code
stringlengths
5
1M
repo_name
stringlengths
5
109
path
stringlengths
6
208
language
stringclasses
1 value
license
stringclasses
15 values
size
int64
5
1M
package sbt package plugins import sbt.librarymanagement.{ Configuration, Configurations } import Def.Setting /** A plugin representing the ability to build a JVM project. * * Core tasks/keys: * - `run` * - `test` * - `compile` * - `fullClasspath` * Core configurations * - `Test` * - `Compile` */ object JvmPlugin extends AutoPlugin { // We are automatically enabled for any IvyModule project. We also require its settings // for ours to work. override def requires = IvyPlugin override def trigger = allRequirements override lazy val projectSettings: Seq[Setting[_]] = Defaults.runnerSettings ++ Defaults.paths ++ Classpaths.jvmPublishSettings ++ Classpaths.jvmBaseSettings ++ Defaults.projectTasks ++ Defaults.packageBase ++ Defaults.compileBase ++ Defaults.defaultConfigs override lazy val globalSettings: Seq[Setting[_]] = Defaults.globalJvmCore override def projectConfigurations: Seq[Configuration] = Configurations.default }
dansanduleac/sbt
main/src/main/scala/sbt/plugins/JvmPlugin.scala
Scala
bsd-3-clause
1,016
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.spark.sql.streaming import java.util.Locale import scala.collection.JavaConverters._ import org.apache.spark.annotation.{Experimental, InterfaceStability} import org.apache.spark.sql.{AnalysisException, Dataset, ForeachWriter} import org.apache.spark.sql.catalyst.streaming.InternalOutputModes import org.apache.spark.sql.execution.command.DDLUtils import org.apache.spark.sql.execution.datasources.DataSource import org.apache.spark.sql.execution.streaming.{ForeachSink, MemoryPlan, MemorySink} /** * :: Experimental :: * Interface used to write a streaming `Dataset` to external storage systems (e.g. file systems, * key-value stores, etc). Use `Dataset.writeStream` to access this. * * @since 2.0.0 */ @Experimental @InterfaceStability.Evolving final class DataStreamWriter[T] private[sql](ds: Dataset[T]) { private val df = ds.toDF() /** * Specifies how data of a streaming DataFrame/Dataset is written to a streaming sink. * - `OutputMode.Append()`: only the new rows in the streaming DataFrame/Dataset will be * written to the sink * - `OutputMode.Complete()`: all the rows in the streaming DataFrame/Dataset will be written * to the sink every time these is some updates * - `OutputMode.Update()`: only the rows that were updated in the streaming DataFrame/Dataset * will be written to the sink every time there are some updates. If * the query doesn't contain aggregations, it will be equivalent to * `OutputMode.Append()` mode. * * @since 2.0.0 */ def outputMode(outputMode: OutputMode): DataStreamWriter[T] = { this.outputMode = outputMode this } /** * Specifies how data of a streaming DataFrame/Dataset is written to a streaming sink. * - `append`: only the new rows in the streaming DataFrame/Dataset will be written to * the sink * - `complete`: all the rows in the streaming DataFrame/Dataset will be written to the sink * every time these is some updates * - `update`: only the rows that were updated in the streaming DataFrame/Dataset will * be written to the sink every time there are some updates. If the query doesn't * contain aggregations, it will be equivalent to `append` mode. * @since 2.0.0 */ def outputMode(outputMode: String): DataStreamWriter[T] = { this.outputMode = InternalOutputModes(outputMode) this } /** * Set the trigger for the stream query. The default value is `ProcessingTime(0)` and it will run * the query as fast as possible. * * Scala Example: * {{{ * df.writeStream.trigger(ProcessingTime("10 seconds")) * * import scala.concurrent.duration._ * df.writeStream.trigger(ProcessingTime(10.seconds)) * }}} * * Java Example: * {{{ * df.writeStream().trigger(ProcessingTime.create("10 seconds")) * * import java.util.concurrent.TimeUnit * df.writeStream().trigger(ProcessingTime.create(10, TimeUnit.SECONDS)) * }}} * * @since 2.0.0 */ def trigger(trigger: Trigger): DataStreamWriter[T] = { this.trigger = trigger this } /** * Specifies the name of the [[StreamingQuery]] that can be started with `start()`. * This name must be unique among all the currently active queries in the associated SQLContext. * * @since 2.0.0 */ def queryName(queryName: String): DataStreamWriter[T] = { this.extraOptions += ("queryName" -> queryName) this } /** * Specifies the underlying output data source. * * @since 2.0.0 */ def format(source: String): DataStreamWriter[T] = { this.source = source this } /** * Partitions the output by the given columns on the file system. If specified, the output is * laid out on the file system similar to Hive's partitioning scheme. As an example, when we * partition a dataset by year and then month, the directory layout would look like: * * - year=2016/month=01/ * - year=2016/month=02/ * * Partitioning is one of the most widely used techniques to optimize physical data layout. * It provides a coarse-grained index for skipping unnecessary data reads when queries have * predicates on the partitioned columns. In order for partitioning to work well, the number * of distinct values in each column should typically be less than tens of thousands. * * @since 2.0.0 */ @scala.annotation.varargs def partitionBy(colNames: String*): DataStreamWriter[T] = { this.partitioningColumns = Option(colNames) this } /** * Adds an output option for the underlying data source. * * You can set the following option(s): * <ul> * <li>`timeZone` (default session local timezone): sets the string that indicates a timezone * to be used to format timestamps in the JSON/CSV datasources or partition values.</li> * </ul> * * @since 2.0.0 */ def option(key: String, value: String): DataStreamWriter[T] = { this.extraOptions += (key -> value) this } /** * Adds an output option for the underlying data source. * * @since 2.0.0 */ def option(key: String, value: Boolean): DataStreamWriter[T] = option(key, value.toString) /** * Adds an output option for the underlying data source. * * @since 2.0.0 */ def option(key: String, value: Long): DataStreamWriter[T] = option(key, value.toString) /** * Adds an output option for the underlying data source. * * @since 2.0.0 */ def option(key: String, value: Double): DataStreamWriter[T] = option(key, value.toString) /** * (Scala-specific) Adds output options for the underlying data source. * * You can set the following option(s): * <ul> * <li>`timeZone` (default session local timezone): sets the string that indicates a timezone * to be used to format timestamps in the JSON/CSV datasources or partition values.</li> * </ul> * * @since 2.0.0 */ def options(options: scala.collection.Map[String, String]): DataStreamWriter[T] = { this.extraOptions ++= options this } /** * Adds output options for the underlying data source. * * You can set the following option(s): * <ul> * <li>`timeZone` (default session local timezone): sets the string that indicates a timezone * to be used to format timestamps in the JSON/CSV datasources or partition values.</li> * </ul> * * @since 2.0.0 */ def options(options: java.util.Map[String, String]): DataStreamWriter[T] = { this.options(options.asScala) this } /** * Starts the execution of the streaming query, which will continually output results to the given * path as new data arrives. The returned [[StreamingQuery]] object can be used to interact with * the stream. * * @since 2.0.0 */ def start(path: String): StreamingQuery = { option("path", path).start() } /** * Starts the execution of the streaming query, which will continually output results to the given * path as new data arrives. The returned [[StreamingQuery]] object can be used to interact with * the stream. * * @since 2.0.0 */ def start(): StreamingQuery = { if (source.toLowerCase(Locale.ROOT) == DDLUtils.HIVE_PROVIDER) { throw new AnalysisException("Hive data source can only be used with tables, you can not " + "write files of Hive data source directly.") } if (source == "memory") { assertNotPartitioned("memory") if (extraOptions.get("queryName").isEmpty) { throw new AnalysisException("queryName must be specified for memory sink") } val sink = new MemorySink(df.schema, outputMode) val resultDf = Dataset.ofRows(df.sparkSession, new MemoryPlan(sink)) val chkpointLoc = extraOptions.get("checkpointLocation") val recoverFromChkpoint = outputMode == OutputMode.Complete() val query = df.sparkSession.sessionState.streamingQueryManager.startQuery( extraOptions.get("queryName"), chkpointLoc, df, sink, outputMode, useTempCheckpointLocation = true, recoverFromCheckpointLocation = recoverFromChkpoint, trigger = trigger) resultDf.createOrReplaceTempView(query.name) query } else if (source == "foreach") { assertNotPartitioned("foreach") val sink = new ForeachSink[T](foreachWriter)(ds.exprEnc) df.sparkSession.sessionState.streamingQueryManager.startQuery( extraOptions.get("queryName"), extraOptions.get("checkpointLocation"), df, sink, outputMode, useTempCheckpointLocation = true, trigger = trigger) } else { val (useTempCheckpointLocation, recoverFromCheckpointLocation) = if (source == "console") { (true, false) } else { (false, true) } val dataSource = DataSource( df.sparkSession, className = source, options = extraOptions.toMap, partitionColumns = normalizedParCols.getOrElse(Nil)) df.sparkSession.sessionState.streamingQueryManager.startQuery( extraOptions.get("queryName"), extraOptions.get("checkpointLocation"), df, dataSource.createSink(outputMode), outputMode, useTempCheckpointLocation = useTempCheckpointLocation, recoverFromCheckpointLocation = recoverFromCheckpointLocation, trigger = trigger) } } /** * Starts the execution of the streaming query, which will continually send results to the given * `ForeachWriter` as new data arrives. The `ForeachWriter` can be used to send the data * generated by the `DataFrame`/`Dataset` to an external system. * * Scala example: * {{{ * datasetOfString.writeStream.foreach(new ForeachWriter[String] { * * def open(partitionId: Long, version: Long): Boolean = { * // open connection * } * * def process(record: String) = { * // write string to connection * } * * def close(errorOrNull: Throwable): Unit = { * // close the connection * } * }).start() * }}} * * Java example: * {{{ * datasetOfString.writeStream().foreach(new ForeachWriter<String>() { * * @Override * public boolean open(long partitionId, long version) { * // open connection * } * * @Override * public void process(String value) { * // write string to connection * } * * @Override * public void close(Throwable errorOrNull) { * // close the connection * } * }).start(); * }}} * * @since 2.0.0 */ def foreach(writer: ForeachWriter[T]): DataStreamWriter[T] = { this.source = "foreach" this.foreachWriter = if (writer != null) { ds.sparkSession.sparkContext.clean(writer) } else { throw new IllegalArgumentException("foreach writer cannot be null") } this } private def normalizedParCols: Option[Seq[String]] = partitioningColumns.map { cols => cols.map(normalize(_, "Partition")) } /** * The given column name may not be equal to any of the existing column names if we were in * case-insensitive context. Normalize the given column name to the real one so that we don't * need to care about case sensitivity afterwards. */ private def normalize(columnName: String, columnType: String): String = { val validColumnNames = df.logicalPlan.output.map(_.name) validColumnNames.find(df.sparkSession.sessionState.analyzer.resolver(_, columnName)) .getOrElse(throw new AnalysisException(s"$columnType column $columnName not found in " + s"existing columns (${validColumnNames.mkString(", ")})")) } private def assertNotPartitioned(operation: String): Unit = { if (partitioningColumns.isDefined) { throw new AnalysisException(s"'$operation' does not support partitioning") } } /////////////////////////////////////////////////////////////////////////////////////// // Builder pattern config options /////////////////////////////////////////////////////////////////////////////////////// private var source: String = df.sparkSession.sessionState.conf.defaultDataSourceName private var outputMode: OutputMode = OutputMode.Append private var trigger: Trigger = Trigger.ProcessingTime(0L) private var extraOptions = new scala.collection.mutable.HashMap[String, String] private var foreachWriter: ForeachWriter[T] = null private var partitioningColumns: Option[Seq[String]] = None }
MLnick/spark
sql/core/src/main/scala/org/apache/spark/sql/streaming/DataStreamWriter.scala
Scala
apache-2.0
13,567
class SCL5869(private[this] var param:Int) { def <ref>param():Int = this.param def param_= (param:Int) {this.param = param} }
katejim/intellij-scala
testdata/resolve/failed/scope/SCL5869.scala
Scala
apache-2.0
129
/** * Copyright 2015, deepsense.io * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package io.deepsense.deeplang.doperables import org.mockito.Mockito._ import io.deepsense.deeplang.doperables.dataframe.DataFrame import io.deepsense.deeplang.inference.{InferContext, InferenceWarnings} import io.deepsense.deeplang.{DKnowledge, ExecutionContext, UnitSpec} class EvaluatorSpec extends UnitSpec { private def evaluator = { val e = mock[Evaluator] when(e.evaluate) thenCallRealMethod() e } val dataFrame = mock[DataFrame] val metricValue = mock[MetricValue] val execCtx = mock[ExecutionContext] val inferCtx = mock[InferContext] val emptyWarnings = InferenceWarnings.empty "Evaluator" should { "evaluate DataFrame" in { val e = evaluator when(e._evaluate(execCtx, dataFrame)) thenReturn metricValue e.evaluate(execCtx)(())(dataFrame) shouldBe metricValue } "infer knowledge" in { val e = evaluator when(e._infer(DKnowledge(dataFrame))) thenReturn metricValue val (knowledge, warnings) = e.evaluate.infer(inferCtx)(())(DKnowledge(dataFrame)) knowledge.single shouldBe metricValue warnings shouldBe emptyWarnings } } }
deepsense-io/seahorse-workflow-executor
deeplang/src/test/scala/io/deepsense/deeplang/doperables/EvaluatorSpec.scala
Scala
apache-2.0
1,736
/* Copyright (c) 2012, The Children's Hospital of Philadelphia All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ package edu.chop.cbmi.dataExpress.dataWriters.sql import edu.chop.cbmi.dataExpress.backends.SqlBackend import edu.chop.cbmi.dataExpress.exceptions.TableDoesNotExist import collection.mutable.ListBuffer import edu.chop.cbmi.dataExpress.dataModels.{DataType, DataTable, DataRow} import edu.chop.cbmi.dataExpress.dataWriters.{Updater, DataWriter} /** * Created by IntelliJ IDEA. * User: masinoa * Date: 12/16/11 * Time: 12:37 PM * To change this template use File | Settings | File Templates. */ object SqlTableWriter{ val OVERWRITE_OPTION_DROP = 0 val OVERWRITE_OPTION_TRUNCATE = 1 val OVERWRITE_OPTION_APPEND = 2 } case class SqlTableWriter(val backend : SqlBackend, val schema : Option[String] = None, val catalog : String = null) extends DataWriter with Updater{ private def column_names(table_name : String) = { val rs = backend.connection.getMetaData.getColumns(catalog, schema.getOrElse(null), table_name, null) var names = scala.collection.mutable.HashMap.empty[Int,String] if(rs.next){ do{ names += (rs.getInt(17)->rs.getString(4)) }while(rs.next) names.toList.sortBy(_._1).map(_._2) }else throw TableDoesNotExist(table_name) } /** * @param row A DataRow whose column names match columns in the target table, not all columns are required * @return SqlOperationsStatus contains status and primary key of newly inserted row */ override def insert_row[T](table_name:String, row: DataRow[T]) = SqlOperationStatus(true, backend.insertReturningKeys(table_name, row, schema)) /** * @param table A DataTable whose column names match columns in the target table, not all columns are required * @return SqlOperationsStatus contains status and primary keys for each row */ override def insert_rows[T](table_name: String, table: DataTable[T]) = { //TODO for logging it would help to know how many rows were inserted val result = backend.batchInsert(table_name, table, schema) SqlOperationStatus(true) } override def insert_rows[T](table_name: String, rows: Iterable[DataRow[T]]) = { val result = backend.batchInsertRows(table_name, rows.iterator, column_names(table_name), schema) if(result == -1)SqlOperationStatus(false) else SqlOperationStatus(true) } /** * @param f A function that takes a column_name : String and returns the value for that column */ override def insert_row[T](table_name:String, f : (String)=>Option[T]) = SqlOperationStatus(true, backend.insertReturningKeys(table_name, DataRow(apply_f_for_cols(table_name,f): _*), schema)) override def update_row[T](table_name : String, updated_row : DataRow[T], filter : (String,_)*) = SqlOperationStatus(backend.updateRow(table_name, updated_row, filter.toList, schema)) def update_row[T](table_name : String, filter : (String,_)*)(f:(String)=>Option[T]) = SqlOperationStatus(backend.updateRow(table_name, DataRow(apply_f_for_cols(table_name, f):_*), filter.toList, schema)) private def apply_f_for_cols[T](table_name:String, f:(String)=>T) = { val new_row = ListBuffer.empty[(String,T)] column_names(table_name).foreach((name:String)=>{ (f(name) : @unchecked) match{ case Some(t) => new_row += name->t.asInstanceOf[T] case None => {} //row was filtered } }) new_row } override def insert_table[T,G<:DataType](table_name: String, data_types: Seq[G] = Seq.empty[DataType], table: DataTable[T], overwrite_option: Int = SqlTableWriter.OVERWRITE_OPTION_APPEND) = { if(data_types.isEmpty)throw new Exception("data_types list is empty in insert table") else { overwrite_option match { case SqlTableWriter.OVERWRITE_OPTION_DROP => backend.createTable(table_name, table.column_names.toList, data_types.toList, schema) case SqlTableWriter.OVERWRITE_OPTION_TRUNCATE => backend.truncateTable(table_name) case SqlTableWriter.OVERWRITE_OPTION_APPEND =>{} //nothing to do hear case _ => throw new Exception("Unsupported option : " + overwrite_option) } if(table != DataTable.empty) insert_rows(table_name, table) else SqlOperationStatus(true) } } }
chop-dbhi/dataexpress
src/main/scala/edu/chop/cbmi/dataExpress/dataWriters/sql/SqlTableWriter.scala
Scala
bsd-2-clause
5,553
package net.stsmedia.akka.http.models import reactivemongo.bson.{BSONDocument, BSONDocumentReader, BSONDocumentWriter, BSONObjectID} import spray.json._ /** * Created by sschmidt on 14/11/14. */ case class User(id: BSONObjectID, name: String) object User extends DefaultJsonProtocol { implicit object UserReader extends BSONDocumentReader[User] { def read(doc: BSONDocument): User = { val id = doc.getAs[BSONObjectID]("_id").get val name = doc.getAs[String]("name").get User(id, name) } } implicit object UserWriter extends BSONDocumentWriter[User] { override def write(u: User): BSONDocument = BSONDocument { "name" -> u.name } } implicit object UserJsonFormat extends RootJsonFormat[User] { def write(u: User) = JsObject("name" -> JsString(u.name)) def read(value: JsValue) = value match { case JsArray(Vector(JsString(name))) => new User(null, name) case _ => deserializationError("User expected") } } }
stsmedia/akka-http-server
src/main/scala/net/stsmedia/akka/http/models/User.scala
Scala
mit
999
package io.udash.demos.jquery.views.functions import io.udash.demos.jquery.views.FunctionView import io.udash.wrappers.jquery._ import scalatags.JsDom.tags2 /** Based on examples from: <a href="http://api.jquery.com/add/">jQuery Docs</a>. */ object AddView extends FunctionView { import scalatags.JsDom.all._ override protected val content = div(cls := "addview")( h3(".add() & .css()"), tags2.style( """.addview div { | width: 60px; | height: 60px; | margin: 10px; | float: left; |} |.addview p { | clear: left; | font-weight: bold; | font-size: 16px; | color: blue; | margin: 0 10px; | padding: 2px; |}""".stripMargin ), div(), div(), div(), div(), div(), div(), p("Added this... (notice no border)") ).render override protected def script = () => { jQ("div", content).css("border", "2px solid red") .add("p", content) .css("background", "yellow") } }
UdashFramework/scala-js-jquery
example/src/main/scala/io/udash/demos/jquery/views/functions/AddView.scala
Scala
apache-2.0
1,044
/* * Copyright 2001-2013 Artima, Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.scalatest.words import org.scalatest.matchers._ import org.scalatest.enablers._ import org.scalautils._ import org.scalatest.FailureMessages import org.scalatest.UnquotedString import org.scalatest.Resources import scala.collection.GenTraversable import scala.collection.GenSeq import org.scalatest.Matchers.newTestFailedException import org.scalatest.Helper.accessProperty /** * This class is part of the ScalaTest matchers DSL. Please see the documentation for <a href="../Matchers.html"><code>Matchers</code></a> for an overview of * the matchers DSL. * * @author Bill Venners */ final class HaveWord { /** * This method enables the following syntax: * * <pre class="stHighlight"> * book should have length (9) * ^ * </pre> */ def length(expectedLength: Long): MatcherFactory1[Any, Length] = new MatcherFactory1[Any, Length] { def matcher[T <: Any : Length]: Matcher[T] = { val length = implicitly[Length[T]] new Matcher[T] { def apply(left: T): MatchResult = { val lengthOfLeft = length.extentOf(left) MatchResult( lengthOfLeft == expectedLength, // FailureMessages("hadLengthInsteadOfExpectedLength", left, lengthOfLeft, expectedLength), FailureMessages("didNotHaveExpectedLength", left, expectedLength), FailureMessages("hadExpectedLength", left, expectedLength) ) } } } } /** * This method enables the following syntax: * * <pre class="stHighlight"> * book should have size (9) * ^ * </pre> * * <p> * Currently, this method will produce a <code>Matcher[AnyRef]</code>, and if the * <code>AnyRef</code> passed to that matcher's <code>apply</code> method does not have the appropriate <code>size</code> property * structure, all will compile but a <code>TestFailedException</code> will result at runtime explaining the problem. * In a future ScalaTest release, this may be tightened so that all is statically checked at compile time. * </p> */ def size(expectedSize: Long): MatcherFactory1[Any, Size] = new MatcherFactory1[Any, Size] { def matcher[T <: Any : Size]: Matcher[T] = { val length = implicitly[Size[T]] new Matcher[T] { def apply(left: T): MatchResult = { val lengthOfLeft = length.extentOf(left) MatchResult( lengthOfLeft == expectedSize, // FailureMessages("hadSizeInsteadOfExpectedSize", left, lengthOfLeft, expectedSize), FailureMessages("didNotHaveExpectedSize", left, expectedSize), FailureMessages("hadExpectedSize", left, expectedSize) ) } } } } /* new Matcher[AnyRef] { def apply(left: AnyRef): MatchResult = left match { case leftArray: Array[_] => MatchResult( leftArray.length == expectedSize, FailureMessages("didNotHaveExpectedSize", left, expectedSize), FailureMessages("hadExpectedSize", left, expectedSize) ) case leftTrav: GenTraversable[_] => MatchResult( leftTrav.size == expectedSize, FailureMessages("didNotHaveExpectedSize", left, expectedSize), FailureMessages("hadExpectedSize", left, expectedSize) ) case leftJavaList: java.util.List[_] => MatchResult( leftJavaList.size == expectedSize, FailureMessages("didNotHaveExpectedSize", left, expectedSize), FailureMessages("hadExpectedSize", left, expectedSize) ) case _ => accessProperty(left, 'size, false) match { case None => throw newTestFailedException(Resources("noSizeStructure", expectedSize.toString)) case Some(result) => MatchResult( result == expectedSize, FailureMessages("didNotHaveExpectedSize", left, expectedSize), FailureMessages("hadExpectedSize", left, expectedSize) ) } } } */ /** * This method enables the following syntax: * * <pre class="stHighlight"> * book should have (title ("A Tale of Two Cities")) * ^ * </pre> */ def apply[T](firstPropertyMatcher: HavePropertyMatcher[T, _], propertyMatchers: HavePropertyMatcher[T, _]*): Matcher[T] = new Matcher[T] { def apply(left: T): MatchResult = { val results = for (propertyVerifier <- firstPropertyMatcher :: propertyMatchers.toList) yield propertyVerifier(left) val firstFailureOption = results.find(pv => !pv.matches) val justOneProperty = propertyMatchers.length == 0 firstFailureOption match { case Some(firstFailure) => val failedVerification = firstFailure val failureMessage = FailureMessages( "propertyDidNotHaveExpectedValue", UnquotedString(failedVerification.propertyName), failedVerification.expectedValue, failedVerification.actualValue, left ) val midSentenceFailureMessage = FailureMessages( "midSentencePropertyDidNotHaveExpectedValue", UnquotedString(failedVerification.propertyName), failedVerification.expectedValue, failedVerification.actualValue, left ) MatchResult(false, failureMessage, failureMessage, midSentenceFailureMessage, midSentenceFailureMessage) case None => val failureMessage = if (justOneProperty) { val firstPropertyResult = results.head // know this will succeed, because firstPropertyMatcher was required FailureMessages( "propertyHadExpectedValue", UnquotedString(firstPropertyResult.propertyName), firstPropertyResult.expectedValue, left ) } else FailureMessages("allPropertiesHadExpectedValues", left) val midSentenceFailureMessage = if (justOneProperty) { val firstPropertyResult = results.head // know this will succeed, because firstPropertyMatcher was required FailureMessages( "midSentencePropertyHadExpectedValue", UnquotedString(firstPropertyResult.propertyName), firstPropertyResult.expectedValue, left ) } else FailureMessages("midSentenceAllPropertiesHadExpectedValues", left) MatchResult(true, failureMessage, failureMessage, midSentenceFailureMessage, midSentenceFailureMessage) } } } }
svn2github/scalatest
src/main/scala/org/scalatest/words/HaveWord.scala
Scala
apache-2.0
7,653
package com.seanshubin.scala.training.sample.data import com.seanshubin.scala.training.core.Item trait ItemFormatter { def format(item: Item): String }
SeanShubin/scala-training
sample-data/src/main/scala/com/seanshubin/scala/training/sample/data/ItemFormatter.scala
Scala
unlicense
156
import org.eclipse.jetty.server.Server import org.eclipse.jetty.servlet.{ DefaultServlet, ServletContextHandler } import org.eclipse.jetty.webapp.WebAppContext import org.scalatra.servlet.ScalatraListener object JettyLauncher { def main(args: Array[String]) { val port = if(System.getenv("PORT") != null) System.getenv("PORT").toInt else 8080 val server = new Server(port) val context = new WebAppContext() context.setContextPath("/") context.setResourceBase("src/main/webapp") context.addServlet(classOf[edu.depauw.sjss.SJSS], "/*") context.setEventListeners(Array(new ScalatraListener)) server.setHandler(context) server.start server.join } }
DePauwREU2013/sjs-server
src/main/scala/JettyLauncher.scala
Scala
mit
694
package jp.opap.material.data import java.time.LocalDateTime import java.time.format.DateTimeFormatter import com.fasterxml.jackson.core.JsonGenerator import com.fasterxml.jackson.databind.SerializerProvider import com.fasterxml.jackson.databind.module.SimpleModule import com.fasterxml.jackson.databind.ser.std.StdSerializer object JsonSerializers { object AppSerializerModule extends SimpleModule { this.addSerializer(classOf[Seq[_]], new SeqSerializer()) this.addSerializer(classOf[Map[_, _]], new MapSerializer()) this.addSerializer(classOf[LocalDateTime], new LocalDateTimeSerializer()) this.addSerializer(classOf[Option[_]], new OptionSerializer()) // this.addDeserializer(classOf[Option[_]], OptionDeserializer) } class SeqSerializer() extends StdSerializer[Seq[_]](classOf[Seq[_]]) { override def serialize(value: Seq[_], gen: JsonGenerator, provider: SerializerProvider): Unit = { gen.writeStartArray() value.foreach(gen.writeObject) gen.writeEndArray() } } class MapSerializer() extends StdSerializer[Map[_, _]](classOf[Map[_, _]]) { override def serialize(value: Map[_, _], gen: JsonGenerator, provider: SerializerProvider): Unit = { gen.writeStartObject() value.foreach(entry => gen.writeObjectField(entry._1.toString, entry._2)) gen.writeEndObject() } } class LocalDateTimeSerializer() extends StdSerializer[LocalDateTime](classOf[LocalDateTime]) { override def serialize(value: LocalDateTime, gen: JsonGenerator, provider: SerializerProvider): Unit = { gen.writeString(value.format(DateTimeFormatter.ISO_DATE_TIME)) } } class OptionSerializer() extends StdSerializer[Option[_]](classOf[Option[_]]) { override def serialize(value: Option[_], gen: JsonGenerator, provider: SerializerProvider): Unit = { if (value.isDefined) gen.writeString(value.get.toString) else gen.writeNull() } } // object OptionDeserializer extends StdDeserializer[Option[_]](classOf[Option[_]]) { // override def deserialize(p: JsonParser, ctxt: DeserializationContext): Option[_] = ??? // } }
opap-jp/material-explorer
rest/src/main/scala/jp/opap/material/data/JsonSerializers.scala
Scala
mit
2,135
/* *\\ ** Squants ** ** ** ** Scala Quantities and Units of Measure Library and DSL ** ** (c) 2013-2015, Gary Keorkunian ** ** ** \\* */ package squants.energy import squants.electro.{Coulombs, Volts} import squants.mass.{Kilograms, Moles} import squants.motion.{MetersPerSecond, NewtonSeconds, Newtons} import squants.space.{CubicMeters, Meters} import squants.thermal.{JoulesPerKelvin, Kelvin} import squants.time.Hours import squants.{MetricSystem, QuantityParseException} import squants.radio.{WattsPerSquareMeter, BecquerelsPerSquareMeterSecond} import org.scalatest.flatspec.AnyFlatSpec import org.scalatest.matchers.should.Matchers /** * @author garyKeorkunian * @since 0.1 * */ class EnergySpec extends AnyFlatSpec with Matchers { behavior of "Energy and its Units of Measure" it should "create values using UOM factories" in { WattHours(1).toWattHours should be(1) MilliwattHours(1).toMilliwattHours should be(1) KilowattHours(1).toKilowattHours should be(1) MegawattHours(1).toMegawattHours should be(1) GigawattHours(1).toGigawattHours should be(1) Joules(1).toJoules should be(1) Picojoules(1).toPicojoules should be(1) Nanojoules(1).toNanojoules should be(1) Microjoules(1).toMicrojoules should be(1) Millijoules(1).toMillijoules should be(1) Kilojoules(1).toKilojoules should be(1) Megajoules(1).toMegajoules should be(1) Gigajoules(1).toGigajoules should be(1) Terajoules(1).toTerajoules should be(1) BritishThermalUnits(1).toBtus should be(1) MBtus(1).toMBtus should be(1) MMBtus(1).toMMBtus should be(1) Ergs(1).toErgs should be(1) ElectronVolt(1).toeV should be(1) MilliElectronVolt(1).tomeV should be(1) KiloElectronVolt(1).tokeV should be(1) MegaElectronVolt(1).toMeV should be(1) GigaElectronVolt(1).toGeV should be(1) TeraElectronVolt(1).toTeV should be(1) PetaElectronVolt(1).toPeV should be(1) ExaElectronVolt(1).toEeV should be(1) } it should "create values from properly formatted Strings" in { Energy("10.22 J").get should be(Joules(10.22)) Energy("10.22 Wh").get should be(WattHours(10.22)) Energy("10.22 mWh").get should be(MilliwattHours(10.22)) Energy("10.22 kWh").get should be(KilowattHours(10.22)) Energy("10.22 MWh").get should be(MegawattHours(10.22)) Energy("10.22 GWh").get should be(GigawattHours(10.22)) Energy("10.22 Btu").get should be(BritishThermalUnits(10.22)) Energy("10.22 MBtu").get should be(MBtus(10.22)) Energy("10.22 MMBtu").get should be(MMBtus(10.22)) Energy("10.22 erg").get should be(Ergs(10.22)) Energy("10.22 eV").get should be(ElectronVolt(10.22)) Energy("10.22 meV").get should be(MilliElectronVolt(10.22)) Energy("10.22 keV").get should be(KiloElectronVolt(10.22)) Energy("10.22 MeV").get should be(MegaElectronVolt(10.22)) Energy("10.22 GeV").get should be(GigaElectronVolt(10.22)) Energy("10.22 TeV").get should be(TeraElectronVolt(10.22)) Energy("10.22 PeV").get should be(PetaElectronVolt(10.22)) Energy("10.22 EeV").get should be(ExaElectronVolt(10.22)) Energy("10.22 zz").failed.get should be(QuantityParseException("Unable to parse Energy", "10.22 zz")) Energy("ZZ J").failed.get should be(QuantityParseException("Unable to parse Energy", "ZZ J")) } it should "properly convert to all supported Units of Measure" in { val x = WattHours(1) x.toWattHours should be(1) x.toMilliwattHours should be(1 / MetricSystem.Milli) x.toKilowattHours should be(1 / MetricSystem.Kilo) x.toMegawattHours should be(1 / MetricSystem.Mega) x.toGigawattHours should be(1 / MetricSystem.Giga) x.toJoules should be(1 / Joules.conversionFactor) x.toPicojoules should be(1 / Picojoules.conversionFactor) x.toNanojoules should be(1 / Nanojoules.conversionFactor) x.toMicrojoules should be(1 / Microjoules.conversionFactor) x.toMillijoules should be(1 / Millijoules.conversionFactor) x.toKilojoules should be(1 / Kilojoules.conversionFactor) x.toMegajoules should be(1 / Megajoules.conversionFactor) x.toGigajoules should be(1 / Gigajoules.conversionFactor) x.toBtus should be(1 / BritishThermalUnits.conversionFactor) x.toMBtus should be(1 / MBtus.conversionFactor) x.toMMBtus should be(1 / MMBtus.conversionFactor) x.toErgs should be(1 / Ergs.conversionFactor) x.toeV should be(1 / ElectronVolt.conversionFactor) x.tomeV should be(1 / MilliElectronVolt.conversionFactor) x.tokeV should be(1 / KiloElectronVolt.conversionFactor) x.toMeV should be(1 / MegaElectronVolt.conversionFactor) x.toGeV should be(1 / GigaElectronVolt.conversionFactor) x.toTeV should be(1 / TeraElectronVolt.conversionFactor) x.toPeV should be(1 / PetaElectronVolt.conversionFactor) x.toEeV should be(1 / ExaElectronVolt.conversionFactor) ElectronVolt(1).toJoules should be(1.602176565e-19) } it should "return properly formatted strings for all supported Units of Measure" in { WattHours(1).toString(WattHours) should be("1.0 Wh") MilliwattHours(1).toString(MilliwattHours) should be("1.0 mWh") KilowattHours(1).toString(KilowattHours) should be("1.0 kWh") MegawattHours(1).toString(MegawattHours) should be("1.0 MWh") GigawattHours(1).toString(GigawattHours) should be("1.0 GWh") Joules(1).toString(Joules) should be("1.0 J") Picojoules(1).toString(Picojoules) should be("1.0 pJ") Nanojoules(1).toString(Nanojoules) should be("1.0 nJ") Microjoules(1).toString(Microjoules) should be("1.0 µJ") Millijoules(1).toString(Millijoules) should be("1.0 mJ") Kilojoules(1).toString(Kilojoules) should be("1.0 kJ") Megajoules(1).toString(Megajoules) should be("1.0 MJ") Gigajoules(1).toString(Gigajoules) should be("1.0 GJ") Terajoules(1).toString(Terajoules) should be("1.0 TJ") BritishThermalUnits(1).toString(BritishThermalUnits) should be("1.0 Btu") MBtus(1).toString(MBtus) should be("1.0 MBtu") MMBtus(1).toString(MMBtus) should be("1.0 MMBtu") Ergs(1).toString(Ergs) should be ("1.0 erg") ElectronVolt(1).toString(ElectronVolt) should be("1.0 eV") MilliElectronVolt(1).toString(MilliElectronVolt) should be("1.0 meV") KiloElectronVolt(1).toString(KiloElectronVolt) should be("1.0 keV") MegaElectronVolt(1).toString(MegaElectronVolt) should be("1.0 MeV") GigaElectronVolt(1).toString(GigaElectronVolt) should be("1.0 GeV") TeraElectronVolt(1).toString(TeraElectronVolt) should be("1.0 TeV") PetaElectronVolt(1).toString(PetaElectronVolt) should be("1.0 PeV") ExaElectronVolt(1).toString(ExaElectronVolt) should be("1.0 EeV") } it should "return Irradiance when multiplied by ParticleFlux" in { WattHours(1) * BecquerelsPerSquareMeterSecond(1) should be(WattsPerSquareMeter(Hours(1).toSeconds)) } it should "return Power when divided by Time" in { WattHours(1) / Hours(1) should be(Watts(1)) } it should "return Time when divided by Power" in { WattHours(1) / Watts(1) should be(Hours(1)) } it should "return ElectricalPotential when divided by ElectricalCharge" in { Joules(1) / Coulombs(1) should be(Volts(1)) } it should "return Force when divided by Length" in { Joules(1) / Meters(1) should be(Newtons(1)) } it should "return Mass when divided by SpecificEnergy" in { Joules(1) / Grays(1) should be(Kilograms(1)) } it should "return SpecificEnergy when divided by Mass" in { Joules(1) / Kilograms(1) should be(Grays(1)) } it should "return Volume when divided by EnergyDensity" in { Joules(1) / JoulesPerCubicMeter(1) should be(CubicMeters(1)) } it should "return EnergyDensity when divided by Volume" in { Joules(1) / CubicMeters(1) should be(JoulesPerCubicMeter(1)) } it should "return ThermalCapacity when divided by Temperature" in { Joules(10) / JoulesPerKelvin(4) should be(Kelvin(2.5)) } it should "return Temperature when divided by ThermalCapacity" in { Joules(10) / Kelvin(2) should be(JoulesPerKelvin(5)) } it should "return MolarEnergy when divided by ChemicalAmount" in { Joules(10) / Moles(2) should be(JoulesPerMole(5)) } behavior of "KineticEnergyCalculations" it should "calculate Kinetic Energy from Mass and Velocity" in { KineticEnergy(Kilograms(10), MetersPerSecond(5)) should be(Joules(125)) KineticEnergy(Kilograms(5), MetersPerSecond(10)) should be(Joules(250)) } it should "calculate Kinetic Energy from Mass and Momentum" in { KineticEnergy(Kilograms(10), NewtonSeconds(5)) should be(Joules(.25)) KineticEnergy(Kilograms(5), NewtonSeconds(10)) should be(Joules(1)) } behavior of "EnergyConversions" it should "provide aliases for single unit values" in { import EnergyConversions._ wattHour should be(WattHours(1)) Wh should be(WattHours(1)) milliwattHour should be(MilliwattHours(1)) mWh should be(MilliwattHours(1)) kilowattHour should be(KilowattHours(1)) kWh should be(KilowattHours(1)) megawattHour should be(MegawattHours(1)) MWh should be(MegawattHours(1)) gigawattHour should be(GigawattHours(1)) GWh should be(GigawattHours(1)) joule should be(Joules(1)) picojoule should be(Picojoules(1)) nanojoule should be(Nanojoules(1)) microjoule should be(Microjoules(1)) millijoule should be(Millijoules(1)) kilojoule should be(Kilojoules(1)) megajoule should be(Megajoules(1)) gigajoule should be(Gigajoules(1)) terajoule should be(Terajoules(1)) btu should be(BritishThermalUnits(1)) btuMultiplier should be(0.2930710701722222) eV should be(ElectronVolt(1)) meV should be(MilliElectronVolt(1)) keV should be(KiloElectronVolt(1)) MeV should be(MegaElectronVolt(1)) GeV should be(GigaElectronVolt(1)) TeV should be(TeraElectronVolt(1)) PeV should be(PetaElectronVolt(1)) EeV should be(ExaElectronVolt(1)) } it should "provide implicit conversion from Double" in { import EnergyConversions._ val d = 10D d.Wh should be(WattHours(d)) d.mWh should be(MilliwattHours(d)) d.kWh should be(KilowattHours(d)) d.MWh should be(MegawattHours(d)) d.GWh should be(GigawattHours(d)) d.wattHours should be(WattHours(d)) d.kilowattHours should be(KilowattHours(d)) d.megawattHours should be(MegawattHours(d)) d.gigawattHours should be(GigawattHours(d)) d.J should be(Joules(d)) d.joules should be(Joules(d)) d.picojoules should be(Picojoules(d)) d.nanojoules should be(Nanojoules(d)) d.microjoules should be(Microjoules(d)) d.milljoules should be(Millijoules(d)) d.kilojoules should be(Kilojoules(d)) d.megajoules should be(Megajoules(d)) d.gigajoules should be(Gigajoules(d)) d.Btu should be(BritishThermalUnits(d)) d.MBtu should be(MBtus(d)) d.MMBtu should be(MMBtus(d)) d.ergs should be(Ergs(d)) d.eV should be(ElectronVolt(d)) d.meV should be(MilliElectronVolt(d)) d.keV should be(KiloElectronVolt(d)) d.MeV should be(MegaElectronVolt(d)) d.GeV should be(GigaElectronVolt(d)) d.TeV should be(TeraElectronVolt(d)) d.PeV should be(PetaElectronVolt(d)) d.EeV should be(ExaElectronVolt(d)) } it should "provide implicit conversions from String" in { import EnergyConversions._ "10.22 J".toEnergy.get should be(Joules(10.22)) "10.22 Wh".toEnergy.get should be(WattHours(10.22)) "10.22 mWh".toEnergy.get should be(MilliwattHours(10.22)) "10.22 kWh".toEnergy.get should be(KilowattHours(10.22)) "10.22 MWh".toEnergy.get should be(MegawattHours(10.22)) "10.22 GWh".toEnergy.get should be(GigawattHours(10.22)) "10.22 Btu".toEnergy.get should be(BritishThermalUnits(10.22)) "10.22 MBtu".toEnergy.get should be(MBtus(10.22)) "10.22 MMBtu".toEnergy.get should be(MMBtus(10.22)) "10.22 erg".toEnergy.get should be(Ergs(10.22)) "10.22 eV".toEnergy.get should be(ElectronVolt(10.22)) "10.22 meV".toEnergy.get should be(MilliElectronVolt(10.22)) "10.22 keV".toEnergy.get should be(KiloElectronVolt(10.22)) "10.22 MeV".toEnergy.get should be(MegaElectronVolt(10.22)) "10.22 GeV".toEnergy.get should be(GigaElectronVolt(10.22)) "10.22 TeV".toEnergy.get should be(TeraElectronVolt(10.22)) "10.22 PeV".toEnergy.get should be(PetaElectronVolt(10.22)) "10.22 EeV".toEnergy.get should be(ExaElectronVolt(10.22)) "10.22 zz".toEnergy.failed.get should be(QuantityParseException("Unable to parse Energy", "10.22 zz")) "ZZ J".toEnergy.failed.get should be(QuantityParseException("Unable to parse Energy", "ZZ J")) } it should "provide Numeric support" in { import EnergyConversions.EnergyNumeric val es = List(WattHours(100), KilowattHours(1)) es.sum should be(KilowattHours(1.1)) } }
typelevel/squants
shared/src/test/scala/squants/energy/EnergySpec.scala
Scala
apache-2.0
13,235
/** * Copyright 2016 Rackspace US, Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package com.rackspace.identity.components import java.io.ByteArrayOutputStream import java.io.File import javax.xml.xpath.XPathExpression import javax.xml.xpath.XPathConstants import javax.xml.xpath.XPathException import javax.xml.transform.Source import javax.xml.transform.stream.StreamSource import javax.xml.transform.dom.DOMSource import com.rackspace.com.papi.components.checker.util.XMLParserPool._ import com.rackspace.com.papi.components.checker.util.ImmutableNamespaceContext import com.rackspace.com.papi.components.checker.util.XPathExpressionPool._ import org.junit.runner.RunWith import org.scalatest.junit.JUnitRunner import org.scalatest.FunSuite import net.sf.saxon.s9api._ import net.sf.saxon.Configuration.LicenseFeature._ import com.fasterxml.jackson.databind.JsonNode import com.fasterxml.jackson.databind.ObjectMapper import org.scalatest.exceptions.TestFailedException import org.w3c.dom.Document @RunWith(classOf[JUnitRunner]) class ExtractExtensionSuite extends AttributeMapperBase with XPathAssertions { val testDir = new File("src/test/resources/tests/extract-extn-tests") val tests : List[File] = testDir.listFiles.toList.filter(f => { f.toString.endsWith("xml") }) val authXMLSample = new File("src/test/resources/samples/AuthenticateResponseSAML.xml") val authJSONSample = new File("src/test/resources/samples/AuthenticateResponseSAML.json") type ExtractTestXML = (File /* assertion */, String /* validation engine */) => Source /* Resulting extensions */ def runTestsXML(description : String, extractTest : ExtractTestXML) : Unit = { tests.foreach( assertFile => { val asserterExec = getAsserterExec(new StreamSource(assertFile)) validators.foreach (v => { test (s"$description ($assertFile validated with $v)") { var docBuilder : javax.xml.parsers.DocumentBuilder = null try { docBuilder = borrowParser val outDoc = docBuilder.newDocument val domDest = new DOMDestination(outDoc) val newExt = extractTest(assertFile, v) val asserter = AttributeMapper.getXsltTransformer(asserterExec) asserter.setSource(newExt) asserter.setDestination(domDest) asserter.transform() assert(outDoc) } finally { if (docBuilder != null) returnParser(docBuilder) } } }) }) } type ExtractTestJSON = (File /* assertion */, String /* validation engine */) => String /* Resulting JSON as string */ def runTestsJSON(description : String, extractTest : ExtractTestJSON) : Unit = { tests.foreach( assertFile => { val asserterExec = getAsserterJsonExec(new StreamSource(assertFile)) validators.foreach (v => { test (s"$description ($assertFile validated with $v)") { var docBuilder : javax.xml.parsers.DocumentBuilder = null try { docBuilder = borrowParser val outDoc = docBuilder.newDocument val domDest = new DOMDestination(outDoc) val newExt = extractTest(assertFile, v) val asserter = AttributeMapper.getXQueryEvaluator(asserterExec, Map[QName,XdmValue](new QName("__JSON__") -> new XdmAtomicValue(newExt))) asserter.setDestination(domDest) asserter.run() assert(outDoc) } finally { if (docBuilder != null) returnParser(docBuilder) } } }) }) } // // Register namespaces for xpath asserts // register("ks","http://docs.openstack.org/identity/api/v2.0") register("rax-auth","http://docs.rackspace.com/identity/api/ext/RAX-AUTH/v1.0") runTestsXML("XML Extended Attributes", (assertFile : File, v : String) => { println (s"Getting extended attributes in XML from $assertFile") // scalastyle:ignore val dest = new XdmDestination AttributeMapper.extractExtendedAttributes (new StreamSource(assertFile), dest, false, true, v) dest.getXdmNode.asSource }) // // Some simple spot assertions to make sure we didn't muck with the // auth response after we modified it. // def accessXMLAssertions(doc : Document) : Unit = { assert(doc, "/ks:access") // spot check token assert(doc, "/ks:access/ks:token[@id='aaaaa-bbbbb-ccccc-dddd']") assert(doc, "/ks:access/ks:token/ks:tenant[@id='12345']") assert(doc, "/ks:access/ks:token/rax-auth:authenticatedBy/rax-auth:credential = 'FEDERATED'") // spot check user assert(doc, "/ks:access/ks:user[@id='161418']") assert(doc, "/ks:access/ks:user[@id='161418']/ks:roles/ks:role[1]/@id = '3'") assert(doc, "/ks:access/ks:user[@id='161418']/ks:roles/ks:role[1]/@name = 'identity:default'") assert(doc, "/ks:access/ks:user[@id='161418']/ks:roles/ks:role[2]/@id = '208'") assert(doc, "/ks:access/ks:user[@id='161418']/ks:roles/ks:role[2]/@name = 'nova:admin'") // spot check catalog assert(doc, """/ks:access/ks:serviceCatalog/ks:service[@type='rax:database']/ks:endpoint[@region='DFW']/@publicURL = 'https://dfw.databases.api.rackspacecloud.com/v1.0/12345' """) assert(doc, """/ks:access/ks:serviceCatalog/ks:service[@type='rax:monitor']/ks:endpoint/@publicURL = 'https://monitoring.api.rackspacecloud.com/v1.0/12345' """) assert(doc, """/ks:access/ks:serviceCatalog/ks:service[@type='compute' and @name='cloudServers']/ks:endpoint/@publicURL = 'https://servers.api.rackspacecloud.com/v1.0/12345' """) assert(doc, """/ks:access/ks:serviceCatalog/ks:service[@type='compute' and @name='cloudServersOpenStack']/ks:endpoint[@region='DFW']/@publicURL = 'https://dfw.servers.api.rackspacecloud.com/v2/12345' """) } // // Some simple spot assertions to make sure we didn't muck with the // auth response after we modified it. // def accessJSONAssertions(node : JsonNode) : Unit = { assert (node, "exists($_?access)") // // spot check token // assert (node, "$_?access?token?id = 'aaaaa-bbbbb-ccccc-dddd'") assert (node, "$_?access?token?tenant?id = '12345'") assert (node, "$_?access?token?('RAX-AUTH:authenticatedBy')?*[1] = 'FEDERATED'") // spot check user assert (node, "$_?access?user?id = '161418'") assert (node, "$_?access?user?roles?1?id = '3'") assert (node, "$_?access?user?roles?1?name = 'identity:default'") assert (node, "$_?access?user?roles?2?id = '208'") assert (node, "$_?access?user?roles?2?name = 'nova:admin'") // spot check catalog assert (node, """$_?access?serviceCatalog?*[?type='rax:database']?endpoints?*[?region='DFW']?publicURL = 'https://dfw.databases.api.rackspacecloud.com/v1.0/12345'""") assert (node, """$_?access?serviceCatalog?*[?type='rax:monitor']?endpoints?1?publicURL = 'https://monitoring.api.rackspacecloud.com/v1.0/12345'""") assert (node, """$_?access?serviceCatalog?*[?type='compute' and ?name='cloudServers']?endpoints?1?publicURL = 'https://servers.api.rackspacecloud.com/v1.0/12345'""") assert (node, """$_?access?serviceCatalog?*[?type='compute' and ?name='cloudServersOpenStack']?endpoints?*[?region='DFW']?publicURL = 'https://dfw.servers.api.rackspacecloud.com/v2/12345'""") } def shouldBeEmptyExtensions(assert : Source) : Boolean = { val nsContext = ImmutableNamespaceContext(Map[String,String]()) val xpathString = "//processing-instruction()[name() ='noExt']" val XPATH_VERSION = 31 var exp : XPathExpression = null try { exp = borrowExpression(xpathString,nsContext, XPATH_VERSION) exp.evaluate (assert, XPathConstants.BOOLEAN).asInstanceOf[Boolean] } catch { case xpe : XPathException => throw new TestFailedException (s"Error in XPath $xpathString", xpe, 4) // scalastyle:ignore case tf : TestFailedException => throw tf case unknown : Throwable => throw new TestFailedException(s"Unknown error in XPath $xpathString", 4) // scalastyle:ignore } finally { if (exp != null) returnExpression (xpathString, nsContext, XPATH_VERSION, exp) } } // // Validates an auth result with a possible auth extension and // returns the extension (if one exists) or the original if one // doesn't. // def validateAuthExtensions (authExt : Document, assertion : Source) : Source = { var docBuilder : javax.xml.parsers.DocumentBuilder = null var outDoc2 : Document = null try { docBuilder = borrowParser outDoc2 = docBuilder.newDocument } finally { if (docBuilder != null) returnParser(docBuilder) } // // Asserts on destination // accessXMLAssertions(authExt) // // Empty assert // if (shouldBeEmptyExtensions(assertion)) { assert(authExt,"empty(/ks:access/rax-auth:extendedAttributes)") } else { assert(authExt,"not(empty(/ks:access/rax-auth:extendedAttributes))") assert(authExt,"count(/ks:access/rax-auth:extendedAttributes) = 1") } // // Extract and return extensions // val extnNode = authExt.getElementsByTagNameNS("http://docs.rackspace.com/identity/api/ext/RAX-AUTH/v1.0", "extendedAttributes").item(0) if (extnNode != null) { val newExtn = outDoc2.importNode (extnNode, true) outDoc2.appendChild(newExtn) new DOMSource(outDoc2) } else { new DOMSource(authExt) } } // // Validates an auth result with a possible auth extension and // returns the extension (if one exists) or the original if one // doesn't. // def validateAuthExtensions (authExt : JsonNode, assertion : Source) : String = { val om = new ObjectMapper // // Asserts on destination // accessJSONAssertions(authExt) // // Empty assert // if (shouldBeEmptyExtensions(assertion)) { assert(authExt,"empty($_?access?('RAX-AUTH:extendedAttributes'))") } else { assert(authExt,"exists($_?access?('RAX-AUTH:extendedAttributes'))") } om.writeValueAsString(authExt.get("access")) } runTestsXML("XML Extended Attributes -- built into request (combine call)", (assertFile : File, v : String) => { println (s"Adding extended attributes in XML from $assertFile") // scalastyle:ignore var docBuilder : javax.xml.parsers.DocumentBuilder = null try { docBuilder = borrowParser val outDoc = docBuilder.newDocument val accessDest = new DOMDestination(outDoc) AttributeMapper.addExtendedAttributes (new StreamSource(authXMLSample), new StreamSource(assertFile), accessDest, false, true, v) validateAuthExtensions (outDoc, new StreamSource(assertFile)) } finally { if (docBuilder != null) returnParser(docBuilder) } }) runTestsXML("XML Extended Attributes -- built into request (doc assert, doc result)", (assertFile : File, v : String) => { println (s"Adding extended attributes in XML from $assertFile") // scalastyle:ignore var docBuilder : javax.xml.parsers.DocumentBuilder = null try { docBuilder = borrowParser val assert = docBuilder.parse(assertFile) val outDoc = AttributeMapper.addExtendedAttributes (new StreamSource(authXMLSample), assert, true, v) validateAuthExtensions (outDoc, new DOMSource(assert)) } finally { if (docBuilder != null) returnParser(docBuilder) } }) runTestsXML("XML Extended Attributes -- built into request (doc auth, doc assert, doc result)", (assertFile : File, v : String) => { println (s"Adding extended attributes in XML from $assertFile") // scalastyle:ignore var docBuilder : javax.xml.parsers.DocumentBuilder = null try { docBuilder = borrowParser val assert = docBuilder.parse(assertFile) val authResp = docBuilder.parse(authXMLSample) val outDoc = AttributeMapper.addExtendedAttributes (authResp, assert, true, v) validateAuthExtensions (outDoc, new DOMSource(assert)) } finally { if (docBuilder != null) returnParser(docBuilder) } }) runTestsXML("XML Extended Attributes -- built into request (xml source call)", (assertFile : File, v : String) => { println (s"Adding extended attributes in XML from $assertFile") // scalastyle:ignore var docBuilder : javax.xml.parsers.DocumentBuilder = null try { docBuilder = borrowParser val outDoc = docBuilder.newDocument val accessDest = new DOMDestination(outDoc) AttributeMapper.addExtendedAttributes (new StreamSource(authXMLSample), new StreamSource(assertFile), accessDest, true, v) validateAuthExtensions (outDoc, new StreamSource(assertFile)) } finally { if (docBuilder != null) returnParser(docBuilder) } }) runTestsJSON("JSON Extended Attributes", (assertFile : File, v : String) => { println (s"Getting extended attributes in JSON from $assertFile") // scalastyle:ignore val bout = new ByteArrayOutputStream val dest = AttributeMapper.processor.newSerializer(bout) AttributeMapper.extractExtendedAttributes(new StreamSource(assertFile), dest, true, true, v) bout.toString("UTF-8") }) runTestsJSON("JSON Extended Attributes (JsonNode)", (assertFile : File, v : String) => { println (s"Getting extended attributes in JSON from $assertFile") // scalastyle:ignore val om = new ObjectMapper val node = AttributeMapper.extractExtendedAttributes(new StreamSource(assertFile), true, v) om.writeValueAsString(node) }) runTestsJSON("JSON Extended Attributes -- built into request (combine call)", (assertFile : File, v : String) => { println (s"Getting extended attributes in JSON from $assertFile") // scalastyle:ignore val om = new ObjectMapper val bout = new ByteArrayOutputStream val dest = AttributeMapper.processor.newSerializer(bout) AttributeMapper.addExtendedAttributes(new StreamSource (authJSONSample), new StreamSource(assertFile), dest, true, true, v) val node = om.readTree (bout.toString("UTF-8")) validateAuthExtensions(node, new StreamSource(assertFile)) }) runTestsJSON("JSON Extended Attributes -- built into request (authResp as JsonNode, return JsonNode)", (assertFile : File, v : String) => { println (s"Getting extended attributes in JSON from $assertFile") // scalastyle:ignore val om = new ObjectMapper val node = AttributeMapper.addExtendedAttributes(om.readTree (authJSONSample), new StreamSource(assertFile), true, v) validateAuthExtensions(node, new StreamSource(assertFile)) }) runTestsJSON("JSON Extended Attributes -- built into request (authResp as streamSource, return JsonNode)", (assertFile : File, v : String) => { println (s"Getting extended attributes in JSON from $assertFile") // scalastyle:ignore val node = AttributeMapper.addExtendedAttributes(new StreamSource (authJSONSample), new StreamSource(assertFile), true, v) validateAuthExtensions(node, new StreamSource(assertFile)) }) runTestsJSON("JSON Extended Attributes -- built into request (authResp as JsonNode, assert as Doc, return JsonNode)", (assertFile : File, v : String) => { println (s"Getting extended attributes in JSON from $assertFile") // scalastyle:ignore var docBuilder : javax.xml.parsers.DocumentBuilder = null try { docBuilder = borrowParser val om = new ObjectMapper val assert = docBuilder.parse(assertFile) val node = AttributeMapper.addExtendedAttributes(om.readTree (authJSONSample), assert, true, v) validateAuthExtensions(node, new StreamSource(assertFile)) } finally { if (docBuilder != null) returnParser(docBuilder) } }) }
RackerWilliams/attributeMapping
core/src/test/scala/com/rackspace/identity/components/ExtractExtensionSuite.scala
Scala
apache-2.0
16,903
package com.twitter.finatra.http.tests.integration.doeverything.main.services import com.google.inject.assistedinject.Assisted import com.twitter.inject.annotations.Flag import javax.inject.{Inject, Named} import com.twitter.util.Duration class ComplexService @Inject() ( exampleService: DoEverythingService, defaultString: String, @Named("str1") string1: String, @Named("str2") string2: String, defaultInt: Int, @Flag("moduleDuration") duration1: Duration, @Assisted name: String) { assert(defaultString == "" || defaultString == "default string") assert(string1 != null) assert(string2 != null) assert(defaultInt == 0 || defaultInt == 11) def execute: String = exampleService.doit + " " + name + " " + duration1.inMillis }
twitter/finatra
http-server/src/test/scala/com/twitter/finatra/http/tests/integration/doeverything/main/services/ComplexService.scala
Scala
apache-2.0
753
/* * * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * http://www.apache.org/licenses/LICENSE-2.0 * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * */ package org.xdata.analytics.spark.micropathing import java.lang.{Double => JavaDouble} import java.awt.geom.Point2D import java.util.Properties import java.util.ArrayList; import scala.annotation.serializable import scala.collection.mutable.ListBuffer import org.joda.time.DateTime import com.oculusinfo.binning.TileData import com.oculusinfo.binning.TileIndex import com.oculusinfo.binning.impl.WebMercatorTilePyramid import com.oculusinfo.tilegen.tiling.StandardDoubleBinDescriptor import com.oculusinfo.tilegen.tiling.StandardDoubleArrayBinDescriptor import com.oculusinfo.tilegen.tiling.HBaseTileIO import com.oculusinfo.tilegen.tiling.LocalTileIO import org.apache.spark.SparkContext import org.apache.spark.rdd.RDD /** * Executes all stages of micro pathing analytic. * * Extend this trait and override the readInput method (or use an available class) * */ trait MicroPathEngine { var inputPath = "" var outputPath = "" var idCol = -1 var latCol = -1 var lonCol = -1 var dateTimeCol = -1 var dateCol = -1 var timeCol = -1 var columnSeperator = "" def run(config:Properties) = { checkConf(config) readStandardConfProperties(config) val sc = setup(config) val triplineConf = getMicroPathConf(config) val data = readInput(sc,config,triplineConf) val paths = processPaths(sc,config,triplineConf,data) execute(sc,paths,config,triplineConf) } /** * enforce required conf file properties */ def checkConf(conf:Properties){ } def readStandardConfProperties(conf:Properties) = { inputPath = conf.getProperty("input.path") outputPath = conf.getProperty("output.path") idCol = conf.getProperty("col.id","0").toInt latCol = conf.getProperty("col.lat","1").toInt lonCol = conf.getProperty("col.lon","2").toInt dateTimeCol = conf.getProperty("col.datetime","-1").toInt dateCol = conf.getProperty("col.date","-1").toInt timeCol = conf.getProperty("col.time","-1").toInt columnSeperator = conf.getProperty("col.seperator",0x1.toChar.toString) // default hive field terminator } /** * Create the trip line analytic configuration from the given properties file */ def getMicroPathConf(conf:Properties) = { val timeFilter = conf.getProperty("time.filter",Int.MaxValue.toString).toInt val distanceFilter = conf.getProperty("distance.filter",Int.MaxValue.toString).toInt val lowerLat = conf.getProperty("lower.lat","-90.0").toDouble val lowerLon = conf.getProperty("lower.lon","-180.0").toDouble val upperLat = conf.getProperty("upper.lat","90.0").toDouble val upperLon = conf.getProperty("upper.lon","179.999999").toDouble val regionWidth = conf.getProperty("tripline.region.width","100000.0").toDouble val regionHeight = conf.getProperty("tripline.region.height","100000.0").toDouble val velocityFilter = conf.getProperty("velocity.filter","-1.0").toDouble new MicroPathConfig(timeFilter, distanceFilter, velocityFilter, lowerLat, lowerLon, upperLat, upperLon, regionWidth, regionHeight) } /** * Create the spark context from the properties file. */ def setup(config:Properties): SparkContext = { val default_parallelism = config.getProperty("default_parallelism","8").toInt val frameSize = config.getProperty("spark.akka.frameSize","200") val master_uri = config.getProperty("master_uri","local") val spark_home = config.getProperty("SPARK_HOME","") val deploymentCodePaths = config.getProperty("deployment_path","").split(":") val jobName = config.getProperty("job.name","SparkMicroPathing") // System.setProperty("spark.executor.memory", "6G") System.setProperty("spark.default.parallelism",default_parallelism.toString) println("spark.default.parallelism "+default_parallelism.toString) System.setProperty("spark.akka.frameSize",frameSize) println("spark.akka.frameSize "+frameSize) System.setProperty("spark.storage.memoryFraction", "0.5") println("spark.storage.memoryFraction 0.5") System.setProperty("spark.worker.timeout", "30000") System.setProperty("spark.akka.timeout", "30000") System.setProperty("spark.storage.blockManagerHeartBeatMs", "30000") val checkPointDir = config.getProperty("checkpoint.dir","/tmp/checkpoints") println("check point dir: "+checkPointDir) System.setProperty("spark.serializer", "org.apache.spark.serializer.KryoSerializer") //System.setProperty("spark.kryo.registrator", "org.xdata.analytics.spark.micropathing.TriplineDataRegistrator") val sc:SparkContext = if (master_uri.indexOf("local") == 0) new SparkContext( master_uri, jobName) else new SparkContext( master_uri, jobName, spark_home, deploymentCodePaths) sc.setCheckpointDir(checkPointDir, true) return sc } /** * Read input data into an RDD[MicroPathInputRow] * * OVERRIDE this method to read you input data. Ensure you filter out data that is not inside the test region. * */ def readInput(sc:SparkContext,config:Properties,triplineConf:MicroPathConfig) :RDD[(String,DateTime,Double,Double)] /** * Convert the raw input data into paths, and cache for future use. */ def processPaths(sc:SparkContext,config:Properties,triplineConf:MicroPathConfig,data:RDD[(String,DateTime,Double,Double)]) : RDD[(Point2D.Double,Point2D.Double,Double)] = { val pathRDD = data.groupBy(_._1) .flatMap( {case (id,dataSeq) => val buffer = new ListBuffer[(Point2D.Double,Point2D.Double,Double)] val sorted = dataSeq.sortWith({case(row1,row2) => row1._2.compareTo(row2._2) < 0 }) var prevPoint : Point2D.Double = null var prevTime :DateTime = null for (row <- sorted){ val currentPoint = new Point2D.Double(row._3,row._4) val currentTime = row._2 if (prevPoint != null){ val distance = MicroPathUtilities.getDistance(prevPoint,currentPoint) val timeDelta = MicroPathUtilities.getTimeDelta(currentTime,prevTime) val velocity = MicroPathUtilities.getVelocity(distance,timeDelta) if ( distance > 0 && distance < triplineConf.distanceFilter && timeDelta < triplineConf.timeFilter && (velocity < triplineConf.velocityFilter || triplineConf.velocityFilter < 0) ){ buffer += ((prevPoint,currentPoint,velocity)) } } prevPoint = currentPoint prevTime = currentTime } buffer }).cache // cache the paths as they will be used multiple times (once for each level) //pathRDD.checkpoint return pathRDD } /** * Execute the analytic and return weighted coordinates. */ def execute(sc:SparkContext,paths:RDD[(Point2D.Double,Point2D.Double,Double)],config:Properties,triplineConf:MicroPathConfig) = { val maxLevel = config.getProperty("mercator.level","1").toInt var name = config.getProperty("avro.output.name","unkown") var desc = config.getProperty("avro.output.desc","unknown") val datastore = config.getProperty("avro.data.store","local") println("paths: " + paths.count()) for (level <- 1 to maxLevel){ val t1 = System.currentTimeMillis() /* val decay = config.getProperty("velocity.filter.decay","-1.0").toDouble val filteredPaths = if (decay >0 && decay < 1 && level > 0) paths.filter({case (p1,p2,v) => v < (math.pow(decay,level-1)*triplineConf.velocityFilter) || triplineConf.velocityFilter < 0 }) else paths */ val tileRDD = paths.flatMap( {case(p1,p2,v)=> MicroPathUtilities.findPath(p1,p2,level)}) .groupBy({case ((tileX,tileY,binX,binY)) => (tileX,tileY) }) .map({case (tilePoint,dataSeq) => val freqs = new Array[Double](256*256) for ((tileX,tileY,binX,binY) <- dataSeq){ val index = binX+(binY*256) freqs(index) += 1 } var tileData = new ArrayList[JavaDouble](256*256) for (freq <- freqs) { tileData.add(freq) } // TODO - do an additional aggregation step on bins here. check to see if visual is better // END val tileIndex = new TileIndex(level,tilePoint._1,tilePoint._2) new TileData[JavaDouble](tileIndex, tileData) }) // tileRDD.cache // cache before writing to ensure computation of RDD is not repeated. val pyramider = new WebMercatorTilePyramid() var io = if (datastore =="hbase") new HBaseTileIO(config.getProperty("hbase.zookeeper.quorum"), config.getProperty("hbase.zookeeper.port"), config.getProperty("hbase.master")) else new LocalTileIO("avro") var binDesc = new StandardDoubleBinDescriptor() // if using hdfs output path should be the path in hdfs, if hbase outputPath is the table name io.writeTileSet[Double, JavaDouble](pyramider, outputPath, tileRDD, binDesc, name, desc) //io.writeTiles(outputPath, pyramider, serializer, tileRDD) // config.getProperty("avro.output.name","unkown"), config.getProperty("avro.output.desc","unknown")) //tileRDD.unpersist val time = System.currentTimeMillis() - t1 println("Computed level "+level+" in "+time+" msec.") } } }
Sotera/aggregate-micro-paths
spark/src/main/scala/org/xdata/analytics/spark/micropathing/MicroPathEngine.scala
Scala
apache-2.0
10,549
/* Copyright 2017-2020 Erik Erlandson Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ package coulomb.pureconfig import scala.reflect.runtime.universe.WeakTypeTag import _root_.pureconfig.{ConfigReader, ConfigWriter, ConfigCursor} import _root_.pureconfig.error.{CannotConvert, ConfigReaderFailures, ConvertFailure} import com.typesafe.config.ConfigValue import eu.timepit.refined.refineV import eu.timepit.refined.api.{ Refined, Validate } import coulomb._ package object refined { import coulomb.pureconfig.infra.CoulombPureconfigOverride // prevent the "main" pureconfig rule from ambiguity on `Refined[V, P]` implicit def overridePureconfigRefined[V, P]: CoulombPureconfigOverride[Refined[V, P]] = new CoulombPureconfigOverride[Refined[V, P]] {} /** Manifest a ConfigWriter for `Quantity[Refined[P, V], U]` */ implicit def coulombRefinedConfigWriter[V, P, U](implicit qcw: ConfigWriter[Quantity[V, U]] ): ConfigWriter[Quantity[Refined[V, P], U]] = new ConfigWriter[Quantity[Refined[V, P], U]] { def to(q: Quantity[Refined[V, P], U]): ConfigValue = qcw.to(Quantity[V, U](q.value.value)) } /** Manifest a ConfigReader for `Quantity[Refined[P, V], U]` */ implicit def coulombRefinedConfigReader[V, P, U](implicit qcr: ConfigReader[Quantity[V, U]], qpv: Validate[V, P], qtt: WeakTypeTag[Quantity[Refined[V, P], U]] ): ConfigReader[Quantity[Refined[V, P], U]] = new ConfigReader[Quantity[Refined[V, P], U]] { def from(cur: ConfigCursor): Either[ConfigReaderFailures, Quantity[Refined[V, P], U]] = { qcr.from(cur) match { case Left(readFailure) => Left(readFailure) case Right(q) => { refineV[P](q.value) match { case Right(rval) => Right(rval.withUnit[U]) case Left(because) => Left( ConfigReaderFailures( ConvertFailure( reason = CannotConvert( value = s"$q", toType = qtt.tpe.toString, because = because ), cur = cur))) } } } } } }
erikerlandson/coulomb
coulomb-pureconfig-refined/src/main/scala/coulomb/pureconfig/refined/package.scala
Scala
apache-2.0
2,603
/* * The MIT License * * Copyright 2014 Kamnev Georgiy (nt.gocha@gmail.com). * * Данная лицензия разрешает, безвозмездно, лицам, получившим копию данного программного * обеспечения и сопутствующей документации (в дальнейшем именуемыми "Программное Обеспечение"), * использовать Программное Обеспечение без ограничений, включая неограниченное право на * использование, копирование, изменение, объединение, публикацию, распространение, сублицензирование * и/или продажу копий Программного Обеспечения, также как и лицам, которым предоставляется * данное Программное Обеспечение, при соблюдении следующих условий: * * Вышеупомянутый копирайт и данные условия должны быть включены во все копии * или значимые части данного Программного Обеспечения. * * ДАННОЕ ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ ПРЕДОСТАВЛЯЕТСЯ «КАК ЕСТЬ», БЕЗ ЛЮБОГО ВИДА ГАРАНТИЙ, * ЯВНО ВЫРАЖЕННЫХ ИЛИ ПОДРАЗУМЕВАЕМЫХ, ВКЛЮЧАЯ, НО НЕ ОГРАНИЧИВАЯСЬ ГАРАНТИЯМИ ТОВАРНОЙ ПРИГОДНОСТИ, * СООТВЕТСТВИЯ ПО ЕГО КОНКРЕТНОМУ НАЗНАЧЕНИЮ И НЕНАРУШЕНИЯ ПРАВ. НИ В КАКОМ СЛУЧАЕ АВТОРЫ * ИЛИ ПРАВООБЛАДАТЕЛИ НЕ НЕСУТ ОТВЕТСТВЕННОСТИ ПО ИСКАМ О ВОЗМЕЩЕНИИ УЩЕРБА, УБЫТКОВ * ИЛИ ДРУГИХ ТРЕБОВАНИЙ ПО ДЕЙСТВУЮЩИМ КОНТРАКТАМ, ДЕЛИКТАМ ИЛИ ИНОМУ, ВОЗНИКШИМ ИЗ, ИМЕЮЩИМ * ПРИЧИНОЙ ИЛИ СВЯЗАННЫМ С ПРОГРАММНЫМ ОБЕСПЕЧЕНИЕМ ИЛИ ИСПОЛЬЗОВАНИЕМ ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ * ИЛИ ИНЫМИ ДЕЙСТВИЯМИ С ПРОГРАММНЫМ ОБЕСПЕЧЕНИЕМ. */ package xyz.cofe.odtexport.xtest /** * Посетитель XML узлов делегиующий вызовы шаблонам * @param patterns Шаблоны узлов */ class NodePatterns extends XMLPathVisitor with NodePatternsVisitor { private var _patterns = List[NodePattern](); def patterns = _patterns; def this(patterns:NodePattern*) = { this(); for( p <- patterns )this._patterns = p :: this.patterns; this._patterns = this._patterns.reverse; } def this(patterns:Iterable[NodePattern]) = { this(); for( p <- patterns )this._patterns = p :: this._patterns; this._patterns = this.patterns.reverse; } } /** * Примесь к посетителю XMLPathVisitor, делегирующего вызовы к шаблонам узлов */ trait NodePatternsVisitor extends XMLPathVisitor { import org.w3c.dom.{Node => XMLNode}; /** * Используемые шаблоны * @return XML шаблоны */ def patterns : List[NodePattern]; /** * Вызывается при входе в узел XML. * Делегиует вызовы к шаблонам. * Передается управление тому шаблону кто первый ответил на NodePattern.test(node) утвердительно. * @param node Узел XML * @return Результат делегирования (если было совпадение с шаблоном), либо true по умолчанию. */ override def enter(node:XMLNode):Boolean = { super.enter(node); var res = true; var stop = false; for( pattern <- patterns ){ if( !stop & pattern.test(node) ){ res = pattern.enter(node); stop = true; } } res; } /** * Вызывается при выходе из узла * Делегиует вызовы к шаблонам. * Передается управление тому шаблону кто первый ответил на NodePattern.test(node) утвердительно. * @param node Узел XML */ override def exit(node:XMLNode):Unit = { var stop = false; for( pattern <- patterns ){ if( !stop & pattern.test(node) ){ pattern.exit(node); stop = true; } } super.exit(node); } /** * Вызывается перед началом обработки дерева. * Делегирует вызовы к шаблонам. */ override def begin():Unit = { for( ptr <- patterns ) ptr.begin(); } /** * Вызывается после обработки дерева. * Делегирует вызовы к шаблонам. */ override def end():Unit = { for( ptr <- patterns.reverse ) ptr.end(); } }
gochaorg/odt-export
src/main/scala/xyz/cofe/odtexport/xtest/NodePatternsVisitor.scala
Scala
mit
5,131
package me.yingrui.segment.dict import org.junit.Assert import org.junit.Test class POSArrayTest { @Test def one_Word_Could_has_Multi_POSes() { val posArray = new POSArray() val posV = POS("V", 1) val posT = POS("T", 1) val posN = POS("N", 3451) posArray.add(posV) posArray.add(posT) posArray.add(posN) Assert.assertEquals(posArray.getOccurredCount("V"), 1) Assert.assertEquals(posArray.getOccurredCount("N"), 3451) Assert.assertEquals(posArray.getOccurredSum(), 3453) val posArray2 = new POSArray() posArray2.add(posArray) Assert.assertEquals(posArray2.getOccurredCount("V"), 1) Assert.assertEquals(posArray2.getOccurredCount("N"), 3451) Assert.assertEquals(posArray2.getOccurredSum(), 3453) val pa = posArray.getWordPOSTable() Assert.assertEquals(pa(0)(1) + pa(1)(1) + pa(2)(1), 3453) } }
yingrui/mahjong
lib-segment/src/test/scala/me/yingrui/segment/dict/POSArrayTest.scala
Scala
gpl-3.0
944
package mesosphere.marathon package api import javax.servlet._ import javax.servlet.http.HttpServletResponse class CacheDisablingFilter extends Filter { override def init(filterConfig: FilterConfig): Unit = {} override def doFilter(request: ServletRequest, response: ServletResponse, chain: FilterChain): Unit = { response match { case httpResponse: HttpServletResponse => httpResponse.setHeader("Cache-Control", "no-cache, no-store, must-revalidate") // HTTP 1.1 httpResponse.setHeader("Pragma", "no-cache") // HTTP 1.0 httpResponse.setHeader("Expires", "0") // Proxies case _ => // ignore other responses } chain.doFilter(request, response) } override def destroy(): Unit = {} }
gsantovena/marathon
src/main/scala/mesosphere/marathon/api/CacheDisablingFilter.scala
Scala
apache-2.0
742
package main.scala.overlapping.timeSeriesOld import breeze.linalg.{DenseMatrix, DenseVector} import main.scala.overlapping.containers._ import scala.reflect.ClassTag /** * Created by Francois Belletti on 9/23/15. */ object SecondMomentEstimator{ /** * Compute the second moment of a Time Series RDD. * * @param timeSeries Input data. * @tparam IndexT Timestamp type. * @return Second moment matrix. */ def apply[IndexT : ClassTag]( timeSeries: VectTimeSeries[IndexT]): DenseMatrix[Double] ={ val estimator = new SecondMomentEstimator[IndexT](timeSeries.config) estimator.estimate(timeSeries) } } class SecondMomentEstimator[IndexT : ClassTag](config: VectTSConfig[IndexT]) extends FirstOrderEssStat[IndexT, (DenseMatrix[Double], Long)] with Estimator[IndexT, DenseMatrix[Double]]{ override def zero = (DenseMatrix.zeros[Double](config.dim, config.dim), 0L) override def kernel(t: TSInstant[IndexT], v: DenseVector[Double]): (DenseMatrix[Double], Long) = { (v * v.t, 1L) } override def reducer(r1: (DenseMatrix[Double], Long), r2: (DenseMatrix[Double], Long)): (DenseMatrix[Double], Long) = { (r1._1 + r2._1, r1._2 + r2._2) } def normalize(x: (DenseMatrix[Double], Long)): DenseMatrix[Double] = { x._1 / x._2.toDouble } override def estimate(timeSeries: VectTimeSeries[IndexT]): DenseMatrix[Double] = { normalize(timeSeriesStats(timeSeries)) } }
bellettif/sparkGeoTS
sparkTS/src/main/scala/overlapping/timeSeriesOld/SecondMomentEstimator.scala
Scala
bsd-3-clause
1,440
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.spark.streaming import java.io.{InputStream, NotSerializableException} import java.util.concurrent.atomic.{AtomicInteger, AtomicReference} import scala.collection.Map import scala.collection.mutable.Queue import scala.reflect.ClassTag import scala.util.control.NonFatal import akka.actor.{Props, SupervisorStrategy} import org.apache.hadoop.conf.Configuration import org.apache.hadoop.fs.Path import org.apache.hadoop.io.{BytesWritable, LongWritable, Text} import org.apache.hadoop.mapreduce.lib.input.TextInputFormat import org.apache.hadoop.mapreduce.{InputFormat => NewInputFormat} import org.apache.spark._ import org.apache.spark.annotation.{DeveloperApi, Experimental} import org.apache.spark.deploy.SparkHadoopUtil import org.apache.spark.input.FixedLengthBinaryInputFormat import org.apache.spark.rdd.{RDD, RDDOperationScope} import org.apache.spark.serializer.SerializationDebugger import org.apache.spark.storage.StorageLevel import org.apache.spark.streaming.StreamingContextState._ import org.apache.spark.streaming.dstream._ import org.apache.spark.streaming.receiver.{ActorReceiver, ActorSupervisorStrategy, Receiver} import org.apache.spark.streaming.scheduler.{JobScheduler, StreamingListener} import org.apache.spark.streaming.ui.{StreamingJobProgressListener, StreamingTab} import org.apache.spark.util.{AsynchronousListenerBus, CallSite, ShutdownHookManager, ThreadUtils, Utils} /** * Main entry point for Spark Streaming functionality. It provides methods used to create * [[org.apache.spark.streaming.dstream.DStream]]s from various input sources. It can be either * created by providing a Spark master URL and an appName, or from a org.apache.spark.SparkConf * configuration (see core Spark documentation), or from an existing org.apache.spark.SparkContext. * The associated SparkContext can be accessed using `context.sparkContext`. After * creating and transforming DStreams, the streaming computation can be started and stopped * using `context.start()` and `context.stop()`, respectively. * `context.awaitTermination()` allows the current thread to wait for the termination * of the context by `stop()` or by an exception. */ class StreamingContext private[streaming] ( sc_ : SparkContext, cp_ : Checkpoint, batchDur_ : Duration ) extends Logging { /** * Create a StreamingContext using an existing SparkContext. * @param sparkContext existing SparkContext * @param batchDuration the time interval at which streaming data will be divided into batches */ def this(sparkContext: SparkContext, batchDuration: Duration) = { this(sparkContext, null, batchDuration) } /** * Create a StreamingContext by providing the configuration necessary for a new SparkContext. * @param conf a org.apache.spark.SparkConf object specifying Spark parameters * @param batchDuration the time interval at which streaming data will be divided into batches */ def this(conf: SparkConf, batchDuration: Duration) = { this(StreamingContext.createNewSparkContext(conf), null, batchDuration) } /** * Create a StreamingContext by providing the details necessary for creating a new SparkContext. * @param master cluster URL to connect to (e.g. mesos://host:port, spark://host:port, local[4]). * @param appName a name for your job, to display on the cluster web UI * @param batchDuration the time interval at which streaming data will be divided into batches */ def this( master: String, appName: String, batchDuration: Duration, sparkHome: String = null, jars: Seq[String] = Nil, environment: Map[String, String] = Map()) = { this(StreamingContext.createNewSparkContext(master, appName, sparkHome, jars, environment), null, batchDuration) } /** * Recreate a StreamingContext from a checkpoint file. * @param path Path to the directory that was specified as the checkpoint directory * @param hadoopConf Optional, configuration object if necessary for reading from * HDFS compatible filesystems */ def this(path: String, hadoopConf: Configuration) = this(null, CheckpointReader.read(path, new SparkConf(), hadoopConf).get, null) /** * Recreate a StreamingContext from a checkpoint file. * @param path Path to the directory that was specified as the checkpoint directory */ def this(path: String) = this(path, SparkHadoopUtil.get.conf) /** * Recreate a StreamingContext from a checkpoint file using an existing SparkContext. * @param path Path to the directory that was specified as the checkpoint directory * @param sparkContext Existing SparkContext */ def this(path: String, sparkContext: SparkContext) = { this( sparkContext, CheckpointReader.read(path, sparkContext.conf, sparkContext.hadoopConfiguration).get, null) } if (sc_ == null && cp_ == null) { throw new Exception("Spark Streaming cannot be initialized with " + "both SparkContext and checkpoint as null") } private[streaming] val isCheckpointPresent = (cp_ != null) private[streaming] val sc: SparkContext = { if (sc_ != null) { sc_ } else if (isCheckpointPresent) { SparkContext.getOrCreate(cp_.createSparkConf()) } else { throw new SparkException("Cannot create StreamingContext without a SparkContext") } } if (sc.conf.get("spark.master") == "local" || sc.conf.get("spark.master") == "local[1]") { logWarning("spark.master should be set as local[n], n > 1 in local mode if you have receivers" + " to get data, otherwise Spark jobs will not get resources to process the received data.") } private[streaming] val conf = sc.conf private[streaming] val env = sc.env private[streaming] val graph: DStreamGraph = { if (isCheckpointPresent) { cp_.graph.setContext(this) cp_.graph.restoreCheckpointData() cp_.graph } else { require(batchDur_ != null, "Batch duration for StreamingContext cannot be null") val newGraph = new DStreamGraph() newGraph.setBatchDuration(batchDur_) newGraph } } private val nextInputStreamId = new AtomicInteger(0) private[streaming] var checkpointDir: String = { if (isCheckpointPresent) { sc.setCheckpointDir(cp_.checkpointDir) cp_.checkpointDir } else { null } } private[streaming] val checkpointDuration: Duration = { if (isCheckpointPresent) cp_.checkpointDuration else graph.batchDuration } private[streaming] val scheduler = new JobScheduler(this) private[streaming] val waiter = new ContextWaiter private[streaming] val progressListener = new StreamingJobProgressListener(this) private[streaming] val uiTab: Option[StreamingTab] = if (conf.getBoolean("spark.ui.enabled", true)) { Some(new StreamingTab(this)) } else { None } /* Initializing a streamingSource to register metrics */ private val streamingSource = new StreamingSource(this) private var state: StreamingContextState = INITIALIZED private val startSite = new AtomicReference[CallSite](null) private[streaming] def getStartSite(): CallSite = startSite.get() private var shutdownHookRef: AnyRef = _ conf.getOption("spark.streaming.checkpoint.directory").foreach(checkpoint) /** * Return the associated Spark context */ def sparkContext: SparkContext = sc /** * Set each DStreams in this context to remember RDDs it generated in the last given duration. * DStreams remember RDDs only for a limited duration of time and releases them for garbage * collection. This method allows the developer to specify how long to remember the RDDs ( * if the developer wishes to query old data outside the DStream computation). * @param duration Minimum duration that each DStream should remember its RDDs */ def remember(duration: Duration) { graph.remember(duration) } /** * Set the context to periodically checkpoint the DStream operations for driver * fault-tolerance. * @param directory HDFS-compatible directory where the checkpoint data will be reliably stored. * Note that this must be a fault-tolerant file system like HDFS for */ def checkpoint(directory: String) { if (directory != null) { val path = new Path(directory) val fs = path.getFileSystem(sparkContext.hadoopConfiguration) fs.mkdirs(path) val fullPath = fs.getFileStatus(path).getPath().toString sc.setCheckpointDir(fullPath) checkpointDir = fullPath } else { checkpointDir = null } } private[streaming] def isCheckpointingEnabled: Boolean = { checkpointDir != null } private[streaming] def initialCheckpoint: Checkpoint = { if (isCheckpointPresent) cp_ else null } private[streaming] def getNewInputStreamId() = nextInputStreamId.getAndIncrement() /** * Execute a block of code in a scope such that all new DStreams created in this body will * be part of the same scope. For more detail, see the comments in `doCompute`. * * Note: Return statements are NOT allowed in the given body. */ private[streaming] def withScope[U](body: => U): U = sparkContext.withScope(body) /** * Execute a block of code in a scope such that all new DStreams created in this body will * be part of the same scope. For more detail, see the comments in `doCompute`. * * Note: Return statements are NOT allowed in the given body. */ private[streaming] def withNamedScope[U](name: String)(body: => U): U = { RDDOperationScope.withScope(sc, name, allowNesting = false, ignoreParent = false)(body) } /** * Create an input stream with any arbitrary user implemented receiver. * Find more details at: http://spark.apache.org/docs/latest/streaming-custom-receivers.html * @param receiver Custom implementation of Receiver * * @deprecated As of 1.0.0", replaced by `receiverStream`. */ @deprecated("Use receiverStream", "1.0.0") def networkStream[T: ClassTag](receiver: Receiver[T]): ReceiverInputDStream[T] = { withNamedScope("network stream") { receiverStream(receiver) } } /** * Create an input stream with any arbitrary user implemented receiver. * Find more details at: http://spark.apache.org/docs/latest/streaming-custom-receivers.html * @param receiver Custom implementation of Receiver */ def receiverStream[T: ClassTag](receiver: Receiver[T]): ReceiverInputDStream[T] = { withNamedScope("receiver stream") { new PluggableInputDStream[T](this, receiver) } } /** * Create an input stream with any arbitrary user implemented actor receiver. * Find more details at: http://spark.apache.org/docs/latest/streaming-custom-receivers.html * @param props Props object defining creation of the actor * @param name Name of the actor * @param storageLevel RDD storage level (default: StorageLevel.MEMORY_AND_DISK_SER_2) * * @note An important point to note: * Since Actor may exist outside the spark framework, It is thus user's responsibility * to ensure the type safety, i.e parametrized type of data received and actorStream * should be same. */ def actorStream[T: ClassTag]( props: Props, name: String, storageLevel: StorageLevel = StorageLevel.MEMORY_AND_DISK_SER_2, supervisorStrategy: SupervisorStrategy = ActorSupervisorStrategy.defaultStrategy ): ReceiverInputDStream[T] = withNamedScope("actor stream") { receiverStream(new ActorReceiver[T](props, name, storageLevel, supervisorStrategy)) } /** * Create a input stream from TCP source hostname:port. Data is received using * a TCP socket and the receive bytes is interpreted as UTF8 encoded `\\n` delimited * lines. * @param hostname Hostname to connect to for receiving data * @param port Port to connect to for receiving data * @param storageLevel Storage level to use for storing the received objects * (default: StorageLevel.MEMORY_AND_DISK_SER_2) */ def socketTextStream( hostname: String, port: Int, storageLevel: StorageLevel = StorageLevel.MEMORY_AND_DISK_SER_2 ): ReceiverInputDStream[String] = withNamedScope("socket text stream") { socketStream[String](hostname, port, SocketReceiver.bytesToLines, storageLevel) } /** * Create a input stream from TCP source hostname:port. Data is received using * a TCP socket and the receive bytes it interepreted as object using the given * converter. * @param hostname Hostname to connect to for receiving data * @param port Port to connect to for receiving data * @param converter Function to convert the byte stream to objects * @param storageLevel Storage level to use for storing the received objects * @tparam T Type of the objects received (after converting bytes to objects) */ def socketStream[T: ClassTag]( hostname: String, port: Int, converter: (InputStream) => Iterator[T], storageLevel: StorageLevel ): ReceiverInputDStream[T] = { new SocketInputDStream[T](this, hostname, port, converter, storageLevel) } /** * Create a input stream from network source hostname:port, where data is received * as serialized blocks (serialized using the Spark's serializer) that can be directly * pushed into the block manager without deserializing them. This is the most efficient * way to receive data. * @param hostname Hostname to connect to for receiving data * @param port Port to connect to for receiving data * @param storageLevel Storage level to use for storing the received objects * (default: StorageLevel.MEMORY_AND_DISK_SER_2) * @tparam T Type of the objects in the received blocks */ def rawSocketStream[T: ClassTag]( hostname: String, port: Int, storageLevel: StorageLevel = StorageLevel.MEMORY_AND_DISK_SER_2 ): ReceiverInputDStream[T] = withNamedScope("raw socket stream") { new RawInputDStream[T](this, hostname, port, storageLevel) } /** * Create a input stream that monitors a Hadoop-compatible filesystem * for new files and reads them using the given key-value types and input format. * Files must be written to the monitored directory by "moving" them from another * location within the same file system. File names starting with . are ignored. * @param directory HDFS directory to monitor for new file * @tparam K Key type for reading HDFS file * @tparam V Value type for reading HDFS file * @tparam F Input format for reading HDFS file */ def fileStream[ K: ClassTag, V: ClassTag, F <: NewInputFormat[K, V]: ClassTag ] (directory: String): InputDStream[(K, V)] = { new FileInputDStream[K, V, F](this, directory) } /** * Create a input stream that monitors a Hadoop-compatible filesystem * for new files and reads them using the given key-value types and input format. * Files must be written to the monitored directory by "moving" them from another * location within the same file system. * @param directory HDFS directory to monitor for new file * @param filter Function to filter paths to process * @param newFilesOnly Should process only new files and ignore existing files in the directory * @tparam K Key type for reading HDFS file * @tparam V Value type for reading HDFS file * @tparam F Input format for reading HDFS file */ def fileStream[ K: ClassTag, V: ClassTag, F <: NewInputFormat[K, V]: ClassTag ] (directory: String, filter: Path => Boolean, newFilesOnly: Boolean): InputDStream[(K, V)] = { new FileInputDStream[K, V, F](this, directory, filter, newFilesOnly) } /** * Create a input stream that monitors a Hadoop-compatible filesystem * for new files and reads them using the given key-value types and input format. * Files must be written to the monitored directory by "moving" them from another * location within the same file system. File names starting with . are ignored. * @param directory HDFS directory to monitor for new file * @param filter Function to filter paths to process * @param newFilesOnly Should process only new files and ignore existing files in the directory * @param conf Hadoop configuration * @tparam K Key type for reading HDFS file * @tparam V Value type for reading HDFS file * @tparam F Input format for reading HDFS file */ def fileStream[ K: ClassTag, V: ClassTag, F <: NewInputFormat[K, V]: ClassTag ] (directory: String, filter: Path => Boolean, newFilesOnly: Boolean, conf: Configuration): InputDStream[(K, V)] = { new FileInputDStream[K, V, F](this, directory, filter, newFilesOnly, Option(conf)) } /** * Create a input stream that monitors a Hadoop-compatible filesystem * for new files and reads them as text files (using key as LongWritable, value * as Text and input format as TextInputFormat). Files must be written to the * monitored directory by "moving" them from another location within the same * file system. File names starting with . are ignored. * @param directory HDFS directory to monitor for new file */ def textFileStream(directory: String): DStream[String] = withNamedScope("text file stream") { fileStream[LongWritable, Text, TextInputFormat](directory).map(_._2.toString) } /** * Create an input stream that monitors a Hadoop-compatible filesystem * for new files and reads them as flat binary files, assuming a fixed length per record, * generating one byte array per record. Files must be written to the monitored directory * by "moving" them from another location within the same file system. File names * starting with . are ignored. * * '''Note:''' We ensure that the byte array for each record in the * resulting RDDs of the DStream has the provided record length. * * @param directory HDFS directory to monitor for new file * @param recordLength length of each record in bytes */ def binaryRecordsStream( directory: String, recordLength: Int): DStream[Array[Byte]] = withNamedScope("binary records stream") { val conf = sc_.hadoopConfiguration conf.setInt(FixedLengthBinaryInputFormat.RECORD_LENGTH_PROPERTY, recordLength) val br = fileStream[LongWritable, BytesWritable, FixedLengthBinaryInputFormat]( directory, FileInputDStream.defaultFilter: Path => Boolean, newFilesOnly = true, conf) val data = br.map { case (k, v) => val bytes = v.getBytes require(bytes.length == recordLength, "Byte array does not have correct length. " + s"${bytes.length} did not equal recordLength: $recordLength") bytes } data } /** * Create an input stream from a queue of RDDs. In each batch, * it will process either one or all of the RDDs returned by the queue. * * NOTE: Arbitrary RDDs can be added to `queueStream`, there is no way to recover data of * those RDDs, so `queueStream` doesn't support checkpointing. * * @param queue Queue of RDDs * @param oneAtATime Whether only one RDD should be consumed from the queue in every interval * @tparam T Type of objects in the RDD */ def queueStream[T: ClassTag]( queue: Queue[RDD[T]], oneAtATime: Boolean = true ): InputDStream[T] = { queueStream(queue, oneAtATime, sc.makeRDD(Seq[T](), 1)) } /** * Create an input stream from a queue of RDDs. In each batch, * it will process either one or all of the RDDs returned by the queue. * * NOTE: Arbitrary RDDs can be added to `queueStream`, there is no way to recover data of * those RDDs, so `queueStream` doesn't support checkpointing. * * @param queue Queue of RDDs * @param oneAtATime Whether only one RDD should be consumed from the queue in every interval * @param defaultRDD Default RDD is returned by the DStream when the queue is empty. * Set as null if no RDD should be returned when empty * @tparam T Type of objects in the RDD */ def queueStream[T: ClassTag]( queue: Queue[RDD[T]], oneAtATime: Boolean, defaultRDD: RDD[T] ): InputDStream[T] = { new QueueInputDStream(this, queue, oneAtATime, defaultRDD) } /** * Create a unified DStream from multiple DStreams of the same type and same slide duration. */ def union[T: ClassTag](streams: Seq[DStream[T]]): DStream[T] = withScope { new UnionDStream[T](streams.toArray) } /** * Create a new DStream in which each RDD is generated by applying a function on RDDs of * the DStreams. */ def transform[T: ClassTag]( dstreams: Seq[DStream[_]], transformFunc: (Seq[RDD[_]], Time) => RDD[T] ): DStream[T] = withScope { new TransformedDStream[T](dstreams, sparkContext.clean(transformFunc)) } /** Add a [[org.apache.spark.streaming.scheduler.StreamingListener]] object for * receiving system events related to streaming. */ def addStreamingListener(streamingListener: StreamingListener) { scheduler.listenerBus.addListener(streamingListener) } private def validate() { assert(graph != null, "Graph is null") graph.validate() require( !isCheckpointingEnabled || checkpointDuration != null, "Checkpoint directory has been set, but the graph checkpointing interval has " + "not been set. Please use StreamingContext.checkpoint() to set the interval." ) // Verify whether the DStream checkpoint is serializable if (isCheckpointingEnabled) { val checkpoint = new Checkpoint(this, Time.apply(0)) try { Checkpoint.serialize(checkpoint, conf) } catch { case e: NotSerializableException => throw new NotSerializableException( "DStream checkpointing has been enabled but the DStreams with their functions " + "are not serializable\\n" + SerializationDebugger.improveException(checkpoint, e).getMessage() ) } } if (Utils.isDynamicAllocationEnabled(sc.conf)) { logWarning("Dynamic Allocation is enabled for this application. " + "Enabling Dynamic allocation for Spark Streaming applications can cause data loss if " + "Write Ahead Log is not enabled for non-replayable sources like Flume. " + "See the programming guide for details on how to enable the Write Ahead Log") } } /** * :: DeveloperApi :: * * Return the current state of the context. The context can be in three possible states - * * - StreamingContextState.INTIALIZED - The context has been created, but not been started yet. * Input DStreams, transformations and output operations can be created on the context. * - StreamingContextState.ACTIVE - The context has been started, and been not stopped. * Input DStreams, transformations and output operations cannot be created on the context. * - StreamingContextState.STOPPED - The context has been stopped and cannot be used any more. */ @DeveloperApi def getState(): StreamingContextState = synchronized { state } /** * Start the execution of the streams. * * @throws IllegalStateException if the StreamingContext is already stopped. */ def start(): Unit = synchronized { state match { case INITIALIZED => startSite.set(DStream.getCreationSite()) StreamingContext.ACTIVATION_LOCK.synchronized { StreamingContext.assertNoOtherContextIsActive() try { validate() // Start the streaming scheduler in a new thread, so that thread local properties // like call sites and job groups can be reset without affecting those of the // current thread. ThreadUtils.runInNewThread("streaming-start") { sparkContext.setCallSite(startSite.get) sparkContext.clearJobGroup() sparkContext.setLocalProperty(SparkContext.SPARK_JOB_INTERRUPT_ON_CANCEL, "false") scheduler.start() } state = StreamingContextState.ACTIVE } catch { case NonFatal(e) => logError("Error starting the context, marking it as stopped", e) scheduler.stop(false) state = StreamingContextState.STOPPED throw e } StreamingContext.setActiveContext(this) } shutdownHookRef = ShutdownHookManager.addShutdownHook( StreamingContext.SHUTDOWN_HOOK_PRIORITY)(stopOnShutdown) // Registering Streaming Metrics at the start of the StreamingContext assert(env.metricsSystem != null) env.metricsSystem.registerSource(streamingSource) uiTab.foreach(_.attach()) logInfo("StreamingContext started") case ACTIVE => logWarning("StreamingContext has already been started") case STOPPED => throw new IllegalStateException("StreamingContext has already been stopped") } } /** * Wait for the execution to stop. Any exceptions that occurs during the execution * will be thrown in this thread. */ def awaitTermination() { waiter.waitForStopOrError() } /** * Wait for the execution to stop. Any exceptions that occurs during the execution * will be thrown in this thread. * @param timeout time to wait in milliseconds * * @deprecated As of 1.3.0, replaced by `awaitTerminationOrTimeout(Long)`. */ @deprecated("Use awaitTerminationOrTimeout(Long) instead", "1.3.0") def awaitTermination(timeout: Long) { waiter.waitForStopOrError(timeout) } /** * Wait for the execution to stop. Any exceptions that occurs during the execution * will be thrown in this thread. * * @param timeout time to wait in milliseconds * @return `true` if it's stopped; or throw the reported error during the execution; or `false` * if the waiting time elapsed before returning from the method. */ def awaitTerminationOrTimeout(timeout: Long): Boolean = { waiter.waitForStopOrError(timeout) } /** * Stop the execution of the streams immediately (does not wait for all received data * to be processed). By default, if `stopSparkContext` is not specified, the underlying * SparkContext will also be stopped. This implicit behavior can be configured using the * SparkConf configuration spark.streaming.stopSparkContextByDefault. * * @param stopSparkContext If true, stops the associated SparkContext. The underlying SparkContext * will be stopped regardless of whether this StreamingContext has been * started. */ def stop( stopSparkContext: Boolean = conf.getBoolean("spark.streaming.stopSparkContextByDefault", true) ): Unit = synchronized { stop(stopSparkContext, false) } /** * Stop the execution of the streams, with option of ensuring all received data * has been processed. * * @param stopSparkContext if true, stops the associated SparkContext. The underlying SparkContext * will be stopped regardless of whether this StreamingContext has been * started. * @param stopGracefully if true, stops gracefully by waiting for the processing of all * received data to be completed */ def stop(stopSparkContext: Boolean, stopGracefully: Boolean): Unit = { var shutdownHookRefToRemove: AnyRef = null if (AsynchronousListenerBus.withinListenerThread.value) { throw new SparkException("Cannot stop StreamingContext within listener thread of" + " AsynchronousListenerBus") } synchronized { try { state match { case INITIALIZED => logWarning("StreamingContext has not been started yet") case STOPPED => logWarning("StreamingContext has already been stopped") case ACTIVE => scheduler.stop(stopGracefully) // Removing the streamingSource to de-register the metrics on stop() env.metricsSystem.removeSource(streamingSource) uiTab.foreach(_.detach()) StreamingContext.setActiveContext(null) waiter.notifyStop() if (shutdownHookRef != null) { shutdownHookRefToRemove = shutdownHookRef shutdownHookRef = null } logInfo("StreamingContext stopped successfully") } } finally { // The state should always be Stopped after calling `stop()`, even if we haven't started yet state = STOPPED } } if (shutdownHookRefToRemove != null) { ShutdownHookManager.removeShutdownHook(shutdownHookRefToRemove) } // Even if we have already stopped, we still need to attempt to stop the SparkContext because // a user might stop(stopSparkContext = false) and then call stop(stopSparkContext = true). if (stopSparkContext) sc.stop() } private def stopOnShutdown(): Unit = { val stopGracefully = conf.getBoolean("spark.streaming.stopGracefullyOnShutdown", false) logInfo(s"Invoking stop(stopGracefully=$stopGracefully) from shutdown hook") // Do not stop SparkContext, let its own shutdown hook stop it stop(stopSparkContext = false, stopGracefully = stopGracefully) } } /** * StreamingContext object contains a number of utility functions related to the * StreamingContext class. */ object StreamingContext extends Logging { /** * Lock that guards activation of a StreamingContext as well as access to the singleton active * StreamingContext in getActiveOrCreate(). */ private val ACTIVATION_LOCK = new Object() private val SHUTDOWN_HOOK_PRIORITY = ShutdownHookManager.SPARK_CONTEXT_SHUTDOWN_PRIORITY + 1 private val activeContext = new AtomicReference[StreamingContext](null) private def assertNoOtherContextIsActive(): Unit = { ACTIVATION_LOCK.synchronized { if (activeContext.get() != null) { throw new IllegalStateException( "Only one StreamingContext may be started in this JVM. " + "Currently running StreamingContext was started at" + activeContext.get.getStartSite().longForm) } } } private def setActiveContext(ssc: StreamingContext): Unit = { ACTIVATION_LOCK.synchronized { activeContext.set(ssc) } } /** * :: Experimental :: * * Get the currently active context, if there is one. Active means started but not stopped. */ @Experimental def getActive(): Option[StreamingContext] = { ACTIVATION_LOCK.synchronized { Option(activeContext.get()) } } /** * @deprecated As of 1.3.0, replaced by implicit functions in the DStream companion object. * This is kept here only for backward compatibility. */ @deprecated("Replaced by implicit functions in the DStream companion object. This is " + "kept here only for backward compatibility.", "1.3.0") def toPairDStreamFunctions[K, V](stream: DStream[(K, V)]) (implicit kt: ClassTag[K], vt: ClassTag[V], ord: Ordering[K] = null) : PairDStreamFunctions[K, V] = { DStream.toPairDStreamFunctions(stream)(kt, vt, ord) } /** * :: Experimental :: * * Either return the "active" StreamingContext (that is, started but not stopped), or create a * new StreamingContext that is * @param creatingFunc Function to create a new StreamingContext */ @Experimental def getActiveOrCreate(creatingFunc: () => StreamingContext): StreamingContext = { ACTIVATION_LOCK.synchronized { getActive().getOrElse { creatingFunc() } } } /** * :: Experimental :: * * Either get the currently active StreamingContext (that is, started but not stopped), * OR recreate a StreamingContext from checkpoint data in the given path. If checkpoint data * does not exist in the provided, then create a new StreamingContext by calling the provided * `creatingFunc`. * * @param checkpointPath Checkpoint directory used in an earlier StreamingContext program * @param creatingFunc Function to create a new StreamingContext * @param hadoopConf Optional Hadoop configuration if necessary for reading from the * file system * @param createOnError Optional, whether to create a new StreamingContext if there is an * error in reading checkpoint data. By default, an exception will be * thrown on error. */ @Experimental def getActiveOrCreate( checkpointPath: String, creatingFunc: () => StreamingContext, hadoopConf: Configuration = SparkHadoopUtil.get.conf, createOnError: Boolean = false ): StreamingContext = { ACTIVATION_LOCK.synchronized { getActive().getOrElse { getOrCreate(checkpointPath, creatingFunc, hadoopConf, createOnError) } } } /** * Either recreate a StreamingContext from checkpoint data or create a new StreamingContext. * If checkpoint data exists in the provided `checkpointPath`, then StreamingContext will be * recreated from the checkpoint data. If the data does not exist, then the StreamingContext * will be created by called the provided `creatingFunc`. * * @param checkpointPath Checkpoint directory used in an earlier StreamingContext program * @param creatingFunc Function to create a new StreamingContext * @param hadoopConf Optional Hadoop configuration if necessary for reading from the * file system * @param createOnError Optional, whether to create a new StreamingContext if there is an * error in reading checkpoint data. By default, an exception will be * thrown on error. */ def getOrCreate( checkpointPath: String, creatingFunc: () => StreamingContext, hadoopConf: Configuration = SparkHadoopUtil.get.conf, createOnError: Boolean = false ): StreamingContext = { val checkpointOption = CheckpointReader.read( checkpointPath, new SparkConf(), hadoopConf, createOnError) checkpointOption.map(new StreamingContext(null, _, null)).getOrElse(creatingFunc()) } /** * Find the JAR from which a given class was loaded, to make it easy for users to pass * their JARs to StreamingContext. */ def jarOfClass(cls: Class[_]): Option[String] = SparkContext.jarOfClass(cls) private[streaming] def createNewSparkContext(conf: SparkConf): SparkContext = { new SparkContext(conf) } private[streaming] def createNewSparkContext( master: String, appName: String, sparkHome: String, jars: Seq[String], environment: Map[String, String] ): SparkContext = { val conf = SparkContext.updatedConf( new SparkConf(), master, appName, sparkHome, jars, environment) new SparkContext(conf) } private[streaming] def rddToFileName[T](prefix: String, suffix: String, time: Time): String = { var result = time.milliseconds.toString if (prefix != null && prefix.length > 0) { result = s"$prefix-$result" } if (suffix != null && suffix.length > 0) { result = s"$result.$suffix" } result } } private class StreamingContextPythonHelper { /** * This is a private method only for Python to implement `getOrCreate`. */ def tryRecoverFromCheckpoint(checkpointPath: String): Option[StreamingContext] = { val checkpointOption = CheckpointReader.read( checkpointPath, new SparkConf(), SparkHadoopUtil.get.conf, false) checkpointOption.map(new StreamingContext(null, _, null)) } }
chenc10/Spark-PAF
streaming/src/main/scala/org/apache/spark/streaming/StreamingContext.scala
Scala
apache-2.0
36,642
/** * ==== * This file is part of SensApp [ http://sensapp.modelbased.net ] * * Copyright (C) 2011- SINTEF ICT * Contact: SINTEF ICT <nicolas.ferry@sintef.no> * * Module: net.modelbased.sensapp * * SensApp is free software: you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as * published by the Free Software Foundation, either version 3 of * the License, or (at your option) any later version. * * SensApp is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General * Public License along with SensApp. If not, see * <http://www.gnu.org/licenses/>. * ==== * * This file is part of SensApp [ http://sensapp.modelbased.net ] * * Copyright (C) 2012- SINTEF ICT * Contact: SINTEF ICT <nicolas.ferry@sintef.no> * * Module: net.modelbased.sensapp.service.registry * * SensApp is free software: you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as * published by the Free Software Foundation, either version 3 of * the License, or (at your option) any later version. * * SensApp is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General * Public License along with SensApp. If not, see * <http://www.gnu.org/licenses/>. */ package net.modelbased.sensapp.service.registry.data import cc.spray.json._ import net.modelbased.sensapp.library.datastore._ import ElementJsonProtocol._ /** * Persistence layer associated to the Element class * * @author Sebastien Mosser */ class SensorDescriptionRegistry extends DataStore[SensorDescription] { override val databaseName = "sensapp_db" override val collectionName = "registry.sensors" override val key = "id" override def getIdentifier(e: SensorDescription) = e.id override def deserialize(json: String): SensorDescription = { json.asJson.convertTo[SensorDescription] } override def serialize(e: SensorDescription): String = { e.toJson.toString } } class CompositeSensorDescriptionRegistry extends DataStore[CompositeSensorDescription] { override val databaseName = "sensapp_db" override val collectionName = "registry.sensors.composite" override val key = "id" override def getIdentifier(e: CompositeSensorDescription) = e.id override def deserialize(json: String): CompositeSensorDescription = { json.asJson.convertTo[CompositeSensorDescription] } override def serialize(e: CompositeSensorDescription): String = { e.toJson.toString } }
SINTEF-9012/sensapp
net.modelbased.sensapp.service.registry/src/main/scala/net/modelbased/sensapp/service/registry/data/SensorDataStructureRegistry.scala
Scala
lgpl-3.0
3,025
/* Copyright 2012 Twitter, Inc. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ package com.twitter.scalding /** * The args class does a simple command line parsing. The rules are: * keys start with one or more "-". Each key has zero or more values * following. */ object Args { /** * Split on whitespace and then parse. */ def apply(argString : String) : Args = Args(argString.split("\\\\s+")) /** * parses keys as starting with a dash, except single dashed digits. * Also parses key value pairs that are separated with an equal sign. * All following non-dashed args are a list of values. * If the list starts with non-dashed args, these are associated with the * empty string: "" **/ def apply(args : Iterable[String]) : Args = { def startingDashes(word : String) = word.takeWhile { _ == '-' }.length new Args( //Fold into a list of (arg -> List[values]) args .filter{ a => !a.matches("\\\\s*") } .foldLeft(List("" -> List[String]())) { (acc, arg) => val noDashes = arg.dropWhile{ _ == '-'} if (arg.contains("=")) { val splitArg = arg.split("=") (splitArg(0) -> List(splitArg(1))) :: acc } else if(arg == noDashes || isNumber(arg)) (acc.head._1 -> (arg :: acc.head._2)) :: acc.tail else (noDashes -> List()) :: acc } //Now reverse the values to keep the same order .map {case (key, value) => key -> value.reverse}.toMap ) } def isNumber(arg : String) : Boolean = { try { arg.toDouble true } catch { case e : NumberFormatException => false } } } class Args(val m : Map[String,List[String]]) extends java.io.Serializable { //Replace or add a given key+args pair: def +(keyvals : (String,Iterable[String])) = { new Args(m + (keyvals._1 -> keyvals._2.toList)) } /** * Does this Args contain a given key? */ def boolean(key : String) = m.contains(key) /** * Get the list of values associated with a given key. * if the key is absent, return the empty list. NOTE: empty * does not mean the key is absent, it could be a key without * a value. Use boolean() to check existence. */ def list(key : String) = m.get(key).getOrElse(List()) /** * This is a synonym for required */ def apply(key : String) = required(key) /** * Gets the list of positional arguments */ def positional : List[String] = list("") override def equals(other : Any) = { if( other.isInstanceOf[Args] ) { other.asInstanceOf[Args].m.equals(m) } else { false } } /** * Equivalent to .optional(key).getOrElse(default) */ def getOrElse(key : String, default : String) = optional(key).getOrElse(default) /** * return exactly one value for a given key. * If there is more than one value, you get an exception */ def required(key : String) = list(key) match { case List() => sys.error("Please provide a value for --" + key) case List(a) => a case _ => sys.error("Please only provide a single value for --" + key) } def toList : List[String] = { m.foldLeft(List[String]()) { (args, kvlist) => val k = kvlist._1 val values = kvlist._2 if( k != "") { //Make sure positional args are first args ++ ((("--" + k) :: values)) } else { // These are positional args (no key), put them first: values ++ args } } } // TODO: if there are spaces in the keys or values, this will not round-trip override def toString : String = toList.mkString(" ") /** * If there is zero or one element, return it as an Option. * If there is a list of more than one item, you get an error */ def optional(key : String) : Option[String] = list(key) match { case List() => None case List(a) => Some(a) case _ => sys.error("Please provide at most one value for --" + key) } }
AoJ/scalding
src/main/scala/com/twitter/scalding/Args.scala
Scala
apache-2.0
4,424
/* Copyright 2015 Twitter, Inc. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ package com.twitter.scalding.serialization import org.scalacheck.Arbitrary import org.scalacheck.Properties import org.scalacheck.Prop import org.scalacheck.Prop.forAll import org.scalacheck.Gen import org.scalacheck.Prop._ import JavaStreamEnrichments._ import java.io._ import scala.collection.generic.CanBuildFrom object JavaStreamEnrichmentsProperties extends Properties("JavaStreamEnrichmentsProperties") { def output = new ByteArrayOutputStream // The default Array[Equiv] is reference. WAT!? implicit def aeq[T: Equiv]: Equiv[Array[T]] = new Equiv[Array[T]] { def equiv(a: Array[T], b: Array[T]): Boolean = { val teq = Equiv[T] @annotation.tailrec def go(pos: Int): Boolean = if (pos == a.length) true else { teq.equiv(a(pos), b(pos)) && go(pos + 1) } (a.length == b.length) && go(0) } } implicit def teq[T1: Equiv, T2: Equiv]: Equiv[(T1, T2)] = new Equiv[(T1, T2)] { def equiv(a: (T1, T2), b: (T1, T2)) = { Equiv[T1].equiv(a._1, b._1) && Equiv[T2].equiv(a._2, b._2) } } def writeRead[T: Equiv](g: Gen[T], w: (T, OutputStream) => Unit, r: InputStream => T): Prop = forAll(g) { t => val test = output w(t, test) Equiv[T].equiv(r(test.toInputStream), t) } def writeRead[T: Equiv: Arbitrary](w: (T, OutputStream) => Unit, r: InputStream => T): Prop = writeRead(implicitly[Arbitrary[T]].arbitrary, w, r) property("Can (read/write)Size") = writeRead(Gen.chooseNum(0, Int.MaxValue), { (i: Int, os) => os.writePosVarInt(i) }, { _.readPosVarInt }) property("Can (read/write)Float") = writeRead( { (i: Float, os) => os.writeFloat(i) }, { _.readFloat }) property("Can (read/write)Array[Byte]") = writeRead( // Use list because Array has a shitty toString { (b: List[Byte], os) => os.writePosVarInt(b.size); os.writeBytes(b.toArray) }, { is => val bytes = new Array[Byte](is.readPosVarInt) is.readFully(bytes) bytes.toList }) property("Can (read/write)Boolean") = writeRead( { (i: Boolean, os) => os.writeBoolean(i) }, { _.readBoolean }) property("Can (read/write)Double") = writeRead( { (i: Double, os) => os.writeDouble(i) }, { _.readDouble }) property("Can (read/write)Int") = writeRead(Gen.chooseNum(Int.MinValue, Int.MaxValue), { (i: Int, os) => os.writeInt(i) }, { _.readInt }) property("Can (read/write)Long") = writeRead(Gen.chooseNum(Long.MinValue, Long.MaxValue), { (i: Long, os) => os.writeLong(i) }, { _.readLong }) property("Can (read/write)Short") = writeRead(Gen.chooseNum(Short.MinValue, Short.MaxValue), { (i: Short, os) => os.writeShort(i) }, { _.readShort }) property("Can (read/write)UnsignedByte") = writeRead(Gen.chooseNum(0, (1 << 8) - 1), { (i: Int, os) => os.write(i.toByte) }, { _.readUnsignedByte }) property("Can (read/write)UnsignedShort") = writeRead(Gen.chooseNum(0, (1 << 16) - 1), { (i: Int, os) => os.writeShort(i.toShort) }, { _.readUnsignedShort }) }
sriramkrishnan/scalding
scalding-serialization/src/test/scala/com/twitter/scalding/serialization/JavaStreamEnrichmentsProperties.scala
Scala
apache-2.0
3,581
/* * Copyright 2022 HM Revenue & Customs * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package views.returns import org.jsoup.Jsoup import play.api.data.Form import play.api.data.Forms.{boolean, single} import views.VatRegViewSpec import views.html.returns.claim_refunds_view class ClaimRefundsViewSpec extends VatRegViewSpec { val form = Form(single("value" -> boolean)) val view = app.injector.instanceOf[claim_refunds_view] implicit val doc = Jsoup.parse(view(form).body) object ExpectedContent { val heading = "Does the business expect to regularly claim VAT refunds from HMRC?" val title = "Does the business expect to regularly claim VAT refunds from HMRC?" val para1 = "Most businesses do not claim VAT refunds. It is only possible when the VAT a business pays on " + "business-related purchases is more than the VAT it charges customers." val detailsSummary = "Show me an example" val detailsContent = "If a business sells mainly zero-rated items (the VAT on them is 0%), it may pay more VAT to " + "run its business than it can charge. For example, most books are zero-rated, so a bookshop may find itself in this situation." val label = "Select yes if you expect the business to regularly claim VAT refunds from HMRC" val continue = "Save and continue" val yes = "Yes" val no = "No" } "The charge expectancy (regularly claim refunds) page" must { "have a back link in new Setup" in new ViewSetup { doc.hasBackLink mustBe true } "have the correct heading" in new ViewSetup { doc.heading mustBe Some(ExpectedContent.heading) } "have a progressive disclosure" in new ViewSetup { doc.details mustBe Some(Details(ExpectedContent.detailsSummary, ExpectedContent.detailsContent)) } "have yes/no radio options" in new ViewSetup { doc.radio("true") mustBe Some(ExpectedContent.yes) doc.radio("false") mustBe Some(ExpectedContent.no) } "have a primary action" in new ViewSetup { doc.submitButton mustBe Some(ExpectedContent.continue) } } }
hmrc/vat-registration-frontend
test/views/returns/ClaimRefundsViewSpec.scala
Scala
apache-2.0
2,606
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.spark.mllib.clustering import scala.reflect.ClassTag import org.apache.spark.annotation.Since import org.apache.spark.api.java.JavaSparkContext._ import org.apache.spark.internal.Logging import org.apache.spark.mllib.linalg.{BLAS, Vector, Vectors} import org.apache.spark.rdd.RDD import org.apache.spark.streaming.api.java.{JavaDStream, JavaPairDStream} import org.apache.spark.streaming.dstream.DStream import org.apache.spark.util.Utils import org.apache.spark.util.random.XORShiftRandom /** * StreamingKMeansModel extends MLlib's KMeansModel for streaming * algorithms, so it can keep track of a continuously updated weight * associated with each cluster, and also update the model by * doing a single iteration of the standard k-means algorithm. * * The update algorithm uses the "mini-batch" KMeans rule, * generalized to incorporate forgetfulness (i.e. decay). * The update rule (for each cluster) is: * * <blockquote> * $$ * \begin{align} * c_{t+1} &= [(c_t * n_t * a) + (x_t * m_t)] / [n_t + m_t] \\ * n_{t+1} &= n_t * a + m_t * \end{align} * $$ * </blockquote> * * Where c_t is the previously estimated centroid for that cluster, * n_t is the number of points assigned to it thus far, x_t is the centroid * estimated on the current batch, and m_t is the number of points assigned * to that centroid in the current batch. * * The decay factor 'a' scales the contribution of the clusters as estimated thus far, * by applying a as a discount weighting on the current point when evaluating * new incoming data. If a=1, all batches are weighted equally. If a=0, new centroids * are determined entirely by recent data. Lower values correspond to * more forgetting. * * Decay can optionally be specified by a half life and associated * time unit. The time unit can either be a batch of data or a single * data point. Considering data arrived at time t, the half life h is defined * such that at time t + h the discount applied to the data from t is 0.5. * The definition remains the same whether the time unit is given * as batches or points. */ @Since("1.2.0") class StreamingKMeansModel @Since("1.2.0") ( @Since("1.2.0") override val clusterCenters: Array[Vector], @Since("1.2.0") val clusterWeights: Array[Double]) extends KMeansModel(clusterCenters) with Logging { /** * Perform a k-means update on a batch of data. */ @Since("1.2.0") def update(data: RDD[Vector], decayFactor: Double, timeUnit: String): StreamingKMeansModel = { // find nearest cluster to each point val closest = data.map(point => (this.predict(point), (point, 1L))) // get sums and counts for updating each cluster def mergeContribs(p1: (Vector, Long), p2: (Vector, Long)): (Vector, Long) = { val sum = if (p1._1 == null) { p2._1 } else if (p2._1 == null) { p1._1 } else { BLAS.axpy(1.0, p2._1, p1._1) p1._1 } (sum, p1._2 + p2._2) } val dim = clusterCenters(0).size val pointStats: Array[(Int, (Vector, Long))] = closest .aggregateByKey((null.asInstanceOf[Vector], 0L))(mergeContribs, mergeContribs) .collect() val discount = timeUnit match { case StreamingKMeans.BATCHES => decayFactor case StreamingKMeans.POINTS => val numNewPoints = pointStats.iterator.map { case (_, (_, n)) => n }.sum math.pow(decayFactor, numNewPoints) } // apply discount to weights BLAS.scal(discount, Vectors.dense(clusterWeights)) // implement update rule pointStats.foreach { case (label, (sum, count)) => val centroid = clusterCenters(label) val updatedWeight = clusterWeights(label) + count val lambda = count / math.max(updatedWeight, 1e-16) clusterWeights(label) = updatedWeight BLAS.scal(1.0 - lambda, centroid) BLAS.axpy(lambda / count, sum, centroid) // display the updated cluster centers val display = clusterCenters(label).size match { case x if x > 100 => centroid.toArray.take(100).mkString("[", ",", "...") case _ => centroid.toArray.mkString("[", ",", "]") } logInfo(s"Cluster $label updated with weight $updatedWeight and centroid: $display") } // Check whether the smallest cluster is dying. If so, split the largest cluster. val (maxWeight, largest) = clusterWeights.iterator.zipWithIndex.maxBy(_._1) val (minWeight, smallest) = clusterWeights.iterator.zipWithIndex.minBy(_._1) if (minWeight < 1e-8 * maxWeight) { logInfo(s"Cluster $smallest is dying. Split the largest cluster $largest into two.") val weight = (maxWeight + minWeight) / 2.0 clusterWeights(largest) = weight clusterWeights(smallest) = weight val largestClusterCenter = clusterCenters(largest) val smallestClusterCenter = clusterCenters(smallest) var j = 0 while (j < dim) { val x = largestClusterCenter(j) val p = 1e-14 * math.max(math.abs(x), 1.0) largestClusterCenter.asBreeze(j) = x + p smallestClusterCenter.asBreeze(j) = x - p j += 1 } } new StreamingKMeansModel(clusterCenters, clusterWeights) } } /** * StreamingKMeans provides methods for configuring a * streaming k-means analysis, training the model on streaming, * and using the model to make predictions on streaming data. * See KMeansModel for details on algorithm and update rules. * * Use a builder pattern to construct a streaming k-means analysis * in an application, like: * * {{{ * val model = new StreamingKMeans() * .setDecayFactor(0.5) * .setK(3) * .setRandomCenters(5, 100.0) * .trainOn(DStream) * }}} */ @Since("1.2.0") class StreamingKMeans @Since("1.2.0") ( @Since("1.2.0") var k: Int, @Since("1.2.0") var decayFactor: Double, @Since("1.2.0") var timeUnit: String) extends Logging with Serializable { @Since("1.2.0") def this() = this(2, 1.0, StreamingKMeans.BATCHES) protected var model: StreamingKMeansModel = new StreamingKMeansModel(null, null) /** * Set the number of clusters. */ @Since("1.2.0") def setK(k: Int): this.type = { require(k > 0, s"Number of clusters must be positive but got ${k}") this.k = k this } /** * Set the forgetfulness of the previous centroids. */ @Since("1.2.0") def setDecayFactor(a: Double): this.type = { require(a >= 0, s"Decay factor must be nonnegative but got ${a}") this.decayFactor = a this } /** * Set the half life and time unit ("batches" or "points"). If points, then the decay factor * is raised to the power of number of new points and if batches, then decay factor will be * used as is. */ @Since("1.2.0") def setHalfLife(halfLife: Double, timeUnit: String): this.type = { require(halfLife > 0, s"Half life must be positive but got ${halfLife}") if (timeUnit != StreamingKMeans.BATCHES && timeUnit != StreamingKMeans.POINTS) { throw new IllegalArgumentException("Invalid time unit for decay: " + timeUnit) } this.decayFactor = math.exp(math.log(0.5) / halfLife) logInfo("Setting decay factor to: %g ".format (this.decayFactor)) this.timeUnit = timeUnit this } /** * Specify initial centers directly. */ @Since("1.2.0") def setInitialCenters(centers: Array[Vector], weights: Array[Double]): this.type = { require(centers.size == weights.size, "Number of initial centers must be equal to number of weights") require(centers.size == k, s"Number of initial centers must be ${k} but got ${centers.size}") require(weights.forall(_ >= 0), s"Weight for each initial center must be nonnegative but got [${weights.mkString(" ")}]") model = new StreamingKMeansModel(centers, weights) this } /** * Initialize random centers, requiring only the number of dimensions. * * @param dim Number of dimensions * @param weight Weight for each center * @param seed Random seed */ @Since("1.2.0") def setRandomCenters(dim: Int, weight: Double, seed: Long = Utils.random.nextLong): this.type = { require(dim > 0, s"Number of dimensions must be positive but got ${dim}") require(weight >= 0, s"Weight for each center must be nonnegative but got ${weight}") val random = new XORShiftRandom(seed) val centers = Array.fill(k)(Vectors.dense(Array.fill(dim)(random.nextGaussian()))) val weights = Array.fill(k)(weight) model = new StreamingKMeansModel(centers, weights) this } /** * Return the latest model. */ @Since("1.2.0") def latestModel(): StreamingKMeansModel = { model } /** * Update the clustering model by training on batches of data from a DStream. * This operation registers a DStream for training the model, * checks whether the cluster centers have been initialized, * and updates the model using each batch of data from the stream. * * @param data DStream containing vector data */ @Since("1.2.0") def trainOn(data: DStream[Vector]): Unit = { assertInitialized() data.foreachRDD { (rdd, time) => model = model.update(rdd, decayFactor, timeUnit) } } /** * Java-friendly version of `trainOn`. */ @Since("1.4.0") def trainOn(data: JavaDStream[Vector]): Unit = trainOn(data.dstream) /** * Use the clustering model to make predictions on batches of data from a DStream. * * @param data DStream containing vector data * @return DStream containing predictions */ @Since("1.2.0") def predictOn(data: DStream[Vector]): DStream[Int] = { assertInitialized() data.map(model.predict) } /** * Java-friendly version of `predictOn`. */ @Since("1.4.0") def predictOn(data: JavaDStream[Vector]): JavaDStream[java.lang.Integer] = { JavaDStream.fromDStream(predictOn(data.dstream).asInstanceOf[DStream[java.lang.Integer]]) } /** * Use the model to make predictions on the values of a DStream and carry over its keys. * * @param data DStream containing (key, feature vector) pairs * @tparam K key type * @return DStream containing the input keys and the predictions as values */ @Since("1.2.0") def predictOnValues[K: ClassTag](data: DStream[(K, Vector)]): DStream[(K, Int)] = { assertInitialized() data.mapValues(model.predict) } /** * Java-friendly version of `predictOnValues`. */ @Since("1.4.0") def predictOnValues[K]( data: JavaPairDStream[K, Vector]): JavaPairDStream[K, java.lang.Integer] = { implicit val tag = fakeClassTag[K] JavaPairDStream.fromPairDStream( predictOnValues(data.dstream).asInstanceOf[DStream[(K, java.lang.Integer)]]) } /** Check whether cluster centers have been initialized. */ private[this] def assertInitialized(): Unit = { if (model.clusterCenters == null) { throw new IllegalStateException( "Initial cluster centers must be set before starting predictions") } } } private[clustering] object StreamingKMeans { final val BATCHES = "batches" final val POINTS = "points" }
ueshin/apache-spark
mllib/src/main/scala/org/apache/spark/mllib/clustering/StreamingKMeans.scala
Scala
apache-2.0
11,970
/* * Copyright 2021 HM Revenue & Customs * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package controllers import com.google.inject.Inject import config.MyErrorHandler class AssetsController @Inject() (errorHandler: MyErrorHandler,metadata: AssetsMetadata) extends AssetsBuilder(errorHandler,metadata)
hmrc/gmp-frontend
app/controllers/AssetsController.scala
Scala
apache-2.0
821
package com.blackboxsociety.net import scalaz.{Reader => _, _} import scalaz.syntax.bind._ import com.blackboxsociety._ import scalaz.concurrent._ import scalaz.concurrent.Task._ import scalaz.stream.{async => streamAsync, _} import java.nio.channels._ import java.nio._ import java.io.IOException import scodec.bits.ByteVector import com.blackboxsociety.util._ trait TcpClient { def reader(): Process[Task, ByteVector] def stringReader(): Process[Task, String] def write(b: Array[Byte]): Task[Unit] def write(s: String): Task[Unit] def write(b: ByteBuffer): Task[Unit] def write(s: ByteVector): Task[Unit] def write(c: FileChannel, o: Long = 0): Task[Unit] def end(b: Array[Byte]): Task[Unit] def end(s: String): Task[Unit] def end(c: FileChannel): Task[Unit] def close(): Task[Unit] def close(n: Unit): Task[Unit] } object TcpClient { def apply(socket: SocketChannel): TcpClient = { socket.configureBlocking(false) TcpClientImpl(socket) } private case class TcpClientImpl(s: SocketChannel) extends TcpClient { def reader(): Process[Task, ByteVector] = { def read(): Task[Finishable[ByteVector]] = async { next => EventLoop.addSocketRead(s, { () => val buffer = ByteBuffer.allocate(32768) try { s.read(buffer) match { case -1 => next(\\/-(Done(ByteVector.view(buffer)))) case _ => next(\\/-(More(ByteVector.view(buffer)))) } } catch { case e: IOException => next(-\\/(e)) } }) } def go(): Process[Task, ByteVector] = Process.await[Task, Finishable[ByteVector], ByteVector](read()) { case Done(b) => Process.emit(b) case More(b) => Process.Emit(Seq(b), go()) } go() } def stringReader(): Process[Task, String] = reader().pipe(text.utf8Decode) def writer(): Sink[Task, ByteVector] = { def go(): Sink[Task, ByteVector] = Process.await[Task, ByteVector => Task[Unit], ByteVector => Task[Unit]](Task.now(write _)) { f => Process.Emit(Seq(f), go()) } go() } def write(b: Array[Byte]): Task[Unit] = async { next => val buffer = ByteBuffer.allocate(b.length) buffer.clear() buffer.put(b) buffer.flip() write(buffer).runAsync(next) } def write(b: ByteVector): Task[Unit] = write(b.toByteBuffer) def write(b: ByteBuffer): Task[Unit] = async { next => EventLoop.addSocketWrite(s, { () => try { s.write(b) if (b.hasRemaining) { write(b).runAsync(next) } else { next(\\/-(Unit)) } } catch { case e: IOException => close().runAsync({ _ => next(-\\/(e))}) } }) } def write(s: String): Task[Unit] = { write(s.getBytes) } def write(c: FileChannel, o: Long = 0): Task[Unit] = async { next => EventLoop.addSocketWrite(s, { () => val size = c.size() try { val sent = c.transferTo(o, size, s) val rem = o + sent if (rem < c.size()) { write(c, rem).runAsync(next) } else { next(\\/-(Unit)) } } catch { case e: IOException => close().runAsync({ _ => next(-\\/(e))}) } }) } def end(b: Array[Byte]): Task[Unit] = write(b) >>= close def end(s: String): Task[Unit] = write(s) >>= close def end(c: FileChannel): Task[Unit] = write(c) >>= close def close(): Task[Unit] = async { next => EventLoop.closeChannel(s) s.close() next(\\/-(Unit)) } def close(n: Unit): Task[Unit] = close() } }
blackboxsociety/blackbox-core
src/main/scala/com/blackboxsociety/net/TcpClient.scala
Scala
mit
3,703
package TAPLcomp.untyped import scala.text.Document // outer means that the term is the top-level term object UntypedPrinter { import TAPLcomp.Print._ def ptmTerm(outer: Boolean, t: Term): Document = t match { case TmAbs(x, t2) => val abs = g0("\\\\" :: x :: ".") val body = ptmTerm(outer, t2) g2(abs :/: body) case t => ptmAppTerm(outer, t) } def ptmAppTerm(outer: Boolean, t: Term): Document = t match { case TmApp(t1, t2) => g2(ptmAppTerm(false, t1) :/: ptmATerm(false, t2)) case t => ptmATerm(outer, t) } def ptm(t: Term) = ptmTerm(true, t) def ptmATerm(outer: Boolean, t: Term): Document = t match { case TmVar(x) => x case t => "(" :: ptmTerm(outer, t) :: ")" } }
hy-zhang/parser
Scala/Parser/src/TAPLcomp/untyped/syntax.scala
Scala
bsd-3-clause
746
package dtc.instances.moment import java.time.{DayOfWeek, Duration, LocalDate, LocalTime} import dtc.js.MomentZonedDateTime import dtc.{Offset, TimeZoneId, Zoned} trait MomentZonedDateTimeInstanceWithoutOrder extends Zoned[MomentZonedDateTime] { def capture(date: LocalDate, time: LocalTime, zone: TimeZoneId): MomentZonedDateTime = MomentZonedDateTime.of(date, time, zone) def withZoneSameInstant(x: MomentZonedDateTime, zone: TimeZoneId): MomentZonedDateTime = x.withZoneSameInstant(zone) def withZoneSameLocal(x: MomentZonedDateTime, zone: TimeZoneId): MomentZonedDateTime = x.withZoneSameLocal(zone) def zone(x: MomentZonedDateTime): TimeZoneId = x.zone def date(x: MomentZonedDateTime): LocalDate = x.toLocalDate def time(x: MomentZonedDateTime): LocalTime = x.toLocalTime def plus(x: MomentZonedDateTime, d: Duration): MomentZonedDateTime = x.plus(d) def minus(x: MomentZonedDateTime, d: Duration): MomentZonedDateTime = x.minus(d) def plusDays(x: MomentZonedDateTime, days: Int): MomentZonedDateTime = x.plusDays(days) def plusMonths(x: MomentZonedDateTime, months: Int): MomentZonedDateTime = x.plusMonths(months) def plusYears(x: MomentZonedDateTime, years: Int): MomentZonedDateTime = x.plusYears(years) def offset(x: MomentZonedDateTime): Offset = x.offset def withYear(x: MomentZonedDateTime, year: Int): MomentZonedDateTime = x.withYear(year) def withMonth(x: MomentZonedDateTime, month: Int): MomentZonedDateTime = x.withMonth(month) def withDayOfMonth(x: MomentZonedDateTime, dayOfMonth: Int): MomentZonedDateTime = x.withDayOfMonth(dayOfMonth) def withHour(x: MomentZonedDateTime, hour: Int): MomentZonedDateTime = x.withHour(hour) def withMinute(x: MomentZonedDateTime, minute: Int): MomentZonedDateTime = x.withMinute(minute) def withSecond(x: MomentZonedDateTime, second: Int): MomentZonedDateTime = x.withSecond(second) def withMillisecond(x: MomentZonedDateTime, millisecond: Int): MomentZonedDateTime = x.withMillisecond(millisecond) def withTime(x: MomentZonedDateTime, time: LocalTime): MomentZonedDateTime = x.withTime(time) def withDate(x: MomentZonedDateTime, date: LocalDate): MomentZonedDateTime = x.withDate(date) def dayOfWeek(x: MomentZonedDateTime): DayOfWeek = x.dayOfWeek def dayOfMonth(x: MomentZonedDateTime): Int = x.dayOfMonth def month(x: MomentZonedDateTime): Int = x.month def year(x: MomentZonedDateTime): Int = x.year def millisecond(x: MomentZonedDateTime): Int = x.millisecond def second(x: MomentZonedDateTime): Int = x.second def minute(x: MomentZonedDateTime): Int = x.minute def hour(x: MomentZonedDateTime): Int = x.hour def yearsUntil(x: MomentZonedDateTime, until: MomentZonedDateTime): Long = x.yearsUntil(until) def monthsUntil(x: MomentZonedDateTime, until: MomentZonedDateTime): Long = x.monthsUntil(until) def daysUntil(x: MomentZonedDateTime, until: MomentZonedDateTime): Long = x.daysUntil(until) def hoursUntil(x: MomentZonedDateTime, until: MomentZonedDateTime): Long = x.hoursUntil(until) def minutesUntil(x: MomentZonedDateTime, until: MomentZonedDateTime): Long = x.minutesUntil(until) def secondsUntil(x: MomentZonedDateTime, until: MomentZonedDateTime): Long = x.secondsUntil(until) def millisecondsUntil(x: MomentZonedDateTime, until: MomentZonedDateTime): Long = x.millisecondsUntil(until) def utc(x: MomentZonedDateTime): (LocalDate, LocalTime) = { val utcTime = x.withZoneSameInstant(TimeZoneId.UTC) utcTime.toLocalDate -> utcTime.toLocalTime } }
vpavkin/dtc
moment/src/main/scala/dtc/instances/moment/MomentZonedDateTimeInstanceWithoutOrder.scala
Scala
apache-2.0
3,525
/* * Copyright 2001-2015 Artima, Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.scalatest.prop import org.scalactic.anyvals._ import org.scalatest.FunSpec import org.scalatest.Matchers import org.scalatest.exceptions.TestFailedException import scala.collection.immutable.SortedSet import scala.collection.immutable.SortedMap class GeneratorSpec extends FunSpec with Matchers { describe("A Generator") { it("should offer a map and flatMap method that composes the next methods") { import Generator._ def pairGen(): Generator[(Int, Double)] = // doubleGen().flatMap(d => intGen().map(i => (i, d))) for { d <- doubleGenerator i <- intGenerator } yield (i, d) val aGen = pairGen() val bGen = pairGen() val (a1, _, ar1) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = Randomizer(100)) val (a2, _, ar2) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar1) val (a3, _, _) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar2) a1._1 should not equal a2._1 a1._2 should not equal a2._2 val (b1, _, br1) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = Randomizer(100)) val (b2, _, br2) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br1) val (b3, _, _) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br2) a1 shouldEqual b1 a2 shouldEqual b2 a3 shouldEqual b3 } it("should offer a map method that composes canonicals methods and offers a shrink that uses the canonicals methods") { import Generator._ val (intCanonicalsIt, _) = intGenerator.canonicals(Randomizer.default) val expectedTupCanonicals = intCanonicalsIt.map(i => ('A', i)).toList val tupGen = for (i <- intGenerator) yield ('A', i) val (tupShrinkIt, _) = tupGen.shrink(('A', 100), Randomizer.default) val (tupCanonicalsIt, _) = tupGen.canonicals(Randomizer.default) val tupShrink = tupShrinkIt.toList val tupCanonicals = tupCanonicalsIt.toList tupShrink shouldBe expectedTupCanonicals tupCanonicals shouldBe expectedTupCanonicals } it("should offer a flatMap method that composes canonicals methods and offers a shrink that uses the canonicals methods") { import Generator._ val (intCanonicalsIt, _) = intGenerator.canonicals(Randomizer.default) val intCanonicals = intCanonicalsIt.toList val (doubleCanonicalsIt, _) = doubleGenerator.canonicals(Randomizer.default) val doubleCanonicals = doubleCanonicalsIt.toList val expectedTupCanonicals: List[(Int, Double)] = for { i <- intCanonicals d <- doubleCanonicals } yield (i, d) val tupGen = for { i <- intGenerator d <- doubleGenerator } yield (i, d) val (tupShrinkIt, _) = tupGen.shrink((100, 100.0), Randomizer.default) val (tupCanonicalsIt, _) = tupGen.canonicals(Randomizer.default) val tupShrink = tupShrinkIt.toList val tupCanonicals = tupCanonicalsIt.toList tupShrink shouldBe expectedTupCanonicals tupCanonicals shouldBe expectedTupCanonicals } it("should offer a filter method so that pattern matching can be used in for expressions with Generator generators") { """for ((a, b) <- CommonGenerators.tuple2s[String, Int]) yield (b, a)""" should compile case class Person(name: String, age: Int) val persons = CommonGenerators.instancesOf(Person) { p => (p.name, p.age) } """for (Person(a, b) <- persons) yield (b, a)""" should compile } it("should offer a filter method that throws an exception if too many objects are filtered out") { val doNotDoThisAtHome = CommonGenerators.ints.filter(i => i == 0) // Only keep zero a [IllegalStateException] should be thrownBy { doNotDoThisAtHome.next(SizeParam(PosZInt(0), 100, 100), Nil, Randomizer.default) } val okToDoThisAtHome = CommonGenerators.ints.filter(i => i != 0) // Only keep non-zeros noException should be thrownBy { okToDoThisAtHome.next(SizeParam(PosZInt(0), 100, 100), Nil, Randomizer.default) } } it("should mix up both i and d when used in a for expression") { import Generator._ def pairGen(): Generator[(Int, Double)] = // doubleGen().flatMap(d => intGen().map(i => (i, d))) for { i <- intGenerator d <- doubleGenerator } yield (i, d) val aGen = pairGen() val bGen = pairGen() val (a1, _, ar1) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = Randomizer(100)) val (a2, _, ar2) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar1) val (a3, _, _) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar2) a1._1 should not equal a2._1 a1._2 should not equal a2._2 val (b1, _, br1) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = Randomizer(100)) val (b2, _, br2) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br1) val (b3, _, _) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br2) a1 shouldEqual b1 a2 shouldEqual b2 a3 shouldEqual b3 } it("should be usable in a forAll") { import GeneratorDrivenPropertyChecks._ forAll { (i: Int) => i + i shouldEqual i * 2 } a [TestFailedException] should be thrownBy { forAll { (i: Int) => i + i shouldEqual i * 3 } } } it("should be used at least minSuccessful times in a forAll") { import GeneratorDrivenPropertyChecks._ var count = 0 forAll { (i: Int) => count += 1 i + i shouldEqual i * 2 } count shouldEqual generatorDrivenConfig.minSuccessful.value { implicit val generatorDrivenConfig = PropertyCheckConfiguration(minSuccessful = 10) count = 0 forAll { (i: Int) => count += 1 i + i shouldEqual i * 2 } count shouldEqual generatorDrivenConfig.minSuccessful.value } } it("should be used at least maxDiscarded times in a forAll") { import GeneratorDrivenPropertyChecks._ var count = 0 a [TestFailedException] should be thrownBy { forAll { (i: Int) => count += 1 whenever(false) { i + i shouldEqual i * 3 } } } val maxDiscarded = PropertyCheckConfiguration.calculateMaxDiscarded(generatorDrivenConfig.maxDiscardedFactor, generatorDrivenConfig.minSuccessful) count shouldEqual maxDiscarded { val expectedTestDiscarded = 49 val maxDiscardedFactor = PosZDouble.ensuringValid(PropertyCheckConfiguration.calculateMaxDiscardedFactor(10, expectedTestDiscarded)) implicit val generatorDrivenConfig = PropertyCheckConfiguration(maxDiscardedFactor = maxDiscardedFactor) info(s"What is this one: ${generatorDrivenConfig.maxDiscardedFactor}") count = 0 a [TestFailedException] should be thrownBy { forAll { (i: Int) => count += 1 whenever(false) { i + i shouldEqual i * 3 } } } count shouldEqual expectedTestDiscarded } } it("mapping and flatMapping a Generator should compose the edges") { // import prop._ import Generator._ val intGenerator1 = intGenerator val intGenerator2 = intGenerator val (initEdges1, ir1) = intGenerator1.initEdges(100, Randomizer.default) val (initEdges2, ir2) = intGenerator2.initEdges(100, ir1) initEdges1 should contain theSameElementsAs initEdges2 def pairGen(): Generator[(Int, Int)] = for { i <- intGenerator1 j <- intGenerator2 } yield (i, j) val gen = pairGen() val (initEdges, ier) = gen.initEdges(100, ir2) initEdges.length should equal (initEdges1.length * initEdges2.length) val comboLists: List[List[Int]] = initEdges1.combinations(2).toList val comboPairs: List[(Int, Int)] = comboLists.map(xs => (xs(0), xs(1))) val plusReversedPairs: List[(Int, Int)] = comboPairs flatMap { case (x, y) => List((x, y), (y, x)) } val sameValuePairs: List[(Int, Int)] = initEdges1.map(i => (i, i)) val expectedInitEdges: List[(Int, Int)] = plusReversedPairs ++ sameValuePairs initEdges should contain theSameElementsAs expectedInitEdges val (tup1, e1, r1) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = initEdges, rnd = ier) val (tup2, e2, r2) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = e1, rnd = r1) val (tup3, e3, r3) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = e2, rnd = r2) val (tup4, e4, r4) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = e3, rnd = r3) val (tup5, e5, r5) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = e4, rnd = r4) val (tup6, e6, r6) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = e5, rnd = r5) val (tup7, e7, r7) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = e6, rnd = r6) val (tup8, e8, r8) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = e7, rnd = r7) val (tup9, e9, r9) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = e8, rnd = r8) val (tup10, e10, r10) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = e9, rnd = r9) val (tup11, e11, r11) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = e10, rnd = r10) val (tup12, e12, r12) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = e11, rnd = r11) val (tup13, e13, r13) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = e12, rnd = r12) val (tup14, e14, r14) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = e13, rnd = r13) val (tup15, e15, r15) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = e14, rnd = r14) val (tup16, e16, r16) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = e15, rnd = r15) val (tup17, e17, r17) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = e16, rnd = r16) val (tup18, e18, r18) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = e17, rnd = r17) val (tup19, e19, r19) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = e18, rnd = r18) val (tup20, e20, r20) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = e19, rnd = r19) val (tup21, e21, r21) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = e20, rnd = r20) val (tup22, e22, r22) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = e21, rnd = r21) val (tup23, e23, r23) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = e22, rnd = r22) val (tup24, e24, r24) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = e23, rnd = r23) val (tup25, _, _) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = e24, rnd = r24) val values = List(tup1, tup2, tup3, tup4, tup5, tup6, tup7, tup8, tup9, tup10, tup11, tup12, tup13, tup14, tup15, tup16, tup17, tup18, tup19, tup20, tup21, tup22, tup23, tup24, tup25) values should contain theSameElementsAs expectedInitEdges } describe("for Booleans") { it("should produce true and false more or less equally") { import Generator._ val classification = CommonGenerators.classify(100000, booleanGenerator) { case x if x => "true" case _ => "false" } classification.portions("true") should be (0.5 +- 0.01) } it("should produce the same Boolean values in the same order given the same Randomizer") { import Generator._ @scala.annotation.tailrec def loop(n: Int, rnd: Randomizer, results: List[Boolean]): List[Boolean] = { if (n == 0) results else { val (bool, _, nextRnd) = booleanGenerator.next(SizeParam(0, 0, 0), Nil, rnd) loop(n - 1, nextRnd, bool :: results) } } val rnd = Randomizer.default val firstRound = loop(100, rnd, Nil) val secondRound = loop(100, rnd, Nil) firstRound should contain theSameElementsAs(secondRound) } } describe("for Bytes") { it("should produce the same Byte values in the same order given the same Randomizer") { import Generator._ val aGen = byteGenerator val bGen = byteGenerator val (a1, _, ar1) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = Randomizer(100)) val (a2, _, ar2) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar1) val (a3, _, ar3) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar2) val (a4, _, ar4) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar3) val (a5, _, ar5) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar4) val (a6, _, ar6) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar5) val (a7, _, _) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar6) val (b1, _, br1) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = Randomizer(100)) val (b2, _, br2) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br1) val (b3, _, br3) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br2) val (b4, _, br4) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br3) val (b5, _, br5) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br4) val (b6, _, br6) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br5) val (b7, _, _) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br6) List(a1, a2, a3, a4, a5) should contain theSameElementsAs List(b1, b2, b3, b4, b5) a6 shouldEqual b6 a7 shouldEqual b7 } it("should produce Byte edge values first in random order") { import Generator._ val gen = byteGenerator val (initEdges, ier) = gen.initEdges(10, Randomizer.default) val (a1: Byte, ae1: List[Byte], ar1: Randomizer) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = initEdges, rnd = ier) val (a2, ae2, ar2) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = ae1, rnd = ar1) val (a3, ae3, ar3) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = ae2, rnd = ar2) val (a4, ae4, ar4) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = ae3, rnd = ar3) val (a5, _, _) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = ae4, rnd = ar4) val edges = List(a1, a2, a3, a4, a5) edges should contain (0) edges should contain (1) edges should contain (-1) edges should contain (Byte.MaxValue) edges should contain (Byte.MinValue) } it("should produce Byte canonical values") { import Generator._ val gen = byteGenerator val (canonicals, _) = gen.canonicals(Randomizer.default) canonicals.toList shouldBe List(0, 1, -1, 2, -2, 3, -3).map(_.toByte) } it("should shrink Bytes by repeatedly halving and negating") { import GeneratorDrivenPropertyChecks._ forAll { (b: Byte) => val generator = implicitly[Generator[Byte]] val (shrinkIt, _) = generator.shrink(b, Randomizer.default) val shrinks: List[Byte] = shrinkIt.toList shrinks.distinct.length shouldEqual shrinks.length if (b == 0) shrinks shouldBe empty else { if (b > 1.toByte) shrinks.last should be > 0.toByte else if (b < -1.toByte) shrinks.last should be < 0.toByte import org.scalatest.Inspectors._ val pairs: List[(Byte, Byte)] = shrinks.zip(shrinks.tail) forAll (pairs) { case (x, y) => assert(x == 0 || x == -y || x.abs == y.abs / 2) } } } } } describe("for Shorts") { it("should produce the same Short values in the same order given the same Randomizer") { import Generator._ val aGen= shortGenerator val bGen = shortGenerator val (a1, _, ar1) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = Randomizer(100)) val (a2, _, ar2) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar1) val (a3, _, ar3) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar2) val (a4, _, ar4) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar3) val (a5, _, ar5) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar4) val (a6, _, ar6) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar5) val (a7, _, _) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar6) val (b1, _, br1) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = Randomizer(100)) val (b2, _, br2) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br1) val (b3, _, br3) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br2) val (b4, _, br4) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br3) val (b5, _, br5) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br4) val (b6, _, br6) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br5) val (b7, _, _) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br6) List(a1, a2, a3, a4, a5) should contain theSameElementsAs List(b1, b2, b3, b4, b5) a6 shouldEqual b6 a7 shouldEqual b7 } it("should produce Short edge values first in random order") { import Generator._ val gen = shortGenerator val (initEdges, ier) = gen.initEdges(10, Randomizer.default) val (a1: Short, ae1: List[Short], ar1: Randomizer) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = initEdges, rnd = ier) val (a2, ae2, ar2) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = ae1, rnd = ar1) val (a3, ae3, ar3) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = ae2, rnd = ar2) val (a4, ae4, ar4) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = ae3, rnd = ar3) val (a5, _, _) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = ae4, rnd = ar4) val edges = List(a1, a2, a3, a4, a5) edges should contain (0) edges should contain (1) edges should contain (-1) edges should contain (Short.MaxValue) edges should contain (Short.MinValue) } it("should produce Short canonical values") { import Generator._ val gen = shortGenerator val (canonicals, _) = gen.canonicals(Randomizer.default) canonicals.toList shouldBe List(0, 1, -1, 2, -2, 3, -3).map(_.toShort) } it("should shrink Shorts by repeatedly halving and negating") { import GeneratorDrivenPropertyChecks._ forAll { (n: Short) => val generator = implicitly[Generator[Short]] val (shrinkIt, _) = generator.shrink(n, Randomizer.default) val shrinks: List[Short] = shrinkIt.toList shrinks.distinct.length shouldEqual shrinks.length if (n == 0) shrinks shouldBe empty else { if (n > 1.toShort) shrinks.last should be > 0.toShort else if (n < -1.toShort) shrinks.last should be < 0.toShort import org.scalatest.Inspectors._ val pairs: List[(Short, Short)] = shrinks.zip(shrinks.tail) forAll (pairs) { case (x, y) => assert(x == 0 || x == -y || x.abs == y.abs / 2) } } } } } describe("for Ints") { it("should produce the same Int values in the same order given the same Randomizer") { import Generator._ val aGen= intGenerator val bGen = intGenerator val (a1, _, ar1) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = Randomizer(100)) val (a2, _, ar2) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar1) val (a3, _, ar3) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar2) val (a4, _, ar4) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar3) val (a5, _, ar5) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar4) val (a6, _, ar6) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar5) val (a7, _, _) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar6) val (b1, _, br1) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = Randomizer(100)) val (b2, _, br2) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br1) val (b3, _, br3) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br2) val (b4, _, br4) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br3) val (b5, _, br5) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br4) val (b6, _, br6) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br5) val (b7, _, _) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br6) List(a1, a2, a3, a4, a5) should contain theSameElementsAs List(b1, b2, b3, b4, b5) a6 shouldEqual b6 a7 shouldEqual b7 } it("should produce Int edge values first in random order") { import Generator._ val gen = intGenerator val (initEdges, ier) = gen.initEdges(10, Randomizer.default) val (a1: Int, ae1: List[Int], ar1: Randomizer) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = initEdges, rnd = ier) val (a2, ae2, ar2) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = ae1, rnd = ar1) val (a3, ae3, ar3) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = ae2, rnd = ar2) val (a4, ae4, ar4) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = ae3, rnd = ar3) val (a5, _, _) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = ae4, rnd = ar4) val edges = List(a1, a2, a3, a4, a5) edges should contain (0) edges should contain (1) edges should contain (-1) edges should contain (Int.MaxValue) edges should contain (Int.MinValue) } it("should produce Int canonical values") { import Generator._ val gen = intGenerator val (canonicals, _) = gen.canonicals(Randomizer.default) canonicals.toList shouldBe List(0, 1, -1, 2, -2, 3, -3) } it("should shrink Ints by repeatedly halving and negating") { import GeneratorDrivenPropertyChecks._ forAll { (i: Int) => val generator = implicitly[Generator[Int]] val (shrinkIt, _) = generator.shrink(i, Randomizer.default) val shrinks: List[Int] = shrinkIt.toList shrinks.distinct.length shouldEqual shrinks.length if (i == 0) shrinks shouldBe empty else { if (i > 1) shrinks.last should be > 0 else if (i < -1) shrinks.last should be < 0 import org.scalatest.Inspectors._ val pairs: List[(Int, Int)] = shrinks.zip(shrinks.tail) forAll (pairs) { case (x, y) => assert(x == 0 || x == -y || x.abs == y.abs / 2) } } } } } describe("for Longs") { it("should produce the same Long values in the same order given the same Randomizer") { import Generator._ val aGen= longGenerator val bGen = longGenerator val (a1, _, ar1) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = Randomizer(100)) val (a2, _, ar2) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar1) val (a3, _, ar3) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar2) val (a4, _, ar4) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar3) val (a5, _, ar5) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar4) val (a6, _, ar6) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar5) val (a7, _, _) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar6) val (b1, _, br1) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = Randomizer(100)) val (b2, _, br2) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br1) val (b3, _, br3) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br2) val (b4, _, br4) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br3) val (b5, _, br5) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br4) val (b6, _, br6) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br5) val (b7, _, _) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br6) List(a1, a2, a3, a4, a5) should contain theSameElementsAs List(b1, b2, b3, b4, b5) a6 shouldEqual b6 a7 shouldEqual b7 } it("should produce Long edge values first in random order") { import Generator._ val gen = longGenerator val (initEdges, ier) = gen.initEdges(10, Randomizer.default) val (a1: Long, ae1: List[Long], ar1: Randomizer) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = initEdges, rnd = ier) val (a2, ae2, ar2) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = ae1, rnd = ar1) val (a3, ae3, ar3) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = ae2, rnd = ar2) val (a4, ae4, ar4) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = ae3, rnd = ar3) val (a5, _, _) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = ae4, rnd = ar4) val edges = List(a1, a2, a3, a4, a5) edges should contain (0) edges should contain (1) edges should contain (-1) edges should contain (Long.MaxValue) edges should contain (Long.MinValue) } it("should produce Long canonical values") { import Generator._ val gen = longGenerator val (canonicals, _) = gen.canonicals(Randomizer.default) canonicals.toList shouldBe List(0L, 1L, -1L, 2L, -2L, 3L, -3L) } it("should shrink Longs by repeatedly halving and negating") { import GeneratorDrivenPropertyChecks._ forAll { (n: Long) => val generator = implicitly[Generator[Long]] val (shrinkIt, _) = generator.shrink(n, Randomizer.default) val shrinks: List[Long] = shrinkIt.toList shrinks.distinct.length shouldEqual shrinks.length if (n == 0) shrinks shouldBe empty else { if (n > 1L) shrinks.last should be > 0L else if (n < -1L) shrinks.last should be < 0L import org.scalatest.Inspectors._ val pairs: List[(Long, Long)] = shrinks.zip(shrinks.tail) forAll (pairs) { case (x, y) => assert(x == 0 || x == -y || x.abs == y.abs / 2) } /* all (pairs) should satisfy { case (x, y) => y == 0 || y == -x || y.abs == x.abs / 2 } */ } } } } describe("for Chars") { it("should produce the same Char values in the same order given the same Randomizer") { import Generator._ val aGen= charGenerator val bGen = charGenerator val (a1, _, ar1) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = Randomizer(100)) val (a2, _, ar2) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar1) val (a3, _, ar3) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar2) val (a4, _, ar4) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar3) val (a5, _, ar5) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar4) val (a6, _, ar6) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar5) val (a7, _, _) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar6) val (b1, _, br1) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = Randomizer(100)) val (b2, _, br2) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br1) val (b3, _, br3) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br2) val (b4, _, br4) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br3) val (b5, _, br5) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br4) val (b6, _, br6) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br5) val (b7, _, _) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br6) List(a1, a2, a3, a4, a5) should contain theSameElementsAs List(b1, b2, b3, b4, b5) a6 shouldEqual b6 a7 shouldEqual b7 } it("should produce Char edge values first in random order") { import Generator._ val gen = charGenerator val (initEdges, ier) = gen.initEdges(10, Randomizer.default) val (a1: Char, ae1: List[Char], ar1: Randomizer) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = initEdges, rnd = ier) val (a2, _, _) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = ae1, rnd = ar1) val edges = List(a1, a2) edges should contain (Char.MinValue) edges should contain (Char.MaxValue) } it("should produce Char canonical values") { import Generator._ val gen = charGenerator val (canonicalsIt, _) = gen.canonicals(Randomizer.default) val canonicals = canonicalsIt.toList canonicals(0) should (be >= 'a' and be <= 'z') canonicals(1) should (be >= 'A' and be <= 'Z') canonicals(2) should (be >= '0' and be <= '9') } it("should shrink Chars by trying selected printable characters") { import GeneratorDrivenPropertyChecks._ val expectedChars = "abcdefghikjlmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789".toList val generator = implicitly[Generator[Char]] forAll { (c: Char) => val (shrinkIt, _) = generator.shrink(c, Randomizer.default) val shrinks: List[Char] = shrinkIt.toList shrinks.distinct.length shouldEqual shrinks.length if (c >= '0' && c <= '9' || c >= 'A' && c <= 'Z' || c >= 'a' && c <= 'z') shrinks shouldBe empty else shrinks shouldEqual expectedChars } import org.scalatest.Inspectors Inspectors.forAll (expectedChars) { (c: Char) => val (shrinkIt, _) = generator.shrink(c, Randomizer.default) val shrinks: List[Char] = shrinkIt.toList shrinks shouldBe empty } } } describe("for Floats") { it("should produce the same Float values in the same order given the same Randomizer") { import Generator._ val aGen = floatGenerator val bGen = floatGenerator val (a1, _, ar1) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = Randomizer(100)) val (a2, _, ar2) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar1) val (a3, _, _) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar2) val (b1, _, br1) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = Randomizer(100)) val (b2, _, br2) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br1) val (b3, _, _) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br2) a1 shouldEqual b1 a2 shouldEqual b2 a3 shouldEqual b3 } it("should produce the Float edge value first") { import Generator._ val gen = floatGenerator val (initEdges, ier) = gen.initEdges(10, Randomizer.default) val (a1: Float, ae1: List[Float], ar1: Randomizer) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = initEdges, rnd = ier) val (a2, ae2, ar2) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = ae1, rnd = ar1) val (a3, ae3, ar3) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = ae2, rnd = ar2) val (a4, ae4, ar4) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = ae3, rnd = ar3) val (a5, ae5, ar5) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = ae4, rnd = ar4) val (a6, ae6, ar6) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = ae5, rnd = ar5) val (a7, ae7, ar7) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = ae6, rnd = ar6) val (a8, ae8, ar8) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = ae7, rnd = ar7) val (a9, ae9, ar9) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = ae8, rnd = ar8) val (a10, _, _) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = ae9, rnd = ar9) val edges = List(a1, a2, a3, a4, a5, a6, a7, a8, a9, a10) edges should contain (Float.NegativeInfinity) edges should contain (Float.MinValue) edges should contain (-1.0F) edges should contain (-Float.MinPositiveValue) edges should contain (-0.0F) edges should contain (0.0F) edges should contain (Float.MinPositiveValue) edges should contain (1.0F) edges should contain (Float.MaxValue) edges should contain (Float.PositiveInfinity) } it("should produce Float canonical values") { import Generator._ val gen = floatGenerator val (canonicals, _) = gen.canonicals(Randomizer.default) canonicals.toList shouldBe List(0.0f, 1.0f, -1.0f, 2.0f, -2.0f, 3.0f, -3.0f) } it("should shrink Floats by dropping the fraction part then repeatedly 'square-rooting' and negating") { import GeneratorDrivenPropertyChecks._ forAll { (f: Float) => val generator = implicitly[Generator[Float]] val (shrinkIt, _) = generator.shrink(f, Randomizer.default) val shrinks: List[Float] = shrinkIt.toList shrinks.distinct.length shouldEqual shrinks.length if (f == 0.0f) { shrinks shouldBe empty } else { val n = if (f == Float.PositiveInfinity || f == Float.NaN) Float.MaxValue else if (f == Float.NegativeInfinity) Float.MinValue else f if (n > 1.0f) shrinks.last should be > 0.0f else if (n < -1.0f) shrinks.last should be < 0.0f import org.scalatest.Inspectors._ if (!n.isWhole) { shrinks.last shouldEqual (if (n > 0.0f) n.floor else n.ceil) } val pairs: List[(Float, Float)] = shrinks.zip(shrinks.tail) forAll (pairs) { case (x, y) => assert(x == 0.0f || x == -y || x.abs < y.abs) } } } } } describe("for Doubles") { it("should produce the same Double values in the same order given the same Randomizer") { import Generator._ val aGen = doubleGenerator val bGen = doubleGenerator val (a1, _, ar1) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = Randomizer(100)) val (a2, _, ar2) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar1) val (a3, _, _) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar2) val (b1, _, br1) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = Randomizer(100)) val (b2, _, br2) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br1) val (b3, _, _) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br2) a1 shouldEqual b1 a2 shouldEqual b2 a3 shouldEqual b3 } it("should produce the Double edge value first") { import Generator._ val gen = doubleGenerator val (initEdges, ier) = gen.initEdges(10, Randomizer.default) val (a1: Double, ae1: List[Double], ar1: Randomizer) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = initEdges, rnd = ier) val (a2, ae2, ar2) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = ae1, rnd = ar1) val (a3, ae3, ar3) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = ae2, rnd = ar2) val (a4, ae4, ar4) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = ae3, rnd = ar3) val (a5, ae5, ar5) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = ae4, rnd = ar4) val (a6, ae6, ar6) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = ae5, rnd = ar5) val (a7, ae7, ar7) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = ae6, rnd = ar6) val (a8, ae8, ar8) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = ae7, rnd = ar7) val (a9, ae9, ar9) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = ae8, rnd = ar8) val (a10, _, _) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = ae9, rnd = ar9) val edges = List(a1, a2, a3, a4, a5, a6, a7, a8, a9, a10) edges should contain (Double.NegativeInfinity) edges should contain (Double.MinValue) edges should contain (-1.0) edges should contain (-Double.MinPositiveValue) edges should contain (-0.0) edges should contain (0.0) edges should contain (Double.MinPositiveValue) edges should contain (1.0) edges should contain (Double.MaxValue) edges should contain (Double.PositiveInfinity) } it("should produce Double canonical values") { import Generator._ val gen = doubleGenerator val (canonicals, _) = gen.canonicals(Randomizer.default) canonicals.toList shouldBe List(0.0, 1.0, -1.0, 2.0, -2.0, 3.0, -3.0) } it("should shrink Doubles by dropping the fraction part then repeatedly 'square-rooting' and negating") { import GeneratorDrivenPropertyChecks._ // try with -173126.1489439121 forAll { (d: Double) => val generator = implicitly[Generator[Double]] val (shrinkIt, _) = generator.shrink(d, Randomizer.default) val shrinks: List[Double] = shrinkIt.toList shrinks.distinct.length shouldEqual shrinks.length if (d == 0.0) { shrinks shouldBe empty } else { val n = if (d == Double.PositiveInfinity || d == Double.NaN) Double.MaxValue else if (d == Double.NegativeInfinity) Double.MinValue else d if (n > 1.0) shrinks.last should be > 0.0 else if (n < -1.0) shrinks.last should be < 0.0 if (!n.isWhole) { shrinks.last shouldEqual (if (n > 0.0) n.floor else n.ceil) } val pairs: List[(Double, Double)] = shrinks.zip(shrinks.tail) import org.scalatest.Inspectors._ forAll (pairs) { case (x, y) => assert(x == 0.0 || x == -y || x.abs < y.abs) } } } } } /** * Boilerplate reduction for those `(Iterator[T], Randomizer)` pairs returned * from `canonicals()` and `shrink()` * * @param pair the returned values from the Generator method * @tparam T the type of the Generator */ implicit class GeneratorIteratorPairOps[T](pair: (Iterator[T], Randomizer)) { /** * Helper method for testing canonicals and shrinks, which should always be * "growing". * * The definition of "growing" means, essentially, "moving further from zero". * Sometimes that's in the positive direction (eg, PosInt), sometimes negative * (NegFloat), sometimes both (NonZeroInt). * * This returns Unit, because it's all about the assertion. * * This is a bit loose and approximate, but sufficient for the various * Scalactic types. * * @param iter an Iterator over a type, typically a Scalactic type * @param conv a conversion function from the Scalactic type to an ordinary Numeric * @tparam T the Scalactic type * @tparam N the underlying ordered numeric type */ def shouldGrowWith[N: Ordering](conv: T => N)(implicit nOps: Numeric[N]): Unit = { val iter: Iterator[T] = pair._1 iter.reduce { (last, cur) => // Duplicates not allowed: last should not equal cur val nLast = nOps.abs(conv(last)) val nCur = nOps.abs(conv(cur)) nLast should be <= nCur cur } } } describe("for PosInts") { it("should produce the same PosInt values in the same order given the same Randomizer") { import Generator._ val aGen= posIntGenerator val bGen = posIntGenerator val (a1, _, ar1) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = Randomizer(100)) val (a2, _, ar2) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar1) val (a3, _, ar3) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar2) val (a4, _, ar4) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar3) val (a5, _, ar5) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar4) val (a6, _, ar6) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar5) val (a7, _, _) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar6) val (b1, _, br1) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = Randomizer(100)) val (b2, _, br2) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br1) val (b3, _, br3) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br2) val (b4, _, br4) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br3) val (b5, _, br5) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br4) val (b6, _, br6) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br5) val (b7, _, _) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br6) List(a1, a2, a3, a4, a5) should contain theSameElementsAs List(b1, b2, b3, b4, b5) a6 shouldEqual b6 a7 shouldEqual b7 } it("should produce PosInt edge values first in random order") { import Generator._ val gen = posIntGenerator val (initEdges, ier) = gen.initEdges(10, Randomizer.default) val (a1: PosInt, ae1: List[PosInt], ar1: Randomizer) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = initEdges, rnd = ier) val (a2, _, _) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = ae1, rnd = ar1) val edges = List(a1, a2) edges should contain (PosInt(1)) edges should contain (PosInt.MaxValue) } it("should have legitimate canonicals and shrink") { import Generator._ val gen = posIntGenerator val rnd = Randomizer.default gen.canonicals(rnd).shouldGrowWith(_.value) gen.shrink(PosInt(10000), rnd).shouldGrowWith(_.value) } } describe("for PosZInts") { it("should produce the same PosZInt values in the same order given the same Randomizer") { import Generator._ val aGen= posZIntGenerator val bGen = posZIntGenerator val (a1, _, ar1) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = Randomizer(100)) val (a2, _, ar2) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar1) val (a3, _, ar3) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar2) val (a4, _, ar4) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar3) val (a5, _, ar5) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar4) val (a6, _, ar6) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar5) val (a7, _, _) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar6) val (b1, _, br1) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = Randomizer(100)) val (b2, _, br2) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br1) val (b3, _, br3) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br2) val (b4, _, br4) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br3) val (b5, _, br5) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br4) val (b6, _, br6) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br5) val (b7, _, _) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br6) List(a1, a2, a3, a4, a5) should contain theSameElementsAs List(b1, b2, b3, b4, b5) a6 shouldEqual b6 a7 shouldEqual b7 } it("should produce PosZInt edge values first in random order") { import Generator._ val gen = posZIntGenerator val (initEdges, ier) = gen.initEdges(10, Randomizer.default) val (a1: PosZInt, ae1: List[PosZInt], ar1: Randomizer) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = initEdges, rnd = ier) val (a2, ae2, ar2) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = ae1, rnd = ar1) val (a3, _, _) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = ae2, rnd = ar2) val edges = List(a1, a2, a3) edges should contain (PosZInt(0)) edges should contain (PosZInt(1)) edges should contain (PosZInt.MaxValue) } it("should have legitimate canonicals and shrink") { import Generator._ val gen = posZIntGenerator val rnd = Randomizer.default gen.canonicals(rnd).shouldGrowWith(_.value) gen.shrink(PosZInt(10000), rnd).shouldGrowWith(_.value) } } describe("for PosLongs") { it("should produce the same PosLong values in the same order given the same Randomizer") { import Generator._ val aGen= posLongGenerator val bGen = posLongGenerator val (a1, _, ar1) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = Randomizer(100)) val (a2, _, ar2) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar1) val (a3, _, ar3) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar2) val (a4, _, ar4) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar3) val (a5, _, ar5) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar4) val (a6, _, ar6) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar5) val (a7, _, _) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar6) val (b1, _, br1) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = Randomizer(100)) val (b2, _, br2) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br1) val (b3, _, br3) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br2) val (b4, _, br4) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br3) val (b5, _, br5) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br4) val (b6, _, br6) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br5) val (b7, _, _) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br6) List(a1, a2, a3, a4, a5) should contain theSameElementsAs List(b1, b2, b3, b4, b5) a6 shouldEqual b6 a7 shouldEqual b7 } it("should produce PosLong edge values first in random order") { import Generator._ val gen = posLongGenerator val (initEdges, ier) = gen.initEdges(10, Randomizer.default) val (a1: PosLong, ae1: List[PosLong], ar1: Randomizer) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = initEdges, rnd = ier) val (a2, _, _) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = ae1, rnd = ar1) val edges = List(a1, a2) edges should contain (PosLong(1L)) edges should contain (PosLong.MaxValue) } it("should have legitimate canonicals and shrink") { import Generator._ val gen = posLongGenerator val rnd = Randomizer.default gen.canonicals(rnd).shouldGrowWith(_.value) gen.shrink(PosLong(10000), rnd).shouldGrowWith(_.value) } } describe("for PosZLongs") { it("should produce the same PosZLong values in the same order given the same Randomizer") { import Generator._ val aGen= posZLongGenerator val bGen = posZLongGenerator val (a1, _, ar1) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = Randomizer(100)) val (a2, _, ar2) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar1) val (a3, _, ar3) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar2) val (a4, _, ar4) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar3) val (a5, _, ar5) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar4) val (a6, _, ar6) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar5) val (a7, _, _) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar6) val (b1, _, br1) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = Randomizer(100)) val (b2, _, br2) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br1) val (b3, _, br3) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br2) val (b4, _, br4) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br3) val (b5, _, br5) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br4) val (b6, _, br6) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br5) val (b7, _, _) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br6) List(a1, a2, a3, a4, a5) should contain theSameElementsAs List(b1, b2, b3, b4, b5) a6 shouldEqual b6 a7 shouldEqual b7 } it("should produce PosZLong edge values first in random order") { import Generator._ val gen = posZLongGenerator val (initEdges, ier) = gen.initEdges(10, Randomizer.default) val (a1: PosZLong, ae1: List[PosZLong], ar1: Randomizer) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = initEdges, rnd = ier) val (a2, ae2, ar2) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = ae1, rnd = ar1) val (a3, _, _) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = ae2, rnd = ar2) val edges = List(a1, a2, a3) edges should contain (PosZLong(0L)) edges should contain (PosZLong(1L)) edges should contain (PosZLong.MaxValue) } it("should have legitimate canonicals and shrink") { import Generator._ val gen = posZLongGenerator val rnd = Randomizer.default gen.canonicals(rnd).shouldGrowWith(_.value) gen.shrink(PosZLong(10000), rnd).shouldGrowWith(_.value) } } describe("for PosFloat") { it("should produce the same PosFloat values in the same order given the same Randomizer") { import Generator._ val aGen= posFloatGenerator val bGen = posFloatGenerator val (a1, _, ar1) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = Randomizer(100)) val (a2, _, ar2) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar1) val (a3, _, ar3) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar2) val (a4, _, ar4) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar3) val (a5, _, ar5) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar4) val (a6, _, ar6) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar5) val (a7, _, _) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar6) val (b1, _, br1) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = Randomizer(100)) val (b2, _, br2) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br1) val (b3, _, br3) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br2) val (b4, _, br4) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br3) val (b5, _, br5) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br4) val (b6, _, br6) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br5) val (b7, _, _) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br6) List(a1, a2, a3, a4, a5) should contain theSameElementsAs List(b1, b2, b3, b4, b5) a6 shouldEqual b6 a7 shouldEqual b7 } it("should produce PosFloat edge values first in random order") { import Generator._ val gen = posFloatGenerator val (initEdges, ier) = gen.initEdges(10, Randomizer.default) val (a1: PosFloat, ae1: List[PosFloat], ar1: Randomizer) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = initEdges, rnd = ier) val (a2, ae2, ar2) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = ae1, rnd = ar1) val (a3, ae3, ar3) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = ae2, rnd = ar2) val (a4, _, _) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = ae3, rnd = ar3) val edges = List(a1, a2, a3, a4) edges should contain (PosFloat.MinPositiveValue) edges should contain (PosFloat(1.0f)) edges should contain (PosFloat.MaxValue) edges should contain (PosFloat.PositiveInfinity) } it("should have legitimate canonicals and shrink") { import Generator._ val gen = posFloatGenerator val rnd = Randomizer.default gen.canonicals(rnd).shouldGrowWith(_.value) gen.shrink(PosFloat(10000), rnd).shouldGrowWith(_.value) } } describe("for PosFiniteFloat") { it("should produce the same PosFiniteFloat values in the same order given the same Randomizer") { import Generator._ val aGen= posFiniteFloatGenerator val bGen = posFiniteFloatGenerator val (a1, _, ar1) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = Randomizer(100)) val (a2, _, ar2) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar1) val (a3, _, ar3) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar2) val (a4, _, ar4) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar3) val (a5, _, ar5) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar4) val (a6, _, ar6) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar5) val (a7, _, _) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar6) val (b1, _, br1) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = Randomizer(100)) val (b2, _, br2) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br1) val (b3, _, br3) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br2) val (b4, _, br4) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br3) val (b5, _, br5) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br4) val (b6, _, br6) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br5) val (b7, _, _) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br6) List(a1, a2, a3, a4, a5) should contain theSameElementsAs List(b1, b2, b3, b4, b5) a6 shouldEqual b6 a7 shouldEqual b7 } it("should produce PosFiniteFloat edge values first in random order") { import Generator._ val gen = posFiniteFloatGenerator val (initEdges, ier) = gen.initEdges(10, Randomizer.default) val (a1: PosFiniteFloat, ae1: List[PosFiniteFloat], ar1: Randomizer) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = initEdges, rnd = ier) val (a2, ae2, ar2) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = ae1, rnd = ar1) val (a3, _, _) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = ae2, rnd = ar2) val edges = List(a1, a2, a3) edges should contain (PosFiniteFloat.MinValue) edges should contain (PosFiniteFloat(1.0f)) edges should contain (PosFiniteFloat.MaxValue) } it("should have legitimate canonicals and shrink") { import Generator._ val gen = posFiniteFloatGenerator val rnd = Randomizer.default gen.canonicals(rnd).shouldGrowWith(_.value) gen.shrink(PosFiniteFloat(10000), rnd).shouldGrowWith(_.value) } } describe("for PosZFloat") { it("should produce the same PosZFloat values in the same order given the same Randomizer") { import Generator._ val aGen= posZFloatGenerator val bGen = posZFloatGenerator val (a1, _, ar1) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = Randomizer(100)) val (a2, _, ar2) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar1) val (a3, _, ar3) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar2) val (a4, _, ar4) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar3) val (a5, _, ar5) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar4) val (a6, _, ar6) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar5) val (a7, _, _) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar6) val (b1, _, br1) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = Randomizer(100)) val (b2, _, br2) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br1) val (b3, _, br3) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br2) val (b4, _, br4) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br3) val (b5, _, br5) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br4) val (b6, _, br6) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br5) val (b7, _, _) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br6) List(a1, a2, a3, a4, a5) should contain theSameElementsAs List(b1, b2, b3, b4, b5) a6 shouldEqual b6 a7 shouldEqual b7 } it("should produce PosZFloat edge values first in random order") { import Generator._ val gen = posZFloatGenerator val (initEdges, ier) = gen.initEdges(10, Randomizer.default) val (a1: PosZFloat, ae1: List[PosZFloat], ar1: Randomizer) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = initEdges, rnd = ier) val (a2, ae2, ar2) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = ae1, rnd = ar1) val (a3, ae3, ar3) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = ae2, rnd = ar2) val (a4, ae4, ar4) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = ae3, rnd = ar3) val (a5, ae5, ar5) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = ae4, rnd = ar4) val (a6, _, _) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = ae5, rnd = ar5) val edges = List(a1, a2, a3, a4, a5, a6) edges should contain (PosZFloat(-0.0f)) edges should contain (PosZFloat(0.0f)) edges should contain (PosZFloat.MinPositiveValue) edges should contain (PosZFloat(1.0f)) edges should contain (PosZFloat.MaxValue) edges should contain (PosZFloat.PositiveInfinity) } it("should have legitimate canonicals and shrink") { import Generator._ val gen = posZFloatGenerator val rnd = Randomizer.default gen.canonicals(rnd).shouldGrowWith(_.value) gen.shrink(PosZFloat(10000), rnd).shouldGrowWith(_.value) } } describe("for PosZFiniteFloat") { it("should produce the same PosZFiniteFloat values in the same order given the same Randomizer") { import Generator._ val aGen= posZFiniteFloatGenerator val bGen = posZFiniteFloatGenerator val (a1, _, ar1) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = Randomizer(100)) val (a2, _, ar2) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar1) val (a3, _, ar3) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar2) val (a4, _, ar4) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar3) val (a5, _, ar5) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar4) val (a6, _, ar6) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar5) val (a7, _, _) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar6) val (b1, _, br1) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = Randomizer(100)) val (b2, _, br2) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br1) val (b3, _, br3) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br2) val (b4, _, br4) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br3) val (b5, _, br5) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br4) val (b6, _, br6) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br5) val (b7, _, _) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br6) List(a1, a2, a3, a4, a5) should contain theSameElementsAs List(b1, b2, b3, b4, b5) a6 shouldEqual b6 a7 shouldEqual b7 } it("should produce PosZFiniteFloat edge values first in random order") { import Generator._ val gen = posZFiniteFloatGenerator val (initEdges, ier) = gen.initEdges(10, Randomizer.default) val (a1: PosZFiniteFloat, ae1: List[PosZFiniteFloat], ar1: Randomizer) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = initEdges, rnd = ier) val (a2, ae2, ar2) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = ae1, rnd = ar1) val (a3, ae3, ar3) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = ae2, rnd = ar2) val (a4, ae4, ar4) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = ae3, rnd = ar3) val (a5, _, _) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = ae4, rnd = ar4) val edges = List(a1, a2, a3, a4, a5) edges should contain (PosZFiniteFloat(-0.0f)) edges should contain (PosZFiniteFloat(0.0f)) edges should contain (PosZFiniteFloat.MinPositiveValue) edges should contain (PosZFiniteFloat(1.0f)) edges should contain (PosZFiniteFloat.MaxValue) } it("should have legitimate canonicals and shrink") { import Generator._ val gen = posZFiniteFloatGenerator val rnd = Randomizer.default gen.canonicals(rnd).shouldGrowWith(_.value) gen.shrink(PosZFiniteFloat(10000), rnd).shouldGrowWith(_.value) } } describe("for PosDouble") { it("should produce the same PosDouble values in the same order given the same Randomizer") { import Generator._ val aGen= posDoubleGenerator val bGen = posDoubleGenerator val (a1, _, ar1) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = Randomizer(100)) val (a2, _, ar2) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar1) val (a3, _, ar3) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar2) val (a4, _, ar4) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar3) val (a5, _, ar5) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar4) val (a6, _, ar6) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar5) val (a7, _, _) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar6) val (b1, _, br1) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = Randomizer(100)) val (b2, _, br2) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br1) val (b3, _, br3) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br2) val (b4, _, br4) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br3) val (b5, _, br5) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br4) val (b6, _, br6) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br5) val (b7, _, _) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br6) List(a1, a2, a3, a4, a5) should contain theSameElementsAs List(b1, b2, b3, b4, b5) a6 shouldEqual b6 a7 shouldEqual b7 } it("should produce PosDouble edge values first in random order") { import Generator._ val gen = posDoubleGenerator val (initEdges, ier) = gen.initEdges(10, Randomizer.default) val (a1: PosDouble, ae1: List[PosDouble], ar1: Randomizer) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = initEdges, rnd = ier) val (a2, ae2, ar2) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = ae1, rnd = ar1) val (a3, ae3, ar3) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = ae2, rnd = ar2) val (a4, _, _) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = ae3, rnd = ar3) val edges = List(a1, a2, a3, a4) edges should contain (PosDouble.MinPositiveValue) edges should contain (PosDouble(1.0)) edges should contain (PosDouble.MaxValue) edges should contain (PosDouble.PositiveInfinity) } it("should have legitimate canonicals and shrink") { import Generator._ val gen = posDoubleGenerator val rnd = Randomizer.default gen.canonicals(rnd).shouldGrowWith(_.value) gen.shrink(PosDouble(10000), rnd).shouldGrowWith(_.value) } } describe("for PosFiniteDouble") { it("should produce the same PosFiniteDouble values in the same order given the same Randomizer") { import Generator._ val aGen= posFiniteDoubleGenerator val bGen = posFiniteDoubleGenerator val (a1, _, ar1) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = Randomizer(100)) val (a2, _, ar2) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar1) val (a3, _, ar3) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar2) val (a4, _, ar4) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar3) val (a5, _, ar5) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar4) val (a6, _, ar6) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar5) val (a7, _, _) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar6) val (b1, _, br1) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = Randomizer(100)) val (b2, _, br2) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br1) val (b3, _, br3) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br2) val (b4, _, br4) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br3) val (b5, _, br5) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br4) val (b6, _, br6) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br5) val (b7, _, _) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br6) List(a1, a2, a3, a4, a5) should contain theSameElementsAs List(b1, b2, b3, b4, b5) a6 shouldEqual b6 a7 shouldEqual b7 } it("should produce PosFiniteDouble edge values first in random order") { import Generator._ val gen = posFiniteDoubleGenerator val (initEdges, ier) = gen.initEdges(10, Randomizer.default) val (a1: PosFiniteDouble, ae1: List[PosFiniteDouble], ar1: Randomizer) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = initEdges, rnd = ier) val (a2, ae2, ar2) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = ae1, rnd = ar1) val (a3, _, _) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = ae2, rnd = ar2) val edges = List(a1, a2, a3) edges should contain (PosFiniteDouble.MinValue) edges should contain (PosFiniteDouble(1.0)) edges should contain (PosFiniteDouble.MaxValue) } it("should have legitimate canonicals and shrink") { import Generator._ val gen = posFiniteDoubleGenerator val rnd = Randomizer.default gen.canonicals(rnd).shouldGrowWith(_.value) gen.shrink(PosFiniteDouble(10000), rnd).shouldGrowWith(_.value) } } describe("for PosZDouble") { it("should produce the same PosZDouble values in the same order given the same Randomizer") { import Generator._ val aGen= posZDoubleGenerator val bGen = posZDoubleGenerator val (a1, _, ar1) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = Randomizer(100)) val (a2, _, ar2) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar1) val (a3, _, ar3) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar2) val (a4, _, ar4) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar3) val (a5, _, ar5) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar4) val (a6, _, ar6) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar5) val (a7, _, _) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar6) val (b1, _, br1) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = Randomizer(100)) val (b2, _, br2) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br1) val (b3, _, br3) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br2) val (b4, _, br4) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br3) val (b5, _, br5) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br4) val (b6, _, br6) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br5) val (b7, _, _) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br6) List(a1, a2, a3, a4, a5) should contain theSameElementsAs List(b1, b2, b3, b4, b5) a6 shouldEqual b6 a7 shouldEqual b7 } it("should produce PosZDouble edge values first in random order") { import Generator._ val gen = posZDoubleGenerator val (initEdges, ier) = gen.initEdges(10, Randomizer.default) val (a1: PosZDouble, ae1: List[PosZDouble], ar1: Randomizer) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = initEdges, rnd = ier) val (a2, ae2, ar2) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = ae1, rnd = ar1) val (a3, ae3, ar3) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = ae2, rnd = ar2) val (a4, ae4, ar4) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = ae3, rnd = ar3) val (a5, ae5, ar5) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = ae4, rnd = ar4) val (a6, _, _) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = ae5, rnd = ar5) val edges = List(a1, a2, a3, a4, a5, a6) edges should contain (PosZDouble(-0.0f)) edges should contain (PosZDouble(0.0f)) edges should contain (PosZDouble.MinPositiveValue) edges should contain (PosZDouble(1.0f)) edges should contain (PosZDouble.MaxValue) edges should contain (PosZDouble.PositiveInfinity) } it("should have legitimate canonicals and shrink") { import Generator._ val gen = posZDoubleGenerator val rnd = Randomizer.default gen.canonicals(rnd).shouldGrowWith(_.value) gen.shrink(PosZDouble(10000), rnd).shouldGrowWith(_.value) } } describe("for PosZFiniteDouble") { it("should produce the same PosZFiniteDouble values in the same order given the same Randomizer") { import Generator._ val aGen= posZFiniteDoubleGenerator val bGen = posZFiniteDoubleGenerator val (a1, _, ar1) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = Randomizer(100)) val (a2, _, ar2) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar1) val (a3, _, ar3) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar2) val (a4, _, ar4) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar3) val (a5, _, ar5) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar4) val (a6, _, ar6) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar5) val (a7, _, _) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar6) val (b1, _, br1) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = Randomizer(100)) val (b2, _, br2) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br1) val (b3, _, br3) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br2) val (b4, _, br4) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br3) val (b5, _, br5) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br4) val (b6, _, br6) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br5) val (b7, _, _) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br6) List(a1, a2, a3, a4, a5) should contain theSameElementsAs List(b1, b2, b3, b4, b5) a6 shouldEqual b6 a7 shouldEqual b7 } it("should produce PosZFiniteDouble edge values first in random order") { import Generator._ val gen = posZFiniteDoubleGenerator val (initEdges, ier) = gen.initEdges(10, Randomizer.default) val (a1: PosZFiniteDouble, ae1: List[PosZFiniteDouble], ar1: Randomizer) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = initEdges, rnd = ier) val (a2, ae2, ar2) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = ae1, rnd = ar1) val (a3, ae3, ar3) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = ae2, rnd = ar2) val (a4, ae4, ar4) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = ae3, rnd = ar3) val (a5, _, _) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = ae4, rnd = ar4) val edges = List(a1, a2, a3, a4, a5) edges should contain (PosZFiniteDouble(-0.0f)) edges should contain (PosZFiniteDouble(0.0f)) edges should contain (PosZFiniteDouble.MinPositiveValue) edges should contain (PosZFiniteDouble(1.0f)) edges should contain (PosZFiniteDouble.MaxValue) } it("should have legitimate canonicals and shrink") { import Generator._ val gen = posZFiniteDoubleGenerator val rnd = Randomizer.default gen.canonicals(rnd).shouldGrowWith(_.value) gen.shrink(PosZFiniteDouble(10000), rnd).shouldGrowWith(_.value) } } describe("for NegInts") { it("should produce the same NegInt values in the same order given the same Randomizer") { import Generator._ val aGen= negIntGenerator val bGen = negIntGenerator val (a1, _, ar1) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = Randomizer(100)) val (a2, _, ar2) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar1) val (a3, _, ar3) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar2) val (a4, _, ar4) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar3) val (a5, _, ar5) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar4) val (a6, _, ar6) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar5) val (a7, _, _) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar6) val (b1, _, br1) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = Randomizer(100)) val (b2, _, br2) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br1) val (b3, _, br3) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br2) val (b4, _, br4) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br3) val (b5, _, br5) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br4) val (b6, _, br6) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br5) val (b7, _, _) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br6) List(a1, a2, a3, a4, a5) should contain theSameElementsAs List(b1, b2, b3, b4, b5) a6 shouldEqual b6 a7 shouldEqual b7 } it("should produce NegInt edge values first in random order") { import Generator._ val gen = negIntGenerator val (initEdges, ier) = gen.initEdges(10, Randomizer.default) val (a1: NegInt, ae1: List[NegInt], ar1: Randomizer) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = initEdges, rnd = ier) val (a2, _, _) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = ae1, rnd = ar1) val edges = List(a1, a2) edges should contain (NegInt(-1)) edges should contain (NegInt.MaxValue) } it("should have legitimate canonicals and shrink") { import Generator._ val gen = negIntGenerator val rnd = Randomizer.default gen.canonicals(rnd).shouldGrowWith(_.value) gen.shrink(NegInt(-10000), rnd).shouldGrowWith(_.value) } } describe("for NegZInts") { it("should produce the same NegZInt values in the same order given the same Randomizer") { import Generator._ val aGen= negZIntGenerator val bGen = negZIntGenerator val (a1, _, ar1) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = Randomizer(100)) val (a2, _, ar2) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar1) val (a3, _, ar3) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar2) val (a4, _, ar4) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar3) val (a5, _, ar5) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar4) val (a6, _, ar6) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar5) val (a7, _, _) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar6) val (b1, _, br1) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = Randomizer(100)) val (b2, _, br2) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br1) val (b3, _, br3) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br2) val (b4, _, br4) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br3) val (b5, _, br5) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br4) val (b6, _, br6) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br5) val (b7, _, _) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br6) List(a1, a2, a3, a4, a5) should contain theSameElementsAs List(b1, b2, b3, b4, b5) a6 shouldEqual b6 a7 shouldEqual b7 } it("should produce NegZInt edge values first in random order") { import Generator._ val gen = negZIntGenerator val (initEdges, ier) = gen.initEdges(10, Randomizer.default) val (a1: NegZInt, ae1: List[NegZInt], ar1: Randomizer) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = initEdges, rnd = ier) val (a2, ae2, ar2) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = ae1, rnd = ar1) val (a3, _, _) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = ae2, rnd = ar2) val edges = List(a1, a2, a3) edges should contain (NegZInt(0)) edges should contain (NegZInt(-1)) edges should contain (NegZInt.MaxValue) } it("should have legitimate canonicals and shrink") { import Generator._ val gen = negZIntGenerator val rnd = Randomizer.default gen.canonicals(rnd).shouldGrowWith(_.value) gen.shrink(NegZInt(-10000), rnd).shouldGrowWith(_.value) } } describe("for NegLongs") { it("should produce the same NegLong values in the same order given the same Randomizer") { import Generator._ val aGen= negLongGenerator val bGen = negLongGenerator val (a1, _, ar1) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = Randomizer(100)) val (a2, _, ar2) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar1) val (a3, _, ar3) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar2) val (a4, _, ar4) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar3) val (a5, _, ar5) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar4) val (a6, _, ar6) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar5) val (a7, _, _) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar6) val (b1, _, br1) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = Randomizer(100)) val (b2, _, br2) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br1) val (b3, _, br3) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br2) val (b4, _, br4) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br3) val (b5, _, br5) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br4) val (b6, _, br6) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br5) val (b7, _, _) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br6) List(a1, a2, a3, a4, a5) should contain theSameElementsAs List(b1, b2, b3, b4, b5) a6 shouldEqual b6 a7 shouldEqual b7 } it("should produce NegLong edge values first in random order") { import Generator._ val gen = negLongGenerator val (initEdges, ier) = gen.initEdges(10, Randomizer.default) val (a1: NegLong, ae1: List[NegLong], ar1: Randomizer) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = initEdges, rnd = ier) val (a2, _, _) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = ae1, rnd = ar1) val edges = List(a1, a2) edges should contain (NegLong(-1L)) edges should contain (NegLong.MaxValue) } it("should have legitimate canonicals and shrink") { import Generator._ val gen = negLongGenerator val rnd = Randomizer.default gen.canonicals(rnd).shouldGrowWith(_.value) gen.shrink(NegLong(-10000), rnd).shouldGrowWith(_.value) } } describe("for NegZLongs") { it("should produce the same NegZLong values in the same order given the same Randomizer") { import Generator._ val aGen= negZLongGenerator val bGen = negZLongGenerator val (a1, _, ar1) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = Randomizer(100)) val (a2, _, ar2) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar1) val (a3, _, ar3) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar2) val (a4, _, ar4) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar3) val (a5, _, ar5) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar4) val (a6, _, ar6) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar5) val (a7, _, _) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar6) val (b1, _, br1) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = Randomizer(100)) val (b2, _, br2) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br1) val (b3, _, br3) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br2) val (b4, _, br4) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br3) val (b5, _, br5) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br4) val (b6, _, br6) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br5) val (b7, _, _) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br6) List(a1, a2, a3, a4, a5) should contain theSameElementsAs List(b1, b2, b3, b4, b5) a6 shouldEqual b6 a7 shouldEqual b7 } it("should produce NegZLong edge values first in random order") { import Generator._ val gen = negZLongGenerator val (initEdges, ier) = gen.initEdges(10, Randomizer.default) val (a1: NegZLong, ae1: List[NegZLong], ar1: Randomizer) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = initEdges, rnd = ier) val (a2, ae2, ar2) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = ae1, rnd = ar1) val (a3, _, _) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = ae2, rnd = ar2) val edges = List(a1, a2, a3) edges should contain (NegZLong(0L)) edges should contain (NegZLong(-1L)) edges should contain (NegZLong.MaxValue) } it("should have legitimate canonicals and shrink") { import Generator._ val gen = negZLongGenerator val rnd = Randomizer.default gen.canonicals(rnd).shouldGrowWith(_.value) gen.shrink(NegZLong(-10000), rnd).shouldGrowWith(_.value) } } describe("for NegFloat") { it("should produce the same NegFloat values in the same order given the same Randomizer") { import Generator._ val aGen= negFloatGenerator val bGen = negFloatGenerator val (a1, _, ar1) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = Randomizer(100)) val (a2, _, ar2) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar1) val (a3, _, ar3) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar2) val (a4, _, ar4) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar3) val (a5, _, ar5) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar4) val (a6, _, ar6) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar5) val (a7, _, _) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar6) val (b1, _, br1) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = Randomizer(100)) val (b2, _, br2) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br1) val (b3, _, br3) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br2) val (b4, _, br4) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br3) val (b5, _, br5) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br4) val (b6, _, br6) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br5) val (b7, _, _) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br6) List(a1, a2, a3, a4, a5) should contain theSameElementsAs List(b1, b2, b3, b4, b5) a6 shouldEqual b6 a7 shouldEqual b7 } it("should produce NegFloat edge values first in random order") { import Generator._ val gen = negFloatGenerator val (initEdges, ier) = gen.initEdges(10, Randomizer.default) val (a1: NegFloat, ae1: List[NegFloat], ar1: Randomizer) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = initEdges, rnd = ier) val (a2, ae2, ar2) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = ae1, rnd = ar1) val (a3, ae3, ar3) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = ae2, rnd = ar2) val (a4, _, _) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = ae3, rnd = ar3) val edges = List(a1, a2, a3, a4) edges should contain (NegFloat.MaxValue) edges should contain (NegFloat(-1.0f)) edges should contain (NegFloat.MinValue) edges should contain (NegFloat.NegativeInfinity) } it("should have legitimate canonicals and shrink") { import Generator._ val gen = negFloatGenerator val rnd = Randomizer.default gen.canonicals(rnd).shouldGrowWith(_.value) gen.shrink(NegFloat(-10000), rnd).shouldGrowWith(_.value) } } describe("for NegFiniteFloat") { it("should produce the same NegFiniteFloat values in the same order given the same Randomizer") { import Generator._ val aGen= negFiniteFloatGenerator val bGen = negFiniteFloatGenerator val (a1, _, ar1) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = Randomizer(100)) val (a2, _, ar2) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar1) val (a3, _, ar3) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar2) val (a4, _, ar4) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar3) val (a5, _, ar5) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar4) val (a6, _, ar6) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar5) val (a7, _, _) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar6) val (b1, _, br1) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = Randomizer(100)) val (b2, _, br2) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br1) val (b3, _, br3) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br2) val (b4, _, br4) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br3) val (b5, _, br5) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br4) val (b6, _, br6) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br5) val (b7, _, _) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br6) List(a1, a2, a3, a4, a5) should contain theSameElementsAs List(b1, b2, b3, b4, b5) a6 shouldEqual b6 a7 shouldEqual b7 } it("should produce NegFiniteFloat edge values first in random order") { import Generator._ val gen = negFiniteFloatGenerator val (initEdges, ier) = gen.initEdges(10, Randomizer.default) val (a1: NegFiniteFloat, ae1: List[NegFiniteFloat], ar1: Randomizer) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = initEdges, rnd = ier) val (a2, ae2, ar2) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = ae1, rnd = ar1) val (a3, _, _) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = ae2, rnd = ar2) val edges = List(a1, a2, a3) edges should contain (NegFiniteFloat(-1.0f)) edges should contain (NegFiniteFloat.MaxValue) edges should contain (NegFiniteFloat.MinValue) } it("should have legitimate canonicals and shrink") { import Generator._ val gen = negFiniteFloatGenerator val rnd = Randomizer.default gen.canonicals(rnd).shouldGrowWith(_.value) gen.shrink(NegFiniteFloat(-10000), rnd).shouldGrowWith(_.value) } } describe("for NegZFloat") { it("should produce the same NegZFloat values in the same order given the same Randomizer") { import Generator._ val aGen= negZFloatGenerator val bGen = negZFloatGenerator val (a1, _, ar1) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = Randomizer(100)) val (a2, _, ar2) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar1) val (a3, _, ar3) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar2) val (a4, _, ar4) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar3) val (a5, _, ar5) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar4) val (a6, _, ar6) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar5) val (a7, _, _) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar6) val (b1, _, br1) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = Randomizer(100)) val (b2, _, br2) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br1) val (b3, _, br3) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br2) val (b4, _, br4) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br3) val (b5, _, br5) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br4) val (b6, _, br6) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br5) val (b7, _, _) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br6) List(a1, a2, a3, a4, a5) should contain theSameElementsAs List(b1, b2, b3, b4, b5) a6 shouldEqual b6 a7 shouldEqual b7 } it("should produce NegZFloat edge values first in random order") { import Generator._ val gen = negZFloatGenerator val (initEdges, ier) = gen.initEdges(10, Randomizer.default) val (a1: NegZFloat, ae1: List[NegZFloat], ar1: Randomizer) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = initEdges, rnd = ier) val (a2, ae2, ar2) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = ae1, rnd = ar1) val (a3, ae3, ar3) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = ae2, rnd = ar2) val (a4, ae4, ar4) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = ae3, rnd = ar3) val (a5, ae5, ar5) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = ae4, rnd = ar4) val (a6, _, _) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = ae5, rnd = ar5) val edges = List(a1, a2, a3, a4, a5, a6) edges should contain (NegZFloat(0.0f)) edges should contain (NegZFloat(-0.0f)) edges should contain (NegZFloat.ensuringValid(-Float.MinPositiveValue)) edges should contain (NegZFloat(-1.0f)) edges should contain (NegZFloat.MinValue) edges should contain (NegZFloat.NegativeInfinity) } it("should have legitimate canonicals and shrink") { import Generator._ val gen = negZFloatGenerator val rnd = Randomizer.default gen.canonicals(rnd).shouldGrowWith(_.value) gen.shrink(NegZFloat(-10000), rnd).shouldGrowWith(_.value) } } describe("for NegZFiniteFloat") { it("should produce the same NegZFiniteFloat values in the same order given the same Randomizer") { import Generator._ val aGen= negZFiniteFloatGenerator val bGen = negZFiniteFloatGenerator val (a1, _, ar1) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = Randomizer(100)) val (a2, _, ar2) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar1) val (a3, _, ar3) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar2) val (a4, _, ar4) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar3) val (a5, _, ar5) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar4) val (a6, _, ar6) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar5) val (a7, _, _) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar6) val (b1, _, br1) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = Randomizer(100)) val (b2, _, br2) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br1) val (b3, _, br3) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br2) val (b4, _, br4) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br3) val (b5, _, br5) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br4) val (b6, _, br6) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br5) val (b7, _, _) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br6) List(a1, a2, a3, a4, a5) should contain theSameElementsAs List(b1, b2, b3, b4, b5) a6 shouldEqual b6 a7 shouldEqual b7 } it("should produce NegZFiniteFloat edge values first in random order") { import Generator._ val gen = negZFiniteFloatGenerator val (initEdges, ier) = gen.initEdges(10, Randomizer.default) val (a1: NegZFiniteFloat, ae1: List[NegZFiniteFloat], ar1: Randomizer) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = initEdges, rnd = ier) val (a2, ae2, ar2) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = ae1, rnd = ar1) val (a3, ae3, ar3) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = ae2, rnd = ar2) val (a4, ae4, ar4) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = ae3, rnd = ar3) val (a5, _, _) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = ae4, rnd = ar4) val edges = List(a1, a2, a3, a4, a5) edges should contain (NegZFiniteFloat(0.0f)) edges should contain (NegZFiniteFloat(-0.0f)) edges should contain (NegZFiniteFloat.ensuringValid(-Float.MinPositiveValue)) edges should contain (NegZFiniteFloat(-1.0f)) edges should contain (NegZFiniteFloat.MinValue) } it("should have legitimate canonicals and shrink") { import Generator._ val gen = negZFiniteFloatGenerator val rnd = Randomizer.default gen.canonicals(rnd).shouldGrowWith(_.value) gen.shrink(NegZFiniteFloat(-10000), rnd).shouldGrowWith(_.value) } } describe("for NegDouble") { it("should produce the same NegDouble values in the same order given the same Randomizer") { import Generator._ val aGen= negDoubleGenerator val bGen = negDoubleGenerator val (a1, _, ar1) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = Randomizer(100)) val (a2, _, ar2) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar1) val (a3, _, ar3) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar2) val (a4, _, ar4) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar3) val (a5, _, ar5) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar4) val (a6, _, ar6) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar5) val (a7, _, _) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar6) val (b1, _, br1) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = Randomizer(100)) val (b2, _, br2) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br1) val (b3, _, br3) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br2) val (b4, _, br4) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br3) val (b5, _, br5) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br4) val (b6, _, br6) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br5) val (b7, _, _) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br6) List(a1, a2, a3, a4, a5) should contain theSameElementsAs List(b1, b2, b3, b4, b5) a6 shouldEqual b6 a7 shouldEqual b7 } it("should produce NegDouble edge values first in random order") { import Generator._ val gen = negDoubleGenerator val (initEdges, ier) = gen.initEdges(10, Randomizer.default) val (a1: NegDouble, ae1: List[NegDouble], ar1: Randomizer) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = initEdges, rnd = ier) val (a2, ae2, ar2) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = ae1, rnd = ar1) val (a3, ae3, ar3) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = ae2, rnd = ar2) val (a4, _, _) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = ae3, rnd = ar3) val edges = List(a1, a2, a3, a4) edges should contain (NegDouble.MaxValue) edges should contain (NegDouble(-1.0f)) edges should contain (NegDouble.MinValue) edges should contain (NegDouble.NegativeInfinity) } it("should have legitimate canonicals and shrink") { import Generator._ val gen = negDoubleGenerator val rnd = Randomizer.default gen.canonicals(rnd).shouldGrowWith(_.value) gen.shrink(NegDouble(-10000), rnd).shouldGrowWith(_.value) } } describe("for NegFiniteDouble") { it("should produce the same NegFiniteDouble values in the same order given the same Randomizer") { import Generator._ val aGen= negFiniteDoubleGenerator val bGen = negFiniteDoubleGenerator val (a1, _, ar1) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = Randomizer(100)) val (a2, _, ar2) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar1) val (a3, _, ar3) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar2) val (a4, _, ar4) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar3) val (a5, _, ar5) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar4) val (a6, _, ar6) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar5) val (a7, _, _) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar6) val (b1, _, br1) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = Randomizer(100)) val (b2, _, br2) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br1) val (b3, _, br3) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br2) val (b4, _, br4) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br3) val (b5, _, br5) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br4) val (b6, _, br6) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br5) val (b7, _, _) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br6) List(a1, a2, a3, a4, a5) should contain theSameElementsAs List(b1, b2, b3, b4, b5) a6 shouldEqual b6 a7 shouldEqual b7 } it("should produce NegFiniteDouble edge values first in random order") { import Generator._ val gen = negFiniteDoubleGenerator val (initEdges, ier) = gen.initEdges(10, Randomizer.default) val (a1: NegFiniteDouble, ae1: List[NegFiniteDouble], ar1: Randomizer) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = initEdges, rnd = ier) val (a2, ae2, ar2) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = ae1, rnd = ar1) val (a3, _, _) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = ae2, rnd = ar2) val edges = List(a1, a2, a3) edges should contain (NegFiniteDouble(-1.0)) edges should contain (NegFiniteDouble.MinValue) edges should contain (NegFiniteDouble.MaxValue) } it("should have legitimate canonicals and shrink") { import Generator._ val gen = negFiniteDoubleGenerator val rnd = Randomizer.default gen.canonicals(rnd).shouldGrowWith(_.value) gen.shrink(NegFiniteDouble(-10000), rnd).shouldGrowWith(_.value) } } describe("for NegZDouble") { it("should produce the same NegZDouble values in the same order given the same Randomizer") { import Generator._ val aGen= negZDoubleGenerator val bGen = negZDoubleGenerator val (a1, _, ar1) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = Randomizer(100)) val (a2, _, ar2) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar1) val (a3, _, ar3) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar2) val (a4, _, ar4) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar3) val (a5, _, ar5) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar4) val (a6, _, ar6) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar5) val (a7, _, _) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar6) val (b1, _, br1) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = Randomizer(100)) val (b2, _, br2) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br1) val (b3, _, br3) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br2) val (b4, _, br4) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br3) val (b5, _, br5) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br4) val (b6, _, br6) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br5) val (b7, _, _) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br6) List(a1, a2, a3, a4, a5) should contain theSameElementsAs List(b1, b2, b3, b4, b5) a6 shouldEqual b6 a7 shouldEqual b7 } it("should produce NegZDouble edge values first in random order") { import Generator._ val gen = negZDoubleGenerator val (initEdges, ier) = gen.initEdges(10, Randomizer.default) val (a1: NegZDouble, ae1: List[NegZDouble], ar1: Randomizer) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = initEdges, rnd = ier) val (a2, ae2, ar2) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = ae1, rnd = ar1) val (a3, ae3, ar3) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = ae2, rnd = ar2) val (a4, ae4, ar4) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = ae3, rnd = ar3) val (a5, ae5, ar5) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = ae4, rnd = ar4) val (a6, _, _) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = ae5, rnd = ar5) val edges = List(a1, a2, a3, a4, a5, a6) edges should contain (NegZDouble(0.0f)) edges should contain (NegZDouble(-0.0f)) edges should contain (NegZDouble.ensuringValid(-Double.MinPositiveValue)) edges should contain (NegZDouble(-1.0f)) edges should contain (NegZDouble.MinValue) edges should contain (NegZDouble.NegativeInfinity) } it("should have legitimate canonicals and shrink") { import Generator._ val gen = negZDoubleGenerator val rnd = Randomizer.default gen.canonicals(rnd).shouldGrowWith(_.value) gen.shrink(NegZDouble(-10000), rnd).shouldGrowWith(_.value) } } describe("for NegZFiniteDouble") { it("should produce the same NegZFiniteDouble values in the same order given the same Randomizer") { import Generator._ val aGen= negZFiniteDoubleGenerator val bGen = negZFiniteDoubleGenerator val (a1, _, ar1) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = Randomizer(100)) val (a2, _, ar2) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar1) val (a3, _, ar3) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar2) val (a4, _, ar4) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar3) val (a5, _, ar5) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar4) val (a6, _, ar6) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar5) val (a7, _, _) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar6) val (b1, _, br1) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = Randomizer(100)) val (b2, _, br2) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br1) val (b3, _, br3) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br2) val (b4, _, br4) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br3) val (b5, _, br5) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br4) val (b6, _, br6) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br5) val (b7, _, _) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br6) List(a1, a2, a3, a4, a5) should contain theSameElementsAs List(b1, b2, b3, b4, b5) a6 shouldEqual b6 a7 shouldEqual b7 } it("should produce NegZFiniteDouble edge values first in random order") { import Generator._ val gen = negZFiniteDoubleGenerator val (initEdges, ier) = gen.initEdges(10, Randomizer.default) val (a1: NegZFiniteDouble, ae1: List[NegZFiniteDouble], ar1: Randomizer) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = initEdges, rnd = ier) val (a2, ae2, ar2) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = ae1, rnd = ar1) val (a3, ae3, ar3) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = ae2, rnd = ar2) val (a4, ae4, ar4) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = ae3, rnd = ar3) val (a5, _, _) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = ae4, rnd = ar4) val edges = List(a1, a2, a3, a4, a5) edges should contain (NegZFiniteDouble(0.0)) edges should contain (NegZFiniteDouble(-0.0)) edges should contain (NegZFiniteDouble.ensuringValid(-Double.MinPositiveValue)) edges should contain (NegZFiniteDouble(-1.0)) edges should contain (NegZFiniteDouble.MinValue) } it("should have legitimate canonicals and shrink") { import Generator._ val gen = negZFiniteDoubleGenerator val rnd = Randomizer.default gen.canonicals(rnd).shouldGrowWith(_.value) gen.shrink(NegZFiniteDouble(-10000), rnd).shouldGrowWith(_.value) } } describe("for NonZeroInts") { it("should produce the same NonZeroInt values in the same order given the same Randomizer") { import Generator._ val aGen= nonZeroIntGenerator val bGen = nonZeroIntGenerator val (a1, _, ar1) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = Randomizer(100)) val (a2, _, ar2) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar1) val (a3, _, ar3) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar2) val (a4, _, ar4) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar3) val (a5, _, ar5) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar4) val (a6, _, ar6) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar5) val (a7, _, _) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar6) val (b1, _, br1) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = Randomizer(100)) val (b2, _, br2) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br1) val (b3, _, br3) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br2) val (b4, _, br4) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br3) val (b5, _, br5) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br4) val (b6, _, br6) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br5) val (b7, _, _) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br6) List(a1, a2, a3, a4, a5) should contain theSameElementsAs List(b1, b2, b3, b4, b5) a6 shouldEqual b6 a7 shouldEqual b7 } it("should produce NonZeroInt edge values first in random order") { import Generator._ val gen = nonZeroIntGenerator val (initEdges, ier) = gen.initEdges(10, Randomizer.default) val (a1: NonZeroInt, ae1: List[NonZeroInt], ar1: Randomizer) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = initEdges, rnd = ier) val (a2, ae2, ar2) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = ae1, rnd = ar1) val (a3, ae3, ar3) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = ae2, rnd = ar2) val (a4, ae4, ar4) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = ae3, rnd = ar3) val edges = List(a1, a2, a3, a4) edges should contain (NonZeroInt(-1)) edges should contain (NonZeroInt.MaxValue) edges should contain (NonZeroInt(1)) edges should contain (NonZeroInt.MinValue) } it("should produce NonZeroInt canonical values") { import Generator._ val gen = nonZeroIntGenerator val (canonicals, _) = gen.canonicals(Randomizer.default) canonicals.toList shouldBe List(NonZeroInt(1), NonZeroInt(-1), NonZeroInt(2), NonZeroInt(-2), NonZeroInt(3), NonZeroInt(-3)) } it("should shrink NonZeroInts by repeatedly halving and negating") { import GeneratorDrivenPropertyChecks._ forAll { (i: NonZeroInt) => val generator = implicitly[Generator[NonZeroInt]] val (shrinkIt, _) = generator.shrink(i, Randomizer.default) val shrinks: List[NonZeroInt] = shrinkIt.toList shrinks.distinct.length shouldEqual shrinks.length if (i.value == 1 || i.value == -1) shrinks shouldBe empty else { if (i > 1) shrinks.last.value should be >= 1 else if (i < -1) shrinks.last.value should be <= 1 import org.scalatest.Inspectors._ val pairs: List[(NonZeroInt, NonZeroInt)] = shrinks.zip(shrinks.tail) forAll (pairs) { case (x, y) => assert(x == -y || x.value.abs == y.value.abs / 2) } } } } } describe("for NonZeroLongs") { it("should produce the same NonZeroLong values in the same order given the same Randomizer") { import Generator._ val aGen= nonZeroLongGenerator val bGen = nonZeroLongGenerator val (a1, _, ar1) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = Randomizer(100)) val (a2, _, ar2) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar1) val (a3, _, ar3) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar2) val (a4, _, ar4) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar3) val (a5, _, ar5) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar4) val (a6, _, ar6) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar5) val (a7, _, _) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar6) val (b1, _, br1) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = Randomizer(100)) val (b2, _, br2) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br1) val (b3, _, br3) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br2) val (b4, _, br4) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br3) val (b5, _, br5) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br4) val (b6, _, br6) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br5) val (b7, _, _) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br6) List(a1, a2, a3, a4, a5) should contain theSameElementsAs List(b1, b2, b3, b4, b5) a6 shouldEqual b6 a7 shouldEqual b7 } it("should produce NonZeroLong edge values first in random order") { import Generator._ val gen = nonZeroLongGenerator val (initEdges, ier) = gen.initEdges(10, Randomizer.default) val (a1: NonZeroLong, ae1: List[NonZeroLong], ar1: Randomizer) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = initEdges, rnd = ier) val (a2, ae2, ar2) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = ae1, rnd = ar1) val (a3, ae3, ar3) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = ae2, rnd = ar2) val (a4, _, _) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = ae3, rnd = ar3) val edges = List(a1, a2, a3, a4) edges should contain (NonZeroLong(-1L)) edges should contain (NonZeroLong.MaxValue) edges should contain (NonZeroLong(1L)) edges should contain (NonZeroLong.MinValue) } it("should have legitimate canonicals and shrink") { import Generator._ val gen = nonZeroLongGenerator val rnd = Randomizer.default gen.canonicals(rnd).shouldGrowWith(_.value) gen.shrink(NonZeroLong(10000), rnd).shouldGrowWith(_.value) } } describe("for NonZeroFloat") { it("should produce the same NonZeroFloat values in the same order given the same Randomizer") { import Generator._ val aGen= nonZeroFloatGenerator val bGen = nonZeroFloatGenerator val (a1, _, ar1) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = Randomizer(100)) val (a2, _, ar2) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar1) val (a3, _, ar3) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar2) val (a4, _, ar4) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar3) val (a5, _, ar5) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar4) val (a6, _, ar6) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar5) val (a7, _, _) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar6) val (b1, _, br1) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = Randomizer(100)) val (b2, _, br2) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br1) val (b3, _, br3) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br2) val (b4, _, br4) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br3) val (b5, _, br5) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br4) val (b6, _, br6) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br5) val (b7, _, _) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br6) List(a1, a2, a3, a4, a5) should contain theSameElementsAs List(b1, b2, b3, b4, b5) a6 shouldEqual b6 a7 shouldEqual b7 } it("should produce NonZeroFloat edge values first in random order") { import Generator._ val gen = nonZeroFloatGenerator val (initEdges, ier) = gen.initEdges(10, Randomizer.default) val (a1: NonZeroFloat, ae1: List[NonZeroFloat], ar1: Randomizer) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = initEdges, rnd = ier) val (a2, ae2, ar2) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = ae1, rnd = ar1) val (a3, ae3, ar3) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = ae2, rnd = ar2) val (a4, ae4, ar4) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = ae3, rnd = ar3) val (a5, ae5, ar5) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = ae4, rnd = ar4) val (a6, ae6, ar6) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = ae5, rnd = ar5) val (a7, ae7, ar7) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = ae6, rnd = ar6) val (a8, _, _) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = ae7, rnd = ar7) val edges = List(a1, a2, a3, a4, a5, a6, a7, a8) edges should contain (NonZeroFloat.NegativeInfinity) edges should contain (NonZeroFloat.MinValue) edges should contain (NonZeroFloat(-1.0f)) edges should contain (-NonZeroFloat.MinPositiveValue) edges should contain (NonZeroFloat.MinPositiveValue) edges should contain (NonZeroFloat(1.0f)) edges should contain (NonZeroFloat.MaxValue) edges should contain (NonZeroFloat.PositiveInfinity) } it("should have legitimate canonicals and shrink") { import Generator._ val gen = nonZeroFloatGenerator val rnd = Randomizer.default gen.canonicals(rnd).shouldGrowWith(_.value) gen.shrink(NonZeroFloat(10000), rnd).shouldGrowWith(_.value) } } describe("for NonZeroFiniteFloat") { it("should produce the same NonZeroFiniteFloat values in the same order given the same Randomizer") { import Generator._ val aGen= nonZeroFiniteFloatGenerator val bGen = nonZeroFiniteFloatGenerator val (a1, _, ar1) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = Randomizer(100)) val (a2, _, ar2) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar1) val (a3, _, ar3) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar2) val (a4, _, ar4) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar3) val (a5, _, ar5) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar4) val (a6, _, ar6) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar5) val (a7, _, _) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar6) val (b1, _, br1) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = Randomizer(100)) val (b2, _, br2) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br1) val (b3, _, br3) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br2) val (b4, _, br4) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br3) val (b5, _, br5) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br4) val (b6, _, br6) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br5) val (b7, _, _) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br6) List(a1, a2, a3, a4, a5) should contain theSameElementsAs List(b1, b2, b3, b4, b5) a6 shouldEqual b6 a7 shouldEqual b7 } it("should produce NonZeroFiniteFloat edge values first in random order") { import Generator._ val gen = nonZeroFiniteFloatGenerator val (initEdges, ier) = gen.initEdges(10, Randomizer.default) val (a1: NonZeroFiniteFloat, ae1: List[NonZeroFiniteFloat], ar1: Randomizer) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = initEdges, rnd = ier) val (a2, ae2, ar2) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = ae1, rnd = ar1) val (a3, ae3, ar3) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = ae2, rnd = ar2) val (a4, ae4, ar4) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = ae3, rnd = ar3) val (a5, ae5, ar5) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = ae4, rnd = ar4) val (a6, _, _) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = ae5, rnd = ar5) val edges = List(a1, a2, a3, a4, a5, a6) edges should contain (NonZeroFiniteFloat.MinValue) edges should contain (NonZeroFiniteFloat(-1.0f)) edges should contain (NonZeroFiniteFloat.ensuringValid(-NonZeroFiniteFloat.MinPositiveValue)) edges should contain (NonZeroFiniteFloat.MinPositiveValue) edges should contain (NonZeroFiniteFloat(1.0f)) edges should contain (NonZeroFiniteFloat.MaxValue) } it("should have legitimate canonicals and shrink") { import Generator._ val gen = nonZeroFiniteFloatGenerator val rnd = Randomizer.default gen.canonicals(rnd).shouldGrowWith(_.value) gen.shrink(NonZeroFiniteFloat(10000), rnd).shouldGrowWith(_.value) } } describe("for NonZeroDouble") { it("should produce the same NonZeroDouble values in the same order given the same Randomizer") { import Generator._ val aGen= nonZeroDoubleGenerator val bGen = nonZeroDoubleGenerator val (a1, _, ar1) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = Randomizer(100)) val (a2, _, ar2) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar1) val (a3, _, ar3) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar2) val (a4, _, ar4) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar3) val (a5, _, ar5) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar4) val (a6, _, ar6) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar5) val (a7, _, _) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar6) val (b1, _, br1) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = Randomizer(100)) val (b2, _, br2) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br1) val (b3, _, br3) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br2) val (b4, _, br4) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br3) val (b5, _, br5) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br4) val (b6, _, br6) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br5) val (b7, _, _) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br6) List(a1, a2, a3, a4, a5) should contain theSameElementsAs List(b1, b2, b3, b4, b5) a6 shouldEqual b6 a7 shouldEqual b7 } it("should produce NonZeroDouble edge values first in random order") { import Generator._ val gen = nonZeroDoubleGenerator val (initEdges, ier) = gen.initEdges(10, Randomizer.default) val (a1: NonZeroDouble, ae1: List[NonZeroDouble], ar1: Randomizer) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = initEdges, rnd = ier) val (a2, ae2, ar2) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = ae1, rnd = ar1) val (a3, ae3, ar3) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = ae2, rnd = ar2) val (a4, ae4, ar4) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = ae3, rnd = ar3) val (a5, ae5, ar5) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = ae4, rnd = ar4) val (a6, ae6, ar6) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = ae5, rnd = ar5) val (a7, ae7, ar7) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = ae6, rnd = ar6) val (a8, _, _) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = ae7, rnd = ar7) val edges = List(a1, a2, a3, a4, a5, a6, a7, a8) edges should contain (NonZeroDouble.NegativeInfinity) edges should contain (NonZeroDouble.MinValue) edges should contain (NonZeroDouble(-1.0f)) edges should contain (-NonZeroDouble.MinPositiveValue) edges should contain (NonZeroDouble.MinPositiveValue) edges should contain (NonZeroDouble(1.0f)) edges should contain (NonZeroDouble.MaxValue) edges should contain (NonZeroDouble.PositiveInfinity) } it("should have legitimate canonicals and shrink") { import Generator._ val gen = nonZeroDoubleGenerator val rnd = Randomizer.default gen.canonicals(rnd).shouldGrowWith(_.value) gen.shrink(NonZeroDouble(10000), rnd).shouldGrowWith(_.value) } } describe("for NonZeroFiniteDouble") { it("should produce the same NonZeroFiniteDouble values in the same order given the same Randomizer") { import Generator._ val aGen= nonZeroFiniteDoubleGenerator val bGen = nonZeroFiniteDoubleGenerator val (a1, _, ar1) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = Randomizer(100)) val (a2, _, ar2) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar1) val (a3, _, ar3) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar2) val (a4, _, ar4) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar3) val (a5, _, ar5) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar4) val (a6, _, ar6) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar5) val (a7, _, _) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar6) val (b1, _, br1) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = Randomizer(100)) val (b2, _, br2) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br1) val (b3, _, br3) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br2) val (b4, _, br4) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br3) val (b5, _, br5) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br4) val (b6, _, br6) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br5) val (b7, _, _) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br6) List(a1, a2, a3, a4, a5) should contain theSameElementsAs List(b1, b2, b3, b4, b5) a6 shouldEqual b6 a7 shouldEqual b7 } it("should produce NonZeroFiniteDouble edge values first in random order") { import Generator._ val gen = nonZeroFiniteDoubleGenerator val (initEdges, ier) = gen.initEdges(10, Randomizer.default) val (a1: NonZeroFiniteDouble, ae1: List[NonZeroFiniteDouble], ar1: Randomizer) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = initEdges, rnd = ier) val (a2, ae2, ar2) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = ae1, rnd = ar1) val (a3, ae3, ar3) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = ae2, rnd = ar2) val (a4, ae4, ar4) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = ae3, rnd = ar3) val (a5, ae5, ar5) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = ae4, rnd = ar4) val (a6, _, _) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = ae5, rnd = ar5) val edges = List(a1, a2, a3, a4, a5, a6) edges should contain (NonZeroFiniteDouble.MinValue) edges should contain (NonZeroFiniteDouble(-1.0)) edges should contain (NonZeroFiniteDouble.ensuringValid(-NonZeroFiniteDouble.MinPositiveValue)) edges should contain (NonZeroFiniteDouble.MinPositiveValue) edges should contain (NonZeroFiniteDouble(1.0)) edges should contain (NonZeroFiniteDouble.MaxValue) } it("should have legitimate canonicals and shrink") { import Generator._ val gen = nonZeroFiniteDoubleGenerator val rnd = Randomizer.default gen.canonicals(rnd).shouldGrowWith(_.value) gen.shrink(NonZeroFiniteDouble(10000), rnd).shouldGrowWith(_.value) } } describe("for FiniteFloat") { it("should produce the same FiniteFloat values in the same order given the same Randomizer") { import Generator._ val aGen = finiteFloatGenerator val bGen = finiteFloatGenerator val (a1, _, ar1) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = Randomizer(100)) val (a2, _, ar2) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar1) val (a3, _, ar3) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar2) val (a4, _, ar4) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar3) val (a5, _, ar5) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar4) val (a6, _, ar6) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar5) val (a7, _, _) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar6) val (b1, _, br1) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = Randomizer(100)) val (b2, _, br2) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br1) val (b3, _, br3) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br2) val (b4, _, br4) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br3) val (b5, _, br5) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br4) val (b6, _, br6) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br5) val (b7, _, _) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br6) List(a1, a2, a3, a4, a5) should contain theSameElementsAs List(b1, b2, b3, b4, b5) a6 shouldEqual b6 a7 shouldEqual b7 } it("should produce FiniteFloat edge values first in random order") { import Generator._ val gen = finiteFloatGenerator val (initEdges, ier) = gen.initEdges(10, Randomizer.default) val (a1: FiniteFloat, ae1: List[FiniteFloat], ar1: Randomizer) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = initEdges, rnd = ier) val (a2, ae2, ar2) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = ae1, rnd = ar1) val (a3, ae3, ar3) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = ae2, rnd = ar2) val (a4, ae4, ar4) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = ae3, rnd = ar3) val (a5, ae5, ar5) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = ae4, rnd = ar4) val (a6, ae6, ar6) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = ae5, rnd = ar5) val (a7, _, _) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = ae6, rnd = ar6) val edges = List(a1, a2, a3, a4, a5, a6, a7) edges should contain (FiniteFloat.MinValue) edges should contain (FiniteFloat(-1.0f)) edges should contain (FiniteFloat.ensuringValid(-FiniteFloat.MinPositiveValue)) edges should contain (FiniteFloat(0.0f)) edges should contain (FiniteFloat.MinPositiveValue) edges should contain (FiniteFloat(1.0f)) edges should contain (FiniteFloat.MaxValue) } it("should have legitimate canonicals and shrink") { import Generator._ val gen = finiteFloatGenerator val rnd = Randomizer.default gen.canonicals(rnd).shouldGrowWith(_.value) gen.shrink(FiniteFloat(10000), rnd).shouldGrowWith(_.value) } } describe("for FiniteDouble") { it("should produce the same FiniteDouble values in the same order given the same Randomizer") { import Generator._ val aGen = finiteDoubleGenerator val bGen = finiteDoubleGenerator val (a1, _, ar1) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = Randomizer(100)) val (a2, _, ar2) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar1) val (a3, _, ar3) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar2) val (a4, _, ar4) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar3) val (a5, _, ar5) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar4) val (a6, _, ar6) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar5) val (a7, _, _) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar6) val (b1, _, br1) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = Randomizer(100)) val (b2, _, br2) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br1) val (b3, _, br3) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br2) val (b4, _, br4) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br3) val (b5, _, br5) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br4) val (b6, _, br6) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br5) val (b7, _, _) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br6) List(a1, a2, a3, a4, a5) should contain theSameElementsAs List(b1, b2, b3, b4, b5) a6 shouldEqual b6 a7 shouldEqual b7 } it("should produce FiniteDouble edge values first in random order") { import Generator._ val gen = finiteDoubleGenerator val (initEdges, ier) = gen.initEdges(10, Randomizer.default) val (a1: FiniteDouble, ae1: List[FiniteDouble], ar1: Randomizer) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = initEdges, rnd = ier) val (a2, ae2, ar2) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = ae1, rnd = ar1) val (a3, ae3, ar3) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = ae2, rnd = ar2) val (a4, ae4, ar4) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = ae3, rnd = ar3) val (a5, ae5, ar5) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = ae4, rnd = ar4) val (a6, ae6, ar6) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = ae5, rnd = ar5) val (a7, _, _) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = ae6, rnd = ar6) val edges = List(a1, a2, a3, a4, a5, a6, a7) edges should contain (FiniteDouble.MinValue) edges should contain (FiniteDouble(-1.0)) edges should contain (FiniteDouble.ensuringValid(-FiniteDouble.MinPositiveValue)) edges should contain (FiniteDouble(0.0)) edges should contain (FiniteDouble.MinPositiveValue) edges should contain (FiniteDouble(1.0)) edges should contain (FiniteDouble.MaxValue) } it("should have legitimate canonicals and shrink") { import Generator._ val gen = finiteDoubleGenerator val rnd = Randomizer.default gen.canonicals(rnd).shouldGrowWith(_.value) gen.shrink(FiniteDouble(10000), rnd).shouldGrowWith(_.value) } } describe("for NumericChar") { it("should produce the same NumericChar values in the same order given the same Randomizer") { import Generator._ val aGen = numericCharGenerator val bGen = numericCharGenerator val (a1, _, ar1) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = Randomizer(100)) val (a2, _, ar2) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar1) val (a3, _, ar3) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar2) val (a4, _, ar4) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar3) val (a5, _, ar5) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar4) val (a6, _, ar6) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar5) val (a7, _, _) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar6) val (b1, _, br1) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = Randomizer(100)) val (b2, _, br2) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br1) val (b3, _, br3) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br2) val (b4, _, br4) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br3) val (b5, _, br5) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br4) val (b6, _, br6) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br5) val (b7, _, _) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br6) List(a1, a2, a3, a4, a5) should contain theSameElementsAs List(b1, b2, b3, b4, b5) a6 shouldEqual b6 a7 shouldEqual b7 } it("should produce NumericChar edge values first in random order") { import Generator._ val gen = numericCharGenerator val (initEdges, ier) = gen.initEdges(10, Randomizer.default) val (a1, ae1, ar1) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = initEdges, rnd = ier) val (a2, _, ar2) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = ae1, rnd = ar1) List(a1, a2) should contain theSameElementsAs List(NumericChar('0'), NumericChar('9')) } } describe("for Strings") { it("should offer a String generator that returns a string whose length equals the passed size") { import Generator._ val gen = stringGenerator val (s1, _, r1) = gen.next(szp = SizeParam(PosZInt(0), 100, 0), edges = Nil, rnd = Randomizer(100)) s1.length shouldBe 0 val (s2, _, r2) = gen.next(szp = SizeParam(PosZInt(0), 100, 3), edges = Nil, rnd = r1) s2.length shouldBe 3 val (s3, _, r3) = gen.next(szp = SizeParam(PosZInt(0), 100, 38), edges = Nil, rnd = r2) s3.length shouldBe 38 val (s4, _, r4) = gen.next(szp = SizeParam(PosZInt(0), 100, 88), edges = Nil, rnd = r3) s4.length shouldBe 88 val (s5, _, _) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = r4) s5.length shouldBe 100 } it("should shrink Strings using strategery") { import GeneratorDrivenPropertyChecks._ forAll { (s: String) => val generator = implicitly[Generator[String]] val (shrinkIt, _) = generator.shrink(s, Randomizer.default) val shrinks: List[String] = shrinkIt.toList if (s.isEmpty) shrinks shouldBe empty else { shrinks(0) shouldBe "" shrinks(1) should have length 1 shrinks(1).head should (be >= 'a' and be <= 'z') shrinks(2) should have length 1 shrinks(2).head should (be >= 'A' and be <= 'Z') shrinks(3) should have length 1 shrinks(3).head should (be >= '0' and be <= '9') val theChars = shrinks.drop(4) val distincts: List[String] = s.distinct.toList.map(_.toString) theChars.take(distincts.length).toList shouldEqual distincts val theHalves = shrinks.drop(4 + distincts.length) if (theHalves.length > 1) { import org.scalatest.Inspectors val zipped = theHalves.zip(theHalves.tail) Inspectors.forAll (zipped) { case (s, t) => s.length should be < t.length } } else succeed } } } it("should offer a String generator that offers cononicals based on Char canonicals") { import Generator._ val gen = stringGenerator val (canonicalsIt, _) = gen.canonicals(Randomizer.default) val canonicals = canonicalsIt.toList canonicals(0) shouldBe empty canonicals(1) should have length 1 canonicals(1).head should (be >= 'a' and be <= 'z') canonicals(2) should have length 1 canonicals(2).head should (be >= 'A' and be <= 'Z') canonicals(3) should have length 1 canonicals(3).head should (be >= '0' and be <= '9') } } describe("for Options") { it("should produce Nones with a reasonable frequency") { import Generator._ val gen = optionGenerator[Int] val classified = CommonGenerators.classify(1000, gen) { case Some(_) => "Some" case None => "None" } classified.portions("None") should be (0.1 +- 0.03) } it("should use the base type for edges") { import Generator._ val baseGen = intGenerator val gen = optionGenerator[Int] val rnd = Randomizer.default val (intEdges, _) = baseGen.initEdges(100, rnd) val (optEdges, _) = gen.initEdges(100, rnd) optEdges should contain (None) optEdges.filter(_.isDefined).map(_.get) should contain theSameElementsAs intEdges } it("should use the base type for canonicals") { import Generator._ val baseGen = intGenerator val gen = optionGenerator[Int] val rnd = Randomizer.default val (intCanon, _) = baseGen.canonicals(rnd) val (optCanonIter, _) = gen.canonicals(rnd) val optCanon = optCanonIter.toList optCanon should contain (None) optCanon.filter(_.isDefined).map(_.get) should contain theSameElementsAs intCanon.toList } it("should use the base type for shrinking") { import Generator._ val baseGen = intGenerator val gen = optionGenerator[Int] val rnd = Randomizer.default val (intShrinkIter, _) = baseGen.shrink(10000, rnd) val (optShrinkIter, _) = gen.shrink(Some(10000), rnd) val intShrink = intShrinkIter.toList val optShrink = optShrinkIter.toList optShrink should contain (None) optShrink.filter(_.isDefined).map(_.get) should contain theSameElementsAs(intShrink) } it("should not try to shrink None") { import Generator._ val gen = optionGenerator[Int] val rnd = Randomizer.default val (optShrink, _) = gen.shrink(None, rnd) assert(optShrink.isEmpty) } } describe("for Ors") { it("should use the base types for edges") { import Generator._ import org.scalactic._ val gGen = intGenerator val bGen = stringGenerator val gen = orGenerator[Int, String] val rnd = Randomizer.default val (gEdges, _) = gGen.initEdges(100, rnd) val (bEdges, _) = bGen.initEdges(100, rnd) val (orEdges, _) = gen.initEdges(100, rnd) orEdges should contain theSameElementsAs(gEdges.map(Good(_)) ++ bEdges.map(Bad(_))) } it("should use the base types for canonicals") { import Generator._ import org.scalactic._ val gGen = intGenerator val bGen = stringGenerator val gen = orGenerator[Int, String] val rnd = Randomizer.default val (gCanon, _) = gGen.canonicals(rnd) val (bCanon, _) = bGen.canonicals(rnd) val (orCanon, _) = gen.canonicals(rnd) orCanon.toList should contain theSameElementsAs((gCanon.map(Good(_)) ++ bCanon.map(Bad(_))).toList) } it("should produce an appropriate mix of Good and Bad") { import Generator._ import org.scalactic._ val gen = orGenerator[Int, String] val classification = CommonGenerators.classify(1000, gen) { case Good(_) => "Good" case Bad(_) => "Bad" } // It's arbitrary, but we know that it produces Bad about a quarter of the time: classification.percentages("Bad").value should be (25 +- 2) } it("should use the base types to shrink") { import Generator._ import org.scalactic._ val gGen = intGenerator val bGen = stringGenerator val gen = orGenerator[Int, String] val rnd = Randomizer.default val (gShrink, _) = gGen.shrink(1000, rnd) val (bShrink, _) = bGen.shrink("hello world!", rnd) val (orGoodShrink, _) = gen.shrink(Good(1000), rnd) val (orBadShrink, _) = gen.shrink(Bad("hello world!"), rnd) orGoodShrink.toList should contain theSameElementsAs(gShrink.map(Good(_)).toList) orBadShrink.toList should contain theSameElementsAs(bShrink.map(Bad(_)).toList) } } describe("for Eithers") { it("should use the base types for edges") { import Generator._ val rGen = intGenerator val lGen = stringGenerator val gen = eitherGenerator[String, Int] val rnd = Randomizer.default val (rEdges, _) = rGen.initEdges(100, rnd) val (lEdges, _) = lGen.initEdges(100, rnd) val (eitherEdges, _) = gen.initEdges(100, rnd) eitherEdges should contain theSameElementsAs(rEdges.map(Right(_)) ++ lEdges.map(Left(_))) } it("should use the base types for canonicals") { import Generator._ val rGen = intGenerator val lGen = stringGenerator val gen = eitherGenerator[String, Int] val rnd = Randomizer.default val (rCanon, _) = rGen.canonicals(rnd) val (lCanon, _) = lGen.canonicals(rnd) val (eitherCanon, _) = gen.canonicals(rnd) eitherCanon.toList should contain theSameElementsAs((rCanon.map(Right(_)) ++ lCanon.map(Left(_))).toList) } it("should produce an appropriate mix of Right and Left") { import Generator._ val gen = eitherGenerator[String, Int] val classification = CommonGenerators.classify(1000, gen) { case Right(_) => "Right" case Left(_) => "Left" } // It's arbitrary, but we know that it produces Left about a quarter of the time: classification.percentages("Left").value should be (25 +- 2) } it("should use the base types to shrink") { import Generator._ val rGen = intGenerator val lGen = stringGenerator val gen = eitherGenerator[String, Int] val rnd = Randomizer.default val (rShrink, _) = rGen.shrink(1000, rnd) val (lShrink, _) = lGen.shrink("hello world!", rnd) val (eitherRightShrink, _) = gen.shrink(Right(1000), rnd) val (eitherLeftShrink, _) = gen.shrink(Left("hello world!"), rnd) eitherRightShrink.toList should contain theSameElementsAs(rShrink.map(Right(_)).toList) eitherLeftShrink.toList should contain theSameElementsAs(lShrink.map(Left(_)).toList) } } import scala.collection.GenTraversable import org.scalactic.ColCompatHelper /** * A common test for how we do shrinking in the collection Generators. * * Since we generally try to deal with shrink() the same way for collections, we use * this common test to make sure it's consistent. Not every collection type manages * to use this (because Scala 2.12 collections just aren't that consistent), but * it generally works. * * @param factory the companion object for this collection type * @param generator the Generator for this collection type * @tparam F the collection type we are testing */ def shrinkByStrategery[F[Int] <: GenTraversable[Int]](factory: ColCompatHelper.Factory[Int, F[Int]])(implicit generator: Generator[F[Int]]): Unit = { import GeneratorDrivenPropertyChecks._ val intGenerator = Generator.intGenerator val (intCanonicalsIt, _) = intGenerator.canonicals(Randomizer.default) val intCanonicals = intCanonicalsIt.toList forAll { (xs: F[Int]) => val (shrinkIt, _) = generator.shrink(xs, Randomizer.default) val shrinks: List[F[Int]] = shrinkIt.toList if (xs.isEmpty) shrinks shouldBe empty else { // First one should be the empty list shrinks(0) shouldBe empty // Then should come one-element Lists of the canonicals of the type val phase2 = shrinks.drop(1).take(intCanonicals.length) phase2 shouldEqual (intCanonicals.map(i => ColCompatHelper.newBuilder(factory).+=(i).result)) // Phase 3 should be one-element lists of all distinct values in the value passed to shrink // If xs already is a one-element list, then we don't do this, because then xs would appear in the output. val xsList = xs.toList val xsDistincts = if (xsList.length > 1) xsList.distinct else Nil val phase3 = shrinks.drop(1 + intCanonicals.length).take(xsDistincts.length) phase3 shouldEqual (xsDistincts.map(i => ColCompatHelper.newBuilder(factory).+=(i).result)) // Phase 4 should be n-element lists that are prefixes cut in half val theHalves = shrinks.drop(1 + intCanonicals.length + xsDistincts.length) theHalves should not contain xs // This was a bug I noticed if (theHalves.length > 1) { import org.scalatest.Inspectors val zipped = theHalves.zip(theHalves.tail) Inspectors.forAll (zipped) { case (s, t) => s.size should be < t.size } } else succeed } } } import org.scalactic.ColCompatHelper.Factory._ describe("for Lists") { it("should offer a List[T] generator that returns a List[T] whose length equals the passed size") { import Generator._ val gen = listGenerator[Int] val (l1, _, r1) = gen.next(szp = SizeParam(PosZInt(0), 100, 0), edges = Nil, rnd = Randomizer(100)) l1.length shouldBe 0 val (l2, _, r2) = gen.next(szp = SizeParam(PosZInt(0), 100, 3), edges = Nil, rnd = r1) l2.length shouldBe 3 val (l3, _, r3) = gen.next(szp = SizeParam(PosZInt(0), 100, 38), edges = Nil, rnd = r2) l3.length shouldBe 38 val (l4, _, r4) = gen.next(szp = SizeParam(PosZInt(0), 100, 88), edges = Nil, rnd = r3) l4.length shouldBe 88 val (l5, _, _) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = r4) l5.length shouldBe 100 } it("should not exhibit this bug in List shrinking") { val lstGen = implicitly[Generator[List[List[Int]]]] val xss = List(List(100, 200, 300, 400, 300)) lstGen.shrink(xss, Randomizer.default)._1.toList should not contain xss } it("should shrink Lists using strategery") { shrinkByStrategery[List](List) } it("should return an empty Iterator when asked to shrink a List of size 0") { val lstGen = implicitly[Generator[List[Int]]] val xs = List.empty[Int] lstGen.shrink(xs, Randomizer.default)._1.toList shouldBe empty } it("should return an Iterator of the canonicals excluding the given values to shrink when asked to shrink a List of size 1") { val lstGen = implicitly[Generator[List[Int]]] val canonicalLists = List(0, 1, -1, 2, -2, 3, -3).map(i => List(i)) val expectedLists = List(List.empty[Int]) ++ canonicalLists val nonCanonical = List(99) lstGen.shrink(nonCanonical, Randomizer.default)._1.toList should contain theSameElementsAs expectedLists val canonical = List(3) // Ensure 3 (an Int canonical value) does not show up twice in the output lstGen.shrink(canonical, Randomizer.default)._1.toList should contain theSameElementsAs expectedLists } it("should return an Iterator that does not repeat canonicals when asked to shrink a List of size 2 that includes canonicals") { val lstGen = implicitly[Generator[List[Int]]] val shrinkees = lstGen.shrink(List(3, 99), Randomizer.default)._1.toList shrinkees.distinct should contain theSameElementsAs shrinkees } it("should return an Iterator that does not repeat the passed list-to-shink even if that list has a power of 2 length") { // Since the last batch of lists produced by the list shrinker start at length 2 and then double in size each time, // they lengths will be powers of two: 2, 4, 8, 16, etc... So make sure that if the original length has length 16, // for example, that that one doesn't show up in the shrinks output, because it would be the original list-to-shrink. val lstGen = implicitly[Generator[List[Int]]] val listToShrink = List.fill(16)(99) val shrinkees = lstGen.shrink(listToShrink, Randomizer.default)._1.toList shrinkees.distinct should not contain listToShrink } it("should offer a list generator whose canonical method uses the canonical method of the underlying T") { import GeneratorDrivenPropertyChecks._ val intGenerator = Generator.intGenerator val (intCanonicalsIt, _) = intGenerator.canonicals(Randomizer.default) val intCanonicals = intCanonicalsIt.toList val listOfIntGenerator = Generator.listGenerator[Int] val (listOfIntCanonicalsIt, _) = listOfIntGenerator.canonicals(Randomizer.default) val listOfIntCanonicals = listOfIntCanonicalsIt.toList listOfIntCanonicals shouldEqual intCanonicals.map(i => List(i)) } } describe("for Function0s") { it("should offer an implicit provider for constant function0's with a pretty toString") { val function0s = Generator.function0Generator[Int] import GeneratorDrivenPropertyChecks._ forAll (function0s) { (f: () => Int) => val constantResult = f() import org.scalactic.TimesOnInt._ 10 times { f() shouldEqual constantResult } f.toString shouldBe s"() => $constantResult" } } it("should offer an implicit provider for constant function0's that returns the edges of the result type") { val ints = Generator.intGenerator val function0s = Generator.function0Generator[Int] val (intEdgesIt, rnd1) = ints.initEdges(100, Randomizer.default) val (function0EdgesIt, _) = function0s.initEdges(100, rnd1) val intEdges = intEdgesIt.toList val function0Edges = function0EdgesIt.toList function0Edges.map(f => f()) should contain theSameElementsAs intEdges } it("should offer an implicit provider for constant function0's that returns the canonicals of the result type") { val ints = Generator.intGenerator val function0s = Generator.function0Generator[Int] val (intCanonicalsIt, rnd1) = ints.canonicals(Randomizer.default) val (function0CanonicalsIt, _) = function0s.canonicals(rnd1) val intCanonicals = intCanonicalsIt.toList val function0Canonicals = function0CanonicalsIt.toList function0Canonicals.map(f => f()) should contain theSameElementsAs intCanonicals } it("should offer an implicit provider for constant function0's that returns the shrinks of the result type") { val ints = Generator.intGenerator val function0s = Generator.function0Generator[Int] import GeneratorDrivenPropertyChecks._ forAll (ints) { (i: Int) => val (intShrinksIt, rnd1) = ints.shrink(i, Randomizer.default) val (function0ShrinksIt, _) = function0s.shrink(() => i, rnd1) val intShrinks = intShrinksIt.toList val function0Shrinks = function0ShrinksIt.toList function0Shrinks.map(f => f()) should contain theSameElementsAs intShrinks } } } describe("for arbitrary Function1s") { it("should offer an implicit provider that uses hashCode to tweak a seed and has a pretty toString") { val gen = implicitly[Generator[Option[Int] => List[Int]]] val sample = gen.sample sample.toString should include ("Option[Int]") sample.toString should include ("List[Int]") } } describe("for Tuple2s") { it("should offer a tuple2 generator") { val gen = implicitly[Generator[(Int, Int)]] val intGen = implicitly[Generator[Int]] val (it8, rnd1) = intGen.shrink(8, Randomizer.default) val (it18, rnd2)= intGen.shrink(18, rnd1) val list8 = it8.toList val list18 = it18.toList val listTup = for { x <- list8 y <- list18 } yield (x, y) gen.shrink((8, 18), rnd2)._1.toList shouldEqual listTup } it("should be able to transform a tuple generator to a case class generator") { val tupGen: Generator[(String, Int)] = Generator.tuple2Generator[String, Int] case class Person(name: String, age: Int) val persons = for (tup <- tupGen) yield Person(tup._1, tup._2) val (it, _) = persons.shrink(Person("Harry Potter", 32), Randomizer.default) it.toList should not be empty } } describe("for Int => Ints") { it("should have toString and simpleName that doesn't include org.scalatest.prop.valueOf") { import GeneratorDrivenPropertyChecks._ forAll { (f: Int => Int) => f.toString should startWith ("(i: Int) => ") f.toString should not include "org.scalatest.prop.valueOf" } } } describe("for Vector[T]s") { it("should produce the same Vector[T] values in the same order given the same Randomizer") { val aGen= Generator.vectorGenerator[Int] val bGen = Generator.vectorGenerator[Int] val (a1, _, ar1) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = Randomizer(100)) val (a2, _, ar2) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar1) val (a3, _, ar3) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar2) val (a4, _, ar4) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar3) val (a5, _, ar5) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar4) val (a6, _, ar6) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar5) val (a7, _, _) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar6) val (b1, _, br1) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = Randomizer(100)) val (b2, _, br2) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br1) val (b3, _, br3) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br2) val (b4, _, br4) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br3) val (b5, _, br5) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br4) val (b6, _, br6) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br5) val (b7, _, _) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br6) List(a1, a2, a3, a4, a5) should contain theSameElementsAs List(b1, b2, b3, b4, b5) a6 shouldEqual b6 a7 shouldEqual b7 } it("should produce Vector[T] edge values first in random order") { val gen = Generator.vectorGenerator[Int] val (a1: Vector[Int], ae1: List[Vector[Int]], ar1: Randomizer) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = List(Vector.empty[Int], Vector(1, 2), Vector(3, 4, 5)), rnd = Randomizer.default) val (a2, ae2, ar2) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = ae1, rnd = ar1) val (a3, _, _) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = ae2, rnd = ar2) val edges = List(a1, a2, a3) edges should contain (Vector.empty[Int]) edges should contain (Vector(1, 2)) edges should contain (Vector(3, 4, 5)) } it("should produce Vector[T] following size determined by havingSize method") { val aGen= Generator.vectorGenerator[Int] implicit val sGen = aGen.havingSize(PosZInt(3)) import GeneratorDrivenPropertyChecks._ forAll { v: Vector[Int] => v.size shouldBe 3 } } it("should produce Vector[T] following length determined by havingLength method") { val aGen= Generator.vectorGenerator[Int] implicit val sGen = aGen.havingLength(PosZInt(3)) import GeneratorDrivenPropertyChecks._ forAll { v: Vector[Int] => v.length shouldBe 3 } } it("should produce Vector[T] following sizes determined by havingSizeBetween method") { val aGen= Generator.vectorGenerator[Int] implicit val sGen = aGen.havingSizesBetween(PosZInt(3), PosZInt(5)) import GeneratorDrivenPropertyChecks._ forAll { v: Vector[Int] => v.size should (be >= 3 and be <= 5) } } it("should produce IllegalArgumentException when havingSizesBetween is called with invalid from and to pair") { val aGen= Generator.vectorGenerator[Int] aGen.havingSizesBetween(PosZInt(3), PosZInt(5)) assertThrows[IllegalArgumentException] { aGen.havingSizesBetween(PosZInt(3), PosZInt(3)) } assertThrows[IllegalArgumentException] { aGen.havingSizesBetween(PosZInt(3), PosZInt(2)) } } it("should produce Vector[T] following lengths determined by havingLengthBetween method") { val aGen= Generator.vectorGenerator[Int] implicit val sGen = aGen.havingLengthsBetween(PosZInt(3), PosZInt(5)) import GeneratorDrivenPropertyChecks._ forAll { v: Vector[Int] => v.length should (be >= 3 and be <= 5) } } it("should produce IllegalArgumentException when havingLengthBetween is called with invalid from and to pair") { val aGen= Generator.vectorGenerator[Int] aGen.havingLengthsBetween(PosZInt(3), PosZInt(5)) assertThrows[IllegalArgumentException] { aGen.havingLengthsBetween(PosZInt(3), PosZInt(3)) } assertThrows[IllegalArgumentException] { aGen.havingLengthsBetween(PosZInt(3), PosZInt(2)) } } it("should produce Vector[T] following sizes determined by havingSizesDeterminedBy method") { val aGen= Generator.vectorGenerator[Int] implicit val sGen = aGen.havingSizesDeterminedBy(s => SizeParam(5, 0, 5)) import GeneratorDrivenPropertyChecks._ forAll { v: Vector[Int] => v.size shouldBe 5 } } it("should produce Vector[T] following sizes determined by havingLengthsDeterminedBy method") { val aGen= Generator.vectorGenerator[Int] implicit val sGen = aGen.havingLengthsDeterminedBy(s => SizeParam(5, 0, 5)) import GeneratorDrivenPropertyChecks._ forAll { v: Vector[Int] => v.length shouldBe 5 } } it("should shrink Vectors using strategery") { shrinkByStrategery[Vector](Vector) } it("should return an empty Iterator when asked to shrink a Vector of size 0") { val lstGen = implicitly[Generator[Vector[Int]]] val xs = Vector.empty[Int] lstGen.shrink(xs, Randomizer.default)._1.toVector shouldBe empty } it("should return an Iterator of the canonicals excluding the given values to shrink when asked to shrink a Vector of size 1") { val lstGen = implicitly[Generator[Vector[Int]]] val canonicalLists = Vector(0, 1, -1, 2, -2, 3, -3).map(i => Vector(i)) val expectedLists = Vector(Vector.empty[Int]) ++ canonicalLists val nonCanonical = Vector(99) lstGen.shrink(nonCanonical, Randomizer.default)._1.toVector should contain theSameElementsAs expectedLists val canonical = Vector(3) // Ensure 3 (an Int canonical value) does not show up twice in the output lstGen.shrink(canonical, Randomizer.default)._1.toVector should contain theSameElementsAs expectedLists } it("should return an Iterator that does not repeat canonicals when asked to shrink a Vector of size 2 that includes canonicals") { val lstGen = implicitly[Generator[Vector[Int]]] val shrinkees = lstGen.shrink(Vector(3, 99), Randomizer.default)._1.toList shrinkees.distinct should contain theSameElementsAs shrinkees } it("should return an Iterator that does not repeat the passed list-to-shink even if that list has a power of 2 length") { // Since the last batch of lists produced by the list shrinker start at length 2 and then double in size each time, // they lengths will be powers of two: 2, 4, 8, 16, etc... So make sure that if the original length has length 16, // for example, that that one doesn't show up in the shrinks output, because it would be the original list-to-shrink. val lstGen = implicitly[Generator[Vector[Int]]] val listToShrink = Vector.fill(16)(99) val shrinkees = lstGen.shrink(listToShrink, Randomizer.default)._1.toList shrinkees.distinct should not contain listToShrink } it("should offer a Vector generator whose canonical method uses the canonical method of the underlying T") { import GeneratorDrivenPropertyChecks._ val intGenerator = Generator.intGenerator val (intCanonicalsIt, _) = intGenerator.canonicals(Randomizer.default) val intCanonicals = intCanonicalsIt.toVector val listOfIntGenerator = Generator.vectorGenerator[Int] val (listOfIntCanonicalsIt, _) = listOfIntGenerator.canonicals(Randomizer.default) val listOfIntCanonicals = listOfIntCanonicalsIt.toList listOfIntCanonicals shouldEqual intCanonicals.map(i => List(i)) } } describe("for Set[T]s") { it("should produce the same Set[T] values in the same order given the same Randomizer") { val aGen= Generator.setGenerator[Int] val bGen = Generator.setGenerator[Int] val (a1, _, ar1) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = Randomizer(100)) val (a2, _, ar2) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar1) val (a3, _, ar3) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar2) val (a4, _, ar4) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar3) val (a5, _, ar5) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar4) val (a6, _, ar6) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar5) val (a7, _, _) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar6) val (b1, _, br1) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = Randomizer(100)) val (b2, _, br2) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br1) val (b3, _, br3) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br2) val (b4, _, br4) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br3) val (b5, _, br5) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br4) val (b6, _, br6) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br5) val (b7, _, _) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br6) List(a1, a2, a3, a4, a5) should contain theSameElementsAs List(b1, b2, b3, b4, b5) a6 shouldEqual b6 a7 shouldEqual b7 } it("should produce Set[T] edge values first in random order") { val gen = Generator.setGenerator[Int] val (a1: Set[Int], ae1: List[Set[Int]], ar1: Randomizer) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = List(Set.empty[Int], Set(1, 2), Set(3, 4, 5)), rnd = Randomizer.default) val (a2, ae2, ar2) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = ae1, rnd = ar1) val (a3, _, _) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = ae2, rnd = ar2) val edges = List(a1, a2, a3) edges should contain (Set.empty[Int]) edges should contain (Set(1, 2)) edges should contain (Set(3, 4, 5)) } it("should produce Set[T] following size determined by havingSize method") { val aGen= Generator.setGenerator[Int] implicit val sGen = aGen.havingSize(PosZInt(3)) import GeneratorDrivenPropertyChecks._ forAll { s: Set[Int] => s.size shouldBe 3 } } it("should produce Set[T] following sizes determined by havingSizeBetween method") { val aGen= Generator.setGenerator[Int] implicit val sGen = aGen.havingSizesBetween(PosZInt(3), PosZInt(5)) import GeneratorDrivenPropertyChecks._ forAll { s: Set[Int] => s.size should (be >= 3 and be <= 5) } } it("should produce IllegalArgumentException when havingSizesBetween is called with invalid from and to pair") { val aGen= Generator.setGenerator[Int] aGen.havingSizesBetween(PosZInt(3), PosZInt(5)) assertThrows[IllegalArgumentException] { aGen.havingSizesBetween(PosZInt(3), PosZInt(3)) } assertThrows[IllegalArgumentException] { aGen.havingSizesBetween(PosZInt(3), PosZInt(2)) } } it("should produce Set[T] following sizes determined by havingSizesDeterminedBy method") { val aGen= Generator.setGenerator[Int] implicit val sGen = aGen.havingSizesDeterminedBy(s => SizeParam(5, 0, 5)) import GeneratorDrivenPropertyChecks._ forAll { s: Set[Int] => s.size shouldBe 5 } } it("should shrink Sets using strategery") { shrinkByStrategery[Set](Set) } it("should return an empty Iterator when asked to shrink a Set of size 0") { val lstGen = implicitly[Generator[Set[Int]]] val xs = Set.empty[Int] lstGen.shrink(xs, Randomizer.default)._1.toSet shouldBe empty } it("should return an Iterator of the canonicals excluding the given values to shrink when asked to shrink a Set of size 1") { val lstGen = implicitly[Generator[Set[Int]]] val canonicalLists = Vector(0, 1, -1, 2, -2, 3, -3).map(i => Set(i)) val expectedLists = Vector(Set.empty[Int]) ++ canonicalLists val nonCanonical = Set(99) lstGen.shrink(nonCanonical, Randomizer.default)._1.toVector should contain theSameElementsAs expectedLists val canonical = Set(3) // Ensure 3 (an Int canonical value) does not show up twice in the output lstGen.shrink(canonical, Randomizer.default)._1.toVector should contain theSameElementsAs expectedLists } it("should return an Iterator that does not repeat canonicals when asked to shrink a Set of size 2 that includes canonicals") { val lstGen = implicitly[Generator[Set[Int]]] val shrinkees = lstGen.shrink(Set(3, 99), Randomizer.default)._1.toList shrinkees.distinct should contain theSameElementsAs shrinkees } it("should return an Iterator that does not repeat the passed set-to-shink even if that set has a power of 2 length") { // Since the last batch of lists produced by the list shrinker start at length 2 and then double in size each time, // they lengths will be powers of two: 2, 4, 8, 16, etc... So make sure that if the original length has length 16, // for example, that that one doesn't show up in the shrinks output, because it would be the original list-to-shrink. val lstGen = implicitly[Generator[Set[Int]]] val listToShrink: Set[Int] = (Set.empty[Int] /: (1 to 16)) { (set, n) => set + n } val shrinkees = lstGen.shrink(listToShrink, Randomizer.default)._1.toList shrinkees.distinct should not contain listToShrink } it("should offer a Set generator whose canonical method uses the canonical method of the underlying T") { import GeneratorDrivenPropertyChecks._ val intGenerator = Generator.intGenerator val (intCanonicalsIt, _) = intGenerator.canonicals(Randomizer.default) val intCanonicals = intCanonicalsIt.toList val listOfIntGenerator = Generator.setGenerator[Int] val (listOfIntCanonicalsIt, _) = listOfIntGenerator.canonicals(Randomizer.default) val listOfIntCanonicals = listOfIntCanonicalsIt.toList listOfIntCanonicals shouldEqual intCanonicals.map(i => Set(i)) } } describe("for SortedSet[T]s") { it("should produce the same SortedSet[T] values in the same order given the same Randomizer") { val aGen= Generator.sortedSetGenerator[Int] val bGen = Generator.sortedSetGenerator[Int] val (a1, _, ar1) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = Randomizer(100)) val (a2, _, ar2) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar1) val (a3, _, ar3) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar2) val (a4, _, ar4) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar3) val (a5, _, ar5) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar4) val (a6, _, ar6) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar5) val (a7, _, _) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar6) val (b1, _, br1) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = Randomizer(100)) val (b2, _, br2) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br1) val (b3, _, br3) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br2) val (b4, _, br4) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br3) val (b5, _, br5) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br4) val (b6, _, br6) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br5) val (b7, _, _) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br6) List(a1, a2, a3, a4, a5) should contain theSameElementsAs List(b1, b2, b3, b4, b5) a6 shouldEqual b6 a7 shouldEqual b7 } it("should produce SortedSet[T] edge values first in random order") { val gen = Generator.sortedSetGenerator[Int] val (a1: SortedSet[Int], ae1: List[SortedSet[Int]], ar1: Randomizer) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = List(SortedSet.empty[Int], SortedSet(1, 2), SortedSet(3, 4, 5)), rnd = Randomizer.default) val (a2, ae2, ar2) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = ae1, rnd = ar1) val (a3, _, _) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = ae2, rnd = ar2) val edges = List(a1, a2, a3) edges should contain (SortedSet.empty[Int]) edges should contain (SortedSet(1, 2)) edges should contain (SortedSet(3, 4, 5)) } it("should produce Set[T] following size determined by havingSize method") { val aGen= Generator.sortedSetGenerator[Int] implicit val sGen = aGen.havingSize(PosZInt(3)) import GeneratorDrivenPropertyChecks._ forAll { s: SortedSet[Int] => s.size shouldBe 3 } } it("should produce Set[T] following sizes determined by havingSizeBetween method") { val aGen= Generator.sortedSetGenerator[Int] implicit val sGen = aGen.havingSizesBetween(PosZInt(3), PosZInt(5)) import GeneratorDrivenPropertyChecks._ forAll { s: SortedSet[Int] => s.size should (be >= 3 and be <= 5) } } it("should produce IllegalArgumentException when havingSizesBetween is called with invalid from and to pair") { val aGen= Generator.sortedSetGenerator[Int] aGen.havingSizesBetween(PosZInt(3), PosZInt(5)) assertThrows[IllegalArgumentException] { aGen.havingSizesBetween(PosZInt(3), PosZInt(3)) } assertThrows[IllegalArgumentException] { aGen.havingSizesBetween(PosZInt(3), PosZInt(2)) } } it("should produce Set[T] following sizes determined by havingSizesDeterminedBy method") { val aGen= Generator.sortedSetGenerator[Int] implicit val sGen = aGen.havingSizesDeterminedBy(s => SizeParam(5, 0, 5)) import GeneratorDrivenPropertyChecks._ forAll { s: SortedSet[Int] => s.size shouldBe 5 } } it("should shrink SortedSets using strategery") { // Due to what I can only assume is an oversight in the standard library, SortedSet's // companion object is not a GenericCompanion, so we can't use the common function here: import GeneratorDrivenPropertyChecks._ val generator = implicitly[Generator[SortedSet[Int]]] val intGenerator = Generator.intGenerator val (intCanonicalsIt, _) = intGenerator.canonicals(Randomizer.default) val intCanonicals = intCanonicalsIt.toList forAll { (xs: SortedSet[Int]) => val (shrinkIt, _) = generator.shrink(xs, Randomizer.default) val shrinks: List[SortedSet[Int]] = shrinkIt.toList if (xs.isEmpty) shrinks shouldBe empty else { // First one should be the empty list shrinks(0) shouldBe empty // Then should come one-element Lists of the canonicals of the type val phase2 = shrinks.drop(1).take(intCanonicals.length) phase2 shouldEqual (intCanonicals.map(i => SortedSet(i))) // Phase 3 should be one-element lists of all distinct values in the value passed to shrink // If xs already is a one-element list, then we don't do this, because then xs would appear in the output. val xsList = xs.toList val xsDistincts = if (xsList.length > 1) xsList.distinct else Nil val phase3 = shrinks.drop(1 + intCanonicals.length).take(xsDistincts.length) phase3 shouldEqual (xsDistincts.map(i => SortedSet(i))) // Phase 4 should be n-element lists that are prefixes cut in half val theHalves = shrinks.drop(1 + intCanonicals.length + xsDistincts.length) theHalves should not contain xs // This was a bug I noticed if (theHalves.length > 1) { import org.scalatest.Inspectors val zipped = theHalves.zip(theHalves.tail) Inspectors.forAll (zipped) { case (s, t) => s.size should be < t.size } } else succeed } } } it("should return an empty Iterator when asked to shrink a SortedSet of size 0") { val lstGen = implicitly[Generator[SortedSet[Int]]] val xs = SortedSet.empty[Int] lstGen.shrink(xs, Randomizer.default)._1.toSet shouldBe empty } it("should return an Iterator of the canonicals excluding the given values to shrink when asked to shrink a Set of size 1") { val lstGen = implicitly[Generator[SortedSet[Int]]] val canonicalLists = Vector(0, 1, -1, 2, -2, 3, -3).map(i => SortedSet(i)) val expectedLists = Vector(SortedSet.empty[Int]) ++ canonicalLists val nonCanonical = SortedSet(99) lstGen.shrink(nonCanonical, Randomizer.default)._1.toVector should contain theSameElementsAs expectedLists val canonical = SortedSet(3) // Ensure 3 (an Int canonical value) does not show up twice in the output lstGen.shrink(canonical, Randomizer.default)._1.toVector should contain theSameElementsAs expectedLists } it("should return an Iterator that does not repeat canonicals when asked to shrink a SortedSet of size 2 that includes canonicals") { val lstGen = implicitly[Generator[SortedSet[Int]]] val shrinkees = lstGen.shrink(SortedSet(3, 99), Randomizer.default)._1.toList shrinkees.distinct should contain theSameElementsAs shrinkees } it("should return an Iterator that does not repeat the passed set-to-shink even if that set has a power of 2 length") { // Since the last batch of lists produced by the list shrinker start at length 2 and then double in size each time, // they lengths will be powers of two: 2, 4, 8, 16, etc... So make sure that if the original length has length 16, // for example, that that one doesn't show up in the shrinks output, because it would be the original list-to-shrink. val lstGen = implicitly[Generator[SortedSet[Int]]] val listToShrink: SortedSet[Int] = (SortedSet.empty[Int] /: (1 to 16)) { (set, n) => set + n } val shrinkees = lstGen.shrink(listToShrink, Randomizer.default)._1.toList shrinkees.distinct should not contain listToShrink } it("should offer a Set generator whose canonical method uses the canonical method of the underlying T") { import GeneratorDrivenPropertyChecks._ val intGenerator = Generator.intGenerator val (intCanonicalsIt, _) = intGenerator.canonicals(Randomizer.default) val intCanonicals = intCanonicalsIt.toList val listOfIntGenerator = Generator.sortedSetGenerator[Int] val (listOfIntCanonicalsIt, _) = listOfIntGenerator.canonicals(Randomizer.default) val listOfIntCanonicals = listOfIntCanonicalsIt.toList listOfIntCanonicals shouldEqual intCanonicals.map(i => SortedSet(i)) } } describe("for Map[K, V]s") { it("should produce the same Map[K, V] values in the same order given the same Randomizer") { val aGen= Generator.mapGenerator[Int, String] val bGen = Generator.mapGenerator[Int, String] val (a1, _, ar1) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = Randomizer(100)) val (a2, _, ar2) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar1) val (a3, _, ar3) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar2) val (a4, _, ar4) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar3) val (a5, _, ar5) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar4) val (a6, _, ar6) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar5) val (a7, _, _) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar6) val (b1, _, br1) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = Randomizer(100)) val (b2, _, br2) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br1) val (b3, _, br3) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br2) val (b4, _, br4) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br3) val (b5, _, br5) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br4) val (b6, _, br6) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br5) val (b7, _, _) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br6) List(a1, a2, a3, a4, a5) should contain theSameElementsAs List(b1, b2, b3, b4, b5) a6 shouldEqual b6 a7 shouldEqual b7 } it("should produce Map[K, V] edge values first in random order") { val gen = Generator.mapGenerator[Int, String] val (a1: Map[Int, String], ae1: List[Map[Int, String]], ar1: Randomizer) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = List(Map.empty[Int, String], Map(1 -> "one", 2 -> "two"), Map(3 -> "three", 4 -> "four", 5 -> "five")), rnd = Randomizer.default) val (a2, ae2, ar2) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = ae1, rnd = ar1) val (a3, _, _) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = ae2, rnd = ar2) val edges = List(a1, a2, a3) edges should contain (Map.empty[Int, String]) edges should contain (Map(1 -> "one", 2 -> "two")) edges should contain (Map(3 -> "three", 4 -> "four", 5 -> "five")) } it("should produce Map[K, V] following size determined by havingSize method") { val aGen= Generator.mapGenerator[Int, String] implicit val sGen = aGen.havingSize(PosZInt(3)) import GeneratorDrivenPropertyChecks._ forAll { s: Map[Int, String] => s.size shouldBe 3 } } it("should produce Map[K, V] following sizes determined by havingSizeBetween method") { val aGen= Generator.mapGenerator[Int, String] implicit val sGen = aGen.havingSizesBetween(PosZInt(3), PosZInt(5)) import GeneratorDrivenPropertyChecks._ forAll { s: Map[Int, String] => s.size should (be >= 3 and be <= 5) } } it("should produce IllegalArgumentException when havingSizesBetween is called with invalid from and to pair") { val aGen= Generator.mapGenerator[Int, String] aGen.havingSizesBetween(PosZInt(3), PosZInt(5)) assertThrows[IllegalArgumentException] { aGen.havingSizesBetween(PosZInt(3), PosZInt(3)) } assertThrows[IllegalArgumentException] { aGen.havingSizesBetween(PosZInt(3), PosZInt(2)) } } it("should produce Map[K, V] following sizes determined by havingSizesDeterminedBy method") { val aGen= Generator.mapGenerator[Int, String] implicit val sGen = aGen.havingSizesDeterminedBy(s => SizeParam(5, 0, 5)) import GeneratorDrivenPropertyChecks._ forAll { s: Map[Int, String] => s.size shouldBe 5 } } it("should shrink Maps using strategery") { import GeneratorDrivenPropertyChecks._ val generator = implicitly[Generator[Map[PosInt, Int]]] val tupleGenerator = Generator.tuple2Generator[PosInt, Int] val (tupleCanonicalsIt, _) = tupleGenerator.canonicals(Randomizer.default) val tupleCanonicals = tupleCanonicalsIt.toList forAll { (xs: Map[PosInt, Int]) => val (shrinkIt, _) = generator.shrink(xs, Randomizer.default) val shrinks: List[Map[PosInt, Int]] = shrinkIt.toList if (xs.isEmpty) shrinks shouldBe empty else { // First one should be the empty list shrinks(0) shouldBe empty // Then should come one-element Lists of the canonicals of the type val phase2 = shrinks.drop(1).take(tupleCanonicals.length) phase2 shouldEqual (tupleCanonicals.map(i => Map(i))) // Phase 3 should be one-element lists of all distinct values in the value passed to shrink // If xs already is a one-element list, then we don't do this, because then xs would appear in the output. val xsList = xs.toList val xsDistincts = if (xsList.length > 1) xsList.distinct else Nil val phase3 = shrinks.drop(1 + tupleCanonicals.length).take(xsDistincts.length) phase3 shouldEqual (xsDistincts.map(i => Map(i))) // Phase 4 should be n-element lists that are prefixes cut in half val theHalves = shrinks.drop(1 + tupleCanonicals.length + xsDistincts.length) theHalves should not contain xs // This was a bug I noticed if (theHalves.length > 1) { import org.scalatest.Inspectors val zipped = theHalves.zip(theHalves.tail) Inspectors.forAll (zipped) { case (s, t) => s.size should be < t.size } } else succeed } } } it("should return an empty Iterator when asked to shrink a Map of size 0") { val lstGen = implicitly[Generator[Map[PosInt, Int]]] val xs = Map.empty[PosInt, Int] lstGen.shrink(xs, Randomizer.default)._1.toSet shouldBe empty } it("should return an Iterator of the canonicals excluding the given values to shrink when asked to shrink a Map of size 1") { val lstGen = implicitly[Generator[Map[PosInt, Int]]] val canonicalLists = for { k <- Vector(1, 2, 3) v <- Vector(0, 1, -1, 2, -2, 3, -3) } yield Map(PosInt.ensuringValid(k) -> v) val expectedLists = Vector(Map.empty[PosInt, Int]) ++ canonicalLists val nonCanonical = Map(PosInt(99) -> 99) lstGen.shrink(nonCanonical, Randomizer.default)._1.toVector should contain theSameElementsAs expectedLists val canonical = Map(PosInt(3) -> 3) // Ensure 3 (an Int canonical value) does not show up twice in the output lstGen.shrink(canonical, Randomizer.default)._1.toVector should contain theSameElementsAs expectedLists } it("should return an Iterator that does not repeat canonicals when asked to shrink a Map of size 2 that includes canonicals") { val lstGen = implicitly[Generator[Map[PosInt, Int]]] val shrinkees = lstGen.shrink(Map(PosInt(3) -> 3, PosInt(2) -> 2, PosInt(99) -> 99), Randomizer.default)._1.toList shrinkees.distinct should contain theSameElementsAs shrinkees } it("should return an Iterator that does not repeat the passed map-to-shink even if that set has a power of 2 length") { // Since the last batch of lists produced by the list shrinker start at length 2 and then double in size each time, // they lengths will be powers of two: 2, 4, 8, 16, etc... So make sure that if the original length has length 16, // for example, that that one doesn't show up in the shrinks output, because it would be the original list-to-shrink. val lstGen = implicitly[Generator[Map[PosInt, Int]]] val listToShrink: Map[PosInt, Int] = (Map.empty[PosInt, Int] /: (1 to 16)) { (map, n) => map + (PosInt.ensuringValid(n) -> n) } val shrinkees = lstGen.shrink(listToShrink, Randomizer.default)._1.toList shrinkees.distinct should not contain listToShrink } it("should offer a Map generator whose canonical method uses the canonical method of the underlying types") { import GeneratorDrivenPropertyChecks._ val tupleGenerator = Generator.tuple2Generator[PosInt, Int] val (tupleCanonicalsIt, _) = tupleGenerator.canonicals(Randomizer.default) val tupleCanonicals = tupleCanonicalsIt.toList val mapGenerator = Generator.mapGenerator[PosInt, Int] val (mapCanonicalsIt, _) = mapGenerator.canonicals(Randomizer.default) val mapCanonicals = mapCanonicalsIt.toList mapCanonicals shouldEqual tupleCanonicals.map(i => Map(i)) } } describe("for SortedMaps") { it("should produce the same SortedMap[K, V] values in the same order given the same Randomizer") { val aGen= Generator.sortedMapGenerator[Int, String] val bGen = Generator.sortedMapGenerator[Int, String] val (a1, _, ar1) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = Randomizer(100)) val (a2, _, ar2) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar1) val (a3, _, ar3) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar2) val (a4, _, ar4) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar3) val (a5, _, ar5) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar4) val (a6, _, ar6) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar5) val (a7, _, _) = aGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = ar6) val (b1, _, br1) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = Randomizer(100)) val (b2, _, br2) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br1) val (b3, _, br3) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br2) val (b4, _, br4) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br3) val (b5, _, br5) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br4) val (b6, _, br6) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br5) val (b7, _, _) = bGen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = Nil, rnd = br6) List(a1, a2, a3, a4, a5) should contain theSameElementsAs List(b1, b2, b3, b4, b5) a6 shouldEqual b6 a7 shouldEqual b7 } it("should produce SortedMap[K, V] edge values first in random order") { val gen = Generator.sortedMapGenerator[Int, String] val (a1: SortedMap[Int, String], ae1: List[SortedMap[Int, String]], ar1: Randomizer) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = List(SortedMap.empty[Int, String], SortedMap(1 -> "one", 2 -> "two"), SortedMap(3 -> "three", 4 -> "four", 5 -> "five")), rnd = Randomizer.default) val (a2, ae2, ar2) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = ae1, rnd = ar1) val (a3, _, _) = gen.next(szp = SizeParam(PosZInt(0), 100, 100), edges = ae2, rnd = ar2) val edges = List(a1, a2, a3) edges should contain (SortedMap.empty[Int, String]) edges should contain (SortedMap(1 -> "one", 2 -> "two")) edges should contain (SortedMap(3 -> "three", 4 -> "four", 5 -> "five")) } it("should produce SortedMap[K, V] following size determined by havingSize method") { val aGen= Generator.sortedMapGenerator[Int, String] implicit val sGen = aGen.havingSize(PosZInt(3)) import GeneratorDrivenPropertyChecks._ forAll { s: SortedMap[Int, String] => s.size shouldBe 3 } } it("should produce SortedMap[K, V] following sizes determined by havingSizeBetween method") { val aGen= Generator.sortedMapGenerator[Int, String] implicit val sGen = aGen.havingSizesBetween(PosZInt(3), PosZInt(5)) import GeneratorDrivenPropertyChecks._ forAll { s: SortedMap[Int, String] => s.size should (be >= 3 and be <= 5) } } it("should produce IllegalArgumentException when havingSizesBetween is called with invalid from and to pair") { val aGen= Generator.sortedMapGenerator[Int, String] aGen.havingSizesBetween(PosZInt(3), PosZInt(5)) assertThrows[IllegalArgumentException] { aGen.havingSizesBetween(PosZInt(3), PosZInt(3)) } assertThrows[IllegalArgumentException] { aGen.havingSizesBetween(PosZInt(3), PosZInt(2)) } } it("should produce SortedMap[K, V] following sizes determined by havingSizesDeterminedBy method") { val aGen= Generator.sortedMapGenerator[Int, String] implicit val sGen = aGen.havingSizesDeterminedBy(s => SizeParam(5, 0, 5)) import GeneratorDrivenPropertyChecks._ forAll { s: SortedMap[Int, String] => s.size shouldBe 5 } } it("should shrink SortedMaps using strategery") { import GeneratorDrivenPropertyChecks._ val generator = implicitly[Generator[SortedMap[PosInt, Int]]] val tupleGenerator = Generator.tuple2Generator[PosInt, Int] val (tupleCanonicalsIt, _) = tupleGenerator.canonicals(Randomizer.default) val tupleCanonicals = tupleCanonicalsIt.toList forAll { (xs: SortedMap[PosInt, Int]) => val (shrinkIt, _) = generator.shrink(xs, Randomizer.default) val shrinks: List[SortedMap[PosInt, Int]] = shrinkIt.toList if (xs.isEmpty) shrinks shouldBe empty else { // First one should be the empty list shrinks(0) shouldBe empty // Then should come one-element Lists of the canonicals of the type val phase2 = shrinks.drop(1).take(tupleCanonicals.length) phase2 shouldEqual (tupleCanonicals.map(i => SortedMap(i))) // Phase 3 should be one-element lists of all distinct values in the value passed to shrink // If xs already is a one-element list, then we don't do this, because then xs would appear in the output. val xsList = xs.toList val xsDistincts = if (xsList.length > 1) xsList.distinct else Nil val phase3 = shrinks.drop(1 + tupleCanonicals.length).take(xsDistincts.length) phase3 shouldEqual (xsDistincts.map(i => SortedMap(i))) // Phase 4 should be n-element lists that are prefixes cut in half val theHalves = shrinks.drop(1 + tupleCanonicals.length + xsDistincts.length) theHalves should not contain xs // This was a bug I noticed if (theHalves.length > 1) { import org.scalatest.Inspectors val zipped = theHalves.zip(theHalves.tail) Inspectors.forAll (zipped) { case (s, t) => s.size should be < t.size } } else succeed } } } it("should return an empty Iterator when asked to shrink a SortedMap of size 0") { val lstGen = implicitly[Generator[SortedMap[PosInt, Int]]] val xs = SortedMap.empty[PosInt, Int] lstGen.shrink(xs, Randomizer.default)._1.toSet shouldBe empty } it("should return an Iterator of the canonicals excluding the given values to shrink when asked to shrink a SortedMap of size 1") { val lstGen = implicitly[Generator[SortedMap[PosInt, Int]]] val canonicalLists = for { k <- Vector(1, 2, 3) v <- Vector(0, 1, -1, 2, -2, 3, -3) } yield SortedMap(PosInt.ensuringValid(k) -> v) val expectedLists = Vector(SortedMap.empty[PosInt, Int]) ++ canonicalLists val nonCanonical = SortedMap(PosInt(99) -> 99) lstGen.shrink(nonCanonical, Randomizer.default)._1.toVector should contain theSameElementsAs expectedLists val canonical = SortedMap(PosInt(3) -> 3) // Ensure 3 (an Int canonical value) does not show up twice in the output lstGen.shrink(canonical, Randomizer.default)._1.toVector should contain theSameElementsAs expectedLists } it("should return an Iterator that does not repeat canonicals when asked to shrink a SortedMap of size 2 that includes canonicals") { val lstGen = implicitly[Generator[SortedMap[PosInt, Int]]] val shrinkees = lstGen.shrink(SortedMap(PosInt(3) -> 3, PosInt(2) -> 2, PosInt(99) -> 99), Randomizer.default)._1.toList shrinkees.distinct should contain theSameElementsAs shrinkees } it("should return an Iterator that does not repeat the passed SortedMap-to-shink even if that SortedMap has a power of 2 length") { // Since the last batch of lists produced by the list shrinker start at length 2 and then double in size each time, // they lengths will be powers of two: 2, 4, 8, 16, etc... So make sure that if the original length has length 16, // for example, that that one doesn't show up in the shrinks output, because it would be the original list-to-shrink. val lstGen = implicitly[Generator[SortedMap[PosInt, Int]]] val listToShrink: SortedMap[PosInt, Int] = (SortedMap.empty[PosInt, Int] /: (1 to 16)) { (map, n) => map + (PosInt.ensuringValid(n) -> n) } val shrinkees = lstGen.shrink(listToShrink, Randomizer.default)._1.toList shrinkees.distinct should not contain listToShrink } it("should offer a SortedMap generator whose canonical method uses the canonical method of the underlying types") { import GeneratorDrivenPropertyChecks._ val tupleGenerator = Generator.tuple2Generator[PosInt, Int] val (tupleCanonicalsIt, _) = tupleGenerator.canonicals(Randomizer.default) val tupleCanonicals = tupleCanonicalsIt.toList val mapGenerator = Generator.sortedMapGenerator[PosInt, Int] val (mapCanonicalsIt, _) = mapGenerator.canonicals(Randomizer.default) val mapCanonicals = mapCanonicalsIt.toList mapCanonicals shouldEqual tupleCanonicals.map(i => Map(i)) } } it("should be creatable for recursive types") { // Based on an example from ScalaCheck: The Definitive Guide sealed trait Color extends Product with Serializable case object Red extends Color case object Green extends Color sealed trait Shape extends Product with Serializable { def color: Color } case class Line(val color: Color) extends Shape case class Circle(val color: Color) extends Shape case class Box(val color: Color, boxed: Shape) extends Shape import CommonGenerators.{evenly, specificValues} val genColor = specificValues(Red, Green) val genLine = for { color <- genColor } yield Line(color) val genCircle = for { color <- genColor } yield Circle(color) """ lazy val genShape = evenly(genLine, genCircle, genBox) lazy val genBox: Generator[Box] = for { color <- genColor shape <- genShape } yield Box(color, shape) """ should compile } } }
dotty-staging/scalatest
scalatest-test/src/test/scala/org/scalatest/prop/GeneratorSpec.scala
Scala
apache-2.0
209,065
package me.reminisce.stats.retrieving import akka.actor._ import com.github.nscala_time.time.Imports._ import me.reminisce.stats.model.DatabaseCollection import me.reminisce.stats.model.Messages._ import me.reminisce.stats.model.RetrievingMessages._ import me.reminisce.stats.retrieving.RetrievingService._ import me.reminisce.stats.statistics.Responses._ import me.reminisce.stats.statistics.Stats.StatsEntities import reactivemongo.api.{Cursor, DefaultDB} import reactivemongo.api.collections.bson._ import reactivemongo.bson.{BSONDateTime, BSONDocument} import scala.concurrent.ExecutionContext.Implicits.global import scala.concurrent.Future import scala.util.{Failure, Success} object RetrievingService { def props(database: DefaultDB): Props = Props(new RetrievingService(database)) def getStatistics(database: DefaultDB, userId: String, from: Option[DateTime], to: Option[DateTime], limit: Option[Int]): Future[List[StatsEntities]] = { val query = getQuery(userId, from, to) val collectionStats = database[BSONCollection](DatabaseCollection.statsCollection) limit match { case Some(max) => collectionStats.find(query).sort(BSONDocument("date" -> -1)).cursor[StatsEntities]().collect[List](max, Cursor.DoneOnError[List[StatsEntities]]()) case None => collectionStats.find(query).sort(BSONDocument("date" -> -1)).cursor[StatsEntities]().collect[List](maxDocs = -1, Cursor.DoneOnError[List[StatsEntities]]()) } } def getQuery(userId: String, from: Option[DateTime], to: Option[DateTime]): BSONDocument = { (from, to) match { case (Some(f), Some(t)) => BSONDocument( "userId" -> userId, "date" -> BSONDocument( "$gte" -> BSONDateTime(f.getMillis), "$lte" -> BSONDateTime(t.getMillis) ) ) case (Some(f), None) => BSONDocument( "userId" -> userId, "date" -> BSONDocument( "$gte" -> BSONDateTime(f.getMillis) ) ) case (None, Some(t)) => BSONDocument( "userId" -> userId, "date" -> BSONDocument( "$lte" -> BSONDateTime(t.getMillis) ) ) case (None, None) => BSONDocument( "userId" -> userId ) } } } class RetrievingService(database: DefaultDB) extends Actor with ActorLogging { def receive: Receive = waitingForMessages def waitingForMessages: Receive = { case RetrieveStats(userId, from, to, limit) => val client = sender val future = getStatistics(database, userId, from, to, limit) future.onComplete { case Success(stats) => if (stats.isEmpty) { client ! UserNotFound(s"Statistics not found for $userId") } else { client ! StatsRetrieved(stats.map(responseFromStats)) } case Failure(_) => sender ! Abort } case o => log.info(s"[RS] Unexpected message ($o) received in waitingForMessages state") } }
reminisceme/stats
src/main/scala/me/reminisce/stats/retrieving/RetrievingService.scala
Scala
apache-2.0
3,028
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.spark.sql.catalyst.util import java.sql.{Date, Timestamp} import java.text.{DateFormat, SimpleDateFormat} import java.util.{TimeZone, Calendar} import org.apache.spark.unsafe.types.UTF8String /** * Helper functions for converting between internal and external date and time representations. * Dates are exposed externally as java.sql.Date and are represented internally as the number of * dates since the Unix epoch (1970-01-01). Timestamps are exposed externally as java.sql.Timestamp * and are stored internally as longs, which are capable of storing timestamps with 100 nanosecond * precision. */ object DateTimeUtils { // we use Int and Long internally to represent [[DateType]] and [[TimestampType]] type SQLDate = Int type SQLTimestamp = Long // see http://stackoverflow.com/questions/466321/convert-unix-timestamp-to-julian // it's 2440587.5, rounding up to compatible with Hive final val JULIAN_DAY_OF_EPOCH = 2440588 final val SECONDS_PER_DAY = 60 * 60 * 24L final val MICROS_PER_SECOND = 1000L * 1000L final val NANOS_PER_SECOND = MICROS_PER_SECOND * 1000L final val MICROS_PER_DAY = MICROS_PER_SECOND * SECONDS_PER_DAY final val MILLIS_PER_DAY = SECONDS_PER_DAY * 1000L // number of days in 400 years final val daysIn400Years: Int = 146097 // number of days between 1.1.1970 and 1.1.2001 final val to2001 = -11323 // this is year -17999, calculation: 50 * daysIn400Year final val YearZero = -17999 final val toYearZero = to2001 + 7304850 @transient lazy val defaultTimeZone = TimeZone.getDefault // Java TimeZone has no mention of thread safety. Use thread local instance to be safe. private val threadLocalLocalTimeZone = new ThreadLocal[TimeZone] { override protected def initialValue: TimeZone = { Calendar.getInstance.getTimeZone } } // `SimpleDateFormat` is not thread-safe. private val threadLocalTimestampFormat = new ThreadLocal[DateFormat] { override def initialValue(): SimpleDateFormat = { new SimpleDateFormat("yyyy-MM-dd HH:mm:ss") } } // `SimpleDateFormat` is not thread-safe. private val threadLocalDateFormat = new ThreadLocal[DateFormat] { override def initialValue(): SimpleDateFormat = { new SimpleDateFormat("yyyy-MM-dd") } } // we should use the exact day as Int, for example, (year, month, day) -> day def millisToDays(millisUtc: Long): SQLDate = { // SPARK-6785: use Math.floor so negative number of days (dates before 1970) // will correctly work as input for function toJavaDate(Int) val millisLocal = millisUtc + threadLocalLocalTimeZone.get().getOffset(millisUtc) Math.floor(millisLocal.toDouble / MILLIS_PER_DAY).toInt } // reverse of millisToDays def daysToMillis(days: SQLDate): Long = { val millisUtc = days.toLong * MILLIS_PER_DAY millisUtc - threadLocalLocalTimeZone.get().getOffset(millisUtc) } def dateToString(days: SQLDate): String = threadLocalDateFormat.get.format(toJavaDate(days)) // Converts Timestamp to string according to Hive TimestampWritable convention. def timestampToString(us: SQLTimestamp): String = { val ts = toJavaTimestamp(us) val timestampString = ts.toString val formatted = threadLocalTimestampFormat.get.format(ts) if (timestampString.length > 19 && timestampString.substring(19) != ".0") { formatted + timestampString.substring(19) } else { formatted } } def stringToTime(s: String): java.util.Date = { if (!s.contains('T')) { // JDBC escape string if (s.contains(' ')) { Timestamp.valueOf(s) } else { Date.valueOf(s) } } else if (s.endsWith("Z")) { // this is zero timezone of ISO8601 stringToTime(s.substring(0, s.length - 1) + "GMT-00:00") } else if (s.indexOf("GMT") == -1) { // timezone with ISO8601 val inset = "+00.00".length val s0 = s.substring(0, s.length - inset) val s1 = s.substring(s.length - inset, s.length) if (s0.substring(s0.lastIndexOf(':')).contains('.')) { stringToTime(s0 + "GMT" + s1) } else { stringToTime(s0 + ".0GMT" + s1) } } else { // ISO8601 with GMT insert val ISO8601GMT: SimpleDateFormat = new SimpleDateFormat( "yyyy-MM-dd'T'HH:mm:ss.SSSz" ) ISO8601GMT.parse(s) } } /** * Returns the number of days since epoch from from java.sql.Date. */ def fromJavaDate(date: Date): SQLDate = { millisToDays(date.getTime) } /** * Returns a java.sql.Date from number of days since epoch. */ def toJavaDate(daysSinceEpoch: SQLDate): Date = { new Date(daysToMillis(daysSinceEpoch)) } /** * Returns a java.sql.Timestamp from number of micros since epoch. */ def toJavaTimestamp(us: SQLTimestamp): Timestamp = { // setNanos() will overwrite the millisecond part, so the milliseconds should be // cut off at seconds var seconds = us / MICROS_PER_SECOND var micros = us % MICROS_PER_SECOND // setNanos() can not accept negative value if (micros < 0) { micros += MICROS_PER_SECOND seconds -= 1 } val t = new Timestamp(seconds * 1000) t.setNanos(micros.toInt * 1000) t } /** * Returns the number of micros since epoch from java.sql.Timestamp. */ def fromJavaTimestamp(t: Timestamp): SQLTimestamp = { if (t != null) { t.getTime() * 1000L + (t.getNanos().toLong / 1000) % 1000L } else { 0L } } /** * Returns the number of microseconds since epoch from Julian day * and nanoseconds in a day */ def fromJulianDay(day: Int, nanoseconds: Long): SQLTimestamp = { // use Long to avoid rounding errors val seconds = (day - JULIAN_DAY_OF_EPOCH).toLong * SECONDS_PER_DAY seconds * MICROS_PER_SECOND + nanoseconds / 1000L } /** * Returns Julian day and nanoseconds in a day from the number of microseconds * * Note: support timestamp since 4717 BC (without negative nanoseconds, compatible with Hive). */ def toJulianDay(us: SQLTimestamp): (Int, Long) = { val julian_us = us + JULIAN_DAY_OF_EPOCH * MICROS_PER_DAY val day = julian_us / MICROS_PER_DAY val micros = julian_us % MICROS_PER_DAY (day.toInt, micros * 1000L) } /** * Parses a given UTF8 date string to the corresponding a corresponding [[Long]] value. * The return type is [[Option]] in order to distinguish between 0L and null. The following * formats are allowed: * * `yyyy` * `yyyy-[m]m` * `yyyy-[m]m-[d]d` * `yyyy-[m]m-[d]d ` * `yyyy-[m]m-[d]d [h]h:[m]m:[s]s.[ms][ms][ms][us][us][us]` * `yyyy-[m]m-[d]d [h]h:[m]m:[s]s.[ms][ms][ms][us][us][us]Z` * `yyyy-[m]m-[d]d [h]h:[m]m:[s]s.[ms][ms][ms][us][us][us]-[h]h:[m]m` * `yyyy-[m]m-[d]d [h]h:[m]m:[s]s.[ms][ms][ms][us][us][us]+[h]h:[m]m` * `yyyy-[m]m-[d]dT[h]h:[m]m:[s]s.[ms][ms][ms][us][us][us]` * `yyyy-[m]m-[d]dT[h]h:[m]m:[s]s.[ms][ms][ms][us][us][us]Z` * `yyyy-[m]m-[d]dT[h]h:[m]m:[s]s.[ms][ms][ms][us][us][us]-[h]h:[m]m` * `yyyy-[m]m-[d]dT[h]h:[m]m:[s]s.[ms][ms][ms][us][us][us]+[h]h:[m]m` * `[h]h:[m]m:[s]s.[ms][ms][ms][us][us][us]` * `[h]h:[m]m:[s]s.[ms][ms][ms][us][us][us]Z` * `[h]h:[m]m:[s]s.[ms][ms][ms][us][us][us]-[h]h:[m]m` * `[h]h:[m]m:[s]s.[ms][ms][ms][us][us][us]+[h]h:[m]m` * `T[h]h:[m]m:[s]s.[ms][ms][ms][us][us][us]` * `T[h]h:[m]m:[s]s.[ms][ms][ms][us][us][us]Z` * `T[h]h:[m]m:[s]s.[ms][ms][ms][us][us][us]-[h]h:[m]m` * `T[h]h:[m]m:[s]s.[ms][ms][ms][us][us][us]+[h]h:[m]m` */ def stringToTimestamp(s: UTF8String): Option[SQLTimestamp] = { if (s == null) { return None } var timeZone: Option[Byte] = None val segments: Array[Int] = Array[Int](1, 1, 1, 0, 0, 0, 0, 0, 0) var i = 0 var currentSegmentValue = 0 val bytes = s.getBytes var j = 0 var digitsMilli = 0 var justTime = false while (j < bytes.length) { val b = bytes(j) val parsedValue = b - '0'.toByte if (parsedValue < 0 || parsedValue > 9) { if (j == 0 && b == 'T') { justTime = true i += 3 } else if (i < 2) { if (b == '-') { segments(i) = currentSegmentValue currentSegmentValue = 0 i += 1 } else if (i == 0 && b == ':') { justTime = true segments(3) = currentSegmentValue currentSegmentValue = 0 i = 4 } else { return None } } else if (i == 2) { if (b == ' ' || b == 'T') { segments(i) = currentSegmentValue currentSegmentValue = 0 i += 1 } else { return None } } else if (i == 3 || i == 4) { if (b == ':') { segments(i) = currentSegmentValue currentSegmentValue = 0 i += 1 } else { return None } } else if (i == 5 || i == 6) { if (b == 'Z') { segments(i) = currentSegmentValue currentSegmentValue = 0 i += 1 timeZone = Some(43) } else if (b == '-' || b == '+') { segments(i) = currentSegmentValue currentSegmentValue = 0 i += 1 timeZone = Some(b) } else if (b == '.' && i == 5) { segments(i) = currentSegmentValue currentSegmentValue = 0 i += 1 } else { return None } if (i == 6 && b != '.') { i += 1 } } else { if (b == ':' || b == ' ') { segments(i) = currentSegmentValue currentSegmentValue = 0 i += 1 } else { return None } } } else { if (i == 6) { digitsMilli += 1 } currentSegmentValue = currentSegmentValue * 10 + parsedValue } j += 1 } segments(i) = currentSegmentValue while (digitsMilli < 6) { segments(6) *= 10 digitsMilli += 1 } if (!justTime && (segments(0) < 1000 || segments(0) > 9999 || segments(1) < 1 || segments(1) > 12 || segments(2) < 1 || segments(2) > 31)) { return None } if (segments(3) < 0 || segments(3) > 23 || segments(4) < 0 || segments(4) > 59 || segments(5) < 0 || segments(5) > 59 || segments(6) < 0 || segments(6) > 999999 || segments(7) < 0 || segments(7) > 23 || segments(8) < 0 || segments(8) > 59) { return None } val c = if (timeZone.isEmpty) { Calendar.getInstance() } else { Calendar.getInstance( TimeZone.getTimeZone(f"GMT${timeZone.get.toChar}${segments(7)}%02d:${segments(8)}%02d")) } c.set(Calendar.MILLISECOND, 0) if (justTime) { c.set(Calendar.HOUR_OF_DAY, segments(3)) c.set(Calendar.MINUTE, segments(4)) c.set(Calendar.SECOND, segments(5)) } else { c.set(segments(0), segments(1) - 1, segments(2), segments(3), segments(4), segments(5)) } Some(c.getTimeInMillis * 1000 + segments(6)) } /** * Parses a given UTF8 date string to the corresponding a corresponding [[Int]] value. * The return type is [[Option]] in order to distinguish between 0 and null. The following * formats are allowed: * * `yyyy`, * `yyyy-[m]m` * `yyyy-[m]m-[d]d` * `yyyy-[m]m-[d]d ` * `yyyy-[m]m-[d]d *` * `yyyy-[m]m-[d]dT*` */ def stringToDate(s: UTF8String): Option[SQLDate] = { if (s == null) { return None } val segments: Array[Int] = Array[Int](1, 1, 1) var i = 0 var currentSegmentValue = 0 val bytes = s.getBytes var j = 0 while (j < bytes.length && (i < 3 && !(bytes(j) == ' ' || bytes(j) == 'T'))) { val b = bytes(j) if (i < 2 && b == '-') { segments(i) = currentSegmentValue currentSegmentValue = 0 i += 1 } else { val parsedValue = b - '0'.toByte if (parsedValue < 0 || parsedValue > 9) { return None } else { currentSegmentValue = currentSegmentValue * 10 + parsedValue } } j += 1 } segments(i) = currentSegmentValue if (segments(0) < 1000 || segments(0) > 9999 || segments(1) < 1 || segments(1) > 12 || segments(2) < 1 || segments(2) > 31) { return None } val c = Calendar.getInstance(TimeZone.getTimeZone("GMT")) c.set(segments(0), segments(1) - 1, segments(2), 0, 0, 0) c.set(Calendar.MILLISECOND, 0) Some((c.getTimeInMillis / MILLIS_PER_DAY).toInt) } /** * Returns the hour value of a given timestamp value. The timestamp is expressed in microseconds. */ def getHours(timestamp: SQLTimestamp): Int = { val localTs = (timestamp / 1000) + defaultTimeZone.getOffset(timestamp / 1000) ((localTs / 1000 / 3600) % 24).toInt } /** * Returns the minute value of a given timestamp value. The timestamp is expressed in * microseconds. */ def getMinutes(timestamp: SQLTimestamp): Int = { val localTs = (timestamp / 1000) + defaultTimeZone.getOffset(timestamp / 1000) ((localTs / 1000 / 60) % 60).toInt } /** * Returns the second value of a given timestamp value. The timestamp is expressed in * microseconds. */ def getSeconds(timestamp: SQLTimestamp): Int = { ((timestamp / 1000 / 1000) % 60).toInt } private[this] def isLeapYear(year: Int): Boolean = { (year % 4) == 0 && ((year % 100) != 0 || (year % 400) == 0) } /** * Return the number of days since the start of 400 year period. * The second year of a 400 year period (year 1) starts on day 365. */ private[this] def yearBoundary(year: Int): Int = { year * 365 + ((year / 4 ) - (year / 100) + (year / 400)) } /** * Calculates the number of years for the given number of days. This depends * on a 400 year period. * @param days days since the beginning of the 400 year period * @return (number of year, days in year) */ private[this] def numYears(days: Int): (Int, Int) = { val year = days / 365 val boundary = yearBoundary(year) if (days > boundary) (year, days - boundary) else (year - 1, days - yearBoundary(year - 1)) } /** * Calculates the year and and the number of the day in the year for the given * number of days. The given days is the number of days since 1.1.1970. * * The calculation uses the fact that the period 1.1.2001 until 31.12.2400 is * equals to the period 1.1.1601 until 31.12.2000. */ private[this] def getYearAndDayInYear(daysSince1970: SQLDate): (Int, Int) = { // add the difference (in days) between 1.1.1970 and the artificial year 0 (-17999) val daysNormalized = daysSince1970 + toYearZero val numOfQuarterCenturies = daysNormalized / daysIn400Years val daysInThis400 = daysNormalized % daysIn400Years + 1 val (years, dayInYear) = numYears(daysInThis400) val year: Int = (2001 - 20000) + 400 * numOfQuarterCenturies + years (year, dayInYear) } /** * Returns the 'day in year' value for the given date. The date is expressed in days * since 1.1.1970. */ def getDayInYear(date: SQLDate): Int = { getYearAndDayInYear(date)._2 } /** * Returns the year value for the given date. The date is expressed in days * since 1.1.1970. */ def getYear(date: SQLDate): Int = { getYearAndDayInYear(date)._1 } /** * Returns the quarter for the given date. The date is expressed in days * since 1.1.1970. */ def getQuarter(date: SQLDate): Int = { var (year, dayInYear) = getYearAndDayInYear(date) if (isLeapYear(year)) { dayInYear = dayInYear - 1 } if (dayInYear <= 90) { 1 } else if (dayInYear <= 181) { 2 } else if (dayInYear <= 273) { 3 } else { 4 } } /** * Split date (expressed in days since 1.1.1970) into four fields: * year, month (Jan is Month 1), dayInMonth, daysToMonthEnd (0 if it's last day of month). */ def splitDate(date: SQLDate): (Int, Int, Int, Int) = { var (year, dayInYear) = getYearAndDayInYear(date) val isLeap = isLeapYear(year) if (isLeap && dayInYear == 60) { (year, 2, 29, 0) } else { if (isLeap && dayInYear > 60) dayInYear -= 1 if (dayInYear <= 181) { if (dayInYear <= 31) { (year, 1, dayInYear, 31 - dayInYear) } else if (dayInYear <= 59) { (year, 2, dayInYear - 31, if (isLeap) 60 - dayInYear else 59 - dayInYear) } else if (dayInYear <= 90) { (year, 3, dayInYear - 59, 90 - dayInYear) } else if (dayInYear <= 120) { (year, 4, dayInYear - 90, 120 - dayInYear) } else if (dayInYear <= 151) { (year, 5, dayInYear - 120, 151 - dayInYear) } else { (year, 6, dayInYear - 151, 181 - dayInYear) } } else { if (dayInYear <= 212) { (year, 7, dayInYear - 181, 212 - dayInYear) } else if (dayInYear <= 243) { (year, 8, dayInYear - 212, 243 - dayInYear) } else if (dayInYear <= 273) { (year, 9, dayInYear - 243, 273 - dayInYear) } else if (dayInYear <= 304) { (year, 10, dayInYear - 273, 304 - dayInYear) } else if (dayInYear <= 334) { (year, 11, dayInYear - 304, 334 - dayInYear) } else { (year, 12, dayInYear - 334, 365 - dayInYear) } } } } /** * Returns the month value for the given date. The date is expressed in days * since 1.1.1970. January is month 1. */ def getMonth(date: SQLDate): Int = { var (year, dayInYear) = getYearAndDayInYear(date) if (isLeapYear(year)) { if (dayInYear == 60) { return 2 } else if (dayInYear > 60) { dayInYear = dayInYear - 1 } } if (dayInYear <= 31) { 1 } else if (dayInYear <= 59) { 2 } else if (dayInYear <= 90) { 3 } else if (dayInYear <= 120) { 4 } else if (dayInYear <= 151) { 5 } else if (dayInYear <= 181) { 6 } else if (dayInYear <= 212) { 7 } else if (dayInYear <= 243) { 8 } else if (dayInYear <= 273) { 9 } else if (dayInYear <= 304) { 10 } else if (dayInYear <= 334) { 11 } else { 12 } } /** * Returns the 'day of month' value for the given date. The date is expressed in days * since 1.1.1970. */ def getDayOfMonth(date: SQLDate): Int = { var (year, dayInYear) = getYearAndDayInYear(date) if (isLeapYear(year)) { if (dayInYear == 60) { return 29 } else if (dayInYear > 60) { dayInYear = dayInYear - 1 } } if (dayInYear <= 31) { dayInYear } else if (dayInYear <= 59) { dayInYear - 31 } else if (dayInYear <= 90) { dayInYear - 59 } else if (dayInYear <= 120) { dayInYear - 90 } else if (dayInYear <= 151) { dayInYear - 120 } else if (dayInYear <= 181) { dayInYear - 151 } else if (dayInYear <= 212) { dayInYear - 181 } else if (dayInYear <= 243) { dayInYear - 212 } else if (dayInYear <= 273) { dayInYear - 243 } else if (dayInYear <= 304) { dayInYear - 273 } else if (dayInYear <= 334) { dayInYear - 304 } else { dayInYear - 334 } } /** * The number of days for each month (not leap year) */ private val monthDays = Array(31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31) /** * Returns the date value for the first day of the given month. * The month is expressed in months since year zero (17999 BC), starting from 0. */ private def firstDayOfMonth(absoluteMonth: Int): SQLDate = { val absoluteYear = absoluteMonth / 12 var monthInYear = absoluteMonth - absoluteYear * 12 var date = getDateFromYear(absoluteYear) if (monthInYear >= 2 && isLeapYear(absoluteYear + YearZero)) { date += 1 } while (monthInYear > 0) { date += monthDays(monthInYear - 1) monthInYear -= 1 } date } /** * Returns the date value for January 1 of the given year. * The year is expressed in years since year zero (17999 BC), starting from 0. */ private def getDateFromYear(absoluteYear: Int): SQLDate = { val absoluteDays = (absoluteYear * 365 + absoluteYear / 400 - absoluteYear / 100 + absoluteYear / 4) absoluteDays - toYearZero } /** * Add date and year-month interval. * Returns a date value, expressed in days since 1.1.1970. */ def dateAddMonths(days: SQLDate, months: Int): SQLDate = { val (year, monthInYear, dayOfMonth, daysToMonthEnd) = splitDate(days) val absoluteMonth = (year - YearZero) * 12 + monthInYear - 1 + months val nonNegativeMonth = if (absoluteMonth >= 0) absoluteMonth else 0 val currentMonthInYear = nonNegativeMonth % 12 val currentYear = nonNegativeMonth / 12 val leapDay = if (currentMonthInYear == 1 && isLeapYear(currentYear + YearZero)) 1 else 0 val lastDayOfMonth = monthDays(currentMonthInYear) + leapDay val currentDayInMonth = if (daysToMonthEnd == 0 || dayOfMonth >= lastDayOfMonth) { // last day of the month lastDayOfMonth } else { dayOfMonth } firstDayOfMonth(nonNegativeMonth) + currentDayInMonth - 1 } /** * Add timestamp and full interval. * Returns a timestamp value, expressed in microseconds since 1.1.1970 00:00:00. */ def timestampAddInterval(start: SQLTimestamp, months: Int, microseconds: Long): SQLTimestamp = { val days = millisToDays(start / 1000L) val newDays = dateAddMonths(days, months) daysToMillis(newDays) * 1000L + start - daysToMillis(days) * 1000L + microseconds } /** * Returns number of months between time1 and time2. time1 and time2 are expressed in * microseconds since 1.1.1970. * * If time1 and time2 having the same day of month, or both are the last day of month, * it returns an integer (time under a day will be ignored). * * Otherwise, the difference is calculated based on 31 days per month, and rounding to * 8 digits. */ def monthsBetween(time1: SQLTimestamp, time2: SQLTimestamp): Double = { val millis1 = time1 / 1000L val millis2 = time2 / 1000L val date1 = millisToDays(millis1) val date2 = millisToDays(millis2) val (year1, monthInYear1, dayInMonth1, daysToMonthEnd1) = splitDate(date1) val (year2, monthInYear2, dayInMonth2, daysToMonthEnd2) = splitDate(date2) val months1 = year1 * 12 + monthInYear1 val months2 = year2 * 12 + monthInYear2 if (dayInMonth1 == dayInMonth2 || ((daysToMonthEnd1 == 0) && (daysToMonthEnd2 == 0))) { return (months1 - months2).toDouble } // milliseconds is enough for 8 digits precision on the right side val timeInDay1 = millis1 - daysToMillis(date1) val timeInDay2 = millis2 - daysToMillis(date2) val timesBetween = (timeInDay1 - timeInDay2).toDouble / MILLIS_PER_DAY val diff = (months1 - months2).toDouble + (dayInMonth1 - dayInMonth2 + timesBetween) / 31.0 // rounding to 8 digits math.round(diff * 1e8) / 1e8 } /* * Returns day of week from String. Starting from Thursday, marked as 0. * (Because 1970-01-01 is Thursday). */ def getDayOfWeekFromString(string: UTF8String): Int = { val dowString = string.toString.toUpperCase dowString match { case "SU" | "SUN" | "SUNDAY" => 3 case "MO" | "MON" | "MONDAY" => 4 case "TU" | "TUE" | "TUESDAY" => 5 case "WE" | "WED" | "WEDNESDAY" => 6 case "TH" | "THU" | "THURSDAY" => 0 case "FR" | "FRI" | "FRIDAY" => 1 case "SA" | "SAT" | "SATURDAY" => 2 case _ => -1 } } /** * Returns the first date which is later than startDate and is of the given dayOfWeek. * dayOfWeek is an integer ranges in [0, 6], and 0 is Thu, 1 is Fri, etc,. */ def getNextDateForDayOfWeek(startDate: SQLDate, dayOfWeek: Int): SQLDate = { startDate + 1 + ((dayOfWeek - 1 - startDate) % 7 + 7) % 7 } /** * Returns last day of the month for the given date. The date is expressed in days * since 1.1.1970. */ def getLastDayOfMonth(date: SQLDate): SQLDate = { val (_, _, _, daysToMonthEnd) = splitDate(date) date + daysToMonthEnd } private val TRUNC_TO_YEAR = 1 private val TRUNC_TO_MONTH = 2 private val TRUNC_INVALID = -1 /** * Returns the trunc date from original date and trunc level. * Trunc level should be generated using `parseTruncLevel()`, should only be 1 or 2. */ def truncDate(d: SQLDate, level: Int): SQLDate = { if (level == TRUNC_TO_YEAR) { d - DateTimeUtils.getDayInYear(d) + 1 } else if (level == TRUNC_TO_MONTH) { d - DateTimeUtils.getDayOfMonth(d) + 1 } else { // caller make sure that this should never be reached sys.error(s"Invalid trunc level: $level") } } /** * Returns the truncate level, could be TRUNC_YEAR, TRUNC_MONTH, or TRUNC_INVALID, * TRUNC_INVALID means unsupported truncate level. */ def parseTruncLevel(format: UTF8String): Int = { if (format == null) { TRUNC_INVALID } else { format.toString.toUpperCase match { case "YEAR" | "YYYY" | "YY" => TRUNC_TO_YEAR case "MON" | "MONTH" | "MM" => TRUNC_TO_MONTH case _ => TRUNC_INVALID } } } /** * Returns a timestamp of given timezone from utc timestamp, with the same string * representation in their timezone. */ def fromUTCTime(time: SQLTimestamp, timeZone: String): SQLTimestamp = { val tz = TimeZone.getTimeZone(timeZone) val offset = tz.getOffset(time / 1000L) time + offset * 1000L } /** * Returns a utc timestamp from a given timestamp from a given timezone, with the same * string representation in their timezone. */ def toUTCTime(time: SQLTimestamp, timeZone: String): SQLTimestamp = { val tz = TimeZone.getTimeZone(timeZone) val offset = tz.getOffset(time / 1000L) time - offset * 1000L } }
ArvinDevel/onlineAggregationOnSparkV2
sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/util/DateTimeUtils.scala
Scala
apache-2.0
26,854
/* * This software is licensed under the GNU Affero General Public License, quoted below. * * This file is a part of PowerAPI. * * Copyright (C) 2011-2016 Inria, University of Lille 1. * * PowerAPI is free software: you can redistribute it and/or modify * it under the terms of the GNU Affero General Public License as * published by the Free Software Foundation, either version 3 of * the License, or (at your option) any later version. * * PowerAPI is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Affero General Public License for more details. * * You should have received a copy of the GNU Affero General Public License * along with PowerAPI. * * If not, please consult http://www.gnu.org/licenses/agpl-3.0.html. */ package org.powerapi.core import java.util.UUID import scala.concurrent.Await import scala.concurrent.duration.DurationInt import akka.actor.{Actor, Props, Terminated} import akka.event.Logging.Info import akka.pattern.gracefulStop import akka.testkit.{EventFilter, TestActorRef, TestProbe} import akka.util.Timeout import org.powerapi.core.MonitorChannel._ import org.powerapi.core.power._ import org.powerapi.core.target.{All, Application, Process, Target, intToProcess, stringToApplication} import org.powerapi.core.TickChannel.{publishTick, tickTopic} import org.powerapi.module.FormulaChannel.startFormula import org.powerapi.module.PowerChannel.{AggregatePowerReport, RawPowerReport, publishRawPowerReport, subscribeAggPowerReport, unsubscribeAggPowerReport} import org.powerapi.module.SensorChannel.startSensor import org.powerapi.module.{Formula, Formulas, Sensor, Sensors} import org.powerapi.reporter.Reporters import org.powerapi.{PowerDisplay, UnitTest} class EmptySensor(eventBus: MessageBus, muid: UUID, target: Target) extends Sensor(eventBus, muid, target) { def init(): Unit = {} def terminate(): Unit = {} def handler: Actor.Receive = sensorDefault } class EmptyFormula(eventBus: MessageBus, muid: UUID, target: Target) extends Formula(eventBus, muid, target) { def init(): Unit = {} def terminate(): Unit = {} def handler: Actor.Receive = formulaDefault } class MonitorSuite extends UnitTest { val timeout = Timeout(1.seconds) val threshold = 0.5 override def afterAll() = { system.terminate() } trait Bus { val eventBus = new MessageBus } "A MonitorChild actor" should "launch an exception when the messages received cannot be handled" in new Bus { val muid = UUID.randomUUID() val frequency = 50.milliseconds val targets = Set[Target](1) val monitor = TestActorRef(Props(classOf[MonitorChild], eventBus, muid, targets), "monitor") EventFilter.warning(occurrences = 1, source = monitor.path.toString).intercept({ monitor ! MonitorStop("test", muid) }) // Not an exception, just an assessment (switching in the running state). EventFilter.info(occurrences = 1, source = monitor.path.toString).intercept({ monitor ! MonitorStart("test", muid, targets) }) EventFilter.warning(occurrences = 1, source = monitor.path.toString).intercept({ monitor ! MonitorStart("test", muid, targets) }) EventFilter.info(occurrences = 1, source = monitor.path.toString).intercept({ monitor ! MonitorFrequency("test", muid, 1.second) }) EventFilter.info(occurrences = 1, source = monitor.path.toString).intercept({ monitor ! MonitorAggregator("test", muid, MAX) }) EventFilter.warning(occurrences = 1, source = monitor.path.toString).intercept({ monitor ! MonitorFrequency("test", UUID.randomUUID(), 1.second) }) EventFilter.warning(occurrences = 1, source = monitor.path.toString).intercept({ monitor ! MonitorAggregator("test", UUID.randomUUID(), MAX) }) EventFilter.warning(occurrences = 1, source = monitor.path.toString).intercept({ monitor ! MonitorStop("test", UUID.randomUUID()) }) EventFilter.info(occurrences = 1, source = monitor.path.toString).intercept({ monitor ! MonitorStop("test", muid) }) Await.result(gracefulStop(monitor, timeout.duration), timeout.duration) } it should "produce MonitorTick per muid/target when a Tick is received" in new Bus { val muid1 = UUID.randomUUID() val muid2 = UUID.randomUUID() val targets = Set[Target](1, "java", All) case class ExtendedTick(topic: String, traces: Seq[String], timestamp: Long) extends Tick val clocks = TestActorRef(Props(classOf[Clocks], eventBus), "clocks") val monitor1 = TestActorRef(Props(classOf[MonitorChild], eventBus, muid1, targets), "monitor1") val monitor2 = TestActorRef(Props(classOf[MonitorChild], eventBus, muid2, targets), "monitor2") val watcher = TestProbe() watcher.watch(monitor1) watcher.watch(monitor2) targets.foreach(target => { subscribeMonitorTick(muid1, target)(eventBus)(testActor) subscribeMonitorTick(muid2, target)(eventBus)(testActor) }) EventFilter.info(occurrences = 1, source = monitor1.path.toString).intercept({ monitor1 ! MonitorStart("test", muid1, targets) }) EventFilter.info(occurrences = 1, source = monitor2.path.toString).intercept({ monitor2 ! MonitorStart("test", muid2, targets) }) val tick1 = ExtendedTick(tickTopic(muid1), Seq("method", "a"), System.currentTimeMillis()) val tick2 = ExtendedTick(tickTopic(muid2), Seq("method", "b"), System.currentTimeMillis() + 1000) publishTick(tick1)(eventBus) var msgs = receiveN(targets.size).asInstanceOf[Seq[MonitorTick]] msgs.map(_.target) should contain theSameElementsAs targets msgs.map(_.muid).toSet should contain theSameElementsAs Seq(muid1) msgs.map(_.tick).toSet should contain theSameElementsAs Seq(tick1) publishTick(tick2)(eventBus) msgs = receiveN(targets.size).asInstanceOf[Seq[MonitorTick]] msgs.map(_.target) should contain theSameElementsAs targets msgs.map(_.muid).toSet should contain theSameElementsAs Seq(muid2) msgs.map(_.tick).toSet should contain theSameElementsAs Seq(tick2) EventFilter.info(occurrences = 1, source = monitor1.path.toString).intercept({ monitor1 ! MonitorStop("test", muid1) }) val filter = EventFilter.custom({ case Info(_, claz, _) if claz == classOf[ClockChild] || claz == classOf[MonitorChild] => true }, occurrences = 2) filter.intercept({ monitor2 ! MonitorFrequency("test", muid2, 50.millis) }) publishTick(tick2)(eventBus) receiveWhile(5.seconds) { case msg: MonitorTick if !msg.tick.isInstanceOf[ExtendedTick] => msg } EventFilter.info(occurrences = 1, source = monitor2.path.toString).intercept({ monitor2 ! MonitorStop("test", muid2) }) watcher.receiveN(2).asInstanceOf[Seq[Terminated]].map(_.actor) should contain theSameElementsAs Seq(monitor1, monitor2) Await.result(gracefulStop(clocks, timeout.duration), timeout.duration) Await.result(gracefulStop(monitor1, timeout.duration), timeout.duration) Await.result(gracefulStop(monitor2, timeout.duration), timeout.duration) } it should "handle a clock at a given frequency when needed, and produce MonitorTick per muid/target when a Tick is received" in new Bus { val clocks = TestActorRef(Props(classOf[Clocks], eventBus), "clocks") val frequency1 = 250.milliseconds val frequency2 = 50.milliseconds val frequency3 = 1.second val muid1 = UUID.randomUUID() val muid2 = UUID.randomUUID() val targets = Set[Target](1, "java", All) var messages = Seq[MonitorTick]() val monitor1 = TestActorRef(Props(classOf[MonitorChild], eventBus, muid1, targets), "monitor1") val monitor2 = TestActorRef(Props(classOf[MonitorChild], eventBus, muid2, targets), "monitor2") val watcher = TestProbe() watcher.watch(monitor1) watcher.watch(monitor2) targets.foreach(target => { subscribeMonitorTick(muid1, target)(eventBus)(testActor) subscribeMonitorTick(muid2, target)(eventBus)(testActor) }) EventFilter.info(occurrences = 1, source = monitor1.path.toString).intercept({ monitor1 ! MonitorStart("test", muid1, targets) }) EventFilter.info(occurrences = 1, source = monitor2.path.toString).intercept({ monitor2 ! MonitorStart("test", muid2, targets) }) var filter = EventFilter.custom({ case Info(_, claz, _) if claz == classOf[ClockChild] || claz == classOf[MonitorChild] => true }, occurrences = 2) filter.intercept({ monitor1 ! MonitorFrequency("test", muid1, frequency1) }) messages = receiveWhile(10.seconds, messages = targets.size * ((10.seconds / frequency1) * threshold).toInt) { case msg: MonitorTick => msg } messages.size should equal(targets.size * ((10.seconds / frequency1) * threshold).toInt) messages.map(_.muid).toSet should contain theSameElementsAs Seq(muid1) messages.map(_.target).toSet should contain theSameElementsAs targets targets.foreach(target => unsubscribeMonitorTick(muid1, target)(eventBus)(testActor)) filter = EventFilter.custom({ case Info(_, claz, _) if claz == classOf[ClockChild] || claz == classOf[MonitorChild] => true }, occurrences = 2) filter.intercept({ monitor2 ! MonitorFrequency("test", muid2, frequency2) }) messages = receiveWhile(10.seconds, messages = targets.size * ((10.seconds / frequency2) * threshold).toInt) { case msg: MonitorTick => msg } messages.size should equal(targets.size * ((10.seconds / frequency2) * threshold).toInt) messages.map(_.muid).toSet should contain theSameElementsAs Seq(muid2) messages.map(_.target).toSet should contain theSameElementsAs targets filter = EventFilter.custom({ case Info(_, claz, _) if claz == classOf[ClockChild] || claz == classOf[MonitorChild] => true }, occurrences = 3) filter.intercept({ monitor2 ! MonitorFrequency("test", muid2, frequency3) }) messages = receiveWhile(10.seconds, messages = targets.size * ((10.seconds / frequency3) * threshold).toInt) { case msg: MonitorTick => msg } messages.size should equal(targets.size * ((10.seconds / frequency3) * threshold).toInt) messages.map(_.muid).toSet should contain theSameElementsAs Seq(muid2) messages.map(_.target).toSet should contain theSameElementsAs targets val children = clocks.children.seq children.foreach(child => watcher.watch(child)) monitor1 ! MonitorStop("test", muid1) monitor2 ! MonitorStopAll("test") watcher.receiveN(2 + children.size).asInstanceOf[Seq[Terminated]].map(_.actor) should contain theSameElementsAs Seq(monitor1, monitor2) ++ children Await.result(gracefulStop(clocks, timeout.duration), timeout.duration) Await.result(gracefulStop(monitor1, timeout.duration), timeout.duration) Await.result(gracefulStop(monitor2, timeout.duration), timeout.duration) } it should "aggregate its RawPowerReport into one AggregatePowerReport when all required RawPowerReport are stacked" in new Bus { val muid = UUID.randomUUID() val targets = Set[Target](1, "java", All) val tick1 = new Tick { val topic = "test" val timestamp = System.currentTimeMillis() } val tick2 = new Tick { val topic = "test" val timestamp = System.currentTimeMillis() + 1000 } val tick3 = new Tick { val topic = "test" val timestamp = System.currentTimeMillis() + 2000 } val tick4 = new Tick { val topic = "test" val timestamp = System.currentTimeMillis() + 3000 } val monitor = TestActorRef(Props(classOf[MonitorChild], eventBus, muid, targets), "monitor") val watcher = TestProbe() watcher.watch(monitor) subscribeAggPowerReport(muid)(eventBus)(testActor) EventFilter.info(occurrences = 1, source = monitor.path.toString).intercept({ monitor ! MonitorStart("test", muid, targets) }) EventFilter.info(occurrences = 1, source = monitor.path.toString).intercept({ monitor ! MonitorAggregator("test", muid, MEAN) }) monitor ! RawPowerReport("test", muid, 1, 10.W, "cpu", tick1) monitor ! RawPowerReport("test", muid, 1, 2.W, "disk", tick1) monitor ! RawPowerReport("test", muid, "java", 5.W, "cpu", tick1) monitor ! RawPowerReport("test", muid, "java", 1.W, "disk", tick1) expectNoMsg() monitor ! RawPowerReport("test", muid, 1, 15.W, "cpu", tick2) monitor ! RawPowerReport("test", muid, 1, 6.W, "disk", tick2) var msg = expectMsgClass(classOf[AggregatePowerReport]) msg.size should equal(4) msg.targets should contain theSameElementsAs Seq[Target](1, "java") msg.devices should contain theSameElementsAs Seq("cpu", "disk") msg.ticks should contain theSameElementsAs Seq(tick1) msg.power should equal(MEAN(Seq(10.W, 2.W, 5.W, 1.W))) msg.powerPerDevice should contain theSameElementsAs Map("cpu" -> MEAN(Seq(10.W, 5.W)), "disk" -> MEAN(Seq(2.W, 1.W))) msg.powerPerTarget should contain theSameElementsAs Map(Process(1) -> MEAN(Seq(10.W, 2.W)), Application("java") -> MEAN(Seq(5.W, 1.W))) monitor ! RawPowerReport("test", muid, 1, 12.W, "cpu", tick3) monitor ! RawPowerReport("test", muid, 1, 8.W, "disk", tick3) msg = expectMsgClass(classOf[AggregatePowerReport]) msg.size should equal(2) msg.targets should contain theSameElementsAs Seq[Target](1) msg.devices should contain theSameElementsAs Seq("cpu", "disk") msg.ticks should contain theSameElementsAs Seq(tick2) msg.power should equal(MEAN(Seq(15.W, 6.W))) msg.powerPerDevice should contain theSameElementsAs Map("cpu" -> MEAN(Seq(15.W)), "disk" -> MEAN(Seq(6.W))) msg.powerPerTarget should contain theSameElementsAs Map(Process(1) -> MEAN(Seq(15.W, 6.W))) EventFilter.info(occurrences = 1, source = monitor.path.toString).intercept({ monitor ! MonitorAggregator("test", muid, MAX) }) monitor ! RawPowerReport("test", muid, "java", 3.W, "cpu", tick3) monitor ! RawPowerReport("test", muid, "java", 1.W, "disk", tick3) monitor ! RawPowerReport("test", muid, All, 15.W, "cpu", tick3) monitor ! RawPowerReport("test", muid, All, 10.W, "disk", tick3) monitor ! RawPowerReport("test", muid, 1, 15.W, "cpu", tick4) monitor ! RawPowerReport("test", muid, 1, 4.W, "disk", tick4) msg = expectMsgClass(classOf[AggregatePowerReport]) msg.size should equal(6) msg.targets should contain theSameElementsAs Seq[Target](1, "java", All) msg.devices should contain theSameElementsAs Seq("cpu", "disk") msg.ticks should contain theSameElementsAs Seq(tick3) msg.power should equal(MAX(Seq(12.W, 8.W, 3.W, 1.W, 15.W, 10.W))) msg.powerPerDevice should contain theSameElementsAs Map("cpu" -> MAX(Seq(12.W, 3.W, 15.W)), "disk" -> MAX(Seq(8.W, 1.W, 10.W))) msg.powerPerTarget should contain theSameElementsAs Map(Process(1) -> MAX(Seq(12.W, 8.W)), Application("java") -> MAX(Seq(3.W, 1.W)), All -> MAX(Seq(15.W, 10.W))) Await.result(gracefulStop(monitor, timeout.duration), timeout.duration) } "A Monitors actor" should "handle MonitorChild actors" in new Bus { val muid1 = UUID.randomUUID() val frequency1 = 50.milliseconds val muid2 = UUID.randomUUID() val muid3 = UUID.randomUUID() val clocks = TestActorRef(Props(classOf[Clocks], eventBus), "clocks") val monitors = TestActorRef(Props(classOf[Monitors], eventBus), "monitors") val watcher = TestProbe() subscribeMonitorTick(muid1, 1)(eventBus)(testActor) subscribeMonitorTick(muid1, "java")(eventBus)(testActor) EventFilter.info(occurrences = 1, start = s"monitor is started, muid: $muid1").intercept({ startMonitor(muid1, Set(1, "java"))(eventBus) }) EventFilter.info(occurrences = 1, start = s"monitor is started, muid: $muid2").intercept({ startMonitor(muid2, Set(2, "java", All))(eventBus) }) EventFilter.info(occurrences = 1, start = s"monitor is started, muid: $muid3").intercept({ startMonitor(muid3, Set(All))(eventBus) }) var filter = EventFilter.custom({ case Info(_, claz, _) if claz == classOf[ClockChild] || claz == classOf[MonitorChild] => true }, occurrences = 2) filter.intercept({ setFrequency(muid1, frequency1)(eventBus) }) receiveWhile(10.seconds, messages = (2 * (10.seconds / frequency1) * threshold).toInt) { case msg: MonitorTick => msg }.size should equal(2 * ((10.seconds / frequency1) * threshold).toInt) val clockChildren = clocks.children.seq val monitorChildren = monitors.children.seq clockChildren foreach watcher.watch monitorChildren foreach watcher.watch unsubscribeMonitorTick(muid1, 1)(eventBus)(testActor) unsubscribeMonitorTick(muid1, "java")(eventBus)(testActor) expectNoMsg() unsubscribeAggPowerReport(muid1)(eventBus)(testActor) stopMonitor(muid1)(eventBus) subscribeAggPowerReport(muid2)(eventBus)(testActor) val tick1 = new Tick { val topic = "test" val timestamp = System.currentTimeMillis() } val tick2 = new Tick { val topic = "test" val timestamp = System.currentTimeMillis() + 1000 } publishRawPowerReport(muid2, 2, 1.W, "cpu", tick1)(eventBus) publishRawPowerReport(muid2, "java", 5.W, "cpu", tick1)(eventBus) publishRawPowerReport(muid2, All, 6.W, "cpu", tick1)(eventBus) EventFilter.info(occurrences = 1, message = "aggregator is changed").intercept({ setAggregator(muid2, MEDIAN)(eventBus) }) publishRawPowerReport(muid2, 1, 10.W, "cpu", tick2)(eventBus) val msg = expectMsgClass(classOf[AggregatePowerReport]) msg.size should equal(3) msg.devices should contain theSameElementsAs Seq("cpu") msg.power should equal(MEDIAN(Seq(1.W, 5.W, 6.W))) msg.targets should contain theSameElementsAs Seq[Target](2, "java", All) msg.ticks should contain theSameElementsAs Seq(tick1) stopAllMonitor(eventBus) watcher.receiveN(4).asInstanceOf[Seq[Terminated]].map(_.actor) should contain theSameElementsAs clockChildren ++ monitorChildren watcher.expectNoMsg() Await.result(gracefulStop(clocks, timeout.duration), timeout.duration) Await.result(gracefulStop(monitors, timeout.duration), timeout.duration) } "A Monitor object" should "allow to interact directly with the Monitor supervisor" in new Bus { val monitorO = new Monitor(eventBus) val frequency = 50.milliseconds val clocks = TestActorRef(Props(classOf[Clocks], eventBus), "clocks") val monitors = TestActorRef(Props(classOf[Monitors], eventBus), "monitors") val sensors = TestActorRef(Props(classOf[Sensors], eventBus), "sensors") val formulas = TestActorRef(Props(classOf[Formulas], eventBus), "formulas") val reporters = TestActorRef(Props(classOf[Reporters], eventBus), "reporters") val watcher = TestProbe() val tick1 = new Tick { val topic = "test" val timestamp = System.currentTimeMillis() } val tick2 = new Tick { val topic = "test" val timestamp = System.currentTimeMillis() + 1000 } val tick3 = new Tick { val topic = "test" val timestamp = System.currentTimeMillis() + 2000 } val tick4 = new Tick { val topic = "test" val timestamp = System.currentTimeMillis() + 3000 } val tick5 = new Tick { val topic = "test" val timestamp = System.currentTimeMillis() + 4000 } val reporter = new DisplayMock class DisplayMock extends PowerDisplay { def display(aggregatePowerReport: AggregatePowerReport): Unit = testActor ! aggregatePowerReport.power } EventFilter.info(occurrences = 1, start = s"monitor is started, muid: ${monitorO.muid}").intercept({ startMonitor(monitorO.muid, Set(1, "java"))(eventBus) }) EventFilter.info(occurrences = 2, start = s"sensor is started, class: ${classOf[EmptySensor].getName}").intercept({ startSensor(monitorO.muid, Process(1), classOf[EmptySensor], Seq(eventBus, monitorO.muid, Process(1)))(eventBus) startSensor(monitorO.muid, Application("java"), classOf[EmptySensor], Seq(eventBus, monitorO.muid, Application("java")))(eventBus) }) EventFilter.info(occurrences = 2, start = s"formula is started, class: ${classOf[EmptyFormula].getName}").intercept({ startFormula(monitorO.muid, Process(1), classOf[EmptyFormula], Seq(eventBus, monitorO.muid, Process(1)))(eventBus) startFormula(monitorO.muid, Application("java"), classOf[EmptyFormula], Seq(eventBus, monitorO.muid, Application("java")))(eventBus) }) EventFilter.info(occurrences = 1, message = "aggregator is changed").intercept({ monitorO(MAX) }) EventFilter.info(occurrences = 1, start = s"reporter is started, class: ${reporter.getClass.getName}").intercept({ monitorO.to(reporter) }) val reporterChildren = reporters.children.seq reporterChildren foreach watcher.watch publishRawPowerReport(monitorO.muid, 1, 1.W, "cpu", tick1)(eventBus) publishRawPowerReport(monitorO.muid, "java", 5.W, "cpu", tick1)(eventBus) publishRawPowerReport(monitorO.muid, "java", 10.W, "cpu", tick2)(eventBus) expectMsgClass(classOf[RawPower]) should equal(MAX(Seq(1.W, 5.W))) EventFilter.info(occurrences = 1, start = s"reporter is stopped, class: ${reporter.getClass.getName}").intercept({ monitorO.unto(reporter) }) watcher.receiveN(1).asInstanceOf[Seq[Terminated]].map(_.actor) should contain theSameElementsAs reporterChildren monitorO.to(testActor) publishRawPowerReport(monitorO.muid, 1, 6.W, "cpu", tick2)(eventBus) publishRawPowerReport(monitorO.muid, 1, 5.W, "cpu", tick3)(eventBus) expectMsgClass(classOf[AggregatePowerReport]).power should equal(MAX(Seq(6.W, 10.W))) expectNoMsg() monitorO.unto(testActor) monitorO.to(testActor, subscribeAggPowerReport(monitorO.muid)) publishRawPowerReport(monitorO.muid, "java", 1.W, "cpu", tick3)(eventBus) publishRawPowerReport(monitorO.muid, "java", 4.W, "cpu", tick4)(eventBus) expectMsgClass(classOf[AggregatePowerReport]).power should equal(MAX(Seq(5.W, 1.W))) expectNoMsg() monitorO.unto(testActor, unsubscribeAggPowerReport(monitorO.muid)) publishRawPowerReport(monitorO.muid, "java", 4.W, "cpu", tick5)(eventBus) expectNoMsg() subscribeMonitorTick(monitorO.muid, 1)(eventBus)(testActor) subscribeMonitorTick(monitorO.muid, "java")(eventBus)(testActor) val filter = EventFilter.custom({ case Info(_, claz, _) if claz == classOf[ClockChild] || claz == classOf[MonitorChild] => true }, occurrences = 2) filter.intercept({ monitorO.every(frequency) }) receiveWhile(10.seconds, messages = (2 * (10.seconds / frequency) * threshold).toInt) { case msg: MonitorTick => msg }.size should equal(2 * ((10.seconds / frequency) * threshold).toInt) val clockChildren = clocks.children.seq val monitorChildren = monitors.children.seq val sensorChildren = sensors.children.seq val formulaChildren = formulas.children.seq clockChildren foreach watcher.watch monitorChildren foreach watcher.watch sensorChildren foreach watcher.watch formulaChildren foreach watcher.watch monitorO.cancel() watcher.receiveN(6).asInstanceOf[Seq[Terminated]].map(_.actor) should contain theSameElementsAs clockChildren ++ monitorChildren ++ sensorChildren ++ formulaChildren Await.result(gracefulStop(clocks, timeout.duration), timeout.duration) Await.result(gracefulStop(monitors, timeout.duration), timeout.duration) Await.result(gracefulStop(sensors, timeout.duration), timeout.duration) Await.result(gracefulStop(formulas, timeout.duration), timeout.duration) Await.result(gracefulStop(reporters, timeout.duration), timeout.duration) } }
Spirals-Team/powerapi
powerapi-core/src/test/scala/org/powerapi/core/MonitorSuite.scala
Scala
agpl-3.0
23,926
package play import sbt._ import sbt.Keys._ trait Keys { val jdbc = "com.typesafe.play" %% "play-jdbc" % play.core.PlayVersion.current val anorm = "com.typesafe.play" %% "anorm" % play.core.PlayVersion.current val javaCore = "com.typesafe.play" %% "play-java" % play.core.PlayVersion.current val javaJdbc = "com.typesafe.play" %% "play-java-jdbc" % play.core.PlayVersion.current val javaEbean = "com.typesafe.play" %% "play-java-ebean" % play.core.PlayVersion.current val javaJpa = "com.typesafe.play" %% "play-java-jpa" % play.core.PlayVersion.current def component(id: String) = "com.typesafe.play" %% id % play.core.PlayVersion.current val filters = "com.typesafe.play" %% "filters-helpers" % play.core.PlayVersion.current val cache = "com.typesafe.play" %% "play-cache" % play.core.PlayVersion.current val playVersion = SettingKey[String]("play-version") val playDefaultPort = SettingKey[Int]("play-default-port") val requireJs = SettingKey[Seq[String]]("play-require-js") val requireJsFolder = SettingKey[String]("play-require-js-folder") val requireJsShim = SettingKey[String]("play-require-js-shim") val requireNativePath = SettingKey[Option[String]]("play-require-native-path") /** Our means of hooking the run task with additional behavior. */ val playRunHooks = TaskKey[Seq[play.PlayRunHook]]("play-run-hooks") @deprecated("2.2", "Please use playRunHooks setting instead.") val playOnStarted = SettingKey[Seq[(java.net.InetSocketAddress) => Unit]]("play-onStarted") @deprecated("2.2", "Please use playRunHooks setting instead.") val playOnStopped = SettingKey[Seq[() => Unit]]("play-onStopped") /** A hook to configure how play blocks on user input while running. */ val playInteractionMode = SettingKey[play.PlayInteractionMode]("play-interaction-mode") val playAssetsDirectories = SettingKey[Seq[File]]("play-assets-directories") val playExternalAssets = SettingKey[Seq[(File, File => PathFinder, String)]]("play-external-assets") val confDirectory = SettingKey[File]("play-conf") val templatesImport = SettingKey[Seq[String]]("play-templates-imports") val routesImport = SettingKey[Seq[String]]("play-routes-imports") val generateReverseRouter = SettingKey[Boolean]("play-generate-reverse-router", "Whether the reverse router should be generated. Setting to false may reduce compile times if it's not needed.") val namespaceReverseRouter = SettingKey[Boolean]("play-namespace-reverse-router", "Whether the reverse router should be namespaced. Useful if you have many routers that use the same actions.") val ebeanEnabled = SettingKey[Boolean]("play-ebean-enabled") val templatesTypes = SettingKey[Map[String, String]]("play-templates-formats") val closureCompilerOptions = SettingKey[Seq[String]]("play-closure-compiler-options") val lessOptions = SettingKey[Seq[String]]("play-less-options") val coffeescriptOptions = SettingKey[Seq[String]]("play-coffeescript-options") val lessEntryPoints = SettingKey[PathFinder]("play-less-entry-points") val coffeescriptEntryPoints = SettingKey[PathFinder]("play-coffeescript-entry-points") val javascriptEntryPoints = SettingKey[PathFinder]("play-javascript-entry-points") val playPlugin = SettingKey[Boolean]("play-plugin") val devSettings = SettingKey[Seq[(String, String)]]("play-dev-settings") val scalaIdePlay2Prefs = TaskKey[Unit]("scala-ide-play2-prefs") // Constants that may be useful elsewhere val defaultJavaTemplatesImport = Seq( "models._", "controllers._", "java.lang._", "java.util._", "scala.collection.JavaConversions._", "scala.collection.JavaConverters._", "play.api.i18n._", "play.core.j.PlayMagicForJava._", "play.mvc._", "play.data._", "play.api.data.Field", "play.mvc.Http.Context.Implicit._", "views.%format%._") val defaultScalaTemplatesImport = Seq( "models._", "controllers._", "play.api.i18n._", "play.api.mvc._", "play.api.data._", "views.%format%._") val defaultTemplatesImport = Seq("play.api.templates._", "play.api.templates.PlayMagic._") } object Keys extends Keys trait PlayInternalKeys { type ClassLoaderCreator = (String, Array[URL], ClassLoader) => ClassLoader val playDependencyClasspath = TaskKey[Classpath]("play-dependency-classpath") val playReloaderClasspath = TaskKey[Classpath]("play-reloader-classpath") val playCommonClassloader = TaskKey[ClassLoader]("play-common-classloader") val playDependencyClassLoader = TaskKey[ClassLoaderCreator]("play-dependency-classloader") val playReloaderClassLoader = TaskKey[ClassLoaderCreator]("play-reloader-classloader") val playReload = TaskKey[sbt.inc.Analysis]("play-reload") val buildRequire = TaskKey[Seq[(File, File)]]("play-build-require-assets") val playCompileEverything = TaskKey[Seq[sbt.inc.Analysis]]("play-compile-everything") }
michaelahlers/team-awesome-wedding
vendor/play-2.2.1/framework/src/sbt-plugin/src/main/scala/PlayKeys.scala
Scala
mit
4,925
package com.github.kmizu.mregex import java.io.{PrintWriter, StringWriter} class Dfa(val table: Array[Array[Int]], val start: Int, val finals: Set[Int]) { import Nfa.Compiler.NumberOfAlphabets def and(rhs: Dfa): Dfa = { val newTable = Array.ofDim[Int](table.length * rhs.table.length, NumberOfAlphabets) val newStart = rhs.table.length * start + rhs.start var newFinals = Set[Int]() for (a <- finals) { for (b <- rhs.finals) { newFinals += (rhs.table.length * a + b) } } var a = 0 while (a < table.length) { var b = 0 while (b < rhs.table.length) { var input: Int = 0 while (input < NumberOfAlphabets) { val nextA = table(a)(input) val nextB = rhs.table(b)(input) if (nextA == -1 || nextB == -1) { newTable(rhs.table.length * a + b)(input) = -1 } else { newTable(rhs.table.length * a + b)(input) = rhs.table.length * nextA + nextB } input += 1 } b += 1 } a += 1 } new Dfa(newTable, newStart, newFinals) } def matches(input: String): Boolean = { var current = start var cursor = 0 while(cursor < input.length && (current != -1 || !finals.contains(current))) { val ch = input.charAt(cursor) current = table(current)(ch) cursor += 1 } finals.contains(current) } def disjoint(dfa: Dfa): Boolean = this.and(dfa).isEmpty def isEmpty: Boolean = { val reachable = mark(Set(), start) reachable.filter{finals contains _}.isEmpty } override def toString: String = { var maxDigit: Int = String.valueOf(table.length).length if (maxDigit % 2 == 0) maxDigit += 1 val ASCII_PRINTABLE_START = 32 val ASCII_PRINTABLE_FINAL = 126 val buff = new StringWriter val w = new PrintWriter(buff) w.printf("start: %d%n", new Integer(start)) w.printf("final: ") for (f <- finals) { w.printf("%0" + maxDigit + "d ", new Integer(f)) } w.println() for(i <- 0 until table.length) { w.printf("%0" + maxDigit + "d: ", new Integer(i)) for(j <- ASCII_PRINTABLE_START to ASCII_PRINTABLE_FINAL) { if (table(i)(j) != -1) { w.printf("%c -> %0" + maxDigit + "d ", j.toChar:Character, new Integer(table(i)(j))) w.flush() } w.flush() } w.println() } w.flush() new String(buff.getBuffer) } private def mark(reachable: Set[Int], stateNum: Int): Set[Int] = { var result = reachable if (reachable.contains(stateNum)) return result result += stateNum var input = 0 while (input < NumberOfAlphabets) { val next = table(stateNum)(input) if (next != -1) result ++= mark(reachable, next) input += 1 } result } private def spacing(w: PrintWriter, n: Int): Unit = { w.print(" " * n) } }
kmizu/minimal_regex_matcher
src/main/scala/com/github/kmizu/mregex/Dfa.scala
Scala
mit
2,897
/* Copyright 2012 Twitter, Inc. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ package com.twitter.algebird import org.scalacheck.Arbitrary import org.scalacheck.Arbitrary.arbitrary import org.scalacheck.Properties import org.scalacheck.Prop.forAll import org.scalacheck.Gen.choose object SummingIteratorTest extends Properties("SummingIterator") { def sumEquiv[V:Semigroup:Equiv](it0: Iterator[V], it1: Iterator[V]): Boolean = StatefulSummerLaws.zeroEquiv(Semigroup.sumOption(it0), Semigroup.sumOption(it1)) case class Capacity(c: Int) implicit val capArb = Arbitrary { for(c <- choose(0, 10240)) yield Capacity(c) } implicit def mapEquiv[K,V:Monoid:Equiv]: Equiv[Map[K,V]] = Equiv.fromFunction { (l, r) => val zl = MapAlgebra.removeZeros(l) val zr = MapAlgebra.removeZeros(r) zl.size == zr.size && { zl.forall { case (k,v) => zr.get(k).map { rv => Equiv[V].equiv(rv, v) }.getOrElse(false) } } } property("With Maps is preserved[(Short,Int)]") = forAll { (cap: Capacity, items: List[(Short, Int)]) => val mitems = items.map { Map(_) } val qit = SummingIterator[Map[Short, Int]](SummingQueue[Map[Short,Int]](cap.c), mitems.iterator) val qitc = SummingIterator[Map[Short, Int]](SummingCache[Short,Int](cap.c), mitems.iterator) sumEquiv(mitems.iterator, qit) && sumEquiv(mitems.iterator, qitc) } property("With Maps is preserved[(Short,String)]") = forAll { (cap: Capacity, items: List[(Short, String)]) => val mitems = items.map { Map(_) } val qit = SummingIterator(SummingQueue[Map[Short,String]](cap.c), mitems.iterator) val qitc = SummingIterator(SummingCache[Short,String](cap.c), mitems.iterator) sumEquiv(mitems.iterator, qit) && sumEquiv(mitems.iterator, qitc) } }
snoble/algebird
algebird-test/src/test/scala/com/twitter/algebird/SummingIteratorTest.scala
Scala
apache-2.0
2,245
package com.dominikgruber.fpinscala.chapter03 import org.scalatest._ class Exercise20Spec extends FlatSpec with Matchers { "flatMap" should "duplicate elements" in { val l = List(1, 2, 3) val f = (i: Int) => List(i, i) List.flatMap(l)(f) should be (List(1, 1, 2, 2, 3, 3)) } }
TheDom/functional-programming-in-scala
src/test/scala/com/dominikgruber/fpinscala/chapter03/Exercise20Spec.scala
Scala
mit
295
package rtmp.protocol import akka.util.ByteString /** */ abstract class BaseProtocol { def handshake(input:Array[Byte]):Response }
vimvim/AkkaTest
src/main/scala/rtmp/protocol/BaseProtocol.scala
Scala
agpl-3.0
136
/* * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, * software distributed under the License is distributed on an * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY * KIND, either express or implied. See the License for the * specific language governing permissions and limitations * under the License. */ package org.apache.samza.metrics import org.apache.samza.clustermanager.SamzaApplicationState import org.apache.samza.config.{ClusterManagerConfig, Config, MetricsConfig} import org.apache.samza.util.Logging /** * Responsible for wiring up Samza's metrics. Given that Samza has a metric * registry, we might as well use it. This class takes Samza's application * master state, and converts it to metrics. */ class ContainerProcessManagerMetrics(val config: Config, val state: SamzaApplicationState, val registry: ReadableMetricsRegistry) extends MetricsHelper with Logging { val clusterManagerConfig = new ClusterManagerConfig(config) val mRunningContainers = newGauge("running-containers", () => state.runningProcessors.size) val mNeededContainers = newGauge("needed-containers", () => state.neededProcessors.get()) val mCompletedContainers = newGauge("completed-containers", () => state.completedProcessors.get()) val mFailedContainers = newGauge("failed-containers", () => state.failedContainers.get()) val mReleasedContainers = newGauge("released-containers", () => state.releasedContainers.get()) val mContainers = newGauge("container-count", () => state.processorCount.get()) val mRedundantNotifications = newGauge("redundant-notifications", () => state.redundantNotifications.get()) val mJobHealthy = newGauge("job-healthy", () => if (state.jobHealthy.get()) 1 else 0) val mPreferredHostRequests = newGauge("preferred-host-requests", () => state.preferredHostRequests.get()) val mAnyHostRequests = newGauge("any-host-requests", () => state.anyHostRequests.get()) val mExpiredPreferredHostRequests = newGauge("expired-preferred-host-requests", () => state.expiredPreferredHostRequests.get()) val mExpiredAnyHostRequests = newGauge("expired-any-host-requests", () => state.expiredAnyHostRequests.get()) val mHostAffinityMatchPct = newGauge("host-affinity-match-pct", () => { val numPreferredHostRequests = state.preferredHostRequests.get() val numExpiredPreferredHostRequests = state.expiredPreferredHostRequests.get() if (numPreferredHostRequests != 0) { 100.00 * (numPreferredHostRequests - numExpiredPreferredHostRequests) / numPreferredHostRequests } else { 0L } }) val mFailedStandbyAllocations = newGauge("failed-standby-allocations", () => state.failedStandbyAllocations.get()) val mFailoversToAnyHost = newGauge("failovers-to-any-host", () => state.failoversToAnyHost.get()) val mFailoversToStandby = newGauge("failovers-to-standby", () => state.failoversToStandby.get()) val mFailedContainerPlacementActions = newGauge("failed-container-placements-actions", () => state.failedContainerPlacementActions.get()) val mContainerMemoryMb = newGauge("container-memory-mb", () => clusterManagerConfig.getContainerMemoryMb) val mContainerCpuCores = newGauge("container-cpu-cores", () => clusterManagerConfig.getNumCores) }
lhaiesp/samza
samza-core/src/main/scala/org/apache/samza/metrics/ContainerProcessManagerMetrics.scala
Scala
apache-2.0
3,730
package com.twitter.util import java.util.Locale import org.junit.runner.RunWith import org.scalatest.WordSpec import org.scalatest.junit.JUnitRunner @RunWith(classOf[JUnitRunner]) class TwitterDateFormatTest extends WordSpec { "TwitterDateFormat" should { "disallow Y without w" in { intercept[IllegalArgumentException] { TwitterDateFormat("YYYYMMDD") } intercept[IllegalArgumentException] { TwitterDateFormat("YMD", Locale.GERMAN) } } "allow Y with w" in { TwitterDateFormat("YYYYww") } "allow Y when quoted" in { TwitterDateFormat("yyyy 'Year'") } "stripSingleQuoted" in { import TwitterDateFormat._ assert(stripSingleQuoted("") == "") assert(stripSingleQuoted("YYYY") == "YYYY") assert(stripSingleQuoted("''") == "") assert(stripSingleQuoted("'abc'") == "") assert(stripSingleQuoted("x'abc'") == "x") assert(stripSingleQuoted("'abc'x") == "x") assert(stripSingleQuoted("'abc'def'ghi'") == "def") intercept[IllegalArgumentException] { stripSingleQuoted("'abc") } intercept[IllegalArgumentException] { stripSingleQuoted("'abc'def'ghi") } } } }
BuoyantIO/twitter-util
util-core/src/test/scala/com/twitter/util/TwitterDateFormatTest.scala
Scala
apache-2.0
1,229
package io.skysail.core.app.resources import akka.pattern.ask import io.skysail.core.akka.RequestEvent import io.skysail.core.app.SkysailApplication import io.skysail.core.app.menus.MenuItem import io.skysail.core.resources.AsyncListResource import io.skysail.core.server.actors.ApplicationsActor import scala.concurrent.ExecutionContext.Implicits.global import scala.util.{Failure, Success} class MenusResource extends AsyncListResource[MenuItem] { def get(requestEvent: RequestEvent): Unit = { val appsActor = SkysailApplication.getApplicationsActor(this.actorContext.system) (appsActor ? ApplicationsActor.GetMenus()) .mapTo[List[MenuItem]] .onComplete { case Success(menuItems) => requestEvent.controllerActor ! menuItems case Failure(f) => println(s"failure ${f}") } } }
evandor/skysail-core
skysail.core/src/io/skysail/core/app/resources/MenusResource.scala
Scala
apache-2.0
837
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.spark.sql.kafka010 import java.util.Locale import org.apache.kafka.clients.producer.ProducerConfig import org.apache.kafka.common.serialization.ByteArraySerializer import org.scalatest.time.SpanSugar._ import org.apache.spark.sql.{AnalysisException, DataFrame, Row} import org.apache.spark.sql.catalyst.expressions.{AttributeReference, SpecificInternalRow, UnsafeProjection} import org.apache.spark.sql.streaming._ import org.apache.spark.sql.types.{BinaryType, DataType} import org.apache.spark.util.Utils /** * This is a temporary port of KafkaSinkSuite, since we do not yet have a V2 memory stream. * Once we have one, this will be changed to a specialization of KafkaSinkSuite and we won't have * to duplicate all the code. */ class KafkaContinuousSinkSuite extends KafkaContinuousTest { import testImplicits._ override val streamingTimeout = 30.seconds override val brokerProps = Map("auto.create.topics.enable" -> "false") override def afterAll(): Unit = { if (testUtils != null) { testUtils.teardown() testUtils = null } super.afterAll() } test("streaming - write to kafka with topic field") { val inputTopic = newTopic() testUtils.createTopic(inputTopic, partitions = 1) val input = spark .readStream .format("kafka") .option("kafka.bootstrap.servers", testUtils.brokerAddress) .option("subscribe", inputTopic) .option("startingOffsets", "earliest") .load() val topic = newTopic() testUtils.createTopic(topic) val writer = createKafkaWriter( input.toDF(), withTopic = None, withOutputMode = Some(OutputMode.Append))( withSelectExpr = s"'$topic' as topic", "value") val reader = createKafkaReader(topic) .selectExpr("CAST(key as STRING) key", "CAST(value as STRING) value") .selectExpr("CAST(key as INT) key", "CAST(value as INT) value") .as[(Option[Int], Int)] .map(_._2) try { testUtils.sendMessages(inputTopic, Array("1", "2", "3", "4", "5")) eventually(timeout(streamingTimeout)) { checkDatasetUnorderly(reader, 1, 2, 3, 4, 5) } testUtils.sendMessages(inputTopic, Array("6", "7", "8", "9", "10")) eventually(timeout(streamingTimeout)) { checkDatasetUnorderly(reader, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10) } } finally { writer.stop() } } test("streaming - write w/o topic field, with topic option") { val inputTopic = newTopic() testUtils.createTopic(inputTopic, partitions = 1) val input = spark .readStream .format("kafka") .option("kafka.bootstrap.servers", testUtils.brokerAddress) .option("subscribe", inputTopic) .option("startingOffsets", "earliest") .load() val topic = newTopic() testUtils.createTopic(topic) val writer = createKafkaWriter( input.toDF(), withTopic = Some(topic), withOutputMode = Some(OutputMode.Append()))() val reader = createKafkaReader(topic) .selectExpr("CAST(key as STRING) key", "CAST(value as STRING) value") .selectExpr("CAST(key as INT) key", "CAST(value as INT) value") .as[(Option[Int], Int)] .map(_._2) try { testUtils.sendMessages(inputTopic, Array("1", "2", "3", "4", "5")) eventually(timeout(streamingTimeout)) { checkDatasetUnorderly(reader, 1, 2, 3, 4, 5) } testUtils.sendMessages(inputTopic, Array("6", "7", "8", "9", "10")) eventually(timeout(streamingTimeout)) { checkDatasetUnorderly(reader, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10) } } finally { writer.stop() } } test("streaming - topic field and topic option") { /* The purpose of this test is to ensure that the topic option * overrides the topic field. We begin by writing some data that * includes a topic field and value (e.g., 'foo') along with a topic * option. Then when we read from the topic specified in the option * we should see the data i.e., the data was written to the topic * option, and not to the topic in the data e.g., foo */ val inputTopic = newTopic() testUtils.createTopic(inputTopic, partitions = 1) val input = spark .readStream .format("kafka") .option("kafka.bootstrap.servers", testUtils.brokerAddress) .option("subscribe", inputTopic) .option("startingOffsets", "earliest") .load() val topic = newTopic() testUtils.createTopic(topic) val writer = createKafkaWriter( input.toDF(), withTopic = Some(topic), withOutputMode = Some(OutputMode.Append()))( withSelectExpr = "'foo' as topic", "CAST(value as STRING) value") val reader = createKafkaReader(topic) .selectExpr("CAST(key AS STRING)", "CAST(value AS STRING)") .selectExpr("CAST(key AS INT)", "CAST(value AS INT)") .as[(Option[Int], Int)] .map(_._2) try { testUtils.sendMessages(inputTopic, Array("1", "2", "3", "4", "5")) eventually(timeout(streamingTimeout)) { checkDatasetUnorderly(reader, 1, 2, 3, 4, 5) } testUtils.sendMessages(inputTopic, Array("6", "7", "8", "9", "10")) eventually(timeout(streamingTimeout)) { checkDatasetUnorderly(reader, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10) } } finally { writer.stop() } } test("null topic attribute") { val inputTopic = newTopic() testUtils.createTopic(inputTopic, partitions = 1) val input = spark .readStream .format("kafka") .option("kafka.bootstrap.servers", testUtils.brokerAddress) .option("subscribe", inputTopic) .option("startingOffsets", "earliest") .load() val topic = newTopic() testUtils.createTopic(topic) /* No topic field or topic option */ var writer: StreamingQuery = null var ex: Exception = null try { writer = createKafkaWriter(input.toDF())( withSelectExpr = "CAST(null as STRING) as topic", "value" ) testUtils.sendMessages(inputTopic, Array("1", "2", "3", "4", "5")) eventually(timeout(streamingTimeout)) { assert(writer.exception.isDefined) ex = writer.exception.get } } finally { writer.stop() } assert(ex.getCause.getCause.getMessage .toLowerCase(Locale.ROOT) .contains("null topic present in the data.")) } test("streaming - write data with bad schema") { val inputTopic = newTopic() testUtils.createTopic(inputTopic, partitions = 1) val input = spark .readStream .format("kafka") .option("kafka.bootstrap.servers", testUtils.brokerAddress) .option("subscribe", inputTopic) .option("startingOffsets", "earliest") .load() val topic = newTopic() testUtils.createTopic(topic) val ex = intercept[AnalysisException] { /* No topic field or topic option */ createKafkaWriter(input.toDF())( withSelectExpr = "value as key", "value" ) } assert(ex.getMessage .toLowerCase(Locale.ROOT) .contains("topic option required when no 'topic' attribute is present")) val ex2 = intercept[AnalysisException] { /* No value field */ createKafkaWriter(input.toDF())( withSelectExpr = s"'$topic' as topic", "value as key" ) } assert(ex2.getMessage.toLowerCase(Locale.ROOT).contains( "required attribute 'value' not found")) } test("streaming - write data with valid schema but wrong types") { val inputTopic = newTopic() testUtils.createTopic(inputTopic, partitions = 1) val input = spark .readStream .format("kafka") .option("kafka.bootstrap.servers", testUtils.brokerAddress) .option("subscribe", inputTopic) .option("startingOffsets", "earliest") .load() .selectExpr("CAST(value as STRING) value") val topic = newTopic() testUtils.createTopic(topic) val ex = intercept[AnalysisException] { /* topic field wrong type */ createKafkaWriter(input.toDF())( withSelectExpr = s"CAST('1' as INT) as topic", "value" ) } assert(ex.getMessage.toLowerCase(Locale.ROOT).contains("topic type must be a string")) val ex2 = intercept[AnalysisException] { /* value field wrong type */ createKafkaWriter(input.toDF())( withSelectExpr = s"'$topic' as topic", "CAST(value as INT) as value" ) } assert(ex2.getMessage.toLowerCase(Locale.ROOT).contains( "value attribute type must be a string or binary")) val ex3 = intercept[AnalysisException] { /* key field wrong type */ createKafkaWriter(input.toDF())( withSelectExpr = s"'$topic' as topic", "CAST(value as INT) as key", "value" ) } assert(ex3.getMessage.toLowerCase(Locale.ROOT).contains( "key attribute type must be a string or binary")) } test("streaming - write to non-existing topic") { val inputTopic = newTopic() testUtils.createTopic(inputTopic, partitions = 1) val input = spark .readStream .format("kafka") .option("kafka.bootstrap.servers", testUtils.brokerAddress) .option("subscribe", inputTopic) .option("startingOffsets", "earliest") .load() val topic = newTopic() var writer: StreamingQuery = null var ex: Exception = null try { ex = intercept[StreamingQueryException] { writer = createKafkaWriter(input.toDF(), withTopic = Some(topic))() testUtils.sendMessages(inputTopic, Array("1", "2", "3", "4", "5")) eventually(timeout(streamingTimeout)) { assert(writer.exception.isDefined) } throw writer.exception.get } } finally { writer.stop() } assert(ex.getCause.getCause.getMessage.toLowerCase(Locale.ROOT).contains("job aborted")) } test("streaming - exception on config serializer") { val inputTopic = newTopic() testUtils.createTopic(inputTopic, partitions = 1) testUtils.sendMessages(inputTopic, Array("0")) val input = spark .readStream .format("kafka") .option("kafka.bootstrap.servers", testUtils.brokerAddress) .option("subscribe", inputTopic) .load() val ex = intercept[IllegalArgumentException] { createKafkaWriter( input.toDF(), withOptions = Map("kafka.key.serializer" -> "foo"))() } assert(ex.getMessage.toLowerCase(Locale.ROOT).contains( "kafka option 'key.serializer' is not supported")) val ex2 = intercept[IllegalArgumentException] { createKafkaWriter( input.toDF(), withOptions = Map("kafka.value.serializer" -> "foo"))() } assert(ex2.getMessage.toLowerCase(Locale.ROOT).contains( "kafka option 'value.serializer' is not supported")) } test("generic - write big data with small producer buffer") { /* This test ensures that we understand the semantics of Kafka when * is comes to blocking on a call to send when the send buffer is full. * This test will configure the smallest possible producer buffer and * indicate that we should block when it is full. Thus, no exception should * be thrown in the case of a full buffer. */ val topic = newTopic() testUtils.createTopic(topic, 1) val options = new java.util.HashMap[String, Object] options.put("bootstrap.servers", testUtils.brokerAddress) options.put("buffer.memory", "16384") // min buffer size options.put("block.on.buffer.full", "true") options.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, classOf[ByteArraySerializer].getName) options.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, classOf[ByteArraySerializer].getName) val inputSchema = Seq(AttributeReference("value", BinaryType)()) val data = new Array[Byte](15000) // large value val writeTask = new KafkaStreamDataWriter(Some(topic), options, inputSchema) try { val fieldTypes: Array[DataType] = Array(BinaryType) val converter = UnsafeProjection.create(fieldTypes) val row = new SpecificInternalRow(fieldTypes) row.update(0, data) val iter = Seq.fill(1000)(converter.apply(row)).iterator iter.foreach(writeTask.write(_)) writeTask.commit() } finally { writeTask.close() } } private def createKafkaReader(topic: String): DataFrame = { spark.read .format("kafka") .option("kafka.bootstrap.servers", testUtils.brokerAddress) .option("startingOffsets", "earliest") .option("endingOffsets", "latest") .option("subscribe", topic) .load() } private def createKafkaWriter( input: DataFrame, withTopic: Option[String] = None, withOutputMode: Option[OutputMode] = None, withOptions: Map[String, String] = Map[String, String]()) (withSelectExpr: String*): StreamingQuery = { var stream: DataStreamWriter[Row] = null val checkpointDir = Utils.createTempDir() var df = input.toDF() if (withSelectExpr.length > 0) { df = df.selectExpr(withSelectExpr: _*) } stream = df.writeStream .format("kafka") .option("checkpointLocation", checkpointDir.getCanonicalPath) .option("kafka.bootstrap.servers", testUtils.brokerAddress) // We need to reduce blocking time to efficiently test non-existent partition behavior. .option("kafka.max.block.ms", "1000") .trigger(Trigger.Continuous(1000)) .queryName("kafkaStream") withTopic.foreach(stream.option("topic", _)) withOutputMode.foreach(stream.outputMode(_)) withOptions.foreach(opt => stream.option(opt._1, opt._2)) stream.start() } }
aosagie/spark
external/kafka-0-10-sql/src/test/scala/org/apache/spark/sql/kafka010/KafkaContinuousSinkSuite.scala
Scala
apache-2.0
14,435
/* * This file is part of the "silex" library of helpers for Apache Spark. * * Copyright (c) 2015 Red Hat, Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package com.redhat.et.silex.util import org.scalatest._ class RegexImplicitsSpec extends FlatSpec with Matchers { import OptionalArgProperties._ it should "use the r-interpolator to generate a regex" in { import RegexImplicits._ val matches = "123::456" match { case r"([0-9]+)$first::([0-9]+)$second" => (first, second) case _ => ("", "") } assert(matches == ("123", "456")) } }
erikerlandson/silex
src/test/scala/com/redhat/et/silex/util/regexImplicits.scala
Scala
apache-2.0
1,106
/* * Copyright 2012-2016 Netflix, Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package com.netflix.edda.web import org.scalatest.FunSuite class FieldSelectorParserTest extends FunSuite { test("ParseSingleKey") { val expr = ":(a)" expectResult(KeySelectExpr(Map("a" -> FixedExpr(matches = true)))) { FieldSelectorParser.parse(expr) } } test("ParseManyKeys") { val expr = ":(a,b,c)" expectResult(KeySelectExpr(Map( "a" -> FixedExpr(matches = true), "b" -> FixedExpr(matches = true), "c" -> FixedExpr(matches = true) ))) { FieldSelectorParser.parse(expr) } } test("ParseFlatten") { val expr = "::(a,b,c)" expectResult(FlattenExpr(KeySelectExpr(Map( "a" -> FixedExpr(matches = true), "b" -> FixedExpr(matches = true), "c" -> FixedExpr(matches = true) )))) { FieldSelectorParser.parse(expr) } } test("ParseSubExpr") { val expr = ":(a,b:(d,e),c::(f,g,h))" expectResult(KeySelectExpr(Map( "a" -> FixedExpr(matches = true), "b" -> KeySelectExpr(Map( "d" -> FixedExpr(matches = true), "e" -> FixedExpr(matches = true) )), "c" -> FlattenExpr(KeySelectExpr(Map( "f" -> FixedExpr(matches = true), "g" -> FixedExpr(matches = true), "h" -> FixedExpr(matches = true) ))) ))) { FieldSelectorParser.parse(expr) } } test("ParseEqualExpr") { val expr = ":(a=42)" expectResult(KeySelectExpr(Map("a" -> EqualExpr(42)))) { FieldSelectorParser.parse(expr) } } test("ParseNotEqualExpr") { val expr = ":(a!=42)" expectResult(KeySelectExpr(Map("a" -> NotEqualExpr(42)))) { FieldSelectorParser.parse(expr) } } test("ParseRegexExpr") { val expr = ":(a~/^.*Id$/)" expectResult(KeySelectExpr(Map("a" -> RegexExpr("^.*Id$", invert = false)))) { FieldSelectorParser.parse(expr) } } test("ParseInvRegexExpr") { val expr = ":(a!~/^.*Id$/)" expectResult(KeySelectExpr(Map("a" -> RegexExpr("^.*Id$", invert = true)))) { FieldSelectorParser.parse(expr) } } test("ParseStringLiteral") { val expr = ":(a=\\"42\\")" expectResult(KeySelectExpr(Map("a" -> EqualExpr("42")))) { FieldSelectorParser.parse(expr) } } }
wstrucke/edda
src/test/scala/com/netflix/edda/web/FieldSelectorParserTest.scala
Scala
apache-2.0
2,821
val p: Seq[Double] = Seq() p.foldLeft("") { (a, b) /*(B, Double) inferred*/ => /*start*/(a, b)/*end*/ 0d } //(String, Double)
ilinum/intellij-scala
testdata/typeInference/bugs3/SCL2412.scala
Scala
apache-2.0
135
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.spark.carbondata.restructure.vectorreader import java.math.BigDecimal import org.apache.spark.sql.Row import org.apache.spark.sql.common.util.Spark2QueryTest import org.scalatest.BeforeAndAfterAll import org.apache.carbondata.spark.exception.ProcessMetaDataException class ChangeDataTypeTestCases extends Spark2QueryTest with BeforeAndAfterAll { override def beforeAll { sql("DROP TABLE IF EXISTS changedatatypetest") sql("DROP TABLE IF EXISTS hivetable") } test("test change datatype on existing column and load data, insert into hive table") { def test_change_column_load_insert() = { beforeAll sql( "CREATE TABLE changedatatypetest(intField INT,stringField STRING,charField STRING," + "timestampField TIMESTAMP,decimalField DECIMAL(6,2)) STORED BY 'carbondata'") sql(s"LOAD DATA LOCAL INPATH '$resourcesPath/restructure/data1.csv' INTO TABLE " + s"changedatatypetest OPTIONS('FILEHEADER'='intField,stringField,charField,timestampField," + s"decimalField')") sql("ALTER TABLE changedatatypetest CHANGE intField intfield BIGINT") sql( "CREATE TABLE hivetable(intField BIGINT,stringField STRING,charField STRING,timestampField " + "TIMESTAMP,decimalField DECIMAL(6,2)) STORED AS PARQUET") sql("INSERT INTO TABLE hivetable SELECT * FROM changedatatypetest") afterAll } sqlContext.setConf("carbon.enable.vector.reader", "true") test_change_column_load_insert() sqlContext.setConf("carbon.enable.vector.reader", "false") test_change_column_load_insert() } test("test datatype change and filter") { def test_change_datatype_and_filter() = { beforeAll sql( "CREATE TABLE changedatatypetest(intField INT,stringField STRING,charField STRING," + "timestampField TIMESTAMP,decimalField DECIMAL(6,2)) STORED BY 'carbondata'") sql(s"LOAD DATA LOCAL INPATH '$resourcesPath/restructure/data1.csv' INTO TABLE " + s"changedatatypetest OPTIONS('FILEHEADER'='intField,stringField,charField,timestampField," + s"decimalField')") sql("ALTER TABLE changedatatypetest CHANGE intField intfield BIGINT") sql(s"LOAD DATA LOCAL INPATH '$resourcesPath/restructure/data1.csv' INTO TABLE " + s"changedatatypetest OPTIONS('FILEHEADER'='intField,stringField,charField,timestampField," + s"decimalField')") checkAnswer(sql("SELECT charField FROM changedatatypetest WHERE intField > 99"), Seq(Row("abc"), Row("abc"))) checkAnswer(sql("SELECT charField FROM changedatatypetest WHERE intField < 99"), Seq()) checkAnswer(sql("SELECT charField FROM changedatatypetest WHERE intField = 100"), Seq(Row("abc"), Row("abc"))) afterAll } sqlContext.setConf("carbon.enable.vector.reader", "true") test_change_datatype_and_filter sqlContext.setConf("carbon.enable.vector.reader", "false") test_change_datatype_and_filter } test("test change int datatype and load data") { def test_change_int_and_load() = { beforeAll sql( "CREATE TABLE changedatatypetest(intField INT,stringField STRING,charField STRING," + "timestampField TIMESTAMP,decimalField DECIMAL(6,2)) STORED BY 'carbondata'") sql(s"LOAD DATA LOCAL INPATH '$resourcesPath/restructure/data1.csv' INTO TABLE " + s"changedatatypetest OPTIONS('FILEHEADER'='intField,stringField,charField,timestampField," + s"decimalField')") sql("ALTER TABLE changedatatypetest CHANGE intField intfield BIGINT") sql(s"LOAD DATA LOCAL INPATH '$resourcesPath/restructure/data1.csv' INTO TABLE " + s"changedatatypetest OPTIONS('FILEHEADER'='intField,stringField,charField,timestampField," + s"decimalField')") checkAnswer(sql("SELECT SUM(intField) FROM changedatatypetest"), Row(200)) afterAll } sqlContext.setConf("carbon.enable.vector.reader", "true") test_change_int_and_load() sqlContext.setConf("carbon.enable.vector.reader", "false") test_change_int_and_load() } test("test change decimal datatype and compaction") { def test_change_decimal_and_compaction() = { beforeAll sql( "CREATE TABLE changedatatypetest(intField INT,stringField STRING,charField STRING," + "timestampField TIMESTAMP,decimalField DECIMAL(6,2)) STORED BY 'carbondata'") sql(s"LOAD DATA LOCAL INPATH '$resourcesPath/restructure/data1.csv' INTO TABLE " + s"changedatatypetest OPTIONS('FILEHEADER'='intField,stringField,charField,timestampField," + s"decimalField')") sql("ALTER TABLE changedatatypetest CHANGE decimalField decimalField DECIMAL(9,5)") sql(s"LOAD DATA LOCAL INPATH '$resourcesPath/restructure/data1.csv' INTO TABLE " + s"changedatatypetest OPTIONS('FILEHEADER'='intField,stringField,charField,timestampField," + s"decimalField')") checkAnswer(sql("SELECT decimalField FROM changedatatypetest"), Seq(Row(new BigDecimal("21.23").setScale(5)), Row(new BigDecimal("21.23").setScale(5)))) sql("ALTER TABLE changedatatypetest COMPACT 'major'") checkExistence(sql("SHOW SEGMENTS FOR TABLE changedatatypetest"), true, "0 Compacted") checkExistence(sql("SHOW SEGMENTS FOR TABLE changedatatypetest"), true, "1 Compacted") checkExistence(sql("SHOW SEGMENTS FOR TABLE changedatatypetest"), true, "0.1 Success") afterAll } sqlContext.setConf("carbon.enable.vector.reader", "true") test_change_decimal_and_compaction() sqlContext.setConf("carbon.enable.vector.reader", "false") test_change_decimal_and_compaction() } test("test to change int datatype to long") { def test_change_int_to_long() = { beforeAll sql( "CREATE TABLE changedatatypetest(intField INT,stringField STRING,charField STRING," + "timestampField TIMESTAMP,decimalField DECIMAL(6,2)) STORED BY 'carbondata'") sql(s"LOAD DATA LOCAL INPATH '$resourcesPath/restructure/data1.csv' INTO TABLE " + s"changedatatypetest OPTIONS('FILEHEADER'='intField,stringField,charField,timestampField," + s"decimalField')") sql("ALTER TABLE changedatatypetest CHANGE intField intField LONG") checkAnswer(sql("SELECT intField FROM changedatatypetest LIMIT 1"), Row(100)) afterAll } sqlContext.setConf("carbon.enable.vector.reader", "true") test_change_int_to_long() sqlContext.setConf("carbon.enable.vector.reader", "false") test_change_int_to_long() } test("test data type change for with pre-aggregate table should throw exception") { sql("drop table if exists preaggMain") sql("drop table if exists PreAggMain_preagg1") sql("create table preaggMain (a int, b string, c string) stored by 'carbondata'") sql( "create datamap preagg1 on table PreAggMain using 'preaggregate' as select" + " a,sum(b) from PreAggMain group by a") assert(intercept[ProcessMetaDataException] { sql("alter table preaggmain change a a long").show }.getMessage.contains("exists in a pre-aggregate table")) assert(intercept[ProcessMetaDataException] { sql("alter table preaggmain_preagg1 change a a long").show }.getMessage.contains("Cannot change data type or rename column for columns in pre-aggregate table")) sql("drop table if exists preaggMain") sql("drop table if exists PreAggMain_preagg1") } test("test data type change for dictionary exclude INT type column") { def test_change_data_type() = { beforeAll sql("drop table if exists table_sort") sql("CREATE TABLE table_sort (imei int,age int,mac string) STORED BY 'carbondata' TBLPROPERTIES('DICTIONARY_EXCLUDE'='imei,age','SORT_COLUMNS'='imei,age')") sql("insert into table_sort select 32674,32794,'MAC1'") sql("alter table table_sort change age age bigint") sql("insert into table_sort select 32675,9223372036854775807,'MAC2'") try { sqlContext.setConf("carbon.enable.vector.reader", "true") checkAnswer(sql("select * from table_sort"), Seq(Row(32674, 32794, "MAC1"), Row(32675, Long.MaxValue, "MAC2"))) } finally { sqlContext.setConf("carbon.enable.vector.reader", "true") } afterAll } sqlContext.setConf("carbon.enable.vector.reader", "true") test_change_data_type() sqlContext.setConf("carbon.enable.vector.reader", "false") test_change_data_type() } override def afterAll { sql("DROP TABLE IF EXISTS changedatatypetest") sql("DROP TABLE IF EXISTS hivetable") sqlContext.setConf("carbon.enable.vector.reader", "false") } }
manishgupta88/carbondata
integration/spark2/src/test/scala/org/apache/spark/carbondata/restructure/vectorreader/ChangeDataTypeTestCases.scala
Scala
apache-2.0
9,462
package dispatch.classic.tagsoup import dispatch.classic.{HandlerVerbs, Request} import xml.parsing.NoBindingFactoryAdapter import java.io.InputStreamReader import org.xml.sax.InputSource import org.ccil.cowan.tagsoup.jaxp.SAXFactoryImpl trait ImplicitTagSoupHandlers { implicit def handlerToTagSoupHandlers(h: HandlerVerbs) = new TagSoupHandlers(h) implicit def requestToTagSoupHandlers(req: Request) = new TagSoupHandlers(req); implicit def stringToTagSoupHandlers(str: String) = new TagSoupHandlers(new Request(str)); } object TagSoupHttp extends ImplicitTagSoupHandlers class TagSoupHandlers(subject: HandlerVerbs) { lazy val parserFactory = new SAXFactoryImpl /** Process response with TagSoup html processor in block */ def tagsouped [T] (block: (xml.NodeSeq) => T) = subject >> { (stm, charset) => block( new NoBindingFactoryAdapter().loadXML(new InputSource(new InputStreamReader(stm, charset)), parserFactory.newSAXParser()) ) } /** Alias for verb tagsouped */ def </> [T] (block: (xml.NodeSeq) => T) = tagsouped (block) /** Conveniences handler for retrieving a NodeSeq */ def as_tagsouped = tagsouped {ns => ns} }
dispatch/dispatch
tagsoup/src/main/scala/TagSoupHttp.scala
Scala
lgpl-2.1
1,158
package org.http4s package server package middleware package authentication import org.http4s.headers.Authorization import scalaz._ import scalaz.concurrent.Task /** * Provides Basic Authentication from RFC 2617. * @param realm The realm used for authentication purposes. * @param store A partial function mapping (realm, user) to the * appropriate password. */ class BasicAuthentication(realm: String, store: AuthenticationStore) extends Authentication { private trait AuthReply private sealed case class OK(user: String, realm: String) extends AuthReply private case object NeedsAuth extends AuthReply protected def getChallenge(req: Request) = checkAuth(req).map { case OK(user, realm) => \\/-(addUserRealmAttributes(req, user, realm)) case NeedsAuth => -\\/(Challenge("Basic", realm, Nil.toMap)) } private def checkAuth(req: Request): Task[AuthReply] = { req.headers.get(Authorization) match { case Some(Authorization(BasicCredentials(user, client_pass))) => store(realm, user).map { case None => NeedsAuth case Some(server_pass) => if (server_pass == client_pass) OK(user, realm) else NeedsAuth } case Some(Authorization(_)) => Task.now(NeedsAuth) case None => Task.now(NeedsAuth) } } }
hvesalai/http4s
server/src/main/scala/org/http4s/server/middleware/authentication/BasicAuthentication.scala
Scala
apache-2.0
1,329
/* * Licensed to The Apereo Foundation under one or more contributor license * agreements. See the NOTICE file distributed with this work for additional * information regarding copyright ownership. * * The Apereo Foundation licenses this file to you under the Apache License, * Version 2.0, (the "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at: * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package com.tle.web.bulk.workflow.operations import com.google.inject.assistedinject.{Assisted, AssistedInject} import com.tle.beans.item.HistoryEvent import com.tle.common.i18n.CurrentLocale import com.tle.common.security.Privilege import com.tle.common.workflow.node.WorkflowNode import com.tle.common.workflow.{WorkflowItemStatus, WorkflowNodeStatus} import com.tle.core.item.standard.operations.workflow.TaskOperation import com.tle.core.security.TLEAclManager import com.tle.core.security.impl.SecureInModeration import com.tle.exceptions.AccessDeniedException import javax.inject.Inject import scala.collection.JavaConverters._ @SecureInModeration class WorkflowMoveOperation @AssistedInject()(@Assisted("msg") val msg: String, @Assisted("toStep") val toStep: String) extends TaskOperation { @Inject var aclService: TLEAclManager = _ override def execute: Boolean = { if (!aclService.hasPrivilege(getWorkflow, Privilege.MANAGE_WORKFLOW)) { throw new AccessDeniedException( CurrentLocale.get("com.tle.core.services.item.error.nopriv", "MANAGE_WORKFLOW", getItemId)) } clearAllStatuses() val nodeSeq = getWorkflow.getNodes.asScala.toSeq def requiresSiblingCompletion(wn: WorkflowNode) = wn.getType != WorkflowNode.PARALLEL_TYPE val parentMap = nodeSeq.groupBy(n => Option(n.getParent)) def newStatus(completed: Boolean)(n: WorkflowNode) = { val ns = n.getType match { case WorkflowNode.ITEM_TYPE => val wis = new WorkflowItemStatus(n, null) wis.setStarted(params.getDateNow) wis case _ => new WorkflowNodeStatus(n) } ns.setStatus(if (completed) WorkflowNodeStatus.COMPLETE else WorkflowNodeStatus.INCOMPLETE) ns } nodeSeq.find(_.getUuid == toStep).foreach { wn => def completePreviousSiblings(child: WorkflowNode): Seq[WorkflowNodeStatus] = (for { parent <- Option(child.getParent).filter(requiresSiblingCompletion) children <- parentMap.get(Some(parent)) } yield { children.filter(_.getChildIndex < child.getChildIndex).map(newStatus(true)) }).getOrElse(Seq.empty) def addParentStatuses(child: WorkflowNode): Seq[WorkflowNodeStatus] = { (completePreviousSiblings(child) :+ newStatus(false)(child)) ++ Option(child.getParent).toSeq.flatMap(addParentStatuses) } val newStatuses = addParentStatuses(wn) initStatusMap(newStatuses.asJava) newStatuses.foreach { wns => if (wns.getStatus == WorkflowNodeStatus.INCOMPLETE && !wns.getNode.isLeafNode) { update(wns.getNode) } } enter(wn) val h = createHistory(HistoryEvent.Type.taskMove) setToStepFromTask(h, toStep) h.setComment(msg) } updateModeration() true } }
equella/Equella
Source/Plugins/Core/com.equella.core/scalasrc/com/tle/web/bulk/workflow/operations/WorkflowMoveOperation.scala
Scala
apache-2.0
3,682
package org.jetbrains.plugins.scala.lang.scaladoc.generate import javax.swing.JComponent import javax.swing.event.DocumentEvent import com.intellij.CommonBundle import com.intellij.analysis.{AnalysisScope, BaseAnalysisAction, BaseAnalysisActionDialog} import com.intellij.execution.configurations._ import com.intellij.execution.executors.DefaultRunExecutor import com.intellij.execution.impl.{RunManagerImpl, RunnerAndConfigurationSettingsImpl} import com.intellij.execution.runners.{ExecutionEnvironment, ExecutionEnvironmentBuilder, ProgramRunner} import com.intellij.execution.util.ExecutionErrorDialog import com.intellij.execution.{ExecutionException, Executor, RunnerRegistry} import com.intellij.ide.util.PropertiesComponent import com.intellij.openapi.options.SettingsEditor import com.intellij.openapi.project.Project import com.intellij.ui.DocumentAdapter import org.jetbrains.plugins.scala.console.ScalaConsoleConfigurationType import org.jetbrains.plugins.scala.lang.scaladoc.generate.ScaladocAction.ScaladocRunConfiguration /** * User: Dmitry Naidanov * Date: 01.10.11 */ class ScaladocAction extends BaseAnalysisAction("Generate Scaladoc", "Scaladoc") { private var configurationDialog: ScaladocConsoleRunConfigurationForm = null private def disposeForm() { configurationDialog = null } def analyze(project: Project, scope: AnalysisScope) { var config: ScaladocConfiguration = null try { configurationDialog.saveSettings() config = new ScaladocConfiguration(configurationDialog, project, scope) try { val runConfig = new ScaladocRunConfiguration(project, configurationDialog, config) val runner: ProgramRunner[_ <: RunnerSettings] = RunnerRegistry.getInstance.getRunner(DefaultRunExecutor.EXECUTOR_ID, config) val builder: ExecutionEnvironmentBuilder = new ExecutionEnvironmentBuilder(project, DefaultRunExecutor.getRunExecutorInstance) builder.runProfile(config) builder.runnerAndSettings(runner, new RunnerAndConfigurationSettingsImpl(new RunManagerImpl(project), runConfig, false)) runner.execute(builder.build()) } catch { case e: ExecutionException => ExecutionErrorDialog.show(e, CommonBundle.getErrorTitle, project) } } finally { disposeForm() } } override def canceled() { super.canceled() disposeForm() } override def getAdditionalActionSettings(project: Project, dialog: BaseAnalysisActionDialog): JComponent = { configurationDialog = new ScaladocConsoleRunConfigurationForm(project) configurationDialog.getOutputDirChooser.getDocument.addDocumentListener(new DocumentAdapter() { def textChanged(e: DocumentEvent) { updateAvailability(dialog) } }) updateAvailability(dialog) configurationDialog.createCenterPanel() } private def updateAvailability(dialog: BaseAnalysisActionDialog) { dialog.setOKActionEnabled(!configurationDialog.getOutputDir.isEmpty) } } object ScaladocAction { // just stub entities, will never be invoked object ScaladocRunConfigurationFactory extends ConfigurationFactory(new ScalaConsoleConfigurationType) { override def createTemplateConfiguration(project: Project): RunConfiguration = new ScaladocRunConfiguration(project, null, null) } class ScaladocRunConfiguration(project: Project, dialog: ScaladocConsoleRunConfigurationForm, config: ScaladocConfiguration) extends RunConfigurationBase(project, ScaladocRunConfigurationFactory, "Generate Scaladoc") { override def checkConfiguration() {} override def getConfigurationEditor: SettingsEditor[_ <: ScaladocRunConfiguration] = new SettingsEditor[ScaladocRunConfiguration]() { override def createEditor(): JComponent = dialog.createCenterPanel() override def resetEditorFrom(s: ScaladocRunConfiguration) {} override def applyEditorTo(s: ScaladocRunConfiguration) {} } override def getState(executor: Executor, env: ExecutionEnvironment): RunProfileState = config.getState(executor, env) } }
loskutov/intellij-scala
src/org/jetbrains/plugins/scala/lang/scaladoc/generate/ScaladocAction.scala
Scala
apache-2.0
4,148
package org.apache.mesos.chronos.scheduler.jobs.constraints import java.util.regex.PatternSyntaxException import org.specs2.mutable.SpecificationWithJUnit class UnlikeConstraintSpec extends SpecificationWithJUnit with ConstraintSpecHelper { "matches attributes of type text" in { val attributes = List(createTextAttribute("dc", "north"), createTextAttribute("rack", "rack-4")) val constraint = UnlikeConstraint("rack", "rack-[1-3]") constraint.matches(attributes) must_== true val attributes2 = List(createTextAttribute("dc", "north")) val constraint2 = UnlikeConstraint("dc", "north|south") constraint2.matches(attributes2) must_== false } "matches attributes of type scalar" in { val attributes = List(createScalarAttribute("number", 1)) val constraint = UnlikeConstraint("number", """\\d\\.\\d""") constraint.matches(attributes) must_== false val attributes2 = List(createScalarAttribute("number", 1)) val constraint2 = UnlikeConstraint("number", """100.\\d""") constraint2.matches(attributes) must_== true } "matches attributes of type set" in { val attributes = List(createSetAttribute("dc", Array("north"))) val constraint = UnlikeConstraint("dc", "^n.*") constraint.matches(attributes) must_== false val attributes2 = List(createSetAttribute("dc", Array("south"))) constraint.matches(attributes2) must_== true } "fails in case of an invalid regular expression" in { UnlikeConstraint("invalid-regex", "[[[") must throwA[PatternSyntaxException] } }
lionelnicolas/chronos
src/test/scala/org/apache/mesos/chronos/scheduler/jobs/constraints/UnlikeConstraintSpec.scala
Scala
apache-2.0
1,555
package de.sciss.mellite import de.sciss.file._ import de.sciss.lucre.store.BerkeleyDB import de.sciss.lucre.{Copy, Txn} import de.sciss.nuages.Nuages import de.sciss.nuages.Nuages.Surface import de.sciss.proc.{Durable, Workspace} // quick hack to copy a nuages-only database into a regular mellite session object ImportNuages extends App { val fIn = args.headOption.map(file).getOrElse( // userHome/"Documents"/"projects"/"Anemone"/"sessions"/"session_160527_164131" userHome/"Music"/"renibday"/"sessions"/"session_160616_160647" ) val fOut = userHome/"mellite"/"sessions"/fIn.replaceExt(".mllt").name require(!fOut.exists()) Mellite.initTypes() val factIn = BerkeleyDB.factory(fIn, createIfNecessary = false) type In = Durable.Txn type Out = Durable.Txn val sysIn = Durable(factIn) try { val nInH = sysIn.root[Nuages[In]] { _ => sys.error("Expecting existing Nuages file") } val dsc = BerkeleyDB.Config() dsc.allowCreate = true val ds = BerkeleyDB.factory(fOut, dsc) val wOut = Workspace.Durable.empty(fOut.toURI, ds) try { Txn.copy[In, Out, Unit] { (txIn: In, tx: Out) => val cpy = Copy[In, Out]()(txIn, tx) val nIn = nInH()(txIn) val infoIn = nIn.surface match { case Surface.Timeline(tl) => s"Timeline: ${tl.iterator(txIn).size}" case Surface.Folder (f) => s"Folder: ${f.size(txIn)}" } println(s"IN: $infoIn") val nOut = cpy(nIn) cpy.finish() val infoOut = nOut.surface match { case Surface.Timeline(tl) => s"Timeline: ${tl.iterator(tx).size}" case Surface.Folder (f) => s"Folder: ${f.size(tx)}" } println(s"OUT: $infoOut") val foldOut = wOut.root(tx) foldOut.addLast(nOut)(tx) } (sysIn, wOut.cursor) } finally { wOut.cursor.step { implicit tx => wOut.dispose() } } } finally { sysIn.close() } println("Import done.") sys.exit() }
Sciss/Mellite
app/src/test/scala/de/sciss/mellite/ImportNuages.scala
Scala
agpl-3.0
2,025
package colossus.extensions.util.bson.reader import java.nio.ByteBuffer import colossus.extensions.util.bson.element.BsonObjectId case class BsonObjectIdReader(buffer: ByteBuffer) extends Reader[BsonObjectId] { override def read: Option[BsonObjectId] = { val name = readCString() val value = readBytes(12) Some(BsonObjectId(name, value)) } }
fehmicansaglam/colossus-extensions
mongo/src/main/scala/colossus/extensions/util/bson/reader/BsonObjectIdReader.scala
Scala
apache-2.0
361
// code-examples/AdvOOP/overrides/final-class-wont-compile.scala // WON'T COMPILE. final class Fixed { def doSomething = "Fixed did something!" } class Changeable1 extends Fixed // ERROR
XClouded/t4f-core
scala/src/tmp/AdvOOP/overrides/final-class-wont-compile.scala
Scala
apache-2.0
195
import org.specs2.mutable.Specification class FizzBuzzTwoSpec extends Specification { "n % 3 or contains 3 == Fizz and n % 5, contains 5 == Buzz, both == FizzBuzz" should { "for 1" in { FizzBuzzTwo(1).take(1).toList.map(_.value) must beEqualTo( List("1") ) } "for 1..10" in { FizzBuzzTwo(1).take(10).toList.map { _.value } must beEqualTo( List( "1", "2", "Fizz", "4", "Buzz", "Fizz", "7", "8", "Fizz", "Buzz" ) ) } "for 10..20" in { FizzBuzzTwo(10).take(10).toList.map { _.value } must beEqualTo( List( "Buzz", "11", "Fizz", "Fizz", "14", "FizzBuzz", "16", "17", "Fizz", "19" ) ) } "for 50..60" in { FizzBuzzTwo(50).take(10).toList.map { _.value } must beEqualTo( List("Buzz", "Fizz", "Buzz", "FizzBuzz", "Fizz", "Buzz", "Buzz", "Fizz", "Buzz", "Buzz") ) } } }
dkowis/CodingDojo
KataFizzBuzz/src/test/scala/FizzBuzzTwoSpec.scala
Scala
mit
960
package offGridOrcs object ViewInspection { def view(model: Model.Inspection): Seq[Sprite] = { val titleAndDescription = getTitleAndDetails(model) (viewBackground() ++ viewGrid(model) ++ viewTitle(titleAndDescription._1) ++ viewCloseButton() ++ viewDetails(titleAndDescription._2) ++ viewModeButton('A', 0, model.mode == Model.InspectionMode.Status()) ++ viewModeButton('S', 1, model.mode == Model.InspectionMode.Stock()) ++ viewCursor(model)) } def getTitleAndDetails(model: Model.Inspection): (String, Seq[String]) = { val world = model.mapModel.world val tile = world(model.topLeft + model.selection) val healthyAndGreen = Seq("HEALTHY", "GREEN") val fullData = tile match { case Tile(_, _, _, Some(_), _, _, _) => ("DEMON", Seq("FIERY", "ANGRY"), getStockDetails(Stock.Zero)) case Tile(_, _, Some(orcID), _, _, _, _) => val orc = world(orcID) ("ORC", healthyAndGreen, getStockDetails(orc.stock)) case Tile(_, _, _, _, Some(buildingID), _, _) => val building = world(buildingID) (building.blueprint.name, Seq( "STURDY", s"${building.currentOrcs}/${building.blueprint.housingCapacity} ORCS"), getStockDetails(building.stock)) case Tile(_, Tile.Trees(_), _, _, _, _, _) => ("TREES", healthyAndGreen, getStockDetails(tile.stock)) case Tile(_, Tile.Grass(_), _, _, _, _, _) => ("GRASS", healthyAndGreen, getStockDetails(tile.stock)) case Tile(_, Tile.Building(_), _, _, _, _, _) => ("???", Seq("UNDER", "CNSTRCTN"), getStockDetails(tile.stock)) } (fullData._1, model.mode match { case Model.InspectionMode.Status() => fullData._2 case Model.InspectionMode.Stock() => fullData._3 }) } def getStockDetails(stock: Stock): Seq[String] = { if (stock.wood == 0) { Seq("NO STOCK") } else { Seq(s"${stock.wood} WOOD") } } def viewBackground(): Seq[Sprite] = { Seq(Sprite( Vec2.Zero, BitmapLibrary.InspectScreen)) } def viewGrid(model: Model.Inspection): Seq[Sprite] = { val i = model.selection.x.toInt + model.selection.y.toInt * 3 Seq(Sprite( Vec2(4, 5), BitmapLibrary.InspectGrid(i))) } def viewTitle(text: String): Seq[Sprite] = { GlyphBitmap.getSprites(Vec2(17, 4), text, _.boldLargeBitmap) } def viewCloseButton(): Seq[Sprite] = { val topLeft = Vec2( Dimensions.LowRez - 10, 1) Seq( Sprite( topLeft, BitmapLibrary.InspectCorner), GlyphBitmap.getSprite( topLeft + Vec2(2, 1), 'Q', _.boldBitmap)) } def viewModeButton(char: Char, index: Int, isActive: Boolean): Seq[Sprite] = { val topLeft = Vec2( 4 + 12 * index.toDouble, Dimensions.LowRez - 14) Seq( Sprite( topLeft, if (isActive) { BitmapLibrary.InspectButton } else { BitmapLibrary.InspectReverseButton }), GlyphBitmap.getSprite( topLeft + Vec2(2, 2), char, if (isActive) { _.boldBitmap } else { _.boldReverseBitmap })) } def viewDetails(lines: Seq[String]): Seq[Sprite] = { val topLeft = Vec2(4, 18) lines .zip(Stream.iterate(0)(_ + 1)) .map({ case (line, index) => GlyphBitmap.getSprites( topLeft + Vec2(0, 8 * index.toDouble), line, _.boldBitmap) }) .flatten } def viewCursor(model: Model.Inspection): Seq[Sprite] = { ViewMap.viewCursor(model.cursor, Time.Zero) } }
dcecile/off-grid-orcs
src/ViewInspection.scala
Scala
mit
3,745
package ignition.core.utils import java.sql.Timestamp import org.joda.time.{DateTime, DateTimeZone, Period, Seconds} import org.joda.time.format.ISODateTimeFormat object DateUtils { private val isoDateTimeFormatter = ISODateTimeFormat.dateTime().withZoneUTC() implicit def dateTimeOrdering: Ordering[DateTime] = Ordering.fromLessThan(_ isBefore _) implicit def periodOrdering: Ordering[Period] = Ordering.fromLessThan(_.toStandardSeconds.getSeconds < _.toStandardSeconds.getSeconds) implicit def timestampOrdering: Ordering[Timestamp] = new Ordering[Timestamp] { def compare(x: Timestamp, y: Timestamp): Int = x compareTo y } implicit class DateTimeImprovements(val dateTime: DateTime) { def toIsoString = isoDateTimeFormatter.print(dateTime) def saneEqual(other: DateTime) = dateTime.withZone(DateTimeZone.UTC).isEqual(other.withZone(DateTimeZone.UTC)) def isEqualOrAfter(other: DateTime) = dateTime.isAfter(other) || dateTime.saneEqual(other) def isEqualOrBefore(other: DateTime) = dateTime.isBefore(other) || dateTime.saneEqual(other) def isBetween(start: DateTime, end: DateTime) = dateTime.isAfter(start) && dateTime.isEqualOrBefore(end) } implicit class SecondsImprovements(val seconds: Seconds) { implicit def toScalaDuration: scala.concurrent.duration.FiniteDuration = { scala.concurrent.duration.Duration(seconds.getSeconds, scala.concurrent.duration.SECONDS) } } }
chaordic/ignition-core
src/main/scala/ignition/core/utils/DateUtils.scala
Scala
mit
1,469
package jsky.app.ot.gemini.editor.targetComponent.details2 import java.awt.{GridBagConstraints, GridBagLayout, Insets} import javax.swing.JPanel import edu.gemini.pot.sp.ISPNode import edu.gemini.shared.util.immutable.{Option => GOption} import edu.gemini.shared.util.immutable.ScalaConverters.ScalaOptionOps import edu.gemini.spModel.obs.context.ObsContext import edu.gemini.spModel.target.SPTarget import jsky.app.ot.gemini.editor.targetComponent.{TargetFeedbackEditor, TargetFeedbackEditor$, TelescopePosEditor} import scala.collection.JavaConverters._ import scalaz.syntax.id._ final class TargetDetailPanel extends JPanel with TelescopePosEditor with ReentrancyHack { private val nonsidereal = new NonSiderealDetailEditor private val sidereal = new SiderealDetailEditor private val too = new TooDetailEditor val allEditors = List(nonsidereal, sidereal) val allEditorsJava = allEditors.asJava // This doodad will ensure that any change event coming from the SPTarget will get turned into // a call to `edit`, so we don't have to worry about that case everywhere. Everything from here // on down only needs to care about implementing `edit`. val tpw = new ForwardingTelescopePosWatcher(this) // Fields private[this] var tde: TargetDetailEditor = null def curDetailEditor: Option[TargetDetailEditor] = Option(tde) def curDetailEditorJava: GOption[TargetDetailEditor] = curDetailEditor.asGeminiOpt val source = new SourceDetailsEditor val targetFeedbackEditor = new TargetFeedbackEditor // Put it all together setLayout(new GridBagLayout) add(source.peer, new GridBagConstraints() <| { c => c.anchor = GridBagConstraints.NORTH c.gridx = 1 c.gridy = 0 c.weightx = 1.0 c.weighty = 1.0 c.fill = GridBagConstraints.BOTH }) add(targetFeedbackEditor.getComponent, new GridBagConstraints() <| { c => c.gridx = 0 c.gridy = 1 c.weightx = 1 c.gridwidth = 2 c.insets = new Insets(0,4,0,4) c.fill = GridBagConstraints.HORIZONTAL }) def edit(obsContext: GOption[ObsContext], spTarget: SPTarget, node: ISPNode): Unit = { // Create or replace the existing detail editor, if needed val newTde = spTarget.getTarget.fold(_ => too, _ => sidereal, _ => nonsidereal) if (tde != newTde) { if (tde != null) remove(tde) tde = newTde add(tde, new GridBagConstraints() <| { c => c.anchor = GridBagConstraints.NORTH c.gridx = 0 c.gridy = 0 }) revalidate() repaint() } // Forward the `edit` call. tpw. edit(obsContext, spTarget, node) tde. edit(obsContext, spTarget, node) targetFeedbackEditor.edit(obsContext, spTarget, node) source. edit(obsContext, spTarget, node) } }
spakzad/ocs
bundle/jsky.app.ot/src/main/scala/jsky/app/ot/gemini/editor/targetComponent/details2/TargetDetailPanel.scala
Scala
bsd-3-clause
2,870
package debop4s.rediscala.client import java.lang.{Double => JDouble, Iterable => JIterable, Long => JLong} import java.util.{List => JList, Map => JMap, Set => JSet} import debop4s.rediscala._ import org.slf4j.{Logger, LoggerFactory} import redis._ import redis.commands.Transactions object JRedisClient { def apply(): JRedisClient = apply(RedisClient()) def apply(host: String, port: Int): JRedisClient = apply(RedisClient(host, port)) def apply(redisClient: RedisClient): JRedisClient = { require(redisClient != null) new JRedisClient(redisClient) } } /** * Redis 서버를 이용하기 위한 비동기 통신을 수행하는 client 입니다. * [[RedisClient]] 가 scala 전용의 수형을 사용하므로, Java에서도 쉽게 사용할 수 있도록 Wrapping 했습니다. * * @param _redis [[RedisClient]] instance. * @author Sunghyouk Bae */ class JRedisClient(private[this] val _redis: RedisClient) extends JRedisSupport with JRedisTransactionalSupport { def this() = this(RedisClient()) require(_redis != null) protected lazy val log: Logger = LoggerFactory.getLogger(getClass) override val redis: RedisCommands = { _redis // def server = RedisServer(_redis.host, _redis.port, db = _redis.db) // RedisClientPool((0 until sys.runtime.availableProcessors()).map(i => server)) } override lazy val redisBlocking: RedisBlockingClient = RedisBlockingClient( host = _redis.host, port = _redis.port, password = _redis.password, db = _redis.db, name = _redis.name ) override lazy val transactionalRedis: Transactions = _redis }
debop/debop4s
debop4s-rediscala/src/main/scala/debop4s/rediscala/client/JRedisClient.scala
Scala
apache-2.0
1,642
package nz.wicker.autoencoder.math.optimization /** * Differentiable `Double`-valued function suitable for line-search * algorithms. The domain of the function is some vectorspace `V`, * and the corresponding gradient is also from `V`. */ trait DifferentiableFunction[V] extends (V => Double) { /** * Returns the function value `f(x)` together with the gradient * `(grad f)(x)` */ def apply(x: V): Double def grad(x: V): V def valueAndGrad(x: V): (Double, V) = (apply(x), grad(x)) }
joergwicker/autoencoder
src/main/scala/nz/wicker/autoencoder/math/optimization/DifferentiableFunction.scala
Scala
gpl-3.0
507
package io.github.chikei.sbt.onelog import java.io.PrintWriter import com.zavakid.sbt.LogDepProcess.{ProcessContext, _} import net.virtualvoid.sbt.graph.DependencyGraphKeys._ import net.virtualvoid.sbt.graph.{DependencyGraphPlugin, ModuleGraph, ModuleId} import org.fusesource.scalate.TemplateEngine import sbt.Keys._ import sbt.{AutoPlugin, Def, IO, Load, ModuleID, Plugins, Project, ProjectRef, Scoped, State, Task, _} object OneLog extends AutoPlugin { import OneLogKeys._ val autoImport = OneLogKeys override def requires: Plugins = DependencyGraphPlugin override def trigger = allRequirements override def globalSettings: Seq[Def.Setting[_]] = { onLoad := onLoad.value andThen doTask } var appended = false val doTask: State => State = { state => if (OneLog.appended) state else { import state.globalLogging.{full => log} val buildStruct = Project.structure(state) val extracted = Project.extract(state) if (!extracted.getOpt(oneLogDisableDependencyProcess in Global).getOrElse(false)) { log.info("sbt-one-log start process...") def compute(graph: ModuleGraph, libraryDeps: Seq[sbt.ModuleID], p: ProjectRef): IndexedSeq[ModuleID] = { val roots = graph.nodes.filter(n => !graph.edges.exists(_._2 == n.id)).sortBy(_.id.idString) val directDeps = roots.flatMap(d => graph.dependencyMap(d.id)) .filter(_.evictedByVersion.isEmpty) .filterNot(d => d.id.organisation.equals("org.scala-lang")) .flatMap { dep => // filter deps which not contains sub projects libraryDeps.find { libDep => libDep.organization.equals(dep.id.organisation) && libDep.name.equals(dep.id.name) }.map(dep -> _) } directDeps.foldLeft(libraryDeps.toIndexedSeq) { case (libs, (dep, libDep)) => val context = ProcessContext(dep.id, libDep, graph, libs, p, extracted) processStrategies(context).libraryDeps } } val (transformed, newState) = buildStruct.allProjectRefs.filter { p => //FIXME! .task is deprecated val t = oneLogComputeModuleGraph in p val s = Scoped.scopedSetting(t.scope, t.key) extracted.getOpt(s).isDefined //extracted.getOpt((computeModuleGraph in p).task).isDefined }.foldLeft((extracted.session.mergeSettings, state)) { case ((allSettings, foldedState), p) => // need receive new state val (newState, depGraph) = extracted.runTask(oneLogComputeModuleGraph in p, foldedState) val newLibs = compute(depGraph, extracted.get(libraryDependencies in p), p) (allSettings.map { s => s.key.key match { //case s if "libraryDependencies".equals(s.key.key.label) => case libraryDependencies.key => // ensure just modify this project's dependencies s.key.scope.project.toOption.filter(p.equals(_)).fold(s.asInstanceOf[Setting[Seq[ModuleID]]]) { _ => s.asInstanceOf[Setting[Seq[ModuleID]]].mapInit((_, _) => newLibs) } case _ => s } }, newState) } OneLog.appended = true //extracted.append(appendedSettings, state) val newStructure = Load.reapply(transformed, extracted.structure)(extracted.showKey) log.info("sbt-one-log finished process") Project.setProject(extracted.session, newStructure, newState) } else state } } // def task: State => State = { state => // val extracted = Project.extract(state) // extracted.structure.allProjectRefs.foldLeft(state) { (state, p) => // val ds: Seq[ModuleID] = extracted.get(libraryDependencies in p) // println("=====" + p + " dep : ") // ds.foreach(println) // println("===========") // if (p.project == "module1") { // val (newState, _) = extracted.runTask(update.in(p).in(Compile), state) // extracted.append(Seq[Setting[_]]( // libraryDependencies in p := Seq() // ), newState) // } else state // // } // } override def projectSettings: Seq[Setting[_]] = Seq[Setting[_]]( oneLogSlf4jVersion := "1.7.10", oneLogLogbackVersion := "1.1.2", oneLogScalaLoggingVersion := (scalaBinaryVersion.value match { case "2.12" => "3.5.0" case "2.11" => "3.5.0" case "2.10" => "2.1.2" }), oneLogUseScalaLogging := true, resolvers += "99-empty" at "http://version99.qos.ch/", oneLogComputeModuleGraph := (moduleGraph in Compile).value ) ++ inConfig(Compile) { Seq( oneLogLogbackXmlTemplate := "/sbtonelog/templates/logback.xml.mustache", oneLogLogbackFileName := "logback.xml", oneLogGenerateLogbackXml := generateLogbackXMLImpl.value ) } ++ inConfig(Test) { Seq( oneLogLogbackXmlTemplate := "/sbtonelog/templates/logback-test.xml.mustache", oneLogLogbackFileName := "logback-test.xml", oneLogGenerateLogbackXml := generateLogbackXMLImpl.value ) } ++ Seq(Compile, Test, Runtime, Provided, Optional).flatMap{ config => inConfig(config)(Seq( oneLogComputeChanges := Changes.generate(moduleGraph.value, libraryDependencies.value, oneLogSlf4jVersion.value, oneLogLogbackVersion.value, scalaBinaryVersion.value, oneLogScalaLoggingVersion.value), oneLogRenderOverride := ChangesLayout.sbtRenderOverride, oneLogRenderDependency := ChangesLayout.sbtRenderAdd, ongLogChangesAscii := ChangesLayout.ascii(oneLogComputeChanges.value, oneLogRenderDependency.value, oneLogRenderOverride.value), oneLogChanges := { val s = streams.value s.log.info(name.value) s.log.info(ongLogChangesAscii.value) }, oneLogWriteChangesFile := target.value / ("changes-%s.txt").format(config.toString), oneLogWriteChange := { val f = oneLogWriteChangesFile.value val p = new PrintWriter(f, "UTF-8") p.write(ChangesLayout.ascii(oneLogComputeChanges.value, oneLogRenderDependency.value, oneLogRenderOverride.value, false)) p.close() } )) } lazy val generateLogbackXMLImpl: Def.Initialize[Task[Unit]] = Def.task { val out = streams.value def generateContent(engine: TemplateEngine, context: Map[String, Any], templatePath: String, baseDir: File, file: File) { val content = engine.layout(templatePath, context) if (!baseDir.exists) baseDir.mkdirs() file.createNewFile() out.log.info(s"generate $file") IO.write(file, content) } //val force = generateLogbackXMLParser.parsed val force = false val resourceDir = resourceDirectory.value val logbackXML = resourceDir / oneLogLogbackFileName.value val context = Map("projectName" -> name.value) val engine = new TemplateEngine() (force, logbackXML.exists()) match { case (false, false) => generateContent(engine, context, oneLogLogbackXmlTemplate.value, resourceDir, logbackXML) case (false, true) => out.log.info(s"${logbackXML.toString} is exist") case (true, _) => out.log.warn(s"force generate is not support yes") } } }
chikei/sbt-one-log
src/main/scala/io/github/chikei/sbt/onelog/OneLog.scala
Scala
apache-2.0
7,339
package pw.ian.sysadmincraft.world import org.specs2.mutable.Specification class PillarManagerSpec extends Specification { "spiralIndex" >> { "should be unique" >> { val list = (0 to 10000).map(PillarManagerUtils.spiralIndex) list.toSet.size must_== list.size } } }
simplyianm/sysadmincraft
src/test/scala/pw/ian/sysadmincraft/world/PillarManagerSpec.scala
Scala
isc
297
/* * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.flink.table.sources import org.apache.flink.api.common.typeinfo.TypeInformation import org.apache.flink.table.api.ValidationException import org.apache.flink.table.expressions.{Expression, PlannerExpression, ResolvedFieldReference} /** * The [[FieldComputer]] interface returns an expression to compute the field of the table schema * of a [[TableSource]] from one or more fields of the [[TableSource]]'s return type. * * @tparam T The result type of the provided expression. */ abstract class FieldComputer[T] { /** * Returns the names of all fields that the expression of the field computer accesses. * * @return An array with the names of all accessed fields. */ def getArgumentFields: Array[String] /** * Returns the result type of the expression. * * @return The result type of the expression. */ def getReturnType: TypeInformation[T] /** * Validates that the fields that the expression references have the correct types. * * @param argumentFieldTypes The types of the physical input fields. */ @throws[ValidationException] def validateArgumentFields(argumentFieldTypes: Array[TypeInformation[_]]): Unit /** * Returns the [[Expression]] that computes the value of the field. * * @param fieldAccesses Field access expressions for the argument fields. * @return The expression to extract the timestamp from the [[TableSource]] return type. */ def getExpression(fieldAccesses: Array[ResolvedFieldReference]): Expression }
ueshin/apache-flink
flink-table/flink-table-planner/src/main/scala/org/apache/flink/table/sources/FieldComputer.scala
Scala
apache-2.0
2,353
package akkaviz.events import akka.NotUsed import akka.actor.ActorRef import akka.stream.scaladsl.Flow import akkaviz.events.types.{ThroughputMeasurement, ReceivedWithId, BackendEvent} import scala.concurrent.duration._ object ThroughputMeasurementFlow { def apply(period: FiniteDuration): Flow[BackendEvent, ThroughputMeasurement, NotUsed] = { Flow[BackendEvent] .collect { case r: ReceivedWithId => r.actorRef } .groupedWithin(Int.MaxValue, period) .map { refs => refs.groupBy(identity).mapValues(_.length) } .scan(Map[ActorRef, Int]()) { case (previous, current) => // produce zero for actors that have been measured previously but didn't receive any messages during `period` current ++ (for { k <- previous.keySet.diff(current.keySet) } yield k -> 0) } .mapConcat { m => for { (ref, count) <- m } yield ThroughputMeasurement(ref, count / (period.toMillis.toDouble / 1.second.toMillis.toDouble)) } } }
blstream/akka-viz
monitoring/src/main/scala/akkaviz/events/ThroughputMeasurementFlow.scala
Scala
mit
1,027
import akka.actor._ import akka.remote._ import akka.pattern.ask import akka.pattern.pipe import akka.util.Timeout import scala.concurrent.duration._ import scala.concurrent.ExecutionContext.Implicits._ import scalafx.application.Platform class ParticipantActor( val control: tictactoeClientFrontWindowController#Controller , val controller: tictactoeClientPlayWindowController#Controller) extends Actor { import ParticipantActor._ import ServerActor._ var player1: Option[ActorRef] = None var player2: Option[ActorRef] = None def host = context.actorSelection(control.serverLocation) override def preStart(): Unit = { context.system.eventStream.subscribe(self, classOf[akka.remote.DisassociatedEvent]) context.system.eventStream.subscribe(self, classOf[akka.remote.AssociationErrorEvent]) } def receive = { case Join(name , ref) => implicit val timeout: Timeout = Timeout(5 seconds) //println(host) host ? Connect(name , ref) pipeTo sender //var name1 = name println(s"name: $name") case JoinSuccess => tictactoeRunUI.player = "p1" //tictactoeRunUI.player1Name = name1 context.become(join) case AlreadyJoin => Platform.runLater({ control.showJoinedError() }) case AssociationErrorEvent(_ , localAddress , remoteAddress , _ , _) => Platform.runLater({ control.showConnectionError() }) case DisassociatedEvent(localAddress , remoteAddress , _) => Platform.runLater({ control.showConnectionError() }) case Click => context.become(click) case Done => context.unbecome() case player2Join => //println("set player 2") tictactoeRunUI.player = "p2" context.become(p2) } // player1 become join def join: Receive = { case Join(name , ref) => sender ! AlreadyJoin case p1(name , secondPlayer) => // knows 2nd player // send start to p1 and 2nd player player2 = Some(secondPlayer) tictactoeRunUI.player2Name.value = name case AssociationErrorEvent(_ , localAddress , remoteAddress , _ , _) => Platform.runLater({ control.showConnectionError() }) case DisassociatedEvent(localAddress , remoteAddress , _) => Platform.runLater({ control.showConnectionError() }) case Start => Platform.runLater({ controller.showStart() controller.clickable.value = true println("click true") }) context.become(click) } // player2 become p2 def p2: Receive = { case Join(name , ref) => sender ! AlreadyJoin case AssociationErrorEvent(_ , localAddress , remoteAddress , _ , _) => Platform.runLater({ control.showConnectionError() }) case DisassociatedEvent(localAddress , remoteAddress , _) => Platform.runLater({ control.showConnectionError() }) case Start => // show stop Platform.runLater({ controller.showStop() }) //println("receivedstart") context.become(unclick) case p2(name , player1) => //println("setting playaer") this.player1 = Some(player1) tictactoeRunUI.player1Name.value = name player1 ! Start //println("sending start to "+player1) self ! Start } def click: Receive = { case AssociationErrorEvent(_ , localAddress , remoteAddress , _ , _) => Platform.runLater({ control.showConnectionError() }) case DisassociatedEvent(localAddress , remoteAddress , _) => Platform.runLater({ control.showConnectionError() }) case ClickCount(myCount) => println("clickcount") Platform.runLater({ controller.clickable.value = false controller.selfClickOnButton(myCount) }) if (tictactoeRunUI.player == "p1") { player2.get ! SelectCount(myCount) //println("SelectCount(myCount):"+SelectCount(myCount)) context.become(unclick) } else if (tictactoeRunUI.player == "p2") { player1.get ! SelectCount(myCount) context.become(unclick) } sender ! Done case Reset => reset() case GameEnd => controller.clickable.value = false } def unclick: Receive = { case AssociationErrorEvent(_ , localAddress , remoteAddress , _ , _) => Platform.runLater({ control.showConnectionError() }) case DisassociatedEvent(localAddress , remoteAddress , _) => Platform.runLater({ control.showConnectionError() }) case ClickCount(myCount) => Platform.runLater({ controller.showStop() //controller.clickOnButtonX(myCount) }) sender ! Done case SelectCount(myCount) => context.become(click) //println("selectCount execute") Platform.runLater({ controller.clickable.value = true controller.clickOnButton(myCount) }) case Reset => reset() case GameEnd => controller.clickable.value = false } def reset() { player1 = None player2 = None context.unbecome() } } object ParticipantActor { // external message case class Winner(name: String) case class Join(name: String , ref: ActorRef) case class JoinSuccess(name: String , ref: ActorRef) case class p2(name: String , playerOwn: ActorRef) case class p1(name: String , playerTwo: ActorRef) case class SelectCount(myCount: Int) case class ClickCount(myCount: Int) // internal message case object ConnectSuccess case object ConnectFail case object JoinFail case object Click case object AlreadyJoin case object player2Join case object Done case object Start case object Reset case object GameEnd }
MagikarpBot/scala-akka-tictactoe
src/main/scala/ParticipantActor.scala
Scala
gpl-3.0
6,265
package com.gajdulewicz import com.mongodb.casbah.WriteConcern /** * Created by gajduler on 09/12/14. */ object GeneratorApp { def main(args: Array[String]) { val writes: Int = 1 * 100 * 1000 val initWriter = new MongoWriter(bufferSize = 100000) (1 to writes).foreach(id => { val prof = ProfileGenerator.genProfile(id) initWriter.scheduleForInsert(prof) }) val defaultWriter = new MongoWriter(bufferSize = 100000) time("Default concern") { (1 to writes).foreach(id => { val prof = ProfileGenerator.genProfile(id) defaultWriter.scheduleForInsert(prof) }) } val journaledWriter = new MongoWriter(bufferSize = 100000, writeConcenrn = WriteConcern.Journaled) time("Journaled concern") { (1 to writes).foreach(id => { val prof = ProfileGenerator.genProfile(id) journaledWriter.scheduleForInsert(prof) }) } val fsynced = new MongoWriter(bufferSize = 100000, writeConcenrn = WriteConcern.Fsynced) time("fsynced concern") { (1 to writes).foreach(id => { val prof = ProfileGenerator.genProfile(id) fsynced.scheduleForInsert(prof) }) } } def time[A](message: String = "")(a: => A) = { val now = System.nanoTime val result = a val micros = (System.nanoTime - now) / 1000 / 1000 println(message + " %d ms".format(micros)) result } }
rafax/dbperf
src/main/scala/com/gajdulewicz/Main.scala
Scala
mit
1,412
/* * Copyright (c) 2012-2014 Snowplow Analytics Ltd. All rights reserved. * * This program is licensed to you under the Apache License Version 2.0, * and you may not use this file except in compliance with the Apache License Version 2.0. * You may obtain a copy of the Apache License Version 2.0 at http://www.apache.org/licenses/LICENSE-2.0. * * Unless required by applicable law or agreed to in writing, * software distributed under the Apache License Version 2.0 is distributed on an * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the Apache License Version 2.0 for the specific language governing permissions and limitations there under. */ package com.snowplowanalytics.snowplow.enrich.common package utils // Java import java.net.URI // Scalaz import scalaz._ import Scalaz._ // Specs2 import org.specs2.{Specification, ScalaCheck} import org.specs2.matcher.DataTables import org.specs2.scalaz.ValidationMatchers import org.scalacheck._ import org.scalacheck.Arbitrary._ class StringToUriTest extends Specification with DataTables { def is = "Parsing Strings into URIs should work" ! e1 def e1 = "SPEC NAME" || "URI" | "EXPECTED" | "Empty URI" !! null ! None.success | "Simple URI" !! "https://google.com" ! Some(URI.create("https://google.com")).success | "Complex URI" !! "http://www.google.com/search?q=gateway+oracle+cards+denise+linn&hl=en&client=safari" ! Some(URI.create("http://www.google.com/search?q=gateway+oracle+cards+denise+linn&hl=en&client=safari")).success | "Salvageable bad URI with raw spaces" !! "http://www.psychicbazaar.com/2-tarot-cards/genre/gothic/type/all/view/grid?n=24&utm_source=GoogleSearch&utm_medium=cpc&utm_campaign=uk-tarot--gothic-tarot&utm_term=bohemian gothic tarot&utm_content=33088202008&gclid=CN2LmteX2LkCFQKWtAodrSMASw" ! Some(URI.create("http://www.psychicbazaar.com/2-tarot-cards/genre/gothic/type/all/view/grid?n=24&utm_source=GoogleSearch&utm_medium=cpc&utm_campaign=uk-tarot--gothic-tarot&utm_term=bohemian%20gothic%20tarot&utm_content=33088202008&gclid=CN2LmteX2LkCFQKWtAodrSMASw")).success | "Unsalvageable bad URI" !! "http://adserver.adtech.de/adlink|3.0" ! "Provided URI string [http://adserver.adtech.de/adlink|3.0] violates RFC 2396: [Illegal character in path at index 32: http://adserver.adtech.de/adlink|3.0]".fail |> { (_, uri, expected) => { ConversionUtils.stringToUri(uri) must_== expected } } } class ExplodeUriTest extends Specification with DataTables { def is = "Exploding URIs into their component pieces with explodeUri should work" ! e1 def e1 = "SPEC NAME" || "URI" | "EXP. SCHEME" | "EXP. HOST" | "EXP. PORT" | "EXP. PATH" | "EXP. QUERY" | "EXP. FRAGMENT" | "With path, qs & #" !! "http://www.psychicbazaar.com/oracles/119-psycards-deck.html?view=print#detail" ! "http" ! "www.psychicbazaar.com" ! 80 ! Some("/oracles/119-psycards-deck.html") ! Some("view=print") ! Some("detail") | "With path & space in qs" !! "http://psy.bz/genre/all/type/all?utm_source=google&utm_medium=cpc&utm_term=buy%2Btarot&utm_campaign=spring_sale" ! "http" ! "psy.bz" ! 80 ! Some("/genre/all/type/all") ! Some("utm_source=google&utm_medium=cpc&utm_term=buy%2Btarot&utm_campaign=spring_sale") ! None | "With path & no www" !! "http://snowplowanalytics.com/analytics/index.html" ! "http" ! "snowplowanalytics.com" ! 80 ! Some("/analytics/index.html") ! None ! None | "Port specified" !! "http://www.nbnz.co.nz:440/login.asp" ! "http" ! "www.nbnz.co.nz" ! 440 ! Some("/login.asp") ! None ! None | "HTTPS & #" !! "https://www.lancs.ac.uk#footer" ! "https" ! "www.lancs.ac.uk" ! 80 ! None ! None ! Some("footer") | "www2 & trailing /" !! "https://www2.williamhill.com/" ! "https" ! "www2.williamhill.com" ! 80 ! Some("/") ! None ! None | "Tab & newline in qs" !! "http://www.ebay.co.uk/sch/i.html?_from=R40&_trksid=m570.l2736&_nkw=%09+Clear+Quartz+Point+Rock+Crystal%0ADowsing+Pendulum" ! "http" ! "www.ebay.co.uk" ! 80 ! Some("/sch/i.html") ! Some("_from=R40&_trksid=m570.l2736&_nkw=%09+Clear+Quartz+Point+Rock+Crystal%0ADowsing+Pendulum") ! None | "Tab & newline in path" !! "https://snowplowanalytics.com/analytic%0As/index%09nasty.html" ! "https" ! "snowplowanalytics.com" ! 80 ! Some("/analytic%0As/index%09nasty.html") ! None ! None | "Tab & newline in #" !! "http://psy.bz/oracles/psycards.html?view=print#detail%09is%0Acorrupted" ! "http" ! "psy.bz" ! 80 ! Some("/oracles/psycards.html") ! Some("view=print") ! Some("detail%09is%0Acorrupted") |> { (_, uri, scheme, host, port, path, query, fragment) => { val actual = ConversionUtils.explodeUri(new URI(uri)) val expected = ConversionUtils.UriComponents(scheme, host, port, path, query, fragment) actual must_== expected } } } class FixTabsNewlinesTest extends Specification with DataTables { val SafeTab = " " def is = "Replacing tabs, newlines and control characters with fixTabsNewlines should work" ! e1 def e1 = "SPEC NAME" || "INPUT STR" | "EXPECTED" | "Empty string" !! "" ! None | "String with true-tab" !! " " ! SafeTab.some | "String with \\t" !! "\t" ! SafeTab.some | "String with \\\\t" !! "\\\t" ! "\\%s".format(SafeTab).some | "String with \\b" !! "\b" ! None | "String ending in newline" !! "Hello\n" ! "Hello".some | "String with control char" !! "\u0002" ! None | "String with space" !! "\u0020" ! " ".some | "String with black diamond" !! "�" ! "�".some | "String with everything" !! "Hi \u0002�\u0020\bJo\t\u0002" ! "Hi%s� Jo%s".format(SafeTab, SafeTab).some |> { (_, str, expected) => ConversionUtils.fixTabsNewlines(str) must_== expected } } // TODO: note that we have some functionality tweaks planned. // See comments on ConversionUtils.decodeBase64Url for details. class DecodeBase64UrlTest extends Specification with DataTables with ValidationMatchers with ScalaCheck { def is = "This is a specification to test the decodeBase64Url function" ^ p^ "decodeBase64Url should return failure if passed a null" ! e1^ "decodeBase64Url should not return failure on any other string" ! e2^ "decodeBase64Url should correctly decode valid Base64 (URL-safe) encoded strings" ! e3^ end val FieldName = "e" // Only way of getting a failure currently def e1 = ConversionUtils.decodeBase64Url(FieldName, null) must beFailing("Field [%s]: exception Base64-decoding [null] (URL-safe encoding): [null]".format(FieldName)) // No string creates a failure def e2 = check { (str: String) => ConversionUtils.decodeBase64Url(FieldName, str) must beSuccessful } // Taken from: // 1. Lua Tracker's base64_spec.lua // 2. Manual tests of the JavaScript Tracker's trackUnstructEvent() // 3. Misc edge cases worth checking def e3 = "SPEC NAME" || "ENCODED STRING" | "EXPECTED" | "Lua Tracker String #1" !! "Sm9oblNtaXRo" ! "JohnSmith" | "Lua Tracker String #2" !! "am9obitzbWl0aA" ! "john+smith" | "Lua Tracker String #3" !! "Sm9obiBTbWl0aA" ! "John Smith" | "Lua Tracker JSON #1" !! "eyJhZ2UiOjIzLCJuYW1lIjoiSm9obiJ9" ! """{"age":23,"name":"John"}""" | "Lua Tracker JSON #2" !! "eyJteVRlbXAiOjIzLjMsIm15VW5pdCI6ImNlbHNpdXMifQ" ! """{"myTemp":23.3,"myUnit":"celsius"}""" | "Lua Tracker JSON #3" !! "eyJldmVudCI6InBhZ2VfcGluZyIsIm1vYmlsZSI6dHJ1ZSwicHJvcGVydGllcyI6eyJtYXhfeCI6OTYwLCJtYXhfeSI6MTA4MCwibWluX3giOjAsIm1pbl95IjotMTJ9fQ" ! """{"event":"page_ping","mobile":true,"properties":{"max_x":960,"max_y":1080,"min_x":0,"min_y":-12}}""" | "Lua Tracker JSON #4" !! "eyJldmVudCI6ImJhc2tldF9jaGFuZ2UiLCJwcmljZSI6MjMuMzksInByb2R1Y3RfaWQiOiJQQlowMDAzNDUiLCJxdWFudGl0eSI6LTIsInRzdGFtcCI6MTY3ODAyMzAwMH0" ! """{"event":"basket_change","price":23.39,"product_id":"PBZ000345","quantity":-2,"tstamp":1678023000}""" | "JS Tracker JSON #1" !! "eyJwcm9kdWN0X2lkIjoiQVNPMDEwNDMiLCJjYXRlZ29yeSI6IkRyZXNzZXMiLCJicmFuZCI6IkFDTUUiLCJyZXR1cm5pbmciOnRydWUsInByaWNlIjo0OS45NSwic2l6ZXMiOlsieHMiLCJzIiwibCIsInhsIiwieHhsIl0sImF2YWlsYWJsZV9zaW5jZSRkdCI6MTU4MDF9" ! """{"product_id":"ASO01043","category":"Dresses","brand":"ACME","returning":true,"price":49.95,"sizes":["xs","s","l","xl","xxl"],"available_since$dt":15801}""" | "Unescaped characters" !! "äöü - &" ! "" | "Blank string" !! "" ! "" |> { (_, str, expected) => { ConversionUtils.decodeBase64Url(FieldName, str) must beSuccessful(expected) } } } class StringToDoublelikeTest extends Specification with DataTables with ValidationMatchers { def is = "This is a specification to test the stringToDoublelike function" ^ p^ "stringToDoublelike should fail if the supplied String is not parseable as a number" ! e1^ "stringToDoublelike should convert numeric Strings to 'Double-like' Strings loadable by Redshift" ! e2^ "stringToDoublelike will alas *not* fail numbers having more significant digits than Redshift supports" ! e3^ end val FieldName = "val" def err: (String) => String = input => "Field [%s]: cannot convert [%s] to Double-like String".format(FieldName, input) def e1 = "SPEC NAME" || "INPUT STR" | "EXPECTED" | "Empty string" !! "" ! err("") | "Number with commas" !! "19,999.99" ! err("19,999.99") | "Hexadecimal number" !! "0x54" ! err("0x54") | "Bad sci. notation" !! "-7.51E^9" ! err("-7.51E^9") | "German number" !! "1.000,3932" ! err("1.000,3932") | "NaN" !! "NaN" ! err("NaN") | "English string" !! "hi & bye" ! err("hi & bye") | "Vietnamese name" !! "Trịnh Công Sơn" ! err("Trịnh Công Sơn") |> { (_, str, expected) => ConversionUtils.stringToDoublelike(FieldName, str) must beFailing(expected) } def e2 = "SPEC NAME" || "INPUT STR" | "EXPECTED" | "Integer #1" !! "23" ! "23" | "Integer #2" !! "23." ! "23" | "Negative integer" !! "-2012103" ! "-2012103" | "Arabic number" !! "٤٥٦٧.٦٧" ! "4567.67" | "Floating point #1" !! "1999.99" ! "1999.99" | "Floating point #2" !! "1999.00" ! "1999.00" | "Floating point #3" !! "78694353.00001" ! "78694353.00001" | "Floating point #4" !! "-78694353.00001" ! "-78694353.00001" | "Sci. notation #1" !! "4.321768E3" ! "4321.768" | "Sci. notation #2" !! "6.72E9" ! "6720000000" | "Sci. notation #3" !! "7.51E-9" ! "0.00000000751" |> { (_, str, expected) => ConversionUtils.stringToDoublelike(FieldName, str) must beSuccessful(expected) } val BigNumber = "78694235323.00000001" // Redshift only supports 15 significant digits for a Double def e3 = ConversionUtils.stringToDoublelike(FieldName, BigNumber) must beSuccessful(BigNumber) } class StringToBooleanlikeJByte extends Specification with DataTables with ValidationMatchers { def is = "This is a specification to test the stringToBooleanlikeJByte function" ^ p^ "stringToBooleanlikeJByte should fail if the supplied String is not parseable as a 1 or 0 JByte" ! e1^ "stringToBooleanlikeJByte should convert '1' or '0' Strings to 'Boolean-like' JBytes loadable by Redshift" ! e2^ end val FieldName = "val" def err: (String) => String = input => "Field [%s]: cannot convert [%s] to Boolean-like JByte".format(FieldName, input) def e1 = "SPEC NAME" || "INPUT STR" | "EXPECTED" | "Empty string" !! "" ! err("") | "Small number" !! "2" ! err("2") | "Negative number" !! "-1" ! err("-1") | "Floating point number" !! "0.0" ! err("0.0") | "Large number" !! "19,999.99" ! err("19,999.99") | "Text #1" !! "a" ! err("a") | "Text #2" !! "0x54" ! err("0x54") |> { (_, str, expected) => ConversionUtils.stringToBooleanlikeJByte(FieldName, str) must beFailing(expected) } def e2 = "SPEC NAME" || "INPUT STR" | "EXPECTED" | "True aka 1" !! "1" ! 1.toByte | "False aka 0" !! "0" ! 0.toByte |> { (_, str, expected) => ConversionUtils.stringToBooleanlikeJByte(FieldName, str) must beSuccessful(expected) } }
pkallos/snowplow
3-enrich/scala-common-enrich/src/test/scala/com.snowplowanalytics.snowplow.enrich.common/utils/conversionUtilsTests.scala
Scala
apache-2.0
15,163
package redeyes.parser import redeyes.doc._ import redeyes.util.Strings import scalaz._ import scalaz.std.string._ import scalaz.std.vector._ import scalaz.syntax.monad._ import shapeless._ import shapeless.ops.hlist.{Comapped, ToList} trait ParserModule { self => /** * The abstract type representing the channels supported by this parser module. */ protected type Channel protected implicit def ChannelEqual: Equal[Channel] // TODO: Move to functions /** * The abstract type representing an atom of information parsed from a channel. * For example, in a text parser module, the atom might be a character. */ protected type Atom[C <: Channel, A] /** * Every parser module has to provide an atom algebra module. */ protected trait AtomAlgebra { /** * An atom representing the smallest unit of information that can be produced * from the specified channel. This should not be "empty" but should actually * represent consumption of some information. */ def anything[C <: Channel](channel: C): Atom[C, _] /** * Produces a parser which is the negation of the specified atom. */ def negate[C <: Channel, A](atom: Atom[C, A]): Parser[A] /** * Produces a parser which is the intersection of two atoms. */ def intersect[C <: Channel, A: Equal](a1: Atom[C, A], a2: Atom[C, A]): Parser[A] } protected def AtomAlgebra: AtomAlgebra def generate[A](parser: Parser[A]): EphemeralStream[A] def generate1[A](parser: Parser[A]): A = generate(parser).head() /** * The core parser abstraction, with a range of combinators. */ sealed trait Parser[A] { import Parser.ParserEquivApplicative._ final def |> [B] (f: => A <=> B): Parser[B] = this <**> Pure(f) final def <**> [B] (that: => Parser[A <=> B]): Parser[B] = Apply[A, B](Need(that), Need(this)) final def <~< [B] (that: => Parser[B]): Parser[A] = lift2[A, B, A](Equiv.id[A].leftfst(generate1(that)))(this, that) final def >~> [B] (that: => Parser[B]): Parser[B] = lift2[A, B, B](Equiv.id[B].leftsnd(generate1(this)))(this, that) final def <|> (that: => Parser[A]): Parser[A] = Or(Need(this), Need(that)) final def <&> (that: => Parser[A])(implicit equal: Equal[A]): Parser[A] = Intersect(Need(this), Need(that)) final def <~> [B](that: => Parser[B]): Parser[(A, B)] = Zip(Need(this), Need(that)) final def <+> (that: => Parser[A])(implicit m: Semigroup[A]): Parser[A] = Join(Need(this), Need(that)) final def const[B](k: B): Parser[B] = map(Equiv(to = a => k, from = b => generate1(this))) final def maybeAs[B](implicit ev: A <:< B, A: scala.reflect.ClassTag[A]): Parser[Option[B]] = maybe.map(Equiv[Option[A], Option[B]]( to = oa => oa.map(ev), from = ob => ob match { case None => None case Some(b) => if (A.runtimeClass.isAssignableFrom(b.getClass)) Some(b.asInstanceOf[A]) else None } )) final def as[B](implicit ev: A <:< B, A: scala.reflect.ClassTag[A]): Parser[B] = maybeAs[B].getOrFail final def sepBy[B](sep: => Parser[B]): Parser[Vector[A]] = (this.one <+> (sep >~> this).many) <|> this.maybe.map(Equiv[Option[A], Vector[A]](_.toVector, _.headOption)) final def sepBy1[B](sep: => Parser[B]): Parser[Vector[A]] = this.one <+> (sep >~> this).many final def maybe : Parser[Option[A]] = atMost(1).map(Equiv[Vector[A], Option[A]](_.headOption, _.toVector)) final def many : Parser[Vector[A]] = Repeat(Need(this), None, None) final def some : Parser[Vector[A]] = Repeat(Need(this), Some(1), None) final def one: Parser[Vector[A]] = exactly(1) final def exactly(count: Int) : Parser[Vector[A]] = Repeat(Need(this), Some(count), Some(count)) final def atLeast(min: Int) : Parser[Vector[A]] = Repeat(Need(this), Some(min), None) final def atMost(max: Int) : Parser[Vector[A]] = Repeat(Need(this), None, Some(max)) final def between(min: Int, max: Int) : Parser[Vector[A]] = Repeat(Need(this), Some(min), Some(max)) final def filter(f: A => Boolean): Parser[A] = Filter(Need(this), f) final def ^! [B: Documented, C: Documented](expected: B, unexpected: C): Parser[A] = Described(Need(this), Documented[B].document(expected), Documented[C].document(unexpected)) final def ^! [B: Documented](expected: B): Parser[A] = Described(Need(this), Documented[B].document(expected), Doc.Empty) final def unary_! : Parser[A] = Not(Need(negate), Need(this)) final def map[B](f: A <=> B): Parser[B] = Map(Need(this), f) final def show(implicit s: Show[A]) = Cord(toString) final def === (that: => Parser[A])(implicit equal: Equal[A]): Parser[Boolean] = Eq(Need(this), Need(that)) protected def negate: Parser[A] } implicit class ParserEquivSyntax[A, B](value: Parser[A <=> B]) { @inline final def <*> (that: => Parser[A]): Parser[B] = that <**> value } implicit class ParserOptionSyntax[A](value: Parser[Option[A]]) { def getOrFail: Parser[A] = self.getOrFail(value) } trait ParserInstances { implicit def ParserShow[A: Show]: Show[Parser[A]] = Show.show(_.show) def ParserAndSemigroup[A: Semigroup: Equal]: Semigroup[Parser[A]] = new Semigroup[Parser[A]] { def append(a1: Parser[A], a2: => Parser[A]) = a1 <&> a2 } def ParserOrSemigroup[A]: Semigroup[Parser[A]] = new Semigroup[Parser[A]] { def append(a1: Parser[A], a2: => Parser[A]) = a1 <|> a2 } implicit val ParserEquivApplicative = new EquivApplicative[Parser] { def point[A](a: => A): Parser[A] = Pure(a) def ap1[A, B](fa: => Parser[A])(f: => Parser[A <=> B]): Parser[B] = Apply(Need(f), Need(fa)) def map[A, B](fa: => Parser[A])(f: A <=> B): Parser[B] = Map(Need(fa), f) def zip2[A, B](fa: => Parser[A], fb: => Parser[B]): Parser[(A, B)] = zip2(fa, fb) } } object Parser extends ParserInstances protected def end(channel: Channel): Parser[Unit] = End(channel) protected def atom[C <: Channel, A](channel: C, atom: Atom[C, A]): Parser[A] = AtomParser(channel, atom) def zip2[A, B](pa: => Parser[A], pb: => Parser[B]): Parser[(A, B)] = Zip(Need(pa), Need(pb)) def constant[A](value: A): Parser[A] = Pure(value) def lookAhead[A](parser: => Parser[A]): Parser[A] = LookAhead(Need(parser)) def fail[A, B: Documented](expected: B): Parser[A] = (Fail.as[A] ^! Documented[B].document(expected)) def fail[A, B: Documented, C: Documented](expected: B, unexpected: C): Parser[A] = (Fail.as[A] ^! (Documented[B].document(expected), Documented[C].document(unexpected))) def ifThenElse[A](predicate: => Parser[Boolean])(ifTrue: => Parser[A], ifFalse: => Parser[A]) = { IfThenElse(Need(predicate), Need(ifTrue), Need(ifFalse)) } def getOrFail[A](p: Parser[Option[A]]): Parser[A] = GetOrFail(Need(p)) def check[A, B](condition: => Parser[A])(then: => Parser[B], orElse: => Parser[B]): Parser[B] = (lookAhead(condition) >~> then) <|> orElse def choice[A](p1: Parser[A], ps: Parser[A]*): Parser[A] = ps.foldLeft(p1)(_ <|> _) def manyTill[A, B](parser: => Parser[A], limit: => Parser[B]): Parser[Vector[A]] = (lookAhead(!limit) >~> parser).many def switch[A](catchAll: Parser[A])(cases: (Parser[Boolean], Parser[A])*): Parser[A] = { if (cases.length == 0) catchAll else { val (predicate, ifTrue) = cases.head ifThenElse(predicate)(ifTrue = ifTrue, ifFalse = switch(catchAll)(cases.tail: _*)) } } protected final case class AtomParser[C <: Channel, A](channel: C, atom: Atom[C, A]) extends Parser[A] { def negate : Parser[A] = AtomAlgebra.negate(atom) override def toString = "AtomParser(" + atom + ")" } /** * A parser that expects the end of input for the specified channel, and will * fail if there is more input. */ protected final case class End(channel: Channel) extends Parser[Unit] { def negate : Parser[Unit] = LookAhead(Need(AtomParser(channel, AtomAlgebra.anything(channel)))).const(Unit) override def toString = "End(" + channel + ")" } /** * A parser that consumes no input and always fails. Because this parser consumes * no input, it is not necessary for it to be parameterized by the channel. */ protected final case object Fail extends Parser[Unit] { def negate : Parser[Unit] = Pure(Unit) def as[A]: Parser[A] = this.map(Equiv(to = unit => sys.error("impossible"), from = a => Unit)) // ??? override def toString = "Fail" } /** * A parser that filters for elements that pass a specified predicate. */ protected final case class Filter[A](parser: Need[Parser[A]], f: A => Boolean) extends Parser[A] { self => def negate: Parser[A] = new Filter(parser, a => !f(a)) override def toString = "Filter(" + parser.value + ", " + f + ")" } protected final case class GetOrFail[A](parser: Need[Parser[Option[A]]]) extends Parser[A] { self => def negate: Parser[A] = GetOrFail[A](parser.map(p => !p)) override def toString = "GetOrFail(" + parser.value + ")" } /** * A parser that consumes no input and always succeeds with the specified value. */ protected final case class Pure[A](value: A) extends Parser[A] { def negate : Parser[A] = this override def toString = "Pure(" + value + ")" } /** * A parser that parsers a number of other parsers in some unspecified order. */ /* protected case class AllOf[L <: HList, O <: HList](parsers: L)(implicit val cm: Comapped.Aux[L, Parser, O], toList: ToList[L, Parser[_]]) extends Parser[O] { def negate : Parser[O] = { val parsers1: List[Parser[_]] = parsers.toList ??? } override def toString = "AllOf(" + parsers + ")" } */ /** * A parser that consumes no input but produces the output of another parser. */ protected final case class LookAhead[A](parser: Need[Parser[A]]) extends Parser[A] { def negate : Parser[A] = LookAhead(Need(!parser.value)) override def toString = "LookAhead(" + parser.value + ")" } /** * A parser that determines the equivalence of two other parsers. * * Note: This parser is redundant and is included only for performance reasons. */ protected final case class Eq[A: Equal](left: Need[Parser[A]], right: Need[Parser[A]]) extends Parser[Boolean] { def equal: Equal[A] = Equal[A] def negate : Parser[Boolean] = Eq(left, right)(new Equal[A] { def equal(a1: A, a2: A): Boolean = !Equal[A].equal(a1, a2) }) override def toString = "Eq(" + left.value + ", " + right.value + ")" } /** * A parser that joins together the output of two other parsers (of the same type) * using a provided semigroup. * * FIXME: This parser is too powerful and needs restricting. */ protected final case class Join[A: Semigroup](left: Need[Parser[A]], right: Need[Parser[A]]) extends Parser[A] { def semigroup: Semigroup[A] = Semigroup[A] def flatten: Vector[Need[Parser[A]]] = { def flatten0(v: Parser[A]): Need[Vector[Need[Parser[A]]]] = v match { case x : Join[A] => for { left <- x.left right <- x.right leftFlattened <- flatten0(left) rightFlattened <- flatten0(right) } yield leftFlattened ++ rightFlattened case _ => Need(Vector(Need(v))) } flatten0(this).value } def negate : Parser[A] = { val negatedLeft = left.map(p => !p) val negatedRight = right.map(p => !p) Join(negatedLeft, negatedRight) <|> Join(left, negatedRight) <|> Join(negatedLeft, right) } override def toString = "Join(" + left.value + ", " + right.value + ")" } protected final case class Intersect[A: Equal](left: Need[Parser[A]], right: Need[Parser[A]]) extends Parser[A] { def equal: Equal[A] = Equal[A] def flatten: Vector[Need[Parser[A]]] = { def flatten0(v: Parser[A]): Need[Vector[Need[Parser[A]]]] = v match { case x : Intersect[A] => for { left <- x.left right <- x.right leftFlattened <- flatten0(left) rightFlattened <- flatten0(right) } yield leftFlattened ++ rightFlattened case _ => Need(Vector(Need(v))) } flatten0(this).value } def negate : Parser[A] = { val negatedLeft = left.map(p => !p) val negatedRight = right.map(p => !p) Intersect(negatedLeft, negatedRight) <|> Intersect(left, negatedRight) <|> Intersect(negatedLeft, right) } override def toString = "Join(" + left.value + ", " + right.value + ")" } protected final case class Zip[A, B](left: Need[Parser[A]], right: Need[Parser[B]]) extends Parser[(A, B)] { def negate: Parser[(A, B)] = { val negatedLeft = left.map(p => !p) val negatedRight = right.map(p => !p) Zip(negatedLeft, negatedRight) <|> Zip(left, negatedRight) <|> Zip(negatedLeft, right) } override def toString = "Zip(" + left.value + ", " + right.value + ")" } /** * Parsers a boolean, then based on the value of that boolean, parses with one of two * provided parsers. This parser provides the ability to do simple context-sensitive * parsing. It is the only way of doing such parsing within this framework. */ protected final case class IfThenElse[A](predicate: Need[Parser[Boolean]], ifTrue: Need[Parser[A]], ifFalse: Need[Parser[A]]) extends Parser[A] { def negate : Parser[A] = { // TODO: Include other possibilities IfThenElse(predicate, ifTrue.map(v => !v), ifFalse.map(v => !v)) } override def toString = "IfThenElse(" + predicate.value + ", " + ifTrue.value + "," + ifFalse.value + ")" } /** * A parser that parsers one of two alternatives. This parser is left-biased. * * TODO: Find some way to seal the hierarchy so we can delete GetOrFail */ protected final case class Or[A](left: Need[Parser[A]], right: Need[Parser[A]]) extends Parser[A] { def flatten: Vector[Need[Parser[A]]] = { def flatten0(v: Parser[A]): Need[Vector[Need[Parser[A]]]] = v match { case x : Or[A] => for { left <- x.left leftMapped <- flatten0(left) right <- x.right rightMapped <- flatten0(right) } yield leftMapped ++ rightMapped case _ => Need(Vector(Need(v))) } flatten0(this).value } def negate : Parser[A] = ??? // TODO: !left.value <&> !right.value override def toString = "Or(" + left.value + ", " + right.value + ")" } /** * A parser that is the negation of some other parser. */ protected final case class Not[A](negated: Need[Parser[A]], original: Need[Parser[A]]) extends Parser[A] { def negate : Parser[A] = original.value override def toString = "Not(" + negated.value + ", " + original.value + ")" } /** * A parser that repeats another parser within specified ranges. */ protected final case class Repeat[A](parser: Need[Parser[A]], min: Option[Int], max: Option[Int]) extends Parser[Vector[A]] { def negate : Parser[Vector[A]] = ??? override def toString = "Repeat(" + parser.value + ", " + min + ", " + max + ")" } /** * A parser that maps the value of one parser into another value using a provided function. */ protected final case class Map[A, B](parser: Need[Parser[A]], f: A <=> B) extends Parser[B] { def negate : Parser[B] = Map(parser.map(v => !v), f) override def toString = "Map(" + parser.value + ", " + f + ")" } /** * A parser that applies a parser of a function to a parser of a value. */ protected final case class Apply[A, B](f: Need[Parser[A <=> B]], value: Need[Parser[A]]) extends Parser[B] { def negate : Parser[B] = { // Apply needs to parse f and then value to succeed. So we can produce // elements not matched by this parser by negating f, value, or both. Apply(f.map(p => !p), value.map(p => !p)) <|> Apply(f, value.map(p => !p)) <|> Apply(f.map(p => !p), value) } override def toString = "Apply(" + f + ", " + value.value + ")" } /** * A parser that describes failure cases for another parser. */ protected final case class Described[A](parser: Need[Parser[A]], expected: Doc, unexpected: Doc) extends Parser[A] { def negate : Parser[A] = Described(parser.map(p => !p), unexpected, expected) override def toString = "Described(" + parser.value + ")" } }
redeyes/redeyes
src/main/scala/redeyes/parser/parser.scala
Scala
mit
16,643
package org.apache.spark.mllib.treelib.core import org.apache.spark._ import org.apache.spark.SparkContext._ import org.apache.spark.rdd._ import java.io._ import java.io.DataOutputStream import java.io.FileOutputStream abstract class TreeModel extends Serializable { /** * The index of target feature */ var yIndex : Int = -1; /** * The indexes of the features which were used to predict target feature */ var xIndexes : Set[Int] = Set[Int]() /** * all features information */ var fullFeatureSet : FeatureSet = new FeatureSet(List[Feature]()) /** * The features which were used to build the tree, they were re-indexed from featureSet */ //var usefulFeatureSet : FeatureSet = new FeatureSet(List[Feature]()) var usefulFeatures : Set[Int] = null /** * the root node of the tree */ var tree : Node = null var minsplit : Int = 10 var threshold : Double = 0.01 var maximumComplexity : Double = 0.01 var maxDepth : Int = 63 var yFeature: String = "" var xFeatures : Set[Any] = Set[Any]() /*** * Is the tree empty ? */ def isEmpty() = (tree == null) /** * Is the tree is build completely */ var isComplete = false /** * The tree builder which created this model */ var treeBuilder : TreeBuilder = null /******************************************************/ /* REGION FUNCTIONS */ /******************************************************/ /** * Predict Y base on input features * * @param record an array, which its each element is a value of each input feature * @param ignoreBranchSet a set of branch ID, which won't be used to predict (only use it's root node) * @return a predicted value * @throw Exception if the tree is empty */ def predict(record: Array[String], ignoreBranchSet: Set[BigInt] = Set[BigInt]()): String /** * Evaluate the accuracy of regression tree * @param input an input record (uses the same delimiter with trained data set) * @param delimiter the delimiter of training data */ def evaluate(input: RDD[String], delimiter : Char = ',') /** * Write the current tree model to file * * @param path where we want to write to */ def writeToFile(path: String) = { val oos = new ObjectOutputStream(new FileOutputStream(path)) oos.writeObject(this) oos.close } }
bigfootproject/spark-dectree
spark/mllib/src/main/scala/org/apache/spark/mllib/treelib/core/TreeModel.scala
Scala
apache-2.0
2,416
/** ******************************************************************************************** * Scaliapp * Version 0.1 * * The primary distribution site is * * http://scaliapp.alanrodas.com * * Copyright 2014 Alan Rodas Bonjour * * Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file * except in compliance with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software distributed under the * License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, * either express or implied. See the License for the specific language governing permissions * and limitations under the License. * *********************************************************************************************/ package com.alanrodas.scaliapp.core.runtime /** * Represents any value passed as an argument to a command. * * This abstract class represent any form of value passed, weather * named, or unnamed. It has two known subclasses, * [[com.alanrodas.scaliapp.core.runtime.UnnamedValue UnnamedValue]] and * [[com.alanrodas.scaliapp.core.runtime.NamedValue NamedValue]]. * * @param value The value passed to the command */ abstract class AbstractValue(val value : String) /** * Represents an unnamed value passed to a command. * * This is a concrete implementation of * [[com.alanrodas.scaliapp.core.runtime.AbstractValue AbstractValue]] * for unnamed values, that means, the values that are passed to a command * that accepts multiple arguments. * * @param value The value passed to the command */ case class UnnamedValue(override val value : String) extends AbstractValue(value) /** * Represents a named value passed to a command. * * This is a concrete implementation of * [[com.alanrodas.scaliapp.core.runtime.AbstractValue AbstractValue]] * for named values, that means, the values that are passed to a command * that accepts a concrete amount of arguments. * * This class also provides accessors for the name of the value and * a boolean stating if the value was passed as an argument or if it * is the default value. * * @param name The name of the value passed to the command * @param value The value passed to the command * @param defined ''true'' if it was defined by the user, ''false'' otherwise */ case class NamedValue(name : String, override val value : String, defined : Boolean) extends AbstractValue(value) { /** * Returns the value as an instance of the type ''T'' * * @param converter The function to convert the String value to a ''T'' * @tparam T Any type argument that can be used */ def value[T](implicit converter : String => T) : T = value }
alanrodas/scaliapp
src/main/scala/com/alanrodas/scaliapp/core/runtime/values.scala
Scala
apache-2.0
2,813
/* * Copyright 2008 Juha Komulainen * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package solitarius.rules import org.specs._ import solitarius.general._ import Utils.shuffled import Rank._ object SpiderSpecification extends Specification { "Pile" should { "show only the topmost card" in { val pile = new SpiderPile val (card :: cards) = randomCards(6) cards.reverse.foreach(pile.push) pile.showOnlyTop() pile.isEmpty must beFalse pile.size mustEqual 5 pile.top mustEqual Some(cards.head) pile.visibleCards mustEqual List(cards.head) pile.visibleCount mustEqual 1 } "be allowed to be empty" in { val pile = new SpiderPile pile.isEmpty must beTrue pile.size mustEqual 0 pile.top mustEqual None pile.visibleCards mustEqual Nil pile.visibleCount mustEqual 0 } "allow dropping cards on top" in { val pile = new SpiderPile val (card :: cards) = hearts(Five, Six, Eight, Jack, Ace, King) cards.reverse.foreach(pile.push) pile.showOnlyTop() val seq = new DummySequence(card) pile.canDrop(seq) must beTrue pile.drop(seq) pile.isEmpty must beFalse pile.size mustEqual 6 pile.top mustEqual Some(card) pile.visibleCards mustEqual List(card, cards.head) pile.visibleCount mustEqual 2 } "flip the new top card to be visible when top card is popped" in { val pile = new SpiderPile val cards = randomCards(6) cards.reverse.foreach(pile.push) pile.showOnlyTop() val seq = pile.sequence(1) seq must beSome[Sequence] seq.get.toList mustEqual List(cards(0)) seq.get.removeFromOriginalPile() pile.size mustEqual 5 pile.top mustEqual Some(cards(1)) pile.visibleCards mustEqual List(cards(1)) pile.visibleCount mustEqual 1 } "support popping the last card" in { val pile = new SpiderPile val cards = randomCards(1) pile.push(cards.head) pile.visibleCards mustEqual cards pile.visibleCount mustEqual 1 val seq = pile.sequence(1) seq must beSome[Sequence] seq.get.toList mustEqual List(cards.head) seq.get.removeFromOriginalPile pile.visibleCards must beEmpty pile.visibleCount mustEqual 0 } "support returning sequences of cards" in { val pile = new SpiderPile val cards = hearts(Five, Six, Seven, Nine, Jack, Ace, King) cards.drop(3).reverse.foreach(pile.push) pile.showOnlyTop() cards.take(3).reverse.foreach(pile.push) pile.longestDraggableSequence mustEqual 3 } } def hearts(ranks: Rank*) = ranks.map(new Card(_, Suit.Heart)).toList def randomCards(count: Int) = Deck.shuffledCards.take(count) class DummySequence(cards: Card*) extends Sequence(cards.toList) { override def removeFromOriginalPile() { } } }
komu/solitarius
src/test/scala/solitarius/rules/SpiderSpecification.scala
Scala
apache-2.0
3,629
/** * This file is part of SensApp [ http://sensapp.modelbased.net ] * * Copyright (C) 2011- SINTEF ICT * Contact: SINTEF ICT <nicolas.ferry@sintef.no> * * Module: net.modelbased.sensapp * * SensApp is free software: you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as * published by the Free Software Foundation, either version 3 of * the License, or (at your option) any later version. * * SensApp is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General * Public License along with SensApp. If not, see * <http://www.gnu.org/licenses/>. */ package net.modelbased.sensapp.restful import akka.actor.Actor import akka.http._ import javax.ws.rs.core.MediaType /** * A resource handler * @param pattern the URI schema that triggers this handler * @param request the actual requested URI */ abstract class ResourceHandler(val pattern: URIPattern, val request: String) extends Actor { /** * Contains the pass-by-uri parameters, declared in pattern */ protected val _params: Map[String, String] = pattern.extract(request) /** * The receive method is an indirection to Sensapp dispatcher */ def receive = { case r: RequestMethod => dispatch(r) case _ => throw new IllegalArgumentException } /** * A handler is a function of RequestMethod to Boolean. It implements * the logic associated to a given method applied to a given resource */ protected type Handler = RequestMethod => Boolean /** * Bindings have to be provided by the developer to bind a HTTP verb * to a given handler */ protected val _bindings: Map[String, Handler] /** * The dispatch method retrieve the handler associated to a request, * and apply it to the request. * * @param method the requestMethod received as invocation */ private def dispatch(method: RequestMethod): Boolean = { val verb = method.request.getMethod() _bindings.get(verb) match { case Some(handler) => handleRequest(handler, method) case None => handleNoHandler(verb, method) } } /** * Implements the behavior when no available handlers are found * * @param verb the unhandled HTTP verb * @param method the request actually received */ private def handleNoHandler(verb: String, method: RequestMethod): Boolean = { method.response.setContentType(MediaType.TEXT_PLAIN) method NotImplemented ("[" + verb + "] is not supported yet!") } /** * Apply a given handler to a given request. * * Exceptions are forwarded to the used as ServerError response * * @param lambda the handler to be applied * @param method the receive request */ private def handleRequest(lambda: Handler, method: RequestMethod): Boolean = { try { lambda(method) } catch { case e: Exception => { method.response.setContentType(MediaType.TEXT_PLAIN) val msg = e.getMessage() method Error msg } } } }
SINTEF-9012/sensapp
_attic/net.modelbased.sensapp.restful/src/main/scala/net/modelbased/sensapp/restful/ResourceHandler.scala
Scala
lgpl-3.0
3,255
package org.mrgeo.utils object Memory { def used(): String = { val bytes = Runtime.getRuntime.totalMemory() - Runtime.getRuntime.freeMemory() format(bytes) } def free():String = { format(Runtime.getRuntime.freeMemory) } def allocated():String = { format(Runtime.getRuntime.totalMemory()) } def total():String = { format(Runtime.getRuntime.maxMemory()) } def format(bytes: Long): String = { val unit = 1024 if (bytes < unit) { return bytes + "B" } val exp = (Math.log(bytes) / Math.log(unit)).toInt val pre = "KMGTPE".charAt(exp - 1) "%.1f%sB".format(bytes / Math.pow(unit, exp), pre) } }
tjkrell/MrGEO
mrgeo-core/src/main/scala/org/mrgeo/utils/Memory.scala
Scala
apache-2.0
667
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.spark.sql.catalyst.optimizer import org.apache.spark.sql.catalyst.analysis._ import org.apache.spark.sql.catalyst.dsl.expressions._ import org.apache.spark.sql.catalyst.dsl.plans._ import org.apache.spark.sql.catalyst.expressions._ import org.apache.spark.sql.catalyst.expressions.Literal.{FalseLiteral, TrueLiteral} import org.apache.spark.sql.catalyst.plans.PlanTest import org.apache.spark.sql.catalyst.plans.logical._ import org.apache.spark.sql.catalyst.rules._ import org.apache.spark.sql.internal.SQLConf import org.apache.spark.sql.types.{IntegerType, StructField, StructType} class BinaryComparisonSimplificationSuite extends PlanTest with PredicateHelper { object Optimize extends RuleExecutor[LogicalPlan] { val batches = Batch("AnalysisNodes", Once, EliminateSubqueryAliases) :: Batch("Infer Filters", Once, InferFiltersFromConstraints) :: Batch("Constant Folding", FixedPoint(50), NullPropagation, ConstantFolding, BooleanSimplification, SimplifyBinaryComparison, PruneFilters) :: Nil } val nullableRelation = LocalRelation('a.int.withNullability(true)) val nonNullableRelation = LocalRelation('a.int.withNullability(false)) test("Preserve nullable exprs when constraintPropagation is false") { withSQLConf(SQLConf.CONSTRAINT_PROPAGATION_ENABLED.key -> "false") { val a = Symbol("a") for (e <- Seq(a === a, a <= a, a >= a, a < a, a > a)) { val plan = nullableRelation.where(e).analyze val actual = Optimize.execute(plan) val correctAnswer = plan comparePlans(actual, correctAnswer) } } } test("Preserve non-deterministic exprs") { val plan = nonNullableRelation .where(Rand(0) === Rand(0) && Rand(1) <=> Rand(1)).analyze val actual = Optimize.execute(plan) val correctAnswer = plan comparePlans(actual, correctAnswer) } test("Nullable Simplification Primitive: <=>") { val plan = nullableRelation.select('a <=> 'a).analyze val actual = Optimize.execute(plan) val correctAnswer = nullableRelation.select(Alias(TrueLiteral, "(a <=> a)")()).analyze comparePlans(actual, correctAnswer) } test("Non-Nullable Simplification Primitive") { val plan = nonNullableRelation .select('a === 'a, 'a <=> 'a, 'a <= 'a, 'a >= 'a, 'a < 'a, 'a > 'a).analyze val actual = Optimize.execute(plan) val correctAnswer = nonNullableRelation .select( Alias(TrueLiteral, "(a = a)")(), Alias(TrueLiteral, "(a <=> a)")(), Alias(TrueLiteral, "(a <= a)")(), Alias(TrueLiteral, "(a >= a)")(), Alias(FalseLiteral, "(a < a)")(), Alias(FalseLiteral, "(a > a)")()) .analyze comparePlans(actual, correctAnswer) } test("Expression Normalization") { val plan = nonNullableRelation.where( 'a * Literal(100) + Pi() === Pi() + Literal(100) * 'a && DateAdd(CurrentDate(), 'a + Literal(2)) <= DateAdd(CurrentDate(), Literal(2) + 'a)) .analyze val actual = Optimize.execute(plan) val correctAnswer = nonNullableRelation.analyze comparePlans(actual, correctAnswer) } test("SPARK-26402: accessing nested fields with different cases in case insensitive mode") { val expId = NamedExpression.newExprId val qualifier = Seq.empty[String] val structType = StructType( StructField("a", StructType(StructField("b", IntegerType, false) :: Nil), false) :: Nil) val fieldA1 = GetStructField( GetStructField( AttributeReference("data1", structType, false)(expId, qualifier), 0, Some("a1")), 0, Some("b1")) val fieldA2 = GetStructField( GetStructField( AttributeReference("data2", structType, false)(expId, qualifier), 0, Some("a2")), 0, Some("b2")) // GetStructField with different names are semantically equal; thus, `EqualTo(fieldA1, fieldA2)` // will be optimized to `TrueLiteral` by `SimplifyBinaryComparison`. val originalQuery = nonNullableRelation.where(EqualTo(fieldA1, fieldA2)) val optimized = Optimize.execute(originalQuery) val correctAnswer = nonNullableRelation.analyze comparePlans(optimized, correctAnswer) } test("Simplify null and nonnull with filter constraints") { val a = Symbol("a") Seq(a === a, a <= a, a >= a, a < a, a > a).foreach { condition => val plan = nonNullableRelation.where(condition).analyze val actual = Optimize.execute(plan) val correctAnswer = nonNullableRelation.analyze comparePlans(actual, correctAnswer) } // infer filter constraints will add IsNotNull Seq(a === a, a <= a, a >= a).foreach { condition => val plan = nullableRelation.where(condition).analyze val actual = Optimize.execute(plan) val correctAnswer = nullableRelation.where('a.isNotNull).analyze comparePlans(actual, correctAnswer) } Seq(a < a, a > a).foreach { condition => val plan = nullableRelation.where(condition).analyze val actual = Optimize.execute(plan) val correctAnswer = nullableRelation.analyze comparePlans(actual, correctAnswer) } } test("Simplify nullable without constraints propagation") { withSQLConf(SQLConf.CONSTRAINT_PROPAGATION_ENABLED.key -> "false") { val a = Symbol("a") Seq(And(a === a, a.isNotNull), And(a <= a, a.isNotNull), And(a >= a, a.isNotNull)).foreach { condition => val plan = nullableRelation.where(condition).analyze val actual = Optimize.execute(plan) val correctAnswer = nullableRelation.where('a.isNotNull).analyze comparePlans(actual, correctAnswer) } Seq(And(a < a, a.isNotNull), And(a > a, a.isNotNull)) .foreach { condition => val plan = nullableRelation.where(condition).analyze val actual = Optimize.execute(plan) val correctAnswer = nullableRelation.analyze comparePlans(actual, correctAnswer) } } } }
maropu/spark
sql/catalyst/src/test/scala/org/apache/spark/sql/catalyst/optimizer/BinaryComparisonSimplificationSuite.scala
Scala
apache-2.0
6,819
package im.tox.antox.fragments import java.io.{IOException, File} import java.text.SimpleDateFormat import java.util.Date import android.app.{Dialog, Activity} import android.content.{Context, Intent} import android.graphics.{BitmapFactory, Bitmap} import android.media.ThumbnailUtils import android.net.Uri import android.os.{Bundle, Environment} import android.preference.PreferenceManager import android.provider.MediaStore import android.support.v4.app.DialogFragment import android.support.v4.content.{CursorLoader, FileProvider} import android.support.v7.app.AlertDialog import android.util.Log import android.view.View import android.view.View.OnClickListener import android.view.ViewGroup.LayoutParams import android.widget.{Toast, Button, ImageView} import im.tox.antox.data.{State, AntoxDB} import im.tox.antox.tox.ToxSingleton import im.tox.antox.transfer.FileUtils import im.tox.antox.utils.Constants import im.tox.antox.wrapper.BitmapUtils.RichBitmap import im.tox.antox.wrapper.FileKind import im.tox.antox.wrapper.FileKind.AVATAR import im.tox.antoxnightly.R //not a DialogFragment (i. because they don't work with PreferenceActivity class AvatarDialog(activity: Activity) { val preferences = PreferenceManager.getDefaultSharedPreferences(activity) def onActivityResult(requestCode: Int, resultCode: Int, data: Intent) { if (resultCode == Activity.RESULT_OK) { val name = preferences.getString("tox_id", "") val avatarFile = new File(AVATAR.getStorageDir(activity), name) if (requestCode == Constants.IMAGE_RESULT) { val uri = data.getData val filePathColumn = Array(MediaStore.MediaColumns.DATA, MediaStore.MediaColumns.DISPLAY_NAME) val loader = new CursorLoader(activity, uri, filePathColumn, null, null, null) val cursor = loader.loadInBackground() if (cursor != null) { if (cursor.moveToFirst()) { val imageFile = new File(cursor.getString(cursor.getColumnIndexOrThrow(filePathColumn(0)))) if (!imageFile.exists()) return FileUtils.copy(imageFile, avatarFile) } } } resizeAvatar(avatarFile) match { case Some(bitmap) => FileUtils.writeBitmap(bitmap, Bitmap.CompressFormat.PNG, 0, avatarFile) preferences.edit().putString("avatar", name).commit() case None => avatarFile.delete() Toast.makeText(activity, activity.getResources.getString(R.string.avatar_too_large_error), Toast.LENGTH_SHORT) } val db = new AntoxDB(activity) db.setAllFriendReceivedAvatar(false) db.close() State.transfers.updateSelfAvatar(activity) } } def resizeAvatar(avatar: File): Option[Bitmap] = { val rawBitmap = BitmapFactory.decodeFile(avatar.getPath) val cropDimension = if (rawBitmap.getWidth >= rawBitmap.getHeight) { rawBitmap.getHeight } else { rawBitmap.getWidth } var bitmap = ThumbnailUtils.extractThumbnail(rawBitmap, cropDimension, cropDimension) val MAX_DIMENSIONS = 256 val MIN_DIMENSIONS = 16 var currSize = MAX_DIMENSIONS while (currSize >= MIN_DIMENSIONS && bitmap.getSizeInBytes > Constants.MAX_AVATAR_SIZE) { bitmap = Bitmap.createScaledBitmap(bitmap, currSize, currSize, false) currSize /= 2 } if (bitmap.getSizeInBytes > Constants.MAX_AVATAR_SIZE) { None } else { Some(bitmap) } } def refreshAvatar(avatarView: ImageView): Unit = { val avatar = AVATAR.getAvatarFile(preferences.getString("avatar", ""), activity) if (avatar.isDefined && avatar.get.exists()) { avatarView.setImageURI(Uri.fromFile(avatar.get)) } else { avatarView.setImageResource(R.drawable.ic_action_contact) } } var mDialog: Option[Dialog] = None def show(): Unit = { val inflator = activity.getLayoutInflater val view = inflator.inflate(R.layout.dialog_avatar, null) mDialog = Some(new AlertDialog.Builder(activity, R.style.AppCompatAlertDialogStyle) .setView(view).create()) val photoButton = view.findViewById(R.id.avatar_takephoto).asInstanceOf[Button] val fileButton = view.findViewById(R.id.avatar_pickfile).asInstanceOf[Button] photoButton.setOnClickListener(new View.OnClickListener { override def onClick(v: View): Unit = { val cameraIntent = new Intent(android.provider.MediaStore.ACTION_IMAGE_CAPTURE) if (cameraIntent.resolveActivity(activity.getPackageManager) != null) { val fileName = preferences.getString("tox_id", "") try { val file = new File(AVATAR.getStorageDir(activity), fileName) cameraIntent.putExtra(MediaStore.EXTRA_OUTPUT, Uri.fromFile(file)) activity.startActivityForResult(cameraIntent, Constants.PHOTO_RESULT) } catch { case e: IOException => e.printStackTrace() } } else { Toast.makeText(activity, activity.getResources.getString(R.string.no_camera_intent_error), Toast.LENGTH_SHORT) } } }) fileButton.setOnClickListener(new OnClickListener { override def onClick(v: View): Unit = { val intent = new Intent(Intent.ACTION_PICK, android.provider.MediaStore.Images.Media.EXTERNAL_CONTENT_URI) activity.startActivityForResult(intent, Constants.IMAGE_RESULT) } }) refreshAvatar(view.findViewById(R.id.avatar_image).asInstanceOf[ImageView]) if (mDialog.get.isShowing) close() mDialog.get.show() } def close(): Unit = { mDialog.foreach(_.cancel()) } }
Astonex/Antox
app/src/main/scala/im/tox/antox/fragments/AvatarDialog.scala
Scala
gpl-3.0
5,589
//:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** @author John Miller * @version 1.2 * @date Fri Jul 1 14:01:05 EDT 2016 * @see LICENSE (MIT style license file). */ package scalation.util import scala.collection.mutable.{AbstractMap, Map, MapLike} import scala.reflect.ClassTag //:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** The `BpTreeMap` class provides B+Tree maps. B+Trees are used as multi-level * index structures that provide efficient access for both point queries and range * queries. * @see docs.scala-lang.org/overviews/collections/concrete-mutable-collection-classes.html * @see www.scala-lang.org/api/current/#scala.collection.mutable.MapLike *------------------------------------------------------------------------------ * @param half the number of keys per node range from 'half' to '2 * half' */ class BpTreeMap [K <% Ordered [K]: ClassTag, V: ClassTag] (half: Int = 2) extends AbstractMap [K, V] with Map [K, V] with MapLike [K, V, BpTreeMap [K, V]] with Serializable { /** The debug flag for tracking node splits */ private val DEBUG = true /** The maximum number of keys per node */ private val mx = 2 * half /** The root of 'this' B+Tree */ private var root = new Node [K] (true, half) /** The first leaf node in 'this' B+Tree map */ private val firstLeaf = root /** The counter for the number of nodes accessed (for performance testing) */ private var _count = 0 /** The counter for the number of keys in 'this' B+Tree map */ private var keyCount = 0 // P U B L I C M E T H O D S ------------------------------------------- //:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** Put the key-value pair 'kv' in 'this' B+Tree map, returning a reference to * the updated tree. * @param kv the key-value pair to insert */ def += (kv: (K, V)): BpTreeMap.this.type = { keyCount += 1; insert (kv._1, kv._2, root); this } //:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** Remove the key-value pair with key 'key' from 'this' B+Tree map, returning * a reference to the updated tree. * @param key the key to remove */ def -= (key: K): BpTreeMap.this.type = throw new NoSuchMethodException ("-= method not yet supported") //:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** Compare two keys. * @param key1 the first key * @param key2 the second key */ def compare (key1: K, key2: K): Int = key1 compare key2 //:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** Return the total number of nodes accessed. */ def count: Int = _count //:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** Return an empty B+Tree map. */ override def empty: BpTreeMap [K, V] = new BpTreeMap [K, V] (half) //:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** Apply function 'f' to each key-value pair in 'this' B+Tree map. * @param f the function to be applied */ override def foreach [U] (f: ((K, V)) => U) { for (kv <- iterator) f(kv) } //:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** Optionally return the value in 'this' B+Tree map associated with the * key 'key'. Use 'apply' method to remove optional. * @param key the key used for look up */ def get (key: K): Option [V] = Option (find (key, root)) //:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** Create an iterator over the key-value pairs in 'this' B+Tree map. * The iteration proceeds over the leaf level of the tree. */ def iterator: Iterator [(K, V)] = { var nn = firstLeaf var ii = 0 new Iterator [(K, V)] { def hasNext: Boolean = nn != null def next: (K, V) = { val kv = (nn.key(ii), nn.ref(ii).asInstanceOf [V]) if (ii < nn.nKeys - 1) ii += 1 else { ii = 0; nn = nn.ref(mx).asInstanceOf [Node [K]] } kv } // next } // Iterator } // iterator //:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** Return the size of 'this' B+Tree map. */ override def size: Int = keyCount //:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** Print the keys in 'this' B+Tree map. */ def printTree () { println ("BpTreeMap"); printT (root, 0); println ("-" * 50) } // P R I V A T E M E T H O D S ----------------------------------------- //:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** Print 'this' B+Tree map using a preorder traversal and indenting each level. * @param n the current node to print * @param level the current level in the B+Tree */ private def printT (n: Node [K], level: Int) { println ("-" * 50) print ("\\t" * level + "[ . ") for (i <- 0 until n.nKeys) print (n.key(i) + " . ") println ("]") if (! n.isLeaf) for (j <- 0 to n.nKeys) printT (n.asInstanceOf [Node [K]].ref(j).asInstanceOf [Node [K]], level + 1) } // printT //:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** Recursive helper method for finding key 'key' in 'this' B+tree map. * @param key the key to find * @param n the current node */ private def find (key: K, n: Node [K]): V = { _count += 1 val ip = n.find (key) if (n.isLeaf) { if (ip < n.nKeys && key == n.key(ip)) n.ref(ip).asInstanceOf [V] else null.asInstanceOf [V] } else { find (key, n.ref(ip).asInstanceOf [Node [K]]) } // if } // find //:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** Recursive helper method for inserting 'key' and 'ref' into 'this' B+tree map. * @param key the key to insert * @param ref the value/node to insert * @param n the current node */ private def insert (key: K, ref: V, n: Node [K]): (K, Node [K]) = { var kd_rt: (K, Node [K]) = null if (n.isLeaf) { // handle leaf node kd_rt = add (n, key, ref) if (kd_rt != null) { if (n != root) return kd_rt root = new Node (root, kd_rt._1, kd_rt._2, half) } // if } else { // handle internal node kd_rt = insert (key, ref, n.ref(n.find (key)).asInstanceOf [Node [K]]) if (kd_rt != null) { kd_rt = addI (n, kd_rt._1, kd_rt._2) if (kd_rt != null && n == root) root = new Node (root, kd_rt._1, kd_rt._2, half) } // if } // if kd_rt } // insert //:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** Add a new key 'k' and value 'v' into leaf node 'n'. If it is already full, * a 'split' will be triggered, in which case the divider key and new * right sibling node are returned. * @param n the current node * @param k the new key * @param v the new left value */ private def add (n: Node [K], k: K, v: Any): (K, Node [K]) = { var kd_rt: (K, Node [K]) = null // divider key, right sibling var split = false if (n.isFull) { split = true if (DEBUG) println ("before leaf split: n = " + n) kd_rt = n.split () // split n -> r & rt if (DEBUG) println ("after leaf split: n = " + n + "\\nkd_rt = " + kd_rt) if (k > n.key(n.nKeys - 1)) { kd_rt._2.wedge (k, v, kd_rt._2.find (k), true) // wedge into right sibling return kd_rt } // if } // if n.wedge (k, v, n.find (k), true) // wedge into current node if (split) kd_rt else null } // add //:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** Add a new key 'k' and value 'v' into internal node 'n'. If it is already * full, a 'split' will be triggered, in which case the divider key and new * right sibling node are returned. * @param n the current node * @param k the new key * @param v the new left value */ private def addI (n: Node [K], k: K, v: Any): (K, Node [K]) = { var kd_rt: (K, Node [K]) = null // divider key, right sibling var split = false if (n.isFull) { split = true if (DEBUG) println ("before internal split: n = " + n) kd_rt = n.split () // split n -> n & rt n.nKeys -= 1 // remove promoted largest left key if (DEBUG) println ("after internal split: n = " + n + "\\nkd_rt = " + kd_rt) if (k > n.key(n.nKeys - 1)) { kd_rt._2.wedge (k, v, kd_rt._2.find (k), false) // wedge into right sibling return kd_rt } // if } // if n.wedge (k, v, n.find (k), false) // wedge into current node if (split) kd_rt else null } // addI } // BpTreeMap class //:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** The `BpTreeMapTest` object is used to test the `BpTreeMap` class by inserting * increasing key values. * > run-main scalation.util.BpTreeMapTest */ object BpTreeMapTest extends App { val tree = new BpTreeMap [Int, Int] () val totKeys = 26 for (i <- 1 until totKeys by 2) { tree.put (i, i * i) tree.printTree () println ("=" * 50) } // for for (i <- 0 until totKeys) println ("key = " + i + " value = " + tree.get(i)) println ("-" * 50) for (it <- tree.iterator) println (it) println ("-" * 50) tree.foreach (println (_)) println ("-" * 50) println ("size = " + tree.size) println ("Average number of nodes accessed = " + tree.count / totKeys.toDouble) } // BpTreeMapTest object //:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** The `BpTreeMapTest2` object is used to test the `BpTreeMap` class by inserting * random key values. * > run-main scalation.util.BpTreeMapTest2 */ object BpTreeMapTest2 extends App { val tree = new BpTreeMap [Int, Int] () val totKeys = 50 val mx = 10 * totKeys // for unique random integers // import scalation.random.RandiU0 // comment out due to package dependency // val stream = 2 // val rng = RandiU0 (mx, stream) // for (i <- 1 until totKeys) tree.put (rng.iigen (mx), i * i) // for random integers import java.util.Random val seed = 1 val rng = new Random (seed) for (i <- 1 until totKeys) tree.put (rng.nextInt (mx), i * i) tree.printTree () println ("-" * 50) println ("size = " + tree.size) println ("Average number of nodes accessed = " + tree.count / totKeys.toDouble) } // BpTreeMapTest2 object
scalation/fda
scalation_1.2/src/main/scala/scalation/util/BpTreeMap.scala
Scala
mit
11,622
val a: (Int) => Int = _.floatValue //False
ilinum/intellij-scala
testdata/typeConformance/basic/FunctionFalseConformance.scala
Scala
apache-2.0
42
/** * This file is part of mycollab-web. * * mycollab-web is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * mycollab-web is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with mycollab-web. If not, see <http://www.gnu.org/licenses/>. */ package com.esofthead.mycollab.module.project.view.settings import com.esofthead.mycollab.common.UrlTokenizer import com.esofthead.mycollab.core.arguments.NumberSearchField import com.esofthead.mycollab.eventmanager.EventBusFactory import com.esofthead.mycollab.module.project.domain.criteria.ProjectRoleSearchCriteria import com.esofthead.mycollab.module.project.events.ProjectEvent import com.esofthead.mycollab.module.project.view.ProjectUrlResolver import com.esofthead.mycollab.module.project.view.parameters.{ProjectRoleScreenData, ProjectScreenData} import com.esofthead.mycollab.vaadin.mvp.PageActionChain /** * @author MyCollab Ltd * @since 5.0.9 */ class RoleUrlResolver extends ProjectUrlResolver { this.addSubResolver("list", new ListUrlResolver()) this.addSubResolver("preview", new PreviewUrlResolver()) private class ListUrlResolver extends ProjectUrlResolver { protected override def handlePage(params: String*) { val projectId: Int = new UrlTokenizer(params(0)).getInt val roleSearchCriteria: ProjectRoleSearchCriteria = new ProjectRoleSearchCriteria roleSearchCriteria.setProjectId(new NumberSearchField(projectId)) val chain: PageActionChain = new PageActionChain(new ProjectScreenData.Goto(projectId), new ProjectRoleScreenData.Search(roleSearchCriteria)) EventBusFactory.getInstance.post(new ProjectEvent.GotoMyProject(this, chain)) } } private class PreviewUrlResolver extends ProjectUrlResolver { protected override def handlePage(params: String*) { val token: UrlTokenizer = new UrlTokenizer(params(0)) val projectId: Int = token.getInt val roleId: Int = token.getInt val chain: PageActionChain = new PageActionChain(new ProjectScreenData.Goto(projectId), new ProjectRoleScreenData.Read(roleId)) EventBusFactory.getInstance.post(new ProjectEvent.GotoMyProject(this, chain)) } } }
uniteddiversity/mycollab
mycollab-web/src/main/scala/com/esofthead/mycollab/module/project/view/settings/RoleUrlResolver.scala
Scala
agpl-3.0
2,715
/* * Copyright 2012 Twitter Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package com.twitter.zipkin.builder import com.twitter.finagle.stats.{StatsReceiver, OstrichStatsReceiver} import com.twitter.finagle.tracing.{Tracer, NullTracer} import com.twitter.finagle.exception import com.twitter.logging.config._ import com.twitter.logging.{ConsoleHandler, Logger, LoggerFactory} import com.twitter.ostrich.admin._ import com.twitter.util.{Timer, JavaTimer} import java.net.{InetSocketAddress, InetAddress} import scala.util.matching.Regex /** * Base builder for a Zipkin service */ case class ZipkinServerBuilder( serverPort : Int, adminPort : Int, serverAddress : InetAddress = InetAddress.getLocalHost, loggers : List[LoggerFactory] = List(LoggerFactory(level = Some(Level.DEBUG), handlers = List(ConsoleHandler()))), adminStatsNodes : List[StatsFactory] = List(StatsFactory(reporters = List(TimeSeriesCollectorFactory()))), adminStatsFilters : List[Regex] = List.empty, statsReceiver : StatsReceiver = new OstrichStatsReceiver, tracerFactory : Tracer.Factory = NullTracer.factory, timer : Timer = new JavaTimer(true), exceptionMonitorFactory : exception.MonitorFactory = exception.NullMonitorFactory ) extends Builder[(RuntimeEnvironment) => Unit] { def serverPort(p: Int) : ZipkinServerBuilder = copy(serverPort = p) def adminPort(p: Int) : ZipkinServerBuilder = copy(adminPort = p) def serverAddress(a: InetAddress) : ZipkinServerBuilder = copy(serverAddress = a) def loggers(l: List[LoggerFactory]) : ZipkinServerBuilder = copy(loggers = l) def statsReceiver(s: StatsReceiver) : ZipkinServerBuilder = copy(statsReceiver = s) def tracerFactory(t: Tracer.Factory) : ZipkinServerBuilder = copy(tracerFactory = t) def exceptionMonitorFactory(h: exception.MonitorFactory) : ZipkinServerBuilder = copy(exceptionMonitorFactory = h) def timer(t: Timer) : ZipkinServerBuilder = copy(timer = t) def addLogger(l: LoggerFactory) : ZipkinServerBuilder = copy(loggers = loggers :+ l) def addAdminStatsNode(n: StatsFactory): ZipkinServerBuilder = copy(adminStatsNodes = adminStatsNodes :+ n) def addAdminStatsFilter(f: Regex) : ZipkinServerBuilder = copy(adminStatsFilters = adminStatsFilters :+ f) private lazy val adminServiceFactory: AdminServiceFactory = AdminServiceFactory( httpPort = adminPort, statsNodes = adminStatsNodes, statsFilters = adminStatsFilters ) lazy val socketAddress = new InetSocketAddress(serverAddress, serverPort) var adminHttpService: Option[AdminHttpService] = None def apply() = (runtime: RuntimeEnvironment) => { Logger.configure(loggers) adminHttpService = Some(adminServiceFactory(runtime)) } }
devcamcar/zipkin
zipkin-common/src/main/scala/com/twitter/zipkin/builder/ZipkinServerBuilder.scala
Scala
apache-2.0
3,608
/* * Copyright 2012 Pascal Voitot (@mandubian) * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ import org.specs2.mutable._ import org.junit.runner.RunWith import org.specs2.runner.JUnitRunner import org.specs2.specification.{Step, Fragments} import scala.concurrent._ import scala.concurrent.duration.Duration // import play.api.libs.json._ // import play.api.libs.functional._ // import play.api.libs.functional.syntax._ import datomisca.executioncontext.ExecutionContextHelper._ class ShapotomicSpec extends Specification { sequential import shapeless._ import datomisca._ import Datomic._ import shapotomic._ // Datomic URI definition val uri = "datomic:mem://shapotomisca" // Datomic Connection as an implicit in scope implicit lazy val conn = Datomic.connect(uri) // Koala Schema object Koala { object ns { val koala = Namespace("koala") } // schema attributes val name = Attribute(ns.koala / "name", SchemaType.string, Cardinality.one).withDoc("Koala's name") val age = Attribute(ns.koala / "age", SchemaType.long, Cardinality.one).withDoc("Koala's age") val trees = Attribute(ns.koala / "trees", SchemaType.string, Cardinality.many).withDoc("Koala's trees") // Draft playing with Datomisca and Shapeless Fields/Records val fieldName = DField(name) val fieldAge = DField(age) val fieldTrees = DField(trees) // the schema in HList form val schema = name :: age :: trees :: HNil // the datomic facts corresponding to schema // (need specifying upper type for shapeless conversion to list) val txData = schema.toList[Operation] } def startDB = { println(s"Creating DB with uri $uri: "+ createDatabase(uri)) Await.result( Datomic.transact(Koala.txData), Duration("2 seconds") ) } def stopDB = { deleteDatabase(uri) println("Deleted DB") defaultExecutorService.shutdownNow() } override def map(fs: => Fragments) = Step(startDB) ^ fs ^ Step(stopDB) "shapotomic" should { "convert HList to Datomic Facts & Datomic Entities from HList" in { // creates a Temporary ID & keeps it for resolving entity after insertion val id = DId(Partition.USER) // creates an HList entity val hListEntity = id :: "kaylee" :: 3L :: Set( "manna_gum", "tallowwood" ) :: HNil // builds Datomisca Entity facts statically checking at compile-time HList against Schema val txData = hListEntity.toAddEntity(Koala.schema) // inserts data into Datomic val tx = Datomic.transact(txData) map { tx => // resolves real DEntity from temporary ID val e = Datomic.resolveEntity(tx, id) // rebuilds HList entity from DEntity statically typed by schema // Explicitly typing the val to show that the compiler builds the right HList from schema val postHListEntity: Long :: String :: Long :: Set[String] :: HNil = e.toHList(Koala.schema) postHListEntity must beEqualTo( e.id :: "kaylee" :: 3L :: Set( "manna_gum", "tallowwood" ) :: HNil ) } Await.result(tx, Duration("3 seconds")) success } "Draft test: Field/Record" in { import Record._ val koala = Koala.fieldName -> "kaylee" :: Koala.fieldAge -> 3L :: Koala.fieldTrees -> Set( "manna_gum", "tallowwood" ) :: HNil println("name:"+koala.get(Koala.fieldName)) println("age:"+koala.get(Koala.fieldAge)) success } } }
mandubian/shapotomic
src/test/scala/ShapotomicTestSpec.scala
Scala
apache-2.0
4,142
object Initialization1 { case class InitA() { val x = y val y = 0 } }
epfl-lara/stainless
frontends/benchmarks/extraction/invalid/Initialization1.scala
Scala
apache-2.0
82
package ru.dgolubets.jsmoduleloader.internal import java.io.{BufferedReader, InputStreamReader} import java.nio.CharBuffer import scala.util.Try /** * Resource internal. */ private[jsmoduleloader] object Resource { /** * Reads resource string. * @param resourceName Name of the resource * @return */ def readString(resourceName: String, resourceClass: Class[_] = this.getClass): Try[String] = Try { val resource = resourceClass.getResourceAsStream(resourceName) if(resource == null) throw new Exception(s"Resource was not found: $resourceName") val reader = new BufferedReader(new InputStreamReader(resource)) try { val stringBuilder = new StringBuilder() val buffer = CharBuffer.allocate(1024) while (reader.read(buffer) > 0){ buffer.flip() stringBuilder.appendAll(buffer.array(), 0, buffer.remaining()) } stringBuilder.result() } finally { reader.close() } } }
DGolubets/js-module-loader
src/main/scala/ru/dgolubets/jsmoduleloader/internal/Resource.scala
Scala
mit
1,005
package com.googlecode.kanbanik.api import java.util import com.googlecode.kanbanik.commands.ExecuteStatisticsCommand import org.junit.runner.RunWith import org.scalatest.junit.JUnitRunner import org.kanbanik.statistics import org.scalatest.FlatSpec import net.liftweb.json._ import com.googlecode.kanbanik.dtos._ @RunWith(classOf[JUnitRunner]) class StatisticsLearningTest extends FlatSpec { implicit val formats = DefaultFormats "statistics" should "be possible to call it" in { true // val fullDescriptor = new util.HashMap[String, Object]() // val resultDescriptor = new util.HashMap[String, Object]() // val filterType = new util.HashMap[String, Object]() // val resultDescriptors = new util.ArrayList[Object]() // // fullDescriptor.put(":reduce-function", ":merge") // filterType.put(":eventType", "TaskDeleted") // resultDescriptor.put(":function", ":cnt") // resultDescriptor.put(":filter", filterType) // resultDescriptors.add(resultDescriptor) // fullDescriptor.put(":result-descriptors", resultDescriptors) //// //// {:reduce-function :merge //// :result-descriptors [{ //// :filter {:eventType "TaskDeleted"} //// :function :pass //// }]} // // val x = statistics.execute(fullDescriptor, 3600000) // print(x) } it should "should parse the data properly" in { val json = parse(""" {"reduceFunction": ":merge", "timeframe": 100, "resultDescriptors": [ { "filter": {"example": {"eventType": "TaskDeleted"}} } ]} """) val res = json.extract[AnalyzeDescriptorDto] assert(res.reduceFunction === ":merge") val cmd = new ExecuteStatisticsCommand() val x = statistics.execute(cmd.toJDescriptor(res), 600000) print(x) } }
kanbanik/kanbanik
kanbanik-server/src/test/scala/com/googlecode/kanbanik/api/StatisticsLearningTest.scala
Scala
apache-2.0
1,949
package controllers import java.util.UUID import com.hbc.svc.sundial.v2 import com.hbc.svc.sundial.v2.models._ import dao.SundialDao import model._ import play.api.Logger import util.Conversions._ object ModelConverter { /////////////////////////////////////////////////////////////////////////////////////////////////////////// // PROCESSES /////////////////////////////////////////////////////////////////////////////////////////////////////////// //TODO This will be RBAR if we load a lot of processes - maybe have a loadProcessesAndTasks DAO method? def toExternalProcess(process: model.Process)( implicit dao: SundialDao): v2.models.Process = { val tasks = dao.processDao.loadTasksForProcess(process.id) v2.models.Process(process.id, process.processDefinitionName, process.startedAt, toExternalProcessStatus(process.status), tasks.map(toExternalTask)) } def toExternalProcessStatus( status: model.ProcessStatus): v2.models.ProcessStatus = status match { case model.ProcessStatus.Running() => v2.models.ProcessStatus.Running case model.ProcessStatus.Succeeded(_) => v2.models.ProcessStatus.Succeeded case model.ProcessStatus.Failed(_) => v2.models.ProcessStatus.Failed } //TODO This will be RBAR if we load a lot of tasks – maybe load all the logs/metadata at once? def toExternalTask(task: model.Task)( implicit dao: SundialDao): v2.models.Task = { val logs = dao.taskLogsDao.loadEventsForTask(task.id) val metadata = dao.taskMetadataDao.loadMetadataForTask(task.id) v2.models.Task( task.id, task.processId, task.processDefinitionName, task.taskDefinitionName, task.startedAt, task.endedAt, task.previousAttempts, logs.map(toExternalLogEntry), metadata.map(toExternalMetadataEntry), loadExecutableMetadata(task), toExternalTaskStatus(task.status) ) } def toExternalLogEntry(entry: model.TaskEventLog): v2.models.LogEntry = { v2.models.LogEntry(entry.id, entry.when, entry.source, entry.message) } def toExternalMetadataEntry( entry: model.TaskMetadataEntry): v2.models.MetadataEntry = { v2.models.MetadataEntry(entry.id, entry.when, entry.key, entry.value) } def toExternalTaskStatus(status: model.TaskStatus): v2.models.TaskStatus = status match { case model.TaskStatus.Running() => v2.models.TaskStatus.Running case model.TaskStatus.Success(_) => v2.models.TaskStatus.Succeeded case model.TaskStatus.Failure(_, _) => v2.models.TaskStatus.Failed } def loadExecutableMetadata(task: model.Task)( implicit dao: SundialDao): Option[Seq[v2.models.MetadataEntry]] = task.executable match { case _: ShellCommandExecutable => val stateOpt = dao.shellCommandStateDao.loadState(task.id) stateOpt.map { state => // Use the task ID as the UUID for the metadata entry Seq( v2.models.MetadataEntry(state.taskId, state.asOf, "status", state.status.toString)) } case _: ECSExecutable => val stateOpt = dao.ecsContainerStateDao.loadState(task.id) stateOpt.map { state => Seq( v2.models.MetadataEntry(state.taskId, state.asOf, "status", state.status.toString), v2.models.MetadataEntry(state.taskId, state.asOf, "taskArn", state.ecsTaskArn) ) } case _: BatchExecutable => val stateOpt = dao.batchContainerStateDao.loadState(task.id) stateOpt.map { state => Seq( v2.models.MetadataEntry(state.taskId, state.asOf, "status", state.status.toString), v2.models.MetadataEntry(state.taskId, state.asOf, "jobId", state.jobId.toString) ) } case _: EmrJobExecutable => val stateOpt = dao.emrJobStateDao.loadState(task.id) stateOpt.map { state => Seq( v2.models.MetadataEntry(state.taskId, state.asOf, "status", state.status.toString), v2.models.MetadataEntry(state.taskId, state.asOf, "jobId", state.taskId.toString) ) } } /////////////////////////////////////////////////////////////////////////////////////////////////////////// // PROCESS DEFINITIONS /////////////////////////////////////////////////////////////////////////////////////////////////////////// def toExternalProcessDefinition(processDefinition: model.ProcessDefinition)( implicit dao: SundialDao): v2.models.ProcessDefinition = { val taskDefinitions = dao.processDefinitionDao.loadTaskDefinitionTemplates( processDefinition.name) v2.models.ProcessDefinition( processDefinition.name, Some(processDefinition.isPaused), processDefinition.description, processDefinition.schedule.map(toExternalSchedule), taskDefinitions.map(toExternalTaskDefinitionTemplate), toExternalOverlapAction(processDefinition.overlapAction), toExternalNotifications(processDefinition.notifications) ) } def toExternalSchedule( schedule: model.ProcessSchedule): v2.models.ProcessSchedule = schedule match { case model.CronSchedule(min, hr, dom, mo, dow) => v2.models.CronSchedule(dow, mo, dom, hr, min) case model.ContinuousSchedule(buffer) => v2.models.ContinuousSchedule(Some(buffer)) } def toExternalOverlapAction(overlapAction: model.ProcessOverlapAction) : v2.models.ProcessOverlapAction = overlapAction match { case model.ProcessOverlapAction.Wait => v2.models.ProcessOverlapAction.Wait case model.ProcessOverlapAction.Terminate => v2.models.ProcessOverlapAction.Terminate } def toExternalNotifications(notifications: Seq[model.Notification]) : Option[Seq[v2.models.Notification]] = { def toExternalNotification : PartialFunction[model.Notification, v2.models.Notification] = { case email: EmailNotification => Email(email.name, email.email, NotificationOptions .fromString(email.notifyAction) .getOrElse(NotificationOptions.OnStateChangeAndFailures)) case pagerduty: PagerdutyNotification => Pagerduty(pagerduty.serviceKey, pagerduty.numConsecutiveFailures, pagerduty.apiUrl) } if (notifications.isEmpty) { None } else { Some(notifications.map(toExternalNotification)) } } def toExternalTaskDefinition( taskDefinition: model.TaskDefinition): v2.models.TaskDefinition = { v2.models.TaskDefinition( taskDefinition.name, toExternalDependencies(taskDefinition.dependencies), toExternalExecutable(taskDefinition.executable), taskDefinition.limits.maxAttempts, taskDefinition.limits.maxExecutionTimeSeconds, taskDefinition.backoff.seconds, taskDefinition.backoff.exponent, taskDefinition.requireExplicitSuccess ) } def toExternalTaskDefinitionTemplate( taskDefinition: model.TaskDefinitionTemplate) : v2.models.TaskDefinition = { v2.models.TaskDefinition( taskDefinition.name, toExternalDependencies(taskDefinition.dependencies), toExternalExecutable(taskDefinition.executable), taskDefinition.limits.maxAttempts, taskDefinition.limits.maxExecutionTimeSeconds, taskDefinition.backoff.seconds, taskDefinition.backoff.exponent, taskDefinition.requireExplicitSuccess ) } def toExternalDependencies( dependencies: model.TaskDependencies): Seq[v2.models.TaskDependency] = { val required = dependencies.required.map { taskDefinitionName => v2.models.TaskDependency(taskDefinitionName, true) } val optional = dependencies.required.map { taskDefinitionName => v2.models.TaskDependency(taskDefinitionName, false) } required ++ optional } def toExternalExecutable( executable: model.Executable): v2.models.TaskExecutable = executable match { case model.ShellCommandExecutable(script, env) => val envAsEntries = { if (env.isEmpty) { Option.empty } else { Some(env.map { case (key, value) => v2.models.EnvironmentVariable(key, value) }.toSeq) } } v2.models.ShellScriptCommand(script, envAsEntries) case model.BatchExecutable(image, tag, command, memory, vCpus, jobRoleArn, environmentVariables, jobQueue) => v2.models.BatchImageCommand( image, tag, command, memory, vCpus, jobRoleArn, environmentVariables.toSeq.map(variable => EnvironmentVariable(variable._1, variable._2)), jobQueue) case model.EmrJobExecutable(emrClusterDetails, jobName, region, clazz, s3JarPath, sparkConf, sparkPackages, args, s3LogDetailsOpt, loadData, saveResults) => { def toEmrInstanceGroup(instanceGroupDetails: InstanceGroupDetails) = { val awsMarket = (instanceGroupDetails.awsMarket, instanceGroupDetails.bidPriceOpt) match { case ("on_demand", None) => OnDemand.OnDemand case ("spot", Some(bidPrice)) => Spot(BigDecimal(bidPrice)) case _ => OnDemand.OnDemand } EmrInstanceGroupDetails(instanceGroupDetails.instanceType, instanceGroupDetails.instanceCount, awsMarket, instanceGroupDetails.ebsVolumeSizeOpt) } val cluster = emrClusterDetails match { case EmrClusterDetails(Some(clusterName), None, Some(releaseLabel), applications, Some(s3LogUri), Some(masterInstanceGroup), coreInstanceGroupOpt, taskInstanceGroupOpt, ec2SubnetOpt, Some(emrServiceRole), Some(emrJobFlowRole), Some(visibleToAllUsers), configuration, false, securityConfiguration) => { val serviceRole = if (emrServiceRole == DefaultEmrServiceRole.DefaultEmrServiceRole.toString) { DefaultEmrServiceRole.DefaultEmrServiceRole } else { CustomEmrServiceRole(emrServiceRole) } val jobFlowRole = if (emrJobFlowRole == DefaultEmrJobFlowRole.DefaultEmrJobFlowRole.toString) { DefaultEmrJobFlowRole.DefaultEmrJobFlowRole } else { CustomEmrJobFlowRole(emrJobFlowRole) } v2.models.NewEmrCluster( clusterName, EmrReleaseLabel .fromString(releaseLabel) .getOrElse( sys.error(s"Unrecognised EMR version $releaseLabel")), applications.map(EmrApplication.fromString(_).get), s3LogUri, toEmrInstanceGroup(masterInstanceGroup), coreInstanceGroupOpt.map(toEmrInstanceGroup), taskInstanceGroupOpt.map(toEmrInstanceGroup), ec2SubnetOpt, serviceRole, jobFlowRole, visibleToAllUsers, configuration, securityConfiguration ) } case EmrClusterDetails(None, Some(clusterId), None, applications, None, None, None, None, None, None, None, None, None, true, None) if applications.isEmpty => v2.models.ExistingEmrCluster(clusterId) case _ => throw new IllegalArgumentException( s"Unexpected Cluster details: $emrClusterDetails") } val logDetailsOpt = s3LogDetailsOpt.flatMap { case LogDetails(logGroupName, logStreamName) => Some(S3LogDetails(logGroupName, logStreamName)) } val loadDataOpt = loadData.map(_.map(copyFileJob => S3Cp(copyFileJob.source, copyFileJob.destination))) val saveResultsOpt = saveResults.map(_.map(copyFileJob => S3Cp(copyFileJob.source, copyFileJob.destination))) v2.models.EmrCommand(cluster, jobName, region, clazz, s3JarPath, sparkConf, sparkPackages, args, logDetailsOpt, loadDataOpt, saveResultsOpt) } } /////////////////////////////////////////////////////////////////////////////////////////////////////////// // REVERSE MAPPING /////////////////////////////////////////////////////////////////////////////////////////////////////////// def toInternalSchedule( schedule: v2.models.ProcessSchedule): model.ProcessSchedule = schedule match { case v2.models.ContinuousSchedule(buffer) => model.ContinuousSchedule(buffer.getOrElse(0)) case v2.models.CronSchedule(dow, mo, dom, hr, min) => model.CronSchedule(min, hr, dom, mo, dow) case v2.models.ProcessScheduleUndefinedType(description) => throw new IllegalArgumentException( s"Unknown schedule type with description [$description]") } def toInternalExecutable( executable: v2.models.TaskExecutable): model.Executable = executable match { case v2.models.ShellScriptCommand(script, envOpt) => val envAsMap = envOpt match { case Some(env) => env.map { envVar => envVar.variableName -> envVar.value }.toMap case _ => Map.empty[String, String] } model.ShellCommandExecutable(script, envAsMap) case v2.models.BatchImageCommand(image, tag, command, memory, vCpus, jobRoleArn, environmentVariables, jobQueue) => model.BatchExecutable( image, tag, command, memory, vCpus, jobRoleArn, environmentVariables .map(envVariable => envVariable.variableName -> envVariable.value) .toMap, jobQueue ) case v2.models.EmrCommand(emrCluster, jobName, region, clazz, s3JarPath, sparkConf, sparkPackages, args, s3LogDetailsOpt, loadDataOpt, saveResultsOpt) => { def toInstanceGroupDetails( emrInstanceGroupDetails: EmrInstanceGroupDetails) = { val (awsMarket: String, bidPriceOpt: Option[Double]) = emrInstanceGroupDetails.awsMarket match { case OnDemand.OnDemand => ("on_demand", None) case Spot(bidPrice) => ("spot", Some(bidPrice.toDouble)) case _ => ("on_demand", None) } InstanceGroupDetails(emrInstanceGroupDetails.emrInstanceType, emrInstanceGroupDetails.instanceCount, awsMarket, bidPriceOpt, emrInstanceGroupDetails.ebsVolumeSize) } val clusterDetails = emrCluster match { case NewEmrCluster(clusterName, releaseLabel, applications, s3LogUri, masterInstanceGroup, coreInstanceGroup, taskInstanceGroup, ec2SubnetOpt, emrServiceRole, emrJobFlowRole, visibleToAllUsers, configuration, securityConfiguration) => { val serviceRoleName = emrServiceRole match { case DefaultEmrServiceRole.DefaultEmrServiceRole => DefaultEmrServiceRole.DefaultEmrServiceRole.toString case CustomEmrServiceRole(roleName) => roleName case DefaultEmrServiceRole.UNDEFINED(undefined) => throw new IllegalArgumentException( s"Unknown service role type: $undefined") case EmrServiceRoleUndefinedType(undefined) => throw new IllegalArgumentException( s"Unknown service role type: $undefined") } val jobFlowRoleName = emrJobFlowRole match { case DefaultEmrJobFlowRole.DefaultEmrJobFlowRole => DefaultEmrJobFlowRole.DefaultEmrJobFlowRole.toString case CustomEmrJobFlowRole(roleName) => roleName case DefaultEmrJobFlowRole.UNDEFINED(undefined) => throw new IllegalArgumentException( s"Unknown job flow role type: $undefined") case EmrJobFlowRoleUndefinedType(undefined) => throw new IllegalArgumentException( s"Unknown job flow role type: $undefined") } EmrClusterDetails( Some(clusterName), None, Some(releaseLabel.toString), applications.map(_.toString), Some(s3LogUri), Some(toInstanceGroupDetails(masterInstanceGroup)), coreInstanceGroup.map(toInstanceGroupDetails), taskInstanceGroup.map(toInstanceGroupDetails), ec2Subnet = ec2SubnetOpt, Some(serviceRoleName), Some(jobFlowRoleName), Some(visibleToAllUsers), configuration, existingCluster = false, securityConfiguration ) } case ExistingEmrCluster(clusterId) => EmrClusterDetails(clusterName = None, clusterId = Some(clusterId), existingCluster = true) case EmrClusterUndefinedType(undefinedType) => { Logger.error(s"UnsupportedClusterType($undefinedType)") throw new IllegalArgumentException( s"Cluster Type not supported: $undefinedType") } } val logDetailsOpt = s3LogDetailsOpt.map { case S3LogDetails(logGroupName, logStreamName) => LogDetails(logGroupName, logStreamName) } val loadData = loadDataOpt.map( _.map(s3Cp => CopyFileJob(s3Cp.source, s3Cp.destination))) val saveResults = saveResultsOpt.map( _.map(s3Cp => CopyFileJob(s3Cp.source, s3Cp.destination))) EmrJobExecutable(clusterDetails, jobName, region, clazz, s3JarPath, sparkConf, sparkPackages, args, logDetailsOpt, loadData, saveResults) } case v2.models.TaskExecutableUndefinedType(description) => throw new IllegalArgumentException( s"Unknown executable type with description [$description]") } def toInternalOverlapAction( overlap: v2.models.ProcessOverlapAction): model.ProcessOverlapAction = overlap match { case v2.models.ProcessOverlapAction.Wait => model.ProcessOverlapAction.Wait case v2.models.ProcessOverlapAction.Terminate => model.ProcessOverlapAction.Terminate case _: v2.models.ProcessOverlapAction.UNDEFINED => throw new IllegalArgumentException("Unknown overlap action") } def toInternalTaskStatusType( status: v2.models.TaskStatus): model.TaskStatusType = status match { case v2.models.TaskStatus.Starting => model.TaskStatusType.Running case v2.models.TaskStatus.Pending => model.TaskStatusType.Running case v2.models.TaskStatus.Submitted => model.TaskStatusType.Running case v2.models.TaskStatus.Runnable => model.TaskStatusType.Running case v2.models.TaskStatus.Succeeded => model.TaskStatusType.Success case v2.models.TaskStatus.Failed => model.TaskStatusType.Failure case v2.models.TaskStatus.Running => model.TaskStatusType.Running case _: v2.models.TaskStatus.UNDEFINED => throw new IllegalArgumentException("Unknown task status type") } def toInternalProcessStatusType( status: v2.models.ProcessStatus): model.ProcessStatusType = status match { case v2.models.ProcessStatus.Succeeded => model.ProcessStatusType.Succeeded case v2.models.ProcessStatus.Failed => model.ProcessStatusType.Failed case v2.models.ProcessStatus.Running => model.ProcessStatusType.Running case _: v2.models.ProcessStatus.UNDEFINED => throw new IllegalArgumentException("Unknown process status type") } def toInternalLogEntry(taskId: UUID, entry: v2.models.LogEntry): model.TaskEventLog = { model.TaskEventLog(entry.logEntryId, taskId, entry.when, entry.source, entry.message) } def toInternalMetadataEntry( taskId: UUID, entry: v2.models.MetadataEntry): model.TaskMetadataEntry = { model.TaskMetadataEntry(entry.metadataEntryId, taskId, entry.when, entry.key, entry.value) } def toInternalNotification : PartialFunction[v2.models.Notification, model.Notification] = { case email: Email => EmailNotification(email.name, email.email, email.notifyWhen.toString) case pagerduty: Pagerduty => PagerdutyNotification(pagerduty.serviceKey, pagerduty.apiUrl, pagerduty.numConsecutiveFailures) case NotificationUndefinedType(notificationTypeName) => throw new IllegalArgumentException( s"Unknown notification type [$notificationTypeName]") } }
gilt/sundial
app/controllers/ModelConverter.scala
Scala
mit
24,794
package com.sksamuel.elastic4s import org.elasticsearch.index.query.{HasParentFilterBuilder, HasChildFilterBuilder, NestedFilterBuilder, FilterBuilders} import org.elasticsearch.common.geo.GeoDistance import org.elasticsearch.common.unit.DistanceUnit import com.sksamuel.elastic4s.DefinitionAttributes._ /** @author Stephen Samuel */ trait FilterDsl { def existsFilter(field: String): ExistsFilter = new ExistsFilter(field) def geoboxFilter(field: String): GeoBoundingBoxFilter = new GeoBoundingBoxFilter(field) def geoDistance(field: String): GeoDistanceFilter = new GeoDistanceFilter(field) def geoPolygon(field: String): GeoPolygonFilter = new GeoPolygonFilter(field) def geoDistanceRangeFilter(field: String): GeoDistanceRangeFilterDefinition = new GeoDistanceRangeFilterDefinition(field) def hasChildFilter(`type`: String): HasChildExpectsQueryOrFilter = new HasChildExpectsQueryOrFilter(`type`) class HasChildExpectsQueryOrFilter(`type`: String) { def query(query: QueryDefinition) = new HasChildFilterDefinition(FilterBuilders.hasChildFilter(`type`, query.builder)) def filter(filter: FilterDefinition) = new HasChildFilterDefinition(FilterBuilders.hasChildFilter(`type`, filter.builder)) } def hasParentFilter(`type`: String): HasParentExpectsQueryOrFilter = new HasParentExpectsQueryOrFilter(`type`) class HasParentExpectsQueryOrFilter(`type`: String) { def query(query: QueryDefinition) = new HasParentFilterDefinition(FilterBuilders.hasParentFilter(`type`, query.builder)) def filter(filter: FilterDefinition) = new HasParentFilterDefinition(FilterBuilders.hasParentFilter(`type`, filter.builder)) } def nestedFilter(path: String): NestedFilterExpectsQueryOrFilter = new NestedFilterExpectsQueryOrFilter(path) class NestedFilterExpectsQueryOrFilter(path: String) { def query(query: QueryDefinition) = new NestedFilterDefinition(FilterBuilders.nestedFilter(path, query.builder)) def filter(filter: FilterDefinition) = new NestedFilterDefinition(FilterBuilders.nestedFilter(path, filter.builder)) } def matchAllFilter: MatchAllFilter = new MatchAllFilter def or(filters: FilterDefinition*): OrFilterDefinition = new OrFilterDefinition(filters: _*) def or(filters: Iterable[FilterDefinition]): OrFilterDefinition = new OrFilterDefinition(filters.toSeq: _*) def orFilter(filters: FilterDefinition*): OrFilterDefinition = new OrFilterDefinition(filters: _*) def orFilter(filters: Iterable[FilterDefinition]): OrFilterDefinition = new OrFilterDefinition(filters.toSeq: _*) def and(filters: FilterDefinition*): AndFilterDefinition = andFilter(filters) def and(filters: Iterable[FilterDefinition]): AndFilterDefinition = andFilter(filters) def andFilter(filters: FilterDefinition*): AndFilterDefinition = andFilter(filters) def andFilter(filters: Iterable[FilterDefinition]): AndFilterDefinition = new AndFilterDefinition(filters.toSeq: _*) def numericRangeFilter(field: String): NumericRangeFilter = new NumericRangeFilter(field) def rangeFilter(field: String): RangeFilter = new RangeFilter(field) def prefixFilter(field: String, prefix: Any): PrefixFilterDefinition = new PrefixFilterDefinition(field, prefix) def prefixFilter(tuple: (String, Any)): PrefixFilterDefinition = prefixFilter(tuple._1, tuple._2) def queryFilter(query: QueryDefinition): QueryFilterDefinition = new QueryFilterDefinition(query) def regexFilter(field: String, regex: Any): RegexFilterDefinition = new RegexFilterDefinition(field, regex) def regexFilter(tuple: (String, Any)): RegexFilterDefinition = regexFilter(tuple._1, tuple._2) def scriptFilter(script: String): ScriptFilterDefinition = new ScriptFilterDefinition(script) def termFilter(field: String, value: Any): TermFilterDefinition = new TermFilterDefinition(field, value) def termFilter(tuple: (String, Any)): TermFilterDefinition = termFilter(tuple._1, tuple._2) def termsFilter(field: String, values: Any*): TermsFilterDefinition = new TermsFilterDefinition(field, values.map(_.toString): _*) def termsLookupFilter(field: String): TermsLookupFilterDefinition = new TermsLookupFilterDefinition(field) def typeFilter(`type`: String): TypeFilterDefinition = new TypeFilterDefinition(`type`) def missingFilter(field: String): MissingFilterDefinition = new MissingFilterDefinition(field) def idsFilter(ids: String*): IdFilterDefinition = new IdFilterDefinition(ids: _*) def bool(block: => BoolFilterDefinition): FilterDefinition = block def must(queries: FilterDefinition*): BoolFilterDefinition = new BoolFilterDefinition().must(queries: _*) def must(queries: Iterable[FilterDefinition]): BoolFilterDefinition = new BoolFilterDefinition().must(queries) def should(queries: FilterDefinition*): BoolFilterDefinition = new BoolFilterDefinition().should(queries: _*) def should(queries: Iterable[FilterDefinition]): BoolFilterDefinition = new BoolFilterDefinition().should(queries) case object not { def filter(filter: FilterDefinition): NotFilterDefinition = new NotFilterDefinition(filter) } def not(filter: FilterDefinition): NotFilterDefinition = new NotFilterDefinition(filter) def not(queries: FilterDefinition*): BoolFilterDefinition = new BoolFilterDefinition().not(queries: _*) def not(queries: Iterable[FilterDefinition]): BoolFilterDefinition = new BoolFilterDefinition().not(queries) } trait FilterDefinition { def builder: org.elasticsearch.index.query.FilterBuilder } class BoolFilterDefinition extends FilterDefinition { val builder = FilterBuilders.boolFilter() def must(filters: FilterDefinition*): this.type = { filters.foreach(builder must _.builder) this } def must(filters: Iterable[FilterDefinition]): this.type = { filters.foreach(builder must _.builder) this } def should(filters: FilterDefinition*): this.type = { filters.foreach(builder should _.builder) this } def should(filters: Iterable[FilterDefinition]): this.type = { filters.foreach(builder should _.builder) this } def not(filters: FilterDefinition*): this.type = { filters.foreach(builder mustNot _.builder) this } def not(filters: Iterable[FilterDefinition]): this.type = { filters.foreach(builder mustNot _.builder) this } } class IdFilterDefinition(ids: String*) extends FilterDefinition { val builder = FilterBuilders.idsFilter().addIds(ids: _*) def filterName(filterName: String): IdFilterDefinition = { builder.filterName(filterName) this } def withIds(any: Any*): IdFilterDefinition = { any.foreach(id => builder.addIds(id.toString)) this } } class TypeFilterDefinition(`type`: String) extends FilterDefinition { val builder = FilterBuilders.typeFilter(`type`) } class ExistsFilter(field: String) extends FilterDefinition { val builder = FilterBuilders.existsFilter(field) def filterName(filterName: String): ExistsFilter = { builder.filterName(filterName) this } } class QueryFilterDefinition(q: QueryDefinition) extends FilterDefinition with DefinitionAttributeCache { val builder = FilterBuilders.queryFilter(q.builder) val _builder = builder def filterName(filterName: String): QueryFilterDefinition = { builder.filterName(filterName) this } } class MissingFilterDefinition(field: String) extends FilterDefinition { val builder = FilterBuilders.missingFilter(field) def includeNull(nullValue: Boolean): MissingFilterDefinition = { builder.nullValue(nullValue) this } def filterName(filterName: String): MissingFilterDefinition = { builder.filterName(filterName) this } def existence(existence: Boolean): MissingFilterDefinition = { builder.existence(existence) this } } class ScriptFilterDefinition(script: String) extends FilterDefinition with DefinitionAttributeCache with DefinitionAttributeCacheKey with DefinitionAttributeFilterName { val builder = FilterBuilders.scriptFilter(script) val _builder = builder def lang(lang: String): ScriptFilterDefinition = { builder.lang(lang) this } def param(name: String, value: Any): ScriptFilterDefinition = { builder.addParam(name, value) this } def params(map: Map[String, Any]): ScriptFilterDefinition = { for ( entry <- map ) param(entry._1, entry._2) this } } class MatchAllFilter extends FilterDefinition { val builder = FilterBuilders.matchAllFilter() } @deprecated("deprecated in elasticsearch 1.0", "1.0") class NumericRangeFilter(field: String) extends FilterDefinition with DefinitionAttributeFrom with DefinitionAttributeTo with DefinitionAttributeLt with DefinitionAttributeGt with DefinitionAttributeCache with DefinitionAttributeCacheKey { val builder = FilterBuilders.numericRangeFilter(field) val _builder = builder def filterName(filterName: String): NumericRangeFilter = { builder.filterName(filterName) this } def includeLower(includeLower: Boolean): NumericRangeFilter = { builder.includeLower(includeLower) this } def includeUpper(includeUpper: Boolean): NumericRangeFilter = { builder.includeUpper(includeUpper) this } def lte(lte: Double): NumericRangeFilter = { builder.lte(lte) this } def lte(lte: Long): NumericRangeFilter = { builder.lte(lte) this } def gte(gte: Double): NumericRangeFilter = { builder.gte(gte) this } def gte(gte: Long): NumericRangeFilter = { builder.gte(gte) this } } class RangeFilter(field: String) extends FilterDefinition with DefinitionAttributeTo with DefinitionAttributeFrom with DefinitionAttributeLt with DefinitionAttributeGt with DefinitionAttributeCache with DefinitionAttributeCacheKey with DefinitionAttributeFilterName { val builder = FilterBuilders.rangeFilter(field) val _builder = builder def includeLower(includeLower: Boolean): RangeFilter = { builder.includeLower(includeLower) this } def includeUpper(includeUpper: Boolean): RangeFilter = { builder.includeUpper(includeUpper) this } def lte(lte: String): RangeFilter = { builder.lte(lte) this } def gte(gte: String): RangeFilter = { builder.gte(gte) this } def execution(execution: String): RangeFilter = { builder.setExecution(execution) this } } class HasChildFilterDefinition(val builder: HasChildFilterBuilder) extends FilterDefinition { val _builder = builder def name(name: String): HasChildFilterDefinition = { builder.filterName(name) this } } class HasParentFilterDefinition(val builder: HasParentFilterBuilder) extends FilterDefinition { val _builder = builder def name(name: String): HasParentFilterDefinition = { builder.filterName(name) this } } class NestedFilterDefinition(val builder: NestedFilterBuilder) extends FilterDefinition with DefinitionAttributeCache with DefinitionAttributeCacheKey with DefinitionAttributeFilterName { val _builder = builder def join(join: Boolean): NestedFilterDefinition = { builder.join(join) this } } class PrefixFilterDefinition(field: String, prefix: Any) extends FilterDefinition with DefinitionAttributeCache with DefinitionAttributeCacheKey { val builder = FilterBuilders.prefixFilter(field, prefix.toString) val _builder = builder def name(name: String): this.type = { builder.filterName(name) this } } class TermFilterDefinition(field: String, value: Any) extends FilterDefinition with DefinitionAttributeCache with DefinitionAttributeCacheKey { val builder = FilterBuilders.termFilter(field, value.toString) val _builder = builder def name(name: String): this.type = { builder.filterName(name) this } } class TermsFilterDefinition(field: String, values: Any*) extends FilterDefinition with DefinitionAttributeCache with DefinitionAttributeCacheKey { import scala.collection.JavaConverters._ val builder = FilterBuilders.termsFilter(field, values.asJava) val _builder = builder def name(name: String): this.type = { builder.filterName(name) this } def execution(execution: String): this.type = { builder.execution(execution) this } } class TermsLookupFilterDefinition(field: String) extends FilterDefinition with DefinitionAttributeCache with DefinitionAttributeCacheKey { val builder = FilterBuilders.termsLookupFilter(field) val _builder = builder def name(name: String): this.type = { builder.filterName(name) this } def index(index: String): this.type = { builder.lookupIndex(index) this } def lookupType(`type`: String): this.type = { builder.lookupType(`type`) this } def id(id: String): this.type = { builder.lookupId(id) this } def path(path: String): this.type = { builder.lookupPath(path) this } def routing(routing: String): this.type = { builder.lookupRouting(routing) this } def lookupCache(cache: Boolean): this.type = { builder.lookupCache(cache) this } } class GeoPolygonFilter(name: String) extends FilterDefinition with DefinitionAttributeCache with DefinitionAttributeCacheKey { val builder = FilterBuilders.geoPolygonFilter(name) val _builder = builder def point(geohash: String): GeoPolygonFilter = { builder.addPoint(geohash) this } def point(lat: Double, lon: Double): this.type = { _builder.addPoint(lat, lon) this } } class GeoDistanceRangeFilterDefinition(field: String) extends FilterDefinition with DefinitionAttributeTo with DefinitionAttributeFrom with DefinitionAttributeLt with DefinitionAttributeGt with DefinitionAttributeLat with DefinitionAttributeLon with DefinitionAttributeCache with DefinitionAttributeCacheKey with DefinitionAttributePoint { val builder = FilterBuilders.geoDistanceRangeFilter(field) val _builder = builder def geoDistance(geoDistance: GeoDistance): GeoDistanceRangeFilterDefinition = { builder.geoDistance(geoDistance) this } def geohash(geohash: String): GeoDistanceRangeFilterDefinition = { builder.geohash(geohash) this } def gte(gte: Any): GeoDistanceRangeFilterDefinition = { builder.gte(gte) this } def lte(lte: Any): GeoDistanceRangeFilterDefinition = { builder.lte(lte) this } def includeLower(includeLower: Boolean): GeoDistanceRangeFilterDefinition = { builder.includeLower(includeLower) this } def includeUpper(includeUpper: Boolean): GeoDistanceRangeFilterDefinition = { builder.includeUpper(includeUpper) this } def name(name: String): GeoDistanceRangeFilterDefinition = { builder.filterName(name) this } } class NotFilterDefinition(filter: FilterDefinition) extends FilterDefinition with DefinitionAttributeCache with DefinitionAttributeFilterName { val builder = FilterBuilders.notFilter(filter.builder) val _builder = builder } class OrFilterDefinition(filters: FilterDefinition*) extends FilterDefinition with DefinitionAttributeCache with DefinitionAttributeCacheKey { val builder = FilterBuilders.orFilter(filters.map(_.builder).toArray: _*) val _builder = builder def name(name: String): this.type = { builder.filterName(name) this } } class AndFilterDefinition(filters: FilterDefinition*) extends FilterDefinition with DefinitionAttributeCache with DefinitionAttributeCacheKey { val builder = FilterBuilders.andFilter(filters.map(_.builder).toArray: _*) val _builder = builder def name(name: String): this.type = { builder.filterName(name) this } } class GeoDistanceFilter(name: String) extends FilterDefinition with DefinitionAttributeLat with DefinitionAttributeLon with DefinitionAttributeCache with DefinitionAttributeCacheKey { val builder = FilterBuilders.geoDistanceFilter(name) val _builder = builder def geohash(geohash: String): GeoDistanceFilter = { builder.geohash(geohash) this } def method(method: GeoDistance): GeoDistanceFilter = geoDistance(method) def geoDistance(geoDistance: GeoDistance): GeoDistanceFilter = { builder.geoDistance(geoDistance) this } def distance(distance: String): GeoDistanceFilter = { builder.distance(distance) this } def distance(distance: Double, unit: DistanceUnit): GeoDistanceFilter = { builder.distance(distance, unit) this } def point(lat: Double, long: Double): GeoDistanceFilter = { builder.point(lat, long) this } } class GeoBoundingBoxFilter(name: String) extends FilterDefinition with DefinitionAttributeCache with DefinitionAttributeCacheKey { val builder = FilterBuilders.geoBoundingBoxFilter(name) val _builder = builder private var _left: Double = _ private var _top: Double = _ private var _right: Double = _ private var _bottom: Double = _ def left(left: Double): GeoBoundingBoxFilter = { _left = left builder.topLeft(_top, _left) this } def top(top: Double): GeoBoundingBoxFilter = { _top = top builder.topLeft(_top, _left) this } def right(right: Double): GeoBoundingBoxFilter = { _right = right builder.bottomRight(_bottom, _right) this } def bottom(bottom: Double): GeoBoundingBoxFilter = { _bottom = bottom builder.bottomRight(_bottom, _right) this } } class RegexFilterDefinition(field: String, regex: Any) extends FilterDefinition with DefinitionAttributeCache with DefinitionAttributeCacheKey { val builder = FilterBuilders.regexpFilter(field, regex.toString) val _builder = builder def name(name: String): this.type = { builder.filterName(name) this } }
l15k4/elastic4s
elastic4s-core/src/main/scala/com/sksamuel/elastic4s/filters.scala
Scala
apache-2.0
17,711
package com.twitter.finagle.service import com.twitter.conversions.time._ import com.twitter.finagle.{ChannelClosedException, Failure, TimeoutException, WriteException} import com.twitter.util.{ TimeoutException => UtilTimeoutException, Duration, JavaSingleton, Return, Throw, Try} import java.util.{concurrent => juc} import java.{util => ju} import scala.collection.JavaConverters._ /** * A function defining retry behavior for a given value type `A`. * * The [[Function1]] returns [[None]] if no more retries should be made * and [[Some]] if another retry should happen. The returned `Some` has * a [[Duration]] field for how long to wait for the next retry as well * as the next `RetryPolicy` to use. * * @see [[SimpleRetryPolicy]] for a Java friendly API. */ abstract class RetryPolicy[-A] extends (A => Option[(Duration, RetryPolicy[A])]) { /** * Creates a new `RetryPolicy` based on the current `RetryPolicy` in which values of `A` * are first checked against a predicate function, and only if the predicate returns true * will the value be passed on to the current `RetryPolicy`. * * The predicate function need not be a pure function, but can change its behavior over * time. For example, the predicate function's decision can be based upon backpressure * signals supplied by things like failure rates or latency, which allows `RetryPolicy`s * to dynamically reduce the number of retries in response to backpressure. * * The predicate function is only called on the first failure in a chain. Any additional * chained RetryPolicies returned by the current policy will then see additional failures * unfiltered. Contrast this will `filterEach`, which applies the filter to each `RetryPolicy` * in the chain. */ def filter[B <: A](pred: B => Boolean): RetryPolicy[B] = RetryPolicy { e => if (!pred(e)) None else this(e) } /** * Similar to `filter`, but the predicate is applied to each `RetryPolicy` in the chain * returned by the current RetryPolicy. For example, if the current `RetryPolicy` returns * `Some((D, P'))` for value `E` (of type `A`), and the given predicate returns true for `E`, * then the value returned from the filtering `RetryPolicy` will be `Some((D, P''))` where * `P''` is equal to `P'.filterEach(pred)`. * * One example where this is useful is to dynamically and fractionally allow retries based * upon backpressure signals. If, for example, the predicate function returned true or false * based upon a probability distribution computed from a backpressure signal, it could return * true 50% of the time, giving you a 50% chance of performing a single retry, a 25% chance of * performing 2 retries, 12.5% chance of performing 3 retries, etc. This might be more * desirable than just using `filter` where you end up with a 50% chance of no retries and * 50% chance of the full number of retries. */ def filterEach[B <: A](pred: B => Boolean): RetryPolicy[B] = RetryPolicy { e => if (!pred(e)) None else { this(e).map { case (backoff, p2) => (backoff, p2.filterEach(pred)) } } } /** * Applies a dynamically chosen retry limit to an existing `RetryPolicy` that may allow for * more retries. When the returned `RetryPolicy` is first invoked, it will call the `maxRetries` * by-name parameter to get the current maximum retries allowed. Regardless of the number * of retries that the underlying policy would allow, it is capped to be no greater than the * number returned by `maxRetries` on the first failure in the chain. * * Using a dynamically choosen retry limit allows for the retry count to be tuned at runtime * based upon backpressure signals such as failure rate or request latency. */ def limit(maxRetries: => Int): RetryPolicy[A] = RetryPolicy[A] { e => val triesRemaining = maxRetries if (triesRemaining <= 0) None else { this(e).map { case (backoff, p2) => (backoff, p2.limit(triesRemaining - 1)) } } } } /** * A retry policy abstract class. This is convenient to use for Java programmers. Simply implement * the two abstract methods `shouldRetry` and `backoffAt` and you're good to go! */ abstract class SimpleRetryPolicy[A](i: Int) extends RetryPolicy[A] with (A => Option[(Duration, RetryPolicy[A])]) { def this() = this(0) final def apply(e: A) = { if (shouldRetry(e)) { backoffAt(i) match { case Duration.Top => None case howlong => Some((howlong, new SimpleRetryPolicy[A](i + 1) { def shouldRetry(a: A) = SimpleRetryPolicy.this.shouldRetry(a) def backoffAt(retry: Int) = SimpleRetryPolicy.this.backoffAt(retry) })) } } else { None } } override def andThen[B](that: Option[(Duration, RetryPolicy[A])] => B): A => B = that.compose(this) override def compose[B](that: B => A): B => Option[(Duration, RetryPolicy[A])] = that.andThen(this) /** * Given a value, decide whether it is retryable. Typically the value is an exception. */ def shouldRetry(a: A): Boolean /** * Given a number of retries, return how long to wait till the next retry. Note that this is * zero-indexed. To implement a finite number of retries, implement a method like: * `if (i > 3) return never` */ def backoffAt(retry: Int): Duration /** * A convenience method to access Duration.Top from Java. This is a sentinel value that * signals no-further-retries. */ final val never = Duration.Top } object RetryPolicy extends JavaSingleton { object RetryableWriteException { def unapply(thr: Throwable): Option[Throwable] = thr match { // We don't retry interruptions by default since they // indicate that the request was discarded. case f: Failure if f.isFlagged(Failure.Interrupted) => None case f: Failure if f.isFlagged(Failure.Restartable) => Some(f.show) case WriteException(exc) => Some(exc) case _ => None } } /** * Failures that are generally retryable because the request failed * before it finished being written to the remote service. * See [[com.twitter.finagle.WriteException]]. */ val WriteExceptionsOnly: PartialFunction[Try[Nothing], Boolean] = { case Throw(RetryableWriteException(_)) => true } val TimeoutAndWriteExceptionsOnly: PartialFunction[Try[Nothing], Boolean] = WriteExceptionsOnly.orElse { case Throw(Failure(Some(_: TimeoutException))) => true case Throw(Failure(Some(_: UtilTimeoutException))) => true case Throw(_: TimeoutException) => true case Throw(_: UtilTimeoutException) => true } val ChannelClosedExceptionsOnly: PartialFunction[Try[Nothing], Boolean] = { case Throw(_: ChannelClosedException) => true } val Never: RetryPolicy[Try[Nothing]] = new RetryPolicy[Try[Nothing]] { def apply(t: Try[Nothing]): Option[(Duration, Nothing)] = None } /** * Converts a `RetryPolicy[Try[Nothing]]` to a `RetryPolicy[(Req, Try[Rep])]` * that acts only on exceptions. */ private[finagle] def convertExceptionPolicy[Req, Rep]( policy: RetryPolicy[Try[Nothing]] ): RetryPolicy[(Req, Try[Rep])] = new RetryPolicy[(Req, Try[Rep])] { def apply(input: (Req, Try[Rep])): Option[(Duration, RetryPolicy[(Req, Try[Rep])])] = input match { case (_, t@Throw(_)) => policy(t.asInstanceOf[Throw[Nothing]]) match { case Some((howlong, nextPolicy)) => Some((howlong, convertExceptionPolicy(nextPolicy))) case None => None } case (_, Return(_)) => None } } /** * Lifts a function of type `A => Option[(Duration, RetryPolicy[A])]` in the `RetryPolicy` type. */ def apply[A](f: A => Option[(Duration, RetryPolicy[A])]): RetryPolicy[A] = new RetryPolicy[A] { def apply(e: A): Option[(Duration, RetryPolicy[A])] = f(e) } /** * Try up to a specific number of times, based on the supplied `PartialFunction[A, Boolean]`. * A value of type `A` is considered retryable if and only if the PartialFunction * is defined at and returns true for that value. * * The returned policy has jittered backoffs between retries. * * @param numTries the maximum number of attempts (including retries) that can be made. * A value of `1` means one attempt and no retries on failure. * A value of `2` means one attempt and then a single retry if the failure meets the * criteria of `shouldRetry`. * @param shouldRetry which `A`-typed values are considered retryable. */ def tries[A]( numTries: Int, shouldRetry: PartialFunction[A, Boolean] ): RetryPolicy[A] = { val backoffs = Backoff.decorrelatedJittered(5.millis, 200.millis) backoff[A](backoffs.take(numTries - 1))(shouldRetry) } /** * Try up to a specific number of times of times on failures that are * [[com.twitter.finagle.service.RetryPolicy.WriteExceptionsOnly]]. * * The returned policy has jittered backoffs between retries. * * @param numTries the maximum number of attempts (including retries) that can be made. * A value of `1` means one attempt and no retries on failure. * A value of `2` means one attempt and then a single retry if the failure meets the * criteria of [[com.twitter.finagle.service.RetryPolicy.WriteExceptionsOnly]]. */ def tries(numTries: Int): RetryPolicy[Try[Nothing]] = tries(numTries, WriteExceptionsOnly) private[this] val AlwaysFalse = Function.const(false) _ /** * Retry based on a series of backoffs defined by a `Stream[Duration]`. The * stream is consulted to determine the duration after which a request is to * be retried. A `PartialFunction` argument determines which request types * are retryable. * * @see [[backoffJava]] for a Java friendly API. */ def backoff[A]( backoffs: Stream[Duration] )(shouldRetry: PartialFunction[A, Boolean]): RetryPolicy[A] = { RetryPolicy { e => if (shouldRetry.applyOrElse(e, AlwaysFalse)) { backoffs match { case howlong #:: rest => Some((howlong, backoff(rest)(shouldRetry))) case _ => None } } else { None } } } /** * A version of [[backoff]] usable from Java. * * @param backoffs can be created via [[Backoff.toJava]]. */ def backoffJava[A]( backoffs: juc.Callable[ju.Iterator[Duration]], shouldRetry: PartialFunction[A, Boolean] ): RetryPolicy[A] = { backoff[A](backoffs.call().asScala.toStream)(shouldRetry) } /** * Combines multiple `RetryPolicy`s into a single combined `RetryPolicy`, with interleaved * backoffs. For a given value of `A`, each policy in `policies` is tried in order. If all * policies return `None`, then the combined `RetryPolicy` returns `None`. If policy `P` returns * `Some((D, P'))`, then the combined `RetryPolicy` returns `Some((D, P''))`, where `P''` is a * new combined `RetryPolicy` with the same sub-policies, with the exception of `P` replaced by * `P'`. * * The ordering of policies matters: earlier policies get a chance to handle the failure * before later policies; a catch-all policy, if any, should be last. * * As an example, let's say you combine two `RetryPolicy`s, `R1` and `R2`, where `R1` handles * only exception `E1` with a backoff of `(10.milliseconds, 20.milliseconds, 30.milliseconds)`, * while `R2` handles only exception `E2` with a backoff of `(15.milliseconds, 25.milliseconds)`. * * If a sequence of exceptions, `(E2, E1, E1, E2)`, is fed in order to the combined retry policy, * the backoffs seen will be `(15.milliseconds, 10.milliseconds, 20.milliseconds, * 25.milliseconds)`. * * The maximum number of retries the combined policy could allow under the worst case scenario * of exceptions is equal to the sum of the individual maximum retries of each subpolicy. To * put a cap on the combined maximum number of retries, you can call `limit` on the combined * policy with a smaller cap. */ def combine[A](policies: RetryPolicy[A]*): RetryPolicy[A] = RetryPolicy[A] { e => // stores the first matched backoff var backoffOpt: Option[Duration] = None val policies2 = policies.map { p => if (backoffOpt.nonEmpty) p else { p(e) match { case None => p case Some((backoff, p2)) => backoffOpt = Some(backoff) p2 } } } backoffOpt match { case None => None case Some(backoff) => Some((backoff, combine(policies2: _*))) } } }
zfy0701/finagle
finagle-core/src/main/scala/com/twitter/finagle/service/RetryPolicy.scala
Scala
apache-2.0
12,851
package lila.security import scala.concurrent.duration._ import com.github.blemale.scaffeine.Cache import lila.user.User import lila.common.config.NetDomain final class PromotionApi(domain: NetDomain) { def test(user: User)(text: String, prevText: Option[String] = None): Boolean = user.isVerified || user.isAdmin || { val promotions = extract(text) promotions.isEmpty || { val prevTextPromotion = prevText ?? extract val prev = ~cache.getIfPresent(user.id) -- prevTextPromotion val accept = prev.sizeIs < 3 && !prev.exists(promotions.contains) if (!accept) logger.info(s"Promotion @${user.username} ${identify(text) mkString ", "}") accept } } def save(user: User, text: String): Unit = { val promotions = extract(text) if (promotions.nonEmpty) cache.put(user.id, ~cache.getIfPresent(user.id) ++ promotions) } private type Id = String private val cache: Cache[User.ID, Set[Id]] = lila.memo.CacheApi.scaffeineNoScheduler .expireAfterAccess(24 hours) .build[User.ID, Set[Id]]() private lazy val regexes = List( s"$domain/team/([\\\\w-]+)", s"$domain/tournament/(\\\\w+)", s"$domain/swiss/(\\\\w+)", s"$domain/simul/(\\\\w+)", s"$domain/study/(\\\\w+)", s"$domain/class/(\\\\w+)", """(?:youtube\\.com|youtu\\.be)/(?:watch)?(?:\\?v=)?([^"&?/ ]{11})""", """youtube\\.com/channel/([\\w-]{24})""", """twitch\\.tv/([a-zA-Z0-9](?:\\w{2,24}+))""" ).map(_.r.unanchored) private def extract(text: String): Set[Id] = regexes .flatMap(_ findAllMatchIn text) .view .flatMap { m => Option(m group 1) } .toSet private def identify(text: String): List[String] = regexes.flatMap(_ findAllMatchIn text).map(_.matched) }
luanlv/lila
modules/security/src/main/Promotion.scala
Scala
mit
1,806
package se.marcuslonnberg.scaladocker.remote.api import java.io._ import org.kamranzafar.jtar.{TarEntry, TarOutputStream} import scala.annotation.tailrec object TarArchive { def apply(inDir: File, out: File): File = { val files = FileUtils.listFilesRecursive(inDir) apply(files, out) } def apply(files: Map[String, File], outFile: File): File = { val entries = files.toSeq.sortBy(_._1).map { case (path, file) => createEntry(path, file) } apply(entries, outFile) } private[api] def apply(entries: Iterable[TarEntry], outFile: File): File = { val tarFile = new FileOutputStream(outFile) val tarStream = new TarOutputStream(new BufferedOutputStream(tarFile)) val buffer = Array.ofDim[Byte](2048) def copyFile(file: File) = { val fileStream = new BufferedInputStream(new FileInputStream(file)) @tailrec def copy(input: InputStream) { val len = input.read(buffer) if (len != -1) { tarStream.write(buffer, 0, len) copy(input) } } copy(fileStream) fileStream.close() } entries.foreach { entry => tarStream.putNextEntry(entry) if (entry.getFile.isFile) { copyFile(entry.getFile) } tarStream.flush() } tarStream.close() tarFile.close() outFile } private[api] def createEntry(path: String, file: File) = { val entry = new TarEntry(file, path) entry.setUserName("") entry.setGroupName("") entry.setIds(0, 0) entry.getHeader.mode = FileUtils.filePermissions(file) entry } }
marcuslonnberg/scala-docker
src/main/scala/se/marcuslonnberg/scaladocker/remote/api/TarArchive.scala
Scala
mit
1,605
package service.sheet import org.apache.commons.io.output.ByteArrayOutputStream import org.apache.poi.hssf.usermodel._ import org.apache.poi.ss.usermodel.{BorderStyle, FillPatternType, IndexedColors} import org.apache.poi.ss.util.{CellRangeAddress, RegionUtil} import scala.util.Try sealed trait Fraction object Fraction { object Low extends Fraction object Medium extends Fraction object Large extends Fraction object AutoFit extends Fraction } case class Row(value: String) case class SheetHeader(left: String, center: String, right: String) case class RowHeader(cols: List[(Row, Fraction)], backgroundColor: IndexedColors, repeating: Boolean) case class Signature(text: String) case class SheetFooter(left: String, showPageNumbers: Boolean) case class Sheet(name: String, header: SheetHeader, rowHeader: RowHeader, rowContent: List[List[Row]], footer: SheetFooter) object SheetService { private def withSheet(name: String)(f: (HSSFSheet, HSSFWorkbook) => Unit): Try[ByteArrayOutputStream] = { val book = HSSFWorkbookFactory.createWorkbook() for { sheet <- Try(book.createSheet(name)) _ = f(sheet, book) stream = new ByteArrayOutputStream() _ = book.write(stream) _ = stream.close() _ = book.close() } yield stream } def createSheet(sheet: Sheet)(custom: (HSSFSheet) => Unit): Try[ByteArrayOutputStream] = withSheet(sheet.name) { (sheet0, book) => val headerStyle = book.createCellStyle() val contentStyle = book.createCellStyle() val font = book.createFont() createHeader(sheet0, sheet.header) createFooter(sheet0, sheet.footer) val (headerCells, lastRow) = createRowHeader(sheet0, font, headerStyle, sheet.rowHeader) applyBorders(headerStyle, headerCells) val contentCells = createRows(sheet0, lastRow + 1, sheet.rowContent) applyBorders(contentStyle, contentCells) custom(sheet0) applyWidth(sheet0, sheet) } private def applyWidth(sheet0: HSSFSheet, sheet: Sheet): Unit = { def fractionValue(f: Fraction): Option[Double] = f match { case Fraction.Low => Some(0.05) case Fraction.Medium => Some(0.15) case Fraction.Large => Some(0.25) case Fraction.AutoFit => None } val maxCols = sheet.rowHeader.cols.size val colWidth = 16 // TODO this magic number was determined by trial and error val totalWidth = maxCols * colWidth val cells = sheet.rowHeader.cols.map(t => fractionValue(t._2)).zipWithIndex val widthSoFar = cells.filter(_._1.isDefined).foldLeft(0) { case (acc, (f, i)) => val width = (totalWidth * f.get).toInt sheet0.setColumnWidth(i, width * 256) acc + width } val remainingCells = cells.filter(_._1.isEmpty) val remainingWidth = (totalWidth - widthSoFar) / remainingCells.size remainingCells.foreach { case (_, i) => sheet0.setColumnWidth(i, remainingWidth * 256) } } private def applyBorders(style: HSSFCellStyle, cells: List[HSSFCell]): Unit = { val borderColor = IndexedColors.BLACK.getIndex val borderStyle = BorderStyle.THIN style.setBorderBottom(borderStyle) style.setBottomBorderColor(borderColor) style.setBorderLeft(borderStyle) style.setLeftBorderColor(borderColor) style.setBorderRight(borderStyle) style.setRightBorderColor(borderColor) style.setBorderTop(borderStyle) style.setTopBorderColor(borderColor) cells.foreach(_.setCellStyle(style)) } private def createRowHeader(sheet: HSSFSheet, font: HSSFFont, style: HSSFCellStyle, header: RowHeader): (List[HSSFCell], Int) = { font.setBold(true) style.setFont(font) style.setFillForegroundColor(header.backgroundColor.index) style.setFillPattern(FillPatternType.SOLID_FOREGROUND) val row = sheet.createRow(0) val cells = header.cols.zipWithIndex.map { case (col, index) => val cell = row.createCell(index) cell.setCellValue(col._1.value) cell.setCellStyle(style) cell } if (header.repeating) { sheet.setRepeatingRows(new CellRangeAddress(row.getRowNum, row.getRowNum, row.getRowNum, header.cols.size - 1)) } cells -> row.getRowNum } private def createHeader(sheet: HSSFSheet, header: SheetHeader): Unit = { sheet.getHeader.setLeft(header.left) sheet.getHeader.setCenter(header.center) sheet.getHeader.setRight(header.right) } private def createFooter(sheet: HSSFSheet, footer: SheetFooter): Unit = { sheet.getFooter.setLeft(footer.left) if (footer.showPageNumbers) { sheet.getFooter.setRight(s"${HeaderFooter.page} / ${HeaderFooter.numPages}") } } private def createRows(sheet: HSSFSheet, nextRow: Int, rows: List[List[Row]]): List[HSSFCell] = { rows.zipWithIndex.flatMap { case (rows, rowIndex) => val row = sheet.createRow(rowIndex + nextRow) rows.zipWithIndex.map { case (col, colIndex) => val cell = row.createCell(colIndex) cell.setCellValue(col.value) cell } } } }
THK-ADV/lwm-reloaded
app/service/sheet/SheetService.scala
Scala
mit
5,077
package spinoco.protocol.mail.header import scodec.Codec import spinoco.protocol.mail.EmailAddress import spinoco.protocol.mail.header.codec.{EmailAddressCodec, commaSeparated} /** * RFC 5322 3.6.2. * * The "From:" field specifies the author(s) of the message, * that is, the mailbox(es) of the person(s) or system(s) responsible * for the writing of the message. * * * @param email Email of the person * @param others List of other autors of this email. * */ case class From( email: EmailAddress , others: List[EmailAddress] ) extends DefaultEmailHeaderField object From extends DefaultHeaderDescription[From] { val codec: Codec[From] = { commaSeparated(EmailAddressCodec.codec, fold = true).xmap( From.apply _ tupled, from => (from.email, from.others) ) } }
Spinoco/protocol
mail/src/main/scala/spinoco/protocol/mail/header/From.scala
Scala
mit
819
package com.gilt.thehand.rules.typed import com.gilt.thehand.rules.conversions.ConvertsToLong import com.gilt.thehand.rules.comparison.LessThan import com.gilt.thehand.rules.SingleValueRuleParser /** * A typed implementation of the LessThan trait, specific to Long. This can be used for any non-decimal datatype. */ case class LongLt(value: Long) extends LessThan with ConvertsToLong { // This override is necessary because the native type Long is not Ordered (RichLong mixes this in). override def matchInnerType(v: Long) = v < value } /** * Use this to differentiate LessThan[Long] from other versions of LessThan. */ object LongLtParser extends SingleValueRuleParser[LongLt] { def ruleConstructor(value: Long) = LongLt(value) def toValue(value: String) = value.toLong }
gilt/the-hand
src/main/scala/com/gilt/thehand/rules/typed/LongLt.scala
Scala
apache-2.0
788
/* * Copyright 2012 Atlassian PTY LTD * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package kadai package concurrent import language.implicitConversions import log.Logging object IntRepeater { implicit def AddRepeatSyntax(i: Int) = new IntRepeater(i) } class IntRepeater(i: Int) extends Logging { import Logging._ require(i > 0, "Repeat amount must be > 0") def times[A](x: => A) = { @annotation.tailrec def loop(last: A)(left: Int): A = if (left <= 0) last else loop(x)(left - 1) loop(x)(i - 1) } /** * Try executing a function n times. * This ignores exceptions until the last try. */ def retries[A](f: => A): A = retriesWith { _ => () }(f) /** * Try executing a function n times, executing a backoff strategy in between. * This ignores exceptions until the last try. */ def retriesWith[A](backoff: Int => Unit)(f: => A): A = { // compiler doesn't optimise tail recursion in catch clauses, hence the workaround using Option @annotation.tailrec def loop(t: Int): A = { try Some(f) catch { case e: Exception if t <= i => withLog(s"retry-operation failed: ${e} attempt $t of max $i") { None } } } match { case Some(a) => a case None => backoff(t); loop(t + 1) } loop(1) } }
simpleenergy/kadai
concurrent/src/main/scala/kadai/concurrent/IntRepeater.scala
Scala
apache-2.0
1,861
/* * Copyright (C) 2013-2014 by Michael Hombre Brinkmann */ package net.twibs.util import com.ibm.icu.util.ULocale import net.twibs.testutil.TwibsTest class SettingsTest extends TwibsTest { test("Check version for run modes") { val sys = SystemSettings.copy(runMode = RunMode.PRODUCTION) sys.version should be(sys.majorVersion) SystemSettings.version should be(sys.fullVersion) } SystemSettings.runMode.isTest shouldBe true test("Default Mode") { RunMode.isProduction shouldBe false RunMode.isStaging shouldBe false RunMode.isDevelopment shouldBe false RunMode.isTest shouldBe true } test("Default loaded configuration is Default application") { ApplicationSettings.translators(ULocale.GERMAN).translate("message", "") should be("Runmode test Host unknown User tester Lang German (test) App Default") } test("Configuration for production mode is default") { SystemSettings.default.copy(runMode = RunMode.PRODUCTION).use { ApplicationSettings.translators(ULocale.GERMAN).translate("message", "") should be("Runmode production Host unknown User tester Lang German App Default") } } test("Configuration for host overrides and joins configuration") { SystemSettings.default.copy(hostName = "twibs-test-host").use { ApplicationSettings.translators(ULocale.GERMAN).translate("message", "") should be("Runmode test Host testhost User tester Lang German (test on testhost) App Default") } } test("Different locales for applications") { SystemSettings.default.use { ApplicationSettings.locales should be(List(ULocale.GERMAN, ULocale.ENGLISH, ULocale.FRENCH)) SystemSettings.applicationSettings("t1").locales should be(List(ULocale.GERMAN)) SystemSettings.applicationSettings("t2").locales should be(List(SystemSettings.default.locale)) } } test("Find configured applications") { SystemSettings.default.use { SystemSettings.applicationSettings.values.map(_.name).toList.sorted should be(List("default", "t1", "t2")) } } test("Find application settings by path") { SystemSettings.default.use { SystemSettings.applicationSettingsForPath("/content/t1").name should be("t1") SystemSettings.applicationSettingsForPath("/content/t").name should be(ApplicationSettings.DEFAULT_NAME) } } test("Validate context path") { intercept[NullPointerException] { Request.requireValidContextPath(null) } intercept[IllegalArgumentException] { Request.requireValidContextPath("/") }.getMessage should include("not be /") intercept[IllegalArgumentException] { Request.requireValidContextPath("nix") }.getMessage should include("start with /") intercept[IllegalArgumentException] { Request.requireValidContextPath("/x x") }.getMessage should include("invalid") } }
hombre/twibs
twibs-util-test/src/test/scala/net/twibs/util/SettingsTest.scala
Scala
apache-2.0
2,860
/* * Copyright (C) 2018 Lightbend Inc. <https://www.lightbend.com> * Copyright (C) 2017-2018 Alexis Seigneurin. * * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.kafka.streams.scala import java.util.Properties import java.util.regex.Pattern import org.apache.kafka.streams.kstream.GlobalKTable import org.apache.kafka.streams.processor.{ProcessorSupplier, StateStore} import org.apache.kafka.streams.state.StoreBuilder import org.apache.kafka.streams.{Topology, StreamsBuilder => StreamsBuilderJ} import org.apache.kafka.streams.scala.kstream._ import ImplicitConversions._ import scala.collection.JavaConverters._ /** * Wraps the Java class StreamsBuilder and delegates method calls to the underlying Java object. */ class StreamsBuilder(inner: StreamsBuilderJ = new StreamsBuilderJ) { /** * Create a [[kstream.KStream]] from the specified topic. * <p> * The `implicit Consumed` instance provides the values of `auto.offset.reset` strategy, `TimestampExtractor`, * key and value deserializers etc. If the implicit is not found in scope, compiler error will result. * <p> * A convenient alternative is to have the necessary implicit serdes in scope, which will be implicitly * converted to generate an instance of `Consumed`. @see [[ImplicitConversions]]. * {{{ * // Brings all implicit conversions in scope * import ImplicitConversions._ * * // Bring implicit default serdes in scope * import Serdes._ * * val builder = new StreamsBuilder() * * // stream function gets the implicit Consumed which is constructed automatically * // from the serdes through the implicits in ImplicitConversions#consumedFromSerde * val userClicksStream: KStream[String, Long] = builder.stream(userClicksTopic) * }}} * * @param topic the topic name * @return a [[kstream.KStream]] for the specified topic */ def stream[K, V](topic: String)(implicit consumed: Consumed[K, V]): KStream[K, V] = inner.stream[K, V](topic, consumed) /** * Create a [[kstream.KStream]] from the specified topics. * * @param topics the topic names * @return a [[kstream.KStream]] for the specified topics * @see #stream(String) * @see `org.apache.kafka.streams.StreamsBuilder#stream` */ def stream[K, V](topics: Set[String])(implicit consumed: Consumed[K, V]): KStream[K, V] = inner.stream[K, V](topics.asJava, consumed) /** * Create a [[kstream.KStream]] from the specified topic pattern. * * @param topicPattern the topic name pattern * @return a [[kstream.KStream]] for the specified topics * @see #stream(String) * @see `org.apache.kafka.streams.StreamsBuilder#stream` */ def stream[K, V](topicPattern: Pattern)(implicit consumed: Consumed[K, V]): KStream[K, V] = inner.stream[K, V](topicPattern, consumed) /** * Create a [[kstream.KTable]] from the specified topic. * <p> * The `implicit Consumed` instance provides the values of `auto.offset.reset` strategy, `TimestampExtractor`, * key and value deserializers etc. If the implicit is not found in scope, compiler error will result. * <p> * A convenient alternative is to have the necessary implicit serdes in scope, which will be implicitly * converted to generate an instance of `Consumed`. @see [[ImplicitConversions]]. * {{{ * // Brings all implicit conversions in scope * import ImplicitConversions._ * * // Bring implicit default serdes in scope * import Serdes._ * * val builder = new StreamsBuilder() * * // stream function gets the implicit Consumed which is constructed automatically * // from the serdes through the implicits in ImplicitConversions#consumedFromSerde * val userClicksStream: KTable[String, Long] = builder.table(userClicksTopic) * }}} * * @param topic the topic name * @return a [[kstream.KTable]] for the specified topic * @see `org.apache.kafka.streams.StreamsBuilder#table` */ def table[K, V](topic: String)(implicit consumed: Consumed[K, V]): KTable[K, V] = inner.table[K, V](topic, consumed) /** * Create a [[kstream.KTable]] from the specified topic. * * @param topic the topic name * @param materialized the instance of `Materialized` used to materialize a state store * @return a [[kstream.KTable]] for the specified topic * @see #table(String) * @see `org.apache.kafka.streams.StreamsBuilder#table` */ def table[K, V](topic: String, materialized: Materialized[K, V, ByteArrayKeyValueStore])( implicit consumed: Consumed[K, V] ): KTable[K, V] = inner.table[K, V](topic, consumed, materialized) /** * Create a `GlobalKTable` from the specified topic. The serializers from the implicit `Consumed` * instance will be used. Input records with `null` key will be dropped. * * @param topic the topic name * @return a `GlobalKTable` for the specified topic * @see `org.apache.kafka.streams.StreamsBuilder#globalTable` */ def globalTable[K, V](topic: String)(implicit consumed: Consumed[K, V]): GlobalKTable[K, V] = inner.globalTable(topic, consumed) /** * Create a `GlobalKTable` from the specified topic. The resulting `GlobalKTable` will be materialized * in a local `KeyValueStore` configured with the provided instance of `Materialized`. The serializers * from the implicit `Consumed` instance will be used. * * @param topic the topic name * @param materialized the instance of `Materialized` used to materialize a state store * @return a `GlobalKTable` for the specified topic * @see `org.apache.kafka.streams.StreamsBuilder#globalTable` */ def globalTable[K, V](topic: String, materialized: Materialized[K, V, ByteArrayKeyValueStore])( implicit consumed: Consumed[K, V] ): GlobalKTable[K, V] = inner.globalTable(topic, consumed, materialized) /** * Adds a state store to the underlying `Topology`. The store must still be "connected" to a `Processor`, * `Transformer`, or `ValueTransformer` before it can be used. * <p> * It is required to connect state stores to `Processor`, `Transformer`, or `ValueTransformer` before they can be used. * * @param builder the builder used to obtain this state store `StateStore` instance * @return the underlying Java abstraction `StreamsBuilder` after adding the `StateStore` * @throws org.apache.kafka.streams.errors.TopologyException if state store supplier is already added * @see `org.apache.kafka.streams.StreamsBuilder#addStateStore` */ def addStateStore(builder: StoreBuilder[_ <: StateStore]): StreamsBuilderJ = inner.addStateStore(builder) /** * Adds a global `StateStore` to the topology. Global stores should not be added to `Processor`, `Transformer`, * or `ValueTransformer` (in contrast to regular stores). * <p> * It is not required to connect a global store to `Processor`, `Transformer`, or `ValueTransformer`; * those have read-only access to all global stores by default. * * @see `org.apache.kafka.streams.StreamsBuilder#addGlobalStore` */ def addGlobalStore(storeBuilder: StoreBuilder[_ <: StateStore], topic: String, consumed: Consumed[_, _], stateUpdateSupplier: ProcessorSupplier[_, _]): StreamsBuilderJ = inner.addGlobalStore(storeBuilder, topic, consumed, stateUpdateSupplier) def build(): Topology = inner.build() /** * Returns the `Topology` that represents the specified processing logic and accepts * a `Properties` instance used to indicate whether to optimize topology or not. * * @param props the `Properties` used for building possibly optimized topology * @return the `Topology` that represents the specified processing logic * @see `org.apache.kafka.streams.StreamsBuilder#build` */ def build(props: Properties): Topology = inner.build(props) }
gf53520/kafka
streams/streams-scala/src/main/scala/org/apache/kafka/streams/scala/StreamsBuilder.scala
Scala
apache-2.0
8,638
package model.repositories.anorm import anorm.SqlParser._ import anorm._ import model.dtos._ object ConsFrequencyPerOrganizationParser{ val Parse: RowParser[ConsFrequencyPerOrganization] = { str("date") ~ str("organizationName") ~ long("organizationId") ~ int("numberOfConsultations") ~ get[Option[String]]("groupTitle") ~ str("cons_ids")map { case date ~ organizationName ~ organizationId ~ numberOfConsultations ~ groupTitle ~ cons_ids => new ConsFrequencyPerOrganization(date, organizationName, organizationId, numberOfConsultations, groupTitle, cons_ids) } } }
scify/DemocracIT-Web
app/model/repositories/anorm/ConsFrequencyPerOrganizationParser.scala
Scala
apache-2.0
633
/* * Part of NDLA learningpath-api. * Copyright (C) 2016 NDLA * * See LICENSE * */ package no.ndla.learningpathapi.model.api import org.scalatra.swagger.annotations._ import org.scalatra.swagger.runtime.annotations.ApiModelProperty import scala.annotation.meta.field // format: off @ApiModel(description = "Information about a learningstep") case class LearningStepV2( @(ApiModelProperty @field)(description = "The id of the learningstep") id: Long, @(ApiModelProperty @field)(description = "The revision number for this learningstep") revision: Int, @(ApiModelProperty @field)(description = "The sequence number for the step. The first step has seqNo 0.") seqNo: Int, @(ApiModelProperty @field)(description = "The title of the learningstep") title: Title, @(ApiModelProperty @field)(description = "The description of the learningstep") description: Option[Description], @(ApiModelProperty @field)(description = "The embed content for the learningstep") embedUrl: Option[EmbedUrlV2], @(ApiModelProperty @field)(description = "Determines if the title of the step should be displayed in viewmode") showTitle: Boolean, @(ApiModelProperty @field)(description = "The type of the step", allowableValues = "INTRODUCTION,TEXT,QUIZ,TASK,MULTIMEDIA,SUMMARY,TEST") `type`: String, @(ApiModelProperty @field)(description = "Describes the copyright information for the learningstep") license: Option[License], @(ApiModelProperty @field)(description = "The full url to where the complete metainformation about the learningstep can be found") metaUrl: String, @(ApiModelProperty @field)(description = "True if authenticated user may edit this learningstep") canEdit: Boolean, @(ApiModelProperty @field)(description = "The status of the learningstep", allowableValues = "ACTIVE,DELETED") status: String, @(ApiModelProperty @field)(description = "The supported languages of the learningstep") supportedLanguages: Seq[String] )
NDLANO/learningpath-api
src/main/scala/no/ndla/learningpathapi/model/api/LearningStep.scala
Scala
gpl-3.0
1,972
package im.actor.server import akka.actor.ActorSystem import akka.stream.Materializer import akka.util.Timeout import cats.data.Xor import eu.codearte.jfairy.Fairy import im.actor.api.rpc.ClientData import im.actor.api.rpc.auth.AuthService import im.actor.api.rpc.peers.{ ApiOutPeer, ApiPeerType, ApiUserOutPeer } import im.actor.api.rpc.users.ApiUser import im.actor.server.api.rpc.RpcApiExtension import im.actor.server.api.rpc.service.auth.AuthServiceImpl import im.actor.server.oauth.GoogleProvider import im.actor.server.persist.{ AuthCodeRepo, AuthSessionRepo } import im.actor.server.session.{ Session, SessionConfig, SessionRegion } import im.actor.server.user.UserExtension import org.scalatest.concurrent.ScalaFutures import org.scalatest.{ Inside, Suite } import slick.driver.PostgresDriver.api._ import scala.concurrent._ import scala.concurrent.duration._ import scala.util.Random trait PersistenceHelpers { implicit val timeout = Timeout(5.seconds) def getUserModel(userId: Int)(implicit db: Database) = Await.result(db.run(persist.UserRepo.find(userId)), timeout.duration).get } trait UserStructExtensions { implicit class ExtUser(user: ApiUser) { def asModel()(implicit db: Database): model.User = Await.result(db.run(persist.UserRepo.find(user.id)), 3.seconds).get } } trait ServiceSpecHelpers extends PersistenceHelpers with UserStructExtensions with ScalaFutures with Inside { this: Suite ⇒ protected val system: ActorSystem protected val fairy = Fairy.create() //private implicit val patienceConfig = PatienceConfig(Span(10, Seconds)) def buildPhone(): Long = { 75550000000L + scala.util.Random.nextInt(999999) } def buildEmail(at: String = ""): String = { val email = fairy.person().email() if (at.isEmpty) email else email.substring(0, email.lastIndexOf("@")) + s"@$at" } def createAuthId()(implicit db: Database): Long = { val authId = scala.util.Random.nextLong() Await.result(db.run(persist.AuthIdRepo.create(authId, None, None)), 1.second) authId } def createAuthId(userId: Int)(implicit ec: ExecutionContext, system: ActorSystem, db: Database, service: AuthService): (Long, Int) = { val authId = scala.util.Random.nextLong() Await.result(db.run(persist.AuthIdRepo.create(authId, None, None)), 1.second) implicit val clientData = ClientData(authId, scala.util.Random.nextLong(), None) val phoneNumber = Await.result(db.run(persist.UserPhoneRepo.findByUserId(userId)) map (_.head.number), 1.second) val txHash = whenReady(service.handleStartPhoneAuth( phoneNumber = phoneNumber, appId = 42, apiKey = "appKey", deviceHash = Random.nextLong.toBinaryString.getBytes, deviceTitle = "Specs virtual device", timeZone = None, preferredLanguages = Vector.empty ))(_.toOption.get.transactionHash) val code = whenReady(db.run(AuthCodeRepo.findByTransactionHash(txHash)))(_.get.code) val res = Await.result(service.handleValidateCode(txHash, code), 5.seconds) res match { case Xor.Right(rsp) ⇒ rsp case Xor.Left(e) ⇒ fail(s"Got RpcError ${e}") } (authId, Await.result(db.run(AuthSessionRepo.findByAuthId(authId)), 5.seconds).get.id) } def createSessionId(): Long = scala.util.Random.nextLong() def createUser()(implicit service: AuthService, db: Database, system: ActorSystem): (ApiUser, Long, Int, Long) = { val authId = createAuthId() val phoneNumber = buildPhone() val (user, authSid) = createUser(authId, phoneNumber) (user, authId, authSid, phoneNumber) } def createUser(phoneNumber: Long)(implicit service: AuthService, system: ActorSystem, db: Database): (ApiUser, Int) = createUser(createAuthId(), phoneNumber) def getOutPeer(userId: Int, clientAuthId: Long): ApiOutPeer = { val accessHash = Await.result(UserExtension(system).getAccessHash(userId, clientAuthId), 5.seconds) ApiOutPeer(ApiPeerType.Private, userId, accessHash) } def getUserOutPeer(userId: Int, clientAuthId: Long): ApiUserOutPeer = { val outPeer = getOutPeer(userId, clientAuthId) ApiUserOutPeer(outPeer.id, outPeer.accessHash) } //TODO: make same method to work with email def createUser(authId: Long, phoneNumber: Long)(implicit service: AuthService, system: ActorSystem, db: Database): (ApiUser, Int) = withoutLogs { implicit val clientData = ClientData(authId, Random.nextLong(), None) val txHash = whenReady(service.handleStartPhoneAuth( phoneNumber = phoneNumber, appId = 42, apiKey = "appKey", deviceHash = Random.nextLong.toBinaryString.getBytes, deviceTitle = "Specs Has You", timeZone = None, preferredLanguages = Vector.empty ))(_.toOption.get.transactionHash) val code = whenReady(db.run(AuthCodeRepo.findByTransactionHash(txHash)))(_.get.code) whenReady(service.handleValidateCode(txHash, code))(_ ⇒ ()) val user = whenReady(service.handleSignUp(txHash, fairy.person().fullName(), None, None))(_.toOption.get.user) val authSid = whenReady(db.run(AuthSessionRepo.findByAuthId(authId)))(_.get.id) (user, authSid) } def buildRpcApiService(services: Seq[im.actor.api.rpc.Service])(implicit system: ActorSystem, db: Database) = RpcApiExtension(system).register(services) protected def withoutLogs[A](f: ⇒ A)(implicit system: ActorSystem): A = { val logger = org.slf4j.LoggerFactory.getLogger(org.slf4j.Logger.ROOT_LOGGER_NAME).asInstanceOf[ch.qos.logback.classic.Logger] val logLevel = logger.getLevel val esLogLevel = system.eventStream.logLevel logger.setLevel(ch.qos.logback.classic.Level.WARN) system.eventStream.setLogLevel(akka.event.Logging.WarningLevel) val res = f logger.setLevel(logLevel) system.eventStream.setLogLevel(esLogLevel) res } protected def futureSleep(delay: Long)(implicit ec: ExecutionContext): Future[Unit] = Future { blocking { Thread.sleep(delay) } } }
ufosky-server/actor-platform
actor-server/actor-testkit/src/main/scala/im/actor/server/ServiceSpecHelpers.scala
Scala
agpl-3.0
6,013
/* * Copyright 2016 The BigDL Authors. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package com.intel.analytics.bigdl.nn.mkldnn import com.intel.analytics.bigdl.mkl.{AlgKind, Memory} import com.intel.analytics.bigdl.nn.mkldnn.Phase.TrainingPhase import com.intel.analytics.bigdl.nn.{SpatialAveragePooling, SpatialMaxPooling} import com.intel.analytics.bigdl.tensor.Tensor import com.intel.analytics.bigdl.utils.BigDLSpecHelper import com.intel.analytics.bigdl.utils.RandomGenerator.RNG import org.apache.commons.lang3.SerializationUtils import scala.util.Random class MaxPoolingSpec extends BigDLSpecHelper { "Max Pooling test1" should "be correct" in { val batchSize = 2 val input = Tensor[Float](batchSize, 480, 28, 28).apply1(e => Random.nextFloat()) RNG.setSeed(100) val pool = MaxPooling(3, 3, 2, 2) RNG.setSeed(100) val layer = SpatialMaxPooling[Float](3, 3, 2, 2).ceil() val output2 = layer.forward(input).toTensor[Float] val seq = Sequential() seq.add(ReorderMemory(HeapData(Array(batchSize, 480, 28, 28), Memory.Format.nchw), HeapData(Array(batchSize, 480, 28, 28), Memory.Format.nchw))) seq.add(pool) seq.add(ReorderMemory(HeapData(Array(batchSize, 480, 14, 14), Memory.Format.nchw), HeapData(Array(batchSize, 480, 14, 14), Memory.Format.nchw))) seq.compile(Phase.TrainingPhase, Array(HeapData(Array(batchSize, 480, 28, 28), Memory.Format.nchw))) val output1 = seq.forward(input) output1 should be(output2) val grad2 = layer.backward(input, output2).toTensor[Float] val grad1 = seq.backward(input, output2) grad1 should be(grad2) } "Max Pooling test2" should "be correct" in { val batchSize = 2 val input = Tensor[Float](batchSize, 64, 112, 112).apply1(e => Random.nextFloat()) RNG.setSeed(100) val pool = MaxPooling(3, 3, 2, 2) RNG.setSeed(100) val layer = SpatialMaxPooling[Float](3, 3, 2, 2).ceil() val output2 = layer.forward(input).toTensor[Float] val seq = Sequential() seq.add(ReorderMemory(HeapData(Array(batchSize, 64, 112, 112), Memory.Format.nchw), HeapData(Array(batchSize, 64, 112, 112), Memory.Format.nchw))) seq.add(pool) seq.add(ReorderMemory(HeapData(Array(batchSize, 64, 56, 56), Memory.Format.nchw), HeapData(Array(batchSize, 64, 56, 56), Memory.Format.nchw))) seq.compile(Phase.TrainingPhase, Array(HeapData(Array(batchSize, 64, 112, 112), Memory.Format.nchw))) val output1 = seq.forward(input) output1 should be(output2) val grad2 = layer.backward(input, output2).toTensor[Float] val grad1 = seq.backward(input, output2) grad1 should be(grad2) } "max pooling with java serialization" should "be correct" in { val batchSize = 2 val inputShape = Array(batchSize, 64, 112, 112) val outputShape = Array(batchSize, 64, 56, 56) val input = Tensor[Float](batchSize, 64, 112, 112).rand(-1, 1) val pool = MaxPooling(3, 3, 2, 2) pool.setRuntime(new MklDnnRuntime) pool.initFwdPrimitives(Array(HeapData(inputShape, Memory.Format.nchw)), TrainingPhase) pool.initBwdPrimitives(Array(HeapData(outputShape, Memory.Format.nchw)), TrainingPhase) pool.initGradWPrimitives(Array(HeapData(outputShape, Memory.Format.nchw)), TrainingPhase) val cloned = SerializationUtils.clone(pool) cloned.setRuntime(new MklDnnRuntime) cloned.initFwdPrimitives(Array(HeapData(inputShape, Memory.Format.nchw)), TrainingPhase) cloned.initBwdPrimitives(Array(HeapData(outputShape, Memory.Format.nchw)), TrainingPhase) cloned.initGradWPrimitives(Array(HeapData(outputShape, Memory.Format.nchw)), TrainingPhase) pool.forward(input) cloned.forward(input) Tools.dense(pool.output) should be (Tools.dense(cloned.output)) val gradOutput = Tensor[Float](outputShape).rand(-1, 1) pool.backward(input, gradOutput) cloned.backward(input, gradOutput) Tools.dense(pool.gradInput) should be (Tools.dense(cloned.gradInput)) } }
yiheng/BigDL
spark/dl/src/test/scala/com/intel/analytics/bigdl/nn/mkldnn/MaxPoolingSpec.scala
Scala
apache-2.0
4,511
package graphique.backends.localbackend.imageserver import java.nio.file.Path import akka.actor.{Actor, ActorLogging, ActorRef, Props} import akka.io.IO import spray.can.Http private[localbackend] class ImageServerManager(hostname: String, port: Int, imagePath: Path) extends Actor with ActorLogging { require(port >= 0) import graphique.backends.localbackend.imageserver.ImageServerManager._ var imageServer: Option[ActorRef] = None var sprayCanHttpListener: Option[ActorRef] = None def receive: Receive = { case Start => // Stop any running server first sprayCanHttpListener foreach { listener => listener ! Http.Unbind } // Create a new managed ImageServer instance sprayCanHttpListener = None imageServer = Some(context actorOf(Props(new ImageServer(imagePath)), "Listener")) IO(Http)(context.system) ! Http.Bind(imageServer.get, interface = hostname, port = port) case Stop => IO(Http)(context.system) ! Http.Unbind case Http.CommandFailed(command: Http.Bind) => throw new IllegalStateException(s"Failed to launch a local HTTP image server on port $port") case Http.Bound(_) => sprayCanHttpListener = Some(sender) // The sender is used later for stopping case message => log warning s"Received unexpected message: $message" } } private[localbackend] object ImageServerManager { /** * Instructs the HttpServer to start serving the images. */ case object Start /** * Instructs the HttpServer to shut down. */ case object Stop }
amrhassan/graphique
src/main/scala/graphique/backends/localbackend/imageserver/ImageServerManager.scala
Scala
mit
1,575