code
stringlengths 5
1.03M
| repo_name
stringlengths 5
90
| path
stringlengths 4
158
| license
stringclasses 15
values | size
int64 5
1.03M
| n_ast_errors
int64 0
53.9k
| ast_max_depth
int64 2
4.17k
| n_whitespaces
int64 0
365k
| n_ast_nodes
int64 3
317k
| n_ast_terminals
int64 1
171k
| n_ast_nonterminals
int64 1
146k
| loc
int64 -1
37.3k
| cycloplexity
int64 -1
1.31k
|
|---|---|---|---|---|---|---|---|---|---|---|---|---|
import qualified Data.ByteString as B
import Control.Monad
import Microbench
import Commit
main = microbench "commit parsing" parseOneCommit where
parseOneCommit = do
text <- B.readFile "testdata/commit"
let Right commit = parseCommit text
unless (length (commit_parents commit) > 0) $
fail "misparse"
return ()
|
martine/gat
|
Commit_perftest.hs
|
gpl-2.0
| 338
| 0
| 15
| 68
| 102
| 49
| 53
| 11
| 1
|
{-# OPTIONS_GHC -fno-implicit-prelude #-}
-----------------------------------------------------------------------------
-- |
-- Module : Data.Tuple
-- Copyright : (c) The University of Glasgow 2001
-- License : BSD-style (see the file libraries/base/LICENSE)
--
-- Maintainer : libraries@haskell.org
-- Stability : experimental
-- Portability : portable
--
-- The tuple data types, and associated functions.
--
-----------------------------------------------------------------------------
module Data.Tuple
( fst -- :: (a,b) -> a
, snd -- :: (a,b) -> a
, curry -- :: ((a, b) -> c) -> a -> b -> c
, uncurry -- :: (a -> b -> c) -> ((a, b) -> c)
)
where
default () -- Double isn't available yet
-- ---------------------------------------------------------------------------
-- Standard functions over tuples
|
kaoskorobase/mescaline
|
resources/hugs/packages/base/Data/Tuple.hs
|
gpl-3.0
| 1,095
| 0
| 4
| 402
| 45
| 37
| 8
| 7
| 0
|
module Graphics.Forensics.Analyser.Demosaic where
import Prelude hiding (zipWith3)
import Graphics.Forensics.Algorithms.Convolve
import Graphics.Forensics.Analyser
import Graphics.Forensics.Color
import Graphics.Forensics.Image
import Graphics.Forensics.Report
import Graphics.Forensics.Utilities (zipWith3)
import Data.Array.Repa (DIM2, (:.)(..), computeP, computeUnboxedP)
import qualified Data.Array.Repa as Repa
analyser :: Analyser ByteImage
analyser =
Analyser
{ analyse = demosaicAnalyse
, name = "demosaic"
, author = "Moritz Roth"
, version = readVersion "1.0"
}
highpass :: Stencil DIM2 Float
highpass = [stencil2| 0 1 0
1 -4 1
0 1 0 |]
demosaicAnalyse :: ByteImage -> Analysis ()
demosaicAnalyse !img = task "Demosaic analysis" 4 $ do
let fImg = byteToFloatImage img
{-Convole the float image with a highpass filter-}
let conv = return . convolveS Clamp highpass
let rmap = computeUnboxedP . flip Repa.map fImg
r <- conv =<< rmap channelRed
step
g <- conv =<< rmap channelGreen
step
b <- conv =<< rmap channelBlue
step
{-Merge the convolved channels into the result image-}
result <- computeP $ zipWith3 fromRGBValues r g b
reportInfo "Output: image demosaic analysis." $
reportImage (floatToByteImage result)
|
Purview/purview
|
src/Graphics/Forensics/Analyser/Demosaic.hs
|
gpl-3.0
| 1,317
| 0
| 13
| 262
| 329
| 179
| 150
| -1
| -1
|
module Main where
import Command
import Hardware1
import Hardware2
main = do
run start
run stop
print $ getInfo start
print $ getInfo stop
run rotate
print ""
|
graninas/Haskell-Algorithms
|
Tests/Types/Test.hs
|
gpl-3.0
| 197
| 0
| 8
| 66
| 62
| 28
| 34
| 11
| 1
|
{-# LANGUAGE FlexibleContexts #-}
module Data.Cellular where
import Data.Subset
import Data.DecidableSubset
import Data.Maybe
import Data.Monoid
import Data.List
import Data.Function.MemoM
import Control.Monad.Identity
newtype CellularT m g a = Cellular { delta :: (g -> m a) -> m a }
-- This type is quite annoying: we would like to have m (g -> a)
-- but, at the same time, still be able to have local side effects.
stepM :: (Monoid g, Monad m) => CellularT m g a -> (g -> m a) -> (g -> m a)
stepM cell init g = delta cell $ init . (g <>)
runM :: (Monoid g, Ord g, Monad m) => CellularT m g a -> (g -> m a) -> [g -> m a]
runM cell = iterate (memoM . stepM cell)
-- Obviously, we can have pure Cellular. And they are Actually a lot
-- easier to run:
type Cellular g a = CellularT Identity g a
-- run :: (Monoid g, Ord g, MonadMemo g a Identity) => Cellular g a -> (g -> a) -> [g -> a]
run cell = fmap (runIdentity .) . runM cell . (Identity .)
-- A PreCellular is a Cellular automata whose behaviour we only
-- observe on a subset of the whole Monoid
data PreCellularT m s g a =
PreCellular { decidableSubset :: DecidableSubset s g
, cellular :: CellularT m g a }
stepPM :: (Monoid g, Monad m) =>
PreCellularT m s g a -> (g -> m a) -> (s -> m a) -> (s -> m a)
stepPM (PreCellular dec cell) dflt initS = stepM cell initG . embed (subset dec)
where initG g = maybe (dflt g) initS $ decide dec g
runPM :: (Monoid g, Ord s, Monad m) =>
PreCellularT m s g a -> (Either s g -> m a) -> [s -> m a]
runPM cell init = iterate (memoM . stepPM cell (init . Right)) (init . Left)
|
gallais/potpourri
|
haskell/cellular/Data/Cellular.hs
|
gpl-3.0
| 1,626
| 0
| 11
| 387
| 578
| 308
| 270
| 26
| 1
|
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE ViewPatterns #-}
-- |
-- Copyright : (c) 2010-2012 Benedikt Schmidt & Simon Meier
-- License : GPL v3 (see LICENSE)
--
-- Maintainer : Simon Meier <iridcode@gmail.com>
-- Portability : GHC only
--
-- A monad for writing constraint reduction steps together with basic steps
-- for inserting nodes, edges, actions, and equations and applying
-- substitutions.
module Theory.Constraint.Solver.Reduction (
-- * The constraint 'Reduction' monad
Reduction
, execReduction
, runReduction
-- ** Change management
, ChangeIndicator(..)
, whenChanged
, applyChangeList
, whileChanging
-- ** Accessing the 'ProofContext'
, getProofContext
, getMaudeHandle
-- ** Inserting nodes, edges, and atoms
, labelNodeId
, insertFreshNode
, insertFreshNodeConc
, insertGoal
, insertAtom
, insertEdges
, insertChain
, insertAction
, insertLess
, insertFormula
, reducibleFormula
-- ** Goal management
, markGoalAsSolved
, removeSolvedSplitGoals
-- ** Substitution application
, substSystem
, substNodes
, substEdges
, substLastAtom
, substLessAtoms
, substFormulas
, substSolvedFormulas
-- ** Solving equalities
, SplitStrategy(..)
, solveNodeIdEqs
, solveTermEqs
, solveFactEqs
, solveRuleEqs
, solveSubstEqs
-- ** Conjunction with another constraint 'System'
, conjoinSystem
-- ** Convenience export
, module Logic.Connectives
) where
import Debug.Trace
import Prelude hiding (id, (.))
import qualified Data.Foldable as F
import qualified Data.Map as M
import qualified Data.Set as S
import qualified Data.ByteString.Char8 as BC
import Data.List (mapAccumL)
import Safe
import Control.Basics
import Control.Category
import Control.Monad.Bind
import Control.Monad.Disj
import Control.Monad.Reader
import Control.Monad.State (StateT, execStateT, gets, runStateT)
import Text.PrettyPrint.Class
import Extension.Data.Label
import Extension.Data.Monoid (Monoid(..))
import Extension.Prelude
import Logic.Connectives
import Theory.Constraint.Solver.Contradictions
-- import Theory.Constraint.Solver.Types
import Theory.Constraint.System
import Theory.Model
------------------------------------------------------------------------------
-- The constraint reduction monad
------------------------------------------------------------------------------
-- | A constraint reduction step. Its state is the current constraint system,
-- it can generate fresh names, split over cases, and access the proof
-- context.
type Reduction = StateT System (FreshT (DisjT (Reader ProofContext)))
-- Executing reductions
-----------------------
-- | Run a constraint reduction. Returns a list of constraint systems whose
-- combined solutions are equal to the solutions of the given system. This
-- property is obviously not enforced, but it must be respected by all
-- functions of type 'Reduction'.
runReduction :: Reduction a -> ProofContext -> System -> FreshState
-> Disj ((a, System), FreshState)
runReduction m ctxt se fs =
Disj $ (`runReader` ctxt) $ runDisjT $ (`runFreshT` fs) $ runStateT m se
-- | Run a constraint reduction returning only the updated constraint systems
-- and the new freshness states.
execReduction :: Reduction a -> ProofContext -> System -> FreshState
-> Disj (System, FreshState)
execReduction m ctxt se fs =
Disj $ (`runReader` ctxt) . runDisjT . (`runFreshT` fs) $ execStateT m se
-- Change management
--------------------
-- | Indicate whether the constraint system was changed or not.
data ChangeIndicator = Unchanged | Changed
deriving( Eq, Ord, Show )
instance Monoid ChangeIndicator where
mempty = Unchanged
Changed `mappend` _ = Changed
_ `mappend` Changed = Changed
Unchanged `mappend` Unchanged = Unchanged
-- | Return 'True' iff there was a change.
wasChanged :: ChangeIndicator -> Bool
wasChanged Changed = True
wasChanged Unchanged = False
-- | Only apply a monadic action, if there has been a change.
whenChanged :: Monad m => ChangeIndicator -> m () -> m ()
whenChanged = when . wasChanged
-- | Apply a list of changes to the proof state.
applyChangeList :: [Reduction ()] -> Reduction ChangeIndicator
applyChangeList [] = return Unchanged
applyChangeList changes = sequence_ changes >> return Changed
-- | Execute a 'Reduction' as long as it results in changes. Indicate whether
-- at least one change was performed.
whileChanging :: Reduction ChangeIndicator -> Reduction ChangeIndicator
whileChanging reduction =
go Unchanged
where
go indicator = do indicator' <- reduction
case indicator' of
Unchanged -> return indicator
Changed -> go indicator'
-- Accessing the proof context
------------------------------
-- | Retrieve the 'ProofContext'.
getProofContext :: Reduction ProofContext
getProofContext = ask
-- | Retrieve the 'MaudeHandle' from the 'ProofContext'.
getMaudeHandle :: Reduction MaudeHandle
getMaudeHandle = askM pcMaudeHandle
-- Inserting (fresh) nodes into the constraint system
-----------------------------------------------------
-- | Insert a fresh rule node labelled with a fresh instance of one of the
-- rules and return one of the conclusions.
insertFreshNodeConc :: [RuleAC] -> Reduction (RuleACInst, NodeConc, LNFact)
insertFreshNodeConc rules = do
(i, ru) <- insertFreshNode rules
(v, fa) <- disjunctionOfList $ enumConcs ru
return (ru, (i, v), fa)
-- | Insert a fresh rule node labelled with a fresh instance of one of the rules
-- and solve it's 'Fr', 'In', and 'KU' premises immediatly.
insertFreshNode :: [RuleAC] -> Reduction (NodeId, RuleACInst)
insertFreshNode rules = do
i <- freshLVar "vr" LSortNode
(,) i <$> labelNodeId i rules
-- | Label a node-id with a fresh instance of one of the rules and
-- solve it's 'Fr', 'In', and 'KU' premises immediatly.
--
-- PRE: Node must not yet be labelled with a rule.
labelNodeId :: NodeId -> [RuleAC] -> Reduction RuleACInst
labelNodeId = \i rules -> do
(ru, mrconstrs) <- importRule =<< disjunctionOfList rules
solveRuleConstraints mrconstrs
modM sNodes (M.insert i ru)
exploitPrems i ru
return ru
where
-- | Import a rule with all its variables renamed to fresh variables.
importRule ru = someRuleACInst ru `evalBindT` noBindings
mkISendRuleAC m = return $ Rule (IntrInfo (ISendRule))
[kuFact m] [inFact m] [kLogFact m]
mkFreshRuleAC m = Rule (ProtoInfo (ProtoRuleACInstInfo FreshRule []))
[] [freshFact m] []
exploitPrems i ru = mapM_ (exploitPrem i ru) (enumPrems ru)
exploitPrem i ru (v, fa) = case fa of
-- CR-rule *DG2_2* specialized for *In* facts.
Fact InFact [m] -> do
j <- freshLVar "vf" LSortNode
ruKnows <- mkISendRuleAC m
modM sNodes (M.insert j ruKnows)
modM sEdges (S.insert $ Edge (j, ConcIdx 0) (i, v))
exploitPrems j ruKnows
-- CR-rule *DG2_2* specialized for *Fr* facts.
Fact FreshFact [m] -> do
j <- freshLVar "vf" LSortNode
modM sNodes (M.insert j (mkFreshRuleAC m))
unless (isFreshVar m) $ do
-- 'm' must be of sort fresh ==> enforce via unification
n <- varTerm <$> freshLVar "n" LSortFresh
void (solveTermEqs SplitNow [Equal m n])
modM sEdges (S.insert $ Edge (j, ConcIdx 0) (i,v))
-- CR-rule *DG2_{2,u}*: solve a KU-premise by inserting the
-- corresponding KU-actions before this node.
_ | isKUFact fa -> do
j <- freshLVar "vk" LSortNode
insertLess j i
void (insertAction j fa)
-- Store premise goal for later processing using CR-rule *DG2_2*
| otherwise -> insertGoal (PremiseG (i,v) fa) (v `elem` breakers)
where
breakers = ruleInfo (get praciLoopBreakers) (const []) $ get rInfo ru
-- | Insert a chain constrain.
insertChain :: NodeConc -> NodePrem -> Reduction ()
insertChain c p = insertGoal (ChainG c p) False
-- | Insert an edge constraint. CR-rule *DG1_2* is enforced automatically,
-- i.e., the fact equalities are enforced.
insertEdges :: [(NodeConc, LNFact, LNFact, NodePrem)] -> Reduction ()
insertEdges edges = do
void (solveFactEqs SplitNow [ Equal fa1 fa2 | (_, fa1, fa2, _) <- edges ])
modM sEdges (\es -> foldr S.insert es [ Edge c p | (c,_,_,p) <- edges])
-- | Insert an 'Action' atom. Ensures that (almost all) trivial *KU* actions
-- are solved immediately using rule *S_{at,u,triv}*. We currently avoid
-- adding intermediate products. Indicates whether nodes other than the given
-- action have been added to the constraint system.
--
-- FIXME: Ensure that intermediate products are also solved before stating
-- that no rule is applicable.
insertAction :: NodeId -> LNFact -> Reduction ChangeIndicator
insertAction i fa = do
present <- (goal `M.member`) <$> getM sGoals
isdiff <- getM sDiffSystem
nodePresent <- (i `M.member`) <$> getM sNodes
if present
then do return Unchanged
else do case kFactView fa of
Just (UpK, viewTerm2 -> FPair m1 m2) -> do
-- In the diff case, add pair rule instead of goal
if isdiff
then do
-- if the node is already present in the graph, do not insert it again. (This can be caused by substitutions applying and changing a goal.)
if not nodePresent
then do
modM sNodes (M.insert i (Rule (IntrInfo (ConstrRule $ BC.pack "pair")) ([(Fact KUFact [m1]),(Fact KUFact [m2])]) ([fa]) ([fa])))
insertGoal goal False
markGoalAsSolved "pair" goal
requiresKU m1 *> requiresKU m2 *> return Changed
else do
insertGoal goal False
markGoalAsSolved "exists" goal
return Changed
else do
insertGoal goal False
requiresKU m1 *> requiresKU m2 *> return Changed
Just (UpK, viewTerm2 -> FInv m) -> do
-- In the diff case, add inv rule instead of goal
if isdiff
then do
-- if the node is already present in the graph, do not insert it again. (This can be caused by substitutions applying and changing a goal.)
if not nodePresent
then do
modM sNodes (M.insert i (Rule (IntrInfo (ConstrRule $ BC.pack "inv")) ([(Fact KUFact [m])]) ([fa]) ([fa])))
insertGoal goal False
markGoalAsSolved "inv" goal
requiresKU m *> return Changed
else do
insertGoal goal False
markGoalAsSolved "exists" goal
return Changed
else do
insertGoal goal False
requiresKU m *> return Changed
Just (UpK, viewTerm2 -> FMult ms) -> do
-- In the diff case, add mult rule instead of goal
if isdiff
then do
-- if the node is already present in the graph, do not insert it again. (This can be caused by substitutions applying and changing a goal.)
if not nodePresent
then do
modM sNodes (M.insert i (Rule (IntrInfo (ConstrRule $ BC.pack "mult")) (map (\x -> Fact KUFact [x]) ms) ([fa]) ([fa])))
insertGoal goal False
markGoalAsSolved "mult" goal
mapM_ requiresKU ms *> return Changed
else do
insertGoal goal False
markGoalAsSolved "exists" goal
return Changed
else do
insertGoal goal False
mapM_ requiresKU ms *> return Changed
Just (UpK, viewTerm2 -> FUnion ms) -> do
-- In the diff case, add union (?) rule instead of goal
if isdiff
then do
-- if the node is already present in the graph, do not insert it again. (This can be caused by substitutions applying and changing a goal.)
if not nodePresent
then do
modM sNodes (M.insert i (Rule (IntrInfo (ConstrRule $ BC.pack "union")) (map (\x -> Fact KUFact [x]) ms) ([fa]) ([fa])))
insertGoal goal False
markGoalAsSolved "union" goal
mapM_ requiresKU ms *> return Changed
else do
insertGoal goal False
markGoalAsSolved "exists" goal
return Changed
else do
insertGoal goal False
mapM_ requiresKU ms *> return Changed
_ -> do
insertGoal goal False
return Unchanged
where
goal = ActionG i fa
-- Here we rely on the fact that the action is new. Otherwise, we might
-- loop due to generating new KU-nodes that are merged immediately.
requiresKU t = do
j <- freshLVar "vk" LSortNode
let faKU = kuFact t
insertLess j i
void (insertAction j faKU)
-- | Insert a 'Less' atom. @insertLess i j@ means that *i < j* is added.
insertLess :: NodeId -> NodeId -> Reduction ()
insertLess i j = modM sLessAtoms (S.insert (i, j))
-- | Insert a 'Last' atom and ensure their uniqueness.
insertLast :: NodeId -> Reduction ChangeIndicator
insertLast i = do
lst <- getM sLastAtom
case lst of
Nothing -> setM sLastAtom (Just i) >> return Unchanged
Just j -> solveNodeIdEqs [Equal i j]
-- | Insert an atom. Returns 'Changed' if another part of the constraint
-- system than the set of actions was changed.
insertAtom :: LNAtom -> Reduction ChangeIndicator
insertAtom ato = case ato of
EqE x y -> solveTermEqs SplitNow [Equal x y]
Action i fa -> insertAction (ltermNodeId' i) fa
Less i j -> do insertLess (ltermNodeId' i) (ltermNodeId' j)
return Unchanged
Last i -> insertLast (ltermNodeId' i)
-- | Insert a 'Guarded' formula. Ensures that existentials, conjunctions, negated
-- last atoms, and negated less atoms, are immediately solved using the rules
-- *S_exists*, *S_and*, *S_not,last*, and *S_not,less*. Only the inserted
-- formula is marked as solved. Other intermediate formulas are not marked.
insertFormula :: LNGuarded -> Reduction ()
insertFormula = do
insert True
where
insert mark fm = do
formulas <- getM sFormulas
solvedFormulas <- getM sSolvedFormulas
insert' mark formulas solvedFormulas fm
insert' mark formulas solvedFormulas fm
| fm `S.member` formulas = return ()
| fm `S.member` solvedFormulas = return ()
| otherwise = case fm of
GAto ato -> do
markAsSolved
void (insertAtom (bvarToLVar ato))
-- CR-rule *S_∧*
GConj fms -> do
markAsSolved
mapM_ (insert False) (getConj fms)
-- Store for later applications of CR-rule *S_∨*
GDisj disj -> do
modM sFormulas (S.insert fm)
insertGoal (DisjG disj) False
-- CR-rule *S_∃*
GGuarded Ex ss as gf -> do
-- must always mark as solved, as we otherwise may repeatedly
-- introduce fresh variables.
modM sSolvedFormulas $ S.insert fm
xs <- mapM (uncurry freshLVar) ss
let body = gconj (map GAto as ++ [gf])
insert False (substBound (zip [0..] (reverse xs)) body)
-- CR-rule *S_{¬,⋖}*
GGuarded All [] [Less i j] gf | gf == gfalse -> do
markAsSolved
insert False (gdisj [GAto (EqE i j), GAto (Less j i)])
-- CR-rule: FIXME add this rule to paper
GGuarded All [] [EqE i@(bltermNodeId -> Just _)
j@(bltermNodeId -> Just _) ] gf
| gf == gfalse -> do
markAsSolved
insert False (gdisj [GAto (Less i j), GAto (Less j i)])
-- CR-rule *S_{¬,last}*
GGuarded All [] [Last i] gf | gf == gfalse -> do
markAsSolved
lst <- getM sLastAtom
j <- case lst of
Nothing -> do j <- freshLVar "last" LSortNode
void (insertLast j)
return (varTerm (Free j))
Just j -> return (varTerm (Free j))
insert False $ gdisj [ GAto (Less j i), GAto (Less i j) ]
-- Guarded All quantification: store for saturation
GGuarded All _ _ _ -> modM sFormulas (S.insert fm)
where
markAsSolved = when mark $ modM sSolvedFormulas $ S.insert fm
-- | 'True' iff the formula can be reduced by one of the rules implemented in
-- 'insertFormula'.
reducibleFormula :: LNGuarded -> Bool
reducibleFormula fm = case fm of
GAto _ -> True
GConj _ -> True
GGuarded Ex _ _ _ -> True
GGuarded All [] [Less _ _] gf -> gf == gfalse
GGuarded All [] [Last _] gf -> gf == gfalse
_ -> False
-- Goal management
------------------
-- | Combine the status of two goals.
combineGoalStatus :: GoalStatus -> GoalStatus -> GoalStatus
combineGoalStatus (GoalStatus solved1 age1 loops1)
(GoalStatus solved2 age2 loops2) =
GoalStatus (solved1 || solved2) (min age1 age2) (loops1 || loops2)
-- | Insert a goal and its status with a new age. Merge status if goal exists.
insertGoalStatus :: Goal -> GoalStatus -> Reduction ()
insertGoalStatus goal status = do
age <- getM sNextGoalNr
modM sGoals $ M.insertWith' combineGoalStatus goal (set gsNr age status)
sNextGoalNr =: succ age
-- | Insert a 'Goal' and store its age.
insertGoal :: Goal -> Bool -> Reduction ()
insertGoal goal looping = insertGoalStatus goal (GoalStatus False 0 looping)
-- | Mark the given goal as solved.
markGoalAsSolved :: String -> Goal -> Reduction ()
markGoalAsSolved how goal =
case goal of
ActionG _ _ -> updateStatus
PremiseG _ fa
| isKDFact fa -> modM sGoals $ M.delete goal
| otherwise -> updateStatus
ChainG _ _ -> modM sGoals $ M.delete goal
SplitG _ -> updateStatus
DisjG disj -> modM sFormulas (S.delete $ GDisj disj) >>
modM sSolvedFormulas (S.insert $ GDisj disj) >>
updateStatus
where
updateStatus = do
mayStatus <- M.lookup goal <$> getM sGoals
case mayStatus of
Just status -> trace (msg status) $
modM sGoals $ M.insert goal $ set gsSolved True status
Nothing -> trace ("markGoalAsSolved: inexistent goal " ++ show goal) $ return ()
msg status = render $ nest 2 $ fsep $
[ text ("solved goal nr. "++ show (get gsNr status))
<-> parens (text how) <> colon
, nest 2 (prettyGoal goal) ]
removeSolvedSplitGoals :: Reduction ()
removeSolvedSplitGoals = do
goals <- getM sGoals
existent <- splitExists <$> getM sEqStore
sequence_ [ modM sGoals $ M.delete goal
| goal@(SplitG i) <- M.keys goals, not (existent i) ]
-- Substitution
---------------
-- | Apply the current substitution of the equation store to the remainder of
-- the sequent.
substSystem :: Reduction ChangeIndicator
substSystem = do
c1 <- substNodes
substEdges
substLastAtom
substLessAtoms
substFormulas
substSolvedFormulas
substLemmas
c2 <- substGoals
substNextGoalNr
return (c1 <> c2)
-- no invariants to maintain here
substEdges, substLessAtoms, substLastAtom, substFormulas,
substSolvedFormulas, substLemmas, substNextGoalNr :: Reduction ()
substEdges = substPart sEdges
substLessAtoms = substPart sLessAtoms
substLastAtom = substPart sLastAtom
substFormulas = substPart sFormulas
substSolvedFormulas = substPart sSolvedFormulas
substLemmas = substPart sLemmas
substNextGoalNr = return ()
-- | Apply the current substitution of the equation store to a part of the
-- sequent. This is an internal function.
substPart :: Apply a => (System :-> a) -> Reduction ()
substPart l = do subst <- getM sSubst
modM l (apply subst)
-- | Apply the current substitution of the equation store the nodes of the
-- constraint system. Indicates whether additional equalities were added to
-- the equations store.
substNodes :: Reduction ChangeIndicator
substNodes =
substNodeIds <* ((modM sNodes . M.map . apply) =<< getM sSubst)
-- | @setNodes nodes@ normalizes the @nodes@ such that node ids are unique and
-- then updates the @sNodes@ field of the proof state to the corresponding map.
-- Return @True@ iff new equalities have been added to the equation store.
setNodes :: [(NodeId, RuleACInst)] -> Reduction ChangeIndicator
setNodes nodes0 = do
sNodes =: M.fromList nodes
if null ruleEqs then return Unchanged
else solveRuleEqs SplitLater ruleEqs >> return Changed
where
-- merge nodes with equal node id
(ruleEqs, nodes) = first concat $ unzip $ map merge $ groupSortOn fst nodes0
merge [] = unreachable "setNodes"
merge (keep:remove) = (map (Equal (snd keep) . snd) remove, keep)
-- | Apply the current substitution of the equation store to the node ids and
-- ensure uniqueness of the labels, as required by rule *U_lbl*. Indicates
-- whether there where new equalities added to the equations store.
substNodeIds :: Reduction ChangeIndicator
substNodeIds =
whileChanging $ do
subst <- getM sSubst
nodes <- gets (map (first (apply subst)) . M.toList . get sNodes)
setNodes nodes
-- | Substitute all goals. Keep the ones with the lower nr.
substGoals :: Reduction ChangeIndicator
substGoals = do
subst <- getM sSubst
goals <- M.toList <$> getM sGoals
sGoals =: M.empty
changes <- forM goals $ \(goal, status) -> case goal of
-- Look out for KU-actions that might need to be solved again.
ActionG i fa@(kFactView -> Just (UpK, m))
| (isMsgVar m || isProduct m || isUnion m) && (apply subst m /= m) ->
insertAction i (apply subst fa)
_ -> do modM sGoals $
M.insertWith' combineGoalStatus (apply subst goal) status
return Unchanged
return (mconcat changes)
-- Conjoining two constraint systems
------------------------------------
-- | @conjoinSystem se@ conjoins the logical information in @se@ to the
-- constraint system. It assumes that the free variables in @se@ are shared
-- with the free variables in the proof state.
conjoinSystem :: System -> Reduction ()
conjoinSystem sys = do
kind <- getM sCaseDistKind
unless (kind == get sCaseDistKind sys) $
error "conjoinSystem: typing-kind mismatch"
joinSets sSolvedFormulas
joinSets sLemmas
joinSets sEdges
F.mapM_ insertLast $ get sLastAtom sys
F.mapM_ (uncurry insertLess) $ get sLessAtoms sys
-- split-goals are not valid anymore
mapM_ (uncurry insertGoalStatus) $ filter (not . isSplitGoal . fst) $ M.toList $ get sGoals sys
F.mapM_ insertFormula $ get sFormulas sys
-- update nodes
_ <- (setNodes . (M.toList (get sNodes sys) ++) . M.toList) =<< getM sNodes
-- conjoin equation store
eqs <- getM sEqStore
let (eqs',splitIds) = (mapAccumL addDisj eqs (map snd . getConj $ get sConjDisjEqs sys))
setM sEqStore eqs'
-- add split-goals for all disjunctions of sys
mapM_ (`insertGoal` False) $ SplitG <$> splitIds
void (solveSubstEqs SplitNow $ get sSubst sys)
-- Propagate substitution changes. Ignore change indicator, as it is
-- assumed to be 'Changed' by default.
void substSystem
where
joinSets :: Ord a => (System :-> S.Set a) -> Reduction ()
joinSets proj = modM proj (`S.union` get proj sys)
-- Unification via the equation store
-------------------------------------
-- | 'SplitStrategy' denotes if the equation store should be split into
-- multiple equation stores.
data SplitStrategy = SplitNow | SplitLater
-- The 'ChangeIndicator' indicates whether at least one non-trivial equality
-- was solved.
-- | @noContradictoryEqStore@ suceeds iff the equation store is not
-- contradictory.
noContradictoryEqStore :: Reduction ()
noContradictoryEqStore = (contradictoryIf . eqsIsFalse) =<< getM sEqStore
-- | Add a list of term equalities to the equation store. And
-- split resulting disjunction of equations according
-- to given split strategy.
--
-- Note that updating the remaining parts of the constraint system with the
-- substitution has to be performed using a separate call to 'substSystem'.
solveTermEqs :: SplitStrategy -> [Equal LNTerm] -> Reduction ChangeIndicator
solveTermEqs splitStrat eqs0 =
case filter (not . evalEqual) eqs0 of
[] -> do return Unchanged
eqs1 -> do
hnd <- getMaudeHandle
se <- gets id
(eqs2, maySplitId) <- addEqs hnd eqs1 =<< getM sEqStore
setM sEqStore
=<< simp hnd (substCreatesNonNormalTerms hnd se)
=<< case (maySplitId, splitStrat) of
(Just splitId, SplitNow) -> disjunctionOfList
$ fromJustNote "solveTermEqs"
$ performSplit eqs2 splitId
(Just splitId, SplitLater) -> do
insertGoal (SplitG splitId) False
return eqs2
_ -> return eqs2
noContradictoryEqStore
return Changed
-- | Add a list of equalities in substitution form to the equation store
solveSubstEqs :: SplitStrategy -> LNSubst -> Reduction ChangeIndicator
solveSubstEqs split subst =
solveTermEqs split [Equal (varTerm v) t | (v, t) <- substToList subst]
-- | Add a list of node equalities to the equation store.
solveNodeIdEqs :: [Equal NodeId] -> Reduction ChangeIndicator
solveNodeIdEqs = solveTermEqs SplitNow . map (fmap varTerm)
-- | Add a list of fact equalities to the equation store, if possible.
solveFactEqs :: SplitStrategy -> [Equal LNFact] -> Reduction ChangeIndicator
solveFactEqs split eqs = do
contradictoryIf (not $ all evalEqual $ map (fmap factTag) eqs)
solveListEqs (solveTermEqs split) $ map (fmap factTerms) eqs
-- | Add a list of rule equalities to the equation store, if possible.
solveRuleEqs :: SplitStrategy -> [Equal RuleACInst] -> Reduction ChangeIndicator
solveRuleEqs split eqs = do
contradictoryIf (not $ all evalEqual $ map (fmap (get rInfo)) eqs)
solveListEqs (solveFactEqs split) $
map (fmap (get rConcs)) eqs ++ map (fmap (get rPrems)) eqs
++ map (fmap (get rActs)) eqs
-- | Solve a number of equalities between lists interpreted as free terms
-- using the given solver for solving the entailed per-element equalities.
solveListEqs :: ([Equal a] -> Reduction b) -> [(Equal [a])] -> Reduction b
solveListEqs solver eqs = do
contradictoryIf (not $ all evalEqual $ map (fmap length) eqs)
solver $ concatMap flatten eqs
where
flatten (Equal l r) = zipWith Equal l r
-- | Solve the constraints associated with a rule.
solveRuleConstraints :: Maybe RuleACConstrs -> Reduction ()
solveRuleConstraints (Just eqConstr) = do
hnd <- getMaudeHandle
(eqs, splitId) <- addRuleVariants eqConstr <$> getM sEqStore
insertGoal (SplitG splitId) False
-- do not use expensive substCreatesNonNormalTerms here
setM sEqStore =<< simp hnd (const (const False)) eqs
noContradictoryEqStore
solveRuleConstraints Nothing = return ()
|
ekr/tamarin-prover
|
lib/theory/src/Theory/Constraint/Solver/Reduction.hs
|
gpl-3.0
| 29,399
| 297
| 29
| 9,124
| 6,287
| 3,284
| 3,003
| 459
| 14
|
{-|
Module : Fuzzball.Algorithm
Description : Implementation of a fuzzy matching algorithm
The Fuzzball.Algorithm module implements the actual fuzzy matching algorithm.
-}
module Fuzzball.Algorithm
( fuzzyMatch
, MatchRating(..)
) where
-- | The rating of the quality of a fuzzy match
data MatchRating = MatchRating {
rating :: Int
, indexes :: [Int]
} deriving (Eq, Ord, Show)
-- | Fuzzily match a pattern over a string
fuzzyMatch :: String -> String -> Maybe MatchRating
fuzzyMatch [] _ = Just . MatchRating 0 $ []
fuzzyMatch _ [] = Nothing
fuzzyMatch (p:ps) (c:cs)
| p == c = fmap found . fmap push . fuzzyMatch ps $ cs
| otherwise = fmap push . fuzzyMatch (p:ps) $ cs
where -- Increment the indices
push mr@(MatchRating _ indexes) =
let indexes' = map (+1) indexes
in mr { indexes = indexes' }
-- Update the rating and add a new index
found mr@(MatchRating rating indexes) =
let rating' = rating + if null indexes then 0 else head indexes
in mr { rating = rating', indexes = 0:indexes }
|
froozen/fuzzball
|
src/Fuzzball/Algorithm.hs
|
gpl-3.0
| 1,119
| 0
| 13
| 306
| 315
| 167
| 148
| 19
| 2
|
module Lambda.Types.Either where
import Lambda.Variable
import Lambda.Engine
-- Introduction
inl :: Term -> Term
inl a = Lambda onleft (Lambda onright (Apply (VarTerm onleft) a))
where onleft = head unusedVars
onright = unusedVars !! 1
unusedVars = notUsed $ allVar a
inr :: Term -> Term
inr b = Lambda onleft (Lambda onright (Apply (VarTerm onright) b))
where onleft = head unusedVars
onright = unusedVars !! 1
unusedVars = notUsed $ allVar b
-- Elimination
reveal :: Term -> Term -> Term -> Term
reveal x onleft onright = Apply (Apply x onleft) onright
-- Interpretation
showEither :: (Term -> String) -> (Term -> String) -> Term -> String
showEither showLeft showRight t =
let
onleft = Variable "onleft"
onright = Variable "onright"
term = reduceAll $ applyArgs t $ map VarTerm [onleft, onright]
in
case explode term of
(VarTerm x, args) | x == onleft ->
let
left = applyArgs (head args) (tail args)
in
"inl(" ++ showLeft left ++ ")"
(VarTerm x, args) | x == onright ->
let
right = applyArgs (head args) (tail args)
in
"inr(" ++ showRight right ++ ")"
_ ->
show term
|
fpoli/lambda
|
src/Lambda/Types/Either.hs
|
gpl-3.0
| 1,384
| 0
| 17
| 503
| 448
| 225
| 223
| 32
| 3
|
{-# LANGUAGE NoImplicitPrelude #-}
module My.XMonad.Config.Mods.Amixer (alsaKeys) where
import Control.Arrow ((***))
import Data.Function ((.), ($))
import Data.List (map)
import Data.Map.Lazy (fromList)
import qualified Graphics.X11.ExtraTypes.XF86 as XF86
import XMonad (noModMask)
import My.XMonad.Core (KeyConfig, spawn)
alsaKeys :: KeyConfig
alsaKeys _ = fromList . map ((,) noModMask *** amixer) $
[ (XF86.xF86XK_AudioLowerVolume, "5%-")
, (XF86.xF86XK_AudioMute, "toggle")
, (XF86.xF86XK_AudioRaiseVolume, "5%+")
]
where amixer c = spawn "amixer" ["-q", "set", "Master", c]
|
xkollar/my-xmonad
|
src/My/XMonad/Config/Mods/Amixer.hs
|
gpl-3.0
| 605
| 0
| 11
| 91
| 194
| 121
| 73
| 15
| 1
|
{-# LANGUAGE ForeignFunctionInterface #-}
{-----------------------------------------------------------------
(c) 2008-2009 Markus Dittrich
This program is free software; you can redistribute it
and/or modify it under the terms of the GNU General Public
License Version 3 as published by the Free Software Foundation.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License Version 3 for more details.
You should have received a copy of the GNU General Public
License along with this program; if not, write to the Free
Software Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA.
--------------------------------------------------------------------}
-- | definition of additional math and helper functions
module ExtraFunctions ( erf
, erfc
, fact
, is_equal
, is_equal_with
, real_exp
, to_int
, to_positive_int
) where
-- imports
import Foreign()
import Foreign.C.Types
import Prelude
-- | use glibc DBL_EPSILON
dbl_epsilon :: Double
dbl_epsilon = 2.2204460492503131e-16
-- | comparison function for doubles via dbl_epsion
is_equal :: Double -> Double -> Bool
is_equal x y = abs(x-y) <= abs(x) * dbl_epsilon
-- | comparison function for doubles via threshold
is_equal_with :: Double -> Double -> Double -> Bool
is_equal_with x y th = abs(x-y) <= abs(x) * th
-- | function checking if a Double can be interpreted as a non
-- negative Integer. We need this since all parsing of numbers
-- is done with Doubles but some functions only work for
-- non-negative integers such as factorial.
-- To check if we are dealing with Double, we convert to an
-- Integer via floor and the compare if the numbers are identical.
-- If yes, the number seems to be an Integer and we return it,
-- otherwise Nothing
to_positive_int :: Double -> Maybe Integer
to_positive_int x =
case (is_equal (fromInteger . floor $ x) x) && (x > 0.0) of
True -> Just $ floor x
False -> Nothing
-- | function checking if a Double can be interpreted as an
-- Integer. See is_positive_int for more detail
to_int :: Double -> Maybe Integer
to_int x =
case is_equal (fromInteger . floor $ x) x of
True -> Just $ floor x
False -> Nothing
-- | helper function for defining real powers
-- NOTE: We use glibc's pow function since it is more
-- precise than implementing it ourselves via, e.g.,
-- pow a x = exp $ x * log a
foreign import ccall "math.h pow"
c_pow :: CDouble -> CDouble -> CDouble
real_exp :: Double -> Double -> Double
real_exp a x = realToFrac $ c_pow (realToFrac a) (realToFrac x)
-- | factorial function
fact :: Integer -> Integer
fact 0 = 1
fact n = n * fact (n-1)
-- | error function erf(x)
-- we use a recursive solution of the Taylor series expansion
erf :: Double -> Double
erf x
| x == 0.0 = 0.0 -- our recursive alg. loops forever
-- in this case
| abs(x) > 2.2 = 1.0 - erfc x -- use erfc for numerical accuracy
| otherwise = 2.0 / sqrt(pi) * (erf_h x x 1.0)
where
x_next n = -(x^2) * (2*n-1)/(n * (2*n+1))
erf_h old x_old n = let x_new = x_old * (x_next n)
tot = old + x_new
in
if abs(x_new/tot) < dbl_epsilon
then tot
else erf_h tot x_new (n+1)
-- | complementary error function erfc(x) = 1 - erf(x)
-- we use a recursive solution of the continued fraction
-- expression of erfc(x) for it superior convergence
-- property. Here, we calculate the ith and (i+1)th convergent, (see
-- http://archives.math.utk.edu/articles/atuyl/confrac/intro.html)
-- and terminate when the relative difference is smaller than a
-- certain threshold.
erfc :: Double -> Double
erfc x
| abs(x) < 2.2 = 1.0 - erf(x) -- use erf(x) in [-2.2,2.2]
| signum(x) < 0 = 2.0 - erfc(-x) -- continued fraction expansion
-- only valid for x > 0
| otherwise = 1/sqrt(pi) * exp(-x^2)
* (erfc_h nc1 nc2 dc1 dc2 1.0)
where
nc1 = 1.0 :: Double -- numerator of 1st convergent
nc2 = x :: Double -- numerator of 2nd convergent
dc1 = x :: Double -- denominator of 1st convergent
dc2 = x^2+0.5 :: Double -- denominator of 2nd convergent
erfc_h n1 n2 d1 d2 i =
let num_new = n1*i + n2*x
denom_new = d1*i + d2*x
d_old = n2/d2
d_new = num_new/denom_new
in
if abs((d_old - d_new)/d_new) < dbl_epsilon
then d_new
else erfc_h n2 num_new d2 denom_new (i+0.5)
|
markusle/husky
|
src/ExtraFunctions.hs
|
gpl-3.0
| 4,946
| 0
| 15
| 1,424
| 941
| 508
| 433
| 64
| 2
|
{-
- Copyright (C) 2015-2016 Ramakrishnan Muthukrishnan <ram@rkrishnan.org>
-
- This file is part of FuncTorrent.
-
- FuncTorrent is free software; you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation; either version 3 of the License, or
- (at your option) any later version.
-
- FuncTorrent is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU General Public License for more details.
-
- You should have received a copy of the GNU General Public License
- along with FuncTorrent; if not, see <http://www.gnu.org/licenses/>
-}
{-# LANGUAGE OverloadedStrings #-}
module FuncTorrent.Metainfo
(Info(..),
Metainfo(..),
torrentToMetainfo
) where
import Prelude hiding (lookup)
import Data.ByteString.Char8 (ByteString, unpack)
import Data.Map as M ((!), lookup)
import Data.List (intersperse)
import Crypto.Hash.SHA1 (hash)
import Data.Maybe (maybeToList)
import FuncTorrent.Bencode (BVal(..), encode, decode, bstrToString, bValToInteger)
data FileMeta = FileMeta { lengthInBytes :: !Integer
, md5sum :: !(Maybe String)
, path :: String
} deriving (Eq, Show)
data Info = Info { pieceLength :: !Integer
, pieces :: !ByteString
, private :: !(Maybe Integer)
, name :: !String
, filemeta :: [FileMeta]
} deriving (Eq, Show)
data Metainfo = Metainfo { info :: !(Maybe Info)
, announceList :: ![String]
, creationDate :: !(Maybe Integer)
, comment :: !(Maybe String)
, createdBy :: !(Maybe String)
, encoding :: !(Maybe String)
, infoHash :: !ByteString
} deriving (Eq, Show)
bvalToInfo :: BVal -> Maybe Info
bvalToInfo (Bdict minfo) = let (Bint pieceLength') = minfo ! "piece length"
(Bstr pieces') = minfo ! "pieces"
private' = Nothing
(Bstr name') = minfo ! "name"
-- is the key "files" present? If so, it is a multi-file torrent
-- if not, it is a single file torrent.
filesIfMulti = lookup "files" minfo
partialInfo = Info { pieceLength = pieceLength'
, pieces = pieces'
, private = private'
, name = unpack name'
, filemeta = []
}
in
case filesIfMulti of
Nothing -> let (Bint length') = minfo ! "length"
filemeta' = FileMeta { lengthInBytes = length'
, md5sum = Nothing
, path = unpack name' }
in Just (partialInfo { filemeta = [filemeta'] })
Just (Blist files) -> mapM toFileMeta files >>=
\filemeta' ->
Just partialInfo { filemeta = filemeta' }
Just _ -> Nothing
bvalToInfo _ = Nothing
toFileMeta :: BVal -> Maybe FileMeta
toFileMeta (Bdict fm) = let (Bint length') = fm ! "length"
(Blist pathElems) = fm ! "path"
pathStrings = fmap bstrToString pathElems
in
sequence pathStrings >>=
\pathList -> let path' = concat $ intersperse "/" pathList
in Just (FileMeta { lengthInBytes = length'
, md5sum = Nothing
, path = path' })
toFileMeta _ = Nothing
mkMetaInfo :: BVal -> Either String Metainfo
mkMetaInfo (Bdict minfo) =
let info' = bvalToInfo $ minfo ! "info"
announce' = lookup "announce" minfo
announceList' = lookup "announce-list" minfo
creationDate' = lookup "creation date" minfo
comment' = lookup "comment" minfo
createdBy' = lookup "created by" minfo
encoding' = lookup "encoding" minfo
in Right Metainfo {
info = info'
, announceList = maybeToList (announce' >>= bstrToString)
++ getAnnounceList announceList'
, creationDate = bValToInteger =<< creationDate'
, comment = bstrToString =<< comment'
, createdBy = bstrToString =<< createdBy'
, encoding = bstrToString =<< encoding'
, infoHash = hash . encode $ (minfo ! "info")
}
mkMetaInfo _ = Left "mkMetaInfo: expect an input dict"
getAnnounceList :: Maybe BVal -> [String]
getAnnounceList Nothing = []
getAnnounceList (Just (Bint _)) = []
getAnnounceList (Just (Bstr _)) = []
getAnnounceList (Just (Blist l)) = map (\s -> case s of
(Bstr s') -> unpack s'
(Blist s') -> case s' of
[Bstr s''] -> unpack s''
_ -> ""
_ -> "") l
getAnnounceList (Just (Bdict _)) = []
torrentToMetainfo :: ByteString -> Either String Metainfo
torrentToMetainfo s =
case decode s of
Right d -> mkMetaInfo d
Left e -> Left ("Cannot parse the torrent file: " ++ show e)
|
vu3rdd/functorrent
|
src/FuncTorrent/Metainfo.hs
|
gpl-3.0
| 6,258
| 0
| 16
| 2,811
| 1,210
| 650
| 560
| 123
| 4
|
module Pause where
import DataTypes
import Graphics.Gloss
import Graphics.Gloss.Interface.Pure.Game
-- | Update the pause screen.
updatePause :: Float -> AsteroidsGame -> AsteroidsGame
updatePause seconds game = game
-- | Handle the key events on the pause screen.
handlePauseKeys :: Event -> AsteroidsGame -> AsteroidsGame
--handlePauseKeys (EventKey (Char '1') _ _ _) game = game {gameMode = Single} -- Continue the game as singleplayer mode when press '1'
--handlePauseKeys (EventKey (Char '2') _ _ _) game = game {gameMode = Cooperative} -- Continue the game as cooperative mode when press '2'
--handlePauseKeys (EventKey (Char '3') _ _ _) game = game {gameMode = Versus} -- Continue the game as versus mode when press '3'
handlePauseKeys (EventKey (Char 'q') _ _ _) game = game {gameMode = Menu} -- Return to the menu and quit the game when press 'q'
handlePauseKeys (EventKey (Char 'p') Down _ _) game = game {gameMode = (whereFrom game)}
handlePauseKeys _ game = game
-- | Display the pause screen with some options.
pauseRender :: AsteroidsGame -> Picture
pauseRender game = color white (pictures
[
translate (-350) 280 (text "-------"),
translate (-350) 200 (text "| Paused. |"),
translate (-350) 120 (text "-------"),
--scale (0.4) (0.4) (translate (-800) (100) (text "(1)Continue as SinglePlayer")),
--scale (0.4) (0.4) (translate (-800) (-100) (text "(2)Continue as Cooperative")),
--scale (0.4) (0.4) (translate (-800) (-300) (text "(3)Continue as Versus")),
scale (0.4) (0.4) (translate (-800) (100) (text "(p)Resume")),
scale (0.4) (0.4) (translate (-800) (-100) (text "(q)Return to MainMenu"))
])
|
kareem2048/Asteroids
|
Pause.hs
|
gpl-3.0
| 1,704
| 0
| 13
| 335
| 327
| 181
| 146
| 18
| 1
|
{-# LANGUAGE DeriveGeneric #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE LambdaCase #-}
{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE StandaloneDeriving #-}
{-# LANGUAGE TemplateHaskell #-}
-- Module : Gen.Types.Ann
-- Copyright : (c) 2013-2015 Brendan Hay
-- License : This Source Code Form is subject to the terms of
-- the Mozilla Public License, v. 2.0.
-- A copy of the MPL can be found in the LICENSE file or
-- you can obtain it at http://mozilla.org/MPL/2.0/.
-- Maintainer : Brendan Hay <brendan.g.hay@gmail.com>
-- Stability : provisional
-- Portability : non-portable (GHC extensions)
module Gen.Types.Ann where
import Control.Comonad
import Control.Comonad.Cofree
import Control.Lens
import Data.Aeson
import Data.Function (on)
import Data.Hashable
import qualified Data.HashSet as Set
import Data.Monoid
import Data.Text (Text)
import qualified Data.Text as Text
import Gen.TH
import Gen.Types.Id
import GHC.Generics (Generic)
type Set = Set.HashSet
data Direction
= Output
| Input
deriving (Eq, Show, Generic)
instance Hashable Direction
data Mode
= Bi
| Uni !Direction
deriving (Eq, Show)
instance Monoid Mode where
mempty = Bi
mappend (Uni i) (Uni o)
| i == o = Uni o
mappend _ _ = Bi
data Relation = Relation
{ _relShared :: !Int -- FIXME: get around to using something more sensible.
, _relMode :: !Mode
} deriving (Eq, Show)
makeClassy ''Relation
instance Monoid Relation where
mempty = Relation 0 mempty
mappend a b = Relation (on add _relShared b a) (on (<>) _relMode b a)
where
add 0 0 = 2
add 1 0 = 2
add 0 1 = 2
add x y = x + y
instance (Functor f, HasRelation a) => HasRelation (Cofree f a) where
relation = lens extract (flip (:<) . unwrap) . relation
mkRelation :: Maybe Id -> Direction -> Relation
mkRelation p = Relation (maybe 0 (const 1) p) . Uni
isShared :: HasRelation a => a -> Bool
isShared = (> 1) . view relShared
isOrphan :: HasRelation a => a -> Bool
isOrphan = (== 0) . view relShared
data Derive
= DEq
| DOrd
| DRead
| DShow
| DEnum
| DNum
| DIntegral
| DReal
| DRealFrac
| DRealFloat
| DMonoid
| DSemigroup
| DIsString
| DData
| DTypeable
| DGeneric
deriving (Eq, Ord, Show, Generic)
instance Hashable Derive
instance FromJSON Derive where
parseJSON = gParseJSON' (spinal & ctor %~ (. Text.drop 1))
data Lit
= Int
| Long
| Double
| Text
| Blob
| Time
| Bool
deriving (Show)
data TType
= TType Text [Derive]
| TLit Lit
| TNatural
| TStream
| TMaybe TType
| TSensitive TType
| TList TType
| TList1 TType
| TMap TType TType
deriving (Show)
data Related = Related
{ _annId :: Id
, _annRelation :: Relation
} deriving (Show)
makeClassy ''Related
instance (Functor f, HasRelated a) => HasRelated (Cofree f a) where
related = lens extract (flip (:<) . unwrap) . related
instance HasId Related where
identifier = view annId
instance HasRelation Related where
relation = annRelation
data Prefixed = Prefixed
{ _annRelated :: Related
, _annPrefix :: Maybe Text
} deriving (Show)
makeClassy ''Prefixed
instance (Functor f, HasPrefixed a) => HasPrefixed (Cofree f a) where
prefixed = lens extract (flip (:<) . unwrap) . prefixed
instance HasRelation Prefixed where
relation = related . relation
instance HasRelated Prefixed where
related = annRelated
instance HasId Prefixed where
identifier = view annId
data Solved = Solved
{ _annPrefixed :: Prefixed
, _annType :: TType
} deriving (Show)
makeClassy ''Solved
instance (Functor f, HasSolved a) => HasSolved (Cofree f a) where
solved = lens extract (flip (:<) . unwrap) . solved
instance HasRelation Solved where
relation = prefixed . relation
instance HasRelated Solved where
related = prefixed . related
instance HasPrefixed Solved where
prefixed = annPrefixed
instance HasId Solved where
identifier = view annId
|
fmapfmapfmap/amazonka
|
gen/src/Gen/Types/Ann.hs
|
mpl-2.0
| 4,409
| 0
| 11
| 1,323
| 1,173
| 646
| 527
| 141
| 1
|
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE DeriveDataTypeable #-}
{-# LANGUAGE DeriveGeneric #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE NoImplicitPrelude #-}
{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE RecordWildCards #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE TypeOperators #-}
{-# OPTIONS_GHC -fno-warn-duplicate-exports #-}
{-# OPTIONS_GHC -fno-warn-unused-binds #-}
{-# OPTIONS_GHC -fno-warn-unused-imports #-}
-- |
-- Module : Network.Google.Resource.CloudSearch.Settings.SearchApplications.List
-- Copyright : (c) 2015-2016 Brendan Hay
-- License : Mozilla Public License, v. 2.0.
-- Maintainer : Brendan Hay <brendan.g.hay@gmail.com>
-- Stability : auto-generated
-- Portability : non-portable (GHC extensions)
--
-- Lists all search applications. **Note:** This API requires an admin
-- account to execute.
--
-- /See:/ <https://developers.google.com/cloud-search/docs/guides/ Cloud Search API Reference> for @cloudsearch.settings.searchapplications.list@.
module Network.Google.Resource.CloudSearch.Settings.SearchApplications.List
(
-- * REST Resource
SettingsSearchApplicationsListResource
-- * Creating a Request
, settingsSearchApplicationsList
, SettingsSearchApplicationsList
-- * Request Lenses
, ssalXgafv
, ssalUploadProtocol
, ssalAccessToken
, ssalUploadType
, ssalDebugOptionsEnableDebugging
, ssalPageToken
, ssalPageSize
, ssalCallback
) where
import Network.Google.CloudSearch.Types
import Network.Google.Prelude
-- | A resource alias for @cloudsearch.settings.searchapplications.list@ method which the
-- 'SettingsSearchApplicationsList' request conforms to.
type SettingsSearchApplicationsListResource =
"v1" :>
"settings" :>
"searchapplications" :>
QueryParam "$.xgafv" Xgafv :>
QueryParam "upload_protocol" Text :>
QueryParam "access_token" Text :>
QueryParam "uploadType" Text :>
QueryParam "debugOptions.enableDebugging" Bool :>
QueryParam "pageToken" Text :>
QueryParam "pageSize" (Textual Int32) :>
QueryParam "callback" Text :>
QueryParam "alt" AltJSON :>
Get '[JSON] ListSearchApplicationsResponse
-- | Lists all search applications. **Note:** This API requires an admin
-- account to execute.
--
-- /See:/ 'settingsSearchApplicationsList' smart constructor.
data SettingsSearchApplicationsList =
SettingsSearchApplicationsList'
{ _ssalXgafv :: !(Maybe Xgafv)
, _ssalUploadProtocol :: !(Maybe Text)
, _ssalAccessToken :: !(Maybe Text)
, _ssalUploadType :: !(Maybe Text)
, _ssalDebugOptionsEnableDebugging :: !(Maybe Bool)
, _ssalPageToken :: !(Maybe Text)
, _ssalPageSize :: !(Maybe (Textual Int32))
, _ssalCallback :: !(Maybe Text)
}
deriving (Eq, Show, Data, Typeable, Generic)
-- | Creates a value of 'SettingsSearchApplicationsList' with the minimum fields required to make a request.
--
-- Use one of the following lenses to modify other fields as desired:
--
-- * 'ssalXgafv'
--
-- * 'ssalUploadProtocol'
--
-- * 'ssalAccessToken'
--
-- * 'ssalUploadType'
--
-- * 'ssalDebugOptionsEnableDebugging'
--
-- * 'ssalPageToken'
--
-- * 'ssalPageSize'
--
-- * 'ssalCallback'
settingsSearchApplicationsList
:: SettingsSearchApplicationsList
settingsSearchApplicationsList =
SettingsSearchApplicationsList'
{ _ssalXgafv = Nothing
, _ssalUploadProtocol = Nothing
, _ssalAccessToken = Nothing
, _ssalUploadType = Nothing
, _ssalDebugOptionsEnableDebugging = Nothing
, _ssalPageToken = Nothing
, _ssalPageSize = Nothing
, _ssalCallback = Nothing
}
-- | V1 error format.
ssalXgafv :: Lens' SettingsSearchApplicationsList (Maybe Xgafv)
ssalXgafv
= lens _ssalXgafv (\ s a -> s{_ssalXgafv = a})
-- | Upload protocol for media (e.g. \"raw\", \"multipart\").
ssalUploadProtocol :: Lens' SettingsSearchApplicationsList (Maybe Text)
ssalUploadProtocol
= lens _ssalUploadProtocol
(\ s a -> s{_ssalUploadProtocol = a})
-- | OAuth access token.
ssalAccessToken :: Lens' SettingsSearchApplicationsList (Maybe Text)
ssalAccessToken
= lens _ssalAccessToken
(\ s a -> s{_ssalAccessToken = a})
-- | Legacy upload protocol for media (e.g. \"media\", \"multipart\").
ssalUploadType :: Lens' SettingsSearchApplicationsList (Maybe Text)
ssalUploadType
= lens _ssalUploadType
(\ s a -> s{_ssalUploadType = a})
-- | If you are asked by Google to help with debugging, set this field.
-- Otherwise, ignore this field.
ssalDebugOptionsEnableDebugging :: Lens' SettingsSearchApplicationsList (Maybe Bool)
ssalDebugOptionsEnableDebugging
= lens _ssalDebugOptionsEnableDebugging
(\ s a -> s{_ssalDebugOptionsEnableDebugging = a})
-- | The next_page_token value returned from a previous List request, if any.
-- The default value is 10
ssalPageToken :: Lens' SettingsSearchApplicationsList (Maybe Text)
ssalPageToken
= lens _ssalPageToken
(\ s a -> s{_ssalPageToken = a})
-- | The maximum number of items to return.
ssalPageSize :: Lens' SettingsSearchApplicationsList (Maybe Int32)
ssalPageSize
= lens _ssalPageSize (\ s a -> s{_ssalPageSize = a})
. mapping _Coerce
-- | JSONP
ssalCallback :: Lens' SettingsSearchApplicationsList (Maybe Text)
ssalCallback
= lens _ssalCallback (\ s a -> s{_ssalCallback = a})
instance GoogleRequest SettingsSearchApplicationsList
where
type Rs SettingsSearchApplicationsList =
ListSearchApplicationsResponse
type Scopes SettingsSearchApplicationsList =
'["https://www.googleapis.com/auth/cloud_search",
"https://www.googleapis.com/auth/cloud_search.settings",
"https://www.googleapis.com/auth/cloud_search.settings.query"]
requestClient SettingsSearchApplicationsList'{..}
= go _ssalXgafv _ssalUploadProtocol _ssalAccessToken
_ssalUploadType
_ssalDebugOptionsEnableDebugging
_ssalPageToken
_ssalPageSize
_ssalCallback
(Just AltJSON)
cloudSearchService
where go
= buildClient
(Proxy ::
Proxy SettingsSearchApplicationsListResource)
mempty
|
brendanhay/gogol
|
gogol-cloudsearch/gen/Network/Google/Resource/CloudSearch/Settings/SearchApplications/List.hs
|
mpl-2.0
| 6,472
| 0
| 19
| 1,439
| 896
| 519
| 377
| 131
| 1
|
{-# OPTIONS_GHC -fno-warn-unused-imports #-}
{-# OPTIONS_GHC -fno-warn-duplicate-exports #-}
-- Derived from AWS service descriptions, licensed under Apache 2.0.
-- |
-- Module : Network.AWS.Kinesis
-- Copyright : (c) 2013-2015 Brendan Hay
-- License : Mozilla Public License, v. 2.0.
-- Maintainer : Brendan Hay <brendan.g.hay@gmail.com>
-- Stability : auto-generated
-- Portability : non-portable (GHC extensions)
--
-- Amazon Kinesis Service API Reference
--
-- Amazon Kinesis is a managed service that scales elastically for real
-- time processing of streaming big data.
--
-- /See:/ <http://docs.aws.amazon.com/kinesis/latest/APIReference/Welcome.html AWS API Reference>
module Network.AWS.Kinesis
(
-- * Service Configuration
kinesis
-- * Errors
-- $errors
-- ** ExpiredIteratorException
, _ExpiredIteratorException
-- ** InvalidArgumentException
, _InvalidArgumentException
-- ** ProvisionedThroughputExceededException
, _ProvisionedThroughputExceededException
-- ** ResourceNotFoundException
, _ResourceNotFoundException
-- ** LimitExceededException
, _LimitExceededException
-- ** ResourceInUseException
, _ResourceInUseException
-- * Waiters
-- $waiters
-- ** StreamExists
, streamExists
-- * Operations
-- $operations
-- ** PutRecord
, module Network.AWS.Kinesis.PutRecord
-- ** MergeShards
, module Network.AWS.Kinesis.MergeShards
-- ** GetShardIterator
, module Network.AWS.Kinesis.GetShardIterator
-- ** GetRecords
, module Network.AWS.Kinesis.GetRecords
-- ** ListTagsForStream
, module Network.AWS.Kinesis.ListTagsForStream
-- ** AddTagsToStream
, module Network.AWS.Kinesis.AddTagsToStream
-- ** PutRecords
, module Network.AWS.Kinesis.PutRecords
-- ** DeleteStream
, module Network.AWS.Kinesis.DeleteStream
-- ** RemoveTagsFromStream
, module Network.AWS.Kinesis.RemoveTagsFromStream
-- ** ListStreams (Paginated)
, module Network.AWS.Kinesis.ListStreams
-- ** CreateStream
, module Network.AWS.Kinesis.CreateStream
-- ** SplitShard
, module Network.AWS.Kinesis.SplitShard
-- ** DescribeStream (Paginated)
, module Network.AWS.Kinesis.DescribeStream
-- * Types
-- ** ShardIteratorType
, ShardIteratorType (..)
-- ** StreamStatus
, StreamStatus (..)
-- ** HashKeyRange
, HashKeyRange
, hashKeyRange
, hkrStartingHashKey
, hkrEndingHashKey
-- ** PutRecordsRequestEntry
, PutRecordsRequestEntry
, putRecordsRequestEntry
, prreExplicitHashKey
, prreData
, prrePartitionKey
-- ** PutRecordsResultEntry
, PutRecordsResultEntry
, putRecordsResultEntry
, prreSequenceNumber
, prreErrorCode
, prreErrorMessage
, prreShardId
-- ** Record
, Record
, record
, rApproximateArrivalTimestamp
, rSequenceNumber
, rData
, rPartitionKey
-- ** SequenceNumberRange
, SequenceNumberRange
, sequenceNumberRange
, snrEndingSequenceNumber
, snrStartingSequenceNumber
-- ** Shard
, Shard
, shard
, sAdjacentParentShardId
, sParentShardId
, sShardId
, sHashKeyRange
, sSequenceNumberRange
-- ** StreamDescription
, StreamDescription
, streamDescription
, sdStreamName
, sdStreamARN
, sdStreamStatus
, sdShards
, sdHasMoreShards
-- ** Tag
, Tag
, tag
, tagValue
, tagKey
) where
import Network.AWS.Kinesis.AddTagsToStream
import Network.AWS.Kinesis.CreateStream
import Network.AWS.Kinesis.DeleteStream
import Network.AWS.Kinesis.DescribeStream
import Network.AWS.Kinesis.GetRecords
import Network.AWS.Kinesis.GetShardIterator
import Network.AWS.Kinesis.ListStreams
import Network.AWS.Kinesis.ListTagsForStream
import Network.AWS.Kinesis.MergeShards
import Network.AWS.Kinesis.PutRecord
import Network.AWS.Kinesis.PutRecords
import Network.AWS.Kinesis.RemoveTagsFromStream
import Network.AWS.Kinesis.SplitShard
import Network.AWS.Kinesis.Types
import Network.AWS.Kinesis.Waiters
{- $errors
Error matchers are designed for use with the functions provided by
<http://hackage.haskell.org/package/lens/docs/Control-Exception-Lens.html Control.Exception.Lens>.
This allows catching (and rethrowing) service specific errors returned
by 'Kinesis'.
-}
{- $operations
Some AWS operations return results that are incomplete and require subsequent
requests in order to obtain the entire result set. The process of sending
subsequent requests to continue where a previous request left off is called
pagination. For example, the 'ListObjects' operation of Amazon S3 returns up to
1000 objects at a time, and you must send subsequent requests with the
appropriate Marker in order to retrieve the next page of results.
Operations that have an 'AWSPager' instance can transparently perform subsequent
requests, correctly setting Markers and other request facets to iterate through
the entire result set of a truncated API operation. Operations which support
this have an additional note in the documentation.
Many operations have the ability to filter results on the server side. See the
individual operation parameters for details.
-}
{- $waiters
Waiters poll by repeatedly sending a request until some remote success condition
configured by the 'Wait' specification is fulfilled. The 'Wait' specification
determines how many attempts should be made, in addition to delay and retry strategies.
-}
|
olorin/amazonka
|
amazonka-kinesis/gen/Network/AWS/Kinesis.hs
|
mpl-2.0
| 5,708
| 0
| 5
| 1,220
| 443
| 329
| 114
| 85
| 0
|
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE DeriveDataTypeable #-}
{-# LANGUAGE DeriveGeneric #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE NoImplicitPrelude #-}
{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE RecordWildCards #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE TypeOperators #-}
{-# OPTIONS_GHC -fno-warn-duplicate-exports #-}
{-# OPTIONS_GHC -fno-warn-unused-binds #-}
{-# OPTIONS_GHC -fno-warn-unused-imports #-}
-- |
-- Module : Network.Google.Resource.Healthcare.Projects.Locations.DataSets.ConsentStores.ConsentArtifacts.Get
-- Copyright : (c) 2015-2016 Brendan Hay
-- License : Mozilla Public License, v. 2.0.
-- Maintainer : Brendan Hay <brendan.g.hay@gmail.com>
-- Stability : auto-generated
-- Portability : non-portable (GHC extensions)
--
-- Gets the specified Consent artifact.
--
-- /See:/ <https://cloud.google.com/healthcare Cloud Healthcare API Reference> for @healthcare.projects.locations.datasets.consentStores.consentArtifacts.get@.
module Network.Google.Resource.Healthcare.Projects.Locations.DataSets.ConsentStores.ConsentArtifacts.Get
(
-- * REST Resource
ProjectsLocationsDataSetsConsentStoresConsentArtifactsGetResource
-- * Creating a Request
, projectsLocationsDataSetsConsentStoresConsentArtifactsGet
, ProjectsLocationsDataSetsConsentStoresConsentArtifactsGet
-- * Request Lenses
, pldscscagXgafv
, pldscscagUploadProtocol
, pldscscagAccessToken
, pldscscagUploadType
, pldscscagName
, pldscscagCallback
) where
import Network.Google.Healthcare.Types
import Network.Google.Prelude
-- | A resource alias for @healthcare.projects.locations.datasets.consentStores.consentArtifacts.get@ method which the
-- 'ProjectsLocationsDataSetsConsentStoresConsentArtifactsGet' request conforms to.
type ProjectsLocationsDataSetsConsentStoresConsentArtifactsGetResource
=
"v1" :>
Capture "name" Text :>
QueryParam "$.xgafv" Xgafv :>
QueryParam "upload_protocol" Text :>
QueryParam "access_token" Text :>
QueryParam "uploadType" Text :>
QueryParam "callback" Text :>
QueryParam "alt" AltJSON :>
Get '[JSON] ConsentArtifact
-- | Gets the specified Consent artifact.
--
-- /See:/ 'projectsLocationsDataSetsConsentStoresConsentArtifactsGet' smart constructor.
data ProjectsLocationsDataSetsConsentStoresConsentArtifactsGet =
ProjectsLocationsDataSetsConsentStoresConsentArtifactsGet'
{ _pldscscagXgafv :: !(Maybe Xgafv)
, _pldscscagUploadProtocol :: !(Maybe Text)
, _pldscscagAccessToken :: !(Maybe Text)
, _pldscscagUploadType :: !(Maybe Text)
, _pldscscagName :: !Text
, _pldscscagCallback :: !(Maybe Text)
}
deriving (Eq, Show, Data, Typeable, Generic)
-- | Creates a value of 'ProjectsLocationsDataSetsConsentStoresConsentArtifactsGet' with the minimum fields required to make a request.
--
-- Use one of the following lenses to modify other fields as desired:
--
-- * 'pldscscagXgafv'
--
-- * 'pldscscagUploadProtocol'
--
-- * 'pldscscagAccessToken'
--
-- * 'pldscscagUploadType'
--
-- * 'pldscscagName'
--
-- * 'pldscscagCallback'
projectsLocationsDataSetsConsentStoresConsentArtifactsGet
:: Text -- ^ 'pldscscagName'
-> ProjectsLocationsDataSetsConsentStoresConsentArtifactsGet
projectsLocationsDataSetsConsentStoresConsentArtifactsGet pPldscscagName_ =
ProjectsLocationsDataSetsConsentStoresConsentArtifactsGet'
{ _pldscscagXgafv = Nothing
, _pldscscagUploadProtocol = Nothing
, _pldscscagAccessToken = Nothing
, _pldscscagUploadType = Nothing
, _pldscscagName = pPldscscagName_
, _pldscscagCallback = Nothing
}
-- | V1 error format.
pldscscagXgafv :: Lens' ProjectsLocationsDataSetsConsentStoresConsentArtifactsGet (Maybe Xgafv)
pldscscagXgafv
= lens _pldscscagXgafv
(\ s a -> s{_pldscscagXgafv = a})
-- | Upload protocol for media (e.g. \"raw\", \"multipart\").
pldscscagUploadProtocol :: Lens' ProjectsLocationsDataSetsConsentStoresConsentArtifactsGet (Maybe Text)
pldscscagUploadProtocol
= lens _pldscscagUploadProtocol
(\ s a -> s{_pldscscagUploadProtocol = a})
-- | OAuth access token.
pldscscagAccessToken :: Lens' ProjectsLocationsDataSetsConsentStoresConsentArtifactsGet (Maybe Text)
pldscscagAccessToken
= lens _pldscscagAccessToken
(\ s a -> s{_pldscscagAccessToken = a})
-- | Legacy upload protocol for media (e.g. \"media\", \"multipart\").
pldscscagUploadType :: Lens' ProjectsLocationsDataSetsConsentStoresConsentArtifactsGet (Maybe Text)
pldscscagUploadType
= lens _pldscscagUploadType
(\ s a -> s{_pldscscagUploadType = a})
-- | Required. The resource name of the Consent artifact to retrieve.
pldscscagName :: Lens' ProjectsLocationsDataSetsConsentStoresConsentArtifactsGet Text
pldscscagName
= lens _pldscscagName
(\ s a -> s{_pldscscagName = a})
-- | JSONP
pldscscagCallback :: Lens' ProjectsLocationsDataSetsConsentStoresConsentArtifactsGet (Maybe Text)
pldscscagCallback
= lens _pldscscagCallback
(\ s a -> s{_pldscscagCallback = a})
instance GoogleRequest
ProjectsLocationsDataSetsConsentStoresConsentArtifactsGet
where
type Rs
ProjectsLocationsDataSetsConsentStoresConsentArtifactsGet
= ConsentArtifact
type Scopes
ProjectsLocationsDataSetsConsentStoresConsentArtifactsGet
= '["https://www.googleapis.com/auth/cloud-platform"]
requestClient
ProjectsLocationsDataSetsConsentStoresConsentArtifactsGet'{..}
= go _pldscscagName _pldscscagXgafv
_pldscscagUploadProtocol
_pldscscagAccessToken
_pldscscagUploadType
_pldscscagCallback
(Just AltJSON)
healthcareService
where go
= buildClient
(Proxy ::
Proxy
ProjectsLocationsDataSetsConsentStoresConsentArtifactsGetResource)
mempty
|
brendanhay/gogol
|
gogol-healthcare/gen/Network/Google/Resource/Healthcare/Projects/Locations/DataSets/ConsentStores/ConsentArtifacts/Get.hs
|
mpl-2.0
| 6,125
| 0
| 15
| 1,213
| 698
| 409
| 289
| 114
| 1
|
-- {-# LANGUAGE #-}
{-# OPTIONS_GHC -Wall -fno-warn-missing-signatures #-}
----------------------------------------------------------------------
-- |
-- Module : Shady.Play.CseTest
-- Copyright : (c) Conal Elliott 2009
-- License : AGPLv3
--
-- Maintainer : conal@conal.net
-- Stability : experimental
--
-- Test new CSE stuff
----------------------------------------------------------------------
module Shady.Play.CseTest where
import Prelude hiding ((<*))
-- import Control.Applicative (liftA2)
import Data.VectorSpace
-- For testing
import Text.PrettyPrint.Leijen.DocExpr (Expr,HasExpr(expr))
import Data.Boolean
import Shady.Language.Exp
-- import Shady.Color
-- import Shady.Image
import Shady.Complex
import Shady.Misc (frac)
-- import Shady.Language.Cse
import Shady.Language.Share
x :: HasExpr a => a -> Expr
x = expr
type Point = ComplexE R
{-
xc :: Color -> Expr
xc = expr . colorToR4
xp :: Point -> Expr
xp = expr . pointToR2
-}
q :: FloatE
q = Var (var "q")
t1,t2 :: FloatE
t1 = q + q
-- Was @q * (q + q)@, now @let a = q + q in a * a@. What happened?
t2 = t1 * t1
c1 = cse t1
t3a = sin q / cos q
-- let a = sin(q) in
-- let b = cos(q) in
-- b + a / b
--
t3 = cos q + t3a
-- cse => cos(q) + sin(q) / cos(q)
t3b = cq + sq / cq
where
cq = cos q
sq = sin q
-- cse => let x3 = cos(q) in x3 + sin(q) / x3
-- let a = cos(q) in
-- a - 1.0 / a
--
t4 = cos q - 1 / cos q
-- let a = cos(q) in
-- a * (a + sin(q) / a)
--
t5 = cos q * t3
-- let a = cos(q) in
-- (a + sin(q) / a) * (a - 1.0 / a)
--
t6 = t3 * t4
-- let a = cos(q) in
-- let b = sin(q) in
-- (a + b / a) * (a - 1.0 / a) + (a + b / a)
t7 = t6 + t3
-- let a = sin(q) in
-- a + (1.0 - a) * (a < 3.0 ? 4.0 : 5.0)
--
t8 = let a = sin q in a + (1 - a) * (ifE (a <* 3) 4 5)
-- q * sin(q)
r = q * sin q
-- let a = sin(q) in
-- a * (q * a)
s = sin q * r
-- let a = sin(q) in
-- let b = q * a in
-- b + a * b
t9a = r + s
-- let a = sin(q) in
-- let b = q * a in
-- a * b + b
t9b = s + r
w = Var (var "w") :: R2E
{-
bw :: BoolE -> Color
bw = boolean white clear
ra :: R2E -> Color
ra z = bw (z <.> z <* 1)
-}
stripes (a :+ _) = frac a <* 0.5
a1 :: FloatE
a1 = magnitudeSq (t *^ uv)
{-
a2 :: BoolE
a2 = uscale2 t udisk uv
a3 :: R4E
a3 = colorToR4 $ toColor (uscale2 (cos t) udisk uv)
-}
t :: FloatE
t = Var (var "t")
u,v :: FloatE
u = Var (var "u")
v = Var (var "v")
uv :: Point
uv = u :+ v
-------------
ts = [t1,t2,t3a,t3,t4,t5,t6,t8,t9a,t9b]
main = mapM_ (print.expr) ts
|
conal/shady-gen
|
src/Shady/Play/CseTest.hs
|
agpl-3.0
| 2,583
| 0
| 11
| 723
| 586
| 348
| 238
| 46
| 1
|
{-# LANGUAGE TemplateHaskell #-}
module Model.Notification.SQL
( selectNotifyDelivery
, selectTargetNotification
, selectNotification
, selectPartyAuthorizationNotify
) where
import qualified Language.Haskell.TH as TH
import Has
import Model.SQL.Select
import Model.Time
import Model.Id.Types
import Model.Permission.Types
import Model.Release.Types
import Model.Party.Types
import Model.Party.SQL
import Model.Volume.Types
import Model.Volume.SQL
import Model.Container.Types
import Model.Segment
import Model.Asset.Types
import Model.Tag.Types
import Model.Tag.SQL
import Model.Comment.Types
import Model.Notification.Types
selectNotifyDelivery :: Selector
selectNotifyDelivery = selectMap (TH.VarE 'fromMaybeDelivery `TH.AppE`) $ selectColumn "notify_view" "delivery"
makePartyAuthorizationNotice :: (Party, Maybe Permission) -> Delivery -> (Party, Maybe Permission, Delivery)
makePartyAuthorizationNotice (p, a) d = (p, a, d)
selectPartyAuthorizationNotify :: TH.Name -- ^ 'Identity'
-> Selector -- ^ @('Party', Maybe 'Permission', 'Delivery')@
selectPartyAuthorizationNotify ident = selectJoin 'makePartyAuthorizationNotice
[ selectPartyAuthorization ident
, joinOn "id = target"
selectNotifyDelivery
]
makeNotification :: Id Notification -> Notice -> Timestamp -> Delivery -> Maybe Permission -> Maybe (Id Container) -> Maybe Segment -> Maybe (Id Asset) -> Maybe Release -> Maybe (Id Comment) -> PartyRow -> Maybe PartyRow -> Maybe VolumeRow -> Maybe Tag -> Account -> Notification
makeNotification i n t d e c s a r m w p v g u = Notification i (view u) n t d w p v e c s a r m g
notificationRow :: Selector -- ^ @'PartyRow' -> Maybe 'PartyRow' -> Maybe 'VolumeRow' -> Maybe 'Tag' -> 'Account' -> 'Notification'@
notificationRow = selectColumns 'makeNotification "notification" ["id", "notice", "time", "delivered", "permission", "container", "segment", "asset", "release", "comment"]
selectTargetNotification :: Selector -- ^ @'Account' -> 'Notification'@
selectTargetNotification = selectJoin '($)
[ notificationRow
, joinOn "notification.agent = agent.id"
$ selectPartyRow `fromAlias` "agent"
, maybeJoinOn "notification.party = nparty.id"
$ selectPartyRow `fromAlias` "nparty"
, maybeJoinOn "notification.volume = volume.id" selectVolumeRow
, maybeJoinOn "notification.tag = tag.id" selectTag
]
selectNotification :: Selector -- ^ @'Notification'@
selectNotification = selectJoin '($)
[ selectTargetNotification
, joinOn "notification.target = account.id"
selectUserAccount
]
|
databrary/databrary
|
src/Model/Notification/SQL.hs
|
agpl-3.0
| 2,548
| 0
| 19
| 356
| 599
| 339
| 260
| 52
| 1
|
{-# LANGUAGE GADTs #-}
-----------------------------------------------------------------------------
-- Copyright 2018, Ideas project team. This file is distributed under the
-- terms of the Apache License 2.0. For more information, see the files
-- "LICENSE.txt" and "NOTICE.txt", which are included in the distribution.
-----------------------------------------------------------------------------
-- |
-- Maintainer : bastiaan.heeren@ou.nl
-- Stability : provisional
-- Portability : portable (depends on ghc)
--
-- Services using JSON notation
--
-----------------------------------------------------------------------------
module Ideas.Encoding.NewEncoderJSON (JSONBuilder, builderToJSON, jsonEncoder) where
import Control.Applicative hiding (Const)
import Data.Char
import Data.Maybe
import Ideas.Common.Library hiding (exerciseId)
import Ideas.Encoding.Encoder hiding (symbol)
import Ideas.Encoding.Request
import Ideas.Service.State
import Ideas.Service.Types hiding (String)
import Ideas.Text.JSON
import Ideas.Utils.Prelude (distinct)
import qualified Ideas.Service.Diagnose as Diagnose
import qualified Ideas.Service.Submit as Submit
import qualified Ideas.Service.Types as Tp
type JSONBuilder = [(Maybe Key, JSON)]
listJSONBuilder :: [JSONBuilder] -> JSONBuilder
listJSONBuilder xs = {-
case mapM isSingleton xs of
Just ys -> ys
Nothing -> -} [(Nothing, Array (map builderToJSON xs))]
isSingleton :: [a] -> Maybe a
isSingleton [x] = Just x
isSingleton _ = Nothing
builderToJSON :: JSONBuilder -> JSON
builderToJSON [(Nothing, x)] = x
builderToJSON xs =
case mapM fst xs of
Just ks -> Object (zip ks (map snd xs))
Nothing -> Array (map f xs)
where
f (Nothing, a) = a
f (Just k, a) = Object [(k, a)]
tagJSONBuilder :: String -> JSONBuilder -> JSONBuilder
tagJSONBuilder s = tagJSON (map toLower s) . builderToJSON
tagJSON :: String -> JSON -> JSONBuilder
tagJSON s a = [(Just s, a)]
-------------------------------------------------------------
--
jsonEncoder :: TypedValue (Type a) -> EncoderX a JSONBuilder
jsonEncoder tv@(val ::: tp) =
case tp of
Iso p t -> jsonEncoder (to p val ::: t)
t1 :|: t2 -> case val of
Left x -> jsonEncoder (x ::: t1)
Right y -> jsonEncoder (y ::: t2)
Pair t1 t2 -> (++) <$> jsonEncoder (fst val ::: t1) <*> jsonEncoder (snd val ::: t2)
Tp.List t -> listJSONBuilder <$> sequence [ jsonEncoder (x ::: t) | x <- val ]
Tp.Tag s t
| s == "Diagnosis" -> encodeTyped encodeDiagnosis Diagnose.tDiagnosis tv
| otherwise -> tagJSONBuilder (map toLower s) <$> jsonEncoder (val ::: t)
Tp.Unit -> pure []
Const ctp -> jsonEncodeConst (val ::: ctp)
_ -> fail $ "Cannot encode type: " ++ show tp
jsonEncodeConst :: TypedValue (Const a) -> EncoderX a JSONBuilder
jsonEncodeConst (val ::: tp) =
case tp of
Rule -> encodeRule val
Location -> encodeLocation val
Environment -> encodeEnvironment val
Context -> encodeContext val
State -> encodeState val
SomeExercise -> case val of
Some ex -> pure (exerciseInfo ex)
Text -> pure [(Nothing, toJSON (show val))]
Tp.String -> pure [(Nothing, toJSON val)]
Tp.Int -> pure [(Nothing, toJSON val)]
Tp.Bool -> pure [(Nothing, toJSON val)]
_ -> fail $ "Type " ++ show tp ++ " not supported in JSON"
{-
encoderFor $ \(val ::: tp) ->
case tp of
Rule -> encodeRule // val
Location -> encodeLocation // val
Environment -> encodeEnvironment // val
Context -> encodeContext // val
State -> encodeState // val
_ -> pure [(Nothing, toJSON (show tp))]
{-
SomeExercise -> case val of
Some ex -> pure (exerciseInfo ex)
Term -> pure (termToJSON val)
Text -> pure (toJSON (show val))
Int -> pure (toJSON val)
Bool -> pure (toJSON val)
Tp.String -> pure (toJSON val)
_ -> fail $ "Type " ++ show tp ++ " not supported in JSON"
-}
-}
encodeRule :: Rule (Context a) -> EncoderX a JSONBuilder
encodeRule r = pure (tagJSON "rule" (toJSON (showId r)))
encodeEnvironment :: Environment -> EncoderX a JSONBuilder
encodeEnvironment env =
let f a = (showId a, String (showValue a))
in pure $ tagJSON "environment" $ Object [ f a | a <- bindings env ]
{-
{-encodeStateEnvironment :: JSONEncoder a (Context a)
encodeStateEnvironment = makeEncoder $ \ctx ->
let loc = fromLocation (location ctx)
env = (if null loc then id else insertRef (makeRef "location") loc)
$ environment ctx
in Object [ (showId a, String $ showValue a) | a <- bindings env ]
-}
-}
encodeContext :: Context a -> EncoderX a JSONBuilder
encodeContext ctx =
let encValue = case fromContext ctx of
Just a -> encodeTerm a
Nothing -> pure $ tagJSON "term" Null -- todo: merge with encodeTerm
encEnv = encodeEnvironment (environment ctx)
encLoc = encodeLocation (location ctx)
in (\xs ys zs -> tagJSONBuilder "context" $ xs ++ ys ++ zs) <$> encValue <*> encEnv <*> encLoc
encodeTerm :: a -> EncoderX a JSONBuilder
encodeTerm a = (tagJSON "term" . f) <$> getExercise
where
f ex =
case hasJSONView ex of
Just jv -> build jv a
Nothing -> String (prettyPrinter ex a)
-- True ex = tagJSON "term" . fromMaybe Null . liftA2 build (hasJSONView ex) . return
-- f False ex = tagJSON "term" . String . prettyPrinter ex
encodeLocation :: Location -> EncoderX a JSONBuilder
encodeLocation loc = pure (tagJSON "location" (toJSON (fromLocation loc)))
encodeState :: State a -> EncoderX a JSONBuilder
encodeState st =
let ctx = stateContext st
get f = maybe Null String (f st)
make ppCtx =
[ (Just "exerciseid", String $ showId (exercise st))
, (Just "prefix", if withoutPrefix st
then Null
else String (show (statePrefix st))
)
] ++
ppCtx ++
[ (Just "userid", get stateUser)
, (Just "sessionid", get stateSession)
, (Just "taskid", get stateStartTerm)
]
in (tagJSONBuilder "state" . make) <$> (encodeContext ctx)
encodeDiagnosis :: Diagnose.Diagnosis a -> EncoderX a JSONBuilder
encodeDiagnosis diagnosis =
case diagnosis of
Diagnose.Correct b st ->
(\xs ys -> (Just "diagnosetype", toJSON "correct") : xs ++ ys) <$> encodeReady b <*> encodeState st
Diagnose.Similar b st mr ->
(\xs ys zs -> (Just "diagnosetype", toJSON "similar") : xs ++ ys ++ zs) <$> encodeReady b <*> encodeState st <*> encodeMaybeRule mr
Diagnose.NotEquivalent s ->
return [(Just "diagnosetype", toJSON "notequiv"), (Just "message", toJSON s)]
Diagnose.Expected b st r ->
(\xs ys zs -> (Just "diagnosetype", toJSON "expected") : xs ++ ys ++ zs) <$> encodeReady b <*> encodeState st <*> encodeRule r
Diagnose.Buggy env r ->
(\xs ys -> (Just "diagnosetype", toJSON "buggy") : xs ++ ys) <$> encodeEnvironment env <*> encodeRule r
Diagnose.Detour b st env r ->
(\xs ys zs vs -> (Just "diagnosetype", toJSON "detour") : xs ++ ys ++ zs ++ vs) <$> encodeReady b <*> encodeState st <*> encodeEnvironment env <*> encodeRule r
Diagnose.WrongRule b st mr ->
(\xs ys zs -> (Just "diagnosetype", toJSON "wrongrule") : xs ++ ys ++ zs) <$> encodeReady b <*> encodeState st <*> encodeMaybeRule mr
Diagnose.SyntaxError msg ->
pure [(Just "diagnosetype", toJSON "syntaxerror"), (Just "message", toJSON msg)]
where
encodeReady b = return [(Just "ready", toJSON b)]
encodeRule r = return [(Just "rule", toJSON (showId r))]
encodeMaybeRule mr = return [(Just "rule", maybe Null (toJSON . showId) mr)]
-- make "correct" [fromReady b, fromState st]
{-
Diagnose.SyntaxError s ->
pure $ Object [("syntaxerror", String s)]
Diagnose.NotEquivalent s ->
if null s then pure (Object [("notequiv", Null)])
else make "notequiv" [fromReason s]
Diagnose.Buggy env r ->
make "buggy" [fromEnv env, fromRule r]
Diagnose.Similar b st ->
make "similar" [fromReady b, fromState st]
Diagnose.WrongRule b st mr ->
make "wrongrule" [fromReady b, fromState st, fromMaybeRule mr]
Diagnose.Expected b st r ->
make "expected" [fromReady b, fromState st, fromRule r]
Diagnose.Detour b st env r ->
make "detour" [fromReady b, fromState st, fromEnv env, fromRule r]
Diagnose.Correct b st ->
make "correct" [fromReady b, fromState st]
Diagnose.Unknown b st ->
make "unknown" [fromReady b, fromState st]
where
make s = fmap (\xs -> Object $ ("diagnosis", toJSON s) : xs) . sequence
fromEnv env = fmap (\x -> ("env", x)) $ jsonEncoder // (env ::: tEnvironment)
fromRule r = pure ("rule", (toJSON (showId r)))
fromMaybeRule mr = pure ("mayberule", (maybe Null (toJSON . showId) mr))
fromReady b = pure ("ready", toJSON b)
fromState st = fmap (\x -> ("state", x)) $ jsonEncoder // (st ::: tState)
fromReason s = pure ("reason", (Object [("reason", toJSON s)]))
-}
{-
{-
Tp.Tag s t
| s == "Result" -> encodeTyped encodeResult Submit.tResult
| s == "Diagnosis" -> encodeTyped encodeDiagnosis Diagnose.tDiagnosis
| s == "Derivation" -> (encodeDerivation, tDerivation (tPair tRule tEnvironment) tContext) <?>
encodeTyped encodeDerivationText (tDerivation tString tContext)
| s == "elem" -> jsonEncoder // (val ::: t)
| otherwise -> (\b -> Object [(s, b)]) <$> jsonEncoder // (val ::: t)
Tp.Unit -> pure Null
Const ctp -> jsonEncodeConst // (val ::: ctp)
_ -> fail $ "Cannot encode type: " ++ show tp
-}
{-
jsonEncoder = encoderFor $ \tv@(val ::: tp) ->
case tp of
_ | length (tupleList tv) > 1 ->
jsonTuple <$> sequence [ jsonEncoder // x | x <- tupleList tv ]
Iso p t -> jsonEncoder // (to p val ::: t)
t1 :|: t2 -> case val of
Left x -> jsonEncoder // (x ::: t1)
Right y -> jsonEncoder // (y ::: t2)
Pair t1 t2 ->
let f x y = jsonTuple [x, y]
in liftA2 f (jsonEncoder // (fst val ::: t1))
(jsonEncoder // (snd val ::: t2))
List (Const Rule) ->
pure $ Array $ map ruleShortInfo val
Tp.Tag s t
| s == "Result" -> encodeTyped encodeResult Submit.tResult
| s == "Diagnosis" -> encodeTyped encodeDiagnosis Diagnose.tDiagnosis
| s == "Derivation" -> (encodeDerivation, tDerivation (tPair tRule tEnvironment) tContext) <?>
encodeTyped encodeDerivationText (tDerivation tString tContext)
| s == "elem" -> jsonEncoder // (val ::: t)
| otherwise -> (\b -> Object [(s, b)]) <$> jsonEncoder // (val ::: t)
Tp.Unit -> pure Null
Tp.List t -> Array <$> sequence [ jsonEncoder // (x ::: t) | x <- val ]
Const ctp -> jsonEncodeConst // (val ::: ctp)
_ -> fail $ "Cannot encode type: " ++ show tp
where
tupleList :: TypedValue (TypeRep f) -> [TypedValue (TypeRep f)]
tupleList (x ::: Tp.Iso p t) = tupleList (to p x ::: t)
tupleList (p ::: Tp.Pair t1 t2) =
tupleList (fst p ::: t1) ++ tupleList (snd p ::: t2)
tupleList (x ::: Tag s t)
| s == "Message" = tupleList (x ::: t)
tupleList (ev ::: (t1 :|: t2)) =
either (\x -> tupleList (x ::: t1))
(\x -> tupleList (x ::: t2)) ev
tupleList tv = [tv]
--------------------------
-- legacy representation
encodeEnvironment :: JSONEncoder a Environment
encodeEnvironment = makeEncoder $ \env ->
let f a = Object [(showId a, String (showValue a))]
in Object [("environment", Array [ f a | a <- bindings env ])]
encodeDerivation :: JSONEncoder a (Derivation (Rule (Context a), Environment) (Context a))
encodeDerivation = encoderFor $ \d ->
let xs = [ (s, a) | (_, s, a) <- triples d ]
in jsonEncoder // (xs ::: tList (tPair (tPair tRule tEnvironment) tContext))
encodeDerivationText :: JSONEncoder a (Derivation String (Context a))
encodeDerivationText = encoderFor $ \d ->
let xs = [ (s, a) | (_, s, a) <- triples d ]
in jsonEncoder // (xs ::: tList (tPair tString tContext))
encodeResult :: JSONEncoder a (Submit.Result a)
encodeResult = encoderFor $ \result -> Object <$>
case result of
Submit.Buggy rs -> pure
[ ("result", String "Buggy")
, ("rules", Array $ map (String . showId) rs)
]
Submit.NotEquivalent s -> pure $
("result", String "NotEquivalent") :
[ ("reason", String s) | not (null s)]
Submit.Ok rs st ->
let f x =
[ ("result", String "Ok")
, ("rules", Array $ map (String . showId) rs)
, ("state", x)
]
in f <$> jsonEncoder // (st ::: tState)
Submit.Detour rs st ->
let f x =
[ ("result", String "Detour")
, ("rules", Array $ map (String . showId) rs)
, ("state", x)
]
in f <$> jsonEncoder // (st ::: tState)
Submit.Unknown st ->
let f x =
[ ("result", String "Unknown")
, ("state", x)
]
in f <$> jsonEncoder // (st ::: tState)
encodeDiagnosis :: JSONEncoder a (Diagnose.Diagnosis a)
encodeDiagnosis = encoderFor $ \diagnosis ->
case diagnosis of
Diagnose.SyntaxError s ->
pure $ Object [("syntaxerror", String s)]
Diagnose.NotEquivalent s ->
if null s then pure (Object [("notequiv", Null)])
else make "notequiv" [fromReason s]
Diagnose.Buggy env r ->
make "buggy" [fromEnv env, fromRule r]
Diagnose.Similar b st ->
make "similar" [fromReady b, fromState st]
Diagnose.WrongRule b st mr ->
make "wrongrule" [fromReady b, fromState st, fromMaybeRule mr]
Diagnose.Expected b st r ->
make "expected" [fromReady b, fromState st, fromRule r]
Diagnose.Detour b st env r ->
make "detour" [fromReady b, fromState st, fromEnv env, fromRule r]
Diagnose.Correct b st ->
make "correct" [fromReady b, fromState st]
Diagnose.Unknown b st ->
make "unknown" [fromReady b, fromState st]
where
make s = fmap (\xs -> Object $ ("diagnosis", toJSON s) : xs) . sequence
fromEnv env = fmap (\x -> ("env", x)) $ jsonEncoder // (env ::: tEnvironment)
fromRule r = pure ("rule", (toJSON (showId r)))
fromMaybeRule mr = pure ("mayberule", (maybe Null (toJSON . showId) mr))
fromReady b = pure ("ready", toJSON b)
fromState st = fmap (\x -> ("state", x)) $ jsonEncoder // (st ::: tState)
fromReason s = pure ("reason", (Object [("reason", toJSON s)]))
{-
encodeTree :: Tree JSON -> JSON
encodeTree (Node r ts) =
case r of
Array [x, t] -> Object
[ ("rootLabel", x)
, ("type", t)
, ("subForest", Array $ map encodeTree ts)
]
_ -> error "ModeJSON: malformed tree!" -}
jsonTuple :: [JSON] -> JSON
jsonTuple xs =
case catMaybes <$> mapM f xs of
Just ys | distinct (map fst ys) -> Object ys
_ -> Array xs
where
f (Object [p]) = Just (Just p)
f Null = Just Nothing
f _ = Nothing
ruleShortInfo :: Rule a -> JSON
ruleShortInfo r = Object
[ ("name", toJSON (showId r))
, ("buggy", toJSON (isBuggy r))
, ("arguments", toJSON (length (getRefs r)))
, ("rewriterule", toJSON (isRewriteRule r))
]
-}
-}
exerciseInfo :: Exercise a -> JSONBuilder
exerciseInfo ex = tagJSON "exercise" $ Object
[ ("exerciseid", toJSON (showId ex))
, ("description", toJSON (description ex))
, ("status", toJSON (show (status ex)))
]
|
ideas-edu/ideas
|
src/Ideas/Encoding/NewEncoderJSON.hs
|
apache-2.0
| 16,205
| 0
| 19
| 4,580
| 2,343
| 1,196
| 1,147
| 128
| 11
|
module TestSuite1 ( tests ) where
import Distribution.TestSuite
import Kind.Assumption
tests :: IO [Test]
tests = return [ Test test1 ]
where
test1 = TestInstance
{ run = return $ Finished
$ if kgammaIsEmpty kgammaEmpty
then Pass
else Fail "kgammaEmpty is not empty"
, name = "Kind.Assumption.isEmpty"
, tags = []
, options = []
, setOption = \_ _ -> Right test1
}
|
lpeterse/koka
|
src/TestSuite1.hs
|
apache-2.0
| 517
| 0
| 11
| 216
| 119
| 68
| 51
| 14
| 2
|
module Actions.LoginScreen.RegistrationConfirmation.Url where
url :: String
url = "/registrationConfirmation"
|
DataStewardshipPortal/ds-wizard
|
DSServer/app/Actions/LoginScreen/RegistrationConfirmation/Url.hs
|
apache-2.0
| 112
| 0
| 4
| 11
| 18
| 12
| 6
| 3
| 1
|
{-# LANGUAGE MultiParamTypeClasses #-}
module SoftwareRenderer where
import Point
import Circle
import Rectangle
import Renderer
import Shape
import Data.Matrix
import Data.Colour
import Data.Colour.Names
import Data.Colour.SRGB
data SoftwareBuffer = SoftwareBuffer { w,h :: Integer, frame :: Point -> Colour Double}
swBufferMatrix :: SoftwareBuffer -> Matrix (Colour Double)
swBufferMatrix (SoftwareBuffer w h f)= matrix (fromInteger w) (fromInteger h) matrixGen where
matrixGen :: (Int,Int) -> Colour Double
matrixGen (x,y) = f (pointCreate (toInteger x) (toInteger y))
instance RenderObject SoftwareBuffer Rectangle where
render (SoftwareBuffer w h frame) trans rect = (SoftwareBuffer w h newRect) where
newRect :: Point -> Colour Double
newRect pos
| contains rect ((getMiddle rect) + (trans $ relativPos rect pos)) = over (getColour rect) (frame pos)
| otherwise = frame pos
instance RenderObject SoftwareBuffer Circle where
render (SoftwareBuffer w h frame) trans circle = (SoftwareBuffer w h newCircle) where
newCircle :: Point -> Colour Double
newCircle pos
| contains circle ((getMiddle circle) + (trans $ relativPos circle pos)) = over (getColour circle) (frame pos)
| otherwise = frame pos
instance Renderer SoftwareBuffer where
emptyFrame w h = (SoftwareBuffer w h a) where
a :: Point -> Colour Double
a p = white
|
marcelhollerbach/hrem
|
src/SoftwareRenderer.hs
|
apache-2.0
| 1,446
| 0
| 16
| 312
| 492
| 252
| 240
| 32
| 1
|
-- Copyright 2010 Google Inc.
--
-- Licensed under the Apache License, Version 2.0 (the "License");
-- you may not use this file except in compliance with the License.
-- You may obtain a copy of the License at
--
-- http://www.apache.org/licenses/LICENSE-2.0
--
-- Unless required by applicable law or agreed to in writing, software
-- distributed under the License is distributed on an "AS IS" BASIS,
-- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-- See the License for the specific language governing permissions and
-- limitations under the License.
module Source where
import DevUtils
import Tutorial
import Control.Monad (when)
import Control.Monad.IO.Class
import qualified Data.ByteString as B
import qualified Data.ByteString.Char8 as C
import Data.Maybe
import qualified Data.Text as T
import qualified Data.Text.Encoding as T
import Snap.Types
import Text.Html hiding ((</>))
import qualified Text.Html as Html
handler :: Snap ()
handler = do
fileparam <- getParam (C.pack "file")
showPreview <- (maybe False (not . C.null))
`fmap` getParam (C.pack "preview")
case maybe Nothing (legalPath . C.unpack) fileparam of
Nothing -> errorBadRequest
Just file -> do
meth <- rqMethod `fmap` getRequest
when (meth == POST) $ handleSave file
html <- liftIO $ mkSrcPage file showPreview
htmlResponse html
handleSave :: FilePath -> Snap()
handleSave file = do
contents <- getParam (C.pack "contents")
case contents of
Nothing -> errorBadRequest
Just c -> liftIO $ B.writeFile file $ clean c
where
clean = T.encodeUtf8 . T.filter (/= '\r') . T.decodeUtf8
mkSrcPage :: FilePath -> Bool -> IO Html
mkSrcPage path showPreview = do
si <- getSrcInfo path
contents <- if srcExists si
then readFile (srcPath si)
else return $ emptyModule (srcPath si)
return $ srcPage si contents showPreview
srcPage :: SrcInfo -> String -> Bool -> Html
srcPage si contents showPreview = devpage ("Source of " ++ srcPath si)
content
(modules si)
scriptSrcs
where
content = thediv ! [identifier "source-page"] <<
[ h1 << srcPath si
, p << small << srcFullPath si
, rocker
, preview showPreview si
, editor contents
]
rocker = thediv ! [identifier "rocker", theclass "button-set"] <<
[ thediv ! [identifier "rocker-edit-image"] << noHtml
, thediv ! [identifier "rocker-run-image", displayHidden] << noHtml
, anchor ! [identifier "rocker-edit", href "#"] << "Edit"
, anchor ! [identifier "rocker-run", href "#"] << "Run"
]
editor :: String -> Html
editor contents = thediv ! [identifier "editor", displayHidden] <<
[ errors
, form ! [Html.method "POST"] << [editorBox, btns, hidden]
]
where
btns = thediv ! [theclass "button-set"] <<
[ input ! [thetype "button", value "Cancel", theclass "btn-cancel"]
, input ! [thetype "submit", value "Save", theclass "btn-save"]
]
editorBox = thediv ! [identifier "editor-box"] <<
textarea ! [theclass "src", name "contents",
identifier "txt-src", strAttr "readonly" "readonly" ]
<< contents
hidden = input ! [thetype "hidden", name "preview", value "1"]
preview :: Bool -> SrcInfo -> Html
preview showPreview = maybe noHtml build . previewPath
where
build path =
thediv ! [ identifier "preview"
, theclass "panel with-preview"
, displayHidden ] <<
[ h1 << "Rendering Preview"
, tag "iframe" ! [ theclass "panel-content" ] << noHtml
, p ! [ identifier "preview-url", displayHidden ] << path
, showMarker
]
showMarker =
if showPreview
then thediv ! [ identifier "preview-show", displayHidden ] << noHtml
else noHtml
errors :: Html
errors = thediv ! [ identifier "errors"
, theclass "panel with-errors"
, displayHidden] <<
[ h1 << "Compilation Errors"
, pre ! [ theclass "panel-content", displayHidden ] << noHtml
]
modules :: SrcInfo -> [Html]
modules si = catMaybes
[ Just $ modFStat si
, Just $ modActions si
, modTutorial si
, Just modSearch]
modFStat :: SrcInfo -> Html
modFStat si = (h2 << "File Info") +++
if srcExists si
then [if srcWritable si then noHtml else p << bold << "read only",
p << show (srcModTime si)]
else [p << bold << "new file"]
modActions :: SrcInfo -> Html
modActions si = (h2 << "Actions") +++
ulist << map (li ! [theclass "op"]) (catMaybes
[ previewLink si
--, Just $ italics << "Revert"
, downloadLink si
, fileLink si
, Just (anchor ! [ identifier "recompile",
theclass "op-recompile", href "#" ]
<< "Force Recompile")
])
modTutorial :: SrcInfo -> Maybe Html
modTutorial si = previewPath si >>= tutorialModule
modSearch :: Html
modSearch = (h2 << "Research") +++
[ form ! [action "http://holumbus.fh-wedel.de/hayoo/hayoo.html"
, target "barley-reseach"] <<
[ input ! [thetype "text", name "query", theclass "research-query"]
, input ! [thetype "submit", value "Hayoo"]
]
, form ! [action "http://haskell.org/hoogle", target "barley-reseach"] <<
[ input ! [thetype "text", name "q", theclass "research-query"]
, input ! [thetype "submit", value "Hoogle"]
]
]
emptyModule :: FilePath -> String
emptyModule filename =
"module " ++ modName ++ " where\n\
\\n\
\import Text.Html\n\
\\n\
\page = body << [\n\
\ h1 << \"Hi!\",\n\
\ paragraph << \"testing\"\n\
\ ]\n"
where
modName = filename -- TODO should replace slashes with dots
scriptSrcs :: [String]
scriptSrcs =
[ "/static/jquery.js"
, "/static/codemirror.js"
, "/static/mode/haskell.js"
, "Source.js"
]
displayHidden :: HtmlAttr
displayHidden = thestyle "display: none;"
|
mzero/barley
|
seed/Source.hs
|
apache-2.0
| 6,332
| 0
| 15
| 1,871
| 1,617
| 858
| 759
| 131
| 3
|
-- (C) 2013 Pepijn Kokke & Wout Elsinghorst
-- Adapted by Jurriaan Hage
{-# LANGUAGE RankNTypes #-}
{-# LANGUAGE FlexibleContexts #-}
module FunFlow.Parsing where
import FunFlow.Ast
import Prelude hiding ( abs, sum )
import Data.Char (isSpace)
import Text.ParserCombinators.UU
import Text.ParserCombinators.UU.Utils
import Text.ParserCombinators.UU.Idioms (iI,Ii (..))
import Text.ParserCombinators.UU.BasicInstances (Parser,pSym)
-- * Top-Level Parsers
parseExpr :: String -> Expr
parseExpr = runParser "stdin" pExpr
-- * Parsing the FUN language
pExpr :: Parser Expr
pExpr = (pFn <|> pFun <|> pITE <|> pLet <|> pPair <|> pPCase <|> pCons <|> pNil <|> pLCase <|> pDType <|> pDTCase) <<|> pBin
where
-- literal expressions
pLit = Int <$> pInteger
<|> Bool True <$ pSymbol "true"
<|> Bool False <$ pSymbol "false"
-- atomic expressions
pAtom = pLit
<<|> Var <$> pIdent
<<|> pDType
<<|> pParens pExpr
-- simple expressions
pFn, pFun, pLet, pITE, pPair, pPCase, pCons, pNil, pLCase, pDType, pDTCase :: Parser Expr
pFn = iI (Fn 0) "fn" pIdent "=>" pExpr Ii -- Default Pi to 0
pFun = iI (Fun 0) "fun" pIdent pIdent "=>" pExpr Ii -- Dito
pLet = iI Let "let" pIdent "=" pExpr "in" pExpr Ii
pITE = iI ITE "if" pExpr "then" pExpr "else" pExpr Ii
pPair = iI (Pair 0) "Pair" "(" pExpr "," pExpr ")" Ii
pPCase = iI PCase "pcase" pExpr "of" "Pair" "(" pIdent "," pIdent ")" "=>" pExpr Ii
pCons = iI (Cons 0) "Cons" "(" pExpr "," pExpr ")" Ii
pNil = (Nil 0) <$ pSymbol "Nil"
pLCase = iI LCase "lcase" pExpr "of" "Cons" "(" pIdent "," pIdent ")" "=>" pExpr "or" pExpr Ii
pDType = iI (DType 0) "C" "(" (pListSep (pSymbol ",") pExpr) ")" Ii
pDTCase = iI DTCase "case" pExpr "of" "C" "(" (pListSep (pSymbol ",") pIdent) ")" "=>" pExpr "or" pExpr Ii
-- chained expressions
pApp = pChainl_ng (App <$ pSpaces) pAtom
pBin = pChainl_ng (bin <$> pOper) pApp
pIdent,pConst,pOper :: Parser Name
pIdent = lexeme $ (:) <$> pLower <*> pMany (pLetter <|> pDigit <|> pUnderscore)
pConst = lexeme $ (:) <$> pUpper <*> pMany (pLetter <|> pDigit <|> pUnderscore)
pOper = lexeme $ pSome $ pAnySym "*+/-"
pUnderscore :: Parser Char
pUnderscore = pSym '_'
-- * Recognising more list structures with separators
pFoldr2Sep :: IsParser p => (a -> b -> b, b) -> p a1 -> p a -> p b
pFoldr2Sep alg@(op,e) sep p = must_be_non_empties "pFoldr2Sep" sep p pfm
where pfm = op <$> p <*> pFoldr1 alg (sep *> p)
pList2Sep :: IsParser p => p a1 -> p a -> p [a]
pList2Sep s p = must_be_non_empties "pListSep" s p (pFoldr2Sep list_alg s p)
|
aochagavia/CompilerConstruction
|
funflow/src/FunFlow/Parsing.hs
|
apache-2.0
| 2,595
| 0
| 16
| 545
| 892
| 481
| 411
| 46
| 1
|
{-# OPTIONS -fglasgow-exts #-}
-----------------------------------------------------------------------------
{-| Module : QPolygon.hs
Copyright : (c) David Harley 2010
Project : qtHaskell
Version : 1.1.4
Modified : 2010-09-02 17:02:31
Warning : this file is machine generated - do not modify.
--}
-----------------------------------------------------------------------------
module Qtc.Core.QPolygon (
QqqPolygon(..), QqPolygon(..)
,QqqPolygon_nf(..), QqPolygon_nf(..)
,qpoint, qqpoint
,QqputPoints(..)
,QqsetPoint(..), qqsetPoint
,qPolygon_delete
)
where
import Qth.ClassTypes.Core
import Qtc.Enums.Base
import Qtc.Enums.Core.Qt
import Qtc.Classes.Base
import Qtc.Classes.Qccs
import Qtc.Classes.Core
import Qtc.ClassTypes.Core
import Qth.ClassTypes.Core
class QqqPolygon x1 where
qqPolygon :: x1 -> IO (QPolygon ())
class QqPolygon x1 where
qPolygon :: x1 -> IO (QPolygon ())
instance QqPolygon (()) where
qPolygon ()
= withQPolygonResult $
qtc_QPolygon
foreign import ccall "qtc_QPolygon" qtc_QPolygon :: IO (Ptr (TQPolygon ()))
instance QqPolygon ((QPolygon t1)) where
qPolygon (x1)
= withQPolygonResult $
withObjectPtr x1 $ \cobj_x1 ->
qtc_QPolygon1 cobj_x1
foreign import ccall "qtc_QPolygon1" qtc_QPolygon1 :: Ptr (TQPolygon t1) -> IO (Ptr (TQPolygon ()))
instance QqqPolygon ((QRect t1)) where
qqPolygon (x1)
= withQPolygonResult $
withObjectPtr x1 $ \cobj_x1 ->
qtc_QPolygon2 cobj_x1
foreign import ccall "qtc_QPolygon2" qtc_QPolygon2 :: Ptr (TQRect t1) -> IO (Ptr (TQPolygon ()))
instance QqPolygon ((Rect)) where
qPolygon (x1)
= withQPolygonResult $
withCRect x1 $ \crect_x1_x crect_x1_y crect_x1_w crect_x1_h ->
qtc_QPolygon3 crect_x1_x crect_x1_y crect_x1_w crect_x1_h
foreign import ccall "qtc_QPolygon3" qtc_QPolygon3 :: CInt -> CInt -> CInt -> CInt -> IO (Ptr (TQPolygon ()))
instance QqPolygon ((Int)) where
qPolygon (x1)
= withQPolygonResult $
qtc_QPolygon4 (toCInt x1)
foreign import ccall "qtc_QPolygon4" qtc_QPolygon4 :: CInt -> IO (Ptr (TQPolygon ()))
instance QqqPolygon ((QRect t1, Bool)) where
qqPolygon (x1, x2)
= withQPolygonResult $
withObjectPtr x1 $ \cobj_x1 ->
qtc_QPolygon5 cobj_x1 (toCBool x2)
foreign import ccall "qtc_QPolygon5" qtc_QPolygon5 :: Ptr (TQRect t1) -> CBool -> IO (Ptr (TQPolygon ()))
instance QqPolygon ((Rect, Bool)) where
qPolygon (x1, x2)
= withQPolygonResult $
withCRect x1 $ \crect_x1_x crect_x1_y crect_x1_w crect_x1_h ->
qtc_QPolygon6 crect_x1_x crect_x1_y crect_x1_w crect_x1_h (toCBool x2)
foreign import ccall "qtc_QPolygon6" qtc_QPolygon6 :: CInt -> CInt -> CInt -> CInt -> CBool -> IO (Ptr (TQPolygon ()))
class QqqPolygon_nf x1 where
qqPolygon_nf :: x1 -> IO (QPolygon ())
class QqPolygon_nf x1 where
qPolygon_nf :: x1 -> IO (QPolygon ())
instance QqPolygon_nf (()) where
qPolygon_nf ()
= withObjectRefResult $
qtc_QPolygon
instance QqPolygon_nf ((QPolygon t1)) where
qPolygon_nf (x1)
= withObjectRefResult $
withObjectPtr x1 $ \cobj_x1 ->
qtc_QPolygon1 cobj_x1
instance QqqPolygon_nf ((QRect t1)) where
qqPolygon_nf (x1)
= withObjectRefResult $
withObjectPtr x1 $ \cobj_x1 ->
qtc_QPolygon2 cobj_x1
instance QqPolygon_nf ((Rect)) where
qPolygon_nf (x1)
= withObjectRefResult $
withCRect x1 $ \crect_x1_x crect_x1_y crect_x1_w crect_x1_h ->
qtc_QPolygon3 crect_x1_x crect_x1_y crect_x1_w crect_x1_h
instance QqPolygon_nf ((Int)) where
qPolygon_nf (x1)
= withObjectRefResult $
qtc_QPolygon4 (toCInt x1)
instance QqqPolygon_nf ((QRect t1, Bool)) where
qqPolygon_nf (x1, x2)
= withObjectRefResult $
withObjectPtr x1 $ \cobj_x1 ->
qtc_QPolygon5 cobj_x1 (toCBool x2)
instance QqPolygon_nf ((Rect, Bool)) where
qPolygon_nf (x1, x2)
= withObjectRefResult $
withCRect x1 $ \crect_x1_x crect_x1_y crect_x1_w crect_x1_h ->
qtc_QPolygon6 crect_x1_x crect_x1_y crect_x1_w crect_x1_h (toCBool x2)
instance QqqboundingRect (QPolygon a) (()) (IO (QRect ())) where
qqboundingRect x0 ()
= withQRectResult $
withObjectPtr x0 $ \cobj_x0 ->
qtc_QPolygon_boundingRect cobj_x0
foreign import ccall "qtc_QPolygon_boundingRect" qtc_QPolygon_boundingRect :: Ptr (TQPolygon a) -> IO (Ptr (TQRect ()))
instance QqboundingRect (QPolygon a) (()) (IO (Rect)) where
qboundingRect x0 ()
= withRectResult $ \crect_ret_x crect_ret_y crect_ret_w crect_ret_h ->
withObjectPtr x0 $ \cobj_x0 ->
qtc_QPolygon_boundingRect_qth cobj_x0 crect_ret_x crect_ret_y crect_ret_w crect_ret_h
foreign import ccall "qtc_QPolygon_boundingRect_qth" qtc_QPolygon_boundingRect_qth :: Ptr (TQPolygon a) -> Ptr CInt -> Ptr CInt -> Ptr CInt -> Ptr CInt -> IO ()
instance QqcontainsPoint (QPolygon a) ((Point, FillRule)) where
qcontainsPoint x0 (x1, x2)
= withBoolResult $
withObjectPtr x0 $ \cobj_x0 ->
withCPoint x1 $ \cpoint_x1_x cpoint_x1_y ->
qtc_QPolygon_containsPoint_qth cobj_x0 cpoint_x1_x cpoint_x1_y (toCLong $ qEnum_toInt x2)
foreign import ccall "qtc_QPolygon_containsPoint_qth" qtc_QPolygon_containsPoint_qth :: Ptr (TQPolygon a) -> CInt -> CInt -> CLong -> IO CBool
instance QqqcontainsPoint (QPolygon a) ((QPoint t1, FillRule)) where
qqcontainsPoint x0 (x1, x2)
= withBoolResult $
withObjectPtr x0 $ \cobj_x0 ->
withObjectPtr x1 $ \cobj_x1 ->
qtc_QPolygon_containsPoint cobj_x0 cobj_x1 (toCLong $ qEnum_toInt x2)
foreign import ccall "qtc_QPolygon_containsPoint" qtc_QPolygon_containsPoint :: Ptr (TQPolygon a) -> Ptr (TQPoint t1) -> CLong -> IO CBool
instance Qqintersected (QPolygon a) ((QPolygon t1)) (IO (QPolygon ())) where
qintersected x0 (x1)
= withQPolygonResult $
withObjectPtr x0 $ \cobj_x0 ->
withObjectPtr x1 $ \cobj_x1 ->
qtc_QPolygon_intersected cobj_x0 cobj_x1
foreign import ccall "qtc_QPolygon_intersected" qtc_QPolygon_intersected :: Ptr (TQPolygon a) -> Ptr (TQPolygon t1) -> IO (Ptr (TQPolygon ()))
qpoint :: QPolygon a -> ((Int)) -> IO (Point)
qpoint x0 (x1)
= withPointResult $ \cpoint_ret_x cpoint_ret_y ->
withObjectPtr x0 $ \cobj_x0 ->
qtc_QPolygon_point_qth cobj_x0 (toCInt x1) cpoint_ret_x cpoint_ret_y
foreign import ccall "qtc_QPolygon_point_qth" qtc_QPolygon_point_qth :: Ptr (TQPolygon a) -> CInt -> Ptr CInt -> Ptr CInt -> IO ()
qqpoint :: QPolygon a -> ((Int)) -> IO (QPoint ())
qqpoint x0 (x1)
= withQPointResult $
withObjectPtr x0 $ \cobj_x0 ->
qtc_QPolygon_point cobj_x0 (toCInt x1)
foreign import ccall "qtc_QPolygon_point" qtc_QPolygon_point :: Ptr (TQPolygon a) -> CInt -> IO (Ptr (TQPoint ()))
class QqputPoints x1 where
qputPoints :: QPolygon a -> x1 -> IO ()
instance QqputPoints ((Int, Int, QPolygon t3)) where
qputPoints x0 (x1, x2, x3)
= withObjectPtr x0 $ \cobj_x0 ->
withObjectPtr x3 $ \cobj_x3 ->
qtc_QPolygon_putPoints cobj_x0 (toCInt x1) (toCInt x2) cobj_x3
foreign import ccall "qtc_QPolygon_putPoints" qtc_QPolygon_putPoints :: Ptr (TQPolygon a) -> CInt -> CInt -> Ptr (TQPolygon t3) -> IO ()
instance QqputPoints ((Int, Int, QPolygon t3, Int)) where
qputPoints x0 (x1, x2, x3, x4)
= withObjectPtr x0 $ \cobj_x0 ->
withObjectPtr x3 $ \cobj_x3 ->
qtc_QPolygon_putPoints1 cobj_x0 (toCInt x1) (toCInt x2) cobj_x3 (toCInt x4)
foreign import ccall "qtc_QPolygon_putPoints1" qtc_QPolygon_putPoints1 :: Ptr (TQPolygon a) -> CInt -> CInt -> Ptr (TQPolygon t3) -> CInt -> IO ()
class QqsetPoint x1 where
qsetPoint :: QPolygon a -> x1 -> IO ()
instance QqsetPoint ((Int, Int, Int)) where
qsetPoint x0 (x1, x2, x3)
= withObjectPtr x0 $ \cobj_x0 ->
qtc_QPolygon_setPoint1 cobj_x0 (toCInt x1) (toCInt x2) (toCInt x3)
foreign import ccall "qtc_QPolygon_setPoint1" qtc_QPolygon_setPoint1 :: Ptr (TQPolygon a) -> CInt -> CInt -> CInt -> IO ()
instance QqsetPoint ((Int, Point)) where
qsetPoint x0 (x1, x2)
= withObjectPtr x0 $ \cobj_x0 ->
withCPoint x2 $ \cpoint_x2_x cpoint_x2_y ->
qtc_QPolygon_setPoint_qth cobj_x0 (toCInt x1) cpoint_x2_x cpoint_x2_y
foreign import ccall "qtc_QPolygon_setPoint_qth" qtc_QPolygon_setPoint_qth :: Ptr (TQPolygon a) -> CInt -> CInt -> CInt -> IO ()
qqsetPoint :: QPolygon a -> ((Int, QPoint t2)) -> IO ()
qqsetPoint x0 (x1, x2)
= withObjectPtr x0 $ \cobj_x0 ->
withObjectPtr x2 $ \cobj_x2 ->
qtc_QPolygon_setPoint cobj_x0 (toCInt x1) cobj_x2
foreign import ccall "qtc_QPolygon_setPoint" qtc_QPolygon_setPoint :: Ptr (TQPolygon a) -> CInt -> Ptr (TQPoint t2) -> IO ()
instance Qqsubtracted (QPolygon a) ((QPolygon t1)) (IO (QPolygon ())) where
qsubtracted x0 (x1)
= withQPolygonResult $
withObjectPtr x0 $ \cobj_x0 ->
withObjectPtr x1 $ \cobj_x1 ->
qtc_QPolygon_subtracted cobj_x0 cobj_x1
foreign import ccall "qtc_QPolygon_subtracted" qtc_QPolygon_subtracted :: Ptr (TQPolygon a) -> Ptr (TQPolygon t1) -> IO (Ptr (TQPolygon ()))
instance Qqtranslate (QPolygon a) ((Int, Int)) (IO ()) where
qtranslate x0 (x1, x2)
= withObjectPtr x0 $ \cobj_x0 ->
qtc_QPolygon_translate1 cobj_x0 (toCInt x1) (toCInt x2)
foreign import ccall "qtc_QPolygon_translate1" qtc_QPolygon_translate1 :: Ptr (TQPolygon a) -> CInt -> CInt -> IO ()
instance Qqtranslate (QPolygon a) ((Point)) (IO ()) where
qtranslate x0 (x1)
= withObjectPtr x0 $ \cobj_x0 ->
withCPoint x1 $ \cpoint_x1_x cpoint_x1_y ->
qtc_QPolygon_translate_qth cobj_x0 cpoint_x1_x cpoint_x1_y
foreign import ccall "qtc_QPolygon_translate_qth" qtc_QPolygon_translate_qth :: Ptr (TQPolygon a) -> CInt -> CInt -> IO ()
instance Qqqtranslate (QPolygon a) ((QPoint t1)) where
qqtranslate x0 (x1)
= withObjectPtr x0 $ \cobj_x0 ->
withObjectPtr x1 $ \cobj_x1 ->
qtc_QPolygon_translate cobj_x0 cobj_x1
foreign import ccall "qtc_QPolygon_translate" qtc_QPolygon_translate :: Ptr (TQPolygon a) -> Ptr (TQPoint t1) -> IO ()
instance Qqunited (QPolygon a) ((QPolygon t1)) (IO (QPolygon ())) where
qunited x0 (x1)
= withQPolygonResult $
withObjectPtr x0 $ \cobj_x0 ->
withObjectPtr x1 $ \cobj_x1 ->
qtc_QPolygon_united cobj_x0 cobj_x1
foreign import ccall "qtc_QPolygon_united" qtc_QPolygon_united :: Ptr (TQPolygon a) -> Ptr (TQPolygon t1) -> IO (Ptr (TQPolygon ()))
qPolygon_delete :: QPolygon a -> IO ()
qPolygon_delete x0
= withObjectPtr x0 $ \cobj_x0 ->
qtc_QPolygon_delete cobj_x0
foreign import ccall "qtc_QPolygon_delete" qtc_QPolygon_delete :: Ptr (TQPolygon a) -> IO ()
|
uduki/hsQt
|
Qtc/Core/QPolygon.hs
|
bsd-2-clause
| 10,379
| 0
| 16
| 1,797
| 3,535
| 1,818
| 1,717
| -1
| -1
|
{-# LANGUAGE ScopedTypeVariables #-}
module Tests.Properties.Mul (tests) where
import Control.Applicative ((<$>), pure)
import Control.Exception as E (SomeException, catch, evaluate)
import Data.Int (Int32, Int64)
import Data.Text.Internal (mul, mul32, mul64)
import System.IO.Unsafe (unsafePerformIO)
import Test.Tasty (TestTree)
import Test.Tasty.QuickCheck (testProperty)
import Test.QuickCheck hiding ((.&.))
mulRef :: (Integral a, Bounded a) => a -> a -> Maybe a
mulRef a b
| ab < bot || ab > top = Nothing
| otherwise = Just (fromIntegral ab)
where ab = fromIntegral a * fromIntegral b
top = fromIntegral (maxBound `asTypeOf` a) :: Integer
bot = fromIntegral (minBound `asTypeOf` a) :: Integer
eval :: (a -> b -> c) -> a -> b -> Maybe c
eval f a b = unsafePerformIO $
(Just <$> evaluate (f a b)) `E.catch` (\(_::SomeException) -> pure Nothing)
t_mul32 :: Int32 -> Int32 -> Property
t_mul32 a b = mulRef a b === eval mul32 a b
t_mul64 :: Int64 -> Int64 -> Property
t_mul64 a b = mulRef a b === eval mul64 a b
t_mul :: Int -> Int -> Property
t_mul a b = mulRef a b === eval mul a b
tests :: [TestTree]
tests = [
testProperty "t_mul" t_mul
, testProperty "t_mul32" t_mul32
, testProperty "t_mul64" t_mul64
]
|
bgamari/text
|
tests/Tests/Properties/Mul.hs
|
bsd-2-clause
| 1,261
| 0
| 11
| 254
| 500
| 273
| 227
| 31
| 1
|
{-# LANGUAGE OverloadedStrings #-}
module SimpleParams where
import Data.List.Split
import Data.String.Utils (endswith, replace)
import Safe
import Data.Char
parseEmbedded :: String -> String
parseEmbedded str =
case splitOn "#" str of
[k, v] ->
if endswith "@" v
then "{\"key\":\"" ++ k ++ "\",\"value\":\"" ++ replace "@" "" v ++ "\",\"last\":true}"
else "{\"key\":\"" ++ k ++ "\",\"value\":\"" ++ v ++ "\"}"
_ -> ""
processPart :: String -> String
processPart str
| isDigit symb = str
| symb `elem` specialCharacters = str
| '#' `elem` str = parseEmbedded str
| otherwise = "\"" ++ str ++ "\""
where
symb = headDef ' ' str
simpleParamsToJson :: String -> String
simpleParamsToJson sparams = "{" ++ concatMap processPart (splitOnSpecialCharacters sparams) ++ "}"
splitOnSpecialCharacters :: String -> [String]
splitOnSpecialCharacters = split $ dropBlanks $ oneOf specialCharacters
specialCharacters :: String
specialCharacters = ",:[]{} "
|
dbushenko/trurl
|
src/SimpleParams.hs
|
bsd-3-clause
| 1,056
| 0
| 12
| 253
| 291
| 153
| 138
| 27
| 3
|
module Network.Raptr.StorageSpec where
import Control.Exception (bracket)
import Control.Monad.Trans (liftIO)
import Data.Binary
import Data.ByteString.Lazy (fromStrict, toStrict)
import Network.Raptr.Raptr hiding (run)
import Network.Raptr.TestUtils
import System.IO.Storage
import System.Random
import Test.Hspec
import Test.QuickCheck
import Test.QuickCheck.Monadic
newtype Payload = P Int deriving (Eq, Show)
instance Binary Payload where
put (P i) = put i
get = P <$> get
instance Arbitrary Payload where
arbitrary = P <$> arbitrary
data SAction = AddEntry Payload
| Truncate Int
| GetEntry Int
| LastEntry
| Observe (Maybe Payload)
deriving (Eq,Show)
payloadFromEntry = fmap (decode . fromStrict . eValue)
indexAt i = foldr (const succIndex) index0 [1 .. i]
runActions :: FileLog -> [ SAction ] -> IO [ Maybe Payload ]
runActions log [] = return []
runActions log (Observe p:as) = (p:) <$> runActions log as
runActions log (Truncate i:as) = truncateLogAtIndex log idx >> runActions log as
where
idx = indexAt i
runActions log (AddEntry s:as) = insertEntry log e >> runActions log as
where
e = Entry index0 term0 (toStrict $ encode s)
runActions log (GetEntry i:as) = decodeEntry >>= \ e -> (e:) <$> runActions log as
where
idx = indexAt i
decodeEntry = do
e <- getEntry log idx
return $ payloadFromEntry e
runActions log (LastEntry:as) = decodeLastEntry >>= \ e -> (e:) <$> runActions log as
where
decodeLastEntry = do
e <- getLastEntry log
return $ payloadFromEntry e
actions :: Int -- ^ length of underlying structure
-> Gen [ SAction ]
actions n = oneof [ return []
, (:) <$>
(AddEntry <$> arbitrary) <*>
actions (n+1)
, do
i <- choose (1,n)
(GetEntry i:) <$> actions n
, (LastEntry:) <$> actions n
, if n == 0
then return []
else do
i <- choose (0, n)
(Truncate i:) <$> actions i
]
delta :: [SAction] -> Int
delta q = delta' q 0
where
delta' [] n = n
delta' (AddEntry _:qs) n = delta' qs (n+1)
delta' (Truncate i:qs) n = delta' qs i
delta' (_:qs) n = delta' qs n
observe :: [SAction] -> [SAction] -> [SAction] -> PropertyM IO [Maybe Payload]
observe pref actions suff = run $
bracket
(randomRIO (1,100000000 :: Int) >>= \ i-> openLog ("test-qc-" ++ show i ++ ".log") )
(removeFileSafely . logName)
(flip runActions (pref ++ actions ++ suff))
-- | Observational equivalence of sequence of actions within arbitrary context
(==~) :: [ SAction ] -> [ SAction ] -> Property
a ==~ b = monadicIO $ do
pref <- pick $ actions 0
suff <- pick $ actions (delta $ pref ++ a)
oc <- observe pref a suff
oc' <- observe pref b suff
liftIO $ putStrLn $ "observing " ++ show oc ++ " for " ++ show a
liftIO$ putStrLn $ "observing " ++ show oc' ++ " for " ++ show b
assert $ oc == oc'
-- | Observational equivalence of sequence of actions with arbitrary prefix
(^==) :: [ SAction ] -> [ SAction ] -> Property
a ^== b = monadicIO $ do
pref <- pick $ actions 0
oc <- observe pref a []
oc' <- observe pref b []
liftIO $ putStrLn $ "observing " ++ show oc ++ " for " ++ show a
liftIO$ putStrLn $ "observing " ++ show oc' ++ " for " ++ show b
assert $ oc == oc'
prop_last_entry :: Payload -> Property
prop_last_entry n = [ AddEntry n, LastEntry ] ^== [ Truncate 0, AddEntry n, LastEntry ]
prop_last_entry_get_first_after_truncate :: Payload -> Property
prop_last_entry_get_first_after_truncate n = [ Truncate 0, AddEntry n, GetEntry 1 ] ^== [ AddEntry n, LastEntry ]
prop_get_0_is_empty :: Payload -> Property
prop_get_0_is_empty n = [ GetEntry 0 ] ==~ [ Observe Nothing ]
storageSpec :: Spec
storageSpec = do
it "last entry always retrieves previously added entry" $ property prop_last_entry
it "last entry equals get first entry after truncate" $ property prop_last_entry_get_first_after_truncate
it "entry 0 is always empty" $ property prop_get_0_is_empty
|
capital-match/raptr
|
test/Network/Raptr/StorageSpec.hs
|
bsd-3-clause
| 4,535
| 0
| 14
| 1,444
| 1,487
| 759
| 728
| 97
| 4
|
import Distribution.PackageDescription
import Distribution.PackageDescription.Parse
import Distribution.Verbosity
import Distribution.System
import Distribution.Simple
import Distribution.Simple.Utils
import Distribution.Simple.Setup
import Distribution.Simple.Command
import Distribution.Simple.Program
import Distribution.Simple.LocalBuildInfo
import Distribution.Simple.PreProcess hiding (ppC2hs)
import Control.Exception
import Control.Monad
import System.Exit
import System.FilePath
import System.Directory
import System.Environment
import System.IO.Error hiding (catch)
import Prelude hiding (catch)
-- Replicate the invocation of the postConf script, so that we can insert the
-- arguments of --extra-include-dirs and --extra-lib-dirs as paths in CPPFLAGS
-- and LDFLAGS into the environment
--
main :: IO ()
main = defaultMainWithHooks customHooks
where
preprocessors = hookedPreProcessors autoconfUserHooks
customHooks = autoconfUserHooks {
preConf = preConfHook,
postConf = postConfHook,
hookedPreProcessors = ("chs",ppC2hs) : filter (\x -> fst x /= "chs") preprocessors
}
preConfHook :: Args -> ConfigFlags -> IO HookedBuildInfo
preConfHook args flags = do
let verbosity = fromFlag (configVerbosity flags)
confExists <- doesFileExist "configure"
unless confExists $ do
code <- rawSystemExitCode verbosity "autoconf" []
case code of
ExitSuccess -> return ()
ExitFailure c -> die $ "autoconf exited with code " ++ show c
preConf autoconfUserHooks args flags
postConfHook :: Args -> ConfigFlags -> PackageDescription -> LocalBuildInfo -> IO ()
postConfHook args flags pkg_descr lbi
= let verbosity = fromFlag (configVerbosity flags)
in do
noExtraFlags args
confExists <- doesFileExist "configure"
if confExists
then runConfigureScript verbosity False flags lbi
else die "configure script not found."
pbi <- getHookedBuildInfo verbosity
let pkg_descr' = updatePackageDescription pbi pkg_descr
postConf simpleUserHooks args flags pkg_descr' lbi
runConfigureScript :: Verbosity -> Bool -> ConfigFlags -> LocalBuildInfo -> IO ()
runConfigureScript verbosity backwardsCompatHack flags lbi = do
env <- getEnvironment
(ccProg, ccFlags) <- configureCCompiler verbosity (withPrograms lbi)
let env' = foldr appendToEnvironment env
[("CC", ccProg)
,("CFLAGS", unwords ccFlags)
,("CPPFLAGS", unwords $ map ("-I"++) (configExtraIncludeDirs flags))
,("LDFLAGS", unwords $ map ("-L"++) (configExtraLibDirs flags))
]
handleNoWindowsSH $ rawSystemExitWithEnv verbosity "sh" args env'
where
args = "configure" : configureArgs backwardsCompatHack flags
appendToEnvironment (key, val) [] = [(key, val)]
appendToEnvironment (key, val) (kv@(k, v) : rest)
| key == k = (key, v ++ " " ++ val) : rest
| otherwise = kv : appendToEnvironment (key, val) rest
handleNoWindowsSH action
| buildOS /= Windows
= action
| otherwise
= action
`catch` \ioe -> if isDoesNotExistError ioe
then die notFoundMsg
else throwIO ioe
notFoundMsg = "The package has a './configure' script. This requires a "
++ "Unix compatibility toolchain such as MinGW+MSYS or Cygwin."
getHookedBuildInfo :: Verbosity -> IO HookedBuildInfo
getHookedBuildInfo verbosity = do
maybe_infoFile <- defaultHookedPackageDesc
case maybe_infoFile of
Nothing -> return emptyHookedBuildInfo
Just infoFile -> do
info verbosity $ "Reading parameters from " ++ infoFile
readHookedBuildInfo verbosity infoFile
-- Replicate the default C2HS preprocessor hook here, and inject a value for
-- extra-c2hs-options, if it was present in the buildinfo file
--
-- Everything below copied from Distribution.Simple.PreProcess
--
ppC2hs :: BuildInfo -> LocalBuildInfo -> PreProcessor
ppC2hs bi lbi
= PreProcessor {
platformIndependent = False,
runPreProcessor = \(inBaseDir, inRelativeFile)
(outBaseDir, outRelativeFile) verbosity ->
rawSystemProgramConf verbosity c2hsProgram (withPrograms lbi) . filter (not . null) $
maybe [] words (lookup "x-extra-c2hs-options" (customFieldsBI bi))
++ ["--include=" ++ outBaseDir]
++ ["--cppopts=" ++ opt | opt <- getCppOptions bi lbi]
++ ["--output-dir=" ++ outBaseDir,
"--output=" ++ outRelativeFile,
inBaseDir </> inRelativeFile]
}
getCppOptions :: BuildInfo -> LocalBuildInfo -> [String]
getCppOptions bi lbi
= ["-I" ++ dir | dir <- includeDirs bi]
++ [opt | opt@('-':c:_) <- ccOptions bi, c `elem` "DIU"]
|
bmsherman/magma-gpu
|
Setup.hs
|
bsd-3-clause
| 5,030
| 0
| 16
| 1,307
| 1,180
| 616
| 564
| 98
| 3
|
module Game where
import Commands (FieldItem(..), MoveDirection(..))
import Data.Array (Array, listArray, bounds, (!), assocs)
import Data.List (find)
import Data.Maybe (fromJust)
import Data.Text (Text, empty)
data Game
= Game
{ gameSettings :: GameSettings
, gameState :: GameState
} deriving (Show)
data GameSettings
= GameSettings
{ settingsTimeBank :: Int
, settingsTimePerMove :: Int
, settingsPlayerNames :: [Text]
, settingsYourBot :: Text
, settingsYourBotId :: Int
, settingsFieldWidth :: Int
, settingsFieldHeight :: Int
} deriving (Show)
type Point = (Int, Int)
type Field = Array Point FieldItem
data GameState
= GameState
{ stateRound :: Int
, stateField :: Field
} deriving (Show)
emptyGame :: Game
emptyGame = Game emptySettings emptyState
where emptySettings = GameSettings 0 0 [] empty 0 0 0
emptyState = GameState 0 emptyField
emptyField = listArray ((0, 0), (0, 0)) []
getNeighbours :: Field -> (Int, Int) -> [(MoveDirection, (Int, Int))]
getNeighbours g (y, x) =
let
possibleNeighbours =
[ (MoveUp, (y - 1, x))
, (MoveLeft, (y, x - 1))
, (MoveDown, (y + 1, x))
, (MoveRight, (y, x + 1))
]
in
filter (isValidPosition . snd) possibleNeighbours
where
isValidPosition p@(y', x') =
let
(_, (maxY, maxX)) =
bounds g
w =
maxX + 1
h =
maxY + 1
in
(x' >= 0) && (x' < w) && (y' >= 0) && (y' < h) && isAccessiblePosition g p
isAccessiblePosition :: Field -> (Int, Int) -> Bool
isAccessiblePosition f =
not . checkField f (\fi -> fi == Wall || isPlayer fi)
checkField :: Array (Int, Int) a -> (a -> Bool) -> (Int, Int) -> Bool
checkField field check pos =
check $ field ! pos
isPlayer :: FieldItem -> Bool
isPlayer (Player _) = True
isPlayer _ = False
getPlayerPosition :: Int -> Field -> Point
getPlayerPosition playerId f =
fst $ fromJust $ find ((== (Player playerId)) . snd) $ assocs f
|
asvyazin/starapple-haskell-starter
|
app/Game.hs
|
bsd-3-clause
| 2,054
| 0
| 14
| 564
| 766
| 440
| 326
| 63
| 1
|
{-# LANGUAGE TypeFamilies, FlexibleContexts, FlexibleInstances #-}
module QueryArrow.DB.NoConnection where
import QueryArrow.DB.DB
-- interface
class INoConnectionDatabase2 db where
type NoConnectionQueryType db
type NoConnectionRowType db
noConnectionDBStmtExec :: db -> NoConnectionQueryType db -> DBResultStream (NoConnectionRowType db) -> DBResultStream (NoConnectionRowType db)
-- instance for IDatabase
newtype NoConnectionDatabase db = NoConnectionDatabase db
instance (IDatabase0 db) => (IDatabase0 (NoConnectionDatabase db)) where
type DBFormulaType (NoConnectionDatabase db) = DBFormulaType db
getName (NoConnectionDatabase db) = getName db
getPreds (NoConnectionDatabase db) = getPreds db
supported (NoConnectionDatabase db) = supported db
instance (IDatabase1 db) => (IDatabase1 (NoConnectionDatabase db)) where
type DBQueryType (NoConnectionDatabase db) = DBQueryType db
translateQuery (NoConnectionDatabase db) = translateQuery db
instance (INoConnectionDatabase2 db) => IDatabase2 (NoConnectionDatabase db) where
data ConnectionType (NoConnectionDatabase db) = NoConnectionDBConnection db
dbOpen (NoConnectionDatabase db) = return (NoConnectionDBConnection db)
instance (IDatabase0 db, IDatabase1 db, INoConnectionDatabase2 db, DBQueryType db ~ NoConnectionQueryType db) => IDatabase (NoConnectionDatabase db) where
-- instance for IDBConnection
instance IDBConnection0 (ConnectionType (NoConnectionDatabase db)) where
dbClose _ = return ()
dbBegin _ = return ()
dbCommit _ = return ()
dbPrepare _ = return ()
dbRollback _ = return ()
instance (INoConnectionDatabase2 db) => IDBConnection (ConnectionType (NoConnectionDatabase db)) where
type QueryType (ConnectionType (NoConnectionDatabase db)) = NoConnectionQueryType db
type StatementType (ConnectionType (NoConnectionDatabase db)) = NoConnectionDBStatement db
prepareQuery (NoConnectionDBConnection db) qu = return (NoConnectionDBStatement db qu)
-- instance for IDBStatement
data NoConnectionDBStatement db = NoConnectionDBStatement db (NoConnectionQueryType db)
instance (INoConnectionDatabase2 db) => IDBStatement (NoConnectionDBStatement db) where
type RowType (NoConnectionDBStatement db) = NoConnectionRowType db
dbStmtClose _ = return ()
dbStmtExec (NoConnectionDBStatement db qu ) = noConnectionDBStmtExec db qu
|
xu-hao/QueryArrow
|
QueryArrow-common/src/QueryArrow/DB/NoConnection.hs
|
bsd-3-clause
| 2,447
| 6
| 12
| 408
| 304
| 244
| 60
| 35
| 0
|
{-# LANGUAGE UndecidableInstances #-}
{-# LANGUAGE ConstraintKinds #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE FlexibleInstances #-}
-- |
--
-- This module contains exports a single function, 'substituteNames',
-- for performing name substitution in an Futhark expression.
module Futhark.Transform.Substitute
(Substitutions,
Substitute(..),
Substitutable)
where
import Control.Monad.Identity
import qualified Data.HashMap.Lazy as HM
import qualified Data.HashSet as HS
import Futhark.Representation.AST.Syntax
import Futhark.Representation.AST.Traversals
-- | The substitutions to be made are given by a mapping from names to
-- names.
type Substitutions = HM.HashMap VName VName
-- | A type that is an instance of this class supports substitution of
-- any names contained within.
class Substitute a where
-- | @substituteNames m e@ replaces the variable names in @e@ with
-- new names, based on the mapping in @m@. It is assumed that all
-- names in @e@ are unique, i.e. there is no shadowing. Aliasing
-- information is also updated, although the resulting information
-- may be erroneous if any if the substitute names in @m@ were
-- already in use in @e@.
substituteNames :: HM.HashMap VName VName -> a -> a
instance Substitute a => Substitute [a] where
substituteNames substs = map $ substituteNames substs
instance (Substitute a, Substitute b) => Substitute (a,b) where
substituteNames substs (x,y) =
(substituteNames substs x, substituteNames substs y)
instance (Substitute a, Substitute b, Substitute c) => Substitute (a,b,c) where
substituteNames substs (x,y,z) =
(substituteNames substs x,
substituteNames substs y,
substituteNames substs z)
instance Substitute a => Substitute (Maybe a) where
substituteNames substs = fmap $ substituteNames substs
instance Substitute Bool where
substituteNames = flip const
instance Substitute VName where
substituteNames substs k = HM.lookupDefault k k substs
instance Substitute SubExp where
substituteNames substs (Var v) = Var $ substituteNames substs v
substituteNames _ (Constant v) = Constant v
instance Substitutable lore => Substitute (Exp lore) where
substituteNames substs = mapExp $ replace substs
instance Substitute attr => Substitute (PatElemT attr) where
substituteNames substs (PatElem ident bindage attr) =
PatElem
(substituteNames substs ident)
(substituteNames substs bindage)
(substituteNames substs attr)
instance Substitute Bindage where
substituteNames _ BindVar =
BindVar
substituteNames substs (BindInPlace cs src is) =
BindInPlace
(map (substituteNames substs) cs)
(substituteNames substs src)
(map (substituteNames substs) is)
instance Substitute attr => Substitute (ParamT attr) where
substituteNames substs (Param name attr) =
Param
(substituteNames substs name)
(substituteNames substs attr)
instance Substitute attr => Substitute (PatternT attr) where
substituteNames substs (Pattern context values) =
Pattern (substituteNames substs context) (substituteNames substs values)
instance Substitutable lore => Substitute (Binding lore) where
substituteNames substs (Let pat annot e) =
Let
(substituteNames substs pat)
(substituteNames substs annot)
(substituteNames substs e)
instance Substitutable lore => Substitute (Body lore) where
substituteNames substs (Body attr bnds res) =
Body
(substituteNames substs attr)
(substituteNames substs bnds)
(substituteNames substs res)
replace :: (Substitutable lore) => HM.HashMap VName VName -> Mapper lore lore Identity
replace substs = Mapper {
mapOnVName = return . substituteNames substs
, mapOnSubExp = return . substituteNames substs
, mapOnBody = return . substituteNames substs
, mapOnCertificates = return . map (substituteNames substs)
, mapOnRetType = return . substituteNames substs
, mapOnFParam = return . substituteNames substs
, mapOnOp = return . substituteNames substs
}
instance Substitute Rank where
substituteNames _ = id
instance Substitute () where
substituteNames _ = id
instance Substitute Shape where
substituteNames substs (Shape es) =
Shape $ map (substituteNames substs) es
instance Substitute ExtShape where
substituteNames substs (ExtShape es) =
ExtShape $ map (substituteNames substs) es
instance Substitute ExtDimSize where
substituteNames substs (Free se) = Free $ substituteNames substs se
substituteNames _ (Ext x) = Ext x
instance Substitute Names where
substituteNames = HS.map . substituteNames
instance Substitute shape => Substitute (TypeBase shape u) where
substituteNames _ (Prim et) = Prim et
substituteNames substs (Array et sz u) =
Array et (substituteNames substs sz) u
substituteNames substs (Mem sz space) =
Mem (substituteNames substs sz) space
instance Substitutable lore => Substitute (Lambda lore) where
substituteNames substs (Lambda params body rettype) =
Lambda
(substituteNames substs params)
(substituteNames substs body)
(map (substituteNames substs) rettype)
instance Substitutable lore => Substitute (ExtLambda lore) where
substituteNames substs (ExtLambda params body rettype) =
ExtLambda
(substituteNames substs params)
(substituteNames substs body)
(map (substituteNames substs) rettype)
instance Substitute Ident where
substituteNames substs v =
v { identName = substituteNames substs $ identName v
, identType = substituteNames substs $ identType v
}
instance Substitute ExtRetType where
substituteNames substs (ExtRetType ts) =
ExtRetType $ map (substituteNames substs) ts
instance Substitute d => Substitute (DimChange d) where
substituteNames substs =
fmap $ substituteNames substs
-- | Lores in which all annotations support name
-- substitution.
type Substitutable lore = (Annotations lore,
Substitute (ExpAttr lore),
Substitute (BodyAttr lore),
Substitute (LetAttr lore),
Substitute (FParamAttr lore),
Substitute (LParamAttr lore),
Substitute (RetType lore),
Substitute (Op lore))
|
CulpaBS/wbBach
|
src/Futhark/Transform/Substitute.hs
|
bsd-3-clause
| 6,404
| 0
| 10
| 1,411
| 1,690
| 862
| 828
| 131
| 1
|
{-# LANGUAGE OverloadedStrings, FlexibleContexts #-}
module SampleWorld where
import Control.Lens
import Control.Monad.State as State
import qualified Data.Aeson as A
import qualified Data.ByteString.Lazy.Char8 as B
import qualified Data.Map as M
import qualified Data.Text as T
import qualified Data.IntMap as I
import TaskPals
addComponent :: ObjId -> Component -> World -> World
addComponent objId component = case component of
CompWork w -> work %~ I.insert objId w
CompTasks t -> tasks %~ I.insert objId t
CompPhysics p -> physics %~ I.insert objId p
CompMeta m -> meta %~ I.insert objId m
addObj :: Obj -> World -> World
addObj obj world = let objId = world^.nextObj in
nextObj %~ succ $ foldr (addComponent $ objId) world (obj objId)
addObjs :: [Obj] -> World -> World
addObjs objs world = foldr addObj world objs
door :: Obj
door objId =
[ CompPhysics $ PhysicsComponent (OnMap (0,40)) (Rectangle 10 3) 0 True
, CompTasks $ I.fromList [ (1, Task "Open" Open Labor 0 2 0 [EnableTask (objId, 2), ResetThisTask, DisableThisTask, SetBlocking False] True)
, (2, Task "Close" Close Labor 0 2 0 [EnableTask (objId, 1), DisableThisTask, SetBlocking True] False)
, (3, Task "Break" Break Labor 2 5 0 [] True)
]
, CompMeta $ MetaComponent "Door" [] Nothing
]
james :: Obj
james objId =
[ CompPhysics $ PhysicsComponent (OnMap (0,0)) (Circle 3) 3 True
, CompTasks $ I.fromList [ (1, Task "Kill" Break Combat 0 10 0 [RemoveThisObj] True)
, (2, Task "Heal" Fix Medical 0 1 0 [ResetThisTask, RemoveWorkFrom (objId, 1) 1] True)
]
-- , CompWork $ WorkComponent NeverAct (Just $ WorkOn (2,1)) Nothing [(Skill Labor 1 1)]
, CompWork $ WorkComponent NeverAct (Just $ GoTo (ToMap (2,2))) Nothing [(Skill Labor 1 1)]
, CompMeta $ MetaComponent "James" ["pal"] (Just "James")
]
blankWorld :: World
blankWorld = World 1 I.empty I.empty I.empty I.empty
world :: World
world = addObjs [door, james] blankWorld
|
ojw/taskpals
|
src/SampleWorld.hs
|
bsd-3-clause
| 2,109
| 0
| 13
| 527
| 731
| 396
| 335
| 39
| 4
|
{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE FunctionalDependencies #-}
{-# LANGUAGE OverlappingInstances #-}
{-# LANGUAGE UndecidableInstances #-}
{-# LANGUAGE TemplateHaskell #-}
{-# OPTIONS_GHC -fno-warn-orphans #-}
import System.Lifted
import System.Directory.Lifted
import qualified System.Directory as D
import Control.Monad.Trans.Either
import Control.Monad.Trans.Maybe
import Control.Applicative
import qualified Data.Text as T
import qualified Data.Text.IO as T
import GHC.IO.Exception
type EitherString = EitherT String
deriveSystemLiftedErrors "DisallowIOE [HardwareFault]" ''MaybeT
deriveSystemLiftedErrors "AllIOE" ''EitherString
deriveSystemDirectory ''MaybeT
deriveSystemDirectory ''EitherString
main :: IO ()
main = do
m <- runMaybeT $ createDirectory "abc"
r <- runEitherT $ bimapEitherT T.pack id $ do
createDirectory "cde"
createDirectory "cdd"
print m
case r of
Left s -> T.putStrLn s
Right _ -> putStrLn "OK"
j <- runEitherT $ ioFilterT (DisallowIOE [HardwareFault]) $ do
D.createDirectory "ajj"
D.createDirectory "aji"
case j of
Left s -> Prelude.putStrLn s
Right _ -> putStrLn "OK!"
print j
x <- runMaybeT $ joinMaybeMT (findFile ["."] "LICENSE")
<|> getHomeDirectory
print x
putStrLn "end"
|
jcristovao/system-lifted
|
example/main.hs
|
bsd-3-clause
| 1,474
| 0
| 13
| 278
| 342
| 169
| 173
| 45
| 3
|
{-# OPTIONS_GHC -fno-warn-tabs #-}
import Common
import MT19937
import Control.Concurrent
import Control.Monad
import Data.Time.Clock.POSIX
import Data.Word
import System.Random hiding (next)
wait :: Int -> IO ()
wait n = do
putStr "Waiting"
replicateM_ n $ do
threadDelay 1000000
putStr "."
putStr "\n"
crack :: Word32 -> IO Word32
crack out = do
time <- fmap truncate getPOSIXTime
return $ head $ filter ((out ==) . fst . next . seed) [time - 999..time]
main = do
putStrLn "=== Challange22 ==="
wait =<< getStdRandom (randomR (40, 400))
s <- fmap truncate getPOSIXTime
let rng = seed s
wait =<< getStdRandom (randomR (40, 400))
cs <- crack (fst $ next rng)
if cs == s then putStrLn "Success!" else putStrLn "Failure!"
|
andrewcchen/matasano-cryptopals-solutions
|
set3/Challange22.hs
|
bsd-3-clause
| 741
| 0
| 13
| 140
| 293
| 143
| 150
| 27
| 2
|
{-# LANGUAGE PatternGuards, ViewPatterns #-}
{-# LANGUAGE RecordWildCards #-}
{-
map f [] = []
map f (x:xs) = f x : map f xs
foldr f z [] = z
foldr f z (x:xs) = f x (foldr f z xs)
foldl f z [] = z
foldl f z (x:xs) = foldl f (f z x) xs
-}
{-
<TEST>
f (x:xs) = negate x + f xs ; f [] = 0 -- f xs = foldr ((+) . negate) 0 xs
f (x:xs) = x + 1 : f xs ; f [] = [] -- f xs = map (+ 1) xs
f z (x:xs) = f (z*x) xs ; f z [] = z -- f z xs = foldl (*) z xs
f a (x:xs) b = x + a + b : f a xs b ; f a [] b = [] -- f a xs b = map (\ x -> x + a + b) xs
f [] a = return a ; f (x:xs) a = a + x >>= \fax -> f xs fax -- f xs a = foldM (+) a xs
f (x:xs) a = a + x >>= \fax -> f xs fax ; f [] a = pure a -- f xs a = foldM (+) a xs
foos [] x = x; foos (y:ys) x = foo y $ foos ys x -- foos ys x = foldr foo x ys
f [] y = y; f (x:xs) y = f xs $ g x y -- f xs y = foldl (flip g) y xs
f [] y = y; f (x : xs) y = let z = g x y in f xs z -- f xs y = foldl (flip g) y xs
f [] y = y; f (x:xs) y = f xs (f xs z)
fun [] = []; fun (x:xs) = f x xs ++ fun xs
</TEST>
-}
module Hint.ListRec(listRecHint) where
import Hint.Type (DeclHint, Severity(Suggestion, Warning), idea, toSSA)
import Data.Generics.Uniplate.DataOnly
import Data.List.Extra
import Data.Maybe
import Data.Either.Extra
import Control.Monad
import Refact.Types hiding (RType(Match))
import GHC.Types.SrcLoc
import GHC.Hs.Extension
import GHC.Hs.Pat
import GHC.Builtin.Types
import GHC.Hs.Type
import GHC.Types.Name.Reader
import GHC.Hs.Binds
import GHC.Hs.Expr
import GHC.Hs.Decls
import GHC.Types.Basic
import GHC.Parser.Annotation
import Language.Haskell.Syntax.Extension
import GHC.Util
import Language.Haskell.GhclibParserEx.GHC.Hs.Pat
import Language.Haskell.GhclibParserEx.GHC.Hs.Expr
import Language.Haskell.GhclibParserEx.GHC.Hs.ExtendInstances
import Language.Haskell.GhclibParserEx.GHC.Utils.Outputable
import Language.Haskell.GhclibParserEx.GHC.Types.Name.Reader
listRecHint :: DeclHint
listRecHint _ _ = concatMap f . universe
where
f o = maybeToList $ do
let x = o
(x, addCase) <- findCase x
(use,severity,x) <- matchListRec x
let y = addCase x
guard $ recursiveStr `notElem` varss y
-- Maybe we can do better here maintaining source
-- formatting?
pure $ idea severity ("Use " ++ use) (reLoc o) (reLoc y) [Replace Decl (toSSA o) [] (unsafePrettyPrint y)]
recursiveStr :: String
recursiveStr = "_recursive_"
recursive = strToVar recursiveStr
data ListCase =
ListCase
[String] -- recursion parameters
(LHsExpr GhcPs) -- nil case
(String, String, LHsExpr GhcPs) -- cons case
-- For cons-case delete any recursive calls with 'xs' in them. Any
-- recursive calls are marked "_recursive_".
data BList = BNil | BCons String String
deriving (Eq, Ord, Show)
data Branch =
Branch
String -- function name
[String] -- parameters
Int -- list position
BList (LHsExpr GhcPs) -- list type/body
---------------------------------------------------------------------
-- MATCH THE RECURSION
matchListRec :: ListCase -> Maybe (String, Severity, LHsExpr GhcPs)
matchListRec o@(ListCase vs nil (x, xs, cons))
-- Suggest 'map'?
| [] <- vs, varToStr nil == "[]", (L _ (OpApp _ lhs c rhs)) <- cons, varToStr c == ":"
, astEq (fromParen rhs) recursive, xs `notElem` vars lhs
= Just $ (,,) "map" Hint.Type.Warning $
appsBracket [ strToVar "map", niceLambda [x] lhs, strToVar xs]
-- Suggest 'foldr'?
| [] <- vs, App2 op lhs rhs <- view cons
, xs `notElem` (vars op ++ vars lhs) -- the meaning of xs changes, see #793
, astEq (fromParen rhs) recursive
= Just $ (,,) "foldr" Suggestion $
appsBracket [ strToVar "foldr", niceLambda [x] $ appsBracket [op,lhs], nil, strToVar xs]
-- Suggest 'foldl'?
| [v] <- vs, view nil == Var_ v, (L _ (HsApp _ r lhs)) <- cons
, astEq (fromParen r) recursive
, xs `notElem` vars lhs
= Just $ (,,) "foldl" Suggestion $
appsBracket [ strToVar "foldl", niceLambda [v,x] lhs, strToVar v, strToVar xs]
-- Suggest 'foldM'?
| [v] <- vs, (L _ (HsApp _ ret res)) <- nil, isReturn ret, varToStr res == "()" || view res == Var_ v
, [L _ (BindStmt _ (view -> PVar_ b1) e), L _ (BodyStmt _ (fromParen -> (L _ (HsApp _ r (view -> Var_ b2)))) _ _)] <- asDo cons
, b1 == b2, astEq r recursive, xs `notElem` vars e
, name <- "foldM" ++ ['_' | varToStr res == "()"]
= Just $ (,,) name Suggestion $
appsBracket [strToVar name, niceLambda [v,x] e, strToVar v, strToVar xs]
-- Nope, I got nothing ¯\_(ツ)_/¯.
| otherwise = Nothing
-- Very limited attempt to convert >>= to do, only useful for
-- 'foldM' / 'foldM_'.
asDo :: LHsExpr GhcPs -> [LStmt GhcPs (LHsExpr GhcPs)]
asDo (view ->
App2 bind lhs
(L _ (HsLam _ MG {
mg_origin=FromSource
, mg_alts=L _ [
L _ Match { m_ctxt=LambdaExpr
, m_pats=[v@(L _ VarPat{})]
, m_grhss=GRHSs _
[L _ (GRHS _ [] rhs)]
(EmptyLocalBinds _)}]}))
) =
[ noLocA $ BindStmt EpAnnNotUsed v lhs
, noLocA $ BodyStmt noExtField rhs noSyntaxExpr noSyntaxExpr ]
asDo (L _ (HsDo _ (DoExpr _) (L _ stmts))) = stmts
asDo x = [noLocA $ BodyStmt noExtField x noSyntaxExpr noSyntaxExpr]
---------------------------------------------------------------------
-- FIND THE CASE ANALYSIS
findCase :: LHsDecl GhcPs -> Maybe (ListCase, LHsExpr GhcPs -> LHsDecl GhcPs)
findCase x = do
-- Match a function binding with two alternatives.
(L _ (ValD _ FunBind {fun_matches=
MG{mg_origin=FromSource, mg_alts=
(L _
[ x1@(L _ Match{..}) -- Match fields.
, x2]), ..} -- Match group fields.
, ..} -- Fun. bind fields.
)) <- pure x
Branch name1 ps1 p1 c1 b1 <- findBranch x1
Branch name2 ps2 p2 c2 b2 <- findBranch x2
guard (name1 == name2 && ps1 == ps2 && p1 == p2)
[(BNil, b1), (BCons x xs, b2)] <- pure $ sortOn fst [(c1, b1), (c2, b2)]
b2 <- transformAppsM (delCons name1 p1 xs) b2
(ps, b2) <- pure $ eliminateArgs ps1 b2
let ps12 = let (a, b) = splitAt p1 ps1 in map strToPat (a ++ xs : b) -- Function arguments.
emptyLocalBinds = EmptyLocalBinds noExtField :: HsLocalBindsLR GhcPs GhcPs -- Empty where clause.
gRHS e = noLoc $ GRHS EpAnnNotUsed [] e :: LGRHS GhcPs (LHsExpr GhcPs) -- Guarded rhs.
gRHSSs e = GRHSs emptyComments [gRHS e] emptyLocalBinds -- Guarded rhs set.
match e = Match{m_ext=EpAnnNotUsed,m_pats=ps12, m_grhss=gRHSSs e, ..} -- Match.
matchGroup e = MG{mg_alts=noLocA [noLocA $ match e], mg_origin=Generated, ..} -- Match group.
funBind e = FunBind {fun_matches=matchGroup e, ..} :: HsBindLR GhcPs GhcPs -- Fun bind.
pure (ListCase ps b1 (x, xs, b2), noLocA . ValD noExtField . funBind)
delCons :: String -> Int -> String -> LHsExpr GhcPs -> Maybe (LHsExpr GhcPs)
delCons func pos var (fromApps -> (view -> Var_ x) : xs) | func == x = do
(pre, (view -> Var_ v) : post) <- pure $ splitAt pos xs
guard $ v == var
pure $ apps $ recursive : pre ++ post
delCons _ _ _ x = pure x
eliminateArgs :: [String] -> LHsExpr GhcPs -> ([String], LHsExpr GhcPs)
eliminateArgs ps cons = (remove ps, transform f cons)
where
args = [zs | z : zs <- map fromApps $ universeApps cons, astEq z recursive]
elim = [all (\xs -> length xs > i && view (xs !! i) == Var_ p) args | (i, p) <- zipFrom 0 ps] ++ repeat False
remove = concat . zipWith (\b x -> [x | not b]) elim
f (fromApps -> x : xs) | astEq x recursive = apps $ x : remove xs
f x = x
---------------------------------------------------------------------
-- FIND A BRANCH
findBranch :: LMatch GhcPs (LHsExpr GhcPs) -> Maybe Branch
findBranch (L _ x) = do
Match { m_ctxt = FunRhs {mc_fun=(L _ name)}
, m_pats = ps
, m_grhss =
GRHSs {grhssGRHSs=[L l (GRHS _ [] body)]
, grhssLocalBinds=EmptyLocalBinds _
}
} <- pure x
(a, b, c) <- findPat ps
pure $ Branch (occNameStr name) a b c $ simplifyExp body
findPat :: [LPat GhcPs] -> Maybe ([String], Int, BList)
findPat ps = do
ps <- mapM readPat ps
[i] <- pure $ findIndices isRight ps
let (left, [right]) = partitionEithers ps
pure (left, i, right)
readPat :: LPat GhcPs -> Maybe (Either String BList)
readPat (view -> PVar_ x) = Just $ Left x
readPat (L _ (ParPat _ (L _ (ConPat _ (L _ n) (InfixCon (view -> PVar_ x) (view -> PVar_ xs))))))
| n == consDataCon_RDR = Just $ Right $ BCons x xs
readPat (L _ (ConPat _ (L _ n) (PrefixCon [] [])))
| n == nameRdrName nilDataConName = Just $ Right BNil
readPat _ = Nothing
|
ndmitchell/hlint
|
src/Hint/ListRec.hs
|
bsd-3-clause
| 8,869
| 0
| 27
| 2,330
| 2,996
| 1,570
| 1,426
| 151
| 2
|
module Logo.Builtins.Turtle (turtleBuiltins) where
import Prelude hiding (tan)
import qualified Data.Map as M
import Control.Monad.Trans (lift)
import Diagrams.TwoD.Path.Turtle
import Diagrams.TwoD.Types (p2)
import Data.Colour (Colour)
import Data.Colour.Names
import Logo.Types
updateTurtle :: TurtleIO a -> LogoEvaluator a
updateTurtle = lift
fd, bk, rt, lt, home, setxy, seth, pu, pd, setpensize, setpencolor :: [LogoToken] -> LogoEvaluator LogoToken
turtleBuiltins :: M.Map String LogoFunctionDef
turtleBuiltins = M.fromList
[ ("fd", LogoFunctionDef 1 fd)
, ("bk", LogoFunctionDef 1 bk)
, ("rt", LogoFunctionDef 1 rt)
, ("lt", LogoFunctionDef 1 lt)
, ("home", LogoFunctionDef 0 home)
, ("setxy", LogoFunctionDef 2 setxy)
, ("seth", LogoFunctionDef 1 seth)
, ("pu", LogoFunctionDef 0 pu)
, ("pd", LogoFunctionDef 0 pd)
, ("setpensize", LogoFunctionDef 1 setpensize)
, ("setpencolor", LogoFunctionDef 1 setpencolor)
]
fd (NumLiteral d : []) = do
updateTurtle (forward d)
return $ StrLiteral ""
fd args = error $ "Invalid arguments to fd" ++ show args
bk (NumLiteral d : []) = do
updateTurtle (backward d)
return $ StrLiteral ""
bk _ = error "Invalid arguments to fd"
rt (NumLiteral a : []) = do
updateTurtle (right a)
return $ StrLiteral ""
rt _ = error "Invalid arguments to rt"
lt (NumLiteral a : []) = do
updateTurtle (left a)
return $ StrLiteral ""
lt _ = error "Invalid arguments to lt"
home [] = do
updateTurtle (setPos (p2 (0,0)))
return $ StrLiteral ""
home _ = error "Invalid arguments to home"
setxy [NumLiteral x, NumLiteral y] = do
updateTurtle (setPos (p2 (x,y)))
return $ StrLiteral ""
setxy _ = error "Invalid arguments to setxy"
seth [NumLiteral n] = do
updateTurtle (setHeading n)
return $ StrLiteral ""
seth _ = error "Invalid arguments to seth"
pu [] = do
updateTurtle penUp
return $ StrLiteral ""
pu _ = error "Invalid arguments to pu"
pd [] = do
updateTurtle penDown
return $ StrLiteral ""
pd _ = error "Invalid arguments to pd"
setpensize [NumLiteral d] = do
updateTurtle (setPenWidth d)
return $ StrLiteral ""
setpensize _ = error "Invalid arguments to setpensize"
setpencolor [NumLiteral d] = do
updateTurtle (setPenColor (numToColor . round $ d))
return $ StrLiteral ""
where
numToColor :: Int -> Colour Double
numToColor 0 = black
numToColor 1 = blue
numToColor 2 = green
numToColor 3 = cyan
numToColor 4 = red
numToColor 5 = magenta
numToColor 6 = yellow
numToColor 7 = white
numToColor 8 = brown
numToColor 9 = tan
numToColor 10 = forestgreen
numToColor 11 = aqua
numToColor 12 = salmon
numToColor 13 = purple
numToColor 14 = orange
numToColor 15 = grey
numToColor _ = error "Color values greater than 15 are not supported"
setpencolor _ = error "Invalid arguments to setpencolor"
|
deepakjois/hs-logo
|
src/Logo/Builtins/Turtle.hs
|
bsd-3-clause
| 2,933
| 0
| 12
| 657
| 1,029
| 523
| 506
| 87
| 17
|
module Win32File
{-
( AccessMode, ShareMode, CreateMode, FileAttributeOrFlag
, CreateFile, CloseHandle, DeleteFile, CopyFile
, MoveFileFlag, MoveFile, MoveFileEx,
)
-}
where
import Win32Types
import StdDIS
----------------------------------------------------------------
-- Enumeration types
----------------------------------------------------------------
type AccessMode = UINT
gENERIC_NONE :: AccessMode
gENERIC_NONE =
unsafePerformIO(
prim_Win32File_cpp_gENERIC_NONE >>= \ (res1) ->
(return (res1)))
primitive prim_Win32File_cpp_gENERIC_NONE :: IO (Word32)
gENERIC_READ :: AccessMode
gENERIC_READ =
unsafePerformIO(
prim_Win32File_cpp_gENERIC_READ >>= \ (res1) ->
(return (res1)))
primitive prim_Win32File_cpp_gENERIC_READ :: IO (Word32)
gENERIC_WRITE :: AccessMode
gENERIC_WRITE =
unsafePerformIO(
prim_Win32File_cpp_gENERIC_WRITE >>= \ (res1) ->
(return (res1)))
primitive prim_Win32File_cpp_gENERIC_WRITE :: IO (Word32)
gENERIC_EXECUTE :: AccessMode
gENERIC_EXECUTE =
unsafePerformIO(
prim_Win32File_cpp_gENERIC_EXECUTE >>= \ (res1) ->
(return (res1)))
primitive prim_Win32File_cpp_gENERIC_EXECUTE :: IO (Word32)
gENERIC_ALL :: AccessMode
gENERIC_ALL =
unsafePerformIO(
prim_Win32File_cpp_gENERIC_ALL >>= \ (res1) ->
(return (res1)))
primitive prim_Win32File_cpp_gENERIC_ALL :: IO (Word32)
dELETE :: AccessMode
dELETE =
unsafePerformIO(
prim_Win32File_cpp_dELETE >>= \ (res1) ->
(return (res1)))
primitive prim_Win32File_cpp_dELETE :: IO (Word32)
rEAD_CONTROL :: AccessMode
rEAD_CONTROL =
unsafePerformIO(
prim_Win32File_cpp_rEAD_CONTROL >>= \ (res1) ->
(return (res1)))
primitive prim_Win32File_cpp_rEAD_CONTROL :: IO (Word32)
wRITE_DAC :: AccessMode
wRITE_DAC =
unsafePerformIO(
prim_Win32File_cpp_wRITE_DAC >>= \ (res1) ->
(return (res1)))
primitive prim_Win32File_cpp_wRITE_DAC :: IO (Word32)
wRITE_OWNER :: AccessMode
wRITE_OWNER =
unsafePerformIO(
prim_Win32File_cpp_wRITE_OWNER >>= \ (res1) ->
(return (res1)))
primitive prim_Win32File_cpp_wRITE_OWNER :: IO (Word32)
sYNCHRONIZE :: AccessMode
sYNCHRONIZE =
unsafePerformIO(
prim_Win32File_cpp_sYNCHRONIZE >>= \ (res1) ->
(return (res1)))
primitive prim_Win32File_cpp_sYNCHRONIZE :: IO (Word32)
sTANDARD_RIGHTS_REQUIRED :: AccessMode
sTANDARD_RIGHTS_REQUIRED =
unsafePerformIO(
prim_Win32File_cpp_sTANDARD_RIGHTS_REQUIRED >>= \ (res1) ->
(return (res1)))
primitive prim_Win32File_cpp_sTANDARD_RIGHTS_REQUIRED :: IO (Word32)
sTANDARD_RIGHTS_READ :: AccessMode
sTANDARD_RIGHTS_READ =
unsafePerformIO(
prim_Win32File_cpp_sTANDARD_RIGHTS_READ >>= \ (res1) ->
(return (res1)))
primitive prim_Win32File_cpp_sTANDARD_RIGHTS_READ :: IO (Word32)
sTANDARD_RIGHTS_WRITE :: AccessMode
sTANDARD_RIGHTS_WRITE =
unsafePerformIO(
prim_Win32File_cpp_sTANDARD_RIGHTS_WRITE >>= \ (res1) ->
(return (res1)))
primitive prim_Win32File_cpp_sTANDARD_RIGHTS_WRITE :: IO (Word32)
sTANDARD_RIGHTS_EXECUTE :: AccessMode
sTANDARD_RIGHTS_EXECUTE =
unsafePerformIO(
prim_Win32File_cpp_sTANDARD_RIGHTS_EXECUTE >>= \ (res1) ->
(return (res1)))
primitive prim_Win32File_cpp_sTANDARD_RIGHTS_EXECUTE :: IO (Word32)
sTANDARD_RIGHTS_ALL :: AccessMode
sTANDARD_RIGHTS_ALL =
unsafePerformIO(
prim_Win32File_cpp_sTANDARD_RIGHTS_ALL >>= \ (res1) ->
(return (res1)))
primitive prim_Win32File_cpp_sTANDARD_RIGHTS_ALL :: IO (Word32)
sPECIFIC_RIGHTS_ALL :: AccessMode
sPECIFIC_RIGHTS_ALL =
unsafePerformIO(
prim_Win32File_cpp_sPECIFIC_RIGHTS_ALL >>= \ (res1) ->
(return (res1)))
primitive prim_Win32File_cpp_sPECIFIC_RIGHTS_ALL :: IO (Word32)
aCCESS_SYSTEM_SECURITY :: AccessMode
aCCESS_SYSTEM_SECURITY =
unsafePerformIO(
prim_Win32File_cpp_aCCESS_SYSTEM_SECURITY >>= \ (res1) ->
(return (res1)))
primitive prim_Win32File_cpp_aCCESS_SYSTEM_SECURITY :: IO (Word32)
mAXIMUM_ALLOWED :: AccessMode
mAXIMUM_ALLOWED =
unsafePerformIO(
prim_Win32File_cpp_mAXIMUM_ALLOWED >>= \ (res1) ->
(return (res1)))
primitive prim_Win32File_cpp_mAXIMUM_ALLOWED :: IO (Word32)
----------------------------------------------------------------
type ShareMode = UINT
fILE_SHARE_NONE :: ShareMode
fILE_SHARE_NONE =
unsafePerformIO(
prim_Win32File_cpp_fILE_SHARE_NONE >>= \ (res1) ->
(return (res1)))
primitive prim_Win32File_cpp_fILE_SHARE_NONE :: IO (Word32)
fILE_SHARE_READ :: ShareMode
fILE_SHARE_READ =
unsafePerformIO(
prim_Win32File_cpp_fILE_SHARE_READ >>= \ (res1) ->
(return (res1)))
primitive prim_Win32File_cpp_fILE_SHARE_READ :: IO (Word32)
fILE_SHARE_WRITE :: ShareMode
fILE_SHARE_WRITE =
unsafePerformIO(
prim_Win32File_cpp_fILE_SHARE_WRITE >>= \ (res1) ->
(return (res1)))
primitive prim_Win32File_cpp_fILE_SHARE_WRITE :: IO (Word32)
----------------------------------------------------------------
type CreateMode = UINT
cREATE_NEW :: CreateMode
cREATE_NEW =
unsafePerformIO(
prim_Win32File_cpp_cREATE_NEW >>= \ (res1) ->
(return (res1)))
primitive prim_Win32File_cpp_cREATE_NEW :: IO (Word32)
cREATE_ALWAYS :: CreateMode
cREATE_ALWAYS =
unsafePerformIO(
prim_Win32File_cpp_cREATE_ALWAYS >>= \ (res1) ->
(return (res1)))
primitive prim_Win32File_cpp_cREATE_ALWAYS :: IO (Word32)
oPEN_EXISTING :: CreateMode
oPEN_EXISTING =
unsafePerformIO(
prim_Win32File_cpp_oPEN_EXISTING >>= \ (res1) ->
(return (res1)))
primitive prim_Win32File_cpp_oPEN_EXISTING :: IO (Word32)
oPEN_ALWAYS :: CreateMode
oPEN_ALWAYS =
unsafePerformIO(
prim_Win32File_cpp_oPEN_ALWAYS >>= \ (res1) ->
(return (res1)))
primitive prim_Win32File_cpp_oPEN_ALWAYS :: IO (Word32)
tRUNCATE_EXISTING :: CreateMode
tRUNCATE_EXISTING =
unsafePerformIO(
prim_Win32File_cpp_tRUNCATE_EXISTING >>= \ (res1) ->
(return (res1)))
primitive prim_Win32File_cpp_tRUNCATE_EXISTING :: IO (Word32)
----------------------------------------------------------------
type FileAttributeOrFlag = UINT
fILE_ATTRIBUTE_READONLY :: FileAttributeOrFlag
fILE_ATTRIBUTE_READONLY =
unsafePerformIO(
prim_Win32File_cpp_fILE_ATTRIBUTE_READONLY >>= \ (res1) ->
(return (res1)))
primitive prim_Win32File_cpp_fILE_ATTRIBUTE_READONLY :: IO (Word32)
fILE_ATTRIBUTE_HIDDEN :: FileAttributeOrFlag
fILE_ATTRIBUTE_HIDDEN =
unsafePerformIO(
prim_Win32File_cpp_fILE_ATTRIBUTE_HIDDEN >>= \ (res1) ->
(return (res1)))
primitive prim_Win32File_cpp_fILE_ATTRIBUTE_HIDDEN :: IO (Word32)
fILE_ATTRIBUTE_SYSTEM :: FileAttributeOrFlag
fILE_ATTRIBUTE_SYSTEM =
unsafePerformIO(
prim_Win32File_cpp_fILE_ATTRIBUTE_SYSTEM >>= \ (res1) ->
(return (res1)))
primitive prim_Win32File_cpp_fILE_ATTRIBUTE_SYSTEM :: IO (Word32)
fILE_ATTRIBUTE_DIRECTORY :: FileAttributeOrFlag
fILE_ATTRIBUTE_DIRECTORY =
unsafePerformIO(
prim_Win32File_cpp_fILE_ATTRIBUTE_DIRECTORY >>= \ (res1) ->
(return (res1)))
primitive prim_Win32File_cpp_fILE_ATTRIBUTE_DIRECTORY :: IO (Word32)
fILE_ATTRIBUTE_ARCHIVE :: FileAttributeOrFlag
fILE_ATTRIBUTE_ARCHIVE =
unsafePerformIO(
prim_Win32File_cpp_fILE_ATTRIBUTE_ARCHIVE >>= \ (res1) ->
(return (res1)))
primitive prim_Win32File_cpp_fILE_ATTRIBUTE_ARCHIVE :: IO (Word32)
fILE_ATTRIBUTE_NORMAL :: FileAttributeOrFlag
fILE_ATTRIBUTE_NORMAL =
unsafePerformIO(
prim_Win32File_cpp_fILE_ATTRIBUTE_NORMAL >>= \ (res1) ->
(return (res1)))
primitive prim_Win32File_cpp_fILE_ATTRIBUTE_NORMAL :: IO (Word32)
fILE_ATTRIBUTE_TEMPORARY :: FileAttributeOrFlag
fILE_ATTRIBUTE_TEMPORARY =
unsafePerformIO(
prim_Win32File_cpp_fILE_ATTRIBUTE_TEMPORARY >>= \ (res1) ->
(return (res1)))
primitive prim_Win32File_cpp_fILE_ATTRIBUTE_TEMPORARY :: IO (Word32)
fILE_ATTRIBUTE_COMPRESSED :: FileAttributeOrFlag
fILE_ATTRIBUTE_COMPRESSED =
unsafePerformIO(
prim_Win32File_cpp_fILE_ATTRIBUTE_COMPRESSED >>= \ (res1) ->
(return (res1)))
primitive prim_Win32File_cpp_fILE_ATTRIBUTE_COMPRESSED :: IO (Word32)
fILE_FLAG_WRITE_THROUGH :: FileAttributeOrFlag
fILE_FLAG_WRITE_THROUGH =
unsafePerformIO(
prim_Win32File_cpp_fILE_FLAG_WRITE_THROUGH >>= \ (res1) ->
(return (res1)))
primitive prim_Win32File_cpp_fILE_FLAG_WRITE_THROUGH :: IO (Word32)
fILE_FLAG_OVERLAPPED :: FileAttributeOrFlag
fILE_FLAG_OVERLAPPED =
unsafePerformIO(
prim_Win32File_cpp_fILE_FLAG_OVERLAPPED >>= \ (res1) ->
(return (res1)))
primitive prim_Win32File_cpp_fILE_FLAG_OVERLAPPED :: IO (Word32)
fILE_FLAG_NO_BUFFERING :: FileAttributeOrFlag
fILE_FLAG_NO_BUFFERING =
unsafePerformIO(
prim_Win32File_cpp_fILE_FLAG_NO_BUFFERING >>= \ (res1) ->
(return (res1)))
primitive prim_Win32File_cpp_fILE_FLAG_NO_BUFFERING :: IO (Word32)
fILE_FLAG_RANDOM_ACCESS :: FileAttributeOrFlag
fILE_FLAG_RANDOM_ACCESS =
unsafePerformIO(
prim_Win32File_cpp_fILE_FLAG_RANDOM_ACCESS >>= \ (res1) ->
(return (res1)))
primitive prim_Win32File_cpp_fILE_FLAG_RANDOM_ACCESS :: IO (Word32)
fILE_FLAG_SEQUENTIAL_SCAN :: FileAttributeOrFlag
fILE_FLAG_SEQUENTIAL_SCAN =
unsafePerformIO(
prim_Win32File_cpp_fILE_FLAG_SEQUENTIAL_SCAN >>= \ (res1) ->
(return (res1)))
primitive prim_Win32File_cpp_fILE_FLAG_SEQUENTIAL_SCAN :: IO (Word32)
fILE_FLAG_DELETE_ON_CLOSE :: FileAttributeOrFlag
fILE_FLAG_DELETE_ON_CLOSE =
unsafePerformIO(
prim_Win32File_cpp_fILE_FLAG_DELETE_ON_CLOSE >>= \ (res1) ->
(return (res1)))
primitive prim_Win32File_cpp_fILE_FLAG_DELETE_ON_CLOSE :: IO (Word32)
fILE_FLAG_BACKUP_SEMANTICS :: FileAttributeOrFlag
fILE_FLAG_BACKUP_SEMANTICS =
unsafePerformIO(
prim_Win32File_cpp_fILE_FLAG_BACKUP_SEMANTICS >>= \ (res1) ->
(return (res1)))
primitive prim_Win32File_cpp_fILE_FLAG_BACKUP_SEMANTICS :: IO (Word32)
fILE_FLAG_POSIX_SEMANTICS :: FileAttributeOrFlag
fILE_FLAG_POSIX_SEMANTICS =
unsafePerformIO(
prim_Win32File_cpp_fILE_FLAG_POSIX_SEMANTICS >>= \ (res1) ->
(return (res1)))
primitive prim_Win32File_cpp_fILE_FLAG_POSIX_SEMANTICS :: IO (Word32)
sECURITY_ANONYMOUS :: FileAttributeOrFlag
sECURITY_ANONYMOUS =
unsafePerformIO(
prim_Win32File_cpp_sECURITY_ANONYMOUS >>= \ (res1) ->
(return (res1)))
primitive prim_Win32File_cpp_sECURITY_ANONYMOUS :: IO (Word32)
sECURITY_IDENTIFICATION :: FileAttributeOrFlag
sECURITY_IDENTIFICATION =
unsafePerformIO(
prim_Win32File_cpp_sECURITY_IDENTIFICATION >>= \ (res1) ->
(return (res1)))
primitive prim_Win32File_cpp_sECURITY_IDENTIFICATION :: IO (Word32)
sECURITY_IMPERSONATION :: FileAttributeOrFlag
sECURITY_IMPERSONATION =
unsafePerformIO(
prim_Win32File_cpp_sECURITY_IMPERSONATION >>= \ (res1) ->
(return (res1)))
primitive prim_Win32File_cpp_sECURITY_IMPERSONATION :: IO (Word32)
sECURITY_DELEGATION :: FileAttributeOrFlag
sECURITY_DELEGATION =
unsafePerformIO(
prim_Win32File_cpp_sECURITY_DELEGATION >>= \ (res1) ->
(return (res1)))
primitive prim_Win32File_cpp_sECURITY_DELEGATION :: IO (Word32)
sECURITY_CONTEXT_TRACKING :: FileAttributeOrFlag
sECURITY_CONTEXT_TRACKING =
unsafePerformIO(
prim_Win32File_cpp_sECURITY_CONTEXT_TRACKING >>= \ (res1) ->
(return (res1)))
primitive prim_Win32File_cpp_sECURITY_CONTEXT_TRACKING :: IO (Word32)
sECURITY_EFFECTIVE_ONLY :: FileAttributeOrFlag
sECURITY_EFFECTIVE_ONLY =
unsafePerformIO(
prim_Win32File_cpp_sECURITY_EFFECTIVE_ONLY >>= \ (res1) ->
(return (res1)))
primitive prim_Win32File_cpp_sECURITY_EFFECTIVE_ONLY :: IO (Word32)
sECURITY_SQOS_PRESENT :: FileAttributeOrFlag
sECURITY_SQOS_PRESENT =
unsafePerformIO(
prim_Win32File_cpp_sECURITY_SQOS_PRESENT >>= \ (res1) ->
(return (res1)))
primitive prim_Win32File_cpp_sECURITY_SQOS_PRESENT :: IO (Word32)
----------------------------------------------------------------
type MoveFileFlag = DWORD
mOVEFILE_REPLACE_EXISTING :: MoveFileFlag
mOVEFILE_REPLACE_EXISTING =
unsafePerformIO(
prim_Win32File_cpp_mOVEFILE_REPLACE_EXISTING >>= \ (res1) ->
(return (res1)))
primitive prim_Win32File_cpp_mOVEFILE_REPLACE_EXISTING :: IO (Word32)
mOVEFILE_COPY_ALLOWED :: MoveFileFlag
mOVEFILE_COPY_ALLOWED =
unsafePerformIO(
prim_Win32File_cpp_mOVEFILE_COPY_ALLOWED >>= \ (res1) ->
(return (res1)))
primitive prim_Win32File_cpp_mOVEFILE_COPY_ALLOWED :: IO (Word32)
mOVEFILE_DELAY_UNTIL_REBOOT :: MoveFileFlag
mOVEFILE_DELAY_UNTIL_REBOOT =
unsafePerformIO(
prim_Win32File_cpp_mOVEFILE_DELAY_UNTIL_REBOOT >>= \ (res1) ->
(return (res1)))
primitive prim_Win32File_cpp_mOVEFILE_DELAY_UNTIL_REBOOT :: IO (Word32)
----------------------------------------------------------------
type FilePtrDirection = DWORD
fILE_BEGIN :: FilePtrDirection
fILE_BEGIN =
unsafePerformIO(
prim_Win32File_cpp_fILE_BEGIN >>= \ (res1) ->
(return (res1)))
primitive prim_Win32File_cpp_fILE_BEGIN :: IO (Word32)
fILE_CURRENT :: FilePtrDirection
fILE_CURRENT =
unsafePerformIO(
prim_Win32File_cpp_fILE_CURRENT >>= \ (res1) ->
(return (res1)))
primitive prim_Win32File_cpp_fILE_CURRENT :: IO (Word32)
fILE_END :: FilePtrDirection
fILE_END =
unsafePerformIO(
prim_Win32File_cpp_fILE_END >>= \ (res1) ->
(return (res1)))
primitive prim_Win32File_cpp_fILE_END :: IO (Word32)
----------------------------------------------------------------
type DriveType = UINT
dRIVE_UNKNOWN :: DriveType
dRIVE_UNKNOWN =
unsafePerformIO(
prim_Win32File_cpp_dRIVE_UNKNOWN >>= \ (res1) ->
(return (res1)))
primitive prim_Win32File_cpp_dRIVE_UNKNOWN :: IO (Word32)
dRIVE_NO_ROOT_DIR :: DriveType
dRIVE_NO_ROOT_DIR =
unsafePerformIO(
prim_Win32File_cpp_dRIVE_NO_ROOT_DIR >>= \ (res1) ->
(return (res1)))
primitive prim_Win32File_cpp_dRIVE_NO_ROOT_DIR :: IO (Word32)
dRIVE_REMOVABLE :: DriveType
dRIVE_REMOVABLE =
unsafePerformIO(
prim_Win32File_cpp_dRIVE_REMOVABLE >>= \ (res1) ->
(return (res1)))
primitive prim_Win32File_cpp_dRIVE_REMOVABLE :: IO (Word32)
dRIVE_FIXED :: DriveType
dRIVE_FIXED =
unsafePerformIO(
prim_Win32File_cpp_dRIVE_FIXED >>= \ (res1) ->
(return (res1)))
primitive prim_Win32File_cpp_dRIVE_FIXED :: IO (Word32)
dRIVE_REMOTE :: DriveType
dRIVE_REMOTE =
unsafePerformIO(
prim_Win32File_cpp_dRIVE_REMOTE >>= \ (res1) ->
(return (res1)))
primitive prim_Win32File_cpp_dRIVE_REMOTE :: IO (Word32)
dRIVE_CDROM :: DriveType
dRIVE_CDROM =
unsafePerformIO(
prim_Win32File_cpp_dRIVE_CDROM >>= \ (res1) ->
(return (res1)))
primitive prim_Win32File_cpp_dRIVE_CDROM :: IO (Word32)
dRIVE_RAMDISK :: DriveType
dRIVE_RAMDISK =
unsafePerformIO(
prim_Win32File_cpp_dRIVE_RAMDISK >>= \ (res1) ->
(return (res1)))
primitive prim_Win32File_cpp_dRIVE_RAMDISK :: IO (Word32)
----------------------------------------------------------------
type DefineDosDeviceFlags = DWORD
dDD_RAW_TARGET_PATH :: DefineDosDeviceFlags
dDD_RAW_TARGET_PATH =
unsafePerformIO(
prim_Win32File_cpp_dDD_RAW_TARGET_PATH >>= \ (res1) ->
(return (res1)))
primitive prim_Win32File_cpp_dDD_RAW_TARGET_PATH :: IO (Word32)
dDD_REMOVE_DEFINITION :: DefineDosDeviceFlags
dDD_REMOVE_DEFINITION =
unsafePerformIO(
prim_Win32File_cpp_dDD_REMOVE_DEFINITION >>= \ (res1) ->
(return (res1)))
primitive prim_Win32File_cpp_dDD_REMOVE_DEFINITION :: IO (Word32)
dDD_EXACT_MATCH_ON_REMOVE :: DefineDosDeviceFlags
dDD_EXACT_MATCH_ON_REMOVE =
unsafePerformIO(
prim_Win32File_cpp_dDD_EXACT_MATCH_ON_REMOVE >>= \ (res1) ->
(return (res1)))
primitive prim_Win32File_cpp_dDD_EXACT_MATCH_ON_REMOVE :: IO (Word32)
----------------------------------------------------------------
type BinaryType = DWORD
sCS_32BIT_BINARY :: BinaryType
sCS_32BIT_BINARY =
unsafePerformIO(
prim_Win32File_cpp_sCS_32BIT_BINARY >>= \ (res1) ->
(return (res1)))
primitive prim_Win32File_cpp_sCS_32BIT_BINARY :: IO (Word32)
sCS_DOS_BINARY :: BinaryType
sCS_DOS_BINARY =
unsafePerformIO(
prim_Win32File_cpp_sCS_DOS_BINARY >>= \ (res1) ->
(return (res1)))
primitive prim_Win32File_cpp_sCS_DOS_BINARY :: IO (Word32)
sCS_WOW_BINARY :: BinaryType
sCS_WOW_BINARY =
unsafePerformIO(
prim_Win32File_cpp_sCS_WOW_BINARY >>= \ (res1) ->
(return (res1)))
primitive prim_Win32File_cpp_sCS_WOW_BINARY :: IO (Word32)
sCS_PIF_BINARY :: BinaryType
sCS_PIF_BINARY =
unsafePerformIO(
prim_Win32File_cpp_sCS_PIF_BINARY >>= \ (res1) ->
(return (res1)))
primitive prim_Win32File_cpp_sCS_PIF_BINARY :: IO (Word32)
sCS_POSIX_BINARY :: BinaryType
sCS_POSIX_BINARY =
unsafePerformIO(
prim_Win32File_cpp_sCS_POSIX_BINARY >>= \ (res1) ->
(return (res1)))
primitive prim_Win32File_cpp_sCS_POSIX_BINARY :: IO (Word32)
sCS_OS216_BINARY :: BinaryType
sCS_OS216_BINARY =
unsafePerformIO(
prim_Win32File_cpp_sCS_OS216_BINARY >>= \ (res1) ->
(return (res1)))
primitive prim_Win32File_cpp_sCS_OS216_BINARY :: IO (Word32)
----------------------------------------------------------------
type FileNotificationFlag = DWORD
fILE_NOTIFY_CHANGE_FILE_NAME :: FileNotificationFlag
fILE_NOTIFY_CHANGE_FILE_NAME =
unsafePerformIO(
prim_Win32File_cpp_fILE_NOTIFY_CHANGE_FILE_NAME >>= \ (res1) ->
(return (res1)))
primitive prim_Win32File_cpp_fILE_NOTIFY_CHANGE_FILE_NAME :: IO (Word32)
fILE_NOTIFY_CHANGE_DIR_NAME :: FileNotificationFlag
fILE_NOTIFY_CHANGE_DIR_NAME =
unsafePerformIO(
prim_Win32File_cpp_fILE_NOTIFY_CHANGE_DIR_NAME >>= \ (res1) ->
(return (res1)))
primitive prim_Win32File_cpp_fILE_NOTIFY_CHANGE_DIR_NAME :: IO (Word32)
fILE_NOTIFY_CHANGE_ATTRIBUTES :: FileNotificationFlag
fILE_NOTIFY_CHANGE_ATTRIBUTES =
unsafePerformIO(
prim_Win32File_cpp_fILE_NOTIFY_CHANGE_ATTRIBUTES >>= \ (res1) ->
(return (res1)))
primitive prim_Win32File_cpp_fILE_NOTIFY_CHANGE_ATTRIBUTES :: IO (Word32)
fILE_NOTIFY_CHANGE_SIZE :: FileNotificationFlag
fILE_NOTIFY_CHANGE_SIZE =
unsafePerformIO(
prim_Win32File_cpp_fILE_NOTIFY_CHANGE_SIZE >>= \ (res1) ->
(return (res1)))
primitive prim_Win32File_cpp_fILE_NOTIFY_CHANGE_SIZE :: IO (Word32)
fILE_NOTIFY_CHANGE_LAST_WRITE :: FileNotificationFlag
fILE_NOTIFY_CHANGE_LAST_WRITE =
unsafePerformIO(
prim_Win32File_cpp_fILE_NOTIFY_CHANGE_LAST_WRITE >>= \ (res1) ->
(return (res1)))
primitive prim_Win32File_cpp_fILE_NOTIFY_CHANGE_LAST_WRITE :: IO (Word32)
fILE_NOTIFY_CHANGE_SECURITY :: FileNotificationFlag
fILE_NOTIFY_CHANGE_SECURITY =
unsafePerformIO(
prim_Win32File_cpp_fILE_NOTIFY_CHANGE_SECURITY >>= \ (res1) ->
(return (res1)))
primitive prim_Win32File_cpp_fILE_NOTIFY_CHANGE_SECURITY :: IO (Word32)
----------------------------------------------------------------
type FileType = DWORD
fILE_TYPE_UNKNOWN :: FileType
fILE_TYPE_UNKNOWN =
unsafePerformIO(
prim_Win32File_cpp_fILE_TYPE_UNKNOWN >>= \ (res1) ->
(return (res1)))
primitive prim_Win32File_cpp_fILE_TYPE_UNKNOWN :: IO (Word32)
fILE_TYPE_DISK :: FileType
fILE_TYPE_DISK =
unsafePerformIO(
prim_Win32File_cpp_fILE_TYPE_DISK >>= \ (res1) ->
(return (res1)))
primitive prim_Win32File_cpp_fILE_TYPE_DISK :: IO (Word32)
fILE_TYPE_CHAR :: FileType
fILE_TYPE_CHAR =
unsafePerformIO(
prim_Win32File_cpp_fILE_TYPE_CHAR >>= \ (res1) ->
(return (res1)))
primitive prim_Win32File_cpp_fILE_TYPE_CHAR :: IO (Word32)
fILE_TYPE_PIPE :: FileType
fILE_TYPE_PIPE =
unsafePerformIO(
prim_Win32File_cpp_fILE_TYPE_PIPE >>= \ (res1) ->
(return (res1)))
primitive prim_Win32File_cpp_fILE_TYPE_PIPE :: IO (Word32)
----------------------------------------------------------------
type LPSECURITY_ATTRIBUTES = Addr
type MbLPSECURITY_ATTRIBUTES = Maybe LPSECURITY_ATTRIBUTES
----------------------------------------------------------------
-- File operations
----------------------------------------------------------------
deleteFile :: String -> IO ()
deleteFile gc_arg1 =
(marshall_string_ gc_arg1) >>= \ (arg1) ->
prim_Win32File_cpp_deleteFile arg1 >>= \ (gc_failed,gc_failstring) ->
if ( gc_failed /= (0::Int))
then unmarshall_string_ gc_failstring >>= ioError . userError
else (return (()))
primitive prim_Win32File_cpp_deleteFile :: Addr -> IO (Int,Addr)
copyFile :: String -> String -> Bool -> IO ()
copyFile gc_arg1 gc_arg2 gc_arg3 =
(marshall_string_ gc_arg1) >>= \ (arg1) ->
(marshall_string_ gc_arg2) >>= \ (arg2) ->
(marshall_bool_ gc_arg3) >>= \ (arg3) ->
prim_Win32File_cpp_copyFile arg1 arg2 arg3 >>= \ (gc_failed,gc_failstring) ->
if ( gc_failed /= (0::Int))
then unmarshall_string_ gc_failstring >>= ioError . userError
else (return (()))
primitive prim_Win32File_cpp_copyFile :: Addr -> Addr -> Int -> IO (Int,Addr)
moveFile :: String -> String -> IO ()
moveFile gc_arg1 gc_arg2 =
(marshall_string_ gc_arg1) >>= \ (arg1) ->
(marshall_string_ gc_arg2) >>= \ (arg2) ->
prim_Win32File_cpp_moveFile arg1 arg2 >>= \ (gc_failed,gc_failstring) ->
if ( gc_failed /= (0::Int))
then unmarshall_string_ gc_failstring >>= ioError . userError
else (return (()))
primitive prim_Win32File_cpp_moveFile :: Addr -> Addr -> IO (Int,Addr)
moveFileEx :: String -> String -> MoveFileFlag -> IO ()
moveFileEx gc_arg1 gc_arg2 arg3 =
(marshall_string_ gc_arg1) >>= \ (arg1) ->
(marshall_string_ gc_arg2) >>= \ (arg2) ->
prim_Win32File_cpp_moveFileEx arg1 arg2 arg3 >>= \ (gc_failed,gc_failstring) ->
if ( gc_failed /= (0::Int))
then unmarshall_string_ gc_failstring >>= ioError . userError
else (return (()))
primitive prim_Win32File_cpp_moveFileEx :: Addr -> Addr -> Word32 -> IO (Int,Addr)
setCurrentDirectory :: String -> IO ()
setCurrentDirectory gc_arg1 =
(marshall_string_ gc_arg1) >>= \ (arg1) ->
prim_Win32File_cpp_setCurrentDirectory arg1 >>= \ (gc_failed,gc_failstring) ->
if ( gc_failed /= (0::Int))
then unmarshall_string_ gc_failstring >>= ioError . userError
else (return (()))
primitive prim_Win32File_cpp_setCurrentDirectory :: Addr -> IO (Int,Addr)
createDirectory :: String -> MbLPSECURITY_ATTRIBUTES -> IO ()
createDirectory gc_arg1 arg2 =
(marshall_string_ gc_arg1) >>= \ (arg1) ->
(case arg2 of {
Nothing -> (return (nullAddr));
(Just arg2) -> (return ((arg2)))
}) >>= \ (arg2) ->
prim_Win32File_cpp_createDirectory arg1 arg2 >>= \ (gc_failed,gc_failstring) ->
if ( gc_failed /= (0::Int))
then unmarshall_string_ gc_failstring >>= ioError . userError
else (return (()))
primitive prim_Win32File_cpp_createDirectory :: Addr -> Addr -> IO (Int,Addr)
createDirectoryEx :: String -> String -> MbLPSECURITY_ATTRIBUTES -> IO ()
createDirectoryEx gc_arg1 gc_arg2 arg3 =
(marshall_string_ gc_arg1) >>= \ (arg1) ->
(marshall_string_ gc_arg2) >>= \ (arg2) ->
(case arg3 of {
Nothing -> (return (nullAddr));
(Just arg3) -> (return ((arg3)))
}) >>= \ (arg3) ->
prim_Win32File_cpp_createDirectoryEx arg1 arg2 arg3 >>= \ (gc_failed,gc_failstring) ->
if ( gc_failed /= (0::Int))
then unmarshall_string_ gc_failstring >>= ioError . userError
else (return (()))
primitive prim_Win32File_cpp_createDirectoryEx :: Addr -> Addr -> Addr -> IO (Int,Addr)
removeDirectory :: String -> IO ()
removeDirectory gc_arg1 =
(marshall_string_ gc_arg1) >>= \ (arg1) ->
prim_Win32File_cpp_removeDirectory arg1 >>= \ (gc_failed,gc_failstring) ->
if ( gc_failed /= (0::Int))
then unmarshall_string_ gc_failstring >>= ioError . userError
else (return (()))
primitive prim_Win32File_cpp_removeDirectory :: Addr -> IO (Int,Addr)
getBinaryType :: String -> IO BinaryType
getBinaryType gc_arg1 =
(marshall_string_ gc_arg1) >>= \ (arg1) ->
prim_Win32File_cpp_getBinaryType arg1 >>= \ (res1,gc_failed,gc_failstring) ->
if ( gc_failed /= (0::Int))
then unmarshall_string_ gc_failstring >>= ioError . userError
else (return (res1))
primitive prim_Win32File_cpp_getBinaryType :: Addr -> IO (Word32,Int,Addr)
----------------------------------------------------------------
-- HANDLE operations
----------------------------------------------------------------
createFile :: String -> AccessMode -> ShareMode -> MbLPSECURITY_ATTRIBUTES -> CreateMode -> FileAttributeOrFlag -> MbHANDLE -> IO HANDLE
createFile gc_arg1 arg2 arg3 arg4 arg5 arg6 arg7 =
(marshall_string_ gc_arg1) >>= \ (arg1) ->
(case arg4 of {
Nothing -> (return (nullAddr));
(Just arg4) -> (return ((arg4)))
}) >>= \ (arg4) ->
(case arg7 of {
Nothing -> (return (nullHANDLE));
(Just arg7) -> (return ((arg7)))
}) >>= \ (arg7) ->
prim_Win32File_cpp_createFile arg1 arg2 arg3 arg4 arg5 arg6 arg7 >>= \ (res1,gc_failed,gc_failstring) ->
if ( gc_failed /= (0::Int))
then unmarshall_string_ gc_failstring >>= ioError . userError
else (return (res1))
primitive prim_Win32File_cpp_createFile :: Addr -> Word32 -> Word32 -> Addr -> Word32 -> Word32 -> Addr -> IO (Addr,Int,Addr)
closeHandle :: HANDLE -> IO ()
closeHandle arg1 =
prim_Win32File_cpp_closeHandle arg1 >>= \ (gc_failed,gc_failstring) ->
if ( gc_failed /= (0::Int))
then unmarshall_string_ gc_failstring >>= ioError . userError
else (return (()))
primitive prim_Win32File_cpp_closeHandle :: Addr -> IO (Int,Addr)
getFileType :: HANDLE -> IO FileType
getFileType arg1 =
prim_Win32File_cpp_getFileType arg1 >>= \ (res1) ->
(return (res1))
primitive prim_Win32File_cpp_getFileType :: Addr -> IO (Word32)
--Apparently no error code
flushFileBuffers :: HANDLE -> IO ()
flushFileBuffers arg1 =
prim_Win32File_cpp_flushFileBuffers arg1 >>= \ (gc_failed,gc_failstring) ->
if ( gc_failed /= (0::Int))
then unmarshall_string_ gc_failstring >>= ioError . userError
else (return (()))
primitive prim_Win32File_cpp_flushFileBuffers :: Addr -> IO (Int,Addr)
setEndOfFile :: HANDLE -> IO ()
setEndOfFile arg1 =
prim_Win32File_cpp_setEndOfFile arg1 >>= \ (gc_failed,gc_failstring) ->
if ( gc_failed /= (0::Int))
then unmarshall_string_ gc_failstring >>= ioError . userError
else (return (()))
primitive prim_Win32File_cpp_setEndOfFile :: Addr -> IO (Int,Addr)
setFileAttributes :: String -> FileAttributeOrFlag -> IO ()
setFileAttributes gc_arg1 arg2 =
(marshall_string_ gc_arg1) >>= \ (arg1) ->
prim_Win32File_cpp_setFileAttributes arg1 arg2 >>= \ (gc_failed,gc_failstring) ->
if ( gc_failed /= (0::Int))
then unmarshall_string_ gc_failstring >>= ioError . userError
else (return (()))
primitive prim_Win32File_cpp_setFileAttributes :: Addr -> Word32 -> IO (Int,Addr)
getFileAttributes :: String -> IO FileAttributeOrFlag
getFileAttributes gc_arg1 =
(marshall_string_ gc_arg1) >>= \ (arg1) ->
prim_Win32File_cpp_getFileAttributes arg1 >>= \ (res1,gc_failed,gc_failstring) ->
if ( gc_failed /= (0::Int))
then unmarshall_string_ gc_failstring >>= ioError . userError
else (return (res1))
primitive prim_Win32File_cpp_getFileAttributes :: Addr -> IO (Word32,Int,Addr)
----------------------------------------------------------------
-- Read/write files
----------------------------------------------------------------
-- No support for this yet
--type OVERLAPPED =
-- (DWORD, -- Offset
-- DWORD, -- OffsetHigh
-- HANDLE) -- hEvent
type LPOVERLAPPED = Addr
type MbLPOVERLAPPED = Maybe LPOVERLAPPED
--Sigh - I give up & prefix win32_ to the next two to avoid
-- senseless Prelude name clashes. --sof.
win32_ReadFile :: HANDLE -> Addr -> DWORD -> MbLPOVERLAPPED -> IO DWORD
win32_ReadFile arg1 arg2 arg3 arg4 =
(case arg4 of {
Nothing -> (return (nullAddr));
(Just arg4) -> (return ((arg4)))
}) >>= \ (arg4) ->
prim_Win32File_cpp_win32_ReadFile arg1 arg2 arg3 arg4 >>= \ (res1,gc_failed,gc_failstring) ->
if ( gc_failed /= (0::Int))
then unmarshall_string_ gc_failstring >>= ioError . userError
else (return (res1))
primitive prim_Win32File_cpp_win32_ReadFile :: Addr -> Addr -> Word32 -> Addr -> IO (Word32,Int,Addr)
win32_WriteFile :: HANDLE -> Addr -> DWORD -> MbLPOVERLAPPED -> IO DWORD
win32_WriteFile arg1 arg2 arg3 arg4 =
(case arg4 of {
Nothing -> (return (nullAddr));
(Just arg4) -> (return ((arg4)))
}) >>= \ (arg4) ->
prim_Win32File_cpp_win32_WriteFile arg1 arg2 arg3 arg4 >>= \ (res1,gc_failed,gc_failstring) ->
if ( gc_failed /= (0::Int))
then unmarshall_string_ gc_failstring >>= ioError . userError
else (return (res1))
primitive prim_Win32File_cpp_win32_WriteFile :: Addr -> Addr -> Word32 -> Addr -> IO (Word32,Int,Addr)
-- missing Seek functioinality; GSL ???
-- Dont have Word64; ADR
-- %fun SetFilePointer :: HANDLE -> Word64 -> FilePtrDirection -> IO Word64
----------------------------------------------------------------
-- File Notifications
--
-- Use these to initialise, "increment" and close a HANDLE you can wait
-- on.
----------------------------------------------------------------
findFirstChangeNotification :: String -> Bool -> FileNotificationFlag -> IO HANDLE
findFirstChangeNotification gc_arg1 gc_arg2 arg3 =
(marshall_string_ gc_arg1) >>= \ (arg1) ->
(marshall_bool_ gc_arg2) >>= \ (arg2) ->
prim_Win32File_cpp_findFirstChangeNotification arg1 arg2 arg3 >>= \ (res1,gc_failed,gc_failstring) ->
if ( gc_failed /= (0::Int))
then unmarshall_string_ gc_failstring >>= ioError . userError
else (return (res1))
primitive prim_Win32File_cpp_findFirstChangeNotification :: Addr -> Int -> Word32 -> IO (Addr,Int,Addr)
findNextChangeNotification :: HANDLE -> IO ()
findNextChangeNotification arg1 =
prim_Win32File_cpp_findNextChangeNotification arg1 >>= \ (gc_failed,gc_failstring) ->
if ( gc_failed /= (0::Int))
then unmarshall_string_ gc_failstring >>= ioError . userError
else (return (()))
primitive prim_Win32File_cpp_findNextChangeNotification :: Addr -> IO (Int,Addr)
findCloseChangeNotification :: HANDLE -> IO ()
findCloseChangeNotification arg1 =
prim_Win32File_cpp_findCloseChangeNotification arg1 >>= \ (gc_failed,gc_failstring) ->
if ( gc_failed /= (0::Int))
then unmarshall_string_ gc_failstring >>= ioError . userError
else (return (()))
primitive prim_Win32File_cpp_findCloseChangeNotification :: Addr -> IO (Int,Addr)
----------------------------------------------------------------
-- DOS Device flags
----------------------------------------------------------------
defineDosDevice :: DefineDosDeviceFlags -> String -> String -> IO ()
defineDosDevice arg1 gc_arg1 gc_arg2 =
(marshall_string_ gc_arg1) >>= \ (arg2) ->
(marshall_string_ gc_arg2) >>= \ (arg3) ->
prim_Win32File_cpp_defineDosDevice arg1 arg2 arg3 >>= \ (gc_failed,gc_failstring) ->
if ( gc_failed /= (0::Int))
then unmarshall_string_ gc_failstring >>= ioError . userError
else (return (()))
primitive prim_Win32File_cpp_defineDosDevice :: Word32 -> Addr -> Addr -> IO (Int,Addr)
----------------------------------------------------------------
-- These functions are very unusual in the Win32 API:
-- They dont return error codes
areFileApisANSI :: IO Bool
areFileApisANSI =
prim_Win32File_cpp_areFileApisANSI >>= \ (res1) ->
(unmarshall_bool_ res1) >>= \ gc_res1 ->
(return (gc_res1))
primitive prim_Win32File_cpp_areFileApisANSI :: IO (Int)
setFileApisToOEM :: IO ()
setFileApisToOEM =
prim_Win32File_cpp_setFileApisToOEM
primitive prim_Win32File_cpp_setFileApisToOEM :: IO ()
setFileApisToANSI :: IO ()
setFileApisToANSI =
prim_Win32File_cpp_setFileApisToANSI
primitive prim_Win32File_cpp_setFileApisToANSI :: IO ()
setHandleCount :: UINT -> IO UINT
setHandleCount arg1 =
prim_Win32File_cpp_setHandleCount arg1 >>= \ (res1) ->
(return (res1))
primitive prim_Win32File_cpp_setHandleCount :: Word32 -> IO (Word32)
----------------------------------------------------------------
getLogicalDrives :: IO DWORD
getLogicalDrives =
prim_Win32File_cpp_getLogicalDrives >>= \ (res1,gc_failed,gc_failstring) ->
if ( gc_failed /= (0::Int))
then unmarshall_string_ gc_failstring >>= ioError . userError
else (return (res1))
primitive prim_Win32File_cpp_getLogicalDrives :: IO (Word32,Int,Addr)
-- %fun GetDriveType :: MbString -> IO DriveType
getDiskFreeSpace :: MbString -> IO (DWORD,DWORD,DWORD,DWORD)
getDiskFreeSpace gc_arg1 =
(case gc_arg1 of {
Nothing -> (return (nullAddr));
(Just gc_arg1) -> (marshall_string_ gc_arg1) >>= \ (s) ->
(return ((s)))
}) >>= \ (s) ->
prim_Win32File_cpp_getDiskFreeSpace s >>= \ (res1,res2,res3,res4,gc_failed,gc_failstring) ->
if ( gc_failed /= (0::Int))
then unmarshall_string_ gc_failstring >>= ioError . userError
else (return ((res1,res2,res3,res4)))
primitive prim_Win32File_cpp_getDiskFreeSpace :: Addr -> IO (Word32,Word32,Word32,Word32,Int,Addr)
setVolumeLabel :: String -> String -> IO ()
setVolumeLabel gc_arg1 gc_arg2 =
(marshall_string_ gc_arg1) >>= \ (arg1) ->
(marshall_string_ gc_arg2) >>= \ (arg2) ->
prim_Win32File_cpp_setVolumeLabel arg1 arg2 >>= \ (gc_failed,gc_failstring) ->
if ( gc_failed /= (0::Int))
then unmarshall_string_ gc_failstring >>= ioError . userError
else (return (()))
primitive prim_Win32File_cpp_setVolumeLabel :: Addr -> Addr -> IO (Int,Addr)
----------------------------------------------------------------
-- End
----------------------------------------------------------------
needPrims_hugs 2
|
OS2World/DEV-UTIL-HUGS
|
libraries/win32/Win32File.hs
|
bsd-3-clause
| 32,747
| 307
| 18
| 4,441
| 8,308
| 4,541
| 3,767
| -1
| -1
|
-- Copyright (c) 2016-present, Facebook, Inc.
-- All rights reserved.
--
-- This source code is licensed under the BSD-style license found in the
-- LICENSE file in the root directory of this source tree. An additional grant
-- of patent rights can be found in the PATENTS file in the same directory.
{-# LANGUAGE GADTs #-}
{-# LANGUAGE OverloadedStrings #-}
module Duckling.TimeGrain.SV.Rules
( rules ) where
import Data.Text (Text)
import Prelude
import Data.String
import Duckling.Dimensions.Types
import qualified Duckling.TimeGrain.Types as TG
import Duckling.Types
grains :: [(Text, String, TG.Grain)]
grains = [ ("second (grain)", "sek(und(er(na)?)?)?", TG.Second)
, ("minute (grain)", "min(ut(er(na)?)?)?", TG.Minute)
, ("hour (grain)", "t(imm(e(n)?|ar(na)?)?)?", TG.Hour)
, ("day (grain)", "dag(en|ar(na)?)?", TG.Day)
, ("week (grain)", "veck(or(na)?|a(n)?)?", TG.Week)
, ("month (grain)", "m\x00e5nad(er(na)?)?", TG.Month)
, ("quarter (grain)", "kvart(al)(et)?", TG.Quarter)
, ("year (grain)", "\x00e5r(en)?", TG.Year)
]
rules :: [Rule]
rules = map go grains
where
go (name, regexPattern, grain) = Rule
{ name = name
, pattern = [regex regexPattern]
, prod = \_ -> Just $ Token TimeGrain grain
}
|
rfranek/duckling
|
Duckling/TimeGrain/SV/Rules.hs
|
bsd-3-clause
| 1,317
| 0
| 11
| 277
| 272
| 173
| 99
| 25
| 1
|
{-# LANGUAGE DeriveDataTypeable #-}
{-# LANGUAGE OverloadedStrings #-}
module Data.API.Subledger.Error
( SubledgerError(..)
, SubledgerErrorType(..)
, SubledgerErrorHTTPCode(..)
, mkErrorHTTP
, setErrorHTTP
) where
import Control.Exception
import Data.Aeson
import Data.Default
import Data.Text (Text)
import Data.Typeable (Typeable)
-- | Error Codes for HTTP Responses
data SubledgerErrorHTTPCode = BadRequest -- ^ 400
| UnAuthorized -- ^ 401
| RequestFailed -- ^ 402
| NotFound -- ^ 404
| VersionConflict -- ^ 409
| SubledgerServerError Int -- ^ (>=500)
| UnknownHTTPCode Int -- ^ All other codes
deriving (Eq, Show, Typeable)
mkErrorHTTP :: Int -> SubledgerErrorHTTPCode
mkErrorHTTP statusCode =
case statusCode of
400 -> BadRequest
401 -> UnAuthorized
402 -> RequestFailed
404 -> NotFound
409 -> VersionConflict
code | code >= 500 -> SubledgerServerError code
code -> UnknownHTTPCode code
-- | set the `errorHTTP` field of the `SubledgerError` based on the
-- HTTP response code.
setErrorHTTP :: Int -- ^ HTTP Status code
-> SubledgerError -- ^ `SubledgerError`
-> SubledgerError
setErrorHTTP statusCode subledgerError = subledgerError { errorHTTP = Just $ mkErrorHTTP statusCode }
-- | Subledger error types
data SubledgerErrorType
= ConnectionFailure
| ParseFailure
| APIError
| UnknownErrorType
| UnlabeledErrorType
deriving (Bounded, Enum, Eq, Show, Typeable)
-- | Subledger error
data SubledgerError =
SubledgerError { errorType :: SubledgerErrorType
, errorMsg :: Text
, errorHTTP :: Maybe SubledgerErrorHTTPCode
} deriving (Eq, Show, Typeable)
instance Default SubledgerError where
def = SubledgerError UnlabeledErrorType mempty Nothing
instance Exception SubledgerError
instance FromJSON SubledgerError where
parseJSON = withObject "SubledgerError" $ \o ->
SubledgerError APIError <$> o .: "exception"
<*> fmap (fmap mkErrorHTTP) (o .:? "status")
|
whittle/subledger
|
subledger-core/src/Data/API/Subledger/Error.hs
|
bsd-3-clause
| 2,332
| 0
| 11
| 727
| 421
| 239
| 182
| 54
| 7
|
{-# LANGUAGE FlexibleInstances, FlexibleContexts, TypeFamilies #-}
-----------------------------------------------------------------------------
-- |
-- Module : Data.FingerTree
-- Copyright : (c) Ross Paterson, Ralf Hinze, Paweł Nowak 2014
-- License : BSD-style
-- Maintainer : pawel834@gmail.com
-- Stability : provisional
-- Portability : non-portable (TypeFamilies)
--
-- A version of Data.FingerTree from package fingertree modified to use
-- associated types instead of functional dependencies and MPTCs.
--
-- A general sequence representation with arbitrary annotations, for
-- use as a base for implementations of various collection types, as
-- described in section 4 of
--
-- * Ralf Hinze and Ross Paterson,
-- \"Finger trees: a simple general-purpose data structure\",
-- /Journal of Functional Programming/ 16:2 (2006) pp 197-217.
-- <http://www.soi.city.ac.uk/~ross/papers/FingerTree.html>
--
-- For a directly usable sequence type, see @Data.Sequence@, which is
-- a specialization of this structure.
--
-- An amortized running time is given for each operation, with /n/
-- referring to the length of the sequence. These bounds hold even in
-- a persistent (shared) setting.
--
-- /Note/: Many of these operations have the same names as similar
-- operations on lists in the "Prelude". The ambiguity may be resolved
-- using either qualification or the @hiding@ clause.
--
-----------------------------------------------------------------------------
module Data.FingerTree
( FingerTree
, Measured(..)
-- * Construction
, empty, singleton
, (<|), (|>), (><)
, fromList
-- * Deconstruction
, null
, ViewL(..), ViewR(..), viewl, viewr
, split, takeUntil, dropUntil
-- * Transformation
, reverse
, fmap', fmapWithPos, unsafeFmap
, traverse', traverseWithPos, unsafeTraverse
) where
import Prelude hiding (null, reverse)
import Control.Applicative (Applicative(pure, (<*>)), (<$>))
import Data.Foldable (Foldable(foldMap), toList)
import Data.Monoid
infixr 5 ><
infixr 5 <|, :<
infixl 5 |>, :>
-- | View of the left end of a sequence.
data ViewL s a = EmptyL -- ^ empty sequence
| a :< s a -- ^ leftmost element and the rest of the sequence
deriving (Eq, Ord, Show, Read)
-- | View of the right end of a sequence.
data ViewR s a = EmptyR -- ^ empty sequence
| s a :> a -- ^ the sequence minus the rightmost element,
-- and the rightmost element
deriving (Eq, Ord, Show, Read)
instance Functor s => Functor (ViewL s) where
fmap _ EmptyL = EmptyL
fmap f (x :< xs) = f x :< fmap f xs
instance Functor s => Functor (ViewR s) where
fmap _ EmptyR = EmptyR
fmap f (xs :> x) = fmap f xs :> f x
-- | 'empty' and '><'.
instance Measured a => Monoid (FingerTree a) where
mempty = empty
mappend = (><)
-- Explicit Digit type (Exercise 1)
data Digit a = One a
| Two a a
| Three a a a
| Four a a a a
deriving Show
instance Foldable Digit where
foldMap f (One a) = f a
foldMap f (Two a b) = f a <> f b
foldMap f (Three a b c) = f a <> f b <> f c
foldMap f (Four a b c d) = f a <> f b <> f c <> f d
-------------------
-- 4.1 Measurements
-------------------
-- | Things that can be measured.
class Monoid (Measure a) => Measured a where
type Measure a :: *
measure :: a -> Measure a
instance Measured a => Measured (Digit a) where
type Measure (Digit a) = Measure a
measure = foldMap measure
---------------------------
-- 4.2 Caching measurements
---------------------------
data Node a = Node2 !(Measure a) a a | Node3 !(Measure a) a a a
instance Foldable Node where
foldMap f (Node2 _ a b) = f a <> f b
foldMap f (Node3 _ a b c) = f a <> f b <> f c
node2 :: Measured a => a -> a -> Node a
node2 a b = Node2 (measure a <> measure b) a b
node3 :: Measured a => a -> a -> a -> Node a
node3 a b c = Node3 (measure a <> measure b <> measure c) a b c
instance Measured a => Measured (Node a) where
type Measure (Node a) = Measure a
measure (Node2 v _ _) = v
measure (Node3 v _ _ _) = v
nodeToDigit :: Node a -> Digit a
nodeToDigit (Node2 _ a b) = Two a b
nodeToDigit (Node3 _ a b c) = Three a b c
-- | A representation of a sequence of values of type @a@, allowing
-- access to the ends in constant time, and append and split in time
-- logarithmic in the size of the smaller piece.
--
-- The collection is also parameterized by a measure type @v@, which
-- is used to specify a position in the sequence for the 'split' operation.
-- The types of the operations enforce the constraint @'Measured' v a@,
-- which also implies that the type @v@ is determined by @a@.
--
-- A variety of abstract data types can be implemented by using different
-- element types and measurements.
data FingerTree a
= Empty
| Single a
| Deep !(Measure a) !(Digit a) (FingerTree (Node a)) !(Digit a)
deep :: Measured a=> Digit a -> FingerTree (Node a) -> Digit a -> FingerTree a
deep pr m sf = Deep ((measure pr `mappendVal` m) <> measure sf) pr m sf
-- | /O(1)/. The cached measure of a tree.
instance Measured a => Measured (FingerTree a) where
type Measure (FingerTree a) = Measure a
measure Empty = mempty
measure (Single x) = measure x
measure (Deep v _ _ _) = v
instance Foldable FingerTree where
foldMap _ Empty = mempty
foldMap f (Single x) = f x
foldMap f (Deep _ pr m sf) =
foldMap f pr <> foldMap (foldMap f) m <> foldMap f sf
instance Eq a => Eq (FingerTree a) where
xs == ys = toList xs == toList ys
instance Ord a => Ord (FingerTree a) where
compare xs ys = compare (toList xs) (toList ys)
instance Show a => Show (FingerTree a) where
showsPrec p xs = showParen (p > 10) $
showString "fromList " . shows (toList xs)
-- | Like 'fmap', but with a more constrained type.
fmap' :: (Measured a, Measured b)
=> (a -> b) -> FingerTree a -> FingerTree b
fmap' = mapTree
mapTree :: (Measured a, Measured b)
=> (a -> b) -> FingerTree a -> FingerTree b
mapTree _ Empty = Empty
mapTree f (Single x) = Single (f x)
mapTree f (Deep _ pr m sf) =
deep (mapDigit f pr) (mapTree (mapNode f) m) (mapDigit f sf)
mapNode :: (Measured a, Measured b)
=> (a -> b) -> Node a -> Node b
mapNode f (Node2 _ a b) = node2 (f a) (f b)
mapNode f (Node3 _ a b c) = node3 (f a) (f b) (f c)
mapDigit :: (a -> b) -> Digit a -> Digit b
mapDigit f (One a) = One (f a)
mapDigit f (Two a b) = Two (f a) (f b)
mapDigit f (Three a b c) = Three (f a) (f b) (f c)
mapDigit f (Four a b c d) = Four (f a) (f b) (f c) (f d)
-- | Map all elements of the tree with a function that also takes the
-- measure of the prefix of the tree to the left of the element.
fmapWithPos :: (Measured a, Measured b)
=> (Measure a -> a -> b) -> FingerTree a -> FingerTree b
fmapWithPos f = mapWPTree f mempty
mapWPTree :: (Measured a, Measured b)
=> (Measure a -> a -> b) -> Measure a -> FingerTree a -> FingerTree b
mapWPTree _ _ Empty = Empty
mapWPTree f v (Single x) = Single (f v x)
mapWPTree f v (Deep _ pr m sf) =
deep (mapWPDigit f v pr)
(mapWPTree (mapWPNode f) vpr m)
(mapWPDigit f vm sf)
where
vpr = v <> measure pr
vm = vpr `mappendVal` m
mapWPNode :: (Measured a, Measured b)
=> (Measure a -> a -> b) -> Measure a -> Node a -> Node b
mapWPNode f v (Node2 _ a b) = node2 (f v a) (f va b)
where
va = v <> measure a
mapWPNode f v (Node3 _ a b c) = node3 (f v a) (f va b) (f vab c)
where
va = v <> measure a
vab = va <> measure b
mapWPDigit :: Measured a => (Measure a -> a -> b) -> Measure a -> Digit a -> Digit b
mapWPDigit f v (One a) = One (f v a)
mapWPDigit f v (Two a b) = Two (f v a) (f va b)
where
va = v <> measure a
mapWPDigit f v (Three a b c) = Three (f v a) (f va b) (f vab c)
where
va = v <> measure a
vab = va <> measure b
mapWPDigit f v (Four a b c d) = Four (f v a) (f va b) (f vab c) (f vabc d)
where
va = v <> measure a
vab = va <> measure b
vabc = vab <> measure c
-- | Like 'fmap', but safe only if the function preserves the measure.
unsafeFmap :: Measure a ~ Measure b
=> (a -> b) -> FingerTree a -> FingerTree b
unsafeFmap _ Empty = Empty
unsafeFmap f (Single x) = Single (f x)
unsafeFmap f (Deep v pr m sf) =
Deep v (mapDigit f pr) (unsafeFmap (unsafeFmapNode f) m) (mapDigit f sf)
unsafeFmapNode :: Measure a ~ Measure b
=> (a -> b) -> Node a -> Node b
unsafeFmapNode f (Node2 v a b) = Node2 v (f a) (f b)
unsafeFmapNode f (Node3 v a b c) = Node3 v (f a) (f b) (f c)
-- | Like 'traverse', but with a more constrained type.
traverse' :: (Measured a, Measured b, Applicative f)
=> (a -> f b) -> FingerTree a -> f (FingerTree b)
traverse' = traverseTree
traverseTree :: (Measured b, Applicative f)
=> (a -> f b) -> FingerTree a -> f (FingerTree b)
traverseTree _ Empty = pure Empty
traverseTree f (Single x) = Single <$> f x
traverseTree f (Deep _ pr m sf) =
deep <$> traverseDigit f pr <*> traverseTree (traverseNode f) m <*> traverseDigit f sf
traverseNode :: (Measured b, Applicative f)
=> (a -> f b) -> Node a -> f (Node b)
traverseNode f (Node2 _ a b) = node2 <$> f a <*> f b
traverseNode f (Node3 _ a b c) = node3 <$> f a <*> f b <*> f c
traverseDigit :: (Applicative f) => (a -> f b) -> Digit a -> f (Digit b)
traverseDigit f (One a) = One <$> f a
traverseDigit f (Two a b) = Two <$> f a <*> f b
traverseDigit f (Three a b c) = Three <$> f a <*> f b <*> f c
traverseDigit f (Four a b c d) = Four <$> f a <*> f b <*> f c <*> f d
-- | Traverse the tree with a function that also takes the
-- measure of the prefix of the tree to the left of the element.
traverseWithPos :: (Measured a, Measured b, Applicative f)
=> (Measure a -> a -> f b) -> FingerTree a -> f (FingerTree b)
traverseWithPos f = traverseWPTree f mempty
traverseWPTree :: (Measured a, Measured b, Applicative f)
=> (Measure a -> a -> f b) -> Measure a -> FingerTree a -> f (FingerTree b)
traverseWPTree _ _ Empty = pure Empty
traverseWPTree f v (Single x) = Single <$> f v x
traverseWPTree f v (Deep _ pr m sf) =
deep <$> traverseWPDigit f v pr <*> traverseWPTree (traverseWPNode f) vpr m <*> traverseWPDigit f vm sf
where
vpr = v <> measure pr
vm = vpr `mappendVal` m
traverseWPNode :: (Measured a, Measured b, Applicative f)
=> (Measure a -> a -> f b) -> Measure a -> Node a -> f (Node b)
traverseWPNode f v (Node2 _ a b) = node2 <$> f v a <*> f va b
where
va = v <> measure a
traverseWPNode f v (Node3 _ a b c) = node3 <$> f v a <*> f va b <*> f vab c
where
va = v <> measure a
vab = va <> measure b
traverseWPDigit :: (Measured a, Applicative f)
=> (Measure a -> a -> f b) -> Measure a -> Digit a -> f (Digit b)
traverseWPDigit f v (One a) = One <$> f v a
traverseWPDigit f v (Two a b) = Two <$> f v a <*> f va b
where
va = v <> measure a
traverseWPDigit f v (Three a b c) = Three <$> f v a <*> f va b <*> f vab c
where
va = v <> measure a
vab = va <> measure b
traverseWPDigit f v (Four a b c d) = Four <$> f v a <*> f va b <*> f vab c <*> f vabc d
where
va = v <> measure a
vab = va <> measure b
vabc = vab <> measure c
-- | Like 'traverse', but safe only if the function preserves the measure.
unsafeTraverse :: (Measure a ~ Measure b, Applicative f)
=> (a -> f b) -> FingerTree a -> f (FingerTree b)
unsafeTraverse _ Empty = pure Empty
unsafeTraverse f (Single x) = Single <$> f x
unsafeTraverse f (Deep v pr m sf) =
Deep v <$> traverseDigit f pr <*> unsafeTraverse (unsafeTraverseNode f) m <*> traverseDigit f sf
unsafeTraverseNode :: (Measure a ~ Measure b, Applicative f)
=> (a -> f b) -> Node a -> f (Node b)
unsafeTraverseNode f (Node2 v a b) = Node2 v <$> f a <*> f b
unsafeTraverseNode f (Node3 v a b c) = Node3 v <$> f a <*> f b <*> f c
-----------------------------------------------------
-- 4.3 Construction, deconstruction and concatenation
-----------------------------------------------------
-- | /O(1)/. The empty sequence.
empty :: Measured a => FingerTree a
empty = Empty
-- | /O(1)/. A singleton sequence.
singleton :: Measured a => a -> FingerTree a
singleton = Single
-- | /O(n)/. Create a sequence from a finite list of elements.
fromList :: Measured a => [a] -> FingerTree a
fromList = foldr (<|) Empty
-- | /O(1)/. Add an element to the left end of a sequence.
-- Mnemonic: a triangle with the single element at the pointy end.
(<|) :: Measured a => a -> FingerTree a -> FingerTree a
a <| Empty = Single a
a <| Single b = deep (One a) Empty (One b)
a <| Deep v (Four b c d e) m sf = m `seq`
Deep (measure a <> v) (Two a b) (node3 c d e <| m) sf
a <| Deep v pr m sf =
Deep (measure a <> v) (consDigit a pr) m sf
consDigit :: a -> Digit a -> Digit a
consDigit a (One b) = Two a b
consDigit a (Two b c) = Three a b c
consDigit a (Three b c d) = Four a b c d
consDigit _ (Four _ _ _ _) = illegal_argument "consDigit"
-- | /O(1)/. Add an element to the right end of a sequence.
-- Mnemonic: a triangle with the single element at the pointy end.
(|>) :: Measured a => FingerTree a -> a -> FingerTree a
Empty |> a = Single a
Single a |> b = deep (One a) Empty (One b)
Deep v pr m (Four a b c d) |> e = m `seq`
Deep (v <> measure e) pr (m |> node3 a b c) (Two d e)
Deep v pr m sf |> x =
Deep (v <> measure x) pr m (snocDigit sf x)
snocDigit :: Digit a -> a -> Digit a
snocDigit (One a) b = Two a b
snocDigit (Two a b) c = Three a b c
snocDigit (Three a b c) d = Four a b c d
snocDigit (Four _ _ _ _) _ = illegal_argument "snocDigit"
-- | /O(1)/. Is this the empty sequence?
null :: Measured a => FingerTree a -> Bool
null Empty = True
null _ = False
-- | /O(1)/. Analyse the left end of a sequence.
viewl :: Measured a => FingerTree a -> ViewL FingerTree a
viewl Empty = EmptyL
viewl (Single x) = x :< Empty
viewl (Deep _ (One x) m sf) = x :< rotL m sf
viewl (Deep _ pr m sf) = lheadDigit pr :< deep (ltailDigit pr) m sf
rotL :: Measured a => FingerTree (Node a) -> Digit a -> FingerTree a
rotL m sf = case viewl m of
EmptyL -> digitToTree sf
a :< m' -> Deep (measure m <> measure sf) (nodeToDigit a) m' sf
lheadDigit :: Digit a -> a
lheadDigit (One a) = a
lheadDigit (Two a _) = a
lheadDigit (Three a _ _) = a
lheadDigit (Four a _ _ _) = a
ltailDigit :: Digit a -> Digit a
ltailDigit (One _) = illegal_argument "ltailDigit"
ltailDigit (Two _ b) = One b
ltailDigit (Three _ b c) = Two b c
ltailDigit (Four _ b c d) = Three b c d
-- | /O(1)/. Analyse the right end of a sequence.
viewr :: Measured a => FingerTree a -> ViewR FingerTree a
viewr Empty = EmptyR
viewr (Single x) = Empty :> x
viewr (Deep _ pr m (One x)) = rotR pr m :> x
viewr (Deep _ pr m sf) = deep pr m (rtailDigit sf) :> rheadDigit sf
rotR :: Measured a => Digit a -> FingerTree (Node a) -> FingerTree a
rotR pr m = case viewr m of
EmptyR -> digitToTree pr
m' :> a -> Deep (measure pr `mappendVal` m) pr m' (nodeToDigit a)
rheadDigit :: Digit a -> a
rheadDigit (One a) = a
rheadDigit (Two _ b) = b
rheadDigit (Three _ _ c) = c
rheadDigit (Four _ _ _ d) = d
rtailDigit :: Digit a -> Digit a
rtailDigit (One _) = illegal_argument "rtailDigit"
rtailDigit (Two a _) = One a
rtailDigit (Three a b _) = Two a b
rtailDigit (Four a b c _) = Three a b c
digitToTree :: Measured a => Digit a -> FingerTree a
digitToTree (One a) = Single a
digitToTree (Two a b) = deep (One a) Empty (One b)
digitToTree (Three a b c) = deep (Two a b) Empty (One c)
digitToTree (Four a b c d) = deep (Two a b) Empty (Two c d)
----------------
-- Concatenation
----------------
-- | /O(log(min(n1,n2)))/. Concatenate two sequences.
(><) :: Measured a => FingerTree a -> FingerTree a -> FingerTree a
(><) = appendTree0
appendTree0 :: Measured a => FingerTree a -> FingerTree a -> FingerTree a
appendTree0 Empty xs =
xs
appendTree0 xs Empty =
xs
appendTree0 (Single x) xs =
x <| xs
appendTree0 xs (Single x) =
xs |> x
appendTree0 (Deep _ pr1 m1 sf1) (Deep _ pr2 m2 sf2) =
deep pr1 (addDigits0 m1 sf1 pr2 m2) sf2
addDigits0 :: Measured a => FingerTree (Node a) -> Digit a -> Digit a -> FingerTree (Node a) -> FingerTree (Node a)
addDigits0 m1 (One a) (One b) m2 =
appendTree1 m1 (node2 a b) m2
addDigits0 m1 (One a) (Two b c) m2 =
appendTree1 m1 (node3 a b c) m2
addDigits0 m1 (One a) (Three b c d) m2 =
appendTree2 m1 (node2 a b) (node2 c d) m2
addDigits0 m1 (One a) (Four b c d e) m2 =
appendTree2 m1 (node3 a b c) (node2 d e) m2
addDigits0 m1 (Two a b) (One c) m2 =
appendTree1 m1 (node3 a b c) m2
addDigits0 m1 (Two a b) (Two c d) m2 =
appendTree2 m1 (node2 a b) (node2 c d) m2
addDigits0 m1 (Two a b) (Three c d e) m2 =
appendTree2 m1 (node3 a b c) (node2 d e) m2
addDigits0 m1 (Two a b) (Four c d e f) m2 =
appendTree2 m1 (node3 a b c) (node3 d e f) m2
addDigits0 m1 (Three a b c) (One d) m2 =
appendTree2 m1 (node2 a b) (node2 c d) m2
addDigits0 m1 (Three a b c) (Two d e) m2 =
appendTree2 m1 (node3 a b c) (node2 d e) m2
addDigits0 m1 (Three a b c) (Three d e f) m2 =
appendTree2 m1 (node3 a b c) (node3 d e f) m2
addDigits0 m1 (Three a b c) (Four d e f g) m2 =
appendTree3 m1 (node3 a b c) (node2 d e) (node2 f g) m2
addDigits0 m1 (Four a b c d) (One e) m2 =
appendTree2 m1 (node3 a b c) (node2 d e) m2
addDigits0 m1 (Four a b c d) (Two e f) m2 =
appendTree2 m1 (node3 a b c) (node3 d e f) m2
addDigits0 m1 (Four a b c d) (Three e f g) m2 =
appendTree3 m1 (node3 a b c) (node2 d e) (node2 f g) m2
addDigits0 m1 (Four a b c d) (Four e f g h) m2 =
appendTree3 m1 (node3 a b c) (node3 d e f) (node2 g h) m2
appendTree1 :: Measured a => FingerTree a -> a -> FingerTree a -> FingerTree a
appendTree1 Empty a xs =
a <| xs
appendTree1 xs a Empty =
xs |> a
appendTree1 (Single x) a xs =
x <| a <| xs
appendTree1 xs a (Single x) =
xs |> a |> x
appendTree1 (Deep _ pr1 m1 sf1) a (Deep _ pr2 m2 sf2) =
deep pr1 (addDigits1 m1 sf1 a pr2 m2) sf2
addDigits1 :: Measured a
=> FingerTree (Node a) -> Digit a -> a -> Digit a -> FingerTree (Node a) -> FingerTree (Node a)
addDigits1 m1 (One a) b (One c) m2 =
appendTree1 m1 (node3 a b c) m2
addDigits1 m1 (One a) b (Two c d) m2 =
appendTree2 m1 (node2 a b) (node2 c d) m2
addDigits1 m1 (One a) b (Three c d e) m2 =
appendTree2 m1 (node3 a b c) (node2 d e) m2
addDigits1 m1 (One a) b (Four c d e f) m2 =
appendTree2 m1 (node3 a b c) (node3 d e f) m2
addDigits1 m1 (Two a b) c (One d) m2 =
appendTree2 m1 (node2 a b) (node2 c d) m2
addDigits1 m1 (Two a b) c (Two d e) m2 =
appendTree2 m1 (node3 a b c) (node2 d e) m2
addDigits1 m1 (Two a b) c (Three d e f) m2 =
appendTree2 m1 (node3 a b c) (node3 d e f) m2
addDigits1 m1 (Two a b) c (Four d e f g) m2 =
appendTree3 m1 (node3 a b c) (node2 d e) (node2 f g) m2
addDigits1 m1 (Three a b c) d (One e) m2 =
appendTree2 m1 (node3 a b c) (node2 d e) m2
addDigits1 m1 (Three a b c) d (Two e f) m2 =
appendTree2 m1 (node3 a b c) (node3 d e f) m2
addDigits1 m1 (Three a b c) d (Three e f g) m2 =
appendTree3 m1 (node3 a b c) (node2 d e) (node2 f g) m2
addDigits1 m1 (Three a b c) d (Four e f g h) m2 =
appendTree3 m1 (node3 a b c) (node3 d e f) (node2 g h) m2
addDigits1 m1 (Four a b c d) e (One f) m2 =
appendTree2 m1 (node3 a b c) (node3 d e f) m2
addDigits1 m1 (Four a b c d) e (Two f g) m2 =
appendTree3 m1 (node3 a b c) (node2 d e) (node2 f g) m2
addDigits1 m1 (Four a b c d) e (Three f g h) m2 =
appendTree3 m1 (node3 a b c) (node3 d e f) (node2 g h) m2
addDigits1 m1 (Four a b c d) e (Four f g h i) m2 =
appendTree3 m1 (node3 a b c) (node3 d e f) (node3 g h i) m2
appendTree2 :: Measured a
=> FingerTree a -> a -> a -> FingerTree a -> FingerTree a
appendTree2 Empty a b xs =
a <| b <| xs
appendTree2 xs a b Empty =
xs |> a |> b
appendTree2 (Single x) a b xs =
x <| a <| b <| xs
appendTree2 xs a b (Single x) =
xs |> a |> b |> x
appendTree2 (Deep _ pr1 m1 sf1) a b (Deep _ pr2 m2 sf2) =
deep pr1 (addDigits2 m1 sf1 a b pr2 m2) sf2
addDigits2 :: Measured a
=> FingerTree (Node a) -> Digit a -> a -> a -> Digit a -> FingerTree (Node a) -> FingerTree (Node a)
addDigits2 m1 (One a) b c (One d) m2 =
appendTree2 m1 (node2 a b) (node2 c d) m2
addDigits2 m1 (One a) b c (Two d e) m2 =
appendTree2 m1 (node3 a b c) (node2 d e) m2
addDigits2 m1 (One a) b c (Three d e f) m2 =
appendTree2 m1 (node3 a b c) (node3 d e f) m2
addDigits2 m1 (One a) b c (Four d e f g) m2 =
appendTree3 m1 (node3 a b c) (node2 d e) (node2 f g) m2
addDigits2 m1 (Two a b) c d (One e) m2 =
appendTree2 m1 (node3 a b c) (node2 d e) m2
addDigits2 m1 (Two a b) c d (Two e f) m2 =
appendTree2 m1 (node3 a b c) (node3 d e f) m2
addDigits2 m1 (Two a b) c d (Three e f g) m2 =
appendTree3 m1 (node3 a b c) (node2 d e) (node2 f g) m2
addDigits2 m1 (Two a b) c d (Four e f g h) m2 =
appendTree3 m1 (node3 a b c) (node3 d e f) (node2 g h) m2
addDigits2 m1 (Three a b c) d e (One f) m2 =
appendTree2 m1 (node3 a b c) (node3 d e f) m2
addDigits2 m1 (Three a b c) d e (Two f g) m2 =
appendTree3 m1 (node3 a b c) (node2 d e) (node2 f g) m2
addDigits2 m1 (Three a b c) d e (Three f g h) m2 =
appendTree3 m1 (node3 a b c) (node3 d e f) (node2 g h) m2
addDigits2 m1 (Three a b c) d e (Four f g h i) m2 =
appendTree3 m1 (node3 a b c) (node3 d e f) (node3 g h i) m2
addDigits2 m1 (Four a b c d) e f (One g) m2 =
appendTree3 m1 (node3 a b c) (node2 d e) (node2 f g) m2
addDigits2 m1 (Four a b c d) e f (Two g h) m2 =
appendTree3 m1 (node3 a b c) (node3 d e f) (node2 g h) m2
addDigits2 m1 (Four a b c d) e f (Three g h i) m2 =
appendTree3 m1 (node3 a b c) (node3 d e f) (node3 g h i) m2
addDigits2 m1 (Four a b c d) e f (Four g h i j) m2 =
appendTree4 m1 (node3 a b c) (node3 d e f) (node2 g h) (node2 i j) m2
appendTree3 :: Measured a
=> FingerTree a -> a -> a -> a -> FingerTree a -> FingerTree a
appendTree3 Empty a b c xs =
a <| b <| c <| xs
appendTree3 xs a b c Empty =
xs |> a |> b |> c
appendTree3 (Single x) a b c xs =
x <| a <| b <| c <| xs
appendTree3 xs a b c (Single x) =
xs |> a |> b |> c |> x
appendTree3 (Deep _ pr1 m1 sf1) a b c (Deep _ pr2 m2 sf2) =
deep pr1 (addDigits3 m1 sf1 a b c pr2 m2) sf2
addDigits3 :: Measured a
=> FingerTree (Node a) -> Digit a -> a -> a -> a -> Digit a -> FingerTree (Node a) -> FingerTree (Node a)
addDigits3 m1 (One a) b c d (One e) m2 =
appendTree2 m1 (node3 a b c) (node2 d e) m2
addDigits3 m1 (One a) b c d (Two e f) m2 =
appendTree2 m1 (node3 a b c) (node3 d e f) m2
addDigits3 m1 (One a) b c d (Three e f g) m2 =
appendTree3 m1 (node3 a b c) (node2 d e) (node2 f g) m2
addDigits3 m1 (One a) b c d (Four e f g h) m2 =
appendTree3 m1 (node3 a b c) (node3 d e f) (node2 g h) m2
addDigits3 m1 (Two a b) c d e (One f) m2 =
appendTree2 m1 (node3 a b c) (node3 d e f) m2
addDigits3 m1 (Two a b) c d e (Two f g) m2 =
appendTree3 m1 (node3 a b c) (node2 d e) (node2 f g) m2
addDigits3 m1 (Two a b) c d e (Three f g h) m2 =
appendTree3 m1 (node3 a b c) (node3 d e f) (node2 g h) m2
addDigits3 m1 (Two a b) c d e (Four f g h i) m2 =
appendTree3 m1 (node3 a b c) (node3 d e f) (node3 g h i) m2
addDigits3 m1 (Three a b c) d e f (One g) m2 =
appendTree3 m1 (node3 a b c) (node2 d e) (node2 f g) m2
addDigits3 m1 (Three a b c) d e f (Two g h) m2 =
appendTree3 m1 (node3 a b c) (node3 d e f) (node2 g h) m2
addDigits3 m1 (Three a b c) d e f (Three g h i) m2 =
appendTree3 m1 (node3 a b c) (node3 d e f) (node3 g h i) m2
addDigits3 m1 (Three a b c) d e f (Four g h i j) m2 =
appendTree4 m1 (node3 a b c) (node3 d e f) (node2 g h) (node2 i j) m2
addDigits3 m1 (Four a b c d) e f g (One h) m2 =
appendTree3 m1 (node3 a b c) (node3 d e f) (node2 g h) m2
addDigits3 m1 (Four a b c d) e f g (Two h i) m2 =
appendTree3 m1 (node3 a b c) (node3 d e f) (node3 g h i) m2
addDigits3 m1 (Four a b c d) e f g (Three h i j) m2 =
appendTree4 m1 (node3 a b c) (node3 d e f) (node2 g h) (node2 i j) m2
addDigits3 m1 (Four a b c d) e f g (Four h i j k) m2 =
appendTree4 m1 (node3 a b c) (node3 d e f) (node3 g h i) (node2 j k) m2
appendTree4 :: Measured a
=> FingerTree a -> a -> a -> a -> a -> FingerTree a -> FingerTree a
appendTree4 Empty a b c d xs =
a <| b <| c <| d <| xs
appendTree4 xs a b c d Empty =
xs |> a |> b |> c |> d
appendTree4 (Single x) a b c d xs =
x <| a <| b <| c <| d <| xs
appendTree4 xs a b c d (Single x) =
xs |> a |> b |> c |> d |> x
appendTree4 (Deep _ pr1 m1 sf1) a b c d (Deep _ pr2 m2 sf2) =
deep pr1 (addDigits4 m1 sf1 a b c d pr2 m2) sf2
addDigits4 :: Measured a
=> FingerTree (Node a) -> Digit a -> a -> a -> a -> a -> Digit a -> FingerTree (Node a) -> FingerTree (Node a)
addDigits4 m1 (One a) b c d e (One f) m2 =
appendTree2 m1 (node3 a b c) (node3 d e f) m2
addDigits4 m1 (One a) b c d e (Two f g) m2 =
appendTree3 m1 (node3 a b c) (node2 d e) (node2 f g) m2
addDigits4 m1 (One a) b c d e (Three f g h) m2 =
appendTree3 m1 (node3 a b c) (node3 d e f) (node2 g h) m2
addDigits4 m1 (One a) b c d e (Four f g h i) m2 =
appendTree3 m1 (node3 a b c) (node3 d e f) (node3 g h i) m2
addDigits4 m1 (Two a b) c d e f (One g) m2 =
appendTree3 m1 (node3 a b c) (node2 d e) (node2 f g) m2
addDigits4 m1 (Two a b) c d e f (Two g h) m2 =
appendTree3 m1 (node3 a b c) (node3 d e f) (node2 g h) m2
addDigits4 m1 (Two a b) c d e f (Three g h i) m2 =
appendTree3 m1 (node3 a b c) (node3 d e f) (node3 g h i) m2
addDigits4 m1 (Two a b) c d e f (Four g h i j) m2 =
appendTree4 m1 (node3 a b c) (node3 d e f) (node2 g h) (node2 i j) m2
addDigits4 m1 (Three a b c) d e f g (One h) m2 =
appendTree3 m1 (node3 a b c) (node3 d e f) (node2 g h) m2
addDigits4 m1 (Three a b c) d e f g (Two h i) m2 =
appendTree3 m1 (node3 a b c) (node3 d e f) (node3 g h i) m2
addDigits4 m1 (Three a b c) d e f g (Three h i j) m2 =
appendTree4 m1 (node3 a b c) (node3 d e f) (node2 g h) (node2 i j) m2
addDigits4 m1 (Three a b c) d e f g (Four h i j k) m2 =
appendTree4 m1 (node3 a b c) (node3 d e f) (node3 g h i) (node2 j k) m2
addDigits4 m1 (Four a b c d) e f g h (One i) m2 =
appendTree3 m1 (node3 a b c) (node3 d e f) (node3 g h i) m2
addDigits4 m1 (Four a b c d) e f g h (Two i j) m2 =
appendTree4 m1 (node3 a b c) (node3 d e f) (node2 g h) (node2 i j) m2
addDigits4 m1 (Four a b c d) e f g h (Three i j k) m2 =
appendTree4 m1 (node3 a b c) (node3 d e f) (node3 g h i) (node2 j k) m2
addDigits4 m1 (Four a b c d) e f g h (Four i j k l) m2 =
appendTree4 m1 (node3 a b c) (node3 d e f) (node3 g h i) (node3 j k l) m2
----------------
-- 4.4 Splitting
----------------
-- | /O(log(min(i,n-i)))/. Split a sequence at a point where the predicate
-- on the accumulated measure changes from 'False' to 'True'.
--
-- For predictable results, one should ensure that there is only one such
-- point, i.e. that the predicate is /monotonic/.
split :: Measured a
=> (Measure a -> Bool) -> FingerTree a -> (FingerTree a, FingerTree a)
split _ Empty = (Empty, Empty)
split p xs
| p (measure xs) = (l, x <| r)
| otherwise = (xs, Empty)
where
Split l x r = splitTree p mempty xs
-- | /O(log(min(i,n-i)))/.
-- Given a monotonic predicate @p@, @'takeUntil' p t@ is the largest
-- prefix of @t@ whose measure does not satisfy @p@.
--
-- * @'takeUntil' p t = 'fst' ('split' p t)@
takeUntil :: Measured a => (Measure a -> Bool) -> FingerTree a -> FingerTree a
takeUntil p = fst . split p
-- | /O(log(min(i,n-i)))/.
-- Given a monotonic predicate @p@, @'dropUntil' p t@ is the rest of @t@
-- after removing the largest prefix whose measure does not satisfy @p@.
--
-- * @'dropUntil' p t = 'snd' ('split' p t)@
dropUntil :: Measured a => (Measure a -> Bool) -> FingerTree a -> FingerTree a
dropUntil p = snd . split p
data Split t a = Split t a t
splitTree :: Measured a
=> (Measure a -> Bool) -> Measure a
-> FingerTree a -> Split (FingerTree a) a
splitTree _ _ Empty = illegal_argument "splitTree"
splitTree _ _ (Single x) = Split Empty x Empty
splitTree p i (Deep _ pr m sf)
| p vpr = let Split l x r = splitDigit p i pr
in Split (maybe Empty digitToTree l) x (deepL r m sf)
| p vm = let Split ml xs mr = splitTree p vpr m
Split l x r = splitNode p (vpr `mappendVal` ml) xs
in Split (deepR pr ml l) x (deepL r mr sf)
| otherwise = let Split l x r = splitDigit p vm sf
in Split (deepR pr m l) x (maybe Empty digitToTree r)
where
vpr = i <> measure pr
vm = vpr `mappendVal` m
-- Avoid relying on right identity (cf Exercise 7)
mappendVal :: Measured a => Measure a -> FingerTree a -> Measure a
mappendVal v Empty = v
mappendVal v t = v <> measure t
deepL :: Measured a
=> Maybe (Digit a) -> FingerTree (Node a) -> Digit a -> FingerTree a
deepL Nothing m sf = rotL m sf
deepL (Just pr) m sf = deep pr m sf
deepR :: Measured a
=> Digit a -> FingerTree (Node a) -> Maybe (Digit a) -> FingerTree a
deepR pr m Nothing = rotR pr m
deepR pr m (Just sf) = deep pr m sf
splitNode :: Measured a
=> (Measure a -> Bool) -> Measure a -> Node a
-> Split (Maybe (Digit a)) a
splitNode p i (Node2 _ a b)
| p va = Split Nothing a (Just (One b))
| otherwise = Split (Just (One a)) b Nothing
where
va = i <> measure a
splitNode p i (Node3 _ a b c)
| p va = Split Nothing a (Just (Two b c))
| p vab = Split (Just (One a)) b (Just (One c))
| otherwise = Split (Just (Two a b)) c Nothing
where
va = i <> measure a
vab = va <> measure b
splitDigit :: Measured a
=> (Measure a -> Bool) -> Measure a -> Digit a -> Split (Maybe (Digit a)) a
splitDigit _ i (One a) = i `seq` Split Nothing a Nothing
splitDigit p i (Two a b)
| p va = Split Nothing a (Just (One b))
| otherwise = Split (Just (One a)) b Nothing
where
va = i <> measure a
splitDigit p i (Three a b c)
| p va = Split Nothing a (Just (Two b c))
| p vab = Split (Just (One a)) b (Just (One c))
| otherwise = Split (Just (Two a b)) c Nothing
where
va = i <> measure a
vab = va <> measure b
splitDigit p i (Four a b c d)
| p va = Split Nothing a (Just (Three b c d))
| p vab = Split (Just (One a)) b (Just (Two c d))
| p vabc = Split (Just (Two a b)) c (Just (One d))
| otherwise = Split (Just (Three a b c)) d Nothing
where
va = i <> measure a
vab = va <> measure b
vabc = vab <> measure c
------------------
-- Transformations
------------------
-- | /O(n)/. The reverse of a sequence.
reverse :: Measured a => FingerTree a -> FingerTree a
reverse = reverseTree id
reverseTree :: Measured b => (a -> b) -> FingerTree a -> FingerTree b
reverseTree _ Empty = Empty
reverseTree f (Single x) = Single (f x)
reverseTree f (Deep _ pr m sf) =
deep (reverseDigit f sf) (reverseTree (reverseNode f) m) (reverseDigit f pr)
reverseNode :: Measured b => (a -> b) -> Node a -> Node b
reverseNode f (Node2 _ a b) = node2 (f b) (f a)
reverseNode f (Node3 _ a b c) = node3 (f c) (f b) (f a)
reverseDigit :: (a -> b) -> Digit a -> Digit b
reverseDigit f (One a) = One (f a)
reverseDigit f (Two a b) = Two (f b) (f a)
reverseDigit f (Three a b c) = Three (f c) (f b) (f a)
reverseDigit f (Four a b c d) = Four (f d) (f c) (f b) (f a)
illegal_argument :: String -> a
illegal_argument name =
error $ "Logic error: " ++ name ++ " called with illegal argument"
{- $example
Particular abstract data types may be implemented by defining
element types with suitable 'Measured' instances.
(from section 4.5 of the paper)
Simple sequences can be implemented using a 'Sum' monoid as a measure:
> newtype Elem a = Elem { getElem :: a }
>
> instance Measured (Elem a) where
> type Measure (Elem a) = Sum Int
> measure (Elem _) = Sum 1
>
> newtype Seq a = Seq (FingerTree (Elem a))
Then the measure of a subsequence is simply its length.
This representation supports log-time extraction of subsequences:
> take :: Int -> Seq a -> Seq a
> take k (Seq xs) = Seq (takeUntil (> Sum k) xs)
>
> drop :: Int -> Seq a -> Seq a
> drop k (Seq xs) = Seq (dropUntil (> Sum k) xs)
The module @Data.Sequence@ is an optimized instantiation of this type.
-}
|
pawel-n/fingertree-tf
|
Data/FingerTree.hs
|
bsd-3-clause
| 32,775
| 0
| 16
| 8,838
| 15,731
| 7,754
| 7,977
| 611
| 2
|
{-
This is the Main module for the HaCoTeB project. It is separated from the
HaCoTeB module to allow for later reuse and to differentiate between the tool
and its usage.
-}
{-# LANGUAGE RecordWildCards #-}
module Main where
import System.Console.CmdArgs
import HaCoTeB
main = do
Options {..} <- cmdArgs options -- as defined in HaCoTeB.Options
convert file
|
mihaimaruseac/HaCoTeB
|
src/Main.hs
|
bsd-3-clause
| 367
| 0
| 9
| 68
| 43
| 24
| 19
| 7
| 1
|
{-# LANGUAGE GADTs, StandaloneDeriving, KindSignatures #-}
import System.Environment
import System.Directory
import System.FilePath.Find
import System.FilePath.Posix as FilePath
import qualified Graphics.Exif as Ex
data Field
data Exif :: * -> * where
Manufacturer :: Exif String
Model :: Exif String
Orientation :: Exif String
IsoSpeed :: Exif Int
Field :: (Show t) => Exif t -> t -> Exif Field
deriving instance Show (Exif a)
type ExifProperties = [Exif Field]
type FileName = String
type FileExtension = String
type FileDirectory = String
data SimpleFile where
SimpleFileC :: FileName -> FileDirectory -> FileExtension -> SimpleFile
deriving Show
data File :: * where -- don't seem to need a gadt/phantom
ImageFile :: SimpleFile -> ExifProperties -> File
DefaultFile :: SimpleFile -> File
deriving Show
{--
type Files = [File]
import :: Directory -> Files
import d =
some pipe filter...
query :: Files -> Query -> Files
query fs q = fold fs q
--}
search pat dir = find always (fileName ~~? pat) dir
fromExif :: (String, String) -> ExifProperties -> ExifProperties
fromExif ("Manufacturer", v) l = Field Manufacturer v : l
fromExif ("Model", v) l = Field Model v : l
fromExif ("Orientation", v) l = Field Orientation v : l
fromExif ("IsoSpeed", v) l = Field Manufacturer v : l -- FIXME
fromExif (_, v) l = l
mkSimpleFile f = SimpleFileC name path ext
where
(path, name) = FilePath.splitFileName f
ext = FilePath.takeExtension f
mkFile ".jpg" f = do
exif <- Ex.fromFile f
exiftags <- Ex.allTags exif
let fields = foldr fromExif [] exiftags
let sf = mkSimpleFile f
return $ ImageFile sf fields
mkFile ext f = do
let (path, name) = FilePath.splitFileName f
return $ DefaultFile $ mkSimpleFile f
printFileMeta f = do
defaultf <- mkFile (FilePath.takeExtension f) f
putStrLn (show defaultf)
main = do [pat] <- getArgs
dir <- getCurrentDirectory
files <- search pat dir
mapM_ printFileMeta files
-- test
test = withArgs ["*"] main
|
gregor-samsa/hs.test
|
iyd1.hs
|
bsd-3-clause
| 2,102
| 0
| 11
| 493
| 631
| 329
| 302
| -1
| -1
|
import ZuriHac.Plays.XSink
main :: IO ()
main = run
|
bitonic/zurihac-plays
|
app/xsink.hs
|
bsd-3-clause
| 53
| 0
| 6
| 10
| 22
| 12
| 10
| 3
| 1
|
module Reactive.Bacon.Core where
import Control.Monad
import Prelude hiding (map, filter)
class Observable s where
(==>) :: s a -> (a -> IO()) -> IO ()
(>>=!) :: IO (s a) -> (a -> IO()) -> IO ()
(>>=!) action f = action >>= \observable -> (observable ==> f)
infixl 1 >>=!
data EventStream a = EventStream { subscribe :: (EventSink a -> IO Disposable) }
type EventSink a = (Event a -> IO (HandleResult))
data Event a = Next a | End
data HandleResult = More | NoMore
type Disposable = IO ()
class EventSource s where
toEventStream :: s a -> EventStream a
instance EventSource EventStream where
toEventStream = id
instance Observable EventStream where
(==>) src f = void $ subscribe (toEventStream src) $ toObserver f
instance Functor Event where
fmap f (Next a) = Next (f a)
fmap _ End = End
instance Show a => Show (Event a) where
show (Next x) = show x
show End = "<END>"
instance Eq a => Eq (Event a) where
(==) End End = True
(==) (Next x) (Next y) = (x==y)
(==) _ _ = False
obs :: EventSource s => s a -> EventStream a
obs = toEventStream
neverE :: EventStream a
neverE = EventStream $ \_ -> return $ (return ())
toObserver :: (a -> IO()) -> EventSink a
toObserver next = sink
where sink (Next x) = next x >> return More
sink End = return NoMore
toEventObserver :: (Event a -> IO()) -> EventSink a
toEventObserver next = sink
where sink event = next event >> return More
-- | Reactive property. Differences from EventStream:
-- - addListener function must always deliver the latest known value to the new listener
--
-- So a Property is roughly an EventStream that stores its latest value so
-- that it is always available for new listeners. Doesn't mean it has to be
-- up to date if it has been without listeners for a while.
data Property a = Property { addPropertyListener :: PropertySink a -> IO Disposable }
class PropertySource s where
toProperty :: s a -> Property a
instance PropertySource Property where
toProperty = id
data PropertyEvent a = Initial a | Update a | EndUpdate
type PropertySink a = PropertyEvent a -> IO HandleResult
|
raimohanska/reactive-bacon
|
src/Reactive/Bacon/Core.hs
|
bsd-3-clause
| 2,133
| 0
| 12
| 464
| 759
| 397
| 362
| 47
| 2
|
module Valkyrie.Valkyrie where
import Valkyrie.Types
import Control.Applicative
import Control.Monad
import Control.Monad.Trans
instance Monad m => Functor (ValkyrieM m) where
fmap = liftM
instance Monad m => Applicative (ValkyrieM m) where
pure = return
(<*>) = ap
instance Monad m => Monad (ValkyrieM m) where
return x = ValkyrieM $ \v -> return (x, v)
(>>=) (ValkyrieM x) f = ValkyrieM $ \v -> x v >>= \(x', v') -> (runValkyrieM (f x')) v'
instance MonadTrans ValkyrieM where
lift mx = ValkyrieM $ \v -> mx >>= \x -> return (x, v)
instance (MonadIO m) => MonadIO (ValkyrieM m) where
liftIO mx = ValkyrieM $ \v -> liftIO mx >>= \x -> return (x, v)
get :: Monad m => ValkyrieM m Valkyrie
get = ValkyrieM $ \v -> return (v, v)
put :: Monad m => Valkyrie -> ValkyrieM m ()
put v = ValkyrieM $ \_ -> return ((), v)
modify :: Monad m => (Valkyrie -> m Valkyrie) -> ValkyrieM m ()
modify f = do
valk <- get
valk' <- lift $ f valk
put valk'
|
Feeniks/valkyrie
|
src/Valkyrie/Valkyrie.hs
|
bsd-3-clause
| 998
| 0
| 14
| 241
| 456
| 237
| 219
| 26
| 1
|
import Test.Cabal.Prelude
main = cabalTest $
cabal' "new-run" ["foo"] >>= assertOutputContains "Hello World"
|
themoritz/cabal
|
cabal-testsuite/PackageTests/NewBuild/CmdRun/Datafiles/cabal.test.hs
|
bsd-3-clause
| 114
| 0
| 8
| 18
| 31
| 16
| 15
| 3
| 1
|
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE RecordWildCards #-}
{-# LANGUAGE BangPatterns #-}
module ECC.Code.LDPC.GPU.CUDA.TwoArrays where
import ECC.Code.LDPC.Utils
import ECC.Types
import ECC.Puncture
import Data.Char (isDigit)
import qualified Data.Matrix as M
import Data.Bit
import Data.Bits
import qualified Data.Vector.Unboxed as U
import qualified Data.Vector.Storable as S
import qualified Data.Matrix.QuasiCyclic as Q
import Debug.Trace
import qualified ECC.Code.LDPC.Fast.Encoder as E
import Data.Monoid
-- import Foreign.CUDA hiding (launchKernel)
import Foreign.CUDA.Runtime.Marshal as RM hiding (AllocFlag (..))
import Foreign.CUDA.Driver.Marshal (registerArray, AllocFlag (..))
import Foreign.CUDA.Types
-- import qualified Foreign.CUDA.Driver as CUDA
import Foreign.CUDA.Driver.Context.Base
import Foreign.CUDA.Driver.Exec
import qualified Foreign.CUDA.Driver.Device as CUDA
import qualified Foreign.CUDA.Driver.Stream as Stream
import Foreign.CUDA.Driver.Module
import Foreign.Storable (sizeOf)
import Foreign.ForeignPtr
import qualified Foreign.Marshal as F
import Data.IORef
import GHC.Int
import Control.DeepSeq
import Data.Foldable (fold)
import Control.Monad --(liftM2)
import GHC.Conc
import GHC.Float
type IntT = Int32
type FloatTy = Float --Double
float_t_width :: Int
float_t_width = sizeOf (undefined :: FloatTy)
data CudaAllocations =
CudaAllocations
{ cm :: Module
}
code :: Code
code = mkLDPC_CodeIO "two-arrays" 1 E.encoder decoder initialize finalize
pokeListArrayAsync :: S.Storable a => S.Vector a -> DevicePtr a -> Maybe Stream -> IO ()
pokeListArrayAsync !xs !dptr !stream = do
let len = S.length xs
(fptr, _) = S.unsafeToForeignPtr0 xs
withForeignPtr fptr (\p -> pokeArrayAsync len (HostPtr p) dptr stream)
swapRefs :: IORef a -> IORef a -> IORef a -> IO ()
swapRefs tempRef xRef yRef = do
x <- readIORef xRef
y <- readIORef yRef
atomicWriteIORef tempRef x
atomicWriteIORef xRef y
temp <- readIORef tempRef
atomicWriteIORef yRef temp
convertToFloatT :: [Double] -> [FloatTy]
convertToFloatT = map realToFrac
maxBlockSize :: IntT
maxBlockSize = 1024
decoder ::
CudaAllocations -> Q.QuasiCyclic Integer -> IO (Rate -> Int -> U.Vector Double -> IO (Maybe (U.Vector Bool)))
decoder CudaAllocations{..} arr@(Q.QuasiCyclic sz _) = do
(mLet0, offsets, rowCount, colCount) <- init'd
let rowsPerBlock
| rowCount <= maxBlockSize = rowCount
| otherwise = rowCount `div` 2
colsPerBlock
| colCount <= maxBlockSize = colCount
| otherwise = colCount `div` 4
rowBlockSize
| rowCount <= maxBlockSize = rowCount `div` 2
| otherwise = rowCount `div` 4
colBlockSize = colCount `div` 22
productColsPerBlock = colBlockSize `div` 2
makeNonzeroMatFun <- getFun cm "makeNonzeroMat"
tanhTransformFun <- getFun cm "tanhTransform"
setToOneFun <- getFun cm "setToOne"
insertOnesFun <- getFun cm "insertOnes"
selfProductFun <- getFun cm "selfProduct"
atanhTransformFun <- getFun cm "atanhTransform"
updateLamFun <- getFun cm "updateLamT"
parityRowResultsFun <- getFun cm "parityRowResults"
checkParityFun <- getFun cm "checkParity"
memset mLet0 (fromIntegral (rowCount * colCount * fromIntegral float_t_width)) 0
mLetRef <- newIORef mLet0
newMLet0 <- mallocArray (fromIntegral $ rowCount * colCount) :: IO (DevicePtr FloatTy)
newMLetRef <- newIORef newMLet0
tempRef <- newIORef =<< (mallocArray 1 :: IO (DevicePtr FloatTy))
-- rowResults <- mallocArray (fromIntegral rowCount) :: IO (DevicePtr Int32)
partials <- mallocArray (fromIntegral rowCount) :: IO (DevicePtr FloatTy)
print (rowCount, colCount)
print (colCount*rowCount)
mLetT <- mallocArray (fromIntegral $ rowCount * colCount) :: IO (DevicePtr FloatTy)
let orig_lam_len = fromIntegral colCount*sz :: Int
orig_lam_dev <- mallocArray orig_lam_len :: IO (DevicePtr FloatTy)
lam_dev <- mallocArray orig_lam_len :: IO (DevicePtr FloatTy)
pop_dev <- newListArray [0] :: IO (DevicePtr Int32)
done_dev <- newListArray [0] :: IO (DevicePtr Int32)
stream1 <- Stream.create []
stream2 <- Stream.create []
mletStream <- Stream.create []
-- putStr "atanh compute occupancy: "
-- -- (fromIntegral (colCount `div` colBlockSize), fromIntegral (rowCount `div` rowBlockSize), 1)
-- -- (fromIntegral colBlockSize,fromIntegral rowBlockSize,1)
-- print (colBlockSize * rowBlockSize)
return $ \rate maxIterations orig_lam -> do
let orig_lam_stor = S.map double2Float $ U.convert orig_lam :: S.Vector FloatTy
orig_lam_list = U.toList orig_lam
-- pokeListArray orig_lam_list orig_lam_dev
-- pokeListArray orig_lam_list lam_dev
pokeListArrayAsync orig_lam_stor orig_lam_dev (Just stream1)
pokeListArrayAsync orig_lam_stor lam_dev (Just stream2)
pokeListArray [0] pop_dev
lamResultRef <- newIORef lam_dev
mLet' <- readIORef mLetRef
memset mLet' (fromIntegral $ rowCount * colCount * fromIntegral float_t_width) 0
let go !iters
| iters >= maxIterations = writeIORef lamResultRef orig_lam_dev
| otherwise = do
mLet <- readIORef mLetRef
newMLet <- readIORef newMLetRef
-- Check parity every 5th iteration
parity <- if True --iters < 3 || iters `rem` 5 == 0 || iters == maxIterations - 1
then do
launchKernel parityRowResultsFun
(1, fromIntegral rowCount, 1)
(fromIntegral colCount, 1, 1)
0
Nothing
[VArg done_dev
,VArg lam_dev
,IArg rowCount
,IArg colCount
,IArg (fromIntegral sz)
,VArg offsets
]
[done] <- peekListArray 1 done_dev
return (done > 0)
else return True
writeIORef lamResultRef lam_dev
when parity $ do
-- Update matrix
let nr = 4
launchKernel selfProductFun
(fromIntegral rowCount `div` nr, 1, 1)
(nr, fromIntegral colCount, 1)
(fromIntegral colCount * nr * float_t_width)
Nothing
[VArg lam_dev
,VArg mLet
,VArg newMLet
,VArg mLetT
,IArg rowCount
,IArg colCount
,IArg (fromIntegral sz)
,VArg offsets
]
copyArray orig_lam_len orig_lam_dev lam_dev
swapRefs tempRef mLetRef newMLetRef
-- Update guess
launchKernel updateLamFun
-- (fromIntegral sz, 1, 1)
-- (fromIntegral colCount, 1, 1)
(fromIntegral (colCount `div` colBlockSize), fromIntegral (rowCount `div` rowBlockSize), 1)
(fromIntegral colBlockSize, fromIntegral rowBlockSize, 1)
-- (fromIntegral sz, 1, 1)
-- (fromIntegral colCount, 1, 1)
0
Nothing
[VArg lam_dev
,VArg mLetT
,IArg rowCount
,IArg colCount
,IArg (fromIntegral sz)
,VArg offsets
]
go (iters+1)
Stream.block stream1
Stream.block stream2
go 0
lamPtr <- readIORef lamResultRef
result <- peekListArray orig_lam_len lamPtr
let r = Just $! U.map hard $! S.convert $! U.fromList result
-- free orig_lam_dev
-- free lam_dev
-- free pop_dev
-- enqueueFree orig_lam_dev
-- enqueueFree lam_dev
-- enqueueFree pop_dev
return $! r
where
init'd = initMatrixlet arr
initialize :: IO CudaAllocations
initialize = do
dummy <- RM.mallocArray 1 :: IO (DevicePtr Int) -- Sets up CUDA context
cm <- loadFile "cudabits/two_arrays.ptx"
RM.free dummy
return (CudaAllocations {..})
finalize :: CudaAllocations -> IO ()
finalize CudaAllocations {..} = do
return ()
initMatrixlet :: Q.QuasiCyclic Integer -> IO (DevicePtr FloatTy, DevicePtr IntT, IntT, IntT)
initMatrixlet (Q.QuasiCyclic sz qm) = do
mLetPtr <- mallocArray (mLetRowCount * mLetColCount)
offsetsPtr <- newListArray offsets
return (mLetPtr, offsetsPtr, fromIntegral mLetRowCount, fromIntegral mLetColCount)
where
mLetRowCount = M.nrows qm*sz
mLetColCount = M.ncols qm
pop :: [Integer] -> Integer
pop =
getSum .
foldMap (\n ->
if n == 0
then 0
else 1)
-- The number must be a power of two, because there is only one bit set.
g :: Integer -> IntT
g x | x `testBit` 0 = 0
| x == 0 = error "got to zero; should never happen"
| otherwise = 1 + g (x `shiftR` 1)
offsets :: [IntT]
offsets =
foldMap (\n ->
case n of
0 -> [-1]
_ -> [g n]) $
qm
|
ku-fpg/ecc-ldpc
|
src/ECC/Code/LDPC/GPU/CUDA/TwoArrays.hs
|
bsd-3-clause
| 9,684
| 91
| 17
| 3,172
| 2,267
| 1,213
| 1,054
| 204
| 3
|
{-# LANGUAGE NoImplicitPrelude #-}
{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE PackageImports #-}
{-# LANGUAGE UnicodeSyntax #-}
{-|
[@ISO639-1@] -
[@ISO639-2@] -
[@ISO639-3@] kap
[@Native name@] бежкьалас миц
[@English name@] Bezhta
-}
module Text.Numeral.Language.KAP.TestData (cardinals) where
--------------------------------------------------------------------------------
-- Imports
--------------------------------------------------------------------------------
import "base" Prelude ( Num )
import "numerals" Text.Numeral.Grammar.Reified ( defaultInflection )
import "this" Text.Numeral.Test ( TestData )
--------------------------------------------------------------------------------
-- Test data
--------------------------------------------------------------------------------
{-
Sources:
http://www.languagesandnumbers.com/how-to-count-in-bezhta/en/kap/
-}
cardinals ∷ (Num i) ⇒ TestData i
cardinals =
[ ( "default"
, defaultInflection
, [ (0, "nol")
, (1, "hõs")
, (2, "q’ona")
, (3, "łana")
, (4, "ṏq’önä")
, (5, "łina")
, (6, "iłna")
, (7, "aƛna")
, (8, "beƛna")
, (9, "äč’ena")
, (10, "ac’ona")
, (11, "ac’ona hõs")
, (12, "ac’ona q’ona")
, (13, "ac’ona łana")
, (14, "ac’ona ṏq’önä")
, (15, "ac’ona łina")
, (16, "ac’ona iłna")
, (17, "ac’ona aƛna")
, (18, "ac’ona beƛna")
, (19, "ac’ona äč’ena")
, (20, "qona")
, (21, "qona hõs")
, (22, "qona q’ona")
, (23, "qona łana")
, (24, "qona ṏq’önä")
, (25, "qona łina")
, (26, "qona iłna")
, (27, "qona aƛna")
, (28, "qona beƛna")
, (29, "qona äč’ena")
, (30, "łanayig")
, (31, "łanayig hõs")
, (32, "łanayig q’ona")
, (33, "łanayig łana")
, (34, "łanayig ṏq’önä")
, (35, "łanayig łina")
, (36, "łanayig iłna")
, (37, "łanayig aƛna")
, (38, "łanayig beƛna")
, (39, "łanayig äč’ena")
, (40, "ṏq’önäyig")
, (41, "ṏq’önäyig hõs")
, (42, "ṏq’önäyig q’ona")
, (43, "ṏq’önäyig łana")
, (44, "ṏq’önäyig ṏq’önä")
, (45, "ṏq’önäyig łina")
, (46, "ṏq’önäyig iłna")
, (47, "ṏq’önäyig aƛna")
, (48, "ṏq’önäyig beƛna")
, (49, "ṏq’önäyig äč’ena")
, (50, "łinayig")
, (51, "łinayig hõs")
, (52, "łinayig q’ona")
, (53, "łinayig łana")
, (54, "łinayig ṏq’önä")
, (55, "łinayig łina")
, (56, "łinayig iłna")
, (57, "łinayig aƛna")
, (58, "łinayig beƛna")
, (59, "łinayig äč’ena")
, (60, "iłnayig")
, (61, "iłnayig hõs")
, (62, "iłnayig q’ona")
, (63, "iłnayig łana")
, (64, "iłnayig ṏq’önä")
, (65, "iłnayig łina")
, (66, "iłnayig iłna")
, (67, "iłnayig aƛna")
, (68, "iłnayig beƛna")
, (69, "iłnayig äč’ena")
, (70, "aƛnayig")
, (71, "aƛnayig hõs")
, (72, "aƛnayig q’ona")
, (73, "aƛnayig łana")
, (74, "aƛnayig ṏq’önä")
, (75, "aƛnayig łina")
, (76, "aƛnayig iłna")
, (77, "aƛnayig aƛna")
, (78, "aƛnayig beƛna")
, (79, "aƛnayig äč’ena")
, (80, "beƛnayig")
, (81, "beƛnayig hõs")
, (82, "beƛnayig q’ona")
, (83, "beƛnayig łana")
, (84, "beƛnayig ṏq’önä")
, (85, "beƛnayig łina")
, (86, "beƛnayig iłna")
, (87, "beƛnayig aƛna")
, (88, "beƛnayig beƛna")
, (89, "beƛnayig äč’ena")
, (90, "äč’enayig")
, (91, "äč’enayig hõs")
, (92, "äč’enayig q’ona")
, (93, "äč’enayig łana")
, (94, "äč’enayig ṏq’önä")
, (95, "äč’enayig łina")
, (96, "äč’enayig iłna")
, (97, "äč’enayig aƛna")
, (98, "äč’enayig beƛna")
, (99, "äč’enayig äč’ena")
, (100, "hõsč’it’")
, (101, "hõsč’it’ hõs")
, (102, "hõsč’it’ q’ona")
, (103, "hõsč’it’ łana")
, (104, "hõsč’it’ ṏq’önä")
, (105, "hõsč’it’ łina")
, (106, "hõsč’it’ iłna")
, (107, "hõsč’it’ aƛna")
, (108, "hõsč’it’ beƛna")
, (109, "hõsč’it’ äč’ena")
, (110, "hõsč’it’ ac’ona")
, (123, "hõsč’it’ qona łana")
, (200, "q’onač’it’")
, (300, "łanač’it’")
, (321, "łanač’it’ qona hõs")
, (400, "ṏq’önäč’it’")
, (500, "łinač’it’")
, (600, "iłnač’it’")
, (700, "aƛnač’it’")
, (800, "beƛnač’it’")
, (900, "äč’enač’it’")
, (909, "äč’enač’it’ äč’ena")
, (990, "äč’enač’it’ äč’enayig")
, (999, "äč’enač’it’ äč’enayig äč’ena")
, (1000, "hazay")
]
)
]
|
telser/numerals
|
src-test/Text/Numeral/Language/KAP/TestData.hs
|
bsd-3-clause
| 5,198
| 0
| 8
| 1,373
| 1,219
| 815
| 404
| 137
| 1
|
{-# LANGUAGE BangPatterns, CPP, NondecreasingIndentation, ScopedTypeVariables #-}
{-# OPTIONS_GHC -fno-warn-warnings-deprecations #-}
-- NB: we specifically ignore deprecations. GHC 7.6 marks the .QSem module as
-- deprecated, although it became un-deprecated later. As a result, using 7.6
-- as your bootstrap compiler throws annoying warnings.
-- -----------------------------------------------------------------------------
--
-- (c) The University of Glasgow, 2011
--
-- This module implements multi-module compilation, and is used
-- by --make and GHCi.
--
-- -----------------------------------------------------------------------------
module GhcMake(
depanal,
load, LoadHowMuch(..),
topSortModuleGraph,
noModError, cyclicModuleErr
) where
#include "HsVersions.h"
#ifdef GHCI
import qualified Linker ( unload )
#endif
import DriverPhases
import DriverPipeline
import DynFlags
import ErrUtils
import Finder
import GhcMonad
import HeaderInfo
import HsSyn
import HscTypes
import Module
import RdrName ( RdrName )
import TcIface ( typecheckIface )
import TcRnMonad ( initIfaceCheck )
import Bag ( listToBag )
import BasicTypes
import Digraph
import Exception ( tryIO, gbracket, gfinally )
import FastString
import Maybes ( expectJust )
import Name
import MonadUtils ( allM, MonadIO )
import Outputable
import Panic
import SrcLoc
import StringBuffer
import SysTools
import UniqFM
import Util
import Data.Either ( rights, partitionEithers )
import qualified Data.Map as Map
import Data.Map (Map)
import qualified Data.Set as Set
import qualified FiniteMap as Map ( insertListWith )
import Control.Concurrent ( forkIOWithUnmask, killThread )
import qualified GHC.Conc as CC
import Control.Concurrent.MVar
import Control.Concurrent.QSem
import Control.Exception
import Control.Monad
import Data.IORef
import Data.List
import qualified Data.List as List
import Data.Maybe
import Data.Ord ( comparing )
import Data.Time
import System.Directory
import System.FilePath
import System.IO ( fixIO )
import System.IO.Error ( isDoesNotExistError )
import GHC.Conc ( getNumProcessors, getNumCapabilities, setNumCapabilities )
label_self :: String -> IO ()
label_self thread_name = do
self_tid <- CC.myThreadId
CC.labelThread self_tid thread_name
-- -----------------------------------------------------------------------------
-- Loading the program
-- | Perform a dependency analysis starting from the current targets
-- and update the session with the new module graph.
--
-- Dependency analysis entails parsing the @import@ directives and may
-- therefore require running certain preprocessors.
--
-- Note that each 'ModSummary' in the module graph caches its 'DynFlags'.
-- These 'DynFlags' are determined by the /current/ session 'DynFlags' and the
-- @OPTIONS@ and @LANGUAGE@ pragmas of the parsed module. Thus if you want
-- changes to the 'DynFlags' to take effect you need to call this function
-- again.
--
depanal :: GhcMonad m =>
[ModuleName] -- ^ excluded modules
-> Bool -- ^ allow duplicate roots
-> m ModuleGraph
depanal excluded_mods allow_dup_roots = do
hsc_env <- getSession
let
dflags = hsc_dflags hsc_env
targets = hsc_targets hsc_env
old_graph = hsc_mod_graph hsc_env
liftIO $ showPass dflags "Chasing dependencies"
liftIO $ debugTraceMsg dflags 2 (hcat [
text "Chasing modules from: ",
hcat (punctuate comma (map pprTarget targets))])
mod_graphE <- liftIO $ downsweep hsc_env old_graph excluded_mods allow_dup_roots
mod_graph <- reportImportErrors mod_graphE
modifySession $ \_ -> hsc_env { hsc_mod_graph = mod_graph }
return mod_graph
-- | Describes which modules of the module graph need to be loaded.
data LoadHowMuch
= LoadAllTargets
-- ^ Load all targets and its dependencies.
| LoadUpTo ModuleName
-- ^ Load only the given module and its dependencies.
| LoadDependenciesOf ModuleName
-- ^ Load only the dependencies of the given module, but not the module
-- itself.
-- | Try to load the program. See 'LoadHowMuch' for the different modes.
--
-- This function implements the core of GHC's @--make@ mode. It preprocesses,
-- compiles and loads the specified modules, avoiding re-compilation wherever
-- possible. Depending on the target (see 'DynFlags.hscTarget') compilating
-- and loading may result in files being created on disk.
--
-- Calls the 'defaultWarnErrLogger' after each compiling each module, whether
-- successful or not.
--
-- Throw a 'SourceError' if errors are encountered before the actual
-- compilation starts (e.g., during dependency analysis). All other errors
-- are reported using the 'defaultWarnErrLogger'.
--
load :: GhcMonad m => LoadHowMuch -> m SuccessFlag
load how_much = do
mod_graph <- depanal [] False
guessOutputFile
hsc_env <- getSession
let hpt1 = hsc_HPT hsc_env
let dflags = hsc_dflags hsc_env
-- The "bad" boot modules are the ones for which we have
-- B.hs-boot in the module graph, but no B.hs
-- The downsweep should have ensured this does not happen
-- (see msDeps)
let all_home_mods = [ms_mod_name s
| s <- mod_graph, not (isBootSummary s)]
bad_boot_mods = [s | s <- mod_graph, isBootSummary s,
not (ms_mod_name s `elem` all_home_mods)]
ASSERT( null bad_boot_mods ) return ()
-- check that the module given in HowMuch actually exists, otherwise
-- topSortModuleGraph will bomb later.
let checkHowMuch (LoadUpTo m) = checkMod m
checkHowMuch (LoadDependenciesOf m) = checkMod m
checkHowMuch _ = id
checkMod m and_then
| m `elem` all_home_mods = and_then
| otherwise = do
liftIO $ errorMsg dflags (text "no such module:" <+>
quotes (ppr m))
return Failed
checkHowMuch how_much $ do
-- mg2_with_srcimps drops the hi-boot nodes, returning a
-- graph with cycles. Among other things, it is used for
-- backing out partially complete cycles following a failed
-- upsweep, and for removing from hpt all the modules
-- not in strict downwards closure, during calls to compile.
let mg2_with_srcimps :: [SCC ModSummary]
mg2_with_srcimps = topSortModuleGraph True mod_graph Nothing
-- If we can determine that any of the {-# SOURCE #-} imports
-- are definitely unnecessary, then emit a warning.
warnUnnecessarySourceImports mg2_with_srcimps
let
-- check the stability property for each module.
stable_mods@(stable_obj,stable_bco)
= checkStability hpt1 mg2_with_srcimps all_home_mods
-- prune bits of the HPT which are definitely redundant now,
-- to save space.
pruned_hpt = pruneHomePackageTable hpt1
(flattenSCCs mg2_with_srcimps)
stable_mods
_ <- liftIO $ evaluate pruned_hpt
-- before we unload anything, make sure we don't leave an old
-- interactive context around pointing to dead bindings. Also,
-- write the pruned HPT to allow the old HPT to be GC'd.
setSession $ discardIC $ hsc_env { hsc_HPT = pruned_hpt }
liftIO $ debugTraceMsg dflags 2 (text "Stable obj:" <+> ppr stable_obj $$
text "Stable BCO:" <+> ppr stable_bco)
-- Unload any modules which are going to be re-linked this time around.
let stable_linkables = [ linkable
| m <- stable_obj++stable_bco,
Just hmi <- [lookupUFM pruned_hpt m],
Just linkable <- [hm_linkable hmi] ]
liftIO $ unload hsc_env stable_linkables
-- We could at this point detect cycles which aren't broken by
-- a source-import, and complain immediately, but it seems better
-- to let upsweep_mods do this, so at least some useful work gets
-- done before the upsweep is abandoned.
--hPutStrLn stderr "after tsort:\n"
--hPutStrLn stderr (showSDoc (vcat (map ppr mg2)))
-- Now do the upsweep, calling compile for each module in
-- turn. Final result is version 3 of everything.
-- Topologically sort the module graph, this time including hi-boot
-- nodes, and possibly just including the portion of the graph
-- reachable from the module specified in the 2nd argument to load.
-- This graph should be cycle-free.
-- If we're restricting the upsweep to a portion of the graph, we
-- also want to retain everything that is still stable.
let full_mg :: [SCC ModSummary]
full_mg = topSortModuleGraph False mod_graph Nothing
maybe_top_mod = case how_much of
LoadUpTo m -> Just m
LoadDependenciesOf m -> Just m
_ -> Nothing
partial_mg0 :: [SCC ModSummary]
partial_mg0 = topSortModuleGraph False mod_graph maybe_top_mod
-- LoadDependenciesOf m: we want the upsweep to stop just
-- short of the specified module (unless the specified module
-- is stable).
partial_mg
| LoadDependenciesOf _mod <- how_much
= ASSERT( case last partial_mg0 of
AcyclicSCC ms -> ms_mod_name ms == _mod; _ -> False )
List.init partial_mg0
| otherwise
= partial_mg0
stable_mg =
[ AcyclicSCC ms
| AcyclicSCC ms <- full_mg,
ms_mod_name ms `elem` stable_obj++stable_bco ]
-- the modules from partial_mg that are not also stable
-- NB. also keep cycles, we need to emit an error message later
unstable_mg = filter not_stable partial_mg
where not_stable (CyclicSCC _) = True
not_stable (AcyclicSCC ms)
= ms_mod_name ms `notElem` stable_obj++stable_bco
-- Load all the stable modules first, before attempting to load
-- an unstable module (#7231).
mg = stable_mg ++ unstable_mg
-- clean up between compilations
let cleanup hsc_env = intermediateCleanTempFiles (hsc_dflags hsc_env)
(flattenSCCs mg2_with_srcimps)
hsc_env
liftIO $ debugTraceMsg dflags 2 (hang (text "Ready for upsweep")
2 (ppr mg))
n_jobs <- case parMakeCount dflags of
Nothing -> liftIO getNumProcessors
Just n -> return n
let upsweep_fn | n_jobs > 1 = parUpsweep n_jobs
| otherwise = upsweep
setSession hsc_env{ hsc_HPT = emptyHomePackageTable }
(upsweep_ok, modsUpswept)
<- upsweep_fn pruned_hpt stable_mods cleanup mg
-- Make modsDone be the summaries for each home module now
-- available; this should equal the domain of hpt3.
-- Get in in a roughly top .. bottom order (hence reverse).
let modsDone = reverse modsUpswept
-- Try and do linking in some form, depending on whether the
-- upsweep was completely or only partially successful.
if succeeded upsweep_ok
then
-- Easy; just relink it all.
do liftIO $ debugTraceMsg dflags 2 (text "Upsweep completely successful.")
-- Clean up after ourselves
hsc_env1 <- getSession
liftIO $ intermediateCleanTempFiles dflags modsDone hsc_env1
-- Issue a warning for the confusing case where the user
-- said '-o foo' but we're not going to do any linking.
-- We attempt linking if either (a) one of the modules is
-- called Main, or (b) the user said -no-hs-main, indicating
-- that main() is going to come from somewhere else.
--
let ofile = outputFile dflags
let no_hs_main = gopt Opt_NoHsMain dflags
let
main_mod = mainModIs dflags
a_root_is_Main = any ((==main_mod).ms_mod) mod_graph
do_linking = a_root_is_Main || no_hs_main || ghcLink dflags == LinkDynLib || ghcLink dflags == LinkStaticLib
when (ghcLink dflags == LinkBinary
&& isJust ofile && not do_linking) $
liftIO $ debugTraceMsg dflags 1 $
text ("Warning: output was redirected with -o, " ++
"but no output will be generated\n" ++
"because there is no " ++
moduleNameString (moduleName main_mod) ++ " module.")
-- link everything together
linkresult <- liftIO $ link (ghcLink dflags) dflags do_linking (hsc_HPT hsc_env1)
loadFinish Succeeded linkresult
else
-- Tricky. We need to back out the effects of compiling any
-- half-done cycles, both so as to clean up the top level envs
-- and to avoid telling the interactive linker to link them.
do liftIO $ debugTraceMsg dflags 2 (text "Upsweep partially successful.")
let modsDone_names
= map ms_mod modsDone
let mods_to_zap_names
= findPartiallyCompletedCycles modsDone_names
mg2_with_srcimps
let mods_to_keep
= filter ((`notElem` mods_to_zap_names).ms_mod)
modsDone
hsc_env1 <- getSession
let hpt4 = retainInTopLevelEnvs (map ms_mod_name mods_to_keep)
(hsc_HPT hsc_env1)
-- Clean up after ourselves
liftIO $ intermediateCleanTempFiles dflags mods_to_keep hsc_env1
-- there should be no Nothings where linkables should be, now
ASSERT(all (isJust.hm_linkable) (eltsUFM (hsc_HPT hsc_env))) do
-- Link everything together
linkresult <- liftIO $ link (ghcLink dflags) dflags False hpt4
modifySession $ \hsc_env -> hsc_env{ hsc_HPT = hpt4 }
loadFinish Failed linkresult
-- | Finish up after a load.
loadFinish :: GhcMonad m => SuccessFlag -> SuccessFlag -> m SuccessFlag
-- If the link failed, unload everything and return.
loadFinish _all_ok Failed
= do hsc_env <- getSession
liftIO $ unload hsc_env []
modifySession discardProg
return Failed
-- Empty the interactive context and set the module context to the topmost
-- newly loaded module, or the Prelude if none were loaded.
loadFinish all_ok Succeeded
= do modifySession discardIC
return all_ok
-- | Forget the current program, but retain the persistent info in HscEnv
discardProg :: HscEnv -> HscEnv
discardProg hsc_env
= discardIC $ hsc_env { hsc_mod_graph = emptyMG
, hsc_HPT = emptyHomePackageTable }
-- | Discard the contents of the InteractiveContext, but keep the DynFlags.
-- It will also keep ic_int_print and ic_monad if their names are from
-- external packages.
discardIC :: HscEnv -> HscEnv
discardIC hsc_env
= hsc_env { hsc_IC = new_ic { ic_int_print = keep_external_name ic_int_print
, ic_monad = keep_external_name ic_monad } }
where
dflags = ic_dflags old_ic
old_ic = hsc_IC hsc_env
new_ic = emptyInteractiveContext dflags
keep_external_name ic_name
| nameIsFromExternalPackage this_pkg old_name = old_name
| otherwise = ic_name new_ic
where
this_pkg = thisPackage dflags
old_name = ic_name old_ic
intermediateCleanTempFiles :: DynFlags -> [ModSummary] -> HscEnv -> IO ()
intermediateCleanTempFiles dflags summaries hsc_env
= do notIntermediate <- readIORef (filesToNotIntermediateClean dflags)
cleanTempFilesExcept dflags (notIntermediate ++ except)
where
except =
-- Save preprocessed files. The preprocessed file *might* be
-- the same as the source file, but that doesn't do any
-- harm.
map ms_hspp_file summaries ++
-- Save object files for loaded modules. The point of this
-- is that we might have generated and compiled a stub C
-- file, and in the case of GHCi the object file will be a
-- temporary file which we must not remove because we need
-- to load/link it later.
hptObjs (hsc_HPT hsc_env)
-- | If there is no -o option, guess the name of target executable
-- by using top-level source file name as a base.
guessOutputFile :: GhcMonad m => m ()
guessOutputFile = modifySession $ \env ->
let dflags = hsc_dflags env
mod_graph = hsc_mod_graph env
mainModuleSrcPath :: Maybe String
mainModuleSrcPath = do
let isMain = (== mainModIs dflags) . ms_mod
[ms] <- return (filter isMain mod_graph)
ml_hs_file (ms_location ms)
name = fmap dropExtension mainModuleSrcPath
name_exe = do
#if defined(mingw32_HOST_OS)
-- we must add the .exe extention unconditionally here, otherwise
-- when name has an extension of its own, the .exe extension will
-- not be added by DriverPipeline.exeFileName. See #2248
name' <- fmap (<.> "exe") name
#else
name' <- name
#endif
mainModuleSrcPath' <- mainModuleSrcPath
-- #9930: don't clobber input files (unless they ask for it)
if name' == mainModuleSrcPath'
then throwGhcException . UsageError $
"default output name would overwrite the input file; " ++
"must specify -o explicitly"
else Just name'
in
case outputFile dflags of
Just _ -> env
Nothing -> env { hsc_dflags = dflags { outputFile = name_exe } }
-- -----------------------------------------------------------------------------
--
-- | Prune the HomePackageTable
--
-- Before doing an upsweep, we can throw away:
--
-- - For non-stable modules:
-- - all ModDetails, all linked code
-- - all unlinked code that is out of date with respect to
-- the source file
--
-- This is VERY IMPORTANT otherwise we'll end up requiring 2x the
-- space at the end of the upsweep, because the topmost ModDetails of the
-- old HPT holds on to the entire type environment from the previous
-- compilation.
pruneHomePackageTable :: HomePackageTable
-> [ModSummary]
-> ([ModuleName],[ModuleName])
-> HomePackageTable
pruneHomePackageTable hpt summ (stable_obj, stable_bco)
= mapUFM prune hpt
where prune hmi
| is_stable modl = hmi'
| otherwise = hmi'{ hm_details = emptyModDetails }
where
modl = moduleName (mi_module (hm_iface hmi))
hmi' | Just l <- hm_linkable hmi, linkableTime l < ms_hs_date ms
= hmi{ hm_linkable = Nothing }
| otherwise
= hmi
where ms = expectJust "prune" (lookupUFM ms_map modl)
ms_map = listToUFM [(ms_mod_name ms, ms) | ms <- summ]
is_stable m = m `elem` stable_obj || m `elem` stable_bco
-- -----------------------------------------------------------------------------
--
-- | Return (names of) all those in modsDone who are part of a cycle as defined
-- by theGraph.
findPartiallyCompletedCycles :: [Module] -> [SCC ModSummary] -> [Module]
findPartiallyCompletedCycles modsDone theGraph
= chew theGraph
where
chew [] = []
chew ((AcyclicSCC _):rest) = chew rest -- acyclic? not interesting.
chew ((CyclicSCC vs):rest)
= let names_in_this_cycle = nub (map ms_mod vs)
mods_in_this_cycle
= nub ([done | done <- modsDone,
done `elem` names_in_this_cycle])
chewed_rest = chew rest
in
if notNull mods_in_this_cycle
&& length mods_in_this_cycle < length names_in_this_cycle
then mods_in_this_cycle ++ chewed_rest
else chewed_rest
-- ---------------------------------------------------------------------------
--
-- | Unloading
unload :: HscEnv -> [Linkable] -> IO ()
unload hsc_env stable_linkables -- Unload everthing *except* 'stable_linkables'
= case ghcLink (hsc_dflags hsc_env) of
#ifdef GHCI
LinkInMemory -> Linker.unload (hsc_dflags hsc_env) stable_linkables
#else
LinkInMemory -> panic "unload: no interpreter"
-- urgh. avoid warnings:
hsc_env stable_linkables
#endif
_other -> return ()
-- -----------------------------------------------------------------------------
{- |
Stability tells us which modules definitely do not need to be recompiled.
There are two main reasons for having stability:
- avoid doing a complete upsweep of the module graph in GHCi when
modules near the bottom of the tree have not changed.
- to tell GHCi when it can load object code: we can only load object code
for a module when we also load object code fo all of the imports of the
module. So we need to know that we will definitely not be recompiling
any of these modules, and we can use the object code.
The stability check is as follows. Both stableObject and
stableBCO are used during the upsweep phase later.
@
stable m = stableObject m || stableBCO m
stableObject m =
all stableObject (imports m)
&& old linkable does not exist, or is == on-disk .o
&& date(on-disk .o) > date(.hs)
stableBCO m =
all stable (imports m)
&& date(BCO) > date(.hs)
@
These properties embody the following ideas:
- if a module is stable, then:
- if it has been compiled in a previous pass (present in HPT)
then it does not need to be compiled or re-linked.
- if it has not been compiled in a previous pass,
then we only need to read its .hi file from disk and
link it to produce a 'ModDetails'.
- if a modules is not stable, we will definitely be at least
re-linking, and possibly re-compiling it during the 'upsweep'.
All non-stable modules can (and should) therefore be unlinked
before the 'upsweep'.
- Note that objects are only considered stable if they only depend
on other objects. We can't link object code against byte code.
-}
checkStability
:: HomePackageTable -- HPT from last compilation
-> [SCC ModSummary] -- current module graph (cyclic)
-> [ModuleName] -- all home modules
-> ([ModuleName], -- stableObject
[ModuleName]) -- stableBCO
checkStability hpt sccs all_home_mods = foldl checkSCC ([],[]) sccs
where
checkSCC (stable_obj, stable_bco) scc0
| stableObjects = (scc_mods ++ stable_obj, stable_bco)
| stableBCOs = (stable_obj, scc_mods ++ stable_bco)
| otherwise = (stable_obj, stable_bco)
where
scc = flattenSCC scc0
scc_mods = map ms_mod_name scc
home_module m = m `elem` all_home_mods && m `notElem` scc_mods
scc_allimps = nub (filter home_module (concatMap ms_home_allimps scc))
-- all imports outside the current SCC, but in the home pkg
stable_obj_imps = map (`elem` stable_obj) scc_allimps
stable_bco_imps = map (`elem` stable_bco) scc_allimps
stableObjects =
and stable_obj_imps
&& all object_ok scc
stableBCOs =
and (zipWith (||) stable_obj_imps stable_bco_imps)
&& all bco_ok scc
object_ok ms
| gopt Opt_ForceRecomp (ms_hspp_opts ms) = False
| Just t <- ms_obj_date ms = t >= ms_hs_date ms
&& same_as_prev t
| otherwise = False
where
same_as_prev t = case lookupUFM hpt (ms_mod_name ms) of
Just hmi | Just l <- hm_linkable hmi
-> isObjectLinkable l && t == linkableTime l
_other -> True
-- why '>=' rather than '>' above? If the filesystem stores
-- times to the nearset second, we may occasionally find that
-- the object & source have the same modification time,
-- especially if the source was automatically generated
-- and compiled. Using >= is slightly unsafe, but it matches
-- make's behaviour.
--
-- But see #5527, where someone ran into this and it caused
-- a problem.
bco_ok ms
| gopt Opt_ForceRecomp (ms_hspp_opts ms) = False
| otherwise = case lookupUFM hpt (ms_mod_name ms) of
Just hmi | Just l <- hm_linkable hmi ->
not (isObjectLinkable l) &&
linkableTime l >= ms_hs_date ms
_other -> False
{- Parallel Upsweep
-
- The parallel upsweep attempts to concurrently compile the modules in the
- compilation graph using multiple Haskell threads.
-
- The Algorithm
-
- A Haskell thread is spawned for each module in the module graph, waiting for
- its direct dependencies to finish building before it itself begins to build.
-
- Each module is associated with an initially empty MVar that stores the
- result of that particular module's compile. If the compile succeeded, then
- the HscEnv (synchronized by an MVar) is updated with the fresh HMI of that
- module, and the module's HMI is deleted from the old HPT (synchronized by an
- IORef) to save space.
-
- Instead of immediately outputting messages to the standard handles, all
- compilation output is deferred to a per-module TQueue. A QSem is used to
- limit the number of workers that are compiling simultaneously.
-
- Meanwhile, the main thread sequentially loops over all the modules in the
- module graph, outputting the messages stored in each module's TQueue.
-}
-- | Each module is given a unique 'LogQueue' to redirect compilation messages
-- to. A 'Nothing' value contains the result of compilation, and denotes the
-- end of the message queue.
data LogQueue = LogQueue !(IORef [Maybe (Severity, SrcSpan, PprStyle, MsgDoc)])
!(MVar ())
-- | The graph of modules to compile and their corresponding result 'MVar' and
-- 'LogQueue'.
type CompilationGraph = [(ModSummary, MVar SuccessFlag, LogQueue)]
-- | Build a 'CompilationGraph' out of a list of strongly-connected modules,
-- also returning the first, if any, encountered module cycle.
buildCompGraph :: [SCC ModSummary] -> IO (CompilationGraph, Maybe [ModSummary])
buildCompGraph [] = return ([], Nothing)
buildCompGraph (scc:sccs) = case scc of
AcyclicSCC ms -> do
mvar <- newEmptyMVar
log_queue <- do
ref <- newIORef []
sem <- newEmptyMVar
return (LogQueue ref sem)
(rest,cycle) <- buildCompGraph sccs
return ((ms,mvar,log_queue):rest, cycle)
CyclicSCC mss -> return ([], Just mss)
-- A Module and whether it is a boot module.
type BuildModule = (Module, IsBoot)
-- | 'Bool' indicating if a module is a boot module or not. We need to treat
-- boot modules specially when building compilation graphs, since they break
-- cycles. Regular source files and signature files are treated equivalently.
data IsBoot = IsBoot | NotBoot
deriving (Ord, Eq, Show, Read)
-- | Tests if an 'HscSource' is a boot file, primarily for constructing
-- elements of 'BuildModule'.
hscSourceToIsBoot :: HscSource -> IsBoot
hscSourceToIsBoot HsBootFile = IsBoot
hscSourceToIsBoot _ = NotBoot
mkBuildModule :: ModSummary -> BuildModule
mkBuildModule ms = (ms_mod ms, if isBootSummary ms then IsBoot else NotBoot)
-- | The entry point to the parallel upsweep.
--
-- See also the simpler, sequential 'upsweep'.
parUpsweep
:: GhcMonad m
=> Int
-- ^ The number of workers we wish to run in parallel
-> HomePackageTable
-> ([ModuleName],[ModuleName])
-> (HscEnv -> IO ())
-> [SCC ModSummary]
-> m (SuccessFlag,
[ModSummary])
parUpsweep n_jobs old_hpt stable_mods cleanup sccs = do
hsc_env <- getSession
let dflags = hsc_dflags hsc_env
-- The bits of shared state we'll be using:
-- The global HscEnv is updated with the module's HMI when a module
-- successfully compiles.
hsc_env_var <- liftIO $ newMVar hsc_env
-- The old HPT is used for recompilation checking in upsweep_mod. When a
-- module sucessfully gets compiled, its HMI is pruned from the old HPT.
old_hpt_var <- liftIO $ newIORef old_hpt
-- What we use to limit parallelism with.
par_sem <- liftIO $ newQSem n_jobs
let updNumCapabilities = liftIO $ do
n_capabilities <- getNumCapabilities
unless (n_capabilities /= 1) $ setNumCapabilities n_jobs
return n_capabilities
-- Reset the number of capabilities once the upsweep ends.
let resetNumCapabilities orig_n = liftIO $ setNumCapabilities orig_n
gbracket updNumCapabilities resetNumCapabilities $ \_ -> do
-- Sync the global session with the latest HscEnv once the upsweep ends.
let finallySyncSession io = io `gfinally` do
hsc_env <- liftIO $ readMVar hsc_env_var
setSession hsc_env
finallySyncSession $ do
-- Build the compilation graph out of the list of SCCs. Module cycles are
-- handled at the very end, after some useful work gets done. Note that
-- this list is topologically sorted (by virtue of 'sccs' being sorted so).
(comp_graph,cycle) <- liftIO $ buildCompGraph sccs
let comp_graph_w_idx = zip comp_graph [1..]
-- The list of all loops in the compilation graph.
-- NB: For convenience, the last module of each loop (aka the module that
-- finishes the loop) is prepended to the beginning of the loop.
let comp_graph_loops = go (map fstOf3 (reverse comp_graph))
where
go [] = []
go (ms:mss) | Just loop <- getModLoop ms (ms:mss)
= map mkBuildModule (ms:loop) : go mss
| otherwise
= go mss
-- Build a Map out of the compilation graph with which we can efficiently
-- look up the result MVar associated with a particular home module.
let home_mod_map :: Map BuildModule (MVar SuccessFlag, Int)
home_mod_map =
Map.fromList [ (mkBuildModule ms, (mvar, idx))
| ((ms,mvar,_),idx) <- comp_graph_w_idx ]
liftIO $ label_self "main --make thread"
-- For each module in the module graph, spawn a worker thread that will
-- compile this module.
let { spawnWorkers = forM comp_graph_w_idx $ \((mod,!mvar,!log_queue),!mod_idx) ->
forkIOWithUnmask $ \unmask -> do
liftIO $ label_self $ unwords
[ "worker --make thread"
, "for module"
, show (moduleNameString (ms_mod_name mod))
, "number"
, show mod_idx
]
-- Replace the default log_action with one that writes each
-- message to the module's log_queue. The main thread will
-- deal with synchronously printing these messages.
--
-- Use a local filesToClean var so that we can clean up
-- intermediate files in a timely fashion (as soon as
-- compilation for that module is finished) without having to
-- worry about accidentally deleting a simultaneous compile's
-- important files.
lcl_files_to_clean <- newIORef []
let lcl_dflags = dflags { log_action = parLogAction log_queue
, filesToClean = lcl_files_to_clean }
-- Unmask asynchronous exceptions and perform the thread-local
-- work to compile the module (see parUpsweep_one).
m_res <- try $ unmask $ prettyPrintGhcErrors lcl_dflags $
parUpsweep_one mod home_mod_map comp_graph_loops
lcl_dflags cleanup
par_sem hsc_env_var old_hpt_var
stable_mods mod_idx (length sccs)
res <- case m_res of
Right flag -> return flag
Left exc -> do
-- Don't print ThreadKilled exceptions: they are used
-- to kill the worker thread in the event of a user
-- interrupt, and the user doesn't have to be informed
-- about that.
when (fromException exc /= Just ThreadKilled)
(errorMsg lcl_dflags (text (show exc)))
return Failed
-- Populate the result MVar.
putMVar mvar res
-- Write the end marker to the message queue, telling the main
-- thread that it can stop waiting for messages from this
-- particular compile.
writeLogQueue log_queue Nothing
-- Add the remaining files that weren't cleaned up to the
-- global filesToClean ref, for cleanup later.
files_kept <- readIORef (filesToClean lcl_dflags)
addFilesToClean dflags files_kept
-- Kill all the workers, masking interrupts (since killThread is
-- interruptible). XXX: This is not ideal.
; killWorkers = uninterruptibleMask_ . mapM_ killThread }
-- Spawn the workers, making sure to kill them later. Collect the results
-- of each compile.
results <- liftIO $ bracket spawnWorkers killWorkers $ \_ ->
-- Loop over each module in the compilation graph in order, printing
-- each message from its log_queue.
forM comp_graph $ \(mod,mvar,log_queue) -> do
printLogs dflags log_queue
result <- readMVar mvar
if succeeded result then return (Just mod) else return Nothing
-- Collect and return the ModSummaries of all the successful compiles.
-- NB: Reverse this list to maintain output parity with the sequential upsweep.
let ok_results = reverse (catMaybes results)
-- Handle any cycle in the original compilation graph and return the result
-- of the upsweep.
case cycle of
Just mss -> do
liftIO $ fatalErrorMsg dflags (cyclicModuleErr mss)
return (Failed,ok_results)
Nothing -> do
let success_flag = successIf (all isJust results)
return (success_flag,ok_results)
where
writeLogQueue :: LogQueue -> Maybe (Severity,SrcSpan,PprStyle,MsgDoc) -> IO ()
writeLogQueue (LogQueue ref sem) msg = do
atomicModifyIORef' ref $ \msgs -> (msg:msgs,())
_ <- tryPutMVar sem ()
return ()
-- The log_action callback that is used to synchronize messages from a
-- worker thread.
parLogAction :: LogQueue -> LogAction
parLogAction log_queue _dflags !severity !srcSpan !style !msg = do
writeLogQueue log_queue (Just (severity,srcSpan,style,msg))
-- Print each message from the log_queue using the log_action from the
-- session's DynFlags.
printLogs :: DynFlags -> LogQueue -> IO ()
printLogs !dflags (LogQueue ref sem) = read_msgs
where read_msgs = do
takeMVar sem
msgs <- atomicModifyIORef' ref $ \xs -> ([], reverse xs)
print_loop msgs
print_loop [] = read_msgs
print_loop (x:xs) = case x of
Just (severity,srcSpan,style,msg) -> do
log_action dflags dflags severity srcSpan style msg
print_loop xs
-- Exit the loop once we encounter the end marker.
Nothing -> return ()
-- The interruptible subset of the worker threads' work.
parUpsweep_one
:: ModSummary
-- ^ The module we wish to compile
-> Map BuildModule (MVar SuccessFlag, Int)
-- ^ The map of home modules and their result MVar
-> [[BuildModule]]
-- ^ The list of all module loops within the compilation graph.
-> DynFlags
-- ^ The thread-local DynFlags
-> (HscEnv -> IO ())
-- ^ The callback for cleaning up intermediate files
-> QSem
-- ^ The semaphore for limiting the number of simultaneous compiles
-> MVar HscEnv
-- ^ The MVar that synchronizes updates to the global HscEnv
-> IORef HomePackageTable
-- ^ The old HPT
-> ([ModuleName],[ModuleName])
-- ^ Lists of stable objects and BCOs
-> Int
-- ^ The index of this module
-> Int
-- ^ The total number of modules
-> IO SuccessFlag
-- ^ The result of this compile
parUpsweep_one mod home_mod_map comp_graph_loops lcl_dflags cleanup par_sem
hsc_env_var old_hpt_var stable_mods mod_index num_mods = do
let this_build_mod = mkBuildModule mod
let home_imps = map unLoc $ ms_home_imps mod
let home_src_imps = map unLoc $ ms_home_srcimps mod
-- All the textual imports of this module.
let textual_deps = Set.fromList $ mapFst (mkModule (thisPackage lcl_dflags)) $
zip home_imps (repeat NotBoot) ++
zip home_src_imps (repeat IsBoot)
-- Dealing with module loops
-- ~~~~~~~~~~~~~~~~~~~~~~~~~
--
-- Not only do we have to deal with explicit textual dependencies, we also
-- have to deal with implicit dependencies introduced by import cycles that
-- are broken by an hs-boot file. We have to ensure that:
--
-- 1. A module that breaks a loop must depend on all the modules in the
-- loop (transitively or otherwise). This is normally always fulfilled
-- by the module's textual dependencies except in degenerate loops,
-- e.g.:
--
-- A.hs imports B.hs-boot
-- B.hs doesn't import A.hs
-- C.hs imports A.hs, B.hs
--
-- In this scenario, getModLoop will detect the module loop [A,B] but
-- the loop finisher B doesn't depend on A. So we have to explicitly add
-- A in as a dependency of B when we are compiling B.
--
-- 2. A module that depends on a module in an external loop can't proceed
-- until the entire loop is re-typechecked.
--
-- These two invariants have to be maintained to correctly build a
-- compilation graph with one or more loops.
-- The loop that this module will finish. After this module successfully
-- compiles, this loop is going to get re-typechecked.
let finish_loop = listToMaybe
[ tail loop | loop <- comp_graph_loops
, head loop == this_build_mod ]
-- If this module finishes a loop then it must depend on all the other
-- modules in that loop because the entire module loop is going to be
-- re-typechecked once this module gets compiled. These extra dependencies
-- are this module's "internal" loop dependencies, because this module is
-- inside the loop in question.
let int_loop_deps = Set.fromList $
case finish_loop of
Nothing -> []
Just loop -> filter (/= this_build_mod) loop
-- If this module depends on a module within a loop then it must wait for
-- that loop to get re-typechecked, i.e. it must wait on the module that
-- finishes that loop. These extra dependencies are this module's
-- "external" loop dependencies, because this module is outside of the
-- loop(s) in question.
let ext_loop_deps = Set.fromList
[ head loop | loop <- comp_graph_loops
, any (`Set.member` textual_deps) loop
, this_build_mod `notElem` loop ]
let all_deps = foldl1 Set.union [textual_deps, int_loop_deps, ext_loop_deps]
-- All of the module's home-module dependencies.
let home_deps_with_idx =
[ home_dep | dep <- Set.toList all_deps
, Just home_dep <- [Map.lookup dep home_mod_map] ]
-- Sort the list of dependencies in reverse-topological order. This way, by
-- the time we get woken up by the result of an earlier dependency,
-- subsequent dependencies are more likely to have finished. This step
-- effectively reduces the number of MVars that each thread blocks on.
let home_deps = map fst $ sortBy (flip (comparing snd)) home_deps_with_idx
-- Wait for the all the module's dependencies to finish building.
deps_ok <- allM (fmap succeeded . readMVar) home_deps
-- We can't build this module if any of its dependencies failed to build.
if not deps_ok
then return Failed
else do
-- Any hsc_env at this point is OK to use since we only really require
-- that the HPT contains the HMIs of our dependencies.
hsc_env <- readMVar hsc_env_var
old_hpt <- readIORef old_hpt_var
let logger err = printBagOfErrors lcl_dflags (srcErrorMessages err)
-- Limit the number of parallel compiles.
let withSem sem = bracket_ (waitQSem sem) (signalQSem sem)
mb_mod_info <- withSem par_sem $
handleSourceError (\err -> do logger err; return Nothing) $ do
-- Have the ModSummary and HscEnv point to our local log_action
-- and filesToClean var.
let lcl_mod = localize_mod mod
let lcl_hsc_env = localize_hsc_env hsc_env
-- Compile the module.
mod_info <- upsweep_mod lcl_hsc_env old_hpt stable_mods lcl_mod
mod_index num_mods
return (Just mod_info)
case mb_mod_info of
Nothing -> return Failed
Just mod_info -> do
let this_mod = ms_mod_name mod
-- Prune the old HPT unless this is an hs-boot module.
unless (isBootSummary mod) $
atomicModifyIORef' old_hpt_var $ \old_hpt ->
(delFromUFM old_hpt this_mod, ())
-- Update and fetch the global HscEnv.
lcl_hsc_env' <- modifyMVar hsc_env_var $ \hsc_env -> do
let hsc_env' = hsc_env { hsc_HPT = addToUFM (hsc_HPT hsc_env)
this_mod mod_info }
-- If this module is a loop finisher, now is the time to
-- re-typecheck the loop.
hsc_env'' <- case finish_loop of
Nothing -> return hsc_env'
Just loop -> typecheckLoop lcl_dflags hsc_env' $
map (moduleName . fst) loop
return (hsc_env'', localize_hsc_env hsc_env'')
-- Clean up any intermediate files.
cleanup lcl_hsc_env'
return Succeeded
where
localize_mod mod
= mod { ms_hspp_opts = (ms_hspp_opts mod)
{ log_action = log_action lcl_dflags
, filesToClean = filesToClean lcl_dflags } }
localize_hsc_env hsc_env
= hsc_env { hsc_dflags = (hsc_dflags hsc_env)
{ log_action = log_action lcl_dflags
, filesToClean = filesToClean lcl_dflags } }
-- -----------------------------------------------------------------------------
--
-- | The upsweep
--
-- This is where we compile each module in the module graph, in a pass
-- from the bottom to the top of the graph.
--
-- There better had not be any cyclic groups here -- we check for them.
upsweep
:: GhcMonad m
=> HomePackageTable -- ^ HPT from last time round (pruned)
-> ([ModuleName],[ModuleName]) -- ^ stable modules (see checkStability)
-> (HscEnv -> IO ()) -- ^ How to clean up unwanted tmp files
-> [SCC ModSummary] -- ^ Mods to do (the worklist)
-> m (SuccessFlag,
[ModSummary])
-- ^ Returns:
--
-- 1. A flag whether the complete upsweep was successful.
-- 2. The 'HscEnv' in the monad has an updated HPT
-- 3. A list of modules which succeeded loading.
upsweep old_hpt stable_mods cleanup sccs = do
(res, done) <- upsweep' old_hpt [] sccs 1 (length sccs)
return (res, reverse done)
where
upsweep' _old_hpt done
[] _ _
= return (Succeeded, done)
upsweep' _old_hpt done
(CyclicSCC ms:_) _ _
= do dflags <- getSessionDynFlags
liftIO $ fatalErrorMsg dflags (cyclicModuleErr ms)
return (Failed, done)
upsweep' old_hpt done
(AcyclicSCC mod:mods) mod_index nmods
= do -- putStrLn ("UPSWEEP_MOD: hpt = " ++
-- show (map (moduleUserString.moduleName.mi_module.hm_iface)
-- (moduleEnvElts (hsc_HPT hsc_env)))
let logger _mod = defaultWarnErrLogger
hsc_env <- getSession
-- Remove unwanted tmp files between compilations
liftIO (cleanup hsc_env)
mb_mod_info
<- handleSourceError
(\err -> do logger mod (Just err); return Nothing) $ do
mod_info <- liftIO $ upsweep_mod hsc_env old_hpt stable_mods
mod mod_index nmods
logger mod Nothing -- log warnings
return (Just mod_info)
case mb_mod_info of
Nothing -> return (Failed, done)
Just mod_info -> do
let this_mod = ms_mod_name mod
-- Add new info to hsc_env
hpt1 = addToUFM (hsc_HPT hsc_env) this_mod mod_info
hsc_env1 = hsc_env { hsc_HPT = hpt1 }
-- Space-saving: delete the old HPT entry
-- for mod BUT if mod is a hs-boot
-- node, don't delete it. For the
-- interface, the HPT entry is probaby for the
-- main Haskell source file. Deleting it
-- would force the real module to be recompiled
-- every time.
old_hpt1 | isBootSummary mod = old_hpt
| otherwise = delFromUFM old_hpt this_mod
done' = mod:done
-- fixup our HomePackageTable after we've finished compiling
-- a mutually-recursive loop. See reTypecheckLoop, below.
hsc_env2 <- liftIO $ reTypecheckLoop hsc_env1 mod done'
setSession hsc_env2
upsweep' old_hpt1 done' mods (mod_index+1) nmods
maybeGetIfaceDate :: DynFlags -> ModLocation -> IO (Maybe UTCTime)
maybeGetIfaceDate dflags location
| writeInterfaceOnlyMode dflags
-- Minor optimization: it should be harmless to check the hi file location
-- always, but it's better to avoid hitting the filesystem if possible.
= modificationTimeIfExists (ml_hi_file location)
| otherwise
= return Nothing
-- | Compile a single module. Always produce a Linkable for it if
-- successful. If no compilation happened, return the old Linkable.
upsweep_mod :: HscEnv
-> HomePackageTable
-> ([ModuleName],[ModuleName])
-> ModSummary
-> Int -- index of module
-> Int -- total number of modules
-> IO HomeModInfo
upsweep_mod hsc_env old_hpt (stable_obj, stable_bco) summary mod_index nmods
= let
this_mod_name = ms_mod_name summary
this_mod = ms_mod summary
mb_obj_date = ms_obj_date summary
mb_if_date = ms_iface_date summary
obj_fn = ml_obj_file (ms_location summary)
hs_date = ms_hs_date summary
is_stable_obj = this_mod_name `elem` stable_obj
is_stable_bco = this_mod_name `elem` stable_bco
old_hmi = lookupUFM old_hpt this_mod_name
-- We're using the dflags for this module now, obtained by
-- applying any options in its LANGUAGE & OPTIONS_GHC pragmas.
dflags = ms_hspp_opts summary
prevailing_target = hscTarget (hsc_dflags hsc_env)
local_target = hscTarget dflags
-- If OPTIONS_GHC contains -fasm or -fllvm, be careful that
-- we don't do anything dodgy: these should only work to change
-- from -fllvm to -fasm and vice-versa, otherwise we could
-- end up trying to link object code to byte code.
target = if prevailing_target /= local_target
&& (not (isObjectTarget prevailing_target)
|| not (isObjectTarget local_target))
then prevailing_target
else local_target
-- store the corrected hscTarget into the summary
summary' = summary{ ms_hspp_opts = dflags { hscTarget = target } }
-- The old interface is ok if
-- a) we're compiling a source file, and the old HPT
-- entry is for a source file
-- b) we're compiling a hs-boot file
-- Case (b) allows an hs-boot file to get the interface of its
-- real source file on the second iteration of the compilation
-- manager, but that does no harm. Otherwise the hs-boot file
-- will always be recompiled
mb_old_iface
= case old_hmi of
Nothing -> Nothing
Just hm_info | isBootSummary summary -> Just iface
| not (mi_boot iface) -> Just iface
| otherwise -> Nothing
where
iface = hm_iface hm_info
compile_it :: Maybe Linkable -> SourceModified -> IO HomeModInfo
compile_it mb_linkable src_modified =
compileOne hsc_env summary' mod_index nmods
mb_old_iface mb_linkable src_modified
compile_it_discard_iface :: Maybe Linkable -> SourceModified
-> IO HomeModInfo
compile_it_discard_iface mb_linkable src_modified =
compileOne hsc_env summary' mod_index nmods
Nothing mb_linkable src_modified
-- With the HscNothing target we create empty linkables to avoid
-- recompilation. We have to detect these to recompile anyway if
-- the target changed since the last compile.
is_fake_linkable
| Just hmi <- old_hmi, Just l <- hm_linkable hmi =
null (linkableUnlinked l)
| otherwise =
-- we have no linkable, so it cannot be fake
False
implies False _ = True
implies True x = x
in
case () of
_
-- Regardless of whether we're generating object code or
-- byte code, we can always use an existing object file
-- if it is *stable* (see checkStability).
| is_stable_obj, Just hmi <- old_hmi -> do
liftIO $ debugTraceMsg (hsc_dflags hsc_env) 5
(text "skipping stable obj mod:" <+> ppr this_mod_name)
return hmi
-- object is stable, and we have an entry in the
-- old HPT: nothing to do
| is_stable_obj, isNothing old_hmi -> do
liftIO $ debugTraceMsg (hsc_dflags hsc_env) 5
(text "compiling stable on-disk mod:" <+> ppr this_mod_name)
linkable <- liftIO $ findObjectLinkable this_mod obj_fn
(expectJust "upsweep1" mb_obj_date)
compile_it (Just linkable) SourceUnmodifiedAndStable
-- object is stable, but we need to load the interface
-- off disk to make a HMI.
| not (isObjectTarget target), is_stable_bco,
(target /= HscNothing) `implies` not is_fake_linkable ->
ASSERT(isJust old_hmi) -- must be in the old_hpt
let Just hmi = old_hmi in do
liftIO $ debugTraceMsg (hsc_dflags hsc_env) 5
(text "skipping stable BCO mod:" <+> ppr this_mod_name)
return hmi
-- BCO is stable: nothing to do
| not (isObjectTarget target),
Just hmi <- old_hmi,
Just l <- hm_linkable hmi,
not (isObjectLinkable l),
(target /= HscNothing) `implies` not is_fake_linkable,
linkableTime l >= ms_hs_date summary -> do
liftIO $ debugTraceMsg (hsc_dflags hsc_env) 5
(text "compiling non-stable BCO mod:" <+> ppr this_mod_name)
compile_it (Just l) SourceUnmodified
-- we have an old BCO that is up to date with respect
-- to the source: do a recompilation check as normal.
-- When generating object code, if there's an up-to-date
-- object file on the disk, then we can use it.
-- However, if the object file is new (compared to any
-- linkable we had from a previous compilation), then we
-- must discard any in-memory interface, because this
-- means the user has compiled the source file
-- separately and generated a new interface, that we must
-- read from the disk.
--
| isObjectTarget target,
Just obj_date <- mb_obj_date,
obj_date >= hs_date -> do
case old_hmi of
Just hmi
| Just l <- hm_linkable hmi,
isObjectLinkable l && linkableTime l == obj_date -> do
liftIO $ debugTraceMsg (hsc_dflags hsc_env) 5
(text "compiling mod with new on-disk obj:" <+> ppr this_mod_name)
compile_it (Just l) SourceUnmodified
_otherwise -> do
liftIO $ debugTraceMsg (hsc_dflags hsc_env) 5
(text "compiling mod with new on-disk obj2:" <+> ppr this_mod_name)
linkable <- liftIO $ findObjectLinkable this_mod obj_fn obj_date
compile_it_discard_iface (Just linkable) SourceUnmodified
-- See Note [Recompilation checking when typechecking only]
| writeInterfaceOnlyMode dflags,
Just if_date <- mb_if_date,
if_date >= hs_date -> do
liftIO $ debugTraceMsg (hsc_dflags hsc_env) 5
(text "skipping tc'd mod:" <+> ppr this_mod_name)
compile_it Nothing SourceUnmodified
_otherwise -> do
liftIO $ debugTraceMsg (hsc_dflags hsc_env) 5
(text "compiling mod:" <+> ppr this_mod_name)
compile_it Nothing SourceModified
-- Note [Recompilation checking when typechecking only]
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-- If we are compiling with -fno-code -fwrite-interface, there won't
-- be any object code that we can compare against, nor should there
-- be: we're *just* generating interface files. In this case, we
-- want to check if the interface file is new, in lieu of the object
-- file. See also Trac #9243.
-- Filter modules in the HPT
retainInTopLevelEnvs :: [ModuleName] -> HomePackageTable -> HomePackageTable
retainInTopLevelEnvs keep_these hpt
= listToUFM [ (mod, expectJust "retain" mb_mod_info)
| mod <- keep_these
, let mb_mod_info = lookupUFM hpt mod
, isJust mb_mod_info ]
-- ---------------------------------------------------------------------------
-- Typecheck module loops
{-
See bug #930. This code fixes a long-standing bug in --make. The
problem is that when compiling the modules *inside* a loop, a data
type that is only defined at the top of the loop looks opaque; but
after the loop is done, the structure of the data type becomes
apparent.
The difficulty is then that two different bits of code have
different notions of what the data type looks like.
The idea is that after we compile a module which also has an .hs-boot
file, we re-generate the ModDetails for each of the modules that
depends on the .hs-boot file, so that everyone points to the proper
TyCons, Ids etc. defined by the real module, not the boot module.
Fortunately re-generating a ModDetails from a ModIface is easy: the
function TcIface.typecheckIface does exactly that.
Picking the modules to re-typecheck is slightly tricky. Starting from
the module graph consisting of the modules that have already been
compiled, we reverse the edges (so they point from the imported module
to the importing module), and depth-first-search from the .hs-boot
node. This gives us all the modules that depend transitively on the
.hs-boot module, and those are exactly the modules that we need to
re-typecheck.
Following this fix, GHC can compile itself with --make -O2.
-}
reTypecheckLoop :: HscEnv -> ModSummary -> ModuleGraph -> IO HscEnv
reTypecheckLoop hsc_env ms graph
| Just loop <- getModLoop ms graph
, let non_boot = filter (not.isBootSummary) loop
= typecheckLoop (hsc_dflags hsc_env) hsc_env (map ms_mod_name non_boot)
| otherwise
= return hsc_env
getModLoop :: ModSummary -> ModuleGraph -> Maybe [ModSummary]
getModLoop ms graph
| not (isBootSummary ms)
, any (\m -> ms_mod m == this_mod && isBootSummary m) graph
, let mss = reachableBackwards (ms_mod_name ms) graph
= Just mss
| otherwise
= Nothing
where
this_mod = ms_mod ms
typecheckLoop :: DynFlags -> HscEnv -> [ModuleName] -> IO HscEnv
typecheckLoop dflags hsc_env mods = do
debugTraceMsg dflags 2 $
text "Re-typechecking loop: " <> ppr mods
new_hpt <-
fixIO $ \new_hpt -> do
let new_hsc_env = hsc_env{ hsc_HPT = new_hpt }
mds <- initIfaceCheck new_hsc_env $
mapM (typecheckIface . hm_iface) hmis
let new_hpt = addListToUFM old_hpt
(zip mods [ hmi{ hm_details = details }
| (hmi,details) <- zip hmis mds ])
return new_hpt
return hsc_env{ hsc_HPT = new_hpt }
where
old_hpt = hsc_HPT hsc_env
hmis = map (expectJust "typecheckLoop" . lookupUFM old_hpt) mods
reachableBackwards :: ModuleName -> [ModSummary] -> [ModSummary]
reachableBackwards mod summaries
= [ ms | (ms,_,_) <- reachableG (transposeG graph) root ]
where -- the rest just sets up the graph:
(graph, lookup_node) = moduleGraphNodes False summaries
root = expectJust "reachableBackwards" (lookup_node HsBootFile mod)
-- ---------------------------------------------------------------------------
--
-- | Topological sort of the module graph
topSortModuleGraph
:: Bool
-- ^ Drop hi-boot nodes? (see below)
-> [ModSummary]
-> Maybe ModuleName
-- ^ Root module name. If @Nothing@, use the full graph.
-> [SCC ModSummary]
-- ^ Calculate SCCs of the module graph, possibly dropping the hi-boot nodes
-- The resulting list of strongly-connected-components is in topologically
-- sorted order, starting with the module(s) at the bottom of the
-- dependency graph (ie compile them first) and ending with the ones at
-- the top.
--
-- Drop hi-boot nodes (first boolean arg)?
--
-- - @False@: treat the hi-boot summaries as nodes of the graph,
-- so the graph must be acyclic
--
-- - @True@: eliminate the hi-boot nodes, and instead pretend
-- the a source-import of Foo is an import of Foo
-- The resulting graph has no hi-boot nodes, but can be cyclic
topSortModuleGraph drop_hs_boot_nodes summaries mb_root_mod
= map (fmap summaryNodeSummary) $ stronglyConnCompG initial_graph
where
(graph, lookup_node) = moduleGraphNodes drop_hs_boot_nodes summaries
initial_graph = case mb_root_mod of
Nothing -> graph
Just root_mod ->
-- restrict the graph to just those modules reachable from
-- the specified module. We do this by building a graph with
-- the full set of nodes, and determining the reachable set from
-- the specified node.
let root | Just node <- lookup_node HsSrcFile root_mod, graph `hasVertexG` node = node
| otherwise = throwGhcException (ProgramError "module does not exist")
in graphFromEdgedVertices (seq root (reachableG graph root))
type SummaryNode = (ModSummary, Int, [Int])
summaryNodeKey :: SummaryNode -> Int
summaryNodeKey (_, k, _) = k
summaryNodeSummary :: SummaryNode -> ModSummary
summaryNodeSummary (s, _, _) = s
moduleGraphNodes :: Bool -> [ModSummary]
-> (Graph SummaryNode, HscSource -> ModuleName -> Maybe SummaryNode)
moduleGraphNodes drop_hs_boot_nodes summaries = (graphFromEdgedVertices nodes, lookup_node)
where
numbered_summaries = zip summaries [1..]
lookup_node :: HscSource -> ModuleName -> Maybe SummaryNode
lookup_node hs_src mod = Map.lookup (mod, hscSourceToIsBoot hs_src) node_map
lookup_key :: HscSource -> ModuleName -> Maybe Int
lookup_key hs_src mod = fmap summaryNodeKey (lookup_node hs_src mod)
node_map :: NodeMap SummaryNode
node_map = Map.fromList [ ((moduleName (ms_mod s),
hscSourceToIsBoot (ms_hsc_src s)), node)
| node@(s, _, _) <- nodes ]
-- We use integers as the keys for the SCC algorithm
nodes :: [SummaryNode]
nodes = [ (s, key, out_keys)
| (s, key) <- numbered_summaries
-- Drop the hi-boot ones if told to do so
, not (isBootSummary s && drop_hs_boot_nodes)
, let out_keys = out_edge_keys hs_boot_key (map unLoc (ms_home_srcimps s)) ++
out_edge_keys HsSrcFile (map unLoc (ms_home_imps s)) ++
(-- see [boot-edges] below
if drop_hs_boot_nodes || ms_hsc_src s == HsBootFile
then []
else case lookup_key HsBootFile (ms_mod_name s) of
Nothing -> []
Just k -> [k]) ]
-- [boot-edges] if this is a .hs and there is an equivalent
-- .hs-boot, add a link from the former to the latter. This
-- has the effect of detecting bogus cases where the .hs-boot
-- depends on the .hs, by introducing a cycle. Additionally,
-- it ensures that we will always process the .hs-boot before
-- the .hs, and so the HomePackageTable will always have the
-- most up to date information.
-- Drop hs-boot nodes by using HsSrcFile as the key
hs_boot_key | drop_hs_boot_nodes = HsSrcFile
| otherwise = HsBootFile
out_edge_keys :: HscSource -> [ModuleName] -> [Int]
out_edge_keys hi_boot ms = mapMaybe (lookup_key hi_boot) ms
-- If we want keep_hi_boot_nodes, then we do lookup_key with
-- IsBoot; else NotBoot
-- The nodes of the graph are keyed by (mod, is boot?) pairs
-- NB: hsig files show up as *normal* nodes (not boot!), since they don't
-- participate in cycles (for now)
type NodeKey = (ModuleName, IsBoot)
type NodeMap a = Map.Map NodeKey a
msKey :: ModSummary -> NodeKey
msKey (ModSummary { ms_mod = mod, ms_hsc_src = boot })
= (moduleName mod, hscSourceToIsBoot boot)
mkNodeMap :: [ModSummary] -> NodeMap ModSummary
mkNodeMap summaries = Map.fromList [ (msKey s, s) | s <- summaries]
nodeMapElts :: NodeMap a -> [a]
nodeMapElts = Map.elems
-- | If there are {-# SOURCE #-} imports between strongly connected
-- components in the topological sort, then those imports can
-- definitely be replaced by ordinary non-SOURCE imports: if SOURCE
-- were necessary, then the edge would be part of a cycle.
warnUnnecessarySourceImports :: GhcMonad m => [SCC ModSummary] -> m ()
warnUnnecessarySourceImports sccs = do
dflags <- getDynFlags
logWarnings (listToBag (concatMap (check dflags . flattenSCC) sccs))
where check dflags ms =
let mods_in_this_cycle = map ms_mod_name ms in
[ warn dflags i | m <- ms, i <- ms_home_srcimps m,
unLoc i `notElem` mods_in_this_cycle ]
warn :: DynFlags -> Located ModuleName -> WarnMsg
warn dflags (L loc mod) =
mkPlainErrMsg dflags loc
(ptext (sLit "Warning: {-# SOURCE #-} unnecessary in import of ")
<+> quotes (ppr mod))
reportImportErrors :: MonadIO m => [Either ErrMsg b] -> m [b]
reportImportErrors xs | null errs = return oks
| otherwise = throwManyErrors errs
where (errs, oks) = partitionEithers xs
throwManyErrors :: MonadIO m => [ErrMsg] -> m ab
throwManyErrors errs = liftIO $ throwIO $ mkSrcErr $ listToBag errs
-----------------------------------------------------------------------------
--
-- | Downsweep (dependency analysis)
--
-- Chase downwards from the specified root set, returning summaries
-- for all home modules encountered. Only follow source-import
-- links.
--
-- We pass in the previous collection of summaries, which is used as a
-- cache to avoid recalculating a module summary if the source is
-- unchanged.
--
-- The returned list of [ModSummary] nodes has one node for each home-package
-- module, plus one for any hs-boot files. The imports of these nodes
-- are all there, including the imports of non-home-package modules.
downsweep :: HscEnv
-> [ModSummary] -- Old summaries
-> [ModuleName] -- Ignore dependencies on these; treat
-- them as if they were package modules
-> Bool -- True <=> allow multiple targets to have
-- the same module name; this is
-- very useful for ghc -M
-> IO [Either ErrMsg ModSummary]
-- The elts of [ModSummary] all have distinct
-- (Modules, IsBoot) identifiers, unless the Bool is true
-- in which case there can be repeats
downsweep hsc_env old_summaries excl_mods allow_dup_roots
= do
rootSummaries <- mapM getRootSummary roots
rootSummariesOk <- reportImportErrors rootSummaries
let root_map = mkRootMap rootSummariesOk
checkDuplicates root_map
summs <- loop (concatMap calcDeps rootSummariesOk) root_map
return summs
where
-- When we're compiling a signature file, we have an implicit
-- dependency on what-ever the signature's implementation is.
-- (But not when we're type checking!)
calcDeps summ
| HsigFile <- ms_hsc_src summ
, Just m <- getSigOf (hsc_dflags hsc_env) (moduleName (ms_mod summ))
, modulePackageKey m == thisPackage (hsc_dflags hsc_env)
= (noLoc (moduleName m), NotBoot) : msDeps summ
| otherwise = msDeps summ
dflags = hsc_dflags hsc_env
roots = hsc_targets hsc_env
old_summary_map :: NodeMap ModSummary
old_summary_map = mkNodeMap old_summaries
getRootSummary :: Target -> IO (Either ErrMsg ModSummary)
getRootSummary (Target (TargetFile file mb_phase) obj_allowed maybe_buf)
= do exists <- liftIO $ doesFileExist file
if exists
then Right `fmap` summariseFile hsc_env old_summaries file mb_phase
obj_allowed maybe_buf
else return $ Left $ mkPlainErrMsg dflags noSrcSpan $
text "can't find file:" <+> text file
getRootSummary (Target (TargetModule modl) obj_allowed maybe_buf)
= do maybe_summary <- summariseModule hsc_env old_summary_map NotBoot
(L rootLoc modl) obj_allowed
maybe_buf excl_mods
case maybe_summary of
Nothing -> return $ Left $ packageModErr dflags modl
Just s -> return s
rootLoc = mkGeneralSrcSpan (fsLit "<command line>")
-- In a root module, the filename is allowed to diverge from the module
-- name, so we have to check that there aren't multiple root files
-- defining the same module (otherwise the duplicates will be silently
-- ignored, leading to confusing behaviour).
checkDuplicates :: NodeMap [Either ErrMsg ModSummary] -> IO ()
checkDuplicates root_map
| allow_dup_roots = return ()
| null dup_roots = return ()
| otherwise = liftIO $ multiRootsErr dflags (head dup_roots)
where
dup_roots :: [[ModSummary]] -- Each at least of length 2
dup_roots = filterOut isSingleton $ map rights $ nodeMapElts root_map
loop :: [(Located ModuleName,IsBoot)]
-- Work list: process these modules
-> NodeMap [Either ErrMsg ModSummary]
-- Visited set; the range is a list because
-- the roots can have the same module names
-- if allow_dup_roots is True
-> IO [Either ErrMsg ModSummary]
-- The result includes the worklist, except
-- for those mentioned in the visited set
loop [] done = return (concat (nodeMapElts done))
loop ((wanted_mod, is_boot) : ss) done
| Just summs <- Map.lookup key done
= if isSingleton summs then
loop ss done
else
do { multiRootsErr dflags (rights summs); return [] }
| otherwise
= do mb_s <- summariseModule hsc_env old_summary_map
is_boot wanted_mod True
Nothing excl_mods
case mb_s of
Nothing -> loop ss done
Just (Left e) -> loop ss (Map.insert key [Left e] done)
Just (Right s)-> loop (calcDeps s ++ ss)
(Map.insert key [Right s] done)
where
key = (unLoc wanted_mod, is_boot)
mkRootMap :: [ModSummary] -> NodeMap [Either ErrMsg ModSummary]
mkRootMap summaries = Map.insertListWith (flip (++))
[ (msKey s, [Right s]) | s <- summaries ]
Map.empty
-- | Returns the dependencies of the ModSummary s.
-- A wrinkle is that for a {-# SOURCE #-} import we return
-- *both* the hs-boot file
-- *and* the source file
-- as "dependencies". That ensures that the list of all relevant
-- modules always contains B.hs if it contains B.hs-boot.
-- Remember, this pass isn't doing the topological sort. It's
-- just gathering the list of all relevant ModSummaries
msDeps :: ModSummary -> [(Located ModuleName, IsBoot)]
msDeps s =
concat [ [(m,IsBoot), (m,NotBoot)] | m <- ms_home_srcimps s ]
++ [ (m,NotBoot) | m <- ms_home_imps s ]
home_imps :: [Located (ImportDecl RdrName)] -> [Located ModuleName]
home_imps imps = [ ideclName i | L _ i <- imps,
isLocal (fmap snd $ ideclPkgQual i) ]
where isLocal Nothing = True
isLocal (Just pkg) | pkg == fsLit "this" = True -- "this" is special
isLocal _ = False
ms_home_allimps :: ModSummary -> [ModuleName]
ms_home_allimps ms = map unLoc (ms_home_srcimps ms ++ ms_home_imps ms)
ms_home_srcimps :: ModSummary -> [Located ModuleName]
ms_home_srcimps = home_imps . ms_srcimps
ms_home_imps :: ModSummary -> [Located ModuleName]
ms_home_imps = home_imps . ms_imps
-----------------------------------------------------------------------------
-- Summarising modules
-- We have two types of summarisation:
--
-- * Summarise a file. This is used for the root module(s) passed to
-- cmLoadModules. The file is read, and used to determine the root
-- module name. The module name may differ from the filename.
--
-- * Summarise a module. We are given a module name, and must provide
-- a summary. The finder is used to locate the file in which the module
-- resides.
summariseFile
:: HscEnv
-> [ModSummary] -- old summaries
-> FilePath -- source file name
-> Maybe Phase -- start phase
-> Bool -- object code allowed?
-> Maybe (StringBuffer,UTCTime)
-> IO ModSummary
summariseFile hsc_env old_summaries file mb_phase obj_allowed maybe_buf
-- we can use a cached summary if one is available and the
-- source file hasn't changed, But we have to look up the summary
-- by source file, rather than module name as we do in summarise.
| Just old_summary <- findSummaryBySourceFile old_summaries file
= do
let location = ms_location old_summary
dflags = hsc_dflags hsc_env
src_timestamp <- get_src_timestamp
-- The file exists; we checked in getRootSummary above.
-- If it gets removed subsequently, then this
-- getModificationUTCTime may fail, but that's the right
-- behaviour.
-- return the cached summary if the source didn't change
if ms_hs_date old_summary == src_timestamp &&
not (gopt Opt_ForceRecomp (hsc_dflags hsc_env))
then do -- update the object-file timestamp
obj_timestamp <-
if isObjectTarget (hscTarget (hsc_dflags hsc_env))
|| obj_allowed -- bug #1205
then liftIO $ getObjTimestamp location NotBoot
else return Nothing
hi_timestamp <- maybeGetIfaceDate dflags location
return old_summary{ ms_obj_date = obj_timestamp
, ms_iface_date = hi_timestamp }
else
new_summary src_timestamp
| otherwise
= do src_timestamp <- get_src_timestamp
new_summary src_timestamp
where
get_src_timestamp = case maybe_buf of
Just (_,t) -> return t
Nothing -> liftIO $ getModificationUTCTime file
-- getMofificationUTCTime may fail
new_summary src_timestamp = do
let dflags = hsc_dflags hsc_env
let hsc_src = if isHaskellSigFilename file then HsigFile else HsSrcFile
(dflags', hspp_fn, buf)
<- preprocessFile hsc_env file mb_phase maybe_buf
(srcimps,the_imps, L _ mod_name) <- getImports dflags' buf hspp_fn file
-- Make a ModLocation for this file
location <- liftIO $ mkHomeModLocation dflags mod_name file
-- Tell the Finder cache where it is, so that subsequent calls
-- to findModule will find it, even if it's not on any search path
mod <- liftIO $ addHomeModuleToFinder hsc_env mod_name location
-- when the user asks to load a source file by name, we only
-- use an object file if -fobject-code is on. See #1205.
obj_timestamp <-
if isObjectTarget (hscTarget (hsc_dflags hsc_env))
|| obj_allowed -- bug #1205
then liftIO $ modificationTimeIfExists (ml_obj_file location)
else return Nothing
hi_timestamp <- maybeGetIfaceDate dflags location
return (ModSummary { ms_mod = mod, ms_hsc_src = hsc_src,
ms_location = location,
ms_hspp_file = hspp_fn,
ms_hspp_opts = dflags',
ms_hspp_buf = Just buf,
ms_srcimps = srcimps, ms_textual_imps = the_imps,
ms_hs_date = src_timestamp,
ms_iface_date = hi_timestamp,
ms_obj_date = obj_timestamp })
findSummaryBySourceFile :: [ModSummary] -> FilePath -> Maybe ModSummary
findSummaryBySourceFile summaries file
= case [ ms | ms <- summaries, HsSrcFile <- [ms_hsc_src ms],
expectJust "findSummaryBySourceFile" (ml_hs_file (ms_location ms)) == file ] of
[] -> Nothing
(x:_) -> Just x
-- Summarise a module, and pick up source and timestamp.
summariseModule
:: HscEnv
-> NodeMap ModSummary -- Map of old summaries
-> IsBoot -- IsBoot <=> a {-# SOURCE #-} import
-> Located ModuleName -- Imported module to be summarised
-> Bool -- object code allowed?
-> Maybe (StringBuffer, UTCTime)
-> [ModuleName] -- Modules to exclude
-> IO (Maybe (Either ErrMsg ModSummary)) -- Its new summary
summariseModule hsc_env old_summary_map is_boot (L loc wanted_mod)
obj_allowed maybe_buf excl_mods
| wanted_mod `elem` excl_mods
= return Nothing
| Just old_summary <- Map.lookup (wanted_mod, is_boot) old_summary_map
= do -- Find its new timestamp; all the
-- ModSummaries in the old map have valid ml_hs_files
let location = ms_location old_summary
src_fn = expectJust "summariseModule" (ml_hs_file location)
-- check the modification time on the source file, and
-- return the cached summary if it hasn't changed. If the
-- file has disappeared, we need to call the Finder again.
case maybe_buf of
Just (_,t) -> check_timestamp old_summary location src_fn t
Nothing -> do
m <- tryIO (getModificationUTCTime src_fn)
case m of
Right t -> check_timestamp old_summary location src_fn t
Left e | isDoesNotExistError e -> find_it
| otherwise -> ioError e
| otherwise = find_it
where
dflags = hsc_dflags hsc_env
check_timestamp old_summary location src_fn src_timestamp
| ms_hs_date old_summary == src_timestamp &&
not (gopt Opt_ForceRecomp dflags) = do
-- update the object-file timestamp
obj_timestamp <-
if isObjectTarget (hscTarget (hsc_dflags hsc_env))
|| obj_allowed -- bug #1205
then getObjTimestamp location is_boot
else return Nothing
hi_timestamp <- maybeGetIfaceDate dflags location
return (Just (Right old_summary{ ms_obj_date = obj_timestamp
, ms_iface_date = hi_timestamp}))
| otherwise =
-- source changed: re-summarise.
new_summary location (ms_mod old_summary) src_fn src_timestamp
find_it = do
-- Don't use the Finder's cache this time. If the module was
-- previously a package module, it may have now appeared on the
-- search path, so we want to consider it to be a home module. If
-- the module was previously a home module, it may have moved.
uncacheModule hsc_env wanted_mod
found <- findImportedModule hsc_env wanted_mod Nothing
case found of
Found location mod
| isJust (ml_hs_file location) ->
-- Home package
just_found location mod
| otherwise ->
-- Drop external-pkg
ASSERT(modulePackageKey mod /= thisPackage dflags)
return Nothing
err -> return $ Just $ Left $ noModError dflags loc wanted_mod err
-- Not found
just_found location mod = do
-- Adjust location to point to the hs-boot source file,
-- hi file, object file, when is_boot says so
let location' | IsBoot <- is_boot = addBootSuffixLocn location
| otherwise = location
src_fn = expectJust "summarise2" (ml_hs_file location')
-- Check that it exists
-- It might have been deleted since the Finder last found it
maybe_t <- modificationTimeIfExists src_fn
case maybe_t of
Nothing -> return $ Just $ Left $ noHsFileErr dflags loc src_fn
Just t -> new_summary location' mod src_fn t
new_summary location mod src_fn src_timestamp
= do
-- Preprocess the source file and get its imports
-- The dflags' contains the OPTIONS pragmas
(dflags', hspp_fn, buf) <- preprocessFile hsc_env src_fn Nothing maybe_buf
(srcimps, the_imps, L mod_loc mod_name) <- getImports dflags' buf hspp_fn src_fn
-- NB: Despite the fact that is_boot is a top-level parameter, we
-- don't actually know coming into this function what the HscSource
-- of the module in question is. This is because we may be processing
-- this module because another module in the graph imported it: in this
-- case, we know if it's a boot or not because of the {-# SOURCE #-}
-- annotation, but we don't know if it's a signature or a regular
-- module until we actually look it up on the filesystem.
let hsc_src = case is_boot of
IsBoot -> HsBootFile
_ | isHaskellSigFilename src_fn -> HsigFile
| otherwise -> HsSrcFile
when (mod_name /= wanted_mod) $
throwOneError $ mkPlainErrMsg dflags' mod_loc $
text "File name does not match module name:"
$$ text "Saw:" <+> quotes (ppr mod_name)
$$ text "Expected:" <+> quotes (ppr wanted_mod)
-- Find the object timestamp, and return the summary
obj_timestamp <-
if isObjectTarget (hscTarget (hsc_dflags hsc_env))
|| obj_allowed -- bug #1205
then getObjTimestamp location is_boot
else return Nothing
hi_timestamp <- maybeGetIfaceDate dflags location
return (Just (Right (ModSummary { ms_mod = mod,
ms_hsc_src = hsc_src,
ms_location = location,
ms_hspp_file = hspp_fn,
ms_hspp_opts = dflags',
ms_hspp_buf = Just buf,
ms_srcimps = srcimps,
ms_textual_imps = the_imps,
ms_hs_date = src_timestamp,
ms_iface_date = hi_timestamp,
ms_obj_date = obj_timestamp })))
getObjTimestamp :: ModLocation -> IsBoot -> IO (Maybe UTCTime)
getObjTimestamp location is_boot
= if is_boot == IsBoot then return Nothing
else modificationTimeIfExists (ml_obj_file location)
preprocessFile :: HscEnv
-> FilePath
-> Maybe Phase -- ^ Starting phase
-> Maybe (StringBuffer,UTCTime)
-> IO (DynFlags, FilePath, StringBuffer)
preprocessFile hsc_env src_fn mb_phase Nothing
= do
(dflags', hspp_fn) <- preprocess hsc_env (src_fn, mb_phase)
buf <- hGetStringBuffer hspp_fn
return (dflags', hspp_fn, buf)
preprocessFile hsc_env src_fn mb_phase (Just (buf, _time))
= do
let dflags = hsc_dflags hsc_env
let local_opts = getOptions dflags buf src_fn
(dflags', leftovers, warns)
<- parseDynamicFilePragma dflags local_opts
checkProcessArgsResult dflags leftovers
handleFlagWarnings dflags' warns
let needs_preprocessing
| Just (Unlit _) <- mb_phase = True
| Nothing <- mb_phase, Unlit _ <- startPhase src_fn = True
-- note: local_opts is only required if there's no Unlit phase
| xopt Opt_Cpp dflags' = True
| gopt Opt_Pp dflags' = True
| otherwise = False
when needs_preprocessing $
throwGhcExceptionIO (ProgramError "buffer needs preprocesing; interactive check disabled")
return (dflags', src_fn, buf)
-----------------------------------------------------------------------------
-- Error messages
-----------------------------------------------------------------------------
noModError :: DynFlags -> SrcSpan -> ModuleName -> FindResult -> ErrMsg
-- ToDo: we don't have a proper line number for this error
noModError dflags loc wanted_mod err
= mkPlainErrMsg dflags loc $ cannotFindModule dflags wanted_mod err
noHsFileErr :: DynFlags -> SrcSpan -> String -> ErrMsg
noHsFileErr dflags loc path
= mkPlainErrMsg dflags loc $ text "Can't find" <+> text path
packageModErr :: DynFlags -> ModuleName -> ErrMsg
packageModErr dflags mod
= mkPlainErrMsg dflags noSrcSpan $
text "module" <+> quotes (ppr mod) <+> text "is a package module"
multiRootsErr :: DynFlags -> [ModSummary] -> IO ()
multiRootsErr _ [] = panic "multiRootsErr"
multiRootsErr dflags summs@(summ1:_)
= throwOneError $ mkPlainErrMsg dflags noSrcSpan $
text "module" <+> quotes (ppr mod) <+>
text "is defined in multiple files:" <+>
sep (map text files)
where
mod = ms_mod summ1
files = map (expectJust "checkDup" . ml_hs_file . ms_location) summs
cyclicModuleErr :: [ModSummary] -> SDoc
-- From a strongly connected component we find
-- a single cycle to report
cyclicModuleErr mss
= ASSERT( not (null mss) )
case findCycle graph of
Nothing -> ptext (sLit "Unexpected non-cycle") <+> ppr mss
Just path -> vcat [ ptext (sLit "Module imports form a cycle:")
, nest 2 (show_path path) ]
where
graph :: [Node NodeKey ModSummary]
graph = [(ms, msKey ms, get_deps ms) | ms <- mss]
get_deps :: ModSummary -> [NodeKey]
get_deps ms = ([ (unLoc m, IsBoot) | m <- ms_home_srcimps ms ] ++
[ (unLoc m, NotBoot) | m <- ms_home_imps ms ])
show_path [] = panic "show_path"
show_path [m] = ptext (sLit "module") <+> ppr_ms m
<+> ptext (sLit "imports itself")
show_path (m1:m2:ms) = vcat ( nest 7 (ptext (sLit "module") <+> ppr_ms m1)
: nest 6 (ptext (sLit "imports") <+> ppr_ms m2)
: go ms )
where
go [] = [ptext (sLit "which imports") <+> ppr_ms m1]
go (m:ms) = (ptext (sLit "which imports") <+> ppr_ms m) : go ms
ppr_ms :: ModSummary -> SDoc
ppr_ms ms = quotes (ppr (moduleName (ms_mod ms))) <+>
(parens (text (msHsFilePath ms)))
|
urbanslug/ghc
|
compiler/main/GhcMake.hs
|
bsd-3-clause
| 87,718
| 25
| 37
| 27,814
| 14,542
| 7,438
| 7,104
| -1
| -1
|
module ETA.CodeGen.Expr where
import ETA.Core.CoreSyn
import ETA.Types.Type
import ETA.Types.TyCon
import ETA.BasicTypes.Id
import ETA.Prelude.PrimOp
import ETA.StgSyn.StgSyn
import ETA.BasicTypes.DataCon
import ETA.Utils.Panic
import ETA.Util
import ETA.Debug
import ETA.CodeGen.Utils
import ETA.CodeGen.Monad
import ETA.CodeGen.Name
import ETA.CodeGen.Layout
import ETA.CodeGen.Types
import ETA.CodeGen.Closure
import ETA.CodeGen.Env
import ETA.CodeGen.Rts
import ETA.CodeGen.Constr
import ETA.CodeGen.Prim
import ETA.CodeGen.ArgRep
import {-# SOURCE #-} ETA.CodeGen.Bind (cgBind)
import Codec.JVM
import Data.Monoid((<>))
import Data.Foldable(fold)
import Data.Maybe(mapMaybe)
import Control.Monad(when, forM_, unless)
cgExpr :: StgExpr -> CodeGen ()
cgExpr (StgApp fun args) = traceCg (str "StgApp" <+> ppr fun <+> ppr args) >>
cgIdApp fun args
cgExpr (StgOpApp (StgPrimOp SeqOp) [StgVarArg a, _] _) = cgIdApp a []
cgExpr (StgOpApp op args ty) = traceCg (str "StgOpApp" <+> ppr args <+> ppr ty) >>
cgOpApp op args ty
cgExpr (StgConApp con args) = traceCg (str "StgConApp" <+> ppr con <+> ppr args) >>
cgConApp con args
-- TODO: Deal with ticks
cgExpr (StgTick t e) = traceCg (str "StgTick" <+> ppr t) >> cgExpr e
cgExpr (StgLit lit) = emitReturn [mkLocDirect False $ cgLit lit]
cgExpr (StgLet binds expr) = do
cgBind binds
cgExpr expr
cgExpr (StgLetNoEscape _ _ binds expr) =
cgLneBinds binds expr
cgExpr (StgCase expr _ _ binder _ altType alts) =
traceCg (str "StgCase" <+> ppr expr <+> ppr binder <+> ppr altType) >>
cgCase expr binder altType alts
cgExpr _ = unimplemented "cgExpr"
cgLneBinds :: StgBinding -> StgExpr -> CodeGen ()
cgLneBinds (StgNonRec binder rhs) expr = do
-- TODO: Optimize this to calculate the smallest type that can hold the target
label <- newLabel
targetLoc <- newTemp False jint
(info, genBindCode) <- cgLetNoEscapeRhsBody binder rhs label 1 targetLoc
n' <- peekNextLocal
bindCode <- genBindCode n'
addBinding info
exprCode <- forkLneBody $ cgExpr expr
let (bindLabel, argLocs) = expectJust "cgLneBinds:StgNonRec"
. maybeLetNoEscape $ info
emit $ fold (map storeDefault argLocs)
<> letNoEscapeCodeBlocks label targetLoc [(bindLabel, bindCode)] exprCode
cgLneBinds (StgRec pairs) expr = do
label <- newLabel
targetLoc <- newTemp False jint
let lneInfos = snd $ foldr (\(a,b) (n,xs) -> (n - 1, (a,b,label,n,targetLoc):xs))
(length pairs, []) pairs
result <- sequence $ map (\(a,b,c,d,e) -> cgLetNoEscapeRhsBody a b c d e) lneInfos
n' <- peekNextLocal
let (infos, genBindCodes) = unzip result
(labels, argLocss) = unzip $ map (expectJust "cgLneBinds:StgRec"
. maybeLetNoEscape) infos
addBindings infos
bindCodes <- sequence $ ($ n') <$> genBindCodes
exprCode <- forkLneBody $ cgExpr expr
emit $ fold (fold (map (map storeDefault) argLocss))
<> letNoEscapeCodeBlocks label targetLoc (zip labels bindCodes) exprCode
cgLetNoEscapeRhsBody :: Id -> StgRhs -> Label -> Int -> CgLoc -> CodeGen (CgIdInfo, Int -> CodeGen Code)
cgLetNoEscapeRhsBody binder (StgRhsClosure _ _ _ _ _ args body) jumpLabel target targetLoc
= cgLetNoEscapeClosure binder (nonVoidIds args) body jumpLabel target targetLoc
cgLetNoEscapeRhsBody binder (StgRhsCon _ con args) jumpLabel target targetLoc
= cgLetNoEscapeClosure binder [] (StgConApp con args) jumpLabel target targetLoc
cgLetNoEscapeClosure
:: Id -> [NonVoid Id] -> StgExpr -> Label -> Int -> CgLoc -> CodeGen (CgIdInfo, Int -> CodeGen Code)
cgLetNoEscapeClosure binder args body label target targetLoc = do
argLocs <- mapM newIdLoc args
let code n' = forkLneBody $ do
bindArgs $ zip args argLocs
setNextLocal n'
cgExpr body
return (lneIdInfo binder label target targetLoc argLocs, code)
letNoEscapeCodeBlocks :: Label -> CgLoc -> [(Int, Code)] -> Code -> Code
letNoEscapeCodeBlocks label targetLoc labelledCode body =
storeDefault targetLoc
<> startLabel label
<> intSwitch (loadLoc targetLoc) labelledCode (Just body)
maybeLetNoEscape :: CgIdInfo -> Maybe (Int, [CgLoc])
maybeLetNoEscape CgIdInfo { cgLocation = LocLne _label target _targetLoc argLocs }
= Just (target, argLocs)
maybeLetNoEscape _ = Nothing
cgIdApp :: Id -> [StgArg] -> CodeGen ()
cgIdApp funId [] | isVoidTy (idType funId) = emitReturn []
cgIdApp funId args = do
dflags <- getDynFlags
funInfo <- getCgIdInfo funId
selfLoopInfo <- getSelfLoop
let cgFunId = cgId funInfo
funName = idName cgFunId
lfInfo = cgLambdaForm funInfo
funLoc = cgLocation funInfo
nArgs = length args
vArgs = length $ filter (isVoidTy . stgArgType) args
case getCallMethod dflags funName cgFunId lfInfo nArgs vArgs funLoc
selfLoopInfo of
ReturnIt -> traceCg (str "cgIdApp: ReturnIt") >>
emitReturn [funLoc]
EnterIt -> traceCg (str "cgIdApp: EnterIt") >>
emitEnter funLoc
SlowCall -> do
traceCg (str "cgIdApp: SlowCall")
argFtCodes <- getRepFtCodes args
withContinuation $ slowCall dflags funLoc argFtCodes
DirectEntry entryCode arity -> do
traceCg (str "cgIdApp: DirectEntry")
argFtCodes <- getRepFtCodes args
withContinuation $ directCall False entryCode arity argFtCodes
JumpToIt label cgLocs mLne -> do
traceCg (str "cgIdApp: JumpToIt")
codes <- getNonVoidArgCodes args
emit $ multiAssign cgLocs codes
<> maybe mempty
(\(target, targetLoc) ->
storeLoc targetLoc (iconst (locFt targetLoc) $ fromIntegral target))
mLne
<> goto label
emitEnter :: CgLoc -> CodeGen ()
emitEnter thunk = do
sequel <- getSequel
case sequel of
Return ->
emit $ enterMethod thunk <> greturn closureType
AssignTo cgLocs -> do
emit $ evaluateMethod thunk <> mkReturnEntry cgLocs
cgConApp :: DataCon -> [StgArg] -> CodeGen ()
cgConApp con args
| isUnboxedTupleCon con = do
repCodes <- getNonVoidArgRepCodes args
emitReturn $ map mkRepLocDirect repCodes
| otherwise = do
(idInfo, genInitCode) <- buildDynCon (dataConWorkId con) con args []
(initCode, _recIndexes, _dataFt) <- genInitCode
emit initCode
emitReturn [cgLocation idInfo]
cgCase :: StgExpr -> Id -> AltType -> [StgAlt] -> CodeGen ()
cgCase (StgOpApp (StgPrimOp op) args _) binder (AlgAlt tyCon) alts
| isEnumerationTyCon tyCon = do
dflags <- getDynFlags
tagExpr <- doEnumPrimop op args
let closureCode = snd $ tagToClosure dflags tyCon tagExpr
loadCode <- if not $ isDeadBinder binder then do
bindLoc <- newIdLoc (NonVoid binder)
bindArg (NonVoid binder) bindLoc
emitAssign bindLoc closureCode
return $ loadLoc bindLoc
else return closureCode
(maybeDefault, branches) <- cgAlgAltRhss (NonVoid binder) alts
emit $ intSwitch (getTagMethod loadCode) branches maybeDefault
where doEnumPrimop :: PrimOp -> [StgArg] -> CodeGen Code
doEnumPrimop TagToEnumOp [arg] =
getArgLoadCode (NonVoid arg)
doEnumPrimop primop args = do
codes <- cgPrimOp primop args
return $ head codes
cgCase (StgApp v []) _ (PrimAlt _) alts
| isVoidRep (idPrimRep v)
, [(DEFAULT, _, _, rhs)] <- alts
= cgExpr rhs
cgCase (StgApp v []) binder altType@(PrimAlt _) alts
| isUnLiftedType (idType v)
|| repsCompatible
= do
unless repsCompatible $
panic "cgCase: reps do not match, perhaps a dodgy unsafeCoerce?"
vInfo <- getCgIdInfo v
binderLoc <- newIdLoc nvBinder
emitAssign binderLoc (idInfoLoadCode vInfo)
bindArgs [(nvBinder, binderLoc)]
cgAlts nvBinder altType alts
where repsCompatible = vRep == idPrimRep binder
-- TODO: Allow integer conversions?
nvBinder = NonVoid binder
vRep = idPrimRep v
cgCase scrut@(StgApp v []) _ (PrimAlt _) _ = do
cgLoc <- newIdLoc (NonVoid v)
withSequel (AssignTo [cgLoc]) $ cgExpr scrut
panic "cgCase: bad unsafeCoerce!"
-- TODO: Generate infinite loop here?
cgCase (StgOpApp (StgPrimOp SeqOp) [StgVarArg a, _] _) binder altType alts
= cgCase (StgApp a []) binder altType alts
cgCase scrut binder altType alts = do
altLocs <- mapM newIdLoc retBinders
-- Take into account uses for unboxed tuples
-- Case-of-case expressions need special care
-- Since there can be multiple bindings to return
-- binder.
when (isCaseOfCase scrut) $ do
emit $ fold (map storeDefault altLocs)
withSequel (AssignTo altLocs) $ cgExpr scrut
bindArgs $ zip retBinders altLocs
cgAlts (NonVoid binder) altType alts
where retBinders = chooseReturnBinders binder altType alts
isCaseOfCase = go
go (StgLet _ e) = go e
go (StgTick _ e) = go e
go (StgCase _ _ _ _ _ _ _) = True
go _ = False
chooseReturnBinders :: Id -> AltType -> [StgAlt] -> [NonVoid Id]
chooseReturnBinders binder (PrimAlt _) _ = nonVoidIds [binder]
chooseReturnBinders _ (UbxTupAlt _) [(_, ids, _, _)] = nonVoidIds ids
chooseReturnBinders binder (AlgAlt _) _ = nonVoidIds [binder]
chooseReturnBinders binder PolyAlt _ = nonVoidIds [binder]
chooseReturnBinders _ _ _ = panic "chooseReturnBinders"
cgAlts :: NonVoid Id -> AltType -> [StgAlt] -> CodeGen ()
cgAlts _ PolyAlt [(_, _, _, rhs)] = cgExpr rhs
cgAlts _ (UbxTupAlt _) [(_, _, _, rhs)] = cgExpr rhs
cgAlts binder (PrimAlt _) alts = do
taggedBranches <- cgAltRhss binder alts
binderLoc <- if null (nonVoidIds [unsafeStripNV binder]) then
return $ mkLocDirect False (jint, mempty)
else
getCgLoc binder
let (DEFAULT, deflt) = head taggedBranches
taggedBranches' = [(lit, code) | (LitAlt lit, code) <- taggedBranches]
emit $ litSwitch (locFt binderLoc) (loadLoc binderLoc) taggedBranches' deflt
cgAlts binder (AlgAlt _) alts = do
(maybeDefault, branches) <- cgAlgAltRhss binder alts
binderLoc <- getCgLoc binder
emit $ intSwitch (getTagMethod $ loadLoc binderLoc) branches maybeDefault
cgAlts _ _ _ = panic "cgAlts"
cgAltRhss :: NonVoid Id -> [StgAlt] -> CodeGen [(AltCon, Code)]
cgAltRhss binder alts =
forkAlts $ map cgAlt alts
where cgAlt :: StgAlt -> (AltCon, CodeGen ())
cgAlt (con, binders, uses, rhs) =
( con
, bindConArgs con binder binders uses
>> cgExpr rhs )
bindConArgs :: AltCon -> NonVoid Id -> [Id] -> [Bool] -> CodeGen ()
bindConArgs (DataAlt con) binder args uses
| not (null args), or uses = do
dflags <- getDynFlags
let conClass = dataConClass dflags con
dataFt = obj conClass
base <- getCgLoc binder
emit $ loadLoc base
<> gconv conType dataFt
-- TODO: Take into account uses as well
forM_ indexedFields $ \(i, (ft, (arg, use))) ->
when use $ do
let nvArg = NonVoid arg
cgLoc <- newIdLoc nvArg
emitAssign cgLoc $ dup dataFt
<> getfield (mkFieldRef conClass (constrField i) ft)
bindArg nvArg cgLoc
-- TODO: Remove this pop in a clever way
emit $ pop dataFt
where indexedFields = indexList . mapMaybe (\(mb, args) ->
case mb of
Just m -> Just (m, args)
Nothing -> Nothing)
$ zip maybeFields (zip args uses)
maybeFields = map repFieldType_maybe $ dataConRepArgTys con
bindConArgs _ _ _ _ = return ()
cgAlgAltRhss :: NonVoid Id -> [StgAlt] -> CodeGen (Maybe Code, [(Int, Code)])
cgAlgAltRhss binder alts = do
taggedBranches <- cgAltRhss binder alts
let (maybeDefault, branches) =
case taggedBranches of
((DEFAULT, rhs) : _) -> (Just rhs, allBranches)
{- INVARIANT: length alts > 0
We select the *last* alternative since that will
typically have a higher tag and will require more
bytecode to perform the check if it's a simple
case with 2 alternatives (the most frequent case). -}
_ -> (Just $ snd remainingBranch, remainingBranches)
(remainingBranches, remainingBranch) = (init allBranches, last allBranches)
allBranches = [ (getDataConTag con, code)
| (DataAlt con, code) <- taggedBranches ]
return (maybeDefault, branches)
|
pparkkin/eta
|
compiler/ETA/CodeGen/Expr.hs
|
bsd-3-clause
| 12,571
| 0
| 22
| 3,163
| 4,182
| 2,062
| 2,120
| 273
| 6
|
{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE CPP #-}
-- {-# OPTIONS_GHC -cpp -DPiForallInstalled #-}
--------------------------------------------------------------------
-- |
-- Copyright : (c) Andreas Reuleaux 2015
-- License : BSD2
-- Maintainer: Andreas Reuleaux <rx@a-rx.info>
-- Stability : experimental
-- Portability: non-portable
--
-- This module tests Pire's parser: sigma types
--------------------------------------------------------------------
module ParserTests.SigmaTypes where
import Test.Tasty
import Test.Tasty.HUnit
import Pire.Syntax
import Pire.NoPos
import Pire.Parser.ParseUtils
import Pire.Parser.PiParseUtils
import Pire.Parser.Expr
import Pire.Forget
import Pire.Untie
import Bound
#ifdef PiForallInstalled
import qualified PiForall.Parser as P
#endif
-- sigma types, cf. beginning of test/Hw1.pi
-- new as of May 2015
-- test w/
-- main' "sigma"
parsingSigmaTypesU = testGroup "parsing sigma types - unit tests" $ tail [
undefined
, let s = "{ x : A | B }"
in
testGroup ("sigma type '"++s++"'") $ tail [
undefined
-- as a sigma type
, testCase ("parsing sigmaTy '"++s++"'")
$ (nopos $ parse sigmaTy s) @?= (Sigma "x" (V "A") (Scope (V (F (V "B")))))
-- and as an expr as well, course
, testCase ("parsing expr '"++s++"'")
$ (nopos $ parse expr s) @?= (Sigma "x" (V "A") (Scope (V (F (V "B")))))
, testCase ("parse & forget sigmaTy_ '"++s++"'")
$ (forget $ parseP sigmaTy_ s) @?= (parseP sigmaTy s)
]
#ifdef PiForallInstalled
++ tail [
undefined
, testCase ("parse & untie expr '"++s++"'")
$ (untie $ parse expr s) @?= (piParse P.expr s)
]
#endif
, let s = "\\ y . { x : A | B }"
in
testGroup ("bind op for sigma type: \""++s++"\"") $ tail [
undefined
-- TODO seems silly, rethink
, testCase ("parsing expr '"++s++"'")
$ (parse expr s) @?= (parse expr s)
, testCase ("parsing expr_ '"++s++"'")
$ (parse expr_ s) @?= (parse expr_ s)
-- , testCase ("parse & forget expr '"++s++"'")
-- $ (parse expr s) @?= (parse expr s)
]
, let s = "more stuff to come here... - more complicated: w/ whitespace etc"
in
testGroup ("sigma type '"++s++"'") $ tail [
undefined
]
-- indent!
]
|
reuleaux/pire
|
tests/ParserTests/SigmaTypes.hs
|
bsd-3-clause
| 2,500
| 0
| 24
| 734
| 563
| 308
| 255
| 34
| 1
|
module Spec where
import Test.Hspec
import Challenge ( ranges )
main :: IO ()
main = hspec $ do
describe "Challenge.ranges" $ do
it "will return an empty list when no ranges exist" $ do
ranges [] `shouldBe` ([] :: [String])
it "will return a single range" $ do
ranges [1, 2] `shouldBe` ["1->2"]
it "will return multiple ranges" $ do
ranges [1, 2, 3, 4, 5, 8, 9, 10] `shouldBe` ["1->5", "8->10"]
it "will return multiple ranges ignoring numbers that are not part of a range" $ do
ranges [1, 2, 3, 5, 8, 9, 10, 12] `shouldBe` ["1->3", "8->10"]
|
mindm/2017Challenges
|
challenge_6/haskell/halogenandtoast/src/Spec.hs
|
mit
| 589
| 0
| 16
| 148
| 216
| 119
| 97
| 14
| 1
|
module Pos.Infra.Discovery
( module Pos.Infra.Discovery.Model.Class
, module Pos.Infra.Discovery.Model.Neighbours
) where
import Pos.Infra.Discovery.Model.Class
import Pos.Infra.Discovery.Model.Neighbours
|
input-output-hk/pos-haskell-prototype
|
infra/src/Pos/Infra/Discovery.hs
|
mit
| 247
| 0
| 5
| 56
| 43
| 32
| 11
| 5
| 0
|
{-# LANGUAGE RankNTypes #-}
{-# OPTIONS_GHC -fno-warn-type-defaults #-}
module Math.NumberTheory.PrimitiveRootsBench
( benchSuite
) where
import Gauge.Main
import Data.Constraint
import Data.Maybe
import Math.NumberTheory.Moduli.Multiplicative
import Math.NumberTheory.Moduli.Singleton
import Math.NumberTheory.Primes
primRootWrap :: Integer -> Word -> Integer -> Bool
primRootWrap p k g = case fromJust $ cyclicGroupFromFactors [(p', k)] of
Some cg -> case proofFromCyclicGroup cg of
Sub Dict -> isJust $ isPrimitiveRoot cg (fromInteger g)
where
p' = fromJust $ isPrime p
primRootWrap2 :: Integer -> Word -> Integer -> Bool
primRootWrap2 p k g = case fromJust $ cyclicGroupFromFactors [(two, 1), (p', k)] of
Some cg -> case proofFromCyclicGroup cg of
Sub Dict -> isJust $ isPrimitiveRoot cg (fromInteger g)
where
two = fromJust $ isPrime 2
p' = fromJust $ isPrime p
cyclicWrap :: Integer -> Maybe (Some (CyclicGroup Integer))
cyclicWrap = cyclicGroupFromModulo
benchSuite :: Benchmark
benchSuite = bgroup "PrimRoot"
[ bgroup "groupFromModulo"
[ bench "3^20000" $ nf cyclicWrap (3^20000) -- prime to large power
, bench "10000000000000061" $ nf cyclicWrap (10^16 + 61) -- large prime
, bench "2*3^20000" $ nf cyclicWrap (2*3^20000) -- twice prime to large power
, bench "10000000000000046" $ nf cyclicWrap (10^16 + 46) -- twice large prime
, bench "224403121196654400" $ nf cyclicWrap 224403121196654400 -- highly composite
]
, bgroup "check prim roots"
[ bench "3^20000" $ nf (primRootWrap 3 20000) 2 -- prime to large power
, bench "10000000000000061" $ nf (primRootWrap (10^16 + 61) 1) 3 -- large prime
, bench "10000000000000061^2" $ nf (primRootWrap (10^16 + 61) 2) 3 -- large prime squared
, bench "2*3^20000" $ nf (primRootWrap2 3 20000) 5 -- twice prime to large power
, bench "10000000000000046" $ nf (primRootWrap2 (5*10^15 + 23) 1) 5 -- twice large prime
]
]
|
cartazio/arithmoi
|
benchmark/Math/NumberTheory/PrimitiveRootsBench.hs
|
mit
| 2,106
| 0
| 16
| 520
| 613
| 320
| 293
| 37
| 1
|
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE helpset PUBLIC "-//Sun Microsystems Inc.//DTD JavaHelp HelpSet Version 2.0//EN" "http://java.sun.com/products/javahelp/helpset_2_0.dtd">
<helpset version="2.0" xml:lang="tr-TR">
<title>Tak-ve-Hackle | ZAP Uzantısı</title>
<maps>
<homeID>top</homeID>
<mapref location="map.jhm"/>
</maps>
<view>
<name>TOC</name>
<label>İçindekiler</label>
<type>org.zaproxy.zap.extension.help.ZapTocView</type>
<data>toc.xml</data>
</view>
<view>
<name>Index</name>
<label>İçerik</label>
<type>javax.help.IndexView</type>
<data>index.xml</data>
</view>
<view>
<name>Search</name>
<label>Arama</label>
<type>javax.help.SearchView</type>
<data engine="com.sun.java.help.search.DefaultSearchEngine">
JavaHelpSearch
</data>
</view>
<view>
<name>Favorites</name>
<label>Favoriler</label>
<type>javax.help.FavoritesView</type>
</view>
</helpset>
|
veggiespam/zap-extensions
|
addOns/plugnhack/src/main/javahelp/org/zaproxy/zap/extension/plugnhack/resources/help_tr_TR/helpset_tr_TR.hs
|
apache-2.0
| 983
| 80
| 68
| 159
| 431
| 217
| 214
| -1
| -1
|
{-# LANGUAGE Unsafe #-}
{-# OPTIONS_HADDOCK hide #-}
-----------------------------------------------------------------------------
-- |
-- Module : Control.Monad.ST.Imp
-- Copyright : (c) The University of Glasgow 2001
-- License : BSD-style (see the file libraries/base/LICENSE)
--
-- Maintainer : libraries@haskell.org
-- Stability : experimental
-- Portability : non-portable (requires universal quantification for runST)
--
-- This library provides support for /strict/ state threads, as
-- described in the PLDI \'94 paper by John Launchbury and Simon Peyton
-- Jones /Lazy Functional State Threads/.
--
-----------------------------------------------------------------------------
module Control.Monad.ST.Imp (
-- * The 'ST' Monad
ST, -- abstract, instance of Functor, Monad, Typeable.
runST,
fixST,
-- * Converting 'ST' to 'IO'
RealWorld, -- abstract
stToIO,
-- * Unsafe operations
unsafeInterleaveST,
unsafeDupableInterleaveST,
unsafeIOToST,
unsafeSTToIO
) where
import GHC.ST ( ST, runST, fixST, unsafeInterleaveST
, unsafeDupableInterleaveST )
import GHC.Base ( RealWorld )
import GHC.IO ( stToIO, unsafeIOToST, unsafeSTToIO )
|
rahulmutt/ghcvm
|
libraries/base/Control/Monad/ST/Imp.hs
|
bsd-3-clause
| 1,339
| 0
| 5
| 344
| 107
| 77
| 30
| 16
| 0
|
module PPrint where
import Text.PrettyPrint
type Var a = Int
type Exp a = Int -> Doc
lit :: (Show a) => a -> Exp a
lit x i = text (show x)
var :: Var a -> Exp a
var x i = text ("x" ++ show x)
dirac :: Exp a -> Exp b
dirac p i = text "dirac" <> parens (p i)
bern :: Exp a -> Exp b
bern p i = text "bern" <> parens (p i)
uniform :: Exp a -> Exp b -> Exp c
uniform lo hi i = text "uniform" <>
parens (lo i <> comma <> hi i)
normal :: Exp a -> Exp b -> Exp c
normal mu sd i = text "normal" <>
parens (mu i <> comma <> sd i)
categorical :: Exp a -> Exp b
categorical p i = text "categorical" <>
parens (p i)
bind :: Exp a -> (Exp a -> Exp b) -> Exp b
bind m cont i = text "let" <+>
var i i <+>
text "<-" <+>
m i <+>
text "in" $$
cont (var i) (i+1)
conditioned :: Exp a -> Exp b
conditioned f i = text "observe" <> parens (f i)
unconditioned :: Exp a -> Exp b
unconditioned f = f
lam :: (Exp a -> Exp a) -> Exp (a -> b)
lam body i = parens (
text "lambda" <+>
var i i <+>
text "->" <+>
body (var i) (i+1))
app :: Exp (a -> b) -> Exp a -> Exp b
app f x i = parens (f i <+> x i)
fix :: (Exp a -> Exp a) -> Exp a
fix g i = parens (
text "fix" <+>
var i i <+>
text "->" <+>
g (var i) (i+1))
ifThenElse :: Exp a -> Exp b -> Exp c -> Exp d
ifThenElse cond t f i = parens (
text "if" <+> cond i <+>
text "then" <+> t i <+>
text "else" <+> f i)
test :: Exp a
test = unconditioned (uniform (lit False) (lit True)) `bind`
\c -> conditioned (ifThenElse
c
(normal (lit 1) (lit 1))
(uniform (lit 0) (lit 3))) `bind`
\_ -> unconditioned (dirac c)
-- main :: IO ()
-- main = print $ test 0
|
bitemyapp/hakaru
|
Historical/PPrint.hs
|
bsd-3-clause
| 2,013
| 0
| 14
| 831
| 950
| 457
| 493
| 58
| 1
|
-----------------------------------------------------------------------------
-- |
-- Module : XMonad.Hooks.DebugKeyEvents
-- Copyright : (c) 2011 Brandon S Allbery <allbery.b@gmail.com>
-- License : BSD
--
-- Maintainer : Brandon S Allbery <allbery.b@gmail.com>
-- Stability : unstable
-- Portability : unportable
--
-- A debugging module to track key events, useful when you can't tell whether
-- xmonad is processing some or all key events.
-----------------------------------------------------------------------------
module XMonad.Hooks.DebugKeyEvents (-- * Usage
-- $usage
debugKeyEvents
) where
import XMonad.Core
import XMonad.Operations (cleanMask)
import Graphics.X11.Xlib
import Graphics.X11.Xlib.Extras
import Control.Monad.State (gets)
import Data.Bits
import Data.List (intercalate)
import Data.Monoid
import Numeric (showHex)
import System.IO (hPutStrLn
,stderr)
-- $usage
-- Add this to your handleEventHook to print received key events to the
-- log (the console if you use @startx@/@xinit@, otherwise usually
-- @~/.xsession-errors@).
--
-- > , handleEventHook = debugKeyEvents
--
-- If you already have a handleEventHook then you should append it:
--
-- > , handleEventHook = ... <+> debugKeyEvents
--
-- Logged key events look like:
--
-- @keycode 53 sym 120 (0x78, "x") mask 0x0 () clean 0x0 ()@
--
-- The @mask@ and @clean@ indicate the modifiers pressed along with
-- the key; @mask@ is raw, and @clean@ is what @xmonad@ sees after
-- sanitizing it (removing @numberLockMask@, etc.)
--
-- For more detailed instructions on editing the logHook see:
--
-- "XMonad.Doc.Extending#The_log_hook_and_external_status_bars"
-- | Print key events to stderr for debugging
debugKeyEvents :: Event -> X All
debugKeyEvents (KeyEvent {ev_event_type = t, ev_state = m, ev_keycode = code})
| t == keyPress =
withDisplay $ \dpy -> do
sym <- io $ keycodeToKeysym dpy code 0
msk <- cleanMask m
nl <- gets numberlockMask
io $ hPutStrLn stderr $ intercalate " " ["keycode"
,show code
,"sym"
,show sym
," ("
,hex sym
," \""
,keysymToString sym
,"\") mask"
,hex m
,"(" ++ vmask nl m ++ ")"
,"clean"
,hex msk
,"(" ++ vmask nl msk ++ ")"
]
return (All True)
debugKeyEvents _ = return (All True)
-- | Convenient showHex variant
hex :: (Integral n, Show n) => n -> String
hex v = "0x" ++ showHex v ""
-- | Convert a modifier mask into a useful string
vmask :: KeyMask -> KeyMask -> String
vmask numLockMask msk = intercalate " " $
reverse $
fst $
foldr vmask' ([],msk) masks
where
masks = map (\m -> (m,show m)) [0..toEnum (bitSize msk - 1)] ++
[(numLockMask,"num" )
,( lockMask,"lock" )
,(controlMask,"ctrl" )
,( shiftMask,"shift")
,( mod5Mask,"mod5" )
,( mod4Mask,"mod4" )
,( mod3Mask,"mod3" )
,( mod2Mask,"mod2" )
,( mod1Mask,"mod1" )
]
vmask' _ a@( _,0) = a
vmask' (m,s) (ss,v) | v .&. m == m = (s:ss,v .&. complement m)
vmask' _ r = r
|
kmels/xmonad-launcher
|
XMonad/Hooks/DebugKeyEvents.hs
|
bsd-3-clause
| 4,265
| 0
| 15
| 1,874
| 675
| 388
| 287
| 56
| 3
|
-- |
-- Copyright : (c) 2010-2012 Benedikt Schmidt
-- License : GPL v3 (see LICENSE)
--
-- Maintainer : Benedikt Schmidt <beschmi@gmail.com>
--
-- Computing and checking the variants of a term.
module Term.Narrowing.Variants (
computeVariantsCheck
, module Term.Narrowing.Variants.Compute
, module Term.Narrowing.Variants.Check
) where
import Term.Narrowing.Variants.Compute
import Term.Narrowing.Variants.Check
import Term.Unification
import Control.Monad.Reader
-- | @variantsListCheck ts@ computes all variants of @ts@ considered as a single term
-- without a bound or symmetry substitution. Before returning the result, it checks
-- if the set of variants is complete and minimal. If that is not the case, it
-- fails with an error
computeVariantsCheck :: LNTerm -> WithMaude [LNSubstVFresh]
computeVariantsCheck t =
reader checkWithMaude
where
checkWithMaude hnd
| not $ run $ checkComplete t vars
= error $ "computeVariantsCheck: variant computation for "++ show t ++" failed. Computed set not complete."
| not $ run $ checkMinimal t vars
= error $ "computeVariantsCheck: variant computation for "++ show t ++" failed. Computed set not minimal."
| otherwise
= vars
where
vars = run $ computeVariants t
run = (`runReader` hnd)
|
rsasse/tamarin-prover
|
lib/term/src/Term/Narrowing/Variants.hs
|
gpl-3.0
| 1,326
| 0
| 11
| 273
| 205
| 117
| 88
| 20
| 1
|
{-# LANGUAGE DataKinds, PolyKinds, TypeFamilies, GADTs, ConstraintKinds #-}
module T12919 where
import Data.Kind
data N = Z
data V :: N -> Type where
VZ :: V Z
type family VC (n :: N) :: Type where
VC Z = Type
type family VF (xs :: V n) (f :: VC n) :: Type where
VF VZ f = f
data Dict c where
Dict :: c => Dict c
prop :: xs ~ VZ => Dict (VF xs f ~ f)
prop = Dict
|
sdiehl/ghc
|
testsuite/tests/typecheck/should_compile/T12919.hs
|
bsd-3-clause
| 379
| 0
| 9
| 101
| 151
| 87
| 64
| 14
| 1
|
main :: IO ()
main = putStrLn "T15261b"
|
sdiehl/ghc
|
testsuite/tests/rts/T15261/T15261b.hs
|
bsd-3-clause
| 40
| 0
| 6
| 8
| 19
| 9
| 10
| 2
| 1
|
module UnitTests.Distribution.Client.Tar (
tests
) where
import Distribution.Client.Tar ( filterEntries
, filterEntriesM
)
import Codec.Archive.Tar ( Entries(..)
, foldEntries
)
import Codec.Archive.Tar.Entry ( EntryContent(..)
, simpleEntry
, Entry(..)
, toTarPath
)
import Test.Tasty
import Test.Tasty.HUnit
import qualified Data.ByteString.Lazy as BS
import qualified Data.ByteString.Lazy.Char8 as BS.Char8
import Control.Monad.Writer.Lazy (runWriterT, tell)
tests :: [TestTree]
tests = [ testCase "filterEntries" filterTest
, testCase "filterEntriesM" filterMTest
]
filterTest :: Assertion
filterTest = do
let e1 = getFileEntry "file1" "x"
e2 = getFileEntry "file2" "y"
p = (\e -> let (NormalFile dta _) = entryContent e
str = BS.Char8.unpack dta
in str /= "y")
assertEqual "Unexpected result for filter" "xz" $
entriesToString $ filterEntries p $ Next e1 $ Next e2 Done
assertEqual "Unexpected result for filter" "z" $
entriesToString $ filterEntries p $ Done
assertEqual "Unexpected result for filter" "xf" $
entriesToString $ filterEntries p $ Next e1 $ Next e2 $ Fail "f"
filterMTest :: Assertion
filterMTest = do
let e1 = getFileEntry "file1" "x"
e2 = getFileEntry "file2" "y"
p = (\e -> let (NormalFile dta _) = entryContent e
str = BS.Char8.unpack dta
in tell "t" >> return (str /= "y"))
(r, w) <- runWriterT $ filterEntriesM p $ Next e1 $ Next e2 Done
assertEqual "Unexpected result for filterM" "xz" $ entriesToString r
assertEqual "Unexpected result for filterM w" "tt" w
(r1, w1) <- runWriterT $ filterEntriesM p $ Done
assertEqual "Unexpected result for filterM" "z" $ entriesToString r1
assertEqual "Unexpected result for filterM w" "" w1
(r2, w2) <- runWriterT $ filterEntriesM p $ Next e1 $ Next e2 $ Fail "f"
assertEqual "Unexpected result for filterM" "xf" $ entriesToString r2
assertEqual "Unexpected result for filterM w" "tt" w2
getFileEntry :: FilePath -> [Char] -> Entry
getFileEntry pth dta =
simpleEntry tp $ NormalFile dta' $ BS.length dta'
where tp = case toTarPath False pth of
Right tp' -> tp'
Left e -> error e
dta' = BS.Char8.pack dta
entriesToString :: Entries String -> String
entriesToString =
foldEntries (\e acc -> let (NormalFile dta _) = entryContent e
str = BS.Char8.unpack dta
in str ++ acc) "z" id
|
mydaum/cabal
|
cabal-install/tests/UnitTests/Distribution/Client/Tar.hs
|
bsd-3-clause
| 2,760
| 0
| 17
| 867
| 772
| 392
| 380
| 59
| 2
|
<?xml version="1.0" encoding="UTF-8"?><!DOCTYPE helpset PUBLIC "-//Sun Microsystems Inc.//DTD JavaHelp HelpSet Version 2.0//EN" "http://java.sun.com/products/javahelp/helpset_2_0.dtd">
<helpset version="2.0" xml:lang="pt-BR">
<title>Início rápido | Extensão ZAP</title>
<maps>
<homeID>top</homeID>
<mapref location="map.jhm"/>
</maps>
<view>
<name>TOC</name>
<label>Conteúdo</label>
<type>org.zaproxy.zap.extension.help.ZapTocView</type>
<data>toc.xml</data>
</view>
<view>
<name>Index</name>
<label>Índice</label>
<type>javax.help.IndexView</type>
<data>index.xml</data>
</view>
<view>
<name>Search</name>
<label>Localizar</label>
<type>javax.help.SearchView</type>
<data engine="com.sun.java.help.search.DefaultSearchEngine">
JavaHelpSearch
</data>
</view>
<view>
<name>Favorites</name>
<label>Favoritos</label>
<type>javax.help.FavoritesView</type>
</view>
</helpset>
|
thc202/zap-extensions
|
addOns/diff/src/main/javahelp/org/zaproxy/zap/extension/diff/resources/help_pt_BR/helpset_pt_BR.hs
|
apache-2.0
| 982
| 78
| 66
| 159
| 422
| 213
| 209
| -1
| -1
|
import ObjLink
library_name = "libfoo_script_T2615.so" -- this is really a linker script
main = do
initObjLinker
result <- loadDLL library_name
case result of
Nothing -> putStrLn (library_name ++ " loaded successfully")
Just x -> putStrLn ("error: " ++ x)
|
urbanslug/ghc
|
testsuite/tests/rts/T2615.hs
|
bsd-3-clause
| 273
| 0
| 12
| 56
| 70
| 34
| 36
| 8
| 2
|
module ShouldFail where
|
ezyang/ghc
|
testsuite/tests/plugins/T11244.hs
|
bsd-3-clause
| 24
| 0
| 2
| 3
| 4
| 3
| 1
| 1
| 0
|
module T9776 where
|
urbanslug/ghc
|
testsuite/tests/driver/T9776.hs
|
bsd-3-clause
| 19
| 0
| 2
| 3
| 4
| 3
| 1
| 1
| 0
|
{-# LANGUAGE TemplateHaskell #-}
module Cenary.Codegen.CodegenState where
import Cenary.Codegen.Address
import Cenary.Codegen.Env
import Cenary.Codegen.FuncRegistry
import qualified Cenary.Codegen.MappingOrder as MO
import Cenary.EvmAPI.Program
import Control.Lens
data CodegenState = CodegenState
{ _env :: !(Env Address)
, _heapSpaceBegin :: Integer -- Dis boi should stay lazy or bad things happen
, _sp :: !Integer -- Stack pointer
, _framePtrs :: ![Integer]
, _maxStackSize :: Integer
, _stackStorageEnd :: !Integer
, _pc :: !Integer
, _funcRegistry :: !FuncRegistry
, _program :: Program
, _funcOffset :: !Integer
, _mappingOrder :: MO.MappingOrder
}
makeLenses ''CodegenState
|
yigitozkavci/ivy
|
src/Cenary/Codegen/CodegenState.hs
|
mit
| 830
| 0
| 11
| 234
| 149
| 92
| 57
| 35
| 0
|
{-# LANGUAGE DeriveGeneric, CPP #-}
module Data.KdMap.Dynamic
( -- * Usage
-- $usage
-- * Reference
-- ** Types
PointAsListFn
, SquaredDistanceFn
, KdMap
-- ** Dynamic /k/-d map construction
, empty
, singleton
, emptyWithDist
, singletonWithDist
-- ** Insertion
, insert
, insertPair
, batchInsert
-- ** Query
, nearest
, inRadius
, kNearest
, inRange
, assocs
, keys
, elems
, null
, size
-- ** Folds
, foldrWithKey
-- ** Utilities
, defaultSqrDist
-- ** Internal (for testing)
, subtreeSizes
) where
import Prelude hiding (null)
#if MIN_VERSION_base(4,8,0)
#else
import Control.Applicative hiding (empty)
import Data.Foldable
import Data.Traversable
#endif
import Data.Bits
import Data.Function
import qualified Data.List as L
import Control.DeepSeq
import Control.DeepSeq.Generics (genericRnf)
import GHC.Generics
import qualified Data.KdMap.Static as KDM
import Data.KdMap.Static (PointAsListFn, SquaredDistanceFn, defaultSqrDist)
-- $usage
--
-- The 'KdMap' is a variant of
-- @Data.KdTree.Dynamic.@'Data.KdTree.Dynamic.KdTree' where each point
-- in the tree is associated with some data. It is the dynamic variant
-- of @Data.KdMap.Static.@'Data.KdMap.Static.KdMap'.
--
-- Here's an example of interleaving point-value insertions and point
-- queries using 'KdMap', where points are 3D points and values are
-- 'String's:
--
-- @
-- >>> let dkdm = 'singleton' point3dAsList ((Point3D 0.0 0.0 0.0), \"First\")
--
-- >>> let dkdm' = 'insert' dkdm ((Point3D 1.0 1.0 1.0), \"Second\")
--
-- >>> 'nearest' dkdm' (Point3D 0.4 0.4 0.4)
-- (Point3D {x = 0.0, y = 0.0, z = 0.0}, \"First\")
--
-- >>> let dkdm'' = 'insert' dkdm' ((Point3D 0.5 0.5 0.5), \"Third\")
--
-- >>> 'nearest' dkdm'' (Point3D 0.4 0.4 0.4)
-- (Point3D {x = 0.5, y = 0.5, z = 0.5}, \"Third\")
-- @
-- | A dynamic /k/-d tree structure that stores points of type @p@
-- with axis values of type @a@. Additionally, each point is
-- associated with a value of type @v@.
data KdMap a p v = KdMap
{ _trees :: [KDM.KdMap a p v]
, _pointAsList :: PointAsListFn a p
, _distSqr :: SquaredDistanceFn a p
, _numNodes :: Int
} deriving Generic
instance (NFData a, NFData p, NFData v) => NFData (KdMap a p v) where rnf = genericRnf
instance (Show a, Show p, Show v) => Show (KdMap a p v) where
show kdm = "KdMap " ++ show (_trees kdm)
instance Functor (KdMap a p) where
fmap f dkdMap = dkdMap { _trees = map (fmap f) $ _trees dkdMap }
-- | Performs a foldr over each point-value pair in the 'KdMap'.
foldrWithKey :: ((p, v) -> b -> b) -> b -> KdMap a p v -> b
foldrWithKey f z dkdMap = L.foldr (flip $ KDM.foldrWithKey f) z $ _trees dkdMap
instance Foldable (KdMap a p) where
foldr f = foldrWithKey (f . snd)
instance Traversable (KdMap a p) where
traverse f (KdMap t p d n) =
KdMap <$> traverse (traverse f) t <*> pure p <*> pure d <*> pure n
-- | Generates an empty 'KdMap' with a user-specified distance function.
emptyWithDist :: PointAsListFn a p -> SquaredDistanceFn a p -> KdMap a p v
emptyWithDist p2l d2 = KdMap [] p2l d2 0
-- | Returns whether the 'KdMap' is empty.
null :: KdMap a p v -> Bool
null (KdMap [] _ _ _) = True
null _ = False
-- | Generates a 'KdMap' with a single point-value pair using a
-- user-specified distance function.
singletonWithDist :: Real a => PointAsListFn a p
-> SquaredDistanceFn a p
-> (p, v)
-> KdMap a p v
singletonWithDist p2l d2 (k, v) =
KdMap [KDM.buildWithDist p2l d2 [(k, v)]] p2l d2 1
-- | Generates an empty 'KdMap' with the default distance function.
empty :: Real a => PointAsListFn a p -> KdMap a p v
empty p2l = emptyWithDist p2l $ defaultSqrDist p2l
-- | Generates a 'KdMap' with a single point-value pair using the
-- default distance function.
singleton :: Real a => PointAsListFn a p -> (p, v) -> KdMap a p v
singleton p2l = singletonWithDist p2l $ defaultSqrDist p2l
-- | Adds a given point-value pair to a 'KdMap'.
--
-- Average time complexity per insert for /n/ inserts: /O(log^2(n))/.
insert :: Real a => KdMap a p v -> p -> v -> KdMap a p v
insert (KdMap trees p2l d2 n) k v =
let bitList = map ((1 .&.) . (n `shiftR`)) [0..]
(onesPairs, theRestPairs) = span ((== 1) . fst) $ zip bitList trees
((_, ones), (_, theRest)) = (unzip onesPairs, unzip theRestPairs)
newTree = KDM.buildWithDist p2l d2 $ (k, v) : L.concatMap KDM.assocs ones
in KdMap (newTree : theRest) p2l d2 $ n + 1
-- | Same as 'insert', but takes point and value as a pair.
insertPair :: Real a => KdMap a p v -> (p, v) -> KdMap a p v
insertPair t = uncurry (insert t)
-- | Given a 'KdMap' and a query point, returns the point-value pair in
-- the 'KdMap' with the point nearest to the query.
--
-- Average time complexity: /O(log^2(n))/.
nearest :: Real a => KdMap a p v -> p -> (p, v)
nearest (KdMap ts _ d2 _) query =
let nearests = map (`KDM.nearest` query) ts
--in if Data.List.null nearests
in if L.null nearests
then error "Called nearest on empty KdMap."
else L.minimumBy (compare `on` (d2 query . fst)) nearests
-- | Given a 'KdMap', a query point, and a number @k@, returns the
-- @k@ point-value pairs with the nearest points to the query.
--
-- Neighbors are returned in order of increasing distance from query
-- point.
--
-- Average time complexity: /log(k) * log^2(n)/ for /k/ nearest
-- neighbors on a structure with /n/ data points.
--
-- Worst case time complexity: /n * log(k)/ for /k/ nearest neighbors
-- on a structure with /n/ data points.
kNearest :: Real a => KdMap a p v -> Int -> p -> [(p, v)]
kNearest (KdMap trees _ d2 _) k query =
let neighborSets = map (\t -> KDM.kNearest t k query) trees
in take k $ L.foldr merge [] neighborSets
where merge [] ys = ys
merge xs [] = xs
merge xs@(x:xt) ys@(y:yt)
| distX <= distY = x : merge xt ys
| otherwise = y : merge xs yt
where distX = d2 query $ fst x
distY = d2 query $ fst y
-- | Given a 'KdMap', a query point, and a radius, returns all
-- point-value pairs in the 'KdTree' with points within the given
-- radius of the query point.
--
-- Points are not returned in any particular order.
--
-- Worst case time complexity: /O(n)/ for /n/ data points.
inRadius :: Real a => KdMap a p v -> a -> p -> [(p, v)]
inRadius (KdMap trees _ _ _) radius query =
L.concatMap (\t -> KDM.inRadius t radius query) trees
-- | Finds all point-value pairs in a 'KdMap' with points within a
-- given range, where the range is specified as a set of lower and
-- upper bounds.
--
-- Points are not returned in any particular order.
--
-- Worst case time complexity: /O(n)/ for n data points and a range
-- that spans all the points.
inRange :: Real a => KdMap a p v
-> p -- ^ lower bounds of range
-> p -- ^ upper bounds of range
-> [(p, v)] -- ^ point-value pairs within given
-- range
inRange (KdMap trees _ _ _) lowers uppers =
L.concatMap (\t -> KDM.inRange t lowers uppers) trees
-- | Returns the number of elements in the 'KdMap'.
--
-- Time complexity: /O(1)/
size :: KdMap a p v -> Int
size (KdMap _ _ _ n) = n
-- | Returns a list of all the point-value pairs in the 'KdMap'.
--
-- Time complexity: /O(n)/ for /n/ data points.
assocs :: KdMap a p v -> [(p, v)]
assocs (KdMap trees _ _ _) = L.concatMap KDM.assocs trees
-- | Returns all points in the 'KdMap'.
--
-- Time complexity: /O(n)/ for /n/ data points.
keys :: KdMap a p v -> [p]
keys = map fst . assocs
-- | Returns all values in the 'KdMap'.
--
-- Time complexity: /O(n)/ for /n/ data points.
elems :: KdMap a p v -> [v]
elems = map snd . assocs
-- | Inserts a list of point-value pairs into the 'KdMap'.
--
-- TODO: This will be made far more efficient than simply repeatedly
-- inserting.
batchInsert :: Real a => KdMap a p v -> [(p, v)] -> KdMap a p v
batchInsert = L.foldl' insertPair
-- | Returns size of each internal /k/-d tree that makes up the
-- dynamic structure. For internal testing use.
subtreeSizes :: KdMap a p v -> [Int]
subtreeSizes (KdMap trees _ _ _) = map KDM.size trees
|
giogadi/kdt
|
lib-src/Data/KdMap/Dynamic.hs
|
mit
| 8,486
| 0
| 13
| 2,165
| 2,022
| 1,102
| 920
| 117
| 3
|
module Proteome.Path where
import qualified Data.Text as Text
import Path (
Abs,
Dir,
File,
Path,
Rel,
parseAbsDir,
parseAbsFile,
parseRelDir,
parseRelFile,
toFilePath,
(</>),
)
import Path.IO (doesFileExist)
parsePathMaybe ::
(FilePath -> Either a (Path b t)) ->
Text ->
Maybe (Path b t)
parsePathMaybe parser =
rightToMaybe . parser . toString
parseAbsDirMaybe ::
Text ->
Maybe (Path Abs Dir)
parseAbsDirMaybe =
parsePathMaybe parseAbsDir
parseAbsFileMaybe ::
Text ->
Maybe (Path Abs File)
parseAbsFileMaybe =
parsePathMaybe parseAbsFile
parseRelDirMaybe ::
Text ->
Maybe (Path Rel Dir)
parseRelDirMaybe =
parsePathMaybe parseRelDir
parseRelFileMaybe ::
Text ->
Maybe (Path Rel File)
parseRelFileMaybe =
parsePathMaybe parseRelFile
absoluteParseDir ::
Path Abs Dir ->
Text ->
Maybe (Path Abs Dir)
absoluteParseDir cwd spec =
tryAbsolute <|> tryRelative
where
specS =
toString spec
tryAbsolute =
rightToMaybe (parseAbsDir specS)
tryRelative =
makeAbsolute <$> rightToMaybe (parseRelDir specS)
makeAbsolute path =
cwd </> path
absoluteParse ::
Path Abs Dir ->
Text ->
Maybe (Path Abs File)
absoluteParse cwd spec =
tryAbsolute <|> tryRelative
where
specS =
toString spec
tryAbsolute =
rightToMaybe (parseAbsFile specS)
tryRelative =
makeAbsolute <$> rightToMaybe (parseRelFile specS)
makeAbsolute path =
cwd </> path
existingFile ::
MonadIO m =>
Path Abs Dir ->
Text ->
m (Maybe (Path Abs File))
existingFile cwd spec =
join <$> traverse check (absoluteParse cwd spec)
where
check path = do
exists <- doesFileExist path
return $ if exists then Just path else Nothing
pathText :: Path b t -> Text
pathText =
toText . toFilePath
dropSlash :: Path b t -> Text
dropSlash =
Text.dropWhileEnd ('/' ==) . pathText
|
tek/proteome
|
packages/proteome/lib/Proteome/Path.hs
|
mit
| 1,906
| 0
| 12
| 452
| 593
| 306
| 287
| 85
| 2
|
module Parser (LispVal(..)
,ParseError
,parseLispVal
) where
import Control.Applicative ((*>), (<*))
import Control.Monad
import Text.ParserCombinators.Parsec hiding (spaces)
import System.Environment
import Data.Char (isDigit)
import Data.Maybe (fromJust, fromMaybe)
import Numeric (readHex, readOct, readFloat)
import Internal
symbol :: Parser Char
symbol = oneOf "!#$%&|*+-/:<=>?@^_~"
spaces :: Parser ()
spaces = skipMany1 space
{- Exercise 3 -}
escapingTable = [('"', '"')
,('\'', '\'')
,('n', '\n')
,('t', '\t')
,('r', '\r')
,('\\', '\\')
]
charNameTable = [("space", ' ')
,("newline", '\n')
,("tab", '\t')
]
parseString :: Parser LispVal
-- parseString = liftM String (char '"' *> many (noneOf "\"") <* char '"')
{- Exercise 2 -}
parseString = liftM String (char '"' *> many foo <* char '"')
where foo = try bar
<|> char '\\'
<|> noneOf "\""
bar = do char '\\'
x <- oneOf (map fst escapingTable)
return $ fromJust $ lookup x escapingTable
nameToChar :: String -> Char
nameToChar xs = fromMaybe (error $ "No character names '" ++ xs ++ "' found!")
(lookup xs charNameTable)
parseIdentifier :: Parser LispVal
parseIdentifier = do
first <- symbol <|> letter
rest <- many (symbol <|> alphaNum <|> char '\\') -- '\\' is for char syntax
let (x:xs) = rest
return $ if first == '#' then
case x of
't' -> Bool True
'f' -> Bool False
'o' -> (Number . fst . head . readOct) xs -- Exercise 4
'h' -> (Number . fst . head . readHex) xs -- Exercise 4
'\\'-> Character $ if length xs == 1 -- Exercise 5
then head xs else nameToChar xs
_ -> error "invalid syntax"
else Identifier (first : rest)
parseSign :: Parser Char
parseSign = option '+' (char '-' <|> char '+')
signify :: (Num a) => Char -> a -> a
signify '-' a = -a
signify '+' a = a
signify _ _ = error "invalid sign"
parseIntegerNumber :: Parser LispVal
parseIntegerNumber = do i <- parseInteger
optional $ char 'L'
return $ Number i
parseInteger :: Parser Integer
parseInteger = do sign <- parseSign
int <- parseUnsignedInteger
return $ signify sign int
parseUnsignedInteger :: Parser Integer
parseUnsignedInteger = liftM read $ many1 digit
{- Exercise 6 -}
parseFloatNumber :: Parser LispVal
parseFloatNumber = do f <- parseFloat
optional $ char 'F'
return $ Float f
parseFloat :: Parser Double
parseFloat = do sign <- parseSign
num <- parseUnsignedFloat
return $ signify sign num
parseUnsignedFloat :: Parser Double
parseUnsignedFloat = try parseExponential <|> parseDecimal
parseDecimal :: Parser Double
parseDecimal = do ipart <- parseNumStr
char '.'
fpart <- parseNumStr
return $ fst $ head $ readFloat (ipart ++ "." ++ fpart)
where parseNumStr = many1 digit
parseExponential :: Parser Double
parseExponential = do bpart <- try parseDecimal <|>
liftM fromIntegral parseInteger
oneOf "eE"
epart <- liftM fromIntegral parseInteger
return (bpart * 10 ** epart)
{- Exercise 7 -}
parseRationalNumber :: Parser LispVal
parseRationalNumber = do
den <- parseInteger
char '/'
num <- parseInteger
let x = gcd den num
d = den `div` x
n = num `div` x
d' = if n < 0 then -d else d
n' = if n < 0 then -n else n
return $ if n == 1
then Number d'
else Rational d' n'
{- Exercise 7 -}
parseComplexNumber :: Parser LispVal
parseComplexNumber = do
real <- try parseFloat <|> (liftM fromIntegral $ try parseInteger)
signi<- char '+' <|> char '-'
imag <- option 1 (try parseUnsignedFloat <|>
liftM fromIntegral parseUnsignedInteger)
char 'i'
return $ Complex real (signify signi imag)
{- Modified implementation of this function -}
parseNumber :: Parser LispVal
parseNumber = try parseComplexNumber
<|> try parseFloatNumber
<|> try parseRationalNumber
<|> try parseIntegerNumber
{- Exercise 1.1/1.2 -}
{-
parseNumber :: Parser LispVal
parseNumber = many1 digit >>= return . Number . read
parseNumber = do s <- many1 digit
return $ Number $ read s
-}
parseExpr :: Parser LispVal
parseExpr = parseString
<|> try parseNumber
<|> try parseIdentifier
<|> try parseQuoted
<|> char '(' *> (try parseList <|> parseDottedList) <* char ')'
parseList :: Parser LispVal
parseList = liftM List $ sepBy parseExpr spaces
parseDottedList :: Parser LispVal
parseDottedList = do
head <- endBy parseExpr spaces
tail <- char '.' >> spaces >> parseExpr
return $ DottedList head tail
parseQuoted :: Parser LispVal
parseQuoted = do
char '\''
x <- parseExpr
return $ List [Identifier "quote", x]
testParse :: String -> IO ()
testParse input = putStrLn $ case parse (parseExpr <* eof) "lisp" input of
Left err -> "No match: " ++ show err
Right _ -> "Found value."
parseLispVal :: String -> Either ParseError LispVal
parseLispVal = parse (parseExpr <* eof) "input"
main :: IO ()
main = getArgs >>= testParse . head
|
shouya/thinking-dumps
|
wys48h/code/Parser.hs
|
mit
| 5,660
| 0
| 16
| 1,811
| 1,611
| 810
| 801
| 140
| 8
|
{-# LANGUAGE DeriveGeneric, OverloadedStrings #-}
{-|
Anscombe's quartet
Four datasets with nearly identical statistical properties
Wikipedia article: <https://en.wikipedia.org/wiki/Anscombe%27s_quartet>
-}
module Numeric.Datasets.Anscombe where
anscombe :: [[(Double,Double)]]
anscombe = [anscombe1, anscombe2, anscombe3, anscombe4]
anscombe1, anscombe2, anscombe3, anscombe4 :: [(Double, Double)]
anscombe1 = [
(10,8.04),
(8,6.95),
(13,7.58),
(9,8.81),
(11,8.33),
(14,9.96),
(6,7.24),
(4,4.26),
(12,10.84),
(7,4.82),
(5,5.68)
]
anscombe2 = [
(10,9.14),
(8,8.14),
(13,8.74),
(9,8.77),
(11,9.26),
(14,8.1),
(6,6.13),
(4,3.1),
(12,9.13),
(7,7.26),
(5,4.74)
]
anscombe3 = [
(10,7.46),
(8,6.77),
(13,12.74),
(9,7.11),
(11,7.81),
(14,8.84),
(6,6.08),
(4,5.39),
(12,8.15),
(7,6.42),
(5,5.73)
]
anscombe4 = [
(8,6.58),
(8,5.76),
(8,7.71),
(8,8.84),
(8,8.47),
(8,7.04),
(8,5.25),
(19,12.5),
(8,5.56),
(8,7.91),
(8,6.89)
]
|
glutamate/datasets
|
datasets/src/Numeric/Datasets/Anscombe.hs
|
mit
| 1,018
| 0
| 7
| 201
| 479
| 320
| 159
| 53
| 1
|
-----------------------------------------------------------------------------
--
-- Module : Tikz.DSL
-- Copyright :
-- License : MIT
--
-- Maintainer : -
-- Stability :
-- Portability :
--
-- |
--
{-# LANGUAGE ExistentialQuantification, TypeSynonymInstances, FlexibleInstances #-}
module Tikz.DSL (
Repr
, Elem(..)
, ElemType(..)
, TypeOfElem(..)
, Attr(..)
, Expr(..)
, ExprType(..)
, TypeOfExpr(..)
, Cmd(..)
, Env(..)
, EmptyLine(..)
, CommentLines(..)
, RawExpr(..)
, picture
, PictureDefs(..)
, PictureAttrs(..)
, PictureStyles(..)
, Style(..)
, Def(..)
, Node(..)
, Path(..)
, PathType(..)
) where
import qualified Data.List as List
import Prelude hiding (concat, unwords, lines)
import Data.ByteString.Char8 (ByteString, pack, concat, intercalate, unwords, append)
import qualified Data.ByteString.Char8 as BS
-----------------------------------------------------------------------------
type Repr = ByteString
type Indent = Int
-----------------------------------------------------------------------------
data ElemType = TAttr | TExpr
data ExprType = TCmd | TEnv
type family TypeOfElem e :: ElemType
type family TypeOfExpr e :: ExprType
class Elem a where -- elemType :: a -> ElemType
elemMultiline :: a -> Bool
elemRepr :: Indent -> a -> ByteString
data Attr = forall e . (Elem e, TypeOfElem e ~ TAttr) => Attr e
data Expr = forall e . (Elem e, TypeOfElem e ~ TExpr) => Expr e
data Cmd = forall e . (Elem e, TypeOfElem e ~ TExpr, TypeOfExpr e ~ TCmd) => Cmd e
data Env = Env { envName :: String
, envAttrs :: [Attr]
, envBody :: [Expr]
}
data EmptyLine = EmptyLine
data CommentLines = CommentLines [String]
data RawExpr = RawExpr String
instance Elem Attr where -- elemType _ = TAttr
elemMultiline (Attr a) = elemMultiline a
elemRepr i (Attr a) = elemRepr i a
instance Elem Expr where -- elemType _ = TExpr
elemMultiline (Expr e) = elemMultiline e
elemRepr i (Expr e) = elemRepr i e
instance Elem Cmd where -- elemType _ = TExpr
elemMultiline (Cmd c) = elemMultiline c
elemRepr i (Cmd c) = elemRepr i c
instance Elem Env where -- elemType _ = TExpr
elemMultiline _ = True
elemRepr i e = concat [
indent i
, latexKey "begin"
, key
, optArgs $ envAttrs e
, newline
, lines . map (elemRepr (nextIndent i)) $ envBody e
, newline
, indent i
, latexKey "end"
, key
]
where key = surroundBracketsCurly . pack $ envName e
instance Elem EmptyLine where -- elemType _ = TExpr
elemMultiline _ = True
elemRepr _ _ = newline
instance Elem CommentLines where -- elemType _ = TExpr
elemMultiline _ = True
elemRepr i (CommentLines ls) = pack $ pre
++ List.intercalate pre ls
++ "\n"
where pre = indent' i ++ "% "
instance Elem RawExpr where elemMultiline (RawExpr s) = '\n' `elem` s
elemRepr _ (RawExpr s) = pack s
type instance TypeOfElem Attr = TAttr
type instance TypeOfElem Expr = TExpr
type instance TypeOfElem Cmd = TExpr
type instance TypeOfElem Env = TExpr
type instance TypeOfElem EmptyLine = TExpr
type instance TypeOfElem CommentLines = TExpr
type instance TypeOfElem RawExpr = TExpr
-----------------------------------------------------------------------------
newtype PictureDefs = PictureDefs [Def]
newtype PictureAttrs = PictureAttrs [Attr]
newtype PictureStyles = PictureStyles [Style]
-----------------------------------------------------------------------------
indent = pack . indent'
indent' = flip replicate ' '
nextIndent = (+) 4
newline = pack "\n"
lines = intercalate (pack "\n")
latexKey k = pack $ "\\" ++ k
surround pre suf x = concat [pack pre, x, pack suf]
surround' pre suf x = concat $ map pack [pre, x, suf]
surroundBracketsCurly = surround "{" "}"
surroundBracketsSquare = surround "[" "]"
surroundBracketsRound = surround "(" ")"
surroundBracketsCurly' = surround' "{" "}"
surroundBracketsSquare' = surround' "[" "]"
surroundBracketsRound' = surround' "(" ")"
surroundSpace s = surround s' s'
where s' = replicate s ' '
optArgs [] = BS.empty
optArgs as = surroundBracketsSquare . intercalate (pack ",") $ map (elemRepr 0) as
-----------------------------------------------------------------------------
type instance TypeOfElem String = TAttr
instance Elem String where elemMultiline _ = False
elemRepr _ = pack
-----------------------------------------------------------------------------
picture (PictureAttrs attrs) (PictureStyles styles) (PictureDefs defs) body =
Env "tikzpicture" attrs ( map Expr styles ++ Expr EmptyLine
: map Expr defs ++ Expr EmptyLine
: body)
-----------------------------------------------------------------------------
data Style = Style String [Attr]
instance Elem Style where elemMultiline _ = False
elemRepr i (Style name vals) = concat [
indent i
, latexKey "tikzstyle"
, surroundBracketsCurly' name
, pack " = "
, optArgs vals
, pack ";"
]
type instance TypeOfElem Style = TExpr
-----------------------------------------------------------------------------
data Def = Def String String
instance Elem Def where elemMultiline _ = False
elemRepr i (Def name val) = concat [
indent i
, latexKey "def"
, latexKey name
, surroundBracketsCurly' val
]
type instance TypeOfElem Def = TExpr
-----------------------------------------------------------------------------
data Node = Node String [Attr] (Maybe String) [Expr]
instance Elem Node where
elemMultiline (Node _ _ _ []) = False
elemMultiline _ = True
elemRepr i (Node name attrs at body) = concat [
indent i
, latexKey "node"
, optArgs attrs
, surroundBracketsRound' name
, at'
, body' `append` pack ";"
]
where at' = case at of Just a -> concat [
pack " at "
, surroundBracketsRound' a
]
_ -> BS.empty
body' = case body of [] -> pack "{}"
[x] | not $ elemMultiline x -> surroundBracketsCurly
. surroundSpace 1
$ elemRepr 0 x
_ -> concat [
pack "{"
, newline
, lines $ map (elemRepr (nextIndent i)) body
, newline
, indent i
, pack "}"
]
type instance TypeOfElem Node = TExpr
-----------------------------------------------------------------------------
data PathType = Edge
data Path = Path PathType String String
instance Elem Path where elemMultiline _ = False
elemRepr i (Path Edge from to) = concat [
indent i
, latexKey "path "
, surroundBracketsRound' from
, pack " edge "
, surroundBracketsRound' to
, pack ";"
]
type instance TypeOfElem Path = TExpr
-----------------------------------------------------------------------------
|
fehu/hneuro
|
src/Tikz/DSL.hs
|
mit
| 8,830
| 0
| 18
| 3,529
| 1,948
| 1,064
| 884
| -1
| -1
|
module Hate.Math.OpenGL where
import Data.Vect.Float
import qualified Graphics.Rendering.OpenGL as GL
toOpenGLVertex :: Vec4 -> GL.Vertex4 Float
toOpenGLVertex (Vec4 x y z w) = GL.Vertex4 x y z w
|
bananu7/Hate
|
src/Hate/Math/OpenGL.hs
|
mit
| 203
| 0
| 7
| 35
| 67
| 38
| 29
| 5
| 1
|
import qualified Data.ByteString.Lazy.Char8 as L
closing = readPrice . (!!4) . L.split ','
readPrice :: L.ByteString -> Maybe Int
readPrice str =
case L.readInt str of
Nothing -> Nothing
Just (dollars, rest) ->
case L.readInt (L.tail rest) of
Nothing -> Nothing
Just (cent, more) -> Just (dollars * 100 + cent)
highestClose = maximum . (Nothing :) . map closing . L.lines
highestCloseFrom path = do
content <- L.readFile path
print (highestClose content)
|
zhangjiji/real-world-haskell
|
ch8/highestClose.hs
|
mit
| 495
| 0
| 14
| 113
| 195
| 100
| 95
| 14
| 3
|
{-# LANGUAGE Safe #-}
{-# LANGUAGE OverloadedStrings #-}
-- | A pretty-printer for a small subset of LLVM
module LlvmPrinter where
import Data.String
( fromString
, IsString
)
import Data.List
( intercalate
)
import Data.Monoid
( (<>)
, mempty
, mconcat
, Monoid
)
import LlvmData
-- | A typeclass for transforming any type to any monoidal string type
class ToLlvm a where
toLlvm :: (Eq s, Monoid s, IsString s) => a -> s
instance ToLlvm ToplevelEntity where
toLlvm (Function ret nm args as blk) = "\ndefine " <> fromString ret
<+> "@" <> fromString nm
<> "(" <> fromString (intercalate ", " (map parameter args)) <> ")"
<+> fromString (unwords as)
<+> "{\n" <> mconcat (map (bbLine . toLlvm) blk) <> "}"
toLlvm (Target nm val) = "target " <> fromString nm <> " = \"" <> fromString val <> "\""
-- | Print a basic block line
bbLine :: (Monoid s, IsString s) => s -> s
bbLine s = s <> "\n"
instance ToLlvm Statement where
toLlvm (Assignment s e) = " %" <> fromString s <> " = " <> toLlvm e
toLlvm (Return s e) = " ret " <> fromString s <+> toLlvm e
toLlvm (Label s) = "\n" <> fromString s <> ":"
toLlvm (Branch s) = " br" <+> label s
toLlvm (BranchCond b t f) = " br i1" <+> toLlvm b <> "," <+> label t <> "," <+> label f
toLlvm (Flush) = mempty
instance ToLlvm Expr where
toLlvm (ExprConstant lit) = toLlvm lit
toLlvm (ExprVar nm) = identifier nm
toLlvm (ExprAdd ty e1 e2) = "add " <> fromString ty <+> toLlvm e1 <> ", " <> toLlvm e2
toLlvm (ExprPhi ty es) = "phi " <> fromString ty <+> mintercalate ", " (map phiField es)
instance ToLlvm Literal where
toLlvm (LitString s) = fromString (show s)
toLlvm (LitInteger x) = fromString (show x)
toLlvm (LitBool True) = "true"
toLlvm (LitBool False) = "false"
-- | Print a function parameter
parameter :: (Eq s, Monoid s, IsString s) => Parameter -> s
parameter (Parameter ty s) = fromString ty <+> identifier s
-- | Print a label
label :: (Eq s, Monoid s, IsString s) => String -> s
label s = "label" <+> identifier s
-- | Print an identifier
identifier :: (Eq s, Monoid s, IsString s) => String -> s
identifier s = "%" <> fromString s
-- | Same as intercalate from Data.List, but works for any monoid
mintercalate :: (Monoid s, IsString s) => s -> [s] -> s
mintercalate _ [] = mempty
mintercalate sep xs = foldr1 (\x y -> x <> sep <> y) xs
-- | Prints a phi field
phiField :: (Eq s, Monoid s, IsString s) => (Expr, String) -> s
phiField (e, s) = "[" <+> toLlvm e <> "," <+> identifier s <+> "]"
-- | Concat with a space between, unless one is empty
(<+>) :: (Eq s, Monoid s, IsString s) => s -> s -> s
a <+> b
| a == mempty = b
| b == mempty = a
| otherwise = a <> " " <> b
|
garious/hopt
|
LlvmPrinter.hs
|
mit
| 2,992
| 0
| 16
| 902
| 1,061
| 538
| 523
| 58
| 1
|
module MLUtil.Folding
( columnHead
, foldColumn
) where
import MLUtil.Imports
columnHead :: Matrix -> Int -> R
columnHead m c = m `atIndex` (0, c)
foldColumn :: (R -> b -> b) -> b -> Matrix -> Int -> b
foldColumn f acc m c = foldr (\r acc' -> f (m `atIndex` (r, c)) acc') acc [0..rows m - 1]
|
rcook/mlutil
|
mlutil/src/MLUtil/Folding.hs
|
mit
| 317
| 0
| 11
| 86
| 149
| 83
| 66
| 8
| 1
|
{-# LANGUAGE TupleSections #-}
module Main where
import Data.Bool (bool)
import Data.Either (fromRight)
import Data.List (unfoldr)
import Data.Text (Text)
import qualified Data.Text as T
import qualified Data.Text.IO as T
import qualified Data.Text.Read as T
import Data.Vector (Vector)
import qualified Data.Vector as V
rd :: Text -> Int
rd = fromRight 0 . (fmap fst . T.signed T.decimal)
rdProg :: Text -> Vector Int
rdProg = V.fromList . fmap rd . T.split (== ',')
step :: (Int, Vector Int) -> Maybe (Vector Int, (Int, Vector Int))
step (i, xs)
| o == 99 = Nothing
| o == 1 || o == 2 = Just (xs', (i + 4, xs'))
| otherwise = error "unknown opcode"
where
o = xs V.! i
a = xs V.! (i + 1)
b = xs V.! (i + 2)
c = xs V.! (i + 3)
x = xs V.! a
y = xs V.! b
z = bool (x * y) (x + y) (o == 1)
xs' = xs V.// [(c, z)]
start :: Int -> Int -> Vector Int -> Vector Int
start noun verb = (V.// [(1, noun), (2, verb)])
run :: Vector Int -> Int
run = V.head . last . unfoldr step . (0, )
part1 :: Vector Int -> Int
part1 = run . start 12 2
part2 :: Vector Int -> Int
part2 xs =
head
[ 100 * noun + verb
| noun <- [0 .. 99]
, verb <- [0 .. 99]
, 19690720 == run (start noun verb xs)
]
main :: IO ()
main = do
xs <- rdProg <$> T.readFile "input"
print $ part1 xs
print $ part2 xs
|
genos/online_problems
|
advent_of_code_2019/day02/src/Main.hs
|
mit
| 1,342
| 0
| 11
| 356
| 678
| 368
| 310
| 46
| 1
|
{-# LANGUAGE RecordWildCards #-}
{-# LANGUAGE BangPatterns #-}
-- | This module provides the ability to create reapers: dedicated cleanup
-- threads. These threads will automatically spawn and die based on the
-- presence of a workload to process on.
module Control.Reaper (
-- * Settings
ReaperSettings
, defaultReaperSettings
-- * Accessors
, reaperAction
, reaperDelay
, reaperCons
, reaperNull
, reaperEmpty
-- * Type
, Reaper(..)
-- * Creation
, mkReaper
-- * Helper
, mkListAction
) where
import Control.AutoUpdate.Util (atomicModifyIORef')
import Control.Concurrent (forkIO, threadDelay, killThread, ThreadId)
import Control.Exception (mask_)
import Data.IORef (IORef, newIORef, readIORef, writeIORef)
-- | Settings for creating a reaper. This type has two parameters:
-- @workload@ gives the entire workload, whereas @item@ gives an
-- individual piece of the queue. A common approach is to have @workload@
-- be a list of @item@s. This is encouraged by 'defaultReaperSettings' and
-- 'mkListAction'.
--
-- Since 0.1.1
data ReaperSettings workload item = ReaperSettings
{ reaperAction :: workload -> IO (workload -> workload)
-- ^ The action to perform on a workload. The result of this is a
-- \"workload modifying\" function. In the common case of using lists,
-- the result should be a difference list that prepends the remaining
-- workload to the temporary workload. For help with setting up such
-- an action, see 'mkListAction'.
--
-- Default: do nothing with the workload, and then prepend it to the
-- temporary workload. This is incredibly useless; you should
-- definitely override this default.
--
-- Since 0.1.1
, reaperDelay :: {-# UNPACK #-} !Int
-- ^ Number of microseconds to delay between calls of 'reaperAction'.
--
-- Default: 30 seconds.
--
-- Since 0.1.1
, reaperCons :: item -> workload -> workload
-- ^ Add an item onto a workload.
--
-- Default: list consing.
--
-- Since 0.1.1
, reaperNull :: workload -> Bool
-- ^ Check if a workload is empty, in which case the worker thread
-- will shut down.
--
-- Default: 'null'.
--
-- Since 0.1.1
, reaperEmpty :: workload
-- ^ An empty workload.
--
-- Default: empty list.
--
-- Since 0.1.1
}
-- | Default @ReaperSettings@ value, biased towards having a list of work
-- items.
--
-- Since 0.1.1
defaultReaperSettings :: ReaperSettings [item] item
defaultReaperSettings = ReaperSettings
{ reaperAction = \wl -> return (wl ++)
, reaperDelay = 30000000
, reaperCons = (:)
, reaperNull = null
, reaperEmpty = []
}
-- | A data structure to hold reaper APIs.
data Reaper workload item = Reaper {
-- | Adding an item to the workload
reaperAdd :: item -> IO ()
-- | Reading workload.
, reaperRead :: IO workload
-- | Stopping the reaper thread if exists.
-- The current workload is returned.
, reaperStop :: IO workload
-- | Killing the reaper thread immediately if exists.
, reaperKill :: IO ()
}
-- | State of reaper.
data State workload = NoReaper -- ^ No reaper thread
| Workload workload -- ^ The current jobs
-- | Create a reaper addition function. This funciton can be used to add
-- new items to the workload. Spawning of reaper threads will be handled
-- for you automatically.
--
-- Since 0.1.1
mkReaper :: ReaperSettings workload item -> IO (Reaper workload item)
mkReaper settings@ReaperSettings{..} = do
stateRef <- newIORef NoReaper
tidRef <- newIORef Nothing
return Reaper {
reaperAdd = add settings stateRef tidRef
, reaperRead = readRef stateRef
, reaperStop = stop stateRef
, reaperKill = kill tidRef
}
where
readRef stateRef = do
mx <- readIORef stateRef
case mx of
NoReaper -> return reaperEmpty
Workload wl -> return wl
stop stateRef = atomicModifyIORef' stateRef $ \mx ->
case mx of
NoReaper -> (NoReaper, reaperEmpty)
Workload x -> (Workload reaperEmpty, x)
kill tidRef = do
mtid <- readIORef tidRef
case mtid of
Nothing -> return ()
Just tid -> killThread tid
add :: ReaperSettings workload item
-> IORef (State workload) -> IORef (Maybe ThreadId)
-> item -> IO ()
add settings@ReaperSettings{..} stateRef tidRef item =
mask_ $ do
next <- atomicModifyIORef' stateRef cons
next
where
cons NoReaper = let !wl = reaperCons item reaperEmpty
in (Workload wl, spawn settings stateRef tidRef)
cons (Workload wl) = let wl' = reaperCons item wl
in (Workload wl', return ())
spawn :: ReaperSettings workload item
-> IORef (State workload) -> IORef (Maybe ThreadId)
-> IO ()
spawn settings stateRef tidRef = do
tid <- forkIO $ reaper settings stateRef tidRef
writeIORef tidRef $ Just tid
reaper :: ReaperSettings workload item
-> IORef (State workload) -> IORef (Maybe ThreadId)
-> IO ()
reaper settings@ReaperSettings{..} stateRef tidRef = do
threadDelay reaperDelay
-- Getting the current jobs. Push an empty job to the reference.
wl <- atomicModifyIORef' stateRef swapWithEmpty
-- Do the jobs. A function to merge the left jobs and
-- new jobs is returned.
!merge <- reaperAction wl
-- Merging the left jobs and new jobs.
-- If there is no jobs, this thread finishes.
next <- atomicModifyIORef' stateRef (check merge)
next
where
swapWithEmpty NoReaper = error "Control.Reaper.reaper: unexpected NoReaper (1)"
swapWithEmpty (Workload wl) = (Workload reaperEmpty, wl)
check _ NoReaper = error "Control.Reaper.reaper: unexpected NoReaper (2)"
check merge (Workload wl)
-- If there is no job, reaper is terminated.
| reaperNull wl' = (NoReaper, writeIORef tidRef Nothing)
-- If there are jobs, carry them out.
| otherwise = (Workload wl', reaper settings stateRef tidRef)
where
wl' = merge wl
-- | A helper function for creating 'reaperAction' functions. You would
-- provide this function with a function to process a single work item and
-- return either a new work item, or @Nothing@ if the work item is
-- expired.
--
-- Since 0.1.1
mkListAction :: (item -> IO (Maybe item'))
-> [item]
-> IO ([item'] -> [item'])
mkListAction f =
go id
where
go !front [] = return front
go !front (x:xs) = do
my <- f x
let front' =
case my of
Nothing -> front
Just y -> front . (y:)
go front' xs
|
erikd/wai
|
auto-update/Control/Reaper.hs
|
mit
| 6,832
| 0
| 16
| 1,868
| 1,296
| 697
| 599
| 106
| 4
|
import Data.Char
cap :: String -> String
cap = map toUpper
rev :: String -> String
rev = reverse
tupled :: String -> (String, String)
tupled = (,) <$> cap <*> rev
tupled' :: String -> (String, String)
tupled' = do
c <- cap
r <- rev
return (c,r)
tupled'' :: String -> (String, String)
tupled'' = cap >>=
\c -> rev >>=
\r -> return (c,r)
|
JustinUnger/haskell-book
|
ch22/ex.hs
|
mit
| 393
| 0
| 10
| 124
| 161
| 89
| 72
| 16
| 1
|
-- Power function. Primitive Recursion.
module Power where
import Test.QuickCheck
power :: Integer -> Integer -> Integer
power basis exponent
| exponent < 0 = error "Power.hs: Negative exponent."
| otherwise = power' basis exponent
where
power' :: Integer -> Integer -> Integer
power' _ 0 = 1
-- power' _ 1 = 2 -- There would be an attempt to match this in every recursion step.
-- Under what condition(s) could this mathching be an advantage?
-- Under what condition(s) could this matching be a disadvantage?
-- (Keywords: recursion pattern, parallelism, complex data structures ...)
power' basis exponent
| even exponent = power' (square basis) (halve exponent)
| otherwise = basis * power' (square basis) (halve exponent)
square :: Integer -> Integer
square basis = basis * basis
halve :: Integer -> Integer
halve exponent = exponent `div` 2
{- GHCi>
power 2 0
power 2 1
power 2 2
power 2 3
-}
-- 1
-- 2
-- 4
-- 8
prop_power :: Integer -> (Positive Integer) -> Bool
prop_power b (Positive e)
= power b e == b ^ e
-- GHCi> quickCheck prop_power
|
pascal-knodel/haskell-craft
|
Examples/· Recursion/· Primitive Recursion/Calculations/Power.hs
|
mit
| 1,160
| 0
| 11
| 300
| 253
| 131
| 122
| 18
| 2
|
module Scorer.Emit where
import Scorer.Config
import Scorer.Einsendung
import Scorer.Aufgabe
import Scorer.Util hiding ( size )
--import Prelude hiding (unwords, map, head, null, all, filter, foldr1)
import Control.Types hiding ( size )
import qualified Control.Vorlesung as V
import qualified Control.Aufgabe as A
import qualified Control.Student as S
import qualified Control.Schule as U
import Autolib.FiniteMap hiding ( collect )
import Autolib.Set
import Autolib.Util.Sort
import Autolib.ToDoc
import Autolib.Output ( Output )
import qualified Autolib.Output as O
import qualified Data.Text as T
import Control.Monad ( guard , liftM, when, forM )
import System.IO ( hFlush, stdout )
import Data.Char
-- | druckt Auswertung für alle Aufgaben einer Vorlesung
emit :: Bool -- ^ obfuscate Matrikelnummers?
-> U.Schule
-> V.Vorlesung -> DataFM -> IO ( Maybe Output )
emit deco u vor fm0 = do
studs <- V.steilnehmer $ V.vnr vor
let ssnrs = mkSet $ map S.snr studs
smnrs = mkSet $ map S.mnr studs
registered (Left mnr) = internal mnr `elementOf` smnrs
registered (Right snr) =internal snr `elementOf` ssnrs
let fm = mapFM ( \ key val -> do
e <- val
return ( e { visible = registered $ matrikel e } )
) fm0
if ( 0 < sizeFM fm )
then do
let header = O.Doc $ vcat
[ text $ unwords [ toString $ U.name u ]
, text $ unwords [ "Auswertung für Lehrveranstaltung"
, toString $ V.name vor, ":"
]
]
out <- forM ( fmToList fm ) $ single deco (V.unr vor)
to <- totalize deco (V.unr vor) fm
return $ Just $ O.lead header $ foldr1 O.Above [ O.Itemize out, to, inform ]
else return Nothing
inform :: Output
inform = O.Doc $ text $ unwords
[ "Dabei gibt es pro Score" , show scorePoints, "Punkte"
, "für die Plätze [1 ..", show scoreItems, "]"
]
realize :: [ Einsendung ] -> [ Einsendung ]
realize es = take scoreItems -- genau 10 stück
$ filter visible
$ es
-- | FIXME: this is badly broken
-- und zwar für Matrikelnummern, die keine Zahlen sind
isadmin :: ToString r => Obfuscated r -> Bool
isadmin m =
let cs = toString $ internal m
in if all isDigit cs
then 1023 > ( read cs :: Int )
else False
-- | druckt Auswertung einer Aufgabe
single :: Bool -> UNr -> ( ANr, [ Einsendung ] ) -> IO Output
single deco u arg @( anr, es ) = do
[ auf ] <- A.get_this anr
let header = O.Text $ T.pack $ unwords
[ "Aufgabe" , toString $ A.name auf
, unwords $ if null es then [] else
[ "( beste bekannte Lösung", show (size $ head es), ")" ]
]
let realized = realize es
decorated <-
if False -- deco
then mapM (liftM show . decorate u) realized
else return $ map show realized
let scored = O.Itemize $ map (O.Text . T.pack) decorated
let try = O.Named_Link "Aufgabe ausprobieren (ohne Wertung)"
$ "/cgi-bin/Trial.cgi?problem=" ++ Control.Types.toString ( A.anr auf )
return $ O.lead (O.lead header try ) scored
decorate :: UNr -> Einsendung -> IO SE
decorate u e = case matrikel e of
Left mnr -> do
studs <- S.get_unr_mnr ( u , internal mnr )
case studs of
[] -> return $ SE ( read "SNr 0" ) e
(s:_) -> return $ SE ( S.snr s ) e
Right snr -> return $ SE ( internal snr ) e
totalize :: Bool -> UNr -> DataFM -> IO Output
totalize deco u fm = do
infos <- collect deco u fm
return $ O.lead (O.Text $ T.pack "Top Ten") $ O.Doc $ vcat $ do
(i,(p,ps)) <- infos
return $ text $ unwords [ stretch 10 $ show p
, ":"
, stretch 10 $ case i of
Left m -> toString m
Right s -> toString s
, ":"
, pshow ps
]
pshow ps = unwords $ [ stretch 4 $ show (Prelude.length ps)
, "Platzierungen"
, ":"
, cshow ps
]
cshow ps = fshow $ addListToFM_C (+) emptyFM $ Prelude.zip ps $ repeat (1 :: Integer)
fshow pfm = unwords $ do
p <- [1..10]
return $ stretch 3 $ case lookupFM pfm p of
Just k -> show k
_ -> []
-- | gesamtliste der highscore
collect :: Bool
-> UNr
-> DataFM
-> IO [ ( Either (Obfuscated MNr) (Obfuscated SNr)
, (Int , [Int] ) ) ] -- ^ ( Matrikel, Punkt, Plätze )
collect deco u fm = do
let nice (e,p) =
if False -- deco
then do SE s _ <- decorate u e
return ( error "Scorer.Emit.collect") -- ( show s , p )
else return ( matrikel e , p )
infos <- mapM nice $ do
(auf,es) <- fmToList fm
(e,p,k) <- zip3 (realize es) scorePoints [1..]
return (e,(p,[k]))
return $ Prelude.take scoreItems
$ sortBy ( \ (_,(p,_)) -> negate p ) -- größten zuerst
$ fmToList
$ addListToFM_C ( \ (x,xs) (y,ys) -> (x+y,xs++ys) ) emptyFM
$ infos
{-
collect :: DataFM
-> [ ( MNr, Int ) ] -- ^ ( Matrikel, Punkt )
collect fm = take scoreItems
$ sortBy ( \ (m, p) -> negate p ) -- größten zuerst
$ fmToList
$ addListToFM_C (+) emptyFM
$ do ( auf, es ) <- fmToList fm
( e, p ) <- zip ( realize es ) scorePoints
return ( matrikel e, p )
-}
|
marcellussiegburg/autotool
|
db/src/Scorer/Emit.hs
|
gpl-2.0
| 5,434
| 128
| 22
| 1,759
| 1,736
| 939
| 797
| 123
| 3
|
{-# LANGUAGE FlexibleInstances, UndecidableInstances, TypeSynonymInstances #-}
{-# LANGUAGE LambdaCase #-}
module Data.Binary.StringRef
( ListOfStringable(..)
, StringReferencingBinary(..)
, IntLen(..)
, ls_encode
, ls_decode
) where
import Data.Binary
import Data.Binary.Put
import Data.Binary.Get
import Control.Monad
import Control.Applicative ((<$>))
import Data.List
import Data.ByteString.Lazy (ByteString)
import qualified Data.MyText as T
import Data.MyText (Text, decodeUtf8, encodeUtf8)
import Debug.Trace
class StringReferencingBinary a => ListOfStringable a where
listOfStrings :: a -> [Text]
-- | An extended version of Binary that passes the list of strings of the
-- previous sample
class StringReferencingBinary a where
ls_put :: [Text] -> a -> Put
ls_get :: [Text] -> Get a
------------------------------------------------------------------------
-- Instances for the first few tuples
instance (StringReferencingBinary a, StringReferencingBinary b) => StringReferencingBinary (a,b) where
ls_put strs (a,b) = ls_put strs a >> ls_put strs b
ls_get strs = liftM2 (,) (ls_get strs) (ls_get strs)
instance (StringReferencingBinary a, StringReferencingBinary b, StringReferencingBinary c) => StringReferencingBinary (a,b,c) where
ls_put strs (a,b,c) = ls_put strs a >> ls_put strs b >> ls_put strs c
ls_get strs = liftM3 (,,) (ls_get strs) (ls_get strs) (ls_get strs)
instance (StringReferencingBinary a, StringReferencingBinary b, StringReferencingBinary c, StringReferencingBinary d) => StringReferencingBinary (a,b,c,d) where
ls_put strs (a,b,c,d) = ls_put strs a >> ls_put strs b >> ls_put strs c >> ls_put strs d
ls_get strs = liftM4 (,,,) (ls_get strs) (ls_get strs) (ls_get strs) (ls_get strs)
instance (StringReferencingBinary a, StringReferencingBinary b, StringReferencingBinary c, StringReferencingBinary d, StringReferencingBinary e) => StringReferencingBinary (a,b,c,d,e) where
ls_put strs (a,b,c,d,e) = ls_put strs a >> ls_put strs b >> ls_put strs c >> ls_put strs d >> ls_put strs e
ls_get strs = liftM5 (,,,,) (ls_get strs) (ls_get strs) (ls_get strs) (ls_get strs) (ls_get strs)
newtype CompactNum a = CompactNum { fromCompactNum :: a }
instance (Integral a, Num a, Binary a) => StringReferencingBinary (CompactNum a) where
ls_put _ (CompactNum i)
| 0 <= i && i < 255 = putWord8 (fromIntegral i)
| otherwise = putWord8 255 >> put i
ls_get _ = fmap CompactNum $ getWord8 >>= \case
i | 0 <= i && i < 255 -> return (fromIntegral i)
| otherwise -> get
instance StringReferencingBinary a => StringReferencingBinary [a] where
ls_put strs l = ls_put strs (CompactNum (length l)) >> mapM_ (ls_put strs) l
ls_get strs = ls_getMany strs . fromCompactNum =<< ls_get strs
instance StringReferencingBinary Text where
ls_put strs s = case elemIndex s strs of
Just i | 0 <= i && i < 255 ->
putWord8 (fromIntegral (succ i))
_ -> putWord8 0 >> ls_put strs (T.unpack s)
ls_get strs = getWord8 >>= \case
0 -> T.pack <$> ls_get strs
i -> return $! strs !! fromIntegral (pred i)
-- | 'ls_get strsMany n' ls_get strs 'n' elements in order, without blowing the stack.
ls_getMany :: StringReferencingBinary a => [Text] -> Int -> Get [a]
ls_getMany strs n = go [] n
where
go xs 0 = return $! reverse xs
go xs i = do x <- ls_get strs
-- we must seq x to avoid stack overflows due to laziness in
-- (>>=)
x `seq` go (x:xs) (i-1)
{-# INLINE ls_getMany #-}
-- compat newtype for deserialization of v2-v4 CaptureData
newtype IntLen a = IntLen { fromIntLen :: a }
-- compat instance for deserialization of v1 CaptureData
instance Binary a => Binary (IntLen a) where
put = put . fromIntLen
get = IntLen <$> get
-- compat instance for deserialization of v2-v4 CaptureData
instance StringReferencingBinary a => StringReferencingBinary (IntLen [a]) where
ls_put strs (IntLen l) = ls_put strs (length l) >> mapM_ (ls_put strs) l
ls_get strs = fmap IntLen $ ls_getMany strs =<< ls_get strs
-- compat instance for deserialization of v2-v4 CaptureData
instance StringReferencingBinary (IntLen Text) where
ls_put strs (IntLen s) = case elemIndex s strs of
Just i | 0 <= i && i < 255 ->
putWord8 (fromIntegral (succ i))
_ -> putWord8 0 >> ls_put strs (IntLen (T.unpack s))
ls_get strs = fmap IntLen $ getWord8 >>= \case
0 -> T.pack . fromIntLen <$> ls_get strs
i -> return $! strs !! fromIntegral (pred i)
{-
instance Binary a => StringReferencingBinary a where
ls_put _ = put
ls_get _ = get
-}
instance StringReferencingBinary Char where { ls_put _ = put; ls_get _ = get }
instance StringReferencingBinary Int where { ls_put _ = put; ls_get _ = get }
instance StringReferencingBinary Integer where { ls_put _ = put; ls_get _ = get }
instance StringReferencingBinary Bool where { ls_put _ = put; ls_get _ = get }
ls_encode :: StringReferencingBinary a => [Text] -> a -> ByteString
ls_encode strs = runPut . ls_put strs
{-# INLINE ls_encode #-}
-- | Decode a value from a lazy ByteString, reconstructing the original structure.
--
ls_decode :: StringReferencingBinary a => [Text] -> ByteString -> a
ls_decode strs = runGet (ls_get strs)
|
nomeata/darcs-mirror-arbtt
|
src/Data/Binary/StringRef.hs
|
gpl-2.0
| 5,618
| 0
| 15
| 1,384
| 1,759
| 913
| 846
| 84
| 2
|
module Coloring (
livenessAnalysis, livenessGraph, graphColoring,
registerAllocate,
dotAllocationGraph,
) where
import Data.Maybe
import Data.List
import Data.Function
import Data.Ord
import Data.Graph.Inductive.Graph
import Data.Graph.Inductive.PatriciaTree
import Data.Graph.Inductive.Dot
import System.Process
import Control.Monad.State
import Debug.Trace
import Language
import qualified X86 as X86
type Lifetime = (Int, Int)
meet :: Lifetime -> Lifetime -> Bool
meet (p,q) (s,t) =
if p <= s
then s <= q
else p <= t
livenessAnalysis :: Int -> [A ()] -> [(Cell, Lifetime)]
livenessAnalysis _ [] = []
livenessAnalysis n (x:xs) = birth n x xs ++ livenessAnalysis (n+1) xs
where birth n (AMov (Cell i) _) rest = death n (n+1) i rest
birth n _ _ = []
death m n i (AAdd _ (Cell j):_) | i == j = [(i,(m,n))]
death m n i (AAdd _ _:rest) = death m (n+1) i rest
death m n i (ASub _ (Cell j):_) | i == j = [(i,(m,n))]
death m n i (ASub _ _:rest) = death m (n+1) i rest
death m n i (AMul (Cell j):_) | i == j = [(i,(m,n))]
death m n i (AMul _:rest) = death m (n+1) i rest
death m n i (AMov (Cell j) _:_) | i == j = [(i,(m,n))]
death m n i (AMov _ _:rest) = death m (n+1) i rest
death m n i [] = [(i,(m,n))]
livenessGraph :: [(Node, Lifetime)] -> Gr Lifetime ()
livenessGraph analysis = mkGraph nodes edges where
nodes = analysis
edges = concatMap overlaps nodes
overlaps (i,life) = map (\(j, _) -> (i, j, ())) .
filter (meet life . snd) .
filter (\(j,_) -> j /= i) $
analysis
coloring graph = execState (mapM colorVertex heuristic) [] where
-- sort the vertices of the graph in order of most edges first
heuristic = sortBy (flip (comparing (deg graph))) . nodes $ graph
colorVertex i = do let ne = neighbors graph i
colors <- get
let neColors = catMaybes . map (flip lookup colors) $ ne
let myColor = head $ [1..] \\ neColors
put ((i,myColor):colors)
graphColoring graph = gmap color graph where
color (l, i, _, r) = (l, i, fromJust . lookup i $ colors, r)
colors = coloring graph
registerAllocate asm = map r asm where
colors = graphColoring . livenessGraph . livenessAnalysis 0 $ asm
priority = map (snd . head) . sortBy (flip (comparing length)) . groupBy ((==)`on`snd) . labNodes $ colors
allocation = zip priority ([X86.R X86.EBX, X86.R X86.ECX, X86.R X86.ESI, X86.R X86.EDI] ++ map ((X86.DV) . ("ev"++) . show) [0..])
r (AAdd x y) = X86.Add (i x) (i y)
r (ASub x y) = X86.Sub (i x) (i y)
r (AMul x) = X86.Mul (i x)
r (AMov x y) = X86.Mov (i x) (i y)
i (Register ()) = X86.R X86.EAX
i (Deref ()) = X86.DR X86.EAX
i (Cell c) = let y = lookup c . labNodes $ colors in
let x = lookup (fromJust y) $ allocation
in fromJust x
i (Num n) = X86.I n
dotAllocationGraph asm = do
let dot = showDot . fglToDot . graphColoring . livenessGraph . livenessAnalysis 0 $ asm
writeFile "file.dot" dot
system("dot -Tpng -ofile.png file.dot")
|
orchid-hybrid/bee
|
Bee/Coloring.hs
|
gpl-3.0
| 3,119
| 2
| 18
| 826
| 1,581
| 824
| 757
| 72
| 10
|
import Tree (isLeaf, fringe)
|
evolutics/haskell-formatter
|
testsuite/resources/source/orders_parts/root_import_entities/Input.hs
|
gpl-3.0
| 29
| 0
| 5
| 4
| 12
| 7
| 5
| 1
| 0
|
module ScopalVerbs (rules) where
import AbsAST
rules = [
"(ComplVV manage_to $1) -> $1"
, "(UseCl $3 PPos (PredVP $2 (ComplVV forget_to $1) ^ (UseCl $3 PPos (PredVP $2 $1))"
, "(UseCl $3 PPos (PredVP $2 (ComplVV forget_to $1) -> (UseCl $3 PNeg (PredVP $2 $1))"
, "(UseCl $3 PPos (PredVP $2 (ComplVV refused_to $1) | (UseCl $3 PPos (PredVP $2 $1))"
, "(UseCl $3 PPos (PredVP $2 (ComplVV refused_to $1) -> (UseCl $3 PNeg (PredVP $2 $1))"
]
|
cunger/mule
|
src/rules/ScopalVerbs.hs
|
gpl-3.0
| 496
| 0
| 5
| 137
| 32
| 21
| 11
| 8
| 1
|
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE DeriveDataTypeable #-}
{-# LANGUAGE DeriveGeneric #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE NoImplicitPrelude #-}
{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE RecordWildCards #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE TypeOperators #-}
{-# OPTIONS_GHC -fno-warn-duplicate-exports #-}
{-# OPTIONS_GHC -fno-warn-unused-binds #-}
{-# OPTIONS_GHC -fno-warn-unused-imports #-}
-- |
-- Module : Network.Google.Resource.AppEngine.Apps.Repair
-- Copyright : (c) 2015-2016 Brendan Hay
-- License : Mozilla Public License, v. 2.0.
-- Maintainer : Brendan Hay <brendan.g.hay@gmail.com>
-- Stability : auto-generated
-- Portability : non-portable (GHC extensions)
--
-- Recreates the required App Engine features for the specified App Engine
-- application, for example a Cloud Storage bucket or App Engine service
-- account. Use this method if you receive an error message about a missing
-- feature, for example, Error retrieving the App Engine service account.
--
-- /See:/ <https://cloud.google.com/appengine/docs/admin-api/ Google App Engine Admin API Reference> for @appengine.apps.repair@.
module Network.Google.Resource.AppEngine.Apps.Repair
(
-- * REST Resource
AppsRepairResource
-- * Creating a Request
, appsRepair
, AppsRepair
-- * Request Lenses
, arXgafv
, arUploadProtocol
, arPp
, arAccessToken
, arUploadType
, arPayload
, arBearerToken
, arAppsId
, arCallback
) where
import Network.Google.AppEngine.Types
import Network.Google.Prelude
-- | A resource alias for @appengine.apps.repair@ method which the
-- 'AppsRepair' request conforms to.
type AppsRepairResource =
"v1" :>
"apps" :>
CaptureMode "appsId" "repair" Text :>
QueryParam "$.xgafv" Text :>
QueryParam "upload_protocol" Text :>
QueryParam "pp" Bool :>
QueryParam "access_token" Text :>
QueryParam "uploadType" Text :>
QueryParam "bearer_token" Text :>
QueryParam "callback" Text :>
QueryParam "alt" AltJSON :>
ReqBody '[JSON] RepairApplicationRequest :>
Post '[JSON] Operation
-- | Recreates the required App Engine features for the specified App Engine
-- application, for example a Cloud Storage bucket or App Engine service
-- account. Use this method if you receive an error message about a missing
-- feature, for example, Error retrieving the App Engine service account.
--
-- /See:/ 'appsRepair' smart constructor.
data AppsRepair = AppsRepair'
{ _arXgafv :: !(Maybe Text)
, _arUploadProtocol :: !(Maybe Text)
, _arPp :: !Bool
, _arAccessToken :: !(Maybe Text)
, _arUploadType :: !(Maybe Text)
, _arPayload :: !RepairApplicationRequest
, _arBearerToken :: !(Maybe Text)
, _arAppsId :: !Text
, _arCallback :: !(Maybe Text)
} deriving (Eq,Show,Data,Typeable,Generic)
-- | Creates a value of 'AppsRepair' with the minimum fields required to make a request.
--
-- Use one of the following lenses to modify other fields as desired:
--
-- * 'arXgafv'
--
-- * 'arUploadProtocol'
--
-- * 'arPp'
--
-- * 'arAccessToken'
--
-- * 'arUploadType'
--
-- * 'arPayload'
--
-- * 'arBearerToken'
--
-- * 'arAppsId'
--
-- * 'arCallback'
appsRepair
:: RepairApplicationRequest -- ^ 'arPayload'
-> Text -- ^ 'arAppsId'
-> AppsRepair
appsRepair pArPayload_ pArAppsId_ =
AppsRepair'
{ _arXgafv = Nothing
, _arUploadProtocol = Nothing
, _arPp = True
, _arAccessToken = Nothing
, _arUploadType = Nothing
, _arPayload = pArPayload_
, _arBearerToken = Nothing
, _arAppsId = pArAppsId_
, _arCallback = Nothing
}
-- | V1 error format.
arXgafv :: Lens' AppsRepair (Maybe Text)
arXgafv = lens _arXgafv (\ s a -> s{_arXgafv = a})
-- | Upload protocol for media (e.g. \"raw\", \"multipart\").
arUploadProtocol :: Lens' AppsRepair (Maybe Text)
arUploadProtocol
= lens _arUploadProtocol
(\ s a -> s{_arUploadProtocol = a})
-- | Pretty-print response.
arPp :: Lens' AppsRepair Bool
arPp = lens _arPp (\ s a -> s{_arPp = a})
-- | OAuth access token.
arAccessToken :: Lens' AppsRepair (Maybe Text)
arAccessToken
= lens _arAccessToken
(\ s a -> s{_arAccessToken = a})
-- | Legacy upload protocol for media (e.g. \"media\", \"multipart\").
arUploadType :: Lens' AppsRepair (Maybe Text)
arUploadType
= lens _arUploadType (\ s a -> s{_arUploadType = a})
-- | Multipart request metadata.
arPayload :: Lens' AppsRepair RepairApplicationRequest
arPayload
= lens _arPayload (\ s a -> s{_arPayload = a})
-- | OAuth bearer token.
arBearerToken :: Lens' AppsRepair (Maybe Text)
arBearerToken
= lens _arBearerToken
(\ s a -> s{_arBearerToken = a})
-- | Part of \`name\`. Name of the application to repair. Example:
-- apps\/myapp
arAppsId :: Lens' AppsRepair Text
arAppsId = lens _arAppsId (\ s a -> s{_arAppsId = a})
-- | JSONP
arCallback :: Lens' AppsRepair (Maybe Text)
arCallback
= lens _arCallback (\ s a -> s{_arCallback = a})
instance GoogleRequest AppsRepair where
type Rs AppsRepair = Operation
type Scopes AppsRepair =
'["https://www.googleapis.com/auth/cloud-platform"]
requestClient AppsRepair'{..}
= go _arAppsId _arXgafv _arUploadProtocol
(Just _arPp)
_arAccessToken
_arUploadType
_arBearerToken
_arCallback
(Just AltJSON)
_arPayload
appEngineService
where go
= buildClient (Proxy :: Proxy AppsRepairResource)
mempty
|
rueshyna/gogol
|
gogol-appengine/gen/Network/Google/Resource/AppEngine/Apps/Repair.hs
|
mpl-2.0
| 5,882
| 0
| 19
| 1,503
| 941
| 548
| 393
| 130
| 1
|
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE DeriveDataTypeable #-}
{-# LANGUAGE DeriveGeneric #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE NoImplicitPrelude #-}
{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE RecordWildCards #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE TypeOperators #-}
{-# OPTIONS_GHC -fno-warn-duplicate-exports #-}
{-# OPTIONS_GHC -fno-warn-unused-binds #-}
{-# OPTIONS_GHC -fno-warn-unused-imports #-}
-- |
-- Module : Network.Google.Resource.AdSenseHost.Accounts.List
-- Copyright : (c) 2015-2016 Brendan Hay
-- License : Mozilla Public License, v. 2.0.
-- Maintainer : Brendan Hay <brendan.g.hay@gmail.com>
-- Stability : auto-generated
-- Portability : non-portable (GHC extensions)
--
-- List hosted accounts associated with this AdSense account by ad client
-- id.
--
-- /See:/ <https://developers.google.com/adsense/host/ AdSense Host API Reference> for @adsensehost.accounts.list@.
module Network.Google.Resource.AdSenseHost.Accounts.List
(
-- * REST Resource
AccountsListResource
-- * Creating a Request
, accountsList
, AccountsList
-- * Request Lenses
, alFilterAdClientId
) where
import Network.Google.AdSenseHost.Types
import Network.Google.Prelude
-- | A resource alias for @adsensehost.accounts.list@ method which the
-- 'AccountsList' request conforms to.
type AccountsListResource =
"adsensehost" :>
"v4.1" :>
"accounts" :>
QueryParams "filterAdClientId" Text :>
QueryParam "alt" AltJSON :> Get '[JSON] Accounts
-- | List hosted accounts associated with this AdSense account by ad client
-- id.
--
-- /See:/ 'accountsList' smart constructor.
newtype AccountsList =
AccountsList'
{ _alFilterAdClientId :: [Text]
}
deriving (Eq, Show, Data, Typeable, Generic)
-- | Creates a value of 'AccountsList' with the minimum fields required to make a request.
--
-- Use one of the following lenses to modify other fields as desired:
--
-- * 'alFilterAdClientId'
accountsList
:: [Text] -- ^ 'alFilterAdClientId'
-> AccountsList
accountsList pAlFilterAdClientId_ =
AccountsList' {_alFilterAdClientId = _Coerce # pAlFilterAdClientId_}
-- | Ad clients to list accounts for.
alFilterAdClientId :: Lens' AccountsList [Text]
alFilterAdClientId
= lens _alFilterAdClientId
(\ s a -> s{_alFilterAdClientId = a})
. _Coerce
instance GoogleRequest AccountsList where
type Rs AccountsList = Accounts
type Scopes AccountsList =
'["https://www.googleapis.com/auth/adsensehost"]
requestClient AccountsList'{..}
= go _alFilterAdClientId (Just AltJSON)
adSenseHostService
where go
= buildClient (Proxy :: Proxy AccountsListResource)
mempty
|
brendanhay/gogol
|
gogol-adsense-host/gen/Network/Google/Resource/AdSenseHost/Accounts/List.hs
|
mpl-2.0
| 2,848
| 0
| 12
| 613
| 318
| 196
| 122
| 50
| 1
|
import CanvasHs
import CanvasHs.Data
import Widgets
data State = State Int
initState = State 3
-- | call widgetHandler with your personal state
main = widgetHandler handler initState
-- | Be wary, you get CombinedState here containing your state
handler state StartEvent = (state, shape $ Container 900 600 [checkboxShape])
where
(widgetState, checkboxShape) = newRadioButton 3 "myRadioButton" ["optie 1", "optie 2", "optie 3", "optie 4"]
{-
data WidgetState = WidgetState {
widgets :: [Widget],
hasFocus :: Widget
}
data Widget = DropDown { dropDownId :: String, options :: [String], selected :: Int, collapsed :: Bool, offset :: Int } | NoWidget
initState = WidgetState [] NoWidget
main = installEventHandler handler initState
handler :: WidgetState -> Event -> (WidgetState, Output)
handler st StartEvent = (st, shape $
drawDropDown ndd)
where
widgs = widgets st
ndd = newDropDown "abcde" (map (\x -> "Optie: " ++ (show x)) [1..10])
newWidgs = (ndd):widgs
drawDropDown :: Widget -> Shape
drawDropDown DropDown{dropDownId = dropDownId, options = options, selected = selected, collapsed = collapsed, offset = offset} =
Container 256 totalSize ([
-- | De omtrek
Fill (255, 255, 255, 1.0) $ Stroke (64, 64, 64, 1.0) 1 $ Rect (0, 0) 256 32,
-- | Het tekstvak
Translate 8 8 $ Container 216 16 [Text (0,0) (options !! selected) defaults{size=16}],
-- | het pijltje van de dropdown
Translate 224 0 $ Event defaults{eventId=dropDownId, mouseClick = True} $ Container 32 32 [Stroke (128, 128, 128, 1.0) 1 $ Fill (64, 64, 64, 1.0) $ Polygon [(8, 10), (16, 16), (24, 10), (16, 22)]],
-- | De container waar straks de andere opties instaan
Translate 0 32 $ Fill (255, 255, 255, 1.0) $ Stroke (64, 64, 64, 1.0) 1 $ Rect (0, 0) 256 dropDownSize
] ++ (if (not collapsed) then
[ -- | De andere opties, als de dropdown open is :P
Translate 8 40 $ Container 240 192
(map (\x ->
Translate 0 (32 * x) $ Text (0,0) (options !! (x + offset)) defaults{size=16}
) [0..(maxLen - 1)])
] else []))
where
len = length options
maxLen = min len 6
totalSize = if collapsed then 32 else (maxLen + 1) * 32
dropDownSize = maxLen * 32
newDropDown :: String -> [String] -> Widget
newDropDown newId options = DropDown ("dropdown:" ++ newId) options 0 True 0
-}
|
CanvasHS/Widgets
|
demo.hs
|
lgpl-2.1
| 2,478
| 1
| 8
| 636
| 110
| 59
| 51
| 8
| 1
|
-- Solutions to H99 problems
--
import System.Random
--
-- Exercises 1 to 28: Lists
--Ex 1
myLast :: [a] -> a
myLast [x] = x
myLast (x:xs) =
myLast xs
--Ex 2
myButLast :: [a] -> a
myButLast [x,_] = x
myButLast (x:xs) =
myButLast xs
--Ex 3
elementAt :: (Integral b) => [a] -> b -> a
elementAt (x:xs) 0 = x
elementAt (x:xs) ix = elementAt xs (ix-1)
--Ex 4
myLength :: (Integral b) => [a] -> b
myLength [] = 0
myLength (x:xs) = myLength xs + 1
--Ex 5
myReverse :: [a] -> [a]
myReverse [] = []
myReverse xs = foldl (\acc x -> x:acc) [] xs
--Ex 6
myPalindrome :: Eq a => [a] -> Bool
myPalindrome [] = True
myPalindrome x = x == myReverse x
--Ex 7
data NestedList a = Elem a | List [NestedList a]
myFlatten :: NestedList a -> [a]
myFlatten (Elem a) = [a]
myFlatten (List inner) = foldl (\acc x -> acc ++ (myFlatten x)) [] inner
--Ex 8
compress :: Eq a => [a] -> [a]
compress [] = []
compress (x:xs) = x : (compress $ dropWhile (== x) xs)
--Ex 9
pack :: Eq a => [a] -> [[a]]
pack [] = []
pack list = let (left,right) = span (== head list) list in
left : pack right
--Ex 10
encode :: (Eq a) => [a] -> [(Int, a)]
encode list = map (\x -> (length x, head x)) (pack list)
--Ex 11
data RleElem c a = Single a | Multiple c a deriving Show
encode' :: (Integral c, Eq a) => [a] -> [RleElem c a]
encode' list = map (\x -> case length x of
1 -> Single (head x)
_ -> Multiple (fromIntegral $ length x) (head x))
(pack list)
--Ex 12
decode :: (Integral c) => [RleElem c a] -> [a]
decode list = foldr (\x acc -> case x of
Single elem -> elem:acc
Multiple count elem -> (replicate (fromIntegral count) elem) ++ acc) [] list
--Ex 13
encodeDirect :: (Integral c, Eq a) => [a] -> [RleElem c a]
encodeElem :: Integral c => c -> a -> RleElem c a
encodeElem c a = if c > 1 then (Multiple c a)
else (Single a)
encodeInner :: (Integral c, Eq a) => (c,a) -> [a] -> [RleElem c a]
encodeInner (c,a) [] = [encodeElem c a]
encodeInner (c,a) (h:t)
| a == h = encodeInner (c+1, a) t
| otherwise = (encodeElem c a) : encodeInner (1,h) t
encodeDirect [] = []
encodeDirect (h:t) = encodeInner (1, h) t
--Ex 14
dupli :: [a] -> [a]
dupli [] = []
dupli (x:xs) = x:x:(dupli xs)
--Ex 15
repli :: Integral c => [a] -> c -> [a]
repli [] _ = []
repli (x:xs) c = (replicate (fromIntegral c) x) ++ (repli xs c)
--Ex 16
dropEvery :: Integral c => [a] -> c -> [a]
-- I don't really like the foldr solution
--dropEvery list n = foldr (\(x,c) acc -> if c `mod` n == 0 then acc
-- else x:acc) [] (zip list [1..])
dropEvery list n = map fst $ filter (\(x,c) -> c `mod` n /= 0) (zip list [1..])
--Ex 17
split :: Integral c => [a] -> c -> ([a],[a])
helper :: Integral c => [a] -> c -> [a] -> ([a],[a])
helper front n back = if n == 0 then (front, back)
else helper (front ++ [head back]) (n-1) (tail back)
split list c = helper [] c list
--Ex 18
slice :: Int -> Int -> ([a] -> [a])
slice i k = take (k-i+1) . drop (i-1)
--Ex 19
rotate :: Int -> [a] -> [a]
rotate c list@(x:xs) | c == 0 = list
| c < 0 = rotate (length list + c) list
| c > 0 = rotate (c-1) (xs ++ [x])
--Ex 20
removeAt :: Int -> [a] -> (a, [a])
removeAt c list = (head (drop (c-1) list), (take (c-1) list) ++ (drop c list))
--Ex 21
insertAt :: Int -> a -> [a] -> [a]
insertAt c e xs = f ++ e : s
where f = take (c-1) xs
s = drop (c-1) xs
--Ex 22
range :: Int -> Int -> [Int]
range a b = [x | x <- [a..b]]
--Ex 23
rndSelect :: Int -> [a] -> [a]
rndSelect 0 _ = []
rndSelect c xs = foldl fun [] $ take c $ randomRs (1, length xs) (mkStdGen seed)
where fun acc r = (elementAt xs r) : acc
seed = 42
-- exercise 23 variation with generator passing
rndSelect' :: (RandomGen g) => Int -> [a] -> g -> ([a], g)
rndSelect' 0 _ g = ([], g)
rndSelect' n xs g = ((at i) : ys, g'')
where at = elementAt xs
(i, g') = randomR (1, length xs) g
(ys, g'') = rndSelect' (n-1) xs g'
|
bananu7/H99-solutions
|
ex-01-28-lists.hs
|
unlicense
| 4,163
| 6
| 15
| 1,221
| 2,255
| 1,194
| 1,061
| 93
| 2
|
module EitherMonad where
import Control.Applicative
-- years ago
type Founded = Int
-- number of programmers
type Coders = Int
data SoftwareShop =
Shop {
founded :: Founded
, programmers :: Coders
} deriving (Eq, Show)
data FoundedError = NegativeYears Founded
| TooManyYears Founded
| NegativeCoders Coders
| TooManyCoders Coders
| TooManyCodersForYears Founded Coders
deriving (Eq, Show)
validateFounded :: Int -> Either FoundedError Founded
validateFounded n
| n < 0 = Left $ NegativeYears n
| n > 500 = Left $ TooManyYears n
| otherwise = Right n
-- Tho, many programmers *are* negative.
validateCoders :: Int -> Either FoundedError Coders
validateCoders n
| n < 0 = Left $ NegativeCoders n
| n > 5000 = Left $ TooManyCoders n
| otherwise = Right n
mkSoftware :: Int -> Int -> Either FoundedError SoftwareShop
mkSoftware years coders = do
founded <- validateFounded years
programmers <- validateCoders coders
if programmers > div founded 10
then Left $ TooManyCodersForYears founded programmers
else Right $ Shop founded programmers
-- Either monad
data Sum a b = First a | Second b deriving (Eq, Show)
instance Functor (Sum a) where
fmap _ (First a) = First a
fmap f (Second b) = Second (f b)
instance Applicative (Sum a) where
pure = Second
First x <*> _ = First x
Second _ <*> First x = First x
Second f <*> Second x = Second (f x)
instance Monad (Sum a) where
return = pure
First x >>= _ = First x
Second x >>= f = f x
|
dmvianna/haskellbook
|
src/Ch18-EitherMonad.hs
|
unlicense
| 1,618
| 0
| 9
| 448
| 547
| 269
| 278
| 45
| 2
|
{-# LANGUAGE OverloadedStrings #-}
module Haskoin.Crypto.SignatureSpec (spec) where
import Control.Monad
import Data.Bits (testBit)
import Data.ByteString (ByteString)
import qualified Data.ByteString as BS
import Data.Map.Strict (Map)
import qualified Data.Map.Strict as Map
import Data.Maybe
import Data.Serialize as S
import Data.String.Conversions (cs)
import Data.Text (Text)
import Haskoin.Address
import Haskoin.Transaction
import Haskoin.Keys
import Haskoin.Crypto
import Haskoin.Script
import Haskoin.Constants
import Haskoin.Util
import Haskoin.Util.Arbitrary
import Haskoin.UtilSpec (readTestFile)
import Test.Hspec
import Test.Hspec.QuickCheck
import Test.HUnit
import Test.QuickCheck
spec :: Spec
spec = do
describe "Signature properties" $ do
prop "verify signature" $
forAll arbitrarySignature $ \(m, key', sig) ->
verifyHashSig m sig (derivePubKey key')
prop "s component less than half order" $
forAll arbitrarySignature $ isCanonicalHalfOrder . lst3
prop "encoded signature is canonical" $
forAll arbitrarySignature $ testIsCanonical . lst3
prop "decodeStrictSig . exportSig identity" $
forAll arbitrarySignature $
(\s -> decodeStrictSig (exportSig s) == Just s) . lst3
prop "importSig . exportSig identity" $
forAll arbitrarySignature $
(\s -> importSig (exportSig s) == Just s) . lst3
prop "getSig . putSig identity" $
forAll arbitrarySignature $
(\s -> runGet getSig (runPut $ putSig s) == Right s) . lst3
describe "Signature vectors" $
checkDistSig $ \file1 file2 -> do
vectors <- runIO (readTestFile file1 :: IO [(Text, Text, Text)])
vectorsDER <- runIO (readTestFile file2 :: IO [(Text, Text, Text)])
it "Passes the trezor rfc6979 test vectors" $
mapM_ (testRFC6979Vector . toVector) vectors
it "Passes the rfc6979 DER test vectors" $
mapM_ (testRFC6979DERVector . toVector) vectorsDER
describe "BIP143 signature vectors" $ do
it "agrees with BIP143 p2wpkh example" testBip143p2wpkh
it "agrees with BIP143 p2sh-p2wpkh example" testBip143p2shp2wpkh
it "builds a p2wsh multisig transaction" testP2WSHMulsig
it "agrees with BIP143 p2sh-p2wsh multisig example" testBip143p2shp2wpkhMulsig
-- github.com/bitcoin/bitcoin/blob/master/src/script.cpp
-- from function IsCanonicalSignature
testIsCanonical :: Sig -> Bool
testIsCanonical sig = not $
-- Non-canonical signature: too short
(len < 8) ||
-- Non-canonical signature: too long
(len > 72) ||
-- Non-canonical signature: wrong type
(BS.index s 0 /= 0x30) ||
-- Non-canonical signature: wrong length marker
(BS.index s 1 /= len - 2) ||
-- Non-canonical signature: S length misplaced
(5 + rlen >= len) ||
-- Non-canonical signature: R+S length mismatch
(rlen + slen + 6 /= len) ||
-- Non-canonical signature: R value type mismatch
(BS.index s 2 /= 0x02) ||
-- Non-canonical signature: R length is zero
(rlen == 0) ||
-- Non-canonical signature: R value negative
testBit (BS.index s 4) 7 ||
-- Non-canonical signature: R value excessively padded
( rlen > 1
&& BS.index s 4 == 0
&& not (testBit (BS.index s 5) 7)
) ||
-- Non-canonical signature: S value type mismatch
(BS.index s (fromIntegral rlen + 4) /= 0x02) ||
-- Non-canonical signature: S length is zero
(slen == 0) ||
-- Non-canonical signature: S value negative
testBit (BS.index s (fromIntegral rlen+6)) 7 ||
-- Non-canonical signature: S value excessively padded
( slen > 1
&& BS.index s (fromIntegral rlen + 6) == 0
&& not (testBit (BS.index s (fromIntegral rlen + 7)) 7)
)
where
s = exportSig sig
len = fromIntegral $ BS.length s
rlen = BS.index s 3
slen = BS.index s (fromIntegral rlen + 5)
-- RFC6979 note: Different libraries of libsecp256k1 use different constants
-- to produce a nonce. Thus, their deterministric signatures will be different.
-- We still want to test against fixed signatures so we need a way to switch
-- between implementations. We check the output of signMsg 1 0
data ValidImpl
= ImplCore
| ImplABC
implSig :: Text
implSig =
encodeHex $
exportSig $
signMsg
"0000000000000000000000000000000000000000000000000000000000000001"
"0000000000000000000000000000000000000000000000000000000000000000"
-- We have test vectors for these cases
validImplMap :: Map Text ValidImpl
validImplMap =
Map.fromList
[ ( "3045022100a0b37f8fba683cc68f6574cd43b39f0343a50008bf6ccea9d13231\
\d9e7e2e1e4022011edc8d307254296264aebfc3dc76cd8b668373a072fd64665\
\b50000e9fcce52"
, ImplCore)
, ( "304402200581361d23e645be9e3efe63a9a2ac2e8dd0c70ba3ac8554c9befe06\
\0ad0b36202207d8172f1e259395834793d81b17e986f1e6131e4734969d2f4ae\
\3a9c8bc42965"
, ImplABC)
]
getImpl :: Maybe ValidImpl
getImpl = implSig `Map.lookup` validImplMap
rfc6979files :: ValidImpl -> (FilePath, FilePath)
rfc6979files ImplCore = ("rfc6979core.json", "rfc6979DERcore.json")
rfc6979files ImplABC = ("rfc6979abc.json", "rfc6979DERabc.json")
checkDistSig :: (FilePath -> FilePath -> Spec) -> Spec
checkDistSig go =
case rfc6979files <$> getImpl of
Just (file1, file2) -> go file1 file2
_ ->
it "Passes rfc6979 test vectors" $
void $ assertFailure "Invalid rfc6979 signature"
{- Trezor RFC 6979 Test Vectors -}
-- github.com/trezor/python-ecdsa/blob/master/ecdsa/test_pyecdsa.py
toVector :: (Text, Text, Text) -> (SecKey, ByteString, Text)
toVector (prv, m, res) = (fromJust $ (secKey <=< decodeHex) prv, cs m, res)
testRFC6979Vector :: (SecKey, ByteString, Text) -> Assertion
testRFC6979Vector (prv, m, res) = do
assertEqual "RFC 6979 Vector" res (encodeHex $ encode $ exportCompactSig s)
assertBool "Signature is valid" $ verifyHashSig h s (derivePubKey prv)
assertBool "Signature is canonical" $ testIsCanonical s
assertBool "Signature is normalized" $ isCanonicalHalfOrder s
where
h = sha256 m
s = signHash prv h
-- Test vectors from:
-- https://crypto.stackexchange.com/questions/20838/request-for-data-to-test-deterministic-ecdsa-signature-algorithm-for-secp256k1
testRFC6979DERVector :: (SecKey, ByteString, Text) -> Assertion
testRFC6979DERVector (prv, m, res) = do
assertEqual "RFC 6979 DER Vector" res (encodeHex $ exportSig s)
assertBool "DER Signature is valid" $ verifyHashSig h s (derivePubKey prv)
assertBool "DER Signature is canonical" $ testIsCanonical s
assertBool "DER Signature is normalized" $ isCanonicalHalfOrder s
where
h = sha256 m
s = signHash prv h
-- Reproduce the P2WPKH example from BIP 143
testBip143p2wpkh :: Assertion
testBip143p2wpkh =
case getImpl of
Just ImplCore ->
assertEqual "BIP143 Core p2wpkh" (Right signedTxCore) generatedSignedTx
Just ImplABC ->
assertEqual "BIP143 ABC p2wpkh" (Right signedTxABC) generatedSignedTx
Nothing -> assertFailure "Invalid secp256k1 library"
where
signedTxCore =
"01000000000102fff7f7881a8099afa6940d42d1e7f6362bec38171ea3edf433\
\541db4e4ad969f00000000494830450221008b9d1dc26ba6a9cb62127b02742f\
\a9d754cd3bebf337f7a55d114c8e5cdd30be022040529b194ba3f9281a99f2b1\
\c0a19c0489bc22ede944ccf4ecbab4cc618ef3ed01eeffffffef51e1b804cc89\
\d182d279655c3aa89e815b1b309fe287d9b2b55d57b90ec68a0100000000ffff\
\ffff02202cb206000000001976a9148280b37df378db99f66f85c95a783a76ac\
\7a6d5988ac9093510d000000001976a9143bde42dbee7e4dbe6a21b2d50ce2f0\
\167faa815988ac000247304402203609e17b84f6a7d30c80bfa610b5b4542f32\
\a8a0d5447a12fb1366d7f01cc44a0220573a954c4518331561406f90300e8f33\
\58f51928d43c212a8caed02de67eebee0121025476c2e83188368da1ff3e292e\
\7acafcdb3566bb0ad253f62fc70f07aeee635711000000"
signedTxABC =
"01000000000102fff7f7881a8099afa6940d42d1e7f6362bec38171ea3edf433\
\541db4e4ad969f000000004847304402200fbc9dad97500334e47c2dca50096a\
\2117c01952c2870102e320823d21c36229022007cb36c2b141d11c08ef81d948\
\f148332fc09fe8f6d226aaaf8ba6ae0d8a66ba01eeffffffef51e1b804cc89d1\
\82d279655c3aa89e815b1b309fe287d9b2b55d57b90ec68a0100000000ffffff\
\ff02202cb206000000001976a9148280b37df378db99f66f85c95a783a76ac7a\
\6d5988ac9093510d000000001976a9143bde42dbee7e4dbe6a21b2d50ce2f016\
\7faa815988ac0002473044022011cb891cee521eb1fc7aef681655a881288553\
\fc024cff9cee5007bae5e6b8c602200b89d60ee2f98aa9a645dad59cd680b4b6\
\25f343efcd3e7fb70852100ef601890121025476c2e83188368da1ff3e292e7a\
\cafcdb3566bb0ad253f62fc70f07aeee635711000000"
unsignedTx =
"0100000002fff7f7881a8099afa6940d42d1e7f6362bec38171ea3edf433541d\
\b4e4ad969f0000000000eeffffffef51e1b804cc89d182d279655c3aa89e815b\
\1b309fe287d9b2b55d57b90ec68a0100000000ffffffff02202cb20600000000\
\1976a9148280b37df378db99f66f85c95a783a76ac7a6d5988ac9093510d0000\
\00001976a9143bde42dbee7e4dbe6a21b2d50ce2f0167faa815988ac11000000"
Just key0 =
secHexKey
"bbc27228ddcb9209d7fd6f36b02f7dfa6252af40bb2f1cbc7a557da8027ff866"
pubKey0 = toPubKey key0
Just key1 =
secHexKey
"619c335025c7f4012e556c2a58b2506e30b8511b53ade95ea316fd8c3286feb9"
[op0, op1] = prevOutput <$> txIn unsignedTx
sigIn0 = SigInput (PayPK pubKey0) 625000000 op0 sigHashAll Nothing
WitnessPubKeyAddress h = pubKeyWitnessAddr $ toPubKey key1
sigIn1 = SigInput (PayWitnessPKHash h) 600000000 op1 sigHashAll Nothing
generatedSignedTx = signTx btc unsignedTx [sigIn0, sigIn1] [key0, key1]
-- Reproduce the P2SH-P2WPKH example from BIP 143
testBip143p2shp2wpkh :: Assertion
testBip143p2shp2wpkh =
case getImpl of
Just ImplCore ->
assertEqual "BIP143 Core p2sh-p2wpkh" (Right signedTxCore) generatedSignedTx
Just ImplABC ->
assertEqual "BIP143 ABC p2sh-p2wpkh" (Right signedTxABC) generatedSignedTx
Nothing -> assertFailure "Invalid secp256k1 library"
where
signedTxCore =
"01000000000101db6b1b20aa0fd7b23880be2ecbd4a98130974cf4748fb66092\
\ac4d3ceb1a5477010000001716001479091972186c449eb1ded22b78e40d009b\
\df0089feffffff02b8b4eb0b000000001976a914a457b684d7f0d539a46a45bb\
\c043f35b59d0d96388ac0008af2f000000001976a914fd270b1ee6abcaea97fe\
\a7ad0402e8bd8ad6d77c88ac02473044022047ac8e878352d3ebbde1c94ce3a1\
\0d057c24175747116f8288e5d794d12d482f0220217f36a485cae903c713331d\
\877c1f64677e3622ad4010726870540656fe9dcb012103ad1d8e89212f0b92c7\
\4d23bb710c00662ad1470198ac48c43f7d6f93a2a2687392040000"
signedTxABC =
"01000000000101db6b1b20aa0fd7b23880be2ecbd4a98130974cf4748fb66092\
\ac4d3ceb1a5477010000001716001479091972186c449eb1ded22b78e40d009b\
\df0089feffffff02b8b4eb0b000000001976a914a457b684d7f0d539a46a45bb\
\c043f35b59d0d96388ac0008af2f000000001976a914fd270b1ee6abcaea97fe\
\a7ad0402e8bd8ad6d77c88ac024730440220091c78fd1e21535f6ddc45515e4c\
\afca15cdf344765d72c1529fb82d3ada2d1802204a980d5e37d0b04f5e1185a0\
\f97295c383764e9a4b08d8bd1161b33c6719139a012103ad1d8e89212f0b92c7\
\4d23bb710c00662ad1470198ac48c43f7d6f93a2a2687392040000"
unsignedTx =
"0100000001db6b1b20aa0fd7b23880be2ecbd4a98130974cf4748fb66092ac4d\
\3ceb1a54770100000000feffffff02b8b4eb0b000000001976a914a457b684d7\
\f0d539a46a45bbc043f35b59d0d96388ac0008af2f000000001976a914fd270b\
\1ee6abcaea97fea7ad0402e8bd8ad6d77c88ac92040000"
Just key0 =
secHexKey
"eb696a065ef48a2192da5b28b694f87544b30fae8327c4510137a922f32c6dcf"
op0 = prevOutput . head $ txIn unsignedTx
WitnessPubKeyAddress h = pubKeyWitnessAddr $ toPubKey key0
sigIn0 = SigInput (PayWitnessPKHash h) 1000000000 op0 sigHashAll Nothing
generatedSignedTx = signNestedWitnessTx btc unsignedTx [sigIn0] [key0]
-- P2WSH multisig example (tested against bitcoin-core 0.19.0.1)
testP2WSHMulsig :: Assertion
testP2WSHMulsig =
case getImpl of
Just ImplCore ->
assertEqual "Core p2wsh multisig" (Right signedTxCore) generatedSignedTx
Just ImplABC ->
assertEqual "ABC p2wsh multisig" (Right signedTxABC) generatedSignedTx
Nothing -> assertFailure "Invalid secp256k1 library"
where
signedTxCore =
"01000000000101d2e34df5d7ee565208eddd231548916b9b0e99f4f5071f8961\
\34a448c5fb07bf0100000000ffffffff01f0b9f505000000001976a9143d5a35\
\2cab583b12fbcb26d1269b4a2c951a33ad88ac0400483045022100fad4fedd2b\
\b4c439c64637eb8e9150d9020a7212808b8dc0578d5ff5b4ad65fe0220714640\
\f261b37eb3106310bf853f4b706e51436fb6b64c2ab00768814eb55b98014730\
\44022100baff4e4ceea4022b9725a2e6f6d77997a554f858165b91ac8c16c983\
\3008bee9021f5f70ebc3f8580dc0a5e96451e3697bdf1f1f5883944f0f33ab0c\
\fb272354040169522102ba46d3bb8db74c77c6cf082db57fc0548058fcdea811\
\549e186526e3d10caf6721038ac8aef2dd9cea5e7d66e2f6e23f177a6c21f69e\
\a311fa0c85d81badb6b37ceb2103d96d2bfbbc040faaf93491d69e2bfe9695e2\
\d8e007a7f26db96c2ee42db15dc953ae00000000"
signedTxABC =
"01000000000101d2e34df5d7ee565208eddd231548916b9b0e99f4f5071f8961\
\34a448c5fb07bf0100000000ffffffff01f0b9f505000000001976a9143d5a35\
\2cab583b12fbcb26d1269b4a2c951a33ad88ac0400483045022100b79bf3714a\
\50f8f0e2f946034361ba4f6567b796d55910d89e98720d2e99f98c0220134879\
\518002df23e80a058475fa8b10bc4182bedfecd5f85e446a00f211ea53014830\
\45022100ce3c77480d664430a7544c1a962d1ae31151109a528a37e5bccc92ba\
\2e460ad10220317bc9a71d0c3471058d16d4c3b1ea99616208db6b9b9040fb81\
\0a7fa27f72b40169522102ba46d3bb8db74c77c6cf082db57fc0548058fcdea8\
\11549e186526e3d10caf6721038ac8aef2dd9cea5e7d66e2f6e23f177a6c21f6\
\9ea311fa0c85d81badb6b37ceb2103d96d2bfbbc040faaf93491d69e2bfe9695\
\e2d8e007a7f26db96c2ee42db15dc953ae00000000"
unsignedTx =
"0100000001d2e34df5d7ee565208eddd231548916b9b0e99f4f5071f896134a4\
\48c5fb07bf0100000000ffffffff01f0b9f505000000001976a9143d5a352cab\
\583b12fbcb26d1269b4a2c951a33ad88ac00000000"
op0 = head $ prevOutput <$> txIn unsignedTx
Just keys =
traverse
secHexKey
[ "3030303030303030303030303030303030303030303030303030303030303031"
, "3030303030303030303030303030303030303030303030303030303030303032"
, "3030303030303030303030303030303030303030303030303030303030303033"
]
rdm = PayMulSig (toPubKey <$> keys) 2
sigIn =
SigInput
(toP2WSH $ encodeOutput rdm)
100000000
op0
sigHashAll
(Just rdm)
generatedSignedTx = signTx btc unsignedTx [sigIn] (take 2 keys)
-- Reproduce the P2SH-P2WSH multisig example from BIP 143
testBip143p2shp2wpkhMulsig :: Assertion
testBip143p2shp2wpkhMulsig =
case getImpl of
Just ImplCore ->
assertEqual
"BIP143 Core p2sh-p2wsh multisig"
(Right signedTxCore)
generatedSignedTx
Just ImplABC ->
assertEqual
"BIP143 Core p2sh-p2wsh multisig"
(Right signedTxABC)
generatedSignedTx
Nothing -> assertFailure "Invalid secp256k1 library"
where
signedTxCore =
"0100000000010136641869ca081e70f394c6948e8af409e18b619df2ed74aa10\
\6c1ca29787b96e0100000023220020a16b5755f7f6f96dbd65f5f0d6ab9418b8\
\9af4b1f14a1bb8a09062c35f0dcb54ffffffff0200e9a435000000001976a914\
\389ffce9cd9ae88dcc0631e88a821ffdbe9bfe2688acc0832f05000000001976\
\a9147480a33f950689af511e6e84c138dbbd3c3ee41588ac080047304402206a\
\c44d672dac41f9b00e28f4df20c52eeb087207e8d758d76d92c6fab3b73e2b02\
\20367750dbbe19290069cba53d096f44530e4f98acaa594810388cf7409a1870\
\ce01473044022068c7946a43232757cbdf9176f009a928e1cd9a1a8c212f15c1\
\e11ac9f2925d9002205b75f937ff2f9f3c1246e547e54f62e027f64eefa26955\
\78cc6432cdabce271502473044022059ebf56d98010a932cf8ecfec54c48e613\
\9ed6adb0728c09cbe1e4fa0915302e022007cd986c8fa870ff5d2b3a89139c9f\
\e7e499259875357e20fcbb15571c76795403483045022100fbefd94bd0a488d5\
\0b79102b5dad4ab6ced30c4069f1eaa69a4b5a763414067e02203156c6a5c9cf\
\88f91265f5a942e96213afae16d83321c8b31bb342142a14d163814830450221\
\00a5263ea0553ba89221984bd7f0b13613db16e7a70c549a86de0cc0444141a4\
\07022005c360ef0ae5a5d4f9f2f87a56c1546cc8268cab08c73501d6b3be2e1e\
\1a8a08824730440220525406a1482936d5a21888260dc165497a90a15669636d\
\8edca6b9fe490d309c022032af0c646a34a44d1f4576bf6a4a74b67940f8faa8\
\4c7df9abe12a01a11e2b4783cf56210307b8ae49ac90a048e9b53357a2354b33\
\34e9c8bee813ecb98e99a7e07e8c3ba32103b28f0c28bfab54554ae8c658ac5c\
\3e0ce6e79ad336331f78c428dd43eea8449b21034b8113d703413d57761b8b97\
\81957b8c0ac1dfe69f492580ca4195f50376ba4a21033400f6afecb833092a9a\
\21cfdf1ed1376e58c5d1f47de74683123987e967a8f42103a6d48b1131e94ba0\
\4d9737d61acdaa1322008af9602b3b14862c07a1789aac162102d8b661b0b330\
\2ee2f162b09e07a55ad5dfbe673a9f01d9f0c19617681024306b56ae00000000"
signedTxABC =
"0100000000010136641869ca081e70f394c6948e8af409e18b619df2ed74aa10\
\6c1ca29787b96e0100000023220020a16b5755f7f6f96dbd65f5f0d6ab9418b8\
\9af4b1f14a1bb8a09062c35f0dcb54ffffffff0200e9a435000000001976a914\
\389ffce9cd9ae88dcc0631e88a821ffdbe9bfe2688acc0832f05000000001976\
\a9147480a33f950689af511e6e84c138dbbd3c3ee41588ac0800483045022100\
\b70b684ef0d17b51adf71c0dae932beca5d447dd5eec03394328436bdba836e7\
\0220208ebfd7408d21e41da11d8287655528385429d3fe300bee241f10944339\
\5b580147304402204b5f9bc06c8f0a252b9842ea44785853beb1638002cec5f2\
\489d73e5f6f5109302204f3b132b32638835d4b1a651e7d18dc93c10192db553\
\999932af6a8e3d8a153202483045022100e0ed8d3a245a138c751d74e1359aee\
\6a52476ddf33a3a9a5f0c2ad30147319650220581318187061ad0f48fc4f5c85\
\1822e554d59977005b8de4b78bf2ce2fe8399703483045022100a0a40abc581e\
\4b725775a3aa93bf0f0fd9a02ad3aa0f93483214784a47ba5387022069151c30\
\f85a7e20c8671107c5af884ee4c5a82bd06398327fa68a993f7cc64b81473044\
\022016d828460f6fab3cf89ae4b87c8f02c11c798cf739967f3b7406e7367c29\
\ae8b022079e82b822eb6c37a66efabc3f0b40a2b98c52f848d36463f6623cbdc\
\fe675812824730440220225a14ba7434858dbb5e6e0a0969ddf3b5455edaabf9\
\9f5773d1f59e7816b918022047ed1ab87840a74f7e9489f3af051e5fd26b790f\
\b308c79f4b0ed73c0422795d83cf56210307b8ae49ac90a048e9b53357a2354b\
\3334e9c8bee813ecb98e99a7e07e8c3ba32103b28f0c28bfab54554ae8c658ac\
\5c3e0ce6e79ad336331f78c428dd43eea8449b21034b8113d703413d57761b8b\
\9781957b8c0ac1dfe69f492580ca4195f50376ba4a21033400f6afecb833092a\
\9a21cfdf1ed1376e58c5d1f47de74683123987e967a8f42103a6d48b1131e94b\
\a04d9737d61acdaa1322008af9602b3b14862c07a1789aac162102d8b661b0b3\
\302ee2f162b09e07a55ad5dfbe673a9f01d9f0c19617681024306b56ae00000000"
unsignedTx =
"010000000136641869ca081e70f394c6948e8af409e18b619df2ed74aa106c1c\
\a29787b96e0100000000ffffffff0200e9a435000000001976a914389ffce9cd\
\9ae88dcc0631e88a821ffdbe9bfe2688acc0832f05000000001976a9147480a3\
\3f950689af511e6e84c138dbbd3c3ee41588ac00000000"
op0 = head $ prevOutput <$> txIn unsignedTx
rawKeys =
[ "730fff80e1413068a05b57d6a58261f07551163369787f349438ea38ca80fac6"
, "11fa3d25a17cbc22b29c44a484ba552b5a53149d106d3d853e22fdd05a2d8bb3"
, "77bf4141a87d55bdd7f3cd0bdccf6e9e642935fec45f2f30047be7b799120661"
, "14af36970f5025ea3e8b5542c0f8ebe7763e674838d08808896b63c3351ffe49"
, "fe9a95c19eef81dde2b95c1284ef39be497d128e2aa46916fb02d552485e0323"
, "428a7aee9f0c2af0cd19af3cf1c78149951ea528726989b2e83e4778d2c3f890"
]
Just keys = traverse secHexKey rawKeys
rdm = PayMulSig (toPubKey <$> keys) 6
sigIn sh = SigInput (toP2WSH $ encodeOutput rdm) 987654321 op0 sh (Just rdm)
sigHashesA = [sigHashAll, sigHashNone, sigHashSingle]
sigHashesB = setAnyoneCanPayFlag <$> sigHashesA
sigIns = sigIn <$> (sigHashesA <> sigHashesB)
generatedSignedTx = foldM addSig unsignedTx $ zip sigIns keys
addSig tx (sigIn', key') = signNestedWitnessTx btc tx [sigIn'] [key']
secHexKey :: Text -> Maybe SecKey
secHexKey = decodeHex >=> secKey
toPubKey :: SecKey -> PubKeyI
toPubKey = derivePubKeyI . wrapSecKey True
|
haskoin/haskoin
|
test/Haskoin/Crypto/SignatureSpec.hs
|
unlicense
| 21,190
| 0
| 20
| 4,130
| 2,472
| 1,282
| 1,190
| 246
| 3
|
{-# LANGUAGE TupleSections #-}
{-# LANGUAGE GeneralizedNewtypeDeriving #-}
{-# LANGUAGE StandaloneDeriving #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE FunctionalDependencies #-}
{-# LANGUAGE UndecidableInstances #-}
{-# LANGUAGE CPP #-}
{-# OPTIONS_HADDOCK hide #-}
module Text.HTML.Scalpel.Internal.Serial (
SerialScraper
, SerialScraperT
, inSerial
, stepBack
, stepNext
, seekBack
, seekNext
, untilBack
, untilNext
) where
import Text.HTML.Scalpel.Internal.Scrape
import Text.HTML.Scalpel.Internal.Select
import Control.Applicative
import Control.Monad
import Control.Monad.Trans
import Control.Monad.Except (MonadError)
import Control.Monad.Cont (MonadCont)
import Control.Monad.Reader
import Control.Monad.State
import Control.Monad.Trans.Maybe
import Control.Monad.Writer (MonadWriter)
import Data.Bifunctor
import Data.Functor.Identity
import Data.List.PointedList (PointedList)
import Data.Maybe
import Prelude hiding (until)
import qualified Control.Monad.Fail as Fail
import qualified Data.List.PointedList as PointedList
import qualified Data.Tree as Tree
import qualified Text.StringLike as TagSoup
-- | Serial scrapers operate on a zipper of tag specs that correspond to the
-- root nodes / siblings in a document.
--
-- Access to the zipper is always performed in a move-then-read manner. For this
-- reason it is valid for the current focus of the zipper to be just off either
-- end of list such that moving forward or backward would result in reading the
-- first or last node.
--
-- These valid focuses are expressed as Nothing values at either end of the
-- zipper since they are valid positions for the focus to pass over, but not
-- valid positions to read.
type SpecZipper str = PointedList (Maybe (TagSpec str))
-- | A 'SerialScraper' allows for the application of 'Scraper's on a sequence of
-- sibling nodes. This allows for use cases like targeting the sibling of a
-- node, or extracting a sequence of sibling nodes (e.g. paragraphs (\<p\>)
-- under a header (\<h2\>)).
--
-- Conceptually serial scrapers operate on a sequence of tags that correspond to
-- the immediate children of the currently focused node. For example, given the
-- following HTML:
--
-- @
-- \<article\>
-- \<h1\>title\</h1\>
-- \<h2\>Section 1\</h2\>
-- \<p\>Paragraph 1.1\</p\>
-- \<p\>Paragraph 1.2\</p\>
-- \<h2\>Section 2\</h2\>
-- \<p\>Paragraph 2.1\</p\>
-- \<p\>Paragraph 2.2\</p\>
-- \</article\>
-- @
--
-- A serial scraper that visits the header and paragraph nodes can be executed
-- with the following:
--
-- @
-- 'chroot' "article" $ 'inSerial' $ do ...
-- @
--
-- Each 'SerialScraper' primitive follows the pattern of first moving the focus
-- backward or forward and then extracting content from the new focus.
-- Attempting to extract content from beyond the end of the sequence causes the
-- scraper to fail.
--
-- To complete the above example, the article's structure and content can be
-- extracted with the following code:
--
-- @
-- 'chroot' "article" $ 'inSerial' $ do
-- title <- 'seekNext' $ 'text' "h1"
-- sections <- many $ do
-- section <- 'seekNext' $ text "h2"
-- ps <- 'untilNext' ('matches' "h2") (many $ 'seekNext' $ 'text' "p")
-- return (section, ps)
-- return (title, sections)
-- @
--
-- Which will evaluate to:
--
-- @
-- ("title", [
-- ("Section 1", ["Paragraph 1.1", "Paragraph 1.2"]),
-- ("Section 2", ["Paragraph 2.1", "Paragraph 2.2"]),
-- ])
-- @
type SerialScraper str a = SerialScraperT str Identity a
-- | Run a serial scraper transforming over a monad 'm'.
newtype SerialScraperT str m a =
MkSerialScraper (StateT (SpecZipper str) (MaybeT m) a)
deriving (Functor, Applicative, Alternative, Monad, MonadPlus, MonadFix,
MonadIO, MonadCont, MonadError e, MonadReader r, MonadWriter w)
#if MIN_VERSION_base(4,9,0)
deriving instance Monad m => Fail.MonadFail (SerialScraperT str m)
#else
instance Fail.MonadFail m => Fail.MonadFail (SerialScraperT str m) where
fail = lift . Fail.fail
#endif
instance MonadTrans (SerialScraperT str) where
lift op = MkSerialScraper . lift . lift $ op
instance MonadState s m => MonadState s (SerialScraperT str m) where
get = MkSerialScraper (lift . lift $ get)
put = MkSerialScraper . lift . lift . put
-- | Executes a 'SerialScraper' in the context of a 'Scraper'. The immediate
-- children of the currently focused node are visited serially.
inSerial :: (TagSoup.StringLike str, Monad m)
=> SerialScraperT str m a -> ScraperT str m a
inSerial (MkSerialScraper serialScraper) = MkScraper $ ReaderT $ scraper
where
scraper spec@(vec, root : _, ctx)
| ctxInChroot ctx = evalStateT serialScraper
(toZipper (vec, Tree.subForest root, ctx))
| otherwise = evalStateT serialScraper (toZipper spec)
scraper _ = empty
-- Create a zipper from the current tag spec by generating a new tag spec
-- that just contains each root node in the forest.
toZipper (vector, forest, context) =
zipperFromList $ map ((vector, , context) . return) forest
-- | Creates a SpecZipper from a list of tag specs. This requires bookending the
-- zipper with Nothing values to denote valid focuses that are just off either
-- end of the list.
zipperFromList :: TagSoup.StringLike str => [TagSpec str] -> SpecZipper str
zipperFromList = PointedList.insertLeft Nothing
. foldr (PointedList.insertLeft . Just)
(PointedList.singleton Nothing)
stepWith :: (TagSoup.StringLike str, Monad m)
=> (SpecZipper str -> Maybe (SpecZipper str))
-> ScraperT str m b
-> SerialScraperT str m b
stepWith moveList (MkScraper (ReaderT scraper)) = MkSerialScraper . StateT $
\zipper -> do
zipper' <- maybeT $ moveList zipper
focus <- maybeT $ PointedList._focus zipper'
value <- scraper focus
return (value, zipper')
-- | Move the cursor back one node and execute the given scraper on the new
-- focused node.
stepBack :: (TagSoup.StringLike str, Monad m) => ScraperT str m a -> SerialScraperT str m a
stepBack = stepWith PointedList.previous
-- | Move the cursor forward one node and execute the given scraper on the new
-- focused node.
stepNext :: (TagSoup.StringLike str, Monad m)
=> ScraperT str m a -> SerialScraperT str m a
stepNext = stepWith PointedList.next
seekWith :: (TagSoup.StringLike str, Monad m)
=> (SpecZipper str -> Maybe (SpecZipper str))
-> ScraperT str m b
-> SerialScraperT str m b
seekWith moveList (MkScraper (ReaderT scraper)) = MkSerialScraper (StateT go)
where
go zipper = do zipper' <- maybeT $ moveList zipper
runScraper zipper' <|> go zipper'
runScraper zipper = do
focus <- maybeT $ PointedList._focus zipper
value <- scraper focus
return (value, zipper)
-- | Move the cursor backward until the given scraper is successfully able to
-- execute on the focused node. If the scraper is never successful then the
-- serial scraper will fail.
seekBack :: (TagSoup.StringLike str, Monad m)
=> ScraperT str m a -> SerialScraperT str m a
seekBack = seekWith PointedList.previous
-- | Move the cursor forward until the given scraper is successfully able to
-- execute on the focused node. If the scraper is never successful then the
-- serial scraper will fail.
seekNext :: (TagSoup.StringLike str, Monad m)
=> ScraperT str m a -> SerialScraperT str m a
seekNext = seekWith PointedList.next
untilWith :: (TagSoup.StringLike str, Monad m)
=> (SpecZipper str -> Maybe (SpecZipper str))
-> (Maybe (TagSpec str) -> SpecZipper str -> SpecZipper str)
-> ScraperT str m a
-> SerialScraperT str m b
-> SerialScraperT str m b
untilWith moveList appendNode (MkScraper (ReaderT until)) (MkSerialScraper scraper) =
MkSerialScraper $ do
inner <- StateT split
lift (evalStateT scraper (appendNode Nothing inner))
where
split zipper =
do zipper' <- maybeT $ moveList zipper
spec <- maybeT $ PointedList._focus zipper'
do until spec
return (PointedList.singleton Nothing, zipper)
<|> (first (appendNode (Just spec)) `liftM` split zipper')
<|> return (PointedList.singleton Nothing, zipper)
-- | Create a new serial context by moving the focus backward and collecting
-- nodes until the scraper matches the focused node. The serial scraper is then
-- executed on the collected nodes.
untilBack :: (TagSoup.StringLike str, Monad m)
=> ScraperT str m a -> SerialScraperT str m b -> SerialScraperT str m b
untilBack = untilWith PointedList.previous PointedList.insertRight
-- | Create a new serial context by moving the focus forward and collecting
-- nodes until the scraper matches the focused node. The serial scraper is then
-- executed on the collected nodes.
--
-- The provided serial scraper is unable to see nodes outside the new restricted
-- context.
untilNext :: (TagSoup.StringLike str, Monad m)
=> ScraperT str m a -> SerialScraperT str m b -> SerialScraperT str m b
untilNext = untilWith PointedList.next PointedList.insertLeft
maybeT :: Monad m => Maybe a -> MaybeT m a
maybeT = MaybeT . return
|
fimad/scalpel
|
scalpel-core/src/Text/HTML/Scalpel/Internal/Serial.hs
|
apache-2.0
| 9,371
| 0
| 17
| 1,942
| 1,771
| 963
| 808
| 123
| 2
|
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE helpset PUBLIC "-//Sun Microsystems Inc.//DTD JavaHelp HelpSet Version 2.0//EN" "http://java.sun.com/products/javahelp/helpset_2_0.dtd">
<helpset version="2.0" xml:lang="id-ID">
<title>Browser View | ZAP Extension</title>
<maps>
<homeID>top</homeID>
<mapref location="map.jhm"/>
</maps>
<view>
<name>TOC</name>
<label>Contents</label>
<type>org.zaproxy.zap.extension.help.ZapTocView</type>
<data>toc.xml</data>
</view>
<view>
<name>Index</name>
<label>Index</label>
<type>javax.help.IndexView</type>
<data>index.xml</data>
</view>
<view>
<name>Search</name>
<label>Telusuri</label>
<type>javax.help.SearchView</type>
<data engine="com.sun.java.help.search.DefaultSearchEngine">
JavaHelpSearch
</data>
</view>
<view>
<name>Favorites</name>
<label>Favorites</label>
<type>javax.help.FavoritesView</type>
</view>
</helpset>
|
0xkasun/security-tools
|
src/org/zaproxy/zap/extension/browserView/resources/help_id_ID/helpset_id_ID.hs
|
apache-2.0
| 976
| 80
| 66
| 160
| 415
| 210
| 205
| -1
| -1
|
-- cabal-helper: Simple interface to Cabal's configuration state
-- Copyright (C) 2015-2017 Daniel Gröber <cabal-helper@dxld.at>
--
-- SPDX-License-Identifier: Apache-2.0
--
-- Licensed under the Apache License, Version 2.0 (the "License");
-- you may not use this file except in compliance with the License.
-- You may obtain a copy of the License at
--
-- http://www.apache.org/licenses/LICENSE-2.0
{-# LANGUAGE TemplateHaskell, ScopedTypeVariables, CPP #-}
{-|
Module : CabalHelper.Compiletime.Data
Description : Embeds source code for runtime component using TH
License : Apache-2.0
-}
module CabalHelper.Compiletime.Data where
import Control.Monad
import Control.Monad.IO.Class
import Data.Digest.Pure.SHA
import Data.Functor
import Data.List
import qualified Data.ByteString as BS
import qualified Data.ByteString.UTF8 as UTF8
import qualified Data.ByteString.Lazy as LBS
import qualified Data.ByteString.Lazy.UTF8 as LUTF8
import Language.Haskell.TH
import Language.Haskell.TH.Syntax (addDependentFile)
import System.Directory
import System.FilePath
import System.IO.Temp
import System.PosixCompat.Files
import System.PosixCompat.Time
import System.PosixCompat.Types
import Prelude
import CabalHelper.Compiletime.Compat.Environment
withSystemTempDirectoryEnv :: String -> (FilePath -> IO b) -> IO b
withSystemTempDirectoryEnv tpl f = do
m <- liftIO $ lookupEnv "CABAL_HELPER_KEEP_SOURCEDIR"
case m of
Nothing -> withSystemTempDirectory tpl f
Just _ -> do
tmpdir <- getCanonicalTemporaryDirectory
f =<< createTempDirectory tmpdir tpl
createHelperSources :: FilePath -> IO ()
createHelperSources dir = do
let chdir = dir </> "CabalHelper"
liftIO $ do
createDirectoryIfMissing True $ chdir </> "Runtime"
createDirectoryIfMissing True $ chdir </> "Shared"
let modtime :: EpochTime
modtime = fromIntegral $ (read :: String -> Integer)
-- See https://reproducible-builds.org/specs/source-date-epoch/
$(runIO $ do
msde :: Maybe Integer
<- fmap read <$> lookupEnv "SOURCE_DATE_EPOCH"
(current_time :: Integer) <- round . toRational <$> epochTime
return $ LitE . StringL $ show $ maybe current_time id msde)
liftIO $ forM_ sourceFiles $ \(fn, src) -> do
let path = chdir </> fn
BS.writeFile path $ UTF8.fromString src
setFileTimes path modtime modtime
sourceHash :: String
sourceHash = fst runtimeSources
sourceFiles :: [(FilePath, String)]
sourceFiles = snd runtimeSources
runtimeSources :: (String, [(FilePath, FilePath)])
runtimeSources = $(
let files = map (\f -> (f, ("src/CabalHelper" </> f))) $ sort $
[ ("Runtime/Main.hs")
, ("Runtime/HelperMain.hs")
, ("Runtime/Compat.hs")
, ("Shared/Common.hs")
, ("Shared/InterfaceTypes.hs")
]
in do
contents <- forM (map snd files) $ \lf -> do
addDependentFile lf
runIO (LBS.readFile lf)
let hashes = map (bytestringDigest . sha256) contents
let top_hash = showDigest $ sha256 $ LBS.concat hashes
let exprWrapper =
#if MIN_VERSION_template_haskell(2,16,0)
Just
#else
id
#endif
thfiles <- forM (map fst files `zip` contents) $ \(f, xs) -> do
return $ TupE [exprWrapper (LitE (StringL f)), exprWrapper (LitE (StringL (LUTF8.toString xs)))]
return $ TupE [exprWrapper (LitE (StringL top_hash)), exprWrapper (ListE thfiles)]
)
-- - $(LitE . StringL <$> runIO (UTF8.toString <$> BS.readFile
|
DanielG/cabal-helper
|
src/CabalHelper/Compiletime/Data.hs
|
apache-2.0
| 3,553
| 0
| 26
| 739
| 862
| 461
| 401
| 69
| 2
|
{-# LANGUAGE OverloadedStrings #-}
module Barc.FutharkGen (genFuthark) where
import Data.List
import qualified Data.Text as T
import Prelude
import Barc.ExpInner
genFuthark :: Prog -> T.Text
genFuthark (Prog w h e) =
T.concat [ "let board_is_okay(board: "
, board_t
, "): bool =\n"
, futLet "vs"
(futCall "map" ["i32.i8", futCall "flatten" ["board"]])
(codeBoolExp e)
, ""
, "let main [n] (boards: [n]"
, board_t
, "): [n]bool =\n"
, " map board_is_okay boards\n"
]
where w' = T.pack $ show w
h' = T.pack $ show h
board_t = T.concat [ "[", h', "][", w', "]i8"]
codeBoolExp :: ExpBool -> T.Text
codeBoolExp e = T.append (codeBoolExp' e) "\n"
codeBoolExp' :: ExpBool -> T.Text
codeBoolExp' e = case e of
BoolVal b -> if b then "true" else "false"
IndexBool bs i -> futIndex (codeBoolListExp bs) (codeIntExp i)
BoolConv e' -> futCall "i32.bool" [codeIntExp e']
ReduceBool ident neutral list body ->
futReduce "bool" ident (codeBoolExp neutral)
(codeBoolListExp list) (codeBoolExp body)
ReduceBoolValueFirst ident -> reduceValueFirst ident
ReduceBoolValueSecond ident -> reduceValueSecond ident
And e0 e1 -> futBinOp "&&" (codeBoolExp e0) (codeBoolExp e1)
Or e0 e1 -> futBinOp "||" (codeBoolExp e0) (codeBoolExp e1)
Not e' -> futUnOp "!" (codeBoolExp e')
Eq e0 e1 -> futBinOp "==" (codeIntExp e0) (codeIntExp e1)
Gt e0 e1 -> futBinOp ">" (codeIntExp e0) (codeIntExp e1)
codeIntExp :: ExpInt -> T.Text
codeIntExp e = T.append (codeIntExp' e) "\n"
codeIntExp' :: ExpInt -> T.Text
codeIntExp' e = case e of
Const n -> T.pack $ show n
IndexInt ns i -> futIndex (codeIntListExp ns) (codeIntExp i)
CurrentIndex ident -> currentIndex ident
LengthInt ns -> futLength $ codeIntListExp ns
LengthBool bs -> futLength $ codeBoolListExp bs
IntConv e' -> futCall "i32.bool" [codeBoolExp e']
ReduceInt ident neutral list body ->
futReduce "i32" ident (codeIntExp neutral)
(codeIntListExp list) (codeIntExp body)
ReduceIntValueFirst ident -> reduceValueFirst ident
ReduceIntValueSecond ident -> reduceValueSecond ident
Add e0 e1 -> futBinOp "+" (codeIntExp e0) (codeIntExp e1)
Subtract e0 e1 -> futBinOp "-" (codeIntExp e0) (codeIntExp e1)
Multiply e0 e1 -> futBinOp "*" (codeIntExp e0) (codeIntExp e1)
Modulo e0 e1 -> futBinOp "%" (codeIntExp e0) (codeIntExp e1)
codeBoolListExp :: ExpBoolList -> T.Text
codeBoolListExp e = T.append (codeBoolListExp' e) "\n"
codeBoolListExp' :: ExpBoolList -> T.Text
codeBoolListExp' e = case e of
ListBool bs -> brackets $ commaSep $ map codeBoolExp bs
MapBool ident len body ->
futMap "bool" ident (codeIntExp len) (codeBoolExp body)
codeIntListExp :: ExpIntList -> T.Text
codeIntListExp e = T.append (codeIntListExp' e) "\n"
codeIntListExp' :: ExpIntList -> T.Text
codeIntListExp' e = case e of
BoardValues -> "vs"
ListInt ns -> brackets $ commaSep $ map codeIntExp ns
MapInt ident len body ->
futMap "i32" ident (codeIntExp len) (codeIntExp body)
futReduce :: T.Text -> Int -> T.Text -> T.Text -> T.Text -> T.Text
futReduce baseType ident neutral list body =
futCall "reduce" [fun, neutral, list]
where fun = T.concat [ "\\"
, T.concat $ map parens args
, ": "
, baseType
, " -> "
, body
]
args = [ T.concat [ reduceValueFirst ident
, ": "
, baseType
]
, T.concat [ reduceValueSecond ident
, ": "
, baseType
]
]
reduceValueFirst :: Int -> T.Text
reduceValueFirst ident = T.concat [ "reduce_value_first_"
, T.pack $ show ident
]
reduceValueSecond :: Int -> T.Text
reduceValueSecond ident = T.concat [ "reduce_value_second_"
, T.pack $ show ident
]
futMap :: T.Text -> Int -> T.Text -> T.Text -> T.Text
futMap baseType ident len body =
futCall "map" [fun, list]
where fun = T.concat [ "\\"
, parens arg
, ": "
, baseType
, " -> "
, body
]
arg = T.concat [ currentIndex ident
, ": i32"
]
list = futCall "iota" [len]
currentIndex :: Int -> T.Text
currentIndex ident = T.concat [ "current_index_"
, T.pack $ show ident
]
futIndex :: T.Text -> T.Text -> T.Text
futIndex xs i = T.concat [ parens xs
, brackets i
]
futCall :: T.Text -> [T.Text] -> T.Text
futCall name args = name <> mconcat (map parens args)
futLength :: T.Text -> T.Text
futLength xs = futCall "length" [xs]
futBinOp :: T.Text -> T.Text -> T.Text -> T.Text
futBinOp op x y = parens $ T.concat [x, op, y]
futUnOp :: T.Text -> T.Text -> T.Text
futUnOp op x = parens $ T.concat [op, x]
futLet :: T.Text -> T.Text -> T.Text -> T.Text
futLet v e body = T.concat [ "let "
, v
, " = "
, e
, " in\n"
, body
]
parens :: T.Text -> T.Text
parens t = T.concat [ "("
, t
, ")"
]
brackets :: T.Text -> T.Text
brackets t = T.concat [ "["
, t
, "]"
]
commaSep :: [T.Text] -> T.Text
commaSep = T.intercalate ", "
|
Athas/banko
|
barc/Barc/FutharkGen.hs
|
bsd-2-clause
| 5,910
| 0
| 12
| 2,111
| 1,857
| 940
| 917
| 137
| 13
|
module Handler.GoogleVerify where
import Import
getGoogleVerifyR :: Handler RepHtml
getGoogleVerifyR = sendFile "text/html" "config/googled672395359cbd0e8.html"
|
pbrisbin/devsite
|
Handler/GoogleVerify.hs
|
bsd-2-clause
| 163
| 0
| 5
| 16
| 27
| 15
| 12
| 4
| 1
|
{-# LANGUAGE Rank2Types #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE ImpredicativeTypes #-}
{-# LANGUAGE ScopedTypeVariables #-}
module System.EtCetera.Internal where
import Control.Category (id, (.))
import Control.Lens (Lens', over, set, view)
import Data.Monoid ((<>))
import Generics.Deriving.Base (Generic)
import Generics.Deriving.Monoid (GMonoid, gmempty, gmappend)
import Prelude hiding (id, (.))
import Text.Boomerang.Combinators (manyl, manyr, opt, push, rCons, rList, rList1, rListSep, rNil, somel, somer)
import Text.Boomerang.HStack ((:-)(..))
import Text.Boomerang.String (StringBoomerang, StringError)
import System.EtCetera.Internal.Boomerangs (eol)
import System.EtCetera.Internal.Prim (Prs(..), Ser(..), toPrs, toSer)
-- | Configuration files usually are just sets
-- of unodered options. I wasn't able to easily
-- express final parser and printer constructions
-- with Boomerangs only, so my strategy is following:
--
-- * create separate boomerangs for every single option
--
-- * create separate parser - it will hold sum off all options
-- parsers, so it can parse any option definition
--
-- * create separate serializer which will hold whole config
-- serialization
--
-- * use these options boomerangs with options lens to feed above
-- parser and serializer at once
--
-- * these will produce partial parser (it parses only single option)
-- and final serializer, because they are not isomorphic I've decided
-- to not use Boomerang to hold them
type SingleOptionParser config r =
Prs StringError String (config :- r) (config :- r)
type Serializer config r =
Ser String (config :- r) (config :- r)
data Optional a = Present a | Missing
deriving (Eq, Show)
instance Monoid (Optional a) where
mempty = Missing
v@(Present a) `mappend` _ = v
_ `mappend` u = u
instance GMonoid (Optional a) where
gmempty = mempty
gmappend = mappend
extendSerializerWithScalarOption :: Lens' config (Optional a) ->
StringBoomerang (config :- r) (a :- config :- r) ->
Serializer config r ->
Serializer config r
extendSerializerWithScalarOption optionLens optionBoomerang serializer =
valueExtractor . optionSerializer . serializer <> serializer
where
optionSerializer = toSer (optionBoomerang . eol)
valueExtractor =
Ser (\(config :- r) ->
case view optionLens config of
(Present v) -> Just (id, v :- set optionLens Missing config :- r)
Missing -> Nothing)
extendSerializerWithVectorOption :: Lens' config [a] ->
StringBoomerang (config :- r) ([a] :- config :- r) ->
Serializer config r ->
Serializer config r
extendSerializerWithVectorOption optionLens optionBoomerang serializer =
serializer . valueExtractor . optionSerializer <> serializer
where
optionSerializer = toSer (optionBoomerang . eol)
valueExtractor =
Ser
(\(config :- r) ->
let ov = view optionLens config
in (case ov of
[] -> Nothing
otherwise -> Just (id, ov :- set optionLens [] config :- r)))
extendSerializerWithRepeatableScalar :: Lens' config [a] ->
StringBoomerang (config :- r) (a :- config :- r) ->
Serializer config r ->
Serializer config r
extendSerializerWithRepeatableScalar optionLens optionBoomerang serializer =
serializer . valueExtractor . optionSerializer <> serializer
where
optionSerializer = toSer (rList (optionBoomerang . eol))
valueExtractor =
Ser (\(config :- r) -> Just (id, view optionLens config :- set optionLens [] config :- r))
addScalarOptionParser :: Lens' config (Optional a) ->
StringBoomerang (config :- r) (a :- config :- r) ->
SingleOptionParser config r ->
SingleOptionParser config r
addScalarOptionParser optionLens optionBoomerang optionsParser =
optionsParser <> (valueSetter . toPrs optionBoomerang)
where
valueSetter =
Prs (return (\(v :- config :- r) -> set optionLens (Present v) config :- r))
addVectorOptionParser :: Lens' config [a] ->
StringBoomerang (config :- r) ([a] :- config :- r) ->
SingleOptionParser config r ->
SingleOptionParser config r
addVectorOptionParser optionLens optionBoomerang optionsParser =
optionsParser <> (valueSetter . toPrs optionBoomerang)
where
valueSetter =
Prs (return (\(v :- config :- r) -> set optionLens v config :- r))
addRepeatableScalarParser :: Lens' config [a] ->
StringBoomerang (config :- r) (a :- config :- r) ->
SingleOptionParser config r ->
SingleOptionParser config r
addRepeatableScalarParser optionLens optionBoomerang optionsParser =
(valueSetter . toPrs optionBoomerang) <> optionsParser
where
valueSetter =
Prs (return (\(v :- config :- r) -> over optionLens (v :) config :- r))
vector :: Lens' config [a] ->
StringBoomerang (config :- r) ([a] :- config :- r) ->
(SingleOptionParser config r, Serializer config r) ->
(SingleOptionParser config r, Serializer config r)
vector optionLens optionBoomerang (p, s) =
(p', s')
where
p' = addVectorOptionParser optionLens optionBoomerang p
s' = extendSerializerWithVectorOption optionLens optionBoomerang s
scalar :: Lens' config (Optional a) ->
StringBoomerang (config :- r) (a :- config :- r) ->
(SingleOptionParser config r, Serializer config r) ->
(SingleOptionParser config r, Serializer config r)
scalar optionLens optionBoomerang (p, s) =
(p', s')
where
p' = addScalarOptionParser optionLens optionBoomerang p
s' = extendSerializerWithScalarOption optionLens optionBoomerang s
repeatableScalar :: Lens' config [a] ->
StringBoomerang (config :- r) (a :- config :- r) ->
(SingleOptionParser config r, Serializer config r) ->
(SingleOptionParser config r, Serializer config r)
repeatableScalar optionLens optionBoomerang (p, s) =
(p', s')
where
p' = addRepeatableScalarParser optionLens optionBoomerang p
s' = extendSerializerWithRepeatableScalar optionLens optionBoomerang s
|
paluh/et-cetera
|
src/System/EtCetera/Internal.hs
|
bsd-3-clause
| 6,589
| 0
| 21
| 1,775
| 1,718
| 933
| 785
| -1
| -1
|
module Main (main) where
import System.Environment
import Data.List
import Data.Ord
import Data.Function
collatz :: Int -> [Int] -> [Int]
collatz n xs | n == 1 = xs ++ [1]
collatz n xs | even n = collatz (n `div` 2) $ xs ++ [n]
collatz n xs | otherwise = collatz (n * 3 + 1) $ xs ++ [n]
main :: IO ()
main = do [x] <- getArgs
print $ fst $ maximumBy (comparing length `on` snd)
$ fmap (\ x -> (x, collatz x []) ) [1..(read x)]
|
lnds/programando.org
|
siracusa/damowe-2.hs
|
bsd-3-clause
| 451
| 0
| 13
| 116
| 250
| 131
| 119
| 13
| 1
|
module ChatData where
import Control.Distributed.STM.DSTM
type CmdTVar = TVar (Maybe ServerCmd)
data ServerCmd = Join String CmdTVar
| Msg String String
| Leave String
deriving (Show,Read)
instance Dist ServerCmd where
finTVars (Join _ cmd) = finTVars cmd
finTVars _ = return ()
regTVars env (Join _ cmd) = regTVars env cmd
regTVars _ _ = return ()
|
proger/haskell-dstm
|
Chat/ChatData.hs
|
bsd-3-clause
| 382
| 0
| 8
| 90
| 138
| 72
| 66
| 12
| 0
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.