content
stringlengths
42
6.51k
def is_close(a, b, rel_tol=1e-9, abs_tol=0.0, method='weak'): """ returns True if a is close in value to b. False otherwise :param a: one of the values to be tested :param b: the other value to be tested :param rel_tol=1e-9: The relative tolerance -- the amount of error allowed, relative to the magnitude of the input values. :param abs_tol=0.0: The minimum absolute tolerance level -- useful for comparisons to zero. :param method: The method to use. options are: "asymmetric" : the b value is used for scaling the tolerance "strong" : The tolerance is scaled by the smaller of the two values "weak" : The tolerance is scaled by the larger of the two values "average" : The tolerance is scaled by the average of the two values. NOTES: -inf, inf and NaN behave similarly to the IEEE 754 Standard. That -is, NaN is not close to anything, even itself. inf and -inf are -only close to themselves. Complex values are compared based on their absolute value. The function can be used with Decimal types, if the tolerance(s) are specified as Decimals:: isclose(a, b, rel_tol=Decimal('1e-9')) See PEP-0485 for a detailed description See also: http://www.boost.org/doc/libs/1_34_0/libs/test/doc/components/test_tools/floating_point_comparison.html http://floating-point-gui.de/errors/comparison/ http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html """ if method not in ("asymmetric", "strong", "weak", "average"): raise ValueError('method must be one of: "asymmetric",' ' "strong", "weak", "average"') if rel_tol < 0.0 or abs_tol < 0.0: raise ValueError('error tolerances must be non-negative') if a == b: # short-circuit exact equality return True # use cmath so it will work with complex or float # print a # print b # if cmath.isinf(a) or cmath.isinf(b): # # This includes the case of two infinities of opposite sign, or # # one infinity and one finite number. Two infinities of opposite sign # # would otherwise have an infinite relative tolerance. # return False diff = abs(b - a) if method == "asymmetric": return (diff <= abs(rel_tol * b)) or (diff <= abs_tol) elif method == "strong": return (((diff <= abs(rel_tol * b)) and (diff <= abs(rel_tol * a))) or (diff <= abs_tol)) elif method == "weak": return (((diff <= abs(rel_tol * b)) or (diff <= abs(rel_tol * a))) or (diff <= abs_tol)) elif method == "average": return ((diff <= abs(rel_tol * (a + b) * 0.5) or (diff <= abs_tol)))
def get_property_content(content, prefix): """Add the prefix to each object in the content and return the concatenated string with "," as the separator. Args: content: the list containing property objects prefix: the prefix before dcid, such as "dcs:" Returns: objects separated by comma. For example: "dcs:bio/CWH41_YEAST,dcs:bio/RPN3_YEAST" """ if not content: return None item_list = [] for obj in content: item_list.append(prefix + obj) return ','.join(item_list)
def updateFile(original, header, startIdx, endIdx): """ creates a new file with an updated header, then returns it """ newFile = [] for i in range(startIdx): # keep the segment occurring before the start idx newFile.append(original[i]) newFile.extend(header) # add to the new file with the desired header for i in range(endIdx + 1, len(original)): # place the rest of the original file that is needed newFile.append(original[i]) return newFile
def compare_configs(c1, c2): """Compare two configurations list to see if they are the same. returns true if they are the same """ for i in range(len(c1)): if c1[i]!=c2[i]: return False return True
def secientificNotation(num): """ change the number into scientific notation after three decimal places :param num: input number :return: scientific notation after two decimal places """ if num > 1e12: res = num / 1e12 unit = 'T' elif num > 1e9: res = num / 1e9 unit = 'G' elif num > 1e6: res = num / 1e6 unit = 'M' elif num > 1e3: res = num / 1e3 unit = 'K' elif num > 0: res = num unit = 'B' else: res = num unit = '' res = str(round(res, 3)) + unit return res
def get_version(inc_version, exc_version): """ Method to determine whether to use including or excluding version :param inc_version: Including version :param exc_version: Excluding version :return: Including version if it is not empty or *. Excluding version otherwise """ if inc_version and inc_version != "*": return inc_version return exc_version
def gcd(a, b): """Computes the greatest common divisor of integers a and b using Euclid's Algorithm. """ while True: if b == 0: return a a, b = b, a % b
def link_ids(id1, id2): """ Takes two id arguments. Returns XML for id1 or links id1 and id2 together """ if id1 and id2: # Both exist, so link them return '<link>' + id1 + id2 + '</link>' else: return id1
def f_gw(x, alpha): """ Calculates f_gw as given by eq (17) and (20) """ return (1.+x**(3.-alpha))**3 / ( 4.*x**3 * ( 1.+ (4.-alpha) *x**(3.-alpha) ) )
def equal_near(item_1: float, item_2: float, thresold: float = 0.1) -> bool: """Is two item close to equl? Return True is difference less than thresold. Args: item_1 (float): First item. item_2 (float): Second item. thresold (float, optional): Thresold for compare. Defaults to 0.01. Returns: bool: Return True if difference less than thresold. """ return abs(1 - (item_1 / item_2)) < thresold
def compare_sets(s1, s2): """Compare the sets.""" if len(s1) != 0: # return s1 == s2 return s1 - s2 return False
def bisect(a, x, lo=0, hi=None): """Return the index where to insert item x in list a, assuming a is sorted. The return value i is such that all e in a[:i] have e <= x, and all e in a[i:] have e > x. So if x already appears in the list, a.insert(x) will insert just after the rightmost x already there. Optional args lo (default 0) and hi (default len(a)) bound the slice of a to be searched. """ if lo < 0: raise ValueError('lo must be non-negative') if hi is None: hi = len(a) while lo < hi: mid = (lo+hi)//2 # Use __lt__ to match the logic in list.sort() and in heapq if x < a[mid]: hi = mid else: lo = mid+1 return lo
def quickSort(ll=[]): """The out of place quick sort algorithm """ if len(ll) <= 1: return ll else: pp = ll[len(ll)-1] lp = [x for x in ll if x < pp] le = [x for x in ll if x == pp] lg = [x for x in ll if x > pp] return (quickSort(lp) + le + quickSort(lg))
def convertToURL( cPathname ): """Convert a Windows or Linux pathname into an OOo URL.""" if len( cPathname ) > 1: if cPathname[1:2] == ":": cPathname = "/" + cPathname[0] + "|" + cPathname[2:] cPathname = cPathname.replace( "\\", "/" ) cPathname = "file://" + cPathname return cPathname
def bytes_needed(i): """ Compute the number of bytes needed to hold arbitrary-length integer i """ bn = 1 while True: i >>= 7 if i == 1: # negative sign bit return bn + 1 elif i == 0: return bn i >>= 1 bn += 1
def factorial(number): """Return the factorial of a number.""" accumulator = 1 for n in range(1, number + 1): accumulator *= n return accumulator
def enforce_not_None(e): """Enforce non-nullness of input. Used for typechecking and runtime safety.""" if e is None: raise Exception("Input is None.") return e
def is_youtube(raw_song): """ Check if the input song is a YouTube link. """ status = len(raw_song) == 11 and raw_song.replace(" ", "%20") == raw_song status = status and not raw_song.lower() == raw_song status = status or 'youtube.com/watch?v=' in raw_song return status
def get_thresholdtable_from_fpr(scores,labels, fpr_list): """Calculate the threshold score list from the FPR list Args: score_target: list of (score,label) Returns: threshold_list: list, the element is threshold score calculated by the corresponding fpr """ threshold_list = [] live_scores = [] for score, label in zip(scores,labels): if label == 0: live_scores.append(float(score)) live_scores.sort(reverse=True) live_nums = len(live_scores) for fpr in fpr_list: i_sample = int(fpr * live_nums) i_sample = max(1, i_sample) threshold_list.append(live_scores[i_sample - 1]) return threshold_list
def _get_table(infobox_line): """Converts the infobox into a one row table.""" cells = infobox_line.split('\t') # remove empty cells cells = list(filter(lambda x: x.find('<none>') == -1, cells)) columns = {cell[0:cell.split(':')[0].rfind('_')] for cell in cells} table = {col: dict() for col in columns} for cell in cells: delimiter_position_value = cell.find(':') column_index = cell[0:delimiter_position_value] value = cell[delimiter_position_value + 1:] delimiter_column_index = column_index.rfind('_') column = column_index[0:delimiter_column_index] index = column_index[delimiter_column_index + 1:] table[column][index] = value infobox_line_as_table = [] for column in table: row_value = ' '.join( table[column][index] for index in sorted(table[column].keys())) infobox_line_as_table.append({ 'column_header': column, 'row_number': 1, 'content': row_value, }) return infobox_line_as_table
def _resolve_text(unicode_bytes): """Resolves Facebook text data, which is often dumped as Unicode bytes, to actual text.""" return unicode_bytes.encode("charmap").decode("utf8")
def is_not_empty(test_object): """Return True if the test_object is not None or empty.""" if test_object: if isinstance(test_object, str): if test_object.strip(): # test_object is not None AND myString is not empty or blank return True return False return True return False
def controls(t): """The output should be a list of M tuple""" # [(1., 0.), (0.,0.), (-1., 0.), (0., 1.), (0., -1.)] return [(0., 0.3)]
def is_checkpoint(block_number: int, epoch_length: int) -> bool: """ Return ``True`` if the given ``block_number`` is a checkpoint, otherwise ``False``. """ return block_number % epoch_length == 0
def eq_div(N, i): """ Equally divide N examples among i buckets. For example, `eq_div(12,3) = [4,4,4]`. """ return [] if i <= 0 else [N // i + 1] * (N % i) + [N // i] * (i - N % i)
def initials(string, sep = ".", sepAtEnd = True): """Returns the initials of a string""" splitString = string.split(" ") theInitialList = [i[:1].capitalize() for i in splitString] return sep.join(theInitialList)+sep*sepAtEnd
def append_zeros_to_filtname(filtname): """Adds zeros to standardize the size of all filternames Parameters: filtname (str) - name of the filter file Returns: filtname (str) - name of the filter file, possibly now with zeroes inserted """ while len(filtname) < 15: filtname = filtname[:6] + '0' + filtname[6:] return filtname
def coords_api_to_json_tilt(ang_up): """converts from API coordinates to robot coordinates.""" ang_down = -ang_up return ang_down
def checksave(save_all, pix_list, save_ratio, save_count_annotated, save_count_blank): """ Checks whether or not an image chip should be saved :param save_all: (bool) saves all chips if true :param pix_list: list of pixel values in image mask :param save_ratio: ratio of annotated chips to unannotated chips :param save_count_annotated: total annotated chips saved :param save_count_blank: total blank chips saved :return: bool """ if save_all is True: save = True elif save_count_annotated / float(save_count_blank) > save_ratio: save = True elif len([x for x in pix_list if x > 0]) > 0: save = True else: save = False return save
def get_shipping_costs(request, shipping_method): """Returns a dictionary with the shipping price and tax for the passed request and shipping method. The format of the dictionary is: {"price" : 0.0, "tax" : 0.0} """ if shipping_method is None: return { "price_net": 0.0, "price_gross": 0.0, "tax": 0.0 } price_gross = shipping_method.get_price_gross(request) price_net = shipping_method.get_price_net(request) tax = shipping_method.get_tax(request) return { "price_net": price_net, "price_gross": price_gross, "tax": tax }
def lower_keys(x): """converts the payload dict keys to all lowercase to match schema Args: x:payload """ if isinstance(x, dict): return dict((k.lower(),v) for k, v in x.items()) else: return "msg_fromat_incorrect"
def reverseComplement(seq): """Reverse Complement a fonction, must be in capital letter.""" return seq.replace('A','t').replace('T','a').replace('C','g').replace('G','c').replace('a','A').replace('t','T').replace('c','C').replace('g','G')[::-1]
def buildKmers(sequence, ksize): """Returns k-mers on the basis of ksize.""" kmers = [] n_kmers = len(sequence) - ksize + 1 for i in range(n_kmers): kmer = sequence[i:i + ksize] kmers.append(kmer) return kmers
def td_path_join(*argv): """Construct TD path from args.""" assert len(argv) >= 2, "Requires at least 2 tdpath arguments" return "/".join([str(arg_) for arg_ in argv])
def getint(data, offset, intsize): """ Retrieve an integer (big-endian) and new offset from the current offset """ value = 0 while intsize > 0: value = (value << 8) + data[offset] offset += 1 intsize -= 1 return value, offset
def merge(a, b, path=None): """From https://stackoverflow.com/a/7205107""" if path is None: path = [] for key in b: if key in a: if isinstance(a[key], dict) and isinstance(b[key], dict): merge(a[key], b[key], path + [str(key)]) elif a[key] == b[key]: pass # same leaf value else: pass # ignore conflicts, left dict wins. else: a[key] = b[key] return a
def get_possible_celeb(matrix): """Take an n x n matrix that has m[i][j] = True iff i knows j and return person who is maybe a celebrity.""" possible_celeb = 0 for p in range(1, len(matrix)): if (matrix[possible_celeb][p] or not matrix[p][possible_celeb]): possible_celeb = p return possible_celeb
def get_bigquery_raster_schema(band_column='value', band_type='INT64'): """ Generate Bigquery table schema for a raster """ return [ { 'name': band_column, 'type': band_type }, { 'name': 'geom', 'type': 'GEOGRAPHY' } ]
def med_leftpad(s, n): """Takes a string and a number (guaranteed to be greater than length of the string), and returns that string, padded on its left side with empty space characters such that the length of the string equals the number.""" return ' ' * (n - len(s)) + s
def find_replace_tuple(t, aliasDict): """ Replace elements of t according to rules in `aliasDict`. Parameters ---------- t : tuple or list The object to perform replacements upon. aliasDict : dictionary Dictionary whose keys are potential elements of `t` and whose values are tuples corresponding to a sub-sequence that the given element should be replaced with. If None, no replacement is performed. Returns ------- tuple """ t = tuple(t) if aliasDict is None: return t for label, expandedStr in aliasDict.items(): while label in tuple(t): i = t.index(label) t = t[:i] + tuple(expandedStr) + t[i + 1:] return t
def _is_dunder(name): """Returns True if a __dunder__ name, False otherwise.""" return (len(name) > 4 and name[:2] == name[-2:] == '__' and name[2] != '_' and name[-3] != '_')
def trans_delay(val): """ Given ESM value, return transfer delay (ms). Please refer to 10.5.6.5, TS24.008 for more details. :param val: the value encoded in the ESM NAS message """ if val <= 15: return val * 10 elif val <= 31: return 200 + (val - 16) * 50 elif val <= 62: return 1000 + (val - 32) * 100 else: return None
def hide_index_html_from(path): """Remove ``index.html`` suffix as well as trailing slashes (if any). """ if not path.endswith('index.html'): return path return path[:-10].rstrip('/')
def join_nums_and_pairs(verses, joiner=', '): """ Given an array of ints and int pairs, return a single string of individual verse numbers and verse ranges: [3,5,(7,10)] --> "3, 5, 7-10". """ return joiner.join([str(x) if isinstance(x, int) else '%d-%d' % x for x in verses])
def factor_of_all_upto(num, limit): """ Returns True if num is divisible by all numbers in the range of integers in 1 up to and including limit. # Speed up by skipping 1. Any integer is divisible by 1! # If the number ends in 1, 3, 7, or 9, it's more likely to be prime. # Check backwards from the largest possible factor """ start = 2 for factor in range(start, limit + 1): if num % factor != 0: return False return True
def log10(x): """ Taking a number, giving it a base and raising it to a power is log """ temp = x count = 0 while temp >= 10: temp = temp / 10 count += 1 return count
def to_camel_case(snake_case_string): """ Convert a string from snake case to camel case. For example, "some_var" would become "someVar". :param snake_case_string: Snake-cased string to convert to camel case. :returns: Camel-cased version of snake_case_string. """ parts = snake_case_string.lstrip('_').split('_') return parts[0] + ''.join([i.title() for i in parts[1:]])
def get_precision(TP, FP): """ precision positive predictive value """ precision = TP / (TP + FP) return precision
def beat_period_to_tempo(beat, Fs): """Convert beat period (samples) to tempo (BPM) [FMP, Section 6.3.2] Notebook: C6/C6S3_BeatTracking.ipynb Args: beat (int): Beat period (samples) Fs (scalar): Sample rate Returns: tempo (float): Tempo (BPM) """ tempo = 60 / (beat / Fs) return tempo
def generate_shifts(key): """Generate the vigenere shifts from the key.""" return list(map(lambda x: ord('z') - ord(x) + 1, key))
def one_step_integrator(state, ders, ps, dt): """RK4 integrates state with derivative and input for one step of dt :param state: state of the variables :param ders: derivative functions :param ps: perturbations [p1,p2,...] (default 0) :param dt: time step :return: state after one integration step""" D = len(state) # 1 k1 = [ders[i](state,ps) for i in range(D)] # 2 state2 = [state[i]+k1[i]*dt/2.0 for i in range(D)] k2 = [ders[i](state2,ps) for i in range(D)] # 3 state3 = [state[i]+k2[i]*dt/2.0 for i in range(D)] k3 = [ders[i](state3,ps) for i in range(D)] # 4 state4 = [state[i]+k3[i]*dt for i in range(D)] k4 = [ders[i](state4,ps) for i in range(D)] # put togeather statef = [state[i] + (k1[i]+2*k2[i]+2*k3[i]+k4[i])/6.0*dt for i in range(D)] return statef
def rstrip(s, chars=None): """rstrip(s [,chars]) -> string Return a copy of the string s with trailing whitespace removed. If chars is given and not None, remove characters in chars instead. """ return s.rstrip(chars)
def digits_to_num(L, reverse=False): """Returns a number from a list of digits, given by the lowest power of 10 to the highest, or the other way around if `reverse` is True""" digits = reversed(L) if reverse else L n = 0 for i, d in enumerate(digits): n += d * (10 ** i) return n
def _prev_char(s: str, idx: int): """Returns the character from *s* at the position before *idx* or None, if *idx* is zero. """ if idx <= 0: return None else: return s[idx - 1]
def dm_fibonancci(n): """ Finding the dm_Fibonacci sequence with seeds of 1, 1, 2 for n = 0, 1, 2 respectively The sequence is 0,1,1,2,3,5,8,13,..., where the recursive relation is dm_fibonancci(n) = dm_fibonancci(n-1) + 2* dm_fibonancci(n-2) - dm_fibonancci(n-3) :param n: the index, starting from 0 :return: the sequence """ # assume n is positive integer n = n//1 if n>=1 else 0 # ensure n is non-negative integer c1=1 c2=2 c3=-1 if n>2: return c1* dm_fibonancci(n-1) + c2* dm_fibonancci(n-2) + c3* dm_fibonancci(n-3) # n should be <= 1 here. Anything greater than 0, assume it's 1 return 2 if (n==2) else 1 if (n==1) else 1
def edist(xloc, yloc, hw): """Calculates the euclidean distance""" return ((xloc - hw)**2 + (yloc - hw)**2)**0.5
def desc_coord(texts): """ Extract description and coordinates. Remove everything below `Total` Return (description, coordinates) """ desc_res = [] vertices_res = [] for text in texts[1:]: # 0th bounding box is whole picture desc = text.description.encode('utf-8', 'ignore').decode('utf-8') if desc.lower() == 'total' or desc.lower() == 'tip' or \ desc.lower() == 'guide': break # remove everything below `Total` and `Tip` desc_res.append(desc) # get coordinates vertices = [(vertex.x, vertex.y) for vertex in text.bounding_poly.vertices] vertices_res.append(vertices) return desc_res, vertices_res
def iswithin(angle, X, dx): """iswithin function. Is angle within dx of X?""" try: if abs(float(angle) - X) <= dx: return True else: return False except ValueError: # Handle if we have missing data in numerical column return False
def fade(begin, end, factor): """ return value within begin and end at < factor > (0.0..1.0) """ # check if we got a bunch of values to morph if type(begin) in [list, tuple]: result = [] # call fade() for every of these values for i in range(len(begin)): result.append(fade(begin[i], end[i], factor)) elif type(begin) is int: # round result to int if begin is an int result = int(round(begin + (end - begin) * factor)) else: # return the resulting float result = begin + (end - begin) * factor return result
def primeSieve(k): """return a list with length k + 1, showing if list[i] == 1, i is a prime else if list[i] == 0, i is a composite, if list[i] == -1, not defined""" def isPrime(n): """return True is given number n is absolutely prime, return False is otherwise.""" for i in range(2, int(n ** 0.5) + 1): if n % i == 0: return False return True result = [-1] * (k + 1) for i in range(2, int(k + 1)): if isPrime(i): result[i] = 1 else: result[i] = 0 return result
def isclose(a, b, atol=1e-01): """ Check if a and b are closer than tolerance level atol return abs(a - b) < atol """ return abs(a - b) < atol
def mycomp(strin, pattern, exact=False): """check pattern against strin. If exact, then retrun pattern==strin, else return strin.find(pattern)>-1.""" if exact: return bool(strin==pattern) else: return bool(strin.find(pattern)>-1)
def get_error_directory_does_not_exists(dir_kind): """dir kind = [dir, file ,url]""" return f"Error: Directory with {dir_kind} does not exist:"
def is_point_in_corner_circular_boundary(distance, circular_radius, boundary_range): """ judge whether a point is in boundary area for four corner circular """ if circular_radius - distance > boundary_range: return True else: return False
def do_match(ctg_e, ref_e, cigar_val, ctg_seq, ctg_clv): """ :param ctg_e: contig end index :param ref_e: reference end index :param ctg_clv: cleavage site in contig coordinate """ ctg_b = ctg_e - cigar_val ref_b = ref_e - cigar_val if ctg_e > ctg_clv: if ctg_b <= ctg_clv: seq_to_add = ctg_seq[ctg_b: ctg_clv + 1] else: seq_to_add = '' else: seq_to_add = ctg_seq[ctg_b: ctg_e] next_ctg_e = ctg_b next_ref_e = ref_b return next_ctg_e, next_ref_e, seq_to_add
def bubblesort(x): """ input: bubble sort takes in a list or numpy array output: returns the list or array in sorted order notes: use bubble sort algorithm -- adapted from pseudocode in Cormen textbook """ assign = 0 cond = 0 for i in range(len(x)): for j in range(len(x)-1, i, -1): if x[j] < x[j-1]: cond += 1 x[j], x[j-1] = x[j-1], x[j] assign += 3 return [x, cond, assign]
def calc_rp(R, Rp): """ Calculate a parallel resistor to match R (R = Rp//Rx) """ if R >= Rp : return None return R * Rp / (Rp - R)
def var_series(get_var_series, n) -> list: """ :param get_var_series: func return random value :param n: number of elements :return: variation series """ l = [] for i in range(n): l.append(get_var_series()) l.sort() return l
def guess_extension(content_type): """ Python's `mimetypes.guess_extension` is no use because it simply returns the first of an unordered set. We use the same set of media types here, but take a reasonable preference on what extension to map to. """ return { 'application/javascript': '.js', 'application/msword': '.doc', 'application/octet-stream': '.bin', 'application/oda': '.oda', 'application/pdf': '.pdf', 'application/pkcs7-mime': '.p7c', 'application/postscript': '.ps', 'application/vnd.apple.mpegurl': '.m3u', 'application/vnd.ms-excel': '.xls', 'application/vnd.ms-powerpoint': '.ppt', 'application/x-bcpio': '.bcpio', 'application/x-cpio': '.cpio', 'application/x-csh': '.csh', 'application/x-dvi': '.dvi', 'application/x-gtar': '.gtar', 'application/x-hdf': '.hdf', 'application/x-latex': '.latex', 'application/x-mif': '.mif', 'application/x-netcdf': '.nc', 'application/x-pkcs12': '.p12', 'application/x-pn-realaudio': '.ram', 'application/x-python-code': '.pyc', 'application/x-sh': '.sh', 'application/x-shar': '.shar', 'application/x-shockwave-flash': '.swf', 'application/x-sv4cpio': '.sv4cpio', 'application/x-sv4crc': '.sv4crc', 'application/x-tar': '.tar', 'application/x-tcl': '.tcl', 'application/x-tex': '.tex', 'application/x-texinfo': '.texinfo', 'application/x-troff': '.tr', 'application/x-troff-man': '.man', 'application/x-troff-me': '.me', 'application/x-troff-ms': '.ms', 'application/x-ustar': '.ustar', 'application/x-wais-source': '.src', 'application/xml': '.xml', 'application/zip': '.zip', 'audio/basic': '.au', 'audio/mpeg': '.mp3', 'audio/x-aiff': '.aif', 'audio/x-pn-realaudio': '.ra', 'audio/x-wav': '.wav', 'image/gif': '.gif', 'image/ief': '.ief', 'image/jpeg': '.jpe', 'image/png': '.png', 'image/svg+xml': '.svg', 'image/tiff': '.tiff', 'image/vnd.microsoft.icon': '.ico', 'image/x-cmu-raster': '.ras', 'image/x-ms-bmp': '.bmp', 'image/x-portable-anymap': '.pnm', 'image/x-portable-bitmap': '.pbm', 'image/x-portable-graymap': '.pgm', 'image/x-portable-pixmap': '.ppm', 'image/x-rgb': '.rgb', 'image/x-xbitmap': '.xbm', 'image/x-xpixmap': '.xpm', 'image/x-xwindowdump': '.xwd', 'message/rfc822': '.eml', 'text/css': '.css', 'text/csv': '.csv', 'text/html': '.html', 'text/plain': '.txt', 'text/richtext': '.rtx', 'text/tab-separated-values': '.tsv', 'text/x-python': '.py', 'text/x-setext': '.etx', 'text/x-sgml': '.sgml', 'text/x-vcard': '.vcf', 'text/xml': '.xml', 'video/mp4': '.mp4', 'video/mpeg': '.mpeg', 'video/quicktime': '.mov', 'video/webm': '.webm', 'video/x-msvideo': '.avi', 'video/x-sgi-movie': '.movie' }.get(content_type, '')
def content_parser(content,identifiers): """ Content is a list of words and identifiers is a dict of lists """ info_list = [] index = 0 for word in content: for i in identifiers.keys(): try: word = str(word) except: try: word = word.split()[0] except: #some random instances of unicode weird things. pass e = [str(z) for z in identifiers[i]] for t in e: if t in word: info_list.append((word,index)) break index += 1 if info_list: return info_list
def solution(A): """ DINAKAR Idea is minimum average can be either 2 or 3 element ie. if you want to choose 4 then that again can be divided in to 2,2 groups, same for 6 can be divided in 3,3 group We calculate prefix sum to find average easily for given start and end position We do average either for 2 oe 3 element of array as shown in inner loop for j in range(i + 1, min(i + 3, len_ar)): at the end it is going to be order or n+2or3 = order of n o(n) :param A: :return: """ len_ar = len(A) prefix_sum = [0] * (len_ar + 1) for i in range(1, len_ar + 1): prefix_sum[i] = prefix_sum[i - 1] + A[i - 1] print(prefix_sum) # max element in array by 3 max_average = 100000 / 3 min_idx_start = 0 for i in range(len_ar): print() for j in range(i + 1, min(i + 3, len_ar)): print("For i " + str(i) + " j " + str(j)) average = (prefix_sum[j + 1] - prefix_sum[i]) / (j - i + 1) print("Avg " + str(average)) if average < max_average: min_idx_start = i max_average = average print("Min from here " + str(min_idx_start) + " max_average so far => " + str(max_average)) return min_idx_start
def is_sorted(array): """Write a function called is_sorted that takes a list as a parameter and returns True if the list is sorted in ascending order and False otherwise. You can assume (as a precondition) that the elements of the list can be compared with the relational operators <, >, etc.""" copy_array = array[:] copy_array.sort() return copy_array == array
def easy_iscat(a): """Takes in a string and returns 'meow' if it is the exact string 'cat', otherwise 'woof'.""" return 'meow' if a == 'cat' else 'woof'
def _get_non_None_elements(iter_of_vals): """ Returns non None values. """ return [x for x in iter_of_vals if x is not None]
def createCutDownLists( inputSlope, lowElasticModulus, inputxList, inputyList, strainValue, highElasticModCuttingRange): """Takes only the relevant section of the input curve, so finding intersection point is faster""" if inputSlope > lowElasticModulus: if strainValue >= (max(inputxList) - highElasticModCuttingRange - 1): """ prevents issues where lots of identical strain values near end mess up indexing (since .index() takes lowest index)""" cutDownxList = ( [x for x in inputxList if x > (strainValue - highElasticModCuttingRange)]) cutLowList = [] for i in inputxList: if i not in cutDownxList: cutLowList.append(i) else: break numBelow = len(cutLowList) startingIndex = numBelow endingIndex = startingIndex + len(cutDownxList) + 1 cutDownyList = inputyList[startingIndex: endingIndex - 1: 1] else: cutDownxList = ( [x for x in inputxList if x > (strainValue - highElasticModCuttingRange) and x < (strainValue + highElasticModCuttingRange)]) cutLowList = [] for i in inputxList: if i not in cutDownxList: cutLowList.append(i) else: break numBelow = len(cutLowList) startingIndex = numBelow endingIndex = startingIndex + len(cutDownxList) + 1 cutDownyList = inputyList[startingIndex: endingIndex - 1: 1] return cutDownxList, cutDownyList else: return inputxList, inputyList
def _get_aligned_offsets(hd_list, height, align="baseline"): """ Geiven a list of (height, descent) of each boxes, align the boxes with *align* and calculate the y-offsets of each boxes. total width and the offset positions of each items according to *mode*. xdescent is analagous to the usual descent, but along the x-direction. xdescent values are currently ignored. *hd_list* : list of (width, xdescent) of boxes to be aligned. *sep* : spacing between boxes *height* : Intended total length. None if not used. *align* : align mode. 'baseline', 'top', 'bottom', or 'center'. """ if height is None: height = max([h for h, d in hd_list]) if align == "baseline": height_descent = max([h-d for h, d in hd_list]) descent = max([d for h, d in hd_list]) height = height_descent + descent offsets = [0. for h, d in hd_list] elif align in ["left","top"]: descent=0. offsets = [d for h, d in hd_list] elif align in ["right","bottom"]: descent=0. offsets = [height-h+d for h, d in hd_list] elif align == "center": descent=0. offsets = [(height-h)*.5+d for h, d in hd_list] else: raise ValueError("Unknown Align mode : %s" % (align,)) return height, descent, offsets
def is_basestring(s): """Return True for any string type (for str/unicode on Py2 and bytes/str on Py3).""" return isinstance(s, (str, bytes))
def cmp_zorder(lhs, rhs): """Compare z-ordering Code taken from https://en.wikipedia.org/wiki/Z-order_curve """ def less_msb(x: int, y: int): return x < y and x < (x ^ y) # Assume lhs and rhs array-like objects of indices. assert len(lhs) == len(rhs) # Will contain the most significant dimension. msd = 2 # Loop over the other dimensions. for dim in [1, 0]: # Check if the current dimension is more significant # by comparing the most significant bits. if less_msb(lhs[msd] ^ rhs[msd], lhs[dim] ^ rhs[dim]): msd = dim return lhs[msd] - rhs[msd]
def convert_to_orca_zmatrix(lines): """Convert a proper zmatrix into an orca zmatrix""" # First line element = lines[0].split()[0] orca_zmatrix = [[element, '0', '0', '0', '0', '0', '0']] # Second lines element, atom1, distance = lines[1].split()[:3] orca_zmatrix.append([element, atom1, '0', '0', distance, '0', '0']) # Third line if len(lines) > 2: element, atom1, distance, atom2, angle = lines[2].split()[:5] orca_zmatrix.append([element, atom1, atom2, '0', distance, angle, '0']) # All other lines for line in lines[3:]: element, atom1, distance, atom2, angle, atom3, dihedral = line.split()[:7] orca_zmatrix.append([element, atom1, atom2, atom3, distance, angle, dihedral]) return orca_zmatrix
def make_features_dicts(all_features: dict, feat_list: list) -> dict: """Takes a dict of all features and a list of strings with all desired features and returns a dict with these features. ---------- all_features dictionary of all available features and their possible values feat_list list of feature names to be filtered for Returns ------- dict filtered features dictionary """ return {x: all_features[x] for x in feat_list}
def _get_segmentation_strategy(segmentation): """Get the baci string for a geometry pair strategy.""" if segmentation: return 'segmentation' else: return 'gauss_point_projection_without_boundary_segmentation'
def get_partition_lengths(partitions): """ Takes an array of partitions and returns and array with their lenghts. Parameters ---------- partitions: array Array containing the partitions. Returns ------- array Array containing partition lengths. """ return [len(p) for p in partitions]
def _format_coredump_stdout(cmd_ret): """ Helper function to format the stdout from the get_coredump_network_config function. cmd_ret The return dictionary that comes from a cmd.run_all call. """ ret_dict = {} for line in cmd_ret["stdout"].splitlines(): line = line.strip().lower() if line.startswith("enabled:"): enabled = line.split(":") if "true" in enabled[1]: ret_dict["enabled"] = True else: ret_dict["enabled"] = False break if line.startswith("host vnic:"): host_vnic = line.split(":") ret_dict["host_vnic"] = host_vnic[1].strip() if line.startswith("network server ip:"): ip = line.split(":") ret_dict["ip"] = ip[1].strip() if line.startswith("network server port:"): ip_port = line.split(":") ret_dict["port"] = ip_port[1].strip() return ret_dict
def update_dict(dict_a, dict_b): """ Because dict.update(d) does not return the new dict >>> a = {'a': 1, 'b': 2} >>> update_dict(a, {'b': 3, 'c': 3}) {'a': 1, 'c': 3, 'b': 3} """ dict_a.update(dict_b) return dict_a
def get_series_number(nrrd_file): """ (str) -> str Return series number for the given nrrd_file. >>>nrrd_file = '/paulsen/MRx/PHD_032/0454/31774/ANONRAW/0454_31774_DWI-31_7.nrrd' >>>get_scan_type(nrrd_file) 7 """ return nrrd_file.split("_")[-1].replace(".nrrd", "")
def _build_index_vcf_command_str(bgzipped_vcf): """Generate command string to index vcf file.""" command = " ".join([ 'tabix -p vcf', bgzipped_vcf ]) return command
def _create_extension_feed_item_mutate_operations( client, extension_feed_item_resource_names ): """Creates MutateOperations for the sitelink extension feed items that will be removed. Args: client: an initialized GoogleAdsClient instance. extension_feed_item_resource_names: the extension feed item resource names. Returns: An array of MutateOperations for the extension feed items. """ mutate_operations = [] # Create a MutateOperation for each extension feed item to remove. for resource_name in extension_feed_item_resource_names: mutate_operation = client.get_type("MutateOperation") mutate_operation.extension_feed_item_operation.remove = resource_name mutate_operations.append(mutate_operation) return mutate_operations
def avoid_already_replied_id(db_data, reply_id): """ This function avoid tweets already replied """ already_replied = False db_ids = db_data[1:] for tw_id in db_ids: if reply_id == tw_id: print("Tweet ID: ", reply_id, " already replied" ) already_replied = True return already_replied
def _check_cors_origin(origin, allowed_origins): """ Check if an origin match cors allowed origins """ if isinstance(allowed_origins, list): if origin in allowed_origins: return origin elif allowed_origins == '*': return allowed_origins elif allowed_origins == origin: # Cors origin is either * or specific origin return allowed_origins
def departure_filter(row): """ Copy departure time from arrival if missing """ if not row["departure_time"] and row["arrival_time"]: row["departure_time"] = row["arrival_time"] return row
def standardise1(x,l1,l2): """standardise data x to [-1,1] Parameters x: original data l1: lower bound l2: upper bound ---------- Returns ------- standardised data """ x-=l1 x*=2/float(l2-l1) x-=1 return x
def is_pii_table(table_id): """ Return True if specified table is a pii table :param table_id: identifies the table :return: True if specified table is a pii table, False otherwise """ return table_id.startswith('pii') or table_id.startswith('participant')
def get_ltm_cells(cells): """converts matrix indices so all are below the diagonal cells: list of indices into a 2D integer-indexable object (typically a list or lists of array of arrays) """ new_cells = [] for i, j in cells: if i == j: continue if i < j: i, j = j, i new_cells.append((i, j)) # remove duplicates new_cells = sorted(set(new_cells)) return new_cells
def rev_comp(seq): """ Get reverse complement """ match_dict = {'A': 'T', 'T': 'A', 'C': 'G', 'G': 'C'} return ''.join([match_dict[x] for x in seq][::-1])
def _gather_input_features(extracted_results): """Gather input features. Args: extracted_results (List[List[Dict]]): Multi-frame feature extraction results Returns: List[List[dict]]: Multi-frame feature extraction results stored in a nested list. Each element of the outer list is the feature extraction results of a single frame, and each element of the inner list is the extracted results of one person, which contains: features (ndarray): extracted features track_id (int): unique id of each person, required when ``with_track_id==True``` """ sequence_inputs = [] for frame in extracted_results: frame_inputs = [] for res in frame: inputs = dict() if 'features' in res: inputs['features'] = res['features'] if 'track_id' in res: inputs['track_id'] = res['track_id'] frame_inputs.append(inputs) sequence_inputs.append(frame_inputs) return sequence_inputs
def quoteattr(data): """Quote an attribute value. Escape less then the obvious xml.saxutils.quoteattr, e.g. do not convert `\n` to `&#10;`. """ return '"%s"' % data.replace('"', "&quot;")
def last(*args): """Return last value from any object type - list,tuple,int,string""" if len(args) == 1: return int(''.join(map(str,args))) if isinstance(args[0],int) else args[0][-1] return args[-1]
def FindShortestPath(graph, start, end, path=[]): """This is code I found online to find shortest paths. It should take all edge weights as 1? I thik this is dijkstra. I had trouble implementing other dijkstra code From website: Note that while the user calls find_graph() with three arguments, it calls itself with a fourth argument: the path that has already been traversed. The default value for this argument is the empty list, '[]', meaning no nodes have been traversed yet. This argument is used to avoid cycles This is slow and should only be used when losses are present""" path = path + [start] if start == end: return path if start not in graph: return None shortest = None for node in graph[start]: if node not in path: newpath = FindShortestPath(graph, node, end, path) if newpath: if not shortest or len(newpath) < len(shortest): shortest = newpath return shortest
def ensure_trailing_slash(url: str) -> str: """When comparing URLs, e.g. "http://example.com/" and "http://example.com", use this method to normalise the comparison.""" if "?" in url: # If the URL contains a parameter (e.g. https://example.com/search?page=1), ignore trailing slash. return url return url if url[-1] == "/" else f"{url}/"
def indent(data: str, spaces: int) -> str: """ Indent every line in 'data' by 'spaces' """ result = [] for line in data.splitlines(): result.append(" " * spaces + line) return "\n".join(result)