code
string
signature
string
docstring
string
loss_without_docstring
float64
loss_with_docstring
float64
factor
float64
lv_stats = {} for la in nd._mv_grid_districts[0].lv_load_areas(): for lvgd in la.lv_grid_districts(): station_neighbors = list(lvgd.lv_grid._graph[ lvgd.lv_grid._station].keys()) # check if nodes of a statio are members of list generators station_generators = [x for x in station_neighbors if x in lvgd.lv_grid.generators()] lv_stats[repr(lvgd.lv_grid._station)] = station_generators return lv_stats
def lv_grid_generators_bus_bar(nd)
Calculate statistics about generators at bus bar in LV grids Parameters ---------- nd : ding0.NetworkDing0 Network container object Returns ------- lv_stats : dict Dict with keys of LV grid repr() on first level. Each of the grids has a set of statistical information about its topology
8.326947
7.419044
1.122375
abs_path = os.path.abspath(path) if len(nd._mv_grid_districts) > 1: name_extension = '_{number}-{number2}'.format( number=nd._mv_grid_districts[0].id_db, number2=nd._mv_grid_districts[-1].id_db) else: name_extension = '_{number}'.format(number=nd._mv_grid_districts[0].id_db) if filename is None: filename = "ding0_grids_{ext}.pkl".format( ext=name_extension) # delete attributes of `nd` in order to make pickling work # del nd._config del nd._orm pickle.dump(nd, open(os.path.join(abs_path, filename), "wb"))
def save_nd_to_pickle(nd, path='', filename=None)
Use pickle to save the whole nd-object to disc The network instance is entirely pickled to a file. Parameters ---------- nd : NetworkDing0 Ding0 grid container object path : str Absolute or relative path where pickle should be saved. Default is '' which means pickle is save to PWD
4.342109
3.969701
1.093813
abs_path = os.path.abspath(path) if filename is None: raise NotImplementedError return pickle.load(open(os.path.join(abs_path, filename), "rb"))
def load_nd_from_pickle(filename=None, path='')
Use pickle to save the whole nd-object to disc Parameters ---------- filename : str Filename of nd pickle path : str Absolute or relative path where pickle should be saved. Default is '' which means pickle is save to PWD Returns ------- nd : NetworkDing0 Ding0 grid container object
3.332886
4.019889
0.829099
# cable and line kilometer distribution f, axarr = plt.subplots(2, 2, sharex=True) stats.hist(column=['Length of MV overhead lines'], bins=5, alpha=0.5, ax=axarr[0, 0]) stats.hist(column=['Length of MV underground cables'], bins=5, alpha=0.5, ax=axarr[0, 1]) stats.hist(column=['Length of LV overhead lines'], bins=5, alpha=0.5, ax=axarr[1, 0]) stats.hist(column=['Length of LV underground cables'], bins=5, alpha=0.5, ax=axarr[1, 1]) plt.savefig(os.path.join(plotpath, 'Histogram_cable_line_length.pdf'))
def plot_cable_length(stats, plotpath)
Cable length per MV grid district
2.629634
2.498987
1.05228
# Generation capacity vs. peak load sns.set_context("paper", font_scale=1.1) sns.set_style("ticks") # reformat to MW gen_cap_indexes = ["Gen. Cap. of MV at v_level 4", "Gen. Cap. of MV at v_level 5", "Gen. Cap. of LV at v_level 6", "Gen. Cap. of LV at v_level 7"] peak_load_index = ["LA Total LV Peak Load total"] stats['generation_capacity'] = stats[gen_cap_indexes].sum(axis=1) / 1e3 stats['peak_load'] = stats[peak_load_index] / 1e3 sns.lmplot('generation_capacity', 'peak_load', data=stats, fit_reg=False, # hue='v_nom', # hue='Voltage level', scatter_kws={"marker": "D", "s": 100}, aspect=2) plt.title('Peak load vs. generation capacity') plt.xlabel('Generation capacity in MW') plt.ylabel('Peak load in MW') plt.savefig(os.path.join(plotpath, 'Scatter_generation_load.pdf'))
def plot_generation_over_load(stats, plotpath)
Plot of generation over load
3.914292
3.904088
1.002614
pickle_name = cfg_ding0.get('output', 'nd_pickle') # self.nd = self.read_pickles_from_files(pickle_name) # TODO: instead of passing a list of mvgd's, pass list of filenames plus optionally a basth_path for mvgd in mv_grid_districts[1:]: filename = os.path.join( self.base_path, 'results', pickle_name.format(mvgd)) if os.path.isfile(filename): mvgd_pickle = pickle.load(open(filename, 'rb')) if mvgd_pickle._mv_grid_districts: mvgd.add_mv_grid_district(mvgd_pickle._mv_grid_districts[0]) # save to concatenated pickle pickle.dump(mvgd, open(os.path.join( self.base_path, 'results', "ding0_grids_{0}-{1}.pkl".format( mv_grid_districts[0], mv_grid_districts[-1])), "wb")) # save stats (edges and nodes data) to csv nodes, edges = mvgd.to_dataframe() nodes.to_csv(os.path.join( self.base_path, 'results', 'mvgd_nodes_stats_{0}-{1}.csv'.format( mv_grid_districts[0], mv_grid_districts[-1])), index=False) edges.to_csv(os.path.join( self.base_path, 'results', 'mvgd_edges_stats_{0}-{1}.csv'.format( mv_grid_districts[0], mv_grid_districts[-1])), index=False)
def concat_nd_pickles(self, mv_grid_districts)
Read multiple pickles, join nd objects and save to file Parameters ---------- mv_grid_districts : list Ints describing MV grid districts
3.325568
3.369687
0.986907
############################## # close circuit breakers nw.control_circuit_breakers(mode='close') ############################## nodes_idx = 0 nodes_dict = {} branches_idx = 0 branches_dict = {} for district in nw.mv_grid_districts(): # nodes voltage for node in district.mv_grid.graph_nodes_sorted(): nodes_idx += 1 if hasattr(node, 'voltage_res'): Vres0 = node.voltage_res[0] Vres1 = node.voltage_res[1] else: Vres0 = 'Not available' Vres1 = 'Not available' nodes_dict[nodes_idx] = {'MV_grid_id': district.mv_grid.id_db, 'node id': node.__repr__(), 'V_res_0': Vres0, 'V_res_1': Vres1, 'V nominal': district.mv_grid.v_level} # branches currents for branch in district.mv_grid.graph_edges(): branches_idx += 1 if hasattr(branch['branch'], 's_res'): s_res0 = branch['branch'].s_res[0] s_res1 = branch['branch'].s_res[1] else: s_res0 = 'Not available' s_res1 = 'Not available' branches_dict[branches_idx] = { 'MV_grid_id': district.mv_grid.id_db, 'branch id': branch['branch'].__repr__(), # .id_db 's_res_0': s_res0, 's_res_1': s_res1, # 'length': branch['branch'].length / 1e3, } nodes_df = pd.DataFrame.from_dict(nodes_dict, orient='index') branches_df = pd.DataFrame.from_dict(branches_dict, orient='index') if not nodes_df.empty: nodes_df = nodes_df.set_index('node id') nodes_df = nodes_df.fillna(0) nodes_df = nodes_df[sorted(nodes_df.columns.tolist())] nodes_df.sort_index(inplace=True) if not branches_df.empty: branches_df = branches_df.set_index('branch id') branches_df = branches_df.fillna(0) branches_df = branches_df[sorted(branches_df.columns.tolist())] branches_df.sort_index(inplace=True) return (nodes_df, branches_df)
def calculate_mvgd_voltage_current_stats(nw)
MV Voltage and Current Statistics for an arbitrary network Parameters ---------- nw: :any:`list` of NetworkDing0 The MV grid(s) to be studied Returns ------- pandas.DataFrame nodes_df : Dataframe containing voltage statistics for every node in the MVGD pandas.DataFrame lines_df : Dataframe containing voltage statistics for every edge in the MVGD
2.248526
2.218987
1.013312
############################## # close circuit breakers nw.control_circuit_breakers(mode='close') ############################## nodes_idx = 0 nodes_dict = {} branches_idx = 0 branches_dict = {} for mv_district in nw.mv_grid_districts(): for LA in mv_district.lv_load_areas(): if not LA.is_aggregated: for lv_district in LA.lv_grid_districts(): # nodes voltage crit_nodes = get_critical_voltage_at_nodes(lv_district.lv_grid) for node in crit_nodes: nodes_idx += 1 nodes_dict[nodes_idx] = { 'MV_grid_id': mv_district.mv_grid.id_db, 'LV_grid_id': lv_district.lv_grid.id_db, 'LA_id': LA.id_db, 'node id': node['node'].__repr__(), 'v_diff_0': node['v_diff'][0], 'v_diff_1': node['v_diff'][1], 's_max_0': 'NA', 's_max_1': 'NA', 'V nominal': lv_district.lv_grid.v_level, } # branches currents critical_branches, critical_stations = get_critical_line_loading(lv_district.lv_grid) for branch in critical_branches: branches_idx += 1 branches_dict[branches_idx] = { 'MV_grid_id': mv_district.mv_grid.id_db, 'LV_grid_id': lv_district.lv_grid.id_db, 'LA_id': LA.id_db, 'branch id': branch['branch'].__repr__(), 's_max_0': branch['s_max'][0], 's_max_1': branch['s_max'][1], } # stations for node in critical_stations: nodes_idx += 1 nodes_dict[nodes_idx] = { 'MV_grid_id': mv_district.mv_grid.id_db, 'LV_grid_id': lv_district.lv_grid.id_db, 'LA_id': LA.id_db, 'node id': node['station'].__repr__(), 's_max_0': node['s_max'][0], 's_max_1': node['s_max'][1], 'v_diff_0': 'NA', 'v_diff_1': 'NA', } nodes_df = pd.DataFrame.from_dict(nodes_dict, orient='index') branches_df = pd.DataFrame.from_dict(branches_dict, orient='index') if not nodes_df.empty: nodes_df = nodes_df.set_index('node id') nodes_df = nodes_df.fillna(0) nodes_df = nodes_df[sorted(nodes_df.columns.tolist())] nodes_df.sort_index(inplace=True) if not branches_df.empty: branches_df = branches_df.set_index('branch id') branches_df = branches_df.fillna(0) branches_df = branches_df[sorted(branches_df.columns.tolist())] branches_df.sort_index(inplace=True) return nodes_df, branches_df
def calculate_lvgd_voltage_current_stats(nw)
LV Voltage and Current Statistics for an arbitrary network Note ---- Aggregated Load Areas are excluded. Parameters ---------- nw: :any:`list` of NetworkDing0 The MV grid(s) to be studied Returns ------- pandas.DataFrame nodes_df : Dataframe containing voltage, respectively current, statis for every critical node, resp. every critical station, in every LV grid in nw. pandas.DataFrame lines_df : Dataframe containing current statistics for every critical line, in every LV grid in nw.
2.043356
1.979848
1.032077
'''Runs ding0 over the districtis selected in mv_grid_districts It also writes the result in filename. If filename = False, then the network is not saved. Parameters ---------- mv_grid_districts: :any:`list` of :obj:`int` Districts IDs: Defaults to [3545] filename: str Defaults to 'ding0_tests_grids_1.pkl' If filename=False, then the network is not saved Returns ------- NetworkDing0 The created MV network. ''' print('\n########################################') print(' Running ding0 for district', mv_grid_districts) # database connection/ session engine = db.connection(section='oedb') session = sessionmaker(bind=engine)() # instantiate new ding0 network object nd = NetworkDing0(name='network') # run DINGO on selected MV Grid District nd.run_ding0(session=session, mv_grid_districts_no=mv_grid_districts) # export grid to file (pickle) if filename: print('\n########################################') print(' Saving result in ', filename) save_nd_to_pickle(nd, filename=filename) print('\n########################################') return nd
def init_mv_grid(mv_grid_districts=[3545], filename='ding0_tests_grids_1.pkl')
Runs ding0 over the districtis selected in mv_grid_districts It also writes the result in filename. If filename = False, then the network is not saved. Parameters ---------- mv_grid_districts: :any:`list` of :obj:`int` Districts IDs: Defaults to [3545] filename: str Defaults to 'ding0_tests_grids_1.pkl' If filename=False, then the network is not saved Returns ------- NetworkDing0 The created MV network.
5.740098
3.012362
1.905514
# make some plot plotpath = os.path.join(base_path, 'plots') results.plot_cable_length(stats, plotpath) plt.show() results.plot_generation_over_load(stats, plotpath) plt.show()
def ding0_exemplary_plots(stats, base_path=BASEPATH)
Analyze multiple grid district data generated with Ding0. Parameters ---------- stats : pandas.DataFrame Statistics of each MV grid districts base_path : str Root directory of Ding0 data structure, i.e. '~/.ding0' (which is default).
4.590904
5.071285
0.905274
# load Ding0 data nds = [] for filename in filenames: try: nd_load = results.load_nd_from_pickle(filename= os.path.join(base_path, 'grids', filename)) nds.append(nd_load) except: print("File {mvgd} not found. It was maybe excluded by Ding0 or " "just forgotten to generate by you...".format(mvgd=filename)) nd = nds[0] for n in nds[1:]: nd.add_mv_grid_district(n._mv_grid_districts[0]) # get statistical numbers about grid stats = results.calculate_mvgd_stats(nd) return stats
def nd_load_and_stats(filenames, base_path=BASEPATH)
Load multiple files from disk and generate stats Passes the list of files assuming the ding0 data structure as default in :code:`~/.ding0`. Data will be concatenated and key indicators for each grid district are returned in table and graphic format. Parameters ---------- filenames : list of str Provide list of files you want to analyze base_path : str Root directory of Ding0 data structure, i.e. '~/.ding0' (which is default). Returns ------- stats : pandas.DataFrame Statistics of each MV grid districts
7.649806
6.638479
1.152343
#TODO: finish docstring # load cable data, file_names and parameter branch_parameters = grid.network.static_data['MV_cables'] branch_parameters = branch_parameters[branch_parameters['U_n'] == grid.v_level].sort_values('I_max_th') branch_ctr = 0 for branch, rel_overload in crit_branches.items(): try: type = branch_parameters.loc[ branch_parameters[ branch_parameters['I_max_th'] >= branch['branch'] .type['I_max_th'] * rel_overload ].loc[ :, 'I_max_th' ].idxmin(), : ] branch['branch'].type = type branch_ctr += 1 except: logger.warning('Branch {} could not be reinforced (current ' 'issues) as there is no appropriate cable type ' 'available. Original type is retained.'.format( branch)) pass if branch_ctr: logger.info('==> {} branches were reinforced.'.format(str(branch_ctr)))
def reinforce_branches_current(grid, crit_branches)
Reinforce MV or LV grid by installing a new branch/line type Parameters ---------- grid : GridDing0 Grid identifier. crit_branches : dict Dict of critical branches with max. relative overloading. Notes ----- The branch type to be installed is determined per branch using the rel. overloading. According to [#]_ only cables are installed. References ---------- .. [#] Ackermann et al. (RP VNS) See Also -------- ding0.flexopt.check_tech_constraints.check_load : ding0.flexopt.reinforce_measures.reinforce_branches_voltage :
7.415174
6.938835
1.068648
#TODO: finish docstring # load cable data, file_names and parameter branch_parameters = grid.network.static_data['{gridlevel}_cables'.format( gridlevel=grid_level)] branch_parameters = branch_parameters[branch_parameters['U_n'] == grid.v_level].sort_values('I_max_th') branch_ctr = 0 for branch in crit_branches: try: type = branch_parameters.loc[ branch_parameters.loc[ branch_parameters['I_max_th'] > branch.type['I_max_th'] ].loc[ :, 'I_max_th' ].idxmin(), : ] branch.type = type branch_ctr += 1 except: logger.warning('Branch {} could not be reinforced (voltage ' 'issues) as there is no appropriate cable type ' 'available. Original type is retained.'.format( branch)) pass if branch_ctr: logger.info('==> {} branches were reinforced.'.format(str(branch_ctr)))
def reinforce_branches_voltage(grid, crit_branches, grid_level='MV')
Reinforce MV or LV grid by installing a new branch/line type Parameters ---------- grid : GridDing0 Grid identifier. crit_branches : :any:`list` of :obj:`int` List of critical branches. #TODO: check if a list or a dictionary grid_level : str Specifying either 'MV' for medium-voltage grid or 'LV' for low-voltage grid level. Notes ----- The branch type to be installed is determined per branch - the next larger cable available is used. According to Ackermann only cables are installed. See Also -------- ding0.flexopt.check_tech_constraints.check_load : ding0.flexopt.reinforce_measures.reinforce_branches_voltage :
6.807174
6.8325
0.996293
load_factor_lv_trans_lc_normal = cfg_ding0.get( 'assumptions', 'load_factor_lv_trans_lc_normal') load_factor_lv_trans_fc_normal = cfg_ding0.get( 'assumptions', 'load_factor_lv_trans_fc_normal') trafo_params = grid.network._static_data['{grid_level}_trafos'.format( grid_level=grid_level)] trafo_s_max_max = max(trafo_params['S_nom']) for station in critical_stations: # determine if load or generation case and apply load factor if station['s_max'][0] > station['s_max'][1]: case = 'load' lf_lv_trans_normal = load_factor_lv_trans_lc_normal else: case = 'gen' lf_lv_trans_normal = load_factor_lv_trans_fc_normal # cumulative maximum power of transformers installed s_max_trafos = sum([_.s_max_a for _ in station['station']._transformers]) # determine missing trafo power to solve overloading issue s_trafo_missing = max(station['s_max']) - ( s_max_trafos * lf_lv_trans_normal) # list of trafos with rated apparent power below `trafo_s_max_max` extendable_trafos = [_ for _ in station['station']._transformers if _.s_max_a < trafo_s_max_max] # try to extend power of existing trafos while (s_trafo_missing > 0) and extendable_trafos: # only work with first of potentially multiple trafos trafo = extendable_trafos[0] trafo_s_max_a_before = trafo.s_max_a # extend power of first trafo to next higher size available extend_trafo_power(extendable_trafos, trafo_params) # diminish missing trafo power by extended trafo power and update # extendable trafos list s_trafo_missing -= ((trafo.s_max_a * lf_lv_trans_normal) - trafo_s_max_a_before) extendable_trafos = [_ for _ in station['station']._transformers if _.s_max_a < trafo_s_max_max] # build new trafos inside station until if s_trafo_missing > 0: trafo_type, trafo_cnt = select_transformers(grid, s_max={ 's_max': s_trafo_missing, 'case': case }) # create transformers and add them to station of LVGD for t in range(0, trafo_cnt): lv_transformer = TransformerDing0( grid=grid, id_db=id, v_level=0.4, s_max_longterm=trafo_type['S_nom'], r=trafo_type['R'], x=trafo_type['X']) # add each transformer to its station grid._station.add_transformer(lv_transformer) logger.info("{stations_cnt} have been reinforced due to overloading " "issues.".format(stations_cnt=len(critical_stations)))
def extend_substation(grid, critical_stations, grid_level)
Reinforce MV or LV substation by exchanging the existing trafo and installing a parallel one if necessary. First, all available transformers in a `critical_stations` are extended to maximum power. If this does not solve all present issues, additional transformers are build. Parameters ---------- grid: GridDing0 Ding0 grid container critical_stations : :any:`list` List of stations with overloading grid_level : str Either "LV" or "MV". Basis to select right equipment. Notes ----- Curently straight forward implemented for LV stations Returns ------- type #TODO: Description of return. Change type in the previous line accordingly
4.594412
4.266362
1.076892
grid = crit_stations[0]['node'].grid trafo_params = grid.network._static_data['{grid_level}_trafos'.format( grid_level=grid_level)] trafo_s_max_max = max(trafo_params['S_nom']) trafo_min_size = trafo_params.loc[trafo_params['S_nom'].idxmin(), :] v_diff_max_fc = cfg_ding0.get('assumptions', 'lv_max_v_level_fc_diff_normal') v_diff_max_lc = cfg_ding0.get('assumptions', 'lv_max_v_level_lc_diff_normal') tree = nx.dfs_tree(grid._graph, grid._station) for station in crit_stations: v_delta = max(station['v_diff']) # get list of nodes of main branch in right order extendable_trafos = [_ for _ in station['node']._transformers if _.s_max_a < trafo_s_max_max] v_delta_initially_lc = v_delta[0] v_delta_initially_fc = v_delta[1] new_transformers_cnt = 0 # extend existing trafo power while voltage issues exist and larger trafos # are available while (v_delta[0] > v_diff_max_lc) or (v_delta[1] > v_diff_max_fc): if extendable_trafos: # extend power of first trafo to next higher size available extend_trafo_power(extendable_trafos, trafo_params) elif new_transformers_cnt < 2: # build a new transformer lv_transformer = TransformerDing0( grid=grid, id_db=id, v_level=0.4, s_max_longterm=trafo_min_size['S_nom'], r=trafo_min_size['R'], x=trafo_min_size['X']) # add each transformer to its station grid._station.add_transformer(lv_transformer) new_transformers_cnt += 1 # update break criteria v_delta = get_voltage_at_bus_bar(grid, tree) extendable_trafos = [_ for _ in station['node']._transformers if _.s_max_a < trafo_s_max_max] if (v_delta[0] == v_delta_initially_lc) or ( v_delta[1] == v_delta_initially_fc): logger.warning("Extension of {station} has no effect on " "voltage delta at bus bar. Transformation power " "extension is halted.".format( station=station['node'])) break
def extend_substation_voltage(crit_stations, grid_level='LV')
Extend substation if voltage issues at the substation occur Follows a two-step procedure: i) Existing transformers are extended by replacement with large nominal apparent power ii) New additional transformers added to substation (see 'Notes') Parameters ---------- crit_stations : :any:`list` List of stations with overloading or voltage issues. grid_level : str Specifiy grid level: 'MV' or 'LV' Notes ----- At maximum 2 new of largest (currently 630 kVA) transformer are additionally built to resolve voltage issues at MV-LV substation bus bar.
4.986248
4.851055
1.027869
unsolved_branches = [] cable_lf = cfg_ding0.get('assumptions', 'load_factor_lv_cable_lc_normal') cables = grid.network.static_data['LV_cables'] # resolve overloading issues for each branch segment for branch in crit_branches: I_max_branch_load = branch['s_max'][0] I_max_branch_gen = branch['s_max'][1] I_max_branch = max([I_max_branch_load, I_max_branch_gen]) suitable_cables = cables[(cables['I_max_th'] * cable_lf) > I_max_branch] if not suitable_cables.empty: cable_type = suitable_cables.loc[suitable_cables['I_max_th'].idxmin(), :] branch['branch'].type = cable_type crit_branches.remove(branch) else: cable_type_max = cables.loc[cables['I_max_th'].idxmax(), :] unsolved_branches.append(branch) branch['branch'].type = cable_type_max logger.error("No suitable cable type could be found for {branch} " "with I_th_max = {current}. " "Cable of type {cable} is chosen during " "reinforcement.".format( branch=branch['branch'], cable=cable_type_max.name, current=I_max_branch )) return unsolved_branches
def reinforce_lv_branches_overloading(grid, crit_branches)
Choose appropriate cable type for branches with line overloading Parameters ---------- grid : LVGridDing0 Ding0 LV grid object crit_branches : :any:`list` List of critical branches incl. its line loading Notes ----- If maximum size cable is not capable to resolve issue due to line overloading largest available cable type is assigned to branch. Returns ------- :any:`list` unsolved_branches : List of braches no suitable cable could be found
4.4433
4.020983
1.105028
trafo = extendable_trafos[0] trafo_s_max_a_before = trafo.s_max_a trafo_nearest_larger = trafo_params.loc[ trafo_params.loc[ trafo_params['S_nom'] > trafo_s_max_a_before ].loc[ :, 'S_nom' ].idxmin(), : ] trafo.s_max_a = trafo_nearest_larger['S_nom'] trafo.r = trafo_nearest_larger['R'] trafo.x = trafo_nearest_larger['X']
def extend_trafo_power(extendable_trafos, trafo_params)
Extend power of first trafo in list of extendable trafos Parameters ---------- extendable_trafos : :any:`list` Trafos with rated power below maximum size available trafo trafo_params : :pandas:`pandas.DataFrame<dataframe>` Transformer parameters
3.047221
3.138651
0.97087
if generator not in self._generators and isinstance(generator, GeneratorDing0): self._generators.append(generator) self.graph_add_node(generator)
def add_generator(self, generator)
Adds a generator to _generators and grid graph if not already existing Parameters ---------- generator : GridDing0 Description #TODO
9.448491
4.887859
1.933053
if ((node_object not in self._graph.nodes()) and (isinstance(node_object, (StationDing0, CableDistributorDing0, LVLoadAreaCentreDing0, CircuitBreakerDing0, GeneratorDing0)))): self._graph.add_node(node_object)
def graph_add_node(self, node_object)
Adds a station or cable distributor object to grid graph if not already existing Parameters ---------- node_object : GridDing0 Description #TODO
9.427979
5.330177
1.768793
return sorted(self._graph.nodes(), key=lambda _: repr(_))
def graph_nodes_sorted(self)
Returns an (ascending) sorted list of graph's nodes (name is used as key). Returns ------- :any:`list` Description #TODO check
10.917467
13.801847
0.791015
edges = nx.get_edge_attributes(self._graph, 'branch') nodes = list(edges.keys())[list(edges.values()).index(branch)] return nodes
def graph_nodes_from_branch(self, branch)
Returns nodes that are connected by `branch` Args ---- branch: BranchDing0 Description #TODO Returns ------- (:obj:`GridDing0`, :obj:`GridDing0`) 2-tuple of nodes (Ding0 objects) #TODO:Check
3.777424
4.546659
0.830813
# TODO: This method can be replaced and speed up by using NetworkX' neighbors() branches = [] branches_dict = self._graph.adj[node] for branch in branches_dict.items(): branches.append(branch) return sorted(branches, key=lambda _: repr(_))
def graph_branches_from_node(self, node)
Returns branches that are connected to `node` Args ---- node: GridDing0 Ding0 object (member of graph) Returns ------- :any:`list` List of tuples (node in :obj:`GridDing0`, branch in :obj:`BranchDing0`) :: (node , branch_0 ), ..., (node , branch_N ),
8.532785
10.025211
0.851133
# get edges with attributes edges = nx.get_edge_attributes(self._graph, 'branch').items() # sort them according to connected nodes edges_sorted = sorted(list(edges), key=lambda _: (''.join(sorted([repr(_[0][0]),repr(_[0][1])])))) for edge in edges_sorted: yield {'adj_nodes': edge[0], 'branch': edge[1]}
def graph_edges(self)
Returns a generator for iterating over graph edges The edge of a graph is described by the two adjacent node and the branch object itself. Whereas the branch object is used to hold all relevant power system parameters. Yields ------ int Description #TODO check Note ---- There are generator functions for nodes (`Graph.nodes()`) and edges (`Graph.edges()`) in NetworkX but unlike graph nodes, which can be represented by objects, branch objects can only be accessed by using an edge attribute ('branch' is used here) To make access to attributes of the branch objects simpler and more intuitive for the user, this generator yields a dictionary for each edge that contains information about adjacent nodes and the branch object. Note, the construction of the dictionary highly depends on the structure of the in-going tuple (which is defined by the needs of networkX). If this changes, the code will break.
5.563266
4.475753
1.242979
if (node_source in self._graph.nodes()) and (node_target in self._graph.nodes()): path = nx.shortest_path(self._graph, node_source, node_target) else: raise Exception('At least one of the nodes is not a member of graph.') if type == 'nodes': return path elif type == 'edges': return [_ for _ in self._graph.edges(nbunch=path, data=True) if (_[0] in path and _[1] in path)] else: raise ValueError('Please specify type as nodes or edges')
def find_path(self, node_source, node_target, type='nodes')
Determines shortest path Determines the shortest path from `node_source` to `node_target` in _graph using networkx' shortest path algorithm. Args ---- node_source: GridDing0 source node, member of _graph node_target: GridDing0 target node, member of _graph type : str Specify if nodes or edges should be returned. Default is `nodes` Returns ------- :any:`list` of :obj:`GridDing0` path: shortest path from `node_source` to `node_target` (list of nodes in _graph) Notes ----- WARNING: The shortest path is calculated using the count of hops, not the actual line lengths! As long as the circuit breakers are open, this works fine since there's only one path. But if they are closed, there are 2 possible paths. The result is a path which have min. count of hops but might have a longer total path length than the second sone. See networkx' function shortest_path() function for details on how the path is calculated.
2.420948
2.252124
1.074962
branches = set() for node_target in nodes_target: path = self.find_path(node_source, node_target) node_pairs = list(zip(path[0:len(path) - 1], path[1:len(path)])) for n1, n2 in node_pairs: branches.add(self._graph.adj[n1][n2]['branch']) return list(branches)
def find_and_union_paths(self, node_source, nodes_target)
Determines shortest paths from `node_source` to all nodes in `node_target` in _graph using find_path(). The branches of all paths are stored in a set - the result is a list of unique branches. Args ---- node_source: GridDing0 source node, member of _graph node_target: GridDing0 target node, member of _graph Returns ------- :any:`list` of :obj:`BranchDing0` branches: list of branches (list of nodes in _graph) #TODO:check
2.596536
2.723397
0.953418
length = 0 path = self.find_path(node_source, node_target) node_pairs = list(zip(path[0:len(path)-1], path[1:len(path)])) for n1, n2 in node_pairs: length += self._graph.adj[n1][n2]['branch'].length return length
def graph_path_length(self, node_source, node_target)
Calculates the absolute distance between `node_source` and `node_target` in meters using find_path() and branches' length attribute. Args ---- node_source: GridDing0 source node, member of _graph node_target: GridDing0 target node, member of _graph Returns ------- float path length in m
3.241385
3.089654
1.049109
return sorted(nx.isolates(self._graph), key=lambda x: repr(x))
def graph_isolated_nodes(self)
Finds isolated nodes = nodes with no neighbors (degree zero) Returns ------- :any:`list` of :obj:`GridDing0` List of nodes (Ding0 objects)
6.572395
10.34041
0.635603
if transformer not in self.transformers() and isinstance(transformer, TransformerDing0): self._transformers.append(transformer)
def add_transformer(self, transformer)
Adds a transformer to _transformers if not already existing Args ---- transformer : StationDing0 Description #TODO
9.734548
4.636382
2.0996
for branch in self._grid.graph_edges(): if branch['branch'].ring == self: yield branch
def branches(self)
#TODO: description
22.909676
19.350052
1.183959
for lv_load_area in self._grid._graph.nodes(): if isinstance(lv_load_area, LVLoadAreaDing0): if lv_load_area.ring == self: yield lv_load_area
def lv_load_areas(self)
#TODO: description
7.902644
7.215632
1.095212
self.branch_nodes = self.grid.graph_nodes_from_branch(self.branch) self.grid._graph.remove_edge(self.branch_nodes[0], self.branch_nodes[1]) self.status = 'open'
def open(self)
Open a Circuit Breaker #TODO Check
5.52843
5.226285
1.057812
self.grid._graph.add_edge(self.branch_nodes[0], self.branch_nodes[1], branch=self.branch) self.status = 'closed'
def close(self)
Close a Circuit Breaker #TODO Check
7.493082
7.466626
1.003543
for load_area in sorted(self._lv_load_areas, key=lambda _: repr(_)): yield load_area
def lv_load_areas(self)
Returns a generator for iterating over load_areas Yields ------ int generator for iterating over load_areas
7.938279
6.551208
1.211727
if lv_load_area not in self.lv_load_areas() and isinstance(lv_load_area, LVLoadAreaDing0): self._lv_load_areas.append(lv_load_area) self.mv_grid.graph_add_node(lv_load_area.lv_load_area_centre)
def add_lv_load_area(self, lv_load_area)
Adds a Load Area `lv_load_area` to _lv_load_areas if not already existing Additionally, adds the associated centre object to MV grid's _graph as node. Args ---- lv_load_area: LVLoadAreaDing0 instance of class LVLoadAreaDing0
4.956326
2.367167
2.093779
if lv_load_area_group not in self.lv_load_area_groups(): self._lv_load_area_groups.append(lv_load_area_group)
def add_lv_load_area_group(self, lv_load_area_group)
Adds a LV load_area to _lv_load_areas if not already existing.
2.045484
1.789218
1.143228
peak_load = peak_load_satellites = 0 for lv_load_area in self.lv_load_areas(): peak_load += lv_load_area.peak_load if lv_load_area.is_satellite: peak_load_satellites += lv_load_area.peak_load self.peak_load = peak_load self.peak_load_satellites = peak_load_satellites
def add_peak_demand(self)
Summarizes peak loads of underlying load_areas in kVA. (peak load sum and peak load of satellites)
2.76101
1.976872
1.396656
peak_load_aggregated = 0 for lv_load_area in self.lv_load_areas(): if lv_load_area.is_aggregated: peak_load_aggregated += lv_load_area.peak_load self.peak_load_aggregated = peak_load_aggregated
def add_aggregated_peak_demand(self)
Summarizes peak loads of underlying aggregated load_areas
3.134847
2.522808
1.242603
for lv_grid_district in sorted(self._lv_grid_districts, key=lambda _: repr(_)): yield lv_grid_district
def lv_grid_districts(self)
Returns a generator for iterating over LV grid districts Yields ------ int generator for iterating over LV grid districts
5.523403
5.387459
1.025233
# TODO: check docstring if lv_grid_district not in self._lv_grid_districts and \ isinstance(lv_grid_district, LVGridDistrictDing0): self._lv_grid_districts.append(lv_grid_district)
def add_lv_grid_district(self, lv_grid_district)
Adds a LV grid district to _lv_grid_districts if not already existing Args ---- lv_grid_district: :shapely:`Shapely Polygon object<polygons>` Descr
5.583476
6.732447
0.829338
cum_peak_generation = 0 for lv_grid_district in self._lv_grid_districts: cum_peak_generation += lv_grid_district.lv_grid.station().peak_generation return cum_peak_generation
def peak_generation(self)
Cumulative peak generation of generators connected to LV grids of underlying LVGDs
6.858512
4.413432
1.554009
i, j = pair return (self._nodes[i.name()], self._nodes[j.name()])
def get_pair(self, pair)
get pair description Parameters ---------- pair : :any:`list` of nodes Descr Returns ------- type Descr
7.77844
11.375124
0.683811
return all( [node.route_allocation() is not None for node in list(self._nodes.values()) if node != self._problem.depot()] )
def is_complete(self)
Returns True if this is a complete solution, i.e, all nodes are allocated Returns ------- bool True if all nodes are llocated.
14.015121
13.059047
1.073212
new_solution = self.__class__(self._problem, len(self._routes)) # Clone routes for index, r in enumerate(self._routes): new_route = new_solution._routes[index] for node in r.nodes(): # Insere new node on new route new_node = new_solution._nodes[node] new_route.allocate([new_node]) return new_solution
def clone(self)
Returns a deep copy of self Function clones: * route * allocation * nodes Returns ------- type Deep copy of self
5.31052
4.918532
1.079696
length = 0 for r in self._routes: length = length + r.length() return length
def length(self)
Returns the solution length (or cost) Returns ------- float Solution length (or cost).
6.011125
8.171841
0.73559
g = nx.Graph() ntemp = [] nodes_pos = {} demands = {} demands_pos = {} for no, node in self._nodes.items(): g.add_node(node) ntemp.append(node) coord = self._problem._coord[no] nodes_pos[node] = tuple(coord) demands[node] = 'd=' + str(node.demand()) demands_pos[node] = tuple([a+b for a, b in zip(coord, [2.5]*len(coord))]) depot = self._nodes[self._problem._depot._name] for r in self.routes(): n1 = r._nodes[0:len(r._nodes)-1] n2 = r._nodes[1:len(r._nodes)] e = list(zip(n1, n2)) e.append((depot, r._nodes[0])) e.append((r._nodes[-1], depot)) g.add_edges_from(e) plt.figure() ax = plt.gca() ax.get_xaxis().set_visible(False) ax.get_yaxis().set_visible(False) if anim is not None: nx.draw_networkx(g, nodes_pos, with_labels=False, node_size=50) plt.savefig(anim.file_path + anim.file_prefix + (4 - len(str(anim.counter))) * '0' + str(anim.counter) + '.png', dpi=150, bbox_inches='tight') anim.counter += 1 plt.close() else: nx.draw_networkx(g, nodes_pos) nx.draw_networkx_labels(g, demands_pos, labels=demands) plt.show()
def draw_network(self, anim)
Draws solution's graph using networkx Parameters ---------- AnimationDing0 AnimationDing0 object
2.605197
2.576071
1.011306
branches = [] polygon_shp = transform(proj, polygon) for branch in mv_grid.graph_edges(): nodes = branch['adj_nodes'] branch_shp = transform(proj, LineString([nodes[0].geo_data, nodes[1].geo_data])) # check if branches intersect with polygon if mode = 'intersects' if mode == 'intersects': if polygon_shp.intersects(branch_shp): branches.append(branch) # check if polygon contains branches if mode = 'contains' elif mode == 'contains': if polygon_shp.contains(branch_shp): branches.append(branch) # error else: raise ValueError('Mode is invalid!') return branches
def calc_geo_branches_in_polygon(mv_grid, polygon, mode, proj)
Calculate geographical branches in polygon. For a given `mv_grid` all branches (edges in the graph of the grid) are tested if they are in the given `polygon`. You can choose different modes and projections for this operation. Parameters ---------- mv_grid : MVGridDing0 MV Grid object. Edges contained in `mv_grid.graph_edges()` are taken for the test. polygon : :shapely:`Shapely Point object<points>` Polygon that contains edges. mode : str Choose between 'intersects' or 'contains'. proj : int EPSG code to specify projection Returns ------- :any:`list` of :any:`BranchDing0` objects List of branches
3.077422
2.857816
1.076844
branches = [] while not branches: node_shp = transform(proj, node.geo_data) buffer_zone_shp = node_shp.buffer(radius) for branch in mv_grid.graph_edges(): nodes = branch['adj_nodes'] branch_shp = transform(proj, LineString([nodes[0].geo_data, nodes[1].geo_data])) if buffer_zone_shp.intersects(branch_shp): branches.append(branch) radius += radius_inc return branches
def calc_geo_branches_in_buffer(node, mv_grid, radius, radius_inc, proj)
Determines branches in nodes' associated graph that are at least partly within buffer of `radius` from `node`. If there are no nodes, the buffer is successively extended by `radius_inc` until nodes are found. Parameters ---------- node : LVStationDing0, GeneratorDing0, or CableDistributorDing0 origin node (e.g. LVStationDing0 object) with associated shapely object (attribute `geo_data`) in any CRS (e.g. WGS84) radius : float buffer radius in m radius_inc : float radius increment in m proj : int pyproj projection object: nodes' CRS to equidistant CRS (e.g. WGS84 -> ETRS) Returns ------- :any:`list` of :networkx:`NetworkX Graph Obj< >` List of branches (NetworkX branch objects)
3.692906
3.363073
1.098075
branch_detour_factor = cfg_ding0.get('assumptions', 'branch_detour_factor') # notice: vincenty takes (lat,lon) branch_length = branch_detour_factor * vincenty((node_source.geo_data.y, node_source.geo_data.x), (node_target.geo_data.y, node_target.geo_data.x)).m # ========= BUG: LINE LENGTH=0 WHEN CONNECTING GENERATORS =========== # When importing generators, the geom_new field is used as position. If it is empty, EnergyMap's geom # is used and so there are a couple of generators at the same position => length of interconnecting # line is 0. See issue #76 if branch_length == 0: branch_length = 1 logger.warning('Geo distance is zero, check objects\' positions. ' 'Distance is set to 1m') # =================================================================== return branch_length
def calc_geo_dist_vincenty(node_source, node_target)
Calculates the geodesic distance between `node_source` and `node_target` incorporating the detour factor specified in :file:`ding0/ding0/config/config_calc.cfg`. Parameters ---------- node_source: LVStationDing0, GeneratorDing0, or CableDistributorDing0 source node, member of GridDing0._graph node_target: LVStationDing0, GeneratorDing0, or CableDistributorDing0 target node, member of GridDing0._graph Returns ------- :any:`float` Distance in m
10.581438
9.380624
1.12801
branch_detour_factor = cfg_ding0.get('assumptions', 'branch_detour_factor') matrix = {} for i in nodes_pos: pos_origin = tuple(nodes_pos[i]) matrix[i] = {} for j in nodes_pos: pos_dest = tuple(nodes_pos[j]) # notice: vincenty takes (lat,lon), thus the (x,y)/(lon,lat) tuple is reversed distance = branch_detour_factor * vincenty(tuple(reversed(pos_origin)), tuple(reversed(pos_dest))).km matrix[i][j] = distance return matrix
def calc_geo_dist_matrix_vincenty(nodes_pos)
Calculates the geodesic distance between all nodes in `nodes_pos` incorporating the detour factor in config_calc.cfg. For every two points/coord it uses geopy's vincenty function (formula devised by Thaddeus Vincenty, with an accurate ellipsoidal model of the earth). As default ellipsoidal model of the earth WGS-84 is used. For more options see https://geopy.readthedocs.org/en/1.10.0/index.html?highlight=vincenty#geopy.distance.vincenty Parameters ---------- nodes_pos: dict dictionary of nodes with positions, with x=longitude, y=latitude, and the following format:: { 'node_1': (x_1, y_1), ..., 'node_n': (x_n, y_n) } Returns ------- :obj:`dict` dictionary with distances between all nodes (in km), with the following format:: { 'node_1': {'node_1': dist_11, ..., 'node_n': dist_1n}, ..., 'node_n': {'node_1': dist_n1, ..., 'node_n': dist_nn} }
5.362046
5.07497
1.056567
proj_source = partial( pyproj.transform, pyproj.Proj(init='epsg:4326'), # source coordinate system pyproj.Proj(init='epsg:3035')) # destination coordinate system # ETRS (equidistant) to WGS84 (conformal) projection proj_target = partial( pyproj.transform, pyproj.Proj(init='epsg:3035'), # source coordinate system pyproj.Proj(init='epsg:4326')) # destination coordinate system branch_shp = transform(proj_source, LineString([node_source.geo_data, node_target.geo_data])) distance = vincenty((node_source.geo_data.y, node_source.geo_data.x), (node_target.geo_data.y, node_target.geo_data.x)).m centre_point_shp = transform(proj_target, branch_shp.interpolate(distance/2)) return centre_point_shp
def calc_geo_centre_point(node_source, node_target)
Calculates the geodesic distance between `node_source` and `node_target` incorporating the detour factor specified in config_calc.cfg. Parameters ---------- node_source: LVStationDing0, GeneratorDing0, or CableDistributorDing0 source node, member of GridDing0._graph node_target: LVStationDing0, GeneratorDing0, or CableDistributorDing0 target node, member of GridDing0._graph Returns ------- :any:`float` Distance in m.
2.408222
2.567566
0.937939
# backup kind and type of branch branch_kind = graph.adj[node][target_obj_result]['branch'].kind branch_type = graph.adj[node][target_obj_result]['branch'].type branch_ring = graph.adj[node][target_obj_result]['branch'].ring graph.remove_edge(node, target_obj_result) if isinstance(target_obj_result, MVCableDistributorDing0): neighbor_nodes = list(graph.neighbors(target_obj_result)) if len(neighbor_nodes) == 2: node.grid.remove_cable_distributor(target_obj_result) branch_length = calc_geo_dist_vincenty(neighbor_nodes[0], neighbor_nodes[1]) graph.add_edge(neighbor_nodes[0], neighbor_nodes[1], branch=BranchDing0(length=branch_length, kind=branch_kind, type=branch_type, ring=branch_ring)) if debug: logger.debug('disconnect edge {0}-{1}'.format(node, target_obj_result))
def disconnect_node(node, target_obj_result, graph, debug)
Disconnects `node` from `target_obj` Args ---- node: LVLoadAreaCentreDing0, i.e. Origin node - Ding0 graph object (e.g. LVLoadAreaCentreDing0) target_obj_result: LVLoadAreaCentreDing0, i.e. Origin node - Ding0 graph object (e.g. LVLoadAreaCentreDing0) graph: :networkx:`NetworkX Graph Obj< >` NetworkX graph object with nodes and newly created branches debug: bool If True, information is printed during process
3.832967
3.284954
1.166825
for branch in mv_grid.graph_edges(): if branch['branch'].kind is None: branch['branch'].kind = mv_grid.default_branch_kind if branch['branch'].type is None: branch['branch'].type = mv_grid.default_branch_type
def parametrize_lines(mv_grid)
Set unparametrized branches to default branch type Args ---- mv_grid: MVGridDing0 MV grid instance Notes ----- During the connection process of satellites, new branches are created - these have to be parametrized.
4.041998
3.173612
1.273627
# get power factor for loads cos_phi_load = cfg_ding0.get('assumptions', 'cos_phi_load') specs = {} nodes_demands = {} nodes_pos = {} nodes_agg = {} # check if there are only load areas of type aggregated and satellite # -> treat satellites as normal load areas (allow for routing) satellites_only = True for node in graph.nodes(): if isinstance(node, LVLoadAreaCentreDing0): if not node.lv_load_area.is_satellite and not node.lv_load_area.is_aggregated: satellites_only = False for node in graph.nodes(): # station is LV station if isinstance(node, LVLoadAreaCentreDing0): # only major stations are connected via MV ring # (satellites in case of there're only satellites in grid district) if not node.lv_load_area.is_satellite or satellites_only: # get demand and position of node # convert node's demand to int for performance purposes and to avoid that node # allocation with subsequent deallocation results in demand<0 due to rounding errors. nodes_demands[str(node)] = int(node.lv_load_area.peak_load / cos_phi_load) nodes_pos[str(node)] = (node.geo_data.x, node.geo_data.y) # get aggregation flag if node.lv_load_area.is_aggregated: nodes_agg[str(node)] = True else: nodes_agg[str(node)] = False # station is MV station elif isinstance(node, MVStationDing0): nodes_demands[str(node)] = 0 nodes_pos[str(node)] = (node.geo_data.x, node.geo_data.y) specs['DEPOT'] = str(node) specs['BRANCH_KIND'] = node.grid.default_branch_kind specs['BRANCH_TYPE'] = node.grid.default_branch_type specs['V_LEVEL'] = node.grid.v_level specs['NODE_COORD_SECTION'] = nodes_pos specs['DEMAND'] = nodes_demands specs['MATRIX'] = calc_geo_dist_matrix_vincenty(nodes_pos) specs['IS_AGGREGATED'] = nodes_agg return specs
def ding0_graph_to_routing_specs(graph)
Build data dictionary from graph nodes for routing (translation) Args ---- graph: :networkx:`NetworkX Graph Obj< >` NetworkX graph object with nodes Returns ------- :obj:`dict` Data dictionary for routing. See Also -------- ding0.grid.mv_grid.models.models.Graph : for keys of return dict
5.019336
4.942732
1.015498
# TODO: check docstring # TODO: Implement debug mode (pass to solver) to get more information while routing (print routes, draw network, ..) # translate DING0 graph to routing specs specs = ding0_graph_to_routing_specs(graph) # create routing graph using specs RoutingGraph = Graph(specs) timeout = 30000 # create solver objects savings_solver = savings.ClarkeWrightSolver() local_search_solver = local_search.LocalSearchSolver() start = time.time() # create initial solution using Clarke and Wright Savings methods savings_solution = savings_solver.solve(RoutingGraph, timeout, debug, anim) # OLD, MAY BE USED LATER - Guido, please don't declare a variable later=now() :) : #if not savings_solution.is_complete(): # print('=== Solution is not a complete solution! ===') if debug: logger.debug('ClarkeWrightSolver solution:') util.print_solution(savings_solution) logger.debug('Elapsed time (seconds): {}'.format(time.time() - start)) #savings_solution.draw_network() # improve initial solution using local search local_search_solution = local_search_solver.solve(RoutingGraph, savings_solution, timeout, debug, anim) # this line is for debug plotting purposes: #local_search_solution = savings_solution if debug: logger.debug('Local Search solution:') util.print_solution(local_search_solution) logger.debug('Elapsed time (seconds): {}'.format(time.time() - start)) #local_search_solution.draw_network() return routing_solution_to_ding0_graph(graph, local_search_solution)
def solve(graph, debug=False, anim=None)
Do MV routing for given nodes in `graph`. Translate data from node objects to appropriate format before. Args ---- graph: :networkx:`NetworkX Graph Obj< >` NetworkX graph object with nodes debug: bool, defaults to False If True, information is printed while routing anim: AnimationDing0 AnimationDing0 object Returns ------- :networkx:`NetworkX Graph Obj< >` NetworkX graph object with nodes and edges See Also -------- ding0.tools.animation.AnimationDing0 : for a more detailed description on anim parameter.
5.30019
5.185751
1.022068
I_max_load = nom_power / (3 ** 0.5 * nom_voltage) # determine suitable cable for this current suitable_cables = avail_cables[avail_cables['I_max_th'] > I_max_load] if not suitable_cables.empty: cable_type = suitable_cables.loc[suitable_cables['I_max_th'].idxmin(), :] else: cable_type = avail_cables.loc[avail_cables['I_max_th'].idxmax(), :] return cable_type
def cable_type(nom_power, nom_voltage, avail_cables)
Determine suitable type of cable for given nominal power Based on maximum occurring current which is derived from nominal power (either peak load or max. generation capacity) a suitable cable type is chosen. Thus, no line overloading issues should occur. Parameters ---------- nom_power : float Nominal power of generators or loads connected via a cable nom_voltage : float Nominal voltage in kV avail_cables : :pandas:`pandas.DataFrame<dataframe>` Available cable types including it's electrical parameters Returns ------- :pandas:`pandas.DataFrame<dataframe>` Parameters of cable type
3.030333
2.9481
1.027894
logging.info('Handling duplications for "%s"', file_path) f = open_strings_file(file_path, "r+") header_comment_key_value_tuples = extract_header_comment_key_value_tuples_from_file(f) file_elements = [] section_file_elements = [] keys_to_objects = {} duplicates_found = [] for header_comment, comments, key, value in header_comment_key_value_tuples: if len(header_comment) > 0: # New section - Appending the last section entries, sorted by comment for elem in sorted(section_file_elements, key=lambda x: x.comments[0]): file_elements.append(elem) section_file_elements = [] file_elements.append(Comment(header_comment)) if key in keys_to_objects: keys_to_objects[key].add_comments(comments) duplicates_found.append(key) else: loc_obj = LocalizationEntry(comments, key, value) keys_to_objects[key] = loc_obj section_file_elements.append(loc_obj) # Adding last section for elem in sorted(section_file_elements, key=lambda x: x.comments[0]): file_elements.append(elem) f.seek(0) for element in file_elements: f.write(unicode(element)) f.write(u"\n") f.truncate() f.close() logging.info("Omitted %d duplicates (%s)" % (len(duplicates_found), ",".join(duplicates_found))) logging.info('Finished handling duplications for "%s"', file_path)
def handle_duplications(file_path)
Omits the duplications in the strings files. Keys that appear more than once, will be joined to one appearance and the omit will be documented. Args: file_path (str): The path to the strings file.
2.837529
2.757862
1.028887
for resource in self._client._resources: # set the name param, the keys now have / in them potion_resource = self._client._resources[resource] try: oc_cls = _model_lookup[resource] oc_cls._api = self oc_cls._resource = potion_resource setattr(self, oc_cls.__name__, oc_cls) except KeyError: # Ignore resources we don't explicitly model pass
def _copy_resources(self)
Copy all of the resources over to the toplevel client -return: populates self with a pointer to each ._client.Resource
9.206866
7.792552
1.181496
username = click.prompt("Please enter your One Codex (email)") if api_key is not None: return username, api_key password = click.prompt("Please enter your password (typing will be hidden)", hide_input=True) # now get the API key api_key = fetch_api_key_from_uname(username, password, server) return username, api_key
def login_uname_pwd(server, api_key=None)
Prompts user for username and password, gets API key from server if not provided.
4.92258
4.800658
1.025397
# fetch_api_key and check_version expect server to end in / if server[-1] != "/": server = server + "/" # creds file path setup if creds_file is None: creds_file = os.path.expanduser("~/.onecodex") # check if the creds file exists and is readable if not os.path.exists(creds_file): if silent: return None creds = {} elif not os.access(creds_file, os.R_OK): click.echo("Please check the permissions on {}".format(collapse_user(creds_file)), err=True) sys.exit(1) else: # it is, so let's read it! with open(creds_file, "r") as fp: try: creds = json.load(fp) except ValueError: click.echo( "Your ~/.onecodex credentials file appears to be corrupted. " # noqa "Please delete it and re-authorize.", err=True, ) sys.exit(1) # check for updates if logged in more than one day ago last_update = creds.get("updated_at") or creds.get("saved_at") last_update = last_update if last_update else datetime.datetime.now().strftime(DATE_FORMAT) diff = datetime.datetime.now() - datetime.datetime.strptime(last_update, DATE_FORMAT) if diff.days >= 1: # if creds_file is old, check for updates upgrade_required, msg = check_version(__version__, server) creds["updated_at"] = datetime.datetime.now().strftime(DATE_FORMAT) try: json.dump(creds, open(creds_file, "w")) except Exception as e: if e.errno == errno.EACCES: click.echo( "Please check the permissions on {}".format(collapse_user(creds_file)), err=True, ) sys.exit(1) else: raise if upgrade_required: click.echo("\nWARNING: {}\n".format(msg), err=True) # finally, give the user back what they want (whether silent or not) if silent: return creds.get("api_key", None) click.echo( "Credentials file already exists ({}). Logout first.".format(collapse_user(creds_file)), err=True, ) return creds.get("email", None) # creds_file was not found and we're not silent, so prompt user to login email, api_key = login_uname_pwd(server, api_key=api_key) if api_key is None: click.echo( "We could not verify your credentials. Either you mistyped your email " "or password, or your account does not currently have API access. " "Please contact help@onecodex.com if you continue to experience problems." ) sys.exit(1) creds.update( { "api_key": api_key, "saved_at": datetime.datetime.now().strftime(DATE_FORMAT), "updated_at": None, "email": email, } ) try: json.dump(creds, open(creds_file, "w")) except Exception as e: if e.errno == errno.EACCES: click.echo("Please check the permissions on {}".format(creds_file), err=True) sys.exit(1) else: raise click.echo("Your ~/.onecodex credentials file was successfully created.", err=True) return email
def _login(server, creds_file=None, api_key=None, silent=False)
Login main function
2.739458
2.728225
1.004117
if creds_file is None: creds_file = os.path.expanduser("~/.onecodex") try: os.remove(creds_file) except Exception as e: if e.errno == errno.ENOENT: return False elif e.errno == errno.EACCES: click.echo( "Please check the permissions on {}".format(collapse_user(creds_file)), err=True ) sys.exit(1) else: raise return True
def _remove_creds(creds_file=None)
Remove ~/.onecodex file, returning True if successul or False if the file didn't exist
2.828179
2.309907
1.224369
if _remove_creds(creds_file=creds_file): click.echo("Successfully removed One Codex credentials.", err=True) sys.exit(0) else: click.echo("No One Codex API keys found.", err=True) sys.exit(1)
def _logout(creds_file=None)
Logout main function, just rm ~/.onecodex more or less
4.038608
2.951015
1.368549
@wraps(fn) def login_wrapper(ctx, *args, **kwargs): base_url = os.environ.get("ONE_CODEX_API_BASE", "https://app.onecodex.com") api_kwargs = {"telemetry": ctx.obj["TELEMETRY"]} api_key_prior_login = ctx.obj.get("API_KEY") bearer_token_env = os.environ.get("ONE_CODEX_BEARER_TOKEN") api_key_env = os.environ.get("ONE_CODEX_API_KEY") api_key_creds_file = _login(base_url, silent=True) if api_key_prior_login is not None: api_kwargs["api_key"] = api_key_prior_login elif bearer_token_env is not None: api_kwargs["bearer_token"] = bearer_token_env elif api_key_env is not None: api_kwargs["api_key"] = api_key_env elif api_key_creds_file is not None: api_kwargs["api_key"] = api_key_creds_file else: click.echo( "The command you specified requires authentication. Please login first.\n", err=True ) ctx.exit() ctx.obj["API"] = Api(**api_kwargs) return fn(ctx, *args, **kwargs) return login_wrapper
def login_required(fn)
Requires login before proceeding, but does not prompt the user to login. Decorator should be used only on Click CLI commands. Notes ----- Different means of authentication will be attempted in this order: 1. An API key present in the Click context object from a previous successful authentication. 2. A bearer token (ONE_CODEX_BEARER_TOKEN) in the environment. 3. An API key (ONE_CODEX_API_KEY) in the environment. 4. An API key in the credentials file (~/.onecodex).
2.493664
2.095085
1.190245
if json is True: return self._results() else: return self._table()
def results(self, json=True)
Returns the complete results table for the classification. Parameters ---------- json : bool, optional Return result as JSON? Default True. Returns ------- table : dict | DataFrame Return a JSON object with the classification results or a Pandas DataFrame if json=False.
6.001199
8.472309
0.708331
# TODO: Consider removing this method... since it's kind of trivial # May want to replace with something that actually gets genome-size adjusted # abundances from the results table if ids is None: # get the data frame return self.table() else: res = self.table() return res[res["tax_id"].isin(ids)]
def abundances(self, ids=None)
Query the results table to get abundance data for all or some tax ids
12.489598
10.806844
1.155712
super(Samples, self).save() if self.metadata is not None: self.metadata.save()
def save(self)
Persist changes on this Samples object back to the One Codex server along with any changes on its metadata (if it has any).
6.085618
3.003932
2.025884
res = cls._resource if not isinstance(files, string_types) and not isinstance(files, tuple): raise OneCodexException( "Please pass a string or tuple or forward and reverse filepaths." ) if not isinstance(project, Projects) and project is not None: project_search = Projects.get(project) if not project_search: project_search = Projects.where(name=project) if not project_search: try: project_search = Projects.where(project_name=project) except HTTPError: project_search = None if not project_search: raise OneCodexException("{} is not a valid project UUID".format(project)) if isinstance(project_search, list): project = project_search[0] sample_id = upload_sequence( files, res._client.session, res, metadata=metadata, tags=tags, project=project, coerce_ascii=coerce_ascii, progressbar=progressbar, ) return cls.get(sample_id)
def upload( cls, files, metadata=None, tags=None, project=None, coerce_ascii=False, progressbar=None )
Uploads a series of files to the One Codex server. Parameters ---------- files : `string` or `tuple` A single path to a file on the system, or a tuple containing a pairs of paths. Tuple values will be interleaved as paired-end reads and both files should contain the same number of records. Paths to single files will be uploaded as-is. metadata : `dict`, optional tags : `list`, optional project : `string`, optional UUID of project to associate this sample with. coerce_ascii : `bool`, optional If true, rename unicode filenames to ASCII and issue warning. progressbar : `click.progressbar`, optional If passed, display a progress bar using Click. Returns ------- A `Samples` object upon successful upload. None if the upload failed.
3.27581
3.154845
1.038343
for comment in comments: if comment not in self.comments and len(comment) > 0: self.comments.append(comment) if len(self.comments[0]) == 0: self.comments.pop(0)
def add_comments(self, comments)
Add comments to the localization entry Args: comments (list of str): The comments to be added to the localization entry.
2.524955
2.725772
0.926327
logging.info("Merging translations") for lang_dir in os.listdir(localization_bundle_path): if lang_dir == DEFAULT_LANGUAGE_DIRECTORY_NAME: continue for translated_path in glob.glob(os.path.join(localization_bundle_path, lang_dir, "*" + TRANSLATED_SUFFIX)): strings_path = translated_path[:-1 * len(TRANSLATED_SUFFIX)] localizable_path = os.path.join(localization_bundle_path, DEFAULT_LANGUAGE_DIRECTORY_NAME, os.path.basename(strings_path)) localization_merge_back(localizable_path, strings_path, translated_path, strings_path)
def merge_translations(localization_bundle_path)
Merges the new translation with the old one. The translated files are saved as '.translated' file, and are merged with old translated file. Args: localization_bundle_path (str): The path to the localization bundle.
2.969527
3.082527
0.963342
# TODO: Refactor into an Exception class error_code = resp.status_code if error_code == 402: error_message = ( "Please add a payment method to upload more samples. If you continue to " "experience problems, contact us at help@onecodex.com for assistance." ) elif error_code == 403: error_message = "Please login to your One Codex account or pass the appropriate API key." else: try: error_json = resp.json() except ValueError: error_json = {} if "msg" in error_json: error_message = error_json["msg"].rstrip(".") elif "message" in error_json: error_message = error_json["message"].rstrip(".") else: error_message = None if state == "init" and not error_message: error_message = ( "Could not initialize upload. Are you logged in? If this problem " "continues, please contact help@onecodex.com for assistance." ) elif state == "upload" and not error_message: error_message = ( "File could not be uploaded. If this problem continues, please contact " "help@onecodex.com for assistance." ) elif state == "callback" and not error_message: error_message = ( "Callback could not be completed. If this problem continues, please " "contact help@onecodex.com for assistance." ) if error_message is None: error_message = "Upload failed. Please contact help@onecodex.com for assistance." raise UploadException(error_message)
def raise_api_error(resp, state=None)
Raise an exception with a pretty message in various states of upload
2.701721
2.611308
1.034623
# Special case validation errors if len(err_json) == 1 and "validationOf" in err_json[0]: required_fields = ", ".join(err_json[0]["validationOf"]["required"]) return "Validation error. Requires properties: {}.".format(required_fields) # General error handling msg = "; ".join(err.get("message", "") for err in err_json) # Fallback if not msg: msg = "Bad request." return msg
def pretty_print_error(err_json)
Pretty print Flask-Potion error messages for the user.
4.538056
4.617345
0.982828
if include_references: return json.dumps(self._resource._properties, cls=PotionJSONEncoder) else: return json.dumps( { k: v for k, v in self._resource._properties.items() if not isinstance(v, Resource) and not k.startswith("$") }, cls=PotionJSONEncoder, )
def _to_json(self, include_references=True)
Convert the model to JSON using the PotionJSONEncode and automatically resolving the resource as needed (`_properties` call handles this).
3.067401
2.144631
1.43027
return cls.where(sort=sort, limit=limit)
def all(cls, sort=None, limit=None)
Returns all objects of this type. Alias for where() (without filter arguments). See `where` for documentation on the `sort` and `limit` parameters.
6.556911
5.158731
1.271032
check_bind(cls) # do this here to avoid passing this on to potion filter_func = keyword_filters.pop("filter", None) public = False if any(x["rel"] == "instances_public" for x in cls._resource._schema["links"]): public = keyword_filters.pop("public", False) instances_route = keyword_filters.pop( "_instances", "instances" if not public else "instances_public" ) schema = next(l for l in cls._resource._schema["links"] if l["rel"] == instances_route) sort_schema = schema["schema"]["properties"]["sort"]["properties"] where_schema = schema["schema"]["properties"]["where"]["properties"] sort = generate_potion_sort_clause(keyword_filters.pop("sort", None), sort_schema) limit = keyword_filters.pop("limit", None if not public else 1000) where = {} # we're filtering by fancy objects (like SQLAlchemy's filter) if len(filters) > 0: if len(filters) == 1 and isinstance(filters[0], dict): where = filters[0] elif all(isinstance(f, six.string_types) for f in filters): # if it's a list of strings, treat it as an multiple "get" request where = {"$uri": {"$in": [cls._convert_id_to_uri(f) for f in filters]}} else: # we're doing some more advanced filtering raise NotImplementedError("Advanced filtering hasn't been implemented yet") # we're filtering by keyword arguments (like SQLAlchemy's filter_by) if len(keyword_filters) > 0: for k, v in generate_potion_keyword_where(keyword_filters, where_schema, cls).items(): if k in where: raise AttributeError("Multiple definitions for same field {}".format(k)) where[k] = v # the potion-client method returns an iterator (which lazily fetchs the records # using `per_page` instances per request) so for limiting we only want to fetch the first # n (and not instantiate all the available which is what would happen if we just sliced) cursor = getattr(cls._resource, instances_route)( where=where, sort=sort, per_page=DEFAULT_PAGE_SIZE ) if limit is not None: cursor = itertools.islice(cursor, limit) # finally, apply local filtering function on objects before returning wrapped = [cls(_resource=r) for r in cursor] if filter_func: if callable(filter_func): wrapped = [obj for obj in wrapped if filter_func(obj) is True] else: raise OneCodexException( "Expected callable for filter, got: {}".format(type(filter_func).__name__) ) return wrapped
def where(cls, *filters, **keyword_filters)
Retrieves objects (Samples, Classifications, etc.) from the One Codex server. Parameters ---------- filters : objects Advanced filters to use (not implemented) sort : string | list, optional Sort the results by this field (or list of fields). By default in descending order, but if any of the fields start with the special character ^, sort in ascending order. For example, sort=['size', '^filename'] will sort by size from largest to smallest and filename from A-Z for items with the same size. limit : integer, optional Number of records to return. For smaller searches, this can reduce the number of network requests made. keyword_filters : strings | objects Filter the results by specific keywords (or filter objects, in advanced usage) Examples -------- You can filter objects that are returned locally using a lambda function: # returns only samples with a filename ending in '.gz' my_samples = Samples.where(filter=lambda s: s.filename.endswith('.gz')) Returns ------- list A list of all objects matching these filters. If no filters are passed, this matches all objects.
4.577348
4.724544
0.968844
check_bind(cls) # we're just retrieving one object from its uuid try: resource = cls._resource.fetch(uuid) if isinstance(resource, list): # TODO: Investigate why potion .fetch() # method is occassionally returning a list here... if len(resource) == 1: resource = resource[0] else: raise TypeError("Potion-Client error in fetching resource") except HTTPError as e: # 404 error means this doesn't exist if e.response.status_code == 404: return None else: raise e return cls(_resource=resource)
def get(cls, uuid)
Retrieve one specific object from the server by its UUID (unique 16-character id). UUIDs can be found in the web browser's address bar while viewing analyses and other objects. Parameters ---------- uuid : string UUID of the object to retrieve. Returns ------- OneCodexBase | None The object with that UUID or None if no object could be found. Examples -------- >>> api.Samples.get('xxxxxxxxxxxxxxxx') <Sample xxxxxxxxxxxxxxxx>
6.378347
7.510483
0.849259
check_bind(self) if self.id is None: raise ServerError("{} object does not exist yet".format(self.__class__.name)) elif not self.__class__._has_schema_method("destroy"): raise MethodNotSupported("{} do not support deletion.".format(self.__class__.__name__)) try: self._resource.delete() except HTTPError as e: if e.response.status_code == 403: raise PermissionDenied("") # FIXME: is this right? else: raise e
def delete(self)
Delete this object from the One Codex server.
5.4529
5.145936
1.059652
check_bind(self) creating = self.id is None if creating and not self.__class__._has_schema_method("create"): raise MethodNotSupported("{} do not support creating.".format(self.__class__.__name__)) if not creating and not self.__class__._has_schema_method("update"): raise MethodNotSupported("{} do not support updating.".format(self.__class__.__name__)) try: self._resource.save() except HTTPError as e: if e.response.status_code == 400: err_json = e.response.json().get("errors", []) msg = pretty_print_error(err_json) raise ServerError(msg) elif e.response.status_code == 404: action = "creating" if creating else "updating" raise MethodNotSupported( "{} do not support {}.".format(self.__class__.__name__, action) ) elif e.response.status_code == 409: raise ServerError("This {} object already exists".format(self.__class__.__name__)) else: raise e
def save(self)
Either create or persist changes on this object back to the One Codex server.
2.876935
2.647536
1.086646
if not isinstance(file_path, tuple): raise OneCodexException("Cannot get the interleaved filename without a tuple.") if re.match(".*[._][Rr][12][_.].*", file_path[0]): return re.sub("[._][Rr][12]", "", file_path[0]) else: warnings.warn("Paired-end filenames do not match--are you sure they are correct?") return file_path[0]
def interleaved_filename(file_path)
Return filename used to represent a set of paired-end files. Assumes Illumina-style naming conventions where each file has _R1_ or _R2_ in its name.
6.019132
5.040504
1.194153
_, ext = os.path.splitext(file_path) if uncompressed: if ext in {".gz", ".gzip"}: with gzip.GzipFile(file_path, mode="rb") as fp: try: fp.seek(0, os.SEEK_END) return fp.tell() except ValueError: # on python2, cannot seek from end and must instead read to end fp.seek(0) while len(fp.read(8192)) != 0: pass return fp.tell() elif ext in {".bz", ".bz2", ".bzip", ".bzip2"}: with bz2.BZ2File(file_path, mode="rb") as fp: fp.seek(0, os.SEEK_END) return fp.tell() return os.path.getsize(file_path)
def _file_size(file_path, uncompressed=False)
Return size of a single file, compressed or uncompressed
2.34716
2.302177
1.019539
if isinstance(file_path, tuple): assert len(file_path) == 2 file_size = sum(_file_size(f, uncompressed=True) for f in file_path) file_path = interleaved_filename(file_path) paired = True else: file_size = _file_size(file_path, uncompressed=False) paired = False new_filename, ext = os.path.splitext(os.path.basename(file_path)) if ext in {".gz", ".gzip", ".bz", ".bz2", ".bzip"}: compressed = ext new_filename, ext = os.path.splitext(new_filename) else: compressed = "" # strip compressed extension if paired-end, since we're going to upload uncompressed if paired and compressed: final_filename = new_filename + ext else: final_filename = new_filename + ext + compressed if enforce_fastx: if ext in {".fa", ".fna", ".fasta"}: file_format = "fasta" elif ext in {".fq", ".fastq"}: file_format = "fastq" else: raise UploadException( "{}: extension must be one of .fa, .fna, .fasta, .fq, .fastq".format(final_filename) ) else: file_format = None if file_size == 0: raise UploadException("{}: empty files can not be uploaded".format(final_filename)) return final_filename, file_size, file_format
def _file_stats(file_path, enforce_fastx=True)
Return information about the file path (or paths, if paired), prior to upload. Parameters ---------- file_path : `string` or `tuple` System path to the file(s) to be uploaded Returns ------- `string` Filename, minus compressed extension (.gz or .bz2). If paired, use first path to generate the filename that will be used to represent both paths in the pair. `integer` If paired, the uncompressed file size of both files in the path. If single, the raw file size whether compressed or not. Pairs are always uploaded uncompressed, whereas single files are uploaded in whatever format they're in. One Codex will uncompress and re-compress as appropriate. {'fasta', 'fastq'} The format of the file being uploaded, guessed only by its extension. If paired, this determines how many lines to pull from each file during interleaving.
2.730831
2.496361
1.093925
upload_args = { "filename": file_name, "size": file_size, "upload_type": "standard", # this is multipart form data } if metadata: # format metadata keys as snake case new_metadata = {} for md_key, md_val in metadata.items(): new_metadata[snake_case(md_key)] = md_val upload_args["metadata"] = new_metadata if tags: upload_args["tags"] = tags if project: upload_args["project"] = getattr(project, "id", project) try: upload_info = samples_resource.init_upload(upload_args) except requests.exceptions.HTTPError as e: raise_api_error(e.response, state="init") except requests.exceptions.ConnectionError: raise_connectivity_error(file_name) return upload_info
def _call_init_upload(file_name, file_size, metadata, tags, project, samples_resource)
Call init_upload at the One Codex API and return data used to upload the file. Parameters ---------- file_name : `string` The file_name you wish to associate this fastx file with at One Codex. file_size : `integer` Accurate size of file to be uploaded, in bytes. metadata : `dict`, optional tags : `list`, optional project : `string`, optional UUID of project to associate this sample with. samples_resource : `onecodex.models.Samples` Wrapped potion-client object exposing `init_upload` and `confirm_upload` routes to mainline. Returns ------- `dict` Contains, at a minimum, 'upload_url' and 'sample_id'. Should also contain various additional data used to upload the file to fastx-proxy, a user's S3 bucket, or an intermediate bucket.
2.934888
3.289283
0.892258
upload_args = {"filename": file_name} if metadata: # format metadata keys as snake case new_metadata = {} for md_key, md_val in metadata.items(): new_metadata[snake_case(md_key)] = md_val upload_args["metadata"] = new_metadata if tags: upload_args["tags"] = tags if project: upload_args["project"] = getattr(project, "id", project) return upload_args
def _make_retry_fields(file_name, metadata, tags, project)
Generate fields to send to init_multipart_upload in the case that a Sample upload via fastx-proxy fails. Parameters ---------- file_name : `string` The file_name you wish to associate this fastx file with at One Codex. metadata : `dict`, optional tags : `list`, optional project : `string`, optional UUID of project to associate this sample with. Returns ------- `dict` Contains metadata fields that will be integrated into the Sample model created when init_multipart_upload is called.
2.693162
3.025556
0.890138
filename, file_size, file_format = _file_stats(files) # if filename cannot be represented as ascii, raise and suggest renaming try: # python2 ascii_fname = unidecode(unicode(filename)) except NameError: ascii_fname = unidecode(filename) if filename != ascii_fname: if coerce_ascii: # TODO: Consider warnings.warn here instead logging.warn( "Renaming {} to {}, must be ASCII\n".format(filename.encode("utf-8"), ascii_fname) ) filename = ascii_fname else: raise OneCodexException("Filenames must be ascii. Try using --coerce-ascii") # disable progressbar while keeping context manager if not progressbar: progressbar = FakeProgressBar() # file_path is the path to the file on this disk. file_name is what we'll call the file in the # mainline database. file_size is the sum of both files in a pair, or the size of an unpaired # file. if paired, file_size is the uncompressed size. if unpaired, file_size is the actual # size on disk. unpaired files are uploaded as-is. paired files are decompressed, interleaved, # and uploaded as uncompressed data. with progressbar as bar: if isinstance(files, tuple): fobj = FASTXInterleave(files, file_size, file_format, bar) else: fobj = FilePassthru(files, file_size, bar) # must call init_upload in this loop in order to get a sample uuid we can call # cancel_upload on later if user hits ctrl+c fields = _call_init_upload(filename, file_size, metadata, tags, project, samples_resource) def cancel_atexit(): bar.canceled = True bar.update(1) logging.info("Canceled upload for sample: {}".format(fields["sample_id"])) samples_resource.cancel_upload({"sample_id": fields["sample_id"]}) atexit_register(cancel_atexit) # if the upload via init_upload fails, upload_sequence_fileobj will call # init_multipart_upload, which accepts metadata to be integrated into a newly-created # Sample model. if the s3 intermediate route is used, two Sample models will ultimately # exist on mainline: the failed fastx-proxy upload and the successful s3 intermediate. retry_fields = _make_retry_fields(filename, metadata, tags, project) try: sample_id = upload_sequence_fileobj( fobj, filename, fields, retry_fields, session, samples_resource ) atexit_unregister(cancel_atexit) return sample_id except KeyboardInterrupt: cancel_atexit() atexit_unregister(cancel_atexit) raise
def upload_sequence( files, session, samples_resource, metadata=None, tags=None, project=None, coerce_ascii=False, progressbar=None, )
Uploads a sequence file (or pair of files) to the One Codex server via either our proxy or directly to S3. Parameters ---------- files : `list` A list of paths to files on the system, or tuples containing pairs of paths. Tuples will be interleaved as paired-end reads and both files should contain the same number of records. Paths to single files will be uploaded as-is. session : `requests.Session` Connection to One Codex API. samples_resource : `onecodex.models.Samples` Wrapped potion-client object exposing `init_upload` and `confirm_upload` methods. metadata : `dict`, optional tags : `list`, optional project : `string`, optional UUID of project to associate this sample with. coerce_ascii : `bool`, optional If true, rename unicode filenames to ASCII and issue warning. progressbar : `click.progressbar`, optional If passed, display a progress bar using Click. Returns ------- A Sample object for the completed upload.
6.465041
6.242902
1.035583
# need an OrderedDict to preserve field order for S3, required for Python 2.7 multipart_fields = OrderedDict() for k, v in fields["additional_fields"].items(): multipart_fields[str(k)] = str(v) # this attribute is only in FASTXInterleave and FilePassthru mime_type = getattr(file_obj, "mime_type", "text/plain") multipart_fields["file"] = (file_name, file_obj, mime_type) encoder = MultipartEncoder(multipart_fields) upload_request = None try: upload_request = session.post( fields["upload_url"], data=encoder, headers={"Content-Type": encoder.content_type}, auth={}, ) except requests.exceptions.ConnectionError: pass # If we expect a status *always* try to check it, # waiting up to 4 hours for buffering to complete (~30-50GB file gzipped) if "status_url" in fields["additional_fields"]: now = time.time() while time.time() < (now + 60 * 60 * 4): try: resp = session.post( fields["additional_fields"]["status_url"], json={"sample_id": fields["sample_id"]}, ) resp.raise_for_status() except (ValueError, requests.exceptions.RequestException) as e: logging.debug("Retrying due to error: {}".format(e)) raise RetryableUploadException( "Unexpected failure of direct upload proxy. Retrying..." ) if resp.json() and resp.json().get("complete", True) is False: logging.debug("Blocking on waiting for proxy to complete (in progress)...") time.sleep(30) else: break # Return is successfully processed if resp.json().get("code") in [200, 201]: file_obj.close() return elif resp.json().get("code") == 500: logging.debug("Retrying due to 500 from proxy...") raise RetryableUploadException("Unexpected issue with direct upload proxy. Retrying...") else: raise_api_error(resp, state="upload") # Direct to S3 case else: file_obj.close() if upload_request.status_code not in [200, 201]: raise RetryableUploadException("Unknown connectivity issue with proxy upload.") # Issue a callback -- this only happens in the direct-to-S3 case try: if not fields["additional_fields"].get("callback_url"): samples_resource.confirm_upload( {"sample_id": fields["sample_id"], "upload_type": "standard"} ) except requests.exceptions.HTTPError as e: raise_api_error(e.response, state="callback") except requests.exceptions.ConnectionError: raise_connectivity_error()
def _direct_upload(file_obj, file_name, fields, session, samples_resource)
Uploads a single file-like object via our validating proxy. Maintains compatibility with direct upload to a user's S3 bucket as well in case we disable our validating proxy. Parameters ---------- file_obj : `FASTXInterleave`, `FilePassthru`, or a file-like object A wrapper around a pair of fastx files (`FASTXInterleave`) or a single fastx file. In the case of paired files, they will be interleaved and uploaded uncompressed. In the case of a single file, it will simply be passed through (`FilePassthru`) to One Codex, compressed or otherwise. If a file-like object is given, its mime-type will be sent as 'text/plain'. file_name : `string` The file_name you wish to associate this fastx file with at One Codex. fields : `dict` Additional data fields to include as JSON in the POST. Must include 'sample_id' and 'upload_url' at a minimum. samples_resource : `onecodex.models.Samples` Wrapped potion-client object exposing `init_upload` and `confirm_upload` routes to mainline. Raises ------ RetryableUploadException In cases where the proxy is temporarily down or we experience connectivity issues UploadException In other cases where the proxy determines the upload is invalid and should *not* be retried.
4.346481
3.859188
1.126268
# First attempt to upload via our validating proxy try: _direct_upload(file_obj, file_name, fields, session, samples_resource) sample_id = fields["sample_id"] except RetryableUploadException: # upload failed--retry direct upload to S3 intermediate logging.error("{}: Connectivity issue, trying direct upload...".format(file_name)) file_obj.seek(0) # reset file_obj back to start try: retry_fields = samples_resource.init_multipart_upload(retry_fields) except requests.exceptions.HTTPError as e: raise_api_error(e.response, state="init") except requests.exceptions.ConnectionError: raise_connectivity_error(file_name) s3_upload = _s3_intermediate_upload( file_obj, file_name, retry_fields, session, samples_resource._client._root_url + retry_fields["callback_url"], # full callback url ) sample_id = s3_upload.get("sample_id", "<UUID not yet assigned>") logging.info("{}: finished as sample {}".format(file_name, sample_id)) return sample_id
def upload_sequence_fileobj(file_obj, file_name, fields, retry_fields, session, samples_resource)
Uploads a single file-like object to the One Codex server via either fastx-proxy or directly to S3. Parameters ---------- file_obj : `FASTXInterleave`, `FilePassthru`, or a file-like object A wrapper around a pair of fastx files (`FASTXInterleave`) or a single fastx file. In the case of paired files, they will be interleaved and uploaded uncompressed. In the case of a single file, it will simply be passed through (`FilePassthru`) to One Codex, compressed or otherwise. If a file-like object is given, its mime-type will be sent as 'text/plain'. file_name : `string` The file_name you wish to associate this fastx file with at One Codex. fields : `dict` Additional data fields to include as JSON in the POST. Must include 'sample_id' and 'upload_url' at a minimum. retry_fields : `dict` Metadata sent to `init_multipart_upload` in the case that the upload via fastx-proxy fails. session : `requests.Session` Connection to One Codex API. samples_resource : `onecodex.models.Samples` Wrapped potion-client object exposing `init_upload` and `confirm_upload` routes to mainline. Raises ------ UploadException In the case of a fatal exception during an upload. Returns ------- `string` containing sample ID of newly uploaded file.
5.071667
4.744657
1.068922
if not isinstance(file_path, six.string_types): raise ValueError( "Expected file_path to be a string, got {}".format(type(file_path).__name__) ) file_name, file_size, _ = _file_stats(file_path, enforce_fastx=False) # disable progressbar while keeping context manager if not progressbar: progressbar = FakeProgressBar() with progressbar as bar: fobj = FilePassthru(file_path, file_size, bar) document_id = upload_document_fileobj(fobj, file_name, session, documents_resource) bar.finish() return document_id
def upload_document(file_path, session, documents_resource, progressbar=None)
Uploads multiple document files to the One Codex server directly to S3 via an intermediate bucket. Parameters ---------- file_path : `str` A path to a file on the system. session : `requests.Session` Connection to One Codex API. documents_resource : `onecodex.models.Documents` Wrapped potion-client object exposing `init_upload` and `confirm_upload` methods. progressbar : `click.progressbar`, optional If passed, display a progress bar using Click. Raises ------ UploadException In the case of a fatal exception during an upload. Returns ------- A `str` document ID for the newly uploaded file.
4.528031
4.892467
0.925511
try: fields = documents_resource.init_multipart_upload() except requests.exceptions.HTTPError as e: raise_api_error(e.response, state="init") except requests.exceptions.ConnectionError: raise_connectivity_error(file_name) s3_upload = _s3_intermediate_upload( file_obj, file_name, fields, session, documents_resource._client._root_url + fields["callback_url"], # full callback url ) document_id = s3_upload.get("document_id", "<UUID not yet assigned>") logging.info("{}: finished as document {}".format(file_name, document_id)) return document_id
def upload_document_fileobj(file_obj, file_name, session, documents_resource, log=None)
Uploads a single file-like object to the One Codex server directly to S3. Parameters ---------- file_obj : `FilePassthru`, or a file-like object If a file-like object is given, its mime-type will be sent as 'text/plain'. Otherwise, `FilePassthru` will send a compressed type if the file is gzip'd or bzip'd. file_name : `string` The file_name you wish to associate this file with at One Codex. fields : `dict` Additional data fields to include as JSON in the POST. session : `requests.Session` Connection to One Codex API. documents_resource : `onecodex.models.Documents` Wrapped potion-client object exposing `init_upload` and `confirm_upload` routes to mainline. Notes ----- In contrast to `upload_sample_fileobj`, this method will /only/ upload to an S3 intermediate bucket--not via our direct proxy or directly to a user's S3 bucket with a signed request. Raises ------ UploadException In the case of a fatal exception during an upload. Returns ------- `string` containing sample UUID of newly uploaded file.
5.761273
5.600255
1.028752
import boto3 from boto3.s3.transfer import TransferConfig from boto3.exceptions import S3UploadFailedError # actually do the upload client = boto3.client( "s3", aws_access_key_id=fields["upload_aws_access_key_id"], aws_secret_access_key=fields["upload_aws_secret_access_key"], ) # if boto uses threads, ctrl+c won't work config = TransferConfig(use_threads=False) # let boto3 update our progressbar rather than our FASTX wrappers, if applicable boto_kwargs = {} if hasattr(file_obj, "progressbar"): boto_kwargs["Callback"] = file_obj.progressbar.update file_obj.progressbar = None try: client.upload_fileobj( file_obj, fields["s3_bucket"], fields["file_id"], ExtraArgs={"ServerSideEncryption": "AES256"}, Config=config, **boto_kwargs ) except S3UploadFailedError: raise_connectivity_error(file_name) # issue a callback try: resp = session.post( callback_url, json={ "s3_path": "s3://{}/{}".format(fields["s3_bucket"], fields["file_id"]), "filename": file_name, "import_as_document": fields.get("import_as_document", False), }, ) except requests.exceptions.ConnectionError: raise_connectivity_error(file_name) if resp.status_code != 200: raise_connectivity_error(file_name) try: return resp.json() except ValueError: return {}
def _s3_intermediate_upload(file_obj, file_name, fields, session, callback_url)
Uploads a single file-like object to an intermediate S3 bucket which One Codex can pull from after receiving a callback. Parameters ---------- file_obj : `FASTXInterleave`, `FilePassthru`, or a file-like object A wrapper around a pair of fastx files (`FASTXInterleave`) or a single fastx file. In the case of paired files, they will be interleaved and uploaded uncompressed. In the case of a single file, it will simply be passed through (`FilePassthru`) to One Codex, compressed or otherwise. If a file-like object is given, its mime-type will be sent as 'text/plain'. file_name : `string` The file_name you wish to associate this fastx file with at One Codex. fields : `dict` Additional data fields to include as JSON in the POST. callback_url : `string` API callback at One Codex which will trigger a pull from this S3 bucket. Raises ------ UploadException In the case of a fatal exception during an upload. Note we rely on boto3 to handle its own retry logic. Returns ------- `dict` : JSON results from internal confirm import callback URL
2.767095
2.868206
0.964748
assert loc == 0 # rewind progress bar if self.progressbar: self.progressbar.update(-self._tell) self._fp_left.seek(loc) self._fp_right.seek(loc) self._tell = loc self._buf = Buffer()
def seek(self, loc)
Called if upload fails and must be retried.
7.161305
7.357125
0.973384
assert loc == 0 # rewind progress bar if self.progressbar: self.progressbar.update(-self._fp.tell()) self._fp.seek(loc)
def seek(self, loc)
Called if upload fails and must be retried.
7.871243
8.153096
0.96543
old_localizable_dict = generate_localization_key_to_entry_dictionary_from_file(old_strings_file) output_file_elements = [] f = open_strings_file(new_strings_file, "r+") for header_comment, comments, key, value in extract_header_comment_key_value_tuples_from_file(f): if len(header_comment) > 0: output_file_elements.append(Comment(header_comment)) localize_value = value if key in old_localizable_dict: localize_value = old_localizable_dict[key].value output_file_elements.append(LocalizationEntry(comments, key, localize_value)) f.close() write_file_elements_to_strings_file(old_strings_file, output_file_elements)
def merge_strings_files(old_strings_file, new_strings_file)
Merges the old strings file with the new one. Args: old_strings_file (str): The path to the old strings file (previously produced, and possibly altered) new_strings_file (str): The path to the new strings file (newly produced).
3.15447
3.347608
0.942306
parser.add_argument("--log_path", default="", help="The log file path") parser.add_argument("--verbose", help="Increase logging verbosity", action="store_true")
def configure_parser(self, parser)
Adds the necessary supported arguments to the argument parser. Args: parser (argparse.ArgumentParser): The parser to add arguments to.
3.950506
4.479877
0.881833
parser = argparse.ArgumentParser(description=self.description()) self.configure_parser(parser) self.run(parser.parse_args())
def run_with_standalone_parser(self)
Will run the operation as standalone with a new ArgumentParser
3.720838
3.125711
1.190397
if metric not in ("simpson", "chao1", "shannon"): raise OneCodexException( "For alpha diversity, metric must be one of: simpson, chao1, shannon" ) # needs read counts, not relative abundances if self._guess_normalized(): raise OneCodexException("Alpha diversity requires unnormalized read counts.") df = self.to_df(rank=rank, normalize=False) output = {"classification_id": [], metric: []} for c_id in df.index: output["classification_id"].append(c_id) output[metric].append( skbio.diversity.alpha_diversity(metric, df.loc[c_id].tolist(), [c_id]).values[0] ) return pd.DataFrame(output).set_index("classification_id")
def alpha_diversity(self, metric="simpson", rank="auto")
Caculate the diversity within a community. Parameters ---------- metric : {'simpson', 'chao1', 'shannon'} The diversity metric to calculate. rank : {'auto', 'kingdom', 'phylum', 'class', 'order', 'family', 'genus', 'species'}, optional Analysis will be restricted to abundances of taxa at the specified level. Returns ------- pandas.DataFrame, a distance matrix.
4.169699
3.945018
1.056953
if metric not in ("jaccard", "braycurtis", "cityblock"): raise OneCodexException( "For beta diversity, metric must be one of: jaccard, braycurtis, cityblock" ) # needs read counts, not relative abundances if self._guess_normalized(): raise OneCodexException("Beta diversity requires unnormalized read counts.") df = self.to_df(rank=rank, normalize=False) counts = [] for c_id in df.index: counts.append(df.loc[c_id].tolist()) return skbio.diversity.beta_diversity(metric, counts, df.index.tolist())
def beta_diversity(self, metric="braycurtis", rank="auto")
Calculate the diversity between two communities. Parameters ---------- metric : {'jaccard', 'braycurtis', 'cityblock'} The distance metric to calculate. rank : {'auto', 'kingdom', 'phylum', 'class', 'order', 'family', 'genus', 'species'}, optional Analysis will be restricted to abundances of taxa at the specified level. Returns ------- skbio.stats.distance.DistanceMatrix, a distance matrix.
4.138778
4.000818
1.034483
# needs read counts, not relative abundances if self._guess_normalized(): raise OneCodexException("UniFrac requires unnormalized read counts.") df = self.to_df(rank=rank, normalize=False) counts = [] for c_id in df.index: counts.append(df.loc[c_id].tolist()) tax_ids = df.keys().tolist() tree = self.tree_build() tree = self.tree_prune_rank(tree, rank=df.ocx_rank) # there's a bug (?) in skbio where it expects the root to only have # one child, so we do a little faking here from skbio.tree import TreeNode new_tree = TreeNode(name="fake root") new_tree.rank = "no rank" new_tree.append(tree) # then finally run the calculation and return if weighted: return skbio.diversity.beta_diversity( "weighted_unifrac", counts, df.index.tolist(), tree=new_tree, otu_ids=tax_ids ) else: return skbio.diversity.beta_diversity( "unweighted_unifrac", counts, df.index.tolist(), tree=new_tree, otu_ids=tax_ids )
def unifrac(self, weighted=True, rank="auto")
A beta diversity metric that takes into account the relative relatedness of community members. Weighted UniFrac looks at abundances, unweighted UniFrac looks at presence. Parameters ---------- weighted : `bool` Calculate the weighted (True) or unweighted (False) distance metric. rank : {'auto', 'kingdom', 'phylum', 'class', 'order', 'family', 'genus', 'species'}, optional Analysis will be restricted to abundances of taxa at the specified level. Returns ------- skbio.stats.distance.DistanceMatrix, a distance matrix.
4.907873
4.882109
1.005277
# TODO: Hit programmatic endpoint to fetch JWT key, not API key with requests.Session() as session: # get the login page normally text = session.get(server_url + "login").text # retrieve the CSRF token out of it csrf = re.search('type="hidden" value="([^"]+)"', text).group(1) # and resubmit using the username/password *and* the CSRF login_data = { "email": username, "password": password, "csrf_token": csrf, "next": "/api/get_token", } page = session.post(server_url + "login", data=login_data) try: key = page.json()["key"] except (ValueError, KeyError): # ValueError includes simplejson.decoder.JSONDecodeError key = None return key
def fetch_api_key_from_uname(username, password, server_url)
Retrieves an API key from the One Codex webpage given the username and password
4.420158
4.450814
0.993112
def version_inadequate(client_version, server_version): client_version = tuple([int(x) for x in client_version.split("-")[0].split(".")]) server_version = tuple([int(x) for x in server_version.split(".")]) return client_version < server_version # this will probably live on /api/v0 forever for compat with older CLI versions data = requests.post(server + "api/v0/check_for_cli_update", data={"version": version}) if data.status_code != 200: return False, "Error connecting to server" data = data.json() latest_version = data["latest_version"] if version_inadequate(version, latest_version): return ( True, ( "Please upgrade your client to the latest version (v{}) using the command " "`pip install --upgrade onecodex`".format(latest_version) ), ) return False, None
def check_version(version, server)
Check if the current CLI version is supported by the One Codex backend. Parameters ---------- version : `string` Current version of the One Codex client library server : `string` Complete URL to One Codex server, e.g., https://app.onecodex.com Returns ------- `tuple` containing two values: - True if the user *must* upgrade their software, otherwise False - An error message if the user should upgrade, otherwise None.
3.843582
3.464996
1.10926
if value is not None and len(value) != 32: raise click.BadParameter( "API Key must be 32 characters long, not {}".format(str(len(value))) ) else: return value
def valid_api_key(ctx, param, value)
Ensures an API has valid length (this is a click callback)
2.565888
2.172046
1.181323
if not no_pretty: click.echo( json.dumps(j, cls=PotionJSONEncoder, sort_keys=True, indent=4, separators=(",", ": ")) ) else: click.echo(j)
def pprint(j, no_pretty)
Prints as formatted JSON
2.994063
2.964657
1.009919
v = sys.version_info if v.major == 3: return False # Python 2 issue if v.major == 2 and v.minor == 7 and v.micro >= 9: return False # >= 2.7.9 includes the new SSL updates try: import OpenSSL # noqa import ndg # noqa import pyasn1 # noqa except ImportError: pass return True
def is_insecure_platform()
Checks if the current system is missing an SSLContext object
4.894665
4.788428
1.022186