code
string
signature
string
docstring
string
loss_without_docstring
float64
loss_with_docstring
float64
factor
float64
parser = argparse.ArgumentParser( description='Transform Pylint JSON report to HTML') parser.add_argument( 'filename', metavar='FILENAME', type=argparse.FileType('r'), nargs='?', default=sys.stdin, help='Pylint JSON report input file (or stdin)') parser.add_argument( '-o', '--output', metavar='FILENAME', type=argparse.FileType('w'), default=sys.stdout, help='Pylint HTML report output file (or stdout)') parser.add_argument( '-f', '--input-format', metavar='FORMAT', choices=[SIMPLE_JSON, EXTENDED_JSON], action='store', dest='input_format', default='json', help='Pylint JSON Report input type (json or jsonextended)') return parser
def build_command_parser()
Build command parser using ``argparse`` module.
2.726638
2.72485
1.000656
parser = build_command_parser() options = parser.parse_args() file_pointer = options.filename input_format = options.input_format with file_pointer: json_data = json.load(file_pointer) if input_format == SIMPLE_JSON: report = Report(json_data) elif input_format == EXTENDED_JSON: report = Report( json_data.get('messages'), json_data.get('stats'), json_data.get('previous')) print(report.render(), file=options.output)
def main()
Pylint JSON to HTML Main Entry Point
3.570026
3.37255
1.058554
template = self.get_template() return template.render( messages=self._messages, metrics=self.metrics, report=self)
def render(self)
Render report to HTML
8.213794
5.985428
1.372299
self._messages.append({ 'type': msg.category, 'module': msg.module, 'obj': msg.obj, 'line': msg.line, 'column': msg.column, 'path': msg.path, 'symbol': msg.symbol, 'message': str(msg.msg) or '', 'message-id': msg.msg_id, })
def handle_message(self, msg)
Store new message for later use. .. seealso:: :meth:`~JsonExtendedReporter.on_close`
3.340867
3.323148
1.005332
reports = { 'messages': self._messages, 'stats': stats, 'previous': previous_stats, } print(json.dumps(reports, cls=JSONSetEncoder, indent=4), file=self.out)
def on_close(self, stats, previous_stats)
Print the extended JSON report to reporter's output. :param dict stats: Metrics for the current pylint run :param dict previous_stats: Metrics for the previous pylint run
4.877794
4.606254
1.05895
def triangulate(points): # Remove duplicate xy points bc that would make delauney fail, and must remember z (if any) for retrieving originals from index results seen = set() uniqpoints = [ p for p in points if str( p[:2] ) not in seen and not seen.add( str( p[:2] ) )] classpoints = [_Point(*point[:2]) for point in uniqpoints] # Compute Delauney triangle_ids = tesselator.computeDelaunayTriangulation(classpoints) # Get vertices from result indexes triangles = [[uniqpoints[i] for i in triangle] for triangle in triangle_ids] return triangles
Connects an input list of xy tuples with lines forming a set of smallest possible Delauney triangles between them. Arguments: - **points**: A list of xy or xyz point tuples to triangulate. Returns: - A list of triangle polygons. If the input coordinate points contained a third z value then the output triangles will also have these z values.
null
null
null
# Remove duplicate xy points bc that would make delauney fail, and must remember z (if any) for retrieving originals from index results seen = set() uniqpoints = [ p for p in points if str( p[:2] ) not in seen and not seen.add( str( p[:2] ) )] classpoints = [_Point(*point[:2]) for point in uniqpoints] # Create fake sitepoints around the point extent to correct for infinite polygons # For a similar approach and problem see: http://gis.stackexchange.com/questions/11866/voronoi-polygons-that-run-out-to-infinity xs,ys = list(zip(*uniqpoints))[:2] pointswidth = max(xs) - min(xs) pointsheight = max(ys) - min(ys) xbuff,ybuff = ( pointswidth / 100.0 * buffer_percent , pointsheight / 100.0 * buffer_percent ) midx,midy = ( sum(xs) / float(len(xs)) , sum(ys) / float(len(ys)) ) #bufferbox = [(midx-xbuff,midy-ybuff),(midx+xbuff,midy-ybuff),(midx+xbuff,midy+ybuff),(midx-xbuff,midy+ybuff)] # corner buffer bufferbox = [(midx-xbuff,midy),(midx+xbuff,midy),(midx,midy+ybuff),(midx,midy-ybuff)] # mid sides buffer classpoints.extend([_Point(*corner) for corner in bufferbox]) # Compute Voronoi vertices,edges,poly_dict = tesselator.computeVoronoiDiagram(classpoints) # Turn unordered result edges into ordered polygons polygons = list() for sitepoint,polyedges in list(poly_dict.items()): polyedges = [edge[1:] for edge in polyedges] poly = list() firststart,firstend = polyedges.pop(0) poly.append(firstend) while polyedges: curend = poly[-1] for i,other in enumerate(polyedges): otherstart,otherend = other if otherstart == curend: poly.append(otherend) ##print otherstart,otherend polyedges.pop(i) break elif otherend == curend: ##print otherend,otherstart poly.append(otherstart) polyedges.pop(i) break # Get vertices from indexes try: sitepoint = uniqpoints[sitepoint] except IndexError: sitepoint = None # fake bbox sitepoints shouldnt be in the results poly = [vertices[vi] for vi in poly if vi != -1] polygons.append((sitepoint, poly)) # Maybe clip parts of polygons that stick outside screen? # ... return polygons
def voronoi(points, buffer_percent=100)
Surrounds each point in an input list of xy tuples with a unique Voronoi polygon. Arguments: - **points**: A list of xy or xyz point tuples to triangulate. - **buffer_percent** (optional): Controls how much bigger than the original bbox of the input points to set the bbox of fake points, used to account for lacking values around the edges (default is 100 percent). Returns: - Returns a list of 2-tuples, with the first item in each tuple being the original input point (or None for each corner of the bounding box buffer), and the second item being the point's corressponding Voronoi polygon.
4.490158
4.423324
1.015109
if len(val1) != len(val2): return False result = 0 for x, y in zip(val1, val2): result |= ord(x) ^ ord(y) return result == 0
def equals(val1, val2)
Returns True if the two strings are equal, False otherwise. The time taken is independent of the number of characters that match. For the sake of simplicity, this function executes in constant time only when the two strings have the same length. It short-circuits when they have different lengths.
1.847628
1.92827
0.958179
''' Encodes integer into variable-length format into data.''' if n < 0: raise ValueError('only support positive integer') while True: this_byte = n & 0x7f n >>= 7 if n == 0: data.append(this_byte) break data.append(this_byte | 0x80)
def _encode_uvarint(data, n)
Encodes integer into variable-length format into data.
2.988739
2.418808
1.235624
''' Parses a sequence of packets in data. The sequence is terminated by a packet with a field type of EOS :param data bytes to be deserialized. :return: the rest of data and an array of packet V2 ''' from pymacaroons.exceptions import MacaroonDeserializationException prev_field_type = -1 packets = [] while True: if len(data) == 0: raise MacaroonDeserializationException( 'section extends past end of buffer') rest, packet = self._parse_packet_v2(data) if packet.field_type == self._EOS: return rest, packets if packet.field_type <= prev_field_type: raise MacaroonDeserializationException('fields out of order') packets.append(packet) prev_field_type = packet.field_type data = rest
def _parse_section_v2(self, data)
Parses a sequence of packets in data. The sequence is terminated by a packet with a field type of EOS :param data bytes to be deserialized. :return: the rest of data and an array of packet V2
4.791882
2.420735
1.979515
''' Parses a V2 data packet at the start of the given data. The format of a packet is as follows: field_type(varint) payload_len(varint) data[payload_len bytes] apart from EOS which has no payload_en or data (it's a single zero byte). :param data: :return: rest of data, PacketV2 ''' from pymacaroons.exceptions import MacaroonDeserializationException ft, n = _decode_uvarint(data) data = data[n:] if ft == self._EOS: return data, PacketV2(ft, None) payload_len, n = _decode_uvarint(data) data = data[n:] if payload_len > len(data): raise MacaroonDeserializationException( 'field data extends past end of buffer') return data[payload_len:], PacketV2(ft, data[0:payload_len])
def _parse_packet_v2(self, data)
Parses a V2 data packet at the start of the given data. The format of a packet is as follows: field_type(varint) payload_len(varint) data[payload_len bytes] apart from EOS which has no payload_en or data (it's a single zero byte). :param data: :return: rest of data, PacketV2
6.069051
2.349208
2.583446
''' Return a new discharge macaroon bound to the receiving macaroon's current signature so that it can be used in a request. This must be done before a discharge macaroon is sent to a server. :param discharge_macaroon: :return: bound discharge macaroon ''' protected = discharge_macaroon.copy() return HashSignaturesBinder(self).bind(protected)
def prepare_for_request(self, discharge_macaroon)
Return a new discharge macaroon bound to the receiving macaroon's current signature so that it can be used in a request. This must be done before a discharge macaroon is sent to a server. :param discharge_macaroon: :return: bound discharge macaroon
7.151454
2.697423
2.651217
''' Return a caveat as a dictionary for export as the JSON macaroon v1 format. ''' serialized = {} if len(c.caveat_id) > 0: serialized['cid'] = c.caveat_id if c.verification_key_id: serialized['vid'] = utils.raw_urlsafe_b64encode( c.verification_key_id).decode('utf-8') if c.location: serialized['cl'] = c.location return serialized
def _caveat_v1_to_dict(c)
Return a caveat as a dictionary for export as the JSON macaroon v1 format.
4.375601
2.990641
1.463098
''' Return a caveat as a dictionary for export as the JSON macaroon v2 format. ''' serialized = {} if len(c.caveat_id_bytes) > 0: _add_json_binary_field(c.caveat_id_bytes, serialized, 'i') if c.verification_key_id: _add_json_binary_field(c.verification_key_id, serialized, 'v') if c.location: serialized['l'] = c.location return serialized
def _caveat_v2_to_dict(c)
Return a caveat as a dictionary for export as the JSON macaroon v2 format.
4.404077
3.081987
1.428973
''' Set the given field to the given val (a bytearray) in the serialized dictionary. If the value isn't valid utf-8, we base64 encode it and use field+"64" as the field name. ''' try: val = b.decode("utf-8") serialized[field] = val except UnicodeDecodeError: val = utils.raw_urlsafe_b64encode(b).decode('utf-8') serialized[field + '64'] = val
def _add_json_binary_field(b, serialized, field)
Set the given field to the given val (a bytearray) in the serialized dictionary. If the value isn't valid utf-8, we base64 encode it and use field+"64" as the field name.
5.023871
2.145607
2.341469
''' Read the value of a JSON field that may be string or base64-encoded. ''' val = deserialized.get(field) if val is not None: return utils.convert_to_bytes(val) val = deserialized.get(field + '64') if val is None: return None return utils.raw_urlsafe_b64decode(val)
def _read_json_binary_field(deserialized, field)
Read the value of a JSON field that may be string or base64-encoded.
3.910354
2.955463
1.323094
'''Serialize the macaroon in JSON format indicated by the version field. @param macaroon the macaroon to serialize. @return JSON macaroon. ''' from pymacaroons import macaroon if m.version == macaroon.MACAROON_V1: return self._serialize_v1(m) return self._serialize_v2(m)
def serialize(self, m)
Serialize the macaroon in JSON format indicated by the version field. @param macaroon the macaroon to serialize. @return JSON macaroon.
4.400939
2.415588
1.821891
'''Serialize the macaroon in JSON format v1. @param macaroon the macaroon to serialize. @return JSON macaroon. ''' serialized = { 'identifier': utils.convert_to_string(macaroon.identifier), 'signature': macaroon.signature, } if macaroon.location: serialized['location'] = macaroon.location if macaroon.caveats: serialized['caveats'] = [ _caveat_v1_to_dict(caveat) for caveat in macaroon.caveats ] return json.dumps(serialized)
def _serialize_v1(self, macaroon)
Serialize the macaroon in JSON format v1. @param macaroon the macaroon to serialize. @return JSON macaroon.
2.700497
2.12503
1.270804
'''Serialize the macaroon in JSON format v2. @param macaroon the macaroon to serialize. @return JSON macaroon in v2 format. ''' serialized = {} _add_json_binary_field(macaroon.identifier_bytes, serialized, 'i') _add_json_binary_field(binascii.unhexlify(macaroon.signature_bytes), serialized, 's') if macaroon.location: serialized['l'] = macaroon.location if macaroon.caveats: serialized['c'] = [ _caveat_v2_to_dict(caveat) for caveat in macaroon.caveats ] return json.dumps(serialized)
def _serialize_v2(self, macaroon)
Serialize the macaroon in JSON format v2. @param macaroon the macaroon to serialize. @return JSON macaroon in v2 format.
2.985846
2.403291
1.242399
'''Deserialize a JSON macaroon depending on the format. @param serialized the macaroon in JSON format. @return the macaroon object. ''' deserialized = json.loads(serialized) if deserialized.get('identifier') is None: return self._deserialize_v2(deserialized) else: return self._deserialize_v1(deserialized)
def deserialize(self, serialized)
Deserialize a JSON macaroon depending on the format. @param serialized the macaroon in JSON format. @return the macaroon object.
4.243697
2.356687
1.800704
'''Deserialize a JSON macaroon in v1 format. @param serialized the macaroon in v1 JSON format. @return the macaroon object. ''' from pymacaroons.macaroon import Macaroon, MACAROON_V1 from pymacaroons.caveat import Caveat caveats = [] for c in deserialized.get('caveats', []): caveat = Caveat( caveat_id=c['cid'], verification_key_id=( utils.raw_b64decode(c['vid']) if c.get('vid') else None ), location=( c['cl'] if c.get('cl') else None ), version=MACAROON_V1 ) caveats.append(caveat) return Macaroon( location=deserialized.get('location'), identifier=deserialized['identifier'], caveats=caveats, signature=deserialized['signature'], version=MACAROON_V1 )
def _deserialize_v1(self, deserialized)
Deserialize a JSON macaroon in v1 format. @param serialized the macaroon in v1 JSON format. @return the macaroon object.
2.867835
2.337772
1.226739
'''Deserialize a JSON macaroon v2. @param serialized the macaroon in JSON format v2. @return the macaroon object. ''' from pymacaroons.macaroon import Macaroon, MACAROON_V2 from pymacaroons.caveat import Caveat caveats = [] for c in deserialized.get('c', []): caveat = Caveat( caveat_id=_read_json_binary_field(c, 'i'), verification_key_id=_read_json_binary_field(c, 'v'), location=_read_json_binary_field(c, 'l'), version=MACAROON_V2 ) caveats.append(caveat) return Macaroon( location=_read_json_binary_field(deserialized, 'l'), identifier=_read_json_binary_field(deserialized, 'i'), caveats=caveats, signature=binascii.hexlify( _read_json_binary_field(deserialized, 's')), version=MACAROON_V2 )
def _deserialize_v2(self, deserialized)
Deserialize a JSON macaroon v2. @param serialized the macaroon in JSON format v2. @return the macaroon object.
2.553999
2.089014
1.222586
if not id: if not (user and project): raise ValueError('Both user and project required') if ( isinstance(user, User) and isinstance(project, Project) ): _user_id = user.id _project_id = project.id elif ( isinstance(user, (int, str,)) and isinstance(project, (int, str,)) ): _user_id = user _project_id = project else: raise TypeError id = cls.where(user_id=_user_id, project_id=_project_id).next().id return super(ProjectPreferences, cls).find(id)
def find(cls, id='', user=None, project=None)
Like :py:meth:`.PanoptesObject.find` but can also query by user and project. - **user** and **project** can be either a :py:class:`.User` and :py:class:`.Project` instance respectively, or they can be given as IDs. If either argument is given, the other is also required.
2.479926
2.491107
0.995512
if (isinstance(settings, dict)): _to_update = settings if ( isinstance(user, User) and isinstance(project, Project) ): _user_id = user.id _project_id = project.id elif ( isinstance(user, (int, str,)) and isinstance(project, (int, str,)) ): _user_id = user _project_id = project else: raise TypeError cls.http_post( 'update_settings', json={ 'project_preferences': { 'user_id': _user_id, 'project_id': _project_id, 'settings': _to_update, } } ) else: raise TypeError
def save_settings(cls, project=None, user=None, settings=None)
Save settings for a user without first fetching their preferences. - **user** and **project** can be either a :py:class:`.User` and :py:class:`.Project` instance respectively, or they can be given as IDs. If either argument is given, the other is also required. - **settings** is a :py:class:`dict` containing the settings to be saved.
2.468825
2.418054
1.020997
cls._local.save_exec = ThreadPoolExecutor( max_workers=ASYNC_SAVE_THREADS ) return cls._local.save_exec
def async_saves(cls)
Returns a context manager to allow asynchronously creating subjects. Using this context manager will create a pool of threads which will create multiple subjects at once and upload any local files simultaneously. The recommended way to use this is with the `with` statement:: with Subject.async_saves(): local_files = [...] for filename in local_files: s = Subject() s.links.project = 1234 s.add_location(filename) s.save() Alternatively, you can manually shut down the thread pool:: pool = Subject.async_saves() local_files = [...] try: for filename in local_files: s = Subject() s.links.project = 1234 s.add_location(filename) s.save() finally: pool.shutdown()
8.347537
10.575901
0.789298
if not client: client = Panoptes.client() async_save = hasattr(self._local, 'save_exec') with client: if async_save: try: # The recursive call will exec in a new thread, so # self._local.save_exec will be undefined above self._async_future = self._local.save_exec.submit( self.save, client=client, ) return except RuntimeError: del self._local.save_exec async_save = False if not self.metadata == self._original_metadata: self.modified_attributes.add('metadata') response = retry( super(Subject, self).save, attempts=UPLOAD_RETRY_LIMIT, sleeptime=RETRY_BACKOFF_INTERVAL, retry_exceptions=(PanoptesAPIException,), log_args=False, ) if not response: return try: if async_save: upload_exec = self._local.save_exec else: upload_exec = ThreadPoolExecutor( max_workers=ASYNC_SAVE_THREADS, ) for location, media_data in zip( response['subjects'][0]['locations'], self._media_files ): if not media_data: continue for media_type, url in location.items(): upload_exec.submit( retry, self._upload_media, args=(url, media_data, media_type), attempts=UPLOAD_RETRY_LIMIT, sleeptime=RETRY_BACKOFF_INTERVAL, retry_exceptions=( requests.exceptions.RequestException, ), log_args=False, ) finally: if not async_save: upload_exec.shutdown()
def save(self, client=None)
Like :py:meth:`.PanoptesObject.save`, but also uploads any local files which have previosly been added to the subject with :py:meth:`add_location`. Automatically retries uploads on error. If multiple local files are to be uploaded, several files will be uploaded simultaneously to save time.
3.925149
3.800537
1.032788
if hasattr(self, "_async_future") and self._async_future.done(): self._async_future.result() return True else: return False
def async_save_result(self)
Retrieves the result of this subject's asynchronous save. - Returns `True` if the subject was saved successfully. - Raises `concurrent.futures.CancelledError` if the save was cancelled. - If the save failed, raises the relevant exception. - Returns `False` if the subject hasn't finished saving or if the subject has not been queued for asynchronous save.
3.741786
3.463635
1.080306
if type(location) is dict: self.locations.append(location) self._media_files.append(None) return elif type(location) in (str,) + _OLD_STR_TYPES: f = open(location, 'rb') else: f = location try: media_data = f.read() if MEDIA_TYPE_DETECTION == 'magic': media_type = magic.from_buffer(media_data, mime=True) else: media_type = imghdr.what(None, media_data) if not media_type: raise UnknownMediaException( 'Could not detect file type. Please try installing ' 'libmagic: https://panoptes-python-client.readthedocs.' 'io/en/latest/user_guide.html#uploading-non-image-' 'media-types' ) media_type = 'image/{}'.format(media_type) self.locations.append(media_type) self._media_files.append(media_data) finally: f.close()
def add_location(self, location)
Add a media location to this subject. - **location** can be an open :py:class:`file` object, a path to a local file, or a :py:class:`dict` containing MIME types and URLs for remote media. Examples:: subject.add_location(my_file) subject.add_location('/data/image.jpg') subject.add_location({'image/png': 'https://example.com/image.png'})
3.350072
3.409731
0.982503
if generate: self.generate_export(export_type) if generate or wait: export = self.wait_export(export_type, wait_timeout) else: export = self.describe_export(export_type) if export_type in TALK_EXPORT_TYPES: media_url = export['data_requests'][0]['url'] else: media_url = export['media'][0]['src'] response = requests.get(media_url, stream=True) response.csv_reader = functools.partial( csv.reader, response.iter_lines(decode_unicode=True), ) response.csv_dictreader = functools.partial( csv.DictReader, response.iter_lines(decode_unicode=True), ) return response
def get_export( self, export_type, generate=False, wait=False, wait_timeout=None, )
Downloads a data export over HTTP. Returns a `Requests Response <http://docs.python-requests.org/en/master/api/#requests.Response>`_ object containing the content of the export. - **export_type** is a string specifying which type of export should be downloaded. - **generate** is a boolean specifying whether to generate a new export and wait for it to be ready, or to just download the latest export. - **wait** is a boolean specifying whether to wait for an in-progress export to finish, if there is one. Has no effect if ``generate`` is ``True``. - **wait_timeout** is the number of seconds to wait if ``wait`` is ``True``. Has no effect if ``wait`` is ``False`` or if ``generate`` is ``True``. The returned :py:class:`.Response` object has two additional attributes as a convenience for working with the CSV content; **csv_reader** and **csv_dictreader**, which are wrappers for :py:meth:`.csv.reader` and :py:class:`csv.DictReader` respectively. These wrappers take care of correctly decoding the export content for the CSV parser. Example:: classification_export = Project(1234).get_export('classifications') for row in classification_export.csv_reader(): print(row) classification_export = Project(1234).get_export('classifications') for row in classification_export.csv_dictreader(): print(row)
2.671276
2.646692
1.009289
success = False if timeout: end_time = datetime.datetime.now() + datetime.timedelta( seconds=timeout ) while (not timeout) or (datetime.datetime.now() < end_time): export_description = self.describe_export( export_type, ) if export_type in TALK_EXPORT_TYPES: export_metadata = export_description['data_requests'][0] else: export_metadata = export_description['media'][0]['metadata'] if export_metadata.get('state', '') in ('ready', 'finished'): success = True break time.sleep(2) if not success: raise PanoptesAPIException( '{}_export not ready within {} seconds'.format( export_type, timeout ) ) return export_description
def wait_export( self, export_type, timeout=None, )
Blocks until an in-progress export is ready. - **export_type** is a string specifying which type of export to wait for. - **timeout** is the maximum number of seconds to wait. If ``timeout`` is given and the export is not ready by the time limit, :py:class:`.PanoptesAPIException` is raised.
3.097345
2.93215
1.056339
if export_type in TALK_EXPORT_TYPES: return talk.post_data_request( 'project-{}'.format(self.id), export_type.replace('talk_', '') ) return self.http_post( self._export_path(export_type), json={"media": {"content_type": "text/csv"}}, )[0]
def generate_export(self, export_type)
Start a new export. - **export_type** is a string specifying which type of export to start. Returns a :py:class:`dict` containing metadata for the new export.
7.989119
8.208589
0.973263
if export_type in TALK_EXPORT_TYPES: return talk.get_data_request( 'project-{}'.format(self.id), export_type.replace('talk_', '') )[0] return self.http_get( self._export_path(export_type), )[0]
def describe_export(self, export_type)
Fetch metadata for an export. - **export_type** is a string specifying which type of export to look up. Returns a :py:class:`dict` containing metadata for the export.
7.162036
8.174932
0.876097
scope = kwargs.pop('scope', None) if not scope: return super(Classification, cls).where(**kwargs) return cls.paginated_results(*cls.http_get(scope, params=kwargs))
def where(cls, **kwargs)
where(scope=None, **kwargs) Like :py:meth:`.PanoptesObject.where`, but also allows setting the query scope. - **scope** can be any of the values given in the `Classification Collection API documentation <http://docs.panoptes.apiary.io/#reference/classification/classification/list-all-classifications>`_ without the leading slash. Examples:: my_classifications = Classification.where() my_proj_123_classifications = Classification.where(project_id=123) all_proj_123_classifications = Classification.where( scope='project', project_id=123, )
8.27215
6.585032
1.256205
if not id and not slug: return None try: return cls.where(id=id, slug=slug).next() except StopIteration: raise PanoptesAPIException( "Could not find collection with slug='{}'".format(slug) )
def find(cls, id='', slug=None)
Similar to :py:meth:`.PanoptesObject.find`, but allows lookup by slug as well as ID. Examples:: collection_1234 = Collection.find(1234) my_collection = Collection.find(slug="example/my-collection")
4.472981
3.948447
1.132846
if not ( isinstance(subject, Subject) or isinstance(subject, (int, str,)) ): raise TypeError if isinstance(subject, Subject): _subject_id = subject.id else: _subject_id = str(subject) self.http_post( '{}/links/default_subject'.format(self.id), json={'default_subject': _subject_id}, )
def set_default_subject(self, subject)
Sets the subject's location media URL as a link. It displays as the default subject on PFE. - **subject** can be a single :py:class:`.Subject` instance or a single subject ID. Examples:: collection.set_default_subject(1234) collection.set_default_subject(Subject(1234))
3.711778
3.77249
0.983906
for sms in SetMemberSubject.where(subject_set_id=self.id): yield sms.links.subject
def subjects(self)
A generator which yields :py:class:`.Subject` objects which are in this subject set. Examples:: for subject in subject_set.subjects: print(subject.id)
27.240767
35.243725
0.772925
subjects = [ s.id if isinstance(s, Subject) else s for s in subjects ] return Workflow.http_post( '{}/retired_subjects'.format(self.id), json={ 'subject_ids': subjects, 'retirement_reason': reason } )
def retire_subjects(self, subjects, reason='other')
Retires subjects in this workflow. - **subjects** can be a list of :py:class:`Subject` instances, a list of subject IDs, a single :py:class:`Subject` instance, or a single subject ID. - **reason** gives the reason the :py:class:`Subject` has been retired. Defaults to **other**. Examples:: workflow.retire_subjects(1234) workflow.retire_subjects([1,2,3,4]) workflow.retire_subjects(Subject(1234)) workflow.retire_subjects([Subject(12), Subject(34)])
4.100728
4.435869
0.924447
return [ r.links.owner for r in ProjectRole.where(project_id=self.id) if len(roles) == 0 or len(set(roles) & set(r.roles)) > 0 ]
def collaborators(self, *roles)
Returns a list of :py:class:`.User` who are collaborators on this project. Zero or more role arguments can be passed as strings to narrow down the results. If any roles are given, users who possess at least one of the given roles are returned. Examples:: all_collabs = project.collaborators() moderators = project.collaborators("moderators") moderators_and_translators = project.collaborators( "moderators", "translators", )
5.064729
5.586278
0.906637
cls._local.panoptes_client = cls(*args, **kwargs) cls._local.panoptes_client.login() return cls._local.panoptes_client
def connect(cls, *args, **kwargs)
connect(username=None, password=None, endpoint=None, admin=False) Configures the Panoptes client for use. Note that there is no need to call this unless you need to pass one or more of the below arguments. By default, the client will connect to the public Zooniverse.org API as an anonymous user. All arguments are optional: - **username** is your Zooniverse.org username. - **password** is your Zooniverse.org password. - **endpoint** is the HTTP API endpoint you'd like to connect to. Defaults to **https://www.zooniverse.org**. Should not include a trailing slash. - **admin** is a boolean, switching on admin mode if ``True``. Has no effect if the given username is not a Zooniverse.org administrator. Examples:: Panoptes.connect(username='example', password='example') Panoptes.connect(endpoint='https://panoptes.example.com')
4.314887
4.928549
0.875488
_id = kwargs.pop('id', '') return cls.paginated_results(*cls.http_get(_id, params=kwargs))
def where(cls, **kwargs)
Returns a generator which yields instances matching the given query arguments. For example, this would yield all :py:class:`.Project`:: Project.where() And this would yield all launch approved :py:class:`.Project`:: Project.where(launch_approved=True)
13.7144
16.564466
0.827941
if not _id: return None try: return next(cls.where(id=_id)) except StopIteration: raise PanoptesAPIException( "Could not find {} with id='{}'".format(cls.__name__, _id) )
def find(cls, _id)
Returns the individual instance with the given ID, if it exists. Raises :py:class:`PanoptesAPIException` if the object with that ID is not found.
3.855725
2.765221
1.394364
if not self.id: save_method = Panoptes.client().post force_reload = False else: if not self.modified_attributes: return if not self._loaded: self.reload() save_method = Panoptes.client().put force_reload = True response, response_etag = save_method( self.url(self.id), json={self._api_slug: self._savable_dict( modified_attributes=self.modified_attributes )}, etag=self.etag ) raw_resource_response = response[self._api_slug][0] self.set_raw(raw_resource_response, response_etag) if force_reload: self._loaded = False return response
def save(self)
Saves the object. If the object has not been saved before (i.e. it's new), then a new object is created. Otherwise, any changes are submitted to the API.
4.53286
4.10872
1.103229
if not self.id: return reloaded_object = self.__class__.find(self.id) self.set_raw( reloaded_object.raw, reloaded_object.etag )
def reload(self)
Re-fetches the object from the API, discarding any local changes. Returns without doing anything if the object is new.
5.972281
4.360356
1.369677
if not self.id: return if not self._loaded: self.reload() return self.http_delete(self.id, etag=self.etag)
def delete(self)
Deletes the object. Returns without doing anything if the object is new.
7.595754
5.961069
1.274227
if self.readonly: raise NotImplementedError( '{} links can\'t be modified'.format(self._slug) ) if not self._parent.id: raise ObjectNotSavedException( "Links can not be modified before the object has been saved." ) _objs = [obj for obj in self._build_obj_list(objs) if obj not in self] if not _objs: return self._parent.http_post( '{}/links/{}'.format(self._parent.id, self._slug), json={self._slug: _objs}, retry=True, ) self._linked_object_ids.extend(_objs)
def add(self, objs)
Adds the given `objs` to this `LinkCollection`. - **objs** can be a list of :py:class:`.PanoptesObject` instances, a list of object IDs, a single :py:class:`.PanoptesObject` instance, or a single object ID. Examples:: organization.links.projects.add(1234) organization.links.projects.add(Project(1234)) workflow.links.subject_sets.add([1,2,3,4]) workflow.links.subject_sets.add([Project(12), Project(34)])
4.93842
4.527738
1.090704
if self.readonly: raise NotImplementedError( '{} links can\'t be modified'.format(self._slug) ) if not self._parent.id: raise ObjectNotSavedException( "Links can not be modified before the object has been saved." ) _objs = [obj for obj in self._build_obj_list(objs) if obj in self] if not _objs: return _obj_ids = ",".join(_objs) self._parent.http_delete( '{}/links/{}/{}'.format(self._parent.id, self._slug, _obj_ids), retry=True, ) self._linked_object_ids = [ obj for obj in self._linked_object_ids if obj not in _objs ]
def remove(self, objs)
Removes the given `objs` from this `LinkCollection`. - **objs** can be a list of :py:class:`.PanoptesObject` instances, a list of object IDs, a single :py:class:`.PanoptesObject` instance, or a single object ID. Examples:: organization.links.projects.remove(1234) organization.links.projects.remove(Project(1234)) workflow.links.subject_sets.remove([1,2,3,4]) workflow.links.subject_sets.remove([Project(12), Project(34)])
4.367526
4.102867
1.064506
# Promote dicts to Namelists if not isinstance(nml, Namelist) and isinstance(nml, dict): nml_in = Namelist(nml) else: nml_in = nml nml_in.write(nml_path, force=force, sort=sort)
def write(nml, nml_path, force=False, sort=False)
Save a namelist to disk using either a file object or its file path. File object usage: >>> with open(nml_path, 'w') as nml_file: >>> f90nml.write(nml, nml_file) File path usage: >>> f90nml.write(nml, 'data.nml') This function is equivalent to the ``write`` function of the ``Namelist`` object ``nml``. >>> nml.write('data.nml') By default, ``write`` will not overwrite an existing file. To override this, use the ``force`` flag. >>> nml.write('data.nml', force=True) To alphabetically sort the ``Namelist`` keys, use the ``sort`` flag. >>> nml.write('data.nml', sort=True)
3.225065
3.463808
0.931075
parser = Parser() return parser.read(nml_path, nml_patch, out_path)
def patch(nml_path, nml_patch, out_path=None)
Create a new namelist based on an input namelist and reference dict. >>> f90nml.patch('data.nml', nml_patch, 'patched_data.nml') This function is equivalent to the ``read`` function of the ``Parser`` object with the patch output arguments. >>> parser = f90nml.Parser() >>> nml = parser.read('data.nml', nml_patch, 'patched_data.nml') A patched namelist file will retain any formatting or comments from the original namelist file. Any modified values will be formatted based on the settings of the ``Namelist`` object.
4.571044
8.824044
0.518021
self.trans = Transform(self.size[0], self.size[1], x1, y1, x2, y2)
def setCoords(self, x1, y1, x2, y2)
Set coordinates of window to run from (x1,y1) in the lower-left corner to (x2,y2) in the upper-right corner.
4.038473
4.062569
0.994069
if format.upper() in cairosvg.SURFACES: surface = cairosvg.SURFACES[format.upper()] else: raise Exception("'%s' image format unavailable: use one of %s" % (format.upper(), list(cairosvg.SURFACES.keys()))) return surface.convert(bytestring=str(self), **kwargs)
def convert(self, format="png", **kwargs)
png, ps, pdf, gif, jpg, svg returns image in format as bytes
4.442941
4.311343
1.030524
import PIL.Image bytes = self.convert("png") sfile = io.BytesIO(bytes) pil = PIL.Image.open(sfile) return pil
def toPIL(self, **attribs)
Convert canvas to a PIL image
4.899243
4.735047
1.034677
im = self.toPIL(**attribs) sfile = io.BytesIO() im.save(sfile, format="gif") return sfile.getvalue()
def toGIF(self, **attribs)
Convert canvas to GIF bytes
3.403711
3.394361
1.002755
array = self.toArray() (width, height, depth) = array.size for x in range(width): for y in range(height): yield Pixel(array, x, y)
def getPixels(self)
Return a stream of pixels from current Canvas.
4.243708
4.074062
1.04164
return Point(self.center[0] - self.radius, self.center[1] - self.radius)
def getP1(self)
Left, upper point
4.545643
3.936727
1.154676
return Point(self.center[0] + self.radius, self.center[1] + self.radius)
def getP2(self)
Right, lower point
4.600185
3.996555
1.151038
self.error = error if not self.is_running.is_set(): def loop(): self.need_to_stop.clear() self.is_running.set() for robot in self.robots: if robot.brain: self.runBrain(robot.brain) count = 0 while not self.need_to_stop.isSet(): if not self.paused.is_set(): self.clock += self.sim_time for robot in self.robots: try: robot.update() except Exception as exc: self.need_to_stop.set() if error: error.value = "Error: %s. Now stopping simulation." % str(exc) else: raise if gui: self.draw() if count % self.gui_update == 0: if "canvas" in set_values: set_values["canvas"].value = str(self.render()) if "energy" in set_values: if len(self.robots) > 0: set_values["energy"].value = str(self.robots[0].energy) count += 1 self.realsleep(self.sim_time) if self.robots[0].energy <= 0: self.need_to_stop.set() self.is_running.clear() for robot in self.robots: robot.stop() threading.Thread(target=loop).start()
def start_sim(self, gui=True, set_values={}, error=None)
Run the simulation in the background, showing the GUI by default.
2.931866
2.899255
1.011248
from calysto.display import display, clear_output canvas = self.render() clear_output(wait=True) display(canvas)
def draw(self)
Render and draw the world and robots.
8.807503
8.021418
1.097998
start = self.time() while (self.time() - start < seconds and not self.need_to_stop.is_set()): self.need_to_stop.wait(self.sim_time)
def sleep(self, seconds)
Sleep in simulated time.
4.214789
3.767939
1.118593
if self.error: self.error.value = "" def wrapper(): self.brain_running.set() try: f() except KeyboardInterrupt: # Just stop pass except Exception as e: if self.error: self.error.value = "<pre style='background: #fdd'>" + traceback.format_exc() + "</pre>" else: raise finally: self.brain_running.clear() # Otherwise, will show error threading.Thread(target=wrapper).start()
def runBrain(self, f)
Run a brain program in the background.
4.291976
4.107275
1.044969
dx, dy = map(lambda v: v * lam_percent, self.psize) total = 0 while total < count: points = np.random.poisson(lam=(dx, dy), size=(count, 2)) for x, y in points: px, py = (int(x - dx + cx), int(y - dy + cy)) if self.getPatch(px, py) is None: self.setPatch(px, py, item) total += 1 if total == count: break
def addCluster(self, cx, cy, item, count, lam_percent=.25)
Add a Poisson cluster of count items around (x,y).
3.202787
2.962228
1.081209
self.vx = vx self.sleep(seconds) self.vx = 0
def forward(self, seconds, vx=5)
Move continuously in simulator for seconds and velocity vx.
4.482998
3.916874
1.144535
length = len(codon) retval = int(codon) return retval/(10 ** (length - 1)) - 5.0
def codon2weight(self, codon)
Turn a codon of "000" to "999" to a number between -5.0 and 5.0.
9.171851
5.289417
1.734
if length is None: length = self.clen retval = 0 weight = min(max(weight + 5.0, 0), 10.0) * (10 ** (length - 1)) for i in range(length): if i == length - 1: # last one d = int(round(weight / (10 ** (length - i - 1)))) else: d = int(weight / (10 ** (length - i - 1))) weight = weight % (10 ** (length - i - 1)) retval += d * (10 ** (length - i - 1)) return ("%0" + str(length) + "d") % retval
def weight2codon(self, weight, length=None)
Given a weight between -5 and 5, turn it into a codon, eg "000" to "999"
2.656588
2.413423
1.100755
return (isinstance(val, list) and any(isinstance(v, vtype) for v in val) and all((isinstance(v, vtype) or v is None) for v in val))
def is_nullable_list(val, vtype)
Return True if list contains either values of type `vtype` or None.
2.539311
2.24828
1.129446
if isinstance(width, int): if width >= 0: self._column_width = width else: raise ValueError('Column width must be nonnegative.') else: raise TypeError('Column width must be a nonnegative integer.')
def column_width(self, width)
Validate and set the column width.
2.33411
2.112263
1.105028
# Explicit indent setting if isinstance(value, str): if value.isspace() or len(value) == 0: self._indent = value else: raise ValueError('String indentation can only contain ' 'whitespace.') # Set indent width elif isinstance(value, int): if value >= 0: self._indent = value * ' ' else: raise ValueError('Indentation spacing must be nonnegative.') else: raise TypeError('Indentation must be specified by string or space ' 'width.')
def indent(self, value)
Validate and set the indent width.
3.684388
3.488928
1.056023
if not isinstance(value, bool): raise TypeError('end_comma attribute must be a logical type.') self._end_comma = value
def end_comma(self, value)
Validate and set the comma termination flag.
4.9332
4.029046
1.224409
if not isinstance(value, bool): raise TypeError('index_spacing attribute must be a logical type.') self._index_spacing = value
def index_spacing(self, value)
Validate and set the index_spacing flag.
4.998543
3.801184
1.314996
if not isinstance(value, bool): raise TypeError('uppercase attribute must be a logical type.') self._uppercase = value
def uppercase(self, value)
Validate and set the uppercase flag.
6.931507
5.240732
1.322622
if isinstance(value, str): # Duck-test the format string; raise ValueError on fail '{0:{1}}'.format(1.23, value) self._float_format = value else: raise TypeError('Floating point format code must be a string.')
def float_format(self, value)
Validate and set the upper case flag.
8.548389
7.604915
1.124061
if not any(isinstance(value, t) for t in (list, tuple)): raise TypeError("Logical representation must be a tuple with " "a valid true and false value.") if not len(value) == 2: raise ValueError("List must contain two values.") self.false_repr = value[0] self.true_repr = value[1]
def logical_repr(self, value)
Set the string representation of logical values.
3.73827
3.631502
1.0294
if isinstance(value, str): if not (value.lower().startswith('f') or value.lower().startswith('.f')): raise ValueError("Logical false representation must start " "with 'F' or '.F'.") else: self._logical_repr[0] = value else: raise TypeError('Logical false representation must be a string.')
def false_repr(self, value)
Validate and set the logical false representation.
3.832059
3.094126
1.238495
# TODO: Validate contents? (May want to set before adding the data.) if not isinstance(value, dict): raise TypeError('start_index attribute must be a dict.') self._start_index = value
def start_index(self, value)
Validate and set the vector start index.
8.917084
8.302082
1.074078
nml_is_file = hasattr(nml_path, 'read') if not force and not nml_is_file and os.path.isfile(nml_path): raise IOError('File {0} already exists.'.format(nml_path)) nml_file = nml_path if nml_is_file else open(nml_path, 'w') try: self._writestream(nml_file, sort) finally: if not nml_is_file: nml_file.close()
def write(self, nml_path, force=False, sort=False)
Write Namelist to a Fortran 90 namelist file. >>> nml = f90nml.read('input.nml') >>> nml.write('out.nml')
2.141816
2.667052
0.803065
for sec in nml_patch: if sec not in self: self[sec] = Namelist() self[sec].update(nml_patch[sec])
def patch(self, nml_patch)
Update the namelist from another partial or full namelist. This is different from the intrinsic `update()` method, which replaces a namelist section. Rather, it updates the values within a section.
3.696156
3.11101
1.188089
for key, value in self.items(): for inner_key, inner_value in value.items(): yield (key, inner_key), inner_value
def groups(self)
Return an iterator that spans values with group and variable names. Elements of the iterator consist of a tuple containing two values. The first is internal tuple containing the current namelist group and its variable name. The second element of the returned tuple is the value associated with the current group and variable.
3.30924
3.052592
1.084076
if self._newline: print(file=nml_file) self._newline = True if self.uppercase: grp_name = grp_name.upper() if sort: grp_vars = Namelist(sorted(grp_vars.items(), key=lambda t: t[0])) print('&{0}'.format(grp_name), file=nml_file) for v_name, v_val in grp_vars.items(): v_start = grp_vars.start_index.get(v_name, None) for v_str in self._var_strings(v_name, v_val, v_start=v_start): nml_line = self.indent + '{0}'.format(v_str) print(nml_line, file=nml_file) print('/', file=nml_file)
def _write_nmlgrp(self, grp_name, grp_vars, nml_file, sort=False)
Write namelist group to target file.
3.056417
2.927144
1.044164
# TODO: Preserve ordering nmldict = OrderedDict(self) # Search for namelists within the namelist # TODO: Move repeated stuff to new functions for key, value in self.items(): if isinstance(value, Namelist): nmldict[key] = value.todict(complex_tuple) elif isinstance(value, complex) and complex_tuple: nmldict[key] = [value.real, value.imag] try: nmldict['_complex'].append(key) except KeyError: nmldict['_complex'] = [key] elif isinstance(value, list): complex_list = False for idx, entry in enumerate(value): if isinstance(entry, Namelist): nmldict[key][idx] = entry.todict(complex_tuple) elif isinstance(entry, complex) and complex_tuple: nmldict[key][idx] = [entry.real, entry.imag] complex_list = True if complex_list: try: nmldict['_complex'].append(key) except KeyError: nmldict['_complex'] = [key] # Append the start index if present if self.start_index: nmldict['_start_index'] = self.start_index return nmldict
def todict(self, complex_tuple=False)
Return a dict equivalent to the namelist. Since Fortran variables and names cannot start with the ``_`` character, any keys starting with this token denote metadata, such as starting index. The ``complex_tuple`` flag is used to convert complex data into an equivalent 2-tuple, with metadata stored to flag the variable as complex. This is primarily used to facilitate the storage of the namelist into an equivalent format which does not support complex numbers, such as JSON or YAML.
2.499367
2.326273
1.074408
if isinstance(value, bool): return self._f90bool(value) elif isinstance(value, numbers.Integral): return self._f90int(value) elif isinstance(value, numbers.Real): return self._f90float(value) elif isinstance(value, numbers.Complex): return self._f90complex(value) elif isinstance(value, basestring): return self._f90str(value) elif value is None: return '' else: raise ValueError('Type {0} of {1} cannot be converted to a Fortran' ' type.'.format(type(value), value))
def _f90repr(self, value)
Convert primitive Python types to equivalent Fortran strings.
1.857173
1.811174
1.025398
return '({0:{fmt}}, {1:{fmt}})'.format(value.real, value.imag, fmt=self.float_format)
def _f90complex(self, value)
Return a Fortran 90 representation of a complex number.
5.087142
4.2477
1.197623
# Replace Python quote escape sequence with Fortran result = repr(str(value)).replace("\\'", "''").replace('\\"', '""') # Un-escape the Python backslash escape sequence result = result.replace('\\\\', '\\') return result
def _f90str(self, value)
Return a Fortran 90 representation of a string.
8.170658
7.022153
1.163555
response_keys = set(page.keys()) uncommon_keys = response_keys - self.common_keys for possible_data_key in uncommon_keys: element = page[possible_data_key] if isinstance(element, dict): return [self.representation(self.client, self.service_name, element)] if isinstance(element, list): return [self.representation(self.client, self.service_name, x) for x in element]
def extract_data(self, page)
Extract the AppNexus object or list of objects from the response
4.005986
3.745061
1.069672
page = self.get_page(num_elements=1) data = self.extract_data(page) if data: return data[0]
def first(self)
Extract the first AppNexus object present in the response
6.060071
4.930116
1.229194
if num_elements is None: num_elements = self.batch_size specs = self.specs.copy() specs.update(start_element=start_element, num_elements=num_elements) return self.client.get(self.service_name, **specs)
def get_page(self, start_element=0, num_elements=None)
Get a page (100 elements) starting from `start_element`
2.94344
2.889517
1.018662
initial_count = self.count() count_with_skip = max(0, initial_count - self._skip) size = min(count_with_skip, self._limit) return size
def size(self)
Return the number of elements of the cursor with skip and limit
5.077178
3.940612
1.288424
if align == "left": return (s + (p * n))[:n] + sep elif align == "center": pos = n + len(s)/2 - n/2 return ((p * n) + s + (p * n))[pos:pos + n] + sep elif align == "right": return ((p * n) + s)[-n:] + sep
def pad(s, n, p = " ", sep = "|", align = "left")
Returns a padded string. s = string to pad n = width of string to return sep = separator (on end of string) align = text alignment, "left", "center", or "right"
2.61171
2.622707
0.995807
for key in dict2: dict1[key] = list(map(lambda a,b: a + b, dict1.get(key, [0,0,0,0]), dict2[key])) return dict1
def sumMerge(dict1, dict2)
Adds two dictionaries together, and merges into the first, dict1. Returns first dict.
2.49698
2.839141
0.879484
if mode == 'pickle': import pickle fp = open(filename) network = pickle.load(fp) fp.close() return network elif mode in ['plain', 'conx']: fp = open(filename, "r") line = fp.readline() network = None while line: if line.startswith("layer,"): # layer, name, size temp, name, sizeStr = line.split(",") name = name.strip() size = int(sizeStr) network.addLayer(name, size) line = fp.readline() weights = [float(f) for f in line.split()] for i in range(network[name].size): network[name].weight[i] = weights[i] elif line.startswith("connection,"): # connection, fromLayer, toLayer temp, nameFrom, nameTo = line.split(",") nameFrom, nameTo = nameFrom.strip(), nameTo.strip() network.connect(nameFrom, nameTo) for i in range(network[nameFrom].size): line = fp.readline() weights = [float(f) for f in line.split()] for j in range(network[nameTo].size): network[nameFrom, nameTo].weight[i][j] = weights[j] elif line.startswith("parameter,"): temp, exp = line.split(",") exec(exp) # network is the neural network object elif line.startswith("network,"): temp, netType = line.split(",") netType = netType.strip().lower() if netType == "cascornetwork": from pyrobot.brain.cascor import CascorNetwork network = CascorNetwork() elif netType == "network": network = Network() elif netType == "srn": network = SRN() else: raise AttributeError("unknown network type: '%s'" % netType) line = fp.readline() return network
def loadNetworkFromFile(filename, mode = 'pickle')
Deprecated. Use loadNetwork instead.
2.657619
2.622089
1.01355
thunk = kwargs.get("thunk", lambda: random.random()) if not args: return [thunk() for i in range(n)] A = [] for i in range(n): A.append( ndim(*args, thunk=thunk) ) return A
def ndim(n, *args, **kwargs)
Makes a multi-dimensional array of random floats. (Replaces RandomArray).
4.495357
3.590033
1.252177
if type(size) == type(1): size = (size,) temp = Numeric.array( ndim(*size), thunk=lambda: random.gauss(0, 1)) * (2.0 * bound) return temp - bound
def randomArray2(size, bound)
Returns an array initialized to random values between -bound and bound distributed in a gaussian probability distribution more appropriate for a Tanh activation function.
9.144854
8.785654
1.040885
if type(size) == type(1): size = (size,) temp = Numeric.array( ndim(*size) ) * (2.0 * bound) return temp - bound
def randomArray(size, bound)
Returns an array initialized to random values between -max and max.
9.149446
8.54887
1.070252
print(name + ": ", end=" ") cnt = 0 for i in a: print("%4.2f" % i, end=" ") if width > 0 and (cnt + 1) % width == 0: print('') cnt += 1
def displayArray(name, a, width = 0)
Prints an array (any sequence of floats, really) to the screen.
2.753612
2.678041
1.028219
string = name + ": " cnt = 0 for i in a: string += "%4.2f " % i if width > 0 and (cnt + 1) % width == 0: string += '\n' cnt += 1 return string
def toStringArray(name, a, width = 0)
Returns an array (any sequence of floats, really) as a string.
2.848087
2.68099
1.062326
for i in a: fp.write("%f%s" % (i, delim)) if nl: fp.write("\n")
def writeArray(fp, a, delim = " ", nl = 1)
Writes a sequence a of floats to file pointed to by file pointer.
2.491161
2.294163
1.085869
self.randomize() self.dweight = Numeric.zeros(self.size, 'f') self.delta = Numeric.zeros(self.size, 'f') self.wed = Numeric.zeros(self.size, 'f') self.wedLast = Numeric.zeros(self.size, 'f') self.target = Numeric.zeros(self.size, 'f') self.error = Numeric.zeros(self.size, 'f') self.activation = Numeric.zeros(self.size, 'f') self.netinput = Numeric.zeros(self.size, 'f') self.targetSet = 0 self.activationSet = 0 self.verify = 1 # layer report of stats: self.pcorrect = 0 self.ptotal = 0 self.correct = 0 # misc: self.minTarget = 0.0 self.maxTarget = 1.0 self.minActivation = 0.0 self.maxActivation = 1.0
def initialize(self)
Initializes important node values to zero for each node in the layer (target, error, activation, dbias, delta, netinput, bed).
3.042897
2.580528
1.179176
if force or not self.frozen: self.weight = randomArray(self.size, self._maxRandom)
def randomize(self, force = 0)
Initialize node biases to random values in the range [-max, max].
14.830421
13.247418
1.119495
# overwrites current data if newsize <= 0: raise LayerError('Layer size changed to zero.', newsize) minSize = min(self.size, newsize) bias = randomArray(newsize, self._maxRandom) Numeric.put(bias, Numeric.arange(minSize), self.weight) self.weight = bias self.size = newsize self.displayWidth = newsize self.targetSet = 0 self.activationSet = 0 self.target = Numeric.zeros(self.size, 'f') self.error = Numeric.zeros(self.size, 'f') self.activation = Numeric.zeros(self.size, 'f') self.dweight = Numeric.zeros(self.size, 'f') self.delta = Numeric.zeros(self.size, 'f') self.netinput = Numeric.zeros(self.size, 'f') self.wed = Numeric.zeros(self.size, 'f') self.wedLast = Numeric.zeros(self.size, 'f')
def changeSize(self, newsize)
Changes the size of the layer. Should only be called through Network.changeLayerSize().
3.648044
3.470975
1.051014
tss = self.TSSError() return math.sqrt(tss / self.size)
def RMSError(self)
Returns Root Mean Squared Error for this layer's pattern.
15.668197
8.858873
1.768644
return Numeric.add.reduce(Numeric.fabs(self.target - self.activation) < tolerance)
def getCorrect(self, tolerance)
Returns the number of nodes within tolerance of the target.
12.711768
10.448794
1.216578
maxvalue = -10000 maxpos = -1 ttlvalue = 0 if type == 'activation': ttlvalue = Numeric.add.reduce(self.activation) maxpos = Numeric.argmax(self.activation) maxvalue = self.activation[maxpos] elif type == 'target': # note that backprop() resets self.targetSet flag if self.verify and self.targetSet == 0: raise LayerError('getWinner() called with \'target\' but target has not been set.', \ self.targetSet) ttlvalue = Numeric.add.reduce(self.target) maxpos = Numeric.argmax(self.target) maxvalue = self.target[maxpos] else: raise LayerError('getWinner() called with unknown layer attribute.', \ type) if self.size > 0: avgvalue = ttlvalue / float(self.size) else: raise LayerError('getWinner() called for layer of size zero.', \ self.size) return maxpos, maxvalue, avgvalue
def getWinner(self, type = 'activation')
Returns the winner of the type specified {'activation' or 'target'}.
3.446731
3.369811
1.022826