code
string
signature
string
docstring
string
loss_without_docstring
float64
loss_with_docstring
float64
factor
float64
if not self.is_tagged(SENTENCES): self.tokenize_sentences() return self.ends(SENTENCES)
def sentence_ends(self)
The list of end positions representing ``sentences`` layer elements.
9.602919
8.326162
1.153343
if not self.is_tagged(SENTENCES): self.tokenize_sentences() tok = self.__word_tokenizer text = self.text dicts = [] for sentence in self[SENTENCES]: sent_start, sent_end = sentence[START], sentence[END] sent_text = text[sent_start:sent_end] spans = tok.span_tokenize(sent_text) for start, end in spans: dicts.append({START: start+sent_start, END: end+sent_start, TEXT: sent_text[start:end]}) self[WORDS] = dicts return self
def tokenize_words(self)
Apply word tokenization and create ``words`` layer. Automatically creates ``paragraphs`` and ``sentences`` layers.
2.905329
3.083292
0.942282
if not self.is_tagged(WORDS): self.tokenize_words() sentences = self.divide(WORDS, SENTENCES) for sentence in sentences: texts = [word[TEXT] for word in sentence] all_analysis = vabamorf.analyze(texts, **self.__kwargs) for word, analysis in zip(sentence, all_analysis): word[ANALYSIS] = analysis[ANALYSIS] word[TEXT] = analysis[TEXT] return self
def tag_analysis(self)
Tag ``words`` layer with morphological analysis attributes.
5.60114
4.981396
1.124412
if not self.is_tagged(WORDS): self.tokenize_words() return [word[TEXT] for word in self[WORDS]]
def word_texts(self)
The list of words representing ``words`` layer elements.
7.440989
7.067214
1.052889
if not self.is_tagged(WORDS): self.tokenize_words() return self.spans(WORDS)
def word_spans(self)
The list of spans representing ``words`` layer elements.
10.214702
8.396372
1.216561
if not self.is_tagged(WORDS): self.tokenize_words() return self.starts(WORDS)
def word_starts(self)
The list of start positions representing ``words`` layer elements.
11.414009
9.312495
1.225666
if not self.is_tagged(WORDS): self.tokenize_words() return self.ends(WORDS)
def word_ends(self)
The list of end positions representing ``words`` layer elements.
11.688253
9.339711
1.251458
if not self.is_tagged(ANALYSIS): self.tag_analysis() return [word[ANALYSIS] for word in self.words]
def analysis(self)
The list of analysis of ``words`` layer elements.
8.028769
6.093833
1.317524
return [self.__get_key(word[ANALYSIS], element, sep) for word in self.words]
def get_analysis_element(self, element, sep='|')
The list of analysis elements of ``words`` layer. Parameters ---------- element: str The name of the element, for example "lemma", "postag". sep: str The separator for ambiguous analysis (default: "|"). As morphological analysis cannot always yield unambiguous results, we return ambiguous values separated by the pipe character as default.
13.524803
13.621579
0.992895
if not self.is_tagged(ANALYSIS): self.tag_analysis() return self.get_analysis_element(ROOT)
def roots(self)
The list of word roots. Ambiguous cases are separated with pipe character by default. Use :py:meth:`~estnltk.text.Text.get_analysis_element` to specify custom separator for ambiguous entries.
9.868089
7.885109
1.251484
if not self.is_tagged(ANALYSIS): self.tag_analysis() return self.get_analysis_element(LEMMA)
def lemmas(self)
The list of lemmas. Ambiguous cases are separated with pipe character by default. Use :py:meth:`~estnltk.text.Text.get_analysis_element` to specify custom separator for ambiguous entries.
8.198957
7.163317
1.144576
if not self.is_tagged(ANALYSIS): self.tag_analysis() return [[an[LEMMA] for an in word[ANALYSIS]] for word in self[WORDS]]
def lemma_lists(self)
Lemma lists. Ambiguous cases are separate list elements.
7.932904
7.888155
1.005673
if not self.is_tagged(ANALYSIS): self.tag_analysis() return self.get_analysis_element(ENDING)
def endings(self)
The list of word endings. Ambiguous cases are separated with pipe character by default. Use :py:meth:`~estnltk.text.Text.get_analysis_element` to specify custom separator for ambiguous entries.
10.91272
8.58129
1.271688
if not self.is_tagged(ANALYSIS): self.tag_analysis() return self.get_analysis_element(FORM)
def forms(self)
Tthe list of word forms. Ambiguous cases are separated with pipe character by default. Use :py:meth:`~estnltk.text.Text.get_analysis_element` to specify custom separator for ambiguous entries.
10.575577
8.01328
1.319756
if not self.is_tagged(ANALYSIS): self.tag_analysis() return self.get_analysis_element(POSTAG)
def postags(self)
The list of word part-of-speech tags. Ambiguous cases are separated with pipe character by default. Use :py:meth:`~estnltk.text.Text.get_analysis_element` to specify custom separator for ambiguous entries.
9.45598
7.880378
1.19994
if not self.is_tagged(ANALYSIS): self.tag_analysis() return [POSTAG_DESCRIPTIONS.get(tag, '') for tag in self.get_analysis_element(POSTAG)]
def postag_descriptions(self)
Human-readable POS-tag descriptions.
6.727025
6.288078
1.069806
if not self.is_tagged(ANALYSIS): self.tag_analysis() return self.get_analysis_element(ROOT_TOKENS)
def root_tokens(self)
Root tokens of word roots.
8.7062
6.97389
1.248399
descs = [] for postag, form in zip(self.postags, self.forms): desc = VERB_TYPES.get(form, '') if len(desc) == 0: toks = form.split(' ') if len(toks) == 2: plur_desc = PLURALITY.get(toks[0], None) case_desc = CASES.get(toks[1], None) toks = [] if plur_desc is not None: toks.append(plur_desc) if case_desc is not None: toks.append(case_desc) desc = ' '.join(toks) descs.append(desc) return descs
def descriptions(self)
Human readable word descriptions.
2.673469
2.619952
1.020427
if not self.__syntactic_parser or not isinstance(self.__syntactic_parser, VISLCG3Parser): self.__syntactic_parser = VISLCG3Parser() return self.tag_syntax()
def tag_syntax_vislcg3(self)
Changes default syntactic parser to VISLCG3Parser, performs syntactic analysis, and stores the results in the layer named LAYER_VISLCG3.
4.206241
3.095227
1.358944
if not self.__syntactic_parser or not isinstance(self.__syntactic_parser, MaltParser): self.__syntactic_parser = MaltParser() return self.tag_syntax()
def tag_syntax_maltparser(self)
Changes default syntactic parser to MaltParser, performs syntactic analysis, and stores the results in the layer named LAYER_CONLL.
3.968974
3.583783
1.107482
# Load default Syntactic tagger: if self.__syntactic_parser is None: self.__syntactic_parser = load_default_syntactic_parser() if not self.is_tagged(ANALYSIS): if isinstance(self.__syntactic_parser, MaltParser): # By default: Use disambiguation for MaltParser's input if 'disambiguate' not in self.__kwargs: self.__kwargs['disambiguate'] = True self.tag_analysis() elif isinstance(self.__syntactic_parser, VISLCG3Parser): # By default: Do not use disambiguation for VISLCG3Parser's input # (VISLCG3 already does its own rule-based disambiguation) if 'disambiguate' not in self.__kwargs: self.__kwargs['disambiguate'] = False self.tag_analysis() return self.__syntactic_parser.parse_text( self, **self.__kwargs )
def tag_syntax(self)
Parses this text with the syntactic analyzer (``self.__syntactic_parser``), and stores the found syntactic analyses: into the layer LAYER_CONLL (if MaltParser is used, default), or into the layer LAYER_VISLCG3 (if VISLCG3Parser is used).
4.137531
3.152065
1.312642
# If no layer specified, decide the layer based on the type of syntactic # analyzer used: if not layer and self.__syntactic_parser: if isinstance(self.__syntactic_parser, MaltParser): layer = LAYER_CONLL elif isinstance(self.__syntactic_parser, VISLCG3Parser): layer = LAYER_VISLCG3 # If no syntactic analyzer available, pick the layer as the first syntactic # layer available: if not layer and self.is_tagged(LAYER_CONLL): layer = LAYER_CONLL elif not layer and self.is_tagged(LAYER_VISLCG3): layer = LAYER_VISLCG3 # Based on the chosen layer, perform the syntactic analysis (if necessary) # and return the results packaged as tree objects; if layer: if layer==LAYER_CONLL: if not self.is_tagged(layer): self.tag_syntax_maltparser() return self.syntax_trees_conll elif layer==LAYER_VISLCG3: if not self.is_tagged(layer): self.tag_syntax_vislcg3() return self.syntax_trees_vislcg3 else: raise ValueError('(!) Unexpected layer name: '+str(layer)) else: raise ValueError('(!) Missing layer name! ')
def syntax_trees( self, layer=None )
Builds syntactic trees (estnltk.syntax.utils.Tree objects) from syntactic annotations and returns as a list. If the input argument *layer* is not specified, the type of the syntactic parser is used to decide, which syntactic analysis layer should be produced and taken as basis for building syntactic trees; If a syntactic parser is not available, then a missing *layer* name is replaced by the first syntactic layer available (1st LAYER_CONLL, then LAYER_VISLCG3); Otherwise, the *layer* must be provided by the user and it must be either LAYER_CONLL or LAYER_VISLCG3.
3.69506
2.961025
1.247899
if not self.is_tagged(ANALYSIS): self.tag_analysis() if self.__ner_tagger is None: self.__ner_tagger = load_default_ner_tagger() self.__ner_tagger.tag_document(self) return self
def tag_labels(self)
Tag named entity labels in the ``words`` layer.
4.737818
4.932122
0.960604
if not self.is_tagged(LABEL): self.tag_labels() return [word[LABEL] for word in self.words]
def labels(self)
Named entity labels.
7.946763
7.098159
1.119553
if not self.is_tagged(LABEL): self.tag_labels() nes = [] word_start = -1 labels = self.labels + ['O'] # last is sentinel words = self.words label = 'O' for i, l in enumerate(labels): if l.startswith('B-') or l == 'O': if word_start != -1: nes.append({START: words[word_start][START], END: words[i-1][END], LABEL: label}) if l.startswith('B-'): word_start = i label = l[2:] else: word_start = -1 self[NAMED_ENTITIES] = nes return self
def tag_named_entities(self)
Tag ``named_entities`` layer. This automatically performs morphological analysis along with all dependencies.
3.413675
3.574474
0.955015
if not self.is_tagged(NAMED_ENTITIES): self.tag_named_entities() phrases = self.split_by(NAMED_ENTITIES) return [' '.join(phrase.lemmas) for phrase in phrases]
def named_entities(self)
The elements of ``named_entities`` layer.
5.189067
5.773529
0.898769
if not self.is_tagged(NAMED_ENTITIES): self.tag_named_entities() return self.texts(NAMED_ENTITIES)
def named_entity_texts(self)
The texts representing named entities.
6.399909
5.396507
1.185935
if not self.is_tagged(NAMED_ENTITIES): self.tag_named_entities() return self.spans(NAMED_ENTITIES)
def named_entity_spans(self)
The spans of named entities.
5.778366
4.866386
1.187404
if not self.is_tagged(NAMED_ENTITIES): self.tag_named_entities() return [ne[LABEL] for ne in self[NAMED_ENTITIES]]
def named_entity_labels(self)
The named entity labels without BIO prefixes.
5.44577
5.41212
1.006218
if not self.is_tagged(ANALYSIS): self.tag_analysis() if not self.is_tagged(TIMEXES): if self.__timex_tagger is None: self.__timex_tagger = load_default_timex_tagger() self.__timex_tagger.tag_document(self, **self.__kwargs) return self
def tag_timexes(self)
Create ``timexes`` layer. Depends on morphological analysis data in ``words`` layer and tags it automatically, if it is not present.
3.65522
3.356699
1.088933
if not self.is_tagged(TIMEXES): self.tag_timexes() return self.starts(TIMEXES)
def timex_starts(self)
The list of start positions of ``timexes`` layer elements.
6.712165
5.669748
1.183856
if not self.is_tagged(TIMEXES): self.tag_timexes() return self.ends(TIMEXES)
def timex_ends(self)
The list of end positions of ``timexes`` layer elements.
6.832896
5.495977
1.243254
if not self.is_tagged(TIMEXES): self.tag_timexes() return self.spans(TIMEXES)
def timex_spans(self)
The list of spans of ``timexes`` layer elements.
6.587449
5.109755
1.289191
if not self.is_tagged(ANALYSIS): self.tag_analysis() if self.__clause_segmenter is None: self.__clause_segmenter = load_default_clausesegmenter() return self.__clause_segmenter.tag(self)
def tag_clause_annotations(self)
Tag clause annotations in ``words`` layer. Depends on morphological analysis.
5.847927
5.43726
1.075528
if not self.is_tagged(CLAUSE_ANNOTATION): self.tag_clause_annotations() return [word.get(CLAUSE_ANNOTATION, None) for word in self[WORDS]]
def clause_annotations(self)
The list of clause annotations in ``words`` layer.
5.865542
4.300431
1.363943
if not self.is_tagged(CLAUSE_ANNOTATION): self.tag_clause_annotations() return [word.get(CLAUSE_IDX, None) for word in self[WORDS]]
def clause_indices(self)
The list of clause indices in ``words`` layer. The indices are unique only in the boundary of a single sentence.
8.523927
7.530911
1.131859
if not self.is_tagged(CLAUSE_ANNOTATION): self.tag_clause_annotations() def from_sentence(words): clauses = defaultdict(list) start = words[0][START] end = words[0][END] clause = words[0][CLAUSE_IDX] for word in words: if word[CLAUSE_IDX] != clause: clauses[clause].append((start, end)) start, clause = word[START], word[CLAUSE_IDX] end = word[END] clauses[clause].append((start, words[-1][END])) clauses = [(key, {START: [s for s, e in clause], END: [e for s, e in clause]}) for key, clause in clauses.items()] return [v for k, v in sorted(clauses)] clauses = [] sentences = self.divide() for sentence in sentences: clauses.extend(from_sentence(sentence)) self[CLAUSES] = clauses return self
def tag_clauses(self)
Create ``clauses`` multilayer. Depends on clause annotations.
3.337173
3.227042
1.034128
if not self.is_tagged(CLAUSES): self.tag_clauses() return self.texts(CLAUSES)
def clause_texts(self)
The texts of ``clauses`` multilayer elements. Non-consequent spans are concatenated with space character by default. Use :py:meth:`~estnltk.text.Text.texts` method to supply custom separators.
7.811337
6.917614
1.129195
if not self.is_tagged(CLAUSES): self.tag_clauses() if self.__verbchain_detector is None: self.__verbchain_detector = load_default_verbchain_detector() sentences = self.divide() verbchains = [] for sentence in sentences: chains = self.__verbchain_detector.detectVerbChainsFromSent( sentence ) for chain in chains: # 1) Get spans for all words of the phrase word_spans = [ ( sentence[idx][START], sentence[idx][END] ) \ for idx in sorted( chain[PHRASE] ) ] # 2) Assign to the chain chain[START] = [ span[0] for span in word_spans ] chain[END] = [ span[1] for span in word_spans ] verbchains.extend(chains) self[VERB_CHAINS] = verbchains return self
def tag_verb_chains(self)
Create ``verb_chains`` layer. Depends on ``clauses`` layer.
4.373527
4.162538
1.050688
if not self.is_tagged(VERB_CHAINS): self.tag_verb_chains() return self.texts(VERB_CHAINS)
def verb_chain_texts(self)
The list of texts of ``verb_chains`` layer elements.
5.602717
4.80489
1.166045
if not self.is_tagged(VERB_CHAINS): self.tag_verb_chains() return self.starts(VERB_CHAINS)
def verb_chain_starts(self)
The start positions of ``verb_chains`` elements.
5.668495
4.960574
1.142709
if not self.is_tagged(VERB_CHAINS): self.tag_verb_chains() return self.ends(VERB_CHAINS)
def verb_chain_ends(self)
The end positions of ``verb_chains`` elements.
6.018543
5.06424
1.188439
global wordnet_tagger if wordnet_tagger is None: # cached wn tagger wordnet_tagger = WordnetTagger() self.__wordnet_tagger = wordnet_tagger if len(kwargs) > 0: return self.__wordnet_tagger.tag_text(self, **kwargs) return self.__wordnet_tagger.tag_text(self, **self.__kwargs)
def tag_wordnet(self, **kwargs)
Create wordnet attribute in ``words`` layer. See :py:meth:`~estnltk.text.wordnet_tagger.WordnetTagger.tag_text` method for applicable keyword arguments.
2.706024
2.676852
1.010898
if not self.is_tagged(WORDNET): self.tag_wordnet() return [[a[WORDNET] for a in analysis] for analysis in self.analysis]
def wordnet_annotations(self)
The list of wordnet annotations of ``words`` layer.
7.340646
7.761967
0.94572
synsets = [] for wn_annots in self.wordnet_annotations: word_synsets = [] for wn_annot in wn_annots: for synset in wn_annot.get(SYNSETS, []): word_synsets.append(deepcopy(synset)) synsets.append(word_synsets) return synsets
def synsets(self)
The list of annotated synsets of ``words`` layer.
2.882998
2.728399
1.056663
literals = [] for word_synsets in self.synsets: word_literals = set() for synset in word_synsets: for variant in synset.get(SYN_VARIANTS): if LITERAL in variant: word_literals.add(variant[LITERAL]) literals.append(list(sorted(word_literals))) return literals
def word_literals(self)
The list of literals per word in ``words`` layer.
3.743751
3.576028
1.046902
if not self.is_tagged(WORDS): self.tokenize_words() return [data[SPELLING] for data in vabamorf.spellcheck(self.word_texts, suggestions=False)]
def spelling(self)
Flag incorrectly spelled words. Returns a list of booleans, where element at each position denotes, if the word at the same position is spelled correctly.
20.00601
19.569744
1.022293
if not self.is_tagged(WORDS): self.tokenize_words() return [data[SUGGESTIONS] for data in vabamorf.spellcheck(self.word_texts, suggestions=True)]
def spelling_suggestions(self)
The list of spelling suggestions per misspelled word.
18.134089
15.39106
1.178222
if not self.is_tagged(WORDS): self.tokenize_words() return vabamorf.spellcheck(self.word_texts, suggestions=True)
def spellcheck_results(self)
The list of True/False values denoting the correct spelling of words.
21.114262
18.922626
1.115821
if not self.is_tagged(WORDS): self.tokenize_words() text = self.text fixed = vabamorf.fix_spelling(self.word_texts, join=False) spans = self.word_spans assert len(fixed) == len(spans) if len(spans) > 0: newtoks = [] lastend = 0 for fix, (start, end) in zip(fixed, spans): newtoks.append(text[lastend:start]) newtoks.append(fix) lastend = end newtoks.append(text[lastend:]) return Text(''.join(newtoks), **self.__kwargs) return self
def fix_spelling(self)
Fix spelling of the text. Note that this method uses the first suggestion that is given for each misspelled word. It does not perform any sophisticated analysis to determine which one of the suggestions fits best into the context. Returns ------- Text A copy of this instance with automatically fixed spelling.
4.017245
4.08734
0.982851
return Text(self.__text_cleaner.clean(self[TEXT]), **self.__kwargs)
def clean(self)
Return a copy of this Text instance with invalid characters removed.
17.501024
10.680278
1.63863
N = len(spans) results = [{TEXT: text} for text in self.texts_from_spans(spans, sep=sep)] for elem in self: if isinstance(self[elem], list): splits = divide_by_spans(self[elem], spans, translate=True, sep=sep) for idx in range(N): results[idx][elem] = splits[idx] return [Text(res) for res in results]
def split_given_spans(self, spans, sep=' ')
Split the text into several pieces. Resulting texts have all the layers that are present in the text instance that is splitted. The elements are copied to resulting pieces that are covered by their spans. However, this can result in empty layers if no element of a splitted layer fits into a span of a particular output piece. The positions of layer elements that are copied are translated according to the container span, so they are consistent with returned text lengths. Parameters ---------- spans: list of spans. The positions determining the regions that will end up as individual pieces. Spans themselves can be lists of spans, which denote multilayer-style text regions. sep: str The separator that is used to join together text pieces of multilayer spans. Returns ------- list of Text One instance of text per span.
4.435038
4.639766
0.955875
if not self.is_tagged(layer): self.tag(layer) return self.split_given_spans(self.spans(layer), sep=sep)
def split_by(self, layer, sep=' ')
Split the text into multiple instances defined by elements of given layer. The spans for layer elements are extracted and feed to :py:meth:`~estnltk.text.Text.split_given_spans` method. Parameters ---------- layer: str String determining the layer that is used to define the start and end positions of resulting splits. sep: str (default: ' ') The separator to use to join texts of multilayer elements. Returns ------- list of Text
6.4934
5.547598
1.170488
text = self[TEXT] regex = regex_or_pattern if isinstance(regex, six.string_types): regex = re.compile(regex_or_pattern, flags=flags) # else is assumed pattern last_end = 0 spans = [] if gaps: # tag cap spans for mo in regex.finditer(text): start, end = mo.start(), mo.end() if start > last_end: spans.append((last_end, start)) last_end = end if last_end < len(text): spans.append((last_end, len(text))) else: # use matched regions spans = [(mo.start(), mo.end()) for mo in regex.finditer(text)] return self.split_given_spans(spans)
def split_by_regex(self, regex_or_pattern, flags=re.U, gaps=True)
Split the text into multiple instances using a regex. Parameters ---------- regex_or_pattern: str or compiled pattern The regular expression to use for splitting. flags: int (default: re.U) The regular expression flags (only used, when user has not supplied compiled regex). gaps: boolean (default: True) If True, then regions matched by the regex are not included in the resulting Text instances, which is expected behaviour. If False, then only regions matched by the regex are included in the result. Returns ------- list of Text The Text instances obtained by splitting.
3.002078
3.16471
0.948611
if not self.is_tagged(layer): self.tag(layer) if not self.is_tagged(by): self.tag(by) return divide(self[layer], self[by])
def divide(self, layer=WORDS, by=SENTENCES)
Divide the Text into pieces by keeping references to original elements, when possible. This is not possible only, if the _element_ is a multispan. Parameters ---------- element: str The element to collect and distribute in resulting bins. by: str Each resulting bin is defined by spans of this element. Returns ------- list of (list of dict)
3.065629
4.333745
0.707386
current_classes = set() result = [] for pos, group in group_tags_at_same_position(tags): opening, closing = get_opening_closing_tags(group) # handle closing tags at current position closing_added = False if len(closing) > 0: closing_tag = Tag(pos, False, '') for tag in closing: current_classes.remove(tag.css_class) result.append(closing_tag) closing_added = True # handle opening tags at current position opening_added = False if len(opening) > 0: # handle the begin of an overlap if not closing_added and len(current_classes) > 0: result.append(Tag(pos, False, '')) for tag in opening: current_classes.add(tag.css_class) opening_tag = Tag(pos, True, ' '.join(sorted(current_classes))) result.append(opening_tag) opening_added = True # handle the end of an overlap if closing_added and not opening_added and len(current_classes) > 0: opening_tag = Tag(pos, True, ' '.join(sorted(current_classes))) result.append(opening_tag) return result
def create_tags_with_concatenated_css_classes(tags)
Function that creates <mark> tags such that they are not overlapping. In order to do this, it concatenates the css classes and stores the concatenated result in new tags.
2.423793
2.415333
1.003503
if len(matches) == 0: return matches matches.sort() N = len(matches) scores = [len(match) for match in matches] prev = [-1] * N for i in range(1, N): bestscore = -1 bestprev = -1 j = i while j >= 0: # if matches do not overlap if matches[j].is_before(matches[i]): l = scores[j] + len(matches[i]) if l >= bestscore: bestscore = l bestprev = j else: # in case of overlapping matches l = scores[j] - len(matches[j]) + len(matches[i]) if l >= bestscore: bestscore = l bestprev = prev[j] j = j - 1 scores[i] = bestscore prev[i] = bestprev # first find the matching with highest combined score bestscore = max(scores) bestidx = len(scores) - scores[-1::-1].index(bestscore) -1 # then backtrack the non-conflicting matchings that should be kept keepidxs = [bestidx] bestidx = prev[bestidx] while bestidx != -1: keepidxs.append(bestidx) bestidx = prev[bestidx] # filter the matches return [matches[idx] for idx in reversed(keepidxs)]
def resolve_using_maximal_coverage(matches)
Given a list of matches, select a subset of matches such that there are no overlaps and the total number of covered characters is maximal. Parameters ---------- matches: list of Match Returns -------- list of Match
3.04951
3.134942
0.972749
def _isSeparatedByPossibleClauseBreakers( tokens, wordID1, wordID2, punctForbidden = True, \ commaForbidden = True, \ conjWordsForbidden = True ): ''' Teeb kindlaks, kas j2rjendi tokens s6naindeksite vahemikus [wordID1, wordID2) (vahemiku algus on inklusiivne) leidub sides6nu (ja/ning/ega/v6i), punktuatsiooni (koma, sidekriipsud, koolon, kolm j2rjestikkust punkti) v6i adverbe-sidendeid aga/kuid/vaid; Lippudega saab kontrolli l6dvendada: *) punctForbidden=False lylitab v2lja punktuatsiooni ( kirjavahem2rgid v.a koma ) kontrolli; *) commaForbidden=False lylitab v2lja koma kontrolli ( ei puuduta teisi kirjavahem2rke ) kontrolli; *) conjWordsForbidden=False lylitab v2lja sides6nade ja adverb-sidendite kontrolli; Tagastab True, kui leidub kasv6i yks eelnimetatud juhtudest, vastasel juhul False; ''' global _breakerJaNingEgaVoi, _breakerAgaKuidVaid, _breakerKomaLopus, _breakerPunktuats minWID = min(wordID1, wordID2) maxWID = max(wordID1, wordID2) insideCheckArea = False for i in range(len(tokens)): token = tokens[i] if token[WORD_ID] >= minWID: insideCheckArea = True if token[WORD_ID] >= maxWID: insideCheckArea = False if insideCheckArea: if punctForbidden and _breakerPunktuats.matches(token): return True if commaForbidden and _breakerKomaLopus.matches(token): return True if conjWordsForbidden and (_breakerAgaKuidVaid.matches(token) or \ _breakerJaNingEgaVoi.matches(token)): return True return False
Teeb kindlaks, kas j2rjendi tokens s6naindeksite vahemikus [wordID1, wordID2) (vahemiku algus on inklusiivne) leidub sides6nu (ja/ning/ega/v6i), punktuatsiooni (koma, sidekriipsud, koolon, kolm j2rjestikkust punkti) v6i adverbe-sidendeid aga/kuid/vaid; Lippudega saab kontrolli l6dvendada: *) punctForbidden=False lylitab v2lja punktuatsiooni ( kirjavahem2rgid v.a koma ) kontrolli; *) commaForbidden=False lylitab v2lja koma kontrolli ( ei puuduta teisi kirjavahem2rke ) kontrolli; *) conjWordsForbidden=False lylitab v2lja sides6nade ja adverb-sidendite kontrolli; Tagastab True, kui leidub kasv6i yks eelnimetatud juhtudest, vastasel juhul False;
null
null
null
def _isClauseFinal( wordID, clauseTokens ): ''' Teeb kindlaks, kas etteantud ID-ga s6na on osalause l6pus: -- s6nale ei j2rgne ykski teine s6na; -- s6nale j2rgnevad vaid punktuatsioonim2rgid ja/v6i sidendid JA/NING/EGA/VÕI; Tagastab True, kui eeltoodud tingimused on t2idetud, vastasel juhul False; ''' jaNingEgaVoi = WordTemplate({ROOT:'^(ja|ning|ega|v[\u014D\u00F5]i)$',POSTAG:'[DJ]'}) punktuatsioon = WordTemplate({POSTAG:'Z'}) for i in range(len(clauseTokens)): token = clauseTokens[i] if token[WORD_ID] == wordID: if i+1 == len(clauseTokens): return True else: for j in range(i+1, len(clauseTokens)): token2 = clauseTokens[j] if not (jaNingEgaVoi.matches(token2) or punktuatsioon.matches(token2)): return False return True return False
Teeb kindlaks, kas etteantud ID-ga s6na on osalause l6pus: -- s6nale ei j2rgne ykski teine s6na; -- s6nale j2rgnevad vaid punktuatsioonim2rgid ja/v6i sidendid JA/NING/EGA/VÕI; Tagastab True, kui eeltoodud tingimused on t2idetud, vastasel juhul False;
null
null
null
def _isFollowedByComma( wordID, clauseTokens ): ''' Teeb kindlaks, kas etteantud ID-ga s6nale j2rgneb vahetult koma; Tagastab True, kui eeltoodud tingimus on t2idetud, vastasel juhul False; ''' koma = WordTemplate({ROOT:'^,+$', POSTAG:'Z'}) for i in range(len(clauseTokens)): token = clauseTokens[i] if token[WORD_ID] == wordID: if re.match('^.*,$', token[TEXT]): return True elif i+1 < len(clauseTokens) and koma.matches(clauseTokens[i+1]): return True break return False
Teeb kindlaks, kas etteantud ID-ga s6nale j2rgneb vahetult koma; Tagastab True, kui eeltoodud tingimus on t2idetud, vastasel juhul False;
null
null
null
def _canFormAraPhrase( araVerb, otherVerb ): ''' Teeb kindlaks, kas etteantud 'ära' verb (araVerb) yhildub teise verbiga; Arvestab järgimisi ühilduvusi: ains 2. pööre: ära_neg.o + V_o ains 3. pööre: ära_neg.gu + V_gu mitm 1. pööre: ära_neg.me + V_me ära_neg.me + V_o ära_neg.gem + V_gem mitm 2. pööre: ära_neg.ge + V_ge mitm 3. pööre: ära_neg.gu + V_gu passiiv: ära_neg.gu + V_tagu Kui yhildub, tagastab listide listi, vastasel juhul tagastab tyhja listi. Tagastatava listi esimene liige on 'ära' verbi analüüside indeksite list (millised analüüsid vastavad 'ära' verbile) ning listi teine liige on yhilduva verbi analüüside indeksite list (millised analüüsid vastavad ühilduvale verbile); Indeksite listid on sellised, nagu neid leitakse meetodi wordtemplate.matchingAnalyseIndexes(token) abil; ''' global _verbAraAgreements for i in range(0, len(_verbAraAgreements), 2): araVerbTemplate = _verbAraAgreements[i] otherVerbTemplate = _verbAraAgreements[i+1] matchingAraAnalyses = araVerbTemplate.matchingAnalyseIndexes(araVerb) if matchingAraAnalyses: matchingVerbAnalyses = otherVerbTemplate.matchingAnalyseIndexes(otherVerb) if matchingVerbAnalyses: return [matchingAraAnalyses, matchingVerbAnalyses] return []
Teeb kindlaks, kas etteantud 'ära' verb (araVerb) yhildub teise verbiga; Arvestab järgimisi ühilduvusi: ains 2. pööre: ära_neg.o + V_o ains 3. pööre: ära_neg.gu + V_gu mitm 1. pööre: ära_neg.me + V_me ära_neg.me + V_o ära_neg.gem + V_gem mitm 2. pööre: ära_neg.ge + V_ge mitm 3. pööre: ära_neg.gu + V_gu passiiv: ära_neg.gu + V_tagu Kui yhildub, tagastab listide listi, vastasel juhul tagastab tyhja listi. Tagastatava listi esimene liige on 'ära' verbi analüüside indeksite list (millised analüüsid vastavad 'ära' verbile) ning listi teine liige on yhilduva verbi analüüside indeksite list (millised analüüsid vastavad ühilduvale verbile); Indeksite listid on sellised, nagu neid leitakse meetodi wordtemplate.matchingAnalyseIndexes(token) abil;
null
null
null
def _loadVerbSubcatRelations(infile): ''' Meetod, mis loeb failist sisse verbide rektsiooniseosed infiniitverbidega; Eeldab, et rektsiooniseosed on tekstifailis, kujul: häbene da mast igatse da St rea alguses on verbilemma ning TAB-iga on sellest eraldatud võimalike rektsioonide (käändeliste verbide vormitunnuste) loetelu, tähtsuse järjekorras; Tagastab rektsiooniseosed sõnastikuna, mille võtmeteks lemmad ning väärtusteks vastavad vormitunnuste loetelud. ''' relations = dict() in_f = codecs.open(infile, mode='r', encoding='utf-8') for line in in_f: line = line.rstrip() if len(line) > 0 and not re.match("^#.+$", line): (verb, forms) = line.split('\t') relations[verb] = forms.split() in_f.close() return relations
Meetod, mis loeb failist sisse verbide rektsiooniseosed infiniitverbidega; Eeldab, et rektsiooniseosed on tekstifailis, kujul: häbene da mast igatse da St rea alguses on verbilemma ning TAB-iga on sellest eraldatud võimalike rektsioonide (käändeliste verbide vormitunnuste) loetelu, tähtsuse järjekorras; Tagastab rektsiooniseosed sõnastikuna, mille võtmeteks lemmad ning väärtusteks vastavad vormitunnuste loetelud.
null
null
null
def _isVerbExpansible( verbObj, clauseTokens, clauseID ): ''' Kontrollib, kas tavaline verb on laiendatav etteantud osalauses: *) verbi kontekstis (osalauses) on veel teisi verbe; *) verb kuulub etteantud osalausesse; *) tegemist ei ole olema-verbiga (neid vaatame mujal eraldi); *) tegemist pole maks|mas|mast|mata-verbiga; *) tegemist pole verbiahelaga, mille l6pus on ja/ning/ega/v6i-fraas; Tagastab True, kui k6ik tingimused t2idetud; ''' global _verbInfNonExpansible # Leiame, kas fraas kuulub antud osalausesse ning on laiendatav if verbObj[OTHER_VERBS] and verbObj[CLAUSE_IDX] == clauseID and \ re.match('^(verb)$', verbObj[PATTERN][-1], re.I): # Leiame viimasele s6nale vastava token'i lastToken = [token for token in clauseTokens if token[WORD_ID] == verbObj[PHRASE][-1]] if not lastToken: raise Exception(' Last token not found for '+str(verbObj)+' in '+str( getJsonAsTextString(clauseTokens) )) lastToken = lastToken[0] # Leiame, ega tegu pole maks/mas/mast/mata verbidega (neid esialgu ei laienda edasi) # NB! Tegelikult peaks v2hemalt -mas verbe saama siiski laiendada: # Ma ei_0 käinud_0 teda palumas_0 ümber otsustada_0 . # Aga kuidas seda teha v6imalikult v2heste vigadega, vajab edasist uurimist ... if not _verbInfNonExpansible.matches(lastToken): # Kontrollime, et fraasi l6pus poleks ja/ning/ega/v6i fraasi: # kui on, siis esialgu targu seda fraasi laiendama ei hakka: if len(verbObj[PATTERN]) >=3 and verbObj[PATTERN][-2] == '&': return False return True # # TODO: siin tuleks ilmselt keelata ka 'saama + Verb_tud' konstruktsioonide laiendused, # kuna need kipuvad olema pigem vigased (kuigi haruldased); Nt. # # ringi hääletades sai_0 rongidega jänest sõita_0 ja vagunisaatjatest neidudega öösiti napsu võetud_0 . # return False
Kontrollib, kas tavaline verb on laiendatav etteantud osalauses: *) verbi kontekstis (osalauses) on veel teisi verbe; *) verb kuulub etteantud osalausesse; *) tegemist ei ole olema-verbiga (neid vaatame mujal eraldi); *) tegemist pole maks|mas|mast|mata-verbiga; *) tegemist pole verbiahelaga, mille l6pus on ja/ning/ega/v6i-fraas; Tagastab True, kui k6ik tingimused t2idetud;
null
null
null
def _suitableVerbExpansion( foundSubcatChain ): ''' V6tab etteantud jadast osa, mis sobib: *) kui liikmeid on 3, keskmine on konjuktsioon ning esimene ja viimane klapivad, tagastab selle kolmiku; Nt. ei_0 saa_0 lihtsalt välja astuda_? ja_? uttu tõmmata_? => astuda ja tõmmata *) kui liikmeid on rohkem kui 3, teine on konjuktsioon ning esimene ja kolmas klapivad, ning l6pus pole verbe, tagastab esikolmiku; *) kui liikmeid on rohkem kui yks, v6tab liikmeks esimese mitte- konjunktsiooni (kui selline leidub); Kui need tingimused pole t2idetud, tagastab tyhis6ne; ''' markings = [] tokens = [] nonConjTokens = [] for (marking, token) in foundSubcatChain: markings.append( marking ) tokens.append( token ) if marking != '&': nonConjTokens.append( token ) if (len(markings) == 3 and markings[0]==markings[2] and markings[0]!='&' and markings[1]=='&'): return tokens elif (len(markings) > 3 and markings[0]==markings[2] and markings[0]!='&' and markings[1]=='&' and \ all([m == '&' for m in markings[3:]]) ): return tokens[:3] elif (len(nonConjTokens) > 0): return nonConjTokens[:1] return []
V6tab etteantud jadast osa, mis sobib: *) kui liikmeid on 3, keskmine on konjuktsioon ning esimene ja viimane klapivad, tagastab selle kolmiku; Nt. ei_0 saa_0 lihtsalt välja astuda_? ja_? uttu tõmmata_? => astuda ja tõmmata *) kui liikmeid on rohkem kui 3, teine on konjuktsioon ning esimene ja kolmas klapivad, ning l6pus pole verbe, tagastab esikolmiku; *) kui liikmeid on rohkem kui yks, v6tab liikmeks esimese mitte- konjunktsiooni (kui selline leidub); Kui need tingimused pole t2idetud, tagastab tyhis6ne;
null
null
null
def _expandSaamaWithTud( clauseTokens, clauseID, foundChains ): ''' Meetod, mis määrab spetsiifilised rektsiooniseosed: täiendab 'saama'-verbiga lõppevaid verbijadasid, lisades (v6imalusel) nende l6ppu 'tud'-infiniitverbi (nt. sai tehtud, sai käidud ujumas); Vastavalt leitud laiendustele t2iendab andmeid sisendlistis foundChains; ''' verbTud = WordTemplate({POSTAG:'V', FORM:'^(tud|dud)$'}) verb = WordTemplate({POSTAG:'V'}) verbOlema = WordTemplate({POSTAG:'V', ROOT:'^(ole)$'}) for verbObj in foundChains: # Leiame, kas fraas kuulub antud osalausesse ning on laiendatav if _isVerbExpansible(verbObj, clauseTokens, clauseID): lastVerbWID = verbObj[PHRASE][-1] lastToken = [token for token in clauseTokens if token[WORD_ID] == lastVerbWID] lastIndex = [i for i in range(len(clauseTokens)) if clauseTokens[i][WORD_ID] == lastVerbWID] lastToken = lastToken[0] lastIndex = lastIndex[0] mainVerb = [analysis[ROOT] for analysis in verb.matchingAnalyses(lastToken)] mainVerbLemma = mainVerb[0] # Leiame, kas tegemist on 'saama' verbiga if mainVerbLemma == 'saa': # # Saama + 'tud', lubame eraldada verbiahelana vaid siis, kui: # *) 'tud' on osalause l6pus ning vahel pole punktuatsioonim2rke, nt: # Kord sai_0 laadalt isegi aprikoosipuu koduaeda viidud_0 . # *) 'saama' on osalause l6pus ning vahetult eelneb 'tud', nt: # Ja et see vajaduse korral avalikustatud_1 saaks_1 . # expansion = None if not _isClauseFinal(lastVerbWID, clauseTokens ): for i in range(lastIndex + 1, len(clauseTokens)): token = clauseTokens[i] tokenWID = token[WORD_ID] if verbTud.matches(token) and _isClauseFinal(tokenWID, clauseTokens ) and \ not _isSeparatedByPossibleClauseBreakers( clauseTokens, verbObj[PHRASE][-1], tokenWID, True, True, False): expansion = token break elif lastIndex-1 > -1: if verbTud.matches(clauseTokens[lastIndex-1]): expansion = clauseTokens[lastIndex-1] if expansion: tokenWID = expansion[WORD_ID] verbObj[PHRASE].append( tokenWID ) verbObj[ANALYSIS_IDS].append( _getMatchingAnalysisIDs( expansion, verbTud ) ) if verbOlema.matches(expansion): verbObj[PATTERN].append('ole') else: verbObj[PATTERN].append('verb')
Meetod, mis määrab spetsiifilised rektsiooniseosed: täiendab 'saama'-verbiga lõppevaid verbijadasid, lisades (v6imalusel) nende l6ppu 'tud'-infiniitverbi (nt. sai tehtud, sai käidud ujumas); Vastavalt leitud laiendustele t2iendab andmeid sisendlistis foundChains;
null
null
null
def _getMatchingAnalysisIDs( tokenJson, requiredWordTemplate, discardAnalyses = None ): ''' Tagastab listi tokenJson'i analyysidest, mis sobivad etteantud yksiku sõnamalli või sõnamallide listi mõne elemendiga (requiredWordTemplate võib olla üks WordTemplate või list WordTemplate elementidega); Kui discardAnalyses on defineeritud (ning on WordTemplate), visatakse minema analyysid, mis vastavad sellele s6namallile; ''' final_ids = set() if isinstance(requiredWordTemplate, list): for wt in requiredWordTemplate: ids = wt.matchingAnalyseIndexes(tokenJson) if ids: final_ids.update(ids) elif isinstance(requiredWordTemplate, WordTemplate): ids = requiredWordTemplate.matchingAnalyseIndexes(tokenJson) final_ids = set(ids) if discardAnalyses: if isinstance(discardAnalyses, WordTemplate): ids2 = discardAnalyses.matchingAnalyseIndexes(tokenJson) if ids2: final_ids = final_ids.difference(set(ids2)) else: raise Exception(' The parameter discardAnalyses should be WordTemplate.') if len(final_ids) == 0: raise Exception(' Unable to find matching analyse IDs for: '+str(tokenJson)) return list(final_ids)
Tagastab listi tokenJson'i analyysidest, mis sobivad etteantud yksiku sõnamalli või sõnamallide listi mõne elemendiga (requiredWordTemplate võib olla üks WordTemplate või list WordTemplate elementidega); Kui discardAnalyses on defineeritud (ning on WordTemplate), visatakse minema analyysid, mis vastavad sellele s6namallile;
null
null
null
if len(regex) == 0: return False try: re.compile(regex) return True except sre_constants.error: return False
def is_valid_regex(regex)
Function for checking a valid regex.
2.441005
2.395318
1.019074
# assert not (nested(elem1, elem2) or nested(elem2, elem1)), 'deletion not defined for nested elements' if overlapping_right(elem1, elem2): elem1['end'] = elem2['start'] return elem1, elem2
def delete_left(elem1, elem2)
xxxxx yyyyy --------- xxx yyyyy
5.375616
6.537999
0.822211
# assert not (nested(elem1, elem2) or nested(elem2, elem1)), 'deletion not defined for nested elements' if overlapping_left(elem1, elem2): elem2['start'] = elem1['end'] return elem1, elem2
def delete_right(elem1, elem2)
xxxxx yyyyy --------- xxxxx yyy
5.647915
6.559644
0.861009
yielded = set() ri = layer[:] # Shallow copy the layer for i1, elem1 in enumerate(ri): for i2, elem2 in enumerate(ri): if i1 != i2 and elem1['start'] <= elem2['start'] < elem1['end']: inds = (i1, i2) if i1 < i2 else (i2, i1) if inds not in yielded and in_by_identity(layer, elem1) and in_by_identity(layer, elem2): yielded.add(inds) yield elem1, elem2
def iterate_intersecting_pairs(layer)
Given a layer of estntltk objects, yields pairwise intersecting elements. Breaks when the layer is changed or deleted after initializing the iterator.
3.342173
3.086248
1.082924
def _getPOS( self, token, onlyFirst = True ): ''' Returns POS of the current token. ''' if onlyFirst: return token[ANALYSIS][0][POSTAG] else: return [ a[POSTAG] for a in token[ANALYSIS] ]
Returns POS of the current token.
null
null
null
def _getPhrase( self, i, sentence, NPlabels ): ''' Fetches the full length phrase from the position i based on the existing NP phrase annotations (from NPlabels); Returns list of sentence tokens in the phrase, and indices of the phrase; ''' phrase = [] indices = [] if 0 <= i and i < len(sentence) and NPlabels[i] == 'B': phrase = [ sentence[i] ] indices = [ i ] j = i + 1 while ( j < len(sentence) ): if NPlabels[j] in ['B', '']: break else: phrase.append( sentence[j] ) indices.append( j ) j += 1 return phrase, indices
Fetches the full length phrase from the position i based on the existing NP phrase annotations (from NPlabels); Returns list of sentence tokens in the phrase, and indices of the phrase;
null
null
null
def _getCaseAgreement(self, token1, token2): ''' Detects whether there is a morphological case agreement between two consecutive nominals (token1 and token2), and returns the common case, or None if no agreement exists; Applies a special set of rules for detecting agreement on the word in genitive followed by the word in ter, es, ab or kom. ''' forms1 = set( [a[FORM] for a in token1[ANALYSIS]] ) forms2 = set( [a[FORM] for a in token2[ANALYSIS]] ) if len(forms1.intersection(forms2))==0: # Kontrollime ka ni-na-ta-ga k22ndeid: if 'sg g' in forms1: if 'sg ter' in forms2: return 'sg ter' elif 'sg es' in forms2: return 'sg es' elif 'sg ab' in forms2: return 'sg ab' elif 'sg kom' in forms2: return 'sg kom' elif 'pl g' in forms1: if 'pl ter' in forms2: return 'pl ter' elif 'pl es' in forms2: return 'pl es' elif 'pl ab' in forms2: return 'pl ab' elif 'pl kom' in forms2: return 'pl kom' return None else: return list(forms1.intersection(forms2))[0]
Detects whether there is a morphological case agreement between two consecutive nominals (token1 and token2), and returns the common case, or None if no agreement exists; Applies a special set of rules for detecting agreement on the word in genitive followed by the word in ter, es, ab or kom.
null
null
null
def get_phrases(self, text, np_labels): ''' Given a Text and a BIO labels (one label for each word in Text) , extracts phrases and returns as a list of phrases, where each phrase is a list of word tokens belonging to the phrase; Parameters ---------- text: estnltk.text.Text The input Text, or a list consecutive words (dict objects). The method attempts to automatically determine the type of the input; np_labels : list of str A list of strings, containing a B-I-O label for each word in *text*; Returns ------- list of (list of tokens) List of phrases, where each phrase is a list of word tokens belonging to the phrase; ''' # 1) Take different inputs to common list of words format: input_words = [] if isinstance(text, Text): # input is Text input_words = text.words elif isinstance(text, list) and len(text)>0 and isinstance(text[0], dict) and \ TEXT in text[0]: # input is a list of words input_words = text elif text: raise Exception('Unexpected input text:', text) if len(input_words) != len(np_labels): raise Exception(' (!) Number of words ('+str(len(input_words))+\ ') does not match number of labels '+str(len(np_labels))) # 2) Extract phrases from input words: phrases = [] for i, word in enumerate(input_words): label = np_labels[i] if label == 'B': phrases.append([]) if label in ['B', 'I']: phrases[-1].append( word ) return phrases
Given a Text and a BIO labels (one label for each word in Text) , extracts phrases and returns as a list of phrases, where each phrase is a list of word tokens belonging to the phrase; Parameters ---------- text: estnltk.text.Text The input Text, or a list consecutive words (dict objects). The method attempts to automatically determine the type of the input; np_labels : list of str A list of strings, containing a B-I-O label for each word in *text*; Returns ------- list of (list of tokens) List of phrases, where each phrase is a list of word tokens belonging to the phrase;
null
null
null
def get_phrase_texts(self, text, np_labels): ''' Given a Text, and a list describing text annotations in the B-I-O format (*np_label*), extracts phrases and returns as a list of phrase texts; Assumes that the input is same as the input acceptable for the method NounPhraseChunker.get_phrases(); Returns ------- list of string Returns a list of phrase texts; ''' phrases = self.get_phrases(text, np_labels) texts = [] for phrase in phrases: phrase_str = ' '.join([word[TEXT] for word in phrase]) texts.append( phrase_str ) return texts
Given a Text, and a list describing text annotations in the B-I-O format (*np_label*), extracts phrases and returns as a list of phrase texts; Assumes that the input is same as the input acceptable for the method NounPhraseChunker.get_phrases(); Returns ------- list of string Returns a list of phrase texts;
null
null
null
def annotateText(self, text, layer, np_labels = None): ''' Applies this chunker on given Text, and adds results of the chunking as a new annotation layer to the text. If the NP annotations are provided (via the input list *np_labels*), uses the given NP annotations, otherwise produces new NP_LABEL annotations via the method self.analyze_text(); Parameters ---------- text: estnltk.text.Text The input text where the new layer of NP chunking annotations is to be added; layer: str Name of the new layer; np_labels : list of str Optional: A list of strings, containing a B-I-O label for each word in *text*; If provided, uses annotations from *np_labels*, otherwise creates new annotations with this chunker; Returns ------- text The input text where a new layer (containing NP annotations) has been added; ''' input_words = None if isinstance(text, Text): # input is Text input_words = text.words else: raise Exception(' Input text should be of type Text, but it is ', text) phrases = [] # If NP_LABEL-s are not provided, text needs to be analyzed first: if not np_labels: np_labels = self.analyze_text( text, return_type="labels" ) if len(input_words) != len(np_labels): raise Exception(' (!) Number of words ('+str(len(input_words))+\ ') does not match number of labels '+str(len(np_labels))) # Fetch NP chunks phrases = self.get_phrases( text, np_labels ) # Create and attach annotations to the Text object annotations = [] if phrases: for phrase in phrases: phrase_annotation = {} phrase_annotation[START] = phrase[0][START] phrase_annotation[END] = phrase[-1][END] phrase_annotation[TEXT] = ' '.join([word[TEXT] for word in phrase ]) annotations.append( phrase_annotation ) text[layer] = annotations return text
Applies this chunker on given Text, and adds results of the chunking as a new annotation layer to the text. If the NP annotations are provided (via the input list *np_labels*), uses the given NP annotations, otherwise produces new NP_LABEL annotations via the method self.analyze_text(); Parameters ---------- text: estnltk.text.Text The input text where the new layer of NP chunking annotations is to be added; layer: str Name of the new layer; np_labels : list of str Optional: A list of strings, containing a B-I-O label for each word in *text*; If provided, uses annotations from *np_labels*, otherwise creates new annotations with this chunker; Returns ------- text The input text where a new layer (containing NP annotations) has been added;
null
null
null
outer_spans = [spans(elem) for elem in by] return divide_by_spans(elements, outer_spans, translate=translate, sep=sep)
def divide(elements, by, translate=False, sep=' ')
Divide lists `elements` and `by`. All elements are grouped into N bins, where N denotes the elements in `by` list. Parameters ---------- elements: list of dict Elements to be grouped into bins. by: list of dict Elements defining the bins. translate: bool (default: False) When dividing, also translate start and end positions of elements. sep: str (default ' ') In case of multispans, what is the default text separator. This is required in order to tag correct start, end positions of elements.
5.881893
10.256705
0.573468
openRE = re.compile(openDelim) closeRE = re.compile(closeDelim) # partition text in separate blocks { } { } spans = [] # pairs (s, e) for each partition nest = 0 # nesting level start = openRE.search(text, 0) if not start: return text end = closeRE.search(text, start.end()) next = start while end: next = openRE.search(text, next.end()) if not next: # termination while nest: # close all pending nest -=1 end0 = closeRE.search(text, end.end()) if end0: end = end0 else: break spans.append((start.start(), end.end())) break while end.end() < next.start(): # { } { if nest: nest -= 1 # try closing more last = end.end() end = closeRE.search(text, end.end()) if not end: # unbalanced if spans: span = (spans[0][0], last) else: span = (start.start(), last) spans = [span] break else: spans.append((start.start(), end.end())) # advance start, find next close start = next end = closeRE.search(text, next.end()) break # { } if next != start: # { { } nest += 1 # collect text outside partitions return dropSpans(spans, text)
def dropNested(text, openDelim, closeDelim)
A matching function for nested expressions, e.g. namespaces and tables.
3.569692
3.610545
0.988685
spans.sort() res = '' offset = 0 for s, e in spans: if offset <= s: # handle nesting if offset < s: res += text[offset:s] offset = e res += text[offset:] return res
def dropSpans(spans, text)
Drop from text the blocks identified in :param spans:, possibly nested.
4.374983
4.317253
1.013372
text = bold_italic.sub(r'\1', text) text = bold.sub(r'\1', text) text = italic_quote.sub(r'"\1"', text) text = italic.sub(r'"\1"', text) text = quote_quote.sub(r'"\1"', text) # residuals of unbalanced quotes text = text.replace("'''", '').replace("''", '"') text = newlines.sub(r'\n', text) text = bulletlist.sub(r'', text) # Collect spans spans = [] # Drop HTML comments for m in comment.finditer(text): spans.append((m.start(), m.end())) # Drop self-closing tags for pattern in selfClosing_tag_patterns: for m in pattern.finditer(text): spans.append((m.start(), m.end())) # Drop ignored tags for left, right in ignored_tag_patterns: for m in left.finditer(text): spans.append((m.start(), m.end())) for m in right.finditer(text): spans.append((m.start(), m.end())) # Bulk remove all spans text = dropSpans(spans, text) # Drop discarded elements for tag in discardElements: text = dropNested(text, r'<\s*%s\b[^>/]*>' % tag, r'<\s*/\s*%s>' % tag) # Expand placeholders for pattern, placeholder in placeholder_tag_patterns: index = 1 for match in pattern.finditer(text): text = text.replace(match.group(), '%s_%d' % (placeholder, index)) index += 1 text = text.replace('<<', u'«').replace('>>', u'»') ############################################# # Cleanup text text = text.replace('\t', ' ') text = spaces.sub(' ', text) text = dots.sub('...', text) text = re.sub(u' (,:\.\)\]»)', r'\1', text) text = re.sub(u'(\[\(«) ', r'\1', text) text = re.sub(r'\n\W+?\n', '\n', text, flags=re.U) # lines with only punctuations text = text.replace(',,', ',').replace(',.', '.') return text
def clean(text)
Transforms wiki markup. @see https://www.mediawiki.org/wiki/Help:Formatting
3.199694
3.184525
1.004764
return isinstance(docs, list) and \ all(isinstance(d, (basestring, Text)) for d in docs)
def __isListOfTexts(self, docs)
Checks whether the input is a list of strings or Text-s;
3.758347
2.987349
1.258088
return isinstance(docs, list) and \ all(self.__isListOfTexts(ds) for ds in docs)
def __isListOfLists(self, docs)
Checks whether the input is a list of list of strings/Text-s;
5.317663
3.887307
1.367955
lemmaFreq = dict() for doc in docs: for word in doc[WORDS]: # 1) Leiame k6ik s6naga seotud unikaalsed pärisnimelemmad # (kui neid on) uniqLemmas = set() for analysis in word[ANALYSIS]: if analysis[POSTAG] == 'H': uniqLemmas.add( analysis[ROOT] ) # 2) Jäädvustame lemmade sagedused for lemma in uniqLemmas: if lemma not in lemmaFreq: lemmaFreq[lemma] = 1 else: lemmaFreq[lemma] += 1 return lemmaFreq
def __create_proper_names_lexicon(self, docs)
Moodustab dokumendikollektsiooni põhjal pärisnimede sagedussõnastiku (mis kirjeldab, mitu korda iga pärisnimelemma esines);
10.3522
7.907919
1.309093
for doc in docs: for word in doc[WORDS]: # Vaatame vaid s6nu, millele on pakutud rohkem kui yks analyys: if len(word[ANALYSIS]) > 1: # 1) Leiame kõigi pärisnimede sagedused sagedusleksikonist highestFreq = 0 properNameAnalyses = [] for analysis in word[ANALYSIS]: if analysis[POSTAG] == 'H': if analysis[ROOT] in lexicon: properNameAnalyses.append( analysis ) if lexicon[analysis[ROOT]] > highestFreq: highestFreq = lexicon[analysis[ROOT]] else: raise Exception(' Unable to find lemma ',analysis[ROOT], \ ' from the lexicon. ') # 2) J2tame alles vaid suurima lemmasagedusega pärisnimeanalyysid, # ylejaanud kustutame maha if highestFreq > 0: toDelete = [] for analysis in properNameAnalyses: if lexicon[analysis[ROOT]] < highestFreq: toDelete.append(analysis) for analysis in toDelete: word[ANALYSIS].remove(analysis)
def __disambiguate_proper_names_1(self, docs, lexicon)
Teeme esmase yleliigsete analyyside kustutamise: kui sõnal on mitu erineva sagedusega pärisnimeanalüüsi, siis jätame alles vaid suurima sagedusega analyysi(d) ...
8.610538
6.213165
1.385854
certainNames = set() for doc in docs: for word in doc[WORDS]: # Vaatame vaid pärisnimeanalüüsidest koosnevaid sõnu if all([ a[POSTAG] == 'H' for a in word[ANALYSIS] ]): # Jäädvustame kõik unikaalsed lemmad kui kindlad pärisnimed for analysis in word[ANALYSIS]: certainNames.add( analysis[ROOT] ) return certainNames
def __find_certain_proper_names(self, docs)
Moodustame kindlate pärisnimede loendi: vaatame sõnu, millel ongi ainult pärisnimeanalüüsid ning võtame sealt loendisse unikaalsed pärisnimed;
17.43824
9.836555
1.772799
sentInitialNames = set() for doc in docs: for sentence in doc.divide( layer=WORDS, by=SENTENCES ): sentencePos = 0 # Tavaline lausealgus for i in range(len(sentence)): word = sentence[i] # Täiendavad heuristikud lausealguspositsioonide leidmiseks: # 1) kirjavahemärk, mis pole koma ega semikoolon, on lausealgus: if all([ a[POSTAG] == 'Z' for a in word[ANALYSIS] ]) and \ not re.match('^[,;]+$', word[TEXT]): sentencePos = 0 #self.__debug_print_word_in_sentence_str(sentence, word) continue # 2) potentsiaalne loendi algus (arv, millele järgneb punkt või # sulg ja mis ei ole kuupäev); if not re.match('^[1234567890]*$', word[TEXT] ) and \ not re.match('^[1234567890]{1,2}.[1234567890]{1,2}.[1234567890]{4}$', word[TEXT] ) and \ re.match("^[1234567890.()]*$", word[TEXT]): sentencePos = 0 #self.__debug_print_word_in_sentence_str(sentence, word) continue if sentencePos == 0: # Vaatame lausealgulisi sõnu, millel on nii pärisnimeanalüüs(e) # kui ka mitte-pärisnimeanalüüs(e) h_postags = [ a[POSTAG] == 'H' for a in word[ANALYSIS] ] if any( h_postags ) and not all( h_postags ): for analysis in word[ANALYSIS]: # Jätame meelde kõik unikaalsed pärisnimelemmad if analysis[POSTAG] == 'H': sentInitialNames.add( analysis[ROOT] ) sentencePos += 1 return sentInitialNames
def __find_sentence_initial_proper_names(self, docs)
Moodustame lausealguliste pärisnimede loendi: vaatame sõnu, millel nii pärisnimeanalüüs(id) kui ka mittepärisnimeanalüüs(id) ning mis esinevad lause või nummerdatud loendi alguses - jäädvustame selliste sõnade unikaalsed lemmad;
7.411397
5.791997
1.279593
for doc in docs: for word in doc[WORDS]: # Vaatame vaid s6nu, millele on pakutud rohkem kui yks analyys: if len(word[ANALYSIS]) > 1: # 1) Leiame analyysid, mis tuleks loendi järgi eemaldada toDelete = [] for analysis in word[ANALYSIS]: if analysis[POSTAG] == 'H' and analysis[ROOT] in lemma_set: toDelete.append( analysis ) # 2) Eemaldame yleliigsed analyysid if toDelete: for analysis in toDelete: word[ANALYSIS].remove(analysis)
def __remove_redundant_proper_names(self, docs, lemma_set)
Eemaldame yleliigsed pärisnimeanalüüsid etteantud sõnalemmade loendi (hulga) põhjal;
9.316139
6.338928
1.469671
for doc in docs: for sentence in doc.divide( layer=WORDS, by=SENTENCES ): sentencePos = 0 # Tavaline lausealgus for i in range(len(sentence)): word = sentence[i] # Täiendavad heuristikud lausealguspositsioonide leidmiseks: # 1) kirjavahemärk, mis pole koma ega semikoolon, on lausealgus: if all([ a[POSTAG] == 'Z' for a in word[ANALYSIS] ]) and \ not re.match('^[,;]+$', word[TEXT]): sentencePos = 0 continue # # Vaatame ainult mitmeseid s6nu, mis sisaldavad ka p2risnimeanalyysi # if len(word[ANALYSIS]) > 1 and \ any([ a[POSTAG] == 'H' for a in word[ANALYSIS] ]): if sentencePos != 0: # 1) Kui oleme lause keskel, valime alati vaid nimeanalyysid # (eeldades, et nyyseks on järgi jäänud vaid korrektsed nimed) toDelete = [] for analysis in word[ANALYSIS]: if analysis[POSTAG] not in ['H', 'G']: toDelete.append( analysis ) for analysis in toDelete: word[ANALYSIS].remove(analysis) #if toDelete: # self.__debug_print_word_in_sentence_str(sentence, word) else: # 2) Kui oleme lause alguses, siis valime ainult nimeanalyysid # juhul, kui vastav lemma esines ka mujal (st lemma esinemis- # sagedus on suurem kui 1); # Kas m6ni lemma esineb p2risnimede leksikonis sagedusega > 1 ? hasRecurringProperName = False toDelete = [] for analysis in word[ANALYSIS]: if analysis[ROOT] in lexicon and lexicon[analysis[ROOT]] > 1: hasRecurringProperName = True if analysis[POSTAG] not in ['H', 'G']: toDelete.append( analysis ) if hasRecurringProperName and toDelete: # Kui p2risnimi esines ka mujal, j2tame alles vaid p2risnime- # analyysid: for analysis in toDelete: word[ANALYSIS].remove(analysis) #self.__debug_print_word_in_sentence_str(sentence, word) sentencePos += 1
def __disambiguate_proper_names_2(self, docs, lexicon)
Kustutame üleliigsed mitte-pärisnimeanalüüsid: -- kui lause keskel on pärisnimeanalüüsiga sõna, jätamegi alles vaid pärisnimeanalyys(id); -- kui lause alguses on pärisnimeanalüüsiga s6na, ning pärisnimelemma esineb korpuses suurema sagedusega kui 1, jätamegi alles vaid pärisnimeanalyys(id); vastasel juhul ei kustuta midagi;
8.737791
7.224316
1.209497
# 1) Leiame pärisnimelemmade sagedusleksikoni lexicon = self.__create_proper_names_lexicon(docs) # 2) Teeme esialgse kustutamise: kui sõnal on mitu erineva korpuse- # sagedusega pärisnimeanalüüsi, siis jätame alles vaid kõige # sagedasema analyysi ... self.__disambiguate_proper_names_1(docs, lexicon) # 3) Eemaldame yleliigsed lause alguse pärisnimeanalüüsid; # Kõigepealt leiame: kindlad pärisnimed, lause alguses esinevad # p2risnimed ja lause keskel esinevad pärisnimed certainNames = self.__find_certain_proper_names(docs) sentInitialNames = self.__find_sentence_initial_proper_names(docs) sentCentralNames = self.__find_sentence_central_proper_names(docs) # 3.1) Võrdleme lause alguses ja keskel esinevaid lemmasid: leiame # lemmad, mis esinesid ainult lause alguses ... onlySentenceInitial = sentInitialNames.difference(sentCentralNames) # 3.2) Võrdleme ainult lause alguses esinevaid ning kindlaid pärisnime- # lemmasid: kui sõna esines vaid lause alguses ega ole kindel # pärisnimelemma, pole tõenäoliselt tegu pärisnimega ... notProperNames = onlySentenceInitial.difference(certainNames) # 3.3) Eemaldame yleliigsed p2risnimeanalyysid (kui selliseid leidus) if len(notProperNames) > 0: self.__remove_redundant_proper_names(docs, notProperNames) # 4) Leiame uue pärisnimelemmade sagedusleksikoni (sagedused on # tõenäoliselt vahepeal muutunud); lexicon = self.__create_proper_names_lexicon(docs) # 5) Teeme üleliigsete mittepärisnimeanalüüside kustutamise sõnadelt, # millel on lisaks pärisnimeanalüüsidele ka teisi analüüse: # lausealgusesse jätame alles vaid pärisnimeanalüüsid, kui neid # esineb korpuses ka mujal; # lause keskele jätame igal juhul alles vaid pärisnimeanalüüsid; self.__disambiguate_proper_names_2(docs, lexicon) return docs
def pre_disambiguate(self, docs)
Teostab pärisnimede eelühestamine. Üldiseks eesmärgiks on vähendada mitmesust suurtähega algavate sonade morf analüüsil, nt eemaldada pärisnime analüüs, kui suurtäht tähistab tõenäoliselt lausealgust.
9.17086
8.257819
1.110567
return POSTAG in analysisA and POSTAG in analysisB and \ analysisA[POSTAG]==analysisB[POSTAG] and \ ROOT in analysisA and ROOT in analysisB and \ analysisA[ROOT]==analysisB[ROOT] and \ FORM in analysisA and FORM in analysisB and \ analysisA[FORM]==analysisB[FORM] and \ CLITIC in analysisA and CLITIC in analysisB and \ analysisA[CLITIC]==analysisB[CLITIC] and \ ENDING in analysisA and ENDING in analysisB and \ analysisA[ENDING]==analysisB[ENDING]
def __analyses_match(self, analysisA, analysisB)
Leiame, kas tegu on duplikaatidega ehk täpselt üht ja sama morfoloogilist infot sisaldavate analüüsidega.
1.993396
2.074299
0.960997
for doc in docs: for word in doc[WORDS]: # 1) Leiame k6ik analyysi-duplikaadid (kui neid on) toDelete = [] for i in range(len(word[ANALYSIS])): if i+1 < len(word[ANALYSIS]): for j in range(i+1, len(word[ANALYSIS])): analysisI = word[ANALYSIS][i] analysisJ = word[ANALYSIS][j] if self.__analyses_match(analysisI, analysisJ): if j not in toDelete: toDelete.append(j) # 2) Kustutame yleliigsed analyysid if toDelete: for a in sorted(toDelete, reverse=True): del word[ANALYSIS][a] # # *) Kui verbi analüüside puhul on olemas nii '-tama' kui ka '-ma' # lõpp, siis jätta alles vaid -ma, ülejäänud kustutada; # Nt lõpetama: lõp+tama, lõppe+tama, lõpeta+ma # teatama: tead+tama, teata+ma # if any([ a[POSTAG]=='V' and a[ENDING]=='tama' for a in word[ANALYSIS] ]) and \ any([ a[POSTAG]=='V' and a[ENDING]=='ma' for a in word[ANALYSIS] ]): toDelete = [] for a in range( len(word[ANALYSIS]) ): if word[ANALYSIS][a][POSTAG]=='V' and \ word[ANALYSIS][a][ENDING]=='tama': toDelete.append(a) if toDelete: for a in sorted(toDelete, reverse=True): del word[ANALYSIS][a]
def __remove_duplicate_and_problematic_analyses(self, docs)
1) Eemaldab sisendkorpuse kõigi sõnade morf analüüsidest duplikaadid ehk siis korduvad analüüsid; Nt sõna 'palk' saab kaks analyysi: 'palk' (mis käändub 'palk\palgi') ja 'palk' (mis käändub 'palk\palga'), aga pärast duplikaatide eemaldamist jääb alles vaid üks; 2) Kui verbi analüüside hulgas on alles nii '-tama' kui ka '-ma', siis jätta alles vaid '-ma' analüüsid;
5.499781
3.970566
1.385138
for d in range(len(docs)): for w in range(len(docs[d][WORDS])): word = docs[d][WORDS][w] # Jätame vahele nn peidetud sõnad if (d, w) in hiddenWords: continue isAmbiguous = (len(word[ANALYSIS])>1) # Jäädvustame sagedused, verbide omad eraldiseisva märkega: for a in word[ANALYSIS]: lemma = a[ROOT]+'ma' if a[POSTAG]=='V' else a[ROOT] # 1) Jäädvustame üldise sageduse if lemma not in lexicon: lexicon[lemma] = 1 else: lexicon[lemma] += 1 # 2) Jäädvustame mitmeste sõnade esinemise if isAmbiguous: amb_lexicon[lemma] = 1 # Kanname yldisest sagedusleksikonist sagedused yle mitmeste lemmade # sagedusleksikoni for lemma in amb_lexicon.keys(): amb_lexicon[lemma] = lexicon[lemma]
def __supplement_lemma_frequency_lexicon(self, docs, hiddenWords, lexicon, amb_lexicon)
Täiendab etteantud sagedusleksikone antud korpuse (docs) põhjal: *) yldist sagedusleksikoni, kus on k6ik lemmad, v.a. lemmad, mis kuuluvad nn peidetud sõnade hulka (hiddenWords); *) mitmeste sagedusleksikoni, kus on vaid mitmeste analyysidega s6nades esinenud lemmad, v.a. (hiddenWords) lemmad, koos nende yldiste esinemissagedustega (esimesest leksikonist);
10.736981
7.124562
1.507037
for d in range(len(docs)): for w in range(len(docs[d][WORDS])): word = docs[d][WORDS][w] # Jätame vahele nn peidetud sõnad if (d, w) in hiddenWords: continue # Vaatame vaid mitmeseks jäänud analüüsidega sõnu if len(word[ANALYSIS]) > 1: # 1) Leiame suurima esinemissageduse mitmeste lemmade seas highestFreq = 0 for analysis in word[ANALYSIS]: lemma = analysis[ROOT]+'ma' if analysis[POSTAG]=='V' else analysis[ROOT] if lemma in lexicon and lexicon[lemma] > highestFreq: highestFreq = lexicon[lemma] if highestFreq > 0: # 2) Jätame välja kõik analüüsid, mille lemma esinemissagedus # on väiksem kui suurim esinemissagedus; toDelete = [] for analysis in word[ANALYSIS]: lemma = analysis[ROOT]+'ma' if analysis[POSTAG]=='V' else analysis[ROOT] freq = lexicon[lemma] if lemma in lexicon else 0 if freq < highestFreq: toDelete.append(analysis) for analysis in toDelete: word[ANALYSIS].remove(analysis)
def __disambiguate_with_lexicon(self, docs, lexicon, hiddenWords)
Teostab lemmade leksikoni järgi mitmeste morf analüüside ühestamise - eemaldab üleliigsed analüüsid; Toetub ideele "üks tähendus teksti kohta": kui mitmeseks jäänud lemma esineb tekstis/korpuses ka mujal ning lõppkokkuvõttes esineb sagedamini kui alternatiivsed analüüsid, siis tõenäoliselt see ongi õige lemma/analüüs;
6.168169
4.879739
1.264036
for analysis_match in text.analysis: for candidate in analysis_match: if candidate['partofspeech'] in PYVABAMORF_TO_WORDNET_POS_MAP: # Wordnet contains data about the given lemma and pos combination - will annotate. wordnet_obj = {} tag_synsets(wordnet_obj, candidate, **kwargs) return text
def tag_text(self, text, **kwargs)
Annotates `analysis` entries in `corpus` with a list of lemmas` synsets and queried WordNet data in a 'wordnet' entry. Note ---- Annotates every `analysis` entry with a `wordnet`:{`synsets`:[..]}. Parameters ---------- text: estnltk.text.Text Representation of a corpus in a disassembled form for automatic text analysis with word-level `analysis` entry. E.g. corpus disassembled into paragraphs, sentences, words ({'paragraphs':[{'sentences':[{'words':[{'analysis':{...}},..]},..]},..]}). pos : boolean, optional If True, annotates each synset with a correspnding `pos` (part-of-speech) tag. variants : boolean, optional If True, annotates each synset with a list of all its variants' (lemmas') literals. var_sense : boolean, optional If True and `variants` is True, annotates each variant/lemma with its sense number. var_definition : boolean, optional If True and `variants` is True, annotates each variant/lemma with its definition. Definitions often missing in WordNet. var_examples : boolean, optional If True and `variants` is True, annotates each variant/lemma with a list of its examples. Examples often missing in WordNet. relations : list of str, optional Holds interested relations. Legal relations are as follows: `antonym`, `be_in_state`, `belongs_to_class`, `causes`, `fuzzynym`, `has_holo_location`, `has_holo_madeof`, `has_holo_member`, `has_holo_part`, `has_holo_portion`, `has_holonym`, `has_hyperonym`, `has_hyponym`, `has_instance`, `has_mero_location`, `has_mero_madeof`, `has_mero_member`, `has_mero_part`, `has_mero_portion`, `has_meronym`, `has_subevent`, `has_xpos_hyperonym`, `has_xpos_hyponym`, `involved`, `involved_agent`, `involved_instrument`, `involved_location`, `involved_patient`, `involved_target_direction`, `is_caused_by`, `is_subevent_of`, `near_antonym`, `near_synonym`, `role`, `role_agent`, `role_instrument`, `role_location`, `role_patient`, `role_target_direction`, `state_of`, `xpos_fuzzynym`, `xpos_near_antonym`, `xpos_near_synonym`. Annotates each synset with related synsets' indices with respect to queried relations. Returns ------- estnltk.text.Text In-place annotated `text`.
20.492054
15.941243
1.285474
words = sentence_chunk.split('\n') texts = [] labels = [] for word in words: word = word.strip() if len(word) > 0: toks = word.split('\t') texts.append(toks[0].strip()) labels.append(toks[-1].strip()) return texts, labels
def get_texts_and_labels(sentence_chunk)
Given a sentence chunk, extract original texts and labels.
1.972983
1.877875
1.050647
word_spans = [] sentence_spans = [] sentence_chunks = doc.split('\n\n') sentences = [] for chunk in sentence_chunks: sent_texts, sent_labels = get_texts_and_labels(chunk.strip()) sentences.append(list(zip(sent_texts, sent_labels))) return sentences
def parse_doc(doc)
Exract list of sentences containing (text, label) pairs.
4.073728
3.565653
1.142491
raw_tokens = [] curpos = 0 text_spans = [] all_labels = [] sent_spans = [] word_texts = [] for sentence in document: startpos = curpos for idx, (text, label) in enumerate(sentence): raw_tokens.append(text) word_texts.append(text) all_labels.append(label) text_spans.append((curpos, curpos+len(text))) curpos += len(text) if idx < len(sentence) - 1: raw_tokens.append(' ') curpos += 1 sent_spans.append((startpos, curpos)) raw_tokens.append('\n') curpos += 1 return { TEXT: ''.join(raw_tokens), WORDS: [{TEXT: text, START: start, END: end, LABEL: label} for text, (start, end), label in zip(word_texts, text_spans, all_labels)], SENTENCES: [{START: start, END:end} for start, end in sent_spans] }
def convert(document)
Convert a document to a Text object
2.392668
2.41974
0.988812
''' Cleanup all the local data. ''' self._select_cb = None self._commit_cb = None self._rollback_cb = None super(TransactionClass, self)._cleanup()
def _cleanup(self)
Cleanup all the local data.
9.201926
5.346484
1.721117
''' Set this channel to use transactions. ''' if not self._enabled: self._enabled = True self.send_frame(MethodFrame(self.channel_id, 90, 10)) self._select_cb.append(cb) self.channel.add_synchronous_cb(self._recv_select_ok)
def select(self, cb=None)
Set this channel to use transactions.
7.663911
5.689945
1.346922
''' Commit the current transaction. Caller can specify a callback to use when the transaction is committed. ''' # Could call select() but spec 1.9.2.3 says to raise an exception if not self.enabled: raise self.TransactionsNotEnabled() self.send_frame(MethodFrame(self.channel_id, 90, 20)) self._commit_cb.append(cb) self.channel.add_synchronous_cb(self._recv_commit_ok)
def commit(self, cb=None)
Commit the current transaction. Caller can specify a callback to use when the transaction is committed.
8.521229
6.604863
1.290145