path
stringlengths
13
17
screenshot_names
listlengths
1
873
code
stringlengths
0
40.4k
cell_type
stringclasses
1 value
130023373/cell_16
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd #dataframe manipulation train = pd.read_csv('/kaggle/input/machinehack-watermark-challenge/train.csv') test = pd.read_csv('/kaggle/input/machinehack-watermark-challenge/test.csv') train['Label'].value_counts()
code
130023373/cell_3
[ "image_output_2.png", "image_output_1.png" ]
!pip install pip -U -q !pip install fastdup -q
code
130023373/cell_27
[ "text_plain_output_1.png" ]
from PIL import Image, ImageDraw, ImageEnhance #for read the image from tqdm import tqdm_notebook import cv2 #for read the image import os import pandas as pd #dataframe manipulation import seaborn as sns #for visualization train = pd.read_csv('/kaggle/input/machinehack-watermark-challenge/train.csv') test = pd.read_csv('/kaggle/input/machinehack-watermark-challenge/test.csv') _=sns.countplot(x=train['Label'],order=train['Label'].value_counts().index); _=plt.title("Target Label Distribution",fontsize=18) def img_read(path, im, new_size=False): img = Image.open(f'{os.path.join(path, im)}') if new_size: img = img.resize((224, 224)) return img else: return img path="/kaggle/input/machinehack-watermark-challenge/train" fig=plt.figure(figsize=(8, 15)) for i,label in enumerate(['Watermark','No Watermark']): _=plt.subplot(1,2,i+1) img=img_read(path,train[train['Label']==label]['Image'].head(1).values[0]) plt.imshow(img) plt.axis('off') plt.title(f"{'With Watermark' if label=='Watermark' else 'No Watermark'}") def rgb_dist_plot(img,ax): start=0 end=256 for _,color in enumerate(['Red','Green','Blue']): _=sns.kdeplot(img.histogram()[start:end],label=color,color=color) _=plt.legend(); start+=256 end+=256 for label in ['Watermark','No Watermark']: fig, axs = plt.subplots(1, 2 ,figsize=(15,5)) img_id=train[train['Label']==label].head(1)['Image'].values[0] img_file =Image.open(f"/kaggle/input/machinehack-watermark-challenge/train/{img_id}") axs[0].imshow(img_file) axs[0].axis('off') axs[0].set_title(img_id,fontsize=18) _=rgb_dist_plot(img_file,ax=axs[1]) axs[1].set_title("RGB Color Distribution For "+img_id,fontsize=18) def basic_image_info(df, path): image_name = [] img_mode = [] img_height = [] img_width = [] img_contrast = [] for file in tqdm_notebook(df['Image']): image_name.append(file) img = Image.open(f'{os.path.join(path, file)}') grey_img = cv2.imread(f'{os.path.join(path, file)}', cv2.COLOR_BGR2GRAY) img_mode.append(img.mode) img_width.append(img.width) img_height.append(img.height) img_contrast.append(grey_img.std()) return pd.DataFrame({'image_name': image_name, 'img_mode': img_mode, 'img_contrast': img_contrast, 'img_width': img_width, 'img_height': img_height}) train_image_basic_info=basic_image_info(train, "/kaggle/input/machinehack-watermark-challenge/train") train_image_basic_info.head()
code
130023373/cell_5
[ "image_output_1.png" ]
import pandas as pd import numpy as np import seaborn as sns from matplotlib import pyplot as plt from PIL import Image, ImageDraw, ImageEnhance import skimage.color import skimage.util import imagehash import cv2 import os import re import itertools import distance import time import warnings warnings.filterwarnings('ignore') from tqdm import tqdm_notebook
code
106208987/cell_4
[ "text_plain_output_1.png" ]
from matplotlib import image im = image.imread('../input/rice-image-dataset/Rice_Image_Dataset/Arborio/Arborio (10012).jpg') im.shape
code
106208987/cell_2
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os os.listdir('../input/rice-image-dataset/Rice_Image_Dataset')
code
106208987/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
106208987/cell_7
[ "application_vnd.jupyter.stderr_output_2.png", "text_plain_output_1.png" ]
import numpy as np # linear algebra import os import numpy as np import pandas as pd import os os.listdir('../input/rice-image-dataset/Rice_Image_Dataset') def load(impath): imgs = [] labels = [] l1 = os.listdir(impath) for i in l1: if i[-1] == 't': continue l2 = os.listdir(impath + '/' + i) count = 0 for j in l2: img = Image.open(impath + '/' + i + '/' + j) img = img.resize(size=(28, 28)) img = img.convert('L') imgs.append(np.array(img)) labels.append(i) count += 1 if count >= 1000: break return (np.array(imgs), labels) arr, l = load('../input/rice-image-dataset/Rice_Image_Dataset') l
code
106208987/cell_5
[ "text_plain_output_1.png", "image_output_1.png" ]
from matplotlib import image import matplotlib.pyplot as plt im = image.imread('../input/rice-image-dataset/Rice_Image_Dataset/Arborio/Arborio (10012).jpg') im.shape plt.imshow(im)
code
122244126/cell_13
[ "text_html_output_1.png", "text_plain_output_1.png" ]
import numpy as np import pandas as pd import warnings import gc import numpy as np import pandas as pd from tqdm.notebook import tqdm import time import matplotlib.pyplot as plt import warnings warnings.filterwarnings('ignore') from sklearn.svm import SVR as skSVR from cuml.svm import SVR as cuSVR def smape(y_true, y_pred, agg=True): smap = np.zeros(len(y_true)) num = np.abs(y_true - y_pred) dem = (np.abs(y_true) + np.abs(y_pred)) / 2 pos_ind = (y_true != 0) | (y_pred != 0) smap[pos_ind] = num[pos_ind] / dem[pos_ind] if agg == True: return 100 * np.mean(smap) else: return 100 * smap BASE = '../input/godaddy-microbusiness-density-forecasting/' VERSION = 29 COLS = ['GEO_ID', 'NAME', 'S0101_C01_026E'] df2017 = pd.read_csv('../input/census-data-for-godaddy/ACSST5Y2017.S0101-Data.csv', usecols=COLS) df2017 = df2017.iloc[1:] df2017['S0101_C01_026E'] = df2017['S0101_C01_026E'].astype('int') df2018 = pd.read_csv('../input/census-data-for-godaddy/ACSST5Y2018.S0101-Data.csv', usecols=COLS) df2018 = df2018.iloc[1:] df2018['S0101_C01_026E'] = df2018['S0101_C01_026E'].astype('int') df2019 = pd.read_csv('../input/census-data-for-godaddy/ACSST5Y2019.S0101-Data.csv', usecols=COLS) df2019 = df2019.iloc[1:] df2019['S0101_C01_026E'] = df2019['S0101_C01_026E'].astype('int') df2020 = pd.read_csv('../input/census-data-for-godaddy/ACSST5Y2020.S0101-Data.csv', usecols=COLS) df2020 = df2020.iloc[1:] df2020['S0101_C01_026E'] = df2020['S0101_C01_026E'].astype('int') df2021 = pd.read_csv('../input/census-data-for-godaddy/ACSST5Y2021.S0101-Data.csv', usecols=COLS) df2021 = df2021.iloc[1:] df2021['S0101_C01_026E'] = df2021['S0101_C01_026E'].astype('int') df2017['cfips'] = df2017.GEO_ID.apply(lambda x: int(x.split('US')[-1])) df2018['cfips'] = df2018.GEO_ID.apply(lambda x: int(x.split('US')[-1])) df2019['cfips'] = df2019.GEO_ID.apply(lambda x: int(x.split('US')[-1])) df2020['cfips'] = df2020.GEO_ID.apply(lambda x: int(x.split('US')[-1])) df2021['cfips'] = df2021.GEO_ID.apply(lambda x: int(x.split('US')[-1])) df2017['year'] = 2017 + 2 df2018['year'] = 2018 + 2 df2019['year'] = 2019 + 2 df2020['year'] = 2020 + 2 df2021['year'] = 2021 + 2 K = pd.concat((df2017, df2018, df2019, df2020, df2021)) del K['GEO_ID'], K['NAME'] K = K.rename(columns={'S0101_C01_026E': 'K'}) K train = pd.read_csv(BASE + 'train.csv') reaveal_test = pd.read_csv(BASE + 'revealed_test.csv') train = pd.concat([train, reaveal_test]).sort_values(by=['cfips', 'first_day_of_month']).reset_index(drop=True) test = pd.read_csv(BASE + 'test.csv') drop_index = (test.first_day_of_month == '2022-11-01') | (test.first_day_of_month == '2022-12-01') test = test.loc[~drop_index, :] sub = pd.read_csv(BASE + 'sample_submission.csv') train['istest'] = 0 test['istest'] = 1 raw = pd.concat((train, test)).sort_values(['cfips', 'row_id']).reset_index(drop=True) coords = pd.read_csv('/kaggle/input/usa-counties-coordinates/cfips_location.csv') raw = raw.merge(coords.drop('name', axis=1), on='cfips') raw['first_day_of_month'] = pd.to_datetime(raw['first_day_of_month']) raw['year'] = raw['first_day_of_month'].dt.year raw['month'] = raw['first_day_of_month'].dt.month raw['county'] = raw.groupby('cfips')['county'].ffill() raw['state'] = raw.groupby('cfips')['state'].ffill() raw['dcount'] = raw.groupby(['cfips'])['row_id'].cumcount() raw['county_i'] = (raw['county'] + raw['state']).factorize()[0] raw['state_i'] = raw['state'].factorize()[0] raw = raw.merge(K, on=['cfips', 'year'], how='left') raw['tmp'] = (100 * raw['active'] / raw['K']).round(decimals=4) ind = raw['microbusiness_density'].notnull() del raw['tmp'] for t in range(0, 7): raw[f'lag{t}'] = raw.groupby('cfips')['active'].shift(t) raw[f'lag{t}'] = raw.groupby('cfips')[f'lag{t}'].ffill() ind = raw.active.notnull() & (raw.dcount >= 29) for lag in range(1, 7): print(lag, smape(raw.loc[ind, 'active'], raw.loc[ind, f'lag{lag}']))
code
122244126/cell_9
[ "text_plain_output_1.png" ]
import numpy as np import pandas as pd import warnings import gc import numpy as np import pandas as pd from tqdm.notebook import tqdm import time import matplotlib.pyplot as plt import warnings warnings.filterwarnings('ignore') from sklearn.svm import SVR as skSVR from cuml.svm import SVR as cuSVR def smape(y_true, y_pred, agg=True): smap = np.zeros(len(y_true)) num = np.abs(y_true - y_pred) dem = (np.abs(y_true) + np.abs(y_pred)) / 2 pos_ind = (y_true != 0) | (y_pred != 0) smap[pos_ind] = num[pos_ind] / dem[pos_ind] if agg == True: return 100 * np.mean(smap) else: return 100 * smap BASE = '../input/godaddy-microbusiness-density-forecasting/' VERSION = 29 COLS = ['GEO_ID', 'NAME', 'S0101_C01_026E'] df2017 = pd.read_csv('../input/census-data-for-godaddy/ACSST5Y2017.S0101-Data.csv', usecols=COLS) df2017 = df2017.iloc[1:] df2017['S0101_C01_026E'] = df2017['S0101_C01_026E'].astype('int') df2018 = pd.read_csv('../input/census-data-for-godaddy/ACSST5Y2018.S0101-Data.csv', usecols=COLS) df2018 = df2018.iloc[1:] df2018['S0101_C01_026E'] = df2018['S0101_C01_026E'].astype('int') df2019 = pd.read_csv('../input/census-data-for-godaddy/ACSST5Y2019.S0101-Data.csv', usecols=COLS) df2019 = df2019.iloc[1:] df2019['S0101_C01_026E'] = df2019['S0101_C01_026E'].astype('int') df2020 = pd.read_csv('../input/census-data-for-godaddy/ACSST5Y2020.S0101-Data.csv', usecols=COLS) df2020 = df2020.iloc[1:] df2020['S0101_C01_026E'] = df2020['S0101_C01_026E'].astype('int') df2021 = pd.read_csv('../input/census-data-for-godaddy/ACSST5Y2021.S0101-Data.csv', usecols=COLS) df2021 = df2021.iloc[1:] df2021['S0101_C01_026E'] = df2021['S0101_C01_026E'].astype('int') df2017['cfips'] = df2017.GEO_ID.apply(lambda x: int(x.split('US')[-1])) df2018['cfips'] = df2018.GEO_ID.apply(lambda x: int(x.split('US')[-1])) df2019['cfips'] = df2019.GEO_ID.apply(lambda x: int(x.split('US')[-1])) df2020['cfips'] = df2020.GEO_ID.apply(lambda x: int(x.split('US')[-1])) df2021['cfips'] = df2021.GEO_ID.apply(lambda x: int(x.split('US')[-1])) df2017['year'] = 2017 + 2 df2018['year'] = 2018 + 2 df2019['year'] = 2019 + 2 df2020['year'] = 2020 + 2 df2021['year'] = 2021 + 2 K = pd.concat((df2017, df2018, df2019, df2020, df2021)) del K['GEO_ID'], K['NAME'] K = K.rename(columns={'S0101_C01_026E': 'K'}) K train = pd.read_csv(BASE + 'train.csv') reaveal_test = pd.read_csv(BASE + 'revealed_test.csv') train = pd.concat([train, reaveal_test]).sort_values(by=['cfips', 'first_day_of_month']).reset_index(drop=True) test = pd.read_csv(BASE + 'test.csv') drop_index = (test.first_day_of_month == '2022-11-01') | (test.first_day_of_month == '2022-12-01') test = test.loc[~drop_index, :] sub = pd.read_csv(BASE + 'sample_submission.csv') train['istest'] = 0 test['istest'] = 1 raw = pd.concat((train, test)).sort_values(['cfips', 'row_id']).reset_index(drop=True) coords = pd.read_csv('/kaggle/input/usa-counties-coordinates/cfips_location.csv') raw = raw.merge(coords.drop('name', axis=1), on='cfips') raw['first_day_of_month'] = pd.to_datetime(raw['first_day_of_month']) raw['year'] = raw['first_day_of_month'].dt.year raw['month'] = raw['first_day_of_month'].dt.month raw['county'] = raw.groupby('cfips')['county'].ffill() raw['state'] = raw.groupby('cfips')['state'].ffill() raw['dcount'] = raw.groupby(['cfips'])['row_id'].cumcount() raw['county_i'] = (raw['county'] + raw['state']).factorize()[0] raw['state_i'] = raw['state'].factorize()[0] raw = raw.merge(K, on=['cfips', 'year'], how='left') raw['tmp'] = (100 * raw['active'] / raw['K']).round(decimals=4) ind = raw['microbusiness_density'].notnull() del raw['tmp'] raw.tail(10)
code
122244126/cell_6
[ "text_plain_output_1.png" ]
import numpy as np import pandas as pd import warnings import gc import numpy as np import pandas as pd from tqdm.notebook import tqdm import time import matplotlib.pyplot as plt import warnings warnings.filterwarnings('ignore') from sklearn.svm import SVR as skSVR from cuml.svm import SVR as cuSVR def smape(y_true, y_pred, agg=True): smap = np.zeros(len(y_true)) num = np.abs(y_true - y_pred) dem = (np.abs(y_true) + np.abs(y_pred)) / 2 pos_ind = (y_true != 0) | (y_pred != 0) smap[pos_ind] = num[pos_ind] / dem[pos_ind] if agg == True: return 100 * np.mean(smap) else: return 100 * smap BASE = '../input/godaddy-microbusiness-density-forecasting/' VERSION = 29 COLS = ['GEO_ID', 'NAME', 'S0101_C01_026E'] df2017 = pd.read_csv('../input/census-data-for-godaddy/ACSST5Y2017.S0101-Data.csv', usecols=COLS) df2017 = df2017.iloc[1:] df2017['S0101_C01_026E'] = df2017['S0101_C01_026E'].astype('int') df2018 = pd.read_csv('../input/census-data-for-godaddy/ACSST5Y2018.S0101-Data.csv', usecols=COLS) df2018 = df2018.iloc[1:] df2018['S0101_C01_026E'] = df2018['S0101_C01_026E'].astype('int') df2019 = pd.read_csv('../input/census-data-for-godaddy/ACSST5Y2019.S0101-Data.csv', usecols=COLS) df2019 = df2019.iloc[1:] df2019['S0101_C01_026E'] = df2019['S0101_C01_026E'].astype('int') df2020 = pd.read_csv('../input/census-data-for-godaddy/ACSST5Y2020.S0101-Data.csv', usecols=COLS) df2020 = df2020.iloc[1:] df2020['S0101_C01_026E'] = df2020['S0101_C01_026E'].astype('int') df2021 = pd.read_csv('../input/census-data-for-godaddy/ACSST5Y2021.S0101-Data.csv', usecols=COLS) df2021 = df2021.iloc[1:] df2021['S0101_C01_026E'] = df2021['S0101_C01_026E'].astype('int') df2017['cfips'] = df2017.GEO_ID.apply(lambda x: int(x.split('US')[-1])) df2018['cfips'] = df2018.GEO_ID.apply(lambda x: int(x.split('US')[-1])) df2019['cfips'] = df2019.GEO_ID.apply(lambda x: int(x.split('US')[-1])) df2020['cfips'] = df2020.GEO_ID.apply(lambda x: int(x.split('US')[-1])) df2021['cfips'] = df2021.GEO_ID.apply(lambda x: int(x.split('US')[-1])) df2017['year'] = 2017 + 2 df2018['year'] = 2018 + 2 df2019['year'] = 2019 + 2 df2020['year'] = 2020 + 2 df2021['year'] = 2021 + 2 K = pd.concat((df2017, df2018, df2019, df2020, df2021)) del K['GEO_ID'], K['NAME'] K = K.rename(columns={'S0101_C01_026E': 'K'}) K train = pd.read_csv(BASE + 'train.csv') reaveal_test = pd.read_csv(BASE + 'revealed_test.csv') train = pd.concat([train, reaveal_test]).sort_values(by=['cfips', 'first_day_of_month']).reset_index(drop=True) test = pd.read_csv(BASE + 'test.csv') drop_index = (test.first_day_of_month == '2022-11-01') | (test.first_day_of_month == '2022-12-01') test = test.loc[~drop_index, :] sub = pd.read_csv(BASE + 'sample_submission.csv') train['istest'] = 0 test['istest'] = 1 raw = pd.concat((train, test)).sort_values(['cfips', 'row_id']).reset_index(drop=True) coords = pd.read_csv('/kaggle/input/usa-counties-coordinates/cfips_location.csv') raw = raw.merge(coords.drop('name', axis=1), on='cfips') raw['first_day_of_month'] = pd.to_datetime(raw['first_day_of_month']) raw['year'] = raw['first_day_of_month'].dt.year raw['month'] = raw['first_day_of_month'].dt.month raw['county'] = raw.groupby('cfips')['county'].ffill() raw['state'] = raw.groupby('cfips')['state'].ffill() raw['dcount'] = raw.groupby(['cfips'])['row_id'].cumcount() raw['county_i'] = (raw['county'] + raw['state']).factorize()[0] raw['state_i'] = raw['state'].factorize()[0] raw = raw.merge(K, on=['cfips', 'year'], how='left') K = K.sort_values(['cfips', 'year']).reset_index(drop=True) K['lag'] = K.groupby('cfips')['K'].shift(1) K['up'] = (K['K'] - K['lag']) / K['K'] K['up'] = K['up'].fillna(0) K['utrend'] = 1 * (K['up'] > 0.0005) K['dtrend'] = 1 * (K['up'] < -0.0005) K dtu = K.groupby('cfips')['utrend', 'dtrend'].sum().reset_index() dtu['grp'] = 1 dtu.loc[dtu['utrend'] == 4, 'grp'] = 2 dtu.loc[dtu['dtrend'] == 4, 'grp'] = 0 raw['grp'] = raw['cfips'].map(dtu.set_index('cfips')['grp'].to_dict()) raw['utrend'] = 1 * (raw['grp'] == 2).astype('float32') raw['atrend'] = 1 * (raw['grp'] == 1).astype('float32') raw['ntrend'] = 1 * (raw['grp'] == 0).astype('float32') raw['grp'].value_counts()
code
122244126/cell_2
[ "text_plain_output_1.png" ]
import numpy as np import pandas as pd import warnings import gc import numpy as np import pandas as pd from tqdm.notebook import tqdm import time import matplotlib.pyplot as plt import warnings warnings.filterwarnings('ignore') from sklearn.svm import SVR as skSVR from cuml.svm import SVR as cuSVR def smape(y_true, y_pred, agg=True): smap = np.zeros(len(y_true)) num = np.abs(y_true - y_pred) dem = (np.abs(y_true) + np.abs(y_pred)) / 2 pos_ind = (y_true != 0) | (y_pred != 0) smap[pos_ind] = num[pos_ind] / dem[pos_ind] if agg == True: return 100 * np.mean(smap) else: return 100 * smap BASE = '../input/godaddy-microbusiness-density-forecasting/' VERSION = 29 COLS = ['GEO_ID', 'NAME', 'S0101_C01_026E'] df2017 = pd.read_csv('../input/census-data-for-godaddy/ACSST5Y2017.S0101-Data.csv', usecols=COLS) df2017 = df2017.iloc[1:] df2017['S0101_C01_026E'] = df2017['S0101_C01_026E'].astype('int') print(df2017.shape) df2018 = pd.read_csv('../input/census-data-for-godaddy/ACSST5Y2018.S0101-Data.csv', usecols=COLS) df2018 = df2018.iloc[1:] df2018['S0101_C01_026E'] = df2018['S0101_C01_026E'].astype('int') print(df2018.shape) df2019 = pd.read_csv('../input/census-data-for-godaddy/ACSST5Y2019.S0101-Data.csv', usecols=COLS) df2019 = df2019.iloc[1:] df2019['S0101_C01_026E'] = df2019['S0101_C01_026E'].astype('int') print(df2019.shape) df2020 = pd.read_csv('../input/census-data-for-godaddy/ACSST5Y2020.S0101-Data.csv', usecols=COLS) df2020 = df2020.iloc[1:] df2020['S0101_C01_026E'] = df2020['S0101_C01_026E'].astype('int') print(df2020.shape) df2021 = pd.read_csv('../input/census-data-for-godaddy/ACSST5Y2021.S0101-Data.csv', usecols=COLS) df2021 = df2021.iloc[1:] df2021['S0101_C01_026E'] = df2021['S0101_C01_026E'].astype('int') print(df2021.shape) df2017['cfips'] = df2017.GEO_ID.apply(lambda x: int(x.split('US')[-1])) df2018['cfips'] = df2018.GEO_ID.apply(lambda x: int(x.split('US')[-1])) df2019['cfips'] = df2019.GEO_ID.apply(lambda x: int(x.split('US')[-1])) df2020['cfips'] = df2020.GEO_ID.apply(lambda x: int(x.split('US')[-1])) df2021['cfips'] = df2021.GEO_ID.apply(lambda x: int(x.split('US')[-1])) df2017['year'] = 2017 + 2 df2018['year'] = 2018 + 2 df2019['year'] = 2019 + 2 df2020['year'] = 2020 + 2 df2021['year'] = 2021 + 2 K = pd.concat((df2017, df2018, df2019, df2020, df2021)) del K['GEO_ID'], K['NAME'] K = K.rename(columns={'S0101_C01_026E': 'K'}) K
code
122244126/cell_11
[ "text_html_output_1.png", "text_plain_output_1.png" ]
import numpy as np import pandas as pd import warnings import gc import numpy as np import pandas as pd from tqdm.notebook import tqdm import time import matplotlib.pyplot as plt import warnings warnings.filterwarnings('ignore') from sklearn.svm import SVR as skSVR from cuml.svm import SVR as cuSVR def smape(y_true, y_pred, agg=True): smap = np.zeros(len(y_true)) num = np.abs(y_true - y_pred) dem = (np.abs(y_true) + np.abs(y_pred)) / 2 pos_ind = (y_true != 0) | (y_pred != 0) smap[pos_ind] = num[pos_ind] / dem[pos_ind] if agg == True: return 100 * np.mean(smap) else: return 100 * smap BASE = '../input/godaddy-microbusiness-density-forecasting/' VERSION = 29 COLS = ['GEO_ID', 'NAME', 'S0101_C01_026E'] df2017 = pd.read_csv('../input/census-data-for-godaddy/ACSST5Y2017.S0101-Data.csv', usecols=COLS) df2017 = df2017.iloc[1:] df2017['S0101_C01_026E'] = df2017['S0101_C01_026E'].astype('int') df2018 = pd.read_csv('../input/census-data-for-godaddy/ACSST5Y2018.S0101-Data.csv', usecols=COLS) df2018 = df2018.iloc[1:] df2018['S0101_C01_026E'] = df2018['S0101_C01_026E'].astype('int') df2019 = pd.read_csv('../input/census-data-for-godaddy/ACSST5Y2019.S0101-Data.csv', usecols=COLS) df2019 = df2019.iloc[1:] df2019['S0101_C01_026E'] = df2019['S0101_C01_026E'].astype('int') df2020 = pd.read_csv('../input/census-data-for-godaddy/ACSST5Y2020.S0101-Data.csv', usecols=COLS) df2020 = df2020.iloc[1:] df2020['S0101_C01_026E'] = df2020['S0101_C01_026E'].astype('int') df2021 = pd.read_csv('../input/census-data-for-godaddy/ACSST5Y2021.S0101-Data.csv', usecols=COLS) df2021 = df2021.iloc[1:] df2021['S0101_C01_026E'] = df2021['S0101_C01_026E'].astype('int') df2017['cfips'] = df2017.GEO_ID.apply(lambda x: int(x.split('US')[-1])) df2018['cfips'] = df2018.GEO_ID.apply(lambda x: int(x.split('US')[-1])) df2019['cfips'] = df2019.GEO_ID.apply(lambda x: int(x.split('US')[-1])) df2020['cfips'] = df2020.GEO_ID.apply(lambda x: int(x.split('US')[-1])) df2021['cfips'] = df2021.GEO_ID.apply(lambda x: int(x.split('US')[-1])) df2017['year'] = 2017 + 2 df2018['year'] = 2018 + 2 df2019['year'] = 2019 + 2 df2020['year'] = 2020 + 2 df2021['year'] = 2021 + 2 K = pd.concat((df2017, df2018, df2019, df2020, df2021)) del K['GEO_ID'], K['NAME'] K = K.rename(columns={'S0101_C01_026E': 'K'}) K train = pd.read_csv(BASE + 'train.csv') reaveal_test = pd.read_csv(BASE + 'revealed_test.csv') train = pd.concat([train, reaveal_test]).sort_values(by=['cfips', 'first_day_of_month']).reset_index(drop=True) test = pd.read_csv(BASE + 'test.csv') drop_index = (test.first_day_of_month == '2022-11-01') | (test.first_day_of_month == '2022-12-01') test = test.loc[~drop_index, :] sub = pd.read_csv(BASE + 'sample_submission.csv') train['istest'] = 0 test['istest'] = 1 raw = pd.concat((train, test)).sort_values(['cfips', 'row_id']).reset_index(drop=True) coords = pd.read_csv('/kaggle/input/usa-counties-coordinates/cfips_location.csv') raw = raw.merge(coords.drop('name', axis=1), on='cfips') raw['first_day_of_month'] = pd.to_datetime(raw['first_day_of_month']) raw['year'] = raw['first_day_of_month'].dt.year raw['month'] = raw['first_day_of_month'].dt.month raw['county'] = raw.groupby('cfips')['county'].ffill() raw['state'] = raw.groupby('cfips')['state'].ffill() raw['dcount'] = raw.groupby(['cfips'])['row_id'].cumcount() raw['county_i'] = (raw['county'] + raw['state']).factorize()[0] raw['state_i'] = raw['state'].factorize()[0] raw = raw.merge(K, on=['cfips', 'year'], how='left') raw['tmp'] = (100 * raw['active'] / raw['K']).round(decimals=4) ind = raw['microbusiness_density'].notnull() del raw['tmp'] for t in range(0, 7): raw[f'lag{t}'] = raw.groupby('cfips')['active'].shift(t) raw[f'lag{t}'] = raw.groupby('cfips')[f'lag{t}'].ffill() raw.tail(10)
code
122244126/cell_1
[ "text_plain_output_1.png" ]
import numpy as np import pandas as pd import warnings import gc import numpy as np import pandas as pd from tqdm.notebook import tqdm import time import matplotlib.pyplot as plt import warnings warnings.filterwarnings('ignore') print(pd.__version__) from sklearn.svm import SVR as skSVR from cuml.svm import SVR as cuSVR def smape(y_true, y_pred, agg=True): smap = np.zeros(len(y_true)) num = np.abs(y_true - y_pred) dem = (np.abs(y_true) + np.abs(y_pred)) / 2 pos_ind = (y_true != 0) | (y_pred != 0) smap[pos_ind] = num[pos_ind] / dem[pos_ind] if agg == True: return 100 * np.mean(smap) else: return 100 * smap BASE = '../input/godaddy-microbusiness-density-forecasting/' VERSION = 29
code
122244126/cell_8
[ "text_plain_output_1.png" ]
import numpy as np import pandas as pd import warnings import gc import numpy as np import pandas as pd from tqdm.notebook import tqdm import time import matplotlib.pyplot as plt import warnings warnings.filterwarnings('ignore') from sklearn.svm import SVR as skSVR from cuml.svm import SVR as cuSVR def smape(y_true, y_pred, agg=True): smap = np.zeros(len(y_true)) num = np.abs(y_true - y_pred) dem = (np.abs(y_true) + np.abs(y_pred)) / 2 pos_ind = (y_true != 0) | (y_pred != 0) smap[pos_ind] = num[pos_ind] / dem[pos_ind] if agg == True: return 100 * np.mean(smap) else: return 100 * smap BASE = '../input/godaddy-microbusiness-density-forecasting/' VERSION = 29 COLS = ['GEO_ID', 'NAME', 'S0101_C01_026E'] df2017 = pd.read_csv('../input/census-data-for-godaddy/ACSST5Y2017.S0101-Data.csv', usecols=COLS) df2017 = df2017.iloc[1:] df2017['S0101_C01_026E'] = df2017['S0101_C01_026E'].astype('int') df2018 = pd.read_csv('../input/census-data-for-godaddy/ACSST5Y2018.S0101-Data.csv', usecols=COLS) df2018 = df2018.iloc[1:] df2018['S0101_C01_026E'] = df2018['S0101_C01_026E'].astype('int') df2019 = pd.read_csv('../input/census-data-for-godaddy/ACSST5Y2019.S0101-Data.csv', usecols=COLS) df2019 = df2019.iloc[1:] df2019['S0101_C01_026E'] = df2019['S0101_C01_026E'].astype('int') df2020 = pd.read_csv('../input/census-data-for-godaddy/ACSST5Y2020.S0101-Data.csv', usecols=COLS) df2020 = df2020.iloc[1:] df2020['S0101_C01_026E'] = df2020['S0101_C01_026E'].astype('int') df2021 = pd.read_csv('../input/census-data-for-godaddy/ACSST5Y2021.S0101-Data.csv', usecols=COLS) df2021 = df2021.iloc[1:] df2021['S0101_C01_026E'] = df2021['S0101_C01_026E'].astype('int') df2017['cfips'] = df2017.GEO_ID.apply(lambda x: int(x.split('US')[-1])) df2018['cfips'] = df2018.GEO_ID.apply(lambda x: int(x.split('US')[-1])) df2019['cfips'] = df2019.GEO_ID.apply(lambda x: int(x.split('US')[-1])) df2020['cfips'] = df2020.GEO_ID.apply(lambda x: int(x.split('US')[-1])) df2021['cfips'] = df2021.GEO_ID.apply(lambda x: int(x.split('US')[-1])) df2017['year'] = 2017 + 2 df2018['year'] = 2018 + 2 df2019['year'] = 2019 + 2 df2020['year'] = 2020 + 2 df2021['year'] = 2021 + 2 K = pd.concat((df2017, df2018, df2019, df2020, df2021)) del K['GEO_ID'], K['NAME'] K = K.rename(columns={'S0101_C01_026E': 'K'}) K train = pd.read_csv(BASE + 'train.csv') reaveal_test = pd.read_csv(BASE + 'revealed_test.csv') train = pd.concat([train, reaveal_test]).sort_values(by=['cfips', 'first_day_of_month']).reset_index(drop=True) test = pd.read_csv(BASE + 'test.csv') drop_index = (test.first_day_of_month == '2022-11-01') | (test.first_day_of_month == '2022-12-01') test = test.loc[~drop_index, :] sub = pd.read_csv(BASE + 'sample_submission.csv') train['istest'] = 0 test['istest'] = 1 raw = pd.concat((train, test)).sort_values(['cfips', 'row_id']).reset_index(drop=True) coords = pd.read_csv('/kaggle/input/usa-counties-coordinates/cfips_location.csv') raw = raw.merge(coords.drop('name', axis=1), on='cfips') raw['first_day_of_month'] = pd.to_datetime(raw['first_day_of_month']) raw['year'] = raw['first_day_of_month'].dt.year raw['month'] = raw['first_day_of_month'].dt.month raw['county'] = raw.groupby('cfips')['county'].ffill() raw['state'] = raw.groupby('cfips')['state'].ffill() raw['dcount'] = raw.groupby(['cfips'])['row_id'].cumcount() raw['county_i'] = (raw['county'] + raw['state']).factorize()[0] raw['state_i'] = raw['state'].factorize()[0] raw = raw.merge(K, on=['cfips', 'year'], how='left') raw['tmp'] = (100 * raw['active'] / raw['K']).round(decimals=4) ind = raw['microbusiness_density'].notnull() print((raw.loc[ind, 'microbusiness_density'] - raw.loc[ind, 'tmp']).abs().mean()) del raw['tmp']
code
122244126/cell_15
[ "text_html_output_1.png" ]
BACK = 36 features = ['utrend', 'atrend', 'ntrend', 'lng', 'lat', 'rate0', 'rate1', 'rate2', 'rate3', 'rate4', 'rate_sum', 'last_rate1', 'last_rate2', 'last_rate3', 'last_rate4'] CLIPS = {1: 0.00225, 2: 0.005, 3: 0.011, 4: 0.015, 5: 0.024, 6: 0.032} for LEAD in range(1, 7): print(f'Forecast month ahead {LEAD}...') raw[f'pred{LEAD}'] = raw[f'lag{LEAD}'].copy() raw[f'k{LEAD}'] = 0.0 for fold in range(29, 40 + LEAD + 1): ind = raw.dcount <= fold - LEAD tmp = raw.loc[ind].copy().reset_index(drop=True) tmp['target'] = tmp.groupby('cfips')['active'].shift(-LEAD) tmp['target'] = tmp['target'] / tmp['active'] - 1 tmp['target'] = tmp['target'].clip(-1.0, 1.0) tmp[f'last_active'] = tmp.groupby('cfips')['active'].transform('last') for t in range(5): tmp[f'lag{t}'] = tmp.groupby('cfips')['active'].shift(t) tmp[f'lag{t}'] = tmp.groupby('cfips')[f'lag{t}'].ffill() tmp[f'rate{t}'] = tmp[f'active'] / tmp[f'lag{t}'] - 1 tmp[f'rate{t}'] = tmp[f'rate{t}'].clip(-1.0, 1.0) tmp[f'last_rate{t}'] = (tmp[f'last_active'] - tmp[f'lag{t}']) / tmp[f'last_active'] tmp[f'last_rate{t}'] = tmp[f'last_rate{t}'].clip(-1.0, 1.0) ind = tmp.dcount >= 5 tmp.loc[ind, f'rate{t}'] = tmp.loc[ind, f'rate{t}'].fillna(0) tmp.loc[ind, f'last_rate{t}'] = tmp.loc[ind, f'last_rate{t}'].fillna(0) tmp[f'rate_sum'] = (4 * tmp['rate0'] + 3 * tmp['rate1'] + 2 * tmp['rate2'] + 1 * tmp['rate3']) / 10 model = skSVR(C=0.5, kernel='rbf', degree=3, gamma='scale', coef0=0.0, tol=1e-06, epsilon=0.1, cache_size=200, verbose=False, max_iter=-1) ind = tmp.target.notnull() & (tmp.active != 0) & (tmp.dcount >= fold - LEAD - BACK) & (tmp[features].isnull().sum(1) == 0) & (tmp[f'lag{LEAD}'] > 0) model.fit(tmp.loc[ind, features], tmp.loc[ind, 'target']) ind = tmp.dcount == fold - LEAD tmp.loc[ind, f'k{LEAD}'] = model.predict(tmp.loc[ind, features]) ypred = tmp.loc[ind, [f'k{LEAD}', 'cfips']].set_index('cfips')[f'k{LEAD}'].to_dict() del model gc.collect() ind = raw.dcount == fold raw.loc[ind, f'k{LEAD}'] = raw.loc[ind, 'cfips'].map(ypred).fillna(0) raw[f'pred{LEAD}'] = (raw[f'lag{LEAD}'] * (raw[f'k{LEAD}'].fillna(0) + 1).clip(1, 1 + CLIPS[LEAD])).round() ind = raw.dcount == fold smape0 = smape(raw.loc[ind, 'active'], raw.loc[ind, f'lag{LEAD}']) smape1 = smape(raw.loc[ind, 'active'], raw.loc[ind, f'pred{LEAD}']) print(f'month {fold}, smape gain: {smape0 - smape1:0.4f}') raw[f'pred{LEAD}'] = raw[f'lag{LEAD}'] * (raw[f'k{LEAD}'].fillna(0) + 1).clip(1, 1 + CLIPS[LEAD]) raw[f'pred{LEAD}'] = raw[f'pred{LEAD}'].round() ind = (raw.dcount >= 29) & (raw.dcount <= 40) smape0 = smape(raw.loc[ind, 'active'], raw.loc[ind, f'lag{LEAD}']) smape1 = smape(raw.loc[ind, 'active'], raw.loc[ind, f'pred{LEAD}']) print(f'Forecast {LEAD}, total smape gain: {smape0 - smape1:0.4f}') print()
code
122244126/cell_3
[ "text_html_output_1.png" ]
import numpy as np import pandas as pd import warnings import gc import numpy as np import pandas as pd from tqdm.notebook import tqdm import time import matplotlib.pyplot as plt import warnings warnings.filterwarnings('ignore') from sklearn.svm import SVR as skSVR from cuml.svm import SVR as cuSVR def smape(y_true, y_pred, agg=True): smap = np.zeros(len(y_true)) num = np.abs(y_true - y_pred) dem = (np.abs(y_true) + np.abs(y_pred)) / 2 pos_ind = (y_true != 0) | (y_pred != 0) smap[pos_ind] = num[pos_ind] / dem[pos_ind] if agg == True: return 100 * np.mean(smap) else: return 100 * smap BASE = '../input/godaddy-microbusiness-density-forecasting/' VERSION = 29 COLS = ['GEO_ID', 'NAME', 'S0101_C01_026E'] df2017 = pd.read_csv('../input/census-data-for-godaddy/ACSST5Y2017.S0101-Data.csv', usecols=COLS) df2017 = df2017.iloc[1:] df2017['S0101_C01_026E'] = df2017['S0101_C01_026E'].astype('int') df2018 = pd.read_csv('../input/census-data-for-godaddy/ACSST5Y2018.S0101-Data.csv', usecols=COLS) df2018 = df2018.iloc[1:] df2018['S0101_C01_026E'] = df2018['S0101_C01_026E'].astype('int') df2019 = pd.read_csv('../input/census-data-for-godaddy/ACSST5Y2019.S0101-Data.csv', usecols=COLS) df2019 = df2019.iloc[1:] df2019['S0101_C01_026E'] = df2019['S0101_C01_026E'].astype('int') df2020 = pd.read_csv('../input/census-data-for-godaddy/ACSST5Y2020.S0101-Data.csv', usecols=COLS) df2020 = df2020.iloc[1:] df2020['S0101_C01_026E'] = df2020['S0101_C01_026E'].astype('int') df2021 = pd.read_csv('../input/census-data-for-godaddy/ACSST5Y2021.S0101-Data.csv', usecols=COLS) df2021 = df2021.iloc[1:] df2021['S0101_C01_026E'] = df2021['S0101_C01_026E'].astype('int') df2017['cfips'] = df2017.GEO_ID.apply(lambda x: int(x.split('US')[-1])) df2018['cfips'] = df2018.GEO_ID.apply(lambda x: int(x.split('US')[-1])) df2019['cfips'] = df2019.GEO_ID.apply(lambda x: int(x.split('US')[-1])) df2020['cfips'] = df2020.GEO_ID.apply(lambda x: int(x.split('US')[-1])) df2021['cfips'] = df2021.GEO_ID.apply(lambda x: int(x.split('US')[-1])) df2017['year'] = 2017 + 2 df2018['year'] = 2018 + 2 df2019['year'] = 2019 + 2 df2020['year'] = 2020 + 2 df2021['year'] = 2021 + 2 K = pd.concat((df2017, df2018, df2019, df2020, df2021)) del K['GEO_ID'], K['NAME'] K = K.rename(columns={'S0101_C01_026E': 'K'}) K train = pd.read_csv(BASE + 'train.csv') reaveal_test = pd.read_csv(BASE + 'revealed_test.csv') train = pd.concat([train, reaveal_test]).sort_values(by=['cfips', 'first_day_of_month']).reset_index(drop=True) test = pd.read_csv(BASE + 'test.csv') drop_index = (test.first_day_of_month == '2022-11-01') | (test.first_day_of_month == '2022-12-01') test = test.loc[~drop_index, :] sub = pd.read_csv(BASE + 'sample_submission.csv') print(train.shape, test.shape, sub.shape) train['istest'] = 0 test['istest'] = 1 raw = pd.concat((train, test)).sort_values(['cfips', 'row_id']).reset_index(drop=True) coords = pd.read_csv('/kaggle/input/usa-counties-coordinates/cfips_location.csv') raw = raw.merge(coords.drop('name', axis=1), on='cfips') raw['first_day_of_month'] = pd.to_datetime(raw['first_day_of_month']) raw['year'] = raw['first_day_of_month'].dt.year raw['month'] = raw['first_day_of_month'].dt.month raw['county'] = raw.groupby('cfips')['county'].ffill() raw['state'] = raw.groupby('cfips')['state'].ffill() raw['dcount'] = raw.groupby(['cfips'])['row_id'].cumcount() raw['county_i'] = (raw['county'] + raw['state']).factorize()[0] raw['state_i'] = raw['state'].factorize()[0] raw = raw.merge(K, on=['cfips', 'year'], how='left') raw.tail(20)
code
122244126/cell_5
[ "text_html_output_1.png" ]
import numpy as np import pandas as pd import warnings import gc import numpy as np import pandas as pd from tqdm.notebook import tqdm import time import matplotlib.pyplot as plt import warnings warnings.filterwarnings('ignore') from sklearn.svm import SVR as skSVR from cuml.svm import SVR as cuSVR def smape(y_true, y_pred, agg=True): smap = np.zeros(len(y_true)) num = np.abs(y_true - y_pred) dem = (np.abs(y_true) + np.abs(y_pred)) / 2 pos_ind = (y_true != 0) | (y_pred != 0) smap[pos_ind] = num[pos_ind] / dem[pos_ind] if agg == True: return 100 * np.mean(smap) else: return 100 * smap BASE = '../input/godaddy-microbusiness-density-forecasting/' VERSION = 29 COLS = ['GEO_ID', 'NAME', 'S0101_C01_026E'] df2017 = pd.read_csv('../input/census-data-for-godaddy/ACSST5Y2017.S0101-Data.csv', usecols=COLS) df2017 = df2017.iloc[1:] df2017['S0101_C01_026E'] = df2017['S0101_C01_026E'].astype('int') df2018 = pd.read_csv('../input/census-data-for-godaddy/ACSST5Y2018.S0101-Data.csv', usecols=COLS) df2018 = df2018.iloc[1:] df2018['S0101_C01_026E'] = df2018['S0101_C01_026E'].astype('int') df2019 = pd.read_csv('../input/census-data-for-godaddy/ACSST5Y2019.S0101-Data.csv', usecols=COLS) df2019 = df2019.iloc[1:] df2019['S0101_C01_026E'] = df2019['S0101_C01_026E'].astype('int') df2020 = pd.read_csv('../input/census-data-for-godaddy/ACSST5Y2020.S0101-Data.csv', usecols=COLS) df2020 = df2020.iloc[1:] df2020['S0101_C01_026E'] = df2020['S0101_C01_026E'].astype('int') df2021 = pd.read_csv('../input/census-data-for-godaddy/ACSST5Y2021.S0101-Data.csv', usecols=COLS) df2021 = df2021.iloc[1:] df2021['S0101_C01_026E'] = df2021['S0101_C01_026E'].astype('int') df2017['cfips'] = df2017.GEO_ID.apply(lambda x: int(x.split('US')[-1])) df2018['cfips'] = df2018.GEO_ID.apply(lambda x: int(x.split('US')[-1])) df2019['cfips'] = df2019.GEO_ID.apply(lambda x: int(x.split('US')[-1])) df2020['cfips'] = df2020.GEO_ID.apply(lambda x: int(x.split('US')[-1])) df2021['cfips'] = df2021.GEO_ID.apply(lambda x: int(x.split('US')[-1])) df2017['year'] = 2017 + 2 df2018['year'] = 2018 + 2 df2019['year'] = 2019 + 2 df2020['year'] = 2020 + 2 df2021['year'] = 2021 + 2 K = pd.concat((df2017, df2018, df2019, df2020, df2021)) del K['GEO_ID'], K['NAME'] K = K.rename(columns={'S0101_C01_026E': 'K'}) K K = K.sort_values(['cfips', 'year']).reset_index(drop=True) K['lag'] = K.groupby('cfips')['K'].shift(1) K['up'] = (K['K'] - K['lag']) / K['K'] K['up'] = K['up'].fillna(0) K['utrend'] = 1 * (K['up'] > 0.0005) K['dtrend'] = 1 * (K['up'] < -0.0005) K
code
34120381/cell_2
[ "text_plain_output_1.png" ]
import os import os for dirname, _, filenames in os.walk('/kaggle/'): for filename in filenames: print(os.path.join(dirname, filename))
code
34120381/cell_1
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd from sklearn.model_selection import train_test_split from keras.preprocessing.text import Tokenizer from keras.preprocessing import sequence from gensim.models import Word2Vec from keras.models import Sequential from keras.callbacks import EarlyStopping from keras import optimizers from keras.layers import Embedding, Conv1D, MaxPooling1D, Dense from keras.layers import Dense, Activation, Dropout, Flatten, Input from keras import regularizers
code
34120381/cell_3
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd datasets_dir = '' vnrows = None datasets_dir = '/kaggle/input/fakenews-preprocessed-dataset/' df = pd.read_csv(datasets_dir + 'fakenews_preprocessed_35k.csv', nrows=vnrows, encoding='utf-8')
code
105213956/cell_21
[ "text_plain_output_1.png" ]
from nltk.corpus import stopwords from nltk.stem import WordNetLemmatizer from nltk.stem.snowball import SnowballStemmer from sklearn.manifold import TSNE from tensorflow.keras.preprocessing.sequence import pad_sequences from tensorflow.keras.preprocessing.text import Tokenizer import nltk import numpy as np import pandas as pd # For data handling import seaborn as sns import re import pandas as pd from time import time from collections import defaultdict from bs4 import BeautifulSoup from nltk import word_tokenize from nltk.corpus import stopwords from nltk.stem import WordNetLemmatizer from sklearn.decomposition import PCA from matplotlib import pyplot as plt from gensim.models import Word2Vec, Phrases from nltk.tokenize import word_tokenize import nltk import seaborn as sns import numpy as np from tensorflow.keras.preprocessing.sequence import pad_sequences from tensorflow.keras.preprocessing.text import Tokenizer import gensim nltk.download('punkt') nltk.download('wordnet') nltk.download('omw-1.4') import spacy df = pd.read_csv('../input/google-war-news/war-news.csv', encoding='latin1') df.isnull().sum() df.dropna(subset=['Summary'], inplace=True) from nltk.stem.snowball import SnowballStemmer def stemm_text(text): stemmer = SnowballStemmer('english') return ' '.join([stemmer.stem(w) for w in text.split(' ')]) w_tokenizer = nltk.tokenize.WhitespaceTokenizer() lemmatizer = nltk.stem.WordNetLemmatizer() def lemmatize_text(text): lemmatizer = WordNetLemmatizer() return ' '.join([lemmatizer.lemmatize(w) for w in text.split(' ')]) T = df['Summary'].str.split(' \n\n---\n\n').str[0] T = T.str.replace('-', ' ').str.replace('[^\\w\\s]', '').str.replace('\n', ' ').str.lower() stop = stopwords.words('english') T = T.apply(lambda x: ' '.join((x for x in x.split() if not x.isdigit()))) T = T.apply(lambda words: ' '.join((word.lower() for word in words.split() if word not in stop))) T1 = T.values.tolist() def Sentence2Vec(T, embedding_dim=100, max_length=300): glove_path = '../input/glove6b100dtxt/glove.6B.100d.txt' path = glove_path tokenizer = Tokenizer() text = T tokenizer.fit_on_texts(text) word_index = tokenizer.word_index vocab_size = 5000 trunc_type = 'post' oov_tok = '<OOV>' padding_type = 'post' text_sequence = tokenizer.texts_to_sequences(text) text_sequence = pad_sequences(text_sequence, maxlen=max_length, truncating=trunc_type, padding=padding_type) size_of_vocabulary = len(tokenizer.word_index) + 1 embeddings_index = dict() f = open(path) for line in f: values = line.split() word = values[0] coefs = np.asarray(values[1:], dtype='float32') embeddings_index[word] = coefs f.close() embedding_matrix = np.zeros((size_of_vocabulary, embedding_dim)) for word, i in tokenizer.word_index.items(): embedding_vector = embeddings_index.get(word) if embedding_vector is not None: embedding_matrix[i] = embedding_vector text_shape = text_sequence.shape X_train = np.empty((text_shape[0], text_shape[1], embedding_matrix.shape[1])) for i in range(text_sequence.shape[0]): for j in range(text_sequence.shape[1]): X_train[i, j, :] = embedding_matrix[text_sequence[i][j]] return (X_train, embeddings_index, word_index) L = list(word_index.keys()) emb_matrix = np.zeros((len(L) + 1, 100)) for word, index in word_index.items(): embedding_vector = embeddings_index.get(word) if embedding_vector is not None: emb_matrix[index, :] = embedding_vector emb_matrix.shape tsne = TSNE(perplexity=40, n_components=2, init='pca', n_iter=2500, random_state=123) z = tsne.fit_transform(emb_matrix) df3 = pd.DataFrame() df3['comp-1'] = z[:, 0] df3['comp-2'] = z[:, 1] plt.figure(figsize=(12, 6)) sns.scatterplot(x='comp-1', y='comp-2', data=df3).set(title='Glove T-SNE projection')
code
105213956/cell_9
[ "image_output_1.png" ]
from nltk.corpus import stopwords import pandas as pd # For data handling df = pd.read_csv('../input/google-war-news/war-news.csv', encoding='latin1') df.isnull().sum() df.dropna(subset=['Summary'], inplace=True) T = df['Summary'].str.split(' \n\n---\n\n').str[0] T = T.str.replace('-', ' ').str.replace('[^\\w\\s]', '').str.replace('\n', ' ').str.lower() stop = stopwords.words('english') T = T.apply(lambda x: ' '.join((x for x in x.split() if not x.isdigit()))) T = T.apply(lambda words: ' '.join((word.lower() for word in words.split() if word not in stop)))
code
105213956/cell_25
[ "application_vnd.jupyter.stderr_output_1.png" ]
from gensim.models import word2vec from nltk import word_tokenize from nltk.corpus import stopwords from nltk.tokenize import word_tokenize import pandas as pd # For data handling df = pd.read_csv('../input/google-war-news/war-news.csv', encoding='latin1') df.isnull().sum() df.dropna(subset=['Summary'], inplace=True) T = df['Summary'].str.split(' \n\n---\n\n').str[0] T = T.str.replace('-', ' ').str.replace('[^\\w\\s]', '').str.replace('\n', ' ').str.lower() stop = stopwords.words('english') T = T.apply(lambda x: ' '.join((x for x in x.split() if not x.isdigit()))) T = T.apply(lambda words: ' '.join((word.lower() for word in words.split() if word not in stop))) T1 = T.values.tolist() T1 = T.apply(word_tokenize) num_features = 100 min_word_count = 20 num_workers = 4 context = 20 downsampling = 0.001 from gensim.models import word2vec print('Training model....') model = word2vec.Word2Vec(workers=num_workers, vector_size=num_features, min_count=min_word_count, window=context, sample=downsampling) model.build_vocab(T1, progress_per=1000) model.train(T1, total_examples=model.corpus_count, epochs=model.epochs)
code
105213956/cell_30
[ "text_plain_output_1.png" ]
from gensim.models import word2vec from nltk import word_tokenize from nltk.corpus import stopwords from nltk.tokenize import word_tokenize import pandas as pd # For data handling df = pd.read_csv('../input/google-war-news/war-news.csv', encoding='latin1') df.isnull().sum() df.dropna(subset=['Summary'], inplace=True) T = df['Summary'].str.split(' \n\n---\n\n').str[0] T = T.str.replace('-', ' ').str.replace('[^\\w\\s]', '').str.replace('\n', ' ').str.lower() stop = stopwords.words('english') T = T.apply(lambda x: ' '.join((x for x in x.split() if not x.isdigit()))) T = T.apply(lambda words: ' '.join((word.lower() for word in words.split() if word not in stop))) T1 = T.values.tolist() T1 = T.apply(word_tokenize) num_features = 100 min_word_count = 20 num_workers = 4 context = 20 downsampling = 0.001 from gensim.models import word2vec model = word2vec.Word2Vec(workers=num_workers, vector_size=num_features, min_count=min_word_count, window=context, sample=downsampling) model.build_vocab(T1, progress_per=1000) model.train(T1, total_examples=model.corpus_count, epochs=model.epochs) labels = model.wv.index_to_key model.wv['ukraine'] X = model.wv[model.wv.index_to_key] X.shape
code
105213956/cell_33
[ "application_vnd.jupyter.stderr_output_1.png" ]
from gensim.models import word2vec from nltk import word_tokenize from nltk.corpus import stopwords from nltk.stem import WordNetLemmatizer from nltk.stem.snowball import SnowballStemmer from nltk.tokenize import word_tokenize from sklearn.manifold import TSNE from tensorflow.keras.preprocessing.sequence import pad_sequences from tensorflow.keras.preprocessing.text import Tokenizer import nltk import numpy as np import pandas as pd # For data handling import seaborn as sns import re import pandas as pd from time import time from collections import defaultdict from bs4 import BeautifulSoup from nltk import word_tokenize from nltk.corpus import stopwords from nltk.stem import WordNetLemmatizer from sklearn.decomposition import PCA from matplotlib import pyplot as plt from gensim.models import Word2Vec, Phrases from nltk.tokenize import word_tokenize import nltk import seaborn as sns import numpy as np from tensorflow.keras.preprocessing.sequence import pad_sequences from tensorflow.keras.preprocessing.text import Tokenizer import gensim nltk.download('punkt') nltk.download('wordnet') nltk.download('omw-1.4') import spacy df = pd.read_csv('../input/google-war-news/war-news.csv', encoding='latin1') df.isnull().sum() df.dropna(subset=['Summary'], inplace=True) from nltk.stem.snowball import SnowballStemmer def stemm_text(text): stemmer = SnowballStemmer('english') return ' '.join([stemmer.stem(w) for w in text.split(' ')]) w_tokenizer = nltk.tokenize.WhitespaceTokenizer() lemmatizer = nltk.stem.WordNetLemmatizer() def lemmatize_text(text): lemmatizer = WordNetLemmatizer() return ' '.join([lemmatizer.lemmatize(w) for w in text.split(' ')]) T = df['Summary'].str.split(' \n\n---\n\n').str[0] T = T.str.replace('-', ' ').str.replace('[^\\w\\s]', '').str.replace('\n', ' ').str.lower() stop = stopwords.words('english') T = T.apply(lambda x: ' '.join((x for x in x.split() if not x.isdigit()))) T = T.apply(lambda words: ' '.join((word.lower() for word in words.split() if word not in stop))) T1 = T.values.tolist() def Sentence2Vec(T, embedding_dim=100, max_length=300): glove_path = '../input/glove6b100dtxt/glove.6B.100d.txt' path = glove_path tokenizer = Tokenizer() text = T tokenizer.fit_on_texts(text) word_index = tokenizer.word_index vocab_size = 5000 trunc_type = 'post' oov_tok = '<OOV>' padding_type = 'post' text_sequence = tokenizer.texts_to_sequences(text) text_sequence = pad_sequences(text_sequence, maxlen=max_length, truncating=trunc_type, padding=padding_type) size_of_vocabulary = len(tokenizer.word_index) + 1 embeddings_index = dict() f = open(path) for line in f: values = line.split() word = values[0] coefs = np.asarray(values[1:], dtype='float32') embeddings_index[word] = coefs f.close() embedding_matrix = np.zeros((size_of_vocabulary, embedding_dim)) for word, i in tokenizer.word_index.items(): embedding_vector = embeddings_index.get(word) if embedding_vector is not None: embedding_matrix[i] = embedding_vector text_shape = text_sequence.shape X_train = np.empty((text_shape[0], text_shape[1], embedding_matrix.shape[1])) for i in range(text_sequence.shape[0]): for j in range(text_sequence.shape[1]): X_train[i, j, :] = embedding_matrix[text_sequence[i][j]] return (X_train, embeddings_index, word_index) L = list(word_index.keys()) emb_matrix = np.zeros((len(L) + 1, 100)) for word, index in word_index.items(): embedding_vector = embeddings_index.get(word) if embedding_vector is not None: emb_matrix[index, :] = embedding_vector emb_matrix.shape tsne = TSNE(perplexity=40, n_components=2, init='pca', n_iter=2500, random_state=123) z = tsne.fit_transform(emb_matrix) df3 = pd.DataFrame() df3['comp-1'] = z[:, 0] df3['comp-2'] = z[:, 1] T1 = T.apply(word_tokenize) num_features = 100 min_word_count = 20 num_workers = 4 context = 20 downsampling = 0.001 from gensim.models import word2vec model = word2vec.Word2Vec(workers=num_workers, vector_size=num_features, min_count=min_word_count, window=context, sample=downsampling) model.build_vocab(T1, progress_per=1000) model.train(T1, total_examples=model.corpus_count, epochs=model.epochs) labels = model.wv.index_to_key model.wv['ukraine'] X = model.wv[model.wv.index_to_key] X.shape tsne = TSNE(perplexity=40, n_components=2, init='pca', n_iter=2500, random_state=123) z = tsne.fit_transform(X) z.shape df3 = pd.DataFrame() df3['comp-1'] = z[:, 0] df3['comp-2'] = z[:, 1] x = z[:, 0] y = z[:, 1] plt.figure(figsize=(12, 6)) sns.scatterplot(x='comp-1', y='comp-2', data=df3).set(title='Word2Vec T-SNE projection')
code
105213956/cell_20
[ "text_plain_output_1.png" ]
from nltk.corpus import stopwords from nltk.stem import WordNetLemmatizer from nltk.stem.snowball import SnowballStemmer from sklearn.manifold import TSNE from tensorflow.keras.preprocessing.sequence import pad_sequences from tensorflow.keras.preprocessing.text import Tokenizer import nltk import numpy as np import pandas as pd # For data handling import re import pandas as pd from time import time from collections import defaultdict from bs4 import BeautifulSoup from nltk import word_tokenize from nltk.corpus import stopwords from nltk.stem import WordNetLemmatizer from sklearn.decomposition import PCA from matplotlib import pyplot as plt from gensim.models import Word2Vec, Phrases from nltk.tokenize import word_tokenize import nltk import seaborn as sns import numpy as np from tensorflow.keras.preprocessing.sequence import pad_sequences from tensorflow.keras.preprocessing.text import Tokenizer import gensim nltk.download('punkt') nltk.download('wordnet') nltk.download('omw-1.4') import spacy df = pd.read_csv('../input/google-war-news/war-news.csv', encoding='latin1') df.isnull().sum() df.dropna(subset=['Summary'], inplace=True) from nltk.stem.snowball import SnowballStemmer def stemm_text(text): stemmer = SnowballStemmer('english') return ' '.join([stemmer.stem(w) for w in text.split(' ')]) w_tokenizer = nltk.tokenize.WhitespaceTokenizer() lemmatizer = nltk.stem.WordNetLemmatizer() def lemmatize_text(text): lemmatizer = WordNetLemmatizer() return ' '.join([lemmatizer.lemmatize(w) for w in text.split(' ')]) T = df['Summary'].str.split(' \n\n---\n\n').str[0] T = T.str.replace('-', ' ').str.replace('[^\\w\\s]', '').str.replace('\n', ' ').str.lower() stop = stopwords.words('english') T = T.apply(lambda x: ' '.join((x for x in x.split() if not x.isdigit()))) T = T.apply(lambda words: ' '.join((word.lower() for word in words.split() if word not in stop))) T1 = T.values.tolist() def Sentence2Vec(T, embedding_dim=100, max_length=300): glove_path = '../input/glove6b100dtxt/glove.6B.100d.txt' path = glove_path tokenizer = Tokenizer() text = T tokenizer.fit_on_texts(text) word_index = tokenizer.word_index vocab_size = 5000 trunc_type = 'post' oov_tok = '<OOV>' padding_type = 'post' text_sequence = tokenizer.texts_to_sequences(text) text_sequence = pad_sequences(text_sequence, maxlen=max_length, truncating=trunc_type, padding=padding_type) size_of_vocabulary = len(tokenizer.word_index) + 1 embeddings_index = dict() f = open(path) for line in f: values = line.split() word = values[0] coefs = np.asarray(values[1:], dtype='float32') embeddings_index[word] = coefs f.close() embedding_matrix = np.zeros((size_of_vocabulary, embedding_dim)) for word, i in tokenizer.word_index.items(): embedding_vector = embeddings_index.get(word) if embedding_vector is not None: embedding_matrix[i] = embedding_vector text_shape = text_sequence.shape X_train = np.empty((text_shape[0], text_shape[1], embedding_matrix.shape[1])) for i in range(text_sequence.shape[0]): for j in range(text_sequence.shape[1]): X_train[i, j, :] = embedding_matrix[text_sequence[i][j]] return (X_train, embeddings_index, word_index) L = list(word_index.keys()) emb_matrix = np.zeros((len(L) + 1, 100)) for word, index in word_index.items(): embedding_vector = embeddings_index.get(word) if embedding_vector is not None: emb_matrix[index, :] = embedding_vector emb_matrix.shape tsne = TSNE(perplexity=40, n_components=2, init='pca', n_iter=2500, random_state=123) z = tsne.fit_transform(emb_matrix)
code
105213956/cell_29
[ "text_plain_output_1.png" ]
from gensim.models import word2vec from nltk import word_tokenize from nltk.corpus import stopwords from nltk.tokenize import word_tokenize import pandas as pd # For data handling df = pd.read_csv('../input/google-war-news/war-news.csv', encoding='latin1') df.isnull().sum() df.dropna(subset=['Summary'], inplace=True) T = df['Summary'].str.split(' \n\n---\n\n').str[0] T = T.str.replace('-', ' ').str.replace('[^\\w\\s]', '').str.replace('\n', ' ').str.lower() stop = stopwords.words('english') T = T.apply(lambda x: ' '.join((x for x in x.split() if not x.isdigit()))) T = T.apply(lambda words: ' '.join((word.lower() for word in words.split() if word not in stop))) T1 = T.values.tolist() T1 = T.apply(word_tokenize) num_features = 100 min_word_count = 20 num_workers = 4 context = 20 downsampling = 0.001 from gensim.models import word2vec model = word2vec.Word2Vec(workers=num_workers, vector_size=num_features, min_count=min_word_count, window=context, sample=downsampling) model.build_vocab(T1, progress_per=1000) model.train(T1, total_examples=model.corpus_count, epochs=model.epochs) labels = model.wv.index_to_key model.wv['ukraine'] X = model.wv[model.wv.index_to_key] X
code
105213956/cell_11
[ "text_plain_output_1.png" ]
from nltk.corpus import stopwords import pandas as pd # For data handling df = pd.read_csv('../input/google-war-news/war-news.csv', encoding='latin1') df.isnull().sum() df.dropna(subset=['Summary'], inplace=True) T = df['Summary'].str.split(' \n\n---\n\n').str[0] T = T.str.replace('-', ' ').str.replace('[^\\w\\s]', '').str.replace('\n', ' ').str.lower() stop = stopwords.words('english') T = T.apply(lambda x: ' '.join((x for x in x.split() if not x.isdigit()))) T = T.apply(lambda words: ' '.join((word.lower() for word in words.split() if word not in stop))) type(T)
code
105213956/cell_1
[ "text_plain_output_1.png" ]
import nltk import re import pandas as pd from time import time from collections import defaultdict from bs4 import BeautifulSoup from nltk import word_tokenize from nltk.corpus import stopwords from nltk.stem import WordNetLemmatizer from sklearn.decomposition import PCA from matplotlib import pyplot as plt from gensim.models import Word2Vec, Phrases from nltk.tokenize import word_tokenize import nltk import seaborn as sns import numpy as np from tensorflow.keras.preprocessing.sequence import pad_sequences from tensorflow.keras.preprocessing.text import Tokenizer import gensim nltk.download('punkt') nltk.download('wordnet') nltk.download('omw-1.4') import spacy
code
105213956/cell_18
[ "text_plain_output_1.png" ]
from nltk.corpus import stopwords from nltk.stem import WordNetLemmatizer from nltk.stem.snowball import SnowballStemmer from tensorflow.keras.preprocessing.sequence import pad_sequences from tensorflow.keras.preprocessing.text import Tokenizer import nltk import numpy as np import pandas as pd # For data handling import re import pandas as pd from time import time from collections import defaultdict from bs4 import BeautifulSoup from nltk import word_tokenize from nltk.corpus import stopwords from nltk.stem import WordNetLemmatizer from sklearn.decomposition import PCA from matplotlib import pyplot as plt from gensim.models import Word2Vec, Phrases from nltk.tokenize import word_tokenize import nltk import seaborn as sns import numpy as np from tensorflow.keras.preprocessing.sequence import pad_sequences from tensorflow.keras.preprocessing.text import Tokenizer import gensim nltk.download('punkt') nltk.download('wordnet') nltk.download('omw-1.4') import spacy df = pd.read_csv('../input/google-war-news/war-news.csv', encoding='latin1') df.isnull().sum() df.dropna(subset=['Summary'], inplace=True) from nltk.stem.snowball import SnowballStemmer def stemm_text(text): stemmer = SnowballStemmer('english') return ' '.join([stemmer.stem(w) for w in text.split(' ')]) w_tokenizer = nltk.tokenize.WhitespaceTokenizer() lemmatizer = nltk.stem.WordNetLemmatizer() def lemmatize_text(text): lemmatizer = WordNetLemmatizer() return ' '.join([lemmatizer.lemmatize(w) for w in text.split(' ')]) T = df['Summary'].str.split(' \n\n---\n\n').str[0] T = T.str.replace('-', ' ').str.replace('[^\\w\\s]', '').str.replace('\n', ' ').str.lower() stop = stopwords.words('english') T = T.apply(lambda x: ' '.join((x for x in x.split() if not x.isdigit()))) T = T.apply(lambda words: ' '.join((word.lower() for word in words.split() if word not in stop))) T1 = T.values.tolist() def Sentence2Vec(T, embedding_dim=100, max_length=300): glove_path = '../input/glove6b100dtxt/glove.6B.100d.txt' path = glove_path tokenizer = Tokenizer() text = T tokenizer.fit_on_texts(text) word_index = tokenizer.word_index vocab_size = 5000 trunc_type = 'post' oov_tok = '<OOV>' padding_type = 'post' text_sequence = tokenizer.texts_to_sequences(text) text_sequence = pad_sequences(text_sequence, maxlen=max_length, truncating=trunc_type, padding=padding_type) size_of_vocabulary = len(tokenizer.word_index) + 1 embeddings_index = dict() f = open(path) for line in f: values = line.split() word = values[0] coefs = np.asarray(values[1:], dtype='float32') embeddings_index[word] = coefs f.close() embedding_matrix = np.zeros((size_of_vocabulary, embedding_dim)) for word, i in tokenizer.word_index.items(): embedding_vector = embeddings_index.get(word) if embedding_vector is not None: embedding_matrix[i] = embedding_vector text_shape = text_sequence.shape X_train = np.empty((text_shape[0], text_shape[1], embedding_matrix.shape[1])) for i in range(text_sequence.shape[0]): for j in range(text_sequence.shape[1]): X_train[i, j, :] = embedding_matrix[text_sequence[i][j]] return (X_train, embeddings_index, word_index) L = list(word_index.keys()) emb_matrix = np.zeros((len(L) + 1, 100)) for word, index in word_index.items(): embedding_vector = embeddings_index.get(word) if embedding_vector is not None: emb_matrix[index, :] = embedding_vector emb_matrix.shape
code
105213956/cell_32
[ "text_plain_output_1.png" ]
from gensim.models import word2vec from nltk import word_tokenize from nltk.corpus import stopwords from nltk.stem import WordNetLemmatizer from nltk.stem.snowball import SnowballStemmer from nltk.tokenize import word_tokenize from sklearn.manifold import TSNE from tensorflow.keras.preprocessing.sequence import pad_sequences from tensorflow.keras.preprocessing.text import Tokenizer import nltk import numpy as np import pandas as pd # For data handling import re import pandas as pd from time import time from collections import defaultdict from bs4 import BeautifulSoup from nltk import word_tokenize from nltk.corpus import stopwords from nltk.stem import WordNetLemmatizer from sklearn.decomposition import PCA from matplotlib import pyplot as plt from gensim.models import Word2Vec, Phrases from nltk.tokenize import word_tokenize import nltk import seaborn as sns import numpy as np from tensorflow.keras.preprocessing.sequence import pad_sequences from tensorflow.keras.preprocessing.text import Tokenizer import gensim nltk.download('punkt') nltk.download('wordnet') nltk.download('omw-1.4') import spacy df = pd.read_csv('../input/google-war-news/war-news.csv', encoding='latin1') df.isnull().sum() df.dropna(subset=['Summary'], inplace=True) from nltk.stem.snowball import SnowballStemmer def stemm_text(text): stemmer = SnowballStemmer('english') return ' '.join([stemmer.stem(w) for w in text.split(' ')]) w_tokenizer = nltk.tokenize.WhitespaceTokenizer() lemmatizer = nltk.stem.WordNetLemmatizer() def lemmatize_text(text): lemmatizer = WordNetLemmatizer() return ' '.join([lemmatizer.lemmatize(w) for w in text.split(' ')]) T = df['Summary'].str.split(' \n\n---\n\n').str[0] T = T.str.replace('-', ' ').str.replace('[^\\w\\s]', '').str.replace('\n', ' ').str.lower() stop = stopwords.words('english') T = T.apply(lambda x: ' '.join((x for x in x.split() if not x.isdigit()))) T = T.apply(lambda words: ' '.join((word.lower() for word in words.split() if word not in stop))) T1 = T.values.tolist() def Sentence2Vec(T, embedding_dim=100, max_length=300): glove_path = '../input/glove6b100dtxt/glove.6B.100d.txt' path = glove_path tokenizer = Tokenizer() text = T tokenizer.fit_on_texts(text) word_index = tokenizer.word_index vocab_size = 5000 trunc_type = 'post' oov_tok = '<OOV>' padding_type = 'post' text_sequence = tokenizer.texts_to_sequences(text) text_sequence = pad_sequences(text_sequence, maxlen=max_length, truncating=trunc_type, padding=padding_type) size_of_vocabulary = len(tokenizer.word_index) + 1 embeddings_index = dict() f = open(path) for line in f: values = line.split() word = values[0] coefs = np.asarray(values[1:], dtype='float32') embeddings_index[word] = coefs f.close() embedding_matrix = np.zeros((size_of_vocabulary, embedding_dim)) for word, i in tokenizer.word_index.items(): embedding_vector = embeddings_index.get(word) if embedding_vector is not None: embedding_matrix[i] = embedding_vector text_shape = text_sequence.shape X_train = np.empty((text_shape[0], text_shape[1], embedding_matrix.shape[1])) for i in range(text_sequence.shape[0]): for j in range(text_sequence.shape[1]): X_train[i, j, :] = embedding_matrix[text_sequence[i][j]] return (X_train, embeddings_index, word_index) L = list(word_index.keys()) emb_matrix = np.zeros((len(L) + 1, 100)) for word, index in word_index.items(): embedding_vector = embeddings_index.get(word) if embedding_vector is not None: emb_matrix[index, :] = embedding_vector emb_matrix.shape tsne = TSNE(perplexity=40, n_components=2, init='pca', n_iter=2500, random_state=123) z = tsne.fit_transform(emb_matrix) T1 = T.apply(word_tokenize) num_features = 100 min_word_count = 20 num_workers = 4 context = 20 downsampling = 0.001 from gensim.models import word2vec model = word2vec.Word2Vec(workers=num_workers, vector_size=num_features, min_count=min_word_count, window=context, sample=downsampling) model.build_vocab(T1, progress_per=1000) model.train(T1, total_examples=model.corpus_count, epochs=model.epochs) labels = model.wv.index_to_key model.wv['ukraine'] X = model.wv[model.wv.index_to_key] X.shape tsne = TSNE(perplexity=40, n_components=2, init='pca', n_iter=2500, random_state=123) z = tsne.fit_transform(X) z.shape
code
105213956/cell_15
[ "application_vnd.jupyter.stderr_output_1.png" ]
from nltk.corpus import stopwords from nltk.stem import WordNetLemmatizer from nltk.stem.snowball import SnowballStemmer from tensorflow.keras.preprocessing.sequence import pad_sequences from tensorflow.keras.preprocessing.text import Tokenizer import nltk import numpy as np import pandas as pd # For data handling import re import pandas as pd from time import time from collections import defaultdict from bs4 import BeautifulSoup from nltk import word_tokenize from nltk.corpus import stopwords from nltk.stem import WordNetLemmatizer from sklearn.decomposition import PCA from matplotlib import pyplot as plt from gensim.models import Word2Vec, Phrases from nltk.tokenize import word_tokenize import nltk import seaborn as sns import numpy as np from tensorflow.keras.preprocessing.sequence import pad_sequences from tensorflow.keras.preprocessing.text import Tokenizer import gensim nltk.download('punkt') nltk.download('wordnet') nltk.download('omw-1.4') import spacy df = pd.read_csv('../input/google-war-news/war-news.csv', encoding='latin1') df.isnull().sum() df.dropna(subset=['Summary'], inplace=True) from nltk.stem.snowball import SnowballStemmer def stemm_text(text): stemmer = SnowballStemmer('english') return ' '.join([stemmer.stem(w) for w in text.split(' ')]) w_tokenizer = nltk.tokenize.WhitespaceTokenizer() lemmatizer = nltk.stem.WordNetLemmatizer() def lemmatize_text(text): lemmatizer = WordNetLemmatizer() return ' '.join([lemmatizer.lemmatize(w) for w in text.split(' ')]) T = df['Summary'].str.split(' \n\n---\n\n').str[0] T = T.str.replace('-', ' ').str.replace('[^\\w\\s]', '').str.replace('\n', ' ').str.lower() stop = stopwords.words('english') T = T.apply(lambda x: ' '.join((x for x in x.split() if not x.isdigit()))) T = T.apply(lambda words: ' '.join((word.lower() for word in words.split() if word not in stop))) T1 = T.values.tolist() def Sentence2Vec(T, embedding_dim=100, max_length=300): glove_path = '../input/glove6b100dtxt/glove.6B.100d.txt' path = glove_path tokenizer = Tokenizer() text = T tokenizer.fit_on_texts(text) word_index = tokenizer.word_index vocab_size = 5000 trunc_type = 'post' oov_tok = '<OOV>' padding_type = 'post' text_sequence = tokenizer.texts_to_sequences(text) text_sequence = pad_sequences(text_sequence, maxlen=max_length, truncating=trunc_type, padding=padding_type) size_of_vocabulary = len(tokenizer.word_index) + 1 embeddings_index = dict() f = open(path) for line in f: values = line.split() word = values[0] coefs = np.asarray(values[1:], dtype='float32') embeddings_index[word] = coefs f.close() embedding_matrix = np.zeros((size_of_vocabulary, embedding_dim)) for word, i in tokenizer.word_index.items(): embedding_vector = embeddings_index.get(word) if embedding_vector is not None: embedding_matrix[i] = embedding_vector text_shape = text_sequence.shape X_train = np.empty((text_shape[0], text_shape[1], embedding_matrix.shape[1])) for i in range(text_sequence.shape[0]): for j in range(text_sequence.shape[1]): X_train[i, j, :] = embedding_matrix[text_sequence[i][j]] return (X_train, embeddings_index, word_index) X_train, embeddings_index, word_index = Sentence2Vec(T)
code
105213956/cell_3
[ "text_plain_output_2.png", "text_plain_output_1.png" ]
import pandas as pd # For data handling df = pd.read_csv('../input/google-war-news/war-news.csv', encoding='latin1') df.head()
code
105213956/cell_31
[ "text_plain_output_1.png" ]
from gensim.models import word2vec from nltk import word_tokenize from nltk.corpus import stopwords from nltk.stem import WordNetLemmatizer from nltk.stem.snowball import SnowballStemmer from nltk.tokenize import word_tokenize from sklearn.manifold import TSNE from tensorflow.keras.preprocessing.sequence import pad_sequences from tensorflow.keras.preprocessing.text import Tokenizer import nltk import numpy as np import pandas as pd # For data handling import re import pandas as pd from time import time from collections import defaultdict from bs4 import BeautifulSoup from nltk import word_tokenize from nltk.corpus import stopwords from nltk.stem import WordNetLemmatizer from sklearn.decomposition import PCA from matplotlib import pyplot as plt from gensim.models import Word2Vec, Phrases from nltk.tokenize import word_tokenize import nltk import seaborn as sns import numpy as np from tensorflow.keras.preprocessing.sequence import pad_sequences from tensorflow.keras.preprocessing.text import Tokenizer import gensim nltk.download('punkt') nltk.download('wordnet') nltk.download('omw-1.4') import spacy df = pd.read_csv('../input/google-war-news/war-news.csv', encoding='latin1') df.isnull().sum() df.dropna(subset=['Summary'], inplace=True) from nltk.stem.snowball import SnowballStemmer def stemm_text(text): stemmer = SnowballStemmer('english') return ' '.join([stemmer.stem(w) for w in text.split(' ')]) w_tokenizer = nltk.tokenize.WhitespaceTokenizer() lemmatizer = nltk.stem.WordNetLemmatizer() def lemmatize_text(text): lemmatizer = WordNetLemmatizer() return ' '.join([lemmatizer.lemmatize(w) for w in text.split(' ')]) T = df['Summary'].str.split(' \n\n---\n\n').str[0] T = T.str.replace('-', ' ').str.replace('[^\\w\\s]', '').str.replace('\n', ' ').str.lower() stop = stopwords.words('english') T = T.apply(lambda x: ' '.join((x for x in x.split() if not x.isdigit()))) T = T.apply(lambda words: ' '.join((word.lower() for word in words.split() if word not in stop))) T1 = T.values.tolist() def Sentence2Vec(T, embedding_dim=100, max_length=300): glove_path = '../input/glove6b100dtxt/glove.6B.100d.txt' path = glove_path tokenizer = Tokenizer() text = T tokenizer.fit_on_texts(text) word_index = tokenizer.word_index vocab_size = 5000 trunc_type = 'post' oov_tok = '<OOV>' padding_type = 'post' text_sequence = tokenizer.texts_to_sequences(text) text_sequence = pad_sequences(text_sequence, maxlen=max_length, truncating=trunc_type, padding=padding_type) size_of_vocabulary = len(tokenizer.word_index) + 1 embeddings_index = dict() f = open(path) for line in f: values = line.split() word = values[0] coefs = np.asarray(values[1:], dtype='float32') embeddings_index[word] = coefs f.close() embedding_matrix = np.zeros((size_of_vocabulary, embedding_dim)) for word, i in tokenizer.word_index.items(): embedding_vector = embeddings_index.get(word) if embedding_vector is not None: embedding_matrix[i] = embedding_vector text_shape = text_sequence.shape X_train = np.empty((text_shape[0], text_shape[1], embedding_matrix.shape[1])) for i in range(text_sequence.shape[0]): for j in range(text_sequence.shape[1]): X_train[i, j, :] = embedding_matrix[text_sequence[i][j]] return (X_train, embeddings_index, word_index) L = list(word_index.keys()) emb_matrix = np.zeros((len(L) + 1, 100)) for word, index in word_index.items(): embedding_vector = embeddings_index.get(word) if embedding_vector is not None: emb_matrix[index, :] = embedding_vector emb_matrix.shape tsne = TSNE(perplexity=40, n_components=2, init='pca', n_iter=2500, random_state=123) z = tsne.fit_transform(emb_matrix) T1 = T.apply(word_tokenize) num_features = 100 min_word_count = 20 num_workers = 4 context = 20 downsampling = 0.001 from gensim.models import word2vec model = word2vec.Word2Vec(workers=num_workers, vector_size=num_features, min_count=min_word_count, window=context, sample=downsampling) model.build_vocab(T1, progress_per=1000) model.train(T1, total_examples=model.corpus_count, epochs=model.epochs) labels = model.wv.index_to_key model.wv['ukraine'] X = model.wv[model.wv.index_to_key] X.shape tsne = TSNE(perplexity=40, n_components=2, init='pca', n_iter=2500, random_state=123) z = tsne.fit_transform(X)
code
105213956/cell_24
[ "text_plain_output_1.png" ]
from nltk import word_tokenize from nltk.corpus import stopwords from nltk.tokenize import word_tokenize import pandas as pd # For data handling df = pd.read_csv('../input/google-war-news/war-news.csv', encoding='latin1') df.isnull().sum() df.dropna(subset=['Summary'], inplace=True) T = df['Summary'].str.split(' \n\n---\n\n').str[0] T = T.str.replace('-', ' ').str.replace('[^\\w\\s]', '').str.replace('\n', ' ').str.lower() stop = stopwords.words('english') T = T.apply(lambda x: ' '.join((x for x in x.split() if not x.isdigit()))) T = T.apply(lambda words: ' '.join((word.lower() for word in words.split() if word not in stop))) T1 = T.values.tolist() T1 = T.apply(word_tokenize) T1
code
105213956/cell_10
[ "text_html_output_1.png" ]
from nltk.corpus import stopwords import pandas as pd # For data handling df = pd.read_csv('../input/google-war-news/war-news.csv', encoding='latin1') df.isnull().sum() df.dropna(subset=['Summary'], inplace=True) T = df['Summary'].str.split(' \n\n---\n\n').str[0] T = T.str.replace('-', ' ').str.replace('[^\\w\\s]', '').str.replace('\n', ' ').str.lower() stop = stopwords.words('english') T = T.apply(lambda x: ' '.join((x for x in x.split() if not x.isdigit()))) T = T.apply(lambda words: ' '.join((word.lower() for word in words.split() if word not in stop))) T
code
105213956/cell_27
[ "text_plain_output_1.png", "image_output_1.png" ]
from gensim.models import word2vec from nltk import word_tokenize from nltk.corpus import stopwords from nltk.tokenize import word_tokenize import pandas as pd # For data handling df = pd.read_csv('../input/google-war-news/war-news.csv', encoding='latin1') df.isnull().sum() df.dropna(subset=['Summary'], inplace=True) T = df['Summary'].str.split(' \n\n---\n\n').str[0] T = T.str.replace('-', ' ').str.replace('[^\\w\\s]', '').str.replace('\n', ' ').str.lower() stop = stopwords.words('english') T = T.apply(lambda x: ' '.join((x for x in x.split() if not x.isdigit()))) T = T.apply(lambda words: ' '.join((word.lower() for word in words.split() if word not in stop))) T1 = T.values.tolist() T1 = T.apply(word_tokenize) num_features = 100 min_word_count = 20 num_workers = 4 context = 20 downsampling = 0.001 from gensim.models import word2vec model = word2vec.Word2Vec(workers=num_workers, vector_size=num_features, min_count=min_word_count, window=context, sample=downsampling) model.build_vocab(T1, progress_per=1000) model.train(T1, total_examples=model.corpus_count, epochs=model.epochs) labels = model.wv.index_to_key model.wv['ukraine']
code
105213956/cell_5
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # For data handling df = pd.read_csv('../input/google-war-news/war-news.csv', encoding='latin1') df.isnull().sum()
code
17144682/cell_21
[ "text_html_output_1.png" ]
import pandas as pd #for data wrangling noise_complaints_data = pd.read_csv('../input/Noise_Complaints.csv') noise_complaints_data.isna().sum() noise_complaints_data.drop(['Status', 'Due Date', 'Agency', 'Agency Name', 'Landmark', 'Facility Type', 'Status', 'Due Date', 'Resolution Description', 'Community Board', 'Park Facility Name', 'Park Borough', 'Vehicle Type', 'Taxi Company Borough', 'Taxi Pick Up Location', 'Bridge Highway Name', 'Bridge Highway Direction', 'Road Ramp', 'Bridge Highway Segment'], axis=1) noise_complaints_data['City'].unique()
code
17144682/cell_13
[ "text_html_output_1.png" ]
import pandas as pd #for data wrangling noise_complaints_data = pd.read_csv('../input/Noise_Complaints.csv') noise_complaints_data.isna().sum() noise_complaints_data.drop(['Status', 'Due Date', 'Agency', 'Agency Name', 'Landmark', 'Facility Type', 'Status', 'Due Date', 'Resolution Description', 'Community Board', 'Park Facility Name', 'Park Borough', 'Vehicle Type', 'Taxi Company Borough', 'Taxi Pick Up Location', 'Bridge Highway Name', 'Bridge Highway Direction', 'Road Ramp', 'Bridge Highway Segment'], axis=1) comp_desc = noise_complaints_data['Descriptor'].value_counts() comp_desc
code
17144682/cell_9
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd #for data wrangling noise_complaints_data = pd.read_csv('../input/Noise_Complaints.csv') noise_complaints_data.info()
code
17144682/cell_34
[ "text_plain_output_1.png" ]
import pandas as pd #for data wrangling noise_complaints_data = pd.read_csv('../input/Noise_Complaints.csv') noise_complaints_data.isna().sum() noise_complaints_data.drop(['Status', 'Due Date', 'Agency', 'Agency Name', 'Landmark', 'Facility Type', 'Status', 'Due Date', 'Resolution Description', 'Community Board', 'Park Facility Name', 'Park Borough', 'Vehicle Type', 'Taxi Company Borough', 'Taxi Pick Up Location', 'Bridge Highway Name', 'Bridge Highway Direction', 'Road Ramp', 'Bridge Highway Segment'], axis=1) print(noise_complaints_data['Longitude'].max()) print(noise_complaints_data['Longitude'].min())
code
17144682/cell_23
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd #for data wrangling noise_complaints_data = pd.read_csv('../input/Noise_Complaints.csv') noise_complaints_data.isna().sum() noise_complaints_data.drop(['Status', 'Due Date', 'Agency', 'Agency Name', 'Landmark', 'Facility Type', 'Status', 'Due Date', 'Resolution Description', 'Community Board', 'Park Facility Name', 'Park Borough', 'Vehicle Type', 'Taxi Company Borough', 'Taxi Pick Up Location', 'Bridge Highway Name', 'Bridge Highway Direction', 'Road Ramp', 'Bridge Highway Segment'], axis=1) comp_city = noise_complaints_data['City'].value_counts() comp_city_df = comp_city.to_frame().reset_index() comp_city_df.rename(columns={'index': 'City Name'}, inplace=True) comp_city_df.rename(columns={'City': 'Count'}, inplace=True) comp_city_df.head(10)
code
17144682/cell_44
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd #for data wrangling noise_complaints_data = pd.read_csv('../input/Noise_Complaints.csv') noise_complaints_data.isna().sum() noise_complaints_data.drop(['Status', 'Due Date', 'Agency', 'Agency Name', 'Landmark', 'Facility Type', 'Status', 'Due Date', 'Resolution Description', 'Community Board', 'Park Facility Name', 'Park Borough', 'Vehicle Type', 'Taxi Company Borough', 'Taxi Pick Up Location', 'Bridge Highway Name', 'Bridge Highway Direction', 'Road Ramp', 'Bridge Highway Segment'], axis=1) noise_complaints_data['Day of Week'].head()
code
17144682/cell_6
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd #for data wrangling noise_complaints_data = pd.read_csv('../input/Noise_Complaints.csv')
code
17144682/cell_39
[ "text_plain_output_1.png" ]
from pylab import rcParams from pylab import rcParams from pylab import rcParams import matplotlib.pyplot as plt #data plotting import pandas as pd #for data wrangling noise_complaints_data = pd.read_csv('../input/Noise_Complaints.csv') noise_complaints_data.isna().sum() noise_complaints_data.drop(['Status', 'Due Date', 'Agency', 'Agency Name', 'Landmark', 'Facility Type', 'Status', 'Due Date', 'Resolution Description', 'Community Board', 'Park Facility Name', 'Park Borough', 'Vehicle Type', 'Taxi Company Borough', 'Taxi Pick Up Location', 'Bridge Highway Name', 'Bridge Highway Direction', 'Road Ramp', 'Bridge Highway Segment'], axis=1) from pylab import rcParams rcParams['figure.figsize'] = (10, 10) from pylab import rcParams rcParams['figure.figsize'] = (6, 10) noise_complaints_manhattan = noise_complaints_data[noise_complaints_data['Borough'] == 'MANHATTAN'] noise_complaints_brooklyn = noise_complaints_data[noise_complaints_data['Borough'] == 'BROOKLYN'] noise_complaints_queens = noise_complaints_data[noise_complaints_data['Borough'] == 'QUEENS'] plt.plot(noise_complaints_queens['Longitude'], noise_complaints_queens['Latitude'], '.', markersize=0.5)
code
17144682/cell_26
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd #for data wrangling noise_complaints_data = pd.read_csv('../input/Noise_Complaints.csv') noise_complaints_data.isna().sum() noise_complaints_data.drop(['Status', 'Due Date', 'Agency', 'Agency Name', 'Landmark', 'Facility Type', 'Status', 'Due Date', 'Resolution Description', 'Community Board', 'Park Facility Name', 'Park Borough', 'Vehicle Type', 'Taxi Company Borough', 'Taxi Pick Up Location', 'Bridge Highway Name', 'Bridge Highway Direction', 'Road Ramp', 'Bridge Highway Segment'], axis=1) noise_complaints_data['Borough'].unique()
code
17144682/cell_48
[ "text_plain_output_1.png" ]
from pylab import rcParams from pylab import rcParams from pylab import rcParams from pylab import rcParams import pandas as pd #for data wrangling import seaborn as sns #data visualization noise_complaints_data = pd.read_csv('../input/Noise_Complaints.csv') noise_complaints_data.isna().sum() noise_complaints_data.drop(['Status', 'Due Date', 'Agency', 'Agency Name', 'Landmark', 'Facility Type', 'Status', 'Due Date', 'Resolution Description', 'Community Board', 'Park Facility Name', 'Park Borough', 'Vehicle Type', 'Taxi Company Borough', 'Taxi Pick Up Location', 'Bridge Highway Name', 'Bridge Highway Direction', 'Road Ramp', 'Bridge Highway Segment'], axis=1) comp_desc = noise_complaints_data['Descriptor'].value_counts() comp_desc comp_desc_df = comp_desc.to_frame().reset_index() comp_desc_df.rename(columns={'index': 'Description'}, inplace=True) comp_desc_df.rename(columns={'Descriptor': 'Count'}, inplace=True) from pylab import rcParams rcParams['figure.figsize'] = (10, 3) comp_city = noise_complaints_data['City'].value_counts() comp_city_df = comp_city.to_frame().reset_index() comp_city_df.rename(columns={'index': 'City Name'}, inplace=True) comp_city_df.rename(columns={'City': 'Count'}, inplace=True) from pylab import rcParams rcParams['figure.figsize'] = (10, 5) sns.countplot(x=noise_complaints_data['Day of Week'])
code
17144682/cell_41
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd #for data wrangling noise_complaints_data = pd.read_csv('../input/Noise_Complaints.csv') noise_complaints_data.isna().sum() noise_complaints_data.drop(['Status', 'Due Date', 'Agency', 'Agency Name', 'Landmark', 'Facility Type', 'Status', 'Due Date', 'Resolution Description', 'Community Board', 'Park Facility Name', 'Park Borough', 'Vehicle Type', 'Taxi Company Borough', 'Taxi Pick Up Location', 'Bridge Highway Name', 'Bridge Highway Direction', 'Road Ramp', 'Bridge Highway Segment'], axis=1) noise_complaints_data['Created Date'].iloc[0]
code
17144682/cell_11
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd #for data wrangling noise_complaints_data = pd.read_csv('../input/Noise_Complaints.csv') noise_complaints_data.isna().sum() noise_complaints_data.drop(['Status', 'Due Date', 'Agency', 'Agency Name', 'Landmark', 'Facility Type', 'Status', 'Due Date', 'Resolution Description', 'Community Board', 'Park Facility Name', 'Park Borough', 'Vehicle Type', 'Taxi Company Borough', 'Taxi Pick Up Location', 'Bridge Highway Name', 'Bridge Highway Direction', 'Road Ramp', 'Bridge Highway Segment'], axis=1)
code
17144682/cell_7
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd #for data wrangling noise_complaints_data = pd.read_csv('../input/Noise_Complaints.csv') noise_complaints_data.head()
code
17144682/cell_18
[ "text_plain_output_1.png" ]
from pylab import rcParams import pandas as pd #for data wrangling import seaborn as sns #data visualization noise_complaints_data = pd.read_csv('../input/Noise_Complaints.csv') noise_complaints_data.isna().sum() noise_complaints_data.drop(['Status', 'Due Date', 'Agency', 'Agency Name', 'Landmark', 'Facility Type', 'Status', 'Due Date', 'Resolution Description', 'Community Board', 'Park Facility Name', 'Park Borough', 'Vehicle Type', 'Taxi Company Borough', 'Taxi Pick Up Location', 'Bridge Highway Name', 'Bridge Highway Direction', 'Road Ramp', 'Bridge Highway Segment'], axis=1) comp_desc = noise_complaints_data['Descriptor'].value_counts() comp_desc comp_desc_df = comp_desc.to_frame().reset_index() comp_desc_df.rename(columns={'index': 'Description'}, inplace=True) comp_desc_df.rename(columns={'Descriptor': 'Count'}, inplace=True) from pylab import rcParams rcParams['figure.figsize'] = (10, 3) sns.countplot(y='Complaint Type', data=noise_complaints_data, order=noise_complaints_data['Complaint Type'].value_counts().index).set_title('NYC Noise Complaint Types 2018')
code
17144682/cell_28
[ "text_html_output_1.png" ]
from pylab import rcParams import pandas as pd #for data wrangling import seaborn as sns #data visualization noise_complaints_data = pd.read_csv('../input/Noise_Complaints.csv') noise_complaints_data.isna().sum() noise_complaints_data.drop(['Status', 'Due Date', 'Agency', 'Agency Name', 'Landmark', 'Facility Type', 'Status', 'Due Date', 'Resolution Description', 'Community Board', 'Park Facility Name', 'Park Borough', 'Vehicle Type', 'Taxi Company Borough', 'Taxi Pick Up Location', 'Bridge Highway Name', 'Bridge Highway Direction', 'Road Ramp', 'Bridge Highway Segment'], axis=1) comp_desc = noise_complaints_data['Descriptor'].value_counts() comp_desc comp_desc_df = comp_desc.to_frame().reset_index() comp_desc_df.rename(columns={'index': 'Description'}, inplace=True) comp_desc_df.rename(columns={'Descriptor': 'Count'}, inplace=True) from pylab import rcParams rcParams['figure.figsize'] = (10, 3) comp_city = noise_complaints_data['City'].value_counts() comp_city_df = comp_city.to_frame().reset_index() comp_city_df.rename(columns={'index': 'City Name'}, inplace=True) comp_city_df.rename(columns={'City': 'Count'}, inplace=True) sns.countplot(y='Borough', data=noise_complaints_data, order=noise_complaints_data['Borough'].value_counts().index).set_title('NYC Noise Complaints by Borough 2018')
code
17144682/cell_15
[ "text_plain_output_1.png" ]
import pandas as pd #for data wrangling noise_complaints_data = pd.read_csv('../input/Noise_Complaints.csv') noise_complaints_data.isna().sum() noise_complaints_data.drop(['Status', 'Due Date', 'Agency', 'Agency Name', 'Landmark', 'Facility Type', 'Status', 'Due Date', 'Resolution Description', 'Community Board', 'Park Facility Name', 'Park Borough', 'Vehicle Type', 'Taxi Company Borough', 'Taxi Pick Up Location', 'Bridge Highway Name', 'Bridge Highway Direction', 'Road Ramp', 'Bridge Highway Segment'], axis=1) comp_desc = noise_complaints_data['Descriptor'].value_counts() comp_desc comp_desc_df = comp_desc.to_frame().reset_index() comp_desc_df.rename(columns={'index': 'Description'}, inplace=True) comp_desc_df.rename(columns={'Descriptor': 'Count'}, inplace=True) comp_desc_df.head(10)
code
17144682/cell_16
[ "text_plain_output_1.png" ]
from pylab import rcParams import pandas as pd #for data wrangling import seaborn as sns #data visualization noise_complaints_data = pd.read_csv('../input/Noise_Complaints.csv') noise_complaints_data.isna().sum() noise_complaints_data.drop(['Status', 'Due Date', 'Agency', 'Agency Name', 'Landmark', 'Facility Type', 'Status', 'Due Date', 'Resolution Description', 'Community Board', 'Park Facility Name', 'Park Borough', 'Vehicle Type', 'Taxi Company Borough', 'Taxi Pick Up Location', 'Bridge Highway Name', 'Bridge Highway Direction', 'Road Ramp', 'Bridge Highway Segment'], axis=1) comp_desc = noise_complaints_data['Descriptor'].value_counts() comp_desc comp_desc_df = comp_desc.to_frame().reset_index() comp_desc_df.rename(columns={'index': 'Description'}, inplace=True) comp_desc_df.rename(columns={'Descriptor': 'Count'}, inplace=True) from pylab import rcParams rcParams['figure.figsize'] = (10, 3) sns.barplot(x='Count', y='Description', data=comp_desc_df.head(10)).set_title('Top 10 NYC Noise Compaint Descriptors 2018')
code
17144682/cell_38
[ "text_plain_output_1.png" ]
from pylab import rcParams from pylab import rcParams from pylab import rcParams import matplotlib.pyplot as plt #data plotting import pandas as pd #for data wrangling noise_complaints_data = pd.read_csv('../input/Noise_Complaints.csv') noise_complaints_data.isna().sum() noise_complaints_data.drop(['Status', 'Due Date', 'Agency', 'Agency Name', 'Landmark', 'Facility Type', 'Status', 'Due Date', 'Resolution Description', 'Community Board', 'Park Facility Name', 'Park Borough', 'Vehicle Type', 'Taxi Company Borough', 'Taxi Pick Up Location', 'Bridge Highway Name', 'Bridge Highway Direction', 'Road Ramp', 'Bridge Highway Segment'], axis=1) from pylab import rcParams rcParams['figure.figsize'] = (10, 10) from pylab import rcParams rcParams['figure.figsize'] = (6, 10) noise_complaints_manhattan = noise_complaints_data[noise_complaints_data['Borough'] == 'MANHATTAN'] noise_complaints_brooklyn = noise_complaints_data[noise_complaints_data['Borough'] == 'BROOKLYN'] plt.plot(noise_complaints_brooklyn['Longitude'], noise_complaints_brooklyn['Latitude'], '.', markersize=0.5)
code
17144682/cell_47
[ "text_plain_output_1.png", "image_output_1.png" ]
from pylab import rcParams from pylab import rcParams from pylab import rcParams from pylab import rcParams import pandas as pd #for data wrangling import seaborn as sns #data visualization noise_complaints_data = pd.read_csv('../input/Noise_Complaints.csv') noise_complaints_data.isna().sum() noise_complaints_data.drop(['Status', 'Due Date', 'Agency', 'Agency Name', 'Landmark', 'Facility Type', 'Status', 'Due Date', 'Resolution Description', 'Community Board', 'Park Facility Name', 'Park Borough', 'Vehicle Type', 'Taxi Company Borough', 'Taxi Pick Up Location', 'Bridge Highway Name', 'Bridge Highway Direction', 'Road Ramp', 'Bridge Highway Segment'], axis=1) comp_desc = noise_complaints_data['Descriptor'].value_counts() comp_desc comp_desc_df = comp_desc.to_frame().reset_index() comp_desc_df.rename(columns={'index': 'Description'}, inplace=True) comp_desc_df.rename(columns={'Descriptor': 'Count'}, inplace=True) from pylab import rcParams rcParams['figure.figsize'] = (10, 3) comp_city = noise_complaints_data['City'].value_counts() comp_city_df = comp_city.to_frame().reset_index() comp_city_df.rename(columns={'index': 'City Name'}, inplace=True) comp_city_df.rename(columns={'City': 'Count'}, inplace=True) from pylab import rcParams rcParams['figure.figsize'] = (10, 5) sns.countplot(x=noise_complaints_data['Month'])
code
17144682/cell_17
[ "text_html_output_1.png" ]
import pandas as pd #for data wrangling noise_complaints_data = pd.read_csv('../input/Noise_Complaints.csv') noise_complaints_data.isna().sum() noise_complaints_data.drop(['Status', 'Due Date', 'Agency', 'Agency Name', 'Landmark', 'Facility Type', 'Status', 'Due Date', 'Resolution Description', 'Community Board', 'Park Facility Name', 'Park Borough', 'Vehicle Type', 'Taxi Company Borough', 'Taxi Pick Up Location', 'Bridge Highway Name', 'Bridge Highway Direction', 'Road Ramp', 'Bridge Highway Segment'], axis=1) comp_type = noise_complaints_data['Complaint Type'].value_counts() comp_type
code
17144682/cell_35
[ "text_plain_output_1.png" ]
import pandas as pd #for data wrangling noise_complaints_data = pd.read_csv('../input/Noise_Complaints.csv') noise_complaints_data.isna().sum() noise_complaints_data.drop(['Status', 'Due Date', 'Agency', 'Agency Name', 'Landmark', 'Facility Type', 'Status', 'Due Date', 'Resolution Description', 'Community Board', 'Park Facility Name', 'Park Borough', 'Vehicle Type', 'Taxi Company Borough', 'Taxi Pick Up Location', 'Bridge Highway Name', 'Bridge Highway Direction', 'Road Ramp', 'Bridge Highway Segment'], axis=1) print(noise_complaints_data['Latitude'].max()) print(noise_complaints_data['Latitude'].min())
code
17144682/cell_31
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd #for data wrangling noise_complaints_data = pd.read_csv('../input/Noise_Complaints.csv') noise_complaints_data.isna().sum() noise_complaints_data.drop(['Status', 'Due Date', 'Agency', 'Agency Name', 'Landmark', 'Facility Type', 'Status', 'Due Date', 'Resolution Description', 'Community Board', 'Park Facility Name', 'Park Borough', 'Vehicle Type', 'Taxi Company Borough', 'Taxi Pick Up Location', 'Bridge Highway Name', 'Bridge Highway Direction', 'Road Ramp', 'Bridge Highway Segment'], axis=1) noise_complaints_data['Location Type'].value_counts()
code
17144682/cell_46
[ "text_plain_output_1.png", "image_output_1.png" ]
from pylab import rcParams from pylab import rcParams from pylab import rcParams from pylab import rcParams import pandas as pd #for data wrangling import seaborn as sns #data visualization noise_complaints_data = pd.read_csv('../input/Noise_Complaints.csv') noise_complaints_data.isna().sum() noise_complaints_data.drop(['Status', 'Due Date', 'Agency', 'Agency Name', 'Landmark', 'Facility Type', 'Status', 'Due Date', 'Resolution Description', 'Community Board', 'Park Facility Name', 'Park Borough', 'Vehicle Type', 'Taxi Company Borough', 'Taxi Pick Up Location', 'Bridge Highway Name', 'Bridge Highway Direction', 'Road Ramp', 'Bridge Highway Segment'], axis=1) comp_desc = noise_complaints_data['Descriptor'].value_counts() comp_desc comp_desc_df = comp_desc.to_frame().reset_index() comp_desc_df.rename(columns={'index': 'Description'}, inplace=True) comp_desc_df.rename(columns={'Descriptor': 'Count'}, inplace=True) from pylab import rcParams rcParams['figure.figsize'] = (10, 3) comp_city = noise_complaints_data['City'].value_counts() comp_city_df = comp_city.to_frame().reset_index() comp_city_df.rename(columns={'index': 'City Name'}, inplace=True) comp_city_df.rename(columns={'City': 'Count'}, inplace=True) from pylab import rcParams rcParams['figure.figsize'] = (10, 5) sns.countplot(x=noise_complaints_data['Hour'])
code
17144682/cell_24
[ "text_plain_output_1.png" ]
from pylab import rcParams import pandas as pd #for data wrangling import seaborn as sns #data visualization noise_complaints_data = pd.read_csv('../input/Noise_Complaints.csv') noise_complaints_data.isna().sum() noise_complaints_data.drop(['Status', 'Due Date', 'Agency', 'Agency Name', 'Landmark', 'Facility Type', 'Status', 'Due Date', 'Resolution Description', 'Community Board', 'Park Facility Name', 'Park Borough', 'Vehicle Type', 'Taxi Company Borough', 'Taxi Pick Up Location', 'Bridge Highway Name', 'Bridge Highway Direction', 'Road Ramp', 'Bridge Highway Segment'], axis=1) comp_desc = noise_complaints_data['Descriptor'].value_counts() comp_desc comp_desc_df = comp_desc.to_frame().reset_index() comp_desc_df.rename(columns={'index': 'Description'}, inplace=True) comp_desc_df.rename(columns={'Descriptor': 'Count'}, inplace=True) from pylab import rcParams rcParams['figure.figsize'] = (10, 3) comp_city = noise_complaints_data['City'].value_counts() comp_city_df = comp_city.to_frame().reset_index() comp_city_df.rename(columns={'index': 'City Name'}, inplace=True) comp_city_df.rename(columns={'City': 'Count'}, inplace=True) sns.barplot(x='Count', y='City Name', data=comp_city_df.head(10)).set_title('Top 10 NYC Noise Compaints by City 2018')
code
17144682/cell_27
[ "text_plain_output_1.png" ]
import pandas as pd #for data wrangling noise_complaints_data = pd.read_csv('../input/Noise_Complaints.csv') noise_complaints_data.isna().sum() noise_complaints_data.drop(['Status', 'Due Date', 'Agency', 'Agency Name', 'Landmark', 'Facility Type', 'Status', 'Due Date', 'Resolution Description', 'Community Board', 'Park Facility Name', 'Park Borough', 'Vehicle Type', 'Taxi Company Borough', 'Taxi Pick Up Location', 'Bridge Highway Name', 'Bridge Highway Direction', 'Road Ramp', 'Bridge Highway Segment'], axis=1) noise_complaints_data['Borough'].value_counts()
code
17144682/cell_37
[ "text_plain_output_1.png" ]
from pylab import rcParams from pylab import rcParams from pylab import rcParams import matplotlib.pyplot as plt #data plotting import pandas as pd #for data wrangling noise_complaints_data = pd.read_csv('../input/Noise_Complaints.csv') noise_complaints_data.isna().sum() noise_complaints_data.drop(['Status', 'Due Date', 'Agency', 'Agency Name', 'Landmark', 'Facility Type', 'Status', 'Due Date', 'Resolution Description', 'Community Board', 'Park Facility Name', 'Park Borough', 'Vehicle Type', 'Taxi Company Borough', 'Taxi Pick Up Location', 'Bridge Highway Name', 'Bridge Highway Direction', 'Road Ramp', 'Bridge Highway Segment'], axis=1) from pylab import rcParams rcParams['figure.figsize'] = (10, 10) from pylab import rcParams rcParams['figure.figsize'] = (6, 10) noise_complaints_manhattan = noise_complaints_data[noise_complaints_data['Borough'] == 'MANHATTAN'] plt.plot(noise_complaints_manhattan['Longitude'], noise_complaints_manhattan['Latitude'], '.', markersize=0.3)
code
17144682/cell_5
[ "text_plain_output_1.png" ]
from plotly.offline import download_plotlyjs,init_notebook_mode,plot,iplot import cufflinks as cf import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from plotly import __version__ import cufflinks as cf from plotly.offline import download_plotlyjs, init_notebook_mode, plot, iplot import plotly.graph_objs as go init_notebook_mode(connected=True) cf.go_offline()
code
17144682/cell_36
[ "text_plain_output_1.png", "image_output_1.png" ]
from pylab import rcParams from pylab import rcParams import matplotlib.pyplot as plt #data plotting import pandas as pd #for data wrangling noise_complaints_data = pd.read_csv('../input/Noise_Complaints.csv') noise_complaints_data.isna().sum() noise_complaints_data.drop(['Status', 'Due Date', 'Agency', 'Agency Name', 'Landmark', 'Facility Type', 'Status', 'Due Date', 'Resolution Description', 'Community Board', 'Park Facility Name', 'Park Borough', 'Vehicle Type', 'Taxi Company Borough', 'Taxi Pick Up Location', 'Bridge Highway Name', 'Bridge Highway Direction', 'Road Ramp', 'Bridge Highway Segment'], axis=1) from pylab import rcParams rcParams['figure.figsize'] = (10, 10) plt.plot(noise_complaints_data['Longitude'], noise_complaints_data['Latitude'], '.', markersize=0.2)
code
129019356/cell_2
[ "text_plain_output_1.png" ]
!pip install pycaret
code
129019356/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
129019356/cell_3
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns import numpy as np import pandas as pd pd.set_option('max_columns', None) pd.set_option('max_rows', 90) import matplotlib.pyplot as plt import seaborn as sns sns.set_style('darkgrid') from sklearn.neighbors import KNeighborsRegressor import scipy.stats from sklearn.preprocessing import StandardScaler from pycaret.regression import setup, compare_models from sklearn.model_selection import KFold, cross_val_score from catboost import CatBoostRegressor from sklearn.linear_model import BayesianRidge, HuberRegressor, Ridge, OrthogonalMatchingPursuit from lightgbm import LGBMRegressor from sklearn.ensemble import GradientBoostingRegressor from xgboost import XGBRegressor import optuna
code
89139521/cell_13
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/tabular-playground-series-mar-2022/train.csv', parse_dates=['time'], index_col=['row_id']) df.isna().sum() index_series = pd.DataFrame(df.time.drop_duplicates().sort_values().reset_index(drop=True)) index_series['times_gap'] = index_series - index_series.shift(1) index_series.sort_values(by='times_gap', ascending=False).head(5) df['direction'].value_counts()
code
89139521/cell_4
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/tabular-playground-series-mar-2022/train.csv', parse_dates=['time'], index_col=['row_id']) df.head()
code
89139521/cell_19
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/tabular-playground-series-mar-2022/train.csv', parse_dates=['time'], index_col=['row_id']) df.isna().sum() index_series = pd.DataFrame(df.time.drop_duplicates().sort_values().reset_index(drop=True)) index_series['times_gap'] = index_series - index_series.shift(1) index_series.sort_values(by='times_gap', ascending=False).head(5) df['hour'] = df.time.dt.hour df['minute'] = df.time.dt.minute median = df.groupby(['hour', 'minute', 'x', 'y', 'direction']).median() median
code
89139521/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
89139521/cell_7
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/tabular-playground-series-mar-2022/train.csv', parse_dates=['time'], index_col=['row_id']) df.isna().sum() index_series = pd.DataFrame(df.time.drop_duplicates().sort_values().reset_index(drop=True)) index_series['times_gap'] = index_series - index_series.shift(1) index_series.sort_values(by='times_gap', ascending=False).head(5)
code
89139521/cell_8
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('/kaggle/input/tabular-playground-series-mar-2022/train.csv', parse_dates=['time'], index_col=['row_id']) df.isna().sum() index_series = pd.DataFrame(df.time.drop_duplicates().sort_values().reset_index(drop=True)) index_series['times_gap'] = index_series - index_series.shift(1) index_series.sort_values(by='times_gap', ascending=False).head(5) sns.lineplot(data=index_series, y='times_gap', x='time')
code
89139521/cell_15
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/tabular-playground-series-mar-2022/train.csv', parse_dates=['time'], index_col=['row_id']) df.isna().sum() index_series = pd.DataFrame(df.time.drop_duplicates().sort_values().reset_index(drop=True)) index_series['times_gap'] = index_series - index_series.shift(1) index_series.sort_values(by='times_gap', ascending=False).head(5) df.head()
code
89139521/cell_17
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/tabular-playground-series-mar-2022/train.csv', parse_dates=['time'], index_col=['row_id']) df.isna().sum() index_series = pd.DataFrame(df.time.drop_duplicates().sort_values().reset_index(drop=True)) index_series['times_gap'] = index_series - index_series.shift(1) index_series.sort_values(by='times_gap', ascending=False).head(5) df['hour'] = df.time.dt.hour df['minute'] = df.time.dt.minute df
code
89139521/cell_24
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/tabular-playground-series-mar-2022/train.csv', parse_dates=['time'], index_col=['row_id']) df.isna().sum() index_series = pd.DataFrame(df.time.drop_duplicates().sort_values().reset_index(drop=True)) index_series['times_gap'] = index_series - index_series.shift(1) index_series.sort_values(by='times_gap', ascending=False).head(5) test = pd.read_csv('/kaggle/input/tabular-playground-series-mar-2022/test.csv', parse_dates=['time']) test['hour'] = test.time.dt.hour test['minute'] = test.time.dt.minute pd.read_csv('/kaggle/input/tabular-playground-series-mar-2022/sample_submission.csv')
code
89139521/cell_10
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/tabular-playground-series-mar-2022/train.csv', parse_dates=['time'], index_col=['row_id']) df.isna().sum() index_series = pd.DataFrame(df.time.drop_duplicates().sort_values().reset_index(drop=True)) index_series['times_gap'] = index_series - index_series.shift(1) index_series.sort_values(by='times_gap', ascending=False).head(5) print(df['x'].unique()) print(df['y'].unique())
code
89139521/cell_12
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('/kaggle/input/tabular-playground-series-mar-2022/train.csv', parse_dates=['time'], index_col=['row_id']) df.isna().sum() index_series = pd.DataFrame(df.time.drop_duplicates().sort_values().reset_index(drop=True)) index_series['times_gap'] = index_series - index_series.shift(1) index_series.sort_values(by='times_gap', ascending=False).head(5) sns.scatterplot(data=df, x='x', y='y')
code
89139521/cell_5
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/tabular-playground-series-mar-2022/train.csv', parse_dates=['time'], index_col=['row_id']) df.isna().sum()
code
88080357/cell_19
[ "text_plain_output_1.png" ]
! wget -O ngannou.gif https://raw.githubusercontent.com/Justsecret123/Human-pose-estimation/main/Test%20gifs/Ngannou_takedown.gif
code
88080357/cell_24
[ "text_plain_output_1.png" ]
from IPython.display import HTML, display from matplotlib.collections import LineCollection import cv2 import imageio import matplotlib.patches as patches import matplotlib.pyplot as plt import numpy as np import tensorflow as tf KEYPOINT_DICT = {'nose': 0, 'left_eye': 1, 'right_eye': 2, 'left_ear': 3, 'right_ear': 4, 'left_shoulder': 5, 'right_shoulder': 6, 'left_elbow': 7, 'right_elbow': 8, 'left_wrist': 9, 'right_wrist': 10, 'left_hip': 11, 'right_hip': 12, 'left_knee': 13, 'right_knee': 14, 'left_ankle': 15, 'right_ankle': 16} KEYPOINT_EDGE_INDS_TO_COLOR = {(0, 1): 'm', (0, 2): 'c', (1, 3): 'm', (2, 4): 'c', (0, 5): 'm', (0, 6): 'c', (5, 7): 'm', (7, 9): 'm', (6, 8): 'c', (8, 10): 'c', (5, 6): 'y', (5, 11): 'm', (6, 12): 'c', (11, 12): 'y', (11, 13): 'm', (13, 15): 'm', (12, 14): 'c', (14, 16): 'c'} def _keypoints_and_edges_for_display( keypoints_with_scores, height, width, keypoint_threshold=0.11, ): """Returns high confidence keypoints and edges for visualization. Args: keypoints_with_scores: A numpy array with shape [1, 1, 17, 3] representing the keypoint coordinates and scores returned from the MoveNet model. height: height of the image in pixels. width: width of the image in pixels. keypoint_threshold: minimum confidence score for a keypoint to be visualized. Returns: A (keypoints_xy, edges_xy, edge_colors) containing: * the coordinates of all keypoints of all detected entities; * the coordinates of all skeleton edges of all detected entities; * the colors in which the edges should be plotted. """ keypoints_all = [] keypoint_edges_all = [] edge_colors = [] (num_instances, _, _, _) = keypoints_with_scores.shape for idx in range(num_instances): kpts_x = keypoints_with_scores[0, idx, :, 1] kpts_y = keypoints_with_scores[0, idx, :, 0] kpts_scores = keypoints_with_scores[0, idx, :, 2] kpts_absolute_xy = np.stack([width * np.array(kpts_x), height * np.array(kpts_y)], axis=-1) kpts_above_thresh_absolute = kpts_absolute_xy[kpts_scores > keypoint_threshold, :] keypoints_all.append(kpts_above_thresh_absolute) for (edge_pair, color) in KEYPOINT_EDGE_INDS_TO_COLOR.items(): if kpts_scores[edge_pair[0]] > keypoint_threshold \ and kpts_scores[edge_pair[1]] > keypoint_threshold: x_start = kpts_absolute_xy[edge_pair[0], 0] y_start = kpts_absolute_xy[edge_pair[0], 1] x_end = kpts_absolute_xy[edge_pair[1], 0] y_end = kpts_absolute_xy[edge_pair[1], 1] line_seg = np.array([[x_start, y_start], [x_end, y_end]]) keypoint_edges_all.append(line_seg) edge_colors.append(color) if keypoints_all: keypoints_xy = np.concatenate(keypoints_all, axis=0) else: keypoints_xy = np.zeros((0, 17, 2)) if keypoint_edges_all: edges_xy = np.stack(keypoint_edges_all, axis=0) else: edges_xy = np.zeros((0, 2, 2)) return (keypoints_xy, edges_xy, edge_colors) def draw_prediction_on_image( image, keypoints_with_scores, crop_region=None, close_figure=False, output_image_height=None, ): """Draws the keypoint predictions on image. Args: image: A numpy array with shape [height, width, channel] representing the pixel values of the input image. keypoints_with_scores: A numpy array with shape [1, 1, 17, 3] representing the keypoint coordinates and scores returned from the MoveNet model. crop_region: A dictionary that defines the coordinates of the bounding box of the crop region in normalized coordinates (see the init_crop_region function below for more detail). If provided, this function will also draw the bounding box on the image. output_image_height: An integer indicating the height of the output image. Note that the image aspect ratio will be the same as the input image. Returns: A numpy array with shape [out_height, out_width, channel] representing the image overlaid with keypoint predictions. """ (height, width, channel) = image.shape aspect_ratio = float(width) / height (fig, ax) = plt.subplots(figsize=(12 * aspect_ratio, 12)) # To remove the huge white borders fig.tight_layout(pad=0) ax.margins(0) ax.set_yticklabels([]) ax.set_xticklabels([]) plt.axis('off') im = ax.imshow(image) line_segments = LineCollection([], linewidths=4, linestyle='solid') ax.add_collection(line_segments) # Turn off tick labels scat = ax.scatter([], [], s=60, color='#FF1493', zorder=3) (keypoint_locs, keypoint_edges, edge_colors) = \ _keypoints_and_edges_for_display(keypoints_with_scores, height, width) line_segments.set_segments(keypoint_edges) line_segments.set_color(edge_colors) if keypoint_edges.shape[0]: line_segments.set_segments(keypoint_edges) line_segments.set_color(edge_colors) if keypoint_locs.shape[0]: scat.set_offsets(keypoint_locs) if crop_region is not None: xmin = max(crop_region['x_min'] * width, 0.0) ymin = max(crop_region['y_min'] * height, 0.0) rec_width = min(crop_region['x_max'], 0.99) * width - xmin rec_height = min(crop_region['y_max'], 0.99) * height - ymin rect = patches.Rectangle( (xmin, ymin), rec_width, rec_height, linewidth=1, edgecolor='b', facecolor='none', ) ax.add_patch(rect) fig.canvas.draw() image_from_plot = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8) image_from_plot = \ image_from_plot.reshape(fig.canvas.get_width_height()[::-1] + (3, )) plt.close(fig) if output_image_height is not None: output_image_width = int(output_image_height / height * width) image_from_plot = cv2.resize(image_from_plot, dsize=(output_image_width, output_image_height), interpolation=cv2.INTER_CUBIC) return image_from_plot def to_gif(images, fps): """Converts image sequence (4D numpy array) to gif.""" imageio.mimsave('./animation.gif', images, fps=fps) return embed.embed_file('./animation.gif') def progress(value, max=100): return HTML(""" <progress value='{value}' max='{max}', style='width: 100%' > {value} </progress> """.format(value=value, max=max)) MIN_CROP_KEYPOINT_SCORE = 0.2 def init_crop_region(image_height, image_width): """Defines the default crop region. The function provides the initial crop region (pads the full image from both sides to make it a square image) when the algorithm cannot reliably determine the crop region from the previous frame. """ if image_width > image_height: box_height = image_width / image_height box_width = 1.0 y_min = (image_height / 2 - image_width / 2) / image_height x_min = 0.0 else: box_height = 1.0 box_width = image_height / image_width y_min = 0.0 x_min = (image_width / 2 - image_height / 2) / image_width return {'y_min': y_min, 'x_min': x_min, 'y_max': y_min + box_height, 'x_max': x_min + box_width, 'height': box_height, 'width': box_width} def torso_visible(keypoints): """Checks whether there are enough torso keypoints. This function checks whether the model is confident at predicting one of the shoulders/hips which is required to determine a good crop region. """ return (keypoints[0, 0, KEYPOINT_DICT['left_hip'], 2] > MIN_CROP_KEYPOINT_SCORE or keypoints[0, 0, KEYPOINT_DICT['right_hip'], 2] > MIN_CROP_KEYPOINT_SCORE) and (keypoints[0, 0, KEYPOINT_DICT['left_shoulder'], 2] > MIN_CROP_KEYPOINT_SCORE or keypoints[0, 0, KEYPOINT_DICT['right_shoulder'], 2] > MIN_CROP_KEYPOINT_SCORE) def determine_torso_and_body_range(keypoints, target_keypoints, center_y, center_x): """Calculates the maximum distance from each keypoints to the center location. The function returns the maximum distances from the two sets of keypoints: full 17 keypoints and 4 torso keypoints. The returned information will be used to determine the crop size. See determineCropRegion for more detail. """ torso_joints = ['left_shoulder', 'right_shoulder', 'left_hip', 'right_hip'] max_torso_yrange = 0.0 max_torso_xrange = 0.0 for joint in torso_joints: dist_y = abs(center_y - target_keypoints[joint][0]) dist_x = abs(center_x - target_keypoints[joint][1]) if dist_y > max_torso_yrange: max_torso_yrange = dist_y if dist_x > max_torso_xrange: max_torso_xrange = dist_x max_body_yrange = 0.0 max_body_xrange = 0.0 for joint in KEYPOINT_DICT.keys(): if keypoints[0, 0, KEYPOINT_DICT[joint], 2] < MIN_CROP_KEYPOINT_SCORE: continue dist_y = abs(center_y - target_keypoints[joint][0]) dist_x = abs(center_x - target_keypoints[joint][1]) if dist_y > max_body_yrange: max_body_yrange = dist_y if dist_x > max_body_xrange: max_body_xrange = dist_x return [max_torso_yrange, max_torso_xrange, max_body_yrange, max_body_xrange] def determine_crop_region(keypoints, image_height, image_width): """Determines the region to crop the image for the model to run inference on. The algorithm uses the detected joints from the previous frame to estimate the square region that encloses the full body of the target person and centers at the midpoint of two hip joints. The crop size is determined by the distances between each joints and the center point. When the model is not confident with the four torso joint predictions, the function returns a default crop which is the full image padded to square. """ target_keypoints = {} for joint in KEYPOINT_DICT.keys(): target_keypoints[joint] = [keypoints[0, 0, KEYPOINT_DICT[joint], 0] * image_height, keypoints[0, 0, KEYPOINT_DICT[joint], 1] * image_width] if torso_visible(keypoints): center_y = (target_keypoints['left_hip'][0] + target_keypoints['right_hip'][0]) / 2 center_x = (target_keypoints['left_hip'][1] + target_keypoints['right_hip'][1]) / 2 max_torso_yrange, max_torso_xrange, max_body_yrange, max_body_xrange = determine_torso_and_body_range(keypoints, target_keypoints, center_y, center_x) crop_length_half = np.amax([max_torso_xrange * 1.9, max_torso_yrange * 1.9, max_body_yrange * 1.2, max_body_xrange * 1.2]) tmp = np.array([center_x, image_width - center_x, center_y, image_height - center_y]) crop_length_half = np.amin([crop_length_half, np.amax(tmp)]) crop_corner = [center_y - crop_length_half, center_x - crop_length_half] if crop_length_half > max(image_width, image_height) / 2: return init_crop_region(image_height, image_width) else: crop_length = crop_length_half * 2 return {'y_min': crop_corner[0] / image_height, 'x_min': crop_corner[1] / image_width, 'y_max': (crop_corner[0] + crop_length) / image_height, 'x_max': (crop_corner[1] + crop_length) / image_width, 'height': (crop_corner[0] + crop_length) / image_height - crop_corner[0] / image_height, 'width': (crop_corner[1] + crop_length) / image_width - crop_corner[1] / image_width} else: return init_crop_region(image_height, image_width) def crop_and_resize(image, crop_region, crop_size): """Crops and resize the image to prepare for the model input.""" boxes = [[crop_region['y_min'], crop_region['x_min'], crop_region['y_max'], crop_region['x_max']]] output_image = tf.image.crop_and_resize(image, box_indices=[0], boxes=boxes, crop_size=crop_size) return tf.cast(output_image, tf.int32) image_path = './ngannou.gif' raw_image = tf.io.read_file(image_path) decoded_image = tf.image.decode_gif(raw_image) image = tf.cast(decoded_image, dtype=tf.int32) num_frames, image_height, image_width, _ = image.shape crop_region = init_crop_region(image_height, image_width) shape = image.shape print(f'\n - The gif is divided in {shape[0]} frames\n - Image size : ({shape[1]},{shape[2]})\n - Channels : {shape[3]}\n - Data type : {image.dtype}')
code
88080357/cell_14
[ "application_vnd.jupyter.stderr_output_1.png" ]
import tensorflow_hub as hub model = hub.load('https://tfhub.dev/google/movenet/multipose/lightning/1') movenet = model.signatures['serving_default']
code
88080357/cell_27
[ "application_vnd.jupyter.stderr_output_2.png", "text_html_output_1.png", "application_vnd.jupyter.stderr_output_1.png" ]
from IPython.display import HTML, display from matplotlib.collections import LineCollection import cv2 import imageio import matplotlib.patches as patches import matplotlib.pyplot as plt import numpy as np import tensorflow as tf import tensorflow_hub as hub KEYPOINT_DICT = {'nose': 0, 'left_eye': 1, 'right_eye': 2, 'left_ear': 3, 'right_ear': 4, 'left_shoulder': 5, 'right_shoulder': 6, 'left_elbow': 7, 'right_elbow': 8, 'left_wrist': 9, 'right_wrist': 10, 'left_hip': 11, 'right_hip': 12, 'left_knee': 13, 'right_knee': 14, 'left_ankle': 15, 'right_ankle': 16} KEYPOINT_EDGE_INDS_TO_COLOR = {(0, 1): 'm', (0, 2): 'c', (1, 3): 'm', (2, 4): 'c', (0, 5): 'm', (0, 6): 'c', (5, 7): 'm', (7, 9): 'm', (6, 8): 'c', (8, 10): 'c', (5, 6): 'y', (5, 11): 'm', (6, 12): 'c', (11, 12): 'y', (11, 13): 'm', (13, 15): 'm', (12, 14): 'c', (14, 16): 'c'} def _keypoints_and_edges_for_display( keypoints_with_scores, height, width, keypoint_threshold=0.11, ): """Returns high confidence keypoints and edges for visualization. Args: keypoints_with_scores: A numpy array with shape [1, 1, 17, 3] representing the keypoint coordinates and scores returned from the MoveNet model. height: height of the image in pixels. width: width of the image in pixels. keypoint_threshold: minimum confidence score for a keypoint to be visualized. Returns: A (keypoints_xy, edges_xy, edge_colors) containing: * the coordinates of all keypoints of all detected entities; * the coordinates of all skeleton edges of all detected entities; * the colors in which the edges should be plotted. """ keypoints_all = [] keypoint_edges_all = [] edge_colors = [] (num_instances, _, _, _) = keypoints_with_scores.shape for idx in range(num_instances): kpts_x = keypoints_with_scores[0, idx, :, 1] kpts_y = keypoints_with_scores[0, idx, :, 0] kpts_scores = keypoints_with_scores[0, idx, :, 2] kpts_absolute_xy = np.stack([width * np.array(kpts_x), height * np.array(kpts_y)], axis=-1) kpts_above_thresh_absolute = kpts_absolute_xy[kpts_scores > keypoint_threshold, :] keypoints_all.append(kpts_above_thresh_absolute) for (edge_pair, color) in KEYPOINT_EDGE_INDS_TO_COLOR.items(): if kpts_scores[edge_pair[0]] > keypoint_threshold \ and kpts_scores[edge_pair[1]] > keypoint_threshold: x_start = kpts_absolute_xy[edge_pair[0], 0] y_start = kpts_absolute_xy[edge_pair[0], 1] x_end = kpts_absolute_xy[edge_pair[1], 0] y_end = kpts_absolute_xy[edge_pair[1], 1] line_seg = np.array([[x_start, y_start], [x_end, y_end]]) keypoint_edges_all.append(line_seg) edge_colors.append(color) if keypoints_all: keypoints_xy = np.concatenate(keypoints_all, axis=0) else: keypoints_xy = np.zeros((0, 17, 2)) if keypoint_edges_all: edges_xy = np.stack(keypoint_edges_all, axis=0) else: edges_xy = np.zeros((0, 2, 2)) return (keypoints_xy, edges_xy, edge_colors) def draw_prediction_on_image( image, keypoints_with_scores, crop_region=None, close_figure=False, output_image_height=None, ): """Draws the keypoint predictions on image. Args: image: A numpy array with shape [height, width, channel] representing the pixel values of the input image. keypoints_with_scores: A numpy array with shape [1, 1, 17, 3] representing the keypoint coordinates and scores returned from the MoveNet model. crop_region: A dictionary that defines the coordinates of the bounding box of the crop region in normalized coordinates (see the init_crop_region function below for more detail). If provided, this function will also draw the bounding box on the image. output_image_height: An integer indicating the height of the output image. Note that the image aspect ratio will be the same as the input image. Returns: A numpy array with shape [out_height, out_width, channel] representing the image overlaid with keypoint predictions. """ (height, width, channel) = image.shape aspect_ratio = float(width) / height (fig, ax) = plt.subplots(figsize=(12 * aspect_ratio, 12)) # To remove the huge white borders fig.tight_layout(pad=0) ax.margins(0) ax.set_yticklabels([]) ax.set_xticklabels([]) plt.axis('off') im = ax.imshow(image) line_segments = LineCollection([], linewidths=4, linestyle='solid') ax.add_collection(line_segments) # Turn off tick labels scat = ax.scatter([], [], s=60, color='#FF1493', zorder=3) (keypoint_locs, keypoint_edges, edge_colors) = \ _keypoints_and_edges_for_display(keypoints_with_scores, height, width) line_segments.set_segments(keypoint_edges) line_segments.set_color(edge_colors) if keypoint_edges.shape[0]: line_segments.set_segments(keypoint_edges) line_segments.set_color(edge_colors) if keypoint_locs.shape[0]: scat.set_offsets(keypoint_locs) if crop_region is not None: xmin = max(crop_region['x_min'] * width, 0.0) ymin = max(crop_region['y_min'] * height, 0.0) rec_width = min(crop_region['x_max'], 0.99) * width - xmin rec_height = min(crop_region['y_max'], 0.99) * height - ymin rect = patches.Rectangle( (xmin, ymin), rec_width, rec_height, linewidth=1, edgecolor='b', facecolor='none', ) ax.add_patch(rect) fig.canvas.draw() image_from_plot = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8) image_from_plot = \ image_from_plot.reshape(fig.canvas.get_width_height()[::-1] + (3, )) plt.close(fig) if output_image_height is not None: output_image_width = int(output_image_height / height * width) image_from_plot = cv2.resize(image_from_plot, dsize=(output_image_width, output_image_height), interpolation=cv2.INTER_CUBIC) return image_from_plot def to_gif(images, fps): """Converts image sequence (4D numpy array) to gif.""" imageio.mimsave('./animation.gif', images, fps=fps) return embed.embed_file('./animation.gif') def progress(value, max=100): return HTML(""" <progress value='{value}' max='{max}', style='width: 100%' > {value} </progress> """.format(value=value, max=max)) MIN_CROP_KEYPOINT_SCORE = 0.2 def init_crop_region(image_height, image_width): """Defines the default crop region. The function provides the initial crop region (pads the full image from both sides to make it a square image) when the algorithm cannot reliably determine the crop region from the previous frame. """ if image_width > image_height: box_height = image_width / image_height box_width = 1.0 y_min = (image_height / 2 - image_width / 2) / image_height x_min = 0.0 else: box_height = 1.0 box_width = image_height / image_width y_min = 0.0 x_min = (image_width / 2 - image_height / 2) / image_width return {'y_min': y_min, 'x_min': x_min, 'y_max': y_min + box_height, 'x_max': x_min + box_width, 'height': box_height, 'width': box_width} def torso_visible(keypoints): """Checks whether there are enough torso keypoints. This function checks whether the model is confident at predicting one of the shoulders/hips which is required to determine a good crop region. """ return (keypoints[0, 0, KEYPOINT_DICT['left_hip'], 2] > MIN_CROP_KEYPOINT_SCORE or keypoints[0, 0, KEYPOINT_DICT['right_hip'], 2] > MIN_CROP_KEYPOINT_SCORE) and (keypoints[0, 0, KEYPOINT_DICT['left_shoulder'], 2] > MIN_CROP_KEYPOINT_SCORE or keypoints[0, 0, KEYPOINT_DICT['right_shoulder'], 2] > MIN_CROP_KEYPOINT_SCORE) def determine_torso_and_body_range(keypoints, target_keypoints, center_y, center_x): """Calculates the maximum distance from each keypoints to the center location. The function returns the maximum distances from the two sets of keypoints: full 17 keypoints and 4 torso keypoints. The returned information will be used to determine the crop size. See determineCropRegion for more detail. """ torso_joints = ['left_shoulder', 'right_shoulder', 'left_hip', 'right_hip'] max_torso_yrange = 0.0 max_torso_xrange = 0.0 for joint in torso_joints: dist_y = abs(center_y - target_keypoints[joint][0]) dist_x = abs(center_x - target_keypoints[joint][1]) if dist_y > max_torso_yrange: max_torso_yrange = dist_y if dist_x > max_torso_xrange: max_torso_xrange = dist_x max_body_yrange = 0.0 max_body_xrange = 0.0 for joint in KEYPOINT_DICT.keys(): if keypoints[0, 0, KEYPOINT_DICT[joint], 2] < MIN_CROP_KEYPOINT_SCORE: continue dist_y = abs(center_y - target_keypoints[joint][0]) dist_x = abs(center_x - target_keypoints[joint][1]) if dist_y > max_body_yrange: max_body_yrange = dist_y if dist_x > max_body_xrange: max_body_xrange = dist_x return [max_torso_yrange, max_torso_xrange, max_body_yrange, max_body_xrange] def determine_crop_region(keypoints, image_height, image_width): """Determines the region to crop the image for the model to run inference on. The algorithm uses the detected joints from the previous frame to estimate the square region that encloses the full body of the target person and centers at the midpoint of two hip joints. The crop size is determined by the distances between each joints and the center point. When the model is not confident with the four torso joint predictions, the function returns a default crop which is the full image padded to square. """ target_keypoints = {} for joint in KEYPOINT_DICT.keys(): target_keypoints[joint] = [keypoints[0, 0, KEYPOINT_DICT[joint], 0] * image_height, keypoints[0, 0, KEYPOINT_DICT[joint], 1] * image_width] if torso_visible(keypoints): center_y = (target_keypoints['left_hip'][0] + target_keypoints['right_hip'][0]) / 2 center_x = (target_keypoints['left_hip'][1] + target_keypoints['right_hip'][1]) / 2 max_torso_yrange, max_torso_xrange, max_body_yrange, max_body_xrange = determine_torso_and_body_range(keypoints, target_keypoints, center_y, center_x) crop_length_half = np.amax([max_torso_xrange * 1.9, max_torso_yrange * 1.9, max_body_yrange * 1.2, max_body_xrange * 1.2]) tmp = np.array([center_x, image_width - center_x, center_y, image_height - center_y]) crop_length_half = np.amin([crop_length_half, np.amax(tmp)]) crop_corner = [center_y - crop_length_half, center_x - crop_length_half] if crop_length_half > max(image_width, image_height) / 2: return init_crop_region(image_height, image_width) else: crop_length = crop_length_half * 2 return {'y_min': crop_corner[0] / image_height, 'x_min': crop_corner[1] / image_width, 'y_max': (crop_corner[0] + crop_length) / image_height, 'x_max': (crop_corner[1] + crop_length) / image_width, 'height': (crop_corner[0] + crop_length) / image_height - crop_corner[0] / image_height, 'width': (crop_corner[1] + crop_length) / image_width - crop_corner[1] / image_width} else: return init_crop_region(image_height, image_width) def crop_and_resize(image, crop_region, crop_size): """Crops and resize the image to prepare for the model input.""" boxes = [[crop_region['y_min'], crop_region['x_min'], crop_region['y_max'], crop_region['x_max']]] output_image = tf.image.crop_and_resize(image, box_indices=[0], boxes=boxes, crop_size=crop_size) return tf.cast(output_image, tf.int32) model = hub.load('https://tfhub.dev/google/movenet/multipose/lightning/1') movenet = model.signatures['serving_default'] input_size = 256 image_path = './ngannou.gif' raw_image = tf.io.read_file(image_path) decoded_image = tf.image.decode_gif(raw_image) image = tf.cast(decoded_image, dtype=tf.int32) num_frames, image_height, image_width, _ = image.shape crop_region = init_crop_region(image_height, image_width) shape = image.shape def run_inference(movenet, image, crop_region, crop_size): """Runs model inference on the cropped region. The function runs the model inference on the cropped region and updates the model output to the original image coordinate system. """ image_height, image_width, _ = image.shape input_image = crop_and_resize(tf.expand_dims(image, axis=0), crop_region, crop_size=crop_size) output = movenet(input_image)['output_0'] keypoints_with_scores = output.numpy() max_instances = 6 for idx in range(17): keypoints_with_scores[0, 0, idx, 0] = (crop_region['y_min'] * image_height + crop_region['height'] * image_height * keypoints_with_scores[0, 0, idx, 0]) / image_height keypoints_with_scores[0, 0, idx, 1] = (crop_region['x_min'] * image_width + crop_region['width'] * image_width * keypoints_with_scores[0, 0, idx, 1]) / image_width return keypoints_with_scores output_images = [] bar = display(progress(0, num_frames - 1), display_id=True) for frame_idx in range(num_frames): keypoints_with_scores = run_inference(movenet, image[frame_idx, :, :, :], crop_region, crop_size=[input_size, input_size]) output_images.append(draw_prediction_on_image(image[frame_idx, :, :, :].numpy().astype(np.int32), keypoints_with_scores, crop_region=None, close_figure=True, output_image_height=300)) crop_region = determine_crop_region(keypoints_with_scores, image_height, image_width) bar.update(progress(frame_idx, num_frames - 1))
code
17141241/cell_21
[ "text_html_output_1.png" ]
import pandas as pd train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') train.isnull().sum() test.isnull().sum() train['Age'] = train['Age'].fillna(train['Age'].median()) test['Age'] = test['Age'].fillna(test['Age'].median()) train.drop('Cabin', axis=1, inplace=True) test.drop('Cabin', axis=1, inplace=True) train['Embarked'] = train['Embarked'].fillna('S') test['Fare'] = test['Fare'].fillna(test['Fare'].median()) train.drop('Name', axis=1, inplace=True) test.drop('Name', axis=1, inplace=True) train.drop('Ticket', axis=1, inplace=True) test.drop('Ticket', axis=1, inplace=True) train = train.join(pd.get_dummies(train['Sex'], prefix='sex')) test = test.join(pd.get_dummies(test['Sex'], prefix='sex')) train = train.join(pd.get_dummies(train['Embarked'], prefix='emberk')) test = test.join(pd.get_dummies(test['Embarked'], prefix='emberk')) train.drop(['Sex', 'Embarked'], axis=1, inplace=True) test.drop(['Sex', 'Embarked'], axis=1, inplace=True) test.head()
code
17141241/cell_13
[ "text_html_output_1.png" ]
import pandas as pd train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') train.isnull().sum() train['Ticket'].value_counts()
code
17141241/cell_9
[ "text_plain_output_1.png" ]
import pandas as pd train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') train.isnull().sum() train.head()
code
17141241/cell_25
[ "text_html_output_1.png" ]
import pandas as pd train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') train.isnull().sum() test.isnull().sum() train['Age'] = train['Age'].fillna(train['Age'].median()) test['Age'] = test['Age'].fillna(test['Age'].median()) train.drop('Cabin', axis=1, inplace=True) test.drop('Cabin', axis=1, inplace=True) train['Embarked'] = train['Embarked'].fillna('S') test['Fare'] = test['Fare'].fillna(test['Fare'].median()) train.drop('Name', axis=1, inplace=True) test.drop('Name', axis=1, inplace=True) train.drop('Ticket', axis=1, inplace=True) test.drop('Ticket', axis=1, inplace=True) train = train.join(pd.get_dummies(train['Sex'], prefix='sex')) test = test.join(pd.get_dummies(test['Sex'], prefix='sex')) train = train.join(pd.get_dummies(train['Embarked'], prefix='emberk')) test = test.join(pd.get_dummies(test['Embarked'], prefix='emberk')) train.drop(['Sex', 'Embarked'], axis=1, inplace=True) test.drop(['Sex', 'Embarked'], axis=1, inplace=True) X_train = train.drop('Survived', axis=1) y_train = train['Survived'].values y_train
code
17141241/cell_20
[ "text_plain_output_1.png" ]
import pandas as pd train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') train.isnull().sum() test.isnull().sum() train['Age'] = train['Age'].fillna(train['Age'].median()) test['Age'] = test['Age'].fillna(test['Age'].median()) train.drop('Cabin', axis=1, inplace=True) test.drop('Cabin', axis=1, inplace=True) train['Embarked'] = train['Embarked'].fillna('S') test['Fare'] = test['Fare'].fillna(test['Fare'].median()) train.drop('Name', axis=1, inplace=True) test.drop('Name', axis=1, inplace=True) train.drop('Ticket', axis=1, inplace=True) test.drop('Ticket', axis=1, inplace=True) train = train.join(pd.get_dummies(train['Sex'], prefix='sex')) test = test.join(pd.get_dummies(test['Sex'], prefix='sex')) train = train.join(pd.get_dummies(train['Embarked'], prefix='emberk')) test = test.join(pd.get_dummies(test['Embarked'], prefix='emberk')) train.drop(['Sex', 'Embarked'], axis=1, inplace=True) test.drop(['Sex', 'Embarked'], axis=1, inplace=True) train.head()
code
17141241/cell_6
[ "text_html_output_1.png" ]
import pandas as pd train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') train.info()
code
17141241/cell_11
[ "text_plain_output_1.png" ]
import pandas as pd train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') train.isnull().sum() train['Cabin'].value_counts()
code
17141241/cell_7
[ "text_html_output_1.png" ]
import pandas as pd train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') train.isnull().sum()
code
17141241/cell_18
[ "text_plain_output_1.png" ]
import pandas as pd train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') train.isnull().sum() test.isnull().sum() train['Age'] = train['Age'].fillna(train['Age'].median()) test['Age'] = test['Age'].fillna(test['Age'].median()) train.drop('Cabin', axis=1, inplace=True) test.drop('Cabin', axis=1, inplace=True) train['Embarked'] = train['Embarked'].fillna('S') test['Fare'] = test['Fare'].fillna(test['Fare'].median()) train.drop('Name', axis=1, inplace=True) test.drop('Name', axis=1, inplace=True) train.drop('Ticket', axis=1, inplace=True) test.drop('Ticket', axis=1, inplace=True) train = train.join(pd.get_dummies(train['Sex'], prefix='sex')) test = test.join(pd.get_dummies(test['Sex'], prefix='sex')) train = train.join(pd.get_dummies(train['Embarked'], prefix='emberk')) test = test.join(pd.get_dummies(test['Embarked'], prefix='emberk')) train.head()
code
17141241/cell_8
[ "text_html_output_1.png" ]
import pandas as pd train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') test.isnull().sum()
code
17141241/cell_15
[ "text_html_output_1.png" ]
import pandas as pd train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') train.isnull().sum() test.isnull().sum() train['Age'] = train['Age'].fillna(train['Age'].median()) test['Age'] = test['Age'].fillna(test['Age'].median()) train.drop('Cabin', axis=1, inplace=True) test.drop('Cabin', axis=1, inplace=True) train['Embarked'] = train['Embarked'].fillna('S') test['Fare'] = test['Fare'].fillna(test['Fare'].median()) train.head()
code
17141241/cell_16
[ "text_plain_output_1.png" ]
import pandas as pd train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') train.isnull().sum() test.isnull().sum() train['Age'] = train['Age'].fillna(train['Age'].median()) test['Age'] = test['Age'].fillna(test['Age'].median()) train.drop('Cabin', axis=1, inplace=True) test.drop('Cabin', axis=1, inplace=True) train['Embarked'] = train['Embarked'].fillna('S') test['Fare'] = test['Fare'].fillna(test['Fare'].median()) print(f"[train]Nmaeのユニークな要素: {train['Name'].nunique()}") print(f"[test]Nmaeのユニークな要素: {test['Name'].nunique()}") print(f"[train]Sexのユニークな要素: {train['Sex'].nunique()}") print(f"[test]Sexのユニークな要素: {test['Sex'].nunique()}") print(f"[train]Ticketのユニークな要素: {train['Ticket'].nunique()}") print(f"[test]Ticketのユニークな要素: {test['Ticket'].nunique()}") print(f"[train]Embarkedのユニークな要素: {train['Embarked'].nunique()}") print(f"[test]Embarkedのユニークな要素: {test['Embarked'].nunique()}")
code
17141241/cell_24
[ "text_plain_output_1.png" ]
import pandas as pd train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') train.isnull().sum() test.isnull().sum() train['Age'] = train['Age'].fillna(train['Age'].median()) test['Age'] = test['Age'].fillna(test['Age'].median()) train.drop('Cabin', axis=1, inplace=True) test.drop('Cabin', axis=1, inplace=True) train['Embarked'] = train['Embarked'].fillna('S') test['Fare'] = test['Fare'].fillna(test['Fare'].median()) train.drop('Name', axis=1, inplace=True) test.drop('Name', axis=1, inplace=True) train.drop('Ticket', axis=1, inplace=True) test.drop('Ticket', axis=1, inplace=True) train = train.join(pd.get_dummies(train['Sex'], prefix='sex')) test = test.join(pd.get_dummies(test['Sex'], prefix='sex')) train = train.join(pd.get_dummies(train['Embarked'], prefix='emberk')) test = test.join(pd.get_dummies(test['Embarked'], prefix='emberk')) train.drop(['Sex', 'Embarked'], axis=1, inplace=True) test.drop(['Sex', 'Embarked'], axis=1, inplace=True) X_train = train.drop('Survived', axis=1) y_train = train['Survived'].values X_train.head()
code