code
stringlengths
5
1M
repo_name
stringlengths
5
109
path
stringlengths
6
208
language
stringclasses
1 value
license
stringclasses
15 values
size
int64
5
1M
package motylwg.camusic.test import org.scalatest.FunSuite import org.junit.runner.RunWith import org.scalatest.junit.JUnitRunner import motylwg.camusic._ @RunWith(classOf[JUnitRunner]) class PlayerTest extends FunSuite { test("readBytes") { val data = List( List(true, true, true, true, false, false, false, false, true, true), List(false, false, false, false, true, true, true, true, false, false)) val pm = new PitchMapper(MinorPitches) val pitchMap = pm.getShuffledMap val dm = new DurationMapper(BalancedDurations) val durationMap = dm.getShuffledMap val source = new CaSource(pitchMap, durationMap) assert(source.readBytes(data) === (List(0xf0, 0x0f), List(List(true, true), List(false, false)))) } /* test("musicString") { val ints = List(0, 1, 2, 3) val caPlayer = new CaPlayer() assert(caPlayer.musicString(ints) === "C5i G5w C5h D5q") } */ }
motylwg/CaMusic
src/test/scala/PlayerTest.scala
Scala
mit
922
package hubcat import dispatch._ import org.json4s.JsonDSL._ import org.json4s.native.Printer.compact import org.json4s.native.JsonMethods.render trait RepoPulls extends Client.Completion { self: RepoRequests => private def base = apiHost / "repos" / user / repo / "pulls" class Pulls extends Client.Completion { class PullsComments extends Client.Completion { private [this] def base = apiHost / "repos" / user / repo / "pulls" / "comments" case class Filter( _sort: Option[String] = None, _direction: Option[String] = None) extends Client.Completion { /** http://developer.github.com/v3/pulls/comments/#list-comments-on-a-pull-request */ override def apply[T](handler: Client.Handler[T]) = request(base <<? Map.empty[String, String] ++ _sort.map("sort" -> _) ++ _direction.map("direction" -> _))(handler) } case class Comment(id: Int) extends Client.Completion { /** http://developer.github.com/v3/pulls/comments/#get-a-single-comment */ override def apply[T](handler: Client.Handler[T]) = request(base / id)(handler) /** http://developer.github.com/v3/pulls/comments/#edit-a-comment */ def edit(body: String) = complete(base.POST / id << compact(render(("body" -> body)))) /** http://developer.github.com/v3/pulls/comments/#delete-a-comment */ def delete = complete(base.DELETE / id) } override def apply[T](handler: Client.Handler[T]) = filter(handler) def filter = Filter() def get(id: Int) = Comment(id) } case class Filter( _state: Option[String] = None, _head: Option[String] = None, _base: Option[String] = None, _accept: String = Accept.GithubJson) extends Client.Completion { def state(s: String) = copy(_state = Some(s)) def head(h: String) = copy(_head = Some(h)) def base(b: String) = copy(_head = Some(b)) def accepting = new { def raw = copy(_accept = Accept.RawJson) def text = copy(_accept = Accept.TextJson) def html = copy(_accept = Accept.HtmlJson) def fullJson = copy(_accept = Accept.FullJson) } override def apply[T](handler: Client.Handler[T]) = request(RepoPulls.this.base <:< Map("Accept" -> _accept) <<? Map.empty[String, String] ++ _state.map("state" -> _) ++ _head.map("head" -> _) ++ _base.map("base" -> _))(handler) } /** http://developer.github.com/v3/pulls/#list-pull-requests */ def filter = Filter() /** http://developer.github.com/v3/pulls/#list-pull-requests */ override def apply[T](handler: Client.Handler[T]) = filter(handler) /** http://developer.github.com/v3/pulls/#create-a-pull-request */ def create(title: String, head: String) = PullBuilder(title, head) def comments = new PullsComments } /** Operations defined for a specific pull request */ case class Pull( id: Int, _accept: String = Accept.GithubJson) extends Client.Completion { private def acceptHeader = Map("Accept" -> _accept) class PullComments extends Client.Completion { private [this] def base = apiHost / "repos" / user / repo / "pulls" / id / "comments" /** http://developer.github.com/v3/pulls/comments/#list-comments-on-a-pull-request */ override def apply[T](handler: Client.Handler[T]) = request(base)(handler) /** Starts a new thread of review. http://developer.github.com/v3/pulls/comments/#create-a-comment */ def create(body: String, commit: String, path: String, position: Int) = complete(base.POST << compact( render(("body" -> body) ~ ("commit_id" -> commit) ~ ("path" -> path) ~ ("position" -> position)))) /** Creates a response in reply to a thread of review. http://developer.github.com/v3/pulls/comments/#create-a-comment */ def reply(to: Int, body: String) = complete(base.POST << compact(render( ("body" -> body) ~ ("in_reply_to" -> to)))) } /** Update operation fields */ case class Update( _title: Option[String] = None, _body: Option[String] = None, _state: Option[String] = None) extends Client.Completion { def title(t: String) = copy(_title = Some(t)) def body(b: String) = copy(_body = Some(b)) def state(s: String) = copy(_state = Some(s)) override def apply[T](handler: Client.Handler[T]) = request(base.PATCH / id << pmap)(handler) private def pmap = compact(render( ("title" -> _title) ~ ("body" -> _body) ~ ("state" -> _state))) } def accepting = new { def raw = copy(_accept = Accept.RawJson) def text = copy(_accept = Accept.TextJson) def html = copy(_accept = Accept.HtmlJson) def fullJson = copy(_accept = Accept.FullJson) def diff = copy(_accept = Accept.Diff) def patch = copy(_accept = Accept.Patch) } /** http://developer.github.com/v3/pulls/#get-a-single-pull-request */ override def apply[T](handler: Client.Handler[T]) = request(base / id <:< acceptHeader)(handler) /** http://developer.github.com/v3/pulls/#update-a-pull-request */ def update = Update() /** http://developer.github.com/v3/pulls/#list-commits-on-a-pull-request */ def commits = complete(base / id / "commits" <:< acceptHeader) /** http://developer.github.com/v3/pulls/#list-pull-requests-files */ def files = complete(base / id / "files" <:< acceptHeader) /** http://developer.github.com/v3/pulls/#get-if-a-pull-request-has-been-merged */ def merged = complete(base / id / "merge") /** http://developer.github.com/v3/pulls/#merge-a-pull-request-merge-buttontrade */ def merge(msg: Option[String] = None) = complete(base.PUT / id / "merge" << compact(render(("commit_message" -> msg)))) def comments = new PullComments } /** Builder for creating a new pull request */ case class PullBuilder( title: String, head: String, _base: String = "master", _body: Option[String] = None, _issue: Option[Int] = None) extends Client.Completion { def body(b: String) = copy(_body = Some(b)) def base(b: String) = copy(_base = b) override def apply[T](handler: Client.Handler[T]) = request(RepoPulls.this.base.POST << pmap)(handler) def pmap = compact(render( ("title" -> title) ~ ("body" -> _body) ~ ("base" -> _base) ~ ("head" -> head) ~ ("issue" -> _issue))) } def pulls = new Pulls def pull(id: Int): Pull = Pull(id) }
rintcius/hubcat
src/main/scala/pulls.scala
Scala
mit
6,768
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.spark.sql.hive.execution.command import org.apache.spark.sql.{CarbonEnv, Row, SparkSession} import org.apache.spark.sql.execution.command.{CarbonDropTableCommand, DropDatabaseCommand, RunnableCommand} case class CarbonDropDatabaseCommand(command: DropDatabaseCommand) extends RunnableCommand { override val output = command.output override def run(sparkSession: SparkSession): Seq[Row] = { val dbName = command.databaseName // DropHiveDB command will fail if cascade is false and one or more table exists in database val rows = command.run(sparkSession) if (command.cascade) { val tablesInDB = CarbonEnv.get.carbonMetastore.getAllTables() .filterNot(_.database.exists(_.equalsIgnoreCase(dbName))) tablesInDB.foreach { tableName => CarbonDropTableCommand(true, Some(dbName), tableName.table).run(sparkSession) } } CarbonEnv.get.carbonMetastore.dropDatabaseDirectory(dbName) rows } }
Sephiroth-Lin/incubator-carbondata
integration/spark2/src/main/scala/org/apache/spark/sql/execution/command/CarbonHiveCommands.scala
Scala
apache-2.0
1,778
package org.automanlang.core.question import org.automanlang.core.AutomanAdapter import org.automanlang.core.answer.{Answer, ScalarOutcome, AbstractScalarAnswer} import scala.concurrent.ExecutionContext.Implicits.global abstract class DiscreteScalarQuestion extends Question { type AA = AbstractScalarAnswer[A] type O = ScalarOutcome[A] protected var _confidence: Double = 0.95 def confidence_=(c: Double) { _confidence = c } def confidence: Double = _confidence def num_possibilities: BigInt protected[automanlang] def getOutcome(adapter: AutomanAdapter) : O = { ScalarOutcome(this, schedulerFuture(adapter)) } protected[automanlang] def composeOutcome(o: O, adapter: AutomanAdapter) : O = { // unwrap future from previous Outcome val f = o.f map { case Answer(value, cost, conf, id, dist) => if (this.confidence <= conf) { Answer( value, BigDecimal(0.00).setScale(2, math.BigDecimal.RoundingMode.FLOOR), conf, id, dist ) } else { startScheduler(adapter) } case _ => startScheduler(adapter) } ScalarOutcome(this, f) } }
dbarowy/AutoMan
libautoman/src/main/scala/org/automanlang/core/question/DiscreteScalarQuestion.scala
Scala
gpl-2.0
1,193
/* * Copyright (c) 2016 SnappyData, Inc. All rights reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); you * may not use this file except in compliance with the License. You * may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or * implied. See the License for the specific language governing * permissions and limitations under the License. See accompanying * LICENSE file. */ package org.apache.spark.sql.streaming import scala.reflect.runtime.universe.TypeTag import org.apache.spark.sql.catalyst.encoders.{ExpressionEncoder, RowEncoder} import org.apache.spark.sql.catalyst.expressions.AttributeReference import org.apache.spark.sql.catalyst.{InternalRow, JavaTypeInference} import org.apache.spark.sql.execution.datasources.LogicalRelation import org.apache.spark.sql.hive.SnappyStoreHiveCatalog import org.apache.spark.sql.sources.SchemaRelationProvider import org.apache.spark.sql.types.StructType import org.apache.spark.sql.{AnalysisException, Row} import org.apache.spark.streaming.SnappyStreamingContext import org.apache.spark.streaming.api.java.JavaDStream import org.apache.spark.streaming.dstream.DStream object StreamSqlHelper { def registerRelationDestroy(): Unit = { SnappyStoreHiveCatalog.registerRelationDestroy() } def clearStreams(): Unit = { StreamBaseRelation.clearStreams() } /** * Returns a Catalyst Schema for the given java bean class. */ protected def getSchema(beanClass: Class[_]): Seq[AttributeReference] = { val (dataType, _) = JavaTypeInference.inferDataType(beanClass) dataType.asInstanceOf[StructType].fields.map { f => AttributeReference(f.name, f.dataType, f.nullable)() } } def getSchemaDStream(ssc: SnappyStreamingContext, tableName: String): SchemaDStream = { val catalog = ssc.snappySession.sessionState.catalog catalog.lookupRelation(catalog.newQualifiedTableName(tableName)) match { case LogicalRelation(sr: StreamPlan, _, _) => new SchemaDStream(ssc, LogicalDStreamPlan(sr.schema.toAttributes, sr.rowStream)(ssc)) case _ => throw new AnalysisException(s"Table $tableName not a stream table") } } /** * Creates a [[SchemaDStream]] from an DStream of Product (e.g. case classes). */ def createSchemaDStream[A <: Product : TypeTag](ssc: SnappyStreamingContext, stream: DStream[A]): SchemaDStream = { val encoder = ExpressionEncoder[A]() val schema = encoder.schema val logicalPlan = LogicalDStreamPlan(schema.toAttributes, stream.map(encoder.toRow(_).copy()))(ssc) new SchemaDStream(ssc, logicalPlan) } def createSchemaDStream(ssc: SnappyStreamingContext, rowStream: DStream[Row], schema: StructType): SchemaDStream = { val encoder = RowEncoder(schema) val logicalPlan = LogicalDStreamPlan(schema.toAttributes, rowStream.map(encoder.toRow(_).copy()))(ssc) new SchemaDStream(ssc, logicalPlan) } def createSchemaDStream(ssc: SnappyStreamingContext, rowStream: JavaDStream[_], beanClass: Class[_]): SchemaDStream = { val encoder = ExpressionEncoder.javaBean(beanClass.asInstanceOf[Class[Any]]) val schema = encoder.schema val logicalPlan = LogicalDStreamPlan(schema.toAttributes, rowStream.dstream.map(encoder.toRow(_).copy()))(ssc) new SchemaDStream(ssc, logicalPlan) } } trait StreamPlan { def rowStream: DStream[InternalRow] def schema: StructType } trait StreamPlanProvider extends SchemaRelationProvider
vjr/snappydata
core/src/main/scala/org/apache/spark/sql/streaming/StreamSqlHelper.scala
Scala
apache-2.0
3,733
/* * Copyright 2017-2022 John Snow Labs * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package com.johnsnowlabs.nlp /** * Trait used to create annotators with input columns of variable length. * */ trait HasMultipleInputAnnotationCols extends HasInputAnnotationCols { /** Annotator reference id. The Annotator type is the same for any of the input columns*/ val inputAnnotatorType: String lazy override val inputAnnotatorTypes: Array[String] = getInputCols.map(_ =>inputAnnotatorType) /** * Columns that contain annotations necessary to run this annotator * AnnotatorType is the same for all input columns in that annotator. */ override def setInputCols(value: Array[String]): this.type = { set(inputCols, value) } }
JohnSnowLabs/spark-nlp
src/main/scala/com/johnsnowlabs/nlp/HasMultipleInputAnnotationCols.scala
Scala
apache-2.0
1,271
package org.jetbrains.plugins.scala package worksheet.processor import com.intellij.openapi.vfs.newvfs.FileAttribute import com.intellij.psi.PsiFile /** * User: Dmitry.Naydanov * Date: 30.07.14. */ trait WorksheetPerFileConfig { protected val enabled = "enabled" protected val disabled = "disable" def isEnabled(file: PsiFile, attribute: FileAttribute): Boolean = FileAttributeUtilCache.readAttribute(attribute, file).contains("enabled") def setEnabled(file: PsiFile, attribute: FileAttribute, e: Boolean) { FileAttributeUtilCache.writeAttribute(attribute, file, if (e) enabled else disabled) } }
ilinum/intellij-scala
src/org/jetbrains/plugins/scala/worksheet/processor/WorksheetPerFileConfig.scala
Scala
apache-2.0
618
/* * Copyright 2017 HM Revenue & Customs * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package uk.gov.hmrc.ct.accounts.frsse2008.calculations import org.joda.time.{LocalDate, Period, PeriodType} object PeriodCalculator { def periodHeadingComponents(startDate: LocalDate, endDate: LocalDate): PeriodHeadingComponents = { val friendlyEndDate = endDate.toString("d MMM yyyy") val yearEndDate = endDate.toString("yyyy") val months = monthsInPeriod(startDate, endDate) months match { case 12 => PeriodHeadingComponents(monthCount = 12, messageKey = "", dateText = yearEndDate) case months if (months > 1) => PeriodHeadingComponents(monthCount = months, messageKey = "periodHeader.plural", dateText = friendlyEndDate) case _ => PeriodHeadingComponents(monthCount = months, messageKey = "periodHeader.singular", dateText = friendlyEndDate) } } private def monthsInPeriod(startDate: LocalDate, endDate: LocalDate): Int = { val period = new Period(startDate.minusDays(1), endDate, PeriodType.yearMonthDay().withYearsRemoved()) period match { case p if p.getDays > 15 => p.getMonths + 1 case p if p.getMonths < 1 => 1 case p => p.getMonths } } } case class PeriodHeadingComponents(monthCount: Int, messageKey: String, dateText: String)
liquidarmour/ct-calculations
src/main/scala/uk/gov/hmrc/ct/accounts/frsse2008/calculations/PeriodCalculator.scala
Scala
apache-2.0
1,829
package com.cloudray.scalapress.search import org.scalatest.{OneInstancePerTest, FunSuite} import org.scalatest.mock.MockitoSugar /** @author Stephen Samuel */ class FacetFieldTest extends FunSuite with MockitoSugar with OneInstancePerTest { test("facet field apply") { assert(TagsFacetField === FacetField("tags").get) assert(AttributeFacetField(4) === FacetField("attr_facet_4").get) assert(None === FacetField("asqew")) } }
vidyacraghav/scalapress
src/test/scala/com/cloudray/scalapress/search/FacetFieldTest.scala
Scala
apache-2.0
447
package controllers.admin import scalaz._ import Scalaz._ import scalaz.Validation import scalaz.Validation.FlatMap._ import scalaz.NonEmptyList._ import net.liftweb.json._ import net.liftweb.json.JsonParser._ import io.megam.auth.funnel.{ FunnelResponse, FunnelResponses } import io.megam.auth.funnel.FunnelErrors._ import io.megam.auth.stack.Role._ import play.api.mvc._ import controllers.stack.Results import controllers.stack.{APIAuthElement, PermissionElement} object Balances extends Controller with APIAuthElement with PermissionElement { def update = StackAction(parse.tolerantText, AuthorityKey -> Administrator) { implicit request => (Validation.fromTryCatchThrowable[Result, Throwable] { reqFunneled match { case Success(succ) => { val freq = succ.getOrElse(throw new CannotAuthenticateError("Invalid header.", "Read docs.megam.io/api.")) val email = freq.maybeEmail.getOrElse(throw new CannotAuthenticateError("Email not found (or) invalid.", "Read docs.megam.io/api.")) val org = freq.maybeOrg.getOrElse(throw new CannotAuthenticateError("Org not found (or) invalid.", "Read docs.megam.io/api.")) val admin = canPermit(grabAuthBag).getOrElse(throw new PermissionNotThere("admin authority is required to access this resource.", "Read docs.megam.io/api.")) val clientAPIBody = freq.clientAPIBody.getOrElse(throw new Error("Body not found (or) invalid.")) models.admin.Balances.update(clientAPIBody) match { case Success(succ) => Status(CREATED)( FunnelResponse(CREATED, "Your balances updated successfully.", "Megam::Balances").toJson(true)) case Failure(err) => val rn: FunnelResponse = new HttpReturningError(err) Status(rn.code)(rn.toJson(true)) } } case Failure(err) => { val rn: FunnelResponse = new HttpReturningError(err) Status(rn.code)(rn.toJson(true)) } } }).fold(succ = { a: Result => a }, fail = { t: Throwable => { val rn: FunnelResponse = new HttpReturningError(nels(t)); Status(rn.code)(rn.toJson(true)) } }) } }
indykish/vertice_gateway
app/controllers/admin/Balances.scala
Scala
mit
2,186
/** * Copyright 2015 Zaradai * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package com.zaradai.lattrac import com.zaradai.lattrac.capture._ import com.zaradai.lattrac.store.Observer class LatencyServiceDecorator(builder: LatencyBuilder) extends LatencyTracerService { private[this] lazy val service = builder.buildWithAutoLifecycle override def trace(id: String, location: String): Unit = service.trace(id, location) override def observe(observer: Observer[TraceEvent]): Unit = service.observe(observer) } object FineLatencyTracer extends LatencyServiceDecorator(LatencyTracerBuilder.nanos.inMemory.disruptored) object FineLatencyTracerBackedByMongo extends LatencyServiceDecorator(LatencyTracerBuilder.nanos.usingMongo().disruptored) object CourseLatencyTracer extends LatencyServiceDecorator(LatencyTracerBuilder.millis.inMemory.queued) object CourseLatencyTracerBackByMongo extends LatencyServiceDecorator(LatencyTracerBuilder.millis.usingMongo().queued)
zaradai/lattrac
src/main/scala/com/zaradai/lattrac/LatencyTracer.scala
Scala
apache-2.0
1,493
package com.ibm.spark.kernel.api import java.io.{InputStream, PrintStream} import com.ibm.spark.comm.CommManager import com.ibm.spark.interpreter._ import com.ibm.spark.kernel.protocol.v5._ import com.ibm.spark.kernel.protocol.v5.kernel.ActorLoader import com.ibm.spark.magic.MagicLoader import com.typesafe.config.Config import org.mockito.Mockito._ import org.scalatest.mock.MockitoSugar import org.scalatest.{BeforeAndAfter, FunSpec, Matchers} import com.ibm.spark.global.ExecuteRequestState class KernelSpec extends FunSpec with Matchers with MockitoSugar with BeforeAndAfter { private val BadCode = Some("abc foo bar") private val GoodCode = Some("val foo = 1") private val ErrorCode = Some("val foo = bar") private val ErrorMsg = "Name: error\\n" + "Message: bad\\n" + "StackTrace: 1" private var mockConfig: Config = _ private var mockActorLoader: ActorLoader = _ private var mockInterpreter: Interpreter = _ private var mockCommManager: CommManager = _ private var mockMagicLoader: MagicLoader = _ private var kernel: KernelLike = _ before { mockConfig = mock[Config] mockInterpreter = mock[Interpreter] when(mockInterpreter.interpret(BadCode.get)) .thenReturn((Results.Incomplete, null)) when(mockInterpreter.interpret(GoodCode.get)) .thenReturn((Results.Success, Left(new ExecuteOutput("ok")))) when(mockInterpreter.interpret(ErrorCode.get)) .thenReturn((Results.Error, Right(ExecuteError("error","bad", List("1"))))) mockCommManager = mock[CommManager] mockActorLoader = mock[ActorLoader] mockMagicLoader = mock[MagicLoader] kernel = new Kernel( mockConfig, mockActorLoader, mockInterpreter, mockCommManager, mockMagicLoader ) } after { ExecuteRequestState.reset() } describe("Kernel") { describe("#eval") { it("should return syntax error") { kernel eval BadCode should be((false, "Syntax Error!")) } it("should return ok") { kernel eval GoodCode should be((true, "ok")) } it("should return error") { kernel eval ErrorCode should be((false, ErrorMsg)) } it("should return error on None") { kernel eval None should be ((false, "Error!")) } } describe("#out") { it("should throw an exception if the ExecuteRequestState has not been set") { intercept[IllegalArgumentException] { kernel.out } } it("should create a new PrintStream instance if the ExecuteRequestState has been set") { ExecuteRequestState.processIncomingKernelMessage( new KernelMessage(Nil, "", mock[Header], mock[ParentHeader], mock[Metadata], "") ) kernel.out shouldBe a [PrintStream] } } describe("#err") { it("should throw an exception if the ExecuteRequestState has not been set") { intercept[IllegalArgumentException] { kernel.err } } it("should create a new PrintStream instance if the ExecuteRequestState has been set") { ExecuteRequestState.processIncomingKernelMessage( new KernelMessage(Nil, "", mock[Header], mock[ParentHeader], mock[Metadata], "") ) // TODO: Access the underlying streamType field to assert stderr? kernel.err shouldBe a [PrintStream] } } describe("#in") { it("should throw an exception if the ExecuteRequestState has not been set") { intercept[IllegalArgumentException] { kernel.in } } it("should create a new InputStream instance if the ExecuteRequestState has been set") { ExecuteRequestState.processIncomingKernelMessage( new KernelMessage(Nil, "", mock[Header], mock[ParentHeader], mock[Metadata], "") ) kernel.in shouldBe a [InputStream] } } describe("#stream") { it("should throw an exception if the ExecuteRequestState has not been set") { intercept[IllegalArgumentException] { kernel.stream } } it("should create a StreamMethods instance if the ExecuteRequestState has been set") { ExecuteRequestState.processIncomingKernelMessage( new KernelMessage(Nil, "", mock[Header], mock[ParentHeader], mock[Metadata], "") ) kernel.stream shouldBe a [StreamMethods] } } } }
codeaudit/spark-kernel
kernel/src/test/scala/com/ibm/spark/kernel/api/KernelSpec.scala
Scala
apache-2.0
4,425
package com.xored.scalajs.react.examples.hello import com.xored.scalajs.react._ object HelloMessage extends TypedReactSpec { case class State() case class Props(name: String) def getInitialState(self: This) = State() @scalax def render(self: This) = { <div>Hello {self.props.name}</div> } }
Aste88/scala-js-react
scalajs-react-examples/src/main/scala/com/xored/scalajs/react/examples/hello/HelloMessage.scala
Scala
apache-2.0
312
package feature.format import feature._ /** A record representing the information contained in one line of a file in GTF2.2 feature.format * ([[http://mblab.wustl.edu/GTF22.html feature.format specification]]) * * @param line String containing one valid GTF2.2 line with or without trailing newline character */ class GTF22Record(private val line: String) extends FeatureBuilderModifier { // Remove trailing comment, then trailing whitespace, then final semicolon private val trimmed: String = line.split("#")(0).replaceAll("""\\s+$""", "").replaceAll(";$", "") // Fields are tab-separated private val tokens: Array[String] = trimmed.split("\\t") validate() private def validate(): Unit = { if (!isComment) { // Can't have two tabs in a row if (tokens.contains("")) throw new IllegalArgumentException(s"Malformed GTF2.2 line. Empty field.\\n$line") // Must have at least 9 tab-separated fields if (tokens.length < 9) throw new IllegalArgumentException(s"Invalid GTF2.2 line. Must have at least 9 tab-separated fields.\\n$line") if (start >= end) throw new IllegalArgumentException(s"Invalid GTF2.2 line. Invalid start and end.\\n$line") if (start < 0) throw new IllegalArgumentException(s"Invalid GTF2.2 line. Invalid start position.\\n$line") if (frame.isDefined && (frame.get < 0 || frame.get > 2)) throw new IllegalArgumentException(s"Invalid GTF2.2 line. Invalid frame.\\n$line") // Compute lazy orientation and score so they get validated val o = orientation val s = score if (!ignore) { featureType match { case _: MatureRNA => // Check for required attributes gene_id and transcript_id if (!attributes.contains("gene_id")) throw new IllegalArgumentException(s"Invalid GTF2.2 line. Must have gene_id attribute.\\n$line") if (!attributes.contains("transcript_id")) throw new IllegalArgumentException(s"Invalid GTF2.2 line. Must have transcript_id attribute.\\n$line") case _ => Unit } } } } /** True if the line represents a comment (starting with '#'), false otherwise. */ lazy val isComment: Boolean = line.startsWith("#") /** True if the line is to be ignored, either because it is a comment or because * the feature type is not supported (see [[http://mblab.wustl.edu/GTF22.html feature.format specification]]). */ lazy val ignore: Boolean = isComment || featureType == Ignore /** The chromosome or reference sequence name. */ lazy val chr: String = tokens(0).replaceFirst("^chr", "") /** The annotation source (see [[http://mblab.wustl.edu/GTF22.html feature.format specification]]). */ lazy val source: String = tokens(1) /** The feature type. For valid values see [[http://mblab.wustl.edu/GTF22.html feature.format specification]]. */ lazy val featureType: FeatureType = FeatureType.forLabel(tokens(2)) /** Zero-based start position in reference coordinates, inclusive. * * GTF2.2 feature.format uses 1-based positions. This library uses 0-based positions. * Therefore, this value has been converted to a 0-based position. The start position * is the first position that is included in the feature. */ lazy val start: Int = Utils.zeroBasedInclusiveStart(tokens(3).toInt) /** Zero-based end position in reference coordinates, exclusive. * * GTF2.2 feature.format uses 1-based positions, and furthermore, uses fully closed * intervals so the end position is the last position included in the feature. * This library uses 0-based positions and half open intervals, so the end * position is the position after the last position included in the feature. * Therefore, this value is equal to the integer in the GTF2.2 file, because * it is theoretically converted twice for these two differences. * */ lazy val end: Int = Utils.zeroBasedExclusiveEnd(tokens(4).toInt) /** The floating point score, or None if '.' is specified in the line. */ lazy val score: Option[Float] = tokens(5) match { case "." => None case s: String => { try { Some(s.toFloat) } catch { case n: NumberFormatException => throw new IllegalArgumentException(s"Invalid GTF2 line. Invalid score.\\n$line") } } } /** The [[Orientation]]. * * This value is equal to [[Plus]] if '+' is specified in the file or [[Minus]] if * '-' is specified. * */ lazy val orientation: Orientation = tokens(6) match { case "+" => Plus case "-" => Minus case _ => throw new IllegalArgumentException(s"Invalid GTF2 orientation.\\n$line") } /** The frame, or None if '.' is specified in the file. */ lazy val frame: Option[Int] = tokens(7) match { case "." => None case s: String => Some(s.toInt) } /** Map of attribute name to value. * * Empty attributes (having value "") are not included in this map. * * See [[http://mblab.wustl.edu/GTF22.html feature.format specification]] for details on GTF2.2 attributes. * */ lazy val attributes: Map[String, String] = { // Map of attribute name to attribute value val as = new scala.collection.mutable.HashMap[String, String] // Attribute key/value pairs are separated by semicolons tokens(8).split("; ").foreach(s => { // Key and value are separated by a single space val ss: Array[String] = s.split(" ") if(ss.length < 2) throw new IllegalArgumentException(s"Invalid GTF2 attribute: $s\\n$line") val k: String = ss.head // There can only be one value between double quotes if(ss.tail.mkString(" ").split("\\"").length > 2) throw new IllegalArgumentException(s"Invalid GTF2 attribute spacing:\\n$line") val v: String = ss.tail.mkString(" ").replace("\\"", "") // String values are between double quotes if(k == "" || k.startsWith(" ")) throw new IllegalArgumentException(s"Invalid GTF2 attribute spacing: $s\\n$line") if(v.startsWith(" ")) throw new IllegalArgumentException(s"Invalid GTF2 attribute spacing:\\n$line") // Skip empty string attribute values if(v != "") as.put(k, v) }) // Convert to an immutable map as.toMap } /** Transcript ID, or None if attribute value is "" */ lazy val transcriptId: Option[String] = attributes.get("transcript_id") /** Gene ID, or None if attribute value is "" */ lazy val geneId: Option[String] = attributes.get("gene_id") /** Returns a new [[FeatureBuilder]] consisting of the passed [[FeatureBuilder]] with * the information in this [[GTF22Record]] added to it. * * The feature type must not be one of the CNS types (see [[http://mblab.wustl.edu/GTF22.html feature.format specification]]) * as these features are specified on a single GTF2.2 line and should not be incorporated into an existing * [[FeatureBuilder]]. The feature type must also not be an ignored type. * * @param fb Original [[FeatureBuilder]] with the same transcript ID and gene ID as this record * @return New [[FeatureBuilder]] with additional information from this record incorporated */ override def op(fb: FeatureBuilder): FeatureBuilder = { // Only operate on the FeatureBuilder if it has the same transcript ID and gene ID as this record if(transcriptId != fb.featureId) throw new IllegalArgumentException(s"Transcript ID ($transcriptId) must be equal to existing feature ID (${fb.featureId})") if(geneId != fb.geneId) throw new IllegalArgumentException(s"Gene ID ($geneId) must be equal to existing gene ID (${fb.geneId})") // Create the block for this record val blk = Block(chr, start, end, orientation) featureType match { // Assume the CDS will be specified so don't do anything special with start codon, 5'-UTR, 3'-UTR case Exon | StartCodon | UTR5 | UTR3 => fb.addBlock(blk) // Include the stop codon in our CDS case CDS | StopCodon => fb.addBlock(blk).setCdsStart(Utils.updateCdsStart(fb, start)).setCdsEnd(Utils.updateCdsEnd(fb, end)) // These feature types must have only one block case Intergenic | IntergenicCNS | IntronicCNS | Ignore => throw new IllegalArgumentException("Only feature types representing parts of transcripts can be used" + s"to update a ${classOf[FeatureBuilder].getName}. GTF2.2 line:\\n$line") } } } private object Utils { /* Update CDS start after encountering a new block. Replace existing start if new start is less, or add new start if doesn't exist yet */ def updateCdsStart(fb: FeatureBuilder, ns: Int): Int = if(fb.cdsStart.isDefined) math.min(ns, fb.cdsStart.get) else ns /* Update CDS end after encountering a new block. Replace existing end if new end is greater, or add new end if doesn't exist yet */ def updateCdsEnd(fb: FeatureBuilder, ne: Int): Int = if(fb.cdsEnd.isDefined) math.max(ne, fb.cdsEnd.get) else ne def zeroBasedInclusiveStart(gtf2start: Int): Int = gtf2start - 1 def zeroBasedExclusiveEnd(gtf2end: Int): Int = gtf2end } /** A GTF2.2 feature type */ sealed trait FeatureType {val name: String} /** A GTF2.2 feature type that represents part of a mature RNA transcript */ sealed trait MatureRNA extends FeatureType /** GTF2.2 CDS feature type */ case object CDS extends MatureRNA {val name = "CDS"} /** GTF2.2 start codon feature type */ case object StartCodon extends MatureRNA {val name = "start_codon"} /** GTF2.2 stop codon feature type */ case object StopCodon extends MatureRNA {val name = "stop_codon"} /** GTF2.2 5'-UTR feature type */ case object UTR5 extends MatureRNA {val name = "5UTR"} /** GTF2.2 3'-UTR feature type */ case object UTR3 extends MatureRNA {val name = "3UTR"} /** GTF2.2 intergenic feature type */ case object Intergenic extends FeatureType {val name = "inter"} /** GTF2.2 intergenic CNS feature type */ case object IntergenicCNS extends FeatureType {val name = "inter_CNS"} /** GTF2.2 intronic CNS feature type */ case object IntronicCNS extends FeatureType {val name = "intron_CNS"} /** GTF2.2 exon feature type */ case object Exon extends MatureRNA {val name = "exon"} /** Nonstandard feature type. See [[http://mblab.wustl.edu/GTF22.html feature.format specification]] for details. */ case object Ignore extends FeatureType {val name = "ignore"} /** Utilities for GTF2.2 [[FeatureType]]s */ object FeatureType { /** Returns the [[FeatureType]] specified by the GTF2.2 value * * @param label GTF2.2 feature type label */ def forLabel(label: String): FeatureType = { label match { case Exon.name => Exon case CDS.name => CDS case StartCodon.name => StartCodon case StopCodon.name => StopCodon case UTR5.name => UTR5 case UTR3.name => UTR3 case Intergenic.name => Intergenic case IntergenicCNS.name => IntergenicCNS case IntronicCNS.name => IntronicCNS case _ => Ignore } } }
pamelarussell/sgxlib
src/main/scala/feature/format/GTF22Record.scala
Scala
mit
11,045
package com.anchortab.snippet import java.util.Locale import scala.math._ import net.liftweb._ import common._ import http._ import LiftRules._ import rest._ import js._ import JE._ import JsExp._ import util._ import Helpers._ import json._ import Extraction._ import mongodb._ import BsonDSL._ import org.bson.types.ObjectId import com.anchortab.model._ import com.anchortab.actor._ import com.newrelic.api.agent._ object Api extends RestHelper with Loggable with AccountDeletion { private val localizationCache = new collection.mutable.HashMap[Locale, JObject] with collection.mutable.SynchronizedMap[Locale, JObject] def statelessRewrite : RewritePF = { case RewriteRequest(ParsePath("api" :: "v1" :: "user" :: userId :: "tabs" :: Nil, _, _, _), _, _) => RewriteResponse("api" :: "v1" :: "user" :: userId :: "tabs" :: "0" :: Nil) } serve { ////////// // API "embed" resource. // // Calls in this namespace are used by the Tab itself to retrieve the information // it needs to render, or to add an email address to the Tab's email list. ////////// case req @ Req("api" :: "v1" :: "embed" :: tabId :: Nil, _, GetRequest) => { NewRelic.setTransactionName("API", "/api/v1/embed") NewRelic.addCustomParameter("tabId", tabId) for { tab <- (Tab.find(tabId):Box[Tab]) ?~ { NewRelic.ignoreTransaction "Unknown tab." } ~> 404 user <- tab.user.filter(_.tabsActive_?) ?~ { NewRelic.ignoreTransaction "This tab has been disabled." } ~> 403 plan = user.plan callbackFnName <- req.param("callback") ?~ "Callback not specified." ~> 400 } yield { val remoteIp = req.header("X-Forwarded-For") openOr req.remoteAddr val userAgent = req.userAgent openOr "unknown" val domain = req.header("X-Embedded-Domain") Tab.update("_id" -> tab._id, "$inc" -> ("stats.views" -> 1)) if (user.firstSteps.get(UserFirstStep.Keys.EmbedYourTab).isDefined) { User.update("_id" -> user._id, "$unset" -> ( ("firstSteps." + UserFirstStep.Keys.EmbedYourTab) -> true ) ) } User.update("_id" -> user._id, "$inc" -> ( ("quotaCounts." + Plan.Quotas.Views) -> 1 ) ) QuotasActor ! CheckQuotaCounts(user._id) EventActor ! TrackEvent(Event( Event.Types.TabView, Some(remoteIp), Some(userAgent), Some(user._id), Some(tab._id), domain = domain )) val whitelabelTab = tab.appearance.whitelabel && plan.hasFeature_?(Plan.Features.WhitelabeledTabs) val colorScheme = { if (tab.appearance.colorScheme.name == TabColorScheme.Custom.name && ! plan.hasFeature_?(Plan.Features.CustomColorSchemes)) { TabColorScheme.Red } else { tab.appearance.colorScheme } } val localizedContent = localizationCache.getOrElseUpdate(S.locale, { List( "tab-firstName", "tab-emailAddress", "tab-submit", "tab-subscribe", "tab-minimizeAnchorTab", "tab-maximizeAnchorTab", "tab-somethingWentWrong", "tab-invalidEmail" ).map({ localizationKey => (localizationKey -> S.?(localizationKey)) }).foldLeft(JObject(Nil))(_ ~ _) }) val tabJson = ("delay" -> tab.appearance.delay) ~ ("colorScheme" -> decompose(colorScheme)) ~ ("whitelabel" -> whitelabelTab) ~ ("customText" -> tab.appearance.customText) ~ ("submitButtonText" -> tab.appearance.customSubmitButtonText) ~ ("mobileTabText" -> tab.appearance.customMobileTabText) ~ ("collectName" -> tab.appearance.collectName) ~ ("i18n" -> localizedContent) Call(callbackFnName, tabJson) } } // JSONP can't be semantic. :( case req @ Req("api" :: "v1" :: "embed" :: tabId :: "submit" :: Nil, _, GetRequest) => { NewRelic.setTransactionName("API", "/api/v1/embed/star/submit") NewRelic.addCustomParameter("tabId", tabId) for { tab <- (Tab.find(tabId):Box[Tab]) ?~ { NewRelic.ignoreTransaction "Unknown tab." } ~> 404 user <- tab.user.filter(_.tabsActive_?) ?~ { NewRelic.ignoreTransaction "This tab has been disabled." } ~> 403 callbackFnName <- req.param("callback") ?~! "Callback not specified." ~> 400 email <- req.param("email").filter(_.trim.nonEmpty) ?~! "Email was not specified." ~> 400 name = req.param("name").map(_.trim).filter(_.nonEmpty) } yield { val remoteIp = req.header("X-Forwarded-For") openOr req.remoteAddr val userAgent = req.userAgent openOr "unknown" val domain = req.header("X-Embedded-Domain") val submitResult = { val successMessage = "tab-successConfirm" val iFrameParameters = tab.service.iFrameParameters.map(decompose _) ("success" -> 1) ~ ("email" -> email) ~ ("message" -> S.?(successMessage)) ~ ("iFrame" -> iFrameParameters) } QuotasActor ! CheckQuotaCounts(user._id) EventActor ! TrackEvent(Event( Event.Types.TabSubmit, Some(remoteIp), Some(userAgent), Some(user._id), Some(tab._id), domain = domain )) ServiceWrapperSubmissionActor ! SubscribeEmailToServiceWrapper(tab, email, name) Call(callbackFnName, submitResult) } } ////////// // API "user" resource. ////////// case Req("api" :: "v1" :: "user" :: Nil, _, GetRequest) => { for { user <- statelessUser.is } yield { user.asJson } } ?~ "Authentication Failed." ~> 401 ////////// // API "tab" resource ////////// case Req("api" :: "v1" :: "tab" :: tabId :: Nil, _, GetRequest) => { for { currentUser <- statelessUser.is ?~ "Authentication Failed." ~> 401 possibleTab = (Tab.find(tabId):Box[Tab]) tab <- possibleTab.filter { tabInQuestion => tabInQuestion.userId == currentUser._id || currentUser.admin_? } ?~ "Unknown tab." ~> 404 } yield { tab.asJson } } ////////// // API "admin" resource. ////////// case req @ Req("api" :: "v1" :: "admin" :: "users" :: Nil, _, GetRequest) => { for { possibleAdminUser <- (statelessUser.is ?~ "Authentication Failed." ~> 401) adminUser <- (Full(possibleAdminUser).filter(_.admin_?) ?~ "Not authorized." ~> 403) } yield { decompose(User.findAll.map(_.asJson)) } } case req @ Req("api" :: "v1" :: "admin" :: "users" :: Nil, _, PostRequest) => { for { possibleAdminUser <- (statelessUser.is ?~ "Authentication Failed." ~> 401) adminUser <- (Full(possibleAdminUser).filter(_.admin_?) ?~ "Not authorized." ~> 403) requestBody <- req.body ?~ "No request body." ~> 400 requestJson <- tryo(Serialization.read[JValue](new String(requestBody))) ?~! "Invalid JSON." ~> 400 email <- tryo(requestJson \\ "email").map(_.extract[String]) ?~ "Email is missing" ~> 400 password <- tryo(requestJson \\ "password").map(_.extract[String]) ?~ "Password is missing." ~> 400 } yield { val user = User(email, User.hashPassword(password)) user.save ("id" -> user._id.toString):JObject } } case req @ Req("api" :: "v1" :: "admin" :: "user" :: id :: Nil, _, GetRequest) => { for { possibleAdminUser <- (statelessUser.is ?~ "Authentication Failed." ~> 401) adminUser <- (Full(possibleAdminUser).filter(_.admin_?) ?~ "Not authorized." ~> 403) user <- (User.find(id):Box[User]) ?~! "User not found." ~> 404 } yield { user.asJson } } case req @ Req("api" :: "v1" :: "admin" :: "user" :: id :: Nil, _, DeleteRequest) => { for { possibleAdminUser <- (statelessUser.is ?~ "Authentication Failed." ~> 401) adminUser <- (Full(possibleAdminUser).filter(_.admin_?) ?~ "Not authorized." ~> 403) user <- (User.find(id):Box[User]) ?~! "User not found." ~> 404 //deleteResult <- deleteAccount(user) } yield { user.delete OkResponse() } } } }
farmdawgnation/anchortab
src/main/scala/com/anchortab/snippet/Api.scala
Scala
apache-2.0
8,963
/* * Copyright 2013 http4s.org * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.http4s package parser import com.comcast.ip4s._ import org.http4s.headers.Origin import org.http4s.syntax.all._ class OriginHeaderSuite extends munit.FunSuite { val host1 = Origin.Host(Uri.Scheme.http, Uri.RegName("www.foo.com"), Some(12345)) val host2 = Origin.Host(Uri.Scheme.https, Uri.Ipv4Address(ipv4"127.0.0.1"), None) val hostString1 = "http://www.foo.com:12345" val hostString2 = "https://127.0.0.1" test("Origin value method should Render a host with a port number") { val origin: Origin = host1 assertEquals(origin.value, hostString1) } test("Origin value method should Render a host without a port number") { val origin: Origin = host2 assertEquals(origin.value, hostString2) } test("Origin value method should Render an empty origin") { val origin: Origin = Origin.`null` assertEquals(origin.value, "null") } test("OriginHeader parser should Parse a host with a port number") { val text = hostString1 val origin = host1 val headers = Headers(("Origin", text)) val extracted = headers.get[Origin] assertEquals(extracted, Some(origin)) } test("OriginHeader parser should Parse a host without a port number") { val text = hostString2 val origin = host2 val headers = Headers(("Origin", text)) val extracted = headers.get[Origin] assertEquals(extracted, Some(origin)) } test("OriginHeader parser should Parse a 'null' origin") { val text = "null" val origin = Origin.`null` val headers = Headers(("Origin", text)) val extracted = headers.get[Origin] assertEquals(extracted, Some(origin)) } test("OriginHeader should fail on a list of multiple hosts") { val text = s"$hostString1 $hostString2" val headers = Headers(("Origin", text)) val extracted = headers.get[Origin] assertEquals(extracted, None) } test("OriginHeader should fail on an empty string") { val text = "" val headers = Headers(("Origin", text)) val extracted = headers.get[Origin] assertEquals(extracted, None) } }
http4s/http4s
tests/shared/src/test/scala/org/http4s/parser/OriginHeaderSuite.scala
Scala
apache-2.0
2,661
package com.clarifi.reporting.ermine import com.clarifi.reporting.Supply import com.clarifi.reporting.ermine.Kind.{ zipKinds, kindVars, subKind } import com.clarifi.reporting.ermine.Type.{ typeVars, allTypeVars } import scala.collection.immutable.List /** A type annotation with possible (pseudo)-existential holes * * @author EAK, DJD */ case class Annot(loc: Loc, eksists: List[KindVar], exists: List[V[Kind]], body: Type) extends Located { def map(f: Type => Type): Annot = Annot(loc, eksists, exists, f(body)) def close(implicit su: Supply): Annot = { val nbody = body.closeWith(exists).nf val dks = (kindVars(exists) ++ kindVars(nbody) -- eksists).toList val ndks = refreshList(Bound, loc, dks) val km = zipKinds(dks, ndks) Annot(loc, eksists ++ ndks, subKind(km, exists), subKind(km, nbody)) } def subst(ks: PartialFunction[V[Unit],Kind], ts: PartialFunction[V[Kind],Type]): Annot = Annot(loc, eksists, exists map { v => v map { k => k subst ks } }, body.subst(ks, ts)) } object Annot { val annotAny: Annot = { val v = V(Loc.builtin,-1,None,Bound,Star(Loc.builtin)) Annot(Loc.builtin, List(), List(v), VarT(v)) } def plain(l: Loc, ty: Type): Annot = Annot(l, List(), List(), ty) implicit def relocatableAnnot: Relocatable[Annot] = new Relocatable[Annot] { def setLoc(a: Annot, l: Loc) = Annot(l, a.eksists, a.exists, a.body) } implicit def annotHasTypeVars: HasTypeVars[Annot] = new HasTypeVars[Annot] { def vars(a: Annot) = typeVars(a.body) -- a.exists def allVars(a: Annot) = allTypeVars(a.body) -- a.exists def sub(ks: PartialFunction[KindVar, Kind], ts: PartialFunction[TypeVar, Type], a: Annot): Annot = a.subst(ks, ts) } }
ermine-language/ermine-legacy
src/main/scala/com/clarifi/reporting/ermine/Annot.scala
Scala
bsd-2-clause
1,718
/* * Scala.js (https://www.scala-js.org/) * * Copyright EPFL. * * Licensed under Apache License 2.0 * (https://www.apache.org/licenses/LICENSE-2.0). * * See the NOTICE file distributed with this work for * additional information regarding copyright ownership. */ package java.util /** A subclass of `HashMap` that systematically rejects `null` keys and values. * * This class is used as the implementation of some other hashtable-like data * structures that require non-`null` keys and values to correctly implement * their specifications. */ private[util] class NullRejectingHashMap[K, V]( initialCapacity: Int, loadFactor: Float) extends HashMap[K, V](initialCapacity, loadFactor) { def this() = this(HashMap.DEFAULT_INITIAL_CAPACITY, HashMap.DEFAULT_LOAD_FACTOR) def this(initialCapacity: Int) = this(initialCapacity, HashMap.DEFAULT_LOAD_FACTOR) def this(m: Map[_ <: K, _ <: V]) = { this(m.size()) putAll(m) } // Use Nodes that will reject `null`s in `setValue()` override private[util] def newNode(key: K, hash: Int, value: V, previous: HashMap.Node[K, V], next: HashMap.Node[K, V]): HashMap.Node[K, V] = { new NullRejectingHashMap.Node(key, hash, value, previous, next) } override def get(key: Any): V = { if (key == null) throw new NullPointerException() super.get(key) } override def containsKey(key: Any): Boolean = { if (key == null) throw new NullPointerException() super.containsKey(key) } override def put(key: K, value: V): V = { if (key == null || value == null) throw new NullPointerException() super.put(key, value) } override def putIfAbsent(key: K, value: V): V = { if (value == null) throw new NullPointerException() val old = get(key) // throws if `key` is null if (old == null) super.put(key, value) old } @noinline override def putAll(m: Map[_ <: K, _ <: V]): Unit = { /* The only purpose of `impl` is to capture the wildcards as named types, * so that we prevent type inference from inferring deprecated existential * types. */ @inline def impl[K1 <: K, V1 <: V](m: Map[K1, V1]): Unit = { val iter = m.entrySet().iterator() while (iter.hasNext()) { val entry = iter.next() put(entry.getKey(), entry.getValue()) } } impl(m) } override def remove(key: Any): V = { if (key == null) throw new NullPointerException() super.remove(key) } override def remove(key: Any, value: Any): Boolean = { val old = get(key) // throws if `key` is null if (old != null && old.equals(value)) { // false if `value` is null super.remove(key) true } else { false } } override def replace(key: K, oldValue: V, newValue: V): Boolean = { if (oldValue == null || newValue == null) throw new NullPointerException() val old = get(key) // throws if `key` is null if (oldValue.equals(old)) { // false if `old` is null super.put(key, newValue) true } else { false } } override def replace(key: K, value: V): V = { if (value == null) throw new NullPointerException() val old = get(key) // throws if `key` is null if (old != null) super.put(key, value) old } override def containsValue(value: Any): Boolean = { if (value == null) throw new NullPointerException() super.containsValue(value) } override def clone(): AnyRef = new NullRejectingHashMap[K, V](this) } private object NullRejectingHashMap { private final class Node[K, V](key: K, hash: Int, value: V, previous: HashMap.Node[K, V], next: HashMap.Node[K, V]) extends HashMap.Node[K, V](key, hash, value, previous, next) { override def setValue(v: V): V = { if (v == null) throw new NullPointerException() super.setValue(v) } } }
scala-js/scala-js
javalib/src/main/scala/java/util/NullRejectingHashMap.scala
Scala
apache-2.0
3,925
package org.elasticmq import org.joda.time.{Duration, DateTime} case class QueueData( name: String, defaultVisibilityTimeout: MillisVisibilityTimeout, delay: Duration, receiveMessageWait: Duration, created: DateTime, lastModified: DateTime, deadLettersQueue: Option[DeadLettersQueueData] = None, isFifo: Boolean = false, hasContentBasedDeduplication: Boolean = false, copyMessagesTo: Option[String] = None, moveMessagesTo: Option[String] = None, tags: Map[String, String] = Map[String, String]() ) case class DeadLettersQueueData(name: String, maxReceiveCount: Int)
adamw/elasticmq
core/src/main/scala/org/elasticmq/QueueData.scala
Scala
apache-2.0
617
/** * Licensed to Big Data Genomics (BDG) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The BDG licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.bdgenomics.guacamole.commands import org.bdgenomics.guacamole.TestUtil import org.bdgenomics.guacamole.TestUtil.SparkFunSuite import org.bdgenomics.guacamole.pileup.Pileup import org.scalatest.Matchers class SomaticPoCIndelCallerSuite extends SparkFunSuite with Matchers { test("no indels") { val normalReads = Seq( TestUtil.makeRead("TCGATCGA", "8M", "8", 0), TestUtil.makeRead("TCGATCGA", "8M", "8", 0), TestUtil.makeRead("TCGATCGA", "8M", "8", 0) ) val normalPileup = Pileup(normalReads, 2) val tumorReads = Seq( TestUtil.makeRead("TCGGTCGA", "8M", "3G4", 0), TestUtil.makeRead("TCGGTCGA", "8M", "3G4", 0), TestUtil.makeRead("TCGGTCGA", "8M", "3G4", 0) ) val tumorPileup = Pileup(tumorReads, 2) SomaticPoCIndelCaller.callSimpleIndelsAtLocus(tumorPileup, normalPileup).size should be(0) } test("single-base deletion") { val normalReads = Seq( TestUtil.makeRead("TCGATCGA", "8M", "8", 0), TestUtil.makeRead("TCGATCGA", "8M", "8", 0), TestUtil.makeRead("TCGATCGA", "8M", "8", 0)) val normalPileup = Pileup(normalReads, 2) val tumorReads = Seq( TestUtil.makeRead("TCGTCGA", "3M1D4M", "3^A4", 0), TestUtil.makeRead("TCGTCGA", "3M1D4M", "3^A4", 0), TestUtil.makeRead("TCGTCGA", "3M1D4M", "3^A4", 0)) val tumorPileup = Pileup(tumorReads, 2) val genotypes = SomaticPoCIndelCaller.callSimpleIndelsAtLocus(tumorPileup, normalPileup) genotypes.size should be(1) val genotype = genotypes(0) val variant = genotype.getVariant variant.getReferenceAllele should be("GA") variant.getAlternateAllele should be("G") } test("multiple-base deletion") { val normalReads = Seq( TestUtil.makeRead("TCGAAGCTTCGAAGCT", "16M", "16", 0), TestUtil.makeRead("TCGAAGCTTCGAAGCT", "16M", "16", 0), TestUtil.makeRead("TCGAAGCTTCGAAGCT", "16M", "16", 0) ) val normalPileup = Pileup(normalReads, 4) val tumorReads = Seq( TestUtil.makeRead("TCGAAAAGCT", "5M6D5M", "5^GCTTCG5", 0), TestUtil.makeRead("TCGAAAAGCT", "5M6D5M", "5^GCTTCG5", 0), TestUtil.makeRead("TCGAAAAGCT", "5M6D5M", "5^GCTTCG5", 0) ) val tumorPileup = Pileup(tumorReads, 4) val genotypes = SomaticPoCIndelCaller.callSimpleIndelsAtLocus(tumorPileup, normalPileup) genotypes.size should be(1) val genotype = genotypes(0) val variant = genotype.getVariant variant.getReferenceAllele should be("AGCTTCG") variant.getAlternateAllele should be("A") } test("single-base insertion") { val normalReads = Seq( TestUtil.makeRead("TCGATCGA", "8M", "8", 0), TestUtil.makeRead("TCGATCGA", "8M", "8", 0), TestUtil.makeRead("TCGATCGA", "8M", "8", 0) ) val normalPileup = Pileup(normalReads, 2) val tumorReads = Seq( TestUtil.makeRead("TCGAGTCGA", "4M1I4M", "8", 0), TestUtil.makeRead("TCGAGTCGA", "4M1I4M", "8", 0), TestUtil.makeRead("TCGAGTCGA", "4M1I4M", "8", 0) ) val tumorPileup = Pileup(tumorReads, 3) val genotypes = SomaticPoCIndelCaller.callSimpleIndelsAtLocus(tumorPileup, normalPileup) genotypes.size should be(1) val genotype = genotypes(0) val variant = genotype.getVariant variant.getReferenceAllele should be("A") variant.getAlternateAllele should be("AG") } test("multiple-base insertion") { val normalReads = Seq( TestUtil.makeRead("TCGATCGA", "8M", "8", 0), TestUtil.makeRead("TCGATCGA", "8M", "8", 0), TestUtil.makeRead("TCGATCGA", "8M", "8", 0) ) val tumorReads = Seq( TestUtil.makeRead("TCGAGGTCTCGA", "4M4I4M", "8", 0), TestUtil.makeRead("TCGAGGTCTCGA", "4M4I4M", "8", 0), TestUtil.makeRead("TCGAGGTCTCGA", "4M4I4M", "8", 0) ) val genotypes = SomaticPoCIndelCaller.callSimpleIndelsAtLocus(Pileup(tumorReads, 3), Pileup(normalReads, 3)) genotypes.size should be(1) val genotype = genotypes(0) val variant = genotype.getVariant variant.getReferenceAllele should be("A") variant.getAlternateAllele should be("AGGTC") } test("insertions and deletions") { /* idx: 01234 56 7890123456 ref: TCGAA TC GATCGATCGA seq: TC ATCTCAAAAGA GATCGA */ val normalReads = Seq( TestUtil.makeRead("TCGAATCGATCGATCGA", "17M", "17", 10), TestUtil.makeRead("TCGAATCGATCGATCGA", "17M", "17", 10), TestUtil.makeRead("TCGAATCGATCGATCGA", "17M", "17", 10) ) val tumorReads = Seq( TestUtil.makeRead("TCATCTCAAAAGAGATCGA", "2M2D1M2I2M4I2M2D6M", "2^GA5^TC6", 10), TestUtil.makeRead("TCATCTCAAAAGAGATCGA", "2M2D1M2I2M4I2M2D6M", "2^GA5^TC6", 10), TestUtil.makeRead("TCATCTCAAAAGAGATCGA", "2M2D1M2I2M4I2M2D6M", "2^GA5^TC6", 10) ) def testLocus(locus: Int, refBases: String, altBases: String) = { val tumorPileup = Pileup(tumorReads, locus) val normalPileup = Pileup(normalReads, locus) val genotypes = SomaticPoCIndelCaller.callSimpleIndelsAtLocus(tumorPileup, normalPileup) genotypes.size should be(1) val genotype = genotypes(0) val variant = genotype.getVariant variant.getReferenceAllele should be(refBases) variant.getAlternateAllele should be(altBases) } testLocus(11, "CGA", "C") testLocus(14, "A", "ATC") testLocus(16, "C", "CAAAA") testLocus(18, "ATC", "A") } }
ryan-williams/guacamole
src/test/scala/org/bdgenomics/guacamole/commands/SomaticPoCIndelCallerSuite.scala
Scala
apache-2.0
6,173
package leo.modules.agent.rules package control_rules import leo.Configuration import leo.datastructures.{AnnotatedClause, Clause, Signature} import leo.datastructures.blackboard.{DataType, Delta} import leo.modules.GeneralState /** * This rule selects a clause from Unprocessed * to be processed next. */ class SelectionRule(inType : DataType[AnnotatedClause], outType : DataType[AnnotatedClause], canSelectNext : () => Boolean, unprocessed : UnprocessedSet, blockable : Seq[DataType[Any]] = Seq() ) (implicit state : GeneralState[AnnotatedClause]) extends Rule{ private val maxRound = try {Configuration.valueOf("ll").get.head.toInt} catch {case e : Exception => -1} var actRound = 0 var work : Int = 0 val maxWork : Int = try {Configuration.valueOf("nSelect").get.head.toInt} catch {case e : Exception => 1} override val name: String = "selection_rule" override val inTypes: Seq[DataType[Any]] = inType +: blockable override val outTypes: Seq[DataType[Any]] = Seq(outType) override def canApply(r: Delta): Seq[Hint] = { unprocessed.synchronized{ work -= r.removes(inType).size // TODO Save selected and only delete those val canSelect = canSelectNext() if(work == 0 && canSelect && unprocessed.unprocessedLeft){ if(actRound >= maxRound && maxRound > 0){ leo.Out.debug(s"[Selection] (Round = ${actRound}) : Maximum number of iterations reached.") return Seq() } state.incProofLoopCount() actRound += 1 var res : Seq[Hint] = Seq() while(work < maxWork && unprocessed.unprocessedLeft){ val c = unprocessed.nextUnprocessed if (Clause.effectivelyEmpty(c.cl)) { return Seq() } else { work += 1 leo.Out.debug(s"[Selection] (Round = ${actRound}) : ${c.pretty(state.signature)}") res = new MoveHint(c, inType, outType) +: res } } res } else { // println(s"UnprocessedLeft : ${unprocessed.unprocessedLeft}\\n work : ${work}\\n canSelect : ${canSelect}") Seq() } } } }
lex-lex/Leo-III
oldsrc/main/scala/leo/modules/agent/rules/control_rules/SelectionRule.scala
Scala
bsd-3-clause
2,234
package com.harrys.hyppo.worker.actor.amqp import java.util.UUID import akka.testkit.TestActorRef import com.harrys.hyppo.worker.actor.RabbitMQTests import com.harrys.hyppo.worker.api.proto.CreateIngestionTasksRequest import com.harrys.hyppo.worker.{TestConfig, TestObjects} /** * Created by jpetty on 9/17/15. */ class QueueProxyActorTests extends RabbitMQTests("QueueProxyActorTests", TestConfig.coordinatorWithRandomQueuePrefix()) { val injector = TestConfig.localCoordinatorInjector(system, config) "The Queue Proxy" must { val proxy = TestActorRef(injector.getInstance(classOf[EnqueueWorkQueueProxy]), "enqueue") "successfully enqueue messages" in { val source = TestObjects.testIngestionSource(name = "queue proxy") val integration = TestObjects.testProcessedDataIntegration(source) val testJob = TestObjects.testIngestionJob(source) val work = CreateIngestionTasksRequest(integration, UUID.randomUUID(), Seq(), testJob) val queueName = naming.integrationWorkQueueName(work) proxy ! work within(config.rabbitMQTimeout){ awaitAssert(helpers.checkQueueSize(connection, queueName) shouldBe 1) } } } }
harrystech/hyppo-worker
worker/src/test/scala/com/harrys/hyppo/worker/actor/amqp/QueueProxyActorTests.scala
Scala
mit
1,208
package emmy.distribution import emmy.autodiff._ import scalaz.Scalaz.Id trait NormalFactor[U[_], S] extends Factor with Node { def mu: Expression[U, Double, S] def sigma: Expression[U, Double, S] def variable: Expression[U, Double, S] override def parents = Seq(mu, sigma) override lazy val logp: Expression[Id, Double, Any] = { implicit val ops = variable.ops val x = (variable - mu) / sigma sum(-(log(sigma) + x * x / 2.0)).toDouble } } class UnitNormalSample[U[_], S](implicit val ops: ContainerOps.Aux[U, S], val so: ScalarOps[U[Double], U[Double]], val vt: Evaluable[ValueOps[U, Double, S]] ) extends Expression[U, Double, S] { override def eval(ec: GradientContext): Evaluable[U[Double]] = { ctx ⇒ { val valueT = vt(ctx) valueT.rnd } } } class NormalSample[U[_], S]( val mu: Expression[U, Double, S], val sigma: Expression[U, Double, S] )(implicit val ops: ContainerOps.Aux[U, S]) extends ContinuousVariable[U, S] with NormalFactor[U, S] { override val variable: NormalSample[U, S] = this override val vt: Evaluable[ValueOps[U, Double, S]] = mu.vt override val so: ScalarOps[U[Double], U[Double]] = ScalarOps.liftBoth[U, Double, Double](ScalarOps.doubleOps, ops) private val unit = new UnitNormalSample()(ops, so, vt) private val upstream = mu + unit * sigma override def eval(ec: GradientContext): Evaluable[U[Double]] = { ec(upstream) } override def grad[W[_], T](gc: GradientContext, v: Parameter[W, T]): Gradient[W, U] = { gc(upstream, v) } override def toString: String = { s"~ N($mu, $sigma)" } } case class Normal[U[_], S]( mu: Expression[U, Double, S], sigma: Expression[U, Double, S] )(implicit ops: ContainerOps.Aux[U, S]) extends Distribution[U, Double, S] { override def sample: ContinuousVariable[U, S] = new NormalSample(mu, sigma) def factor(v: Expression[U, Double, S]) = { val self = this new NormalFactor[U, S] { override val mu: Expression[U, Double, S] = self.mu override val sigma: Expression[U, Double, S] = self.sigma override val variable: Expression[U, Double, S] = v } } override def observe(data: U[Double]): Observation[U, Double, S] = new NormalObservation(mu, sigma, data) class NormalObservation private[Normal] ( val mu: Expression[U, Double, S], val sigma: Expression[U, Double, S], val value: Evaluable[U[Double]] )(implicit val ops: ContainerOps.Aux[U, S]) extends Observation[U, Double, S] with NormalFactor[U, S] { override val variable: NormalObservation = this override val vt: Evaluable[ValueOps[U, Double, S]] = mu.vt override val so: ScalarOps[U[Double], U[Double]] = ScalarOps.liftBoth[U, Double, Double](ScalarOps.doubleOps, ops) override def toString: String = { s"($value <- N($mu, $sigma))" } } }
fvlankvelt/emmy
src/main/scala/emmy/distribution/Normal.scala
Scala
apache-2.0
2,998
package org.leebli.parser.jar import java.io.File import java.io.FileInputStream import org.junit.Test import junit.framework.Assert class JarParserTestCase { @Test def testParseJarOnly() { val cl = ClassLoader.getSystemClassLoader(); val urls = System.getProperty("java.class.path").split(File.pathSeparator); println(urls.mkString(",")) val jarUrl = urls find (_.contains("parser-jar-testproject")) Assert.assertTrue(jarUrl.isDefined) val jarFile = JarParser.parseJarFile("parser-jar-testproject.jar", Some(10), new FileInputStream(jarUrl.head)) Assert.assertEquals(jarFile.name, "parser-jar-testproject.jar") Assert.assertEquals(jarFile.size, Some(10)) Assert.assertFalse(jarFile.classes.isEmpty) Assert.assertEquals(jarFile.classes.size, 4) Assert.assertTrue(jarFile.mavenInfo.isDefined) val mavenInfo = jarFile.mavenInfo.head Assert.assertEquals(mavenInfo.groupId, "org.leebli.parsers") Assert.assertEquals(mavenInfo.artifactId, "parser-jar-testproject") Assert.assertEquals(mavenInfo.version, "1.0") println(jarFile.classes.mkString(",")) } @Test def testParseJarAndClasses() { val cl = ClassLoader.getSystemClassLoader(); val urls = System.getProperty("java.class.path").split(File.pathSeparator); println(urls.mkString(",")) val jarUrl = urls find (_.contains("parser-jar-testproject")) Assert.assertTrue(jarUrl.isDefined) val jarFile = JarParser.parseJarFile("parser-jar-testproject.jar", Some(10), new FileInputStream(jarUrl.head), true) Assert.assertEquals(jarFile.name, "parser-jar-testproject.jar") Assert.assertEquals(jarFile.size, Some(10)) Assert.assertFalse(jarFile.classes.isEmpty) Assert.assertEquals(jarFile.classes.size, 4) Assert.assertTrue(jarFile.mavenInfo.isDefined) val mavenInfo = jarFile.mavenInfo.head Assert.assertEquals(mavenInfo.groupId, "org.leebli.parsers") Assert.assertEquals(mavenInfo.artifactId, "parser-jar-testproject") Assert.assertEquals(mavenInfo.version, "1.0") println(jarFile.classes.mkString(",")) val javaClass = jarFile.classes find (_.name == "org.leebli.parser.bytecode.test.TestAttribute") Assert.assertTrue(javaClass.isDefined) } }
jonathan-macke/leebli
parsers/archive-parser/src/test/scala/org/leebli/parser/jar/JarParserTestCase.scala
Scala
apache-2.0
2,267
/* * Copyright (c) 2014-2019 Israel Herraiz <isra@herraiz.org> * * Permission is hereby granted, free of charge, to any person * obtaining a copy of this software and associated documentation * files (the "Software"), to deal in the Software without * restriction, including without limitation the rights to use, copy, * modify, merge, publish, distribute, sublicense, and/or sell copies * of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ // --------------------- // Test for example 3.13 // --------------------- package chap03 import org.specs2.mutable._ object Ex13Spec extends Specification { "The foldRight function" should { "behave like foldLeft with empty lists" in { Ex13.foldRight(Nil: List[Int], 0)(_+_) mustEqual Ex10.foldLeft(Nil: List[Int],0)(_+_) } "behave like List's foldRight with empty lists" in { Ex13.foldRight(Nil: List[Int], 0)(_+_) mustEqual (Nil: List[Int]).foldRight(0)(_+_) } "behave like foldLeft reversedly with non-empty lists" in { Ex13.foldRight(List(1,3,5,4),Nil: List[Int]) { (x,y) => x :: y } mustEqual Ex10.foldLeft(List(4,5,3,1),Nil: List[Int]) { (x,y) => y :: x } } "behave like List's foldRight with non-empty lists" in { Ex13.foldRight(List(1,2),List(3,4)) { (x,y) => x :: y } mustEqual (List(1,2)).foldRight(List(3,4)) { (x,y) => x :: y } } } "The foldLeft function" should { "behave like foldLeft (ex. 10) with empty lists" in { Ex13.foldLeft(Nil: List[Int], 0)(_+_) mustEqual Ex10.foldLeft(Nil: List[Int],0)(_+_) } "behave like foldLeft (ex. 10) with non-empty lists" in { Ex13.foldLeft(List(1,3,5,4),Nil: List[Int]) { (x,y) => y :: x } mustEqual Ex10.foldLeft(List(1,3,5,4),Nil: List[Int]) { (x,y) => y :: x } } "behave like List's foldLeft with empty lists" in { Ex13.foldLeft(Nil: List[Int], 0)(_+_) mustEqual (Nil: List[Int]).foldLeft(0)(_+_) } "behave like List's foldLeft with non-empty lists" in { Ex13.foldLeft(List(1,2),List(3,4)) { (x,y) => y :: x } mustEqual (List(1,2)).foldLeft(List(3,4)) { (x,y) => y :: x } } } }
iht/fpinscala
src/test/scala/chap03/ex13Spec.scala
Scala
mit
2,931
/* * Copyright 2021 HM Revenue & Customs * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package uk.gov.hmrc.ct.ct600e.v2 import uk.gov.hmrc.ct.box._ import uk.gov.hmrc.ct.computations.HmrcAccountingPeriod import uk.gov.hmrc.ct.ct600.v2.calculations.CorporationTaxCalculator import uk.gov.hmrc.ct.ct600e.v2.retriever.CT600EBoxRetriever case class E1033(value: Int) extends CtBoxIdentifier("First Financial Year") with CtInteger object E1033 extends CorporationTaxCalculator with Calculated[E1033, CT600EBoxRetriever] { override def calculate(fieldValueRetriever: CT600EBoxRetriever): E1033 = { E1033(financialYear1(HmrcAccountingPeriod(fieldValueRetriever.e1021(), fieldValueRetriever.e1022))) } }
hmrc/ct-calculations
src/main/scala/uk/gov/hmrc/ct/ct600e/v2/E1033.scala
Scala
apache-2.0
1,226
package com.sksamuel.elastic4s sealed trait Response[+U] { /** * Returns the http status code of the response. */ def status: Int /** * Returns the body included in the HTTP response or None if this response did not include a body. * * @return */ def body: Option[String] /** * Returns any HTTP headers that were included in the response. */ def headers: Map[String, String] /** * Returns the marshalled response U if this is an instance of [[RequestSuccess]], otherwise * throws an exception. */ def result: U /** * Returns error details as an instance of [[ElasticError]] if this is [[RequestFailure]]. * Otherwise throws an exception. */ def error: ElasticError /** * Returns true if this response is an error state. * * @return */ def isError: Boolean /** * Returns true if this response was successful */ final def isSuccess: Boolean = !isError def map[V](f: U => V): Response[V] def flatMap[V](f: U => Response[V]): Response[V] final def fold[V](ifError: => V)(f: U => V): V = if (isError) ifError else f(result) final def fold[V](onError: RequestFailure => V, onSuccess: U => V): V = this match { case failure: RequestFailure => onError(failure) case RequestSuccess(_, _, _, result) => onSuccess(result) } final def foreach[V](f: U => V): Unit = if (!isError) f(result) final def toOption: Option[U] = if (isError) None else Some(result) final def toEither: Either[ElasticError, U] = if (isError) Left(error) else Right(result) } case class RequestSuccess[U](override val status: Int, // the http status code of the response override val body: Option[String], // the http response body if the response included one override val headers: Map[String, String], // any http headers included in the response override val result: U) extends Response[U] { override def isError = false override def error = throw new NoSuchElementException(s"Request success $result") final def map[V](f: U => V): Response[V] = RequestSuccess(status, body, headers, f(result)) final def flatMap[V](f: U => Response[V]): Response[V] = f(result) } case class RequestFailure(override val status: Int, // the http status code of the response override val body: Option[String], // the http response body if the response included one override val headers: Map[String, String], // any http headers included in the response override val error: ElasticError) extends Response[Nothing] { override def result = throw new NoSuchElementException(s"Request Failure $error") override def isError = true final def map[V](f: Nothing => V): Response[V] = this final def flatMap[V](f: Nothing => Response[V]): Response[V] = this }
sksamuel/elastic4s
elastic4s-core/src/main/scala/com/sksamuel/elastic4s/responses.scala
Scala
apache-2.0
2,921
/******************************************************************************* * Copyright (c) 2019. Carl Minden * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. ******************************************************************************/ package com.anathema_roguelike package fov import com.anathema_roguelike.main.display.DisplayCellTransformation abstract class LightLevelShader(lightLevels: LightLevels) extends DisplayCellTransformation { protected def getLightLevels: LightLevels = lightLevels }
carlminden/anathema-roguelike
src/com/anathema_roguelike/fov/LightLevelShader.scala
Scala
gpl-3.0
1,114
package com.datawizards.dmg.customizations import com.datawizards.dmg.TestModel._ import com.datawizards.dmg.dialects.{H2Dialect, HiveDialect, MySQLDialect, RedshiftDialect} import com.datawizards.dmg.generator.HiveGenerator import com.datawizards.dmg.{DataModelGenerator, DataModelGeneratorBaseTest} import org.junit.runner.RunWith import org.scalatest.junit.JUnitRunner @RunWith(classOf[JUnitRunner]) class UnderscoreConversionTest extends DataModelGeneratorBaseTest { test("Underscore conversion - H2") { val expected = """CREATE TABLE person_with_underscore_with_multiple_names( | person_name VARCHAR, | person_age INT |);""".stripMargin assertResultIgnoringNewLines(expected) { DataModelGenerator.generate[PersonWithUnderscoreWithMultipleNames](H2Dialect) } } test("Underscore conversion - Hive") { val expected = """CREATE TABLE PEOPLE( | name STRING, | person_age INT |) |TBLPROPERTIES( 'MODEL_GENERATOR_METADATA_HASH' = '1071146412') |;""".stripMargin assertResultIgnoringNewLines(expected) { DataModelGenerator.generate[PersonWithUnderscoreWithMultipleNames](new HiveGenerator) } } test("Underscore conversion - Redshift") { val expected = """CREATE TABLE person_with_underscore_with_multiple_names( | name VARCHAR, | age INTEGER |);""".stripMargin assertResultIgnoringNewLines(expected) { DataModelGenerator.generate[PersonWithUnderscoreWithMultipleNames](RedshiftDialect) } } test("Underscore conversion - MySQL") { val expected = """CREATE TABLE PersonWithUnderscoreWithMultipleNames( | personName VARCHAR, | personAge INT |);""".stripMargin assertResultIgnoringNewLines(expected) { DataModelGenerator.generate[PersonWithUnderscoreWithMultipleNames](MySQLDialect) } } }
mateuszboryn/data-model-generator
src/test/scala/com/datawizards/dmg/customizations/UnderscoreConversionTest.scala
Scala
apache-2.0
1,935
package is.hail.utils.prettyPrint import java.io.{StringWriter, Writer} import java.util.ArrayDeque import is.hail.utils.ArrayBuilder import scala.annotation.tailrec object Doc { def render(doc: Doc, width: Int, ribbonWidth: Int, _maxLines: Int, out: Writer): Unit = { // All groups whose formatting is still undetermined. The innermost group is at the end. // A group which has been determined to be non-flat is popped from the front, even if the // group is still open. This is safe because top-level Lines (not in any group) always print // as newlines. // Each GroupN contains the contents of the group that has been scanned so far. val pendingGroups = new ArrayDeque[GroupN] // Represents the rest of the document past the node currently being scanned. val kont = new ArrayDeque[KontNode] // The current position in the document, if it had been formatted entirely in one line. // This is only used to take the difference between two globalPos values, to determine // the length of a group if it is formatted flat. var globalPos: Int = 0 val maxLines = if (_maxLines > 0) _maxLines else Int.MaxValue var lines: Int = 0 var remainingInLine: Int = math.min(width, ribbonWidth) var indentation: Int = 0 var currentNode = doc // Group openings and closes are deferred until the next Line. This forces any Text to be // considered part of the group containing the previous Line. For opens, this is a slight // performance optimization, because text at the beginning of a group can be written eagerly, // regardless of how the group is formatted. For closes, this is more correct: if text // immediately follows the end of a group, then the group may fit on the current line, yet // the following text would exceed the max width. var pendingOpens: Int = 0 var pendingCloses: Int = 0 def scan(node: ScannedNode, size: Int): Unit = { globalPos += size if (pendingGroups.isEmpty) { printNode(node, false) } else { pendingGroups.getLast.contents += node while (!pendingGroups.isEmpty && globalPos - pendingGroups.getFirst.start > remainingInLine) { val head = pendingGroups.removeFirst() head.end = globalPos printNode(head, false) } } } // Process the top of kont until a non-empty ConcatK is found; move the first contained node // to currentNode. @tailrec def advance(): Unit = { if (kont.isEmpty) { currentNode = null } else { kont.peek() match { case ConcatK(k) => if (k.isEmpty) { kont.pop() advance() } else { currentNode = k.next() } case PopGroupK => if (pendingOpens > 0) pendingOpens -= 1 else pendingCloses += 1 kont.pop() advance() case UnindentK(i) => indentation -= i kont.pop() advance() } } } def printNode(node: ScannedNode, flatten: Boolean): Unit = node match { case TextN(t) => remainingInLine -= t.length out.write(t) case LineN(i, ifFlat: String) => if (flatten) { remainingInLine -= ifFlat.length out.write(ifFlat) } else { lines += 1 if (lines >= maxLines) throw new MaxLinesExceeded() out.write('\n') out.write(" " * i) remainingInLine = math.min(width - i, ribbonWidth) } case GroupN(contents, start, stop) => val h = stop - start <= remainingInLine var i = 0 while (i < contents.size) { printNode(contents(i), h) i += 1 } } def closeGroups(): Unit = while (pendingCloses > 0) { if (pendingGroups.isEmpty) { pendingCloses = 0 return } val last = pendingGroups.removeLast() last.end = globalPos if (pendingGroups.isEmpty) { printNode(last, true) } else { pendingGroups.getLast.contents += last } pendingCloses -= 1 } def openGroups(): Unit = { while (pendingOpens > 0) { pendingGroups.addLast(GroupN(new ArrayBuilder[ScannedNode](), globalPos, -1)) pendingOpens -= 1 } } try { while (currentNode != null) { currentNode match { case Text(t) => scan(TextN(t), t.length) advance() case Line(ifFlat) => closeGroups() openGroups() scan(LineN(indentation, ifFlat), ifFlat.length) advance() case Group(body) => kont.push(PopGroupK) pendingOpens += 1 currentNode = body case Indent(i, body) => indentation += i kont.push(UnindentK(i)) currentNode = body case Concat(bodyIt) => kont.push(ConcatK(bodyIt.iterator)) advance() } } closeGroups() } catch { case _: MaxLinesExceeded => // 'maxLines' have been printed, so break out of the loop and stop printing. } } } abstract class Doc { def render(width: Int, ribbonWidth: Int, maxLines: Int, out: Writer): Unit = Doc.render(this, width, ribbonWidth, maxLines, out) def render(width: Int, ribbonWidth: Int, maxLines: Int): String = { val out = new StringWriter() render(width, ribbonWidth, maxLines, out) out.toString } } private[prettyPrint] case class Text(t: String) extends Doc private[prettyPrint] case class Line(ifFlat: String) extends Doc private[prettyPrint] case class Group(body: Doc) extends Doc private[prettyPrint] case class Indent(i: Int, body: Doc) extends Doc private[prettyPrint] case class Concat(it: Iterable[Doc]) extends Doc private[prettyPrint] abstract class ScannedNode private[prettyPrint] case class TextN(t: String) extends ScannedNode private[prettyPrint] case class LineN(indentation: Int, ifFlat: String) extends ScannedNode private[prettyPrint] case class GroupN(contents: ArrayBuilder[ScannedNode], start: Int, var end: Int) extends ScannedNode private[prettyPrint] abstract class KontNode private[prettyPrint] case object PopGroupK extends KontNode private[prettyPrint] case class UnindentK(indent: Int) extends KontNode private[prettyPrint] case class ConcatK(kont: Iterator[Doc]) extends KontNode private[prettyPrint] class MaxLinesExceeded() extends Exception
danking/hail
hail/src/main/scala/is/hail/utils/prettyPrint/PrettyPrintWriter.scala
Scala
mit
6,555
package recipestore.db.tinkerpop import com.google.common.base.Strings /** * DSE as of when this class is created, still lacks Gremlin Fluent Api.Hence * a bunch of helper classes for some common DSE Graph operations. * */ object GremlinQueryFactory { def addVertexScript(label: String, propertyMap: Map[String, AnyRef]): String = { val propertyChain = if (propertyMap == null) "" else propertyMap .filterNot(entry => entry._1.toLowerCase().equals("label")) .filterNot(_._2 == null) .filterNot(e => e._1.startsWith("id")) //Not a mistake.We are not interpolating actual value, rather // use the binding mechanism available in DSE graph api .map(e => s"'${e._1}', ${e._1}") .mkString(",") val propertyValuesString = if (Strings.isNullOrEmpty(propertyChain)) "" else s",$propertyChain" s"g.addV(label,'$label'$propertyValuesString)" } def addEdgeScript(edgeLabel: String, propertyMap: Map[String, AnyRef] = Map()) = { val propertyChain = if (propertyMap == null || propertyMap.size == 0) "" else "," + propertyMap .filterNot(e => e._1.equals("id")) .filterNot(e => e._1.toLowerCase().equals("label")) .filter(_._2 != null) .map(e => s"'${e._1}', ${e._1}") .mkString(",") s"""def v1 = g.V().has('resourceId',id1).next()\n def v2 = g.V().has('resourceId',id2).next()\n v1.addEdge('$edgeLabel', v2 $propertyChain)""" } }
prad-a-RuntimeException/semantic-store
src/main/scala/recipestore/db/tinkerpop/GremlinQueryFactory.scala
Scala
mit
1,467
package com.sksamuel.avro4s.schemas import com.sksamuel.avro4s.SchemaFor import org.apache.avro.{Schema, SchemaBuilder} import scala.quoted.Quotes import scala.quoted.Expr import scala.quoted.Type object ScalaEnums: inline def schema[T]: SchemaFor[T] = ${ schema } def schema[T:Type](using quotes: Quotes): Expr[SchemaFor[T]] = import quotes.reflect.* val tpe = TypeRepr.of[T] val t = tpe.typeSymbol.tree println(t) println(tpe.toString) '{ new SchemaFor[T] { println("hello") override def schema: Schema = SchemaBuilder.builder().intType() } }
sksamuel/avro4s
avro4s-core/src/main/scala/com/sksamuel/avro4s/schemas/scalaenums.scala
Scala
apache-2.0
593
/* * Copyright 2011-2018 Chris de Vreeze * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package eu.cdevreeze.nta.common.taxonomy import java.net.URI import eu.cdevreeze.tqa.base.dom.TaxonomyDocument import eu.cdevreeze.tqa.base.dom.XsdSchema import eu.cdevreeze.tqa.base.taxonomy.BasicTaxonomy import eu.cdevreeze.tqa.base.taxonomybuilder.DocumentCollector import eu.cdevreeze.tqa.docbuilder.DocumentBuilder import eu.cdevreeze.yaidom.queryapi.BackingDocumentApi /** * A taxonomy, holding a collection of DTSes (fitting entirely in that taxonomy). * * It does not know anything about the part of the taxonomy that must be validated by NTA validators. * * Note that memory usage may be quite large, so by all means use DOM-like trees that use Saxon tiny trees or * some other thread-safe low footprint DOM-like element implementation. * * @author Chris de Vreeze */ final class Taxonomy private ( val universeTaxonomy: BasicTaxonomy, val dtsMap: Map[Set[URI], BasicTaxonomy]) { assert(dtsMap.forall { case (ep, taxo) => ep.subsetOf(taxo.taxonomyBase.taxonomyDocUriMap.keySet) }) assert(dtsMap.values.forall(dts => dts.taxonomyBase.taxonomyDocUriMap.keySet.subsetOf(universeTaxonomy.taxonomyBase.taxonomyDocUriMap.keySet))) def findAllDocumentUris: Set[URI] = { universeTaxonomy.taxonomyBase.taxonomyDocUriMap.keySet } def findDts(entrypoint: Set[URI]): Option[BasicTaxonomy] = { dtsMap.get(entrypoint) } def getDts(entrypoint: Set[URI]): BasicTaxonomy = { findDts(entrypoint).getOrElse(sys.error(s"No DTS found for entrypoint ${entrypoint.mkString(", ")}")) } def findDocument(uri: URI): Option[TaxonomyDocument] = { universeTaxonomy.taxonomyBase.taxonomyDocUriMap.get(uri) } def getDocument(uri: URI): TaxonomyDocument = { findDocument(uri).getOrElse(sys.error(s"No document found with URI '$uri'")) } def isEntrypointDocument(doc: TaxonomyDocument): Boolean = { dtsMap.keySet.exists(_.contains(doc.uri)) } def isEntrypointSchemaDocument(doc: TaxonomyDocument): Boolean = { doc.documentElement.isInstanceOf[XsdSchema] && isEntrypointDocument(doc) } def filterEntrypointsReturningCombinedDtsAsUriSet(p: Set[URI] => Boolean): Set[URI] = { dtsMap.filterKeys(p) .values.flatMap { dts => dts.taxonomyBase.taxonomyDocUriMap.keySet }.toSet } } object Taxonomy { def build( universeTaxonomy: BasicTaxonomy, dtsDocumentCollector: DocumentCollector, entrypoints: Set[Set[URI]]): Taxonomy = { val docBuilder = new DocBuilder(universeTaxonomy) val dtsMap: Map[Set[URI], BasicTaxonomy] = entrypoints.toSeq.map { entrypointUris => val dtsUris: Set[URI] = dtsDocumentCollector.collectTaxonomyDocuments(entrypointUris, docBuilder).map(_.uri).toSet val dts: BasicTaxonomy = universeTaxonomy.filteringDocumentUris(dtsUris) entrypointUris -> dts }.toMap new Taxonomy(universeTaxonomy, dtsMap) } /** * Very fast DocumentBuilder that only looks up documents in the passed "universe taxonomy", instead of parsing. */ final class DocBuilder(val universeTaxonomy: BasicTaxonomy) extends DocumentBuilder { type BackingDoc = BackingDocumentApi def build(uri: URI): BackingDocumentApi = { universeTaxonomy.taxonomyBase.taxonomyDocUriMap .getOrElse(uri, sys.error(s"Missing document with URI '$uri'")) .backingDocument } } }
dvreeze/nta
src/main/scala/eu/cdevreeze/nta/common/taxonomy/Taxonomy.scala
Scala
apache-2.0
3,958
package edu.cmu.lti.nlp.amr.ConceptInvoke import edu.cmu.lti.nlp.amr._ import edu.cmu.lti.nlp.amr.Train._ import edu.cmu.lti.nlp.amr.BasicFeatureVector._ import java.io.File import java.io.FileOutputStream import java.io.PrintStream import java.io.BufferedOutputStream import java.io.OutputStreamWriter import java.lang.Math.abs import java.lang.Math.log import java.lang.Math.exp import java.lang.Math.random import java.lang.Math.floor import java.lang.Math.min import java.lang.Math.max import scala.io.Source import scala.util.matching.Regex import scala.collection.mutable.Map import scala.collection.mutable.Set import scala.collection.mutable.ArrayBuffer abstract class Decoder(featureNames: List[String]) { val features = new Features(featureNames) // maybe this should be renamed ff? def decode(input: Input) : DecoderResult }
avikalpg/jamr
src/ConceptInvoke/Decoder.scala
Scala
bsd-2-clause
848
/* * Copyright 2015 Nicolas Rinaudo * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package kantan.csv package laws trait VersionSpecificReaderEngineLaws { self: ReaderEngineLaws => def withFilter(csv: List[List[Cell]], f: List[Cell] => Boolean): Boolean = asReader(csv).withFilter(f).toList == asReader(csv).filter(f).toList def toStream(csv: List[List[Cell]]): Boolean = asReader(csv).toStream == csv.toStream def toTraversable(csv: List[List[Cell]]): Boolean = asReader(csv).toTraversable == csv.toTraversable def toIterator(csv: List[List[Cell]]): Boolean = asReader(csv).toIterator.sameElements(csv.toIterator) }
nrinaudo/scala-csv
laws/shared/src/main/scala-2.12/kantan/csv/laws/VersionSpecificReaderEngineLaws.scala
Scala
mit
1,163
/*********************************************************************** * Copyright (c) 2013-2019 Commonwealth Computer Research, Inc. * All rights reserved. This program and the accompanying materials * are made available under the terms of the Apache License, Version 2.0 * which accompanies this distribution and is available at * http://www.opensource.org/licenses/apache2.0.php. ***********************************************************************/ package org.locationtech.geomesa.fs.storage.common.partitions import org.locationtech.geomesa.fs.storage.api.PartitionScheme.SimplifiedFilter import org.locationtech.geomesa.fs.storage.api.{NamedOptions, PartitionScheme, PartitionSchemeFactory} import org.opengis.feature.simple.{SimpleFeature, SimpleFeatureType} import org.opengis.filter.Filter object FlatScheme extends PartitionScheme { override val depth: Int = 0 override def getPartitionName(feature: SimpleFeature): String = "" override def getSimplifiedFilters(filter: Filter, partition: Option[String]): Option[Seq[SimplifiedFilter]] = Some(Seq(SimplifiedFilter(filter, Seq(""), partial = false))) class FlatPartitionSchemeFactory extends PartitionSchemeFactory { override def load(sft: SimpleFeatureType, config: NamedOptions): Option[PartitionScheme] = if (config.name.equalsIgnoreCase("flat")) { Some(FlatScheme) } else { None } } }
elahrvivaz/geomesa
geomesa-fs/geomesa-fs-storage/geomesa-fs-storage-common/src/main/scala/org/locationtech/geomesa/fs/storage/common/partitions/FlatScheme.scala
Scala
apache-2.0
1,391
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.spark.deploy.master.ui import org.apache.spark.Logging import org.apache.spark.deploy.master.Master import org.apache.spark.status.api.v1.{ApiRootResource, ApplicationsListResource, ApplicationInfo, UIRoot} import org.apache.spark.ui.{SparkUI, WebUI} import org.apache.spark.ui.JettyUtils._ import org.apache.spark.util.RpcUtils /** * Web UI server for the standalone master. */ private[master] class MasterWebUI(val master: Master, requestedPort: Int) extends WebUI(master.securityMgr, requestedPort, master.conf, name = "MasterUI") with Logging with UIRoot { val masterActorRef = master.self val timeout = RpcUtils.askTimeout(master.conf) val killEnabled = master.conf.getBoolean("spark.ui.killEnabled", true) val masterPage = new MasterPage(this) initialize() /** Initialize all components of the server. */ def initialize() { val masterPage = new MasterPage(this) attachPage(new ApplicationPage(this)) attachPage(new HistoryNotFoundPage(this)) attachPage(masterPage) attachHandler(createStaticHandler(MasterWebUI.STATIC_RESOURCE_DIR, "/static")) attachHandler(ApiRootResource.getServletHandler(this)) attachHandler(createRedirectHandler( "/app/kill", "/", masterPage.handleAppKillRequest, httpMethods = Set("POST"))) attachHandler(createRedirectHandler( "/driver/kill", "/", masterPage.handleDriverKillRequest, httpMethods = Set("POST"))) } /** Attach a reconstructed UI to this Master UI. Only valid after bind(). */ def attachSparkUI(ui: SparkUI) { assert(serverInfo.isDefined, "Master UI must be bound to a server before attaching SparkUIs") ui.getHandlers.foreach(attachHandler) } /** Detach a reconstructed UI from this Master UI. Only valid after bind(). */ def detachSparkUI(ui: SparkUI) { assert(serverInfo.isDefined, "Master UI must be bound to a server before detaching SparkUIs") ui.getHandlers.foreach(detachHandler) } def getApplicationInfoList: Iterator[ApplicationInfo] = { val state = masterPage.getMasterState val activeApps = state.activeApps.sortBy(_.startTime).reverse val completedApps = state.completedApps.sortBy(_.endTime).reverse activeApps.iterator.map { ApplicationsListResource.convertApplicationInfo(_, false) } ++ completedApps.iterator.map { ApplicationsListResource.convertApplicationInfo(_, true) } } def getSparkUI(appId: String): Option[SparkUI] = { val state = masterPage.getMasterState val activeApps = state.activeApps.sortBy(_.startTime).reverse val completedApps = state.completedApps.sortBy(_.endTime).reverse (activeApps ++ completedApps).find { _.id == appId }.flatMap { master.rebuildSparkUI } } } private[master] object MasterWebUI { private val STATIC_RESOURCE_DIR = SparkUI.STATIC_RESOURCE_DIR }
andrewor14/iolap
core/src/main/scala/org/apache/spark/deploy/master/ui/MasterWebUI.scala
Scala
apache-2.0
3,633
/* * Grammar of Graphics in Scala * Copyright (c) 2011, ggscala.org */ package org.ggscala.model import org.scalatest._ import flatspec._ import matchers._ import org.ggscala.test.TestUtils import org.ggscala.model.DataFrame._ class DataFrameSpec extends AnyFlatSpec with should.Matchers { "A MemoryDataFrame" should "be simple to construct" in { val data = Array( 1.0, 2.0, 3.0 ) // make data frame with a single numeric column val dataFrame = MemoryDataFrame( d("values",data) ) dataFrame.ncol should be (1) dataFrame.names.toArray should equal ( Array("values") ) } it should "be simple to construct with multiple columns" in { val data1 = Array( 1.0, 2.0, 3.0 ) val data2 = Array( "A", "B", "C" ) // make data frame with two columns val dataFrame = MemoryDataFrame( d("values",data1), s("letters",data2) ) dataFrame.ncol should be (2) val expectNames = Array( "values", "letters" ) dataFrame.names.toArray should equal (expectNames) } it should "be row-bindable" in { // construct start state val (data1,data2,data3,data4) = ( Array( 1.0, 2.0, 3.0 ), Array( "A", "B", "C" ), Array( 4.0, 5.0, 6.0 ), Array( "A", "B", "C" ) ) val dataFrame1 = MemoryDataFrame( d("values",data1), s("letters",data2) ) val dataFrame2 = MemoryDataFrame( d("values",data3), s("letters",data4) ) // action val dataFrame3 = dataFrame1.rbind(dataFrame2) // asserts val expectNames = Array( "values", "letters" ) val expectData1 = Array( 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 ) val expectData2 = Array( "A", "B", "C", "A", "B", "C" ) dataFrame3.ncol should be (2) dataFrame3.names.toArray should equal (expectNames) dataFrame3.$d("values").toArray should equal (expectData1) dataFrame3.$s("letters").toArray should equal (expectData2) } it should "support row iteration" in { val (data1,data2) = (Array( 1.0, 2.0, 3.0 ),Array( "A", "B", "C" )) val dataFrame = MemoryDataFrame( d("values",data1), s("letters",data2) ) var count = 0 for( row <- dataFrame.rowIterator ) { row.length should be (2) // TODO assert casts (might be better way to do this with ScalaTest) count += 1 } count should be (3) } } object DataFrameSpec { def main(args:Array[String]) = { TestUtils.timing { (new DataFrameSpec).execute() } } }
drkeoni/ggscala
src/test/scala/org/ggscala/model/DataFrameSpec.scala
Scala
mit
2,419
package org.jetbrains.plugins.scala package lang package references import java.util import java.util.Collections import com.intellij.openapi.diagnostic.Logger import com.intellij.openapi.module.{Module, ModuleUtilCore} import com.intellij.openapi.roots.ModuleRootManager import com.intellij.openapi.util.{Condition, TextRange} import com.intellij.openapi.vfs.VirtualFile import com.intellij.patterns.PlatformPatterns import com.intellij.psi._ import com.intellij.psi.impl.source.resolve.reference.impl.providers.{FileReference, FileReferenceSet} import com.intellij.util.ProcessingContext import com.intellij.util.containers.ContainerUtil import org.jetbrains.annotations.NotNull import org.jetbrains.plugins.scala.extensions._ import org.jetbrains.plugins.scala.lang.psi.api.base.patterns.ScInterpolationPattern import org.jetbrains.plugins.scala.lang.psi.api.base.{ScInterpolatedStringLiteral, ScLiteral} import org.jetbrains.plugins.scala.lang.psi.api.expr.ScReferenceExpression import org.jetbrains.plugins.scala.lang.psi.impl.ScalaPsiElementFactory import org.jetbrains.plugins.scala.lang.psi.impl.expr.ScInterpolatedStringPartReference import scala.collection.JavaConversions class ScalaReferenceContributor extends PsiReferenceContributor { def registerReferenceProviders(registrar: PsiReferenceRegistrar) { registrar.registerReferenceProvider(PlatformPatterns.psiElement(classOf[ScLiteral]), new FilePathReferenceProvider()) registrar.registerReferenceProvider(PlatformPatterns.psiElement(classOf[ScLiteral]), new InterpolatedStringReferenceProvider()) } } class InterpolatedStringReferenceProvider extends PsiReferenceProvider { override def getReferencesByElement(element: PsiElement, context: ProcessingContext): Array[PsiReference] = { element match { case _: ScInterpolatedStringLiteral => Array.empty case l: ScLiteral if (l.isString || l.isMultiLineString) && l.getText.contains("$") => val interpolated = ScalaPsiElementFactory.createExpressionFromText("s" + l.getText, l.getContext) interpolated.getChildren.filter { case _: ScInterpolatedStringPartReference => false case _: ScReferenceExpression => true case _ => false }.map { case ref: ScReferenceExpression => new PsiReference { override def getVariants: Array[AnyRef] = Array.empty override def getCanonicalText: String = ref.getCanonicalText override def getElement: PsiElement = l override def isReferenceTo(element: PsiElement): Boolean = ref.isReferenceTo(element) override def bindToElement(element: PsiElement): PsiElement = ref override def handleElementRename(newElementName: String): PsiElement = ref override def isSoft: Boolean = true override def getRangeInElement: TextRange = { val range = ref.getTextRange val startOffset = interpolated.getTextRange.getStartOffset + 1 new TextRange(range.getStartOffset - startOffset, range.getEndOffset - startOffset) } override def resolve(): PsiElement = null } } case _ => Array.empty } } } // todo: Copy of the corresponding class from IDEA, changed to use ScLiteral rather than PsiLiteralExpr class FilePathReferenceProvider extends PsiReferenceProvider { private val LOG: Logger = Logger.getInstance("#org.jetbrains.plugins.scala.lang.references.FilePathReferenceProvider") @NotNull def getRoots(thisModule: Module, includingClasses: Boolean): java.util.Collection[PsiFileSystemItem] = { if (thisModule == null) return Collections.emptyList[PsiFileSystemItem] val modules: java.util.List[Module] = new util.ArrayList[Module] modules.add(thisModule) var moduleRootManager: ModuleRootManager = ModuleRootManager.getInstance(thisModule) ContainerUtil.addAll(modules, moduleRootManager.getDependencies: _*) val result: java.util.List[PsiFileSystemItem] = new java.util.ArrayList[PsiFileSystemItem] val psiManager: PsiManager = PsiManager.getInstance(thisModule.getProject) if (includingClasses) { val libraryUrls: Array[VirtualFile] = moduleRootManager.orderEntries.getAllLibrariesAndSdkClassesRoots for (file <- libraryUrls) { val directory: PsiDirectory = psiManager.findDirectory(file) if (directory != null) { result.add(directory) } } } for (module <- JavaConversions.iterableAsScalaIterable(modules)) { moduleRootManager = ModuleRootManager.getInstance(module) val sourceRoots: Array[VirtualFile] = moduleRootManager.getSourceRoots for (root <- sourceRoots) { val directory: PsiDirectory = psiManager.findDirectory(root) if (directory != null) { val aPackage: PsiPackage = JavaDirectoryService.getInstance.getPackage(directory) if (aPackage != null && aPackage.name != null) { try { val createMethod = Class.forName("com.intellij.psi.impl.source.resolve.reference.impl.providers.PackagePrefixFileSystemItemImpl").getMethod("create", classOf[PsiDirectory]) createMethod.setAccessible(true) createMethod.invoke(directory) } catch { case t: Exception => LOG.warn(t) } } else { result.add(directory) } } } } result } @NotNull def getReferencesByElement(element: PsiElement, text: String, offset: Int, soft: Boolean): Array[PsiReference] = { new FileReferenceSet(text, element, offset, this, true, myEndingSlashNotAllowed) { protected override def isSoft: Boolean = soft override def isAbsolutePathReference: Boolean = true override def couldBeConvertedTo(relative: Boolean): Boolean = !relative override def absoluteUrlNeedsStartSlash: Boolean = { val s: String = getPathString s != null && s.length > 0 && s.charAt(0) == '/' } @NotNull override def computeDefaultContexts: java.util.Collection[PsiFileSystemItem] = { val module: Module = ModuleUtilCore.findModuleForPsiElement(getElement) getRoots(module, includingClasses = true) } override def createFileReference(range: TextRange, index: Int, text: String): FileReference = { FilePathReferenceProvider.this.createFileReference(this, range, index, text) } protected override def getReferenceCompletionFilter: Condition[PsiFileSystemItem] = { new Condition[PsiFileSystemItem] { def value(element: PsiFileSystemItem): Boolean = { isPsiElementAccepted(element) } } } }.getAllReferences.map(identity) } override def acceptsTarget(@NotNull target: PsiElement): Boolean = { target.isInstanceOf[PsiFileSystemItem] } protected def isPsiElementAccepted(element: PsiElement): Boolean = { !(element.isInstanceOf[PsiJavaFile] && element.isInstanceOf[PsiCompiledElement]) } protected def createFileReference(referenceSet: FileReferenceSet, range: TextRange, index: Int, text: String): FileReference = { new FileReference(referenceSet, range, index, text) } def getReferencesByElement(element: PsiElement, context: ProcessingContext): Array[PsiReference] = { element match { case interpolated: ScInterpolationPattern => val refs = interpolated.getReferencesToStringParts val start: Int = interpolated.getTextRange.getStartOffset return refs.flatMap{ r => val offset = r.getElement.getTextRange.getStartOffset - start getReferencesByElement(r.getElement, r.getElement.getText, offset, soft = true)} case interpolatedString: ScInterpolatedStringLiteral => val refs = interpolatedString.getReferencesToStringParts val start: Int = interpolatedString.getTextRange.getStartOffset return refs.flatMap{ r => val offset = r.getElement.getTextRange.getStartOffset - start getReferencesByElement(r.getElement, r.getElement.getText, offset, soft = true) } case literal: ScLiteral => literal.getValue match { case text: String => if (text == null) return PsiReference.EMPTY_ARRAY return getReferencesByElement(element, text, 1, soft = true) case _ => } case _ => } PsiReference.EMPTY_ARRAY } private final val myEndingSlashNotAllowed: Boolean = false }
ilinum/intellij-scala
src/org/jetbrains/plugins/scala/lang/references/ScalaReferenceContributor.scala
Scala
apache-2.0
8,559
package org.jetbrains.plugins.scala package codeInspection.typeChecking import java.util.Comparator import com.intellij.codeInsight.PsiEquivalenceUtil import com.intellij.codeInspection.{ProblemHighlightType, ProblemsHolder} import com.intellij.openapi.application.ApplicationManager import com.intellij.openapi.project.Project import com.intellij.psi.PsiElement import com.intellij.psi.tree.IElementType import com.intellij.psi.util.PsiTreeUtil import org.jetbrains.plugins.scala.codeInspection.typeChecking.TypeCheckCanBeMatchInspection.{inspectionId, inspectionName} import org.jetbrains.plugins.scala.codeInspection.typeChecking.TypeCheckToMatchUtil._ import org.jetbrains.plugins.scala.codeInspection.{AbstractFixOnTwoPsiElements, AbstractInspection} import org.jetbrains.plugins.scala.extensions.{PsiElementExt, inWriteAction} import org.jetbrains.plugins.scala.lang.lexer.ScalaTokenTypes import org.jetbrains.plugins.scala.lang.psi.api.ScalaRecursiveElementVisitor import org.jetbrains.plugins.scala.lang.psi.api.base.patterns.{ScBindingPattern, ScPattern} import org.jetbrains.plugins.scala.lang.psi.api.base.types.{ScExistentialClause, ScTypeElement, ScTypeElementExt} import org.jetbrains.plugins.scala.lang.psi.api.expr._ import org.jetbrains.plugins.scala.lang.psi.api.statements.ScPatternDefinition import org.jetbrains.plugins.scala.lang.psi.api.statements.params.ScParameter import org.jetbrains.plugins.scala.lang.psi.api.toplevel.ScNamedElement import org.jetbrains.plugins.scala.lang.psi.impl.ScalaPsiElementFactory.createExpressionFromText import org.jetbrains.plugins.scala.lang.psi.impl.toplevel.synthetic.SyntheticNamedElement import org.jetbrains.plugins.scala.lang.psi.types.ScTypeExt import org.jetbrains.plugins.scala.lang.psi.{ScalaPsiElement, ScalaPsiUtil} import org.jetbrains.plugins.scala.lang.refactoring.namesSuggester.NameSuggester import org.jetbrains.plugins.scala.lang.refactoring.util.{InplaceRenameHelper, ScalaVariableValidator} import scala.annotation.tailrec import scala.collection.mutable /** * Nikolay.Tropin * 5/6/13 */ object TypeCheckCanBeMatchInspection { val inspectionId = "TypeCheckCanBeMatch" val inspectionName = "Type check can be replaced by pattern matching" } class TypeCheckCanBeMatchInspection extends AbstractInspection(inspectionId, inspectionName){ def actionFor(holder: ProblemsHolder): PartialFunction[PsiElement, Any] = { case IsInstanceOfCall(call) => for { ifStmt <- Option(PsiTreeUtil.getParentOfType(call, classOf[ScIfStmt])) condition <- ifStmt.condition iioCall <- findIsInstanceOfCalls(condition, onlyFirst = true) if iioCall == call if typeCheckIsUsedEnough(ifStmt, call) } { val fix = new TypeCheckCanBeMatchQuickFix(call, ifStmt) holder.registerProblem(call, inspectionName, ProblemHighlightType.GENERIC_ERROR_OR_WARNING, fix) } } private def typeCheckIsUsedEnough(ifStmt: ScIfStmt, isInstOf: ScGenericCall): Boolean = { val chainSize = listOfIfAndIsInstOf(ifStmt, isInstOf, onlyFirst = true).size val typeCastsNumber = findAsInstOfCalls(ifStmt.condition, isInstOf).size + findAsInstOfCalls(ifStmt.thenBranch, isInstOf).size chainSize > 1 || typeCastsNumber > 0 } } class TypeCheckCanBeMatchQuickFix(isInstOfUnderFix: ScGenericCall, ifStmt: ScIfStmt) extends AbstractFixOnTwoPsiElements(inspectionName, isInstOfUnderFix, ifStmt) { def doApplyFix(project: Project) { val isInstOf = getFirstElement val ifSt = getSecondElement if (!ifSt.isValid || !isInstOf.isValid) return val (matchStmtOption, renameData) = buildMatchStmt(ifSt, isInstOf, onlyFirst = true) for (matchStmt <- matchStmtOption) { val newMatch = inWriteAction { ifSt.replaceExpression(matchStmt, removeParenthesis = true).asInstanceOf[ScMatchStmt] } if (!ApplicationManager.getApplication.isUnitTestMode) { val renameHelper = new InplaceRenameHelper(newMatch) setElementsForRename(newMatch, renameHelper, renameData) renameHelper.startRenaming() } } } } object TypeCheckToMatchUtil { type RenameData = collection.mutable.ArrayBuffer[(Int, Seq[String])] def buildMatchStmt(ifStmt: ScIfStmt, isInstOfUnderFix: ScGenericCall, onlyFirst: Boolean): (Option[ScMatchStmt], RenameData) = { import ifStmt.projectContext baseExpr(isInstOfUnderFix) match { case Some(expr: ScExpression) => val matchedExprText = expr.getText val (caseClausesText, renameData) = buildCaseClausesText(ifStmt, isInstOfUnderFix, onlyFirst) val matchStmtText = s"$matchedExprText match { \n " + caseClausesText + "}" val matchStmt = createExpressionFromText(matchStmtText).asInstanceOf[ScMatchStmt] (Some(matchStmt), renameData) case _ => (None, null) } } private def buildCaseClauseText(ifStmt: ScIfStmt, isInstOf: ScGenericCall, caseClauseIndex: Int, renameData: RenameData): Option[String] = { var definedName: Option[String] = None var definition: Option[ScPatternDefinition] = None //method for finding and saving named type cast def checkAndStoreNameAndDef(asInstOfCall: ScGenericCall): Boolean = { ScalaPsiUtil.getContextOfType(asInstOfCall, strict = true, classOf[ScPatternDefinition]) match { case patternDef: ScPatternDefinition => val bindings = patternDef.bindings //pattern consist of one assignment of asInstanceOf call if (bindings.size == 1 && patternDef.expr.get == asInstOfCall) { definition match { //store first occurence of pattern definition and name case Some(oldDef) if oldDef.getTextOffset < patternDef.getTextOffset => true case _ => definedName = Some(bindings.head.getName) definition = Some(patternDef) true } } else false case null => false } } def typeNeedParentheses(typeElem: ScTypeElement): Boolean = { PsiTreeUtil.getChildOfType(typeElem, classOf[ScExistentialClause]) != null } for { args <- isInstOf.typeArgs condition <- ifStmt.condition if args.typeArgs.size == 1 } yield { val typeElem = args.typeArgs.head val typeName0 = typeElem.getText val typeName = if (typeNeedParentheses(typeElem)) s"($typeName0)" else typeName0 val asInstOfInBody = findAsInstOfCalls(ifStmt.thenBranch, isInstOf) val guardCond = guardCondition(condition, isInstOf) val asInstOfInGuard = findAsInstOfCalls(guardCond, isInstOf) val asInstOfEverywhere = asInstOfInBody ++ asInstOfInGuard implicit val projectContext = ifStmt.projectContext if (asInstOfInBody.count(checkAndStoreNameAndDef) == 0) { //no usage of asInstanceOf if (asInstOfEverywhere.isEmpty) { buildCaseClauseText("_ : " + typeName, guardCond, ifStmt.thenBranch, ifStmt.getProject) } //no named usage else { val suggestedNames = NameSuggester.suggestNames(asInstOfEverywhere.head)( new ScalaVariableValidator(ifStmt, false, ifStmt.getParent, ifStmt.getParent) ) val name = suggestedNames.head asInstOfEverywhere.foreach { c => val newExpr = createExpressionFromText(name) inWriteAction { c.replaceExpression(newExpr, removeParenthesis = true) } } renameData += ((caseClauseIndex, suggestedNames.toSeq)) buildCaseClauseText(s"$name : $typeName", guardCond, ifStmt.thenBranch, ifStmt.getProject) } } //have named usage, use this name in case clause pattern definition else { //deleting unnecessary val declaration val patternDef = definition.get inWriteAction { patternDef.delete() } val name = definedName.get val newExpr = createExpressionFromText(name) inWriteAction { asInstOfEverywhere.foreach(_.replaceExpression(newExpr, removeParenthesis = true)) } buildCaseClauseText(s"$name : $typeName", guardCond, ifStmt.thenBranch, ifStmt.getProject) } } } private def buildDefaultCaseClauseText(body: Option[ScExpression], project: Project): Option[String] = { Some(buildCaseClauseText("_ ", None, body, project)) } private def buildCaseClauseText(patternText: String, guardCondition: Option[ScExpression], body: Option[ScExpression], project: Project): String = { val builder = new StringBuilder builder.append("case ").append(patternText) guardCondition.map(cond => builder.append(" if " + cond.getText)) val arrow = ScalaPsiUtil.functionArrow(project) builder.append(s" $arrow") body match { case Some(block: ScBlock) => for (elem <- block.children) { val elementType: IElementType = elem.getNode.getElementType if (elementType != ScalaTokenTypes.tLBRACE && elementType != ScalaTokenTypes.tRBRACE) builder.append(elem.getText) } case Some(expr: ScExpression) => builder.append(expr.getText) case None => } if (!builder.last.isWhitespace) builder.append("\n") builder.toString() } def listOfIfAndIsInstOf(currentIfStmt: ScIfStmt, currentCall: ScGenericCall, onlyFirst: Boolean): List[(ScIfStmt, ScGenericCall)] = { for (currentBase <- baseExpr(currentCall)) { currentIfStmt.elseBranch match { case Some(nextIfStmt: ScIfStmt) => for { nextCond <- nextIfStmt.condition nextCall <- findIsInstanceOfCalls(nextCond, onlyFirst) nextBase <- baseExpr(nextCall) if equiv(currentBase, nextBase) } { return (currentIfStmt, currentCall) :: listOfIfAndIsInstOf(nextIfStmt, nextCall, onlyFirst) } return (currentIfStmt, currentCall) :: Nil case _ => return (currentIfStmt, currentCall) :: Nil } } Nil } private def buildCaseClausesText(ifStmt: ScIfStmt, isInstOfUnderFix: ScGenericCall, onlyFirst: Boolean): (String, RenameData) = { implicit val project = ifStmt.getProject val builder = new StringBuilder val (ifStmts, isInstOf) = listOfIfAndIsInstOf(ifStmt, isInstOfUnderFix, onlyFirst).unzip val renameData = new RenameData() for { index <- ifStmts.indices text <- buildCaseClauseText(ifStmts(index), isInstOf(index), index, renameData) } { builder.append(text) } if (ifStmts != Nil) { val lastElse = ifStmts.last.elseBranch val defaultText: Option[String] = buildDefaultCaseClauseText(lastElse, project) defaultText.foreach(builder.append) } (builder.toString(), renameData) } @tailrec def findIsInstanceOfCalls(condition: ScExpression, onlyFirst: Boolean): List[ScGenericCall] = { if (onlyFirst) { condition match { case IsInstanceOfCall(call) => List(call) case infixExpr: ScInfixExpr if infixExpr.operation.refName == "&&" => findIsInstanceOfCalls(infixExpr.lOp, onlyFirst) case parenth: ScParenthesisedExpr => findIsInstanceOfCalls(parenth.expr.orNull, onlyFirst) case _ => Nil } } else { separateConditions(condition).collect {case IsInstanceOfCall(call) => call} } } def findAsInstOfCalls(body: Option[ScExpression], isInstOfCall: ScGenericCall): Seq[ScGenericCall] = { import isInstOfCall.projectContext def isAsInstOfCall(genCall: ScGenericCall) = { genCall.referencedExpr match { case ref: ScReferenceExpression if ref.refName == "asInstanceOf" => ref.resolve() match { case _: SyntheticNamedElement => true case _ => false } case _ => false } } def equalTypes(firstCall: ScGenericCall, secondCall: ScGenericCall): Boolean = { val option = for { firstArgs <- firstCall.typeArgs secondArgs <- secondCall.typeArgs firstTypes = firstArgs.typeArgs secondTypes = secondArgs.typeArgs if firstTypes.size == 1 && secondTypes.size == 1 } yield { val firstType = firstTypes.head.calcType val secondType = secondTypes.head.calcType firstType.equiv(secondType) } option.getOrElse(false) } val result = collection.mutable.ArrayBuffer[ScGenericCall]() val visitor = new ScalaRecursiveElementVisitor() { override def visitGenericCallExpression(call: ScGenericCall) { for { base1 <- baseExpr(isInstOfCall) base2 <- baseExpr(call) if isAsInstOfCall(call) if equalTypes(call, isInstOfCall) if equiv(base1, base2) } { result += call } super.visitGenericCallExpression(call) } } for (expr <- body) expr.accept(visitor) result } def setElementsForRename(matchStmt: ScMatchStmt, renameHelper: InplaceRenameHelper, renameData: RenameData) { val caseClauses = matchStmt.caseClauses.toList for { (index, suggestedNames) <- renameData caseClause = caseClauses(index) name = suggestedNames.head } { val primary = mutable.ArrayBuffer[ScNamedElement]() val dependents = mutable.SortedSet()(Ordering.by[ScalaPsiElement, Int](_.getTextOffset)) val patternVisitor = new ScalaRecursiveElementVisitor() { override def visitPattern(pat: ScPattern) { pat match { case bp: ScBindingPattern if bp.name == name => primary += bp case _ => } super.visitPattern(pat) } } val referenceVisitor = new ScalaRecursiveElementVisitor() { override def visitReferenceExpression(ref: ScReferenceExpression) { for (prim <- primary) { if (ref.refName == name && ref.resolve() == prim) dependents += ref } super.visitReferenceExpression(ref) } } caseClause.accept(patternVisitor) caseClause.accept(referenceVisitor) for (prim <- primary) renameHelper.addGroup(prim, dependents.toSeq, suggestedNames) } } def baseExpr(gCall: ScGenericCall): Option[ScExpression] = gCall.referencedExpr match { case ref: ScReferenceExpression => ref.qualifier case _ => None } private def guardCondition(condition: ScExpression, isInstOfCall: ScGenericCall): Option[ScExpression] = { val conditions = separateConditions(condition) conditions match { case Nil => None case _ => val guardConditions: List[ScExpression] = conditions.filterNot(equiv(_, isInstOfCall)) val guardConditionsText: String = guardConditions.map(_.getText).mkString(" && ") val guard = createExpressionFromText(guardConditionsText, condition).asInstanceOf[ScExpression] Option(guard) } } def equiv(elem1: PsiElement, elem2: PsiElement): Boolean = { val comparator = new Comparator[PsiElement]() { def compare(element1: PsiElement, element2: PsiElement): Int = { if (element1 == element2) return 0 (element1, element2) match { case (par1: ScParameter, par2: ScParameter) => val name1 = par1.name val name2 = par2.name if (name1 != null && name2 != null) name1.compareTo(name2) else 1 case _ => 1 } } } PsiEquivalenceUtil.areElementsEquivalent(elem1, elem2, comparator, false) } def separateConditions(expr: ScExpression): List[ScExpression] = { expr match { case parenth: ScParenthesisedExpr => parenth.expr match { case Some(infixExpr: ScInfixExpr) if infixExpr.operation.refName == "&&" => separateConditions(infixExpr.lOp) ::: separateConditions(infixExpr.rOp) ::: Nil case genCall: ScGenericCall => genCall :: Nil case _ => parenth :: Nil } case infixExpr: ScInfixExpr if infixExpr.operation.refName == "&&" => separateConditions(infixExpr.lOp) ::: separateConditions(infixExpr.rOp) ::: Nil case _ => expr :: Nil } } }
ilinum/intellij-scala
src/org/jetbrains/plugins/scala/codeInspection/typeChecking/TypeCheckCanBeMatchInspection.scala
Scala
apache-2.0
16,207
/*********************************************************************** * Copyright (c) 2013-2017 Commonwealth Computer Research, Inc. * All rights reserved. This program and the accompanying materials * are made available under the terms of the Apache License, Version 2.0 * which accompanies this distribution and is available at * http://www.opensource.org/licenses/apache2.0.php. ***********************************************************************/ package org.locationtech.geomesa.utils.stats import org.junit.runner.RunWith import org.locationtech.geomesa.curve.TimePeriod import org.locationtech.geomesa.utils.geotools.GeoToolsDateFormat import org.locationtech.geomesa.utils.text.WKTUtils import org.specs2.mutable.Specification import org.specs2.runner.JUnitRunner @RunWith(classOf[JUnitRunner]) class Z3FrequencyTest extends Specification with StatTestHelper { def createStat(precision: Int, observe: Boolean): Z3Frequency = { val s = Stat(sft, Stat.Z3Frequency("geom", "dtg", TimePeriod.Week, precision)) if (observe) { features.foreach { s.observe } } s.asInstanceOf[Z3Frequency] } def createStat(observe: Boolean = true): Z3Frequency = createStat(25, observe) def toDate(string: String) = java.util.Date.from(java.time.LocalDateTime.parse(string, GeoToolsDateFormat).toInstant(java.time.ZoneOffset.UTC)) def toGeom(string: String) = WKTUtils.read(string) "FrequencyZ3 stat" should { "work with geometries and dates" >> { "be empty initially" >> { val stat = createStat(observe = false) stat.isEmpty must beTrue stat.size mustEqual 0 } "correctly bin values" >> { val stat = createStat() stat.isEmpty must beFalse stat.size mustEqual 100 forall(0 until 100) { i => stat.count(toGeom(s"POINT(-$i ${i / 2})"), toDate(f"2012-01-01T${i%24}%02d:00:00.000Z")) must beBetween(1L, 6L) } } "serialize and deserialize" >> { val stat = createStat() val packed = StatSerializer(sft).serialize(stat) val unpacked = StatSerializer(sft).deserialize(packed) unpacked must beAnInstanceOf[Z3Frequency] unpacked.asInstanceOf[Z3Frequency].geomIndex mustEqual stat.geomIndex unpacked.asInstanceOf[Z3Frequency].dtgIndex mustEqual stat.dtgIndex unpacked.asInstanceOf[Z3Frequency].precision mustEqual stat.precision unpacked.asInstanceOf[Z3Frequency].toJson mustEqual stat.toJson } "serialize and deserialize empty stats" >> { val stat = createStat(observe = false) val packed = StatSerializer(sft).serialize(stat) val unpacked = StatSerializer(sft).deserialize(packed) unpacked must beAnInstanceOf[Z3Frequency] unpacked.asInstanceOf[Z3Frequency].geomIndex mustEqual stat.geomIndex unpacked.asInstanceOf[Z3Frequency].dtgIndex mustEqual stat.dtgIndex unpacked.asInstanceOf[Z3Frequency].precision mustEqual stat.precision unpacked.asInstanceOf[Z3Frequency].toJson mustEqual stat.toJson } "deserialize as immutable value" >> { val stat = createStat() val packed = StatSerializer(sft).serialize(stat) val unpacked = StatSerializer(sft).deserialize(packed, immutable = true) unpacked must beAnInstanceOf[Z3Frequency] unpacked.asInstanceOf[Z3Frequency].geomIndex mustEqual stat.geomIndex unpacked.asInstanceOf[Z3Frequency].dtgIndex mustEqual stat.dtgIndex unpacked.asInstanceOf[Z3Frequency].precision mustEqual stat.precision unpacked.asInstanceOf[Z3Frequency].toJson mustEqual stat.toJson unpacked.clear must throwAn[Exception] unpacked.+=(stat) must throwAn[Exception] unpacked.observe(features.head) must throwAn[Exception] unpacked.unobserve(features.head) must throwAn[Exception] } "clear" >> { val stat = createStat() stat.clear() stat.isEmpty must beTrue stat.size mustEqual 0 forall(0 until 100) { i => stat.count(toGeom(s"POINT(-$i ${i / 2})"), toDate(f"2012-01-01T${i%24}%02d:00:00.000Z")) mustEqual 0 } stat.count(toGeom("POINT(-180 -90)"), toDate("2012-01-01T00:00:00.000Z")) mustEqual 0 } } } }
ronq/geomesa
geomesa-utils/src/test/scala/org/locationtech/geomesa/utils/stats/Z3FrequencyTest.scala
Scala
apache-2.0
4,307
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.spark.sql.execution.datasources import java.util.{Locale, ServiceConfigurationError, ServiceLoader} import scala.collection.JavaConverters._ import scala.language.{existentials, implicitConversions} import scala.util.{Failure, Success, Try} import org.apache.hadoop.conf.Configuration import org.apache.hadoop.fs.Path import org.apache.spark.deploy.SparkHadoopUtil import org.apache.spark.internal.Logging import org.apache.spark.sql._ import org.apache.spark.sql.catalyst.analysis.UnresolvedAttribute import org.apache.spark.sql.catalyst.catalog.{BucketSpec, CatalogStorageFormat, CatalogTable, CatalogUtils} import org.apache.spark.sql.catalyst.expressions.Attribute import org.apache.spark.sql.catalyst.plans.logical.LogicalPlan import org.apache.spark.sql.catalyst.util.CaseInsensitiveMap import org.apache.spark.sql.execution.SparkPlan import org.apache.spark.sql.execution.datasources.csv.CSVFileFormat import org.apache.spark.sql.execution.datasources.jdbc.JdbcRelationProvider import org.apache.spark.sql.execution.datasources.json.JsonFileFormat import org.apache.spark.sql.execution.datasources.orc.OrcFileFormat import org.apache.spark.sql.execution.datasources.parquet.ParquetFileFormat import org.apache.spark.sql.execution.streaming._ import org.apache.spark.sql.execution.streaming.sources.{RateStreamProvider, TextSocketSourceProvider} import org.apache.spark.sql.internal.SQLConf import org.apache.spark.sql.sources._ import org.apache.spark.sql.streaming.OutputMode import org.apache.spark.sql.types.{CalendarIntervalType, StructField, StructType} import org.apache.spark.sql.util.SchemaUtils import org.apache.spark.util.Utils /** * The main class responsible for representing a pluggable Data Source in Spark SQL. In addition to * acting as the canonical set of parameters that can describe a Data Source, this class is used to * resolve a description to a concrete implementation that can be used in a query plan * (either batch or streaming) or to write out data using an external library. * * From an end user's perspective a DataSource description can be created explicitly using * [[org.apache.spark.sql.DataFrameReader]] or CREATE TABLE USING DDL. Additionally, this class is * used when resolving a description from a metastore to a concrete implementation. * * Many of the arguments to this class are optional, though depending on the specific API being used * these optional arguments might be filled in during resolution using either inference or external * metadata. For example, when reading a partitioned table from a file system, partition columns * will be inferred from the directory layout even if they are not specified. * * @param paths A list of file system paths that hold data. These will be globbed before and * qualified. This option only works when reading from a [[FileFormat]]. * @param userSpecifiedSchema An optional specification of the schema of the data. When present * we skip attempting to infer the schema. * @param partitionColumns A list of column names that the relation is partitioned by. This list is * generally empty during the read path, unless this DataSource is managed * by Hive. In these cases, during `resolveRelation`, we will call * `getOrInferFileFormatSchema` for file based DataSources to infer the * partitioning. In other cases, if this list is empty, then this table * is unpartitioned. * @param bucketSpec An optional specification for bucketing (hash-partitioning) of the data. * @param catalogTable Optional catalog table reference that can be used to push down operations * over the datasource to the catalog service. */ case class DataSource( sparkSession: SparkSession, className: String, paths: Seq[String] = Nil, userSpecifiedSchema: Option[StructType] = None, partitionColumns: Seq[String] = Seq.empty, bucketSpec: Option[BucketSpec] = None, options: Map[String, String] = Map.empty, catalogTable: Option[CatalogTable] = None) extends Logging { case class SourceInfo(name: String, schema: StructType, partitionColumns: Seq[String]) lazy val providingClass: Class[_] = DataSource.lookupDataSource(className, sparkSession.sessionState.conf) lazy val sourceInfo: SourceInfo = sourceSchema() private val caseInsensitiveOptions = CaseInsensitiveMap(options) private val equality = sparkSession.sessionState.conf.resolver bucketSpec.map { bucket => SchemaUtils.checkColumnNameDuplication( bucket.bucketColumnNames, "in the bucket definition", equality) SchemaUtils.checkColumnNameDuplication( bucket.sortColumnNames, "in the sort definition", equality) } /** * In the read path, only managed tables by Hive provide the partition columns properly when * initializing this class. All other file based data sources will try to infer the partitioning, * and then cast the inferred types to user specified dataTypes if the partition columns exist * inside `userSpecifiedSchema`, otherwise we can hit data corruption bugs like SPARK-18510, or * inconsistent data types as reported in SPARK-21463. * @param fileIndex A FileIndex that will perform partition inference * @return The PartitionSchema resolved from inference and cast according to `userSpecifiedSchema` */ private def combineInferredAndUserSpecifiedPartitionSchema(fileIndex: FileIndex): StructType = { val resolved = fileIndex.partitionSchema.map { partitionField => // SPARK-18510: try to get schema from userSpecifiedSchema, otherwise fallback to inferred userSpecifiedSchema.flatMap(_.find(f => equality(f.name, partitionField.name))).getOrElse( partitionField) } StructType(resolved) } /** * Get the schema of the given FileFormat, if provided by `userSpecifiedSchema`, or try to infer * it. In the read path, only managed tables by Hive provide the partition columns properly when * initializing this class. All other file based data sources will try to infer the partitioning, * and then cast the inferred types to user specified dataTypes if the partition columns exist * inside `userSpecifiedSchema`, otherwise we can hit data corruption bugs like SPARK-18510. * This method will try to skip file scanning whether `userSpecifiedSchema` and * `partitionColumns` are provided. Here are some code paths that use this method: * 1. `spark.read` (no schema): Most amount of work. Infer both schema and partitioning columns * 2. `spark.read.schema(userSpecifiedSchema)`: Parse partitioning columns, cast them to the * dataTypes provided in `userSpecifiedSchema` if they exist or fallback to inferred * dataType if they don't. * 3. `spark.readStream.schema(userSpecifiedSchema)`: For streaming use cases, users have to * provide the schema. Here, we also perform partition inference like 2, and try to use * dataTypes in `userSpecifiedSchema`. All subsequent triggers for this stream will re-use * this information, therefore calls to this method should be very cheap, i.e. there won't * be any further inference in any triggers. * * @param format the file format object for this DataSource * @param fileStatusCache the shared cache for file statuses to speed up listing * @return A pair of the data schema (excluding partition columns) and the schema of the partition * columns. */ private def getOrInferFileFormatSchema( format: FileFormat, fileStatusCache: FileStatusCache = NoopCache): (StructType, StructType) = { // the operations below are expensive therefore try not to do them if we don't need to, e.g., // in streaming mode, we have already inferred and registered partition columns, we will // never have to materialize the lazy val below lazy val tempFileIndex = { val allPaths = caseInsensitiveOptions.get("path") ++ paths val hadoopConf = sparkSession.sessionState.newHadoopConf() val globbedPaths = allPaths.toSeq.flatMap { path => val hdfsPath = new Path(path) val fs = hdfsPath.getFileSystem(hadoopConf) val qualified = hdfsPath.makeQualified(fs.getUri, fs.getWorkingDirectory) SparkHadoopUtil.get.globPathIfNecessary(fs, qualified) }.toArray new InMemoryFileIndex(sparkSession, globbedPaths, options, None, fileStatusCache) } val partitionSchema = if (partitionColumns.isEmpty) { // Try to infer partitioning, because no DataSource in the read path provides the partitioning // columns properly unless it is a Hive DataSource combineInferredAndUserSpecifiedPartitionSchema(tempFileIndex) } else { // maintain old behavior before SPARK-18510. If userSpecifiedSchema is empty used inferred // partitioning if (userSpecifiedSchema.isEmpty) { val inferredPartitions = tempFileIndex.partitionSchema inferredPartitions } else { val partitionFields = partitionColumns.map { partitionColumn => userSpecifiedSchema.flatMap(_.find(c => equality(c.name, partitionColumn))).orElse { val inferredPartitions = tempFileIndex.partitionSchema val inferredOpt = inferredPartitions.find(p => equality(p.name, partitionColumn)) if (inferredOpt.isDefined) { logDebug( s"""Type of partition column: $partitionColumn not found in specified schema |for $format. |User Specified Schema |===================== |${userSpecifiedSchema.orNull} | |Falling back to inferred dataType if it exists. """.stripMargin) } inferredOpt }.getOrElse { throw new AnalysisException(s"Failed to resolve the schema for $format for " + s"the partition column: $partitionColumn. It must be specified manually.") } } StructType(partitionFields) } } val dataSchema = userSpecifiedSchema.map { schema => StructType(schema.filterNot(f => partitionSchema.exists(p => equality(p.name, f.name)))) }.orElse { format.inferSchema( sparkSession, caseInsensitiveOptions, tempFileIndex.allFiles()) }.getOrElse { throw new AnalysisException( s"Unable to infer schema for $format. It must be specified manually.") } // We just print a waring message if the data schema and partition schema have the duplicate // columns. This is because we allow users to do so in the previous Spark releases and // we have the existing tests for the cases (e.g., `ParquetHadoopFsRelationSuite`). // See SPARK-18108 and SPARK-21144 for related discussions. try { SchemaUtils.checkColumnNameDuplication( (dataSchema ++ partitionSchema).map(_.name), "in the data schema and the partition schema", equality) } catch { case e: AnalysisException => logWarning(e.getMessage) } (dataSchema, partitionSchema) } /** Returns the name and schema of the source that can be used to continually read data. */ private def sourceSchema(): SourceInfo = { providingClass.newInstance() match { case s: StreamSourceProvider => val (name, schema) = s.sourceSchema( sparkSession.sqlContext, userSpecifiedSchema, className, caseInsensitiveOptions) SourceInfo(name, schema, Nil) case format: FileFormat => val path = caseInsensitiveOptions.getOrElse("path", { throw new IllegalArgumentException("'path' is not specified") }) // Check whether the path exists if it is not a glob pattern. // For glob pattern, we do not check it because the glob pattern might only make sense // once the streaming job starts and some upstream source starts dropping data. val hdfsPath = new Path(path) if (!SparkHadoopUtil.get.isGlobPath(hdfsPath)) { val fs = hdfsPath.getFileSystem(sparkSession.sessionState.newHadoopConf()) if (!fs.exists(hdfsPath)) { throw new AnalysisException(s"Path does not exist: $path") } } val isSchemaInferenceEnabled = sparkSession.sessionState.conf.streamingSchemaInference val isTextSource = providingClass == classOf[text.TextFileFormat] // If the schema inference is disabled, only text sources require schema to be specified if (!isSchemaInferenceEnabled && !isTextSource && userSpecifiedSchema.isEmpty) { throw new IllegalArgumentException( "Schema must be specified when creating a streaming source DataFrame. " + "If some files already exist in the directory, then depending on the file format " + "you may be able to create a static DataFrame on that directory with " + "'spark.read.load(directory)' and infer schema from it.") } val (dataSchema, partitionSchema) = getOrInferFileFormatSchema(format) SourceInfo( s"FileSource[$path]", StructType(dataSchema ++ partitionSchema), partitionSchema.fieldNames) case _ => throw new UnsupportedOperationException( s"Data source $className does not support streamed reading") } } /** Returns a source that can be used to continually read data. */ def createSource(metadataPath: String): Source = { providingClass.newInstance() match { case s: StreamSourceProvider => s.createSource( sparkSession.sqlContext, metadataPath, userSpecifiedSchema, className, caseInsensitiveOptions) case format: FileFormat => val path = caseInsensitiveOptions.getOrElse("path", { throw new IllegalArgumentException("'path' is not specified") }) new FileStreamSource( sparkSession = sparkSession, path = path, fileFormatClassName = className, schema = sourceInfo.schema, partitionColumns = sourceInfo.partitionColumns, metadataPath = metadataPath, options = caseInsensitiveOptions) case _ => throw new UnsupportedOperationException( s"Data source $className does not support streamed reading") } } /** Returns a sink that can be used to continually write data. */ def createSink(outputMode: OutputMode): Sink = { providingClass.newInstance() match { case s: StreamSinkProvider => s.createSink(sparkSession.sqlContext, caseInsensitiveOptions, partitionColumns, outputMode) case fileFormat: FileFormat => val path = caseInsensitiveOptions.getOrElse("path", { throw new IllegalArgumentException("'path' is not specified") }) if (outputMode != OutputMode.Append) { throw new AnalysisException( s"Data source $className does not support $outputMode output mode") } new FileStreamSink(sparkSession, path, fileFormat, partitionColumns, caseInsensitiveOptions) case _ => throw new UnsupportedOperationException( s"Data source $className does not support streamed writing") } } /** * Create a resolved [[BaseRelation]] that can be used to read data from or write data into this * [[DataSource]] * * @param checkFilesExist Whether to confirm that the files exist when generating the * non-streaming file based datasource. StructuredStreaming jobs already * list file existence, and when generating incremental jobs, the batch * is considered as a non-streaming file based data source. Since we know * that files already exist, we don't need to check them again. */ def resolveRelation(checkFilesExist: Boolean = true): BaseRelation = { val relation = (providingClass.newInstance(), userSpecifiedSchema) match { // TODO: Throw when too much is given. case (dataSource: SchemaRelationProvider, Some(schema)) => dataSource.createRelation(sparkSession.sqlContext, caseInsensitiveOptions, schema) case (dataSource: RelationProvider, None) => dataSource.createRelation(sparkSession.sqlContext, caseInsensitiveOptions) case (_: SchemaRelationProvider, None) => throw new AnalysisException(s"A schema needs to be specified when using $className.") case (dataSource: RelationProvider, Some(schema)) => val baseRelation = dataSource.createRelation(sparkSession.sqlContext, caseInsensitiveOptions) if (baseRelation.schema != schema) { throw new AnalysisException(s"$className does not allow user-specified schemas.") } baseRelation // We are reading from the results of a streaming query. Load files from the metadata log // instead of listing them using HDFS APIs. case (format: FileFormat, _) if FileStreamSink.hasMetadata( caseInsensitiveOptions.get("path").toSeq ++ paths, sparkSession.sessionState.newHadoopConf()) => val basePath = new Path((caseInsensitiveOptions.get("path").toSeq ++ paths).head) val tempFileCatalog = new MetadataLogFileIndex(sparkSession, basePath, None) val fileCatalog = if (userSpecifiedSchema.nonEmpty) { val partitionSchema = combineInferredAndUserSpecifiedPartitionSchema(tempFileCatalog) new MetadataLogFileIndex(sparkSession, basePath, Option(partitionSchema)) } else { tempFileCatalog } val dataSchema = userSpecifiedSchema.orElse { format.inferSchema( sparkSession, caseInsensitiveOptions, fileCatalog.allFiles()) }.getOrElse { throw new AnalysisException( s"Unable to infer schema for $format at ${fileCatalog.allFiles().mkString(",")}. " + "It must be specified manually") } HadoopFsRelation( fileCatalog, partitionSchema = fileCatalog.partitionSchema, dataSchema = dataSchema, bucketSpec = None, format, caseInsensitiveOptions)(sparkSession) // This is a non-streaming file based datasource. case (format: FileFormat, _) => val allPaths = caseInsensitiveOptions.get("path") ++ paths val hadoopConf = sparkSession.sessionState.newHadoopConf() val globbedPaths = allPaths.flatMap( DataSource.checkAndGlobPathIfNecessary(hadoopConf, _, checkFilesExist)).toArray val fileStatusCache = FileStatusCache.getOrCreate(sparkSession) val (dataSchema, partitionSchema) = getOrInferFileFormatSchema(format, fileStatusCache) val fileCatalog = if (sparkSession.sqlContext.conf.manageFilesourcePartitions && catalogTable.isDefined && catalogTable.get.tracksPartitionsInCatalog) { val defaultTableSize = sparkSession.sessionState.conf.defaultSizeInBytes new CatalogFileIndex( sparkSession, catalogTable.get, catalogTable.get.stats.map(_.sizeInBytes.toLong).getOrElse(defaultTableSize)) } else { new InMemoryFileIndex( sparkSession, globbedPaths, options, Some(partitionSchema), fileStatusCache) } HadoopFsRelation( fileCatalog, partitionSchema = partitionSchema, dataSchema = dataSchema.asNullable, bucketSpec = bucketSpec, format, caseInsensitiveOptions)(sparkSession) case _ => throw new AnalysisException( s"$className is not a valid Spark SQL Data Source.") } relation match { case hs: HadoopFsRelation => SchemaUtils.checkColumnNameDuplication( hs.dataSchema.map(_.name), "in the data schema", equality) SchemaUtils.checkColumnNameDuplication( hs.partitionSchema.map(_.name), "in the partition schema", equality) case _ => SchemaUtils.checkColumnNameDuplication( relation.schema.map(_.name), "in the data schema", equality) } relation } /** * Creates a command node to write the given [[LogicalPlan]] out to the given [[FileFormat]]. * The returned command is unresolved and need to be analyzed. */ private def planForWritingFileFormat( format: FileFormat, mode: SaveMode, data: LogicalPlan): InsertIntoHadoopFsRelationCommand = { // Don't glob path for the write path. The contracts here are: // 1. Only one output path can be specified on the write path; // 2. Output path must be a legal HDFS style file system path; // 3. It's OK that the output path doesn't exist yet; val allPaths = paths ++ caseInsensitiveOptions.get("path") val outputPath = if (allPaths.length == 1) { val path = new Path(allPaths.head) val fs = path.getFileSystem(sparkSession.sessionState.newHadoopConf()) path.makeQualified(fs.getUri, fs.getWorkingDirectory) } else { throw new IllegalArgumentException("Expected exactly one path to be specified, but " + s"got: ${allPaths.mkString(", ")}") } val caseSensitive = sparkSession.sessionState.conf.caseSensitiveAnalysis PartitioningUtils.validatePartitionColumn(data.schema, partitionColumns, caseSensitive) val fileIndex = catalogTable.map(_.identifier).map { tableIdent => sparkSession.table(tableIdent).queryExecution.analyzed.collect { case LogicalRelation(t: HadoopFsRelation, _, _, _) => t.location }.head } // For partitioned relation r, r.schema's column ordering can be different from the column // ordering of data.logicalPlan (partition columns are all moved after data column). This // will be adjusted within InsertIntoHadoopFsRelation. InsertIntoHadoopFsRelationCommand( outputPath = outputPath, staticPartitions = Map.empty, ifPartitionNotExists = false, partitionColumns = partitionColumns.map(UnresolvedAttribute.quoted), bucketSpec = bucketSpec, fileFormat = format, options = options, query = data, mode = mode, catalogTable = catalogTable, fileIndex = fileIndex, outputColumns = data.output) } /** * Writes the given [[LogicalPlan]] out to this [[DataSource]] and returns a [[BaseRelation]] for * the following reading. * * @param mode The save mode for this writing. * @param data The input query plan that produces the data to be written. Note that this plan * is analyzed and optimized. * @param outputColumns The original output columns of the input query plan. The optimizer may not * preserve the output column's names' case, so we need this parameter * instead of `data.output`. * @param physicalPlan The physical plan of the input query plan. We should run the writing * command with this physical plan instead of creating a new physical plan, * so that the metrics can be correctly linked to the given physical plan and * shown in the web UI. */ def writeAndRead( mode: SaveMode, data: LogicalPlan, outputColumns: Seq[Attribute], physicalPlan: SparkPlan): BaseRelation = { if (outputColumns.map(_.dataType).exists(_.isInstanceOf[CalendarIntervalType])) { throw new AnalysisException("Cannot save interval data type into external storage.") } providingClass.newInstance() match { case dataSource: CreatableRelationProvider => dataSource.createRelation( sparkSession.sqlContext, mode, caseInsensitiveOptions, Dataset.ofRows(sparkSession, data)) case format: FileFormat => val cmd = planForWritingFileFormat(format, mode, data) val resolvedPartCols = cmd.partitionColumns.map { col => // The partition columns created in `planForWritingFileFormat` should always be // `UnresolvedAttribute` with a single name part. assert(col.isInstanceOf[UnresolvedAttribute]) val unresolved = col.asInstanceOf[UnresolvedAttribute] assert(unresolved.nameParts.length == 1) val name = unresolved.nameParts.head outputColumns.find(a => equality(a.name, name)).getOrElse { throw new AnalysisException( s"Unable to resolve $name given [${data.output.map(_.name).mkString(", ")}]") } } val resolved = cmd.copy(partitionColumns = resolvedPartCols, outputColumns = outputColumns) resolved.run(sparkSession, physicalPlan) // Replace the schema with that of the DataFrame we just wrote out to avoid re-inferring copy(userSpecifiedSchema = Some(outputColumns.toStructType.asNullable)).resolveRelation() case _ => sys.error(s"${providingClass.getCanonicalName} does not allow create table as select.") } } /** * Returns a logical plan to write the given [[LogicalPlan]] out to this [[DataSource]]. */ def planForWriting(mode: SaveMode, data: LogicalPlan): LogicalPlan = { if (data.schema.map(_.dataType).exists(_.isInstanceOf[CalendarIntervalType])) { throw new AnalysisException("Cannot save interval data type into external storage.") } providingClass.newInstance() match { case dataSource: CreatableRelationProvider => SaveIntoDataSourceCommand(data, dataSource, caseInsensitiveOptions, mode) case format: FileFormat => DataSource.validateSchema(data.schema) planForWritingFileFormat(format, mode, data) case _ => sys.error(s"${providingClass.getCanonicalName} does not allow create table as select.") } } } object DataSource extends Logging { /** A map to maintain backward compatibility in case we move data sources around. */ private val backwardCompatibilityMap: Map[String, String] = { val jdbc = classOf[JdbcRelationProvider].getCanonicalName val json = classOf[JsonFileFormat].getCanonicalName val parquet = classOf[ParquetFileFormat].getCanonicalName val csv = classOf[CSVFileFormat].getCanonicalName val libsvm = "org.apache.spark.ml.source.libsvm.LibSVMFileFormat" val orc = "org.apache.spark.sql.hive.orc.OrcFileFormat" val nativeOrc = classOf[OrcFileFormat].getCanonicalName val socket = classOf[TextSocketSourceProvider].getCanonicalName val rate = classOf[RateStreamProvider].getCanonicalName Map( "org.apache.spark.sql.jdbc" -> jdbc, "org.apache.spark.sql.jdbc.DefaultSource" -> jdbc, "org.apache.spark.sql.execution.datasources.jdbc.DefaultSource" -> jdbc, "org.apache.spark.sql.execution.datasources.jdbc" -> jdbc, "org.apache.spark.sql.json" -> json, "org.apache.spark.sql.json.DefaultSource" -> json, "org.apache.spark.sql.execution.datasources.json" -> json, "org.apache.spark.sql.execution.datasources.json.DefaultSource" -> json, "org.apache.spark.sql.parquet" -> parquet, "org.apache.spark.sql.parquet.DefaultSource" -> parquet, "org.apache.spark.sql.execution.datasources.parquet" -> parquet, "org.apache.spark.sql.execution.datasources.parquet.DefaultSource" -> parquet, "org.apache.spark.sql.hive.orc.DefaultSource" -> orc, "org.apache.spark.sql.hive.orc" -> orc, "org.apache.spark.sql.execution.datasources.orc.DefaultSource" -> nativeOrc, "org.apache.spark.sql.execution.datasources.orc" -> nativeOrc, "org.apache.spark.ml.source.libsvm.DefaultSource" -> libsvm, "org.apache.spark.ml.source.libsvm" -> libsvm, "com.databricks.spark.csv" -> csv, "org.apache.spark.sql.execution.streaming.TextSocketSourceProvider" -> socket, "org.apache.spark.sql.execution.streaming.RateSourceProvider" -> rate ) } /** * Class that were removed in Spark 2.0. Used to detect incompatibility libraries for Spark 2.0. */ private val spark2RemovedClasses = Set( "org.apache.spark.sql.DataFrame", "org.apache.spark.sql.sources.HadoopFsRelationProvider", "org.apache.spark.Logging") /** Given a provider name, look up the data source class definition. */ def lookupDataSource(provider: String, conf: SQLConf): Class[_] = { val provider1 = backwardCompatibilityMap.getOrElse(provider, provider) match { case name if name.equalsIgnoreCase("orc") && conf.getConf(SQLConf.ORC_IMPLEMENTATION) == "native" => classOf[OrcFileFormat].getCanonicalName case name if name.equalsIgnoreCase("orc") && conf.getConf(SQLConf.ORC_IMPLEMENTATION) == "hive" => "org.apache.spark.sql.hive.orc.OrcFileFormat" case name => name } val provider2 = s"$provider1.DefaultSource" val loader = Utils.getContextOrSparkClassLoader val serviceLoader = ServiceLoader.load(classOf[DataSourceRegister], loader) try { serviceLoader.asScala.filter(_.shortName().equalsIgnoreCase(provider1)).toList match { // the provider format did not match any given registered aliases case Nil => try { Try(loader.loadClass(provider1)).orElse(Try(loader.loadClass(provider2))) match { case Success(dataSource) => // Found the data source using fully qualified path dataSource case Failure(error) => if (provider1.startsWith("org.apache.spark.sql.hive.orc")) { throw new AnalysisException( "Hive built-in ORC data source must be used with Hive support enabled. " + "Please use the native ORC data source by setting 'spark.sql.orc.impl' to " + "'native'") } else if (provider1.toLowerCase(Locale.ROOT) == "avro" || provider1 == "com.databricks.spark.avro") { throw new AnalysisException( s"Failed to find data source: ${provider1.toLowerCase(Locale.ROOT)}. " + "Please find an Avro package at " + "http://spark.apache.org/third-party-projects.html") } else { throw new ClassNotFoundException( s"Failed to find data source: $provider1. Please find packages at " + "http://spark.apache.org/third-party-projects.html", error) } } } catch { case e: NoClassDefFoundError => // This one won't be caught by Scala NonFatal // NoClassDefFoundError's class name uses "/" rather than "." for packages val className = e.getMessage.replaceAll("/", ".") if (spark2RemovedClasses.contains(className)) { throw new ClassNotFoundException(s"$className was removed in Spark 2.0. " + "Please check if your library is compatible with Spark 2.0", e) } else { throw e } } case head :: Nil => // there is exactly one registered alias head.getClass case sources => // There are multiple registered aliases for the input. If there is single datasource // that has "org.apache.spark" package in the prefix, we use it considering it is an // internal datasource within Spark. val sourceNames = sources.map(_.getClass.getName) val internalSources = sources.filter(_.getClass.getName.startsWith("org.apache.spark")) if (internalSources.size == 1) { logWarning(s"Multiple sources found for $provider1 (${sourceNames.mkString(", ")}), " + s"defaulting to the internal datasource (${internalSources.head.getClass.getName}).") internalSources.head.getClass } else { throw new AnalysisException(s"Multiple sources found for $provider1 " + s"(${sourceNames.mkString(", ")}), please specify the fully qualified class name.") } } } catch { case e: ServiceConfigurationError if e.getCause.isInstanceOf[NoClassDefFoundError] => // NoClassDefFoundError's class name uses "/" rather than "." for packages val className = e.getCause.getMessage.replaceAll("/", ".") if (spark2RemovedClasses.contains(className)) { throw new ClassNotFoundException(s"Detected an incompatible DataSourceRegister. " + "Please remove the incompatible library from classpath or upgrade it. " + s"Error: ${e.getMessage}", e) } else { throw e } } } /** * When creating a data source table, the `path` option has a special meaning: the table location. * This method extracts the `path` option and treat it as table location to build a * [[CatalogStorageFormat]]. Note that, the `path` option is removed from options after this. */ def buildStorageFormatFromOptions(options: Map[String, String]): CatalogStorageFormat = { val path = CaseInsensitiveMap(options).get("path") val optionsWithoutPath = options.filterKeys(_.toLowerCase(Locale.ROOT) != "path") CatalogStorageFormat.empty.copy( locationUri = path.map(CatalogUtils.stringToURI), properties = optionsWithoutPath) } /** * If `path` is a file pattern, return all the files that match it. Otherwise, return itself. * If `checkFilesExist` is `true`, also check the file existence. */ private def checkAndGlobPathIfNecessary( hadoopConf: Configuration, path: String, checkFilesExist: Boolean): Seq[Path] = { val hdfsPath = new Path(path) val fs = hdfsPath.getFileSystem(hadoopConf) val qualified = hdfsPath.makeQualified(fs.getUri, fs.getWorkingDirectory) val globPath = SparkHadoopUtil.get.globPathIfNecessary(fs, qualified) if (globPath.isEmpty) { throw new AnalysisException(s"Path does not exist: $qualified") } // Sufficient to check head of the globPath seq for non-glob scenario // Don't need to check once again if files exist in streaming mode if (checkFilesExist && !fs.exists(globPath.head)) { throw new AnalysisException(s"Path does not exist: ${globPath.head}") } globPath } /** * Called before writing into a FileFormat based data source to make sure the * supplied schema is not empty. * @param schema */ private def validateSchema(schema: StructType): Unit = { def hasEmptySchema(schema: StructType): Boolean = { schema.size == 0 || schema.find { case StructField(_, b: StructType, _, _) => hasEmptySchema(b) case _ => false }.isDefined } if (hasEmptySchema(schema)) { throw new AnalysisException( s""" |Datasource does not support writing empty or nested empty schemas. |Please make sure the data schema has at least one or more column(s). """.stripMargin) } } }
brad-kaiser/spark
sql/core/src/main/scala/org/apache/spark/sql/execution/datasources/DataSource.scala
Scala
apache-2.0
36,094
package scodec.bits import org.scalatest._ import org.scalatest.prop.GeneratorDrivenPropertyChecks class BitsSuite extends FunSuite with Matchers with GeneratorDrivenPropertyChecks { protected def serializationShouldRoundtrip[A](x: A): Unit = { import java.io.{ ByteArrayInputStream, ByteArrayOutputStream, ObjectInputStream, ObjectOutputStream } val bout = new ByteArrayOutputStream val out = new ObjectOutputStream(bout) out.writeObject(x) out.close() val in = new ObjectInputStream(new ByteArrayInputStream(bout.toByteArray)) val deserialized = in.readObject.asInstanceOf[A] deserialized shouldBe x } }
aloiscochard/scodec-bits
core/src/test/scala/scodec/bits/BitsSuite.scala
Scala
bsd-3-clause
645
package scray.hdfs import scray.querying.queries.DomainQuery import scray.querying.description.TableIdentifier import com.twitter.util.FuturePool import scray.querying.source.store.QueryableStoreSource import scray.querying.description.Column import HDFSQueryableSource._ import scray.querying.queries.KeyedQuery import com.twitter.util.Future import scray.querying.description.Row import scray.hdfs.index.HDFSBlobResolver import org.apache.hadoop.io.Writable import scray.querying.description.SimpleRow import scala.collection.mutable.ArrayBuffer import scray.querying.description.RowColumn import scray.querying.description.ArrayByteColumn import scray.querying.description.internal.SingleValueDomain import com.twitter.concurrent.Spool import scray.querying.description.ColumnFactory import com.typesafe.scalalogging.LazyLogging /** * Some HDFS queryable source to query Blobs from HDFS */ class HDFSQueryableSource[Q <: DomainQuery, T <: Writable]( val ti: TableIdentifier, val resolver: HDFSBlobResolver[org.apache.hadoop.io.Text], futurePool: FuturePool) extends QueryableStoreSource[Q](ti, getRowKeyColumns(ti), Set(), getAllColumns(ti), false) with LazyLogging { val rowColumn = Column(rowKeyColumnName, ti) val valueColumn = Column(valueColumnName, ti) override def request(query: Q): scray.querying.source.LazyDataFuture = { requestIterator(query).map { it => it.hasNext match { case true => it.next() *:: Future.value(Spool.empty[Row]) case false => Spool.empty[Row] } } } override def requestIterator(query: Q): Future[Iterator[Row]] = { futurePool { val key = query.domains.find(domain => domain.column == rowColumn).flatMap { case single: SingleValueDomain[_] => Some(single.value) case _ => None } key.map { mkey => val value = resolver.getBlob(HDFSBlobResolver.transformHadoopTypes(mkey).asInstanceOf[org.apache.hadoop.io.Text]) new OneHDFSBlobIterator(rowColumn, Some(mkey), valueColumn, value) }.getOrElse { new OneHDFSBlobIterator(rowColumn, None, valueColumn, None) } } } override def keyedRequest(query: KeyedQuery): Future[Iterator[Row]] = { futurePool { val key = query.keys.find(rowcol => rowcol.column.columnName == rowKeyColumnName).map(_.value) key.map { mkey => val value = resolver.getBlob(mkey.asInstanceOf[org.apache.hadoop.io.Text]) new OneHDFSBlobIterator(rowColumn, Some(mkey), valueColumn, value) }.getOrElse { new OneHDFSBlobIterator(rowColumn, None, valueColumn, None) } } } } object HDFSQueryableSource { val rowKeyColumnName = "KEY" val valueColumnName = "VALUE" val allColumnNames = Set(rowKeyColumnName, valueColumnName) def getRowKeyColumns(ti: TableIdentifier): Set[Column] = Set(Column(rowKeyColumnName, ti)) def getValueColumn(ti: TableIdentifier): Set[Column] = Set(Column(valueColumnName, ti)) def getAllColumns(ti: TableIdentifier): Set[Column] = allColumnNames.map(name => Column(name, ti)) } class OneHDFSBlobIterator(keyCol: Column, key: Option[Any], col: Column, value: Option[Array[Byte]]) extends Iterator[Row] with LazyLogging { var retrieved = value.isEmpty override def hasNext: Boolean = !retrieved override def next(): Row = { retrieved = true value.map { entry => val entries = new ArrayBuffer[RowColumn[_]]() key.foreach(k => entries += ColumnFactory.getColumnFromValue(keyCol, k)) entries += new ArrayByteColumn(col, entry) logger.info(s" found and fetched value $value") SimpleRow(entries) }.getOrElse(null) } }
scray/scray
scray-hdfs/modules/scray-hdfs-service-adapter/src/main/scala/scray/hdfs/HDFSQueryableSource.scala
Scala
apache-2.0
3,699
/* PageLayout.scala * * Jim McBeath, November 3, 2005 (as PageLayout.java) * converted to scala June 21, 2008 */ package net.jimmc.mimprint import net.jimmc.util.SResources import java.awt.Dimension import java.awt.Insets import java.io.File import java.io.PrintWriter import java.text.MessageFormat import java.util.Stack import javax.xml.parsers.SAXParser import javax.xml.parsers.SAXParserFactory import org.xml.sax.Attributes import org.xml.sax.helpers.DefaultHandler import org.xml.sax.SAXException object PageLayout { val BORDER_THICKNESS = 20 //Values for page units val UNIT_CM = 0 //metric val UNIT_INCH = 1 //english } /** The layout for a page of images. */ class PageLayout(app:SResources) { import PageLayout._ //get all fields from our companion object private var description:String = _ //description of this layout private var pageUnit:Int = _ //name of our units, e.g. "in", "cm" //The actual values we store in our various dimension fields //are the units times the multiplier. For example, we //would represent 8.5 inches as 8500. private var pageWidth:Int = _ //width of the page in pageUnits private var pageHeight:Int = _ //height of the page in pageUnits private var areaLayout:AreaLayout = _ private var currentArea:AreaLayout = _ //when loading an XML file def setDefaultLayout() { pageUnit = UNIT_INCH pageWidth = 8500 //American standard paper size pageHeight = 11000 val margin = 500 //margin on outer edges val spacing = 250 //spacing between areas areaLayout = AreaLayoutFactory.createDefaultTopLayout() areaLayout.setMargins(margin) areaLayout.setSpacing(spacing) areaLayout.setBorderThickness(BORDER_THICKNESS) setAreaLayout(areaLayout) } private def setAreaLayoutBounds() { if (areaLayout!=null) areaLayout.setBounds(0,0,pageWidth,pageHeight) } /** Set the descriptive text for this layout. */ def setDescription(description:String) = this.description = description def getDescription():String = description /** Set the page units. * @param unit One of UNIT_CM or UNIT_INCH. */ def setPageUnit(unit:Int) { if (unit==pageUnit) return //no change unit match { case UNIT_CM => pageUnit = unit case UNIT_INCH => pageUnit = unit case _ => throw new IllegalArgumentException("bad units "+unit) } } /** Get the current page units, either UNIT_CM or UNIT_INCH. */ def getPageUnit():Int = pageUnit def setPageWidth(width:Int) { this.pageWidth = width if (areaLayout==null) return setAreaLayoutBounds() areaLayout.revalidate() } def getPageWidth():Int = pageWidth def setPageHeight(height:Int) { this.pageHeight = height if (areaLayout==null) return setAreaLayoutBounds() areaLayout.revalidate() } def getPageHeight():Int = pageHeight //Set our top-level AreaLayout def setAreaLayout(areaLayout:AreaLayout) { this.areaLayout = areaLayout setAreaLayoutBounds() areaLayout.setBorderThickness(BORDER_THICKNESS) areaLayout.revalidate() areaLayout.setParent(null) //top level layout areaLayout.setTreeLocation(null) areaLayout.setSubTreeLocations() areaLayout.setTreeDepth(0) areaLayout.setSubTreeDepths() fixImageIndexes() } def fixImageIndexes() { areaLayout.setImageIndexes(0) } def getAreaLayout():AreaLayout = areaLayout /** Write the current layout template. */ def writeLayoutTemplate(pw:PrintWriter) { pw.println("<?xml version=\\"1.0\\" encoding=\\"utf-8\\"?>") //XML header line //TODO - write out DTD line? val pageLineFmt = "<page width=\\"{0}\\" height=\\"{1}\\" unit=\\"{2}\\">" val pageLineArgs = Array( PageValue.formatPageValue(getPageWidth()), PageValue.formatPageValue(getPageHeight()), if (getPageUnit()==PageLayout.UNIT_CM) "cm" else "in" ) pw.println(MessageFormat.format(pageLineFmt, (pageLineArgs.asInstanceOf[Array[Object]]:_*))) if (description!=null) pw.println(" <description>"+description+"</description>") areaLayout.writeTemplate(pw,1) pw.println("</page>") } /** Read in the specified layout template. */ def loadLayoutTemplate(f:File) { var parser:SAXParser = null try { parser = SAXParserFactory.newInstance().newSAXParser() //TODO - create factory only once } catch { case ex:Exception => throw new RuntimeException("Exception creating SAXParser",ex) } //System.out.println("Created SAXParser") val handler:DefaultHandler = new PageLayoutHandler() try { parser.parse(f,handler) } catch { case ex:Exception => //SAXException, IOException throw new RuntimeException("Error parsing xml",ex) } } /** Get a string from our resources. */ def getResourceString(name:String) = app.getResourceString(name) /** Get a string from our resources. */ def getResourceFormatted(name:String, arg:String) = app.getResourceFormatted(name, arg) class PageLayoutHandler extends DefaultHandler { private var areaStack:Stack[AreaLayout] = _ private var lastText:String = _ //most recent parsed text override def startDocument() { //System.out.println("startDocument") areaStack = new Stack() } override def endDocument() { //System.out.println("endDocument") } override def startElement(url:String, localName:String, qName:String, attributes:Attributes) { //System.out.println("startElement "+uri+","+localName+","+ // qName+",attrs="+attributes) if (qName.equals("description")) () //ignore the start, pick up the text on the end else if (qName.equals("page")) loadPageAttributes(attributes) else if (qName.equals("margins")) loadMargins(attributes) else if (qName.equals("spacing")) loadSpacing(attributes) else { val newArea:AreaLayout = AreaLayoutFactory.newAreaLayout(qName) newArea.setBorderThickness(BORDER_THICKNESS) newArea.setXmlAttributes(attributes) //TODO - ensure that newArea.areas has been allocated areaStack.push(currentArea) currentArea = newArea } } private def loadMargins(attrs:Attributes) { val leftStr = attrs.getValue("left") val rightStr = attrs.getValue("right") val topStr = attrs.getValue("top") val bottomStr = attrs.getValue("bottom") val left = PageValue.parsePageValue(leftStr,0) val right = PageValue.parsePageValue(rightStr,0) val top = PageValue.parsePageValue(topStr,0) val bottom = PageValue.parsePageValue(bottomStr,0) if (currentArea!=null) currentArea.setMargins(new Insets(top,left,bottom,right)) else throw new IllegalArgumentException( "Can't set margins directly on a Page") } private def loadSpacing(attrs:Attributes) { val widthStr = attrs.getValue("width") val heightStr = attrs.getValue("height") val width = PageValue.parsePageValue(widthStr,0) val height = PageValue.parsePageValue(heightStr,0) if (currentArea!=null) currentArea.setSpacing(new Dimension(width,height)) else throw new IllegalArgumentException( "Can't set spacing directly on a Page") } private def loadPageAttributes(attrs:Attributes) { val heightStr = attrs.getValue("height") val widthStr = attrs.getValue("width") if (heightStr==null || widthStr==null || heightStr.trim().equals("") || widthStr.trim().equals("")) { val msg = getResourceString("error.PageDimensionsRequired") throw new IllegalArgumentException(msg) } setPageWidth(PageValue.parsePageValue(widthStr)) setPageHeight(PageValue.parsePageValue(heightStr)) val unitStr = attrs.getValue("unit") if ("cm".equalsIgnoreCase(unitStr)) setPageUnit(UNIT_CM) else if ("in".equalsIgnoreCase(unitStr)) setPageUnit(UNIT_INCH) else { val msg = getResourceString("error.BadPageUnit") throw new IllegalArgumentException(msg) } } override def characters(ch:Array[Char], start:Int, end:Int) = lastText = new String(ch,start,end) override def endElement(url:String, localName:String, qName:String) { //System.out.println("endElement "+uri+","+localName+","+qName) //TODO - validate end element matches start element if (qName=="description") { if (lastText!=null) setDescription(lastText) return } else if (qName=="page") { if (currentArea!=null) { val msg = getResourceString("error.MissingEndAreaElement") throw new RuntimeException(msg) } return //done with the page } else if (qName=="margins") { return } else if (qName=="spacing") { return } else { //nothing here } val newArea:AreaLayout = currentArea currentArea = areaStack.pop() if (currentArea==null) setAreaLayout(newArea) //set page layout else currentArea.addAreaLayout(newArea) } } }
jimmc/mimprint
src/net/jimmc/mimprint/PageLayout.scala
Scala
gpl-2.0
10,365
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.spark.scheduler /** * A backend interface for scheduling systems that allows plugging in different ones under * ClusterScheduler. We assume a Mesos-like model where the application gets resource offers as * machines become available and can launch tasks on them. */ private[spark] trait SchedulerBackend { def start(): Unit def stop(): Unit def reviveOffers(): Unit def defaultParallelism(): Int def killTask(taskId: Long, executorId: String): Unit = throw new UnsupportedOperationException }
sryza/spark
core/src/main/scala/org/apache/spark/scheduler/SchedulerBackend.scala
Scala
apache-2.0
1,330
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.spark.sql.kafka010 import java.{util => ju} import java.util.concurrent.Executors import scala.collection.JavaConverters._ import scala.collection.mutable.ArrayBuffer import scala.concurrent.{ExecutionContext, Future} import scala.concurrent.duration.Duration import scala.util.control.NonFatal import org.apache.kafka.clients.consumer.{Consumer, ConsumerConfig, KafkaConsumer, OffsetAndTimestamp} import org.apache.kafka.common.TopicPartition import org.apache.spark.internal.Logging import org.apache.spark.sql.catalyst.util.CaseInsensitiveMap import org.apache.spark.util.{ThreadUtils, UninterruptibleThread} /** * This class uses Kafka's own [[KafkaConsumer]] API to read data offsets from Kafka. * The [[ConsumerStrategy]] class defines which Kafka topics and partitions should be read * by this source. These strategies directly correspond to the different consumption options * in. This class is designed to return a configured [[KafkaConsumer]] that is used by the * [[KafkaSource]] to query for the offsets. See the docs on * [[org.apache.spark.sql.kafka010.ConsumerStrategy]] * for more details. * * Note: This class is not ThreadSafe */ private[kafka010] class KafkaOffsetReader( consumerStrategy: ConsumerStrategy, val driverKafkaParams: ju.Map[String, Object], readerOptions: CaseInsensitiveMap[String], driverGroupIdPrefix: String) extends Logging { /** * Used to ensure execute fetch operations execute in an UninterruptibleThread */ val kafkaReaderThread = Executors.newSingleThreadExecutor((r: Runnable) => { val t = new UninterruptibleThread("Kafka Offset Reader") { override def run(): Unit = { r.run() } } t.setDaemon(true) t }) val execContext = ExecutionContext.fromExecutorService(kafkaReaderThread) /** * Place [[groupId]] and [[nextId]] here so that they are initialized before any consumer is * created -- see SPARK-19564. */ private var groupId: String = null private var nextId = 0 /** * A KafkaConsumer used in the driver to query the latest Kafka offsets. This only queries the * offsets and never commits them. */ @volatile protected var _consumer: Consumer[Array[Byte], Array[Byte]] = null protected def consumer: Consumer[Array[Byte], Array[Byte]] = synchronized { assert(Thread.currentThread().isInstanceOf[UninterruptibleThread]) if (_consumer == null) { val newKafkaParams = new ju.HashMap[String, Object](driverKafkaParams) if (driverKafkaParams.get(ConsumerConfig.GROUP_ID_CONFIG) == null) { newKafkaParams.put(ConsumerConfig.GROUP_ID_CONFIG, nextGroupId()) } _consumer = consumerStrategy.createConsumer(newKafkaParams) } _consumer } private[kafka010] val maxOffsetFetchAttempts = readerOptions.getOrElse(KafkaSourceProvider.FETCH_OFFSET_NUM_RETRY, "3").toInt private[kafka010] val offsetFetchAttemptIntervalMs = readerOptions.getOrElse(KafkaSourceProvider.FETCH_OFFSET_RETRY_INTERVAL_MS, "1000").toLong private def nextGroupId(): String = { groupId = driverGroupIdPrefix + "-" + nextId nextId += 1 groupId } override def toString(): String = consumerStrategy.toString /** * Closes the connection to Kafka, and cleans up state. */ def close(): Unit = { if (_consumer != null) runUninterruptibly { stopConsumer() } kafkaReaderThread.shutdown() } /** * @return The Set of TopicPartitions for a given topic */ def fetchTopicPartitions(): Set[TopicPartition] = runUninterruptibly { assert(Thread.currentThread().isInstanceOf[UninterruptibleThread]) // Poll to get the latest assigned partitions consumer.poll(0) val partitions = consumer.assignment() consumer.pause(partitions) partitions.asScala.toSet } /** * Fetch the partition offsets for the topic partitions that are indicated * in the [[ConsumerStrategy]] and [[KafkaOffsetRangeLimit]]. */ def fetchPartitionOffsets( offsetRangeLimit: KafkaOffsetRangeLimit, isStartingOffsets: Boolean): Map[TopicPartition, Long] = { def validateTopicPartitions(partitions: Set[TopicPartition], partitionOffsets: Map[TopicPartition, Long]): Map[TopicPartition, Long] = { assert(partitions == partitionOffsets.keySet, "If startingOffsets contains specific offsets, you must specify all TopicPartitions.\\n" + "Use -1 for latest, -2 for earliest.\\n" + s"Specified: ${partitionOffsets.keySet} Assigned: ${partitions}") logDebug(s"Partitions assigned to consumer: $partitions. Seeking to $partitionOffsets") partitionOffsets } val partitions = fetchTopicPartitions() // Obtain TopicPartition offsets with late binding support offsetRangeLimit match { case EarliestOffsetRangeLimit => partitions.map { case tp => tp -> KafkaOffsetRangeLimit.EARLIEST }.toMap case LatestOffsetRangeLimit => partitions.map { case tp => tp -> KafkaOffsetRangeLimit.LATEST }.toMap case SpecificOffsetRangeLimit(partitionOffsets) => validateTopicPartitions(partitions, partitionOffsets) case SpecificTimestampRangeLimit(partitionTimestamps) => fetchSpecificTimestampBasedOffsets(partitionTimestamps, failsOnNoMatchingOffset = isStartingOffsets).partitionToOffsets } } /** * Resolves the specific offsets based on Kafka seek positions. * This method resolves offset value -1 to the latest and -2 to the * earliest Kafka seek position. * * @param partitionOffsets the specific offsets to resolve * @param reportDataLoss callback to either report or log data loss depending on setting */ def fetchSpecificOffsets( partitionOffsets: Map[TopicPartition, Long], reportDataLoss: String => Unit): KafkaSourceOffset = { val fnAssertParametersWithPartitions: ju.Set[TopicPartition] => Unit = { partitions => assert(partitions.asScala == partitionOffsets.keySet, "If startingOffsets contains specific offsets, you must specify all TopicPartitions.\\n" + "Use -1 for latest, -2 for earliest, if you don't care.\\n" + s"Specified: ${partitionOffsets.keySet} Assigned: ${partitions.asScala}") logDebug(s"Partitions assigned to consumer: $partitions. Seeking to $partitionOffsets") } val fnRetrievePartitionOffsets: ju.Set[TopicPartition] => Map[TopicPartition, Long] = { _ => partitionOffsets } val fnAssertFetchedOffsets: Map[TopicPartition, Long] => Unit = { fetched => partitionOffsets.foreach { case (tp, off) if off != KafkaOffsetRangeLimit.LATEST && off != KafkaOffsetRangeLimit.EARLIEST => if (fetched(tp) != off) { reportDataLoss( s"startingOffsets for $tp was $off but consumer reset to ${fetched(tp)}") } case _ => // no real way to check that beginning or end is reasonable } } fetchSpecificOffsets0(fnAssertParametersWithPartitions, fnRetrievePartitionOffsets, fnAssertFetchedOffsets) } def fetchSpecificTimestampBasedOffsets( partitionTimestamps: Map[TopicPartition, Long], failsOnNoMatchingOffset: Boolean): KafkaSourceOffset = { val fnAssertParametersWithPartitions: ju.Set[TopicPartition] => Unit = { partitions => assert(partitions.asScala == partitionTimestamps.keySet, "If starting/endingOffsetsByTimestamp contains specific offsets, you must specify all " + s"topics. Specified: ${partitionTimestamps.keySet} Assigned: ${partitions.asScala}") logDebug(s"Partitions assigned to consumer: $partitions. Seeking to $partitionTimestamps") } val fnRetrievePartitionOffsets: ju.Set[TopicPartition] => Map[TopicPartition, Long] = { _ => { val converted = partitionTimestamps.map { case (tp, timestamp) => tp -> java.lang.Long.valueOf(timestamp) }.asJava val offsetForTime: ju.Map[TopicPartition, OffsetAndTimestamp] = consumer.offsetsForTimes(converted) offsetForTime.asScala.map { case (tp, offsetAndTimestamp) => if (failsOnNoMatchingOffset) { assert(offsetAndTimestamp != null, "No offset matched from request of " + s"topic-partition $tp and timestamp ${partitionTimestamps(tp)}.") } if (offsetAndTimestamp == null) { tp -> KafkaOffsetRangeLimit.LATEST } else { tp -> offsetAndTimestamp.offset() } }.toMap } } val fnAssertFetchedOffsets: Map[TopicPartition, Long] => Unit = { _ => } fetchSpecificOffsets0(fnAssertParametersWithPartitions, fnRetrievePartitionOffsets, fnAssertFetchedOffsets) } private def fetchSpecificOffsets0( fnAssertParametersWithPartitions: ju.Set[TopicPartition] => Unit, fnRetrievePartitionOffsets: ju.Set[TopicPartition] => Map[TopicPartition, Long], fnAssertFetchedOffsets: Map[TopicPartition, Long] => Unit): KafkaSourceOffset = { val fetched = partitionsAssignedToConsumer { partitions => { fnAssertParametersWithPartitions(partitions) val partitionOffsets = fnRetrievePartitionOffsets(partitions) partitionOffsets.foreach { case (tp, KafkaOffsetRangeLimit.LATEST) => consumer.seekToEnd(ju.Arrays.asList(tp)) case (tp, KafkaOffsetRangeLimit.EARLIEST) => consumer.seekToBeginning(ju.Arrays.asList(tp)) case (tp, off) => consumer.seek(tp, off) } partitionOffsets.map { case (tp, _) => tp -> consumer.position(tp) } } } fnAssertFetchedOffsets(fetched) KafkaSourceOffset(fetched) } /** * Fetch the earliest offsets for the topic partitions that are indicated * in the [[ConsumerStrategy]]. */ def fetchEarliestOffsets(): Map[TopicPartition, Long] = partitionsAssignedToConsumer( partitions => { logDebug("Seeking to the beginning") consumer.seekToBeginning(partitions) val partitionOffsets = partitions.asScala.map(p => p -> consumer.position(p)).toMap logDebug(s"Got earliest offsets for partition : $partitionOffsets") partitionOffsets }, fetchingEarliestOffset = true) /** * Fetch the latest offsets for the topic partitions that are indicated * in the [[ConsumerStrategy]]. * * Kafka may return earliest offsets when we are requesting latest offsets if `poll` is called * right before `seekToEnd` (KAFKA-7703). As a workaround, we will call `position` right after * `poll` to wait until the potential offset request triggered by `poll(0)` is done. * * In addition, to avoid other unknown issues, we also use the given `knownOffsets` to audit the * latest offsets returned by Kafka. If we find some incorrect offsets (a latest offset is less * than an offset in `knownOffsets`), we will retry at most `maxOffsetFetchAttempts` times. When * a topic is recreated, the latest offsets may be less than offsets in `knownOffsets`. We cannot * distinguish this with KAFKA-7703, so we just return whatever we get from Kafka after retrying. */ def fetchLatestOffsets( knownOffsets: Option[PartitionOffsetMap]): PartitionOffsetMap = partitionsAssignedToConsumer { partitions => { logDebug("Seeking to the end.") if (knownOffsets.isEmpty) { consumer.seekToEnd(partitions) partitions.asScala.map(p => p -> consumer.position(p)).toMap } else { var partitionOffsets: PartitionOffsetMap = Map.empty /** * Compare `knownOffsets` and `partitionOffsets`. Returns all partitions that have incorrect * latest offset (offset in `knownOffsets` is great than the one in `partitionOffsets`). */ def findIncorrectOffsets(): Seq[(TopicPartition, Long, Long)] = { var incorrectOffsets = ArrayBuffer[(TopicPartition, Long, Long)]() partitionOffsets.foreach { case (tp, offset) => knownOffsets.foreach(_.get(tp).foreach { knownOffset => if (knownOffset > offset) { val incorrectOffset = (tp, knownOffset, offset) incorrectOffsets += incorrectOffset } }) } incorrectOffsets } // Retry to fetch latest offsets when detecting incorrect offsets. We don't use // `withRetriesWithoutInterrupt` to retry because: // // - `withRetriesWithoutInterrupt` will reset the consumer for each attempt but a fresh // consumer has a much bigger chance to hit KAFKA-7703. // - Avoid calling `consumer.poll(0)` which may cause KAFKA-7703. var incorrectOffsets: Seq[(TopicPartition, Long, Long)] = Nil var attempt = 0 do { consumer.seekToEnd(partitions) partitionOffsets = partitions.asScala.map(p => p -> consumer.position(p)).toMap attempt += 1 incorrectOffsets = findIncorrectOffsets() if (incorrectOffsets.nonEmpty) { logWarning("Found incorrect offsets in some partitions " + s"(partition, previous offset, fetched offset): $incorrectOffsets") if (attempt < maxOffsetFetchAttempts) { logWarning("Retrying to fetch latest offsets because of incorrect offsets") Thread.sleep(offsetFetchAttemptIntervalMs) } } } while (incorrectOffsets.nonEmpty && attempt < maxOffsetFetchAttempts) logDebug(s"Got latest offsets for partition : $partitionOffsets") partitionOffsets } } } /** * Fetch the earliest offsets for specific topic partitions. * The return result may not contain some partitions if they are deleted. */ def fetchEarliestOffsets( newPartitions: Seq[TopicPartition]): Map[TopicPartition, Long] = { if (newPartitions.isEmpty) { Map.empty[TopicPartition, Long] } else { partitionsAssignedToConsumer(partitions => { // Get the earliest offset of each partition consumer.seekToBeginning(partitions) val partitionOffsets = newPartitions.filter { p => // When deleting topics happen at the same time, some partitions may not be in // `partitions`. So we need to ignore them partitions.contains(p) }.map(p => p -> consumer.position(p)).toMap logDebug(s"Got earliest offsets for new partitions: $partitionOffsets") partitionOffsets }, fetchingEarliestOffset = true) } } private def partitionsAssignedToConsumer( body: ju.Set[TopicPartition] => Map[TopicPartition, Long], fetchingEarliestOffset: Boolean = false) : Map[TopicPartition, Long] = runUninterruptibly { withRetriesWithoutInterrupt { // Poll to get the latest assigned partitions consumer.poll(0) val partitions = consumer.assignment() if (!fetchingEarliestOffset) { // Call `position` to wait until the potential offset request triggered by `poll(0)` is // done. This is a workaround for KAFKA-7703, which an async `seekToBeginning` triggered by // `poll(0)` may reset offsets that should have been set by another request. partitions.asScala.map(p => p -> consumer.position(p)).foreach(_ => {}) } consumer.pause(partitions) logDebug(s"Partitions assigned to consumer: $partitions.") body(partitions) } } /** * This method ensures that the closure is called in an [[UninterruptibleThread]]. * This is required when communicating with the [[KafkaConsumer]]. In the case * of streaming queries, we are already running in an [[UninterruptibleThread]], * however for batch mode this is not the case. */ private def runUninterruptibly[T](body: => T): T = { if (!Thread.currentThread.isInstanceOf[UninterruptibleThread]) { val future = Future { body }(execContext) ThreadUtils.awaitResult(future, Duration.Inf) } else { body } } /** * Helper function that does multiple retries on a body of code that returns offsets. * Retries are needed to handle transient failures. For e.g. race conditions between getting * assignment and getting position while topics/partitions are deleted can cause NPEs. * * This method also makes sure `body` won't be interrupted to workaround a potential issue in * `KafkaConsumer.poll`. (KAFKA-1894) */ private def withRetriesWithoutInterrupt( body: => Map[TopicPartition, Long]): Map[TopicPartition, Long] = { // Make sure `KafkaConsumer.poll` won't be interrupted (KAFKA-1894) assert(Thread.currentThread().isInstanceOf[UninterruptibleThread]) synchronized { var result: Option[Map[TopicPartition, Long]] = None var attempt = 1 var lastException: Throwable = null while (result.isEmpty && attempt <= maxOffsetFetchAttempts && !Thread.currentThread().isInterrupted) { Thread.currentThread match { case ut: UninterruptibleThread => // "KafkaConsumer.poll" may hang forever if the thread is interrupted (E.g., the query // is stopped)(KAFKA-1894). Hence, we just make sure we don't interrupt it. // // If the broker addresses are wrong, or Kafka cluster is down, "KafkaConsumer.poll" may // hang forever as well. This cannot be resolved in KafkaSource until Kafka fixes the // issue. ut.runUninterruptibly { try { result = Some(body) } catch { case NonFatal(e) => lastException = e logWarning(s"Error in attempt $attempt getting Kafka offsets: ", e) attempt += 1 Thread.sleep(offsetFetchAttemptIntervalMs) resetConsumer() } } case _ => throw new IllegalStateException( "Kafka APIs must be executed on a o.a.spark.util.UninterruptibleThread") } } if (Thread.interrupted()) { throw new InterruptedException() } if (result.isEmpty) { assert(attempt > maxOffsetFetchAttempts) assert(lastException != null) throw lastException } result.get } } private def stopConsumer(): Unit = synchronized { assert(Thread.currentThread().isInstanceOf[UninterruptibleThread]) if (_consumer != null) _consumer.close() } private def resetConsumer(): Unit = synchronized { stopConsumer() _consumer = null // will automatically get reinitialized again } }
jkbradley/spark
external/kafka-0-10-sql/src/main/scala/org/apache/spark/sql/kafka010/KafkaOffsetReader.scala
Scala
apache-2.0
19,511
package org.janzhou.native import com.sun.jna._ trait libpmem extends Library { def pmem_map(fd:Int):Pointer def pmem_unmap(pmemaddr:Pointer, pmem_len:Long):Int def pmem_is_pmem(pmemaddr:Pointer, pmem_len:Long):Int def pmem_persist(addr:Pointer, len:Long):Unit def pmem_msync(addr:Pointer, len:Long):Int def pmem_flush(addr:Pointer, len:Long):Unit def pmem_drain():Unit def pmem_has_hw_drain():Int def pmem_memmove_persist(pmemdest:Pointer, src:Pointer, len:Int):Pointer def pmem_memcpy_persist(pmemdest:Pointer, src:Pointer, len:Int):Pointer def pmem_memset_persist(pmemdest:Pointer, c:Int, len:Int):Pointer def pmem_memmove_nodrain(pmemdest:Pointer, src:Pointer, len:Int):Pointer def pmem_memcpy_nodrain(pmemdest:Pointer, src:Pointer, len:Int):Pointer def pmem_memset_nodrain(pmemdest:Pointer, c:Int, len:Int):Pointer } object libpmem { private var _libpmem:libpmem = null def run():libpmem = { if ( _libpmem == null ) { _libpmem = Native.loadLibrary("pmem", classOf[libpmem]).asInstanceOf[libpmem] } _libpmem } def call:libpmem = run() }
janzhou/scala-native
src/main/scala/org/janzhou/native/libpmem.scala
Scala
apache-2.0
1,099
// lchannels - session programming in Scala // Copyright (c) 2016, Alceste Scalas and Imperial College London // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are met: // // * Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistributions in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE // POSSIBILITY OF SUCH DAMAGE. /** @author Alceste Scalas <alceste.scalas@imperial.ac.uk> */ package lchannels.examples.sleepingbarber.customer import scala.concurrent.duration.Duration import com.typesafe.scalalogging.StrictLogging import lchannels._ import lchannels.examples.sleepingbarber.barbershop ////////////////////////////////////////////////////////////////////////////// // Session type: // S_cust = ?Full.end & ?Seat.?Ready.S_cut // where S_cut = !Description(String).?Haircut.!Pay.end ////////////////////////////////////////////////////////////////////////////// sealed abstract class WaitingRoom case class Full() extends WaitingRoom case class Seat()(val cont: In[Ready]) extends WaitingRoom case class Ready()(val cont: Out[Description]) case class Description(text: String)(val cont: Out[Cut]) case class Cut()(val cont: Out[Pay]) case class Pay(amount: Int) //////////////////////////////////////////////////////////////////////////// class Customer(name: String, shop: barbershop.Shop) (implicit d: Duration) extends Runnable with StrictLogging { private def logTrace(msg: String) = logger.trace(f"${name}: ${msg}") private def logDebug(msg: String) = logger.debug(f"${name}: ${msg}") private def logInfo(msg: String) = logger.info(f"${name}: ${msg}") private def logWarn(msg: String) = logger.warn(f"${name}: ${msg}") private def logError(msg: String) = logger.error(f"${name}: ${msg}") // Own thread private val thread = { val t = new Thread(this); t.start(); t } def join() = thread.join() override def run(): Unit = { logInfo("started, entering in shop") loop() logInfo("leaving the shop") } private def loop(): Unit = { shop.enter() ? { case Full() => { logInfo("waiting is room full, will retry within 3 seconds") Thread.sleep(new scala.util.Random().nextInt(30) * 100) loop() } case m @ Seat() => { logInfo("got a seat, waiting...") m.cont ? { ready => logInfo("barber is ready, describing cut") (ready.cont !! Description("Fancy hairdo")_) ? { cut => logInfo("cut done, paying") cut.cont ! Pay(42) } } } } } }
scribble/scribble.github.io
src/main/jbake/assets/docs/lchannels/examples/src/main/scala/lchannels/examples/sleepingbarber/Customer.scala
Scala
apache-2.0
3,692
package io.taig.android.util.syntax import android.graphics.Bitmap import io.taig.android.util.operation import scala.language.implicitConversions trait bitmap { implicit def utilBitmapSyntax(bitmap: Bitmap): operation.bitmap = { new operation.bitmap(bitmap) } } object bitmap extends bitmap
Taig/Toolbelt
util/src/main/scala/io/taig/android/util/syntax/bitmap.scala
Scala
mit
304
/* * La Trobe University - Distributed Deep Learning System * Copyright 2016 Matthias Langer (t3l@threelights.de) * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * */ package edu.latrobe.blaze.objectives import edu.latrobe._ import edu.latrobe.blaze._ import edu.latrobe.time._ import scala.util.hashing._ final class PeriodicTrigger(override val builder: PeriodicTriggerBuilder, override val seed: InstanceSeed) extends BinaryTriggerObjective[PeriodicTriggerBuilder]( ObjectiveEvaluationResult.Neutral ) { require(builder != null && seed != null) val period : TimeSpan = builder.period private var clock : Timer = Timer(period) override protected def doEvaluate(optimizer: OptimizerLike, runBeginIterationNo: Long, runBeginTime: Timestamp, runNoSamples: Long, model: Module, batch: Batch, output: Tensor, value: Real) : Boolean = clock.resetIfElapsed(period) // --------------------------------------------------------------------------- // State management. // --------------------------------------------------------------------------- override def state : ObjectiveState = PeriodicTriggerState(super.state, clock) override def restoreState(state: InstanceState): Unit = { super.restoreState(state.parent) state match { case state: PeriodicTriggerState => clock = state.clock.copy case _ => throw new MatchError(state) } } } final class PeriodicTriggerBuilder extends BinaryTriggerObjectiveBuilder[PeriodicTriggerBuilder] { override def repr : PeriodicTriggerBuilder = this private var _period : TimeSpan = TimeSpan.oneMinute def period : TimeSpan = _period def period_=(value: TimeSpan): Unit = { require(value >= TimeSpan.zero) _period = value } def setPeriod(value: TimeSpan) : PeriodicTriggerBuilder = { period_=(value) this } def setPeriod(value: Real) : PeriodicTriggerBuilder = setPeriod(TimeSpan(value)) override protected def doToString() : List[Any] = _period :: super.doToString() override def hashCode() : Int = MurmurHash3.mix(super.hashCode(), _period.hashCode()) override def canEqual(that: Any) : Boolean = that.isInstanceOf[PeriodicTriggerBuilder] override protected def doEquals(other: Equatable) : Boolean = super.doEquals(other) && (other match { case other: PeriodicTriggerBuilder => _period == other._period case _ => false }) override protected def doCopy() : PeriodicTriggerBuilder = PeriodicTriggerBuilder() override def copyTo(other: InstanceBuilder) : Unit = { super.copyTo(other) other match { case other: PeriodicTriggerBuilder => other._period = _period case _ => } } override def build(seed: InstanceSeed) : PeriodicTrigger = new PeriodicTrigger(this, seed) } object PeriodicTriggerBuilder { final def apply() : PeriodicTriggerBuilder = new PeriodicTriggerBuilder final def apply(period: Real) : PeriodicTriggerBuilder = apply().setPeriod(period) final def apply(period: TimeSpan) : PeriodicTriggerBuilder = apply().setPeriod(period) } final case class PeriodicTriggerState(override val parent: InstanceState, clock: Timer) extends ObjectiveState { }
bashimao/ltudl
blaze/src/main/scala/edu/latrobe/blaze/objectives/PeriodicTrigger.scala
Scala
apache-2.0
4,164
object Super { class C { def ++=(x: Int) = () } class D extends C { override def ++=(x: Int) = super.++=(x) } class T1 { def foo: Int = ??? } trait T2 new T1 with T2 { override def foo: Int = super.foo } trait T3 { def foo: Unit } trait T4 extends T3 { this: C => abstract override def foo: Unit = super.foo } }
mdemarne/scalahost
tests/src/test/resources/ScalaToMeta/Super/Original.scala
Scala
bsd-3-clause
343
package com.campudus.tableaux.database.domain import com.campudus.tableaux.database.model.TableauxModel._ import org.vertx.scala.core.json._ case class RawRow( id: RowId, rowLevelAnnotations: RowLevelAnnotations, cellLevelAnnotations: CellLevelAnnotations, values: Seq[_] ) case class Row( table: Table, id: RowId, rowLevelAnnotations: RowLevelAnnotations, cellLevelAnnotations: CellLevelAnnotations, values: Seq[_] ) extends DomainObject { override def getJson: JsonObject = { val json = Json.obj( "id" -> id, "values" -> compatibilityGet(values) ) if (rowLevelAnnotations.isDefined) { json.mergeIn(rowLevelAnnotations.getJson) } if (cellLevelAnnotations.isDefined) { json.mergeIn(cellLevelAnnotations.getJson) } json } } case class RowSeq(rows: Seq[Row], page: Page = Page(Pagination(None, None), None)) extends DomainObject { override def getJson: JsonObject = { Json.obj( "page" -> compatibilityGet(page), "rows" -> (rows map (_.getJson)) ) } } case class DependentRows(table: Table, column: ColumnType[_], rows: Seq[JsonObject]) extends DomainObject { override def getJson: JsonObject = { Json.obj( "table" -> table.getJson, "column" -> compatibilityGet(column), "rows" -> compatibilityGet(rows) ) } } case class DependentRowsSeq(dependentRowsSeq: Seq[DependentRows]) extends DomainObject { override def getJson: JsonObject = Json.obj("dependentRows" -> compatibilityGet(dependentRowsSeq)) }
campudus/tableaux
src/main/scala/com/campudus/tableaux/database/domain/row.scala
Scala
apache-2.0
1,558
package com.ignition.frame.mllib import scala.xml.{ Elem, Node } import org.apache.spark.mllib.stat.Statistics import org.apache.spark.rdd.RDD.rddToPairRDDFunctions import org.apache.spark.sql.{ DataFrame, Row } import org.apache.spark.sql.types.StructType import org.json4s.JValue import org.json4s.JsonDSL._ import org.json4s.jvalue2monadic import com.ignition.frame.{ FrameTransformer, SparkRuntime } import com.ignition.types.{ RichStructType, double, fieldToRichStruct, long } import com.ignition.util.JsonUtils.RichJValue import com.ignition.util.XmlUtils.RichNodeSeq /** * Calculates column-based statistics using MLLib library. * * @author Vlad Orzhekhovskiy */ case class ColumnStats(dataFields: Iterable[String], groupFields: Iterable[String] = Nil) extends FrameTransformer with MLFunctions { import ColumnStats._ def add(fields: String*) = copy(dataFields = dataFields ++ fields) def %(fields: String*) = add(fields: _*) def groupBy(fields: String*) = copy(groupFields = fields) protected def compute(arg: DataFrame)(implicit runtime: SparkRuntime): DataFrame = { val df = optLimit(arg, runtime.previewMode) val rdd = toVectors(df, dataFields, groupFields) rdd.persist val keys = rdd.keys.distinct.collect val rows = keys map { key => val slice = rdd filter (_._1 == key) values val st = Statistics.colStats(slice) val data = (0 until dataFields.size) flatMap { idx => Seq(st.max(idx), st.min(idx), st.mean(idx), st.numNonzeros(idx), st.variance(idx), st.normL1(idx), st.normL2(idx)) } Row.fromSeq((key.toSeq :+ st.count) ++ data) } val targetRDD = ctx.sparkContext.parallelize(rows) val targetFields = ((groupFields map df.schema.apply toSeq) :+ long("count")) ++ dataFields.zipWithIndex.flatMap { case (name, idx) => double(s"${name}_max") ~ double(s"${name}_min") ~ double(s"${name}_mean") ~ double(s"${name}_non0") ~ double(s"${name}_variance") ~ double(s"${name}_normL1") ~ double(s"${name}_normL2") } val schema = StructType(targetFields) ctx.createDataFrame(targetRDD, schema) } def toXml: Elem = <node> <aggregate> { dataFields map { name => <field name={ name }/> } } </aggregate> { if (!groupFields.isEmpty) <group-by> { groupFields map (f => <field name={ f }/>) } </group-by> } </node>.copy(label = tag) def toJson: org.json4s.JValue = { val groupBy = if (groupFields.isEmpty) None else Some(groupFields) val aggregate = dataFields map (_.toString) ("tag" -> tag) ~ ("groupBy" -> groupBy) ~ ("aggregate" -> aggregate) } } /** * Columns Stats companion object. */ object ColumnStats { val tag = "column-stats" def apply(dataFields: String*): ColumnStats = apply(dataFields, Nil) def fromXml(xml: Node) = { val dataFields = (xml \ "aggregate" \ "field") map { _ \ "@name" asString } val groupFields = (xml \ "group-by" \ "field") map (_ \ "@name" asString) apply(dataFields, groupFields) } def fromJson(json: JValue) = { val dataFields = (json \ "aggregate" asArray) map (_ asString) val groupFields = (json \ "groupBy" asArray) map (_ asString) apply(dataFields, groupFields) } }
uralian/ignition
src/main/scala/com/ignition/frame/mllib/ColumnStats.scala
Scala
apache-2.0
3,323
/* * Copyright (c) 2014-2018 by The Monix Project Developers. * See the project homepage at: https://monix.io * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package monix.execution.schedulers import monix.execution.ExecutionModel import scala.concurrent.duration.TimeUnit import scala.concurrent.{ExecutionContext, Future} /** The `TracingScheduler` is a [[monix.execution.Scheduler Scheduler]] * implementation that wraps another * [[monix.execution.schedulers.SchedulerService SchedulerService]] * reference, with the purpose of propagating the * [[monix.execution.misc.Local.Context Local.Context]] on async * execution. * * @param underlying the * [[monix.execution.schedulers.SchedulerService SchedulerService]] * in charge of the actual execution and scheduling */ final class TracingSchedulerService(underlying: SchedulerService) extends TracingScheduler.Base(underlying) with SchedulerService { self => override def isShutdown: Boolean = underlying.isShutdown override def isTerminated: Boolean = underlying.isTerminated override def shutdown(): Unit = underlying.shutdown() override def awaitTermination(timeout: Long, unit: TimeUnit, awaitOn: ExecutionContext): Future[Boolean] = underlying.awaitTermination(timeout, unit, awaitOn) override def withExecutionModel(em: ExecutionModel): TracingSchedulerService = new TracingSchedulerService(underlying.withExecutionModel(em)) } object TracingSchedulerService { /** Builds a [[TracingScheduler]] instance, wrapping the * `underlying` scheduler given. */ def apply(underlying: SchedulerService): TracingSchedulerService = new TracingSchedulerService(underlying) }
Wogan/monix
monix-execution/shared/src/main/scala/monix/execution/schedulers/TracingSchedulerService.scala
Scala
apache-2.0
2,226
package com.thangiee.lolhangouts.ui.core import android.content.Intent trait TIntent { implicit class IntentOp(i: Intent) { def args(arguments: (String, Any)*): Intent = { for ((k, v) ← arguments) { v match { case v: String => i.putExtra(k, v) case v: Int => i.putExtra(k, v) case v: Double => i.putExtra(k, v) case v: Float => i.putExtra(k, v) case v: Boolean => i.putExtra(k, v) case v: Serializable => i.putExtra(k, v) } } i } } }
Thangiee/LoL-Hangouts
src/com/thangiee/lolhangouts/ui/core/TIntent.scala
Scala
apache-2.0
586
// Copyright: 2010 - 2018 https://github.com/ensime/ensime-server/graphs // License: http://www.gnu.org/licenses/gpl-3.0.en.html package org.ensime.util import Predef.{ any2stringadd => _, _ => _ } import scala.collection.{ Map, Set } package object map { implicit class RichMap[K, V](val map: Map[K, V]) extends AnyVal { /** * Map.mapValues is notoriously inconsistent and returns a View * rather than a solid implementation, this is what you thought it * did. */ def mapValuesEagerly[W](f: V => W): Map[K, W] = map.map { case (k, v) => (k, f(v)) } } // I'm sure CanBuildFrom could make this general to all value containers implicit class RichMultiMapSet[K, V](val map: Map[K, Set[V]]) extends AnyVal { /** * Treating `map` as a multimap, merge with another similarly * structured object removing duplicate values. */ def merge(other: Map[K, Set[V]]): Map[K, Set[V]] = { import collection.mutable val builder = new mutable.HashMap[K, mutable.Set[V]] with mutable.MultiMap[K, V] builder ++= map.mapValuesEagerly { v => v.to[mutable.Set] } for { (k, vs) <- other v <- vs } builder.addBinding(k, v) builder.map { case (k, vs) => (k, vs.toSet) }(collection.breakOut) } } }
yyadavalli/ensime-server
util/src/main/scala/org/ensime/util/map.scala
Scala
gpl-3.0
1,345
/* * Copyright (c) 2014-2018 by The Monix Project Developers. * See the project homepage at: https://monix.io * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package monix.tail.internal import cats.effect.Sync import cats.syntax.all._ import monix.execution.internal.collection.ChunkedArrayStack import monix.tail.Iterant import monix.tail.Iterant.{Concat, Halt, Last, Next, NextBatch, NextCursor, Scope, Suspend} import monix.tail.batches.BatchCursor private[tail] object IterantHeadOptionL { /** * Implementation for `Iterant#headOption`. */ def apply[F[_], A](source: Iterant[F, A]) (implicit F: Sync[F]): F[Option[A]] = { source match { case Next(a, _) => F.pure(Some(a)) case Last(a) => F.pure(Some(a)) case _ => F.suspend(new Loop[F, A].apply(source)) } } private final class Loop[F[_], A](implicit F: Sync[F]) extends Iterant.Visitor[F, A, F[Option[A]]] { //-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= // Used in visit(Concat) private[this] var stackRef: ChunkedArrayStack[F[Iterant[F, A]]] = _ private def stackPush(item: F[Iterant[F, A]]): Unit = { if (stackRef == null) stackRef = ChunkedArrayStack() stackRef.push(item) } private def stackPop(): F[Iterant[F, A]] = { if (stackRef != null) stackRef.pop() else null.asInstanceOf[F[Iterant[F, A]]] } private[this] val concatContinue: (Option[A] => F[Option[A]]) = { case None => stackPop() match { case null => F.pure(None) case xs => xs.flatMap(this) } case some => F.pure(some) } //-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= def visit(ref: Next[F, A]): F[Option[A]] = F.pure(Some(ref.item)) def visit(ref: NextBatch[F, A]): F[Option[A]] = processCursor(ref.batch.cursor(), ref.rest) def visit(ref: NextCursor[F, A]): F[Option[A]] = processCursor(ref.cursor, ref.rest) def visit(ref: Suspend[F, A]): F[Option[A]] = ref.rest.flatMap(this) def visit(ref: Concat[F, A]): F[Option[A]] = { stackPush(ref.rh) ref.lh.flatMap(this).flatMap(concatContinue) } def visit[S](ref: Scope[F, S, A]): F[Option[A]] = ref.runFold(this) def visit(ref: Last[F, A]): F[Option[A]] = F.pure(Some(ref.item)) def visit(ref: Halt[F, A]): F[Option[A]] = ref.e match { case Some(e) => F.raiseError(e) case None => F.pure(None) } def fail(e: Throwable): F[Option[A]] = F.raiseError(e) private def processCursor(cursor: BatchCursor[A], rest: F[Iterant[F, A]]): F[Option[A]] = { if (cursor.hasNext()) F.pure(Some(cursor.next())) else rest.flatMap(this) } } }
Wogan/monix
monix-tail/shared/src/main/scala/monix/tail/internal/IterantHeadOptionL.scala
Scala
apache-2.0
3,302
package com.twitter.finagle import com.twitter.finagle.util.LoadService import com.twitter.util.{Closable, Future, Time} import java.net.{InetSocketAddress, SocketAddress} import java.util.logging.Logger import scala.collection.mutable /** * Indicates that an [[com.twitter.finagle.Announcer]] was not found for the * given `scheme`. * * Announcers are discovered via Finagle's [[com.twitter.finagle.util.LoadService]] * mechanism. These exceptions typically suggest that there are no libraries * on the classpath that define an Announcer for the given scheme. */ class AnnouncerNotFoundException(scheme: String) extends Exception("Announcer not found for scheme \\"%s\\"".format(scheme)) /** * Indicates that multiple [[com.twitter.finagle.Announcer Announcers]] were * discovered for given `scheme`. * * Announcers are discovered via Finagle's [[com.twitter.finagle.util.LoadService]] * mechanism. These exceptions typically suggest that there are multiple * libraries on the classpath with conflicting scheme definitions. */ class MultipleAnnouncersPerSchemeException(announcers: Map[String, Seq[Announcer]]) extends NoStacktrace { override def getMessage = { val msgs = announcers map { case (scheme, rs) => "%s=(%s)".format(scheme, rs.map(_.getClass.getName).mkString(", ")) } mkString(" ") "Multiple announcers defined: %s".format(msgs) } } /** * Indicates that a forum string passed to an [[com.twitter.finagle.Announcer]] * was invalid according to the forum grammar [1]. * * [1] http://twitter.github.io/finagle/guide/Names.html */ class AnnouncerForumInvalid(forum: String) extends Exception("Announcer forum \\"%s\\" is not valid".format(forum)) trait Announcement extends Closable { def close(deadline: Time) = unannounce() def unannounce(): Future[Unit] } trait ProxyAnnouncement extends Announcement with Proxy { val forums: List[String] } trait Announcer { val scheme: String def announce(addr: InetSocketAddress, name: String): Future[Announcement] } object Announcer { private[this] lazy val announcers = { val announcers = LoadService[Announcer]() val log = Logger.getLogger(getClass.getName) val dups = announcers groupBy(_.scheme) filter { case (_, rs) => rs.size > 1 } if (dups.size > 0) throw new MultipleAnnouncersPerSchemeException(dups) for (r <- announcers) log.info("Announcer[%s] = %s(%s)".format(r.scheme, r.getClass.getName, r)) announcers } def get[T <: Announcer](clazz: Class[T]): Option[T] = announcers find { _.getClass isAssignableFrom clazz } map { _.asInstanceOf[T] } private[this] val _announcements = mutable.Set[(InetSocketAddress, List[String])]() def announcements = synchronized { _announcements.toSet } def announce(addr: InetSocketAddress, forum: String): Future[Announcement] = { val announcement = forum.split("!", 2) match { case Array(scheme, name) => announcers.find(_.scheme == scheme) match { case Some(announcer) => announcer.announce(addr, name) case None => Future.exception(new AnnouncerNotFoundException(scheme)) } case _ => Future.exception(new AnnouncerForumInvalid(forum)) } announcement map { ann => val lastForums = ann match { case a: ProxyAnnouncement => a.forums case _ => Nil } val proxyAnnouncement = new ProxyAnnouncement { val self = ann def unannounce() = ann.unannounce() val forums = forum :: lastForums } synchronized { _announcements -= ((addr, lastForums)) _announcements += ((addr, proxyAnnouncement.forums)) } proxyAnnouncement } } }
travisbrown/finagle
finagle-core/src/main/scala/com/twitter/finagle/Announcer.scala
Scala
apache-2.0
3,701
/** * Copyright 2013 Gianluca Amato <gamato@unich.it> * * This file is part of JANDOM: JVM-based Analyzer for Numerical DOMains * JANDOM is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * JANDOM is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty ofa * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with JANDOM. If not, see <http://www.gnu.org/licenses/>. */ package it.unich.jandom.targets.jvmsoot import it.unich.jandom.targets._ import soot.SootMethod import soot.Scene import soot.jimple.toolkits.callgraph.CHATransformer import soot.jimple.toolkits.callgraph.Sources import soot.jimple.toolkits.callgraph.TopologicalOrderer /** * This is just a tag for interpretations which should be used in the analysis of Soot * methods. The input in a Soot interpretation has the following format: * - if the method is not static, the first dimension corresponds to `this` * - each further dimension corresponds to a parameter in the order of declaration * The output of a Soot interpretation has the same correspondence between dimensions * and signature, with the addition of a last parameters corresponding to the return type * if this is different from `void`. */ trait SootInterpretation[Tgt <: SootCFG[Tgt,_], Params <: Parameters[Tgt]] extends Interpretation[Tgt, Params] { } /** * A `TopSootInterpretation` always returns the top abstract element of the correct type for * each input. * @param params the parameters for the analysis */ class TopSootInterpretation[Tgt <: SootCFG[Tgt, _], Params <: Parameters[Tgt]](val params: Params) extends SootInterpretation[Tgt, Params] { def apply(method: SootMethod, input: params.Property): params.Property = params.domain.top(SootCFG.outputTypes(method)) } /** * A `JimpleInterpretation` tries to return the semantics of a method by recursively analyzing its body. * It does not handle recursion, so it generates an exception if recursion is detected. It should only * be used for testing purposes. It only supports the target `JimpleMethod` for now. * @param params the parameters for the analysis * @throw IllegalArgumentException if recursive definitions are detected */ class JimpleInterpretation[Params <: Parameters[JimpleMethod]](val params: Params) extends SootInterpretation[JimpleMethod, Params] { /** * It maps each pair `(method, input)` with the pair `(output,rec)`. The first time a pair `(method, input)` * is encountered, the value `(bottom, false)` is put in `inte`. Then, the body of the method is analyzed. * If during the analysis the pair `(method, input)` is required again, execution stops with an exception, * otherwise `(output, true)` is saved into the map. */ private val inte = scala.collection.mutable.HashMap[(SootMethod, params.Property), (params.Property, Boolean)]() private val jmethodCache = scala.collection.mutable.HashMap[SootMethod, JimpleMethod]() def apply(method: SootMethod, input: params.Property): params.Property = { if (inte contains ((method, input))) inte((method, input)) match { case (output, true) => output case (output, false) => throw new IllegalArgumentException("Recursive") } else { inte((method, input)) = (params.domain.bottom(SootCFG.outputTypes(method)), false) val jmethod = jmethodCache.getOrElseUpdate(method, new JimpleMethod(method)) val ann = jmethod.analyzeFromInput(params)(input) val output = jmethod.extractOutput(params)(ann) inte((method, input)) = (output, true) output } } } /** * A `JimpleRecursiveInterpretation` tries to return the semantics of methods by a summary based analysis. * The semantics of all methods is initialized to top for every possible input, then methods are analyzed * with a work-list based approach. Each method has a single possible input context, which is top. */ class JimpleRecursiveInterpretation[Params <: Parameters[JimpleMethod]](scene: Scene, val params: Params) extends Interpretation[JimpleMethod, Params] { import scala.collection.JavaConversions._ val inte = scala.collection.mutable.HashMap[SootMethod, params.Property]() val targets = scala.collection.mutable.HashMap[SootMethod, Option[JimpleMethod]]() def apply(method: SootMethod, input: params.Property): params.Property = { if (inte contains method) inte(method) else { val bottom = params.domain.bottom(SootCFG.outputTypes(method)) inte(method) = bottom bottom } } def compute(method: SootMethod, input: params.Property) { val l = new java.util.LinkedList[SootMethod]() l.add(method) scene.setEntryPoints(l) CHATransformer.v().transform() val cg = scene.getCallGraph() val tpo = new TopologicalOrderer(cg) tpo.go() val order = tpo.order().reverse // it is enough to get the set of all the elements if (order.isEmpty()) order.add(method) for (m <- order; if !(targets contains m)) { targets(m) = if (m.isConcrete()) Some(new JimpleMethod(m)) else None inte(m) = params.domain.bottom(SootCFG.outputTypes(m)) } val worklist = scala.collection.mutable.Queue[SootMethod](order.toSeq: _*) while (!worklist.isEmpty) { val m = worklist.dequeue val jmethod = targets(m) val top = params.domain.top(SootCFG.inputTypes(m)) val output = jmethod match { case None => inte(m) case Some(jmethod) => { val ann = jmethod.analyzeFromInput(params)(top) jmethod.extractOutput(params)(ann) } } if (!(inte(m) >= output)) { inte(m) = inte(m) widening output val sources = new Sources(cg.edgesInto(m)).asInstanceOf[java.util.Iterator[SootMethod]] worklist.enqueue(sources.toSeq: _*) } } } override def toString = inte.toString }
rubino22/JDBeta
core/src/main/scala/it/unich/jandom/targets/jvmsoot/SootInterpretation.scala
Scala
lgpl-3.0
6,191
package sorm.test.general import org.scalatest.{FunSuite, Matchers} import org.junit.runner.RunWith import org.scalatest.junit.JUnitRunner import sorm._ import sorm.test.MultiInstanceSuite @RunWith(classOf[JUnitRunner]) class TutorialSuite extends FunSuite with Matchers with MultiInstanceSuite { import TutorialSuite._ def entities = Set() + Entity[Artist]() + Entity[Genre]() + Entity[Locale](unique = Set() + Seq("code")) instancesAndIds foreach { case (db, dbId) => // create locales: val ru = db.save( Locale("ru") ) val en = db.save( Locale("en") ) // create genres: val rock = db.save( Genre( Map( en -> Seq("Rock"), ru -> Seq("Рок") ) ) ) val hardRock = db.save( Genre( Map( en -> Seq("Hard Rock"), ru -> Seq("Тяжёлый рок", "Тяжелый рок") ) ) ) val metal = db.save( Genre( Map( en -> Seq("Metal"), ru -> Seq("Метал") ) ) ) val grunge = db.save( Genre( Map( en -> Seq("Grunge"), ru -> Seq("Грандж") ) ) ) // create artists: db.save( Artist( Map( en -> Seq("Metallica"), ru -> Seq("Металика", "Металлика") ), Set( metal, rock, hardRock ) ) ) db.save( Artist( Map( en -> Seq("Nirvana"), ru -> Seq("Нирвана") ), Set( rock, hardRock, grunge ) ) ) db.save( Artist( Map( en -> Seq("Kino"), ru -> Seq("Кино") ), Set( rock ) ) ) db.save( Artist( Map( en -> Seq("The Rolling Stones", "Rolling Stones", "Rolling Stones, The"), ru -> Seq("Ролинг Стоунз", "Роллинг Стоунз", "Роллинг Стоунс", "Ролинг Стоунс") ), Set( rock ) ) ) db.save( Artist( Map( en -> Seq("Dire Straits"), ru -> Seq("Даэр Стрэйтс") ), Set( rock ) ) ) db.save( Artist( Map( en -> Seq("Godsmack"), ru -> Seq("Годсмэк") ), Set( metal, hardRock, rock ) ) ) // All artists having a genre equaling to the value of the `metal` variable, // which we've previously declared. // The result type is `Stream[Artist with Persisted]` val metalArtists = db.query[Artist].whereContains("genres", metal).fetch() // All artists having a genre that contains "Hard Rock" of a locale with a // code "en" in a list of its names. // The result type is `Stream[Artist with Persisted]` val hardRockArtists = db.query[Artist] .whereEqual("genres.item.names.value.item", "Hard Rock") .whereEqual("genres.item.names.key.code", "en") .fetch() test(dbId + " - metal artists"){ metalArtists.flatMap(_.names.values.flatten) should ( contain("Metallica") and contain("Godsmack") and not contain("Kino") ) } test(dbId + " - hard rock artists"){ hardRockArtists.flatMap(_.names.values.flatten) should ( contain("Nirvana") and contain("Metallica") and contain("Godsmack") and not contain("Dire Straits") ) } } } object TutorialSuite { case class Artist ( names : Map[Locale, Seq[String]], genres : Set[Genre] ) case class Genre ( names : Map[Locale, Seq[String]] ) case class Locale ( code : String ) }
pjfanning/sorm
src/test/scala/sorm/test/general/TutorialSuite.scala
Scala
mit
3,829
package org.locationtech.geomesa.plugin import org.apache.wicket.behavior.SimpleAttributeModifier import org.apache.wicket.markup.html.form.{Form, FormComponent} import org.apache.wicket.markup.html.panel.Panel import org.apache.wicket.model.{IModel, ResourceModel} import org.geoserver.web.data.store.StoreEditPanel import org.geoserver.web.data.store.panel.{ParamPanel, PasswordParamPanel, TextParamPanel} import org.geoserver.web.util.MapModel import org.geotools.data.DataAccessFactory.Param /* * Copyright 2013 Commonwealth Computer Research, Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ abstract class GeoMesaStoreEditPanel (componentId: String, storeEditForm: Form[_]) extends StoreEditPanel(componentId, storeEditForm) { def addTextPanel(paramsModel: IModel[_], param: Param): FormComponent[_] = { val paramName = param.key val resourceKey = getClass.getSimpleName + "." + paramName val required = param.required val textParamPanel = new TextParamPanel(paramName, new MapModel(paramsModel, paramName).asInstanceOf[IModel[_]], new ResourceModel(resourceKey, paramName), required) addPanel(textParamPanel, param, resourceKey) } def addPasswordPanel(paramsModel: IModel[_], param: Param): FormComponent[_] = { val paramName = param.key val resourceKey = getClass.getSimpleName + "." + paramName val required = param.required val passParamPanel = new PasswordParamPanel(paramName, new MapModel(paramsModel, paramName).asInstanceOf[IModel[_]], new ResourceModel(resourceKey, paramName), required) addPanel(passParamPanel, param, resourceKey) } def addPanel(paramPanel: Panel with ParamPanel, param: Param, resourceKey: String): FormComponent[_] = { paramPanel.getFormComponent.setType(classOf[String]) val defaultTitle = String.valueOf(param.description) val titleModel = new ResourceModel(resourceKey + ".title", defaultTitle) val title = String.valueOf(titleModel.getObject) paramPanel.add(new SimpleAttributeModifier("title", title)) add(paramPanel) paramPanel.getFormComponent } }
jwkessi/geomesa
geomesa-plugin/src/main/scala/org/locationtech/geomesa/plugin/GeoMesaStoreEditPanel.scala
Scala
apache-2.0
2,641
package wdl import better.files.File import org.scalatest.{FlatSpec, Matchers} class WdlWorkflowImportsSpec extends FlatSpec with Matchers { def addAndGetFile(name: String, source: String): String = { val tempFile = File.newTemporaryFile(s"$name", ".wdl", Option(wdlDirectory)) write source tempFile.name } private val wdlDirectory = File.newTemporaryDirectory("imports_dir") val echoHelloWdl = """ |task inItalian { | String x = "ciao" | command { | echo "${x}" | } |} | |task inSpanish { | String x = "hola" | command { | echo "${x}" | } |} | |task inFrench { | String x = "bonjour" | command { | echo "${x}" | } |} | |workflow echoHello {} """.stripMargin val echoHelloWdlFile = addAndGetFile("echoHello", echoHelloWdl) val basicWdl = s""" |import "$echoHelloWdlFile" """.stripMargin + """ | |task ls { | command { | ls -l | } | output { | String fileList = read_string(stdout()) | } |} | |task pwd { | command { | pwd | } | output { | String current = read_string(stdout()) | } |} | |workflow basic { | call ls | call pwd | output { | ls.fileList | } |} """.stripMargin val printNumsWdl = s""" |import "$echoHelloWdlFile" as multilingualEcho | """.stripMargin + """ |task ls { | command { | ls | } |} | | |task print1 { | Int x = 10 | command { | for i in `seq 1 ${x}` | do | echo $i | done | } |} | |task print2 { | Int x = 20 | command { | for i in `seq 1 ${x}` | do | echo $i | done | } |} | |task print3 { | Int x = 30 | command { | for i in `seq 1 ${x}` | do | echo $i | done | } |} """.stripMargin val snoozeWdl = """ |task sleep { | command { sleep 1 } | |} |task sleep2 { | command { sleep 2 } |} | |task sleep3 { | command { sleep 3 } |} """.stripMargin val threeStepWdl = """ |task ps { | command { | ps | } | output { | File procs = stdout() | } |} | |task cgrep { | String pattern | File in_file | command { | grep '${pattern}' ${in_file} | wc -l | } | output { | Int count = read_int(stdout()) | } | runtime {docker: "ubuntu:latest"} |} | |task wc { | File in_file | command { | cat ${in_file} | wc -l | } | output { | Int count = read_int(stdout()) | } | runtime {docker: "ubuntu:latest"} |} | |workflow three_step { | call ps | call cgrep { input: in_file=ps.procs } | call wc { input: in_file=ps.procs } |} """.stripMargin val threeStepWdlWithImports = s""" |import "$echoHelloWdlFile" as funEcho | """.stripMargin + threeStepWdl val basicWdlImportFile = addAndGetFile("basic", basicWdl) val threeStepWdlImportFile = addAndGetFile("threestep", threeStepWdlWithImports) val snoozeWdlImportFile = addAndGetFile("snooze", snoozeWdl) val printNumsWdlImportFile = addAndGetFile("printNums", printNumsWdl) def noExtension(fileName: String) = fileName.replace(".wdl","") val imports = s""" |import "$basicWdlImportFile" |import "$threeStepWdlImportFile" as classicThreeStep |import "$snoozeWdlImportFile" as trySleep |import "$printNumsWdlImportFile" | """.stripMargin val primaryWorkflow = s""" | |task testCaseTask { | command { | echo "Ruchi's birthday: 01/19" | } |} | |workflow testCases { | call ${noExtension(basicWdlImportFile)}.ls as ls1 | call ${noExtension(printNumsWdlImportFile)}.ls as ls2 | | #call ${noExtension(basicWdlImportFile)}.pwd as soBasic | | #call ${noExtension(printNumsWdlImportFile)}.print1 | #call ${noExtension(printNumsWdlImportFile)}.print2 as printingFun | | | call classicThreeStep.ps | call classicThreeStep.ps as psAgain | | call trySleep.sleep | call trySleep.sleep2 as sleepMore | | call ${noExtension(basicWdlImportFile)}.${noExtension(echoHelloWdlFile)}.inFrench | call classicThreeStep.funEcho.inSpanish | call classicThreeStep.funEcho.inSpanish as inPortugese | call ${noExtension(printNumsWdlImportFile)}.multilingualEcho.inItalian | |} |""".stripMargin val wdlWithImports = imports + primaryWorkflow val namespace = { val resolvers: Seq[ImportResolver] = Seq(WdlNamespace.directoryResolver(wdlDirectory), WdlNamespace.fileResolver) WdlNamespaceWithWorkflow.load(wdlWithImports, resolvers).get } "WDL file with imports" should "Have 1 task (remaining tasks are in separate namespaces)" in { namespace.tasks.size shouldEqual 1 } it should "Have 4 imported WdlNamespaces" in { namespace.namespaces.size shouldEqual 4 } it should "import a WDL file (with alias) and be able to reference its tasks by FQN" in { namespace.resolve("classicThreeStep.ps").size shouldEqual 1 } it should "import a WDL file (with no alias) and be able to reference its tasks by FQN" in { namespace.resolve(s"${noExtension(printNumsWdlImportFile)}.print1").size shouldEqual 1 } it should "import two WDL file (with clashing task names) and be able to reference all tasks by FQN" in { val clashingTaskNames = Seq(namespace.resolve(s"${noExtension(basicWdlImportFile)}.ls"), namespace.resolve(s"${noExtension(printNumsWdlImportFile)}.ls")) clashingTaskNames.size shouldEqual 2 } def deleteTempFiles() = wdlDirectory.delete(swallowIOExceptions = true) deleteTempFiles() }
ohsu-comp-bio/cromwell
wdl/src/test/scala/wdl/WdlWorkflowImportsSpec.scala
Scala
bsd-3-clause
6,302
package eu.shiftforward.icfpc2015.model import scala.collection.mutable case class PowerPhrase(text: List[Char]) { val movements = text.map(Command.char) val length = text.length } object PowerPhrase { def apply(text: String): PowerPhrase = new PowerPhrase(text.toList) val knownPhrases = List( PowerPhrase("Ei!"), // from statement PowerPhrase("Ia! Ia!"), // from problem 3 grid PowerPhrase("R'lyeh"), // from problem 5 grid PowerPhrase("Yuggoth"), // from problem 7 grid PowerPhrase("Tsathoggua"), // https://twitter.com/ICFPContest2015/status/630300070236139520 PowerPhrase("Yoyodyne"), // https://twitter.com/ICFPContest2015/status/630393114331459588, https://en.wikipedia.org/wiki/The_Adventures_of_Buckaroo_Banzai_Across_the_8th_Dimension PowerPhrase("Blue Hades"), // https://twitter.com/ICFPContest2015/status/629956402031624192, https://laundry-game.obsidianportal.com/wikis/blue-hades PowerPhrase("The Laundry"), PowerPhrase("Case Nightmare Green")) // https://twitter.com/ICFPContest2015/status/630645065304576000 def getMatchings(source: Seq[Command], powerphrases: Seq[PowerPhrase]): Map[PowerPhrase, List[Int]] = { var matching = List[(Int, PowerPhrase)]() var matched = Map[PowerPhrase, List[Int]]() for (i <- source.indices) { val command = source(i) powerphrases.foreach { p => matching = matching :+ (0, p) } matching = matching.foldLeft(List[(Int, PowerPhrase)]()) { case (acc, (idx, power)) => if (command.action == power.movements(idx).action) { if (idx + 1 == power.movements.length) { val startingIdx = i - power.movements.length + 1 matched = matched.updated(power, matched.getOrElse(power, List[Int]()) :+ startingIdx) acc } else { acc :+ (idx + 1, power) } } else { acc } } } matched } def flatten(sourceLength: Int, matchings: Map[PowerPhrase, List[Int]]): Map[Int, PowerPhrase] = { val sortedMatches = matchings.toList.sortWith { case ((powerA, idxsA), (powerB, idxsB)) => if (idxsA.length == idxsB.length) powerA.movements.length > powerB.movements.length else idxsA.length > idxsB.length } val matchingsSortedNoOverlaps = sortedMatches.map { case (power, idxs) => val movementLength = power.movements.length val newIndexes = idxs.tail.foldLeft(List(idxs.head)) { case (acc, i) => if (acc.last + movementLength <= i) { acc :+ i } else { acc } } (power, newIndexes) } var freePositions = List.fill(sourceLength)(true) matchingsSortedNoOverlaps.foldLeft(Map[Int, PowerPhrase]()) { case (acc, (power, idxs)) => val succesfulPlacements = mutable.ArrayBuffer[(Int, PowerPhrase)]() idxs foreach { i => val valid = freePositions.slice(i, i + power.length - 1).reduce(_ && _) if (valid) { succesfulPlacements += (i -> power) for (j <- 0 until power.length) { freePositions = freePositions.updated(i + j, false) } } } acc ++ succesfulPlacements.toMap } } def getBestString(source: Seq[Command], powerPhrases: Seq[PowerPhrase] = knownPhrases): String = { val matchings = getMatchings(source, powerPhrases) val finalMatchings = flatten(source.length, matchings) var result = "" var i = 0 while (i < source.length) { finalMatchings.get(i) match { case None => result += source(i).ch i += 1 case Some(power) => result += power.text.mkString("") i += power.text.length } } result } }
ShiftForward/icfpc2015
src/main/scala/eu/shiftforward/icfpc2015/model/PowerPhrase.scala
Scala
mit
3,873
package com.example object Decoration extends App { trait Logger { def debug(msg: String) def error(msg: String) } def log[A, B](logger: Logger)(fn: A => B): A => B = { input => try { logger.debug(s"Start. <= $input") val start = System.nanoTime val output = fn(input) val time = (System.nanoTime - start) / 1000000 logger.debug(s"End $time ms. => $output") output } catch { case e: Exception => logger.error(e.toString) throw e } } trait DB { def begin def commit def rollback def select(sql: String) } class TestDB extends DB { def begin = println("[begin]") def commit = println("[commit]") def rollback = println("[rollback]") def select(sql: String) = println(s"[select] $sql") } def transaction[T](fn: DB => T): DB => T = { db => try { db.begin val result = fn(db) db.commit result } catch { case e: Exception => db.rollback throw e } } class TestLogger extends Logger { def debug(msg: String) = println(s"[Debug] $msg") def error(msg: String) = println(s"[Error] $msg") } def testLogger = new TestLogger def testDB = new TestDB val selectPerson = log(testLogger) { transaction { db => db.select("select * from person") Thread.sleep(103) //throw new RuntimeException("Error") "Alex Smith" } } selectPerson(testDB) }
enpassant/miniatures
src/main/scala/com/example/Composition.scala
Scala
apache-2.0
1,539
package com.gx.chain.oo /** * Copyright 2017 josephguan * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * */ /** * Handler Interface */ abstract class RequestHandler(next: RequestHandler) { def handleRequest(req: Request): Unit = { if (next != null) { next.handleRequest(req) } else { println("No one is responsible for this request.") } } } /** * Developer is a concrete handler */ class Developer(next: RequestHandler) extends RequestHandler(next) { override def handleRequest(req: Request): Unit = req match { case FixBugRequest(desc) => println(s"I am a developer. I can fix this bug: $desc") req.markHandled() case _ => super.handleRequest(req) } } /** * Architect is a concrete handler */ class Architect(next: RequestHandler) extends RequestHandler(next) { override def handleRequest(req: Request): Unit = req match { case FeatureRequest(desc) => println(s"I am an architect. I can implement this feature: $desc") req.markHandled() case _ => super.handleRequest(req) } } /** * CTO is a concrete handler */ class CTO(next: RequestHandler) extends RequestHandler(next) { override def handleRequest(req: Request): Unit = req match { case ProductRequest(desc) => println(s"I am a CTO. I can make this product: $desc") req.markHandled() case _ => super.handleRequest(req) } }
josephguan/scala-design-patterns
behavioral/chain-of-responsibility/src/main/scala/com/gx/chain/oo/RequestHandler.scala
Scala
apache-2.0
1,946
// Copyright (C) 2011-2012 the original author or authors. // See the LICENCE.txt file distributed with this work for additional // information regarding copyright ownership. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package org.scalastyle // scalastyle:off magic.number multiple.string.literals import org.junit.Test import org.scalastyle.file.CheckerTest import org.scalastyle.file.FileLengthChecker class CommentFilterDisabledTest extends CheckerTest { val key = "file.size.limit" val classUnderTest = classOf[FileLengthChecker] @Test def testOne(): Unit = { val source = """ // scalastyle:off package foobar object Foobar { } object Barbar { } """ assertErrors(List(fileError(List("5"))), source, Map("maxFileLength" -> "5"), commentFilter = false) } }
scalastyle/scalastyle
src/test/scala/org/scalastyle/CommentFilterDisabledTest.scala
Scala
apache-2.0
1,303
package com.airbnb.scheduler.api import java.util.logging.{Level, Logger} import javax.ws.rs._ import javax.ws.rs.core.{MediaType, Response} import javax.ws.rs.core.Response.Status import scala.Array import com.airbnb.scheduler.config.SchedulerConfiguration import scala.collection.mutable.ListBuffer import com.airbnb.scheduler.jobs._ import com.airbnb.scheduler.graph.JobGraph import com.google.inject.Inject import com.codahale.metrics.annotation.Timed import com.fasterxml.jackson.databind.ObjectMapper import scala.collection.JavaConversions._ /** * The REST API to the PerformanceResource component of the API. * @author Matt Redmond (matt.redmond@airbnb.com) * Returns a list of jobs, sorted by percentile run times. */ @Path(PathConstants.allStatsPath) @Produces(Array(MediaType.APPLICATION_JSON)) class StatsResource @Inject()( val jobScheduler: JobScheduler, val jobGraph: JobGraph, val configuration: SchedulerConfiguration, val jobMetrics: JobMetrics) { private[this] val log = Logger.getLogger(getClass.getName) @Timed @GET // Valid arguments are // /scheduler/stats/99thPercentile // /scheduler/stats/98thPercentile // /scheduler/stats/95thPercentile // /scheduler/stats/75thPercentile // /scheduler/stats/median // /scheduler/stats/mean def getPerf(@PathParam("percentile") percentile: String): Response = { try { var output = ListBuffer[Map[String, Any]]() var jobs = ListBuffer[(String, Double)]() val mapper = new ObjectMapper() for (jobNameString <- jobGraph.dag.vertexSet()) { val node = mapper.readTree(jobMetrics.getJsonStats(jobNameString)) if (node.has(percentile) && node.get(percentile) != null) { val time = node.get(percentile).asDouble() jobs.append((jobNameString, time)) } } jobs = jobs.sortBy(_._2).reverse for ( (jobNameString, time) <- jobs) { val myMap = Map("jobNameLabel" -> jobNameString, "time" -> time / 1000.0) output.append(myMap) } Response.ok(output).build } catch { case ex: Exception => { log.log(Level.WARNING, "Exception while serving request", ex) throw new WebApplicationException(Status.INTERNAL_SERVER_ERROR) } } } }
doronin/chronos
src/main/scala/com/airbnb/scheduler/api/StatsResource.scala
Scala
apache-2.0
2,405
package org.igye.jfxutils.dialog import org.junit.{Assert, Test} class TextFieldVarNameAutocompleteTest { @Test def extractPartsAndFilterTest(): Unit = { var res = TextFieldVarNameAutocomplete.extractPartsAndFilter("text1${varname}text2", 8) Assert.assertEquals("text1${", res.left) Assert.assertEquals("v", res.filter) Assert.assertEquals("}text2", res.right) res = TextFieldVarNameAutocomplete.extractPartsAndFilter("text1${v}text2", 8) Assert.assertEquals("text1${", res.left) Assert.assertEquals("v", res.filter) Assert.assertEquals("}text2", res.right) res = TextFieldVarNameAutocomplete.extractPartsAndFilter("text1${}text2", 7) Assert.assertEquals("text1${", res.left) Assert.assertEquals("", res.filter) Assert.assertEquals("}text2", res.right) res = TextFieldVarNameAutocomplete.extractPartsAndFilter("text1$}text2", 7) Assert.assertEquals("text1$}", res.left) Assert.assertEquals("", res.filter) Assert.assertEquals("text2", res.right) res = TextFieldVarNameAutocomplete.extractPartsAndFilter("text1$}text2", 6) Assert.assertEquals("text1$", res.left) Assert.assertEquals("", res.filter) Assert.assertEquals("}text2", res.right) res = TextFieldVarNameAutocomplete.extractPartsAndFilter("text1$}text2", 5) Assert.assertEquals("text1", res.left) Assert.assertEquals("", res.filter) Assert.assertEquals("$}text2", res.right) res = TextFieldVarNameAutocomplete.extractPartsAndFilter("abcd", 1) Assert.assertEquals("a", res.left) Assert.assertEquals("", res.filter) Assert.assertEquals("bcd", res.right) } }
Igorocky/jfxutils
src/test/scala/org/igye/jfxutils/dialog/TextFieldVarNameAutocompleteTest.scala
Scala
mit
1,757
package grammarcomp /** * File: GrammarComparator.scala * Date: 20/5/2013 * Author: Mikaël Mayer * Purpose: Compares two grammars */ package repair import grammar._ import CFGrammar._ import EBNFGrammar._ import generators._ import parsing._ import equivalence._ import utils._ import scala.collection.mutable.ListBuffer import scala.collection.mutable.MultiMap import scala.collection.mutable.HashMap object RepairResult { sealed trait CNFFeedback[T] sealed trait GrammarFeedback[T] sealed trait BNFFeedback case class NoRepair[T](reason: String) extends GrammarFeedback[T] with CNFFeedback[T] with BNFFeedback { override def toString = reason } //CNF repair feedback case class CNFRemove[T](r: Rule[T], repairRule : Option[Rule[T]] = None) extends CNFFeedback[T] { override def toString = " Remove rule " + r } case class CNFAdd[T](l: List[Rule[T]]) extends CNFFeedback[T] { override def toString = " Add rules " + l.mkString("\\n") } case class CNFSplit[T](old: Rule[T], news: List[Rule[T]], repRule: Rule[T]) extends CNFFeedback[T] { override def toString = " Replace \\n" + old + "\\n by \\n" + news.mkString("\\n") } case class CNFExpand[T](old: Rule[T], news: List[Rule[T]]) extends CNFFeedback[T] { override def toString = " Expand \\n" + old + "\\n as \\n" + news.mkString("\\n") } //Grammar feedback case class AddAllRules[T](l: List[Rule[T]]) extends GrammarFeedback[T] { override def toString = " Add rules " + rulesToStr(l) } case class RemoveRules[T](l: List[Rule[T]], repRules : Option[List[Rule[T]]] = None) extends GrammarFeedback[T] { override def toString = " Remove rules " + rulesToStr(l) } case class RefineRules[T](olds: List[Rule[T]], news: List[Rule[T]], repRules: List[Rule[T]]) extends GrammarFeedback[T] { override def toString = " Refine \\n" + rulesToStr(olds) + "\\n by replacing it by \\n" + rulesToStr(news) } case class ExpandRules[T](olds: List[Rule[T]], news: List[Rule[T]]) extends GrammarFeedback[T] { override def toString = " Expand \\n" + rulesToStr(olds) + "\\n by replacing it by \\n" + rulesToStr(news) } def cnfToGrammarFeedbacks[T](oldg: Grammar[T], newg: Grammar[T], cnfFBs: List[CNFFeedback[T]]) = cnfFBs map { case CNFAdd(rules) => val newrules = CNFConverter.removeCNFNonterminals(newg, rules) AddAllRules(newrules) case CNFRemove(rule, None) => val newrules = CNFConverter.removeCNFNonterminals(oldg, List(rule)) RemoveRules(newrules) case CNFRemove(rule, Some(repRule)) => val newrules = CNFConverter.removeCNFNonterminals(oldg, List(rule)) val repRules = CNFConverter.removeCNFNonterminals(oldg, List(repRule)) RemoveRules(newrules, Some(repRules)) case CNFSplit(iold, inews, repRule) => val nolds = CNFConverter.removeCNFNonterminals(oldg, List(iold)) val nnews = CNFConverter.removeCNFNonterminals(newg, inews) val nreps = CNFConverter.removeCNFNonterminals(newg, List(repRule)) RefineRules(nolds, nnews, nreps) case CNFExpand(iold, inews) => val nolds = CNFConverter.removeCNFNonterminals(oldg, List(iold)) val nnews = CNFConverter.removeCNFNonterminals(newg, inews) ExpandRules(nolds, nnews) case n@NoRepair(_) => n } //BNF feedback //TODO: do not know how to generate this /*case class AddAllBNFRules(l: List[BNFRule], s: String) extends BNFFeedback { override def toString = s + l.mkString("\\n") } case class RemoveBNFRules(l: List[BNFRule], s: String) extends BNFFeedback { override def toString = s + l.mkString("\\n") } case class ReplaceBNFRules(old: List[BNFRule], nu: List[BNFRule], s: String) extends BNFFeedback { override def toString = s + " replace \\n" + old.mkString("\\n") + "\\n by \\n" + nu.mkString("\\n") }*/ /*def toBNFFeedback(feedback: List[CNFFeedback], cnfG: Grammar) = { val genSymbols = CNFConverter.generatedSymbols val cnfContext = CNFConverter.enclosingContext val genRegexp = BNFConverter.generatedRegExp val bnfContext = BNFConverter.enclosingContext //println("Generated Regexp: "+genRegexp.mkString("\\n")) //println("Generated Symbols: "+genSymbols.mkString("\\n")) def cnfToGrammarRule(l: Rule[T]): Rule[T] = { val rightSide = l.rightSide.flatMap { case k: Nonterminal => genSymbols.getOrElse(k, List(k)) case k => List(k) } val leftSide = l.leftSide cnfContext.getOrElse(leftSide, (l: List[Symbol]) => Rule[T](leftSide, rightSide))(rightSide) } def grammarToBNFrule(l: Rule[T]): BNFRule = { val rightSide = RegConcat(l.rightSide.map { case k: Symbol => { val re = genRegexp.getOrElse[RegExp](k, RegId(k.name): RegExp) //println("Regex generated: "+re+" contains: "+genRegexp.contains(k)) re } case k => RegId(k.name) }) //println("Generated right side for rule: "+ rightSide) val leftSide = l.leftSide bnfContext.getOrElse(leftSide, (k: RegExp) => BNFRule(RegId(leftSide.name), k))(rightSide) } val finalfeedback: List[BNFFeedback] = for (f <- feedback.toList) yield { f match { case c @ Comment(s) => c: BNFFeedback case AddAllRules(l, comment, d) => val bnfFixes = (l map cnfToGrammarRule map grammarToBNFrule).distinct AddAllBNFRules(bnfFixes, comment, "") case RemoveRules(bad, comment, d) => val bnfFixes = (bad map cnfToGrammarRule map grammarToBNFrule).distinct RemoveBNFRules(bnfFixes, comment, "") case ReplaceRules(old, nu, comment) => val bnfOld = (old map cnfToGrammarRule map grammarToBNFrule).distinct val bnfNew = (nu map cnfToGrammarRule map grammarToBNFrule).distinct ReplaceBNFRules(bnfOld, bnfNew, comment) } } finalfeedback.toList }*/ }
epfl-lara/GrammarComparison
src/main/scala/grammarcomp/repair/RepairResult.scala
Scala
mit
6,001
package org.knora.webapi.twirl import org.knora.webapi.IRI /** * Represents a standoff datatype class of an XML tag. * * @param datatype the IRI of the standoff datatype class. * @param attributeName the XML attribute that holds the typed value. * @param mappingStandoffDataTypeClassElementIri the IRI of the standoff datatype element (to be used to create the element in the triplestore). */ case class MappingStandoffDatatypeClass(datatype: IRI, attributeName: String, mappingStandoffDataTypeClassElementIri: IRI) /** * Represents an attribute of an XML tag. * * @param attributeName the name of the XML attribute. * @param namespace the namespace of the XML attribute. * @param standoffProperty the IRI of standoff property the XML attribute is mapped to. * @param mappingXMLAttributeElementIri the IRI of the attribute element (to be used to create the element in the triplestore). */ case class MappingXMLAttribute(attributeName: String, namespace: String, standoffProperty: IRI, mappingXMLAttributeElementIri: IRI) /** * Represents an element of an XML to standoff mapping. * * @param tagName the name of the XML tag. * @param namespace the namespace of the XML tag. * @param className the classname of the XML tag. * @param standoffClass the IRI of the standoff class the XML tag is mapped to. * @param attributes the attributes of the XML tag. * @param standoffDataTypeClass the standoff data type class of the xml tag. * @param mappingElementIri the IRI of the mapping element (to be used to create the element in the triplestore). */ case class MappingElement(tagName: String, namespace: String, className: String, standoffClass: IRI, attributes: Seq[MappingXMLAttribute] = Seq.empty[MappingXMLAttribute], standoffDataTypeClass: Option[MappingStandoffDatatypeClass] = None, mappingElementIri: IRI, separatorRequired: Boolean)
musicEnfanthen/Knora
webapi/src/main/scala/org/knora/webapi/twirl/Mapping.scala
Scala
agpl-3.0
2,050
package com.outr.arango import com.outr.arango.api.model.ArangoLinkFieldProperties import scala.concurrent.{ExecutionContext, Future} class View[D <: Document[D]](val name: String, val includeAllFields: Boolean, val fields: Map[Field[_], ArangoLinkFieldProperties], val collection: Collection[D], val analyzers: List[Analyzer]) { lazy val arangoView: ArangoView = collection.graph.arangoDatabase.searchView(name) collection.graph.add(this) protected[arango] def create(createView: Boolean)(implicit ec: ExecutionContext): Future[Unit] = for { _ <- if (createView) { arangoView.create() } else { Future.successful(()) } _ <- arangoView.update( includeAllFields = includeAllFields, links = Some(List( ViewLink( collectionName = collection.name, fields = fields.map { case (f, p) => f.fieldName -> p }, analyzers = analyzers ) ) )) } yield { () } }
outr/arangodb-scala
driver/src/main/scala/com/outr/arango/View.scala
Scala
mit
1,098
/* * Copyright 2012 Twitter Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package com.twitter.zipkin.web import com.twitter.app.App import com.twitter.conversions.time._ import com.twitter.finagle.http.HttpMuxer import com.twitter.finagle.stats.{DefaultStatsReceiver, StatsReceiver} import com.twitter.finagle.{Http, Service, Thrift} import com.twitter.server.TwitterServer import com.twitter.util.{Await, Future} import com.twitter.zipkin.common.mustache.ZipkinMustache import com.twitter.zipkin.gen.ZipkinQuery import java.net.InetSocketAddress import org.jboss.netty.handler.codec.http.{HttpRequest, HttpResponse} trait ZipkinWebFactory { self: App => import Handlers._ private[this] val resourceDirs = Map( "/public/css" -> "text/css", "/public/img" -> "image/png", "/public/js" -> "application/javascript", "/public/templates" -> "text/plain" ) val webServerPort = flag("zipkin.web.port", new InetSocketAddress(8080), "Listening port for the zipkin web frontend") val webRootUrl = flag("zipkin.web.rootUrl", "http://localhost:8080/", "Url where the service is located") val webCacheResources = flag("zipkin.web.cacheResources", false, "cache resources (mustache, static sources, etc)") val webPinTtl = flag("zipkin.web.pinTtl", 30.days, "Length of time pinned traces should exist") val queryDest = flag("zipkin.web.query.dest", "127.0.0.1:9411", "Location of the query server") def newQueryClient(): ZipkinQuery[Future] = Thrift.newIface[ZipkinQuery[Future]]("ZipkinQuery=" + queryDest()) def newWebServer( queryClient: ZipkinQuery[Future] = newQueryClient(), stats: StatsReceiver = DefaultStatsReceiver.scope("zipkin-web") ): Service[HttpRequest, HttpResponse] = { ZipkinMustache.cache = webCacheResources() Seq( ("/public/", handlePublic(resourceDirs, webCacheResources())), ("/", addLayout(webRootUrl()) andThen handleIndex(queryClient)), ("/traces/:id", addLayout(webRootUrl()) andThen handleTraces), ("/static", addLayout(webRootUrl()) andThen handleStatic), ("/aggregates", addLayout(webRootUrl()) andThen handleAggregates), ("/api/query", handleQuery(queryClient)), ("/api/services", handleServices(queryClient)), ("/api/spans", requireServiceName andThen handleSpans(queryClient)), ("/api/top_annotations", requireServiceName andThen handleTopAnnotations(queryClient)), ("/api/top_kv_annotations", requireServiceName andThen handleTopKVAnnotations(queryClient)), ("/api/dependencies", handleDependencies(queryClient)), ("/api/dependencies/?:startTime/?:endTime", handleDependencies(queryClient)), ("/api/get/:id", handleGetTrace(queryClient)), ("/api/trace/:id", handleGetTrace(queryClient)), ("/api/is_pinned/:id", handleIsPinned(queryClient)), ("/api/pin/:id/:state", handleTogglePin(queryClient, webPinTtl())) ).foldLeft(new HttpMuxer) { case (m , (p, handler)) => val path = p.split("/").toList val handlePath = path.takeWhile { t => !(t.startsWith(":") || t.startsWith("?:")) } val suffix = if (p.endsWith("/") || p.contains(":")) "/" else "" m.withHandler(handlePath.mkString("/") + suffix, nettyToFinagle andThen collectStats(stats.scope(handlePath.mkString("-"))) andThen renderPage andThen catchExceptions andThen checkPath(path) andThen handler) } } } object Main extends TwitterServer with ZipkinWebFactory { def main() { val server = Http.serve(webServerPort(), newWebServer(stats = statsReceiver.scope("zipkin-web"))) onExit { server.close() } Await.ready(server) } }
dmmata/zipkin
zipkin-web/src/main/scala/com/twitter/zipkin/web/Main.scala
Scala
apache-2.0
4,198
// src/main/scala/progscala2/traits/observer/Observer.scala package progscala2.traits.observer trait Observer[-State] { // <1> def receiveUpdate(state: State): Unit } trait Subject[State] { // <2> private var observers: List[Observer[State]] = Nil // <3> def addObserver(observer:Observer[State]): Unit = // <4> observers ::= observer // <5> def notifyObservers(state: State): Unit = // <6> observers foreach (_.receiveUpdate(state)) }
sunilrebel/programming-scala
examples/src/main/scala/progscala2/traits/observer/observer.scala
Scala
mpl-2.0
646
package com.sksamuel.elastic4s.requests.searches import scala.language.implicitConversions case class Highlight(options: HighlightOptions, fields: Iterable[HighlightField]) trait HighlightApi { def highlightOptions(): HighlightOptions = HighlightOptions() def highlight(field: String): HighlightField = HighlightField(field) }
stringbean/elastic4s
elastic4s-core/src/main/scala/com/sksamuel/elastic4s/requests/searches/HighlightApi.scala
Scala
apache-2.0
334
package io.skysail.api.ddd /** * DDD stands for the concepts of "Domain Driven Design". * * This sealed trait defines various elements to characterize * these concepts. */ // tag::methods[] sealed trait DddElement // end::methods[] /** * * @tparam T the type of the id attribute for this entity, e.g. Int or String */ trait Entity[T] extends DddElement { def id: Option[T] override def hashCode(): Int = id.hashCode() override def equals(obj: scala.Any): Boolean = { if (!obj.isInstanceOf[Entity[T]]) { return false } val otherEntity = obj.asInstanceOf[Entity[T]] if (id == null || otherEntity.id == null) { return false } if (id.isEmpty || otherEntity.id.isEmpty) { return false } otherEntity.id == id } } trait ValueObject extends DddElement
evandor/skysail-server
skysail.api/src/io/skysail/api/ddd/ddd.scala
Scala
apache-2.0
822
/******************************************************************************* * Copyright (c) 2015-2018 Skymind, Inc. * * This program and the accompanying materials are made available under the * terms of the Apache License, Version 2.0 which is available at * https://www.apache.org/licenses/LICENSE-2.0. * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * License for the specific language governing permissions and limitations * under the License. * * SPDX-License-Identifier: Apache-2.0 ******************************************************************************/ package org.deeplearning4j.scalnet.layers.core import org.deeplearning4j.nn.conf.layers.{ ActivationLayer => JActivationLayer } import org.nd4j.linalg.activations.Activation /** * Activation layer * * @author Max Pumperla */ class ActivationLayer(activation: Activation, nOut: Option[List[Int]], nIn: Option[List[Int]], override val name: String = "") extends Layer { override def compile: org.deeplearning4j.nn.conf.layers.Layer = new JActivationLayer.Builder() .activation(activation) .name(name) .build() override val outputShape: List[Int] = nOut.getOrElse(List(0)) override val inputShape: List[Int] = nIn.getOrElse(List(0)) override def reshapeInput(newIn: List[Int]): ActivationLayer = new ActivationLayer(activation, Some(newIn), Some(newIn), name) } object ActivationLayer { def apply(activation: Activation, nOut: Int = 0, nIn: Int = 0, name: String = ""): ActivationLayer = new ActivationLayer(activation, Some(List(nOut)), Some(List(nIn)), name) }
deeplearning4j/deeplearning4j
scalnet/src/main/scala/org/deeplearning4j/scalnet/layers/core/ActivationLayer.scala
Scala
apache-2.0
1,859
package djinni import djinni.ast._ import djinni.generatorTools._ import djinni.meta._ class JavaMarshal(spec: Spec) extends Marshal(spec) { val javaNullableAnnotation = spec.javaNullableAnnotation.map(pkg => '@' + pkg.split("\\\\.").last) val javaNonnullAnnotation = spec.javaNonnullAnnotation.map(pkg => '@' + pkg.split("\\\\.").last) override def typename(tm: MExpr): String = toJavaType(tm, None) def typename(name: String, ty: TypeDef): String = idJava.ty(name) override def fqTypename(tm: MExpr): String = toJavaType(tm, spec.javaPackage) def fqTypename(name: String, ty: TypeDef): String = withPackage(spec.javaPackage, idJava.ty(name)) override def paramType(tm: MExpr): String = toJavaValueType(tm, None) override def fqParamType(tm: MExpr): String = toJavaValueType(tm, spec.javaPackage) override def returnType(ret: Option[TypeRef]): String = ret.fold("void")(ty => toJavaValueType(ty.resolved, None)) override def fqReturnType(ret: Option[TypeRef]): String = ret.fold("void")(ty => toJavaValueType(ty.resolved, spec.javaPackage)) override def fieldType(tm: MExpr): String = toJavaValueType(tm, None) override def fqFieldType(tm: MExpr): String = toJavaValueType(tm, spec.javaPackage) override def toCpp(tm: MExpr, expr: String): String = throw new AssertionError("direct java to cpp conversion not possible") override def fromCpp(tm: MExpr, expr: String): String = throw new AssertionError("direct cpp to java conversion not possible") def references(m: Meta): Seq[SymbolReference] = m match { case o: MOpaque => o match { case MList => List(ImportRef("java.util.ArrayList")) case MSet => List(ImportRef("java.util.HashSet")) case MMap => List(ImportRef("java.util.HashMap")) case MDate => List(ImportRef("java.util.Date")) case _ => List() } case e if isEnumFlags(e) => List(ImportRef("java.util.EnumSet")) case _ => List() } val interfaceNullityAnnotation = if (spec.cppNnType.nonEmpty) javaNonnullAnnotation else javaNullableAnnotation def nullityAnnotation(ty: Option[TypeRef]): Option[String] = ty.map(nullityAnnotation).getOrElse(None) def nullityAnnotation(ty: TypeRef): Option[String] = { ty.resolved.base match { case MOptional => javaNullableAnnotation case p: MPrimitive => None case m: MDef => m.defType match { case DInterface => interfaceNullityAnnotation case DEnum => javaNonnullAnnotation case DRecord => javaNonnullAnnotation } case e: MExtern => e.defType match { case DInterface => interfaceNullityAnnotation case DRecord => if(e.java.reference) javaNonnullAnnotation else None case DEnum => javaNonnullAnnotation } case _ => javaNonnullAnnotation } } def isReference(td: TypeDecl) = td.body match { case i: Interface => true case r: Record => true case e: Enum => true } def isEnumFlags(m: Meta): Boolean = m match { case MDef(_, _, _, Enum(_, true)) => true case MExtern(_, _, _, Enum(_, true), _, _, _, _, _) => true case _ => false } def isEnumFlags(tm: MExpr): Boolean = tm.base match { case MOptional => isEnumFlags(tm.args.head) case _ => isEnumFlags(tm.base) } private def toJavaValueType(tm: MExpr, packageName: Option[String]): String = { val name = toJavaType(tm, packageName) if(isEnumFlags(tm)) s"EnumSet<$name>" else name } private def toJavaType(tm: MExpr, packageName: Option[String]): String = { def args(tm: MExpr) = if (tm.args.isEmpty) "" else tm.args.map(f(_, true)).mkString("<", ", ", ">") def f(tm: MExpr, needRef: Boolean): String = { tm.base match { case MOptional => // HACK: We use "null" for the empty optional in Java. assert(tm.args.size == 1) val arg = tm.args.head arg.base match { case p: MPrimitive => p.jBoxed case MOptional => throw new AssertionError("nested optional?") case m => f(arg, true) } case e: MExtern => (if(needRef) e.java.boxed else e.java.typename) + (if(e.java.generic) args(tm) else "") case o => val base = o match { case p: MPrimitive => if (needRef) p.jBoxed else p.jName case MString => "String" case MDate => "Date" case MBinary => "byte[]" case MOptional => throw new AssertionError("optional should have been special cased") case MList => "ArrayList" case MSet => "HashSet" case MMap => "HashMap" case d: MDef => withPackage(packageName, idJava.ty(d.name)) case e: MExtern => throw new AssertionError("unreachable") case p: MParam => idJava.typeParam(p.name) } base + args(tm) } } f(tm, false) } private def withPackage(packageName: Option[String], t: String) = packageName.fold(t)(_ + "." + t) }
happybits/djinni
src/source/JavaMarshal.scala
Scala
apache-2.0
4,978
/** * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package kafka.api import java.security.AccessController import java.util.Properties import javax.security.auth.callback._ import javax.security.auth.Subject import javax.security.auth.login.AppConfigurationEntry import scala.collection.Seq import kafka.server.KafkaConfig import kafka.utils.TestUtils import kafka.utils.JaasTestUtils._ import org.apache.kafka.common.config.SaslConfigs import org.apache.kafka.common.config.internals.BrokerSecurityConfigs import org.apache.kafka.common.network.Mode import org.apache.kafka.common.security.auth._ import org.apache.kafka.common.security.plain.PlainAuthenticateCallback import org.junit.jupiter.api.Assertions.assertTrue import org.junit.jupiter.api.Test object SaslPlainSslEndToEndAuthorizationTest { class TestPrincipalBuilder extends KafkaPrincipalBuilder { override def build(context: AuthenticationContext): KafkaPrincipal = { val saslContext = context.asInstanceOf[SaslAuthenticationContext] // Verify that peer principal can be obtained from the SSLSession provided in the context // since we have enabled TLS mutual authentication for the listener val sslPrincipal = saslContext.sslSession.get.getPeerPrincipal.getName assertTrue(sslPrincipal.endsWith(s"CN=${TestUtils.SslCertificateCn}"), s"Unexpected SSL principal $sslPrincipal") saslContext.server.getAuthorizationID match { case KafkaPlainAdmin => new KafkaPrincipal(KafkaPrincipal.USER_TYPE, "admin") case KafkaPlainUser => new KafkaPrincipal(KafkaPrincipal.USER_TYPE, "user") case _ => KafkaPrincipal.ANONYMOUS } } } object Credentials { val allUsers = Map(KafkaPlainUser -> "user1-password", KafkaPlainUser2 -> KafkaPlainPassword2, KafkaPlainAdmin -> "broker-password") } class TestServerCallbackHandler extends AuthenticateCallbackHandler { def configure(configs: java.util.Map[String, _], saslMechanism: String, jaasConfigEntries: java.util.List[AppConfigurationEntry]): Unit = {} def handle(callbacks: Array[Callback]): Unit = { var username: String = null for (callback <- callbacks) { if (callback.isInstanceOf[NameCallback]) username = callback.asInstanceOf[NameCallback].getDefaultName else if (callback.isInstanceOf[PlainAuthenticateCallback]) { val plainCallback = callback.asInstanceOf[PlainAuthenticateCallback] plainCallback.authenticated(Credentials.allUsers(username) == new String(plainCallback.password)) } else throw new UnsupportedCallbackException(callback) } } def close(): Unit = {} } class TestClientCallbackHandler extends AuthenticateCallbackHandler { def configure(configs: java.util.Map[String, _], saslMechanism: String, jaasConfigEntries: java.util.List[AppConfigurationEntry]): Unit = {} def handle(callbacks: Array[Callback]): Unit = { val subject = Subject.getSubject(AccessController.getContext()) val username = subject.getPublicCredentials(classOf[String]).iterator().next() for (callback <- callbacks) { if (callback.isInstanceOf[NameCallback]) callback.asInstanceOf[NameCallback].setName(username) else if (callback.isInstanceOf[PasswordCallback]) { if (username == KafkaPlainUser || username == KafkaPlainAdmin) callback.asInstanceOf[PasswordCallback].setPassword(Credentials.allUsers(username).toCharArray) } else throw new UnsupportedCallbackException(callback) } } def close(): Unit = {} } } // This test uses SASL callback handler overrides for server connections of Kafka broker // and client connections of Kafka producers and consumers. Client connections from Kafka brokers // used for inter-broker communication also use custom callback handlers. The second client used in // the multi-user test SaslEndToEndAuthorizationTest#testTwoConsumersWithDifferentSaslCredentials uses // static JAAS configuration with default callback handlers to test those code paths as well. class SaslPlainSslEndToEndAuthorizationTest extends SaslEndToEndAuthorizationTest { import SaslPlainSslEndToEndAuthorizationTest._ this.serverConfig.setProperty(s"${listenerName.configPrefix}${KafkaConfig.SslClientAuthProp}", "required") this.serverConfig.setProperty(BrokerSecurityConfigs.PRINCIPAL_BUILDER_CLASS_CONFIG, classOf[TestPrincipalBuilder].getName) this.serverConfig.put(KafkaConfig.SaslClientCallbackHandlerClassProp, classOf[TestClientCallbackHandler].getName) val mechanismPrefix = listenerName.saslMechanismConfigPrefix("PLAIN") this.serverConfig.put(s"$mechanismPrefix${KafkaConfig.SaslServerCallbackHandlerClassProp}", classOf[TestServerCallbackHandler].getName) this.producerConfig.put(SaslConfigs.SASL_CLIENT_CALLBACK_HANDLER_CLASS, classOf[TestClientCallbackHandler].getName) this.consumerConfig.put(SaslConfigs.SASL_CLIENT_CALLBACK_HANDLER_CLASS, classOf[TestClientCallbackHandler].getName) this.adminClientConfig.put(SaslConfigs.SASL_CLIENT_CALLBACK_HANDLER_CLASS, classOf[TestClientCallbackHandler].getName) private val plainLogin = s"org.apache.kafka.common.security.plain.PlainLoginModule username=$KafkaPlainUser required;" this.producerConfig.put(SaslConfigs.SASL_JAAS_CONFIG, plainLogin) this.consumerConfig.put(SaslConfigs.SASL_JAAS_CONFIG, plainLogin) this.adminClientConfig.put(SaslConfigs.SASL_JAAS_CONFIG, plainLogin) override protected def kafkaClientSaslMechanism = "PLAIN" override protected def kafkaServerSaslMechanisms = List("PLAIN") override val clientPrincipal = new KafkaPrincipal(KafkaPrincipal.USER_TYPE, "user") override val kafkaPrincipal = new KafkaPrincipal(KafkaPrincipal.USER_TYPE, "admin") override def jaasSections(kafkaServerSaslMechanisms: Seq[String], kafkaClientSaslMechanism: Option[String], mode: SaslSetupMode, kafkaServerEntryName: String): Seq[JaasSection] = { val brokerLogin = PlainLoginModule(KafkaPlainAdmin, "") // Password provided by callback handler val clientLogin = PlainLoginModule(KafkaPlainUser2, KafkaPlainPassword2) Seq(JaasSection(kafkaServerEntryName, Seq(brokerLogin)), JaasSection(KafkaClientContextName, Seq(clientLogin))) ++ zkSections } // Generate SSL certificates for clients since we are enabling TLS mutual authentication // in this test for the SASL_SSL listener. override def clientSecurityProps(certAlias: String): Properties = { TestUtils.securityConfigs(Mode.CLIENT, securityProtocol, trustStoreFile, certAlias, TestUtils.SslCertificateCn, clientSaslProperties, needsClientCert = Some(true)) } /** * Checks that secure paths created by broker and acl paths created by AclCommand * have expected ACLs. */ @Test def testAcls(): Unit = { TestUtils.verifySecureZkAcls(zkClient, 1) } }
Chasego/kafka
core/src/test/scala/integration/kafka/api/SaslPlainSslEndToEndAuthorizationTest.scala
Scala
apache-2.0
7,758
package org.apache.spark.ml.util import breeze.linalg._ import breeze.numerics._ import org.apache.spark.util.AccumulatorV2 import scala.collection.mutable.ArrayBuffer /** * @author sramirez */ class MatrixAccumulator(val rows: Int, val cols: Int, sparse: Boolean) extends AccumulatorV2[Matrix[Double], Matrix[Double]] { def this(m: Matrix[Double]) = { this(m.rows, m.cols, m.isInstanceOf[CSCMatrix[Double]]) this.accMatrix = m.copy } def this(rows: Int, cols: Int, cooMatrix: ArrayBuffer[(Int, Int, Double)]) = { this(rows, cols, true) val builder = new CSCMatrix.Builder[Double](rows = rows, cols = cols) cooMatrix.foreach{ t => builder.add(t._1, t._2, t._3) } this.accMatrix = builder.result } private var accMatrix: Matrix[Double] = if (sparse) CSCMatrix.zeros(rows, cols) else Matrix.zeros(rows, cols) private var zero: Boolean = true def reset(): Unit = { accMatrix = if (sparse) CSCMatrix.zeros(rows, cols) else Matrix.zeros(rows, cols) zero = true } def add(v: Matrix[Double]): Unit = { if(isZero) zero = false accMatrix = accMatrix match { case bsm: CSCMatrix[Double] => bsm += v.asInstanceOf[CSCMatrix[Double]] case dsm: DenseMatrix[Double] => dsm += v } } def isZero(): Boolean = zero def merge(other: AccumulatorV2[Matrix[Double], Matrix[Double]]): Unit = add(other.value) def value: Matrix[Double] = accMatrix def copy(): AccumulatorV2[Matrix[Double], Matrix[Double]] = new MatrixAccumulator(accMatrix) }
sramirez/spark-RELIEFFC-fselection
src/main/scala/org/apache/spark/ml/util/MatrixAccumulator.scala
Scala
apache-2.0
1,536
/* * * * Copyright 2015 Skymind,Inc. * * * * Licensed under the Apache License, Version 2.0 (the "License"); * * you may not use this file except in compliance with the License. * * You may obtain a copy of the License at * * * * http://www.apache.org/licenses/LICENSE-2.0 * * * * Unless required by applicable law or agreed to in writing, software * * distributed under the License is distributed on an "AS IS" BASIS, * * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * * See the License for the specific language governing permissions and * * limitations under the License. * * */ package org.nd4j.api.linalg import org.junit.runner.RunWith import org.nd4j.api.linalg.DSL._ import org.nd4j.linalg.factory.Nd4j import org.scalatest.junit.JUnitRunner import org.scalatest.{FlatSpec, Matchers} @RunWith(classOf[JUnitRunner]) class RichNDArraySpec extends FlatSpec with Matchers { "RichNDArray" should "use the apply method to access values" in { // -- 2D array val nd2 = Nd4j.create(Array[Double](1, 2, 3, 4), Array(4, 1)) nd2(0) should be(1) nd2(3, 0) should be(4) // -- 3D array val nd3 = Nd4j.create(Array[Double](1, 2, 3, 4, 5, 6, 7, 8), Array(2, 2, 2)) nd3(0, 0, 0) should be(1) nd3(1, 1, 1) should be(8) } it should "use transpose abbreviation" in { val nd1 = Nd4j.create(Array[Double](1, 2, 3), Array(3, 1)) nd1.shape should equal(Array(3, 1)) val nd1t = nd1.T nd1t.shape should equal(Array(1,3)) } it should "add correctly" in { val a = Nd4j.create(Array[Double](1, 2, 3, 4, 5, 6, 7, 8), Array(2, 2, 2)) val b = a + 100 a(0, 0, 0) should be(1) b(0, 0, 0) should be(101) a += 1 a(0, 0, 0) should be(2) } it should "subtract correctly" in { val a = Nd4j.create(Array[Double](1, 2, 3, 4, 5, 6, 7, 8), Array(2, 2, 2)) val b = a - 100 a(0, 0, 0) should be(1) b(0, 0, 0) should be(-99) a -= 1 a(0, 0, 0) should be(0) val c = Nd4j.create(Array[Double](1, 2)) val d = c - c d(0) should be(0) d(1) should be(0) } it should "divide correctly" in { val a = Nd4j.create(Array[Double](1, 2, 3, 4, 5, 6, 7, 8), Array(2, 2, 2)) val b = a / a a(1, 1, 1) should be(8) b(1, 1, 1) should be(1) a /= a a(1, 1, 1) should be(1) } it should "element-by-element multiply correctly" in { val a = Nd4j.create(Array[Double](1, 2, 3, 4), Array(4, 1)) val b = a * a a(3) should be(4) // [1.0, 2.0, 3.0, 4.0 b(3) should be(16) // [1.0 ,4.0 ,9.0 ,16.0] a *= 5 // [5.0 ,10.0 ,15.0 ,20.0] a(0) should be(5) } it should "use the update method to mutate values" in { val nd3 = Nd4j.create(Array[Double](1, 2, 3, 4, 5, 6, 7, 8), Array(2, 2, 2)) nd3(0) = 11 nd3(0) should be(11) val idx = Array(1, 1, 1) nd3(idx) = 100 nd3(idx) should be(100) } it should "use === for equality comparisons" in { val a = Nd4j.create(Array[Double](1, 2)) val b = Nd4j.create(Array[Double](1, 2)) val c = a === b c(0) should be(1) c(1) should be(1) val d = Nd4j.create(Array[Double](10, 20)) val e = a === d e(0) should be(0) e(1) should be(0) val f = a === 1 // === from our DSL f(0) should be(1) f(1) should be(0) } it should "use > for greater than comparisons" in { val a = Nd4j.create(Array[Double](1, 3)) val b = a > 1 b(0) should be(0) b(1) should be(1) val c = Nd4j.create(Array[Double](2, 2)) val d = c > a d(0) should be(1) d(1) should be(0) } it should "use < for less than comparisons" in { val a = Nd4j.create(Array[Double](1, 3)) val b = a < 2 b(0) should be(1) b(1) should be(0) val c = Nd4j.create(Array[Double](2, 2)) val d = c < a d(0) should be(0) d(1) should be(1) } it should "use - prefix for negation" in { val a = Nd4j.create(Array[Double](1, 3)) val b = -a b(0) should be(-1) b(1) should be(-3) } }
phvu/nd4j
nd4j-scala-api/src/test/scala/org/nd4j/api/linalg/RichNDArraySpec.scala
Scala
apache-2.0
4,047
/* Copyright 2013 Tomas Tauber Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ package com.twitter.scalding.mathematics import cascading.pipe.Pipe import cascading.tuple.Fields import com.twitter.scalding.TDsl._ import com.twitter.scalding._ import com.twitter.scalding.typed.{ValuePipe, EmptyValue, LiteralValue, ComputedValue} import com.twitter.algebird.{ Semigroup, Monoid, Ring, Group, Field } import scala.collection.mutable.Map import scala.collection.mutable.HashMap import cascading.flow.FlowDef import java.io.Serializable /** * This is the future Matrix API. The old one will be removed in scalding 0.10.0 (or 1.0.0). * * Create Matrix2 instances with methods in the Matrix2 object. * Note that this code optimizes the order in which it evaluates matrices, and replaces equivalent * terms to avoid recomputation. Also, this code puts the parenthesis in the optimal place in * terms of size according to the sizeHints. For instance: * (A*B)*C == A*(B*C) but if B is a 10 x 10^6 matrix, and C is 10^6 x 100, * it is better to do the B*C product first in order to avoid storing as much intermediate output. * * NOTE THIS REQUIREMENT: for each formula, you can only have one Ring[V] in scope. If you * evaluate part of the formula with one Ring, and another part with another, you must go through * a TypedPipe (call toTypedPipe) or the result may not be correct. */ sealed trait Matrix2[R, C, V] extends Serializable { implicit def rowOrd: Ordering[R] implicit def colOrd: Ordering[C] val sizeHint: SizeHint = NoClue def +(that: Matrix2[R, C, V])(implicit mon: Monoid[V]): Matrix2[R, C, V] = Sum(this, that, mon) def -(that: Matrix2[R, C, V])(implicit g: Group[V]): Matrix2[R, C, V] = Sum(this, that.negate, g) def unary_-(implicit g: Group[V]): Matrix2[R, C, V] = negate def negate(implicit g: Group[V]): Matrix2[R, C, V] /** Represents the pointwise, or Hadamard, product of two matrices. */ def #*#(that: Matrix2[R, C, V])(implicit ring: Ring[V]): Matrix2[R, C, V] = HadamardProduct(this, that, ring) // Matrix product def *[C2](that: Matrix2[C, C2, V])(implicit ring: Ring[V], mj: MatrixJoiner2): Matrix2[R, C2, V] = Product(this, that, ring) def *(that: Scalar2[V])(implicit ring: Ring[V], mode: Mode, flowDef: FlowDef, mj: MatrixJoiner2): Matrix2[R, C, V] = that * this def /(that: Scalar2[V])(implicit field: Field[V], mode: Mode, flowDef: FlowDef): Matrix2[R, C, V] = that divMatrix this /** Convert the current Matrix to a TypedPipe */ def toTypedPipe: TypedPipe[(R, C, V)] def transpose: Matrix2[C, R, V] /** * Users should never need this. This is the current Matrix2, but in most optimized * form. Usually, you will just do matrix operations until you eventually call write * or toTypedPipe */ def optimizedSelf: Matrix2[R, C, V] = Matrix2.optimize(this.asInstanceOf[Matrix2[Any, Any, V]])._2.asInstanceOf[Matrix2[R, C, V]] /** equivalent to multiplying this matrix by itself, power times */ def ^(power: Int)(implicit ev: =:=[R, C], ring: Ring[V], mj: MatrixJoiner2): Matrix2[R, R, V] = { // it can possibly be pre-computed in an optimal way as g^k = ((g*g)*(g*g)... // but it is handled in "optimize" in general, so that (g^k)*something works assert(power > 0, "exponent must be >= 1") val literal = this.asInstanceOf[Matrix2[R, R, V]] if (power == 1) { literal } else { literal * (literal ^ (power - 1)) } } // TODO: complete the rest of the API to match the old Matrix API (many methods are effectively on the TypedPipe) def sumColVectors(implicit ring: Ring[V], mj: MatrixJoiner2): Matrix2[R, Unit, V] = Product(this, OneC()(colOrd), ring) /** * the result is the same as considering everything on the this to be like a 1 value * so we just sum, using only a monoid on VecV, where this Matrix has the value true. * This is useful for graph propagation of monoids, such as sketchs like HyperLogLog, * BloomFilters or CountMinSketch. * TODO This is a special kind of product that could be optimized like Product is */ def propagate[C2, VecV](vec: Matrix2[C, C2, VecV])(implicit ev: =:=[V, Boolean], mon: Monoid[VecV], mj: MatrixJoiner2): Matrix2[R, C2, VecV] = { //This cast will always succeed: lazy val joinedBool = mj.join(this.asInstanceOf[Matrix2[R, C, Boolean]], vec) implicit val ord2: Ordering[C2] = vec.colOrd lazy val resultPipe = joinedBool.flatMap { case (key, ((row, bool), (col2, v))) => if (bool) Some((row, col2), v) else None // filter early } .group // TODO we could be lazy with this group and combine with a sum .sum .filter { kv => mon.isNonZero(kv._2) } .map { case ((r, c2), v) => (r, c2, v) } MatrixLiteral(resultPipe, this.sizeHint) } def propagateRow[C2](mat: Matrix2[C, C2, Boolean])(implicit ev: =:=[R, Unit], mon: Monoid[V], mj: MatrixJoiner2): Matrix2[Unit, C2, V] = mat.transpose.propagate(this.transpose.asInstanceOf[Matrix2[C, Unit, V]]).transpose // Binarize values, all x != 0 become 1 def binarizeAs[NewValT](implicit mon: Monoid[V], ring: Ring[NewValT]): Matrix2[R, C, NewValT] = { lazy val newPipe = toTypedPipe.map { case (r, c, x) => (r, c, if (mon.isNonZero(x)) { ring.one } else { ring.zero }) } .filter { kv => ring.isNonZero(kv._3) } MatrixLiteral(newPipe, this.sizeHint) } /** Row L2 normalization (can only be called for Double) * After this operation, the sum(|x|^2) along each row will be 1. */ def rowL2Normalize(implicit ev: =:=[V, Double], mj: MatrixJoiner2): Matrix2[R, C, Double] = { val matD = this.asInstanceOf[Matrix2[R, C, Double]] lazy val result = MatrixLiteral(matD.toTypedPipe.map { case (r, c, x) => (r, c, x * x) }, this.sizeHint) .sumColVectors .toTypedPipe .map { case (r, c, x) => (r, r, 1 / scala.math.sqrt(x)) } // diagonal + inverse MatrixLiteral(result, SizeHint.asDiagonal(this.sizeHint.setRowsToCols)) * matD } def getRow(index: R): Matrix2[Unit, C, V] = MatrixLiteral( toTypedPipe .filter { case (r, c, v) => Ordering[R].equiv(r, index) } .map { case (r, c, v) => ((), c, v) }, this.sizeHint.setRows(1L) ) def getColumn(index: C): Matrix2[R, Unit, V] = MatrixLiteral( toTypedPipe .filter { case (r, c, v) => Ordering[C].equiv(c, index) } .map { case (r, c, v) => (r, (), v) }, this.sizeHint.setCols(1L) ) /** Consider this Matrix as the r2 row of a matrix. The current matrix must be a row, * which is to say, its row type must be Unit. */ def asRow[R2](r2: R2)(implicit ev: R =:= Unit, rowOrd: Ordering[R2]): Matrix2[R2, C, V] = MatrixLiteral(toTypedPipe.map { case (r, c, v) => (r2, c, v) }, this.sizeHint) def asCol[C2](c2: C2)(implicit ev: C =:= Unit, colOrd: Ordering[C2]): Matrix2[R, C2, V] = MatrixLiteral(toTypedPipe.map { case (r, c, v) => (r, c2, v) }, this.sizeHint) // Compute the sum of the main diagonal. Only makes sense cases where the row and col type are // equal def trace(implicit mon: Monoid[V], ev: =:=[R,C]): Scalar2[V] = Scalar2(toTypedPipe.asInstanceOf[TypedPipe[(R, R, V)]] .filter{case (r1, r2, _) => Ordering[R].equiv(r1, r2)} .map{case (_,_,x) => x} .sum(mon) ) def write(sink: TypedSink[(R, C, V)])(implicit fd: FlowDef, m: Mode): Matrix2[R, C, V] = MatrixLiteral(toTypedPipe.write(sink), sizeHint) } /** This trait allows users to plug in join algoritms * where they are needed to improve products and propagations. * The default works well in most cases, but highly skewed matrices may need some * special handling */ trait MatrixJoiner2 extends java.io.Serializable { def join[R, C, V, C2, V2](left: Matrix2[R, C, V], right: Matrix2[C, C2, V2]): TypedPipe[(C, ((R, V), (C2, V2)))] } object MatrixJoiner2 { // The default if the user does not override, // comment this out to verify we are not hiding the user's suppled values implicit def default: MatrixJoiner2 = new DefaultMatrixJoiner(10000L) def join[R, C, V, C2, V2](left: Matrix2[R, C, V], right: Matrix2[C, C2, V2])(implicit mj: MatrixJoiner2): TypedPipe[(C, ((R, V), (C2, V2)))] = mj.join(left, right) } /** This uses standard join if the matrices are comparable size and large, * otherwise, if one is much smaller than the other, we use a hash join */ class DefaultMatrixJoiner(sizeRatioThreshold: Long) extends MatrixJoiner2 { def join[R, C, V, C2, V2](left: Matrix2[R, C, V], right: Matrix2[C, C2, V2]): TypedPipe[(C, ((R, V), (C2, V2)))] = { implicit val cOrd: Ordering[C] = left.colOrd val one = left.toTypedPipe.map { case (r, c, v) => (c, (r, v)) }.group val two = right.toTypedPipe.map { case (c, c2, v2) => (c, (c2, v2)) }.group val sizeOne = left.sizeHint.total.getOrElse(BigInt(1L)) val sizeTwo = right.sizeHint.total.getOrElse(BigInt(1L)) def swapInner[M,N](t: TypedPipe[(C, (M, N))]): TypedPipe[(C, (N, M))] = t.mapValues { t: (M,N) => t.swap } // TODO: // use block join on tall skinny times skinny tall (or skewed): the result really big, // but the direct approach can't get much parallelism. // https://github.com/twitter/scalding/issues/629 if (sizeOne / sizeTwo > sizeRatioThreshold) { one.hashJoin(two) } else if (sizeTwo / sizeOne > sizeRatioThreshold) { swapInner(two.hashJoin(one)) } else if (sizeOne > sizeTwo) { one.join(two).toTypedPipe } else { swapInner(two.join(one).toTypedPipe) } } } /** * Infinite column vector - only for intermediate computations */ case class OneC[R, V](implicit override val rowOrd: Ordering[R]) extends Matrix2[R, Unit, V] { override val sizeHint: SizeHint = FiniteHint(Long.MaxValue, 1) override def colOrd = Ordering[Unit] def transpose = OneR() override def negate(implicit g: Group[V]) = sys.error("Only used in intermediate computations, try (-1 * OneC)") def toTypedPipe = sys.error("Only used in intermediate computations") } /** * Infinite row vector - only for intermediate computations */ case class OneR[C, V](implicit override val colOrd: Ordering[C]) extends Matrix2[Unit, C, V] { override val sizeHint: SizeHint = FiniteHint(1, Long.MaxValue) override def rowOrd = Ordering[Unit] def transpose = OneC() override def negate(implicit g: Group[V]) = sys.error("Only used in intermediate computations, try (-1 * OneR)") def toTypedPipe = sys.error("Only used in intermediate computations") } /** * Class representing a matrix product * * @param left multiplicand * @param right multiplier * @param ring * @param expressions a HashMap of common subtrees; None if possibly not optimal (did not go through optimize), Some(...) with a HashMap that was created in optimize */ case class Product[R, C, C2, V](left: Matrix2[R, C, V], right: Matrix2[C, C2, V], ring: Ring[V], expressions: Option[Map[Matrix2[R, C2, V], TypedPipe[(R, C2, V)]]] = None)(implicit val joiner: MatrixJoiner2) extends Matrix2[R, C2, V] { /** * Structural, NOT mathematical equality (e.g. (A*B) * C != A * (B*C)) * Used for the Matrix2OptimizationTest (so that it doesn't care about expressions) */ override def equals(obj: Any): Boolean = obj match { case Product(tl, tr, _, _) => left.equals(tl) && right.equals(tr) case _ => false } override def hashCode(): Int = left.hashCode ^ right.hashCode private lazy val optimal: Boolean = expressions.isDefined private lazy val isSpecialCase: Boolean = right.isInstanceOf[OneC[_, _]] || left.isInstanceOf[OneR[_, _]] private lazy val specialCase: TypedPipe[(R, C2, V)] = { val leftMatrix = right.isInstanceOf[OneC[_, _]] val joined = (if (leftMatrix) { val ord: Ordering[R] = left.rowOrd left.toTypedPipe.groupBy(x => x._1)(ord) } else { val ord: Ordering[C] = right.rowOrd right.toTypedPipe.groupBy(x => x._1)(ord) }).mapValues { _._3 } .sum(ring) .filter { kv => ring.isNonZero(kv._2) } if (leftMatrix) { joined.map { case (r, v) => (r, (), v) }.asInstanceOf[TypedPipe[(R, C2, V)]] // we know C2 is Unit } else { joined.map { case (c, v) => ((), c, v) }.asInstanceOf[TypedPipe[(R, C2, V)]] // we know R is Unit } } // represents `\\sum_{i j} M_{i j}` where `M_{i j}` is the Matrix with exactly one element at `row=i, col = j`. lazy val toOuterSum: TypedPipe[(R, C2, V)] = { if (optimal) { if (isSpecialCase) { specialCase } else { implicit val ord: Ordering[C] = right.rowOrd joiner.join(left, right) .map { case (key, ((l1, lv), (r2, rv))) => (l1, r2, ring.times(lv, rv)) } } } else { // this branch might be tricky, since not clear to me that optimizedSelf will be a Product with a known C type // Maybe it is Product[R, _, C2, V] optimizedSelf.asInstanceOf[Product[R, _, C2, V]].toOuterSum } } private def computePipe(joined: TypedPipe[(R, C2, V)] = toOuterSum): TypedPipe[(R, C2, V)] = { if (isSpecialCase) { joined } else { val ord2: Ordering[(R, C2)] = Ordering.Tuple2(rowOrd, colOrd) joined.groupBy(w => (w._1, w._2))(ord2).mapValues { _._3 } .sum(ring) .filter { kv => ring.isNonZero(kv._2) } .map { case ((r, c), v) => (r, c, v) } } } override lazy val toTypedPipe: TypedPipe[(R, C2, V)] = { expressions match { case Some(m) => m.get(this) match { case Some(pipe) => pipe case None => { val result = computePipe() m.put(this, result) result } } case None => optimizedSelf.toTypedPipe } } override val sizeHint = left.sizeHint * right.sizeHint implicit override val rowOrd: Ordering[R] = left.rowOrd implicit override val colOrd: Ordering[C2] = right.colOrd override lazy val transpose: Product[C2, C, R, V] = Product(right.transpose, left.transpose, ring) override def negate(implicit g: Group[V]): Product[R, C, C2, V] = { if (left.sizeHint.total.getOrElse(BigInt(0L)) > right.sizeHint.total.getOrElse(BigInt(0L))) { Product(left, right.negate, ring, expressions) } else { Product(left.negate, right, ring, expressions) } } /** Trace(A B) = Trace(B A) so we optimize to choose the lowest cost item */ override def trace(implicit mon: Monoid[V], ev1: =:=[R,C2]): Scalar2[V] = { val (cost1, plan1) = Matrix2.optimize(this.asInstanceOf[Matrix2[Any, Any, V]]) val (cost2, plan2) = Matrix2.optimize( Product(right.asInstanceOf[Matrix2[C,R,V]], left.asInstanceOf[Matrix2[R,C,V]], ring, None) .asInstanceOf[Matrix2[Any, Any, V]] ) if (cost1 > cost2) { val product2 = plan2.asInstanceOf[Product[C, R, C, V]] val ord = left.colOrd val filtered = product2.toOuterSum.filter{case (c1, c2, _) => ord.equiv(c1, c2)} Scalar2(product2.computePipe(filtered).map{case (_, _, x) => x}.sum(mon)) } else { val product1 = plan1.asInstanceOf[Product[R, C, R, V]] val ord = left.rowOrd val filtered = product1.toOuterSum.filter{case (r1, r2, _) => ord.equiv(r1, r2)} Scalar2(product1.computePipe(filtered).map{case (_, _, x) => x}.sum(mon)) } } } case class Sum[R, C, V](left: Matrix2[R, C, V], right: Matrix2[R, C, V], mon: Monoid[V]) extends Matrix2[R, C, V] { def collectAddends(sum: Sum[R, C, V]): List[TypedPipe[(R, C, V)]] = { def getLiteral(mat: Matrix2[R, C, V]): TypedPipe[(R, C, V)] = { mat match { case x @ Product(_, _, _, _) => x.toOuterSum case x @ MatrixLiteral(_, _) => x.toTypedPipe case x @ HadamardProduct(_, _, _) => x.optimizedSelf.toTypedPipe case _ => sys.error("Invalid addend") } } sum match { case Sum(l @ Sum(_, _, _), r @ Sum(_, _, _), _) => { collectAddends(l) ++ collectAddends(r) } case Sum(l @ Sum(_, _, _), r, _) => { collectAddends(l) ++ List(getLiteral(r)) } case Sum(l, r @ Sum(_, _, _), _) => { getLiteral(l) :: collectAddends(r) } case Sum(l, r, _) => { List(getLiteral(l), getLiteral(r)) } } } override lazy val toTypedPipe: TypedPipe[(R, C, V)] = { if (left.equals(right)) { left.optimizedSelf.toTypedPipe.map(v => (v._1, v._2, mon.plus(v._3, v._3))) } else { val ord: Ordering[(R, C)] = Ordering.Tuple2(left.rowOrd, left.colOrd) collectAddends(this) .reduce((x, y) => x ++ y) .groupBy(x => (x._1, x._2))(ord).mapValues { _._3 } .sum(mon) .filter { kv => mon.isNonZero(kv._2) } .map { case ((r, c), v) => (r, c, v) } } } override val sizeHint = left.sizeHint + right.sizeHint implicit override val rowOrd: Ordering[R] = left.rowOrd implicit override val colOrd: Ordering[C] = left.colOrd override lazy val transpose: Sum[C, R, V] = Sum(left.transpose, right.transpose, mon) override def negate(implicit g: Group[V]): Sum[R, C, V] = Sum(left.negate, right.negate, mon) override def sumColVectors(implicit ring: Ring[V], mj: MatrixJoiner2): Matrix2[R, Unit, V] = Sum(left.sumColVectors, right.sumColVectors, mon) override def trace(implicit mon: Monoid[V], ev: =:=[R,C]): Scalar2[V] = Scalar2(collectAddends(this).map { pipe => pipe.asInstanceOf[TypedPipe[(R, R, V)]] .filter { case (r, c, v) => Ordering[R].equiv(r, c) } .map { _._3 } }.reduce(_ ++ _).sum) } case class HadamardProduct[R, C, V](left: Matrix2[R, C, V], right: Matrix2[R, C, V], ring: Ring[V]) extends Matrix2[R, C, V] { // TODO: optimize / combine with Sums: https://github.com/tomtau/scalding/issues/14#issuecomment-22971582 override lazy val toTypedPipe: TypedPipe[(R, C, V)] = { if (left.equals(right)) { left.optimizedSelf.toTypedPipe.map(v => (v._1, v._2, ring.times(v._3, v._3))) } else { val ord: Ordering[(R, C)] = Ordering.Tuple2(left.rowOrd, left.colOrd) // tracking values which were reduced (multiplied by non-zero) or non-reduced (multiplied by zero) with a boolean (left.optimizedSelf.toTypedPipe.map { case (r, c, v) => (r, c, (v, false)) } ++ right.optimizedSelf.toTypedPipe.map { case (r, c, v) => (r, c, (v, false)) }) .groupBy(x => (x._1, x._2))(ord) .mapValues { _._3 } .reduce((x, y) => (ring.times(x._1, y._1), true)) .filter { kv => kv._2._2 && ring.isNonZero(kv._2._1) } .map { case ((r, c), v) => (r, c, v._1) } } } override lazy val transpose: MatrixLiteral[C, R, V] = MatrixLiteral(toTypedPipe.map(x => (x._2, x._1, x._3)), sizeHint.transpose)(colOrd, rowOrd) override val sizeHint = left.sizeHint #*# right.sizeHint override def negate(implicit g: Group[V]): HadamardProduct[R, C, V] = if (left.sizeHint.total.getOrElse(BigInt(0L)) > right.sizeHint.total.getOrElse(BigInt(0L))) HadamardProduct(left, right.negate, ring) else HadamardProduct(left.negate, right, ring) implicit override val rowOrd: Ordering[R] = left.rowOrd implicit override val colOrd: Ordering[C] = left.colOrd } case class MatrixLiteral[R, C, V](override val toTypedPipe: TypedPipe[(R, C, V)], override val sizeHint: SizeHint)(implicit override val rowOrd: Ordering[R], override val colOrd: Ordering[C]) extends Matrix2[R, C, V] { override lazy val transpose: MatrixLiteral[C, R, V] = MatrixLiteral(toTypedPipe.map(x => (x._2, x._1, x._3)), sizeHint.transpose)(colOrd, rowOrd) override def negate(implicit g: Group[V]): MatrixLiteral[R, C, V] = MatrixLiteral(toTypedPipe.map(x => (x._1, x._2, g.negate(x._3))), sizeHint) } /** A representation of a scalar value that can be used with Matrices */ trait Scalar2[V] extends Serializable { def value: ValuePipe[V] def +(that: Scalar2[V])(implicit sg: Semigroup[V]): Scalar2[V] = { (value, that.value) match { case (EmptyValue(), _) => that case (LiteralValue(v1), _) => that.map(sg.plus(v1, _)) case (_, EmptyValue()) => this case (_, LiteralValue(v2)) => map(sg.plus(_, v2)) // TODO: optimize sums of scalars like sums of matrices: // only one M/R pass for the whole Sum. case (_, ComputedValue(v2)) => Scalar2((value ++ v2).sum(sg)) } } def -(that: Scalar2[V])(implicit g: Group[V]): Scalar2[V] = this + that.map(x => g.negate(x)) def *(that: Scalar2[V])(implicit ring: Ring[V]): Scalar2[V] = Scalar2(ValuePipe.fold(value, that.value)(ring.times _)) def /(that: Scalar2[V])(implicit f: Field[V]): Scalar2[V] = Scalar2(ValuePipe.fold(value, that.value)(f.div _)) def unary_-(implicit g: Group[V]): Scalar2[V] = map(x => g.negate(x)) def *[R, C](that: Matrix2[R, C, V])(implicit ring: Ring[V], mj: MatrixJoiner2): Matrix2[R, C, V] = that match { case p@Product(left, right, _, expressions) => if (left.sizeHint.total.getOrElse(BigInt(0L)) > right.sizeHint.total.getOrElse(BigInt(0L))) Product(left, (this * right), ring, expressions)(p.joiner) else Product(this * left, right, ring, expressions)(p.joiner) case HadamardProduct(left, right, _) => if (left.sizeHint.total.getOrElse(BigInt(0L)) > right.sizeHint.total.getOrElse(BigInt(0L))) HadamardProduct(left, (this * right), ring) else HadamardProduct(this * left, right, ring) case s @ Sum(left, right, mon) => Sum(this * left, this * right, mon) case m @ MatrixLiteral(_, _) => timesLiteral(m) // handle literals here case x @ OneC() => Product(OneC[Unit, V](), toMatrix, ring) .asInstanceOf[Matrix2[R, C, V]] case x @ OneR() => Product(toMatrix, OneR[Unit, V](), ring) .asInstanceOf[Matrix2[R, C, V]] } def divMatrix[R, C](that: Matrix2[R, C, V])(implicit f: Field[V]): MatrixLiteral[R, C, V] = MatrixLiteral( that.toTypedPipe .mapWithValue(value) { case ((r, c, v), optV) => (r, c, f.div(v, optV.getOrElse(f.zero))) }, that.sizeHint )(that.rowOrd, that.colOrd) def timesLiteral[R, C](that: Matrix2[R, C, V])(implicit ring: Ring[V]): MatrixLiteral[R, C, V] = MatrixLiteral( that.toTypedPipe .mapWithValue(value) { case ((r, c, v), optV) => (r, c, ring.times(optV.getOrElse(ring.zero), v)) }, that.sizeHint )(that.rowOrd, that.colOrd) def map[U](fn: V => U): Scalar2[U] = Scalar2(value.map(fn)) def toMatrix: Matrix2[Unit, Unit, V] = MatrixLiteral(value.toTypedPipe.map(v => ((), (), v)), FiniteHint(1, 1)) // TODO: FunctionMatrix[R,C,V](fn: (R,C) => V) and a Literal scalar is just: FuctionMatrix[Unit, Unit, V]({ (_, _) => v }) } case class ValuePipeScalar[V](override val value: ValuePipe[V]) extends Scalar2[V] object Scalar2 { // implicits cannot share names implicit def from[V](v: ValuePipe[V]): Scalar2[V] = ValuePipeScalar(v) def apply[V](v: ValuePipe[V]): Scalar2[V] = ValuePipeScalar(v) // implicits can't share names, but we want the implicit implicit def const[V](v: V)(implicit fd: FlowDef, m: Mode): Scalar2[V] = from(LiteralValue(v)) def apply[V](v: V)(implicit fd: FlowDef, m: Mode): Scalar2[V] = from(LiteralValue(v)) } object Matrix2 { def apply[R:Ordering, C: Ordering, V](t: TypedPipe[(R, C, V)], hint: SizeHint): Matrix2[R, C, V] = MatrixLiteral(t, hint) def read[R, C, V](t: TypedSource[(R, C, V)], hint: SizeHint)(implicit ordr: Ordering[R], ordc: Ordering[C], fd: FlowDef, m: Mode): Matrix2[R, C, V] = MatrixLiteral(TypedPipe.from(t), hint) def J[R, C, V](implicit ordR: Ordering[R], ordC: Ordering[C], ring: Ring[V], mj: MatrixJoiner2) = Product(OneC[R, V]()(ordR), OneR[C, V]()(ordC), ring) /** * The original prototype that employs the standard O(n^3) dynamic programming * procedure to optimize a matrix chain factorization. * * Now, it also "prefers" more spread out / bushy / less deep factorization * which reflects more the Map/Reduce nature. */ def optimizeProductChain[V](p: IndexedSeq[Matrix2[Any, Any, V]], product: Option[(Ring[V], MatrixJoiner2)]): (BigInt, Matrix2[Any, Any, V]) = { val subchainCosts = HashMap.empty[(Int, Int), BigInt] val splitMarkers = HashMap.empty[(Int, Int), Int] def computeCosts(p: IndexedSeq[Matrix2[Any, Any, V]], i: Int, j: Int): BigInt = { if (subchainCosts.contains((i, j))) subchainCosts((i, j)) if (i == j) subchainCosts.put((i, j), 0) else { subchainCosts.put((i, j), Long.MaxValue) for (k <- i to (j - 1)) { // the original did not multiply by (k - i) and (j - k - 1) respectively (this achieves spread out trees) val cost = (k - i) * computeCosts(p, i, k) + (j - k - 1) * computeCosts(p, k + 1, j) + (p(i).sizeHint * (p(k).sizeHint * p(j).sizeHint)).total.getOrElse(BigInt(0L)) if (cost < subchainCosts((i, j))) { subchainCosts.put((i, j), cost) splitMarkers.put((i, j), k) } } } subchainCosts((i, j)) } val sharedMap = HashMap.empty[Matrix2[Any, Any, V], TypedPipe[(Any, Any, V)]] def generatePlan(i: Int, j: Int): Matrix2[Any, Any, V] = { if (i == j) p(i) else { val k = splitMarkers((i, j)) val left = generatePlan(i, k) val right = generatePlan(k + 1, j) val (ring, joiner) = product.get Product(left, right, ring, Some(sharedMap))(joiner) } } val best = computeCosts(p, 0, p.length - 1) (best, generatePlan(0, p.length - 1)) } /** * This function walks the input tree, finds basic blocks to optimize, * i.e. matrix product chains that are not interrupted by summations. * One example: * A*B*C*(D+E)*(F*G) => "basic blocks" are ABC, D, E, and FG * * + it now does "global" optimization - i.e. over optimize over basic blocks. * In the above example, we'd treat (D+E) as a temporary matrix T and optimize the whole chain ABCTFG * * Not sure if making use of distributivity to generate more variants would be good. * In the above example, we could also generate ABCDFG + ABCEFG and have basic blocks: ABCDFG, and ABCEFG. * But this would be almost twice as much work with the current cost estimation. */ def optimize[V](mf: Matrix2[Any, Any, V]): (BigInt, Matrix2[Any, Any, V]) = { def pair[X,Y](x: Option[X], y: Option[Y]): Option[(X,Y)] = for { xi <- x; yi <- y } yield (xi, yi) /** * Recursive function - returns a flatten product chain and optimizes product chains under sums */ def optimizeBasicBlocks(mf: Matrix2[Any, Any, V]): (List[Matrix2[Any, Any, V]], BigInt, Option[Ring[V]], Option[MatrixJoiner2]) = { mf match { // basic block of one matrix case element @ MatrixLiteral(_, _) => (List(element), 0, None, None) // two potential basic blocks connected by a sum case Sum(left, right, mon) => { val (lastLChain, lastCost1, ringL, joinerL) = optimizeBasicBlocks(left) val (lastRChain, lastCost2, ringR, joinerR) = optimizeBasicBlocks(right) val (cost1, newLeft) = optimizeProductChain(lastLChain.toIndexedSeq, pair(ringL, joinerL)) val (cost2, newRight) = optimizeProductChain(lastRChain.toIndexedSeq, pair(ringR, joinerR)) (List(Sum(newLeft, newRight, mon)), lastCost1 + lastCost2 + cost1 + cost2, ringL.orElse(ringR), joinerL.orElse(joinerR)) } case HadamardProduct(left, right, ring) => { val (lastLChain, lastCost1, ringL, joinerL) = optimizeBasicBlocks(left) val (lastRChain, lastCost2, ringR, joinerR) = optimizeBasicBlocks(right) val (cost1, newLeft) = optimizeProductChain(lastLChain.toIndexedSeq, pair(ringL, joinerL)) val (cost2, newRight) = optimizeProductChain(lastRChain.toIndexedSeq, pair(ringR, joinerR)) (List(HadamardProduct(newLeft, newRight, ring)), lastCost1 + lastCost2 + cost1 + cost2, ringL.orElse(ringR), joinerL.orElse(joinerR)) } // chain (...something...)*(...something...) case p@Product(left, right, ring, _) => { val (lastLChain, lastCost1, ringL, joinerL) = optimizeBasicBlocks(left) val (lastRChain, lastCost2, ringR, joinerR) = optimizeBasicBlocks(right) (lastLChain ++ lastRChain, lastCost1 + lastCost2, Some(ring), Some(p.joiner)) } // OneC, OneR and potentially other intermediate matrices case el => (List(el), 0, None, None) } } val (lastChain, lastCost, ring, joiner) = optimizeBasicBlocks(mf) val (potentialCost, finalResult) = optimizeProductChain(lastChain.toIndexedSeq, pair(ring, joiner)) (lastCost + potentialCost, finalResult) } }
vidyar/twitterscalding
scalding-core/src/main/scala/com/twitter/scalding/mathematics/Matrix2.scala
Scala
apache-2.0
29,370
package org.apache.spark.streaming.flumedemo import com.wallace.common.LogSupport import org.apache.spark.SparkContext import org.apache.spark.storage.StorageLevel import org.apache.spark.streaming.dstream.ReceiverInputDStream import org.apache.spark.streaming.flume.{FlumeUtils, SparkFlumeEvent} import org.apache.spark.streaming.{Seconds, StreamingContext} import scala.util.control.NonFatal /** * Created by Wallace on 2017/3/30. */ object SparkStreamingFlumeDemo extends LogSupport { private val DEFAULT_BATCH_DURATION: Int = 20 private val DEFAULT_PART_NUM: Int = 30 def main(args: Array[String]): Unit = { if (args.length < 2) { log.warn("please enter host and port") System.exit(1) } //val sc = new SparkContext("spark://centos.host1:7077", "Spark Streaming Flume Integration") val sc = new SparkContext("local[*]", "Spark Streaming Flume Integration") //创建StreamingContext,20秒一个批次 val ssc = new StreamingContext(sc, Seconds(DEFAULT_BATCH_DURATION)) val hostname = args(0) val port = args(1).toInt val storageLevel = StorageLevel.MEMORY_ONLY val flumeStream: ReceiverInputDStream[SparkFlumeEvent] = FlumeUtils.createStream(ssc, hostname, port, storageLevel) val flumePollingStream: ReceiverInputDStream[SparkFlumeEvent] = FlumeUtils.createPollingStream(ssc, hostname, port, storageLevel) flumeStream.count().map(cnt => "Received " + cnt + " flume events.").print() flumePollingStream.count().map(cnt => "Received " + cnt + " flume events.").print() flumeStream.foreachRDD { rdd => rdd.coalesce(DEFAULT_PART_NUM).saveAsTextFile("/") } //开始运行 ssc.start() //计算完毕退出 try { ssc.awaitTermination() } catch { case NonFatal(e) => log.error(s"[SparkStreamingFlume] Catch NonFatal Exception: ${e.getMessage}.") ssc.stop(stopSparkContext = true, stopGracefully = true) } finally { sc.stop() } } }
BiyuHuang/CodePrototypesDemo
demo/SparkDemo/src/main/scala/org/apache/spark/streaming/flumedemo/SparkStreamingFlumeDemo.scala
Scala
apache-2.0
2,056
/* * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.flink.table.runtime.batch.table import org.apache.flink.api.scala._ import org.apache.flink.api.scala.util.CollectionDataSets import org.apache.flink.table.api._ import org.apache.flink.table.api.bridge.scala._ import org.apache.flink.table.api.internal.TableEnvironmentInternal import org.apache.flink.table.runtime.utils.TableProgramsTestBase.TableConfigMode import org.apache.flink.table.runtime.utils.{TableProgramsCollectionTestBase, TableProgramsTestBase} import org.apache.flink.table.utils.MemoryTableSourceSinkUtil import org.apache.flink.test.util.TestBaseUtils import org.apache.flink.types.Row import org.junit.Assert.assertEquals import org.junit._ import org.junit.runner.RunWith import org.junit.runners.Parameterized import java.util import scala.collection.JavaConverters._ @RunWith(classOf[Parameterized]) class TableEnvironmentITCase( configMode: TableConfigMode) extends TableProgramsCollectionTestBase(configMode) { @Test def testSimpleRegister(): Unit = { val tableName = "MyTable" val env = ExecutionEnvironment.getExecutionEnvironment val tEnv = BatchTableEnvironment.create(env, config) val ds = CollectionDataSets.get3TupleDataSet(env) tEnv.createTemporaryView(tableName, ds) val t = tEnv.scan(tableName).select('_1, '_2, '_3) val expected = "1,1,Hi\\n" + "2,2,Hello\\n" + "3,2,Hello world\\n" + "4,3,Hello world, how are you?\\n" + "5,3,I am fine.\\n" + "6,3,Luke Skywalker\\n" + "7,4,Comment#1\\n" + "8,4,Comment#2\\n" + "9,4,Comment#3\\n" + "10,4,Comment#4\\n" + "11,5,Comment#5\\n" + "12,5,Comment#6\\n" + "13,5,Comment#7\\n" + "14,5,Comment#8\\n" + "15,5,Comment#9\\n" + "16,6,Comment#10\\n" + "17,6,Comment#11\\n" + "18,6,Comment#12\\n" + "19,6,Comment#13\\n" + "20,6,Comment#14\\n" + "21,6,Comment#15\\n" val results = t.toDataSet[Row].collect() TestBaseUtils.compareResultAsText(results.asJava, expected) } @Test def testRegisterWithFieldsByPosition(): Unit = { val tableName = "MyTable" val env = ExecutionEnvironment.getExecutionEnvironment val tEnv = BatchTableEnvironment.create(env, config) val ds = CollectionDataSets.get3TupleDataSet(env) tEnv.createTemporaryView(tableName, ds, 'a, 'b, 'c) // new alias val t = tEnv.scan(tableName).select('a, 'b) val expected = "1,1\\n" + "2,2\\n" + "3,2\\n" + "4,3\\n" + "5,3\\n" + "6,3\\n" + "7,4\\n" + "8,4\\n" + "9,4\\n" + "10,4\\n" + "11,5\\n" + "12,5\\n" + "13,5\\n" + "14,5\\n" + "15,5\\n" + "16,6\\n" + "17,6\\n" + "18,6\\n" + "19,6\\n" + "20,6\\n" + "21,6\\n" val results = t.toDataSet[Row].collect() TestBaseUtils.compareResultAsText(results.asJava, expected) } @Test def testRegisterWithFieldsByName(): Unit = { val tableName = "MyTable" val env = ExecutionEnvironment.getExecutionEnvironment val tEnv = BatchTableEnvironment.create(env, config) val ds = CollectionDataSets.get3TupleDataSet(env) tEnv.createTemporaryView(tableName, ds, '_3, '_1, '_2) // new order val t = tEnv.scan(tableName).select('_1, '_2) val expected = "1,1\\n" + "2,2\\n" + "3,2\\n" + "4,3\\n" + "5,3\\n" + "6,3\\n" + "7,4\\n" + "8,4\\n" + "9,4\\n" + "10,4\\n" + "11,5\\n" + "12,5\\n" + "13,5\\n" + "14,5\\n" + "15,5\\n" + "16,6\\n" + "17,6\\n" + "18,6\\n" + "19,6\\n" + "20,6\\n" + "21,6\\n" val results = t.toDataSet[Row].collect() TestBaseUtils.compareResultAsText(results.asJava, expected) } @Test def testTableRegister(): Unit = { val tableName = "MyTable" val env = ExecutionEnvironment.getExecutionEnvironment val tEnv = BatchTableEnvironment.create(env, config) val t = CollectionDataSets.get3TupleDataSet(env).toTable(tEnv, 'a, 'b, 'c) tEnv.registerTable(tableName, t) val regT = tEnv.scan(tableName).select('a, 'b).filter('a > 8) val expected = "9,4\\n" + "10,4\\n" + "11,5\\n" + "12,5\\n" + "13,5\\n" + "14,5\\n" + "15,5\\n" + "16,6\\n" + "17,6\\n" + "18,6\\n" + "19,6\\n" + "20,6\\n" + "21,6\\n" val results = regT.toDataSet[Row].collect() TestBaseUtils.compareResultAsText(results.asJava, expected) } @Test def testToTable(): Unit = { val env = ExecutionEnvironment.getExecutionEnvironment val tEnv = BatchTableEnvironment.create(env, config) val t = CollectionDataSets.get3TupleDataSet(env) .toTable(tEnv, 'a, 'b, 'c) .select('a, 'b, 'c) val expected = "1,1,Hi\\n" + "2,2,Hello\\n" + "3,2,Hello world\\n" + "4,3,Hello world, how are you?\\n" + "5,3,I am fine.\\n" + "6,3,Luke Skywalker\\n" + "7,4,Comment#1\\n" + "8,4,Comment#2\\n" + "9,4,Comment#3\\n" + "10,4,Comment#4\\n" + "11,5,Comment#5\\n" + "12,5,Comment#6\\n" + "13,5,Comment#7\\n" + "14,5,Comment#8\\n" + "15,5,Comment#9\\n" + "16,6,Comment#10\\n" + "17,6,Comment#11\\n" + "18,6,Comment#12\\n" + "19,6,Comment#13\\n" + "20,6,Comment#14\\n" + "21,6,Comment#15\\n" val results = t.toDataSet[Row].collect() TestBaseUtils.compareResultAsText(results.asJava, expected) } @Test def testToTableFromCaseClass(): Unit = { val env = ExecutionEnvironment.getExecutionEnvironment val tEnv = BatchTableEnvironment.create(env, config) val data = List( SomeCaseClass("Peter", 28, 4000.00, "Sales"), SomeCaseClass("Anna", 56, 10000.00, "Engineering"), SomeCaseClass("Lucy", 42, 6000.00, "HR")) val t = env.fromCollection(data) .toTable(tEnv, 'a, 'b, 'c, 'd) .select('a, 'b, 'c, 'd) val expected: String = "Peter,28,4000.0,Sales\\n" + "Anna,56,10000.0,Engineering\\n" + "Lucy,42,6000.0,HR\\n" val results = t.toDataSet[Row].collect() TestBaseUtils.compareResultAsText(results.asJava, expected) } @Test def testToTableFromAndToCaseClass(): Unit = { val env = ExecutionEnvironment.getExecutionEnvironment val tEnv = BatchTableEnvironment.create(env, config) val data = List( SomeCaseClass("Peter", 28, 4000.00, "Sales"), SomeCaseClass("Anna", 56, 10000.00, "Engineering"), SomeCaseClass("Lucy", 42, 6000.00, "HR")) val t = env.fromCollection(data) .toTable(tEnv, 'a, 'b, 'c, 'd) .select('a, 'b, 'c, 'd) val expected: String = "SomeCaseClass(Peter,28,4000.0,Sales)\\n" + "SomeCaseClass(Anna,56,10000.0,Engineering)\\n" + "SomeCaseClass(Lucy,42,6000.0,HR)\\n" val results = t.toDataSet[SomeCaseClass].collect() TestBaseUtils.compareResultAsText(results.asJava, expected) } @Test def testInsertIntoMemoryTable(): Unit = { val env = ExecutionEnvironment.getExecutionEnvironment val tEnv = BatchTableEnvironment.create(env) MemoryTableSourceSinkUtil.clear() val t = CollectionDataSets.getSmall3TupleDataSet(env).toTable(tEnv).as("a", "b", "c") tEnv.registerTable("sourceTable", t) val fieldNames = Array("d", "e", "f") val fieldTypes = tEnv.scan("sourceTable").getSchema.getFieldTypes val sink = new MemoryTableSourceSinkUtil.UnsafeMemoryAppendTableSink tEnv.asInstanceOf[TableEnvironmentInternal].registerTableSinkInternal( "targetTable", sink.configure(fieldNames, fieldTypes)) tEnv.scan("sourceTable") .select('a, 'b, 'c) .insertInto("targetTable") tEnv.execute("job name") val expected = List("1,1,Hi", "2,2,Hello", "3,2,Hello world") assertEquals(expected.sorted, MemoryTableSourceSinkUtil.tableDataStrings.sorted) } } object TableEnvironmentITCase { @Parameterized.Parameters(name = "Table config = {0}") def parameters(): util.Collection[Array[java.lang.Object]] = { Seq[Array[AnyRef]]( Array(TableProgramsTestBase.DEFAULT) ).asJava } } case class SomeCaseClass(name: String, age: Int, salary: Double, department: String) { def this() { this("", 0, 0.0, "") } }
tzulitai/flink
flink-table/flink-table-planner/src/test/scala/org/apache/flink/table/runtime/batch/table/TableEnvironmentITCase.scala
Scala
apache-2.0
8,526
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.spark.sql.sources.v2 import java.io.File import java.util import java.util.OptionalLong import scala.collection.JavaConverters._ import test.org.apache.spark.sql.sources.v2._ import org.apache.spark.SparkException import org.apache.spark.sql.{DataFrame, QueryTest, Row} import org.apache.spark.sql.catalyst.InternalRow import org.apache.spark.sql.execution.datasources.v2.{BatchScanExec, DataSourceV2Relation} import org.apache.spark.sql.execution.exchange.{Exchange, ShuffleExchangeExec} import org.apache.spark.sql.execution.vectorized.OnHeapColumnVector import org.apache.spark.sql.functions._ import org.apache.spark.sql.sources.{Filter, GreaterThan} import org.apache.spark.sql.sources.v2.TableCapability._ import org.apache.spark.sql.sources.v2.reader._ import org.apache.spark.sql.sources.v2.reader.partitioning.{ClusteredDistribution, Distribution, Partitioning} import org.apache.spark.sql.test.SharedSQLContext import org.apache.spark.sql.types.{IntegerType, StructType} import org.apache.spark.sql.util.CaseInsensitiveStringMap import org.apache.spark.sql.vectorized.ColumnarBatch class DataSourceV2Suite extends QueryTest with SharedSQLContext { import testImplicits._ private def getBatch(query: DataFrame): AdvancedBatch = { query.queryExecution.executedPlan.collect { case d: BatchScanExec => d.batch.asInstanceOf[AdvancedBatch] }.head } private def getJavaBatch(query: DataFrame): JavaAdvancedDataSourceV2.AdvancedBatch = { query.queryExecution.executedPlan.collect { case d: BatchScanExec => d.batch.asInstanceOf[JavaAdvancedDataSourceV2.AdvancedBatch] }.head } test("simplest implementation") { Seq(classOf[SimpleDataSourceV2], classOf[JavaSimpleDataSourceV2]).foreach { cls => withClue(cls.getName) { val df = spark.read.format(cls.getName).load() checkAnswer(df, (0 until 10).map(i => Row(i, -i))) checkAnswer(df.select('j), (0 until 10).map(i => Row(-i))) checkAnswer(df.filter('i > 5), (6 until 10).map(i => Row(i, -i))) } } } test("advanced implementation") { Seq(classOf[AdvancedDataSourceV2], classOf[JavaAdvancedDataSourceV2]).foreach { cls => withClue(cls.getName) { val df = spark.read.format(cls.getName).load() checkAnswer(df, (0 until 10).map(i => Row(i, -i))) val q1 = df.select('j) checkAnswer(q1, (0 until 10).map(i => Row(-i))) if (cls == classOf[AdvancedDataSourceV2]) { val batch = getBatch(q1) assert(batch.filters.isEmpty) assert(batch.requiredSchema.fieldNames === Seq("j")) } else { val batch = getJavaBatch(q1) assert(batch.filters.isEmpty) assert(batch.requiredSchema.fieldNames === Seq("j")) } val q2 = df.filter('i > 3) checkAnswer(q2, (4 until 10).map(i => Row(i, -i))) if (cls == classOf[AdvancedDataSourceV2]) { val batch = getBatch(q2) assert(batch.filters.flatMap(_.references).toSet == Set("i")) assert(batch.requiredSchema.fieldNames === Seq("i", "j")) } else { val batch = getJavaBatch(q2) assert(batch.filters.flatMap(_.references).toSet == Set("i")) assert(batch.requiredSchema.fieldNames === Seq("i", "j")) } val q3 = df.select('i).filter('i > 6) checkAnswer(q3, (7 until 10).map(i => Row(i))) if (cls == classOf[AdvancedDataSourceV2]) { val batch = getBatch(q3) assert(batch.filters.flatMap(_.references).toSet == Set("i")) assert(batch.requiredSchema.fieldNames === Seq("i")) } else { val batch = getJavaBatch(q3) assert(batch.filters.flatMap(_.references).toSet == Set("i")) assert(batch.requiredSchema.fieldNames === Seq("i")) } val q4 = df.select('j).filter('j < -10) checkAnswer(q4, Nil) if (cls == classOf[AdvancedDataSourceV2]) { val batch = getBatch(q4) // 'j < 10 is not supported by the testing data source. assert(batch.filters.isEmpty) assert(batch.requiredSchema.fieldNames === Seq("j")) } else { val batch = getJavaBatch(q4) // 'j < 10 is not supported by the testing data source. assert(batch.filters.isEmpty) assert(batch.requiredSchema.fieldNames === Seq("j")) } } } } test("columnar batch scan implementation") { Seq(classOf[ColumnarDataSourceV2], classOf[JavaColumnarDataSourceV2]).foreach { cls => withClue(cls.getName) { val df = spark.read.format(cls.getName).load() checkAnswer(df, (0 until 90).map(i => Row(i, -i))) checkAnswer(df.select('j), (0 until 90).map(i => Row(-i))) checkAnswer(df.filter('i > 50), (51 until 90).map(i => Row(i, -i))) } } } test("schema required data source") { Seq(classOf[SchemaRequiredDataSource], classOf[JavaSchemaRequiredDataSource]).foreach { cls => withClue(cls.getName) { val e = intercept[IllegalArgumentException](spark.read.format(cls.getName).load()) assert(e.getMessage.contains("requires a user-supplied schema")) val schema = new StructType().add("i", "int").add("s", "string") val df = spark.read.format(cls.getName).schema(schema).load() assert(df.schema == schema) assert(df.collect().isEmpty) } } } test("partitioning reporting") { import org.apache.spark.sql.functions.{count, sum} Seq(classOf[PartitionAwareDataSource], classOf[JavaPartitionAwareDataSource]).foreach { cls => withClue(cls.getName) { val df = spark.read.format(cls.getName).load() checkAnswer(df, Seq(Row(1, 4), Row(1, 4), Row(3, 6), Row(2, 6), Row(4, 2), Row(4, 2))) val groupByColA = df.groupBy('i).agg(sum('j)) checkAnswer(groupByColA, Seq(Row(1, 8), Row(2, 6), Row(3, 6), Row(4, 4))) assert(groupByColA.queryExecution.executedPlan.collectFirst { case e: ShuffleExchangeExec => e }.isEmpty) val groupByColAB = df.groupBy('i, 'j).agg(count("*")) checkAnswer(groupByColAB, Seq(Row(1, 4, 2), Row(2, 6, 1), Row(3, 6, 1), Row(4, 2, 2))) assert(groupByColAB.queryExecution.executedPlan.collectFirst { case e: ShuffleExchangeExec => e }.isEmpty) val groupByColB = df.groupBy('j).agg(sum('i)) checkAnswer(groupByColB, Seq(Row(2, 8), Row(4, 2), Row(6, 5))) assert(groupByColB.queryExecution.executedPlan.collectFirst { case e: ShuffleExchangeExec => e }.isDefined) val groupByAPlusB = df.groupBy('i + 'j).agg(count("*")) checkAnswer(groupByAPlusB, Seq(Row(5, 2), Row(6, 2), Row(8, 1), Row(9, 1))) assert(groupByAPlusB.queryExecution.executedPlan.collectFirst { case e: ShuffleExchangeExec => e }.isDefined) } } } test ("statistics report data source") { Seq(classOf[ReportStatisticsDataSource], classOf[JavaReportStatisticsDataSource]).foreach { cls => withClue(cls.getName) { val df = spark.read.format(cls.getName).load() val logical = df.queryExecution.optimizedPlan.collect { case d: DataSourceV2Relation => d }.head val statics = logical.computeStats() assert(statics.rowCount.isDefined && statics.rowCount.get === 10, "Row count statics should be reported by data source") assert(statics.sizeInBytes === 80, "Size in bytes statics should be reported by data source") } } } test("SPARK-23574: no shuffle exchange with single partition") { val df = spark.read.format(classOf[SimpleSinglePartitionSource].getName).load().agg(count("*")) assert(df.queryExecution.executedPlan.collect { case e: Exchange => e }.isEmpty) } test("simple writable data source") { // TODO: java implementation. Seq(classOf[SimpleWritableDataSource]).foreach { cls => withTempPath { file => val path = file.getCanonicalPath assert(spark.read.format(cls.getName).option("path", path).load().collect().isEmpty) spark.range(10).select('id as 'i, -'id as 'j).write.format(cls.getName) .option("path", path).save() checkAnswer( spark.read.format(cls.getName).option("path", path).load(), spark.range(10).select('id, -'id)) // test with different save modes spark.range(10).select('id as 'i, -'id as 'j).write.format(cls.getName) .option("path", path).mode("append").save() checkAnswer( spark.read.format(cls.getName).option("path", path).load(), spark.range(10).union(spark.range(10)).select('id, -'id)) spark.range(5).select('id as 'i, -'id as 'j).write.format(cls.getName) .option("path", path).mode("overwrite").save() checkAnswer( spark.read.format(cls.getName).option("path", path).load(), spark.range(5).select('id, -'id)) spark.range(5).select('id as 'i, -'id as 'j).write.format(cls.getName) .option("path", path).mode("ignore").save() checkAnswer( spark.read.format(cls.getName).option("path", path).load(), spark.range(5).select('id, -'id)) val e = intercept[Exception] { spark.range(5).select('id as 'i, -'id as 'j).write.format(cls.getName) .option("path", path).mode("error").save() } assert(e.getMessage.contains("data already exists")) // test transaction val failingUdf = org.apache.spark.sql.functions.udf { var count = 0 (id: Long) => { if (count > 5) { throw new RuntimeException("testing error") } count += 1 id } } // this input data will fail to read middle way. val input = spark.range(10).select(failingUdf('id).as('i)).select('i, -'i as 'j) val e2 = intercept[SparkException] { input.write.format(cls.getName).option("path", path).mode("overwrite").save() } assert(e2.getMessage.contains("Writing job aborted")) // make sure we don't have partial data. assert(spark.read.format(cls.getName).option("path", path).load().collect().isEmpty) } } } test("simple counter in writer with onDataWriterCommit") { Seq(classOf[SimpleWritableDataSource]).foreach { cls => withTempPath { file => val path = file.getCanonicalPath assert(spark.read.format(cls.getName).option("path", path).load().collect().isEmpty) val numPartition = 6 spark.range(0, 10, 1, numPartition).select('id as 'i, -'id as 'j).write.format(cls.getName) .option("path", path).save() checkAnswer( spark.read.format(cls.getName).option("path", path).load(), spark.range(10).select('id, -'id)) assert(SimpleCounter.getCounter == numPartition, "method onDataWriterCommit should be called as many as the number of partitions") } } } test("SPARK-23293: data source v2 self join") { val df = spark.read.format(classOf[SimpleDataSourceV2].getName).load() val df2 = df.select(($"i" + 1).as("k"), $"j") checkAnswer(df.join(df2, "j"), (0 until 10).map(i => Row(-i, i, i + 1))) } test("SPARK-23301: column pruning with arbitrary expressions") { val df = spark.read.format(classOf[AdvancedDataSourceV2].getName).load() val q1 = df.select('i + 1) checkAnswer(q1, (1 until 11).map(i => Row(i))) val batch1 = getBatch(q1) assert(batch1.requiredSchema.fieldNames === Seq("i")) val q2 = df.select(lit(1)) checkAnswer(q2, (0 until 10).map(i => Row(1))) val batch2 = getBatch(q2) assert(batch2.requiredSchema.isEmpty) // 'j === 1 can't be pushed down, but we should still be able do column pruning val q3 = df.filter('j === -1).select('j * 2) checkAnswer(q3, Row(-2)) val batch3 = getBatch(q3) assert(batch3.filters.isEmpty) assert(batch3.requiredSchema.fieldNames === Seq("j")) // column pruning should work with other operators. val q4 = df.sort('i).limit(1).select('i + 1) checkAnswer(q4, Row(1)) val batch4 = getBatch(q4) assert(batch4.requiredSchema.fieldNames === Seq("i")) } test("SPARK-23315: get output from canonicalized data source v2 related plans") { def checkCanonicalizedOutput( df: DataFrame, logicalNumOutput: Int, physicalNumOutput: Int): Unit = { val logical = df.queryExecution.optimizedPlan.collect { case d: DataSourceV2Relation => d }.head assert(logical.canonicalized.output.length == logicalNumOutput) val physical = df.queryExecution.executedPlan.collect { case d: BatchScanExec => d }.head assert(physical.canonicalized.output.length == physicalNumOutput) } val df = spark.read.format(classOf[AdvancedDataSourceV2].getName).load() checkCanonicalizedOutput(df, 2, 2) checkCanonicalizedOutput(df.select('i), 2, 1) } test("SPARK-25425: extra options should override sessions options during reading") { val prefix = "spark.datasource.userDefinedDataSource." val optionName = "optionA" withSQLConf(prefix + optionName -> "true") { val df = spark .read .option(optionName, false) .format(classOf[DataSourceV2WithSessionConfig].getName).load() val options = df.queryExecution.optimizedPlan.collectFirst { case d: DataSourceV2Relation => d.options }.get assert(options.get(optionName) === "false") } } test("SPARK-25425: extra options should override sessions options during writing") { withTempPath { path => val sessionPath = path.getCanonicalPath withSQLConf("spark.datasource.simpleWritableDataSource.path" -> sessionPath) { withTempPath { file => val optionPath = file.getCanonicalPath val format = classOf[SimpleWritableDataSource].getName val df = Seq((1L, 2L)).toDF("i", "j") df.write.format(format).option("path", optionPath).save() assert(!new File(sessionPath).exists) checkAnswer(spark.read.format(format).option("path", optionPath).load(), df) } } } } test("SPARK-25700: do not read schema when writing in other modes except append and overwrite") { withTempPath { file => val cls = classOf[SimpleWriteOnlyDataSource] val path = file.getCanonicalPath val df = spark.range(5).select('id as 'i, -'id as 'j) // non-append mode should not throw exception, as they don't access schema. df.write.format(cls.getName).option("path", path).mode("error").save() df.write.format(cls.getName).option("path", path).mode("ignore").save() // append and overwrite modes will access the schema and should throw exception. intercept[SchemaReadAttemptException] { df.write.format(cls.getName).option("path", path).mode("append").save() } intercept[SchemaReadAttemptException] { df.write.format(cls.getName).option("path", path).mode("overwrite").save() } } } } case class RangeInputPartition(start: Int, end: Int) extends InputPartition object SimpleReaderFactory extends PartitionReaderFactory { override def createReader(partition: InputPartition): PartitionReader[InternalRow] = { val RangeInputPartition(start, end) = partition new PartitionReader[InternalRow] { private var current = start - 1 override def next(): Boolean = { current += 1 current < end } override def get(): InternalRow = InternalRow(current, -current) override def close(): Unit = {} } } } abstract class SimpleBatchTable extends Table with SupportsRead { override def schema(): StructType = new StructType().add("i", "int").add("j", "int") override def name(): String = this.getClass.toString override def capabilities(): util.Set[TableCapability] = Set(BATCH_READ).asJava } abstract class SimpleScanBuilder extends ScanBuilder with Batch with Scan { override def build(): Scan = this override def toBatch: Batch = this override def readSchema(): StructType = new StructType().add("i", "int").add("j", "int") override def createReaderFactory(): PartitionReaderFactory = SimpleReaderFactory } class SimpleSinglePartitionSource extends TableProvider { class MyScanBuilder extends SimpleScanBuilder { override def planInputPartitions(): Array[InputPartition] = { Array(RangeInputPartition(0, 5)) } } override def getTable(options: CaseInsensitiveStringMap): Table = new SimpleBatchTable { override def newScanBuilder(options: CaseInsensitiveStringMap): ScanBuilder = { new MyScanBuilder() } } } // This class is used by pyspark tests. If this class is modified/moved, make sure pyspark // tests still pass. class SimpleDataSourceV2 extends TableProvider { class MyScanBuilder extends SimpleScanBuilder { override def planInputPartitions(): Array[InputPartition] = { Array(RangeInputPartition(0, 5), RangeInputPartition(5, 10)) } } override def getTable(options: CaseInsensitiveStringMap): Table = new SimpleBatchTable { override def newScanBuilder(options: CaseInsensitiveStringMap): ScanBuilder = { new MyScanBuilder() } } } class AdvancedDataSourceV2 extends TableProvider { override def getTable(options: CaseInsensitiveStringMap): Table = new SimpleBatchTable { override def newScanBuilder(options: CaseInsensitiveStringMap): ScanBuilder = { new AdvancedScanBuilder() } } } class AdvancedScanBuilder extends ScanBuilder with Scan with SupportsPushDownFilters with SupportsPushDownRequiredColumns { var requiredSchema = new StructType().add("i", "int").add("j", "int") var filters = Array.empty[Filter] override def pruneColumns(requiredSchema: StructType): Unit = { this.requiredSchema = requiredSchema } override def readSchema(): StructType = requiredSchema override def pushFilters(filters: Array[Filter]): Array[Filter] = { val (supported, unsupported) = filters.partition { case GreaterThan("i", _: Int) => true case _ => false } this.filters = supported unsupported } override def pushedFilters(): Array[Filter] = filters override def build(): Scan = this override def toBatch: Batch = new AdvancedBatch(filters, requiredSchema) } class AdvancedBatch(val filters: Array[Filter], val requiredSchema: StructType) extends Batch { override def planInputPartitions(): Array[InputPartition] = { val lowerBound = filters.collectFirst { case GreaterThan("i", v: Int) => v } val res = scala.collection.mutable.ArrayBuffer.empty[InputPartition] if (lowerBound.isEmpty) { res.append(RangeInputPartition(0, 5)) res.append(RangeInputPartition(5, 10)) } else if (lowerBound.get < 4) { res.append(RangeInputPartition(lowerBound.get + 1, 5)) res.append(RangeInputPartition(5, 10)) } else if (lowerBound.get < 9) { res.append(RangeInputPartition(lowerBound.get + 1, 10)) } res.toArray } override def createReaderFactory(): PartitionReaderFactory = { new AdvancedReaderFactory(requiredSchema) } } class AdvancedReaderFactory(requiredSchema: StructType) extends PartitionReaderFactory { override def createReader(partition: InputPartition): PartitionReader[InternalRow] = { val RangeInputPartition(start, end) = partition new PartitionReader[InternalRow] { private var current = start - 1 override def next(): Boolean = { current += 1 current < end } override def get(): InternalRow = { val values = requiredSchema.map(_.name).map { case "i" => current case "j" => -current } InternalRow.fromSeq(values) } override def close(): Unit = {} } } } class SchemaRequiredDataSource extends TableProvider { class MyScanBuilder(schema: StructType) extends SimpleScanBuilder { override def planInputPartitions(): Array[InputPartition] = Array.empty override def readSchema(): StructType = schema } override def getTable(options: CaseInsensitiveStringMap): Table = { throw new IllegalArgumentException("requires a user-supplied schema") } override def getTable(options: CaseInsensitiveStringMap, schema: StructType): Table = { val userGivenSchema = schema new SimpleBatchTable { override def schema(): StructType = userGivenSchema override def newScanBuilder(options: CaseInsensitiveStringMap): ScanBuilder = { new MyScanBuilder(userGivenSchema) } } } } class ColumnarDataSourceV2 extends TableProvider { class MyScanBuilder extends SimpleScanBuilder { override def planInputPartitions(): Array[InputPartition] = { Array(RangeInputPartition(0, 50), RangeInputPartition(50, 90)) } override def createReaderFactory(): PartitionReaderFactory = { ColumnarReaderFactory } } override def getTable(options: CaseInsensitiveStringMap): Table = new SimpleBatchTable { override def newScanBuilder(options: CaseInsensitiveStringMap): ScanBuilder = { new MyScanBuilder() } } } object ColumnarReaderFactory extends PartitionReaderFactory { private final val BATCH_SIZE = 20 override def supportColumnarReads(partition: InputPartition): Boolean = true override def createReader(partition: InputPartition): PartitionReader[InternalRow] = { throw new UnsupportedOperationException } override def createColumnarReader(partition: InputPartition): PartitionReader[ColumnarBatch] = { val RangeInputPartition(start, end) = partition new PartitionReader[ColumnarBatch] { private lazy val i = new OnHeapColumnVector(BATCH_SIZE, IntegerType) private lazy val j = new OnHeapColumnVector(BATCH_SIZE, IntegerType) private lazy val batch = new ColumnarBatch(Array(i, j)) private var current = start override def next(): Boolean = { i.reset() j.reset() var count = 0 while (current < end && count < BATCH_SIZE) { i.putInt(count, current) j.putInt(count, -current) current += 1 count += 1 } if (count == 0) { false } else { batch.setNumRows(count) true } } override def get(): ColumnarBatch = batch override def close(): Unit = batch.close() } } } class PartitionAwareDataSource extends TableProvider { class MyScanBuilder extends SimpleScanBuilder with SupportsReportPartitioning{ override def planInputPartitions(): Array[InputPartition] = { // Note that we don't have same value of column `a` across partitions. Array( SpecificInputPartition(Array(1, 1, 3), Array(4, 4, 6)), SpecificInputPartition(Array(2, 4, 4), Array(6, 2, 2))) } override def createReaderFactory(): PartitionReaderFactory = { SpecificReaderFactory } override def outputPartitioning(): Partitioning = new MyPartitioning } override def getTable(options: CaseInsensitiveStringMap): Table = new SimpleBatchTable { override def newScanBuilder(options: CaseInsensitiveStringMap): ScanBuilder = { new MyScanBuilder() } } class MyPartitioning extends Partitioning { override def numPartitions(): Int = 2 override def satisfy(distribution: Distribution): Boolean = distribution match { case c: ClusteredDistribution => c.clusteredColumns.contains("i") case _ => false } } } case class SpecificInputPartition(i: Array[Int], j: Array[Int]) extends InputPartition object SpecificReaderFactory extends PartitionReaderFactory { override def createReader(partition: InputPartition): PartitionReader[InternalRow] = { val p = partition.asInstanceOf[SpecificInputPartition] new PartitionReader[InternalRow] { private var current = -1 override def next(): Boolean = { current += 1 current < p.i.length } override def get(): InternalRow = InternalRow(p.i(current), p.j(current)) override def close(): Unit = {} } } } class SchemaReadAttemptException(m: String) extends RuntimeException(m) class SimpleWriteOnlyDataSource extends SimpleWritableDataSource { override def getTable(options: CaseInsensitiveStringMap): Table = { new MyTable(options) { override def schema(): StructType = { throw new SchemaReadAttemptException("schema should not be read.") } } } } class ReportStatisticsDataSource extends TableProvider { class MyScanBuilder extends SimpleScanBuilder with SupportsReportStatistics { override def estimateStatistics(): Statistics = { new Statistics { override def sizeInBytes(): OptionalLong = OptionalLong.of(80) override def numRows(): OptionalLong = OptionalLong.of(10) } } override def planInputPartitions(): Array[InputPartition] = { Array(RangeInputPartition(0, 5), RangeInputPartition(5, 10)) } } override def getTable(options: CaseInsensitiveStringMap): Table = { new SimpleBatchTable { override def newScanBuilder(options: CaseInsensitiveStringMap): ScanBuilder = { new MyScanBuilder } } } }
Aegeaner/spark
sql/core/src/test/scala/org/apache/spark/sql/sources/v2/DataSourceV2Suite.scala
Scala
apache-2.0
26,296
package scala.slick.driver import java.util.UUID import java.sql.{PreparedStatement, ResultSet} import scala.slick.lifted._ import scala.slick.ast.{SequenceNode, Library, FieldSymbol, Node} import scala.slick.util.MacroSupport.macroSupportInterpolation import scala.slick.compiler.CompilerState import scala.slick.jdbc.meta.MTable import scala.slick.jdbc.{Invoker, JdbcType} /** Slick driver for PostgreSQL. * * This driver implements all capabilities of [[scala.slick.driver.JdbcProfile]]. * * Notes: * * <ul> * <li>[[scala.slick.profile.RelationalProfile.capabilities.typeBlob]]: * The default implementation of the <code>Blob</code> type uses the * database type <code>lo</code> and the stored procedure * <code>lo_manage</code>, both of which are provided by the "lo" * extension in PostgreSQL.</li> * </ul> */ trait MyPostgresDriver extends JdbcDriver { driver => override def getTables: Invoker[MTable] = MTable.getTables(None, None, None, Some(Seq("TABLE"))) override val columnTypes = new JdbcTypes override def createQueryBuilder(n: Node, state: CompilerState): QueryBuilder = new QueryBuilder(n, state) override def createTableDDLBuilder(table: Table[_]): TableDDLBuilder = new TableDDLBuilder(table) override def createColumnDDLBuilder(column: FieldSymbol, table: Table[_]): ColumnDDLBuilder = new ColumnDDLBuilder(column) override def defaultSqlTypeName(tmd: JdbcType[_]): String = tmd.sqlType match { case java.sql.Types.BLOB => "lo" case java.sql.Types.DOUBLE => "DOUBLE PRECISION" /* PostgreSQL does not have a TINYINT type, so we use SMALLINT instead. */ case java.sql.Types.TINYINT => "SMALLINT" case _ => super.defaultSqlTypeName(tmd) } class QueryBuilder(tree: Node, state: CompilerState) extends super.QueryBuilder(tree, state) { override protected val concatOperator = Some("||") override protected val supportsEmptyJoinConditions = false override protected def buildFetchOffsetClause(fetch: Option[Long], offset: Option[Long]) = (fetch, offset) match { case (Some(t), Some(d)) => b" limit $t offset $d" case (Some(t), None ) => b" limit $t" case (None, Some(d)) => b" offset $d" case _ => } override def expr(n: Node, skipParens: Boolean = false) = n match { case Library.NextValue(SequenceNode(name)) => b"nextval('$name')" case Library.CurrentValue(SequenceNode(name)) => b"currval('$name')" case _ => super.expr(n, skipParens) } } class TableDDLBuilder(table: Table[_]) extends super.TableDDLBuilder(table) { override def createPhase1 = super.createPhase1 ++ columns.flatMap { case cb: ColumnDDLBuilder => cb.createLobTrigger(table.tableName) } override def dropPhase1 = { val dropLobs = columns.flatMap { case cb: ColumnDDLBuilder => cb.dropLobTrigger(table.tableName) } if(dropLobs.isEmpty) super.dropPhase1 else Seq("delete from "+quoteIdentifier(table.tableName)) ++ dropLobs ++ super.dropPhase1 } } class ColumnDDLBuilder(column: FieldSymbol) extends super.ColumnDDLBuilder(column) { override def appendColumn(sb: StringBuilder) { sb append quoteIdentifier(column.name) append ' ' if(autoIncrement && !customSqlType) sb append "SERIAL" else sb append sqlType autoIncrement = false appendOptions(sb) } def lobTrigger(tname: String) = quoteIdentifier(tname+"__"+quoteIdentifier(column.name)+"_lob") def createLobTrigger(tname: String): Option[String] = if(sqlType == "lo") Some( "create trigger "+lobTrigger(tname)+" before update or delete on "+ quoteIdentifier(tname)+" for each row execute procedure lo_manage("+quoteIdentifier(column.name)+")" ) else None def dropLobTrigger(tname: String): Option[String] = if(sqlType == "lo") Some( "drop trigger "+lobTrigger(tname)+" on "+quoteIdentifier(tname) ) else None } class JdbcTypes extends super.JdbcTypes { override val byteArrayJdbcType = new ByteArrayJdbcType override val uuidJdbcType = new UUIDJdbcType class ByteArrayJdbcType extends super.ByteArrayJdbcType { override val sqlType = java.sql.Types.BINARY override val sqlTypeName = "BYTEA" } class UUIDJdbcType extends super.UUIDJdbcType { override def sqlTypeName = "UUID" override def setValue(v: UUID, p: PreparedStatement, idx: Int) = p.setObject(idx, v, sqlType) override def getValue(r: ResultSet, idx: Int) = r.getObject(idx).asInstanceOf[UUID] override def updateValue(v: UUID, r: ResultSet, idx: Int) = r.updateObject(idx, v) override def valueToSQLLiteral(value: UUID) = "'" + value + "'" override def hasLiteralForm = true } } } object MyPostgresDriver extends MyPostgresDriver
leithaus/strategies
slicktrix/src/main/scala/com/synereo/MyPostgresDriver.scala
Scala
cc0-1.0
4,827
import scala.tools.partest.JavapTest object Test extends JavapTest { def code = """ |case class Betty(i: Int) { def next = Betty(i+1) } |:javap Betty """.stripMargin override def yah(res: Seq[String]) = { def filtered = res filter (_ contains "public class Betty") 1 == filtered.size } }
yusuke2255/dotty
tests/pending/run/repl-javap.scala
Scala
bsd-3-clause
314
package org.denigma.nlp.pages import akka.http.scaladsl.model._ import akka.http.scaladsl.server.{Directives, Route} import scalacss.Defaults._ class Head extends Directives { lazy val webjarsPrefix = "lib" lazy val resourcePrefix = "resources" def mystyles = path("styles" / "mystyles.css"){ complete { HttpResponse( entity = HttpEntity(MediaTypes.`text/css`.withCharset(HttpCharsets.`UTF-8`), MyStyles.render )) } } def loadResources = pathPrefix(resourcePrefix ~ Slash) { getFromResourceDirectory("") } def webjars =pathPrefix(webjarsPrefix ~ Slash) { getFromResourceDirectory(webjarsPrefix) } def routes: Route = mystyles ~ webjars ~ loadResources }
antonkulaga/bio-nlp
app/jvm/src/main/scala/org/denigma/nlp/pages/Head.scala
Scala
mpl-2.0
706
package chandu0101.scalajs.react.components package semanticui import chandu0101.macros.tojs.JSMacro import japgolly.scalajs.react._ import japgolly.scalajs.react.vdom.VdomNode import scala.scalajs.js import scala.scalajs.js.`|` /** * This file is generated - submit issues instead of PR against it */ case class SuiListContent( ref: js.UndefOr[String] = js.undefined, description: js.UndefOr[VdomNode] = js.undefined, floated: js.UndefOr[SemanticFLOATS] = js.undefined, content: js.UndefOr[VdomNode] = js.undefined, header: js.UndefOr[VdomNode] = js.undefined, key: js.UndefOr[String] = js.undefined, className: js.UndefOr[String] = js.undefined, verticalAlign: js.UndefOr[SemanticVERTICALALIGNMENTS] = js.undefined, as: js.UndefOr[String | js.Function] = js.undefined ) { def apply(children: VdomNode*) = { val props = JSMacro[SuiListContent](this) val component = JsComponent[js.Object, Children.Varargs, Null](Sui.ListContent) component(props)(children: _*) } }
rleibman/scalajs-react-components
core/src/main/scala/chandu0101/scalajs/react/components/semanticui/SuiListContent.scala
Scala
apache-2.0
1,028
package filodb.akkabootstrapper import akka.actor.{ActorSystem, AddressFromURIString} import akka.cluster.Cluster import akka.testkit.{ImplicitSender, TestKit} import com.typesafe.config.{Config, ConfigFactory} import org.scalatest._ import org.scalatest.matchers.should.Matchers import org.scalatest.wordspec.AnyWordSpecLike class SeedNodeHeadDiscoverySpec extends BaseSeedNodeDiscoverySpec(AbstractTestKit.head) { "ExplicitListClusterSeedDiscovery" must { "discover if selfNode is head of list" in { seeds.headOption shouldEqual Some(selfAddress) val discovery = new ExplicitListClusterSeedDiscovery(cluster, settings) // remove self node unless it is in the head of the sorted list. discovery.discoverClusterSeeds.contains(cluster.selfAddress) shouldBe true discovery.discoverClusterSeeds.size shouldEqual settings.seedsExplicitlyListed.size } } } class SeedNodeLastDiscoverySpec extends BaseSeedNodeDiscoverySpec(AbstractTestKit.last) { "ExplicitListClusterSeedDiscovery" must { "discover if selfNode is last of list" in { seeds.last shouldEqual selfAddress val discovery = new ExplicitListClusterSeedDiscovery(cluster, settings) // remove self node unless it is in the head of the sorted list. discovery.discoverClusterSeeds.contains(cluster.selfAddress) shouldBe false discovery.discoverClusterSeeds.size shouldEqual settings.seedsExplicitlyListed.size - 1 } } } abstract class BaseSeedNodeDiscoverySpec(config: Config) extends AbstractTestKit(config) with AnyWordSpecLike { protected val cluster = Cluster(system) protected val selfAddress = cluster.selfAddress protected val settings = new AkkaBootstrapperSettings(system.settings.config) protected val seeds = settings.seedsExplicitlyListed.map(AddressFromURIString(_)) "ExplicitListClusterSeedDiscovery" must { "include the self node in seeds if first not malformed and first is self" in { seeds.contains(selfAddress) shouldBe true } } } object AbstractTestKit { val name = "seed-test" val host = "127.0.0.1" val port = 2552 val rootConfig: Config = ConfigFactory.parseString( s""" |akka-bootstrapper { | seed-discovery.timeout = 1 minute | seed-discovery.class = "filodb.akkabootstrapper.ExplicitListClusterSeedDiscovery" | http-seeds.base-url = "http://$host:8080/" |} |akka.remote.netty.tcp.port = $port |akka.remote.netty.tcp.hostname = $host |akka.jvm-exit-on-fatal-error = off |akka.loggers = ["akka.testkit.TestEventListener"] |akka.actor.provider = "cluster" """ .stripMargin) .withFallback(ConfigFactory.load("application_test.conf")) def head: Config = ConfigFactory.parseString( s""" |akka-bootstrapper{ | explicit-list.seeds = [ | "akka.tcp://$name@$host:$port", | "akka.tcp://$name@$host:2553", | "akka.tcp://$name@$host:2554" | ] |} """.stripMargin).withFallback(rootConfig) def last: Config = ConfigFactory.parseString( s""" |akka-bootstrapper{ | explicit-list.seeds = [ | "akka.tcp://$name@$host:2553", | "akka.tcp://$name@$host:2554", | "akka.tcp://$name@$host:$port" ] |} """.stripMargin).withFallback(rootConfig) } abstract class AbstractTestKit(config: Config) extends TestKit(ActorSystem(AbstractTestKit.name, config)) with Suite with Matchers with BeforeAndAfterAll with BeforeAndAfter with ImplicitSender { override def afterAll(): Unit = { super.afterAll() TestKit.shutdownActorSystem(system) } }
filodb/FiloDB
akka-bootstrapper/src/test/scala/filodb/akkabootstrapper/SeedNodeDiscoverySpec.scala
Scala
apache-2.0
3,724
package com.github.mdr.mash.ns.view import com.github.mdr.mash.functions.{ BoundParams, MashFunction, Parameter, ParameterModel } import com.github.mdr.mash.runtime.MashObject object PrintFunction extends MashFunction("view.print") { object Params { val Data = Parameter( nameOpt = Some("data"), summaryOpt = Some("Data to print")) } import Params._ val params = ParameterModel(Data) def call(boundParams: BoundParams): MashObject = { val data = boundParams(Data) ViewClass.build(data, print = true) } override def typeInferenceStrategy = ViewClass override def summaryOpt = Some("Print the data") }
mdr/mash
src/main/scala/com/github/mdr/mash/ns/view/PrintFunction.scala
Scala
mit
648
/* * Copyright (c) 2016 Snowplow Analytics Ltd. All rights reserved. * * This program is licensed to you under the Apache License Version 2.0, * and you may not use this file except in compliance with the * Apache License Version 2.0. * You may obtain a copy of the Apache License Version 2.0 at * http://www.apache.org/licenses/LICENSE-2.0. * * Unless required by applicable law or agreed to in writing, * software distributed under the Apache License Version 2.0 is distributed on * an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either * express or implied. See the Apache License Version 2.0 for the specific * language governing permissions and limitations there under. */ import sbt._ import Keys._ object Json4sBuildSettings { import BuildSettings._ // Settings specific for Iglu Core Json4s implementation lazy val json4sBuildSettings = commonSettings ++ Seq[Setting[_]]( description := "Iglu Core type classes instances for Json4s" ) ++ mavenCentralExtras ++ publishSettings }
snowplow/iglu
0-common/scala-core/project/Json4sBuildSettings.scala
Scala
apache-2.0
1,032
/* * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, * software distributed under the License is distributed on an * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY * KIND, either express or implied. See the License for the * specific language governing permissions and limitations * under the License. * * Author(s) : * - David Courtinot * - Xiaowen Ji */ /** * This package contains all the classes needed to model the Clang AST (well, only a small * part of it but it is sufficient to play with purely imperative C++). */ package object ast { /** * Enables to split the 'data' field of the ConcreteASTNode(s) * */ implicit class DataProcessor(data: String) { val dataList = DataProcessor.splitReg.findAllIn(data).map(_.replaceAll("'", "")).toSeq } /** * Separates a data string into several fragments * */ implicit object DataProcessor { private val splitReg = "<[^>]+>+|\\\\(.+\\\\)|(\\"[^\\"]+\\")|('[^']+'|[^\\\\s']+)+".r } /** * Enables negative indexes for look-up on a Seq * */ implicit class SeqFetcher[T](seq: Seq[T]) { def get(idx: Int) = if (idx >= 0) seq(idx) else seq(seq.length + idx) } }
jxw1102/Projet-merou
ModelChecker/src/ast/package.scala
Scala
apache-2.0
1,712
/* * OpenVC, an open source VHDL compiler/simulator * Copyright (C) 2010 Christian Reisinger * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ package at.jku.ssw.openvc.util /** * Represents a position in a source file * * @author <a href="mailto:chr_reisinger@yahoo.de">Christian Reisinger</a> * @see [[at.jku.ssw.openvc.parser.VHDLParser.toPosition]] */ sealed abstract class Position extends Ordered[Position] { /** * Is this position not NoPosition? * If isDefined is true, line, column, start and end are defined. */ val isDefined = true /**Is this position a range position? */ val isRange = false /** * returns a new position with a character offset * @param characterOffset the offset * @return the new position */ def addCharacterOffset(characterOffset: Int): Position = sys.error("Position.addCharacterOffset") /** * returns a new position with a line offset * @param lineOffset the offset * @return the new position */ def addLineOffset(lineOffset: Int): Position = sys.error("Position.addLineOffset") /**the line in the source file */ def line: Int /**column the character position in the line */ def column: Int /**The start of the position, either of the token or range */ def start: Int /**The end of the position, either of the token or range */ def end: Int /**Result of comparing <code>this</code> with operand <code>that</code>. * returns <code>x</code> where * <code>x &lt; 0</code> iff <code>this &lt; that</code> * <code>x == 0</code> iff <code>this == that</code> * <code>x &gt; 0</code> iff <code>this &gt; that</code> */ override def compare(that: Position): Int = if (this == NoPosition) -1 else if (that == NoPosition) 1 else if (this.start < that.start) -1 else if (this.start == that.start) this.end - that.end else 1 } /** * Represents a point in a source file * * @author <a href="mailto:chr_reisinger@yahoo.de">Christian Reisinger</a> * @see [[at.jku.ssw.openvc.util.SourceFile]] * @param line the line in the source file * @param column the character position in the line * @param start the index of the first character of the token in the content array of a source file * @param end the index of the last character of the token in the content array of a source file */ final case class OffsetPosition(line: Int, column: Int, start: Int, end: Int) extends Position { override def addLineOffset(lineOffset: Int) = new OffsetPosition(this.line + lineOffset, this.column, -1, -1) override def addCharacterOffset(characterOffset: Int) = new OffsetPosition(this.line, this.column + characterOffset, -1, -1) } /** * Represents a range in a source file, it is used for syntax errors * * @author <a href="mailto:chr_reisinger@yahoo.de">Christian Reisinger</a> * @see [[at.jku.ssw.openvc.util.SourceFile]] * @param point the point where the range starts * @param start the index of the first character of the range in the content array of a source file * @param end the index of the last character of the range in the content array of a source file */ final case class RangePosition(point: OffsetPosition, start: Int, end: Int) extends Position { override val isRange = true val line = point.line val column = point.column } /** * NoPosition is a dummy position that always throws for `line`, `column`, `start` and `end` an exception. * NoPosition is used when there is no real position to avoid null values. * @author <a href="mailto:chr_reisinger@yahoo.de">Christian Reisinger</a> */ object NoPosition extends Position { override val isDefined = false def line = sys.error("NoPosition.line") def column = sys.error("NoPosition.column") def start = sys.error("NoPosition.start") def end = sys.error("NoPosition.end") }
chrreisinger/OpenVC
src/main/scala/at/jku/ssw/openvc/util/Position.scala
Scala
gpl-3.0
4,486
/* * Copyright 2021 HM Revenue & Customs * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package uk.gov.hmrc.ct.accounts.validation import org.mockito.Mockito.when import uk.gov.hmrc.ct.accounts.retriever.AccountsBoxRetriever import uk.gov.hmrc.ct.accounts.{AC402, AC404} import uk.gov.hmrc.ct.box.CtValidation import uk.gov.hmrc.ct.utils.UnitSpec class AC402Spec extends UnitSpec { "AC402 validation" should { val boxRetriever = mock[AccountsBoxRetriever] "not show error messages where AC402 is within limit" in { when(boxRetriever.ac404()).thenReturn(AC404(Some(0))) AC402(Some(0)).validate(boxRetriever) shouldBe Set.empty[CtValidation] AC402(Some(999999)).validate(boxRetriever) shouldBe Set.empty[CtValidation] } "show correct error messages where AC402 is outside limit" in { when(boxRetriever.ac404()).thenReturn(AC404(Some(0))) AC402(Some(-1)).validate(boxRetriever) shouldBe Set(CtValidation(Some("AC402"),"error.AC402.mustBeZeroOrPositive",None)) AC402(Some(-0)).validate(boxRetriever) shouldBe Set.empty[CtValidation] AC402(Some(1000000)).validate(boxRetriever) shouldBe Set(CtValidation(Some("AC402"),"error.AC402.exceeds.max",Some(List("999999")))) } "show correct error message when AC402 doesn't need to be present" in{ when(boxRetriever.ac404()).thenReturn(AC404(Some(1))) AC402(None).validate(boxRetriever) shouldBe Set(CtValidation(Some("AC402"),"error.AC402.required",None)) } "don't show error message when AC402 should be present" in{ when(boxRetriever.ac404()).thenReturn(AC404(None)) AC402(None).validate(boxRetriever) shouldBe Set.empty[CtValidation] } } }
hmrc/ct-calculations
src/test/scala/uk/gov/hmrc/ct/accounts/validation/AC402Spec.scala
Scala
apache-2.0
2,216
/* * Copyright (c) 2013 Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU Affero General Public License as * published by the Free Software Foundation, either version 3 of the * License, or (at your option) any later version. * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Affero General Public License for more details. * * You should have received a copy of the GNU Affero General Public License * along with this program. If not, see http://www.gnu.org/licenses/agpl.html. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ package generated.scala /* StreamRowImpl wraps a DenseVectorView that represents a Stream row. * * author: Arvind Sujeeth (asujeeth@stanford.edu) * created: 3/15/11 * * Pervasive Parallelism Laboratory (PPL) * Stanford University * */ class IntStreamRow(chunkRow: Int, offset: Int, stream: IntStream, x: Array[Int]) extends IntDenseVectorView(x, chunkRow*stream.numCols, 1, stream.numCols, true) { // absolute row index in the stream val index = offset*stream.chunkSize + chunkRow }
TiarkRompf/lancet
src/main/scala/generated/scala/IntStreamRow.scala
Scala
agpl-3.0
1,492
package io.github.dmitrib.elasticsearch.cli import java.io.{InputStreamReader, BufferedReader, FileInputStream} import java.util import java.util.concurrent.{TimeUnit, ArrayBlockingQueue} import com.beust.jcommander.{Parameter, Parameters} import org.elasticsearch.action.ActionListener import org.elasticsearch.action.get.{MultiGetRequest, MultiGetResponse} import org.elasticsearch.search.fetch.source.FetchSourceContext import scala.collection.JavaConverters._ @Parameters(commandDescription = "Retrieve documents by its key") object MultiGetCommand extends Runnable { import EsTool._ @Parameter( names = Array("--batch-size"), description = "Number of params to supply in each search request") var batchSize = 100 @Parameter( names = Array("--file"), description = "A file to read newline-separated search attributes, system input will be used if no file is specified") var file: String = _ @Parameter( names = Array("--exclude"), description = "A wildcard pattern for fields to exclude from source, can be specified multiple times") val excludeFields: util.List[String] = new util.ArrayList[String] @Parameter( names = Array("--include"), description = "A wildcard pattern for fields to include in source, can be specified multiple times") val includeFields: util.List[String] = new util.ArrayList[String] @Parameter( names = Array("--src-only"), description = "print only source JSON") val srcOnly = false @Parameter( names = Array("--src-id-tsv"), description = "print ID and source separated by TAB") val srcIdTsv = false @Parameter( names = Array("--max-jobs"), description = "number of requests to execute in parallel") val maxJobs = 1 def run() { val stream = Option(file).fold(System.in)(new FileInputStream(_)) val reader = new BufferedReader(new InputStreamReader(stream)) val it = Iterator.continually(reader.readLine).takeWhile(_ != null).grouped(batchSize) val respQueue = new ArrayBlockingQueue[Either[MultiGetResponse, Throwable]](maxJobs) def executeBatch(batch: Seq[String]) { val req = client.prepareMultiGet() batch.foreach { id => val item = new MultiGetRequest.Item( index, Option(kind).getOrElse(throw new IllegalStateException("type is not set")), id ) if (!excludeFields.isEmpty || !includeFields.isEmpty) { item.fetchSourceContext( new FetchSourceContext(includeFields.asScala.toArray, excludeFields.asScala.toArray) ) } req.add(item) } req.execute(new ActionListener[MultiGetResponse] { override def onFailure(e: Throwable) { respQueue.put(Right(e)) } override def onResponse(response: MultiGetResponse) { respQueue.put(Left(response)) } }) } var activeJobs = 0 var pollTimeotCount = 0 while (activeJobs > 0 || it.hasNext) { while (activeJobs < maxJobs && it.hasNext) { executeBatch(it.next()) activeJobs = activeJobs + 1 } val res = respQueue.poll(requestTimeoutMins*60+10, TimeUnit.SECONDS) res match { case Left(hits) => activeJobs = activeJobs - 1 hits.getResponses.foreach { hit => if (hit.isFailed) { println(hit.getFailure.getMessage) } else if (hit.getResponse.isExists) { println(hitToString(hit.getId, hit.getResponse.getSourceAsString, srcOnly, srcIdTsv)) } } case Right(e) => throw e case null => throw new RuntimeException("timeout on waiting for response") } } } }
Digsolab/elasticsearch-cli
src/main/scala/io/github/dmitrib/elasticsearch/cli/MultiGetCommand.scala
Scala
apache-2.0
3,727
package com.karasiq.shadowcloud.webapp.components.common import com.karasiq.bootstrap.Bootstrap.default._ import com.karasiq.shadowcloud.webapp.context.AppContext import org.scalajs.dom import rx.Var import scalaTags.all._ import scala.scalajs.js import scala.scalajs.js.annotation.JSGlobal @js.native @JSGlobal("pell") object PellJS extends js.Object { def init(options: js.Dynamic): Element = js.native } @js.native @JSGlobal class TurndownService(options: js.Dynamic) extends js.Object { def turndown(html: String): String = js.native } object Pell { abstract class Editor(implicit ac: AppContext) extends BootstrapHtmlComponent { val submitting = Var(false) val html = Var("") def onSubmit(): Unit override def renderTag(md: ModifierT*): TagT = { val parent = div(height := 400.px).render val container = div("pell".addClass).render parent.appendChild(container) val options = js.Dynamic.literal( element = container, onChange = (s: String) => html() = s ) dom.window.setTimeout(() => { PellJS.init(options) val editor = container.asInstanceOf[js.Dynamic].content.asInstanceOf[dom.Element] html.trigger { if (editor.innerHTML != html.now) editor.innerHTML = html.now } }, 0) div( parent, Button(ButtonStyle.success, block = true)( ac.locale.submit, onclick := Callback.onClick(_ => if (!submitting.now) onSubmit()), "disabled".classIf(submitting) ) ) } } def apply(f: Editor => Unit)(implicit ac: AppContext): Editor = new Editor { override def onSubmit(): Unit = f(this) } def toMarkdown(html: String): String = new TurndownService(js.Dynamic.literal()).turndown(html) }
Karasiq/shadowcloud
server/webapp/src/main/scala/com/karasiq/shadowcloud/webapp/components/common/Pell.scala
Scala
apache-2.0
1,812
/* * Copyright 2015 HM Revenue & Customs * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package uk.gov.hmrc.ct.computations import uk.gov.hmrc.ct.box.{CtBoxIdentifier, CtOptionalInteger, Input} case class CP19(value: Option[Int]) extends CtBoxIdentifier(name = "Accountancy and audit") with CtOptionalInteger with Input object CP19 { def apply(int: Int): CP19 = CP19(Some(int)) }
scottcutts/ct-calculations
src/main/scala/uk/gov/hmrc/ct/computations/CP19.scala
Scala
apache-2.0
904
package org.zouzias.spark.lucenerdd.examples.wikipedia import org.apache.spark.sql.SparkSession import org.apache.spark.SparkConf import org.zouzias.spark.lucenerdd.LuceneRDD import org.zouzias.spark.lucenerdd._ import org.zouzias.spark.lucenerdd.logging.Logging /** * Example that demonstrates how to search on a list of capital names using [[LuceneRDD]] * * Search over all capitals for a specific capital */ object CapitalsSearchExample extends Logging { def main(args: Array[String]) { // initialise spark context val conf = new SparkConf().setAppName("CapitalsSearchExample") val k = 10 implicit val spark: SparkSession = SparkSession.builder.config(conf).getOrCreate() val start = System.currentTimeMillis() // Load DataFrame and instantiate LuceneRDD val capitals = spark.read.parquet("data/spatial/capitals.parquet").select("name", "country") val luceneRDD = LuceneRDD(capitals) // Perform a term query val result = luceneRDD.termQuery("name", "ottawa", k) val end = System.currentTimeMillis() logInfo("=" * 40) logInfo(s"Elapsed time: ${(end - start) / 1000.0} seconds") logInfo("=" * 40) logInfo(result.take(k).mkString("\n")) // terminate spark context spark.stop() } }
zouzias/spark-lucenerdd-examples
src/main/scala/org/zouzias/spark/lucenerdd/examples/wikipedia/CapitalsSearchExample.scala
Scala
apache-2.0
1,268