code
string
signature
string
docstring
string
loss_without_docstring
float64
loss_with_docstring
float64
factor
float64
args = { 'level': level, } self._level_chk.check(args) return self._client.json('logger.set_level', args)
def set_level(self, level)
Set the log level of the g8os Note: this level is for messages that ends up on screen or on log file :param level: the level to be set can be one of ("CRITICAL", "ERROR", "WARNING", "NOTICE", "INFO", "DEBUG")
8.674695
10.591051
0.819059
args = { 'queue': queue, 'levels': list(levels), } self._subscribe_chk.check(args) return self._client.json('logger.subscribe', args)
def subscribe(self, queue=None, *levels)
Subscribe to the aggregated log stream. On subscribe a ledis queue will be fed with all running processes logs. Always use the returned queue name from this method, even if u specified the queue name to use Note: it is legal to subscribe to the same queue, but would be a bad logic if two processes are trying to read from the same queue. :param queue: Your unique queue name, otherwise, a one will get generated for your :param levels: :return: queue name to pull from
7.113045
9.76582
0.728361
args = { 'port': port, 'interface': interface, 'subnet': subnet, } self._port_chk.check(args) return self._client.json('nft.drop_port', args)
def drop_port(self, port, interface=None, subnet=None)
close an opened port (takes the same parameters passed in open) :param port: then port number :param interface: an optional interface to close the port for :param subnet: an optional subnet to close the port for
5.920388
6.63178
0.89273
args = { 'key': key, 'tags': tags, } self._query_chk.check(args) return self._client.json('aggregator.query', args)
def query(self, key=None, **tags)
Query zero-os aggregator for current state object of monitored metrics. Note: ID is returned as part of the key (if set) to avoid conflict with similar metrics that has same key. For example, a cpu core nr can be the id associated with 'machine.CPU.percent' so we can return all values for all the core numbers in the same dict. U can filter on the ID as a tag :example: self.query(key=key, id=value) :param key: metric key (ex: machine.memory.ram.available) :param tags: optional tags filter :return: dict of { 'key[/id]': state object }
7.575111
7.353566
1.030128
disks = [] if disks is None else disks args = { "host": host, "port": port, "disks": disks } self._rtinfo_start_params_chk.check(args) return self._client.json("rtinfo.start", args)
def start(self, host="localhost", port=8999, disks=None)
Start rtinfo-client :param host: str rtinfod host address :param port: int rtinfod client port :param disks: list of prefixes of wathable disks (e.g ["sd"])
6.263923
5.581552
1.122255
args = { "host": host, "port": port, } self._rtinfo_stop_params_chk.check(args) return self._client.json("rtinfo.stop", args)
def stop(self, host, port)
Stop rtinfo-client :param host: str rtinfod host address :param port: int rtinfod client port
8.25046
6.495664
1.270149
args = { 'subsystem': subsystem, 'name': name, } self._cgroup_chk.check(args) return self._client.json('cgroup.ensure', args)
def ensure(self, subsystem, name)
Creates a cgroup if it doesn't exist under the specified subsystem and the given name :param subsystem: the cgroup subsystem (currently support 'memory', and 'cpuset') :param name: name of the cgroup to delete
7.731126
8.865102
0.872085
args = { 'subsystem': subsystem, 'name': name, 'pid': pid, } self._task_chk.check(args) return self._client.json('cgroup.task-add', args)
def task_add(self, subsystem, name, pid)
Add process (with pid) to a cgroup :param subsystem: the cgroup subsystem (currently support 'memory', and 'cpuset') :param name: name of the cgroup :param pid: PID to add
5.590379
5.386932
1.037767
args = { 'name': name, 'mem': mem, 'swap': swap, } self._memory_spec.check(args) return self._client.json('cgroup.memory.spec', args)
def memory(self, name, mem=0, swap=0)
Set/Get memory cgroup specification/limitation the call to this method will always GET the current set values for both mem and swap. If mem is not zero, the memory will set the memory limit to the given value, and swap to the given value (even 0) :param mem: Set memory limit to the given value (in bytes), ignore if 0 :param swap: Set swap limit to the given value (in bytes) (only if mem is not zero) :return: current memory limitation
5.280621
5.562266
0.949365
args = { 'name': name, 'cpus': cpus, 'mems': mems, } self._cpuset_spec.check(args) return self._client.json('cgroup.cpuset.spec', args)
def cpuset(self, name, cpus=None, mems=None)
Set/Get cpuset cgroup specification/limitation the call to this method will always GET the current set values for both cpus and mems If cpus, or mems is NOT NONE value it will be set as the spec for that attribute :param cpus: Set cpus affinity limit to the given value (0, 1, 0-10, etc...) :param mems: Set mems affinity limit to the given value (0, 1, 0-10, etc...) :return: current cpuset
4.600903
5.107667
0.900783
if not id: id = str(uuid.uuid4()) payload = { 'id': id, 'command': command, 'arguments': arguments, 'queue': queue, 'max_time': max_time, 'stream': stream, 'tags': tags, } self._raw_chk.check(payload) flag = 'result:{}:flag'.format(id) self._redis.rpush('core:default', json.dumps(payload)) if self._redis.brpoplpush(flag, flag, DefaultTimeout) is None: TimeoutError('failed to queue job {}'.format(id)) logger.debug('%s >> g8core.%s(%s)', id, command, ', '.join(("%s=%s" % (k, v) for k, v in arguments.items()))) return Response(self, id)
def raw(self, command, arguments, queue=None, max_time=None, stream=False, tags=None, id=None)
Implements the low level command call, this needs to build the command structure and push it on the correct queue. :param command: Command name to execute supported by the node (ex: core.system, info.cpu, etc...) check documentation for list of built in commands :param arguments: A dict of required command arguments depends on the command name. :param queue: command queue (commands on the same queue are executed sequentially) :param max_time: kill job server side if it exceeded this amount of seconds :param stream: If True, process stdout and stderr are pushed to a special queue (stream:<id>) so client can stream output :param tags: job tags :param id: job id. Generated if not supplied :return: Response object
4.171219
4.103578
1.016484
zeta = 0.0 if phi1 == phi2 and theta1 == theta2: zeta = 0.0 else: argument = sin(theta1)*sin(theta2)*cos(phi1-phi2) + \ cos(theta1)*cos(theta2) if argument < -1: zeta = np.pi elif argument > 1: zeta = 0.0 else: zeta = acos(argument) return zeta
def calczeta(phi1, phi2, theta1, theta2)
Calculate the angular separation between position (phi1, theta1) and (phi2, theta2)
2.346375
2.331843
1.006232
if m >= k: factor = sqrt(factorial(l-k)*factorial(l+m)/factorial(l+k)/factorial(l-m)) part2 = (cos(theta1/2))**(2*l+k-m)*(-sin(theta1/2))**(m-k)/factorial(m-k) part3 = sp.hyp2f1(m-l,-k-l,m-k+1,-(tan(theta1/2))**2) return factor*part2*part3 else: return (-1)**(m-k) * dlmk(l,k,m,theta1)
def dlmk(l,m,k,theta1)
returns value of d^l_mk as defined in allen, ottewill 97. Called by Dlmk
4.027442
4.224451
0.953365
return exp(complex(0.,-m*phi1)) * dlmk(l,m,k,theta1) * \ exp(complex(0.,-k*gamma(phi1,phi2,theta1,theta2)))
def Dlmk(l,m,k,phi1,phi2,theta1,theta2)
returns value of D^l_mk as defined in allen, ottewill 97.
5.402311
5.777548
0.935053
if phi1 == phi2 and theta1 == theta2: gamma = 0 else: gamma = atan( sin(theta2)*sin(phi2-phi1) / \ (cos(theta1)*sin(theta2)*cos(phi1-phi2) - \ sin(theta1)*cos(theta2)) ) dummy_arg = (cos(gamma)*cos(theta1)*sin(theta2)*cos(phi1-phi2) + \ sin(gamma)*sin(theta2)*sin(phi2-phi1) - \ cos(gamma)*sin(theta1)*cos(theta2)) if dummy_arg >= 0: return gamma else: return pi + gamma
def gamma(phi1,phi2,theta1,theta2)
calculate third rotation angle inputs are angles from 2 pulsars returns the angle.
2.424573
2.37787
1.019641
rotated_gamma = 0 for ii in range(2*l+1): rotated_gamma += Dlmk(l,m,ii-l,phi1,phi2,theta1,theta2).conjugate()*gamma_ml[ii] return rotated_gamma
def rotated_Gamma_ml(m,l,phi1,phi2,theta1,theta2,gamma_ml)
This function takes any gamma in the computational frame and rotates it to the cosmic frame.
4.201442
4.734344
0.887439
if m>0: ans=(1./sqrt(2))*(rotated_Gamma_ml(m,l,phi1,phi2,theta1,theta2,gamma_ml) + \ (-1)**m*rotated_Gamma_ml(-m,l,phi1,phi2,theta1,theta2,gamma_ml)) return ans.real if m==0: return rotated_Gamma_ml(0,l,phi1,phi2,theta1,theta2,gamma_ml).real if m<0: ans=(1./sqrt(2)/complex(0.,1))*(rotated_Gamma_ml(-m,l,phi1,phi2,theta1,theta2,gamma_ml) - \ (-1)**m*rotated_Gamma_ml(m,l,phi1,phi2,theta1,theta2,gamma_ml)) return ans.real
def real_rotated_Gammas(m,l,phi1,phi2,theta1,theta2,gamma_ml)
This function returns the real-valued form of the Overlap Reduction Functions, see Eqs 47 in Mingarelli et al, 2013.
1.988835
2.039323
0.975243
if formbats: psr.formbats() res, err = psr.residuals(removemean=False)[psr.deleted == 0], psr.toaerrs[psr.deleted == 0] res -= numpy.sum(res/err**2) / numpy.sum(1/err**2) return numpy.sum(res * res / (1e-12 * err * err))
def chisq(psr,formbats=False)
Return the total chisq for the current timing solution, removing noise-averaged mean residual, and ignoring deleted points.
7.656826
6.876737
1.113439
if formbats: psr.formbats() res, err = psr.residuals(removemean=False)[psr.deleted == 0], psr.toaerrs[psr.deleted == 0] res -= numpy.sum(res/err**2) / numpy.sum(1/err**2) # bats already updated by residuals(); skip constant-phase column M = psr.designmatrix(updatebats=False,fixunits=True,fixsigns=True)[psr.deleted==0,1:] # renormalize design-matrix columns if renormalize: norm = numpy.sqrt(numpy.sum(M**2,axis=0)) M /= norm else: norm = 1.0 # compute chisq derivative, de-renormalize dr = -2 * numpy.dot(M.T,res / (1e-12 * err**2)) * norm return dr
def dchisq(psr,formbats=False,renormalize=True)
Return gradient of total chisq for the current timing solution, after removing noise-averaged mean residual, and ignoring deleted points.
7.189427
6.918782
1.039117
ctr, err = psr.vals(), psr.errs() # to avoid losing precision, we're searching in units of parameter errors if numpy.any(err == 0.0): print("Warning: one or more fit parameters have zero a priori error, and won't be searched.") hloc, hval = [], [] def func(xs): psr.vals([c + x*e for x,c,e in zip(xs,ctr,err)]) ret = chisq(psr,formbats=formbats) if numpy.isnan(ret): print("Warning: chisq is nan at {0}.".format(psr.vals())) if history: hloc.append(psr.vals()) hval.append(ret) return ret def dfunc(xs): psr.vals([c + x*e for x,c,e in zip(xs,ctr,err)]) dc = dchisq(psr,formbats=formbats,renormalize=renormalize) ret = numpy.array([d*e for d,e in zip(dc,err)],'d') return ret opts = kwargs.copy() if method not in ['Nelder-Mead','Powell']: opts['jac'] = dfunc if method in ['L-BFGS-B']: opts['bounds'] = [(float((bounds[par][0] - ctr[i])/err[i]), float((bounds[par][1] - ctr[i])/err[i])) if par in bounds else (None,None) for i,par in enumerate(psr.pars())] res = scipy.optimize.minimize(func,[0.0]*len(ctr),method=method,**opts) if hasattr(res,'message'): print(res.message) # this will also set parameters to the minloc minchisq = func(res.x) if history: return minchisq, numpy.array(hval), numpy.array(hloc) else: return minchisq
def findmin(psr,method='Nelder-Mead',history=False,formbats=False,renormalize=True,bounds={},**kwargs)
Use scipy.optimize.minimize to find minimum-chisq timing solution, passing through all extra options. Resets psr[...].val to the final solution, and returns the final chisq. Will use chisq gradient if method requires it. Ignores deleted points.
3.326632
3.301216
1.007699
mask = psr.deleted == 0 res, err = psr.residuals(removemean=False)[mask], psr.toaerrs[mask] M = psr.designmatrix(updatebats=False,fixunits=True,fixsigns=True)[mask,:] C = numpy.diag((err * 1e-6)**2) if renormalize: norm = numpy.sqrt(numpy.sum(M**2,axis=0)) M /= norm else: norm = np.ones_like(M[0,:]) mtcm = numpy.dot(M.T,numpy.dot(numpy.linalg.inv(C),M)) mtcy = numpy.dot(M.T,numpy.dot(numpy.linalg.inv(C),res)) xvar = numpy.linalg.inv(mtcm) c = scipy.linalg.cho_factor(mtcm) xhat = scipy.linalg.cho_solve(c,mtcy) sol = psr.vals() psr.vals(sol + xhat[1:] / norm[1:]) psr.errs(numpy.sqrt(numpy.diag(xvar)[1:]) / norm[1:]) return chisq(psr)
def glsfit(psr,renormalize=True)
Solve local GLS problem using scipy.linalg.cholesky. Update psr[...].val and psr[...].err from solution. If renormalize=True, normalize each design-matrix column by its norm.
4.627914
4.402709
1.051151
N = len(t) F = np.zeros((N, 2 * nmodes)) if Tspan is not None: T = Tspan else: T = t.max() - t.min() # define sampling frequencies if fmin is not None and fmax is not None: f = np.linspace(fmin, fmax, nmodes) else: f = np.linspace(1 / T, nmodes / T, nmodes) if logf: f = np.logspace(np.log10(1 / T), np.log10(nmodes / T), nmodes) Ffreqs = np.zeros(2 * nmodes) Ffreqs[0::2] = f Ffreqs[1::2] = f F[:,::2] = np.sin(2*np.pi*t[:,None]*f[None,:]) F[:,1::2] = np.cos(2*np.pi*t[:,None]*f[None,:]) if freq: return F, Ffreqs else: return F
def create_fourier_design_matrix(t, nmodes, freq=False, Tspan=None, logf=False, fmin=None, fmax=None)
Construct fourier design matrix from eq 11 of Lentati et al, 2013 :param t: vector of time series in seconds :param nmodes: number of fourier coefficients to use :param freq: option to output frequencies :param Tspan: option to some other Tspan :param logf: use log frequency spacing :param fmin: lower sampling frequency :param fmax: upper sampling frequency :return: F: fourier design matrix :return: f: Sampling frequencies (if freq=True)
1.851114
1.781699
1.03896
fyr = 1 / 3.16e7 return (10**log10_A)**2 / 12.0 / np.pi**2 * fyr**(gamma-3) * f**(-gamma)
def powerlaw(f, log10_A=-16, gamma=5)
Power-law PSD. :param f: Sampling frequencies :param log10_A: log10 of red noise Amplitude [GW units] :param gamma: Spectral index of red noise process
7.259807
7.483982
0.970046
gwb = GWB(ngw,seed,flow,fhigh,gwAmp,alpha,logspacing) gwb.add_gwb(psr,dist) return gwb
def add_gwb(psr, dist=1, ngw=1000, seed=None, flow=1e-8, fhigh=1e-5, gwAmp=1e-20, alpha=-0.66, logspacing=True)
Add a stochastic background from inspiraling binaries, using the tempo2 code that underlies the GWbkgrd plugin. Here 'dist' is the pulsar distance [in kpc]; 'ngw' is the number of binaries, 'seed' (a negative integer) reseeds the GWbkgrd pseudorandom-number-generator, 'flow' and 'fhigh' [Hz] determine the background band, 'gwAmp' and 'alpha' determine its amplitude and exponent, and setting 'logspacing' to False will use linear spacing for the individual sources. It is also possible to create a background object with gwb = GWB(ngw,seed,flow,fhigh,gwAmp,alpha,logspacing) then call the method gwb.add_gwb(pulsar[i],dist) repeatedly to get a consistent background for multiple pulsars. Returns the GWB object
2.906843
2.268971
1.281128
gwb = GWB(ngw, seed, flow, fhigh, gwAmp, alpha, logspacing, dipoleamps, dipoledir, dipolemag) gwb.add_gwb(psr,dist) return gwb
def add_dipole_gwb(psr, dist=1, ngw=1000, seed=None, flow=1e-8, fhigh=1e-5, gwAmp=1e-20, alpha=-0.66, logspacing=True, dipoleamps=None, dipoledir=None, dipolemag=None)
Add a stochastic background from inspiraling binaries distributed according to a pure dipole distribution, using the tempo2 code that underlies the GWdipolebkgrd plugin. The basic use is identical to that of 'add_gwb': Here 'dist' is the pulsar distance [in kpc]; 'ngw' is the number of binaries, 'seed' (a negative integer) reseeds the GWbkgrd pseudorandom-number-generator, 'flow' and 'fhigh' [Hz] determine the background band, 'gwAmp' and 'alpha' determine its amplitude and exponent, and setting 'logspacing' to False will use linear spacing for the individual sources. Additionally, the dipole component can be specified by using one of two methods: 1) Specify the dipole direction as three dipole amplitudes, in the vector dipoleamps 2) Specify the direction of the dipole as a magnitude dipolemag, and a vector dipoledir=[dipolephi, dipoletheta] It is also possible to create a background object with gwb = GWB(ngw,seed,flow,fhigh,gwAmp,alpha,logspacing) then call the method gwb.add_gwb(pulsar[i],dist) repeatedly to get a consistent background for multiple pulsars. Returns the GWB object
2.66955
2.314824
1.153241
import tempfile outfile = tempfile.NamedTemporaryFile(delete=False) outfile.write(b'FORMAT 1\n') outfile.write(b'MODE 1\n') obsname = 'fake_' + os.path.basename(parfile) if obsname[-4:] == '.par': obsname = obsname[:-4] for i,t in enumerate(obstimes): outfile.write('{0} {1} {2} {3} {4} {5}\n'.format( obsname,_geti(freq,i),t,_geti(toaerr,i),_geti(observatory,i),_geti(flags,i) ).encode('ascii')) timfile = outfile.name outfile.close() pulsar = libstempo.tempopulsar(parfile,timfile,dofit=False) for i in range(iters): pulsar.stoas[:] -= pulsar.residuals() / 86400.0 pulsar.formbats() os.remove(timfile) return pulsar
def fakepulsar(parfile, obstimes, toaerr, freq=1440.0, observatory='AXIS', flags='', iters=3)
Returns a libstempo tempopulsar object corresponding to a noiseless set of observations for the pulsar specified in 'parfile', with observations happening at times (MJD) given in the array (or list) 'obstimes', with measurement errors given by toaerr (us). A new timfile can then be saved with pulsar.savetim(). Re the other parameters: - 'toaerr' needs to be either a common error, or a list of errors of the same length of 'obstimes'; - 'freq' can be either a common observation frequency in MHz, or a list; it defaults to 1440; - 'observatory' can be either a common observatory name, or a list; it defaults to the IPTA MDC 'AXIS'; - 'flags' can be a string (such as '-sys EFF.EBPP.1360') or a list of strings; it defaults to an empty string; - 'iters' is the number of iterative removals of computed residuals from TOAs (which is how the fake pulsar is made...)
3.926388
3.407157
1.152394
if seed is not None: N.random.seed(seed) # default efacvec efacvec = N.ones(psr.nobs) # check that efac is scalar if flags is None if flags is None: if not N.isscalar(efac): raise ValueError('ERROR: If flags is None, efac must be a scalar') else: efacvec = N.ones(psr.nobs) * efac if flags is not None and flagid is not None and not N.isscalar(efac): if len(efac) == len(flags): for ct, flag in enumerate(flags): ind = flag == N.array(psr.flagvals(flagid)) efacvec[ind] = efac[ct] psr.stoas[:] += efacvec * psr.toaerrs * (1e-6 / day) * N.random.randn(psr.nobs)
def add_efac(psr, efac=1.0, flagid=None, flags=None, seed=None)
Add nominal TOA errors, multiplied by `efac` factor. Optionally take a pseudorandom-number-generator seed.
3.664459
3.552543
1.031503
if seed is not None: N.random.seed(seed) # default equadvec equadvec = N.zeros(psr.nobs) # check that equad is scalar if flags is None if flags is None: if not N.isscalar(equad): raise ValueError('ERROR: If flags is None, equad must be a scalar') else: equadvec = N.ones(psr.nobs) * equad if flags is not None and flagid is not None and not N.isscalar(equad): if len(equad) == len(flags): for ct, flag in enumerate(flags): ind = flag == N.array(psr.flagvals(flagid)) equadvec[ind] = equad[ct] psr.stoas[:] += (equadvec / day) * N.random.randn(psr.nobs)
def add_equad(psr, equad, flagid=None, flags=None, seed=None)
Add quadrature noise of rms `equad` [s]. Optionally take a pseudorandom-number-generator seed.
3.817026
3.771442
1.012087
if seed is not None: N.random.seed(seed) if flags is None: t, U = quantize_fast(N.array(psr.toas(),'d'), dt=coarsegrain) elif flags is not None and flagid is not None: t, f, U = quantize_fast(N.array(psr.toas(),'d'), N.array(psr.flagvals(flagid)), dt=coarsegrain) # default jitter value ecorrvec = N.zeros(len(t)) # check that jitter is scalar if flags is None if flags is None: if not N.isscalar(ecorr): raise ValueError('ERROR: If flags is None, jitter must be a scalar') else: ecorrvec = N.ones(len(t)) * ecorr if flags is not None and flagid is not None and not N.isscalar(ecorr): if len(ecorr) == len(flags): for ct, flag in enumerate(flags): ind = flag == N.array(f) ecorrvec[ind] = ecorr[ct] psr.stoas[:] += (1 / day) * N.dot(U*ecorrvec, N.random.randn(U.shape[1]))
def add_jitter(psr, ecorr ,flagid=None, flags=None, coarsegrain=0.1, seed=None)
Add correlated quadrature noise of rms `ecorr` [s], with coarse-graining time `coarsegrain` [days]. Optionally take a pseudorandom-number-generator seed.
3.541099
3.515858
1.007179
if seed is not None: N.random.seed(seed) t = psr.toas() minx, maxx = N.min(t), N.max(t) x = (t - minx) / (maxx - minx) T = (day/year) * (maxx - minx) size = 2*components F = N.zeros((psr.nobs,size),'d') f = N.zeros(size,'d') for i in range(components): F[:,2*i] = N.cos(2*math.pi*(i+1)*x) F[:,2*i+1] = N.sin(2*math.pi*(i+1)*x) f[2*i] = f[2*i+1] = (i+1) / T norm = A**2 * year**2 / (12 * math.pi**2 * T) prior = norm * f**(-gamma) y = N.sqrt(prior) * N.random.randn(size) psr.stoas[:] += (1.0/day) * N.dot(F,y)
def add_rednoise(psr,A,gamma,components=10,seed=None)
Add red noise with P(f) = A^2 / (12 pi^2) (f year)^-gamma, using `components` Fourier bases. Optionally take a pseudorandom-number-generator seed.
3.527917
3.386359
1.041803
t = psr.toas() t0 = offset * (N.max(t) - N.min(t)) sine = A * N.cos(2 * math.pi * f * day * (t - t0)) psr.stoas[:] += sine / day
def add_line(psr,f,A,offset=0.5)
Add a line of frequency `f` [Hz] and amplitude `A` [s], with origin at a fraction `offset` through the dataset.
8.837185
8.100924
1.090886
# Define the heaviside function heaviside = lambda x: 0.5 * (N.sign(x) + 1) # Glitches are spontaneous spin-up events. # Thus TOAs will be advanced, and resiudals will be negative. psr.stoas[:] -= amp * heaviside(psr.toas() - epoch) * \ (psr.toas() - epoch)*86400.0
def add_glitch(psr, epoch, amp)
Like pulsar term BWM event, but now differently parameterized: just an amplitude (not log-amp) parameter, and an epoch. [source: piccard] :param psr: pulsar object :param epoch: TOA time (MJD) the burst hits the earth :param amp: amplitude of the glitch
10.579196
10.33579
1.02355
xs = interpolator.x ys = interpolator.y def pointwise(x): if x < xs[0]: return ys[0] # +(x-xs[0])*(ys[1]-ys[0])/(xs[1]-xs[0]) elif x > xs[-1]: return ys[-1] # +(x-xs[-1])*(ys[-1]-ys[-2])/(xs[-1]-xs[-2]) else: return interpolator(x) def ufunclike(xs): return N.array(map(pointwise, N.array(xs))) return ufunclike
def extrap1d(interpolator)
Function to extend an interpolation function to an extrapolation function. :param interpolator: scipy interp1d object :returns ufunclike: extension of function to extrapolation
2.065562
2.085175
0.990594
# begin loop over all pulsar pairs and calculate ORF npsr = len(psr) ORF = N.zeros((npsr, npsr)) phati = N.zeros(3) phatj = N.zeros(3) ptheta = [N.pi/2 - p['DECJ'].val for p in psr] pphi = [p['RAJ'].val for p in psr] for ll in range(0, npsr): phati[0] = N.cos(pphi[ll]) * N.sin(ptheta[ll]) phati[1] = N.sin(pphi[ll]) * N.sin(ptheta[ll]) phati[2] = N.cos(ptheta[ll]) for kk in range(0, npsr): phatj[0] = N.cos(pphi[kk]) * N.sin(ptheta[kk]) phatj[1] = N.sin(pphi[kk]) * N.sin(ptheta[kk]) phatj[2] = N.cos(ptheta[kk]) if ll != kk: xip = (1.-N.sum(phati*phatj)) / 2. ORF[ll, kk] = 3.*( 1./3. + xip * ( N.log(xip) -1./6.) ) else: ORF[ll, kk] = 2.0 return ORF
def computeORFMatrix(psr)
Compute ORF matrix. :param psr: List of pulsar object instances :returns: Matrix that has the ORF values for every pulsar pair with 2 on the diagonals to account for the pulsar term.
2.592989
2.521901
1.028188
res, t, errs = psr.residuals(), psr.toas(), psr.toaerrs if (not deleted) and N.any(psr.deleted != 0): res, t, errs = res[psr.deleted == 0], t[psr.deleted == 0], errs[psr.deleted == 0] print("Plotting {0}/{1} nondeleted points.".format(len(res),psr.nobs)) meanres = math.sqrt(N.mean(res**2)) / 1e-6 if group is None: i = N.argsort(t) P.errorbar(t[i],res[i]/1e-6,yerr=errs[i],fmt='x',**kwargs) else: if (not deleted) and N.any(psr.deleted): flagmask = psr.flagvals(group)[~psr.deleted] else: flagmask = psr.flagvals(group) unique = list(set(flagmask)) for flagval in unique: f = (flagmask == flagval) flagres, flagt, flagerrs = res[f], t[f], errs[f] i = N.argsort(flagt) P.errorbar(flagt[i],flagres[i]/1e-6,yerr=flagerrs[i],fmt='x',**kwargs) P.legend(unique,numpoints=1,bbox_to_anchor=(1.1,1.1)) P.xlabel('MJD'); P.ylabel('res [us]') P.title("{0} - rms res = {1:.2f} us".format(psr.name,meanres))
def plotres(psr,deleted=False,group=None,**kwargs)
Plot residuals, compute unweighted rms residual.
2.988965
2.922713
1.022668
theta, phi, omega, polarization = gwb.gw_dist() rho = phi-N.pi eta = 0.5*N.pi - theta # I don't know how to get rid of the RuntimeWarning -- RvH, Oct 10, 2014: # /Users/vhaaster/env/dev/lib/python2.7/site-packages/matplotlib/projections/geo.py:485: # RuntimeWarning: invalid value encountered in arcsin theta = np.arcsin(y / np.sqrt(2)) #old_settings = N.seterr(invalid='ignore') P.title("GWB source population") ax = P.axes(projection='mollweide') foo = P.scatter(rho, eta, marker='.', s=1) #bar = N.seterr(**old_settings) return foo
def plotgwsrc(gwb)
Plot a GWB source population as a mollweide projection.
8.166979
7.338881
1.112837
mask = Mask(pulsar,usedeleted) err = 1.0e-6 * mask(pulsar.toaerrs) Cdiag = (efac*err)**2 if equad: Cdiag = Cdiag + (1e-6*equad)**2 * N.ones(len(err)) if Ared: redf, F = _setuprednoise(pulsar,redcomponents) F = mask(F) phi = Ared**2 * redf**(-gammared) if jitter: # quantize at 1 second; U plays the role of redF t, U = _quantize(86400.0 * mask(pulsar.toas()),1.0) phi_j = (1e-6*jitter)**2 * N.ones(U.shape[1]) # stack the basis arrays if we're also doing red noise phi = N.hstack((phi,phi_j)) if Ared else phi_j F = N.hstack((F,U)) if Ared else U if Ared or jitter: # Lentati formulation for correlated noise invphi = N.diag(1/phi) Ninv = N.diag(1/Cdiag) NinvF = dot(Ninv,F) # could be accelerated X = invphi + dot(F.T,NinvF) # invphi + FTNinvF Cinv = Ninv - dot(NinvF,N.linalg.inv(X),NinvF.T) logCdet = N.sum(N.log(Cdiag)) + N.sum(N.log(phi)) + N.linalg.slogdet(X)[1] # check else: # noise is all diagonal Cinv = N.diag(1/Cdiag) logCdet = N.sum(N.log(Cdiag)) if marginalize: M = mask(pulsar.designmatrix()) res = mask(N.array(pulsar.residuals(updatebats=False),'d')) CinvM = N.dot(Cinv,M) A = dot(M.T,CinvM) invA = N.linalg.inv(A) CinvMres = dot(res,CinvM) ret = -0.5 * dot(res,Cinv,res) + 0.5 * dot(CinvMres,invA,CinvMres.T) if normalize: ret = ret - 0.5 * logCdet - 0.5 * N.linalg.slogdet(A)[1] - 0.5 * (M.shape[0] - M.shape[1]) * math.log(2.0*math.pi) else: res = mask(N.array(pulsar.residuals(),'d')) ret = -0.5 * dot(res,Cinv,res) if normalize: ret = ret - 0.5 * logCdet - 0.5 * len(res) * math.log(2.0*math.pi) return ret
def loglike(pulsar,efac=1.0,equad=None,jitter=None,Ared=None,gammared=None,marginalize=True,normalize=True,redcomponents=10,usedeleted=True)
Returns the Gaussian-process likelihood for 'pulsar'. The likelihood is evaluated at the current value of the pulsar parameters, as given by pulsar[parname].val. If efac, equad, and/or Ared are set, will compute the likelihood assuming the corresponding noise model. EFAC multiplies measurement noise; EQUAD adds in quadrature, and is given in us; red-noise is specified with the GW-like dimensionless amplitude Ared and exponent gamma, and is modeled with 'redcomponents' Fourier components. If marginalize=True (the default), loglike will marginalize over all the parameters in pulsar.fitpars, using an M-matrix formulation.
4.142987
4.179834
0.991185
ret = [] for par in parlist: # match anything of the form XXX{number1-number2} m = re.match('(.*)\{([0-9]+)\-([0-9]+)\}',par) if m is None: ret.append(par) else: # (these are strings) root, number1, number2 = m.group(1), m.group(2), m.group(3) # if number1 begins with 0s, number parameters as 00, 01, 02, ..., # otherwise go with 0, 1, 2, ... fmt = '{{0}}{{1:0{0}d}}'.format(len(number1)) if number1[0] == '0' else '{0}{1:d}' ret = ret + [fmt.format(root,i) for i in range(int(m.group(2)),int(m.group(3))+1)] return ret
def expandranges(parlist)
Rewrite a list of parameters by expanding ranges (e.g., log10_efac{1-10}) into individual parameters.
3.585795
3.445779
1.040634
rootdict = {root: [] for root in roots} res = [] for par in parlist: found = False for root in roots: if len(par) > len(root) and par[:len(root)] == root: rootdict[root].append(int(par[len(root):])) found = True if not found: res.append(par) for root in roots: if rootdict[root]: if len(rootdict[root]) > 1: rmin, rmax = min(rootdict[root]), max(rootdict[root]) res.append('{0}{{{1}-{2}}}{3}'.format(root,rmin,rmax, '(incomplete)' if rmax - rmin != len(rootdict[root]) - 1 else '')) else: res.append('{0}{1}'.format(root,rootdict[root][0])) return res
def _findrange(parlist,roots=['JUMP','DMXR1_','DMXR2_','DMX_','efac','log10_efac'])
Rewrite a list of parameters name by detecting ranges (e.g., JUMP1, JUMP2, ...) and compressing them.
2.122473
2.120648
1.000861
w,s,d = data.chains.shape start = int((1.0 - fraction) * s) total = int((s - start) / skip) return data.chains[:,start::skip,:].reshape((w*total,d))
def merge(data,skip=50,fraction=1.0)
Merge one every 'skip' clouds into a single emcee population, using the later 'fraction' of the run.
6.791086
6.872403
0.988168
ret = ret[ret[:,index] > min,:] if max is not None: ret = ret[ret[:,index] < max,:] return ret
def cull(data,index,min=None,max=None): ret = data if min is not None
Sieve an emcee clouds by excluding walkers with search variable 'index' smaller than 'min' or larger than 'max'.
4.050076
3.180219
1.273521
pth = resource_filename(Requirement.parse('libstempo'), 'libstempo/ecc_vs_nharm.txt') fil = np.loadtxt(pth) return interp1d(fil[:,0], fil[:,1])
def make_ecc_interpolant()
Make interpolation function from eccentricity file to determine number of harmonics to use for a given eccentricity. :returns: interpolant
7.911838
8.513092
0.929373
# chirp mass mc *= SOLAR2S dedt = -304/(15*mc) * (2*np.pi*mc*F)**(8/3) * e * \ (1 + 121/304*e**2) / ((1-e**2)**(5/2)) return dedt
def get_edot(F, mc, e)
Compute eccentricity derivative from Taylor et al. (2015) :param F: Orbital frequency [Hz] :param mc: Chirp mass of binary [Solar Mass] :param e: Eccentricity of binary :returns: de/dt
8.911454
7.547956
1.180645
# chirp mass mc *= SOLAR2S dFdt = 48 / (5*np.pi*mc**2) * (2*np.pi*mc*F)**(11/3) * \ (1 + 73/24*e**2 + 37/96*e**4) / ((1-e**2)**(7/2)) return dFdt
def get_Fdot(F, mc, e)
Compute frequency derivative from Taylor et al. (2015) :param F: Orbital frequency [Hz] :param mc: Chirp mass of binary [Solar Mass] :param e: Eccentricity of binary :returns: dF/dt
6.964586
6.03554
1.153929
# chirp mass mc *= SOLAR2S #total mass m = (((1+q)**2)/q)**(3/5) * mc dgdt = 6*np.pi*F * (2*np.pi*F*m)**(2/3) / (1-e**2) * \ (1 + 0.25*(2*np.pi*F*m)**(2/3)/(1-e**2)*(26-15*e**2)) return dgdt
def get_gammadot(F, mc, q, e)
Compute gamma dot from Barack and Cutler (2004) :param F: Orbital frequency [Hz] :param mc: Chirp mass of binary [Solar Mass] :param q: Mass ratio of binary :param e: Eccentricity of binary :returns: dgamma/dt
6.516987
5.963099
1.092886
F = y[0] e = y[1] gamma = y[2] phase = y[3] #total mass m = (((1+q)**2)/q)**(3/5) * mc dFdt = get_Fdot(F, mc, e) dedt = get_edot(F, mc, e) dgdt = get_gammadot(F, mc, q, e) dphasedt = 2*np.pi*F return np.array([dFdt, dedt, dgdt, dphasedt])
def get_coupled_ecc_eqns(y, t, mc, q)
Computes the coupled system of differential equations from Peters (1964) and Barack & Cutler (2004). This is a system of three variables: F: Orbital frequency [Hz] e: Orbital eccentricity gamma: Angle of precession of periastron [rad] phase0: Orbital phase [rad] :param y: Vector of input parameters [F, e, gamma] :param t: Time [s] :param mc: Chirp mass of binary [Solar Mass] :param q: Mass ratio of binary :returns: array of derivatives [dF/dt, de/dt, dgamma/dt, dphase/dt]
3.937808
3.522922
1.117767
y0 = np.array([F0, e0, gamma0, phase0]) y, infodict = odeint(get_coupled_ecc_eqns, y0, t, args=(mc,q), full_output=True) if infodict['message'] == 'Integration successful.': ret = y else: ret = 0 return ret
def solve_coupled_ecc_solution(F0, e0, gamma0, phase0, mc, q, t)
Compute the solution to the coupled system of equations from from Peters (1964) and Barack & Cutler (2004) at a given time. :param F0: Initial orbital frequency [Hz] :param e0: Initial orbital eccentricity :param gamma0: Initial angle of precession of periastron [rad] :param mc: Chirp mass of binary [Solar Mass] :param q: Mass ratio of binary :param t: Time at which to evaluate solution [s] :returns: (F(t), e(t), gamma(t), phase(t))
2.944435
3.174592
0.9275
# convert to seconds mc *= SOLAR2S dl *= MPC2S omega = 2 * np.pi * F amp = n * mc**(5/3) * omega**(2/3) / dl ret = -amp * (ss.jn(n-2,n*e) - 2*e*ss.jn(n-1,n*e) + (2/n)*ss.jn(n,n*e) + 2*e*ss.jn(n+1,n*e) - ss.jn(n+2,n*e)) return ret
def get_an(n, mc, dl, F, e)
Compute a_n from Eq. 22 of Taylor et al. (2015). :param n: Harmonic number :param mc: Chirp mass of binary [Solar Mass] :param dl: Luminosity distance [Mpc] :param F: Orbital frequency of binary [Hz] :param e: Orbital Eccentricity :returns: a_n
4.529318
4.167187
1.0869
# convert to seconds mc *= SOLAR2S dl *= MPC2S omega = 2 * np.pi * F amp = n * mc**(5/3) * omega**(2/3) / dl ret = -amp * np.sqrt(1-e**2) *(ss.jn(n-2,n*e) - 2*ss.jn(n,n*e) + ss.jn(n+2,n*e)) return ret
def get_bn(n, mc, dl, F, e)
Compute b_n from Eq. 22 of Taylor et al. (2015). :param n: Harmonic number :param mc: Chirp mass of binary [Solar Mass] :param dl: Luminosity distance [Mpc] :param F: Orbital frequency of binary [Hz] :param e: Orbital Eccentricity :returns: b_n
7.819019
6.88624
1.135455
# convert to seconds mc *= SOLAR2S dl *= MPC2S omega = 2 * np.pi * F amp = 2 * mc**(5/3) * omega**(2/3) / dl ret = amp * ss.jn(n,n*e) / (n * omega) return ret
def get_cn(n, mc, dl, F, e)
Compute c_n from Eq. 22 of Taylor et al. (2015). :param n: Harmonic number :param mc: Chirp mass of binary [Solar Mass] :param dl: Luminosity distance [Mpc] :param F: Orbital frequency of binary [Hz] :param e: Orbital Eccentricity :returns: c_n
9.759679
8.879027
1.099183
n = np.arange(1, nmax) # time dependent amplitudes an = get_an(n, mc, dl, F, e) bn = get_bn(n, mc, dl, F, e) cn = get_cn(n, mc, dl, F, e) # time dependent terms omega = 2*np.pi*F gt = gamma + gammadot * t lt = l0 + omega * t # tiled phase phase1 = n * np.tile(lt, (nmax-1,1)).T phase2 = np.tile(gt, (nmax-1,1)).T phasep = phase1 + 2*phase2 phasem = phase1 - 2*phase2 # intermediate terms sp = np.sin(phasem)/(n*omega-2*gammadot) + \ np.sin(phasep)/(n*omega+2*gammadot) sm = np.sin(phasem)/(n*omega-2*gammadot) - \ np.sin(phasep)/(n*omega+2*gammadot) cp = np.cos(phasem)/(n*omega-2*gammadot) + \ np.cos(phasep)/(n*omega+2*gammadot) cm = np.cos(phasem)/(n*omega-2*gammadot) - \ np.cos(phasep)/(n*omega+2*gammadot) splus_n = -0.5 * (1+np.cos(inc)**2) * (an*sp - bn*sm) + \ (1-np.cos(inc)**2)*cn * np.sin(phase1) scross_n = np.cos(inc) * (an*cm - bn*cp) return np.sum(splus_n, axis=1), np.sum(scross_n, axis=1)
def calculate_splus_scross(nmax, mc, dl, F, e, t, l0, gamma, gammadot, inc)
Calculate splus and scross summed over all harmonics. This waveform differs slightly from that in Taylor et al (2015) in that it includes the time dependence of the advance of periastron. :param nmax: Total number of harmonics to use :param mc: Chirp mass of binary [Solar Mass] :param dl: Luminosity distance [Mpc] :param F: Orbital frequency of binary [Hz] :param e: Orbital Eccentricity :param t: TOAs [s] :param l0: Initial eccentric anomoly [rad] :param gamma: Angle of periastron advance [rad] :param gammadot: Time derivative of angle of periastron advance [rad/s] :param inc: Inclination angle [rad]
2.436737
2.390002
1.019554
y = dt[response] seq = dt[sequence] if trim_seq_len is not None: seq = pad_sequences(seq, align=seq_align, maxlen=trim_seq_len) seq = [s.replace("N", "") for s in seq] dt_kmer = kmer_count(seq, k) Xsp = csc_matrix(dt_kmer) en = ElasticNet(alpha=1, standardize=False, n_splits=3) en.fit(Xsp, y) # which coefficients are nonzero?= nonzero_kmers = dt_kmer.columns.values[en.coef_ != 0].tolist() # perform stepwise selection # # TODO - how do we deal with the intercept? # largest number of motifs where they don't differ by more than 1 k-mer def find_next_best(dt_kmer, y, selected_kmers, to_be_selected_kmers, consider_shift=True): F, pval = f_regression(dt_kmer[to_be_selected_kmers], y) kmer = to_be_selected_kmers.pop(pval.argmin()) selected_kmers.append(kmer) def select_criterion(s1, s2, consider_shift=True): if hamming_distance(s1, s2) <= 1: return False if consider_shift and hamming_distance(s1[1:], s2[:-1]) == 0: return False if consider_shift and hamming_distance(s1[:-1], s2[1:]) == 0: return False return True to_be_selected_kmers = [ckmer for ckmer in to_be_selected_kmers if select_criterion(ckmer, kmer, consider_shift)] if len(to_be_selected_kmers) == 0: return selected_kmers else: # regress out the new feature lm = LinearRegression() lm.fit(dt_kmer[selected_kmers], y) y_new = y - lm.predict(dt_kmer[selected_kmers]) return find_next_best(dt_kmer, y_new, selected_kmers, to_be_selected_kmers, consider_shift) selected_kmers = find_next_best(dt_kmer, y, [], nonzero_kmers, consider_shift) return selected_kmers
def best_kmers(dt, response, sequence, k=6, consider_shift=True, n_cores=1, seq_align="start", trim_seq_len=None)
Find best k-mers for CONCISE initialization. Args: dt (pd.DataFrame): Table containing response variable and sequence. response (str): Name of the column used as the reponse variable. sequence (str): Name of the column storing the DNA/RNA sequences. k (int): Desired k-mer length. n_cores (int): Number of cores to use for computation. It can use up to 3 cores. consider_shift (boolean): When performing stepwise k-mer selection. Is TATTTA similar to ATTTAG? seq_align (str): one of ``{"start", "end"}``. To which end should we align sequences? trim_seq_len (int): Consider only first `trim_seq_len` bases of each sequence when generating the sequence design matrix. If :python:`None`, set :py:attr:`trim_seq_len` to the longest sequence length, hence whole sequences are considered. Returns: string list: Best set of motifs for this dataset sorted with respect to confidence (best candidate occuring first). Details: First a lasso model gets fitted to get a set of initial motifs. Next, the best subset of unrelated motifs is selected by stepwise selection.
3.016271
2.919362
1.033195
# generate all k-mers all_kmers = generate_all_kmers(k) kmer_count_list = [] for seq in seq_list: kmer_count_list.append([seq.count(kmer) for kmer in all_kmers]) return pd.DataFrame(kmer_count_list, columns=all_kmers)
def kmer_count(seq_list, k)
Generate k-mer counts from a set of sequences Args: seq_list (iterable): List of DNA sequences (with letters from {A, C, G, T}) k (int): K in k-mer. Returns: pandas.DataFrame: Count matrix for seach sequence in seq_list Example: >>> kmer_count(["ACGTTAT", "GACGCGA"], 2) AA AC AG AT CA CC CG CT GA GC GG GT TA TC TG TT 0 0 1 0 1 0 0 1 0 0 0 0 1 1 0 0 1 1 0 1 0 0 0 0 2 0 2 1 0 0 0 0 0 0
2.04846
2.641321
0.775544
bases = ['A', 'C', 'G', 'T'] return [''.join(p) for p in itertools.product(bases, repeat=k)]
def generate_all_kmers(k)
Generate all possible k-mers Example: >>> generate_all_kmers(2) ['AA', 'AC', 'AG', 'AT', 'CA', 'CC', 'CG', 'CT', 'GA', 'GC', 'GG', 'GT', 'TA', 'TC', 'TG', 'TT']
2.686441
3.240941
0.828908
return {key: np.asarray(value) if value is not None else None for key, value in obj_dict.items()}
def dict_to_numpy_dict(obj_dict)
Convert a dictionary of lists into a dictionary of numpy arrays
2.989968
2.666544
1.121289
if type(obj_dict) == dict: return {key: rec_dict_to_numpy_dict(value) if value is not None else None for key, value in obj_dict.items()} elif obj_dict is None: return None else: return np.asarray(obj_dict)
def rec_dict_to_numpy_dict(obj_dict)
Same as dict_to_numpy_dict, but recursive
1.965529
1.946673
1.009686
if type(a) != type(b) and type(a) != np.ndarray and type(b) != np.ndarray: return False # go through a dictionary if type(a) == dict and type(b) == dict: if not a.keys() == b.keys(): return False for key in a.keys(): res = compare_numpy_dict(a[key], b[key], exact) if res == False: print("false for key = ", key) return False return True # if type(a) == np.ndarray and type(b) == np.ndarray: if type(a) == np.ndarray or type(b) == np.ndarray: if exact: return (a == b).all() else: return np.testing.assert_almost_equal(a, b) if a is None and b is None: return True raise NotImplementedError
def compare_numpy_dict(a, b, exact=True)
Compare two recursive numpy dictionaries
2.047643
1.995835
1.025958
# make sure n_bases is an int assert type(n_bases) == int x = np.arange(start, end + 1) knots = get_knots(start, end, n_bases, spline_order) X_splines = get_X_spline(x, knots, n_bases, spline_order, add_intercept) S = get_S(n_bases, spline_order, add_intercept) # Get the same knot positions as with mgcv # https://github.com/cran/mgcv/blob/master/R/smooth.r#L1560 return X_splines, S, knots
def get_gam_splines(start=0, end=100, n_bases=10, spline_order=3, add_intercept=True)
Main function required by (TF)Concise class
3.652989
3.666203
0.996396
x_range = end - start start = start - x_range * 0.001 end = end + x_range * 0.001 # mgcv annotation m = spline_order - 1 nk = n_bases - m # number of interior knots dknots = (end - start) / (nk - 1) knots = np.linspace(start=start - dknots * (m + 1), stop=end + dknots * (m + 1), num=nk + 2 * m + 2) return knots.astype(np.float32)
def get_knots(start, end, n_bases=10, spline_order=3)
Arguments: x; np.array of dim 1
3.513395
3.453295
1.017404
if len(x.shape) is not 1: raise ValueError("x has to be 1 dimentional") tck = [knots, np.zeros(n_bases), spline_order] X = np.zeros([len(x), n_bases]) for i in range(n_bases): vec = np.zeros(n_bases) vec[i] = 1.0 tck[1] = vec X[:, i] = si.splev(x, tck, der=0) if add_intercept is True: ones = np.ones_like(X[:, :1]) X = np.hstack([ones, X]) return X.astype(np.float32)
def get_X_spline(x, knots, n_bases=10, spline_order=3, add_intercept=True)
Returns: np.array of shape [len(x), n_bases + (add_intercept)] # BSpline formula https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.BSpline.html#scipy.interpolate.BSpline Fortran code: https://github.com/scipy/scipy/blob/v0.19.0/scipy/interpolate/fitpack/splev.f
2.381912
2.394452
0.994763
S = self.S if add_intercept is True: # S <- cbind(0, rbind(0, S)) # in R zeros = np.zeros_like(S[:1, :]) S = np.vstack([zeros, S]) zeros = np.zeros_like(S[:, :1]) S = np.hstack([zeros, S]) return S
def getS(self, add_intercept=False)
Get the penalty matrix S Returns np.array, of shape (n_bases + add_intercept, n_bases + add_intercept)
3.629297
3.753212
0.966984
# sanity check if x.min() < self.start: raise Warning("x.min() < self.start") if x.max() > self.end: raise Warning("x.max() > self.end") return get_X_spline(x=x, knots=self.knots, n_bases=self.n_bases, spline_order=self.spline_order, add_intercept=add_intercept)
def predict(self, x, add_intercept=False)
For some x, predict the bn(x) for each base Arguments: x: np.array; Vector of dimension 1 add_intercept: bool; should we add the intercept to the final array Returns: np.array, of shape (len(x), n_bases + (add_intercept))
3.068095
3.000234
1.022619
motifs = _load_motifs() motif_names = sorted(list(motifs.keys())) df = pd.Series(motif_names).str.split(expand=True) df.rename(columns={0: "PWM_id", 1: "info1", 2: "info2"}, inplace=True) # compute the consensus consensus = pd.Series([PWM(motifs[m]).get_consensus() for m in motif_names]) df["consensus"] = consensus return df
def get_metadata()
Get pandas.DataFrame with metadata about the PWM's. Columns: - PWM_id (id of the PWM - pass to get_pwm_list() for getting the pwm - info1 - additional information about the motifs - info2 - consensus: PWM consensus sequence
3.782809
3.065827
1.233863
l = _load_motifs() l = {k.split()[0]: v for k, v in l.items()} pwm_list = [PWM(l[m] + pseudocountProb, name=m) for m in motif_name_list] return pwm_list
def get_pwm_list(motif_name_list, pseudocountProb=0.0001)
Get a list of ENCODE PWM's. # Arguments pwm_id_list: List of id's from the `PWM_id` column in `get_metadata()` table pseudocountProb: Added pseudocount probabilities to the PWM # Returns List of `concise.utils.pwm.PWM` instances.
3.302644
3.790553
0.871283
y_true, y_pred = _mask_value_nan(y_true, y_pred) if round: y_true = y_true.round() if len(y_true) == 0 or len(np.unique(y_true)) < 2: return np.nan return skm.roc_auc_score(y_true, y_pred)
def auc(y_true, y_pred, round=True)
Area under the ROC curve
2.380681
2.482792
0.958872
y_true, y_pred = _mask_value_nan(y_true, y_pred) precision, recall, _ = skm.precision_recall_curve(y_true, y_pred) return skm.auc(recall, precision)
def auprc(y_true, y_pred)
Area under the precision-recall curve
2.51999
2.4927
1.010948
y_true, y_pred = _mask_value_nan(y_true, y_pred) precision, recall, _ = skm.precision_recall_curve(y_true, y_pred) return recall[np.searchsorted(precision - precision, 0)]
def recall_at_precision(y_true, y_pred, precision)
Recall at a certain precision threshold Args: y_true: true labels y_pred: predicted labels precision: resired precision level at which where to compute the recall
3.671485
4.812247
0.762946
y_true, y_pred = _mask_value_nan(y_true, y_pred) if round: y_true = np.round(y_true) y_pred = np.round(y_pred) return skm.accuracy_score(y_true, y_pred)
def accuracy(y_true, y_pred, round=True)
Classification accuracy
1.99
2.091003
0.951696
y_true, y_pred = _mask_value_nan(y_true, y_pred) if round: y_true = np.round(y_true) y_pred = np.round(y_pred) return skm.recall_score(y_true, y_pred)
def tpr(y_true, y_pred, round=True)
True positive rate `tp / (tp + fn)`
2.093853
2.177326
0.961663
y_true, y_pred = _mask_value_nan(y_true, y_pred) if round: y_true = np.round(y_true) y_pred = np.round(y_pred) c = skm.confusion_matrix(y_true, y_pred) return c[0, 0] / c[0].sum()
def tnr(y_true, y_pred, round=True)
True negative rate `tn / (tn + fp)`
2.215483
2.283389
0.970261
y_true, y_pred = _mask_value_nan(y_true, y_pred) if round: y_true = np.round(y_true) y_pred = np.round(y_pred) return skm.matthews_corrcoef(y_true, y_pred)
def mcc(y_true, y_pred, round=True)
Matthews correlation coefficient
1.909991
2.014993
0.947889
y_true, y_pred = _mask_value_nan(y_true, y_pred) if round: y_true = np.round(y_true) y_pred = np.round(y_pred) return skm.f1_score(y_true, y_pred)
def f1(y_true, y_pred, round=True)
F1 score: `2 * (p * r) / (p + r)`, where p=precision and r=recall.
1.992803
2.103372
0.947432
return np.mean(y_true.argmax(axis=1) == y_pred.argmax(axis=1))
def cat_acc(y_true, y_pred)
Categorical accuracy
2.320327
2.429452
0.955082
y_true, y_pred = _mask_nan(y_true, y_pred) return np.corrcoef(y_true, y_pred)[0, 1]
def cor(y_true, y_pred)
Compute Pearson correlation coefficient.
2.450061
2.169463
1.12934
y_true, y_pred = _mask_nan(y_true, y_pred) if len(y_true) > nb_sample: idx = np.arange(len(y_true)) np.random.shuffle(idx) idx = idx[:nb_sample] y_true = y_true[idx] y_pred = y_pred[idx] return kendalltau(y_true, y_pred)[0]
def kendall(y_true, y_pred, nb_sample=100000)
Kendall's tau coefficient, Kendall rank correlation coefficient
1.648227
1.645519
1.001646
y_true, y_pred = _mask_nan(y_true, y_pred) return np.mean(np.abs(y_true - y_pred))
def mad(y_true, y_pred)
Median absolute deviation
2.259136
2.374276
0.951505
y_true, y_pred = _mask_nan(y_true, y_pred) return ((y_true - y_pred) ** 2).mean(axis=None)
def mse(y_true, y_pred)
Mean squared error
2.494634
2.652279
0.940563
y_true, y_pred = _mask_nan(y_true, y_pred) var_resid = np.var(y_true - y_pred) var_y_true = np.var(y_true) return 1 - var_resid / var_y_true
def var_explained(y_true, y_pred)
Fraction of variance explained.
2.466934
2.521581
0.978328
def sample_log(myrange): x = np.random.uniform(np.log10(myrange[0]), np.log10(myrange[1])) return 10**x def sample_unif(myrange): x = np.random.uniform(myrange[0], myrange[1]) return x def sample_set(myset): x = random.sample(myset, 1) return x[0] def type_dep_sample(myrange): if type(myrange) is list: return sample_log(myrange) if type(myrange) is tuple: return sample_unif(myrange) if type(myrange) is set: return sample_set(myrange) return myrange return {k: type_dep_sample(v) for k, v in params.items()}
def sample_params(params)
Randomly sample hyper-parameters stored in a dictionary on a predefined range and scale. Useful for hyper-parameter random search. Args: params (dict): hyper-parameters to sample. Dictionary value-type parsing: - :python:`[1e3, 1e7]` - uniformly sample on a **log10** scale from the interval :python:`(1e3,1e7)` - :python:`(1, 10)` - uniformly sample on a **normal** scale from the interval :python:`(1,10)` - :python:`{1, 2}` - sample from a **set** of values. - :python:`1` - don't sample Returns: dict: Dictionary with the same keys as :py:attr:`params`, but with only one element as the value. Examples: >>> myparams = { "max_pool": True, # allways use True "step_size": [0.09, 0.005], "step_decay": (0.9, 1), "n_splines": {10, None}, # use either 10 or None "some_tuple": {(1,2), (1)}, } >>> concise.sample_params(myparams) {'step_decay': 0.9288, 'step_size': 0.0292, 'max_pool': True, 'n_splines': None, 'some_tuple': (1, 2)} >>> concise.sample_params(myparams) {'step_decay': 0.9243, 'step_size': 0.0293, 'max_pool': True, 'n_splines': None, 'some_tuple': (1)} >>> concise.sample_params(myparams) {'step_decay': 0.9460, 'step_size': 0.0301, 'max_pool': True, 'n_splines': 10, 'some_tuple': (1, 2)} Note: - :python:`{[1,2], [3,4]}` is invalid. Use :python:`{(1,2), (3,4)}` instead. - You can allways use :python:`{}` with a single element to by-pass sampling.
2.152841
1.999972
1.076436
y = K.cast(K.round(y), K.floatx()) z = K.cast(K.round(z), K.floatx()) def count_matches(y, z): return K.sum(K.cast(y, K.floatx()) * K.cast(z, K.floatx())) ones = K.ones_like(y) zeros = K.zeros_like(y) y_ones = K.equal(y, ones) y_zeros = K.equal(y, zeros) z_ones = K.equal(z, ones) z_zeros = K.equal(z, zeros) tp = count_matches(y_ones, z_ones) tn = count_matches(y_zeros, z_zeros) fp = count_matches(y_zeros, z_ones) fn = count_matches(y_ones, z_zeros) return (tp, tn, fp, fn)
def contingency_table(y, z)
Note: if y and z are not rounded to 0 or 1, they are ignored
1.554733
1.527851
1.017594
tp, tn, fp, fn = contingency_table(y, z) return tp / (tp + fn)
def tpr(y, z)
True positive rate `tp / (tp + fn)`
3.006089
2.639784
1.138763
tp, tn, fp, fn = contingency_table(y, z) return tn / (tn + fp)
def tnr(y, z)
True negative rate `tn / (tn + fp)`
3.131956
2.883315
1.086234
tp, tn, fp, fn = contingency_table(y, z) return fp / (fp + tn)
def fpr(y, z)
False positive rate `fp / (fp + tn)`
3.293185
2.927511
1.124909
tp, tn, fp, fn = contingency_table(y, z) return fn / (fn + tp)
def fnr(y, z)
False negative rate `fn / (fn + tp)`
4.237265
3.010819
1.407346
tp, tn, fp, fn = contingency_table(y, z) return tp / (tp + fp)
def precision(y, z)
Precision `tp / (tp + fp)`
3.018203
2.952487
1.022258
tp, tn, fp, fn = contingency_table(y, z) return fp / (tp + fp)
def fdr(y, z)
False discovery rate `fp / (tp + fp)`
4.14774
3.095987
1.339715
tp, tn, fp, fn = contingency_table(y, z) return (tp + tn) / (tp + tn + fp + fn)
def accuracy(y, z)
Classification accuracy `(tp + tn) / (tp + tn + fp + fn)`
2.620792
2.199545
1.191516
_recall = recall(y, z) _prec = precision(y, z) return 2 * (_prec * _recall) / (_prec + _recall)
def f1(y, z)
F1 score: `2 * (p * r) / (p + r)`, where p=precision and r=recall.
3.096139
2.342613
1.321661
tp, tn, fp, fn = contingency_table(y, z) return (tp * tn - fp * fn) / K.sqrt((tp + fp) * (tp + fn) * (tn + fp) * (tn + fn))
def mcc(y, z)
Matthews correlation coefficient
2.29163
2.286322
1.002322
weights = _cat_sample_weights(y) _acc = K.cast(K.equal(K.argmax(y, axis=-1), K.argmax(z, axis=-1)), K.floatx()) _acc = K.sum(_acc * weights) / K.sum(weights) return _acc
def cat_acc(y, z)
Classification accuracy for multi-categorical case
2.508198
2.571926
0.975222
var_resid = K.var(y_true - y_pred) var_y_true = K.var(y_true) return 1 - var_resid / var_y_true
def var_explained(y_true, y_pred)
Fraction of variance explained.
2.75211
2.973107
0.925668
test_len(train) y = train[1] n_rows = y.shape[0] if stratified: if len(y.shape) > 1: if y.shape[1] > 1: raise ValueError("Can't use stratified K-fold with multi-column response variable") else: y = y[:, 0] # http://scikit-learn.org/stable/modules/generated/sklearn.model_selection.StratifiedKFold.html#sklearn.model_selection.StratifiedKFold.split return model_selection.StratifiedKFold(n_splits=cv_n_folds, shuffle=True, random_state=random_state)\ .split(X=np.zeros((n_rows, 1)), y=y) else: return model_selection.KFold(n_splits=cv_n_folds, shuffle=True, random_state=random_state)\ .split(X=np.zeros((n_rows, 1)))
def split_KFold_idx(train, cv_n_folds=5, stratified=False, random_state=None)
Get k-fold indices generator
2.13153
2.066272
1.031582
test_len(train) y = train[1][idx] # x split if isinstance(train[0], (list, tuple)): x = [x[idx] for x in train[0]] elif isinstance(train[0], dict): x = {k: v[idx] for k, v in train[0].items()} elif isinstance(train[0], np.ndarray): x = train[0][idx] else: raise ValueError("Input can only be of type: list, dict or np.ndarray") if keep_other: return (x, y) + train[2:] else: return (x, y)
def subset(train, idx, keep_other=True)
Subset the `train=(x, y)` data tuple, each of the form: - list, np.ndarray - tuple, np.ndarray - dictionary, np.ndarray - np.ndarray, np.ndarray # Note In case there are other data present in the tuple: `(x, y, other1, other2, ...)`, these get passed on as: `(x_sub, y_sub, other1, other2)` # Arguments train: `(x,y, other1, other2, ...)` tuple of data idx: indices to subset the data with keep_other: bool; If True, the additional tuple elements `(other1, other2, ...)` are passed together with `(x, y)` but don't get subsetted.
2.553924
2.592581
0.985089
if type(response) is str: response = [response] X_feat = np.array(dt[features], dtype="float32") y = np.array(dt[response], dtype="float32") X_seq = encodeDNA(seq_vec=dt[sequence], maxlen=trim_seq_len, seq_align=seq_align) X_seq = np.array(X_seq, dtype="float32") id_vec = np.array(dt[id_column]) return X_feat, X_seq, y, id_vec
def prepare_data(dt, features, response, sequence, id_column=None, seq_align="end", trim_seq_len=None)
Prepare data for Concise.train or ConciseCV.train. Args: dt: A pandas DataFrame containing all the required data. features (List of strings): Column names of `dt` used to produce the features design matrix. These columns should be numeric. response (str or list of strings): Name(s) of column(s) used as a reponse variable. sequence (str): Name of the column storing the DNA/RNA sequences. id_column (str): Name of the column used as the row identifier. seq_align (str): one of ``{"start", "end"}``. To which end should we align sequences? trim_seq_len (int): Consider only first `trim_seq_len` bases of each sequence when generating the sequence design matrix. If :python:`None`, set :py:attr:`trim_seq_len` to the longest sequence length, hence whole sequences are considered. standardize_features (bool): If True, column in the returned matrix matrix :py:attr:`X_seq` are normalied to have zero mean and unit variance. Returns: tuple: Tuple with elements: :code:`(X_feat: X_seq, y, id_vec)`, where: - :py:attr:`X_feat`: features design matrix of shape :code:`(N, D)`, where N is :code:`len(dt)` and :code:`D = len(features)` - :py:attr:`X_seq`: sequence matrix of shape :code:`(N, 1, trim_seq_len, 4)`. It represents 1-hot encoding of the DNA/RNA sequence. - :py:attr:`y`: Response variable 1-column matrix of shape :code:`(N, 1)` - :py:attr:`id_vec`: 1D Character array of shape :code:`(N)`. It represents the ID's of individual rows. Note: One-hot encoding of the DNA/RNA sequence is the following: .. code:: python { "A": np.array([1, 0, 0, 0]), "C": np.array([0, 1, 0, 0]), "G": np.array([0, 0, 1, 0]), "T": np.array([0, 0, 0, 1]), "U": np.array([0, 0, 0, 1]), "N": np.array([0, 0, 0, 0]), }
2.448302
2.328122
1.051621
x = np.copy(x) if minval is not None: x[x < minval] = minval if maxval is not None: x[x > maxval] = maxval return x
def _trunc(x, minval=None, maxval=None)
Truncate vector values to have values on range [minval, maxval]
1.647238
1.500808
1.097568
# TODO - make it general... if len(x.shape) == 1: x = x.reshape((-1, 1)) if start is None: start = np.nanmin(x) else: if x.min() < start: if warn: print("WARNING, x.min() < start for some elements. Truncating them to start: x[x < start] = start") x = _trunc(x, minval=start) if end is None: end = np.nanmax(x) else: if x.max() > end: if warn: print("WARNING, x.max() > end for some elements. Truncating them to end: x[x > end] = end") x = _trunc(x, maxval=end) bs = BSpline(start, end, n_bases=n_bases, spline_order=spline_order ) # concatenate x to long assert len(x.shape) == 2 n_rows = x.shape[0] n_cols = x.shape[1] x_long = x.reshape((-1,)) x_feat = bs.predict(x_long, add_intercept=False) # shape = (n_rows * n_cols, n_bases) x_final = x_feat.reshape((n_rows, n_cols, n_bases)) return x_final
def encodeSplines(x, n_bases=10, spline_order=3, start=None, end=None, warn=True)
**Deprecated**. Function version of the transformer class `EncodeSplines`. Get B-spline base-function expansion # Details First, the knots for B-spline basis functions are placed equidistantly on the [start, end] range. (inferred from the data if None). Next, b_n(x) value is is computed for each x and each n (spline-index) with `scipy.interpolate.splev`. # Arguments x: a numpy array of positions with 2 dimensions n_bases int: Number of spline bases. spline_order: 2 for quadratic, 3 for qubic splines start, end: range of values. If None, they are inferred from the data as minimum and maximum value. warn: Show warnings. # Returns `np.ndarray` of shape `(x.shape[0], x.shape[1], n_bases)`
2.539597
2.574925
0.98628
assert x.ndim > 1 self.data_min_ = np.min(x, axis=tuple(range(x.ndim - 1))) self.data_max_ = np.max(x, axis=tuple(range(x.ndim - 1))) if self.share_knots: self.data_min_[:] = np.min(self.data_min_) self.data_max_[:] = np.max(self.data_max_)
def fit(self, x)
Calculate the knot placement from the values ranges. # Arguments x: numpy array, either N x D or N x L x D dimensional.
2.389806
2.428111
0.984224
# 1. split across last dimension # 2. re-use ranges # 3. Merge array_list = [encodeSplines(x[..., i].reshape((-1, 1)), n_bases=self.n_bases, spline_order=self.degree, warn=warn, start=self.data_min_[i], end=self.data_max_[i]).reshape(x[..., i].shape + (self.n_bases,)) for i in range(x.shape[-1])] return np.stack(array_list, axis=-2)
def transform(self, x, warn=True)
Obtain the transformed values
5.46399
5.432024
1.005885
if ignore_stop_codons: vocab = CODONS else: vocab = CODONS + STOP_CODONS assert seq_length % 3 == 0 return Input((seq_length / 3, len(vocab)), name=name, **kwargs)
def InputCodon(seq_length, ignore_stop_codons=True, name=None, **kwargs)
Input placeholder for array returned by `encodeCodon` Note: The seq_length is divided by 3 Wrapper for: `keras.layers.Input((seq_length / 3, 61 or 61), name=name, **kwargs)`
3.21322
2.842201
1.130539
return Input((seq_length, len(AMINO_ACIDS)), name=name, **kwargs)
def InputAA(seq_length, name=None, **kwargs)
Input placeholder for array returned by `encodeAA` Wrapper for: `keras.layers.Input((seq_length, 22), name=name, **kwargs)`
4.39779
4.639793
0.947842