code
string
signature
string
docstring
string
loss_without_docstring
float64
loss_with_docstring
float64
factor
float64
''' Given an FSM and a multiplier, return the multiplied FSM. ''' if multiplier < 0: raise Exception("Can't multiply an FSM by " + repr(multiplier)) alphabet = self.alphabet # metastate is a set of iterations+states initial = {(self.initial, 0)} def final(state): '''If the initial state is final then multiplying doesn't alter that''' for (substate, iteration) in state: if substate == self.initial \ and (self.initial in self.finals or iteration == multiplier): return True return False def follow(current, symbol): next = [] for (substate, iteration) in current: if iteration < multiplier \ and substate in self.map \ and symbol in self.map[substate]: next.append((self.map[substate][symbol], iteration)) # final of self? merge with initial on next iteration if self.map[substate][symbol] in self.finals: next.append((self.initial, iteration + 1)) if len(next) == 0: raise OblivionError return frozenset(next) return crawl(alphabet, initial, final, follow).reduce()
def times(self, multiplier)
Given an FSM and a multiplier, return the multiplied FSM.
4.809729
4.496314
1.069705
''' Return a finite state machine which will accept any string NOT accepted by self, and will not accept any string accepted by self. This is more complicated if there are missing transitions, because the missing "dead" state must now be reified. ''' alphabet = self.alphabet initial = {0 : self.initial} def follow(current, symbol): next = {} if 0 in current and current[0] in self.map and symbol in self.map[current[0]]: next[0] = self.map[current[0]][symbol] return next # state is final unless the original was def final(state): return not (0 in state and state[0] in self.finals) return crawl(alphabet, initial, final, follow).reduce()
def everythingbut(self)
Return a finite state machine which will accept any string NOT accepted by self, and will not accept any string accepted by self. This is more complicated if there are missing transitions, because the missing "dead" state must now be reified.
6.280563
2.949206
2.129577
''' Return a new FSM such that for every string that self accepts (e.g. "beer", the new FSM accepts the reversed string ("reeb"). ''' alphabet = self.alphabet # Start from a composite "state-set" consisting of all final states. # If there are no final states, this set is empty and we'll find that # no other states get generated. initial = frozenset(self.finals) # Find every possible way to reach the current state-set # using this symbol. def follow(current, symbol): next = frozenset([ prev for prev in self.map for state in current if symbol in self.map[prev] and self.map[prev][symbol] == state ]) if len(next) == 0: raise OblivionError return next # A state-set is final if the initial state is in it. def final(state): return self.initial in state # Man, crawl() is the best! return crawl(alphabet, initial, final, follow)
def reversed(self)
Return a new FSM such that for every string that self accepts (e.g. "beer", the new FSM accepts the reversed string ("reeb").
7.096805
4.868345
1.457745
'''A state is "live" if a final state can be reached from it.''' reachable = [state] i = 0 while i < len(reachable): current = reachable[i] if current in self.finals: return True if current in self.map: for symbol in self.map[current]: next = self.map[current][symbol] if next not in reachable: reachable.append(next) i += 1 return False
def islive(self, state)
A state is "live" if a final state can be reached from it.
2.498192
2.057833
1.213992
''' Generate strings (lists of symbols) that this FSM accepts. Since there may be infinitely many of these we use a generator instead of constructing a static list. Strings will be sorted in order of length and then lexically. This procedure uses arbitrary amounts of memory but is very fast. There may be more efficient ways to do this, that I haven't investigated yet. You can use this in list comprehensions. ''' # Many FSMs have "dead states". Once you reach a dead state, you can no # longer reach a final state. Since many strings may end up here, it's # advantageous to constrain our search to live states only. livestates = set(state for state in self.states if self.islive(state)) # We store a list of tuples. Each tuple consists of an input string and the # state that this input string leads to. This means we don't have to run the # state machine from the very beginning every time we want to check a new # string. strings = [] # Initial entry (or possibly not, in which case this is a short one) cstate = self.initial cstring = [] if cstate in livestates: if cstate in self.finals: yield cstring strings.append((cstring, cstate)) # Fixed point calculation i = 0 while i < len(strings): (cstring, cstate) = strings[i] if cstate in self.map: for symbol in sorted(self.map[cstate], key=key): nstate = self.map[cstate][symbol] nstring = cstring + [symbol] if nstate in livestates: if nstate in self.finals: yield nstring strings.append((nstring, nstate)) i += 1
def strings(self)
Generate strings (lists of symbols) that this FSM accepts. Since there may be infinitely many of these we use a generator instead of constructing a static list. Strings will be sorted in order of length and then lexically. This procedure uses arbitrary amounts of memory but is very fast. There may be more efficient ways to do this, that I haven't investigated yet. You can use this in list comprehensions.
4.910528
2.918118
1.682772
''' Consider the FSM as a set of strings and return the cardinality of that set, or raise an OverflowError if there are infinitely many ''' num_strings = {} def get_num_strings(state): # Many FSMs have at least one oblivion state if self.islive(state): if state in num_strings: if num_strings[state] is None: # "computing..." # Recursion! There are infinitely many strings recognised raise OverflowError(state) return num_strings[state] num_strings[state] = None # i.e. "computing..." n = 0 if state in self.finals: n += 1 if state in self.map: for symbol in self.map[state]: n += get_num_strings(self.map[state][symbol]) num_strings[state] = n else: # Dead state num_strings[state] = 0 return num_strings[state] return get_num_strings(self.initial)
def cardinality(self)
Consider the FSM as a set of strings and return the cardinality of that set, or raise an OverflowError if there are infinitely many
3.974552
3.095526
1.283967
''' For completeness only, since `set.copy()` also exists. FSM objects are immutable, so I can see only very odd reasons to need this. ''' return fsm( alphabet = self.alphabet, states = self.states, initial = self.initial, finals = self.finals, map = self.map, )
def copy(self)
For completeness only, since `set.copy()` also exists. FSM objects are immutable, so I can see only very odd reasons to need this.
7.277059
2.076032
3.505274
''' Compute the Brzozowski derivative of this FSM with respect to the input string of symbols. <https://en.wikipedia.org/wiki/Brzozowski_derivative> If any of the symbols are not members of the alphabet, that's a KeyError. If you fall into oblivion, then the derivative is an FSM accepting no strings. ''' try: # Consume the input string. state = self.initial for symbol in input: if not symbol in self.alphabet: if not anything_else in self.alphabet: raise KeyError(symbol) symbol = anything_else # Missing transition = transition to dead state if not (state in self.map and symbol in self.map[state]): raise OblivionError state = self.map[state][symbol] # OK so now we have consumed that string, use the new location as the # starting point. return fsm( alphabet = self.alphabet, states = self.states, initial = state, finals = self.finals, map = self.map, ) except OblivionError: # Fell out of the FSM. The derivative of this FSM is the empty FSM. return null(self.alphabet)
def derive(self, input)
Compute the Brzozowski derivative of this FSM with respect to the input string of symbols. <https://en.wikipedia.org/wiki/Brzozowski_derivative> If any of the symbols are not members of the alphabet, that's a KeyError. If you fall into oblivion, then the derivative is an FSM accepting no strings.
4.884939
2.800274
1.74445
if self.url_prefix: url = '{prefix}{url}'.format(prefix=self.url_prefix, url=endpoint.url) else: url = endpoint.url self.add_url_rule( url, view_func=endpoint.as_view(endpoint.get_name()), )
def add_endpoint(self, endpoint)
Register an :class:`.Endpoint` aginst this resource. :param endpoint: :class:`.Endpoint` API Endpoint class Usage:: foo_resource = Resource('example', __name__) class MyEndpoint(Endpoint): url = '/example' name = 'myendpoint' foo_resource.add_endpoint(MyEndpoint)
2.801992
2.872587
0.975425
'''reduce() the result of this method call (unless you already reduced it).''' def new_method(self, *args, **kwargs): result = method(self, *args, **kwargs) if result == self: return result return result.reduce() return new_method
def reduce_after(method)
reduce() the result of this method call (unless you already reduced it).
4.399828
3.058843
1.438396
''' Take a method which acts on 0 or more regular expression objects... return a new method which simply converts them all to FSMs, calls the FSM method on them instead, then converts the result back to a regular expression. We do this for several of the more annoying operations. ''' fsm_method = getattr(fsm.fsm, method.__name__) def new_method(*legos): alphabet = set().union(*[lego.alphabet() for lego in legos]) return from_fsm(fsm_method(*[lego.to_fsm(alphabet) for lego in legos])) return new_method
def call_fsm(method)
Take a method which acts on 0 or more regular expression objects... return a new method which simply converts them all to FSMs, calls the FSM method on them instead, then converts the result back to a regular expression. We do this for several of the more annoying operations.
6.993196
2.26703
3.08474
''' Parse the entire supplied string as an instance of the present class. Mainly for internal use in unit tests because it drops through to match() in a convenient way. ''' obj, i = cls.match(string, 0) if i != len(string): raise Exception("Could not parse '" + string + "' beyond index " + str(i)) return obj
def parse(cls, string)
Parse the entire supplied string as an instance of the present class. Mainly for internal use in unit tests because it drops through to match() in a convenient way.
6.970455
2.3675
2.944226
''' Each time next() is called on this iterator, a new string is returned which will the present lego piece can match. StopIteration is raised once all such strings have been returned, although a regex with a * in may match infinitely many strings. ''' # In the case of a regex like "[^abc]", there are infinitely many (well, a # very large finite number of) single characters which will match. It's not # productive to iterate over all of these giving every single example. # You must supply your own "otherchar" to stand in for all of these # possibilities. for string in self.to_fsm().strings(): # Have to represent `fsm.anything_else` somehow. if fsm.anything_else in string: if otherchar == None: raise Exception("Please choose an 'otherchar'") string = [ otherchar if char == fsm.anything_else else char for char in string ] yield "".join(string)
def strings(self, otherchar=None)
Each time next() is called on this iterator, a new string is returned which will the present lego piece can match. StopIteration is raised once all such strings have been returned, although a regex with a * in may match infinitely many strings.
9.932012
5.149224
1.928837
''' Multiplication is not well-defined for all pairs of multipliers because the resulting possibilities do not necessarily form a continuous range. For example: {0,x} * {0,y} = {0,x*y} {2} * {3} = {6} {2} * {1,2} = ERROR The proof isn't simple but suffice it to say that {p,p+q} * {r,r+s} is equal to {pr, (p+q)(r+s)} only if s=0 or qr+1 >= p. If not, then at least one gap appears in the range. The first inaccessible number is (p+q)r + 1. ''' return other.optional == bound(0) or \ self.optional * other.mandatory + bound(1) >= self.mandatory
def canmultiplyby(self, other)
Multiplication is not well-defined for all pairs of multipliers because the resulting possibilities do not necessarily form a continuous range. For example: {0,x} * {0,y} = {0,x*y} {2} * {3} = {6} {2} * {1,2} = ERROR The proof isn't simple but suffice it to say that {p,p+q} * {r,r+s} is equal to {pr, (p+q)(r+s)} only if s=0 or qr+1 >= p. If not, then at least one gap appears in the range. The first inaccessible number is (p+q)r + 1.
10.365919
1.707423
6.071089
''' Intersection is not well-defined for all pairs of multipliers. For example: {2,3} & {3,4} = {3} {2,} & {1,7} = {2,7} {2} & {5} = ERROR ''' return not (self.max < other.min or other.max < self.min)
def canintersect(self, other)
Intersection is not well-defined for all pairs of multipliers. For example: {2,3} & {3,4} = {3} {2,} & {1,7} = {2,7} {2} & {5} = ERROR
5.060441
1.66865
3.032655
'''Union is not defined for all pairs of multipliers. e.g. {0,1} | {3,4}''' return not (self.max + bound(1) < other.min or other.max + bound(1) < self.min)
def canunion(self, other)
Union is not defined for all pairs of multipliers. e.g. {0,1} | {3,4}
7.822034
3.54139
2.208747
''' Find the shared part of two multipliers. This is the largest multiplier which can be safely subtracted from both the originals. This may return the "zero" multiplier. ''' mandatory = min(self.mandatory, other.mandatory) optional = min(self.optional, other.optional) return multiplier(mandatory, mandatory + optional)
def common(self, other)
Find the shared part of two multipliers. This is the largest multiplier which can be safely subtracted from both the originals. This may return the "zero" multiplier.
6.817889
2.351487
2.899395
''' "Dock" another mult from this one (i.e. remove part of the tail) and return the result. The reverse of concatenation. This is a lot trickier. e.g. a{4,5} - a{3} = a{1,2} ''' if other.multiplicand != self.multiplicand: raise Exception("Can't subtract " + repr(other) + " from " + repr(self)) return mult(self.multiplicand, self.multiplier - other.multiplier)
def dock(self, other)
"Dock" another mult from this one (i.e. remove part of the tail) and return the result. The reverse of concatenation. This is a lot trickier. e.g. a{4,5} - a{3} = a{1,2}
6.399021
1.939736
3.298914
''' Return the common part of these two mults. This is the largest mult which can be safely subtracted from both the originals. The multiplier on this mult could be zero: this is the case if, for example, the multiplicands disagree. ''' if self.multiplicand == other.multiplicand: return mult(self.multiplicand, self.multiplier.common(other.multiplier)) # Multiplicands disagree, no common part at all. return mult(nothing, zero)
def common(self, other)
Return the common part of these two mults. This is the largest mult which can be safely subtracted from both the originals. The multiplier on this mult could be zero: this is the case if, for example, the multiplicands disagree.
6.216348
2.237873
2.777793
''' Return the common prefix of these two concs; that is, the largest conc which can be safely beheaded() from the front of both. The result could be emptystring. "ZYAA, ZYBB" -> "ZY" "CZ, CZ" -> "CZ" "YC, ZC" -> "" With the "suffix" flag set, works from the end. E.g.: "AAZY, BBZY" -> "ZY" "CZ, CZ" -> "CZ" "CY, CZ" -> "" ''' mults = [] indices = range(min(len(self.mults), len(other.mults))) # e.g. [0, 1, 2, 3] # Work backwards from the end of both concs instead. if suffix: indices = [-i - 1 for i in indices] # e.g. [-1, -2, -3, -4] for i in indices: common = self.mults[i].common(other.mults[i]) # Happens when multiplicands disagree (e.g. "A.common(B)") or if # the multiplicand is shared but the common multiplier is zero # (e.g. "ABZ*.common(CZ)".) if common.multiplier == zero: break mults.append(common) # If we did not remove the entirety of both mults, we cannot continue. if common != self.mults[i] or common != other.mults[i]: break if suffix: mults = reversed(mults) return conc(*mults)
def common(self, other, suffix=False)
Return the common prefix of these two concs; that is, the largest conc which can be safely beheaded() from the front of both. The result could be emptystring. "ZYAA, ZYBB" -> "ZY" "CZ, CZ" -> "CZ" "YC, ZC" -> "" With the "suffix" flag set, works from the end. E.g.: "AAZY, BBZY" -> "ZY" "CZ, CZ" -> "CZ" "CY, CZ" -> ""
4.873902
2.467895
1.974923
''' Subtract another conc from this one. This is the opposite of concatenation. For example, if ABC + DEF = ABCDEF, then logically ABCDEF - DEF = ABC. ''' # e.g. self has mults at indices [0, 1, 2, 3, 4, 5, 6] len=7 # e.g. other has mults at indices [0, 1, 2] len=3 new = list(self.mults) for i in reversed(range(len(other.mults))): # [2, 1, 0] # e.g. i = 1, j = 7 - 3 + 1 = 5 j = len(self.mults) - len(other.mults) + i new[j] = new[j].dock(other.mults[i]) if new[j].multiplier == zero: # omit that mult entirely since it has been factored out del new[j] # If the subtraction is incomplete but there is more to # other.mults, then we have a problem. For example, "ABC{2} - BC" # subtracts the C successfully but leaves something behind, # then tries to subtract the B too, which isn't possible else: if i != 0: raise Exception("Can't subtract " + repr(other) + " from " + repr(self)) return conc(*new)
def dock(self, other)
Subtract another conc from this one. This is the opposite of concatenation. For example, if ABC + DEF = ABCDEF, then logically ABCDEF - DEF = ABC.
5.456419
4.19175
1.301704
''' The opposite of concatenation. Remove a common suffix from the present pattern; that is, from each of its constituent concs. AYZ|BYZ|CYZ - YZ = A|B|C. ''' return pattern(*[c.dock(other) for c in self.concs])
def dock(self, other)
The opposite of concatenation. Remove a common suffix from the present pattern; that is, from each of its constituent concs. AYZ|BYZ|CYZ - YZ = A|B|C.
18.485912
2.271767
8.137241
''' Like dock() but the other way around. Remove a common prefix from the present pattern; that is, from each of its constituent concs. ZA|ZB|ZC.behead(Z) = A|B|C ''' return pattern(*[c.behead(other) for c in self.concs])
def behead(self, other)
Like dock() but the other way around. Remove a common prefix from the present pattern; that is, from each of its constituent concs. ZA|ZB|ZC.behead(Z) = A|B|C
15.273121
2.101367
7.268183
''' Find the longest conc which acts as prefix to every conc in this pattern. This could be the empty string. Return the common prefix along with all the leftovers after truncating that common prefix from each conc. "ZA|ZB|ZC" -> "Z", "(A|B|C)" "ZA|ZB|ZC|Z" -> "Z", "(A|B|C|)" "CZ|CZ" -> "CZ", "()" If "suffix" is True, the same result but for suffixes. ''' if len(self.concs) == 0: raise Exception("Can't call _commonconc on " + repr(self)) from functools import reduce return reduce( lambda x, y: x.common(y, suffix=suffix), self.concs )
def _commonconc(self, suffix=False)
Find the longest conc which acts as prefix to every conc in this pattern. This could be the empty string. Return the common prefix along with all the leftovers after truncating that common prefix from each conc. "ZA|ZB|ZC" -> "Z", "(A|B|C)" "ZA|ZB|ZC|Z" -> "Z", "(A|B|C|)" "CZ|CZ" -> "CZ", "()" If "suffix" is True, the same result but for suffixes.
5.343563
1.629715
3.278833
''' This function don't use the plugin. ''' session = create_session() try: user = session.query(User).filter_by(name=name).first() session.delete(user) session.commit() except SQLAlchemyError, e: session.rollback() raise bottle.HTTPError(500, "Database Error", e) finally: session.close()
def delete_name(name)
This function don't use the plugin.
3.479029
2.806621
1.239579
''' Make sure that other installed plugins don't affect the same keyword argument and check if metadata is available.''' for other in app.plugins: if not isinstance(other, SQLAlchemyPlugin): continue if other.keyword == self.keyword: raise bottle.PluginError("Found another SQLAlchemy plugin with "\ "conflicting settings (non-unique keyword).") elif other.name == self.name: self.name += '_%s' % self.keyword if self.create and not self.metadata: raise bottle.PluginError('Define metadata value to create database.')
def setup(self, app)
Make sure that other installed plugins don't affect the same keyword argument and check if metadata is available.
9.02348
5.261705
1.714935
self.__in_send_multipart = True try: msg = super(GreenSocket, self).send_multipart(*args, **kwargs) finally: self.__in_send_multipart = False self.__state_changed() return msg
def send_multipart(self, *args, **kwargs)
wrap send_multipart to prevent state_changed on each partial send
3.665802
2.809468
1.304803
self.__in_recv_multipart = True try: msg = super(GreenSocket, self).recv_multipart(*args, **kwargs) finally: self.__in_recv_multipart = False self.__state_changed() return msg
def recv_multipart(self, *args, **kwargs)
wrap recv_multipart to prevent state_changed on each partial recv
3.635674
2.776999
1.30921
ext_file = os.path.abspath(str(ext_file)) F = pd.read_table( ext_file, header=[0, 1], index_col=list(range(index_col)), sep=sep) F.columns.names = ['region', 'sector'] if index_col == 1: F.index.names = ['stressor'] elif index_col == 2: F.index.names = ['stressor', 'unit'] elif index_col == 3: F.index.names = ['stressor', 'compartment', 'unit'] else: F.reset_index(level=list(range(3, index_col)), drop=True, inplace=True) F.index.names = ['stressor', 'compartment', 'unit'] unit = None if index_col > 1: unit = pd.DataFrame(F.iloc[:, 0]. reset_index(level='unit').unit) F.reset_index(level='unit', drop=True, inplace=True) if drop_compartment: F.reset_index(level='compartment', drop=True, inplace=True) unit.reset_index(level='compartment', drop=True, inplace=True) return Extension(name=name, F=F, unit=unit, iosystem=iosystem, version=version, year=year, )
def parse_exio12_ext(ext_file, index_col, name, drop_compartment=True, version=None, year=None, iosystem=None, sep=',')
Parse an EXIOBASE version 1 or 2 like extension file into pymrio.Extension EXIOBASE like extensions files are assumed to have two rows which are used as columns multiindex (region and sector) and up to three columns for the row index (see Parameters). For EXIOBASE 3 - extension can be loaded directly with pymrio.load Notes ----- So far this only parses factor of production extensions F (not final demand extensions FY nor coeffiecents S). Parameters ---------- ext_file : string or pathlib.Path File to parse index_col : int The number of columns (1 to 3) at the beginning of the file to use as the index. The order of the index_col must be - 1 index column: ['stressor'] - 2 index columns: ['stressor', 'unit'] - 3 index columns: ['stressor', 'compartment', 'unit'] - > 3: everything up to three index columns will be removed name : string Name of the extension drop_compartment : boolean, optional If True (default) removes the compartment from the index. version : string, optional see pymrio.Extension iosystem : string, optional see pymrio.Extension year : string or int see pymrio.Extension sep : string, optional Delimiter to use; default ',' Returns ------- pymrio.Extension with F (and unit if available)
2.442121
1.966424
1.24191
try: ver_match = re.search(r'(\d+\w*(\.|\-|\_))*\d+\w*', filename) version = ver_match.string[ver_match.start():ver_match.end()] if re.search('\_\d\d\d\d', version[-5:]): version = version[:-5] except AttributeError: version = None return version
def get_exiobase12_version(filename)
Returns the EXIOBASE version for the given filename, None if not found
3.838233
3.978773
0.964678
path = os.path.normpath(str(path)) if coefficients: exio_core_regex = dict( # don’t match file if starting with _ A=re.compile('(?<!\_)mrIot.*txt'), Y=re.compile('(?<!\_)mrFinalDemand.*txt'), S_factor_inputs=re.compile('(?<!\_)mrFactorInputs.*txt'), S_emissions=re.compile('(?<!\_)mrEmissions.*txt'), S_materials=re.compile('(?<!\_)mrMaterials.*txt'), S_resources=re.compile('(?<!\_)mrResources.*txt'), FY_resources=re.compile('(?<!\_)mrFDResources.*txt'), FY_emissions=re.compile('(?<!\_)mrFDEmissions.*txt'), FY_materials=re.compile('(?<!\_)mrFDMaterials.*txt'), ) else: exio_core_regex = dict( # don’t match file if starting with _ Z=re.compile('(?<!\_)mrIot.*txt'), Y=re.compile('(?<!\_)mrFinalDemand.*txt'), F_fac=re.compile('(?<!\_)mrFactorInputs.*txt'), F_emissions=re.compile('(?<!\_)mrEmissions.*txt'), F_materials=re.compile('(?<!\_)mrMaterials.*txt'), F_resources=re.compile('(?<!\_)mrResources.*txt'), FY_emissions=re.compile('(?<!\_)mrFDEmissions.*txt'), FY_materials=re.compile('(?<!\_)mrFDMaterials.*txt'), ) repo_content = get_repo_content(path) exio_files = dict() for kk, vv in exio_core_regex.items(): found_file = [vv.search(ff).string for ff in repo_content.filelist if vv.search(ff)] if len(found_file) > 1: logging.warning( "Multiple files found for {}: {}" " - USING THE FIRST ONE".format(kk, found_file)) found_file = found_file[0:1] elif len(found_file) == 0: continue else: if repo_content.iszip: format_para = sniff_csv_format(found_file[0], zip_file=path) else: format_para = sniff_csv_format(os.path.join(path, found_file[0])) exio_files[kk] = dict( root_repo=path, file_path=found_file[0], version=get_exiobase12_version( os.path.basename(found_file[0])), index_rows=format_para['nr_header_row'], index_col=format_para['nr_index_col'], unit_col=format_para['nr_index_col'] - 1, sep=format_para['sep']) return exio_files
def get_exiobase_files(path, coefficients=True)
Gets the EXIOBASE files in path (which can be a zip file) Parameters ---------- path: str or pathlib.Path Path to exiobase files or zip file coefficients: boolean, optional If True (default), considers the mrIot file as A matrix, and the extensions as S matrices. Otherwise as Z and F, respectively Returns ------- dict of dict
2.749621
2.635972
1.043115
ispxp = True if re.search('pxp', path, flags=re.IGNORECASE) else False isixi = True if re.search('ixi', path, flags=re.IGNORECASE) else False if ispxp == isixi: system = None else: system = 'pxp' if ispxp else 'ixi' return system
def _get_MRIO_system(path)
Extract system information (ixi, pxp) from file path. Returns 'ixi' or 'pxp', None in undetermined
2.948079
2.350095
1.254451
path = os.path.abspath(os.path.normpath(str(path))) exio_files = get_exiobase_files(path) if len(exio_files) == 0: raise ParserError("No EXIOBASE files found at {}".format(path)) system = _get_MRIO_system(path) if not system: logging.warning("Could not determine system (pxp or ixi)" " set system parameter manually") io = generic_exiobase12_parser(exio_files, system=system) return io
def parse_exiobase1(path)
Parse the exiobase1 raw data files. This function works with - pxp_ita_44_regions_coeff_txt - ixi_fpa_44_regions_coeff_txt - pxp_ita_44_regions_coeff_src_txt - ixi_fpa_44_regions_coeff_src_txt which can be found on www.exiobase.eu The parser works with the compressed (zip) files as well as the unpacked files. Parameters ---------- path : pathlib.Path or string Path of the exiobase 1 data Returns ------- pymrio.IOSystem with exio1 data
6.513347
5.555137
1.172491
io = load_all(path) # need to rename the final demand satellite, # wrong name in the standard distribution try: io.satellite.FY = io.satellite.F_hh.copy() del io.satellite.F_hh except AttributeError: pass # some ixi in the exiobase 3.4 official distribution # have a country name mixup. Clean it here: io.rename_regions( {'AUS': 'AU', 'AUT': 'AT', 'BEL': 'BE', 'BGR': 'BG', 'BRA': 'BR', 'CAN': 'CA', 'CHE': 'CH', 'CHN': 'CN', 'CYP': 'CY', 'CZE': 'CZ', 'DEU': 'DE', 'DNK': 'DK', 'ESP': 'ES', 'EST': 'EE', 'FIN': 'FI', 'FRA': 'FR', 'GBR': 'GB', 'GRC': 'GR', 'HRV': 'HR', 'HUN': 'HU', 'IDN': 'ID', 'IND': 'IN', 'IRL': 'IE', 'ITA': 'IT', 'JPN': 'JP', 'KOR': 'KR', 'LTU': 'LT', 'LUX': 'LU', 'LVA': 'LV', 'MEX': 'MX', 'MLT': 'MT', 'NLD': 'NL', 'NOR': 'NO', 'POL': 'PL', 'PRT': 'PT', 'ROM': 'RO', 'RUS': 'RU', 'SVK': 'SK', 'SVN': 'SI', 'SWE': 'SE', 'TUR': 'TR', 'TWN': 'TW', 'USA': 'US', 'ZAF': 'ZA', 'WWA': 'WA', 'WWE': 'WE', 'WWF': 'WF', 'WWL': 'WL', 'WWM': 'WM'}) return io
def parse_exiobase3(path)
Parses the public EXIOBASE 3 system This parser works with either the compressed zip archive as downloaded or the extracted system. Note ---- The exiobase 3 parser does so far not include population and characterization data. Parameters ---------- path : string or pathlib.Path Path to the folder with the EXIOBASE files or the compressed archive. Returns ------- IOSystem A IOSystem with the parsed exiobase 3 data
2.578382
2.622417
0.983208
sea_ext = '.xlsx' sea_start = 'WIOD_SEA' _SEA_folder = os.path.join(root_path, 'SEA') if not os.path.exists(_SEA_folder): _SEA_folder = root_path sea_folder_content = [ff for ff in os.listdir(_SEA_folder) if os.path.splitext(ff)[-1] == sea_ext and ff[:8] == sea_start] if sea_folder_content: # read data sea_file = os.path.join(_SEA_folder, sorted(sea_folder_content)[0]) df_sea = pd.read_excel(sea_file, sheet_name=data_sheet, header=0, index_col=[0, 1, 2, 3]) # fix years ic_sea = df_sea.columns.tolist() ic_sea = [yystr.lstrip('_') for yystr in ic_sea] df_sea.columns = ic_sea try: ds_sea = df_sea[str(year)] except KeyError: warnings.warn( 'SEA extension does not include data for the ' 'year {} - SEA-Extension not included'.format(year), ParserWarning) return None, None # get useful data (employment) mt_sea = ['EMP', 'EMPE', 'H_EMP', 'H_EMPE'] ds_use_sea = pd.concat( [ds_sea.xs(key=vari, level='Variable', drop_level=False) for vari in mt_sea]) ds_use_sea.drop(labels='TOT', level='Code', inplace=True) ds_use_sea.reset_index('Description', drop=True, inplace=True) # RoW not included in SEA but needed to get it consistent for # all countries. Just add a dummy with 0 for all accounts. if 'RoW' not in ds_use_sea.index.get_level_values('Country'): ds_RoW = ds_use_sea.xs('USA', level='Country', drop_level=False) ds_RoW.ix[:] = 0 df_RoW = ds_RoW.reset_index() df_RoW['Country'] = 'RoW' ds_use_sea = pd.concat( [ds_use_sea.reset_index(), df_RoW]).set_index( ['Country', 'Code', 'Variable']) ds_use_sea.fillna(value=0, inplace=True) df_use_sea = ds_use_sea.unstack(level=['Country', 'Code'])[str(year)] df_use_sea.index.names = IDX_NAMES['VA_row_single'] df_use_sea.columns.names = IDX_NAMES['F_col'] df_use_sea = df_use_sea.astype('float') df_unit = pd.DataFrame( data=[ # this data must be in the same order as mt_sea 'thousand persons', 'thousand persons', 'mill hours', 'mill hours', ], columns=['unit'], index=df_use_sea.index) return df_use_sea, df_unit else: warnings.warn( 'SEA extension raw data file not found - ' 'SEA-Extension not included', ParserWarning) return None, None
def __get_WIOD_SEA_extension(root_path, year, data_sheet='DATA')
Utility function to get the extension data from the SEA file in WIOD This function is based on the structure in the WIOD_SEA_July14 file. Missing values are set to zero. The function works if the SEA file is either in path or in a subfolder named 'SEA'. Parameters ---------- root_path : string Path to the WIOD data or the path with the SEA data. year : str or int Year to return for the extension sea_data_sheet : string, optional Worksheet with the SEA data in the excel file Returns ------- SEA data as extension for the WIOD MRIO
3.655887
3.742366
0.976892
meta_string = "{time} - {etype} - {entry}".format( time=self._time(), etype=entry_type.upper(), entry=entry) self._content['history'].insert(0, meta_string) self.logger(meta_string)
def _add_history(self, entry_type, entry)
Generic method to add entry as entry_type to the history
5.695344
5.346391
1.065269
if not new_value: return para = para.lower() if para == 'history': raise ValueError( 'History can only be extended - use method "note"') old_value = self._content.get(para, None) if new_value == old_value: return self._content[para] = new_value if old_value and log: self._add_history(entry_type="METADATA_CHANGE", entry='Changed parameter "{para}" ' 'from "{old}" to "{new}"'.format( para=para, old=old_value, new=new_value))
def change_meta(self, para, new_value, log=True)
Changes the meta data This function does nothing if None is passed as new_value. To set a certain value to None pass the str 'None' Parameters ---------- para: str Meta data entry to change new_value: str New value log: boolean, optional If True (default) records the meta data change in the history
3.873816
4.38262
0.883904
if self._path_in_arc: with zipfile.ZipFile(file=str(self._metadata_file)) as zf: self._content = json.loads( zf.read(self._path_in_arc).decode('utf-8'), object_pairs_hook=OrderedDict) else: with self._metadata_file.open('r') as mdf: self._content = json.load(mdf, object_pairs_hook=OrderedDict)
def _read_content(self)
Reads metadata from location (and path_in_arc if archive) This function is called during the init process and should not be used in isolation: it overwrites unsafed metadata.
2.824835
2.314905
1.220281
if location: location = Path(location) if os.path.splitext(str(location))[1] == '': self._metadata_file = location / DEFAULT_FILE_NAMES['metadata'] else: self._metadata_file = location if self._metadata_file: with self._metadata_file.open(mode='w') as mdf: json.dump(self._content, mdf, indent=4) else: logging.error("No metadata file given for storing the file")
def save(self, location=None)
Saves the current status of the metadata This saves the metadata at the location of the previously loaded metadata or at the file/path given in location. Specify a location if the metadata should be stored in a different location or was never stored before. Subsequent saves will use the location set here. Parameters ---------- location: str, optional Path or file for saving the metadata. This can be the full file path or just the storage folder. In the latter case, the filename defined in DEFAULT_FILE_NAMES['metadata'] (currently 'metadata.json') is assumed.
3.401207
3.202421
1.062074
x = np.reshape(np.sum(np.hstack((Z, Y)), 1), (-1, 1)) if type(Z) is pd.DataFrame: x = pd.DataFrame(x, index=Z.index, columns=['indout']) if type(x) is pd.Series: x = pd.DataFrame(x) if type(x) is pd.DataFrame: x.columns = ['indout'] return x
def calc_x(Z, Y)
Calculate the industry output x from the Z and Y matrix Parameters ---------- Z : pandas.DataFrame or numpy.array Symmetric input output table (flows) Y : pandas.DataFrame or numpy.array final demand with categories (1.order) for each country (2.order) Returns ------- pandas.DataFrame or numpy.array Industry output x as column vector The type is determined by the type of Z. If DataFrame index as Z
2.728836
3.133611
0.870828
x = L.dot(y) if type(x) is pd.Series: x = pd.DataFrame(x) if type(x) is pd.DataFrame: x.columns = ['indout'] return x
def calc_x_from_L(L, y)
Calculate the industry output x from L and a y vector Parameters ---------- L : pandas.DataFrame or numpy.array Symmetric input output Leontief table y : pandas.DataFrame or numpy.array a column vector of the total final demand Returns ------- pandas.DataFrame or numpy.array Industry output x as column vector The type is determined by the type of L. If DataFrame index as L
4.345253
4.723167
0.919987
if (type(x) is pd.DataFrame) or (type(x) is pd.Series): x = x.values x = x.reshape((1, -1)) # use numpy broadcasting - much faster # (but has to ensure that x is a row vector) # old mathematical form: # return A.dot(np.diagflat(x)) if type(A) is pd.DataFrame: return pd.DataFrame(A.values * x, index=A.index, columns=A.columns) else: return A*x
def calc_Z(A, x)
calculate the Z matrix (flows) from A and x Parameters ---------- A : pandas.DataFrame or numpy.array Symmetric input output table (coefficients) x : pandas.DataFrame or numpy.array Industry output column vector Returns ------- pandas.DataFrame or numpy.array Symmetric input output table (flows) Z The type is determined by the type of A. If DataFrame index/columns as A
4.913734
5.602151
0.877116
if (type(x) is pd.DataFrame) or (type(x) is pd.Series): x = x.values if (type(x) is not np.ndarray) and (x == 0): recix = 0 else: with warnings.catch_warnings(): # catch the divide by zero warning # we deal wit that by setting to 0 afterwards warnings.simplefilter('ignore') recix = 1/x recix[recix == np.inf] = 0 recix = recix.reshape((1, -1)) # use numpy broadcasting - factor ten faster # Mathematical form - slow # return Z.dot(np.diagflat(recix)) if type(Z) is pd.DataFrame: return pd.DataFrame(Z.values * recix, index=Z.index, columns=Z.columns) else: return Z*recix
def calc_A(Z, x)
Calculate the A matrix (coefficients) from Z and x Parameters ---------- Z : pandas.DataFrame or numpy.array Symmetric input output table (flows) x : pandas.DataFrame or numpy.array Industry output column vector Returns ------- pandas.DataFrame or numpy.array Symmetric input output table (coefficients) A The type is determined by the type of Z. If DataFrame index/columns as Z
4.473062
5.04419
0.886775
I = np.eye(A.shape[0]) # noqa if type(A) is pd.DataFrame: return pd.DataFrame(np.linalg.inv(I-A), index=A.index, columns=A.columns) else: return np.linalg.inv(I-A)
def calc_L(A)
Calculate the Leontief L from A Parameters ---------- A : pandas.DataFrame or numpy.array Symmetric input output table (coefficients) Returns ------- pandas.DataFrame or numpy.array Leontief input output table L The type is determined by the type of A. If DataFrame index/columns as A
2.655099
3.086918
0.860113
Y_diag = ioutil.diagonalize_blocks(Y.values, blocksize=nr_sectors) Y_inv = np.linalg.inv(Y_diag) M = D_cba.dot(Y_inv) if type(D_cba) is pd.DataFrame: M.columns = D_cba.columns M.index = D_cba.index return M
def recalc_M(S, D_cba, Y, nr_sectors)
Calculate Multipliers based on footprints. Parameters ---------- D_cba : pandas.DataFrame or numpy array Footprint per sector and country Y : pandas.DataFrame or numpy array Final demand: aggregated across categories or just one category, one column per country. This will be diagonalized per country block. The diagonolized form must be invertable for this method to work. nr_sectors : int Number of sectors in the MRIO Returns ------- pandas.DataFrame or numpy.array Multipliers M The type is determined by the type of D_cba. If DataFrame index/columns as D_cba
3.969727
3.992249
0.994359
# diagonalize each sector block per country # this results in a disaggregated y with final demand per country per # sector in one column Y_diag = ioutil.diagonalize_blocks(Y.values, blocksize=nr_sectors) x_diag = L.dot(Y_diag) x_tot = x_diag.values.sum(1) del Y_diag D_cba = pd.DataFrame(S.values.dot(x_diag), index=S.index, columns=S.columns) # D_pba = S.dot(np.diagflat(x_tot)) # faster broadcasted calculation: D_pba = pd.DataFrame(S.values*x_tot.reshape((1, -1)), index=S.index, columns=S.columns) # for the traded accounts set the domestic industry output to zero dom_block = np.zeros((nr_sectors, nr_sectors)) x_trade = ioutil.set_block(x_diag.values, dom_block) D_imp = pd.DataFrame(S.values.dot(x_trade), index=S.index, columns=S.columns) x_exp = x_trade.sum(1) # D_exp = S.dot(np.diagflat(x_exp)) # faster broadcasted version: D_exp = pd.DataFrame(S.values * x_exp.reshape((1, -1)), index=S.index, columns=S.columns) return (D_cba, D_pba, D_imp, D_exp)
def calc_accounts(S, L, Y, nr_sectors)
Calculate sector specific cba and pba based accounts, imp and exp accounts The total industry output x for the calculation is recalculated from L and y Parameters ---------- L : pandas.DataFrame Leontief input output table L S : pandas.DataFrame Direct impact coefficients Y : pandas.DataFrame Final demand: aggregated across categories or just one category, one column per country nr_sectors : int Number of sectors in the MRIO Returns ------- Tuple (D_cba, D_pba, D_imp, D_exp) Format: D_row x L_col (=nr_countries*nr_sectors) - D_cba Footprint per sector and country - D_pba Total factur use per sector and country - D_imp Total global factor use to satisfy total final demand in the country per sector - D_exp Total factor use in one country to satisfy final demand in all other countries (per sector)
4.199969
3.53553
1.187932
# Use post here - NB: get could be necessary for some other pages # but currently works for wiod and eora returnvalue = namedtuple('url_content', ['raw_text', 'data_urls']) url_text = requests.post(url_db_view, cookies=access_cookie).text data_urls = [url_db_content + ff for ff in re.findall(mrio_regex, url_text)] return returnvalue(raw_text=url_text, data_urls=data_urls)
def _get_url_datafiles(url_db_view, url_db_content, mrio_regex, access_cookie=None)
Urls of mrio files by parsing url content for mrio_regex Parameters ---------- url_db_view: url str Url which shows the list of mrios in the db url_db_content: url str Url which needs to be appended before the url parsed from the url_db_view to get a valid download link mrio_regex: regex str Regex to parse the mrio datafile from url_db_view access_cookie: dict, optional If needed, cookie to access the database Returns ------- Named tuple: .raw_text: content of url_db_view for later use .data_urls: list of url
7.237755
7.077549
1.022636
for url in url_list: filename = os.path.basename(url) if not overwrite_existing and filename in os.listdir(storage_folder): continue storage_file = os.path.join(storage_folder, filename) # Using requests here - tried with aiohttp but was actually slower # Also don’t use shutil.copyfileobj - corrupts zips from Eora req = requests.post(url, stream=True, cookies=access_cookie) with open(storage_file, 'wb') as lf: for chunk in req.iter_content(1024*5): lf.write(chunk) meta_handler._add_fileio('Downloaded {} to {}'.format(url, filename)) meta_handler.save() return meta_handler
def _download_urls(url_list, storage_folder, overwrite_existing, meta_handler, access_cookie=None)
Save url from url_list to storage_folder Parameters ---------- url_list: list of str Valid url to download storage_folder: str, valid path Location to store the download, folder will be created if not existing. If the file is already present in the folder, the download depends on the setting in 'overwrite_existing'. overwrite_existing: boolean, optional If False, skip download of file already existing in the storage folder (default). Set to True to replace files. meta_handler: instance of MRIOMetaData Returns ------- The meta_handler is passed back
4.686969
5.295656
0.885059
try: os.makedirs(storage_folder) except FileExistsError: pass if type(years) is int or type(years) is str: years = [years] years = years if years else range(1995, 2012) years = [str(yy).zfill(2)[-2:] for yy in years] wiod_web_content = _get_url_datafiles( url_db_view=WIOD_CONFIG['url_db_view'], url_db_content=WIOD_CONFIG['url_db_content'], mrio_regex='protected.*?wiot\d\d.*?xlsx') restricted_wiod_io_urls = [url for url in wiod_web_content.data_urls if re.search(r"(wiot)(\d\d)", os.path.basename(url)).group(2) in years] meta = MRIOMetaData(location=storage_folder, description='WIOD metadata file for pymrio', name='WIOD', system='ixi', version='data13') meta = _download_urls(url_list=restricted_wiod_io_urls + satellite_urls, storage_folder=storage_folder, overwrite_existing=overwrite_existing, meta_handler=meta) meta.save() return meta
def download_wiod2013(storage_folder, years=None, overwrite_existing=False, satellite_urls=WIOD_CONFIG['satellite_urls'])
Downloads the 2013 wiod release Note ---- Currently, pymrio only works with the 2013 release of the wiod tables. The more recent 2016 release so far (October 2017) lacks the environmental and social extensions. Parameters ---------- storage_folder: str, valid path Location to store the download, folder will be created if not existing. If the file is already present in the folder, the download of the specific file will be skipped. years: list of int or str, optional If years is given only downloads the specific years. This only applies to the IO tables because extensions are stored by country and not per year. The years can be given in 2 or 4 digits. overwrite_existing: boolean, optional If False, skip download of file already existing in the storage folder (default). Set to True to replace files. satellite_urls : list of str (urls), optional Which satellite accounts to download. Default: satellite urls defined in WIOD_CONFIG - list of all available urls Remove items from this list to only download a subset of extensions
5.179879
5.004388
1.035067
s = '%.6f' % time.time() whole, frac = map(int, s.split('.')) res = '%d%d' % (whole, frac) return res[:length]
def get_timestamp(length)
Get a timestamp of `length` in string
4.578208
4.23881
1.080069
if PY3: return os.makedirs(path, exist_ok=True) try: os.makedirs(path) except OSError as exc: if exc.errno == errno.EEXIST and os.path.isdir(path): pass else: raise
def mkdir_p(path)
mkdir -p path
1.765566
1.782433
0.990537
ozmq = __import__('zmq') ozmq.Socket = zmq.Socket ozmq.Context = zmq.Context ozmq.Poller = zmq.Poller ioloop = __import__('zmq.eventloop.ioloop') ioloop.Poller = zmq.Poller
def monkey_patch()
Monkey patches `zmq.Context` and `zmq.Socket` If test_suite is True, the pyzmq test suite will be patched for compatibility as well.
3.556066
3.647326
0.974979
# Attriubtes to keep must be defined in the init: __basic__ strwarn = None for df in self.__basic__: if (getattr(self, df)) is None: if force: strwarn = ("Reset system warning - Recalculation after " "reset not possible " "because {} missing".format(df)) warnings.warn(strwarn, ResetWarning) else: raise ResetError("To few tables to recalculate the " "system after reset ({} missing) " "- reset can be forced by passing " "'force=True')".format(df)) if _meta: _meta._add_modify("Reset system to Z and Y") if strwarn: _meta._add_modify(strwarn) [setattr(self, key, None) for key in self.get_DataFrame( data=False, with_unit=False, with_population=False) if key not in self.__basic__] return self
def reset_full(self, force=False, _meta=None)
Remove all accounts which can be recalculated based on Z, Y, F, FY Parameters ---------- force: boolean, optional If True, reset to flows although the system can not be recalculated. Default: False _meta: MRIOMetaData, optional Metadata handler for logging, optional. Internal
9.868936
9.55399
1.032965
# Development note: The attributes which should be removed are # defined in self.__non_agg_attributes__ strwarn = None for df in self.__basic__: if (getattr(self, df)) is None: if force: strwarn = ("Reset system warning - Recalculation after " "reset not possible " "because {} missing".format(df)) warnings.warn(strwarn, ResetWarning) else: raise ResetError("To few tables to recalculate the " "system after reset ({} missing) " "- reset can be forced by passing " "'force=True')".format(df)) if _meta: _meta._add_modify("Reset to absolute flows") if strwarn: _meta._add_modify(strwarn) [setattr(self, key, None) for key in self.__non_agg_attributes__] return self
def reset_to_flows(self, force=False, _meta=None)
Keeps only the absolute values. This removes all attributes which can not be aggregated and must be recalculated after the aggregation. Parameters ---------- force: boolean, optional If True, reset to flows although the system can not be recalculated. Default: False _meta: MRIOMetaData, optional Metadata handler for logging, optional. Internal
8.939805
8.140778
1.098151
# Development note: The coefficient attributes are # defined in self.__coefficients__ [setattr(self, key, None) for key in self.get_DataFrame( data=False, with_unit=False, with_population=False) if key not in self.__coefficients__] return self
def reset_to_coefficients(self)
Keeps only the coefficient. This can be used to recalculate the IO tables for a new finald demand. Note ----- The system can not be reconstructed after this steps because all absolute data is removed. Save the Y data in case a reconstruction might be necessary.
10.005669
11.986589
0.834739
_tmp = copy.deepcopy(self) if not new_name: new_name = self.name + '_copy' if str(type(self)) == "<class 'pymrio.core.mriosystem.IOSystem'>": _tmp.meta.note('IOSystem copy {new} based on {old}'.format( new=new_name, old=self.meta.name)) _tmp.meta.change_meta('name', new_name, log=False) else: _tmp.name = new_name return _tmp
def copy(self, new_name=None)
Returns a deep copy of the system Parameters ----------- new_name: str, optional Set a new meta name parameter. Default: <old_name>_copy
4.971914
4.830913
1.029187
possible_dataframes = ['Y', 'FY'] for df in possible_dataframes: if (df in self.__dict__) and (getattr(self, df) is not None): try: ind = getattr(self, df).columns.get_level_values( 'category').unique() except (AssertionError, KeyError): ind = getattr(self, df).columns.get_level_values( 1).unique() if entries: if type(entries) is str: entries = [entries] ind = ind.tolist() return [None if ee not in entries else ee for ee in ind] else: return ind else: logging.warn("No attributes available to get Y categories") return None
def get_Y_categories(self, entries=None)
Returns names of y cat. of the IOSystem as unique names in order Parameters ---------- entries : List, optional If given, retuns an list with None for all values not in entries. Returns ------- Index List of categories, None if no attribute to determine list is available
3.897225
3.853076
1.011458
possible_dataframes = ['A', 'L', 'Z', 'Y', 'F', 'FY', 'M', 'S', 'D_cba', 'D_pba', 'D_imp', 'D_exp', 'D_cba_reg', 'D_pba_reg', 'D_imp_reg', 'D_exp_reg', 'D_cba_cap', 'D_pba_cap', 'D_imp_cap', 'D_exp_cap', ] for df in possible_dataframes: if (df in self.__dict__) and (getattr(self, df) is not None): orig_idx = getattr(self, df).index break else: logging.warn("No attributes available to get index") return None if as_dict: dd = {k: k for k in orig_idx} if grouping_pattern: for pattern, new_group in grouping_pattern.items(): if type(pattern) is str: dd.update({k: new_group for k, v in dd.items() if re.match(pattern, k)}) else: dd.update({k: new_group for k, v in dd.items() if all([re.match(pat, k[nr]) for nr, pat in enumerate(pattern)])}) return dd else: return orig_idx
def get_index(self, as_dict=False, grouping_pattern=None)
Returns the index of the DataFrames in the system Parameters ---------- as_dict: boolean, optional If True, returns a 1:1 key-value matching for further processing prior to groupby functions. Otherwise (default) the index is returned as pandas index. grouping_pattern: dict, optional Dictionary with keys being regex patterns matching index and values the name for the grouping. If the index is a pandas multiindex, the keys must be tuples of length levels in the multiindex, with a valid regex expression at each position. Otherwise, the keys need to be strings. Only relevant if as_dict is True.
3.16188
3.107037
1.017651
for df in self.get_DataFrame(data=True, with_population=False): df.index = index
def set_index(self, index)
Sets the pd dataframe index of all dataframes in the system to index
14.512142
11.633889
1.247402
for key in self.__dict__: if (key is 'unit') and not with_unit: continue if (key is 'population') and not with_population: continue if type(self.__dict__[key]) is pd.DataFrame: if data: yield getattr(self, key) else: yield key
def get_DataFrame(self, data=False, with_unit=True, with_population=True)
Yields all panda.DataFrames or there names Notes ----- For IOSystem this does not include the DataFrames in the extensions. Parameters ---------- data : boolean, optional If True, returns a generator which yields the DataFrames. If False, returns a generator which yields only the names of the DataFrames with_unit: boolean, optional If True, includes the 'unit' DataFrame If False, does not include the 'unit' DataFrame. The method than only yields the numerical data tables with_population: boolean, optional If True, includes the 'population' vector If False, does not include the 'population' vector. Returns ------- DataFrames or string generator, depending on parameter data
2.461757
2.450471
1.004606
if type(path) is str: path = path.rstrip('\\') path = Path(path) path.mkdir(parents=True, exist_ok=True) para_file_path = path / DEFAULT_FILE_NAMES['filepara'] file_para = dict() file_para['files'] = dict() if table_format in ['text', 'csv', 'txt']: table_format = 'txt' elif table_format in ['pickle', 'bin', 'binary', 'pkl']: table_format = 'pkl' else: raise ValueError('Unknown table format "{}" - ' 'must be "txt" or "pkl"'.format(table_format)) return None if not table_ext: if table_format == 'txt': table_ext = '.txt' if table_format == 'pkl': table_ext = '.pkl' if str(type(self)) == "<class 'pymrio.core.mriosystem.IOSystem'>": file_para['systemtype'] = GENERIC_NAMES['iosys'] elif str(type(self)) == "<class 'pymrio.core.mriosystem.Extension'>": file_para['systemtype'] = GENERIC_NAMES['ext'] file_para['name'] = self.name else: logging.warn('Unknown system type {} - set to "undef"'.format( str(type(self)))) file_para['systemtype'] = 'undef' for df, df_name in zip(self.get_DataFrame(data=True), self.get_DataFrame()): if type(df.index) is pd.MultiIndex: nr_index_col = len(df.index.levels) else: nr_index_col = 1 if type(df.columns) is pd.MultiIndex: nr_header = len(df.columns.levels) else: nr_header = 1 save_file = df_name + table_ext save_file_with_path = path / save_file logging.info('Save file {}'.format(save_file_with_path)) if table_format == 'txt': df.to_csv(save_file_with_path, sep=sep, float_format=float_format) else: df.to_pickle(save_file_with_path) file_para['files'][df_name] = dict() file_para['files'][df_name]['name'] = save_file file_para['files'][df_name]['nr_index_col'] = str(nr_index_col) file_para['files'][df_name]['nr_header'] = str(nr_header) with para_file_path.open(mode='w') as pf: json.dump(file_para, pf, indent=4) if file_para['systemtype'] == GENERIC_NAMES['iosys']: if not self.meta: self.meta = MRIOMetaData(name=self.name, location=path) self.meta._add_fileio("Saved {} to {}".format(self.name, path)) self.meta.save(location=path) return self
def save(self, path, table_format='txt', sep='\t', table_ext=None, float_format='%.12g')
Saving the system to path Parameters ---------- path : pathlib.Path or string path for the saved data (will be created if necessary, data within will be overwritten). table_format : string Format to save the DataFrames: - 'pkl' : Binary pickle files, alias: 'pickle', 'bin', 'binary' - 'txt' : Text files (default), alias: 'text', 'csv' table_ext : string, optional File extension, default depends on table_format(.pkl for pickle, .txt for text) sep : string, optional Field delimiter for the output file, only for txt files. Default: tab ('\t') float_format : string, optional Format for saving the DataFrames, default = '%.12g', only for txt files
2.590286
2.550145
1.015741
if type(regions) is list: regions = {old: new for old, new in zip(self.get_regions(), regions)} for df in self.get_DataFrame(data=True): df.rename(index=regions, columns=regions, inplace=True) try: for ext in self.get_extensions(data=True): for df in ext.get_DataFrame(data=True): df.rename(index=regions, columns=regions, inplace=True) except: pass self.meta._add_modify("Changed country names") return self
def rename_regions(self, regions)
Sets new names for the regions Parameters ---------- regions : list or dict In case of dict: {'old_name' : 'new_name'} with a entry for each old_name which should be renamed In case of list: List of new names in order and complete without repetition
3.779451
3.890427
0.971475
if type(sectors) is list: sectors = {old: new for old, new in zip(self.get_sectors(), sectors)} for df in self.get_DataFrame(data=True): df.rename(index=sectors, columns=sectors, inplace=True) try: for ext in self.get_extensions(data=True): for df in ext.get_DataFrame(data=True): df.rename(index=sectors, columns=sectors, inplace=True) except: pass self.meta._add_modify("Changed sector names") return self
def rename_sectors(self, sectors)
Sets new names for the sectors Parameters ---------- sectors : list or dict In case of dict: {'old_name' : 'new_name'} with an entry for each old_name which should be renamed In case of list: List of new names in order and complete without repetition
3.342457
3.423836
0.976232
if type(Y_categories) is list: Y_categories = {old: new for old, new in zip(self.get_Y_categories(), Y_categories)} for df in self.get_DataFrame(data=True): df.rename(index=Y_categories, columns=Y_categories, inplace=True) try: for ext in self.get_extensions(data=True): for df in ext.get_DataFrame(data=True): df.rename(index=Y_categories, columns=Y_categories, inplace=True) except: pass self.meta._add_modify("Changed Y category names") return self
def rename_Y_categories(self, Y_categories)
Sets new names for the Y_categories Parameters ---------- Y_categories : list or dict In case of dict: {'old_name' : 'new_name'} with an entry for each old_name which should be renamed In case of list: List of new names in order and complete without repetition
3.182742
3.305863
0.962757
possible_dataframes = ['F', 'FY', 'M', 'S', 'D_cba', 'D_pba', 'D_imp', 'D_exp', 'D_cba_reg', 'D_pba_reg', 'D_imp_reg', 'D_exp_reg', 'D_cba_cap', 'D_pba_cap', 'D_imp_cap', 'D_exp_cap', ] for df in possible_dataframes: if (df in self.__dict__) and (getattr(self, df) is not None): return getattr(self, df).index.get_values() else: logging.warn("No attributes available to get row names") return None
def get_rows(self)
Returns the name of the rows of the extension
4.236165
3.989152
1.061921
retdict = {} for rowname, data in zip(self.get_DataFrame(), self.get_DataFrame(data=True)): retdict[rowname] = pd.DataFrame(data.ix[row]) if name: retdict['name'] = name return retdict
def get_row_data(self, row, name=None)
Returns a dict with all available data for a row in the extension Parameters ---------- row : tuple, list, string A valid index for the extension DataFrames name : string, optional If given, adds a key 'name' with the given value to the dict. In that case the dict can be used directly to build a new extension. Returns ------- dict object with the data (pandas DataFrame)for the specific rows
4.572218
4.7759
0.957352
if type(stressor) is int: stressor = self.F.index[stressor] if len(stressor) == 1: stressor = stressor[0] if not name: if type(stressor) is str: name = stressor else: name = '_'.join(stressor) + '_diag' ext_diag = Extension(name) ext_diag.F = pd.DataFrame( index=self.F.columns, columns=self.F.columns, data=np.diag(self.F.loc[stressor, :]) ) try: ext_diag.unit = pd.DataFrame( index=ext_diag.F.index, columns=self.unit.columns, data=self.unit.loc[stressor].unit) except AttributeError: # If no unit in stressor, self.unit.columns break ext_diag.unit = None return ext_diag
def diag_stressor(self, stressor, name=None)
Diagonalize one row of the stressor matrix for a flow analysis. This method takes one row of the F matrix and diagonalize to the full region/sector format. Footprints calculation based on this matrix show the flow of embodied stressors from the source region/sector (row index) to the final consumer (column index). Note ---- Since the type of analysis based on the disaggregated matrix is based on flow, direct household emissions (FY) are not included. Parameters ---------- stressor : str or int - valid index for one row of the F matrix This must be a tuple for a multiindex, a string otherwise. The stressor to diagonalize. name : string (optional) The new name for the extension, if None (default): string based on the given stressor (row name) Returns ------- Extension
3.071768
2.858664
1.074547
# Possible cases: # 1) Z given, rest can be None and calculated # 2) A and x given, rest can be calculated # 3) A and Y , calc L (if not given) - calc x and the rest # this catches case 3 if self.x is None and self.Z is None: # in that case we need L or at least A to calculate it if self.L is None: self.L = calc_L(self.A) logging.info('Leontief matrix L calculated') self.x = calc_x_from_L(self.L, self.Y.sum(axis=1)) self.meta._add_modify('Industry Output x calculated') # this chains of ifs catch cases 1 and 2 if self.Z is None: self.Z = calc_Z(self.A, self.x) self.meta._add_modify('Flow matrix Z calculated') if self.x is None: self.x = calc_x(self.Z, self.Y) self.meta._add_modify('Industry output x calculated') if self.A is None: self.A = calc_A(self.Z, self.x) self.meta._add_modify('Coefficient matrix A calculated') if self.L is None: self.L = calc_L(self.A) self.meta._add_modify('Leontief matrix L calculated') return self
def calc_system(self)
Calculates the missing part of the core IOSystem The method checks Z, x, A, L and calculates all which are None
4.455092
3.97296
1.121354
ext_list = list(self.get_extensions(data=False)) extensions = extensions or ext_list if type(extensions) == str: extensions = [extensions] for ext_name in extensions: self.meta._add_modify( 'Calculating accounts for extension {}'.format(ext_name)) ext = getattr(self, ext_name) ext.calc_system(x=self.x, Y=self.Y, L=self.L, Y_agg=Y_agg, population=self.population ) return self
def calc_extensions(self, extensions=None, Y_agg=None)
Calculates the extension and their accounts For the calculation, y is aggregated across specified y categories The method calls .calc_system of each extension (or these given in the extensions parameter) Parameters ---------- extensions : list of strings, optional A list of key names of extensions which shall be calculated. Default: all dictionaries of IOSystem are assumed to be extensions Y_agg : pandas.DataFrame or np.array, optional The final demand aggregated (one category per country). Can be used to restrict the calculation of CBA of a specific category (e.g. households). Default: y is aggregated over all categories
4.894117
4.689147
1.043712
for ext in self.get_extensions(data=True): ext.report_accounts(path=path, per_region=per_region, per_capita=per_capita, pic_size=pic_size, format=format, **kwargs)
def report_accounts(self, path, per_region=True, per_capita=False, pic_size=1000, format='rst', **kwargs)
Generates a report to the given path for all extension This method calls .report_accounts for all extensions Notes ----- This looks prettier with the seaborn module (import seaborn before calling this method) Parameters ---------- path : string Root path for the report per_region : boolean, optional If true, reports the accounts per region per_capita : boolean, optional If true, reports the accounts per capita If per_capita and per_region are False, nothing will be done pic_size : int, optional size for the figures in px, 1000 by default format : string, optional file format of the report: 'rst'(default), 'html', 'latex', ... except for rst all depend on the module docutils (all writer_name from docutils can be used as format) ffname : string, optional root file name (without extension, per_capita or per_region will be attached) and folder names If None gets passed (default), self.name with be modified to get a valid name for the operation system without blanks **kwargs : key word arguments, optional This will be passed directly to the pd.DataFrame.plot method (through the self.plot_account method)
2.229424
2.284874
0.975732
ext_list = [key for key in self.__dict__ if type(self.__dict__[key]) is Extension] for key in ext_list: if data: yield getattr(self, key) else: yield key
def get_extensions(self, data=False)
Yields the extensions or their names Parameters ---------- data : boolean, optional If True, returns a generator which yields the extensions. If False, returns a generator which yields the names of the extensions (default) Returns ------- Generator for Extension or string
3.627363
3.802001
0.954067
super().reset_full(force=force, _meta=self.meta) return self
def reset_full(self, force=False)
Remove all accounts which can be recalculated based on Z, Y, F, FY Parameters ---------- force: boolean, optional If True, reset to flows although the system can not be recalculated. Default: False
9.267924
14.507744
0.638826
self.reset_full() [ee.reset_full() for ee in self.get_extensions(data=True)] self.meta._add_modify("Reset all calculated data") return self
def reset_all_full(self, force=False)
Removes all accounts that can be recalculated (IOSystem and extensions) This calls reset_full for the core system and all extension. Parameters ---------- force: boolean, optional If True, reset to flows although the system can not be recalculated. Default: False
15.502797
16.725517
0.926895
super().reset_to_flows(force=force, _meta=self.meta) return self
def reset_to_flows(self, force=False)
Keeps only the absolute values. This removes all attributes which can not be aggregated and must be recalculated after the aggregation. Parameters ---------- force: boolean, optional If True, reset to flows although the system can not be recalculated. Default: False
7.694775
14.872345
0.517388
self.reset_to_flows(force=force) [ee.reset_to_flows(force=force) for ee in self.get_extensions(data=True)] self.meta._add_modify("Reset full system to absolute flows") return self
def reset_all_to_flows(self, force=False)
Resets the IOSystem and all extensions to absolute flows This method calls reset_to_flows for the IOSystem and for all Extensions in the system. Parameters ---------- force: boolean, optional If True, reset to flows although the system can not be recalculated. Default: False
10.089065
9.137995
1.104079
self.reset_to_coefficients() [ee.reset_to_coefficients() for ee in self.get_extensions(data=True)] self.meta._add_modify("Reset full system to coefficients") return self
def reset_all_to_coefficients(self)
Resets the IOSystem and all extensions to coefficients. This method calls reset_to_coefficients for the IOSystem and for all Extensions in the system Note ----- The system can not be reconstructed after this steps because all absolute data is removed. Save the Y data in case a reconstruction might be necessary.
10.497519
9.524316
1.102181
if type(path) is str: path = path.rstrip('\\') path = Path(path) path.mkdir(parents=True, exist_ok=True) self.save(path=path, table_format=table_format, sep=sep, table_ext=table_ext, float_format=float_format) for ext, ext_name in zip(self.get_extensions(data=True), self.get_extensions()): ext_path = path / ext_name ext.save(path=ext_path, table_format=table_format, sep=sep, table_ext=table_ext, float_format=float_format) return self
def save_all(self, path, table_format='txt', sep='\t', table_ext=None, float_format='%.12g')
Saves the system and all extensions Extensions are saved in separate folders (names based on extension) Parameters are passed to the .save methods of the IOSystem and Extensions. See parameters description there.
2.197171
2.108382
1.042112
if ext is None: ext = list(self.get_extensions()) if type(ext) is str: ext = [ext] for ee in ext: try: del self.__dict__[ee] except KeyError: for exinstancename, exdata in zip( self.get_extensions(data=False), self.get_extensions(data=True)): if exdata.name == ee: del self.__dict__[exinstancename] finally: self.meta._add_modify("Removed extension {}".format(ee)) return self
def remove_extension(self, ext=None)
Remove extension from IOSystem For single Extensions the same can be achieved with del IOSystem_name.Extension_name Parameters ---------- ext : string or list, optional The extension to remove, this can be given as the name of the instance or of Extension.name (the latter will be checked if no instance was found) If ext is None (default) all Extensions will be removed
4.100125
3.755125
1.091875
inp = np.asarray(inp) nr_dim = np.ndim(inp) if nr_dim == 1: return True elif (nr_dim == 2) and (1 in inp.shape): return True else: return False
def is_vector(inp)
Returns true if the input can be interpreted as a 'true' vector Note ---- Does only check dimensions, not if type is numeric Parameters ---------- inp : numpy.ndarray or something that can be converted into ndarray Returns ------- Boolean True for vectors: ndim = 1 or ndim = 2 and shape of one axis = 1 False for all other arrays
2.497269
3.145548
0.793906
path = Path(path) if zipfile.is_zipfile(str(path)): with zipfile.ZipFile(str(path)) as zz: filelist = [info.filename for info in zz.infolist()] iszip = True else: iszip = False filelist = [str(f) for f in path.glob('**/*') if f.is_file()] return namedtuple('repocontent', ['iszip', 'filelist'])(iszip, filelist)
def get_repo_content(path)
List of files in a repo (path or zip) Parameters ---------- path: string or pathlib.Path Returns ------- Returns a namedtuple with .iszip and .filelist The path in filelist are pure strings.
2.6664
2.152183
1.238928
if type(path) is str: path = Path(path.rstrip('\\')) if zipfile.is_zipfile(str(path)): para_file_folder = str(path_in_arc) with zipfile.ZipFile(file=str(path)) as zf: files = zf.namelist() else: para_file_folder = str(path) files = [str(f) for f in path.glob('**/*')] if para_file_folder not in files: para_file_full_path = os.path.join( para_file_folder, DEFAULT_FILE_NAMES['filepara']) else: para_file_full_path = para_file_folder para_file_folder = os.path.dirname(para_file_full_path) if para_file_full_path not in files: raise FileNotFoundError( 'File parameter file {} not found'.format( para_file_full_path)) if zipfile.is_zipfile(str(path)): with zipfile.ZipFile(file=str(path)) as zf: para_file_content = json.loads( zf.read(para_file_full_path).decode('utf-8')) else: with open(para_file_full_path, 'r') as pf: para_file_content = json.load(pf) return namedtuple('file_parameter', ['folder', 'name', 'content'])( para_file_folder, os.path.basename(para_file_full_path), para_file_content)
def get_file_para(path, path_in_arc='')
Generic method to read the file parameter file Helper function to consistently read the file parameter file, which can either be uncompressed or included in a zip archive. By default, the file name is to be expected as set in DEFAULT_FILE_NAMES['filepara'] (currently file_parameters.json), but can defined otherwise by including the file name of the parameter file in the parameter path. Parameters ---------- path: pathlib.Path or string Path or path with para file name for the data to load. This must either point to the directory containing the uncompressed data or the location of a compressed zip file with the data. In the later case the parameter 'path_in_arc' needs to be specific to further indicate the location of the data in the compressed file. path_in_arc: string, optional Path to the data in the zip file (where the fileparameters file is located). path_in_arc must be given without leading dot and slash; thus to point to the data in the root of the compressed file pass '' (default), for data in e.g. the folder 'emissions' pass 'emissions/'. Only used if parameter 'path' points to an compressed zip file. Returns ------- Returns a namedtuple with .folder: str with the absolute path containing the file parameter file. In case of a zip the path is relative to the root in the zip .name: Filename without folder of the used parameter file. .content: Dictionary with the content oft the file parameter file Raises ------ FileNotFoundError if parameter file not found
2.145385
1.873938
1.144854
if isinstance(agg_vector, np.ndarray): agg_vector = agg_vector.flatten().tolist() if type(agg_vector[0]) == str: str_vector = agg_vector agg_vector = np.zeros(len(str_vector)) if pos_dict: if len(pos_dict.keys()) != len(set(str_vector)): raise ValueError( 'Posistion elements inconsistent with aggregation vector') seen = pos_dict else: seen = {} counter = 0 for ind, item in enumerate(str_vector): if item not in seen: seen[item] = counter counter += 1 agg_vector[ind] = seen[item] agg_vector = np.array(agg_vector, dtype=int) agg_vector = agg_vector.reshape((1, -1)) row_corr = agg_vector col_corr = np.arange(agg_vector.size) agg_matrix = np.zeros((row_corr.max()+1, col_corr.max()+1)) agg_matrix[row_corr, col_corr] = 1 # set columns with -1 value to 0 agg_matrix[np.tile(agg_vector == -1, (np.shape(agg_matrix)[0], 1))] = 0 return agg_matrix
def build_agg_matrix(agg_vector, pos_dict=None)
Agg. matrix based on mapping given in input as numerical or str vector. The aggregation matrix has the from nxm with -n new classificaction -m old classification Parameters ---------- agg_vector : list or vector like numpy ndarray This can be row or column vector. Length m with position given for n and -1 if values should not be included or length m with id_string for the aggregation pos_dict : dictionary (only possible if agg_vector is given as string) output order for the new matrix must be given as dict with 'string in agg_vector' = pos (as int, -1 if value should not be included in the aggregation) Example 1: input vector: np.array([0, 1, 1, 2]) or ['a', 'b', 'b', 'c'] agg matrix: m0 m1 m2 m3 n0 1 0 0 0 n1 0 1 1 0 n2 0 0 0 1 Example 2: input vector: np.array([1, 0, 0, 2]) or (['b', 'a', 'a', 'c'], dict(a=0,b=1,c=2)) agg matrix: m0 m1 m2 m3 n0 0 1 1 0 n1 1 0 0 0 n2 0 0 0 1
2.568204
2.633969
0.975032
nr_col = arr.shape[1] nr_row = arr.shape[0] if np.mod(nr_row, blocksize): raise ValueError( 'Number of rows of input array must be a multiple of blocksize') arr_diag = np.zeros((nr_row, blocksize*nr_col)) for col_ind, col_val in enumerate(arr.T): col_start = col_ind*blocksize col_end = blocksize + col_ind*blocksize for _ind in range(int(nr_row/blocksize)): row_start = _ind*blocksize row_end = blocksize + _ind * blocksize arr_diag[row_start:row_end, col_start:col_end] = np.diag(col_val[row_start:row_end]) return arr_diag
def diagonalize_blocks(arr, blocksize)
Diagonalize sections of columns of an array for the whole array Parameters ---------- arr : numpy array Input array blocksize : int number of rows/colums forming one block Returns ------- numpy ndarray with shape (columns 'arr' * blocksize, columns 'arr' * blocksize) Example -------- arr: output: (blocksize = 3) 3 1 3 0 0 1 0 0 4 2 0 4 0 0 2 0 5 3 0 0 5 0 0 3 6 9 6 0 0 9 0 0 7 6 0 7 0 0 6 0 8 4 0 0 8 0 0 4
2.356679
2.432216
0.968943
nr_col = arr.shape[1] nr_row = arr.shape[0] nr_col_block = arr_block.shape[1] nr_row_block = arr_block.shape[0] if np.mod(nr_row, nr_row_block) or np.mod(nr_col, nr_col_block): raise ValueError('Number of rows/columns of the input array ' 'must be a multiple of block shape') if nr_row/nr_row_block != nr_col/nr_col_block: raise ValueError('Block array can not be filled as ' 'diagonal blocks in the given array') arr_out = arr.copy() for row_ind in range(int(nr_row/nr_row_block)): row_start = row_ind*nr_row_block row_end = nr_row_block+nr_row_block*row_ind col_start = row_ind*nr_col_block col_end = nr_col_block+nr_col_block*row_ind arr_out[row_start:row_end, col_start:col_end] = arr_block return arr_out
def set_block(arr, arr_block)
Sets the diagonal blocks of an array to an given array Parameters ---------- arr : numpy ndarray the original array block_arr : numpy ndarray the block array for the new diagonal Returns ------- numpy ndarray (the modified array)
2.153008
2.172856
0.990866
seen = {} result = [] for item in ll: if item in seen: continue seen[item] = 1 result.append(item) return result
def unique_element(ll)
returns unique elements from a list preserving the original order
2.079761
1.953131
1.064835
for nr, entry in enumerate(ll): try: float(entry) except (ValueError, TypeError) as e: pass else: return nr return None
def find_first_number(ll)
Returns nr of first entry parseable to float in ll, None otherwise
4.059216
2.492769
1.628397
def read_first_lines(filehandle): lines = [] for i in range(max_test_lines): line = ff.readline() if line == '': break try: line = line.decode('utf-8') except AttributeError: pass lines.append(line[:-1]) return lines if zip_file: with zipfile.ZipFile(zip_file, 'r') as zz: with zz.open(csv_file, 'r') as ff: test_lines = read_first_lines(ff) else: with open(csv_file, 'r') as ff: test_lines = read_first_lines(ff) sep_aly_lines = [sorted([(line.count(sep), sep) for sep in potential_sep if line.count(sep) > 0], key=lambda x: x[0], reverse=True) for line in test_lines] for nr, (count, sep) in enumerate(sep_aly_lines[0]): for line in sep_aly_lines: if line[nr][0] == count: break else: sep = None if sep: break nr_header_row = None nr_index_col = None if sep: nr_index_col = find_first_number(test_lines[-1].split(sep)) if nr_index_col: for nr_header_row, line in enumerate(test_lines): if find_first_number(line.split(sep)) == nr_index_col: break return dict(sep=sep, nr_header_row=nr_header_row, nr_index_col=nr_index_col)
def sniff_csv_format(csv_file, potential_sep=['\t', ',', ';', '|', '-', '_'], max_test_lines=10, zip_file=None)
Tries to get the separator, nr of index cols and header rows in a csv file Parameters ---------- csv_file: str Path to a csv file potential_sep: list, optional List of potential separators (delimiters) to test. Default: '\t', ',', ';', '|', '-', '_' max_test_lines: int, optional How many lines to test, default: 10 or available lines in csv_file zip_file: str, optional Path to a zip file containing the csv file (if any, default: None). If a zip file is given, the path given at 'csv_file' is assumed to be the path to the file within the zip_file. Returns ------- dict with sep: string (separator) nr_index_col: int nr_header_row: int Entries are set to None if inconsistent information in the file
2.254467
2.104145
1.071441
rlist = [] wlist = [] xlist = [] for socket, flags in self.sockets.items(): if isinstance(socket, zmq.Socket): rlist.append(socket.getsockopt(zmq.FD)) continue elif isinstance(socket, int): fd = socket elif hasattr(socket, 'fileno'): try: fd = int(socket.fileno()) except: raise ValueError('fileno() must return an valid integer fd') else: raise TypeError('Socket must be a 0MQ socket, an integer fd ' 'or have a fileno() method: %r' % socket) if flags & zmq.POLLIN: rlist.append(fd) if flags & zmq.POLLOUT: wlist.append(fd) if flags & zmq.POLLERR: xlist.append(fd) return (rlist, wlist, xlist)
def _get_descriptors(self)
Returns three elements tuple with socket descriptors ready for gevent.select.select
2.63343
2.340781
1.125022
if timeout is None: timeout = -1 if timeout < 0: timeout = -1 rlist = None wlist = None xlist = None if timeout > 0: tout = gevent.Timeout.start_new(timeout/1000.0) try: # Loop until timeout or events available rlist, wlist, xlist = self._get_descriptors() while True: events = super(GreenPoller, self).poll(0) if events or timeout == 0: return events # wait for activity on sockets in a green way select.select(rlist, wlist, xlist) except gevent.Timeout, t: if t is not tout: raise return [] finally: if timeout > 0: tout.cancel()
def poll(self, timeout=-1)
Overridden method to ensure that the green version of Poller is used. Behaves the same as :meth:`zmq.core.Poller.poll`
4.042084
3.632162
1.112859
file_id = kwargs['file_id'] kwargs['file_id'] = file_id if str(file_id).strip() else None kwargs['cid'] = kwargs['file_id'] or None kwargs['rate_download'] = kwargs['rateDownload'] kwargs['percent_done'] = kwargs['percentDone'] kwargs['add_time'] = get_utcdatetime(kwargs['add_time']) kwargs['last_update'] = get_utcdatetime(kwargs['last_update']) is_transferred = (kwargs['status'] == 2 and kwargs['move'] == 1) if is_transferred: kwargs['pid'] = api.downloads_directory.cid else: kwargs['pid'] = None del kwargs['rateDownload'] del kwargs['percentDone'] if 'url' in kwargs: if not kwargs['url']: kwargs['url'] = None else: kwargs['url'] = None task = Task(api, **kwargs) if is_transferred: task._parent = api.downloads_directory return task
def _instantiate_task(api, kwargs)
Create a Task object from raw kwargs
3.455542
3.38128
1.021963
r = self.session.get(url, params=params) return self._response_parser(r, expect_json=False)
def get(self, url, params=None)
Initiate a GET request
4.365252
4.710257
0.926755
r = self.session.post(url, data=data, params=params) return self._response_parser(r, expect_json=False)
def post(self, url, data, params=None)
Initiate a POST request
3.65593
4.039637
0.905015
r = self.session.request(method=request.method, url=request.url, params=request.params, data=request.data, files=request.files, headers=request.headers) return self._response_parser(r, expect_json, ignore_content)
def send(self, request, expect_json=True, ignore_content=False)
Send a formatted API request :param request: a formatted request object :type request: :class:`.Request` :param bool expect_json: if True, raise :class:`.InvalidAPIAccess` if response is not in JSON format :param bool ignore_content: whether to ignore setting content of the Response object
2.280971
2.612687
0.873037
if r.ok: try: j = r.json() return Response(j.get('state'), j) except ValueError: # No JSON-encoded data returned if expect_json: logger = logging.getLogger(conf.LOGGING_API_LOGGER) logger.debug(r.text) raise InvalidAPIAccess('Invalid API access.') # Raw response if ignore_content: res = Response(True, None) else: res = Response(True, r.text) return res else: r.raise_for_status()
def _response_parser(self, r, expect_json=True, ignore_content=False)
:param :class:`requests.Response` r: a response object of the Requests library :param bool expect_json: if True, raise :class:`.InvalidAPIAccess` if response is not in JSON format :param bool ignore_content: whether to ignore setting content of the Response object
4.307644
3.958281
1.088261
self._init_cookies() if os.path.exists(self.cookies.filename): self.cookies.load(ignore_discard=ignore_discard, ignore_expires=ignore_expires) self._reset_cache()
def load_cookies(self, ignore_discard=True, ignore_expires=True)
Load cookies from the file :attr:`.API.cookies_filename`
3.211503
3.050335
1.052836
if not isinstance(self.cookies, cookielib.FileCookieJar): m = 'Cookies must be a cookielib.FileCookieJar object to be saved.' raise APIError(m) self.cookies.save(ignore_discard=ignore_discard, ignore_expires=ignore_expires)
def save_cookies(self, ignore_discard=True, ignore_expires=True)
Save cookies to the file :attr:`.API.cookies_filename`
3.0543
2.89833
1.053814
if self.has_logged_in: return True if username is None or password is None: credential = conf.get_credential(section) username = credential['username'] password = credential['password'] passport = Passport(username, password) r = self.http.post(LOGIN_URL, passport.form) if r.state is True: # Bind this passport to API self.passport = passport passport.data = r.content['data'] self._user_id = r.content['data']['USER_ID'] return True else: msg = None if 'err_name' in r.content: if r.content['err_name'] == 'account': msg = 'Account does not exist.' elif r.content['err_name'] == 'passwd': msg = 'Password is incorrect.' raise AuthenticationError(msg)
def login(self, username=None, password=None, section='default')
Created the passport with ``username`` and ``password`` and log in. If either ``username`` or ``password`` is None or omitted, the credentials file will be parsed. :param str username: username to login (email, phone number or user ID) :param str password: password :param str section: section name in the credential file :raise: raises :class:`.AuthenticationError` if failed to login
3.721547
3.685889
1.009674
if self._user_id is None: if self.has_logged_in: self._user_id = self._req_get_user_aq()['data']['uid'] else: raise AuthenticationError('Not logged in.') return self._user_id
def user_id(self)
User id of the current API user
6.009076
5.341576
1.124963
if self._username is None: if self.has_logged_in: self._username = self._get_username() else: raise AuthenticationError('Not logged in.') return self._username
def username(self)
Username of the current API user
3.573343
3.540927
1.009155
r = self.http.get(CHECKPOINT_URL) if r.state is False: return True # If logged out, flush cache self._reset_cache() return False
def has_logged_in(self)
Check whether the API has logged in
12.072679
10.248111
1.178039