\n----' print(printStr) @staticmethod def reconFromAddr(ipAddr): for user in registeredUsers: if user.ip == ipAddr: return user return -1 @staticmethod def reconFromUsr(username): for user in registeredUsers: if user.username == username: return user return -1 @staticmethod def authenticate(connectionSocket): msg = "CONNECTION ACK. PLEASE AUTH WITH USERNAME" connectionSocket.send(msg.encode('utf-8')) rec = connectionSocket.recv(1024) rec = rec.decode('utf-8') user = User.reconFromUsr(rec) if user == -1: msg = "AUTH FAILED" else: msg = "AUTH AS " + user.username user.connnectSocket(connectionSocket) connectionSocket.send(msg.encode('utf-8')) return user ###################### # COMMANDS FUNCTIONS # ###################### # RING # Sends a ring to destination def ring(sender, dest): if dest.connectionStatus == False: print("Failed to RING: dest offline") return -1 ringMessage = "RING " + sender.username dest.connectionSocket.send(ringMessage.encode('utf-8')) def getOnline(): onStr = "" for u in registeredUsers: if u.connectionStatus == True: onStr += (u.username + '\n') return onStr # CONNECTION HANDLER # Handle a connection with a client def handler(connecitonSocket): user = User.authenticate(connecitonSocket) if user == -1: print(connecitonSocket.getpeername(), "failed to authenticate") connecitonSocket.close() else: print(connecitonSocket.getpeername(), "authenticated as", user.username) while True: message = user.connectionSocket.recv(1024) message = message.decode("utf-8") print(user.tag(), ': ', message) handlerExit = commandHandler(message, user) if debug: for u in registeredUsers: u.print() if handlerExit == "CLOSE": print("User", user.tag(), "requested connection close") break elif handlerExit == "": print("User", user.tag(), "forced connection close (blank)") break user.connectionStatus = False user.connectionSocket.close() # COMMAND HANDLER # Recognizes the command and execute work # Or launch a handler for the command # Returns the name of the command decoded def commandHandler(message, user): cmd = message.split() if message == "": return "" if cmd[0] == "RING": dest = User.reconFromUsr(cmd[1]) ring(user, dest) elif cmd[0] == "SETSTATE": user.setState(message[9:]) elif cmd[0] == "GETSTATE": u = User.reconFromUsr(cmd[1]) user.connectionSocket.send(u.state.encode('utf-8')) elif cmd[0] == "GETONLINE": user.connectionSocket.send(getOnline().encode('utf-8')) # Returns the code for the command as connHndlr checks for CLOSE return cmd[0] # SERVER STARTUP # Setting up and launching server serverPort = 1200 serverSocket = socket(AF_INET, SOCK_STREAM) serverSocket.setsockopt(SOL_SOCKET, SO_REUSEADDR, 1) binding = ("", serverPort) serverSocket.bind(binding) # Load users # TODO implement from a file registeredUsers.append(User("mac")) registeredUsers.append(User("surface")) registeredUsers.append(User("leo")) registeredUsers.append(User("ricky")) registeredUsers.append(User("localhost")) # Launch server serverSocket.listen() print("Server is listening...") while True: connectionSocket, clientAddr = serverSocket.accept() print("Request from:", clientAddr[0]) # user = User.reconFromAddr(clientAddr[0]) # user.connnectSocket(connectionSocket) thread = Thread(target=handler, args=(connectionSocket, )) print("Opened connection with:", connectionSocket.getpeername(), "using Thread", thread) thread.start() serverSocket.close()
hilo.py
import threading def worker(): print ('Estoy trabajando') threads = list() for i in range(3): t = threading.Thread(target=worker) threads.append(t) """Agrega el hilo a threads""" t.start()
foo.py
# Python 3.3.3 and 2.7.6 # python fo.py # # Edited by Eilif Sommer Øyre # 17.01.2020 from threading import Thread # Potentially useful thing: # In Python you "import" a global variable, instead of "export"ing it when you declare it # (This is probably an effort to make you feel bad about typing the word "global") i = 0 def incrementingFunction(): global i for j in range(int(1e6)): i += 1 def decrementingFunction(): global i for j in range(int(1e6)): i -= 1 def main(): print(i) incrementing = Thread(target = incrementingFunction, args = (),) decrementing = Thread(target = decrementingFunction, args = (),) incrementing.start() decrementing.start() incrementing.join() decrementing.join() print("The magic number is %d" % (i)) main()
main.py
import sys import time from threading import Thread import pygame from pygame.sprite import Sprite from random import randint, choice from baby.graphics.Panel import Color, Panel _HORIZONTAL_OFFSET = 0 _VERTICAL_OFFSET = 0 def ms_to_sec(milliseconds) -> float: return milliseconds / 1000 def should_draw_shape(): return randint(0, 100) <= _TOLERANCE def set_settings(sprite_options) -> None: global PIXEL_DELTA_MAX, framerate, _TOLERANCE, thread, MOVEMENT, color_left, color_right, color_up, color_down, color_full, sprites MOVEMENT = randint(0, 100) PIXEL_DELTA_MAX = randint(1, 10) framerate = randint(1, 8) _TOLERANCE = randint(1, 30) sprites = choice(sprite_options) for sprite in sprites.sprites(): sprite.color = Color(MOVEMENT) setting_timeout = randint(1, 15) print(f""" MOVEMENT {MOVEMENT} PIXEL_DELTA_MAX {PIXEL_DELTA_MAX} framerate {framerate} _TOLERANCE {_TOLERANCE} setting_timeout {setting_timeout} sprites {sprites.sprites()} """) def wait_then_set(): time.sleep(setting_timeout) set_settings(sprite_options) thread = Thread(target=wait_then_set, daemon=True).start() def main(): global sprites MOVEMENT = 5 pygame.init() infoObject = pygame.display.Info() SCREEN_WIDTH = infoObject.current_w SCREEN_HEIGHT = infoObject.current_h left_x = 0 left_y = 0 right_x = SCREEN_WIDTH / 2 right_y = 0 up_x = 0 up_y = 0 down_y = SCREEN_HEIGHT / 2 down_x = 0 left = Panel(x=left_x, y=left_y, width=SCREEN_WIDTH, height=SCREEN_HEIGHT) right = Panel(x=right_x, y=right_y, width=SCREEN_WIDTH / 2, height=SCREEN_HEIGHT) up = Panel(x=up_x, y=up_y, width=SCREEN_WIDTH, height=SCREEN_HEIGHT / 2) down = Panel(x=down_x, y=down_y, width=SCREEN_WIDTH, height=SCREEN_HEIGHT / 2) full = Panel(x=right_x, y=right_y, width=SCREEN_WIDTH, height=SCREEN_HEIGHT) # sprite_list_name = [Shape() for _ in range(0, 1)] vertical_sprites = pygame.sprite.Group([left, right]) horizontal_sprites = pygame.sprite.Group([up, down]) full_sprites = pygame.sprite.Group([full, ]) set_settings([vertical_sprites, horizontal_sprites, full_sprites]) clock = pygame.time.Clock() screen = pygame.display.set_mode((0, 0), pygame.FULLSCREEN) print("framerate:", framerate) print("tolerance:", _TOLERANCE) while True: for event in pygame.event.get(): if event.type == pygame.QUIT: pygame.quit() sys.exit() sprites.draw(screen) sprites.update() pygame.display.flip() clock.tick(framerate) if __name__ == "__main__": main()
s20.py
""" Orbivo S20. """ import binascii import struct import logging import socket import threading import time _LOGGER = logging.getLogger(__name__) # S20 UDP port PORT = 10000 # UDP best-effort. RETRIES = 3 TIMEOUT = 1.0 DISCOVERY_TIMEOUT = 1.0 # Timeout after which to renew device subscriptions SUBSCRIPTION_TIMEOUT = 60 # Packet constants. MAGIC = b'\x68\x64' DISCOVERY = b'\x00\x06\x71\x61' DISCOVERY_RESP = b'\x00\x2a\x71\x61' SUBSCRIBE = b'\x00\x1e\x63\x6c' SUBSCRIBE_RESP = b'\x00\x18\x63\x6c' CONTROL = b'\x00\x17\x64\x63' CONTROL_RESP = b'\x00\x17\x73\x66' PADDING_1 = b'\x20\x20\x20\x20\x20\x20' PADDING_2 = b'\x00\x00\x00\x00' ON = b'\x01' OFF = b'\x00' # Socket _SOCKET = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) # Buffer _BUFFER = {} def _listen(): """ Listen on socket. """ while True: data, addr = _SOCKET.recvfrom(1024) _BUFFER[addr[0]] = data def _setup(): """ Set up module. Open a UDP socket, and listen in a thread. """ _SOCKET.setsockopt(socket.SOL_SOCKET, socket.SO_BROADCAST, 1) _SOCKET.bind(('', PORT)) udp = threading.Thread(target=_listen) udp.daemon = True udp.start() def _device_time(tab): ts = struct.unpack('<L', tab)[0] - 2208988800 return ts def discover(timeout=DISCOVERY_TIMEOUT): """ Discover devices on the local network. :param timeout: Optional timeout in seconds. :returns: Set of discovered host addresses. """ hosts = {} payload = MAGIC + DISCOVERY for _ in range(RETRIES): _SOCKET.sendto(bytearray(payload), ('255.255.255.255', PORT)) start = time.time() while time.time() < start + timeout: for host, data in _BUFFER.copy().items(): if not _is_discovery_response(data): continue if host not in hosts: _LOGGER.debug("Discovered device at %s", host) entry = {} entry['mac'] = data[7:13] entry['imac'] = data[19:25] entry['next'] = 0 entry['st'] = int(binascii.hexlify(data[-1])) entry['time'] = _device_time(data[37:41]) entry['serverTime'] = int(time.time()) hosts[host] = entry return hosts def _is_discovery_response(data): """ Is this a discovery response? :param data: Payload. """ return data[0:6] == (MAGIC + DISCOVERY_RESP) def _is_subscribe_response(data): """ Is this a subscribe response? :param data: Payload. """ return data[0:6] == (MAGIC + SUBSCRIBE_RESP) def _is_control_response(data): """ Is this a control response? :param data: Payload. """ return data[0:6] == (MAGIC + CONTROL_RESP) class S20Exception(Exception): """ S20 exception. """ pass class S20(object): """ Controls an Orbivo S20 WiFi Smart Socket. http://www.orvibo.com/en_products_view.asp?mid=15&pid=4&id=234 Protocol documentation: http://pastebin.com/LfUhsbcS """ def __init__(self, host, mac = None): """ Initialize S20 object. :param host: IP or hostname of device. """ self.host = host if not mac: (self._mac, self._mac_reversed) = self._discover_mac() else: if type(mac) is str: self._mac = binascii.a2b_hex(''.join(mac.split(':'))) else: self._mac = mac ba = bytearray(self._mac) ba.reverse() self._mac_reversed = ba self._subscribe() @property def on(self): """ State property. :returns: State of device (on/off). """ return self._subscribe() @on.setter def on(self, state): """ Change device state. :param state: True (on) or False (off). """ if state: self._turn_on() else: self._turn_off() def _discover_mac(self): """ Discovers MAC address of device. Discovery is done by sending a UDP broadcast. All configured devices reply. The response contains the MAC address in both needed formats. Discovery of multiple switches must be done synchronously. :returns: Tuple of MAC address and reversed MAC address. """ mac = None mac_reversed = None cmd = MAGIC + DISCOVERY resp = self._udp_transact(cmd, self._discovery_resp, broadcast=True, timeout=DISCOVERY_TIMEOUT) if resp: (mac, mac_reversed) = resp if mac is None: raise S20Exception("Couldn't discover {}".format(self.host)) return (mac, mac_reversed) def _subscribe(self): """ Subscribe to the device. A subscription serves two purposes: - Returns state (on/off). - Enables state changes on the device for a short period of time. """ cmd = MAGIC + SUBSCRIBE + self._mac \ + PADDING_1 + self._mac_reversed + PADDING_1 status = self._udp_transact(cmd, self._subscribe_resp, broadcast=False, timeout=TIMEOUT) if status is not None: self.last_subscribed = time.time() return status == ON else: raise S20Exception( "No status could be found for {}".format(self.host)) def _subscription_is_recent(self): """ Check if subscription occurred recently. :returns: Yes (True) or no (False) """ return self.last_subscribed > time.time() - SUBSCRIPTION_TIMEOUT def _control(self, state): """ Control device state. Possible states are ON or OFF. :param state: Switch to this state. """ # Renew subscription if necessary if not self._subscription_is_recent(): self._subscribe() cmd = MAGIC + CONTROL + self._mac + PADDING_1 + PADDING_2 + state _LOGGER.debug("Sending new state to %s: %s", self.host, ord(state)) ack_state = self._udp_transact(cmd, self._control_resp, False, TIMEOUT, state) if ack_state is None: raise S20Exception( "Device didn't acknowledge control request: {}".format( self.host)) def _discovery_resp(self, data): """ Handle a discovery response. :param data: Payload. :param addr: Address tuple. :returns: MAC and reversed MAC. """ if _is_discovery_response(data): _LOGGER.debug("Discovered MAC of %s: %s", self.host, binascii.hexlify(data[7:13]).decode()) return (data[7:13], data[19:25]) def _subscribe_resp(self, data): """ Handle a subscribe response. :param data: Payload. :returns: State (ON/OFF) """ if _is_subscribe_response(data): status = data[23] _LOGGER.debug("Successfully subscribed to %s, state: %s", self.host, ord(status)) return status def _control_resp(self, data, state): """ Handle a control response. :param data: Payload. :param state: Requested state. :returns: Acknowledged state. """ if _is_control_response(data): ack_state = data[22] if state == ack_state: _LOGGER.debug("Received state ack from %s, state: %s", self.host, ord(ack_state)) return ack_state def _udp_transact(self, payload, handler, broadcast, timeout, *args): """ Complete a UDP transaction. UDP is stateless and not guaranteed, so we have to take some mitigation steps: - Send payload multiple times. - Wait for a while to receive response. :param payload: Payload to send. :param handler: Response handler. :param args: Arguments to pass to response handler. :param broadcast: Send a broadcast instead. :param timeout: Timeout in seconds. """ if self.host in _BUFFER: del _BUFFER[self.host] host = self.host if broadcast: host = '255.255.255.255' retval = None for _ in range(RETRIES): _SOCKET.sendto(bytearray(payload), (host, PORT)) start = time.time() while time.time() < start + timeout: data = _BUFFER.get(self.host, None) if data: retval = handler(data, *args) # Return as soon as a response is received if retval is not None: return retval def _turn_on(self): """ Turn on the device. """ self._control(ON) def _turn_off(self): """ Turn off the device. """ self._control(OFF) _setup()
zlp_connections.py
# Copyright (c) 2020, FADA-CATEC # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Helper module for python thrift interface to ZLP Service. This module contains utility classes and methods which ease the usage of the thrift interface to communicate with the ZLP Service.""" import os import sys import time import socket import copy import threading import thriftpy from thriftpy.protocol import TBinaryProtocolFactory from thriftpy.server import TThreadedServer, TSimpleServer from thriftpy.thrift import TProcessor, TClient from thriftpy.transport import TBufferedTransportFactory, TServerSocket, TSocket class EventChannelInterfaceHandler(object): """This class implement the functions of ClientEventChannel thrift interface. Attributes: property_changed_callback (object): callback to handle settings changes on laser projector system geo_tree_changed_callback (object): callback to handle changes on geotree operator service_state_changed_callback (object): callback to handle changes on services state function_module_changed_callback (object): callback to handle changes on function module state rc_command_received_callback (object): callback to handle remote control commands reception on_reflection_state_changed_callback (object): callback to handle changes on reflection state """ def __init__(self): """Initialize the EventChannelInterfaceHandler object.""" self.property_changed_callback = lambda x, y: None self.geo_tree_changed_callback = lambda x, y: None self.service_state_changed_callback = lambda x, y: None self.function_module_changed_callback = lambda x, y, z: None self.rc_command_received_callback = lambda a, b, c, d, e: None self.on_reflection_state_changed_callback = lambda a, b: None def PropertyChanged(self, name, value): """Set callback function to handle settings changes on laser projector system. Args: name (str): full path of property that was changed value (int): value of property """ self.property_changed_callback(name, value) def GeoTreeChanged(self, changed_flags, element_names): """Set callback function to handle changes on geotree operator. Args: changed_flags (int): integer value with flags of type GeoTreeChangedFlags element_names (enum): identification of changed element (within the GeoTreeElemId enumeration ) """ self.geo_tree_changed_callback(changed_flags, element_names) def ServiceStateChanged(self, oldState, newState): """Set callback function to handle changes on services state. Args: oldState (enum): old state (within the ServiceStates enumeration) before change newState (enum): new state (within the ServiceStates enumeration) after change """ self.service_state_changed_callback(oldState, newState) def FunctionModuleStateChanged(self, functionModID, oldState, newState): """Set callback function to handle changes on function module state. Args: functionModID (str): identificator name of function module oldState (enum): old state (within the FunctionModuleStates enumeration) before change newState (enum): new state (within the FunctionModuleStates enumeration) after change """ self.function_module_changed_callback(functionModID, oldState, newState) def RemoteControlFrameReceived(self, rc_id, command, toggle, projector, timestamp): """Set callback function to handle remote control commands reception. Args: rc_id (str): address of RC-device command (enum): enum with command codes for remotecontrol functions toggle (bool): toggle function active projector (str): serial number of the projector timestamp (int): timestamp """ self.rc_command_received_callback(rc_id, command, toggle, projector, timestamp) def onReflectionStateChanged(self, elementName, state): """Set callback function to handle changes on reflection state. Args: elementName (str): name of the element that changed state state (bool): true if a reflection was detected; False otherwise """ self.on_reflection_state_changed_callback(elementName, state) class ThriftClient(TClient): """This class implement the functions to carry out the connection with the ZLP Service. Args: event_handler (object): object with functions of ClientEventChannel thrift interface Attributes: thrift_interface (obj): load the interface description file (interface.thrift) for the communication between ZLP-Service and a remote client """ def __init__(self, event_handler=EventChannelInterfaceHandler()): """Initialize the ThriftClient object.""" self._event_channel = None self._event_channel_handler = event_handler _interface_file = os.path.join(os.path.dirname(os.path.abspath(__file__)), "interface.thrift") self.thrift_interface = thriftpy.load(_interface_file, module_name="zlaser_thrift") def init_client(self, ip, port): """Establish a connection to thrift server of ZLP Service. Init client opening sockets and init events handler. Args: ip (str): ipv6 network address of ZLP-Service port (str): port number on which ZLP-Service listens for requests """ client_socket = TSocket(ip, port, socket_family=socket.AF_INET, socket_timeout=50000) transport = TBufferedTransportFactory().get_transport(client_socket) protocol = TBinaryProtocolFactory().get_protocol(transport) transport.open() super().__init__(self.thrift_interface.ServiceInterface, protocol) def init_event_channel(self): """Create a thrift server and register it at ZLP Service to receive events.""" if self._event_channel_handler and not self._event_channel: processor = TProcessor(self.thrift_interface.ClientEventChannel, self._event_channel_handler) server_socket = TServerSocket(host="0.0.0.0", port=0, socket_family=socket.AF_INET, client_timeout=200000) server_socket.client_timeout = 1000*60*10 self._event_channel = TSimpleServer(processor, server_socket) t = threading.Thread(target=self._event_channel.serve, daemon=True) t.start() time.sleep(1) connection = self._event_channel.trans.sock.getsockname() self.ConnectClientEventChannel(connection[1]) def set_property_changed_callback(self, callback): """Set callback function related with laser projector settings changes. Args: callback (object): callback function to set Raises: ValueError """ if self._event_channel_handler: self._event_channel_handler.property_changed_callback = callback else: raise ValueError("Error: Can't install callback, because event_handler = none!") def set_geotree_changed_callback(self, callback): """Set callback function related with geotree operator changes. Args: callback (object): callback function to set Raises: ValueError """ if self._event_channel_handler: self._event_channel_handler.geo_tree_changed_callback = callback else: raise ValueError("Error: Can't install callback, because event_handler = none!") def set_function_module_state_changed_callback(self, callback): """Set callback function related with function module state changes. Args: callback (object): callback function to set Raises: ValueError """ if self._event_channel_handler: self._event_channel_handler.function_module_changed_callback = callback else: raise ValueError("Error: Can't install callback, because event_handler = none!") def set_rc_command_received_callback(self, callback): """Set callback function related with remote control commands reception. Args: callback (object): callback function to set Raises: ValueError """ if self._event_channel_handler: self._event_channel_handler.rc_command_received_callback = callback else: raise ValueError("Error: Can't install callback, because event_handler = none!") def set_reflection_state_changed_callback(self, callback): """Set callback function related with reflection state changes. Args: callback (object): callback function to set Raises: ValueError """ if self._event_channel_handler: self._event_channel_handler.on_reflection_state_changed_callback = callback else: raise ValueError("Error: Can't install callback, because event_handler = none!") class ProjectorClient(object): """This class implements the functions for connecting to the projector and basic projection features. Attributes: projector_id (str): serial number of the projector module_id (str): function module identification name """ def __init__(self): """Initialize the ProjectorClient object.""" self.projector_id = "" self.module_id = "" self.__thrift_client = ThriftClient() self.cv = threading.Condition() def get_thrift_client(self): """Return the object generated to communicate with the projector. Returns: object: thrift client object generated to communicate with the projector """ try: return self.__thrift_client except Exception as e: return e def connect(self,server_IP,connection_port): """Create and connect the client to thrift server (located at projector) of ZLP-Service and establish an event channel if needed. Args: server_IP (str): ipv6 network address of ZLP-Service connection_port (str): port number on which ZLP-Service listens for requests Returns: tuple[bool, str]: the first value in the returned tuple is a bool success value and the second value in the tuple is an information message string """ try: if not self.__thrift_client._event_channel: self.__thrift_client.init_client(server_IP, connection_port) self.__thrift_client.init_event_channel() success = True message = "Client connected" else: success = False message = "Projector already connected" except Exception as e: success = False message = e return success,message def disconnect(self): """Disconnect from ZLP Service thrift server and close own event server. Returns: tuple[bool, str]: the first value in the returned tuple is a bool success value and the second value in the tuple is an information message string """ try: self.__thrift_client.RemoveGeoTreeElem("") self.__thrift_client.FunctionModuleRelease(self.module_id) self.__thrift_client.DisconnectClientEventChannel() self.__thrift_client.close() if self.__thrift_client._event_channel: self.__thrift_client._event_channel.close() self.__thrift_client._event_channel = None success = True message = "Projector disconnected" except Exception as e: success = False message = e return success,message def connection_status(self): """Get status of projection connection. Returns: bool: status of the event channel object. Projector connected if true, disconnected otherwise """ return self.__thrift_client._event_channel def transfer_license(self, lic_path): """Transfer data of the local license file to remote file at ZLP-Service. Args: lic_path (str): license file path Returns: tuple[bool, str]: the first value in the returned tuple is a bool success value and the second value in the tuple is an information message string """ try: license_path = os.path.abspath(lic_path) license_file = os.path.basename(license_path) content = open(license_path, 'r').read() self.__thrift_client.TransferDataToFile(content, license_file, True) self.__thrift_client.LoadLicense(license_file) success = True message = "License transfered." except self.__thrift_client.thrift_interface.CantWriteFile as e: success = False message = e except FileNotFoundError as e: success = False message = e except Exception as e: success = False message = e return success,message def check_license(self): """Check if license is valid. Returns: tuple[bool, str]: the first value in the returned tuple is a bool success value and the second value in the tuple is an information message string """ try: success = self.__thrift_client.CheckLicense() if success: message = "License is valid" else: message = "License is not valid" except Exception as e: success = False message = e return success,message def scan_projectors(self, scan_addresses=""): """Scan the network for projectors. Get a list of active projectors. Args: scan_addresses (str): addresses or address to scan Returns: tuple[list, bool, str]: the first value in the returned tuple is a list of serial numbers of the projectors found, the second a bool success value and the third value in the tuple is an information message string """ try: self.__thrift_client.SetProperty("config.projectorManager.cmdGetProjectors.scan", "1") self.__thrift_client.SetProperty("config.projectorManager.cmdGetProjectors.scanAddresses", scan_addresses) self.__thrift_client.SetProperty("config.projectorManager.cmdGetProjectors", "1") serial_list = self.__thrift_client.GetProperty("config.projectorManager.cmdGetProjectors.result.entries") self.__thrift_client.SetProperty("config.projectorManager.cmdGetProjectors.scan", "0") if serial_list: serial_list = serial_list.split(" ") success = True message = "" else: serial_list = [] success = False message = "No projectors found" except Exception as e: serial_list = [] success = False message = e return serial_list,success,message def property_changed_callback(self, prop, value): """Callback function related with laser projector settings changes. Args: prop (str): full path of property that was changed value (int): value of property """ self.cv.acquire() self.cv.notify() self.cv.release() def activate_projector(self,projector_IP): """Set properties to activate a projector. Args: projector_IP (str): address of the projector to scan Returns: tuple[str, bool, str]: the first value in the returned tuple is the serial number string of the activated projector, the second a bool success value and the third value in the tuple is an information message string """ try: projectors, success, message = self.scan_projectors(projector_IP) if success: self.__thrift_client.set_property_changed_callback(self.property_changed_callback) self.__thrift_client.RegisterForChangedProperty("config.licenseState.IsValid") self.cv.acquire() self.projector_id = projectors[0] self.__thrift_client.SetProperty("config.projectorManager.cmdActivateProjector.serial", self.projector_id) self.__thrift_client.SetProperty("config.projectorManager.cmdActivateProjector.active", "1") self.__thrift_client.SetProperty("config.projectorManager.cmdActivateProjector", "1") self.cv.wait() self.cv.release() message = "Projector activated" except Exception as e: success = False message = e return self.projector_id,success,message def deactivate_projector(self): """Set properties to deactivate a projector. Returns: tuple[bool, str]: the first value in the returned tuple is a bool success value and the second value in the tuple is an information message string """ try: projector_property_path = "config.projectorManager.projectors." + self.projector_id self.__thrift_client.SetProperty(projector_property_path + ".cmdShowProjection.show", "0") self.__thrift_client.SetProperty(projector_property_path + ".cmdShowProjection", "1") self.__thrift_client.SetProperty("config.projectorManager.cmdActivateProjector.serial", self.projector_id) self.__thrift_client.SetProperty("config.projectorManager.cmdActivateProjector.active", "0") self.__thrift_client.SetProperty("config.projectorManager.cmdActivateProjector", "1") success = True message = "Projector deactivated:" + self.projector_id except Exception as e: success = False message = e return success,message def function_module_create(self): """Create function module to operate with GeoTreeElements (coordinate systems and projection elements). Returns: tuple[str, bool, str]: the first value in the returned tuple is the function module identification name string, the second is a bool success value and the third value in the tuple is an information message string """ try: self.module_id = self.__thrift_client.FunctionModuleCreate("zFunctModRegister3d", "3DReg") success = True message = "Function module created" except Exception as e: success = False message = e return self.module_id,success,message def start_project(self, cs_name): """Start projection on the surface of all projection elements that belong to the active coordinate system. Args: cs_name (str): name of the active coordinate system Returns: tuple[bool, str]: the first value in the returned tuple is a bool success value and the second value in the tuple is an information message string """ try: if not cs_name: success = False message = "None Coordinate System set" if not self.__thrift_client.GetGeoTreeElement(cs_name).activated: success = False message = "Coordinate_system is not activated" if self.is_empty(cs_name): success = False message = "Nothing to project" else: self.__thrift_client.TriggerProjection() success = True message = "Projecting elements from [" + cs_name + "] coordinate system." except Exception as e: success = False message = e return success,message def stop_project(self): """Stop projection of all elements. Returns: tuple[bool, str]: the first value in the returned tuple is a bool success value and the second value in the tuple is an information message string """ try: projector_property_path = "config.projectorManager.projectors." + self.projector_id self.__thrift_client.SetProperty(projector_property_path + ".cmdShowProjection.show", "0") self.__thrift_client.SetProperty(projector_property_path + ".cmdShowProjection", "1") success = True message = "Projection stopped" except Exception as e: success = False message = e return success,message def update_project(self,cs_name): """Update changes on figures projected (restart projection). Args: cs_name (str): name of the coordinate system to update Returns: tuple[bool, str]: the first value in the returned tuple is a bool success value and the second value in the tuple is an information message string """ try: self.stop_project() self.start_project(cs_name) success = True message = "Projection updated." except Exception as e: success = False message = e return success,message def is_empty(self, cs_name): """Check if coordinate system has associated projection elements. Args: cs_name (str): name of the coordinate system to check Returns: bool: true if there is any projection element defined at the coordinate system, false otherwise """ is_empty = False try: geo_tree_list = self.__thrift_client.GetGeoTreeIds() # elemType = 1024, 1025, 1026, 1027 refers to projection element identificator at the projector device matches = [elem.name for elem in geo_tree_list if elem.elemType in (1024,1025,1026,1027)] proj_elems = [self.__thrift_client.GetProjectionElement(name) for name in matches] for proj_elem in proj_elems: if proj_elem.activated == True and proj_elem.coordinateSystemList[0] == cs_name: proj_elems_actives = proj_elem if not proj_elems_actives: is_empty = True except Exception: is_empty = True return is_empty def on_reflection_change(self, name, reflection): """Default callback for reflection state change, events handler. It is used for running code when pointer is reflected. Args: name (str): name of the pointer that changed state reflection (bool): true if a reflection was detected; False otherwise """ self.stop_project() def scan_pointer(self, reflection_callback=None): """Set callback for reflection state change. Args: reflection_callback (object): callback function Returns: tuple[bool, str]: the first value in the returned tuple is a bool success value and the second value in the tuple is an information message string """ try: if reflection_callback is None: # use default reflection_callback = self.on_reflection_change self.__thrift_client.set_reflection_state_changed_callback(reflection_callback) success = True message = "Reflection callback set." except Exception as e: success = False message = e return success,message
amazon.py
""" femagtools.amazon ~~~~~~~~~~~~~~~~~ Running FEMAG on Amazon Cloud EC2 .. note: To use this engine you have to install the boto3 module from amazon """ import os import threading import time import logging import femagtools.job from .config import Config logger = logging.getLogger(__name__) class MissingConfigurationException(Exception): def __init__(self, message): Exception.__init__(self, "Missing configuration: {}".format(message)) class Engine(object): config_class = Config default_config = { 'ENGINE': 'amazon', 'SERVER_LOCATION': 'eu-central-1', 'INSTANCE_TYPE': 't2.micro', 'ACL': 'authenticated-read', 'IMAGE_ID': 'ami-b0cc23df', 'FINISH_TASK_FILENAME': 'exit_code', 'COMPANY_NAME': 'femag' } """The Amazon Engine This engine uses the boto3 Python module to interact with the amazon ec2 and s3 services Args: buckets (:obj:`list`): Existing buckets with femag calculation files configfile (str): Filename of config file .. :note: If possible you should use the same location for all services """ def __init__(self, buckets=None, configfile='config.ini'): self.buckets = buckets self.job = None # Amazon file storage self.s3_resource = self._create_amazon_resource('s3') # Amazon Server administration self.ec2_resource = self._create_amazon_resource('ec2') # Create instance of config self.config = Config(self.default_config) self.config.from_ini_file(configfile) def _create_amazon_resource(self, resource): import boto3 return boto3.resource(resource) def _create_data_buckets(self): """Create unique S3 Buckets for calculation Args: ACL (str): ACL-Rules for Amazon """ # If buckets exsists map them with a folder if self.buckets: for idx, bucket in enumerate(self.buckets): self.job.tasks[idx].id = bucket['id'] self.job.tasks[idx].directory = bucket['folder'] return bucketConfiguration = {'LocationConstraint': self.config['SERVER_LOCATION']} # Create a bucket for every calculation for t in self.job.tasks: self.s3_resource.create_bucket(ACL=self.config['ACL'], Bucket=t.id, CreateBucketConfiguration=bucketConfiguration) logger.debug("Created buckets") def _upload_files_to_s3(self): """Upload all files to Amazon S3 for this calculation """ if self.buckets: logger.info("Files are already uploaded") return threads = [] for t in self.job.tasks: thread = threading.Thread(target=self._upload, args=(t, )) threads.append(thread) thread.start() logger.info("Uploading files: ") self._wait_for_threads_finished(threads, "Upload files") def _upload(self, task): """Upload thread for uploading one directory :internal: Args: task (py:class:`CloudTask`): The task which belongs to the uploading folder """ # Upload one single tar_file task.tar_file.close() name = os.path.basename(task.file) Body = open(task.file, 'rb') self.s3_resource.Object(task.id, name).put(Body=Body) def _wait_for_threads_finished(self, threads, operation): """Wait until all threads are finished :internal: Args: threads (:obj:`list`): List of threads to check if they are finished operation (str): Name of the operation to write a meaningful log message """ # Wait until all threads are not running while not all([t.isAlive() is False for t in threads]): time.sleep(5) # timer.cancel logger.info("{} is finished".format(operation)) def _start_instances(self): """Start all instances for the calculation """ # Prepare arguemtns for instance start param = {'MinCount': 1, 'MaxCount': 1 } if self.config.get('IMAGE_ID', None): param['ImageId'] = self.config['IMAGE_ID'] else: raise MissingConfigurationException('image_id') if self.config.get('INSTANCE_TYPE', None): param['InstanceType'] = self.config['INSTANCE_TYPE'] else: raise MissingConfigurationException('instance_type') if self.config.get('IAM_INSTANCE_PROFILE', None): param['IamInstanceProfile'] = {'Name': self.config['IAM_INSTANCE_PROFILE'] } if self.config.get('KEY_NAME', None): param['KeyName'] = self.config['KEY_NAME'] # Set security group id as list if self.config['SECURITY_GROUP_IDS']: param['SecurityGroupIds'] = [] for security_group in [s for s in self.config['SECURITY_GROUP_IDS'] if s]: param['SecurityGroupIds'].append(security_group) param['DryRun'] = self.config.get('DRY_RUN', False) threads = [] for idx, t in enumerate(self.job.tasks): thread = threading.Thread(target=self._start_instance, args=(param, t)) threads.append(thread) thread.start() self._wait_for_threads_finished(threads, "Start instances") def _start_instance(self, param, task): """Start one instance :internal: Args: task (Task): the task for calculation """ user_data = self._read_cloud_init(task.id) if user_data: param['UserData'] = user_data instances = self.ec2_resource.create_instances(**param) instance = instances[0] # We only started one instance logger.info("Instance started: {}".format(instance.id)) self._add_tag(task.id, instance.id) instance.wait_until_running() instance.load() # Reload the data to get public dns etc. logger.info("Instance {} is running: Public dns: {}".format(instance.id, instance.public_dns_name)) task.ec2_instance = instance.id def _add_tag(self, task_id, instance_id): """Add a tag to the instance :internal: Args: task_id (int): The task id (Same as the S3 Bucket name) instance_id (int): The instance_id to set the tag to the right instance """ tag = '{}-{}'.format(task_id, self.config.get('COMPANY_NAME', 'femag')) self.ec2_resource.create_tags(Resources=[instance_id], Tags=[{'Key': 'Name', 'Value': tag}]) def _read_cloud_init(self, bucket_name): """Read the cloud init file and if there is a line which starts with {{ENV}} then put all config options as environment variables. """ user_data = "" # Set all config options as environment variable if os.path.isfile(self.config.get('CLOUD_INIT', None)): with open(self.config['CLOUD_INIT'], 'rt') as f: for line in f: if line.startswith('{{ENV}}'): # Add config for key, value in sorted(self.config.items()): user_data += "export {}={}\n".format(key, value) # add other important stuff user_data += "export BUCKET_NAME={}\n".format(bucket_name) continue user_data += line return user_data def _join(self, timeout=20, filename='exit_code'): """Wait until all instances are finished with the calulation. :internal: Args: timeout (int): How long we wait between a check filename (str): What is the filename of the exit_code """ import botocore # For exception finished_tasks = [] client = self.s3_resource.meta.client while len(finished_tasks) < len(self.job.tasks): for t in [task for task in self.job.tasks if task not in finished_tasks]: try: client.get_object(Bucket=t.id, Key=filename) except botocore.exceptions.ClientError: # Instance not ready time.sleep(2) continue finished_tasks.append(t) logger.info("Calculation is finished for instance {}".format(t.id)) self.ec2_resource.instances.filter(InstanceIds=[t.ec2_instance]).terminate() time.sleep(timeout) logger.info("Calculations are finished") def _get_result_data_from_S3(self): """Get all the calculated files to the correct folder """ import boto3 client = self.s3_resource.meta.client transfer = boto3.s3.transfer.S3Transfer(client) for t in self.job.tasks: bucket = t.id folder = t.directory files = client.list_objects(Bucket=bucket)['Contents'] logger.debug("Starting new folder") for file in files: file_name = file['Key'] transfer.download_file(bucket, file_name, os.path.join("{}/{}".format(folder, file_name))) logger.debug("Downloaded file {}".format(file_name)) def _get_status_code(self, filename='exit_code'): """Get the status code from the caluclation Args: filename (str): Filename of exit_code """ status_code = [] for t in self.job.tasks: dir = "{}/{}".format(t.directory, filename) file = open(dir, 'r') status_code.append(file.read()) return status_code def _cleanup(self): threads = [] for t in self.job.tasks: thread = threading.Thread(target=self._delete_bucket, args=(t.id, )) threads.append(thread) thread.start() logger.info("Deleting buckets: ") self._wait_for_threads_finished(threads, "Deleting buckets") # Clean up volumes client = self.ec2_resource.meta.client volumes = client.describe_volumes(Filters=[{'Name': 'status', 'Values': ['available']}])['Volumes'] for v in volumes: client.delete_volume(VolumeId=v['VolumeId']) def _delete_bucket(self, bucket_name): bucket = self.s3_resource.Bucket(bucket_name) for key in bucket.objects.all(): key.delete() bucket.delete() # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - # FEMAG STUFF # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - def create_job(self, workdir): """Create a FEMAG :py:class:`CloudJob` Args: workdir (str): The workdir where the calculation files are stored Return: Cloud job (:class:`CloudJob`) """ self.job = femagtools.job.CloudJob(workdir) return self.job def submit(self): """Starts the FEMAG calculation(s) on Amazon Return: length of started tasks (int) """ self._create_data_buckets() self._upload_files_to_s3() self._start_instances() return len(self.job.tasks) def join( self ): """Wait until all calculations are finished Return: list of all calculations status (C = Ok, X = error) (:obj:`list`) """ status = [] # Wait until all tasks are finished self._join(timeout=20, filename=self.config['FINISH_TASK_FILENAME']) # get all files self._get_result_data_from_S3() # Remove buckets if cleanup is set if int(self.config.get('DELETE_BUCKETS', 0)): self._cleanup() status = self._get_status_code(filename=self.config['FINISH_TASK_FILENAME']) for t, r in zip(self.job.tasks, status): t.status = 'C' if int(r)==0 else 'X' return status
runrun.py
import subprocess, time, os, sys, re, socket from blessings import Terminal bless_term = Terminal() MAXLINES=100 def print_red(s, **kw): print (bless_term.red(s), **kw) def run(*args, **kw): # print ("DBG", args, kw) if 'showoutput' in kw: showoutput = kw['showoutput'] # print("showoutput:", showoutput) del kw['showoutput'] else: showoutput = False if 'timeout' in kw: timeout = float(kw['timeout']) if showoutput: print("running", args[0], "with timeout:", timeout, end=' ') del kw['timeout'] else: timeout = 0 try: if not timeout: timeout = 10**10 # print ("args:", args) proc = subprocess.Popen(*args, stdout=subprocess.PIPE, stderr=subprocess.STDOUT) t0 = time.time() out = "" complete = False while time.time() < t0 + timeout: line = proc.stdout.readline().decode('utf8') # print ("DBG", type(out), type(line)) out += line i = 0 while line != "": if showoutput: sys.stdout.write(line) i += 1 if i >= MAXLINES: break line = proc.stdout.readline().decode('utf8') out += line if proc.poll() != None: complete = True #get all output line = proc.stdout.readline().decode('utf8') out += line while line != "": if showoutput: sys.stdout.write(line) sys.stdout.write(line) line = proc.stdout.readline().decode('utf8') out += line sys.stdout.flush() break ## sys.stdout.write(".") ## sys.stdout.flush() time.sleep(0.2) if not complete: proc.kill() except subprocess.CalledProcessError as e: out = e.output return out, complete # # run a git command, capture the output # def git(cmd, show=False, debug=False): if debug: print_red ("git %s" % cmd) if hasattr(cmd, "lower"): cmd = cmd.split() out, good = run(["git"] + cmd, showoutput=show) if not good: err = "ERROR -- git command did not complete" print (err, file=sys.stderr) out += "\n\n" + err return out, not good def get_branch(): out, err = git("rev-parse --abbrev-ref HEAD") return out.strip() def get_repo(): out, err = git("remote -v") return out.split()[1] def get_author(): return git("log -1 --pretty=format:'%an'")[0].strip().replace("'", "") def get_username(): return git("config --get user.name")[0].strip() def git_status(show=False, debug=False): out, err = git("status --porcelain", show=show, debug=debug) changes=0 for row in out.split("\n"): row = row.strip() if not row: continue if row[:2] != "??": changes += 1 return changes import subprocess as sp from threading import Thread from queue import Queue, Empty import time def test_func(s): if not s: return "" # print ("----------PARSE------------") # print (s) # print ("~~~~~~~~~~~~~~~~~") N = 7 for L in s.split(): try: N = int(L.strip()) except: pass # print ("RESULT:", N) # print ("----------/PARSE------------") return "BOOM " * N def stdout_thread(o, q): def getchar(): return o.read(1) for c in iter(getchar, b''): q.put(c) o.close() def get_sub_stdout(q): r = b'' while True: try: c = q.get(False) except Empty: # print (" EMPTY") break else: # print (" DATA") r += c return r def escape_ansi(line): ansi_escape = re.compile(r'\x1B(?:[@-Z\\-_]|\[[0-?]*[ -/]*[@-~])') # ansi_escape = re.compile(r'(\x9B|\x1B\[)[0-?]*[ -/]*[@-~]') return ansi_escape.sub('', line) SLEEPYTIME = .1 SSH_FORCE_TIMEOUT = 30 class runner: def __init__(self, cmd): self.pobj = sp.Popen(cmd.split(), stdin=sp.PIPE, stdout=sp.PIPE, stderr=sp.STDOUT) self.q = Queue() self.t = Thread(target=stdout_thread, args=(self.pobj.stdout, self.q)) self.t.daemon = True self.t.start() self.in_dat = '' self.t0 = time.time() # Use advanced machine learning algorithms to ascertain if we have a prompt: def has_prompt(self, s): # A proud moment in hell # print ("SSS:", s) if "\n" in s: s = s.split("\n")[-1] s = escape_ansi(s.strip()) i = s.find(self.prompt) if i<0 or i>12: # print ("FAIL") return False # print("PROMPT FOUND") return True # # call interact with user input, returns next process text+prompt # def interact(self, cmd=None, expect=None): if cmd != None: #typically None for first interaction to get prompt #if '', still need to write to stdin to keep rolling ball # print ("===%s==="%cmd) self.pobj.stdin.write(bytes(cmd, 'utf-8')) self.pobj.stdin.write(b'\n') try: self.pobj.stdin.flush() except: return '' self.in_dat = cmd if expect==None: expect=[] elif hasattr(expect, "lower"): expect = [expect] # print ("EXPECT:", expect) o_new = get_sub_stdout(self.q).decode('utf8') o_dat = o_new while not o_new: br = False for ex in expect: # print ("TEST:", ex, o_new, "||", ex in o_new, "|||") if ex in o_new: #additional triggers to return such as Y/n prompts br = True break if br: break o_new = get_sub_stdout(self.q).decode('utf8') o_dat += o_new time.sleep(SLEEPYTIME) # print ("DBG A") # remove echo: # if o_dat.find(self.in_dat+"\r\n")==0: # o_dat=o_dat[len(self.in_dat)+2:] return o_dat, self.has_prompt(o_dat) def first(self): o_dat = "" t0 = time.time() while True: # print (" FIRST:",o_dat) if time.time()-t0 > SSH_FORCE_TIMEOUT: return o_dat, True o_dat += get_sub_stdout(self.q).decode('utf8') spl = o_dat.rstrip().split("\n") if len(spl) >= 2 and "last login" in spl[-2].lower(): break if "timed out" in spl[-1]: return o_dat, True time.sleep(SLEEPYTIME) # print (o_dat) prompt = escape_ansi(spl[-1]) prompt.replace("\r", ']').strip() i = prompt.find(':') if i > 0: # print ("III:", i) prompt = prompt[0:i+1] self.prompt = prompt print ("PROMPT: >>>%s<<<" % prompt) sys.stdout.flush() return o_dat, False def exit(self): self.pobj.stdin.write(bytes('exit', 'utf-8')) self.pobj.stdin.write(b'\n') time.sleep(2) o_new = get_sub_stdout(self.q).decode('utf8') print (o_new) sys.stdout.flush() if __name__=="__main__": cmd = "ssh -tt -4 localhost" # cmd = "echoz foo" print (cmd, end="\n\n") run = runner(cmd) o = run.first() #get initial startup spam + prompt print (o) run.interact("pwd") run.exit() print ("DONE") # if __name__ == "__main__": # print("test run.py") # cmd = sys.argv[1:] # s, err = run(cmd, timeout=10, showoutput=False) # print("output----------\n", s) # print("end output------") # print("completed:", err)
microservice.py
import socket import threading from ..default import ArchNetClientHandler from functools import update_wrapper from multiprocessing import Process def setupmethod(f): def wrapper_func(self, *args, **kwargs): return f(self, *args, **kwargs) return update_wrapper(wrapper_func, f) class Microservice(object): """This class implements a Microservice. To implement the proper microservice, use the following nomenclature: ```python class MyMicroservice(Microservice): def __init__(self, *args, **kwargs): super().__init__( *args, **kwargs) ``` """ def __init__(self, port, hostname, microservicename, backlog = 100): self.microservice_name = microservicename self.port = port self.hostname = hostname self.backlog = backlog self.tcpserver = socket.socket(socket.AF_INET, socket.SOCK_STREAM) self.tcpserver.bind(( self.hostname, self.port )) def start(self): self.tcpserver.listen(self.backlog) while True: self.client( self.tcpserver.accept() ) def client(self, client_tupple): client, client_add = client_tupple Process(target=self.ClientThread, args=(client, client_add,)).start() @setupmethod def client_thread(self, f): self.ClientThread = f return f
debug_eval_mini_srcgame_add_map_bn.py
from __future__ import absolute_import from __future__ import division from __future__ import print_function USED_DEVICES = "-1" import os os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" os.environ["CUDA_VISIBLE_DEVICES"] = USED_DEVICES import sys import threading import time import tensorflow as tf from absl import app from absl import flags from pysc2 import maps from pysc2.lib import stopwatch import lib.config as C import param as P import mini_source_agent_add_map_bn as mini_source_agent from mini_network_add_map_bn import MiniNetwork # from pysc2.env import sc2_env from lib import my_sc2_env as sc2_env from lib.replay_buffer import Buffer from strategy.terran_agent import DummyTerran from strategy_env import SimulatePlatform import unit.protoss_unit as P import unit.terran_unit as T from datetime import datetime import multiprocessing as mp import numpy as np from logging import warning as logging FLAGS = flags.FLAGS flags.DEFINE_bool("training", True, "Whether to train agents.") flags.DEFINE_bool("on_server", True, "Whether is running on server.") flags.DEFINE_bool("debug_mode", True, "Whether is debuging") flags.DEFINE_integer("num_for_update", 100, "Number of episodes for each train.") flags.DEFINE_string("log_path", "./logs/", "Path for log.") flags.DEFINE_string("device", USED_DEVICES, "Device for training.") # Simple64 flags.DEFINE_string("map", "Simple64", "Name of a map to use.") flags.DEFINE_bool("render", False, "Whether to render with pygame.") flags.DEFINE_integer("screen_resolution", 64, "Resolution for screen feature layers.") flags.DEFINE_integer("minimap_resolution", 64, "Resolution for minimap feature layers.") flags.DEFINE_enum("agent_race", "P", sc2_env.races.keys(), "Agent's race.") flags.DEFINE_enum("bot_race", "T", sc2_env.races.keys(), "Bot's race.") flags.DEFINE_enum("difficulty", "7", sc2_env.difficulties.keys(), "Bot's strength.") flags.DEFINE_integer("max_agent_steps", 18000, "Total agent steps.") flags.DEFINE_integer("step_mul", 8, "Game steps per agent step.") flags.DEFINE_bool("profile", False, "Whether to turn on code profiling.") flags.DEFINE_bool("trace", False, "Whether to trace the code execution.") flags.DEFINE_bool("save_replay", False, "Whether to replays_save a replay at the end.") flags.DEFINE_string("replay_dir", "multi-agent/", "dir of replay to replays_save.") # 20200825-101942_mini # 20200828-160609_source flags.DEFINE_string("restore_model_path", "./model/20200901-213813_mini/", "path for restore model") flags.DEFINE_bool("restore_model", True, "Whether to restore old model") flags.DEFINE_string("restore_from", "mini", "mini (for Thought-Game) or source (for Real game)") flags.DEFINE_string("restore_to", "source", "mini (for Thought-Game) or source (for Real game)") flags.DEFINE_bool("load_latest", False, "Load latest or bestest model, default is False") flags.DEFINE_integer("parallel", 10, "How many processes to run in parallel.") flags.DEFINE_integer("thread_num", 5, "How many thread to run in the process.") flags.DEFINE_integer("port_num", 7770, "the start port to create distribute tf") flags.DEFINE_integer("max_iters", 100, "the rl agent max run iters") flags.DEFINE_string("game_version", None, "game version of SC2") flags.DEFINE_bool("freeze_head", False, "Whether freeze_head train agents.") flags.DEFINE_bool("use_bn", False, "Whether use batch_norm to training.") flags.DEFINE_bool("use_sep_net", False, "Whether use seperate network for policy and value model.") flags.DEFINE_integer("ob_space_add", 4, "Add state space from thought game.") flags.DEFINE_integer("act_space_add", 5, "Add action space from thought game.") flags.DEFINE_bool("add_image", True, "Whether add image for input.") flags.DEFINE_bool("image_debug", True, "Whether debug image for input.") flags.DEFINE_string("weighted_sum_type", "AddWeight", "add weighted sum type, AddWeight, AdaptiveWeight, AttentionWeight") FLAGS(sys.argv) # set the play map play_map = C.get_map_class('lib.config.' + FLAGS.map) C.my_sub_pos = play_map.my_sub_pos C.enemy_sub_pos = play_map.enemy_sub_pos C.enemy_main_pos = play_map.enemy_main_pos C.base_camera_pos = play_map.base_camera_pos if not FLAGS.on_server or FLAGS.debug_mode: PARALLEL = 1 THREAD_NUM = 1 MAX_AGENT_STEPS = 18000 DEVICE = ['/gpu:0'] NUM_FOR_UPDATE = 1 TRAIN_ITERS = 1 PORT_NUM = FLAGS.port_num else: PARALLEL = FLAGS.parallel THREAD_NUM = FLAGS.thread_num MAX_AGENT_STEPS = FLAGS.max_agent_steps if USED_DEVICES == '-1': DEVICE = ['/cpu:0'] else: DEVICE = ['/gpu:' + str(dev) for dev in range(len(FLAGS.device.split(',')))] NUM_FOR_UPDATE = FLAGS.num_for_update TRAIN_ITERS = FLAGS.max_iters PORT_NUM = FLAGS.port_num LOG = FLAGS.log_path if not os.path.exists(LOG): os.makedirs(LOG) SERVER_DICT = {"worker": [], "ps": []} # define some global variable UPDATE_EVENT, ROLLING_EVENT = threading.Event(), threading.Event() Counter = 0 Waiting_Counter = 0 Update_Counter = 0 Result_List = [] ''' ps -ef |grep liuruoze | grep 'SC2_x64' | awk '{print $2}' | xargs kill -9 kill -9 `ps -ef |grep liuruoze | grep eval_mini_srcgame_add_map_bn | awk '{print $2}' ` ''' def run_thread(agent, game_num, Synchronizer, difficulty): global UPDATE_EVENT, ROLLING_EVENT, Counter, Waiting_Counter, Update_Counter, Result_List num = 0 all_num = 0 proc_name = mp.current_process().name C._FPS = 22.4 / FLAGS.step_mul # 5.6 step_mul = FLAGS.step_mul # 4 C.difficulty = difficulty with sc2_env.SC2Env( map_name=FLAGS.map, agent_race=FLAGS.agent_race, bot_race=FLAGS.bot_race, difficulty=difficulty, step_mul=step_mul, score_index=-1, game_steps_per_episode=MAX_AGENT_STEPS, screen_size_px=(FLAGS.screen_resolution, FLAGS.screen_resolution), minimap_size_px=(FLAGS.minimap_resolution, FLAGS.minimap_resolution), visualize=False, game_version=FLAGS.game_version) as env: # env = available_actions_printer.AvailableActionsPrinter(env) agent.set_env(env) while all_num != game_num * TRAIN_ITERS: agent.play_right_add(verbose=FLAGS.debug_mode) if FLAGS.training: # check if the num of episodes is enough to update num += 1 all_num += 1 reward = agent.result['reward'] Counter += 1 Result_List.append(reward) logging("(diff: %d) %d epoch: %s get %d/%d episodes! return: %d!" % (int(difficulty), Update_Counter, proc_name, len(Result_List), game_num * THREAD_NUM, reward)) # time for update if num == game_num: num = 0 ROLLING_EVENT.clear() # worker stops rolling, wait for update if agent.index != 0 and THREAD_NUM > 1: Waiting_Counter += 1 if Waiting_Counter == THREAD_NUM - 1: # wait for all the workers stop UPDATE_EVENT.set() ROLLING_EVENT.wait() # update! else: if THREAD_NUM > 1: UPDATE_EVENT.wait() Synchronizer.wait() # wait for other processes to update agent.update_network(Result_List) Result_List.clear() agent.global_buffer.reset() Synchronizer.wait() Update_Counter += 1 # finish update UPDATE_EVENT.clear() Waiting_Counter = 0 ROLLING_EVENT.set() if FLAGS.save_replay: env.save_replay(FLAGS.replay_dir) agent.reset() def Worker(index, update_game_num, Synchronizer, cluster, model_path, log_path): config = tf.ConfigProto( allow_soft_placement=True, log_device_placement=False, ) config.gpu_options.allow_growth = True worker = tf.train.Server(cluster, job_name="worker", task_index=index, config=config) sess = tf.Session(target=worker.target, config=config) summary_writer = tf.summary.FileWriter(log_path) Net = MiniNetwork(sess=sess, summary_writer=summary_writer, rl_training=FLAGS.training, cluster=cluster, index=index, device=DEVICE[index % len(DEVICE)], ppo_load_path=FLAGS.restore_model_path, ppo_save_path=model_path, ob_space_add=FLAGS.ob_space_add, act_space_add=FLAGS.act_space_add, freeze_head=FLAGS.freeze_head, use_bn=FLAGS.use_bn, use_sep_net=FLAGS.use_sep_net, restore_model=FLAGS.restore_model, restore_from=FLAGS.restore_from, restore_to=FLAGS.restore_to, load_latest=FLAGS.load_latest, add_image=FLAGS.add_image) global_buffer = Buffer() agents = [] for i in range(THREAD_NUM): agent = mini_source_agent.MiniSourceAgent(index=i, global_buffer=global_buffer, net=Net, restore_model=FLAGS.restore_model, rl_training=FLAGS.training, strategy_agent=None, ob_space_add=FLAGS.ob_space_add, image_debug=FLAGS.image_debug) agents.append(agent) print("Worker %d: waiting for cluster connection..." % index) sess.run(tf.report_uninitialized_variables()) print("Worker %d: cluster ready!" % index) while len(sess.run(tf.report_uninitialized_variables())): print("Worker %d: waiting for variable initialization..." % index) time.sleep(1) print("Worker %d: variables initialized" % index) game_num = np.ceil(update_game_num // THREAD_NUM) UPDATE_EVENT.clear() ROLLING_EVENT.set() # Run threads threads = [] for i in range(THREAD_NUM - 1): t = threading.Thread(target=run_thread, args=(agents[i], game_num, Synchronizer, FLAGS.difficulty)) threads.append(t) t.daemon = True t.start() time.sleep(3) run_thread(agents[-1], game_num, Synchronizer, FLAGS.difficulty) for t in threads: t.join() def Parameter_Server(Synchronizer, cluster, log_path, model_path, procs): config = tf.ConfigProto( allow_soft_placement=True, log_device_placement=False, ) config.gpu_options.allow_growth = True server = tf.train.Server(cluster, job_name="ps", task_index=0, config=config) sess = tf.Session(target=server.target, config=config) summary_writer = tf.summary.FileWriter(log_path) Net = MiniNetwork(sess=sess, summary_writer=summary_writer, rl_training=FLAGS.training, cluster=cluster, index=0, device=DEVICE[0 % len(DEVICE)], ppo_load_path=FLAGS.restore_model_path, ppo_save_path=model_path, ob_space_add=FLAGS.ob_space_add, act_space_add=FLAGS.act_space_add, freeze_head=FLAGS.freeze_head, use_bn=FLAGS.use_bn, use_sep_net=FLAGS.use_sep_net, restore_model=FLAGS.restore_model, restore_from=FLAGS.restore_from, restore_to=FLAGS.restore_to, load_latest=FLAGS.load_latest, add_image=FLAGS.add_image) agent = mini_source_agent.MiniSourceAgent(index=-1, net=Net, restore_model=FLAGS.restore_model, rl_training=FLAGS.training, ob_space_add=FLAGS.ob_space_add, image_debug=FLAGS.image_debug) print("Parameter server: waiting for cluster connection...") sess.run(tf.report_uninitialized_variables()) print("Parameter server: cluster ready!") print("Parameter server: initializing variables...") agent.init_network() print("Parameter server: variables initialized") update_counter = 0 max_win_rate = 0. latest_win_rate = 0. while update_counter < TRAIN_ITERS: agent.reset_old_network() # wait for update Synchronizer.wait() logging("Update Network!") # TODO count the time , compare cpu and gpu time.sleep(1) # update finish Synchronizer.wait() logging("Update Network finished!") steps, win_rate = agent.update_summary(update_counter) logging("Steps: %d, win rate: %f" % (steps, win_rate)) update_counter += 1 if win_rate >= max_win_rate: agent.save_model() max_win_rate = win_rate latest_win_rate = win_rate agent.net.save_latest_policy() return max_win_rate, latest_win_rate def _main(unused_argv): # create distribute tf cluster start_port = PORT_NUM SERVER_DICT["ps"].append("localhost:%d" % start_port) for i in range(PARALLEL): SERVER_DICT["worker"].append("localhost:%d" % (start_port + 1 + i)) Cluster = tf.train.ClusterSpec(SERVER_DICT) now = datetime.now() model_path = "./model/" + now.strftime("%Y%m%d-%H%M%S") + "_source/" if not os.path.exists(model_path): os.makedirs(model_path) log_path = "./logs/" + now.strftime("%Y%m%d-%H%M%S") + "_source/" UPDATE_GAME_NUM = NUM_FOR_UPDATE per_update_num = np.ceil(UPDATE_GAME_NUM / PARALLEL) Synchronizer = mp.Barrier(PARALLEL + 1) # Run parallel process procs = [] for index in range(PARALLEL): p = mp.Process(name="Worker_%d" % index, target=Worker, args=(index, per_update_num, Synchronizer, Cluster, model_path, log_path)) procs.append(p) p.daemon = True p.start() time.sleep(1) max_win_rate, latest_win_rate = Parameter_Server(Synchronizer, Cluster, log_path, model_path, procs) print('#######################') print('Best Win_rate:', max_win_rate) print('Latest Win_rate:', latest_win_rate) print('#######################') for p in procs: p.join() ''' if FLAGS.profile: print(stopwatch.sw) ''' if __name__ == "__main__": app.run(_main)
acc_threshold_detector.py
#*************************************************************************************************** # Imports #*************************************************************************************************** # Global imports import os import threading import math import time import traceback # Project imports import mooving_iot.utils.logger as logger import mooving_iot.project_config as prj_cfg import mooving_iot.utils.exit as utils_exit import mooving_iot.drivers.acc.acc as drv_acc #*************************************************************************************************** # Module logger #*************************************************************************************************** _log = logger.Logger(os.path.basename(__file__)[0:-3], prj_cfg.LogLevel.INFO) #*************************************************************************************************** # Public classes #*************************************************************************************************** class AccAngles: def __init__(self, x, y, z): self.x = x self.y = y self.z = z def __str__(self): return 'X: {0:.2f}, Y: {0:.2f}, Z: {0:.2f}.'.format(self.x, self.y, self.z) class AccThresholdDetector: DEFAULT_ACC_ANGLE_X = -50 DEFAULT_ACC_ANGLE_Y = 0 DEFAULT_ACC_ANGLE_Z = 40 def __init__(self, acc_driver : drv_acc.Acc): self._acc_driver = acc_driver self._last_acc_data = drv_acc.AccData(0, 0, 0) self._acc_angles = AccAngles(0, 0, 0) self._acc_out_of_thr_peak_count = 0 self._acc_out_of_thr_start_time_ms = 0 self._is_acc_out_of_thr = False self._angle_out_of_thr_start_time_ms = None self._angle_out_of_thr_stop_time_ms = None self._acc_total_duration_ms = None self._acc_peak_count = None self._angle_threshold_degree = None self._angle_total_duration_ms = None self._data_lock = threading.Lock() self._update_thread = threading.Thread(target=self._update) self._update_thread.start() def set_acc_threshold(self, threshold_mg, peak_duration_ms, total_duration_ms, peak_count): with self._data_lock: self._acc_driver.set_acc_threshold(threshold_mg, peak_duration_ms) self._acc_total_duration_ms = total_duration_ms self._acc_peak_count = peak_count def set_angles_threshold(self, threshold_degree, total_duration_ms): with self._data_lock: self._angle_threshold_degree = threshold_degree self._angle_total_duration_ms = total_duration_ms def get_angles(self) -> AccAngles: with self._data_lock: return self._acc_angles def is_acc_out_of_threshold(self) -> bool: with self._data_lock: if self._acc_peak_count != None: current_time_ms = int(time.time() * 1000) end_time_ms = self._acc_out_of_thr_start_time_ms + self._acc_total_duration_ms if current_time_ms > end_time_ms: self._is_acc_out_of_thr = self._acc_out_of_thr_peak_count >= self._acc_peak_count self._acc_out_of_thr_start_time_ms = current_time_ms self._acc_out_of_thr_peak_count = 0 return self._is_acc_out_of_thr else: return False def is_angles_out_of_threshold(self) -> bool: with self._data_lock: if ((self._angle_out_of_thr_start_time_ms == None) or (self._angle_total_duration_ms == None)): return False else: current_time_ms = int(time.time() * 1000) return ((self._angle_out_of_thr_start_time_ms + self._angle_total_duration_ms) <= current_time_ms) def clear(self): with self._data_lock: self._angle_out_of_thr_start_time_ms = None self._acc_out_of_thr_peak_count = 0 def _update(self): try: acc_data_updated = self._acc_driver.get_data_updated_event() while True: acc_data_updated.wait() acc_data_updated.clear() with self._data_lock: self._last_acc_data = self._acc_driver.get_last_data() is_acc_data_threshold = self._acc_driver.is_acc_out_of_threshold() current_time_ms = int(time.time() * 1000) _log.debug( 'Acc data updated: x = {x} mg, y = {y} mg, z = {z} mg. Out of threshold: {thr}.' .format( x=self._last_acc_data.x_mg, y=self._last_acc_data.y_mg, z=self._last_acc_data.z_mg, thr=is_acc_data_threshold)) self._calculate_angles() _log.debug( 'Acc angles updated: x = {x}, y = {y}, z = {z}.' .format( x=self._acc_angles.x, y=self._acc_angles.y, z=self._acc_angles.z)) if self._calc_is_angles_out_of_thr(): self._angle_out_of_thr_stop_time_ms = None if self._angle_out_of_thr_start_time_ms == None: self._angle_out_of_thr_start_time_ms = current_time_ms else: if self._angle_out_of_thr_stop_time_ms == None: self._angle_out_of_thr_stop_time_ms = current_time_ms elif ((self._angle_out_of_thr_stop_time_ms + self._angle_total_duration_ms) <= current_time_ms): self._angle_out_of_thr_start_time_ms = None if (self._acc_peak_count != None) and is_acc_data_threshold: self._acc_out_of_thr_peak_count += 1 except: _log.error(traceback.format_exc()) utils_exit.exit(1) def _calculate_angles(self): x_pow2 = self._last_acc_data.x_mg ** 2 y_pow2 = self._last_acc_data.y_mg ** 2 z_pow2 = self._last_acc_data.z_mg ** 2 g_vector_length = math.sqrt(x_pow2 + y_pow2 + z_pow2) x_angle = math.degrees(math.asin(self._last_acc_data.x_mg / g_vector_length)) y_angle = math.degrees(math.asin(self._last_acc_data.y_mg / g_vector_length)) z_angle = math.degrees(math.asin(self._last_acc_data.z_mg / g_vector_length)) self._acc_angles = AccAngles(x_angle, y_angle, z_angle) def _calc_is_angles_out_of_thr(self): if (self._angle_threshold_degree == None): _log.debug('return false') return False if ( ((AccThresholdDetector.DEFAULT_ACC_ANGLE_X - self._angle_threshold_degree) <= self._acc_angles.x <= (AccThresholdDetector.DEFAULT_ACC_ANGLE_X + self._angle_threshold_degree)) and ((AccThresholdDetector.DEFAULT_ACC_ANGLE_Y - self._angle_threshold_degree) <= self._acc_angles.y <= (AccThresholdDetector.DEFAULT_ACC_ANGLE_Y + self._angle_threshold_degree)) and ((AccThresholdDetector.DEFAULT_ACC_ANGLE_Z - self._angle_threshold_degree) <= self._acc_angles.z <= (AccThresholdDetector.DEFAULT_ACC_ANGLE_Z + self._angle_threshold_degree)) ): return False else: return True
dashboard.py
import collections import threading import time from typing import Any from typing import DefaultDict from typing import Dict from typing import List from typing import Optional import numpy as np from packaging import version from optuna._imports import try_import from optuna._study_direction import StudyDirection import optuna.logging import optuna.study import optuna.trial with try_import() as _imports: from bokeh import __version__ as bokeh_version import bokeh.command.bootstrap import bokeh.document # NOQA import bokeh.layouts import bokeh.models import bokeh.models.widgets import bokeh.plotting import bokeh.themes import tornado.gen if version.parse(bokeh_version) >= version.parse("2.0.0"): raise ImportError( "Your version of bokeh is " + bokeh_version + " . " "Please install bokeh version earlier than 2.0.0. " "Bokeh can be installed by executing `$ pip install 'bokeh<2.0.0'`. " "For further information, please refer to the installation guide of bokeh. ", name="bokeh", ) _mode: Optional[str] = None _study: Optional[optuna.study.Study] = None _HEADER_FORMAT = """ <style> body {{ margin: 20px; }} h1, p {{ margin: 10px 0px; }} </style> <h1>Optuna Dashboard (Beta)</h1> <p> <b>Study name:</b> {study_name}<br> </p> """ _DATETIME_FORMAT = "%Y-%m-%d %H:%M:%S" if _imports.is_successful(): class _CompleteTrialsWidget(object): def __init__( self, trials: List[optuna.trial.FrozenTrial], direction: StudyDirection ) -> None: complete_trials = [ trial for trial in trials if trial.state == optuna.trial.TrialState.COMPLETE ] self.trial_ids = set([trial._trial_id for trial in complete_trials]) self.direction = direction values = [trial.value for trial in complete_trials] if direction == StudyDirection.MINIMIZE: best_values = np.minimum.accumulate(values, axis=0) else: best_values = np.maximum.accumulate(values, axis=0) self.cds = bokeh.models.ColumnDataSource( { "#": list(range(len(complete_trials))), "value": values, "best_value": best_values, } ) self.best_value = best_values[-1] if complete_trials else np.inf def create_figure(self) -> bokeh.plotting.Figure: figure = bokeh.plotting.figure(height=150) figure.circle(x="#", y="value", source=self.cds, alpha=0.3, color="navy") figure.line(x="#", y="best_value", source=self.cds, color="firebrick") figure.xaxis[0].axis_label = "Number of Trials" figure.yaxis[0].axis_label = "Objective Value" return figure def update(self, new_trials: List[optuna.trial.FrozenTrial]) -> None: stream_dict: DefaultDict[str, List[Any]] = collections.defaultdict(list) for trial in new_trials: if trial.state != optuna.trial.TrialState.COMPLETE: continue if trial._trial_id in self.trial_ids: continue stream_dict["#"].append(len(self.trial_ids)) stream_dict["value"].append(trial.value) if self.direction == StudyDirection.MINIMIZE: self.best_value = min(self.best_value, trial.value) else: self.best_value = max(self.best_value, trial.value) stream_dict["best_value"].append(self.best_value) self.trial_ids.add(trial._trial_id) if stream_dict: self.cds.stream(stream_dict) class _AllTrialsWidget(object): def __init__(self, trials: List[optuna.trial.FrozenTrial]) -> None: self.cds = bokeh.models.ColumnDataSource(self.trials_to_dict(trials)) def create_table(self) -> bokeh.models.widgets.DataTable: return bokeh.models.widgets.DataTable( source=self.cds, columns=[ bokeh.models.widgets.TableColumn(field=field, title=field) for field in [ "number", "state", "value", "params", "datetime_start", "datetime_complete", ] ], ) def update( self, old_trials: List[optuna.trial.FrozenTrial], new_trials: List[optuna.trial.FrozenTrial], ) -> None: modified_indices = [] modified_trials = [] for i, old_trial in enumerate(old_trials): new_trial = new_trials[i] if old_trial != new_trial: modified_indices.append(i) modified_trials.append(new_trial) patch_dict = self.trials_to_dict(modified_trials) patch_dict = {k: list(zip(modified_indices, v)) for k, v in patch_dict.items()} self.cds.patch(patch_dict) self.cds.stream(self.trials_to_dict(new_trials[len(old_trials) :])) @staticmethod def trials_to_dict(trials: List[optuna.trial.FrozenTrial]) -> Dict[str, List[Any]]: return { "number": [trial.number for trial in trials], "state": [trial.state.name for trial in trials], "value": [trial.value for trial in trials], "params": [str(trial.params) for trial in trials], "datetime_start": [ trial.datetime_start.strftime(_DATETIME_FORMAT) if trial.datetime_start is not None else None for trial in trials ], "datetime_complete": [ trial.datetime_complete.strftime(_DATETIME_FORMAT) if trial.datetime_complete is not None else None for trial in trials ], } class _DashboardApp(object): def __init__(self, study: optuna.study.Study, launch_update_thread: bool) -> None: self.study = study self.launch_update_thread = launch_update_thread self.lock = threading.Lock() def __call__(self, doc: bokeh.document.Document) -> None: self.doc = doc self.current_trials: Optional[List[optuna.trial.FrozenTrial]] = self.study.trials self.new_trials: Optional[List[optuna.trial.FrozenTrial]] = None self.complete_trials_widget = _CompleteTrialsWidget( self.current_trials, self.study.direction ) self.all_trials_widget = _AllTrialsWidget(self.current_trials) self.doc.title = "Optuna Dashboard (Beta)" header = _HEADER_FORMAT.format(study_name=self.study.study_name) self.doc.add_root( bokeh.layouts.layout( [ [bokeh.models.widgets.Div(text=header)], [self.complete_trials_widget.create_figure()], [self.all_trials_widget.create_table()], ], sizing_mode="scale_width", ) ) if self.launch_update_thread: thread = threading.Thread(target=self.thread_loop) self.stop_event = threading.Event() thread.daemon = True thread.start() self.doc.on_session_destroyed(lambda _: self.stop_event.set()) def thread_loop(self) -> None: while not self.stop_event.is_set(): time.sleep(1) new_trials = self.study.trials with self.lock: need_to_add_callback = self.new_trials is None self.new_trials = new_trials if need_to_add_callback: self.doc.add_next_tick_callback(self.update_callback) @tornado.gen.coroutine def update_callback(self) -> Any: with self.lock: current_trials = self.current_trials new_trials = self.new_trials self.current_trials = self.new_trials self.new_trials = None assert current_trials is not None assert new_trials is not None self.complete_trials_widget.update(new_trials) self.all_trials_widget.update(current_trials, new_trials) def _get_this_source_path() -> str: path = __file__ # Sometimes __file__ points to a *.pyc file, but Bokeh doesn't accept it. if path.endswith(".pyc"): path = path[:-1] return path def _serve(study: optuna.study.Study, bokeh_allow_websocket_origins: List[str]) -> None: global _mode, _study _imports.check() # We want to pass the mode (launching a server? or, just writing an HTML?) and a target study # to our Bokeh app. Unfortunately, as we are using `bokeh.command.bootstrap.main` to launch # our Bokeh app, we cannot directly pass Python objects to it. Therefore, we have no choice but # to use global variables to pass them. _mode = "serve" _study = study # TODO(akiba): Stop using Bokeh's CLI entry point, and start the HTTP server by ourselves. # This is not a very clean way to launch Bokeh server. # Another seemingly better way is to # instantiate and launch `bokeh.server.server.Server` by ourselves. However, in this way, # for some reason, we found that the CDS update is not reflected to browsers, at least on Bokeh # version 0.12.15. In addition, we will need to do many configuration to servers, which can be # done automatically with the following one line. So, for now, we decided to use this way. command = ["bokeh", "serve", "--show", _get_this_source_path()] for bokeh_allow_websocket_origin in bokeh_allow_websocket_origins: command.extend(["--allow-websocket-origin", bokeh_allow_websocket_origin]) bokeh.command.bootstrap.main(command) def _write(study: optuna.study.Study, out_path: str) -> None: global _mode, _study _imports.check() _mode = "html" _study = study bokeh.command.bootstrap.main(["bokeh", "html", _get_this_source_path(), "-o", out_path]) def _run() -> None: # Please note that `_study` and `optuna.dashboard._study` are different here. Here, this module # is loaded inside Bokeh, and thus it is not `optuna.dashboard`, but `bk_script_????`. study = optuna.dashboard._study mode = optuna.dashboard._mode assert study is not None app = _DashboardApp(study, launch_update_thread=(mode == "serve")) doc = bokeh.plotting.curdoc() app(doc) if __name__.startswith("bk_script_"): # Here, this module is loaded inside Bokeh. Therefore, we should launch the Bokeh app. _run()
test_server.py
import asyncio import json import os import time import urllib.parse import uuid from contextlib import ExitStack from http import HTTPStatus from multiprocessing import Process, Manager from multiprocessing.managers import DictProxy from pathlib import Path from typing import List, Text, Type, Generator, NoReturn, Dict, Optional from unittest.mock import Mock, ANY import pytest import requests from _pytest import pathlib from _pytest.monkeypatch import MonkeyPatch from aioresponses import aioresponses from freezegun import freeze_time from mock import MagicMock from ruamel.yaml import StringIO from sanic import Sanic from sanic.testing import SanicASGITestClient import rasa import rasa.constants import rasa.core.jobs import rasa.nlu import rasa.server import rasa.shared.constants import rasa.shared.utils.io import rasa.utils.io from rasa.core import utils from rasa.core.agent import Agent, load_agent from rasa.core.channels import ( channel, CollectingOutputChannel, RestInput, SlackInput, CallbackInput, ) from rasa.core.channels.slack import SlackBot from rasa.core.tracker_store import InMemoryTrackerStore from rasa.model import unpack_model from rasa.nlu.test import CVEvaluationResult from rasa.shared.core import events from rasa.shared.core.constants import ( ACTION_SESSION_START_NAME, ACTION_LISTEN_NAME, REQUESTED_SLOT, SESSION_START_METADATA_SLOT, ) from rasa.shared.core.domain import Domain, SessionConfig from rasa.shared.core.events import ( Event, UserUttered, SlotSet, BotUttered, ActionExecuted, SessionStarted, ) from rasa.shared.core.trackers import DialogueStateTracker from rasa.shared.nlu.constants import INTENT_NAME_KEY from rasa.train import TrainingResult from rasa.utils.endpoints import EndpointConfig from tests.core.conftest import DEFAULT_STACK_CONFIG from tests.nlu.utilities import ResponseTest from tests.utilities import json_of_latest_request, latest_request # a couple of event instances that we can use for testing test_events = [ Event.from_parameters( { "event": UserUttered.type_name, "text": "/goodbye", "parse_data": { "intent": {"confidence": 1.0, INTENT_NAME_KEY: "greet"}, "entities": [], }, } ), BotUttered("Welcome!", {"test": True}), SlotSet("cuisine", 34), SlotSet("cuisine", "34"), SlotSet("location", None), SlotSet("location", [34, "34", None]), ] # sequence of events expected at the beginning of trackers session_start_sequence: List[Event] = [ ActionExecuted(ACTION_SESSION_START_NAME), SessionStarted(), ActionExecuted(ACTION_LISTEN_NAME), ] @pytest.fixture def rasa_app_without_api(rasa_server_without_api: Sanic) -> SanicASGITestClient: return rasa_server_without_api.asgi_client @pytest.fixture def rasa_app(rasa_server: Sanic) -> SanicASGITestClient: return rasa_server.asgi_client @pytest.fixture def rasa_app_nlu(rasa_nlu_server: Sanic) -> SanicASGITestClient: return rasa_nlu_server.asgi_client @pytest.fixture def rasa_app_core(rasa_core_server: Sanic) -> SanicASGITestClient: return rasa_core_server.asgi_client @pytest.fixture def rasa_secured_app(rasa_server_secured: Sanic) -> SanicASGITestClient: return rasa_server_secured.asgi_client @pytest.fixture() async def tear_down_scheduler() -> Generator[None, None, None]: yield None rasa.core.jobs.__scheduler = None async def test_root(rasa_app: SanicASGITestClient): _, response = await rasa_app.get("/") assert response.status == HTTPStatus.OK assert response.text.startswith("Hello from Rasa:") async def test_root_without_enable_api(rasa_app_without_api: SanicASGITestClient): _, response = await rasa_app_without_api.get("/") assert response.status == HTTPStatus.OK assert response.text.startswith("Hello from Rasa:") async def test_root_secured(rasa_secured_app: SanicASGITestClient): _, response = await rasa_secured_app.get("/") assert response.status == HTTPStatus.OK assert response.text.startswith("Hello from Rasa:") async def test_version(rasa_app: SanicASGITestClient): _, response = await rasa_app.get("/version") content = response.json() assert response.status == HTTPStatus.OK assert content.get("version") == rasa.__version__ assert ( content.get("minimum_compatible_version") == rasa.constants.MINIMUM_COMPATIBLE_VERSION ) async def test_status(rasa_app: SanicASGITestClient, trained_rasa_model: Text): _, response = await rasa_app.get("/status") model_file = response.json()["model_file"] assert response.status == HTTPStatus.OK assert "fingerprint" in response.json() assert os.path.isfile(model_file) assert model_file == trained_rasa_model async def test_status_nlu_only( rasa_app_nlu: SanicASGITestClient, trained_nlu_model: Text ): _, response = await rasa_app_nlu.get("/status") model_file = response.json()["model_file"] assert response.status == HTTPStatus.OK assert "fingerprint" in response.json() assert "model_file" in response.json() assert model_file == trained_nlu_model async def test_status_secured(rasa_secured_app: SanicASGITestClient): _, response = await rasa_secured_app.get("/status") assert response.status == HTTPStatus.UNAUTHORIZED async def test_status_not_ready_agent(rasa_app: SanicASGITestClient): rasa_app.app.agent = None _, response = await rasa_app.get("/status") assert response.status == HTTPStatus.CONFLICT @pytest.fixture def shared_statuses() -> DictProxy: return Manager().dict() @pytest.fixture def background_server( shared_statuses: DictProxy, tmpdir: pathlib.Path, monkeypatch: MonkeyPatch ) -> Generator[Process, None, None]: # Create a fake model archive which the mocked train function can return fake_model = Path(tmpdir) / "fake_model.tar.gz" fake_model.touch() fake_model_path = str(fake_model) # Fake training function which blocks until we tell it to stop blocking # If we can send a status request while this is blocking, we can be sure that the # actual training is also not blocking async def mocked_training_function(*_, **__) -> TrainingResult: # Tell the others that we are now blocking shared_statuses["started_training"] = True # Block until somebody tells us to not block anymore while shared_statuses.get("stop_training") is not True: time.sleep(1) return TrainingResult(model=fake_model_path) def run_server(monkeypatch: MonkeyPatch) -> NoReturn: import sys monkeypatch.setattr( sys.modules["rasa.train"], "train_async", mocked_training_function, ) from rasa import __main__ sys.argv = ["rasa", "run", "--enable-api"] __main__.main() server = Process(target=run_server, args=(monkeypatch,)) yield server server.terminate() @pytest.fixture() def training_request( shared_statuses: DictProxy, tmp_path: Path ) -> Generator[Process, None, None]: def send_request() -> None: payload = {} project_path = Path("examples") / "formbot" for file in [ "domain.yml", "config.yml", Path("data") / "rules.yml", Path("data") / "stories.yml", Path("data") / "nlu.yml", ]: full_path = project_path / file # Read in as dictionaries to avoid that keys, which are specified in # multiple files (such as 'version'), clash. content = rasa.shared.utils.io.read_yaml_file(full_path) payload.update(content) concatenated_payload_file = tmp_path / "concatenated.yml" rasa.shared.utils.io.write_yaml(payload, concatenated_payload_file) payload_as_yaml = concatenated_payload_file.read_text() response = requests.post( "http://localhost:5005/model/train", data=payload_as_yaml, headers={"Content-type": rasa.server.YAML_CONTENT_TYPE}, params={"force_training": True}, ) shared_statuses["training_result"] = response.status_code train_request = Process(target=send_request) yield train_request train_request.terminate() # Due to unknown reasons this test can not be run in pycharm, it # results in segfaults...will skip in that case - test will still get run on CI. # It also doesn't run on Windows because of Process-related calls and an attempt # to start/terminate a process. We will investigate this case further later: # https://github.com/RasaHQ/rasa/issues/6302 @pytest.mark.skipif("PYCHARM_HOSTED" in os.environ, reason="results in segfault") @pytest.mark.skip_on_windows def test_train_status_is_not_blocked_by_training( background_server: Process, shared_statuses: DictProxy, training_request: Process ): background_server.start() def is_server_ready() -> bool: try: return ( requests.get("http://localhost:5005/status").status_code == HTTPStatus.OK ) except Exception: return False # wait until server is up before sending train request and status test loop start = time.time() while not is_server_ready() and time.time() - start < 60: time.sleep(1) assert is_server_ready() training_request.start() # Wait until the blocking training function was called start = time.time() while ( shared_statuses.get("started_training") is not True and time.time() - start < 60 ): time.sleep(1) # Check if the number of currently running trainings was incremented response = requests.get("http://localhost:5005/status") assert response.status_code == HTTPStatus.OK assert response.json()["num_active_training_jobs"] == 1 # Tell the blocking training function to stop shared_statuses["stop_training"] = True start = time.time() while shared_statuses.get("training_result") is None and time.time() - start < 60: time.sleep(1) assert shared_statuses.get("training_result") # Check that the training worked correctly assert shared_statuses["training_result"] == HTTPStatus.OK # Check if the number of currently running trainings was decremented response = requests.get("http://localhost:5005/status") assert response.status_code == HTTPStatus.OK assert response.json()["num_active_training_jobs"] == 0 @pytest.mark.parametrize( "response_test", [ ResponseTest( "/model/parse", { "entities": [], "intent": {"confidence": 1.0, INTENT_NAME_KEY: "greet"}, "text": "hello", }, payload={"text": "hello"}, ), ResponseTest( "/model/parse", { "entities": [], "intent": {"confidence": 1.0, INTENT_NAME_KEY: "greet"}, "text": "hello", }, payload={"text": "hello"}, ), ResponseTest( "/model/parse", { "entities": [], "intent": {"confidence": 1.0, INTENT_NAME_KEY: "greet"}, "text": "hello ńöñàśçií", }, payload={"text": "hello ńöñàśçií"}, ), ], ) async def test_parse(rasa_app: SanicASGITestClient, response_test: ResponseTest): _, response = await rasa_app.post( response_test.endpoint, json=response_test.payload ) rjs = response.json() assert response.status == HTTPStatus.OK assert all(prop in rjs for prop in ["entities", "intent", "text"]) assert rjs["entities"] == response_test.expected_response["entities"] assert rjs["text"] == response_test.expected_response["text"] assert rjs["intent"] == response_test.expected_response["intent"] @pytest.mark.parametrize( "response_test", [ ResponseTest( "/model/parse?emulation_mode=wit", { "entities": [], "intent": {"confidence": 1.0, INTENT_NAME_KEY: "greet"}, "text": "hello", }, payload={"text": "hello"}, ), ResponseTest( "/model/parse?emulation_mode=dialogflow", { "entities": [], "intent": {"confidence": 1.0, INTENT_NAME_KEY: "greet"}, "text": "hello", }, payload={"text": "hello"}, ), ResponseTest( "/model/parse?emulation_mode=luis", { "entities": [], "intent": {"confidence": 1.0, INTENT_NAME_KEY: "greet"}, "text": "hello ńöñàśçií", }, payload={"text": "hello ńöñàśçií"}, ), ], ) async def test_parse_with_different_emulation_mode( rasa_app: SanicASGITestClient, response_test: ResponseTest ): _, response = await rasa_app.post( response_test.endpoint, json=response_test.payload ) assert response.status == HTTPStatus.OK async def test_parse_without_nlu_model(rasa_app_core: SanicASGITestClient): _, response = await rasa_app_core.post("/model/parse", json={"text": "hello"}) assert response.status == HTTPStatus.OK rjs = response.json() assert all(prop in rjs for prop in ["entities", "intent", "text"]) async def test_parse_on_invalid_emulation_mode(rasa_app_nlu: SanicASGITestClient): _, response = await rasa_app_nlu.post( "/model/parse?emulation_mode=ANYTHING", json={"text": "hello"} ) assert response.status == HTTPStatus.BAD_REQUEST async def test_train_stack_success_with_md( rasa_app: SanicASGITestClient, default_domain_path: Text, default_stack_config: Text, default_nlu_data: Text, tmp_path: Path, ): payload = dict( domain=Path(default_domain_path).read_text(), config=Path(default_stack_config).read_text(), stories=Path("data/test_stories/stories_defaultdomain.md").read_text(), nlu=Path(default_nlu_data).read_text(), ) _, response = await rasa_app.post("/model/train", json=payload) assert response.status == HTTPStatus.OK assert response.headers["filename"] is not None # save model to temporary file model_path = str(tmp_path / "model.tar.gz") with open(model_path, "wb") as f: f.write(response.body) # unpack model and ensure fingerprint is present model_path = unpack_model(model_path) assert os.path.exists(os.path.join(model_path, "fingerprint.json")) async def test_train_nlu_success( rasa_app: SanicASGITestClient, default_stack_config: Text, default_nlu_data: Text, default_domain_path: Text, tmp_path: Path, ): domain_data = rasa.shared.utils.io.read_yaml_file(default_domain_path) config_data = rasa.shared.utils.io.read_yaml_file(default_stack_config) nlu_data = rasa.shared.utils.io.read_yaml_file(default_nlu_data) # combine all data into our payload payload = { key: val for d in [domain_data, config_data, nlu_data] for key, val in d.items() } data = StringIO() rasa.shared.utils.io.write_yaml(payload, data) _, response = await rasa_app.post( "/model/train", data=data.getvalue(), headers={"Content-type": rasa.server.YAML_CONTENT_TYPE}, ) assert response.status == HTTPStatus.OK # save model to temporary file model_path = str(tmp_path / "model.tar.gz") with open(model_path, "wb") as f: f.write(response.body) # unpack model and ensure fingerprint is present model_path = unpack_model(model_path) assert os.path.exists(os.path.join(model_path, "fingerprint.json")) async def test_train_core_success_with( rasa_app: SanicASGITestClient, default_stack_config: Text, default_stories_file: Text, default_domain_path: Text, tmp_path: Path, ): payload = f""" {Path(default_domain_path).read_text()} {Path(default_stack_config).read_text()} {Path(default_stories_file).read_text()} """ _, response = await rasa_app.post( "/model/train", data=payload, headers={"Content-type": rasa.server.YAML_CONTENT_TYPE}, ) assert response.status == HTTPStatus.OK # save model to temporary file model_path = str(tmp_path / "model.tar.gz") with open(model_path, "wb") as f: f.write(response.body) # unpack model and ensure fingerprint is present model_path = unpack_model(model_path) assert os.path.exists(os.path.join(model_path, "fingerprint.json")) async def test_train_with_retrieval_events_success( rasa_app: SanicASGITestClient, default_stack_config: Text, tmp_path: Path ): with ExitStack() as stack: domain_file = stack.enter_context( open("data/test_domains/default_retrieval_intents.yml") ) config_file = stack.enter_context(open(default_stack_config)) core_file = stack.enter_context( open("data/test_stories/stories_retrieval_intents.md") ) responses_file = stack.enter_context(open("data/test_responses/default.md")) nlu_file = stack.enter_context( open("data/test_nlu/default_retrieval_intents.md") ) payload = dict( domain=domain_file.read(), config=config_file.read(), stories=core_file.read(), responses=responses_file.read(), nlu=nlu_file.read(), ) _, response = await rasa_app.post("/model/train", json=payload, timeout=60 * 5) assert response.status == HTTPStatus.OK assert_trained_model(response.body, tmp_path) def assert_trained_model(response_body: bytes, tmp_path: Path) -> None: # save model to temporary file model_path = str(tmp_path / "model.tar.gz") with open(model_path, "wb") as f: f.write(response_body) # unpack model and ensure fingerprint is present model_path = unpack_model(model_path) assert os.path.exists(os.path.join(model_path, "fingerprint.json")) @pytest.mark.parametrize( "payload", [ {"config": None, "stories": None, "nlu": None, "domain": None, "force": True}, { "config": None, "stories": None, "nlu": None, "domain": None, "force": False, "save_to_default_model_directory": True, }, { "config": None, "stories": None, "nlu": None, "domain": None, "save_to_default_model_directory": False, }, ], ) def test_deprecation_warnings_json_payload(payload: Dict): with pytest.warns(FutureWarning): rasa.server._validate_json_training_payload(payload) async def test_train_with_yaml(rasa_app: SanicASGITestClient, tmp_path: Path): training_data = """ stories: - story: My story steps: - intent: greet - action: utter_greet rules: - rule: My rule steps: - intent: greet - action: utter_greet intents: - greet nlu: - intent: greet examples: | - hi - hello responses: utter_greet: - text: Hi language: en polices: - name: RulePolicy pipeline: - name: KeywordIntentClassifier """ _, response = await rasa_app.post( "/model/train", data=training_data, headers={"Content-type": rasa.server.YAML_CONTENT_TYPE}, ) assert response.status == HTTPStatus.OK assert_trained_model(response.body, tmp_path) async def test_train_with_invalid_yaml(rasa_app: SanicASGITestClient): invalid_yaml = """ rules: rule my rule """ _, response = await rasa_app.post( "/model/train", data=invalid_yaml, headers={"Content-type": rasa.server.YAML_CONTENT_TYPE}, ) assert response.status == HTTPStatus.BAD_REQUEST @pytest.mark.parametrize( "headers, expected", [({}, False), ({"force_training": False}, False), ({"force_training": True}, True)], ) def test_training_payload_from_yaml_force_training( headers: Dict, expected: bool, tmp_path: Path ): request = Mock() request.body = b"" request.args = headers payload = rasa.server._training_payload_from_yaml(request, tmp_path) assert payload.get("force_training") == expected @pytest.mark.parametrize( "headers, expected", [ ({}, rasa.shared.constants.DEFAULT_MODELS_PATH), ({"save_to_default_model_directory": False}, ANY), ( {"save_to_default_model_directory": True}, rasa.shared.constants.DEFAULT_MODELS_PATH, ), ], ) def test_training_payload_from_yaml_save_to_default_model_directory( headers: Dict, expected: Text, tmp_path: Path ): request = Mock() request.body = b"" request.args = headers payload = rasa.server._training_payload_from_yaml(request, tmp_path) assert payload.get("output") assert payload.get("output") == expected async def test_train_missing_config(rasa_app: SanicASGITestClient): payload = dict(domain="domain data", config=None) _, response = await rasa_app.post("/model/train", json=payload) assert response.status == HTTPStatus.BAD_REQUEST async def test_train_missing_training_data(rasa_app: SanicASGITestClient): payload = dict(domain="domain data", config="config data") _, response = await rasa_app.post("/model/train", json=payload) assert response.status == HTTPStatus.BAD_REQUEST async def test_train_internal_error(rasa_app: SanicASGITestClient): payload = dict(domain="domain data", config="config data", nlu="nlu data") _, response = await rasa_app.post("/model/train", json=payload) assert response.status == HTTPStatus.INTERNAL_SERVER_ERROR async def test_evaluate_stories( rasa_app: SanicASGITestClient, default_stories_file: Text ): stories = rasa.shared.utils.io.read_file(default_stories_file) _, response = await rasa_app.post( "/model/test/stories", data=stories, headers={"Content-type": rasa.server.YAML_CONTENT_TYPE}, ) assert response.status == HTTPStatus.OK js = response.json() assert set(js.keys()) == { "report", "precision", "f1", "accuracy", "actions", "in_training_data_fraction", "is_end_to_end_evaluation", } assert not js["is_end_to_end_evaluation"] assert set(js["actions"][0].keys()) == { "action", "predicted", "confidence", "policy", } async def test_evaluate_stories_not_ready_agent( rasa_app_nlu: SanicASGITestClient, default_stories_file: Text ): stories = rasa.shared.utils.io.read_file(default_stories_file) _, response = await rasa_app_nlu.post("/model/test/stories", data=stories) assert response.status == HTTPStatus.CONFLICT async def test_evaluate_stories_end_to_end( rasa_app: SanicASGITestClient, end_to_end_test_story_file: Text ): stories = rasa.shared.utils.io.read_file(end_to_end_test_story_file) _, response = await rasa_app.post("/model/test/stories?e2e=true", data=stories) assert response.status == HTTPStatus.OK js = response.json() assert set(js.keys()) == { "report", "precision", "f1", "accuracy", "actions", "in_training_data_fraction", "is_end_to_end_evaluation", } assert js["is_end_to_end_evaluation"] assert js["actions"] != [] assert set(js["actions"][0].keys()) == { "action", "predicted", "confidence", "policy", } async def test_evaluate_intent(rasa_app: SanicASGITestClient, default_nlu_data: Text): nlu_data = rasa.shared.utils.io.read_file(default_nlu_data) _, response = await rasa_app.post( "/model/test/intents", data=nlu_data, headers={"Content-type": rasa.server.YAML_CONTENT_TYPE}, ) assert response.status == HTTPStatus.OK assert set(response.json().keys()) == { "intent_evaluation", "entity_evaluation", "response_selection_evaluation", } async def test_evaluate_intent_on_just_nlu_model( rasa_app_nlu: SanicASGITestClient, default_nlu_data: Text ): nlu_data = rasa.shared.utils.io.read_file(default_nlu_data) _, response = await rasa_app_nlu.post( "/model/test/intents", data=nlu_data, headers={"Content-type": rasa.server.YAML_CONTENT_TYPE}, ) assert response.status == HTTPStatus.OK assert set(response.json().keys()) == { "intent_evaluation", "entity_evaluation", "response_selection_evaluation", } async def test_evaluate_intent_with_model_param( rasa_app: SanicASGITestClient, trained_nlu_model: Text, default_nlu_data: Text ): _, response = await rasa_app.get("/status") previous_model_file = response.json()["model_file"] nlu_data = rasa.shared.utils.io.read_file(default_nlu_data) _, response = await rasa_app.post( f"/model/test/intents?model={trained_nlu_model}", data=nlu_data, headers={"Content-type": rasa.server.YAML_CONTENT_TYPE}, ) assert response.status == HTTPStatus.OK assert set(response.json().keys()) == { "intent_evaluation", "entity_evaluation", "response_selection_evaluation", } _, response = await rasa_app.get("/status") assert previous_model_file == response.json()["model_file"] async def test_evaluate_intent_with_model_server( rasa_app: SanicASGITestClient, trained_rasa_model: Text, default_nlu_data: Text, tear_down_scheduler: None, ): production_model_server_url = ( "https://example.com/webhooks/actions?model=production" ) test_model_server_url = "https://example.com/webhooks/actions?model=test" nlu_data = rasa.shared.utils.io.read_file(default_nlu_data) with aioresponses() as mocked: # Mock retrieving the production model from the model server mocked.get( production_model_server_url, body=Path(trained_rasa_model).read_bytes(), headers={"ETag": "production"}, ) # Mock retrieving the test model from the model server mocked.get( test_model_server_url, body=Path(trained_rasa_model).read_bytes(), headers={"ETag": "test"}, ) agent_with_model_server = await load_agent( model_server=EndpointConfig(production_model_server_url) ) rasa_app.app.agent = agent_with_model_server _, response = await rasa_app.post( f"/model/test/intents?model={test_model_server_url}", data=nlu_data, headers={"Content-type": rasa.server.YAML_CONTENT_TYPE}, ) assert response.status == HTTPStatus.OK assert set(response.json().keys()) == { "intent_evaluation", "entity_evaluation", "response_selection_evaluation", } production_model_server = rasa_app.app.agent.model_server # Assert that the model server URL for the test didn't override the production # model server URL assert production_model_server.url == production_model_server_url # Assert the tests didn't break pulling the models assert production_model_server.kwargs.get("wait_time_between_pulls") != 0 async def test_cross_validation( rasa_app_nlu: SanicASGITestClient, default_nlu_data: Text ): nlu_data = Path(default_nlu_data).read_text() config = Path(DEFAULT_STACK_CONFIG).read_text() payload = f"{nlu_data}\n{config}" _, response = await rasa_app_nlu.post( "/model/test/intents", data=payload, headers={"Content-type": rasa.server.YAML_CONTENT_TYPE}, params={"cross_validation_folds": 3}, ) assert response.status == HTTPStatus.OK response_body = response.json() for required_key in { "intent_evaluation", "entity_evaluation", "response_selection_evaluation", }: assert required_key in response_body details = response_body[required_key] assert all( key in details for key in ["precision", "f1_score", "report", "errors"] ) async def test_cross_validation_with_md( rasa_app_nlu: SanicASGITestClient, default_nlu_data: Text ): payload = """ ## intent: greet - Hi - Hello """ _, response = await rasa_app_nlu.post( "/model/test/intents", data=payload, params={"cross_validation_folds": 3}, ) assert response.status == HTTPStatus.BAD_REQUEST async def test_cross_validation_with_callback_success( rasa_app_nlu: SanicASGITestClient, default_nlu_data: Text, monkeypatch: MonkeyPatch ): nlu_data = Path(default_nlu_data).read_text() config = Path(DEFAULT_STACK_CONFIG).read_text() payload = f"{nlu_data}\n{config}" callback_url = "https://example.com/webhooks/actions" with aioresponses() as mocked: mocked.post(callback_url, payload={}) mocked_cross_validation = Mock( return_value=( CVEvaluationResult({}, {}, {}), CVEvaluationResult({}, {}, {}), CVEvaluationResult({}, {}, {}), ) ) monkeypatch.setattr( rasa.nlu, rasa.nlu.cross_validate.__name__, mocked_cross_validation ) _, response = await rasa_app_nlu.post( "/model/test/intents", data=payload, headers={"Content-type": rasa.server.YAML_CONTENT_TYPE}, params={"cross_validation_folds": 3, "callback_url": callback_url}, ) assert response.status == HTTPStatus.NO_CONTENT # Sleep to give event loop time to process things in the background await asyncio.sleep(1) mocked_cross_validation.assert_called_once() last_request = latest_request(mocked, "POST", callback_url) assert last_request content = last_request[0].kwargs["data"] response_body = json.loads(content) for required_key in { "intent_evaluation", "entity_evaluation", "response_selection_evaluation", }: assert required_key in response_body details = response_body[required_key] assert all( key in details for key in ["precision", "f1_score", "report", "errors"] ) async def test_cross_validation_with_callback_error( rasa_app_nlu: SanicASGITestClient, default_nlu_data: Text, monkeypatch: MonkeyPatch ): nlu_data = Path(default_nlu_data).read_text() config = Path(DEFAULT_STACK_CONFIG).read_text() payload = f"{nlu_data}\n{config}" monkeypatch.setattr( rasa.nlu, rasa.nlu.cross_validate.__name__, Mock(side_effect=ValueError()) ) callback_url = "https://example.com/webhooks/actions" with aioresponses() as mocked: mocked.post(callback_url, payload={}) _, response = await rasa_app_nlu.post( "/model/test/intents", data=payload, headers={"Content-type": rasa.server.YAML_CONTENT_TYPE}, params={"cross_validation_folds": 3, "callback_url": callback_url}, ) assert response.status == HTTPStatus.NO_CONTENT await asyncio.sleep(1) last_request = latest_request(mocked, "POST", callback_url) assert last_request content = last_request[0].kwargs["json"] assert content["code"] == HTTPStatus.INTERNAL_SERVER_ERROR async def test_callback_unexpected_error( rasa_app_nlu: SanicASGITestClient, default_nlu_data: Text, monkeypatch: MonkeyPatch ): nlu_data = Path(default_nlu_data).read_text() config = Path(DEFAULT_STACK_CONFIG).read_text() payload = f"{nlu_data}\n{config}" async def raiseUnexpectedError() -> NoReturn: raise ValueError() monkeypatch.setattr( rasa.server, rasa.server._training_payload_from_yaml.__name__, Mock(side_effect=ValueError()), ) callback_url = "https://example.com/webhooks/actions" with aioresponses() as mocked: mocked.post(callback_url, payload={}) _, response = await rasa_app_nlu.post( "/model/test/intents", data=payload, headers={"Content-type": rasa.server.YAML_CONTENT_TYPE}, params={"cross_validation_folds": 3, "callback_url": callback_url}, ) assert response.status == HTTPStatus.NO_CONTENT await asyncio.sleep(1) last_request = latest_request(mocked, "POST", callback_url) assert last_request content = last_request[0].kwargs["json"] assert content["code"] == HTTPStatus.INTERNAL_SERVER_ERROR async def test_predict(rasa_app: SanicASGITestClient): data = { "Events": { "value": [ {"event": "action", "name": "action_listen"}, { "event": "user", "text": "hello", "parse_data": { "entities": [], "intent": {"confidence": 0.57, INTENT_NAME_KEY: "greet"}, "text": "hello", }, }, ] } } _, response = await rasa_app.post( "/model/predict", json=data, headers={"Content-Type": rasa.server.JSON_CONTENT_TYPE}, ) content = response.json() assert response.status == HTTPStatus.OK assert "scores" in content assert "tracker" in content assert "policy" in content @freeze_time("2018-01-01") async def test_requesting_non_existent_tracker(rasa_app: SanicASGITestClient): _, response = await rasa_app.get("/conversations/madeupid/tracker") content = response.json() assert response.status == HTTPStatus.OK assert content["paused"] is False assert content["slots"] == { "name": None, REQUESTED_SLOT: None, SESSION_START_METADATA_SLOT: None, } assert content["sender_id"] == "madeupid" assert content["events"] == [ { "event": "action", "name": "action_session_start", "policy": None, "confidence": 1, "timestamp": 1514764800, "action_text": None, }, {"event": "session_started", "timestamp": 1514764800}, { "event": "action", INTENT_NAME_KEY: "action_listen", "policy": None, "confidence": None, "timestamp": 1514764800, "action_text": None, }, ] assert content["latest_message"] == { "text": None, "intent": {}, "entities": [], "message_id": None, "metadata": {}, } @pytest.mark.parametrize("event", test_events) async def test_pushing_event(rasa_app: SanicASGITestClient, event: Event): sender_id = str(uuid.uuid1()) conversation = f"/conversations/{sender_id}" serialized_event = event.as_dict() # Remove timestamp so that a new one is assigned on the server serialized_event.pop("timestamp") time_before_adding_events = time.time() _, response = await rasa_app.post( f"{conversation}/tracker/events", json=serialized_event, headers={"Content-Type": rasa.server.JSON_CONTENT_TYPE}, ) assert response.json() is not None assert response.status == HTTPStatus.OK _, tracker_response = await rasa_app.get(f"/conversations/{sender_id}/tracker") tracker = tracker_response.json() assert tracker is not None assert len(tracker.get("events")) == 4 deserialized_events = [Event.from_parameters(event) for event in tracker["events"]] # there is an initial session start sequence at the beginning of the tracker assert deserialized_events[:3] == session_start_sequence assert deserialized_events[3] == event assert deserialized_events[3].timestamp > time_before_adding_events async def test_push_multiple_events(rasa_app: SanicASGITestClient): conversation_id = str(uuid.uuid1()) conversation = f"/conversations/{conversation_id}" events = [e.as_dict() for e in test_events] _, response = await rasa_app.post( f"{conversation}/tracker/events", json=events, headers={"Content-Type": rasa.server.JSON_CONTENT_TYPE}, ) assert response.json() is not None assert response.status == HTTPStatus.OK _, tracker_response = await rasa_app.get( f"/conversations/{conversation_id}/tracker" ) tracker = tracker_response.json() assert tracker is not None # there is an initial session start sequence at the beginning assert [ Event.from_parameters(event) for event in tracker.get("events") ] == session_start_sequence + test_events @pytest.mark.parametrize( "params", ["?execute_side_effects=true&output_channel=callback", ""] ) async def test_pushing_event_while_executing_side_effects( rasa_server: Sanic, params: Text ): input_channel = CallbackInput(EndpointConfig("https://example.com/callback")) channel.register([input_channel], rasa_server, "/webhooks/") rasa_app = rasa_server.asgi_client sender_id = str(uuid.uuid1()) conversation = f"/conversations/{sender_id}" serialized_event = test_events[1].as_dict() with aioresponses() as mocked: mocked.post( "https://example.com/callback", repeat=True, headers={"Content-Type": "application/json"}, ) await rasa_app.post( f"{conversation}/tracker/events{params}", json=serialized_event, headers={"Content-Type": rasa.server.JSON_CONTENT_TYPE}, ) r = latest_request(mocked, "post", "https://example.com/callback") if not params: assert r is None else: message_received = json_of_latest_request(r) assert message_received.get("recipient_id") == sender_id assert message_received.get("text") == serialized_event.get("text") async def test_post_conversation_id_with_slash(rasa_app: SanicASGITestClient): conversation_id = str(uuid.uuid1()) id_len = len(conversation_id) // 2 conversation_id = conversation_id[:id_len] + "/+-_\\=" + conversation_id[id_len:] conversation = f"/conversations/{conversation_id}" events = [e.as_dict() for e in test_events] _, response = await rasa_app.post( f"{conversation}/tracker/events", json=events, headers={"Content-Type": "application/json"}, ) assert response.json() is not None assert response.status == HTTPStatus.OK _, tracker_response = await rasa_app.get( f"/conversations/{conversation_id}/tracker" ) tracker = tracker_response.json() assert tracker is not None # there is a session start sequence at the start assert [ Event.from_parameters(event) for event in tracker.get("events") ] == session_start_sequence + test_events async def test_put_tracker(rasa_app: SanicASGITestClient): data = [event.as_dict() for event in test_events] _, response = await rasa_app.put( "/conversations/pushtracker/tracker/events", json=data, headers={"Content-Type": rasa.server.JSON_CONTENT_TYPE}, ) content = response.json() assert response.status == HTTPStatus.OK assert len(content["events"]) == len(test_events) assert content["sender_id"] == "pushtracker" _, tracker_response = await rasa_app.get("/conversations/pushtracker/tracker") tracker = tracker_response.json() assert tracker is not None evts = tracker.get("events") assert events.deserialise_events(evts) == test_events async def test_sorted_predict(rasa_app: SanicASGITestClient): await _create_tracker_for_sender(rasa_app, "sortedpredict") _, response = await rasa_app.post("/conversations/sortedpredict/predict") scores = response.json()["scores"] sorted_scores = sorted(scores, key=lambda k: (-k["score"], k["action"])) assert scores == sorted_scores async def _create_tracker_for_sender(app: SanicASGITestClient, sender_id: Text) -> None: data = [event.as_dict() for event in test_events[:3]] _, response = await app.put( f"/conversations/{sender_id}/tracker/events", json=data, headers={"Content-Type": rasa.server.JSON_CONTENT_TYPE}, ) assert response.status == HTTPStatus.OK async def test_get_tracker_with_jwt(rasa_secured_app: SanicASGITestClient): # token generated with secret "core" and algorithm HS256 # on https://jwt.io/ # {"user": {"username": "testadmin", "role": "admin"}} jwt_header = { "Authorization": "Bearer eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9." "eyJ1c2VyIjp7InVzZXJuYW1lIjoidGVzdGFkbWluIiwic" "m9sZSI6ImFkbWluIn19.NAQr0kbtSrY7d28XTqRzawq2u" "QRre7IWTuIDrCn5AIw" } _, response = await rasa_secured_app.get( "/conversations/testadmin/tracker", headers=jwt_header ) assert response.status == HTTPStatus.OK _, response = await rasa_secured_app.get( "/conversations/testuser/tracker", headers=jwt_header ) assert response.status == HTTPStatus.OK # {"user": {"username": "testuser", "role": "user"}} jwt_header = { "Authorization": "Bearer eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9." "eyJ1c2VyIjp7InVzZXJuYW1lIjoidGVzdHVzZXIiLCJyb" "2xlIjoidXNlciJ9fQ.JnMTLYd56qut2w9h7hRQlDm1n3l" "HJHOxxC_w7TtwCrs" } _, response = await rasa_secured_app.get( "/conversations/testadmin/tracker", headers=jwt_header ) assert response.status == HTTPStatus.FORBIDDEN _, response = await rasa_secured_app.get( "/conversations/testuser/tracker", headers=jwt_header ) assert response.status == HTTPStatus.OK def test_list_routes(default_agent: Agent): app = rasa.server.create_app(default_agent, auth_token=None) routes = utils.list_routes(app) assert set(routes.keys()) == { "hello", "version", "status", "retrieve_tracker", "append_events", "replace_events", "retrieve_story", "execute_action", "trigger_intent", "predict", "add_message", "train", "evaluate_stories", "evaluate_intents", "tracker_predict", "parse", "load_model", "unload_model", "get_domain", } async def test_unload_model_error(rasa_app: SanicASGITestClient): _, response = await rasa_app.get("/status") assert response.status == HTTPStatus.OK assert "model_file" in response.json() and response.json()["model_file"] is not None _, response = await rasa_app.delete("/model") assert response.status == HTTPStatus.NO_CONTENT async def test_get_domain(rasa_app: SanicASGITestClient): _, response = await rasa_app.get( "/domain", headers={"accept": rasa.server.JSON_CONTENT_TYPE} ) content = response.json() assert response.status == HTTPStatus.OK assert "config" in content assert "intents" in content assert "entities" in content assert "slots" in content assert "responses" in content assert "actions" in content async def test_get_domain_invalid_accept_header(rasa_app: SanicASGITestClient): _, response = await rasa_app.get("/domain") assert response.status == HTTPStatus.NOT_ACCEPTABLE async def test_load_model(rasa_app: SanicASGITestClient, trained_core_model: Text): _, response = await rasa_app.get("/status") assert response.status == HTTPStatus.OK assert "fingerprint" in response.json() old_fingerprint = response.json()["fingerprint"] data = {"model_file": trained_core_model} _, response = await rasa_app.put("/model", json=data) assert response.status == HTTPStatus.NO_CONTENT _, response = await rasa_app.get("/status") assert response.status == HTTPStatus.OK assert "fingerprint" in response.json() assert old_fingerprint != response.json()["fingerprint"] async def test_load_model_from_model_server( rasa_app: SanicASGITestClient, trained_core_model: Text, tear_down_scheduler: None ): _, response = await rasa_app.get("/status") assert response.status == HTTPStatus.OK assert "fingerprint" in response.json() old_fingerprint = response.json()["fingerprint"] endpoint = EndpointConfig("https://example.com/model/trained_core_model") with open(trained_core_model, "rb") as f: with aioresponses(passthrough=["http://127.0.0.1"]) as mocked: headers = {} fs = os.fstat(f.fileno()) headers["Content-Length"] = str(fs[6]) mocked.get( "https://example.com/model/trained_core_model", content_type="application/x-tar", body=f.read(), ) data = {"model_server": {"url": endpoint.url}} _, response = await rasa_app.put("/model", json=data) assert response.status == HTTPStatus.NO_CONTENT _, response = await rasa_app.get("/status") assert response.status == HTTPStatus.OK assert "fingerprint" in response.json() assert old_fingerprint != response.json()["fingerprint"] async def test_load_model_invalid_request_body(rasa_app: SanicASGITestClient): _, response = await rasa_app.put("/model") assert response.status == HTTPStatus.BAD_REQUEST async def test_load_model_invalid_configuration(rasa_app: SanicASGITestClient): data = {"model_file": "some-random-path"} _, response = await rasa_app.put("/model", json=data) assert response.status == HTTPStatus.BAD_REQUEST async def test_execute(rasa_app: SanicASGITestClient): await _create_tracker_for_sender(rasa_app, "test_execute") data = {INTENT_NAME_KEY: "utter_greet"} _, response = await rasa_app.post("/conversations/test_execute/execute", json=data) assert response.status == HTTPStatus.OK parsed_content = response.json() assert parsed_content["tracker"] assert parsed_content["messages"] async def test_execute_with_missing_action_name(rasa_app: SanicASGITestClient): test_sender = "test_execute_with_missing_action_name" await _create_tracker_for_sender(rasa_app, test_sender) data = {"wrong-key": "utter_greet"} _, response = await rasa_app.post( f"/conversations/{test_sender}/execute", json=data ) assert response.status == HTTPStatus.BAD_REQUEST async def test_execute_with_not_existing_action(rasa_app: SanicASGITestClient): test_sender = "test_execute_with_not_existing_action" await _create_tracker_for_sender(rasa_app, test_sender) data = {"name": "ka[pa[opi[opj[oj[oija"} _, response = await rasa_app.post( f"/conversations/{test_sender}/execute", json=data ) assert response.status == HTTPStatus.INTERNAL_SERVER_ERROR async def test_trigger_intent(rasa_app: SanicASGITestClient): data = {INTENT_NAME_KEY: "greet"} _, response = await rasa_app.post( "/conversations/test_trigger/trigger_intent", json=data ) assert response.status == HTTPStatus.OK parsed_content = response.json() assert parsed_content["tracker"] assert parsed_content["messages"] async def test_trigger_intent_with_entity(rasa_app: SanicASGITestClient): entity_name = "name" entity_value = "Sara" data = {INTENT_NAME_KEY: "greet", "entities": {entity_name: entity_value}} _, response = await rasa_app.post( "/conversations/test_trigger/trigger_intent", json=data ) assert response.status == HTTPStatus.OK parsed_content = response.json() last_slot_set_event = [ event for event in parsed_content["tracker"]["events"] if event["event"] == "slot" ][-1] assert parsed_content["tracker"] assert parsed_content["messages"] assert last_slot_set_event["name"] == entity_name assert last_slot_set_event["value"] == entity_value async def test_trigger_intent_with_missing_intent_name(rasa_app: SanicASGITestClient): test_sender = "test_trigger_intent_with_missing_action_name" data = {"wrong-key": "greet"} _, response = await rasa_app.post( f"/conversations/{test_sender}/trigger_intent", json=data ) assert response.status == HTTPStatus.BAD_REQUEST async def test_trigger_intent_with_not_existing_intent(rasa_app: SanicASGITestClient): test_sender = "test_trigger_intent_with_not_existing_intent" await _create_tracker_for_sender(rasa_app, test_sender) data = {INTENT_NAME_KEY: "ka[pa[opi[opj[oj[oija"} _, response = await rasa_app.post( f"/conversations/{test_sender}/trigger_intent", json=data ) assert response.status == HTTPStatus.NOT_FOUND @pytest.mark.parametrize( "input_channels, output_channel_to_use, expected_channel", [ (None, "slack", CollectingOutputChannel), ([], None, CollectingOutputChannel), ([RestInput()], "slack", CollectingOutputChannel), ([RestInput()], "rest", CollectingOutputChannel), ( [RestInput(), SlackInput("test", slack_signing_secret="foobar")], "slack", SlackBot, ), ], ) def test_get_output_channel( input_channels: List[Text], output_channel_to_use: Text, expected_channel: Type ): request = MagicMock() app = MagicMock() app.input_channels = input_channels request.app = app request.args = {"output_channel": output_channel_to_use} actual = rasa.server._get_output_channel(request, None) assert isinstance(actual, expected_channel) @pytest.mark.parametrize( "input_channels, expected_channel", [ ([], CollectingOutputChannel), ([RestInput()], CollectingOutputChannel), ([RestInput(), SlackInput("test", slack_signing_secret="foobar")], SlackBot), ], ) def test_get_latest_output_channel(input_channels: List[Text], expected_channel: Type): request = MagicMock() app = MagicMock() app.input_channels = input_channels request.app = app request.args = {"output_channel": "latest"} tracker = DialogueStateTracker.from_events( "default", [UserUttered("text", input_channel="slack")] ) actual = rasa.server._get_output_channel(request, tracker) assert isinstance(actual, expected_channel) def test_app_when_app_has_no_input_channels(): request = MagicMock() class NoInputChannels: pass request.app = NoInputChannels() actual = rasa.server._get_output_channel( request, DialogueStateTracker.from_events("default", []) ) assert isinstance(actual, CollectingOutputChannel) @pytest.mark.parametrize( "conversation_events,until_time,fetch_all_sessions,expected", # conversation with one session [ ( [ ActionExecuted(ACTION_SESSION_START_NAME), SessionStarted(), UserUttered("hi", {"name": "greet"}), ActionExecuted("utter_greet"), ], None, True, """version: "2.0" stories: - story: some-conversation-ID steps: - intent: greet user: |- hi - action: utter_greet""", ), # conversation with multiple sessions ( [ ActionExecuted(ACTION_SESSION_START_NAME), SessionStarted(), UserUttered("hi", {"name": "greet"}), ActionExecuted("utter_greet"), ActionExecuted(ACTION_SESSION_START_NAME), SessionStarted(), UserUttered("bye bye", {"name": "goodbye"}), ActionExecuted("utter_goodbye"), ], None, True, """version: "2.0" stories: - story: some-conversation-ID, story 1 steps: - intent: greet user: |- hi - action: utter_greet - story: some-conversation-ID, story 2 steps: - intent: goodbye user: |- bye bye - action: utter_goodbye""", ), # conversation with multiple sessions, but setting `all_sessions=false` # means only the last one is returned ( [ ActionExecuted(ACTION_SESSION_START_NAME), SessionStarted(), UserUttered("hi", {"name": "greet"}), ActionExecuted("utter_greet"), ActionExecuted(ACTION_SESSION_START_NAME), SessionStarted(), UserUttered("bye bye", {"name": "goodbye"}), ActionExecuted("utter_goodbye"), ], None, False, """version: "2.0" stories: - story: some-conversation-ID steps: - intent: goodbye user: |- bye bye - action: utter_goodbye""", ), # the default for `all_sessions` is `false` - this test checks that # only the latest session is returned in that case ( [ ActionExecuted(ACTION_SESSION_START_NAME), SessionStarted(), UserUttered("hi", {"name": "greet"}), ActionExecuted("utter_greet"), ActionExecuted(ACTION_SESSION_START_NAME), SessionStarted(), UserUttered("bye bye", {"name": "goodbye"}), ActionExecuted("utter_goodbye"), ], None, None, """version: "2.0" stories: - story: some-conversation-ID steps: - intent: goodbye user: |- bye bye - action: utter_goodbye""", ), # `until` parameter means only the first session is returned ( [ ActionExecuted(ACTION_SESSION_START_NAME, timestamp=1), SessionStarted(timestamp=2), UserUttered("hi", {"name": "greet"}, timestamp=3), ActionExecuted("utter_greet", timestamp=4), ActionExecuted(ACTION_SESSION_START_NAME, timestamp=5), SessionStarted(timestamp=6), UserUttered("bye bye", {"name": "goodbye"}, timestamp=7), ActionExecuted("utter_goodbye", timestamp=8), ], 4, True, """version: "2.0" stories: - story: some-conversation-ID steps: - intent: greet user: |- hi - action: utter_greet""", ), # empty conversation ([], None, True, 'version: "2.0"'), # Conversation with slot ( [ ActionExecuted(ACTION_SESSION_START_NAME), SessionStarted(), UserUttered("hi", {"name": "greet"}), ActionExecuted("utter_greet"), SlotSet(REQUESTED_SLOT, "some value"), ], None, True, """version: "2.0" stories: - story: some-conversation-ID steps: - intent: greet user: |- hi - action: utter_greet - slot_was_set: - requested_slot: some value""", ), ], ) async def test_get_story( rasa_app: SanicASGITestClient, monkeypatch: MonkeyPatch, conversation_events: List[Event], until_time: Optional[float], fetch_all_sessions: Optional[bool], expected: Text, ): conversation_id = "some-conversation-ID" tracker_store = InMemoryTrackerStore(Domain.empty()) tracker = DialogueStateTracker.from_events(conversation_id, conversation_events) tracker_store.save(tracker) monkeypatch.setattr(rasa_app.app.agent, "tracker_store", tracker_store) url = f"/conversations/{conversation_id}/story?" query = {} if fetch_all_sessions is not None: query["all_sessions"] = fetch_all_sessions if until_time is not None: query["until"] = until_time _, response = await rasa_app.get(url + urllib.parse.urlencode(query)) assert response.status == HTTPStatus.OK assert response.content.decode().strip() == expected async def test_get_story_does_not_update_conversation_session( rasa_app: SanicASGITestClient, monkeypatch: MonkeyPatch ): conversation_id = "some-conversation-ID" # domain with short session expiration time of one second domain = Domain.empty() domain.session_config = SessionConfig( session_expiration_time=1 / 60, carry_over_slots=True ) monkeypatch.setattr(rasa_app.app.agent, "domain", domain) # conversation contains one session that has expired now = time.time() conversation_events = [ ActionExecuted(ACTION_SESSION_START_NAME, timestamp=now - 10), SessionStarted(timestamp=now - 9), UserUttered("hi", {"name": "greet"}, timestamp=now - 8), ActionExecuted("utter_greet", timestamp=now - 7), ] tracker = DialogueStateTracker.from_events(conversation_id, conversation_events) # the conversation session has expired assert rasa_app.app.agent.create_processor()._has_session_expired(tracker) tracker_store = InMemoryTrackerStore(domain) tracker_store.save(tracker) monkeypatch.setattr(rasa_app.app.agent, "tracker_store", tracker_store) _, response = await rasa_app.get(f"/conversations/{conversation_id}/story") assert response.status == HTTPStatus.OK # expected story is returned assert ( response.content.decode().strip() == """version: "2.0" stories: - story: some-conversation-ID steps: - intent: greet user: |- hi - action: utter_greet""" ) # the tracker has the same number of events as were initially added assert len(tracker.events) == len(conversation_events) # the last event is still the same as before assert tracker.events[-1].timestamp == conversation_events[-1].timestamp @pytest.mark.parametrize( "initial_tracker_events,events_to_append,expected_events", [ ( # the tracker is initially empty, and no events are appended # so we'll just expect the session start sequence with an `action_listen` [], [], [ ActionExecuted(ACTION_SESSION_START_NAME), SessionStarted(), ActionExecuted(ACTION_LISTEN_NAME), ], ), ( # the tracker is initially empty, and a user utterance is appended # we expect a tracker with a session start sequence and a user utterance [], [UserUttered("/greet", {"name": "greet", "confidence": 1.0})], [ ActionExecuted(ACTION_SESSION_START_NAME), SessionStarted(), ActionExecuted(ACTION_LISTEN_NAME), UserUttered("/greet", {"name": "greet", "confidence": 1.0}), ], ), ( # the tracker is initially empty, and a session start sequence is appended # we'll just expect the session start sequence [], [ActionExecuted(ACTION_SESSION_START_NAME), SessionStarted()], [ActionExecuted(ACTION_SESSION_START_NAME), SessionStarted()], ), ( # the tracker already contains some events - we can simply append events [ ActionExecuted(ACTION_LISTEN_NAME), UserUttered("/greet", {"name": "greet", "confidence": 1.0}), ], [ActionExecuted("utter_greet")], [ ActionExecuted(ACTION_LISTEN_NAME), UserUttered("/greet", {"name": "greet", "confidence": 1.0}), ActionExecuted("utter_greet"), ], ), ], ) async def test_update_conversation_with_events( rasa_app: SanicASGITestClient, monkeypatch: MonkeyPatch, initial_tracker_events: List[Event], events_to_append: List[Event], expected_events: List[Event], ): conversation_id = "some-conversation-ID" domain = Domain.empty() tracker_store = InMemoryTrackerStore(domain) monkeypatch.setattr(rasa_app.app.agent, "tracker_store", tracker_store) if initial_tracker_events: tracker = DialogueStateTracker.from_events( conversation_id, initial_tracker_events ) tracker_store.save(tracker) fetched_tracker = await rasa.server.update_conversation_with_events( conversation_id, rasa_app.app.agent.create_processor(), domain, events_to_append ) assert list(fetched_tracker.events) == expected_events
multistart_solvers.py
""" This module defines solvers that use multiple starting points in order to have a higher chance at finding the global minimum. """ from . import utils, logging from .solvers import Solver, default_solver import numpy as np import scipy as sp import scipy.optimize from qsrs import native_from_object import time from math import pi, gamma, sqrt import multiprocessing as mp import sys from .persistent_aposmm import initialize_APOSMM, decide_where_to_start_localopt, update_history_dist, add_to_local_H def distance_for_x(x, options, circuit): """Calculate the distance between circuit and the target for input x based on the distance metric""" return options.objective.gen_error_func(circuit, options)(x) # TODO I've left this up for debate before deleting, but with the new code, it is the job of the passed Objective to manage creating an equivalent single-valued objective to use, and by default it generates one in exactly the same way as is generated here. if options.inner_solver.distance_metric == "Frobenius": return options.objective.gen_error_func(circuit, options)(x) elif options.inner_solver.distance_metric == "Residuals": return np.sum(options.error_residuals(options.target, circuit.matrix(x), np.eye(options.target.shape[0]))**2) def optimize_worker(circuit, options, q, x0, error_func): """Worker function used to run the inner solver in parallel""" _, xopt = options.inner_solver.solve_for_unitary(circuit, options, x0) q.put((error_func(xopt), xopt)) class MultiStart_Solver(Solver): """A higher accuracy solver based on APOSMM https://www.mcs.anl.gov/~jlarson/APOSMM/ MultiStart_Solver generally gets better results than other optimizers due to the advanced algorithm to start multiple local optimizers ("inner solvers") and find the global optimum more often. """ def __init__(self, num_threads): """Create a MultiStart_Solver instance. Pass num_threads to set how many threads to use in parallel optimization runs""" self.num_threads = num_threads self.ctx = mp.get_context('fork') if sys.platform != 'win32' else mp.get_context() def solve_for_unitary(self, circuit, options, x0=None): """Optimize the given circuit based on the provided options with initial point x0 (optional). Args: circuit: A qsearch.gates.Gate describing the circuit to optimize options: This uses the following options: - inner_solver : which optimizer to use for local optimization runs - target : the target unitary of synthesis - logger : A qsearch.logging.Logger that will be used for logging the synthesis process. - error_func : The function that the Solver will attempt to minimize. - error_residuals : A function that returns an array of real-valued residuals to be used by a least-squares-based Solver. x0: the starting point for the optimzier """ if 'inner_solver' not in options: options.inner_solver = default_solver(options) U = options.target error_func = options.objective.gen_error_func(circuit, options) logger = options.logger if "logger" in options else logging.Logger(verbosity=options.verbosity, stdout_enabled=options.stdout_enabled, output_file=options.log_file) #np.random.seed(4) # usually we do not want fixed seeds, but it can be useful for some debugging n = circuit.num_inputs # the number of parameters to optimize (the length that v should be when passed to one of the lambdas created above) initial_sample_size = 100 # How many points do you want to sample before deciding where to start runs. num_localopt_runs = self.num_threads # How many localopt runs to start? specs = {'lb': np.zeros(n), 'ub': np.ones(n), 'standalone': True, 'initial_sample_size':initial_sample_size} _, _, rk_const, ld, mu, nu, _, H = initialize_APOSMM([],specs,None) initial_sample = np.random.uniform(0, 1, (initial_sample_size, n)) add_to_local_H(H, initial_sample, specs, on_cube=True) for i, x in enumerate(initial_sample): H['f'][i] = error_func(2*np.pi*x) H[['returned']] = True update_history_dist(H, n) starting_inds = decide_where_to_start_localopt(H, n, initial_sample_size, rk_const, ld, mu, nu) starting_points = H['x'][starting_inds[:num_localopt_runs]] start = time.time() q = self.ctx.Queue() processes = [] rets = [] for x0 in starting_points: p = self.ctx.Process(target=optimize_worker, args=(circuit, options, q, 2*np.pi*x0, error_func)) processes.append(p) p.start() for p in processes: ret = q.get() # will block rets.append(ret) for p in processes: p.join() end = time.time() best_found = np.argmin([r[0] for r in rets]) best_val = rets[best_found][0] xopt = rets[best_found][1] return (circuit.matrix(xopt), xopt) class NaiveMultiStart_Solver(Solver): """A naive but effective multi-start solver which tries to cover as much of the optimization space at once""" def __init__(self, num_threads): """Create a NaiveMultiStart_Solver instance. Pass num_threads to set how many threads to use in parallel optimization runs""" self.threads = num_threads if num_threads else 1 self.ctx = mp.get_context('fork') if sys.platform != 'win32' else mp.get_context() def solve_for_unitary(self, circuit, options, x0=None): if 'inner_solver' not in options: options.inner_solver = default_solver(options) U = options.target logger = options.logger if "logger" in options else logging.Logger(verbosity=options.verbosity, stdout_enabled=options.stdout_enabled, output_file=options.log_file) n = circuit.num_inputs initial_samples = [np.random.uniform((i - 1)/self.threads, i/self.threads, (circuit.num_inputs,)) for i in range(1, self.threads+1)] q = self.ctx.Queue() processes = [] rets = [] for x0 in initial_samples: p = self.ctx.Process(target=optimize_worker, args=(circuit, options, q, x0)) processes.append(p) p.start() for p in processes: ret = q.get() # will block rets.append(ret) for p in processes: p.join() best_found = np.argmin([r[0] for r in rets]) best_val = rets[best_found][0] xopt = rets[best_found][1] return (circuit.matrix(xopt), xopt)
test_sys.py
import unittest, test.support from test.script_helper import assert_python_ok, assert_python_failure import sys, io, os import struct import subprocess import textwrap import warnings import operator import codecs import gc import sysconfig import platform # count the number of test runs, used to create unique # strings to intern in test_intern() numruns = 0 try: import threading except ImportError: threading = None class SysModuleTest(unittest.TestCase): def setUp(self): self.orig_stdout = sys.stdout self.orig_stderr = sys.stderr self.orig_displayhook = sys.displayhook def tearDown(self): sys.stdout = self.orig_stdout sys.stderr = self.orig_stderr sys.displayhook = self.orig_displayhook test.support.reap_children() def test_original_displayhook(self): import builtins out = io.StringIO() sys.stdout = out dh = sys.__displayhook__ self.assertRaises(TypeError, dh) if hasattr(builtins, "_"): del builtins._ dh(None) self.assertEqual(out.getvalue(), "") self.assertTrue(not hasattr(builtins, "_")) dh(42) self.assertEqual(out.getvalue(), "42\n") self.assertEqual(builtins._, 42) del sys.stdout self.assertRaises(RuntimeError, dh, 42) def test_lost_displayhook(self): del sys.displayhook code = compile("42", "<string>", "single") self.assertRaises(RuntimeError, eval, code) def test_custom_displayhook(self): def baddisplayhook(obj): raise ValueError sys.displayhook = baddisplayhook code = compile("42", "<string>", "single") self.assertRaises(ValueError, eval, code) def test_original_excepthook(self): err = io.StringIO() sys.stderr = err eh = sys.__excepthook__ self.assertRaises(TypeError, eh) try: raise ValueError(42) except ValueError as exc: eh(*sys.exc_info()) self.assertTrue(err.getvalue().endswith("ValueError: 42\n")) def test_excepthook(self): with test.support.captured_output("stderr") as stderr: sys.excepthook(1, '1', 1) self.assertTrue("TypeError: print_exception(): Exception expected for " \ "value, str found" in stderr.getvalue()) # FIXME: testing the code for a lost or replaced excepthook in # Python/pythonrun.c::PyErr_PrintEx() is tricky. def test_exit(self): # call with two arguments self.assertRaises(TypeError, sys.exit, 42, 42) # call without argument with self.assertRaises(SystemExit) as cm: sys.exit() self.assertIsNone(cm.exception.code) rc, out, err = assert_python_ok('-c', 'import sys; sys.exit()') self.assertEqual(rc, 0) self.assertEqual(out, b'') self.assertEqual(err, b'') # call with integer argument with self.assertRaises(SystemExit) as cm: sys.exit(42) self.assertEqual(cm.exception.code, 42) # call with tuple argument with one entry # entry will be unpacked with self.assertRaises(SystemExit) as cm: sys.exit((42,)) self.assertEqual(cm.exception.code, 42) # call with string argument with self.assertRaises(SystemExit) as cm: sys.exit("exit") self.assertEqual(cm.exception.code, "exit") # call with tuple argument with two entries with self.assertRaises(SystemExit) as cm: sys.exit((17, 23)) self.assertEqual(cm.exception.code, (17, 23)) # test that the exit machinery handles SystemExits properly rc, out, err = assert_python_failure('-c', 'raise SystemExit(47)') self.assertEqual(rc, 47) self.assertEqual(out, b'') self.assertEqual(err, b'') def check_exit_message(code, expected, **env_vars): rc, out, err = assert_python_failure('-c', code, **env_vars) self.assertEqual(rc, 1) self.assertEqual(out, b'') self.assertTrue(err.startswith(expected), "%s doesn't start with %s" % (ascii(err), ascii(expected))) # test that stderr buffer is flushed before the exit message is written # into stderr check_exit_message( r'import sys; sys.stderr.write("unflushed,"); sys.exit("message")', b"unflushed,message") # test that the exit message is written with backslashreplace error # handler to stderr check_exit_message( r'import sys; sys.exit("surrogates:\uDCFF")', b"surrogates:\\udcff") # test that the unicode message is encoded to the stderr encoding # instead of the default encoding (utf8) check_exit_message( r'import sys; sys.exit("h\xe9")', b"h\xe9", PYTHONIOENCODING='latin-1') def test_getdefaultencoding(self): self.assertRaises(TypeError, sys.getdefaultencoding, 42) # can't check more than the type, as the user might have changed it self.assertIsInstance(sys.getdefaultencoding(), str) # testing sys.settrace() is done in test_sys_settrace.py # testing sys.setprofile() is done in test_sys_setprofile.py def test_setcheckinterval(self): with warnings.catch_warnings(): warnings.simplefilter("ignore") self.assertRaises(TypeError, sys.setcheckinterval) orig = sys.getcheckinterval() for n in 0, 100, 120, orig: # orig last to restore starting state sys.setcheckinterval(n) self.assertEqual(sys.getcheckinterval(), n) @unittest.skipUnless(threading, 'Threading required for this test.') def test_switchinterval(self): self.assertRaises(TypeError, sys.setswitchinterval) self.assertRaises(TypeError, sys.setswitchinterval, "a") self.assertRaises(ValueError, sys.setswitchinterval, -1.0) self.assertRaises(ValueError, sys.setswitchinterval, 0.0) orig = sys.getswitchinterval() # sanity check self.assertTrue(orig < 0.5, orig) try: for n in 0.00001, 0.05, 3.0, orig: sys.setswitchinterval(n) self.assertAlmostEqual(sys.getswitchinterval(), n) finally: sys.setswitchinterval(orig) def test_recursionlimit(self): self.assertRaises(TypeError, sys.getrecursionlimit, 42) oldlimit = sys.getrecursionlimit() self.assertRaises(TypeError, sys.setrecursionlimit) self.assertRaises(ValueError, sys.setrecursionlimit, -42) sys.setrecursionlimit(10000) self.assertEqual(sys.getrecursionlimit(), 10000) sys.setrecursionlimit(oldlimit) @unittest.skipIf(hasattr(sys, 'gettrace') and sys.gettrace(), 'fatal error if run with a trace function') def test_recursionlimit_recovery(self): # NOTE: this test is slightly fragile in that it depends on the current # recursion count when executing the test being low enough so as to # trigger the recursion recovery detection in the _Py_MakeEndRecCheck # macro (see ceval.h). oldlimit = sys.getrecursionlimit() def f(): f() try: for i in (50, 1000): # Issue #5392: stack overflow after hitting recursion limit twice sys.setrecursionlimit(i) self.assertRaises(RuntimeError, f) self.assertRaises(RuntimeError, f) finally: sys.setrecursionlimit(oldlimit) def test_recursionlimit_fatalerror(self): # A fatal error occurs if a second recursion limit is hit when recovering # from a first one. code = textwrap.dedent(""" import sys def f(): try: f() except RuntimeError: f() sys.setrecursionlimit(%d) f()""") with test.support.SuppressCrashReport(): for i in (50, 1000): sub = subprocess.Popen([sys.executable, '-c', code % i], stderr=subprocess.PIPE) err = sub.communicate()[1] self.assertTrue(sub.returncode, sub.returncode) self.assertIn( b"Fatal Python error: Cannot recover from stack overflow", err) def test_getwindowsversion(self): # Raise SkipTest if sys doesn't have getwindowsversion attribute test.support.get_attribute(sys, "getwindowsversion") v = sys.getwindowsversion() self.assertEqual(len(v), 5) self.assertIsInstance(v[0], int) self.assertIsInstance(v[1], int) self.assertIsInstance(v[2], int) self.assertIsInstance(v[3], int) self.assertIsInstance(v[4], str) self.assertRaises(IndexError, operator.getitem, v, 5) self.assertIsInstance(v.major, int) self.assertIsInstance(v.minor, int) self.assertIsInstance(v.build, int) self.assertIsInstance(v.platform, int) self.assertIsInstance(v.service_pack, str) self.assertIsInstance(v.service_pack_minor, int) self.assertIsInstance(v.service_pack_major, int) self.assertIsInstance(v.suite_mask, int) self.assertIsInstance(v.product_type, int) self.assertEqual(v[0], v.major) self.assertEqual(v[1], v.minor) self.assertEqual(v[2], v.build) self.assertEqual(v[3], v.platform) self.assertEqual(v[4], v.service_pack) # This is how platform.py calls it. Make sure tuple # still has 5 elements maj, min, buildno, plat, csd = sys.getwindowsversion() def test_call_tracing(self): self.assertRaises(TypeError, sys.call_tracing, type, 2) @unittest.skipUnless(hasattr(sys, "setdlopenflags"), 'test needs sys.setdlopenflags()') def test_dlopenflags(self): self.assertTrue(hasattr(sys, "getdlopenflags")) self.assertRaises(TypeError, sys.getdlopenflags, 42) oldflags = sys.getdlopenflags() self.assertRaises(TypeError, sys.setdlopenflags) sys.setdlopenflags(oldflags+1) self.assertEqual(sys.getdlopenflags(), oldflags+1) sys.setdlopenflags(oldflags) @test.support.refcount_test def test_refcount(self): # n here must be a global in order for this test to pass while # tracing with a python function. Tracing calls PyFrame_FastToLocals # which will add a copy of any locals to the frame object, causing # the reference count to increase by 2 instead of 1. global n self.assertRaises(TypeError, sys.getrefcount) c = sys.getrefcount(None) n = None self.assertEqual(sys.getrefcount(None), c+1) del n self.assertEqual(sys.getrefcount(None), c) if hasattr(sys, "gettotalrefcount"): self.assertIsInstance(sys.gettotalrefcount(), int) def test_getframe(self): self.assertRaises(TypeError, sys._getframe, 42, 42) self.assertRaises(ValueError, sys._getframe, 2000000000) self.assertTrue( SysModuleTest.test_getframe.__code__ \ is sys._getframe().f_code ) # sys._current_frames() is a CPython-only gimmick. def test_current_frames(self): have_threads = True try: import _thread except ImportError: have_threads = False if have_threads: self.current_frames_with_threads() else: self.current_frames_without_threads() # Test sys._current_frames() in a WITH_THREADS build. @test.support.reap_threads def current_frames_with_threads(self): import threading import traceback # Spawn a thread that blocks at a known place. Then the main # thread does sys._current_frames(), and verifies that the frames # returned make sense. entered_g = threading.Event() leave_g = threading.Event() thread_info = [] # the thread's id def f123(): g456() def g456(): thread_info.append(threading.get_ident()) entered_g.set() leave_g.wait() t = threading.Thread(target=f123) t.start() entered_g.wait() # At this point, t has finished its entered_g.set(), although it's # impossible to guess whether it's still on that line or has moved on # to its leave_g.wait(). self.assertEqual(len(thread_info), 1) thread_id = thread_info[0] d = sys._current_frames() main_id = threading.get_ident() self.assertIn(main_id, d) self.assertIn(thread_id, d) # Verify that the captured main-thread frame is _this_ frame. frame = d.pop(main_id) self.assertTrue(frame is sys._getframe()) # Verify that the captured thread frame is blocked in g456, called # from f123. This is a litte tricky, since various bits of # threading.py are also in the thread's call stack. frame = d.pop(thread_id) stack = traceback.extract_stack(frame) for i, (filename, lineno, funcname, sourceline) in enumerate(stack): if funcname == "f123": break else: self.fail("didn't find f123() on thread's call stack") self.assertEqual(sourceline, "g456()") # And the next record must be for g456(). filename, lineno, funcname, sourceline = stack[i+1] self.assertEqual(funcname, "g456") self.assertIn(sourceline, ["leave_g.wait()", "entered_g.set()"]) # Reap the spawned thread. leave_g.set() t.join() # Test sys._current_frames() when thread support doesn't exist. def current_frames_without_threads(self): # Not much happens here: there is only one thread, with artificial # "thread id" 0. d = sys._current_frames() self.assertEqual(len(d), 1) self.assertIn(0, d) self.assertTrue(d[0] is sys._getframe()) def test_attributes(self): self.assertIsInstance(sys.api_version, int) self.assertIsInstance(sys.argv, list) self.assertIn(sys.byteorder, ("little", "big")) self.assertIsInstance(sys.builtin_module_names, tuple) self.assertIsInstance(sys.copyright, str) self.assertIsInstance(sys.exec_prefix, str) self.assertIsInstance(sys.base_exec_prefix, str) self.assertIsInstance(sys.executable, str) self.assertEqual(len(sys.float_info), 11) self.assertEqual(sys.float_info.radix, 2) self.assertEqual(len(sys.int_info), 2) self.assertTrue(sys.int_info.bits_per_digit % 5 == 0) self.assertTrue(sys.int_info.sizeof_digit >= 1) self.assertEqual(type(sys.int_info.bits_per_digit), int) self.assertEqual(type(sys.int_info.sizeof_digit), int) self.assertIsInstance(sys.hexversion, int) self.assertEqual(len(sys.hash_info), 9) self.assertLess(sys.hash_info.modulus, 2**sys.hash_info.width) # sys.hash_info.modulus should be a prime; we do a quick # probable primality test (doesn't exclude the possibility of # a Carmichael number) for x in range(1, 100): self.assertEqual( pow(x, sys.hash_info.modulus-1, sys.hash_info.modulus), 1, "sys.hash_info.modulus {} is a non-prime".format( sys.hash_info.modulus) ) self.assertIsInstance(sys.hash_info.inf, int) self.assertIsInstance(sys.hash_info.nan, int) self.assertIsInstance(sys.hash_info.imag, int) algo = sysconfig.get_config_var("Py_HASH_ALGORITHM") if sys.hash_info.algorithm in {"fnv", "siphash24"}: self.assertIn(sys.hash_info.hash_bits, {32, 64}) self.assertIn(sys.hash_info.seed_bits, {32, 64, 128}) if algo == 1: self.assertEqual(sys.hash_info.algorithm, "siphash24") elif algo == 2: self.assertEqual(sys.hash_info.algorithm, "fnv") else: self.assertIn(sys.hash_info.algorithm, {"fnv", "siphash24"}) else: # PY_HASH_EXTERNAL self.assertEqual(algo, 0) self.assertGreaterEqual(sys.hash_info.cutoff, 0) self.assertLess(sys.hash_info.cutoff, 8) self.assertIsInstance(sys.maxsize, int) self.assertIsInstance(sys.maxunicode, int) self.assertEqual(sys.maxunicode, 0x10FFFF) self.assertIsInstance(sys.platform, str) self.assertIsInstance(sys.prefix, str) self.assertIsInstance(sys.base_prefix, str) self.assertIsInstance(sys.version, str) vi = sys.version_info self.assertIsInstance(vi[:], tuple) self.assertEqual(len(vi), 5) self.assertIsInstance(vi[0], int) self.assertIsInstance(vi[1], int) self.assertIsInstance(vi[2], int) self.assertIn(vi[3], ("alpha", "beta", "candidate", "final")) self.assertIsInstance(vi[4], int) self.assertIsInstance(vi.major, int) self.assertIsInstance(vi.minor, int) self.assertIsInstance(vi.micro, int) self.assertIn(vi.releaselevel, ("alpha", "beta", "candidate", "final")) self.assertIsInstance(vi.serial, int) self.assertEqual(vi[0], vi.major) self.assertEqual(vi[1], vi.minor) self.assertEqual(vi[2], vi.micro) self.assertEqual(vi[3], vi.releaselevel) self.assertEqual(vi[4], vi.serial) self.assertTrue(vi > (1,0,0)) self.assertIsInstance(sys.float_repr_style, str) self.assertIn(sys.float_repr_style, ('short', 'legacy')) if not sys.platform.startswith('win'): self.assertIsInstance(sys.abiflags, str) @unittest.skipUnless(hasattr(sys, 'thread_info'), 'Threading required for this test.') def test_thread_info(self): info = sys.thread_info self.assertEqual(len(info), 3) self.assertIn(info.name, ('nt', 'pthread', 'solaris', None)) self.assertIn(info.lock, ('semaphore', 'mutex+cond', None)) def test_43581(self): # Can't use sys.stdout, as this is a StringIO object when # the test runs under regrtest. self.assertEqual(sys.__stdout__.encoding, sys.__stderr__.encoding) def test_intern(self): global numruns numruns += 1 self.assertRaises(TypeError, sys.intern) s = "never interned before" + str(numruns) self.assertTrue(sys.intern(s) is s) s2 = s.swapcase().swapcase() self.assertTrue(sys.intern(s2) is s) # Subclasses of string can't be interned, because they # provide too much opportunity for insane things to happen. # We don't want them in the interned dict and if they aren't # actually interned, we don't want to create the appearance # that they are by allowing intern() to succeed. class S(str): def __hash__(self): return 123 self.assertRaises(TypeError, sys.intern, S("abc")) def test_sys_flags(self): self.assertTrue(sys.flags) attrs = ("debug", "inspect", "interactive", "optimize", "dont_write_bytecode", "no_user_site", "no_site", "ignore_environment", "verbose", "bytes_warning", "quiet", "hash_randomization", "isolated") for attr in attrs: self.assertTrue(hasattr(sys.flags, attr), attr) self.assertEqual(type(getattr(sys.flags, attr)), int, attr) self.assertTrue(repr(sys.flags)) self.assertEqual(len(sys.flags), len(attrs)) def assert_raise_on_new_sys_type(self, sys_attr): # Users are intentionally prevented from creating new instances of # sys.flags, sys.version_info, and sys.getwindowsversion. attr_type = type(sys_attr) with self.assertRaises(TypeError): attr_type() with self.assertRaises(TypeError): attr_type.__new__(attr_type) def test_sys_flags_no_instantiation(self): self.assert_raise_on_new_sys_type(sys.flags) def test_sys_version_info_no_instantiation(self): self.assert_raise_on_new_sys_type(sys.version_info) def test_sys_getwindowsversion_no_instantiation(self): # Skip if not being run on Windows. test.support.get_attribute(sys, "getwindowsversion") self.assert_raise_on_new_sys_type(sys.getwindowsversion()) def test_clear_type_cache(self): sys._clear_type_cache() def test_ioencoding(self): env = dict(os.environ) # Test character: cent sign, encoded as 0x4A (ASCII J) in CP424, # not representable in ASCII. env["PYTHONIOENCODING"] = "cp424" p = subprocess.Popen([sys.executable, "-c", 'print(chr(0xa2))'], stdout = subprocess.PIPE, env=env) out = p.communicate()[0].strip() expected = ("\xa2" + os.linesep).encode("cp424") self.assertEqual(out, expected) env["PYTHONIOENCODING"] = "ascii:replace" p = subprocess.Popen([sys.executable, "-c", 'print(chr(0xa2))'], stdout = subprocess.PIPE, env=env) out = p.communicate()[0].strip() self.assertEqual(out, b'?') env["PYTHONIOENCODING"] = "ascii" p = subprocess.Popen([sys.executable, "-c", 'print(chr(0xa2))'], stdout=subprocess.PIPE, stderr=subprocess.PIPE, env=env) out, err = p.communicate() self.assertEqual(out, b'') self.assertIn(b'UnicodeEncodeError:', err) self.assertIn(rb"'\xa2'", err) env["PYTHONIOENCODING"] = "ascii:" p = subprocess.Popen([sys.executable, "-c", 'print(chr(0xa2))'], stdout=subprocess.PIPE, stderr=subprocess.PIPE, env=env) out, err = p.communicate() self.assertEqual(out, b'') self.assertIn(b'UnicodeEncodeError:', err) self.assertIn(rb"'\xa2'", err) env["PYTHONIOENCODING"] = ":surrogateescape" p = subprocess.Popen([sys.executable, "-c", 'print(chr(0xdcbd))'], stdout=subprocess.PIPE, env=env) out = p.communicate()[0].strip() self.assertEqual(out, b'\xbd') @unittest.skipUnless(test.support.FS_NONASCII, 'requires OS support of non-ASCII encodings') def test_ioencoding_nonascii(self): env = dict(os.environ) env["PYTHONIOENCODING"] = "" p = subprocess.Popen([sys.executable, "-c", 'print(%a)' % test.support.FS_NONASCII], stdout=subprocess.PIPE, env=env) out = p.communicate()[0].strip() self.assertEqual(out, os.fsencode(test.support.FS_NONASCII)) @unittest.skipIf(sys.base_prefix != sys.prefix, 'Test is not venv-compatible') def test_executable(self): # sys.executable should be absolute self.assertEqual(os.path.abspath(sys.executable), sys.executable) # Issue #7774: Ensure that sys.executable is an empty string if argv[0] # has been set to an non existent program name and Python is unable to # retrieve the real program name # For a normal installation, it should work without 'cwd' # argument. For test runs in the build directory, see #7774. python_dir = os.path.dirname(os.path.realpath(sys.executable)) p = subprocess.Popen( ["nonexistent", "-c", 'import sys; print(sys.executable.encode("ascii", "backslashreplace"))'], executable=sys.executable, stdout=subprocess.PIPE, cwd=python_dir) stdout = p.communicate()[0] executable = stdout.strip().decode("ASCII") p.wait() self.assertIn(executable, ["b''", repr(sys.executable.encode("ascii", "backslashreplace"))]) def check_fsencoding(self, fs_encoding, expected=None): self.assertIsNotNone(fs_encoding) codecs.lookup(fs_encoding) if expected: self.assertEqual(fs_encoding, expected) def test_getfilesystemencoding(self): fs_encoding = sys.getfilesystemencoding() if sys.platform == 'darwin': expected = 'utf-8' elif sys.platform == 'win32': expected = 'mbcs' else: expected = None self.check_fsencoding(fs_encoding, expected) def c_locale_get_error_handler(self, isolated=False, encoding=None): # Force the POSIX locale env = os.environ.copy() env["LC_ALL"] = "C" code = '\n'.join(( 'import sys', 'def dump(name):', ' std = getattr(sys, name)', ' print("%s: %s" % (name, std.errors))', 'dump("stdin")', 'dump("stdout")', 'dump("stderr")', )) args = [sys.executable, "-c", code] if isolated: args.append("-I") elif encoding: env['PYTHONIOENCODING'] = encoding p = subprocess.Popen(args, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, env=env, universal_newlines=True) stdout, stderr = p.communicate() return stdout def test_c_locale_surrogateescape(self): out = self.c_locale_get_error_handler(isolated=True) self.assertEqual(out, 'stdin: surrogateescape\n' 'stdout: surrogateescape\n' 'stderr: backslashreplace\n') # replace the default error handler out = self.c_locale_get_error_handler(encoding=':strict') self.assertEqual(out, 'stdin: strict\n' 'stdout: strict\n' 'stderr: backslashreplace\n') # force the encoding out = self.c_locale_get_error_handler(encoding='iso8859-1') self.assertEqual(out, 'stdin: surrogateescape\n' 'stdout: surrogateescape\n' 'stderr: backslashreplace\n') def test_implementation(self): # This test applies to all implementations equally. levels = {'alpha': 0xA, 'beta': 0xB, 'candidate': 0xC, 'final': 0xF} self.assertTrue(hasattr(sys.implementation, 'name')) self.assertTrue(hasattr(sys.implementation, 'version')) self.assertTrue(hasattr(sys.implementation, 'hexversion')) self.assertTrue(hasattr(sys.implementation, 'cache_tag')) version = sys.implementation.version self.assertEqual(version[:2], (version.major, version.minor)) hexversion = (version.major << 24 | version.minor << 16 | version.micro << 8 | levels[version.releaselevel] << 4 | version.serial << 0) self.assertEqual(sys.implementation.hexversion, hexversion) # PEP 421 requires that .name be lower case. self.assertEqual(sys.implementation.name, sys.implementation.name.lower()) @test.support.cpython_only def test_debugmallocstats(self): # Test sys._debugmallocstats() from test.script_helper import assert_python_ok args = ['-c', 'import sys; sys._debugmallocstats()'] ret, out, err = assert_python_ok(*args) self.assertIn(b"free PyDictObjects", err) # The function has no parameter self.assertRaises(TypeError, sys._debugmallocstats, True) @unittest.skipUnless(hasattr(sys, "getallocatedblocks"), "sys.getallocatedblocks unavailable on this build") def test_getallocatedblocks(self): # Some sanity checks with_pymalloc = sysconfig.get_config_var('WITH_PYMALLOC') a = sys.getallocatedblocks() self.assertIs(type(a), int) if with_pymalloc: self.assertGreater(a, 0) else: # When WITH_PYMALLOC isn't available, we don't know anything # about the underlying implementation: the function might # return 0 or something greater. self.assertGreaterEqual(a, 0) try: # While we could imagine a Python session where the number of # multiple buffer objects would exceed the sharing of references, # it is unlikely to happen in a normal test run. self.assertLess(a, sys.gettotalrefcount()) except AttributeError: # gettotalrefcount() not available pass gc.collect() b = sys.getallocatedblocks() self.assertLessEqual(b, a) gc.collect() c = sys.getallocatedblocks() self.assertIn(c, range(b - 50, b + 50)) @test.support.cpython_only class SizeofTest(unittest.TestCase): def setUp(self): self.P = struct.calcsize('P') self.longdigit = sys.int_info.sizeof_digit import _testcapi self.gc_headsize = _testcapi.SIZEOF_PYGC_HEAD self.file = open(test.support.TESTFN, 'wb') def tearDown(self): self.file.close() test.support.unlink(test.support.TESTFN) check_sizeof = test.support.check_sizeof def test_gc_head_size(self): # Check that the gc header size is added to objects tracked by the gc. vsize = test.support.calcvobjsize gc_header_size = self.gc_headsize # bool objects are not gc tracked self.assertEqual(sys.getsizeof(True), vsize('') + self.longdigit) # but lists are self.assertEqual(sys.getsizeof([]), vsize('Pn') + gc_header_size) def test_default(self): size = test.support.calcvobjsize self.assertEqual(sys.getsizeof(True), size('') + self.longdigit) self.assertEqual(sys.getsizeof(True, -1), size('') + self.longdigit) def test_objecttypes(self): # check all types defined in Objects/ size = test.support.calcobjsize vsize = test.support.calcvobjsize check = self.check_sizeof # bool check(True, vsize('') + self.longdigit) # buffer # XXX # builtin_function_or_method check(len, size('4P')) # XXX check layout # bytearray samples = [b'', b'u'*100000] for sample in samples: x = bytearray(sample) check(x, vsize('n2Pi') + x.__alloc__()) # bytearray_iterator check(iter(bytearray()), size('nP')) # cell def get_cell(): x = 42 def inner(): return x return inner check(get_cell().__closure__[0], size('P')) # code check(get_cell().__code__, size('5i9Pi3P')) check(get_cell.__code__, size('5i9Pi3P')) def get_cell2(x): def inner(): return x return inner check(get_cell2.__code__, size('5i9Pi3P') + 1) # complex check(complex(0,1), size('2d')) # method_descriptor (descriptor object) check(str.lower, size('3PP')) # classmethod_descriptor (descriptor object) # XXX # member_descriptor (descriptor object) import datetime check(datetime.timedelta.days, size('3PP')) # getset_descriptor (descriptor object) import collections check(collections.defaultdict.default_factory, size('3PP')) # wrapper_descriptor (descriptor object) check(int.__add__, size('3P2P')) # method-wrapper (descriptor object) check({}.__iter__, size('2P')) # dict check({}, size('n2P' + '2nPn' + 8*'n2P')) longdict = {1:1, 2:2, 3:3, 4:4, 5:5, 6:6, 7:7, 8:8} check(longdict, size('n2P' + '2nPn') + 16*struct.calcsize('n2P')) # dictionary-keyiterator check({}.keys(), size('P')) # dictionary-valueiterator check({}.values(), size('P')) # dictionary-itemiterator check({}.items(), size('P')) # dictionary iterator check(iter({}), size('P2nPn')) # dictproxy class C(object): pass check(C.__dict__, size('P')) # BaseException check(BaseException(), size('5Pb')) # UnicodeEncodeError check(UnicodeEncodeError("", "", 0, 0, ""), size('5Pb 2P2nP')) # UnicodeDecodeError check(UnicodeDecodeError("", b"", 0, 0, ""), size('5Pb 2P2nP')) # UnicodeTranslateError check(UnicodeTranslateError("", 0, 1, ""), size('5Pb 2P2nP')) # ellipses check(Ellipsis, size('')) # EncodingMap import codecs, encodings.iso8859_3 x = codecs.charmap_build(encodings.iso8859_3.decoding_table) check(x, size('32B2iB')) # enumerate check(enumerate([]), size('n3P')) # reverse check(reversed(''), size('nP')) # float check(float(0), size('d')) # sys.floatinfo check(sys.float_info, vsize('') + self.P * len(sys.float_info)) # frame import inspect CO_MAXBLOCKS = 20 x = inspect.currentframe() ncells = len(x.f_code.co_cellvars) nfrees = len(x.f_code.co_freevars) extras = x.f_code.co_stacksize + x.f_code.co_nlocals +\ ncells + nfrees - 1 check(x, vsize('12P3ic' + CO_MAXBLOCKS*'3i' + 'P' + extras*'P')) # function def func(): pass check(func, size('12P')) class c(): @staticmethod def foo(): pass @classmethod def bar(cls): pass # staticmethod check(foo, size('PP')) # classmethod check(bar, size('PP')) # generator def get_gen(): yield 1 check(get_gen(), size('Pb2PPP')) # iterator check(iter('abc'), size('lP')) # callable-iterator import re check(re.finditer('',''), size('2P')) # list samples = [[], [1,2,3], ['1', '2', '3']] for sample in samples: check(sample, vsize('Pn') + len(sample)*self.P) # sortwrapper (list) # XXX # cmpwrapper (list) # XXX # listiterator (list) check(iter([]), size('lP')) # listreverseiterator (list) check(reversed([]), size('nP')) # int check(0, vsize('')) check(1, vsize('') + self.longdigit) check(-1, vsize('') + self.longdigit) PyLong_BASE = 2**sys.int_info.bits_per_digit check(int(PyLong_BASE), vsize('') + 2*self.longdigit) check(int(PyLong_BASE**2-1), vsize('') + 2*self.longdigit) check(int(PyLong_BASE**2), vsize('') + 3*self.longdigit) # memoryview check(memoryview(b''), size('Pnin 2P2n2i5P 3cPn')) # module check(unittest, size('PnPPP')) # None check(None, size('')) # NotImplementedType check(NotImplemented, size('')) # object check(object(), size('')) # property (descriptor object) class C(object): def getx(self): return self.__x def setx(self, value): self.__x = value def delx(self): del self.__x x = property(getx, setx, delx, "") check(x, size('4Pi')) # PyCapsule # XXX # rangeiterator check(iter(range(1)), size('4l')) # reverse check(reversed(''), size('nP')) # range check(range(1), size('4P')) check(range(66000), size('4P')) # set # frozenset PySet_MINSIZE = 8 samples = [[], range(10), range(50)] s = size('3n2P' + PySet_MINSIZE*'nP' + 'nP') for sample in samples: minused = len(sample) if minused == 0: tmp = 1 # the computation of minused is actually a bit more complicated # but this suffices for the sizeof test minused = minused*2 newsize = PySet_MINSIZE while newsize <= minused: newsize = newsize << 1 if newsize <= 8: check(set(sample), s) check(frozenset(sample), s) else: check(set(sample), s + newsize*struct.calcsize('nP')) check(frozenset(sample), s + newsize*struct.calcsize('nP')) # setiterator check(iter(set()), size('P3n')) # slice check(slice(0), size('3P')) # super check(super(int), size('3P')) # tuple check((), vsize('')) check((1,2,3), vsize('') + 3*self.P) # type # static type: PyTypeObject s = vsize('P2n15Pl4Pn9Pn11PIP') check(int, s) # (PyTypeObject + PyNumberMethods + PyMappingMethods + # PySequenceMethods + PyBufferProcs + 4P) s = vsize('P2n17Pl4Pn9Pn11PIP') + struct.calcsize('34P 3P 10P 2P 4P') # Separate block for PyDictKeysObject with 4 entries s += struct.calcsize("2nPn") + 4*struct.calcsize("n2P") # class class newstyleclass(object): pass check(newstyleclass, s) # dict with shared keys check(newstyleclass().__dict__, size('n2P' + '2nPn')) # unicode # each tuple contains a string and its expected character size # don't put any static strings here, as they may contain # wchar_t or UTF-8 representations samples = ['1'*100, '\xff'*50, '\u0100'*40, '\uffff'*100, '\U00010000'*30, '\U0010ffff'*100] asciifields = "nnbP" compactfields = asciifields + "nPn" unicodefields = compactfields + "P" for s in samples: maxchar = ord(max(s)) if maxchar < 128: L = size(asciifields) + len(s) + 1 elif maxchar < 256: L = size(compactfields) + len(s) + 1 elif maxchar < 65536: L = size(compactfields) + 2*(len(s) + 1) else: L = size(compactfields) + 4*(len(s) + 1) check(s, L) # verify that the UTF-8 size is accounted for s = chr(0x4000) # 4 bytes canonical representation check(s, size(compactfields) + 4) # compile() will trigger the generation of the UTF-8 # representation as a side effect compile(s, "<stdin>", "eval") check(s, size(compactfields) + 4 + 4) # TODO: add check that forces the presence of wchar_t representation # TODO: add check that forces layout of unicodefields # weakref import weakref check(weakref.ref(int), size('2Pn2P')) # weakproxy # XXX # weakcallableproxy check(weakref.proxy(int), size('2Pn2P')) def test_pythontypes(self): # check all types defined in Python/ size = test.support.calcobjsize vsize = test.support.calcvobjsize check = self.check_sizeof # _ast.AST import _ast check(_ast.AST(), size('P')) try: raise TypeError except TypeError: tb = sys.exc_info()[2] # traceback if tb is not None: check(tb, size('2P2i')) # symtable entry # XXX # sys.flags check(sys.flags, vsize('') + self.P * len(sys.flags)) def test_main(): test.support.run_unittest(SysModuleTest, SizeofTest) if __name__ == "__main__": test_main()
bazelci.py
#!/usr/bin/env python3 # # Copyright 2018 The Bazel Authors. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import base64 import codecs import datetime import glob import hashlib import json import multiprocessing import os import os.path import random import re import requests from shutil import copyfile import shutil import stat import subprocess import sys import tempfile import threading import time import urllib.error import urllib.request import uuid import yaml from urllib.request import url2pathname from urllib.parse import urlparse # Initialize the random number generator. random.seed() BUILDKITE_ORG = os.environ["BUILDKITE_ORGANIZATION_SLUG"] THIS_IS_PRODUCTION = BUILDKITE_ORG == "bazel-untrusted" THIS_IS_TESTING = BUILDKITE_ORG == "bazel-testing" THIS_IS_TRUSTED = BUILDKITE_ORG == "bazel-trusted" THIS_IS_SPARTA = True CLOUD_PROJECT = "bazel-public" if THIS_IS_TRUSTED else "bazel-untrusted" GITHUB_BRANCH = {"bazel": "master", "bazel-trusted": "master", "bazel-testing": "testing"}[ BUILDKITE_ORG ] SCRIPT_URL = "https://raw.githubusercontent.com/bazelbuild/continuous-integration/{}/buildkite/bazelci.py?{}".format( GITHUB_BRANCH, int(time.time()) ) INCOMPATIBLE_FLAG_VERBOSE_FAILURES_URL = "https://raw.githubusercontent.com/bazelbuild/continuous-integration/{}/buildkite/incompatible_flag_verbose_failures.py?{}".format( GITHUB_BRANCH, int(time.time()) ) AGGREGATE_INCOMPATIBLE_TEST_RESULT_URL = "https://raw.githubusercontent.com/bazelbuild/continuous-integration/{}/buildkite/aggregate_incompatible_flags_test_result.py?{}".format( GITHUB_BRANCH, int(time.time()) ) EMERGENCY_FILE_URL = "https://raw.githubusercontent.com/bazelbuild/continuous-integration/{}/buildkite/emergency.yml?{}".format( GITHUB_BRANCH, int(time.time()) ) FLAKY_TESTS_BUCKET = { "bazel-testing": "gs://bazel-testing-buildkite-stats/flaky-tests-bep/", "bazel-trusted": "gs://bazel-buildkite-stats/flaky-tests-bep/", "bazel": "gs://bazel-buildkite-stats/flaky-tests-bep/", }[BUILDKITE_ORG] KZIPS_BUCKET = { "bazel-testing": "gs://bazel-kzips-testing/", "bazel-trusted": "gs://bazel-kzips/", "bazel": "gs://bazel-kzips/", }[BUILDKITE_ORG] # Projects can opt out of receiving GitHub issues from --notify by adding `"do_not_notify": True` to their respective downstream entry. DOWNSTREAM_PROJECTS_PRODUCTION = { "Android Studio Plugin": { "git_repository": "https://github.com/bazelbuild/intellij.git", "http_config": "https://raw.githubusercontent.com/bazelbuild/intellij/master/.bazelci/android-studio.yml", "pipeline_slug": "android-studio-plugin", }, "Android Testing": { "git_repository": "https://github.com/googlesamples/android-testing.git", "http_config": "https://raw.githubusercontent.com/googlesamples/android-testing/master/bazelci/buildkite-pipeline.yml", "pipeline_slug": "android-testing", }, "Bazel": { "git_repository": "https://github.com/bazelbuild/bazel.git", "http_config": "https://raw.githubusercontent.com/bazelbuild/bazel/master/.bazelci/postsubmit.yml", "pipeline_slug": "bazel-bazel", }, "Bazel Bench": { "git_repository": "https://github.com/bazelbuild/bazel-bench.git", "http_config": "https://raw.githubusercontent.com/bazelbuild/bazel-bench/master/.bazelci/postsubmit.yml", "pipeline_slug": "bazel-bench", }, "Bazel Codelabs": { "git_repository": "https://github.com/bazelbuild/codelabs.git", "http_config": "https://raw.githubusercontent.com/bazelbuild/codelabs/master/.bazelci/presubmit.yml", "pipeline_slug": "bazel-codelabs", }, "Bazel Examples": { "git_repository": "https://github.com/bazelbuild/examples.git", "http_config": "https://raw.githubusercontent.com/bazelbuild/examples/master/.bazelci/presubmit.yml", "pipeline_slug": "bazel-bazel-examples", }, "Bazel Federation": { "git_repository": "https://github.com/bazelbuild/bazel-federation.git", "http_config": "https://raw.githubusercontent.com/bazelbuild/bazel-federation/master/.bazelci/presubmit.yml", "pipeline_slug": "bazel-federation", }, "Bazel Remote Cache": { "git_repository": "https://github.com/buchgr/bazel-remote.git", "http_config": "https://raw.githubusercontent.com/buchgr/bazel-remote/master/.bazelci/presubmit.yml", "pipeline_slug": "bazel-remote-cache", }, "Bazel integration testing": { "git_repository": "https://github.com/bazelbuild/bazel-integration-testing.git", "http_config": "https://raw.githubusercontent.com/bazelbuild/bazel-integration-testing/master/.bazelci/presubmit.yml", "pipeline_slug": "bazel-integration-testing", }, "Bazel skylib": { "git_repository": "https://github.com/bazelbuild/bazel-skylib.git", "http_config": "https://raw.githubusercontent.com/bazelbuild/bazel-skylib/master/.bazelci/presubmit.yml", "pipeline_slug": "bazel-skylib", "owned_by_bazel": True, }, "Bazel toolchains": { "git_repository": "https://github.com/bazelbuild/bazel-toolchains.git", "http_config": "https://raw.githubusercontent.com/bazelbuild/bazel-toolchains/master/.bazelci/presubmit.yml", "pipeline_slug": "bazel-toolchains", }, "Bazel watcher": { "git_repository": "https://github.com/bazelbuild/bazel-watcher.git", "http_config": "https://raw.githubusercontent.com/bazelbuild/bazel-watcher/master/.bazelci/presubmit.yml", "pipeline_slug": "bazel-watcher", }, "Bazelisk": { "git_repository": "https://github.com/bazelbuild/bazelisk.git", "http_config": "https://raw.githubusercontent.com/bazelbuild/bazelisk/master/.bazelci/config.yml", "pipeline_slug": "bazelisk", }, "Buildfarm": { "git_repository": "https://github.com/bazelbuild/bazel-buildfarm.git", "http_config": "https://raw.githubusercontent.com/bazelbuild/bazel-buildfarm/master/.bazelci/presubmit.yml", "pipeline_slug": "buildfarm-male-farmer", }, "Buildtools": { "git_repository": "https://github.com/bazelbuild/buildtools.git", "http_config": "https://raw.githubusercontent.com/bazelbuild/buildtools/master/.bazelci/presubmit.yml", "pipeline_slug": "buildtools", }, "CLion Plugin": { "git_repository": "https://github.com/bazelbuild/intellij.git", "http_config": "https://raw.githubusercontent.com/bazelbuild/intellij/master/.bazelci/clion.yml", "pipeline_slug": "clion-plugin", }, "Cartographer": { "git_repository": "https://github.com/googlecartographer/cartographer.git", "http_config": "https://raw.githubusercontent.com/googlecartographer/cartographer/master/.bazelci/presubmit.yml", "pipeline_slug": "cartographer", }, "Cloud Robotics Core": { "git_repository": "https://github.com/googlecloudrobotics/core.git", "http_config": "https://raw.githubusercontent.com/bazelbuild/continuous-integration/master/buildkite/pipelines/cloud-robotics-postsubmit.yml", "pipeline_slug": "cloud-robotics-core", }, "Envoy": { "git_repository": "https://github.com/envoyproxy/envoy.git", "http_config": "https://raw.githubusercontent.com/envoyproxy/envoy/master/.bazelci/presubmit.yml", "pipeline_slug": "envoy", }, "FlatBuffers": { "git_repository": "https://github.com/google/flatbuffers.git", "http_config": "https://raw.githubusercontent.com/google/flatbuffers/master/.bazelci/presubmit.yml", "pipeline_slug": "flatbuffers", }, "Flogger": { "git_repository": "https://github.com/google/flogger.git", "http_config": "https://raw.githubusercontent.com/bazelbuild/continuous-integration/master/buildkite/pipelines/flogger.yml", "pipeline_slug": "flogger", }, "Gerrit": { "git_repository": "https://gerrit.googlesource.com/gerrit.git", "http_config": "https://raw.githubusercontent.com/bazelbuild/continuous-integration/master/buildkite/pipelines/gerrit-postsubmit.yml", "pipeline_slug": "gerrit", }, "Google Logging": { "git_repository": "https://github.com/google/glog.git", "http_config": "https://raw.githubusercontent.com/bazelbuild/continuous-integration/master/buildkite/pipelines/glog-postsubmit.yml", "pipeline_slug": "google-logging", }, "IntelliJ Plugin": { "git_repository": "https://github.com/bazelbuild/intellij.git", "http_config": "https://raw.githubusercontent.com/bazelbuild/intellij/master/.bazelci/intellij.yml", "pipeline_slug": "intellij-plugin", }, "IntelliJ Plugin Aspect": { "git_repository": "https://github.com/bazelbuild/intellij.git", "http_config": "https://raw.githubusercontent.com/bazelbuild/intellij/master/.bazelci/aspect.yml", "pipeline_slug": "intellij-plugin-aspect", }, "Kythe": { "git_repository": "https://github.com/kythe/kythe.git", "http_config": "https://raw.githubusercontent.com/kythe/kythe/master/.bazelci/presubmit.yml", "pipeline_slug": "kythe", }, "Protobuf": { "git_repository": "https://github.com/google/protobuf.git", "http_config": "https://raw.githubusercontent.com/bazelbuild/continuous-integration/master/buildkite/pipelines/protobuf-postsubmit.yml", "pipeline_slug": "protobuf", "owned_by_bazel": True, }, "Stardoc": { "git_repository": "https://github.com/bazelbuild/stardoc.git", "http_config": "https://raw.githubusercontent.com/bazelbuild/stardoc/master/.bazelci/presubmit.yml", "pipeline_slug": "stardoc", "owned_by_bazel": True, }, "Subpar": { "git_repository": "https://github.com/google/subpar.git", "http_config": "https://raw.githubusercontent.com/bazelbuild/continuous-integration/master/buildkite/pipelines/subpar-postsubmit.yml", "pipeline_slug": "subpar", "owned_by_bazel": True, }, "TensorFlow": { "git_repository": "https://github.com/tensorflow/tensorflow.git", "http_config": "https://raw.githubusercontent.com/bazelbuild/continuous-integration/master/buildkite/pipelines/tensorflow-postsubmit.yml", "pipeline_slug": "tensorflow", }, "Tulsi": { "git_repository": "https://github.com/bazelbuild/tulsi.git", "http_config": "https://raw.githubusercontent.com/bazelbuild/tulsi/master/.bazelci/presubmit.yml", "pipeline_slug": "tulsi-bazel-darwin", }, "re2": { "git_repository": "https://github.com/google/re2.git", "http_config": "https://raw.githubusercontent.com/bazelbuild/continuous-integration/master/buildkite/pipelines/re2-postsubmit.yml", "pipeline_slug": "re2", }, "rules_android": { "git_repository": "https://github.com/bazelbuild/rules_android.git", "http_config": "https://raw.githubusercontent.com/bazelbuild/rules_android/master/.bazelci/postsubmit.yml", "pipeline_slug": "rules-android", "disabled_reason": "https://github.com/bazelbuild/rules_android/issues/15", }, "rules_appengine": { "git_repository": "https://github.com/bazelbuild/rules_appengine.git", "http_config": "https://raw.githubusercontent.com/bazelbuild/rules_appengine/master/.bazelci/presubmit.yml", "pipeline_slug": "rules-appengine-appengine", }, "rules_apple": { "git_repository": "https://github.com/bazelbuild/rules_apple.git", "http_config": "https://raw.githubusercontent.com/bazelbuild/rules_apple/master/.bazelci/presubmit.yml", "pipeline_slug": "rules-apple-darwin", }, "rules_cc": { "git_repository": "https://github.com/bazelbuild/rules_cc.git", "http_config": "https://raw.githubusercontent.com/bazelbuild/rules_cc/master/.bazelci/presubmit.yml", "pipeline_slug": "rules-cc", "owned_by_bazel": True, }, "rules_closure": { "git_repository": "https://github.com/bazelbuild/rules_closure.git", "http_config": "https://raw.githubusercontent.com/bazelbuild/rules_closure/master/.bazelci/presubmit.yml", "pipeline_slug": "rules-closure-closure-compiler", "owned_by_bazel": True, }, "rules_d": { "git_repository": "https://github.com/bazelbuild/rules_d.git", "http_config": "https://raw.githubusercontent.com/bazelbuild/rules_d/master/.bazelci/presubmit.yml", "pipeline_slug": "rules-d", }, "rules_docker": { "git_repository": "https://github.com/bazelbuild/rules_docker.git", "http_config": "https://raw.githubusercontent.com/bazelbuild/rules_docker/master/.bazelci/presubmit.yml", "pipeline_slug": "rules-docker-docker", }, "rules_foreign_cc": { "git_repository": "https://github.com/bazelbuild/rules_foreign_cc.git", "http_config": "https://raw.githubusercontent.com/bazelbuild/rules_foreign_cc/master/.bazelci/config.yaml", "pipeline_slug": "rules-foreign-cc", "owned_by_bazel": True, }, "rules_go": { "git_repository": "https://github.com/bazelbuild/rules_go.git", "http_config": "https://raw.githubusercontent.com/bazelbuild/rules_go/master/.bazelci/presubmit.yml", "pipeline_slug": "rules-go-golang", }, "rules_groovy": { "git_repository": "https://github.com/bazelbuild/rules_groovy.git", "http_config": "https://raw.githubusercontent.com/bazelbuild/rules_groovy/master/.bazelci/presubmit.yml", "pipeline_slug": "rules-groovy", }, "rules_gwt": { "git_repository": "https://github.com/bazelbuild/rules_gwt.git", "http_config": "https://raw.githubusercontent.com/bazelbuild/rules_gwt/master/.bazelci/presubmit.yml", "pipeline_slug": "rules-gwt", }, "rules_haskell": { "git_repository": "https://github.com/tweag/rules_haskell.git", "http_config": "https://raw.githubusercontent.com/tweag/rules_haskell/master/.bazelci/presubmit.yml", "pipeline_slug": "rules-haskell-haskell", }, "rules_jsonnet": { "git_repository": "https://github.com/bazelbuild/rules_jsonnet.git", "http_config": "https://raw.githubusercontent.com/bazelbuild/rules_jsonnet/master/.bazelci/presubmit.yml", "pipeline_slug": "rules-jsonnet", }, "rules_jvm_external": { "git_repository": "https://github.com/bazelbuild/rules_jvm_external.git", "http_config": "https://raw.githubusercontent.com/bazelbuild/rules_jvm_external/master/.bazelci/presubmit.yml", "pipeline_slug": "rules-jvm-external", "owned_by_bazel": True, }, "rules_jvm_external - examples": { "git_repository": "https://github.com/bazelbuild/rules_jvm_external.git", "http_config": "https://raw.githubusercontent.com/bazelbuild/rules_jvm_external/master/.bazelci/examples.yml", "pipeline_slug": "rules-jvm-external-examples", "owned_by_bazel": True, }, "rules_k8s": { "git_repository": "https://github.com/bazelbuild/rules_k8s.git", "http_config": "https://raw.githubusercontent.com/bazelbuild/rules_k8s/master/.bazelci/presubmit.yml", "pipeline_slug": "rules-k8s-k8s", "disabled_reason": "https://github.com/bazelbuild/rules_k8s/pull/580", }, "rules_kotlin": { "git_repository": "https://github.com/bazelbuild/rules_kotlin.git", "http_config": "https://raw.githubusercontent.com/bazelbuild/rules_kotlin/master/.bazelci/presubmit.yml", "pipeline_slug": "rules-kotlin-kotlin", }, "rules_nodejs": { "git_repository": "https://github.com/bazelbuild/rules_nodejs.git", "http_config": "https://raw.githubusercontent.com/bazelbuild/rules_nodejs/master/.bazelci/presubmit.yml", "pipeline_slug": "rules-nodejs-nodejs", }, "rules_perl": { "git_repository": "https://github.com/bazelbuild/rules_perl.git", "http_config": "https://raw.githubusercontent.com/bazelbuild/rules_perl/master/.bazelci/presubmit.yml", "pipeline_slug": "rules-perl", }, "rules_proto": { "git_repository": "https://github.com/bazelbuild/rules_proto.git", "http_config": "https://raw.githubusercontent.com/bazelbuild/rules_proto/master/.bazelci/presubmit.yml", "pipeline_slug": "rules-proto", "owned_by_bazel": True, }, "rules_python": { "git_repository": "https://github.com/bazelbuild/rules_python.git", "http_config": "https://raw.githubusercontent.com/bazelbuild/rules_python/master/.bazelci/presubmit.yml", "pipeline_slug": "rules-python-python", "owned_by_bazel": True, }, "rules_rust": { "git_repository": "https://github.com/bazelbuild/rules_rust.git", "http_config": "https://raw.githubusercontent.com/bazelbuild/rules_rust/master/.bazelci/presubmit.yml", "pipeline_slug": "rules-rust-rustlang", }, "rules_sass": { "git_repository": "https://github.com/bazelbuild/rules_sass.git", "http_config": "https://raw.githubusercontent.com/bazelbuild/rules_sass/master/.bazelci/presubmit.yml", "pipeline_slug": "rules-sass", }, "rules_scala": { "git_repository": "https://github.com/bazelbuild/rules_scala.git", "http_config": "https://raw.githubusercontent.com/bazelbuild/rules_scala/master/.bazelci/presubmit.yml", "pipeline_slug": "rules-scala-scala", }, "rules_swift": { "git_repository": "https://github.com/bazelbuild/rules_swift.git", "http_config": "https://raw.githubusercontent.com/bazelbuild/rules_swift/master/.bazelci/presubmit.yml", "pipeline_slug": "rules-swift-swift", "do_not_notify": "https://github.com/bazelbuild/continuous-integration/issues/915", }, "rules_webtesting": { "git_repository": "https://github.com/bazelbuild/rules_webtesting.git", "http_config": "https://raw.githubusercontent.com/bazelbuild/rules_webtesting/master/.bazelci/presubmit.yml", "pipeline_slug": "rules-webtesting-saucelabs", }, "upb": { "git_repository": "https://github.com/protocolbuffers/upb.git", "http_config": "https://raw.githubusercontent.com/protocolbuffers/upb/master/.bazelci/presubmit.yml", "pipeline_slug": "upb", }, } DOWNSTREAM_PROJECTS_TESTING = { "Bazel": DOWNSTREAM_PROJECTS_PRODUCTION["Bazel"], "Bazelisk": DOWNSTREAM_PROJECTS_PRODUCTION["Bazelisk"], "Federation": { "git_repository": "https://github.com/fweikert/bazel-federation.git", "http_config": "https://raw.githubusercontent.com/fweikert/bazel-federation/master/.bazelci/presubmit.yml", "pipeline_slug": "bazel-federation", }, "rules_docker": DOWNSTREAM_PROJECTS_PRODUCTION["rules_docker"], "rules_go": DOWNSTREAM_PROJECTS_PRODUCTION["rules_go"], "rules_groovy": DOWNSTREAM_PROJECTS_PRODUCTION["rules_groovy"], "rules_kotlin": DOWNSTREAM_PROJECTS_PRODUCTION["rules_kotlin"], "rules_nodejs": DOWNSTREAM_PROJECTS_PRODUCTION["rules_nodejs"], "rules_rust": DOWNSTREAM_PROJECTS_PRODUCTION["rules_rust"], "rules_scala": DOWNSTREAM_PROJECTS_PRODUCTION["rules_scala"], } DOWNSTREAM_PROJECTS = { "bazel-testing": DOWNSTREAM_PROJECTS_TESTING, "bazel-trusted": {}, "bazel": DOWNSTREAM_PROJECTS_PRODUCTION, }[BUILDKITE_ORG] DOCKER_REGISTRY_PREFIX = { "bazel-testing": "bazel-public/testing", "bazel-trusted": "bazel-public", "bazel": "bazel-public", }[BUILDKITE_ORG] # A map containing all supported platform names as keys, with the values being # the platform name in a human readable format, and a the buildkite-agent's # working directory. PLATFORMS = { "centos7": { "name": "CentOS 7, Java 8", "emoji-name": ":centos: 7 (Java 8)", "downstream-root": "/var/lib/buildkite-agent/builds/${BUILDKITE_AGENT_NAME}/${BUILDKITE_ORGANIZATION_SLUG}-downstream-projects", "publish_binary": ["ubuntu1404", "centos7", "linux"], "docker-image": f"gcr.io/{DOCKER_REGISTRY_PREFIX}/centos7-java8", "python": "python3.6", }, "debian10": { "name": "Debian Buster, OpenJDK 11", "emoji-name": ":debian: Buster (OpenJDK 11)", "downstream-root": "/var/lib/buildkite-agent/builds/${BUILDKITE_AGENT_NAME}/${BUILDKITE_ORGANIZATION_SLUG}-downstream-projects", "publish_binary": [], "docker-image": f"gcr.io/{DOCKER_REGISTRY_PREFIX}/debian10-java11", "python": "python3.7", }, "ubuntu1604": { "name": "Ubuntu 16.04, OpenJDK 8", "emoji-name": ":ubuntu: 16.04 (OpenJDK 8)", "downstream-root": "/var/lib/buildkite-agent/builds/${BUILDKITE_AGENT_NAME}/${BUILDKITE_ORGANIZATION_SLUG}-downstream-projects", "publish_binary": ["ubuntu1604"], "docker-image": f"gcr.io/{DOCKER_REGISTRY_PREFIX}/ubuntu1604-java8", "python": "python3.6", }, "ubuntu1804": { "name": "Ubuntu 18.04, OpenJDK 11", "emoji-name": ":ubuntu: 18.04 (OpenJDK 11)", "downstream-root": "/var/lib/buildkite-agent/builds/${BUILDKITE_AGENT_NAME}/${BUILDKITE_ORGANIZATION_SLUG}-downstream-projects", "publish_binary": ["ubuntu1804"], "docker-image": f"gcr.io/{DOCKER_REGISTRY_PREFIX}/ubuntu1804-java11", "python": "python3.6", }, "ubuntu1804_nojava": { "name": "Ubuntu 18.04, no JDK", "emoji-name": ":ubuntu: 18.04 (no JDK)", "downstream-root": "/var/lib/buildkite-agent/builds/${BUILDKITE_AGENT_NAME}/${BUILDKITE_ORGANIZATION_SLUG}-downstream-projects", "publish_binary": [], "docker-image": f"gcr.io/{DOCKER_REGISTRY_PREFIX}/ubuntu1804-nojava", "python": "python3.6", }, "ubuntu2004": { "name": "Ubuntu 20.04, OpenJDK 11", "emoji-name": ":ubuntu: 20.04 (OpenJDK 11)", "downstream-root": "/var/lib/buildkite-agent/builds/${BUILDKITE_AGENT_NAME}/${BUILDKITE_ORGANIZATION_SLUG}-downstream-projects", "publish_binary": [], "docker-image": f"gcr.io/{DOCKER_REGISTRY_PREFIX}/ubuntu2004-java11", "python": "python3.8", }, "ubuntu2004_nojava": { "name": "Ubuntu 20.04, no JDK", "emoji-name": ":ubuntu: 20.04 (no JDK)", "downstream-root": "/var/lib/buildkite-agent/builds/${BUILDKITE_AGENT_NAME}/${BUILDKITE_ORGANIZATION_SLUG}-downstream-projects", "publish_binary": [], "docker-image": f"gcr.io/{DOCKER_REGISTRY_PREFIX}/ubuntu2004-nojava", "python": "python3.8", }, "kythe_ubuntu2004": { "name": "Kythe (Ubuntu 20.04, OpenJDK 11)", "emoji-name": "Kythe (:ubuntu: 20.04, OpenJDK 11)", "downstream-root": "/var/lib/buildkite-agent/builds/${BUILDKITE_AGENT_NAME}/${BUILDKITE_ORGANIZATION_SLUG}-downstream-projects", "publish_binary": [], "docker-image": f"gcr.io/{DOCKER_REGISTRY_PREFIX}/ubuntu2004-java11-kythe", "python": "python3.8", }, "macos": { "name": "macOS, OpenJDK 8", "emoji-name": ":darwin: (OpenJDK 8)", "downstream-root": "/Users/buildkite/builds/${BUILDKITE_AGENT_NAME}/${BUILDKITE_ORGANIZATION_SLUG}-downstream-projects", "publish_binary": ["macos"], "queue": "macos", "python": "python3.7", }, "windows": { "name": "Windows, OpenJDK 8", "emoji-name": ":windows: (OpenJDK 8)", "downstream-root": "c:/b/${BUILDKITE_AGENT_NAME}/${BUILDKITE_ORGANIZATION_SLUG}-downstream-projects", "publish_binary": ["windows"], "queue": "windows", "python": "python.exe", }, "rbe_ubuntu1604": { "name": "RBE (Ubuntu 16.04, OpenJDK 8)", "emoji-name": "RBE (:ubuntu: 16.04, OpenJDK 8)", "downstream-root": "/var/lib/buildkite-agent/builds/${BUILDKITE_AGENT_NAME}/${BUILDKITE_ORGANIZATION_SLUG}-downstream-projects", "publish_binary": [], "docker-image": f"gcr.io/{DOCKER_REGISTRY_PREFIX}/ubuntu1604-java8", "python": "python3.6", }, } BUILDIFIER_DOCKER_IMAGE = "gcr.io/bazel-public/buildifier" # The platform used for various steps (e.g. stuff that formerly ran on the "pipeline" workers). DEFAULT_PLATFORM = "ubuntu1804" # In order to test that "the one Linux binary" that we build for our official releases actually # works on all Linux distributions that we test on, we use the Linux binary built on our official # release platform for all Linux downstream tests. LINUX_BINARY_PLATFORM = "centos7" DEFAULT_XCODE_VERSION = "11.7" XCODE_VERSION_REGEX = re.compile(r"^\d+\.\d+(\.\d+)?$") XCODE_VERSION_OVERRIDES = { "10.2.1": "10.3", "11.2": "11.2.1", "11.3": "11.3.1", } ENCRYPTED_SAUCELABS_TOKEN = """ CiQAry63sOlZtTNtuOT5DAOLkum0rGof+DOweppZY1aOWbat8zwSTQAL7Hu+rgHSOr6P4S1cu4YG /I1BHsWaOANqUgFt6ip9/CUGGJ1qggsPGXPrmhSbSPqNAIAkpxYzabQ3mfSIObxeBmhKg2dlILA/ EDql """.strip() BUILD_LABEL_PATTERN = re.compile(r"^Build label: (\S+)$", re.MULTILINE) BUILDIFIER_VERSION_ENV_VAR = "BUILDIFIER_VERSION" BUILDIFIER_WARNINGS_ENV_VAR = "BUILDIFIER_WARNINGS" BUILDIFIER_STEP_NAME = "Buildifier" SKIP_TASKS_ENV_VAR = "CI_SKIP_TASKS" CONFIG_FILE_EXTENSIONS = {".yml", ".yaml"} KYTHE_DIR = "/usr/local/kythe" INDEX_UPLOAD_POLICY_ALWAYS = "Always" INDEX_UPLOAD_POLICY_IF_BUILD_SUCCESS = "IfBuildSuccess" INDEX_UPLOAD_POLICY_NEVER = "Never" class BuildkiteException(Exception): """ Raised whenever something goes wrong and we should exit with an error. """ pass class BinaryUploadRaceException(Exception): """ Raised when try_publish_binaries wasn't able to publish a set of binaries, because the generation of the current file didn't match the expected value. """ pass class BuildkiteClient(object): _ENCRYPTED_BUILDKITE_API_TOKEN = """ CiQA4DEB9ldzC+E39KomywtqXfaQ86hhulgeDsicds2BuvbCYzsSUAAqwcvXZPh9IMWlwWh94J2F exosKKaWB0tSRJiPKnv2NPDfEqGul0ZwVjtWeASpugwxxKeLhFhPMcgHMPfndH6j2GEIY6nkKRbP uwoRMCwe """.strip() _ENCRYPTED_BUILDKITE_API_TESTING_TOKEN = """ CiQAMTBkWjL1C+F5oon3+cC1vmum5+c1y5+96WQY44p0Lxd0PeASUQAy7iU0c6E3W5EOSFYfD5fA MWy/SHaMno1NQSUa4xDOl5yc2kizrtxPPVkX4x9pLNuGUY/xwAn2n1DdiUdWZNWlY1bX2C4ex65e P9w8kNhEbw== """.strip() _BUILD_STATUS_URL_TEMPLATE = ( "https://api.buildkite.com/v2/organizations/{}/pipelines/{}/builds/{}" ) _NEW_BUILD_URL_TEMPLATE = ( "https://api.buildkite.com/v2/organizations/{}/pipelines/{}/builds" ) _RETRY_JOB_URL_TEMPLATE = ( "https://api.buildkite.com/v2/organizations/{}/pipelines/{}/builds/{}/jobs/{}/retry" ) def __init__(self, org, pipeline): self._org = org self._pipeline = pipeline self._token = self._get_buildkite_token() def _get_buildkite_token(self): return decrypt_token( encrypted_token=self._ENCRYPTED_BUILDKITE_API_TESTING_TOKEN if THIS_IS_TESTING else self._ENCRYPTED_BUILDKITE_API_TOKEN, kms_key="buildkite-testing-api-token" if THIS_IS_TESTING else "buildkite-untrusted-api-token", ) def _open_url(self, url, params = []): try: params_str = "".join("&{}={}".format(k, v) for k, v in params) return ( urllib.request.urlopen("{}?access_token={}{}".format(url, self._token, params_str)) .read() .decode("utf-8", "ignore") ) except urllib.error.HTTPError as ex: raise BuildkiteException("Failed to open {}: {} - {}".format(url, ex.code, ex.reason)) def get_build_info(self, build_number): """Get build info for a pipeline with a given build number See https://buildkite.com/docs/apis/rest-api/builds#get-a-build Parameters ---------- build_number : the build number Returns ------- dict the metadata for the build """ url = self._BUILD_STATUS_URL_TEMPLATE.format(self._org, self._pipeline, build_number) output = self._open_url(url) return json.loads(output) def get_build_info_list(self, params): """Get a list of build infos for this pipeline See https://buildkite.com/docs/apis/rest-api/builds#list-builds-for-a-pipeline Parameters ---------- params : the parameters to filter the result Returns ------- list of dict the metadata for a list of builds """ url = self._BUILD_STATUS_URL_TEMPLATE.format(self._org, self._pipeline, "") output = self._open_url(url, params) return json.loads(output) def get_build_log(self, job): return self._open_url(job["raw_log_url"]) @staticmethod def _check_response(response, expected_status_code): if response.status_code != expected_status_code: eprint("Exit code:", response.status_code) eprint("Response:\n", response.text) response.raise_for_status() def trigger_new_build(self, commit, message = None, env = {}): """Trigger a new build at a given commit and return the build metadata. See https://buildkite.com/docs/apis/rest-api/builds#create-a-build Parameters ---------- commit : the commit we want to build at message : the message we should as the build titile env : (optional) the environment variables to set Returns ------- dict the metadata for the build """ url = self._NEW_BUILD_URL_TEMPLATE.format(self._org, self._pipeline) data = { "commit": commit, "branch": "master", "message": message if message else f"Trigger build at {commit}", "env": env, } response = requests.post(url + "?access_token=" + self._token, json = data) BuildkiteClient._check_response(response, requests.codes.created) return json.loads(response.text) def trigger_job_retry(self, build_number, job_id): """Trigger a job retry and return the job metadata. See https://buildkite.com/docs/apis/rest-api/jobs#retry-a-job Parameters ---------- build_number : the number of the build we want to retry job_id : the id of the job we want to retry Returns ------- dict the metadata for the job """ url = self._RETRY_JOB_URL_TEMPLATE.format(self._org, self._pipeline, build_number, job_id) response = requests.put(url + "?access_token=" + self._token) BuildkiteClient._check_response(response, requests.codes.ok) return json.loads(response.text) def wait_job_to_finish(self, build_number, job_id, interval_time=30, logger=None): """Wait a job to finish and return the job metadata Parameters ---------- build_number : the number of the build we want to wait job_id : the id of the job we want to wait interval_time : (optional) the interval time to check the build status, default to 30s logger : (optional) a logger to report progress Returns ------- dict the latest metadata for the job """ t = 0 build_info = self.get_build_info(build_number) while True: for job in build_info["jobs"]: if job["id"] == job_id: state = job["state"] if state != "scheduled" and state != "running" and state != "assigned": return job break else: raise BuildkiteException(f"job id {job_id} doesn't exist in build " + build_info["web_url"]) url = build_info["web_url"] if logger: logger.log(f"Waiting for {url}, waited {t} seconds...") time.sleep(interval_time) t += interval_time build_info = self.get_build_info(build_number) def wait_build_to_finish(self, build_number, interval_time=30, logger=None): """Wait a build to finish and return the build metadata Parameters ---------- build_number : the number of the build we want to wait interval_time : (optional) the interval time to check the build status, default to 30s logger : (optional) a logger to report progress Returns ------- dict the latest metadata for the build """ t = 0 build_info = self.get_build_info(build_number) while build_info["state"] == "scheduled" or build_info["state"] == "running": url = build_info["web_url"] if logger: logger.log(f"Waiting for {url}, waited {t} seconds...") time.sleep(interval_time) t += interval_time build_info = self.get_build_info(build_number) return build_info def decrypt_token(encrypted_token, kms_key): return ( subprocess.check_output( [ gcloud_command(), "kms", "decrypt", "--project", "bazel-untrusted", "--location", "global", "--keyring", "buildkite", "--key", kms_key, "--ciphertext-file", "-", "--plaintext-file", "-", ], input=base64.b64decode(encrypted_token), env=os.environ, ) .decode("utf-8") .strip() ) def eprint(*args, **kwargs): """ Print to stderr and flush (just in case). """ print(*args, flush=True, file=sys.stderr, **kwargs) def is_windows(): return os.name == "nt" def gsutil_command(): return "gsutil.cmd" if is_windows() else "gsutil" def gcloud_command(): return "gcloud.cmd" if is_windows() else "gcloud" def downstream_projects_root(platform): downstream_root = os.path.expandvars(PLATFORMS[platform]["downstream-root"]) if platform == "windows" and os.path.exists("d:/b"): # If this is a Windows machine with a local SSD, the build directory is # on drive D. downstream_root = downstream_root.replace("c:/b/", "d:/b/") if not os.path.exists(downstream_root): os.makedirs(downstream_root) return downstream_root def fetch_configs(http_url, file_config): """ If specified fetches the build configuration from file_config or http_url, else tries to read it from .bazelci/presubmit.yml. Returns the json configuration as a python data structure. """ if file_config is not None and http_url is not None: raise BuildkiteException("file_config and http_url cannot be set at the same time") return load_config(http_url, file_config) def load_config(http_url, file_config, allow_imports=True): if http_url: config = load_remote_yaml_file(http_url) else: file_config = file_config or ".bazelci/presubmit.yml" with open(file_config, "r") as fd: config = yaml.safe_load(fd) # Legacy mode means that there is exactly one task per platform (e.g. ubuntu1604_nojdk), # which means that we can get away with using the platform name as task ID. # No other updates are needed since get_platform_for_task() falls back to using the # task ID as platform if there is no explicit "platforms" field. if "platforms" in config: config["tasks"] = config.pop("platforms") if "tasks" not in config: config["tasks"] = {} imports = config.pop("imports", None) if imports: if not allow_imports: raise BuildkiteException("Nested imports are not allowed") for i in imports: imported_tasks = load_imported_tasks(i, http_url, file_config) config["tasks"].update(imported_tasks) return config def load_remote_yaml_file(http_url): with urllib.request.urlopen(http_url) as resp: reader = codecs.getreader("utf-8") return yaml.safe_load(reader(resp)) def load_imported_tasks(import_name, http_url, file_config): if "/" in import_name: raise BuildkiteException("Invalid import '%s'" % import_name) old_path = http_url or file_config new_path = "%s%s" % (old_path[: old_path.rfind("/") + 1], import_name) if http_url: http_url = new_path else: file_config = new_path imported_config = load_config(http_url=http_url, file_config=file_config, allow_imports=False) namespace = import_name.partition(".")[0] tasks = {} for task_name, task_config in imported_config["tasks"].items(): fix_imported_task_platform(task_name, task_config) fix_imported_task_name(namespace, task_config) fix_imported_task_working_directory(namespace, task_config) tasks["%s_%s" % (namespace, task_name)] = task_config return tasks def fix_imported_task_platform(task_name, task_config): if "platform" not in task_config: task_config["platform"] = task_name def fix_imported_task_name(namespace, task_config): old_name = task_config.get("name") task_config["name"] = "%s (%s)" % (namespace, old_name) if old_name else namespace def fix_imported_task_working_directory(namespace, task_config): old_dir = task_config.get("working_directory") task_config["working_directory"] = os.path.join(namespace, old_dir) if old_dir else namespace def print_collapsed_group(name): eprint("\n\n--- {0}\n\n".format(name)) def print_expanded_group(name): eprint("\n\n+++ {0}\n\n".format(name)) def use_bazelisk_migrate(): """ If USE_BAZELISK_MIGRATE is set, we use `bazelisk --migrate` to test incompatible flags. """ return bool(os.environ.get("USE_BAZELISK_MIGRATE")) def bazelisk_flags(): return ["--migrate"] if use_bazelisk_migrate() else [] def calculate_flags(task_config, task_config_key, json_profile_key, tmpdir, test_env_vars): include_json_profile = task_config.get("include_json_profile", []) json_profile_flags = [] json_profile_out = None if json_profile_key in include_json_profile: json_profile_out = os.path.join(tmpdir, "{}.profile.gz".format(json_profile_key)) json_profile_flags = get_json_profile_flags(json_profile_out) flags = task_config.get(task_config_key) or [] flags += json_profile_flags # We have to add --test_env flags to `build`, too, otherwise Bazel # discards its analysis cache between `build` and `test`. if test_env_vars: flags += ["--test_env={}".format(v) for v in test_env_vars] return flags, json_profile_out def execute_commands( task_config, platform, git_repository, git_commit, git_repo_location, use_bazel_at_commit, use_but, save_but, needs_clean, build_only, test_only, monitor_flaky_tests, incompatible_flags, bazel_version=None, ): # If we want to test incompatible flags, we ignore bazel_version and always use # the latest Bazel version through Bazelisk. if incompatible_flags: bazel_version = None if not bazel_version: # The last good version of Bazel can be specified in an emergency file. # However, we only use last_good_bazel for pipelines that do not # explicitly specify a version of Bazel. try: emergency_settings = load_remote_yaml_file(EMERGENCY_FILE_URL) bazel_version = emergency_settings.get("last_good_bazel") except urllib.error.HTTPError: # Ignore this error. The Setup step will have already complained about # it by showing an error message. pass if build_only and test_only: raise BuildkiteException("build_only and test_only cannot be true at the same time") if use_bazel_at_commit and use_but: raise BuildkiteException("use_bazel_at_commit cannot be set when use_but is true") tmpdir = tempfile.mkdtemp() sc_process = None try: if platform == "macos": activate_xcode(task_config) # If the CI worker runs Bazelisk, we need to forward all required env variables to the test. # Otherwise any integration test that invokes Bazel (=Bazelisk in this case) will fail. test_env_vars = ["LocalAppData"] if platform == "windows" else ["HOME"] if git_repo_location: os.chdir(git_repo_location) elif git_repository: clone_git_repository(git_repository, platform, git_commit) # We use one binary for all Linux platforms (because we also just release one binary for all # Linux versions and we have to ensure that it works on all of them). binary_platform = platform if platform in ["macos", "windows"] else LINUX_BINARY_PLATFORM if use_bazel_at_commit: print_collapsed_group(":gcloud: Downloading Bazel built at " + use_bazel_at_commit) bazel_binary = download_bazel_binary_at_commit( tmpdir, binary_platform, use_bazel_at_commit ) os.environ["USE_BAZEL_VERSION"] = bazel_binary elif use_but: print_collapsed_group(":gcloud: Downloading Bazel Under Test") bazel_binary = download_bazel_binary(tmpdir, binary_platform) os.environ["USE_BAZEL_VERSION"] = bazel_binary else: bazel_binary = "bazel" if bazel_version: os.environ["USE_BAZEL_VERSION"] = bazel_version if "USE_BAZEL_VERSION" in os.environ and not task_config.get( "skip_use_bazel_version_for_test", False ): # This will only work if the bazel binary in $PATH is actually a bazelisk binary # (https://github.com/bazelbuild/bazelisk). test_env_vars.append("USE_BAZEL_VERSION") for key, value in task_config.get("environment", {}).items(): # We have to explicitly convert the value to a string, because sometimes YAML tries to # be smart and converts strings like "true" and "false" to booleans. os.environ[key] = str(value) # Set BAZELISK_SHUTDOWN to 1 when we use bazelisk --migrate on Windows. # This is a workaround for https://github.com/bazelbuild/continuous-integration/issues/1012 if use_bazelisk_migrate() and platform == "windows": os.environ["BAZELISK_SHUTDOWN"] = "1" cmd_exec_func = execute_batch_commands if platform == "windows" else execute_shell_commands cmd_exec_func(task_config.get("setup", None)) # Allow the config to override the current working directory. required_prefix = os.getcwd() requested_working_dir = os.path.abspath(task_config.get("working_directory", "")) if os.path.commonpath([required_prefix, requested_working_dir]) != required_prefix: raise BuildkiteException("working_directory refers to a path outside the workspace") os.chdir(requested_working_dir) if platform == "windows": execute_batch_commands(task_config.get("batch_commands", None)) else: execute_shell_commands(task_config.get("shell_commands", None)) bazel_version = print_bazel_version_info(bazel_binary, platform) print_environment_variables_info() if incompatible_flags: print_expanded_group("Build and test with the following incompatible flags:") for flag in incompatible_flags: eprint(flag + "\n") execute_bazel_run( bazel_binary, platform, task_config.get("run_targets", None), incompatible_flags ) if task_config.get("sauce"): sc_process = start_sauce_connect_proxy(platform, tmpdir) if needs_clean: execute_bazel_clean(bazel_binary, platform) build_targets, test_targets, index_targets = calculate_targets( task_config, platform, bazel_binary, build_only, test_only ) if build_targets: build_flags, json_profile_out_build = calculate_flags(task_config, "build_flags", "build", tmpdir, test_env_vars) try: execute_bazel_build( bazel_version, bazel_binary, platform, build_flags, build_targets, None, incompatible_flags, ) if save_but: upload_bazel_binary(platform) finally: if json_profile_out_build: upload_json_profile(json_profile_out_build, tmpdir) if test_targets: test_flags, json_profile_out_test = calculate_flags(task_config, "test_flags", "test", tmpdir, test_env_vars) if not is_windows(): # On platforms that support sandboxing (Linux, MacOS) we have # to allow access to Bazelisk's cache directory. # However, the flag requires the directory to exist, # so we create it here in order to not crash when a test # does not invoke Bazelisk. bazelisk_cache_dir = get_bazelisk_cache_directory(platform) os.makedirs(bazelisk_cache_dir, mode=0o755, exist_ok=True) test_flags.append("--sandbox_writable_path={}".format(bazelisk_cache_dir)) test_bep_file = os.path.join(tmpdir, "test_bep.json") stop_request = threading.Event() upload_thread = threading.Thread( target=upload_test_logs_from_bep, args=(test_bep_file, tmpdir, stop_request) ) try: upload_thread.start() try: execute_bazel_test( bazel_version, bazel_binary, platform, test_flags, test_targets, test_bep_file, monitor_flaky_tests, incompatible_flags, ) if monitor_flaky_tests: upload_bep_logs_for_flaky_tests(test_bep_file) finally: if json_profile_out_test: upload_json_profile(json_profile_out_test, tmpdir) finally: stop_request.set() upload_thread.join() if index_targets: index_flags, json_profile_out_index = calculate_flags(task_config, "index_flags", "index", tmpdir, test_env_vars) index_upload_policy = task_config.get("index_upload_policy", "IfBuildSuccess") index_upload_gcs = task_config.get("index_upload_gcs", False) try: should_upload_kzip = True if index_upload_policy == INDEX_UPLOAD_POLICY_ALWAYS else False try: execute_bazel_build_with_kythe( bazel_version, bazel_binary, platform, index_flags, index_targets, None, incompatible_flags ) if index_upload_policy == INDEX_UPLOAD_POLICY_IF_BUILD_SUCCESS: should_upload_kzip = True except subprocess.CalledProcessError as e: # If not running with Always policy, raise the build error. if index_upload_policy != INDEX_UPLOAD_POLICY_ALWAYS: handle_bazel_failure(e, "build") if should_upload_kzip: try: merge_and_upload_kythe_kzip(platform, index_upload_gcs) except subprocess.CalledProcessError: raise BuildkiteException("Failed to upload kythe kzip") finally: if json_profile_out_index: upload_json_profile(json_profile_out_index, tmpdir) finally: terminate_background_process(sc_process) if tmpdir: shutil.rmtree(tmpdir) def activate_xcode(task_config): # Get the Xcode version from the config. xcode_version = task_config.get("xcode_version", DEFAULT_XCODE_VERSION) print_collapsed_group("Activating Xcode {}...".format(xcode_version)) # Ensure it's a valid version number. if not isinstance(xcode_version, str): raise BuildkiteException( "Version number '{}' is not a string. Did you forget to put it in quotes?".format( xcode_version ) ) if not XCODE_VERSION_REGEX.match(xcode_version): raise BuildkiteException( "Invalid Xcode version format '{}', must match the format X.Y[.Z].".format( xcode_version ) ) # This is used to replace e.g. 11.2 with 11.2.1 without having to update all configs. xcode_version = XCODE_VERSION_OVERRIDES.get(xcode_version, xcode_version) # Check that the selected Xcode version is actually installed on the host. xcode_path = "/Applications/Xcode{}.app".format(xcode_version) if not os.path.exists(xcode_path): raise BuildkiteException("Xcode not found at '{}'.".format(xcode_path)) # Now activate the specified Xcode version and let it install its required components. # The CI machines have a sudoers config that allows the 'buildkite' user to run exactly # these two commands, so don't change them without also modifying the file there. execute_command(["/usr/bin/sudo", "/usr/bin/xcode-select", "--switch", xcode_path]) execute_command(["/usr/bin/sudo", "/usr/bin/xcodebuild", "-runFirstLaunch"]) def get_bazelisk_cache_directory(platform): # The path relies on the behavior of Go's os.UserCacheDir() # and of the Go version of Bazelisk. cache_dir = "Library/Caches" if platform == "macos" else ".cache" return os.path.join(os.environ.get("HOME"), cache_dir, "bazelisk") def tests_with_status(bep_file, status): return set(label for label, _ in test_logs_for_status(bep_file, status=[status])) def start_sauce_connect_proxy(platform, tmpdir): print_collapsed_group(":saucelabs: Starting Sauce Connect Proxy") os.environ["SAUCE_USERNAME"] = "bazel_rules_webtesting" os.environ["SAUCE_ACCESS_KEY"] = saucelabs_token() os.environ["TUNNEL_IDENTIFIER"] = str(uuid.uuid4()) os.environ["BUILD_TAG"] = str(uuid.uuid4()) readyfile = os.path.join(tmpdir, "sc_is_ready") if platform == "windows": cmd = ["sauce-connect.exe", "-i", os.environ["TUNNEL_IDENTIFIER"], "-f", readyfile] else: cmd = ["sc", "-i", os.environ["TUNNEL_IDENTIFIER"], "-f", readyfile] sc_process = execute_command_background(cmd) wait_start = time.time() while not os.path.exists(readyfile): if time.time() - wait_start > 60: raise BuildkiteException( "Sauce Connect Proxy is still not ready after 60 seconds, aborting!" ) time.sleep(1) print("Sauce Connect Proxy is ready, continuing...") return sc_process def saucelabs_token(): return decrypt_token(encrypted_token=ENCRYPTED_SAUCELABS_TOKEN, kms_key="saucelabs-access-key") def is_pull_request(): third_party_repo = os.getenv("BUILDKITE_PULL_REQUEST_REPO", "") return len(third_party_repo) > 0 def has_flaky_tests(bep_file): return len(test_logs_for_status(bep_file, status=["FLAKY"])) > 0 def print_bazel_version_info(bazel_binary, platform): print_collapsed_group(":information_source: Bazel Info") version_output = execute_command_and_get_output( [bazel_binary] + common_startup_flags(platform) + ["--nomaster_bazelrc", "--bazelrc=/dev/null", "version"] ) execute_command( [bazel_binary] + common_startup_flags(platform) + ["--nomaster_bazelrc", "--bazelrc=/dev/null", "info"] ) match = BUILD_LABEL_PATTERN.search(version_output) return match.group(1) if match else "unreleased binary" def print_environment_variables_info(): print_collapsed_group(":information_source: Environment Variables") for key, value in os.environ.items(): eprint("%s=(%s)" % (key, value)) def upload_bazel_binary(platform): print_collapsed_group(":gcloud: Uploading Bazel Under Test") if platform == "windows": binary_dir = r"bazel-bin\src" binary_name = r"bazel.exe" binary_nojdk_name = r"bazel_nojdk.exe" else: binary_dir = "bazel-bin/src" binary_name = "bazel" binary_nojdk_name = "bazel_nojdk" execute_command(["buildkite-agent", "artifact", "upload", binary_name], cwd=binary_dir) execute_command(["buildkite-agent", "artifact", "upload", binary_nojdk_name], cwd=binary_dir) def merge_and_upload_kythe_kzip(platform, index_upload_gcs): print_collapsed_group(":gcloud: Uploading kythe kzip") kzips = glob.glob("bazel-out/*/extra_actions/**/*.kzip", recursive=True) build_number = os.getenv("BUILDKITE_BUILD_NUMBER") git_commit = os.getenv("BUILDKITE_COMMIT") final_kzip_name = "{}-{}-{}.kzip".format(build_number, platform, git_commit) execute_command([f"{KYTHE_DIR}/tools/kzip", "merge", "--output", final_kzip_name] + kzips) execute_command(["buildkite-agent", "artifact", "upload", final_kzip_name]) if index_upload_gcs: pipeline = os.getenv("BUILDKITE_PIPELINE_SLUG") destination = KZIPS_BUCKET + pipeline + "/" + final_kzip_name print("Uploading to GCS {}".format(destination)) execute_command( [ gsutil_command(), "cp", final_kzip_name, destination, ] ) def download_binary(dest_dir, platform, binary_name): source_step = create_label(platform, "Bazel", build_only=True) execute_command( ["buildkite-agent", "artifact", "download", binary_name, dest_dir, "--step", source_step] ) bazel_binary_path = os.path.join(dest_dir, binary_name) st = os.stat(bazel_binary_path) os.chmod(bazel_binary_path, st.st_mode | stat.S_IEXEC) return bazel_binary_path def download_bazel_binary(dest_dir, platform): binary_name = "bazel.exe" if platform == "windows" else "bazel" return download_binary(dest_dir, platform, binary_name) def download_bazel_nojdk_binary(dest_dir, platform): binary_name = "bazel_nojdk.exe" if platform == "windows" else "bazel_nojdk" return download_binary(dest_dir, platform, binary_name) def download_binary_at_commit(dest_dir, platform, bazel_git_commit, bazel_binary_url, bazel_binary_path): try: execute_command( [ gsutil_command(), "cp", bazel_binary_url, bazel_binary_path, ] ) except subprocess.CalledProcessError as e: raise BuildkiteException( "Failed to download Bazel binary at %s, error message:\n%s" % (bazel_git_commit, str(e)) ) st = os.stat(bazel_binary_path) os.chmod(bazel_binary_path, st.st_mode | stat.S_IEXEC) return bazel_binary_path def download_bazel_binary_at_commit(dest_dir, platform, bazel_git_commit): url = bazelci_builds_gs_url(platform, bazel_git_commit) path = os.path.join(dest_dir, "bazel.exe" if platform == "windows" else "bazel") return download_binary_at_commit(dest_dir, platform, bazel_git_commit, url, path) def download_bazel_nojdk_binary_at_commit(dest_dir, platform, bazel_git_commit): url = bazelci_builds_nojdk_gs_url(platform, bazel_git_commit) path = os.path.join(dest_dir, "bazel_nojdk.exe" if platform == "windows" else "bazel_nojdk") return download_binary_at_commit(dest_dir, platform, bazel_git_commit, url, path) def get_mirror_path(git_repository, platform): mirror_root = { "macos": "/usr/local/var/bazelbuild/", "windows": "c:\\buildkite\\bazelbuild\\", }.get(platform, "/var/lib/bazelbuild/") return mirror_root + re.sub(r"[^0-9A-Za-z]", "-", git_repository) def clone_git_repository(git_repository, platform, git_commit=None): root = downstream_projects_root(platform) project_name = re.search(r"/([^/]+)\.git$", git_repository).group(1) clone_path = os.path.join(root, project_name) print_collapsed_group( "Fetching %s sources at %s" % (project_name, git_commit if git_commit else "HEAD") ) mirror_path = get_mirror_path(git_repository, platform) if not os.path.exists(clone_path): if os.path.exists(mirror_path): execute_command( ["git", "clone", "-v", "--reference", mirror_path, git_repository, clone_path] ) else: execute_command(["git", "clone", "-v", git_repository, clone_path]) os.chdir(clone_path) execute_command(["git", "remote", "set-url", "origin", git_repository]) execute_command(["git", "clean", "-fdqx"]) execute_command(["git", "submodule", "foreach", "--recursive", "git clean -fdqx"]) execute_command(["git", "fetch", "origin"]) if git_commit: # sync to a specific commit of this repository execute_command(["git", "reset", git_commit, "--hard"]) else: # sync to the latest commit of HEAD. Unlikely git pull this also works after a force push. remote_head = ( subprocess.check_output(["git", "symbolic-ref", "refs/remotes/origin/HEAD"]) .decode("utf-8") .rstrip() ) execute_command(["git", "reset", remote_head, "--hard"]) execute_command(["git", "submodule", "sync", "--recursive"]) execute_command(["git", "submodule", "update", "--init", "--recursive", "--force"]) execute_command(["git", "submodule", "foreach", "--recursive", "git reset --hard"]) execute_command(["git", "clean", "-fdqx"]) execute_command(["git", "submodule", "foreach", "--recursive", "git clean -fdqx"]) return clone_path def execute_batch_commands(commands): if not commands: return print_collapsed_group(":batch: Setup (Batch Commands)") batch_commands = "&".join(commands) return subprocess.run(batch_commands, shell=True, check=True, env=os.environ).returncode def execute_shell_commands(commands): if not commands: return print_collapsed_group(":bash: Setup (Shell Commands)") shell_command = "\n".join(["set -e"] + commands) execute_command([shell_command], shell=True) def handle_bazel_failure(exception, action): msg = "bazel {0} failed with exit code {1}".format(action, exception.returncode) if use_bazelisk_migrate(): print_collapsed_group(msg) else: raise BuildkiteException(msg) def execute_bazel_run(bazel_binary, platform, targets, incompatible_flags): if not targets: return print_collapsed_group("Setup (Run Targets)") # When using bazelisk --migrate to test incompatible flags, # incompatible flags set by "INCOMPATIBLE_FLAGS" env var will be ignored. incompatible_flags_to_use = ( [] if (use_bazelisk_migrate() or not incompatible_flags) else incompatible_flags ) for target in targets: try: execute_command( [bazel_binary] + bazelisk_flags() + common_startup_flags(platform) + ["run"] + common_build_flags(None, platform) + incompatible_flags_to_use + [target] ) except subprocess.CalledProcessError as e: handle_bazel_failure(e, "run") def remote_caching_flags(platform): # Only enable caching for untrusted and testing builds. if CLOUD_PROJECT not in ["bazel-untrusted"]: return [] platform_cache_key = [BUILDKITE_ORG.encode("utf-8")] # Whenever the remote cache was known to have been poisoned increase the number below platform_cache_key += ["cache-poisoning-20201011".encode("utf-8")] if platform == "macos": platform_cache_key += [ # macOS version: subprocess.check_output(["/usr/bin/sw_vers", "-productVersion"]), # Path to Xcode: subprocess.check_output(["/usr/bin/xcode-select", "-p"]), # Xcode version: subprocess.check_output(["/usr/bin/xcodebuild", "-version"]), ] # Use a local cache server for our macOS machines. flags = ["--remote_cache=http://100.107.73.148"] else: platform_cache_key += [ # Platform name: platform.encode("utf-8") ] # Use RBE for caching builds running on GCE. flags = [ "--google_default_credentials", "--remote_cache=remotebuildexecution.googleapis.com", "--remote_instance_name=projects/{}/instances/default_instance".format(CLOUD_PROJECT), ] platform_cache_digest = hashlib.sha256() for key in platform_cache_key: eprint("Adding to platform cache key: {}".format(key)) platform_cache_digest.update(key) platform_cache_digest.update(b":") flags += [ "--remote_timeout=60", "--remote_max_connections=200", '--remote_default_platform_properties=properties:{name:"cache-silo-key" value:"%s"}' % platform_cache_digest.hexdigest(), ] return flags def remote_enabled(flags): # Detect if the project configuration enabled its own remote caching / execution. remote_flags = ["--remote_executor", "--remote_cache", "--remote_http_cache"] for flag in flags: for remote_flag in remote_flags: if flag.startswith(remote_flag): return True return False def concurrent_jobs(platform): return "75" if platform.startswith("rbe_") else str(multiprocessing.cpu_count()) def concurrent_test_jobs(platform): if platform.startswith("rbe_"): return "75" elif platform == "windows": return "8" elif platform == "macos": return "8" return "12" def common_startup_flags(platform): if platform == "windows": if os.path.exists("D:/b"): # This machine has a local SSD mounted as drive D. return ["--output_user_root=D:/b"] else: # This machine uses its PD-SSD as the build directory. return ["--output_user_root=C:/b"] return [] def common_build_flags(bep_file, platform): flags = [ "--show_progress_rate_limit=5", "--curses=yes", "--color=yes", "--terminal_columns=143", "--show_timestamps", "--verbose_failures", "--jobs=" + concurrent_jobs(platform), "--announce_rc", "--experimental_repository_cache_hardlinks", # Some projects set --disk_cache in their project-specific bazelrc, which we never want on # CI, so let's just disable it explicitly. "--disk_cache=", ] if platform == "windows": pass elif platform == "macos": flags += [ "--sandbox_writable_path=/var/tmp/_bazel_buildkite/cache/repos/v1", "--test_env=REPOSITORY_CACHE=/var/tmp/_bazel_buildkite/cache/repos/v1", ] else: flags += ["--sandbox_tmpfs_path=/tmp"] if bep_file: flags += [ "--experimental_build_event_json_file_path_conversion=false", "--build_event_json_file=" + bep_file, ] return flags def rbe_flags(original_flags, accept_cached): # Enable remote execution via RBE. flags = [ "--remote_executor=remotebuildexecution.googleapis.com", "--remote_instance_name=projects/bazel-untrusted/instances/default_instance", "--incompatible_strict_action_env", "--google_default_credentials", "--toolchain_resolution_debug", ] # Enable BES / Build Results reporting. flags += [ "--bes_backend=buildeventservice.googleapis.com", "--bes_timeout=360s", "--project_id=bazel-untrusted", ] if not accept_cached: flags += ["--noremote_accept_cached"] # Adapted from https://github.com/bazelbuild/bazel-toolchains/blob/master/bazelrc/.bazelrc flags += [ # These should NOT longer need to be modified. # All that is needed is updating the @bazel_toolchains repo pin # in projects' WORKSPACE files. # # Toolchain related flags to append at the end of your .bazelrc file. "--host_javabase=@buildkite_config//java:jdk", "--javabase=@buildkite_config//java:jdk", "--host_java_toolchain=@bazel_tools//tools/jdk:toolchain_hostjdk8", "--java_toolchain=@bazel_tools//tools/jdk:toolchain_hostjdk8", "--crosstool_top=@buildkite_config//cc:toolchain", "--action_env=BAZEL_DO_NOT_DETECT_CPP_TOOLCHAIN=1", ] # Platform flags: # The toolchain container used for execution is defined in the target indicated # by "extra_execution_platforms", "host_platform" and "platforms". # If you are using your own toolchain container, you need to create a platform # target with "constraint_values" that allow for the toolchain specified with # "extra_toolchains" to be selected (given constraints defined in # "exec_compatible_with"). # More about platforms: https://docs.bazel.build/versions/master/platforms.html # Don't add platform flags if they are specified already. platform_flags = { "--extra_toolchains": "@buildkite_config//config:cc-toolchain", "--extra_execution_platforms": "@buildkite_config//config:platform", "--host_platform": "@buildkite_config//config:platform", "--platforms": "@buildkite_config//config:platform", } for platform_flag, value in list(platform_flags.items()): found = False for original_flag in original_flags: if original_flag.startswith(platform_flag): found = True break if not found: flags += [platform_flag + "=" + value] return flags def compute_flags( platform, flags, incompatible_flags, bep_file, bazel_binary, enable_remote_cache=False ): aggregated_flags = common_build_flags(bep_file, platform) if not remote_enabled(flags): if platform.startswith("rbe_"): aggregated_flags += rbe_flags(flags, accept_cached=enable_remote_cache) elif enable_remote_cache: aggregated_flags += remote_caching_flags(platform) aggregated_flags += flags if incompatible_flags: aggregated_flags += incompatible_flags for i, flag in enumerate(aggregated_flags): if "$HOME" in flag: if platform == "windows": if os.path.exists("D:/"): home = "D:" else: home = "C:/b" elif platform == "macos": home = "/Users/buildkite" else: home = "/var/lib/buildkite-agent" aggregated_flags[i] = flag.replace("$HOME", home) if "$OUTPUT_BASE" in flag: output_base = execute_command_and_get_output( [bazel_binary] + common_startup_flags(platform) + ["info", "output_base"], print_output=False, ).strip() aggregated_flags[i] = flag.replace("$OUTPUT_BASE", output_base) return aggregated_flags def execute_bazel_clean(bazel_binary, platform): print_expanded_group(":bazel: Clean") try: execute_command([bazel_binary] + common_startup_flags(platform) + ["clean", "--expunge"]) except subprocess.CalledProcessError as e: raise BuildkiteException("bazel clean failed with exit code {}".format(e.returncode)) def kythe_startup_flags(): return [f"--bazelrc={KYTHE_DIR}/extractors.bazelrc"] def kythe_build_flags(): return [f"--override_repository=kythe_release={KYTHE_DIR}"] def execute_bazel_build( bazel_version, bazel_binary, platform, flags, targets, bep_file, incompatible_flags ): print_collapsed_group(":bazel: Computing flags for build step") aggregated_flags = compute_flags( platform, flags, # When using bazelisk --migrate to test incompatible flags, # incompatible flags set by "INCOMPATIBLE_FLAGS" env var will be ignored. [] if (use_bazelisk_migrate() or not incompatible_flags) else incompatible_flags, bep_file, bazel_binary, enable_remote_cache=True, ) print_expanded_group(":bazel: Build ({})".format(bazel_version)) try: execute_command( [bazel_binary] + bazelisk_flags() + common_startup_flags(platform) + ["build"] + aggregated_flags + ["--"] + targets ) except subprocess.CalledProcessError as e: handle_bazel_failure(e, "build") def execute_bazel_build_with_kythe( bazel_version, bazel_binary, platform, flags, targets, bep_file, incompatible_flags ): print_collapsed_group(":bazel: Computing flags for build step") aggregated_flags = compute_flags( platform, flags, # When using bazelisk --migrate to test incompatible flags, # incompatible flags set by "INCOMPATIBLE_FLAGS" env var will be ignored. [] if (use_bazelisk_migrate() or not incompatible_flags) else incompatible_flags, bep_file, bazel_binary, enable_remote_cache=False, ) print_expanded_group(":bazel: Build ({})".format(bazel_version)) execute_command( [bazel_binary] + bazelisk_flags() + common_startup_flags(platform) + kythe_startup_flags() + ["build"] + kythe_build_flags() + aggregated_flags + ["--"] + targets ) def calculate_targets(task_config, platform, bazel_binary, build_only, test_only): build_targets = [] if test_only else task_config.get("build_targets", []) test_targets = [] if build_only else task_config.get("test_targets", []) index_targets = [] if (build_only or test_only) else task_config.get("index_targets", []) index_targets_query = None if (build_only or test_only) else task_config.get("index_targets_query", None) if index_targets_query: output = execute_command_and_get_output( [bazel_binary] + common_startup_flags(platform) + [ "--nomaster_bazelrc", "--bazelrc=/dev/null", "query", index_targets_query, ], print_output=False, ) index_targets += output.strip().split("\n") # Remove the "--" argument splitter from the list that some configs explicitly # include. We'll add it back again later where needed. build_targets = [x.strip() for x in build_targets if x.strip() != "--"] test_targets = [x.strip() for x in test_targets if x.strip() != "--"] index_targets = [x.strip() for x in index_targets if x.strip() != "--"] shard_id = int(os.getenv("BUILDKITE_PARALLEL_JOB", "-1")) shard_count = int(os.getenv("BUILDKITE_PARALLEL_JOB_COUNT", "-1")) if shard_id > -1 and shard_count > -1: print_collapsed_group( ":female-detective: Calculating targets for shard {}/{}".format( shard_id + 1, shard_count ) ) expanded_test_targets = expand_test_target_patterns(bazel_binary, platform, test_targets) test_targets = get_targets_for_shard(expanded_test_targets, shard_id, shard_count) return build_targets, test_targets, index_targets def expand_test_target_patterns(bazel_binary, platform, test_targets): included_targets, excluded_targets = partition_targets(test_targets) excluded_string = ( " except tests(set({}))".format(" ".join("'{}'".format(t) for t in excluded_targets)) if excluded_targets else "" ) exclude_manual = ' except tests(attr("tags", "manual", set({})))'.format( " ".join("'{}'".format(t) for t in included_targets) ) eprint("Resolving test targets via bazel query") output = execute_command_and_get_output( [bazel_binary] + common_startup_flags(platform) + [ "--nomaster_bazelrc", "--bazelrc=/dev/null", "query", "tests(set({})){}{}".format( " ".join("'{}'".format(t) for t in included_targets), excluded_string, exclude_manual, ), ], print_output=False, ) return output.strip().split("\n") def partition_targets(targets): included_targets, excluded_targets = [], [] for target in targets: if target.startswith("-"): excluded_targets.append(target[1:]) else: included_targets.append(target) return included_targets, excluded_targets def get_targets_for_shard(test_targets, shard_id, shard_count): # TODO(fweikert): implement a more sophisticated algorithm return sorted(test_targets)[shard_id::shard_count] def execute_bazel_test( bazel_version, bazel_binary, platform, flags, targets, bep_file, monitor_flaky_tests, incompatible_flags, ): aggregated_flags = [ "--flaky_test_attempts=3", "--build_tests_only", "--local_test_jobs=" + concurrent_test_jobs(platform), ] # Don't enable remote caching if the user enabled remote execution / caching themselves # or flaky test monitoring is enabled, as remote caching makes tests look less flaky than # they are. print_collapsed_group(":bazel: Computing flags for test step") aggregated_flags += compute_flags( platform, flags, # When using bazelisk --migrate to test incompatible flags, # incompatible flags set by "INCOMPATIBLE_FLAGS" env var will be ignored. [] if (use_bazelisk_migrate() or not incompatible_flags) else incompatible_flags, bep_file, bazel_binary, enable_remote_cache=not monitor_flaky_tests, ) print_expanded_group(":bazel: Test ({})".format(bazel_version)) try: execute_command( [bazel_binary] + bazelisk_flags() + common_startup_flags(platform) + ["test"] + aggregated_flags + ["--"] + targets ) except subprocess.CalledProcessError as e: handle_bazel_failure(e, "test") def get_json_profile_flags(out_file): return [ "--experimental_generate_json_trace_profile", "--experimental_profile_cpu_usage", "--experimental_json_trace_compression", "--profile={}".format(out_file), ] def upload_bep_logs_for_flaky_tests(test_bep_file): if has_flaky_tests(test_bep_file): build_number = os.getenv("BUILDKITE_BUILD_NUMBER") pipeline_slug = os.getenv("BUILDKITE_PIPELINE_SLUG") execute_command( [ gsutil_command(), "cp", test_bep_file, FLAKY_TESTS_BUCKET + pipeline_slug + "/" + build_number + ".json", ] ) def upload_test_logs_from_bep(bep_file, tmpdir, stop_request): uploaded_targets = set() while True: done = stop_request.isSet() if os.path.exists(bep_file): all_test_logs = test_logs_for_status(bep_file, status=["FAILED", "TIMEOUT", "FLAKY"]) test_logs_to_upload = [ (target, files) for target, files in all_test_logs if target not in uploaded_targets ] if test_logs_to_upload: files_to_upload = rename_test_logs_for_upload(test_logs_to_upload, tmpdir) cwd = os.getcwd() try: os.chdir(tmpdir) test_logs = [os.path.relpath(file, tmpdir) for file in files_to_upload] test_logs = sorted(test_logs) execute_command(["buildkite-agent", "artifact", "upload", ";".join(test_logs)]) finally: uploaded_targets.update([target for target, _ in test_logs_to_upload]) os.chdir(cwd) if done: break time.sleep(5) def upload_json_profile(json_profile_path, tmpdir): if not os.path.exists(json_profile_path): return print_collapsed_group(":gcloud: Uploading JSON Profile") execute_command(["buildkite-agent", "artifact", "upload", json_profile_path], cwd=tmpdir) def rename_test_logs_for_upload(test_logs, tmpdir): # Rename the test.log files to the target that created them # so that it's easy to associate test.log and target. new_paths = [] for label, files in test_logs: attempt = 0 if len(files) > 1: attempt = 1 for test_log in files: try: new_path = test_label_to_path(tmpdir, label, attempt) os.makedirs(os.path.dirname(new_path), exist_ok=True) copyfile(test_log, new_path) new_paths.append(new_path) attempt += 1 except IOError as err: # Log error and ignore. eprint(err) return new_paths def test_label_to_path(tmpdir, label, attempt): # remove leading // path = label[2:] path = path.replace("/", os.sep) path = path.replace(":", os.sep) if attempt == 0: path = os.path.join(path, "test.log") else: path = os.path.join(path, "attempt_" + str(attempt) + ".log") return os.path.join(tmpdir, path) def test_logs_for_status(bep_file, status): targets = [] with open(bep_file, encoding="utf-8") as f: raw_data = f.read() decoder = json.JSONDecoder() pos = 0 while pos < len(raw_data): try: bep_obj, size = decoder.raw_decode(raw_data[pos:]) except ValueError as e: eprint("JSON decoding error: " + str(e)) return targets if "testSummary" in bep_obj: test_target = bep_obj["id"]["testSummary"]["label"] test_status = bep_obj["testSummary"]["overallStatus"] if test_status in status: outputs = bep_obj["testSummary"]["failed"] test_logs = [] for output in outputs: test_logs.append(url2pathname(urlparse(output["uri"]).path)) targets.append((test_target, test_logs)) pos += size + 1 return targets def execute_command_and_get_output(args, shell=False, fail_if_nonzero=True, print_output=True): eprint(" ".join(args)) process = subprocess.run( args, shell=shell, check=fail_if_nonzero, env=os.environ, stdout=subprocess.PIPE, errors="replace", universal_newlines=True, ) if print_output: eprint(process.stdout) return process.stdout def execute_command(args, shell=False, fail_if_nonzero=True, cwd=None, print_output=True): if print_output: eprint(" ".join(args)) return subprocess.run( args, shell=shell, check=fail_if_nonzero, env=os.environ, cwd=cwd ).returncode def execute_command_background(args): eprint(" ".join(args)) return subprocess.Popen(args, env=os.environ) def terminate_background_process(process): if process: process.terminate() try: process.wait(timeout=10) except subprocess.TimeoutExpired: process.kill() def create_step(label, commands, platform, shards=1): if "docker-image" in PLATFORMS[platform]: step = create_docker_step( label, image=PLATFORMS[platform]["docker-image"], commands=commands ) else: step = { "label": label, "command": commands, "agents": {"queue": PLATFORMS[platform]["queue"]}, } if shards > 1: step["label"] += " (shard %n)" step["parallelism"] = shards # Enforce a global 8 hour job timeout. step["timeout_in_minutes"] = 8 * 60 # Automatically retry when an agent got lost (usually due to an infra flake). step["retry"] = { "automatic": [ {"exit_status": -1, "limit": 3}, # Buildkite internal "agent lost" exit code {"exit_status": 137, "limit": 3}, # SIGKILL {"exit_status": 143, "limit": 3}, # SIGTERM ] } return step def create_docker_step(label, image, commands=None, additional_env_vars=None): env = ["ANDROID_HOME", "ANDROID_NDK_HOME", "BUILDKITE_ARTIFACT_UPLOAD_DESTINATION"] if additional_env_vars: env += ["{}={}".format(k, v) for k, v in additional_env_vars.items()] step = { "label": label, "command": commands, "agents": {"queue": "default"}, "plugins": { "docker#v3.5.0": { "always-pull": True, "environment": env, "image": image, "network": "host", "privileged": True, "propagate-environment": True, "propagate-uid-gid": True, "volumes": [ "/etc/group:/etc/group:ro", "/etc/passwd:/etc/passwd:ro", "/opt:/opt:ro", "/var/lib/buildkite-agent:/var/lib/buildkite-agent", "/var/lib/gitmirrors:/var/lib/gitmirrors:ro", "/var/run/docker.sock:/var/run/docker.sock", ], } }, } if not step["command"]: del step["command"] return step def print_project_pipeline( configs, project_name, http_config, file_config, git_repository, monitor_flaky_tests, use_but, incompatible_flags, notify, ): task_configs = configs.get("tasks", None) if not task_configs: raise BuildkiteException("{0} pipeline configuration is empty.".format(project_name)) pipeline_steps = [] # If the repository is hosted on Git-on-borg, we show the link to the commit Gerrit review buildkite_repo = os.getenv("BUILDKITE_REPO") if is_git_on_borg_repo(buildkite_repo): show_gerrit_review_link(buildkite_repo, pipeline_steps) task_configs = filter_tasks_that_should_be_skipped(task_configs, pipeline_steps) # In Bazel Downstream Project pipelines, git_repository and project_name must be specified. is_downstream_project = (use_but or incompatible_flags) and git_repository and project_name buildifier_config = configs.get("buildifier") # Skip Buildifier when we test downstream projects. if buildifier_config and not is_downstream_project: buildifier_env_vars = {} if isinstance(buildifier_config, str): # Simple format: # --- # buildifier: latest buildifier_env_vars[BUILDIFIER_VERSION_ENV_VAR] = buildifier_config else: # Advanced format: # --- # buildifier: # version: latest # warnings: all def set_env_var(config_key, env_var_name): if config_key in buildifier_config: buildifier_env_vars[env_var_name] = buildifier_config[config_key] set_env_var("version", BUILDIFIER_VERSION_ENV_VAR) set_env_var("warnings", BUILDIFIER_WARNINGS_ENV_VAR) if not buildifier_env_vars: raise BuildkiteException( 'Invalid buildifier configuration entry "{}"'.format(buildifier_config) ) pipeline_steps.append( create_docker_step( BUILDIFIER_STEP_NAME, image=BUILDIFIER_DOCKER_IMAGE, additional_env_vars=buildifier_env_vars, ) ) # In Bazel Downstream Project pipelines, we should test the project at the last green commit. git_commit = None if is_downstream_project: last_green_commit_url = bazelci_last_green_commit_url( git_repository, DOWNSTREAM_PROJECTS[project_name]["pipeline_slug"] ) git_commit = get_last_green_commit(last_green_commit_url) config_hashes = set() for task, task_config in task_configs.items(): # We override the Bazel version in downstream pipelines. This means that two tasks that # only differ in the value of their explicit "bazel" field will be identical in the # downstream pipeline, thus leading to duplicate work. # Consequently, we filter those duplicate tasks here. if is_downstream_project: h = hash_task_config(task, task_config) if h in config_hashes: continue config_hashes.add(h) shards = task_config.get("shards", "1") try: shards = int(shards) except ValueError: raise BuildkiteException("Task {} has invalid shard value '{}'".format(task, shards)) step = runner_step( platform=get_platform_for_task(task, task_config), task=task, task_name=task_config.get("name"), project_name=project_name, http_config=http_config, file_config=file_config, git_repository=git_repository, git_commit=git_commit, monitor_flaky_tests=monitor_flaky_tests, use_but=use_but, incompatible_flags=incompatible_flags, shards=shards, ) pipeline_steps.append(step) pipeline_slug = os.getenv("BUILDKITE_PIPELINE_SLUG") all_downstream_pipeline_slugs = [] for _, config in DOWNSTREAM_PROJECTS.items(): all_downstream_pipeline_slugs.append(config["pipeline_slug"]) # We don't need to update last green commit in the following cases: # 1. This job is a GitHub pull request # 2. This job uses a custom built Bazel binary (in Bazel Downstream Projects pipeline) # 3. This job doesn't run on master branch (could be a custom build launched manually) # 4. We don't intend to run the same job in downstream with Bazel@HEAD (eg. google-bazel-presubmit) # 5. We are testing incompatible flags # 6. We are running `bazelisk --migrate` in a non-downstream pipeline if not ( is_pull_request() or use_but or os.getenv("BUILDKITE_BRANCH") != "master" or pipeline_slug not in all_downstream_pipeline_slugs or incompatible_flags or use_bazelisk_migrate() ): # We need to call "Try Update Last Green Commit" even if there are failures, # since we don't want a failing Buildifier step to block the update of # the last green commit for this project. # try_update_last_green_commit() ensures that we don't update the commit # if any build or test steps fail. pipeline_steps.append({"wait": None, "continue_on_failure": True}) pipeline_steps.append( create_step( label="Try Update Last Green Commit", commands=[ fetch_bazelcipy_command(), PLATFORMS[DEFAULT_PLATFORM]["python"] + " bazelci.py try_update_last_green_commit", ], platform=DEFAULT_PLATFORM, ) ) if "validate_config" in configs: pipeline_steps += create_config_validation_steps() if use_bazelisk_migrate() and not is_downstream_project: # Print results of bazelisk --migrate in project pipelines that explicitly set # the USE_BAZELISK_MIGRATE env var, but that are not being run as part of a # downstream pipeline. number = os.getenv("BUILDKITE_BUILD_NUMBER") pipeline_steps += get_steps_for_aggregating_migration_results(number, notify) print_pipeline_steps(pipeline_steps, handle_emergencies=not is_downstream_project) def show_gerrit_review_link(git_repository, pipeline_steps): host = re.search(r"https://(.+?)\.googlesource", git_repository).group(1) if not host: raise BuildkiteException("Couldn't get host name from %s" % git_repository) text = "The transformed code used in this pipeline can be found under https://{}-review.googlesource.com/q/{}". \ format(host, os.getenv("BUILDKITE_COMMIT")) commands = ["buildkite-agent annotate --style=info '{}'".format(text)] pipeline_steps.append( create_step( label=":pipeline: Print information about Gerrit Review Link", commands=commands, platform=DEFAULT_PLATFORM, ) ) def is_git_on_borg_repo(git_repository): return git_repository and "googlesource.com" in git_repository def hash_task_config(task_name, task_config): # Two task configs c1 and c2 have the same hash iff they lead to two functionally identical jobs # in the downstream pipeline. This function discards the "bazel" field (since it's being # overridden) and the "name" field (since it has no effect on the actual work). # Moreover, it adds an explicit "platform" field if that's missing. cpy = task_config.copy() cpy.pop("bazel", None) cpy.pop("name", None) if "platform" not in cpy: cpy["platform"] = task_name m = hashlib.md5() for key in sorted(cpy): value = "%s:%s;" % (key, cpy[key]) m.update(value.encode("utf-8")) return m.digest() def get_platform_for_task(task, task_config): # Most pipeline configurations have exactly one task per platform, which makes it # convenient to use the platform name as task ID. Consequently, we use the # task ID as platform if there is no explicit "platform" field. return task_config.get("platform", task) def create_config_validation_steps(): output = execute_command_and_get_output( ["git", "diff-tree", "--no-commit-id", "--name-only", "-r", os.getenv("BUILDKITE_COMMIT")] ) config_files = [ l for l in output.split("\n") if l.startswith(".bazelci/") and os.path.splitext(l)[1] in CONFIG_FILE_EXTENSIONS ] return [ create_step( label=":cop: Validate {}".format(f), commands=[ fetch_bazelcipy_command(), "{} bazelci.py project_pipeline --file_config={}".format( PLATFORMS[DEFAULT_PLATFORM]["python"], f ), ], platform=DEFAULT_PLATFORM, ) for f in config_files ] def print_pipeline_steps(pipeline_steps, handle_emergencies=True): if handle_emergencies: emergency_step = create_emergency_announcement_step_if_necessary() if emergency_step: pipeline_steps.insert(0, emergency_step) print(yaml.dump({"steps": pipeline_steps})) def create_emergency_announcement_step_if_necessary(): style = "error" message, issue_url, last_good_bazel = None, None, None try: emergency_settings = load_remote_yaml_file(EMERGENCY_FILE_URL) message = emergency_settings.get("message") issue_url = emergency_settings.get("issue_url") last_good_bazel = emergency_settings.get("last_good_bazel") except urllib.error.HTTPError as ex: message = str(ex) style = "warning" if not any([message, issue_url, last_good_bazel]): return text = '<span class="h1">:rotating_light: Emergency :rotating_light:</span>\n' if message: text += "- {}\n".format(message) if issue_url: text += '- Please check this <a href="{}">issue</a> for more details.\n'.format(issue_url) if last_good_bazel: text += ( "- Default Bazel version is *{}*, " "unless the pipeline configuration specifies an explicit version." ).format(last_good_bazel) return create_step( label=":rotating_light: Emergency :rotating_light:", commands=[ 'buildkite-agent annotate --append --style={} --context "omg" "{}"'.format(style, text) ], platform=DEFAULT_PLATFORM, ) def runner_step( platform, task, task_name=None, project_name=None, http_config=None, file_config=None, git_repository=None, git_commit=None, monitor_flaky_tests=False, use_but=False, incompatible_flags=None, shards=1, ): command = PLATFORMS[platform]["python"] + " bazelci.py runner --task=" + task if http_config: command += " --http_config=" + http_config if file_config: command += " --file_config=" + file_config if git_repository: command += " --git_repository=" + git_repository if git_commit: command += " --git_commit=" + git_commit if monitor_flaky_tests: command += " --monitor_flaky_tests" if use_but: command += " --use_but" for flag in incompatible_flags or []: command += " --incompatible_flag=" + flag label = create_label(platform, project_name, task_name=task_name) return create_step( label=label, commands=[fetch_bazelcipy_command(), command], platform=platform, shards=shards ) def fetch_bazelcipy_command(): return "curl -sS {0} -o bazelci.py".format(SCRIPT_URL) def fetch_incompatible_flag_verbose_failures_command(): return "curl -sS {0} -o incompatible_flag_verbose_failures.py".format( INCOMPATIBLE_FLAG_VERBOSE_FAILURES_URL ) def fetch_aggregate_incompatible_flags_test_result_command(): return "curl -sS {0} -o aggregate_incompatible_flags_test_result.py".format( AGGREGATE_INCOMPATIBLE_TEST_RESULT_URL ) def upload_project_pipeline_step( project_name, git_repository, http_config, file_config, incompatible_flags ): pipeline_command = ( '{0} bazelci.py project_pipeline --project_name="{1}" ' + "--git_repository={2}" ).format(PLATFORMS[DEFAULT_PLATFORM]["python"], project_name, git_repository) if incompatible_flags is None: pipeline_command += " --use_but" else: for flag in incompatible_flags: pipeline_command += " --incompatible_flag=" + flag if http_config: pipeline_command += " --http_config=" + http_config if file_config: pipeline_command += " --file_config=" + file_config pipeline_command += " | buildkite-agent pipeline upload" return create_step( label="Setup {0}".format(project_name), commands=[fetch_bazelcipy_command(), pipeline_command], platform=DEFAULT_PLATFORM, ) def create_label(platform, project_name, build_only=False, test_only=False, task_name=None): if build_only and test_only: raise BuildkiteException("build_only and test_only cannot be true at the same time") platform_display_name = PLATFORMS[platform]["emoji-name"] if build_only: label = "Build " elif test_only: label = "Test " else: label = "" platform_label = ( "{0} on {1}".format(task_name, platform_display_name) if task_name else platform_display_name ) if project_name: label += "{0} ({1})".format(project_name, platform_label) else: label += platform_label return label def bazel_build_step( task, platform, project_name, http_config=None, file_config=None, build_only=False, test_only=False, ): pipeline_command = PLATFORMS[platform]["python"] + " bazelci.py runner" if build_only: pipeline_command += " --build_only --save_but" if test_only: pipeline_command += " --test_only" if http_config: pipeline_command += " --http_config=" + http_config if file_config: pipeline_command += " --file_config=" + file_config pipeline_command += " --task=" + task return create_step( label=create_label(platform, project_name, build_only, test_only), commands=[fetch_bazelcipy_command(), pipeline_command], platform=platform, ) def filter_tasks_that_should_be_skipped(task_configs, pipeline_steps): skip_tasks = get_skip_tasks() if not skip_tasks: return task_configs actually_skipped = [] skip_tasks = set(skip_tasks) for task in list(task_configs.keys()): if task in skip_tasks: actually_skipped.append(task) del task_configs[task] skip_tasks.remove(task) if not task_configs: raise BuildkiteException( "Nothing to do since all tasks in the configuration should be skipped." ) annotations = [] if actually_skipped: annotations.append( ("info", "Skipping the following task(s): {}".format(", ".join(actually_skipped))) ) if skip_tasks: annotations.append( ( "warning", ( "The following tasks should have been skipped, " "but were not part of the configuration: {}" ).format(", ".join(skip_tasks)), ) ) if annotations: print_skip_task_annotations(annotations, pipeline_steps) return task_configs def get_skip_tasks(): value = os.getenv(SKIP_TASKS_ENV_VAR, "") return [v for v in value.split(",") if v] def print_skip_task_annotations(annotations, pipeline_steps): commands = [ "buildkite-agent annotate --style={} '{}' --context 'ctx-{}'".format(s, t, hash(t)) for s, t in annotations ] pipeline_steps.append( create_step( label=":pipeline: Print information about skipped tasks", commands=commands, platform=DEFAULT_PLATFORM, ) ) def print_bazel_publish_binaries_pipeline(task_configs, http_config, file_config): if not task_configs: raise BuildkiteException("Bazel publish binaries pipeline configuration is empty.") pipeline_steps = [] task_configs = filter_tasks_that_should_be_skipped(task_configs, pipeline_steps) platforms = [get_platform_for_task(t, tc) for t, tc in task_configs.items()] # These are the platforms that the bazel_publish_binaries.yml config is actually building. configured_platforms = set(filter(should_publish_binaries_for_platform, platforms)) # These are the platforms that we want to build and publish according to this script. expected_platforms = set(filter(should_publish_binaries_for_platform, PLATFORMS)) if not expected_platforms.issubset(configured_platforms): raise BuildkiteException( "Bazel publish binaries pipeline needs to build Bazel for every commit on all publish_binary-enabled platforms." ) # Build Bazel for task, task_config in task_configs.items(): pipeline_steps.append( bazel_build_step( task, get_platform_for_task(task, task_config), "Bazel", http_config, file_config, build_only=True, ) ) pipeline_steps.append("wait") # If all builds succeed, publish the Bazel binaries to GCS. pipeline_steps.append( create_step( label="Publish Bazel Binaries", commands=[ fetch_bazelcipy_command(), PLATFORMS[DEFAULT_PLATFORM]["python"] + " bazelci.py publish_binaries", ], platform=DEFAULT_PLATFORM, ) ) print_pipeline_steps(pipeline_steps) def should_publish_binaries_for_platform(platform): if platform not in PLATFORMS: raise BuildkiteException("Unknown platform '{}'".format(platform)) return PLATFORMS[platform]["publish_binary"] def print_disabled_projects_info_box_step(): info_text = ["Downstream testing is disabled for the following projects :sadpanda:"] for project, config in DOWNSTREAM_PROJECTS.items(): disabled_reason = config.get("disabled_reason", None) if disabled_reason: info_text.append("* **%s**: %s" % (project, disabled_reason)) if len(info_text) == 1: return None return create_step( label=":sadpanda:", commands=[ 'buildkite-agent annotate --append --style=info "\n' + "\n".join(info_text) + '\n"' ], platform=DEFAULT_PLATFORM, ) def print_incompatible_flags_info_box_step(incompatible_flags_map): info_text = ["Build and test with the following incompatible flags:"] for flag in incompatible_flags_map: info_text.append("* **%s**: %s" % (flag, incompatible_flags_map[flag])) if len(info_text) == 1: return None return create_step( label="Incompatible flags info", commands=[ 'buildkite-agent annotate --append --style=info "\n' + "\n".join(info_text) + '\n"' ], platform=DEFAULT_PLATFORM, ) def fetch_incompatible_flags(): """ Return a list of incompatible flags to be tested in downstream with the current release Bazel """ incompatible_flags = {} # If INCOMPATIBLE_FLAGS environment variable is set, we get incompatible flags from it. if "INCOMPATIBLE_FLAGS" in os.environ: for flag in os.environ["INCOMPATIBLE_FLAGS"].split(): # We are not able to get the github link for this flag from INCOMPATIBLE_FLAGS, # so just assign the url to empty string. incompatible_flags[flag] = "" return incompatible_flags bazel_major_version = get_bazel_major_version() output = subprocess.check_output( [ "curl", "https://api.github.com/search/issues?per_page=100&q=repo:bazelbuild/bazel+label:migration-%s" % bazel_major_version, ] ).decode("utf-8") issue_info = json.loads(output) for issue in issue_info["items"]: # Every incompatible flags issue should start with "<incompatible flag name (without --)>:" name = "--" + issue["title"].split(":")[0] url = issue["html_url"] if name.startswith("--incompatible_"): incompatible_flags[name] = url else: eprint( f"{name} is not recognized as an incompatible flag, please modify the issue title " f'of {url} to "<incompatible flag name (without --)>:..."' ) return incompatible_flags def get_bazel_major_version(): # Get bazel major version on CI, eg. 0.21 from "Build label: 0.21.0\n..." output = subprocess.check_output( ["bazel", "--nomaster_bazelrc", "--bazelrc=/dev/null", "version"] ).decode("utf-8") return output.split()[2].rsplit(".", 1)[0] def print_bazel_downstream_pipeline( task_configs, http_config, file_config, test_incompatible_flags, test_disabled_projects, notify ): if not task_configs: raise BuildkiteException("Bazel downstream pipeline configuration is empty.") pipeline_steps = [] task_configs = filter_tasks_that_should_be_skipped(task_configs, pipeline_steps) pipeline_steps = [] info_box_step = print_disabled_projects_info_box_step() if info_box_step is not None: pipeline_steps.append(info_box_step) if not test_incompatible_flags: for task, task_config in task_configs.items(): pipeline_steps.append( bazel_build_step( task, get_platform_for_task(task, task_config), "Bazel", http_config, file_config, build_only=True, ) ) pipeline_steps.append("wait") incompatible_flags = None if test_incompatible_flags: incompatible_flags_map = fetch_incompatible_flags() if not incompatible_flags_map: raise BuildkiteException("No incompatible flag issue is found on github for current version of Bazel.") info_box_step = print_incompatible_flags_info_box_step(incompatible_flags_map) if info_box_step is not None: pipeline_steps.append(info_box_step) incompatible_flags = list(incompatible_flags_map.keys()) for project, config in DOWNSTREAM_PROJECTS.items(): disabled_reason = config.get("disabled_reason", None) # If test_disabled_projects is true, we add configs for disabled projects. # If test_disabled_projects is false, we add configs for not disabled projects. if (test_disabled_projects and disabled_reason) or ( not test_disabled_projects and not disabled_reason ): pipeline_steps.append( upload_project_pipeline_step( project_name=project, git_repository=config["git_repository"], http_config=config.get("http_config", None), file_config=config.get("file_config", None), incompatible_flags=incompatible_flags, ) ) if test_incompatible_flags: current_build_number = os.environ.get("BUILDKITE_BUILD_NUMBER", None) if not current_build_number: raise BuildkiteException("Not running inside Buildkite") if use_bazelisk_migrate(): pipeline_steps += get_steps_for_aggregating_migration_results( current_build_number, notify ) else: pipeline_steps.append({"wait": "~", "continue_on_failure": "true"}) pipeline_steps.append( create_step( label="Test failing jobs with incompatible flag separately", commands=[ fetch_bazelcipy_command(), fetch_incompatible_flag_verbose_failures_command(), PLATFORMS[DEFAULT_PLATFORM]["python"] + " incompatible_flag_verbose_failures.py --build_number=%s | buildkite-agent pipeline upload" % current_build_number, ], platform=DEFAULT_PLATFORM, ) ) if ( not test_disabled_projects and not test_incompatible_flags and os.getenv("BUILDKITE_BRANCH") == "master" ): # Only update the last green downstream commit in the regular Bazel@HEAD + Downstream pipeline. pipeline_steps.append("wait") pipeline_steps.append( create_step( label="Try Update Last Green Downstream Commit", commands=[ fetch_bazelcipy_command(), PLATFORMS[DEFAULT_PLATFORM]["python"] + " bazelci.py try_update_last_green_downstream_commit", ], platform=DEFAULT_PLATFORM, ) ) print_pipeline_steps(pipeline_steps) def get_steps_for_aggregating_migration_results(current_build_number, notify): parts = [ PLATFORMS[DEFAULT_PLATFORM]["python"], "aggregate_incompatible_flags_test_result.py", "--build_number=%s" % current_build_number, ] if notify: parts.append("--notify") return [ {"wait": "~", "continue_on_failure": "true"}, create_step( label="Aggregate incompatible flags test result", commands=[ fetch_bazelcipy_command(), fetch_aggregate_incompatible_flags_test_result_command(), " ".join(parts), ], platform=DEFAULT_PLATFORM, ), ] def bazelci_builds_download_url(platform, git_commit): bucket_name = "bazel-testing-builds" if THIS_IS_TESTING else "bazel-builds" return "https://storage.googleapis.com/{}/artifacts/{}/{}/bazel".format( bucket_name, platform, git_commit ) def bazelci_builds_nojdk_download_url(platform, git_commit): bucket_name = "bazel-testing-builds" if THIS_IS_TESTING else "bazel-builds" return "https://storage.googleapis.com/{}/artifacts/{}/{}/bazel_nojdk".format( bucket_name, platform, git_commit ) def bazelci_builds_gs_url(platform, git_commit): bucket_name = "bazel-testing-builds" if THIS_IS_TESTING else "bazel-builds" return "gs://{}/artifacts/{}/{}/bazel".format(bucket_name, platform, git_commit) def bazelci_builds_nojdk_gs_url(platform, git_commit): bucket_name = "bazel-testing-builds" if THIS_IS_TESTING else "bazel-builds" return "gs://{}/artifacts/{}/{}/bazel_nojdk".format(bucket_name, platform, git_commit) def bazelci_latest_build_metadata_url(): bucket_name = "bazel-testing-builds" if THIS_IS_TESTING else "bazel-builds" return "gs://{}/metadata/latest.json".format(bucket_name) def bazelci_builds_metadata_url(git_commit): bucket_name = "bazel-testing-builds" if THIS_IS_TESTING else "bazel-builds" return "gs://{}/metadata/{}.json".format(bucket_name, git_commit) def bazelci_last_green_commit_url(git_repository, pipeline_slug): bucket_name = "bazel-testing-builds" if THIS_IS_TESTING else "bazel-untrusted-builds" return "gs://{}/last_green_commit/{}/{}".format( bucket_name, git_repository[len("https://") :], pipeline_slug ) def bazelci_last_green_downstream_commit_url(): bucket_name = "bazel-testing-builds" if THIS_IS_TESTING else "bazel-untrusted-builds" return "gs://{}/last_green_commit/downstream_pipeline".format(bucket_name) def get_last_green_commit(last_green_commit_url): try: return ( subprocess.check_output( [gsutil_command(), "cat", last_green_commit_url], env=os.environ ) .decode("utf-8") .strip() ) except subprocess.CalledProcessError: return None def try_update_last_green_commit(): org_slug = os.getenv("BUILDKITE_ORGANIZATION_SLUG") pipeline_slug = os.getenv("BUILDKITE_PIPELINE_SLUG") build_number = os.getenv("BUILDKITE_BUILD_NUMBER") current_job_id = os.getenv("BUILDKITE_JOB_ID") client = BuildkiteClient(org=org_slug, pipeline=pipeline_slug) build_info = client.get_build_info(build_number) # Find any failing steps other than Buildifier and "try update last green". def has_failed(job): state = job.get("state") # Ignore steps that don't have a state (like "wait"). return ( state is not None and state != "passed" and job["id"] != current_job_id and job["name"] != BUILDIFIER_STEP_NAME ) failing_jobs = [j["name"] for j in build_info["jobs"] if has_failed(j)] if failing_jobs: raise BuildkiteException( "Cannot update last green commit due to {} failing step(s): {}".format( len(failing_jobs), ", ".join(failing_jobs) ) ) git_repository = os.getenv("BUILDKITE_REPO") last_green_commit_url = bazelci_last_green_commit_url(git_repository, pipeline_slug) update_last_green_commit_if_newer(last_green_commit_url) def update_last_green_commit_if_newer(last_green_commit_url): last_green_commit = get_last_green_commit(last_green_commit_url) current_commit = subprocess.check_output(["git", "rev-parse", "HEAD"]).decode("utf-8").strip() if last_green_commit: success = False try: execute_command(["git", "fetch", "-v", "origin", last_green_commit]) success = True except subprocess.CalledProcessError: # If there was an error fetching the commit it typically means # that the commit does not exist anymore - due to a force push. In # order to recover from that assume that the current commit is the # newest commit. result = [current_commit] finally: if success: result = ( subprocess.check_output( ["git", "rev-list", "%s..%s" % (last_green_commit, current_commit)] ) .decode("utf-8") .strip() ) else: result = None # If current_commit is newer that last_green_commit, `git rev-list A..B` will output a bunch of # commits, otherwise the output should be empty. if not last_green_commit or result: execute_command( [ "echo %s | %s -h 'Cache-Control: no-store' cp - %s" % (current_commit, gsutil_command(), last_green_commit_url) ], shell=True, ) else: eprint( "Updating abandoned: last green commit (%s) is not older than current commit (%s)." % (last_green_commit, current_commit) ) def try_update_last_green_downstream_commit(): last_green_commit_url = bazelci_last_green_downstream_commit_url() update_last_green_commit_if_newer(last_green_commit_url) def latest_generation_and_build_number(): generation = None output = None for attempt in range(5): output = subprocess.check_output( [gsutil_command(), "stat", bazelci_latest_build_metadata_url()], env=os.environ ) match = re.search("Generation:[ ]*([0-9]+)", output.decode("utf-8")) if not match: raise BuildkiteException("Couldn't parse generation. gsutil output format changed?") generation = match.group(1) match = re.search(r"Hash \(md5\):[ ]*([^\s]+)", output.decode("utf-8")) if not match: raise BuildkiteException("Couldn't parse md5 hash. gsutil output format changed?") expected_md5hash = base64.b64decode(match.group(1)) output = subprocess.check_output( [gsutil_command(), "cat", bazelci_latest_build_metadata_url()], env=os.environ ) hasher = hashlib.md5() hasher.update(output) actual_md5hash = hasher.digest() if expected_md5hash == actual_md5hash: break info = json.loads(output.decode("utf-8")) return generation, info["build_number"] def sha256_hexdigest(filename): sha256 = hashlib.sha256() with open(filename, "rb") as f: for block in iter(lambda: f.read(65536), b""): sha256.update(block) return sha256.hexdigest() def upload_bazel_binaries(): """ Uploads all Bazel binaries to a deterministic URL based on the current Git commit. Returns maps of platform names to sha256 hashes of the corresponding bazel and bazel_nojdk binaries. """ bazel_hashes = {} bazel_nojdk_hashes = {} for platform_name, platform in PLATFORMS.items(): if not should_publish_binaries_for_platform(platform_name): continue tmpdir = tempfile.mkdtemp() try: bazel_binary_path = download_bazel_binary(tmpdir, platform_name) # One platform that we build on can generate binaries for multiple platforms, e.g. # the centos7 platform generates binaries for the "centos7" platform, but also # for the generic "linux" platform. for target_platform_name in platform["publish_binary"]: execute_command( [ gsutil_command(), "cp", bazel_binary_path, bazelci_builds_gs_url(target_platform_name, os.environ["BUILDKITE_COMMIT"]), ] ) bazel_hashes[target_platform_name] = sha256_hexdigest(bazel_binary_path) # Also publish bazel_nojdk binaries. bazel_nojdk_binary_path = download_bazel_nojdk_binary(tmpdir, platform_name) for target_platform_name in platform["publish_binary"]: execute_command( [ gsutil_command(), "cp", bazel_nojdk_binary_path, bazelci_builds_nojdk_gs_url(target_platform_name, os.environ["BUILDKITE_COMMIT"]), ] ) bazel_nojdk_hashes[target_platform_name] = sha256_hexdigest(bazel_nojdk_binary_path) finally: shutil.rmtree(tmpdir) return bazel_hashes, bazel_nojdk_hashes def try_publish_binaries(bazel_hashes, bazel_nojdk_hashes, build_number, expected_generation): """ Uploads the info.json file that contains information about the latest Bazel commit that was successfully built on CI. """ now = datetime.datetime.now() git_commit = os.environ["BUILDKITE_COMMIT"] info = { "build_number": build_number, "build_time": now.strftime("%d-%m-%Y %H:%M"), "git_commit": git_commit, "platforms": {}, } for platform, sha256 in bazel_hashes.items(): info["platforms"][platform] = { "url": bazelci_builds_download_url(platform, git_commit), "sha256": sha256, "nojdk_url": bazelci_builds_nojdk_download_url(platform, git_commit), "nojdk_sha256": bazel_nojdk_hashes[platform], } tmpdir = tempfile.mkdtemp() try: info_file = os.path.join(tmpdir, "info.json") with open(info_file, mode="w", encoding="utf-8") as fp: json.dump(info, fp, indent=2, sort_keys=True) try: execute_command( [ gsutil_command(), "-h", "x-goog-if-generation-match:" + expected_generation, "-h", "Content-Type:application/json", "cp", info_file, bazelci_latest_build_metadata_url(), ] ) except subprocess.CalledProcessError: raise BinaryUploadRaceException() execute_command( [ gsutil_command(), "cp", bazelci_latest_build_metadata_url(), bazelci_builds_metadata_url(git_commit), ] ) finally: shutil.rmtree(tmpdir) def publish_binaries(): """ Publish Bazel binaries to GCS. """ current_build_number = os.environ.get("BUILDKITE_BUILD_NUMBER", None) if not current_build_number: raise BuildkiteException("Not running inside Buildkite") current_build_number = int(current_build_number) # Upload the Bazel binaries for this commit. bazel_hashes, bazel_nojdk_hashes = upload_bazel_binaries() # Try to update the info.json with data about our build. This will fail (expectedly) if we're # not the latest build. for _ in range(5): latest_generation, latest_build_number = latest_generation_and_build_number() if current_build_number <= latest_build_number: eprint( ( "Current build '{0}' is not newer than latest published '{1}'. " + "Skipping publishing of binaries." ).format(current_build_number, latest_build_number) ) break try: try_publish_binaries(bazel_hashes, bazel_nojdk_hashes, current_build_number, latest_generation) except BinaryUploadRaceException: # Retry. continue eprint( "Successfully updated '{0}' to binaries from build {1}.".format( bazelci_latest_build_metadata_url(), current_build_number ) ) break else: raise BuildkiteException("Could not publish binaries, ran out of attempts.") # This is so that multiline python strings are represented as YAML # block strings. def str_presenter(dumper, data): if len(data.splitlines()) > 1: # check for multiline string return dumper.represent_scalar("tag:yaml.org,2002:str", data, style="|") return dumper.represent_scalar("tag:yaml.org,2002:str", data) def main(argv=None): if argv is None: argv = sys.argv[1:] yaml.add_representer(str, str_presenter) parser = argparse.ArgumentParser(description="Bazel Continuous Integration Script") parser.add_argument("--script", type=str) subparsers = parser.add_subparsers(dest="subparsers_name") bazel_publish_binaries_pipeline = subparsers.add_parser("bazel_publish_binaries_pipeline") bazel_publish_binaries_pipeline.add_argument("--file_config", type=str) bazel_publish_binaries_pipeline.add_argument("--http_config", type=str) bazel_publish_binaries_pipeline.add_argument("--git_repository", type=str) bazel_downstream_pipeline = subparsers.add_parser("bazel_downstream_pipeline") bazel_downstream_pipeline.add_argument("--file_config", type=str) bazel_downstream_pipeline.add_argument("--http_config", type=str) bazel_downstream_pipeline.add_argument("--git_repository", type=str) bazel_downstream_pipeline.add_argument( "--test_incompatible_flags", type=bool, nargs="?", const=True ) bazel_downstream_pipeline.add_argument( "--test_disabled_projects", type=bool, nargs="?", const=True ) bazel_downstream_pipeline.add_argument("--notify", type=bool, nargs="?", const=True) project_pipeline = subparsers.add_parser("project_pipeline") project_pipeline.add_argument("--project_name", type=str) project_pipeline.add_argument("--file_config", type=str) project_pipeline.add_argument("--http_config", type=str) project_pipeline.add_argument("--git_repository", type=str) project_pipeline.add_argument("--monitor_flaky_tests", type=bool, nargs="?", const=True) project_pipeline.add_argument("--use_but", type=bool, nargs="?", const=True) project_pipeline.add_argument("--incompatible_flag", type=str, action="append") project_pipeline.add_argument("--notify", type=bool, nargs="?", const=True) runner = subparsers.add_parser("runner") runner.add_argument("--task", action="store", type=str, default="") runner.add_argument("--file_config", type=str) runner.add_argument("--http_config", type=str) runner.add_argument("--git_repository", type=str) runner.add_argument( "--git_commit", type=str, help="Reset the git repository to this commit after cloning it" ) runner.add_argument( "--git_repo_location", type=str, help="Use an existing repository instead of cloning from github", ) runner.add_argument( "--use_bazel_at_commit", type=str, help="Use Bazel binary built at a specific commit" ) runner.add_argument("--use_but", type=bool, nargs="?", const=True) runner.add_argument("--save_but", type=bool, nargs="?", const=True) runner.add_argument("--needs_clean", type=bool, nargs="?", const=True) runner.add_argument("--build_only", type=bool, nargs="?", const=True) runner.add_argument("--test_only", type=bool, nargs="?", const=True) runner.add_argument("--monitor_flaky_tests", type=bool, nargs="?", const=True) runner.add_argument("--incompatible_flag", type=str, action="append") subparsers.add_parser("publish_binaries") subparsers.add_parser("try_update_last_green_commit") subparsers.add_parser("try_update_last_green_downstream_commit") args = parser.parse_args(argv) if args.script: global SCRIPT_URL SCRIPT_URL = args.script try: if args.subparsers_name == "bazel_publish_binaries_pipeline": configs = fetch_configs(args.http_config, args.file_config) print_bazel_publish_binaries_pipeline( task_configs=configs.get("tasks", None), http_config=args.http_config, file_config=args.file_config, ) elif args.subparsers_name == "bazel_downstream_pipeline": configs = fetch_configs(args.http_config, args.file_config) print_bazel_downstream_pipeline( task_configs=configs.get("tasks", None), http_config=args.http_config, file_config=args.file_config, test_incompatible_flags=args.test_incompatible_flags, test_disabled_projects=args.test_disabled_projects, notify=args.notify, ) elif args.subparsers_name == "project_pipeline": configs = fetch_configs(args.http_config, args.file_config) print_project_pipeline( configs=configs, project_name=args.project_name, http_config=args.http_config, file_config=args.file_config, git_repository=args.git_repository, monitor_flaky_tests=args.monitor_flaky_tests, use_but=args.use_but, incompatible_flags=args.incompatible_flag, notify=args.notify, ) elif args.subparsers_name == "runner": configs = fetch_configs(args.http_config, args.file_config) tasks = configs.get("tasks", {}) task_config = tasks.get(args.task) if not task_config: raise BuildkiteException( "No such task '{}' in configuration. Available: {}".format( args.task, ", ".join(tasks) ) ) platform = get_platform_for_task(args.task, task_config) execute_commands( task_config=task_config, platform=platform, git_repository=args.git_repository, git_commit=args.git_commit, git_repo_location=args.git_repo_location, use_bazel_at_commit=args.use_bazel_at_commit, use_but=args.use_but, save_but=args.save_but, needs_clean=args.needs_clean, build_only=args.build_only, test_only=args.test_only, monitor_flaky_tests=args.monitor_flaky_tests, incompatible_flags=args.incompatible_flag, bazel_version=task_config.get("bazel") or configs.get("bazel"), ) elif args.subparsers_name == "publish_binaries": publish_binaries() elif args.subparsers_name == "try_update_last_green_commit": # Update the last green commit of a project pipeline try_update_last_green_commit() elif args.subparsers_name == "try_update_last_green_downstream_commit": # Update the last green commit of the downstream pipeline try_update_last_green_downstream_commit() else: parser.print_help() return 2 except BuildkiteException as e: eprint(str(e)) return 1 return 0 if __name__ == "__main__": sys.exit(main())
web.py
from flask import ( Flask, g, redirect, render_template, request, session, url_for ) import asyncio from threading import Thread import json import discord from discord.ext import commands class User: def __init__(self, id, username, password): self.id = id self.username = username self.password = password def __repr__(self): return f'<User: {self.username}>' users = [] app = Flask('') app.secret_key = 'somesecretkeythatonlyishouldknow' @app.errorhandler(404) def page_not_found(e): return render_template('erro404.html'), 404 @app.route('/', methods=['GET', 'POST']) def login(): return render_template('index.html') def run(): app.run(host='0.0.0.0',port=8080) def keep_alive(): t = Thread(target=run) t.start()
dataloader_webcam.py
import os import torch from torch.autograd import Variable import torch.utils.data as data import torchvision.transforms as transforms from PIL import Image, ImageDraw from SPPE.src.utils.img import load_image, cropBox, im_to_torch from opt import opt from yolo.preprocess import prep_image, prep_frame, inp_to_image from pPose_nms import pose_nms, write_json from SPPE.src.utils.eval import getPrediction from yolo.util import write_results, dynamic_write_results from yolo.darknet import Darknet from tqdm import tqdm import cv2 import json import numpy as np import sys import time import torch.multiprocessing as mp from multiprocessing import Process from multiprocessing import Queue as pQueue from threading import Thread from queue import Queue, LifoQueue if opt.vis_fast: from fn import vis_frame_fast as vis_frame else: from fn import vis_frame class WebcamLoader: def __init__(self, webcam, batchSize=1, queueSize=256): # initialize the file video stream along with the boolean # used to indicate if the thread should be stopped or not self.stream = cv2.VideoCapture(int(webcam)) assert self.stream.isOpened(), 'Cannot capture source' self.stopped = False # initialize the queue used to store frames read from # the video file self.batchSize = batchSize self.Q = LifoQueue(maxsize=queueSize) def start(self): # start a thread to read frames from the file video stream t = Thread(target=self.update, args=()) t.daemon = True t.start() return self def update(self): # keep looping infinitely i = 0 while True: # otherwise, ensure the queue has room in it if not self.Q.full(): img = [] orig_img = [] im_name = [] im_dim_list = [] for k in range(self.batchSize): (grabbed, frame) = self.stream.read() # if the `grabbed` boolean is `False`, then we have # reached the end of the video file if not grabbed: self.stop() return inp_dim = int(opt.inp_dim) img_k, orig_img_k, im_dim_list_k = prep_frame(frame, inp_dim) img.append(img_k) orig_img.append(orig_img_k) im_name.append(str(i) + '.jpg') im_dim_list.append(im_dim_list_k) with torch.no_grad(): # Human Detection img = torch.cat(img) im_dim_list = torch.FloatTensor(im_dim_list).repeat(1, 2) self.Q.put((img, orig_img, im_name, im_dim_list)) i = i + 1 else: with self.Q.mutex: self.Q.queue.clear() def videoinfo(self): # indicate the video info fourcc = int(self.stream.get(cv2.CAP_PROP_FOURCC)) fps = self.stream.get(cv2.CAP_PROP_FPS) frameSize = (int(self.stream.get(cv2.CAP_PROP_FRAME_WIDTH)), int(self.stream.get(cv2.CAP_PROP_FRAME_HEIGHT))) return fourcc, fps, frameSize def getitem(self): # return next frame in the queue return self.Q.get() def len(self): # return queue size return self.Q.qsize() def stop(self): # indicate that the thread should be stopped self.stopped = True class DetectionLoader: def __init__(self, dataloder, batchSize=1, queueSize=1024): # initialize the file video stream along with the boolean # used to indicate if the thread should be stopped or not self.det_model = Darknet("yolo/cfg/yolov3-spp.cfg") self.det_model.load_weights('models/yolo/yolov3-spp.weights') self.det_model.net_info['height'] = opt.inp_dim self.det_inp_dim = int(self.det_model.net_info['height']) assert self.det_inp_dim % 32 == 0 assert self.det_inp_dim > 32 self.det_model.cuda() self.det_model.eval() self.stopped = False self.dataloder = dataloder self.batchSize = batchSize # initialize the queue used to store frames read from # the video file self.Q = LifoQueue(maxsize=queueSize) def start(self): # start a thread to read frames from the file video stream t = Thread(target=self.update, args=()) t.daemon = True t.start() return self def update(self): # keep looping the whole dataset while True: img, orig_img, im_name, im_dim_list = self.dataloder.getitem() with self.dataloder.Q.mutex: self.dataloder.Q.queue.clear() with torch.no_grad(): # Human Detection img = img.cuda() prediction = self.det_model(img, CUDA=True) # NMS process dets = dynamic_write_results(prediction, opt.confidence, opt.num_classes, nms=True, nms_conf=opt.nms_thesh) if isinstance(dets, int) or dets.shape[0] == 0: for k in range(len(orig_img)): if self.Q.full(): time.sleep(2) self.Q.put((orig_img[k], im_name[k], None, None, None, None, None)) continue dets = dets.cpu() im_dim_list = torch.index_select(im_dim_list, 0, dets[:, 0].long()) scaling_factor = torch.min(self.det_inp_dim / im_dim_list, 1)[0].view(-1, 1) # coordinate transfer dets[:, [1, 3]] -= (self.det_inp_dim - scaling_factor * im_dim_list[:, 0].view(-1, 1)) / 2 dets[:, [2, 4]] -= (self.det_inp_dim - scaling_factor * im_dim_list[:, 1].view(-1, 1)) / 2 dets[:, 1:5] /= scaling_factor for j in range(dets.shape[0]): dets[j, [1, 3]] = torch.clamp(dets[j, [1, 3]], 0.0, im_dim_list[j, 0]) dets[j, [2, 4]] = torch.clamp(dets[j, [2, 4]], 0.0, im_dim_list[j, 1]) boxes = dets[:, 1:5] scores = dets[:, 5:6] for k in range(len(orig_img)): boxes_k = boxes[dets[:, 0] == k] if isinstance(boxes_k, int) or boxes_k.shape[0] == 0: if self.Q.full(): time.sleep(2) self.Q.put((orig_img[k], im_name[k], None, None, None, None, None)) continue inps = torch.zeros(boxes_k.size(0), 3, opt.inputResH, opt.inputResW) pt1 = torch.zeros(boxes_k.size(0), 2) pt2 = torch.zeros(boxes_k.size(0), 2) if self.Q.full(): time.sleep(2) self.Q.put((orig_img[k], im_name[k], boxes_k, scores[dets[:, 0] == k], inps, pt1, pt2)) def read(self): # return next frame in the queue return self.Q.get() def len(self): # return queue len return self.Q.qsize() class DetectionProcessor: def __init__(self, detectionLoader, queueSize=1024): # initialize the file video stream along with the boolean # used to indicate if the thread should be stopped or not self.detectionLoader = detectionLoader self.stopped = False # initialize the queue used to store data self.Q = LifoQueue(maxsize=queueSize) def start(self): # start a thread to read frames from the file video stream t = Thread(target=self.update, args=()) t.daemon = True t.start() return self def update(self): # keep looping the whole dataset while True: with torch.no_grad(): (orig_img, im_name, boxes, scores, inps, pt1, pt2) = self.detectionLoader.read() with self.detectionLoader.Q.mutex: self.detectionLoader.Q.queue.clear() if boxes is None or boxes.nelement() == 0: while self.Q.full(): time.sleep(0.2) self.Q.put((None, orig_img, im_name, boxes, scores, None, None)) continue inp = im_to_torch(cv2.cvtColor(orig_img, cv2.COLOR_BGR2RGB)) inps, pt1, pt2 = crop_from_dets(inp, boxes, inps, pt1, pt2) while self.Q.full(): time.sleep(0.2) self.Q.put((inps, orig_img, im_name, boxes, scores, pt1, pt2)) def read(self): # return next frame in the queue return self.Q.get() def len(self): # return queue len return self.Q.qsize() class WebcamDetectionLoader: def __init__(self, webcam=0, batchSize=1, queueSize=256): # initialize the file video stream along with the boolean # used to indicate if the thread should be stopped or not self.det_model = Darknet("yolo/cfg/yolov3-spp.cfg") self.det_model.load_weights('models/yolo/yolov3-spp.weights') self.det_model.net_info['height'] = opt.inp_dim self.det_inp_dim = int(self.det_model.net_info['height']) assert self.det_inp_dim % 32 == 0 assert self.det_inp_dim > 32 self.det_model.cuda() self.det_model.eval() self.stream = cv2.VideoCapture(int(webcam)) assert self.stream.isOpened(), 'Cannot open webcam' self.stopped = False self.batchSize = batchSize # initialize the queue used to store frames read from # the video file self.Q = LifoQueue(maxsize=queueSize) def len(self): return self.Q.qsize() def start(self): # start a thread to read frames from the file video stream t = Thread(target=self.update, args=()) t.daemon = True t.start() return self def update(self): # keep looping while True: img = [] inp = [] orig_img = [] im_name = [] im_dim_list = [] for k in range(self.batchSize): (grabbed, frame) = self.stream.read() if not grabbed: continue # process and add the frame to the queue inp_dim = int(opt.inp_dim) img_k, orig_img_k, im_dim_list_k = prep_frame(frame, inp_dim) inp_k = im_to_torch(orig_img_k) img.append(img_k) inp.append(inp_k) orig_img.append(orig_img_k) im_dim_list.append(im_dim_list_k) with torch.no_grad(): ht = inp[0].size(1) wd = inp[0].size(2) # Human Detection img = Variable(torch.cat(img)).cuda() im_dim_list = torch.FloatTensor(im_dim_list).repeat(1, 2) im_dim_list = im_dim_list.cuda() prediction = self.det_model(img, CUDA=True) # NMS process dets = dynamic_write_results(prediction, opt.confidence, opt.num_classes, nms=True, nms_conf=opt.nms_thesh) if isinstance(dets, int) or dets.shape[0] == 0: for k in range(len(inp)): if self.Q.full(): with self.Q.mutex: self.Q.queue.clear() self.Q.put((inp[k], orig_img[k], None, None)) continue im_dim_list = torch.index_select(im_dim_list, 0, dets[:, 0].long()) scaling_factor = torch.min(self.det_inp_dim / im_dim_list, 1)[0].view(-1, 1) # coordinate transfer dets[:, [1, 3]] -= (self.det_inp_dim - scaling_factor * im_dim_list[:, 0].view(-1, 1)) / 2 dets[:, [2, 4]] -= (self.det_inp_dim - scaling_factor * im_dim_list[:, 1].view(-1, 1)) / 2 dets[:, 1:5] /= scaling_factor for j in range(dets.shape[0]): dets[j, [1, 3]] = torch.clamp(dets[j, [1, 3]], 0.0, im_dim_list[j, 0]) dets[j, [2, 4]] = torch.clamp(dets[j, [2, 4]], 0.0, im_dim_list[j, 1]) boxes = dets[:, 1:5].cpu() scores = dets[:, 5:6].cpu() for k in range(len(inp)): if self.Q.full(): with self.Q.mutex: self.Q.queue.clear() self.Q.put((inp[k], orig_img[k], boxes[dets[:, 0] == k], scores[dets[:, 0] == k])) def videoinfo(self): # indicate the video info fourcc = int(self.stream.get(cv2.CAP_PROP_FOURCC)) fps = self.stream.get(cv2.CAP_PROP_FPS) frameSize = (int(self.stream.get(cv2.CAP_PROP_FRAME_WIDTH)), int(self.stream.get(cv2.CAP_PROP_FRAME_HEIGHT))) return fourcc, fps, frameSize def read(self): # return next frame in the queue return self.Q.get() def more(self): # return True if there are still frames in the queue return self.Q.qsize() > 0 def stop(self): # indicate that the thread should be stopped self.stopped = True class DataWriter: def __init__(self, save_video=False, savepath='examples/res/1.avi', fourcc=cv2.VideoWriter_fourcc(*'XVID'), fps=25, frameSize=(640, 480), queueSize=1024): if save_video: # initialize the file video stream along with the boolean # used to indicate if the thread should be stopped or not self.stream = cv2.VideoWriter(savepath, fourcc, fps, frameSize) assert self.stream.isOpened(), 'Cannot open video for writing' self.save_video = save_video self.stopped = False self.final_result = [] # initialize the queue used to store frames read from # the video file self.Q = Queue(maxsize=queueSize) if opt.save_img: if not os.path.exists(opt.outputpath + '/vis'): os.mkdir(opt.outputpath + '/vis') def start(self): # start a thread to read frames from the file video stream t = Thread(target=self.update, args=()) t.daemon = True t.start() return self def update(self): # keep looping infinitely while True: # if the thread indicator variable is set, stop the # thread if self.stopped: if self.save_video: self.stream.release() return # otherwise, ensure the queue is not empty if not self.Q.empty(): (boxes, scores, hm_data, pt1, pt2, orig_img, im_name) = self.Q.get() orig_img = np.array(orig_img, dtype=np.uint8) if boxes is None: if opt.save_img or opt.save_video or opt.vis: img = orig_img if opt.vis: cv2.imshow("AlphaPose Demo", img) cv2.waitKey(30) if opt.save_img: cv2.imwrite(os.path.join(opt.outputpath, 'vis', im_name), img) if opt.save_video: self.stream.write(img) else: # location prediction (n, kp, 2) | score prediction (n, kp, 1) preds_hm, preds_img, preds_scores = getPrediction( hm_data, pt1, pt2, opt.inputResH, opt.inputResW, opt.outputResH, opt.outputResW) result = pose_nms(boxes, scores, preds_img, preds_scores) result = { 'imgname': im_name, 'result': result } self.final_result.append(result) if opt.save_img or opt.save_video or opt.vis: img = vis_frame(orig_img, result) if opt.vis: cv2.imshow("AlphaPose Demo", img) cv2.waitKey(30) if opt.save_img: cv2.imwrite(os.path.join(opt.outputpath, 'vis', im_name), img) if opt.save_video: self.stream.write(img) else: time.sleep(0.1) def running(self): # indicate that the thread is still running time.sleep(0.2) return not self.Q.empty() def save(self, boxes, scores, hm_data, pt1, pt2, orig_img, im_name): # save next frame in the queue self.Q.put((boxes, scores, hm_data, pt1, pt2, orig_img, im_name)) def stop(self): # indicate that the thread should be stopped self.stopped = True time.sleep(0.2) def results(self): # return final result return self.final_result def len(self): # return queue len return self.Q.qsize() class Mscoco(data.Dataset): def __init__(self, train=True, sigma=1, scale_factor=(0.2, 0.3), rot_factor=40, label_type='Gaussian'): self.img_folder = '../data/coco/images' # root image folders self.is_train = train # training set or test set self.inputResH = opt.inputResH self.inputResW = opt.inputResW self.outputResH = opt.outputResH self.outputResW = opt.outputResW self.sigma = sigma self.scale_factor = scale_factor self.rot_factor = rot_factor self.label_type = label_type self.nJoints_coco = 17 self.nJoints_mpii = 16 self.nJoints = 33 self.accIdxs = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17) self.flipRef = ((2, 3), (4, 5), (6, 7), (8, 9), (10, 11), (12, 13), (14, 15), (16, 17)) def __getitem__(self, index): pass def __len__(self): pass def crop_from_dets(img, boxes, inps, pt1, pt2): ''' Crop human from origin image according to Dectecion Results ''' imght = img.size(1) imgwidth = img.size(2) tmp_img = img tmp_img[0].add_(-0.406) tmp_img[1].add_(-0.457) tmp_img[2].add_(-0.480) for i, box in enumerate(boxes): upLeft = torch.Tensor((float(box[0]), float(box[1]))) bottomRight = torch.Tensor((float(box[2]), float(box[3]))) ht = bottomRight[1] - upLeft[1] width = bottomRight[0] - upLeft[0] if width > 100: scaleRate = 0.2 else: scaleRate = 0.3 upLeft[0] = max(0, upLeft[0] - width * scaleRate / 2) upLeft[1] = max(0, upLeft[1] - ht * scaleRate / 2) bottomRight[0] = max( min(imgwidth - 1, bottomRight[0] + width * scaleRate / 2), upLeft[0] + 5) bottomRight[1] = max( min(imght - 1, bottomRight[1] + ht * scaleRate / 2), upLeft[1] + 5) inps[i] = cropBox(tmp_img.clone(), upLeft, bottomRight, opt.inputResH, opt.inputResW) pt1[i] = upLeft pt2[i] = bottomRight return inps, pt1, pt2
data_getter.py
from collections import Counter from concurrent.futures import ThreadPoolExecutor from datetime import datetime from os import mkdir, path from sys import platform as sys_platform from threading import Thread from time import sleep from typing import Dict, List import jieba import jieba.posseg as pseg from httpx import HTTPError from JianshuResearchTools.article import GetArticleText, GetArticleWordage from JianshuResearchTools.convert import (ArticleSlugToArticleUrl, UserUrlToUserSlug) from JianshuResearchTools.user import (GetUserAllArticlesInfo, GetUserAllBasicData, GetUserArticlesCount) from pandas import DataFrame from wordcloud import WordCloud from yaml import dump as yaml_dump from config_manager import Config from db_config import User from concurrent.futures import TimeoutError from exceptions import (GetUserArticleDataException, GetUserBasicDataException, GetUserWordCloudException, QueueEmptyException) from log_manager import AddRunLog from queue_manager import GetOneToProcess, ProcessFinished, SetUserStatusFailed jieba.setLogLevel(jieba.logging.ERROR) # 关闭 jieba 的日志输出 if not Config()["perf/enable_jieba_parallel"]: AddRunLog(2, "由于配置文件设置,多进程分词已禁用") elif sys_platform == "win32": AddRunLog(2, "由于当前系统不支持,多进程分词已禁用") else: AddRunLog(3, "已开启多进程分词") jieba.enable_parallel(2) if Config()["word_split/enable_stopwords"]: with open("wordcloud_assets/stopwords.txt", "r", encoding="utf-8") as f: STOPWORDS = [x.replace("\n", "") for x in f.readlines()] # 预加载停用词词库 AddRunLog(4, "加载停用词成功") else: AddRunLog(2, "由于配置文件设置,停用词功能已禁用") if Config()["word_split/enable_hotwords"]: jieba.load_userdict("wordcloud_assets/hotwords.txt") # 将热点词加入词库 AddRunLog(4, "加载热点词成功") else: AddRunLog(2, "由于配置文件设置,热点词功能已禁用") if not path.exists("user_data"): mkdir("user_data") def GetUserArticleData(user_url: str) -> DataFrame: start_time = datetime(2021, 1, 1, 0, 0, 0) end_time = datetime(2021, 12, 31, 23, 59, 59) fail_times = 0 while fail_times < 3: result = DataFrame() try: for item in GetUserAllArticlesInfo(user_url, count=50): # 增加单次请求量,提高性能 item_release_time = item["release_time"].replace(tzinfo=None) if item_release_time > end_time: # 文章发布时间晚于 2021 年 pass # 文章是按照时间倒序排列的,此时不做任何处理 elif item_release_time < start_time: # 文章发布时间早于 2021 年 if not item["is_top"]: break # 非置顶文章的发布时间早于 2021 年,则不再继续查询 else: # 文章发布时间在 2021 年内 try: item["wordage"] = GetArticleWordage(ArticleSlugToArticleUrl(item["aslug"]), disable_check=True) except IndexError as e: # 极少数概率下会由于请求的文章状态异常导致报错,此时跳过该文章的信息获取 AddRunLog(2, f"获取 {user_url} 的文章:{ArticleSlugToArticleUrl(item['aslug'])} 信息时发生错误:{e},已跳过该文章") continue else: result = result.append(item, ignore_index=True, sort=False) # 将新的文章追加到 DataFrame 中 except HTTPError as e: fail_times += 1 AddRunLog(2, f"获取 {user_url} 的文章信息时发生错误:{e},这是第 {fail_times} 次出错,10 秒后重试") sleep(10) continue else: if len(result) == 0: raise GetUserArticleDataException("用户没有在 2021 年发布文章") return result raise GetUserBasicDataException("获取文章信息时连续三次失败") def GetUserBasicData(user_url: str) -> Dict: # 处理 JRT 的数据错误 fail_times = 0 while fail_times < 3: result = {} try: data = GetUserAllBasicData(user_url) except HTTPError as e: fail_times += 1 AddRunLog(2, f"获取 {user_url} 的基础信息时发生错误:{e},这是第 {fail_times} 次出错,10 秒后重试") sleep(10) continue else: break else: # 三次失败 raise GetUserBasicDataException("获取基础信息时连续三次失败") result["id"] = data["articles_count"]["id"] result["slug"] = data["articles_count"]["slug"] result["url"] = data["url"] result["name"] = data["name"] result["gender"] = {0: "未知", 1: "男", 2: "女", 3: "未知"}[data["gender"]] result["avatar_url"] = data["articles_count"]["avatar"] result["background_image_url"] = data["articles_count"]["background_image"] result["FP_count"] = round(data["FP_count"], 2) result["FTN_count"] = round(data["FTN_count"], 2) result["FP / FTN"] = round(result["FP_count"] / result["FTN_count"], 2) result["assets_count"] = round(data["assets_count"], 2) result["followers_count"] = data["followers_count"] result["fans_count"] = data["fans_count"] result["likes_count"] = data["likes_count"] result["wordage"] = data["wordage"] result["articles_count"] = GetUserArticlesCount(user_url, disable_check=True) result["introduction_text"] = data["introduction_text"] result["badges_list"] = data["badges_list"] result["next_anniversary_day"] = data["next_anniversary_day"] result["vip_type"] = data["vip_info"]["vip_type"] result["vip_expire_time"] = data["vip_info"]["expire_date"] return result def GetUserWordcloud(articles_list: List[str], user_slug: str) -> None: allow_word_types = ("Ag", "a", "ad", "an", "dg", "g", "i", "j", "l", "Ng", "n", "nr", "ns", "nt", "nz", "tg", "vg", "v", "vd", "vn", "un") words_count: Counter = Counter() for article_url in articles_list: fail_times = 0 while fail_times < 3: try: cutted_text = pseg.cut(GetArticleText(article_url, disable_check=True)) except HTTPError as e: fail_times += 1 AddRunLog(2, f"获取 {user_slug} 的文章内容时发生错误:{e},这是第 {fail_times} 次出错,10 秒后重试") sleep(10) continue else: break else: # 三次失败 raise GetUserWordCloudException("获取文章内容时连续三次失败") # 只保留非单字词,且这些词必须不在停用词列表里,并属于特定词性 cutted_text = (x.word for x in cutted_text if len(x.word) > 1 and x.flag in allow_word_types and x.word not in STOPWORDS) words_count += Counter(cutted_text) wordcloud = WordCloud(font_path="wordcloud_assets/font.otf", width=1280, height=720, background_color="white", max_words=100) if words_count.most_common(1)[0][1] <= 10: # 文章中的最高频词没有达到可生成词云的数量 raise GetUserWordCloudException("用户文章中的最高频词没有达到可生成词云的数量") else: return wordcloud.generate_from_frequencies( {key: value for key, value in words_count.items() if value > 10} ) def GetDataJob(user: User): user_slug = UserUrlToUserSlug(user.user_url) if not path.exists(f"user_data/{user_slug}"): # 避免获取到中途时服务重启导致文件夹已存在报错 mkdir(f"user_data/{user_slug}") AddRunLog(3, f"开始执行 {user.user_url}({user.user_name})的数据获取任务") AddRunLog(4, f"开始获取 {user.user_url}({user.user_name})的基础数据") try: basic_data = GetUserBasicData(user.user_url) except GetUserBasicDataException as e: AddRunLog(1, f"获取 {user.user_url}({user.user_name})的基础数据时发生错误:{e}") SetUserStatusFailed(user.user_url, str(e)) return # 终止运行 else: with open(f"user_data/{user_slug}/basic_data_{user_slug}.yaml", "w", encoding="utf-8") as f: yaml_dump(basic_data, f, indent=4, allow_unicode=True) AddRunLog(4, f"获取 {user.user_url}({user.user_name})的基础数据完成") AddRunLog(4, f"开始获取 {user.user_url}({user.user_name})的文章数据") try: article_data = GetUserArticleData(user.user_url) except GetUserArticleDataException as e: AddRunLog(1, f"获取 {user.user_url}({user.user_name})的文章数据时发生错误:{e}") SetUserStatusFailed(user.user_url, str(e)) return # 终止运行 else: article_data.to_csv(f"user_data/{user_slug}/article_data_{user_slug}.csv", index=False) AddRunLog(4, f"获取 {user.user_url}({user.user_name})的文章数据完成,共 {len(article_data)} 条") AddRunLog(4, f"开始为 {user.user_url}({user.user_name})生成词云图") try: wordcloud_img = GetUserWordcloud((ArticleSlugToArticleUrl(x) for x in list(article_data["aslug"])), user_slug) except GetUserWordCloudException as e: AddRunLog(1, f"为 {user.user_url}({user.user_name})生成词云图时发生错误:{e}") SetUserStatusFailed(user.user_url, str(e)) return # 终止运行 else: wordcloud_img.to_file(f"user_data/{user_slug}/wordcloud_{user_slug}.png") AddRunLog(4, f"为 {user.user_url}({user.user_name})生成词云图成功") ProcessFinished(user.user_url) # 如果数据获取完整,就将用户状态改为 3,表示已完成数据获取 AddRunLog(3, f"{user.user_url}({user.user_name})的数据获取任务执行完毕") AddRunLog(4, f"{user.user_url}({user.user_name})的数据获取线程结束运行") def main(): pool = ThreadPoolExecutor(max_workers=Config()["perf/data_getters_max_count"], thread_name_prefix="data_getter-") futures = [] AddRunLog(4, f"数据获取线程池创建成功,最大线程数:{Config()['perf/data_getters_max_count']}") while True: try: for user, future in futures[:]: # 创建拷贝,防止删除元素导致迭代出错 try: exception_obj = future.exception(timeout=0) # 获取数据获取线程引发的异常 except TimeoutError: # 该线程还未执行完毕 continue else: if exception_obj: AddRunLog(1, f"{user.user_url}({user.user_name})的数据获取线程中出现未捕获的异常:{exception_obj}") SetUserStatusFailed(user.user_url, "数据获取过程中的未知异常") # 将用户状态设置为失败 futures.remove((user, future)) # 将 Future 对象从列表中移除 user = GetOneToProcess() except QueueEmptyException: sleep(0.3) # 队列为空,等待一段时间 continue else: future = pool.submit(GetDataJob, user) futures.append((user, future)) AddRunLog(4, f"启动了新的数据获取线程:{user.user_url}({user.user_name})") def init(): data_getter_thread = Thread(target=main, daemon=True) # 设置为守护线程,避免造成主线程无法退出 data_getter_thread.start()
lxm32_modbus.py
from __future__ import print_function from threading import Thread from time import sleep, time import atexit import sys import signal if sys.version_info.major == 2: from pymodbus.client.sync import ModbusTcpClient as ModbusClient from pymodbus.pdu import ExceptionResponse else: from pymodbus3.client.sync import ModbusTcpClient as ModbusClient from pymodbus3.pdu import ExceptionResponse def get_bit(number, idx): return (number & (1 << idx)) != 0 int32max = 2 ** 31 int32min = -int32max uint16max = 2 ** 16 - 1 def sig_handler(signo, frame): print(f"sig_handler({signo}, {frame})") sys.exit(0) def split_int32(i): if i > int32max or i < int32min: raise ValueError if i < 0: i = abs(i) i |= 1 << 31 i = i ^ 0xFFFFFFFF i |= 1 << 31 i += 1 i16_l = i >> 16 i16_r = i & 0xFFFF return i16_l, i16_r def parse_mf_stat(mf_stat): mode = mf_stat & 0x1F de = get_bit(mf_stat, 4) me = get_bit(mf_stat, 5) mt = get_bit(mf_stat, 6) return mode, de, me, mt states = { 0: "?", 1: "Start (1)", 2: "Not Ready To Switch On (2)", 3: "Switch On Disabled (3)", 4: "Ready To Switch (4)", 5: "Switched On (5)", 6: "Operation Enabled (6)", 7: "Quick Stop Active (7)", 8: "Fault Reaction Active (8)", 9: "Fault (9)", } modes = { 1: "Profile Position", 3: "Profile Velocity", 4: "Profile Torque", 6: "Homing", 0x1F: "Jog", 0x1E: "Electronic Gear", 0x1D: "Motion Sequence", } class Motor: def __init__( self, ip_modbus="192.168.28.21", disable_scan_timeout=False, disable_limit_switches=False, ): self._code_state = None self._is_scanning = False self.client = ModbusClient(ip_modbus) if self.client.connect(): print("connection ok") sys.stdout.flush() else: raise ValueError("bad modbus connection.") if disable_scan_timeout: ret = self.read_holding_registers(17498, 2) if ret.registers == [0, 20]: self.write_registers(17498, [0, 0]) if disable_limit_switches: self.write_registers(1566, [0] * 4) else: self.write_registers(1566, [0, 1, 0, 1]) self.ramp_v = self.read_ramp_v() self.dm_control = 0 self.ref_a = [0, 0] self.ref_b = [0, 0] sleep(0.1) self.outscan = [0] * 13 self._has_to_scan = True self._is_pingponging = False self.ioscanning_thread = Thread(target=self._ioscanning) self.ioscanning_thread.daemon = True self.ioscanning_thread.start() atexit.register(self.close) signal.signal(signal.SIGTERM, sig_handler) def close(self): if self._is_scanning: print("close motor driver") self._has_to_scan = False while self._is_scanning: sleep(0.05) self.client.close() def __del__(self): self.close() def disable_limit_switches(self): """disable limit switches (power stage must be disabled)""" self.disable() self.write_registers(1566, [0] * 4) def enable_limit_switches(self): """disable limit switches (power stage must be disabled)""" self.disable() self.write_registers(1566, [0, 1, 0, 1]) def _build_output_scan(self): outscan = [0] * 4 outscan[0] = 0x2 << 8 old_out = self.outscan[4:] out = [self.dm_control] out.extend(self.ref_a) out.extend(self.ref_b) out.extend(self.ramp_v) if out != old_out: # flip toggle bit self.dm_control ^= 1 << 7 out[0] = self.dm_control # print('hex(dm_control):', hex(self.dm_control)) outscan.extend(out) self.outscan = outscan assert len(outscan) == 13 return outscan def read_holding_registers(self, address, count=1, **kwargs): ret = self.client.read_holding_registers(address, count, **kwargs) if isinstance(ret, ExceptionResponse): print( "ExceptionResponse", ret.exception_code, ret.function_code - 128 ) return ret def write_registers(self, address, values, **kwargs): ret = self.client.write_registers(address, values, **kwargs) if isinstance(ret, ExceptionResponse): print( "ExceptionResponse", ret.exception_code, ret.function_code - 128 ) return ret def compute_dm_control( self, mode=None, enable=None, quick_stop=None, fault_reset=None, halt=None, clear_halt=None, resume_after_halt=None, ): dm_control = self.dm_control if mode is not None: if not isinstance(mode, str): mode = str(mode) if mode.startswith("pos"): dm_control = 0x1 elif mode.startswith("homing"): dm_control = 0x6 else: dm_control = 0x23 if enable: # enable the power stage dm_control |= 1 << 9 else: # disable the power stage dm_control |= 1 << 8 if quick_stop: dm_control |= 1 << 10 if fault_reset: dm_control |= 1 << 11 if halt: dm_control |= 1 << 13 elif clear_halt: dm_control |= 1 << 14 elif resume_after_halt: dm_control |= 1 << 15 self.dm_control = dm_control def set_dm_control( self, mode=None, enable=None, quick_stop=None, fault_reset=None, halt=None, clear_halt=None, resume_after_halt=None, ): self.compute_dm_control( mode=mode, enable=enable, quick_stop=quick_stop, fault_reset=fault_reset, halt=halt, clear_halt=clear_halt, resume_after_halt=resume_after_halt, ) self._pingpong() def _ioscanning(self): self._is_scanning = True while self._has_to_scan: self._pingpong() sleep(0.5) self._is_scanning = False def _pingpong(self): t0 = time() while self._is_pingponging: sleep(0.05) t = time() if t - t0 > 1: print("warning: very slow Motor._pingpong (more than 1 s)") elif t - t0 > 10: raise Exception("Very slow Motor._pingpong (more than 10 s)") self._is_pingponging = True self._build_output_scan() # t1 = time() ret_write = self.write_registers(0, self.outscan, unit=255) if isinstance(ret_write, ExceptionResponse): print( "ExceptionResponse", ret_write.exception_code, ret_write.function_code - 128, ) ret_read = self.read_holding_registers(0, 13, unit=255) registers = ret_read.registers # t = time() # # print ('write_read_time = {}'.format(t - t1)) # if t - t1 > 0.01: # print('write and read time > dt') self.par_ch = registers[:4] self.drive_stat = drive_stat = registers[4] self.mf_stat = mf_stat = registers[5] self.motion_stat = motion_stat = registers[6] self.drive_input = registers[7] self._p_act = registers[8:10] self._v_act = registers[10:12] self._I_act = registers[12] # decode drive_stat new_code_state = drive_stat & 0xF if self._code_state != new_code_state and self._code_state is not None: print( 'state changed from "' + states[self._code_state] + '" to "' + states[new_code_state] + '"' ) self._code_state = new_code_state self.state = states[new_code_state] self.error = get_bit(drive_stat, 6) self.warn = get_bit(drive_stat, 7) self.halt = get_bit(drive_stat, 8) self.homing = get_bit(drive_stat, 9) self.quick_stop = get_bit(drive_stat, 10) self.x_add1 = get_bit(drive_stat, 13) self.x_end = get_bit(drive_stat, 14) self.x_err = get_bit(drive_stat, 15) # mf_stat self.mode, self.de, self.me, self.mt = parse_mf_stat(mf_stat) # motion_stat self.motor_standstill = get_bit(motion_stat, 6) self.motor_pos = get_bit(motion_stat, 7) self.motor_neg = get_bit(motion_stat, 8) self._is_pingponging = False def get_state(self): return ( f"error: {self.error}\nquick_stop: {self.quick_stop}" + "mode:" + hex(self.mode) + f"\nde: {self.de}; me: {self.me}; mt: {self.mt}\n" + "x_add1: {}; x_end: {}; x_err: {}\n".format( self.x_add1, self.x_end, self.x_err ) + "drive_input: " + bin(self.drive_input) + "\ndrive_stat: " + bin(self.drive_stat) + "\nstate: " + self.state + "\nmotor_neg: {}, motor_pos: {}, motor_standstill: {}".format( self.motor_neg, self.motor_pos, self.motor_standstill ) ) def print_state(self): print(self.get_state()) def read_param(self, address, count=2): ret = self.read_holding_registers(address, count) return ret.registers def read_ramp_v(self): return self.read_param(1556, 4) def read_v_target(self): return self.read_param(6938) def read_position_target(self): return self.read_param(6940) def set_target_rotation_rate(self, i32): if self.state == "Fault (9)": print('self.state == "Fault (9)"') if not isinstance(i32, int): i32 = int(round(i32)) self.ref_a = list(split_int32(i32)) self._pingpong() def set_target_position(self, i32): if self.state == "Fault (9)": print('self.state == "Fault (9)"') if not isinstance(i32, int): i32 = int(round(i32)) self.ref_b = list(split_int32(i32)) self._pingpong() def stop_rotation(self): self.set_target_rotation_rate(0) def disable(self): self.set_target_rotation_rate(0) self.set_dm_control() def enable(self, mode=1): self.set_dm_control(mode=mode, enable=1) self.set_target_rotation_rate(0) def run_quick_stop(self): self.set_dm_control(quick_stop=True) def fault_reset(self): self.set_dm_control(fault_reset=1) def set_acceleration(self, a): a = abs(a) if not isinstance(a, int): a = int(round(a)) if a > uint16max: a = uint16max print("Warning: too large acceleration for the motor.") self.ramp_v = [0, a] * 2 self._pingpong() def get_position_actual(self): self._pingpong() return (self._p_act[0] << 16) + self._p_act[1]
EventLoop.py
########################################################################## # # Copyright (c) 2011-2012, John Haddon. All rights reserved. # Copyright (c) 2011-2015, Image Engine Design Inc. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above # copyright notice, this list of conditions and the following # disclaimer. # # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following # disclaimer in the documentation and/or other materials provided with # the distribution. # # * Neither the name of John Haddon nor the names of # any other contributors to this software may be used to endorse or # promote products derived from this software without specific prior # written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS # IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, # THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR # PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF # LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING # NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ########################################################################## import time import weakref import threading import traceback import functools import IECore import Gaffer import GafferUI from Qt import QtCore from Qt import QtWidgets ## This class provides the event loops used to run GafferUI based applications. class EventLoop( object ) : __RunStyle = IECore.Enum.create( "Normal", "PumpThread", "AlreadyRunning", "Houdini" ) ## Creates a new EventLoop. Note that if you are creating the primary # EventLoop for an application then you should use mainEventLoop() instead. def __init__( self, __qtEventLoop=None ) : if __qtEventLoop is None : if self.__mainEventLoop is None or self.__mainEventLoop.__startCount==0 : raise Exception( "Main event loop is not running - perhaps you should use EventLoop.mainEventLoop()?" ) self.__qtEventLoop = QtCore.QEventLoop() else : self.__qtEventLoop = __qtEventLoop self.__runStyle = self.__RunStyle.Normal if isinstance( self.__qtEventLoop, QtWidgets.QApplication ) : try : import maya.OpenMaya if maya.OpenMaya.MGlobal.apiVersion() < 201100 : self.__runStyle = self.__RunStyle.PumpThread else : self.__runStyle = self.__RunStyle.AlreadyRunning except ImportError : pass try : import hou if hou.applicationVersion()[0] < 14 : self.__runStyle = self.__RunStyle.Houdini else : self.__runStyle = self.__RunStyle.AlreadyRunning except ImportError : pass try : import nuke self.__runStyle = self.__RunStyle.AlreadyRunning except ImportError : pass self.__startCount = 0 self.__pumpThread = None self.__houdiniCallback = None ## Starts the event loop, passing control to the UI code. This function returns # when the corresponding stop() method is called. See documentation for # mainEventLoop() for exceptions to this rule. def start( self ) : self.__startCount += 1 if self.__runStyle == self.__RunStyle.Normal : assert( self.__startCount == 1 ) self.__qtEventLoop.exec_() elif self.__runStyle == self.__RunStyle.PumpThread : if self.__pumpThread is None : self.__pumpThread = threading.Thread( target = self.__pumpThreadFn ) self.__pumpThread.start() elif self.__runStyle == self.__RunStyle.Houdini : if self.__houdiniCallback is None : import hou hou.ui.addEventLoopCallback( functools.partial( self.__pump, 5 ) ) self.__houdiniCallback = hou.ui.eventLoopCallbacks()[-1] else : # RunStyle.AlreadyRunning # host application is using qt natively, no need to do anything. pass ## Stops the event loop last started using start(). def stop( self ) : assert( self.__startCount > 0 ) if self.__runStyle == self.__RunStyle.Normal : assert( self.__startCount == 1 ) self.__qtEventLoop.exit() elif self.__runStyle == self.__RunStyle.PumpThread : ## \todo Should we try to stop the pump thread # when self.__startCount hits 0? Right not we're # just keeping it running on the assumption we'll # need it again soon. pass elif self.__runStyle == self.__RunStyle.Houdini : if self.__startCount == 1 and self.__houdiniCallback : import hou hou.ui.removeEventLoopCallback( self.__houdiniCallback ) self.__houdiniCallback = None else : # RunStyle.AlreadyRunning pass self.__startCount -= 1 ## Returns true if this event loop is currently running. def running( self ) : return self.__startCount > 0 # if we're running embedded in an application which already uses qt (like maya 2011 or later) # then there'll already be an application, which we'll share. if not we'll make our own. if QtWidgets.QApplication.instance() : __qtApplication = QtWidgets.QApplication.instance() else : # Set the style explicitly so we don't inherit one from the desktop # environment, which could mess with our own style (on GNOME for instance, # our icons can come out the wrong size). style = QtWidgets.QApplication.setStyle( "Fusion" ) assert( style is not None ) __qtApplication = QtWidgets.QApplication( [ "gaffer" ] ) __mainEventLoop = None ## Returns the main event loop for the application. This should always # be started before running any other nested event loops. In the standalone # Gaffer applications, the main event loop acts like any other, but when # GafferUI is embedded in another application (like Maya) it behaves slightly # differently. In this case, the start() method returns immediately so that # the GafferUI event loop may be interleaved with the event loop of the host # application. Additionally, the start() method may also be called multiple # times to allow several GafferUI-based applications to run in the same host. # The main event loop will therefore only cease running when the number of # calls to stop() matches the number of calls to start(). @classmethod def mainEventLoop( cls ) : if cls.__mainEventLoop is None : cls.__mainEventLoop = cls( cls.__qtApplication ) return cls.__mainEventLoop __idleCallbacks = [] __idleTimer = None ## Adds a function to be called when the event loop is idle (has no events # remaining to be processed). If callback returns False then it will be removed # automatically after running, if it returns True it will be called again until # it returns False, or until removeIdleCallback() is called. ## \todo This should probably be replaced with an idleSignal() like the one we # have in GafferUI.Gadget. @classmethod def addIdleCallback( cls, callback ) : assert( callback not in cls.__idleCallbacks ) cls.__idleCallbacks.append( callback ) cls.__ensureIdleTimer() ## Removes an idle callback previously created with addIdleCallback(). @classmethod def removeIdleCallback( cls, callback ) : cls.__idleCallbacks.remove( callback ) ## Convenience method to introduce a delay on the mainEventLoop(). @classmethod def waitForIdle( cls, count = 1000 ) : cls.__idleCount = 0 def f() : cls.__idleCount += 1 if cls.__idleCount >= count : EventLoop.mainEventLoop().stop() return False return True EventLoop.addIdleCallback( f ) EventLoop.mainEventLoop().start() ## Widgets may only be manipulated on the thread where mainEventLoop() is running. It # is common to want to perform some background processing on a secondary thread, and # to update the UI during processing or upon completion. This function can be used from # such a secondary thread to queue a callable to be called on the main thread. If called # from the main thread, the callable is called immediately. @classmethod def executeOnUIThread( cls, callable, waitForResult=False ) : if QtCore.QThread.currentThread() == cls.__qtApplication.thread() : # Already on the UI thread - just do it. return callable() resultCondition = threading.Condition() if waitForResult else None # we only use a weakref here, because we don't want to be keeping the object # alive from this thread, and hence deleting it from this thread. instead it # is deleted in _UIThreadExecutor.event(). uiThreadExecutor = weakref.ref( _UIThreadExecutor( callable, resultCondition ) ) uiThreadExecutor().moveToThread( cls.__qtApplication.thread() ) if resultCondition is not None : resultCondition.acquire() cls.__qtApplication.postEvent( uiThreadExecutor(), QtCore.QEvent( QtCore.QEvent.Type( _UIThreadExecutor.executeEventType ) ) ) resultCondition.wait() resultCondition.release() return resultCondition.resultValue else : cls.__qtApplication.postEvent( uiThreadExecutor(), QtCore.QEvent( QtCore.QEvent.Type( _UIThreadExecutor.executeEventType ) ) ) return None @classmethod def __ensureIdleTimer( cls ) : assert( QtCore.QThread.currentThread() == EventLoop.__qtApplication.thread() ) if cls.__idleTimer is None : cls.__idleTimer = QtCore.QTimer( cls.__qtApplication ) cls.__idleTimer.timeout.connect( cls.__qtIdleCallback ) if not cls.__idleTimer.isActive() : cls.__idleTimer.start() # This is a staticmethod rather than a classmethod because PySide 1.0.5 # doesn't support classmethods as slots. @staticmethod def __qtIdleCallback() : assert( QtCore.QThread.currentThread() == EventLoop.__qtApplication.thread() ) GafferUI.Gadget.idleSignal()() for c in EventLoop.__idleCallbacks[:] : # slice takes copy, so we can remove during iteration try : if not c() : EventLoop.__idleCallbacks.remove( c ) except Exception as e : # if the callback throws then we remove it anyway, because # we don't want to keep invoking the same error over and over. EventLoop.__idleCallbacks.remove( c ) # report the error IECore.msg( IECore.Msg.Level.Error, "EventLoop.__qtIdleCallback", "".join( traceback.format_exc() ) ) if len( EventLoop.__idleCallbacks )==0 and GafferUI.Gadget.idleSignal().empty() : EventLoop.__idleTimer.stop() @classmethod def _gadgetIdleSignalAccessed( cls ) : # It would be an error to access the idle signal from anything but the main # thread, because it would imply multiple threads fighting over the same signal. assert( QtCore.QThread.currentThread() == EventLoop.__qtApplication.thread() ) cls.__ensureIdleTimer() def __pumpThreadFn( self ) : import maya.utils while 1 : time.sleep( 0.01 ) maya.utils.executeDeferred( self.__pump ) def __pump( self, thrusts=1 ) : for thrust in range( 0, thrusts ) : self.__qtEventLoop.processEvents() _gadgetIdleSignalAccessedConnection = GafferUI.Gadget._idleSignalAccessedSignal().connect( EventLoop._gadgetIdleSignalAccessed ) class _UIThreadExecutor( QtCore.QObject ) : executeEventType = QtCore.QEvent.registerEventType() __instances = set() def __init__( self, callable, resultCondition = None ) : QtCore.QObject.__init__( self ) self.__callable = callable self.__resultCondition = resultCondition # we store a reference to ourselves in __instances, as otherwise # we go out of scope and get deleted at the end of executeOnUIThread # above. that's bad because we never live long enough to get our event, # and we'll also be being deleted from the calling thread, not the ui # thread where we live. self.__instances.add( self ) def event( self, event ) : if event.type() == self.executeEventType : result = self.__callable() if self.__resultCondition is not None : self.__resultCondition.acquire() self.__resultCondition.resultValue = result self.__resultCondition.notify() self.__resultCondition.release() self.__instances.remove( self ) return True return False # Service the requests made to `ParallelAlgo::callOnUIThread()`. Gaffer.ParallelAlgo.pushUIThreadCallHandler( EventLoop.executeOnUIThread )
conftest.py
import os import sys import threading import time from typing import Iterator import pytest import uvicorn from .utils import Server os.environ["DEBUG"] = "true" def serve_in_thread(server: Server) -> Iterator[Server]: thread = threading.Thread(target=server.run) thread.start() try: while not server.started: time.sleep(1e-3) yield server finally: server.should_exit = True thread.join() @pytest.fixture(scope="session") def example_server() -> Iterator[Server]: sys.path.append("example") from server import app config = uvicorn.Config(app=app, loop="asyncio") server = Server(config=config) yield from serve_in_thread(server)
machine_unit.py
#!/usr/bin/env python # # provide host/guest conatainer manager # import os import abc import time import shutil import pathlib import difflib import threading from dataclasses import dataclass from arkon_config import host_user from arkon_config import has_ci_azure from arkon_config import project_repo from arkon_config import project_boot from arkon_config import project_data from sysroot_media import SimpleSysroot # well known system path linux_kernel = f"/boot/vmlinuz-linux" # well known system path linux_initrd = f"/boot/initramfs-linux.img" class HostAny(abc.ABC): "conatainer manager prototype" def __init__(self, guest_name:str, sysroot_path:str) -> None: self.guest_name = guest_name self.sysroot_path = sysroot_path @abc.abstractmethod def command_initiate(self) -> str: "start guest instance" @abc.abstractmethod def command_terminate(self) -> str: "finish guest instance" # FIXME barely usable # https://wiki.archlinux.org/index.php/systemd-nspawn#Run_docker_in_systemd-nspawn # https://www.freedesktop.org/software/systemd/man/systemd.exec.html#System%20Call%20Filtering # https://github.com/systemd/systemd/blob/master/units/systemd-nspawn%40.service.in class HostSYSD(HostAny): "systemd-nspawn container host" def command_initiate(self) -> str: proc_cmdline = ( f"TERM=xterm " # "systemd.log_level=debug " # "systemd.log_target=console " # "systemd.journald.forward_to_console=1 " ) return ( f"sudo " # # elevate privilege f"SYSTEMD_NSPAWN_LOCK=0 " f"SYSTEMD_NSPAWN_USE_CGNS=0 " f"SYSTEMD_NSPAWN_API_VFS_WRITABLE=1 " # f"systemd-nspawn " # # elevate privilege f"--capability=CAP_MKNOD " f"--system-call-filter='@mount @keyring @privileged' " # f"--bind=/dev/disk " f"--bind=/dev/block " f"--bind=/dev/mapper " f"--bind=/dev/loop-control " f"--bind=/dev/loop7 " # sysroot.disk # f"--property='DevicePolicy=auto' " f"--property='DeviceAllow=/dev/loop-control rw' " f"--property='DeviceAllow=block-loop rw' " f"--property='DeviceAllow=block-blkext rw' " f"--property='DeviceAllow=/dev/mapper/control rw' " f"--property='DeviceAllow=block-device-mapper rw' " # f"-E SYSTEMD_COLORS=0 " # suppress colors f"-E SYSTEMD_IN_INITRD=1 " # imitate initramfs f"-E SYSTEMD_PROC_CMDLINE='{proc_cmdline}' " # imitate kernel command line f"-D {project_data} " # image folder f"-M {self.guest_name} " # container name f"/init " # /init is /usr/lib/systemd/systemd ) def command_terminate(self) -> str: return ( f"sudo SYSTEMD_COLORS=0 " f"machinectl terminate {self.guest_name} " ) class HostQEMU(HostAny): "quemu container host" command = "qemu-system-x86_64" kernel = f"{project_repo}{linux_kernel}" initrd = f"{project_repo}{linux_initrd}" monitor_addr = "127.0.0.1" monitor_port = "51234" def has_manager(self) -> bool: "detect quemu manager present" return shutil.which(self.command) is not None def has_kernel_kvm(self) -> bool: "detect kernel has kvm support" return os.path.exists("/dev/kvm") def command_action(self, action:str) -> str: return ( f"printf '{action}\n' | telnet {self.qemu_monitor_addr} {self.qemu_monitor_port} " ) def command_initiate(self) -> str: # note: ensure virtio drivers are present in the guest qemu_cpu_mode = f"-cpu host -enable-kvm " if self.has_kernel_kvm() else "" return ( f"sudo " f"{self.command} " f"{qemu_cpu_mode} " f"-name {self.guest_name} " f"-runas {host_user} " f"-kernel {self.kernel} " f"-initrd {self.initrd} " f"-m 512 -smp 2 " f"-drive if=virtio,cache=none,format=raw,file={self.sysroot_path} " f"-append 'edd=off console=ttyS0 TERM=xterm SYSTEMD_COLORS=0' " f"-nographic -serial mon:stdio " f"-monitor telnet:{self.monitor_addr}:{self.monitor_port},server,nowait " ) def command_terminate(self) -> str: # FIXME use self.guest_name return f"sudo killall {self.command}" class Support: service_path_list_udev = [ "/etc/systemd/system/systemd-udevd.service", "/etc/systemd/system/systemd-udevd-control.socket", "/etc/systemd/system/systemd-udevd-kernel.socket", ] @classmethod def service_mask(cls, service_path:str) -> None: print(f"### service: prohibit {service_path}") os.system(f"sudo ln -s /dev/null {project_data}/{service_path}") @classmethod def service_mask_list(cls, service_path_list:list) -> None: for service_path in service_path_list: cls.service_mask(service_path) @dataclass class MachineUnit: "container host/guest operator" machine:str # container name image_root:str # absolute path to resource folder def __post_init__(self): if has_ci_azure(): print(f"### settle machine state") time.sleep(3) self.sysroot = SimpleSysroot() self.host_qemu = HostQEMU(self.booter_machine, self.sysroot.disk_path) self.host_sysd = HostSYSD(self.booter_machine, self.sysroot.disk_path) @property def test_base(self) -> str: "location of test resources" return f"{self.image_root}/test_base" # https://www.freedesktop.org/software/systemd/man/systemd-run.html def run(self, command:str, machine:str=None) -> None: "invoke command inside machine" if machine is None: machine = self.machine invoke = f"sudo systemd-run --wait -G -P -M {machine} {command}" result = os.system(invoke) assert result == 0, f"result: {result}, command: {command}" def report_machine(self) -> None: print(f"### report active machines") os.system(f"sudo machinectl --all --full") def install_this_tool(self) -> None: print(f"### install systemd-tool") self.run(f"/repo/tool/module/manual-install.sh") def service_enable(self, service:str) -> None: print(f"### service enable : {service}") self.run(f"/usr/bin/systemctl enable {service}") def service_disable(self, service:str) -> None: print(f"### service disable: {service}") self.run(f"/usr/bin/systemctl disable {service}") def service_mask(self, service:str) -> None: print(f"### service mask : {service}") self.run(f"/usr/bin/systemctl mask {service}") def service_unmask(self, service:str) -> None: print(f"### service unmask: {service}") self.run(f"/usr/bin/systemctl unmask {service}") def service_enable_list(self, service_list:list) -> None: for service in service_list: self.service_enable(service) def service_disable_list(self, service_list:list) -> None: for service in service_list: self.service_disable(service) def share_folder_clear(self): print(f"### share folder clear") os.system(f"sudo rm -rf {project_boot}/*") os.system(f"sudo rm -rf {project_data}/*") def share_folder_review(self): print(f"### share folder review") os.system(f"ls -las {project_boot}") os.system(f"ls -las {project_data}") def initrd_image_produce(self): print(f"### produce machine initrd") self.run(f"/usr/bin/mkinitcpio -p linux") def initrd_image_extract(self): print(f"### extract machine initrd") self.run(f"/usr/bin/cp -f {linux_kernel} {linux_initrd} /repo/boot/") self.run(f"/usr/bin/bash -c 'cd /repo/data; lsinitcpio -x {linux_initrd}' ") os.system(f"sudo chown -R {host_user}:{host_user} {project_boot} ") os.system(f"sudo chown -R {host_user}:{host_user} {project_data} ") def perform_make_boot(self) -> None: "produce boot image extract on the host" self.report_machine() self.share_folder_clear() self.initrd_image_produce() self.initrd_image_extract() self.share_folder_review() def assert_has_link(self, path:str) -> None: print(f"### assert link present: {path}") full_path = f"{project_data}/{path}" assert pathlib.Path(full_path).is_symlink(), f"no link: {full_path}" def assert_has_path(self, path:str) -> None: print(f"### assert path present: {path}") full_path = f"{project_data}/{path}" assert pathlib.Path(full_path).exists(), f"no path: {full_path}" def assert_has_text(self, path:str) -> None: print(f"### assert text matches: {path}") boot_path = f"{project_data}/{path}" test_path = f"{self.test_base}/{path}" boot_list = pathlib.Path(boot_path).read_text().split("\n") test_list = pathlib.Path(test_path).read_text().split("\n") diff_list = difflib.unified_diff(test_list, boot_list, lineterm='') diff_text = "\n".join(diff_list) assert boot_list == test_list, f"no match:\n{diff_text}\n" def assert_has_link_list(self, path_list:list) -> None: for path in path_list: self.assert_has_link(path) def assert_has_path_list(self, path_list:list) -> None: for path in path_list: self.assert_has_path(path) def assert_has_text_list(self, path_list:list) -> None: for path in path_list: self.assert_has_text(path) @property def booter_machine(self) -> str: "name of boot container instance" return f"{self.machine}-boot" def booter_run(self, command:str) -> None: "invoke command inside booter" self.run(command, self.booter_machine) def booter_disable_udev(self) -> None: print(f"### booter: disable udev") Support.service_mask_list(Support.service_path_list_udev) def booter_ensure_loop(self): print(f"### booter: ensure loop") os.system("sudo modprobe loop") os.system("sudo losetup") def booter_sysd_prepare(self): print(f"### booter: sysd: prepare") self.booter_ensure_loop() self.booter_disable_udev() def booter_initiate_thread(self, command:str) -> None: "start process in parallel" print(command) def booter_task() -> None: try: print(f"### booter start : {self.booter_machine}") os.system(command) finally: print(f"### booter finish : {self.booter_machine}") booter_thread = threading.Thread(target=booter_task) booter_thread.setDaemon(True) booter_thread.start() def booter_sysd_initiate(self) -> None: self.booter_sysd_prepare() print(f"### initrd image: sysd: activate") command = self.host_sysd.command_initiate() self.booter_initiate_thread(command) # mavual stop: keyboard terminate: CTRL+]]] def booter_sysd_terminate(self) -> None: print() print(f"### initrd image: sysd: deactivate") command = self.host_sysd.command_terminate() os.system(command) # FIXME "Failed to create bus connection: Protocol error" def booter_report_generator(self) -> None: print(f"### report generated units") self.booter_run(f"/usr/lib/systemd/system-generators/systemd-cryptsetup-generator") self.booter_run(f"/usr/lib/systemd/system-generators/systemd-fstab-generator") time.sleep(1) self.booter_run(f"/usr/bin/ls -las /run/systemd/generator") def booter_qemu_action(self, action:str) -> None: print(f"### initrd image: action: {action}") command = self.host_qemu.command_action(action) print(command) os.system(command) def booter_qemu_initiate(self) -> None: if not self.host_qemu.has_manager(): return print() self.sysroot.produce_media() print(f"### initrd image: qemu: activate") command = self.host_qemu.command_initiate() self.booter_initiate_thread(command) # manual stop: keyboard terminate: CTRL+A then X def booter_qemu_terminate(self) -> None: if not self.host_qemu.has_manager(): return print() print(f"### initrd image: qemu: deactivate") command = self.host_qemu.command_terminate() os.system(command)
client_threads_coroutines.py
# -*- coding: utf-8 -*- import sys import logging import gevent import time import traceback from multiprocessing import Process from tutorial import TutorialService from bfd.harpc import client from bfd.harpc.common import config from bfd.harpc.common import monkey # 协程调用的时候要进行打入package,替换掉线程的一些库 monkey.patch_all() logging.basicConfig(level=logging.DEBUG, format='%(asctime)s %(name)-12s %(levelname)-8s %(message)s', filename='./logs/clientdemo.log', filemode='w') Coroutines = 5 req_num = 50 workers = 4 data = [] for i in range(0,1024): data.append(chr(i%64 + 32)) test_msg= ''.join(data) def test(): conf = config.Config() conf.set("client", "service", "python_test$EchoService") conf.set("client", "zk_connect_str", "172.18.1.22:2181") # 每个进程创建一个 client,多个协程公用一个client manager = client.Client(TutorialService.Client, conf) proxy_client = manager.create_proxy() def test_echo(msg): for i in xrange(req_num): try: proxy_client.echo(msg) except Exception, e: print "request error:%s" % e jobs = [] for i in range(Coroutines): jobs.append(gevent.spawn(test_echo,test_msg)) gevent.joinall(jobs) if __name__ == "__main__": p_list = [] start = time.time() for i in range(workers): p = Process(target=test) p_list.append(p) p.start() for p in p_list: p.join() end = time.time() req_time = end-start total = req_num*workers*Coroutines print "total : %s" % total print "total time: %s" % req_time print "tps : %s" % (total/req_time)
printer.py
from threading import Thread,Lock import sys,time class Printer: def __init__(self): self.message = None self.stopped = False self.lock = Lock() def keep_printing(self): while not self.stopped: if self.message is not None: self.lock.acquire() sys.stdout.write('\r'+self.message) sys.stdout.flush() self.message = None time.sleep(0.3) self.lock.release() def start(self): Thread(target=self.keep_printing,args=()).start() return self def stop(self): self.stopped = True def change_line(self): self.message = "\n"
repeated_timer.py
# Copyright (c) Microsoft Corporation. # Licensed under the MIT license. import threading import time import weakref class RepeatedTimer: class State: Stopped=0 Paused=1 Running=2 def __init__(self, secs, callback, count=None): self.secs = secs self.callback = weakref.WeakMethod(callback) if callback else None self._thread = None self._state = RepeatedTimer.State.Stopped self.pause_wait = threading.Event() self.pause_wait.set() self._continue_thread = False self.count = count def start(self): self._continue_thread = True self.pause_wait.set() if self._thread is None or not self._thread.isAlive(): self._thread = threading.Thread(target=self._runner, name='RepeatedTimer', daemon=True) self._thread.start() self._state = RepeatedTimer.State.Running def stop(self, block=False): self.pause_wait.set() self._continue_thread = False if block and not (self._thread is None or not self._thread.isAlive()): self._thread.join() self._state = RepeatedTimer.State.Stopped def get_state(self): return self._state def pause(self): if self._state == RepeatedTimer.State.Running: self.pause_wait.clear() self._state = RepeatedTimer.State.Paused # else nothing to do def unpause(self): if self._state == RepeatedTimer.State.Paused: self.pause_wait.set() if self._state == RepeatedTimer.State.Paused: self._state = RepeatedTimer.State.Running # else nothing to do def _runner(self): while (self._continue_thread): if self.count: self.count -= 0 if not self.count: self._continue_thread = False if self._continue_thread: self.pause_wait.wait() if self.callback and self.callback(): self.callback()() if self._continue_thread: time.sleep(self.secs) self._thread = None self._state = RepeatedTimer.State.Stopped
main.py
import os import curses from curses import textpad import time import random import pickle from pathlib import Path from pytube import YouTube, Playlist import re import urllib.request import threading import vlc os.environ['VLC_VERBOSE'] = '-1' RES_FOLDER = Path(__file__).parent / "res" QUOTE_FOLDER = Path(__file__).parent QUOTE_FILE_NAME = "qts.txt" QUOTE_FILE = QUOTE_FOLDER / QUOTE_FILE_NAME TIMER_WORK_MINS = (20 , 20 , 40 , 50) TIMER_BREAK_MINS = (20 , 10 , 20 , 10) TIMER_WORK = ( TIMER_WORK_MINS[0] * 60, TIMER_WORK_MINS[1] * 60, TIMER_WORK_MINS[2] * 60, TIMER_WORK_MINS[3] * 60) TIMER_BREAK = ( TIMER_BREAK_MINS[0] * 60, TIMER_BREAK_MINS[1] * 60, TIMER_BREAK_MINS[2] * 60, TIMER_BREAK_MINS[3] * 60) SOUNDS_MUTED = False # This is for only growth and start_timer, alarm stays TIMER_START_SOUND = str(RES_FOLDER / "timerstart.wav") ALARM_SOUND = str(RES_FOLDER / "alarm.wav") GROWTH_SOUND = str(RES_FOLDER/ "growth.waw") effect_volume = 100 # How loud sound effects are, not including ambience and music. __all__ = ["run_app"] def get_user_config_directory(): """Returns a platform-specific root directory for user config settings.""" # On Windows, prefer %LOCALAPPDATA%, then %APPDATA%, since we can expect the # AppData directories to be ACLed to be visible only to the user and admin # users (https://stackoverflow.com/a/7617601/1179226). If neither is set, # return None instead of falling back to something that may be world-readable. if os.name == "nt": appdata = os.getenv("LOCALAPPDATA") if appdata: return appdata appdata = os.getenv("APPDATA") if appdata: return appdata return None # On non-windows, use XDG_CONFIG_HOME if set, else default to ~/.config. xdg_config_home = os.getenv("XDG_CONFIG_HOME") if xdg_config_home: return xdg_config_home return os.path.join(os.path.expanduser("~"), ".config") def play_sound(sound): if SOUNDS_MUTED and sound != ALARM_SOUND: return media = vlc.MediaPlayer(sound) media.audio_set_volume(effect_volume) media.play() def toggle_sounds(): global SOUNDS_MUTED SOUNDS_MUTED = not SOUNDS_MUTED def isinternet(): try: urllib.request.urlopen("https://youtube.com", timeout = 10) #Python 3.x return True except: return False def replaceNth( s, source, target, n ): # code from stack overflow, replaces nth occurence of an item. inds = [ i for i in range(len(s) - len(source) + 1) if s[i : i + len(source)] == source ] if len(inds) < n: return s # or maybe raise an error s = list(s) # can't assign to string slices. So, let's listify s[ inds[n - 1] : inds[n - 1] + len(source) ] = target # do n-1 because we start from the first occurrence of the string, not the 0-th return "".join(s) def addtext( x, y, text, anilen, stdscr, color_pair ): # adds and animates text in the center text = replaceNth( text[: int(anilen)], " ", "#", 8 ) # aads "#" after the 7th word to split line text = text.split("#") # splits text into 2 list for i in range(len(text)): stdscr.addstr( y + i, int(x - len(text[i]) / 2), str(text[i]), curses.color_pair(color_pair), ) # displays the list in 2 lines def getrandomline(file): # returns random quote lines = open(file, encoding="utf8").read().splitlines() myline = random.choice(lines) return myline def getqt(): # returns random quote return getrandomline(QUOTE_FILE) def printart( stdscr, file, x, y, color_pair ): # prints line one by one to display text art, also in the middle with open(file, "r", encoding="utf8") as f: lines = f.readlines() for i in range(len(lines)): stdscr.addstr( y + i - len(lines), x - int(len(max(lines, key=len)) / 2), lines[i], curses.color_pair(color_pair), ) def key_events(stdscr, tree1, maxx): global effect_volume # Used for setting the sound effect volume with '{' and '}' key = stdscr.getch() if key in (curses.KEY_UP, ord("k")): tree1.showtimer = True tree1.selectedtimer -= 1 tree1.timerhidetime = int(time.time()) + 5 if key in (curses.KEY_DOWN, ord("j")): tree1.showtimer = True tree1.selectedtimer += 1 tree1.timerhidetime = int(time.time()) + 5 if key == curses.KEY_ENTER or key == 10 or key == 13: # this is enter key if tree1.showtimer: if tree1.currentmenu == "timer": tree1.starttimer(tree1.selectedtimer, stdscr, maxx) else: tree1.featureselect(tree1.selectedtimer, maxx, stdscr) play_sound(TIMER_START_SOUND) tree1.showtimer = False if tree1.breakover: tree1.breakover = False tree1.starttimer(tree1.selectedtimer, stdscr, maxx) play_sound(TIMER_START_SOUND) if key == ord("q"): treedata = open(RES_FOLDER / "treedata", "wb") pickle.dump(tree1.age, treedata, protocol=None) treedata.close() exit() if key == ord("u"): toggle_sounds() if key in (curses.KEY_RIGHT, ord("l")): if tree1.showtimer: tree1.selectedtimer = 0 tree1.currentmenu = "feature" else: tree1.radiomode = False tree1.music_list_num += 1 if tree1.music_list_num > len(tree1.music_list) - 1: tree1.music_list_num = len(tree1.music_list) - 1 tree1.media.stop() tree1.media = vlc.MediaPlayer(tree1.music_list[tree1.music_list_num]) tree1.media.play() tree1.show_music = True tree1.musichidetime = int(time.time()) + 5 if key in (curses.KEY_LEFT, ord("h")): if tree1.showtimer: tree1.selectedtimer = 0 tree1.currentmenu = "timer" else: tree1.radiomode = False tree1.music_list_num -= 1 if tree1.music_list_num < 0: tree1.music_list_num = 0 tree1.media.stop() tree1.media = vlc.MediaPlayer(tree1.music_list[tree1.music_list_num]) tree1.media.play() tree1.show_music = True tree1.musichidetime = int(time.time()) + 5 if key == ord(" "): if tree1.media.is_playing(): tree1.media.pause() tree1.pause = True tree1.pausetime = time.time() if key == ord("m"): tree1.media.pause() if not tree1.isloading and key == ord("n"): tree1.lofiradio() if key == ord("]"): tree1.media.audio_set_volume(min(100, tree1.media.audio_get_volume()+1)) tree1.notifyendtime = int(time.time()) + 2 volume = str(round(tree1.media.audio_get_volume())) + "%" tree1.notifystring = " "*round(maxx*(tree1.media.audio_get_volume()/100)-len(volume)-2) + volume tree1.invert = True tree1.isnotify = True if key == ord("["): tree1.media.audio_set_volume(max(0, tree1.media.audio_get_volume()-1)) tree1.notifyendtime = int(time.time()) + 2 volume = str(round(tree1.media.audio_get_volume())) + "%" tree1.notifystring = " "*round(maxx*(tree1.media.audio_get_volume()/100)-len(volume)-2) + volume tree1.invert = True tree1.isnotify = True tree1.media.audio_set_volume(max(0, tree1.media.audio_get_volume()-1)) tree1.notifyendtime = int(time.time()) + 2 if key == ord("}"): effect_volume = min(100, effect_volume+1) tree1.notifyendtime = int(time.time()) + 2 volume = str(effect_volume) + "%" tree1.notifystring = " "*round(maxx*(effect_volume/100)-len(volume)-2) + volume tree1.invert = True tree1.isnotify = True if key == ord("{"): effect_volume = max(0, effect_volume-1) tree1.notifyendtime = int(time.time()) + 2 volume = str(effect_volume) + "%" tree1.notifystring = " "*round(maxx*(effect_volume/100)-len(volume)-2) + volume tree1.invert = True tree1.isnotify = True if key == ord("="): if tree1.media.get_time()+10000 < tree1.media.get_length(): tree1.media.set_time(i_time=tree1.media.get_time()+10000) else: tree1.media.set_time(tree1.media.get_length()-1) time_sec = tree1.media.get_time()/1000 display_time = str(int(time_sec / 60)).zfill(2) + ":" + str(int(time_sec) % 60).zfill(2) tree1.notifyendtime = int(time.time()) + 2 try: tree1.notifystring = " "*(round(maxx*(tree1.media.get_time()/tree1.media.get_length()))-len(display_time)) + display_time except ZeroDivisionError: pass tree1.invert = True tree1.isnotify = True if key == ord("-"): if tree1.media.get_time()-10000 > 0: tree1.media.set_time(i_time=tree1.media.get_time()-10000) else: tree1.media.set_time(0) time_sec = tree1.media.get_time()/1000 display_time = str(int(time_sec / 60)).zfill(2) + ":" + str(int(time_sec) % 60).zfill(2) tree1.notifyendtime = int(time.time()) + 2 tree1.notifystring = " "*(round(maxx*(tree1.media.get_time()/tree1.media.get_length()))-len(display_time)) + display_time tree1.invert = True tree1.isnotify = True if key == ord("r"): if tree1.isloop: tree1.isloop = False else: tree1.isloop = True tree1.notifyendtime = int(time.time()) + 2 tree1.notifystring = "REPEAT: " + str(tree1.isloop) tree1.invert = False tree1.isnotify = True for i in range(10): if key == ord(str(i)): tree1.media.set_time(i_time=int(tree1.media.get_length()*(i/10))) time_sec = tree1.media.get_time()/1000 display_time = str(int(time_sec / 60)).zfill(2) + ":" + str(int(time_sec) % 60).zfill(2) tree1.notifyendtime = int(time.time()) + 2 tree1.notifystring = " "*(round(maxx*(tree1.media.get_time()/tree1.media.get_length()))-len(display_time)) + display_time tree1.invert = True tree1.isnotify = True def GetSong(link): video = YouTube("http://youtube.com/" + link.split("/")[-1] ) try: video.streams except: return "WRONG LINK ERROR" try: songfile = str(video.streams.get_by_itag(251).download(timeout=30)) except: return "DOWNLOAD ERROR" return songpath def GetLinks(search_string): html = urllib.request.urlopen("https://www.youtube.com/results?search_query=" + search_string.replace(" ", "+")) video_ids = re.findall(r"watch\?v=(\S{11})", html.read().decode()) return "http://youtube.com/watch?v=" + str(video_ids[0]) #print(GetSong(GetLinks(input()))) #time.sleep(100) class tree: def __init__(self, stdscr, age): self.stdscr = stdscr self.age = age self.show_music = False self.music_list = list(_ for _ in RES_FOLDER.glob("*ogg")) self.music_list_num = 0 self.media = vlc.MediaPlayer(str(self.music_list[self.music_list_num])) self.pause = False self.showtimer = False self.timerlist = [ " POMODORO {}+{} ".format(TIMER_WORK_MINS[0], TIMER_BREAK_MINS[0]), " POMODORO {}+{} ".format(TIMER_WORK_MINS[1], TIMER_BREAK_MINS[1]), " POMODORO {}+{} ".format(TIMER_WORK_MINS[2], TIMER_BREAK_MINS[2]), " POMODORO {}+{} ".format(TIMER_WORK_MINS[3], TIMER_BREAK_MINS[3]), " CUSTOM TIMER ", " END TIMER NOW ", ] self.featurelist = [ " PLAY MUSIC FROM YOUTUBE ", " LOFI RADIO 1 ", " LOFI RADIO 2 ", " LOFI RADIO 3 ", " CUSTOM PLAYLIST " ] self.currentmenu = "timer" self.selectedtimer = 0 self.istimer = False self.isbreak = False self.breakover = False self.timerhidetime = 0 self.musichidetime = 0 random.seed(int(time.time() / (60 * 60 * 24))) self.season = random.choice( ["rain", "heavy_rain", "light_rain", "snow", "windy"] ) random.seed() self.youtubedisplay = False self.downloaddisplay = False self.spinnerstate = 0 self.notifyendtime = 0 self.isnotify = False self.notifystring = " " self.playlist = Playlist("https://www.youtube.com/playlist?list=PL6fhs6TSspZvN45CPJApnMYVsWhkt55h7") self.radiomode = False self.isloading = False self.invert = False self.breakendtext = "BREAK IS OVER, PRESS ENTER TO START NEW TIMER" self.isloop = False def display(self, maxx, maxy, seconds): if self.age >= 1 and self.age < 5: self.artfile = str(RES_FOLDER/"p1.txt") if self.age >= 5 and self.age < 10: self.artfile = str(RES_FOLDER/"p2.txt") if self.age >= 10 and self.age < 20: self.artfile = str(RES_FOLDER/"p3.txt") if self.age >= 20 and self.age < 30: self.artfile = str(RES_FOLDER/"p4.txt") if self.age >= 30 and self.age < 40: self.artfile = str(RES_FOLDER/"p5.txt") if self.age >= 40 and self.age < 70: self.artfile = str(RES_FOLDER/"p6.txt") if self.age >= 70 and self.age < 120: self.artfile = str(RES_FOLDER/"p7.txt") if self.age >= 120 and self.age < 200: self.artfile = str(RES_FOLDER/"p8.txt") if self.age >= 200: self.artfile = str(RES_FOLDER/"p9.txt") printart(self.stdscr, self.artfile, int(maxx / 2), int(maxy * 3 / 4), 1) addtext( int(maxx / 2), int(maxy * 3 / 4), "age: " + str(int(self.age)) + " ", -1, self.stdscr, 3, ) # RAIN def rain(self, maxx, maxy, seconds, intensity, speed, char, color_pair): random.seed( int(seconds / speed) ) # this keeps the seed same for some time, so rains looks like its going slowly # printart(self.stdscr, 'res/rain1.txt', int(maxx/2), int(maxy*3/4), 4) for i in range(intensity): ry = random.randrange(int(maxy * 1 / 4), int(maxy * 3 / 4)) rx = random.randrange(int(maxx / 3), int(maxx * 2 / 3)) self.stdscr.addstr(ry, rx, char, curses.color_pair(color_pair)) random.seed() def seasons(self, maxx, maxy, seconds): if self.season == "rain": self.rain(maxx, maxy, seconds, 30, 30, "/", 4) if self.season == "light_rain": self.rain(maxx, maxy, seconds, 30, 60, "`", 4) if self.season == "heavy_rain": self.rain(maxx, maxy, seconds, 40, 20, "/", 4) if self.season == "snow": self.rain(maxx, maxy, seconds, 30, 30, ".", 5) if self.season == "windy": self.rain(maxx, maxy, seconds, 20, 30, "-", 4) def notify(self, stdscr, maxy, maxx): if self.isnotify and time.time() <= self.notifyendtime: curses.textpad.rectangle(stdscr, 0,0,2, maxx-1) if self.invert: stdscr.addstr(1,1, self.notifystring[:maxx-2], curses.A_BOLD | curses.A_REVERSE) else: stdscr.addstr(1,1, self.notifystring[:maxx-2], curses.A_BOLD) self.downloaddisplay = False #self.invert = False def menudisplay(self, stdscr, maxy, maxx): if self.showtimer: if self.currentmenu == "timer": if self.selectedtimer > len(self.timerlist) - 1: self.selectedtimer = len(self.timerlist) - 1 if self.selectedtimer < 0: self.selectedtimer = 0 if self.currentmenu == "feature": if self.selectedtimer > len(self.featurelist) - 1: self.selectedtimer = len(self.featurelist) - 1 if self.selectedtimer < 0: self.selectedtimer = 0 for i in range(len(self.timerlist)): if i == self.selectedtimer and self.currentmenu == "timer": stdscr.addstr( int((maxy - len(self.timerlist)*2) / 2) + i * 2, int(maxx / 25 + 4), self.timerlist[i], curses.A_REVERSE, ) else: stdscr.addstr( int((maxy - len(self.timerlist)*2) / 2) + i * 2, int(maxx / 25), self.timerlist[i], ) for i in range(len(self.featurelist)): if i == self.selectedtimer and self.currentmenu == "feature": stdscr.addstr( int((maxy - len(self.featurelist)*2) / 2) + i * 2, int(maxx * 24 / 25 - len(self.featurelist[i])) - 4, self.featurelist[i], curses.A_REVERSE, ) else: stdscr.addstr( int((maxy - len(self.featurelist)*2) / 2) + i * 2, int(maxx * 24 / 25 - len(self.featurelist[i])), self.featurelist[i], ) if int(time.time()) >= self.timerhidetime: self.showtimer = False if self.istimer: self.secondsleft = int(self.workendtime) - int(time.time()) timertext = ( "Break in: " + str(int(self.secondsleft / 60)).zfill(2) + ":" + str(self.secondsleft % 60).zfill(2) ) stdscr.addstr( int(maxy * 10 / 11), int(maxx / 2 - len(timertext) / 2), timertext ) if self.breakover: self.stdscr.addstr( int(maxy * 10 / 11), int( maxx / 2 - len(self.breakendtext) / 2 ), self.breakendtext, curses.A_BLINK | curses.A_BOLD, ) def breakstart(self): if self.istimer: play_sound(ALARM_SOUND) if self.media.is_playing(): self.media.pause() self.breakendtime = int(time.time()) + self.breaktime self.istimer = False self.isbreak = True def breakdisplay(self, maxx, maxy): self.secondsleft = int(self.breakendtime) - int(time.time()) timertext = ( "Break ends in: " + str(int(self.secondsleft / 60)).zfill(2) + ":" + str(self.secondsleft % 60).zfill(2) ) self.stdscr.addstr( int(maxy * 10 / 11), int(maxx / 2 - len(timertext) / 2), timertext ) if self.secondsleft == 0: self.media.play() self.isbreak = False self.breakover = True play_sound(ALARM_SOUND) def timer(self): if self.istimer and int(time.time()) == int(self.workendtime): self.breakstart() def starttimer(self, inputtime, stdscr, maxx): if inputtime == 5: self.breakendtext = "TIMER IS OVER, PRESS ENTER" self.worktime = 0 self.breaktime = 0 self.istimer == False elif inputtime == 4: try: curses.textpad.rectangle(stdscr, 0,0,2, maxx-1) stdscr.addstr(1,1, "ENTER WORK LENGTH (min) : ") stdscr.refresh() curses.echo() curses.nocbreak() stdscr.nodelay(False) stdscr.keypad(False) curses.curs_set(1) self.worktime = int(stdscr.getstr())*60 stdscr.addstr(1,1, " "*(maxx-2)) stdscr.addstr(1,1, "ENTER BREAK LENGTH (min) : ") stdscr.refresh() self.breaktime = int(stdscr.getstr())*60 curses.noecho() curses.cbreak() stdscr.nodelay(True) stdscr.keypad(True) curses.curs_set(0) self.istimer = True except ValueError: curses.noecho() curses.cbreak() stdscr.nodelay(True) stdscr.keypad(True) curses.curs_set(0) self.notifystring = "VALUE ERROR, PLEASE ENTER AN INTEGER" self.notifyendtime = int(time.time())+5 self.isnotify = True return 0 else: self.breakendtext = "BREAK IS OVER, PRESS ENTER TO START NEW TIMER" self.istimer = True self.worktime = TIMER_WORK[inputtime] self.breaktime = TIMER_BREAK[inputtime] self.workendtime = int(time.time()) + self.worktime def featureselect(self, inputfeature, maxx, stdscr): self.radiomode = False if inputfeature == 0: if hasattr(self, "media"): self.media.stop() self.youtubedisplay = True if inputfeature == 1: self.playlist = Playlist("https://www.youtube.com/playlist?list=PLOzDu-MXXLliO9fBNZOQTBDddoA3FzZUo") self.lofiradio() if inputfeature == 2: self.playlist = Playlist("https://www.youtube.com/playlist?list=PL0ONFXpPDe_mtm3ciwL-v7EE-7yLHDlP8") self.lofiradio() if inputfeature == 3: self.playlist = Playlist("https://www.youtube.com/playlist?list=PLKYTmz7SemaqVDF6XJ15bv_8-j7ckkNgb") self.lofiradio() if inputfeature == 4: curses.textpad.rectangle(stdscr, 0,0,2, maxx-1) stdscr.addstr(1,1, "ENTER PLAyLIST LINK : ") stdscr.refresh() curses.echo() curses.nocbreak() stdscr.nodelay(False) stdscr.keypad(False) curses.curs_set(1) self.playlist = Playlist(stdscr.getstr().decode("utf-8")) curses.noecho() curses.cbreak() stdscr.nodelay(True) stdscr.keypad(True) curses.curs_set(0) self.lofiradio() def loading(self, stdscr, maxx): spinner = [ "[ ]", "[= ]", "[== ]", "[=== ]", "[ ===]", "[ ==]", "[ =]", "[ ]", "[ =]", "[ ==]", "[ ===]", "[====]", "[=== ]", "[== ]", "[= ]" ] self.spinnerstate+=0.5 if self.spinnerstate > len(spinner)-1: self.spinnerstate = 0 curses.textpad.rectangle(stdscr, 0,0,2, maxx-1) stdscr.addstr(1,1, "GETTING AUDIO " + spinner[int(self.spinnerstate)]) def youtube(self, stdscr, maxx): if self.youtubedisplay: curses.textpad.rectangle(stdscr, 0,0,2, maxx-1) stdscr.addstr(1,1, "ENTER SEARCH QUERY/LINK : ") stdscr.refresh() if not "songinput" in locals(): curses.echo() curses.nocbreak() stdscr.nodelay(False) stdscr.keypad(False) curses.curs_set(1) songinput = stdscr.getstr().decode("utf-8") curses.noecho() curses.cbreak() stdscr.nodelay(True) stdscr.keypad(True) curses.curs_set(0) stdscr.addstr(1,1, "GETTING AUDIO") getsongthread = threading.Thread(target=self.playyoutube, args=(songinput,)) getsongthread.daemon = True getsongthread.start() self.youtubedisplay = False self.downloaddisplay = True del songinput if self.downloaddisplay: self.loading(stdscr, maxx) def playyoutube(self, songinput): try: yt = YouTube(GetLinks(songinput)) song = yt.streams.get_by_itag(251).url self.media = vlc.MediaPlayer(song) self.media.play() except: self.notifyendtime = int(time.time()) + 5 self.notifystring = "ERROR GETTING AUDIO, PLEASE TRY AGAIN" self.isnotify = True exit() self.downloaddisplay = False self.yt_title = yt.title self.notifyendtime = int(time.time()) + 10 self.notifystring = "Playing: " + self.yt_title self.invert = False self.isnotify = True def getlofisong(self): # some links dont work, use recursion to find a link which works try: self.lofilink = random.choice(self.playlist.video_urls) link = YouTube(self.lofilink).streams.get_by_itag(251).url return link except: self.isloading = False self.notifyendtime = int(time.time()) + 10 self.notifystring = "UNABLE TO CONNECT, PLEASE CHECK INTERNET CONNECTION" self.invert = False self.isnotify = True self.radiomode = False exit() def lofiradio(self): #lofi playlist from youtube self.media.stop() self.isloading = True self.radiomode = True radiothread = threading.Thread(target=self.actuallofiradio) radiothread.daemon = True radiothread.start() def actuallofiradio(self): if not hasattr(self, "lofisong"): self.lofisong = self.getlofisong() if self.lofisong == "ERROR": exit() self.media = vlc.MediaPlayer(self.lofisong) self.media.play() self.notifyendtime = int(time.time()) + 10 self.notifystring = "Playing: " + YouTube(self.lofilink).title self.invert = False self.isnotify = True self.lofisong = self.getlofisong() self.isloading = False def main(): run = True stdscr = curses.initscr() stdscr.nodelay(True) stdscr.keypad(True) curses.curs_set(0) curses.start_color() curses.noecho() curses.cbreak() curses.use_default_colors() try: curses.init_pair(1, 113, -1) # passive selected text inner, outer curses.init_pair(2, 85, -1) # timer color inner, outer curses.init_pair(3, 3, -1) # active selected inner, outer curses.init_pair(4, 51, -1) # border color inner, outer curses.init_pair(5, 15, -1) curses.init_pair(6, 1, -1) curses.init_pair(7, curses.COLOR_YELLOW, -1) except: curses.init_pair(1, 1, 0) # passive selected text inner, outer curses.init_pair(2, 1, 0) # timer color inner, outer curses.init_pair(3, 1, 0) # active selected inner, outer curses.init_pair(4, 1, 0) # border color inner, outer curses.init_pair(5, 1, 0) curses.init_pair(6, 1, 0) curses.init_pair(7, 1, 0) seconds = 5 anilen = 1 anispeed = 1 music_volume = 0 music_volume_max = 1 quote = getqt() play_sound(GROWTH_SOUND) tree1 = tree(stdscr, 1) tree1.media.play() try: treedata_in = open(RES_FOLDER/ "treedata", "rb") tree1.age = pickle.load(treedata_in) except: tree1.age = 1 try: while run: start = time.time() try: stdscr.erase() maxy, maxx = stdscr.getmaxyx() addtext(int(maxx / 2), int(maxy * 5 / 6), quote, anilen, stdscr, 2) anilen += anispeed if anilen > 150: anilen = 150 if (seconds % (100 * 60 * 10) == 0): # show another quote every 5 min, and grow tree quote = getqt() tree1.age += 1 anilen = 1 play_sound(GROWTH_SOUND) if tree1.musichidetime <= int(time.time()): tree1.show_music = False if tree1.show_music: if os.name == "posix": showtext = ( "Playing: " + str(tree1.music_list[tree1.music_list_num]).split("/")[-1] ) else: showtext = ( "Playing: " + str(tree1.music_list[tree1.music_list_num]).split('\\')[-1] ) stdscr.addstr( int(maxy / 10), int(maxx / 2 - len(showtext) / 2), showtext, curses.A_BOLD, ) tree1.display(maxx, maxy, seconds) tree1.seasons(maxx, maxy, seconds) tree1.menudisplay(stdscr, maxy, maxx) tree1.youtube(stdscr, maxx) tree1.timer() if tree1.media.is_playing() and tree1.media.get_length() - tree1.media.get_time() < 1000 : if tree1.radiomode: tree1.lofiradio() if tree1.isloop: tree1.media.set_position(0) else: tree1.media.stop() tree1.media = vlc.MediaPlayer(tree1.music_list[tree1.music_list_num]) tree1.media.play() if tree1.isloading: tree1.loading(stdscr, maxx) tree1.notify(stdscr, maxy, maxx) key_events(stdscr, tree1, maxx) while tree1.pause: stdscr.erase() stdscr.addstr( int(maxy * 3 / 5), int(maxx / 2 - len("PAUSED") / 2), "PAUSED", curses.A_BOLD, ) key = stdscr.getch() if key == ord(" "): tree1.pause = False tree1.media.play() stdscr.refresh() if tree1.istimer: tree1.workendtime += time.time() - tree1.pausetime if key == ord("q"): treedata = open(RES_FOLDER / "treedata", "wb") pickle.dump(tree1.age, treedata, protocol=None) treedata.close() exit() time.sleep(0.1) while tree1.isbreak: stdscr.erase() stdscr.addstr( int(maxy * 3 / 5), int(maxx / 2 - len("PRESS SPACE TO END BREAK") / 2), "PRESS SPACE TO END BREAK", curses.A_BOLD, ) tree1.breakdisplay(maxx, maxy) stdscr.refresh() key = stdscr.getch() if key == ord(" "): tree1.isbreak = False tree1.media.play() stdscr.refresh() if key == ord("q"): treedata = open(RES_FOLDER / "treedata", "wb") pickle.dump(tree1.age, treedata, protocol=None) treedata.close() exit() time.sleep(0.1) time.sleep(max(0.05 - (time.time() - start), 0)) #time.sleep(0.1) seconds += 5 except KeyboardInterrupt: try: stdscr.erase() stdscr.addstr( int(maxy * 3 / 5), int(maxx / 2 - len("PRESS 'q' TO EXIT") / 2), "PRESS 'q' TO EXIT", curses.A_BOLD, ) stdscr.refresh() time.sleep(1) except KeyboardInterrupt: pass stdscr.refresh() finally: curses.echo() curses.nocbreak() curses.curs_set(1) stdscr.keypad(False) stdscr.nodelay(False) curses.endwin() def run_app(): """A method to run the app""" global QUOTE_FILE config_file = Path(get_user_config_directory()) / "wisdom-tree" / QUOTE_FILE_NAME if config_file.exists(): QUOTE_FILE = config_file main() if __name__ == "__main__": # avoid running the app if the module is imported run_app()
main.py
from spotify import DOWNLOADMP3 as SONGDOWNLOADER import telepot import spotify import requests import threading import os if 'BOT_TOKEN' in os.environ: token = os.environ.get('BOT_TOKEN') else: token = 'token bot' bot = telepot.Bot(token) sort = {} def txtfinder(txt): a = txt.find("https://open.spotify.com") txt = txt[a:] return txt def cantfind(chat_id): bot.sendSticker(chat_id, 'CAACAgQAAxkBAAENH5phv52sd0Wz8El4xl4k917O2-lTFQACiAwAApR9AAFScJSLLR94puIjBA') bot.sendMessage(chat_id, "can't find it") def cantfindone(chat_id): bot.sendSticker(chat_id, 'AAMCBAADGQEAAQ0fmmG_nax3RbPwSXjGXiT3Xs7b6VMVAAKIDAAClH0AAVJwlIstH3im4gEAB20AAyME') bot.sendMessage(chat_id, "can't download one of them") def downloader(link,chat_id,type): PLAYLIST = False if type=='AL': ITEMS = spotify.album(link) elif type == 'AR': ITEMS = spotify.artist(link) elif type == 'PL': ITEMS = spotify.playlist(link) PLAYLIST = True else: ITEMS = [] MESSAGE = "" COUNT = 0 for song in ITEMS: if PLAYLIST: song = song['track'] COUNT+=1 MESSAGE += f"{COUNT}. {song['name']}\n" bot.sendMessage(chat_id, MESSAGE) for song in ITEMS: if PLAYLIST: song = song['track'] try: SONGDOWNLOADER(song['href'], chat_id) except: cantfindone(chat_id) def START(msg,chat_id): print(f"{chat_id}:{msg}") msglink = txtfinder(msg) if msglink[:30]==('https://open.spotify.com/album') : downloader(msg,chat_id,'AL') elif msglink[:30]== ('https://open.spotify.com/track') : try: SONGDOWNLOADER(msg, chat_id) except: bot.sendSticker(chat_id, 'CAACAgQAAxkBAAIFSWBF_m3GHUtZJxQzobvD_iWxYVClAAJuAgACh4hSOhXuVi2-7-xQHgQ') bot.sendMessage(chat_id, "can't download music") elif msg[:33] == 'https://open.spotify.com/playlist': downloader(msg,chat_id,'PL') elif msglink[:31] == ('https://open.spotify.com/artist'): downloader(msg,chat_id,'AR') elif msg == "/start": bot.sendMessage(chat_id, "Hi \nsend me spotify link and I'll give you music\nor use /single or /album or " "/artist") elif msg == "/album": sort[chat_id]='album' bot.sendMessage(chat_id, 'send name and name of artist like this: \nName album\nor for better search use this:\nName album - Name artist') elif msg == '/single': sort[chat_id]='single' bot.sendMessage(chat_id,'send name and name of artist like this: \nName song\nor for better search use this:\nName song - Name artist') elif msg == '/artist': sort[chat_id]='artist' bot.sendMessage(chat_id,'send name and name of artist like this: \nName artist') else: try: if sort[chat_id]=='artist': try: downloader(spotify.searchartist(msg),chat_id,'AR') del sort[chat_id] except: cantfind(chat_id) elif sort[chat_id]=='album': try: downloader(spotify.searchalbum(msg),chat_id,'AL') del sort[chat_id] except: cantfind(chat_id) elif sort[chat_id]=='single': try: SONGDOWNLOADER(spotify.searchsingle(msg), chat_id) del sort[chat_id] except: cantfind(chat_id) except: bot.sendSticker(chat_id, 'CAACAgQAAxkBAAIBFGBLNcpfFcTLxnn5lR20ZbE2EJbrAAJRAQACEqdqA2XZDc7OSUrIHgQ') bot.sendMessage(chat_id,'send me link or use /single or /album or /artist') print('Listening ...') tokenurl = f'https://api.telegram.org/bot{token}' Update = tokenurl+"/getUpdates" def UPDATE(): MESSAGES = requests.get(Update).json() return MESSAGES['result'] while 1: if threading.activeCount()-1 < 15: try: for message in UPDATE(): offset = message['update_id']+1 offset = Update+f"?offset={offset}" offset = requests.post(offset) msg = message['message']['text'] chat_id = message['message']['from']['id'] thread = threading.Thread(target=START,args=(msg,chat_id)) thread.start() except: pass
python_production_server.py
import flask import sys import inspect import uuid import numpy as np import collections import threading import importlib import pkgutil _archives = {} _type_map = { str: 'char', float: 'double', int: 'int32', bool: 'logical', 'bool': 'logical', 'float64': 'double', 'float32': 'single', 'int8': 'int8', 'int16': 'int16', 'int32': 'int32', 'int64': 'int64', 'uint8': 'uint8', 'uint16': 'uint16', 'uint32': 'uint32', 'uint64': 'uint64', np.int64: 'int64', np.int32: 'int32', np.int16: 'int16', np.int8: 'int8', np.uint64: 'uint64', np.uint32: 'uint32', np.uint16: 'uint16', np.uint8: 'uint8', np.bool_: 'logical', np.float64: 'double', np.float32: 'single', } _reverse_type_map = { 'char': str, 'double': np.double, 'single': np.float32, 'int8': np.int8, 'int16': np.int16, 'int32': np.int32, 'int64': np.int64, 'uint8': np.uint8, 'uint16': np.uint16, 'uint32': np.uint32, 'uint64': np.uint64, 'logical': np.bool_, } _app = flask.Flask(__name__) _server_seq = 0 _async_requests = collections.defaultdict(dict) def _execute_function(func, params, n_arg_out=-1, output_format=None): inf_format = 'string' nan_format = 'string' output_mode = 'large' if output_format: if 'nanInfFormat' in output_format: nan_format = inf_format = output_format['nanInfFormat'] if 'mode' in output_format: output_mode = output_format['mode'] for i, par_name in enumerate(list(inspect.signature(func).parameters)): if type(params[i]) == dict and 'mwtype' in params[i]: params[i] = _reverse_type_map[params[i]['mwtype']](params[i]['mwdata']) else: annotation = func.__annotations__[par_name] if type(annotation) == np.ndarray: params[i] = np.array(params[i], dtype=annotation.dtype) else: params[i] = func.__annotations__[par_name](params[i]) result = list(_iterify(func(*params))) if n_arg_out != -1: result = result[:n_arg_out] for i in range(len(result)): if type(result[i]) == np.ndarray: result[i] = result[i].tolist() if output_mode == 'large': annotations = _iterify(func.__annotations__['return']) for i, out in enumerate(result): typ, size = _evaluate_type(annotations[i]) if type(out) == np.ndarray: size = out.shape else: # Try to set length based on element length (for strings and lists) try: size = (1, len(out)) except TypeError: # Element has no length - use default (1, 1) size size = (1, 1) result[i] = { 'mwtype': typ, 'mwsize': size, 'mwdata': list(_iterify(out)) } else: result = list(map(lambda x: list(_iterify(x)), result)) return result class _AsyncFunctionCall: def __init__(self, func, rhs, n_arg_out=-1, output_format=None, client_id=None, collection=None): self.id = uuid.uuid4().hex self.collection = collection if collection else uuid.uuid4().hex self.func = func self.rhs = rhs self.n_arg_out = n_arg_out self.output_format = output_format self.client_id = client_id if client_id else '' self.state = 'READING' self.result = [] self.last_modified_seq = _server_seq def execute(self): global _server_seq if self.state == 'CANCELLED': return self.state = 'PROCESSING' _server_seq += 1 self.last_modified_seq = _server_seq try: self.result = _execute_function(self.func, self.rhs, self.n_arg_out, self.output_format) _server_seq += 1 self.last_modified_seq = _server_seq self.state = 'READY' except Exception: _server_seq += 1 self.last_modified_seq = _server_seq self.state = 'ERROR' def cancel(self): global _server_seq _server_seq += 1 self.last_modified_seq = _server_seq self.state = 'CANCELLED' def get_representation(self): return { 'id': self.id, 'self': '/~' + self.collection + '/requests/' + self.id, 'up': '/~' + self.collection + '/requests', 'lastModifiedSeq': self.last_modified_seq, 'state': self.state, 'client': self.client_id } def _iterify(x): if isinstance(x, collections.Sequence) and type(x) != str: return x return (x,) def register_function(archive, func): global _server_seq _server_seq += 1 if archive not in _archives: _archives[archive] = { 'uuid': archive[:12] + '_' + uuid.uuid4().hex, 'functions': {} } _archives[archive]['functions'][func.__name__] = func def register_module(module): functions = list(map(lambda x: x[1], filter(lambda x: inspect.isroutine(x[1]) and not inspect.isbuiltin(x[1]), inspect.getmembers(module)))) for func in functions: m_name = module.__name__.split('.')[-1] register_function(m_name, func) def autoload_package(pkg_name): modules = list(map(lambda m: importlib.import_module(pkg_name + '.' + m.name), pkgutil.iter_modules([pkg_name]))) for module in modules: register_module(module) def _evaluate_type(annotation): if type(annotation) == np.ndarray: typ = _type_map[annotation.dtype.__str__()] size = [] for d in annotation.shape: size.append(d if d != 0 else 'X') else: typ = _type_map[annotation] size = [1, 1] if typ == 'char': size = [1, 'X'] return typ, size @_app.route('/api/discovery', methods=['GET']) def _discovery(): response = { 'discoverySchemaVersion': '1.0.0', 'archives': {} } vi = sys.version_info py_version = str(vi[0]) + '.' + str(vi[1]) + '.' + str(vi[2]) for archive_key, archive in _archives.items(): arch_response = { 'archiveSchemaVersion': '1.0.0', 'archiveUuid': archive['uuid'], 'functions': {}, 'matlabRuntimeVersion': py_version } for func_name, func in archive['functions'].items(): assert len(func.__annotations__), 'All functions must be annotated!' assert 'return' in func.__annotations__, 'Return type must be annotated!' arch_response['functions'][func_name] = { 'signatures': [{ 'help': func.__doc__, 'inputs': [], 'outputs': [] }] } for i, output in enumerate(_iterify(func.__annotations__['return'])): typ, size = _evaluate_type(output) arch_response['functions'][func.__name__]['signatures'][0]['outputs'].append({ 'mwsize': size, 'mwtype': typ, 'name': 'out' + str(i+1) }) for par_name in list(inspect.signature(func).parameters): typ, size = _evaluate_type(func.__annotations__[par_name]) arch_response['functions'][func.__name__]['signatures'][0]['inputs'].append({ 'mwsize': size, 'mwtype': typ, 'name': par_name }) response['archives'][archive_key] = arch_response return flask.jsonify(response) def _sync_request(archive_name, function_name, request_body): global _server_seq _server_seq += 1 params = request_body['rhs'] n_arg_out = request_body['nargout'] if 'nargout' in request_body else -1 output_format = request_body['outputFormat'] if 'outputFormat' in request_body else None try: func = _archives[archive_name]['functions'][function_name] result = _execute_function(func, params, n_arg_out, output_format) except KeyError: return '404 FunctionNotFound', 404 return flask.jsonify({'lhs': result}) def _async_request(archive_name, function_name, request_body, client_id=None): global _server_seq _server_seq += 1 try: func = _archives[archive_name]['functions'][function_name] except KeyError: return '404 ResourceNotFound', 404 params = request_body['rhs'] n_arg_out = request_body['nargout'] if 'nargout' in request_body else -1 output_format = request_body['outputFormat'] if 'outputFormat' in request_body else None async_call = _AsyncFunctionCall(func, params, n_arg_out, output_format, client_id) _async_requests[async_call.collection][async_call.id] = async_call response = async_call.get_representation() thread = threading.Thread(target=async_call.execute) thread.start() return flask.jsonify(response), 201 @_app.route('/<archive_name>/<function_name>', methods=['POST']) def _call_request(archive_name, function_name): mode = flask.request.args.get('mode', False) if mode and mode == 'async': client_id = flask.request.args.get('client', None) return _async_request(archive_name, function_name, flask.json.loads(flask.request.data), client_id) else: return _sync_request(archive_name, function_name, flask.json.loads(flask.request.data)) @_app.route('/<collection_id>/requests', methods=['GET']) def _get_collection(collection_id): if collection_id[0] == '~': collection_id = collection_id[1:] since = flask.request.args.get('since', None) if not since: return '400 MissingParamSince', 400 clients = flask.request.args.get('clients', None) clients = clients.split(',') if clients else None ids = flask.request.args.get('ids', None) ids = ids.split(',') if ids else None if not clients and not ids: return '400 MissingQueryParams', 400 try: response = { 'createdSeq': _server_seq, 'data': [] } for request in _async_requests[collection_id].values(): if ids and request.id in ids or clients and request.client_id in clients: response['data'].append(request.get_representation()) return flask.jsonify(response) except KeyError: return '', 404 @_app.route('/<collection_id>/requests/<request_id>', methods=['GET']) def _get_request_representation(collection_id, request_id): if collection_id[0] == '~': collection_id = collection_id[1:] try: response = _async_requests[collection_id][request_id].get_representation() return flask.jsonify(response) except KeyError: return '404 ResourceNotFound', 404 @_app.route('/<collection_id>/requests/<request_id>/info', methods=['GET']) def _get_request_status(collection_id, request_id): if collection_id[0] == '~': collection_id = collection_id[1:] try: request = _async_requests[collection_id][request_id] response = { 'request': '/~' + request.collection + '/requests/' + request.id, 'lastModifiedSeq': request.last_modified_seq, 'state': request.state } return flask.jsonify(response) except KeyError: return '404 ResourceNotFound', 404 @_app.route('/<collection_id>/requests/<request_id>/result', methods=['GET']) def _get_request_result(collection_id, request_id): if collection_id[0] == '~': collection_id = collection_id[1:] try: request = _async_requests[collection_id][request_id] if request.state == 'CANCELLED': return '410 RequestAlreadyCancelled', 410 if request.state == 'ERROR': return '500 InternalServerError', 500 if request.state == 'READY': return flask.jsonify({'lhs': request.result}) except KeyError: return '404 RequestNotFound', 404 return '500 InternalServerError', 500 @_app.route('/<collection_id>/requests/<request_id>/cancel', methods=['POST']) def _cancel_request(collection_id, request_id): if collection_id[0] == '~': collection_id = collection_id[1:] try: request = _async_requests[collection_id][request_id] if request.state == 'CANCELLED': return '410 RequestAlreadyCancelled', 410 if request.state == 'READY': return '410 RequestAlreadyCompleted', 410 if request.state == 'ERROR': return '500 InternalServerError', 500 request.cancel() return '204 No Content', 204 except KeyError: return '404 RequestNotFound', 404 return '500 InternalServerError', 500 @_app.route('/<collection_id>/requests/<request_id>', methods=['DELETE']) def _delete_request(collection_id, request_id): if collection_id[0] == '~': collection_id = collection_id[1:] try: request = _async_requests[collection_id][request_id] if request.state not in ['READY', 'ERROR', 'CANCELLED']: return '409 RequestNotCompleted', 409 del _async_requests[collection_id][request_id] return '204 No Content', 204 except KeyError: return '404 RequestNotFound', 404 return '500 InternalServerError', 500 def run(ip='0.0.0.0', port='8080'): _app.run(ip, port)
generate_train_5.py
import json import os from multiprocessing import Process def chunks(lst, n): """Yield successive n-sized chunks from lst.""" for i in range(0, len(lst), n): yield lst[i:i + n] def cut_videos(cmds, i): for i in range(len(cmds)): cmd = cmds[i] print(i, cmd) os.system(cmd) return cmds = [c.strip() for c in open("loveu_1s_cmds_5.txt").readlines()] cpu_core = 25 mp_num = max(1, int(len(cmds)/cpu_core)) splits = list(chunks(cmds, mp_num)) ps = [] for i in range(len(splits)): p = Process(target=cut_videos, args=(splits[i], i)) p.start() ps.append(p) for p in ps: p.join()
multiprocess1.py
''' 使用Process类创建多个进程 ''' # 通过下面程序的执行结果可以验证 父进程在创建子进程时复制了进程及其数据结构 # 每个进程都有自己独立的内存空间 所以进程之间共享数据只能通过IPC的方式 from multiprocessing import Process, Queue from time import sleep def sub_task(string, q): number = q.get() while number: print('%d: %s' % (number, string)) sleep(0.001) number = q.get() def main(): q = Queue(10) for number in range(1, 11): q.put(number) Process(target=sub_task, args=('Ping', q)).start() Process(target=sub_task, args=('Pong', q)).start() if __name__ == '__main__': main()
train.py
#!/usr/bin/env python """ Main training workflow """ from __future__ import division import argparse import glob import os import random import signal import time import torch #from pytorch_pretrained_bert import BertConfig from transformers import BertConfig import distributed from models import data_loader, model_builder from models.data_loader import load_dataset from models.model_builder import Summarizer from models.trainer import build_trainer from others.logging import logger, init_logger model_flags = ['hidden_size', 'ff_size', 'heads', 'inter_layers','encoder','ff_actv', 'use_interval','rnn_size'] def str2bool(v): if v.lower() in ('yes', 'true', 't', 'y', '1'): return True elif v.lower() in ('no', 'false', 'f', 'n', '0'): return False else: raise argparse.ArgumentTypeError('Boolean value expected.') def multi_main(args): """ Spawns 1 process per GPU """ init_logger() nb_gpu = args.world_size mp = torch.multiprocessing.get_context('spawn') # Create a thread to listen for errors in the child processes. error_queue = mp.SimpleQueue() error_handler = ErrorHandler(error_queue) # Train with multiprocessing. procs = [] for i in range(nb_gpu): device_id = i procs.append(mp.Process(target=run, args=(args, device_id, error_queue,), daemon=True)) procs[i].start() logger.info(" Starting process pid: %d " % procs[i].pid) error_handler.add_child(procs[i].pid) for p in procs: p.join() def run(args, device_id, error_queue): """ run process """ setattr(args, 'gpu_ranks', [int(i) for i in args.gpu_ranks]) try: gpu_rank = distributed.multi_init(device_id, args.world_size, args.gpu_ranks) print('gpu_rank %d' %gpu_rank) if gpu_rank != args.gpu_ranks[device_id]: raise AssertionError("An error occurred in \ Distributed initialization") train(args,device_id) except KeyboardInterrupt: pass # killed by parent, do nothing except Exception: # propagate exception to parent process, keeping original traceback import traceback error_queue.put((args.gpu_ranks[device_id], traceback.format_exc())) class ErrorHandler(object): """A class that listens for exceptions in children processes and propagates the tracebacks to the parent process.""" def __init__(self, error_queue): """ init error handler """ import signal import threading self.error_queue = error_queue self.children_pids = [] self.error_thread = threading.Thread( target=self.error_listener, daemon=True) self.error_thread.start() signal.signal(signal.SIGUSR1, self.signal_handler) def add_child(self, pid): """ error handler """ self.children_pids.append(pid) def error_listener(self): """ error listener """ (rank, original_trace) = self.error_queue.get() self.error_queue.put((rank, original_trace)) os.kill(os.getpid(), signal.SIGUSR1) def signal_handler(self, signalnum, stackframe): """ signal handler """ for pid in self.children_pids: os.kill(pid, signal.SIGINT) # kill children processes (rank, original_trace) = self.error_queue.get() msg = """\n\n-- Tracebacks above this line can probably be ignored --\n\n""" msg += original_trace raise Exception(msg) def wait_and_validate(args, device_id): timestep = 0 if (args.test_all): cp_files = sorted(glob.glob(os.path.join(args.model_path, 'model_step_*.pt'))) cp_files.sort(key=os.path.getmtime) xent_lst = [] for i, cp in enumerate(cp_files): step = int(cp.split('.')[-2].split('_')[-1]) xent = validate(args, device_id, cp, step) xent_lst.append((xent, cp)) max_step = xent_lst.index(min(xent_lst)) if (i - max_step > 10): break xent_lst = sorted(xent_lst, key=lambda x: x[0])[:3] logger.info('PPL %s' % str(xent_lst)) for xent, cp in xent_lst: step = int(cp.split('.')[-2].split('_')[-1]) test(args, device_id, cp, step) else: while (True): cp_files = sorted(glob.glob(os.path.join(args.model_path, 'model_step_*.pt'))) cp_files.sort(key=os.path.getmtime) if (cp_files): cp = cp_files[-1] time_of_cp = os.path.getmtime(cp) if (not os.path.getsize(cp) > 0): time.sleep(60) continue if (time_of_cp > timestep): timestep = time_of_cp step = int(cp.split('.')[-2].split('_')[-1]) validate(args, device_id, cp, step) test(args, device_id, cp, step) cp_files = sorted(glob.glob(os.path.join(args.model_path, 'model_step_*.pt'))) cp_files.sort(key=os.path.getmtime) if (cp_files): cp = cp_files[-1] time_of_cp = os.path.getmtime(cp) if (time_of_cp > timestep): continue else: time.sleep(300) def validate(args, device_id, pt, step): device = "cpu" if args.visible_gpus == '-1' else "cuda" if (pt != ''): test_from = pt else: test_from = args.test_from logger.info('Loading checkpoint from %s' % test_from) checkpoint = torch.load(test_from, map_location=lambda storage, loc: storage) opt = vars(checkpoint['opt']) for k in opt.keys(): if (k in model_flags): setattr(args, k, opt[k]) print(args) # config = BertConfig.from_json_file(args.bert_config_path) config = BertConfig.from_pretrained('bert-base-multilingual-cased') model = Summarizer(args, device, load_pretrained_bert=False, bert_config = config) model.load_cp(checkpoint) model.eval() valid_iter =data_loader.Dataloader(args, load_dataset(args, 'valid', shuffle=False), args.batch_size, device, shuffle=False, is_test=False) trainer = build_trainer(args, device_id, model, None) stats = trainer.validate(valid_iter, step) return stats.xent() def test(args, device_id, pt, step): device = "cpu" if args.visible_gpus == '-1' else "cuda" if (pt != ''): test_from = pt else: test_from = args.test_from logger.info('Loading checkpoint from %s' % test_from) checkpoint = torch.load(test_from, map_location=lambda storage, loc: storage) opt = vars(checkpoint['opt']) for k in opt.keys(): if (k in model_flags): setattr(args, k, opt[k]) print(args) # config = BertConfig.from_json_file(args.bert_config_path) config = BertConfig.from_pretrained('bert-base-multilingual-cased') model = Summarizer(args, device, load_pretrained_bert=False, bert_config = config) model.load_cp(checkpoint) model.eval() test_iter =data_loader.Dataloader(args, load_dataset(args, 'test', shuffle=False), args.batch_size, device, shuffle=False, is_test=True) trainer = build_trainer(args, device_id, model, None) trainer.test(test_iter,step) def baseline(args, cal_lead=False, cal_oracle=False): test_iter =data_loader.Dataloader(args, load_dataset(args, 'test', shuffle=False), args.batch_size, device, shuffle=False, is_test=True) trainer = build_trainer(args, device_id, None, None) # if (cal_lead): trainer.test(test_iter, 0, cal_lead=True) elif (cal_oracle): trainer.test(test_iter, 0, cal_oracle=True) def train(args, device_id): init_logger(args.log_file) device = "cpu" if args.visible_gpus == '-1' else "cuda" logger.info('Device ID %d' % device_id) logger.info('Device %s' % device) torch.manual_seed(args.seed) random.seed(args.seed) torch.backends.cudnn.deterministic = True if device_id >= 0: torch.cuda.set_device(device_id) torch.cuda.manual_seed(args.seed) torch.manual_seed(args.seed) random.seed(args.seed) torch.backends.cudnn.deterministic = True def train_iter_fct(): return data_loader.Dataloader(args, load_dataset(args, 'train', shuffle=True), args.batch_size, device, shuffle=True, is_test=False) model = Summarizer(args, device, load_pretrained_bert=True) if args.train_from != '': logger.info('Loading checkpoint from %s' % args.train_from) checkpoint = torch.load(args.train_from, map_location=lambda storage, loc: storage) opt = vars(checkpoint['opt']) for k in opt.keys(): if (k in model_flags): setattr(args, k, opt[k]) model.load_cp(checkpoint) optim = model_builder.build_optim(args, model, checkpoint) else: optim = model_builder.build_optim(args, model, None) logger.info(model) trainer = build_trainer(args, device_id, model, optim) trainer.train(train_iter_fct, args.train_steps) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument("-encoder", default='classifier', type=str, choices=['classifier','transformer','rnn','baseline']) parser.add_argument("-mode", default='train', type=str, choices=['train','validate','test']) parser.add_argument("-bert_data_path", default='../bert_data/cnndm') parser.add_argument("-model_path", default='../models/') parser.add_argument("-result_path", default='../results/cnndm') parser.add_argument("-temp_dir", default='../temp') parser.add_argument("-bert_config_path", default='../bert_config_uncased_base.json') parser.add_argument("-batch_size", default=1000, type=int) parser.add_argument("-use_interval", type=str2bool, nargs='?',const=True,default=True) parser.add_argument("-hidden_size", default=128, type=int) parser.add_argument("-ff_size", default=512, type=int) parser.add_argument("-heads", default=4, type=int) parser.add_argument("-inter_layers", default=2, type=int) parser.add_argument("-rnn_size", default=512, type=int) parser.add_argument("-param_init", default=0, type=float) parser.add_argument("-param_init_glorot", type=str2bool, nargs='?',const=True,default=True) parser.add_argument("-dropout", default=0.1, type=float) parser.add_argument("-optim", default='adam', type=str) parser.add_argument("-lr", default=1, type=float) parser.add_argument("-beta1", default= 0.9, type=float) parser.add_argument("-beta2", default=0.999, type=float) parser.add_argument("-decay_method", default='', type=str) parser.add_argument("-warmup_steps", default=8000, type=int) parser.add_argument("-max_grad_norm", default=0, type=float) parser.add_argument("-save_checkpoint_steps", default=5, type=int) parser.add_argument("-accum_count", default=1, type=int) parser.add_argument("-world_size", default=1, type=int) parser.add_argument("-report_every", default=1, type=int) parser.add_argument("-train_steps", default=1000, type=int) parser.add_argument("-recall_eval", type=str2bool, nargs='?',const=True,default=False) parser.add_argument('-visible_gpus', default='-1', type=str) parser.add_argument('-gpu_ranks', default='0', type=str) parser.add_argument('-log_file', default='../logs/cnndm.log') parser.add_argument('-dataset', default='') parser.add_argument('-seed', default=666, type=int) parser.add_argument("-test_all", type=str2bool, nargs='?',const=True,default=False) parser.add_argument("-test_from", default='') parser.add_argument("-train_from", default='') parser.add_argument("-report_rouge", type=str2bool, nargs='?',const=True,default=True) parser.add_argument("-block_trigram", type=str2bool, nargs='?', const=True, default=True) args = parser.parse_args() args.gpu_ranks = [int(i) for i in args.gpu_ranks.split(',')] os.environ["CUDA_VISIBLE_DEVICES"] = args.visible_gpus init_logger(args.log_file) device = "cpu" if args.visible_gpus == '-1' else "cuda" device_id = 0 if device == "cuda" else -1 if(args.world_size>1): multi_main(args) elif (args.mode == 'train'): train(args, device_id) elif (args.mode == 'validate'): wait_and_validate(args, device_id) elif (args.mode == 'lead'): baseline(args, cal_lead=True) elif (args.mode == 'oracle'): baseline(args, cal_oracle=True) elif (args.mode == 'test'): cp = args.test_from try: step = int(cp.split('.')[-2].split('_')[-1]) except: step = 0 test(args, device_id, cp, step)
_cancel_many_calls_test.py
# Copyright 2016, Google Inc. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following disclaimer # in the documentation and/or other materials provided with the # distribution. # * Neither the name of Google Inc. nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """Test making many calls and immediately cancelling most of them.""" import threading import unittest from grpc._cython import cygrpc from grpc.framework.foundation import logging_pool from tests.unit.framework.common import test_constants _INFINITE_FUTURE = cygrpc.Timespec(float('+inf')) _EMPTY_FLAGS = 0 _EMPTY_METADATA = cygrpc.Metadata(()) _SERVER_SHUTDOWN_TAG = 'server_shutdown' _REQUEST_CALL_TAG = 'request_call' _RECEIVE_CLOSE_ON_SERVER_TAG = 'receive_close_on_server' _RECEIVE_MESSAGE_TAG = 'receive_message' _SERVER_COMPLETE_CALL_TAG = 'server_complete_call' _SUCCESS_CALL_FRACTION = 1.0 / 8.0 class _State(object): def __init__(self): self.condition = threading.Condition() self.handlers_released = False self.parked_handlers = 0 self.handled_rpcs = 0 def _is_cancellation_event(event): return ( event.tag is _RECEIVE_CLOSE_ON_SERVER_TAG and event.batch_operations[0].received_cancelled) class _Handler(object): def __init__(self, state, completion_queue, rpc_event): self._state = state self._lock = threading.Lock() self._completion_queue = completion_queue self._call = rpc_event.operation_call def __call__(self): with self._state.condition: self._state.parked_handlers += 1 if self._state.parked_handlers == test_constants.THREAD_CONCURRENCY: self._state.condition.notify_all() while not self._state.handlers_released: self._state.condition.wait() with self._lock: self._call.start_batch( cygrpc.Operations( (cygrpc.operation_receive_close_on_server(_EMPTY_FLAGS),)), _RECEIVE_CLOSE_ON_SERVER_TAG) self._call.start_batch( cygrpc.Operations((cygrpc.operation_receive_message(_EMPTY_FLAGS),)), _RECEIVE_MESSAGE_TAG) first_event = self._completion_queue.poll() if _is_cancellation_event(first_event): self._completion_queue.poll() else: with self._lock: operations = ( cygrpc.operation_send_initial_metadata( _EMPTY_METADATA, _EMPTY_FLAGS), cygrpc.operation_send_message(b'\x79\x57', _EMPTY_FLAGS), cygrpc.operation_send_status_from_server( _EMPTY_METADATA, cygrpc.StatusCode.ok, b'test details!', _EMPTY_FLAGS), ) self._call.start_batch( cygrpc.Operations(operations), _SERVER_COMPLETE_CALL_TAG) self._completion_queue.poll() self._completion_queue.poll() def _serve(state, server, server_completion_queue, thread_pool): for _ in range(test_constants.RPC_CONCURRENCY): call_completion_queue = cygrpc.CompletionQueue() server.request_call( call_completion_queue, server_completion_queue, _REQUEST_CALL_TAG) rpc_event = server_completion_queue.poll() thread_pool.submit(_Handler(state, call_completion_queue, rpc_event)) with state.condition: state.handled_rpcs += 1 if test_constants.RPC_CONCURRENCY <= state.handled_rpcs: state.condition.notify_all() server_completion_queue.poll() class _QueueDriver(object): def __init__(self, condition, completion_queue, due): self._condition = condition self._completion_queue = completion_queue self._due = due self._events = [] self._returned = False def start(self): def in_thread(): while True: event = self._completion_queue.poll() with self._condition: self._events.append(event) self._due.remove(event.tag) self._condition.notify_all() if not self._due: self._returned = True return thread = threading.Thread(target=in_thread) thread.start() def events(self, at_least): with self._condition: while len(self._events) < at_least: self._condition.wait() return tuple(self._events) class CancelManyCallsTest(unittest.TestCase): def testCancelManyCalls(self): server_thread_pool = logging_pool.pool(test_constants.THREAD_CONCURRENCY) server_completion_queue = cygrpc.CompletionQueue() server = cygrpc.Server() server.register_completion_queue(server_completion_queue) port = server.add_http2_port('[::]:0') server.start() channel = cygrpc.Channel('localhost:{}'.format(port)) state = _State() server_thread_args = ( state, server, server_completion_queue, server_thread_pool,) server_thread = threading.Thread(target=_serve, args=server_thread_args) server_thread.start() client_condition = threading.Condition() client_due = set() client_completion_queue = cygrpc.CompletionQueue() client_driver = _QueueDriver( client_condition, client_completion_queue, client_due) client_driver.start() with client_condition: client_calls = [] for index in range(test_constants.RPC_CONCURRENCY): client_call = channel.create_call( None, _EMPTY_FLAGS, client_completion_queue, b'/twinkies', None, _INFINITE_FUTURE) operations = ( cygrpc.operation_send_initial_metadata( _EMPTY_METADATA, _EMPTY_FLAGS), cygrpc.operation_send_message(b'\x45\x56', _EMPTY_FLAGS), cygrpc.operation_send_close_from_client(_EMPTY_FLAGS), cygrpc.operation_receive_initial_metadata(_EMPTY_FLAGS), cygrpc.operation_receive_message(_EMPTY_FLAGS), cygrpc.operation_receive_status_on_client(_EMPTY_FLAGS), ) tag = 'client_complete_call_{0:04d}_tag'.format(index) client_call.start_batch(cygrpc.Operations(operations), tag) client_due.add(tag) client_calls.append(client_call) with state.condition: while True: if state.parked_handlers < test_constants.THREAD_CONCURRENCY: state.condition.wait() elif state.handled_rpcs < test_constants.RPC_CONCURRENCY: state.condition.wait() else: state.handlers_released = True state.condition.notify_all() break client_driver.events( test_constants.RPC_CONCURRENCY * _SUCCESS_CALL_FRACTION) with client_condition: for client_call in client_calls: client_call.cancel() with state.condition: server.shutdown(server_completion_queue, _SERVER_SHUTDOWN_TAG) if __name__ == '__main__': unittest.main(verbosity=2)
app.py
import nighttimeParenting as infra import time from threading import Thread, Lock, Event from datetime import datetime import smtplib, ssl # TODO: # have to figure out stuff for analytics ######################## global variables ############################ # taken from parenting.firstcry.com messages = ["You are doing great; it will be over soon, hang in there!", "Keep calm, hold your breath, and change this diaper.", "3 am. Party in my crib, be there. Bring your own diaper.", "Poops, I did it again, I made you believe that this could be pee.", "Houston, we have a problem... It is code brown."] # create empty log log = [] # set state to zero by default (display encouring messages) toggleMessage = True # create objects m = infra.micCircuit() sd = infra.StereoDecoder() oled = infra.OLED() lBar = infra.ledBar() hrs = infra.HRSensor() phyUI = infra.PhysicalUI(sd, oled, lBar) # creates locks i2cL = Lock() spiL = Lock() displayL = Lock() # create events wakeup = Event() asleep = Event() stressHigh = Event() enableBreathing = Event() enableMusic = Event() enableMessages = Event() ######################## supporting functions ######################## # sends email to caregiver def sendEmail(message): context = ssl.create_default_context() with smtplib.SMTP_SSL(smtp_server, port) as server: server.set_debuglevel(1) #server.ehlo() #server.starttls(context=context) server.ehlo() server.login(sender_email, password) server.sendmail(sender_email, receiver_email, message) #################### tasks that run in background #################### # monitors audio level in bedrooom def monitorBaby(): # time interval to 10 seconds timeInt = 2 # trigger value (pk-pk) set to 35 trigVal = 32 # constantly monitor audio levels while True: with spiL: isTriggered = m.trigger(trigVal, timeInt) # set wakeup event in motion if threshold is broken over 5 times if isTriggered: wakeup.set() asleep.wait() time.sleep(2) # calculate stress level of caregiver def calculateStessLevel(): while True: # get stress level with i2cL: stressLevel = hrs.getHR_SPO2() # determine if stress level is high if (stressLevel[0] != None and stressLevel[1] != None): # calculate average bpm and sp02 BPM = stressLevel[0] Spo2 = stressLevel[1] print("BPM: " + str(BPM) + " Spo2: " + str(Spo2)) if (BPM >= 110 and Spo2 < 95): stressHigh.set() enableBreathing.set() enableMessages.set() enableMusic.set() # read bpm and spo2 every minute time.sleep(60) ############### tasks that run in response to stress level ############## # sends email warning stress levels are high def notifyStessLevels(): while True: stressHigh.wait() message = """Subject: Stress Level Elevated!\n BPM above 110 and SPO2 below 95%.""" sendEmail(message) stressHigh.clear() # displays encouriging messages def messageDisplay(): while True: enableMessages.wait() if toggleMessage: for mes in messages: with displayL: with i2cL: oled.clearDisplay() oled.printMessage(mes) time.sleep(10) # displays time def timeDisplay(): while True: if not toggleMessage: with displayL: with i2cL: oled.clearDisplay() oled.displayTime() time.sleep(60) # new time display every minute # updates breathing def updateBreathing(): while True: enableBreathing.wait() for val in [0b0000000000, 0b0010000000, 0b0011000000, 0b0011100000, 0b0011110000, 0b0011111000, 0b0011111100, 0b0011111110, 0b0011111111, 0b0111111111, 0b1111111111]: with spiL: lBar.set_bar_level(val) time.sleep(0.5) for val in [0b1111111111, 0b0111111111, 0b0011111111, 0b0011111110, 0b0011111100, 0b0011111000, 0b0011110000, 0b0011100000, 0b0011000000, 0b0010000000, 0b0000000000]: with spiL: lBar.set_bar_level(val) time.sleep(0.5) # turns on soothing music def playMusic(): enableMusic.wait() sd.play() ############### tasks that run in response to baby wakeup ############## # adds to log and sends email when wakeup event occurs def wakeupEvent(): global log wakeup.wait() wakeupTime = datetime.now().strftime("%B %d, %Y %I:%M:%S %p") log.append(wakeupTime) message = """Subject: Your baby is Awake!\n Your baby woke up at approximately """ + wakeupTime + "." sendEmail(message) wakeup.clear() ############### tasks that run in response to stress browser UI ############## # pauses messages def pauseMessages(): global toggleMessage toggleMessage = False # resumes messages def resumeMessages(): global toggleMessage toggleMessage = True # pauses music def pauseMusic(): sd.pause() # resumes music def resumeMusic(): sd.unpause() # adjusts volume def adjustVolume(volLevel): with spiL: sd.setVol(volLevel) # adds message def addMessage(mes): global messages messages.append(mes) # deletes specified message # or pops last message def deleteMessage(mes=''): global messages if mes != '': messages.remove(mes) else: messages.pop() ############### tasks that run in response to physical UI ############## # updates brightness def updateBrightness(): while True: with spiL: currBrightness = phyUI.getBrightness() with i2cL: phyUI.setBrightness(currBrightness) time.sleep(3) # updates volume def updateVolume(): while True: with spiL: phyUI.toggleVolume() time.sleep(3) # send SOS message to parent def sendSOS(): while True: if phyUI.triggerSOS(): # send email print("button") message = """Subject: SOS\n In dire need of assistance! Please come help!""" sendEmail(message) # show confirmation on display confirmMes = "Email sent successfully!" with displayL: with i2cL: oled.clearDisplay() oled.printMessage(confirmMes) time.sleep(3) # let it appear on screen for 3 seconds if __name__ == "__main__": # set up server for email port = 465 #587 # For starttls smtp_server = "smtp.mail.yahoo.com" #"smtp.gmail.com" #sender_email = "apm532@nyu.edu" receiver_email = "tadific487@angeleslid.com" password = "spqcgqenfthwonyz" sender_email = "tzali.goldberg@yahoo.com" # receiver_email = input("Type your email and press enter: ") # password = input("Type your password and press enter: ") # thread everything except browser UI t1 = Thread(target=monitorBaby) t1.start() t2 = Thread(target=calculateStessLevel) t2.start() t3 = Thread(target=notifyStessLevels) t3.start() t4 = Thread(target=messageDisplay) t4.start() t5 = Thread(target=timeDisplay) t5.start() t6 = Thread(target=updateBreathing) t6.start() t7 = Thread(target=playMusic) t7.start() t8 = Thread(target=wakeupEvent) t8.start() t9 = Thread(target=updateBrightness) t9.start() t10 = Thread(target=updateVolume) t10.start() t11 = Thread(target=sendSOS) t11.start() # join threads t1.join() t2.join() t3.join() t4.join() t5.join() t6.join() t7.join() t8.join() t9.join() t10.join() t11.join()
test_queue.py
# Some simple queue module tests, plus some failure conditions # to ensure the Queue locks remain stable. import itertools import random import threading import time import unittest import weakref from test import support py_queue = support.import_fresh_module('queue', blocked=['_queue']) c_queue = support.import_fresh_module('queue', fresh=['_queue']) need_c_queue = unittest.skipUnless(c_queue, "No _queue module found") QUEUE_SIZE = 5 def qfull(q): return q.maxsize > 0 and q.qsize() == q.maxsize # A thread to run a function that unclogs a blocked Queue. class _TriggerThread(threading.Thread): def __init__(self, fn, args): self.fn = fn self.args = args self.startedEvent = threading.Event() threading.Thread.__init__(self) def run(self): # The sleep isn't necessary, but is intended to give the blocking # function in the main thread a chance at actually blocking before # we unclog it. But if the sleep is longer than the timeout-based # tests wait in their blocking functions, those tests will fail. # So we give them much longer timeout values compared to the # sleep here (I aimed at 10 seconds for blocking functions -- # they should never actually wait that long - they should make # progress as soon as we call self.fn()). time.sleep(0.1) self.startedEvent.set() self.fn(*self.args) # Execute a function that blocks, and in a separate thread, a function that # triggers the release. Returns the result of the blocking function. Caution: # block_func must guarantee to block until trigger_func is called, and # trigger_func must guarantee to change queue state so that block_func can make # enough progress to return. In particular, a block_func that just raises an # exception regardless of whether trigger_func is called will lead to # timing-dependent sporadic failures, and one of those went rarely seen but # undiagnosed for years. Now block_func must be unexceptional. If block_func # is supposed to raise an exception, call do_exceptional_blocking_test() # instead. class BlockingTestMixin: def do_blocking_test(self, block_func, block_args, trigger_func, trigger_args): thread = _TriggerThread(trigger_func, trigger_args) thread.start() try: self.result = block_func(*block_args) # If block_func returned before our thread made the call, we failed! if not thread.startedEvent.is_set(): self.fail("blocking function %r appeared not to block" % block_func) return self.result finally: support.join_thread(thread) # make sure the thread terminates # Call this instead if block_func is supposed to raise an exception. def do_exceptional_blocking_test(self,block_func, block_args, trigger_func, trigger_args, expected_exception_class): thread = _TriggerThread(trigger_func, trigger_args) thread.start() try: try: block_func(*block_args) except expected_exception_class: raise else: self.fail("expected exception of kind %r" % expected_exception_class) finally: support.join_thread(thread) # make sure the thread terminates if not thread.startedEvent.is_set(): self.fail("trigger thread ended but event never set") class BaseQueueTestMixin(BlockingTestMixin): def setUp(self): self.cum = 0 self.cumlock = threading.Lock() def basic_queue_test(self, q): if q.qsize(): raise RuntimeError("Call this function with an empty queue") self.assertTrue(q.empty()) self.assertFalse(q.full()) # I guess we better check things actually queue correctly a little :) q.put(111) q.put(333) q.put(222) target_order = dict(Queue = [111, 333, 222], LifoQueue = [222, 333, 111], PriorityQueue = [111, 222, 333]) actual_order = [q.get(), q.get(), q.get()] self.assertEqual(actual_order, target_order[q.__class__.__name__], "Didn't seem to queue the correct data!") for i in range(QUEUE_SIZE-1): q.put(i) self.assertTrue(q.qsize(), "Queue should not be empty") self.assertTrue(not qfull(q), "Queue should not be full") last = 2 * QUEUE_SIZE full = 3 * 2 * QUEUE_SIZE q.put(last) self.assertTrue(qfull(q), "Queue should be full") self.assertFalse(q.empty()) self.assertTrue(q.full()) try: q.put(full, block=0) self.fail("Didn't appear to block with a full queue") except self.queue.Full: pass try: q.put(full, timeout=0.01) self.fail("Didn't appear to time-out with a full queue") except self.queue.Full: pass # Test a blocking put self.do_blocking_test(q.put, (full,), q.get, ()) self.do_blocking_test(q.put, (full, True, 10), q.get, ()) # Empty it for i in range(QUEUE_SIZE): q.get() self.assertTrue(not q.qsize(), "Queue should be empty") try: q.get(block=0) self.fail("Didn't appear to block with an empty queue") except self.queue.Empty: pass try: q.get(timeout=0.01) self.fail("Didn't appear to time-out with an empty queue") except self.queue.Empty: pass # Test a blocking get self.do_blocking_test(q.get, (), q.put, ('empty',)) self.do_blocking_test(q.get, (True, 10), q.put, ('empty',)) def worker(self, q): while True: x = q.get() if x < 0: q.task_done() return with self.cumlock: self.cum += x q.task_done() def queue_join_test(self, q): self.cum = 0 threads = [] for i in (0,1): thread = threading.Thread(target=self.worker, args=(q,)) thread.start() threads.append(thread) for i in range(100): q.put(i) q.join() self.assertEqual(self.cum, sum(range(100)), "q.join() did not block until all tasks were done") for i in (0,1): q.put(-1) # instruct the threads to close q.join() # verify that you can join twice for thread in threads: thread.join() def test_queue_task_done(self): # Test to make sure a queue task completed successfully. q = self.type2test() try: q.task_done() except ValueError: pass else: self.fail("Did not detect task count going negative") def test_queue_join(self): # Test that a queue join()s successfully, and before anything else # (done twice for insurance). q = self.type2test() self.queue_join_test(q) self.queue_join_test(q) try: q.task_done() except ValueError: pass else: self.fail("Did not detect task count going negative") def test_basic(self): # Do it a couple of times on the same queue. # Done twice to make sure works with same instance reused. q = self.type2test(QUEUE_SIZE) self.basic_queue_test(q) self.basic_queue_test(q) def test_negative_timeout_raises_exception(self): q = self.type2test(QUEUE_SIZE) with self.assertRaises(ValueError): q.put(1, timeout=-1) with self.assertRaises(ValueError): q.get(1, timeout=-1) def test_nowait(self): q = self.type2test(QUEUE_SIZE) for i in range(QUEUE_SIZE): q.put_nowait(1) with self.assertRaises(self.queue.Full): q.put_nowait(1) for i in range(QUEUE_SIZE): q.get_nowait() with self.assertRaises(self.queue.Empty): q.get_nowait() def test_shrinking_queue(self): # issue 10110 q = self.type2test(3) q.put(1) q.put(2) q.put(3) with self.assertRaises(self.queue.Full): q.put_nowait(4) self.assertEqual(q.qsize(), 3) q.maxsize = 2 # shrink the queue with self.assertRaises(self.queue.Full): q.put_nowait(4) class QueueTest(BaseQueueTestMixin): def setUp(self): self.type2test = self.queue.Queue super().setUp() class PyQueueTest(QueueTest, unittest.TestCase): queue = py_queue @need_c_queue class CQueueTest(QueueTest, unittest.TestCase): queue = c_queue class LifoQueueTest(BaseQueueTestMixin): def setUp(self): self.type2test = self.queue.LifoQueue super().setUp() class PyLifoQueueTest(LifoQueueTest, unittest.TestCase): queue = py_queue @need_c_queue class CLifoQueueTest(LifoQueueTest, unittest.TestCase): queue = c_queue class PriorityQueueTest(BaseQueueTestMixin): def setUp(self): self.type2test = self.queue.PriorityQueue super().setUp() class PyPriorityQueueTest(PriorityQueueTest, unittest.TestCase): queue = py_queue @need_c_queue class CPriorityQueueTest(PriorityQueueTest, unittest.TestCase): queue = c_queue # A Queue subclass that can provoke failure at a moment's notice :) class FailingQueueException(Exception): pass class FailingQueueTest(BlockingTestMixin): def setUp(self): Queue = self.queue.Queue class FailingQueue(Queue): def __init__(self, *args): self.fail_next_put = False self.fail_next_get = False Queue.__init__(self, *args) def _put(self, item): if self.fail_next_put: self.fail_next_put = False raise FailingQueueException("You Lose") return Queue._put(self, item) def _get(self): if self.fail_next_get: self.fail_next_get = False raise FailingQueueException("You Lose") return Queue._get(self) self.FailingQueue = FailingQueue super().setUp() def failing_queue_test(self, q): if q.qsize(): raise RuntimeError("Call this function with an empty queue") for i in range(QUEUE_SIZE-1): q.put(i) # Test a failing non-blocking put. q.fail_next_put = True try: q.put("oops", block=0) self.fail("The queue didn't fail when it should have") except FailingQueueException: pass q.fail_next_put = True try: q.put("oops", timeout=0.1) self.fail("The queue didn't fail when it should have") except FailingQueueException: pass q.put("last") self.assertTrue(qfull(q), "Queue should be full") # Test a failing blocking put q.fail_next_put = True try: self.do_blocking_test(q.put, ("full",), q.get, ()) self.fail("The queue didn't fail when it should have") except FailingQueueException: pass # Check the Queue isn't damaged. # put failed, but get succeeded - re-add q.put("last") # Test a failing timeout put q.fail_next_put = True try: self.do_exceptional_blocking_test(q.put, ("full", True, 10), q.get, (), FailingQueueException) self.fail("The queue didn't fail when it should have") except FailingQueueException: pass # Check the Queue isn't damaged. # put failed, but get succeeded - re-add q.put("last") self.assertTrue(qfull(q), "Queue should be full") q.get() self.assertTrue(not qfull(q), "Queue should not be full") q.put("last") self.assertTrue(qfull(q), "Queue should be full") # Test a blocking put self.do_blocking_test(q.put, ("full",), q.get, ()) # Empty it for i in range(QUEUE_SIZE): q.get() self.assertTrue(not q.qsize(), "Queue should be empty") q.put("first") q.fail_next_get = True try: q.get() self.fail("The queue didn't fail when it should have") except FailingQueueException: pass self.assertTrue(q.qsize(), "Queue should not be empty") q.fail_next_get = True try: q.get(timeout=0.1) self.fail("The queue didn't fail when it should have") except FailingQueueException: pass self.assertTrue(q.qsize(), "Queue should not be empty") q.get() self.assertTrue(not q.qsize(), "Queue should be empty") q.fail_next_get = True try: self.do_exceptional_blocking_test(q.get, (), q.put, ('empty',), FailingQueueException) self.fail("The queue didn't fail when it should have") except FailingQueueException: pass # put succeeded, but get failed. self.assertTrue(q.qsize(), "Queue should not be empty") q.get() self.assertTrue(not q.qsize(), "Queue should be empty") def test_failing_queue(self): # Test to make sure a queue is functioning correctly. # Done twice to the same instance. q = self.FailingQueue(QUEUE_SIZE) self.failing_queue_test(q) self.failing_queue_test(q) class PyFailingQueueTest(FailingQueueTest, unittest.TestCase): queue = py_queue @need_c_queue class CFailingQueueTest(FailingQueueTest, unittest.TestCase): queue = c_queue class BaseSimpleQueueTest: def setUp(self): self.q = self.type2test() def feed(self, q, seq, rnd): while True: try: val = seq.pop() except IndexError: return q.put(val) if rnd.random() > 0.5: time.sleep(rnd.random() * 1e-3) def consume(self, q, results, sentinel): while True: val = q.get() if val == sentinel: return results.append(val) def consume_nonblock(self, q, results, sentinel): while True: while True: try: val = q.get(block=False) except self.queue.Empty: time.sleep(1e-5) else: break if val == sentinel: return results.append(val) def consume_timeout(self, q, results, sentinel): while True: while True: try: val = q.get(timeout=1e-5) except self.queue.Empty: pass else: break if val == sentinel: return results.append(val) def run_threads(self, n_feeders, n_consumers, q, inputs, feed_func, consume_func): results = [] sentinel = None seq = inputs + [sentinel] * n_consumers seq.reverse() rnd = random.Random(42) exceptions = [] def log_exceptions(f): def wrapper(*args, **kwargs): try: f(*args, **kwargs) except BaseException as e: exceptions.append(e) return wrapper feeders = [threading.Thread(target=log_exceptions(feed_func), args=(q, seq, rnd)) for i in range(n_feeders)] consumers = [threading.Thread(target=log_exceptions(consume_func), args=(q, results, sentinel)) for i in range(n_consumers)] with support.start_threads(feeders + consumers): pass self.assertFalse(exceptions) self.assertTrue(q.empty()) self.assertEqual(q.qsize(), 0) return results def test_basic(self): # Basic tests for get(), put() etc. q = self.q self.assertTrue(q.empty()) self.assertEqual(q.qsize(), 0) q.put(1) self.assertFalse(q.empty()) self.assertEqual(q.qsize(), 1) q.put(2) q.put_nowait(3) q.put(4) self.assertFalse(q.empty()) self.assertEqual(q.qsize(), 4) self.assertEqual(q.get(), 1) self.assertEqual(q.qsize(), 3) self.assertEqual(q.get_nowait(), 2) self.assertEqual(q.qsize(), 2) self.assertEqual(q.get(block=False), 3) self.assertFalse(q.empty()) self.assertEqual(q.qsize(), 1) self.assertEqual(q.get(timeout=0.1), 4) self.assertTrue(q.empty()) self.assertEqual(q.qsize(), 0) with self.assertRaises(self.queue.Empty): q.get(block=False) with self.assertRaises(self.queue.Empty): q.get(timeout=1e-3) with self.assertRaises(self.queue.Empty): q.get_nowait() self.assertTrue(q.empty()) self.assertEqual(q.qsize(), 0) def test_negative_timeout_raises_exception(self): q = self.q q.put(1) with self.assertRaises(ValueError): q.get(timeout=-1) def test_order(self): # Test a pair of concurrent put() and get() q = self.q inputs = list(range(100)) results = self.run_threads(1, 1, q, inputs, self.feed, self.consume) # One producer, one consumer => results appended in well-defined order self.assertEqual(results, inputs) def test_many_threads(self): # Test multiple concurrent put() and get() N = 50 q = self.q inputs = list(range(10000)) results = self.run_threads(N, N, q, inputs, self.feed, self.consume) # Multiple consumers without synchronization append the # results in random order self.assertEqual(sorted(results), inputs) def test_many_threads_nonblock(self): # Test multiple concurrent put() and get(block=False) N = 50 q = self.q inputs = list(range(10000)) results = self.run_threads(N, N, q, inputs, self.feed, self.consume_nonblock) self.assertEqual(sorted(results), inputs) def test_many_threads_timeout(self): # Test multiple concurrent put() and get(timeout=...) N = 50 q = self.q inputs = list(range(1000)) results = self.run_threads(N, N, q, inputs, self.feed, self.consume_timeout) self.assertEqual(sorted(results), inputs) def test_references(self): # The queue should lose references to each item as soon as # it leaves the queue. class C: pass N = 20 q = self.q for i in range(N): q.put(C()) for i in range(N): wr = weakref.ref(q.get()) self.assertIsNone(wr()) class PySimpleQueueTest(BaseSimpleQueueTest, unittest.TestCase): queue = py_queue def setUp(self): self.type2test = self.queue._PySimpleQueue super().setUp() @need_c_queue class CSimpleQueueTest(BaseSimpleQueueTest, unittest.TestCase): queue = c_queue def setUp(self): self.type2test = self.queue.SimpleQueue super().setUp() def test_is_default(self): self.assertIs(self.type2test, self.queue.SimpleQueue) self.assertIs(self.type2test, self.queue.SimpleQueue) def test_reentrancy(self): # bpo-14976: put() may be called reentrantly in an asynchronous # callback. q = self.q gen = itertools.count() N = 10000 results = [] # This test exploits the fact that __del__ in a reference cycle # can be called any time the GC may run. class Circular(object): def __init__(self): self.circular = self def __del__(self): q.put(next(gen)) while True: o = Circular() q.put(next(gen)) del o results.append(q.get()) if results[-1] >= N: break self.assertEqual(results, list(range(N + 1))) if __name__ == "__main__": unittest.main()
data_handler.py
from influxdb import InfluxDBClient from source.device_manager.device_layer.sila_device import SilaDevice from source.device_manager.device_layer.device_interface import DeviceInterface from typing import List, Dict import threading, time import json from threading import Thread class DataHandler: def __init__(self, host: str, port: int, user: str = 'root', password: str = 'root', dbname: str = 'example'): """initialize the data handler Args: host : the host of the InfluxDBClient port : port of the InfluxDB user : username of InfluxDB password : password of InfluxDB dbname : database name """ self.host = host self.port = port self.user = user self.password = password self.dbname = dbname self.client = InfluxDBClient(self.host, self.port, self.user, self.password, self.dbname) self.client.create_database(self.dbname) def setup(self,get_devices: List[DeviceInterface]): interval10=interval50=interval100=[] for device in get_devices: interval10.append([k for k,v in device.properties_interval.items() if v == 10]) interval50.append([k for k,v in device.properties_interval.items() if v == 50]) interval100.append([k for k,v in device.properties_interval.items() if v == 100]) process = Thread(target=self.run, args=[get_devices, interval10, 10]) process.start() process2 = Thread(target=self.run, args=[get_devices, interval50, 50]) process2.start() process3 = Thread(target=self.run, args=[get_devices, interval100, 100]) process3.start() def run(self,get_devices: List[DeviceInterface] , interval_list, interval): """Will store all the data of all available device to the time series database Args:https://discord.com/channels/709354436090396712/714844196300783626 get_devices: List of Devices interval_list: List of property that we want to run at specific interval interval: the interval time between every store to the database """ data = {} for device in get_devices: if device.get_status == "running": # if(device.type=="Sila") for features in device.get_feature_names(): for property in device.get_properties(features): if property in interval_list: data['measurement'] = property data['tags'] = {'device': device, 'features': features} data['time'] = time.time() data['fields'] = {'value': device.call_property(features, property)} json_body = json.dumps(data) self.client.write_points(json_body) threading.Timer(interval, self.run, [get_devices, interval_list, interval]).start() @staticmethod def get_logs(device): """Returns the specified device latest log message Args: device : The Sila device that we want to get the log for Returns: list containing LogLevel,time and the massage """ sila = SilaDevice(device.ip, device.port, device.uuid, device.name) return sila.call_property('DeviceController', 'GetLog_Result')
multientityInterface_Tests.py
# Copyright 2010-2012 Institut Mines-Telecom # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Created on Jun 27, 2012 @author: Bilel Msekni @contact: bilel.msekni@telecom-sudparis.eu @author: Houssem Medhioub @contact: houssem.medhioub@it-sudparis.eu @organization: Institut Mines-Telecom - Telecom SudParis @license: Apache License, Version 2.0 """ from multiprocessing import Process from unittest import TestLoader, TextTestRunner, TestCase from pyocni.TDD.fake_Data.server_Mock import ocni_server import pycurl import time import StringIO from pyocni.TDD.fake_Data.initialize_fakeDB import init_fakeDB import pyocni.TDD.fake_Data.entities as f_entities import pyocni.pyocni_tools.config as config def start_server(): ocni_server_instance = ocni_server() ocni_server_instance.run_server() class test_post(TestCase): """ Tests POST request scenarios """ def setUp(self): """ Set up the test environment """ self.p = Process(target=start_server) self.p.start() time.sleep(0.5) #init_fakeDB() time.sleep(0.5) def tearDown(self): #config.purge_PyOCNI_db() self.p.terminate() def test_register_entities(self): """ register resources & links """ storage = StringIO.StringIO() c = pycurl.Curl() c.setopt(c.URL, 'http://127.0.0.1:8090/compute/') c.setopt(c.HTTPHEADER, ['Accept:text/plain', 'Content-Type: application/occi+json']) c.setopt(c.VERBOSE, True) c.setopt(pycurl.POSTFIELDS, f_entities.link) c.setopt(c.CUSTOMREQUEST, 'POST') c.setopt(c.WRITEFUNCTION, storage.write) c.perform() content = storage.getvalue() print " ========== Body content ==========\n " + content + " \n ==========\n" class test_get(TestCase): """ Tests GET request scenarios """ def setUp(self): """ Set up the test environment """ self.p = Process(target=start_server) self.p.start() time.sleep(0.5) def tearDown(self): self.p.terminate() def test_get_entities(self): """ get resources & links """ storage = StringIO.StringIO() c = pycurl.Curl() c.setopt(c.URL, "http://127.0.0.1:8090/compute/") c.setopt(c.HTTPHEADER, ['Content-type: application/occi+json', 'Accept:application/occi+json']) c.setopt(c.VERBOSE, True) c.setopt(c.CUSTOMREQUEST, 'GET') c.setopt(c.WRITEFUNCTION, storage.write) c.setopt(c.POSTFIELDS,f_entities.j_occi_att) c.perform() content = storage.getvalue() print " ===== Body content =====\n " + content + " ==========\n" class test_put(TestCase): """ Tests PUT request scenarios """ def setUp(self): """ Set up the test environment """ self.p = Process(target=start_server) self.p.start() time.sleep(0.5) def tearDown(self): self.p.terminate() def test_associate_mixins(self): """ """ storage = StringIO.StringIO() c = pycurl.Curl() c.setopt(pycurl.URL, 'http://127.0.0.1:8090/template/resource/medium/') c.setopt(pycurl.HTTPHEADER, ['Accept: application/occi+json']) c.setopt(pycurl.HTTPHEADER, ['Content-Type: application/occi+json']) c.setopt(pycurl.CUSTOMREQUEST, 'PUT') c.setopt(pycurl.POSTFIELDS, fake_data.put_on_mixin_path) c.setopt(pycurl.USERPWD, 'user_1:password') c.setopt(c.WRITEFUNCTION, storage.write) c.perform() content = storage.getvalue() print " ===== Body content =====\n " + content + " ==========\n" class test_delete(TestCase): """ Tests DELETE request scenarios """ def setUp(self): """ Set up the test environment """ self.p = Process(target=start_server) self.p.start() time.sleep(0.5) def tearDown(self): self.p.terminate() def test_dissociate_mixins(self): """ """ storage = StringIO.StringIO() c = pycurl.Curl() c.setopt(pycurl.URL, 'http://127.0.0.1:8090/template/resource/medium/') c.setopt(pycurl.HTTPHEADER, ['Accept: application/occi+json']) c.setopt(pycurl.HTTPHEADER, ['Content-Type: application/occi+json']) c.setopt(pycurl.CUSTOMREQUEST, 'DELETE') c.setopt(c.WRITEFUNCTION, storage.write) c.perform() content = storage.getvalue() print " ===== Body content =====\n " + content + " ==========\n" if __name__ == '__main__': #Create the testing tools loader = TestLoader() runner = TextTestRunner(verbosity=2) #Create the testing suites get_suite = loader.loadTestsFromTestCase(test_get) delete_suite = loader.loadTestsFromTestCase(test_delete) put_suite = loader.loadTestsFromTestCase(test_put) post_suite = loader.loadTestsFromTestCase(test_post) #Run tests #runner.run(get_suite) runner.run(post_suite)
ci_build.py
from optparse import OptionParser from dependencies import read_json_dependencies_from_filename import dependencies import os import platform import threading import sys import subprocess import shutil import getpass from userlocks import userlock from default_platform import default_platform as _default_platform from functools import wraps import version import filechecker DEFAULT_STEPS = "default" ALL_STEPS = "all" ILLEGAL_STEP_NAMES = [DEFAULT_STEPS, ALL_STEPS] def get_vsvars_environment(architecture="x86"): """ Returns a dictionary containing the environment variables set up by vsvars32.bat architecture - Architecture to pass to vcvarsall.bat. Normally "x86" or "amd64" win32-specific """ comntoolsVarNames = ['VS100COMNTOOLS', 'VS110COMNTOOLS', 'VS120COMNTOOLS'] for varName in comntoolsVarNames: vscomntools = os.getenv(varName) if vscomntools is not None: break if vscomntools is None: raise Exception('Couldn\'t find COMNTOOLS environment variable (tried %s)' % ', '.join(comntoolsVarNames)) vsvars32 = os.path.join(vscomntools, '..', '..', 'VC', 'vcvarsall.bat') python = sys.executable process = subprocess.Popen('("%s" %s>nul)&&"%s" -c "import os; print repr(os.environ)"' % (vsvars32, architecture, python), stdout=subprocess.PIPE, shell=True) stdout, _ = process.communicate() exitcode = process.wait() if exitcode != 0: raise Exception("Got error code %s from subprocess!" % exitcode) return eval(stdout.strip()) def default_platform(fail_on_unknown=True): p = _default_platform() if p is None and fail_on_unknown: fail('No platform specified and unable to guess.') return p def delete_directory(path, logfile=None): if logfile is None: logfile = open(os.devnull, "w") path = os.path.abspath(path) logfile.write('Deleting "'+path+'"... ') shutil.rmtree(path, ignore_errors=True) if os.path.isdir(path): logfile.write('\nFailed.\n') raise Exception('Failed to delete "%s"' % path) logfile.write('\nDone.\n') class BuildStep(object): def __init__(self, name, action): if name in ILLEGAL_STEP_NAMES: fail("'{0}' is not allowed as a build step name.".format(name)) self.name = name self.condition_sets = [] self.is_optional = False self.is_enabled_by_default = True self.action = action def add_conditions(self, condition_set): self.condition_sets.append(condition_set) def set_default(self, enabled_by_default): self.is_enabled_by_default = enabled_by_default def set_optional(self, optional): self.is_optional = optional def test_conditions(self, env): if len(self.condition_sets) == 0: return True for conditions in self.condition_sets: if all(key in env and env[key]==value for (key, value) in conditions.items()): return True return False def run(self, context): return self.action(context) class BuildContext(object): pass def flatten_string_list(arglist): """ Assemble a list of string, such as for a subprocess call. Input should be a string or a list containing only strings or similar lists. Output will be a list containing only strings. """ if isinstance(arglist, (str, unicode)): return [arglist] return sum([flatten_string_list(x) for x in arglist], []) def flatten_comma_list(arglist): return sum([s.split(",") for s in arglist], []) def process_kwargs(func_name, kwarg_dict, defaults_dict): result = dict(defaults_dict) for key, value in kwarg_dict.items(): if key in result: result[key] = value else: raise TypeError("{0}() got an unexpected keyword argument '{1}'".format(func_name, key)) return result NOT_SPECIFIED = object() class CaseInsensitiveEnvironmentCopy(dict): def __contains__(self, key): return dict.__contains__(self, key.upper()) def __getitem__(self, key): return dict.__getitem__(self, key.upper()) def __setitem__(self, key, value): return dict.__setitem__(self, key.upper(), value) def __init__(self, *args): if len(args)==0: dict.__init__(self) elif len(args)==1: dict.__init__(self, [(k.upper(), v) for (k,v) in args[0].items()]) else: raise ValueError() def get(self, key, default=None): return dict.get(self, key.upper(), default) def has_key(self, key): return dict.has_key(self, key.upper()) def pop(self, key, *args): return dict.pop(self, key.upper(), *args) def setdefault(self, key, *args): return dict.setdefault(self, key.upper(), *args) def update(self, *args, **kwargs): if len(args)==0: primary={} elif len(args)==1: primary=CaseInsensitiveEnvironmentCopy(args[0]) else: raise ValueError() secondary=CaseInsensitiveEnvironmentCopy(kwargs) return dict.update(self, primary, **secondary) # This is the same mechanism Python uses to decide if os.environ is case- # sensitive: if os.name in ['nt', 'os2']: EnvironmentCopy = CaseInsensitiveEnvironmentCopy else: EnvironmentCopy = dict def callable_to_function(f): ''' Take a callable object, such as a function or instance method, and wrap it in a function. This is necessary if you want to annotate it with extra attributes and it might be an instance method. ''' @wraps(f) def f_prime(*args, **kwargs): f(*args, **kwargs) return f_prime class Builder(object): def __init__(self): self._steps = [] self._optionParser = OptionParser() self.add_bool_option("-v", "--verbose") self.add_bool_option("--no-overrides", help="When fetching dependencies, don't read from a local overrides file.") self.add_bool_option("--incremental-fetch", help="Force incremental fetch, over-riding clean flag.") self._enabled_options = set() self._disabled_options = set() self._disable_all_options = False self._enable_all_options = False #self._context = BuildContext() def has_steps(self): return len(self._steps) > 0 def create_build_step(self, f, name): if hasattr(f, "buildstep"): return f f = callable_to_function(f) f.buildstep = BuildStep(name or f.__name__, f) self._steps.append(f.buildstep) return f def build_condition(self, name=None, **conditions): """Decorator applied to functions in the build_behaviour file.""" def decorator_func(f): f = self.create_build_step(f, name=name) f.buildstep.add_conditions(conditions) return f return decorator_func def build_step(self, name=None, optional=False, default=True): def decorator_func(f): f = self.create_build_step(f, name=name) f.buildstep.set_optional(optional) f.buildstep.set_default(default) return f return decorator_func def get_optional_steps(self): return (step.name for step in self._steps if self.is_optional) def specify_optional_steps(self, *steps): ''' Specify which optional steps to include in the build. "default" includes all default steps. "all" includes all steps. "foo" or "+foo" includes step foo. "-foo" excludes step foo, even if "default" or "all" is present. ''' steps = flatten_string_list(steps) steps = flatten_comma_list(steps) self._enable_all_options = ALL_STEPS in steps #self._enable_default_options = DEFAULT_STEPS in steps self._disable_all_options = DEFAULT_STEPS not in steps and ALL_STEPS not in steps self._disabled_options = set(s[1:] for s in steps if s.startswith("-")) self._enabled_options = set(s[1:] for s in steps if s.startswith("+")) self._enabled_options = self._enabled_options.union( s for s in steps if s[0] not in "+-") def modify_optional_steps(self, *steps): ''' Add or remove optional steps in the build. "+foo" include step foo. "-foo" exclude step foo. ''' for name in steps: if name.startswith("+"): name = name[1:] self._disabled_options.discard(name) self._enabled_options.add(name) elif name.startswith("-"): name = name[1:] self._enabled_options.discard(name) self._disabled_options.add(name) else: raise TypeError("Each step must be a string beginning with '+' or '-'.") def select_optional_steps(self, *args, **kwargs): ''' Deprecated. Use specify_optional_steps or modify_optional_steps instead. ''' kwargs = process_kwargs( "select_optional_steps", kwargs, {"disable_others":False}) if kwargs["disable_others"]: self._enabled_options.clear() self._disable_all_options = True args = flatten_string_list(args) args = flatten_comma_list(args) self.modify_optional_steps(*args) def run(self, argv=None): self._context = BuildContext() options, args = self._optionParser.parse_args(argv) self._context.options = options self._context.args = args self._context.env = EnvironmentCopy(os.environ) for step in self._steps: if step.test_conditions(self._context.env): enabled = True reason = "required" if step.is_optional: enabled = step.is_enabled_by_default reason = "default" if enabled else "not default" if self._enable_all_options: enabled = True reason = "all selected" if self._disable_all_options: enabled = False reason = "not selected" if step.name in self._enabled_options: enabled = True reason = "selected" if step.name in self._disabled_options: enabled = False reason = "deselected" if enabled: print "Performing step '{0}' (reason: '{1}')".format(step.name, reason) step.run(self._context) else: print "Skipping step '{0}' (reason: '{1}')".format(step.name, reason) def add_bool_option(self, *args, **kwargs): kwargs=dict(kwargs) kwargs["default"] = False kwargs["action"] = "store_true" self.add_option(*args, **kwargs) def add_option(self, *args, **kwargs): self._optionParser.add_option(*args, **kwargs) def _check_call(self, *args, **kwargs): # force unicode strings in env to str() as unicode env variables break on windows if 'env' in kwargs: kwargs['env'] = dict((key,str(value)) for (key, value) in kwargs['env'].items()) argstring = [", ".join([repr(arg) for arg in args])] kwargstring = [", ".join(["%s=%r" % (k,v) for (k,v) in kwargs.items()])] invocation = "subprocess.call({0})".format(", ".join(argstring+kwargstring)) if self._context.options.verbose: print invocation try: retval = subprocess.call(*args, **kwargs) except OSError as e: fail("{0} -> failed with exception {1}".format(invocation, e)) if retval != 0: fail("{0} -> returned {1}".format(invocation, retval)) def python(self, *args, **kwargs): args = flatten_string_list(args) self._check_call([sys.executable] + args, env=self._context.env, **kwargs) def shell(self, *args, **kwargs): args = flatten_string_list(args) kwargs.setdefault('shell', True) kwargs.setdefault('env', self._context.env) if len(args) == 1 and kwargs['shell']: # The shell hates lists. args = args[0] self._check_call(args, **kwargs) def cli(self, *args, **kwargs): args = flatten_string_list(args) if platform.system() != "Windows": args = ["mono", "--debug", "--runtime=v4.0.30319"] + args kwargs.setdefault('shell', False) kwargs.setdefault('env', self._context.env) self._check_call(args, **kwargs) def rsync(self, *args, **kwargs): args = flatten_string_list(args) self._check_call(["rsync"] + args, **kwargs) def _dependency_collection(self, env): return read_json_dependencies_from_filename( os.path.join('projectdata', 'dependencies.json'), os.path.join('..', 'dependency_overrides.json'), env, logfile=sys.stdout) def _process_dependency_args(self, *selected, **kwargs): kwargs = process_kwargs( "fetch_dependencies", kwargs, {"env":None},) selected = flatten_string_list(selected) env = dict(kwargs['env'] or {}) if "debugmode" not in env: env['debugmode'] = 'release' env['titlecase-debugmode'] = env['debugmode'].title() if "platform" not in env: env['platform'] = self._context.env["OH_PLATFORM"] if "linn-git-user" not in env: env['linn-git-user'] = getpass.getuser() return selected, env def fetch_dependencies(self, *selected, **kwargs): selected, env = self._process_dependency_args(*selected, **kwargs) use_nuget = os.path.isfile('projectdata/packages.config') clean = False if 'default' in self._enabled_options or 'all' in self._enabled_options or 'clean' in self._enabled_options: if self._context.options.incremental_fetch: clean = False # clean-for fetch follows clean-for-build else: # unless incremental-fetch option is set - in clean = True # which case clean will NOT clean the dependencies if 'clean' in self._disabled_options: clean = False try: dependencies.fetch_dependencies( selected or None, platform=self._context.env["OH_PLATFORM"], env=env, fetch=True, nuget=use_nuget, clean=clean, source=False, logfile=sys.stdout, local_overrides=not self._context.options.no_overrides) except Exception as e: print e raise AbortRunException() def read_dependencies(self, *selected, **kwargs): selected, env = self._process_dependency_args(*selected, **kwargs) return self._dependency_collection(env) def fetch_source(self, *selected, **kwargs): selected, env = self._process_dependency_args(*selected, **kwargs) dependency_collection = self._dependency_collection(env) return dependency_collection.checkout(selected or None) def get_dependency_args(self, *selected, **kwargs): selected, env = self._process_dependency_args(*selected, **kwargs) dependency_collection = self._dependency_collection(env) return dependency_collection.get_args(selected or None) class SshConnection(object): def __init__(self, stdin, stdout, stderr): def pump_output_thread(source, destination): for line in source: destination.write(line) destination.flush() self.stdin = stdin self.stdout = stdout self.stderr = stderr self.stdout_thread = threading.Thread(target=pump_output_thread, args=(stdout, sys.stdout)) self.stderr_thread = threading.Thread(target=pump_output_thread, args=(stderr, sys.stderr)) self.stdout_thread.start() self.stderr_thread.start() def send(self, data): self.stdin.write(data) self.stdin.flush() def join(self): self.stdout_thread.join() self.stderr_thread.join() return self.stdout.channel.recv_exit_status() class SshSession(object): def __init__(self, host, username): import paramiko self.ssh = paramiko.SSHClient() self.ssh.set_missing_host_key_policy(paramiko.AutoAddPolicy()) self.ssh.connect(host, username=username, look_for_keys='True') def call(self, *args, **kwargs): stdin, stdout, stderr = self.ssh.exec_command(*args, **kwargs) conn = SshConnection(stdin, stdout, stderr) return conn.join() def call_async(self, *args, **kwargs): stdin, stdout, stderr = self.ssh.exec_command(*args, **kwargs) return SshConnection(stdin, stdout, stderr) def __call__(self, *args): return self.call(*args) def __enter__(self): return self def __exit__(self, ex_type, ex_value, ex_traceback): self.ssh.close() class AbortRunException(Exception): def __init__(self, message="Aborted due to error.", exitcode=1): Exception.__init__(self, message) self.usermessage = message self.exitcode = exitcode def fail(*args, **kwargs): ''' fail(message, exitcode=1) Abort the build with an error message. ''' raise AbortRunException(*args, **kwargs) def require_version(required_version): '''Fail if the version of ohDevTools is too old.''' try: version.require_version(required_version) except version.BadVersionException as e: fail(e.usermessage, 32) def windows_program_exists(program): return subprocess.call(["where", "/q", program], shell=False)==0 def other_program_exists(program): nul = open(os.devnull, "w") return subprocess.call(["/bin/sh", "-c", "command -v "+program], shell=False, stdout=nul, stderr=nul)==0 program_exists = windows_program_exists if platform.platform().startswith("Windows") else other_program_exists def scp(*args): program = None for p in ["scp", "pscp"]: if program_exists(p): program = p break if program is None: raise "Cannot find scp (or pscp) in the path." subprocess.check_call([program] + list(args)) def _forward_to_builder(name): ''' Create a method that just calls a method of the same name on the builder object with the same arguments. ''' @wraps(getattr(Builder, name)) def func(self, *args, **kwargs): return getattr(self._builder, name)(*args, **kwargs) return func def _forward_to_function(f): ''' Create a method that just calls a function with the same arguments. ''' @wraps(f) def func(self, *args, **kwargs): return f(*args, **kwargs) return func def string_is_truish(value): return value.lower() in ['1', 'yes', 'true', 'on', 'y', 't'] def string_is_falsish(value): return value.lower() in ['0', 'no', 'false', 'off', 'n', 'f'] class OpenHomeBuilder(object): # This is a slightly awkward attempt to bridge the way to a more maintainable # system while making the 'build_behaviour' files easier to work with. To smooth # the transition, this still uses some tricks that may be confusing for maintainers, # but the idea is that the interface it presents to the 'build_behaviour' script # is more natural and can eventually be provided without any esoteric Python. # This tries to tame and conceal the broad generality of Builder and present it as # a base-class for projects to sub-class. Instead of allowing completely arbitrary # steps to be registered, a sensible set of steps is enforced: # setup, fetch, clean, configure, build, test, publish # This allows projects to avoid excessibly duplicating each other. enable_configurations = True # Adds --configuration, --debug and --release options. enable_platforms = True # Adds --platform, --system and --architecture options. enable_versioning = True # Adds --version option. enable_vsvars = True # Find and call vsvarsall if cl.exe is not on path. test_location = 'build/{assembly}/bin/{configuration}/{assembly}.dll' package_location = 'build/packages/{packagename}' package_upload = 'releases@www.openhome.org:/home/releases/www/artifacts/{uploadpath}' automatic_steps = ['fetch','configure','clean','build','test'] mdtool_mac = '/Applications/Xamarin\ Studio.app/Contents/MacOS/mdtool' msbuild_verbosity = 'minimal' cover_reports = [ ] source_check_rules = [ ] standard_source_check_rules = [ ['src/**/*.csproj', 'warnings-as-errors'], # All C# projects should enable warnings-as-errors ['src/**/*.csproj', 'import-shared-settings'], # All C# projects should import the shared settings ['src/**/*.orig', 'disallow'], # Don't commit .orig files from merges! ['src/**/*.cs', 'no-tabs'], # Don't use tabs in C# source ] platform_slave_overrides = {} # subclasses should override this to map non-standard platform slave labels to standard ones in auto behaviour def __init__(self): super(OpenHomeBuilder, self).__init__() def startup(self, builder): self._builder = builder self._context = None if self.enable_platforms: builder.add_option('--platform', help="Target platform. E.g. Windows-x86, Linux-x64, iOs-armv7.") builder.add_option('--system', help="Target system. E.g. Windows, Linux, Mac, iOs.") builder.add_option('--architecture', help="Target architecture. E.g. x86, x64.") if self.enable_configurations: builder.add_option('--configuration', help="Target configuration. E.g. Debug, Release.") builder.add_option("--debug", action="store_const", const="Debug", dest="configuration", help="Specify Debug configuration. Short for --configuration=Debug") builder.add_option("--release", action="store_const", const="Release", dest="configuration", help="Specify Release configuration. Short for --configuration=Release") if self.enable_versioning: builder.add_option('--version', help="Specify version number for build.") if self.enable_vsvars: builder.add_option('--vsvars', default="auto", help="Find and run vsvarsall.bat: 'yes' - always, 'no' - never, 'auto' - only if cl.exe not on path. Default 'auto'.") builder.add_option("--steps", default="default", help="Steps to run, comma separated. Allowed: all default fetch clean configure build test publish") builder.add_bool_option("--auto", help="Choose behaviour automatically based on environment. (Best for CI servers.)") # Sorry, this is a bit crazy. This contortion is intended to let us re-use # Builder.build_step without having to rewrite it. The Builder expects to # call each step and pass in a context object, but we don't want our sub-classes # to have to deal with the context, so our wrapper here accepts the context, # stores it in a field, then forwards to our method. def invoke(name): def passthrough(context): self._context = context getattr(self, name)() self._context = None return passthrough builder.build_step('process_options', optional=False)(invoke("_process_options")) builder.build_step('setup', optional=False)(invoke("setup")) builder.build_step('openhome_setup', optional=False)(invoke("openhome_setup")) builder.build_step('check_source', optional=True, default=True)(invoke("check_source")) builder.build_step('fetch', optional=True, default=True)(invoke("fetch")) builder.build_step('configure', optional=True, default=True)(invoke("configure")) builder.build_step('clean', optional=True, default=True)(invoke("clean")) builder.build_step('build', optional=True, default=True)(invoke("build")) builder.build_step('test', optional=True, default=False)(invoke("test")) builder.build_step('publish', optional=True, default=False)(invoke("publish")) def __getattr__(self, name): return getattr(self._context, name) def _expand_template(self, template, **kwargs): kwargs.update(dict( configuration = self.configuration, system = self.system, architecture = self.architecture, platform = self.platform, version = self.version)) return template.format(**kwargs) def _process_platform_options(self): system = self.options.system architecture = self.options.architecture platform = self.options.platform if platform and (system or architecture): fail('Specify --platform alone or both --system and --architecture, not a mix.') if bool(system) != bool(architecture): fail('Specify --system and --architecture together.') if platform is None and system is not None: platform = system + '-' + architecture if platform is None and self.options.auto: platform = self.env['slave'] # to map non-standard platform slave labels to standard ones in auto behaviour e.g. Android-mono -> Android-anycpu if platform in self.platform_slave_overrides: platform = self.platform_slave_overrides[platform] if platform is None: platform = default_platform() if '-' not in platform: fail('Platform should be a system and an architecture separated by a hyphen, e.g. Windows-x86.') system, architecture = platform.split('-', 2) self.env['OH_PLATFORM'] = platform self.platform = platform self.system = system self.architecture = architecture def _process_configuration_options(self): configuration = self.options.configuration if configuration is None: configuration = "Release" self.configuration = configuration def _process_version_options(self): self.version = self.options.version def _process_auto_option(self): if self.options.auto: self.steps_to_run = self.automatic_steps if self.env.get('PUBLISH_RELEASE',"false").lower() == "true": self.steps_to_run += ["+publish"] self.version = self.env.get('RELEASE_VERSION', self.version) else: self.steps_to_run = self.options.steps def _process_options(self): if self.enable_platforms: self._process_platform_options() if self.enable_configurations: self._process_configuration_options() if self.enable_versioning: self._process_version_options() self._process_auto_option() def setup(self): ''' Subclasses can override to specify setup behaviour to occur before the start of any build. ''' pass def openhome_setup(self): if self.enable_vsvars and self.system == 'Windows': vsvars_string = self.options.vsvars.lower() if vsvars_string == 'auto': vsvars = not program_exists('cl') elif string_is_truish(vsvars_string): vsvars = True elif string_is_falsish(vsvars_string): vsvars = False else: fail('Bad value for --vsvars') if vsvars: print 'Automatically find Visual Studio...' self.env.update(get_vsvars_environment(self.architecture)) self._builder.specify_optional_steps(self.steps_to_run) def check_source(self): ''' Check files in the source tree according to source_check_rules. See filechecker.py for possible rules to apply. ''' if self.source_check_rules == []: print 'No rules defined.' return if not filechecker.apply_rules(self.source_check_rules): self.fail('Source tree failed automated checks. Use --steps="default,-check_source" to suppress these checks temporarily.') def fetch(self): ''' Fetch dependencies. Subclasses may override. ''' self.fetch_dependencies(env={'debugmode':self.configuration, 'platform':self.platform}) def configure(self): ''' Invoke any configure script. Subclasses should override this if the project requires configuration. ''' pass def clean(self): ''' Clean out build results. Subclasses should override this. ''' pass def build(self): ''' Perform the build. Subclasses should override this. ''' pass def test(self): ''' Run the tests. Subclasses should override this. ''' pass def publish(self): ''' Publish the packages. Subclasses should override this. ''' pass def set_nunit_location(self, nunitexe): ''' Specify where nunit can be found. Subclasses must invoke this in order to use the nunit() method. ''' self.nunitexe = nunitexe def set_cover_location(self, coverexe): ''' Specify where OpenCover can be found. Subclasses must invoke this in order to use the cover() method ''' self.coverexe = coverexe def set_reportgen_location(self, reportgenexe): ''' Specify where ReportGenerator can be found. Subclasses must invoke this in order to use the coverReport() method ''' self.reportgenexe = reportgenexe def should_cover(self): ''' Return whether the tests should be covered or not. By default, this method only returns true if the platform is 'Windows-x86', but it could be overriden to enable or disable coverage for other platforms. ''' return self.platform == 'Windows-x86' def msbuild(self, project, target='Build', platform=None, configuration=None, args=None, properties=None, verbosity=None): ''' Invoke msbuild/xbuild to build a project/solution. Specify the path to the project or solution file. ''' #msbuild_args = ['msbuild' if self.system == 'Windows' else 'xbuild'] msbuild_args = ['msbuild' if sys.platform.startswith('win') else 'xbuild'] properties = {} if properties is None else dict(properties) if target is not None: msbuild_args += ['/target:'+target] if verbosity is None: verbosity = self.msbuild_verbosity msbuild_args += ['/verbosity:'+verbosity] if platform is not None: properties['Platform'] = platform if configuration is not None: properties['Configuration'] = configuration msbuild_args += ['/property:{0}={1}'.format(k,v) for (k,v) in properties.items() if v is not None] msbuild_args += [project] if args is not None: msbuild_args += args self._builder.shell(' '.join(msbuild_args)) def mdtool(self, project, target='build', configuration=None, bundle=None): ''' Invoke mdtool to build a project/solution. Specify the path to the project or solution file. ''' mdtool_args = [self.mdtool_mac if sys.platform.startswith('darwin') else 'mdtool'] if target == "build" or target == "Build": mdtool_args += ['build'] mdtool_args += ['-t:Build'] elif target == "clean" or target == "Clean": mdtool_args += ['build'] mdtool_args += ['-t:Clean'] elif target is not None: mdtool_args += [target] if configuration is not None: mdtool_args += ['-c:'+configuration] mdtool_args += [('-p:' if target == 'mac-bundle' else '') + project] if bundle is not None: mdtool_args += [bundle] self._builder.shell(' '.join(mdtool_args)) def nunit(self, test_assembly): ''' Run NUnit on a test assembly. Specify the name of the assembly (with no extension). Test assemblies are located using the template string test_location. ''' if self.nunitexe is None: fail("The builder's setup method should call set_nunit_location().") self._builder.cli([ self.nunitexe, '-labels', '-noshadow', self._expand_template(self.test_location, assembly=test_assembly)]) def cover(self, **args): ''' Carry out a test, measuring it's code coverage. Accepts the following keyworded arguments: - assembly-filter - a filter used by OpenCover to find the assemblies that coverage should be measured for (see OpenCover docs) - output - path of the output xml report - one of: - command - command to execute - nunit_assembly - name of an assembly to be run using nunit (located using the template string test_location) ''' if self.coverexe is None: fail("The builer's setup method should call set_cover_location().") if self.should_cover(): report_dir = os.path.dirname(args['output']) if not os.path.exists(report_dir): os.makedirs(report_dir) cmd_options = [self.coverexe, '-register:user', '-filter:' + args['assembly_filter'], '-output:' + args['output']] if 'command' in args: cmd_options.extend(['-target:' + args['command']]) elif 'nunit_assembly' in args: if self.nunitexe is not None: full_name = os.getcwd() + '/' + self._expand_template(self.test_location, assembly=args['nunit_assembly']) cmd_options.extend(['-coverbytest:*.dll', '-target:' + self.nunitexe, '-targetargs:' + full_name + ' /noshadow /nologo']) else: fail("The builder's setup method should call set_nunit_location().") else: fail("Invalid arguments: " + args) self._builder.cli(cmd_options) self.cover_reports.append(args['output']) else: print 'Coverage not enabled for this platform, executing tests normally' if 'command' in args: self._builder.cli(args['command']) elif 'nunit_assembly' in args: self.nunit(args['nunit_assembly']) def coverReport(self, output_dir, reports=None): ''' Generates a HTML report, based on the provided array xml reports. If no reports are provided, then all the reports generated using the cover function will be used. The array can contain filter strings, i.e. 'reports/*.xml'. ''' if self.should_cover(): if self.reportgenexe is None: fail("The builder's setup method should call set_reportgen_location().") if reports is None: reports = self.cover_reports self._builder.cli([ self.reportgenexe, '-reports:' + ";".join(reports), '-targetdir:' + output_dir]) else: print 'Coverage not enabled for this platform, not generating report' def publish_package(self, packagename, uploadpath, package_location=None, package_upload=None): ''' Publish a package via scp to the package repository. Projects can override the package_location and package_upload template strings to control where packages are uploaded to. ''' packagename = self._expand_template(packagename) uploadpath = self._expand_template(uploadpath) if package_location is None: package_location = self.package_location if package_upload is None: package_upload = self.package_upload sourcepath = self._expand_template(package_location, packagename=packagename) destinationpath = self._expand_template(package_upload, uploadpath=uploadpath) scp(sourcepath, destinationpath) # This just sets up forwarding methods for a bunch of methods on the Builder, to # allow sub-classes access to them. fetch_dependencies = _forward_to_builder("fetch_dependencies") read_dependencies = _forward_to_builder("read_dependencies") get_dependency_args = _forward_to_builder("get_dependency_args") add_option = _forward_to_builder("add_option") add_bool_option = _forward_to_builder("add_bool_option") python = _forward_to_builder("python") shell = _forward_to_builder("shell") cli = _forward_to_builder("cli") rsync = _forward_to_builder("rsync") #build_step = _forward_to_builder("build_step") #build_condition = _forward_to_builder("condition") modify_optional_steps = _forward_to_builder("modify_optional_steps") specify_optional_steps = _forward_to_builder("specify_optional_steps") default_platform = _forward_to_function(default_platform) # This sets up forwarding methods for a bunch of useful functions, to allow # sub-classes access to them. get_vsvars_environment = _forward_to_function(get_vsvars_environment) SshSession = _forward_to_function(SshSession) userlock = _forward_to_function(userlock) fail = _forward_to_function(fail) scp = _forward_to_function(scp) require_version = _forward_to_function(require_version) def run(buildname="build", argv=None): builder = Builder() import ci behaviour_globals = { 'fetch_dependencies':builder.fetch_dependencies, 'read_dependencies':builder.read_dependencies, 'get_dependency_args':builder.get_dependency_args, 'add_option':builder.add_option, 'add_bool_option':builder.add_bool_option, 'python':builder.python, 'shell':builder.shell, 'cli':builder.cli, 'rsync':builder.rsync, 'build_step':builder.build_step, 'build_condition':builder.build_condition, 'default_platform':default_platform, 'get_vsvars_environment':get_vsvars_environment, 'SshSession':SshSession, 'select_optional_steps':builder.select_optional_steps, 'modify_optional_steps':builder.modify_optional_steps, 'specify_optional_steps':builder.specify_optional_steps, 'userlock':userlock, 'fail':fail, 'scp':scp, 'require_version':require_version, 'OpenHomeBuilder':OpenHomeBuilder } for name, value in behaviour_globals.items(): setattr(ci, name, value) try: global_dict = dict(behaviour_globals) execfile(os.path.join('projectdata', buildname+'_behaviour.py'), global_dict) if not builder.has_steps() and 'Builder' in global_dict: instance = global_dict['Builder']() instance.startup(builder) builder.run(argv) except AbortRunException as e: print e.usermessage sys.exit(e.exitcode) for name in behaviour_globals.keys(): delattr(ci, name)
network_execution.py
# Copyright 2012 the V8 project authors. All rights reserved. # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following # disclaimer in the documentation and/or other materials provided # with the distribution. # * Neither the name of Google Inc. nor the names of its # contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import os import socket import subprocess import threading import time from . import distro from . import perfdata from ..local import execution from ..objects import peer from ..objects import workpacket from ..server import compression from ..server import constants from ..server import local_handler from ..server import signatures def GetPeers(): data = local_handler.LocalQuery([constants.REQUEST_PEERS]) if not data: return [] return [ peer.Peer.Unpack(p) for p in data ] class NetworkedRunner(execution.Runner): def __init__(self, suites, progress_indicator, context, peers, workspace): self.suites = suites num_tests = 0 datapath = os.path.join("out", "testrunner_data") self.perf_data_manager = perfdata.PerfDataManager(datapath) self.perfdata = self.perf_data_manager.GetStore(context.arch, context.mode) for s in suites: for t in s.tests: t.duration = self.perfdata.FetchPerfData(t) or 1.0 num_tests += len(s.tests) self._CommonInit(num_tests, progress_indicator, context) self.tests = [] # Only used if we need to fall back to local execution. self.tests_lock = threading.Lock() self.peers = peers self.pubkey_fingerprint = None # Fetched later. self.base_rev = subprocess.check_output( "cd %s; git log -1 --format=%%H --grep=git-svn-id" % workspace, shell=True).strip() self.base_svn_rev = subprocess.check_output( "cd %s; git log -1 %s" # Get commit description. " | grep -e '^\s*git-svn-id:'" # Extract "git-svn-id" line. " | awk '{print $2}'" # Extract "repository@revision" part. " | sed -e 's/.*@//'" % # Strip away "repository@". (workspace, self.base_rev), shell=True).strip() self.patch = subprocess.check_output( "cd %s; git diff %s" % (workspace, self.base_rev), shell=True) self.binaries = {} self.initialization_lock = threading.Lock() self.initialization_lock.acquire() # Released when init is done. self._OpenLocalConnection() self.local_receiver_thread = threading.Thread( target=self._ListenLocalConnection) self.local_receiver_thread.daemon = True self.local_receiver_thread.start() self.initialization_lock.acquire() self.initialization_lock.release() def _OpenLocalConnection(self): self.local_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM) code = self.local_socket.connect_ex(("localhost", constants.CLIENT_PORT)) if code != 0: raise RuntimeError("Failed to connect to local server") compression.Send([constants.REQUEST_PUBKEY_FINGERPRINT], self.local_socket) def _ListenLocalConnection(self): release_lock_countdown = 1 # Pubkey. self.local_receiver = compression.Receiver(self.local_socket) while not self.local_receiver.IsDone(): data = self.local_receiver.Current() if data[0] == constants.REQUEST_PUBKEY_FINGERPRINT: pubkey = data[1] if not pubkey: raise RuntimeError("Received empty public key") self.pubkey_fingerprint = pubkey release_lock_countdown -= 1 if release_lock_countdown == 0: self.initialization_lock.release() release_lock_countdown -= 1 # Prevent repeated triggering. self.local_receiver.Advance() def Run(self, jobs): self.indicator.Starting() need_libv8 = False for s in self.suites: shell = s.shell() if shell not in self.binaries: path = os.path.join(self.context.shell_dir, shell) # Check if this is a shared library build. try: ldd = subprocess.check_output("ldd %s | grep libv8\\.so" % (path), shell=True) ldd = ldd.strip().split(" ") assert ldd[0] == "libv8.so" assert ldd[1] == "=>" need_libv8 = True binary_needs_libv8 = True libv8 = signatures.ReadFileAndSignature(ldd[2]) except: binary_needs_libv8 = False binary = signatures.ReadFileAndSignature(path) if binary[0] is None: print("Error: Failed to create signature.") assert binary[1] != 0 return binary[1] binary.append(binary_needs_libv8) self.binaries[shell] = binary if need_libv8: self.binaries["libv8.so"] = libv8 distro.Assign(self.suites, self.peers) # Spawn one thread for each peer. threads = [] for p in self.peers: thread = threading.Thread(target=self._TalkToPeer, args=[p]) threads.append(thread) thread.start() try: for thread in threads: # Use a timeout so that signals (Ctrl+C) will be processed. thread.join(timeout=10000000) self._AnalyzePeerRuntimes() except KeyboardInterrupt: self.terminate = True raise except Exception, _e: # If there's an exception we schedule an interruption for any # remaining threads... self.terminate = True # ...and then reraise the exception to bail out. raise compression.Send(constants.END_OF_STREAM, self.local_socket) self.local_socket.close() if self.tests: self._RunInternal(jobs) self.indicator.Done() return not self.failed def _TalkToPeer(self, peer): sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) sock.settimeout(self.context.timeout + 10) code = sock.connect_ex((peer.address, constants.PEER_PORT)) if code == 0: try: peer.runtime = None start_time = time.time() packet = workpacket.WorkPacket(peer=peer, context=self.context, base_revision=self.base_svn_rev, patch=self.patch, pubkey=self.pubkey_fingerprint) data, test_map = packet.Pack(self.binaries) compression.Send(data, sock) compression.Send(constants.END_OF_STREAM, sock) rec = compression.Receiver(sock) while not rec.IsDone() and not self.terminate: data_list = rec.Current() for data in data_list: test_id = data[0] if test_id < 0: # The peer is reporting an error. with self.lock: print("\nPeer %s reports error: %s" % (peer.address, data[1])) continue test = test_map.pop(test_id) test.MergeResult(data) try: self.perfdata.UpdatePerfData(test) except Exception, e: print("UpdatePerfData exception: %s" % e) pass # Just keep working. with self.lock: perf_key = self.perfdata.GetKey(test) compression.Send( [constants.INFORM_DURATION, perf_key, test.duration, self.context.arch, self.context.mode], self.local_socket) self.indicator.AboutToRun(test) has_unexpected_output = test.suite.HasUnexpectedOutput(test) if has_unexpected_output: self.failed.append(test) if test.output.HasCrashed(): self.crashed += 1 else: self.succeeded += 1 self.remaining -= 1 self.indicator.HasRun(test, has_unexpected_output) rec.Advance() peer.runtime = time.time() - start_time except KeyboardInterrupt: sock.close() raise except Exception, e: print("Got exception: %s" % e) pass # Fall back to local execution. else: compression.Send([constants.UNRESPONSIVE_PEER, peer.address], self.local_socket) sock.close() if len(test_map) > 0: # Some tests have not received any results. Run them locally. print("\nNo results for %d tests, running them locally." % len(test_map)) self._EnqueueLocally(test_map) def _EnqueueLocally(self, test_map): with self.tests_lock: for test in test_map: self.tests.append(test_map[test]) def _AnalyzePeerRuntimes(self): total_runtime = 0.0 total_work = 0.0 for p in self.peers: if p.runtime is None: return total_runtime += p.runtime total_work += p.assigned_work for p in self.peers: p.assigned_work /= total_work p.runtime /= total_runtime perf_correction = p.assigned_work / p.runtime old_perf = p.relative_performance p.relative_performance = (old_perf + perf_correction) / 2.0 compression.Send([constants.UPDATE_PERF, p.address, p.relative_performance], self.local_socket)
multiprocesses.py
from multiprocessing import Process from multiprocessing import Pool from subprocess import check_output from itertools import product from functools import partial import os import time def info(title): #print title #print 'module name:', __name__ #if hasattr(os, 'getppid'): # only available on Unix #print 'parent process:', os.getppid() print 'process id:', os.getpid() def f(stre,args): info('function f') #test = check_output(["ab","-n",'20',"-c",'5','http://127.0.0.1:80/']) time.sleep(args[1]) print "sleep for ", args[1] start = time.time() for x in range(args[2]): if time.time() - start < args[3] : print stre, "-----------running num", args[0] test = check_output(["ab","-n",'20',"-c",'5','http://127.0.0.1:80/']) print test else: print "*********process terminated", args[0] break if __name__ == '__main__': #pname = 'p'+ str(num) #info('main line') p = Pool(5) list1 = [1,2,3,6,7] list2 = [3,3,3,3,3] list3 = [5,5,5,5,5] list4 = [1,1,1,1,1] process = "process" f2 = partial(f,process) p.map(f2, zip(list1, list2,list3,list4)) #pname = Process(target=f, args=(num,)) #pname.start() #time.sleep(5) #pname.join()
main.py
''' PyCxClient Python-based all in one Chaoxing learning helper,put to test by mos9527 @ mos9527.tooo.top ''' import json import logging import os import sys import threading import time import coloredlogs import math import io from apis import session,behaviorlogging, captchas, general, mooclearning, registration,activities,notification from utils.myutils import userio from utils.showfile import showfile from utils.atom import streamedatom # region Init ''' Initialzation calls Contains argument parsing,logging and other setups. Logging & Argparser ''' # region Settings settings = { 'loginmethod': -1, 'username': '', 'password': '', 'schoolid': '' } # Set-up these strings to login semi-automaticly (you still need to pass Captcha) mimic_settings = { 'step':20, # In percentage * 100,the step of the mimic operation 'block':256 # The block size of a video request } # endregion # region Misc Setup def splash(): '''ASCII Art Splash,just for fun.''' userio.get(f''' ________ _________ __________________ _____ ___ __ \____ ___ ____/___ ___ ____/__ /__(_)_____________ /_ __ /_/ /_ / / / / __ |/_/ / __ /__ /_ _ \_ __ \ __/ _ ____/_ /_/ // /___ __> < / /___ _ / _ / / __/ / / / /_ /_/ _\__, / \____/ /_/|_| \____/ /_/ /_/ \___//_/ /_/\__/ /____/ Python 实现的超星学习通多合一客户端 使用说明: by greats3an@gmail.com · 输入 {userio.cancel} 返回上一级 · 按下【回车】键登录 ''',end='') # endregion # region Logging Setup # Set root logger & Generate a path where the logging text will be write to logger,logfile = logging.getLogger('main'),showfile._GenerateRandomFilename(ext=time.strftime('PyCxClient_%H%M',time.localtime()) + '.log') def init_logging(): global logger # Setup stdout def WriteWrapper(write): def wrapper(text): write(text) open(logfile,'a+',encoding='utf-8').write(text) return wrapper sys.stdin.reconfigure(encoding='utf-8') sys.stdout.reconfigure(encoding='utf-8') # set io encodings to `utf-8` sys.stdout.write = WriteWrapper(sys.stdout.write) coloredlogs.install(logging.DEBUG,stream=sys.stdout) # Install coloredlogs ... for colored logs. logging.getLogger("urllib3").setLevel(logging.WARNING) # turn up logs levels for urllib3 which is used by requests logger.debug('Program started at %s' % time.strftime('%H:%M:%S',time.localtime())) # endregion # region Argument Parser def init_parseargs(): global settings,mimic_settings showfile.fileprocesser = sys.argv[1] if len(sys.argv) > 1 else '' if showfile.fileprocesser:logger.debug('Using custom file processer %s' % showfile.fileprocesser) # setup custom fileprocsser if set in argv # TODO:parse arguments for settings # endregion # region Login sequence def 账号密码登录(settings): '''Perform login by interfacing with user,returns login result''' print('【卡密登录】') # User should login now result = registration.login.NormalLogin( settings['username'] if settings['username'] else userio.get('输入您的账号'), settings['password'] if settings['password'] else userio.get('输入您的密码'), ) if not 'url' in result.keys(): logger.fatal('Failed to login:%s' % result['mes'] if 'mes' in result.keys() else '原因未知') userio.get('按任意键', end='退出') sys.exit(2) # We have logged in,now,list all the courses the user has logger.info('User logged in') return result def 单位登录(settings): '''Perform login by interfacing with user,returns login result''' def GetSchoolID(): '''Seraches unit's ID then let the user choose''' units = registration.serachunits.SearchUnits( userio.get('请输入您所在机构的名称进行模糊搜索(如:XX中学)')) userio.listout( units['froms'], foreach=lambda x,i: x['name'], title='机构列表') unit = units['froms'][int(userio.get('输入您所处机构的【序号】'))] return unit['schoolid'] print('【单位登录】') # User should login now result = registration.login.UnitLogin( settings['schoolid'] if settings['schoolid'] else GetSchoolID(), settings['username'] if settings['username'] else userio.get( '输入您于该机构中的【学号 / 工号】'), settings['password'] if settings['password'] else userio.get('输入您的密码'), # Prompt the user to input the captcha code # Renewing captcha,which will also give us a new JSESSIONID captchas.logincaptcha.RenewCaptcha(True) ) if not 'url' in result.keys(): logger.fatal('Failed to login:%s' % result['mes'] if 'mes' in result.keys() else '原因未知') userio.get('按任意键', end='退出') sys.exit(2) # We have logged in,now,list all the courses the user has logger.info('User logged in') return result def init_login(): # Perform login methods = [账号密码登录, 单位登录] if not 'loginmethod' in list(settings.keys()) or settings['loginmethod'] == -1: userio.listout(methods, foreach=lambda x,i: x.__name__, title='选择登录途径') method = methods[int(userio.get('输入登录方法【序号】',end='>>>'))] # Then we enter the main loop else: method = methods[int(settings['loginmethod'])] method(settings) # endregion # region init() newest_id,Ts,Tscale = None,[],1 # NewestID,TaskS,Timescale def init(): ''' Setup loggings and argparsers. Then,Prompt to login and starts all timed tasks declared with `decorator @T([interval])` ''' # Start timed execution thread def _T(): '''Execute timed sequence''' global Ts while True: for t in Ts: if int(time.time() - t['lastexec']) >= t['every']: t['lastexec'] = time.time() def wrapper(): try: t['method'](*t['args'],**t['kwargs']) except Exception as e: logger.warn('Execption occured when executing %s:%s' % (t['method'].__name__,e)) threading.Thread(target=wrapper,daemon=True).start() # Starts a subthread for this operation # Execute when time is up time.sleep(Tscale) # Minium timescale of x.xx s # First,initialize logging init_logging() # Then,parses arguments init_parseargs() # Splash text...why not? splash() # Finally,prompt the user to login init_login() # And Starts a time sequence executer threading.Thread(target=_T,daemon=True).start() # endregion # endregion # region Nested Life Cycle ''' Work during loop CLI Interfacing is based on this classic nested Loop chain construct,might be a little confusing But in development,yields great extensiblity and debuggablity Since all call stacks can be easily traced ''' # region Looper Utilities def A(actions): '''`A:Action`,prompts user to select a action of choice''' userio.listout(actions, foreach=lambda x,i: x.__name__, title='可用操作') action = actions[int(userio.get('输入操作【序号】'))] return action def L(method): '''`L:Looper`,wrapper for looping inside a function,then breaks once an exception occures''' def wrapper(*args, **kwargs): while True: try: method(*args, **kwargs) except Exception as e: logger.error(e) break return wrapper def T(every,*args,**kwargs): '''T:Timed tasks decorator.Adds timed task into the timed sequence''' def wrapper(method): global Ts Ts.append({'method':method,'every':every,'lastexec':time.time(),'args':args,'kwargs':kwargs}) return wrapper # endregion # region Notification Managment notifylambda = lambda x,i:f"""[{x['completeTime']}] {x['createrName']} {('(我)' if str(x['createrId']) == str(session.cookies.get('_uid')) else '')} {x['title'].strip()}: {x['content'].strip() if 'content' in x.keys() else '(请在【通知列表】查看)'}""" # Lambda for stringify-ing notifications @T(1) # Pull every 1s def 拉取通知(): global newest_id new_notification = notification.pull.PullNotifiactions(lastValue=newest_id,getNew=True) if 'msg' in new_notification.keys() and newest_id: # Incoming message: Message exisits and the id has been renewed before userio.listout(new_notification['msg'],notifylambda,title='新信息',showindex=False) if not newest_id == new_notification['objs']: newest_id = new_notification['objs'] logger.debug('Updating newest notification ID to %s' % newest_id) # endregion # region Nested Functions def 课堂列表(): def _select(): '''User will pick one courses from the list,this funtions returns the one selected''' courses = mooclearning.studentcourses.LoadCourses() userio.listout( courses, foreach=lambda x,i: x["title"] + ' (' + x["description"][0] + ')', title='课堂列表') course = courses[int(userio.get('输入课堂【序号】'))] # Now the user should choose one of those courses return course course = _select() def 课程列表(course): def _select(course): '''Then,user picks one task from the course,this function returns it''' logger.debug('Loading course %s' % course['title']) classes = mooclearning.courseclasses.LoadClasses(course['url']) # User can now select one of the classes to start 'learning' userio.listout(classes.keys(), title='课程列表') class_ = classes[list(classes.keys())[int(userio.get('输入课程【序号】'))]] # Returns the class selected return class_ class_ = _select(course) def 任务列表(class_): def _select(class_): '''We can finally do things on this praticlar task''' userio.listout(class_, foreach=lambda x,i: x['chapter'] + ' ' + x['title'], title='任务列表') task = class_[int(userio.get('输入任务【序号】'))] # Now we load the info of such sub task logger.debug('Loading task %s' % task['title']) _task = mooclearning.classtasks.LoadClassInfo(task['knowledge_url']) # returns the task selected return {**task,**_task} task = _select(class_) def 任务点列表(task): def _select(task): '''User will now select a task point of choice''' userio.listout(task['attachments'], foreach=lambda x,i: x['property']['name'], title='任务点') attachment = task['attachments'][int(userio.get('输入任务点【序号】'))] status = { **general.objectstatus.GetObjectStatus(attachment['property']['objectid']), 'isPassed': attachment['isPassed'] if 'isPassed' in attachment.keys() else False } # returns the task's return {'attachment': attachment, 'status': status} taskpoint = _select(task) print('\n'.join([ f"{userio.header('任务点状态')}", f" 名称:{taskpoint['attachment']['property']['name']}", f" 类型:{taskpoint['attachment']['type']}", f"通过状态:{['未通过 / 未知','已通过'][taskpoint['status']['isPassed']]}" ])) def _enumerate(task, attachment, status): '''Gets all supported operations for the certain task''' def 获取下载链接(): return f""" 直链:{status['download']} 可续传:{status['http']} (需要额外 Header 'referer':'https://mooc1-1.chaoxing.com/ananas/modules/video/index.html?v=2019-1113-1705') """ def 获取封面(): return f""" 链接:{status['screenshot']} """ def 下载为MP3(): return f""" 链接:{status['mp3']} (需要额外 Header 'referer':'https://mooc1-1.chaoxing.com/ananas/modules/video/index.html?v=2019-1113-1705') """ def 设置观看时长(mimic_settings=mimic_settings): step = mimic_settings['step'] block = mimic_settings['block'] logger.debug('Fecthing HTTP Video ATOM header') headers = {'referer': 'https://mooc1-1.chaoxing.com/ananas/modules/video/index.html?v=2019-1113-1705'} # The header necessary to request the HTTP streamed (206) video source header = streamedatom.GetHTTPVideoHeader(status['http'],session,headers=headers) content_length = int(header['http']['Content-Length']) real_duration = math.floor(header['atom'].ATOM_DURATION_SEC) # Note that the video's `real_duration` (in its ATOM header) report_duration = status['duration'] # Is usually the same as the `report_duration`,yet the `report_duration` given by the server # ...is sometimes lower than the real_duration.To make `multimedialog` work,the maxium duration # (in clipTime) must be the `report_duration` otherwise it will result in an 403 # Yet mimicing the playback,we should use `real_duration` to give us a full 100% playback time print('警告:1.更改操作只能【增加】时长,而不能【消减】时长') print() print(' 故该操作不可逆,请慎重使用') print() print(f' 2.该操作将视频分为 {int(100 / step)} 份并同时对API和视频源(分块:{block} B)进行') print() print(' 请求,且在大多数情况下表现安全,但**不保证**') print() print(' 不会导致后台数据的异常,所产生的后果将由阁下') print() print(' 自行承担') print() print(' 注:需要刷新视频页面查看结果') print() print('视频总时长(秒):', real_duration) set_duration = int(userio.get('欲调节到的观看时长')) percentage = set_duration / real_duration print('观看时长、总时长比:%s ' % percentage) def postLog(played_duration): '''Posts a MultimediaLog''' return behaviorlogging.multimedialog.MultimediaLog( task['defaults']['reportUrl'], int(played_duration), report_duration, status['dtoken'], task['defaults']['clazzId'], attachment['property']['objectid'], attachment['otherInfo'], attachment['property']['jobid'] if 'jobid' in attachment['property'].keys( ) else attachment['property']['_jobid'], isdrag=0 if played_duration < int(report_duration) * 0.5 else 4 # Minium playback 'pass' ratio ) for seek in range(0,100 + step,step): # Mimic a normal watch routine seek_precentage = seek / 100 # Precentage of the loop seek_head = int(content_length * percentage * seek_precentage) # Byte start posistion of the request played_duration = int(real_duration * percentage * seek_precentage) # Time start posistion of the log logger.debug('Stepping watch routine head: %s / %s (%s / 100)' % (seek_head,content_length,seek)) # Loads the streaming video sources by chunks r = streamedatom.PartialGet(status['http'],session,seek_head,block,headers=headers) logger.debug('Server returned code %s' % r.status_code) # Sends the request result = postLog(played_duration) # Does the logger return f''' 返回值:{result} 结果:{'播放已结束' if 'true' in result else '播放未结束' if 'false' in result else '修改失败'} ''' def 设置考核点(): print('警告: 该操作不可逆,请慎重使用') userio.get('按下回车键', end='[确定]') result = behaviorlogging.documentpoint.SetDocumentPoint( attachment['property']['jobid'] if 'jobid' in attachment['property'].keys( ) else attachment['property']['_jobid'], task['defaults']['knowledgeid'], task['defaults']['courseid'], task['defaults']['clazzId'], attachment['jtoken'] ) return f''' 信息:{result["msg"]} 结果:{'设置成功' if result['status'] else '设置失败(该项目可能不属于考核点)' } ''' operations = { '*': [获取下载链接], 'video': [获取封面, 下载为MP3, 设置观看时长], 'document': [设置考核点] } return operations['*'] + operations[attachment['type']] if attachment['type'] in operations.keys() else [] AS = _enumerate(task, taskpoint['attachment'], taskpoint['status']) print(A(AS)()) def 设置阅读记录(task): result = behaviorlogging.studentstudy.SetStudentStudy(task['url']) print('结果:',result) raise Exception('Done') AS = [任务点列表,设置阅读记录] L(A(AS))(task) AS = [任务列表] L(A(AS))(class_) def 活动列表(course): def _select(activitylist): '''User will now choose one of the activites''' userio.listout(activitylist,foreach=lambda x,i:'[%s] [%s] %s %s' %(['进行中','已结束'][x['activity_ended']],x['activity_type_str'],x['activity_description'],x['activity_alert']),title='活动列表') return activitylist[int(userio.get('输入序号'))] activitylist = activities.courseactivites.GetCourseActivites(course['url']) activity = _select(activitylist) def 签到(): try: userio.get(f'输入 {userio.cancel} 取消,否则按回车键继续') result = activities.signin.NormalSingin(activity['url']) return '结果:\n ' + result except Exception: return '' def 查看选人情况(): result = activities.pick.PickInfo(activity['url']) userio.listout( result, foreach=lambda x,i:f"{x['name']} {('(我)' if str(x['uid']) == str(session.cookies.get('_uid')) else '')} {x['updatetimeStr']}", title='被选到的人') userio.get('按回车键',ignore_cancel=True) return '' def 查看评分信息(): result = activities.rating.RateDetail(activity['url']) print(f" 标题: {result['rate_info']['title']}") print(f"其他信息: {result['rate_info']['deploy_info']}") userio.listout(result['rate_survey'],lambda x,i:f"{x['sender']} | {x['score']} | {x['message']}",'调研信息') userio.listout(result['rate_imgs'],lambda x,i:f'图片 {i}','内容') try: url = result['rate_imgs'][int(userio.get('输入预览序号'))] showfile.ShowPath(url,ext='jpg',lifetime=10) except Exception: pass return '' def 评分(): print('注意:该功能没有对分数进行上、下限进行限制') print(' 故阁下需为自己所给出的异常分数') print(' 自行负责,请在充分考虑后果后继续') print() userio.get(f'按回车键继续,输入 {userio.cancel} 取消') content = userio.get('评分内容') score = userio.get('评分分数') result = activities.rating.Rate(activity['url'],content,score) return f" 结果:{result['msg'] if result['msg'] else '成功'}" def _enumerate(activity_type): operations = { '*':[], '2':[签到], '11':[查看选人情况], '23':[查看评分信息,评分] } return operations['*'] + operations[str(activity_type)] if str(activity_type) in operations.keys() else [] print(A(_enumerate(activity['activity_type']))()) AS = [课程列表,活动列表] L(A(AS))(course) def 通知列表(pageid=0): notice = notification.pull.PullNotifiactions(0,pageid) if not ('notices' in notice.keys()): print ('!没有更多通知') raise Exception('No older notifications') return userio.listout( notice['notices']['list'], notifylambda, title='通知列表', reverse=True) lastpage = notice['notices']['lastGetId'] userio.get(f'按回车查看下一页,否则输入 {userio.cancel} 退出') return 通知列表(lastpage) def 输入邀请码(): inviteCode = userio.get('请输入邀请码') inviteMessage = mooclearning.invitecode.ParseInviteCode(inviteCode) print(userio.header('课程信息')) print(f''' 课程名: {inviteMessage['title']} 授课教师:{inviteMessage['teacher']} 附加信息:{inviteMessage['msg']} ''') if inviteMessage['msg']:raise Exception(inviteMessage['msg']) userio.get('输入 q 取消添加,否则按回车参加该课程') result = mooclearning.invitecode.JoinByInviteCode(inviteMessage['courseId'],inviteMessage['classId']) print('结果:',result['msg']) raise Exception('Done') # endregion # region entryPoint() def entryPoint(): '''Entry point to the looper''' AS = [课堂列表,通知列表,输入邀请码] # AS:ActionS to be emurated L(A(AS))() # endregion # endregion # region End def end(): session.close() userio.get('按任意键退出,日志文件将会被清除') os.remove(logfile) sys.exit(0) # endregion # Lifecycle of this program: if __name__ == "__main__": # Init: Logging in & `not-a-bot` verification init() # Enters entery point once finished initialzing L(entryPoint)() # End: Cleaning up logs & closes connection.Exits with code 0 end()
train.py
import pdb import os import torch import torch.distributed as dist from math import ceil from random import Random from torch.multiprocessing import Process from torch.autograd import Variable from torchvision import datasets, transforms class Partition(object): """ Dataset-like object, but only access a subset of it. """ def __init__(self, data, index): self.data = data self.index = index def __len__(self): return len(self.index) def __getitem__(self, index): data_idx = self.index[index] return self.data[data_idx] class DataPartitioner(object): """ Partitions a dataset into different chuncks. """ def __init__(self, data, sizes=[0.7, 0.2, 0.1], seed=1234): self.data = data self.partitions = [] rng = Random() rng.seed(seed) data_len = len(data) indexes = [x for x in range(0, data_len)] rng.shuffle(indexes) for frac in sizes: part_len = int(frac * data_len) self.partitions.append(indexes[0:part_len]) indexes = indexes[part_len:] def use(self, partition): return Partition(self.data, self.partitions[partition]) class RingAllReduce(object): def __init__(self, model, criterion, optimizer, dataset, epoch=100, addr='127.0.0.1', port='29500', backend='gloo'): self.model = model self.criterion = criterion self.optimizer = optimizer self.dataset = dataset self.epoch = epoch self.addr = addr self.port = port self.backend = backend def partition_dataset(self): size = dist.get_world_size() bsz = 128 // size partition_sizes = [1.0 / size for _ in range(size)] partition = DataPartitioner(self.dataset, partition_sizes) partition = partition.use(dist.get_rank()) train_set = torch.utils.data.DataLoader( partition, batch_size=bsz, shuffle=True) return train_set, bsz def average_gradients(self): """ Gradient averaging. """ size = float(dist.get_world_size()) for param in self.model.parameters(): dist.all_reduce(param.grad.data, op=dist.reduce_op.SUM, group=0) param.grad.data /= size def run(self, rank, size): """ Distributed Synchronous SGD Example """ torch.manual_seed(1234) train_set, bsz = self.partition_dataset() optimizer = self.optimizer criterion = self.criterion num_batches = ceil(len(train_set.dataset) / float(bsz)) for epoch in range(self.epoch): epoch_loss = 0.0 for data, target in train_set: data, target = Variable(data), Variable(target) optimizer.zero_grad() output = self.model(data) loss = criterion(output, target) epoch_loss += loss.data.item() loss.backward() self.average_gradients() optimizer.step() print('Rank ', dist.get_rank(), ', epoch ', epoch, ': ', epoch_loss / num_batches) def init_processes(self, rank, size, fn): """ Initialize the distributed environment. """ os.environ['MASTER_ADDR'] = self.addr os.environ['MASTER_PORT'] = self.port dist.init_process_group(self.backend, rank=rank, world_size=size) fn(rank, size) def train(self, size=2): processes = [] for rank in range(size): p = Process(target=self.init_processes, args=(rank, size, self.run)) p.start() processes.append(p) for p in processes: p.join()
custom.py
# -------------------------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # -------------------------------------------------------------------------------------------- from __future__ import print_function import threading try: from urllib.parse import urlparse except ImportError: from urlparse import urlparse # pylint: disable=import-error from six.moves.urllib.request import urlopen # pylint: disable=import-error, ungrouped-imports from binascii import hexlify from os import urandom import json import ssl import sys import OpenSSL.crypto from knack.prompting import prompt_pass, NoTTYException from knack.util import CLIError from knack.log import get_logger from msrestazure.azure_exceptions import CloudError from msrestazure.tools import is_valid_resource_id, parse_resource_id from azure.mgmt.storage import StorageManagementClient from azure.mgmt.web.models import (Site, SiteConfig, User, AppServicePlan, SiteConfigResource, SkuDescription, SslState, HostNameBinding, NameValuePair, BackupRequest, DatabaseBackupSetting, BackupSchedule, RestoreRequest, FrequencyUnit, Certificate, HostNameSslState, RampUpRule, UnauthenticatedClientAction, ManagedServiceIdentity, DeletedAppRestoreRequest, DefaultErrorResponseException) from azure.cli.core.commands.client_factory import get_mgmt_service_client from azure.cli.core.commands import LongRunningOperation from azure.cli.core.util import in_cloud_console from azure.cli.core.util import open_page_in_browser from .vsts_cd_provider import VstsContinuousDeliveryProvider from ._params import AUTH_TYPES, MULTI_CONTAINER_TYPES from ._client_factory import web_client_factory, ex_handler_factory from ._appservice_utils import _generic_site_operation logger = get_logger(__name__) # pylint:disable=no-member,too-many-lines,too-many-locals # region "Common routines shared with quick-start extensions." # Please maintain compatibility in both interfaces and functionalities" def create_webapp(cmd, resource_group_name, name, plan, runtime=None, startup_file=None, # pylint: disable=too-many-statements deployment_container_image_name=None, deployment_source_url=None, deployment_source_branch='master', deployment_local_git=None, multicontainer_config_type=None, multicontainer_config_file=None, tags=None): if deployment_source_url and deployment_local_git: raise CLIError('usage error: --deployment-source-url <url> | --deployment-local-git') client = web_client_factory(cmd.cli_ctx) if is_valid_resource_id(plan): parse_result = parse_resource_id(plan) plan_info = client.app_service_plans.get(parse_result['resource_group'], parse_result['name']) else: plan_info = client.app_service_plans.get(resource_group_name, plan) if not plan_info: raise CLIError("The plan '{}' doesn't exist".format(plan)) is_linux = plan_info.reserved node_default_version = '8.11.1' location = plan_info.location site_config = SiteConfig(app_settings=[]) webapp_def = Site(location=location, site_config=site_config, server_farm_id=plan_info.id, tags=tags) helper = _StackRuntimeHelper(client, linux=is_linux) if is_linux: if not validate_container_app_create_options(runtime, deployment_container_image_name, multicontainer_config_type, multicontainer_config_file): raise CLIError("usage error: --runtime | --deployment-container-image-name |" " --multicontainer-config-type TYPE --multicontainer-config-file FILE") if startup_file: site_config.app_command_line = startup_file if runtime: site_config.linux_fx_version = runtime match = helper.resolve(runtime) if not match: raise CLIError("Linux Runtime '{}' is not supported." "Please invoke 'list-runtimes' to cross check".format(runtime)) elif deployment_container_image_name: site_config.linux_fx_version = _format_fx_version(deployment_container_image_name) site_config.app_settings.append(NameValuePair(name="WEBSITES_ENABLE_APP_SERVICE_STORAGE", value="false")) elif multicontainer_config_type and multicontainer_config_file: encoded_config_file = _get_linux_multicontainer_encoded_config_from_file(multicontainer_config_file) site_config.linux_fx_version = _format_fx_version(encoded_config_file, multicontainer_config_type) elif plan_info.is_xenon: # windows container webapp site_config.windows_fx_version = _format_fx_version(deployment_container_image_name) elif runtime: # windows webapp with runtime specified if any([startup_file, deployment_container_image_name, multicontainer_config_file, multicontainer_config_type]): raise CLIError("usage error: --startup-file or --deployment-container-image-name or " "--multicontainer-config-type and --multicontainer-config-file is " "only appliable on linux webapp") match = helper.resolve(runtime) if not match: raise CLIError("Runtime '{}' is not supported. Please invoke 'list-runtimes' to cross check".format(runtime)) # pylint: disable=line-too-long match['setter'](match, site_config) # Be consistent with portal: any windows webapp should have this even it doesn't have node in the stack if not match['displayName'].startswith('node'): site_config.app_settings.append(NameValuePair(name="WEBSITE_NODE_DEFAULT_VERSION", value=node_default_version)) else: # windows webapp without runtime specified site_config.app_settings.append(NameValuePair(name="WEBSITE_NODE_DEFAULT_VERSION", value=node_default_version)) if site_config.app_settings: for setting in site_config.app_settings: logger.info('Will set appsetting %s', setting) poller = client.web_apps.create_or_update(resource_group_name, name, webapp_def) webapp = LongRunningOperation(cmd.cli_ctx)(poller) # Ensure SCC operations follow right after the 'create', no precedent appsetting update commands _set_remote_or_local_git(cmd, webapp, resource_group_name, name, deployment_source_url, deployment_source_branch, deployment_local_git) _fill_ftp_publishing_url(cmd, webapp, resource_group_name, name) return webapp def validate_container_app_create_options(runtime=None, deployment_container_image_name=None, multicontainer_config_type=None, multicontainer_config_file=None): if bool(multicontainer_config_type) != bool(multicontainer_config_file): return False opts = [runtime, deployment_container_image_name, multicontainer_config_type] return len([x for x in opts if x]) == 1 # you can only specify one out the combinations def update_app_settings(cmd, resource_group_name, name, settings=None, slot=None, slot_settings=None): if not settings and not slot_settings: raise CLIError('Usage Error: --settings |--slot-settings') settings = settings or [] slot_settings = slot_settings or [] app_settings = _generic_site_operation(cmd.cli_ctx, resource_group_name, name, 'list_application_settings', slot) for name_value in settings + slot_settings: # split at the first '=', appsetting should not have '=' in the name settings_name, value = name_value.split('=', 1) app_settings.properties[settings_name] = value client = web_client_factory(cmd.cli_ctx) result = _generic_settings_operation(cmd.cli_ctx, resource_group_name, name, 'update_application_settings', app_settings.properties, slot, client) app_settings_slot_cfg_names = [] if slot_settings: new_slot_setting_names = [n.split('=', 1)[0] for n in slot_settings] slot_cfg_names = client.web_apps.list_slot_configuration_names(resource_group_name, name) slot_cfg_names.app_setting_names = slot_cfg_names.app_setting_names or [] slot_cfg_names.app_setting_names += new_slot_setting_names app_settings_slot_cfg_names = slot_cfg_names.app_setting_names client.web_apps.update_slot_configuration_names(resource_group_name, name, slot_cfg_names) return _build_app_settings_output(result.properties, app_settings_slot_cfg_names) def add_azure_storage_account(cmd, resource_group_name, name, custom_id, storage_type, account_name, share_name, access_key, mount_path=None, slot=None, slot_setting=False): from azure.mgmt.web.models import AzureStorageInfoValue azure_storage_accounts = _generic_site_operation(cmd.cli_ctx, resource_group_name, name, 'list_azure_storage_accounts', slot) if custom_id in azure_storage_accounts.properties: raise CLIError("Site already configured with an Azure storage account with the id '{}'. " "Use 'az webapp config storage-account update' to update an existing " "Azure storage account configuration.".format(custom_id)) azure_storage_accounts.properties[custom_id] = AzureStorageInfoValue(type=storage_type, account_name=account_name, share_name=share_name, access_key=access_key, mount_path=mount_path) client = web_client_factory(cmd.cli_ctx) result = _generic_settings_operation(cmd.cli_ctx, resource_group_name, name, 'update_azure_storage_accounts', azure_storage_accounts.properties, slot, client) if slot_setting: slot_cfg_names = client.web_apps.list_slot_configuration_names(resource_group_name, name) slot_cfg_names.azure_storage_config_names = slot_cfg_names.azure_storage_config_names or [] if custom_id not in slot_cfg_names.azure_storage_config_names: slot_cfg_names.azure_storage_config_names.append(custom_id) client.web_apps.update_slot_configuration_names(resource_group_name, name, slot_cfg_names) return result.properties def update_azure_storage_account(cmd, resource_group_name, name, custom_id, storage_type=None, account_name=None, share_name=None, access_key=None, mount_path=None, slot=None, slot_setting=False): from azure.mgmt.web.models import AzureStorageInfoValue azure_storage_accounts = _generic_site_operation(cmd.cli_ctx, resource_group_name, name, 'list_azure_storage_accounts', slot) existing_account_config = azure_storage_accounts.properties.pop(custom_id, None) if not existing_account_config: raise CLIError("No Azure storage account configuration found with the id '{}'. " "Use 'az webapp config storage-account add' to add a new " "Azure storage account configuration.".format(custom_id)) new_account_config = AzureStorageInfoValue( type=storage_type or existing_account_config.type, account_name=account_name or existing_account_config.account_name, share_name=share_name or existing_account_config.share_name, access_key=access_key or existing_account_config.access_key, mount_path=mount_path or existing_account_config.mount_path ) azure_storage_accounts.properties[custom_id] = new_account_config client = web_client_factory(cmd.cli_ctx) result = _generic_settings_operation(cmd.cli_ctx, resource_group_name, name, 'update_azure_storage_accounts', azure_storage_accounts.properties, slot, client) if slot_setting: slot_cfg_names = client.web_apps.list_slot_configuration_names(resource_group_name, name) slot_cfg_names.azure_storage_config_names = slot_cfg_names.azure_storage_config_names or [] if custom_id not in slot_cfg_names.azure_storage_config_names: slot_cfg_names.azure_storage_config_names.append(custom_id) client.web_apps.update_slot_configuration_names(resource_group_name, name, slot_cfg_names) return result.properties def enable_zip_deploy(cmd, resource_group_name, name, src, timeout=None, slot=None): user_name, password = _get_site_credential(cmd.cli_ctx, resource_group_name, name, slot) scm_url = _get_scm_url(cmd, resource_group_name, name, slot) zip_url = scm_url + '/api/zipdeploy?isAsync=true' deployment_status_url = scm_url + '/api/deployments/latest' import urllib3 authorization = urllib3.util.make_headers(basic_auth='{0}:{1}'.format(user_name, password)) headers = authorization headers['content-type'] = 'application/octet-stream' import requests import os # Read file content with open(os.path.realpath(os.path.expanduser(src)), 'rb') as fs: zip_content = fs.read() requests.post(zip_url, data=zip_content, headers=headers) # check the status of async deployment response = _check_zip_deployment_status(deployment_status_url, authorization, timeout) return response def get_sku_name(tier): # pylint: disable=too-many-return-statements tier = tier.upper() if tier == 'F1' or tier == "FREE": return 'FREE' elif tier == 'D1' or tier == "SHARED": return 'SHARED' elif tier in ['B1', 'B2', 'B3', 'BASIC']: return 'BASIC' elif tier in ['S1', 'S2', 'S3']: return 'STANDARD' elif tier in ['P1', 'P2', 'P3']: return 'PREMIUM' elif tier in ['P1V2', 'P2V2', 'P3V2']: return 'PREMIUMV2' elif tier in ['PC2', 'PC3', 'PC4']: return 'PremiumContainer' else: raise CLIError("Invalid sku(pricing tier), please refer to command help for valid values") def _generic_settings_operation(cli_ctx, resource_group_name, name, operation_name, setting_properties, slot=None, client=None): client = client or web_client_factory(cli_ctx) operation = getattr(client.web_apps, operation_name if slot is None else operation_name + '_slot') if slot is None: return operation(resource_group_name, name, str, setting_properties) return operation(resource_group_name, name, slot, str, setting_properties) def show_webapp(cmd, resource_group_name, name, slot=None, app_instance=None): webapp = app_instance if not app_instance: # when the routine is invoked as a help method, not through commands webapp = _generic_site_operation(cmd.cli_ctx, resource_group_name, name, 'get', slot) if not webapp: raise CLIError("'{}' app doesn't exist".format(name)) _rename_server_farm_props(webapp) _fill_ftp_publishing_url(cmd, webapp, resource_group_name, name, slot) return webapp # for generic updater def get_webapp(cmd, resource_group_name, name, slot=None): return _generic_site_operation(cmd.cli_ctx, resource_group_name, name, 'get', slot) def set_webapp(cmd, resource_group_name, name, slot=None, skip_dns_registration=None, skip_custom_domain_verification=None, force_dns_registration=None, ttl_in_seconds=None, **kwargs): instance = kwargs['parameters'] client = web_client_factory(cmd.cli_ctx) updater = client.web_apps.create_or_update_slot if slot else client.web_apps.create_or_update kwargs = dict(resource_group_name=resource_group_name, name=name, site_envelope=instance, skip_dns_registration=skip_dns_registration, skip_custom_domain_verification=skip_custom_domain_verification, force_dns_registration=force_dns_registration, ttl_in_seconds=ttl_in_seconds) if slot: kwargs['slot'] = slot return updater(**kwargs) def update_webapp(instance, client_affinity_enabled=None, https_only=None): if 'function' in instance.kind: raise CLIError("please use 'az functionapp update' to update this function app") if client_affinity_enabled is not None: instance.client_affinity_enabled = client_affinity_enabled == 'true' if https_only is not None: instance.https_only = https_only == 'true' return instance def set_functionapp(cmd, resource_group_name, name, **kwargs): instance = kwargs['parameters'] if 'function' not in instance.kind: raise CLIError('Not a function app to update') client = web_client_factory(cmd.cli_ctx) return client.web_apps.create_or_update(resource_group_name, name, site_envelope=instance) def list_webapp(cmd, resource_group_name=None): result = _list_app(cmd.cli_ctx, resource_group_name) return [r for r in result if 'function' not in r.kind] def list_deleted_webapp(cmd, resource_group_name=None, name=None, slot=None): result = _list_deleted_app(cmd.cli_ctx, resource_group_name, name, slot) return sorted(result, key=lambda site: site.deleted_site_id) def restore_deleted_webapp(cmd, deleted_id, resource_group_name, name, slot=None, restore_content_only=None): request = DeletedAppRestoreRequest(deleted_site_id=deleted_id, recover_configuration=not restore_content_only) return _generic_site_operation(cmd.cli_ctx, resource_group_name, name, 'restore_from_deleted_app', slot, request) def list_function_app(cmd, resource_group_name=None): result = _list_app(cmd.cli_ctx, resource_group_name) return [r for r in result if 'function' in r.kind] def _list_app(cli_ctx, resource_group_name=None): client = web_client_factory(cli_ctx) if resource_group_name: result = list(client.web_apps.list_by_resource_group(resource_group_name)) else: result = list(client.web_apps.list()) for webapp in result: _rename_server_farm_props(webapp) return result def _list_deleted_app(cli_ctx, resource_group_name=None, name=None, slot=None): client = web_client_factory(cli_ctx) result = list(client.deleted_web_apps.list()) if resource_group_name: result = [r for r in result if r.resource_group == resource_group_name] if name: result = [r for r in result if r.deleted_site_name.lower() == name.lower()] if slot: result = [r for r in result if r.slot.lower() == slot.lower()] return result def assign_identity(cmd, resource_group_name, name, role='Contributor', slot=None, scope=None): def getter(): return _generic_site_operation(cmd.cli_ctx, resource_group_name, name, 'get', slot) def setter(webapp): webapp.identity = ManagedServiceIdentity(type='SystemAssigned') poller = _generic_site_operation(cmd.cli_ctx, resource_group_name, name, 'create_or_update', slot, webapp) return LongRunningOperation(cmd.cli_ctx)(poller) from azure.cli.core.commands.arm import assign_identity as _assign_identity webapp = _assign_identity(cmd.cli_ctx, getter, setter, role, scope) return webapp.identity def show_identity(cmd, resource_group_name, name, slot=None): return _generic_site_operation(cmd.cli_ctx, resource_group_name, name, 'get', slot).identity def remove_identity(cmd, resource_group_name, name, slot=None): def getter(): return _generic_site_operation(cmd.cli_ctx, resource_group_name, name, 'get', slot) def setter(webapp): webapp.identity = ManagedServiceIdentity(type='None') poller = _generic_site_operation(cmd.cli_ctx, resource_group_name, name, 'create_or_update', slot, webapp) return LongRunningOperation(cmd.cli_ctx)(poller) from azure.cli.core.commands.arm import assign_identity as _assign_identity webapp = _assign_identity(cmd.cli_ctx, getter, setter) return webapp.identity def get_auth_settings(cmd, resource_group_name, name, slot=None): return _generic_site_operation(cmd.cli_ctx, resource_group_name, name, 'get_auth_settings', slot) def update_auth_settings(cmd, resource_group_name, name, enabled=None, action=None, # pylint: disable=unused-argument client_id=None, token_store_enabled=None, # pylint: disable=unused-argument token_refresh_extension_hours=None, # pylint: disable=unused-argument allowed_external_redirect_urls=None, client_secret=None, # pylint: disable=unused-argument allowed_audiences=None, issuer=None, facebook_app_id=None, # pylint: disable=unused-argument facebook_app_secret=None, facebook_oauth_scopes=None, # pylint: disable=unused-argument twitter_consumer_key=None, twitter_consumer_secret=None, # pylint: disable=unused-argument google_client_id=None, google_client_secret=None, # pylint: disable=unused-argument google_oauth_scopes=None, microsoft_account_client_id=None, # pylint: disable=unused-argument microsoft_account_client_secret=None, # pylint: disable=unused-argument microsoft_account_oauth_scopes=None, slot=None): # pylint: disable=unused-argument auth_settings = get_auth_settings(cmd, resource_group_name, name, slot) if action == 'AllowAnonymous': auth_settings.unauthenticated_client_action = UnauthenticatedClientAction.allow_anonymous elif action: auth_settings.unauthenticated_client_action = UnauthenticatedClientAction.redirect_to_login_page auth_settings.default_provider = AUTH_TYPES[action] import inspect frame = inspect.currentframe() bool_flags = ['enabled', 'token_store_enabled'] # note: getargvalues is used already in azure.cli.core.commands. # and no simple functional replacement for this deprecating method for 3.5 args, _, _, values = inspect.getargvalues(frame) # pylint: disable=deprecated-method for arg in args[2:]: print(arg, values[arg]) if values.get(arg, None): setattr(auth_settings, arg, values[arg] if arg not in bool_flags else values[arg] == 'true') return _generic_site_operation(cmd.cli_ctx, resource_group_name, name, 'update_auth_settings', slot, auth_settings) def list_runtimes(cmd, linux=False): client = web_client_factory(cmd.cli_ctx) runtime_helper = _StackRuntimeHelper(client, linux) return [s['displayName'] for s in runtime_helper.stacks] def _rename_server_farm_props(webapp): # Should be renamed in SDK in a future release setattr(webapp, 'app_service_plan_id', webapp.server_farm_id) del webapp.server_farm_id return webapp def delete_function_app(cmd, resource_group_name, name, slot=None): return _generic_site_operation(cmd.cli_ctx, resource_group_name, name, 'delete', slot) def delete_webapp(cmd, resource_group_name, name, keep_metrics=None, keep_empty_plan=None, keep_dns_registration=None, slot=None): client = web_client_factory(cmd.cli_ctx) if slot: client.web_apps.delete_slot(resource_group_name, name, slot, delete_metrics=False if keep_metrics else None, delete_empty_server_farm=False if keep_empty_plan else None, skip_dns_registration=False if keep_dns_registration else None) else: client.web_apps.delete(resource_group_name, name, delete_metrics=False if keep_metrics else None, delete_empty_server_farm=False if keep_empty_plan else None, skip_dns_registration=False if keep_dns_registration else None) def stop_webapp(cmd, resource_group_name, name, slot=None): return _generic_site_operation(cmd.cli_ctx, resource_group_name, name, 'stop', slot) def start_webapp(cmd, resource_group_name, name, slot=None): return _generic_site_operation(cmd.cli_ctx, resource_group_name, name, 'start', slot) def restart_webapp(cmd, resource_group_name, name, slot=None): return _generic_site_operation(cmd.cli_ctx, resource_group_name, name, 'restart', slot) def get_site_configs(cmd, resource_group_name, name, slot=None): return _generic_site_operation(cmd.cli_ctx, resource_group_name, name, 'get_configuration', slot) def get_app_settings(cmd, resource_group_name, name, slot=None): result = _generic_site_operation(cmd.cli_ctx, resource_group_name, name, 'list_application_settings', slot) client = web_client_factory(cmd.cli_ctx) slot_app_setting_names = client.web_apps.list_slot_configuration_names(resource_group_name, name).app_setting_names return _build_app_settings_output(result.properties, slot_app_setting_names) def get_connection_strings(cmd, resource_group_name, name, slot=None): result = _generic_site_operation(cmd.cli_ctx, resource_group_name, name, 'list_connection_strings', slot) client = web_client_factory(cmd.cli_ctx) slot_constr_names = client.web_apps.list_slot_configuration_names(resource_group_name, name) \ .connection_string_names or [] result = [{'name': p, 'value': result.properties[p], 'slotSetting': p in slot_constr_names} for p in result.properties] return result def get_azure_storage_accounts(cmd, resource_group_name, name, slot=None): client = web_client_factory(cmd.cli_ctx) result = _generic_site_operation(cmd.cli_ctx, resource_group_name, name, 'list_azure_storage_accounts', slot) slot_azure_storage_config_names = client.web_apps.list_slot_configuration_names(resource_group_name, name) \ .azure_storage_config_names or [] return [{'name': p, 'value': result.properties[p], 'slotSetting': p in slot_azure_storage_config_names} for p in result.properties] def _fill_ftp_publishing_url(cmd, webapp, resource_group_name, name, slot=None): profiles = list_publish_profiles(cmd, resource_group_name, name, slot) url = next(p['publishUrl'] for p in profiles if p['publishMethod'] == 'FTP') setattr(webapp, 'ftpPublishingUrl', url) return webapp def _format_fx_version(custom_image_name, container_config_type=None): fx_version = custom_image_name.strip() fx_version_lower = fx_version.lower() # handles case of only spaces if fx_version: if container_config_type: fx_version = '{}|{}'.format(container_config_type, custom_image_name) elif not fx_version_lower.startswith('docker|'): fx_version = '{}|{}'.format('DOCKER', custom_image_name) else: fx_version = ' ' return fx_version def _add_fx_version(cmd, resource_group_name, name, custom_image_name, slot=None): fx_version = _format_fx_version(custom_image_name) web_app = get_webapp(cmd, resource_group_name, name, slot) linux_fx = fx_version if web_app.reserved else None windows_fx = fx_version if web_app.is_xenon else None return update_site_configs(cmd, resource_group_name, name, linux_fx_version=linux_fx, windows_fx_version=windows_fx, slot=slot) def _delete_linux_fx_version(cmd, resource_group_name, name, slot=None): return update_site_configs(cmd, resource_group_name, name, linux_fx_version=' ', slot=slot) def _get_fx_version(cmd, resource_group_name, name, slot=None): site_config = get_site_configs(cmd, resource_group_name, name, slot) return site_config.linux_fx_version or site_config.windows_fx_version or '' def url_validator(url): try: result = urlparse(url) return all([result.scheme, result.netloc, result.path]) except ValueError: return False def _get_linux_multicontainer_decoded_config(cmd, resource_group_name, name, slot=None): from base64 import b64decode linux_fx_version = _get_fx_version(cmd, resource_group_name, name, slot) if not any([linux_fx_version.startswith(s) for s in MULTI_CONTAINER_TYPES]): raise CLIError("Cannot decode config that is not one of the" " following types: {}".format(','.join(MULTI_CONTAINER_TYPES))) return b64decode(linux_fx_version.split('|')[1].encode('utf-8')) def _get_linux_multicontainer_encoded_config_from_file(file_name): from base64 import b64encode config_file_bytes = None if url_validator(file_name): response = urlopen(file_name, context=_ssl_context()) config_file_bytes = response.read() else: with open(file_name, 'rb') as f: config_file_bytes = f.read() # Decode base64 encoded byte array into string return b64encode(config_file_bytes).decode('utf-8') # for any modifications to the non-optional parameters, adjust the reflection logic accordingly # in the method def update_site_configs(cmd, resource_group_name, name, slot=None, linux_fx_version=None, windows_fx_version=None, php_version=None, python_version=None, # pylint: disable=unused-argument net_framework_version=None, # pylint: disable=unused-argument java_version=None, java_container=None, java_container_version=None, # pylint: disable=unused-argument remote_debugging_enabled=None, web_sockets_enabled=None, # pylint: disable=unused-argument always_on=None, auto_heal_enabled=None, # pylint: disable=unused-argument use32_bit_worker_process=None, # pylint: disable=unused-argument min_tls_version=None, # pylint: disable=unused-argument http20_enabled=None, # pylint: disable=unused-argument app_command_line=None, # pylint: disable=unused-argument ftps_state=None): # pylint: disable=unused-argument configs = get_site_configs(cmd, resource_group_name, name, slot) if linux_fx_version: if linux_fx_version.strip().lower().startswith('docker|'): update_app_settings(cmd, resource_group_name, name, ["WEBSITES_ENABLE_APP_SERVICE_STORAGE=false"]) else: delete_app_settings(cmd, resource_group_name, name, ["WEBSITES_ENABLE_APP_SERVICE_STORAGE"]) import inspect frame = inspect.currentframe() bool_flags = ['remote_debugging_enabled', 'web_sockets_enabled', 'always_on', 'auto_heal_enabled', 'use32_bit_worker_process', 'http20_enabled'] # note: getargvalues is used already in azure.cli.core.commands. # and no simple functional replacement for this deprecating method for 3.5 args, _, _, values = inspect.getargvalues(frame) # pylint: disable=deprecated-method for arg in args[3:]: if values.get(arg, None): setattr(configs, arg, values[arg] if arg not in bool_flags else values[arg] == 'true') return _generic_site_operation(cmd.cli_ctx, resource_group_name, name, 'update_configuration', slot, configs) def delete_app_settings(cmd, resource_group_name, name, setting_names, slot=None): app_settings = _generic_site_operation(cmd.cli_ctx, resource_group_name, name, 'list_application_settings', slot) client = web_client_factory(cmd.cli_ctx) slot_cfg_names = client.web_apps.list_slot_configuration_names(resource_group_name, name) is_slot_settings = False for setting_name in setting_names: app_settings.properties.pop(setting_name, None) if slot_cfg_names.app_setting_names and setting_name in slot_cfg_names.app_setting_names: slot_cfg_names.app_setting_names.remove(setting_name) is_slot_settings = True if is_slot_settings: client.web_apps.update_slot_configuration_names(resource_group_name, name, slot_cfg_names) result = _generic_settings_operation(cmd.cli_ctx, resource_group_name, name, 'update_application_settings', app_settings.properties, slot, client) return _build_app_settings_output(result.properties, slot_cfg_names.app_setting_names) def delete_azure_storage_accounts(cmd, resource_group_name, name, custom_id, slot=None): azure_storage_accounts = _generic_site_operation(cmd.cli_ctx, resource_group_name, name, 'list_azure_storage_accounts', slot) client = web_client_factory(cmd.cli_ctx) slot_cfg_names = client.web_apps.list_slot_configuration_names(resource_group_name, name) is_slot_settings = False azure_storage_accounts.properties.pop(custom_id, None) if slot_cfg_names.azure_storage_config_names and custom_id in slot_cfg_names.azure_storage_config_names: slot_cfg_names.azure_storage_config_names.remove(custom_id) is_slot_settings = True if is_slot_settings: client.web_apps.update_slot_configuration_names(resource_group_name, name, slot_cfg_names) result = _generic_settings_operation(cmd.cli_ctx, resource_group_name, name, 'update_azure_storage_accounts', azure_storage_accounts.properties, slot, client) return result.properties def _ssl_context(): if sys.version_info < (3, 4) or (in_cloud_console() and sys.platform.system() == 'Windows'): try: return ssl.SSLContext(ssl.PROTOCOL_TLS) # added in python 2.7.13 and 3.6 except AttributeError: return ssl.SSLContext(ssl.PROTOCOL_TLSv1) return ssl.create_default_context() def _build_app_settings_output(app_settings, slot_cfg_names): slot_cfg_names = slot_cfg_names or [] return [{'name': p, 'value': app_settings[p], 'slotSetting': p in slot_cfg_names} for p in _mask_creds_related_appsettings(app_settings)] def update_connection_strings(cmd, resource_group_name, name, connection_string_type, settings=None, slot=None, slot_settings=None): from azure.mgmt.web.models import ConnStringValueTypePair if not settings and not slot_settings: raise CLIError('Usage Error: --settings |--slot-settings') settings = settings or [] slot_settings = slot_settings or [] conn_strings = _generic_site_operation(cmd.cli_ctx, resource_group_name, name, 'list_connection_strings', slot) for name_value in settings + slot_settings: # split at the first '=', connection string should not have '=' in the name conn_string_name, value = name_value.split('=', 1) if value[0] in ["'", '"']: # strip away the quots used as separators value = value[1:-1] conn_strings.properties[conn_string_name] = ConnStringValueTypePair(value=value, type=connection_string_type) client = web_client_factory(cmd.cli_ctx) result = _generic_settings_operation(cmd.cli_ctx, resource_group_name, name, 'update_connection_strings', conn_strings.properties, slot, client) if slot_settings: new_slot_setting_names = [n.split('=', 1)[0] for n in slot_settings] slot_cfg_names = client.web_apps.list_slot_configuration_names(resource_group_name, name) slot_cfg_names.connection_string_names = slot_cfg_names.connection_string_names or [] slot_cfg_names.connection_string_names += new_slot_setting_names client.web_apps.update_slot_configuration_names(resource_group_name, name, slot_cfg_names) return result.properties def delete_connection_strings(cmd, resource_group_name, name, setting_names, slot=None): conn_strings = _generic_site_operation(cmd.cli_ctx, resource_group_name, name, 'list_connection_strings', slot) client = web_client_factory(cmd.cli_ctx) slot_cfg_names = client.web_apps.list_slot_configuration_names(resource_group_name, name) is_slot_settings = False for setting_name in setting_names: conn_strings.properties.pop(setting_name, None) if slot_cfg_names.connection_string_names and setting_name in slot_cfg_names.connection_string_names: slot_cfg_names.connection_string_names.remove(setting_name) is_slot_settings = True if is_slot_settings: client.web_apps.update_slot_configuration_names(resource_group_name, name, slot_cfg_names) return _generic_settings_operation(cmd.cli_ctx, resource_group_name, name, 'update_connection_strings', conn_strings.properties, slot, client) CONTAINER_APPSETTING_NAMES = ['DOCKER_REGISTRY_SERVER_URL', 'DOCKER_REGISTRY_SERVER_USERNAME', 'DOCKER_REGISTRY_SERVER_PASSWORD', "WEBSITES_ENABLE_APP_SERVICE_STORAGE"] APPSETTINGS_TO_MASK = ['DOCKER_REGISTRY_SERVER_PASSWORD'] def update_container_settings(cmd, resource_group_name, name, docker_registry_server_url=None, docker_custom_image_name=None, docker_registry_server_user=None, websites_enable_app_service_storage=None, docker_registry_server_password=None, multicontainer_config_type=None, multicontainer_config_file=None, slot=None): settings = [] if docker_registry_server_url is not None: settings.append('DOCKER_REGISTRY_SERVER_URL=' + docker_registry_server_url) if (not docker_registry_server_user and not docker_registry_server_password and docker_registry_server_url and '.azurecr.io' in docker_registry_server_url): logger.warning('No credential was provided to access Azure Container Registry. Trying to look up...') parsed = urlparse(docker_registry_server_url) registry_name = (parsed.netloc if parsed.scheme else parsed.path).split('.')[0] try: docker_registry_server_user, docker_registry_server_password = _get_acr_cred(cmd.cli_ctx, registry_name) except Exception as ex: # pylint: disable=broad-except logger.warning("Retrieving credentials failed with an exception:'%s'", ex) # consider throw if needed if docker_registry_server_user is not None: settings.append('DOCKER_REGISTRY_SERVER_USERNAME=' + docker_registry_server_user) if docker_registry_server_password is not None: settings.append('DOCKER_REGISTRY_SERVER_PASSWORD=' + docker_registry_server_password) if docker_custom_image_name is not None: _add_fx_version(cmd, resource_group_name, name, docker_custom_image_name, slot) if websites_enable_app_service_storage: settings.append('WEBSITES_ENABLE_APP_SERVICE_STORAGE=' + websites_enable_app_service_storage) if docker_registry_server_user or docker_registry_server_password or docker_registry_server_url or websites_enable_app_service_storage: # pylint: disable=line-too-long update_app_settings(cmd, resource_group_name, name, settings, slot) settings = get_app_settings(cmd, resource_group_name, name, slot) if multicontainer_config_file and multicontainer_config_type: encoded_config_file = _get_linux_multicontainer_encoded_config_from_file(multicontainer_config_file) linux_fx_version = _format_fx_version(encoded_config_file, multicontainer_config_type) update_site_configs(cmd, resource_group_name, name, linux_fx_version=linux_fx_version) elif multicontainer_config_file or multicontainer_config_type: logger.warning('Must change both settings --multicontainer-config-file FILE --multicontainer-config-type TYPE') return _mask_creds_related_appsettings(_filter_for_container_settings(cmd, resource_group_name, name, settings)) def _get_acr_cred(cli_ctx, registry_name): from azure.mgmt.containerregistry import ContainerRegistryManagementClient from azure.cli.core.commands.parameters import get_resources_in_subscription client = get_mgmt_service_client(cli_ctx, ContainerRegistryManagementClient).registries result = get_resources_in_subscription(cli_ctx, 'Microsoft.ContainerRegistry/registries') result = [item for item in result if item.name.lower() == registry_name] if not result or len(result) > 1: raise CLIError("No resource or more than one were found with name '{}'.".format(registry_name)) resource_group_name = parse_resource_id(result[0].id)['resource_group'] registry = client.get(resource_group_name, registry_name) if registry.admin_user_enabled: # pylint: disable=no-member cred = client.list_credentials(resource_group_name, registry_name) return cred.username, cred.passwords[0].value raise CLIError("Failed to retrieve container registry credentials. Please either provide the " "credentials or run 'az acr update -n {} --admin-enabled true' to enable " "admin first.".format(registry_name)) def delete_container_settings(cmd, resource_group_name, name, slot=None): _delete_linux_fx_version(cmd, resource_group_name, name, slot) delete_app_settings(cmd, resource_group_name, name, CONTAINER_APPSETTING_NAMES, slot) def show_container_settings(cmd, resource_group_name, name, show_multicontainer_config=None, slot=None): settings = get_app_settings(cmd, resource_group_name, name, slot) return _mask_creds_related_appsettings(_filter_for_container_settings(cmd, resource_group_name, name, settings, show_multicontainer_config, slot)) def _filter_for_container_settings(cmd, resource_group_name, name, settings, show_multicontainer_config=None, slot=None): result = [x for x in settings if x['name'] in CONTAINER_APPSETTING_NAMES] fx_version = _get_fx_version(cmd, resource_group_name, name, slot).strip() if fx_version: added_image_name = {'name': 'DOCKER_CUSTOM_IMAGE_NAME', 'value': fx_version} result.append(added_image_name) if show_multicontainer_config: decoded_value = _get_linux_multicontainer_decoded_config(cmd, resource_group_name, name, slot) decoded_image_name = {'name': 'DOCKER_CUSTOM_IMAGE_NAME_DECODED', 'value': decoded_value} result.append(decoded_image_name) return result # TODO: remove this when #3660(service tracking issue) is resolved def _mask_creds_related_appsettings(settings): for x in [x1 for x1 in settings if x1 in APPSETTINGS_TO_MASK]: settings[x] = None return settings def add_hostname(cmd, resource_group_name, webapp_name, hostname, slot=None): client = web_client_factory(cmd.cli_ctx) webapp = client.web_apps.get(resource_group_name, webapp_name) if not webapp: raise CLIError("'{}' app doesn't exist".format(webapp_name)) binding = HostNameBinding(location=webapp.location, site_name=webapp.name) if slot is None: return client.web_apps.create_or_update_host_name_binding(resource_group_name, webapp.name, hostname, binding) return client.web_apps.create_or_update_host_name_binding_slot(resource_group_name, webapp.name, hostname, binding, slot) def delete_hostname(cmd, resource_group_name, webapp_name, hostname, slot=None): client = web_client_factory(cmd.cli_ctx) if slot is None: return client.web_apps.delete_host_name_binding(resource_group_name, webapp_name, hostname) return client.web_apps.delete_host_name_binding_slot(resource_group_name, webapp_name, slot, hostname) def list_hostnames(cmd, resource_group_name, webapp_name, slot=None): result = list(_generic_site_operation(cmd.cli_ctx, resource_group_name, webapp_name, 'list_host_name_bindings', slot)) for r in result: r.name = r.name.split('/')[-1] return result def get_external_ip(cmd, resource_group_name, webapp_name): # logics here are ported from portal client = web_client_factory(cmd.cli_ctx) webapp = client.web_apps.get(resource_group_name, webapp_name) if not webapp: raise CLIError("'{}' app doesn't exist".format(webapp_name)) if webapp.hosting_environment_profile: address = client.app_service_environments.list_vips( resource_group_name, webapp.hosting_environment_profile.name) if address.internal_ip_address: ip_address = address.internal_ip_address else: vip = next((s for s in webapp.host_name_ssl_states if s.ssl_state == SslState.ip_based_enabled), None) ip_address = vip.virtual_ip if vip else address.service_ip_address else: ip_address = _resolve_hostname_through_dns(webapp.default_host_name) return {'ip': ip_address} def _resolve_hostname_through_dns(hostname): import socket return socket.gethostbyname(hostname) def create_webapp_slot(cmd, resource_group_name, webapp, slot, configuration_source=None): client = web_client_factory(cmd.cli_ctx) site = client.web_apps.get(resource_group_name, webapp) if not site: raise CLIError("'{}' app doesn't exist".format(webapp)) location = site.location slot_def = Site(server_farm_id=site.server_farm_id, location=location) clone_from_prod = None slot_def.site_config = SiteConfig() poller = client.web_apps.create_or_update_slot(resource_group_name, webapp, slot_def, slot) result = LongRunningOperation(cmd.cli_ctx)(poller) if configuration_source: clone_from_prod = configuration_source.lower() == webapp.lower() site_config = get_site_configs(cmd, resource_group_name, webapp, None if clone_from_prod else configuration_source) _generic_site_operation(cmd.cli_ctx, resource_group_name, webapp, 'update_configuration', slot, site_config) # slot create doesn't clone over the app-settings and connection-strings, so we do it here # also make sure slot settings don't get propagated. if configuration_source: slot_cfg_names = client.web_apps.list_slot_configuration_names(resource_group_name, webapp) src_slot = None if clone_from_prod else configuration_source app_settings = _generic_site_operation(cmd.cli_ctx, resource_group_name, webapp, 'list_application_settings', src_slot) for a in slot_cfg_names.app_setting_names or []: app_settings.properties.pop(a, None) connection_strings = _generic_site_operation(cmd.cli_ctx, resource_group_name, webapp, 'list_connection_strings', src_slot) for a in slot_cfg_names.connection_string_names or []: connection_strings.properties.pop(a, None) _generic_settings_operation(cmd.cli_ctx, resource_group_name, webapp, 'update_application_settings', app_settings.properties, slot, client) _generic_settings_operation(cmd.cli_ctx, resource_group_name, webapp, 'update_connection_strings', connection_strings.properties, slot, client) result.name = result.name.split('/')[-1] return result def config_source_control(cmd, resource_group_name, name, repo_url, repository_type='git', branch=None, # pylint: disable=too-many-locals manual_integration=None, git_token=None, slot=None, cd_app_type=None, app_working_dir=None, nodejs_task_runner=None, python_framework=None, python_version=None, cd_account_create=None, cd_project_url=None, test=None, slot_swap=None, private_repo_username=None, private_repo_password=None): client = web_client_factory(cmd.cli_ctx) location = _get_location_from_webapp(client, resource_group_name, name) if cd_project_url: # Add default values cd_app_type = 'AspNet' if cd_app_type is None else cd_app_type python_framework = 'Django' if python_framework is None else python_framework python_version = 'Python 3.5.3 x86' if python_version is None else python_version webapp_list = None if test is None else list_webapp(resource_group_name) vsts_provider = VstsContinuousDeliveryProvider() cd_app_type_details = { 'cd_app_type': cd_app_type, 'app_working_dir': app_working_dir, 'nodejs_task_runner': nodejs_task_runner, 'python_framework': python_framework, 'python_version': python_version } try: status = vsts_provider.setup_continuous_delivery(cmd.cli_ctx, resource_group_name, name, repo_url, branch, git_token, slot_swap, cd_app_type_details, cd_project_url, cd_account_create, location, test, private_repo_username, private_repo_password, webapp_list) except RuntimeError as ex: raise CLIError(ex) logger.warning(status.status_message) return status else: non_vsts_params = [cd_app_type, app_working_dir, nodejs_task_runner, python_framework, python_version, cd_account_create, test, slot_swap] if any(non_vsts_params): raise CLIError('Following parameters are of no use when cd_project_url is None: ' + 'cd_app_type, app_working_dir, nodejs_task_runner, python_framework,' + 'python_version, cd_account_create, test, slot_swap') from azure.mgmt.web.models import SiteSourceControl, SourceControl if git_token: sc = SourceControl(location=location, source_control_name='GitHub', token=git_token) client.update_source_control('GitHub', sc) source_control = SiteSourceControl(location=location, repo_url=repo_url, branch=branch, is_manual_integration=manual_integration, is_mercurial=(repository_type != 'git')) # SCC config can fail if previous commands caused SCMSite shutdown, so retry here. for i in range(5): try: poller = _generic_site_operation(cmd.cli_ctx, resource_group_name, name, 'create_or_update_source_control', slot, source_control) return LongRunningOperation(cmd.cli_ctx)(poller) except Exception as ex: # pylint: disable=broad-except import re import time ex = ex_handler_factory(no_throw=True)(ex) # for non server errors(50x), just throw; otherwise retry 4 times if i == 4 or not re.findall(r'\(50\d\)', str(ex)): raise logger.warning('retrying %s/4', i + 1) time.sleep(5) # retry in a moment def update_git_token(cmd, git_token=None): ''' Update source control token cached in Azure app service. If no token is provided, the command will clean up existing token. ''' client = web_client_factory(cmd.cli_ctx) from azure.mgmt.web.models import SourceControl sc = SourceControl(name='not-really-needed', source_control_name='GitHub', token=git_token or '') return client.update_source_control('GitHub', sc) def show_source_control(cmd, resource_group_name, name, slot=None): return _generic_site_operation(cmd.cli_ctx, resource_group_name, name, 'get_source_control', slot) def delete_source_control(cmd, resource_group_name, name, slot=None): return _generic_site_operation(cmd.cli_ctx, resource_group_name, name, 'delete_source_control', slot) def enable_local_git(cmd, resource_group_name, name, slot=None): client = web_client_factory(cmd.cli_ctx) location = _get_location_from_webapp(client, resource_group_name, name) site_config = SiteConfigResource(location=location) site_config.scm_type = 'LocalGit' if slot is None: client.web_apps.create_or_update_configuration(resource_group_name, name, site_config) else: client.web_apps.create_or_update_configuration_slot(resource_group_name, name, site_config, slot) return {'url': _get_local_git_url(cmd.cli_ctx, client, resource_group_name, name, slot)} def sync_site_repo(cmd, resource_group_name, name, slot=None): try: return _generic_site_operation(cmd.cli_ctx, resource_group_name, name, 'sync_repository', slot) except CloudError as ex: # Because of bad spec, sdk throws on 200. We capture it here if ex.status_code not in [200, 204]: raise ex def list_app_service_plans(cmd, resource_group_name=None): client = web_client_factory(cmd.cli_ctx) if resource_group_name is None: plans = list(client.app_service_plans.list()) else: plans = list(client.app_service_plans.list_by_resource_group(resource_group_name)) for plan in plans: # prune a few useless fields del plan.geo_region del plan.subscription return plans def create_app_service_plan(cmd, resource_group_name, name, is_linux, hyper_v, sku='B1', number_of_workers=None, location=None, tags=None): if is_linux and hyper_v: raise CLIError('usage error: --is-linux | --hyper-v') client = web_client_factory(cmd.cli_ctx) sku = _normalize_sku(sku) if location is None: location = _get_location_from_resource_group(cmd.cli_ctx, resource_group_name) # the api is odd on parameter naming, have to live with it for now sku_def = SkuDescription(tier=get_sku_name(sku), name=sku, capacity=number_of_workers) plan_def = AppServicePlan(location=location, tags=tags, sku=sku_def, reserved=(is_linux or None), hyper_v=(hyper_v or None), name=name) return client.app_service_plans.create_or_update(resource_group_name, name, plan_def) def update_app_service_plan(instance, sku=None, number_of_workers=None, admin_site_name=None): sku_def = instance.sku if sku is not None: sku = _normalize_sku(sku) sku_def.tier = get_sku_name(sku) sku_def.name = sku if number_of_workers is not None: sku_def.capacity = number_of_workers instance.sku = sku_def instance.sku = sku_def if admin_site_name is not None: instance.admin_site_name = admin_site_name return instance def show_backup_configuration(cmd, resource_group_name, webapp_name, slot=None): try: return _generic_site_operation(cmd.cli_ctx, resource_group_name, webapp_name, 'get_backup_configuration', slot) except Exception: # pylint: disable=broad-except raise CLIError('Backup configuration not found') def list_backups(cmd, resource_group_name, webapp_name, slot=None): return _generic_site_operation(cmd.cli_ctx, resource_group_name, webapp_name, 'list_backups', slot) def create_backup(cmd, resource_group_name, webapp_name, storage_account_url, db_name=None, db_type=None, db_connection_string=None, backup_name=None, slot=None): client = web_client_factory(cmd.cli_ctx) if backup_name and backup_name.lower().endswith('.zip'): backup_name = backup_name[:-4] db_setting = _create_db_setting(db_name, db_type, db_connection_string) backup_request = BackupRequest(backup_request_name=backup_name, storage_account_url=storage_account_url, databases=db_setting) if slot: return client.web_apps.backup_slot(resource_group_name, webapp_name, backup_request, slot) return client.web_apps.backup(resource_group_name, webapp_name, backup_request) def update_backup_schedule(cmd, resource_group_name, webapp_name, storage_account_url=None, frequency=None, keep_at_least_one_backup=None, retention_period_in_days=None, db_name=None, db_connection_string=None, db_type=None, backup_name=None, slot=None): configuration = None if backup_name and backup_name.lower().endswith('.zip'): backup_name = backup_name[:-4] if not backup_name: from datetime import datetime backup_name = '{0}_{1}'.format(webapp_name, datetime.utcnow().strftime('%Y%m%d%H%M')) try: configuration = _generic_site_operation(cmd.cli_ctx, resource_group_name, webapp_name, 'get_backup_configuration', slot) except DefaultErrorResponseException: # No configuration set yet if not all([storage_account_url, frequency, retention_period_in_days, keep_at_least_one_backup]): raise CLIError('No backup configuration found. A configuration must be created. ' + 'Usage: --container-url URL --frequency TIME --retention DAYS ' + '--retain-one TRUE/FALSE') # If arguments were not specified, use the values in the current backup schedule if storage_account_url is None: storage_account_url = configuration.storage_account_url if retention_period_in_days is None: retention_period_in_days = configuration.backup_schedule.retention_period_in_days if keep_at_least_one_backup is None: keep_at_least_one_backup = configuration.backup_schedule.keep_at_least_one_backup else: keep_at_least_one_backup = keep_at_least_one_backup.lower() == 'true' if frequency: # Parse schedule frequency frequency_num, frequency_unit = _parse_frequency(frequency) else: frequency_num = configuration.backup_schedule.frequency_interval frequency_unit = configuration.backup_schedule.frequency_unit if configuration and configuration.databases: db = configuration.databases[0] db_type = db_type or db.database_type db_name = db_name or db.name db_connection_string = db_connection_string or db.connection_string db_setting = _create_db_setting(db_name, db_type, db_connection_string) backup_schedule = BackupSchedule(frequency_interval=frequency_num, frequency_unit=frequency_unit.name, keep_at_least_one_backup=keep_at_least_one_backup, retention_period_in_days=retention_period_in_days) backup_request = BackupRequest(backup_request_name=backup_name, backup_schedule=backup_schedule, enabled=True, storage_account_url=storage_account_url, databases=db_setting) return _generic_site_operation(cmd.cli_ctx, resource_group_name, webapp_name, 'update_backup_configuration', slot, backup_request) def restore_backup(cmd, resource_group_name, webapp_name, storage_account_url, backup_name, db_name=None, db_type=None, db_connection_string=None, target_name=None, overwrite=None, ignore_hostname_conflict=None, slot=None): client = web_client_factory(cmd.cli_ctx) storage_blob_name = backup_name if not storage_blob_name.lower().endswith('.zip'): storage_blob_name += '.zip' db_setting = _create_db_setting(db_name, db_type, db_connection_string) restore_request = RestoreRequest(storage_account_url=storage_account_url, blob_name=storage_blob_name, overwrite=overwrite, site_name=target_name, databases=db_setting, ignore_conflicting_host_names=ignore_hostname_conflict) if slot: return client.web_apps.restore_slot(resource_group_name, webapp_name, 0, restore_request, slot) return client.web_apps.restore(resource_group_name, webapp_name, 0, restore_request) # pylint: disable=inconsistent-return-statements def _create_db_setting(db_name, db_type, db_connection_string): if all([db_name, db_type, db_connection_string]): return [DatabaseBackupSetting(database_type=db_type, name=db_name, connection_string=db_connection_string)] elif any([db_name, db_type, db_connection_string]): raise CLIError('usage error: --db-name NAME --db-type TYPE --db-connection-string STRING') def _parse_frequency(frequency): unit_part = frequency.lower()[-1] if unit_part == 'd': frequency_unit = FrequencyUnit.day elif unit_part == 'h': frequency_unit = FrequencyUnit.hour else: raise CLIError('Frequency must end with d or h for "day" or "hour"') try: frequency_num = int(frequency[:-1]) except ValueError: raise CLIError('Frequency must start with a number') if frequency_num < 0: raise CLIError('Frequency must be positive') return frequency_num, frequency_unit def _normalize_sku(sku): sku = sku.upper() if sku == 'FREE': return 'F1' elif sku == 'SHARED': return 'D1' return sku def _get_location_from_resource_group(cli_ctx, resource_group_name): from azure.mgmt.resource import ResourceManagementClient client = get_mgmt_service_client(cli_ctx, ResourceManagementClient) group = client.resource_groups.get(resource_group_name) return group.location def _get_location_from_webapp(client, resource_group_name, webapp): webapp = client.web_apps.get(resource_group_name, webapp) if not webapp: raise CLIError("'{}' app doesn't exist".format(webapp)) return webapp.location def _get_local_git_url(cli_ctx, client, resource_group_name, name, slot=None): user = client.get_publishing_user() result = _generic_site_operation(cli_ctx, resource_group_name, name, 'get_source_control', slot) parsed = urlparse(result.repo_url) return '{}://{}@{}/{}.git'.format(parsed.scheme, user.publishing_user_name, parsed.netloc, name) def _get_scm_url(cmd, resource_group_name, name, slot=None): from azure.mgmt.web.models import HostType webapp = show_webapp(cmd, resource_group_name, name, slot=slot) for host in webapp.host_name_ssl_states or []: if host.host_type == HostType.repository: return "https://{}".format(host.name) # this should not happen, but throw anyway raise ValueError('Failed to retrieve Scm Uri') def set_deployment_user(cmd, user_name, password=None): ''' Update deployment credentials.(Note, all webapps in your subscription will be impacted) ''' client = web_client_factory(cmd.cli_ctx) user = User(publishing_user_name=user_name) if password is None: try: password = prompt_pass(msg='Password: ', confirm=True) except NoTTYException: raise CLIError('Please specify both username and password in non-interactive mode.') user.publishing_password = password return client.update_publishing_user(user) def list_publish_profiles(cmd, resource_group_name, name, slot=None): import xmltodict content = _generic_site_operation(cmd.cli_ctx, resource_group_name, name, 'list_publishing_profile_xml_with_secrets', slot) full_xml = '' for f in content: full_xml += f.decode() profiles = xmltodict.parse(full_xml, xml_attribs=True)['publishData']['publishProfile'] converted = [] for profile in profiles: new = {} for key in profile: # strip the leading '@' xmltodict put in for attributes new[key.lstrip('@')] = profile[key] converted.append(new) return converted def enable_cd(cmd, resource_group_name, name, enable, slot=None): settings = [] settings.append("DOCKER_ENABLE_CI=" + enable) update_app_settings(cmd, resource_group_name, name, settings, slot) return show_container_cd_url(cmd, resource_group_name, name, slot) def show_container_cd_url(cmd, resource_group_name, name, slot=None): settings = get_app_settings(cmd, resource_group_name, name, slot) docker_enabled = False for setting in settings: if setting['name'] == 'DOCKER_ENABLE_CI' and setting['value'] == 'true': docker_enabled = True break cd_settings = {} cd_settings['DOCKER_ENABLE_CI'] = docker_enabled if docker_enabled: profiles = list_publish_profiles(cmd, resource_group_name, name, slot) for profile in profiles: if profile['publishMethod'] == 'MSDeploy': scmUrl = profile['publishUrl'].replace(":443", "") cd_url = 'https://' + profile['userName'] + ':' + profile['userPWD'] + '@' + scmUrl + '/docker/hook' cd_settings['CI_CD_URL'] = cd_url break else: cd_settings['CI_CD_URL'] = '' return cd_settings def view_in_browser(cmd, resource_group_name, name, slot=None, logs=False): site = _generic_site_operation(cmd.cli_ctx, resource_group_name, name, 'get', slot) if not site: raise CLIError("'{}' app doesn't exist".format(name)) url = site.enabled_host_names[0] # picks the custom domain URL incase a domain is assigned ssl_host = next((h for h in site.host_name_ssl_states if h.ssl_state != SslState.disabled), None) url = ('https' if ssl_host else 'http') + '://' + url open_page_in_browser(url) if logs: get_streaming_log(cmd, resource_group_name, name, provider=None, slot=slot) # TODO: expose new blob suport def config_diagnostics(cmd, resource_group_name, name, level=None, application_logging=None, web_server_logging=None, docker_container_logging=None, detailed_error_messages=None, failed_request_tracing=None, slot=None): from azure.mgmt.web.models import (FileSystemApplicationLogsConfig, ApplicationLogsConfig, SiteLogsConfig, HttpLogsConfig, FileSystemHttpLogsConfig, EnabledConfig) client = web_client_factory(cmd.cli_ctx) # TODO: ensure we call get_site only once site = client.web_apps.get(resource_group_name, name) if not site: raise CLIError("'{}' app doesn't exist".format(name)) location = site.location application_logs = None if application_logging is not None: if not application_logging: level = 'Off' elif level is None: level = 'Error' fs_log = FileSystemApplicationLogsConfig(level=level) application_logs = ApplicationLogsConfig(file_system=fs_log) http_logs = None server_logging_option = web_server_logging or docker_container_logging if server_logging_option: # TODO: az blob storage log config currently not in use, will be impelemented later. # Tracked as Issue: #4764 on Github filesystem_log_config = None turned_on = server_logging_option != 'off' if server_logging_option in ['filesystem', 'off']: # 100 mb max log size, retention lasts 3 days. Yes we hard code it, portal does too filesystem_log_config = FileSystemHttpLogsConfig(retention_in_mb=100, retention_in_days=3, enabled=turned_on) http_logs = HttpLogsConfig(file_system=filesystem_log_config, azure_blob_storage=None) detailed_error_messages_logs = (None if detailed_error_messages is None else EnabledConfig(enabled=detailed_error_messages)) failed_request_tracing_logs = (None if failed_request_tracing is None else EnabledConfig(enabled=failed_request_tracing)) site_log_config = SiteLogsConfig(location=location, application_logs=application_logs, http_logs=http_logs, failed_requests_tracing=failed_request_tracing_logs, detailed_error_messages=detailed_error_messages_logs) return _generic_site_operation(cmd.cli_ctx, resource_group_name, name, 'update_diagnostic_logs_config', slot, site_log_config) def show_diagnostic_settings(cmd, resource_group_name, name, slot=None): return _generic_site_operation(cmd.cli_ctx, resource_group_name, name, 'get_diagnostic_logs_configuration', slot) def config_slot_auto_swap(cmd, resource_group_name, webapp, slot, auto_swap_slot=None, disable=None): client = web_client_factory(cmd.cli_ctx) site_config = client.web_apps.get_configuration_slot(resource_group_name, webapp, slot) site_config.auto_swap_slot_name = '' if disable else (auto_swap_slot or 'production') return client.web_apps.update_configuration_slot(resource_group_name, webapp, site_config, slot) def list_slots(cmd, resource_group_name, webapp): client = web_client_factory(cmd.cli_ctx) slots = list(client.web_apps.list_slots(resource_group_name, webapp)) for slot in slots: slot.name = slot.name.split('/')[-1] setattr(slot, 'app_service_plan', parse_resource_id(slot.server_farm_id)['name']) del slot.server_farm_id return slots def swap_slot(cmd, resource_group_name, webapp, slot, target_slot=None, action='swap'): client = web_client_factory(cmd.cli_ctx) if action == 'swap': poller = client.web_apps.swap_slot_slot(resource_group_name, webapp, slot, (target_slot or 'production'), True) return poller elif action == 'preview': if target_slot is None: result = client.web_apps.apply_slot_config_to_production(resource_group_name, webapp, slot, True) else: result = client.web_apps.apply_slot_configuration_slot(resource_group_name, webapp, slot, target_slot, True) return result else: # reset # we will reset both source slot and target slot if target_slot is None: client.web_apps.reset_production_slot_config(resource_group_name, webapp) else: client.web_apps.reset_slot_configuration_slot(resource_group_name, webapp, target_slot) return None def delete_slot(cmd, resource_group_name, webapp, slot): client = web_client_factory(cmd.cli_ctx) # TODO: once swagger finalized, expose other parameters like: delete_all_slots, etc... client.web_apps.delete_slot(resource_group_name, webapp, slot) def set_traffic_routing(cmd, resource_group_name, name, distribution): client = web_client_factory(cmd.cli_ctx) site = client.web_apps.get(resource_group_name, name) if not site: raise CLIError("'{}' app doesn't exist".format(name)) configs = get_site_configs(cmd, resource_group_name, name) host_name_suffix = '.' + site.default_host_name.split('.', 1)[1] configs.experiments.ramp_up_rules = [] for r in distribution: slot, percentage = r.split('=') configs.experiments.ramp_up_rules.append(RampUpRule(action_host_name=slot + host_name_suffix, reroute_percentage=float(percentage), name=slot)) _generic_site_operation(cmd.cli_ctx, resource_group_name, name, 'update_configuration', None, configs) return configs.experiments.ramp_up_rules def show_traffic_routing(cmd, resource_group_name, name): configs = get_site_configs(cmd, resource_group_name, name) return configs.experiments.ramp_up_rules def clear_traffic_routing(cmd, resource_group_name, name): set_traffic_routing(cmd, resource_group_name, name, []) def add_cors(cmd, resource_group_name, name, allowed_origins, slot=None): from azure.mgmt.web.models import CorsSettings configs = get_site_configs(cmd, resource_group_name, name, slot) if not configs.cors: configs.cors = CorsSettings() configs.cors.allowed_origins = (configs.cors.allowed_origins or []) + allowed_origins result = _generic_site_operation(cmd.cli_ctx, resource_group_name, name, 'update_configuration', slot, configs) return result.cors def remove_cors(cmd, resource_group_name, name, allowed_origins, slot=None): configs = get_site_configs(cmd, resource_group_name, name, slot) if configs.cors: if allowed_origins: configs.cors.allowed_origins = [x for x in (configs.cors.allowed_origins or []) if x not in allowed_origins] else: configs.cors.allowed_origins = [] configs = _generic_site_operation(cmd.cli_ctx, resource_group_name, name, 'update_configuration', slot, configs) return configs.cors def show_cors(cmd, resource_group_name, name, slot=None): configs = get_site_configs(cmd, resource_group_name, name, slot) return configs.cors def get_streaming_log(cmd, resource_group_name, name, provider=None, slot=None): scm_url = _get_scm_url(cmd, resource_group_name, name, slot) streaming_url = scm_url + '/logstream' import time if provider: streaming_url += ('/' + provider.lstrip('/')) user, password = _get_site_credential(cmd.cli_ctx, resource_group_name, name, slot) t = threading.Thread(target=_get_log, args=(streaming_url, user, password)) t.daemon = True t.start() while True: time.sleep(100) # so that ctrl+c can stop the command def download_historical_logs(cmd, resource_group_name, name, log_file=None, slot=None): scm_url = _get_scm_url(cmd, resource_group_name, name, slot) url = scm_url.rstrip('/') + '/dump' user_name, password = _get_site_credential(cmd.cli_ctx, resource_group_name, name, slot) _get_log(url, user_name, password, log_file) logger.warning('Downloaded logs to %s', log_file) def _get_site_credential(cli_ctx, resource_group_name, name, slot=None): creds = _generic_site_operation(cli_ctx, resource_group_name, name, 'list_publishing_credentials', slot) creds = creds.result() return (creds.publishing_user_name, creds.publishing_password) def _get_log(url, user_name, password, log_file=None): import certifi import urllib3 try: import urllib3.contrib.pyopenssl urllib3.contrib.pyopenssl.inject_into_urllib3() except ImportError: pass http = urllib3.PoolManager(cert_reqs='CERT_REQUIRED', ca_certs=certifi.where()) headers = urllib3.util.make_headers(basic_auth='{0}:{1}'.format(user_name, password)) r = http.request( 'GET', url, headers=headers, preload_content=False ) if r.status != 200: raise CLIError("Failed to connect to '{}' with status code '{}' and reason '{}'".format( url, r.status, r.reason)) if log_file: # download logs with open(log_file, 'wb') as f: while True: data = r.read(1024) if not data: break f.write(data) else: # streaming std_encoding = sys.stdout.encoding for chunk in r.stream(): if chunk: # Extra encode() and decode for stdout which does not surpport 'utf-8' print(chunk.decode(encoding='utf-8', errors='replace') .encode(std_encoding, errors='replace') .decode(std_encoding, errors='replace'), end='') # each line of log has CRLF. r.release_conn() def upload_ssl_cert(cmd, resource_group_name, name, certificate_password, certificate_file): client = web_client_factory(cmd.cli_ctx) webapp = _generic_site_operation(cmd.cli_ctx, resource_group_name, name, 'get') cert_resource_group_name = parse_resource_id(webapp.server_farm_id)['resource_group'] cert_file = open(certificate_file, 'rb') cert_contents = cert_file.read() hosting_environment_profile_param = (webapp.hosting_environment_profile.name if webapp.hosting_environment_profile else '') thumb_print = _get_cert(certificate_password, certificate_file) cert_name = _generate_cert_name(thumb_print, hosting_environment_profile_param, webapp.location, cert_resource_group_name) cert = Certificate(password=certificate_password, pfx_blob=cert_contents, location=webapp.location, server_farm_id=webapp.server_farm_id) return client.certificates.create_or_update(cert_resource_group_name, cert_name, cert) def _generate_cert_name(thumb_print, hosting_environment, location, resource_group_name): return "%s_%s_%s_%s" % (thumb_print, hosting_environment, location, resource_group_name) def _get_cert(certificate_password, certificate_file): ''' Decrypts the .pfx file ''' p12 = OpenSSL.crypto.load_pkcs12(open(certificate_file, 'rb').read(), certificate_password) cert = p12.get_certificate() digest_algorithm = 'sha1' thumbprint = cert.digest(digest_algorithm).decode("utf-8").replace(':', '') return thumbprint def list_ssl_certs(cmd, resource_group_name): client = web_client_factory(cmd.cli_ctx) return client.certificates.list_by_resource_group(resource_group_name) def delete_ssl_cert(cmd, resource_group_name, certificate_thumbprint): client = web_client_factory(cmd.cli_ctx) webapp_certs = client.certificates.list_by_resource_group(resource_group_name) for webapp_cert in webapp_certs: if webapp_cert.thumbprint == certificate_thumbprint: return client.certificates.delete(resource_group_name, webapp_cert.name) raise CLIError("Certificate for thumbprint '{}' not found".format(certificate_thumbprint)) def _update_host_name_ssl_state(cli_ctx, resource_group_name, webapp_name, location, host_name, ssl_state, thumbprint, slot=None): updated_webapp = Site(host_name_ssl_states=[HostNameSslState(name=host_name, ssl_state=ssl_state, thumbprint=thumbprint, to_update=True)], location=location) name = '{}({})'.format(webapp_name, slot) if slot else webapp_name return _generic_site_operation(cli_ctx, resource_group_name, name, 'create_or_update', slot, updated_webapp) def _update_ssl_binding(cmd, resource_group_name, name, certificate_thumbprint, ssl_type, slot=None): client = web_client_factory(cmd.cli_ctx) webapp = client.web_apps.get(resource_group_name, name) if not webapp: raise CLIError("'{}' app doesn't exist".format(name)) cert_resource_group_name = parse_resource_id(webapp.server_farm_id)['resource_group'] webapp_certs = client.certificates.list_by_resource_group(cert_resource_group_name) for webapp_cert in webapp_certs: if webapp_cert.thumbprint == certificate_thumbprint: if len(webapp_cert.host_names) == 1 and not webapp_cert.host_names[0].startswith('*'): return _update_host_name_ssl_state(cmd.cli_ctx, resource_group_name, name, webapp.location, webapp_cert.host_names[0], ssl_type, certificate_thumbprint, slot) query_result = list_hostnames(cmd, resource_group_name, name, slot) hostnames_in_webapp = [x.name.split('/')[-1] for x in query_result] to_update = _match_host_names_from_cert(webapp_cert.host_names, hostnames_in_webapp) for h in to_update: _update_host_name_ssl_state(cmd.cli_ctx, resource_group_name, name, webapp.location, h, ssl_type, certificate_thumbprint, slot) return show_webapp(cmd, resource_group_name, name, slot) raise CLIError("Certificate for thumbprint '{}' not found.".format(certificate_thumbprint)) def bind_ssl_cert(cmd, resource_group_name, name, certificate_thumbprint, ssl_type, slot=None): return _update_ssl_binding(cmd, resource_group_name, name, certificate_thumbprint, SslState.sni_enabled if ssl_type == 'SNI' else SslState.ip_based_enabled, slot) def unbind_ssl_cert(cmd, resource_group_name, name, certificate_thumbprint, slot=None): return _update_ssl_binding(cmd, resource_group_name, name, certificate_thumbprint, SslState.disabled, slot) def _match_host_names_from_cert(hostnames_from_cert, hostnames_in_webapp): # the goal is to match '*.foo.com' with host name like 'admin.foo.com', 'logs.foo.com', etc matched = set() for hostname in hostnames_from_cert: if hostname.startswith('*'): for h in hostnames_in_webapp: if hostname[hostname.find('.'):] == h[h.find('.'):]: matched.add(h) elif hostname in hostnames_in_webapp: matched.add(hostname) return matched # help class handles runtime stack in format like 'node|6.1', 'php|5.5' class _StackRuntimeHelper(object): def __init__(self, client, linux=False): self._client = client self._linux = linux self._stacks = [] def resolve(self, display_name): self._load_stacks() return next((s for s in self._stacks if s['displayName'].lower() == display_name.lower()), None) @property def stacks(self): self._load_stacks() return self._stacks @staticmethod def update_site_config(stack, site_config): for k, v in stack['configs'].items(): setattr(site_config, k, v) return site_config @staticmethod def update_site_appsettings(stack, site_config): if site_config.app_settings is None: site_config.app_settings = [] site_config.app_settings += [NameValuePair(name=k, value=v) for k, v in stack['configs'].items()] return site_config def _load_stacks(self): if self._stacks: return os_type = ('Linux' if self._linux else 'Windows') raw_stacks = self._client.provider.get_available_stacks(os_type_selected=os_type, raw=True) bytes_value = raw_stacks._get_next().content # pylint: disable=protected-access json_value = bytes_value.decode('utf8') json_stacks = json.loads(json_value) stacks = json_stacks['value'] result = [] if self._linux: for properties in [(s['properties']) for s in stacks]: for major in properties['majorVersions']: default_minor = next((m for m in (major['minorVersions'] or []) if m['isDefault']), None) result.append({ 'displayName': (default_minor['runtimeVersion'] if default_minor else major['runtimeVersion']) }) else: # Windows stacks config_mappings = { 'node': 'WEBSITE_NODE_DEFAULT_VERSION', 'python': 'python_version', 'php': 'php_version', 'aspnet': 'net_framework_version' } # get all stack version except 'java' for stack in stacks: if stack['name'] not in config_mappings: continue name, properties = stack['name'], stack['properties'] for major in properties['majorVersions']: default_minor = next((m for m in (major['minorVersions'] or []) if m['isDefault']), None) result.append({ 'displayName': name + '|' + major['displayVersion'], 'configs': { config_mappings[name]: (default_minor['runtimeVersion'] if default_minor else major['runtimeVersion']) } }) # deal with java, which pairs with java container version java_stack = next((s for s in stacks if s['name'] == 'java')) java_container_stack = next((s for s in stacks if s['name'] == 'javaContainers')) for java_version in java_stack['properties']['majorVersions']: for fx in java_container_stack['properties']['frameworks']: for fx_version in fx['majorVersions']: result.append({ 'displayName': 'java|{}|{}|{}'.format(java_version['displayVersion'], fx['display'], fx_version['displayVersion']), 'configs': { 'java_version': java_version['runtimeVersion'], 'java_container': fx['name'], 'java_container_version': fx_version['runtimeVersion'] } }) for r in result: r['setter'] = (_StackRuntimeHelper.update_site_appsettings if 'node' in r['displayName'] else _StackRuntimeHelper.update_site_config) self._stacks = result def create_function(cmd, resource_group_name, name, storage_account, plan=None, os_type=None, runtime=None, consumption_plan_location=None, deployment_source_url=None, deployment_source_branch='master', deployment_local_git=None, deployment_container_image_name=None, tags=None): # pylint: disable=too-many-statements if deployment_source_url and deployment_local_git: raise CLIError('usage error: --deployment-source-url <url> | --deployment-local-git') if bool(plan) == bool(consumption_plan_location): raise CLIError("usage error: --plan NAME_OR_ID | --consumption-plan-location LOCATION") site_config = SiteConfig(app_settings=[]) functionapp_def = Site(location=None, site_config=site_config, tags=tags) client = web_client_factory(cmd.cli_ctx) if consumption_plan_location: locations = list_consumption_locations(cmd) location = next((l for l in locations if l['name'].lower() == consumption_plan_location.lower()), None) if location is None: raise CLIError("Location is invalid. Use: az functionapp list-consumption-locations") functionapp_def.location = consumption_plan_location functionapp_def.kind = 'functionapp' # if os_type is None, the os type is windows is_linux = os_type and os_type.lower() == 'linux' # for linux consumption plan app the os_type should be Linux & should have a runtime specified # currently in other cases the runtime is ignored if is_linux and not runtime: raise CLIError("usage error: --runtime RUNTIME required for linux functions apps with consumption plan.") else: # apps with SKU based plan if is_valid_resource_id(plan): parse_result = parse_resource_id(plan) plan_info = client.app_service_plans.get(parse_result['resource_group'], parse_result['name']) else: plan_info = client.app_service_plans.get(resource_group_name, plan) if not plan_info: raise CLIError("The plan '{}' doesn't exist".format(plan)) location = plan_info.location is_linux = plan_info.reserved functionapp_def.server_farm_id = plan functionapp_def.location = location con_string = _validate_and_get_connection_string(cmd.cli_ctx, resource_group_name, storage_account) if is_linux: functionapp_def.kind = 'functionapp,linux' functionapp_def.reserved = True if consumption_plan_location: site_config.app_settings.append(NameValuePair(name='FUNCTIONS_WORKER_RUNTIME', value=runtime)) site_config.app_settings.append(NameValuePair(name='FUNCTIONS_EXTENSION_VERSION', value='~2')) else: site_config.app_settings.append(NameValuePair(name='FUNCTIONS_EXTENSION_VERSION', value='beta')) site_config.app_settings.append(NameValuePair(name='MACHINEKEY_DecryptionKey', value=str(hexlify(urandom(32)).decode()).upper())) if deployment_container_image_name: functionapp_def.kind = 'functionapp,linux,container' site_config.app_settings.append(NameValuePair(name='DOCKER_CUSTOM_IMAGE_NAME', value=deployment_container_image_name)) site_config.app_settings.append(NameValuePair(name='FUNCTION_APP_EDIT_MODE', value='readOnly')) site_config.app_settings.append(NameValuePair(name='WEBSITES_ENABLE_APP_SERVICE_STORAGE', value='false')) site_config.linux_fx_version = _format_fx_version(deployment_container_image_name) else: site_config.app_settings.append(NameValuePair(name='WEBSITES_ENABLE_APP_SERVICE_STORAGE', value='true')) site_config.linux_fx_version = _format_fx_version('appsvc/azure-functions-runtime') else: functionapp_def.kind = 'functionapp' site_config.app_settings.append(NameValuePair(name='FUNCTIONS_EXTENSION_VERSION', value='~2')) # adding appsetting to site to make it a function site_config.app_settings.append(NameValuePair(name='AzureWebJobsStorage', value=con_string)) site_config.app_settings.append(NameValuePair(name='AzureWebJobsDashboard', value=con_string)) site_config.app_settings.append(NameValuePair(name='WEBSITE_NODE_DEFAULT_VERSION', value='8.11.1')) if consumption_plan_location is None: site_config.always_on = True else: site_config.app_settings.append(NameValuePair(name='WEBSITE_CONTENTAZUREFILECONNECTIONSTRING', value=con_string)) site_config.app_settings.append(NameValuePair(name='WEBSITE_CONTENTSHARE', value=name.lower())) poller = client.web_apps.create_or_update(resource_group_name, name, functionapp_def) functionapp = LongRunningOperation(cmd.cli_ctx)(poller) if consumption_plan_location and is_linux: logger.warning("Your Linux function app '%s', that uses a consumption plan has been successfully" "created but is not active until content is published using" "Azure Portal or the Functions Core Tools.", name) else: _set_remote_or_local_git(cmd, functionapp, resource_group_name, name, deployment_source_url, deployment_source_branch, deployment_local_git) return functionapp def _set_remote_or_local_git(cmd, webapp, resource_group_name, name, deployment_source_url=None, deployment_source_branch='master', deployment_local_git=None): if deployment_source_url: logger.warning("Linking to git repository '%s'", deployment_source_url) try: config_source_control(cmd, resource_group_name, name, deployment_source_url, 'git', deployment_source_branch, manual_integration=True) except Exception as ex: # pylint: disable=broad-except ex = ex_handler_factory(no_throw=True)(ex) logger.warning("Link to git repository failed due to error '%s'", ex) if deployment_local_git: local_git_info = enable_local_git(cmd, resource_group_name, name) logger.warning("Local git is configured with url of '%s'", local_git_info['url']) setattr(webapp, 'deploymentLocalGitUrl', local_git_info['url']) def _validate_and_get_connection_string(cli_ctx, resource_group_name, storage_account): sa_resource_group = resource_group_name if is_valid_resource_id(storage_account): sa_resource_group = parse_resource_id(storage_account)['resource_group'] storage_account = parse_resource_id(storage_account)['name'] storage_client = get_mgmt_service_client(cli_ctx, StorageManagementClient) storage_properties = storage_client.storage_accounts.get_properties(sa_resource_group, storage_account) error_message = '' endpoints = storage_properties.primary_endpoints sku = storage_properties.sku.name.value allowed_storage_types = ['Standard_GRS', 'Standard_LRS', 'Standard_ZRS', 'Premium_LRS'] for e in ['blob', 'queue', 'table']: if not getattr(endpoints, e, None): error_message = "Storage account '{}' has no '{}' endpoint. It must have table, queue, and blob endpoints all enabled".format(storage_account, e) # pylint: disable=line-too-long if sku not in allowed_storage_types: error_message += 'Storage type {} is not allowed'.format(sku) if error_message: raise CLIError(error_message) obj = storage_client.storage_accounts.list_keys(sa_resource_group, storage_account) # pylint: disable=no-member try: keys = [obj.keys[0].value, obj.keys[1].value] # pylint: disable=no-member except AttributeError: # Older API versions have a slightly different structure keys = [obj.key1, obj.key2] # pylint: disable=no-member endpoint_suffix = cli_ctx.cloud.suffixes.storage_endpoint connection_string = 'DefaultEndpointsProtocol={};EndpointSuffix={};AccountName={};AccountKey={}'.format( "https", endpoint_suffix, storage_account, keys[0]) # pylint: disable=no-member return connection_string def list_consumption_locations(cmd): client = web_client_factory(cmd.cli_ctx) regions = client.list_geo_regions(sku='Dynamic') return [{'name': x.name.lower().replace(' ', '')} for x in regions] def list_locations(cmd, sku, linux_workers_enabled=None): client = web_client_factory(cmd.cli_ctx) full_sku = get_sku_name(sku) return client.list_geo_regions(full_sku, linux_workers_enabled) def _check_zip_deployment_status(deployment_status_url, authorization, timeout=None): import requests import time total_trials = (int(timeout) // 30) if timeout else 10 for _num_trials in range(total_trials): time.sleep(30) response = requests.get(deployment_status_url, headers=authorization) res_dict = response.json() if res_dict.get('status', 0) == 5: logger.warning("Zip deployment failed status %s", res_dict['status_text']) break elif res_dict.get('status', 0) == 4: break if 'progress' in res_dict: logger.info(res_dict['progress']) # show only in debug mode, customers seem to find this confusing # if the deployment is taking longer than expected if res_dict.get('status', 0) != 4: logger.warning("""Deployment is taking longer than expected. Please verify status at '%s' beforing launching the app""", deployment_status_url) return res_dict def list_continuous_webjobs(cmd, resource_group_name, name, slot=None): return _generic_site_operation(cmd.cli_ctx, resource_group_name, name, 'list_continuous_web_jobs', slot) def start_continuous_webjob(cmd, resource_group_name, name, webjob_name, slot=None): client = web_client_factory(cmd.cli_ctx) if slot: client.web_apps.start_continuous_web_job(resource_group_name, name, webjob_name, slot) return client.web_apps.get_continuous_web_job_slot(resource_group_name, name, webjob_name, slot) client.web_apps.start_continuous_web_job(resource_group_name, name, webjob_name) return client.web_apps.get_continuous_web_job(resource_group_name, name, webjob_name) def stop_continuous_webjob(cmd, resource_group_name, name, webjob_name, slot=None): client = web_client_factory(cmd.cli_ctx) if slot: client.web_apps.stop_continuous_web_job(resource_group_name, name, webjob_name, slot) return client.web_apps.get_continuous_web_job_slot(resource_group_name, name, webjob_name, slot) client.web_apps.stop_continuous_web_job(resource_group_name, name, webjob_name) return client.web_apps.get_continuous_web_job(resource_group_name, name, webjob_name) def remove_continuous_webjob(cmd, resource_group_name, name, webjob_name, slot=None): client = web_client_factory(cmd.cli_ctx) if slot: return client.web_apps.delete_continuous_web_job(resource_group_name, name, webjob_name, slot) return client.web_apps.delete_continuous_web_job(resource_group_name, name, webjob_name) def list_triggered_webjobs(cmd, resource_group_name, name, slot=None): return _generic_site_operation(cmd.cli_ctx, resource_group_name, name, 'list_triggered_web_jobs', slot) def run_triggered_webjob(cmd, resource_group_name, name, webjob_name, slot=None): client = web_client_factory(cmd.cli_ctx) if slot: client.web_apps.run_triggered_web_job_slot(resource_group_name, name, webjob_name, slot) return client.web_apps.get_triggered_web_job_slot(resource_group_name, name, webjob_name, slot) client.web_apps.run_triggered_web_job(resource_group_name, name, webjob_name) return client.web_apps.get_triggered_web_job(resource_group_name, name, webjob_name) def remove_triggered_webjob(cmd, resource_group_name, name, webjob_name, slot=None): client = web_client_factory(cmd.cli_ctx) if slot: return client.web_apps.delete_triggered_web_job(resource_group_name, name, webjob_name, slot) return client.web_apps.delete_triggered_web_job(resource_group_name, name, webjob_name) def get_history_triggered_webjob(cmd, resource_group_name, name, webjob_name, slot=None): client = web_client_factory(cmd.cli_ctx) if slot: return client.web_apps.list_triggered_web_job_history_slot(resource_group_name, name, webjob_name, slot) return client.web_apps.list_triggered_web_job_history(resource_group_name, name, webjob_name)
load_html.py
import webview import threading """ This example demonstrates how to load HTML in a web view window """ def load_html(): webview.load_html("<h1>This is dynamically loaded HTML</h1>") if __name__ == '__main__': t = threading.Thread(target=load_html) t.start() # Create a non-resizable webview window with 800x600 dimensions webview.create_window("Simple browser", width=800, height=600, resizable=True)
chunk_chek.py
""" Maintainer: Giovanni Lopez Mail: giovannt_92@hotmail.com / gioipez92@gmail.com Build a class to get Manifest, sub-manifest, video and audio chunks """ import re import os import platform import threading from random import randint from basic import ( # head_request, get_request, post_request, load_streamnames_from_file ) # Check random profile or disable and define # the profile to check # OPTIONS = (V_PROFILE, NUM_CHUNKS_TOB_CHECK, RANDOM_PROFILES, ASSET_LIST) if platform.system() != 'Linux': OPTIONS = (5, 10, False, "asset_list.yaml") # ABR Server IP ABR_MANIFEST_SERVER_IP = "localhost" ABR_MANIFEST_SERVER_PORT = 8000 else: V_PROFILE = int(os.getenv("V_PROFILE")) NUM_CHUNKS_TOB_CHECK = int(os.getenv("NUM_CHUNKS_TOB_CHECK")) RANDOM_PROFILES = bool(os.getenv("RANDOM_PROFILES")) ASSET_LIST = os.getenv("ASSET_LIST") OPTIONS = (V_PROFILE, NUM_CHUNKS_TOB_CHECK, RANDOM_PROFILES, ASSET_LIST) ABR_MANIFEST_SERVER_IP = os.getenv("ABR_MANIFEST_SERVER_IP") ABR_MANIFEST_SERVER_PORT = os.getenv("ABR_MANIFEST_SERVER_PORT") # Load asset URLs URLS = load_streamnames_from_file(OPTIONS[3]) ABR_HLS_PARSER = f"http://{ABR_MANIFEST_SERVER_IP}:{ABR_MANIFEST_SERVER_PORT}/hlsmanifest/" class Chunk: """Chunk to be check This object has a basic HTTP caracteristic of an HTTP Chunk, could be video, audio or subtitle """ def __init__(self, chunk_url): self.chunk_url = chunk_url def get_http_chunk_info(self): """To avoid traffic overload on the network, a simple head validation will be execute """ return get_request(self.chunk_url) def get_parsed_manifest(manifest_url): """ Get data from hlsparser, developed by Gio """ manifest_data = {"manifest_url": manifest_url} return post_request(ABR_HLS_PARSER, body=manifest_data) def channel_check(manifest_url): """ Manifest parser request """ parsed_manifest = get_parsed_manifest(manifest_url) if parsed_manifest: json_manifest = parsed_manifest.json() sub_manifests = json_manifest["sub_manifest"] vid_prof_num = len(sub_manifests["video"]) # au_prof_num = len(sub_manifests["audio"]) # sub_prof_num = len(sub_manifests["subtitles"]) if OPTIONS[0] >= vid_prof_num: v_prof = vid_prof_num - 1 else: v_prof = OPTIONS[0] if OPTIONS[2]: v_prof = randint(0, vid_prof_num) if f"sub_manifest_{v_prof}" in sub_manifests["video"].keys(): selected_profile = sub_manifests["video"][f"sub_manifest_{v_prof}"] chunk_base_url = list( filter(None, re.split(r"/\w*.m3u8(.*?)", selected_profile))) chunks = json_manifest["asset_chunks"] if len(chunks["video"]) > OPTIONS[1]: for item in range( len(chunks["video"]) - 2, (len(chunks["video"]) - 2 - int(OPTIONS[1])), - 1): chunk = Chunk(f'{chunk_base_url[0]}/{chunks["video"][str(item)]}') chunk.get_http_chunk_info() # if chunk_headers: # print(chunk_headers.headers) def recursion_channel_check(manifest_urls): """ Given a list of URLs, do a thread execution by URL, amazing fast """ if len(manifest_urls) == 1: my_thread = threading.Thread(target=channel_check, args=(manifest_urls[0],)) my_thread.start() else: mid1 = manifest_urls[:len(manifest_urls)//2] mid2 = manifest_urls[len(manifest_urls)//2:] recursion_channel_check(mid1) recursion_channel_check(mid2) def main(): """ Main executing function """ recursion_channel_check(URLS) if __name__ == '__main__': main()
HiwinRA605_socket_ros_test_20190625191532.py
#!/usr/bin/env python3 # license removed for brevity #接收策略端命令 用Socket傳輸至控制端電腦 import socket ##多執行序 import threading import time ## import sys import os import numpy as np import rospy import matplotlib as plot from std_msgs.msg import String from ROS_Socket.srv import * from ROS_Socket.msg import * import HiwinRA605_socket_TCPcmd as TCP import HiwinRA605_socket_Taskcmd as Taskcmd import enum data = '0' #設定傳輸資料初始值 Arm_feedback = 1 #假設手臂忙碌 state_feedback = 0 NAME = 'socket_server' client_response = 0 #回傳次數初始值 ##------------class pos------- class point(): def __init__(self, x, y, z, pitch, roll, yaw): self.x = x self.y = y self.z = z self.pitch = pitch self.roll = roll self.yaw = yaw pos = point(0,36.8,11.35,-90,0,0) ##------------class socket_cmd--------- class socket_cmd(): def __init__(self, grip, setvel, ra, delay, setboth, action,Speedmode): self.grip = grip self.setvel = setvel self.ra = ra self.delay = delay self.setboth = setboth self.action = action self.Speedmode = Speedmode ##-----------switch define------------## class switch(object): def __init__(self, value): self.value = value self.fall = False def __iter__(self): """Return the match method once, then stop""" yield self.match raise StopIteration def match(self, *args): """Indicate whether or not to enter a case suite""" if self.fall or not args: return True elif self.value in args: # changed for v1.5, see below self.fall = True return True else: return False ##-----------client feedback arm state---------- def socket_client_arm_state(Arm_state): global state_feedback rospy.wait_for_service('arm_state') try: Arm_state_client = rospy.ServiceProxy('arm_state', arm_state) state_feedback = Arm_state_client(Arm_state) #pos_feedback_times = pos_feedback.response return state_feedback except rospy.ServiceException as e: print ("Service call failed: %s"%e) ##-----------client feedback arm state end---------- ##------------server 端------- def point_data(req): ##接收策略端傳送位姿資料 global client_response pos.x = '%s'%req.x pos.y = '%s'%req.y pos.z = '%s'%req.z pos.pitch = '%s'%req.pitch pos.roll = '%s'%req.roll pos.yaw = '%s'%req.yaw client_response = client_response + 1 return(client_response) ##----------Arm Mode-------------### def Arm_Mode(req): ##接收策略端傳送手臂模式資料 socket_cmd.action = int('%s'%req.action) socket_cmd.grip = int('%s'%req.grip) socket_cmd.ra = int('%s'%req.ra) socket_cmd.setvel = int('%s'%req.vel) socket_cmd.setboth = int('%s'%req.both) return(1) ##-------Arm Speed Mode------------### def Speed_Mode(req): ##接收策略端傳送手臂模式資料 socket_cmd.Speedmode = int('%s'%req.Speedmode) return(1) # def Grip_Mode(req): ##接收策略端傳送夾爪動作資料 # socket_cmd.grip = int('%s'%req.grip) # return(1) def socket_server(): ##創建Server node rospy.init_node(NAME) a = rospy.Service('arm_mode',arm_mode, Arm_Mode) ##server arm mode data s = rospy.Service('arm_pos',arm_data, point_data) ##server arm point data b = rospy.Service('speed_mode',speed_mode, Speed_Mode) ##server speed mode data #c = rospy.Service('grip_mode',grip_mode, Grip_Mode) ##server grip mode data print ("Ready to connect") rospy.spin() ## spin one ##------------server 端 end------- ##----------socket 封包傳輸--------------## ##-----------socket client-------- def socket_client(): global Arm_feedback,data try: s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) s.connect(('192.168.0.1', 8080))#iclab 5 & iclab hiwin #s.connect(('192.168.1.102', 8080))#iclab computerx except socket.error as msg: print(msg) sys.exit(1) print('Connection has been successful') print(s.recv(1024)) #start_input=int(input('開始傳輸請按1,離開請按3 : ')) #輸入開始指令 start_input = 1 if start_input==1: while 1: ##---------------socket 傳輸手臂命令----------------- if Arm_feedback == 0: #-------選擇模式-------- for case in switch(socket_cmd.action): #-------PtP Mode-------- if case(Taskcmd.Action_Type.PtoP): for case in switch(socket_cmd.setboth): if case(Taskcmd.Ctrl_Mode.CTRL_POS): data = TCP.SetPtoP(socket_cmd.grip,Taskcmd.RA.ABS,Taskcmd.Ctrl_Mode.CTRL_POS,pos.x,pos.y,pos.z,pos.pitch,pos.roll,pos.yaw,socket_cmd.setvel) break if case(Taskcmd.Ctrl_Mode.CTRL_EULER): data = TCP.SetPtoP(socket_cmd.grip,Taskcmd.RA.ABS,Taskcmd.Ctrl_Mode.CTRL_EULER,pos.x,pos.y,pos.z,pos.pitch,pos.roll,pos.yaw,socket_cmd.setvel) break if case(Taskcmd.Ctrl_Mode.CTRL_BOTH): data = TCP.SetPtoP(socket_cmd.grip,Taskcmd.RA.ABS,Taskcmd.Ctrl_Mode.CTRL_BOTH,pos.x,pos.y,pos.z,pos.pitch,pos.roll,pos.yaw,socket_cmd.setvel) break break #-------Line Mode-------- if case(Taskcmd.Action_Type.Line): for case in switch(socket_cmd.setboth): if case(Taskcmd.Ctrl_Mode.CTRL_POS): data = TCP.SetLine(socket_cmd.grip,Taskcmd.RA.ABS,Taskcmd.Ctrl_Mode.CTRL_POS,pos.x,pos.y,pos.z,pos.pitch,pos.roll,pos.yaw,socket_cmd.setvel) break if case(Taskcmd.Ctrl_Mode.CTRL_EULER): data = TCP.SetLine(socket_cmd.grip,Taskcmd.RA.ABS,Taskcmd.Ctrl_Mode.CTRL_EULER,pos.x,pos.y,pos.z,pos.pitch,pos.roll,pos.yaw,socket_cmd.setvel ) break if case(Taskcmd.Ctrl_Mode.CTRL_BOTH): data = TCP.SetLine(socket_cmd.grip,Taskcmd.RA.ABS,Taskcmd.Ctrl_Mode.CTRL_BOTH,pos.x,pos.y,pos.z,pos.pitch,pos.roll,pos.yaw,socket_cmd.setvel ) break break #-------設定手臂速度-------- if case(Taskcmd.Action_Type.SetVel): data = TCP.SetVel(socket_cmd.grip, socket_cmd.setvel) break #-------設定手臂Delay時間-------- if case(Taskcmd.Action_Type.Delay): data = TCP.SetDelay(socket_cmd.grip,0) break #-------設定手臂急速&安全模式-------- if case(Taskcmd.Action_Type.Mode): data = TCP.Set_SpeedMode(socket_cmd.grip,socket_cmd.Speedmode) break socket_cmd.action= 5 ##切換初始mode狀態 s.send(data.encode('utf-8'))#socket傳送for python to translate str feedback_str = s.recv(1024) #手臂端傳送手臂狀態 if str(feedback_str[2]) == '70':# F 手臂為Ready狀態準備接收下一個運動指令 Arm_feedback = 0 socket_client_arm_state(Arm_feedback) #print("isbusy false") if str(feedback_str[2]) == '84':# T 手臂為忙碌狀態無法執行下一個運動指令 Arm_feedback = 1 socket_client_arm_state(Arm_feedback) #print("isbusy true") if str(feedback_str[2]) == '54':# 6 策略完成 Arm_feedback = 6 socket_client_arm_state(Arm_feedback) print("shutdown") ##---------------socket 傳輸手臂命令 end----------------- if Arm_feedback == Taskcmd.Arm_feedback_Type.shutdown: rospy.on_shutdown(myhook) break if start_input == 3: pass s.close() ##-----------socket client end-------- ##-------------socket 封包傳輸 end--------------## ## 多執行緒 def thread_test(): socket_client() ## 多執行序 end def myhook(): print ("shutdown time!") if __name__ == '__main__': socket_cmd.action = 5##切換初始mode狀態 t = threading.Thread(target=thread_test) t.start() # 開啟多執行緒 socket_server() t.join() # Ctrl+K Ctrl+C 添加行注释 Add line comment # Ctrl+K Ctrl+U 删除行注释 Remove line comment #Ctrl+] / [ 缩进/缩进行 Indent/outdent line