code
string
signature
string
docstring
string
loss_without_docstring
float64
loss_with_docstring
float64
factor
float64
# (must use fillna to replace np.nan with False for indexing) if use_slice: df = sli.copy() else: df = self.df.copy() # if meth_code not provided, return unchanged dataframe if not meth_code: return df # get regex if not strict_match: # grab any record that contains any part of meth_code cond = df['method_codes'].str.contains(meth_code).fillna(False) else: # grab only an exact match pattern = re.compile('{}(?=:|\s|\Z)'.format(meth_code)) cond = df['method_codes'].str.contains(pattern).fillna(False) if incl: # return a copy of records with that method code: return df[cond] else: # return a copy of records without that method code return df[~cond]
def get_records_for_code(self, meth_code, incl=True, use_slice=False, sli=None, strict_match=True)
Use regex to see if meth_code is in the method_codes ":" delimited list. If incl == True, return all records WITH meth_code. If incl == False, return all records WITHOUT meth_code. If strict_match == True, return only records with the exact meth_code. If strict_match == False, return records that contain the meth_code partial string, (i.e., "DE-"). Not inplace
4.296887
4.203293
1.022267
if self.df.empty: return df1 elif df1.empty: return self.df #copy to prevent mutation cdf2 = self.df.copy() #split data into types and decide which to replace # if replace_dir_or_int == 'dir' and 'method_codes' in cdf2.columns: # cdf2 = cdf2[cdf2['method_codes'].notnull()] # acdf2 = cdf2[cdf2['method_codes'].str.contains('LP-PI')] # mcdf2 = cdf2[cdf2['method_codes'].str.contains('LP-DIR')] # elif replace_dir_or_int == 'int' and 'method_codes' in cdf2.columns: # cdf2 = cdf2[cdf2['method_codes'].notnull()] # mcdf2 = cdf2[cdf2['method_codes'].str.contains('LP-PI')] # acdf2 = cdf2[cdf2['method_codes'].str.contains('LP-DIR')] # else: # mcdf2 = cdf2 # acdf2 = pd.DataFrame(columns=mcdf2.columns) #get rid of stupid duplicates # [mcdf2.drop(cx,inplace=True,axis=1) for cx in mcdf2.columns if cx in df1.columns] #join the new calculated data with the old data of same type if self.dtype.endswith('s'): dtype = self.dtype[:-1] else: dtype = self.dtype index_name = dtype + "_name" for df in [df1, cdf2]: df.index.name = index_name mdf = df1.join(cdf2, how='outer', rsuffix='_remove', on=index_name) def keep_non_null_vals(column): extra_column = column + "_remove" if column in mdf.columns and extra_column in mdf.columns: mdf[column] = np.where(mdf[column].apply(lambda x: not_null(x, False)), mdf[column], mdf[extra_column]) # merge values in the following columns # e.g., combine info from specimen + specimen_remove into specimen column for col in ['specimen', 'sample', 'site', 'location', 'lat', 'lon']: keep_non_null_vals(col) #drop duplicate columns if they were created [mdf.drop(col,inplace=True,axis=1) for col in mdf.columns if col.endswith("_remove")] #duplicates rows for some freaking reason mdf.drop_duplicates(inplace=True,subset=[col for col in mdf.columns if col != 'description']) #merge the data of the other type with the new data # mdf = mdf.merge(acdf2, how='outer') if dtype in mdf.columns: #fix freaking indecies because pandas mdf = mdf.set_index(dtype) #really? I wanted the index changed not a column deleted?!? mdf[dtype] = mdf.index mdf.index.name = index_name mdf.sort_index(inplace=True) return mdf
def merge_dfs(self, df1)
Description: takes new calculated data and replaces the corresponding data in self.df with the new input data preserving the most important metadata if they are not otherwise saved. Note this does not mutate self.df it simply returns the merged dataframe if you want to replace self.df you'll have to do that yourself. @param: df1 - first DataFrame whose data will preferentially be used.
3.573515
3.527367
1.013083
# don't let custom name start with "./" if custom_name: if custom_name.startswith('.'): custom_name = os.path.split(custom_name)[1] # put columns in logical order (by group) self.sort_dataframe_cols() # if indexing column was put in, remove it if "num" in self.df.columns: self.df = self.df.drop("num", axis=1) # # make sure name is a string name = self.get_singular_and_plural_dtype(self.dtype)[0] if name in self.df.columns: self.df[name] = self.df[name].astype(str) # if df is None: df = self.df # get full file path dir_path = os.path.realpath(dir_path) if custom_name: fname = pmag.resolve_file_name(custom_name, dir_path) # os.path.join(dir_path, custom_name) elif self.magic_file: fname = pmag.resolve_file_name(self.magic_file, dir_path) else: fname = os.path.join(dir_path, self.dtype + ".txt") # see if there's any data if not len(df): print('-W- No data to write to {}'.format(fname)) return False # add to existing file if append: print('-I- appending {} data to {}'.format(self.dtype, fname)) mode = "a" # overwrite existing file elif os.path.exists(fname): print('-I- overwriting {}'.format(fname)) mode = "w" # or create new file else: print('-I- writing {} records to {}'.format(self.dtype, fname)) mode = "w" f = open(fname, mode) if append: header = False if multi_type: header = True f.write('tab\t{}\n'.format(self.dtype)) f.flush() df.to_csv(f, sep="\t", header=header, index=False, mode='a') else: f.write('tab\t{}\n'.format(self.dtype)) f.flush() df.to_csv(f, sep="\t", header=True, index=False, mode='a') print('-I- {} records written to {} file'.format(len(df), self.dtype)) f.close() return fname
def write_magic_file(self, custom_name=None, dir_path=".", append=False, multi_type=False, df=None)
Write self.df out to tab-delimited file. By default will use standard MagIC filenames (specimens.txt, etc.), or you can provide a custom_name to write to instead. By default will write to custom_name if custom_name is a full path, or will write to dir_path + custom_name if custom_name is not a full path. Parameters ---------- self : MagIC DataFrame custom_name : str custom file name dir_path : str dir_path (used if custom_name is not a full path), default "." append : bool append to existing file, default False multi_type : bool for creating upload file Return -------- fname : str output file name
2.785546
2.749264
1.013197
table_dm = self.data_model.dm[self.dtype] approved_cols = table_dm.index unrecognized_cols = (set(self.df.columns) - set(approved_cols)) return unrecognized_cols
def get_non_magic_cols(self)
Find all columns in self.df that are not real MagIC 3 columns. Returns -------- unrecognized_cols : list
6.966476
6.010682
1.159016
short_df = self.df.loc[ind_name, col_name] mask = pd.notnull(short_df) print(short_df[mask]) try: val = short_df[mask].unique()[0] except IndexError: val = None return val
def get_first_non_null_value(self, ind_name, col_name)
For a given index and column, find the first non-null value. Parameters ---------- self : MagicDataFrame ind_name : str index name for indexing col_name : str column name for indexing Returns --------- single value of str, float, or int
3.036253
3.307678
0.917941
dtype = dtype.strip() if dtype.endswith('s'): return dtype[:-1], dtype elif dtype == 'criteria': return 'table_column', 'criteria' elif dtype == 'contribution': return 'doi', 'contribution'
def get_singular_and_plural_dtype(self, dtype)
Parameters ---------- dtype : str MagIC table type (specimens, samples, contribution, etc.) Returns --------- name : str singular name for MagIC table ('specimen' for specimens table, etc.) dtype : str plural dtype for MagIC table ('specimens' for specimens table, etc.)
5.738036
4.852006
1.182611
args = sys.argv fmt = pmag.get_named_arg('-fmt', 'svg') output_dir_path = pmag.get_named_arg('-WD', '.') input_dir_path = pmag.get_named_arg('-ID', "") if "-h" in args: print(main.__doc__) sys.exit() meas_file = pmag.get_named_arg('-f', 'measurements.txt') spec_file = pmag.get_named_arg('-F', 'specimens.txt') make_plots = True save_plots = False if '-P' in args: make_plots = False if '-sav' in args: save_plots = True pltspec = pmag.get_named_arg('-spc', 0) ipmag.hysteresis_magic(output_dir_path, input_dir_path, spec_file, meas_file, fmt, save_plots, make_plots, pltspec)
def main()
NAME hysteresis_magic.py DESCRIPTION calculates hystereis parameters and saves them in 3.0 specimen format file makes plots if option selected SYNTAX hysteresis_magic.py [command line options] OPTIONS -h prints help message and quits -f: specify input file, default is agm_measurements.txt -F: specify specimens.txt output file -WD: directory to output files to (default : current directory) Note: if using Windows, all figures will output to current directory -ID: directory to read files from (default : same as -WD) -P: do not make the plots -spc SPEC: specify specimen name to plot and quit -sav save all plots and quit -fmt [png,svg,eps,jpg]
2.876342
2.295226
1.253184
if 'data_files' in os.listdir(sys.prefix): return os.path.join(sys.prefix, 'data_files') else: return os.path.join(get_pmag_dir(), 'data_files')
def get_data_files_dir()
Find directory with data_files (sys.prefix or local PmagPy/data_files) and return the path.
3.139017
2.034421
1.542954
# this is correct for py2exe (DEPRECATED) #win_frozen = is_frozen() #if win_frozen: # path = os.path.abspath(unicode(sys.executable, sys.getfilesystemencoding())) # path = os.path.split(path)[0] # return path # this is correct for py2app try: return os.environ['RESOURCEPATH'] # this works for everything else except KeyError: pass # new way: # if we're in the local PmagPy directory: if os.path.isfile(os.path.join(os.getcwd(), 'pmagpy', 'pmag.py')): lib_dir = os.path.join(os.getcwd(), 'pmagpy') # if we're anywhere else: elif getattr(sys, 'frozen', False): #pyinstaller datafile directory return sys._MEIPASS else: # horrible, hack-y fix # (prevents namespace issue between # local github PmagPy and pip-installed PmagPy). # must reload because we may have # changed directories since importing temp = os.getcwd() os.chdir('..') reload(locator) lib_file = resource_filename('locator', 'resource.py') full_dir = os.path.split(lib_file)[0] ind = full_dir.rfind(os.sep) lib_dir = full_dir[:ind+1] lib_dir = os.path.realpath(os.path.join(lib_dir, 'pmagpy')) os.chdir(temp) # end fix # old way: #lib_dir = os.path.dirname(os.path.realpath(__file__)) if not os.path.isfile(os.path.join(lib_dir, 'pmag.py')): lib_dir = os.getcwd() fname = os.path.join(lib_dir, 'pmag.py') if not os.path.isfile(fname): pmag_dir = os.path.split(os.path.split(__file__)[0])[0] if os.path.isfile(os.path.join(pmag_dir,'pmagpy','pmag.py')): return pmag_dir else: print('-W- Can\'t find the data model! Make sure you have installed pmagpy using pip: "pip install pmagpy --upgrade"') return '.' # strip "/" or "\" and "pmagpy" to return proper PmagPy directory if lib_dir.endswith(os.sep): lib_dir = lib_dir[:-1] if lib_dir.endswith('pmagpy'): pmag_dir = os.path.split(lib_dir)[0] else: pmag_dir = lib_dir return pmag_dir
def get_pmag_dir()
Returns directory in which PmagPy is installed
3.555745
3.537633
1.00512
dir_path="./" if '-WD' in sys.argv: ind=sys.argv.index('-WD') dir_path=sys.argv[ind+1] if '-h' in sys.argv: print(main.__doc__) sys.exit() if '-f' in sys.argv: ind=sys.argv.index('-f') magic_file=dir_path+'/'+sys.argv[ind+1] else: print(main.__doc__) sys.exit() if '-xkey' in sys.argv: ind=sys.argv.index('-xkey') xkey=sys.argv[ind+1] if '-ykey' in sys.argv: ind=sys.argv.index('-ykey') ykey=sys.argv[ind+1] else: print(main.__doc__) sys.exit() if '-b' in sys.argv: ind=sys.argv.index('-b') xmin=float(sys.argv[ind+1]) xmax=float(sys.argv[ind+2]) ymin=float(sys.argv[ind+3]) ymax=float(sys.argv[ind+4]) # # # get data read in X,Y=[],[] Data,file_type=pmag.magic_read(magic_file) if len(Data)>0: for rec in Data: if xkey in list(rec.keys()) and rec[xkey]!="" and ykey in list(rec.keys()) and rec[ykey]!="": try: X.append(float(rec[xkey])) Y.append(float(rec[ykey])) except: pass FIG={'fig':1} pmagplotlib.plot_init(FIG['fig'],5,5) if '-b' in sys.argv: pmagplotlib.plot_xy(FIG['fig'],X,Y,sym='ro',xlab=xkey,ylab=ykey,xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax ) else: pmagplotlib.plot_xy(FIG['fig'],X,Y,sym='ro',xlab=xkey,ylab=ykey) pmagplotlib.draw_figs(FIG) ans=input(" S[a]ve to save plot, [q]uit, Return to continue: ") if ans=="q": sys.exit() if ans=="a": files = {} for key in list(FIG.keys()): files[key]=str(key) + ".svg" pmagplotlib.save_plots(FIG,files) sys.exit() else: print('no data to plot')
def main()
NAME plot_magic_keys.py DESCRIPTION picks out keys and makes and xy plot SYNTAX plot_magic_keys.py [command line options] OPTIONS -h prints help message and quits -f FILE: specify input magic format file -xkey KEY: specify key for X -ykey KEY: specify key for Y -b xmin xmax ymin ymax, sets bounds
2.052176
1.92815
1.064324
title = "" files, fmt = {}, 'svg' sym = {'lower': ['o', 'r'], 'upper': ['o', 'w']} plot = 0 if '-h' in sys.argv: # check if help is needed print(main.__doc__) sys.exit() # graceful quit if '-sav' in sys.argv: plot = 1 if '-fmt' in sys.argv: ind = sys.argv.index('-fmt') fmt = sys.argv[ind + 1] if '-s' in sys.argv: ind = sys.argv.index('-s') sym['size'] = int(sys.argv[ind + 1]) else: sym['size'] = 20 if '-Lsym' in sys.argv: ind = sys.argv.index('-Lsym') sym['lower'][0] = sys.argv[ind + 1] sym['lower'][1] = sys.argv[ind + 2] if '-Usym' in sys.argv: ind = sys.argv.index('-Usym') sym['upper'][0] = sys.argv[ind + 1] sym['upper'][1] = sys.argv[ind + 2] if '-f' in sys.argv: # ask for filename ind = sys.argv.index('-f') fname = sys.argv[ind + 1] else: print(main.__doc__) print(' \n -f option required') sys.exit() # graceful quit DI = numpy.loadtxt(fname) EQ = {'eq': 1} pmagplotlib.plot_init(EQ['eq'], 5, 5) pmagplotlib.plot_eq_sym(EQ['eq'], DI, 'Equal Area Plot', sym) # make plot if plot == 0: pmagplotlib.draw_figs(EQ) # make it visible for key in list(EQ.keys()): files[key] = key + '.' + fmt if pmagplotlib.isServer: black = '#000000' purple = '#800080' titles = {} titles['eq'] = 'Equal Area Plot' EQ = pmagplotlib.add_borders(EQ, titles, black, purple) pmagplotlib.save_plots(EQ, files) elif plot == 1: fname = os.path.split(fname)[1].split('.')[0] files['eq'] = fname + '_eq.' + fmt pmagplotlib.save_plots(EQ, files) else: ans = input(" S[a]ve to save plot, [q]uit without saving: ") if ans == "a": pmagplotlib.save_plots(EQ, files)
def main()
NAME eqarea.py DESCRIPTION makes equal area projections from declination/inclination data INPUT FORMAT takes dec/inc as first two columns in space delimited file SYNTAX eqarea.py [options] OPTIONS -f FILE, specify file on command line -sav save figure and quit -fmt [svg,jpg,png,pdf] set figure format [default is svg] -s SIZE specify symbol size - default is 20 -Lsym SHAPE COLOR specify shape and color for lower hemisphere -Usym SHAPE COLOR specify shape and color for upper hemisphere shapes: 's': square,'o': circle,'^,>,v,<': [up,right,down,left] triangle, 'd': diamond, 'p': pentagram, 'h': hexagon, '8': octagon, '+': plus, 'x': cross colors: [b]lue,[g]reen,[r]ed,[c]yan,[m]agenta,[y]ellow,blac[k],[w]hite
2.680557
2.302145
1.164374
currentDirectory = self.WD #os.getcwd() change_dir_dialog = wx.DirDialog(self.panel, "Choose your working directory to create or edit a MagIC contribution:", defaultPath=currentDirectory, style=wx.DD_DEFAULT_STYLE | wx.DD_NEW_DIR_BUTTON | wx.DD_CHANGE_DIR) result = change_dir_dialog.ShowModal() if result == wx.ID_CANCEL: return if result == wx.ID_OK: self.WD = change_dir_dialog.GetPath() self.dir_path.SetValue(self.WD) change_dir_dialog.Destroy() wait = wx.BusyInfo('Initializing data object in new directory, please wait...') wx.SafeYield() print('-I- Initializing magic data object') # make new builder object, but reuse old data_model self.er_magic = builder.ErMagicBuilder(self.WD, self.er_magic.data_model) print('-I- Read in any available data from working directory') self.er_magic.get_all_magic_info() print('-I- Initializing headers') self.er_magic.init_default_headers() self.er_magic.init_actual_headers() del wait
def on_change_dir_button(self, event)
create change directory frame
4.512805
4.511103
1.000377
if self.grid_frame: print('-I- You already have a grid frame open') pw.simple_warning("You already have a grid open") return try: grid_type = event.GetButtonObj().Name[:-4] # remove '_btn' except AttributeError: grid_type = self.FindWindowById(event.Id).Name[:-4] # remove ('_btn') wait = wx.BusyInfo('Making {} grid, please wait...'.format(grid_type)) wx.SafeYield() # hide mainframe self.on_open_grid_frame() self.grid_frame = grid_frame.GridFrame(self.er_magic, self.WD, grid_type, grid_type, self.panel) if self.validation_mode: if grid_type in self.validation_mode: self.grid_frame.grid.paint_invalid_cells(self.warn_dict[grid_type]) #self.grid_frame.msg_boxsizer current_label = self.grid_frame.msg_text.GetLabel() add_text = self.grid_frame.msg_text.SetLabel(add_text) #self.on_finish_change_dir(self.change_dir_dialog) del wait
def make_grid_frame(self, event)
Create a GridFrame for data type of the button that was clicked
6.619886
6.508301
1.017145
# coherence validations wait = wx.BusyInfo('Validating data, please wait...') wx.SafeYield() spec_warnings, samp_warnings, site_warnings, loc_warnings = self.er_magic.validate_data() result_warnings = self.er_magic.validate_results(self.er_magic.results) meas_warnings = self.er_magic.validate_measurements(self.er_magic.measurements) self.warn_dict = {'specimen': spec_warnings, 'sample': samp_warnings, 'site': site_warnings, 'location': loc_warnings, 'result': result_warnings, 'age': {}, 'measurement': meas_warnings} # done coherence validations del wait # write upload file and perform data validations wait = wx.BusyInfo('Making upload file, please wait...') wx.SafeYield() self.er_magic.write_files() upfile, error_message, errors = ipmag.upload_magic(dir_path=self.WD, data_model=self.data_model) del wait if upfile: text = "You are ready to upload.\nYour file:\n{}\nwas generated in directory: \n{}\nDrag and drop this file in the MagIC database.".format(os.path.split(upfile)[1], self.WD) dlg = wx.MessageDialog(self, caption="Saved", message=text, style=wx.OK) else: text = "There were some problems with the creation of your upload file.\nError message: {}\nSee Terminal/Command Prompt for details".format(error_message) dlg = wx.MessageDialog(self, caption="Error", message=text, style=wx.OK) result = dlg.ShowModal() if result == wx.ID_OK: dlg.Destroy() self.edited = False ## add together data & coherence errors into one dictionary if errors: for item_type in errors: for item_name in errors[item_type]: if item_name in self.warn_dict[item_type]: self.warn_dict[item_type][item_name].update(errors[item_type][item_name]) else: self.warn_dict[item_type][item_name] = errors[item_type][item_name] has_problems = [] for item_type, warnings in list(self.warn_dict.items()): if warnings: has_problems.append(item_type) # for any dtypes with validation problems (data or coherence), # highlight the button to the corresponding grid # skip this step for Windows if sys.platform in ['win32', 'win62']: pass else: for dtype in self.warn_dict: wind = self.FindWindowByName(dtype + '_btn') if wind: if dtype in has_problems: wind.Bind(wx.EVT_PAINT, self.highlight_button) else: wind.Unbind(wx.EVT_PAINT, handler=self.highlight_button) self.Refresh() if has_problems: self.validation_mode = set(has_problems) if sys.platform in ['win32', 'win62']: self.message.SetLabel('The following grid(s) have incorrect or incomplete data:\n{}'.format(', '.join(self.validation_mode))) else: self.message.SetLabel('Highlighted grids have incorrect or incomplete data') self.bSizer_msg.ShowItems(True) self.hbox.Fit(self) if not has_problems: self.validation_mode = set() self.message.SetLabel('') self.bSizer_msg.ShowItems(False) self.hbox.Fit(self)
def on_upload_file(self, event)
Write all data to appropriate er_* and pmag_* files. Then use those files to create a MagIC upload format file. Validate the upload file.
3.611288
3.413794
1.057852
if self.parent.grid_frame: if self.parent.grid_frame.grid.changes: dlg = wx.MessageDialog(self,caption="Message:", message="Are you sure you want to exit the program?\nYou have a grid open with unsaved changes.\n ", style=wx.OK|wx.CANCEL) result = dlg.ShowModal() if result == wx.ID_OK: dlg.Destroy() else: dlg.Destroy() return if self.parent.grid_frame: self.parent.grid_frame.Destroy() # if there have been edits, save all data to files # before quitting if self.parent.edited: self.parent.er_magic.write_files() self.parent.Close() try: sys.exit() except TypeError: pass
def on_quit(self, event)
shut down application
4.162089
4.203822
0.990073
dia = pmag_menu_dialogs.ClearWD(self.parent, self.parent.WD) clear = dia.do_clear() if clear: print('-I- Clear data object') self.parent.er_magic = builder.ErMagicBuilder(self.parent.WD, self.parent.data_model) print('-I- Initializing headers') self.parent.er_magic.init_default_headers() self.parent.er_magic.init_actual_headers()
def on_clear(self, event)
initialize window to allow user to empty the working directory
7.880715
7.513271
1.048906
# # initialize variables # version_num=pmag.get_version() orient_file,samp_file = "orient","er_samples.txt" args=sys.argv dir_path,out_path='.','.' default_outfile = True # # if '-WD' in args: ind=args.index('-WD') dir_path=args[ind+1] if '-OD' in args: ind=args.index('-OD') out_path=args[ind+1] if "-h" in args: print(main.__doc__) sys.exit() if "-F" in args: ind=args.index("-F") orient_file=sys.argv[ind+1] default_outfile = False if "-f" in args: ind=args.index("-f") samp_file=sys.argv[ind+1] orient_file=out_path+'/'+orient_file samp_file=dir_path+'/'+samp_file # # read in file to convert # ErSamples=[] Required=['sample_class','sample_type','sample_lithology','lat','long'] Samps,file_type=pmag.magic_read(samp_file) Locs=[] OrKeys=['sample_name','site_name','mag_azimuth','field_dip','sample_class','sample_type','sample_lithology','lat','long','stratigraphic_height','method_codes','site_description'] print("file_type", file_type) # LJ if file_type.lower()=='er_samples': SampKeys=['er_sample_name','er_site_name','sample_azimuth','sample_dip','sample_class','sample_type','sample_lithology','sample_lat','sample_lon','sample_height','magic_method_codes','er_sample_description'] elif file_type.lower()=='magic_measurements': SampKeys=['er_sample_name','er_site_name'] else: print('wrong file format; must be er_samples or magic_measurements only') for samp in Samps: if samp['er_location_name'] not in Locs:Locs.append(samp['er_location_name']) # get all the location names for location_name in Locs: loc_samps=pmag.get_dictitem(Samps,'er_location_name',location_name,'T') OrOut=[] for samp in loc_samps: if samp['er_sample_name'] not in ErSamples: ErSamples.append(samp['er_sample_name']) OrRec={} if 'sample_date' in list(samp.keys()) and samp['sample_date'].strip()!="": date=samp['sample_date'].split(':') OrRec['date']=date[1]+'/'+date[2]+'/'+date[0][2:4] for i in range(len(SampKeys)): if SampKeys[i] in list(samp.keys()):OrRec[OrKeys[i]]=samp[SampKeys[i]] for key in Required: if key not in list(OrRec.keys()):OrRec[key]="" # fill in blank required keys OrOut.append(OrRec) loc=location_name.replace(" ","_") if default_outfile: outfile=orient_file+'_'+loc+'.txt' else: outfile=orient_file pmag.magic_write(outfile,OrOut,location_name) print("Data saved in: ", outfile)
def main()
NAME convert_samples.py DESCRIPTION takes an er_samples or magic_measurements format file and creates an orient.txt template SYNTAX convert_samples.py [command line options] OPTIONS -f FILE: specify input file, default is er_samples.txt -F FILE: specify output file, default is: orient_LOCATION.txt INPUT FORMAT er_samples.txt or magic_measurements format file OUTPUT orient.txt format file
2.998103
2.802967
1.069618
if len(sys.argv) > 0: if '-h' in sys.argv: # check if help is needed print(main.__doc__) sys.exit() # graceful quit if '-f' in sys.argv: # ask for filename ind=sys.argv.index('-f') file=sys.argv[ind+1] f=open(file,'r') data=f.readlines() else: data=sys.stdin.readlines() # read in data from standard input DIs= [] # set up list for dec inc data ofile = "" if '-F' in sys.argv: # set up output file ind = sys.argv.index('-F') ofile= sys.argv[ind+1] out = open(ofile, 'w + a') for line in data: # read in the data from standard input if '\t' in line: rec=line.split('\t') # split each line on space to get records else: rec=line.split() # split each line on space to get records DIs.append((float(rec[0]),float(rec[1]))) # bpars=pmag.dobingham(DIs) output = '%7.1f %7.1f %7.1f %7.1f %7.1f %7.1f %7.1f %7.1f %i' % (bpars["dec"],bpars["inc"],bpars["Eta"],bpars["Edec"],bpars["Einc"],bpars["Zeta"],bpars["Zdec"],bpars["Zinc"],bpars["n"]) if ofile == "": print(output) else: out.write(output+'\n')
def main()
NAME gobing.py DESCRIPTION calculates Bingham parameters from dec inc data INPUT FORMAT takes dec/inc as first two columns in space delimited file SYNTAX gobing.py [options] OPTIONS -f FILE to read from FILE -F, specifies output file name < filename for reading from standard input OUTPUT mean dec, mean inc, Eta, Deta, Ieta, Zeta, Zdec, Zinc, N
3.188945
2.567588
1.242
# initialize some parameters args = sys.argv if "-h" in args: print(main.__doc__) sys.exit() #if "-Fa" in args: # ind = args.index("-Fa") # rmag_anis = args[ind + 1] #if "-Fr" in args: # ind = args.index("-Fr") # rmag_res = args[ind + 1] #meas_file = "atrm_measurements.txt" #rmag_anis = "trm_anisotropy.txt" #rmag_res = "atrm_results.txt" dir_path = pmag.get_named_arg("-WD", ".") input_dir_path = pmag.get_named_arg("-ID", "") meas_file = pmag.get_named_arg("-f", "measurements.txt") data_model_num = int(pmag.get_named_arg("-DM", 3)) spec_outfile = pmag.get_named_arg("-Fsp", "specimens.txt") spec_infile = pmag.get_named_arg("-fsp", "specimens.txt") ipmag.atrm_magic(meas_file, dir_path, input_dir_path, spec_infile, spec_outfile, data_model_num)
def main()
NAME atrm_magic.py DESCRIPTION Converts ATRM data to best-fit tensor (6 elements plus sigma) Original program ARMcrunch written to accomodate ARM anisotropy data collected from 6 axial directions (+X,+Y,+Z,-X,-Y,-Z) using the off-axis remanence terms to construct the tensor. A better way to do the anisotropy of ARMs is to use 9,12 or 15 measurements in the Hext rotational scheme. SYNTAX atrm_magic.py [-h][command line options] OPTIONS -h prints help message and quits -f FILE: specify input file, default is atrm_measurements.txt -fsp FILE: specimen input file, default is specimens.txt (optional) -Fsp FILE: specify output file, default is specimens.txt (MagIC 3 only) -DM DATA_MODEL: specify MagIC 2 or MagIC 3, default is 3 INPUT Input for the present program is a TRM acquisition data with an optional baseline. The order of the measurements is: Decs=[0,90,0,180,270,0,0,90,0] Incs=[0,0,90,0,0,-90,0,0,90] The last two measurements are optional
3.096891
2.512175
1.232753
if '-h' in sys.argv: print(main.__doc__) sys.exit() if '-F' in sys.argv: ind=sys.argv.index('-F') ofile=sys.argv[ind+1] out=open(ofile,'w') else: out='' if '-i' in sys.argv: # if one is -i a95=0 while 1: try: ans = input("Input Declination: <cntrl-D to quit> ") Dec = float(ans) # assign input to Dec, after conversion to floating point ans = input("Input Inclination: ") Inc = float(ans) ans = input("Input Site Latitude: ") slat = float(ans) ans = input("Input Site Longitude: ") slong = float(ans) output = pmag.dia_vgp(Dec,Inc,a95,slat,slong) print('%7.1f %7.1f'%(output[0],output[1])) except: print("\n Good-bye\n") sys.exit() elif '-f' in sys.argv: # input of file name ind=sys.argv.index('-f') file=sys.argv[ind+1] data=numpy.loadtxt(file) else: # data = numpy.loadtxt(sys.stdin,dtype=numpy.float) # read from S/I if len(data.shape)>1: # 2-D array N=data.shape[0] if data.shape[1]==4: # only dec,inc,sitelat, site long -no alpha95 data=data.transpose() inlist=numpy.array([data[0],data[1],numpy.zeros(N),data[2],data[3]]).transpose() output = pmag.dia_vgp(inlist) for k in range(N): if out=='': print('%7.1f %7.1f'%(output[0][k],output[1][k])) else: out.write('%7.1f %7.1f\n'%(output[0][k],output[1][k])) else: # single line of data if len(data)==4: data=[data[0],data[1],0,data[2],data[3]] output = pmag.dia_vgp(data) if out=='': # spit to standard output print('%7.1f %7.1f'%(output[0],output[1])) else: # write to file out.write('%7.1f %7.1f\n'%(output[0],output[1]))
def main()
NAME di_vgp.py DESCRIPTION converts declination/inclination to virtual geomagnetic pole SYNTAX di_vgp.py [-h] [options] OPTIONS -h prints help message and quits -i interactive data entry -f FILE to specify intput file -F FILE to specify output file <filename to read/write from/to standard input INPUT for file entry: D I SLAT SLON where: D: declination I: inclination SLAT: site latitude (positive north) SLON: site longitude (positive east) OUTPUT PLON PLAT where: PLAT: pole latitude PLON: pole longitude (positive east)
3.124416
2.867468
1.089608
os.chdir(self.WD) options = {} HUJI_file = self.bSizer0.return_value() if not HUJI_file: pw.simple_warning("You must select a HUJI format file") return False options['magfile'] = HUJI_file dat_file = self.bSizer0A.return_value() if os.path.isfile(dat_file): options['datafile'] = dat_file else: dat_file="" magicoutfile=os.path.split(HUJI_file)[1]+".magic" outfile=os.path.join(self.WD, magicoutfile) options['meas_file'] = outfile magicoutfile=os.path.split(HUJI_file)[1]+"_specimens.txt" spec_outfile=os.path.join(self.WD, magicoutfile) options['spec_file'] = spec_outfile magicoutfile=os.path.split(HUJI_file)[1]+"_samples.txt" samp_outfile=os.path.join(self.WD, magicoutfile) options['samp_file'] = samp_outfile magicoutfile=os.path.split(HUJI_file)[1]+"_sites.txt" site_outfile=os.path.join(self.WD, magicoutfile) options['site_file'] = site_outfile magicoutfile=os.path.split(HUJI_file)[1]+"_locations.txt" loc_outfile=os.path.join(self.WD, magicoutfile) options['loc_file'] = loc_outfile user = self.bSizer1.return_value() options['user'] = user if user: user = '-usr ' + user experiment_type = self.bSizer2.return_value() options['codelist'] = experiment_type if not experiment_type: pw.simple_warning("You must select an experiment type") return False cooling_rate = self.cooling_rate.GetValue() or 0 if cooling_rate: experiment_type = experiment_type + " " + cooling_rate lab_field = self.bSizer3.return_value() if not lab_field: lab_field = "0 0 0" lab_field_list = lab_field.split() options['labfield'] = lab_field_list[0] options['phi'] = lab_field_list[1] options['theta'] = lab_field_list[2] lab_field = '-dc ' + lab_field spc = self.bSizer4.return_value() options['specnum'] = spc or 0 if not spc: spc = '-spc 0' else: spc = '-spc ' + spc ncn = self.bSizer5.return_value() options['samp_con'] = ncn loc_name = self.bSizer6.return_value() options['location'] = loc_name if loc_name: loc_name = '-loc ' + loc_name #peak_AF = self.bSizer7.return_value() #options['peakfield'] = peak_AF replicate = self.bSizer8.return_value() if replicate: options['noave'] = 0 replicate = '' else: options['noave'] = 1 replicate = '-A' COMMAND = "huji_magic_new.py -f {} -fd {} -F {} -Fsp {} -Fsa {} -Fsi {} -Flo {} {} -LP {} {} -ncn {} {} {} {}".format(HUJI_file, dat_file, outfile, spec_outfile, samp_outfile, site_outfile, loc_outfile, user, experiment_type, loc_name, ncn, lab_field, spc, replicate) program_ran, error_message = convert.huji(**options) if program_ran: pw.close_window(self, COMMAND, outfile) else: pw.simple_warning(error_message)
def on_okButton(self, event)
grab user input values, format them, and run huji_magic.py with the appropriate flags
2.654307
2.564778
1.034907
''' create an editable grid showing demag_orient.txt ''' #-------------------------------- # orient.txt supports many other headers # but we will only initialize with # the essential headers for # sample orientation and headers present # in existing demag_orient.txt file #-------------------------------- #-------------------------------- # create the grid #-------------------------------- samples_list = list(self.orient_data.keys()) samples_list.sort() self.samples_list = [ sample for sample in samples_list if sample is not "" ] #self.headers.extend(self.add_extra_headers(samples_list)) display_headers = [header[1] for header in self.headers] self.grid = magic_grid.MagicGrid(self.panel, 'orient grid', self.samples_list, display_headers) self.grid.InitUI() #-------------------------------- # color the columns by groups #-------------------------------- for i in range(len(self.samples_list)): self.grid.SetCellBackgroundColour(i, 0, "LIGHT GREY") self.grid.SetCellBackgroundColour(i, 1, "LIGHT STEEL BLUE") self.grid.SetCellBackgroundColour(i, 2, "YELLOW") self.grid.SetCellBackgroundColour(i, 3, "YELLOW") self.grid.SetCellBackgroundColour(i, 4, "PALE GREEN") self.grid.SetCellBackgroundColour(i, 5, "PALE GREEN") self.grid.SetCellBackgroundColour(i, 6, "KHAKI") self.grid.SetCellBackgroundColour(i, 7, "KHAKI") self.grid.SetCellBackgroundColour(i, 8, "KHAKI") self.grid.SetCellBackgroundColour(i, 9, "KHAKI") self.grid.SetCellBackgroundColour(i, 10, "KHAKI") self.grid.SetCellBackgroundColour(i, 11, "LIGHT MAGENTA") self.grid.SetCellBackgroundColour(i, 12, "LIGHT MAGENTA") #-------------------------------- # fill data from self.orient_data #-------------------------------- headers = [header[0] for header in self.headers] for sample in self.samples_list: for key in list(self.orient_data[sample].keys()): if key in headers: sample_index = self.samples_list.index(sample) i = headers.index(key) val = str(self.orient_data[sample][key]) # if it's a pmag_object, use its name try: val = val.name except AttributeError: pass if val and val != "None": self.grid.SetCellValue(sample_index, i, val) #-------------------------------- #-------------------------------- # fill in some default values #-------------------------------- for row in range(self.grid.GetNumberRows()): col = 1 if not self.grid.GetCellValue(row, col): self.grid.SetCellValue(row, col, 'g') #-------------------------------- # temporary trick to get drop-down-menus to work self.grid.changes = {'a'} self.grid.AutoSize() #self.drop_down_menu = drop_down_menus.Menus("orient", self, self.grid, '') self.drop_down_menu = drop_down_menus3.Menus("orient", self.contribution, self.grid) self.Bind(wx.grid.EVT_GRID_LABEL_LEFT_CLICK, self.onLeftClickLabel, self.grid)
def create_sheet(self)
create an editable grid showing demag_orient.txt
3.023397
2.798974
1.080181
''' open orient.txt read the data display the data from the file in a new grid ''' dlg = wx.FileDialog( self, message="choose orient file", defaultDir=self.WD, defaultFile="", style=wx.FD_OPEN | wx.FD_CHANGE_DIR ) if dlg.ShowModal() == wx.ID_OK: orient_file = dlg.GetPath() dlg.Destroy() new_data, dtype, keys = pmag.magic_read_dict(orient_file, sort_by_this_name="sample_name", return_keys=True) if len(new_data) > 0: self.orient_data={} self.orient_data=new_data #self.create_sheet() self.update_sheet() print("-I- If you don't see a change in the spreadsheet, you may need to manually re-size the window")
def on_m_open_file(self,event)
open orient.txt read the data display the data from the file in a new grid
5.787887
4.446056
1.301803
if not sample_names: return [] full_headers = list(self.orient_data[sample_names[0]].keys()) add_ons = [] for head in full_headers: if head not in self.header_names: add_ons.append((head, head)) return add_ons
def add_extra_headers(self, sample_names)
If there are samples, add any additional keys they might use to supplement the default headers. Return the headers headers for adding, with the format: [(header_name, header_display_name), ....]
3.828915
3.598292
1.064092
''' open orient.txt read the data display the data from the file in a new grid ''' dlg = wx.FileDialog( self, message="choose orient file", defaultDir=self.WD, defaultFile="", style=wx.FD_OPEN | wx.FD_CHANGE_DIR ) if dlg.ShowModal() == wx.ID_OK: orient_file = dlg.GetPath() dlg.Destroy() new_data = self.er_magic_data.read_magic_file(orient_file, "sample_name")[0] if len(new_data) > 0: self.orient_data={} self.orient_data=new_data #self.create_sheet() self.update_sheet() print("-I- If you don't see a change in the spreadsheet, you may need to manually re-size the window")
def on_m_open_file(self,event)
open orient.txt read the data display the data from the file in a new grid
5.675565
4.247652
1.336165
''' save demag_orient.txt (only the columns that appear on the grid frame) ''' fout = open(os.path.join(self.WD, "demag_orient.txt"), 'w') STR = "tab\tdemag_orient\n" fout.write(STR) headers = [header[0] for header in self.headers] STR = "\t".join(headers) + "\n" fout.write(STR) for sample in self.samples_list: STR = "" for header in headers: sample_index = self.samples_list.index(sample) i = headers.index(header) value = self.grid.GetCellValue(sample_index, i) STR = STR + value + "\t" fout.write(STR[:-1] + "\n") if event != None: dlg1 = wx.MessageDialog(None,caption="Message:", message="data saved in file demag_orient.txt" ,style=wx.OK|wx.ICON_INFORMATION) dlg1.ShowModal() dlg1.Destroy()
def on_m_save_file(self,event)
save demag_orient.txt (only the columns that appear on the grid frame)
3.581652
2.622743
1.365613
if '-h' in sys.argv: print(main.__doc__) sys.exit() zfile, tfile = 'zeq_redo', 'thellier_redo' zredo, tredo = "", "" dir_path = pmag.get_named_arg('-WD', '.') inspec = pmag.get_named_arg('-f', 'specimens.txt') if '-F' in sys.argv: ind = sys.argv.index('-F') redo = sys.argv[ind + 1] tfile = redo zfile = redo inspec = pmag.resolve_file_name(inspec, dir_path) zfile = pmag.resolve_file_name(zfile, dir_path) tfile = pmag.resolve_file_name(tfile, dir_path) # # read in data # specs = [] prior_spec_data, file_type = pmag.magic_read(inspec) if file_type != 'specimens': print(file_type, " this is not a valid pmag_specimens file") sys.exit() outstrings = [] for spec in prior_spec_data: tmp = spec["method_codes"].split(":") meths = [] for meth in tmp: methods = meth.strip().split('-') for m in methods: if m not in meths: meths.append(m) if 'DIR' in meths: # DE-BFL, DE-BFP or DE-FM specs.append(spec['specimen']) if 'dir_comp' in list(spec.keys()) and spec['dir_comp'] != "" and spec['dir_comp'] != " ": comp_name = spec['dir_comp'] else: comp_name = string.ascii_uppercase[specs.count( spec['specimen']) - 1] calculation_type = "DE-BFL" # assume default calculation type is best-fit line if "BFP" in meths: calculation_type = 'DE-BFP' elif "FM" in meths: calculation_type = 'DE-FM' if zredo == "": zredo = open(zfile, "w") outstring = '%s %s %s %s %s \n' % ( spec["specimen"], calculation_type, spec["meas_step_min"], spec["meas_step_max"], comp_name) if outstring not in outstrings: zredo.write(outstring) outstrings.append(outstring) # only writes unique interpretions elif "PI" in meths and "TRM" in meths: # thellier record if tredo == "": tredo = open(tfile, "w") outstring = '%s %i %i \n' % (spec["specimen"], float( spec["meas_step_min"]), float(spec["meas_step_max"])) if outstring not in outstrings: tredo.write(outstring) outstrings.append(outstring) # only writes unique interpretions print('Redo files saved to: ', zfile, tfile)
def main()
NAME mk_redo.py DESCRIPTION Makes thellier_redo and zeq_redo files from existing pmag_specimens format file SYNTAX mk_redo.py [-h] [command line options] INPUT takes specimens.txt formatted input file OPTIONS -h: prints help message and quits -f FILE: specify input file, default is 'specimens.txt' -F REDO: specify output file suffix, default is redo so that output filenames are 'thellier_redo' for thellier data and 'zeq_redo' for direction only data OUTPUT makes a thellier_redo or a zeq_redo format file
3.019249
2.746263
1.099403
minx, miny, maxx, maxy = ls.bounds points = {'left': [(minx, miny), (minx, maxy)], 'right': [(maxx, miny), (maxx, maxy)], 'bottom': [(minx, miny), (maxx, miny)], 'top': [(minx, maxy), (maxx, maxy)],} return sgeom.LineString(points[side])
def find_side(ls, side)
Given a shapely LineString which is assumed to be rectangular, return the line corresponding to a given side of the rectangle.
2.060503
1.869859
1.101957
te = lambda xy: xy[0] lc = lambda t, n, b: np.vstack((np.zeros(n) + t, np.linspace(b[2], b[3], n))).T xticks, xticklabels = _lambert_ticks(ax, ticks, 'bottom', lc, te) ax.xaxis.tick_bottom() ax.set_xticks(xticks) ax.set_xticklabels([ax.xaxis.get_major_formatter()(xtick) for xtick in xticklabels])
def lambert_xticks(ax, ticks)
Draw ticks on the bottom x-axis of a Lambert Conformal projection.
3.116162
2.901938
1.073821
te = lambda xy: xy[1] lc = lambda t, n, b: np.vstack((np.linspace(b[0], b[1], n), np.zeros(n) + t)).T yticks, yticklabels = _lambert_ticks(ax, ticks, 'left', lc, te) ax.yaxis.tick_left() ax.set_yticks(yticks) ax.set_yticklabels([ax.yaxis.get_major_formatter()(ytick) for ytick in yticklabels])
def lambert_yticks(ax, ticks)
Draw ricks on the left y-axis of a Lamber Conformal projection.
3.048911
2.919083
1.044476
outline_patch = sgeom.LineString(ax.outline_patch.get_path().vertices.tolist()) axis = find_side(outline_patch, tick_location) n_steps = 30 extent = ax.get_extent(ccrs.PlateCarree()) _ticks = [] for t in ticks: xy = line_constructor(t, n_steps, extent) proj_xyz = ax.projection.transform_points(ccrs.Geodetic(), xy[:, 0], xy[:, 1]) xyt = proj_xyz[..., :2] ls = sgeom.LineString(xyt.tolist()) locs = axis.intersection(ls) if not locs: tick = [None] else: tick = tick_extractor(locs.xy) _ticks.append(tick[0]) # Remove ticks that aren't visible: ticklabels = copy(ticks) while True: try: index = _ticks.index(None) except ValueError: break _ticks.pop(index) ticklabels.pop(index) return _ticks, ticklabels
def _lambert_ticks(ax, ticks, tick_location, line_constructor, tick_extractor)
Get the tick locations and labels for an axis of a Lambert Conformal projection.
3.157393
3.067827
1.029195
if '-h' in sys.argv: print(main.__doc__) sys.exit() # initialize variables from command line + defaults dir_path = pmag.get_named_arg("-WD", default_val=".") input_dir_path = pmag.get_named_arg('-ID', '') if not input_dir_path: input_dir_path = dir_path in_file = pmag.get_named_arg("-f", default_val="measurements.txt") in_file = pmag.resolve_file_name(in_file, input_dir_path) if "-ID" not in sys.argv: input_dir_path = os.path.split(in_file)[0] plot_by = pmag.get_named_arg("-obj", default_val="loc") LT = pmag.get_named_arg("-LT", "AF") no_norm = pmag.get_flag_arg_from_sys("-N") norm = False if no_norm else True save_plots = pmag.get_flag_arg_from_sys("-sav") fmt = pmag.get_named_arg("-fmt", "svg") XLP = pmag.get_named_arg("-XLP", "") spec_file = pmag.get_named_arg("-fsp", default_val="specimens.txt") samp_file = pmag.get_named_arg("-fsa", default_val="samples.txt") site_file = pmag.get_named_arg("-fsi", default_val="sites.txt") loc_file = pmag.get_named_arg("-flo", default_val="locations.txt") dmag_magic(in_file, dir_path, input_dir_path, spec_file, samp_file, site_file, loc_file, plot_by, LT, norm, XLP, save_plots, fmt)
def main()
NAME dmag_magic.py DESCRIPTION plots intensity decay curves for demagnetization experiments SYNTAX dmag_magic -h [command line options] INPUT takes magic formatted measurements.txt files OPTIONS -h prints help message and quits -f FILE: specify input file, default is: measurements.txt -obj OBJ: specify object [loc, sit, sam, spc] for plot, default is by location -LT [AF,T,M]: specify lab treatment type, default AF -XLP [PI]: exclude specific lab protocols, (for example, method codes like LP-PI) -N do not normalize by NRM magnetization -sav save plots silently and quit -fmt [svg,jpg,png,pdf] set figure format [default is svg] NOTE loc: location (study); sit: site; sam: sample; spc: specimen
2.647302
2.062853
1.283321
norm=0 if '-f' in sys.argv: ind=sys.argv.index('-f') file=sys.argv[ind+1] data=np.loadtxt(file) dates=[2000] elif '-d' in sys.argv: ind=sys.argv.index('-d') dates=[float(sys.argv[ind+1])] elif '-r' in sys.argv: ind=sys.argv.index('-r') dates=np.loadtxt(sys.argv[ind+1]) if '-n' in sys.argv: norm=1 if len(sys.argv)!=0 and '-h' in sys.argv: print(main.__doc__) sys.exit() plt.semilogy() plt.xlabel('Degree (l)') plt.ylabel('Power ($\mu$T$^2$)') labels=[] for date in dates: if date!=2000: gh=pmag.doigrf(0,0,0,date,coeffs=1) data=pmag.unpack(gh) Ls,Rs=pmag.lowes(data) labels.append(str(date)) print(date,Rs[0]) if norm==1: Rs=old_div(np.array(Rs),Rs[0]) #plt.plot(Ls,Rs,'ro') plt.plot(Ls,Rs,linewidth=2) plt.legend(labels,'upper right') plt.draw() input()
def main()
NAME lowes.py DESCRIPTION Plots Lowes spectrum for input IGRF-like file SYNTAX lowes.py [options] OPTIONS: -h prints help message and quits -f FILE specify file name with input data -d date specify desired date -r read desired dates from file -n normalize to dipole term INPUT FORMAT: l m g h
3.55561
3.1958
1.112588
import numpy X=arange(.1,10.1,.2) #make a list of numbers Y=myfunc(X) # calls myfunc with argument X for i in range(len(X)): print(X[i],Y[i])
def main()
This program prints doubled values!
6.906274
6.034245
1.144513
d,i,file2="","","" fmt,plot='svg',0 if '-h' in sys.argv: # check if help is needed print(main.__doc__) sys.exit() # graceful quit if '-sav' in sys.argv: plot=1 if '-fmt' in sys.argv: ind=sys.argv.index('-fmt') fmt=sys.argv[ind+1] if '-f' in sys.argv: ind=sys.argv.index('-f') file1=sys.argv[ind+1] if '-f2' in sys.argv: ind=sys.argv.index('-f2') file2=sys.argv[ind+1] if '-dir' in sys.argv: ind=sys.argv.index('-dir') d=float(sys.argv[ind+1]) i=float(sys.argv[ind+2]) D1=numpy.loadtxt(file1,dtype=numpy.float) if file2!="": D2=numpy.loadtxt(file2,dtype=numpy.float) # counter,NumSims=0,1000 # # get bootstrapped means for first data set # print("Doing first set of directions, please be patient..") BDI1=pmag.di_boot(D1) # # convert to cartesian coordinates X1,X2, Y1,Y2 and Z1, Z2 # if d=="": # repeat for second data set print("Doing second set of directions, please be patient..") BDI2=pmag.di_boot(D2) else: BDI2=[] # set up plots CDF={'X':1,'Y':2,'Z':3} pmagplotlib.plot_init(CDF['X'],4,4) pmagplotlib.plot_init(CDF['Y'],4,4) pmagplotlib.plot_init(CDF['Z'],4,4) # draw the cdfs pmagplotlib.plot_com(CDF,BDI1,BDI2,[d,i]) files={} files['X']='CD_X.'+fmt files['Y']='CD_Y.'+fmt files['Z']='CD_Z.'+fmt if plot==0: pmagplotlib.draw_figs(CDF) ans=input("S[a]ve plots, <Return> to quit ") if ans=="a": pmagplotlib.save_plots(CDF,files) else: sys.exit() else: pmagplotlib.save_plots(CDF,files) sys.exit()
def main()
NAME common_mean.py DESCRIPTION calculates bootstrap statistics to test for common mean INPUT FORMAT takes dec/inc as first two columns in two space delimited files SYNTAX common_mean.py [command line options] OPTIONS -h prints help message and quits -f FILE, input file -f2 FILE, optional second file to compare with first file -dir D I, optional direction to compare with input file -fmt [svg,jpg,pnd,pdf] set figure format [default is svg] NOTES must have either F2 OR dir but not both
3.165464
2.985441
1.0603
# makes sure all values are floats, then norms them by largest value X = numpy.array(list(map(float, x))) X = old_div(X, max(X)) Y = numpy.array(list(map(float, y))) Y = old_div(Y, max(Y)) XY = numpy.array(list(zip(X, Y))) #Provide the intitial estimate E1=TaubinSVD(XY); #Determine the iterative solution E2=LMA(XY, E1); estimates=[E2[2], E2[0], E2[1]]; best_a = E2[0] best_b = E2[1] best_r = E2[2] if best_a <= numpy.mean(X) and best_b <= numpy.mean(Y): k = old_div(-1.,best_r) else: k = old_div(1.,best_r) SSE = get_SSE(best_a, best_b, best_r, X, Y) return k, best_a, best_b, SSE
def AraiCurvature(x=x,y=y)
input: list of x points, list of y points output: k, a, b, SSE. curvature, circle center, and SSE Function for calculating the radius of the best fit circle to a set of x-y coordinates. Paterson, G. A., (2011), A simple test for the presence of multidomain behaviour during paleointensity experiments, J. Geophys. Res., in press, doi: 10.1029/2011JB008369
3.988959
3.85191
1.03558
XY = numpy.array(XY) X = XY[:,0] - numpy.mean(XY[:,0]) # norming points by x avg Y = XY[:,1] - numpy.mean(XY[:,1]) # norming points by y avg centroid = [numpy.mean(XY[:,0]), numpy.mean(XY[:,1])] Z = X * X + Y * Y Zmean = numpy.mean(Z) Z0 = old_div((Z - Zmean), (2. * numpy.sqrt(Zmean))) ZXY = numpy.array([Z0, X, Y]).T U, S, V = numpy.linalg.svd(ZXY, full_matrices=False) # V = V.transpose() A = V[:,2] A[0] = old_div(A[0], (2. * numpy.sqrt(Zmean))) A = numpy.concatenate([A, [(-1. * Zmean * A[0])]], axis=0) a, b = (-1 * A[1:3]) / A[0] / 2 + centroid r = numpy.sqrt(A[1]*A[1]+A[2]*A[2]-4*A[0]*A[3])/abs(A[0])/2; return a,b,r
def TaubinSVD(XY)
algebraic circle fit input: list [[x_1, y_1], [x_2, y_2], ....] output: a, b, r. a and b are the center of the fitting circle, and r is the radius Algebraic circle fit by Taubin G. Taubin, "Estimation Of Planar Curves, Surfaces And Nonplanar Space Curves Defined By Implicit Equations, With Applications To Edge And Range Image Segmentation", IEEE Trans. PAMI, Vol. 13, pages 1115-1138, (1991)
3.291682
3.072565
1.071314
XY = numpy.array(XY) n = len(XY) if n < 4: raise Warning("Circle cannot be calculated with less than 4 data points. Please include more data") Dx = XY[:,0] - Par[0] Dy = XY[:,1] - Par[1] D = numpy.sqrt(Dx * Dx + Dy * Dy) - Par[2] result = old_div(numpy.dot(D, D),(n-3)) return result
def VarCircle(XY, Par): # must have at least 4 sets of xy points or else division by zero occurs if type(XY) != numpy.ndarray
computing the sample variance of distances from data points (XY) to the circle Par = [a b R]
3.741473
3.3297
1.123667
SSE = 0 X = numpy.array(x) Y = numpy.array(y) for i in range(len(X)): x = X[i] y = Y[i] v = (numpy.sqrt( (x -a)**2 + (y - b)**2 ) - r )**2 SSE += v return SSE
def get_SSE(a,b,r,x,y)
input: a, b, r, x, y. circle center, radius, xpts, ypts output: SSE
2.524791
2.605513
0.969019
if '-h' in sys.argv: print(main.__doc__) sys.exit() if '-f' in sys.argv: ind=sys.argv.index('-f') file=sys.argv[ind+1] f=open(file,'r') data=f.readlines() # read in data from standard input for line in data: # step through line by line dec=spitout(line) sys.exit() if '-i' in sys.argv: while 1: # repeat this block until program killed sundata={} # dictionary with sundata in it print ("Time difference between Greenwich Mean Time (hrs to subtract from local time to get GMT): ") try: sundata["delta_u"]=input("<cntl-D> to quit ") except: print("\n Good-bye\n") sys.exit() date="" date=date+input("Year: <cntl-D to quit> ") date=date+":"+input("Month: ") date=date+":"+input("Day: ") date=date+":"+input("hour: ") date=date+":"+input("minute: ") sundata["date"]=date sundata["lat"]=input("Latitude of sampling site (negative in southern hemisphere): ") sundata["lon"]=input("Longitude of sampling site (negative for western hemisphere): ") sundata["shadow_angle"]=input("Shadow angle: ") print('%7.1f'%(pmag.dosundec(sundata))) # call sundec function from pmag module and print else: data=sys.stdin.readlines() # read in data from standard input for line in data: # step through line by line dec=spitout(line)
def main()
NAME sundec.py DESCRIPTION calculates calculates declination from sun compass measurements INPUT FORMAT GMT_offset, lat,long,year,month,day,hours,minutes,shadow_angle where GMT_offset is the hours to subtract from local time for GMT. SYNTAX sundec.py [-i][-f FILE] [< filename ] OPTIONS -i for interactive data entry -f FILE to set file name on command line otherwise put data in input format in space delimited file OUTPUT: declination
4.680617
4.097637
1.142272
# set defaults site_file="er_sites.txt" loc_file="er_locations.txt" Names,user=[],"unknown" Done=[] version_num=pmag.get_version() args=sys.argv dir_path='.' # get command line stuff if '-WD' in args: ind=args.index("-WD") dir_path=args[ind+1] if "-h" in args: print(main.__doc__) sys.exit() if '-f' in args: ind=args.index("-f") site_file=args[ind+1] if '-F' in args: ind=args.index("-F") loc_file=args[ind+1] # site_file=dir_path+'/'+site_file loc_file=dir_path+'/'+loc_file Sites,file_type=pmag.magic_read(site_file) if file_type != 'er_sites': print(file_type) print(file_type,"This is not a valid er_sites file ") sys.exit() # read in site data # LocNames,Locations=[],[] for site in Sites: if site['er_location_name'] not in LocNames: # new location name LocNames.append(site['er_location_name']) sites_locs=pmag.get_dictitem(Sites,'er_location_name',site['er_location_name'],'T') # get all sites for this loc lats=pmag.get_dictkey(sites_locs,'site_lat','f') # get all the latitudes as floats lons=pmag.get_dictkey(sites_locs,'site_lon','f') # get all the longitudes as floats LocRec={'er_citation_names':'This study','er_location_name':site['er_location_name'],'location_type':''} LocRec['location_begin_lat']=str(min(lats)) LocRec['location_end_lat']=str(max(lats)) LocRec['location_begin_lon']=str(min(lons)) LocRec['location_end_lon']=str(max(lons)) Locations.append(LocRec) if len(Locations)>0: pmag.magic_write(loc_file,Locations,"er_locations") print("Locations written to: ",loc_file)
def main()
NAME sites_locations.py DESCRIPTION reads in er_sites.txt file and finds all locations and bounds of locations outputs er_locations.txt file SYNTAX sites_locations.py [command line options] OPTIONS -h prints help message and quits -f: specimen input er_sites format file, default is "er_sites.txt" -F: locations table: default is "er_locations.txt"
2.684956
2.550357
1.052777
cond = method_list['dtype'] == mtype codes = method_list[cond] return codes
def get_one_meth_type(self, mtype, method_list)
Get all codes of one type (i.e., 'anisotropy_estimation')
8.624582
4.815665
1.790943
categories = Series(code_types[code_types[category] == True].index) cond = all_codes['dtype'].isin(categories) codes = all_codes[cond] return codes
def get_one_meth_category(self, category, all_codes, code_types)
Get all codes in one category (i.e., all pmag codes). This can include multiple method types (i.e., 'anisotropy_estimation', 'sample_prepartion', etc.)
5.855303
5.682757
1.030363
args = sys.argv if "-h" in args: print(main.__doc__) sys.exit() dataframe = extractor.command_line_dataframe([['f', False, 'orient.txt'], ['Fsa', False, 'samples.txt'], ['ncn', False, "1"], ['mcd', False, 'FS-FD'], ['loc', False, 'unknown'], ['app', False, False], ['WD', False, '.'], ['ID', False, '.'], ['DM', False, 3]]) checked_args = extractor.extract_and_check_args(args, dataframe) #print('checked_args:', checked_args) orient_file, samp_file, samp_con, method_codes, location_name, append, output_dir, input_dir, data_model = extractor.get_vars(['f', 'Fsa', 'ncn', 'mcd', 'loc', 'app', 'WD', 'ID', 'DM'], checked_args) if len(str(samp_con)) > 1: samp_con, Z = samp_con.split('-') Z = float(Z) else: Z = 1 ipmag.azdip_magic(orient_file, samp_file, samp_con, Z, method_codes, location_name, append, output_dir, input_dir, data_model)
def main()
NAME azdip_magic.py DESCRIPTION takes space delimited AzDip file and converts to MagIC formatted tables SYNTAX azdip_magic.py [command line options] OPTIONS -f FILE: specify input file -Fsa FILE: specify output file, default is: er_samples.txt/samples.txt -ncn NCON: specify naming convention: default is #1 below -mcd: specify sampling method codes as a colon delimited string: [default is: FS-FD] FS-FD field sampling done with a drill FS-H field sampling done with hand samples FS-LOC-GPS field location done with GPS FS-LOC-MAP field location done with map SO-POM a Pomeroy orientation device was used SO-ASC an ASC orientation device was used SO-MAG orientation with magnetic compass -loc: location name, default="unknown" -app appends to existing samples file, default is to overwrite INPUT FORMAT Input files must be space delimited: Samp Az Dip Strike Dip Orientation convention: Lab arrow azimuth = mag_azimuth; Lab arrow dip = 90-field_dip e.g. field_dip is degrees from horizontal of drill direction Magnetic declination convention: Az is already corrected in file Sample naming convention: [1] XXXXY: where XXXX is an arbitrary length site designation and Y is the single character sample designation. e.g., TG001a is the first sample from site TG001. [default] [2] XXXX-YY: YY sample from site XXXX (XXX, YY of arbitary length) [3] XXXX.YY: YY sample from site XXXX (XXX, YY of arbitary length) [4-Z] XXXX[YYY]: YYY is sample designation with Z characters from site XXX [5] site name same as sample [6] site is entered under a separate column -- NOT CURRENTLY SUPPORTED [7-Z] [XXXX]YYY: XXXX is site designation with Z characters with sample name XXXXYYYY NB: all others you will have to customize your self or e-mail ltauxe@ucsd.edu for help. OUTPUT output saved in samples file will overwrite any existing files
5.471479
3.132997
1.746404
args = sys.argv if '-h' in args: print(do_help()) sys.exit() # def k15_magic(k15file, specnum=0, sample_naming_con='1', er_location_name="unknown", measfile='magic_measurements.txt', sampfile="er_samples.txt", aniso_outfile='rmag_anisotropy.txt', result_file="rmag_results.txt", input_dir_path='.', output_dir_path='.'): dataframe = extractor.command_line_dataframe([['f', True, ''], ['F', False, 'measurements.txt'], ['Fsa', False, 'samples.txt'], ['Fa', False, 'specimens.txt'], [ 'Fr', False, 'rmag_results.txt'], ['spc', False, 0], ['ncn', False, '1'], ['loc', False, 'unknown'], ['WD', False, '.'], ['ID', False, '.'], ['DM', False, 3]]) checked_args = extractor.extract_and_check_args(args, dataframe) k15file, measfile, sampfile, aniso_outfile, result_file, specnum, sample_naming_con, location_name, output_dir_path, input_dir_path, data_model_num = extractor.get_vars( ['f', 'F', 'Fsa', 'Fa', 'Fr', 'spc', 'ncn', 'loc', 'WD', 'ID', 'DM'], checked_args) program_ran, error_message = convert.k15(k15file, specnum=specnum, sample_naming_con=sample_naming_con, location=location_name, meas_file=measfile, samp_file=sampfile, aniso_outfile=aniso_outfile, result_file=result_file, input_dir_path=input_dir_path, dir_path=output_dir_path, data_model_num=data_model_num)
def main()
NAME k15_magic.py DESCRIPTION converts .k15 format data to magic_measurements format. assums Jelinek Kappabridge measurement scheme SYNTAX k15_magic.py [-h] [command line options] OPTIONS -h prints help message and quits -DM DATA_MODEL: specify data model 2 or 3 (default 3) -f KFILE: specify .k15 format input file -F MFILE: specify measurement output file -Fsa SFILE, specify sample file for output -Fa AFILE, specify specimen file for output [rmag_anisotropy for data model 2 only] #-ins INST: specify instrument that measurements were made on # not implemented -spc NUM: specify number of digits for specimen ID, default is 0 -ncn NCOM: specify naming convention (default is #1) Sample naming convention: [1] XXXXY: where XXXX is an arbitrary length site designation and Y is the single character sample designation. e.g., TG001a is the first sample from site TG001. [default] [2] XXXX-YY: YY sample from site XXXX (XXX, YY of arbitary length) [3] XXXX.YY: YY sample from site XXXX (XXX, YY of arbitary length) [4-Z] XXXXYYY: YYY is sample designation with Z characters from site XXX [5] site name = sample name [6] site name entered in site_name column in the orient.txt format input file -- NOT CURRENTLY SUPPORTED [7-Z] [XXX]YYY: XXX is site designation with Z characters from samples XXXYYY NB: all others you will have to either customize your self or e-mail ltauxe@ucsd.edu for help. DEFAULTS MFILE: measurements.txt SFILE: samples.txt AFILE: specimens.txt INPUT name [az,pl,strike,dip], followed by 3 rows of 5 measurements for each specimen
4.278393
3.310023
1.292557
missing = [] for col in reqd_cols: if col not in data[0]: missing.append(col) return missing
def check_for_reqd_cols(data, reqd_cols)
Check data (PmagPy list of dicts) for required columns
2.774794
2.336335
1.18767
if '-h' in sys.argv: # check if help is needed print(main.__doc__) sys.exit() # graceful quit if '-f' in sys.argv: ind=sys.argv.index('-f') file=sys.argv[ind+1] f=open(file,'r') data=f.readlines() else: data=sys.stdin.readlines() # read in data from standard input if '-dir' in sys.argv: # ind=sys.argv.index('-dir') typ=sys.argv[ind+1] if typ=='L': calculation_type='DE-BFL' if typ=='P': calculation_type='DE-BFP' if typ=='F': calculation_type='DE-FM' beg_pca = int(sys.argv[ind+2]) end_pca = int(sys.argv[ind+3]) # # datablock= [] # set up list for data s="" ind=0 for line in data: # read in the data from standard input rec=line.split() # split each line on space to get records if s=="": s=rec[0] print(s, calculation_type) print(ind,rec[1],rec[3],rec[4],rec[2]) ind+=1 datablock.append([float(rec[1]),float(rec[3]),float(rec[4]),float(rec[2]),'0']) # treatment,dec,inc,int,dummy mpars=pmag.domean(datablock,beg_pca,end_pca,calculation_type) if calculation_type=="DE-FM": print('%s %s %i %6.2f %6.2f %6.1f %7.1f %7.1f' % (s,calculation_type,mpars["specimen_n"],mpars["measurement_step_min"],mpars["measurement_step_max"],mpars["specimen_a95"],mpars["specimen_dec"],mpars["specimen_inc"])) else: print('%s %s %i %6.2f %6.2f %6.1f %7.1f %7.1f' % (s,calculation_type,mpars["specimen_n"],mpars["measurement_step_min"],mpars["measurement_step_max"],mpars["specimen_mad"],mpars["specimen_dec"],mpars["specimen_inc"]))
def main()
NAME pca.py DESCRIPTION calculates best-fit line/plane through demagnetization data INPUT FORMAT takes specimen_name treatment intensity declination inclination in space delimited file SYNTAX pca.py [command line options][< filename] OPTIONS -h prints help and quits -f FILE -dir [L,P,F][BEG][END] specify direction type, beginning and end (L:line, P:plane or F:fisher mean of unit vectors) BEG: first step (NRM = step zero) END: last step (NRM = step zero) < filename for reading from standard input OUTPUT: specimen_name calculation_type N beg end MAD dec inc if calculation_type is 'p', dec and inc are pole to plane, otherwise, best-fit direction EXAMPLE: pca.py -dir L 1 5 <ex3.3 will calculate best-fit line through demagnetization steps 1 and 5 from file ex5.1
3.110276
2.691899
1.155421
# if column name is present, no need to check if it is required if col_name in df.columns: return None arg_list = arg.split(",") arg_list = [argument.strip('"') for argument in arg_list] msg = "" for a in arg_list: # ignore validations that reference a different table if "." in a: continue if a not in df.columns: msg += "{} column is required unless {} is present. ".format(col_name, a) if msg: return msg else: return None return None
def requiredUnless(col_name, arg, dm, df, *args)
Arg is a string in the format "str1, str2, ..." Each string will be a column name. Col_name is required in df unless each column from arg is present.
4.19059
4.219822
0.993073
table_name = arg if col_name in df.columns: return None elif not con: return None elif table_name in con.tables: return None else: return "{} column is required unless table {} is present".format(col_name, table_name)
def requiredUnlessTable(col_name, arg, dm, df, con=None)
Col_name must be present in df unless arg (table_name) is present in contribution
3.495086
3.479565
1.00446
group_name = arg groups = set() columns = df.columns for col in columns: if col not in dm.index: continue group = dm.loc[col]['group'] groups.add(group) if group_name in groups: if col_name in columns: return None else: return "{} column is required if column group {} is used".format(col_name, group_name) return None
def requiredIfGroup(col_name, arg, dm, df, *args)
Col_name is required if other columns of the group arg are present.
3.312187
3.340847
0.991421
if col_name in df.columns: return None else: return '"{}" column is required'.format(col_name)
def required(col_name, arg, dm, df, *args)
Col_name is required in df.columns. Return error message if not.
3.498728
3.174848
1.102014
#grade = df.apply(func, args=(validation_name, arg, dm), axis=1) cell_value = row[col_name] cell_value = str(cell_value) if not cell_value: return None elif cell_value == 'None': return None elif cell_value == 'nan': return None elif not con: return None # if it's in another table cell_values = [v.strip(" ") for v in cell_value.split(":")] if "." in arg: table_name, table_col_name = arg.split(".") if table_name not in con.tables: return None #return "Must contain a value from {} table. Missing {} table.".format(table_name, table_name) if table_col_name not in con.tables[table_name].df.columns: return '{} table is missing "{}" column, which is required for validating "{}" column'.format(table_name, table_col_name, col_name) possible_values = con.tables[table_name].df[table_col_name].unique() for value in cell_values: if value not in possible_values: trunc_possible_values = [val.replace(' ', '') for val in possible_values if val] trunc_cell_value = cell_value.replace(' ', '') if trunc_cell_value not in trunc_possible_values: if trunc_cell_value != value: return 'This value (long): "{}" is not found in: {} column in {} table. Also (short): {} is not in {}'.format(value, table_col_name, table_name, trunc_cell_value, arg) else: return 'This value: "{}" is not found in: {} column in {} table'.format(value, table_col_name, table_name) break # if it's in the present table: else: possible_values = df[arg].unique() for value in cell_values: if value not in possible_values: return 'This value: "{}" is not found in: {} column'.format(value, arg) break return None
def isIn(row, col_name, arg, dm, df, con=None)
row[col_name] must contain a value from another column. If not, return error message.
3.012755
2.895299
1.040568
cell_value = row[col_name] if not cell_value: return None elif isinstance(cell_value, float): if np.isnan(cell_value): return None try: arg_val = float(arg) except ValueError: if arg in row.index: arg_val = row[arg] else: return None if cb.is_null(arg_val): return None #arg = float(arg) try: if float(cell_value) <= float(arg_val): return None else: return "{} ({}) must be <= {} ({})".format(str(cell_value), col_name, str(arg_val), str(arg)) # this happens when the value isn't a float (an error which will be caught elsewhere) except ValueError: return None
def checkMax(row, col_name, arg, *args)
row[col_name] must be less than or equal to arg. else, return error message.
3.187425
3.155139
1.010233
vocabulary = con.vocab.vocabularies cell_value = str(row[col_name]) if not cell_value: return None elif cell_value == "None": return None cell_values = cell_value.split(":") cell_values = [c.strip() for c in cell_values] # get possible values for controlled vocabulary # exclude weird unicode possible_values = [] for val in vocabulary[col_name]: try: possible_values.append(str(val).lower()) except UnicodeEncodeError as ex: print(val, ex) for value in cell_values: if str(value).lower() == "nan": continue elif str(value).lower() in possible_values: continue elif value.lower() == "none": continue else: try: if str(float(value)) in possible_values: continue except: pass return '"{}" is not in controlled vocabulary for {}'.format(value, arg) return None
def cv(row, col_name, arg, current_data_model, df, con)
row[col_name] must contain only values from the appropriate controlled vocabulary
3.379461
3.174306
1.06463
if col_name in df.columns: # if the column name is present, return nothing return None else: # if the column name is missing, return column name return col_name
def requiredOneInGroup(col_name, group, dm, df, *args)
If col_name is present in df, the group validation is satisfied. If not, it still may be satisfied, but not by THIS col_name. If col_name is missing, return col_name, else return None. Later, we will validate to see if there is at least one None (non-missing) value for this group.
4.002305
3.726749
1.07394
# check column validity required_one = {} # keep track of req'd one in group validations here cols = df.columns invalid_cols = [col for col in cols if col not in dm.index] # go through and run all validations for the data type for validation_name, validation in dm.iterrows(): value_type = validation['type'] if validation_name in df.columns: output = df[validation_name].apply(test_type, args=(value_type,)) df["type_pass" + "_" + validation_name + "_" + value_type] = output # val_list = validation['validations'] if not val_list or isinstance(val_list, float): continue for num, val in enumerate(val_list): func_name, arg = split_func(val) if arg == "magic_table_column": continue # first validate for presence if func_name in presence_operations: func = presence_operations[func_name] #grade = func(validation_name, df, arg, dm) grade = func(validation_name, arg, dm, df, con) pass_col_name = "presence_pass_" + validation_name + "_" + func.__name__ df[pass_col_name] = grade # then validate for correct values elif func_name in value_operations: func = value_operations[func_name] if validation_name in df.columns: grade = df.apply(func, args=(validation_name, arg, dm, df, con), axis=1) col_name = "value_pass_" + validation_name + "_" + func.__name__ if col_name in df.columns: num_range = list(range(1, 10)) for num in num_range: if (col_name + str(num)) in df.columns: continue else: col_name = col_name + str(num) break df[col_name] = grade.astype(object) # last, validate at the column group level elif func_name in group_operations: func = group_operations[func_name] missing = func(validation_name, arg, dm, df) if arg not in required_one: required_one[arg] = [missing] else: required_one[arg].append(missing) # format the group validation columns for key, value in list(required_one.items()): if None in value: # this means at least one value from the required group is present, # so the validation passes continue else: # otherwise, all of the values from the required group are missing, # so the validation fails df["group_pass_{}".format(key)] = "you must have one column from group {}: {}".format(key, ", ".join(value)) return df
def validate_df(df, dm, con=None)
Take in a DataFrame and corresponding data model. Run all validations for that DataFrame. Output is the original DataFrame with some new columns that contain the validation output. Validation columns start with: presence_pass_ (checking that req'd columns are present) type_pass_ (checking that the data is of the correct type) value_pass_ (checking that the value is within the appropriate range) group_pass_ (making sure that group validations pass)
3.600406
3.397886
1.059602
value_cols = df.columns.str.match("^value_pass_") present_cols = df.columns.str.match("^presence_pass") type_cols = df.columns.str.match("^type_pass_") groups_missing = df.columns.str.match("^group_pass_") # value_col_names = df.columns[value_cols] present_col_names = df.columns[present_cols] type_col_names = df.columns[type_cols] group_missing_names = df.columns[groups_missing] # # all validation columns validation_cols = np.where(value_cols, value_cols, present_cols) validation_cols = np.where(validation_cols, validation_cols, type_cols) validation_col_names = df.columns[validation_cols] return value_col_names, present_col_names, type_col_names, group_missing_names, validation_col_names
def get_validation_col_names(df)
Input: validated pandas DataFrame (using validate_df) Output: names of all value validation columns, names of all presence validation columns, names of all type validation columns, names of all missing group columns, names of all validation columns (excluding groups).
2.284206
1.995639
1.144599
if outfile_name: outfile = open(outfile_name, "w") outfile.write("\t".join(["name", "row_number", "problem_type", "problem_col", "error_message"])) outfile.write("\n") else: outfile = None for ind, row in failing_items.iterrows(): issues = row['issues'] string = "{:10} | row number: {}".format(ind, str(row["num"])) first_string = "\t".join([str(ind), str(row["num"])]) if verbose: print(first_string) #if outfile: # ofile.write("{}\n".format(string)) for key, issue in list(issues.items()): issue_type, issue_col = extract_col_name(key) string = "{:10} | {:10} | {}".format(issue_type, issue_col, issue) string = "\t".join([issue_type, issue_col, issue]) if verbose: print(string) if outfile: outfile.write(first_string + "\t" + string + "\n") if outfile: outfile.close()
def print_row_failures(failing_items, verbose=False, outfile_name=None)
Take output from get_row_failures (DataFrame), and output it to stdout, an outfile, or both.
2.932698
2.835089
1.034429
# set temporary numeric index df["num"] = list(range(len(df))) # get column names for value & type validations names = value_cols.union(type_cols) # drop all non validation columns value_problems = df[names.union(["num"])] # drop validation columns that contain no problems failing_items = value_problems.dropna(how="all", subset=names) if not len(failing_items): if verbose: print("No problems") return [] failing_items = failing_items.dropna(how="all", axis=1) # get names of the failing items bad_items = list(failing_items.index) # get index numbers of the failing items bad_indices = list(failing_items["num"]) failing_items['issues'] = failing_items.drop("num", axis=1).apply(make_row_dict, axis=1).values # take output and print/write to file print_row_failures(failing_items, verbose, outfile) return failing_items
def get_row_failures(df, value_cols, type_cols, verbose=False, outfile=None)
Input: already validated DataFrame, value & type column names, and output options. Get details on each detected issue, row by row. Output: DataFrame with type & value validation columns, plus an "issues" column with a dictionary of every problem for that row.
4.707396
4.388013
1.072785
df["num"] = list(range(len(df))) problems = df[validation_names.union(["num"])] all_problems = problems.dropna(how='all', axis=0, subset=validation_names) value_problems = problems.dropna(how='all', axis=0, subset=type_col_names.union(value_col_names)) all_problems = all_problems.dropna(how='all', axis=1) value_problems = value_problems.dropna(how='all', axis=1) if not len(problems): return None, None, None # bad_cols = all_problems.columns prefixes = ["value_pass_", "type_pass_"] missing_prefix = "presence_pass_" problem_cols = [] missing_cols = [] long_missing_cols = [] problem_rows = [] for col in bad_cols: pre, stripped_col = extract_col_name(col) for prefix in prefixes: if col.startswith(prefix): problem_cols.append(stripped_col) continue if col.startswith(missing_prefix): missing_cols.append(stripped_col) long_missing_cols.append(col) if len(value_problems): bad_rows = list(zip(list(value_problems["num"]), list(value_problems.index))) else: bad_rows = [] if verbose: if bad_rows: formatted_rows = ["row: {}, name: {}".format(row[0], row[1]) for row in bad_rows] if len(bad_rows) > 5: print("-W- these rows have problems:\n", "\n".join(formatted_rows[:5]), " ...") print("(for full error output see error file)") else: print("-W- these rows have problems:", "\n".join(formatted_rows)) if problem_cols: print("-W- these columns contain bad values:", ", ".join(set(problem_cols))) if missing_cols: print("-W- these required columns are missing:", ", ".join(missing_cols)) return bad_rows, problem_cols, missing_cols
def get_bad_rows_and_cols(df, validation_names, type_col_names, value_col_names, verbose=False)
Input: validated DataFrame, all validation names, names of the type columns, names of the value columns, verbose (True or False). Output: list of rows with bad values, list of columns with bad values, list of missing (but required) columns.
2.811609
2.844595
0.988404
print("-I- Validating {}".format(dtype)) # grab dataframe current_df = the_con.tables[dtype].df # grab data model current_dm = the_con.tables[dtype].data_model.dm[dtype] # run all validations (will add columns to current_df) current_df = validate_df(current_df, current_dm, the_con) # get names of the added columns value_col_names, present_col_names, type_col_names, missing_groups, validation_col_names = get_validation_col_names(current_df) # print out failure messages ofile = os.path.join(output_dir, "{}_errors.txt".format(dtype)) failing_items = get_row_failures(current_df, value_col_names, type_col_names, verbose, outfile=ofile) bad_rows, bad_cols, missing_cols = get_bad_rows_and_cols(current_df, validation_col_names, value_col_names, type_col_names, verbose=True) # delete all validation rows current_df.drop(validation_col_names, axis=1, inplace=True) current_df.drop(missing_groups, axis=1, inplace=True) if len(failing_items): print("-I- Complete list of row errors can be found in {}".format(ofile)) return dtype, bad_rows, bad_cols, missing_cols, missing_groups, failing_items elif len(missing_cols) or len(missing_groups): print("-I- You are missing some required headers") if len(missing_cols): print("-I- You are missing these required headers: {}".format(", ".join(missing_cols))) if len(missing_groups): formatted_groups = [group[11:] for group in missing_groups] print('-I- You need at least one header from these groups: {}'.format(", ".join(formatted_groups))) else: formatted_groups = [] return dtype, bad_rows, bad_cols, missing_cols, formatted_groups, failing_items else: print("-I- No row errors found!") return False
def validate_table(the_con, dtype, verbose=False, output_dir=".")
Return name of bad table, or False if no errors found. Calls validate_df then parses its output.
3.407808
3.276973
1.039926
passing = True for dtype in list(the_con.tables.keys()): print("validating {}".format(dtype)) fail = validate_table(the_con, dtype) if fail: passing = False print('--')
def validate_contribution(the_con)
Go through a Contribution and validate each table
6.017747
5.010869
1.200939
ind = string.index("(") return string[:ind], string[ind+1:-1].strip('"')
def split_func(string)
Take a string like 'requiredIf("arg_name")' return the function name and the argument: (requiredIf, arg_name)
4.988427
4.717177
1.057502
vals = ['lon_w', 'lon_e', 'lat_lon_precision', 'pole_lon', 'paleolon', 'paleolon_sigma', 'lon', 'lon_sigma', 'vgp_lon', 'paleo_lon', 'paleo_lon_sigma', 'azimuth', 'azimuth_dec_correction', 'dir_dec', 'geographic_precision', 'bed_dip_direction'] relevant_cols = list(set(vals).intersection(df.columns)) return relevant_cols
def get_degree_cols(df)
Take in a pandas DataFrame, and return a list of columns that are in that DataFrame AND should be between 0 - 360 degrees.
7.383753
7.111902
1.038225
prefixes = ["presence_pass_", "value_pass_", "type_pass_"] end = string.rfind("_") for prefix in prefixes: if string.startswith(prefix): return prefix[:-6], string[len(prefix):end] return string, string
def extract_col_name(string)
Take a string and split it. String will be a format like "presence_pass_azimuth", where "azimuth" is the MagIC column name and "presence_pass" is the validation. Return "presence", "azimuth".
6.548547
4.377915
1.495814
ind = row[row.notnull()].index values = row[row.notnull()].values # to transformation with extract_col_name here??? return dict(list(zip(ind, values)))
def make_row_dict(row)
Takes in a DataFrame row (Series), and return a dictionary with the row's index as key, and the row's values as values. {col1_name: col1_value, col2_name: col2_value}
13.64119
12.705272
1.073664
out="" UP=0 if '-h' in sys.argv: print(main.__doc__) sys.exit() if '-f' in sys.argv: dat=[] ind=sys.argv.index('-f') file=sys.argv[ind+1] f=open(file,'r') input=f.readlines() else: input = sys.stdin.readlines() # read from standard input # NEW ofile = "" if '-F' in sys.argv: ind=sys.argv.index('-F') ofile=sys.argv[ind+1] out=open(ofile, 'w + a') # end NEW if '-up' in sys.argv: UP=1 for line in input: rec=line.split() x,y=float(rec[1]),float(rec[0]) # swap x,y cartesian for x,y geographic #d,i=pmag.doeqdi(x,y) r=math.sqrt(x**2+y**2) z=1.-r**2 t=math.asin(z) if UP==1:t=-t if x==0.: if y<0: p=3.*math.pi/2. else: p=old_div(math.pi,2.) else: p=math.atan2(y,x) d,i=p*180./math.pi,t*180./math.pi if d<0:d+=360. # new outstring = '%7.1f %7.1f'%(d,i) if ofile == "": # print '%7.1f %7.1f'%(d,i) print(outstring) else: out.write(outstring+'\n')
def main()
NAME eq_di.py DESCRIPTION converts x,y pairs digitized from equal area projection to dec inc data SYNTAX eq_di.py [command line options] [< filename] OPTIONS -f FILE, input file -F FILE, specifies output file name -up if data are upper hemisphere
3.528221
3.241194
1.088556
print(main.__doc__) if '-h' in sys.argv:sys.exit() cont,Int,Top=1,[],[] while cont==1: try: Int.append(int(input(" Enter desired treatment step interval: <return> to quit "))) Top.append(int(input(" Enter upper bound for this interval: "))) except: cont=0 pmag.chart_maker(Int,Top)
def main()
Welcome to the thellier-thellier experiment automatic chart maker. Please select desired step interval and upper bound for which it is valid. e.g., 50 500 10 600 a blank entry signals the end of data entry. which would generate steps with 50 degree intervals up to 500, followed by 10 degree intervals up to 600. chart is stored in: chart.txt
10.486938
7.362645
1.424344
inc=[] if '-h' in sys.argv: # check if help is needed print(main.__doc__) sys.exit() # graceful quit if '-i' in sys.argv: # ask for filename file=input("Enter file name with inc data: ") inc=numpy.loadtxt(file) elif '-f' in sys.argv: ind=sys.argv.index('-f') file=sys.argv[ind+1] inc=numpy.loadtxt(file) else: inc = numpy.loadtxt(sys.stdin,dtype=numpy.float) ofile="" if '-F' in sys.argv: ind = sys.argv.index('-F') ofile= sys.argv[ind+1] out = open(ofile, 'w + a') # #get doincfish to do the dirty work: fpars= pmag.doincfish(inc) outstring='%7.1f %7.1f %i %8.1f %7.1f %7.1f'%(fpars['ginc'],fpars['inc'],fpars['n'],fpars['r'],fpars['k'],fpars['alpha95']) if ofile == "": print(outstring) else: out.write(outstring+'\n')
def main()
NAME incfish.py DESCRIPTION calculates fisher parameters from inc only data INPUT FORMAT takes inc data SYNTAX incfish.py [options] [< filename] OPTIONS -h prints help message and quits -i for interactive filename entry -f FILE, specify input file name -F FILE, specify output file name < filename for reading from standard input OUTPUT mean inc,Fisher inc, N, R, k, a95 NOTES takes the absolute value of inclinations (to take into account reversals), but returns gaussian mean if < 50.0, because of polarity ambiguity and lack of bias.
4.308864
3.282904
1.312516
decorated = [(len(dict_[sort_on]) if hasattr(dict_[sort_on], '__len__') else dict_[ sort_on], index) for (index, dict_) in enumerate(undecorated)] decorated.sort() return[undecorated[index] for (key, index) in decorated]
def sort_diclist(undecorated, sort_on)
Sort a list of dictionaries by the value in each dictionary for the sorting key Parameters ---------- undecorated : list of dicts sort_on : str, numeric key that is present in all dicts to sort on Returns --------- ordered list of dicts Examples --------- >>> lst = [{'key1': 10, 'key2': 2}, {'key1': 1, 'key2': 20}] >>> sort_diclist(lst, 'key1') [{'key2': 20, 'key1': 1}, {'key2': 2, 'key1': 10}] >>> sort_diclist(lst, 'key2') [{'key2': 2, 'key1': 10}, {'key2': 20, 'key1': 1}]
3.801591
4.806747
0.790886
if float_to_int: try: v = str(math.trunc(float(v))) except ValueError: # catches non floatable strings pass except TypeError: # catches None pass fixed_In = [] for dictionary in In: if k in dictionary: val = dictionary[k] try: val = str(math.trunc(float(val))) except ValueError: # catches non floatable strings pass except TypeError: # catches None pass dictionary[k] = val fixed_In.append(dictionary) In = fixed_In if flag == "T": # return that which is return [dictionary for dictionary in In if k in list(dictionary.keys()) and str(dictionary[k]).lower() == str(v).lower()] if flag == "F": # return that which is not return [dictionary for dictionary in In if k in list(dictionary.keys()) and str(dictionary[k]).lower() != str(v).lower()] if flag == "has": # return that which is contained return [dictionary for dictionary in In if k in list(dictionary.keys()) and str(v).lower() in str(dictionary[k]).lower()] if flag == "not": # return that which is not contained return [dictionary for dictionary in In if k in list(dictionary.keys()) and str(v).lower() not in str(dictionary[k]).lower()] if flag == "eval": A = [dictionary for dictionary in In if k in list(dictionary.keys( )) and dictionary[k] != ''] # find records with no blank values for key # return that which is return [dictionary for dictionary in A if k in list(dictionary.keys()) and float(dictionary[k]) == float(v)] if flag == "min": A = [dictionary for dictionary in In if k in list(dictionary.keys( )) and dictionary[k] != ''] # find records with no blank values for key # return that which is greater than return [dictionary for dictionary in A if k in list(dictionary.keys()) and float(dictionary[k]) >= float(v)] if flag == "max": A = [dictionary for dictionary in In if k in list(dictionary.keys( )) and dictionary[k] != ''] # find records with no blank values for key # return that which is less than return [dictionary for dictionary in A if k in list(dictionary.keys()) and float(dictionary[k]) <= float(v)] if flag == 'not_null': return [dictionary for dictionary in In if dictionary[k]]
def get_dictitem(In, k, v, flag, float_to_int=False)
returns a list of dictionaries from list In with key,k = value, v . CASE INSENSITIVE # allowed keywords: requires that the value of k in the dictionaries contained in In be castable to string and requires that v be castable to a string if flag is T,F ,has or not and requires they be castable to float if flag is eval, min, or max. float_to_int goes through the relvant values in In and truncates them, (like "0.0" to "0") for evaluation, default is False Parameters __________ In : list of dictionaries to work on k : key to test v : key value to test flag : [T,F,has, or not] float_to int : if True, truncates to integer Returns ______ list of dictionaries that meet condition
1.933703
1.780541
1.08602
Out = [] for d in In: if dtype == '': Out.append(d[k]) if dtype == 'f': if d[k] == "": Out.append(0) elif d[k] == None: Out.append(0) else: Out.append(float(d[k])) if dtype == 'int': if d[k] == "": Out.append(0) elif d[k] == None: Out.append(0) else: Out.append(int(d[k])) return Out
def get_dictkey(In, k, dtype)
returns list of given key (k) from input list of dictionaries (In) in data type dtype. uses command: get_dictkey(In,k,dtype). If dtype =="", data are strings; if "int", data are integers; if "f", data are floats.
1.876867
1.62434
1.155464
if isinstance(samp_data, pd.DataFrame): samp_data = (samp_data.T.apply(dict)) # set orientation priorities EX = ["SO-ASC", "SO-POM"] samp_key, az_key, dip_key = 'er_sample_name', 'sample_azimuth', 'sample_dip' disc_key, or_key, meth_key = 'sample_description', 'sample_orientation_flag',\ 'magic_method_codes' if 'data_model' in list(kwargs.keys()) and kwargs['data_model'] == 3: samp_key, az_key, dip_key = 'sample', 'azimuth', 'dip' disc_key, or_key, meth_key = 'description', 'orientation_quality',\ 'method_codes' orient = {samp_key: er_sample_name, az_key: "", dip_key: "", disc_key: ""} # get all the orientation data for this sample orients = get_dictitem(samp_data, samp_key, er_sample_name, 'T') if len(orients) > 0 and or_key in list(orients[0].keys()): # exclude all samples with bad orientation flag orients = get_dictitem(orients, or_key, 'b', 'F') if len(orients) > 0: orient = orients[0] # re-initialize to first one methods = get_dictitem(orients, meth_key, 'SO-', 'has') # get a list of all orientation methods for this sample methods = get_dictkey(methods, meth_key, '') SO_methods = [] for methcode in methods: meths = methcode.split(":") for meth in meths: if (meth.strip() not in EX) and meth.startswith('SO-'): SO_methods.append(meth.strip()) # find top priority orientation method if len(SO_methods) == 0: print("no orientation data for sample ", er_sample_name) # preserve meta-data anyway even though orientation is bad # get all the orientation data for this sample orig_data = get_dictitem(samp_data, samp_key, er_sample_name, 'T') if len(orig_data) > 0: orig_data = orig_data[0] else: orig_data = [] az_type = "SO-NO" else: SO_priorities = set_priorities(SO_methods, 0) az_type = SO_methods[SO_methods.index(SO_priorities[0])] orient = get_dictitem(orients, meth_key, az_type, 'has')[ 0] # re-initialize to best one return orient, az_type
def get_orient(samp_data, er_sample_name, **kwargs)
samp_data : PmagPy list of dicts or pandas DataFrame er_sample_name : sample name
3.7603
3.61183
1.041107
poly_tk03 = [3.15976125e-06, -3.52459817e-04, - 1.46641090e-02, 2.89538539e+00] return poly_tk03[0] * inc**3 + poly_tk03[1] * inc**2 + poly_tk03[2] * inc + poly_tk03[3]
def EI(inc)
Given a mean inclination value of a distribution of directions, this function calculates the expected elongation of this distribution using a best-fit polynomial of the TK03 GAD secular variation model (Tauxe and Kent, 2004). Parameters ---------- inc : inclination in degrees (int or float) Returns --------- elongation : float Examples --------- >>> pmag.EI(20) 2.4863973732 >>> pmag.EI(90) 1.0241570135500004
4.507572
4.183495
1.077466
rad = np.pi/180. Es, Is, Fs, V2s = [], [], [], [] ppars = doprinc(data) D = ppars['dec'] Decs, Incs = data.transpose()[0], data.transpose()[1] Tan_Incs = np.tan(Incs * rad) for f in np.arange(1., .2, -.01): U = old_div(np.arctan((old_div(1., f)) * Tan_Incs), rad) fdata = np.array([Decs, U]).transpose() ppars = doprinc(fdata) Fs.append(f) Es.append(old_div(ppars["tau2"], ppars["tau3"])) ang = angle([D, 0], [ppars["V2dec"], 0]) if 180. - ang < ang: ang = 180. - ang V2s.append(ang) Is.append(abs(ppars["inc"])) if EI(abs(ppars["inc"])) <= Es[-1]: del Es[-1] del Is[-1] del Fs[-1] del V2s[-1] if len(Fs) > 0: for f in np.arange(Fs[-1], .2, -.005): U = old_div(np.arctan((old_div(1., f)) * Tan_Incs), rad) fdata = np.array([Decs, U]).transpose() ppars = doprinc(fdata) Fs.append(f) Es.append(old_div(ppars["tau2"], ppars["tau3"])) Is.append(abs(ppars["inc"])) ang = angle([D, 0], [ppars["V2dec"], 0]) if 180. - ang < ang: ang = 180. - ang V2s.append(ang) if EI(abs(ppars["inc"])) <= Es[-1]: return Es, Is, Fs, V2s return [0], [0], [0], [0]
def find_f(data)
Given a distribution of directions, this function determines parameters (elongation, inclination, flattening factor, and elongation direction) that are consistent with the TK03 secular variation model. Parameters ---------- data : array of declination, inclination pairs (e.g. np.array([[140,21],[127,23],[142,19],[136,22]])) Returns --------- Es : list of elongation values Is : list of inclination values Fs : list of flattening factors V2s : list of elongation directions (relative to the distribution) The function will return a zero list ([0]) for each of these parameters if the directions constitute a pathological distribution. Examples --------- >>> directions = np.array([[140,21],[127,23],[142,19],[136,22]]) >>> Es, Is, Fs, V2s = pmag.find_f(directions)
2.786108
2.552096
1.091694
New = [] for rec in Recs: if 'model_lat' in list(rec.keys()) and rec['model_lat'] != "": New.append(rec) elif 'average_age' in list(rec.keys()) and rec['average_age'] != "" and float(rec['average_age']) <= 5.: if 'site_lat' in list(rec.keys()) and rec['site_lat'] != "": rec['model_lat'] = rec['site_lat'] New.append(rec) elif 'average_inc' in list(rec.keys()) and rec['average_inc'] != "": rec['model_lat'] = '%7.1f' % (plat(float(rec['average_inc']))) New.append(rec) return New
def convert_lat(Recs)
uses lat, for age<5Ma, model_lat if present, else tries to use average_inc to estimate plat.
2.540287
1.976513
1.285237
if data_model == 3: site_key = 'site' agekey = "age" keybase = "" else: site_key = 'er_site_names' agekey = find('age', list(rec.keys())) if agekey != "": keybase = agekey.split('_')[0] + '_' New = [] for rec in Recs: age = '' if rec[keybase + 'age'] != "": age = float(rec[keybase + "age"]) elif rec[keybase + 'age_low'] != "" and rec[keybase + 'age_high'] != '': age = np.mean([rec[keybase + 'age_high'], rec[keybase + "age_low"]]) # age = float(rec[keybase + 'age_low']) + old_div( # (float(rec[keybase + 'age_high']) - float(rec[keybase + 'age_low'])), 2.) if age != '': rec[keybase + 'age_unit'] if rec[keybase + 'age_unit'] == 'Ma': rec[keybase + 'age'] = '%10.4e' % (age) elif rec[keybase + 'age_unit'] == 'ka' or rec[keybase + 'age_unit'] == 'Ka': rec[keybase + 'age'] = '%10.4e' % (age * .001) elif rec[keybase + 'age_unit'] == 'Years AD (+/-)': rec[keybase + 'age'] = '%10.4e' % ((2011 - age) * 1e-6) elif rec[keybase + 'age_unit'] == 'Years BP': rec[keybase + 'age'] = '%10.4e' % ((age) * 1e-6) rec[keybase + 'age_unit'] = 'Ma' New.append(rec) else: if 'site_key' in list(rec.keys()): print('problem in convert_ages:', rec['site_key']) elif 'er_site_name' in list(rec.keys()): print('problem in convert_ages:', rec['site_key']) else: print('problem in convert_ages:', rec) if len(New) == 0: print('no age key:', rec) return New
def convert_ages(Recs, data_model=3)
converts ages to Ma Parameters _________ Recs : list of dictionaries in data model by data_model data_model : MagIC data model (default is 3)
2.608892
2.515391
1.037172
new_recs = [] for rec in data: new_rec = map_magic.mapping(rec, mapping) new_recs.append(new_rec) return new_recs
def convert_items(data, mapping)
Input: list of dicts (each dict a record for one item), mapping with column names to swap into the records. Output: updated list of dicts.
3.700096
3.805186
0.972382
convert = {'specimens': map_magic.spec_magic2_2_magic3_map, 'samples': map_magic.samp_magic2_2_magic3_map, 'sites': map_magic.site_magic2_2_magic3_map, 'locations': map_magic.loc_magic2_2_magic3_map, 'ages': map_magic.age_magic2_2_magic3_map} full_name = os.path.join(input_dir, meas_fname) if not os.path.exists(full_name): print("-W- {} is not a file".format(full_name)) return False, False, False # read in data model 2.5 measurements file data2, filetype = magic_read(full_name) # convert list of dicts to 3.0 NewMeas = convert_items(data2, map_magic.meas_magic2_2_magic3_map) # write 3.0 output to file ofile = os.path.join(output_dir, 'measurements.txt') magic_write(ofile, NewMeas, 'measurements') upgraded = [] if os.path.exists(ofile): print("-I- 3.0 format measurements file was successfully created: {}".format(ofile)) upgraded.append("measurements.txt") else: print("-W- 3.0 format measurements file could not be created") # no_upgrade = [] if not meas_only: # try to convert specimens, samples, sites, & locations for dtype in ['specimens', 'samples', 'sites', 'locations', 'ages']: mapping = convert[dtype] res = convert_and_combine_2_to_3( dtype, mapping, input_dir, output_dir, data_model) if res: upgraded.append(res) # try to upgrade criteria file if os.path.exists(os.path.join(input_dir, 'pmag_criteria.txt')): crit_file = convert_criteria_file_2_to_3(input_dir=input_dir, output_dir=output_dir, data_model=data_model)[0] if crit_file: upgraded.append(crit_file) else: no_upgrade.append("pmag_criteria.txt") # create list of all un-upgradeable files for fname in os.listdir(input_dir): if fname in ['measurements.txt', 'specimens.txt', 'samples.txt', 'sites.txt', 'locations.txt']: continue elif 'rmag' in fname: no_upgrade.append(fname) elif fname in ['pmag_results.txt', 'er_synthetics.txt', 'er_images.txt', 'er_plots.txt']: no_upgrade.append(fname) return NewMeas, upgraded, no_upgrade
def convert_directory_2_to_3(meas_fname="magic_measurements.txt", input_dir=".", output_dir=".", meas_only=False, data_model=None)
Convert 2.0 measurements file into 3.0 measurements file. Merge and convert specimen, sample, site, and location data. Also translates criteria data. Parameters ---------- meas_name : name of measurement file (do not include full path, default is "magic_measurements.txt") input_dir : name of input directory (default is ".") output_dir : name of output directory (default is ".") meas_only : boolean, convert only measurement data (default is False) data_model : data_model3.DataModel object (default is None) Returns --------- NewMeas : 3.0 measurements data (output of pmag.convert_items) upgraded : list of files successfully upgraded to 3.0 no_upgrade: list of 2.5 files not upgraded to 3.0
2.962224
2.523801
1.173716
# read in er_ data & make DataFrame er_file = os.path.join(input_dir, 'er_{}.txt'.format(dtype)) er_data, er_dtype = magic_read(er_file) if len(er_data): er_df = pd.DataFrame(er_data) if dtype == 'ages': pass # remove records with blank ages #er_data = get_dictitem(er_data, 'age', '', "F") #er_df = pd.DataFrame(er_data) else: er_df.index = er_df['er_{}_name'.format(dtype[:-1])] else: er_df = pd.DataFrame() # if dtype == 'ages': full_df = er_df else: # read in pmag_ data & make DataFrame pmag_file = os.path.join(input_dir, 'pmag_{}.txt'.format(dtype)) pmag_data, pmag_dtype = magic_read(pmag_file) if len(pmag_data): pmag_df = pd.DataFrame(pmag_data) pmag_df.index = pmag_df['er_{}_name'.format(dtype[:-1])] else: pmag_df = pd.DataFrame() # combine the two Dataframes full_df = pd.concat([er_df, pmag_df], sort=True) # sort the DataFrame so that all records from one item are together full_df.sort_index(inplace=True) # fix the column names to be 3.0 full_df.rename(columns=map_dict, inplace=True) # create a MagicDataFrame object, providing the dataframe and the data type new_df = cb.MagicDataFrame(dtype=dtype, df=full_df, dmodel=data_model) # write out the data to file if len(new_df.df): new_df.write_magic_file(dir_path=output_dir) return dtype + ".txt" else: print("-I- No {} data found.".format(dtype)) return None
def convert_and_combine_2_to_3(dtype, map_dict, input_dir=".", output_dir=".", data_model=None)
Read in er_*.txt file and pmag_*.txt file in working directory. Combine the data, then translate headers from 2.5 --> 3.0. Last, write out the data in 3.0. Parameters ---------- dtype : string for input type (specimens, samples, sites, etc.) map_dict : dictionary with format {header2_format: header3_format, ...} (from mapping.map_magic module) input_dir : input directory, default "." output_dir : output directory, default "." data_model : data_model3.DataModel object, default None Returns --------- output_file_name with 3.0 format data (or None if translation failed)
3.11743
2.8061
1.110948
# get criteria from infile fname = os.path.join(input_dir, fname) if not os.path.exists(fname): return False, None orig_crit, warnings = read_criteria_from_file(fname, initialize_acceptance_criteria(), data_model=2, return_warnings=True) converted_crit = {} # get data model including criteria map if not data_model: from . import data_model3 as dm3 DM = dm3.DataModel() else: DM = data_model crit_map = DM.crit_map # drop all empty mappings stripped_crit_map = crit_map.dropna(axis='rows') # go through criteria and get 3.0 name and criterion_operation for crit in orig_crit: if orig_crit[crit]['value'] in [-999, '-999', -999.]: continue if crit in stripped_crit_map.index: criterion_operation = stripped_crit_map.loc[crit]['criteria_map']['criterion_operation'] table_col = stripped_crit_map.loc[crit]['criteria_map']['table_column'] orig_crit[crit]['criterion_operation'] = criterion_operation converted_crit[table_col] = orig_crit[crit] else: print('-W- Could not convert {} to 3.0, skipping'.format(crit)) # switch axes converted_df = pd.DataFrame(converted_crit).transpose() # name the index converted_df.index.name = "table_column" # rename columns to 3.0 values # 'category' --> criterion (uses defaults from initalize_default_criteria) # 'pmag_criteria_code' --> criterion (uses what's actually in the translated file) converted_df.rename(columns={'pmag_criteria_code': 'criterion', 'er_citation_names': 'citations', 'criteria_definition': 'description', 'value': 'criterion_value'}, inplace=True) # drop unused columns valid_cols = DM.dm['criteria'].index drop_cols = set(converted_df.columns) - set(valid_cols) converted_df.drop(drop_cols, axis='columns', inplace=True) # move 'table_column' from being the index to being a column converted_df['table_column'] = converted_df.index crit_container = cb.MagicDataFrame(dtype='criteria', df=converted_df) crit_container.write_magic_file(dir_path=output_dir) return "criteria.txt", crit_container
def convert_criteria_file_2_to_3(fname="pmag_criteria.txt", input_dir=".", output_dir=".", data_model=None)
Convert a criteria file from 2.5 to 3.0 format and write it out to file Parameters ---------- fname : string of filename (default "pmag_criteria.txt") input_dir : string of input directory (default ".") output_dir : string of output directory (default ".") data_model : data_model.DataModel object (default None) Returns --------- outfile : string output criteria filename, or False crit_container : cb.MagicDataFrame with 3.0 criteria table
4.459457
4.181808
1.066395
or_con = str(or_con) if mag_azimuth == -999: return "", "" if or_con == "1": # lab_mag_az=mag_az; sample_dip = -dip return mag_azimuth, -field_dip if or_con == "2": return mag_azimuth - 90., -field_dip if or_con == "3": # lab_mag_az=mag_az; sample_dip = 90.-dip return mag_azimuth, 90. - field_dip if or_con == "4": # lab_mag_az=mag_az; sample_dip = dip return mag_azimuth, field_dip if or_con == "5": # lab_mag_az=mag_az; sample_dip = dip-90. return mag_azimuth, field_dip - 90. if or_con == "6": # lab_mag_az=mag_az-90.; sample_dip = 90.-dip return mag_azimuth - 90., 90. - field_dip if or_con == "7": # lab_mag_az=mag_az; sample_dip = 90.-dip return mag_azimuth - 90., 90. - field_dip print("Error in orientation convention")
def orient(mag_azimuth, field_dip, or_con)
uses specified orientation convention to convert user supplied orientations to laboratory azimuth and plunge
1.913188
1.862993
1.026943
Sb, N = 0., 0. for rec in data: delta = 90. - abs(rec['vgp_lat']) if rec['average_k'] != 0: k = rec['average_k'] L = rec['average_lat'] * np.pi / 180. # latitude in radians Nsi = rec['average_nn'] K = old_div(k, (2. * (1. + 3. * np.sin(L)**2) / (5. - 3. * np.sin(L)**2))) Sw = old_div(81., np.sqrt(K)) else: Sw, Nsi = 0, 1. Sb += delta**2. - old_div((Sw**2), Nsi) N += 1. return np.sqrt(old_div(Sb, float(N - 1.)))
def get_Sb(data)
returns vgp scatter for data set
4.709038
4.441119
1.060327
df['delta'] = 90.-df.vgp_lat Sp2 = np.sum(df.delta**2)/(df.shape[0]-1) if 'dir_k' in df.columns and mm97: ks = df.dir_k Ns = df.dir_n Ls = np.radians(df.lat) A95s = 140./np.sqrt(ks*Ns) Sw2_n = 0.335*(A95s**2)*(2.*(1.+3.*np.sin(Ls)**2) / (5.-3.*np.sin(Ls)**2)) return np.sqrt(Sp2-Sw2_n.mean()) else: return np.sqrt(Sp2)
def get_sb_df(df, mm97=False)
Calculates Sf for a dataframe with VGP Lat., and optional Fisher's k, site latitude and N information can be used to correct for within site scatter (McElhinny & McFadden, 1997) Parameters _________ df : Pandas Dataframe with columns REQUIRED: vgp_lat : VGP latitude ONLY REQUIRED for MM97 correction: dir_k : Fisher kappa estimate dir_n : number of specimens (samples) per site lat : latitude of the site mm97 : if True, will do the correction for within site scatter Returns: _______ Sf : Sf
6.288589
4.855157
1.295239
ppars = doprinc(di_block) # get principle direction if combine: D3 = [] D1, D2 = [], [] for rec in di_block: ang = angle([rec[0], rec[1]], [ppars['dec'], ppars['inc']]) if ang > 90.: d, i = (rec[0] - 180.) % 360., -rec[1] D2.append([d, i]) if combine: D3.append([d, i]) else: D1.append([rec[0], rec[1]]) if combine: D3.append([rec[0], rec[1]]) if combine: return D3 else: return D1, D2
def flip(di_block, combine=False)
determines 'normal' direction along the principle eigenvector, then flips the antipodes of the reverse mode to the antipode Parameters ___________ di_block : nested list of directions Return D1 : normal mode D2 : flipped reverse mode as two DI blocks combine : if True return combined D1, D2, nested D,I pairs
3.608239
3.444214
1.047624
vds, X = 0, [] for rec in data: X.append(dir2cart(rec)) for k in range(len(X) - 1): xdif = X[k + 1][0] - X[k][0] ydif = X[k + 1][1] - X[k][1] zdif = X[k + 1][2] - X[k][2] vds += np.sqrt(xdif**2 + ydif**2 + zdif**2) vds += np.sqrt(X[-1][0]**2 + X[-1][1]**2 + X[-1][2]**2) return vds
def dovds(data)
calculates vector difference sum for demagnetization data
2.105141
1.944698
1.082502
vdata, Dirdata, step_meth = [], [], "" if len(data) == 0: return vdata treat_init = ["treatment_temp", "treatment_temp_decay_rate", "treatment_temp_dc_on", "treatment_temp_dc_off", "treatment_ac_field", "treatment_ac_field_decay_rate", "treatment_ac_field_dc_on", "treatment_ac_field_dc_off", "treatment_dc_field", "treatment_dc_field_decay_rate", "treatment_dc_field_ac_on", "treatment_dc_field_ac_off", "treatment_dc_field_phi", "treatment_dc_field_theta"] treats = [] # # find keys that are used # for key in treat_init: if key in list(data[0].keys()): treats.append(key) # get a list of keys stop = {} stop["er_specimen_name"] = "stop" for key in treats: stop[key] = "" # tells program when to quit and go home data.append(stop) # # set initial states # DataState0, newstate = {}, 0 for key in treats: DataState0[key] = data[0][key] # set beginning treatment k, R = 1, 0 for i in range(k, len(data)): FDirdata, Dirdata, DataStateCurr, newstate = [], [], {}, 0 for key in treats: # check if anything changed DataStateCurr[key] = data[i][key] if DataStateCurr[key].strip() != DataState0[key].strip(): newstate = 1 # something changed if newstate == 1: if i == k: # sample is unique vdata.append(data[i - 1]) else: # measurement is not unique # print "averaging: records " ,k,i for l in range(k - 1, i): if 'orientation' in data[l]['measurement_description']: data[l]['measurement_description'] = "" Dirdata.append([float(data[l]['measurement_dec']), float( data[l]['measurement_inc']), float(data[l]['measurement_magn_moment'])]) FDirdata.append( [float(data[l]['measurement_dec']), float(data[l]['measurement_inc'])]) dir, R = vector_mean(Dirdata) Fpars = fisher_mean(FDirdata) vrec = data[i - 1] vrec['measurement_dec'] = '%7.1f' % (dir[0]) vrec['measurement_inc'] = '%7.1f' % (dir[1]) vrec['measurement_magn_moment'] = '%8.3e' % ( old_div(R, (i - k + 1))) vrec['measurement_csd'] = '%7.1f' % (Fpars['csd']) vrec['measurement_positions'] = '%7.1f' % (Fpars['n']) vrec['measurement_description'] = 'average of multiple measurements' if "magic_method_codes" in list(vrec.keys()): meths = vrec["magic_method_codes"].strip().split(":") if "DE-VM" not in meths: meths.append("DE-VM") methods = "" for meth in meths: methods = methods + meth + ":" vrec["magic_method_codes"] = methods[:-1] else: vrec["magic_method_codes"] = "DE-VM" vdata.append(vrec) # reset state to new one for key in treats: DataState0[key] = data[i][key] # set beginning treatment k = i + 1 if data[i]["er_specimen_name"] == "stop": del data[-1] # get rid of dummy stop sign return vdata, treats
def vspec_magic(data)
Takes average vector of replicate measurements
3.487965
3.409069
1.023143
# sort the specimen names speclist = [] for rec in data: try: spec = rec["er_specimen_name"] except KeyError as e: spec = rec["specimen"] if spec not in speclist: speclist.append(spec) speclist.sort() return speclist
def get_specs(data)
Takes a magic format file and returns a list of unique specimen names
3.537832
3.001507
1.178685
Xbar = np.zeros((3)) X = dir2cart(data).transpose() for i in range(3): Xbar[i] = X[i].sum() R = np.sqrt(Xbar[0]**2+Xbar[1]**2+Xbar[2]**2) Xbar = Xbar/R dir = cart2dir(Xbar) return dir, R
def vector_mean(data)
calculates the vector mean of a given set of vectors Parameters __________ data : nested array of [dec,inc,intensity] Returns _______ dir : array of [dec, inc, 1] R : resultant vector length
3.290087
2.944184
1.117487
datablock = [] for rec in data: if rec['er_specimen_name'] == s: meths = rec['magic_method_codes'].split(':') if 'LT-NO' in meths or 'LT-AF-Z' in meths or 'LT-T-Z' in meths: datablock.append(rec) dmagrec = datablock[ind] for k in range(len(data)): meths = data[k]['magic_method_codes'].split(':') if 'LT-NO' in meths or 'LT-AF-Z' in meths or 'LT-T-Z' in meths: if data[k]['er_specimen_name'] == s: if data[k]['treatment_temp'] == dmagrec['treatment_temp'] and data[k]['treatment_ac_field'] == dmagrec['treatment_ac_field']: if data[k]['measurement_dec'] == dmagrec['measurement_dec'] and data[k]['measurement_inc'] == dmagrec['measurement_inc'] and data[k]['measurement_magn_moment'] == dmagrec['measurement_magn_moment']: if data[k]['measurement_flag'] == 'g': flag = 'b' else: flag = 'g' data[k]['measurement_flag'] = flag break return data
def mark_dmag_rec(s, ind, data)
Edits demagnetization data to mark "bad" points with measurement_flag
2.18193
2.20996
0.987317
try: with codecs.open(infile, "r", "utf-8") as f: lines = list(f.readlines()) # file might not exist except FileNotFoundError: if verbose: print( '-W- You are trying to open a file: {} that does not exist'.format(infile)) return [] # encoding might be wrong except UnicodeDecodeError: try: with codecs.open(infile, "r", "Latin-1") as f: print( '-I- Using less strict decoding for {}, output may have formatting errors'.format(infile)) lines = list(f.readlines()) # if file exists, and encoding is correct, who knows what the problem is except Exception as ex: print("-W- ", type(ex), ex) return [] except Exception as ex: print("-W- ", type(ex), ex) return [] # don't leave a blank line at the end i = 0 while i < 10: if not len(lines[-1].strip("\n").strip("\t")): lines = lines[:-1] i += 1 else: i = 10 return lines
def open_file(infile, verbose=True)
Open file and return a list of the file's lines. Try to use utf-8 encoding, and if that fails use Latin-1. Parameters ---------- infile : str full path to file Returns ---------- data: list all lines in the file
3.845847
3.837408
1.002199
DATA = {} #fin = open(path, 'r') #first_line = fin.readline() lines = open_file(path) if not lines: if return_keys: return {}, 'empty_file', None else: return {}, 'empty_file' first_line = lines.pop(0) if first_line[0] == "s" or first_line[1] == "s": delim = ' ' elif first_line[0] == "t" or first_line[1] == "t": delim = '\t' else: print('-W- error reading ', path) if return_keys: return {}, 'bad_file', None else: return {}, 'bad_file' file_type = first_line.strip('\n').strip('\r').split(delim)[1] item_type = file_type #item_type = file_type.split('_')[1][:-1] if sort_by_this_name: pass elif item_type == 'age': sort_by_this_name = "by_line_number" else: sort_by_this_name = item_type line = lines.pop(0) header = line.strip('\n').strip('\r').split(delim) counter = 0 for line in lines: tmp_data = {} tmp_line = line.strip('\n').strip('\r').split(delim) for i in range(len(header)): if i < len(tmp_line): tmp_data[header[i]] = tmp_line[i].strip() else: tmp_data[header[i]] = "" if sort_by_this_name == "by_line_number": DATA[counter] = tmp_data counter += 1 else: if tmp_data[sort_by_this_name] != "": DATA[tmp_data[sort_by_this_name]] = tmp_data if return_keys: return DATA, file_type, header else: return DATA, file_type
def magic_read_dict(path, data=None, sort_by_this_name=None, return_keys=False)
Read a magic-formatted tab-delimited file and return a dictionary of dictionaries, with this format: {'Z35.5a': {'specimen_weight': '1.000e-03', 'er_citation_names': 'This study', 'specimen_volume': '', 'er_location_name': '', 'er_site_name': 'Z35.', 'er_sample_name': 'Z35.5', 'specimen_class': '', 'er_specimen_name': 'Z35.5a', 'specimen_lithology': '', 'specimen_type': ''}, ....} return data, file_type, and keys (if return_keys is true)
2.210306
2.158959
1.023783
''' Sort magic_data by header (like er_specimen_name for example) ''' magic_data_sorted = {} for rec in magic_data: name = rec[sort_name] if name not in list(magic_data_sorted.keys()): magic_data_sorted[name] = [] magic_data_sorted[name].append(rec) return magic_data_sorted
def sort_magic_data(magic_data, sort_name)
Sort magic_data by header (like er_specimen_name for example)
3.401698
2.016388
1.687025
delim = 'tab' hold, magic_data, magic_record, magic_keys = [], [], {}, [] f = open(infile, "r") # # look for right table # line = f.readline()[:-1] file_type = line.split('\t')[1] if file_type == 'delimited': file_type = line.split('\t')[2] if delim == 'tab': line = f.readline()[:-1].split('\t') else: f.close() print("only tab delimitted files are supported now") return while file_type != table: while line[0][0:5] in f.readlines() != ">>>>>": pass line = f.readline()[:-1] file_type = line.split('\t')[1] if file_type == 'delimited': file_type = line.split('\t')[2] ine = f.readline()[:-1].split('\t') while line[0][0:5] in f.readlines() != ">>>>>": for key in line: magic_keys.append(key) for line in f.readlines(): rec = line[:-1].split('\t') hold.append(rec) for rec in hold: magic_record = {} if len(magic_keys) != len(rec): print("Uneven record lengths detected: ", rec) input("Return to continue.... ") for k in range(len(magic_keys)): magic_record[magic_keys[k]] = rec[k] magic_data.append(magic_record) f.close() return magic_data
def upload_read(infile, table)
Reads a table from a MagIC upload (or downloaded) txt file, puts data in a list of dictionaries
3.517844
3.467792
1.014433
pmag_out = open(ofile, 'a') outstring = "" for key in keylist: try: outstring = outstring + '\t' + str(Rec[key]).strip() except: print(key, Rec[key]) # raw_input() outstring = outstring + '\n' pmag_out.write(outstring[1:]) pmag_out.close()
def putout(ofile, keylist, Rec)
writes out a magic format record to ofile
2.924839
2.791511
1.047762
keylist = [] opened = False # sometimes Windows needs a little extra time to open a file # or else it throws an error while not opened: try: pmag_out = open(ofile, 'w') opened = True except IOError: time.sleep(1) outstring = "tab \t" + file_type + "\n" pmag_out.write(outstring) keystring = "" for key in list(Rec.keys()): keystring = keystring + '\t' + key.strip() keylist.append(key) keystring = keystring + '\n' pmag_out.write(keystring[1:]) pmag_out.close() return keylist
def first_rec(ofile, Rec, file_type)
opens the file ofile as a magic template file with headers as the keys to Rec
3.533392
3.555578
0.99376
if len(Recs) < 1: print ('nothing to write') return pmag_out = open(ofile, 'w') outstring = "tab \t" + file_type + "\n" pmag_out.write(outstring) keystring = "" keylist = [] for key in list(Recs[0].keys()): keylist.append(key) keylist.sort() for key in keylist: keystring = keystring + '\t' + key.strip() keystring = keystring + '\n' pmag_out.write(keystring[1:]) for Rec in Recs: outstring = "" for key in keylist: try: outstring = outstring + '\t' + str(Rec[key].strip()) except: if 'er_specimen_name' in list(Rec.keys()): print(Rec['er_specimen_name']) elif 'er_specimen_names' in list(Rec.keys()): print(Rec['er_specimen_names']) print(key, Rec[key]) # raw_input() outstring = outstring + '\n' pmag_out.write(outstring[1:]) pmag_out.close()
def magic_write_old(ofile, Recs, file_type)
writes out a magic format list of dictionaries to ofile Parameters _________ ofile : path to output file Recs : list of dictionaries in MagIC format file_type : MagIC table type (e.g., specimens) Effects : writes a MagIC formatted file from Recs
2.227152
2.228367
0.999455
if len(Recs) < 1: print('No records to write to file {}'.format(ofile)) return False, "" if os.path.split(ofile)[0] != "" and not os.path.isdir(os.path.split(ofile)[0]): os.mkdir(os.path.split(ofile)[0]) pmag_out = open(ofile, 'w+', errors="backslashreplace") outstring = "tab \t" + file_type outstring = outstring.strip("\n").strip( "\r") + "\n" # make sure it's clean for Windows pmag_out.write(outstring) keystring = "" keylist = [] for key in list(Recs[0].keys()): keylist.append(key) keylist.sort() for key in keylist: keystring = keystring + '\t' + key.strip() keystring = keystring + '\n' pmag_out.write(keystring[1:]) for Rec in Recs: outstring = "" for key in keylist: try: outstring = outstring + '\t' + str(Rec[key]).strip() except KeyError: if 'er_specimen_name' in list(Rec.keys()): print(Rec['er_specimen_name']) elif 'specimen' in list(Rec.keys()): print(Rec['specimen']) elif 'er_specimen_names' in list(Rec.keys()): print('specimen names:', Rec['er_specimen_names']) print("No data for %s" % key) # just skip it: outstring = outstring + "\t" # raw_input() outstring = outstring + '\n' pmag_out.write(outstring[1:]) pmag_out.close() print(len(Recs), ' records written to file ', ofile) return True, ofile
def magic_write(ofile, Recs, file_type)
Parameters _________ ofile : path to output file Recs : list of dictionaries in MagIC format file_type : MagIC table type (e.g., specimens) Return : [True,False] : True if successful ofile : same as input Effects : writes a MagIC formatted file from Recs
2.420057
2.406595
1.005594
rad = old_div(np.pi, 180.) # converts from degrees to radians X = dir2cart([dec, inc, 1.]) # get cartesian coordinates of dec,inc # get some sines and cosines of new coordinate system sa, ca = -np.sin(bed_az * rad), np.cos(bed_az * rad) cdp, sdp = np.cos(bed_dip * rad), np.sin(bed_dip * rad) # do the rotation xc = X[0] * (sa * sa + ca * ca * cdp) + X[1] * \ (ca * sa * (1. - cdp)) + X[2] * sdp * ca yc = X[0] * ca * sa * (1. - cdp) + X[1] * \ (ca * ca + sa * sa * cdp) - X[2] * sa * sdp zc = X[0] * ca * sdp - X[1] * sdp * sa - X[2] * cdp # convert back to direction: Dir = cart2dir([xc, yc, -zc]) # return declination, inclination of rotated direction return Dir[0], Dir[1]
def dotilt(dec, inc, bed_az, bed_dip)
Does a tilt correction on a direction (dec,inc) using bedding dip direction and bedding dip. Parameters ---------- dec : declination directions in degrees inc : inclination direction in degrees bed_az : bedding dip direction bed_dip : bedding dip Returns ------- dec,inc : a tuple of rotated dec, inc values Examples ------- >>> pmag.dotilt(91.2,43.1,90.0,20.0) (90.952568837153436, 23.103411670066617)
3.46855
3.559769
0.974375
indat = indat.transpose() # unpack input array into separate arrays dec, inc, bed_az, bed_dip = indat[0], indat[1], indat[2], indat[3] rad = old_div(np.pi, 180.) # convert to radians Dir = np.array([dec, inc]).transpose() X = dir2cart(Dir).transpose() # get cartesian coordinates N = np.size(dec) # get some sines and cosines of new coordinate system sa, ca = -np.sin(bed_az * rad), np.cos(bed_az * rad) cdp, sdp = np.cos(bed_dip * rad), np.sin(bed_dip * rad) # do the rotation xc = X[0] * (sa * sa + ca * ca * cdp) + X[1] * \ (ca * sa * (1. - cdp)) + X[2] * sdp * ca yc = X[0] * ca * sa * (1. - cdp) + X[1] * \ (ca * ca + sa * sa * cdp) - X[2] * sa * sdp zc = X[0] * ca * sdp - X[1] * sdp * sa - X[2] * cdp # convert back to direction: cart = np.array([xc, yc, -zc]).transpose() Dir = cart2dir(cart).transpose() # return declination, inclination arrays of rotated direction return Dir[0], Dir[1]
def dotilt_V(indat)
Does a tilt correction on an array with rows of dec,inc bedding dip direction and dip. Parameters ---------- input : declination, inclination, bedding dip direction and bedding dip nested array of [[dec1, inc1, bed_az1, bed_dip1],[dec2,inc2,bed_az2,bed_dip2]...] Returns ------- dec,inc : arrays of rotated declination, inclination
3.499204
3.229907
1.083376