code
string
signature
string
docstring
string
loss_without_docstring
float64
loss_with_docstring
float64
factor
float64
while True: s = ''.join([random.SystemRandom().choice(string.digits + string.ascii_letters) for n in range(length)]) if (s not in container): break return s
def _generate_random_string(self, container, length=20)
Generate a random cookie or token string not in container. The cookie or token should be secure in the sense that it should not be likely to be able guess a value. Because it is not derived from anything else, there is no vulnerability of the token from computation, or possible leakage of information from the token.
3.001622
3.036939
0.988371
if (self.account_allowed(account)): cookie = self._generate_random_string(self.access_cookies) self.access_cookies[cookie] = int(time.time()) return cookie else: return None
def access_cookie(self, account)
Make and store access cookie for a given account. If account is allowed then make a cookie and add it to the dict of accepted access cookies with current timestamp as the value. Return the access cookie. Otherwise return None.
4.314742
3.639851
1.185417
if (cookie in self.access_cookies): age = int(time.time()) - self.access_cookies[cookie] if (age <= (self.access_cookie_lifetime + 1)): self.logger.info(log_msg + " " + cookie + " ACCEPTED COOKIE (%ds old)" % age) return True # Expired... self.logger.info(log_msg + " " + cookie + " EXPIRED COOKIE (%ds old > %ds)" % (age, self.access_cookie_lifetime)) # Keep cookie for 2x lifetim in order to generate # helpful expired message if (age > (self.access_cookie_lifetime * 2)): del self.access_cookies[cookie] return False else: self.logger.info(log_msg + " " + cookie + " REJECTED COOKIE") return False
def access_cookie_valid(self, cookie, log_msg)
Check access cookie validity. Returns true if the access cookie is valid. The set of allowed access cookies is stored in self.access_cookies. Uses log_msg as prefix to info level log message of accetance or rejection.
3.237198
3.107763
1.041649
if (cookie): token = self._generate_random_string(self.access_tokens) self.access_tokens[token] = (cookie, int(time.time())) return token else: return None
def access_token(self, cookie)
Make and store access token as proxy for the access cookie. Create an access token to act as a proxy for access cookie, add it to the dict of accepted access tokens with (cookie, current timestamp) as the value. Return the access token. Return None if cookie is not set.
4.161844
3.44685
1.207434
if (token in self.access_tokens): (cookie, issue_time) = self.access_tokens[token] age = int(time.time()) - issue_time if (age <= (self.access_token_lifetime + 1)): self.logger.info(log_msg + " " + token + " ACCEPTED TOKEN (%ds old)" % age) return True # Expired... self.logger.info(log_msg + " " + token + " EXPIRED TOKEN (%ds old > %ds)" % (age, self.access_token_lifetime)) # Keep token for 2x lifetim in order to generate # helpful expired message if (age > (self.access_token_lifetime * 2)): del self.access_tokens[token] return False else: self.logger.info(log_msg + " " + token + " REJECTED TOKEN") return False
def access_token_valid(self, token, log_msg)
Check token validity. Returns true if the token is valid. The set of allowed access tokens is stored in self.access_tokens. Uses log_msg as prefix to info level log message of acceptance or rejection.
3.23452
3.154788
1.025273
authz_header = request.headers.get('Authorization', '[none]') if (not authz_header.startswith('Bearer ')): return False token = authz_header[7:] return self.access_token_valid( token, "info_authn: Authorization header")
def info_authn(self)
Check to see if user if authenticated for info.json. Must have Authorization header with value that has the form "Bearer TOKEN", where TOKEN is an appropriate and valid access token.
5.409265
4.687061
1.154085
authn_cookie = request.cookies.get( self.access_cookie_name, default='[none]') return self.access_cookie_valid(authn_cookie, "image_authn: auth cookie")
def image_authn(self)
Check to see if user if authenticated for image requests. Must have access cookie with an appropriate value.
8.180407
6.629347
1.233969
response = make_response( "<html><script>window.close();</script></html>", 200, {'Content-Type': "text/html"}) response.set_cookie(self.account_cookie_name, expires=0) response.set_cookie(self.access_cookie_name, expires=0) response.headers['Access-Control-Allow-Origin'] = '*' return response
def logout_handler(self, **args)
Handler for logout button. Delete cookies and return HTML that immediately closes window
2.651713
2.58467
1.025939
message_id = request.args.get('messageId', default=None) origin = request.args.get('origin', default='unknown_origin') self.logger.info("access_token_handler: origin = " + origin) account = request.cookies.get(self.account_cookie_name, default='') token = self.access_token(account) # Build JSON response data_str = json.dumps(self.access_token_response(token, message_id)) ct = "application/json" # If message_id is set the wrap in HTML with postMessage JavaScript # for a browser client if (message_id is not None): data_str = % (token, data_str, origin) ct = "text/html" # Send response along with cookie response = make_response(data_str, 200, {'Content-Type': ct}) if (token): self.logger.info( "access_token_handler: setting access token = " + token) # Set the cookie for the image content cookie = self.access_cookie(token) self.logger.info( "access_token_handler: setting access cookie = " + cookie) response.set_cookie(self.access_cookie_name, cookie) else: self.logger.info( "access_token_handler: auth failed, sending error") response.headers['Access-control-allow-origin'] = '*' return response
def access_token_handler(self, **args)
Get access token based on cookie sent with this request. This handler deals with two cases: 1) Non-browser client (indicated by no messageId set in request) where the response is a simple JSON response. 2) Browser client (indicate by messageId setin request) where the request must be made from a an iFrame and the response is sent as JSON wrapped in HTML containing a postMessage() script that conveys the access token to the viewer.
3.679349
3.220331
1.142537
response = make_response( "<html><script>window.close();</script></html>", 200, {'Content-Type': "text/html"}) response.set_cookie(self.account_cookie_name, account_cookie_value) return response
def set_cookie_close_window_response(self, account_cookie_value)
Response to set account cookie and close window HTML/JavaScript.
2.701104
2.619893
1.030998
cls.tmpdir = ('/tmp' if (tmpdir is None) else tmpdir) # Shell setup command (e.g set library path) cls.shellsetup = ('' if (shellsetup is None) else shellsetup) if (pnmdir is None): cls.pnmdir = '/usr/bin' for dir in ('/usr/local/bin', '/sw/bin'): if (os.path.isfile(os.path.join(dir, 'pngtopnm'))): cls.pnmdir = dir else: cls.pnmdir = pnmdir # Recklessly assume everything else under cls.pnmdir cls.pngtopnm = os.path.join(cls.pnmdir, 'pngtopnm') cls.jpegtopnm = os.path.join(cls.pnmdir, 'jpegtopnm') cls.pnmfile = os.path.join(cls.pnmdir, 'pnmfile') cls.pnmcut = os.path.join(cls.pnmdir, 'pnmcut') cls.pnmscale = os.path.join(cls.pnmdir, 'pnmscale') cls.pnmrotate = os.path.join(cls.pnmdir, 'pnmrotate') cls.pnmflip = os.path.join(cls.pnmdir, 'pnmflip') cls.pnmtopng = os.path.join(cls.pnmdir, 'pnmtopng') cls.ppmtopgm = os.path.join(cls.pnmdir, 'ppmtopgm') cls.pnmtotiff = os.path.join(cls.pnmdir, 'pnmtotiff') cls.pnmtojpeg = os.path.join(cls.pnmdir, 'pnmtojpeg') cls.pamditherbw = os.path.join(cls.pnmdir, 'pamditherbw') # Need djatoka to get jp2 output cls.djatoka_comp = '/Users/simeon/packages/adore-djatoka-1.1/bin/compress.sh'
def find_binaries(cls, tmpdir=None, shellsetup=None, pnmdir=None)
Set instance variables for directory and binary locations. FIXME - should accept params to set things other than defaults.
2.738865
2.675936
1.023517
pid = os.getpid() self.basename = os.path.join(self.tmpdir, 'iiif_netpbm_' + str(pid)) outfile = self.basename + '.pnm' # Convert source file to pnm filetype = self.file_type(self.srcfile) if (filetype == 'png'): if (self.shell_call(self.pngtopnm + ' ' + self.srcfile + ' > ' + outfile)): raise IIIFError(text="Oops... got error from pngtopnm.") elif (filetype == 'jpg'): if (self.shell_call(self.jpegtopnm + ' ' + self.srcfile + ' > ' + outfile)): raise IIIFError(text="Oops... got error from jpegtopnm.") else: raise IIIFError(code='501', text='bad input file format (only know how to read png/jpeg)') self.tmpfile = outfile # Get size (self.width, self.height) = self.image_size(self.tmpfile)
def do_first(self)
Create PNM file from input image file.
4.004137
3.726855
1.074401
infile = self.tmpfile outfile = self.basename + '.reg' # simeon@ice ~>cat m.pnm | pnmcut 10 10 100 200 > m1.pnm if (x is None): # print "region: full" self.tmpfile = infile else: # print "region: (%d,%d,%d,%d)" % (x,y,w,h) if (self.shell_call('cat ' + infile + ' | ' + self.pnmcut + ' ' + str(x) + ' ' + str(y) + ' ' + str(w) + ' ' + str(h) + ' > ' + outfile)): raise IIIFError(text="Oops... got nonzero output from pnmcut.") self.width = w self.height = h self.tmpfile = outfile
def do_region(self, x, y, w, h)
Apply region selection.
5.743151
5.721034
1.003866
# simeon@ice ~>cat m1.pnm | pnmscale -width 50 > m2.pnm infile = self.tmpfile outfile = self.basename + '.siz' if (w is None): # print "size: no scaling" self.tmpfile = infile else: # print "size: scaling to (%d,%d)" % (w,h) if (self.shell_call('cat ' + infile + ' | ' + self.pnmscale + ' -width ' + str(w) + ' -height ' + str(h) + ' > ' + outfile)): raise IIIFError( text="Oops... got nonzero output from pnmscale.") self.width = w self.height = h self.tmpfile = outfile
def do_size(self, w, h)
Apply size scaling.
6.917137
6.505359
1.063298
infile = self.tmpfile outfile = self.basename + '.col' # Quality (bit-depth): if (quality == 'grey' or quality == 'gray'): if (self.shell_call('cat ' + infile + ' | ' + self.ppmtopgm + ' > ' + outfile)): raise IIIFError( text="Oops... got nonzero output from ppmtopgm.") self.tmpfile = outfile elif (quality == 'bitonal'): if (self.shell_call('cat ' + infile + ' | ' + self.ppmtopgm + ' | ' + self.pamditherbw + ' > ' + outfile)): raise IIIFError( text="Oops... got nonzero output from ppmtopgm.") self.tmpfile = outfile elif ((quality == 'native' and self.api_version < '2.0') or (quality == 'default' and self.api_version >= '2.0') or quality == 'color'): self.tmpfile = infile else: raise IIIFError(code=400, parameter='quality', text="Unknown quality parameter value requested.")
def do_quality(self, quality)
Apply value of quality parameter.
4.51947
4.379608
1.031935
infile = self.tmpfile outfile = self.basename + '.out' outfile_jp2 = self.basename + '.jp2' # Now convert finished pnm file to output format # simeon@ice ~>cat m3.pnm | pnmtojpeg > m4.jpg # simeon@ice ~>cat m3.pnm | pnmtotiff > m4.jpg # pnmtotiff: computing colormap... # pnmtotiff: Too many colors - proceeding to write a 24-bit RGB file. # pnmtotiff: If you want an 8-bit palette file, try doing a 'ppmquant 256'. # simeon@ice ~>cat m3.pnm | pnmtopng > m4.png fmt = ('png' if (format is None) else format) if (fmt == 'png'): # print "format: png" if (self.shell_call(self.pnmtopng + ' ' + infile + ' > ' + outfile)): raise IIIFError( text="Oops... got nonzero output from pnmtopng.") mime_type = "image/png" elif (fmt == 'jpg'): # print "format: jpg" if (self.shell_call(self.pnmtojpeg + ' ' + infile + ' > ' + outfile)): raise IIIFError( text="Oops... got nonzero output from pnmtojpeg.") mime_type = "image/jpeg" elif (fmt == 'tiff' or fmt == 'jp2'): # print "format: tiff/jp2" if (self.shell_call(self.pnmtotiff + ' ' + infile + ' > ' + outfile)): raise IIIFError( text="Oops... got nonzero output from pnmtotiff.") mime_type = "image/tiff" if (fmt == 'jp2'): # use djatoka after tiff if (self.shell_call(DJATOKA_COMP + ' -i ' + outfile + ' -o ' + outfile_jp2)): raise IIIFError( text="Oops... got nonzero output from DJATOKA_COMP.") mime_type = "image/jp2" outfile = tmpfile_jp2 else: raise IIIFError(code=415, parameter='format', text="Unsupported output file format (%s), only png,jpg,tiff are supported." % (fmt)) self.outfile = outfile self.output_format = fmt self.mime_type = mime_type
def do_format(self, format)
Apply format selection.
3.592196
3.574776
1.004873
try: magic_text = magic.from_file(file) if (isinstance(magic_text, bytes)): # In python2 and travis python3 (?!) decode to get unicode string magic_text = magic_text.decode('utf-8') except (TypeError, IOError): return if (re.search('PNG image data', magic_text)): return('png') elif (re.search('JPEG image data', magic_text)): return('jpg') # failed return
def file_type(self, file)
Use python-magic to determine file type. Returns 'png' or 'jpg' on success, nothing on failure.
5.138153
4.55039
1.129168
pout = os.popen(self.shellsetup + self.pnmfile + ' ' + pnmfile, 'r') pnmfileout = pout.read(200) pout.close() m = re.search(', (\d+) by (\d+) ', pnmfileout) if (m is None): raise IIIFError( text="Bad output from pnmfile when trying to get size.") w = int(m.group(1)) h = int(m.group(2)) # print "pnmfile output = %s" % (pnmfileout) # print "image size = %d,%d" % (w,h) return(w, h)
def image_size(self, pnmfile)
Get width and height of pnm file. simeon@homebox src>pnmfile /tmp/214-2.png /tmp/214-2.png:PPM raw, 100 by 100 maxval 255
3.956345
4.002149
0.988555
return(subprocess.call(self.shellsetup + shellcmd, shell=True))
def shell_call(self, shellcmd)
Shell call with necessary setup first.
8.642337
5.85419
1.476265
for file in glob.glob(self.basename + '*'): os.unlink(file)
def cleanup(self)
Clean up any temporary files.
6.755671
4.924075
1.371968
headers = dict(self.headers) if (api_version < '1.1'): headers['Content-Type'] = 'text/xml' response = self.as_xml() else: headers['Content-Type'] = 'text/plain' response = self.as_txt() return(response, self.code, headers)
def image_server_response(self, api_version=None)
Response, code and headers for image server error response. api_version selects the format (XML of 1.0). The return value is a tuple of response - body of HTTP response status - the HTTP status code headers - a dict of HTTP headers which will include the Content-Type As a side effect the routine sets self.content_type to the correct media type for the response.
3.446667
3.031394
1.136991
# Build tree spacing = ("\n" if (self.pretty_xml) else "") root = Element('error', {'xmlns': I3F_NS}) root.text = spacing e_parameter = Element('parameter', {}) e_parameter.text = self.parameter e_parameter.tail = spacing root.append(e_parameter) if (self.text): e_text = Element('text', {}) e_text.text = self.text e_text.tail = spacing root.append(e_text) # Write out as XML document to return tree = ElementTree(root) xml_buf = io.BytesIO() if (sys.version_info < (2, 7)): tree.write(xml_buf, encoding='UTF-8') else: tree.write(xml_buf, encoding='UTF-8', xml_declaration=True, method='xml') return(xml_buf.getvalue().decode('utf-8'))
def as_xml(self)
XML representation of the error to be used in HTTP response. This XML format follows the IIIF Image API v1.0 specification, see <http://iiif.io/api/image/1.0/#error>
3.019342
2.937738
1.027778
s = "IIIF Image Server Error\n\n" s += self.text if (self.text) else 'UNKNOWN_ERROR' s += "\n\n" if (self.parameter): s += "parameter=%s\n" % self.parameter if (self.code): s += "code=%d\n\n" % self.code for header in sorted(self.headers): s += "header %s=%s\n" % (header, self.headers[header]) return s
def as_txt(self)
Text rendering of error response. Designed for use with Image API version 1.1 and above where the error response is suggested to be text or html but not otherwise specified. Intended to provide useful information for debugging.
3.528671
3.288234
1.07312
params = { 'response_type': 'code', 'client_id': self.google_api_client_id, 'redirect_uri': self.scheme_host_port_prefix( 'http', config.host, config.port, prefix) + '/home', 'scope': self.google_api_scope, 'state': self.request_args_get('next', default=''), } url = self.google_oauth2_url + 'auth?' + urlencode(params) return self.login_handler_redirect(url)
def login_handler(self, config=None, prefix=None, **args)
OAuth starts here, redirect user to Google.
3.790846
3.51332
1.078993
gresponse = self.google_get_token(config, prefix) gdata = self.google_get_data(config, gresponse) email = gdata.get('email', 'NO_EMAIL') name = gdata.get('name', 'NO_NAME') # Make and store cookie from identity, set and close window cookie = self.access_cookie(name + ' ' + email) return self.set_cookie_close_window_response(cookie)
def home_handler(self, config=None, prefix=None, **args)
Handler for /home redirect path after Google auth. OAuth ends up back here from Google. Set the account cookie and close window to trigger next step.
6.907313
5.340991
1.293264
params = { 'code': self.request_args_get( 'code', default=''), 'client_id': self.google_api_client_id, 'client_secret': self.google_api_client_secret, 'redirect_uri': self.scheme_host_port_prefix( 'http', config.host, config.port, prefix) + '/home', 'grant_type': 'authorization_code', } payload = urlencode(params).encode('utf-8') url = self.google_oauth2_url + 'token' req = Request(url, payload) json_str = urlopen(req).read() return json.loads(json_str.decode('utf-8'))
def google_get_token(self, config, prefix)
Make request to Google API to get token.
2.722962
2.612714
1.042197
params = { 'access_token': response['access_token'], } payload = urlencode(params) url = self.google_api_url + 'userinfo?' + payload req = Request(url) json_str = urlopen(req).read() return json.loads(json_str.decode('utf-8'))
def google_get_data(self, config, response)
Make request to Google API to get profile data for the user.
2.836013
2.528225
1.121741
if (self.api_version == '1.0'): uri_pattern = r'http://library.stanford.edu/iiif/image-api/compliance.html#level%d' elif (self.api_version == '1.1'): uri_pattern = r'http://library.stanford.edu/iiif/image-api/1.1/compliance.html#level%d' elif (self.api_version == '2.0' or self.api_version == '2.1'): uri_pattern = r'http://iiif.io/api/image/2/level%d.json' else: return if (self.compliance_level is None): return return(uri_pattern % self.compliance_level)
def compliance_uri(self)
Compliance URI based on api_version. Value is based on api_version and complicance_level, will be None if either are unset/unrecognized. The assumption here is that the api_version and level are orthogonal, override this method if that isn't true.
2.247639
2.104977
1.067774
# set if specified if (srcfile is not None): self.srcfile = srcfile if (request is not None): self.request = request if (outfile is not None): self.outfile = outfile if (self.outfile is not None): # create path to output dir if necessary dir = os.path.dirname(self.outfile) if (not os.path.exists(dir)): os.makedirs(dir) # self.do_first() (x, y, w, h) = self.region_to_apply() self.do_region(x, y, w, h) (w, h) = self.size_to_apply() self.do_size(w, h) (mirror, rot) = self.rotation_to_apply(no_mirror=True) self.do_rotation(mirror, rot) (quality) = self.quality_to_apply() self.do_quality(quality) self.do_format(self.request.format) self.do_last() return(self.outfile, self.mime_type)
def derive(self, srcfile=None, request=None, outfile=None)
Do sequence of manipulations for IIIF to derive output image. Named argments: srcfile -- source image file request -- IIIFRequest object with parsed parameters outfile -- output image file. If set the the output file will be written to that file, otherwise a new temporary file will be created and outfile set to its location. See order in spec: http://www-sul.stanford.edu/iiif/image-api/#order Region THEN Size THEN Rotation THEN Quality THEN Format Typical use: r = IIIFRequest(region=...) m = IIIFManipulator() try: m.derive(srcfile='a.jpg',request=r) # .. serve m.outfile except IIIFError as e: # .. finally: m.cleanup() #removes temp m.outfile
2.632265
2.484844
1.059328
if (x is not None): raise IIIFError(code=501, parameter="region", text="Null manipulator supports only region=/full/.")
def do_region(self, x, y, w, h)
Null implementation of region selection.
42.950249
40.896057
1.05023
if (mirror): raise IIIFError(code=501, parameter="rotation", text="Null manipulator does not support mirroring.") if (rot != 0.0): raise IIIFError(code=501, parameter="rotation", text="Null manipulator supports only rotation=(0|360).")
def do_rotation(self, mirror, rot)
Null implementation of rotate and/or mirror.
6.80499
6.388999
1.065111
if (self.api_version >= '2.0'): if (quality != "default"): raise IIIFError(code=501, parameter="default", text="Null manipulator supports only quality=default.") else: # versions 1.0 and 1.1 if (quality != "native"): raise IIIFError(code=501, parameter="native", text="Null manipulator supports only quality=native.")
def do_quality(self, quality)
Null implementation of quality.
5.688189
5.518194
1.030806
if (format is not None): raise IIIFError(code=415, parameter="format", text="Null manipulator does not support specification of output format.") # if (self.outfile is None): self.outfile = self.srcfile else: try: shutil.copyfile(self.srcfile, self.outfile) except IOError as e: raise IIIFError(code=500, text="Failed to copy file (%s)." % (str(e))) self.mime_type = None
def do_format(self, format)
Null implementation of format selection. This is the last step, this null implementation does not accept any specification of a format because we don't even know what the input format is.
5.12332
5.041851
1.016159
if (self.request.region_full or (self.request.region_pct and self.request.region_xywh == (0, 0, 100, 100))): return(None, None, None, None) # Cannot do anything else unless we know size (in self.width and # self.height) if (self.width <= 0 or self.height <= 0): raise IIIFError(code=501, parameter='region', text="Region parameters require knowledge of image size which is not implemented.") if (self.request.region_square): if (self.width <= self.height): y_offset = (self.height - self.width) / 2 return(0, y_offset, self.width, self.width) else: # self.width>self.height x_offset = (self.width - self.height) / 2 return(x_offset, 0, self.height, self.height) # pct or explicit pixel sizes pct = self.request.region_pct (x, y, w, h) = self.request.region_xywh # Convert pct to pixels based on actual size if (pct): x = int((x / 100.0) * self.width + 0.5) y = int((y / 100.0) * self.height + 0.5) w = int((w / 100.0) * self.width + 0.5) h = int((h / 100.0) * self.height + 0.5) # Check if boundary extends beyond image and truncate if ((x + w) > self.width): w = self.width - x if ((y + h) > self.height): h = self.height - y # Final check to see if we have the whole image if (w == 0 or h == 0): raise IIIFZeroSizeError(code=400, parameter='region', text="Region parameters would result in zero size result image.") if (x == 0 and y == 0 and w == self.width and h == self.height): return(None, None, None, None) return(x, y, w, h)
def region_to_apply(self)
Return the x,y,w,h parameters to extract given image width and height. Assume image width and height are available in self.width and self.height, and self.request is IIIFRequest object Expected use: (x,y,w,h) = self.region_to_apply() if (x is None): # full image else: # extract Returns (None,None,None,None) if no extraction is required.
2.697373
2.431689
1.109259
if (self.request.size_full or self.request.size_pct == 100.0): # full size return(None, None) # Not trivially full size, look at possibilities in turn w = self.width h = self.height if (self.request.size_max): # use size limits if present, else full if (self.max_area and self.max_area < (w * h)): scale = (float(self.max_area) / float(w * h)) ** 0.5 w = int(w * scale + 0.5) h = int(h * scale + 0.5) if (self.max_width): max_height = self.max_height if self.max_height is not None else self.max_width if (self.max_width < w): # calculate wrt original width, height rather than # w, h to avoid compounding rounding issues scale = float(self.max_width) / float(self.width) w = int(self.width * scale + 0.5) h = int(self.height * scale + 0.5) if (max_height < h): scale = float(max_height) / float(self.height) w = int(self.width * scale + 0.5) h = int(self.height * scale + 0.5) elif (self.request.size_pct is not None): w = int(self.width * self.request.size_pct / 100.0 + 0.5) h = int(self.height * self.request.size_pct / 100.0 + 0.5) elif (self.request.size_bang): # Have "!w,h" form (mw, mh) = self.request.size_wh # Pick smaller fraction and then work from that... frac = min((float(mw) / float(self.width)), (float(mh) / float(self.height))) w = int(self.width * frac + 0.5) h = int(self.height * frac + 0.5) else: # Must now be "w,h", "w," or ",h". If both are specified then this will the size, # otherwise find other to keep aspect ratio (w, h) = self.request.size_wh if (w is None): w = int(self.width * h / self.height + 0.5) elif (h is None): h = int(self.height * w / self.width + 0.5) # Now have w,h, sanity check and return if (w == 0 or h == 0): raise IIIFZeroSizeError( code=400, parameter='size', text="Size parameter would result in zero size result image (%d,%d)." % (w, h)) # Below would be test for scaling up image size, this is allowed by spec # if ( w>self.width or h>self.height ): # raise IIIFError(code=400,parameter='size', # text="Size requests scaling up image to larger than orginal.") if (w == self.width and h == self.height): return(None, None) return(w, h)
def size_to_apply(self)
Calculate size of image scaled using size parameters. Assumes current image width and height are available in self.width and self.height, and self.request is IIIFRequest object. Formats are: w, ,h w,h pct:p !w,h full max Returns (None,None) if no scaling is required. If max is requested and neither max_area or max_width are specified then this is the same as full. Otherwise the limits are used to determine the size.
3.441186
3.169224
1.085813
rotation = self.request.rotation_deg if (no_mirror and self.request.rotation_mirror): raise IIIFError(code=501, parameter="rotation", text="This implementation does not support mirroring.") if (only90s and (rotation != 0.0 and rotation != 90.0 and rotation != 180.0 and rotation != 270.0)): raise IIIFError(code=501, parameter="rotation", text="This implementation supports only 0,90,180,270 degree rotations.") return(self.request.rotation_mirror, rotation)
def rotation_to_apply(self, only90s=False, no_mirror=False)
Check and interpret rotation. Returns a truth value as to whether to mirror, and a floating point number 0 <= angle < 360 (degrees).
3.276622
3.139001
1.043842
if (self.request.quality is None): if (self.api_version <= '1.1'): return('native') else: return('default') return(self.request.quality)
def quality_to_apply(self)
Value of quality parameter to use in processing request. Simple substitution of 'native' or 'default' if no quality parameter is specified.
6.571771
4.092235
1.605912
if (not tile_height): tile_height = tile_width sf = 1 scale_factors = [sf] for j in range(30): # limit of 2^30, should be enough! sf = 2 * sf if (tile_width * sf > self.width and tile_height * sf > self.height): break scale_factors.append(sf) return scale_factors
def scale_factors(self, tile_width, tile_height=None)
Return a set of scale factors for given tile and window size. Gives a set of scale factors, starting at 1, and in multiples of 2. Largest scale_factor is so that one tile will cover the entire image (self.width,self.height). If tile_height is not specified then tiles are assumed to be squares of tile_width pixels.
3.695422
3.544992
1.042434
if (size is None): size = self.sz # Have we go to the smallest element? if (size <= 3): if (_not_diagonal(x, y)): return None else: return (0, 0, 0) divisor = size // 3 if (_not_diagonal(x // divisor, y // divisor)): return None return self.pixel(x % divisor, y % divisor, divisor)
def pixel(self, x, y, size=None)
Return color for a pixel.
5.569152
5.421461
1.027242
red = int(n * self.shade_factor) if (red > 255): red = 255 return (red, 50, 100)
def color(self, n)
Color of pixel that reached limit after n iterations. Returns a color tuple for use with PIL, tending toward red as we tend toward self.max_iter iterations.
4.770202
4.819401
0.989791
z = z * z + self.c if (abs(z) > 2.0): return self.color(n) n += 1 if (n > self.max_iter): return None return self.mpixel(z, n)
def mpixel(self, z, n=0)
Iteration in Mandlebrot coordinate z.
4.229063
3.103725
1.362576
x = (ix - self.xoffset + 0.5) / self.scale y = (iy - self.yoffset + 0.5) / self.scale z = complex(x, y) self.set_c(z) return self.mpixel(z)
def pixel(self, ix, iy)
Return color for a pixel. Does translation from image coordinates (ix,iy) into the complex plane coordinate z = x+yi, and then calls self.mpixel(z) to find the color at point z.
4.089431
2.66531
1.534317
for sf in scale_factors: if (sf * tilesize >= width and sf * tilesize >= height): continue # avoid any full-region tiles rts = tilesize * sf # tile size in original region xt = (width - 1) // rts + 1 yt = (height - 1) // rts + 1 for nx in range(xt): rx = nx * rts rxe = rx + rts if (rxe > width): rxe = width rw = rxe - rx # same as sw = int(math.ceil(rw/float(sf))) sw = (rw + sf - 1) // sf for ny in range(yt): ry = ny * rts rye = ry + rts if (rye > height): rye = height rh = rye - ry # same as sh = int(math.ceil(rh/float(sf))) sh = (rh + sf - 1) // sf yield([rx, ry, rw, rh], [sw, sh])
def static_partial_tile_sizes(width, height, tilesize, scale_factors)
Generator for partial tile sizes for zoomed in views. Positional arguments: width -- width of full size image height -- height of full size image tilesize -- width and height of tiles scale_factors -- iterable of scale factors, typically [1,2,4..] Yields ([rx,ry,rw,rh],[sw,sh]), the region and size for each tile
2.644631
2.566571
1.030414
# FIXME - Not sure what correct algorithm is for this, from # observation of Openseadragon it seems that one keeps halving # the pixel size of the full image until until both width and # height are less than the tile size. After that all subsequent # halving of the image size are used, all the way down to 1,1. # It seems that without these reduced size full-region images, # OpenSeadragon will not display any unzoomed image in small windows. # # I do not understand the algorithm that OpenSeadragon uses (or # know where it is in the code) to decide how small a version of # the complete image to request. It seems that there is a bug in # OpenSeadragon here because in some cases it requests images # of size 1,1 multiple times, which is anyway a useless image. for level in range(0, 20): factor = 2.0**level sw = int(width / factor + 0.5) sh = int(height / factor + 0.5) if (sw < tilesize and sh < tilesize): if (sw < 1 or sh < 1): break yield([sw, sh])
def static_full_sizes(width, height, tilesize)
Generator for scaled-down full image sizes. Positional arguments: width -- width of full size image height -- height of full size image tilesize -- width and height of tiles Yields [sw,sh], the size for each full-region tile that is less than the tilesize. This includes tiles up to the full image size if that is smaller than the tilesize.
8.671844
8.314171
1.04302
if extra.startswith('/'): extra = extra[1:] r = IIIFRequest(identifier='dummy', api_version=self.api_version) r.parse_url(extra) if (r.info): raise IIIFStaticError("Attempt to specify Image Information in extras.") return(r)
def parse_extra(self, extra)
Parse extra request parameters to IIIFRequest object.
11.154676
8.050307
1.385621
if (osd_version in self.osd_config): return(self.osd_config[osd_version]) else: raise IIIFStaticError("OpenSeadragon version %s not supported, available versions are %s" % (osd_version, ', '.join(sorted(self.osd_config.keys()))))
def get_osd_config(self, osd_version)
Select appropriate portion of config. If the version requested is not supported the raise an exception with a helpful error message listing the versions supported.
3.421946
3.461904
0.988458
self.src = src self.identifier = identifier # Get image details and calculate tiles im = self.manipulator_klass() im.srcfile = self.src im.set_max_image_pixels(self.max_image_pixels) im.do_first() width = im.width height = im.height scale_factors = im.scale_factors(self.tilesize) # Setup destination and IIIF identifier self.setup_destination() # Write out images for (region, size) in static_partial_tile_sizes(width, height, self.tilesize, scale_factors): self.generate_tile(region, size) sizes = [] for size in static_full_sizes(width, height, self.tilesize): # See https://github.com/zimeon/iiif/issues/9 sizes.append({'width': size[0], 'height': size[1]}) self.generate_tile('full', size) for request in self.extras: request.identifier = self.identifier if (request.is_scaled_full_image()): sizes.append({'width': request.size_wh[0], 'height': request.size_wh[1]}) self.generate_file(request) # Write info.json qualities = ['default'] if (self.api_version > '1.1') else ['native'] info = IIIFInfo(level=0, server_and_prefix=self.prefix, identifier=self.identifier, width=width, height=height, scale_factors=scale_factors, tile_width=self.tilesize, tile_height=self.tilesize, formats=['jpg'], qualities=qualities, sizes=sizes, api_version=self.api_version) json_file = os.path.join(self.dst, self.identifier, 'info.json') if (self.dryrun): self.logger.warning( "dryrun mode, would write the following files:") self.logger.warning("%s / %s/%s" % (self.dst, self.identifier, 'info.json')) else: with open(json_file, 'w') as f: f.write(info.as_json()) f.close() self.logger.info("%s / %s/%s" % (self.dst, self.identifier, 'info.json')) self.logger.debug("Written %s" % (json_file))
def generate(self, src=None, identifier=None)
Generate static files for one source image.
3.665956
3.583325
1.02306
r = IIIFRequest(identifier=self.identifier, api_version=self.api_version) if (region == 'full'): r.region_full = True else: r.region_xywh = region # [rx,ry,rw,rh] r.size_wh = size # [sw,sh] r.format = 'jpg' self.generate_file(r, True)
def generate_tile(self, region, size)
Generate one tile for this given region, size of this image.
5.568275
5.17928
1.075106
use_canonical = self.get_osd_config(self.osd_version)['use_canonical'] height = None if (undistorted and use_canonical): height = r.size_wh[1] r.size_wh = [r.size_wh[0], None] # [sw,sh] -> [sw,] path = r.url() # Generate... if (self.dryrun): self.logger.info("%s / %s" % (self.dst, path)) else: m = self.manipulator_klass(api_version=self.api_version) try: m.derive(srcfile=self.src, request=r, outfile=os.path.join(self.dst, path)) self.logger.info("%s / %s" % (self.dst, path)) except IIIFZeroSizeError: self.logger.info("%s / %s - zero size, skipped" % (self.dst, path)) return # done if zero size if (r.region_full and use_canonical and height is not None): # In v2.0 of the spec, the canonical URI form `w,` for scaled # images of the full region was introduced. This is somewhat at # odds with the requirement for `w,h` specified in `sizes` to # be available, and has problems of precision with tall narrow # images. Hopefully will be fixed in 3.0 but for now symlink # the `w,h` form to the `w,` dirs so that might use the specified # `w,h` also work. See # <https://github.com/IIIF/iiif.io/issues/544> # # FIXME - This is ugly because we duplicate code in # iiif.request.url to construct the partial URL region_dir = os.path.join(r.quote(r.identifier), "full") wh_dir = "%d,%d" % (r.size_wh[0], height) wh_path = os.path.join(region_dir, wh_dir) wc_dir = "%d," % (r.size_wh[0]) wc_path = os.path.join(region_dir, wc_dir) if (not self.dryrun): ln = os.path.join(self.dst, wh_path) if (os.path.exists(ln)): os.remove(ln) os.symlink(wc_dir, ln) self.logger.info("%s / %s -> %s" % (self.dst, wh_path, wc_path))
def generate_file(self, r, undistorted=False)
Generate file for IIIFRequest object r from this image. FIXME - Would be nicer to have the test for an undistorted image request based on the IIIFRequest object, and then know whether to apply canonicalization or not. Logically we might use `w,h` instead of the Image API v2.0 canonical form `w,` if the api_version is 1.x. However, OSD 1.2.1 and 2.x assume the new canonical form even in the case where the API version is declared earlier. Thus, determine whether to use the canonical or `w,h` form based solely on the setting of osd_version.
5.613821
4.850849
1.157286
# Do we have a separate identifier? if (not self.identifier): # No separate identifier specified, split off the last path segment # of the source name, strip the extension to get the identifier self.identifier = os.path.splitext(os.path.split(self.src)[1])[0] # Done if dryrun, else setup self.dst first if (self.dryrun): return if (not self.dst): raise IIIFStaticError("No destination directory specified!") dst = self.dst if (os.path.isdir(dst)): # Exists, OK pass elif (os.path.isfile(dst)): raise IIIFStaticError( "Can't write to directory %s: a file of that name exists" % dst) else: os.makedirs(dst) # Second, create identifier based subdir if necessary outd = os.path.join(dst, self.identifier) if (os.path.isdir(outd)): # Nothing for now, perhaps should delete? self.logger.warning( "Output directory %s already exists, adding/updating files" % outd) pass elif (os.path.isfile(outd)): raise IIIFStaticError( "Can't write to directory %s: a file of that name exists" % outd) else: os.makedirs(outd) self.logger.debug("Output directory %s" % outd)
def setup_destination(self)
Setup output directory based on self.dst and self.identifier. Returns the output directory name on success, raises and exception on failure.
3.883533
3.596374
1.079847
osd_config = self.get_osd_config(self.osd_version) osd_base = osd_config['base'] osd_dir = osd_config['dir'] # relative to base osd_js = os.path.join(osd_dir, osd_config['js']) osd_images = os.path.join(osd_dir, osd_config['images']) if (os.path.isdir(html_dir)): # Exists, fine pass elif (os.path.isfile(html_dir)): raise IIIFStaticError( "Can't write to directory %s: a file of that name exists" % html_dir) else: os.makedirs(html_dir) self.logger.info("Writing HTML to %s" % (html_dir)) with open(os.path.join(self.template_dir, 'static_osd.html'), 'r') as f: template = f.read() outfile = self.identifier + '.html' outpath = os.path.join(html_dir, outfile) with open(outpath, 'w') as f: info_json_uri = '/'.join([self.identifier, 'info.json']) if (self.prefix): info_json_uri = '/'.join([self.prefix, info_json_uri]) d = dict(identifier=self.identifier, api_version=self.api_version, osd_version=self.osd_version, osd_uri=osd_js, osd_images_prefix=osd_images, osd_height=osd_width, osd_width=osd_height, info_json_uri=info_json_uri) f.write(Template(template).safe_substitute(d)) self.logger.info("%s / %s" % (html_dir, outfile)) # Do we want to copy OSD in there too? If so, do it only if # we haven't already if (include_osd): if (self.copied_osd): self.logger.info("OpenSeadragon already copied") else: # Make directory, copy JavaScript and icons (from osd_images) osd_path = os.path.join(html_dir, osd_dir) if (not os.path.isdir(osd_path)): os.makedirs(osd_path) shutil.copyfile(os.path.join(osd_base, osd_js), os.path.join(html_dir, osd_js)) self.logger.info("%s / %s" % (html_dir, osd_js)) osd_images_path = os.path.join(html_dir, osd_images) if (os.path.isdir(osd_images_path)): self.logger.warning( "OpenSeadragon images directory (%s) already exists, skipping" % osd_images_path) else: shutil.copytree(os.path.join(osd_base, osd_images), osd_images_path) self.logger.info("%s / %s/*" % (html_dir, osd_images)) self.copied_osd = True
def write_html(self, html_dir='/tmp', include_osd=False, osd_width=500, osd_height=500)
Write HTML test page using OpenSeadragon for the tiles generated. Assumes that the generate(..) method has already been called to set up identifier etc. Parameters: html_dir - output directory for HTML files, will be created if it does not already exist include_osd - true to include OpenSeadragon code osd_width - width of OpenSeadragon pane in pixels osd_height - height of OpenSeadragon pane in pixels
2.325105
2.294621
1.013285
if isinstance(key, int): return _get_value_for_key(key, obj, default) return _get_value_for_keys(key.split('.'), obj, default)
def get_value(key, obj, default=missing)
Helper for pulling a keyed value off various types of objects
2.790436
3.15031
0.885766
for key, val in original.items(): if key not in self.fields: data[key] = val return data
def _handle_load_unknown(self, data, original)
Preserve unknown keys during deserialization.
4.092432
3.183159
1.285651
for key, val in original.items(): if key not in self.fields: data[key] = val return data
def _handle_dump_unknown(self, data, original)
Preserve unknown keys during deserialization.
4.005523
3.185715
1.257339
validated_data = { spec.VERSION: data[spec.VERSION], spec.KIND: data[spec.KIND], } if data.get(spec.LOGGING): validated_data[spec.LOGGING] = LoggingConfig.from_dict( data[spec.LOGGING]) if data.get(spec.TAGS): validated_data[spec.TAGS] = data[spec.TAGS] if data.get(spec.HP_TUNING): validated_data[spec.HP_TUNING] = HPTuningConfig.from_dict( data[spec.HP_TUNING]) return validated_data
def validate_headers(spec, data)
Validates headers data and creates the config objects
2.27107
2.169838
1.046654
data = copy.deepcopy(data) validated_data = {} def validate_keys(section, config, section_data): if not isinstance(section_data, dict) or section == spec.MODEL: return extra_args = [key for key in section_data.keys() if key not in config.SCHEMA().fields] if extra_args: raise PolyaxonfileError('Extra arguments passed for `{}`: {}'.format( section, extra_args)) def add_validated_section(section, config): if data.get(section): section_data = data[section] validate_keys(section=section, config=config, section_data=section_data) validated_data[section] = config.from_dict(section_data) add_validated_section(spec.ENVIRONMENT, spec.ENVIRONMENT_CONFIG) add_validated_section(spec.BUILD, BuildConfig) add_validated_section(spec.RUN, RunConfig) add_validated_section(spec.MODEL, ModelConfig) add_validated_section(spec.TRAIN, TrainConfig) add_validated_section(spec.EVAL, EvalConfig) return validated_data
def validate(spec, data)
Validates the data and creates the config objects
2.763274
2.659963
1.038839
environment = data.get('environment') if environment and environment.replicas: validate_replicas(data.get('framework'), environment.replicas)
def validate_replicas(self, data)
Validate distributed experiment
8.568229
8.157669
1.050328
parsed_data = Parser.parse(self, self._data, matrix_declaration) del parsed_data[self.HP_TUNING] validator.validate(spec=self, data=parsed_data) return ExperimentSpecification(values=[parsed_data, {'kind': self._EXPERIMENT}])
def get_experiment_spec(self, matrix_declaration)
Returns an experiment spec for this group spec and the given matrix declaration.
12.439118
12.292585
1.01192
if BaseSpecification.BUILD not in self._data: return None return BuildConfig.from_dict(self._data[BaseSpecification.BUILD])
def get_build_spec(self)
Returns a build spec for this group spec.
8.225156
6.868295
1.197554
is_grid_search = ( data.get('grid_search') is not None or (data.get('grid_search') is None and data.get('random_search') is None and data.get('hyperband') is None and data.get('bo') is None) ) is_bo = data.get('bo') is not None validate_matrix(data.get('matrix'), is_grid_search=is_grid_search, is_bo=is_bo)
def validate_matrix(self, data)
Validates matrix data and creates the config objects
2.717423
2.707375
1.003711
if not self._anchor: self._anchor = str(uuid.uuid4()) return self._anchor
def anchor(self)
Generate a html anchor name :return:
4.286237
4.288086
0.999569
cases = [x.html() for x in self.cases] return .format(anchor=self.anchor(), name=tag.text(self.name), count=len(cases), cases="".join(cases))
def html(self)
Render this test class as html :return:
9.019391
9.348022
0.964845
return .format(name=tag.text(self.name), value=tag.text(self.value))
def html(self)
Render those properties as html :return:
11.075394
10.398663
1.065079
failure = "" skipped = None stdout = tag.text(self.stdout) stderr = tag.text(self.stderr) if self.skipped: skipped = .format(msg=tag.text(self.skipped_msg), skip=tag.text(self.skipped)) if self.failed(): failure = .format(msg=tag.text(self.failure_msg), fail=tag.text(self.failure)) properties = [x.html() for x in self.properties] return .format(anchor=self.anchor(), testname=self.name, testclassname=self.testclass.name, duration=self.duration, failure=failure, skipped=skipped, properties="".join(properties), stdout=stdout, stderr=stderr)
def html(self)
Render this test case as HTML :return:
3.59189
3.452922
1.040247
tests = list() for testclass in self.classes: tests.extend(self.classes[testclass].cases) return tests
def all(self)
Return all testcases :return:
7.089425
4.920145
1.440898
return [test for test in self.all() if not test.failed() and not test.skipped()]
def passed(self)
Return all the passing testcases :return:
7.564874
7.376765
1.0255
fails = "" skips = "" if len(self.failed()): faillist = list() for failure in self.failed(): faillist.append( .format(anchor=failure.anchor(), name=tag.text( failure.testclass.name + '.' + failure.name))) fails = .format(faillist="".join(faillist)) if len(self.skipped()): skiplist = list() for skipped in self.skipped(): skiplist.append( .format(anchor=skipped.anchor(), name=tag.text( skipped.testclass.name + skipped.name))) skips = .format(skiplist="".join(skiplist)) classlist = list() for classname in self.classes: testclass = self.classes[classname] cases = list() for testcase in testclass.cases: if "pkcs11" in testcase.name: assert True cases.append( .format(anchor=testcase.anchor(), name=tag.text(testcase.name))) classlist.append(.format(anchor=testclass.anchor(), name=testclass.name, cases="".join(cases))) return .format(failed=fails, skips=skips, classlist="".join(classlist))
def toc(self)
Return a html table of contents :return:
3.023529
3.044838
0.993002
classes = list() package = "" if self.package is not None: package = "Package: " + self.package + "<br/>" for classname in self.classes: classes.append(self.classes[classname].html()) errs = "" for error in self.errors: if not len(errs): errs += "<tr><th colspan='2' align='left'>Errors</th></tr>" for part in ["type", "message", "text"]: if part in error: errs += "<tr><td>{}</td><td><pre>{}</pre></td></tr>".format( part, tag.text(error[part])) stdio = "" if self.stderr or self.stdout: stdio += "<tr><th colspan='2' align='left'>Output</th></tr>" if self.stderr: stdio += "<tr><td>Stderr</td><td><pre>{}</pre></td></tr>".format( tag.text(self.stderr)) if self.stdout: stdio += "<tr><td>Stdout</td><td><pre>{}</pre></td></tr>".format( tag.text(self.stdout)) props = "" if len(self.properties): props += "<table>" propnames = sorted(self.properties) for prop in propnames: props += "<tr><th>{}</th><td>{}</td></tr>".format(prop, self.properties[prop]) props += "</table>" return .format(name=tag.text(self.name), anchor=self.anchor(), duration=self.duration, errs=errs, stdio=stdio, toc=self.toc(), package=package, properties=props, classes="".join(classes), count=len(self.all()), fails=len(self.failed()))
def html(self)
Render this as html. :return:
2.566578
2.557221
1.003659
thisdir = os.path.dirname(os.path.abspath(__file__)) with open(os.path.join(thisdir, self.css), "r") as cssfile: return cssfile.read()
def get_css(self)
Return the content of the css file :return:
2.638483
2.86916
0.919601
suites = None if isinstance(self.tree, ET.Element): root = self.tree else: root = self.tree.getroot() if root.tag == "testrun": root = root[0] if root.tag == "testsuite": suites = [root] if root.tag == "testsuites": suites = [x for x in root] assert suites, "could not find test suites in results xml" for suite in suites: cursuite = Suite() self.suites.append(cursuite) cursuite.name = suite.attrib["name"] if "package" in suite.attrib: cursuite.package = suite.attrib["package"] cursuite.duration = float(suite.attrib.get("time", '0').replace(',','')) for element in suite: if element.tag == "error": # top level error? errtag = { "message": element.attrib.get("message", ""), "type": element.attrib.get("type", ""), "text": element.text } cursuite.errors.append(errtag) if element.tag == "system-out": cursuite.stdout = element.text if element.tag == "system-err": cursuite.stderr = element.text if element.tag == "properties": for prop in element: if prop.tag == "property": cursuite.properties[prop.attrib["name"]] = prop.attrib["value"] if element.tag == "testcase": testcase = element if not testcase.attrib.get("classname", None): testcase.attrib["classname"] = NO_CLASSNAME if testcase.attrib["classname"] not in cursuite: testclass = Class() testclass.name = testcase.attrib["classname"] cursuite[testclass.name] = testclass testclass = cursuite[testcase.attrib["classname"]] newcase = Case() newcase.name = testcase.attrib["name"] newcase.testclass = testclass newcase.duration = float(testcase.attrib.get("time", '0').replace(',','')) testclass.cases.append(newcase) # does this test case have any children? for child in testcase: if child.tag == "skipped": newcase.skipped = child.text if "message" in child.attrib: newcase.skipped_msg = child.attrib["message"] elif child.tag == "system-out": newcase.stdout = child.text elif child.tag == "system-err": newcase.stderr = child.text elif child.tag == "failure": newcase.failure = child.text if "message" in child.attrib: newcase.failure_msg = child.attrib["message"] elif child.tag == "error": newcase.failure = child.text if "message" in child.attrib: newcase.failure_msg = child.attrib["message"] elif child.tag == "properties": for property in child: newproperty = Property() newproperty.name = property.attrib["name"] newproperty.value = property.attrib["value"] newcase.properties.append(newproperty)
def process(self)
populate the report from the xml :return:
1.831434
1.811605
1.010945
if len(self.suites) > 1: tochtml = "<ul>" for suite in self.suites: tochtml += '<li><a href="#{anchor}">{name}</a></li>'.format( anchor=suite.anchor(), name=tag.text(suite.name)) tochtml += "</ul>" return tochtml else: return ""
def toc(self)
If this report has multiple suite results, make a table of contents listing each suite :return:
3.068226
2.703845
1.134764
page = self.get_html_head() page += "<body><h1>Test Report</h1>" page += self.toc() for suite in self.suites: page += suite.html() page += "</body></html>" return page
def html(self)
Render the test suite as a HTML report with links to errors first. :return:
4.45275
3.645131
1.221561
(opts, args) = PARSER.parse_args(args) if args else PARSER.parse_args() if not len(args): PARSER.print_usage() sys.exit(1) outfilename = args[0] + ".html" if len(args) > 1: outfilename = args[1] report = parser.Junit(args[0]) html = report.html() with open(outfilename, "wb") as outfile: outfile.write(html.encode('utf-8'))
def run(args)
Run this tool :param args: :return:
3.023221
3.008185
1.004998
warnings = {} msg = '{}'.format(end_of_line) # generate warnings for continuous variables if self._continuous: # highlight far outliers outlier_mask = self.cont_describe.far_outliers > 1 outlier_vars = list(self.cont_describe.far_outliers[outlier_mask].dropna(how='all').index) if outlier_vars: warnings["Warning, Tukey test indicates far outliers in"] = outlier_vars # highlight possible multimodal distributions using hartigan's dip test # -1 values indicate NaN modal_mask = (self.cont_describe.diptest >= 0) & (self.cont_describe.diptest <= 0.05) modal_vars = list(self.cont_describe.diptest[modal_mask].dropna(how='all').index) if modal_vars: warnings["Warning, Hartigan's Dip Test reports possible multimodal distributions for"] = modal_vars # highlight non normal distributions # -1 values indicate NaN modal_mask = (self.cont_describe.normaltest >= 0) & (self.cont_describe.normaltest <= 0.001) modal_vars = list(self.cont_describe.normaltest[modal_mask].dropna(how='all').index) if modal_vars: warnings["Warning, test for normality reports non-normal distributions for"] = modal_vars # create the warning string for n,k in enumerate(sorted(warnings)): msg += '[{}] {}: {}.{}'.format(n+1,k,', '.join(warnings[k]), end_of_line) return msg
def _generate_remark_str(self, end_of_line = '\n')
Generate a series of remarks that the user should consider when interpreting the summary statistics.
3.328349
3.278923
1.015074
# assume all non-numerical and date columns are categorical numeric_cols = set(data._get_numeric_data().columns.values) date_cols = set(data.select_dtypes(include=[np.datetime64]).columns) likely_cat = set(data.columns) - numeric_cols likely_cat = list(likely_cat - date_cols) # check proportion of unique values if numerical for var in data._get_numeric_data().columns: likely_flag = 1.0 * data[var].nunique()/data[var].count() < 0.05 if likely_flag: likely_cat.append(var) return likely_cat
def _detect_categorical_columns(self,data)
Detect categorical columns if they are not specified. Parameters ---------- data : pandas DataFrame The input dataset. Returns ---------- likely_cat : list List of variables that appear to be categorical.
3.784716
3.629067
1.04289
return np.nanstd(x.values,ddof=self._ddof)
def _std(self,x)
Compute standard deviation with ddof degrees of freedom
6.03044
5.161947
1.168249
vals = x.values[~np.isnan(x.values)] try: q1, q3 = np.percentile(vals, [25, 75]) iqr = q3 - q1 low_bound = q1 - (iqr * threshold) high_bound = q3 + (iqr * threshold) outliers = np.where((vals > high_bound) | (vals < low_bound)) except: outliers = [] return outliers
def _tukey(self,x,threshold)
Count outliers according to Tukey's rule. Where Q1 is the lower quartile and Q3 is the upper quartile, an outlier is an observation outside of the range: [Q1 - k(Q3 - Q1), Q3 + k(Q3 - Q1)] k = 1.5 indicates an outlier k = 3.0 indicates an outlier that is "far out"
2.042495
2.000463
1.021011
outliers = self._tukey(x, threshold = 1.5) return np.size(outliers)
def _outliers(self,x)
Compute number of outliers
8.087596
7.178161
1.126695
outliers = self._tukey(x, threshold = 3.0) return np.size(outliers)
def _far_outliers(self,x)
Compute number of "far out" outliers
9.236197
7.839552
1.178154
# set decimal places if isinstance(self._decimals,int): n = self._decimals elif isinstance(self._decimals,dict): try: n = self._decimals[x.name] except: n = 1 else: n = 1 warnings.warn('The decimals arg must be an int or dict. Defaulting to {} d.p.'.format(n)) if x.name in self._nonnormal: f = '{{:.{}f}} [{{:.{}f}},{{:.{}f}}]'.format(n,n,n) return f.format(np.nanmedian(x.values), np.nanpercentile(x.values,25), np.nanpercentile(x.values,75)) else: f = '{{:.{}f}} ({{:.{}f}})'.format(n,n) return f.format(np.nanmean(x.values), np.nanstd(x.values,ddof=self._ddof))
def _t1_summary(self,x)
Compute median [IQR] or mean (Std) for the input series. Parameters ---------- x : pandas Series Series of values to be summarised.
2.730471
2.66144
1.025938
aggfuncs = [pd.Series.count,np.mean,np.median,self._std, self._q25,self._q75,min,max,self._t1_summary,self._diptest, self._outliers,self._far_outliers,self._normaltest] # coerce continuous data to numeric cont_data = data[self._continuous].apply(pd.to_numeric, errors='coerce') # check all data in each continuous column is numeric bad_cols = cont_data.count() != data[self._continuous].count() bad_cols = cont_data.columns[bad_cols] if len(bad_cols)>0: raise InputError(.format(bad_cols.values)) # check for coerced column containing all NaN to warn user for column in cont_data.columns[cont_data.count() == 0]: self._non_continuous_warning(column) if self._groupby: # add the groupby column back cont_data = cont_data.merge(data[[self._groupby]], left_index=True, right_index=True) # group and aggregate data df_cont = pd.pivot_table(cont_data, columns=[self._groupby], aggfunc=aggfuncs) else: # if no groupby, just add single group column df_cont = cont_data.apply(aggfuncs).T df_cont.columns.name = 'overall' df_cont.columns = pd.MultiIndex.from_product([df_cont.columns, ['overall']]) df_cont.index.rename('variable',inplace=True) # remove prefix underscore from column names (e.g. _std -> std) agg_rename = df_cont.columns.levels[0] agg_rename = [x[1:] if x[0]=='_' else x for x in agg_rename] df_cont.columns.set_levels(agg_rename, level=0, inplace=True) return df_cont
def _create_cont_describe(self,data)
Describe the continuous data. Parameters ---------- data : pandas DataFrame The input dataset. Returns ---------- df_cont : pandas DataFrame Summarise the continuous variables.
3.833933
3.884817
0.986902
group_dict = {} for g in self._groupbylvls: if self._groupby: d_slice = data.loc[data[self._groupby] == g, self._categorical] else: d_slice = data[self._categorical].copy() # create a dataframe with freq, proportion df = d_slice.copy() # convert type to string to avoid int converted to boolean, avoiding nans for column in df.columns: df[column] = [str(row) if not pd.isnull(row) else None for row in df[column].values] df = df.melt().groupby(['variable','value']).size().to_frame(name='freq') df.index.set_names('level', level=1, inplace=True) df['percent'] = df['freq'].div(df.freq.sum(level=0),level=0).astype(float)* 100 # set number of decimal places for percent if isinstance(self._decimals,int): n = self._decimals f = '{{:.{}f}}'.format(n) df['percent'] = df['percent'].astype(float).map(f.format) elif isinstance(self._decimals,dict): df.loc[:,'percent'] = df.apply(self._format_cat, axis=1) else: n = 1 f = '{{:.{}f}}'.format(n) df['percent'] = df['percent'].astype(float).map(f.format) # add n column, listing total non-null values for each variable ct = d_slice.count().to_frame(name='n') ct.index.name = 'variable' df = df.join(ct) # add null count nulls = d_slice.isnull().sum().to_frame(name='isnull') nulls.index.name = 'variable' # only save null count to the first category for each variable # do this by extracting the first category from the df row index levels = df.reset_index()[['variable','level']].groupby('variable').first() # add this category to the nulls table nulls = nulls.join(levels) nulls.set_index('level', append=True, inplace=True) # join nulls to categorical df = df.join(nulls) # add summary column df['t1_summary'] = df.freq.map(str) + ' (' + df.percent.map(str) + ')' # add to dictionary group_dict[g] = df df_cat = pd.concat(group_dict,axis=1) # ensure the groups are the 2nd level of the column index if df_cat.columns.nlevels>1: df_cat = df_cat.swaplevel(0, 1, axis=1).sort_index(axis=1,level=0) return df_cat
def _create_cat_describe(self,data)
Describe the categorical data. Parameters ---------- data : pandas DataFrame The input dataset. Returns ---------- df_cat : pandas DataFrame Summarise the categorical variables.
3.493469
3.555158
0.982648
# list features of the variable e.g. matched, paired, n_expected df=pd.DataFrame(index=self._continuous+self._categorical, columns=['continuous','nonnormal','min_observed','pval','ptest']) df.index.rename('variable', inplace=True) df['continuous'] = np.where(df.index.isin(self._continuous),True,False) df['nonnormal'] = np.where(df.index.isin(self._nonnormal),True,False) # list values for each variable, grouped by groupby levels for v in df.index: is_continuous = df.loc[v]['continuous'] is_categorical = ~df.loc[v]['continuous'] is_normal = ~df.loc[v]['nonnormal'] # if continuous, group data into list of lists if is_continuous: catlevels = None grouped_data = [] for s in self._groupbylvls: lvl_data = data.loc[data[self._groupby]==s, v] # coerce to numeric and drop non-numeric data lvl_data = lvl_data.apply(pd.to_numeric, errors='coerce').dropna() # append to overall group data grouped_data.append(lvl_data.values) min_observed = len(min(grouped_data,key=len)) # if categorical, create contingency table elif is_categorical: catlevels = sorted(data[v].astype('category').cat.categories) grouped_data = pd.crosstab(data[self._groupby].rename('_groupby_var_'),data[v]) min_observed = grouped_data.sum(axis=1).min() # minimum number of observations across all levels df.loc[v,'min_observed'] = min_observed # compute pvalues df.loc[v,'pval'],df.loc[v,'ptest'] = self._p_test(v, grouped_data,is_continuous,is_categorical, is_normal,min_observed,catlevels) return df
def _create_significance_table(self,data)
Create a table containing p-values for significance tests. Add features of the distributions and the p-values to the dataframe. Parameters ---------- data : pandas DataFrame The input dataset. Returns ---------- df : pandas DataFrame A table containing the p-values, test name, etc.
3.855447
3.921577
0.983137
# remove the t1_summary level table = self.cont_describe[['t1_summary']].copy() table.columns = table.columns.droplevel(level=0) # add a column of null counts as 1-count() from previous function nulltable = data[self._continuous].isnull().sum().to_frame(name='isnull') try: table = table.join(nulltable) except TypeError: # if columns form a CategoricalIndex, need to convert to string first table.columns = table.columns.astype(str) table = table.join(nulltable) # add an empty level column, for joining with cat table table['level'] = '' table.set_index([table.index,'level'],inplace=True) # add pval column if self._pval and self._pval_adjust: table = table.join(self._significance_table[['pval (adjusted)','ptest']]) elif self._pval: table = table.join(self._significance_table[['pval','ptest']]) return table
def _create_cont_table(self,data)
Create tableone for continuous data. Returns ---------- table : pandas DataFrame A table summarising the continuous variables.
5.76783
5.699296
1.012025
table = self.cat_describe['t1_summary'].copy() # add the total count of null values across all levels isnull = data[self._categorical].isnull().sum().to_frame(name='isnull') isnull.index.rename('variable', inplace=True) try: table = table.join(isnull) except TypeError: # if columns form a CategoricalIndex, need to convert to string first table.columns = table.columns.astype(str) table = table.join(isnull) # add pval column if self._pval and self._pval_adjust: table = table.join(self._significance_table[['pval (adjusted)','ptest']]) elif self._pval: table = table.join(self._significance_table[['pval','ptest']]) return table
def _create_cat_table(self,data)
Create table one for categorical data. Returns ---------- table : pandas DataFrame A table summarising the categorical variables.
5.029494
5.286982
0.951298
# start with the original column names labels = {} for c in self._columns: labels[c] = c # replace column names with alternative names if provided if self._alt_labels: for k in self._alt_labels.keys(): labels[k] = self._alt_labels[k] # append the label suffix if self._label_suffix: for k in labels.keys(): if k in self._nonnormal: labels[k] = "{}, {}".format(labels[k],"median [Q1,Q3]") elif k in self._categorical: labels[k] = "{}, {}".format(labels[k],"n (%)") else: labels[k] = "{}, {}".format(labels[k],"mean (SD)") return labels
def _create_row_labels(self)
Take the original labels for rows. Rename if alternative labels are provided. Append label suffix if label_suffix is True. Returns ---------- labels : dictionary Dictionary, keys are original column name, values are final label.
3.636369
3.245672
1.120374
''' Scale factor for one-dimensional plug-in bandwidth selection. ''' if deriv_order == 0: return (3.0*nbr_data_pts/4)**(-1.0/5) if deriv_order == 2: return (7.0*nbr_data_pts/4)**(-1.0/9) raise ValueError('Not implemented for derivative of order {}'.format(deriv_order))
def bandwidth_factor(nbr_data_pts, deriv_order=0)
Scale factor for one-dimensional plug-in bandwidth selection.
4.533295
3.447042
1.315126
params_string = "" # Parameters are passed. Turn the dict into a string like "a=1 b=2 c=3" string. for key, value in sorted(params.items()): # Strip off a leading underscore from the attribute's key to allow attributes like '_class' # to be used as a CSS class specification instead of the reserved Python keyword 'class'. key = key.lstrip("_") params_string += u' {0}="{1}"'.format(key, value) # Create the tag string tag_string = u"<{0}{1}>".format(tag, params_string) # Add text and closing tag if required. if text: tag_string += u"{0}</{1}>".format(text, tag) return tag_string
def make_html_tag(tag, text=None, **params)
Create an HTML tag string. tag The HTML tag to use (e.g. 'a', 'span' or 'div') text The text to enclose between opening and closing tag. If no text is specified then only the opening tag is returned. Example:: make_html_tag('a', text="Hello", href="/another/page") -> <a href="/another/page">Hello</a> To use reserved Python keywords like "class" as a parameter prepend it with an underscore. Instead of "class='green'" use "_class='green'". Warning: Quotes and apostrophes are not escaped.
4.190655
4.388627
0.95489
leftmost_page = max(self.first_page, (self.page - radius)) rightmost_page = min(self.last_page, (self.page + radius)) nav_items = [] # Create a link to the first page (unless we are on the first page # or there would be no need to insert '..' spacers) if self.page != self.first_page and self.first_page < leftmost_page: page = link_map["first_page"].copy() page["value"] = unicode(page["number"]) nav_items.append(self.link_tag(page)) for item in link_map["range_pages"]: nav_items.append(self.link_tag(item)) # Create a link to the very last page (unless we are on the last # page or there would be no need to insert '..' spacers) if self.page != self.last_page and rightmost_page < self.last_page: page = link_map["last_page"].copy() page["value"] = unicode(page["number"]) nav_items.append(self.link_tag(page)) return self.separator.join(nav_items)
def _range(self, link_map, radius)
Return range of linked pages to substiture placeholder in pattern
2.74912
2.694674
1.020205
text = item["value"] target_url = item["href"] if not item["href"] or item["type"] in ("span", "current_page"): if item["attrs"]: text = make_html_tag("span", **item["attrs"]) + text + "</span>" return text return make_html_tag("a", text=text, href=target_url, **item["attrs"])
def default_link_tag(item)
Create an A-HREF tag that points to another page.
4.66943
4.257999
1.096625
'''Tags a string `corpus`.''' # Assume untokenized corpus has \n between sentences and ' ' between words s_split = SentenceTokenizer().tokenize if tokenize else lambda t: t.split('\n') w_split = WordTokenizer().tokenize if tokenize else lambda s: s.split() def split_sents(corpus): for s in s_split(corpus): yield w_split(s) prev, prev2 = self.START tokens = [] for words in split_sents(corpus): context = self.START + [self._normalize(w) for w in words] + self.END for i, word in enumerate(words): tag = self.tagdict.get(word) if not tag: features = self._get_features(i, word, context, prev, prev2) tag = self.model.predict(features) tokens.append((word, tag)) prev2 = prev prev = tag return tokens
def tag(self, corpus, tokenize=True)
Tags a string `corpus`.
4.022725
4.029649
0.998282
'''Train a model from sentences, and save it at ``save_loc``. ``nr_iter`` controls the number of Perceptron training iterations. :param sentences: A list of (words, tags) tuples. :param save_loc: If not ``None``, saves a pickled model in this location. :param nr_iter: Number of training iterations. ''' self._make_tagdict(sentences) self.model.classes = self.classes for iter_ in range(nr_iter): c = 0 n = 0 for words, tags in sentences: prev, prev2 = self.START context = self.START + [self._normalize(w) for w in words] \ + self.END for i, word in enumerate(words): guess = self.tagdict.get(word) if not guess: feats = self._get_features(i, word, context, prev, prev2) guess = self.model.predict(feats) self.model.update(tags[i], guess, feats) prev2 = prev prev = guess c += guess == tags[i] n += 1 random.shuffle(sentences) logging.info("Iter {0}: {1}/{2}={3}".format(iter_, c, n, _pc(c, n))) self.model.average_weights() # Pickle as a binary file if save_loc is not None: pickle.dump((self.model.weights, self.tagdict, self.classes), open(save_loc, 'wb'), -1) return None
def train(self, sentences, save_loc=None, nr_iter=5)
Train a model from sentences, and save it at ``save_loc``. ``nr_iter`` controls the number of Perceptron training iterations. :param sentences: A list of (words, tags) tuples. :param save_loc: If not ``None``, saves a pickled model in this location. :param nr_iter: Number of training iterations.
3.451465
2.775986
1.243329
'''Load a pickled model.''' try: w_td_c = pickle.load(open(loc, 'rb')) except IOError: msg = ("Missing trontagger.pickle file.") raise MissingCorpusError(msg) self.model.weights, self.tagdict, self.classes = w_td_c self.model.classes = self.classes return None
def load(self, loc)
Load a pickled model.
7.565444
7.872456
0.961002
'''Normalization used in pre-processing. - All words are lower cased - Digits in the range 1800-2100 are represented as !YEAR; - Other digits are represented as !DIGITS :rtype: str ''' if '-' in word and word[0] != '-': return '!HYPHEN' elif word.isdigit() and len(word) == 4: return '!YEAR' elif word[0].isdigit(): return '!DIGITS' else: return word.lower()
def _normalize(self, word)
Normalization used in pre-processing. - All words are lower cased - Digits in the range 1800-2100 are represented as !YEAR; - Other digits are represented as !DIGITS :rtype: str
4.768972
2.08333
2.28911
'''Map tokens into a feature representation, implemented as a {hashable: float} dict. If the features change, a new model must be trained. ''' def add(name, *args): features[' '.join((name,) + tuple(args))] += 1 i += len(self.START) features = defaultdict(int) # It's useful to have a constant feature, which acts sort of like a prior add('bias') add('i suffix', word[-3:]) add('i pref1', word[0]) add('i-1 tag', prev) add('i-2 tag', prev2) add('i tag+i-2 tag', prev, prev2) add('i word', context[i]) add('i-1 tag+i word', prev, context[i]) add('i-1 word', context[i-1]) add('i-1 suffix', context[i-1][-3:]) add('i-2 word', context[i-2]) add('i+1 word', context[i+1]) add('i+1 suffix', context[i+1][-3:]) add('i+2 word', context[i+2]) return features
def _get_features(self, i, word, context, prev, prev2)
Map tokens into a feature representation, implemented as a {hashable: float} dict. If the features change, a new model must be trained.
3.916029
2.949827
1.327545
'''Make a tag dictionary for single-tag words.''' counts = defaultdict(lambda: defaultdict(int)) for words, tags in sentences: for word, tag in zip(words, tags): counts[word][tag] += 1 self.classes.add(tag) freq_thresh = 20 ambiguity_thresh = 0.97 for word, tag_freqs in counts.items(): tag, mode = max(tag_freqs.items(), key=lambda item: item[1]) n = sum(tag_freqs.values()) # Don't add rare words to the tag dictionary # Only add quite unambiguous words if n >= freq_thresh and (float(mode) / n) >= ambiguity_thresh: self.tagdict[word] = tag
def _make_tagdict(self, sentences)
Make a tag dictionary for single-tag words.
3.520892
3.215505
1.094973
'''Return an averaged perceptron model trained on ``examples`` for ``nr_iter`` iterations. ''' model = AveragedPerceptron() for i in range(nr_iter): random.shuffle(examples) for features, class_ in examples: scores = model.predict(features) guess, score = max(scores.items(), key=lambda i: i[1]) if guess != class_: model.update(class_, guess, features) model.average_weights() return model
def train(nr_iter, examples)
Return an averaged perceptron model trained on ``examples`` for ``nr_iter`` iterations.
3.969149
2.816963
1.409017
timestamp = int(time()) header = bytearray(HEADER_SIZE) # Fill the header bytearray with RTP header fields # ... header[0] = header[0] | V << 6; header[0] = header[0] | P << 5; header[0] = header[0] | X << 4; header[0] = header[0] | CC; header[1] = header[1] | M << 7; header[1] = header[1] | PT; header[2] = (seqNum >> 8) & 0xFF; header[3] = seqNum & 0xFF; header[4] = (timestamp >> 24) & 0xFF; header[5] = (timestamp >> 16) & 0xFF; header[6] = (timestamp >> 8) & 0xFF; header[7] = timestamp & 0xFF; header[8] = (SSRC >> 24) & 0xFF; header[9] = (SSRC >> 16) & 0xFF; header[10] = (SSRC >> 8) & 0xFF; header[11] = SSRC & 0xFF self.header = header # Get the payload # ... self.payload = payload
def encode(self, V, P, X, CC, seqNum, M, PT, SSRC, payload)
Encode the RTP packet with header fields and payload.
1.802928
1.771887
1.017519
self.header = bytearray(byteStream[:HEADER_SIZE]) self.payload = byteStream[HEADER_SIZE:]
def decode(self, byteStream)
Decode the RTP packet.
5.188659
4.252159
1.220241
timestamp = self.header[4] << 24 | self.header[5] << 16 | self.header[6] << 8 | self.header[7] return int(timestamp)
def timestamp(self)
Return timestamp.
2.848319
2.412085
1.180854