body
stringlengths
26
98.2k
body_hash
int64
-9,222,864,604,528,158,000
9,221,803,474B
docstring
stringlengths
1
16.8k
path
stringlengths
5
230
name
stringlengths
1
96
repository_name
stringlengths
7
89
lang
stringclasses
1 value
body_without_docstring
stringlengths
20
98.2k
def gsr(epi_data, mask, direction='y', ref_file=None, out_file=None): '\n Computes the :abbr:`GSR (ghost to signal ratio)` [Giannelli2010]_. The\n procedure is as follows:\n\n #. Create a Nyquist ghost mask by circle-shifting the original mask by :math:`N/2`.\n\n #. Rotate by :math:`N/2`\n\n #. Remove the intersection with the original mask\n\n #. Generate a non-ghost background\n\n #. Calculate the :abbr:`GSR (ghost to signal ratio)`\n\n\n .. warning ::\n\n This should be used with EPI images for which the phase\n encoding direction is known.\n\n :param str epi_file: path to epi file\n :param str mask_file: path to brain mask\n :param str direction: the direction of phase encoding (x, y, all)\n :return: the computed gsr\n\n ' direction = direction.lower() if (direction[(- 1)] not in ['x', 'y', 'all']): raise Exception(('Unknown direction %s, should be one of x, -x, y, -y, all' % direction)) if (direction == 'all'): result = [] for newdir in ['x', 'y']: ofile = None if (out_file is not None): (fname, ext) = op.splitext(ofile) if (ext == '.gz'): (fname, ext2) = op.splitext(fname) ext = (ext2 + ext) ofile = ('%s_%s%s' % (fname, newdir, ext)) result += [gsr(epi_data, mask, newdir, ref_file=ref_file, out_file=ofile)] return result n2_mask = np.zeros_like(mask) if (direction == 'x'): n2lim = np.floor((mask.shape[0] / 2)) n2_mask[:n2lim, :, :] = mask[n2lim:(n2lim * 2), :, :] n2_mask[n2lim:(n2lim * 2), :, :] = mask[:n2lim, :, :] elif (direction == 'y'): n2lim = np.floor((mask.shape[1] / 2)) n2_mask[:, :n2lim, :] = mask[:, n2lim:(n2lim * 2), :] n2_mask[:, n2lim:(n2lim * 2), :] = mask[:, :n2lim, :] elif (direction == 'z'): n2lim = np.floor((mask.shape[2] / 2)) n2_mask[:, :, :n2lim] = mask[:, :, n2lim:(n2lim * 2)] n2_mask[:, :, n2lim:(n2lim * 2)] = mask[:, :, :n2lim] n2_mask = (n2_mask * (1 - mask)) n2_mask = (n2_mask + (2 * ((1 - n2_mask) - mask))) if ((ref_file is not None) and (out_file is not None)): ref = nb.load(ref_file) out = nb.Nifti1Image(n2_mask, ref.get_affine(), ref.get_header()) out.to_filename(out_file) ghost = (epi_data[(n2_mask == 1)].mean() - epi_data[(n2_mask == 2)].mean()) signal = epi_data[(n2_mask == 0)].mean() return float((ghost / signal))
1,144,839,233,202,535,200
Computes the :abbr:`GSR (ghost to signal ratio)` [Giannelli2010]_. The procedure is as follows: #. Create a Nyquist ghost mask by circle-shifting the original mask by :math:`N/2`. #. Rotate by :math:`N/2` #. Remove the intersection with the original mask #. Generate a non-ghost background #. Calculate the :abbr:`GSR (ghost to signal ratio)` .. warning :: This should be used with EPI images for which the phase encoding direction is known. :param str epi_file: path to epi file :param str mask_file: path to brain mask :param str direction: the direction of phase encoding (x, y, all) :return: the computed gsr
packages/structural_dhcp_mriqc/structural_dhcp_mriqc/qc/functional.py
gsr
amakropoulos/structural-pipeline-measures
python
def gsr(epi_data, mask, direction='y', ref_file=None, out_file=None): '\n Computes the :abbr:`GSR (ghost to signal ratio)` [Giannelli2010]_. The\n procedure is as follows:\n\n #. Create a Nyquist ghost mask by circle-shifting the original mask by :math:`N/2`.\n\n #. Rotate by :math:`N/2`\n\n #. Remove the intersection with the original mask\n\n #. Generate a non-ghost background\n\n #. Calculate the :abbr:`GSR (ghost to signal ratio)`\n\n\n .. warning ::\n\n This should be used with EPI images for which the phase\n encoding direction is known.\n\n :param str epi_file: path to epi file\n :param str mask_file: path to brain mask\n :param str direction: the direction of phase encoding (x, y, all)\n :return: the computed gsr\n\n ' direction = direction.lower() if (direction[(- 1)] not in ['x', 'y', 'all']): raise Exception(('Unknown direction %s, should be one of x, -x, y, -y, all' % direction)) if (direction == 'all'): result = [] for newdir in ['x', 'y']: ofile = None if (out_file is not None): (fname, ext) = op.splitext(ofile) if (ext == '.gz'): (fname, ext2) = op.splitext(fname) ext = (ext2 + ext) ofile = ('%s_%s%s' % (fname, newdir, ext)) result += [gsr(epi_data, mask, newdir, ref_file=ref_file, out_file=ofile)] return result n2_mask = np.zeros_like(mask) if (direction == 'x'): n2lim = np.floor((mask.shape[0] / 2)) n2_mask[:n2lim, :, :] = mask[n2lim:(n2lim * 2), :, :] n2_mask[n2lim:(n2lim * 2), :, :] = mask[:n2lim, :, :] elif (direction == 'y'): n2lim = np.floor((mask.shape[1] / 2)) n2_mask[:, :n2lim, :] = mask[:, n2lim:(n2lim * 2), :] n2_mask[:, n2lim:(n2lim * 2), :] = mask[:, :n2lim, :] elif (direction == 'z'): n2lim = np.floor((mask.shape[2] / 2)) n2_mask[:, :, :n2lim] = mask[:, :, n2lim:(n2lim * 2)] n2_mask[:, :, n2lim:(n2lim * 2)] = mask[:, :, :n2lim] n2_mask = (n2_mask * (1 - mask)) n2_mask = (n2_mask + (2 * ((1 - n2_mask) - mask))) if ((ref_file is not None) and (out_file is not None)): ref = nb.load(ref_file) out = nb.Nifti1Image(n2_mask, ref.get_affine(), ref.get_header()) out.to_filename(out_file) ghost = (epi_data[(n2_mask == 1)].mean() - epi_data[(n2_mask == 2)].mean()) signal = epi_data[(n2_mask == 0)].mean() return float((ghost / signal))
def dvars(func, mask, output_all=False, out_file=None): '\n Compute the mean :abbr:`DVARS (D referring to temporal\n derivative of timecourses, VARS referring to RMS variance over voxels)`\n [Power2012]_.\n\n Particularly, the *standardized* :abbr:`DVARS (D referring to temporal\n derivative of timecourses, VARS referring to RMS variance over voxels)`\n [Nichols2013]_ are computed.\n\n .. note:: Implementation details\n\n Uses the implementation of the `Yule-Walker equations\n from nitime\n <http://nipy.org/nitime/api/generated/nitime.algorithms.autoregressive.html#nitime.algorithms.autoregressive.AR_est_YW>`_\n for the :abbr:`AR (auto-regressive)` filtering of the fMRI signal.\n\n :param numpy.ndarray func: functional data, after head-motion-correction.\n :param numpy.ndarray mask: a 3D mask of the brain\n :param bool output_all: write out all dvars\n :param str out_file: a path to which the standardized dvars should be saved.\n :return: the standardized DVARS\n\n ' if (len(func.shape) != 4): raise RuntimeError(('Input fMRI dataset should be 4-dimensional' % func)) zv_mask = zero_variance(func, mask) idx = np.where((zv_mask > 0)) mfunc = func[idx[0], idx[1], idx[2], :] func_sd = ((np.percentile(mfunc, 75) - np.percentile(mfunc, 25)) / 1.349) mfunc -= mfunc.mean(axis=1)[(..., np.newaxis)] ak_coeffs = np.apply_along_axis(nta.AR_est_YW, 1, mfunc, 1) func_sd_pd = np.squeeze((np.sqrt((2 * (1 - ak_coeffs[:, 0])).tolist()) * func_sd)) diff_sd_mean = func_sd_pd[(func_sd_pd > 0)].mean() func_diff = np.diff(mfunc, axis=1) dvars_nstd = func_diff.std(axis=0) dvars_stdz = (dvars_nstd / diff_sd_mean) diff_vx_stdz = (func_diff / np.array(([func_sd_pd] * func_diff.shape[(- 1)])).T) dvars_vx_stdz = diff_vx_stdz.std(1, ddof=1) if output_all: gendvars = np.vstack((dvars_stdz, dvars_nstd, dvars_vx_stdz)) else: gendvars = dvars_stdz.reshape(len(dvars_stdz), 1) if (out_file is not None): np.savetxt(out_file, gendvars, fmt='%.12f') return gendvars
8,815,339,491,648,703,000
Compute the mean :abbr:`DVARS (D referring to temporal derivative of timecourses, VARS referring to RMS variance over voxels)` [Power2012]_. Particularly, the *standardized* :abbr:`DVARS (D referring to temporal derivative of timecourses, VARS referring to RMS variance over voxels)` [Nichols2013]_ are computed. .. note:: Implementation details Uses the implementation of the `Yule-Walker equations from nitime <http://nipy.org/nitime/api/generated/nitime.algorithms.autoregressive.html#nitime.algorithms.autoregressive.AR_est_YW>`_ for the :abbr:`AR (auto-regressive)` filtering of the fMRI signal. :param numpy.ndarray func: functional data, after head-motion-correction. :param numpy.ndarray mask: a 3D mask of the brain :param bool output_all: write out all dvars :param str out_file: a path to which the standardized dvars should be saved. :return: the standardized DVARS
packages/structural_dhcp_mriqc/structural_dhcp_mriqc/qc/functional.py
dvars
amakropoulos/structural-pipeline-measures
python
def dvars(func, mask, output_all=False, out_file=None): '\n Compute the mean :abbr:`DVARS (D referring to temporal\n derivative of timecourses, VARS referring to RMS variance over voxels)`\n [Power2012]_.\n\n Particularly, the *standardized* :abbr:`DVARS (D referring to temporal\n derivative of timecourses, VARS referring to RMS variance over voxels)`\n [Nichols2013]_ are computed.\n\n .. note:: Implementation details\n\n Uses the implementation of the `Yule-Walker equations\n from nitime\n <http://nipy.org/nitime/api/generated/nitime.algorithms.autoregressive.html#nitime.algorithms.autoregressive.AR_est_YW>`_\n for the :abbr:`AR (auto-regressive)` filtering of the fMRI signal.\n\n :param numpy.ndarray func: functional data, after head-motion-correction.\n :param numpy.ndarray mask: a 3D mask of the brain\n :param bool output_all: write out all dvars\n :param str out_file: a path to which the standardized dvars should be saved.\n :return: the standardized DVARS\n\n ' if (len(func.shape) != 4): raise RuntimeError(('Input fMRI dataset should be 4-dimensional' % func)) zv_mask = zero_variance(func, mask) idx = np.where((zv_mask > 0)) mfunc = func[idx[0], idx[1], idx[2], :] func_sd = ((np.percentile(mfunc, 75) - np.percentile(mfunc, 25)) / 1.349) mfunc -= mfunc.mean(axis=1)[(..., np.newaxis)] ak_coeffs = np.apply_along_axis(nta.AR_est_YW, 1, mfunc, 1) func_sd_pd = np.squeeze((np.sqrt((2 * (1 - ak_coeffs[:, 0])).tolist()) * func_sd)) diff_sd_mean = func_sd_pd[(func_sd_pd > 0)].mean() func_diff = np.diff(mfunc, axis=1) dvars_nstd = func_diff.std(axis=0) dvars_stdz = (dvars_nstd / diff_sd_mean) diff_vx_stdz = (func_diff / np.array(([func_sd_pd] * func_diff.shape[(- 1)])).T) dvars_vx_stdz = diff_vx_stdz.std(1, ddof=1) if output_all: gendvars = np.vstack((dvars_stdz, dvars_nstd, dvars_vx_stdz)) else: gendvars = dvars_stdz.reshape(len(dvars_stdz), 1) if (out_file is not None): np.savetxt(out_file, gendvars, fmt='%.12f') return gendvars
def fd_jenkinson(in_file, rmax=80.0, out_file=None): '\n Compute the :abbr:`FD (framewise displacement)` [Jenkinson2002]_\n on a 4D dataset, after ``3dvolreg`` has been executed\n (generally a file named ``*.affmat12.1D``).\n\n :param str in_file: path to epi file\n :param float rmax: the default radius (as in FSL) of a sphere represents\n the brain in which the angular displacements are projected.\n :param str out_file: a path for the output file with the FD\n\n :return: the output file with the FD, and the average FD along\n the time series\n :rtype: tuple(str, float)\n\n\n .. note ::\n\n :code:`infile` should have one 3dvolreg affine matrix in one row -\n NOT the motion parameters\n\n\n ' import sys import math if (out_file is None): (fname, ext) = op.splitext(op.basename(in_file)) out_file = op.abspath(('%s_fdfile%s' % (fname, ext))) if ('rel.rms' in in_file): return in_file pm_ = np.genfromtxt(in_file) original_shape = pm_.shape pm = np.zeros((pm_.shape[0], (pm_.shape[1] + 4))) pm[:, :original_shape[1]] = pm_ pm[:, original_shape[1]:] = [0.0, 0.0, 0.0, 1.0] T_rb_prev = np.matrix(np.eye(4)) flag = 0 X = [0] for i in range(0, pm.shape[0]): T_rb = np.matrix(pm[i].reshape(4, 4)) if (flag == 0): flag = 1 else: M = (np.dot(T_rb, T_rb_prev.I) - np.eye(4)) A = M[0:3, 0:3] b = M[0:3, 3] FD_J = math.sqrt(((((rmax * rmax) / 5) * np.trace(np.dot(A.T, A))) + np.dot(b.T, b))) X.append(FD_J) T_rb_prev = T_rb np.savetxt(out_file, X) return out_file
7,429,434,850,716,944,000
Compute the :abbr:`FD (framewise displacement)` [Jenkinson2002]_ on a 4D dataset, after ``3dvolreg`` has been executed (generally a file named ``*.affmat12.1D``). :param str in_file: path to epi file :param float rmax: the default radius (as in FSL) of a sphere represents the brain in which the angular displacements are projected. :param str out_file: a path for the output file with the FD :return: the output file with the FD, and the average FD along the time series :rtype: tuple(str, float) .. note :: :code:`infile` should have one 3dvolreg affine matrix in one row - NOT the motion parameters
packages/structural_dhcp_mriqc/structural_dhcp_mriqc/qc/functional.py
fd_jenkinson
amakropoulos/structural-pipeline-measures
python
def fd_jenkinson(in_file, rmax=80.0, out_file=None): '\n Compute the :abbr:`FD (framewise displacement)` [Jenkinson2002]_\n on a 4D dataset, after ``3dvolreg`` has been executed\n (generally a file named ``*.affmat12.1D``).\n\n :param str in_file: path to epi file\n :param float rmax: the default radius (as in FSL) of a sphere represents\n the brain in which the angular displacements are projected.\n :param str out_file: a path for the output file with the FD\n\n :return: the output file with the FD, and the average FD along\n the time series\n :rtype: tuple(str, float)\n\n\n .. note ::\n\n :code:`infile` should have one 3dvolreg affine matrix in one row -\n NOT the motion parameters\n\n\n ' import sys import math if (out_file is None): (fname, ext) = op.splitext(op.basename(in_file)) out_file = op.abspath(('%s_fdfile%s' % (fname, ext))) if ('rel.rms' in in_file): return in_file pm_ = np.genfromtxt(in_file) original_shape = pm_.shape pm = np.zeros((pm_.shape[0], (pm_.shape[1] + 4))) pm[:, :original_shape[1]] = pm_ pm[:, original_shape[1]:] = [0.0, 0.0, 0.0, 1.0] T_rb_prev = np.matrix(np.eye(4)) flag = 0 X = [0] for i in range(0, pm.shape[0]): T_rb = np.matrix(pm[i].reshape(4, 4)) if (flag == 0): flag = 1 else: M = (np.dot(T_rb, T_rb_prev.I) - np.eye(4)) A = M[0:3, 0:3] b = M[0:3, 3] FD_J = math.sqrt(((((rmax * rmax) / 5) * np.trace(np.dot(A.T, A))) + np.dot(b.T, b))) X.append(FD_J) T_rb_prev = T_rb np.savetxt(out_file, X) return out_file
def gcor(func, mask): '\n Compute the :abbr:`GCOR (global correlation)`.\n\n :param numpy.ndarray func: input fMRI dataset, after motion correction\n :param numpy.ndarray mask: 3D brain mask\n :return: the computed GCOR value\n\n ' tv_mask = zero_variance(func, mask) idx = np.where((tv_mask > 0)) zscores = scipy.stats.mstats.zscore(func[idx[0], idx[1], idx[2], :], axis=1) avg_ts = zscores.mean(axis=0) return float((avg_ts.transpose().dot(avg_ts) / len(avg_ts)))
1,447,277,806,473,772,000
Compute the :abbr:`GCOR (global correlation)`. :param numpy.ndarray func: input fMRI dataset, after motion correction :param numpy.ndarray mask: 3D brain mask :return: the computed GCOR value
packages/structural_dhcp_mriqc/structural_dhcp_mriqc/qc/functional.py
gcor
amakropoulos/structural-pipeline-measures
python
def gcor(func, mask): '\n Compute the :abbr:`GCOR (global correlation)`.\n\n :param numpy.ndarray func: input fMRI dataset, after motion correction\n :param numpy.ndarray mask: 3D brain mask\n :return: the computed GCOR value\n\n ' tv_mask = zero_variance(func, mask) idx = np.where((tv_mask > 0)) zscores = scipy.stats.mstats.zscore(func[idx[0], idx[1], idx[2], :], axis=1) avg_ts = zscores.mean(axis=0) return float((avg_ts.transpose().dot(avg_ts) / len(avg_ts)))
def zero_variance(func, mask): '\n Mask out voxels with zero variance across t-axis\n\n :param numpy.ndarray func: input fMRI dataset, after motion correction\n :param numpy.ndarray mask: 3D brain mask\n :return: the 3D mask of voxels with nonzero variance across :math:`t`.\n :rtype: numpy.ndarray\n\n ' idx = np.where((mask > 0)) func = func[idx[0], idx[1], idx[2], :] tvariance = func.var(axis=1) tv_mask = np.zeros_like(tvariance) tv_mask[(tvariance > 0)] = 1 newmask = np.zeros_like(mask) newmask[idx] = tv_mask return newmask
7,738,469,890,951,027,000
Mask out voxels with zero variance across t-axis :param numpy.ndarray func: input fMRI dataset, after motion correction :param numpy.ndarray mask: 3D brain mask :return: the 3D mask of voxels with nonzero variance across :math:`t`. :rtype: numpy.ndarray
packages/structural_dhcp_mriqc/structural_dhcp_mriqc/qc/functional.py
zero_variance
amakropoulos/structural-pipeline-measures
python
def zero_variance(func, mask): '\n Mask out voxels with zero variance across t-axis\n\n :param numpy.ndarray func: input fMRI dataset, after motion correction\n :param numpy.ndarray mask: 3D brain mask\n :return: the 3D mask of voxels with nonzero variance across :math:`t`.\n :rtype: numpy.ndarray\n\n ' idx = np.where((mask > 0)) func = func[idx[0], idx[1], idx[2], :] tvariance = func.var(axis=1) tv_mask = np.zeros_like(tvariance) tv_mask[(tvariance > 0)] = 1 newmask = np.zeros_like(mask) newmask[idx] = tv_mask return newmask
def main(): 'Run administrative tasks.' os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'tutotrial.settings') try: from django.core.management import execute_from_command_line except ImportError as exc: raise ImportError("Couldn't import Django. Are you sure it's installed and available on your PYTHONPATH environment variable? Did you forget to activate a virtual environment?") from exc execute_from_command_line(sys.argv)
6,364,296,494,956,147,000
Run administrative tasks.
tutorial/manage.py
main
aiueocode/djangorest
python
def main(): os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'tutotrial.settings') try: from django.core.management import execute_from_command_line except ImportError as exc: raise ImportError("Couldn't import Django. Are you sure it's installed and available on your PYTHONPATH environment variable? Did you forget to activate a virtual environment?") from exc execute_from_command_line(sys.argv)
def forget(self): 'Forget about (and possibly remove the result of) this task.' self._cache = None self.backend.forget(self.id)
8,274,503,778,675,953,000
Forget about (and possibly remove the result of) this task.
venv/lib/python2.7/site-packages/celery/result.py
forget
CharleyFarley/ovvio
python
def forget(self): self._cache = None self.backend.forget(self.id)
def revoke(self, connection=None, terminate=False, signal=None, wait=False, timeout=None): 'Send revoke signal to all workers.\n\n Any worker receiving the task, or having reserved the\n task, *must* ignore it.\n\n :keyword terminate: Also terminate the process currently working\n on the task (if any).\n :keyword signal: Name of signal to send to process if terminate.\n Default is TERM.\n :keyword wait: Wait for replies from workers. Will wait for 1 second\n by default or you can specify a custom ``timeout``.\n :keyword timeout: Time in seconds to wait for replies if ``wait``\n enabled.\n\n ' self.app.control.revoke(self.id, connection=connection, terminate=terminate, signal=signal, reply=wait, timeout=timeout)
257,758,433,628,583,740
Send revoke signal to all workers. Any worker receiving the task, or having reserved the task, *must* ignore it. :keyword terminate: Also terminate the process currently working on the task (if any). :keyword signal: Name of signal to send to process if terminate. Default is TERM. :keyword wait: Wait for replies from workers. Will wait for 1 second by default or you can specify a custom ``timeout``. :keyword timeout: Time in seconds to wait for replies if ``wait`` enabled.
venv/lib/python2.7/site-packages/celery/result.py
revoke
CharleyFarley/ovvio
python
def revoke(self, connection=None, terminate=False, signal=None, wait=False, timeout=None): 'Send revoke signal to all workers.\n\n Any worker receiving the task, or having reserved the\n task, *must* ignore it.\n\n :keyword terminate: Also terminate the process currently working\n on the task (if any).\n :keyword signal: Name of signal to send to process if terminate.\n Default is TERM.\n :keyword wait: Wait for replies from workers. Will wait for 1 second\n by default or you can specify a custom ``timeout``.\n :keyword timeout: Time in seconds to wait for replies if ``wait``\n enabled.\n\n ' self.app.control.revoke(self.id, connection=connection, terminate=terminate, signal=signal, reply=wait, timeout=timeout)
def get(self, timeout=None, propagate=True, interval=0.5, no_ack=True, follow_parents=True, EXCEPTION_STATES=states.EXCEPTION_STATES, PROPAGATE_STATES=states.PROPAGATE_STATES): 'Wait until task is ready, and return its result.\n\n .. warning::\n\n Waiting for tasks within a task may lead to deadlocks.\n Please read :ref:`task-synchronous-subtasks`.\n\n :keyword timeout: How long to wait, in seconds, before the\n operation times out.\n :keyword propagate: Re-raise exception if the task failed.\n :keyword interval: Time to wait (in seconds) before retrying to\n retrieve the result. Note that this does not have any effect\n when using the amqp result store backend, as it does not\n use polling.\n :keyword no_ack: Enable amqp no ack (automatically acknowledge\n message). If this is :const:`False` then the message will\n **not be acked**.\n :keyword follow_parents: Reraise any exception raised by parent task.\n\n :raises celery.exceptions.TimeoutError: if `timeout` is not\n :const:`None` and the result does not arrive within `timeout`\n seconds.\n\n If the remote call raised an exception then that exception will\n be re-raised.\n\n ' assert_will_not_block() on_interval = None if (follow_parents and propagate and self.parent): on_interval = self._maybe_reraise_parent_error on_interval() if self._cache: if propagate: self.maybe_reraise() return self.result meta = self.backend.wait_for(self.id, timeout=timeout, interval=interval, on_interval=on_interval, no_ack=no_ack) if meta: self._maybe_set_cache(meta) status = meta['status'] if ((status in PROPAGATE_STATES) and propagate): raise meta['result'] return meta['result']
7,289,805,622,543,313,000
Wait until task is ready, and return its result. .. warning:: Waiting for tasks within a task may lead to deadlocks. Please read :ref:`task-synchronous-subtasks`. :keyword timeout: How long to wait, in seconds, before the operation times out. :keyword propagate: Re-raise exception if the task failed. :keyword interval: Time to wait (in seconds) before retrying to retrieve the result. Note that this does not have any effect when using the amqp result store backend, as it does not use polling. :keyword no_ack: Enable amqp no ack (automatically acknowledge message). If this is :const:`False` then the message will **not be acked**. :keyword follow_parents: Reraise any exception raised by parent task. :raises celery.exceptions.TimeoutError: if `timeout` is not :const:`None` and the result does not arrive within `timeout` seconds. If the remote call raised an exception then that exception will be re-raised.
venv/lib/python2.7/site-packages/celery/result.py
get
CharleyFarley/ovvio
python
def get(self, timeout=None, propagate=True, interval=0.5, no_ack=True, follow_parents=True, EXCEPTION_STATES=states.EXCEPTION_STATES, PROPAGATE_STATES=states.PROPAGATE_STATES): 'Wait until task is ready, and return its result.\n\n .. warning::\n\n Waiting for tasks within a task may lead to deadlocks.\n Please read :ref:`task-synchronous-subtasks`.\n\n :keyword timeout: How long to wait, in seconds, before the\n operation times out.\n :keyword propagate: Re-raise exception if the task failed.\n :keyword interval: Time to wait (in seconds) before retrying to\n retrieve the result. Note that this does not have any effect\n when using the amqp result store backend, as it does not\n use polling.\n :keyword no_ack: Enable amqp no ack (automatically acknowledge\n message). If this is :const:`False` then the message will\n **not be acked**.\n :keyword follow_parents: Reraise any exception raised by parent task.\n\n :raises celery.exceptions.TimeoutError: if `timeout` is not\n :const:`None` and the result does not arrive within `timeout`\n seconds.\n\n If the remote call raised an exception then that exception will\n be re-raised.\n\n ' assert_will_not_block() on_interval = None if (follow_parents and propagate and self.parent): on_interval = self._maybe_reraise_parent_error on_interval() if self._cache: if propagate: self.maybe_reraise() return self.result meta = self.backend.wait_for(self.id, timeout=timeout, interval=interval, on_interval=on_interval, no_ack=no_ack) if meta: self._maybe_set_cache(meta) status = meta['status'] if ((status in PROPAGATE_STATES) and propagate): raise meta['result'] return meta['result']
def collect(self, intermediate=False, **kwargs): 'Iterator, like :meth:`get` will wait for the task to complete,\n but will also follow :class:`AsyncResult` and :class:`ResultSet`\n returned by the task, yielding ``(result, value)`` tuples for each\n result in the tree.\n\n An example would be having the following tasks:\n\n .. code-block:: python\n\n from celery import group\n from proj.celery import app\n\n @app.task(trail=True)\n def A(how_many):\n return group(B.s(i) for i in range(how_many))()\n\n @app.task(trail=True)\n def B(i):\n return pow2.delay(i)\n\n @app.task(trail=True)\n def pow2(i):\n return i ** 2\n\n Note that the ``trail`` option must be enabled\n so that the list of children is stored in ``result.children``.\n This is the default but enabled explicitly for illustration.\n\n Calling :meth:`collect` would return:\n\n .. code-block:: python\n\n >>> from celery.result import ResultBase\n >>> from proj.tasks import A\n\n >>> result = A.delay(10)\n >>> [v for v in result.collect()\n ... if not isinstance(v, (ResultBase, tuple))]\n [0, 1, 4, 9, 16, 25, 36, 49, 64, 81]\n\n ' for (_, R) in self.iterdeps(intermediate=intermediate): (yield (R, R.get(**kwargs)))
2,989,732,586,260,419,600
Iterator, like :meth:`get` will wait for the task to complete, but will also follow :class:`AsyncResult` and :class:`ResultSet` returned by the task, yielding ``(result, value)`` tuples for each result in the tree. An example would be having the following tasks: .. code-block:: python from celery import group from proj.celery import app @app.task(trail=True) def A(how_many): return group(B.s(i) for i in range(how_many))() @app.task(trail=True) def B(i): return pow2.delay(i) @app.task(trail=True) def pow2(i): return i ** 2 Note that the ``trail`` option must be enabled so that the list of children is stored in ``result.children``. This is the default but enabled explicitly for illustration. Calling :meth:`collect` would return: .. code-block:: python >>> from celery.result import ResultBase >>> from proj.tasks import A >>> result = A.delay(10) >>> [v for v in result.collect() ... if not isinstance(v, (ResultBase, tuple))] [0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
venv/lib/python2.7/site-packages/celery/result.py
collect
CharleyFarley/ovvio
python
def collect(self, intermediate=False, **kwargs): 'Iterator, like :meth:`get` will wait for the task to complete,\n but will also follow :class:`AsyncResult` and :class:`ResultSet`\n returned by the task, yielding ``(result, value)`` tuples for each\n result in the tree.\n\n An example would be having the following tasks:\n\n .. code-block:: python\n\n from celery import group\n from proj.celery import app\n\n @app.task(trail=True)\n def A(how_many):\n return group(B.s(i) for i in range(how_many))()\n\n @app.task(trail=True)\n def B(i):\n return pow2.delay(i)\n\n @app.task(trail=True)\n def pow2(i):\n return i ** 2\n\n Note that the ``trail`` option must be enabled\n so that the list of children is stored in ``result.children``.\n This is the default but enabled explicitly for illustration.\n\n Calling :meth:`collect` would return:\n\n .. code-block:: python\n\n >>> from celery.result import ResultBase\n >>> from proj.tasks import A\n\n >>> result = A.delay(10)\n >>> [v for v in result.collect()\n ... if not isinstance(v, (ResultBase, tuple))]\n [0, 1, 4, 9, 16, 25, 36, 49, 64, 81]\n\n ' for (_, R) in self.iterdeps(intermediate=intermediate): (yield (R, R.get(**kwargs)))
def ready(self): 'Returns :const:`True` if the task has been executed.\n\n If the task is still running, pending, or is waiting\n for retry then :const:`False` is returned.\n\n ' return (self.state in self.backend.READY_STATES)
7,264,632,802,835,550,000
Returns :const:`True` if the task has been executed. If the task is still running, pending, or is waiting for retry then :const:`False` is returned.
venv/lib/python2.7/site-packages/celery/result.py
ready
CharleyFarley/ovvio
python
def ready(self): 'Returns :const:`True` if the task has been executed.\n\n If the task is still running, pending, or is waiting\n for retry then :const:`False` is returned.\n\n ' return (self.state in self.backend.READY_STATES)
def successful(self): 'Returns :const:`True` if the task executed successfully.' return (self.state == states.SUCCESS)
4,838,101,157,056,682,000
Returns :const:`True` if the task executed successfully.
venv/lib/python2.7/site-packages/celery/result.py
successful
CharleyFarley/ovvio
python
def successful(self): return (self.state == states.SUCCESS)
def failed(self): 'Returns :const:`True` if the task failed.' return (self.state == states.FAILURE)
3,617,739,404,020,108,000
Returns :const:`True` if the task failed.
venv/lib/python2.7/site-packages/celery/result.py
failed
CharleyFarley/ovvio
python
def failed(self): return (self.state == states.FAILURE)
def __str__(self): '`str(self) -> self.id`' return str(self.id)
4,040,552,640,130,330,600
`str(self) -> self.id`
venv/lib/python2.7/site-packages/celery/result.py
__str__
CharleyFarley/ovvio
python
def __str__(self): return str(self.id)
def __hash__(self): '`hash(self) -> hash(self.id)`' return hash(self.id)
1,800,964,682,614,371,300
`hash(self) -> hash(self.id)`
venv/lib/python2.7/site-packages/celery/result.py
__hash__
CharleyFarley/ovvio
python
def __hash__(self): return hash(self.id)
@property def result(self): 'When the task has been executed, this contains the return value.\n If the task raised an exception, this will be the exception\n instance.' return self._get_task_meta()['result']
1,858,990,990,539,996,000
When the task has been executed, this contains the return value. If the task raised an exception, this will be the exception instance.
venv/lib/python2.7/site-packages/celery/result.py
result
CharleyFarley/ovvio
python
@property def result(self): 'When the task has been executed, this contains the return value.\n If the task raised an exception, this will be the exception\n instance.' return self._get_task_meta()['result']
@property def traceback(self): 'Get the traceback of a failed task.' return self._get_task_meta().get('traceback')
3,479,075,735,694,560,000
Get the traceback of a failed task.
venv/lib/python2.7/site-packages/celery/result.py
traceback
CharleyFarley/ovvio
python
@property def traceback(self): return self._get_task_meta().get('traceback')
@property def state(self): 'The tasks current state.\n\n Possible values includes:\n\n *PENDING*\n\n The task is waiting for execution.\n\n *STARTED*\n\n The task has been started.\n\n *RETRY*\n\n The task is to be retried, possibly because of failure.\n\n *FAILURE*\n\n The task raised an exception, or has exceeded the retry limit.\n The :attr:`result` attribute then contains the\n exception raised by the task.\n\n *SUCCESS*\n\n The task executed successfully. The :attr:`result` attribute\n then contains the tasks return value.\n\n ' return self._get_task_meta()['status']
-8,797,558,300,920,828,000
The tasks current state. Possible values includes: *PENDING* The task is waiting for execution. *STARTED* The task has been started. *RETRY* The task is to be retried, possibly because of failure. *FAILURE* The task raised an exception, or has exceeded the retry limit. The :attr:`result` attribute then contains the exception raised by the task. *SUCCESS* The task executed successfully. The :attr:`result` attribute then contains the tasks return value.
venv/lib/python2.7/site-packages/celery/result.py
state
CharleyFarley/ovvio
python
@property def state(self): 'The tasks current state.\n\n Possible values includes:\n\n *PENDING*\n\n The task is waiting for execution.\n\n *STARTED*\n\n The task has been started.\n\n *RETRY*\n\n The task is to be retried, possibly because of failure.\n\n *FAILURE*\n\n The task raised an exception, or has exceeded the retry limit.\n The :attr:`result` attribute then contains the\n exception raised by the task.\n\n *SUCCESS*\n\n The task executed successfully. The :attr:`result` attribute\n then contains the tasks return value.\n\n ' return self._get_task_meta()['status']
@property def task_id(self): 'compat alias to :attr:`id`' return self.id
-4,713,316,254,543,998,000
compat alias to :attr:`id`
venv/lib/python2.7/site-packages/celery/result.py
task_id
CharleyFarley/ovvio
python
@property def task_id(self): return self.id
def add(self, result): 'Add :class:`AsyncResult` as a new member of the set.\n\n Does nothing if the result is already a member.\n\n ' if (result not in self.results): self.results.append(result)
2,171,822,964,541,988,000
Add :class:`AsyncResult` as a new member of the set. Does nothing if the result is already a member.
venv/lib/python2.7/site-packages/celery/result.py
add
CharleyFarley/ovvio
python
def add(self, result): 'Add :class:`AsyncResult` as a new member of the set.\n\n Does nothing if the result is already a member.\n\n ' if (result not in self.results): self.results.append(result)
def remove(self, result): 'Remove result from the set; it must be a member.\n\n :raises KeyError: if the result is not a member.\n\n ' if isinstance(result, string_t): result = self.app.AsyncResult(result) try: self.results.remove(result) except ValueError: raise KeyError(result)
4,068,160,251,530,570,000
Remove result from the set; it must be a member. :raises KeyError: if the result is not a member.
venv/lib/python2.7/site-packages/celery/result.py
remove
CharleyFarley/ovvio
python
def remove(self, result): 'Remove result from the set; it must be a member.\n\n :raises KeyError: if the result is not a member.\n\n ' if isinstance(result, string_t): result = self.app.AsyncResult(result) try: self.results.remove(result) except ValueError: raise KeyError(result)
def discard(self, result): 'Remove result from the set if it is a member.\n\n If it is not a member, do nothing.\n\n ' try: self.remove(result) except KeyError: pass
1,490,687,160,468,694,800
Remove result from the set if it is a member. If it is not a member, do nothing.
venv/lib/python2.7/site-packages/celery/result.py
discard
CharleyFarley/ovvio
python
def discard(self, result): 'Remove result from the set if it is a member.\n\n If it is not a member, do nothing.\n\n ' try: self.remove(result) except KeyError: pass
def update(self, results): 'Update set with the union of itself and an iterable with\n results.' self.results.extend((r for r in results if (r not in self.results)))
1,345,366,747,161,373,200
Update set with the union of itself and an iterable with results.
venv/lib/python2.7/site-packages/celery/result.py
update
CharleyFarley/ovvio
python
def update(self, results): 'Update set with the union of itself and an iterable with\n results.' self.results.extend((r for r in results if (r not in self.results)))
def clear(self): 'Remove all results from this set.' self.results[:] = []
-7,683,751,693,161,588,000
Remove all results from this set.
venv/lib/python2.7/site-packages/celery/result.py
clear
CharleyFarley/ovvio
python
def clear(self): self.results[:] = []
def successful(self): 'Was all of the tasks successful?\n\n :returns: :const:`True` if all of the tasks finished\n successfully (i.e. did not raise an exception).\n\n ' return all((result.successful() for result in self.results))
3,133,950,208,285,973,500
Was all of the tasks successful? :returns: :const:`True` if all of the tasks finished successfully (i.e. did not raise an exception).
venv/lib/python2.7/site-packages/celery/result.py
successful
CharleyFarley/ovvio
python
def successful(self): 'Was all of the tasks successful?\n\n :returns: :const:`True` if all of the tasks finished\n successfully (i.e. did not raise an exception).\n\n ' return all((result.successful() for result in self.results))
def failed(self): 'Did any of the tasks fail?\n\n :returns: :const:`True` if one of the tasks failed.\n (i.e., raised an exception)\n\n ' return any((result.failed() for result in self.results))
-4,198,079,692,271,458,000
Did any of the tasks fail? :returns: :const:`True` if one of the tasks failed. (i.e., raised an exception)
venv/lib/python2.7/site-packages/celery/result.py
failed
CharleyFarley/ovvio
python
def failed(self): 'Did any of the tasks fail?\n\n :returns: :const:`True` if one of the tasks failed.\n (i.e., raised an exception)\n\n ' return any((result.failed() for result in self.results))
def waiting(self): 'Are any of the tasks incomplete?\n\n :returns: :const:`True` if one of the tasks are still\n waiting for execution.\n\n ' return any(((not result.ready()) for result in self.results))
-4,263,889,825,430,423,600
Are any of the tasks incomplete? :returns: :const:`True` if one of the tasks are still waiting for execution.
venv/lib/python2.7/site-packages/celery/result.py
waiting
CharleyFarley/ovvio
python
def waiting(self): 'Are any of the tasks incomplete?\n\n :returns: :const:`True` if one of the tasks are still\n waiting for execution.\n\n ' return any(((not result.ready()) for result in self.results))
def ready(self): 'Did all of the tasks complete? (either by success of failure).\n\n :returns: :const:`True` if all of the tasks has been\n executed.\n\n ' return all((result.ready() for result in self.results))
5,308,216,925,372,778,000
Did all of the tasks complete? (either by success of failure). :returns: :const:`True` if all of the tasks has been executed.
venv/lib/python2.7/site-packages/celery/result.py
ready
CharleyFarley/ovvio
python
def ready(self): 'Did all of the tasks complete? (either by success of failure).\n\n :returns: :const:`True` if all of the tasks has been\n executed.\n\n ' return all((result.ready() for result in self.results))
def completed_count(self): 'Task completion count.\n\n :returns: the number of tasks completed.\n\n ' return sum((int(result.successful()) for result in self.results))
-7,257,203,177,105,533,000
Task completion count. :returns: the number of tasks completed.
venv/lib/python2.7/site-packages/celery/result.py
completed_count
CharleyFarley/ovvio
python
def completed_count(self): 'Task completion count.\n\n :returns: the number of tasks completed.\n\n ' return sum((int(result.successful()) for result in self.results))
def forget(self): 'Forget about (and possible remove the result of) all the tasks.' for result in self.results: result.forget()
-1,757,364,964,035,442,200
Forget about (and possible remove the result of) all the tasks.
venv/lib/python2.7/site-packages/celery/result.py
forget
CharleyFarley/ovvio
python
def forget(self): for result in self.results: result.forget()
def revoke(self, connection=None, terminate=False, signal=None, wait=False, timeout=None): 'Send revoke signal to all workers for all tasks in the set.\n\n :keyword terminate: Also terminate the process currently working\n on the task (if any).\n :keyword signal: Name of signal to send to process if terminate.\n Default is TERM.\n :keyword wait: Wait for replies from worker. Will wait for 1 second\n by default or you can specify a custom ``timeout``.\n :keyword timeout: Time in seconds to wait for replies if ``wait``\n enabled.\n\n ' self.app.control.revoke([r.id for r in self.results], connection=connection, timeout=timeout, terminate=terminate, signal=signal, reply=wait)
7,090,524,531,389,367,000
Send revoke signal to all workers for all tasks in the set. :keyword terminate: Also terminate the process currently working on the task (if any). :keyword signal: Name of signal to send to process if terminate. Default is TERM. :keyword wait: Wait for replies from worker. Will wait for 1 second by default or you can specify a custom ``timeout``. :keyword timeout: Time in seconds to wait for replies if ``wait`` enabled.
venv/lib/python2.7/site-packages/celery/result.py
revoke
CharleyFarley/ovvio
python
def revoke(self, connection=None, terminate=False, signal=None, wait=False, timeout=None): 'Send revoke signal to all workers for all tasks in the set.\n\n :keyword terminate: Also terminate the process currently working\n on the task (if any).\n :keyword signal: Name of signal to send to process if terminate.\n Default is TERM.\n :keyword wait: Wait for replies from worker. Will wait for 1 second\n by default or you can specify a custom ``timeout``.\n :keyword timeout: Time in seconds to wait for replies if ``wait``\n enabled.\n\n ' self.app.control.revoke([r.id for r in self.results], connection=connection, timeout=timeout, terminate=terminate, signal=signal, reply=wait)
def __getitem__(self, index): '`res[i] -> res.results[i]`' return self.results[index]
-5,759,615,132,893,857,000
`res[i] -> res.results[i]`
venv/lib/python2.7/site-packages/celery/result.py
__getitem__
CharleyFarley/ovvio
python
def __getitem__(self, index): return self.results[index]
@deprecated('3.2', '3.3') def iterate(self, timeout=None, propagate=True, interval=0.5): 'Deprecated method, use :meth:`get` with a callback argument.' elapsed = 0.0 results = OrderedDict(((result.id, copy(result)) for result in self.results)) while results: removed = set() for (task_id, result) in items(results): if result.ready(): (yield result.get(timeout=(timeout and (timeout - elapsed)), propagate=propagate)) removed.add(task_id) elif result.backend.subpolling_interval: time.sleep(result.backend.subpolling_interval) for task_id in removed: results.pop(task_id, None) time.sleep(interval) elapsed += interval if (timeout and (elapsed >= timeout)): raise TimeoutError('The operation timed out')
-6,680,390,843,746,875,000
Deprecated method, use :meth:`get` with a callback argument.
venv/lib/python2.7/site-packages/celery/result.py
iterate
CharleyFarley/ovvio
python
@deprecated('3.2', '3.3') def iterate(self, timeout=None, propagate=True, interval=0.5): elapsed = 0.0 results = OrderedDict(((result.id, copy(result)) for result in self.results)) while results: removed = set() for (task_id, result) in items(results): if result.ready(): (yield result.get(timeout=(timeout and (timeout - elapsed)), propagate=propagate)) removed.add(task_id) elif result.backend.subpolling_interval: time.sleep(result.backend.subpolling_interval) for task_id in removed: results.pop(task_id, None) time.sleep(interval) elapsed += interval if (timeout and (elapsed >= timeout)): raise TimeoutError('The operation timed out')
def get(self, timeout=None, propagate=True, interval=0.5, callback=None, no_ack=True): 'See :meth:`join`\n\n This is here for API compatibility with :class:`AsyncResult`,\n in addition it uses :meth:`join_native` if available for the\n current result backend.\n\n ' return (self.join_native if self.supports_native_join else self.join)(timeout=timeout, propagate=propagate, interval=interval, callback=callback, no_ack=no_ack)
2,206,958,811,034,429,400
See :meth:`join` This is here for API compatibility with :class:`AsyncResult`, in addition it uses :meth:`join_native` if available for the current result backend.
venv/lib/python2.7/site-packages/celery/result.py
get
CharleyFarley/ovvio
python
def get(self, timeout=None, propagate=True, interval=0.5, callback=None, no_ack=True): 'See :meth:`join`\n\n This is here for API compatibility with :class:`AsyncResult`,\n in addition it uses :meth:`join_native` if available for the\n current result backend.\n\n ' return (self.join_native if self.supports_native_join else self.join)(timeout=timeout, propagate=propagate, interval=interval, callback=callback, no_ack=no_ack)
def join(self, timeout=None, propagate=True, interval=0.5, callback=None, no_ack=True): 'Gathers the results of all tasks as a list in order.\n\n .. note::\n\n This can be an expensive operation for result store\n backends that must resort to polling (e.g. database).\n\n You should consider using :meth:`join_native` if your backend\n supports it.\n\n .. warning::\n\n Waiting for tasks within a task may lead to deadlocks.\n Please see :ref:`task-synchronous-subtasks`.\n\n :keyword timeout: The number of seconds to wait for results before\n the operation times out.\n\n :keyword propagate: If any of the tasks raises an exception, the\n exception will be re-raised.\n\n :keyword interval: Time to wait (in seconds) before retrying to\n retrieve a result from the set. Note that this\n does not have any effect when using the amqp\n result store backend, as it does not use polling.\n\n :keyword callback: Optional callback to be called for every result\n received. Must have signature ``(task_id, value)``\n No results will be returned by this function if\n a callback is specified. The order of results\n is also arbitrary when a callback is used.\n To get access to the result object for a particular\n id you will have to generate an index first:\n ``index = {r.id: r for r in gres.results.values()}``\n Or you can create new result objects on the fly:\n ``result = app.AsyncResult(task_id)`` (both will\n take advantage of the backend cache anyway).\n\n :keyword no_ack: Automatic message acknowledgement (Note that if this\n is set to :const:`False` then the messages *will not be\n acknowledged*).\n\n :raises celery.exceptions.TimeoutError: if ``timeout`` is not\n :const:`None` and the operation takes longer than ``timeout``\n seconds.\n\n ' assert_will_not_block() time_start = monotonic() remaining = None results = [] for result in self.results: remaining = None if timeout: remaining = (timeout - (monotonic() - time_start)) if (remaining <= 0.0): raise TimeoutError('join operation timed out') value = result.get(timeout=remaining, propagate=propagate, interval=interval, no_ack=no_ack) if callback: callback(result.id, value) else: results.append(value) return results
5,768,098,422,675,149,000
Gathers the results of all tasks as a list in order. .. note:: This can be an expensive operation for result store backends that must resort to polling (e.g. database). You should consider using :meth:`join_native` if your backend supports it. .. warning:: Waiting for tasks within a task may lead to deadlocks. Please see :ref:`task-synchronous-subtasks`. :keyword timeout: The number of seconds to wait for results before the operation times out. :keyword propagate: If any of the tasks raises an exception, the exception will be re-raised. :keyword interval: Time to wait (in seconds) before retrying to retrieve a result from the set. Note that this does not have any effect when using the amqp result store backend, as it does not use polling. :keyword callback: Optional callback to be called for every result received. Must have signature ``(task_id, value)`` No results will be returned by this function if a callback is specified. The order of results is also arbitrary when a callback is used. To get access to the result object for a particular id you will have to generate an index first: ``index = {r.id: r for r in gres.results.values()}`` Or you can create new result objects on the fly: ``result = app.AsyncResult(task_id)`` (both will take advantage of the backend cache anyway). :keyword no_ack: Automatic message acknowledgement (Note that if this is set to :const:`False` then the messages *will not be acknowledged*). :raises celery.exceptions.TimeoutError: if ``timeout`` is not :const:`None` and the operation takes longer than ``timeout`` seconds.
venv/lib/python2.7/site-packages/celery/result.py
join
CharleyFarley/ovvio
python
def join(self, timeout=None, propagate=True, interval=0.5, callback=None, no_ack=True): 'Gathers the results of all tasks as a list in order.\n\n .. note::\n\n This can be an expensive operation for result store\n backends that must resort to polling (e.g. database).\n\n You should consider using :meth:`join_native` if your backend\n supports it.\n\n .. warning::\n\n Waiting for tasks within a task may lead to deadlocks.\n Please see :ref:`task-synchronous-subtasks`.\n\n :keyword timeout: The number of seconds to wait for results before\n the operation times out.\n\n :keyword propagate: If any of the tasks raises an exception, the\n exception will be re-raised.\n\n :keyword interval: Time to wait (in seconds) before retrying to\n retrieve a result from the set. Note that this\n does not have any effect when using the amqp\n result store backend, as it does not use polling.\n\n :keyword callback: Optional callback to be called for every result\n received. Must have signature ``(task_id, value)``\n No results will be returned by this function if\n a callback is specified. The order of results\n is also arbitrary when a callback is used.\n To get access to the result object for a particular\n id you will have to generate an index first:\n ``index = {r.id: r for r in gres.results.values()}``\n Or you can create new result objects on the fly:\n ``result = app.AsyncResult(task_id)`` (both will\n take advantage of the backend cache anyway).\n\n :keyword no_ack: Automatic message acknowledgement (Note that if this\n is set to :const:`False` then the messages *will not be\n acknowledged*).\n\n :raises celery.exceptions.TimeoutError: if ``timeout`` is not\n :const:`None` and the operation takes longer than ``timeout``\n seconds.\n\n ' assert_will_not_block() time_start = monotonic() remaining = None results = [] for result in self.results: remaining = None if timeout: remaining = (timeout - (monotonic() - time_start)) if (remaining <= 0.0): raise TimeoutError('join operation timed out') value = result.get(timeout=remaining, propagate=propagate, interval=interval, no_ack=no_ack) if callback: callback(result.id, value) else: results.append(value) return results
def iter_native(self, timeout=None, interval=0.5, no_ack=True): 'Backend optimized version of :meth:`iterate`.\n\n .. versionadded:: 2.2\n\n Note that this does not support collecting the results\n for different task types using different backends.\n\n This is currently only supported by the amqp, Redis and cache\n result backends.\n\n ' results = self.results if (not results): return iter([]) return self.backend.get_many(set((r.id for r in results)), timeout=timeout, interval=interval, no_ack=no_ack)
-1,819,789,941,179,141,000
Backend optimized version of :meth:`iterate`. .. versionadded:: 2.2 Note that this does not support collecting the results for different task types using different backends. This is currently only supported by the amqp, Redis and cache result backends.
venv/lib/python2.7/site-packages/celery/result.py
iter_native
CharleyFarley/ovvio
python
def iter_native(self, timeout=None, interval=0.5, no_ack=True): 'Backend optimized version of :meth:`iterate`.\n\n .. versionadded:: 2.2\n\n Note that this does not support collecting the results\n for different task types using different backends.\n\n This is currently only supported by the amqp, Redis and cache\n result backends.\n\n ' results = self.results if (not results): return iter([]) return self.backend.get_many(set((r.id for r in results)), timeout=timeout, interval=interval, no_ack=no_ack)
def join_native(self, timeout=None, propagate=True, interval=0.5, callback=None, no_ack=True): 'Backend optimized version of :meth:`join`.\n\n .. versionadded:: 2.2\n\n Note that this does not support collecting the results\n for different task types using different backends.\n\n This is currently only supported by the amqp, Redis and cache\n result backends.\n\n ' assert_will_not_block() order_index = (None if callback else dict(((result.id, i) for (i, result) in enumerate(self.results)))) acc = (None if callback else [None for _ in range(len(self))]) for (task_id, meta) in self.iter_native(timeout, interval, no_ack): value = meta['result'] if (propagate and (meta['status'] in states.PROPAGATE_STATES)): raise value if callback: callback(task_id, value) else: acc[order_index[task_id]] = value return acc
9,139,139,065,209,087,000
Backend optimized version of :meth:`join`. .. versionadded:: 2.2 Note that this does not support collecting the results for different task types using different backends. This is currently only supported by the amqp, Redis and cache result backends.
venv/lib/python2.7/site-packages/celery/result.py
join_native
CharleyFarley/ovvio
python
def join_native(self, timeout=None, propagate=True, interval=0.5, callback=None, no_ack=True): 'Backend optimized version of :meth:`join`.\n\n .. versionadded:: 2.2\n\n Note that this does not support collecting the results\n for different task types using different backends.\n\n This is currently only supported by the amqp, Redis and cache\n result backends.\n\n ' assert_will_not_block() order_index = (None if callback else dict(((result.id, i) for (i, result) in enumerate(self.results)))) acc = (None if callback else [None for _ in range(len(self))]) for (task_id, meta) in self.iter_native(timeout, interval, no_ack): value = meta['result'] if (propagate and (meta['status'] in states.PROPAGATE_STATES)): raise value if callback: callback(task_id, value) else: acc[order_index[task_id]] = value return acc
@property def subtasks(self): 'Deprecated alias to :attr:`results`.' return self.results
-297,266,856,338,344,450
Deprecated alias to :attr:`results`.
venv/lib/python2.7/site-packages/celery/result.py
subtasks
CharleyFarley/ovvio
python
@property def subtasks(self): return self.results
def save(self, backend=None): 'Save group-result for later retrieval using :meth:`restore`.\n\n Example::\n\n >>> def save_and_restore(result):\n ... result.save()\n ... result = GroupResult.restore(result.id)\n\n ' return (backend or self.app.backend).save_group(self.id, self)
2,484,700,479,012,440,600
Save group-result for later retrieval using :meth:`restore`. Example:: >>> def save_and_restore(result): ... result.save() ... result = GroupResult.restore(result.id)
venv/lib/python2.7/site-packages/celery/result.py
save
CharleyFarley/ovvio
python
def save(self, backend=None): 'Save group-result for later retrieval using :meth:`restore`.\n\n Example::\n\n >>> def save_and_restore(result):\n ... result.save()\n ... result = GroupResult.restore(result.id)\n\n ' return (backend or self.app.backend).save_group(self.id, self)
def delete(self, backend=None): 'Remove this result if it was previously saved.' (backend or self.app.backend).delete_group(self.id)
-5,962,614,933,109,574,000
Remove this result if it was previously saved.
venv/lib/python2.7/site-packages/celery/result.py
delete
CharleyFarley/ovvio
python
def delete(self, backend=None): (backend or self.app.backend).delete_group(self.id)
@classmethod def restore(self, id, backend=None): 'Restore previously saved group result.' return (backend or (self.app.backend if self.app else current_app.backend)).restore_group(id)
7,488,101,914,846,607,000
Restore previously saved group result.
venv/lib/python2.7/site-packages/celery/result.py
restore
CharleyFarley/ovvio
python
@classmethod def restore(self, id, backend=None): return (backend or (self.app.backend if self.app else current_app.backend)).restore_group(id)
def itersubtasks(self): 'Deprecated. Use ``iter(self.results)`` instead.' return iter(self.results)
4,639,782,609,641,679,000
Deprecated. Use ``iter(self.results)`` instead.
venv/lib/python2.7/site-packages/celery/result.py
itersubtasks
CharleyFarley/ovvio
python
def itersubtasks(self): return iter(self.results)
@property def total(self): 'Deprecated: Use ``len(r)``.' return len(self)
-8,613,052,794,903,339,000
Deprecated: Use ``len(r)``.
venv/lib/python2.7/site-packages/celery/result.py
total
CharleyFarley/ovvio
python
@property def total(self): return len(self)
@property def taskset_id(self): 'compat alias to :attr:`self.id`' return self.id
3,185,373,323,444,679,700
compat alias to :attr:`self.id`
venv/lib/python2.7/site-packages/celery/result.py
taskset_id
CharleyFarley/ovvio
python
@property def taskset_id(self): return self.id
@property def result(self): 'The tasks return value' return self._result
-5,183,060,910,031,868,000
The tasks return value
venv/lib/python2.7/site-packages/celery/result.py
result
CharleyFarley/ovvio
python
@property def result(self): return self._result
@property def state(self): 'The tasks state.' return self._state
7,325,794,408,771,949,000
The tasks state.
venv/lib/python2.7/site-packages/celery/result.py
state
CharleyFarley/ovvio
python
@property def state(self): return self._state
@property def traceback(self): 'The traceback if the task failed.' return self._traceback
608,441,875,333,079,700
The traceback if the task failed.
venv/lib/python2.7/site-packages/celery/result.py
traceback
CharleyFarley/ovvio
python
@property def traceback(self): return self._traceback
def get_prepared_model(stage: str, no_classes: int, input_shape: list, loss: str, optimizer: str, metrics: list) -> Model: "Function creates ANN model and compile.\n Args:\n stage ([str]): stage of experiment\n no_classes ([INT]): No of classes for classification\n input_shape ([int, int]): Input shape for model's input layer\n loss ([str]): Loss function for model\n optimizer ([str]): Optimizer for model\n metrics ([str]): Metrics to watch while training\n Returns:\n model: ANN demo model\n " LAYERS = [] BASE_LAYERS = [tf.keras.layers.Flatten(input_shape=input_shape, name='input_layer'), tf.keras.layers.Dense(units=392, activation='relu', name='hidden1'), tf.keras.layers.Dense(units=196, activation='relu', name='hidden2'), tf.keras.layers.Dense(units=no_classes, activation='softmax', name='output_layer')] KERNEL_INIT_LAYERS = [tf.keras.layers.Flatten(input_shape=input_shape, name='input_layer'), tf.keras.layers.Dense(units=392, activation='relu', name='hidden1', kernel_initializer='glorot_uniform', bias_initializer='zeros'), tf.keras.layers.Dense(units=196, activation='relu', name='hidden2', kernel_initializer='glorot_uniform', bias_initializer='zeros'), tf.keras.layers.Dense(units=no_classes, activation='softmax', name='output_layer')] BN_BEFORE_LAYERS = [tf.keras.layers.Flatten(input_shape=input_shape, name='input_layer'), tf.keras.layers.Dense(units=392, name='hidden1', kernel_initializer='glorot_uniform'), tf.keras.layers.BatchNormalization(), tf.keras.layers.Activation('relu'), tf.keras.layers.Dense(units=196, name='hidden2', kernel_initializer='glorot_uniform'), tf.keras.layers.BatchNormalization(), tf.keras.layers.Activation('relu'), tf.keras.layers.Dense(units=no_classes, activation='softmax', name='output_layer')] BN_AFTER_LAYERS = [tf.keras.layers.Flatten(input_shape=input_shape, name='input_layer'), tf.keras.layers.Dense(units=392, activation='relu', name='hidden1', kernel_initializer='glorot_uniform', bias_initializer='zeros'), tf.keras.layers.BatchNormalization(), tf.keras.layers.Dense(units=196, activation='relu', name='hidden2', kernel_initializer='glorot_uniform', bias_initializer='zeros'), tf.keras.layers.BatchNormalization(), tf.keras.layers.Dense(units=no_classes, activation='softmax', name='output_layer')] logging.info('Creating Model..') if (stage == 'BASE_MODEL'): LAYERS = BASE_LAYERS elif (stage == 'KERNEL_INIT_MODEL'): LAYERS = KERNEL_INIT_LAYERS elif (stage == 'BN_BEFORE_MODEL'): LAYERS = BN_BEFORE_LAYERS elif (stage == 'BN_AFTER_MODEL'): LAYERS = BN_AFTER_LAYERS model_ann = tf.keras.models.Sequential(LAYERS) logging.info('Compiling Model..') model_ann.compile(loss=loss, optimizer=optimizer, metrics=metrics) return model_ann
-1,242,451,499,876,563,000
Function creates ANN model and compile. Args: stage ([str]): stage of experiment no_classes ([INT]): No of classes for classification input_shape ([int, int]): Input shape for model's input layer loss ([str]): Loss function for model optimizer ([str]): Optimizer for model metrics ([str]): Metrics to watch while training Returns: model: ANN demo model
src/utils/model.py
get_prepared_model
iDataAstro/MNIST_CLASSIFICATION
python
def get_prepared_model(stage: str, no_classes: int, input_shape: list, loss: str, optimizer: str, metrics: list) -> Model: "Function creates ANN model and compile.\n Args:\n stage ([str]): stage of experiment\n no_classes ([INT]): No of classes for classification\n input_shape ([int, int]): Input shape for model's input layer\n loss ([str]): Loss function for model\n optimizer ([str]): Optimizer for model\n metrics ([str]): Metrics to watch while training\n Returns:\n model: ANN demo model\n " LAYERS = [] BASE_LAYERS = [tf.keras.layers.Flatten(input_shape=input_shape, name='input_layer'), tf.keras.layers.Dense(units=392, activation='relu', name='hidden1'), tf.keras.layers.Dense(units=196, activation='relu', name='hidden2'), tf.keras.layers.Dense(units=no_classes, activation='softmax', name='output_layer')] KERNEL_INIT_LAYERS = [tf.keras.layers.Flatten(input_shape=input_shape, name='input_layer'), tf.keras.layers.Dense(units=392, activation='relu', name='hidden1', kernel_initializer='glorot_uniform', bias_initializer='zeros'), tf.keras.layers.Dense(units=196, activation='relu', name='hidden2', kernel_initializer='glorot_uniform', bias_initializer='zeros'), tf.keras.layers.Dense(units=no_classes, activation='softmax', name='output_layer')] BN_BEFORE_LAYERS = [tf.keras.layers.Flatten(input_shape=input_shape, name='input_layer'), tf.keras.layers.Dense(units=392, name='hidden1', kernel_initializer='glorot_uniform'), tf.keras.layers.BatchNormalization(), tf.keras.layers.Activation('relu'), tf.keras.layers.Dense(units=196, name='hidden2', kernel_initializer='glorot_uniform'), tf.keras.layers.BatchNormalization(), tf.keras.layers.Activation('relu'), tf.keras.layers.Dense(units=no_classes, activation='softmax', name='output_layer')] BN_AFTER_LAYERS = [tf.keras.layers.Flatten(input_shape=input_shape, name='input_layer'), tf.keras.layers.Dense(units=392, activation='relu', name='hidden1', kernel_initializer='glorot_uniform', bias_initializer='zeros'), tf.keras.layers.BatchNormalization(), tf.keras.layers.Dense(units=196, activation='relu', name='hidden2', kernel_initializer='glorot_uniform', bias_initializer='zeros'), tf.keras.layers.BatchNormalization(), tf.keras.layers.Dense(units=no_classes, activation='softmax', name='output_layer')] logging.info('Creating Model..') if (stage == 'BASE_MODEL'): LAYERS = BASE_LAYERS elif (stage == 'KERNEL_INIT_MODEL'): LAYERS = KERNEL_INIT_LAYERS elif (stage == 'BN_BEFORE_MODEL'): LAYERS = BN_BEFORE_LAYERS elif (stage == 'BN_AFTER_MODEL'): LAYERS = BN_AFTER_LAYERS model_ann = tf.keras.models.Sequential(LAYERS) logging.info('Compiling Model..') model_ann.compile(loss=loss, optimizer=optimizer, metrics=metrics) return model_ann
def save_model(model_dir: str, model: Model, model_suffix: str) -> None: '\n args:\n model_dir: directory to save the model\n model: model object to save\n model_suffix: Suffix to save the model\n ' create_directories([model_dir]) model_file = os.path.join(model_dir, f'{model_suffix}.h5') model.save(model_file) logging.info(f'Saved model: {model_file}')
8,604,583,271,117,257,000
args: model_dir: directory to save the model model: model object to save model_suffix: Suffix to save the model
src/utils/model.py
save_model
iDataAstro/MNIST_CLASSIFICATION
python
def save_model(model_dir: str, model: Model, model_suffix: str) -> None: '\n args:\n model_dir: directory to save the model\n model: model object to save\n model_suffix: Suffix to save the model\n ' create_directories([model_dir]) model_file = os.path.join(model_dir, f'{model_suffix}.h5') model.save(model_file) logging.info(f'Saved model: {model_file}')
def save_history_plot(history, plot_dir: str, stage: str) -> None: '\n Args:\n history: History object for plotting loss/accuracy curves\n plot_dir: Directory to save plot files\n stage: Stage name for training\n ' pd.DataFrame(history.history).plot(figsize=(10, 8)) plt.grid(True) create_directories([plot_dir]) plot_file = os.path.join(plot_dir, (stage + '_loss_accuracy.png')) plt.savefig(plot_file) logging.info(f'Loss accuracy plot saved: {plot_file}')
1,670,037,681,986,658,600
Args: history: History object for plotting loss/accuracy curves plot_dir: Directory to save plot files stage: Stage name for training
src/utils/model.py
save_history_plot
iDataAstro/MNIST_CLASSIFICATION
python
def save_history_plot(history, plot_dir: str, stage: str) -> None: '\n Args:\n history: History object for plotting loss/accuracy curves\n plot_dir: Directory to save plot files\n stage: Stage name for training\n ' pd.DataFrame(history.history).plot(figsize=(10, 8)) plt.grid(True) create_directories([plot_dir]) plot_file = os.path.join(plot_dir, (stage + '_loss_accuracy.png')) plt.savefig(plot_file) logging.info(f'Loss accuracy plot saved: {plot_file}')
def get_callbacks(checkpoint_dir: str, tensorboard_logs: str, stage: str) -> list: '\n Args:\n checkpoint_dir: Directory to save the model at checkpoint\n tensorboard_logs: Directory to save tensorboard logs\n stage: Stage name for training\n Returns:\n callback_list: List of created callbacks\n ' create_directories([checkpoint_dir, tensorboard_logs]) tensorboard_cb = tf.keras.callbacks.TensorBoard(tensorboard_logs) early_stopping_cb = tf.keras.callbacks.EarlyStopping(patience=3, restore_best_weights=True) ckpt_file_path = os.path.join(checkpoint_dir, f'{stage}_ckpt_model.h5') checkpoint_cb = tf.keras.callbacks.ModelCheckpoint(filepath=ckpt_file_path, save_best_only=True) callback_list = [tensorboard_cb, early_stopping_cb, checkpoint_cb] logging.info(f'Callbacks created: {callback_list}') return callback_list
4,078,891,736,999,478,000
Args: checkpoint_dir: Directory to save the model at checkpoint tensorboard_logs: Directory to save tensorboard logs stage: Stage name for training Returns: callback_list: List of created callbacks
src/utils/model.py
get_callbacks
iDataAstro/MNIST_CLASSIFICATION
python
def get_callbacks(checkpoint_dir: str, tensorboard_logs: str, stage: str) -> list: '\n Args:\n checkpoint_dir: Directory to save the model at checkpoint\n tensorboard_logs: Directory to save tensorboard logs\n stage: Stage name for training\n Returns:\n callback_list: List of created callbacks\n ' create_directories([checkpoint_dir, tensorboard_logs]) tensorboard_cb = tf.keras.callbacks.TensorBoard(tensorboard_logs) early_stopping_cb = tf.keras.callbacks.EarlyStopping(patience=3, restore_best_weights=True) ckpt_file_path = os.path.join(checkpoint_dir, f'{stage}_ckpt_model.h5') checkpoint_cb = tf.keras.callbacks.ModelCheckpoint(filepath=ckpt_file_path, save_best_only=True) callback_list = [tensorboard_cb, early_stopping_cb, checkpoint_cb] logging.info(f'Callbacks created: {callback_list}') return callback_list
def handle_event(context: events.ExecutionContext, event: events.ExecutionEvent) -> None: 'Short output style shows single symbols in the progress bar.\n\n Otherwise, identical to the default output style.\n ' if isinstance(event, events.Initialized): default.handle_initialized(context, event) if isinstance(event, events.AfterExecution): context.hypothesis_output.extend(event.hypothesis_output) handle_after_execution(context, event) if isinstance(event, events.Finished): default.handle_finished(context, event) if isinstance(event, events.Interrupted): default.handle_interrupted(context, event)
-4,836,795,211,007,890,000
Short output style shows single symbols in the progress bar. Otherwise, identical to the default output style.
src/schemathesis/cli/output/short.py
handle_event
RonnyPfannschmidt/schemathesis
python
def handle_event(context: events.ExecutionContext, event: events.ExecutionEvent) -> None: 'Short output style shows single symbols in the progress bar.\n\n Otherwise, identical to the default output style.\n ' if isinstance(event, events.Initialized): default.handle_initialized(context, event) if isinstance(event, events.AfterExecution): context.hypothesis_output.extend(event.hypothesis_output) handle_after_execution(context, event) if isinstance(event, events.Finished): default.handle_finished(context, event) if isinstance(event, events.Interrupted): default.handle_interrupted(context, event)
@staticmethod def serialize_test_record(test_record): 'Override method to alter how test records are serialized to file data.' return pickle.dumps(test_record, (- 1))
5,715,423,257,767,327,000
Override method to alter how test records are serialized to file data.
openhtf/output/callbacks/__init__.py
serialize_test_record
airdeng/openhtf
python
@staticmethod def serialize_test_record(test_record): return pickle.dumps(test_record, (- 1))
@staticmethod def open_file(filename): 'Override method to alter file open behavior or file types.' return Atomic(filename)
1,194,922,633,395,250,700
Override method to alter file open behavior or file types.
openhtf/output/callbacks/__init__.py
open_file
airdeng/openhtf
python
@staticmethod def open_file(filename): return Atomic(filename)
@contextlib.contextmanager def open_output_file(self, test_record): 'Open file based on pattern.' record_dict = data.convert_to_base_types(test_record, ignore_keys=('code_info', 'phases', 'log_records')) pattern = self.filename_pattern if (isinstance(pattern, six.string_types) or callable(pattern)): output_file = self.open_file(util.format_string(pattern, record_dict)) try: (yield output_file) finally: output_file.close() elif hasattr(self.filename_pattern, 'write'): (yield self.filename_pattern) else: raise ValueError('filename_pattern must be string, callable, or File-like object')
1,003,922,441,930,395,100
Open file based on pattern.
openhtf/output/callbacks/__init__.py
open_output_file
airdeng/openhtf
python
@contextlib.contextmanager def open_output_file(self, test_record): record_dict = data.convert_to_base_types(test_record, ignore_keys=('code_info', 'phases', 'log_records')) pattern = self.filename_pattern if (isinstance(pattern, six.string_types) or callable(pattern)): output_file = self.open_file(util.format_string(pattern, record_dict)) try: (yield output_file) finally: output_file.close() elif hasattr(self.filename_pattern, 'write'): (yield self.filename_pattern) else: raise ValueError('filename_pattern must be string, callable, or File-like object')
async def place_conditional_order(self, market: str, side: str, size: float, type: str='stop', limit_price: float=None, reduce_only: bool=False, cancel: bool=True, trigger_price: float=None, trail_value: float=None) -> dict: "\n To send a Stop Market order, set type='stop' and supply a trigger_price\n To send a Stop Limit order, also supply a limit_price\n To send a Take Profit Market order, set type='trailing_stop' and supply a trigger_price\n To send a Trailing Stop order, set type='trailing_stop' and supply a trail_value\n " assert (type in ('stop', 'take_profit', 'trailing_stop')) assert ((type not in ('stop', 'take_profit')) or (trigger_price is not None)), 'Need trigger prices for stop losses and take profits' assert ((type not in 'trailing_stop') or ((trigger_price is None) and (trail_value is not None))), 'Trailing stops need a trail value and cannot take a trigger price' return (await self._request('POST', 'conditional_orders', json={'market': market, 'side': side, 'triggerPrice': trigger_price, 'size': size, 'reduceOnly': reduce_only, 'type': 'stop', 'cancelLimitOnTrigger': cancel, 'orderPrice': limit_price}))
-751,737,147,964,922,100
To send a Stop Market order, set type='stop' and supply a trigger_price To send a Stop Limit order, also supply a limit_price To send a Take Profit Market order, set type='trailing_stop' and supply a trigger_price To send a Trailing Stop order, set type='trailing_stop' and supply a trail_value
quant/platform/ftx.py
place_conditional_order
a04512/alphahunter
python
async def place_conditional_order(self, market: str, side: str, size: float, type: str='stop', limit_price: float=None, reduce_only: bool=False, cancel: bool=True, trigger_price: float=None, trail_value: float=None) -> dict: "\n To send a Stop Market order, set type='stop' and supply a trigger_price\n To send a Stop Limit order, also supply a limit_price\n To send a Take Profit Market order, set type='trailing_stop' and supply a trigger_price\n To send a Trailing Stop order, set type='trailing_stop' and supply a trail_value\n " assert (type in ('stop', 'take_profit', 'trailing_stop')) assert ((type not in ('stop', 'take_profit')) or (trigger_price is not None)), 'Need trigger prices for stop losses and take profits' assert ((type not in 'trailing_stop') or ((trigger_price is None) and (trail_value is not None))), 'Trailing stops need a trail value and cannot take a trigger price' return (await self._request('POST', 'conditional_orders', json={'market': market, 'side': side, 'triggerPrice': trigger_price, 'size': size, 'reduceOnly': reduce_only, 'type': 'stop', 'cancelLimitOnTrigger': cancel, 'orderPrice': limit_price}))
def __init__(self, **kwargs): 'Initialize.' self.cb = kwargs['cb'] state = None self._platform = kwargs.get('platform') self._symbols = kwargs.get('symbols') self._strategy = kwargs.get('strategy') self._account = kwargs.get('account') self._access_key = kwargs.get('access_key') self._secret_key = kwargs.get('secret_key') self._subaccount_name = kwargs.get('subaccount_name') if (not self._platform): state = State(self._platform, self._account, 'param platform miss') elif (self._account and ((not self._access_key) or (not self._secret_key))): state = State(self._platform, self._account, 'param access_key or secret_key miss') elif (not self._strategy): state = State(self._platform, self._account, 'param strategy miss') elif (not self._symbols): state = State(self._platform, self._account, 'param symbols miss') if state: logger.error(state, caller=self) SingleTask.run(self.cb.on_state_update_callback, state) return self._host = 'https://ftx.com' self._wss = 'wss://ftx.com' url = (self._wss + '/ws') super(FTXTrader, self).__init__(url, send_hb_interval=15, **kwargs) self.heartbeat_msg = {'op': 'ping'} self._rest_api = FTXRestAPI(self._host, self._access_key, self._secret_key, self._subaccount_name) self._orderbooks: DefaultDict[(str, Dict[(str, DefaultDict[(float, float)])])] = defaultdict((lambda : {side: defaultdict(float) for side in {'bids', 'asks'}})) self._assets: DefaultDict[str:Dict[(str, float)]] = defaultdict((lambda : {k: 0.0 for k in {'free', 'locked', 'total'}})) self._syminfo: DefaultDict[str:Dict[(str, Any)]] = defaultdict(dict) if (self._account != None): self.initialize() if (self.cb.on_kline_update_callback or self.cb.on_orderbook_update_callback or self.cb.on_trade_update_callback or self.cb.on_ticker_update_callback): FTXMarket(**kwargs)
-8,882,331,551,842,784,000
Initialize.
quant/platform/ftx.py
__init__
a04512/alphahunter
python
def __init__(self, **kwargs): self.cb = kwargs['cb'] state = None self._platform = kwargs.get('platform') self._symbols = kwargs.get('symbols') self._strategy = kwargs.get('strategy') self._account = kwargs.get('account') self._access_key = kwargs.get('access_key') self._secret_key = kwargs.get('secret_key') self._subaccount_name = kwargs.get('subaccount_name') if (not self._platform): state = State(self._platform, self._account, 'param platform miss') elif (self._account and ((not self._access_key) or (not self._secret_key))): state = State(self._platform, self._account, 'param access_key or secret_key miss') elif (not self._strategy): state = State(self._platform, self._account, 'param strategy miss') elif (not self._symbols): state = State(self._platform, self._account, 'param symbols miss') if state: logger.error(state, caller=self) SingleTask.run(self.cb.on_state_update_callback, state) return self._host = 'https://ftx.com' self._wss = 'wss://ftx.com' url = (self._wss + '/ws') super(FTXTrader, self).__init__(url, send_hb_interval=15, **kwargs) self.heartbeat_msg = {'op': 'ping'} self._rest_api = FTXRestAPI(self._host, self._access_key, self._secret_key, self._subaccount_name) self._orderbooks: DefaultDict[(str, Dict[(str, DefaultDict[(float, float)])])] = defaultdict((lambda : {side: defaultdict(float) for side in {'bids', 'asks'}})) self._assets: DefaultDict[str:Dict[(str, float)]] = defaultdict((lambda : {k: 0.0 for k in {'free', 'locked', 'total'}})) self._syminfo: DefaultDict[str:Dict[(str, Any)]] = defaultdict(dict) if (self._account != None): self.initialize() if (self.cb.on_kline_update_callback or self.cb.on_orderbook_update_callback or self.cb.on_trade_update_callback or self.cb.on_ticker_update_callback): FTXMarket(**kwargs)
async def create_order(self, symbol, action, price, quantity, order_type=ORDER_TYPE_LIMIT, *args, **kwargs): " Create an order.\n\n Args:\n symbol: Trade target\n action: Trade direction, `BUY` or `SELL`.\n price: Price of each contract.\n quantity: The buying or selling quantity.\n order_type: Order type, `MARKET` or `LIMIT`.\n\n Returns:\n order_no: Order ID if created successfully, otherwise it's None.\n error: Error information, otherwise it's None.\n " if (action == ORDER_ACTION_BUY): side = 'buy' else: side = 'sell' size = abs(float(quantity)) price = float(price) if (order_type == ORDER_TYPE_LIMIT): ot = 'limit' elif (order_type == ORDER_TYPE_MARKET): ot = 'market' price = None else: raise NotImplementedError (success, error) = (await self._rest_api.place_order(symbol, side, price, size, ot)) if error: return (None, error) if (not success['success']): return (None, 'place_order error') result = success['result'] return (str(result['id']), None)
8,215,648,725,332,022,000
Create an order. Args: symbol: Trade target action: Trade direction, `BUY` or `SELL`. price: Price of each contract. quantity: The buying or selling quantity. order_type: Order type, `MARKET` or `LIMIT`. Returns: order_no: Order ID if created successfully, otherwise it's None. error: Error information, otherwise it's None.
quant/platform/ftx.py
create_order
a04512/alphahunter
python
async def create_order(self, symbol, action, price, quantity, order_type=ORDER_TYPE_LIMIT, *args, **kwargs): " Create an order.\n\n Args:\n symbol: Trade target\n action: Trade direction, `BUY` or `SELL`.\n price: Price of each contract.\n quantity: The buying or selling quantity.\n order_type: Order type, `MARKET` or `LIMIT`.\n\n Returns:\n order_no: Order ID if created successfully, otherwise it's None.\n error: Error information, otherwise it's None.\n " if (action == ORDER_ACTION_BUY): side = 'buy' else: side = 'sell' size = abs(float(quantity)) price = float(price) if (order_type == ORDER_TYPE_LIMIT): ot = 'limit' elif (order_type == ORDER_TYPE_MARKET): ot = 'market' price = None else: raise NotImplementedError (success, error) = (await self._rest_api.place_order(symbol, side, price, size, ot)) if error: return (None, error) if (not success['success']): return (None, 'place_order error') result = success['result'] return (str(result['id']), None)
async def revoke_order(self, symbol, *order_nos): ' Revoke (an) order(s).\n\n Args:\n symbol: Trade target\n order_nos: Order id list, you can set this param to 0 or multiple items. If you set 0 param, you can cancel all orders for \n this symbol. If you set 1 or multiple param, you can cancel an or multiple order.\n\n Returns:\n 删除全部订单情况: 成功=(True, None), 失败=(False, error information)\n 删除单个或多个订单情况: (删除成功的订单id[], 删除失败的订单id及错误信息[]),比如删除三个都成功那么结果为([1xx,2xx,3xx], [])\n ' if (len(order_nos) == 0): (success, error) = (await self._rest_api.cancel_orders(symbol)) if error: return (False, error) if (not success['success']): return (False, 'cancel_orders error') return (True, None) else: result = [] for order_no in order_nos: (_, e) = (await self._rest_api.cancel_order(order_no)) if e: result.append((order_no, e)) else: result.append((order_no, None)) return (tuple(result), None)
725,604,617,516,433,300
Revoke (an) order(s). Args: symbol: Trade target order_nos: Order id list, you can set this param to 0 or multiple items. If you set 0 param, you can cancel all orders for this symbol. If you set 1 or multiple param, you can cancel an or multiple order. Returns: 删除全部订单情况: 成功=(True, None), 失败=(False, error information) 删除单个或多个订单情况: (删除成功的订单id[], 删除失败的订单id及错误信息[]),比如删除三个都成功那么结果为([1xx,2xx,3xx], [])
quant/platform/ftx.py
revoke_order
a04512/alphahunter
python
async def revoke_order(self, symbol, *order_nos): ' Revoke (an) order(s).\n\n Args:\n symbol: Trade target\n order_nos: Order id list, you can set this param to 0 or multiple items. If you set 0 param, you can cancel all orders for \n this symbol. If you set 1 or multiple param, you can cancel an or multiple order.\n\n Returns:\n 删除全部订单情况: 成功=(True, None), 失败=(False, error information)\n 删除单个或多个订单情况: (删除成功的订单id[], 删除失败的订单id及错误信息[]),比如删除三个都成功那么结果为([1xx,2xx,3xx], [])\n ' if (len(order_nos) == 0): (success, error) = (await self._rest_api.cancel_orders(symbol)) if error: return (False, error) if (not success['success']): return (False, 'cancel_orders error') return (True, None) else: result = [] for order_no in order_nos: (_, e) = (await self._rest_api.cancel_order(order_no)) if e: result.append((order_no, e)) else: result.append((order_no, None)) return (tuple(result), None)
async def get_assets(self): " 获取交易账户资产信息\n\n Args:\n None\n\n Returns:\n assets: Asset if successfully, otherwise it's None.\n error: Error information, otherwise it's None.\n " (success, error) = (await self._rest_api.get_account_info()) if error: return (None, error) if (not success['success']): return (None, 'get_account_info error') data = success['result'] assets = {} total = float(data['collateral']) free = float(data['freeCollateral']) locked = (total - free) assets['USD'] = {'total': total, 'free': free, 'locked': locked} if (assets == self._assets): update = False else: update = True self._assets = assets timestamp = tools.get_cur_timestamp_ms() ast = Asset(self._platform, self._account, self._assets, timestamp, update) return (ast, None)
-8,438,721,267,337,178,000
获取交易账户资产信息 Args: None Returns: assets: Asset if successfully, otherwise it's None. error: Error information, otherwise it's None.
quant/platform/ftx.py
get_assets
a04512/alphahunter
python
async def get_assets(self): " 获取交易账户资产信息\n\n Args:\n None\n\n Returns:\n assets: Asset if successfully, otherwise it's None.\n error: Error information, otherwise it's None.\n " (success, error) = (await self._rest_api.get_account_info()) if error: return (None, error) if (not success['success']): return (None, 'get_account_info error') data = success['result'] assets = {} total = float(data['collateral']) free = float(data['freeCollateral']) locked = (total - free) assets['USD'] = {'total': total, 'free': free, 'locked': locked} if (assets == self._assets): update = False else: update = True self._assets = assets timestamp = tools.get_cur_timestamp_ms() ast = Asset(self._platform, self._account, self._assets, timestamp, update) return (ast, None)
def _convert_order_format(self, o): '将交易所订单结构转换为本交易系统标准订单结构格式\n ' order_no = str(o['id']) state = o['status'] remain = float(o['remainingSize']) filled = float(o['filledSize']) size = float(o['size']) price = (None if (o['price'] == None) else float(o['price'])) avg_price = (None if (o['avgFillPrice'] == None) else float(o['avgFillPrice'])) if (state == 'new'): status = ORDER_STATUS_SUBMITTED elif (state == 'open'): if (remain < size): status = ORDER_STATUS_PARTIAL_FILLED else: status = ORDER_STATUS_SUBMITTED elif (state == 'closed'): if (filled < size): status = ORDER_STATUS_CANCELED else: status = ORDER_STATUS_FILLED else: return None info = {'platform': self._platform, 'account': self._account, 'strategy': self._strategy, 'order_no': order_no, 'action': (ORDER_ACTION_BUY if (o['side'] == 'buy') else ORDER_ACTION_SELL), 'symbol': o['market'], 'price': price, 'quantity': size, 'order_type': (ORDER_TYPE_LIMIT if (o['type'] == 'limit') else ORDER_TYPE_MARKET), 'remain': remain, 'status': status, 'avg_price': avg_price} order = Order(**info) return order
-6,512,945,056,998,619,000
将交易所订单结构转换为本交易系统标准订单结构格式
quant/platform/ftx.py
_convert_order_format
a04512/alphahunter
python
def _convert_order_format(self, o): '\n ' order_no = str(o['id']) state = o['status'] remain = float(o['remainingSize']) filled = float(o['filledSize']) size = float(o['size']) price = (None if (o['price'] == None) else float(o['price'])) avg_price = (None if (o['avgFillPrice'] == None) else float(o['avgFillPrice'])) if (state == 'new'): status = ORDER_STATUS_SUBMITTED elif (state == 'open'): if (remain < size): status = ORDER_STATUS_PARTIAL_FILLED else: status = ORDER_STATUS_SUBMITTED elif (state == 'closed'): if (filled < size): status = ORDER_STATUS_CANCELED else: status = ORDER_STATUS_FILLED else: return None info = {'platform': self._platform, 'account': self._account, 'strategy': self._strategy, 'order_no': order_no, 'action': (ORDER_ACTION_BUY if (o['side'] == 'buy') else ORDER_ACTION_SELL), 'symbol': o['market'], 'price': price, 'quantity': size, 'order_type': (ORDER_TYPE_LIMIT if (o['type'] == 'limit') else ORDER_TYPE_MARKET), 'remain': remain, 'status': status, 'avg_price': avg_price} order = Order(**info) return order
async def get_orders(self, symbol): " 获取当前挂单列表\n\n Args:\n symbol: Trade target\n\n Returns:\n orders: Order list if successfully, otherwise it's None.\n error: Error information, otherwise it's None.\n " orders: List[Order] = [] (success, error) = (await self._rest_api.get_open_orders(symbol)) if error: return (None, error) if (not success['success']): return (None, 'get_open_orders error') data = success['result'] for o in data: order = self._convert_order_format(o) if (order == None): return (None, 'get_open_orders error') orders.append(order) return (orders, None)
-2,887,691,378,927,101,400
获取当前挂单列表 Args: symbol: Trade target Returns: orders: Order list if successfully, otherwise it's None. error: Error information, otherwise it's None.
quant/platform/ftx.py
get_orders
a04512/alphahunter
python
async def get_orders(self, symbol): " 获取当前挂单列表\n\n Args:\n symbol: Trade target\n\n Returns:\n orders: Order list if successfully, otherwise it's None.\n error: Error information, otherwise it's None.\n " orders: List[Order] = [] (success, error) = (await self._rest_api.get_open_orders(symbol)) if error: return (None, error) if (not success['success']): return (None, 'get_open_orders error') data = success['result'] for o in data: order = self._convert_order_format(o) if (order == None): return (None, 'get_open_orders error') orders.append(order) return (orders, None)
async def get_position(self, symbol): " 获取当前持仓\n\n Args:\n symbol: Trade target\n\n Returns:\n position: Position if successfully, otherwise it's None.\n error: Error information, otherwise it's None.\n " (success, error) = (await self._rest_api.get_positions(True)) if error: return (None, error) if (not success['success']): return (None, 'get_position error') p = next(filter((lambda x: (x['future'] == symbol)), success['result']), None) if (p == None): return (Position(self._platform, self._account, self._strategy, symbol), None) if (p['netSize'] == 0): return (Position(self._platform, self._account, self._strategy, symbol), None) pos = Position(self._platform, self._account, self._strategy, symbol) pos.margin_mode = MARGIN_MODE_CROSSED pos.utime = tools.get_cur_timestamp_ms() if (p['netSize'] < 0): pos.long_quantity = 0 pos.long_avail_qty = 0 pos.long_open_price = 0 pos.long_hold_price = 0 pos.long_liquid_price = 0 pos.long_unrealised_pnl = 0 pos.long_leverage = 0 pos.long_margin = 0 pos.short_quantity = abs(p['netSize']) pos.short_avail_qty = ((pos.short_quantity - p['longOrderSize']) if (p['longOrderSize'] < pos.short_quantity) else 0) pos.short_open_price = p['recentAverageOpenPrice'] pos.short_hold_price = p['entryPrice'] pos.short_liquid_price = p['estimatedLiquidationPrice'] pos.short_unrealised_pnl = p['unrealizedPnl'] pos.short_leverage = int((1 / p['initialMarginRequirement'])) pos.short_margin = p['collateralUsed'] else: pos.long_quantity = abs(p['netSize']) pos.long_avail_qty = ((pos.long_quantity - p['shortOrderSize']) if (p['shortOrderSize'] < pos.long_quantity) else 0) pos.long_open_price = p['recentAverageOpenPrice'] pos.long_hold_price = p['entryPrice'] pos.long_liquid_price = p['estimatedLiquidationPrice'] pos.long_unrealised_pnl = p['unrealizedPnl'] pos.long_leverage = int((1 / p['initialMarginRequirement'])) pos.long_margin = p['collateralUsed'] pos.short_quantity = 0 pos.short_avail_qty = 0 pos.short_open_price = 0 pos.short_hold_price = 0 pos.short_liquid_price = 0 pos.short_unrealised_pnl = 0 pos.short_leverage = 0 pos.short_margin = 0 return (pos, None)
6,262,820,115,701,591,000
获取当前持仓 Args: symbol: Trade target Returns: position: Position if successfully, otherwise it's None. error: Error information, otherwise it's None.
quant/platform/ftx.py
get_position
a04512/alphahunter
python
async def get_position(self, symbol): " 获取当前持仓\n\n Args:\n symbol: Trade target\n\n Returns:\n position: Position if successfully, otherwise it's None.\n error: Error information, otherwise it's None.\n " (success, error) = (await self._rest_api.get_positions(True)) if error: return (None, error) if (not success['success']): return (None, 'get_position error') p = next(filter((lambda x: (x['future'] == symbol)), success['result']), None) if (p == None): return (Position(self._platform, self._account, self._strategy, symbol), None) if (p['netSize'] == 0): return (Position(self._platform, self._account, self._strategy, symbol), None) pos = Position(self._platform, self._account, self._strategy, symbol) pos.margin_mode = MARGIN_MODE_CROSSED pos.utime = tools.get_cur_timestamp_ms() if (p['netSize'] < 0): pos.long_quantity = 0 pos.long_avail_qty = 0 pos.long_open_price = 0 pos.long_hold_price = 0 pos.long_liquid_price = 0 pos.long_unrealised_pnl = 0 pos.long_leverage = 0 pos.long_margin = 0 pos.short_quantity = abs(p['netSize']) pos.short_avail_qty = ((pos.short_quantity - p['longOrderSize']) if (p['longOrderSize'] < pos.short_quantity) else 0) pos.short_open_price = p['recentAverageOpenPrice'] pos.short_hold_price = p['entryPrice'] pos.short_liquid_price = p['estimatedLiquidationPrice'] pos.short_unrealised_pnl = p['unrealizedPnl'] pos.short_leverage = int((1 / p['initialMarginRequirement'])) pos.short_margin = p['collateralUsed'] else: pos.long_quantity = abs(p['netSize']) pos.long_avail_qty = ((pos.long_quantity - p['shortOrderSize']) if (p['shortOrderSize'] < pos.long_quantity) else 0) pos.long_open_price = p['recentAverageOpenPrice'] pos.long_hold_price = p['entryPrice'] pos.long_liquid_price = p['estimatedLiquidationPrice'] pos.long_unrealised_pnl = p['unrealizedPnl'] pos.long_leverage = int((1 / p['initialMarginRequirement'])) pos.long_margin = p['collateralUsed'] pos.short_quantity = 0 pos.short_avail_qty = 0 pos.short_open_price = 0 pos.short_hold_price = 0 pos.short_liquid_price = 0 pos.short_unrealised_pnl = 0 pos.short_leverage = 0 pos.short_margin = 0 return (pos, None)
async def get_symbol_info(self, symbol): " 获取指定符号相关信息\n\n Args:\n symbol: Trade target\n\n Returns:\n symbol_info: SymbolInfo if successfully, otherwise it's None.\n error: Error information, otherwise it's None.\n " '\n {\n "success": true,\n "result": [\n {\n "name": "BTC-0628",\n "baseCurrency": null,\n "quoteCurrency": null,\n "type": "future",\n "underlying": "BTC",\n "enabled": true,\n "ask": 3949.25,\n "bid": 3949,\n "last": 10579.52,\n "priceIncrement": 0.25,\n "sizeIncrement": 0.001\n }\n ]\n }\n ' info = self._syminfo[symbol] if (not info): return (None, 'Symbol not exist') price_tick = float(info['priceIncrement']) size_tick = float(info['sizeIncrement']) size_limit = None value_tick = None value_limit = None if (info['type'] == 'future'): base_currency = info['underlying'] quote_currency = 'USD' settlement_currency = 'USD' else: base_currency = info['baseCurrency'] quote_currency = info['quoteCurrency'] settlement_currency = info['quoteCurrency'] symbol_type = info['type'] is_inverse = False multiplier = 1 syminfo = SymbolInfo(self._platform, symbol, price_tick, size_tick, size_limit, value_tick, value_limit, base_currency, quote_currency, settlement_currency, symbol_type, is_inverse, multiplier) return (syminfo, None)
2,875,572,908,821,740,500
获取指定符号相关信息 Args: symbol: Trade target Returns: symbol_info: SymbolInfo if successfully, otherwise it's None. error: Error information, otherwise it's None.
quant/platform/ftx.py
get_symbol_info
a04512/alphahunter
python
async def get_symbol_info(self, symbol): " 获取指定符号相关信息\n\n Args:\n symbol: Trade target\n\n Returns:\n symbol_info: SymbolInfo if successfully, otherwise it's None.\n error: Error information, otherwise it's None.\n " '\n {\n "success": true,\n "result": [\n {\n "name": "BTC-0628",\n "baseCurrency": null,\n "quoteCurrency": null,\n "type": "future",\n "underlying": "BTC",\n "enabled": true,\n "ask": 3949.25,\n "bid": 3949,\n "last": 10579.52,\n "priceIncrement": 0.25,\n "sizeIncrement": 0.001\n }\n ]\n }\n ' info = self._syminfo[symbol] if (not info): return (None, 'Symbol not exist') price_tick = float(info['priceIncrement']) size_tick = float(info['sizeIncrement']) size_limit = None value_tick = None value_limit = None if (info['type'] == 'future'): base_currency = info['underlying'] quote_currency = 'USD' settlement_currency = 'USD' else: base_currency = info['baseCurrency'] quote_currency = info['quoteCurrency'] settlement_currency = info['quoteCurrency'] symbol_type = info['type'] is_inverse = False multiplier = 1 syminfo = SymbolInfo(self._platform, symbol, price_tick, size_tick, size_limit, value_tick, value_limit, base_currency, quote_currency, settlement_currency, symbol_type, is_inverse, multiplier) return (syminfo, None)
async def invalid_indicate(self, symbol, indicate_type): " update (an) callback function.\n\n Args:\n symbol: Trade target\n indicate_type: INDICATE_ORDER, INDICATE_ASSET, INDICATE_POSITION\n\n Returns:\n success: If execute successfully, return True, otherwise it's False.\n error: If execute failed, return error information, otherwise it's None.\n " async def _task(): if ((indicate_type == INDICATE_ORDER) and self.cb.on_order_update_callback): (success, error) = (await self.get_orders(symbol)) if error: state = State(self._platform, self._account, 'get_orders error: {}'.format(error), State.STATE_CODE_GENERAL_ERROR) SingleTask.run(self.cb.on_state_update_callback, state) return for order in success: SingleTask.run(self.cb.on_order_update_callback, order) elif ((indicate_type == INDICATE_ASSET) and self.cb.on_asset_update_callback): (success, error) = (await self.get_assets()) if error: state = State(self._platform, self._account, 'get_assets error: {}'.format(error), State.STATE_CODE_GENERAL_ERROR) SingleTask.run(self.cb.on_state_update_callback, state) return SingleTask.run(self.cb.on_asset_update_callback, success) elif ((indicate_type == INDICATE_POSITION) and self.cb.on_position_update_callback): (success, error) = (await self.get_position(symbol)) if error: state = State(self._platform, self._account, 'get_position error: {}'.format(error), State.STATE_CODE_GENERAL_ERROR) SingleTask.run(self.cb.on_state_update_callback, state) return SingleTask.run(self.cb.on_position_update_callback, success) if ((indicate_type == INDICATE_ORDER) or (indicate_type == INDICATE_ASSET) or (indicate_type == INDICATE_POSITION)): SingleTask.run(_task) return (True, None) else: logger.error('indicate_type error! indicate_type:', indicate_type, caller=self) return (False, 'indicate_type error')
5,374,433,212,418,980,000
update (an) callback function. Args: symbol: Trade target indicate_type: INDICATE_ORDER, INDICATE_ASSET, INDICATE_POSITION Returns: success: If execute successfully, return True, otherwise it's False. error: If execute failed, return error information, otherwise it's None.
quant/platform/ftx.py
invalid_indicate
a04512/alphahunter
python
async def invalid_indicate(self, symbol, indicate_type): " update (an) callback function.\n\n Args:\n symbol: Trade target\n indicate_type: INDICATE_ORDER, INDICATE_ASSET, INDICATE_POSITION\n\n Returns:\n success: If execute successfully, return True, otherwise it's False.\n error: If execute failed, return error information, otherwise it's None.\n " async def _task(): if ((indicate_type == INDICATE_ORDER) and self.cb.on_order_update_callback): (success, error) = (await self.get_orders(symbol)) if error: state = State(self._platform, self._account, 'get_orders error: {}'.format(error), State.STATE_CODE_GENERAL_ERROR) SingleTask.run(self.cb.on_state_update_callback, state) return for order in success: SingleTask.run(self.cb.on_order_update_callback, order) elif ((indicate_type == INDICATE_ASSET) and self.cb.on_asset_update_callback): (success, error) = (await self.get_assets()) if error: state = State(self._platform, self._account, 'get_assets error: {}'.format(error), State.STATE_CODE_GENERAL_ERROR) SingleTask.run(self.cb.on_state_update_callback, state) return SingleTask.run(self.cb.on_asset_update_callback, success) elif ((indicate_type == INDICATE_POSITION) and self.cb.on_position_update_callback): (success, error) = (await self.get_position(symbol)) if error: state = State(self._platform, self._account, 'get_position error: {}'.format(error), State.STATE_CODE_GENERAL_ERROR) SingleTask.run(self.cb.on_state_update_callback, state) return SingleTask.run(self.cb.on_position_update_callback, success) if ((indicate_type == INDICATE_ORDER) or (indicate_type == INDICATE_ASSET) or (indicate_type == INDICATE_POSITION)): SingleTask.run(_task) return (True, None) else: logger.error('indicate_type error! indicate_type:', indicate_type, caller=self) return (False, 'indicate_type error')
async def _login(self): 'FTX的websocket接口真是逗逼,验证成功的情况下居然不会返回任何消息' ts = int((time.time() * 1000)) signature = hmac.new(self._secret_key.encode(), f'{ts}websocket_login'.encode(), 'sha256').hexdigest() args = {'key': self._access_key, 'sign': signature, 'time': ts} if self._subaccount_name: args['subaccount'] = self._subaccount_name data = {'op': 'login', 'args': args} (await self.send_json(data))
3,940,037,901,716,461,600
FTX的websocket接口真是逗逼,验证成功的情况下居然不会返回任何消息
quant/platform/ftx.py
_login
a04512/alphahunter
python
async def _login(self): ts = int((time.time() * 1000)) signature = hmac.new(self._secret_key.encode(), f'{ts}websocket_login'.encode(), 'sha256').hexdigest() args = {'key': self._access_key, 'sign': signature, 'time': ts} if self._subaccount_name: args['subaccount'] = self._subaccount_name data = {'op': 'login', 'args': args} (await self.send_json(data))
async def connected_callback(self): '网络链接成功回调\n ' if (self._account != None): (await self._login()) (success, error) = (await self._rest_api.list_markets()) if error: state = State(self._platform, self._account, 'list_markets error: {}'.format(error), State.STATE_CODE_GENERAL_ERROR) SingleTask.run(self.cb.on_state_update_callback, state) (await self.socket_close()) return for info in success['result']: self._syminfo[info['name']] = info if (self.cb.on_order_update_callback != None): for sym in self._symbols: (orders, error) = (await self.get_orders(sym)) if error: state = State(self._platform, self._account, 'get_orders error: {}'.format(error), State.STATE_CODE_GENERAL_ERROR) SingleTask.run(self.cb.on_state_update_callback, state) (await self.socket_close()) return for o in orders: SingleTask.run(self.cb.on_order_update_callback, o) if (self.cb.on_position_update_callback != None): for sym in self._symbols: (pos, error) = (await self.get_position(sym)) if error: state = State(self._platform, self._account, 'get_position error: {}'.format(error), State.STATE_CODE_GENERAL_ERROR) SingleTask.run(self.cb.on_state_update_callback, state) (await self.socket_close()) return SingleTask.run(self.cb.on_position_update_callback, pos) if (self.cb.on_asset_update_callback != None): (ast, error) = (await self.get_assets()) if error: state = State(self._platform, self._account, 'get_assets error: {}'.format(error), State.STATE_CODE_GENERAL_ERROR) SingleTask.run(self.cb.on_state_update_callback, state) (await self.socket_close()) return SingleTask.run(self.cb.on_asset_update_callback, ast) if (self.cb.on_order_update_callback != None): (await self.send_json({'op': 'subscribe', 'channel': 'orders'})) if (self.cb.on_fill_update_callback != None): (await self.send_json({'op': 'subscribe', 'channel': 'fills'})) self._subscribe_response_count = 0
-7,279,199,030,973,096,000
网络链接成功回调
quant/platform/ftx.py
connected_callback
a04512/alphahunter
python
async def connected_callback(self): '\n ' if (self._account != None): (await self._login()) (success, error) = (await self._rest_api.list_markets()) if error: state = State(self._platform, self._account, 'list_markets error: {}'.format(error), State.STATE_CODE_GENERAL_ERROR) SingleTask.run(self.cb.on_state_update_callback, state) (await self.socket_close()) return for info in success['result']: self._syminfo[info['name']] = info if (self.cb.on_order_update_callback != None): for sym in self._symbols: (orders, error) = (await self.get_orders(sym)) if error: state = State(self._platform, self._account, 'get_orders error: {}'.format(error), State.STATE_CODE_GENERAL_ERROR) SingleTask.run(self.cb.on_state_update_callback, state) (await self.socket_close()) return for o in orders: SingleTask.run(self.cb.on_order_update_callback, o) if (self.cb.on_position_update_callback != None): for sym in self._symbols: (pos, error) = (await self.get_position(sym)) if error: state = State(self._platform, self._account, 'get_position error: {}'.format(error), State.STATE_CODE_GENERAL_ERROR) SingleTask.run(self.cb.on_state_update_callback, state) (await self.socket_close()) return SingleTask.run(self.cb.on_position_update_callback, pos) if (self.cb.on_asset_update_callback != None): (ast, error) = (await self.get_assets()) if error: state = State(self._platform, self._account, 'get_assets error: {}'.format(error), State.STATE_CODE_GENERAL_ERROR) SingleTask.run(self.cb.on_state_update_callback, state) (await self.socket_close()) return SingleTask.run(self.cb.on_asset_update_callback, ast) if (self.cb.on_order_update_callback != None): (await self.send_json({'op': 'subscribe', 'channel': 'orders'})) if (self.cb.on_fill_update_callback != None): (await self.send_json({'op': 'subscribe', 'channel': 'fills'})) self._subscribe_response_count = 0
async def process(self, msg): ' Process message that received from websocket.\n\n Args:\n msg: message received from websocket.\n\n Returns:\n None.\n ' if (not isinstance(msg, dict)): return logger.debug('msg:', json.dumps(msg), caller=self) if (msg['type'] == 'error'): state = State(self._platform, self._account, 'Websocket connection failed: {}'.format(msg), State.STATE_CODE_GENERAL_ERROR) logger.error(state, caller=self) SingleTask.run(self.cb.on_state_update_callback, state) elif (msg['type'] == 'pong'): return elif (msg['type'] == 'info'): if (msg['code'] == 20001): @async_method_locker('FTXTrader._ws_close.locker') async def _ws_close(): (await self.socket_close()) SingleTask.run(_ws_close) elif (msg['type'] == 'unsubscribed'): return elif (msg['type'] == 'subscribed'): self._subscribe_response_count = (self._subscribe_response_count + 1) if (self._subscribe_response_count == 2): state = State(self._platform, self._account, 'Environment ready', State.STATE_CODE_READY) SingleTask.run(self.cb.on_state_update_callback, state) elif (msg['type'] == 'update'): channel = msg['channel'] if (channel == 'orders'): self._update_order(msg) elif (channel == 'fills'): self._update_fill(msg)
-7,256,647,120,417,005,000
Process message that received from websocket. Args: msg: message received from websocket. Returns: None.
quant/platform/ftx.py
process
a04512/alphahunter
python
async def process(self, msg): ' Process message that received from websocket.\n\n Args:\n msg: message received from websocket.\n\n Returns:\n None.\n ' if (not isinstance(msg, dict)): return logger.debug('msg:', json.dumps(msg), caller=self) if (msg['type'] == 'error'): state = State(self._platform, self._account, 'Websocket connection failed: {}'.format(msg), State.STATE_CODE_GENERAL_ERROR) logger.error(state, caller=self) SingleTask.run(self.cb.on_state_update_callback, state) elif (msg['type'] == 'pong'): return elif (msg['type'] == 'info'): if (msg['code'] == 20001): @async_method_locker('FTXTrader._ws_close.locker') async def _ws_close(): (await self.socket_close()) SingleTask.run(_ws_close) elif (msg['type'] == 'unsubscribed'): return elif (msg['type'] == 'subscribed'): self._subscribe_response_count = (self._subscribe_response_count + 1) if (self._subscribe_response_count == 2): state = State(self._platform, self._account, 'Environment ready', State.STATE_CODE_READY) SingleTask.run(self.cb.on_state_update_callback, state) elif (msg['type'] == 'update'): channel = msg['channel'] if (channel == 'orders'): self._update_order(msg) elif (channel == 'fills'): self._update_fill(msg)
def _update_order(self, order_info): ' Order update.\n\n Args:\n order_info: Order information.\n\n Returns:\n None.\n ' o = order_info['data'] order = self._convert_order_format(o) if (order == None): return SingleTask.run(self.cb.on_order_update_callback, order)
-7,402,522,007,243,926,000
Order update. Args: order_info: Order information. Returns: None.
quant/platform/ftx.py
_update_order
a04512/alphahunter
python
def _update_order(self, order_info): ' Order update.\n\n Args:\n order_info: Order information.\n\n Returns:\n None.\n ' o = order_info['data'] order = self._convert_order_format(o) if (order == None): return SingleTask.run(self.cb.on_order_update_callback, order)
def _update_fill(self, fill_info): ' Fill update.\n\n Args:\n fill_info: Fill information.\n\n Returns:\n None.\n ' data = fill_info['data'] fill_no = str(data['id']) order_no = str(data['orderId']) price = float(data['price']) size = float(data['size']) fee = float(data['fee']) ts = tools.utctime_str_to_mts(data['time'], '%Y-%m-%dT%H:%M:%S.%f+00:00') liquidity = (LIQUIDITY_TYPE_TAKER if (data['liquidity'] == 'taker') else LIQUIDITY_TYPE_MAKER) info = {'platform': self._platform, 'account': self._account, 'strategy': self._strategy, 'fill_no': fill_no, 'order_no': order_no, 'side': (ORDER_ACTION_BUY if (data['side'] == 'buy') else ORDER_ACTION_SELL), 'symbol': data['market'], 'price': price, 'quantity': size, 'liquidity': liquidity, 'fee': fee, 'ctime': ts} fill = Fill(**info) SingleTask.run(self.cb.on_fill_update_callback, fill)
-9,178,885,241,940,646,000
Fill update. Args: fill_info: Fill information. Returns: None.
quant/platform/ftx.py
_update_fill
a04512/alphahunter
python
def _update_fill(self, fill_info): ' Fill update.\n\n Args:\n fill_info: Fill information.\n\n Returns:\n None.\n ' data = fill_info['data'] fill_no = str(data['id']) order_no = str(data['orderId']) price = float(data['price']) size = float(data['size']) fee = float(data['fee']) ts = tools.utctime_str_to_mts(data['time'], '%Y-%m-%dT%H:%M:%S.%f+00:00') liquidity = (LIQUIDITY_TYPE_TAKER if (data['liquidity'] == 'taker') else LIQUIDITY_TYPE_MAKER) info = {'platform': self._platform, 'account': self._account, 'strategy': self._strategy, 'fill_no': fill_no, 'order_no': order_no, 'side': (ORDER_ACTION_BUY if (data['side'] == 'buy') else ORDER_ACTION_SELL), 'symbol': data['market'], 'price': price, 'quantity': size, 'liquidity': liquidity, 'fee': fee, 'ctime': ts} fill = Fill(**info) SingleTask.run(self.cb.on_fill_update_callback, fill)
@staticmethod def mapping_layer(): ' 获取符号映射关系.\n Returns:\n layer: 符号映射关系\n ' return None
-4,603,296,640,271,726,600
获取符号映射关系. Returns: layer: 符号映射关系
quant/platform/ftx.py
mapping_layer
a04512/alphahunter
python
@staticmethod def mapping_layer(): ' 获取符号映射关系.\n Returns:\n layer: 符号映射关系\n ' return None
def __init__(self, **kwargs): 'Initialize.' self._platform = kwargs['platform'] self._symbols = kwargs['symbols'] self._host = 'https://ftx.com' self._wss = 'wss://ftx.com' url = (self._wss + '/ws') super(FTXMarket, self).__init__(url, send_hb_interval=15, **kwargs) self.heartbeat_msg = {'op': 'ping'} self._rest_api = FTXRestAPI(self._host, None, None, None) self._orderbooks: DefaultDict[(str, Dict[(str, DefaultDict[(float, float)])])] = defaultdict((lambda : {side: defaultdict(float) for side in {'bids', 'asks'}})) self.initialize()
-1,737,670,192,026,487,300
Initialize.
quant/platform/ftx.py
__init__
a04512/alphahunter
python
def __init__(self, **kwargs): self._platform = kwargs['platform'] self._symbols = kwargs['symbols'] self._host = 'https://ftx.com' self._wss = 'wss://ftx.com' url = (self._wss + '/ws') super(FTXMarket, self).__init__(url, send_hb_interval=15, **kwargs) self.heartbeat_msg = {'op': 'ping'} self._rest_api = FTXRestAPI(self._host, None, None, None) self._orderbooks: DefaultDict[(str, Dict[(str, DefaultDict[(float, float)])])] = defaultdict((lambda : {side: defaultdict(float) for side in {'bids', 'asks'}})) self.initialize()
async def connected_callback(self): '网络链接成功回调\n ' for sym in self._symbols: if (self.cb.on_trade_update_callback != None): (await self.send_json({'op': 'subscribe', 'channel': 'trades', 'market': sym})) if (self.cb.on_orderbook_update_callback != None): (await self.send_json({'op': 'subscribe', 'channel': 'orderbook', 'market': sym})) if (self.cb.on_ticker_update_callback != None): (await self.send_json({'op': 'subscribe', 'channel': 'ticker', 'market': sym})) if (self.cb.on_kline_update_callback != None): LoopRunTask.register(self._kline_loop_query, 60, sym)
8,191,372,696,025,688,000
网络链接成功回调
quant/platform/ftx.py
connected_callback
a04512/alphahunter
python
async def connected_callback(self): '\n ' for sym in self._symbols: if (self.cb.on_trade_update_callback != None): (await self.send_json({'op': 'subscribe', 'channel': 'trades', 'market': sym})) if (self.cb.on_orderbook_update_callback != None): (await self.send_json({'op': 'subscribe', 'channel': 'orderbook', 'market': sym})) if (self.cb.on_ticker_update_callback != None): (await self.send_json({'op': 'subscribe', 'channel': 'ticker', 'market': sym})) if (self.cb.on_kline_update_callback != None): LoopRunTask.register(self._kline_loop_query, 60, sym)
async def process(self, msg): ' Process message that received from websocket.\n\n Args:\n msg: message received from websocket.\n\n Returns:\n None.\n ' if (not isinstance(msg, dict)): return logger.debug('msg:', json.dumps(msg), caller=self) if (msg.get('type') == 'pong'): return elif (msg['type'] == 'error'): state = State(self._platform, self._account, 'Websocket connection failed: {}'.format(msg), State.STATE_CODE_GENERAL_ERROR) logger.error(state, caller=self) SingleTask.run(self.cb.on_state_update_callback, state) elif (msg['type'] == 'info'): if (msg['code'] == 20001): @async_method_locker('FTXMarket._ws_close.locker') async def _ws_close(): (await self.socket_close()) SingleTask.run(_ws_close) elif (msg['type'] == 'unsubscribed'): return elif (msg['type'] == 'subscribed'): return elif ((msg['type'] == 'update') or (msg['type'] == 'partial')): channel = msg['channel'] if (channel == 'orderbook'): self._update_orderbook(msg) elif (channel == 'trades'): self._update_trades(msg) elif (channel == 'ticker'): self._update_ticker(msg)
-192,911,100,035,693,280
Process message that received from websocket. Args: msg: message received from websocket. Returns: None.
quant/platform/ftx.py
process
a04512/alphahunter
python
async def process(self, msg): ' Process message that received from websocket.\n\n Args:\n msg: message received from websocket.\n\n Returns:\n None.\n ' if (not isinstance(msg, dict)): return logger.debug('msg:', json.dumps(msg), caller=self) if (msg.get('type') == 'pong'): return elif (msg['type'] == 'error'): state = State(self._platform, self._account, 'Websocket connection failed: {}'.format(msg), State.STATE_CODE_GENERAL_ERROR) logger.error(state, caller=self) SingleTask.run(self.cb.on_state_update_callback, state) elif (msg['type'] == 'info'): if (msg['code'] == 20001): @async_method_locker('FTXMarket._ws_close.locker') async def _ws_close(): (await self.socket_close()) SingleTask.run(_ws_close) elif (msg['type'] == 'unsubscribed'): return elif (msg['type'] == 'subscribed'): return elif ((msg['type'] == 'update') or (msg['type'] == 'partial')): channel = msg['channel'] if (channel == 'orderbook'): self._update_orderbook(msg) elif (channel == 'trades'): self._update_trades(msg) elif (channel == 'ticker'): self._update_ticker(msg)
def _update_ticker(self, ticker_info): ' ticker update.\n\n Args:\n ticker_info: ticker information.\n\n Returns:\n ' ts = int((float(ticker_info['data']['time']) * 1000)) p = {'platform': self._platform, 'symbol': ticker_info['market'], 'ask': ticker_info['data']['ask'], 'bid': ticker_info['data']['bid'], 'last': ticker_info['data']['last'], 'timestamp': ts} ticker = Ticker(**p) SingleTask.run(self.cb.on_ticker_update_callback, ticker)
-2,724,322,725,391,350,300
ticker update. Args: ticker_info: ticker information. Returns:
quant/platform/ftx.py
_update_ticker
a04512/alphahunter
python
def _update_ticker(self, ticker_info): ' ticker update.\n\n Args:\n ticker_info: ticker information.\n\n Returns:\n ' ts = int((float(ticker_info['data']['time']) * 1000)) p = {'platform': self._platform, 'symbol': ticker_info['market'], 'ask': ticker_info['data']['ask'], 'bid': ticker_info['data']['bid'], 'last': ticker_info['data']['last'], 'timestamp': ts} ticker = Ticker(**p) SingleTask.run(self.cb.on_ticker_update_callback, ticker)
def _update_trades(self, trades_info): ' trades update.\n\n Args:\n trades_info: trades information.\n\n Returns:\n ' for t in trades_info['data']: ts = tools.utctime_str_to_mts(t['time'], '%Y-%m-%dT%H:%M:%S.%f+00:00') p = {'platform': self._platform, 'symbol': trades_info['market'], 'action': (ORDER_ACTION_BUY if (t['side'] == 'buy') else ORDER_ACTION_SELL), 'price': t['price'], 'quantity': t['size'], 'timestamp': ts} trade = Trade(**p) SingleTask.run(self.cb.on_trade_update_callback, trade)
4,211,527,120,994,042,400
trades update. Args: trades_info: trades information. Returns:
quant/platform/ftx.py
_update_trades
a04512/alphahunter
python
def _update_trades(self, trades_info): ' trades update.\n\n Args:\n trades_info: trades information.\n\n Returns:\n ' for t in trades_info['data']: ts = tools.utctime_str_to_mts(t['time'], '%Y-%m-%dT%H:%M:%S.%f+00:00') p = {'platform': self._platform, 'symbol': trades_info['market'], 'action': (ORDER_ACTION_BUY if (t['side'] == 'buy') else ORDER_ACTION_SELL), 'price': t['price'], 'quantity': t['size'], 'timestamp': ts} trade = Trade(**p) SingleTask.run(self.cb.on_trade_update_callback, trade)
def _update_orderbook(self, orderbook_info): ' orderbook update.\n\n Args:\n orderbook_info: orderbook information.\n\n Returns:\n ' market = orderbook_info['market'] data = orderbook_info['data'] if (data['action'] == 'partial'): self._reset_orderbook(market) for side in {'bids', 'asks'}: book = self._orderbooks[market][side] for (price, size) in data[side]: if size: book[price] = size else: del book[price] checksum = data['checksum'] orderbook = self._get_orderbook(market) checksum_data = [':'.join([f'{float(order[0])}:{float(order[1])}' for order in (bid, offer) if order]) for (bid, offer) in zip_longest(orderbook['bids'][:100], orderbook['asks'][:100])] computed_result = int(zlib.crc32(':'.join(checksum_data).encode())) if (computed_result != checksum): @async_method_locker('FTXMarket._re_subscribe.locker') async def _re_subscribe(): (await self.send_json({'op': 'unsubscribe', 'channel': 'orderbook', 'market': market})) (await self.send_json({'op': 'subscribe', 'channel': 'orderbook', 'market': market})) SingleTask.run(_re_subscribe) return logger.debug('orderbook:', json.dumps(orderbook), caller=self) ts = int((float(data['time']) * 1000)) p = {'platform': self._platform, 'symbol': market, 'asks': orderbook['asks'], 'bids': orderbook['bids'], 'timestamp': ts} ob = Orderbook(**p) SingleTask.run(self.cb.on_orderbook_update_callback, ob)
-5,539,249,548,123,632,000
orderbook update. Args: orderbook_info: orderbook information. Returns:
quant/platform/ftx.py
_update_orderbook
a04512/alphahunter
python
def _update_orderbook(self, orderbook_info): ' orderbook update.\n\n Args:\n orderbook_info: orderbook information.\n\n Returns:\n ' market = orderbook_info['market'] data = orderbook_info['data'] if (data['action'] == 'partial'): self._reset_orderbook(market) for side in {'bids', 'asks'}: book = self._orderbooks[market][side] for (price, size) in data[side]: if size: book[price] = size else: del book[price] checksum = data['checksum'] orderbook = self._get_orderbook(market) checksum_data = [':'.join([f'{float(order[0])}:{float(order[1])}' for order in (bid, offer) if order]) for (bid, offer) in zip_longest(orderbook['bids'][:100], orderbook['asks'][:100])] computed_result = int(zlib.crc32(':'.join(checksum_data).encode())) if (computed_result != checksum): @async_method_locker('FTXMarket._re_subscribe.locker') async def _re_subscribe(): (await self.send_json({'op': 'unsubscribe', 'channel': 'orderbook', 'market': market})) (await self.send_json({'op': 'subscribe', 'channel': 'orderbook', 'market': market})) SingleTask.run(_re_subscribe) return logger.debug('orderbook:', json.dumps(orderbook), caller=self) ts = int((float(data['time']) * 1000)) p = {'platform': self._platform, 'symbol': market, 'asks': orderbook['asks'], 'bids': orderbook['bids'], 'timestamp': ts} ob = Orderbook(**p) SingleTask.run(self.cb.on_orderbook_update_callback, ob)
def _update_kline(self, kline_info, symbol): ' kline update.\n\n Args:\n kline_info: kline information.\n\n Returns:\n None.\n ' info = {'platform': self._platform, 'symbol': symbol, 'open': kline_info['open'], 'high': kline_info['high'], 'low': kline_info['low'], 'close': kline_info['close'], 'volume': kline_info['volume'], 'timestamp': tools.utctime_str_to_mts(kline_info['startTime'], '%Y-%m-%dT%H:%M:%S+00:00'), 'kline_type': MARKET_TYPE_KLINE} kline = Kline(**info) SingleTask.run(self.cb.on_kline_update_callback, kline)
-6,886,070,000,955,551,000
kline update. Args: kline_info: kline information. Returns: None.
quant/platform/ftx.py
_update_kline
a04512/alphahunter
python
def _update_kline(self, kline_info, symbol): ' kline update.\n\n Args:\n kline_info: kline information.\n\n Returns:\n None.\n ' info = {'platform': self._platform, 'symbol': symbol, 'open': kline_info['open'], 'high': kline_info['high'], 'low': kline_info['low'], 'close': kline_info['close'], 'volume': kline_info['volume'], 'timestamp': tools.utctime_str_to_mts(kline_info['startTime'], '%Y-%m-%dT%H:%M:%S+00:00'), 'kline_type': MARKET_TYPE_KLINE} kline = Kline(**info) SingleTask.run(self.cb.on_kline_update_callback, kline)
def main(): '\n Calls the other functions in this module to test and/or demonstrate them.\n ' drawing_speed = 10 window = rg.TurtleWindow() window.tracer(drawing_speed) draw_circles(rg.Point(100, 50)) draw_circles(rg.Point((- 200), 0)) window.update() window.close_on_mouse_click()
2,244,172,143,528,723,200
Calls the other functions in this module to test and/or demonstrate them.
src/m5_why_parameters_are_powerful.py
main
brownme1/02-ObjectsFunctionsAndMethods
python
def main(): '\n \n ' drawing_speed = 10 window = rg.TurtleWindow() window.tracer(drawing_speed) draw_circles(rg.Point(100, 50)) draw_circles(rg.Point((- 200), 0)) window.update() window.close_on_mouse_click()
def draw_circles(point): '\n Constructs a SimpleTurtle, then uses the SimpleTurtle to draw 10 circles\n such that:\n -- Each is centered at the given Point, and\n -- They have radii: 15 30 45 60 75 ..., respectively.\n ' turtle = rg.SimpleTurtle() turtle.pen_up() turtle.go_to(point) turtle.set_heading(0) for k in range(1, 11): turtle.pen_up() turtle.right(90) turtle.forward(15) turtle.left(90) turtle.pen_down() turtle.draw_circle((15 * k))
8,336,630,033,255,436,000
Constructs a SimpleTurtle, then uses the SimpleTurtle to draw 10 circles such that: -- Each is centered at the given Point, and -- They have radii: 15 30 45 60 75 ..., respectively.
src/m5_why_parameters_are_powerful.py
draw_circles
brownme1/02-ObjectsFunctionsAndMethods
python
def draw_circles(point): '\n Constructs a SimpleTurtle, then uses the SimpleTurtle to draw 10 circles\n such that:\n -- Each is centered at the given Point, and\n -- They have radii: 15 30 45 60 75 ..., respectively.\n ' turtle = rg.SimpleTurtle() turtle.pen_up() turtle.go_to(point) turtle.set_heading(0) for k in range(1, 11): turtle.pen_up() turtle.right(90) turtle.forward(15) turtle.left(90) turtle.pen_down() turtle.draw_circle((15 * k))
def better_draw_circles(point): '\n Starts out the same as the draw_circles function defined ABOVE.\n You Will make it an IMPROVED, MORE POWERFUL function per the above _TODO_.\n ' turtle = rg.SimpleTurtle() turtle.pen_up() turtle.go_to(point) turtle.set_heading(0) for k in range(1, 11): turtle.pen_up() turtle.right(90) turtle.forward(15) turtle.left(90) turtle.pen_down() print((15 * k))
-5,529,178,186,068,817,000
Starts out the same as the draw_circles function defined ABOVE. You Will make it an IMPROVED, MORE POWERFUL function per the above _TODO_.
src/m5_why_parameters_are_powerful.py
better_draw_circles
brownme1/02-ObjectsFunctionsAndMethods
python
def better_draw_circles(point): '\n Starts out the same as the draw_circles function defined ABOVE.\n You Will make it an IMPROVED, MORE POWERFUL function per the above _TODO_.\n ' turtle = rg.SimpleTurtle() turtle.pen_up() turtle.go_to(point) turtle.set_heading(0) for k in range(1, 11): turtle.pen_up() turtle.right(90) turtle.forward(15) turtle.left(90) turtle.pen_down() print((15 * k))
def even_better_draw_circles(point): ' An improved version of draw_circles, per the _TODO_ above. '
5,236,924,129,325,634,000
An improved version of draw_circles, per the _TODO_ above.
src/m5_why_parameters_are_powerful.py
even_better_draw_circles
brownme1/02-ObjectsFunctionsAndMethods
python
def even_better_draw_circles(point): ' '
def vol(volpath, ext='.npz', batch_size=1, expected_nb_files=(- 1), expected_files=None, data_proc_fn=None, relabel=None, nb_labels_reshape=0, keep_vol_size=False, name='single_vol', nb_restart_cycle=None, patch_size=None, patch_stride=1, collapse_2d=None, extract_slice=None, force_binary=False, nb_feats=1, patch_rand=False, patch_rand_seed=None, vol_rand_seed=None, binary=False, yield_incomplete_final_batch=True, verbose=False): '\n generator for single volume (or volume patches) from a list of files\n\n simple volume generator that loads a volume (via npy/mgz/nii/niigz), processes it,\n and prepares it for keras model formats\n\n if a patch size is passed, breaks the volume into patches and generates those\n ' volfiles = _get_file_list(volpath, ext, vol_rand_seed) nb_files = len(volfiles) assert (nb_files > 0), ('Could not find any files at %s with extension %s' % (volpath, ext)) vol_data = _load_medical_volume(os.path.join(volpath, volfiles[0]), ext) if (data_proc_fn is not None): vol_data = data_proc_fn(vol_data) nb_patches_per_vol = 1 if ((patch_size is not None) and all(((f is not None) for f in patch_size))): if ((relabel is None) and (len(patch_size) == (len(vol_data.shape) - 1))): tmp_patch_size = [f for f in patch_size] patch_size = [*patch_size, vol_data.shape[(- 1)]] patch_stride = [f for f in patch_stride] patch_stride = [*patch_stride, vol_data.shape[(- 1)]] assert (len(vol_data.shape) == len(patch_size)), ('Vol dims %d are not equal to patch dims %d' % (len(vol_data.shape), len(patch_size))) nb_patches_per_vol = np.prod(pl.gridsize(vol_data.shape, patch_size, patch_stride)) if (nb_restart_cycle is None): print('setting restart cycle to', nb_files) nb_restart_cycle = nb_files assert (nb_restart_cycle <= (nb_files * nb_patches_per_vol)), ('%s restart cycle (%s) too big (%s) in %s' % (name, nb_restart_cycle, (nb_files * nb_patches_per_vol), volpath)) if (expected_nb_files >= 0): assert (nb_files == expected_nb_files), ('number of files do not match: %d, %d' % (nb_files, expected_nb_files)) if (expected_files is not None): if (not (volfiles == expected_files)): print('file lists did not match. You should probably stop execution.', file=sys.stderr) print(len(volfiles), len(expected_files)) if verbose: print('nb_restart_cycle:', nb_restart_cycle) fileidx = (- 1) batch_idx = (- 1) feat_idx = 0 batch_shape = None while 1: fileidx = np.mod((fileidx + 1), nb_restart_cycle) if (verbose and (fileidx == 0)): print(('starting %s cycle' % name)) try: if verbose: print(('opening %s' % os.path.join(volpath, volfiles[fileidx]))) file_name = os.path.join(volpath, volfiles[fileidx]) vol_data = _load_medical_volume(file_name, ext, verbose) except: debug_error_msg = '#files: %d, fileidx: %d, nb_restart_cycle: %d. error: %s' print((debug_error_msg % (len(volfiles), fileidx, nb_restart_cycle, sys.exc_info()[0]))) raise if (data_proc_fn is not None): vol_data = data_proc_fn(vol_data) if (relabel is not None): vol_data = _relabel(vol_data, relabel) if (patch_size is None): this_patch_size = vol_data.shape patch_stride = [1 for f in this_patch_size] else: this_patch_size = [f for f in patch_size] for (pi, p) in enumerate(this_patch_size): if (p is None): this_patch_size[pi] = vol_data.shape[pi] patch_stride[pi] = 1 assert (~ np.any(np.isnan(vol_data))), ('Found a nan for %s' % volfiles[fileidx]) assert np.all(np.isfinite(vol_data)), ('Found a inf for %s' % volfiles[fileidx]) patch_gen = patch(vol_data, this_patch_size, patch_stride=patch_stride, nb_labels_reshape=nb_labels_reshape, batch_size=1, infinite=False, collapse_2d=collapse_2d, patch_rand=patch_rand, patch_rand_seed=patch_rand_seed, keep_vol_size=keep_vol_size) empty_gen = True patch_idx = (- 1) for lpatch in patch_gen: empty_gen = False patch_idx += 1 if (np.mod(feat_idx, nb_feats) == 0): vol_data_feats = lpatch else: vol_data_feats = np.concatenate([vol_data_feats, lpatch], (np.ndim(lpatch) - 1)) feat_idx += 1 if binary: vol_data_feats = vol_data_feats.astype(bool) if (np.mod(feat_idx, nb_feats) == 0): feats_shape = vol_data_feats[1:] if ((batch_shape is not None) and (feats_shape != batch_shape)): batch_idx = (- 1) batch_shape = None print('switching patch sizes') (yield np.vstack(vol_data_batch)) if (batch_idx == (- 1)): vol_data_batch = [vol_data_feats] batch_shape = vol_data_feats[1:] else: vol_data_batch = [*vol_data_batch, vol_data_feats] batch_idx += 1 batch_done = (batch_idx == (batch_size - 1)) files_done = (np.mod((fileidx + 1), nb_restart_cycle) == 0) final_batch = (yield_incomplete_final_batch and files_done and (patch_idx == (nb_patches_per_vol - 1))) if final_batch: print(('last batch in %s cycle %d. nb_batch:%d' % (name, fileidx, len(vol_data_batch)))) if (batch_done or final_batch): batch_idx = (- 1) q = np.vstack(vol_data_batch) (yield q) if empty_gen: raise ValueError('Patch generator was empty for file %s', volfiles[fileidx])
2,719,363,371,483,586,600
generator for single volume (or volume patches) from a list of files simple volume generator that loads a volume (via npy/mgz/nii/niigz), processes it, and prepares it for keras model formats if a patch size is passed, breaks the volume into patches and generates those
ext/neuron/neuron/generators.py
vol
adriaan16/brainstorm
python
def vol(volpath, ext='.npz', batch_size=1, expected_nb_files=(- 1), expected_files=None, data_proc_fn=None, relabel=None, nb_labels_reshape=0, keep_vol_size=False, name='single_vol', nb_restart_cycle=None, patch_size=None, patch_stride=1, collapse_2d=None, extract_slice=None, force_binary=False, nb_feats=1, patch_rand=False, patch_rand_seed=None, vol_rand_seed=None, binary=False, yield_incomplete_final_batch=True, verbose=False): '\n generator for single volume (or volume patches) from a list of files\n\n simple volume generator that loads a volume (via npy/mgz/nii/niigz), processes it,\n and prepares it for keras model formats\n\n if a patch size is passed, breaks the volume into patches and generates those\n ' volfiles = _get_file_list(volpath, ext, vol_rand_seed) nb_files = len(volfiles) assert (nb_files > 0), ('Could not find any files at %s with extension %s' % (volpath, ext)) vol_data = _load_medical_volume(os.path.join(volpath, volfiles[0]), ext) if (data_proc_fn is not None): vol_data = data_proc_fn(vol_data) nb_patches_per_vol = 1 if ((patch_size is not None) and all(((f is not None) for f in patch_size))): if ((relabel is None) and (len(patch_size) == (len(vol_data.shape) - 1))): tmp_patch_size = [f for f in patch_size] patch_size = [*patch_size, vol_data.shape[(- 1)]] patch_stride = [f for f in patch_stride] patch_stride = [*patch_stride, vol_data.shape[(- 1)]] assert (len(vol_data.shape) == len(patch_size)), ('Vol dims %d are not equal to patch dims %d' % (len(vol_data.shape), len(patch_size))) nb_patches_per_vol = np.prod(pl.gridsize(vol_data.shape, patch_size, patch_stride)) if (nb_restart_cycle is None): print('setting restart cycle to', nb_files) nb_restart_cycle = nb_files assert (nb_restart_cycle <= (nb_files * nb_patches_per_vol)), ('%s restart cycle (%s) too big (%s) in %s' % (name, nb_restart_cycle, (nb_files * nb_patches_per_vol), volpath)) if (expected_nb_files >= 0): assert (nb_files == expected_nb_files), ('number of files do not match: %d, %d' % (nb_files, expected_nb_files)) if (expected_files is not None): if (not (volfiles == expected_files)): print('file lists did not match. You should probably stop execution.', file=sys.stderr) print(len(volfiles), len(expected_files)) if verbose: print('nb_restart_cycle:', nb_restart_cycle) fileidx = (- 1) batch_idx = (- 1) feat_idx = 0 batch_shape = None while 1: fileidx = np.mod((fileidx + 1), nb_restart_cycle) if (verbose and (fileidx == 0)): print(('starting %s cycle' % name)) try: if verbose: print(('opening %s' % os.path.join(volpath, volfiles[fileidx]))) file_name = os.path.join(volpath, volfiles[fileidx]) vol_data = _load_medical_volume(file_name, ext, verbose) except: debug_error_msg = '#files: %d, fileidx: %d, nb_restart_cycle: %d. error: %s' print((debug_error_msg % (len(volfiles), fileidx, nb_restart_cycle, sys.exc_info()[0]))) raise if (data_proc_fn is not None): vol_data = data_proc_fn(vol_data) if (relabel is not None): vol_data = _relabel(vol_data, relabel) if (patch_size is None): this_patch_size = vol_data.shape patch_stride = [1 for f in this_patch_size] else: this_patch_size = [f for f in patch_size] for (pi, p) in enumerate(this_patch_size): if (p is None): this_patch_size[pi] = vol_data.shape[pi] patch_stride[pi] = 1 assert (~ np.any(np.isnan(vol_data))), ('Found a nan for %s' % volfiles[fileidx]) assert np.all(np.isfinite(vol_data)), ('Found a inf for %s' % volfiles[fileidx]) patch_gen = patch(vol_data, this_patch_size, patch_stride=patch_stride, nb_labels_reshape=nb_labels_reshape, batch_size=1, infinite=False, collapse_2d=collapse_2d, patch_rand=patch_rand, patch_rand_seed=patch_rand_seed, keep_vol_size=keep_vol_size) empty_gen = True patch_idx = (- 1) for lpatch in patch_gen: empty_gen = False patch_idx += 1 if (np.mod(feat_idx, nb_feats) == 0): vol_data_feats = lpatch else: vol_data_feats = np.concatenate([vol_data_feats, lpatch], (np.ndim(lpatch) - 1)) feat_idx += 1 if binary: vol_data_feats = vol_data_feats.astype(bool) if (np.mod(feat_idx, nb_feats) == 0): feats_shape = vol_data_feats[1:] if ((batch_shape is not None) and (feats_shape != batch_shape)): batch_idx = (- 1) batch_shape = None print('switching patch sizes') (yield np.vstack(vol_data_batch)) if (batch_idx == (- 1)): vol_data_batch = [vol_data_feats] batch_shape = vol_data_feats[1:] else: vol_data_batch = [*vol_data_batch, vol_data_feats] batch_idx += 1 batch_done = (batch_idx == (batch_size - 1)) files_done = (np.mod((fileidx + 1), nb_restart_cycle) == 0) final_batch = (yield_incomplete_final_batch and files_done and (patch_idx == (nb_patches_per_vol - 1))) if final_batch: print(('last batch in %s cycle %d. nb_batch:%d' % (name, fileidx, len(vol_data_batch)))) if (batch_done or final_batch): batch_idx = (- 1) q = np.vstack(vol_data_batch) (yield q) if empty_gen: raise ValueError('Patch generator was empty for file %s', volfiles[fileidx])
def patch(vol_data, patch_size, patch_stride=1, nb_labels_reshape=1, keep_vol_size=False, batch_size=1, collapse_2d=None, patch_rand=False, patch_rand_seed=None, variable_batch_size=False, infinite=False): '\n generate patches from volume for keras package\n\n Yields:\n patch: nd array of shape [batch_size, *patch_size], unless resized via nb_labels_reshape\n ' assert (batch_size >= 1), 'batch_size should be at least 1' if (patch_size is None): patch_size = vol_data.shape for (pi, p) in enumerate(patch_size): if (p is None): patch_size[pi] = vol_data.shape[pi] batch_idx = (- 1) if variable_batch_size: batch_size = (yield) while True: gen = pl.patch_gen(vol_data, patch_size, stride=patch_stride, rand=patch_rand, rand_seed=patch_rand_seed) empty_gen = True for lpatch in gen: empty_gen = False lpatch = _categorical_prep(lpatch, nb_labels_reshape, keep_vol_size, patch_size) if (collapse_2d is not None): lpatch = np.squeeze(lpatch, (collapse_2d + 1)) if (batch_idx == (- 1)): if (batch_size == 1): patch_data_batch = lpatch else: patch_data_batch = np.zeros([batch_size, *lpatch.shape[1:]]) patch_data_batch[0, :] = lpatch else: patch_data_batch[(batch_idx + 1), :] = lpatch batch_idx += 1 if (batch_idx == (batch_size - 1)): batch_idx = (- 1) batch_size_y = (yield patch_data_batch) if variable_batch_size: batch_size = batch_size_y assert (not empty_gen), ('generator was empty. vol size was %s' % ''.join([('%d ' % d) for d in vol_data.shape])) if (not infinite): if (batch_idx >= 0): patch_data_batch = patch_data_batch[:(batch_idx + 1), :] (yield patch_data_batch) break
-6,907,692,403,567,869,000
generate patches from volume for keras package Yields: patch: nd array of shape [batch_size, *patch_size], unless resized via nb_labels_reshape
ext/neuron/neuron/generators.py
patch
adriaan16/brainstorm
python
def patch(vol_data, patch_size, patch_stride=1, nb_labels_reshape=1, keep_vol_size=False, batch_size=1, collapse_2d=None, patch_rand=False, patch_rand_seed=None, variable_batch_size=False, infinite=False): '\n generate patches from volume for keras package\n\n Yields:\n patch: nd array of shape [batch_size, *patch_size], unless resized via nb_labels_reshape\n ' assert (batch_size >= 1), 'batch_size should be at least 1' if (patch_size is None): patch_size = vol_data.shape for (pi, p) in enumerate(patch_size): if (p is None): patch_size[pi] = vol_data.shape[pi] batch_idx = (- 1) if variable_batch_size: batch_size = (yield) while True: gen = pl.patch_gen(vol_data, patch_size, stride=patch_stride, rand=patch_rand, rand_seed=patch_rand_seed) empty_gen = True for lpatch in gen: empty_gen = False lpatch = _categorical_prep(lpatch, nb_labels_reshape, keep_vol_size, patch_size) if (collapse_2d is not None): lpatch = np.squeeze(lpatch, (collapse_2d + 1)) if (batch_idx == (- 1)): if (batch_size == 1): patch_data_batch = lpatch else: patch_data_batch = np.zeros([batch_size, *lpatch.shape[1:]]) patch_data_batch[0, :] = lpatch else: patch_data_batch[(batch_idx + 1), :] = lpatch batch_idx += 1 if (batch_idx == (batch_size - 1)): batch_idx = (- 1) batch_size_y = (yield patch_data_batch) if variable_batch_size: batch_size = batch_size_y assert (not empty_gen), ('generator was empty. vol size was %s' % .join([('%d ' % d) for d in vol_data.shape])) if (not infinite): if (batch_idx >= 0): patch_data_batch = patch_data_batch[:(batch_idx + 1), :] (yield patch_data_batch) break
def vol_seg(volpath, segpath, proc_vol_fn=None, proc_seg_fn=None, verbose=False, name='vol_seg', ext='.npz', nb_restart_cycle=None, nb_labels_reshape=(- 1), collapse_2d=None, force_binary=False, nb_input_feats=1, relabel=None, vol_rand_seed=None, seg_binary=False, vol_subname='norm', seg_subname='aseg', **kwargs): '\n generator with (volume, segmentation)\n\n verbose is passed down to the base generators.py primitive generator (e.g. vol, here)\n\n ** kwargs are any named arguments for vol(...),\n except verbose, data_proc_fn, ext, nb_labels_reshape and name\n (which this function will control when calling vol())\n ' vol_gen = vol(volpath, **kwargs, ext=ext, nb_restart_cycle=nb_restart_cycle, collapse_2d=collapse_2d, force_binary=False, relabel=None, data_proc_fn=proc_vol_fn, nb_labels_reshape=1, name=(name + ' vol'), verbose=verbose, nb_feats=nb_input_feats, vol_rand_seed=vol_rand_seed) vol_files = [f.replace(vol_subname, seg_subname) for f in _get_file_list(volpath, ext, vol_rand_seed)] seg_gen = vol(segpath, **kwargs, ext=ext, nb_restart_cycle=nb_restart_cycle, collapse_2d=collapse_2d, force_binary=force_binary, relabel=relabel, vol_rand_seed=vol_rand_seed, data_proc_fn=proc_seg_fn, nb_labels_reshape=nb_labels_reshape, keep_vol_size=True, expected_files=vol_files, name=(name + ' seg'), binary=seg_binary, verbose=False) while 1: input_vol = next(vol_gen).astype('float16') output_vol = next(seg_gen).astype('float16') (yield (input_vol, output_vol))
847,370,237,624,995,200
generator with (volume, segmentation) verbose is passed down to the base generators.py primitive generator (e.g. vol, here) ** kwargs are any named arguments for vol(...), except verbose, data_proc_fn, ext, nb_labels_reshape and name (which this function will control when calling vol())
ext/neuron/neuron/generators.py
vol_seg
adriaan16/brainstorm
python
def vol_seg(volpath, segpath, proc_vol_fn=None, proc_seg_fn=None, verbose=False, name='vol_seg', ext='.npz', nb_restart_cycle=None, nb_labels_reshape=(- 1), collapse_2d=None, force_binary=False, nb_input_feats=1, relabel=None, vol_rand_seed=None, seg_binary=False, vol_subname='norm', seg_subname='aseg', **kwargs): '\n generator with (volume, segmentation)\n\n verbose is passed down to the base generators.py primitive generator (e.g. vol, here)\n\n ** kwargs are any named arguments for vol(...),\n except verbose, data_proc_fn, ext, nb_labels_reshape and name\n (which this function will control when calling vol())\n ' vol_gen = vol(volpath, **kwargs, ext=ext, nb_restart_cycle=nb_restart_cycle, collapse_2d=collapse_2d, force_binary=False, relabel=None, data_proc_fn=proc_vol_fn, nb_labels_reshape=1, name=(name + ' vol'), verbose=verbose, nb_feats=nb_input_feats, vol_rand_seed=vol_rand_seed) vol_files = [f.replace(vol_subname, seg_subname) for f in _get_file_list(volpath, ext, vol_rand_seed)] seg_gen = vol(segpath, **kwargs, ext=ext, nb_restart_cycle=nb_restart_cycle, collapse_2d=collapse_2d, force_binary=force_binary, relabel=relabel, vol_rand_seed=vol_rand_seed, data_proc_fn=proc_seg_fn, nb_labels_reshape=nb_labels_reshape, keep_vol_size=True, expected_files=vol_files, name=(name + ' seg'), binary=seg_binary, verbose=False) while 1: input_vol = next(vol_gen).astype('float16') output_vol = next(seg_gen).astype('float16') (yield (input_vol, output_vol))
def vol_cat(volpaths, crop=None, resize_shape=None, rescale=None, verbose=False, name='vol_cat', ext='.npz', nb_labels_reshape=(- 1), vol_rand_seed=None, **kwargs): '\n generator with (volume, binary_bit) (random order)\n ONLY works with abtch size of 1 for now\n\n verbose is passed down to the base generators.py primitive generator (e.g. vol, here)\n ' folders = [f for f in sorted(os.listdir(volpaths))] proc_vol_fn = (lambda x: nrn_proc.vol_proc(x, crop=crop, resize_shape=resize_shape, interp_order=2, rescale=rescale)) generators = () generators_len = () for folder in folders: vol_gen = vol(os.path.join(volpaths, folder), **kwargs, ext=ext, vol_rand_seed=vol_rand_seed, data_proc_fn=proc_vol_fn, nb_labels_reshape=1, name=folder, verbose=False) generators_len += (len(_get_file_list(os.path.join(volpaths, folder), '.npz')),) generators += (vol_gen,) bake_data_test = False if bake_data_test: print('fake_data_test', file=sys.stderr) while 1: order = np.hstack((np.zeros(generators_len[0]), np.ones(generators_len[1]))).astype('int') np.random.shuffle(order) for idx in order: gen = generators[idx] z = np.zeros([1, 2]) z[(0, idx)] = 1 data = next(gen).astype('float32') if (bake_data_test and (idx == 0)): data = (- data) (yield (data, z))
6,298,195,965,135,200,000
generator with (volume, binary_bit) (random order) ONLY works with abtch size of 1 for now verbose is passed down to the base generators.py primitive generator (e.g. vol, here)
ext/neuron/neuron/generators.py
vol_cat
adriaan16/brainstorm
python
def vol_cat(volpaths, crop=None, resize_shape=None, rescale=None, verbose=False, name='vol_cat', ext='.npz', nb_labels_reshape=(- 1), vol_rand_seed=None, **kwargs): '\n generator with (volume, binary_bit) (random order)\n ONLY works with abtch size of 1 for now\n\n verbose is passed down to the base generators.py primitive generator (e.g. vol, here)\n ' folders = [f for f in sorted(os.listdir(volpaths))] proc_vol_fn = (lambda x: nrn_proc.vol_proc(x, crop=crop, resize_shape=resize_shape, interp_order=2, rescale=rescale)) generators = () generators_len = () for folder in folders: vol_gen = vol(os.path.join(volpaths, folder), **kwargs, ext=ext, vol_rand_seed=vol_rand_seed, data_proc_fn=proc_vol_fn, nb_labels_reshape=1, name=folder, verbose=False) generators_len += (len(_get_file_list(os.path.join(volpaths, folder), '.npz')),) generators += (vol_gen,) bake_data_test = False if bake_data_test: print('fake_data_test', file=sys.stderr) while 1: order = np.hstack((np.zeros(generators_len[0]), np.ones(generators_len[1]))).astype('int') np.random.shuffle(order) for idx in order: gen = generators[idx] z = np.zeros([1, 2]) z[(0, idx)] = 1 data = next(gen).astype('float32') if (bake_data_test and (idx == 0)): data = (- data) (yield (data, z))
def add_prior(gen, proc_vol_fn=None, proc_seg_fn=None, prior_type='location', prior_file=None, prior_feed='input', patch_stride=1, patch_size=None, batch_size=1, collapse_2d=None, extract_slice=None, force_binary=False, verbose=False, patch_rand=False, patch_rand_seed=None): '\n #\n # add a prior generator to a given generator\n # with the number of patches in batch matching output of gen\n ' if (prior_type == 'location'): prior_vol = nd.volsize2ndgrid(vol_size) prior_vol = np.transpose(prior_vol, [1, 2, 3, 0]) prior_vol = np.expand_dims(prior_vol, axis=0) elif (prior_type == 'file'): with timer.Timer('loading prior', True): data = np.load(prior_file) prior_vol = data['prior'].astype('float16') else: with timer.Timer('loading prior', True): prior_vol = prior_file.astype('float16') if force_binary: nb_labels = prior_vol.shape[(- 1)] prior_vol[:, :, :, 1] = np.sum(prior_vol[:, :, :, 1:nb_labels], 3) prior_vol = np.delete(prior_vol, range(2, nb_labels), 3) nb_channels = prior_vol.shape[(- 1)] if (extract_slice is not None): if isinstance(extract_slice, int): prior_vol = prior_vol[:, :, extract_slice, np.newaxis, :] else: prior_vol = prior_vol[:, :, extract_slice, :] assert ((np.ndim(prior_vol) == 4) or (np.ndim(prior_vol) == 3)), 'prior is the wrong size' if (patch_size is None): patch_size = prior_vol.shape[0:3] assert (len(patch_size) == len(patch_stride)) prior_gen = patch(prior_vol, [*patch_size, nb_channels], patch_stride=[*patch_stride, nb_channels], batch_size=batch_size, collapse_2d=collapse_2d, keep_vol_size=True, infinite=True, patch_rand=patch_rand, patch_rand_seed=patch_rand_seed, variable_batch_size=True, nb_labels_reshape=0) assert (next(prior_gen) is None), 'bad prior gen setup' while 1: gen_sample = next(gen) gs_sample = _get_shape(gen_sample) prior_batch = prior_gen.send(gs_sample) (yield (gen_sample, prior_batch))
2,237,103,450,112,340,500
# # add a prior generator to a given generator # with the number of patches in batch matching output of gen
ext/neuron/neuron/generators.py
add_prior
adriaan16/brainstorm
python
def add_prior(gen, proc_vol_fn=None, proc_seg_fn=None, prior_type='location', prior_file=None, prior_feed='input', patch_stride=1, patch_size=None, batch_size=1, collapse_2d=None, extract_slice=None, force_binary=False, verbose=False, patch_rand=False, patch_rand_seed=None): '\n #\n # add a prior generator to a given generator\n # with the number of patches in batch matching output of gen\n ' if (prior_type == 'location'): prior_vol = nd.volsize2ndgrid(vol_size) prior_vol = np.transpose(prior_vol, [1, 2, 3, 0]) prior_vol = np.expand_dims(prior_vol, axis=0) elif (prior_type == 'file'): with timer.Timer('loading prior', True): data = np.load(prior_file) prior_vol = data['prior'].astype('float16') else: with timer.Timer('loading prior', True): prior_vol = prior_file.astype('float16') if force_binary: nb_labels = prior_vol.shape[(- 1)] prior_vol[:, :, :, 1] = np.sum(prior_vol[:, :, :, 1:nb_labels], 3) prior_vol = np.delete(prior_vol, range(2, nb_labels), 3) nb_channels = prior_vol.shape[(- 1)] if (extract_slice is not None): if isinstance(extract_slice, int): prior_vol = prior_vol[:, :, extract_slice, np.newaxis, :] else: prior_vol = prior_vol[:, :, extract_slice, :] assert ((np.ndim(prior_vol) == 4) or (np.ndim(prior_vol) == 3)), 'prior is the wrong size' if (patch_size is None): patch_size = prior_vol.shape[0:3] assert (len(patch_size) == len(patch_stride)) prior_gen = patch(prior_vol, [*patch_size, nb_channels], patch_stride=[*patch_stride, nb_channels], batch_size=batch_size, collapse_2d=collapse_2d, keep_vol_size=True, infinite=True, patch_rand=patch_rand, patch_rand_seed=patch_rand_seed, variable_batch_size=True, nb_labels_reshape=0) assert (next(prior_gen) is None), 'bad prior gen setup' while 1: gen_sample = next(gen) gs_sample = _get_shape(gen_sample) prior_batch = prior_gen.send(gs_sample) (yield (gen_sample, prior_batch))
def vol_prior(*args, proc_vol_fn=None, proc_seg_fn=None, prior_type='location', prior_file=None, prior_feed='input', patch_stride=1, patch_size=None, batch_size=1, collapse_2d=None, extract_slice=None, force_binary=False, nb_input_feats=1, verbose=False, vol_rand_seed=None, patch_rand=False, **kwargs): '\n generator that appends prior to (volume, segmentation) depending on input\n e.g. could be ((volume, prior), segmentation)\n ' patch_rand_seed = None if patch_rand: patch_rand_seed = np.random.random() vol_gen = vol(*args, **kwargs, collapse_2d=collapse_2d, force_binary=False, verbose=verbose, vol_rand_seed=vol_rand_seed) gen = vol(*args, **kwargs, proc_vol_fn=None, proc_seg_fn=None, collapse_2d=collapse_2d, extract_slice=extract_slice, force_binary=force_binary, verbose=verbose, patch_size=patch_size, patch_stride=patch_stride, batch_size=batch_size, vol_rand_seed=vol_rand_seed, patch_rand=patch_rand, patch_rand_seed=patch_rand_seed, nb_input_feats=nb_input_feats) pgen = add_prior(gen, proc_vol_fn=proc_vol_fn, proc_seg_fn=proc_seg_fn, prior_type=prior_type, prior_file=prior_file, prior_feed=prior_feed, patch_stride=patch_stride, patch_size=patch_size, batch_size=batch_size, collapse_2d=collapse_2d, extract_slice=extract_slice, force_binary=force_binary, verbose=verbose, patch_rand=patch_rand, patch_rand_seed=patch_rand_seed, vol_rand_seed=vol_rand_seed) while 1: (gen_sample, prior_batch) = next(pgen) (input_vol, output_vol) = gen_sample if (prior_feed == 'input'): (yield ([input_vol, prior_batch], output_vol)) else: assert (prior_feed == 'output') (yield (input_vol, [output_vol, prior_batch]))
-1,544,022,580,091,930,400
generator that appends prior to (volume, segmentation) depending on input e.g. could be ((volume, prior), segmentation)
ext/neuron/neuron/generators.py
vol_prior
adriaan16/brainstorm
python
def vol_prior(*args, proc_vol_fn=None, proc_seg_fn=None, prior_type='location', prior_file=None, prior_feed='input', patch_stride=1, patch_size=None, batch_size=1, collapse_2d=None, extract_slice=None, force_binary=False, nb_input_feats=1, verbose=False, vol_rand_seed=None, patch_rand=False, **kwargs): '\n generator that appends prior to (volume, segmentation) depending on input\n e.g. could be ((volume, prior), segmentation)\n ' patch_rand_seed = None if patch_rand: patch_rand_seed = np.random.random() vol_gen = vol(*args, **kwargs, collapse_2d=collapse_2d, force_binary=False, verbose=verbose, vol_rand_seed=vol_rand_seed) gen = vol(*args, **kwargs, proc_vol_fn=None, proc_seg_fn=None, collapse_2d=collapse_2d, extract_slice=extract_slice, force_binary=force_binary, verbose=verbose, patch_size=patch_size, patch_stride=patch_stride, batch_size=batch_size, vol_rand_seed=vol_rand_seed, patch_rand=patch_rand, patch_rand_seed=patch_rand_seed, nb_input_feats=nb_input_feats) pgen = add_prior(gen, proc_vol_fn=proc_vol_fn, proc_seg_fn=proc_seg_fn, prior_type=prior_type, prior_file=prior_file, prior_feed=prior_feed, patch_stride=patch_stride, patch_size=patch_size, batch_size=batch_size, collapse_2d=collapse_2d, extract_slice=extract_slice, force_binary=force_binary, verbose=verbose, patch_rand=patch_rand, patch_rand_seed=patch_rand_seed, vol_rand_seed=vol_rand_seed) while 1: (gen_sample, prior_batch) = next(pgen) (input_vol, output_vol) = gen_sample if (prior_feed == 'input'): (yield ([input_vol, prior_batch], output_vol)) else: assert (prior_feed == 'output') (yield (input_vol, [output_vol, prior_batch]))
def vol_seg_prior(*args, proc_vol_fn=None, proc_seg_fn=None, prior_type='location', prior_file=None, prior_feed='input', patch_stride=1, patch_size=None, batch_size=1, collapse_2d=None, extract_slice=None, force_binary=False, nb_input_feats=1, verbose=False, vol_rand_seed=None, patch_rand=None, **kwargs): '\n generator that appends prior to (volume, segmentation) depending on input\n e.g. could be ((volume, prior), segmentation)\n ' patch_rand_seed = None if patch_rand: patch_rand_seed = np.random.random() gen = vol_seg(*args, **kwargs, proc_vol_fn=None, proc_seg_fn=None, collapse_2d=collapse_2d, extract_slice=extract_slice, force_binary=force_binary, verbose=verbose, patch_size=patch_size, patch_stride=patch_stride, batch_size=batch_size, vol_rand_seed=vol_rand_seed, patch_rand=patch_rand, patch_rand_seed=patch_rand_seed, nb_input_feats=nb_input_feats) pgen = add_prior(gen, proc_vol_fn=proc_vol_fn, proc_seg_fn=proc_seg_fn, prior_type=prior_type, prior_file=prior_file, prior_feed=prior_feed, patch_stride=patch_stride, patch_size=patch_size, batch_size=batch_size, collapse_2d=collapse_2d, extract_slice=extract_slice, force_binary=force_binary, verbose=verbose, patch_rand=patch_rand, patch_rand_seed=patch_rand_seed) while 1: (gen_sample, prior_batch) = next(pgen) (input_vol, output_vol) = gen_sample if (prior_feed == 'input'): (yield ([input_vol, prior_batch], output_vol)) else: assert (prior_feed == 'output') (yield (input_vol, [output_vol, prior_batch]))
1,835,908,042,440,738,000
generator that appends prior to (volume, segmentation) depending on input e.g. could be ((volume, prior), segmentation)
ext/neuron/neuron/generators.py
vol_seg_prior
adriaan16/brainstorm
python
def vol_seg_prior(*args, proc_vol_fn=None, proc_seg_fn=None, prior_type='location', prior_file=None, prior_feed='input', patch_stride=1, patch_size=None, batch_size=1, collapse_2d=None, extract_slice=None, force_binary=False, nb_input_feats=1, verbose=False, vol_rand_seed=None, patch_rand=None, **kwargs): '\n generator that appends prior to (volume, segmentation) depending on input\n e.g. could be ((volume, prior), segmentation)\n ' patch_rand_seed = None if patch_rand: patch_rand_seed = np.random.random() gen = vol_seg(*args, **kwargs, proc_vol_fn=None, proc_seg_fn=None, collapse_2d=collapse_2d, extract_slice=extract_slice, force_binary=force_binary, verbose=verbose, patch_size=patch_size, patch_stride=patch_stride, batch_size=batch_size, vol_rand_seed=vol_rand_seed, patch_rand=patch_rand, patch_rand_seed=patch_rand_seed, nb_input_feats=nb_input_feats) pgen = add_prior(gen, proc_vol_fn=proc_vol_fn, proc_seg_fn=proc_seg_fn, prior_type=prior_type, prior_file=prior_file, prior_feed=prior_feed, patch_stride=patch_stride, patch_size=patch_size, batch_size=batch_size, collapse_2d=collapse_2d, extract_slice=extract_slice, force_binary=force_binary, verbose=verbose, patch_rand=patch_rand, patch_rand_seed=patch_rand_seed) while 1: (gen_sample, prior_batch) = next(pgen) (input_vol, output_vol) = gen_sample if (prior_feed == 'input'): (yield ([input_vol, prior_batch], output_vol)) else: assert (prior_feed == 'output') (yield (input_vol, [output_vol, prior_batch]))
def vol_seg_hack(volpath, segpath, proc_vol_fn=None, proc_seg_fn=None, verbose=False, name='vol_seg', ext='.npz', nb_restart_cycle=None, nb_labels_reshape=(- 1), collapse_2d=None, force_binary=False, nb_input_feats=1, relabel=None, vol_rand_seed=None, seg_binary=False, vol_subname='norm', seg_subname='aseg', **kwargs): '\n generator with (volume, segmentation)\n\n verbose is passed down to the base generators.py primitive generator (e.g. vol, here)\n\n ** kwargs are any named arguments for vol(...),\n except verbose, data_proc_fn, ext, nb_labels_reshape and name\n (which this function will control when calling vol())\n ' vol_gen = vol(volpath, **kwargs, ext=ext, nb_restart_cycle=nb_restart_cycle, collapse_2d=collapse_2d, force_binary=False, relabel=None, data_proc_fn=proc_vol_fn, nb_labels_reshape=1, name=(name + ' vol'), verbose=verbose, nb_feats=nb_input_feats, vol_rand_seed=vol_rand_seed) while 1: input_vol = next(vol_gen).astype('float16') (yield input_vol)
-7,127,576,377,244,396,000
generator with (volume, segmentation) verbose is passed down to the base generators.py primitive generator (e.g. vol, here) ** kwargs are any named arguments for vol(...), except verbose, data_proc_fn, ext, nb_labels_reshape and name (which this function will control when calling vol())
ext/neuron/neuron/generators.py
vol_seg_hack
adriaan16/brainstorm
python
def vol_seg_hack(volpath, segpath, proc_vol_fn=None, proc_seg_fn=None, verbose=False, name='vol_seg', ext='.npz', nb_restart_cycle=None, nb_labels_reshape=(- 1), collapse_2d=None, force_binary=False, nb_input_feats=1, relabel=None, vol_rand_seed=None, seg_binary=False, vol_subname='norm', seg_subname='aseg', **kwargs): '\n generator with (volume, segmentation)\n\n verbose is passed down to the base generators.py primitive generator (e.g. vol, here)\n\n ** kwargs are any named arguments for vol(...),\n except verbose, data_proc_fn, ext, nb_labels_reshape and name\n (which this function will control when calling vol())\n ' vol_gen = vol(volpath, **kwargs, ext=ext, nb_restart_cycle=nb_restart_cycle, collapse_2d=collapse_2d, force_binary=False, relabel=None, data_proc_fn=proc_vol_fn, nb_labels_reshape=1, name=(name + ' vol'), verbose=verbose, nb_feats=nb_input_feats, vol_rand_seed=vol_rand_seed) while 1: input_vol = next(vol_gen).astype('float16') (yield input_vol)
def vol_sr_slices(volpath, nb_input_slices, nb_slice_spacing, batch_size=1, ext='.npz', vol_rand_seed=None, nb_restart_cycle=None, name='vol_sr_slices', rand_slices=True, simulate_whole_sparse_vol=False, verbose=False): '\n default generator for slice-wise super resolution\n ' def indices_to_batch(vol_data, start_indices, nb_slices_in_subvol, nb_slice_spacing): idx = start_indices[0] output_batch = np.expand_dims(vol_data[:, :, idx:(idx + nb_slices_in_subvol)], 0) input_batch = np.expand_dims(vol_data[:, :, idx:(idx + nb_slices_in_subvol):(nb_slice_spacing + 1)], 0) for idx in start_indices[1:]: out_sel = np.expand_dims(vol_data[:, :, idx:(idx + nb_slices_in_subvol)], 0) output_batch = np.vstack([output_batch, out_sel]) input_batch = np.vstack([input_batch, np.expand_dims(vol_data[:, :, idx:(idx + nb_slices_in_subvol):(nb_slice_spacing + 1)], 0)]) output_batch = np.reshape(output_batch, [batch_size, (- 1), output_batch.shape[(- 1)]]) return (input_batch, output_batch) print('vol_sr_slices: SHOULD PROPERLY RANDOMIZE accross different subjects', file=sys.stderr) volfiles = _get_file_list(volpath, ext, vol_rand_seed) nb_files = len(volfiles) if (nb_restart_cycle is None): nb_restart_cycle = nb_files nb_slices_in_subvol = (((nb_input_slices - 1) * (nb_slice_spacing + 1)) + 1) fileidx = (- 1) while 1: fileidx = np.mod((fileidx + 1), nb_restart_cycle) if (verbose and (fileidx == 0)): print(('starting %s cycle' % name)) try: vol_data = _load_medical_volume(os.path.join(volpath, volfiles[fileidx]), ext, verbose) except: debug_error_msg = '#files: %d, fileidx: %d, nb_restart_cycle: %d. error: %s' print((debug_error_msg % (len(volfiles), fileidx, nb_restart_cycle, sys.exc_info()[0]))) raise nb_slices = vol_data.shape[2] nb_start_slices = ((nb_slices - nb_slices_in_subvol) + 1) if simulate_whole_sparse_vol: init_slice = 0 if rand_slices: init_slice = np.random.randint(0, high=(nb_start_slices - 1)) all_start_indices = list(range(init_slice, nb_start_slices, (nb_slice_spacing + 1))) for batch_start in range(0, len(all_start_indices), (batch_size * (nb_input_slices - 1))): start_indices = [all_start_indices[s] for s in range(batch_start, (batch_start + batch_size))] (input_batch, output_batch) = indices_to_batch(vol_data, start_indices, nb_slices_in_subvol, nb_slice_spacing) (yield (input_batch, output_batch)) elif rand_slices: assert (not simulate_whole_sparse_vol) start_indices = np.random.choice(range(nb_start_slices), size=batch_size, replace=False) (input_batch, output_batch) = indices_to_batch(vol_data, start_indices, nb_slices_in_subvol, nb_slice_spacing) (yield (input_batch, output_batch)) else: for batch_start in range(0, nb_start_slices, batch_size): start_indices = list(range(batch_start, (batch_start + batch_size))) (input_batch, output_batch) = indices_to_batch(vol_data, start_indices, nb_slices_in_subvol, nb_slice_spacing) (yield (input_batch, output_batch))
5,147,564,931,928,816,000
default generator for slice-wise super resolution
ext/neuron/neuron/generators.py
vol_sr_slices
adriaan16/brainstorm
python
def vol_sr_slices(volpath, nb_input_slices, nb_slice_spacing, batch_size=1, ext='.npz', vol_rand_seed=None, nb_restart_cycle=None, name='vol_sr_slices', rand_slices=True, simulate_whole_sparse_vol=False, verbose=False): '\n \n ' def indices_to_batch(vol_data, start_indices, nb_slices_in_subvol, nb_slice_spacing): idx = start_indices[0] output_batch = np.expand_dims(vol_data[:, :, idx:(idx + nb_slices_in_subvol)], 0) input_batch = np.expand_dims(vol_data[:, :, idx:(idx + nb_slices_in_subvol):(nb_slice_spacing + 1)], 0) for idx in start_indices[1:]: out_sel = np.expand_dims(vol_data[:, :, idx:(idx + nb_slices_in_subvol)], 0) output_batch = np.vstack([output_batch, out_sel]) input_batch = np.vstack([input_batch, np.expand_dims(vol_data[:, :, idx:(idx + nb_slices_in_subvol):(nb_slice_spacing + 1)], 0)]) output_batch = np.reshape(output_batch, [batch_size, (- 1), output_batch.shape[(- 1)]]) return (input_batch, output_batch) print('vol_sr_slices: SHOULD PROPERLY RANDOMIZE accross different subjects', file=sys.stderr) volfiles = _get_file_list(volpath, ext, vol_rand_seed) nb_files = len(volfiles) if (nb_restart_cycle is None): nb_restart_cycle = nb_files nb_slices_in_subvol = (((nb_input_slices - 1) * (nb_slice_spacing + 1)) + 1) fileidx = (- 1) while 1: fileidx = np.mod((fileidx + 1), nb_restart_cycle) if (verbose and (fileidx == 0)): print(('starting %s cycle' % name)) try: vol_data = _load_medical_volume(os.path.join(volpath, volfiles[fileidx]), ext, verbose) except: debug_error_msg = '#files: %d, fileidx: %d, nb_restart_cycle: %d. error: %s' print((debug_error_msg % (len(volfiles), fileidx, nb_restart_cycle, sys.exc_info()[0]))) raise nb_slices = vol_data.shape[2] nb_start_slices = ((nb_slices - nb_slices_in_subvol) + 1) if simulate_whole_sparse_vol: init_slice = 0 if rand_slices: init_slice = np.random.randint(0, high=(nb_start_slices - 1)) all_start_indices = list(range(init_slice, nb_start_slices, (nb_slice_spacing + 1))) for batch_start in range(0, len(all_start_indices), (batch_size * (nb_input_slices - 1))): start_indices = [all_start_indices[s] for s in range(batch_start, (batch_start + batch_size))] (input_batch, output_batch) = indices_to_batch(vol_data, start_indices, nb_slices_in_subvol, nb_slice_spacing) (yield (input_batch, output_batch)) elif rand_slices: assert (not simulate_whole_sparse_vol) start_indices = np.random.choice(range(nb_start_slices), size=batch_size, replace=False) (input_batch, output_batch) = indices_to_batch(vol_data, start_indices, nb_slices_in_subvol, nb_slice_spacing) (yield (input_batch, output_batch)) else: for batch_start in range(0, nb_start_slices, batch_size): start_indices = list(range(batch_start, (batch_start + batch_size))) (input_batch, output_batch) = indices_to_batch(vol_data, start_indices, nb_slices_in_subvol, nb_slice_spacing) (yield (input_batch, output_batch))
def img_seg(volpath, segpath, batch_size=1, verbose=False, nb_restart_cycle=None, name='img_seg', ext='.png', vol_rand_seed=None, **kwargs): '\n generator for (image, segmentation)\n ' def imggen(path, ext, nb_restart_cycle=None): '\n TODO: should really use the volume generators for this\n ' files = _get_file_list(path, ext, vol_rand_seed) if (nb_restart_cycle is None): nb_restart_cycle = len(files) idx = (- 1) while 1: idx = np.mod((idx + 1), nb_restart_cycle) im = scipy.misc.imread(os.path.join(path, files[idx]))[:, :, 0] (yield im.reshape(((1,) + im.shape))) img_gen = imggen(volpath, ext, nb_restart_cycle) seg_gen = imggen(segpath, ext) while 1: input_vol = np.vstack([(next(img_gen).astype('float16') / 255) for i in range(batch_size)]) input_vol = np.expand_dims(input_vol, axis=(- 1)) output_vols = [np_utils.to_categorical(next(seg_gen).astype('int8'), num_classes=2) for i in range(batch_size)] output_vol = np.vstack([np.expand_dims(f, axis=0) for f in output_vols]) (yield (input_vol, output_vol))
8,615,579,906,294,732,000
generator for (image, segmentation)
ext/neuron/neuron/generators.py
img_seg
adriaan16/brainstorm
python
def img_seg(volpath, segpath, batch_size=1, verbose=False, nb_restart_cycle=None, name='img_seg', ext='.png', vol_rand_seed=None, **kwargs): '\n \n ' def imggen(path, ext, nb_restart_cycle=None): '\n TODO: should really use the volume generators for this\n ' files = _get_file_list(path, ext, vol_rand_seed) if (nb_restart_cycle is None): nb_restart_cycle = len(files) idx = (- 1) while 1: idx = np.mod((idx + 1), nb_restart_cycle) im = scipy.misc.imread(os.path.join(path, files[idx]))[:, :, 0] (yield im.reshape(((1,) + im.shape))) img_gen = imggen(volpath, ext, nb_restart_cycle) seg_gen = imggen(segpath, ext) while 1: input_vol = np.vstack([(next(img_gen).astype('float16') / 255) for i in range(batch_size)]) input_vol = np.expand_dims(input_vol, axis=(- 1)) output_vols = [np_utils.to_categorical(next(seg_gen).astype('int8'), num_classes=2) for i in range(batch_size)] output_vol = np.vstack([np.expand_dims(f, axis=0) for f in output_vols]) (yield (input_vol, output_vol))
def _get_file_list(volpath, ext=None, vol_rand_seed=None): '\n get a list of files at the given path with the given extension\n ' files = [f for f in sorted(os.listdir(volpath)) if ((ext is None) or f.endswith(ext))] if (vol_rand_seed is not None): np.random.seed(vol_rand_seed) files = np.random.permutation(files).tolist() return files
3,140,400,078,776,378,000
get a list of files at the given path with the given extension
ext/neuron/neuron/generators.py
_get_file_list
adriaan16/brainstorm
python
def _get_file_list(volpath, ext=None, vol_rand_seed=None): '\n \n ' files = [f for f in sorted(os.listdir(volpath)) if ((ext is None) or f.endswith(ext))] if (vol_rand_seed is not None): np.random.seed(vol_rand_seed) files = np.random.permutation(files).tolist() return files
def _load_medical_volume(filename, ext, verbose=False): '\n load a medical volume from one of a number of file types\n ' with timer.Timer('load_vol', (verbose >= 2)): if (ext == '.npz'): vol_file = np.load(filename) vol_data = vol_file['vol_data'] elif (ext == 'npy'): vol_data = np.load(filename) elif ((ext == '.mgz') or (ext == '.nii') or (ext == '.nii.gz')): vol_med = nib.load(filename) vol_data = vol_med.get_data() else: raise ValueError(('Unexpected extension %s' % ext)) return vol_data
1,786,754,206,587,903,200
load a medical volume from one of a number of file types
ext/neuron/neuron/generators.py
_load_medical_volume
adriaan16/brainstorm
python
def _load_medical_volume(filename, ext, verbose=False): '\n \n ' with timer.Timer('load_vol', (verbose >= 2)): if (ext == '.npz'): vol_file = np.load(filename) vol_data = vol_file['vol_data'] elif (ext == 'npy'): vol_data = np.load(filename) elif ((ext == '.mgz') or (ext == '.nii') or (ext == '.nii.gz')): vol_med = nib.load(filename) vol_data = vol_med.get_data() else: raise ValueError(('Unexpected extension %s' % ext)) return vol_data
def _to_categorical(y, num_classes=None, reshape=True): '\n # copy of keras.utils.np_utils.to_categorical, but with a boolean matrix instead of float\n\n Converts a class vector (integers) to binary class matrix.\n\n E.g. for use with categorical_crossentropy.\n\n # Arguments\n y: class vector to be converted into a matrix\n (integers from 0 to num_classes).\n num_classes: total number of classes.\n\n # Returns\n A binary matrix representation of the input.\n ' oshape = y.shape y = np.array(y, dtype='int').ravel() if (not num_classes): num_classes = (np.max(y) + 1) n = y.shape[0] categorical = np.zeros((n, num_classes), bool) categorical[(np.arange(n), y)] = 1 if reshape: categorical = np.reshape(categorical, [*oshape, num_classes]) return categorical
-1,377,369,910,124,192,800
# copy of keras.utils.np_utils.to_categorical, but with a boolean matrix instead of float Converts a class vector (integers) to binary class matrix. E.g. for use with categorical_crossentropy. # Arguments y: class vector to be converted into a matrix (integers from 0 to num_classes). num_classes: total number of classes. # Returns A binary matrix representation of the input.
ext/neuron/neuron/generators.py
_to_categorical
adriaan16/brainstorm
python
def _to_categorical(y, num_classes=None, reshape=True): '\n # copy of keras.utils.np_utils.to_categorical, but with a boolean matrix instead of float\n\n Converts a class vector (integers) to binary class matrix.\n\n E.g. for use with categorical_crossentropy.\n\n # Arguments\n y: class vector to be converted into a matrix\n (integers from 0 to num_classes).\n num_classes: total number of classes.\n\n # Returns\n A binary matrix representation of the input.\n ' oshape = y.shape y = np.array(y, dtype='int').ravel() if (not num_classes): num_classes = (np.max(y) + 1) n = y.shape[0] categorical = np.zeros((n, num_classes), bool) categorical[(np.arange(n), y)] = 1 if reshape: categorical = np.reshape(categorical, [*oshape, num_classes]) return categorical
def _npz_headers(npz, namelist=None): "\n taken from https://stackoverflow.com/a/43223420\n\n Takes a path to an .npz file, which is a Zip archive of .npy files.\n Generates a sequence of (name, shape, np.dtype).\n\n namelist is a list with variable names, ending in '.npy'. \n e.g. if variable 'var' is in the file, namelist could be ['var.npy']\n " with zipfile.ZipFile(npz) as archive: if (namelist is None): namelist = archive.namelist() for name in namelist: if (not name.endswith('.npy')): continue npy = archive.open(name) version = np.lib.format.read_magic(npy) (shape, fortran, dtype) = np.lib.format._read_array_header(npy, version) (yield (name[:(- 4)], shape, dtype))
-6,422,049,485,589,492,000
taken from https://stackoverflow.com/a/43223420 Takes a path to an .npz file, which is a Zip archive of .npy files. Generates a sequence of (name, shape, np.dtype). namelist is a list with variable names, ending in '.npy'. e.g. if variable 'var' is in the file, namelist could be ['var.npy']
ext/neuron/neuron/generators.py
_npz_headers
adriaan16/brainstorm
python
def _npz_headers(npz, namelist=None): "\n taken from https://stackoverflow.com/a/43223420\n\n Takes a path to an .npz file, which is a Zip archive of .npy files.\n Generates a sequence of (name, shape, np.dtype).\n\n namelist is a list with variable names, ending in '.npy'. \n e.g. if variable 'var' is in the file, namelist could be ['var.npy']\n " with zipfile.ZipFile(npz) as archive: if (namelist is None): namelist = archive.namelist() for name in namelist: if (not name.endswith('.npy')): continue npy = archive.open(name) version = np.lib.format.read_magic(npy) (shape, fortran, dtype) = np.lib.format._read_array_header(npy, version) (yield (name[:(- 4)], shape, dtype))
def imggen(path, ext, nb_restart_cycle=None): '\n TODO: should really use the volume generators for this\n ' files = _get_file_list(path, ext, vol_rand_seed) if (nb_restart_cycle is None): nb_restart_cycle = len(files) idx = (- 1) while 1: idx = np.mod((idx + 1), nb_restart_cycle) im = scipy.misc.imread(os.path.join(path, files[idx]))[:, :, 0] (yield im.reshape(((1,) + im.shape)))
-1,790,853,479,394,038,300
TODO: should really use the volume generators for this
ext/neuron/neuron/generators.py
imggen
adriaan16/brainstorm
python
def imggen(path, ext, nb_restart_cycle=None): '\n \n ' files = _get_file_list(path, ext, vol_rand_seed) if (nb_restart_cycle is None): nb_restart_cycle = len(files) idx = (- 1) while 1: idx = np.mod((idx + 1), nb_restart_cycle) im = scipy.misc.imread(os.path.join(path, files[idx]))[:, :, 0] (yield im.reshape(((1,) + im.shape)))
def main(argv): 'main method for standalone run' config_generator = FaucetConfigGenerator() filepath = '/tmp/faucet_config_dump' egress = 2 access = 3 devices = 1 topo_type = STACK argv = argv[1:] help_msg = '\n <python3> build_config.py -e <egress_switches> -a <access_switches> -d <devices per switch>\n -p <config path> -t <topology type (flat, corp, stack)>\n ' try: (opts, _) = getopt.getopt(argv, 'he:a:d:p:t:', ['egress=', 'access=', 'devices=', 'path=', 'type=']) except getopt.GetoptError: print(help_msg) sys.exit(2) for (opt, arg) in opts: if (opt == '-h'): print(help_msg) sys.exit() elif (opt in ('-e', '--egress')): egress = int(arg) elif (opt in ('-a', '--access')): access = int(arg) elif (opt in ('-d', '--devices')): devices = int(arg) elif (opt in ('-p', '--path')): filepath = arg elif (opt in ('-t', '--type')): topo_type = arg if (topo_type == FLAT): faucet_config = config_generator.create_flat_faucet_config(access, devices) elif (topo_type == CORP): faucet_config = config_generator.create_corp_faucet_config() elif (topo_type == STACK): faucet_config = config_generator.create_scale_faucet_config(egress, access, devices) else: raise Exception(('Unkown topology type: %s' % topo_type)) config_map = proto_dict(faucet_config) with open(filepath, 'w') as config_file: yaml.dump(config_map, config_file)
5,454,660,802,360,472,000
main method for standalone run
testing/python_lib/build_config.py
main
henry54809/forch
python
def main(argv): config_generator = FaucetConfigGenerator() filepath = '/tmp/faucet_config_dump' egress = 2 access = 3 devices = 1 topo_type = STACK argv = argv[1:] help_msg = '\n <python3> build_config.py -e <egress_switches> -a <access_switches> -d <devices per switch>\n -p <config path> -t <topology type (flat, corp, stack)>\n ' try: (opts, _) = getopt.getopt(argv, 'he:a:d:p:t:', ['egress=', 'access=', 'devices=', 'path=', 'type=']) except getopt.GetoptError: print(help_msg) sys.exit(2) for (opt, arg) in opts: if (opt == '-h'): print(help_msg) sys.exit() elif (opt in ('-e', '--egress')): egress = int(arg) elif (opt in ('-a', '--access')): access = int(arg) elif (opt in ('-d', '--devices')): devices = int(arg) elif (opt in ('-p', '--path')): filepath = arg elif (opt in ('-t', '--type')): topo_type = arg if (topo_type == FLAT): faucet_config = config_generator.create_flat_faucet_config(access, devices) elif (topo_type == CORP): faucet_config = config_generator.create_corp_faucet_config() elif (topo_type == STACK): faucet_config = config_generator.create_scale_faucet_config(egress, access, devices) else: raise Exception(('Unkown topology type: %s' % topo_type)) config_map = proto_dict(faucet_config) with open(filepath, 'w') as config_file: yaml.dump(config_map, config_file)
def create_scale_faucet_config(self, t1_switches, t2_switches, access_ports): 'Create Faucet config with stacking topology' setup_vlan = SETUP_VLAN test_vlan = TEST_VLAN vlans = {setup_vlan: Vlan(description='Faucet IoT'), test_vlan: Vlan(description='Orchestrated Testing')} t1_dps = [('nz-kiwi-t1sw%s' % (dp_index + 1)) for dp_index in range(t1_switches)] t2_dps = [('nz-kiwi-t2sw%s' % (dp_index + 1)) for dp_index in range(t2_switches)] dps = {} for (dp_index, dp_name) in enumerate(t1_dps): tap_vlan = (test_vlan if (not dp_index) else None) interfaces = self._build_dp_interfaces(dp_index, dps=t1_dps, t2_dps=t2_dps, tagged_vlans=[setup_vlan], tap_vlan=tap_vlan, egress_port=FAUCET_EGRESS_PORT, lacp=True) dps[dp_name] = self._build_datapath_config((T1_DP_ID_START + dp_index), interfaces, self._generate_dp_mac(T1_DP, dp_index)) for (dp_index, dp_name) in enumerate(t2_dps): interfaces = self._build_dp_interfaces(dp_index, t1_dps=t1_dps, access_ports=access_ports, native_vlan=setup_vlan, port_acl='uniform_acl', lacp=True) dps[dp_name] = self._build_datapath_config((T2_DP_ID_START + dp_index), interfaces, self._generate_dp_mac(T2_DP, dp_index)) return FaucetConfig(dps=dps, version=2, include=['uniform.yaml'], vlans=vlans)
2,438,252,111,082,969,000
Create Faucet config with stacking topology
testing/python_lib/build_config.py
create_scale_faucet_config
henry54809/forch
python
def create_scale_faucet_config(self, t1_switches, t2_switches, access_ports): setup_vlan = SETUP_VLAN test_vlan = TEST_VLAN vlans = {setup_vlan: Vlan(description='Faucet IoT'), test_vlan: Vlan(description='Orchestrated Testing')} t1_dps = [('nz-kiwi-t1sw%s' % (dp_index + 1)) for dp_index in range(t1_switches)] t2_dps = [('nz-kiwi-t2sw%s' % (dp_index + 1)) for dp_index in range(t2_switches)] dps = {} for (dp_index, dp_name) in enumerate(t1_dps): tap_vlan = (test_vlan if (not dp_index) else None) interfaces = self._build_dp_interfaces(dp_index, dps=t1_dps, t2_dps=t2_dps, tagged_vlans=[setup_vlan], tap_vlan=tap_vlan, egress_port=FAUCET_EGRESS_PORT, lacp=True) dps[dp_name] = self._build_datapath_config((T1_DP_ID_START + dp_index), interfaces, self._generate_dp_mac(T1_DP, dp_index)) for (dp_index, dp_name) in enumerate(t2_dps): interfaces = self._build_dp_interfaces(dp_index, t1_dps=t1_dps, access_ports=access_ports, native_vlan=setup_vlan, port_acl='uniform_acl', lacp=True) dps[dp_name] = self._build_datapath_config((T2_DP_ID_START + dp_index), interfaces, self._generate_dp_mac(T2_DP, dp_index)) return FaucetConfig(dps=dps, version=2, include=['uniform.yaml'], vlans=vlans)
def create_flat_faucet_config(self, num_switches, num_access_ports): 'Create Faucet config with flat topology' setup_vlan = SETUP_VLAN switches = [('sw%s' % (sw_num + 1)) for sw_num in range(num_switches)] dps = {} vlans = {setup_vlan: Vlan(description='Faucet IoT')} for (sw_num, sw_name) in enumerate(switches): interfaces = self._build_dp_interfaces(sw_num, dps=switches, egress_port=FAUCET_EGRESS_PORT, tagged_vlans=[setup_vlan], access_ports=num_access_ports, native_vlan=setup_vlan, port_acl='uniform_acl', access_port_start=FLAT_ACCESS_PORT_START, lacp=True) dps[sw_name] = self._build_datapath_config((FLAT_DP_ID_START + sw_num), interfaces, self._generate_dp_mac(T2_DP, sw_num)) return FaucetConfig(dps=dps, version=2, include=['uniform.yaml'], vlans=vlans)
-516,401,817,215,027,650
Create Faucet config with flat topology
testing/python_lib/build_config.py
create_flat_faucet_config
henry54809/forch
python
def create_flat_faucet_config(self, num_switches, num_access_ports): setup_vlan = SETUP_VLAN switches = [('sw%s' % (sw_num + 1)) for sw_num in range(num_switches)] dps = {} vlans = {setup_vlan: Vlan(description='Faucet IoT')} for (sw_num, sw_name) in enumerate(switches): interfaces = self._build_dp_interfaces(sw_num, dps=switches, egress_port=FAUCET_EGRESS_PORT, tagged_vlans=[setup_vlan], access_ports=num_access_ports, native_vlan=setup_vlan, port_acl='uniform_acl', access_port_start=FLAT_ACCESS_PORT_START, lacp=True) dps[sw_name] = self._build_datapath_config((FLAT_DP_ID_START + sw_num), interfaces, self._generate_dp_mac(T2_DP, sw_num)) return FaucetConfig(dps=dps, version=2, include=['uniform.yaml'], vlans=vlans)