content
stringlengths
42
6.51k
def a_star(graph, heuristic, start, goal): """ Finds the shortest distance between two nodes using the A-star (A*) algorithm :param graph: an adjacency-matrix-representation of the graph where (x,y) is the weight of the edge or 0 if there is no edge. :param heuristic: an estimation of distance from node x to y that is guaranteed to be lower than the actual distance. E.g. straight-line distance :param start: the node to start from. :param goal: the node we're searching for :return: The shortest distance to the goal node. Can be easily modified to return the path. """ # This contains the distances from the start node to all other nodes, initialized with a distance of "Infinity" distances = [float("inf")] * len(graph) # The distance from the start node to itself is of course 0 distances[start] = 0 # This contains the priorities with which to visit the nodes, calculated using the heuristic. priorities = [float("inf")] * len(graph) # start node has a priority equal to straight line distance to goal. It will be the first to be expanded. priorities[start] = heuristic[start][goal] # This contains whether a node was already visited visited = [False] * len(graph) # While there are nodes left to visit... while True: # ... find the node with the currently lowest priority... lowest_priority = float("inf") lowest_priority_index = -1 for i in range(len(priorities)): # ... by going through all nodes that haven't been visited yet if priorities[i] < lowest_priority and not visited[i]: lowest_priority = priorities[i] lowest_priority_index = i if lowest_priority_index == -1: # There was no node not yet visited --> Node not found return -1 elif lowest_priority_index == goal: # Goal node found # print("Goal node found!") return distances[lowest_priority_index] # print("Visiting node " + lowestPriorityIndex + " with currently lowest priority of " + lowestPriority) # ...then, for all neighboring nodes that haven't been visited yet.... for i in range(len(graph[lowest_priority_index])): if graph[lowest_priority_index][i] != 0 and not visited[i]: # ...if the path over this edge is shorter... if distances[lowest_priority_index] + graph[lowest_priority_index][i] < distances[i]: # ...save this path as new shortest path distances[i] = distances[lowest_priority_index] + graph[lowest_priority_index][i] # ...and set the priority with which we should continue with this node priorities[i] = distances[i] + heuristic[i][goal] # print("Updating distance of node " + i + " to " + distances[i] + " and priority to " + priorities[i]) # Lastly, note that we are finished with this node. visited[lowest_priority_index] = True # print("Visited nodes: " + visited) # print("Currently lowest distances: " + distances)
def human_to_bytes(size): """Given a human-readable byte string (e.g. 2G, 30M), return the number of bytes. Will return 0 if the argument has unexpected form. """ bytes = size[:-1] unit = size[-1].upper() if bytes.isdigit(): bytes = int(bytes) if unit == 'P': bytes *= 1125899906842624 elif unit == 'T': bytes *= 1099511627776 elif unit == 'G': bytes *= 1073741824 elif unit == 'M': bytes *= 1048576 elif unit == 'K': bytes *= 1024 else: bytes = 0 else: bytes = 0 return bytes
def sortGlyphs(glyphlist): """ Sort glyphs in a way that glyphs from the exceptionList, or glyphs starting with 'uni' names do not get to be key (first) glyphs. An infinite loop is avoided, in case there are only glyphs matching above mentioned properties. """ exceptionList = 'dotlessi dotlessj kgreenlandic ae oe AE OE uhorn'.split() glyphs = sorted(glyphlist) for i in range(len(glyphs)): if glyphs[0] in exceptionList or glyphs[0].startswith('uni'): glyphs.insert(len(glyphs), glyphs.pop(0)) else: continue return glyphs
def encode_synchsafe_int(i, per_byte): """Encode synchsafe integers for ID3v2 tags.""" if i > 2 ** (per_byte * 4) - 1: raise ValueError( f"{i} is too large to be represented by a synchsafe " f"integer with {per_byte} bits per byte." ) v = 0 mask = 0x7F value = i while ((mask ^ 0x7FFFFFFF) > 0): v = value & ~mask v = v << (8 - per_byte) v = v | (value & mask) mask = ((mask + 1) << 8) - 1 value = v return value.to_bytes(4, byteorder='big')
def get_state_feature(num_states_in_group, num_groups, state): """ Given state, return the feature of that state Args: num_states_in_group [int] num_groups [int] state [int] : 1~500 Returns: one_hot_vector [numpy array] """ ### Generate state feature # Create one_hot_vector with size of the num_groups, according to state # For simplicity, assume num_states is always perfectly divisible by num_groups # Note that states start from index 1, not 0! # Example: # If num_states = 100, num_states_in_group = 20, num_groups = 5, # one_hot_vector would be of size 5. # For states 1~20, one_hot_vector would be: [1, 0, 0, 0, 0] one_hot_vector = [0] * num_groups for k in range(num_groups): group_end = num_states_in_group * (k + 1) group_start = group_end - num_states_in_group + 1 if (state <= group_end) & (state >= group_start): one_hot_vector[k] = 1 else: one_hot_vector[k] = 0 return one_hot_vector
def make_pure_python(obj): """ Take dict object which can include either dict or numpy scalars or Python scalars, and convert to pure Python. """ if isinstance(obj, dict): for key, val in obj.items(): obj[key] = make_pure_python(val) return obj elif hasattr(obj, 'item'): return obj.item() else: return obj
def _flatten(container): """ _flatten a sequence of sequences into a single list """ _flattened = [] for sequence in container: _flattened.extend(sequence) return _flattened
def _div_ceil(a, b): """Calculate ceil of a/b without decaying to float.""" return -(-a // b)
def sanitize(this) -> str: """ Convert object to string. Args: this (object). Returns: str(this) (str) Raises: none. """ if this is None: return "None" else: return str(this)
def ValidationForm(consideration, condition, consideration_types={}): """ The basic structure of all the validator methods. """ if consideration is None: return True elif ( consideration and (bool(type(consideration) in consideration_types) if consideration_types else True) ): return condition return not condition
def _get_input_shape(shape_x): """_get_input_shape""" dim_a = shape_x[0] dim_b = shape_x[1] res = [] if dim_a % 16 != 0: dim_a = (dim_a // 16) * 16 + 16 res.append(dim_a) else: res.append(dim_a) if dim_b % 16 != 0: dim_b = (dim_b // 16) * 16 + 16 res.append(dim_b) else: res.append(dim_b) return res
def pass_bot(func): """This decorator is deprecated, and it does nothing""" # What this decorator did is now done by default return func
def export_tripletes_from_color(hex_color): """<Short Description> <Description> Parameters ---------- <argument name>: <type> <argument description> <argument>: <type> <argument description> Returns ------- <type> <description> """ hex_triplets = [hex_color[i:i+2] for i in range(0, len(hex_color), 2)] triplets_integer = [int(hex_triplets[i], 16) for i in range(len(hex_triplets))] return triplets_integer
def minOperations(n): """ In a text file, there is a single character H. Your text editor can execute only two operations in this file: Copy All and Paste. Given a number n, write a method that calculates the fewest number of operations needed to result in exactly n H characters in the file. Returns an integer If n is impossible to achieve, returns 0 """ if not isinstance(n, int): return 0 op = 0 i = 2 while (i <= n): if not (n % i): n = int(n / i) op += i i = 1 i += 1 return op
def has_same_letter_repeated(box, times): """Check if box has any letter repeated number of times.""" return any( box.count(letter) == times for letter in box )
def getOverviewLegendType(distance_heatmap_dict): """ Get overview legend types. Parameters ----------- distance_heatmap_dict : Dictionary Distance Heatmap Dictitonary List formatted for use in visualization. Returns -------- overview_legend_types: List Legend types for overview distance matrices """ overview_legend_types = [hd['overview_legend_type'] for hd in distance_heatmap_dict] # get unique values in overview_legend_types legend_types_unique = set(overview_legend_types) overview_legend_types = list(legend_types_unique) return overview_legend_types
def stringify(value): """ Stringify a value to insert cleanly into the test DB. """ return '\'{}\''.format(value) if value else 'NULL'
def rayTracingPlotFileName( key, site, telescopeModelName, sourceDistance, zenithAngle, label ): """ Ray tracing plot file name. Parameters ---------- key: str Quantity to be plotted (d80_cm, d80_deg, eff_area or eff_flen) site: str South or North. telescopeModelName: str LST-1, MST-FlashCam, ... sourceDistance: float Source distance (km). zenithAngle: float Zenith angle (deg). label: str Instance label. Returns ------- str File name. """ name = "ray-tracing-{}-{}-{}-d{:.1f}-za{:.1f}".format( site, telescopeModelName, key, sourceDistance, zenithAngle ) name += "_{}".format(label) if label is not None else "" name += ".pdf" return name
def fromBytestoInt(b,k): """ Convert a bytes array to a tuple of int ranging from 0 to 256**(k-1) """ assert len(b)% k == 0 i = 0 ck = 0 T = () while i < len(b): nb = 0 while ck < k : nb = nb + b[i]*(256**ck) i+=1 ck+=1 ck = 0 T = T+(nb,) return T
def split_node_id(node_id): """ split and extract collection name """ col_name = "" key_only = "" if isinstance(node_id, str): key_only = node_id splits = node_id.split("/") if len(splits) == 2: col_name = splits[0] key_only = splits[1] return col_name, key_only
def is_contain_chinese(check_str): """Check whether string contains Chinese or not. Args: check_str (str): String to be checked. Return True if contains Chinese, else False. """ for ch in check_str: if u'\u4e00' <= ch <= u'\u9fff': return True return False
def a1(row_index, column_index): """Get an A1 notation for a cell specified by its row index and column index""" ord_first = ord('A') ord_last = ord('Z') letters_count = ord_last - ord_first + 1 level, letter_index = divmod(column_index, letters_count) letter = chr(ord_first + letter_index) * (1 + level) number = row_index + 1 return '{letter}{number}'.format(letter=letter, number=number)
def vectorOFRightDirection(OFvect, FOE): """Returns True if OF vector is pointing away from the FOE, False otherwise.""" # Get points of optical flow vector a1, b1, c1, d1 = OFvect # If left side of FOE if a1 <= FOE[0]: if c1 <= a1: return False # If right side of FOE else: if c1 >= a1: return False return True
def subtract_Q_from_identity(Q): """ If Q = [ [1,2,3], [4,5,6], [7,8,9], ] I - Q: [[1,0,0] [[0,-2,-3] [0,1,0] - Q = [-4,-4,-6] [0,0,1]] [-7,-8,-8]] """ n = len(Q) for row in range(len(Q)): for item in range(len(Q[row])): if row == item: Q[row][item] = 1 - Q[row][item] else: Q[row][item] = -Q[row][item] return Q
def _make_pretty_name(method): """Makes a pretty name for a function/method.""" meth_pieces = [method.__name__] # If its an instance method attempt to tack on the class name if hasattr(method, 'im_self') and method.im_self is not None: try: meth_pieces.insert(0, method.im_self.__class__.__name__) except AttributeError: pass return ".".join(meth_pieces)
def room_url_for_room_id(roomid): """ room schedule url from room id """ template = 'https://www-sbhome1.zv.uni-wuerzburg.de/qisserver/rds?state=wplan&act=Raum&pool=Raum&raum.rgid={}' url = template.format(roomid) return url
def doi_prefix(v): """ Return the prefix of a DOI. """ parts = v.split("/") if len(parts) == 1: raise ValueError("invalid doi: {}".format(v)) return parts[0]
def getfirstbest(bests,threashold=-1): """ finds all the molecules that are among the best 'threashold', and stores them into a set. The previous version of the set is passed to the function as the first variable, and the union of the two is then returned """ if threashold==-1: threashold=len(bests) b=set([]) for t in range(1,threashold+1): b|=bests[t] return b
def test_line_seg_intersect(line1,line2): """Tests to see if two lines segments intersect. The lines are defined as: line1 = [ p0_x, p0_y, p1_x, p1_y ] line2 = [ p2_x, p2_y, p3_x, p3_y ] """ #See http://stackoverflow.com/questions/563198/how-do-you-detect-where- #two-line-segments-intersect for algorithm details #Read in individual point x,y positions from arguments p0_x, p0_y, p1_x, p1_y = line1 p2_x, p2_y, p3_x, p3_y = line2 s1_x = p1_x - p0_x s1_y = p1_y - p0_y s2_x = p3_x - p2_x s2_y = p3_y - p2_y denom = (-s2_x * s1_y + s1_x * s2_y) num_s = (-s1_y * (p0_x - p2_x) + s1_x * (p0_y - p2_y)) num_t = ( s2_x * (p0_y - p2_y) - s2_y * (p0_x - p2_x)) #Detect if lines are parallel or coincident if -1e-10 < denom < 1e-10: if abs(num_s) - abs(num_t) < 1e-5: #Lines are coincident return True else: #Lines are parallel, but not coincident return False s = num_s / denom t = num_t / denom if 0.0 <= s <= 1.0 and 0.0 <= t <= 1.0: #Lines intersect (or meet at endpoints) return True else: #Lines do not intersect return False
def get_steps(x, shape): """ Convert a (vocab_size, steps * batch_size) array into a [(vocab_size, batch_size)] * steps list of views """ steps = shape[1] if x is None: return [None for step in range(steps)] xs = x.reshape(shape + (-1,)) return [xs[:, step, :] for step in range(steps)]
def format_nltk_inputs(input, target): """ Prepare NLTK inputs as tuple of dict and target :return: """ input_nltk = [] for input_feat, tar in zip(input, target): list_dict = {} for index, feat_val in enumerate(input_feat): index = index + 1 k = f'feat_{index}' list_dict[k] = feat_val input_nltk.append((list_dict, tar)) return input_nltk
def get_centre(bounds): """ Get the centre of the object from the bounding box. """ if len(bounds) != 6: return [None] * 6 return [bounds[i] - (bounds[i] - bounds[i - 1]) / 2.0 for i in range(1, len(bounds), 2)]
def _last_build_infos_to_mock_returns(last_builds): """ Helper function for testing waiting for a build. Turns a series of last_build_info dictionaries into a list suitable for returning sequentially from requests_mock. """ return [{'json': {'last_build_info': build_info}} for build_info in last_builds]
def get_branch_code(location_code: str) -> str: """ Returns branch code from normalized location code """ branch = location_code[:2] return branch
def parse_range(entry, valid, default): """ parsing entries entry - value to check default - value if entry is invalid valid - valid range return - entry or default if entry is out of range """ if valid[0] <= entry <= valid[1]: result = entry else: result = default return result
def can_make_metal(i, amount, treasury, formulas): """Returns True if we can make amount of metal i.""" if treasury[i] >= amount: treasury[i] -= amount return True elif treasury[i] >= 0: treasury[i] -= amount extra = -treasury[i] metal_1, metal_2 = formulas[i] result = (can_make_metal(metal_1, extra, treasury, formulas) and can_make_metal(metal_2, extra, treasury, formulas)) if result: treasury[i] += extra return result else: return False
def cmd_list_to_string(cmds): """Converts list of commands into proper string for NX-API Args: cmds (list): ordered list of commands Returns: str: string of commands separated by " ; " """ command = ' ; '.join(cmds) return command + ' ;'
def multiple_benchmark_thetas(benchmark_names): """ Utility function to be used as input to various SampleAugmenter functions, specifying multiple parameter benchmarks. Parameters ---------- benchmark_names : list of str List of names of the benchmarks (as in `madminer.core.MadMiner.add_benchmark`) Returns ------- output : tuple Input to various SampleAugmenter functions """ return "benchmarks", benchmark_names
def clean_usage(usage): """ Remove Duplicate weeks based on the start day of the week :param usage: :return: """ return list({week["days"][0]["dayDate"]: week for week in usage}.values())
def code_is_executable(estimator_code): """Determine if code string is executable. :param str estimator_code: string to check. :returns bool: True if executable """ try: eval(estimator_code) return True except: return False
def FirstActiveGeneral(activities, timepoints): """Given a list of temporal activities in the coded activity state from ConvertWindowState, return the time point at which the protein is first active (not in the 0 inactive state) or 'Not active'. Does not assume any knowledge of the time points. Returns the 0-based index. """ assert len(list(activities)) == len( list(timepoints)), "Must have same length activities and time points" for t in range(len(list(activities))): if not activities[t] == "0": return str(timepoints[t]) return "Not active"
def _orthogonal_vector(vector): """ Given a vector, returns a orthogonal/perpendicular vector of equal length. Returns ------ (float, float): A vector that points in the direction orthogonal to vector. """ return -1 * vector[1], vector[0]
def remove_duplicates(oldlist): """ :param oldlist: :return: """ newlist = [] for item in oldlist: if item not in newlist: newlist.append(item) return newlist
def deepReverse(L): """reverses order of list""" def reverseHelp(L, lst, c): if(L == []): return lst if(isinstance(L[c], list)): #if(isinstance(L[1], list)==False): return reverseHelp(L[0], lst, 0) else: return reverseHelp(L[c:], [L[c]]+lst, c+1) return reverseHelp(L, [], 0)
def quasilexico_key(x): """Returns a key suitable for a quasi-lexicographic sort [1]_. Objects are sorted by length first, then lexicographically. Examples -------- >>> L = ['a', 'aa', 'b'] >>> sorted(L, key=quasilexico_key) ['a', 'b', 'aa'] References ---------- .. [1] Calude, Cristian (1994). Information and randomness. An algorithmic perspective. EATCS Monographs on Theoretical Computer Science. Springer-Verlag. p. 1. """ return (len(x), x)
def as_bytes(value, length): """Turn an integer into a byte array""" return value.to_bytes(length, byteorder="big", signed=False)
def is_legal(letters): """ :param letters:str, the string that user inputs :return:bool, letters is legal type or not """ if len(letters) == 7: # Legal input combines with four characters and three empty spaces if letters[1] == letters[3] == letters[5] == ' ': if letters[0].isalpha() and letters[2].isalpha() and letters[4].isalpha() and letters[6].isalpha(): return True else: return False
def both_args_present_or_not(lhs=None, rhs=None): """ function is used to determine, that both arguments are either passsed or excluded """ return all([lhs, rhs]) or not any([lhs, rhs])
def list_reduce(fn, lst, dftl): """Implementation of list_reduce.""" res = dftl for elem in lst: res = fn(res, elem) return res
def avatar(author): """ Cites the creator of botjack's avatar. ----- :param <author>: <class 'str'> ; author of the command """ msg = f"Hello {author}.\nMy avatar was made by: ScarfyAce. Please check their reddit:\n" + \ "https://www.reddit.com/user/ScarfyAce/" return msg
def slope(p1, p2): """Estimate the slope between 2 points. :param p1: (tuple) first point as (x1, y1) :param p2: (tuple) second point as (x2, y2) :returns: float value """ # test types try: x1 = float(p1[0]) y1 = float(p1[1]) x2 = float(p2[0]) y2 = float(p2[1]) except: raise # test values (p1 and p2 must be different) if x1 == x2 and y1 == y2: raise Exception x_diff = x2 - x1 y_diff = y2 - y1 return y_diff / x_diff
def bubble_sort(arr): """ Exchange sort (bubble sort) 1. Take the first element each time and compare it with the next element. If the former is larger than the latter, switch positions and compare with the latter. If the latter bit is greater, it is not exchanged. Then the next bit is compared with the next bit until the last indexed element. At this time, the last indexed element is the largest, and it is also the element that will never be moved after sorting. That is, L[n-i:n] is arranged so as not to move. 2. The above rule loops for n-1 rounds, then the sorting is complete. Average Time Complexity: O(n**2) Space Complexity: O(1) stability: Yes Best Time Complexity: O(n) Worst Time Complexity: O(n**2) :param arr: :return: """ for i in range(len(arr)-1): for j in range(len(arr)-1-i): if arr[j] > arr[j+1]: arr[j],arr[j+1] = arr[j+1],arr[j] return arr
def app_models(raw_models): """ For a list of raw models return the list of the corresponding app models. """ return [model.get_app_model() if model is not None else None for model in raw_models]
def d4(dx, fc, i): """ fourth-order centered derivative at index i """ D = -fc[i+2] + 8.0*fc[i+1] - 8.0*fc[i-1] + fc[i-2] D = D/(12.0*dx) return D
def schema_id(origin_did: str, name: str, version: str) -> str: """ Return schema identifier for input origin DID, schema name, and schema version. :param origin_did: DID of schema originator :param name: schema name :param version: schema version :return: schema identifier """ return '{}:2:{}:{}'.format(origin_did, name, version)
def denormalize(x, min, max): """ Data min-max denormalization: """ return x * (max - min) + min
def gen_bom_list(mod_list): """generate BOM list""" mod_list.sort(key=lambda desig: desig[0]) # sort by desig_sign return [bom_line[1] for bom_line in mod_list]
def jaccard(seq1, seq2): """ Compute the Jaccard distance between the two sequences `seq1` and `seq2`. They should contain hashable items. The return value is a float between 0 and 1, where 1 means equal, and 0 totally different. """ set1, set2 = set(seq1), set(seq2) return len(set1 & set2) / float(len(set1 | set2))
def similarity(dx1, dy1, dz1, d1, d2): """ uses the rules of similarity in geometry to calculate lengths of edges of a pyramid similar to another pyramid """ dx2 = d2 * dx1 / d1 dy2 = d2 * dy1 / d1 dz2 = d2 * dz1 / d1 return dx2, dy2, dz2
def lib_utils_oo_dict_to_keqv_list(data): """Take a dict and return a list of k=v pairs Input data: {'a': 1, 'b': 2} Return data: ['a=1', 'b=2'] """ return ['='.join(str(e) for e in x) for x in data.items()]
def points_to_coords(points, level): """Transform from [-1, 1] to [0, 2^l]""" return (2**level) * (points*0.5 + 0.5)
def PVIFA(i,n,m=1): """ interest years optional payments per year" """ PVIFA = (1 - (1 / ((1 + i / m)**(m * n)))) / i return PVIFA
def process_chunk_info(line): """ Processes a unified diff chunk header and returns a tuple indication the start and length of the deletion and addition hunks. :param line: Unified diff chunk marker, beginning with '@@' :type line: str :return: a 4-tuple of deletion start, deletion length, addition start, addition length :rtype: tuple[int] """ parts = line.split(' ') del_info = parts[1][1:] add_info = parts[2][1:] del_start, del_length = map(int, del_info.split(',')) if ',' in del_info else (int(del_info), 1) add_start, add_length = map(int, add_info.split(',')) if ',' in add_info else (int(add_info), 1) return del_start, del_length, add_start, add_length
def get_topic_for_path(channel, chan_path_tuple): """ Given channel (dict) that contains a hierary of TopicNode dicts, we use the walk the path given in `chan_path_tuple` to find the corresponding TopicNode. """ assert chan_path_tuple[0] == channel['dirname'], 'Wrong channeldir' chan_path_list = list(chan_path_tuple) chan_path_list.pop(0) # skip the channel name if len(chan_path_list) == 0: return channel current = channel for subtopic in chan_path_list: current = list(filter(lambda d: 'dirname' in d and d['dirname'] == subtopic, current['children']))[0] return current
def GetClosestSupportedMotionBuilderVersion(Version: int): """ Get the closest MotionBuilder version that is supported """ if Version < 2018: return 2018 if Version == 2021: return 2022 return Version
def organize_array_by_rows(unformatted_array, num_cols): """Take unformatted array and make grid array""" num_rows = int(len(unformatted_array) / num_cols) array = [] for row in range(num_rows): array.append(unformatted_array[row * num_cols:(row + 1) * num_cols]) return array
def list_devices_to_string(list_item): """Convert cfg devices into comma split format. Args: list_item (list): list of devices, e.g. [], [1], ["1"], [1,2], ... Returns: devices (string): comma split devices """ return ",".join(str(i) for i in list_item)
def update_item_tuple(data, index, value): """ Update the value of an item in a tuple. Args: data (tuple): The tuple with item to update. index (int): The index of the item to update. value (various): The new value for the item to be updated. Returns: tuple: A new tuple with the updated value. """ list_data = list(data) list_data[index] = value new_tuple = tuple(list_data) return new_tuple
def separate_tour_and_o(row): """ The tour line typically contains contig list like: tig00044568+ tig00045748- tig00071055- tig00015093- tig00030900- This function separates the names from the orientations. """ tour = [] tour_o = [] for contig in row.split(): if contig[-1] in ("+", "-", "?"): tour.append(contig[:-1]) tour_o.append(contig[-1]) else: # Unoriented tour.append(contig) tour_o.append("?") return tour, tour_o
def _default_kwargs_split_fn(kwargs): """Default `kwargs` `dict` getter.""" return (kwargs.get('distribution_kwargs', {}), kwargs.get('bijector_kwargs', {}))
def egg_name(name, version, build): """ Return the egg filename (including the .egg extension) for the given arguments """ return "{0}-{1}-{2}.egg".format(name, version, build)
def dash_to_underscore(obj): """ Configuration data is not underscored :param obj: The object to convert :return:The converted object """ if isinstance(obj, list): ret_obj = [] for item in obj: ret_obj.append(dash_to_underscore(item)) elif isinstance(obj, dict): ret_obj = dict() for key in obj.keys(): new_key = key.replace('-', '_') ret_obj[new_key] = dash_to_underscore(obj[key]) else: ret_obj = obj return ret_obj
def maybe_zero(x: float, tol: float) -> float: """Turn almost zeros to actual zeros""" if abs(x) < tol: return 0 return x
def _Theta(x, y, eps): """Theta tmp Args: x: y: eps: Returns: int: 0 or 1. """ sm = 0 for k in range(len(x)): sm += (x[k]-y[k])**2 if sm > eps: return 0 return 1
def safe_encode(s, coding='utf-8', errors='surrogateescape'): """encode str to bytes, with round-tripping "invalid" bytes""" return s.encode(coding, errors)
def join_path_segments(*args): """ Join multiple lists of path segments together, intelligently handling path segments borders to preserve intended slashes of the final constructed path. This function is not encoding aware. It doesn't test for, or change, the encoding of path segments it is passed. Examples: join_path_segments(['a'], ['b']) == ['a','b'] join_path_segments(['a',''], ['b']) == ['a','b'] join_path_segments(['a'], ['','b']) == ['a','b'] join_path_segments(['a',''], ['','b']) == ['a','','b'] join_path_segments(['a','b'], ['c','d']) == ['a','b','c','d'] Returns: A list containing the joined path segments. """ finals = [] for segments in args: if not segments or segments == ['']: continue elif not finals: finals.extend(segments) else: # Example #1: ['a',''] + ['b'] == ['a','b'] # Example #2: ['a',''] + ['','b'] == ['a','','b'] if finals[-1] == '' and (segments[0] != '' or len(segments) > 1): finals.pop(-1) # Example: ['a'] + ['','b'] == ['a','b'] elif finals[-1] != '' and segments[0] == '' and len(segments) > 1: segments = segments[1:] finals.extend(segments) return finals
def _check_do_transform(df, reference_im, affine_obj): """Check whether or not a transformation should be performed.""" try: crs = getattr(df, "crs") except AttributeError: return False # if it doesn't have a CRS attribute if not crs: return False # return False for do_transform if crs is falsey elif crs and (reference_im is not None or affine_obj is not None): # if the input has a CRS and another obj was provided for xforming return True
def _point_in_bbox(point, bounds): """ valid whether the point is inside the bounding box """ return not(point['coordinates'][1] < bounds[0] or point['coordinates'][1] > bounds[2] or point['coordinates'][0] < bounds[1] or point['coordinates'][0] > bounds[3])
def suffixes(word): """Returns the list of propper suffixes of a word :param word: the word :type word: str :rtype: list .. versionadded: 0.9.8""" return [word[i:] for i in range(1, len(word))]
def remove_prefix_from_string(prefix, string): """Removes a prefix from a string if it exists. Otherwise returns the unmodified string.""" if string.startswith(prefix): string = string[len(prefix):] return string
def logged_in(cookie_string, prefix='', rconn=None): """Check for a valid cookie, if logged in, return user_id If not, return None.""" if rconn is None: return if (not cookie_string) or (cookie_string == "noaccess"): return cookiekey = prefix+cookie_string try: if not rconn.exists(cookiekey): return user_info = rconn.lrange(cookiekey, 0, -1) # user_info is a list of binary values # user_info[0] is user id # user_info[1] is a random number, added to input pin form and checked on submission # user_info[2] is a random number between 1 and 6, sets which pair of PIN numbers to request user_id = int(user_info[0].decode('utf-8')) # and update expire after two hours rconn.expire(cookiekey, 7200) except: return return user_id
def _is_regular_token(token): """ Checks if a token is regular (does not contain regex symbols). Args: token (`str`): the token to be tested Returns: bool: whether or not the token is regular """ token_is_regular = True if not token.isalnum(): # Remove escaped characters candidate = token.replace('/', '') candidate = candidate.replace('"', '') candidate = candidate.replace(r'\^', '') candidate = candidate.replace('\'', '') candidate = candidate.replace('-', '') candidate = candidate.replace('^', '') candidate = candidate.replace('_', '') candidate = candidate.replace(':', '') candidate = candidate.replace(',', '') candidate = candidate.replace(r'\.', '') candidate = candidate.replace(r'\|', '') token_is_regular = candidate.isalnum() or candidate == '' return token_is_regular
def __fix_misspelled_words__(text): """ Fixes the misspelled words in the specified text (uses predefined misspelled dictionary) :param text: The text to be fixed :return: the fixed text """ mispelled_dict = {'proflie': 'profile'} for word in mispelled_dict.keys(): text = text.replace(word, mispelled_dict[word]) return text
def keypoint_scale(keypoint, scale_x, scale_y, **params): """Scales a keypoint by scale_x and scale_y.""" x, y, a, s = keypoint return [x * scale_x, y * scale_y, a, s * max(scale_x, scale_y)]
def get_threat_component(components, threat_type): """ Gets a certain threat component out a list of components Args: components: List of threat components threat_type: Type of threat we are looking for Returns: Either the component that we asked for or None """ for component in components: if component.get('name') == threat_type: return component else: return None
def contains_active_student(node_name, adjancy, roles, keep): """ Finds if there is a student in the children of `node_name` Arguments --------- node_name: str Name of the current node adjancy: dict(str: [str]) Adjancy list of agents roles: dict(str: str) Role of the agents Return ------ True or False """ if node_name in keep: return True for child_name in adjancy[node_name]: if contains_active_student(child_name, adjancy, roles, keep): return True return False
def _duplicates(list_): """Return dict mapping item -> indices.""" item_indices = {} for i, item in enumerate(list_): try: item_indices[item].append(i) except KeyError: # First time seen item_indices[item] = [i] return item_indices
def new_confirmed_case_row(region_name, cases, coords): """Creates a row object. Separate to avoid typos""" return {'name': region_name, 'cases': cases, 'coord': coords}
def clean_end_str(end_str, source_str): """Remove the specified at the end of the string""" tem1 = end_str[::-1] tem2 = source_str[::-1] return tem2[len(tem1):len(tem2)][::-1]
def to3(pnts): """ Convert homogeneous coordinates to plain 3D coordinates. It scales the x, y and z values by the w value. Aruments: pnts: A sequence of 4-tuples (x,y,z,w) Returns: A list of 3-tuples (x,y,z) """ return [(p[0] / p[3], p[1] / p[3], p[2] / p[3]) for p in pnts]
def first_index(L, value): """ Find the first occurrence of value in L. """ val = next(iter(filter(lambda x: x[1] == value, enumerate(L)))) if val: return(val[0]) else: raise(ValueError("{} is not in the list.".format(value)))
def productOfAdjacents(i, n, number): """Returns the product of n adjacent digits starting at i""" """Takes in the number as a string""" product = 1 for i in range (i, i+n): product *= int(number[i]) return product
def fun_lr(lr, milestones, gamma, iters): """MultiStep learning rate""" for milestone in milestones: lr *= gamma if iters >= milestone else 1.0 return lr
def mean(num_1st): """ Calculates the mean of a list of numbers Parameters ---------- num_1st : list List of numbers to calculate the averge of Returns -------- The average/mean of num_1st avgMean Examples -------- >>> mean([1,2,3,4,5]) 3.0 """ Sum = sum(num_1st) N = len(num_1st) avgMean = float(Sum/N) return avgMean
def nested_sum(t): """Computes the total of all numbers in a list of lists. t: list of list of numbers returns: number """ total = 0 for nested in t: total += sum(nested) return total
def generate_block(name, abstract, authors, contributors, types, tags, category, img_url, article_url=None, deployment_url=None): """Generate json documentation for a training program block. If both `article_url` and `deployment_url` are None, the block is assumed to be a container for further sub-blocks (i.e. has an "open" button). Otherwise, either one of or both `article_url` and `deployment_url` must be provided. """ block = { "name": name, "abstract": abstract, "authors": authors, "contributors": contributors, "types": types, "tags": tags, "category": category, "imageUrl": img_url } if article_url is None and deployment_url is None: block["parts"] = [] if deployment_url is not None: block["deploymentUrl"] = deployment_url if article_url is not None: block["articleUrl"] = article_url return block
def ndec(x, max=3): # --DC """RETURNS # OF DECIMAL PLACES IN A NUMBER""" for n in range(max, 0, -1): if round(x, n) != round(x, n-1): return n return 0
def plain_subject_predicate(line): """ Converts spo format into something approximately human readable. :param line: :return: """ if '22-rdf-syntax-ns#' in line: return line.split('/')[-1].split('#')[-1] else: return line.split('/')[-1]
def intersperse(lst, sep): """ #### Insert a separator between every two adjacent items of the list. Input list and separator return list with separator between every two adjacent items """ result = [sep] * (len(lst) * 2 - 1) result[0::2] = lst return result
def is_remote_list(values): """Check if list corresponds to a backend formatted collection of dicts """ for v in values: if not isinstance(v, dict): return False if "@type" not in v.keys(): return False return True