code
stringlengths
5
1M
repo_name
stringlengths
5
109
path
stringlengths
6
208
language
stringclasses
1 value
license
stringclasses
15 values
size
int64
5
1M
package alu import Chisel._ import MicroCodes.MicroCodes._ class ALU extends Module { var io = new Bundle{ var wire_op= Bits(INPUT, width = 5) var wire_data_reg_a= SInt(INPUT ,width = 32) var wire_data_reg_b= SInt(INPUT ,width = 32) var wire_data_output = SInt(OUTPUT, width = 32) } val alu_shamt = io.wire_data_reg_b.toUInt io.wire_data_output := MuxCase(Bits(0), Array[(Chisel.Bool, UInt)]( (io.wire_op === MICRO_OP_ADD) -> (io.wire_data_reg_a + io.wire_data_reg_b).toUInt, (io.wire_op === MICRO_OP_SUB) -> (io.wire_data_reg_a - io.wire_data_reg_b).toUInt, (io.wire_op === MICRO_OP_SLL) -> ((io.wire_data_reg_a<< alu_shamt)(31,0)).toUInt, (io.wire_op === MICRO_OP_SRL) -> (io.wire_data_reg_a>> alu_shamt).toUInt, (io.wire_op === MICRO_OP_SRA) -> (io.wire_data_reg_a.toSInt >> alu_shamt).toUInt, (io.wire_op === MICRO_OP_AND) -> (io.wire_data_reg_a & io.wire_data_reg_b).toUInt, (io.wire_op === MICRO_OP_OR) -> (io.wire_data_reg_a| io.wire_data_reg_a).toUInt, (io.wire_op === MICRO_OP_XOR) -> (io.wire_data_reg_a^ io.wire_data_reg_b).toUInt, (io.wire_op === MICRO_OP_SLT) -> (io.wire_data_reg_a.toSInt < io.wire_data_reg_b.toSInt).toUInt, (io.wire_op === MICRO_OP_SLTU) -> (io.wire_data_reg_a< io.wire_data_reg_b).toUInt, (io.wire_op === MICRO_OP_ADDU) -> (io.wire_data_reg_a.toUInt + io.wire_data_reg_b.toUInt), (io.wire_op === MICRO_OP_SUBU) -> (io.wire_data_reg_a.toUInt - io.wire_data_reg_b.toUInt) )) } class ALUTests(c:ALU) extends Tester(c){ var testReg_a : Int = 0 var testReg_b : Int = 0 var start_nu = math.pow(2,32).toInt - 10 val end_nu = math.pow(2,32).toInt def all_alu_test(reg_a : Int , reg_b : Int){ poke(c.io.wire_data_reg_a,reg_a) poke(c.io.wire_data_reg_b,reg_b) step(1) expect(c.io.wire_data_output,reg_a + reg_b) } for(testReg_a <- start_nu until end_nu ){ for(testReg_b <- start_nu until end_nu ){ all_alu_test(testReg_a,testReg_b) } } }
Coxious/MixCPU
project/alu.scala
Scala
gpl-2.0
2,105
package config import org.apache.commons.lang3.StringUtils import org.pac4j.core.authorization.authorizer.ProfileAuthorizer import org.pac4j.core.context.WebContext import org.pac4j.core.profile.CommonProfile class CustomAuthorizer extends ProfileAuthorizer[CommonProfile] { def isAuthorized(context: WebContext, profiles: java.util.List[CommonProfile]): Boolean = { return isAnyAuthorized(context, profiles) } def isProfileAuthorized(context: WebContext, profile: CommonProfile): Boolean = { if (profile == null) { false } else { StringUtils.startsWith (profile.getUsername, "jle") } } }
ygpark2/play-ain-board
app/config/CustomAuthorizer.scala
Scala
bsd-3-clause
628
/* Copyright 2012 Twitter, Inc. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ package com.twitter.scalding import java.io.Serializable import java.lang.reflect.{ Type, ParameterizedType } import cascading.pipe.Pipe import cascading.tap.SinkMode import cascading.tuple.{ Tuple, TupleEntry, Fields } import com.fasterxml.jackson.core.`type`.TypeReference import com.fasterxml.jackson.module.scala._ import com.fasterxml.jackson.databind.ObjectMapper /** * This Source writes out the TupleEntry as a simple JSON object, using the field * names as keys and the string representation of the values. * * TODO: it would be nice to have a way to add read/write transformations to pipes * that doesn't require extending the sources and overriding methods. * * @param failOnEmptyLines When set to false, it just skips empty lines instead of failing the jobs. Defaults to true * for backwards compatibility. */ case class JsonLine(p: String, fields: Fields = Fields.ALL, override val sinkMode: SinkMode = SinkMode.REPLACE, override val transformInTest: Boolean = false, failOnEmptyLines: Boolean = true) extends FixedPathSource(p) with TextLineScheme { import Dsl._ import JsonLine._ override def transformForWrite(pipe: Pipe) = pipe.mapTo(fields -> 'json) { t: TupleEntry => mapper.writeValueAsString(TupleConverter.ToMap(t)) } override def transformForRead(pipe: Pipe) = { @scala.annotation.tailrec def nestedRetrieval(node: Option[Map[String, AnyRef]], path: List[String]): AnyRef = { (path, node) match { case (_, None) => null case (h :: Nil, Some(fs)) => fs.get(h).orNull case (h :: tail, Some(fs)) => fs.get(h).orNull match { case fs: Map[String @unchecked, AnyRef @unchecked] => nestedRetrieval(Option(fs), tail) case _ => null } case (Nil, _) => null } } val splitFields = (0 until fields.size).map { i: Int => fields.get(i).toString.split('.').toList } pipe.collectTo[String, Tuple]('line -> fields) { case line: String if failOnEmptyLines || line.trim.nonEmpty => val fs: Map[String, AnyRef] = mapper.readValue(line, mapTypeReference) val values = splitFields.map { nestedRetrieval(Option(fs), _) } new cascading.tuple.Tuple(values: _*) } } override def toString = "JsonLine(" + p + ", " + fields.toString + ")" } /** * TODO: at the next binary incompatible version remove the AbstractFunction2/scala.Serializable jank which * was added to get mima to not report binary errors */ object JsonLine extends scala.runtime.AbstractFunction5[String, Fields, SinkMode, Boolean, Boolean, JsonLine] with Serializable with scala.Serializable { val mapTypeReference = typeReference[Map[String, AnyRef]] private[this] def typeReference[T: Manifest] = new TypeReference[T] { override def getType = typeFromManifest(manifest[T]) } private[this] def typeFromManifest(m: Manifest[_]): Type = { if (m.typeArguments.isEmpty) { m.runtimeClass } else new ParameterizedType { def getRawType = m.runtimeClass def getActualTypeArguments = m.typeArguments.map(typeFromManifest).toArray def getOwnerType = null } } val mapper = new ObjectMapper() mapper.registerModule(DefaultScalaModule) }
tdyas/scalding
scalding-json/src/main/scala/com/twitter/scalding/JsonLine.scala
Scala
apache-2.0
3,800
/* * Copyright (C) 2014 Stratio (http://stratio.com) * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package com.stratio.cassandra.lucene import com.google.common.collect.Lists import org.apache.cassandra.db.marshal._ import org.scalatest.{FunSuite, Matchers} import scala.collection.JavaConverters._ /** Base test. * * @author Andres de la Pena `adelapena@stratio.com` */ class BaseScalaTest extends FunSuite with Matchers { } object BaseScalaTest { val utf8 = UTF8Type.instance val ascii = AsciiType.instance val int32 = Int32Type.instance val byte = ByteType.instance val short = ShortType.instance val long = LongType.instance val float = FloatType.instance val double = DoubleType.instance val date = SimpleDateType.instance val integer = IntegerType.instance val uuid = UUIDType.instance val lexicalUuid = LexicalUUIDType.instance val timeUuid = TimeUUIDType.instance val decimal = DecimalType.instance val timestamp = TimestampType.instance val boolean = BooleanType.instance def set[A](elements: AbstractType[A], multiCell: Boolean): SetType[A] = SetType.getInstance(elements, multiCell) def list[A](elements: AbstractType[A], multiCell: Boolean): ListType[A] = ListType.getInstance(elements, multiCell) def map[A, B](keys: AbstractType[A], values: AbstractType[B], multiCell: Boolean): MapType[A, B] = MapType.getInstance(keys, values, multiCell) def udt(names: List[String], types: List[AbstractType[_]]): UserType = new UserType( "ks", utf8.decompose("cell"), Lists.newArrayList(names.map(x => utf8.decompose(x)).asJava), Lists.newArrayList(types.asJava)) def reversed[A](base: AbstractType[A]): ReversedType[A] = ReversedType.getInstance(base) }
adelapena/cassandra-lucene-index
plugin/src/test/scala/com/stratio/cassandra/lucene/BaseScalaTest.scala
Scala
apache-2.0
2,276
/** * Copyright 2011-2012 eBusiness Information, Groupe Excilys (www.excilys.com) * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package com.excilys.ebi.gatling.http.check.bodypart import com.excilys.ebi.gatling.core.check.Matcher import com.excilys.ebi.gatling.core.session.{ NOOP_EVALUATABLE_STRING, Session } import com.excilys.ebi.gatling.http.request.HttpPhase.BodyPartReceived import com.excilys.ebi.gatling.http.response.ExtendedResponse import com.excilys.ebi.gatling.http.check.HttpCheck class ChecksumCheck(val algorithm: String, matcher: Matcher[ExtendedResponse, String], saveAs: Option[String]) extends HttpCheck(NOOP_EVALUATABLE_STRING, matcher, saveAs, BodyPartReceived)
Tjoene/thesis
Case_Programs/gatling-1.4.0/gatling-http/src/main/scala/com/excilys/ebi/gatling/http/check/bodypart/ChecksumCheck.scala
Scala
gpl-2.0
1,202
package ch.wsl.rest.service import spray.http.StatusCodes import akka.actor.Actor import spray.routing.{HttpService, RejectionHandler} // we don't implement our route structure directly in the service actor because // we want to be able to test it independently, without having to spin up an actor class MainService extends Actor with HttpService with RouteRoot { // the HttpService trait defines only one abstract member, which // connects the services environment to the enclosing actor or test def actorRefFactory = context // Handle HTTP errors, like page not found, etc. implicit val myRejectionHandler = RejectionHandler { case Nil ⇒ complete(StatusCodes.NotFound, "The requested resource could not be found.") case t => { println(t) complete(StatusCodes.BadRequest,"Something went wrong here: " + t) } } // this actor only runs our route, but you could add // other things here, like request stream processing // or timeout handling def receive = runRoute(route) }
minettiandrea/postgres-restify
server/src/main/scala/ch/wsl/rest/service/MainService.scala
Scala
apache-2.0
1,036
package im.actor.server.enrich import akka.actor.ActorSystem import akka.stream.ActorMaterializer import im.actor.server import org.scalatest.concurrent.ScalaFutures import org.scalatest.{ FlatSpecLike, Matchers } import im.actor.server.{ ActorSpecification, SqlSpecHelpers } abstract class BaseRichMessageSpec(_system: ActorSystem = { ActorSpecification.createSystem() }) extends server.ActorSuite(_system) with FlatSpecLike with ScalaFutures with Matchers with SqlSpecHelpers { implicit val materializer = ActorMaterializer() }
boneyao/actor-platform
actor-server/actor-tests/src/test/scala/im/actor/server/enrich/BaseRichMessageSpec.scala
Scala
mit
539
/* * This file is part of the Linux Variability Modeling Tools (LVAT). * * Copyright (C) 2010 Steven She <shshe@gsd.uwaterloo.ca> * * LVAT is free software: you can redistribute it and/or modify it under * the terms of the GNU Lesser General Public License as published by the * Free Software Foundation, either version 3 of the License, or (at your * option) any later version. * * LVAT is distributed in the hope that it will be useful, but WITHOUT ANY * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS * FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for * more details. * * You should have received a copy of the GNU Lesser General Public License * along with LVAT. (See files COPYING and COPYING.LESSER.) If not, see * <http://www.gnu.org/licenses/>. */ package gsd.linux import org.kiama.rewriting.Rewriter /** * A simple Tseitin's Transformation that introduces a new variable for each * sub-expression. * * An improved version should eventually replace the manual transformation done * in the LVAT BooleanTranslation. * * @author Steven She (shshe@gsd.uwaterloo.ca) */ object Tseitin { case class TransformResult(expressions: List[BExpr], generated: List[String]) case class IdGen(start: Int, prefix: String) { var i = start def next = { i+=1; prefix + i } def allIds = (start to i).map { prefix + _ }.toList } def transform(in: List[BExpr], prefix: String = "_T", offset: Int = 0): TransformResult = { val idGen = IdGen(offset, prefix) def _transform(ein: BExpr): List[BExpr] = { import gsd.linux.cnf.CNFBuilder._ val e = Rewriter.rewrite(sIffRule <* sImpliesRule)(ein).simplify def _tt(e: BExpr): Pair[BId, List[BExpr]] = { e match { case v: BId => { val eId = BId(idGen.next) eId -> List((!eId | v), (eId | !v)) } case BNot(x) => { val (xId, xExprs) = _tt(x) val eId = BId(idGen.next) eId -> ((!eId | !xId) :: (eId | xId) :: xExprs) } case BAnd(x,y) => { val (xId, xExprs) = _tt(x) val (yId, yExprs) = _tt(y) val eId = BId(idGen.next) eId -> ((!eId | xId) :: (!eId | yId) :: (eId | !xId | !yId) :: xExprs ::: yExprs) } case BOr(x,y) => { val (xId, xExprs) = _tt(x) val (yId, yExprs) = _tt(y) val eId = BId(idGen.next) eId -> ((eId | !xId) :: (eId | !yId) :: (!eId | xId | yId) :: xExprs ::: yExprs) } case _ => sys.error("not supported: " + e + " from: " + in) } } val (ttId, ttExprs) = _tt(e) ttId :: ttExprs } val results = in map _transform TransformResult(results reduceLeft (_ ::: _), idGen.allIds) } }
scas-mdd/linux-variability-analysis-tools.fm-translation
src/main/scala/gsd/linux/Tseitin.scala
Scala
gpl-3.0
2,848
package coursier.cli.install import java.nio.file.{Path, Paths} import caseapp.Tag import cats.data.{Validated, ValidatedNel} final case class UninstallParams( dir: Path, all: Boolean, verbosity: Int ) object UninstallParams { def apply(options: UninstallOptions): ValidatedNel[String, UninstallParams] = { val dir = options.installDir.filter(_.nonEmpty) match { case Some(d) => Paths.get(d) case None => SharedInstallParams.defaultDir } val all = options.all val verbosityV = if (Tag.unwrap(options.quiet) > 0 && Tag.unwrap(options.verbose) > 0) Validated.invalidNel("Cannot have both quiet, and verbosity > 0") else Validated.validNel(Tag.unwrap(options.verbose) - Tag.unwrap(options.quiet)) verbosityV.map { verbosity => UninstallParams( dir, all, verbosity ) } } }
alexarchambault/coursier
modules/cli/src/main/scala/coursier/cli/install/UninstallParams.scala
Scala
apache-2.0
890
package gv package isi package std.conversions object ImplicitResolutionOrder { trait P0 extends AnyRef // with convertible.ImplicitResolutionOrder.Conversions trait P50 extends AnyRef with P0 with ByteConversions trait P60 extends AnyRef with P50 with JavaIoConversions trait P70 extends AnyRef with P60 with ToFutureConversions with UriConversions with PathConversions trait P80 extends AnyRef with P70 with ExecutionContextConversions with ToTryConversions trait P90 extends AnyRef with P80 trait P100 extends AnyRef with P90 trait Conversions extends AnyRef with P100 }
mouchtaris/jleon
src/main/scala-2.12/gv/isi/std/conversions/ImplicitResolutionOrder.scala
Scala
mit
626
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.spark.sql.execution.datasources import java.io.File import java.sql.Timestamp import java.text.SimpleDateFormat import org.apache.spark.sql.{AnalysisException, Column, DataFrame, QueryTest, Row} import org.apache.spark.sql.execution.FileSourceScanExec import org.apache.spark.sql.functions._ import org.apache.spark.sql.internal.SQLConf import org.apache.spark.sql.test.SharedSparkSession import org.apache.spark.sql.types.{IntegerType, LongType, StringType, StructField, StructType} class FileMetadataStructSuite extends QueryTest with SharedSparkSession { val data0: Seq[Row] = Seq(Row("jack", 24, Row(12345L, "uom"))) val data1: Seq[Row] = Seq(Row("lily", 31, Row(54321L, "ucb"))) val schema: StructType = new StructType() .add(StructField("name", StringType)) .add(StructField("age", IntegerType)) .add(StructField("info", new StructType() .add(StructField("id", LongType)) .add(StructField("university", StringType)))) val schemaWithNameConflicts: StructType = new StructType() .add(StructField("name", StringType)) .add(StructField("age", IntegerType)) .add(StructField("_METADATA", new StructType() .add(StructField("id", LongType)) .add(StructField("university", StringType)))) private val METADATA_FILE_PATH = "_metadata.file_path" private val METADATA_FILE_NAME = "_metadata.file_name" private val METADATA_FILE_SIZE = "_metadata.file_size" private val METADATA_FILE_MODIFICATION_TIME = "_metadata.file_modification_time" /** * This test wrapper will test for both row-based and column-based file formats: * (json and parquet) with nested schema: * 1. create df0 and df1 and save them as testFileFormat under /data/f0 and /data/f1 * 2. read the path /data, return the df for further testing * 3. create actual metadata maps for both files under /data/f0 and /data/f1 for further testing * * The final df will have data: * jack | 24 | {12345, uom} * lily | 31 | {54321, ucb} * * The schema of the df will be the `fileSchema` provided to this method * * This test wrapper will provide a `df` and actual metadata map `f0`, `f1` */ private def metadataColumnsTest( testName: String, fileSchema: StructType) (f: (DataFrame, Map[String, Any], Map[String, Any]) => Unit): Unit = { Seq("json", "parquet").foreach { testFileFormat => test(s"metadata struct ($testFileFormat): " + testName) { withTempDir { dir => import scala.collection.JavaConverters._ // 1. create df0 and df1 and save under /data/f0 and /data/f1 val df0 = spark.createDataFrame(data0.asJava, fileSchema) val f0 = new File(dir, "data/f0").getCanonicalPath df0.coalesce(1).write.format(testFileFormat).save(f0) val df1 = spark.createDataFrame(data1.asJava, fileSchema) val f1 = new File(dir, "data/f1").getCanonicalPath df1.coalesce(1).write.format(testFileFormat).save(f1) // 2. read both f0 and f1 val df = spark.read.format(testFileFormat).schema(fileSchema) .load(new File(dir, "data").getCanonicalPath + "/*") val realF0 = new File(dir, "data/f0").listFiles() .filter(_.getName.endsWith(s".$testFileFormat")).head val realF1 = new File(dir, "data/f1").listFiles() .filter(_.getName.endsWith(s".$testFileFormat")).head // 3. create f0 and f1 metadata data val f0Metadata = Map( METADATA_FILE_PATH -> realF0.toURI.toString, METADATA_FILE_NAME -> realF0.getName, METADATA_FILE_SIZE -> realF0.length(), METADATA_FILE_MODIFICATION_TIME -> new Timestamp(realF0.lastModified()) ) val f1Metadata = Map( METADATA_FILE_PATH -> realF1.toURI.toString, METADATA_FILE_NAME -> realF1.getName, METADATA_FILE_SIZE -> realF1.length(), METADATA_FILE_MODIFICATION_TIME -> new Timestamp(realF1.lastModified()) ) f(df, f0Metadata, f1Metadata) } } } } metadataColumnsTest("read partial/all metadata struct fields", schema) { (df, f0, f1) => // read all available metadata struct fields checkAnswer( df.select("name", "age", "info", METADATA_FILE_NAME, METADATA_FILE_PATH, METADATA_FILE_SIZE, METADATA_FILE_MODIFICATION_TIME), Seq( Row("jack", 24, Row(12345L, "uom"), f0(METADATA_FILE_NAME), f0(METADATA_FILE_PATH), f0(METADATA_FILE_SIZE), f0(METADATA_FILE_MODIFICATION_TIME)), Row("lily", 31, Row(54321L, "ucb"), f1(METADATA_FILE_NAME), f1(METADATA_FILE_PATH), f1(METADATA_FILE_SIZE), f1(METADATA_FILE_MODIFICATION_TIME)) ) ) // read a part of metadata struct fields checkAnswer( df.select("name", "info.university", METADATA_FILE_NAME, METADATA_FILE_SIZE), Seq( Row("jack", "uom", f0(METADATA_FILE_NAME), f0(METADATA_FILE_SIZE)), Row("lily", "ucb", f1(METADATA_FILE_NAME), f1(METADATA_FILE_SIZE)) ) ) } metadataColumnsTest("read metadata struct fields with random ordering", schema) { (df, f0, f1) => // read a part of metadata struct fields with random ordering checkAnswer( df.select(METADATA_FILE_NAME, "name", METADATA_FILE_SIZE, "info.university"), Seq( Row(f0(METADATA_FILE_NAME), "jack", f0(METADATA_FILE_SIZE), "uom"), Row(f1(METADATA_FILE_NAME), "lily", f1(METADATA_FILE_SIZE), "ucb") ) ) } metadataColumnsTest("read metadata struct fields with expressions", schema) { (df, f0, f1) => checkAnswer( df.select( // substring of file name substring(col(METADATA_FILE_NAME), 1, 3), // format timestamp date_format(col(METADATA_FILE_MODIFICATION_TIME), "yyyy-MM") .as("_file_modification_year_month"), // convert to kb col(METADATA_FILE_SIZE).divide(lit(1024)).as("_file_size_kb"), // get the file format substring_index(col(METADATA_FILE_PATH), ".", -1).as("_file_format") ), Seq( Row( f0(METADATA_FILE_NAME).toString.substring(0, 3), // sql substring vs scala substring new SimpleDateFormat("yyyy-MM").format(f0(METADATA_FILE_MODIFICATION_TIME)), f0(METADATA_FILE_SIZE).asInstanceOf[Long] / 1024.toDouble, f0(METADATA_FILE_PATH).toString.split("\\\\.").takeRight(1).head ), Row( f1(METADATA_FILE_NAME).toString.substring(0, 3), // sql substring vs scala substring new SimpleDateFormat("yyyy-MM").format(f1(METADATA_FILE_MODIFICATION_TIME)), f1(METADATA_FILE_SIZE).asInstanceOf[Long] / 1024.toDouble, f1(METADATA_FILE_PATH).toString.split("\\\\.").takeRight(1).head ) ) ) } metadataColumnsTest("select all will not select metadata struct fields", schema) { (df, _, _) => checkAnswer( df.select("*"), Seq( Row("jack", 24, Row(12345L, "uom")), Row("lily", 31, Row(54321L, "ucb")) ) ) } metadataColumnsTest("metadata will not overwrite user data", schemaWithNameConflicts) { (df, _, _) => // the user data has the schema: name, age, _metadata.id, _metadata.university // select user data checkAnswer( df.select("name", "age", "_METADATA", "_metadata"), Seq( Row("jack", 24, Row(12345L, "uom"), Row(12345L, "uom")), Row("lily", 31, Row(54321L, "ucb"), Row(54321L, "ucb")) ) ) // select metadata will fail when analysis val ex = intercept[AnalysisException] { df.select("name", METADATA_FILE_NAME).collect() } assert(ex.getMessage.contains("No such struct field file_name in id, university")) } metadataColumnsTest("select only metadata", schema) { (df, f0, f1) => checkAnswer( df.select(METADATA_FILE_NAME, METADATA_FILE_PATH, METADATA_FILE_SIZE, METADATA_FILE_MODIFICATION_TIME), Seq( Row(f0(METADATA_FILE_NAME), f0(METADATA_FILE_PATH), f0(METADATA_FILE_SIZE), f0(METADATA_FILE_MODIFICATION_TIME)), Row(f1(METADATA_FILE_NAME), f1(METADATA_FILE_PATH), f1(METADATA_FILE_SIZE), f1(METADATA_FILE_MODIFICATION_TIME)) ) ) checkAnswer( df.select("_metadata"), Seq( Row(Row(f0(METADATA_FILE_PATH), f0(METADATA_FILE_NAME), f0(METADATA_FILE_SIZE), f0(METADATA_FILE_MODIFICATION_TIME))), Row(Row(f1(METADATA_FILE_PATH), f1(METADATA_FILE_NAME), f1(METADATA_FILE_SIZE), f1(METADATA_FILE_MODIFICATION_TIME))) ) ) } metadataColumnsTest("select and re-select", schema) { (df, f0, f1) => checkAnswer( df.select("name", "age", "info", METADATA_FILE_NAME, METADATA_FILE_PATH, METADATA_FILE_SIZE, METADATA_FILE_MODIFICATION_TIME) .select("name", "file_path"), // cast _metadata.file_path as file_path Seq( Row("jack", f0(METADATA_FILE_PATH)), Row("lily", f1(METADATA_FILE_PATH)) ) ) } metadataColumnsTest("alias", schema) { (df, f0, f1) => val aliasDF = df.select( Column("name").as("myName"), Column("age").as("myAge"), Column(METADATA_FILE_NAME).as("myFileName"), Column(METADATA_FILE_SIZE).as("myFileSize") ) // check schema val expectedSchema = new StructType() .add(StructField("myName", StringType)) .add(StructField("myAge", IntegerType)) .add(StructField("myFileName", StringType)) .add(StructField("myFileSize", LongType)) assert(aliasDF.schema.fields.toSet == expectedSchema.fields.toSet) // check data checkAnswer( aliasDF, Seq( Row("jack", 24, f0(METADATA_FILE_NAME), f0(METADATA_FILE_SIZE)), Row("lily", 31, f1(METADATA_FILE_NAME), f1(METADATA_FILE_SIZE)) ) ) } metadataColumnsTest("filter", schema) { (df, f0, _) => val filteredDF = df.select("name", "age", METADATA_FILE_NAME) .where(Column(METADATA_FILE_NAME) === f0(METADATA_FILE_NAME)) // check the filtered file val partitions = filteredDF.queryExecution.sparkPlan.collectFirst { case p: FileSourceScanExec => p.selectedPartitions }.get assert(partitions.length == 1) // 1 partition assert(partitions.head.files.length == 1) // 1 file in that partition assert(partitions.head.files.head.getPath.toString == f0(METADATA_FILE_PATH)) // the file is f0 // check result checkAnswer( filteredDF, Seq( // _file_name == f0's name, so we will only have 1 row Row("jack", 24, f0(METADATA_FILE_NAME)) ) ) } metadataColumnsTest("filter on metadata and user data", schema) { (df, _, f1) => val filteredDF = df.select("name", "age", "info", METADATA_FILE_NAME, METADATA_FILE_PATH, METADATA_FILE_SIZE, METADATA_FILE_MODIFICATION_TIME) // mix metadata column + user column .where(Column(METADATA_FILE_NAME) === f1(METADATA_FILE_NAME) and Column("name") === "lily") // only metadata columns .where(Column(METADATA_FILE_PATH) === f1(METADATA_FILE_PATH)) // only user column .where("age == 31") // check the filtered file val partitions = filteredDF.queryExecution.sparkPlan.collectFirst { case p: FileSourceScanExec => p.selectedPartitions }.get assert(partitions.length == 1) // 1 partition assert(partitions.head.files.length == 1) // 1 file in that partition assert(partitions.head.files.head.getPath.toString == f1(METADATA_FILE_PATH)) // the file is f1 // check result checkAnswer( filteredDF, Seq(Row("lily", 31, Row(54321L, "ucb"), f1(METADATA_FILE_NAME), f1(METADATA_FILE_PATH), f1(METADATA_FILE_SIZE), f1(METADATA_FILE_MODIFICATION_TIME))) ) } Seq(true, false).foreach { caseSensitive => metadataColumnsTest(s"upper/lower case when case " + s"sensitive is $caseSensitive", schemaWithNameConflicts) { (df, f0, f1) => withSQLConf(SQLConf.CASE_SENSITIVE.key -> caseSensitive.toString) { // file schema: name, age, _METADATA.id, _METADATA.university if (caseSensitive) { // for case sensitive mode: // _METADATA is user data // _metadata is metadata checkAnswer( df.select("name", "age", "_METADATA", "_metadata"), Seq( Row("jack", 24, Row(12345L, "uom"), Row(f0(METADATA_FILE_PATH), f0(METADATA_FILE_NAME), f0(METADATA_FILE_SIZE), f0(METADATA_FILE_MODIFICATION_TIME))), Row("lily", 31, Row(54321L, "ucb"), Row(f1(METADATA_FILE_PATH), f1(METADATA_FILE_NAME), f1(METADATA_FILE_SIZE), f1(METADATA_FILE_MODIFICATION_TIME))) ) ) } else { // for case insensitive mode: // _METADATA and _metadata are both user data // select user data checkAnswer( df.select("name", "age", // user columns "_METADATA", "_metadata", "_metadata.ID", "_METADATA.UniVerSity"), Seq( Row("jack", 24, Row(12345L, "uom"), Row(12345L, "uom"), 12345L, "uom"), Row("lily", 31, Row(54321L, "ucb"), Row(54321L, "ucb"), 54321L, "ucb") ) ) // select metadata will fail when analysis - metadata cannot overwrite user data val ex = intercept[AnalysisException] { df.select("name", "_metadata.file_name").collect() } assert(ex.getMessage.contains("No such struct field file_name in id, university")) val ex1 = intercept[AnalysisException] { df.select("name", "_METADATA.file_NAME").collect() } assert(ex1.getMessage.contains("No such struct field file_NAME in id, university")) } } } } Seq("true", "false").foreach { offHeapColumnVectorEnabled => withSQLConf("spark.sql.columnVector.offheap.enabled" -> offHeapColumnVectorEnabled) { metadataColumnsTest(s"read metadata with " + s"offheap set to $offHeapColumnVectorEnabled", schema) { (df, f0, f1) => // read all available metadata struct fields checkAnswer( df.select("name", "age", "info", METADATA_FILE_NAME, METADATA_FILE_PATH, METADATA_FILE_SIZE, METADATA_FILE_MODIFICATION_TIME), Seq( Row("jack", 24, Row(12345L, "uom"), f0(METADATA_FILE_NAME), f0(METADATA_FILE_PATH), f0(METADATA_FILE_SIZE), f0(METADATA_FILE_MODIFICATION_TIME)), Row("lily", 31, Row(54321L, "ucb"), f1(METADATA_FILE_NAME), f1(METADATA_FILE_PATH), f1(METADATA_FILE_SIZE), f1(METADATA_FILE_MODIFICATION_TIME)) ) ) // read a part of metadata struct fields checkAnswer( df.select("name", "info.university", METADATA_FILE_NAME, METADATA_FILE_SIZE), Seq( Row("jack", "uom", f0(METADATA_FILE_NAME), f0(METADATA_FILE_SIZE)), Row("lily", "ucb", f1(METADATA_FILE_NAME), f1(METADATA_FILE_SIZE)) ) ) } } } Seq("true", "false").foreach { enabled => withSQLConf("spark.sql.optimizer.nestedSchemaPruning.enabled" -> enabled) { metadataColumnsTest(s"read metadata with" + s"nestedSchemaPruning set to $enabled", schema) { (df, f0, f1) => // read a part of data: schema pruning checkAnswer( df.select("name", "info.university", METADATA_FILE_NAME, METADATA_FILE_SIZE), Seq( Row("jack", "uom", f0(METADATA_FILE_NAME), f0(METADATA_FILE_SIZE)), Row("lily", "ucb", f1(METADATA_FILE_NAME), f1(METADATA_FILE_SIZE)) ) ) } } } metadataColumnsTest("prune metadata schema in projects", schema) { (df, f0, f1) => val prunedDF = df.select("name", "age", "info.id", METADATA_FILE_NAME) val fileSourceScanMetaCols = prunedDF.queryExecution.sparkPlan.collectFirst { case p: FileSourceScanExec => p.metadataColumns }.get assert(fileSourceScanMetaCols.size == 1) assert(fileSourceScanMetaCols.head.name == "file_name") checkAnswer( prunedDF, Seq(Row("jack", 24, 12345L, f0(METADATA_FILE_NAME)), Row("lily", 31, 54321L, f1(METADATA_FILE_NAME))) ) } metadataColumnsTest("prune metadata schema in filters", schema) { (df, f0, f1) => val prunedDF = df.select("name", "age", "info.id") .where(col(METADATA_FILE_PATH).contains("data/f0")) val fileSourceScanMetaCols = prunedDF.queryExecution.sparkPlan.collectFirst { case p: FileSourceScanExec => p.metadataColumns }.get assert(fileSourceScanMetaCols.size == 1) assert(fileSourceScanMetaCols.head.name == "file_path") checkAnswer( prunedDF, Seq(Row("jack", 24, 12345L)) ) } metadataColumnsTest("prune metadata schema in projects and filters", schema) { (df, f0, f1) => val prunedDF = df.select("name", "age", "info.id", METADATA_FILE_SIZE) .where(col(METADATA_FILE_PATH).contains("data/f0")) val fileSourceScanMetaCols = prunedDF.queryExecution.sparkPlan.collectFirst { case p: FileSourceScanExec => p.metadataColumns }.get assert(fileSourceScanMetaCols.size == 2) assert(fileSourceScanMetaCols.map(_.name).toSet == Set("file_size", "file_path")) checkAnswer( prunedDF, Seq(Row("jack", 24, 12345L, f0(METADATA_FILE_SIZE))) ) } }
shaneknapp/spark
sql/core/src/test/scala/org/apache/spark/sql/execution/datasources/FileMetadataStructSuite.scala
Scala
apache-2.0
18,362
package java.util trait ListIterator[E] extends Iterator[E] { def add(e: E): Unit def hasPrevious(): Boolean def previous(): E def previousIndex(): Int def nextIndex(): Int def set(e: E): Unit }
doron123/scala-js
javalib/src/main/scala/java/util/ListIterator.scala
Scala
bsd-3-clause
208
package com.sfxcode.sapphire.core.demo.login.controller import com.sfxcode.sapphire.core.controller.ViewController import com.sfxcode.sapphire.core.demo.login.LoginApplicationController import com.sfxcode.sapphire.core.demo.login.model.User import com.sfxcode.sapphire.core.value._ import javafx.event.ActionEvent import javafx.scene.control.CheckBox class ProfileController extends ViewController { lazy val userAdapter: FXBeanAdapter[User] = FXBeanAdapter[User](this) override def didGainVisibility() { super.didGainVisibility() val bindings = KeyBindings("email", "phone", "address", "subscribed") bindings.add("user", "User: ${_self.name()} Mailsize: (${_self.email().length()})") userAdapter.addBindings(bindings) userAdapter.set(applicationController().applicationUser.get) } def actionLogout(event: ActionEvent) { userAdapter.revert() userAdapter.unset() applicationController().applicationUser = None applicationController().showLogin() } def applicationController(): LoginApplicationController = registeredBean[LoginApplicationController].get def actionUpdate(event: ActionEvent) { debugUserData() } def debugUserData() { val maybeTextField = locateTextField("user") println(maybeTextField) val checkBoxOption = locate[CheckBox]("#subscribed") checkBoxOption.foreach(cb => println(cb.selectedProperty.get)) println(applicationController().applicationUser.get.bean) } }
sfxcode/sapphire-core
demos/login/src/main/scala/com/sfxcode/sapphire/core/demo/login/controller/ProfileController.scala
Scala
apache-2.0
1,470
object DepMethTypes { trait Foo { type Bar def bar: Bar } object AFoo extends Foo { type Bar = String def bar = "" } val x: Foo = null def bar(foo: Foo): foo.Bar = foo.bar /* Expression of type DepMethTypes.Foo#Bar doesn't conform to expected type foo.type#Bar */ val s: String = /*start*/bar(AFoo)/*end*/ /* Expression of type foo.type#Bar doesn't conform to expected type String */ } //DepMethTypes.AFoo.Bar
ilinum/intellij-scala
testdata/typeInference/bugs5/SCL5048.scala
Scala
apache-2.0
443
/* * Copyright 2017 Georgi Krastev * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.flink package api.scala.derived.typeinfo import api.common.ExecutionConfig import api.common.typeinfo.TypeInformation import api.java.typeutils.ObjectArrayTypeInfo import api.scala.typeutils._ import api.scala.derived.typeutils._ import scala.collection.SortedMap import scala.collection.generic._ import scala.collection.immutable import scala.collection.mutable import scala.reflect._ /** `TypeInformation` instances for `Array`, `Traversable` and `Map`. */ private[typeinfo] abstract class MkTypeInfo4_Traversable extends MkTypeInfo5_Value { /** Creates `TypeInformation` for a (non-primitive) `Array`. */ implicit def mkArrayTypeInfo[E](implicit tiE: TypeInformation[E]): MkTypeInfo[Array[E]] = this(ObjectArrayTypeInfo.getInfoFor(tiE)) /** Creates `TypeInformation` for a `Traversable` collection. */ implicit def mkTraversableTypeInfo[T[e] <: Traversable[e], E]( implicit tiE: TypeInformation[E], tag: ClassTag[T[E]], cbf: CanBuild[E, T[E]], gen: T[E] <:< GenericTraversableTemplate[E, T] ): MkTypeInfo[T[E]] = this { // Workaround `CanBuildFrom` not being `Serializable`. new TraversableTypeInfo[T[E], E](tag.runtimeClass.asInstanceOf[Class[T[E]]], tiE) { val empty = cbf().result() def createSerializer(config: ExecutionConfig) = new TraversableSerializer[T[E], E](elementTypeInfo.createSerializer(config)) { override def toString = s"TraversableSerializer[$elementSerializer]" def getCbf = new CanBuildFrom[T[E], E, T[E]] { def apply(from: T[E]) = gen(from).genericBuilder def apply() = apply(empty) } } } } /** Creates `TypeInformation` for an (immutable) `Map`. */ implicit def mkMapTypeInfo[K, V]( implicit tiKV: TypeInformation[(K, V)] ): MkTypeInfo[Map[K, V]] = mkInjectTypeInfo( Inject(_.toSeq, (seq: Seq[(K, V)]) => seq.toMap), seqTypeInfo, classTag ) /** Creates `TypeInformation` for a `mutable.Map`. */ implicit def mkMutableMapTypeInfo[K, V]( implicit tiKV: TypeInformation[(K, V)] ): MkTypeInfo[mutable.Map[K, V]] = mkInjectTypeInfo( Inject(_.toSeq, (seq: Seq[(K, V)]) => mutable.Map(seq: _*)), seqTypeInfo, classTag ) /** Creates `TypeInformation` for a `SortedMap`. */ implicit def mkSortedMapTypeInfo[K, V]( implicit tiKV: TypeInformation[(K, V)], ord: Ordering[K] ): MkTypeInfo[SortedMap[K, V]] = mkInjectTypeInfo( Inject(_.toSeq, (seq: Seq[(K, V)]) => SortedMap(seq: _*)), seqTypeInfo, classTag ) /** Creates `TypeInformation` for an `immutable.TreeMap`. */ implicit def mkImmutableTreeMapTypeInfo[K, V]( implicit tiKV: TypeInformation[(K, V)], ord: Ordering[K] ): MkTypeInfo[immutable.TreeMap[K, V]] = mkInjectTypeInfo( Inject(_.toSeq, (seq: Seq[(K, V)]) => immutable.TreeMap(seq: _*)), seqTypeInfo, classTag ) /** Creates `TypeInformation` for an `immutable.HashMap`. */ implicit def mkImmutableHashMapTypeInfo[K, V]( implicit tiKV: TypeInformation[(K, V)] ): MkTypeInfo[immutable.HashMap[K, V]] = mkInjectTypeInfo( Inject(_.toSeq, (seq: Seq[(K, V)]) => immutable.HashMap(seq: _*)), seqTypeInfo, classTag ) /** Creates `TypeInformation` for a `mutable.HashMap`. */ implicit def mkMutableHashMapTypeInfo[K, V]( implicit tiKV: TypeInformation[(K, V)] ): MkTypeInfo[mutable.HashMap[K, V]] = mkInjectTypeInfo( Inject(_.toSeq, (seq: Seq[(K, V)]) => mutable.HashMap(seq: _*)), seqTypeInfo, classTag ) /** Used to inject `Map` types into `Seq`. */ private def seqTypeInfo[E](implicit tiE: TypeInformation[E]): TypeInformation[Seq[E]] = mkTraversableTypeInfo[Seq, E].apply() }
joroKr21/flink-shapeless
src/main/scala/org/apache/flink/api/scala/derived/typeinfo/MkTypeInfo4_Traversable.scala
Scala
apache-2.0
4,259
package io.github.tailhq.dynaml.models.gp import io.github.tailhq.dynaml.kernels.LocalScalarKernel import org.apache.log4j.Logger /** * @author tailhq date: 11/8/16. * * Abstract implementation of multi-task gaussian process * as outlined in Lawrence et. al 2012 on arxiv * @tparam I The index set of the GP. */ class MTGPRegressionModel[I]( cov: LocalScalarKernel[(I, Int)], n: LocalScalarKernel[(I, Int)], data: Seq[Stream[(I, Double)]], num: Int, numOutputs: Int) extends AbstractGPRegressionModel[ Seq[Stream[(I, Double)]], (I, Int)](cov, n, data, num*numOutputs) { assert( data.length == numOutputs, "Number of outputs in data should match numOutputs constructor variable" ) private val logger = Logger.getLogger(this.getClass) val noutputs = numOutputs /** * Convert from the underlying data structure to * Seq[(I, Y)] where I is the index set of the GP * and Y is the value/label type. **/ override def dataAsSeq(data: Seq[Stream[(I, Double)]]): Seq[((I, Int), Double)] = data.zipWithIndex.map((patternSet) => patternSet._1.map(patternAndLabel => ((patternAndLabel._1, patternSet ._2), patternAndLabel._2)) ).reduceLeft((s1, s2) => s1 ++ s2) }
mandar2812/DynaML
dynaml-core/src/main/scala/io/github/tailhq/dynaml/models/gp/MTGPRegressionModel.scala
Scala
apache-2.0
1,232
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.spark.deploy.k8s.integrationtest import java.io.{Closeable, File, PrintWriter} import java.nio.file.{Files, Path} import java.util.concurrent.CountDownLatch import scala.collection.JavaConverters._ import scala.util.Try import io.fabric8.kubernetes.client.dsl.ExecListener import okhttp3.Response import org.apache.commons.io.output.ByteArrayOutputStream import org.apache.hadoop.util.VersionInfo import org.apache.spark.{SPARK_VERSION, SparkException} import org.apache.spark.internal.Logging import org.apache.spark.util.{Utils => SparkUtils} object Utils extends Logging { def getExamplesJarName(): String = { val scalaVersion = scala.util.Properties.versionNumberString .split("\\\\.") .take(2) .mkString(".") s"spark-examples_$scalaVersion-${SPARK_VERSION}.jar" } def tryWithResource[R <: Closeable, T](createResource: => R)(f: R => T): T = { val resource = createResource try f.apply(resource) finally resource.close() } def executeCommand(cmd: String*)( implicit podName: String, kubernetesTestComponents: KubernetesTestComponents): String = { val out = new ByteArrayOutputStream() val pod = kubernetesTestComponents .kubernetesClient .pods() .withName(podName) // Avoid timing issues by looking for open/close class ReadyListener extends ExecListener { val openLatch: CountDownLatch = new CountDownLatch(1) val closeLatch: CountDownLatch = new CountDownLatch(1) override def onOpen(response: Response) { openLatch.countDown() } override def onClose(a: Int, b: String) { closeLatch.countDown() } override def onFailure(e: Throwable, r: Response) { } def waitForInputStreamToConnect(): Unit = { openLatch.await() } def waitForClose(): Unit = { closeLatch.await() } } val listener = new ReadyListener() val watch = pod .readingInput(System.in) .writingOutput(out) .writingError(System.err) .withTTY() .usingListener(listener) .exec(cmd.toArray: _*) // under load sometimes the stdout isn't connected by the time we try to read from it. listener.waitForInputStreamToConnect() listener.waitForClose() watch.close() out.flush() val result = out.toString() result } def createTempFile(contents: String, hostPath: String): String = { val filename = try { val f = File.createTempFile("tmp", ".txt", new File(hostPath)) f.deleteOnExit() new PrintWriter(f) { try { write(contents) } finally { close() } } f.getName } catch { case e: Exception => e.printStackTrace(); throw e; } filename } def getExamplesJarAbsolutePath(sparkHomeDir: Path): String = { val jarName = getExamplesJarName() val jarPathsFound = Files .walk(sparkHomeDir) .filter(Files.isRegularFile(_)) .filter((f: Path) => {f.toFile.getName == jarName}) // we should not have more than one here under current test build dir // we only need one though val jarPath = jarPathsFound .iterator() .asScala .map(_.toAbsolutePath.toString) .toArray .headOption jarPath match { case Some(jar) => jar case _ => throw new SparkException(s"No valid $jarName file was found " + s"under spark home test dir ${sparkHomeDir.toAbsolutePath}!") } } def isHadoop3(): Boolean = { VersionInfo.getVersion.startsWith("3") } }
dbtsai/spark
resource-managers/kubernetes/integration-tests/src/test/scala/org/apache/spark/deploy/k8s/integrationtest/Utils.scala
Scala
apache-2.0
4,377
package spire package macros import org.scalatest.FunSuite import org.scalatest.Matchers import org.scalatest.prop.GeneratorDrivenPropertyChecks import org.scalacheck.{Arbitrary, Gen} class CheckedTest extends FunSuite with GeneratorDrivenPropertyChecks with Matchers { import Checked.checked import Arbitrary.arbitrary case class NotZero[A](value: A) implicit def arbNotZeroLong = Arbitrary(arbitrary[Long] filter (_ != 0L) map (NotZero(_))) implicit def arbNotZeroInt = Arbitrary(arbitrary[Int] filter (_ != 0L) map (NotZero(_))) def checkForLongOverflow(value: BigInt, check: => Long) = { if (value.isValidLong) { check should equal (value.toLong) } else { an[ArithmeticException] should be thrownBy { check } } } def checkForIntOverflow(value: BigInt, check: => Int) = { if (value.isValidInt) { check should equal (value.toInt) } else { an[ArithmeticException] should be thrownBy { check } } } test("Negate of Int.MinValue overflows") { val x = Int.MinValue an[ArithmeticException] should be thrownBy { checked(-x) } } test("Int negate overflow throws arithmetic exception") { forAll("x") { (x: Int) => checkForIntOverflow(-BigInt(x), checked(-x)) } } test("Int addition overflow throws arithmetic exception") { forAll("x", "y") { (x: Int, y: Int) => checkForIntOverflow(BigInt(x) + BigInt(y), checked(x + y)) } } test("Int subtraction overflow throws arithmetic exception") { forAll("x", "y") { (x: Int, y: Int) => checkForIntOverflow(BigInt(x) - BigInt(y), checked(x - y)) } } test("Int multiplication overflow throws arithmetic exception") { forAll("x", "y") { (x: Int, y: Int) => checkForIntOverflow(BigInt(x) * BigInt(y), checked(x * y)) } } test("Int division overflow throws arithmetic exception") { forAll("x", "y") { (x: Int, y: NotZero[Int]) => checkForIntOverflow(BigInt(x) / BigInt(y.value), checked(x / y.value)) } } def distSq(x: Long, y: Long): BigInt = BigInt(x) * BigInt(x) + BigInt(y) * BigInt(y) test("Int euclidean square distance overflow throws arithmetic exception") { forAll("x", "y") { (x: Int, y: Int) => checkForIntOverflow(distSq(x, y), checked(x * x + y * y)) } } test("Negate of Long.MinValue overflows") { val x = Long.MinValue an[ArithmeticException] should be thrownBy { checked(-x) } } test("Long negate overflow throws arithmetic exception") { forAll("x") { (x: Long) => checkForLongOverflow(-BigInt(x), checked(-x)) } } test("Long addition overflow throws arithmetic exception") { forAll("x", "y") { (x: Long, y: Long) => checkForLongOverflow(BigInt(x) + BigInt(y), checked(x + y)) } } test("Long subtraction overflow throws arithmetic exception") { forAll("x", "y") { (x: Long, y: Long) => checkForLongOverflow(BigInt(x) - BigInt(y), checked(x - y)) } } test("Long multiplication overflow throws arithmetic exception") { forAll("x", "y") { (x: Long, y: Long) => checkForLongOverflow(BigInt(x) * BigInt(y), checked(x * y)) } } test("Long division overflow throws arithmetic exception") { forAll("x", "y") { (x: Long, y: NotZero[Long]) => checkForLongOverflow(BigInt(x) / BigInt(y.value), checked(x / y.value)) } } test("Long euclidean square distance overflow throws arithmetic exception") { forAll("x", "y") { (x: Long, y: Long) => checkForLongOverflow(distSq(x, y), checked(x * x + y * y)) } } test("Int upgrades to Long for overflow checks when mixed in binary op") { Checked.option { val x = 2L val y = Int.MaxValue x + y } should equal(Some(Int.MaxValue.toLong + 2)) Checked.option { val x = 2L val y = Int.MaxValue y + x } should equal(Some(Int.MaxValue.toLong + 2)) an[ArithmeticException] should be thrownBy (checked { val x = Long.MaxValue val y = 2 x * y }) an[ArithmeticException] should be thrownBy (checked { val x = Long.MaxValue val y = 2 y * x }) } test("Byte and Short upgrade to Int when mixed") { an[ArithmeticException] should be thrownBy (checked { val x = Int.MaxValue val y = (2: Byte) x * y }) an[ArithmeticException] should be thrownBy (checked { val x = Int.MaxValue val y = (2: Byte) y * x }) an[ArithmeticException] should be thrownBy (checked { val x = Int.MaxValue val y = (2: Short) x * y }) an[ArithmeticException] should be thrownBy (checked { val x = Int.MaxValue val y = (2: Short) y * x }) } }
rklaehn/spire
macros/src/test/scala/spire/macros/CheckedTest.scala
Scala
mit
4,723
package net.vanfleteren.objectvalidation import org.scalactic.{Bad, Every, Fail, Good, One, Or, Pass} /** * Methods returning T Or Every[Error] should be used first on the actual value being validated. * The methods returning ValidationError can be chained on them later using when. * * For example: * * val x = Some("string") * validate(required(x).when(notEmpty)) * * will return String Or Every[Error] only when the passed option is defined and has a non empty string. * */ trait DefaultValidations { type ValidationError = org.scalactic.Validation[Error] /** * The value t should be valid according the the passed validator * @param value alue to validate * @param validator the actual Validator that will do the validation * @tparam T the type of the value */ def valid[T](value: T)(implicit validator: T => T Or Every[Error]): T Or Every[Error] = { validator(value) } /** * If the option is defined, it should be valid. If it is None, it is also considered valid. */ def valid[T](t: Option[T])(implicit validator: T => T Or Every[Error]): Option[T] Or Every[Error] = { if (t.isDefined) { validator(t.get).map(Some(_)) } else { Good(None) } } /** * Always passes validation */ def ok[T](t: T): T Or One[Error] = { Good(t) } /** * The passed option must be defined. */ def require[T](value: Option[T]): T Or One[Error] = { value.map(Good(_)).getOrElse(Bad(One(Error(s"verplicht")))) } /** * The passed option is always good. Acts the same as ok, but might be clearer to use. */ def optional[T](value: Option[T]): Option[T] Or One[Error] = { Good(value) } /** * Only executes the passed validation if the option is defined. * For example: * * Since minLength expects an actual String and not an Option, you need to wrap minLength in opt * * validate(optional(Some("string)).when(opt(minLength(2))) * * * @param validation * @param value * @tparam T * @return */ def opt[T](validation: T => ValidationError)(value: Option[T]): ValidationError = { if (value.isDefined) { validation(value.get) } else { Pass } } /** * String should be minimum length * @param length * @param value * @return */ def minLength(length: Int)(value: String): ValidationError = { if (value.length >= length) { Pass } else { Fail(Error(s"Lengte moet minstens $length zijn")) } } /** * String should not be empty * @param value * @return */ def notEmpty(value: String): ValidationError = { if (value != null && value.trim.length > 0) { Pass } else { Fail(Error(s"Mag niet leeg zijn")) } } /** * The value to be validated should be one of the passed values */ def isOneOf[T](values:Set[T])(value:T): ValidationError = { if(values.contains(value)) { Pass } else { Fail(Error(s"$value is not a valid value")) } } } object DefaultValidations extends DefaultValidations
cvanfleteren/objectvalidation
src/main/scala/net/vanfleteren/objectvalidation/DefaultValidations.scala
Scala
apache-2.0
3,073
// Copyright 2011-2012 James Michael Callahan // See LICENSE-2.0 file for licensing information. package org.scalagfx.math //-------------------------------------------------------------------------------------------------- // P O S 2 D //-------------------------------------------------------------------------------------------------- //-------------------------------------------------------------------------------------------------- // Supported Subset of Operations: // // P + S -> P P - S -> P P * S -> P P / V -> P // V + S -> V V - S -> V V * S -> V V / S -> V // // --- P - P -> V --- --- // P + V -> P P - V -> P P * V -> P P / V -> P // V + V -> V V - V -> V V * V -> V V / V -> V // // S = Scalar(Double), P = Position(Pos2d), V = Vector(Vec2d) //-------------------------------------------------------------------------------------------------- /** Companion object for Pos2d. */ object Pos2d { //------------------------------------------------------------------------------------------------ // C R E A T I O N //------------------------------------------------------------------------------------------------ /** Create a new position from components. */ def apply(x: Double, y: Double) = new Pos2d(x, y) /** Create a new position in which all components are the same scalar value. */ def apply(s: Double) = new Pos2d(s, s) /** The origin. */ val origin: Pos2d = Pos2d(0.0) //------------------------------------------------------------------------------------------------ // C O M P A R I S O N //------------------------------------------------------------------------------------------------ /** The component-wise comparison of whether two positions are within a given epsilon. */ def equiv(a: Pos2d, b: Pos2d, epsilon: Double): Boolean = a.equiv(b, epsilon) /** The component-wise comparison of whether two positions are within a type specific * epsilon. */ def equiv(a: Pos2d, b: Pos2d): Boolean = (a equiv b) /** The component-wise minimum of two positions. */ def min(a: Pos2d, b: Pos2d): Pos2d = compwise(a, b, scala.math.min(_, _)) /** The component-wise maximum of two positions. */ def max(a: Pos2d, b: Pos2d): Pos2d = compwise(a, b, scala.math.max(_, _)) //------------------------------------------------------------------------------------------------ // I N T E R P O L A T I O N //------------------------------------------------------------------------------------------------ /** Linearly interpolate between two positions. */ def lerp(a: Pos2d, b: Pos2d, t: Double): Pos2d = compwise(a, b, Scalar.lerp(_, _, t)) /** Smooth-step interpolate between two positions. */ def smoothlerp(a: Pos2d, b: Pos2d, t: Double): Pos2d = compwise(a, b, Scalar.smoothlerp(_, _, t)) //------------------------------------------------------------------------------------------------ // U T I L I T Y //------------------------------------------------------------------------------------------------ /** Create a position who's components are generated by applying the given binary operator * to each of the corresponding components of the given two positions. */ def compwise(a: Pos2d, b: Pos2d, f: (Double, Double) => Double): Pos2d = Pos2d(f(a.x, b.x), f(a.y, b.y)) } /** An immutable 2-dimensional vector of Double element type used to represent a position in * space for use in computational geometry applications. * * This is not meant to be a general purpose vector, but rather to only defined the limited * set of operations which make geometric sense. This allows Scala type checking to catch * many of the most common errors where scalars, vectors or positions are being accidently * used in a way that is geometrically meaningless. */ class Pos2d(val x: Double, val y: Double) extends Vector2dLike { type Self = Pos2d //------------------------------------------------------------------------------------------------ // C O M P O N E N T O P S //------------------------------------------------------------------------------------------------ /** A copy of this position in which the X component has been replaced with the given * value. */ def newX(v: Double): Pos2d = Pos2d(v, y) /** A copy of this position in which Y component has been replaced with the given value. */ def newY(v: Double): Pos2d = Pos2d(x, v) /** A copy of this position in which the component with the given index as been replaced. */ def newComp(i: Int, v: Double) = i match { case 0 => Pos2d(v, y) case 1 => Pos2d(x, v) case _ => throw new IllegalArgumentException("Invalid index (" + i + ")!") } //------------------------------------------------------------------------------------------------ // U N A R Y O P S //------------------------------------------------------------------------------------------------ /** A position reflected about the origin. */ def negated: Pos2d = Pos2d(-x, -y) //------------------------------------------------------------------------------------------------ // O P E R A T O R S //------------------------------------------------------------------------------------------------ /** The addition of a scalar to all components of this position. */ def + (scalar: Double): Pos2d = Pos2d(x+scalar, y+scalar) /** The component-wise addition of a vector with this position. */ def + (that: Vec2d): Pos2d = Pos2d(x+that.x, y+that.y) /** The subtraction of a scalar value to all components of this position. */ def - (scalar: Double): Pos2d = Pos2d(x-scalar, y-scalar) /** The component-wise subtraction a vector from this position. */ def - (that: Vec2d): Pos2d = Pos2d(x-that.x, y-that.y) /** The vector from the given position to this position. */ def - (that: Pos2d): Vec2d = Vec2d(x-that.x, y-that.y) /** The product of a scalar value with all components of this position. */ def * (scalar: Double): Pos2d = Pos2d(x*scalar, y*scalar) /** The component-wise multiplication of a vector with this position. */ def * (that: Vec2d): Pos2d = Pos2d(x*that.x, y*that.y) /** The quotient of dividing all components of this position by a scalar value. */ def / (scalar: Double): Pos2d = Pos2d(x/scalar, y/scalar) /** The component-wise division of this position by a vector. */ def / (that: Vec2d): Pos2d = Pos2d(x/that.x, y/that.y) //------------------------------------------------------------------------------------------------ // C O M P A R I S O N //------------------------------------------------------------------------------------------------ /** Compares this position to the specified value for equality. */ override def equals(that: Any): Boolean = that match { case that: Pos2d => (that canEqual this) && (x == that.x) && (y == that.y) case _ => false } /** A method that should be called from every well-designed equals method that is open * to be overridden in a subclass. */ def canEqual(that: Any): Boolean = that.isInstanceOf[Pos2d] /** Returns a hash code value for the object. */ override def hashCode: Int = 43 * (41 + x.##) + y.## //------------------------------------------------------------------------------------------------ // U T I L I T Y //------------------------------------------------------------------------------------------------ /** Tests whether the given predicate holds true for all of the corresponding components * of this and the given position. */ def forall(that: Pos2d)(p: (Double, Double) => Boolean): Boolean = p(x, that.x) && p(y, that.y) /** Tests whether the given predicate holds true for any of the corresponding components * of this and the given position. */ def forany(that: Pos2d)(p: (Double, Double) => Boolean): Boolean = p(x, that.x) || p(y, that.y) /** Builds a new position by applying a function to each component of this position. */ def map(f: (Double) => Double): Pos2d = Pos2d(f(x), f(y)) //------------------------------------------------------------------------------------------------ // C O N V E R S I O N //------------------------------------------------------------------------------------------------ /** Convert to a string representation. */ override def toString() = "Pos2d(%.2f, %.2f)".format(x, y) }
JimCallahan/Graphics
src/org/scalagfx/math/Pos2d.scala
Scala
apache-2.0
9,662
/* * Copyright (c) 2002-2018 "Neo Technology," * Network Engine for Objects in Lund AB [http://neotechnology.com] * * This file is part of Neo4j. * * Neo4j is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ package org.neo4j.internal.cypher.acceptance import org.neo4j.cypher.{SyntaxException, NewPlannerTestSupport, ExecutionEngineFunSuite} class SkipLimitAcceptanceTest extends ExecutionEngineFunSuite { test("SKIP should not allow identifiers") { intercept[SyntaxException](execute("MATCH (n) RETURN n SKIP n.count")) } test("LIMIT should not allow identifiers") { intercept[SyntaxException](execute("MATCH (n) RETURN n LIMIT n.count")) } test("SKIP with an expression that does not depend on identifiers should work") { 1 to 10 foreach { _ => createNode() } val query = "MATCH (n) RETURN n SKIP toInt(rand()*9)" val result = execute(query) result.toList should not be empty } test("LIMIT with an expression that does not depend on identifiers should work") { 1 to 3 foreach { _ => createNode() } val query = "MATCH (n) RETURN n LIMIT toInt(ceil(1.7))" val result = execute(query) result.toList should have size 2 } }
HuangLS/neo4j
community/cypher/acceptance/src/test/scala/org/neo4j/internal/cypher/acceptance/SkipLimitAcceptanceTest.scala
Scala
apache-2.0
1,775
import sbt._ import de.wayofquality.sbt.testlogconfig.TestLogConfig.autoImport._ import blended.sbt.Dependencies object BlendedAkka extends ProjectFactory { private[this] val helper = new ProjectSettings( projectName = "blended.akka", description = "Provide OSGi services and API to use Actors in OSGi bundles with a shared ActorSystem.", deps = Seq( Dependencies.orgOsgi, Dependencies.akkaActor, Dependencies.domino, Dependencies.scalatest % "test", Dependencies.logbackCore % "test", Dependencies.logbackClassic % "test" ), adaptBundle = b => b.copy( bundleActivator = s"${b.bundleSymbolicName}.internal.BlendedAkkaActivator", exportPackage = Seq( b.bundleSymbolicName, s"${b.bundleSymbolicName}.protocol" ) ) ) { override def settings: Seq[sbt.Setting[_]] = defaultSettings ++ Seq( Test / testlogDefaultLevel := "INFO", Test / testlogLogPackages ++= Map( "blended" -> "TRACE" ) ) } override val project = helper.baseProject.dependsOn( BlendedUtilLogging.project, BlendedContainerContextApi.project, BlendedDomino.project, BlendedTestsupport.project % "test" ) }
lefou/blended
project/BlendedAkka.scala
Scala
apache-2.0
1,224
package org.reactivecouchbase.rs.scaladsl /** * Handles the retries on error. Similar to `RetryBuilder` of java client of couchbase. */ object Retries { import scala.concurrent._ import scala.concurrent.duration._ import akka.pattern.after import akka.actor.Scheduler /** * Tries to invoke a future block as many time as asked on occurrence of a specific type of error. A fix delay/interval * is applied before each invocation. * Note that if the errors keep occurring more than the maximum allowed number of attempts, the last error that * triggered the extraneous attempt will be wrapped as the cause inside a CannotRetryException * * @param retries Number of retries to be made * @param delay Interval between two consecutive retries * @param errFilter Function to filter a specific type of error * @param f Block of code to be retried, so this should be the couchbase query to retry on failure * @param ec Execution context * @param s Scheduler * @tparam T Type of result * @return Either the result inside a future or an exception */ def retryOnError[T]( retries: Int = 1, delay: FiniteDuration = 0.millis, errFilter: Throwable => Boolean = _ => true )( f: => Future[T] )( implicit ec: ExecutionContext, s: Scheduler ): Future[T] = { f recoverWith { case e if errFilter(e) && retries > 0 => after(delay, s)(retryOnError(retries - 1, delay)(f)) case e if errFilter(e) && retries == 0 => Future.failed(CannotRetryException(s"All retries failed because of ${e.getMessage}")) } } } /** * Thrown exception if error persist even after maximum number of retries. * * @param message Message exception */ case class CannotRetryException(message: String) extends RuntimeException(message)
ReactiveCouchbase/reactivecouchbase-rs-core
src/main/scala/org/reactivecouchbase/rs/scaladsl/Retries.scala
Scala
apache-2.0
1,859
package core.clustering.model import core.DataSet import core.plotting.Plotting import core.util.Distances.DistanceFunc import org.jfree.chart.{ChartFactory, ChartFrame} import org.jfree.data.xy.{XYSeries, XYSeriesCollection} /** * This class represents */ class CentroidModel(clusters: List[CentroidCluster], assignments :Array[Int], dataSet: DataSet) extends Plotting{ /** * * @return */ def getClusters: List[CentroidCluster] = this.clusters /** * * @return */ def getAssignments : Array[Int] = this.assignments def evaluateInterClusterDistances(distanceFunc: DistanceFunc): Double ={ val visited = new Array[Boolean](clusters.size) var distanceSum = 0.0 for(i <- clusters.indices) if(!visited(i)) for(j <-clusters.indices) if(i!=j && !visited(j)) distanceSum += distanceFunc(clusters(i).getCentroid, clusters(j).getCentroid) distanceSum/clusters.size } def evaluateIntraClusterDistances(distanceFunc: DistanceFunc): Double ={ val distanceSum = clusters.map(x => x.distancesSum(distanceFunc)).sum distanceSum/dataSet.data.size } /** * * @param name * @param dimensionX * @param dimensionY */ def render2D(name:String, dimensionX: Int, dimensionY: Int){ // Por cada cluster creamos una serie XY val xyCollection = new XYSeriesCollection() var index = 0 for(cluster <- clusters){ val series = new XYSeries("Cluster_"+index) index = index +1 // Iteramos por los miembros del cluster for(index <- cluster.getMembers){ val x = dataSet.data(index)(dimensionX) val y = dataSet.data(index)(dimensionY) series.add(x,y) } xyCollection.addSeries(series) } // Ahora creamos una serie unicamente para los centroides val centroidSeries = new XYSeries("Centroids") for(cluster <- clusters){ val cX = cluster.getCentroid(dimensionX) val cY = cluster.getCentroid(dimensionY) centroidSeries.add(cX, cY) } xyCollection.addSeries(centroidSeries) val chart = ChartFactory.createScatterPlot(name, "Dim_"+dimensionX, "Dim_"+dimensionY, xyCollection) // create and display a frame... val frame = new ChartFrame("First", chart) frame.pack() frame.setVisible(true) } }
fernandoj92/ScalaML
src/main/scala/core/clustering/model/CentroidModel.scala
Scala
gpl-3.0
2,370
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.predictionio.data.storage.s3 import java.io.ByteArrayInputStream import org.apache.predictionio.data.storage.Model import org.apache.predictionio.data.storage.Models import org.apache.predictionio.data.storage.StorageClientConfig import com.amazonaws.services.s3.AmazonS3 import com.amazonaws.services.s3.model.DeleteObjectRequest import com.amazonaws.services.s3.model.GetObjectRequest import com.amazonaws.services.s3.model.ObjectMetadata import com.amazonaws.services.s3.model.PutObjectRequest import com.amazonaws.services.s3.model.S3Object import com.google.common.io.ByteStreams import grizzled.slf4j.Logging class S3Models(s3Client: AmazonS3, config: StorageClientConfig, prefix: String) extends Models with Logging { def insert(i: Model): Unit = { def getModel(bucketName: String, key: String): Option[Model] = { val data = i.models val metadata: ObjectMetadata = new ObjectMetadata() metadata.setContentLength(data.length) val req = new PutObjectRequest(bucketName, key, new ByteArrayInputStream(data), metadata) try { s3Client.putObject(req) } catch { case e: Throwable => error(s"Failed to insert a model to s3://${bucketName}/${key}", e) } None } doAction(i.id, getModel) } def get(id: String): Option[Model] = { def getModel(bucketName: String, key: String): Option[Model] = { val s3object: S3Object = s3Client.getObject(new GetObjectRequest( bucketName, key)); val is = s3object.getObjectContent try { Some(Model( id = id, models = ByteStreams.toByteArray(is))) } catch { case e: Throwable => error(s"Failed to get a model from s3://${bucketName}/${key}", e) None } finally { is.close() } } doAction(id, getModel) } def delete(id: String): Unit = { def deleteModel(bucketName: String, key: String): Option[Model] = { try { s3Client.deleteObject(new DeleteObjectRequest(bucketName, key)) } catch { case e: Throwable => error(s"Failed to delete s3://${bucketName}/${key}", e) } None } doAction(id, deleteModel) } def doAction(id: String, action: (String, String) => Option[Model]): Option[Model] = { config.properties.get("BUCKET_NAME") match { case Some(bucketName) => val key = config.properties.get("BASE_PATH") match { case Some(basePath) => s"${basePath}/${prefix}${id}" case None => s"${prefix}${id}" } action(bucketName, key) case None => error("S3 bucket is empty.") None } } }
PredictionIO/PredictionIO
storage/s3/src/main/scala/org/apache/predictionio/data/storage/s3/S3Models.scala
Scala
apache-2.0
3,477
/* * Scala (https://www.scala-lang.org) * * Copyright EPFL and Lightbend, Inc. * * Licensed under Apache License 2.0 * (http://www.apache.org/licenses/LICENSE-2.0). * * See the NOTICE file distributed with this work for * additional information regarding copyright ownership. */ package scala package tools.nsc import Properties.{versionMsg, residentPromptString} import scala.reflect.internal.util.FakePos import scala.tools.nsc.reporters.Reporter import scala.tools.util.SystemExit abstract class Driver { val prompt = residentPromptString var reporter: Reporter = _ protected var command: CompilerCommand = _ protected var settings: Settings = _ /** Forward errors to the (current) reporter. */ protected def scalacError(msg: String): Unit = { reporter.error(FakePos("scalac"), msg + "\\n scalac -help gives more information") } /** True to continue compilation. */ protected def processSettingsHook(): Boolean = { if (settings.version) { reporter echo versionMsg ; false } else !reporter.hasErrors } protected def newCompiler(): Global protected def doCompile(compiler: Global): Unit = { if (command.files.isEmpty) { reporter.echo(command.usageMsg) reporter.echo(compiler.pluginOptionsHelp) } else { val run = new compiler.Run() run compile command.files reporter.finish() } } def process(args: Array[String]): Boolean = { val ss = new Settings(scalacError) reporter = Reporter(ss) command = new CompilerCommand(args.toList, ss) settings = command.settings if (processSettingsHook()) { val compiler = newCompiler() reporter = compiler.reporter // adopt the compiler's reporter, which may be custom try { if (reporter.hasErrors) reporter.flush() else if (command.shouldStopWithInfo) reporter.echo(command.getInfoMessage(compiler)) else doCompile(compiler) } catch { case _: SystemExit => // user requested to bail case ex: Throwable => compiler.reportThrowable(ex) ex match { case FatalError(msg) => // signals that we should fail compilation. case _ => throw ex // unexpected error, tell the outside world. } } } else if (reporter.hasErrors) reporter.flush() !reporter.hasErrors } def main(args: Array[String]): Unit = System.exit(if (process(args)) 0 else 1) }
scala/scala
src/compiler/scala/tools/nsc/Driver.scala
Scala
apache-2.0
2,483
package nlpdata.util import cats.Show import cats.Order import cats.Monoid import scala.language.implicitConversions /* Welcome to the new world. * The world of ad-hoc refinement types requiring nothing more from the user than a single method call. * NO MORE WILL YOU BE UNCERTAIN, ON THE FIRST LINE OF YOUR METHOD, * WHETHER THE STRING WAS GUARANTEED TO BE LOWERCASE. * FOR YOU HAVE GUARANTEED IT ALREADY IN THE TYPE SYSTEM. * This is your weapon. This is your LowerCaseString. * Wield it with pride. * NOTE: there are projects to help you do refinement typing...but they seem a bit heavier weight for client code...idk * Anyway, don't try to read the code just below. The point is that you can write: * import nlpdata.util.LowerCaseStrings._ * and then you get the _.lowerCase method on strings, which yields a LowerCaseString, * as well as an implicit conversion from LowerCaseString back to String. * In addition, certain uses of existing methods on String will preserve LowerCaseString (as of now, just +); * if you want there to be more, feel free to let me (Julian) know and I can add them here. * I know it seems like weird extra complication, but honestly I was already having bugs from not lowercasing strings, * despite sprinkling calls to .toLowerCase around so much that the code had gotten noticeably harder to read. */ sealed trait LowerCaseStringCapsule0 { type LowerCaseString sealed trait LowerCaseStringOps { def lowerCase(s: String): LowerCaseString def +(s1: LowerCaseString, s2: LowerCaseString): LowerCaseString def contains(s1: LowerCaseString, s2: LowerCaseString): Boolean def startsWith(s1: LowerCaseString, s2: LowerCaseString): Boolean def endsWith(s1: LowerCaseString, s2: LowerCaseString): Boolean def substring(s: LowerCaseString, beginIndex: Int): LowerCaseString def substring(s: LowerCaseString, beginIndex: Int, endIndex: Int): LowerCaseString } val LowerCaseStringOpsImpl: LowerCaseStringOps implicit def lowerCaseStringToString(lcs: LowerCaseString): String } sealed trait LowerCaseStringCapsule extends LowerCaseStringCapsule0 { implicit def wrapLowerCaseString(lcs: LowerCaseString): LowerCaseStringWrapper implicit def wrapStringToMakeLowerCase(s: String): StringToLowerCaseWrapper implicit def lowerCaseStringShow: Show[LowerCaseString] implicit def lowerCaseStringMonoid: Monoid[LowerCaseString] implicit def lowerCaseStringOrder: Order[LowerCaseString] } protected[util] object LowerCaseStringsImpl extends LowerCaseStringCapsule { override type LowerCaseString = String override object LowerCaseStringOpsImpl extends LowerCaseStringOps { override def lowerCase(s: String): LowerCaseString = s.toLowerCase override def +(s1: LowerCaseString, s2: LowerCaseString) = s1 + s2 override def contains(s1: LowerCaseString, s2: LowerCaseString) = s1 contains s2 override def startsWith(s1: LowerCaseString, s2: LowerCaseString) = s1 startsWith s2 override def endsWith(s1: LowerCaseString, s2: LowerCaseString) = s1 endsWith s2 override def substring(s: LowerCaseString, beginIndex: Int) = s.substring(beginIndex) override def substring(s: LowerCaseString, beginIndex: Int, endIndex: Int) = s.substring(beginIndex, endIndex) } override implicit def lowerCaseStringToString(lcs: LowerCaseString): String = lcs override implicit def wrapLowerCaseString(lcs: LowerCaseString) = new LowerCaseStringWrapper(lcs.asInstanceOf[LowerCaseStrings.LowerCaseString]) // upcasted version of this object override implicit def wrapStringToMakeLowerCase(s: String) = new StringToLowerCaseWrapper(s) override implicit val lowerCaseStringShow: Show[LowerCaseString] = new Show[LowerCaseString] { override def show(lcs: LowerCaseString): String = lcs.toString } override implicit val lowerCaseStringMonoid: Monoid[LowerCaseString] = new Monoid[LowerCaseString] { def empty: LowerCaseString = "" def combine(x: LowerCaseString, y: LowerCaseString): LowerCaseString = x + y override def combineAll(xs: TraversableOnce[LowerCaseString]): LowerCaseString = { val sb = new StringBuilder xs.foreach(sb.append) sb.toString } } override implicit val lowerCaseStringOrder: Order[LowerCaseString] = new Order[LowerCaseString] { override def eqv(x: String, y: String): Boolean = x == y override def compare(x: String, y: String): Int = if (x eq y) 0 else x compareTo y } } // take value with opaque-sealed type from the package object import LowerCaseStrings.LowerCaseString protected[util] class LowerCaseStringWrapper(val lcs: LowerCaseString) extends AnyVal { def +(other: LowerCaseString): LowerCaseString = LowerCaseStrings.LowerCaseStringOpsImpl.+(lcs, other) def contains(other: LowerCaseString): Boolean = LowerCaseStrings.LowerCaseStringOpsImpl.contains(lcs, other) def startsWith(other: LowerCaseString): Boolean = LowerCaseStrings.LowerCaseStringOpsImpl.startsWith(lcs, other) def endsWith(other: LowerCaseString): Boolean = LowerCaseStrings.LowerCaseStringOpsImpl.endsWith(lcs, other) def substring(beginIndex: Int): LowerCaseString = LowerCaseStrings.LowerCaseStringOpsImpl.substring(lcs, beginIndex) def substring(beginIndex: Int, endIndex: Int): LowerCaseString = LowerCaseStrings.LowerCaseStringOpsImpl.substring(lcs, beginIndex, endIndex) } protected[util] class StringToLowerCaseWrapper(val s: String) extends AnyVal { def lowerCase = LowerCaseStrings.LowerCaseStringOpsImpl.lowerCase(s) }
julianmichael/nlpdata
nlpdata/src/nlpdata/util/LowerCaseString.scala
Scala
mit
5,631
/* Copyright 2009-2021 EPFL, Lausanne */ import stainless.lang._ object ArrayNested1 { def test(): Int = { var a = Array(1, 2, 0) def nested(): Unit = { require(a.length == 3) a = a.updated(1, 5) } nested() a(1) } ensuring(_ == 5) }
epfl-lara/stainless
frontends/benchmarks/imperative/valid/ArrayNested1.scala
Scala
apache-2.0
277
package com.databricks.spark.sql.perf.mllib.feature import org.apache.spark.ml import org.apache.spark.ml.linalg.{Vector, Vectors} import org.apache.spark.ml.PipelineStage import org.apache.spark.sql._ import org.apache.spark.sql.functions._ import com.databricks.spark.sql.perf.mllib.OptionImplicits._ import com.databricks.spark.sql.perf.mllib.data.DataGenerator import com.databricks.spark.sql.perf.mllib.{BenchmarkAlgorithm, MLBenchContext, TestFromTraining} /** Object for testing VectorAssembler performance */ object VectorAssembler extends BenchmarkAlgorithm with TestFromTraining { private def getInputCols(numInputCols: Int): Array[String] = { Array.tabulate(numInputCols)(i => s"c${i}") } override def trainingDataSet(ctx: MLBenchContext): DataFrame = { import ctx.params._ require(numInputCols.get <= numFeatures.get, s"numInputCols (${numInputCols}) cannot be greater than numFeatures (${numFeatures}).") val df = DataGenerator.generateContinuousFeatures( ctx.sqlContext, numExamples, ctx.seed(), numPartitions, numFeatures) val slice = udf { (v: Vector, numSlices: Int) => val data = v.toArray val n = data.length.toLong (0 until numSlices).map { i => val start = ((i * n) / numSlices).toInt val end = ((i + 1) * n / numSlices).toInt Vectors.dense(data.slice(start, end)) } } val inputCols = getInputCols(numInputCols.get) df.select(slice(col("features"), lit(numInputCols.get)).as("slices")) .select((0 until numInputCols.get).map(i => col("slices")(i).as(inputCols(i))): _*) } override def getPipelineStage(ctx: MLBenchContext): PipelineStage = { import ctx.params._ val inputCols = getInputCols(numInputCols.get) new ml.feature.VectorAssembler() .setInputCols(inputCols) } }
databricks/spark-sql-perf
src/main/scala/com/databricks/spark/sql/perf/mllib/feature/VectorAssembler.scala
Scala
apache-2.0
1,854
package xfp.simulation import xfp.fixedpoint.{FixedPointFormat => FPFormat, Interval} object TestExamples extends App with Simulation { //val err = findMaxError(bspline1_1D, bspline1_1I, FPFormat(16, 14), Interval(0.0, 1.0), 15, 0.1) var err = findLowerBound(bspline1_1D, bspline1_1I, FPFormat(16, 14), Interval(0.0, 1.0), 15) println("max error %1.8f".format(err._1)) err = findLowerBound(bspline1_2D, bspline1_2I, FPFormat(16, 14), Interval(0.0, 1.0), 15) println("max error %1.8f".format(err._1)) err = findLowerBound(bspline1_3D, bspline1_3I, FPFormat(16, 14), Interval(0.0, 1.0), 15) println("max error %1.8f".format(err._1)) err = findLowerBound(bspline1_4D, bspline1_4I, FPFormat(16, 14), Interval(0.0, 1.0), 15) println("max error %1.8f".format(err._1)) println("\n bspline2: ") err = findLowerBound(bspline2_1D, bspline2_1I, FPFormat(16, 14), Interval(0.0, 1.0), 15) println("max error %1.8f".format(err._1)) err = findLowerBound(bspline2_2D, bspline2_2I, FPFormat(16, 14), Interval(0.0, 1.0), 15) println("max error %1.8f".format(err._1)) err = findLowerBound(bspline2_3D, bspline2_3I, FPFormat(16, 14), Interval(0.0, 1.0), 15) println("max error %1.8f".format(err._1)) err = findLowerBound(bspline2_4D, bspline2_4I, FPFormat(16, 14), Interval(0.0, 1.0), 15) println("max error %1.8f".format(err._1)) err = findLowerBound(bspline2_5D, bspline2_5I, FPFormat(16, 14), Interval(0.0, 1.0), 15) println("max error %1.8f".format(err._1)) def logPolynomial1D(x: Double): Double = x - 0.5*(x*x) + 0.333*(x*x*x) - 0.25*(x*x*x*x) def logPolynomial1I(x: Int): Int = { val tmp0 = ((x * x) >> 14) val tmp1 = ((16384 * tmp0) >> 14) val tmp2 = ((x << 1) - tmp1) val tmp3 = ((x * x) >> 14) val tmp4 = ((tmp3 * x) >> 14) val tmp5 = ((21823 * tmp4) >> 15) val tmp6 = (tmp2 + tmp5) val tmp7 = ((x * x) >> 14) val tmp8 = ((tmp7 * x) >> 14) val tmp9 = ((tmp8 * x) >> 14) val tmp10 = ((16384 * tmp9) >> 15) val tmp11 = (tmp6 - tmp10) return tmp11 } def logPolynomial2D(x: Double): Double = x * (1.0 + x * (-0.5 + x * (0.333 - 0.25 * x))) def logPolynomial2I(x: Int): Int = { val tmp0 = ((16384 * x) >> 15) val tmp1 = ((21823 - (tmp0 << 1)) >> 1) val tmp2 = ((x * tmp1) >> 14) val tmp3 = (-16384 + tmp2) val tmp4 = ((x * tmp3) >> 14) val tmp5 = (((16384 << 1) + tmp4) >> 1) val tmp6 = ((x * tmp5) >> 13) return tmp6 } def logPolynomial3D(x: Double): Double = (((-0.5 * (x * x)) + (x + ((x * (x * x)) * 0.333))) + (-0.25 * (x * (x * (x * x))))) def logPolynomial3I(x: Int): Int = { val tmp0 = ((x * x) >> 14) val tmp1 = ((-16384 * tmp0) >> 14) val tmp2 = ((x * x) >> 14) val tmp3 = ((x * tmp2) >> 14) val tmp4 = ((tmp3 * 21823) >> 15) val tmp5 = (((x << 1) + tmp4) >> 1) val tmp6 = (tmp1 + (tmp5 << 1)) val tmp7 = ((x * x) >> 14) val tmp8 = ((x * tmp7) >> 14) val tmp9 = ((x * tmp8) >> 14) val tmp10 = ((-16384 * tmp9) >> 15) val tmp11 = (tmp6 + tmp10) return tmp11 } def logPolynomial4D(x: Double): Double = (((-0.5 * (x * x)) + x) + ((0.333 * (x * (x * x))) + ((-0.25 * (x * x)) * (x * x)))) def logPolynomial4I(x: Int): Int = { val tmp0 = ((x * x) >> 14) val tmp1 = ((-16384 * tmp0) >> 14) val tmp2 = (tmp1 + (x << 1)) val tmp3 = ((x * x) >> 14) val tmp4 = ((x * tmp3) >> 14) val tmp5 = ((21823 * tmp4) >> 15) val tmp6 = ((x * x) >> 14) val tmp7 = ((-16384 * tmp6) >> 15) val tmp8 = ((x * x) >> 14) val tmp9 = ((tmp7 * tmp8) >> 14) val tmp10 = (tmp5 + tmp9) val tmp11 = (tmp2 + tmp10) return tmp11 } def bspline1_1D(x: Double): Double = ((((3.0 * (x * (x * x))) + (-6.0 * (x * x))) * 0.1666) + (4.0 * 0.1666)) def bspline1_1I(x: Int): Int = { val tmp0 = ((x * x) >> 14) val tmp1 = ((x * tmp0) >> 14) val tmp2 = ((24576 * tmp1) >> 14) val tmp3 = ((x * x) >> 14) val tmp4 = ((-24576 * tmp3) >> 14) val tmp5 = (tmp2 + (tmp4 << 1)) val tmp6 = ((tmp5 * 21837) >> 15) val tmp7 = ((16384 * 21837) >> 14) val tmp8 = (tmp6 + tmp7) return tmp8 } def bspline1_2D(x: Double): Double = ((((3.0 * (x * (x * x))) + (-6.0 * (x * x))) + 4.0) * 0.1666) def bspline1_2I(x: Int): Int = { val tmp0 = ((x * x) >> 14) val tmp1 = ((x * tmp0) >> 14) val tmp2 = ((24576 * tmp1) >> 14) val tmp3 = ((x * x) >> 14) val tmp4 = ((-24576 * tmp3) >> 14) val tmp5 = (tmp2 + (tmp4 << 1)) val tmp6 = ((tmp5 + (16384 << 1)) >> 1) val tmp7 = ((tmp6 * 21837) >> 14) return tmp7 } def bspline1_3D(x: Double): Double = ((4.0 + (((3.0 * x) + -6.0) * (x * x))) * 0.1666) def bspline1_3I(x: Int): Int = { val tmp0 = ((24576 * x) >> 14) val tmp1 = ((tmp0 + (-24576 << 1)) >> 1) val tmp2 = ((x * x) >> 14) val tmp3 = ((tmp1 * tmp2) >> 13) val tmp4 = (((16384 << 1) + tmp3) >> 1) val tmp5 = ((tmp4 * 21837) >> 14) return tmp5 } def bspline1_4D(x: Double): Double = ((4.0 + (((-6.0 * x) + (x * (3.0 * x))) * x)) * 0.1666) def bspline1_4I(x: Int): Int = { val tmp0 = ((-24576 * x) >> 14) val tmp1 = ((24576 * x) >> 14) val tmp2 = ((x * tmp1) >> 14) val tmp3 = ((tmp0 << 1) + tmp2) val tmp4 = ((tmp3 * x) >> 14) val tmp5 = (((16384 << 1) + tmp4) >> 1) val tmp6 = ((tmp5 * 21837) >> 14) return tmp6 } def bspline2_1D(x: Double): Double = (0.1666 * (((-3.0 * (x * (x * x))) + ((3.0 * (x * x)) + (3.0 * x))) + 1.0)) def bspline2_1I(x: Int): Int = { val tmp0 = ((x * x) >> 14) val tmp1 = ((x * tmp0) >> 14) val tmp2 = ((-24576 * tmp1) >> 14) val tmp3 = ((x * x) >> 14) val tmp4 = ((24576 * tmp3) >> 14) val tmp5 = ((24576 * x) >> 14) val tmp6 = ((tmp4 + tmp5) >> 1) val tmp7 = (tmp2 + (tmp6 << 1)) val tmp8 = (((tmp7 << 1) + 16384) >> 2) val tmp9 = ((21837 * tmp8) >> 14) return tmp9 } def bspline2_2D(x: Double): Double = (((((-3.0 * (x * (x * x))) + (3.0 * (x * x))) + (3.0 * x)) + 1.0) * 0.1666) def bspline2_2I(x: Int): Int = { val tmp0 = ((x * x) >> 14) val tmp1 = ((x * tmp0) >> 14) val tmp2 = ((-24576 * tmp1) >> 14) val tmp3 = ((x * x) >> 14) val tmp4 = ((24576 * tmp3) >> 14) val tmp5 = ((tmp2 + tmp4) << 2) val tmp6 = ((24576 * x) >> 14) val tmp7 = ((tmp5 + (tmp6 << 2)) >> 2) val tmp8 = (((tmp7 << 1) + 16384) >> 2) val tmp9 = ((tmp8 * 21837) >> 14) return tmp9 } def bspline2_3D(x: Double): Double = (((3.0 * x) + (1.0 + (x * (x + (x * (x * -3.0)))))) * 0.1666) def bspline2_3I(x: Int): Int = { val tmp0 = ((24576 * x) >> 14) val tmp1 = ((x * -24576) >> 14) val tmp2 = ((x * tmp1) >> 14) val tmp3 = ((x + (tmp2 << 1)) >> 1) val tmp4 = ((x * tmp3) >> 14) val tmp5 = (16384 + (tmp4 << 1)) val tmp6 = (((tmp0 << 1) + tmp5) >> 1) val tmp7 = ((tmp6 * 21837) >> 15) return tmp7 } def bspline2_4D(x: Double): Double = (0.1666 * (1.0 + (x * ((x + (-3.0 * (x * x))) + 3.0)))) def bspline2_4I(x: Int): Int = { val tmp0 = ((x * x) >> 14) val tmp1 = ((-24576 * tmp0) >> 14) val tmp2 = ((x + (tmp1 << 1)) >> 1) val tmp3 = (tmp2 + 24576) val tmp4 = ((x * tmp3) >> 13) val tmp5 = ((16384 + tmp4) >> 1) val tmp6 = ((21837 * tmp5) >> 15) return tmp6 } def bspline2_5D(x: Double): Double = ((1.0 + ((3.0 + (((x * -3.0) * x) + x)) * x)) * 0.1666) def bspline2_5I(x: Int): Int = { val tmp0 = ((x * -24576) >> 14) val tmp1 = ((tmp0 * x) >> 14) val tmp2 = (((tmp1 << 1) + x) >> 1) val tmp3 = (24576 + tmp2) val tmp4 = ((tmp3 * x) >> 13) val tmp5 = ((16384 + tmp4) >> 1) val tmp6 = ((tmp5 * 21837) >> 15) return tmp6 } def field_dc_motor_1D(i_f: Double, ia: Double, omega: Double): Double = { val theta, a, b, c, rho = 1.0; val epsilon = 0.1 (1/((epsilon + (theta * ia))) * (((theta * ((a + b) * (i_f * ia))) + (theta * (rho * i_f))) + -(c * (((i_f * i_f) * omega) * theta)))) } def field_dc_motor_1I(i_f: Int, ia: Int, omega: Int): Int = { val theta, a, b, c, rho = 16384; val epsilon = 26214 val tmp0 = ((theta * ia) >> 14) val tmp1 = ((epsilon + (tmp0 << 4)) >> 4) val tmp2 = ((16384 << 13) / tmp1) val tmp3 = ((a + b) >> 1) val tmp4 = ((i_f * ia) >> 15) val tmp5 = ((tmp3 * tmp4) >> 14) val tmp6 = ((theta * tmp5) >> 14) val tmp7 = ((rho * i_f) >> 14) val tmp8 = ((theta * tmp7) >> 14) val tmp9 = (((tmp6 << 2) + tmp8) >> 2) val tmp10 = ((i_f * i_f) >> 15) val tmp11 = ((tmp10 * omega) >> 14) val tmp12 = ((tmp11 * theta) >> 14) val tmp13 = ((c * tmp12) >> 14) val tmp14 = -(tmp13) val tmp15 = (((tmp9 << 1) + tmp14) >> 1) val tmp16 = ((tmp2 * tmp15) >> 15) return tmp16 //10 } def field_dc_motor_2D(i_f: Double, ia: Double, omega: Double): Double = { val theta, a, b, c, rho = 1.0; val epsilon = 0.1 (1/((epsilon + (theta * ia))) * ((theta * (((a + b) * (i_f * ia)) + (rho * i_f))) + -(c * (((i_f * i_f) * omega) * theta)))) } def field_dc_motor_2I(i_f: Int, ia: Int, omega: Int): Int = { val theta, a, b, c, rho = 16384; val epsilon = 26214 val tmp0 = ((theta * ia) >> 14) val tmp1 = ((epsilon + (tmp0 << 4)) >> 4) val tmp2 = ((16384 << 13) / tmp1) val tmp3 = ((a + b) >> 1) val tmp4 = ((i_f * ia) >> 15) val tmp5 = ((tmp3 * tmp4) >> 14) val tmp6 = ((rho * i_f) >> 14) val tmp7 = (((tmp5 << 2) + tmp6) >> 2) val tmp8 = ((theta * tmp7) >> 14) val tmp9 = ((i_f * i_f) >> 15) val tmp10 = ((tmp9 * omega) >> 14) val tmp11 = ((tmp10 * theta) >> 14) val tmp12 = ((c * tmp11) >> 14) val tmp13 = -(tmp12) val tmp14 = (((tmp8 << 1) + tmp13) >> 1) val tmp15 = ((tmp2 * tmp14) >> 15) return tmp15 //10 } def field_dc_motor_3D(i_f: Double, ia: Double, omega: Double): Double = { val theta, a, b, c, rho = 1.0; val epsilon = 0.1 (1/((epsilon + (theta * ia))) * ((theta * ((((b + a) * i_f) * ia) + (rho * i_f))) + -(c * (((i_f * i_f) * omega) * theta)))) } def field_dc_motor_3I(i_f: Int, ia: Int, omega: Int): Int = { val theta, a, b, c, rho = 16384; val epsilon = 26214 val tmp0 = ((theta * ia) >> 14) val tmp1 = ((epsilon + (tmp0 << 4)) >> 4) val tmp2 = ((16384 << 13) / tmp1) val tmp3 = ((b + a) >> 1) val tmp4 = ((tmp3 * i_f) >> 14) val tmp5 = ((tmp4 * ia) >> 15) val tmp6 = ((rho * i_f) >> 14) val tmp7 = (((tmp5 << 2) + tmp6) >> 2) val tmp8 = ((theta * tmp7) >> 14) val tmp9 = ((i_f * i_f) >> 15) val tmp10 = ((tmp9 * omega) >> 14) val tmp11 = ((tmp10 * theta) >> 14) val tmp12 = ((c * tmp11) >> 14) val tmp13 = -(tmp12) val tmp14 = (((tmp8 << 1) + tmp13) >> 1) val tmp15 = ((tmp2 * tmp14) >> 15) return tmp15 //10 } def field_dc_motor_4D(i_f: Double, ia: Double, omega: Double): Double = { val theta, a, b, c, rho = 1.0; val epsilon = 0.1 ((1/((epsilon + (theta * ia))) * (theta * (((b + a) * (ia * i_f)) + (rho * i_f)))) + (1/((epsilon + (theta * ia))) * -(c * ((i_f * i_f) * (omega * theta))))) } def field_dc_motor_4I(i_f: Int, ia: Int, omega: Int): Int = { val theta, a, b, c, rho = 16384; val epsilon = 26214 val tmp0 = ((theta * ia) >> 14) val tmp1 = ((epsilon + (tmp0 << 4)) >> 4) val tmp2 = ((16384 << 13) / tmp1) val tmp3 = ((b + a) >> 1) val tmp4 = ((ia * i_f) >> 15) val tmp5 = ((tmp3 * tmp4) >> 14) val tmp6 = ((rho * i_f) >> 14) val tmp7 = (((tmp5 << 2) + tmp6) >> 2) val tmp8 = ((theta * tmp7) >> 14) val tmp9 = ((tmp2 * tmp8) >> 15) val tmp10 = ((theta * ia) >> 14) val tmp11 = ((epsilon + (tmp10 << 4)) >> 4) val tmp12 = ((16384 << 13) / tmp11) val tmp13 = ((i_f * i_f) >> 15) val tmp14 = ((omega * theta) >> 14) val tmp15 = ((tmp13 * tmp14) >> 14) val tmp16 = ((c * tmp15) >> 14) val tmp17 = -(tmp16) val tmp18 = ((tmp12 * tmp17) >> 15) val tmp19 = (((tmp9 << 1) + tmp18) >> 1) return tmp19 //10 } def field_dc_motor_5D(i_f: Double, ia: Double, omega: Double): Double = { val theta, a, b, c, rho = 1.0; val epsilon = 0.1 (1/(((theta * ia) + epsilon)) * ((theta * ((((b * i_f) + (i_f * a)) * ia) + (rho * i_f))) + -(c * (((i_f * i_f) * omega) * theta)))) } def field_dc_motor_5I(i_f: Int, ia: Int, omega: Int): Int = { val theta, a, b, c, rho = 16384; val epsilon = 26214 val tmp0 = ((theta * ia) >> 14) val tmp1 = (((tmp0 << 4) + epsilon) >> 4) val tmp2 = ((16384 << 13) / tmp1) val tmp3 = ((b * i_f) >> 14) val tmp4 = ((i_f * a) >> 14) val tmp5 = ((tmp3 + tmp4) >> 1) val tmp6 = ((tmp5 * ia) >> 15) val tmp7 = ((rho * i_f) >> 14) val tmp8 = (((tmp6 << 2) + tmp7) >> 2) val tmp9 = ((theta * tmp8) >> 14) val tmp10 = ((i_f * i_f) >> 15) val tmp11 = ((tmp10 * omega) >> 14) val tmp12 = ((tmp11 * theta) >> 14) val tmp13 = ((c * tmp12) >> 14) val tmp14 = -(tmp13) val tmp15 = (((tmp9 << 1) + tmp14) >> 1) val tmp16 = ((tmp2 * tmp15) >> 15) return tmp16 //10 } def hermite_1D(x: Double): Double =(((((((((((x * x) * x) * x) * x) * x) * x) * x) + (-28.0 * (((((x * x) * x) * x) * x) * x))) + (210.0 * (((x * x) * x) * x))) + (-420.0 * (x * x))) + 105.0) def hermite_1I(x: Long): Long = { val tmp0 = ((x * x) >> 30) val tmp1 = ((tmp0 * x) >> 30) val tmp2 = ((tmp1 * x) >> 31) val tmp3 = ((tmp2 * x) >> 30) val tmp4 = ((tmp3 * x) >> 30) val tmp5 = ((tmp4 * x) >> 31) val tmp6 = ((tmp5 * x) >> 30) val tmp7 = ((x * x) >> 30) val tmp8 = ((tmp7 * x) >> 30) val tmp9 = ((tmp8 * x) >> 31) val tmp10 = ((tmp9 * x) >> 30) val tmp11 = ((tmp10 * x) >> 30) val tmp12 = ((-1879048192L * tmp11) >> 31) val tmp13 = (((tmp6 << 2) + tmp12) >> 2) val tmp14 = ((x * x) >> 30) val tmp15 = ((tmp14 * x) >> 30) val tmp16 = ((tmp15 * x) >> 31) val tmp17 = ((1761607680L * tmp16) >> 31) val tmp18 = (((tmp13 << 5) + tmp17) >> 5) val tmp19 = ((x * x) >> 30) val tmp20 = ((-1761607680L * tmp19) >> 31) val tmp21 = (((tmp18 << 11) + tmp20) >> 11) val tmp22 = (((tmp21 << 20) + 1761607680L) >> 20) return tmp22 } def hermite_2D(x: Double): Double = ((((((((((x * x) * x) * x) * x) * (x * x)) * x) + (-28.0 * (((((x * x) * x) * x) * x) * x))) + (210.0 * (((x * x) * x) * x))) + (-420.0 * (x * x))) + 105.0) def hermite_2I(x: Long): Long = { val tmp0 = ((x * x) >> 30) val tmp1 = ((tmp0 * x) >> 30) val tmp2 = ((tmp1 * x) >> 31) val tmp3 = ((tmp2 * x) >> 30) val tmp4 = ((x * x) >> 30) val tmp5 = ((tmp3 * tmp4) >> 31) val tmp6 = ((tmp5 * x) >> 30) val tmp7 = ((x * x) >> 30) val tmp8 = ((tmp7 * x) >> 30) val tmp9 = ((tmp8 * x) >> 31) val tmp10 = ((tmp9 * x) >> 30) val tmp11 = ((tmp10 * x) >> 30) val tmp12 = ((-1879048192L * tmp11) >> 31) val tmp13 = (((tmp6 << 2) + tmp12) >> 2) val tmp14 = ((x * x) >> 30) val tmp15 = ((tmp14 * x) >> 30) val tmp16 = ((tmp15 * x) >> 31) val tmp17 = ((1761607680L * tmp16) >> 31) val tmp18 = (((tmp13 << 5) + tmp17) >> 5) val tmp19 = ((x * x) >> 30) val tmp20 = ((-1761607680L * tmp19) >> 31) val tmp21 = (((tmp18 << 11) + tmp20) >> 11) val tmp22 = (((tmp21 << 20) + 1761607680L) >> 20) return tmp22 } def hermite_3D(x: Double): Double = ((((((((((x * x) * x) * x) * x) * x) * (x * x)) + (-28.0 * (((((x * x) * x) * x) * x) * x))) + (210.0 * (((x * x) * x) * x))) + (-420.0 * (x * x))) + 105.0) def hermite_3I(x: Long): Long = { val tmp0 = ((x * x) >> 30) val tmp1 = ((tmp0 * x) >> 30) val tmp2 = ((tmp1 * x) >> 31) val tmp3 = ((tmp2 * x) >> 30) val tmp4 = ((tmp3 * x) >> 30) val tmp5 = ((x * x) >> 30) val tmp6 = ((tmp4 * tmp5) >> 31) val tmp7 = ((x * x) >> 30) val tmp8 = ((tmp7 * x) >> 30) val tmp9 = ((tmp8 * x) >> 31) val tmp10 = ((tmp9 * x) >> 30) val tmp11 = ((tmp10 * x) >> 30) val tmp12 = ((-1879048192L * tmp11) >> 31) val tmp13 = (((tmp6 << 2) + tmp12) >> 2) val tmp14 = ((x * x) >> 30) val tmp15 = ((tmp14 * x) >> 30) val tmp16 = ((tmp15 * x) >> 31) val tmp17 = ((1761607680L * tmp16) >> 31) val tmp18 = (((tmp13 << 5) + tmp17) >> 5) val tmp19 = ((x * x) >> 30) val tmp20 = ((-1761607680L * tmp19) >> 31) val tmp21 = (((tmp18 << 11) + tmp20) >> 11) val tmp22 = (((tmp21 << 20) + 1761607680L) >> 20) return tmp22 } def hermite_4D(x: Double): Double = ((((((((((x * x) * x) * x) * x) * x) * x) * x) + ((-28.0 * (((((x * x) * x) * x) * x) * x)) + (210.0 * (((x * x) * x) * x)))) + (-420.0 * (x * x))) + 105.0) def hermite_4I(x: Long): Long = { val tmp0 = ((x * x) >> 30) val tmp1 = ((tmp0 * x) >> 30) val tmp2 = ((tmp1 * x) >> 31) val tmp3 = ((tmp2 * x) >> 30) val tmp4 = ((tmp3 * x) >> 30) val tmp5 = ((tmp4 * x) >> 31) val tmp6 = ((tmp5 * x) >> 30) val tmp7 = ((x * x) >> 30) val tmp8 = ((tmp7 * x) >> 30) val tmp9 = ((tmp8 * x) >> 31) val tmp10 = ((tmp9 * x) >> 30) val tmp11 = ((tmp10 * x) >> 30) val tmp12 = ((-1879048192L * tmp11) >> 31) val tmp13 = ((x * x) >> 30) val tmp14 = ((tmp13 * x) >> 30) val tmp15 = ((tmp14 * x) >> 31) val tmp16 = ((1761607680L * tmp15) >> 31) val tmp17 = (((tmp12 << 3) + tmp16) >> 3) val tmp18 = (((tmp6 << 2) + tmp17) >> 2) val tmp19 = ((x * x) >> 30) val tmp20 = ((-1761607680L * tmp19) >> 31) val tmp21 = (((tmp18 << 11) + tmp20) >> 11) val tmp22 = (((tmp21 << 20) + 1761607680L) >> 20) return tmp22 } def hermite_5D(x: Double): Double = (((((((((x * x) * (x * x)) * x) * x) * x) * x) + (-28.0 * (((((x * x) * x) * x) * x) * x))) + ((210.0 * (((x * x) * x) * x)) + (-420.0 * (x * x)))) + 105.0) def hermite_5I(x: Long): Long = { val tmp0 = ((x * x) >> 30) val tmp1 = ((x * x) >> 30) val tmp2 = ((tmp0 * tmp1) >> 31) val tmp3 = ((tmp2 * x) >> 30) val tmp4 = ((tmp3 * x) >> 30) val tmp5 = ((tmp4 * x) >> 31) val tmp6 = ((tmp5 * x) >> 30) val tmp7 = ((x * x) >> 30) val tmp8 = ((tmp7 * x) >> 30) val tmp9 = ((tmp8 * x) >> 31) val tmp10 = ((tmp9 * x) >> 30) val tmp11 = ((tmp10 * x) >> 30) val tmp12 = ((-1879048192L * tmp11) >> 31) val tmp13 = (((tmp6 << 2) + tmp12) >> 2) val tmp14 = ((x * x) >> 30) val tmp15 = ((tmp14 * x) >> 30) val tmp16 = ((tmp15 * x) >> 31) val tmp17 = ((1761607680L * tmp16) >> 31) val tmp18 = ((x * x) >> 30) val tmp19 = ((-1761607680L * tmp18) >> 31) val tmp20 = (((tmp17 << 6) + tmp19) >> 5) val tmp21 = (((tmp13 << 6) + tmp20) >> 6) val tmp22 = (((tmp21 << 20) + 1761607680L) >> 20) return tmp22 } def hermite_6D(x: Double): Double = ((((((x * ((((x * x) * x) * x) * x)) * x) * x) + (-28.0 * (((((x * x) * x) * x) * x) * x))) + ((((x * x) * x) * (x * 210.0)) + (-420.0 * (x * x)))) + 105.0) def hermite_6I(x: Long): Long = { val tmp0 = ((x * x) >> 30) val tmp1 = ((tmp0 * x) >> 30) val tmp2 = ((tmp1 * x) >> 31) val tmp3 = ((tmp2 * x) >> 30) val tmp4 = ((x * tmp3) >> 30) val tmp5 = ((tmp4 * x) >> 31) val tmp6 = ((tmp5 * x) >> 30) val tmp7 = ((x * x) >> 30) val tmp8 = ((tmp7 * x) >> 30) val tmp9 = ((tmp8 * x) >> 31) val tmp10 = ((tmp9 * x) >> 30) val tmp11 = ((tmp10 * x) >> 30) val tmp12 = ((-1879048192L * tmp11) >> 31) val tmp13 = (((tmp6 << 2) + tmp12) >> 2) val tmp14 = ((x * x) >> 30) val tmp15 = ((tmp14 * x) >> 30) val tmp16 = ((x * 1761607680L) >> 31) val tmp17 = ((tmp15 * tmp16) >> 31) val tmp18 = ((x * x) >> 30) val tmp19 = ((-1761607680L * tmp18) >> 31) val tmp20 = (((tmp17 << 6) + tmp19) >> 5) val tmp21 = (((tmp13 << 6) + tmp20) >> 6) val tmp22 = (((tmp21 << 20) + 1761607680L) >> 20) return tmp22 } def hermite_7D(x: Double): Double = ((((((((x * x) * x) * x) * x) * x) * (x * x)) + (-28.0 * (((((x * x) * x) * x) * x) * x))) + (((-420.0 * (x * x)) + (210.0 * ((x * x) * (x * x)))) + 105.0)) def hermite_7I(x: Long): Long = { val tmp0 = ((x * x) >> 30) val tmp1 = ((tmp0 * x) >> 30) val tmp2 = ((tmp1 * x) >> 31) val tmp3 = ((tmp2 * x) >> 30) val tmp4 = ((tmp3 * x) >> 30) val tmp5 = ((x * x) >> 30) val tmp6 = ((tmp4 * tmp5) >> 31) val tmp7 = ((x * x) >> 30) val tmp8 = ((tmp7 * x) >> 30) val tmp9 = ((tmp8 * x) >> 31) val tmp10 = ((tmp9 * x) >> 30) val tmp11 = ((tmp10 * x) >> 30) val tmp12 = ((-1879048192L * tmp11) >> 31) val tmp13 = (((tmp6 << 2) + tmp12) >> 2) val tmp14 = ((x * x) >> 30) val tmp15 = ((-1761607680L * tmp14) >> 31) val tmp16 = ((x * x) >> 30) val tmp17 = ((x * x) >> 30) val tmp18 = ((tmp16 * tmp17) >> 31) val tmp19 = ((1761607680L * tmp18) >> 31) val tmp20 = ((tmp15 + (tmp19 << 6)) >> 5) val tmp21 = (((tmp20 << 14) + 1761607680L) >> 14) val tmp22 = (((tmp13 << 6) + tmp21) >> 6) return tmp22 } def hermite_8D(x: Double): Double = (((((((x * (x * x)) * x) * x) * x) * (x * x)) + (-28.0 * (((((x * x) * x) * x) * x) * x))) + (((-420.0 * (x * x)) + (210.0 * ((x * (x * x)) * x))) + 105.0)) def hermite_8I(x: Long): Long = { val tmp0 = ((x * x) >> 30) val tmp1 = ((x * tmp0) >> 30) val tmp2 = ((tmp1 * x) >> 31) val tmp3 = ((tmp2 * x) >> 30) val tmp4 = ((tmp3 * x) >> 30) val tmp5 = ((x * x) >> 30) val tmp6 = ((tmp4 * tmp5) >> 31) val tmp7 = ((x * x) >> 30) val tmp8 = ((tmp7 * x) >> 30) val tmp9 = ((tmp8 * x) >> 31) val tmp10 = ((tmp9 * x) >> 30) val tmp11 = ((tmp10 * x) >> 30) val tmp12 = ((-1879048192L * tmp11) >> 31) val tmp13 = (((tmp6 << 2) + tmp12) >> 2) val tmp14 = ((x * x) >> 30) val tmp15 = ((-1761607680L * tmp14) >> 31) val tmp16 = ((x * x) >> 30) val tmp17 = ((x * tmp16) >> 30) val tmp18 = ((tmp17 * x) >> 31) val tmp19 = ((1761607680L * tmp18) >> 31) val tmp20 = ((tmp15 + (tmp19 << 6)) >> 5) val tmp21 = (((tmp20 << 14) + 1761607680L) >> 14) val tmp22 = (((tmp13 << 6) + tmp21) >> 6) return tmp22 } def hermite_9D(x: Double): Double = ((((((((x * x) * x) * x) * x) * x) * (x * x)) + (-28.0 * (((((x * x) * x) * x) * x) * x))) + (((-420.0 * (x * x)) + (210.0 * (((x * x) * x) * x))) + 105.0)) def hermite_9I(x: Long): Long = { val tmp0 = ((x * x) >> 30) val tmp1 = ((tmp0 * x) >> 30) val tmp2 = ((tmp1 * x) >> 31) val tmp3 = ((tmp2 * x) >> 30) val tmp4 = ((tmp3 * x) >> 30) val tmp5 = ((x * x) >> 30) val tmp6 = ((tmp4 * tmp5) >> 31) val tmp7 = ((x * x) >> 30) val tmp8 = ((tmp7 * x) >> 30) val tmp9 = ((tmp8 * x) >> 31) val tmp10 = ((tmp9 * x) >> 30) val tmp11 = ((tmp10 * x) >> 30) val tmp12 = ((-1879048192L * tmp11) >> 31) val tmp13 = (((tmp6 << 2) + tmp12) >> 2) val tmp14 = ((x * x) >> 30) val tmp15 = ((-1761607680L * tmp14) >> 31) val tmp16 = ((x * x) >> 30) val tmp17 = ((tmp16 * x) >> 30) val tmp18 = ((tmp17 * x) >> 31) val tmp19 = ((1761607680L * tmp18) >> 31) val tmp20 = ((tmp15 + (tmp19 << 6)) >> 5) val tmp21 = (((tmp20 << 14) + 1761607680L) >> 14) val tmp22 = (((tmp13 << 6) + tmp21) >> 6) return tmp22 } def multi_poly_1D(a: Double, b: Double, c: Double) = ((((c + (a * b)) + 10.0) * (((a * c) + b) + 30.0)) * (((b * c) + a) + 20.0)) def multi_poly_1I(a: Long, b: Long, c: Long): Long = { val tmp0 = ((a * b) >> 30) val tmp1 = ((c + (tmp0 << 3)) >> 3) val tmp2 = (((tmp1 << 3) + 1342177280L) >> 3) val tmp3 = ((a * c) >> 30) val tmp4 = (((tmp3 << 3) + b) >> 4) val tmp5 = (((tmp4 << 3) + 2013265920L) >> 3) val tmp6 = ((tmp2 * tmp5) >> 30) val tmp7 = ((b * c) >> 30) val tmp8 = (((tmp7 << 3) + a) >> 3) val tmp9 = (((tmp8 << 2) + 1342177280L) >> 2) val tmp10 = ((tmp6 * tmp9) >> 31) return tmp10 } def multi_poly_2D(a: Double, b: Double, c: Double) = (((c + (a * b)) + 10.0) * ((((a * c) + b) + 30.0) * (((b * c) + a) + 20.0))) def multi_poly_2I(a: Long, b: Long, c: Long): Long = { val tmp0 = ((a * b) >> 30) val tmp1 = ((c + (tmp0 << 3)) >> 3) val tmp2 = (((tmp1 << 3) + 1342177280L) >> 3) val tmp3 = ((a * c) >> 30) val tmp4 = (((tmp3 << 3) + b) >> 4) val tmp5 = (((tmp4 << 3) + 2013265920L) >> 3) val tmp6 = ((b * c) >> 30) val tmp7 = (((tmp6 << 3) + a) >> 3) val tmp8 = (((tmp7 << 2) + 1342177280L) >> 2) val tmp9 = ((tmp5 * tmp8) >> 31) val tmp10 = ((tmp2 * tmp9) >> 30) return tmp10 } def multi_poly_3D(a: Double, b: Double, c: Double) = (((((a * b) + c) + 10.0) * (((a * c) + b) + 30.0)) * ((b * c) + (a + 20.0))) def multi_poly_3I(a: Long, b: Long, c: Long): Long = { val tmp0 = ((a * b) >> 30) val tmp1 = (((tmp0 << 3) + c) >> 3) val tmp2 = (((tmp1 << 3) + 1342177280L) >> 3) val tmp3 = ((a * c) >> 30) val tmp4 = (((tmp3 << 3) + b) >> 4) val tmp5 = (((tmp4 << 3) + 2013265920L) >> 3) val tmp6 = ((tmp2 * tmp5) >> 30) val tmp7 = ((b * c) >> 30) val tmp8 = ((a + (1342177280L << 1)) >> 1) val tmp9 = (((tmp7 << 2) + tmp8) >> 2) val tmp10 = ((tmp6 * tmp9) >> 31) return tmp10 } def multi_poly_4D(a: Double, b: Double, c: Double) = (((((c + (a * b)) + 10.0) * ((a * c) + b)) + (((c + (a * b)) + 10.0) * 30.0)) * ((b * c) + (a + 20.0))) def multi_poly_4I(a: Long, b: Long, c: Long): Long = { val tmp0 = ((a * b) >> 30) val tmp1 = ((c + (tmp0 << 3)) >> 3) val tmp2 = (((tmp1 << 3) + 1342177280L) >> 3) val tmp3 = ((a * c) >> 30) val tmp4 = (((tmp3 << 3) + b) >> 4) val tmp5 = ((tmp2 * tmp4) >> 30) val tmp6 = ((a * b) >> 30) val tmp7 = ((c + (tmp6 << 3)) >> 3) val tmp8 = (((tmp7 << 3) + 1342177280L) >> 3) val tmp9 = ((tmp8 * 2013265920L) >> 31) val tmp10 = (((tmp5 << 2) + tmp9) >> 2) val tmp11 = ((b * c) >> 30) val tmp12 = ((a + (1342177280L << 1)) >> 1) val tmp13 = (((tmp11 << 2) + tmp12) >> 2) val tmp14 = ((tmp10 * tmp13) >> 31) return tmp14 } def multi_poly_5D(a: Double, b: Double, c: Double) = (((((a * b) + c) * (((a * c) + b) + 30.0)) + (10.0 * (((c * a) + b) + 30.0))) * ((b * c) + (a + 20.0))) def multi_poly_5I(a: Long, b: Long, c: Long): Long = { val tmp0 = ((a * b) >> 30) val tmp1 = (((tmp0 << 3) + c) >> 3) val tmp2 = ((a * c) >> 30) val tmp3 = (((tmp2 << 3) + b) >> 4) val tmp4 = (((tmp3 << 3) + 2013265920L) >> 3) val tmp5 = ((tmp1 * tmp4) >> 30) val tmp6 = ((c * a) >> 30) val tmp7 = (((tmp6 << 3) + b) >> 4) val tmp8 = (((tmp7 << 3) + 2013265920L) >> 3) val tmp9 = ((1342177280L * tmp8) >> 30) val tmp10 = (((tmp5 << 3) + tmp9) >> 3) val tmp11 = ((b * c) >> 30) val tmp12 = ((a + (1342177280L << 1)) >> 1) val tmp13 = (((tmp11 << 2) + tmp12) >> 2) val tmp14 = ((tmp10 * tmp13) >> 31) return tmp14 } def multi_poly_6D(a: Double, b: Double, c: Double) = (((((c + (b * a)) + 10.0) * ((a * c) + b)) + (((b * a) + (c + 10.0)) * 30.0)) * ((c * b) + (20.0 + a))) def multi_poly_6I(a: Long, b: Long, c: Long): Long = { val tmp0 = ((b * a) >> 30) val tmp1 = ((c + (tmp0 << 3)) >> 3) val tmp2 = (((tmp1 << 3) + 1342177280L) >> 3) val tmp3 = ((a * c) >> 30) val tmp4 = (((tmp3 << 3) + b) >> 4) val tmp5 = ((tmp2 * tmp4) >> 30) val tmp6 = ((b * a) >> 30) val tmp7 = ((c + 1342177280L) >> 1) val tmp8 = (((tmp6 << 2) + tmp7) >> 2) val tmp9 = ((tmp8 * 2013265920L) >> 31) val tmp10 = (((tmp5 << 2) + tmp9) >> 2) val tmp11 = ((c * b) >> 30) val tmp12 = (((1342177280L << 1) + a) >> 1) val tmp13 = (((tmp11 << 2) + tmp12) >> 2) val tmp14 = ((tmp10 * tmp13) >> 31) return tmp14 } def multi_poly_7D(a: Double, b: Double, c: Double) = ((((((c + (b * a)) + 10.0) * (a * c)) + (((c + (b * a)) + 10.0) * b)) + (30.0 * ((a * b) + (c + 10.0)))) * ((b * c) + (a + 20.0))) def multi_poly_7I(a: Long, b: Long, c: Long): Long = { val tmp0 = ((b * a) >> 30) val tmp1 = ((c + (tmp0 << 3)) >> 3) val tmp2 = (((tmp1 << 3) + 1342177280L) >> 3) val tmp3 = ((a * c) >> 30) val tmp4 = ((tmp2 * tmp3) >> 31) val tmp5 = ((b * a) >> 30) val tmp6 = ((c + (tmp5 << 3)) >> 3) val tmp7 = (((tmp6 << 3) + 1342177280L) >> 3) val tmp8 = ((tmp7 * b) >> 30) val tmp9 = (((tmp4 << 4) + tmp8) >> 4) val tmp10 = ((a * b) >> 30) val tmp11 = ((c + 1342177280L) >> 1) val tmp12 = (((tmp10 << 2) + tmp11) >> 2) val tmp13 = ((2013265920L * tmp12) >> 31) val tmp14 = (((tmp9 << 2) + tmp13) >> 2) val tmp15 = ((b * c) >> 30) val tmp16 = ((a + (1342177280L << 1)) >> 1) val tmp17 = (((tmp15 << 2) + tmp16) >> 2) val tmp18 = ((tmp14 * tmp17) >> 31) return tmp18 } def multi_poly_8D(a: Double, b: Double, c: Double) = ((((((c + (b * a)) + 10.0) * (a * c)) + (b * ((c + (b * a)) + 10.0))) * ((b * c) + (a + 20.0))) + ((30.0 * ((a * b) + (c + 10.0))) * ((b * c) + (a + 20.0)))) def multi_poly_8I(a: Long, b: Long, c: Long): Long = { val tmp0 = ((b * a) >> 30) val tmp1 = ((c + (tmp0 << 3)) >> 3) val tmp2 = (((tmp1 << 3) + 1342177280L) >> 3) val tmp3 = ((a * c) >> 30) val tmp4 = ((tmp2 * tmp3) >> 31) val tmp5 = ((b * a) >> 30) val tmp6 = ((c + (tmp5 << 3)) >> 3) val tmp7 = (((tmp6 << 3) + 1342177280L) >> 3) val tmp8 = ((b * tmp7) >> 30) val tmp9 = (((tmp4 << 4) + tmp8) >> 4) val tmp10 = ((b * c) >> 30) val tmp11 = ((a + (1342177280L << 1)) >> 1) val tmp12 = (((tmp10 << 2) + tmp11) >> 2) val tmp13 = ((tmp9 * tmp12) >> 31) val tmp14 = ((a * b) >> 30) val tmp15 = ((c + 1342177280L) >> 1) val tmp16 = (((tmp14 << 2) + tmp15) >> 2) val tmp17 = ((2013265920L * tmp16) >> 31) val tmp18 = ((b * c) >> 30) val tmp19 = ((a + (1342177280L << 1)) >> 1) val tmp20 = (((tmp18 << 2) + tmp19) >> 2) val tmp21 = ((tmp17 * tmp20) >> 31) val tmp22 = (((tmp13 << 2) + tmp21) >> 2) return tmp22 } def multi_poly_9D(a: Double, b: Double, c: Double) = ((((((c + (b * a)) * a) + (10.0 * a)) * c) + ((((c + (b * a)) + 10.0) * b) + ((30.0 * (a * b)) + (30.0 * (c + 10.0))))) * ((c * b) + (a + 20.0))) def multi_poly_9I(a: Long, b: Long, c: Long): Long = { val tmp0 = ((b * a) >> 30) val tmp1 = ((c + (tmp0 << 3)) >> 3) val tmp2 = ((tmp1 * a) >> 30) val tmp3 = ((1342177280L * a) >> 30) val tmp4 = (((tmp2 << 3) + tmp3) >> 3) val tmp5 = ((tmp4 * c) >> 31) val tmp6 = ((b * a) >> 30) val tmp7 = ((c + (tmp6 << 3)) >> 3) val tmp8 = (((tmp7 << 3) + 1342177280L) >> 3) val tmp9 = ((tmp8 * b) >> 30) val tmp10 = ((a * b) >> 30) val tmp11 = ((2013265920L * tmp10) >> 31) val tmp12 = ((c + 1342177280L) >> 1) val tmp13 = ((2013265920L * tmp12) >> 31) val tmp14 = (((tmp11 << 2) + tmp13) >> 2) val tmp15 = ((tmp9 + (tmp14 << 2)) >> 2) val tmp16 = (((tmp5 << 2) + tmp15) >> 2) val tmp17 = ((c * b) >> 30) val tmp18 = ((a + (1342177280L << 1)) >> 1) val tmp19 = (((tmp17 << 2) + tmp18) >> 2) val tmp20 = ((tmp16 * tmp19) >> 31) return tmp20 } def doppler_1D(t: Double, f: Double, u: Double): Double = { //println("t: " + t + " f:" + f + " u:" + u) val x1 = ((331.4 + (0.6 * t)) * f) val x2 = 1/((((331.4 + (0.6 * t)) + u) * ((331.4 + (0.6 * t)) + u))) val result = x1 * x2 //println("x1 " + x1 + " x2 " + x2 + " result " + result) result } def doppler_1I(t: Long, f: Long, u: Long): Long = { val tmp0 = ((1288490189 * t) >> 30) val tmp1 = (((1389992346 << 4) + tmp0) >> 4) val tmp2 = ((tmp1 * f) >> 30) val tmp3 = ((tmp2 * 1073741824) >> 30) val tmp4 = ((1288490189 * t) >> 30) val tmp5 = (((1389992346 << 4) + tmp4) >> 4) val tmp6 = (((tmp5 << 2) + u) >> 2) val tmp7 = ((1288490189 * t) >> 30) val tmp8 = (((1389992346 << 4) + tmp7) >> 4) val tmp9 = (((tmp8 << 2) + u) >> 2) val tmp10 = ((tmp6 * tmp9) >> 31) //println("t: " + t + " f:" + f + " u:" + u) //println(tmp10) val tmp11 = ((tmp3 << 27) / tmp10) return tmp11 //22 } def doppler_2D(t: Double, f: Double, u: Double): Double = { (((331.4 + (0.6 * t)) * f) * 1/(((331.4 + ((0.6 * t) + u)) * (331.4 + ((0.6 * t) + u))))) } def doppler_2I(t: Long, f: Long, u: Long): Long = { val tmp0 = ((1288490189 * t) >> 30) val tmp1 = (((1389992346 << 4) + tmp0) >> 4) val tmp2 = ((tmp1 * f) >> 30) val tmp3 = ((tmp2 * 1073741824) >> 30) val tmp4 = ((1288490189 * t) >> 30) val tmp5 = ((tmp4 + (u << 2)) >> 3) val tmp6 = (((1389992346 << 1) + tmp5) >> 1) val tmp7 = ((1288490189 * t) >> 30) val tmp8 = ((tmp7 + (u << 2)) >> 3) val tmp9 = (((1389992346 << 1) + tmp8) >> 1) val tmp10 = ((tmp6 * tmp9) >> 31) val tmp11 = ((tmp3 << 27) / tmp10) return tmp11 //22 } def doppler_3D(t: Double, f: Double, u: Double): Double = { (((331.4 + (t * 0.6)) * f) * (1/(((331.4 + (t * 0.6)) + u)) * 1/(((331.4 + (t * 0.6)) + u)))) } def doppler_3I(t: Long, f: Long, u: Long): Long = { val tmp0 = ((t * 1288490189) >> 30) val tmp1 = (((1389992346 << 4) + tmp0) >> 4) val tmp2 = ((tmp1 * f) >> 30) val tmp3 = ((t * 1288490189) >> 30) val tmp4 = (((1389992346 << 4) + tmp3) >> 4) val tmp5 = (((tmp4 << 2) + u) >> 2) val tmp6 = ((1073741824 << 23) / tmp5) val tmp7 = ((tmp6 * 1073741824) >> 30) val tmp8 = ((t * 1288490189) >> 30) val tmp9 = (((1389992346 << 4) + tmp8) >> 4) val tmp10 = (((tmp9 << 2) + u) >> 2) val tmp11 = ((tmp7 << 22) / tmp10) val tmp12 = ((tmp2 * tmp11) >> 16) return tmp12 //23 } def doppler_4D(t: Double, f: Double, u: Double): Double = { ((1/(((331.4 + ((0.6 * t) + u)) * (331.4 + (u + (0.6 * t))))) * ((0.6 * t) + 331.4)) * f) } def doppler_4I(t: Long, f: Long, u: Long): Long = { val tmp0 = ((1288490189 * t) >> 30) val tmp1 = ((tmp0 + (u << 2)) >> 3) val tmp2 = (((1389992346 << 1) + tmp1) >> 1) val tmp3 = ((1288490189 * t) >> 30) val tmp4 = (((u << 2) + tmp3) >> 3) val tmp5 = (((1389992346 << 1) + tmp4) >> 1) val tmp6 = ((tmp2 * tmp5) >> 31) val tmp7 = ((1073741824 << 14) / tmp6) val tmp8 = ((1288490189 * t) >> 30) val tmp9 = ((tmp8 + (1389992346 << 4)) >> 4) val tmp10 = ((tmp7 * tmp9) >> 22) val tmp11 = ((tmp10 * f) >> 25) return tmp11 // 22 } }
malyzajko/xfp
analysis_tool/src/xfp/simulation/TestExamples.scala
Scala
bsd-3-clause
34,262
package arrxml.arrow import annotation.implicitNotFound @implicitNotFound(msg = "No instance in scope for ArrowIf[${=>>}].") trait ArrowIf[=>>[-_, +_]] extends ArrowList[=>>] { /** * if lifted to arrows */ def ifA[A, B, C](predicate : A =>> B)(a1 : A =>> C)(a2 : A =>> C) : A =>> C /** * shortcut: @ ifP p = ifA (isA p) @ */ def ifP[A, B](predicate : A ⇒ Boolean)(a1 : A =>> B)(a2 : A =>> B) : A =>> B = ifA(isA(predicate))(a1)(a2) /** * negation: @ neg f = ifA f none this @ */ def neg[A, B](a : A =>> B) : A =>> A = ifA(a)(none[A, A])(self) /** * @ f \\`when\\` g @ : when the predicate g holds, f is applied, else the identity filter this */ def when[A, B](a : A =>> A)(predicate : A =>> B) : (A =>> A) = ifA(predicate)(a)(self) /** * shortcut: @ f \\`whenP\\` p = f \\`when\\` (isA p) @ */ def whenP[A](a : A =>> A)(predicate : A ⇒ Boolean) : (A =>> A) = ifP(predicate)(a)(self) /** * @ f \\`whenNot\\` g @ : when the predicate g does not hold, f is applied, else the identity filter this */ def whenNot[A, B](a : A =>> A)(predicate : A =>> B) : (A =>> A) = ifA(predicate)(self)(a) /** * like 'whenP' */ def whenNotP[A](a : A =>> A)(predicate : A ⇒ Boolean) : (A =>> A) = ifP(predicate)(self)(a) /** * @ g \\`guards\\` f @ : when the predicate g holds, f is applied, else none */ def guards[A, B, C](predicate : A =>> B)(a : A =>> C) : (A =>> C) = ifA(predicate)(a)(none[A, C]) /** * like 'whenP' */ def guardsP[A, B](predicate : A ⇒ Boolean)(a : A =>> B) : (A =>> B) = ifP(predicate)(a)(none[A, B]) /** * shortcut for @ f `guards` this @ */ def filterA[A, B](predicate : A =>> B) : (A =>> A) = ifA(predicate)(self)(none[A, A]) /** * @ f \\`containing\\` g @ : keep only those results from f for which g holds * * definition: @ f \\`containing\\` g = f >>> g \\`guards\\` this @ */ def containing[A, B, C](a1 : A =>> B)(a2 : B =>> C) : (A =>> B) = >>>(a1, guards(a2)(self)) /** * @ f \\`notContaining\\` g @ : keep only those results from f for which g does not hold * * definition: @ f \\`notContaining\\` g = f >>> ifA g none this @ */ def notContaining[A, B, C](a1 : A =>> B)(a2 : B =>> C) : (A =>> B) = >>>(a1, ifA(a2)(none[B, B])(self)) /** * @ f \\`orElse\\` g @ : directional choice: if f succeeds, the result of f is the result, else g is applied */ def orElse[A, B](a1 : A =>> B)(a2 : A =>> B) : (A =>> B) // TODO implementation /** * * generalisation of 'orElse' for multi way branches like in case expressions. * * An auxiliary data type 'IfThen' with an infix constructor ':->' is used for writing multi way branches * * example: @ choiceA [ p1 :-> e1, p2 :-> e2, this :-> default ] @ */ def choiceA[A, B, C] : List[IfThen[A =>> B, A =>> C]] ⇒ (A =>> C) /** * tag a value with Left or Right, if arrow has success, input is tagged with Left, else with Right */ def tagA[A, B](a : A =>> B) : (A =>> Either[A, A]) = { val left : A ⇒ Either[A, A] = Left.apply[A, A] _ val right : A ⇒ Either[A, A] = Right.apply[A, A] _ ifA(a)(arr(left))(arr(right)) } /** * split a list value with an arrow and returns a pair of lists. * This is the arrow version of 'span'. The arrow is deterministic. * * example: @ runLA (spanA (isA (\\/= \\'-\\'))) \\"abc-def\\" @ gives @ [(\\"abc\\",\\"-def\\")] @ as result */ def spanA[A](a : A =>> A) : (List[A] =>> (List[A], List[A])) = { val predicate = >>>(arrL((l : List[A]) ⇒ l.take(1)), a) val split = combine(arr((l : List[A]) ⇒ l.head), >>>(arr((l : List[A]) ⇒ l.tail), spanA(a))) val rejoin = arr((tup : (A, (List[A], List[A]))) ⇒ (tup._1 :: tup._2._1, tup._2._2)) val elseCase = arr((l : List[A]) ⇒ (List.empty[A], l)) ifA(predicate)(>>>(split, rejoin))(elseCase) } /** * partition a list of values into a pair of lists * * This is the arrow Version of 'Data.List.partition' */ def partitionA[A](a : A =>> A) : List[A] =>> (List[A], List[A]) = { val part = listA(>>>(arrL((as : List[A]) ⇒ as), tagA(a))) def untag(l : List[Either[A, A]]) = { val (l1, l2) = l.partition(_.isLeft) (l1.map(_.fold(((a : A) ⇒ a), ((a : A) ⇒ a))), l2.map(_.fold(((a : A) ⇒ a), ((a : A) ⇒ a)))) } >>>(part, arr(untag _)) } } object ArrowIf { @inline def apply[F[-_, +_]](implicit ev : ArrowIf[F]) : ArrowIf[F] = ev } trait ToArrowIfOps { // For endoarrows. implicit class ArrowIfOps0[=>>[-_, +_], A](v : A =>> A) { final def when[B](predicate : A =>> B)(implicit ev : ArrowIf[=>>]) = ev.when(v)(predicate) final def whenP(predicate : A ⇒ Boolean)(implicit ev : ArrowIf[=>>]) = ev.whenP(v)(predicate) final def whenNot[B](predicate : A =>> B)(implicit ev : ArrowIf[=>>]) = ev.whenNot(v)(predicate) final def whenNotP(predicate : A ⇒ Boolean)(implicit ev : ArrowIf[=>>]) = ev.whenNotP(v)(predicate) } implicit class ArrowIfOps1[=>>[-_, +_], A, B](v : A =>> B) { final def guards[C](a : A =>> C)(implicit ev : ArrowIf[=>>]) = ev.guards(v)(a) } } trait ToArrowIfFuncOps { implicit class ArrowIfFuncOps[=>>[-_, +_], A](v : A ⇒ Boolean) { final def guardsP[B](a : A =>> B)(implicit ev : ArrowIf[=>>]) = ev.guardsP(v)(a) } } class IfThen[A, B]
ChrisNeveu/ArrXml
src/main/scala/arrxml/arrow/ArrowIf.scala
Scala
bsd-3-clause
5,514
/* * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.flink.table.planner.runtime.stream.table import org.apache.flink.api.common.time.Time import org.apache.flink.api.scala._ import org.apache.flink.table.api._ import org.apache.flink.table.api.bridge.scala._ import org.apache.flink.table.planner.runtime.utils.StreamingWithStateTestBase.StateBackendMode import org.apache.flink.table.planner.runtime.utils.TestData._ import org.apache.flink.table.planner.runtime.utils.TimeTestUtil.TimestampAndWatermarkWithOffset import org.apache.flink.table.planner.runtime.utils.{StreamingWithStateTestBase, TestingAppendSink} import org.apache.flink.table.planner.utils.Top3 import org.apache.flink.types.Row import org.junit.Assert._ import org.junit.Test import org.junit.runner.RunWith import org.junit.runners.Parameterized import java.math.BigDecimal @RunWith(classOf[Parameterized]) class GroupWindowTableAggregateITCase(mode: StateBackendMode) extends StreamingWithStateTestBase(mode) { val data = List( (1L, 1, "Hi"), (2L, 2, "Hello"), (4L, 2, "Hello"), (8L, 3, "Hello world"), (16L, 3, "Hello world")) val data2 = List( (1L, 1, 1d, 1f, new BigDecimal("1"), "Hi"), (2L, 2, 2d, 2f, new BigDecimal("2"), "Hallo"), (3L, 2, 2d, 2f, new BigDecimal("2"), "Hello"), (4L, 5, 5d, 5f, new BigDecimal("5"), "Hello"), (7L, 3, 3d, 3f, new BigDecimal("3"), "Hello"), (8L, 3, 3d, 3f, new BigDecimal("3"), "Hello world"), (16L, 4, 4d, 4f, new BigDecimal("4"), "Hello world"), (32L, 4, 4d, 4f, new BigDecimal("4"), null.asInstanceOf[String])) @Test def testProcessingTimeSlidingGroupWindowOverCount(): Unit = { tEnv.getConfig.setIdleStateRetentionTime(Time.hours(1), Time.hours(2)) val stream = failingDataSource(tupleData3) val table = stream.toTable(tEnv, 'int, 'long, 'string, 'proctime.proctime) val top3 = new Top3 val windowedTable = table .window(Slide over 4.rows every 2.rows on 'proctime as 'w) .groupBy('w, 'long) .flatAggregate(call(top3, 'int) as ('x, 'y)) .select('long, 'x, 'y) val sink = new TestingAppendSink windowedTable.toAppendStream[Row].addSink(sink) env.execute() val expected = Seq("4,8,8", "4,9,9", "4,10,10", "5,12,12", "5,13,13", "5,14,14", "6,17,17", "6,18,18", "6,19,19", "6,19,19", "6,20,20", "6,21,21") assertEquals(expected.sorted, sink.getAppendResults.sorted) } @Test def testEventTimeSessionGroupWindowOverTime(): Unit = { //To verify the "merge" functionality, we create this test with the following characteristics: // 1. set the Parallelism to 1, and have the test data out of order // 2. create a waterMark with 10ms offset to delay the window emission by 10ms val sessionWindowTestData = List( (1L, 1, "Hello"), (2L, 2, "Hello"), (8L, 8, "Hello"), (9L, 9, "Hello World"), (4L, 4, "Hello"), (16L, 16, "Hello")) val top3 = new Top3 val stream = failingDataSource(sessionWindowTestData) .assignTimestampsAndWatermarks(new TimestampAndWatermarkWithOffset[(Long, Int, String)](10L)) val table = stream.toTable(tEnv, 'long, 'int, 'string, 'rowtime.rowtime) val windowedTable = table .window(Session withGap 5.milli on 'rowtime as 'w) .groupBy('w, 'string) .flatAggregate(top3('int)) .select('string, 'f0, 'f1) val sink = new TestingAppendSink windowedTable.toAppendStream[Row].addSink(sink) env.execute() val expected = Seq("Hello,2,2", "Hello,4,4", "Hello,8,8", "Hello World,9,9", "Hello,16,16") assertEquals(expected.sorted, sink.getAppendResults.sorted) } @Test def testAllProcessingTimeTumblingGroupWindowOverCount(): Unit = { tEnv.getConfig.setIdleStateRetentionTime(Time.hours(1), Time.hours(2)) val stream = failingDataSource(tupleData3) val table = stream.toTable(tEnv, 'int, 'long, 'string, 'proctime.proctime) val top3 = new Top3 val windowedTable = table .window(Tumble over 7.rows on 'proctime as 'w) .groupBy('w) .flatAggregate(top3('int)) .select('f0, 'f1) val sink = new TestingAppendSink windowedTable.toAppendStream[Row].addSink(sink) env.execute() val expected = Seq("5,5", "6,6", "7,7", "12,12", "13,13", "14,14", "19,19", "20,20", "21,21") assertEquals(expected.sorted, sink.getAppendResults.sorted) } @Test def testEventTimeTumblingWindow(): Unit = { val stream = failingDataSource(tupleData3) .assignTimestampsAndWatermarks(new TimestampAndWatermarkWithOffset[(Int, Long, String)](0L)) val table = stream.toTable(tEnv, 'int, 'long, 'string, 'rowtime.rowtime) val top3 = new Top3 val windowedTable = table .window(Tumble over 10.milli on 'rowtime as 'w) .groupBy('w, 'long) .flatAggregate(top3('int) as ('x, 'y)) .select('w.start, 'w.end, 'long, 'x, 'y + 1) val sink = new TestingAppendSink windowedTable.toAppendStream[Row].addSink(sink) env.execute() val expected = Seq( "1970-01-01T00:00,1970-01-01T00:00:00.010,1,1,2", "1970-01-01T00:00,1970-01-01T00:00:00.010,2,2,3", "1970-01-01T00:00,1970-01-01T00:00:00.010,2,3,4", "1970-01-01T00:00,1970-01-01T00:00:00.010,3,4,5", "1970-01-01T00:00,1970-01-01T00:00:00.010,3,5,6", "1970-01-01T00:00,1970-01-01T00:00:00.010,3,6,7", "1970-01-01T00:00,1970-01-01T00:00:00.010,4,7,8", "1970-01-01T00:00,1970-01-01T00:00:00.010,4,8,9", "1970-01-01T00:00,1970-01-01T00:00:00.010,4,9,10", "1970-01-01T00:00:00.010,1970-01-01T00:00:00.020,4,10,11", "1970-01-01T00:00:00.010,1970-01-01T00:00:00.020,5,13,14", "1970-01-01T00:00:00.010,1970-01-01T00:00:00.020,5,14,15", "1970-01-01T00:00:00.010,1970-01-01T00:00:00.020,5,15,16", "1970-01-01T00:00:00.010,1970-01-01T00:00:00.020,6,17,18", "1970-01-01T00:00:00.010,1970-01-01T00:00:00.020,6,18,19", "1970-01-01T00:00:00.010,1970-01-01T00:00:00.020,6,19,20", "1970-01-01T00:00:00.020,1970-01-01T00:00:00.030,6,21,22", "1970-01-01T00:00:00.020,1970-01-01T00:00:00.030,6,20,21") assertEquals(expected.sorted, sink.getAppendResults.sorted) } @Test def testGroupWindowWithoutKeyInProjection(): Unit = { val data = List( (1L, 1, "Hi", 1, 1), (2L, 2, "Hello", 2, 2), (4L, 2, "Hello", 2, 2), (8L, 3, "Hello world", 3, 3), (16L, 3, "Hello world", 3, 3)) val stream = failingDataSource(data) val table = stream.toTable(tEnv, 'long, 'int, 'string, 'int2, 'int3, 'proctime.proctime) val top3 = new Top3 val windowedTable = table .window(Slide over 2.rows every 1.rows on 'proctime as 'w) .groupBy('w, 'int2, 'int3, 'string) .flatAggregate(top3('int)) .select('f0, 'f1) val sink = new TestingAppendSink windowedTable.toAppendStream[Row].addSink(sink) env.execute() val expected = Seq("2,2", "2,2", "3,3", "3,3") assertEquals(expected.sorted, sink.getAppendResults.sorted) } // ---------------------------------------------------------------------------------------------- // Sliding windows // ---------------------------------------------------------------------------------------------- @Test def testAllEventTimeSlidingGroupWindowOverTime(): Unit = { // please keep this test in sync with the bounded variant val stream = failingDataSource(data2) .assignTimestampsAndWatermarks( new TimestampAndWatermarkWithOffset[(Long, Int, Double, Float, BigDecimal, String)](0L)) val table = stream.toTable(tEnv, 'long.rowtime, 'int, 'double, 'float, 'bigdec, 'string) val top3 = new Top3 val windowedTable = table .window(Slide over 5.milli every 2.milli on 'long as 'w) .groupBy('w) .flatAggregate(top3('int)) .select('f0, 'f1, 'w.start, 'w.end, 'w.rowtime) val sink = new TestingAppendSink windowedTable.toAppendStream[Row].addSink(sink) env.execute() val expected = Seq( "1,1,1969-12-31T23:59:59.998,1970-01-01T00:00:00.003,1970-01-01T00:00:00.002", "2,2,1969-12-31T23:59:59.998,1970-01-01T00:00:00.003,1970-01-01T00:00:00.002", "2,2,1970-01-01T00:00,1970-01-01T00:00:00.005,1970-01-01T00:00:00.004", "5,5,1970-01-01T00:00,1970-01-01T00:00:00.005,1970-01-01T00:00:00.004", "2,2,1970-01-01T00:00,1970-01-01T00:00:00.005,1970-01-01T00:00:00.004", "2,2,1970-01-01T00:00:00.002,1970-01-01T00:00:00.007,1970-01-01T00:00:00.006", "2,2,1970-01-01T00:00:00.002,1970-01-01T00:00:00.007,1970-01-01T00:00:00.006", "5,5,1970-01-01T00:00:00.002,1970-01-01T00:00:00.007,1970-01-01T00:00:00.006", "3,3,1970-01-01T00:00:00.004,1970-01-01T00:00:00.009,1970-01-01T00:00:00.008", "3,3,1970-01-01T00:00:00.004,1970-01-01T00:00:00.009,1970-01-01T00:00:00.008", "5,5,1970-01-01T00:00:00.004,1970-01-01T00:00:00.009,1970-01-01T00:00:00.008", "3,3,1970-01-01T00:00:00.006,1970-01-01T00:00:00.011,1970-01-01T00:00:00.010", "3,3,1970-01-01T00:00:00.006,1970-01-01T00:00:00.011,1970-01-01T00:00:00.010", "3,3,1970-01-01T00:00:00.008,1970-01-01T00:00:00.013,1970-01-01T00:00:00.012", "4,4,1970-01-01T00:00:00.012,1970-01-01T00:00:00.017,1970-01-01T00:00:00.016", "4,4,1970-01-01T00:00:00.014,1970-01-01T00:00:00.019,1970-01-01T00:00:00.018", "4,4,1970-01-01T00:00:00.016,1970-01-01T00:00:00.021,1970-01-01T00:00:00.020", "4,4,1970-01-01T00:00:00.028,1970-01-01T00:00:00.033,1970-01-01T00:00:00.032", "4,4,1970-01-01T00:00:00.030,1970-01-01T00:00:00.035,1970-01-01T00:00:00.034", "4,4,1970-01-01T00:00:00.032,1970-01-01T00:00:00.037,1970-01-01T00:00:00.036") assertEquals(expected.sorted, sink.getAppendResults.sorted) } @Test def testEventTimeSlidingGroupWindowOverTimeOverlappingSplitPane(): Unit = { // please keep this test in sync with the bounded variant val stream = failingDataSource(data2) .assignTimestampsAndWatermarks( new TimestampAndWatermarkWithOffset[(Long, Int, Double, Float, BigDecimal, String)](0L)) val table = stream.toTable(tEnv, 'long.rowtime, 'int, 'double, 'float, 'bigdec, 'string) val top3 = new Top3 val windowedTable = table .window(Slide over 5.milli every 4.milli on 'long as 'w) .groupBy('w, 'string) .flatAggregate(top3('int)) .select('string, 'f0, 'f1, 'w.start, 'w.end) val sink = new TestingAppendSink windowedTable.toAppendStream[Row].addSink(sink) env.execute() val expected = Seq( "Hello,2,2,1970-01-01T00:00,1970-01-01T00:00:00.005", "Hello,5,5,1970-01-01T00:00,1970-01-01T00:00:00.005", "Hallo,2,2,1970-01-01T00:00,1970-01-01T00:00:00.005", "Hello world,3,3,1970-01-01T00:00:00.004,1970-01-01T00:00:00.009", "Hello world,3,3,1970-01-01T00:00:00.008,1970-01-01T00:00:00.013", "Hello,3,3,1970-01-01T00:00:00.004,1970-01-01T00:00:00.009", "Hi,1,1,1970-01-01T00:00,1970-01-01T00:00:00.005", "Hello,5,5,1970-01-01T00:00:00.004,1970-01-01T00:00:00.009", "Hello world,4,4,1970-01-01T00:00:00.012,1970-01-01T00:00:00.017", "null,4,4,1970-01-01T00:00:00.028,1970-01-01T00:00:00.033", "Hello world,4,4,1970-01-01T00:00:00.016,1970-01-01T00:00:00.021", "null,4,4,1970-01-01T00:00:00.032,1970-01-01T00:00:00.037") assertEquals(expected.sorted, sink.getAppendResults.sorted) } @Test def testEventTimeSlidingGroupWindowOverTimeNonOverlappingSplitPane(): Unit = { // please keep this test in sync with the bounded variant val stream = failingDataSource(data2) .assignTimestampsAndWatermarks( new TimestampAndWatermarkWithOffset[(Long, Int, Double, Float, BigDecimal, String)](0L)) val table = stream.toTable(tEnv, 'long.rowtime, 'int, 'double, 'float, 'bigdec, 'string) val top3 = new Top3 val windowedTable = table .window(Slide over 3.milli every 10.milli on 'long as 'w) .groupBy('w, 'string) .flatAggregate(top3('int)) .select('string, 'f0, 'f1, 'w.start, 'w.end) val sink = new TestingAppendSink windowedTable.toAppendStream[Row].addSink(sink) env.execute() val expected = Seq( "null,4,4,1970-01-01T00:00:00.030,1970-01-01T00:00:00.033", "Hallo,2,2,1970-01-01T00:00,1970-01-01T00:00:00.003", "Hi,1,1,1970-01-01T00:00,1970-01-01T00:00:00.003") assertEquals(expected.sorted, sink.getAppendResults.sorted) } @Test def testEventTimeGroupWindowWithoutExplicitTimeField(): Unit = { val stream = failingDataSource(data2) .assignTimestampsAndWatermarks( new TimestampAndWatermarkWithOffset[(Long, Int, Double, Float, BigDecimal, String)](0L)) .map(t => (t._2, t._6)) val table = stream.toTable(tEnv, 'int, 'string, 'rowtime.rowtime) val top3 = new Top3 val windowedTable = table .window(Slide over 3.milli every 10.milli on 'rowtime as 'w) .groupBy('w, 'string) .flatAggregate(top3('int)) .select('string, 'f0, 'f1, 'w.start, 'w.end) val sink = new TestingAppendSink windowedTable.toAppendStream[Row].addSink(sink) env.execute() val expected = Seq( "Hallo,2,2,1970-01-01T00:00,1970-01-01T00:00:00.003", "Hi,1,1,1970-01-01T00:00,1970-01-01T00:00:00.003", "null,4,4,1970-01-01T00:00:00.030,1970-01-01T00:00:00.033") assertEquals(expected.sorted, sink.getAppendResults.sorted) } }
apache/flink
flink-table/flink-table-planner/src/test/scala/org/apache/flink/table/planner/runtime/stream/table/GroupWindowTableAggregateITCase.scala
Scala
apache-2.0
14,170
/* * Copyright 2013 Twitter Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); you may * not use this file except in compliance with the License. You may obtain * a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package com.twitter.storehaus.algebra.reporting import com.twitter.util.{ Await, Future } import com.twitter.storehaus.{ReadableStore, ReadableStoreProxy} import org.scalacheck.Properties import org.scalacheck.Prop._ object ReportingReadableStoreProperties extends Properties("ReportingReadableStore") { /** * get returns none when not in either store */ class DummyReporter[K, V](val self: ReadableStore[K, V]) extends ReadableStoreProxy[K, V] with ReadableStoreReporter[ReadableStore[K, V], K, V] { def traceMultiGet[K1 <: K]( ks: Set[K1], request: Map[K1, Future[Option[V]]]): Map[K1, Future[Unit]] = request.mapValues(_.unit) def traceGet(k: K, request: Future[Option[V]]): Future[Unit] = request.unit } def buildStoreRunQueries[K, V]( mA: Map[K, V], others: Set[K], builder: (ReadableStore[K, V]) => ReadableStore[K, V] ): Seq[(Option[V], Option[V])] = { val baseStore = ReadableStore.fromMap(mA) val wrappedStore = builder(baseStore) val expanded: Set[K] = mA.keySet ++ others // We use call to list, or it keeps the results of the map as a set and we loose data expanded.toList.map{k: K => (mA.get(k), Await.result(wrappedStore.get(k)))} } def buildStoreRunMultiGetQueries[K, V]( mA: Map[K, V], others: Set[K], builder: (ReadableStore[K, V]) => ReadableStore[K, V] ): (Map[K, Option[V]], Map[K, Option[V]]) = { val baseStore = ReadableStore.fromMap(mA) val wrappedStore = builder(baseStore) val expanded: Set[K] = mA.keySet ++ others // We use call to list, or it keeps the results of the map as a set and we loose data (expanded.map{k => (k, mA.get(k))}.toMap, wrappedStore.multiGet(expanded).map { case (k, futureV) => (k, Await.result(futureV)) }) } property("Stats store matches raw get for all queries") = forAll { (mA: Map[Int, String], others: Set[Int]) => def reporter(store: ReadableStore[Int, String]): DummyReporter[Int, String] = new DummyReporter[Int, String](store) val queryResults = buildStoreRunQueries(mA, others, reporter) queryResults.forall{case (a, b) => a == b} } property("Present/Absent count matches") = forAll { (mA: Map[Int, String], others: Set[Int]) => var presentCount = 0 var absentCount = 0 def reporter(store: ReadableStore[Int, String]): DummyReporter[Int, String] = new DummyReporter[Int, String](store) { override def traceGet(k: Int, request: Future[Option[String]]) = { request.map { case Some(_) => presentCount += 1 case None => absentCount += 1 } } } val queryResults = buildStoreRunQueries(mA, others, reporter) val wrappedResults = queryResults.map(_._2) wrappedResults.collect{case Some(b) => b}.size == presentCount && wrappedResults.collect{case None => 1}.size == absentCount } property("Stats store matches raw get for multiget all queries") = forAll { (mA: Map[Int, String], others: Set[Int]) => def reporter(store: ReadableStore[Int, String]): DummyReporter[Int, String] = new DummyReporter[Int, String](store) val (mapRes, storeResults) = buildStoreRunMultiGetQueries(mA, others, reporter) mapRes.size == storeResults.size && mapRes.keySet.forall(k => mapRes.get(k) == storeResults.get(k)) } property("Present/Absent count matches in multiget") = forAll { (mA: Map[Int, String], others: Set[Int]) => var presentCount = 0 var absentCount = 0 def reporter(store: ReadableStore[Int, String]): DummyReporter[Int, String] = new DummyReporter[Int, String](store) { override def traceMultiGet[K1 <: Int]( ks: Set[K1], request: Map[K1, Future[Option[String]]]) = { request.mapValues{fOptV => fOptV.map { case Some(_) => presentCount += 1 case None => absentCount += 1 } } } } val (_, storeResults) = buildStoreRunMultiGetQueries(mA, others, reporter) storeResults.values.collect{case Some(b) => b}.size == presentCount && storeResults.values.collect{case None => 1}.size == absentCount } }
twitter/storehaus
storehaus-algebra/src/test/scala/com/twitter/storehaus/algebra/reporting/ReportingReadableStoreProperties.scala
Scala
apache-2.0
4,888
package im.actor.server.persist.auth import java.time.{ ZoneOffset, LocalDateTime } import scala.concurrent.ExecutionContext import im.actor.server.db.ActorPostgresDriver.api._ import im.actor.server.model.{ AuthTransaction, AuthTransactionBase } private[auth] abstract class AuthTransactionRepoBase[T](tag: Tag, tname: String) extends Table[T](tag, tname) { def transactionHash = column[String]("transaction_hash", O.PrimaryKey) def appId = column[Int]("app_id") def apiKey = column[String]("api_key") def deviceHash = column[Array[Byte]]("device_hash") def deviceTitle = column[String]("device_title") def accessSalt = column[String]("access_salt") def deviceInfo = column[Array[Byte]]("device_info") def isChecked = column[Boolean]("is_checked") def deletedAt = column[Option[LocalDateTime]]("deleted_at") } final class AuthTransactionTable(tag: Tag) extends AuthTransactionRepoBase[AuthTransaction](tag, "auth_transactions") { def * = ( transactionHash, appId, apiKey, deviceHash, deviceTitle, accessSalt, deviceInfo, isChecked, deletedAt ) <> (AuthTransaction.tupled, AuthTransaction.unapply) } object AuthTransactionRepo { val transactions = TableQuery[AuthTransactionTable] val active = transactions.filter(_.deletedAt.isEmpty) def find(transactionHash: String) = active.filter(_.transactionHash === transactionHash).result.headOption def findChildren(transactionHash: String)(implicit ec: ExecutionContext): DBIO[Option[AuthTransactionBase]] = for { email ← AuthEmailTransactionRepo.find(transactionHash) phone ← AuthPhoneTransactionRepo.find(transactionHash) username ← AuthUsernameTransactionRepo.find(transactionHash) } yield (email, phone, username) match { case (Some(e), None, None) ⇒ email case (None, Some(p), None) ⇒ phone case (None, None, Some(p)) ⇒ username case _ ⇒ None } def delete(transactionHash: String) = transactions.filter(_.transactionHash === transactionHash).map(_.deletedAt).update(Some(LocalDateTime.now(ZoneOffset.UTC))) def updateSetChecked(transactionHash: String) = transactions.filter(_.transactionHash === transactionHash).map(_.isChecked).update(true) }
EaglesoftZJ/actor-platform
actor-server/actor-persist/src/main/scala/im/actor/server/persist/auth/AuthTransactionRepo.scala
Scala
agpl-3.0
2,277
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.spark.sql.types import java.util.Locale import scala.annotation.tailrec import scala.reflect.runtime.universe.typeTag import org.apache.spark.annotation.Stable import org.apache.spark.sql.catalyst.expressions.{Expression, Literal} import org.apache.spark.sql.errors.QueryCompilationErrors import org.apache.spark.sql.internal.SQLConf /** * The data type representing `java.math.BigDecimal` values. * A Decimal that must have fixed precision (the maximum number of digits) and scale (the number * of digits on right side of dot). * * The precision can be up to 38, scale can also be up to 38 (less or equal to precision). * * The default precision and scale is (10, 0). * * Please use `DataTypes.createDecimalType()` to create a specific instance. * * @since 1.3.0 */ @Stable case class DecimalType(precision: Int, scale: Int) extends FractionalType { DecimalType.checkNegativeScale(scale) if (scale > precision) { throw QueryCompilationErrors.decimalCannotGreaterThanPrecisionError(scale, precision) } if (precision > DecimalType.MAX_PRECISION) { throw QueryCompilationErrors.decimalOnlySupportPrecisionUptoError( DecimalType.simpleString, DecimalType.MAX_PRECISION) } // default constructor for Java def this(precision: Int) = this(precision, 0) def this() = this(10) private[sql] type InternalType = Decimal @transient private[sql] lazy val tag = typeTag[InternalType] private[sql] val numeric = Decimal.DecimalIsFractional private[sql] val fractional = Decimal.DecimalIsFractional private[sql] val ordering = Decimal.DecimalIsFractional private[sql] val asIntegral = Decimal.DecimalAsIfIntegral override private[sql] def exactNumeric = DecimalExactNumeric override def typeName: String = s"decimal($precision,$scale)" override def toString: String = s"DecimalType($precision,$scale)" override def sql: String = typeName.toUpperCase(Locale.ROOT) /** * Returns whether this DecimalType is wider than `other`. If yes, it means `other` * can be casted into `this` safely without losing any precision or range. */ private[sql] def isWiderThan(other: DataType): Boolean = isWiderThanInternal(other) @tailrec private def isWiderThanInternal(other: DataType): Boolean = other match { case dt: DecimalType => (precision - scale) >= (dt.precision - dt.scale) && scale >= dt.scale case dt: IntegralType => isWiderThanInternal(DecimalType.forType(dt)) case _ => false } /** * Returns whether this DecimalType is tighter than `other`. If yes, it means `this` * can be casted into `other` safely without losing any precision or range. */ private[sql] def isTighterThan(other: DataType): Boolean = isTighterThanInternal(other) @tailrec private def isTighterThanInternal(other: DataType): Boolean = other match { case dt: DecimalType => (precision - scale) <= (dt.precision - dt.scale) && scale <= dt.scale case dt: IntegralType => isTighterThanInternal(DecimalType.forType(dt)) case _ => false } /** * The default size of a value of the DecimalType is 8 bytes when precision is at most 18, * and 16 bytes otherwise. */ override def defaultSize: Int = if (precision <= Decimal.MAX_LONG_DIGITS) 8 else 16 override def simpleString: String = s"decimal($precision,$scale)" private[spark] override def asNullable: DecimalType = this } /** * Extra factory methods and pattern matchers for Decimals. * * @since 1.3.0 */ @Stable object DecimalType extends AbstractDataType { import scala.math.min val MAX_PRECISION = 38 val MAX_SCALE = 38 val SYSTEM_DEFAULT: DecimalType = DecimalType(MAX_PRECISION, 18) val USER_DEFAULT: DecimalType = DecimalType(10, 0) val MINIMUM_ADJUSTED_SCALE = 6 // The decimal types compatible with other numeric types private[sql] val BooleanDecimal = DecimalType(1, 0) private[sql] val ByteDecimal = DecimalType(3, 0) private[sql] val ShortDecimal = DecimalType(5, 0) private[sql] val IntDecimal = DecimalType(10, 0) private[sql] val LongDecimal = DecimalType(20, 0) private[sql] val FloatDecimal = DecimalType(14, 7) private[sql] val DoubleDecimal = DecimalType(30, 15) private[sql] val BigIntDecimal = DecimalType(38, 0) private[sql] def forType(dataType: DataType): DecimalType = dataType match { case ByteType => ByteDecimal case ShortType => ShortDecimal case IntegerType => IntDecimal case LongType => LongDecimal case FloatType => FloatDecimal case DoubleType => DoubleDecimal } private[sql] def fromLiteral(literal: Literal): DecimalType = literal.value match { case v: Short => fromDecimal(Decimal(BigDecimal(v))) case v: Int => fromDecimal(Decimal(BigDecimal(v))) case v: Long => fromDecimal(Decimal(BigDecimal(v))) case _ => forType(literal.dataType) } private[sql] def fromDecimal(d: Decimal): DecimalType = DecimalType(d.precision, d.scale) private[sql] def bounded(precision: Int, scale: Int): DecimalType = { DecimalType(min(precision, MAX_PRECISION), min(scale, MAX_SCALE)) } private[sql] def checkNegativeScale(scale: Int): Unit = { if (scale < 0 && !SQLConf.get.allowNegativeScaleOfDecimalEnabled) { throw QueryCompilationErrors.negativeScaleNotAllowedError(scale) } } /** * Scale adjustment implementation is based on Hive's one, which is itself inspired to * SQLServer's one. In particular, when a result precision is greater than * {@link #MAX_PRECISION}, the corresponding scale is reduced to prevent the integral part of a * result from being truncated. * * This method is used only when `spark.sql.decimalOperations.allowPrecisionLoss` is set to true. */ private[sql] def adjustPrecisionScale(precision: Int, scale: Int): DecimalType = { // Assumptions: checkNegativeScale(scale) assert(precision >= scale) if (precision <= MAX_PRECISION) { // Adjustment only needed when we exceed max precision DecimalType(precision, scale) } else if (scale < 0) { // Decimal can have negative scale (SPARK-24468). In this case, we cannot allow a precision // loss since we would cause a loss of digits in the integer part. // In this case, we are likely to meet an overflow. DecimalType(MAX_PRECISION, scale) } else { // Precision/scale exceed maximum precision. Result must be adjusted to MAX_PRECISION. val intDigits = precision - scale // If original scale is less than MINIMUM_ADJUSTED_SCALE, use original scale value; otherwise // preserve at least MINIMUM_ADJUSTED_SCALE fractional digits val minScaleValue = Math.min(scale, MINIMUM_ADJUSTED_SCALE) // The resulting scale is the maximum between what is available without causing a loss of // digits for the integer part of the decimal and the minimum guaranteed scale, which is // computed above val adjustedScale = Math.max(MAX_PRECISION - intDigits, minScaleValue) DecimalType(MAX_PRECISION, adjustedScale) } } override private[sql] def defaultConcreteType: DataType = SYSTEM_DEFAULT override private[sql] def acceptsType(other: DataType): Boolean = { other.isInstanceOf[DecimalType] } override private[sql] def simpleString: String = "decimal" private[sql] object Fixed { def unapply(t: DecimalType): Option[(Int, Int)] = Some((t.precision, t.scale)) } private[sql] object Expression { def unapply(e: Expression): Option[(Int, Int)] = e.dataType match { case t: DecimalType => Some((t.precision, t.scale)) case _ => None } } /** * Returns if dt is a DecimalType that fits inside an int */ def is32BitDecimalType(dt: DataType): Boolean = { dt match { case t: DecimalType => t.precision <= Decimal.MAX_INT_DIGITS case _ => false } } /** * Returns if dt is a DecimalType that fits inside a long */ def is64BitDecimalType(dt: DataType): Boolean = { dt match { case t: DecimalType => t.precision <= Decimal.MAX_LONG_DIGITS case _ => false } } /** * Returns if dt is a DecimalType that doesn't fit inside a long */ def isByteArrayDecimalType(dt: DataType): Boolean = { dt match { case t: DecimalType => t.precision > Decimal.MAX_LONG_DIGITS case _ => false } } def unapply(t: DataType): Boolean = t.isInstanceOf[DecimalType] def unapply(e: Expression): Boolean = e.dataType.isInstanceOf[DecimalType] }
ueshin/apache-spark
sql/catalyst/src/main/scala/org/apache/spark/sql/types/DecimalType.scala
Scala
apache-2.0
9,328
/* * This file is part of EasyForger which is released under GPLv3 License. * See file LICENSE.txt or go to http://www.gnu.org/licenses/gpl-3.0.en.html for full license details. */ package com.easyforger.recipes import net.minecraft.block.Block import net.minecraft.enchantment.Enchantment import net.minecraft.init.{Blocks, Items} import net.minecraft.item.{EnumDyeColor, Item, ItemStack} trait RecipeOps extends RecipeSourceOps with CraftingSourceOps { implicit class RecipeIntOps(quantity: Int) { def *(item: Item): ItemStack = new ItemStack(item, quantity) def *(block: Block): ItemStack = new ItemStack(block, quantity) } implicit def recipeToSmelting(recipe: Recipe): SmeltingRecipe = SmeltingRecipe(recipe, 1) implicit def recipeToCrafting(recipe: Recipe): CraftingRecipe = CraftingRecipe(Set(recipe.source), None, recipe.result) def enchanted(itemStack: ItemStack, enchantment: Enchantment, level: Int): ItemStack = { itemStack.addEnchantment(enchantment, level) itemStack } def smelting(smelts: SmeltingRecipe*): Unit = Smelting.smelting(smelts: _*) def crafting(crafts: CraftingRecipe*): Unit = Crafting.crafting(crafts: _*) } object RecipeOps { val errorShort = 'E val blockShorts = Map( Blocks.BED -> 'b, Blocks.CAKE -> 'c, Blocks.BREWING_STAND -> 'b, Blocks.REEDS -> 'r, Blocks.ACACIA_DOOR -> 'a, Blocks.JUNGLE_DOOR -> 'j, Blocks.OAK_DOOR -> 'o, Blocks.DARK_OAK_DOOR -> 'd, Blocks.BIRCH_DOOR -> 'b, Blocks.SPRUCE_DOOR -> 's ) def shortForItem(item: Item): Symbol = new ItemStack(item).getDisplayName.toLowerCase.charAt(0).symbol def shortForSpecialItem(item: Item, meta: Int): Symbol = if (item == Items.DYE) EnumDyeColor.byMetadata(meta).getName.toLowerCase.charAt(0).symbol else errorShort def shortForBlock(block: Block): Symbol = Item.getItemFromBlock(block) match { case Items.AIR => blockShorts.getOrElse(block, errorShort) case item: Any => shortForItem(item) } def calcMCParamsArray(craftRecipe: CraftingRecipe): Array[Object] = { val params = craftRecipe.shape .map(_.trim.replace(" ", "").replace('.', ' ').split("\\n")) .getOrElse(Array.empty) // turn into a list to avoid removing duplicated acronyms, which would end up hiding errors val acronyms = craftRecipe.sources.toList.flatMap { recipeSource => Seq(new Character(recipeSource.acronym.flatMap(_.name.headOption).getOrElse('E')), recipeSource.itemStack) } params ++ acronyms } implicit class SymbolOps(char: Char) { val symbol = Symbol(char.toString) } }
easyforger/easyforger
src/main/scala/com/easyforger/recipes/RecipeOps.scala
Scala
gpl-3.0
2,632
package jp.opap.material.facade import jp.opap.material.facade.RepositoryDataEventEmitter.{Progress, ProgressListener} import scala.beans.BeanProperty import scala.collection.mutable class RepositoryDataEventEmitter() { var _isRunning: Boolean = false def setRunning(value: Boolean): Unit = synchronized { _isRunning = value } def getRunning: Boolean = synchronized { _isRunning } protected val listeners: mutable.Set[ProgressListener] = mutable.Set() def subscribe(listener: ProgressListener): Unit = synchronized { if (_isRunning) this.listeners += listener } def unsubscribe(listener: ProgressListener): Unit = synchronized { this.listeners.remove(listener) } def publish(progress: Progress): Unit = synchronized { this.listeners.foreach(listener => listener.onUpdate(progress)) } def finish(): Unit = synchronized { this.listeners.foreach(listener => listener.onFinish()) this.setRunning(false) } } object RepositoryDataEventEmitter { trait ProgressListener { def onUpdate(progress: Progress): Unit def onFinish(): Unit } case class Progress(@BeanProperty current: Int, @BeanProperty max: Int, @BeanProperty processing: String, @BeanProperty name: String) }
opap-jp/material-explorer
rest/src/main/scala/jp/opap/material/facade/RepositoryDataEventEmitter.scala
Scala
mit
1,248
package me.reminisce.gameboard.questions import akka.actor.Props import me.reminisce.database.MongoCollections import me.reminisce.database.MongoDBEntities.FBPage import me.reminisce.database.MongoDBFormats._ import me.reminisce.gameboard.board.GameboardEntities._ import me.reminisce.gameboard.questions.QuestionGenerator._ import reactivemongo.api.DefaultDB import reactivemongo.api.collections.bson.BSONCollection import reactivemongo.bson.BSONDocument import scala.concurrent.ExecutionContext.Implicits.global import scala.util.{Failure, Random, Success} /** * Factory for [[me.reminisce.gameboard.questions.WhichPageDidYouLike]] */ object WhichPageDidYouLike { /** * Creates a WhichPageDidYouLike question generator * * @param database database from which to take the data * @return props for the created actor */ def props(database: DefaultDB): Props = Props(new WhichPageDidYouLike(database)) } /** * WhichPageDidYouLike question generator * * @param db database from which to take the data */ class WhichPageDidYouLike(db: DefaultDB) extends QuestionGenerator { /** * Entry point for this actor, handles the CreateQuestionWithMultipleItems(userId, itemIds) message by getting the * necessary items from the database and creating a question. If some items are non conform to what is expected, * missing or there is an error while contacting the database, the error is reported to the client. * * @return Nothing */ def receive: Receive = { case CreateQuestion(userId, itemId, maybeDifficulty) => val client = sender() val pagesCollection = db[BSONCollection](MongoCollections.fbPages) val likesCollection = db[BSONCollection](MongoCollections.fbPageLikes) fetchPage(pagesCollection, itemId, client) { case Some(page) => fetchLikedPages(likesCollection, userId, client) { list => val ids = list.map(fbPageLike => fbPageLike.pageId) val queryNotLiked = BSONDocument( "pageId" -> BSONDocument("$nin" -> ids) ) getDocuments[FBPage](db, pagesCollection, queryNotLiked, 40).onComplete { case Success(listPages) => if (listPages.length < 3) { client ! NotEnoughData(s"Unable to create question : not enough not liked pages.") } else { val choices = getChoices(maybeDifficulty, listPages) val possibilities = (page :: choices).map { pge => val url = pge.photos.flatMap(_.source) Possibility(pge.name.get, url, "Page", Some(pge.pageId)) } possibilities.headOption match { case Some(answer) => val shuffled = Random.shuffle(possibilities) val gameQuestion = MultipleChoiceQuestion(userId, MultipleChoice, MCWhichPageDidYouLike, None, shuffled, shuffled.indexOf(answer)) client ! FinishedQuestionCreation(gameQuestion) case None => client ! NotEnoughData(s"This should not happen, but the possibilities were empty.") } } case Failure(e) => client ! MongoDBError(s"${e.getMessage}") case any => client ! MongoDBError(s"Unknown error : $any.") } } case None => client ! NotEnoughData(s"Page not found. $itemId") } case any => log.error(s"WhichPageDidYouLike received a unexpected message $any") } /** * Get 3 choices. The size of the pool from which there are chosen follows: * y = -30*difficulty + 40 (This is arbitrary) * * @param maybeDifficulty User difficulty for question * @param listPages List of potential FBpage as choices * @return 3 FBpages as a List */ private def getChoices(maybeDifficulty: Option[Double], listPages: List[FBPage]): List[FBPage] = { val sortedList = listPages.sortBy(-_.likesNumber) val pool = Random.shuffle(sortedList.take((-30*maybeDifficulty.getOrElse(0.0)+40).toInt)) pool.take(3) } }
reminisceme/game-creator
src/main/scala/me/reminisce/gameboard/questions/WhichPageDidYouLike.scala
Scala
apache-2.0
4,289
package org.jetbrains.plugins.scala package codeInsight package template package macros import com.intellij.codeInsight.CodeInsightBundle import com.intellij.codeInsight.lookup.{LookupElement, LookupElementBuilder} import com.intellij.codeInsight.template._ import com.intellij.openapi.project.Project import com.intellij.psi.util.PsiTreeUtil import com.intellij.psi.{PsiClass, PsiDocumentManager} import org.jetbrains.plugins.scala.codeInsight.template.impl.ScalaCodeContextType import org.jetbrains.plugins.scala.codeInsight.template.util.MacroUtil import org.jetbrains.plugins.scala.extensions._ import org.jetbrains.plugins.scala.lang.psi.api.ScalaFile import org.jetbrains.plugins.scala.lang.psi.api.toplevel.ScTypedDefinition import org.jetbrains.plugins.scala.lang.psi.api.toplevel.typedef.ScTypeDefinition import org.jetbrains.plugins.scala.lang.psi.types.result.TypingContext import org.jetbrains.plugins.scala.lang.psi.types.{ScType, ScTypeExt} import org.jetbrains.plugins.scala.lang.resolve.ScalaResolveResult import _root_.scala.collection.mutable.ArrayBuffer /** * User: Alexander Podkhalyuzin * Date: 30.01.2009 */ /** * This class provides macros for live templates. Return elements * of given class type (or class types). */ class ScalaVariableOfTypeMacro extends ScalaMacro { def getPresentableName: String = "Scala variable of type macro" override def innerCalculateLookupItems(exprs: Array[Expression], context: ExpressionContext): Array[LookupElement] = { calculateLookupItems(exprs.map(_.calculateResult(context).toString), context, showOne = false) } def calculateLookupItems(exprs: Array[String], context: ExpressionContext, showOne: Boolean): Array[LookupElement] = { if (!validExprs(exprs)) return null val offset = context.getStartOffset val editor = context.getEditor val array = new ArrayBuffer[LookupElement] val file = PsiDocumentManager.getInstance(editor.getProject).getPsiFile(editor.getDocument) PsiDocumentManager.getInstance(editor.getProject).commitDocument(editor.getDocument) file match { case file: ScalaFile => val element = file.findElementAt(offset) val variants = MacroUtil.getVariablesForScope(element).filter(r => { val clazz = PsiTreeUtil.getParentOfType(r.element, classOf[PsiClass]) if (clazz == null) true else { clazz.qualifiedName match { case "scala.Predef" => false case "scala" => false case _ => true } } }) for (variant <- variants) { variant.getElement match { case typed: ScTypedDefinition => for (t <- typed.getType(TypingContext.empty)) addLookupItems(exprs, context, variant, t, file.getProject, array) case _ => } } case _ => } if (array.length < 2 && !showOne) return null array.toArray } def innerCalculateResult(exprs: Array[Expression], context: ExpressionContext): Result = { if (!validExprs(exprs)) return null val offset = context.getStartOffset val editor = context.getEditor val file = PsiDocumentManager.getInstance(editor.getProject).getPsiFile(editor.getDocument) PsiDocumentManager.getInstance(editor.getProject).commitDocument(editor.getDocument) file match { case file: ScalaFile => val element = file.findElementAt(offset) val variants = MacroUtil.getVariablesForScope(element).filter(r => { val clazz = PsiTreeUtil.getParentOfType(r.element, classOf[PsiClass]) if (clazz == null) true else { clazz.qualifiedName match { case "scala.Predef" => false case "scala" => false case _ => true } } }) for (variant <- variants) { variant.getElement match { case typed: ScTypedDefinition => for (t <- typed.getType(TypingContext.empty)) getResult(exprs, context, variant, t, file.getProject).map(return _) case _ => } } null case _ => null } } override def isAcceptableInContext(context: TemplateContextType): Boolean = context.isInstanceOf[ScalaCodeContextType] override def calculateQuickResult(p1: Array[Expression], p2: ExpressionContext): Result = null def getDescription: String = CodeInsightBundle.message("macro.variable.of.type") def getName: String = "scalaVariableOfType" override def getDefaultValue: String = "x" def validExprs(exprs: Array[Expression]): Boolean = validExprsCount(exprs.length) def validExprs(exprs: Array[String]): Boolean = validExprsCount(exprs.length) def validExprsCount(exprsCount: Int): Boolean = exprsCount != 0 def getResult(exprs: Array[Expression], context: ExpressionContext, variant: ScalaResolveResult, scType: ScType, project: Project): Option[Result] = { exprs.apply(0).calculateResult(context).toString match { case "" => Some(new TextResult(variant.getElement.name)) case ScalaVariableOfTypeMacro.iterableId => if (scType.canonicalText.startsWith("_root_.scala.Array")) Some(new TextResult(variant.getElement.name)) else scType.extractClass.collect { case x: ScTypeDefinition if x.functionsByName("foreach").nonEmpty => new TextResult(variant.getElement.name) } case _ => val qualName = scType.extractClass match { case Some(x) => x.qualifiedName case None => "" } exprs.find(expr => qualName == expr.calculateResult(context).toString) .map(_ => new TextResult(variant.getElement.name)) } } def addLookupItems(exprs: Array[String], context: ExpressionContext, variant: ScalaResolveResult, scType: ScType, project: Project, array: ArrayBuffer[LookupElement]) { exprs.apply(0) match { case "" => val item = LookupElementBuilder.create(variant.getElement, variant.getElement.name). withTypeText(scType.presentableText) array += item case ScalaVariableOfTypeMacro.iterableId if scType.canonicalText.startsWith("_root_.scala.Array") => array += LookupElementBuilder.create(variant.getElement, variant.getElement.name) case ScalaVariableOfTypeMacro.iterableId => scType.extractClass match { case Some(x: ScTypeDefinition) if x.functionsByName("foreach").nonEmpty => array += LookupElementBuilder.create(variant.getElement, variant.getElement.name) case _ => } case _ => for (expr <- exprs) { if ((scType.extractClass match { case Some(x) => x.qualifiedName case None => "" }) == expr) array += LookupElementBuilder.create(variant.getElement, variant.getElement.name) } } } } object ScalaVariableOfTypeMacro { val iterableId = "foreach" }
ilinum/intellij-scala
src/org/jetbrains/plugins/scala/codeInsight/template/macros/ScalaVariableOfTypeMacro.scala
Scala
apache-2.0
7,126
/* * Copyright 2014–2018 SlamData Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package matryoshka import slamdata.Predef._ import matryoshka.implicits._ import scalaz._ import simulacrum._ @typeclass trait EqualT[T[_[_]]] { def equal[F[_]: Functor](tf1: T[F], tf2: T[F])(implicit del: Delay[Equal, F]): Boolean def equalT[F[_]: Functor](delay: Delay[Equal, F]): Equal[T[F]] = Equal.equal[T[F]](equal[F](_, _)(Functor[F], delay)) } @SuppressWarnings(Array("org.wartremover.warts.PublicInference")) object EqualT { def recursiveT[T[_[_]]: RecursiveT]: EqualT[T] = new EqualT[T] { def equal[F[_]: Functor] (tf1: T[F], tf2: T[F]) (implicit del: Delay[Equal, F]) = del(equalT[F](del)).equal(tf1.project, tf2.project) } }
slamdata/matryoshka
core/shared/src/main/scala/matryoshka/EqualT.scala
Scala
apache-2.0
1,287
package com.github.al.roulette.player.impl import java.util.UUID import akka.NotUsed import akka.actor.Scheduler import com.github.al.logging.EventStreamLogging import com.github.al.logging.LoggedServerServiceCall.logged import com.github.al.persistence.{PersistentEntityRegistrySugar, Retrying} import com.github.al.roulette.player.api import com.github.al.roulette.player.api._ import com.lightbend.lagom.scaladsl.api.ServiceCall import com.lightbend.lagom.scaladsl.api.broker.Topic import com.lightbend.lagom.scaladsl.api.transport.NotFound import com.lightbend.lagom.scaladsl.broker.TopicProducer import com.lightbend.lagom.scaladsl.persistence.{EventStreamElement, PersistentEntityRegistry} import com.lightbend.lagom.scaladsl.server.ServerServiceCall import com.typesafe.scalalogging.LazyLogging import scala.concurrent.duration.DurationInt import scala.concurrent.{ExecutionContext, Future} import scala.language.postfixOps class PlayerServiceImpl(override val entityRegistry: PersistentEntityRegistry, playerRepository: PlayerRepository) (implicit val executionContext: ExecutionContext, scheduler: Scheduler) extends PlayerService with PersistentEntityRegistrySugar with Retrying with EventStreamLogging with LazyLogging { override def registerPlayer: ServiceCall[Player, PlayerId] = logged { ServerServiceCall { player => val id = UUID.randomUUID() entityRef[PlayerEntity](id) .ask(CreatePlayer(PlayerState(player.playerName))) .map(_ => PlayerId(id)) } } override def login: ServiceCall[PlayerCredentials, PlayerAccessToken] = { ServerServiceCall { credentials => for { playerId <- retry(playerRepository.getPlayerIdByName(credentials.playerName), delay = 300 millis, timeout = 3 seconds) accessToken <- entityRef[PlayerEntity](playerId).ask(IssueAccessToken) } yield PlayerAccessToken(accessToken) } } override def getPlayer(id: UUID): ServiceCall[NotUsed, Player] = logged { ServerServiceCall { _: NotUsed => entityRef[PlayerEntity](id).ask(GetPlayer).map { case Some(playerState) => Player(playerState.playerName) case None => throw NotFound(s"Player $id not found") } } } override def playerEvents: Topic[api.PlayerEvent] = TopicProducer.singleStreamWithOffset { offset => entityRegistry.eventStream(PlayerEvent.Tag, offset) .filter(_.event.isInstanceOf[PlayerCreated]) .mapAsync(1)(logEventStreamElementAsync).mapAsync(1)({ case EventStreamElement(playerId, PlayerCreated(_), _offset) => Future.successful(api.PlayerRegistered(playerId) -> _offset) }) } }
andrei-l/reactive-roulette
player-impl/src/main/scala/com/github/al/roulette/player/impl/PlayerServiceImpl.scala
Scala
mit
2,679
package magento import io.gatling.core.Predef._ import io.gatling.http.Predef._ import io.gatling.jdbc.Predef._ import io.gatling.http.Headers.Names._ import scala.concurrent.duration._ import bootstrap._ import assertions._ import Headers._ object AnonymousBrowserScenario { var feedCategoriesURL = csv("magento_category_urls.csv") var feedProductsURL = csv("magento_product_urls.csv") val homepage = exec(http("Get Homepage") .get("/") .headers(headers_1) ) .pause(2) val categories = feed(feedCategoriesURL.random) .repeat(3) { exec(http("Get Catalog Page") .get("${magento_category_url}") .headers(headers_1a) ) .pause(1) } .pause(2) val products = feed(feedProductsURL.random) .exec(http("Get Product Page") .get("${magento_product_url}") .headers(headers_1a) ) val scn = scenario("Anonymous Browser") .exec( homepage, categories, products ) }
candes/magento-gatling2
user-files/simulations/magento/AnonymousBrowserScenario.scala
Scala
apache-2.0
1,153
/* * Copyright 2014-2021 Netflix, Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package com.netflix.atlas.core.model import munit.FunSuite class ClampSuite extends FunSuite { val step = 60000L val dataTags = Map("name" -> "cpu", "node" -> "i-1") val inputTS = TimeSeries( dataTags, new ArrayTimeSeq( DsType.Gauge, 0L, step, Array[Double](1.0, 1.5, 1.6, 1.7, 1.4, 1.3, 1.2, 1.0, 0.0, 0.0) ) ) val des = StatefulExpr.Des(DataExpr.Sum(Query.Equal("name", "cpu")), 2, 0.1, 0.02) def eval(expr: TimeSeriesExpr, data: List[List[Datapoint]]): List[List[TimeSeries]] = { var state = Map.empty[StatefulExpr, Any] data.map { ts => val t = ts.head.timestamp val context = EvalContext(t, t + step, step, state) val rs = expr.eval(context, ts) state = rs.state rs.data } } test("clamp-min") { val s = 0L val e = 10L * step val context = EvalContext(s, e, step, Map.empty) val clamp = MathExpr.ClampMin(DataExpr.Sum(Query.Equal("name", "cpu")), 1.1) val actual = clamp.eval(context, List(inputTS)).data.head.data.bounded(s, e).data val expected = Array[Double](1.1, 1.5, 1.6, 1.7, 1.4, 1.3, 1.2, 1.1, 1.1, 1.1) assertEquals(actual.toSeq, expected.toSeq) } test("clamp-max") { val s = 0L val e = 10L * step val context = EvalContext(s, e, step, Map.empty) val clamp = MathExpr.ClampMax(DataExpr.Sum(Query.Equal("name", "cpu")), 1.1) val actual = clamp.eval(context, List(inputTS)).data.head.data.bounded(s, e).data val expected = Array[Double](1.0, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.0, 0.0, 0.0) assertEquals(actual.toSeq, expected.toSeq) } }
copperlight/atlas
atlas-core/src/test/scala/com/netflix/atlas/core/model/ClampSuite.scala
Scala
apache-2.0
2,213
package feature /** Exceptions for invalid [[Feature]]s */ object Exceptions { /** Exception indicating invalid CDS size */ class CDSSizeException(message: String) extends IllegalArgumentException(message) }
pamelarussell/sgxlib
src/main/scala/feature/Exceptions.scala
Scala
mit
216
/* * Copyright (c) 2014-2021 by The Monix Project Developers. * See the project homepage at: https://monix.io * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package monix.reactive.internal.operators import monix.execution.Ack import monix.execution.Ack.Continue import monix.execution.exceptions.DummyException import monix.reactive.{Observable, Observer} import scala.concurrent.duration._ import scala.concurrent.duration.Duration.Zero import scala.concurrent.{Future, Promise} import scala.util.Success object FilterSuite extends BaseOperatorSuite { def count(sourceCount: Int) = { sourceCount } def sum(sourceCount: Int): Long = sourceCount.toLong * (sourceCount + 1) def createObservable(sourceCount: Int) = { require(sourceCount > 0, "sourceCount should be strictly positive") Some { val o = if (sourceCount == 1) Observable.now(2L).filter(_ % 2 == 0) else Observable.range(1, sourceCount.toLong * 2 + 1, 1).filter(_ % 2 == 0) Sample(o, count(sourceCount), sum(sourceCount), Zero, Zero) } } def observableInError(sourceCount: Int, ex: Throwable) = { require(sourceCount > 0, "sourceCount should be strictly positive") Some { val ex = DummyException("dummy") val o = if (sourceCount == 1) createObservableEndingInError(Observable.now(2L), ex) .filter(_ % 2 == 0) else createObservableEndingInError(Observable.range(1, sourceCount.toLong * 2 + 1, 1), ex) .filter(_ % 2 == 0) Sample(o, count(sourceCount), sum(sourceCount), Zero, Zero) } } def brokenUserCodeObservable(sourceCount: Int, ex: Throwable) = { require(sourceCount > 0, "sourceCount should be strictly positive") Some { val o = if (sourceCount == 1) Observable.now(1L).filter(_ => throw ex) else Observable.range(1, sourceCount.toLong * 2 + 1, 1).filter { x => if (x == sourceCount * 2) throw ex else x % 2 == 0 } Sample(o, count(sourceCount - 1), sum(sourceCount - 1), Zero, Zero) } } override def cancelableObservables(): Seq[Sample] = { val sample = Observable .range(0, 10) .delayOnNext(1.second) .filter(_ % 2 == 0) Seq(Sample(sample, 0, 0, 0.seconds, 0.seconds)) } test("should not do back-pressure for onComplete, for 1 element") { implicit s => val p = Promise[Continue.type]() var wasCompleted = false createObservable(1) match { case Some(Sample(obs, _, _, waitForFirst, waitForNext)) => var onNextReceived = false obs.unsafeSubscribeFn(new Observer[Long] { def onNext(elem: Long): Future[Ack] = { onNextReceived = true; p.future } def onError(ex: Throwable): Unit = throw new IllegalStateException() def onComplete(): Unit = wasCompleted = true }) s.tick(waitForFirst) assert(onNextReceived) assert(wasCompleted) p.success(Continue) s.tick(waitForNext) } } test("withFilter syntax works") { implicit s => val source = Observable.range(1, 1000) val filtered = for { element <- source if element % 2 == 1 } yield element val f = filtered.toListL.runToFuture s.tick() assertEquals(f.value, Some(Success(List.range(1, 1000, 2)))) } }
monifu/monix
monix-reactive/shared/src/test/scala/monix/reactive/internal/operators/FilterSuite.scala
Scala
apache-2.0
3,924
package com.github.aselab.activerecord.io import com.github.aselab.activerecord._ import inner._ import validations._ import reflections._ object FormSerializer { import ReflectionUtil._ def assignFunc(value: Any, fieldInfo: FieldInfo): Any = formAssignFunc(value, fieldInfo)((v: Any, k: FieldInfo) => v) def formAssignFunc(value: Any, fieldInfo: FieldInfo)(assignFunc: (Any, FieldInfo) => Any): Any = { (value, fieldInfo) match { case (v: FormSerializer, FieldInfo(name, klass, _, isSeq, _)) if classOf[FormSerializer].isAssignableFrom(klass) && !isSeq => value case (v, FieldInfo(name, klass, _, isSeq, _)) if classOf[FormSerializer].isAssignableFrom(klass) && !isSeq => val companion = classToCompanion(klass).asInstanceOf[FormSupport[ActiveModel]] companion.unsafeAssign(v.asInstanceOf[Map[String, Any]], assignFunc) case (v, FieldInfo(name, klass, _, isSeq, _)) if classOf[FormSerializer].isAssignableFrom(klass) && isSeq => if (v.asInstanceOf[List[_]].headOption.exists(e => classOf[FormSerializer].isAssignableFrom(e.getClass))) { value } else { val companion = classToCompanion(klass).asInstanceOf[FormSupport[ActiveModel]] v.asInstanceOf[List[Map[String, Any]]].map(companion.unsafeAssign(_, assignFunc)) } case _ => value } } } trait FormSerializer extends IO { self: ProductModel => import ReflectionUtil._ override def toFieldType(value: Any, fieldInfo: FieldInfo): Any = { if (fieldInfo.isOption) { value match { case Some(v) => Some(v) case null | None | "" => None case v => Some(v) } } else { value } } def toFormValues: Map[String, String] = toFormValues(None) def toFormValues(prefix: Option[String]): Map[String, String] = { def serialize(c: Class[_], value: Any, key: String): Map[String, String] = if (classOf[FormSerializer].isAssignableFrom(c)) { value.asInstanceOf[FormSerializer].toFormValues(Some(key)) } else { Map(FormConverter.get(c).map(key -> _.serialize(value)).getOrElse( throw ActiveRecordException.unsupportedType(key) )) } toMap.flatMap { case (k, v) => val info = _companion.fieldInfo(k) val key = prefix.map(FormUtil.join(_, k)).getOrElse(k) if (info.isSeq) { v.asInstanceOf[Seq[_]].zipWithIndex.flatMap { case (value, index) => serialize(info.fieldType, value, FormUtil.join(key, index)) } } else { serialize(info.fieldType, v, key) } } } def assignFormValues(data: Map[String, String]): this.type = { unsafeAssign(_companion.fieldInfo.flatMap { case (name, info) => lazy val converter = FormConverter.get(info.fieldType).getOrElse( throw ActiveRecordException.unsupportedType(name) ) def deserialize(data: Map[String, String], key: String) = if (info.isModel) { val companion = classToCompanion(info.fieldType).asInstanceOf[FormSupport[ActiveModel]] val map = data.collect { case (k, v) if k.startsWith(key + "[") => FormUtil.shift(k) -> v } if (!(info.isOption && map.nonEmpty)) Some(companion.bind(map)) else None } else { data.get(key).collect { case v if !(info.isOption && v.isEmpty) => converter.deserialize(v) case _ => "" } } try { if (info.isSeq) { val dataList = Stream.from(0).map(i => data.collect { case (k, v) if k.startsWith("%s[%d]".format(name, i)) => FormUtil.shift(k) -> v }.toMap).takeWhile(_.nonEmpty) Some(name -> dataList.zipWithIndex.flatMap { case (d, i) => deserialize(d, i.toString) }.toList) } else { deserialize(data, name).map(name -> _) } } catch { case e: Throwable => this.errors.add(name, Validator.ERROR_PREFIX + "invalid") None } }, FormSerializer.assignFunc(_, _)) } def formErrors: Seq[ValidationError] = { val nestErrors = _companion.validatableFields.flatMap { f => f.toSeq[FormSerializer](this).zipWithIndex.flatMap { case (m, i) => m.formErrors.map { case e if e.isGlobal => e.copy(model = this.getClass, key = f.name + e.key) case e if f.isSeq => e.copy(key = FormUtil.join(f.name, i, e.key)) case e => e.copy(key = FormUtil.join(f.name, e.key)) } } } errors.toSeq ++ nestErrors } override def validate(): Boolean = super.validate && formErrors.isEmpty } trait FormSupport[T <: ActiveModel] { self: ProductModelCompanion[T] => import ReflectionUtil._ type C = ActiveModelCompanion[ActiveModel] def isRequired(name: String): Boolean = { def inner(c: C, names: Seq[String]): Boolean = { (names.headOption, names.tail) match { case (Some(name), tail) => c.fieldInfo.get(name).map { info => if (tail.isEmpty) { info.isRequired } else { inner(classToCompanion(info.fieldType).asInstanceOf[C], tail) } }.getOrElse(false) case _ => false } } inner(this.asInstanceOf[C], FormUtil.split(name).filterNot(s => s.isEmpty || s.matches("^[0-9]+$"))) } def assignValue(value: Any, fieldInfo: FieldInfo): Any = { (value, fieldInfo) match { case (v: FormSerializer, FieldInfo(name, klass, _, isSeq, _)) if classOf[FormSerializer].isAssignableFrom(klass) && !isSeq => value case (v, FieldInfo(name, klass, _, isSeq, _)) if classOf[FormSerializer].isAssignableFrom(klass) && !isSeq => val companion = classToCompanion(klass).asInstanceOf[FormSupport[ActiveModel]] companion.unsafeAssign(v.asInstanceOf[Map[String, Any]], (v, k) => v) case (v, FieldInfo(name, klass, _, isSeq, _)) if classOf[FormSerializer].isAssignableFrom(klass) && isSeq => if (v.asInstanceOf[List[_]].headOption.exists(e => classOf[FormSerializer].isAssignableFrom(e.getClass))) { value } else { val companion = classToCompanion(klass).asInstanceOf[FormSupport[ActiveModel]] v.asInstanceOf[List[Map[String, Any]]].map(companion.unsafeAssign(_, (v, k) => v)) } case _ => value } } def bind(data: Map[String, String])(implicit source: T = self.newInstance): T = { source.assignFormValues(data) source } def unsafeAssign(data: Map[String, Any], assignFunc: (Any, FieldInfo) => Any)(implicit source: T = self.newInstance): T = { source.unsafeAssign(data, assignFunc) source } def unbind(m: T): Map[String, String] = m.toFormValues } object FormUtil { /** a[b][c] => b[c] */ def shift(s: String): String = s.replaceFirst("""[^\\[]+\\[([^\\[\\]]+)\\]""", "$1") /** a[b][c] => a, b, c */ def split(s: String): Seq[String] = s.replaceAll("""\\[([^\\[\\]]*)\\]""", ",$1").split(",") /** a, b, c[d] => a[b][c][d] */ def join(a: String, b: Any*): String = a + b.flatMap(s => split(s.toString)).map("[%s]".format(_)).mkString }
xdougx/scala-activerecord
activerecord/src/main/scala/io/FormSupport.scala
Scala
mit
7,176
package org.jetbrains.sbt.project.data.service import java.io.File import java.util import com.intellij.facet.ModifiableFacetModel import com.intellij.openapi.externalSystem.model.project.{ModuleData, ProjectData} import com.intellij.openapi.externalSystem.model.{DataNode, Key, ProjectKeys} import com.intellij.openapi.externalSystem.service.project.IdeModifiableModelsProvider import com.intellij.openapi.externalSystem.service.project.manage.AbstractProjectDataService import com.intellij.openapi.externalSystem.util.{DisposeAwareProjectChange, ExternalSystemApiUtil} import com.intellij.openapi.module.Module import com.intellij.openapi.project.Project import com.intellij.openapi.roots.ModifiableRootModel import com.intellij.openapi.roots.impl.libraries.LibraryEx import com.intellij.openapi.roots.libraries.Library import com.intellij.util.CommonProcessors.CollectProcessor import org.jetbrains.plugins.scala.project.Platform.{Dotty, Scala} import org.jetbrains.plugins.scala.project.{DottyLibraryName, Platform, ScalaLanguageLevel, ScalaLibraryName, ScalaLibraryProperties, ScalaLibraryType} import scala.collection.JavaConverters._ /** * @author Pavel Fatin */ abstract class AbstractDataService[E, I](key: Key[E]) extends AbstractProjectDataService[E, I] { def createImporter(toImport: Seq[DataNode[E]], projectData: ProjectData, project: Project, modelsProvider: IdeModifiableModelsProvider): Importer[E] def getTargetDataKey: Key[E] = key override final def importData(toImport: util.Collection[DataNode[E]], projectData: ProjectData, project: Project, modelsProvider: IdeModifiableModelsProvider): Unit = createImporter(toImport.asScala.toSeq, projectData, project, modelsProvider).importData() } /** * The purposes of this trait are the following: * - Incapsulate logic necessary for importing specified data * - Wrap "unsafe" methods from IdeModifiableModelsProvider * - Collect import parameters as class fields to eliminate necessity of * dragging them into each and every method of ProjectDataService * - Abstract from External System's API which is rather unstable */ trait Importer[E] { val dataToImport: Seq[DataNode[E]] val projectData: ProjectData val project: Project val modelsProvider: IdeModifiableModelsProvider def importData(): Unit // IdeModifiableModelsProvider wrappers def findIdeModule(name: String): Option[Module] = Option(modelsProvider.findIdeModule(name)) def findIdeModule(data: ModuleData): Option[Module] = Option(modelsProvider.findIdeModule(data)) def getModifiableFacetModel(module: Module): ModifiableFacetModel = modelsProvider.getModifiableFacetModel(module) def getModifiableLibraryModel(library: Library): Library.ModifiableModel = modelsProvider.getModifiableLibraryModel(library) def getModifiableRootModel(module: Module): ModifiableRootModel = modelsProvider.getModifiableRootModel(module) def getModules: Array[Module] = modelsProvider.getModules // FIXME: should be implemented in External System def getModifiableLibraryModelEx(library: Library): LibraryEx.ModifiableModelEx = modelsProvider.getModifiableLibraryModel(library).asInstanceOf[LibraryEx.ModifiableModelEx] // Utility methods def getIdeModuleByNode(node: DataNode[_]): Option[Module] = for { moduleData <- Option(node.getData(ProjectKeys.MODULE)) module <- findIdeModule(moduleData) } yield module def getScalaLibraries: Set[Library] = modelsProvider.getAllLibraries.filter(l => Option(l.getName).exists(_.contains(ScalaLibraryName))).toSet def getScalaLibraries(module: Module, platform: Platform): Set[Library] = { val libraryName = platform match { case Scala => ScalaLibraryName case Dotty => DottyLibraryName } val collector = new CollectProcessor[Library]() getModifiableRootModel(module).orderEntries().librariesOnly().forEachLibrary(collector) collector.getResults.asScala .toSet .filter(l => Option(l.getName).exists(_.contains(libraryName))) } def executeProjectChangeAction(action: => Unit): Unit = ExternalSystemApiUtil.executeProjectChangeAction(new DisposeAwareProjectChange(project) { override def execute(): Unit = action }) def setScalaSdk(library: Library, platform: Platform, languageLevel: ScalaLanguageLevel, compilerClasspath: Seq[File]): Unit = { val properties = new ScalaLibraryProperties() properties.platform = platform properties.languageLevel = languageLevel properties.compilerClasspath = compilerClasspath val model = getModifiableLibraryModelEx(library) model.setKind(ScalaLibraryType.instance.getKind) model.setProperties(properties) } } abstract class AbstractImporter[E](val dataToImport: Seq[DataNode[E]], val projectData: ProjectData, val project: Project, val modelsProvider: IdeModifiableModelsProvider) extends Importer[E]
triplequote/intellij-scala
scala/scala-impl/src/org/jetbrains/sbt/project/data/service/AbstractDataService.scala
Scala
apache-2.0
5,245
package recsys import java.io.File import java.util.{Map => JMap} import com.datastax.driver.core.Cluster import org.constretto.Constretto import org.constretto.Constretto._ import org.constretto.Converter._ object Config { implicit val cassandraConfConverter = fromObject { obj => val servers = obj[List[String]]("servers") val port = obj.get[Int]("port").getOrElse(9042) CassandraConf(servers, port) } implicit val configConverter = fromObject { obj => val cassandra = obj[CassandraConf]("cassandra") Config(cassandra) } } object Sites { implicit val cassandraSiteConverter = fromObject{ obj => CassandraSite(obj[String]("keyspace"), obj[String]("table-prefix")) } implicit val siteConverter = fromObject{ obj => SiteConfig( obj[String]("name"), obj[CassandraSite]("cassandra") ) } def apply(file: File): Sites = { val con = Constretto(List(json(file.toURI.toString, "sites"))) Sites(con[Map[String, SiteConfig]]("sites")) } } case class CassandraConf(servers: List[String], port: Int) { lazy val cluster = { val builder = Cluster.builder() servers.foreach(builder.addContactPoint) builder.withPort(port) .withoutJMXReporting() .withoutMetrics() .build() } def getSession(ks: String) = cluster.connect(ks) } case class Config(cassandra: CassandraConf) case class CassandraSite(keyspace: String, tablePrefix: String) case class SiteConfig(name: String, cassandra: CassandraSite) case class Sites(underlying: Map[String, SiteConfig]) { def get(name: String): Option[SiteConfig] = underlying.get(name) }
przemek1990/spark-cassandra
src/main/scala/recsys/Config.scala
Scala
apache-2.0
1,630
package be.wegenenverkeer.atomium.client import be.wegenenverkeer.atomium.japi import com.github.tomakehurst.wiremock.WireMockServer import com.github.tomakehurst.wiremock.client.WireMock import com.github.tomakehurst.wiremock.client.WireMock._ import com.github.tomakehurst.wiremock.common.SingleRootFileSource import com.github.tomakehurst.wiremock.core.WireMockConfiguration._ import org.scalatest.{BeforeAndAfterAll, Suite} /** * Created by Karel Maesen, Geovise BVBA on 17/11/15. */ trait WithWireMock extends BeforeAndAfterAll { self: Suite => import be.wegenenverkeer.atomium.client.ImplicitConversions._ def fileSource: String def mappings = new SingleRootFileSource(fileSource) //we take a different port then in java-client module, because tests unfortunately continue to overlap with java client module val port: Int = 8089 lazy val server = new WireMockServer(wireMockConfig.port(port).fileSource(mappings)) def mkClientAcceptingXml = new japi.client.AtomiumClient.Builder() .setBaseUrl(s"http://localhost:$port/") .setAcceptXml() .build .asScala def mkClientAcceptingJson = new japi.client.AtomiumClient.Builder() .setBaseUrl(s"http://localhost:$port/") .setAcceptJson() .build .asScala def resetWireMock() { WireMock.resetToDefault() } override def beforeAll() { server.start() configureFor("localhost", port) resetToDefault() } override def afterAll() { server.shutdown() Thread.sleep(1000) } }
joachimvda/atomium
modules/client-scala/src/test/scala/be/wegenenverkeer/atomium/client/WithWireMock.scala
Scala
mit
1,513
import _root_.io.gatling.core.scenario.Simulation import ch.qos.logback.classic.{Level, LoggerContext} import io.gatling.core.Predef._ import io.gatling.http.Predef._ import org.slf4j.LoggerFactory import scala.concurrent.duration._ /** * Performance test for the TeamProject entity. */ class TeamProjectGatlingTest extends Simulation { val context: LoggerContext = LoggerFactory.getILoggerFactory.asInstanceOf[LoggerContext] // Log all HTTP requests //context.getLogger("io.gatling.http").setLevel(Level.valueOf("TRACE")) // Log failed HTTP requests //context.getLogger("io.gatling.http").setLevel(Level.valueOf("DEBUG")) val baseURL = Option(System.getProperty("baseURL")) getOrElse """http://localhost:8080""" val httpConf = http .baseURL(baseURL) .inferHtmlResources() .acceptHeader("*/*") .acceptEncodingHeader("gzip, deflate") .acceptLanguageHeader("fr,fr-fr;q=0.8,en-us;q=0.5,en;q=0.3") .connectionHeader("keep-alive") .userAgentHeader("Mozilla/5.0 (Macintosh; Intel Mac OS X 10.10; rv:33.0) Gecko/20100101 Firefox/33.0") val headers_http = Map( "Accept" -> """application/json""" ) val headers_http_authentication = Map( "Content-Type" -> """application/json""", "Accept" -> """application/json""" ) val headers_http_authenticated = Map( "Accept" -> """application/json""", "Authorization" -> "${access_token}" ) val scn = scenario("Test the TeamProject entity") .exec(http("First unauthenticated request") .get("/api/account") .headers(headers_http) .check(status.is(401))).exitHereIfFailed .pause(10) .exec(http("Authentication") .post("/api/authenticate") .headers(headers_http_authentication) .body(StringBody("""{"username":"admin", "password":"admin"}""")).asJSON .check(header.get("Authorization").saveAs("access_token"))).exitHereIfFailed .pause(1) .exec(http("Authenticated request") .get("/api/account") .headers(headers_http_authenticated) .check(status.is(200))) .pause(10) .repeat(2) { exec(http("Get all teamProjects") .get("/gamecraftteam/api/team-projects") .headers(headers_http_authenticated) .check(status.is(200))) .pause(10 seconds, 20 seconds) .exec(http("Create new teamProject") .post("/gamecraftteam/api/team-projects") .headers(headers_http_authenticated) .body(StringBody("""{"id":null, "teamId":null, "projectId":null}""")).asJSON .check(status.is(201)) .check(headerRegex("Location", "(.*)").saveAs("new_teamProject_url"))).exitHereIfFailed .pause(10) .repeat(5) { exec(http("Get created teamProject") .get("/gamecraftteam${new_teamProject_url}") .headers(headers_http_authenticated)) .pause(10) } .exec(http("Delete created teamProject") .delete("/gamecraftteam${new_teamProject_url}") .headers(headers_http_authenticated)) .pause(10) } val users = scenario("Users").exec(scn) setUp( users.inject(rampUsers(Integer.getInteger("users", 100)) over (Integer.getInteger("ramp", 1) minutes)) ).protocols(httpConf) }
iMartinezMateu/gamecraft
gamecraft-team/src/test/gatling/user-files/simulations/TeamProjectGatlingTest.scala
Scala
mit
3,458
/* * Copyright (C) 2012 The Regents of The University California. * All rights reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package shark.memstore2 import java.nio.ByteBuffer import org.scalatest.FunSuite import spark.{JavaSerializer, KryoSerializer} class TablePartitionSuite extends FunSuite { test("serialize TablePartition backed by non-direct ByteBuffer using Java") { val col1 = Array[Byte](0, 1, 2) val col2 = Array[Byte](1, 2, 3) val tp = new TablePartition(3, Array(ByteBuffer.wrap(col1), ByteBuffer.wrap(col2))) val ser = new JavaSerializer val bytes = ser.newInstance().serialize(tp) val tp1 = ser.newInstance().deserialize[TablePartition](bytes) assert(tp1.numRows === 3) assert(tp1.columns(0).remaining() == 3) assert(tp1.columns(0).get() == 0) assert(tp1.columns(0).get() == 1) assert(tp1.columns(0).get() == 2) assert(tp1.columns(1).remaining() == 3) assert(tp1.columns(1).get() == 1) assert(tp1.columns(1).get() == 2) assert(tp1.columns(1).get() == 3) } test("serialize TablePartition backed by direct ByteBuffer using Java") { val col1 = ByteBuffer.allocateDirect(3) col1.put(0.toByte) col1.put(1.toByte) col1.put(2.toByte) col1.rewind() val col2 = ByteBuffer.allocateDirect(3) col2.put(1.toByte) col2.put(2.toByte) col2.put(3.toByte) col2.rewind() val tp = new TablePartition(3, Array(col1, col2)) val ser = new JavaSerializer val bytes = ser.newInstance().serialize(tp) val tp1 = ser.newInstance().deserialize[TablePartition](bytes) assert(tp1.numRows === 3) assert(tp1.columns(0).remaining() == 3) assert(tp1.columns(0).get() == 0) assert(tp1.columns(0).get() == 1) assert(tp1.columns(0).get() == 2) assert(tp1.columns(1).remaining() == 3) assert(tp1.columns(1).get() == 1) assert(tp1.columns(1).get() == 2) assert(tp1.columns(1).get() == 3) } test("serialize TablePartition backed by non-direct ByteBuffer using Kryo") { val col1 = Array[Byte](0, 1, 2) val col2 = Array[Byte](1, 2, 3) val tp = new TablePartition(3, Array(ByteBuffer.wrap(col1), ByteBuffer.wrap(col2))) val ser = new KryoSerializer val bytes = ser.newInstance().serialize(tp) val tp1 = ser.newInstance().deserialize[TablePartition](bytes) assert(tp1.numRows === 3) assert(tp1.columns(0).remaining() == 3) assert(tp1.columns(0).get() == 0) assert(tp1.columns(0).get() == 1) assert(tp1.columns(0).get() == 2) assert(tp1.columns(1).remaining() == 3) assert(tp1.columns(1).get() == 1) assert(tp1.columns(1).get() == 2) assert(tp1.columns(1).get() == 3) } test("serialize TablePartition backed by direct ByteBuffer using Kryo") { val col1 = ByteBuffer.allocateDirect(3) col1.put(0.toByte) col1.put(1.toByte) col1.put(2.toByte) col1.rewind() val col2 = ByteBuffer.allocateDirect(3) col2.put(1.toByte) col2.put(2.toByte) col2.put(3.toByte) col2.rewind() val tp = new TablePartition(3, Array(col1, col2)) val ser = new KryoSerializer val bytes = ser.newInstance().serialize(tp) val tp1 = ser.newInstance().deserialize[TablePartition](bytes) assert(tp1.numRows === 3) assert(tp1.columns(0).remaining() == 3) assert(tp1.columns(0).get() == 0) assert(tp1.columns(0).get() == 1) assert(tp1.columns(0).get() == 2) assert(tp1.columns(1).remaining() == 3) assert(tp1.columns(1).get() == 1) assert(tp1.columns(1).get() == 2) assert(tp1.columns(1).get() == 3) } }
vax11780/shark
src/test/scala/shark/memstore2/TablePartitionSuite.scala
Scala
apache-2.0
4,098
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.carbondata.spark.testsuite.datamap import java.io.{ByteArrayInputStream, DataOutputStream, ObjectInputStream, ObjectOutputStream} import scala.collection.JavaConverters._ import scala.collection.mutable.ArrayBuffer import com.sun.xml.internal.messaging.saaj.util.ByteOutputStream import org.apache.hadoop.conf.Configuration import org.apache.spark.sql.test.util.QueryTest import org.scalatest.BeforeAndAfterAll import org.apache.carbondata.core.constants.CarbonCommonConstants import org.apache.carbondata.core.datamap.{DataMapDistributable, DataMapMeta, Segment} import org.apache.carbondata.core.datamap.dev.{DataMapBuilder, DataMapModel, DataMapWriter} import org.apache.carbondata.core.datamap.dev.fgdatamap.{FineGrainBlocklet, FineGrainDataMap, FineGrainDataMapFactory} import org.apache.carbondata.core.datastore.FileReader import org.apache.carbondata.core.datastore.block.SegmentProperties import org.apache.carbondata.core.datastore.compression.SnappyCompressor import org.apache.carbondata.core.datastore.impl.FileFactory import org.apache.carbondata.core.datastore.page.ColumnPage import org.apache.carbondata.core.features.TableOperation import org.apache.carbondata.core.indexstore.PartitionSpec import org.apache.carbondata.core.indexstore.blockletindex.BlockletDataMapDistributable import org.apache.carbondata.core.metadata.schema.table.{CarbonTable, DataMapSchema} import org.apache.carbondata.core.metadata.CarbonMetadata import org.apache.carbondata.core.scan.expression.Expression import org.apache.carbondata.core.scan.expression.conditional.EqualToExpression import org.apache.carbondata.core.scan.filter.intf.ExpressionType import org.apache.carbondata.core.scan.filter.resolver.FilterResolverIntf import org.apache.carbondata.core.util.{ByteUtil, CarbonProperties} import org.apache.carbondata.core.util.path.CarbonTablePath import org.apache.carbondata.events.Event import org.apache.carbondata.spark.testsuite.datacompaction.CompactionSupportGlobalSortBigFileTest class FGDataMapFactory(carbonTable: CarbonTable, dataMapSchema: DataMapSchema) extends FineGrainDataMapFactory(carbonTable, dataMapSchema) { /** * Return a new write for this datamap */ override def createWriter(segment: Segment, dataWritePath: String, segmentProperties: SegmentProperties): DataMapWriter = { new FGDataMapWriter(carbonTable, segment, dataWritePath, dataMapSchema) } /** * Get the datamap for segmentId */ override def getDataMaps(segment: Segment): java.util.List[FineGrainDataMap] = { val path = CarbonTablePath.getSegmentPath(carbonTable.getTablePath, segment.getSegmentNo) val file = FileFactory.getCarbonFile(path+ "/" +dataMapSchema.getDataMapName) val files = file.listFiles() files.map { f => val dataMap: FineGrainDataMap = new FGDataMap() dataMap.init(new DataMapModel(f.getCanonicalPath, new Configuration(false))) dataMap }.toList.asJava } /** * Get datamap for distributable object. */ override def getDataMaps(distributable: DataMapDistributable): java.util.List[FineGrainDataMap]= { val mapDistributable = distributable.asInstanceOf[BlockletDataMapDistributable] val dataMap: FineGrainDataMap = new FGDataMap() dataMap.init(new DataMapModel(mapDistributable.getFilePath, new Configuration(false))) Seq(dataMap).asJava } /** * Get all distributable objects of a segmentId * * @return */ override def toDistributable(segment: Segment): java.util.List[DataMapDistributable] = { val path = carbonTable.getTablePath val file = FileFactory.getCarbonFile( path+ "/" +dataMapSchema.getDataMapName + "/" + segment.getSegmentNo) val files = file.listFiles() files.map { f => val d: DataMapDistributable = new BlockletDataMapDistributable(f.getCanonicalPath) d.setSegment(segment) d.setDataMapSchema(getDataMapSchema) d }.toList.asJava } /** * * @param event */ override def fireEvent(event: Event):Unit = { ??? } /** * Clear all datamaps from memory */ override def clear(): Unit = { } /** * Return metadata of this datamap */ override def getMeta: DataMapMeta = { new DataMapMeta(carbonTable.getIndexedColumns(dataMapSchema), List(ExpressionType.EQUALS, ExpressionType.IN).asJava) } /** * delete datamap of the segment */ override def deleteDatamapData(segment: Segment): Unit = { } /** * delete datamap data if any */ override def deleteDatamapData(): Unit = { } /** * defines the features scopes for the datamap */ override def willBecomeStale(operation: TableOperation): Boolean = { false } override def createBuilder(segment: Segment, shardName: String, segmentProperties: SegmentProperties): DataMapBuilder = { ??? } /** * Get the datamap for segmentId */ override def getDataMaps(segment: Segment, partitions: java.util.List[PartitionSpec]): java.util.List[FineGrainDataMap] = { getDataMaps(segment) } } class FGDataMap extends FineGrainDataMap { var maxMin: ArrayBuffer[(Int, (Array[Byte], Array[Byte]), Long, Int)] = _ var FileReader: FileReader = _ var filePath: String = _ val compressor = new SnappyCompressor var taskName:String = _ /** * It is called to load the data map to memory or to initialize it. */ override def init(dataMapModel: DataMapModel): Unit = { this.filePath = dataMapModel.getFilePath val carbonFile = FileFactory.getCarbonFile(filePath) taskName = carbonFile.getName val size = carbonFile.getSize FileReader = FileFactory.getFileHolder(FileFactory.getFileType(filePath)) val footerLen = FileReader.readInt(filePath, size - 4) val bytes = FileReader.readByteArray(filePath, size - footerLen - 4, footerLen) val in = new ByteArrayInputStream(compressor.unCompressByte(bytes)) val obj = new ObjectInputStream(in) maxMin = obj.readObject() .asInstanceOf[ArrayBuffer[(Int, (Array[Byte], Array[Byte]), Long, Int)]] } /** * Prune the datamap with filter expression. It returns the list of * blocklets where these filters can exist. * * @param filterExp * @return */ override def prune( filterExp: FilterResolverIntf, segmentProperties: SegmentProperties, partitions: java.util.List[PartitionSpec]): java.util.List[FineGrainBlocklet] = { val buffer: ArrayBuffer[Expression] = new ArrayBuffer[Expression]() val expression = filterExp.getFilterExpression getEqualToExpression(expression, buffer) val value = buffer.map { f => f.getChildren.get(1).evaluate(null).getString } val meta = findMeta(value(0).getBytes) meta.map { f => readAndFindData(f, value(0).getBytes()) }.filter(_.isDefined).map(_.get).asJava } private def readAndFindData(meta: (Int, (Array[Byte], Array[Byte]), Long, Int), value: Array[Byte]): Option[FineGrainBlocklet] = { val bytes = FileReader.readByteArray(filePath, meta._3, meta._4) val outputStream = new ByteArrayInputStream(compressor.unCompressByte(bytes)) val obj = new ObjectInputStream(outputStream) val blockletsData = obj.readObject() .asInstanceOf[ArrayBuffer[(Array[Byte], Seq[Seq[Int]], Seq[Int])]] import scala.collection.Searching._ val searching = blockletsData .search[(Array[Byte], Seq[Seq[Int]], Seq[Int])]((value, Seq(Seq(0)), Seq(0)))(new Ordering[ (Array[Byte], Seq[Seq[Int]], Seq[Int])] { override def compare(x: (Array[Byte], Seq[Seq[Int]], Seq[Int]), y: (Array[Byte], Seq[Seq[Int]], Seq[Int])) = { ByteUtil.UnsafeComparer.INSTANCE.compareTo(x._1, y._1) } }) if (searching.insertionPoint >= 0) { val f = blockletsData(searching.insertionPoint) val pages = f._3.zipWithIndex.map { p => val pg = new FineGrainBlocklet.Page pg.setPageId(p._1) pg.setRowId(f._2(p._2).toArray) pg } Some(new FineGrainBlocklet(taskName, meta._1.toString, pages.toList.asJava)) } else { None } } private def findMeta(value: Array[Byte]) = { val tuples = maxMin.filter { f => ByteUtil.UnsafeComparer.INSTANCE.compareTo(value, f._2._1) >= 0 && ByteUtil.UnsafeComparer.INSTANCE.compareTo(value, f._2._2) <= 0 } tuples } def getEqualToExpression(expression: Expression, buffer: ArrayBuffer[Expression]): Unit = { if (expression.isInstanceOf[EqualToExpression]) { buffer += expression } else { if (expression.getChildren != null) { expression.getChildren.asScala.map { f => if (f.isInstanceOf[EqualToExpression]) { buffer += f } getEqualToExpression(f, buffer) } } } } /** * Clear complete index table and release memory. */ override def clear():Unit = { } override def isScanRequired(filterExp: FilterResolverIntf): Boolean = ??? /** * clears all the resources for datamaps */ override def finish() = { } override def getNumberOfEntries: Int = 1 } class FGDataMapWriter(carbonTable: CarbonTable, segment: Segment, shardName: String, dataMapSchema: DataMapSchema) extends DataMapWriter(carbonTable.getTablePath, dataMapSchema.getDataMapName, carbonTable.getIndexedColumns(dataMapSchema), segment, shardName) { var taskName: String = _ val fgwritepath = dataMapPath var stream: DataOutputStream = _ val blockletList = new ArrayBuffer[(Array[Byte], Seq[Int], Seq[Int])]() val maxMin = new ArrayBuffer[(Int, (Array[Byte], Array[Byte]), Long, Int)]() var position: Long = 0 val compressor = new SnappyCompressor /** * Start of new block notification. * * @param blockId file name of the carbondata file */ override def onBlockStart(blockId: String): Unit = { this.taskName = shardName if (stream == null) { val path = fgwritepath.substring(0, fgwritepath.lastIndexOf("/")) FileFactory.mkdirs(path) stream = FileFactory .getDataOutputStream(fgwritepath) } } /** * End of block notification */ override def onBlockEnd(blockId: String): Unit = { } /** * Start of new blocklet notification. * * @param blockletId sequence number of blocklet in the block */ override def onBlockletStart(blockletId: Int): Unit = { } /** * End of blocklet notification * * @param blockletId sequence number of blocklet in the block */ override def onBlockletEnd(blockletId: Int): Unit = { val sorted = blockletList .sortWith((l, r) => ByteUtil.UnsafeComparer.INSTANCE.compareTo(l._1, r._1) <= 0) var oldValue: (Array[Byte], Seq[Seq[Int]], Seq[Int]) = null var addedLast: Boolean = false val blockletListUpdated = new ArrayBuffer[(Array[Byte], Seq[Seq[Int]], Seq[Int])]() // Merge all same column values to single row. sorted.foreach { f => if (oldValue != null) { if (ByteUtil.UnsafeComparer.INSTANCE.compareTo(f._1, oldValue._1) == 0) { oldValue = (oldValue._1, oldValue._2 ++ Seq(f._2), oldValue._3 ++ f._3) addedLast = false } else { blockletListUpdated += oldValue oldValue = (f._1, Seq(f._2), f._3) addedLast = true } } else { oldValue = (f._1, Seq(f._2), f._3) addedLast = false } } if (!addedLast && oldValue != null) { blockletListUpdated += oldValue } val out = new ByteOutputStream() val outStream = new ObjectOutputStream(out) outStream.writeObject(blockletListUpdated) outStream.close() val bytes = compressor.compressByte(out.getBytes) stream.write(bytes) maxMin += ((blockletId, (blockletListUpdated.head._1, blockletListUpdated.last ._1), position, bytes.length)) position += bytes.length blockletList.clear() } /** * Add the column pages row to the datamap, order of pages is same as `indexColumns` in * DataMapMeta returned in DataMapFactory. * * Implementation should copy the content of `pages` as needed, because `pages` memory * may be freed after this method returns, if using unsafe column page. */ override def onPageAdded(blockletId: Int, pageId: Int, pageSize: Int, pages: Array[ColumnPage]): Unit = { val size = pages(0).getPageSize val list = new ArrayBuffer[(Array[Byte], Int)]() var i = 0 while (i < size) { val bytes = pages(0).getBytes(i) val newBytes = new Array[Byte](bytes.length - 2) System.arraycopy(bytes, 2, newBytes, 0, newBytes.length) list += ((newBytes, i)) i = i + 1 } // Sort based on the column data in order to create index. val sorted = list .sortWith((l, r) => ByteUtil.UnsafeComparer.INSTANCE.compareTo(l._1, r._1) <= 0) var oldValue: (Array[Byte], Seq[Int], Seq[Int]) = null var addedLast: Boolean = false // Merge all same column values to single row. sorted.foreach { f => if (oldValue != null) { if (ByteUtil.UnsafeComparer.INSTANCE.compareTo(f._1, oldValue._1) == 0) { oldValue = (oldValue._1, oldValue._2 ++ Seq(f._2), oldValue._3) addedLast = false } else { blockletList += oldValue oldValue = (f._1, Seq(f._2), Seq(pageId)) addedLast = true } } else { oldValue = (f._1, Seq(f._2), Seq(pageId)) addedLast = false } } if (!addedLast && oldValue != null) { blockletList += oldValue } } /** * This is called during closing of writer.So after this call no more data will be sent to this * class. */ override def finish(): Unit = { FileFactory.mkdirs(fgwritepath) val out = new ByteOutputStream() val outStream = new ObjectOutputStream(out) outStream.writeObject(maxMin) outStream.close() val bytes = compressor.compressByte(out.getBytes) stream.write(bytes) stream.writeInt(bytes.length) stream.close() } } class FGDataMapTestCase extends QueryTest with BeforeAndAfterAll { val file2 = resourcesPath + "/compaction/fil2.csv" override protected def beforeAll(): Unit = { //n should be about 5000000 of reset if size is default 1024 val n = 150000 CompactionSupportGlobalSortBigFileTest.createFile(file2, n * 4, n) CarbonProperties.getInstance() .addProperty(CarbonCommonConstants.ENABLE_QUERY_STATISTICS, "true") sql("DROP TABLE IF EXISTS normal_test") sql( """ | CREATE TABLE normal_test(id INT, name STRING, city STRING, age INT) | STORED AS carbondata | TBLPROPERTIES('SORT_COLUMNS'='city,name', 'SORT_SCOPE'='LOCAL_SORT') """.stripMargin) sql(s"LOAD DATA LOCAL INPATH '$file2' INTO TABLE normal_test OPTIONS('header'='false')") } test("test fg datamap") { sql("DROP TABLE IF EXISTS datamap_test") sql( """ | CREATE TABLE datamap_test(id INT, name STRING, city STRING, age INT) | STORED AS carbondata | TBLPROPERTIES('SORT_COLUMNS'='city,name', 'SORT_SCOPE'='LOCAL_SORT') """.stripMargin) val table = CarbonMetadata.getInstance().getCarbonTable("default_datamap_test") // register datamap writer sql( s""" | CREATE DATAMAP ggdatamap ON TABLE datamap_test | USING '${classOf[FGDataMapFactory].getName}' | DMPROPERTIES('index_columns'='name') """.stripMargin) sql(s"LOAD DATA LOCAL INPATH '$file2' INTO TABLE datamap_test OPTIONS('header'='false')") checkAnswer(sql("select * from datamap_test where name='n502670'"), sql("select * from normal_test where name='n502670'")) } test("test fg datamap with 2 datamaps ") { sql("DROP TABLE IF EXISTS datamap_test") sql( """ | CREATE TABLE datamap_test(id INT, name STRING, city STRING, age INT) | STORED AS carbondata | TBLPROPERTIES('SORT_COLUMNS'='city,name', 'SORT_SCOPE'='LOCAL_SORT') """.stripMargin) val table = CarbonMetadata.getInstance().getCarbonTable("default_datamap_test") // register datamap writer sql( s""" | CREATE DATAMAP ggdatamap1 ON TABLE datamap_test | USING '${classOf[FGDataMapFactory].getName}' | DMPROPERTIES('index_columns'='name') """.stripMargin) sql( s""" | CREATE DATAMAP ggdatamap2 ON TABLE datamap_test | USING '${classOf[FGDataMapFactory].getName}' | DMPROPERTIES('index_columns'='city') """.stripMargin) sql(s"LOAD DATA LOCAL INPATH '$file2' INTO TABLE datamap_test OPTIONS('header'='false')") checkAnswer(sql("select * from datamap_test where name='n502670' and city='c2670'"), sql("select * from normal_test where name='n502670' and city='c2670'")) checkAnswer(sql("select * from datamap_test where name='n502670' or city='c2670'"), sql("select * from normal_test where name='n502670' or city='c2670'")) } test("test invisible datamap during query") { val tableName = "datamap_testFG" val dataMapName1 = "datamap1" val dataMapName2 = "datamap2" sql(s"DROP TABLE IF EXISTS $tableName") sql( s""" | CREATE TABLE $tableName(id INT, name STRING, city STRING, age INT) | STORED AS carbondata | TBLPROPERTIES('SORT_COLUMNS'='city,name', 'SORT_SCOPE'='LOCAL_SORT') """.stripMargin) // register datamap writer sql( s""" | CREATE DATAMAP $dataMapName1 | ON TABLE $tableName | USING '${classOf[FGDataMapFactory].getName}' | DMPROPERTIES('index_columns'='name') """.stripMargin) sql( s""" | CREATE DATAMAP $dataMapName2 | ON TABLE $tableName | USING '${classOf[FGDataMapFactory].getName}' | DMPROPERTIES('index_columns'='city') """.stripMargin) sql(s"LOAD DATA LOCAL INPATH '$file2' INTO TABLE $tableName OPTIONS('header'='false')") val df1 = sql(s"EXPLAIN EXTENDED SELECT * FROM $tableName WHERE name='n502670' AND city='c2670'").collect() assert(df1(0).getString(0).contains("FG DataMap")) assert(df1(0).getString(0).contains(dataMapName1)) assert(df1(0).getString(0).contains(dataMapName2)) // make datamap1 invisible sql(s"SET ${CarbonCommonConstants.CARBON_DATAMAP_VISIBLE}default.$tableName.$dataMapName1 = false") val df2 = sql(s"EXPLAIN EXTENDED SELECT * FROM $tableName WHERE name='n502670' AND city='c2670'").collect() val e = intercept[Exception] { assert(df2(0).getString(0).contains(dataMapName1)) } assert(e.getMessage.contains("did not contain \"" + dataMapName1)) assert(df2(0).getString(0).contains(dataMapName2)) checkAnswer(sql(s"SELECT * FROM $tableName WHERE name='n502670' AND city='c2670'"), sql("SELECT * FROM normal_test WHERE name='n502670' AND city='c2670'")) // also make datamap2 invisible sql(s"SET ${CarbonCommonConstants.CARBON_DATAMAP_VISIBLE}default.$tableName.$dataMapName2 = false") checkAnswer(sql(s"SELECT * FROM $tableName WHERE name='n502670' AND city='c2670'"), sql("SELECT * FROM normal_test WHERE name='n502670' AND city='c2670'")) val df3 = sql(s"EXPLAIN EXTENDED SELECT * FROM $tableName WHERE name='n502670' AND city='c2670'").collect() val e31 = intercept[Exception] { assert(df3(0).getString(0).contains(dataMapName1)) } assert(e31.getMessage.contains("did not contain \"" + dataMapName1)) val e32 = intercept[Exception] { assert(df3(0).getString(0).contains(dataMapName2)) } assert(e32.getMessage.contains("did not contain \"" + dataMapName2)) // make datamap1,datamap2 visible sql(s"SET ${CarbonCommonConstants.CARBON_DATAMAP_VISIBLE}default.$tableName.$dataMapName1 = true") sql(s"SET ${CarbonCommonConstants.CARBON_DATAMAP_VISIBLE}default.$tableName.$dataMapName2 = true") checkAnswer(sql(s"SELECT * FROM $tableName WHERE name='n502670' AND city='c2670'"), sql("SELECT * FROM normal_test WHERE name='n502670' AND city='c2670'")) val df4 = sql(s"EXPLAIN EXTENDED SELECT * FROM $tableName WHERE name='n502670' AND city='c2670'").collect() assert(df4(0).getString(0).contains(dataMapName1)) assert(df4(0).getString(0).contains(dataMapName2)) } override protected def afterAll(): Unit = { defaultConfig() // CompactionSupportGlobalSortBigFileTest.deleteFile(file2) // sql("DROP TABLE IF EXISTS normal_test") // sql("DROP TABLE IF EXISTS datamap_test") // sql("DROP TABLE IF EXISTS datamap_testFG") // CarbonProperties.getInstance() // .addProperty(CarbonCommonConstants.ENABLE_QUERY_STATISTICS, // CarbonCommonConstants.ENABLE_QUERY_STATISTICS_DEFAULT) } }
jackylk/incubator-carbondata
integration/spark/src/test/scala/org/apache/carbondata/spark/testsuite/datamap/FGDataMapTestCase.scala
Scala
apache-2.0
21,538
/* Copyright (C) 2008-2016 University of Massachusetts Amherst. This file is part of "FACTORIE" (Factor graphs, Imperative, Extensible) http://factorie.cs.umass.edu, http://github.com/factorie Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ package cc.factorie.util import scala.reflect.ClassTag // TODO Why insist on AnyRef? Why not just Any? This would make app.nlp.DocumentProcessor a little cleaner. -akm /** Provides member "attr" which is a map from a class to an attribute value (instance of that class). This is used to attach arbitrary "attributes" to objects that inherit from this trait. Conveniently these attributes do not need to be pre-compiled into the object as class members, and yet when fetched they are returned with the correct Scala type known. For example, attributes are used to attach a part-of-speech label to a cc.factorie.app.nlp.Token, to attach a ParseTree to a Sentence, and coreference information to a Document. Basic example usage: object foo extends Attr; foo.attr += "bar"; require(foo.attr[String] == "bar"); foo.attr.remove[String]. @author Andrew McCallum */ trait Attr extends Serializable { /** A collection of attributes, keyed by the attribute class. */ def getAttr = attr object attr extends Serializable { private var _attr: Array[AnyRef] = new Array[AnyRef](2) /** The number of attributes present. */ def length: Int = { var i = 0; while ((i < _attr.length) && (_attr(i) ne null)) i += 1; i } /** The capacity of the array holding the attributes. May be more than "length", the number of attributes present. */ def capacity: Int = _attr.length private def setCapacity(cap:Int): Unit = { val ta = new Array[AnyRef](cap); System.arraycopy(_attr, 0, ta, 0, math.min(cap, math.min(cap, _attr.length))) } /** Make sure there is capacity of at least "cap" */ def ensureCapacity(cap:Int): Unit = if (cap > _attr.length) { val ta = new Array[AnyRef](cap); System.arraycopy(_attr, 0, ta, 0, _attr.length) } /** Increase capacity by "incr". */ def increaseCapacity(incr:Int): Unit = { val ta = new Array[AnyRef](_attr.length+incr); System.arraycopy(_attr, 0, ta, 0, _attr.length); _attr = ta } /** Remove the attribute at index i. */ def removeIndex(i:Int): Unit = { val len = length if (i == len - 1) _attr(i) = null else { System.arraycopy(_attr, i+1, _attr, i, len-i-1) _attr(len-1) = null } } /** Re-allocate the attribute array to remove any excess capacity */ def trimCapacity(): Unit = { val l = length; if (l < _attr.length) setCapacity(l) } /** Add the given attribute, with key equal to its class. */ def +=[C<:AnyRef](value:C): C = { var i = 0 val key = value.getClass while (i < _attr.length && (_attr(i) ne null) && _attr(i).getClass != key) i += 1 if (i == _attr.length) increaseCapacity(1) _attr(i) = value value } /** Returns the index of the last attribute whose class is assignable from the argument. Attributes occur in the order in which they were inserted. Note this means you can add a:MyClass, then add b:SubclassOfMyClass, then index[MyClass] will return the index of "b". */ @inline final def index(key:Class[_]): Int = { var i = _attr.length - 1 while (i >= 0) { if ((_attr(i) ne null) && key.isAssignableFrom(_attr(i).getClass)) return i i -= 1 } -1 } /** Returns the index of the last attribute whose class is assignable from the argument. Attributes occur in the order in which they were inserted. Note this means you can add a:MyClass, then add b:SubclassOfMyClass, then index[MyClass] will return the index of "b". */ @inline final def index[C<:AnyRef]()(implicit m: ClassTag[C]): Int = index(m.runtimeClass) /** Return the index of the last attribute whose class is exactly the argument. Attributes occur in the order in which they were inserted. */ @inline final def indexExactly(key:Class[_]): Int = { var i = _attr.length - 1 while (i >= 0) { if (key eq _attr(i).getClass) return i i -= 1 } -1 } /** Return true if there is an attribute of class equal to or subclass of the argument. */ def contains[C<:AnyRef]()(implicit m: ClassTag[C]): Boolean = index(m.runtimeClass) >= 0 /** Return true if there is an attribute of class equal to or subclass of the argument. */ def contains(key:Class[_]): Boolean = index(key) >= 0 /** Return true if there is an attribute of class exactly equal to the argument. */ def containsExactly[C<:AnyRef]()(implicit m: ClassTag[C]): Boolean = indexExactly(m.runtimeClass) >= 0 /** Return true if there is an attribute of class exactly equal to the argument. */ def containsExactly(key: Class[_]): Boolean = indexExactly(key) >= 0 /** Returns a sequence of all attributes with classes assignable to C (i.e. that are either C or a subclass of C). */ def all[C<:AnyRef]()(implicit m: ClassTag[C]): Seq[C] = { val key = m.runtimeClass val result = new scala.collection.mutable.ArrayBuffer[C] var i = 0 while (i < _attr.length) { if ((_attr(i) ne null) && key.isAssignableFrom(_attr(i).getClass)) result += _attr(i).asInstanceOf[C] i += 1 } result } /** Remove all attributes with class matching or subclass of C. For example, to remove all attributes call remove[AnyRef]. If call results in no removals, will not throw an Error. */ def remove[C<:AnyRef](implicit m: ClassTag[C]): Unit = { val key = m.runtimeClass var i = 0 while (i < _attr.length) { if ((_attr(i) ne null) && key.isAssignableFrom(_attr(i).getClass)) removeIndex(i) else i += 1 } } /** Return a sequence of all attributes */ def values: Seq[AnyRef] = { val result = new scala.collection.mutable.ArrayBuffer[AnyRef] var i = 0 while (i < _attr.length) { if (_attr(i) ne null) result += _attr(i) i += 1 } result } /** Fetch the first value associated with the given class. If none present, return null. */ def apply[C<:AnyRef]()(implicit m: ClassTag[C]): C = { var i = index(m.runtimeClass) if (i >= 0) _attr(i).asInstanceOf[C] else null.asInstanceOf[C] } /** Fetch the first value associated with the given class. If none present, return null. */ def apply[C<:AnyRef](key:Class[C]): C ={ var i = index(key) if (i >= 0) _attr(i).asInstanceOf[C] else null.asInstanceOf[C] } /** Fetch the first attribute who class is exactly equal to the given class. If none present, return null. */ def exactly[C<:AnyRef]()(implicit m: ClassTag[C]): C = { var i = indexExactly(m.runtimeClass) if (i >= 0) _attr(i).asInstanceOf[C] else null.asInstanceOf[C] } def get[C<:AnyRef](implicit m: ClassTag[C]): Option[C] = { val result = this.apply[C] if (result ne null) Option(result) else None } def getOrElse[C<:AnyRef](defaultValue:C)(implicit m: ClassTag[C]): C = { val result = this.apply[C] if (result ne null) result else defaultValue } def getOrElseUpdate[C<:AnyRef](defaultValue: =>C)(implicit m: ClassTag[C]): C = { val result = this.apply[C] if (result ne null) result else { val value = defaultValue this += value value } } override def toString = values.mkString(" ") } }
strubell/factorie
src/main/scala/cc/factorie/util/Attr.scala
Scala
apache-2.0
8,121
/* * SPDX-License-Identifier: Apache-2.0 * * Copyright 2015-2021 Andre White. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * https://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package io.truthencode.ddo.model.feats import io.truthencode.ddo.activation.AtWillEvent import io.truthencode.ddo.model.classes.HeroicCharacterClass import io.truthencode.ddo.model.classes.HeroicCharacterClass.Monk import io.truthencode.ddo.support.requisite.{FeatRequisiteImpl, GrantsToClass, RequiresAllOfClass} import java.time.Duration /** * At the cost of 10 Ki, a monk can use this ability to make horizontal leaps, closing to targets, * traversing chasms, or zipping past enemies with less chance of being detected. There is a * cool-down of three seconds on this feat and can only be used on yourself. */ trait AbundantStep extends FeatRequisiteImpl with ActiveFeat with AtWillEvent with GrantsToClass with RequiresAllOfClass { override def grantToClass: Seq[(HeroicCharacterClass, Int)] = List((Monk, 12)) override def allOfClass: Seq[(HeroicCharacterClass, Int)] = List((Monk, 12)) override def coolDown: Option[Duration] = Some(Duration.ofSeconds(3)) }
adarro/ddo-calc
subprojects/common/ddo-core/src/main/scala/io/truthencode/ddo/model/feats/AbundantStep.scala
Scala
apache-2.0
1,677
package net.cucumbersome import org.scalatest.{MustMatchers, WordSpec} import scala.concurrent.duration._ import scala.concurrent.{Await, Future} class UnitSpec extends WordSpec with MustMatchers{ def futureValue[A](f: Future[A]): A = Await.result(f, 5 seconds) }
CucumisSativus/rpgRollerBackend
src/test/scala/net/cucumbersome/UnitSpec.scala
Scala
mit
268
package com.twitter.finagle.http import com.twitter.finagle.{Filter, Service} import com.twitter.finagle.util.LoadService import com.twitter.util.Future import java.net.URI import org.jboss.netty.handler.codec.http.{DefaultHttpResponse, HttpHeaders, HttpRequest, HttpResponse, HttpResponseStatus, HttpVersion} import java.util.logging.Logger /** * A service that dispatches incoming requests to registered handlers. * In order to choose which handler to dispatch the request to, we take the path of the request and match it with * the patterns of the pre-registered handlers. The pattern matching follows these rules: * - Patterns ending with "/" use prefix matching. Eg: the pattern "foo/bar/" matches these paths: * "foo/bar", "foo/bar/", "foo/bar/baz", etc. * - Patterns not ending with "/" use exact matching. Eg: the pattern "foo/bar" ONLY matches these two paths: * "foo/bar" and "foo/bar/" * - Exact matching overrides prefix matching. * - When multiple prefix matches exist, the longest pattern wins. */ class HttpMuxer(protected[this] val handlers: Seq[(String, Service[HttpRequest, HttpResponse])]) extends Service[HttpRequest, HttpResponse] { def this() = this(Seq[(String, Service[HttpRequest, HttpResponse])]()) private[this] val sorted: Seq[(String, Service[HttpRequest, HttpResponse])] = handlers.sortBy { case (pattern, _) => pattern.length } reverse def patterns = sorted map { case(p, _) => p } /** * Create a new Mux service with the specified pattern added. If the pattern already exists, overwrite existing value. * Pattern ending with "/" indicates prefix matching; otherwise exact matching. */ def withHandler(pattern: String, service: Service[HttpRequest, HttpResponse]): HttpMuxer = { val norm = normalize(pattern) new HttpMuxer(handlers.filterNot { case (pat, _) => pat == norm } :+ (norm, service)) } /** * Extract path from HttpRequest; look for a matching pattern; if found, dispatch the * HttpRequest to the registered service; otherwise create a NOT_FOUND response */ def apply(request: HttpRequest): Future[HttpResponse] = { val u = request.getUri val uri = u.indexOf('?') match { case -1 => u case n => u.substring(0, n) } val path = normalize(new URI(uri).getPath) // find the longest prefix of path; patterns are already sorted by length in descending order. val matching = sorted.find { case (pattern, _) => (pattern.endsWith("/") && path.startsWith(pattern)) || // prefix (!pattern.endsWith("/") && path == pattern) // exact match } matching match { case Some((_, service)) => service(request) case None => val response = new DefaultHttpResponse(HttpVersion.HTTP_1_1, HttpResponseStatus.NOT_FOUND) response.setHeader(HttpHeaders.Names.CONTENT_LENGTH, 0.toString) Future.value(response) } } /** * - ensure path starts with "/" * - get rid of excessive "/"s. For example "/a//b///c/" => "/a/b/c/" */ private[this] def normalize(path: String) = { val suffix = if (path.endsWith("/")) "/" else "" val p = path.split("/") filterNot(_.isEmpty) mkString "/" "/" + p + suffix } } /** * Singleton default multiplex service */ object HttpMuxer extends Service[HttpRequest, HttpResponse] { @volatile private[this] var underlying = new HttpMuxer() override def apply(request: HttpRequest): Future[HttpResponse] = underlying(request) /** * add handlers to mutate dispatching strategies. */ def addHandler(pattern: String, service: Service[HttpRequest, HttpResponse]) = synchronized { underlying = underlying.withHandler(pattern, service) } private[this] val nettyToFinagle = Filter.mk[HttpRequest, HttpResponse, Request, Response] { (req, service) => service(Request(req)) map { _.httpResponse } } def addRichHandler(pattern: String, service: Service[Request, Response]) = addHandler(pattern, nettyToFinagle andThen service) def patterns = underlying.patterns private[this] val log = Logger.getLogger(getClass.getName) for (handler <- LoadService[HttpMuxHandler]()) { log.info("HttpMuxer[%s] = %s(%s)".format(handler.pattern, handler.getClass.getName, handler)) addHandler(handler.pattern, handler) } } /** * Trait HttpMuxHandler is used for service-loading HTTP handlers. */ trait HttpMuxHandler extends Service[HttpRequest, HttpResponse] { /** The pattern on to bind this handler to */ val pattern: String }
stevegury/finagle
finagle-http/src/main/scala/com/twitter/finagle/http/HttpMuxer.scala
Scala
apache-2.0
4,534
package org.jetbrains.plugins.scala package lang package psi import com.intellij.lang.ASTNode import com.intellij.openapi.editor.Document import com.intellij.openapi.progress.ProgressManager import com.intellij.openapi.util.TextRange import com.intellij.psi._ import com.intellij.psi.impl.source.codeStyle.CodeEditUtil import com.intellij.psi.scope._ import com.intellij.psi.stubs.StubElement import com.intellij.psi.util.PsiTreeUtil import org.jetbrains.plugins.scala.editor.importOptimizer._ import org.jetbrains.plugins.scala.extensions._ import org.jetbrains.plugins.scala.lang.formatting.settings.ScalaCodeStyleSettings import org.jetbrains.plugins.scala.lang.lexer.ScalaTokenTypes import org.jetbrains.plugins.scala.lang.parser.ScalaElementTypes import org.jetbrains.plugins.scala.lang.psi.api.ScalaFile import org.jetbrains.plugins.scala.lang.psi.api.base.ScReferenceElement import org.jetbrains.plugins.scala.lang.psi.api.expr.ScBlockStatement import org.jetbrains.plugins.scala.lang.psi.api.statements.ScTypeAliasDefinition import org.jetbrains.plugins.scala.lang.psi.api.toplevel.imports.usages.{ImportExprUsed, ImportSelectorUsed, ImportUsed, ImportWildcardSelectorUsed} import org.jetbrains.plugins.scala.lang.psi.api.toplevel.imports.{ScImportExpr, ScImportSelector, ScImportStmt} import org.jetbrains.plugins.scala.lang.psi.api.toplevel.packaging.ScPackaging import org.jetbrains.plugins.scala.lang.psi.api.toplevel.typedef.ScTypeDefinition import org.jetbrains.plugins.scala.lang.psi.impl.ScalaPsiElementFactory import org.jetbrains.plugins.scala.lang.psi.types.ScDesignatorType import org.jetbrains.plugins.scala.lang.psi.types.result.TypingContext import org.jetbrains.plugins.scala.lang.refactoring.util.ScalaNamesUtil import org.jetbrains.plugins.scala.lang.resolve.ScalaResolveResult import scala.collection.mutable import scala.collection.mutable.ArrayBuffer trait ScImportsHolder extends ScalaPsiElement { def getImportStatements: Seq[ScImportStmt] = { this match { case s: ScalaStubBasedElementImpl[_] => val stub: StubElement[_] = s.getStub if (stub != null) { return stub.getChildrenByType(ScalaElementTypes.IMPORT_STMT, JavaArrayFactoryUtil.ScImportStmtFactory).toSeq } case _ => } findChildrenByClassScala(classOf[ScImportStmt]).toSeq } override def processDeclarations(processor: PsiScopeProcessor, state : ResolveState, lastParent: PsiElement, place: PsiElement): Boolean = { if (lastParent != null) { var run = ScalaPsiUtil.getPrevStubOrPsiElement(lastParent) // updateResolveCaches() while (run != null) { ProgressManager.checkCanceled() if (run.isInstanceOf[ScImportStmt] && !run.processDeclarations(processor, state, lastParent, place)) return false run = ScalaPsiUtil.getPrevStubOrPsiElement(run) } } true } def getImportsForLastParent(lastParent: PsiElement): Seq[ScImportStmt] = { val buffer: ArrayBuffer[ScImportStmt] = new ArrayBuffer[ScImportStmt]() if (lastParent != null) { var run = ScalaPsiUtil.getPrevStubOrPsiElement(lastParent) while (run != null) { ProgressManager.checkCanceled() run match { case importStmt: ScImportStmt => buffer += importStmt case _ => } run = ScalaPsiUtil.getPrevStubOrPsiElement(run) } } buffer.toSeq } def getAllImportUsed: mutable.Set[ImportUsed] = { val res: mutable.Set[ImportUsed] = new mutable.HashSet[ImportUsed] def processChild(element: PsiElement) { for (child <- element.getChildren) { child match { case imp: ScImportExpr => if (/*!imp.singleWildcard && */imp.selectorSet.isEmpty) { res += ImportExprUsed(imp) } else if (imp.singleWildcard) { res += ImportWildcardSelectorUsed(imp) } for (selector <- imp.selectors) { res += ImportSelectorUsed(selector) } case _ => processChild(child) } } } processChild(this) res } def importStatementsInHeader: Seq[ScImportStmt] = { val buf = new ArrayBuffer[ScImportStmt] for (child <- getChildren) { child match { case x: ScImportStmt => buf += x case p: ScPackaging if !p.isExplicit && buf.isEmpty => return p.importStatementsInHeader case _: ScTypeDefinition | _: ScPackaging => return buf.toSeq case _ => } } buf.toSeq } def addImportForClass(clazz: PsiClass, ref: PsiElement = null) { ref match { case ref: ScReferenceElement => if (!ref.isValid || ref.isReferenceTo(clazz)) return ref.bind() match { case Some(ScalaResolveResult(t: ScTypeAliasDefinition, subst)) if t.typeParameters.isEmpty => for (tp <- t.aliasedType(TypingContext.empty)) { tp match { case ScDesignatorType(c: PsiClass) if c == clazz => return case _ => } } case _ => } case _ => } addImportForPath(clazz.qualifiedName, ref) } def addImportForPsiNamedElement(elem: PsiNamedElement, ref: PsiElement, cClass: Option[PsiClass] = None) { def needImport = ref match { case null => true case ref: ScReferenceElement => ref.isValid && !ref.isReferenceTo(elem) case _ => false } ScalaNamesUtil.qualifiedName(elem) match { case Some(qual) if needImport => addImportForPath(qual, ref) case _ => } } def addImportsForPaths(paths: Seq[String], refsContainer: PsiElement = null): Unit = { import ScalaImportOptimizer._ def samePackage(path: String) = { val ref = ScalaPsiElementFactory.createReferenceFromText(path, this.getManager) val pathQualifier = Option(ref).flatMap(_.qualifier.map(_.getText)).getOrElse("") val ourPackageName: Option[String] = Option(PsiTreeUtil.getParentOfType(this, classOf[ScPackaging], false)).map(_.fullPackageName) ourPackageName.contains(pathQualifier) } getFirstChild match { case pack: ScPackaging if !pack.isExplicit && children.filterByType(classOf[ScImportStmt]).isEmpty => pack.addImportsForPaths(paths, refsContainer) return case _ => } val file = this.getContainingFile match { case sf: ScalaFile => sf case _ => return } val documentManager = PsiDocumentManager.getInstance(getProject) val document: Document = documentManager.getDocument(file) val settings = OptimizeImportSettings(getProject) val optimizer: ScalaImportOptimizer = findOptimizerFor(file) match { case Some(o: ScalaImportOptimizer) => o case _ => return } def replaceWithNewInfos(range: TextRange, infosToAdd: Seq[ImportInfo]): Unit = { val rangeMarker = document.createRangeMarker(range) documentManager.doPostponedOperationsAndUnblockDocument(document) val newRange = new TextRange(rangeMarker.getStartOffset, rangeMarker.getEndOffset) optimizer.replaceWithNewImportInfos(newRange, infosToAdd, settings, document) documentManager.commitDocument(document) } val importInfosToAdd = paths.filterNot(samePackage).flatMap { path => val importText = s"import $path" val place = getImportStatements.lastOption.getOrElse(getFirstChild.getNextSibling) val importStmt = ScalaPsiElementFactory.createImportFromTextWithContext(importText, this, place) createInfo(importStmt) } val importRanges = optimizer.collectImportRanges(this, namesAtRangeStart, createInfo(_)) val needToInsertFirst = if (importRanges.isEmpty) true else refsContainer == null && hasCodeBeforeImports if (needToInsertFirst) { val dummyImport = ScalaPsiElementFactory.createImportFromText("import dummy._", getManager) val usedNames = collectUsedImportedNames(this) val inserted = insertFirstImport(dummyImport, getFirstChild).asInstanceOf[ScImportStmt] val range = inserted.getTextRange val namesAtStart = namesAtRangeStart(inserted) val rangeInfo = RangeInfo(namesAtStart, importInfosToAdd, usedImportedNames = usedNames, isLocal = false) val infosToAdd = optimizedImportInfos(rangeInfo, settings) replaceWithNewInfos(range, infosToAdd) } else { val sortedRanges = importRanges.toSeq.sortBy(_._1.getStartOffset) val selectedRange = if (refsContainer != null && ScalaCodeStyleSettings.getInstance(getProject).isAddImportMostCloseToReference) sortedRanges.reverse.find(_._1.getEndOffset < refsContainer.getTextRange.getStartOffset) else sortedRanges.headOption selectedRange match { case Some((range, RangeInfo(names, importInfos, usedImportedNames, _))) => val buffer = importInfos.to[ArrayBuffer] importInfosToAdd.foreach { infoToAdd => insertInto(buffer, infoToAdd, usedImportedNames, settings) } updateRootPrefix(buffer, names) replaceWithNewInfos(range, buffer) case _ => } } } def addImportForPath(path: String, ref: PsiElement = null): Unit = { addImportsForPaths(Seq(path), ref) } private def hasCodeBeforeImports: Boolean = { val firstChild = childBeforeFirstImport.getOrElse(getFirstChild) var nextChild = firstChild while (nextChild != null) { nextChild match { case _: ScImportStmt => return false case _: ScBlockStatement => return true case _ => nextChild = nextChild.getNextSibling } } true } protected def insertFirstImport(importSt: ScImportStmt, first: PsiElement): PsiElement = { childBeforeFirstImport match { case Some(elem) if first != null && elem.getTextRange.getEndOffset > first.getTextRange.getStartOffset => addImportAfter(importSt, elem) case _ => addBefore(importSt, first) } } protected def childBeforeFirstImport: Option[PsiElement] = { Option(getNode.findChildByType(ScalaTokenTypes.tLBRACE)).map(_.getPsi) } def addImport(element: PsiElement): PsiElement = { CodeEditUtil.addChildren(getNode, element.getNode, element.getNode, null).getPsi } def addImportBefore(element: PsiElement, anchor: PsiElement): PsiElement = { val anchorNode = anchor.getNode CodeEditUtil.addChildren(getNode, element.getNode, element.getNode, anchorNode).getPsi } def addImportAfter(element: PsiElement, anchor: PsiElement): PsiElement = { if (anchor.getNode == getNode.getLastChildNode) return addImport(element) addImportBefore(element, anchor.getNode.getTreeNext.getPsi) } def plainDeleteImport(stmt: ScImportExpr) { stmt.deleteExpr() } def plainDeleteSelector(sel: ScImportSelector) { sel.deleteSelector() } def deleteImportStmt(stmt: ScImportStmt) { def remove(node: ASTNode) = getNode.removeChild(node) def shortenWhitespace(node: ASTNode) { if (node == null) return if (node.getText.count(_ == '\n') >= 2) { val nl = ScalaPsiElementFactory.createNewLine(getManager, node.getText.replaceFirst("[\n]", "")) getNode.replaceChild(node, nl.getNode) } } def removeWhitespace(node: ASTNode) { if (node == null) return if (node.getPsi.isInstanceOf[PsiWhiteSpace]) { if (node.getText.count(_ == '\n') < 2) remove(node) else shortenWhitespace(node) } } def removeSemicolonAndWhitespace(node: ASTNode) { if (node == null) return if (node.getElementType == ScalaTokenTypes.tSEMICOLON) { removeWhitespace(node.getTreeNext) remove(node) } else removeWhitespace(node) } val node = stmt.getNode val next = node.getTreeNext val prev = node.getTreePrev removeSemicolonAndWhitespace(next) remove(node) shortenWhitespace(prev) } }
igrocki/intellij-scala
src/org/jetbrains/plugins/scala/lang/psi/ScImportsHolder.scala
Scala
apache-2.0
11,958
/** * Created by android on 22/2/15. */ import java.sql.Timestamp import Models._ import scala.slick.driver.DerbyDriver.simple._ object Tables { class Positions(tag: Tag) extends Table[Position](tag, "Positions") { def name = column[String]("positionName", O.NotNull) def description = column[String]("description", O.NotNull) def positionId = column[Int]("positionId", O.PrimaryKey, O.AutoInc) def * = (name, description, positionId.?) <> (Position.tupled, Position.unapply) } val positions = TableQuery[Positions] class Players(tag: Tag) extends Table[Player](tag, "Players") { def name = column[String]("playerName", O.NotNull) def positionId = column[Int]("positionId", O.NotNull) def playerId = column[Int]("playerId", O.PrimaryKey, O.AutoInc) def * = (name, positionId, playerId.?) <> (Player.tupled, Player.unapply) def positionIdFk = foreignKey("player_positionId_fk", positionId, positions)(_.positionId) } val players = TableQuery[Players] class Matches(tag: Tag) extends Table[Match](tag, "Matches") { def tournamentName = column[String]("tournamentName", O.NotNull) def dateAndTime = column[Timestamp]("dateAndTime", O.NotNull) def venue = column[String]("venue", O.NotNull) def opponentTeam = column[String]("opponentTeam", O.NotNull) def matchId = column[Int]("matchId", O.PrimaryKey, O.AutoInc) def * = (tournamentName, dateAndTime, venue, opponentTeam, matchId.?) <> (Match.tupled, Match.unapply) } val matches = TableQuery[Matches] class Teams(tag: Tag) extends Table[Team](tag, "Teams") { def matchId = column[Int]("matchId", O.NotNull) def playerId = column[Int]("playerId", O.NotNull) def teamId = column[Int]("teamId", O.PrimaryKey, O.AutoInc) def * = (matchId, playerId, teamId.?) <> (Team.tupled, Team.unapply) def matchIdFk = foreignKey("teams_matchId_fk", matchId, matches)(_.matchId) def playerIdFk = foreignKey("teams_playerId_fk", playerId, players)(_.playerId) } val teams = TableQuery[Teams] }
pamu/Slick-Demos
src/main/scala/Tables.scala
Scala
apache-2.0
2,055
package com.sksamuel.elastic4s.jackson import com.fasterxml.jackson.core.JsonParser import com.fasterxml.jackson.databind.module.SimpleModule import com.fasterxml.jackson.databind.{DeserializationContext, JsonDeserializer, JsonMappingException, ObjectMapper} import com.fasterxml.jackson.module.scala.experimental.ScalaObjectMapper import com.sksamuel.elastic4s.requests.common.RefreshPolicy import com.sksamuel.elastic4s.testkit.DockerTests import org.scalatest.matchers.should.Matchers import org.scalatest.wordspec.AnyWordSpec import scala.util.Success class ElasticJacksonIndexableTest extends AnyWordSpec with Matchers with DockerTests { import ElasticJackson.Implicits._ "ElasticJackson implicits" should { "index a case class" in { client.execute { bulk( indexInto("jacksontest").source(Character("tyrion", "game of thrones")).withId("1"), indexInto("jacksontest").source(Character("hank", "breaking bad")).withId("2"), indexInto("jacksontest").source(Location("dorne", "game of thrones")).withId("3") ).refresh(RefreshPolicy.WaitFor) }.await } "read a case class" in { val resp = client.execute { search("jacksontest").query("breaking") }.await.result resp.to[Character] shouldBe List(Character("hank", "breaking bad")) } "populate special fields" in { val resp = client.execute { search("jacksontest").query("breaking") }.await.result // should populate _id, _index and _type for us from the search result resp.safeTo[CharacterWithIdTypeAndIndex] shouldBe List(Success(CharacterWithIdTypeAndIndex("2", "jacksontest", "_doc", "hank", "breaking bad"))) } "support custom mapper" in { implicit val custom: ObjectMapper with ScalaObjectMapper = new ObjectMapper with ScalaObjectMapper val module = new SimpleModule module.addDeserializer(classOf[String], new JsonDeserializer[String] { override def deserialize(p: JsonParser, ctxt: DeserializationContext): String = sys.error("boom") }) custom.registerModule(module) val resp = client.execute { search("jacksontest").query("breaking") }.await.result // if our custom mapper has been picked up, then it should throw an exception when deserializing intercept[JsonMappingException] { resp.to[Character].toList } } } } case class Character(name: String, show: String) case class CharacterWithIdTypeAndIndex(_id: String, _index: String, _type: String, name: String, show: String) case class Location(name: String, show: String)
sksamuel/elastic4s
elastic4s-tests/src/test/scala/com/sksamuel/elastic4s/jackson/ElasticJacksonIndexableTest.scala
Scala
apache-2.0
2,638
package org.reactress import collection._ trait ReactMutable { def bindSubscription(s: Reactive.Subscription): Reactive.Subscription = s def onMutated(): Unit = {} } object ReactMutable { trait SubscriptionSet extends ReactMutable { val subscriptions = mutable.Set[Reactive.Subscription]() def clearSubscriptions() { for (s <- subscriptions) s.unsubscribe() subscriptions.clear() } override def bindSubscription(s: Reactive.Subscription) = new Reactive.Subscription { subscriptions += this def unsubscribe() { s.unsubscribe() subscriptions -= this } } } }
axel22/reactive-collections
src/main/scala/org/reactress/ReactMutable.scala
Scala
bsd-3-clause
648
package com.cloudray.scalapress.plugin.listings.controller.renderer import com.cloudray.scalapress.item.Item import com.cloudray.scalapress.util.{Scalate, UrlGenerator} import com.cloudray.scalapress.framework.ScalapressContext /** @author Stephen Samuel */ object ListingCompleteRenderer { def render(context: ScalapressContext, listing: Item) = { val url = "http://" + context.installationDao.get.domain + UrlGenerator.url(listing) Scalate.layout("/com/cloudray/scalapress/plugin/listings/listingcomplete.ssp", Map("url" -> url)) } }
vidyacraghav/scalapress
src/main/scala/com/cloudray/scalapress/plugin/listings/controller/renderer/ListingCompleteRenderer.scala
Scala
apache-2.0
551
package hevs.especial.generator import java.io.File import java.util.Date import hevs.especial.dsl.components.{Component, ComponentManager, HwImplemented} import hevs.especial.simulation.QemuLogger import hevs.especial.utils._ /** * Output C/C++ code generator corresponding to the DSL program. * * To generate the C/C++ code of a program, the [[Resolver]] is used to resolve the graph, and then the code for each * connected components can be generated in the right order. Each component generates is responsible to generated its * own code. The generated code file is divided in different sections and every component can add a part of code in * each of them, depending on its needs. * * The `while` loop is divided in 3 sections: 1) Read inputs 2) Loop logic and 3) Update outputs. * Comments will be added to the generated code if [[Settings.GEN_VERBOSE_CODE]] is set. * * @author Christopher Metrailler (mei@hevs.ch) * @version 2.0 */ class CodeGenerator extends Pipeline[Resolver.O, String] { /** Output path of the generated code. */ private final val OUTPUT_PATH = "output/%s/" /** * Define all sections of the code that compose the file generated C/C++ file. * The order is important and correspond to the generation order. */ private final val codeSections = Seq( // (hw: hw_implemented) => hw.getIncludeCode, // Must remove duplicates files (hw: HwImplemented) => hw.getGlobalCode, (hw: HwImplemented) => hw.getFunctionsDefinitions, (hw: HwImplemented) => hw.getInitCode, (hw: HwImplemented) => hw.getBeginOfMainAfterInit, (hw: HwImplemented) => hw.getLoopableCode, (hw: HwImplemented) => hw.getExitCode ) /** * Generate the C/C++ code from the DSL program using the order given by the resolver. * * If the resolver failed, the code generator is not called. The code generator write the file to the output * directory. The output of the pipeline is the path of the generated file. * * @param ctx the context of the program with the logger * @param input the result of the resolver * @return the path of the generated file */ def run(ctx: Context)(input: Resolver.O): String = { // Test if the output directory already exist val dirPath = String.format(OUTPUT_PATH, ctx.progName) val dir: RichFile = new File(dirPath) dir.createFolder() // Create if not exist only // Generate the C file to the output folder val path = dirPath + ctx.progName + ".cpp" val f: RichFile = new File(path) val code = generateCode(ctx)(input) val res = f.write(code) // Write succeed or not if (res) ctx.log.info(s"Code generated to '$path'.") else ctx.log.error(s"Unable to save the generated code to '$path'.") path // The file path as output } /** * Generate the C/C++ source code as a String. * * @param ctx the context of the program * @param resolve the resolver output * @return the C/C++ code generated as a String (not formatted) */ private def generateCode(ctx: Context)(resolve: Resolver.O): String = { // Order the result of the resolver by pass number (sort by key value). // Each pass number as a sequence of components to generate. val ordered = resolve.toSeq.sortBy(_._1) // List with components only, ordered for the code generation val cps = ordered flatMap (x => x._2) val firstLogicIdx = ordered.head._2.size // Count the number of input component (first pass) val nbrOfOutputs = ordered.last._2.size // Number of output (last pass) val firstOutputIndex = cps.size - nbrOfOutputs // Generate each code phase for each components ctx.log.info(s"Generate the code for ${cps.size} components with ${codeSections.size} sections.") // File preamble val result = new StringBuilder result ++= beginFile(ctx.progName) // Add include files and remove duplicates files result ++= beginSection(0) result ++= includeFiles(cps) result ++= endSection() // Generic code sections for all components for (sec <- codeSections.zipWithIndex) { val idx = sec._2 + 1 // Section 0 already done idx match { case 4 => result ++= beginMain if (ctx.isQemuLoggerEnabled) result ++= QemuLogger.addStartEvent + "\\n" result ++= beginMainInit if (ctx.isQemuLoggerEnabled) result ++= QemuLogger.addEndInitEvent + "\\n" case 5 => if (ctx.isQemuLoggerEnabled) result ++= QemuLogger.addLoopStartEvent + "\\n" case _ => } result ++= beginSection(idx) // Print the section name // Add static code when sections start idx match { case 3 => // First init all outputs result ++= beginOutputInit result ++= initOutputs() result ++= endInit + "\\n" // General init result ++= beginInit case 5 => result ++= beginMainLoop case _ => } // Apply the current section function on all components cps.zipWithIndex map { c => val cpNbr = c._2 // Iteration number val cp = c._1 // Component to generate // While loop code section for the first component if (idx == 5 && cpNbr == 0) { // QEMU logger. Ack event to start one loop iteration. if (ctx.isQemuLoggerEnabled) result ++= "\\n" + QemuLogger.addLoopTickEvent + "\\n" if (Settings.GEN_VERBOSE_CODE) result ++= "// 1) Read inputs" result ++= "\\n" } if (idx == 5 && cpNbr == firstLogicIdx) { if (Settings.GEN_VERBOSE_CODE) result ++= "\\n// 2) Loop logic" result ++= "\\n" } if (idx == 5 && cpNbr == firstOutputIndex) { if (Settings.GEN_VERBOSE_CODE) result ++= "\\n// 3) Update outputs" result ++= "\\n" } // Add the component code for the section (if defined) sec._1(cp.asInstanceOf[HwImplemented]) match { case Some(code) => result ++= code + "\\n" case None => } } // Add static code when sections end idx match { case 3 => result ++= endInit case 5 => result ++= endMainLoop case _ => } result ++= endSection() // Print the end of the section } if (ctx.isQemuLoggerEnabled) result ++= QemuLogger.addLoopExitEvent // End of the file result ++= endMain result ++= endFile(ctx.progName) result.result() } // Include all necessary header files, needed by the components. Remove duplicate files. private def includeFiles(cps: Seq[Component]): String = { // List of list of all files to include val incs = for (c <- cps) yield c.asInstanceOf[HwImplemented].getIncludeCode // Remove duplicates files contains in the flatten list using `distinct` val files = for (f <- incs.flatten.distinct) yield String.format("#include \\"%s\\"", f) files.mkString("\\n") + "\\n" } // Init all outputs before the general init private def initOutputs(): String = { val ret = new StringBuilder val outputs = ComponentManager.findConnectedOutputHardware outputs map { cp => cp.asInstanceOf[HwImplemented].getInitCode match { // Add the code only if defined case Some(code) => ret ++= code + "\\n" case None => } } ret.result() } /* Static code definitions */ private final def beginSection(idx: Int) = Settings.GEN_VERBOSE_CODE match { // Print the name of the section only if the output is verbose case true => "//*// Section %02d\\n".format(idx) case _ => "" } private final def endSection() = Settings.GEN_VERBOSE_CODE match { case true => "//*// ----------\\n\\n" case _ => "\\n" } // Header of the file. Comments describing the program and the version used. private final def beginFile(progName: String) = { val file = s"Code for '$progName'." val out = new StringBuilder out ++= "/*" + "\\n" out ++= " " + "*".*(80) + "\\n" out ++= s" $file\\n" out ++= " " + "-".*(file.length) + "\\n" out ++= s" Generated automatically on ${new Date()}.\\n" out ++= s" $Version\\n" out ++= " " + "*".*(80) + "\\n" out ++= " */\\n\\n" out.result() } private final val beginInit = "void init() {\\n" private final val endInit = "}\\n" private final val beginOutputInit = "void initOutputs() {\\n" private final val beginMain = "int main() {\\n" private final val beginMainInit = "initOutputs();\\ninit();\\n\\n" private final val beginMainLoop = "while(1) {\\n" private final val endMainLoop = "}\\n" private final val endMain = "}\\n" private final def endFile(fileName: String) = s"// END of file '$fileName.cpp'" }
hevs-isi/especial-frontend
src/main/scala/hevs/especial/generator/CodeGenerator.scala
Scala
mit
8,817
import org.scalatest.FunSuite import org.tribbloid.ispark.display.dsl.Display import Display.Markdown import org.tribbloid.ispark.display.{MIME, Data} /** * Created by peng on 1/6/15. */ class TestData extends FunSuite { test("plain string") { val text = "I'm a string" val data = Data.parse(text) println(data) assert(data.items.map(_._1).contains(MIME.`text/plain`)) assert(data.items.size === 1) } test("HTML") { val html = <table> <tr> <th>Header 1</th> <th>Header 2</th> </tr> <tr> <td>row 1, cell 1</td> <td>row 1, cell 2</td> </tr> <tr> <td>row 2, cell 1</td> <td>row 2, cell 2</td> </tr> </table> val data = Data.parse(html) println(data) assert(data.items.map(_._1).contains(MIME.`text/plain`)) assert(data.items.map(_._1).contains(MIME.`text/html`)) assert(data.items.size === 2) } test("Markdown") { val md = Markdown( """ |### title """.stripMargin) val data = Data.parse(md) println(data) assert(data.items.map(_._1).contains(MIME.`text/plain`)) assert(data.items.map(_._1).contains(MIME.`text/html`)) assert(data.items.size === 2) } }
tribbloid/ISpark
display/src/test/scala/TestData.scala
Scala
apache-2.0
1,277
package intellij.haskell.editor import com.intellij.lang.ASTNode import com.intellij.lang.folding.{FoldingBuilderEx, FoldingDescriptor} import com.intellij.openapi.editor.Document import com.intellij.openapi.project.DumbAware import com.intellij.openapi.util.TextRange import com.intellij.psi.PsiElement import com.intellij.psi.util.PsiTreeUtil import intellij.haskell.HaskellFile import intellij.haskell.psi._ class HaskellFoldingBuilder extends FoldingBuilderEx with DumbAware { override def buildFoldRegions(root: PsiElement, document: Document, quick: Boolean): Array[FoldingDescriptor] = { root match { case file: HaskellFile => HaskellPsiUtil.findImportDeclarationsBlock(file).map(createFoldingDescriptor).getOrElse(Array()) ++ HaskellPsiUtil.findFileHeader(file).map(createFoldingDescriptor).getOrElse(Array()) ++ HaskellPsiUtil.findTopLevelExpressions(file).flatMap(createFoldingDescriptor) case _ => FoldingDescriptor.EMPTY } } private def createFoldingDescriptor(element: PsiElement): Array[FoldingDescriptor] = { Array(new FoldingDescriptor(element, createFoldingTextRange(element))) } private def createFoldingTextRange(element: PsiElement) = { if (PsiTreeUtil.lastChild(element).getNode.getElementType == HaskellTypes.HS_NEWLINE) { new TextRange(element.getTextRange.getStartOffset, element.getTextRange.getEndOffset - 1) } else { new TextRange(element.getTextRange.getStartOffset, element.getTextRange.getEndOffset) } } override def isCollapsedByDefault(node: ASTNode): Boolean = { val foldingSettings = HaskellFoldingSettings.getInstance() if (node.getElementType == HaskellTypes.HS_IMPORT_DECLARATIONS) { foldingSettings.isCollapseImports } else if (node.getElementType == HaskellTypes.HS_FILE_HEADER) { foldingSettings.isCollapseImports } else if (node.getElementType == HaskellTypes.HS_EXPRESSION) { foldingSettings.isCollapseTopLevelExpression } else false } override def getPlaceholderText(node: ASTNode): String = { node.getPsi match { case _: HaskellImportDeclarations => "import ..." case _: HaskellFileHeader => "{-# ... #-}" case e: HaskellExpression => Option(e.getFirstChild.getText).getOrElse("") + " ..." case _ => null } } }
rikvdkleij/intellij-haskell
src/main/scala/intellij/haskell/editor/HaskellFoldingBuilder.scala
Scala
apache-2.0
2,328
/* * Copyright 2010 Gregor N. Purdy, Sr. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * */ package org.exoprax.graph object Graph2 { abstract sealed class EA[A, +B](a: A) private case class Edge[A, +B](a: A, c: B, b: A) extends EA[A, B](a) private case class Node[A](a: A) extends EA[A, Unit](a) class EdgeAssoc2[A, B](x: A, y: B) { def -> [C](z: C): Tuple3[A, B, C] = Tuple3(x, y, z) } class EdgeAssoc[A](x: A) { def -- [B](y: B): EdgeAssoc2[A, B] = new EdgeAssoc2(x, y) } implicit def any2EdgeAssoc[A](x: A): EdgeAssoc[A] = new EdgeAssoc(x) implicit def tuple2EA[A](x: (A, A)): EA[A, Unit] = Edge(x._1, (), x._2) implicit def tuple3EA[A, B](x: (A, B, A)): EA[A, B] = Edge(x._1, x._2, x._3) implicit def node2EA[A](x: Node[Node[A]]): EA[A, Unit] = x.a implicit def any2EA[A](x: A): EA[A, Unit] = Node(x) def apply[A, B](edges: EA[A, B]*): Graph2[A, B] = { var v = Set[A]() var e = Map[A, Map[A, B]]() def addEdge(x: Edge[A, B]) = { v = v + x.a v = v + x.b if (e.contains(x.a)) { if (e(x.a).contains(x.b)) { throw new RuntimeException("Already have an edge from " + x.a + " to " + x.b) } else { e = e + ((x.a, Map[A, B]((x.b, x.c)))) } } else { e = e + ((x.a, Map[A, B]((x.b, x.c)))) } } def addNode(x: Node[A]) { v = v + x.a } for (x <- edges) { x match { case e@Edge(a, c, b) => addEdge(e) case Node(n@Node(a)) => addNode(n) case n@Node(a) => addNode(n) } } return new Graph2(v, e) } } class Graph2[A, +B](v: Set[A], e: Map[A, Map[A, B]]) { override def toString = "V = { " + v.mkString(", ") + " }\\nE = {" + edgeStringList + " }" def edgeStringList = { val el = for (x <- e; y <- x._2) yield (x._1, y._2, y._1) val esl = el.map { x => x._2 match { case () => x._1 + " -> " + x._3 ; case _ => x._1 + " -- " + x._2 + " -> " + x._3 } } esl.mkString(", ") } }
gnp/GraphScala
src/main/scala/org/exoprax/graph/Graph2.scala
Scala
apache-2.0
2,614
package redis import scala.concurrent._ import scala.concurrent.stm._ import redis.api.connection.Select import scala.concurrent.duration._ class RedisPoolSpec extends RedisStandaloneServer { sequential "basic pool test" should { "ok" in { val redisPool = RedisClientPool(Seq(RedisServer( port = port,db = Some(0)), RedisServer( port = port,db = Some(1)), RedisServer( port = port,db = Some(3)))) val key = "keyPoolDb0" redisPool.set(key, 0) val r = for { getDb1 <- redisPool.get(key) getDb2 <- redisPool.get(key) getDb0 <- redisPool.get[String](key) select <- Future.sequence(redisPool.broadcast(Select(0))) getKey1 <- redisPool.get[String](key) getKey2 <- redisPool.get[String](key) getKey0 <- redisPool.get[String](key) } yield { getDb1 must beNone getDb2 must beNone getDb0 must beSome("0") select mustEqual Seq(true, true, true) getKey1 must beSome("0") getKey2 must beSome("0") getKey0 must beSome("0") } Await.result(r, timeOut) } "check status" in { val redisPool = RedisClientPool(Seq(RedisServer( port = port,db = Some(0)), RedisServer( port = port,db = Some(1)), RedisServer(port = 3333,db = Some(3)))) val key = "keyPoolDb0" awaitAssert(redisPool.redisConnectionPool.size mustEqual 2,20 second) redisPool.set(key, 0) val r = for { getDb1 <- redisPool.get(key) getDb0 <- redisPool.get[String](key) select <- Future.sequence(redisPool.broadcast(Select(0))) getKey1 <- redisPool.get[String](key) getKey0 <- redisPool.get[String](key) } yield { getDb1 must beNone getDb0 must beSome("0") select mustEqual Seq(true, true) getKey1 must beSome("0") getKey0 must beSome("0") } Await.result(r, timeOut) } } }
npeters/rediscala
src/test/scala/redis/RedisPoolSpec.scala
Scala
apache-2.0
1,931
import sbt.Keys._ import sbt._ object CompileSettings extends AutoPlugin { override def trigger = allRequirements override def projectSettings = Seq( scalacOptions ++= Seq( "-optimise", "-deprecation", // Emit warning and location for usages of deprecated APIs. "-feature", // Emit warning and location for usages of features that should be imported explicitly. "-unchecked", // Enable additional warnings where generated code depends on assumptions. "-Xfatal-warnings", // Fail the compilation if there are any warnings. "-Xlint", // Enable recommended additional warnings. "-Ywarn-adapted-args", // Warn if an argument list is modified to match the receiver. "-Ywarn-dead-code", // Warn when dead code is identified. "-Ywarn-inaccessible", // Warn about inaccessible types in method signatures. "-Ywarn-nullary-override", // Warn when non-nullary overrides nullary, e.g. def foo() over def foo. "-Ywarn-numeric-widen", // Warn when numerics are widened. "-Yinline-warnings", // "-language:postfixOps", // See the Scala docs for value scala.language.postfixOps for a discussion "-target:jvm-1.8" // force use jvm 1.8 ), javacOptions in compile ++= Seq("-target", "1.8", "-source", "1.8"), // force use jvm 1.8 compileOrder in Compile := CompileOrder.Mixed, compileOrder in Test := CompileOrder.Mixed, testOptions in Test += Tests.Argument(TestFrameworks.Specs2, "junitxml", "console"), scalacOptions in Test ~= { (options: Seq[String]) => options filterNot (_ == "-Ywarn-dead-code") // Allow dead code in tests (to support using mockito). }, parallelExecution in Test := false, unmanagedBase := baseDirectory.value / "project/lib") }
yuikns/psjrs-ra
project/CompileSettings.scala
Scala
apache-2.0
1,773
package db import java.util.UUID import anorm._ import io.apibuilder.api.v0.models.User import io.apibuilder.internal.v0.models.{Task, TaskDataDiffVersion} import org.joda.time.DateTime import org.postgresql.util.PSQLException import org.scalatestplus.play.PlaySpec import org.scalatestplus.play.guice.GuiceOneAppPerSuite import play.api.db._ class TasksDaoSpec extends PlaySpec with GuiceOneAppPerSuite with db.Helpers { private[this] def setDeletedAt(task: Task, days: Int): Unit = { val query = s""" update tasks set deleted_at = timezone('utc', now()) - interval '$days days' where guid = {guid}::uuid """ injector.instanceOf[DBApi].database("default").withConnection { implicit c => SQL(query).on(Symbol("guid") -> task.guid).execute() } } private[this] lazy val user: User = createRandomUser() private[this] def createTaskDataDiffVersion( oldGuid: UUID = UUID.randomUUID, newGuid: UUID = UUID.randomUUID, numberAttempts: Int = 0 ): Task = { val guid = injector.instanceOf[DBApi].database("default").withConnection { implicit c => tasksDao.insert(c, user, TaskDataDiffVersion(oldGuid, newGuid)) } val task = tasksDao.findByGuid(guid).getOrElse { sys.error("failed to find task") } (0 to numberAttempts).foreach { _ => tasksDao.incrementNumberAttempts(user, task) } tasksDao.findByGuid(guid).getOrElse { sys.error("failed to create task") } } "findByGuid" in { val oldGuid = UUID.randomUUID val newGuid = UUID.randomUUID createTaskDataDiffVersion(oldGuid, newGuid).data must be(TaskDataDiffVersion(oldGuid, newGuid)) } "softDelete" in { val task = createTaskDataDiffVersion() tasksDao.softDelete(user, task) tasksDao.findByGuid(task.guid) must be(None) } "incrementNumberAttempts" in { val task = createTaskDataDiffVersion() val original = task.numberAttempts tasksDao.incrementNumberAttempts(user, task) tasksDao.findByGuid(task.guid).getOrElse { sys.error("failed to find task") }.numberAttempts must be(original + 1) } "recordError" in { val task = createTaskDataDiffVersion() tasksDao.recordError(user, task, "Test") tasksDao.findByGuid(task.guid).getOrElse { sys.error("failed to find task") }.lastError must be(Some("Test")) } "findAll" must { "nOrFewerAttempts" in { val task = createTaskDataDiffVersion(numberAttempts = 2) tasksDao.findAll( guid = Some(task.guid), nOrFewerAttempts = Some(task.numberAttempts) ).map(_.guid) must be(Seq(task.guid)) tasksDao.findAll( guid = Some(task.guid), nOrFewerAttempts = Some(task.numberAttempts - 1) ).map(_.guid) must be(Nil) } "nOrMoreAttempts" in { val task = createTaskDataDiffVersion(numberAttempts = 2) tasksDao.findAll( guid = Some(task.guid), nOrMoreAttempts = Some(task.numberAttempts) ).map(_.guid) must be(Seq(task.guid)) tasksDao.findAll( guid = Some(task.guid), nOrMoreAttempts = Some(task.numberAttempts + 1) ).map(_.guid) must be(Nil) } "nOrMoreMinutesOld" in { val task = createTaskDataDiffVersion() tasksDao.findAll( guid = Some(task.guid), createdOnOrBefore = Some(DateTime.now.plusHours(1)) ).map(_.guid) must be(Seq(task.guid)) tasksDao.findAll( guid = Some(task.guid), createdOnOrBefore = Some(DateTime.now.minusHours(1)) ).map(_.guid) must be(Nil) } "nOrMoreMinutesYoung" in { val task = createTaskDataDiffVersion() tasksDao.findAll( guid = Some(task.guid), createdOnOrAfter = Some(DateTime.now.minusHours(1)) ).map(_.guid) must be(Seq(task.guid)) tasksDao.findAll( guid = Some(task.guid), createdOnOrAfter = Some(DateTime.now.plusHours(1)) ).map(_.guid) must be(Nil) } "isDeleted" in { val task = createTaskDataDiffVersion() tasksDao.findAll( guid = Some(task.guid), isDeleted = Some(false) ).map(_.guid) must be(Seq(task.guid)) tasksDao.findAll( guid = Some(task.guid), isDeleted = Some(true) ).map(_.guid) must be(Nil) tasksDao.findAll( guid = Some(task.guid), isDeleted = None ).map(_.guid) must be(Seq(task.guid)) tasksDao.softDelete(user, task) tasksDao.findAll( guid = Some(task.guid), isDeleted = Some(false) ).map(_.guid) must be(Nil) tasksDao.findAll( guid = Some(task.guid), isDeleted = Some(true) ).map(_.guid) must be(Seq(task.guid)) tasksDao.findAll( guid = Some(task.guid), isDeleted = None ).map(_.guid) must be(Seq(task.guid)) } "deletedAtLeastNDaysAgo" in { val task = createTaskDataDiffVersion() tasksDao.findAll( guid = Some(task.guid), isDeleted = None, deletedAtLeastNDaysAgo = Some(0) ) must be(Nil) tasksDao.softDelete(user, task) tasksDao.findAll( guid = Some(task.guid), isDeleted = None, deletedAtLeastNDaysAgo = Some(90) ).map(_.guid) must be(Nil) setDeletedAt(task, 89) tasksDao.findAll( guid = Some(task.guid), isDeleted = None, deletedAtLeastNDaysAgo = Some(90) ) must be(Nil) setDeletedAt(task, 91) tasksDao.findAll( guid = Some(task.guid), isDeleted = None, deletedAtLeastNDaysAgo = Some(90) ).map(_.guid) must be(Seq(task.guid)) } } "purge" must { "raises error if recently deleted" in { val task = createTaskDataDiffVersion() tasksDao.softDelete(user, task) val ex = intercept[PSQLException] { tasksDao.purge(user, task) } println(ex.getMessage) ex.getMessage.contains("ERROR: Physical deletes on this table can occur only after 1 month of deleting the records") must be(true) } "purges if old" in { val task = createTaskDataDiffVersion() tasksDao.softDelete(user, task) setDeletedAt(task, 45) tasksDao.purge(user, task) tasksDao.findAll( guid = Some(task.guid), isDeleted = None ) must be(Nil) } } }
gheine/apidoc
api/test/db/TasksDaoSpec.scala
Scala
mit
6,316
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.spark.sql.catalyst.json import java.io.ByteArrayOutputStream import scala.collection.mutable.ArrayBuffer import scala.util.Try import com.fasterxml.jackson.core._ import org.apache.spark.internal.Logging import org.apache.spark.sql.catalyst.InternalRow import org.apache.spark.sql.catalyst.expressions._ import org.apache.spark.sql.catalyst.util._ import org.apache.spark.sql.types._ import org.apache.spark.unsafe.types.UTF8String import org.apache.spark.util.Utils /** * Constructs a parser for a given schema that translates a json string to an [[InternalRow]]. */ class JacksonParser( schema: StructType, val options: JSONOptions) extends Logging { import JacksonUtils._ import com.fasterxml.jackson.core.JsonToken._ // A `ValueConverter` is responsible for converting a value from `JsonParser` // to a value in a field for `InternalRow`. private type ValueConverter = JsonParser => AnyRef // `ValueConverter`s for the root schema for all fields in the schema private val rootConverter = makeRootConverter(schema) private val factory = new JsonFactory() options.setJacksonOptions(factory) /** * Create a converter which converts the JSON documents held by the `JsonParser` * to a value according to a desired schema. This is a wrapper for the method * `makeConverter()` to handle a row wrapped with an array. */ private def makeRootConverter(st: StructType): JsonParser => Seq[InternalRow] = { val elementConverter = makeConverter(st) val fieldConverters = st.map(_.dataType).map(makeConverter).toArray (parser: JsonParser) => parseJsonToken[Seq[InternalRow]](parser, st) { case START_OBJECT => convertObject(parser, st, fieldConverters) :: Nil // SPARK-3308: support reading top level JSON arrays and take every element // in such an array as a row // // For example, we support, the JSON data as below: // // [{"a":"str_a_1"}] // [{"a":"str_a_2"}, {"b":"str_b_3"}] // // resulting in: // // List([str_a_1,null]) // List([str_a_2,null], [null,str_b_3]) // case START_ARRAY => val array = convertArray(parser, elementConverter) // Here, as we support reading top level JSON arrays and take every element // in such an array as a row, this case is possible. if (array.numElements() == 0) { Nil } else { array.toArray[InternalRow](schema).toSeq } } } /** * Create a converter which converts the JSON documents held by the `JsonParser` * to a value according to a desired schema. */ def makeConverter(dataType: DataType): ValueConverter = dataType match { case BooleanType => (parser: JsonParser) => parseJsonToken[java.lang.Boolean](parser, dataType) { case VALUE_TRUE => true case VALUE_FALSE => false } case ByteType => (parser: JsonParser) => parseJsonToken[java.lang.Byte](parser, dataType) { case VALUE_NUMBER_INT => parser.getByteValue } case ShortType => (parser: JsonParser) => parseJsonToken[java.lang.Short](parser, dataType) { case VALUE_NUMBER_INT => parser.getShortValue } case IntegerType => (parser: JsonParser) => parseJsonToken[java.lang.Integer](parser, dataType) { case VALUE_NUMBER_INT => parser.getIntValue } case LongType => (parser: JsonParser) => parseJsonToken[java.lang.Long](parser, dataType) { case VALUE_NUMBER_INT => parser.getLongValue } case FloatType => (parser: JsonParser) => parseJsonToken[java.lang.Float](parser, dataType) { case VALUE_NUMBER_INT | VALUE_NUMBER_FLOAT => parser.getFloatValue case VALUE_STRING => // Special case handling for NaN and Infinity. parser.getText match { case "NaN" => Float.NaN case "Infinity" => Float.PositiveInfinity case "-Infinity" => Float.NegativeInfinity case other => throw new RuntimeException(s"Cannot parse $other as FloatType.") } } case DoubleType => (parser: JsonParser) => parseJsonToken[java.lang.Double](parser, dataType) { case VALUE_NUMBER_INT | VALUE_NUMBER_FLOAT => parser.getDoubleValue case VALUE_STRING => // Special case handling for NaN and Infinity. parser.getText match { case "NaN" => Double.NaN case "Infinity" => Double.PositiveInfinity case "-Infinity" => Double.NegativeInfinity case other => throw new RuntimeException(s"Cannot parse $other as DoubleType.") } } case StringType => (parser: JsonParser) => parseJsonToken[UTF8String](parser, dataType) { case VALUE_STRING => UTF8String.fromString(parser.getText) case _ => // Note that it always tries to convert the data as string without the case of failure. val writer = new ByteArrayOutputStream() Utils.tryWithResource(factory.createGenerator(writer, JsonEncoding.UTF8)) { generator => generator.copyCurrentStructure(parser) } UTF8String.fromBytes(writer.toByteArray) } case TimestampType => (parser: JsonParser) => parseJsonToken[java.lang.Long](parser, dataType) { case VALUE_STRING => val stringValue = parser.getText // This one will lose microseconds parts. // See https://issues.apache.org/jira/browse/SPARK-10681. Long.box { Try(options.timestampFormat.parse(stringValue).getTime * 1000L) .getOrElse { // If it fails to parse, then tries the way used in 2.0 and 1.x for backwards // compatibility. DateTimeUtils.stringToTime(stringValue).getTime * 1000L } } case VALUE_NUMBER_INT => parser.getLongValue * 1000000L } case DateType => (parser: JsonParser) => parseJsonToken[java.lang.Integer](parser, dataType) { case VALUE_STRING => val stringValue = parser.getText // This one will lose microseconds parts. // See https://issues.apache.org/jira/browse/SPARK-10681.x Int.box { Try(DateTimeUtils.millisToDays(options.dateFormat.parse(stringValue).getTime)) .orElse { // If it fails to parse, then tries the way used in 2.0 and 1.x for backwards // compatibility. Try(DateTimeUtils.millisToDays(DateTimeUtils.stringToTime(stringValue).getTime)) } .getOrElse { // In Spark 1.5.0, we store the data as number of days since epoch in string. // So, we just convert it to Int. stringValue.toInt } } } case BinaryType => (parser: JsonParser) => parseJsonToken[Array[Byte]](parser, dataType) { case VALUE_STRING => parser.getBinaryValue } case dt: DecimalType => (parser: JsonParser) => parseJsonToken[Decimal](parser, dataType) { case (VALUE_NUMBER_INT | VALUE_NUMBER_FLOAT) => Decimal(parser.getDecimalValue, dt.precision, dt.scale) } case st: StructType => val fieldConverters = st.map(_.dataType).map(makeConverter).toArray (parser: JsonParser) => parseJsonToken[InternalRow](parser, dataType) { case START_OBJECT => convertObject(parser, st, fieldConverters) } case at: ArrayType => val elementConverter = makeConverter(at.elementType) (parser: JsonParser) => parseJsonToken[ArrayData](parser, dataType) { case START_ARRAY => convertArray(parser, elementConverter) } case mt: MapType => val valueConverter = makeConverter(mt.valueType) (parser: JsonParser) => parseJsonToken[MapData](parser, dataType) { case START_OBJECT => convertMap(parser, valueConverter) } case udt: UserDefinedType[_] => makeConverter(udt.sqlType) case _ => (parser: JsonParser) => // Here, we pass empty `PartialFunction` so that this case can be // handled as a failed conversion. It will throw an exception as // long as the value is not null. parseJsonToken[AnyRef](parser, dataType)(PartialFunction.empty[JsonToken, AnyRef]) } /** * This method skips `FIELD_NAME`s at the beginning, and handles nulls ahead before trying * to parse the JSON token using given function `f`. If the `f` failed to parse and convert the * token, call `failedConversion` to handle the token. */ private def parseJsonToken[R >: Null]( parser: JsonParser, dataType: DataType)(f: PartialFunction[JsonToken, R]): R = { parser.getCurrentToken match { case FIELD_NAME => // There are useless FIELD_NAMEs between START_OBJECT and END_OBJECT tokens parser.nextToken() parseJsonToken[R](parser, dataType)(f) case null | VALUE_NULL => null case other => f.applyOrElse(other, failedConversion(parser, dataType)) } } /** * This function throws an exception for failed conversion, but returns null for empty string, * to guard the non string types. */ private def failedConversion[R >: Null]( parser: JsonParser, dataType: DataType): PartialFunction[JsonToken, R] = { case VALUE_STRING if parser.getTextLength < 1 => // If conversion is failed, this produces `null` rather than throwing exception. // This will protect the mismatch of types. null case token => // We cannot parse this token based on the given data type. So, we throw a // RuntimeException and this exception will be caught by `parse` method. throw new RuntimeException( s"Failed to parse a value for data type ${dataType.catalogString} (current token: $token).") } /** * Parse an object from the token stream into a new Row representing the schema. * Fields in the json that are not defined in the requested schema will be dropped. */ private def convertObject( parser: JsonParser, schema: StructType, fieldConverters: Array[ValueConverter]): InternalRow = { val row = new GenericInternalRow(schema.length) while (nextUntil(parser, JsonToken.END_OBJECT)) { schema.getFieldIndex(parser.getCurrentName) match { case Some(index) => row.update(index, fieldConverters(index).apply(parser)) case None => parser.skipChildren() } } row } /** * Parse an object as a Map, preserving all fields. */ private def convertMap( parser: JsonParser, fieldConverter: ValueConverter): MapData = { val keys = ArrayBuffer.empty[UTF8String] val values = ArrayBuffer.empty[Any] while (nextUntil(parser, JsonToken.END_OBJECT)) { keys += UTF8String.fromString(parser.getCurrentName) values += fieldConverter.apply(parser) } ArrayBasedMapData(keys.toArray, values.toArray) } /** * Parse an object as a Array. */ private def convertArray( parser: JsonParser, fieldConverter: ValueConverter): ArrayData = { val values = ArrayBuffer.empty[Any] while (nextUntil(parser, JsonToken.END_ARRAY)) { values += fieldConverter.apply(parser) } new GenericArrayData(values.toArray) } /** * Parse the JSON input to the set of [[InternalRow]]s. * * @param recordLiteral an optional function that will be used to generate * the corrupt record text instead of record.toString */ def parse[T]( record: T, createParser: (JsonFactory, T) => JsonParser, recordLiteral: T => UTF8String): Seq[InternalRow] = { try { Utils.tryWithResource(createParser(factory, record)) { parser => // a null first token is equivalent to testing for input.trim.isEmpty // but it works on any token stream and not just strings parser.nextToken() match { case null => Nil case _ => rootConverter.apply(parser) match { case null => throw new RuntimeException("Root converter returned null") case rows => rows } } } } catch { case e @ (_: RuntimeException | _: JsonProcessingException) => // JSON parser currently doesn't support partial results for corrupted records. // For such records, all fields other than the field configured by // `columnNameOfCorruptRecord` are set to `null`. throw BadRecordException(() => recordLiteral(record), () => None, e) } } }
ddna1021/spark
sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/json/JacksonParser.scala
Scala
apache-2.0
13,520
package edu.cmu.lti.nlp.amr import scala.collection.mutable.Map import scala.collection.mutable.Set import scala.collection.mutable.ArrayBuffer /****************************** Align Spans *****************************/ object AlignSpans { def logUnalignedConcepts(node: Node) { if (node.spans.size == 0) { logger(1, "WARNING: Unaligned concept "+node.concept) } for ((_, child) <- node.topologicalOrdering) { logUnalignedConcepts(child) } } def alignSpans(sentence: Array[String], /*stemmedSentence: Array[List[String]],*/ graph: Graph, wordAlignments: Array[Option[Node]]) : Array[Option[Int]] = { val spanAlignments = new Array[Option[Int]](sentence.size) for (i <- Range(0, sentence.size)) { spanAlignments(i) = None } createSpans(sentence, /*stemmedSentence,*/ graph.root, wordAlignments, spanAlignments, None, graph.spans) logger(3, graph.spans.toString) return spanAlignments } val specialRelations1 : List[String] = List(":ARG.*-of") val specialRelations2 : List[String] = List(":unit") val specialConcepts : Set[String] = Set( "name","country","person","date-entity","organization","city","thing","company","monetary-quantity","continent","mass-quantity","religious-group","political-party","distance-quantity","criminal-organization","research-institute","date-interval","temporal-quantity","world-region","ethnic-group","university") // "govern-01" def createSpans(sentence: Array[String], /*stemmedSentence: Array[List[String]],*/ node: Node, wordAlignments: Array[Option[Node]], spanAlignments: Array[Option[Int]], spanIndex: Option[Int], spans: ArrayBuffer[Span]) : Option[Span] = { // Returns the span for 'node' //Span(var start: Int, var end: Int, var nodeIds: List[String], var words: String, var amr: Node //Node(var id: String, name: Option[String], concept: String, var relations: List[(String, Node)], var topologicalOrdering: List[(String, Node)], var variableRelations: List[(String, Var)], var alignment: Option[Int], var span: Option[Int]) var mySpan = Span(sentence.size, 0, List(node.id), "", Node("", node.name, node.concept, List[(String, Node)](), List[(String, Node)](), List[(String, Var)](), None, ArrayBuffer()), false) // will update later var valid = false if (specialConcepts contains node.concept) { var mySpanIndex = spanIndex if (spanIndex == None) { mySpanIndex = Some(spans.size) spans.append(mySpan) // so we can pass a valid spanIndex } for ((relation, child) <- node.topologicalOrdering) { val span = createSpans(sentence, /*stemmedSentence,*/ child, wordAlignments, spanAlignments, mySpanIndex, spans) if (span.size != 0) { val Some(Span(start,end,nodeIds,_,amr,_)) = span // TODO: is this code right? mySpan.start = min(mySpan.start, start) mySpan.end = max(mySpan.end, end) mySpan.nodeIds = mySpan.nodeIds ::: nodeIds mySpan.amr.topologicalOrdering = (relation, amr) :: mySpan.amr.topologicalOrdering mySpan.amr.relations = (relation, amr) :: mySpan.amr.relations } } mySpan.amr.topologicalOrdering = mySpan.amr.topologicalOrdering.reverse mySpan.amr.relations = mySpan.amr.relations.reverse // TODO: check that the span is valid and update spanAlignments valid = true for (i <- Range(mySpan.start, mySpan.end)) { if (spanAlignments(i) != None) { if (spanAlignments(i) != mySpanIndex) { valid = false // there's a word in the span aligned to a different span, so this is not a valid span } } } mySpan.words = sentence.slice(mySpan.start, mySpan.end).mkString(" ") if (spanIndex == None) { // we need to save the span val Some(index) = mySpanIndex spans(index) = mySpan } if (mySpanIndex != None) { // replaces node.spans = mySpanIndex val Some(myspanindex) = mySpanIndex if (node.spans.size == 0) { node.spans += myspanindex } else { node.spans(0) = myspanindex } } } else { if (node.alignment != None) { val Some(alignment) = node.alignment mySpan.start = alignment mySpan.end = alignment + 1 mySpan.words = sentence(alignment) if (spanIndex == None) { // we need to insert the span ourselves spanAlignments(alignment) = Some(spans.size) spans.append(mySpan) } else { spanAlignments(alignment) = spanIndex // index to this span } if (node.spans.size == 0) { node.spans += spans.size } else { node.spans(0) = spans.size // TODO: check to see if there are other spans already? } valid = true } for ((relation, child) <- node.topologicalOrdering) { createSpans(sentence, /*stemmedSentence,*/ child, wordAlignments, spanAlignments, None, spans) } } return if(valid) { Some(mySpan) } else { None} } }
hopshackle/wordAlignment
src/edu/cmu/lti/nlp/amr/AlignSpans.scala
Scala
bsd-2-clause
5,747
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package spark import java.io.{FileWriter, PrintWriter, File} import scala.io.Source import com.google.common.io.Files import org.scalatest.FunSuite import org.apache.hadoop.io._ import org.apache.hadoop.io.compress.{DefaultCodec, CompressionCodec, GzipCodec} import SparkContext._ class FileSuite extends FunSuite with LocalSparkContext { test("text files") { sc = new SparkContext("local", "test") val tempDir = Files.createTempDir() val outputDir = new File(tempDir, "output").getAbsolutePath val nums = sc.makeRDD(1 to 4) nums.saveAsTextFile(outputDir) // Read the plain text file and check it's OK val outputFile = new File(outputDir, "part-00000") val content = Source.fromFile(outputFile).mkString assert(content === "1\n2\n3\n4\n") // Also try reading it in as a text file RDD assert(sc.textFile(outputDir).collect().toList === List("1", "2", "3", "4")) } test("text files (compressed)") { sc = new SparkContext("local", "test") val tempDir = Files.createTempDir() val normalDir = new File(tempDir, "output_normal").getAbsolutePath val compressedOutputDir = new File(tempDir, "output_compressed").getAbsolutePath val codec = new DefaultCodec() val data = sc.parallelize("a" * 10000, 1) data.saveAsTextFile(normalDir) data.saveAsTextFile(compressedOutputDir, classOf[DefaultCodec]) val normalFile = new File(normalDir, "part-00000") val normalContent = sc.textFile(normalDir).collect assert(normalContent === Array.fill(10000)("a")) val compressedFile = new File(compressedOutputDir, "part-00000" + codec.getDefaultExtension) val compressedContent = sc.textFile(compressedOutputDir).collect assert(compressedContent === Array.fill(10000)("a")) assert(compressedFile.length < normalFile.length) } test("SequenceFiles") { sc = new SparkContext("local", "test") val tempDir = Files.createTempDir() val outputDir = new File(tempDir, "output").getAbsolutePath val nums = sc.makeRDD(1 to 3).map(x => (x, "a" * x)) // (1,a), (2,aa), (3,aaa) nums.saveAsSequenceFile(outputDir) // Try reading the output back as a SequenceFile val output = sc.sequenceFile[IntWritable, Text](outputDir) assert(output.map(_.toString).collect().toList === List("(1,a)", "(2,aa)", "(3,aaa)")) } test("SequenceFile (compressed)") { sc = new SparkContext("local", "test") val tempDir = Files.createTempDir() val normalDir = new File(tempDir, "output_normal").getAbsolutePath val compressedOutputDir = new File(tempDir, "output_compressed").getAbsolutePath val codec = new DefaultCodec() val data = sc.parallelize(Seq.fill(100)("abc"), 1).map(x => (x, x)) data.saveAsSequenceFile(normalDir) data.saveAsSequenceFile(compressedOutputDir, Some(classOf[DefaultCodec])) val normalFile = new File(normalDir, "part-00000") val normalContent = sc.sequenceFile[String, String](normalDir).collect assert(normalContent === Array.fill(100)("abc", "abc")) val compressedFile = new File(compressedOutputDir, "part-00000" + codec.getDefaultExtension) val compressedContent = sc.sequenceFile[String, String](compressedOutputDir).collect assert(compressedContent === Array.fill(100)("abc", "abc")) assert(compressedFile.length < normalFile.length) } test("SequenceFile with writable key") { sc = new SparkContext("local", "test") val tempDir = Files.createTempDir() val outputDir = new File(tempDir, "output").getAbsolutePath val nums = sc.makeRDD(1 to 3).map(x => (new IntWritable(x), "a" * x)) nums.saveAsSequenceFile(outputDir) // Try reading the output back as a SequenceFile val output = sc.sequenceFile[IntWritable, Text](outputDir) assert(output.map(_.toString).collect().toList === List("(1,a)", "(2,aa)", "(3,aaa)")) } test("SequenceFile with writable value") { sc = new SparkContext("local", "test") val tempDir = Files.createTempDir() val outputDir = new File(tempDir, "output").getAbsolutePath val nums = sc.makeRDD(1 to 3).map(x => (x, new Text("a" * x))) nums.saveAsSequenceFile(outputDir) // Try reading the output back as a SequenceFile val output = sc.sequenceFile[IntWritable, Text](outputDir) assert(output.map(_.toString).collect().toList === List("(1,a)", "(2,aa)", "(3,aaa)")) } test("SequenceFile with writable key and value") { sc = new SparkContext("local", "test") val tempDir = Files.createTempDir() val outputDir = new File(tempDir, "output").getAbsolutePath val nums = sc.makeRDD(1 to 3).map(x => (new IntWritable(x), new Text("a" * x))) nums.saveAsSequenceFile(outputDir) // Try reading the output back as a SequenceFile val output = sc.sequenceFile[IntWritable, Text](outputDir) assert(output.map(_.toString).collect().toList === List("(1,a)", "(2,aa)", "(3,aaa)")) } test("implicit conversions in reading SequenceFiles") { sc = new SparkContext("local", "test") val tempDir = Files.createTempDir() val outputDir = new File(tempDir, "output").getAbsolutePath val nums = sc.makeRDD(1 to 3).map(x => (x, "a" * x)) // (1,a), (2,aa), (3,aaa) nums.saveAsSequenceFile(outputDir) // Similar to the tests above, we read a SequenceFile, but this time we pass type params // that are convertable to Writable instead of calling sequenceFile[IntWritable, Text] val output1 = sc.sequenceFile[Int, String](outputDir) assert(output1.collect().toList === List((1, "a"), (2, "aa"), (3, "aaa"))) // Also try having one type be a subclass of Writable and one not val output2 = sc.sequenceFile[Int, Text](outputDir) assert(output2.map(_.toString).collect().toList === List("(1,a)", "(2,aa)", "(3,aaa)")) val output3 = sc.sequenceFile[IntWritable, String](outputDir) assert(output3.map(_.toString).collect().toList === List("(1,a)", "(2,aa)", "(3,aaa)")) } test("object files of ints") { sc = new SparkContext("local", "test") val tempDir = Files.createTempDir() val outputDir = new File(tempDir, "output").getAbsolutePath val nums = sc.makeRDD(1 to 4) nums.saveAsObjectFile(outputDir) // Try reading the output back as an object file val output = sc.objectFile[Int](outputDir) assert(output.collect().toList === List(1, 2, 3, 4)) } test("object files of complex types") { sc = new SparkContext("local", "test") val tempDir = Files.createTempDir() val outputDir = new File(tempDir, "output").getAbsolutePath val nums = sc.makeRDD(1 to 3).map(x => (x, "a" * x)) nums.saveAsObjectFile(outputDir) // Try reading the output back as an object file val output = sc.objectFile[(Int, String)](outputDir) assert(output.collect().toList === List((1, "a"), (2, "aa"), (3, "aaa"))) } test("write SequenceFile using new Hadoop API") { import org.apache.hadoop.mapreduce.lib.output.SequenceFileOutputFormat sc = new SparkContext("local", "test") val tempDir = Files.createTempDir() val outputDir = new File(tempDir, "output").getAbsolutePath val nums = sc.makeRDD(1 to 3).map(x => (new IntWritable(x), new Text("a" * x))) nums.saveAsNewAPIHadoopFile[SequenceFileOutputFormat[IntWritable, Text]]( outputDir) val output = sc.sequenceFile[IntWritable, Text](outputDir) assert(output.map(_.toString).collect().toList === List("(1,a)", "(2,aa)", "(3,aaa)")) } test("read SequenceFile using new Hadoop API") { import org.apache.hadoop.mapreduce.lib.input.SequenceFileInputFormat sc = new SparkContext("local", "test") val tempDir = Files.createTempDir() val outputDir = new File(tempDir, "output").getAbsolutePath val nums = sc.makeRDD(1 to 3).map(x => (new IntWritable(x), new Text("a" * x))) nums.saveAsSequenceFile(outputDir) val output = sc.newAPIHadoopFile[IntWritable, Text, SequenceFileInputFormat[IntWritable, Text]](outputDir) assert(output.map(_.toString).collect().toList === List("(1,a)", "(2,aa)", "(3,aaa)")) } test("file caching") { sc = new SparkContext("local", "test") val tempDir = Files.createTempDir() val out = new FileWriter(tempDir + "/input") out.write("Hello world!\n") out.write("What's up?\n") out.write("Goodbye\n") out.close() val rdd = sc.textFile(tempDir + "/input").cache() assert(rdd.count() === 3) assert(rdd.count() === 3) assert(rdd.count() === 3) } }
wgpshashank/spark
core/src/test/scala/spark/FileSuite.scala
Scala
apache-2.0
9,254
/* * Copyright (c) 2017 Magomed Abdurakhmanov, Hypertino * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. * */ package com.hypertino.facade.modules import com.hypertino.facade.ConfigsFactory import com.hypertino.facade.raml.RamlConfiguration import com.typesafe.config.Config import scaldi.Module class RamlConfigModule extends Module { bind[RamlConfiguration] identifiedBy 'raml to ConfigsFactory.ramlConfig(inject[Config]) }
hypertino/hyperfacade
src/main/scala/com/hypertino/facade/modules/RamlConfigModule.scala
Scala
mpl-2.0
588
/* Copyright 2013, 2014 NICTA This file is part of t3as (Text Analysis As A Service). t3as is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. t3as is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with t3as. If not, see <http://www.gnu.org/licenses/>. */ package org.t3as.patClas.parse import scala.language.postfixOps import scala.xml.Node import org.t3as.patClas.common.IPCUtil.IPCEntry import org.t3as.patClas.common.TreeNode import org.t3as.patClas.common.IPCUtil.ipcToText object IPCParser { /* * hText (hierarchy text) is textBody of this node appended to that of all its ancestors. * This is indexed for searching, but not stored in Lucene or in the database. */ case class IPCNode(ipcEntry: IPCEntry, hText: String) def parse(n: Node) = n \\ "ipcEntry" map (n => mkTree(n, 0, "")) def mkTree(n: Node, level: Int, hText: String): TreeNode[IPCNode] = { val e = ipcNode(n, level, hText); new TreeNode(e, n \\ "ipcEntry" map (n => mkTree(n, level + 1, e.hText))) } def ipcNode(n: Node, level: Int, hText: String) = { def attrOption(n: Node, name: String) = n.attribute(name).map(_(0).text) def attr(n: Node, name: String) = attrOption(n, name).getOrElse(throw new Exception("ipcEntry missing @" + name)) // preserve XML elements (contains presentation elements e.g. <emdash/> and marked up refs to other classification codes) val textBody = n \\ "textBody" toString IPCNode(IPCEntry(None, 0, level, // attr(n, "entryType"), always K, so omit attr(n, "kind"), attr(n, "symbol"), attrOption(n, "endSymbol"), textBody ), hText + " " + ipcToText(textBody)) } }
NICTA/t3as-pat-clas
pat-clas-parse/src/main/scala/org/t3as/patClas/parse/IPCParser.scala
Scala
gpl-3.0
2,152
package org.precompiler.scala101.ch03 /** * * @author Richard Li */ object AccessModifier { def main(args: Array[String]): Unit = { val microwave = new Microwave //Compile error //microwave.turnTable; } } class Microwave { def start(): Unit = println("started") def stop(): Unit = println("stopped") private def turnTable(): Unit = println("turning table") } class Vehicle { //protected is class level - from an instance method //of a class we can access the members decorated as protected on //ANY instance of the same class protected def checkEngine() {} } class Car extends Vehicle { def start(): Unit = { checkEngine() } def tow(vehicle: Vehicle): Unit = { //Compile error //vehicle.checkEngine() } def tow(car: Car): Unit = { car.checkEngine() } } class GasStation { def fillGas(vehicle: Vehicle): Unit = { //Compile error //vehicle.checkEngine() } }
precompiler/scala-101
learning-scala/src/main/scala/org/precompiler/scala101/ch03/AccessModifier.scala
Scala
apache-2.0
940
package models import anorm._ import anorm.SqlParser._ import play.api.db._ import play.api.Play.current case class Task(id: Long, label: String) object Task { val task = { get[Long]("id") ~ get[String]("label") map { case id~label => Task(id, label) } } def all(): List[Task] = DB.withConnection { implicit c => SQL("select * from task").as(task *) } def create(label: String) { DB.withConnection( implicit c => SQL("insert into task (label) values ({label})").on( 'label -> label ).executeUpdate() ) } def delete(id: Long) { DB.withConnection( implicit c => SQL("delete from task where id = {id}").on( 'id -> id ).executeUpdate() ) } }
ericmoritz/play-example
todolist/app/models/Task.scala
Scala
mit
730
/* * Copyright (c) 2015 Andreas Wolf * * See te LICENSE file in the project root for further copyright information. */ package info.andreaswolf.roadhopper.simulation import org.slf4j.LoggerFactory import scala.collection.mutable class SimulationRepository { type T = Simulation val log = LoggerFactory.getLogger(this.getClass) private val simulations = new mutable.HashMap[String, T]() def add(sim: T) = { simulations.put(sim.identifier, sim) log.debug(s"Added simulation with id ${sim.identifier}") } def getByIdentifier[T](id: String) = simulations.get(id).get def has(id: String) = simulations.contains(id) }
andreaswolf/roadhopper
src/main/scala/info/andreaswolf/roadhopper/simulation/SimulationRepository.scala
Scala
mit
640
package builder.api_json import core.{Importer, ServiceFetcher, TypesProvider, TypesProviderEnum, TypesProviderModel, TypesProviderUnion, VersionMigration} import lib.{Methods, Primitives, ServiceConfiguration, Text, UrlKey} import io.apibuilder.spec.v0.models._ import lib.Methods.{MethodsNotAcceptingBodies, supportsBody} import play.api.libs.json._ import scala.util.{Failure, Success, Try} case class ServiceBuilder( migration: VersionMigration ) { def apply( config: ServiceConfiguration, apiJson: String, fetcher: ServiceFetcher ): Service = { val jsValue = Json.parse(apiJson) apply(config, InternalServiceForm(jsValue, fetcher)) } def apply( config: ServiceConfiguration, internal: InternalServiceForm ): Service = { val name = internal.name.getOrElse(sys.error("Missing name")) val key = internal.key.getOrElse { UrlKey.generate(name) } val namespace = internal.namespace.getOrElse { config.applicationNamespace(key) } val resolver = TypeResolver( defaultNamespace = Some(namespace), RecursiveTypesProvider(internal) ) val imports = internal.imports.map { ImportBuilder(internal.fetcher, _) }.sortWith(_.uri.toLowerCase < _.uri.toLowerCase) val headers = internal.headers.map { HeaderBuilder(resolver, _) } val enums = internal.enums.map { EnumBuilder(_) }.sortWith(_.name.toLowerCase < _.name.toLowerCase) val interfaces = internal.interfaces.map { InterfaceBuilder(_) }.sortWith(_.name.toLowerCase < _.name.toLowerCase) val unions = internal.unions.map { UnionBuilder(_) }.sortWith(_.name.toLowerCase < _.name.toLowerCase) val models = internal.models.map { ModelBuilder(_) }.sortWith(_.name.toLowerCase < _.name.toLowerCase) val resources = internal.resources.map { ResourceBuilder(resolver, _) }.sortWith(_.`type`.toLowerCase < _.`type`.toLowerCase) val attributes = internal.attributes.map { AttributeBuilder(_) } val annotations = internal.annotations.map{ AnnotationsBuilder(_) } val info = internal.info match { case None => Info( contact = None, license = None ) case Some(i) => InfoBuilder(i) } Service( apidoc = internal.apidoc.flatMap(_.version) match { case Some(v) => Apidoc(version = v) case None => Apidoc(version = io.apibuilder.spec.v0.Constants.Version) }, info = info, name = name, namespace = namespace, organization = Organization(key = config.orgKey), application = Application(key = key), version = config.version, imports = imports, description = internal.description, baseUrl = internal.baseUrl, enums = enums, interfaces = interfaces, unions = unions, models = models, headers = headers, resources = resources, attributes = attributes, annotations = annotations ++ imports.flatMap(_.annotations).distinct ) } object ResourceBuilder { private[api_json] case class Resolution( `enum`: Option[TypesProviderEnum] = None, model: Option[TypesProviderModel] = None, union: Option[TypesProviderUnion] = None ) { private[this] val all = Seq(`enum`, model, union).flatten assert(all.size <= 1, s"Cannot have more than 1 resolved item: $all") def isEmpty: Boolean = all.isEmpty } // @scala.annotation.tailrec def resolve( resolver: TypesProvider, name: String ): Resolution = { resolver.enums.find(o => o.name == name || o.fullName == name) match { case Some(enum) => { Resolution(enum = Some(enum)) } case None => { resolver.models.find(o => o.name == name || o.fullName == name) match { case Some(model) => { Resolution(model = Some(model)) } case None => { resolver.unions.find(o => o.name == name || o.fullName == name) match { case Some(union) => { Resolution(union = Some(union)) } case None => { Resolution() } } } } } } } def apply( resolver: TypeResolver, internal: InternalResourceForm ): Resource = { val resolution = resolve(resolver.provider, internal.datatype.name) resolution.enum match { case Some(enum) => { val resourcePath = internal.path.getOrElse("/" + enum.plural) Resource( `type` = internal.datatype.label, plural = enum.plural, path = Some(resourcePath), description = internal.description, deprecation = internal.deprecation.map(DeprecationBuilder(_)), operations = internal.operations.map(op => OperationBuilder(op, resourcePath, resolver)), attributes = internal.attributes.map { AttributeBuilder(_) } ) } case None => { resolution.model match { case Some(model) => { val resourcePath = internal.path.getOrElse("/" + model.plural) Resource( `type` = internal.datatype.label, plural = model.plural, path = Some(resourcePath), description = internal.description, deprecation = internal.deprecation.map(DeprecationBuilder(_)), operations = internal.operations.map(op => OperationBuilder(op, resourcePath, resolver, model = Some(model))), attributes = internal.attributes.map { AttributeBuilder(_) } ) } case None => { resolution.union match { case Some(union) => { val resourcePath = internal.path.getOrElse("/" + union.plural) Resource( `type` = internal.datatype.label, plural = union.plural, path = Some(resourcePath), description = internal.description, deprecation = internal.deprecation.map(DeprecationBuilder(_)), operations = internal.operations.map(op => OperationBuilder(op, resourcePath, resolver, union = Some(union))), attributes = internal.attributes.map { AttributeBuilder(_) } ) } case None => { val resourcePath = internal.path.getOrElse("") Resource( `type` = internal.datatype.label, plural = Text.pluralize(internal.datatype.name), path = Some(resourcePath), description = internal.description, deprecation = internal.deprecation.map(DeprecationBuilder(_)), operations = internal.operations.map(op => OperationBuilder(op, resourcePath, resolver)), attributes = internal.attributes.map { AttributeBuilder(_) } ) } } } } } } } } object OperationBuilder { /** * Historically ApiBuilder placed parameters by default for GET and DELETE in * the query parameters. Maintain this convention to avoid breaking APIs */ private[this] def defaultParameterLocation(verb: String): ParameterLocation = { if (supportsBody(verb)) { verb.toUpperCase().trim match { case "DELETE" => ParameterLocation.Query case _ => ParameterLocation.Form } } else { ParameterLocation.Query } } def apply( internal: InternalOperationForm, resourcePath: String, resolver: TypeResolver, model: Option[TypesProviderModel] = None, union: Option[TypesProviderUnion] = None ): Operation = { val method = internal.method.getOrElse("") val defaultLocation = if (internal.body.isDefined) { ParameterLocation.Query } else { internal.method match { case None => ParameterLocation.Form case Some(m) => defaultParameterLocation(m) } } val pathParameters = internal.namedPathParameters.map { name => internal.parameters.find(_.name.contains(name)) match { case None => { val datatypeLabel: String = model.flatMap(_.fields.find(_.name == name)) match { case Some(field) => field.`type` case None => { union.flatMap(commonField(resolver.provider, _, name)).getOrElse { Primitives.String.toString } } } ParameterBuilder.fromPath(name, datatypeLabel) } case Some(declared) => { // Path parameter was declared in the parameters // section. Use the explicit information provided in the // specification ParameterBuilder(declared, ParameterLocation.Path) } } } val internalParams = internal.parameters.filter(p => !pathParameters.exists(_.name == p.name.get)).map { p => ParameterBuilder(p, defaultLocation) } val fullPath = Seq( resourcePath, internal.path.getOrElse("") ).filter(!_.isEmpty).mkString("") match { case "" => "/" case p => p } Operation( method = Method(method), path = fullPath, description = internal.description, deprecation = internal.deprecation.map(DeprecationBuilder(_)), body = internal.body.map { BodyBuilder(_) }, parameters = pathParameters ++ internalParams, responses = internal.responses.map { ResponseBuilder(resolver, _) }, attributes = internal.attributes.map { AttributeBuilder(_) } ) } /** * If all types agree on the datatype for the field with the specified Name, * returns the field. Otherwise, returns None */ private def commonField(resolver: TypesProvider, union: TypesProviderUnion, fieldName: String): Option[String] = { val fieldTypes: Seq[String] = union.types.map { u => Primitives(u.`type`) match { case Some(p) => p.toString case None => { resolver.models.find { m => m.name == u.`type` || m.fullName == u.`type` } match { case None => { Primitives.String.toString } case Some(m) => { m.fields.find(_.name == fieldName) match { case None => { Primitives.String.toString } case Some(f) => { f.`type` } } } } } } } fieldTypes.distinct.toList match { case single :: Nil => Some(single) case _ => None } } } object BodyBuilder { def apply(ib: InternalBodyForm): Body = { ib.datatype match { case Left(errs) => sys.error("Body missing type: " + errs.mkString(", ")) case Right(datatype) => Body( `type` = datatype.label, description = ib.description, deprecation = ib.deprecation.map(DeprecationBuilder(_)), attributes = ib.attributes.map { AttributeBuilder(_) } ) } } } object DeprecationBuilder { def apply(internal: InternalDeprecationForm): Deprecation = { Deprecation(description = internal.description) } } object EnumBuilder { def apply(ie: InternalEnumForm): Enum = { Enum( name = ie.name, plural = ie.plural, description = ie.description, deprecation = ie.deprecation.map(DeprecationBuilder(_)), values = ie.values.map { iv => EnumValue( name = iv.name.get, value = iv.value, description = iv.description, deprecation = iv.deprecation.map(DeprecationBuilder(_)) ) }, attributes = ie.attributes.map { AttributeBuilder(_) } ) } } object UnionBuilder { def apply(internal: InternalUnionForm): Union = { Union( name = internal.name, plural = internal.plural, discriminator = internal.discriminator, description = internal.description, deprecation = internal.deprecation.map(DeprecationBuilder(_)), interfaces = internal.interfaces, types = internal.types.map { it => val typ = rightOrError(it.datatype) UnionType( `type` = typ.label, description = it.description, deprecation = it.deprecation.map(DeprecationBuilder(_)), default = it.default, discriminatorValue = Some( it.discriminatorValue.getOrElse(typ.name) ) ) }, attributes = internal.attributes.map { AttributeBuilder(_) } ) } } object HeaderBuilder { def apply(resolver: TypeResolver, ih: InternalHeaderForm): Header = { Header( name = ih.name.get, `type` = rightOrError(ih.datatype).label, required = ih.required, description = ih.description, deprecation = ih.deprecation.map(DeprecationBuilder(_)), default = ih.default, attributes = ih.attributes.map(AttributeBuilder(_)), ) } } object InfoBuilder { def apply(internal: InternalInfoForm): Info = { Info( contact = internal.contact.flatMap { c => if (c.name.isEmpty && c.email.isEmpty && c.url.isEmpty) { None } else { Some( Contact( name = c.name, url = c.url, email = c.email ) ) } }, license = internal.license.map { l => License( name = l.name.getOrElse { sys.error("License is missing name") }, url = l.url ) } ) } } object ImportBuilder { def apply(fetcher: ServiceFetcher, internal: InternalImportForm): Import = { Importer(fetcher, internal.uri.get).fetched match { case Left(errors) => { sys.error("Errors in import: " + errors) } case Right(service) => { Import( uri = internal.uri.get, organization = service.organization, application = service.application, namespace = service.namespace, version = service.version, enums = service.enums.map(_.name), unions = service.unions.map(_.name), interfaces = service.interfaces.map(_.name), models = service.models.map(_.name), annotations = service.annotations ) } } } } object InterfaceBuilder { def apply(im: InternalInterfaceForm): Interface = { Interface( name = im.name, plural = im.plural, description = im.description, deprecation = im.deprecation.map(DeprecationBuilder(_)), fields = im.fields.map { FieldBuilder(_) }, attributes = im.attributes.map { AttributeBuilder(_) } ) } } object ModelBuilder { def apply(im: InternalModelForm): Model = { Model( name = im.name, plural = im.plural, description = im.description, deprecation = im.deprecation.map(DeprecationBuilder(_)), fields = im.fields.map { FieldBuilder(_) }, interfaces = im.interfaces, attributes = im.attributes.map { AttributeBuilder(_) } ) } } object ResponseBuilder { def apply(resolver: TypeResolver, internal: InternalResponseForm): Response = { Response( code = Try(internal.code.toInt) match { case Success(code) => ResponseCodeInt(code) case Failure(_) => ResponseCodeOption(internal.code) }, `type` = rightOrError(internal.datatype).label, headers = internal.headers.map { HeaderBuilder(resolver, _) }.toList match { case Nil => None case headers => Some(headers) }, description = internal.description, deprecation = internal.deprecation.map(DeprecationBuilder(_)), attributes = Some(internal.attributes.map { AttributeBuilder(_) }) ) } } object ParameterBuilder { def fromPath(name: String, datatypeLabel: String): Parameter = { Parameter( name = name, `type` = datatypeLabel, location = ParameterLocation.Path, required = true ) } def apply(internal: InternalParameterForm, defaultLocation: ParameterLocation): Parameter = { Parameter( name = internal.name.get, `type` = rightOrError(internal.datatype).label, location = internal.location.map(ParameterLocation(_)).getOrElse(defaultLocation), description = internal.description, deprecation = internal.deprecation.map(DeprecationBuilder(_)), required = if (migration.makeFieldsWithDefaultsRequired()) { internal.default match { case None => internal.required case Some(_) => true } } else { internal.required }, default = internal.default, minimum = internal.minimum, maximum = internal.maximum, example = internal.example ) } } object FieldBuilder { def apply( internal: InternalFieldForm ): Field = { Field( name = internal.name.get, `type` = rightOrError(internal.datatype).label, description = internal.description, deprecation = internal.deprecation.map(DeprecationBuilder(_)), default = internal.default, required = if (migration.makeFieldsWithDefaultsRequired()) { internal.default match { case None => internal.required case Some(_) => true } } else { internal.required }, minimum = internal.minimum, maximum = internal.maximum, example = internal.example, attributes = internal.attributes.map { AttributeBuilder(_) }, annotations = internal.annotations ) } } object AttributeBuilder { def apply( internal: InternalAttributeForm ): Attribute = { Attribute( name = internal.name.get, value = internal.value.get, description = internal.description, deprecation = internal.deprecation.map(DeprecationBuilder(_)) ) } } object AnnotationsBuilder { def apply( internal: InternalAnnotationForm ): Annotation = { Annotation( name = internal.name, description = internal.description, deprecation = internal.deprecation.map(DeprecationBuilder(_)) ) } } private[this] def rightOrError[T](value: Either[Seq[String], T]): T = { value match { case Left(errors) => sys.error("Unexpected errors: " + errors.mkString(", ")) case Right(v) => v } } }
apicollective/apibuilder
core/src/main/scala/core/builder/api_json/ServiceBuilder.scala
Scala
mit
19,208
package articles.controllers import articles.models.Article import articles.services.ArticleService import commons.repositories.ActionRunner import play.api.libs.json.{Format, JsArray, Json} import play.api.mvc.{AbstractController, Action, AnyContent, ControllerComponents} import scala.concurrent.ExecutionContext import commons.models._ case class PageRequest(limit: Long, offset: Long, orderings: List[Ordering]) case class Page[Model](models: Seq[Model], count: Long) case class ArticlePage(articles: Seq[Article], articlesCount: Long) class ArticlePageJsonMappings object ArticlePageJsonMappings { import mappings.ArticleJsonMappings._ implicit val articlePageFormat: Format[ArticlePage] = Json.format[ArticlePage] } class ArticleController(actionRunner: ActionRunner, articleService: ArticleService, components: ControllerComponents, implicit private val ec: ExecutionContext) extends AbstractController(components) { import mappings.ArticleJsonMappings._ import ArticlePageJsonMappings._ def all(pageRequest: PageRequest): Action[AnyContent] = { Action.async { actionRunner.runInTransaction(articleService.all(pageRequest)) .map(page => ArticlePage(page.models, page.count)) .map(Json.toJson(_)) .map(Ok(_)) } } }
Dasiu/play-framework-test-project
app/articles/controllers/ArticleController.scala
Scala
mit
1,354
package com.wuyuntao.aeneas.migration.example.migrations import com.wuyuntao.aeneas.migration.Migration import com.wuyuntao.aeneas.migration.dsl.DbModifier class CreateEventTable extends Migration { def version = 20151030182648236L def up(db: DbModifier) = { db.executeSql("""CREATE TABLE events ( | entity_id timeuuid, | partition_nr bigint, | sequence_nr bigint, | event_type text, | event_id timeuuid, | timestamp timestamp, | PRIMARY KEY ((entity_id, partition_nr), sequence_nr) |) WITH CLUSTERING ORDER BY (sequence_nr ASC) |""".stripMargin) } def down(db: DbModifier) = { db.executeSql("DROP TABLE events") } }
wuyuntao/Aeneas
aeneas-migration-example/src/main/scala/com/wuyuntao/aeneas/migration/example/migrations/V20151030182648236_CreateEventTable.scala
Scala
apache-2.0
713
// Copyright © 2012 Esko Luontola <www.orfjackal.net> // This software is released under the Apache License 2.0. // The license text is at http://www.apache.org/licenses/LICENSE-2.0 package net.orfjackal.svngitsaclue import org.eclipse.jgit.awtui.CommitGraphPane import java.awt.BorderLayout import org.eclipse.jgit.storage.file.FileRepositoryBuilder import org.eclipse.jgit.revplot.PlotWalk import javax.swing.{JScrollPane, JPanel, JFrame} object GitCommitGraphSpike { def main(args: Array[String]) { val repository = new FileRepositoryBuilder() .setGitDir(GitRepositorySpike.RepositoryDir) .readEnvironment() .build() val walk = new PlotWalk(repository) walk.markStart(walk.parseCommit(repository.resolve("HEAD"))) val commitGraph = new CommitGraphPane val commits = commitGraph.getCommitList commits.source(walk) commits.fillTo(Integer.MAX_VALUE) val root = new JPanel(new BorderLayout()) root.add(new JScrollPane(commitGraph), BorderLayout.CENTER) val frame = new JFrame("JGit") frame.setContentPane(root) frame.pack() frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE) frame.setLocationByPlatform(true) frame.setVisible(true) } }
orfjackal/svn-gits-a-clue
src/test/scala/net/orfjackal/svngitsaclue/GitCommitGraphSpike.scala
Scala
apache-2.0
1,246
/* * Copyright 2016 The BigDL Authors. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package com.intel.analytics.bigdl.utils.serializer.converters import com.google.protobuf.ByteString import scala.collection.JavaConverters._ import scala.reflect.runtime.universe import com.intel.analytics.bigdl.nn._ import com.intel.analytics.bigdl.nn.abstractnn.{AbstractModule, Activity, DataFormat} import com.intel.analytics.bigdl.optim.Regularizer import com.intel.analytics.bigdl.tensor.Tensor import com.intel.analytics.bigdl.tensor.TensorNumericMath.TensorNumeric import com.intel.analytics.bigdl.utils.serializer._ import com.intel.analytics.bigdl.utils.{MultiShape, SingleShape, Shape => BigDLShape} import com.intel.analytics.bigdl.serialization.Bigdl._ import com.intel.analytics.bigdl.serialization.Bigdl.AttrValue.ArrayValue import scala.collection.mutable import scala.reflect.ClassTag /** * Trait which defines get attribute value from saved protobuf data and convert BigDL object to * protobuf format attribute data */ trait DataConverter { /** * Get attribute value from protobuf attribute data * @tparam T data type * @param context deserialization context * @param attribute protobuf generated Attribute instance * @return BigDL compatible param value */ def getAttributeValue[T : ClassTag](context: DeserializeContext, attribute: AttrValue)( implicit ev: TensorNumeric[T]) : AnyRef /** * Set attribute value to protobuf format * @tparam T data type * @param context serialization context * @param attributeBuilder the attribute value writable instance * @param value the value to be written to protobuf file * @param valueType the type of the value to help set the data type */ def setAttributeValue[T : ClassTag](context: SerializeContext[T], attributeBuilder : AttrValue.Builder, value: Any, valueType: universe.Type = null) (implicit ev: TensorNumeric[T]) : Unit protected def getLock: Object = ModuleSerializer._lock } /** * General implementation of [[DataConverter]], it provides the conversion entry for all types */ object DataConverter extends DataConverter{ private val typePlaceHolder = universe.typeOf[DataConverter] // Customized data converter map, key is the string representation of user defined class type private val customizedConverter = new mutable.HashMap[String, DataConverter] def registerConverter(tpe : String, converter : DataConverter) : Unit = { require(!customizedConverter.contains(tpe), s"converter for $tpe already exists!") customizedConverter(tpe) = converter } private def getRuntimeType[T : ClassTag](value : Any) (implicit ev: TensorNumeric[T]) : universe.Type = { getLock.synchronized { if (value.isInstanceOf[Tensor[_]]) { ModuleSerializer.tensorType } else if (value.isInstanceOf[AbstractModule[_, _, _]]) { ModuleSerializer.abstractModuleType } else if (value.isInstanceOf[Regularizer[_]]) { ModuleSerializer.regularizerType } else if (value.isInstanceOf[InitializationMethod]) { universe.typeOf[InitializationMethod] } else if (value.isInstanceOf[VariableFormat]) { universe.typeOf[VariableFormat] } else if (value.isInstanceOf[DataFormat]) { universe.typeOf[DataFormat] } else if (value.isInstanceOf[BigDLShape]) { universe.typeOf[BigDLShape] } else { val cls = value.getClass val runtimeMirror = universe.runtimeMirror(getClass.getClassLoader) val clsSymbol = runtimeMirror.classSymbol(cls) clsSymbol.toType } } } override def getAttributeValue[T : ClassTag](context: DeserializeContext, attribute: AttrValue) (implicit ev: TensorNumeric[T]) : AnyRef = { attribute.getDataType match { case DataType.INT32 => Integer.valueOf(attribute.getInt32Value) case DataType.INT64 => Long.box(attribute.getInt64Value) case DataType.DOUBLE => Double.box(attribute.getDoubleValue) case DataType.FLOAT => Float.box(attribute.getFloatValue) case DataType.STRING => attribute.getStringValue case DataType.BOOL => Boolean.box(attribute.getBoolValue) case DataType.REGULARIZER => RegularizerConverter.getAttributeValue(context, attribute) case DataType.TENSOR => TensorConverter.getAttributeValue(context, attribute) case DataType.VARIABLE_FORMAT => VariableFormatConverter.getAttributeValue(context, attribute) case DataType.INITMETHOD => InitMethodConverter.getAttributeValue(context, attribute) case DataType.MODULE => ModuleConverter.getAttributeValue(context, attribute) case DataType.NAME_ATTR_LIST => NameListConverter.getAttributeValue(context, attribute) case DataType.ARRAY_VALUE => ArrayConverter.getAttributeValue(context, attribute) case DataType.DATA_FORMAT => DataFormatConverter.getAttributeValue(context, attribute) case DataType.CUSTOM => CustomConverterDelegator.getAttributeValue(context, attribute) case DataType.SHAPE => ShapeConverter.getAttributeValue(context, attribute) case _ => throw new IllegalArgumentException (s"${attribute.getDataType} can not be recognized") } } override def setAttributeValue[T : ClassTag]( context: SerializeContext[T], attributeBuilder: AttrValue.Builder, value: Any, valueType : universe.Type = typePlaceHolder) (implicit ev: TensorNumeric[T]): Unit = { getLock.synchronized { // to make it compatible with Java types if (valueType =:= universe.typeOf[Int] || valueType =:= universe.typeOf[java.lang.Integer]) { attributeBuilder.setDataType(DataType.INT32) attributeBuilder.setInt32Value(value.asInstanceOf[Int]) } else if (valueType =:= universe.typeOf[Long] || valueType =:= universe.typeOf[java.lang.Long]) { attributeBuilder.setDataType(DataType.INT64) attributeBuilder.setInt64Value(value.asInstanceOf[Long]) } else if (valueType =:= universe.typeOf[Float] || valueType =:= universe.typeOf[java.lang.Float]) { attributeBuilder.setDataType(DataType.FLOAT) attributeBuilder.setFloatValue(value.asInstanceOf[Float]) } else if (valueType =:= universe.typeOf[Double] || valueType =:= universe.typeOf[java.lang.Double]) { attributeBuilder.setDataType(DataType.DOUBLE) attributeBuilder.setDoubleValue(value.asInstanceOf[Double]) } else if (valueType =:= universe.typeOf[String] || valueType =:= universe.typeOf[java.lang.String]) { attributeBuilder.setDataType(DataType.STRING) attributeBuilder.setStringValue(value.asInstanceOf[String]) } else if (valueType =:= universe.typeOf[Boolean] || valueType =:= universe.typeOf[java.lang.Boolean]) { attributeBuilder.setDataType(DataType.BOOL) attributeBuilder.setBoolValue(value.asInstanceOf[Boolean]) } else if (valueType =:= universe.typeOf[VariableFormat]) { VariableFormatConverter.setAttributeValue(context, attributeBuilder, value) } else if (valueType =:= universe.typeOf[InitializationMethod]) { InitMethodConverter.setAttributeValue(context, attributeBuilder, value) } else if (valueType.toString == ModuleSerializer.regularizerType.toString) { RegularizerConverter.setAttributeValue(context, attributeBuilder, value) } else if (valueType <:< universe.typeOf[Tensor[_]]) { TensorConverter.setAttributeValue(context, attributeBuilder, value) } else if (valueType.toString == ModuleSerializer.tType.toString) { if (ev == com.intel.analytics.bigdl.tensor.TensorNumericMath.TensorNumeric.NumericDouble) { attributeBuilder.setDataType(DataType.DOUBLE) attributeBuilder.setDoubleValue(value.asInstanceOf[Double]) } else { attributeBuilder.setDataType(DataType.FLOAT) attributeBuilder.setFloatValue(value.asInstanceOf[Float]) } } else if (valueType.toString == ModuleSerializer.abstractModuleType.toString || valueType.toString == ModuleSerializer.tensorModuleType.toString || valueType.toString == ModuleSerializer.moduleType.toString || valueType.toString == ModuleSerializer.boundedModuleType.toString || valueType <:< universe.typeOf[AbstractModule[_, _, _]] ) { ModuleConverter.setAttributeValue(context, attributeBuilder, value) } else if (value.isInstanceOf[mutable.Map[_, _]]) { NameListConverter.setAttributeValue(context, attributeBuilder, value) } else if (valueType <:< universe.typeOf[Array[_]] || valueType.typeSymbol == universe.typeOf[Array[_]].typeSymbol) { ArrayConverter.setAttributeValue(context, attributeBuilder, value, valueType) } else if (valueType =:= universe.typeOf[DataFormat]) { DataFormatConverter.setAttributeValue(context, attributeBuilder, value) } else if (valueType =:= universe.typeOf[BigDLShape]) { ShapeConverter.setAttributeValue(context, attributeBuilder, value) } else { CustomConverterDelegator.setAttributeValue(context, attributeBuilder, value, valueType) } } } /** * DataConverter for name list */ object NameListConverter extends DataConverter { override def getAttributeValue[T: ClassTag] (context: DeserializeContext, attribute: AttrValue)(implicit ev: TensorNumeric[T]): AnyRef = { val nameListMap = new mutable.HashMap[String, mutable.Map[String, Any]]() val listMap = new mutable.HashMap[String, Any]() val nameAttrListValue = attribute.getNameAttrListValue val listName = nameAttrListValue.getName nameAttrListValue.getAttrMap.asScala.foreach(attributePair => { val name = attributePair._1 val attrValue = attributePair._2 val convetedObj = DataConverter.getAttributeValue(context, attrValue) listMap(name) = convetedObj }) nameListMap(listName) = listMap nameListMap } override def setAttributeValue[T: ClassTag](context: SerializeContext[T], attributeBuilder: AttrValue.Builder, value: Any, valueType: universe.Type = null)(implicit ev: TensorNumeric[T]): Unit = { attributeBuilder.setDataType(DataType.NAME_ATTR_LIST) val listMap = value.asInstanceOf[mutable.Map[String, mutable.Map[String, Any]]] val (name, nameListMap) = listMap.head val nameAttrList = NameAttrList.newBuilder nameAttrList.setName(name) nameListMap.foreach(attributePair => { val name = attributePair._1 val obj = attributePair._2 val nextedAttr = AttrValue.newBuilder DataConverter.setAttributeValue(context, nextedAttr, obj, getRuntimeType(obj)) nameAttrList.putAttr(name, nextedAttr.build) }) attributeBuilder.setNameAttrListValue(nameAttrList.build) } } /** * DataConvert for array container, it's different from Array[AttrValue] * it's an array of specific type value * For each specific type, wrapper it as corresponding attribute and call related converter */ object ArrayConverter extends DataConverter { override def getAttributeValue[T: ClassTag] (context: DeserializeContext, attribute: AttrValue)(implicit ev: TensorNumeric[T]): AnyRef = { val valueArray = attribute.getArrayValue val size = valueArray.getSize if (size == -1) { return null } val listType = valueArray.getDatatype val arr = listType match { case DataType.INT32 => if (size == 0) { return new Array[Int](0) } valueArray.getI32List.asScala.toArray.map(_.intValue) case DataType.INT64 => if (size == 0) { return new Array[Long](0) } valueArray.getI64List.asScala.toArray.map(_.longValue()) case DataType.DOUBLE => if (size == 0) { return new Array[Double](0) } valueArray.getDblList.asScala.toArray.map(_.doubleValue()) case DataType.FLOAT => if (size == 0) { return new Array[Float](0) } valueArray.getFltList.asScala.toArray.map(_.floatValue()) case DataType.STRING => if (size == 0) { return new Array[String](0) } valueArray.getStrList.asScala.toArray case DataType.BOOL => if (size == 0) { return new Array[Boolean](0) } valueArray.getBooleanList.asScala.toArray.map(_.booleanValue()) case DataType.REGULARIZER => val regularizers = new Array[Regularizer[T]](size) val regList = valueArray.getRegularizerList.asScala var i = 0 regList.foreach(reg => { val attrValue = AttrValue.newBuilder attrValue.setDataType(DataType.REGULARIZER) attrValue.setRegularizerValue(reg) regularizers(i) = RegularizerConverter. getAttributeValue(context, attrValue.build).asInstanceOf[Regularizer[T]] i += 1 }) regularizers case DataType.TENSOR => val tensors = new Array[Tensor[T]](size) val tensorList = valueArray.getTensorList.asScala var i = 0 tensorList.foreach(tensor => { val attrValue = AttrValue.newBuilder attrValue.setDataType(DataType.TENSOR) attrValue.setTensorValue(tensor) tensors(i) = TensorConverter. getAttributeValue(context, attrValue.build).asInstanceOf[Tensor[T]] i += 1 }) tensors case DataType.VARIABLE_FORMAT => val formats = new Array[VariableFormat](size) val formatList = valueArray.getVariableFormatList.asScala var i = 0 formatList.foreach(format => { val attrValue = AttrValue.newBuilder attrValue.setDataType(DataType.VARIABLE_FORMAT) attrValue.setVariableFormatValue(format) formats(i) = VariableFormatConverter. getAttributeValue(context, attrValue.build).asInstanceOf[VariableFormat] }) formats case DataType.INITMETHOD => val methods = new Array[InitializationMethod](size) val methodList = valueArray.getInitMethodList.asScala var i = 0 methodList.foreach(method => { val attrValue = AttrValue.newBuilder attrValue.setDataType(DataType.INITMETHOD) attrValue.setInitMethodValue(method) methods(i) = InitMethodConverter.getAttributeValue(context, attrValue.build) .asInstanceOf[InitializationMethod] i += 1 }) methods case DataType.MODULE => val modules = new Array[AbstractModule[Activity, Activity, T]](size) val moduleList = valueArray.getBigDLModuleList.asScala var i = 0 moduleList.foreach(module => { val attrValue = AttrValue.newBuilder attrValue.setDataType(DataType.MODULE) attrValue.setBigDLModuleValue(module) modules(i) = ModuleConverter.getAttributeValue(context, attrValue.build) .asInstanceOf[AbstractModule[Activity, Activity, T]] i += 1 }) modules case DataType.NAME_ATTR_LIST => val nameArray = new Array[Map[String, Map[String, Any]]](size) val nameAttriLists = valueArray.getNameAttrListList.asScala var i = 0 nameAttriLists.foreach(nameList => { val attrValue = AttrValue.newBuilder attrValue.setDataType(DataType.NAME_ATTR_LIST) attrValue.setNameAttrListValue(nameList) nameArray(i) = NameListConverter.getAttributeValue(context, attrValue.build) .asInstanceOf[Map[String, Map[String, Any]]] i += 1 }) nameArray case DataType.DATA_FORMAT => val dataFormats = new Array[DataFormat](size) val dataFormatList = valueArray.getDataFormatList.asScala var i = 0 dataFormatList.foreach(format => { val attrValue = AttrValue.newBuilder attrValue.setDataType(DataType.DATA_FORMAT) attrValue.setDataFormatValue(format) dataFormats(i) = DataFormatConverter. getAttributeValue(context, attrValue.build).asInstanceOf[DataFormat] i += 1 }) dataFormats case DataType.CUSTOM => val customValues = new Array[Any](size) val customValueList = valueArray.getCustomList.asScala var i = 0 customValueList.foreach(custom => { val attrValue = AttrValue.newBuilder attrValue.setDataType(DataType.CUSTOM) attrValue.setCustomValue(custom) customValues(i) = CustomConverterDelegator. getAttributeValue(context, attrValue.build) i += 1 }) customValues case DataType.SHAPE => valueArray.getShapeList.asScala.map(shape => { val attrValue = AttrValue.newBuilder attrValue.setDataType(DataType.SHAPE) attrValue.setShape(shape) ShapeConverter.getAttributeValue(context, attrValue.build).asInstanceOf[BigDLShape] }).toArray } arr } override def setAttributeValue[T: ClassTag](context: SerializeContext[T], attributeBuilder: AttrValue.Builder, value: Any, valueType: universe.Type = null)(implicit ev: TensorNumeric[T]): Unit = { attributeBuilder.setDataType(DataType.ARRAY_VALUE) getLock.synchronized { val arrayBuilder = ArrayValue.newBuilder arrayBuilder.setSize(-1) if (valueType =:= universe.typeOf[Array[Int]]) { arrayBuilder.setDatatype(DataType.INT32) if (value != null) { val int32s = value.asInstanceOf[Array[Int]] int32s.foreach(i32 => arrayBuilder.addI32(i32)) arrayBuilder.setSize(int32s.size) } } else if (valueType =:= universe.typeOf[Array[Long]]) { arrayBuilder.setDatatype(DataType.INT64) if (value != null) { val int64s = value.asInstanceOf[Array[Long]] int64s.foreach(i64 => arrayBuilder.addI64(i64)) arrayBuilder.setSize(int64s.size) } } else if (valueType =:= universe.typeOf[Array[Float]]) { arrayBuilder.setDatatype(DataType.FLOAT) if (value != null) { val flts = value.asInstanceOf[Array[Float]] flts.foreach(flt => arrayBuilder.addFlt(flt)) arrayBuilder.setSize(flts.size) } } else if (valueType =:= universe.typeOf[Array[Double]]) { arrayBuilder.setDatatype(DataType.DOUBLE) if (value != null) { val dbs = value.asInstanceOf[Array[Double]] dbs.foreach(dbl => arrayBuilder.addDbl(dbl)) arrayBuilder.setSize(dbs.size) } } else if (valueType =:= universe.typeOf[Array[Boolean]]) { arrayBuilder.setDatatype(DataType.BOOL) if (value != null) { val bls = value.asInstanceOf[Array[Boolean]] bls.foreach(bl => arrayBuilder.addBoolean(bl)) arrayBuilder.setSize(bls.size) } } else if (valueType =:= universe.typeOf[Array[String]]) { arrayBuilder.setDatatype(DataType.STRING) if (value != null) { val strs = value.asInstanceOf[Array[String]] strs.foreach(str => arrayBuilder.addStr(str)) arrayBuilder.setSize(strs.size) } } else if (valueType <:< universe.typeOf[Array[_ <: Regularizer[_ <: Any]]]) { arrayBuilder.setDatatype(DataType.REGULARIZER) if (value != null) { val regularizers = value.asInstanceOf[Array[Regularizer[T]]] regularizers.foreach(reg => { val attrValueBuilder = AttrValue.newBuilder RegularizerConverter.setAttributeValue(context, attrValueBuilder, reg) arrayBuilder.addRegularizer(attrValueBuilder.getRegularizerValue) }) arrayBuilder.setSize(regularizers.size) } } else if (valueType <:< universe. typeOf[Array[_ <: Tensor[_ <: Any]]]) { arrayBuilder.setDatatype(DataType.TENSOR) if (value != null) { val tensors = value.asInstanceOf[Array[Tensor[T]]] tensors.foreach(tensor => { val attrValueBuilder = AttrValue.newBuilder TensorConverter.setAttributeValue(context, attrValueBuilder, tensor) arrayBuilder.addTensor(attrValueBuilder.getTensorValue) }) arrayBuilder.setSize(tensors.size) } } else if (valueType =:= universe.typeOf[Array[VariableFormat]]) { arrayBuilder.setDatatype(DataType.VARIABLE_FORMAT) if (value != null) { val formats = value.asInstanceOf[Array[VariableFormat]] formats.foreach(format => { val attrValueBuilder = AttrValue.newBuilder VariableFormatConverter.setAttributeValue(context, attrValueBuilder, format) arrayBuilder.addVariableFormat(attrValueBuilder.getVariableFormatValue) }) arrayBuilder.setSize(formats.size) } } else if (valueType =:= universe.typeOf[Array[InitializationMethod]]) { arrayBuilder.setDatatype(DataType.INITMETHOD) if (value != null) { val methods = value.asInstanceOf[Array[InitializationMethod]] methods.foreach(method => { val attrValueBuilder = AttrValue.newBuilder InitMethodConverter.setAttributeValue(context, attrValueBuilder, method) arrayBuilder.addInitMethod(attrValueBuilder.getInitMethodValue) }) arrayBuilder.setSize(methods.size) } } else if (valueType <:< universe. typeOf[Array[_ <: AbstractModule[_ <: Activity, _ <: Activity, _ <: Any]]]) { arrayBuilder.setDatatype(DataType.MODULE) if (value != null) { val modules = value.asInstanceOf[Array[_ <: AbstractModule[Activity, Activity, T]]] modules.foreach(module => { val attrValueBuilder = AttrValue.newBuilder ModuleConverter.setAttributeValue(context, attrValueBuilder, module) arrayBuilder.addBigDLModule(attrValueBuilder.getBigDLModuleValue) }) arrayBuilder.setSize(modules.size) } } else if (value.isInstanceOf[Array[Map[_, _]]]) { arrayBuilder.setDatatype(DataType.NAME_ATTR_LIST) value.asInstanceOf[Array[Map[String, Any]]].foreach(map => { val attrValueBuilder = AttrValue.newBuilder NameListConverter.setAttributeValue(context, attrValueBuilder, map) arrayBuilder.addNameAttrList(attrValueBuilder.getNameAttrListValue) }) } else if (valueType =:= universe.typeOf[Array[DataFormat]]) { arrayBuilder.setDatatype(DataType.DATA_FORMAT) if (value != null) { val formats = value.asInstanceOf[Array[DataFormat]] formats.foreach(format => { val attrValueBuilder = AttrValue.newBuilder DataFormatConverter.setAttributeValue(context, attrValueBuilder, format) arrayBuilder.addDataFormat(attrValueBuilder.getDataFormatValue) }) arrayBuilder.setSize(formats.size) } } else if (valueType =:= universe.typeOf[Array[BigDLShape]]) { arrayBuilder.setDatatype(DataType.SHAPE) if (value != null) { val shapes = value.asInstanceOf[Array[BigDLShape]] shapes.foreach(shape => { val attrValueBuilder = AttrValue.newBuilder ShapeConverter.setAttributeValue(context, attrValueBuilder, shape) arrayBuilder.addShape(attrValueBuilder.getShape) }) arrayBuilder.setSize(shapes.size) } } else { arrayBuilder.setDatatype(DataType.CUSTOM) if (value != null) { val customValues = value.asInstanceOf[Array[Any]] customValues.foreach(custom => { val attrValueBuilder = AttrValue.newBuilder CustomConverterDelegator.setAttributeValue(context, attrValueBuilder, custom) arrayBuilder.addCustom(attrValueBuilder.getCustomValue) }) arrayBuilder.setSize(customValues.size) } } attributeBuilder.setArrayValue(arrayBuilder.build) } } } /** * DataConvert for custom value */ object CustomConverterDelegator extends DataConverter { override def getAttributeValue[T: ClassTag](context: DeserializeContext, attribute: AttrValue) (implicit ev: TensorNumeric[T]): AnyRef = { val subType = attribute.getSubType require(customizedConverter.contains(subType), s"unrecognized type $subType") val customConverter = customizedConverter.get(subType).get customConverter.getAttributeValue(context, attribute) } override def setAttributeValue[T: ClassTag](context: SerializeContext[T], attributeBuilder: AttrValue.Builder, value: Any, valueType: universe.Type)(implicit ev: TensorNumeric[T]): Unit = { require(customizedConverter.contains(valueType.toString), s"unrecognized type $valueType") val customConverter = customizedConverter.get(valueType.toString).get attributeBuilder.setDataType(DataType.CUSTOM) attributeBuilder.setSubType(valueType.toString) customConverter.setAttributeValue(context, attributeBuilder, value, valueType) } } }
yiheng/BigDL
spark/dl/src/main/scala/com/intel/analytics/bigdl/utils/serializer/converters/DataConverter.scala
Scala
apache-2.0
26,607
/* * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.flink.table.plan.rules.dataSet import org.apache.calcite.plan.{RelOptRuleCall, Convention, RelOptRule, RelTraitSet} import org.apache.calcite.rel.RelNode import org.apache.calcite.rel.convert.ConverterRule import org.apache.calcite.rel.logical.LogicalUnion import org.apache.calcite.rel.rules.UnionToDistinctRule import org.apache.flink.table.plan.nodes.dataset.{DataSetConvention, DataSetUnion} class DataSetUnionRule extends ConverterRule( classOf[LogicalUnion], Convention.NONE, DataSetConvention.INSTANCE, "DataSetUnionRule") { /** * Only translate UNION ALL. * Note: A distinct Union are translated into * an Aggregate on top of a UNION ALL by [[UnionToDistinctRule]] */ override def matches(call: RelOptRuleCall): Boolean = { val union: LogicalUnion = call.rel(0).asInstanceOf[LogicalUnion] union.all } def convert(rel: RelNode): RelNode = { val union: LogicalUnion = rel.asInstanceOf[LogicalUnion] val traitSet: RelTraitSet = rel.getTraitSet.replace(DataSetConvention.INSTANCE) val convLeft: RelNode = RelOptRule.convert(union.getInput(0), DataSetConvention.INSTANCE) val convRight: RelNode = RelOptRule.convert(union.getInput(1), DataSetConvention.INSTANCE) new DataSetUnion( rel.getCluster, traitSet, convLeft, convRight, rel.getRowType) } } object DataSetUnionRule { val INSTANCE: RelOptRule = new DataSetUnionRule }
DieBauer/flink
flink-libraries/flink-table/src/main/scala/org/apache/flink/table/plan/rules/dataSet/DataSetUnionRule.scala
Scala
apache-2.0
2,270
package com.overviewdocs.util import java.util.Locale object SupportedLanguages { // Supported languages, in ISO639-2 format val languageCodes = Set( "ar", "ca", "cs", "de", "en", "es", "fr", "sv", "nl", "no", "it", "pt", "ro", "ru" ) val languages : Set[SupportedLanguage] = languageCodes.map(SupportedLanguage) val defaultLanguage : SupportedLanguage = SupportedLanguage("en") /** A list of languages, sorted by their display names in callerLocale */ def languagesSortedInCallerLocale(callerLocale: Locale) : Seq[SupportedLanguage] = { languages.toIndexedSeq.sortBy((lang) => lang.displayLanguage(callerLocale)) } }
overview/overview-server
common/src/main/scala/com/overviewdocs/util/SupportedLanguages.scala
Scala
agpl-3.0
701
package unfiltered.oauth2 import unfiltered.request._ import unfiltered.response._ import unfiltered.filter.Plan /** * After your application has obtained an access token, your app can use it to access APIs by * including it in either an access_token query parameter or an Authorization: Beader header. * * To call API using HTTP header. * * GET /api/1/feeds.js HTTP/1.1 * Host: www.example.com * Authorization: Bearer vF9dft4qmT */ case class Protection(source: AuthSource) extends ProtectionLike { /** List or ResourceServer token schemes. By default, * this includes BearerAuth which extracts Bearer tokens for a header, * QParamBeaerAuth which extracts Bearer tokens request params and * MacAuth which extracts tokens from using the `Mac` authentication encoding */ val schemes = Seq(BearerAuth, QParamBearerAuth, MacAuth) } /** Provides OAuth2 protection implementation. * Extend this trait to customize query string `oauth_token`, etc. */ trait ProtectionLike extends Plan { import javax.servlet.http.HttpServletRequest /** Provides a means of verifying a deserialized access token */ val source: AuthSource /** Provides a list of schemes used for decoding access tokens in request */ val schemes: Seq[AuthScheme] final def intent = ((schemes map { _.intent(this) }) :\\ fallback) { _ orElse _ } /** If no authentication token is provided at all, demand the first * authentication scheme of all that are supported */ def fallback: Plan.Intent = { case r => schemes.head.errorResponse(Unauthorized, "", r) } /** Returns access token response to client */ def authenticate[T <: HttpServletRequest]( token: AccessToken, request: HttpRequest[T])(errorResp: (String => ResponseFunction[Any])) = source.authenticateToken(token, request) match { case Left(msg) => errorResp(msg) case Right((user, clientId, scopes)) => request.underlying.setAttribute(OAuth2.XAuthorizedIdentity, user.id) request.underlying.setAttribute(OAuth2.XAuthorizedClientIdentity, clientId) request.underlying.setAttribute(OAuth2.XAuthorizedScopes, scopes) Pass } } /** Represents the authorization source that issued the access token. */ trait AuthSource { /** Given an deserialized access token and request, extract the resource owner, client id, and list of scopes * associated with the request, if there is an error return it represented as a string message * to return the oauth client */ def authenticateToken[T]( token: AccessToken, request: HttpRequest[T]): Either[String, (ResourceOwner, String, Seq[String])] /** * Auth sources which */ def realm: Option[String] = None } /** Represents the scheme used for decoding access tokens from a given requests. */ trait AuthScheme { def intent(protection: ProtectionLike): Plan.Intent def errorString(status: String, description: String) = """error="%s" error_description="%s" """.trim format(status, description) /** The WWW-Authenticate challege returned to the clien tin a 401 response * for invalid requests */ val challenge: String /** * An error header, consisting of the challenge and possibly an error and error_description attribute * (this depends on the authentication scheme). */ def errorHeader(error: Option[String] = None, description: Option[String] = None) = { val attrs = List("error" -> error, "error_description" -> description).collect { case (key, Some(value)) => key -> value } attrs.tail.foldLeft( attrs.headOption.foldLeft(challenge) { case (current, (key, value)) => """%s %s="%s"""".format(current, key, value) } ) { case (current, (key, value)) => current + ",%s=\\"%s\\"".format(key, value) } } /** * The response for failed authentication attempts. Intended to be overridden by authentication schemes that have * differing requirements. */ val failedAuthenticationResponse: (String => ResponseFunction[Any]) = { msg => Unauthorized ~> WWWAuthenticate(errorHeader(Some("invalid_token"), Some(msg))) ~> ResponseString(errorString("invalid_token", msg)) } /** Return a function representing an error response */ def errorResponse[T](status: Status, description: String, request: HttpRequest[T]): ResponseFunction[Any] = (status, description) match { case (Unauthorized, "") => Unauthorized ~> WWWAuthenticate(challenge) ~> ResponseString(challenge) case (Unauthorized, _) => failedAuthenticationResponse(description) case (BadRequest, _) => status ~> ResponseString(errorString("invalid_request", description)) case (Forbidden, _) => status ~> ResponseString(errorString("insufficient_scope", description)) case _ => status ~> ResponseString(errorString(status.toString, description)) } } trait AccessToken case class BearerToken(value: String) extends AccessToken /** Represents Bearer auth encoded in a header. * see also [[http://tools.ietf.org/html/draft-ietf-oauth-v2-bearer-14]] */ trait BearerAuth extends AuthScheme { val challenge = "Bearer" val defaultBearerHeader = """Bearer ([\\w\\d!#$%&'\\(\\)\\*+\\-\\.\\/:<=>?@\\[\\]^_`{|}~\\\\,;]+)""".r /** bearer header format */ def header = defaultBearerHeader object BearerHeader { val HeaderPattern = header def unapply(hval: String) = hval match { case HeaderPattern(token) => Some(token) case _ => None } } def intent(protection: ProtectionLike) = { case Authorization(BearerHeader(token)) & request => protection.authenticate(BearerToken(token), request) { failedAuthenticationResponse } } } object BearerAuth extends BearerAuth {} /** Represents Bearer auth encoded in query params. * ses also [[http://tools.ietf.org/html/draft-ietf-oauth-v2-bearer-14]] */ trait QParamBearerAuth extends AuthScheme { val challenge = "Bearer" val defaultQueryParam = "access_token" def queryParam = defaultQueryParam object BearerParam { def unapply(params: Map[String, Seq[String]]) = params(queryParam).headOption } def intent(protection: ProtectionLike) = { case Params(BearerParam(token)) & request => protection.authenticate(BearerToken(token), request) { failedAuthenticationResponse } } } object QParamBearerAuth extends QParamBearerAuth {} /** Represents MAC auth. */ trait MacAuth extends AuthScheme { import unfiltered.mac.{ Mac, MacAuthorization } val challenge = "MAC" /** The algorithm used to sign the request */ def algorithm: String /** Given a token value, returns the associated token secret */ def tokenSecret(key: String): Option[String] def intent(protection: ProtectionLike) = { case MacAuthorization(id, nonce, bodyhash, ext, mac) & req => try { tokenSecret(id) match { case Some(key) => // compare a signed request with the signature provided Mac.sign(req, nonce, ext, bodyhash, key, algorithm).fold({ err => errorResponse(Unauthorized, err, req) }, { sig => if(sig == mac) protection.authenticate(MacAuthToken(id, key, nonce, bodyhash, ext), req) { failedAuthenticationResponse } else errorResponse(Unauthorized, "invalid MAC signature", req) }) case _ => errorResponse(Unauthorized, "invalid token", req) } } catch { case _: Exception => errorResponse(Unauthorized, "invalid MAC header.", req) } } /** * Whereas the Bearer token is supposed to return an error code in the error attribute and a human-readable * error description in the error_description attribute of the WWW-Authenticate header, for the MAC * authentication scheme, a human-readable error message may be supplied in the error attribute * (see [[http://tools.ietf.org/html/draft-ietf-oauth-v2-http-mac-00#section-4.1]] ) */ override val failedAuthenticationResponse: (String => ResponseFunction[Any]) = { msg => Unauthorized ~> WWWAuthenticate(errorHeader(Some(msg))) ~> ResponseString("""error="%s"""".format(msg)) } } object MacAuth extends MacAuth { def algorithm = "hmac-sha-1" def tokenSecret(key: String) = None } case class MacAuthToken(id: String, secret: String, nonce: String, bodyhash: Option[String], ext: Option[String] ) extends AccessToken
jarin/unfiltered
oauth2/src/main/scala/protections.scala
Scala
mit
8,402
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.spark.ml.recommendation import java.{util => ju} import java.io.IOException import scala.collection.mutable import scala.reflect.ClassTag import scala.util.{Sorting, Try} import scala.util.hashing.byteswap64 import com.github.fommil.netlib.BLAS.{getInstance => blas} import org.apache.hadoop.fs.Path import org.json4s.DefaultFormats import org.json4s.JsonDSL._ import org.apache.spark.{Dependency, Partitioner, ShuffleDependency, SparkContext} import org.apache.spark.annotation.{DeveloperApi, Since} import org.apache.spark.internal.Logging import org.apache.spark.ml.{Estimator, Model} import org.apache.spark.ml.param._ import org.apache.spark.ml.param.shared._ import org.apache.spark.ml.util._ import org.apache.spark.mllib.linalg.CholeskyDecomposition import org.apache.spark.mllib.optimization.NNLS import org.apache.spark.rdd.RDD import org.apache.spark.sql.{DataFrame, Dataset} import org.apache.spark.sql.functions._ import org.apache.spark.sql.types._ import org.apache.spark.storage.StorageLevel import org.apache.spark.util.Utils import org.apache.spark.util.collection.{OpenHashMap, OpenHashSet, SortDataFormat, Sorter} import org.apache.spark.util.random.XORShiftRandom /** * Common params for ALS and ALSModel. */ private[recommendation] trait ALSModelParams extends Params with HasPredictionCol { /** * Param for the column name for user ids. Ids must be integers. Other * numeric types are supported for this column, but will be cast to integers as long as they * fall within the integer value range. * Default: "user" * @group param */ val userCol = new Param[String](this, "userCol", "column name for user ids. Ids must be within " + "the integer value range.") /** @group getParam */ def getUserCol: String = $(userCol) /** * Param for the column name for item ids. Ids must be integers. Other * numeric types are supported for this column, but will be cast to integers as long as they * fall within the integer value range. * Default: "item" * @group param */ val itemCol = new Param[String](this, "itemCol", "column name for item ids. Ids must be within " + "the integer value range.") /** @group getParam */ def getItemCol: String = $(itemCol) /** * Attempts to safely cast a user/item id to an Int. Throws an exception if the value is * out of integer range. */ protected val checkedCast = udf { (n: Double) => if (n > Int.MaxValue || n < Int.MinValue) { throw new IllegalArgumentException(s"ALS only supports values in Integer range for columns " + s"${$(userCol)} and ${$(itemCol)}. Value $n was out of Integer range.") } else { n.toInt } } } /** * Common params for ALS. */ private[recommendation] trait ALSParams extends ALSModelParams with HasMaxIter with HasRegParam with HasPredictionCol with HasCheckpointInterval with HasSeed { /** * Param for rank of the matrix factorization (positive). * Default: 10 * @group param */ val rank = new IntParam(this, "rank", "rank of the factorization", ParamValidators.gtEq(1)) /** @group getParam */ def getRank: Int = $(rank) /** * Param for number of user blocks (positive). * Default: 10 * @group param */ val numUserBlocks = new IntParam(this, "numUserBlocks", "number of user blocks", ParamValidators.gtEq(1)) /** @group getParam */ def getNumUserBlocks: Int = $(numUserBlocks) /** * Param for number of item blocks (positive). * Default: 10 * @group param */ val numItemBlocks = new IntParam(this, "numItemBlocks", "number of item blocks", ParamValidators.gtEq(1)) /** @group getParam */ def getNumItemBlocks: Int = $(numItemBlocks) /** * Param to decide whether to use implicit preference. * Default: false * @group param */ val implicitPrefs = new BooleanParam(this, "implicitPrefs", "whether to use implicit preference") /** @group getParam */ def getImplicitPrefs: Boolean = $(implicitPrefs) /** * Param for the alpha parameter in the implicit preference formulation (nonnegative). * Default: 1.0 * @group param */ val alpha = new DoubleParam(this, "alpha", "alpha for implicit preference", ParamValidators.gtEq(0)) /** @group getParam */ def getAlpha: Double = $(alpha) /** * Param for the column name for ratings. * Default: "rating" * @group param */ val ratingCol = new Param[String](this, "ratingCol", "column name for ratings") /** @group getParam */ def getRatingCol: String = $(ratingCol) /** * Param for whether to apply nonnegativity constraints. * Default: false * @group param */ val nonnegative = new BooleanParam( this, "nonnegative", "whether to use nonnegative constraint for least squares") /** @group getParam */ def getNonnegative: Boolean = $(nonnegative) /** * Param for StorageLevel for intermediate datasets. Pass in a string representation of * `StorageLevel`. Cannot be "NONE". * Default: "MEMORY_AND_DISK". * * @group expertParam */ val intermediateStorageLevel = new Param[String](this, "intermediateStorageLevel", "StorageLevel for intermediate datasets. Cannot be 'NONE'.", (s: String) => Try(StorageLevel.fromString(s)).isSuccess && s != "NONE") /** @group expertGetParam */ def getIntermediateStorageLevel: String = $(intermediateStorageLevel) /** * Param for StorageLevel for ALS model factors. Pass in a string representation of * `StorageLevel`. * Default: "MEMORY_AND_DISK". * * @group expertParam */ val finalStorageLevel = new Param[String](this, "finalStorageLevel", "StorageLevel for ALS model factors.", (s: String) => Try(StorageLevel.fromString(s)).isSuccess) /** @group expertGetParam */ def getFinalStorageLevel: String = $(finalStorageLevel) setDefault(rank -> 10, maxIter -> 10, regParam -> 0.1, numUserBlocks -> 10, numItemBlocks -> 10, implicitPrefs -> false, alpha -> 1.0, userCol -> "user", itemCol -> "item", ratingCol -> "rating", nonnegative -> false, checkpointInterval -> 10, intermediateStorageLevel -> "MEMORY_AND_DISK", finalStorageLevel -> "MEMORY_AND_DISK") /** * Validates and transforms the input schema. * * @param schema input schema * @return output schema */ protected def validateAndTransformSchema(schema: StructType): StructType = { // user and item will be cast to Int SchemaUtils.checkNumericType(schema, $(userCol)) SchemaUtils.checkNumericType(schema, $(itemCol)) // rating will be cast to Float SchemaUtils.checkNumericType(schema, $(ratingCol)) SchemaUtils.appendColumn(schema, $(predictionCol), FloatType) } } /** * Model fitted by ALS. * * @param rank rank of the matrix factorization model * @param userFactors a DataFrame that stores user factors in two columns: `id` and `features` * @param itemFactors a DataFrame that stores item factors in two columns: `id` and `features` */ @Since("1.3.0") class ALSModel private[ml] ( @Since("1.4.0") override val uid: String, @Since("1.4.0") val rank: Int, @transient val userFactors: DataFrame, @transient val itemFactors: DataFrame) extends Model[ALSModel] with ALSModelParams with MLWritable { /** @group setParam */ @Since("1.4.0") def setUserCol(value: String): this.type = set(userCol, value) /** @group setParam */ @Since("1.4.0") def setItemCol(value: String): this.type = set(itemCol, value) /** @group setParam */ @Since("1.3.0") def setPredictionCol(value: String): this.type = set(predictionCol, value) @Since("2.0.0") override def transform(dataset: Dataset[_]): DataFrame = { transformSchema(dataset.schema) // Register a UDF for DataFrame, and then // create a new column named map(predictionCol) by running the predict UDF. val predict = udf { (userFeatures: Seq[Float], itemFeatures: Seq[Float]) => if (userFeatures != null && itemFeatures != null) { blas.sdot(rank, userFeatures.toArray, 1, itemFeatures.toArray, 1) } else { Float.NaN } } dataset .join(userFactors, checkedCast(dataset($(userCol)).cast(DoubleType)) === userFactors("id"), "left") .join(itemFactors, checkedCast(dataset($(itemCol)).cast(DoubleType)) === itemFactors("id"), "left") .select(dataset("*"), predict(userFactors("features"), itemFactors("features")).as($(predictionCol))) } @Since("1.3.0") override def transformSchema(schema: StructType): StructType = { // user and item will be cast to Int SchemaUtils.checkNumericType(schema, $(userCol)) SchemaUtils.checkNumericType(schema, $(itemCol)) SchemaUtils.appendColumn(schema, $(predictionCol), FloatType) } @Since("1.5.0") override def copy(extra: ParamMap): ALSModel = { val copied = new ALSModel(uid, rank, userFactors, itemFactors) copyValues(copied, extra).setParent(parent) } @Since("1.6.0") override def write: MLWriter = new ALSModel.ALSModelWriter(this) } @Since("1.6.0") object ALSModel extends MLReadable[ALSModel] { @Since("1.6.0") override def read: MLReader[ALSModel] = new ALSModelReader @Since("1.6.0") override def load(path: String): ALSModel = super.load(path) private[ALSModel] class ALSModelWriter(instance: ALSModel) extends MLWriter { override protected def saveImpl(path: String): Unit = { val extraMetadata = "rank" -> instance.rank DefaultParamsWriter.saveMetadata(instance, path, sc, Some(extraMetadata)) val userPath = new Path(path, "userFactors").toString instance.userFactors.write.format("parquet").save(userPath) val itemPath = new Path(path, "itemFactors").toString instance.itemFactors.write.format("parquet").save(itemPath) } } private class ALSModelReader extends MLReader[ALSModel] { /** Checked against metadata when loading model */ private val className = classOf[ALSModel].getName override def load(path: String): ALSModel = { val metadata = DefaultParamsReader.loadMetadata(path, sc, className) implicit val format = DefaultFormats val rank = (metadata.metadata \\ "rank").extract[Int] val userPath = new Path(path, "userFactors").toString val userFactors = sparkSession.read.format("parquet").load(userPath) val itemPath = new Path(path, "itemFactors").toString val itemFactors = sparkSession.read.format("parquet").load(itemPath) val model = new ALSModel(metadata.uid, rank, userFactors, itemFactors) DefaultParamsReader.getAndSetParams(model, metadata) model } } } /** * Alternating Least Squares (ALS) matrix factorization. * * ALS attempts to estimate the ratings matrix `R` as the product of two lower-rank matrices, * `X` and `Y`, i.e. `X * Yt = R`. Typically these approximations are called 'factor' matrices. * The general approach is iterative. During each iteration, one of the factor matrices is held * constant, while the other is solved for using least squares. The newly-solved factor matrix is * then held constant while solving for the other factor matrix. * * This is a blocked implementation of the ALS factorization algorithm that groups the two sets * of factors (referred to as "users" and "products") into blocks and reduces communication by only * sending one copy of each user vector to each product block on each iteration, and only for the * product blocks that need that user's feature vector. This is achieved by pre-computing some * information about the ratings matrix to determine the "out-links" of each user (which blocks of * products it will contribute to) and "in-link" information for each product (which of the feature * vectors it receives from each user block it will depend on). This allows us to send only an * array of feature vectors between each user block and product block, and have the product block * find the users' ratings and update the products based on these messages. * * For implicit preference data, the algorithm used is based on * "Collaborative Filtering for Implicit Feedback Datasets", available at * http://dx.doi.org/10.1109/ICDM.2008.22, adapted for the blocked approach used here. * * Essentially instead of finding the low-rank approximations to the rating matrix `R`, * this finds the approximations for a preference matrix `P` where the elements of `P` are 1 if * r &gt; 0 and 0 if r &lt;= 0. The ratings then act as 'confidence' values related to strength of * indicated user * preferences rather than explicit ratings given to items. */ @Since("1.3.0") class ALS(@Since("1.4.0") override val uid: String) extends Estimator[ALSModel] with ALSParams with DefaultParamsWritable { import org.apache.spark.ml.recommendation.ALS.Rating @Since("1.4.0") def this() = this(Identifiable.randomUID("als")) /** @group setParam */ @Since("1.3.0") def setRank(value: Int): this.type = set(rank, value) /** @group setParam */ @Since("1.3.0") def setNumUserBlocks(value: Int): this.type = set(numUserBlocks, value) /** @group setParam */ @Since("1.3.0") def setNumItemBlocks(value: Int): this.type = set(numItemBlocks, value) /** @group setParam */ @Since("1.3.0") def setImplicitPrefs(value: Boolean): this.type = set(implicitPrefs, value) /** @group setParam */ @Since("1.3.0") def setAlpha(value: Double): this.type = set(alpha, value) /** @group setParam */ @Since("1.3.0") def setUserCol(value: String): this.type = set(userCol, value) /** @group setParam */ @Since("1.3.0") def setItemCol(value: String): this.type = set(itemCol, value) /** @group setParam */ @Since("1.3.0") def setRatingCol(value: String): this.type = set(ratingCol, value) /** @group setParam */ @Since("1.3.0") def setPredictionCol(value: String): this.type = set(predictionCol, value) /** @group setParam */ @Since("1.3.0") def setMaxIter(value: Int): this.type = set(maxIter, value) /** @group setParam */ @Since("1.3.0") def setRegParam(value: Double): this.type = set(regParam, value) /** @group setParam */ @Since("1.3.0") def setNonnegative(value: Boolean): this.type = set(nonnegative, value) /** @group setParam */ @Since("1.4.0") def setCheckpointInterval(value: Int): this.type = set(checkpointInterval, value) /** @group setParam */ @Since("1.3.0") def setSeed(value: Long): this.type = set(seed, value) /** @group expertSetParam */ @Since("2.0.0") def setIntermediateStorageLevel(value: String): this.type = set(intermediateStorageLevel, value) /** @group expertSetParam */ @Since("2.0.0") def setFinalStorageLevel(value: String): this.type = set(finalStorageLevel, value) /** * Sets both numUserBlocks and numItemBlocks to the specific value. * * @group setParam */ @Since("1.3.0") def setNumBlocks(value: Int): this.type = { setNumUserBlocks(value) setNumItemBlocks(value) this } @Since("2.0.0") override def fit(dataset: Dataset[_]): ALSModel = { transformSchema(dataset.schema) import dataset.sparkSession.implicits._ val r = if ($(ratingCol) != "") col($(ratingCol)).cast(FloatType) else lit(1.0f) val ratings = dataset .select(checkedCast(col($(userCol)).cast(DoubleType)), checkedCast(col($(itemCol)).cast(DoubleType)), r) .rdd .map { row => Rating(row.getInt(0), row.getInt(1), row.getFloat(2)) } val instrLog = Instrumentation.create(this, ratings) instrLog.logParams(rank, numUserBlocks, numItemBlocks, implicitPrefs, alpha, userCol, itemCol, ratingCol, predictionCol, maxIter, regParam, nonnegative, checkpointInterval, seed) val (userFactors, itemFactors) = ALS.train(ratings, rank = $(rank), numUserBlocks = $(numUserBlocks), numItemBlocks = $(numItemBlocks), maxIter = $(maxIter), regParam = $(regParam), implicitPrefs = $(implicitPrefs), alpha = $(alpha), nonnegative = $(nonnegative), intermediateRDDStorageLevel = StorageLevel.fromString($(intermediateStorageLevel)), finalRDDStorageLevel = StorageLevel.fromString($(finalStorageLevel)), checkpointInterval = $(checkpointInterval), seed = $(seed)) val userDF = userFactors.toDF("id", "features") val itemDF = itemFactors.toDF("id", "features") val model = new ALSModel(uid, $(rank), userDF, itemDF).setParent(this) instrLog.logSuccess(model) copyValues(model) } @Since("1.3.0") override def transformSchema(schema: StructType): StructType = { validateAndTransformSchema(schema) } @Since("1.5.0") override def copy(extra: ParamMap): ALS = defaultCopy(extra) } /** * :: DeveloperApi :: * An implementation of ALS that supports generic ID types, specialized for Int and Long. This is * exposed as a developer API for users who do need other ID types. But it is not recommended * because it increases the shuffle size and memory requirement during training. For simplicity, * users and items must have the same type. The number of distinct users/items should be smaller * than 2 billion. */ @DeveloperApi object ALS extends DefaultParamsReadable[ALS] with Logging { /** * :: DeveloperApi :: * Rating class for better code readability. */ @DeveloperApi case class Rating[@specialized(Int, Long) ID](user: ID, item: ID, rating: Float) @Since("1.6.0") override def load(path: String): ALS = super.load(path) /** Trait for least squares solvers applied to the normal equation. */ private[recommendation] trait LeastSquaresNESolver extends Serializable { /** Solves a least squares problem with regularization (possibly with other constraints). */ def solve(ne: NormalEquation, lambda: Double): Array[Float] } /** Cholesky solver for least square problems. */ private[recommendation] class CholeskySolver extends LeastSquaresNESolver { /** * Solves a least squares problem with L2 regularization: * * min norm(A x - b)^2^ + lambda * norm(x)^2^ * * @param ne a [[NormalEquation]] instance that contains AtA, Atb, and n (number of instances) * @param lambda regularization constant * @return the solution x */ override def solve(ne: NormalEquation, lambda: Double): Array[Float] = { val k = ne.k // Add scaled lambda to the diagonals of AtA. var i = 0 var j = 2 while (i < ne.triK) { ne.ata(i) += lambda i += j j += 1 } CholeskyDecomposition.solve(ne.ata, ne.atb) val x = new Array[Float](k) i = 0 while (i < k) { x(i) = ne.atb(i).toFloat i += 1 } ne.reset() x } } /** NNLS solver. */ private[recommendation] class NNLSSolver extends LeastSquaresNESolver { private var rank: Int = -1 private var workspace: NNLS.Workspace = _ private var ata: Array[Double] = _ private var initialized: Boolean = false private def initialize(rank: Int): Unit = { if (!initialized) { this.rank = rank workspace = NNLS.createWorkspace(rank) ata = new Array[Double](rank * rank) initialized = true } else { require(this.rank == rank) } } /** * Solves a nonnegative least squares problem with L2 regularization: * * min_x_ norm(A x - b)^2^ + lambda * n * norm(x)^2^ * subject to x >= 0 */ override def solve(ne: NormalEquation, lambda: Double): Array[Float] = { val rank = ne.k initialize(rank) fillAtA(ne.ata, lambda) val x = NNLS.solve(ata, ne.atb, workspace) ne.reset() x.map(x => x.toFloat) } /** * Given a triangular matrix in the order of fillXtX above, compute the full symmetric square * matrix that it represents, storing it into destMatrix. */ private def fillAtA(triAtA: Array[Double], lambda: Double) { var i = 0 var pos = 0 var a = 0.0 while (i < rank) { var j = 0 while (j <= i) { a = triAtA(pos) ata(i * rank + j) = a ata(j * rank + i) = a pos += 1 j += 1 } ata(i * rank + i) += lambda i += 1 } } } /** * Representing a normal equation to solve the following weighted least squares problem: * * minimize \\sum,,i,, c,,i,, (a,,i,,^T^ x - b,,i,,)^2^ + lambda * x^T^ x. * * Its normal equation is given by * * \\sum,,i,, c,,i,, (a,,i,, a,,i,,^T^ x - b,,i,, a,,i,,) + lambda * x = 0. */ private[recommendation] class NormalEquation(val k: Int) extends Serializable { /** Number of entries in the upper triangular part of a k-by-k matrix. */ val triK = k * (k + 1) / 2 /** A^T^ * A */ val ata = new Array[Double](triK) /** A^T^ * b */ val atb = new Array[Double](k) private val da = new Array[Double](k) private val upper = "U" private def copyToDouble(a: Array[Float]): Unit = { var i = 0 while (i < k) { da(i) = a(i) i += 1 } } /** Adds an observation. */ def add(a: Array[Float], b: Double, c: Double = 1.0): this.type = { require(c >= 0.0) require(a.length == k) copyToDouble(a) blas.dspr(upper, k, c, da, 1, ata) if (b != 0.0) { blas.daxpy(k, c * b, da, 1, atb, 1) } this } /** Merges another normal equation object. */ def merge(other: NormalEquation): this.type = { require(other.k == k) blas.daxpy(ata.length, 1.0, other.ata, 1, ata, 1) blas.daxpy(atb.length, 1.0, other.atb, 1, atb, 1) this } /** Resets everything to zero, which should be called after each solve. */ def reset(): Unit = { ju.Arrays.fill(ata, 0.0) ju.Arrays.fill(atb, 0.0) } } /** * :: DeveloperApi :: * Implementation of the ALS algorithm. */ @DeveloperApi def train[ID: ClassTag]( // scalastyle:ignore ratings: RDD[Rating[ID]], rank: Int = 10, numUserBlocks: Int = 10, numItemBlocks: Int = 10, maxIter: Int = 10, regParam: Double = 1.0, implicitPrefs: Boolean = false, alpha: Double = 1.0, nonnegative: Boolean = false, intermediateRDDStorageLevel: StorageLevel = StorageLevel.MEMORY_AND_DISK, finalRDDStorageLevel: StorageLevel = StorageLevel.MEMORY_AND_DISK, checkpointInterval: Int = 10, seed: Long = 0L)( implicit ord: Ordering[ID]): (RDD[(ID, Array[Float])], RDD[(ID, Array[Float])]) = { require(intermediateRDDStorageLevel != StorageLevel.NONE, "ALS is not designed to run without persisting intermediate RDDs.") val sc = ratings.sparkContext val userPart = new ALSPartitioner(numUserBlocks) val itemPart = new ALSPartitioner(numItemBlocks) val userLocalIndexEncoder = new LocalIndexEncoder(userPart.numPartitions) val itemLocalIndexEncoder = new LocalIndexEncoder(itemPart.numPartitions) val solver = if (nonnegative) new NNLSSolver else new CholeskySolver val blockRatings = partitionRatings(ratings, userPart, itemPart) .persist(intermediateRDDStorageLevel) val (userInBlocks, userOutBlocks) = makeBlocks("user", blockRatings, userPart, itemPart, intermediateRDDStorageLevel) // materialize blockRatings and user blocks userOutBlocks.count() val swappedBlockRatings = blockRatings.map { case ((userBlockId, itemBlockId), RatingBlock(userIds, itemIds, localRatings)) => ((itemBlockId, userBlockId), RatingBlock(itemIds, userIds, localRatings)) } val (itemInBlocks, itemOutBlocks) = makeBlocks("item", swappedBlockRatings, itemPart, userPart, intermediateRDDStorageLevel) // materialize item blocks itemOutBlocks.count() val seedGen = new XORShiftRandom(seed) var userFactors = initialize(userInBlocks, rank, seedGen.nextLong()) var itemFactors = initialize(itemInBlocks, rank, seedGen.nextLong()) var previousCheckpointFile: Option[String] = None val shouldCheckpoint: Int => Boolean = (iter) => sc.checkpointDir.isDefined && checkpointInterval != -1 && (iter % checkpointInterval == 0) val deletePreviousCheckpointFile: () => Unit = () => previousCheckpointFile.foreach { file => try { val checkpointFile = new Path(file) checkpointFile.getFileSystem(sc.hadoopConfiguration).delete(checkpointFile, true) } catch { case e: IOException => logWarning(s"Cannot delete checkpoint file $file:", e) } } if (implicitPrefs) { for (iter <- 1 to maxIter) { userFactors.setName(s"userFactors-$iter").persist(intermediateRDDStorageLevel) val previousItemFactors = itemFactors itemFactors = computeFactors(userFactors, userOutBlocks, itemInBlocks, rank, regParam, userLocalIndexEncoder, implicitPrefs, alpha, solver) previousItemFactors.unpersist() itemFactors.setName(s"itemFactors-$iter").persist(intermediateRDDStorageLevel) // TODO: Generalize PeriodicGraphCheckpointer and use it here. val deps = itemFactors.dependencies if (shouldCheckpoint(iter)) { itemFactors.checkpoint() // itemFactors gets materialized in computeFactors } val previousUserFactors = userFactors userFactors = computeFactors(itemFactors, itemOutBlocks, userInBlocks, rank, regParam, itemLocalIndexEncoder, implicitPrefs, alpha, solver) if (shouldCheckpoint(iter)) { ALS.cleanShuffleDependencies(sc, deps) deletePreviousCheckpointFile() previousCheckpointFile = itemFactors.getCheckpointFile } previousUserFactors.unpersist() } } else { for (iter <- 0 until maxIter) { itemFactors = computeFactors(userFactors, userOutBlocks, itemInBlocks, rank, regParam, userLocalIndexEncoder, solver = solver) if (shouldCheckpoint(iter)) { val deps = itemFactors.dependencies itemFactors.checkpoint() itemFactors.count() // checkpoint item factors and cut lineage ALS.cleanShuffleDependencies(sc, deps) deletePreviousCheckpointFile() previousCheckpointFile = itemFactors.getCheckpointFile } userFactors = computeFactors(itemFactors, itemOutBlocks, userInBlocks, rank, regParam, itemLocalIndexEncoder, solver = solver) } } val userIdAndFactors = userInBlocks .mapValues(_.srcIds) .join(userFactors) .mapPartitions({ items => items.flatMap { case (_, (ids, factors)) => ids.view.zip(factors) } // Preserve the partitioning because IDs are consistent with the partitioners in userInBlocks // and userFactors. }, preservesPartitioning = true) .setName("userFactors") .persist(finalRDDStorageLevel) val itemIdAndFactors = itemInBlocks .mapValues(_.srcIds) .join(itemFactors) .mapPartitions({ items => items.flatMap { case (_, (ids, factors)) => ids.view.zip(factors) } }, preservesPartitioning = true) .setName("itemFactors") .persist(finalRDDStorageLevel) if (finalRDDStorageLevel != StorageLevel.NONE) { userIdAndFactors.count() itemFactors.unpersist() itemIdAndFactors.count() userInBlocks.unpersist() userOutBlocks.unpersist() itemInBlocks.unpersist() itemOutBlocks.unpersist() blockRatings.unpersist() } (userIdAndFactors, itemIdAndFactors) } /** * Factor block that stores factors (Array[Float]) in an Array. */ private type FactorBlock = Array[Array[Float]] /** * Out-link block that stores, for each dst (item/user) block, which src (user/item) factors to * send. For example, outLinkBlock(0) contains the local indices (not the original src IDs) of the * src factors in this block to send to dst block 0. */ private type OutBlock = Array[Array[Int]] /** * In-link block for computing src (user/item) factors. This includes the original src IDs * of the elements within this block as well as encoded dst (item/user) indices and corresponding * ratings. The dst indices are in the form of (blockId, localIndex), which are not the original * dst IDs. To compute src factors, we expect receiving dst factors that match the dst indices. * For example, if we have an in-link record * * {srcId: 0, dstBlockId: 2, dstLocalIndex: 3, rating: 5.0}, * * and assume that the dst factors are stored as dstFactors: Map[Int, Array[Array[Float]]], which * is a blockId to dst factors map, the corresponding dst factor of the record is dstFactor(2)(3). * * We use a CSC-like (compressed sparse column) format to store the in-link information. So we can * compute src factors one after another using only one normal equation instance. * * @param srcIds src ids (ordered) * @param dstPtrs dst pointers. Elements in range [dstPtrs(i), dstPtrs(i+1)) of dst indices and * ratings are associated with srcIds(i). * @param dstEncodedIndices encoded dst indices * @param ratings ratings * @see [[LocalIndexEncoder]] */ private[recommendation] case class InBlock[@specialized(Int, Long) ID: ClassTag]( srcIds: Array[ID], dstPtrs: Array[Int], dstEncodedIndices: Array[Int], ratings: Array[Float]) { /** Size of the block. */ def size: Int = ratings.length require(dstEncodedIndices.length == size) require(dstPtrs.length == srcIds.length + 1) } /** * Initializes factors randomly given the in-link blocks. * * @param inBlocks in-link blocks * @param rank rank * @return initialized factor blocks */ private def initialize[ID]( inBlocks: RDD[(Int, InBlock[ID])], rank: Int, seed: Long): RDD[(Int, FactorBlock)] = { // Choose a unit vector uniformly at random from the unit sphere, but from the // "first quadrant" where all elements are nonnegative. This can be done by choosing // elements distributed as Normal(0,1) and taking the absolute value, and then normalizing. // This appears to create factorizations that have a slightly better reconstruction // (<1%) compared picking elements uniformly at random in [0,1]. inBlocks.map { case (srcBlockId, inBlock) => val random = new XORShiftRandom(byteswap64(seed ^ srcBlockId)) val factors = Array.fill(inBlock.srcIds.length) { val factor = Array.fill(rank)(random.nextGaussian().toFloat) val nrm = blas.snrm2(rank, factor, 1) blas.sscal(rank, 1.0f / nrm, factor, 1) factor } (srcBlockId, factors) } } /** * A rating block that contains src IDs, dst IDs, and ratings, stored in primitive arrays. */ private[recommendation] case class RatingBlock[@specialized(Int, Long) ID: ClassTag]( srcIds: Array[ID], dstIds: Array[ID], ratings: Array[Float]) { /** Size of the block. */ def size: Int = srcIds.length require(dstIds.length == srcIds.length) require(ratings.length == srcIds.length) } /** * Builder for [[RatingBlock]]. [[mutable.ArrayBuilder]] is used to avoid boxing/unboxing. */ private[recommendation] class RatingBlockBuilder[@specialized(Int, Long) ID: ClassTag] extends Serializable { private val srcIds = mutable.ArrayBuilder.make[ID] private val dstIds = mutable.ArrayBuilder.make[ID] private val ratings = mutable.ArrayBuilder.make[Float] var size = 0 /** Adds a rating. */ def add(r: Rating[ID]): this.type = { size += 1 srcIds += r.user dstIds += r.item ratings += r.rating this } /** Merges another [[RatingBlockBuilder]]. */ def merge(other: RatingBlock[ID]): this.type = { size += other.srcIds.length srcIds ++= other.srcIds dstIds ++= other.dstIds ratings ++= other.ratings this } /** Builds a [[RatingBlock]]. */ def build(): RatingBlock[ID] = { RatingBlock[ID](srcIds.result(), dstIds.result(), ratings.result()) } } /** * Partitions raw ratings into blocks. * * @param ratings raw ratings * @param srcPart partitioner for src IDs * @param dstPart partitioner for dst IDs * @return an RDD of rating blocks in the form of ((srcBlockId, dstBlockId), ratingBlock) */ private def partitionRatings[ID: ClassTag]( ratings: RDD[Rating[ID]], srcPart: Partitioner, dstPart: Partitioner): RDD[((Int, Int), RatingBlock[ID])] = { /* The implementation produces the same result as the following but generates less objects. ratings.map { r => ((srcPart.getPartition(r.user), dstPart.getPartition(r.item)), r) }.aggregateByKey(new RatingBlockBuilder)( seqOp = (b, r) => b.add(r), combOp = (b0, b1) => b0.merge(b1.build())) .mapValues(_.build()) */ val numPartitions = srcPart.numPartitions * dstPart.numPartitions ratings.mapPartitions { iter => val builders = Array.fill(numPartitions)(new RatingBlockBuilder[ID]) iter.flatMap { r => val srcBlockId = srcPart.getPartition(r.user) val dstBlockId = dstPart.getPartition(r.item) val idx = srcBlockId + srcPart.numPartitions * dstBlockId val builder = builders(idx) builder.add(r) if (builder.size >= 2048) { // 2048 * (3 * 4) = 24k builders(idx) = new RatingBlockBuilder Iterator.single(((srcBlockId, dstBlockId), builder.build())) } else { Iterator.empty } } ++ { builders.view.zipWithIndex.filter(_._1.size > 0).map { case (block, idx) => val srcBlockId = idx % srcPart.numPartitions val dstBlockId = idx / srcPart.numPartitions ((srcBlockId, dstBlockId), block.build()) } } }.groupByKey().mapValues { blocks => val builder = new RatingBlockBuilder[ID] blocks.foreach(builder.merge) builder.build() }.setName("ratingBlocks") } /** * Builder for uncompressed in-blocks of (srcId, dstEncodedIndex, rating) tuples. * * @param encoder encoder for dst indices */ private[recommendation] class UncompressedInBlockBuilder[@specialized(Int, Long) ID: ClassTag]( encoder: LocalIndexEncoder)( implicit ord: Ordering[ID]) { private val srcIds = mutable.ArrayBuilder.make[ID] private val dstEncodedIndices = mutable.ArrayBuilder.make[Int] private val ratings = mutable.ArrayBuilder.make[Float] /** * Adds a dst block of (srcId, dstLocalIndex, rating) tuples. * * @param dstBlockId dst block ID * @param srcIds original src IDs * @param dstLocalIndices dst local indices * @param ratings ratings */ def add( dstBlockId: Int, srcIds: Array[ID], dstLocalIndices: Array[Int], ratings: Array[Float]): this.type = { val sz = srcIds.length require(dstLocalIndices.length == sz) require(ratings.length == sz) this.srcIds ++= srcIds this.ratings ++= ratings var j = 0 while (j < sz) { this.dstEncodedIndices += encoder.encode(dstBlockId, dstLocalIndices(j)) j += 1 } this } /** Builds a [[UncompressedInBlock]]. */ def build(): UncompressedInBlock[ID] = { new UncompressedInBlock(srcIds.result(), dstEncodedIndices.result(), ratings.result()) } } /** * A block of (srcId, dstEncodedIndex, rating) tuples stored in primitive arrays. */ private[recommendation] class UncompressedInBlock[@specialized(Int, Long) ID: ClassTag]( val srcIds: Array[ID], val dstEncodedIndices: Array[Int], val ratings: Array[Float])( implicit ord: Ordering[ID]) { /** Size the of block. */ def length: Int = srcIds.length /** * Compresses the block into an [[InBlock]]. The algorithm is the same as converting a * sparse matrix from coordinate list (COO) format into compressed sparse column (CSC) format. * Sorting is done using Spark's built-in Timsort to avoid generating too many objects. */ def compress(): InBlock[ID] = { val sz = length assert(sz > 0, "Empty in-link block should not exist.") sort() val uniqueSrcIdsBuilder = mutable.ArrayBuilder.make[ID] val dstCountsBuilder = mutable.ArrayBuilder.make[Int] var preSrcId = srcIds(0) uniqueSrcIdsBuilder += preSrcId var curCount = 1 var i = 1 var j = 0 while (i < sz) { val srcId = srcIds(i) if (srcId != preSrcId) { uniqueSrcIdsBuilder += srcId dstCountsBuilder += curCount preSrcId = srcId j += 1 curCount = 0 } curCount += 1 i += 1 } dstCountsBuilder += curCount val uniqueSrcIds = uniqueSrcIdsBuilder.result() val numUniqueSrdIds = uniqueSrcIds.length val dstCounts = dstCountsBuilder.result() val dstPtrs = new Array[Int](numUniqueSrdIds + 1) var sum = 0 i = 0 while (i < numUniqueSrdIds) { sum += dstCounts(i) i += 1 dstPtrs(i) = sum } InBlock(uniqueSrcIds, dstPtrs, dstEncodedIndices, ratings) } private def sort(): Unit = { val sz = length // Since there might be interleaved log messages, we insert a unique id for easy pairing. val sortId = Utils.random.nextInt() logDebug(s"Start sorting an uncompressed in-block of size $sz. (sortId = $sortId)") val start = System.nanoTime() val sorter = new Sorter(new UncompressedInBlockSort[ID]) sorter.sort(this, 0, length, Ordering[KeyWrapper[ID]]) val duration = (System.nanoTime() - start) / 1e9 logDebug(s"Sorting took $duration seconds. (sortId = $sortId)") } } /** * A wrapper that holds a primitive key. * * @see [[UncompressedInBlockSort]] */ private class KeyWrapper[@specialized(Int, Long) ID: ClassTag]( implicit ord: Ordering[ID]) extends Ordered[KeyWrapper[ID]] { var key: ID = _ override def compare(that: KeyWrapper[ID]): Int = { ord.compare(key, that.key) } def setKey(key: ID): this.type = { this.key = key this } } /** * [[SortDataFormat]] of [[UncompressedInBlock]] used by [[Sorter]]. */ private class UncompressedInBlockSort[@specialized(Int, Long) ID: ClassTag]( implicit ord: Ordering[ID]) extends SortDataFormat[KeyWrapper[ID], UncompressedInBlock[ID]] { override def newKey(): KeyWrapper[ID] = new KeyWrapper() override def getKey( data: UncompressedInBlock[ID], pos: Int, reuse: KeyWrapper[ID]): KeyWrapper[ID] = { if (reuse == null) { new KeyWrapper().setKey(data.srcIds(pos)) } else { reuse.setKey(data.srcIds(pos)) } } override def getKey( data: UncompressedInBlock[ID], pos: Int): KeyWrapper[ID] = { getKey(data, pos, null) } private def swapElements[@specialized(Int, Float) T]( data: Array[T], pos0: Int, pos1: Int): Unit = { val tmp = data(pos0) data(pos0) = data(pos1) data(pos1) = tmp } override def swap(data: UncompressedInBlock[ID], pos0: Int, pos1: Int): Unit = { swapElements(data.srcIds, pos0, pos1) swapElements(data.dstEncodedIndices, pos0, pos1) swapElements(data.ratings, pos0, pos1) } override def copyRange( src: UncompressedInBlock[ID], srcPos: Int, dst: UncompressedInBlock[ID], dstPos: Int, length: Int): Unit = { System.arraycopy(src.srcIds, srcPos, dst.srcIds, dstPos, length) System.arraycopy(src.dstEncodedIndices, srcPos, dst.dstEncodedIndices, dstPos, length) System.arraycopy(src.ratings, srcPos, dst.ratings, dstPos, length) } override def allocate(length: Int): UncompressedInBlock[ID] = { new UncompressedInBlock( new Array[ID](length), new Array[Int](length), new Array[Float](length)) } override def copyElement( src: UncompressedInBlock[ID], srcPos: Int, dst: UncompressedInBlock[ID], dstPos: Int): Unit = { dst.srcIds(dstPos) = src.srcIds(srcPos) dst.dstEncodedIndices(dstPos) = src.dstEncodedIndices(srcPos) dst.ratings(dstPos) = src.ratings(srcPos) } } /** * Creates in-blocks and out-blocks from rating blocks. * * @param prefix prefix for in/out-block names * @param ratingBlocks rating blocks * @param srcPart partitioner for src IDs * @param dstPart partitioner for dst IDs * @return (in-blocks, out-blocks) */ private def makeBlocks[ID: ClassTag]( prefix: String, ratingBlocks: RDD[((Int, Int), RatingBlock[ID])], srcPart: Partitioner, dstPart: Partitioner, storageLevel: StorageLevel)( implicit srcOrd: Ordering[ID]): (RDD[(Int, InBlock[ID])], RDD[(Int, OutBlock)]) = { val inBlocks = ratingBlocks.map { case ((srcBlockId, dstBlockId), RatingBlock(srcIds, dstIds, ratings)) => // The implementation is a faster version of // val dstIdToLocalIndex = dstIds.toSet.toSeq.sorted.zipWithIndex.toMap val start = System.nanoTime() val dstIdSet = new OpenHashSet[ID](1 << 20) dstIds.foreach(dstIdSet.add) val sortedDstIds = new Array[ID](dstIdSet.size) var i = 0 var pos = dstIdSet.nextPos(0) while (pos != -1) { sortedDstIds(i) = dstIdSet.getValue(pos) pos = dstIdSet.nextPos(pos + 1) i += 1 } assert(i == dstIdSet.size) Sorting.quickSort(sortedDstIds) val dstIdToLocalIndex = new OpenHashMap[ID, Int](sortedDstIds.length) i = 0 while (i < sortedDstIds.length) { dstIdToLocalIndex.update(sortedDstIds(i), i) i += 1 } logDebug( "Converting to local indices took " + (System.nanoTime() - start) / 1e9 + " seconds.") val dstLocalIndices = dstIds.map(dstIdToLocalIndex.apply) (srcBlockId, (dstBlockId, srcIds, dstLocalIndices, ratings)) }.groupByKey(new ALSPartitioner(srcPart.numPartitions)) .mapValues { iter => val builder = new UncompressedInBlockBuilder[ID](new LocalIndexEncoder(dstPart.numPartitions)) iter.foreach { case (dstBlockId, srcIds, dstLocalIndices, ratings) => builder.add(dstBlockId, srcIds, dstLocalIndices, ratings) } builder.build().compress() }.setName(prefix + "InBlocks") .persist(storageLevel) val outBlocks = inBlocks.mapValues { case InBlock(srcIds, dstPtrs, dstEncodedIndices, _) => val encoder = new LocalIndexEncoder(dstPart.numPartitions) val activeIds = Array.fill(dstPart.numPartitions)(mutable.ArrayBuilder.make[Int]) var i = 0 val seen = new Array[Boolean](dstPart.numPartitions) while (i < srcIds.length) { var j = dstPtrs(i) ju.Arrays.fill(seen, false) while (j < dstPtrs(i + 1)) { val dstBlockId = encoder.blockId(dstEncodedIndices(j)) if (!seen(dstBlockId)) { activeIds(dstBlockId) += i // add the local index in this out-block seen(dstBlockId) = true } j += 1 } i += 1 } activeIds.map { x => x.result() } }.setName(prefix + "OutBlocks") .persist(storageLevel) (inBlocks, outBlocks) } /** * Compute dst factors by constructing and solving least square problems. * * @param srcFactorBlocks src factors * @param srcOutBlocks src out-blocks * @param dstInBlocks dst in-blocks * @param rank rank * @param regParam regularization constant * @param srcEncoder encoder for src local indices * @param implicitPrefs whether to use implicit preference * @param alpha the alpha constant in the implicit preference formulation * @param solver solver for least squares problems * @return dst factors */ private def computeFactors[ID]( srcFactorBlocks: RDD[(Int, FactorBlock)], srcOutBlocks: RDD[(Int, OutBlock)], dstInBlocks: RDD[(Int, InBlock[ID])], rank: Int, regParam: Double, srcEncoder: LocalIndexEncoder, implicitPrefs: Boolean = false, alpha: Double = 1.0, solver: LeastSquaresNESolver): RDD[(Int, FactorBlock)] = { val numSrcBlocks = srcFactorBlocks.partitions.length val YtY = if (implicitPrefs) Some(computeYtY(srcFactorBlocks, rank)) else None val srcOut = srcOutBlocks.join(srcFactorBlocks).flatMap { case (srcBlockId, (srcOutBlock, srcFactors)) => srcOutBlock.view.zipWithIndex.map { case (activeIndices, dstBlockId) => (dstBlockId, (srcBlockId, activeIndices.map(idx => srcFactors(idx)))) } } val merged = srcOut.groupByKey(new ALSPartitioner(dstInBlocks.partitions.length)) dstInBlocks.join(merged).mapValues { case (InBlock(dstIds, srcPtrs, srcEncodedIndices, ratings), srcFactors) => val sortedSrcFactors = new Array[FactorBlock](numSrcBlocks) srcFactors.foreach { case (srcBlockId, factors) => sortedSrcFactors(srcBlockId) = factors } val dstFactors = new Array[Array[Float]](dstIds.length) var j = 0 val ls = new NormalEquation(rank) while (j < dstIds.length) { ls.reset() if (implicitPrefs) { ls.merge(YtY.get) } var i = srcPtrs(j) var numExplicits = 0 while (i < srcPtrs(j + 1)) { val encoded = srcEncodedIndices(i) val blockId = srcEncoder.blockId(encoded) val localIndex = srcEncoder.localIndex(encoded) val srcFactor = sortedSrcFactors(blockId)(localIndex) val rating = ratings(i) if (implicitPrefs) { // Extension to the original paper to handle b < 0. confidence is a function of |b| // instead so that it is never negative. c1 is confidence - 1.0. val c1 = alpha * math.abs(rating) // For rating <= 0, the corresponding preference is 0. So the term below is only added // for rating > 0. Because YtY is already added, we need to adjust the scaling here. if (rating > 0) { numExplicits += 1 ls.add(srcFactor, (c1 + 1.0) / c1, c1) } } else { ls.add(srcFactor, rating) numExplicits += 1 } i += 1 } // Weight lambda by the number of explicit ratings based on the ALS-WR paper. dstFactors(j) = solver.solve(ls, numExplicits * regParam) j += 1 } dstFactors } } /** * Computes the Gramian matrix of user or item factors, which is only used in implicit preference. * Caching of the input factors is handled in [[ALS#train]]. */ private def computeYtY(factorBlocks: RDD[(Int, FactorBlock)], rank: Int): NormalEquation = { factorBlocks.values.aggregate(new NormalEquation(rank))( seqOp = (ne, factors) => { factors.foreach(ne.add(_, 0.0)) ne }, combOp = (ne1, ne2) => ne1.merge(ne2)) } /** * Encoder for storing (blockId, localIndex) into a single integer. * * We use the leading bits (including the sign bit) to store the block id and the rest to store * the local index. This is based on the assumption that users/items are approximately evenly * partitioned. With this assumption, we should be able to encode two billion distinct values. * * @param numBlocks number of blocks */ private[recommendation] class LocalIndexEncoder(numBlocks: Int) extends Serializable { require(numBlocks > 0, s"numBlocks must be positive but found $numBlocks.") private[this] final val numLocalIndexBits = math.min(java.lang.Integer.numberOfLeadingZeros(numBlocks - 1), 31) private[this] final val localIndexMask = (1 << numLocalIndexBits) - 1 /** Encodes a (blockId, localIndex) into a single integer. */ def encode(blockId: Int, localIndex: Int): Int = { require(blockId < numBlocks) require((localIndex & ~localIndexMask) == 0) (blockId << numLocalIndexBits) | localIndex } /** Gets the block id from an encoded index. */ @inline def blockId(encoded: Int): Int = { encoded >>> numLocalIndexBits } /** Gets the local index from an encoded index. */ @inline def localIndex(encoded: Int): Int = { encoded & localIndexMask } } /** * Partitioner used by ALS. We require that getPartition is a projection. That is, for any key k, * we have getPartition(getPartition(k)) = getPartition(k). Since the default HashPartitioner * satisfies this requirement, we simply use a type alias here. */ private[recommendation] type ALSPartitioner = org.apache.spark.HashPartitioner /** * Private function to clean up all of the shuffles files from the dependencies and their parents. */ private[spark] def cleanShuffleDependencies[T]( sc: SparkContext, deps: Seq[Dependency[_]], blocking: Boolean = false): Unit = { // If there is no reference tracking we skip clean up. sc.cleaner.foreach { cleaner => /** * Clean the shuffles & all of its parents. */ def cleanEagerly(dep: Dependency[_]): Unit = { if (dep.isInstanceOf[ShuffleDependency[_, _, _]]) { val shuffleId = dep.asInstanceOf[ShuffleDependency[_, _, _]].shuffleId cleaner.doCleanupShuffle(shuffleId, blocking) } val rdd = dep.rdd val rddDeps = rdd.dependencies if (rdd.getStorageLevel == StorageLevel.NONE && rddDeps != null) { rddDeps.foreach(cleanEagerly) } } deps.foreach(cleanEagerly) } } }
gioenn/xSpark
mllib/src/main/scala/org/apache/spark/ml/recommendation/ALS.scala
Scala
apache-2.0
50,863
package org.scurator import org.apache.curator.framework.CuratorFrameworkFactory import org.apache.curator.retry.RetryOneTime import org.junit.runner.RunWith import org.scalatest.junit.JUnitRunner /** * */ @RunWith(classOf[JUnitRunner]) class TestImplicitConversion extends BaseSCuratorTest { "A SCuratorClient" should "support implicitly wrapping a curator client" in { // Create a curator client val curatorClient = CuratorFrameworkFactory.newClient(server.getConnectString, new RetryOneTime(1)) curatorClient.start() // Add needed imports (including implicit conversion) import org.scurator.SCuratorClient.Implicits._ import org.scurator.components.ExistsRequest import scala.concurrent.ExecutionContext.Implicits.global // Call SCuratorClient methods without manualy wrapping // If this compiles we are good (but not using compiles matcher so coverage is tracked) val result = curatorClient.exists(ExistsRequest(path = "/test")).futureValue result should not be 'exists curatorClient.close() } }
granthenke/scurator
src/test/scala/org/scurator/TestImplicitConversion.scala
Scala
apache-2.0
1,061
package io.taig.gandalf.syntax import io.taig.gandalf.{ Validation, ops } import shapeless._ import scala.language.implicitConversions trait dsl { implicit def dslRuleSyntax[I, O, V <: HList, E]( validation: Validation.Aux[I, O, V, E] ): ops.dsl.logic[I, O, V, E] = new ops.dsl.logic( validation ) implicit def dslTransformationSyntax[I, O, V <: HList, E]( validation: Validation.Aux[I, O, V, E] ): ops.dsl.transformation[I, O, V, E] = new ops.dsl.transformation( validation ) } object dsl extends dsl
Taig/Gandalf
core/src/main/scala/io/taig/gandalf/syntax/dsl.scala
Scala
mit
538
package se.lu.nateko.cp.meta.persistence.postgres import java.sql.ResultSet import se.lu.nateko.cp.meta.api.CloseableIterator import java.sql.Connection class ResultSetIterator[T](connectionFactory: () => Connection, resultFactory: ResultSet => T, selectQuery: String) extends CloseableIterator[T]{ private[this] val conn = connectionFactory() private[this] val st = conn.createStatement() private[this] val rs = st.executeQuery(selectQuery) private[this] var doesHaveNext = false private[this] var closed = false increment() final def hasNext: Boolean = !closed && doesHaveNext final def next(): T = if(closed || !doesHaveNext){ throw new IllegalStateException("Iterator has no more elements!") }else try{ val nextItem = resultFactory(rs) increment() nextItem }catch{ case err: Throwable => close(); throw err } final def close(): Unit = if(!closed){ try{ rs.close() st.close() }finally{ conn.close() closed = true } } private def increment(): Unit = { doesHaveNext = rs.next() if(!doesHaveNext) close() } }
ICOS-Carbon-Portal/meta
src/main/scala/se/lu/nateko/cp/meta/persistence/postgres/ResultSetIterator.scala
Scala
gpl-3.0
1,074
/* ************************************************************************************* * Copyright 2013 Normation SAS ************************************************************************************* * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU Affero General Public License as * published by the Free Software Foundation, either version 3 of the * License, or (at your option) any later version. * * In accordance with the terms of section 7 (7. Additional Terms.) of * the GNU Affero GPL v3, the copyright holders add the following * Additional permissions: * Notwithstanding to the terms of section 5 (5. Conveying Modified Source * Versions) and 6 (6. Conveying Non-Source Forms.) of the GNU Affero GPL v3 * licence, when you create a Related Module, this Related Module is * not considered as a part of the work and may be distributed under the * license agreement of your choice. * A "Related Module" means a set of sources files including their * documentation that, without modification of the Source Code, enables * supplementary functions or services in addition to those offered by * the Software. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Affero General Public License for more details. * * You should have received a copy of the GNU Affero General Public License * along with this program. If not, see <http://www.gnu.org/licenses/agpl.html>. * ************************************************************************************* */ package com.normation.rudder.services.policies import net.liftweb.common._ import com.normation.rudder.domain.parameters._ import com.normation.eventlog.EventActor import com.normation.eventlog.ModificationId import com.normation.rudder.repository.RoParameterRepository import com.normation.rudder.repository.WoParameterRepository import com.normation.rudder.batch.AsyncDeploymentAgent import com.normation.rudder.batch.AutomaticStartDeployment import com.normation.inventory.domain.NodeId trait RoParameterService { /** * Returns a Global Parameter by its name */ def getGlobalParameter(parameterName : ParameterName) : Box[Option[GlobalParameter]] /** * Returns all defined Global Parameters */ def getAllGlobalParameters() : Box[Seq[GlobalParameter]] /** * Returns all parameters applicable for a given node */ def getParametersByNode(nodeId: NodeId) : Box[Seq[Parameter]] } trait WoParameterService { /** * Save a parameter * Returns the new global Parameter * Will fail if a parameter with the same name exists */ def saveParameter( parameter : GlobalParameter , modId : ModificationId , actor : EventActor , reason : Option[String] ) : Box[GlobalParameter] /** * Updates a parameter * Returns the new global Parameter * Will fail if no params with the same name exists */ def updateParameter( parameter : GlobalParameter , modId : ModificationId , actor : EventActor , reason : Option[String] ) : Box[GlobalParameter] /** * Delete a global parameter */ def delete(parameterName:ParameterName, modId: ModificationId, actor:EventActor, reason:Option[String]) : Box[ParameterName] } class RoParameterServiceImpl( roParamRepo : RoParameterRepository ) extends RoParameterService with Loggable { /** * Returns a Global Parameter by its name */ def getGlobalParameter(parameterName : ParameterName) : Box[Option[GlobalParameter]] = { roParamRepo.getGlobalParameter(parameterName) match { case Full(entry) => Full(Some(entry)) case Empty => Full(None) case e:Failure => logger.error("Error while trying to fetch param %s : %s".format(parameterName.value, e.messageChain)) e } } /** * Returns all defined Global Parameters */ def getAllGlobalParameters() : Box[Seq[GlobalParameter]]= { roParamRepo.getAllGlobalParameters() match { case Full(seq) => Full(seq) case Empty => Full(Seq()) case e:Failure => logger.error("Error while trying to fetch all parameters : %s".format(e.messageChain)) e } } /** * Returns all parameters applicable for a given node * Hyper naive implementation : all parameters ! */ def getParametersByNode(nodeId: NodeId) : Box[Seq[Parameter]] = { getAllGlobalParameters() } } class WoParameterServiceImpl( roParamService : RoParameterService , woParamRepo : WoParameterRepository , asyncDeploymentAgent : AsyncDeploymentAgent ) extends WoParameterService with Loggable { /** * Save a parameter * Returns the new global Parameter * Will fail if a parameter with the same name exists */ def saveParameter( parameter : GlobalParameter , modId : ModificationId , actor : EventActor , reason : Option[String] ) : Box[GlobalParameter] = { woParamRepo.saveParameter(parameter, modId, actor, reason) match { case e:Failure => logger.error("Error while trying to create param %s : %s".format(parameter.name.value, e.messageChain)) e case Empty => logger.error("Error : Empty result when trying to create param %s".format(parameter.name.value)) Failure("Something unexpected happened when trying to create parameter %s".format(parameter.name.value)) case Full(diff) => // Ok, it's been save, try to fetch the new value roParamService.getGlobalParameter(parameter.name) match { case e: EmptyBox=> e case Full(option) => option match { case Some(entry) => logger.debug("Successfully created parameter %s".format(parameter.name.value)) // launch a deployement asyncDeploymentAgent ! AutomaticStartDeployment(modId,actor) Full(entry) case None => logger.error("Could not fetch back newly created global parameter with name %s".format(parameter.name.value)) Failure("Could not fetch back newly created global parameter with name %s".format(parameter.name.value)) } } } } /** * Updates a parameter * Returns the new global Parameter * Will fail if no params with the same name exists */ def updateParameter( parameter : GlobalParameter , modId : ModificationId , actor : EventActor , reason : Option[String] ) : Box[GlobalParameter] = { woParamRepo.updateParameter(parameter, modId, actor, reason) match { case e:Failure => logger.error("Error while trying to update param %s : %s".format(parameter.name.value, e.messageChain)) e case Empty => logger.error("Error : Empty result when trying to update param %s".format(parameter.name.value)) Failure("Something unexpected happened when trying to update parameter %s".format(parameter.name.value)) case Full(diff) => // Ok, it's been updated, try to fetch the new value roParamService.getGlobalParameter(parameter.name) match { case e: EmptyBox=> e case Full(option) => option match { case Some(entry) => logger.debug("Successfully udated parameter %s".format(parameter.name.value)) // launch a deployement asyncDeploymentAgent ! AutomaticStartDeployment(modId,actor) Full(entry) case None => logger.error("Could not fetch back updated global parameter with name %s".format(parameter.name.value)) Failure("Could not fetch back updated global parameter with name %s".format(parameter.name.value)) } } } } def delete(parameterName:ParameterName, modId: ModificationId, actor:EventActor, reason:Option[String]) : Box[ParameterName] = { woParamRepo.delete(parameterName, modId, actor, reason) match { case e:Failure => logger.error("Error while trying to delete param %s : %s".format(parameterName.value, e.messageChain)) e case Empty => logger.error("Error : Empty result when trying to delete param %s".format(parameterName.value)) Failure("Something unexpected happened when trying to update parameter %s".format(parameterName.value)) case Full(diff) => logger.debug("Successfully deleted parameter %s".format(parameterName.value)) asyncDeploymentAgent ! AutomaticStartDeployment(modId,actor) Full(parameterName) } } }
Kegeruneku/rudder
rudder-core/src/main/scala/com/normation/rudder/services/policies/ParameterService.scala
Scala
agpl-3.0
8,757
/* ___ _ ___ _ _ *\\ ** / __| |/ (_) | | The SKilL Generator ** ** \\__ \\ ' <| | | |__ (c) 2013 University of Stuttgart ** ** |___/_|\\_\\_|_|____| see LICENSE ** \\* */ package de.ust.skill.generator.scala.internal import de.ust.skill.generator.scala.GeneralOutputMaker trait InternalInstancePropertiesMaker extends GeneralOutputMaker { abstract override def make { super.make val out = open("internal/InternalInstanceProperties.scala") //package out.write(s"""package ${packagePrefix}internal""") out.write(""" /** * properties that are required on each instance, but are not exported through the interface * * @author Timm Felden */ trait InternalInstanceProperties { /** * mark an instance as deleted */ final def delete = setSkillID(0) /** * checks for a deleted mark */ final def markedForDeletion = 0 == getSkillID /** * @return the ID of the instance; if -1, no ID has been assigned yet, if 0, the object will not be written to disk */ private[internal] def getSkillID: Int private[internal] def setSkillID(newID: Int): Unit } """) //class prefix out.close() } }
XyzNobody/skill
src/main/scala/de/ust/skill/generator/scala/internal/InternalInstancePorpertiesMaker.scala
Scala
bsd-3-clause
1,381
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.spark.scheduler.cluster.mesos import java.io.File import java.util.{ArrayList => JArrayList, Collections, List => JList} import scala.collection.JavaConverters._ import scala.collection.mutable.{HashMap, HashSet} import org.apache.mesos.Protos.{ExecutorInfo => MesosExecutorInfo, TaskInfo => MesosTaskInfo, _} import org.apache.mesos.SchedulerDriver import org.apache.mesos.protobuf.ByteString import org.apache.spark.{SparkContext, SparkException, TaskState} import org.apache.spark.deploy.mesos.config.EXECUTOR_URI import org.apache.spark.executor.MesosExecutorBackend import org.apache.spark.internal.config import org.apache.spark.scheduler._ import org.apache.spark.scheduler.cluster.ExecutorInfo import org.apache.spark.util.Utils /** * A SchedulerBackend for running fine-grained tasks on Mesos. Each Spark task is mapped to a * separate Mesos task, allowing multiple applications to share cluster nodes both in space (tasks * from multiple apps can run on different cores) and in time (a core can switch ownership). */ private[spark] class MesosFineGrainedSchedulerBackend( scheduler: TaskSchedulerImpl, sc: SparkContext, master: String) extends SchedulerBackend with org.apache.mesos.Scheduler with MesosSchedulerUtils { // Stores the slave ids that has launched a Mesos executor. val slaveIdToExecutorInfo = new HashMap[String, MesosExecutorInfo] val taskIdToSlaveId = new HashMap[Long, String] // An ExecutorInfo for our tasks var execArgs: Array[Byte] = null var classLoader: ClassLoader = null // The listener bus to publish executor added/removed events. val listenerBus = sc.listenerBus private[mesos] val mesosExecutorCores = sc.conf.getDouble("spark.mesos.mesosExecutor.cores", 1) // Offer constraints private[this] val slaveOfferConstraints = parseConstraintString(sc.conf.get("spark.mesos.constraints", "")) // reject offers with mismatched constraints in seconds private val rejectOfferDurationForUnmetConstraints = getRejectOfferDurationForUnmetConstraints(sc.conf) private var schedulerDriver: SchedulerDriver = _ @volatile var appId: String = _ override def start() { classLoader = Thread.currentThread.getContextClassLoader val driver = createSchedulerDriver( master, MesosFineGrainedSchedulerBackend.this, sc.sparkUser, sc.appName, sc.conf, sc.conf.getOption("spark.mesos.driver.webui.url").orElse(sc.ui.map(_.webUrl)), Option.empty, Option.empty, sc.conf.getOption("spark.mesos.driver.frameworkId") ) unsetFrameworkID(sc) startScheduler(driver) } /** * Creates a MesosExecutorInfo that is used to launch a Mesos executor. * * @param availableResources Available resources that is offered by Mesos * @param execId The executor id to assign to this new executor. * @return A tuple of the new mesos executor info and the remaining available resources. */ def createExecutorInfo( availableResources: JList[Resource], execId: String): (MesosExecutorInfo, JList[Resource]) = { val executorSparkHome = sc.conf.getOption("spark.mesos.executor.home") .orElse(sc.getSparkHome()) // Fall back to driver Spark home for backward compatibility .getOrElse { throw new SparkException("Executor Spark home `spark.mesos.executor.home` is not set!") } val environment = Environment.newBuilder() sc.conf.get(config.EXECUTOR_CLASS_PATH).foreach { cp => environment.addVariables( Environment.Variable.newBuilder().setName("SPARK_EXECUTOR_CLASSPATH").setValue(cp).build()) } val extraJavaOpts = sc.conf.get(config.EXECUTOR_JAVA_OPTIONS).map { Utils.substituteAppNExecIds(_, appId, execId) }.getOrElse("") val prefixEnv = sc.conf.get(config.EXECUTOR_LIBRARY_PATH).map { p => Utils.libraryPathEnvPrefix(Seq(p)) }.getOrElse("") environment.addVariables( Environment.Variable.newBuilder() .setName("SPARK_EXECUTOR_OPTS") .setValue(extraJavaOpts) .build()) sc.executorEnvs.foreach { case (key, value) => environment.addVariables(Environment.Variable.newBuilder() .setName(key) .setValue(value) .build()) } val command = CommandInfo.newBuilder() .setEnvironment(environment) val uri = sc.conf.get(EXECUTOR_URI).orElse(Option(System.getenv("SPARK_EXECUTOR_URI"))) val executorBackendName = classOf[MesosExecutorBackend].getName if (uri.isEmpty) { val executorPath = new File(executorSparkHome, "/bin/spark-class").getPath command.setValue(s"$prefixEnv $executorPath $executorBackendName") } else { // Grab everything to the first '.'. We'll use that and '*' to // glob the directory "correctly". val basename = uri.get.split('/').last.split('.').head command.setValue(s"cd ${basename}*; $prefixEnv ./bin/spark-class $executorBackendName") command.addUris(CommandInfo.URI.newBuilder().setValue(uri.get)) } val builder = MesosExecutorInfo.newBuilder() val (resourcesAfterCpu, usedCpuResources) = partitionResources(availableResources, "cpus", mesosExecutorCores) val (resourcesAfterMem, usedMemResources) = partitionResources(resourcesAfterCpu.asJava, "mem", executorMemory(sc)) builder.addAllResources(usedCpuResources.asJava) builder.addAllResources(usedMemResources.asJava) sc.conf.getOption("spark.mesos.uris").foreach(setupUris(_, command)) val executorInfo = builder .setExecutorId(ExecutorID.newBuilder().setValue(execId).build()) .setCommand(command) .setData(ByteString.copyFrom(createExecArg())) executorInfo.setContainer( MesosSchedulerBackendUtil.buildContainerInfo(sc.conf)) (executorInfo.build(), resourcesAfterMem.asJava) } /** * Create and serialize the executor argument to pass to Mesos. Our executor arg is an array * containing all the spark.* system properties in the form of (String, String) pairs. */ private def createExecArg(): Array[Byte] = { if (execArgs == null) { val props = new HashMap[String, String] for ((key, value) <- sc.conf.getAll) { props(key) = value } // Serialize the map as an array of (String, String) pairs execArgs = Utils.serialize(props.toArray) } execArgs } override def offerRescinded(d: org.apache.mesos.SchedulerDriver, o: OfferID) {} override def registered( driver: org.apache.mesos.SchedulerDriver, frameworkId: FrameworkID, masterInfo: MasterInfo) { inClassLoader() { appId = frameworkId.getValue logInfo("Registered as framework ID " + appId) this.schedulerDriver = driver markRegistered() } } private def inClassLoader()(fun: => Unit) = { val oldClassLoader = Thread.currentThread.getContextClassLoader Thread.currentThread.setContextClassLoader(classLoader) try { fun } finally { Thread.currentThread.setContextClassLoader(oldClassLoader) } } override def disconnected(d: org.apache.mesos.SchedulerDriver) {} override def reregistered(d: org.apache.mesos.SchedulerDriver, masterInfo: MasterInfo) {} private def getTasksSummary(tasks: JArrayList[MesosTaskInfo]): String = { val builder = new StringBuilder tasks.asScala.foreach { t => builder.append("Task id: ").append(t.getTaskId.getValue).append("\\n") .append("Slave id: ").append(t.getSlaveId.getValue).append("\\n") .append("Task resources: ").append(t.getResourcesList).append("\\n") .append("Executor resources: ").append(t.getExecutor.getResourcesList) .append("---------------------------------------------\\n") } builder.toString() } /** * Method called by Mesos to offer resources on slaves. We respond by asking our active task sets * for tasks in order of priority. We fill each node with tasks in a round-robin manner so that * tasks are balanced across the cluster. */ override def resourceOffers(d: org.apache.mesos.SchedulerDriver, offers: JList[Offer]) { inClassLoader() { // Fail first on offers with unmet constraints val (offersMatchingConstraints, offersNotMatchingConstraints) = offers.asScala.partition { o => val offerAttributes = toAttributeMap(o.getAttributesList) val meetsConstraints = matchesAttributeRequirements(slaveOfferConstraints, offerAttributes) // add some debug messaging if (!meetsConstraints) { val id = o.getId.getValue logDebug(s"Declining offer: $id with attributes: $offerAttributes") } meetsConstraints } // These offers do not meet constraints. We don't need to see them again. // Decline the offer for a long period of time. offersNotMatchingConstraints.foreach { o => d.declineOffer(o.getId, Filters.newBuilder() .setRefuseSeconds(rejectOfferDurationForUnmetConstraints).build()) } // Of the matching constraints, see which ones give us enough memory and cores val (usableOffers, unUsableOffers) = offersMatchingConstraints.partition { o => val mem = getResource(o.getResourcesList, "mem") val cpus = getResource(o.getResourcesList, "cpus") val slaveId = o.getSlaveId.getValue val offerAttributes = toAttributeMap(o.getAttributesList) // check offers for // 1. Memory requirements // 2. CPU requirements - need at least 1 for executor, 1 for task val meetsMemoryRequirements = mem >= executorMemory(sc) val meetsCPURequirements = cpus >= (mesosExecutorCores + scheduler.CPUS_PER_TASK) val meetsRequirements = (meetsMemoryRequirements && meetsCPURequirements) || (slaveIdToExecutorInfo.contains(slaveId) && cpus >= scheduler.CPUS_PER_TASK) val debugstr = if (meetsRequirements) "Accepting" else "Declining" logDebug(s"$debugstr offer: ${o.getId.getValue} with attributes: " + s"$offerAttributes mem: $mem cpu: $cpus") meetsRequirements } // Decline offers we ruled out immediately unUsableOffers.foreach(o => d.declineOffer(o.getId)) val workerOffers = usableOffers.map { o => val cpus = if (slaveIdToExecutorInfo.contains(o.getSlaveId.getValue)) { getResource(o.getResourcesList, "cpus").toInt } else { // If the Mesos executor has not been started on this slave yet, set aside a few // cores for the Mesos executor by offering fewer cores to the Spark executor (getResource(o.getResourcesList, "cpus") - mesosExecutorCores).toInt } new WorkerOffer( o.getSlaveId.getValue, o.getHostname, cpus) }.toIndexedSeq val slaveIdToOffer = usableOffers.map(o => o.getSlaveId.getValue -> o).toMap val slaveIdToWorkerOffer = workerOffers.map(o => o.executorId -> o).toMap val slaveIdToResources = new HashMap[String, JList[Resource]]() usableOffers.foreach { o => slaveIdToResources(o.getSlaveId.getValue) = o.getResourcesList } val mesosTasks = new HashMap[String, JArrayList[MesosTaskInfo]] val slavesIdsOfAcceptedOffers = HashSet[String]() // Call into the TaskSchedulerImpl val acceptedOffers = scheduler.resourceOffers(workerOffers).filter(!_.isEmpty) acceptedOffers .foreach { offer => offer.foreach { taskDesc => val slaveId = taskDesc.executorId slavesIdsOfAcceptedOffers += slaveId taskIdToSlaveId(taskDesc.taskId) = slaveId val (mesosTask, remainingResources) = createMesosTask( taskDesc, slaveIdToResources(slaveId), slaveId) mesosTasks.getOrElseUpdate(slaveId, new JArrayList[MesosTaskInfo]) .add(mesosTask) slaveIdToResources(slaveId) = remainingResources } } // Reply to the offers val filters = Filters.newBuilder().setRefuseSeconds(1).build() // TODO: lower timeout? mesosTasks.foreach { case (slaveId, tasks) => slaveIdToWorkerOffer.get(slaveId).foreach(o => listenerBus.post(SparkListenerExecutorAdded(System.currentTimeMillis(), slaveId, // TODO: Add support for log urls for Mesos new ExecutorInfo(o.host, o.cores, Map.empty))) ) logTrace(s"Launching Mesos tasks on slave '$slaveId', tasks:\\n${getTasksSummary(tasks)}") d.launchTasks(Collections.singleton(slaveIdToOffer(slaveId).getId), tasks, filters) } // Decline offers that weren't used // NOTE: This logic assumes that we only get a single offer for each host in a given batch for (o <- usableOffers if !slavesIdsOfAcceptedOffers.contains(o.getSlaveId.getValue)) { d.declineOffer(o.getId) } } } /** Turn a Spark TaskDescription into a Mesos task and also resources unused by the task */ def createMesosTask( task: TaskDescription, resources: JList[Resource], slaveId: String): (MesosTaskInfo, JList[Resource]) = { val taskId = TaskID.newBuilder().setValue(task.taskId.toString).build() val (executorInfo, remainingResources) = if (slaveIdToExecutorInfo.contains(slaveId)) { (slaveIdToExecutorInfo(slaveId), resources) } else { createExecutorInfo(resources, slaveId) } slaveIdToExecutorInfo(slaveId) = executorInfo val (finalResources, cpuResources) = partitionResources(remainingResources, "cpus", scheduler.CPUS_PER_TASK) val taskInfo = MesosTaskInfo.newBuilder() .setTaskId(taskId) .setSlaveId(SlaveID.newBuilder().setValue(slaveId).build()) .setExecutor(executorInfo) .setName(task.name) .addAllResources(cpuResources.asJava) .setData(ByteString.copyFrom(TaskDescription.encode(task))) .build() (taskInfo, finalResources.asJava) } override def statusUpdate(d: org.apache.mesos.SchedulerDriver, status: TaskStatus) { inClassLoader() { val tid = status.getTaskId.getValue.toLong val state = mesosToTaskState(status.getState) synchronized { if (TaskState.isFailed(mesosToTaskState(status.getState)) && taskIdToSlaveId.contains(tid)) { // We lost the executor on this slave, so remember that it's gone removeExecutor(taskIdToSlaveId(tid), "Lost executor") } if (TaskState.isFinished(state)) { taskIdToSlaveId.remove(tid) } } scheduler.statusUpdate(tid, state, status.getData.asReadOnlyByteBuffer) } } override def error(d: org.apache.mesos.SchedulerDriver, message: String) { inClassLoader() { logError("Mesos error: " + message) markErr() scheduler.error(message) } } override def stop() { if (schedulerDriver != null) { schedulerDriver.stop() } } override def reviveOffers() { schedulerDriver.reviveOffers() } override def frameworkMessage( d: org.apache.mesos.SchedulerDriver, e: ExecutorID, s: SlaveID, b: Array[Byte]) {} /** * Remove executor associated with slaveId in a thread safe manner. */ private def removeExecutor(slaveId: String, reason: String) = { synchronized { listenerBus.post(SparkListenerExecutorRemoved(System.currentTimeMillis(), slaveId, reason)) slaveIdToExecutorInfo -= slaveId } } private def recordSlaveLost( d: org.apache.mesos.SchedulerDriver, slaveId: SlaveID, reason: ExecutorLossReason) { inClassLoader() { logInfo("Mesos slave lost: " + slaveId.getValue) removeExecutor(slaveId.getValue, reason.toString) scheduler.executorLost(slaveId.getValue, reason) } } override def slaveLost(d: org.apache.mesos.SchedulerDriver, slaveId: SlaveID) { recordSlaveLost(d, slaveId, SlaveLost()) } override def executorLost( d: org.apache.mesos.SchedulerDriver, executorId: ExecutorID, slaveId: SlaveID, status: Int) { logInfo("Executor lost: %s, marking slave %s as lost".format(executorId.getValue, slaveId.getValue)) recordSlaveLost(d, slaveId, ExecutorExited(status, exitCausedByApp = true)) } override def killTask( taskId: Long, executorId: String, interruptThread: Boolean, reason: String): Unit = { schedulerDriver.killTask( TaskID.newBuilder() .setValue(taskId.toString).build() ) } // TODO: query Mesos for number of cores override def defaultParallelism(): Int = sc.conf.getInt("spark.default.parallelism", 8) override def applicationId(): String = Option(appId).getOrElse { logWarning("Application ID is not initialized yet.") super.applicationId } override def maxNumConcurrentTasks(): Int = { // TODO SPARK-25074 support this method for MesosFineGrainedSchedulerBackend 0 } }
hhbyyh/spark
resource-managers/mesos/src/main/scala/org/apache/spark/scheduler/cluster/mesos/MesosFineGrainedSchedulerBackend.scala
Scala
apache-2.0
17,837
/* * Copyright 2016 Coursera Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.coursera.naptime.router2 import com.typesafe.scalalogging.StrictLogging import org.coursera.common.stringkey.StringKey import org.coursera.common.stringkey.StringKeyFormat import org.coursera.naptime.path.ParseFailure import org.coursera.naptime.path.ParseSuccess import org.coursera.naptime.resources.CollectionResource import play.api.http.Status import play.api.libs.json.Json import play.api.mvc.Action import play.api.mvc.BodyParser import play.api.mvc.BodyParsers import play.api.mvc.Request import play.api.mvc.RequestHeader import play.api.mvc.RequestTaggingHandler import play.api.mvc.Result import play.api.mvc.Results import scala.concurrent.Future import scala.language.existentials class NestingCollectionResourceRouter[CollectionResourceType <: CollectionResource[_, _, _]] ( val resourceInstance: CollectionResourceType) extends ResourceRouter with StrictLogging { override type ResourceClass = CollectionResourceType /** * Helper method to convert a path key to the ancestor keys. * * @param pathKey The path key to convert. */ protected[this] def pathToAncestor( pathKey: resourceInstance.PathKey): resourceInstance.AncestorKeys = { pathKey.tail } /** * Helper method to convert an opt path key to the ancestor keys. * * @param pathKey The opt path key to convert. * @return */ protected[this] def optPathToAncestor( pathKey: resourceInstance.OptPathKey): resourceInstance.AncestorKeys = { pathKey.tail } /** * Constructs a Map used to tag the request. * * Note: because of a limitation of the mocking framework, this code gracefully handles when * [[resourceInstance.getClass]] returns null. * * @param methodName The name of the scala method invoked to handle this request. * @return */ protected[this] def mkRequestTags(methodName: String): Map[String, String] = { Map( Router.NAPTIME_RESOURCE_NAME -> Option(resourceInstance.getClass).map(_.getName).getOrElse("nullClass"), Router.NAPTIME_METHOD_NAME -> methodName) } override def routeRequest(path: String, requestHeader: RequestHeader): Option[RouteAction] = { resourceInstance.optParse(path) match { case ParseFailure | ParseSuccess(Some(_), _) => None // This request is not for us. case ParseSuccess(None, pathKeyOpt) => // If the head of the list is defined, convert to the PathKey, else remain as an OptPathKey // Note: we centralize here the casting required to get the compiler to believe us. val pathKey: Either[resourceInstance.OptPathKey, resourceInstance.PathKey] = if (pathKeyOpt.head.isDefined) { Right((pathKeyOpt.head.get ::: pathKeyOpt.tail).asInstanceOf[resourceInstance.PathKey]) } else { Left(pathKeyOpt) } Some(buildHandler(requestHeader, pathKey)) case null => // Test mocking error. logger.error(s"Match error routing request $requestHeader with resource $resourceInstance") throw new MatchError(null) } } private[this] def buildHandler( requestHeader: RequestHeader, pathKey: Either[resourceInstance.OptPathKey, resourceInstance.PathKey]): RouteAction = { requestHeader.method match { case "GET" => buildGetHandler(requestHeader, pathKey) case "POST" => buildPostHandler(requestHeader, pathKey) case "PUT" => buildPutHandler(requestHeader, pathKey) case "DELETE" => buildDeleteHandler(requestHeader, pathKey) case "PATCH" => buildPatchHandler(requestHeader, pathKey) case unknown: String => errorRoute(s"Unknown HTTP method '$unknown'.") } } private[this] def buildGetHandler( requestHeader: RequestHeader, pathKey: Either[resourceInstance.OptPathKey, resourceInstance.PathKey]): RouteAction = { if (pathKey.isRight) { executeGet(requestHeader, pathKey.right.get) } else { val optPathKey = pathKey.left.get requestHeader.queryString.get("q").map { queryStr => if (queryStr.isEmpty) { errorRoute("Must provide a finder name.") } else if (queryStr.length != 1) { errorRoute("Must provide only one finder name.") } else { executeFinder(requestHeader, optPathKey, queryStr.head) } }.getOrElse { requestHeader.queryString.get("ids").map { queryStr => if (queryStr.isEmpty) { errorRoute("Must provide an 'ids' query parameter.") } else if (queryStr.length != 1) { errorRoute("Must provide only one 'ids' query parameter.") } else { val idsOrError = parseIds[resourceInstance.KeyType]( queryStr.head, resourceInstance.keyFormat.stringKeyFormat) idsOrError.right.map { ids => // Note: we have to cast to get the Scala compiler to believe us, even though // Intellij sees this cast as redundant. executeMultiGet( requestHeader, optPathKey, ids.asInstanceOf[Set[resourceInstance.KeyType]]) }.merge } }.getOrElse { executeGetAll(requestHeader, optPathKey) } } } } private[this] def buildPostHandler( requestHeader: RequestHeader, pathKey: Either[resourceInstance.OptPathKey, resourceInstance.PathKey]): RouteAction = { if (pathKey.isLeft) { requestHeader.queryString.get("action").map { queryStr => if (queryStr.isEmpty) { errorRoute("Must provide an action name.") } else if (queryStr.length == 1) { executeAction(requestHeader, pathKey.left.get, queryStr.head) } else { errorRoute("Must provide only one action name.") } }.getOrElse { executeCreate(requestHeader, pathKey.left.get) } } else { errorRoute("Post only to the collection resource, not individual elements.") } } private[this] def buildPutHandler( requestHeader: RequestHeader, pathKey: Either[resourceInstance.OptPathKey, resourceInstance.PathKey]): RouteAction = { pathKey.right.toOption.map { pathKey => executePut(requestHeader, pathKey) }.getOrElse { idRequired } } private[this] def buildDeleteHandler( requestHeader: RequestHeader, pathKey: Either[resourceInstance.OptPathKey, resourceInstance.PathKey]): RouteAction = { pathKey.right.toOption.map { pathKey => executeDelete(requestHeader, pathKey) }.getOrElse { idRequired } } private[this] def buildPatchHandler( requestHeader: RequestHeader, pathKey: Either[resourceInstance.OptPathKey, resourceInstance.PathKey]): RouteAction = { pathKey.right.toOption.map { pathKey => executePatch(requestHeader, pathKey) }.getOrElse { idRequired } } protected[this] def executeGet( requestHeader: RequestHeader, pathKey: resourceInstance.PathKey): RouteAction = { errorRoute("'get' not implemented") } protected[this] def executeMultiGet( requestHeader: RequestHeader, optPathKey: resourceInstance.OptPathKey, ids: Set[resourceInstance.KeyType]): RouteAction = { errorRoute("'multi-get' not implemented") } protected[this] def executeGetAll( requestHeader: RequestHeader, optPathKey: resourceInstance.OptPathKey): RouteAction = { errorRoute("'get-all' not implemented") } protected[this] def executeFinder( requestHeader: RequestHeader, optPathKey: resourceInstance.OptPathKey, finderName: String): RouteAction = { // TODO(saeta): watch out for injection attacks! errorRoute(s"finder '$finderName' not implemented") } protected[this] def executeCreate( requestHeader: RequestHeader, optPathKey: resourceInstance.OptPathKey): RouteAction = { errorRoute("'create' not implemented") } protected[this] def executePut( requestHeader: RequestHeader, pathKey: resourceInstance.PathKey): RouteAction = { errorRoute("'put' not implemented") } protected[this] def executeDelete( requestHeader: RequestHeader, pathKey: resourceInstance.PathKey): RouteAction = { errorRoute("'delete' not implemented") } protected[this] def executePatch( requestHeader: RequestHeader, pathKey: resourceInstance.PathKey): RouteAction = { errorRoute("'patch' not implemented") } protected[this] def executeAction( requestHeader: RequestHeader, optPathKey: resourceInstance.OptPathKey, actionName: String): RouteAction = { // TODO(saeta): watch out for injection attacks! errorRoute(s"action '$actionName' not implemented") } // TODO(saeta): Support populating the Allow header for more useful error responses. protected[this] def errorRoute( msg: String, statusCode: Int = Status.METHOD_NOT_ALLOWED): RouteAction = NestingCollectionResourceRouter.errorRoute(resourceInstance.getClass, msg, statusCode) /** * Helper function to parse ids. * * It is not private[this] for testing purposes. * * @param queryString The query string to parse into ids. * @param parser The string key format for the key type [[T]] * @tparam T The type of keys we are parsing. Note: we use a type parameter to help the scala * compiler correctly infer the types. * @return either a Left(error) or a Right(Set(ids)) */ private[naptime] def parseIds[T]( queryString: String, parser: StringKeyFormat[T]): Either[RouteAction, Set[T]] = { var error: Option[RouteAction] = None // TODO(saeta): check length of idStrings to make sure it's not too long. (Potential DoS.) val idStrings = queryString.split("(?<!\\\\\\\\),") val ids = idStrings.flatMap { idStr => val parsed = parser.reads(StringKey(idStr)) if (parsed.isEmpty) { error = Some(errorRoute(s"Could not parse key '$idStr'")) // TODO: truncate if too long. } parsed }.toSet error.toLeft(ids) } private[this] val idRequired = errorRoute("Requires ID in path as a path parameter.") } object NestingCollectionResourceRouter { private[naptime] def errorRoute( resourceClass: Class[_], msg: String, statusCode: Int = Status.BAD_REQUEST): RouteAction = { new Action[Unit] with RequestTaggingHandler { override def parser: BodyParser[Unit] = BodyParsers.parse.empty override def apply(request: Request[Unit]): Future[Result] = { // TODO(saeta): use standardized error response format. Future.successful(Results.Status(statusCode)(Json.obj("msg" -> s"Routing error: $msg"))) } override def tagRequest(request: RequestHeader): RequestHeader = request.copy(tags = request.tags + (Router.NAPTIME_RESOURCE_NAME -> resourceClass.getName)) } } }
vkuo-coursera/naptime
naptime/src/main/scala/org/coursera/naptime/router2/NestingCollectionResourceRouter.scala
Scala
apache-2.0
11,525
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.spark.util import java.lang.management.ManagementFactory import java.lang.reflect.{Field, Modifier} import java.util.{IdentityHashMap, Random} import scala.collection.mutable.ArrayBuffer import scala.runtime.ScalaRunTime import com.google.common.collect.MapMaker import org.apache.spark.annotation.DeveloperApi import org.apache.spark.internal.Logging import org.apache.spark.internal.config.Tests.TEST_USE_COMPRESSED_OOPS_KEY import org.apache.spark.util.collection.OpenHashSet /** * A trait that allows a class to give [[SizeEstimator]] more accurate size estimation. * When a class extends it, [[SizeEstimator]] will query the `estimatedSize` first. * If `estimatedSize` does not return `None`, [[SizeEstimator]] will use the returned size * as the size of the object. Otherwise, [[SizeEstimator]] will do the estimation work. * The difference between a [[KnownSizeEstimation]] and * [[org.apache.spark.util.collection.SizeTracker]] is that, a * [[org.apache.spark.util.collection.SizeTracker]] still uses [[SizeEstimator]] to * estimate the size. However, a [[KnownSizeEstimation]] can provide a better estimation without * using [[SizeEstimator]]. */ private[spark] trait KnownSizeEstimation { def estimatedSize: Long } /** * :: DeveloperApi :: * Estimates the sizes of Java objects (number of bytes of memory they occupy), for use in * memory-aware caches. * * Based on the following JavaWorld article: * http://www.javaworld.com/javaworld/javaqa/2003-12/02-qa-1226-sizeof.html */ @DeveloperApi object SizeEstimator extends Logging { /** * Estimate the number of bytes that the given object takes up on the JVM heap. The estimate * includes space taken up by objects referenced by the given object, their references, and so on * and so forth. * * This is useful for determining the amount of heap space a broadcast variable will occupy on * each executor or the amount of space each object will take when caching objects in * deserialized form. This is not the same as the serialized size of the object, which will * typically be much smaller. */ def estimate(obj: AnyRef): Long = estimate(obj, new IdentityHashMap[AnyRef, AnyRef]) // Sizes of primitive types private val BYTE_SIZE = 1 private val BOOLEAN_SIZE = 1 private val CHAR_SIZE = 2 private val SHORT_SIZE = 2 private val INT_SIZE = 4 private val LONG_SIZE = 8 private val FLOAT_SIZE = 4 private val DOUBLE_SIZE = 8 // Fields can be primitive types, sizes are: 1, 2, 4, 8. Or fields can be pointers. The size of // a pointer is 4 or 8 depending on the JVM (32-bit or 64-bit) and UseCompressedOops flag. // The sizes should be in descending order, as we will use that information for fields placement. private val fieldSizes = List(8, 4, 2, 1) // Alignment boundary for objects // TODO: Is this arch dependent ? private val ALIGN_SIZE = 8 // A cache of ClassInfo objects for each class // We use weakKeys to allow GC of dynamically created classes private val classInfos = new MapMaker().weakKeys().makeMap[Class[_], ClassInfo]() // Object and pointer sizes are arch dependent private var is64bit = false // Size of an object reference // Based on https://wikis.oracle.com/display/HotSpotInternals/CompressedOops private var isCompressedOops = false private var pointerSize = 4 // Minimum size of a java.lang.Object private var objectSize = 8 initialize() // Sets object size, pointer size based on architecture and CompressedOops settings // from the JVM. private def initialize(): Unit = { val arch = System.getProperty("os.arch") is64bit = arch.contains("64") || arch.contains("s390x") isCompressedOops = getIsCompressedOops objectSize = if (!is64bit) 8 else { if (!isCompressedOops) { 16 } else { 12 } } pointerSize = if (is64bit && !isCompressedOops) 8 else 4 classInfos.clear() classInfos.put(classOf[Object], new ClassInfo(objectSize, Nil)) } private def getIsCompressedOops: Boolean = { // This is only used by tests to override the detection of compressed oops. The test // actually uses a system property instead of a SparkConf, so we'll stick with that. if (System.getProperty(TEST_USE_COMPRESSED_OOPS_KEY) != null) { return System.getProperty(TEST_USE_COMPRESSED_OOPS_KEY).toBoolean } // java.vm.info provides compressed ref info for IBM and OpenJ9 JDKs val javaVendor = System.getProperty("java.vendor") if (javaVendor.contains("IBM") || javaVendor.contains("OpenJ9")) { return System.getProperty("java.vm.info").contains("Compressed Ref") } try { val hotSpotMBeanName = "com.sun.management:type=HotSpotDiagnostic" val server = ManagementFactory.getPlatformMBeanServer() // NOTE: This should throw an exception in non-Sun JVMs // scalastyle:off classforname val hotSpotMBeanClass = Class.forName("com.sun.management.HotSpotDiagnosticMXBean") val getVMMethod = hotSpotMBeanClass.getDeclaredMethod("getVMOption", Class.forName("java.lang.String")) // scalastyle:on classforname val bean = ManagementFactory.newPlatformMXBeanProxy(server, hotSpotMBeanName, hotSpotMBeanClass) // TODO: We could use reflection on the VMOption returned ? getVMMethod.invoke(bean, "UseCompressedOops").toString.contains("true") } catch { case e: Exception => // Guess whether they've enabled UseCompressedOops based on whether maxMemory < 32 GB val guess = Runtime.getRuntime.maxMemory < (32L*1024*1024*1024) val guessInWords = if (guess) "yes" else "not" logWarning("Failed to check whether UseCompressedOops is set; assuming " + guessInWords) return guess } } /** * The state of an ongoing size estimation. Contains a stack of objects to visit as well as an * IdentityHashMap of visited objects, and provides utility methods for enqueueing new objects * to visit. */ private class SearchState(val visited: IdentityHashMap[AnyRef, AnyRef]) { val stack = new ArrayBuffer[AnyRef] var size = 0L def enqueue(obj: AnyRef): Unit = { if (obj != null && !visited.containsKey(obj)) { visited.put(obj, null) stack += obj } } def isFinished(): Boolean = stack.isEmpty def dequeue(): AnyRef = { val elem = stack.last stack.trimEnd(1) elem } } /** * Cached information about each class. We remember two things: the "shell size" of the class * (size of all non-static fields plus the java.lang.Object size), and any fields that are * pointers to objects. */ private class ClassInfo( val shellSize: Long, val pointerFields: List[Field]) {} private def estimate(obj: AnyRef, visited: IdentityHashMap[AnyRef, AnyRef]): Long = { val state = new SearchState(visited) state.enqueue(obj) while (!state.isFinished) { visitSingleObject(state.dequeue(), state) } state.size } private def visitSingleObject(obj: AnyRef, state: SearchState): Unit = { val cls = obj.getClass if (cls.isArray) { visitArray(obj, cls, state) } else if (cls.getName.startsWith("scala.reflect")) { // Many objects in the scala.reflect package reference global reflection objects which, in // turn, reference many other large global objects. Do nothing in this case. } else if (obj.isInstanceOf[ClassLoader] || obj.isInstanceOf[Class[_]]) { // Hadoop JobConfs created in the interpreter have a ClassLoader, which greatly confuses // the size estimator since it references the whole REPL. Do nothing in this case. In // general all ClassLoaders and Classes will be shared between objects anyway. } else { obj match { case s: KnownSizeEstimation => state.size += s.estimatedSize case _ => val classInfo = getClassInfo(cls) state.size += alignSize(classInfo.shellSize) for (field <- classInfo.pointerFields) { state.enqueue(field.get(obj)) } } } } // Estimate the size of arrays larger than ARRAY_SIZE_FOR_SAMPLING by sampling. private val ARRAY_SIZE_FOR_SAMPLING = 400 private val ARRAY_SAMPLE_SIZE = 100 // should be lower than ARRAY_SIZE_FOR_SAMPLING private def visitArray(array: AnyRef, arrayClass: Class[_], state: SearchState): Unit = { val length = ScalaRunTime.array_length(array) val elementClass = arrayClass.getComponentType() // Arrays have object header and length field which is an integer var arrSize: Long = alignSize(objectSize + INT_SIZE) if (elementClass.isPrimitive) { arrSize += alignSize(length.toLong * primitiveSize(elementClass)) state.size += arrSize } else { arrSize += alignSize(length.toLong * pointerSize) state.size += arrSize if (length <= ARRAY_SIZE_FOR_SAMPLING) { var arrayIndex = 0 while (arrayIndex < length) { state.enqueue(ScalaRunTime.array_apply(array, arrayIndex).asInstanceOf[AnyRef]) arrayIndex += 1 } } else { // Estimate the size of a large array by sampling elements without replacement. // To exclude the shared objects that the array elements may link, sample twice // and use the min one to calculate array size. val rand = new Random(42) val drawn = new OpenHashSet[Int](2 * ARRAY_SAMPLE_SIZE) val s1 = sampleArray(array, state, rand, drawn, length) val s2 = sampleArray(array, state, rand, drawn, length) val size = math.min(s1, s2) state.size += math.max(s1, s2) + (size * ((length - ARRAY_SAMPLE_SIZE) / (ARRAY_SAMPLE_SIZE))).toLong } } } private def sampleArray( array: AnyRef, state: SearchState, rand: Random, drawn: OpenHashSet[Int], length: Int): Long = { var size = 0L for (i <- 0 until ARRAY_SAMPLE_SIZE) { var index = 0 do { index = rand.nextInt(length) } while (drawn.contains(index)) drawn.add(index) val obj = ScalaRunTime.array_apply(array, index).asInstanceOf[AnyRef] if (obj != null) { size += SizeEstimator.estimate(obj, state.visited).toLong } } size } private def primitiveSize(cls: Class[_]): Int = { if (cls == classOf[Byte]) { BYTE_SIZE } else if (cls == classOf[Boolean]) { BOOLEAN_SIZE } else if (cls == classOf[Char]) { CHAR_SIZE } else if (cls == classOf[Short]) { SHORT_SIZE } else if (cls == classOf[Int]) { INT_SIZE } else if (cls == classOf[Long]) { LONG_SIZE } else if (cls == classOf[Float]) { FLOAT_SIZE } else if (cls == classOf[Double]) { DOUBLE_SIZE } else { throw new IllegalArgumentException( "Non-primitive class " + cls + " passed to primitiveSize()") } } /** * Get or compute the ClassInfo for a given class. */ private def getClassInfo(cls: Class[_]): ClassInfo = { // Check whether we've already cached a ClassInfo for this class val info = classInfos.get(cls) if (info != null) { return info } val parent = getClassInfo(cls.getSuperclass) var shellSize = parent.shellSize var pointerFields = parent.pointerFields val sizeCount = Array.fill(fieldSizes.max + 1)(0) // iterate through the fields of this class and gather information. for (field <- cls.getDeclaredFields) { if (!Modifier.isStatic(field.getModifiers)) { val fieldClass = field.getType if (fieldClass.isPrimitive) { sizeCount(primitiveSize(fieldClass)) += 1 } else { // Note: in Java 9+ this would be better with trySetAccessible and canAccess try { field.setAccessible(true) // Enable future get()'s on this field pointerFields = field :: pointerFields } catch { // If the field isn't accessible, we can still record the pointer size // but can't know more about the field, so ignore it case _: SecurityException => // do nothing // Java 9+ can throw InaccessibleObjectException but the class is Java 9+-only case re: RuntimeException if re.getClass.getSimpleName == "InaccessibleObjectException" => // do nothing } sizeCount(pointerSize) += 1 } } } // Based on the simulated field layout code in Aleksey Shipilev's report: // http://cr.openjdk.java.net/~shade/papers/2013-shipilev-fieldlayout-latest.pdf // The code is in Figure 9. // The simplified idea of field layout consists of 4 parts (see more details in the report): // // 1. field alignment: HotSpot lays out the fields aligned by their size. // 2. object alignment: HotSpot rounds instance size up to 8 bytes // 3. consistent fields layouts throughout the hierarchy: This means we should layout // superclass first. And we can use superclass's shellSize as a starting point to layout the // other fields in this class. // 4. class alignment: HotSpot rounds field blocks up to HeapOopSize not 4 bytes, confirmed // with Aleksey. see https://bugs.openjdk.java.net/browse/CODETOOLS-7901322 // // The real world field layout is much more complicated. There are three kinds of fields // order in Java 8. And we don't consider the @contended annotation introduced by Java 8. // see the HotSpot classloader code, layout_fields method for more details. // hg.openjdk.java.net/jdk8/jdk8/hotspot/file/tip/src/share/vm/classfile/classFileParser.cpp var alignedSize = shellSize for (size <- fieldSizes if sizeCount(size) > 0) { val count = sizeCount(size).toLong // If there are internal gaps, smaller field can fit in. alignedSize = math.max(alignedSize, alignSizeUp(shellSize, size) + size * count) shellSize += size * count } // Should choose a larger size to be new shellSize and clearly alignedSize >= shellSize, and // round up the instance filed blocks shellSize = alignSizeUp(alignedSize, pointerSize) // Create and cache a new ClassInfo val newInfo = new ClassInfo(shellSize, pointerFields) classInfos.put(cls, newInfo) newInfo } private def alignSize(size: Long): Long = alignSizeUp(size, ALIGN_SIZE) /** * Compute aligned size. The alignSize must be 2^n, otherwise the result will be wrong. * When alignSize = 2^n, alignSize - 1 = 2^n - 1. The binary representation of (alignSize - 1) * will only have n trailing 1s(0b00...001..1). ~(alignSize - 1) will be 0b11..110..0. Hence, * (size + alignSize - 1) & ~(alignSize - 1) will set the last n bits to zeros, which leads to * multiple of alignSize. */ private def alignSizeUp(size: Long, alignSize: Int): Long = (size + alignSize - 1) & ~(alignSize - 1) }
rezasafi/spark
core/src/main/scala/org/apache/spark/util/SizeEstimator.scala
Scala
apache-2.0
15,825
/* * Copyright 2015, by Vladimir Kostyukov and Contributors. * * This file is a part of a Finch library that may be found at * * https://github.com/finagle/finch * * Licensed under the Apache License, Version 2.0 (the "License"); * You may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * * Contributor(s): - */ package io.finch import io.finch.request.ToRequest import java.util.concurrent.ConcurrentHashMap import java.util.concurrent.atomic.AtomicLong import scala.collection.JavaConverters._ import com.twitter.util.Future /** * The ''demo'' project shows the usage of Finch's basic blocks for building a purely functional REST API backend * emulating a set of services working with ''users'' and their ''tickets'' (i.e., cinema tickets). * * The following packages represent the backend: * * - [[demo.model]] - domain model classes: `User` and `Ticket` * - [[demo.reader]] - [[io.finch.request.RequestReader]]s for models * - [[demo.service]] - the application services * - [[demo.endpoint]] - [[io.finch.route.Router]]s for services (endpoints) */ package demo { import com.twitter.finagle.httpx.Request import model._ // A custom request type that wraps an `Request`. // We prefer composition over inheritance. case class AuthRequest(http: Request) object AuthRequest { implicit val toRequest: ToRequest[AuthRequest] = ToRequest[AuthRequest](_.http) } // A thread-safe ids generator. object Id { private val self = new AtomicLong(0) def apply(): Long = self.getAndIncrement } // An abstraction that represents an async interface to a database. object Db { // An underlying map. private val map = new ConcurrentHashMap[Long, User]().asScala def select(id: Long): Future[Option[User]] = map.get(id).toFuture def all: Future[List[User]] = map.values.toList.toFuture def insert(id: Long, u: User): Future[User] = { map += (id -> u) u.toFuture } } }
penland365/finch
demo/src/main/scala/io/finch/demo/package.scala
Scala
apache-2.0
2,397
import _root_.io.gatling.core.scenario.Simulation import ch.qos.logback.classic.{Level, LoggerContext} import io.gatling.core.Predef._ import io.gatling.http.Predef._ import org.slf4j.LoggerFactory import scala.concurrent.duration._ /** * Performance test for the Country entity. */ class CountryGatlingTest extends Simulation { val context: LoggerContext = LoggerFactory.getILoggerFactory.asInstanceOf[LoggerContext] // Log all HTTP requests //context.getLogger("io.gatling.http").setLevel(Level.valueOf("TRACE")) // Log failed HTTP requests //context.getLogger("io.gatling.http").setLevel(Level.valueOf("DEBUG")) val baseURL = Option(System.getProperty("baseURL")) getOrElse """http://127.0.0.1:8080""" val httpConf = http .baseURL(baseURL) .inferHtmlResources() .acceptHeader("*/*") .acceptEncodingHeader("gzip, deflate") .acceptLanguageHeader("fr,fr-fr;q=0.8,en-us;q=0.5,en;q=0.3") .connection("keep-alive") .userAgentHeader("Mozilla/5.0 (Macintosh; Intel Mac OS X 10.10; rv:33.0) Gecko/20100101 Firefox/33.0") val headers_http = Map( "Accept" -> """application/json""" ) val headers_http_authenticated = Map( "Accept" -> """application/json""", "X-CSRF-TOKEN" -> "${csrf_token}" ) val scn = scenario("Test the Country entity") .exec(http("First unauthenticated request") .get("/api/account") .headers(headers_http) .check(status.is(401)) .check(headerRegex("Set-Cookie", "CSRF-TOKEN=(.*); [P,p]ath=/").saveAs("csrf_token"))) .pause(10) .exec(http("Authentication") .post("/api/authentication") .headers(headers_http_authenticated) .formParam("j_username", "admin") .formParam("j_password", "admin") .formParam("remember-me", "true") .formParam("submit", "Login")) .pause(1) .exec(http("Authenticated request") .get("/api/account") .headers(headers_http_authenticated) .check(status.is(200)) .check(headerRegex("Set-Cookie", "CSRF-TOKEN=(.*); [P,p]ath=/").saveAs("csrf_token"))) .pause(10) .repeat(2) { exec(http("Get all countrys") .get("/api/countrys") .headers(headers_http_authenticated) .check(status.is(200))) .pause(10 seconds, 20 seconds) .exec(http("Create new country") .post("/api/countrys") .headers(headers_http_authenticated) .body(StringBody("""{"id":null, "code":"SAMPLE_TEXT", "name":"SAMPLE_TEXT"}""")).asJSON .check(status.is(201)) .check(headerRegex("Location", "(.*)").saveAs("new_country_url"))) .pause(10) .repeat(5) { exec(http("Get created country") .get("${new_country_url}") .headers(headers_http_authenticated)) .pause(10) } .exec(http("Delete created country") .delete("${new_country_url}") .headers(headers_http_authenticated)) .pause(10) } val users = scenario("Users").exec(scn) setUp( users.inject(rampUsers(100) over (1 minutes)) ).protocols(httpConf) }
sandor-balazs/nosql-java
oracle/src/test/gatling/simulations/CountryGatlingTest.scala
Scala
bsd-2-clause
3,308
package com.twitter.rowz import com.twitter.util.Time object RowState extends Enumeration { val Normal, Destroyed = Value } case class Row(id: Long, name: String, createdAt: Time, updatedAt: Time, state: RowState.Value)
twitter/Rowz
src/main/scala/com/twitter/rowz/Row.scala
Scala
apache-2.0
225
package com.jejking.rprng.api import akka.http.scaladsl.marshallers.sprayjson.SprayJsonSupport import akka.http.scaladsl.model.HttpEntity.{Chunk, Chunked} import akka.http.scaladsl.model.{ContentTypes, HttpResponse, StatusCodes} import akka.http.scaladsl.server.ValidationRejection import akka.http.scaladsl.testkit.ScalatestRouteTest import akka.stream.scaladsl.Source import akka.util.ByteString import com.jejking.rprng.rng._ import org.scalamock.scalatest.MockFactory import org.scalatest.concurrent.ScalaFutures import org.scalatest.flatspec.AnyFlatSpec import org.scalatest.matchers.should.Matchers import scala.concurrent.Future /** * Tests for Routes at HTTP API level. */ class RoutesSpec extends AnyFlatSpec with Matchers with ScalaFutures with ScalatestRouteTest with MockFactory with SprayJsonSupport { import RandomIntegerCollectionResponseProtocol.format val oneKb = TestUtils.byteStringOfZeroes(1024) val twoKb = oneKb ++ oneKb "/byte/block" should "return 1024 'random' bytes" in { val mockStreamsHelper = mock[RngStreaming] (mockStreamsHelper.responseForByteBlock _).expects(1024).returning(Future.successful(HttpResponse(entity = oneKb))) val routes = new Routes(mockStreamsHelper) Get("/byte/block") ~> routes.byteRoute ~> check { responseAs[ByteString] shouldEqual oneKb } } "/byte/block/" should "also return 1024 'random' bytes" in { val mockStreamsHelper = mock[RngStreaming] (mockStreamsHelper.responseForByteBlock _).expects(1024).returning(Future.successful(HttpResponse(entity = oneKb))) val routes = new Routes(mockStreamsHelper) Get("/byte/block/") ~> routes.byteRoute ~> check { responseAs[ByteString] shouldEqual oneKb } } "/byte/block/2048" should "return 2048 'random' bytes" in { val mockStreamsHelper = mock[RngStreaming] (mockStreamsHelper.responseForByteBlock _).expects(2048).returning(Future.successful(HttpResponse(entity = twoKb))) val routes = new Routes(mockStreamsHelper) Get("/byte/block/2048") ~> routes.byteRoute ~> check { responseAs[ByteString] shouldEqual twoKb } } "/byte/block/0" should "result in a ValidationRejection" in { val mockStreamsHelper = mock[RngStreaming] (mockStreamsHelper.responseForByteBlock _).expects(*).never() val routes = new Routes(mockStreamsHelper) Get("/byte/block/0") ~> routes.byteRoute ~> check { rejection shouldBe a [ValidationRejection] } } "/byte/block/forty-two" should "be rejected (not matched)" in { val mockStreamsHelper = mock[RngStreaming] (mockStreamsHelper.responseForByteBlock _).expects(*).never() val routes = new Routes(mockStreamsHelper) Get("/byte/block/forty-two") ~> routes.byteRoute ~> check { handled shouldBe false } } "/byte/block/-64" should "be rejected" in { val mockStreamsHelper = mock[RngStreaming] (mockStreamsHelper.responseForByteBlock _).expects(*).never() val routes = new Routes(mockStreamsHelper) Get("/byte/block/-64") ~> routes.byteRoute ~> check { handled shouldBe false } } "/byte/block/" + (Integer.MAX_VALUE + 1L) should "be rejected" in { val mockStreamsHelper = mock[RngStreaming] (mockStreamsHelper.responseForByteBlock _).expects(*).never() val routes = new Routes(mockStreamsHelper) Get("/byte/block/" + (Integer.MAX_VALUE + 1L)) ~> routes.byteRoute ~> check { handled shouldBe false } } "/byte/stream" should "deliver a chunked response" in { val httpResponse = HttpResponse(StatusCodes.OK).withEntity(Chunked(ContentTypes.`application/octet-stream`, Source.single(Chunk(oneKb)))) val mockStreamsHelper = mock[RngStreaming] (mockStreamsHelper.responseForByteStream _).expects(1024).returning(httpResponse) val routes = new Routes(mockStreamsHelper) Get("/byte/stream") ~> routes.byteRoute ~> check { responseEntity.isChunked() shouldBe true whenReady(responseEntity.dataBytes.runFold(ByteString.empty)((acc, in) => acc ++ in)) { bs => bs shouldBe oneKb } } } "/int/list" should "request 1 list of 100 ints between " + Int.MinValue + " and " + Int.MaxValue in { val mockStreamsHelper = mock[RngStreaming] (mockStreamsHelper.responseForIntegerCollection _) .expects(RandomIntegerCollectionRequest(RandomList)) .returning(Future.successful(RandomIntegerCollectionResponse(List(1 to 100)))) val routes = new Routes(mockStreamsHelper) Get("/int/list") ~> routes.intRoute ~> check { handled shouldBe true val resp: RandomIntegerCollectionResponse = responseAs[RandomIntegerCollectionResponse] resp.content should have size 1 resp.content.head should have size 100 } } "/int/list?size=10" should "deliver 1 list of 10 ints between " + Int.MinValue + " and " + Int.MaxValue in { val mockStreamsHelper = mock[RngStreaming] (mockStreamsHelper.responseForIntegerCollection _) .expects(RandomIntegerCollectionRequest(RandomList, size = 10)) .returning(Future.successful(RandomIntegerCollectionResponse(List(1 to 10)))) val routes = new Routes(mockStreamsHelper) Get("/int/list?size=10") ~> routes.intRoute ~> check { handled shouldBe true val resp: RandomIntegerCollectionResponse = responseAs[RandomIntegerCollectionResponse] resp.content should have size 1 resp.content.head should have size 10 } } "/int/list?size=10&count=2" should "deliver 2 lists of 10 ints between " + Int.MinValue + " and " + Int.MaxValue in { val mockStreamsHelper = mock[RngStreaming] (mockStreamsHelper.responseForIntegerCollection _) .expects(RandomIntegerCollectionRequest(RandomList, size = 10, count = 2)) .returning(Future.successful(RandomIntegerCollectionResponse(List(1 to 10, 1 to 10)))) val routes = new Routes(mockStreamsHelper) Get("/int/list?size=10&count=2") ~> routes.intRoute ~> check { handled shouldBe true val resp: RandomIntegerCollectionResponse = responseAs[RandomIntegerCollectionResponse] resp.content should have size 2 resp.content.foreach(it => it should have size 10) } } "/int/list?min=0&max=1000" should "deliver 1 list of 100 ints between 0 and 100" in { val mockStreamsHelper = mock[RngStreaming] (mockStreamsHelper.responseForIntegerCollection _) .expects(RandomIntegerCollectionRequest(RandomList, minBound = 0, maxBound = 100)) .returning(Future.successful(RandomIntegerCollectionResponse(List(1 to 100)))) val routes = new Routes(mockStreamsHelper) Get("/int/list?min=0&max=100") ~> routes.route ~> check { handled shouldBe true val resp: RandomIntegerCollectionResponse = responseAs[RandomIntegerCollectionResponse] resp.content should have size 1 resp.content.head should have size 100 resp.content.head.foreach(i => i should (be >= 0 and be <= 100)) } } "/int/list?size=10&min=100&max=10" should "result in a 400" in { val mockStreamsHelper = mock[RngStreaming] (mockStreamsHelper.responseForIntegerCollection _).expects(*).never() val routes = new Routes(mockStreamsHelper) Get("/int/list?min=100&max=10") ~> routes.route ~> check { response.status shouldBe StatusCodes.BadRequest } } "/int/set" should "give a single set of 100 ints" in { val mockStreamsHelper = mock[RngStreaming] (mockStreamsHelper.responseForIntegerCollection _) .expects(RandomIntegerCollectionRequest(RandomSet)) .returning(Future.successful(RandomIntegerCollectionResponse(Set(1 to 100)))) val routes = new Routes(mockStreamsHelper) Get("/int/set") ~> routes.intRoute ~> check { handled shouldBe true val resp: RandomIntegerCollectionResponse = responseAs[RandomIntegerCollectionResponse] resp.content should have size 1 resp.content.head.toSet should have size 100 } } "/int/set?size=100&min=0&max=50" should "result in a 400" in { val mockStreamsHelper = mock[RngStreaming] (mockStreamsHelper.responseForIntegerCollection _).expects(*).never() val routes = new Routes(mockStreamsHelper) Get("/int/set?size=100&min=0&max=50") ~> routes.route ~> check { response.status shouldBe StatusCodes.BadRequest } } "/png" should "return a default sized png" in { val mockStreamsHelper = mock[RngStreaming] (mockStreamsHelper.responseForPng _).expects(250, 250) val routes = new Routes(mockStreamsHelper) Get("/png") ~> routes.route } "/png?width=100&height=200" should "return a png of width 100 and height 200" in { val mockStreamsHelper = mock[RngStreaming] (mockStreamsHelper.responseForPng _).expects(100, 200) val routes = new Routes(mockStreamsHelper) Get("/png?width=100&height=200") ~> routes.route } "/png?width=100" should "return a png of width 100 and default height" in { val mockStreamsHelper = mock[RngStreaming] (mockStreamsHelper.responseForPng _).expects(100, 250) val routes = new Routes(mockStreamsHelper) Get("/png?width=100") ~> routes.route } "/png?height=50" should "ask for a png of default width and height 50" in { val mockStreamsHelper = mock[RngStreaming] (mockStreamsHelper.responseForPng _).expects(250, 50) val routes = new Routes(mockStreamsHelper) Get("/png?height=50") ~> routes.route } "/png?width=0" should "result in a bad request" in { val mockStreamsHelper = mock[RngStreaming] (mockStreamsHelper.responseForPng _).expects(*, *).never() val routes = new Routes(mockStreamsHelper) Get("/png?width=0") ~> routes.route ~> check { rejection shouldBe a [ValidationRejection] } } "/png?width=-1" should "result in a bad request" in { val mockStreamsHelper = mock[RngStreaming] (mockStreamsHelper.responseForPng _).expects(*, *).never() val routes = new Routes(mockStreamsHelper) Get("/png?width=-1") ~> routes.route ~> check { rejection shouldBe a [ValidationRejection] } } "/png?height=0" should "result in a bad request" in { val mockStreamsHelper = mock[RngStreaming] (mockStreamsHelper.responseForPng _).expects(*, *).never() val routes = new Routes(mockStreamsHelper) Get("/png?height=0") ~> routes.route ~> check { rejection shouldBe a [ValidationRejection] } } "/png?height=-1" should "result in a bad request" in { val mockStreamsHelper = mock[RngStreaming] (mockStreamsHelper.responseForPng _).expects(*, *).never() val routes = new Routes(mockStreamsHelper) Get("/png?height=-1") ~> routes.route ~> check { rejection shouldBe a [ValidationRejection] } } }
jejking/rprng
src/test/scala/com/jejking/rprng/api/RoutesSpec.scala
Scala
apache-2.0
10,673
package io.dylemma.spac package impl import scala.util.control.NonFatal class TopLevelTransformerHandler[In, Out](inner: Transformer.Handler[In, Out], caller: SpacTraceElement) extends Transformer.Handler[In, Out] { def push(in: In, out: Transformer.HandlerWrite[Out]) = { try inner.push(in, out) catch { case NonFatal(e) => throw SpacException.addTrace(SpacException.addEarlyTrace(e, SpacTraceElement.InInput(in)), caller) } } def finish(out: Transformer.HandlerWrite[Out]) = { try inner.finish(out) catch { case NonFatal(e) => throw SpacException.addTrace(SpacException.addEarlyTrace(e, SpacTraceElement.AtInputEnd), caller) } } }
dylemma/xml-spac
core/src/main/scala/io/dylemma/spac/impl/TopLevelTransformerHandler.scala
Scala
mit
652
import io.prediction.controller.LServing class Serving extends LServing[Query, PredictedResult] { override def serve(query: Query, predictedResults: Seq[PredictedResult]): PredictedResult = { predictedResults.maxBy(e => e.confidence) } }
gongsy945/pio-engine-text-classification-heroku
src/main/scala/Serving.scala
Scala
apache-2.0
260
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package water.app import org.apache.spark.{SparkContext, SparkConf} /** * Publish useful method to configure Spark context. */ trait SparkContextSupport { def configure(appName: String = "Sparkling Water Demo"): SparkConf = { val conf = new SparkConf() .setAppName(appName) conf.setIfMissing("spark.master", sys.env.getOrElse("spark.master", "local[*]")) conf } def addFiles(sc: SparkContext, files: String*): Unit = { files.foreach(f => sc.addFile(f)) } def absPath(path: String): String = new java.io.File(path).getAbsolutePath }
printedheart/sparkling-water
core/src/main/scala/water/app/SparkContextSupport.scala
Scala
apache-2.0
1,357