content
stringlengths
22
815k
id
int64
0
4.91M
def test_set_item(): """Tests element written to lin objects. This includes tests for negative indexing and expected exceptions. """ m = lin.Matrix2x3() def set_and_check(x, *args): if len(args) == 1: args = args[0] assert m[args] != x m[args] = x assert m[args] == x set_and_check(1.0, 0, 2) set_and_check(2.0, 0, -1) set_and_check(3.0, 1, 0) set_and_check(4.0, -1, 0) set_and_check(5.0, 3) set_and_check(6.0, -2) with pytest.raises(IndexError): m[2, 0] with pytest.raises(IndexError): m[-3, 0] with pytest.raises(IndexError): m[6] with pytest.raises(IndexError): m[-7]
9,700
def populate_api_servers(): """ Find running API servers. """ def api_server_info(entry): prefix, port = entry.rsplit('-', 1) project_id = prefix[len(API_SERVER_PREFIX):] return project_id, int(port) global api_servers monit_entries = yield monit_operator.get_entries() server_entries = [api_server_info(entry) for entry in monit_entries if entry.startswith(API_SERVER_PREFIX)] for project_id, port in server_entries: api_servers[project_id] = port
9,701
def draw_result(points, colors=None): """ Draw point clouds Args: points ([ndarray]): N x 3 array colors ([ndarray]): N x 3 array """ pcd = o3d.geometry.PointCloud() pcd.points = o3d.utility.Vector3dVector(points) if colors is not None: pcd.colors = o3d.utility.Vector3dVector(colors) o3d.visualization.draw_geometries([pcd])
9,702
def gen_classification_func(model, *, state_file=None, transform=None, pred_func=None, device=None): """ 工厂函数,生成一个分类器函数 用这个函数做过渡的一个重要目的,也是避免重复加载模型 :param model: 模型结构 :param state_file: 存储参数的文件 :param transform: 每一个输入样本的预处理函数 :param pred_func: model 结果的参数的后处理 :return: 返回的函数结构见下述 cls_func """ if state_file: model.load_state_dict(torch.load(str(state_file), map_location=get_device())) model.train(False) device = device or get_device() model.to(device) def cls_func(raw_in): """ :param raw_in: 输入可以是路径、np.ndarray、PIL图片等,都为转为batch结构的tensor im,一张图片路径、np.ndarray、PIL图片 [im1, im2, ...],多张图片清单 :return: 输入如果只有一张图片,则返回一个结果 否则会存在list,返回多个结果 """ dataset = InputDataset(raw_in, transform) # TODO batch_size根据device空间大小自适应设置 xs = torch.utils.data.DataLoader(dataset, batch_size=8) res = None for x in xs: # 每个batch可能很大,所以每个batch依次放到cuda,而不是一次性全放入 x = x.to(device) y = model(x) if pred_func: y = pred_func(y) res = y if res is None else (res + y) return res return cls_func
9,703
def create_recipe_json(image_paths: list) -> dict: """ Orchestrate the various services to respond to a create recipe request. """ logger.info('Creating recipe json from image paths: {}'.format(image_paths)) full_text = load_images_return_text(image_paths) recipe_json = assign_text_to_recipe(full_text) return recipe_json
9,704
def rstrip_extra(fname): """Strip extraneous, non-discriminative filename info from the end of a file. """ to_strip = ("_R", "_", "fastq", ".", "-") while fname.endswith(to_strip): for x in to_strip: if fname.endswith(x): fname = fname[:len(fname) - len(x)] break return fname
9,705
def test_xor2(): """ Two inputs, two outputs. """ net = Network("XOR2") net.add(Layer("input1", shape=1)) net.add(Layer("input2", shape=1)) net.add(Layer("hidden1", shape=2, activation="sigmoid")) net.add(Layer("hidden2", shape=2, activation="sigmoid")) net.add(Layer("shared-hidden", shape=2, activation="sigmoid")) net.add(Layer("output1", shape=1, activation="sigmoid")) net.add(Layer("output2", shape=1, activation="sigmoid")) net.connect("input1", "hidden1") net.connect("input2", "hidden2") net.connect("hidden1", "shared-hidden") net.connect("hidden2", "shared-hidden") net.connect("shared-hidden", "output1") net.connect("shared-hidden", "output2") net.compile(error='mean_squared_error', optimizer=SGD(lr=0.3, momentum=0.9)) net.dataset.load([ ([[0],[0]], [[0],[0]]), ([[0],[1]], [[1],[1]]), ([[1],[0]], [[1],[1]]), ([[1],[1]], [[0],[0]]) ]) net.train(2000, report_rate=10, accuracy=1, plot=False) net.evaluate(show=True) net.propagate_to("shared-hidden", [[1], [1]]) net.propagate_to("output1", [[1], [1]]) net.propagate_to("output2", [[1], [1]]) net.propagate_to("hidden1", [[1], [1]]) net.propagate_to("hidden2", [[1], [1]]) net.propagate_to("output1", [[1], [1]]) net.propagate_to("output2", [[1], [1]]) net.save_weights("/tmp") net.load_weights("/tmp") net.evaluate(show=True) svg = net.to_svg() assert net is not None
9,706
def test_remove_same_word_function(session, query, expected): """ Test when input is word with space, the result will not show the same word """ response = get_complete(session, {'q': query, 'contextual': False}) compare_two_lists(get_typeahead_values(response), expected)
9,707
def run(preprocessors, data, preprocessing=defaultdict(lambda: None), fit=True): """Applies preprocessing to data. It currently suppoerts StandardScaler and OneHotEncoding Parameters ---------- preprocessors : list preprocessors to be applied data : pd.DataFrame data to be preprocessed preprocessing : dict, optional encoders of each preprocessor, by default defaultdict(lambda: None) fit : bool, optional if False, it applies to current encoder, by default True Returns ------- pd.DataFrame dict preprocessed data and preprocessors used """ scaler_to_data_type = { 'StandardScaler': 'numeric', 'OneHotEncoder': 'object'} if len(preprocessors) == 0: return data, preprocessing preprocessor = preprocessors[0] data_type = scaler_to_data_type[preprocessor] splited_data = split_by_type(data) splited_data[data_type], preprocessing[preprocessor] = \ apply_preprocessor(splited_data[data_type], preprocessor, fit=fit, encoder=preprocessing[preprocessor]) processed_data = pd.concat(splited_data.values(), axis=1) return run(preprocessors[1:], processed_data, preprocessing, fit)
9,708
async def test_setting_attribute_with_template(hass, mqtt_mock): """Test the setting of attribute via MQTT with JSON payload.""" await help_test_setting_attribute_with_template( hass, mqtt_mock, fan.DOMAIN, DEFAULT_CONFIG )
9,709
def vouchers_tab(request, voucher_group, deleted=False, template_name="manage/voucher/vouchers.html"): """Displays the vouchers tab """ vouchers = voucher_group.vouchers.all() paginator = Paginator(vouchers, 20) page = paginator.page((request.POST if request.method == 'POST' else request.GET).get("page", 1)) taxes = Tax.objects.all() if (request.method == "POST") and (deleted is False): voucher_form = VoucherForm(data=request.POST) else: voucher_form = VoucherForm() return render_to_string(template_name, request=request, context={ "voucher_group": voucher_group, "taxes": taxes, "form": voucher_form, "vouchers_inline": vouchers_inline(request, voucher_group, vouchers, paginator, page), })
9,710
def all_ground_operators_given_partial( operator: STRIPSOperator, objects: Collection[Object], sub: VarToObjSub) -> Iterator[_GroundSTRIPSOperator]: """Get all possible groundings of the given operator with the given objects such that the parameters are consistent with the given substitution.""" assert set(sub).issubset(set(operator.parameters)) types = [p.type for p in operator.parameters if p not in sub] for choice in get_object_combinations(objects, types): # Complete the choice with the args that are determined from the sub. choice_lst = list(choice) choice_lst.reverse() completed_choice = [] for p in operator.parameters: if p in sub: completed_choice.append(sub[p]) else: completed_choice.append(choice_lst.pop()) assert not choice_lst ground_op = operator.ground(tuple(completed_choice)) yield ground_op
9,711
def normalise_intensity(x, mode="minmax", min_in=0.0, max_in=255.0, min_out=0.0, max_out=1.0, clip=False, clip_range_percentile=(0.05, 99.95), ): """ Intensity normalisation (& optional percentile clipping) for both Numpy Array and Pytorch Tensor of arbitrary dimensions. The "mode" of normalisation indicates different ways to normalise the intensities, including: 1) "meanstd": normalise to 0 mean 1 std; 2) "minmax": normalise to specified (min, max) range; 3) "fixed": normalise with a fixed ratio Args: x: (ndarray / Tensor, shape (N, *size)) mode: (str) indicate normalisation mode min_in: (float) minimum value of the input (assumed value for fixed mode) max_in: (float) maximum value of the input (assumed value for fixed mode) min_out: (float) minimum value of the output max_out: (float) maximum value of the output clip: (boolean) value clipping if True clip_range_percentile: (tuple of floats) percentiles (min, max) to determine the thresholds for clipping Returns: x: (same as input) in-place op on input x """ # determine data dimension dim = x.ndim - 1 image_axes = tuple(range(1, 1 + dim)) # (1,2) for 2D; (1,2,3) for 3D # for numpy.ndarray if type(x) is np.ndarray: # Clipping if clip: # intensity clipping clip_min, clip_max = np.percentile(x, clip_range_percentile, axis=image_axes, keepdims=True) x = np.clip(x, clip_min, clip_max) # Normalise meanstd if mode == "meanstd": mean = np.mean(x, axis=image_axes, keepdims=True) # (N, *range(dim)) std = np.std(x, axis=image_axes, keepdims=True) # (N, *range(dim)) x = (x - mean) / std # axis should match & broadcast # Normalise minmax elif mode == "minmax": min_in = np.amin(x, axis=image_axes, keepdims=True) # (N, *range(dim)) max_in = np.amax(x, axis=image_axes, keepdims=True) # (N, *range(dim))) x = (x - min_in) * (max_out - min_out) / (max_in - min_in + 1e-12) # (!) multiple broadcasting) # Fixed ratio elif mode == "fixed": x = (x - min_in) * (max_out - min_out) / (max_in - min_in + 1e-12) else: raise ValueError("Intensity normalisation mode not understood." "Expect either one of: 'meanstd', 'minmax', 'fixed'") # cast to float 32 x = x.astype(np.float32) # for torch.Tensor elif type(x) is torch.Tensor: # todo: clipping not supported at the moment (requires Pytorch version of the np.percentile() # Normalise meanstd if mode == "meanstd": mean = torch.mean(x, dim=image_axes, keepdim=True) # (N, *range(dim)) std = torch.std(x, dim=image_axes, keepdim=True) # (N, *range(dim)) x = (x - mean) / std # axis should match & broadcast # Normalise minmax elif mode == "minmax": # get min/max across dims by flattening first min_in = x.flatten(start_dim=1, end_dim=-1).min(dim=1)[0].view(-1, *(1,)*dim) # (N, (1,)*dim) max_in = x.flatten(start_dim=1, end_dim=-1).max(dim=1)[0].view(-1, *(1,)*dim) # (N, (1,)*dim) x = (x - min_in) * (max_out - min_out) / (max_in - min_in + 1e-12) # (!) multiple broadcasting) # Fixed ratio elif mode == "fixed": x = (x - min_in) * (max_out - min_out) / (max_in - min_in + 1e-12) else: raise ValueError("Intensity normalisation mode not recognised." "Expect: 'meanstd', 'minmax', 'fixed'") # cast to float32 x = x.float() else: raise TypeError("Input data type not recognised, support numpy.ndarray or torch.Tensor") return x
9,712
def spots_rmsd(spots): """ Calculate the rmsd for a series of small_cell_spot objects @param list of small_cell_spot objects @param RMSD (pixels) of each spot """ rmsd = 0 count = 0 print 'Spots with no preds', [spot.pred is None for spot in spots].count(True), 'of', len(spots) for spot in spots: if spot.pred is None: continue rmsd += measure_distance(col((spot.spot_dict['xyzobs.px.value'][0],spot.spot_dict['xyzobs.px.value'][1])),col(spot.pred))**2 count += 1 if count == 0: return 0 return math.sqrt(rmsd/count)
9,713
def test_point_at_center_bottom(points, point_at_line): """ Test aligned at the line text position calculation, horizontal mode """ x, y = text_point_at_line(points, (10, 5), TextAlign.CENTER) assert x == pytest.approx(point_at_line[0]) assert y == pytest.approx(point_at_line[1])
9,714
def sanitize_df(data_df, schema, setup_index=True, missing_column_procedure='fill_zero'): """ Sanitize dataframe according to provided schema Returns ------- data_df : pandas DataFrame Will have fields provided by schema Will have field types (categorical, datetime, etc) provided by schema. """ data_df = data_df.reset_index() for ff, field_name in enumerate(schema.field_names): type_ff = schema.fields[ff].descriptor['type'] if field_name not in data_df.columns: if missing_column_procedure == 'fill_zero': if type_ff == 'integer': data_df[field_name] = 0 elif type_ff == 'number': data_df[field_name] = 0.0 # Reorder columns to match schema data_df = data_df[schema.field_names] # Cast fields to required type (categorical / datetime) for ff, name in enumerate(schema.field_names): ff_spec = schema.descriptor['fields'][ff] if 'pandas_dtype' in ff_spec and ff_spec['pandas_dtype'] == 'category': data_df[name] = data_df[name].astype('category') elif 'type' in ff_spec and ff_spec['type'] == 'datetime': data_df[name] = pd.to_datetime(data_df[name]) if hasattr(schema, 'primary_key'): data_df = data_df.sort_values(schema.primary_key) if setup_index: data_df = data_df.set_index(schema.primary_key) return data_df
9,715
def log(message): """ Write log message to stdout and to predefined file """ time = "[" + datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S") + "] " outmsg = time + message print(outmsg) with open(LOCAL_STORAGE_DIR + "/" + LOG_FILE_NAME, "a") as myfile: myfile.write(outmsg + "\n")
9,716
def get_id_argument(id_card): """ 获取身份证号码信息 :param id_card: :return: """ id_card = id_card.upper() id_length = len(id_card) if id_length == 18: code = { 'body': id_card[0:17], 'address_code': id_card[0:6], 'birthday_code': id_card[6:14], 'order_code': id_card[14:17], 'check_bit': id_card[17:18], 'type': 18 } else: code = { 'body': id_card, 'address_code': id_card[0:6], 'birthday_code': '19' + id_card[6:12], 'order_code': id_card[12:15], 'check_bit': '', 'type': 15 } return code
9,717
def rhypergeometric(n, m, N, size=None): """ Returns hypergeometric random variates. """ if n == 0: return np.zeros(size, dtype=int) elif n == N: out = np.empty(size, dtype=int) out.fill(m) return out return np.random.hypergeometric(n, N - n, m, size)
9,718
def ctd_upload(Id, filenames, production): """ Edit entry at Caltech Data for data set to upload data given by filenames. Id is an integer that defines the Caltech Data entry. """ caltechdata.edit_ctd(Id, filenames=filenames, production=production)
9,719
def _validate_query( hgnc_manager: HgncManager, query_result, original_identifier: str, original_namespace: str, ) -> Tuple[str, str, str]: """Process and validate HGNC query. :param hgnc_manager: hgnc manager :param query_result: :param original_identifier: :param original_namespace: """ # If invalid entry from HGNC, try to find updated symbol if not query_result and original_namespace == HGNC: return _get_update_alias_symbol(hgnc_manager, original_identifier, HGNC) # Invalid entry, proceed with invalid identifier if not query_result: logger.debug('No found HGNC Symbol for id %s in (%s)', original_identifier, original_namespace) return original_namespace, original_identifier, original_identifier # Multiple entries are returned, for UniProt identifiers if isinstance(query_result, list): if len(query_result) > 1: logger.debug('UniProt identifier with multiple HGNC:s %s', query_result) query_result = query_result[0] # Correct entry, use HGNC identifier return HGNC, query_result.symbol, query_result.identifier
9,720
def AdjustforPeriod(numsnaps,numhalos,boxsize,hval,atime,halodata,icomove=0): """ Map halo positions from 0 to box size """ for i in range(numsnaps): if (icomove): boxval=boxsize/hval else: boxval=boxsize*atime[i]/hval wdata=np.where(halodata[i]["Xc"]<0) halodata[i]["Xc"][wdata]+=boxval wdata=np.where(halodata[i]["Yc"]<0) halodata[i]["Yc"][wdata]+=boxval wdata=np.where(halodata[i]["Zc"]<0) halodata[i]["Zc"][wdata]+=boxval wdata=np.where(halodata[i]["Xc"]>boxval) halodata[i]["Xc"][wdata]-=boxval wdata=np.where(halodata[i]["Yc"]>boxval) halodata[i]["Yc"][wdata]-=boxval wdata=np.where(halodata[i]["Zc"]>boxval) halodata[i]["Zc"][wdata]-=boxval
9,721
def my_model_builder(my_model: MyModel) -> KerasModel: """Build the siamese network model """ input_1 = layers.Input(my_model.input_shape) input_2 = layers.Input(my_model.input_shape) # As mentioned above, Siamese Network share weights between # tower networks (sister networks). To allow this, we will use # same embedding network for both tower networks. embedding_network = build_model_tower(my_model) tower_1 = embedding_network(input_1) tower_2 = embedding_network(input_2) merge_layer = layers.Lambda(euclidean_distance)([tower_1, tower_2]) normal_layer = tf.keras.layers.BatchNormalization()(merge_layer) output_layer = layers.Dense(1, activation="sigmoid")(normal_layer) keras_model = keras.Model(inputs=[input_1, input_2], outputs=output_layer) keras_model.compile( loss=my_model.loss, optimizer=my_model.optimizer, metrics=my_model.metrics ) return keras_model
9,722
def test_upper_bounds_ensured(): """ Long enough simulation should saturate a bounded variable """ example_step = SimulationStep( x0=0, inputs=(15000,1), duration=100 ) _, samples = bounded_angular_velocity(example_step) assert not any(s > bounded_angular_velocity.max for s in samples) assert samples[-1] == bounded_angular_velocity.max
9,723
def test_copy_contents(): """test copy contents if dst is already existed.""" # create addon src addon_path = path.join(root_path, 'tests', 'src', 'addon') addon_main = path.join(root_path, 'tests', 'src', 'addon', 'addon_main') addon_sub = path.join(root_path, 'tests', 'src', 'addon', 'addon_sub') addon_rdme = path.join(root_path, 'tests', 'src', 'addon', 'readme') addon_toc = path.join(root_path, 'tests', 'src', 'addon', 'addon_main', 'addon_main.toc') mkdir(addon_path) mkdir(addon_main) mkdir(addon_sub) with open(addon_rdme, 'w+', encoding='utf-8') as f: f.write('readme') with open(addon_toc, 'w+', encoding='utf-8') as f: f.write('addon_main.toc') # create addon_main which already existed inside dst dst = path.join(root_path, 'tests', 'dst', 'addon') dst_main = path.join(root_path, 'tests', 'dst', 'addon', 'addon_main') mkdir(dst) mkdir(dst_main) # copy contents to dst copied_items = helpers.copy_contents(addon_path, dst) # assertions dst_sub = path.join(root_path, 'tests', 'dst', 'addon', 'addon_sub') dst_main_toc = path.join(root_path, 'tests', 'dst', 'addon', 'addon_main', 'addon_main.toc') dst_rdme = path.join(root_path, 'tests', 'dst', 'addon', 'readme') assert len(copied_items) == 3 assert path.exists(dst_sub) assert path.exists(dst_main_toc), 'addon_main should be override after copy contents.' assert path.exists(dst_rdme), 'copy contents should also work for single file.' # remove everything created rmtree(addon_path) rmtree(dst)
9,724
def save_csv(log, additions, field_cfg, date_format): """Add any unique entries from new to current""" qtys = collections.Counter() pool = {} log_rows = [] log_hashes = set() for row in csv.DictReader(log): log_rows.append(row) hash_ = hash_row(row) assert hash_ not in log_hashes log_hashes.add(hash_) dialect = csv.Sniffer().sniff(additions.read(1024)) additions.seek(0) for row in csv.DictReader(additions, dialect=dialect): conv_row = {} for k, v in row.items(): if k in field_cfg: conv_row[field_cfg[k]] = v.strip() conv_row['status'] = 'N' date = datetime.strptime(conv_row['transaction_date'], date_format).date() conv_row['transaction_date'] = date.strftime('%Y/%m/%d') hash_ = hash_row(conv_row) if hash_ in log_hashes: continue pool[hash_] = conv_row qtys[hash_] += 1 for key, val in qtys.items(): row = pool[key] if val > 1: row['qty'] = val log_rows.append(row) log_rows.sort(key=lambda row: (row['transaction_date'], row['description'])) log.seek(0) writer = csv.DictWriter(log, fields_1, lineterminator='\n') writer.writeheader() for row in log_rows: writer.writerow(row) log.truncate()
9,725
def create_embed( title, description, fields = None, colour = None, timestamp = datetime.utcnow(), author = None, author_icon = None, thumbnail = None, image = None, footer = None ): """Create an Embed Args: title (str): Set title description (str): Set description fields (list of tuples): Set fields colour (int, optional): Set color. Defaults to None. timestamp (datetime, optional): Set timestamp. Defaults to current time. author (str, optional): Set author. Defaults to None. author_icon (str, optional): Set author icon using image url. Defaults to None. thumbnail (str, optional): Set thumbnail using image url. Defaults to None. image (str, optional): Set image using image url. Defaults to None. footer (str, optional): Set footer. Defaults to None. Returns: embed: returns an embed """ embed = Embed( title=title, description=description, colour=colour, timestamp=timestamp ) if fields is not None: for name, value, inline in fields: embed.add_field(name=name, value=value, inline=inline) embed.set_author(name=author, icon_url=author_icon) embed.set_footer(text=footer) embed.set_thumbnail(url=thumbnail) embed.set_image(url=image) return embed
9,726
def autoCalibration(I): """Returns horizontal and vertical factors by which every distance in pixels should be multiplied in order to obtain the equivalent distance in millimeters. This program assumes that the scale presents clear axis ticks and that the distance between two biggest ticks is equal to 10 mm. It also assumes that both horizontal and vertical scales are present in the up right quarter of image I. Args: I (array): one canal image. If I is a RGB image, it is transformed to a grayscale image. Returns: calibFactorX (double) and calibFactorY (double) are respectively the horizontal and vertical calibration factors """ #Check if I is a 1-canal image if len(I.shape) > 2: I = cv2.cvtColor(I, cv2.COLOR_RGB2GRAY) length, width = I.shape[0], I.shape[1] #Cropping with empirical percentages and binarization of the selection # !!! EMPIRICAL TCP = 0.1 #Top cropping percentage - #empirical percentage LCP = 0.5 #Left cropping percentage BCP = 0.65 #Bottom cropping percentage RCP = 0.1 #Right cropping percentage Scale_image = I[int(TCP * length):length-int(BCP * length),\ int(LCP * width):width-int(RCP * width)] Binar_I = cv2.threshold(Scale_image, 220., 255, cv2.THRESH_BINARY)[1] #Selection of the biggest axis ticks: contours of white objects are found as #well as minimal rectangles encapsulating each object. Conditions on the #size of these contours/bounding rectangles enable the removal of objects #that are not the biggest ticks contours = cv2.findContours(Binar_I, cv2.RETR_EXTERNAL, \ cv2.CHAIN_APPROX_NONE)[0] contours_size = [contours[i].size for i in range (len(contours))] BoundingRectangles = [] for i in range(len(contours)): if contours_size[i]<=1.7*np.mean(contours_size): #condition to stop considering the objects corresponding to figures p1, p2, l1, l2 = cv2.boundingRect(contours[i]) #rectangles identified with point (p1,p2) and vectors (l2,0), (0,l1) BoundingRectangles.append([i, (p1,p2,l1,l2), 2.*l1+2.*l2]) MeanPerim = np.mean([BoundingRectangles[i][2] for i in range(len(BoundingRectangles))]) Dashes = [BoundingRectangles[i] for i in range(len(BoundingRectangles)) if BoundingRectangles[i][2]>MeanPerim] #removal of points and small dashes #Calculation of the minimal distances between two horizontal ticks and #two vertical ticks #browse all detected axis ticks horiz = 10000000. vertic = 10000000. for i in range (0, len(Dashes)-1): ref_Dash = Dashes[i][1] for j in range(i+1,len(Dashes)): if len(set(list(range(Dashes[j][1][0],Dashes[j][1][0]+Dashes[j][1][2])))\ .intersection(list(range(ref_Dash[0],ref_Dash[0]+ref_Dash[2]))))>2: h = abs(ref_Dash[1]+ref_Dash[3]-Dashes[j][1][1]-Dashes[j][1][3]) if h<vertic: vertic = h if len(set(list(range(Dashes[j][1][1],Dashes[j][1][1]+Dashes[j][1][3])))\ .intersection(list(range(ref_Dash[1],ref_Dash[1]+ref_Dash[3]))))>2: h = abs(ref_Dash[0]-Dashes[j][1][0]) if h<horiz: horiz = h #Factors to convert distance in pixels into distance in millimeters if horiz == 10000000. or horiz == 0: calibFactorX = None else: calibFactorX = 10./horiz if vertic == 10000000. or vertic == 0: calibFactorY = None else: calibFactorY = 10./vertic ''' visual check for d in range(len(Dashes)): p1 = Dashes[d][1][0] p2 = Dashes[d][1][1] l1 = Dashes[d][1][2] l2 = Dashes[d][1][3] for l in range(p1,p1+l1+1): Binar_I[p2,l] = 150 Binar_I[p2+l2,l] = 150 for c in range(p2,p2+l2+1): Binar_I[c,p1] = 150 Binar_I[c,p1+l1] = 150 cv2.imshow('Binary image', Binar_I) cv2.waitKey(0) & 0xFF cv2.destroyAllWindows() ''' return calibFactorX, calibFactorY
9,727
def reverse_handler(handler_input): """Check if a verb is provided in slot values. If provided, then looks for the paradigm in the irregular_verbs file. If not, then it asks user to provide the verb again. """ # iterate over the dictionaries in irregular_verbs.py and looks for # the verb in the slot. If it finds it, it returns the dictionary def get_verb(irregular_verbs, filled_verboconiugato_slot): for dictionary in IRREGULAR_VERBS["verbs"]: if dictionary["PS"] == verboconiugato or dictionary["PP"] == verboconiugato: return dictionary # type: (HandlerInput) -> Response attribute_manager = handler_input.attributes_manager session_attr = attribute_manager.session_attributes slots = handler_input.request_envelope.request.intent.slots if verboconiugato_slot in slots: # if slot is filled verboconiugato = slots[verboconiugato_slot].value handler_input.attributes_manager.session_attributes[ verboconiugato_slot_key] = verboconiugato # verbo is equal to what i said ex. know # execute the function based on the verb the user asks for. askedVerb # becomes equal to the dictionary returned by the function askedVerb = get_verb(irregular_verbs.IRREGULAR_VERBS, verboconiugato) if verboconiugato == "read" and askedVerb: baseVerb = askedVerb["Base"] pastSimple = askedVerb["PS"] pastPart = askedVerb["PP"] traduzione = askedVerb["Italiano"] speech = ("<lang xml:lang='en-GB'>{}</lang> è il verbo <voice name='Emma'><lang xml:lang='en-GB'>to {}</lang></voice>. Il suo paradigma è <voice name='Emma'><lang xml:lang='en-GB'>to {}, <phoneme alphabet='ipa' ph='rɛd'>{}</phoneme>, <phoneme alphabet='ipa' ph='rɛd'>{}</phoneme></lang></voice>. Significa <phoneme alphabet='ipa' ph='ˈlɛdʤere'>{}</phoneme>.".format(verboconiugato, baseVerb, baseVerb, pastSimple, pastPart, traduzione)) reprompt = ("Cosa vuoi chiedermi?") handler_input.response_builder.set_should_end_session(True) elif askedVerb: baseVerb = askedVerb["Base"] pastSimple = askedVerb["PS"] pastPart = askedVerb["PP"] traduzione = askedVerb["Italiano"] speech = ("<lang xml:lang='en-GB'>{}</lang> è il verbo <voice name='Emma'><lang xml:lang='en-GB'>to {}</lang></voice>. Il suo paradigma è <voice name='Emma'><lang xml:lang='en-GB'>to {}, {}, {}</lang></voice>. Significa {}.".format( verboconiugato, baseVerb, baseVerb, pastSimple, pastPart, traduzione)) reprompt = ("Cosa vuoi chiedermi?") handler_input.response_builder.set_should_end_session(True) else: speech = ( "Non trovo il verbo <lang xml:lang='en-GB'>{}</lang>. Se è corretto, allora la sua coniugazione è regolare".format(verboconiugato)) reprompt = ("Cosa vuoi chiedermi?") handler_input.response_builder.set_should_end_session(True) # if slot isn't filled, repeat helptext else: speech = ("Non ho capito." + help_text) handler_input.response_builder.ask(help_text) handler_input.response_builder.speak(speech).ask( reprompt).set_should_end_session(True) return handler_input.response_builder.response
9,728
def generate_dummy_makefile(target_dir): """Create a dummy makefile to demonstrate how it works. Use dummy values unrelated to any gyp files. Its output should remain the same unless/until makefile_writer.write_android_mk changes. Args: target_dir: directory in which to write the resulting Android.mk """ common_vars_dict = generate_dummy_vars_dict(None) deviation_params = [('foo', 'COND'), ('bar', None)] deviations = [generate_dummy_vars_dict_data(name, condition) for (name, condition) in deviation_params] makefile_writer.write_android_mk(target_dir=target_dir, common=common_vars_dict, deviations_from_common=deviations)
9,729
def commit_user_deletions(): """Delete (marked) users.""" AccountTerminationQueue.objects.commit_terminations()
9,730
def load_wrf_data(filename): """Load required data form the WRF output file : filename""" base_data=load_vars(filename,wrfvars) skin_t=load_tskin(filename,tsvar,landmask) base_data.append(skin_t) atts=mygis.read_atts(filename,global_atts=True) return Bunch(data=base_data,global_atts=atts)
9,731
def DensityRatio_QP(X_den, X_num, kernel, g, v_matrix, ridge=1e-3): """ The function computes a model of the density ratio. The function is in the form $A^T K$ The function returns the coefficients $\alpha_i$ and the bias term b """ l_den, d = X_den.shape l_num, d_num = X_num.shape # TODO: Check d==d_num ones_num = np.matrix(np.ones(shape=(l_num, 1))) zeros_den = np.matrix(np.zeros(shape=(l_den, 1))) gram = kernel(X_den) K = np.matrix(gram + ridge * np.eye(l_den)) # K = np.matrix(gram) # No ridge print("K max, min: %e, %e" % (np.max(K), np.min(K))) data = np.concatenate((X_den, X_num)) if callable(v_matrix): V = np.matrix(v_matrix(X_den, X_den, data)) V_star = np.matrix(v_matrix(X_den, X_num, data)) # l_den by l_num else: return -1 print("V max,min: %e, %e" % (np.max(V), np.min(V))) print("V_star max,min: %e, %e" % (np.max(V_star), np.min(V_star))) tgt1 = K * V * K print("K*V*K max, min: %e, %e" % (np.max(tgt1), np.min(tgt1))) tgt2 = g * K print("g*K max, min: %e, %e" % (np.max(tgt2), np.min(tgt2))) P = cvxopt.matrix(2 * (tgt1 + tgt2)) q_ = -2 * (l_den / l_num) * (K * V_star * ones_num) print("q max, min: %e, %e" % (np.max(q_), np.min(q_))) q = cvxopt.matrix(q_) #### Let's construct the inequality constraints # Now create G and h G = cvxopt.matrix(-K) h = cvxopt.matrix(zeros_den) # G = cvxopt.matrix(np.vstack((-K,-np.eye(l_den)))) # h = cvxopt.matrix(np.vstack((zeros_den,zeros_den))) # Let's construct the equality constraints A = cvxopt.matrix((1 / l_den) * K * V_star * ones_num).T b = cvxopt.matrix(np.ones(1)) return cvxopt.solvers.qp(P, q, G, h, A, b, options=dict( maxiters=50))
9,732
def sanitize_date(date_dict: dict): """ Function to take the date values entered by the user and check their validity. If valid it returns True, otherwise it sets the values to None and returns False :param date_dict: :return: """ month = date_dict["month"] day = date_dict["day"] year = date_dict["year"] date = [month, day, year] date_is_valid = not any([component is None for component in date]) if date_is_valid: date_is_valid &= not (month == 2 and day > 29) date_is_valid &= not (month in [4, 6, 9, 11] and day > 30) is_leap_year = (year % 4) == 0 is_leap_year &= ((year % 100) != 0 or (year % 400) == 0) date_is_valid &= not (month == 2 and day == 29 and not is_leap_year) if not date_is_valid: date_dict["month"] = date_dict["day"] = date_dict["year"] = None return False return True
9,733
def create_scale(tonic, pattern, octave=1): """ Create an octave-repeating scale from a tonic note and a pattern of intervals Args: tonic: root note (midi note number) pattern: pattern of intervals (list of numbers representing intervals in semitones) octave: span of scale (in octaves) Returns: list of midi notes in the scale """ assert(sum(pattern)==12) scale = [tonic] note = tonic for o in range(octave): for i in pattern: note += i if note <= 127: scale.append(note) return scale
9,734
def _qfloat_append(qf, values, axis=None): """Implement np.append for qfloats.""" # First, convert to the same unit. qf1, qf2 = same_unit(qf, values, func=np.append) nominal = np.append(qf1.nominal, qf2.nominal, axis) std = np.append(qf1.uncertainty, qf2.uncertainty, axis) return QFloat(nominal, std, qf1.unit)
9,735
def power_off_progressive(part, restart=False, ibmi_immed=False, timeout=CONF.pypowervm_job_request_timeout): """Attempt soft power-off, retrying with increasing aggression on failure. IBMi partitions always start with OS shutdown. If ibmi_immed == False, os-normal shutdown is tried first; then os-immediate; then vsp-normal; then vsp-hard. If ibmi_immed == True, os-normal is skipped, but the rest of the progression is the same. For non-IBMi partitions: If RMC is up, os-immediate is tried first. If this times out, vsp hard is performed next; otherwise, vsp-normal is attempted before vsp-hard. If RMC is down, vsp-normal is tried first, then vsp-hard. :param part: The LPAR/VIOS wrapper of the instance to power off. :param restart: Boolean. Perform a restart after the power off. :param ibmi_immed: Boolean. Indicates whether to try os-normal first (False, the default) before progressing to os-immediate. If True, skip trying os-normal shutdown. Only applies to IBMi partitions. :param timeout: Time in seconds to wait for the instance to stop. This is only applied to the first attempt in the progression. :raise VMPowerOffFailure: If the last attempt in the progression failed. :raise VMPowerOffTimeout: If the last attempt in the progression timed out. """ _power_off_progressive(part, timeout, restart, ibmi_immed=ibmi_immed)
9,736
async def test_strip(hass: HomeAssistant) -> None: """Test a smart strip.""" already_migrated_config_entry = MockConfigEntry( domain=DOMAIN, data={}, unique_id=MAC_ADDRESS ) already_migrated_config_entry.add_to_hass(hass) plug = _mocked_strip() with _patch_discovery(device=plug), _patch_single_discovery(device=plug): await async_setup_component(hass, tplink.DOMAIN, {tplink.DOMAIN: {}}) await hass.async_block_till_done() # Verify we only create entities for the children # since this is what the previous version did assert hass.states.get("switch.my_strip") is None for plug_id in range(2): entity_id = f"switch.plug{plug_id}" state = hass.states.get(entity_id) assert state.state == STATE_ON await hass.services.async_call( SWITCH_DOMAIN, "turn_off", {ATTR_ENTITY_ID: entity_id}, blocking=True ) plug.children[plug_id].turn_off.assert_called_once() plug.children[plug_id].turn_off.reset_mock() await hass.services.async_call( SWITCH_DOMAIN, "turn_on", {ATTR_ENTITY_ID: entity_id}, blocking=True ) plug.children[plug_id].turn_on.assert_called_once() plug.children[plug_id].turn_on.reset_mock()
9,737
def pre_spawn_hook_environ(monkeypatch, jupyterhub_api_environ): """ Set the environment variables used in the setup_course_hook function """ monkeypatch.setenv('NB_GID', '100') monkeypatch.setenv('NB_NON_GRADER_UID', '1000')
9,738
def filter_by_mean_color(img:np.ndarray, circles:List[Circle], threshold=170) -> List[Circle]: """Filter circles to keep only those who covers an area which high pixel mean than threshold""" filtered = [] for circle in circles: box = Box(circle=circle) area = box.get_region(img) if np.mean(area) > threshold: filtered.append(circle) return filtered
9,739
def test_deletion_no_child(basic_tree): """Test the deletion of a red black tree.""" tree = red_black_tree.RBTree() test_tree = [(23, "23"), (4, "4"), (30, "30"), (11, "11")] for key, data in test_tree: tree.insert(key=key, data=data) tree.delete(4) assert [item for item in tree.inorder_traverse()] == [ (11, "11"), (23, "23"), (30, "30"), ]
9,740
def ParseSortByArg(sort_by=None): """Parses and creates the sort by object from parsed arguments. Args: sort_by: list of strings, passed in from the --sort-by flag. Returns: A parsed sort by string ending in asc or desc. """ if not sort_by: return None fields = [] for field in sort_by: if field.startswith('~'): field = field.lstrip('~') + ' desc' else: field += ' asc' fields.append(field) return ','.join(fields)
9,741
def dense_to_text(decoded, originals): """ Convert a dense, integer encoded `tf.Tensor` into a readable string. Create a summary comparing the decoded plaintext with a given original string. Args: decoded (np.ndarray): Integer array, containing the decoded sequences. originals (np.ndarray): String tensor, containing the original input string for comparision. `originals` can be an empty tensor. Returns: np.ndarray: 1D string Tensor containing only the decoded text outputs. [decoded_string_0, ..., decoded_string_N] np.ndarray: 2D string Tensor with layout: [[decoded_string_0, original_string_0], ... [decoded_string_N, original_string_N]] """ decoded_strings = [] original_strings = [] for d in decoded: decoded_strings.append(''.join([itoc(i) for i in d])) if len(originals) > 0: for o in originals: original_strings.append(''.join([c for c in o.decode('utf-8')])) else: original_strings = ['n/a'] * len(decoded_strings) decoded_strings = np.array(decoded_strings, dtype=np.object) original_strings = np.array(original_strings, dtype=np.object) summary = np.vstack([decoded_strings, original_strings]) return np.array(decoded_strings), summary
9,742
def admin_view_all_working_curriculums(request): """ views all the working curriculums offered by the institute """ user_details = ExtraInfo.objects.get(user = request.user) des = HoldsDesignation.objects.all().filter(user = request.user).first() if str(des.designation) == "student" or str(des.designation) == "Associate Professor" or str(des.designation) == "Professor" or str(des.designation) == "Assistant Professor" : return HttpResponseRedirect('/programme_curriculum/mainpage/') elif str(request.user) == "acadadmin" : pass curriculums = Curriculum.objects.filter(working_curriculum=1) return render(request,'programme_curriculum/acad_admin/admin_view_all_working_curriculums.html',{'curriculums':curriculums})
9,743
async def test_learn(hass): """Test learn service.""" mock_device = MagicMock() mock_device.enter_learning.return_value = None mock_device.check_data.return_value = b64decode(DUMMY_IR_PACKET) with patch.object( hass.components.persistent_notification, "async_create" ) as mock_create: async_setup_service(hass, DUMMY_HOST, mock_device) await hass.async_block_till_done() await hass.services.async_call(DOMAIN, SERVICE_LEARN, {"host": DUMMY_HOST}) await hass.async_block_till_done() assert mock_device.enter_learning.call_count == 1 assert mock_device.enter_learning.call_args == call() assert mock_create.call_count == 1 assert mock_create.call_args == call( "Received packet is: {}".format(DUMMY_IR_PACKET), title="Broadlink switch" )
9,744
def getEmuAtVa(vw, va, maxhit=None): """ Build and run an emulator to the given virtual address from the function entry point. (most useful for state analysis. kinda heavy though...) """ fva = vw.getFunction(va) if fva == None: return None cbva,cbsize,cbfva = vw.getCodeBlock(va) fgraph = v_graphutil.buildFunctionGraph(vw, fva) # Just take the first one off the iterator... for path in v_graphutil.getCodePathsTo(fgraph, cbva): emu = vw.getEmulator() opcodes = v_graphutil.getOpsFromPath(vw, fgraph, path) for op in opcodes: if op.va == va: break emu.executeOpcode(op) return emu
9,745
def _create_test_validity_conditional(metric): """Creates BigQuery SQL clauses to specify validity rules for an NDT test. Args: metric: (string) The metric for which to add the conditional. Returns: (string) A set of SQL clauses that specify conditions an NDT test must meet to be considered a valid, completed test. """ # NDT test is supposed to last 10 seconds, give some buffer for tests that # ended slighly before 10 seconds. MIN_DURATION = _seconds_to_microseconds(9) # Tests that last > 1 hour are likely erroneous. MAX_DURATION = _seconds_to_microseconds(3600) # A test that did not exchange at least 8,192 bytes is likely erroneous. MIN_BYTES = 8192 # web100 state variable constants from # http://www.web100.org/download/kernel/tcp-kis.txt STATE_CLOSED = 1 STATE_ESTABLISHED = 5 STATE_TIME_WAIT = 11 # For RTT metrics, exclude results of tests with 10 or fewer round trip time # samples, because there are not enough samples to accurately estimate the # RTT. MIN_RTT_SAMPLES = 10 conditions = [] # Must have completed the TCP three-way handshake. conditions.append(( '(web100_log_entry.snap.State = {state_closed}\n\t' '\tOR (web100_log_entry.snap.State >= {state_established}\n\t' '\t\tAND web100_log_entry.snap.State <= {state_time_wait}))').format( state_closed=STATE_CLOSED, state_established=STATE_ESTABLISHED, state_time_wait=STATE_TIME_WAIT)) # Must have been determined to be unaffected by platform error. conditions.append(('blacklist_flags == 0')) if _is_server_to_client_metric(metric): # Must leave slow start phase of TCP, indicated by reaching # congestion at least once. conditions.append('web100_log_entry.snap.CongSignals > 0') # Must send at least the minimum number of bytes. conditions.append('web100_log_entry.snap.HCThruOctetsAcked >= %d' % MIN_BYTES) # Must last for at least the minimum test duration. conditions.append( ('(web100_log_entry.snap.SndLimTimeRwin +\n\t' '\tweb100_log_entry.snap.SndLimTimeCwnd +\n\t' '\tweb100_log_entry.snap.SndLimTimeSnd) >= %u') % MIN_DURATION) # Must not exceed the maximum test duration. conditions.append( ('(web100_log_entry.snap.SndLimTimeRwin +\n\t' '\tweb100_log_entry.snap.SndLimTimeCwnd +\n\t' '\tweb100_log_entry.snap.SndLimTimeSnd) < %u') % MAX_DURATION) # Exclude results of tests with fewer than 10 round trip time samples, # because there are not enough samples to accurately estimate the RTT. if metric == 'minimum_rtt' or metric == 'average_rtt': conditions.append('web100_log_entry.snap.CountRTT > %u' % MIN_RTT_SAMPLES) else: # Must receive at least the minimum number of bytes. conditions.append('web100_log_entry.snap.HCThruOctetsReceived >= %u' % MIN_BYTES) # Must last for at least the minimum test duration. conditions.append('web100_log_entry.snap.Duration >= %u' % MIN_DURATION) # Must not exceed the maximum test duration. conditions.append('web100_log_entry.snap.Duration < %u' % MAX_DURATION) return '\n\tAND '.join(conditions)
9,746
def tfds_train_test_split( tfds: tf.data.Dataset, test_frac: float, dataset_size: Union[int, str], buffer_size: int = 256, seed: int = 123, ) -> Sequence[Union[tf.data.Dataset, tf.data.Dataset, int, int]]: """ !!! does not properly work, seems to be dependant on hardware, open isssue on github/tensorflow? Split tf-dataset into a train and test dataset. https://stackoverflow.com/questions/48213766/split-a-dataset-created-by-tensorflow-dataset-api-in-to-train-and-test Args: tfds (tf.data.Dataset): Tf-dataset, that will be split into a train- and testset. test_frac (float): Fract Returns: [tf.data.Dataset, tf.data.Dataset, int, int]: Returns train and test datasets as well as the absolut sizes of the full and the train dataset. """ logger.warning( "This methods of data splitting does not gurantee same split on every machine.") full_ds_size = None if dataset_size == "auto": logger.warning( "dataset_size='auto': In order to calculate the size of the dataset, all " "samples will be loaded.") full_ds_size = get_tfds_size(tfds) elif isinstance(dataset_size, int): full_ds_size = dataset_size logger.info(f"Using following seed to shuffle data: {seed}") tfds = tfds.shuffle(buffer_size, reshuffle_each_iteration=False, seed=seed) train_ds_fraction = 1.0 - test_frac train_ds_size = int(train_ds_fraction * full_ds_size) logger.info(f"train dataset size: {train_ds_size}, val dataset size: " "{full_ds_size - train_ds_size}") train_dataset = tfds.take(train_ds_size) test_dataset = tfds.skip(train_ds_size) return train_dataset, test_dataset, full_ds_size, train_ds_size
9,747
def seconds_to_hms(seconds): """ Convert seconds to H:M:S format. Works for periods over 24H also. """ return datetime.timedelta(seconds=seconds)
9,748
def parse_args(args): """ Takes in the command-line arguments list (args), and returns a nice argparse result with fields for all the options. Borrows heavily from the argparse documentation examples: <http://docs.python.org/library/argparse.html> """ # The command line arguments start with the program name, which we don't # want to treat as an argument for argparse. So we remove it. args = args[1:] # Construct the parser (which is stored in parser) # Module docstring lives in __doc__ # See http://python-forum.com/pythonforum/viewtopic.php?f=3&t=36847 # And a formatter class so our examples in the docstring look good. Isn't it # convenient how we already wrapped it to 80 characters? # See http://docs.python.org/library/argparse.html#formatter-class parser = argparse.ArgumentParser(description=__doc__, formatter_class=argparse.RawDescriptionHelpFormatter) # Now add all the options to it parser.add_argument("fasta", type=str, help="name of the FASTA to read; must be indexable") parser.add_argument("-n", type=int, default=10000, help="the number of k-mers to count") parser.add_argument("-k", type=int, default=150, help="the length of each k-mer") parser.add_argument("--thread_count", type=int, default=multiprocessing.cpu_count(), help="number of k-mer counting threads to use") parser.add_argument("--batch_size", type=int, default=10000, help="number of forward-strand k-mer candidates to count in each batch") parser.add_argument("--bloom_error", type=float, default=1E-4, help="error rate on the bloom filter") return parser.parse_args(args)
9,749
def train(config): """Trains the model based on configuration settings Args: config: configurations for training the model """ tf.reset_default_graph() data = DataReader(config.directory, config.image_dims, config.batch_size, config.num_epochs, config.use_weights) train_data = data.train_batch(config.train_file) num_train_images = data.num_images test_data = data.test_batch(config.val_file) num_val_images = data.num_images # determine number of iterations based on number of images training_iterations = int(np.floor(num_train_images/config.batch_size)) validation_iterations = int(np.floor(num_val_images/config.batch_size)) # create iterators allowing us to switch between datasets handle = tf.placeholder(tf.string, shape=[]) iterator = tf.data.Iterator.from_string_handle(handle, train_data.output_types, train_data.output_shapes) next_element = iterator.get_next() training_iterator = train_data.make_initializable_iterator() val_iterator = test_data.make_initializable_iterator() # create placeholder for train or test train_network = tf.placeholder(tf.bool, []) # get images and pass into network image, label, weight = next_element drn = DRN(image, config.image_dims, config.batch_size, config.num_classes, train_network, config.network) # get predictions and logits prediction = drn.pred logits = drn.prob label = tf.squeeze(label, 3) # resize the logits using bilinear interpolation imsize = tf.constant([config.image_dims[0], config.image_dims[1]], dtype=tf.int32) logits = tf.image.resize_bilinear(logits, imsize) print('Resized shape is {}'.format(logits.get_shape())) prediction = tf.argmax(logits, 3) if config.loss == 'CE': if config.use_weights: label_one_hot = tf.one_hot(label, config.num_classes) loss = tf.nn.softmax_cross_entropy_with_logits(labels=label_one_hot, logits=logits) loss = loss*tf.squeeze(weight, 3) else: # use sparse with flattened labelmaps loss = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=label, logits=logits) loss = tf.reduce_mean(loss) elif config.loss == 'dice': loss = dice_loss(logits, label, config.num_classes, use_weights=config.use_weights) else: NameError("Loss must be specified as CE or DICE") # global step to keep track of iterations global_step = tf.Variable(0, trainable=False, name='global_step') # create placeholder for learning rate learning_rate = tf.placeholder(tf.float32, shape=[]) optimizer = tf.train.AdamOptimizer(learning_rate).minimize(loss, global_step) saver = tf.train.Saver(max_to_keep=3) init = tf.global_variables_initializer() with tf.Session() as sess: training_handle = sess.run(training_iterator.string_handle()) validation_handle = sess.run(val_iterator.string_handle()) sess.run(training_iterator.initializer) sess.run(init) ckpt = tf.train.get_checkpoint_state(config.logs) if ckpt and ckpt.model_checkpoint_path: saver.restore(sess, ckpt.model_checkpoint_path) print('Restoring session at step {}'.format(global_step.eval())) # if restoring saved checkpoint get last saved iteration so that correct # epoch can be restored iteration = global_step.eval() start_epoch = int(np.floor(iteration/training_iterations)) for current_epoch in range(start_epoch, config.num_epochs): train_loss = 0 for i in range(training_iterations): _, l = sess.run([optimizer, loss], feed_dict={handle:training_handle, learning_rate:config.learning_rate, train_network:True}) train_loss += l iteration = global_step.eval() sess.run(val_iterator.initializer) val_loss = 0 for i in range(validation_iterations): l, img, lbl, pred = sess.run([loss, image, label, prediction], feed_dict={handle:validation_handle, train_network:False}) val_loss += l # evaluate accuracy accuracy = jaccard(lbl, pred, config.num_classes) dice_score = dice(lbl, pred, config.num_classes) print('Train loss Epoch {} step {} :{}'.format(current_epoch, iteration, train_loss/training_iterations)) print('Validation loss Epoch {} step {} :{}'.format(current_epoch, iteration, val_loss/validation_iterations)) with open('loss.txt', 'a') as f: f.write("Epoch: {} Step: {} Loss: {}\n".format(current_epoch, iteration, train_loss/training_iterations)) saver.save(sess, config.logs + '/model.ckpt', global_step)
9,750
def test_sentry_middleware(db, clients, mocker, settings): """ Check that users are added to the Sentry context when the middleware is active. """ settings.MIDDLEWARE.append("creator.middleware.SentryMiddleware") client = clients.get("Administrators") mock = mocker.patch("sentry_sdk.set_user") client.get("health_check") assert mock.call_count == 1
9,751
def _add_spot_2d(image, ground_truth, voxel_size_yx, precomputed_gaussian): """Add a 2-d gaussian spot in an image. Parameters ---------- image : np.ndarray, np.uint A 2-d image with shape (y, x). ground_truth : np.ndarray Ground truth array with shape (nb_spots, 4). - coordinate_y - coordinate_x - sigma_yx - amplitude voxel_size_yx : int or float Size of a voxel on the yx plan, in nanometer. precomputed_gaussian : Tuple[np.ndarray] Tuple with one tables of precomputed values for the erf, with shape (nb_value, 2). One table per dimension. Returns ------- new_image : np.ndarray, np.uint A 2-d image with simulated spots and shape (y, x). """ # cast image original_dtype = image.dtype image = image.astype(np.float64) # compute reference spot shape max_sigma = max(ground_truth[:, 2]) radius_yx, _ = stack.get_radius( voxel_size_z=None, voxel_size_yx=voxel_size_yx, psf_z=None, psf_yx=max_sigma) radius_yx = np.ceil(radius_yx).astype(np.int64) yx_shape = radius_yx * 2 + 1 # build a grid to represent a spot image image_spot = np.zeros((yx_shape, yx_shape), dtype=np.uint8) grid = detection.initialize_grid( image_spot=image_spot, voxel_size_z=None, voxel_size_yx=voxel_size_yx, return_centroid=False) # pad image image_padded = np.pad(image, ((radius_yx, radius_yx), (radius_yx, radius_yx)), mode="constant") # loop over every spot for (coord_y, coord_x, sigma_yx, amp) in ground_truth: # simulate spot signal position_spot = np.asarray((radius_yx, radius_yx), dtype=np.int64) position_spot = np.ravel_multi_index( position_spot, dims=image_spot.shape) position_spot = list(grid[:, position_spot]) simulated_spot = detection.gaussian_2d( grid=grid, mu_y=position_spot[0], mu_x=position_spot[1], sigma_yx=sigma_yx, voxel_size_yx=voxel_size_yx, psf_amplitude=amp, psf_background=0, precomputed=precomputed_gaussian) simulated_spot = np.reshape(simulated_spot, image_spot.shape) # add spot coord_y_min = int(coord_y) coord_y_max = int(coord_y + 2 * radius_yx + 1) coord_x_min = int(coord_x) coord_x_max = int(coord_x + 2 * radius_yx + 1) image_padded[coord_y_min:coord_y_max, coord_x_min:coord_x_max] += simulated_spot # unpad image image = image_padded[radius_yx:-radius_yx, radius_yx:-radius_yx] image_raw = np.reshape(image, image.size) # sample Poisson distribution from gaussian values image_raw = np.random.poisson(lam=image_raw, size=image_raw.size) # reshape and cast image new_image = np.reshape(image_raw, image.shape) new_image = np.clip(new_image, 0, np.iinfo(original_dtype).max) new_image = new_image.astype(original_dtype) return new_image
9,752
def bing(text, bot): """<query> - returns the first bing search result for <query>""" api_key = bot.config.get("api_keys", {}).get("bing_azure") # handle NSFW show_nsfw = text.endswith(" nsfw") # remove "nsfw" from the input string after checking for it if show_nsfw: text = text[:-5].strip().lower() rating = NSFW_FILTER if show_nsfw else DEFAULT_FILTER if not api_key: return "Error: No Bing Azure API details." # why are these all differing formats and why does format have a $? ask microsoft params = { "Sources": bingify("web"), "Query": bingify(text), "Adult": bingify(rating), "$format": "json" } request = requests.get(API_URL, params=params, auth=(api_key, api_key)) # I'm not even going to pretend to know why results are in ['d']['results'][0] j = request.json()['d']['results'][0] if not j["Web"]: return "No results." result = j["Web"][0] # not entirely sure this even needs un-escaping, but it wont hurt to leave it in title = formatting.truncate(unescape(result["Title"]), 60) desc = formatting.truncate(unescape(result["Description"]), 150) url = unescape(result["Url"]) return colors.parse('{} -- $(b){}$(b): "{}"'.format(url, title, desc))
9,753
def single_length_RB( RB_number: int, RB_length: int, target: int = 0 ) -> List[List[str]]: """Given a length and number of repetitions it compiles Randomized Benchmarking sequences. Parameters ---------- RB_number : int The number of sequences to construct. RB_length : int The number of Cliffords in each individual sequence. target : int Index of the target qubit Returns ------- list List of RB sequences. """ S = [] for _ in range(RB_number): seq = np.random.choice(24, size=RB_length - 1) + 1 seq = np.append(seq, inverseC(seq)) seq_gates = [] for cliff_num in seq: g = [f"{c}[{target}]" for c in cliffords_decomp[cliff_num - 1]] seq_gates.extend(g) S.append(seq_gates) return S
9,754
def decode(text_file_abs_path, threshold=10): """ Decodes a text into a ciphertext. Parameters --------- text_file_abs_path: str Returns ------- ciphertext: str """ try: with open(text_file_abs_path, "rb") as f: text = f.read() except Exception: return None freq_limit = limit_freq_threshold(threshold) renamed_ciphertext = ''.join( MarkovToolbox.derive_first_letter_of_every_sentence(text)) ciphertext = revert_renamed_number(renamed_ciphertext, freq_limit) if threshold != 10: ciphertext = NumericalToolbox.change_base(ciphertext, threshold, 10, standard_formatting=False) return ciphertext
9,755
def pixelizenxncircregion(bmp: array, x: int, y: int, r: int, n: int): """Pixelize a circular region in a bitmap file by n Args: bmp : unsigned byte array with bmp format x, y, r: center (x, y) and radius r n : integer pixellation dimension n by n Returns: byref modified unsigned byte array """ b = pixelizenxn(bmp, n) c = _BMoffsethd for v in itercirclepartlineedge(r): x1, x2 = mirror(x, v[0]) y1, y2 = mirror(y, v[1]) bmp[c(bmp, x1, y1): c(bmp, x2, y1)], bmp[c(bmp, x1, y2): c(bmp,x2,y2)]= \ b[c(b, x1, y1): c(b, x2, y1)], b[c(b, x1, y2): c(b, x2, y2)]
9,756
def templatetag(parser, token): """ Outputs one of the bits used to compose template tags. Since the template system has no concept of "escaping", to display one of the bits used in template tags, you must use the ``{% templatetag %}`` tag. The argument tells which template bit to output: ================== ======= Argument Outputs ================== ======= ``openblock`` ``{%`` ``closeblock`` ``%}`` ``openvariable`` ``{{`` ``closevariable`` ``}}`` ``openbrace`` ``{`` ``closebrace`` ``}`` ``opencomment`` ``{#`` ``closecomment`` ``#}`` ================== ======= """ # token.split_contents() isn't useful here because this tag doesn't accept variable as arguments bits = token.contents.split() if len(bits) != 2: raise TemplateSyntaxError("'templatetag' statement takes one argument") tag = bits[1] if tag not in TemplateTagNode.mapping: raise TemplateSyntaxError("Invalid templatetag argument: '%s'." " Must be one of: %s" % (tag, list(TemplateTagNode.mapping))) return TemplateTagNode(tag)
9,757
def create_test_folder(df_test, target_path): """Create test set in the target folder Parameters: df_test -- dataframe that contains all the test set details ('patient_id', 'filename', 'class', 'data_source') target_path -- path to the new dataset folder """ folder_path = os.path.join(target_path, 'xray_preprocess/test') print(f'Create test set at: {folder_path}') for _, row in tqdm(df_test.iterrows(), total=df_test.shape[0]): if row['class']=='negative': destination_path = os.path.join(folder_path, 'negative') elif row['class']=='positive': destination_path = os.path.join(folder_path, 'positive') if not os.path.exists(destination_path): os.makedirs(destination_path) img = os.path.join(target_path, 'xray', 'test', row['filename']) shutil.copy(img, destination_path )
9,758
def reflected_phase_curve(phases, omega, g, a_rp): """ Reflected light phase curve for a homogeneous sphere by Heng, Morris & Kitzmann (2021). Parameters ---------- phases : `~np.ndarray` Orbital phases of each observation defined on (0, 1) omega : tensor-like Single-scattering albedo as defined in g : tensor-like Scattering asymmetry factor, ranges from (-1, 1). a_rp : float, tensor-like Semimajor axis scaled by the planetary radius Returns ------- flux_ratio_ppm : tensor-like Flux ratio between the reflected planetary flux and the stellar flux in units of ppm. A_g : tensor-like Geometric albedo derived for the planet given {omega, g}. q : tensor-like Integral phase function """ # Convert orbital phase on (0, 1) to "alpha" on (0, np.pi) alpha = jnp.asarray(2 * np.pi * phases - np.pi) abs_alpha = jnp.abs(alpha) alpha_sort_order = jnp.argsort(alpha) sin_abs_sort_alpha = jnp.sin(abs_alpha[alpha_sort_order]) sort_alpha = alpha[alpha_sort_order] gamma = jnp.sqrt(1 - omega) eps = (1 - gamma) / (1 + gamma) # Equation 34 for Henyey-Greestein P_star = (1 - g ** 2) / (1 + g ** 2 + 2 * g * jnp.cos(alpha)) ** 1.5 # Equation 36 P_0 = (1 - g) / (1 + g) ** 2 # Equation 10: Rho_S = P_star - 1 + 0.25 * ((1 + eps) * (2 - eps)) ** 2 Rho_S_0 = P_0 - 1 + 0.25 * ((1 + eps) * (2 - eps)) ** 2 Rho_L = 0.5 * eps * (2 - eps) * (1 + eps) ** 2 Rho_C = eps ** 2 * (1 + eps) ** 2 alpha_plus = jnp.sin(abs_alpha / 2) + jnp.cos(abs_alpha / 2) alpha_minus = jnp.sin(abs_alpha / 2) - jnp.cos(abs_alpha / 2) # Equation 11: Psi_0 = jnp.where( (alpha_plus > -1) & (alpha_minus < 1), jnp.log((1 + alpha_minus) * (alpha_plus - 1) / (1 + alpha_plus) / (1 - alpha_minus)), 0 ) Psi_S = 1 - 0.5 * (jnp.cos(abs_alpha / 2) - 1.0 / jnp.cos(abs_alpha / 2)) * Psi_0 Psi_L = (jnp.sin(abs_alpha) + (np.pi - abs_alpha) * jnp.cos(abs_alpha)) / np.pi Psi_C = (-1 + 5 / 3 * jnp.cos(abs_alpha / 2) ** 2 - 0.5 * jnp.tan(abs_alpha / 2) * jnp.sin(abs_alpha / 2) ** 3 * Psi_0) # Equation 8: A_g = omega / 8 * (P_0 - 1) + eps / 2 + eps ** 2 / 6 + eps ** 3 / 24 # Equation 9: Psi = ((12 * Rho_S * Psi_S + 16 * Rho_L * Psi_L + 9 * Rho_C * Psi_C) / (12 * Rho_S_0 + 16 * Rho_L + 6 * Rho_C)) flux_ratio_ppm = 1e6 * (a_rp ** -2 * A_g * Psi) q = _integral_phase_function( Psi, sin_abs_sort_alpha, sort_alpha, alpha_sort_order ) return flux_ratio_ppm, A_g, q
9,759
def train_single_span(config: TrainConfig) -> None: """Train a single span edge probing model. Trains the model until either a maximum number of evaluations or a maximum number of evaluations without improvement is reached. Furthermore the learning rate can be halved if the model does not improve for a certain number of evaluations. Args: config: configuration specifying the train parameters. Returns: None """ print("Training the model") lr: int = config.lr eval: int = 0 counter: int = 0 start_index: int = 1 # Train until one of the stop conditions is True. while True: config.model.train() loop: tqdm.notebook.tqdm_notebook = tqdm.tqdm_notebook(config.train_data) # Run through one epoch. for i, (xb, span1s, targets) in enumerate(loop, start_index): config.optimizer.zero_grad() output = config.model( input_ids=xb.to(config.dev), span1s=span1s.to(config.dev) ) batch_loss = config.loss_func(output, targets.to(config.dev)) batch_loss.backward() nn.utils.clip_grad_norm_(config.model.parameters(), 5.0) config.optimizer.step() # Evaluate the model after each eval_interval. if i % config.eval_interval == 0: print(f"Training run {eval+1} finished") loss: float = eval_single_span(config.val_data, config.model, config.loss_func, dev=config.dev) print(f"Loss: {loss}") eval += 1 # Check if the model has improved. if eval == 1: min_loss: float = loss if loss < min_loss: min_loss = loss counter = 0 else: counter += 1 # Check if training is finished. if config.max_evals is not None and eval >= config.max_evals: break elif counter >= config.patience: break elif counter % config.patience_lr == 0 and counter > 0: lr = lr/2 print(f"No improvement for {config.patience_lr} epochs, halving the learning rate to {lr}") for g in config.optimizer.param_groups: g['lr'] = lr # If inner loop did not break start another epoch. else: start_index = i % config.eval_interval continue # If inner loop did break. break print("Training is finished")
9,760
def costspec( currencies: list[str] = ["USD"], ) -> s.SearchStrategy[pos.CostSpec]: """Generates a random CostSpec. Args: currencies: An optional list of currencies to select from. Returns: A new search strategy. """ return s.builds(pos.CostSpec, currency=common.currency(currencies))
9,761
def send_approved_mail(request, user): """ Sends an email to a user once their ``is_active`` status goes from ``False`` to ``True`` when the ``ACCOUNTS_APPROVAL_REQUIRED`` setting is ``True``. """ context = {"request": request, "user": user} subject = subject_template("email/account_approved_subject.txt", context) send_mail_template(subject, "email/account_approved", settings.DEFAULT_FROM_EMAIL, user.email, context=context)
9,762
def test_init_3(rate_sim_3): """Test initialization with true rank arguments.""" desired_n_sequence = 4 desired_max_timestep = 2 desired_stimulus_set = np.array( [ [ [3, 1], [3, 1] ], [ [9, 12], [0, 0] ], [ [3, 4], [3, 4] ], [ [3, 4], [3, 4] ] ], dtype=np.int32 ) desired_n_timestep = np.array([2, 1, 2, 2], dtype=np.int32) assert rate_sim_3.n_sequence == desired_n_sequence assert rate_sim_3.max_timestep == desired_max_timestep np.testing.assert_array_equal( desired_stimulus_set, rate_sim_3.stimulus_set ) np.testing.assert_array_equal( desired_n_timestep, rate_sim_3.n_timestep )
9,763
def get_gene_names_conversion(): """Get the compressed file containing two-way mappings of gene_id to gene_symbol""" with gzip.open( os.path.join( current_app.config["FIVEX_DATA_DIR"], "gene.id.symbol.map.json.gz", ), "rt", ) as f: return json.loads(f.read())
9,764
def _process_input(data, context): """ Pre-process request input before it is sent to TensorFlow Serving REST API Args: data (obj): the request data stream context (Context): an object containing request and configuration details Returns: (dict): a JSON-serializable dict that contains request body and headers """ read_data = data.read() # endpoint API if context.request_content_type == 'application/json': # read as numpy array image_np = np.asarray(json.loads(read_data)).astype(np.dtype('uint8')) image_np = np.array(Image.fromarray(image_np).resize((INPUT_HEIGHT,INPUT_WIDTH))) # batch transform of jpegs elif context.request_content_type == 'application/x-image': # load image from bytes and resize image_from_bytes = Image.open(BytesIO(read_data)).convert('RGB') image_from_bytes = image_from_bytes.resize((INPUT_HEIGHT,INPUT_WIDTH)) image_np = np.array(image_from_bytes) # batch transform of tfrecord elif context.request_content_type == 'application/x-tfexample': example = tf.train.Example() example.ParseFromString(read_data) example_feature = MessageToDict(example.features) image_encoded = str.encode(example_feature['feature']['image']['bytesList']['value'][0]) image_b64 = base64.decodebytes(image_encoded) image_np = np.frombuffer(image_b64, dtype=np.dtype('uint8')).reshape(32,32,3) image_np = np.array(Image.fromarray(image_np).resize((INPUT_HEIGHT,INPUT_WIDTH))) # raise error if content type is not supported else: print("") _return_error(415, 'Unsupported content type "{}"'.format( context.request_content_type or 'Unknown')) # preprocess for resnet50 image_np = tf.keras.applications.resnet_v2.preprocess_input(image_np) # json serialize data_np_json = {"instances": [image_np.tolist()]} data_np_json_serialized = json.dumps(data_np_json) return data_np_json_serialized
9,765
def similarity_matrix_2d(X, Y, metric='cos'): """ Calculate similarity matrix Parameters: X: ndarray input matrix 1 Y: ndarray input matrix 2 distFunc: function distance function Returns: result: ndarray similarity matrix """ n_X = len(X) n_Y = len(Y) if metric == 'cos': dist_func = cos_dist_2d elif metric == 'euclid': dist_func = euclid_dist_2d elif metric == 'mahal': dist_func = mahal_dist_2d else: dist_func = cos_dist_2d #SM = sp.zeros((nX, nY)) SM = [map(dist_func, n_X * [X[i]], Y) for i in xrange(n_X)] #for i in xrange(nX): # SM.append(map(distFunc, nX * [X[i]], Y)) SM = sp.array(SM) return SM
9,766
def issue_list_with_tag(request, tag=None, sortorder=None): """ For a tag. display list of issues """ if tag: stag = "\"%s\"" % tag issues = Issue.tagged.with_any(stag) tag_cloud = [] if issues: tag_cloud = get_tagcloud_issues(issues) issues = issues.filter(is_draft=False) return issue_list( request, issues=issues, sortorder=sortorder, min_tv=1, subset=True, extra_context = { 'selected_tag' : tag, 'issue_tags' : tag_cloud, 'sort_url' : reverse('issue_with_tag', args=[tag,]), }) else: return issue_list(request)
9,767
def update_deal(id, deal_dict): """ Runs local validation on the given dict and gives passing ones to the API to update """ if utils.validate_deal_dict(utils.UPDATE, deal_dict, skip_id=True): resp = utils.request(utils.UPDATE, 'deals', {'id': id}, data=deal_dict) return utils.parse(resp) else: # validation failed but the exception was suppressed pass
9,768
def plot_tilt_hist(series, ntile: str, group_name: str, extra_space: bool = True): """ Plots the histogram group tilts for a single ntile :param series: frame containing the avg tilts, columns: group, index: pd.Period :param ntile: the Ntile we are plotting for :param group_name: the name of the group :return: None """ if extra_space: fig, ax = plt.subplots(1, 2, figsize=LARGE_FIGSIZE) else: _, ax = plt.subplots(1, 1, figsize=(4.5, 4.5)) title = 'Weight Relative to Universe' if 'Ntile' in group_name else 'Group Exposure' plotter_frame = series.to_frame('weight') plotter_frame['colors'] = [TILTS_COLOR_MAP(i) for i in np.linspace(0, 1, len(series))] plotter_frame = plotter_frame.sort_values('weight') ax[0].barh(plotter_frame.index.tolist(), plotter_frame['weight'].tolist(), align='center', color=plotter_frame['colors'].tolist()) ax[0].set(title=f'{ntile}, {group_name}'.title(), ylabel='Group', xlabel=title) ax[0].axvline(0, linestyle='-', color='black', lw=1) if extra_space: return ax[1] plt.show()
9,769
def test_oef_serialization_description(): """Testing the serialization of the OEF.""" foo_datamodel = DataModel("foo", [Attribute("bar", int, True, "A bar attribute.")]) desc = Description({"bar": 1}, data_model=foo_datamodel) msg = OefSearchMessage( performative=OefSearchMessage.Performative.REGISTER_SERVICE, dialogue_reference=(str(1), ""), service_description=desc, ) msg_bytes = OefSearchSerializer().encode(msg) assert len(msg_bytes) > 0 recovered_msg = OefSearchSerializer().decode(msg_bytes) assert recovered_msg == msg
9,770
def get_constraints_for_x(cell, board): """ Get the constraints for a given cell cell @param cell Class instance of Variable; a cell of the Sudoku board @param board @return Number of constraints """ nconstraints = 0 # Row for cellj in board[cell.row][:cell.col]: if cellj.get_domain_size() > 1: nconstraints += 1 for cellj in board[cell.row][cell.col+1:]: if cellj.get_domain_size() > 1: nconstraints += 1 # Col for irow in range(cell.row): if board[irow][cell.col].get_domain_size() > 1: nconstraints += 1 for irow in range(cell.row+1, cell.max_domain_val): if board[irow][cell.col].get_domain_size() > 1: nconstraints += 1 # .. This would not generalize to a new board, but leave for now ibox_row = int(cell.row/3) * 3 ibox_col = int(cell.col/3) * 3 if board[ibox_row+1][ibox_col+1].get_domain_size() > 1 \ or board[ibox_row+1][ibox_col+2].get_domain_size() > 1 \ or board[ibox_row+2][ibox_col+1].get_domain_size() > 1 \ or board[ibox_row+2][ibox_col+2].get_domain_size() > 1: nconstraints += 1 return nconstraints
9,771
def average(values): """Computes the arithmetic mean of a list of numbers. >>> print average([20, 30, 70]) 40.0 """ try: return stats.mean(values) except ZeroDivisionError: return None
9,772
def get_subgraph_pos(G, pos): """ Returns the filtered positions for subgraph G. If subgraph = original graph then pos will be returned. Parameters ---------- G : nx.Graph A graph object. Pos : dict A dictionary with nodes as keys and positions as values. Example ------- >>> pos = nx.spring_layout(G) >>> subgraph_nodes = ['1','2','3'] >>> subgraph = G.subgraph(subgraph_nodes) >>> subgraph_positions = get_subgraph_pos(subgraph,pos) Returns ------- dict Assuming positions were generated earlier for a larger graph with some layout algorithm this functions returns the filtered positions by the subgraph. """ return {k: v for k, v in pos.items() if k in G.nodes()}
9,773
def _calculateWindowPosition(screenGeometry, iconGeometry, windowWidth, windowHeight): """ Calculate window position near-by the system tray using geometry of a system tray and window geometry @param screenGeometry: geometry of the screen where system tray is located @type screenGeometry: QRect @param iconGeometry: geometry of the system tray icon in screen coordinates @type iconGeometry: QRect @param windowWidth: width of the main window @type windowWidth: int @param windowHeight: height of the main window including header @type windowHeight: int @return: coordinates for main window positioning @rtype: QPoint """ possibleWindowPositions = { LEFT: { 'x': iconGeometry.x() + iconGeometry.width(), 'y': iconGeometry.y() + iconGeometry.height() / 2 - windowHeight / 2 }, BOTTOM: { 'x': iconGeometry.x() + iconGeometry.width() / 2 - windowWidth / 2, 'y': iconGeometry.y() - windowHeight }, RIGHT: { 'x': iconGeometry.x() - windowWidth, 'y': iconGeometry.y() + iconGeometry.height() / 2 - windowHeight / 2 }, TOP: { 'x': iconGeometry.x() + iconGeometry.width() / 2 - windowWidth / 2, 'y': iconGeometry.y() + iconGeometry.height() }, } position = possibleWindowPositions[_guessTrayPosition(screenGeometry, iconGeometry)] return QPoint(position['x'], position['y'])
9,774
def build_from_config(config: dict, name: str) -> HomingMotor: """Build the named HomingMotor from data found in config""" def check_for_key(key, cfg): if key not in cfg: raise RuntimeError('Key "{}" for HomingMotor "{}" not found.'.format(key, name)) else: return cfg[key] if name not in config: raise RuntimeError('Config for HomingMotor "{}" not found.'.format(name)) my_config = config[name] inverted = check_for_key('inverted', my_config) max_steps = check_for_key('max_steps', my_config) name = check_for_key('name', my_config) pulse_delay = float(check_for_key('pulse_delay', my_config)) sensor = check_for_key('sensor', my_config) stepper = check_for_key('stepper', my_config) dir_pin = int(check_for_key("dir_pin", stepper)) ms1_pin = int(check_for_key("ms1_pin", stepper)) ms2_pin = int(check_for_key("ms2_pin", stepper)) ms3_pin = int(check_for_key("ms3_pin", stepper)) step_pin = int(check_for_key("step_pin", stepper)) step_size = int(check_for_key("step_size", stepper)) input_pin = int(check_for_key('input_pin', sensor)) m = build(name, dir_pin, step_pin, ms1_pin, ms2_pin, ms3_pin, input_pin, max_steps, inverted, pulse_delay) m.set_step_size(step_size) # print('{} built from config OK'.format(m.get_name())) return m
9,775
def arg_return_greetings(name): """ This is greeting function with arguments and return greeting message :param name: :return: """ message = F"hello {name}" return message
9,776
def basic_usage(card_id: str, parent: Any = None): """Basic usage of the application, minus the card recognition bits""" data = pull_card_data(card_id) qt_window = Card(parent, data) qt_window.setWindowTitle("YGO Scanner") qt_window.show() return qt_window
9,777
async def test_bad_requests(request_path, request_params, aiohttp_client): """Test request paths that should be filtered.""" app = web.Application() app.router.add_get("/{all:.*}", mock_handler) setup_security_filter(app) mock_api_client = await aiohttp_client(app) resp = await mock_api_client.get(request_path, params=request_params) assert resp.status == 400
9,778
def get_abi( contract_sources: Dict[str, str], allow_paths: Optional[str] = None, remappings: Optional[list] = None, silent: bool = True, ) -> Dict: """ Generate ABIs from contract interfaces. Arguments --------- contract_sources : dict a dictionary in the form of {'path': "source code"} allow_paths : str, optional Compiler allowed filesystem import path remappings : list, optional List of solidity path remappings silent : bool, optional Disable verbose reporting Returns ------- dict Compiled ABIs in the format `{'contractName': [ABI]}` """ final_output = { Path(k).stem: { "abi": json.loads(v), "contractName": Path(k).stem, "type": "interface", "sha1": sha1(v.encode()).hexdigest(), } for k, v in contract_sources.items() if Path(k).suffix == ".json" } for path, source in [(k, v) for k, v in contract_sources.items() if Path(k).suffix == ".vy"]: input_json = generate_input_json({path: source}, language="Vyper") input_json["settings"]["outputSelection"]["*"] = {"*": ["abi"]} try: output_json = compile_from_input_json(input_json, silent, allow_paths) except Exception: # vyper interfaces do not convert to ABIs # https://github.com/vyperlang/vyper/issues/1944 continue name = Path(path).stem final_output[name] = { "abi": output_json["contracts"][path][name]["abi"], "contractName": name, "type": "interface", "sha1": sha1(contract_sources[path].encode()).hexdigest(), } solc_sources = {k: v for k, v in contract_sources.items() if Path(k).suffix == ".sol"} if solc_sources: compiler_targets = find_solc_versions(solc_sources, install_needed=True, silent=silent) for version, path_list in compiler_targets.items(): to_compile = {k: v for k, v in contract_sources.items() if k in path_list} set_solc_version(version) input_json = generate_input_json( to_compile, language="Vyper" if version == "vyper" else "Solidity", remappings=remappings, ) input_json["settings"]["outputSelection"]["*"] = {"*": ["abi"]} output_json = compile_from_input_json(input_json, silent, allow_paths) output_json = {k: v for k, v in output_json["contracts"].items() if k in path_list} final_output.update( { name: { "abi": data["abi"], "contractName": name, "type": "interface", "sha1": sha1(contract_sources[path].encode()).hexdigest(), } for path, v in output_json.items() for name, data in v.items() } ) return final_output
9,779
def init_layer_linear_quant_params(quantizer, original_model, layer_name, init_mode=ClipMode.NONE, init_method='Powell', eval_fn=None, search_clipping=False): """ Initializes a layer's linear quant parameters. This is done to set the scipy.optimize.minimize initial guess. Args: quantizer (PostTrainLinearQuantizer): the quantizer, **after** calling prepare model. original_model (nn.Module): the original, pre-quantized, model. layer_name (str): the name of the layer. init_mode (ClipMode or callable or str): the initialization mode. If ClipMode, the initialization will be according to the respective ClipMode. If callable - init_mode will be treated as a loss function between the activations pre and post-quantization, and the initialization process will attempt to find the minimum of that loss function. E.g. if l1_loss has been passed, the initialization vector will be scale, zero_point = argmin_{s, zp} (l1_loss(layer(input), q_layer(input; s, zp))) If str - the mode will be chosen from a list of options. The options are: [NONE, AVG, LAPLACE, GAUSS, L1, L2 ,L3]. Defaults to ClipMode.NONE init_method (str or callable): applicable only in the case of init_mode = 'L1/2/3' or callable. chooses the minimization method for finding the local argmin_{s, zp}. Defaults to 'Powell' eval_fn: evaluation function for the model. Assumed it has a signature of the form `eval_fn(model)->float`. this is the function to be minimized by the optimization algorithm. applicable only in the case of init_mode = 'L1/2/3' or callable. search_clipping (bool): if set, optimize clipping values, otherwise optimize scale factor """ denorm_layer_name = distiller.denormalize_module_name(quantizer.model, layer_name) msglogger.info(denorm_layer_name) if isinstance(init_mode, str): init_mode = _init_mode_from_str(init_mode) layer = dict(original_model.named_modules())[layer_name] local_args, local_kwargs = quantizer.modules_processed_args[denorm_layer_name] if isinstance(init_mode, ClipMode): local_kwargs['clip_acts'] = init_mode replace_fn = quantizer.replacement_factory.get(type(layer), quantizer.default_repalcement_fn) quantized_layer = replace_fn(deepcopy(layer), *local_args, **local_kwargs).eval() if not is_post_train_quant_wrapper(quantized_layer, False): # the module wasn't quantized, nothing to do here return if callable(init_mode): input_for_layer = get_input_for_layer(original_model, layer_name, eval_fn) quantized_layer = optimize_for_layer(layer, quantized_layer, init_mode, input_for_layer, init_method, search_clipping=search_clipping) distiller.model_setattr(quantizer.model, denorm_layer_name, quantized_layer) quantizer.model.eval()
9,780
def predict(w , b , X ): """ 使用学习逻辑回归参数logistic (w,b)预测标签是0还是1, 参数: w - 权重,大小不等的数组(num_px * num_px * 3,1) b - 偏差,一个标量 X - 维度为(num_px * num_px * 3,训练数据的数量)的数据 返回: Y_prediction - 包含X中所有图片的所有预测【0 | 1】的一个numpy数组(向量) """ m = X.shape[1] #图片的数量 Y_prediction = np.zeros((1,m)) w = w.reshape(X.shape[0],1) #计预测猫在图片中出现的概率 A = sigmoid(np.dot(w.T , X) + b) for i in range(A.shape[1]): #将概率a [0,i]转换为实际预测p [0,i] Y_prediction[0,i] = 1 if A[0,i] > 0.5 else 0 #使用断言 assert(Y_prediction.shape == (1,m)) return Y_prediction
9,781
def delta_C(parcels_old, parcels_new, normed=False): """ Compute the number of vertices that change connected component from old parcellation to new parcellation. Parameters: - - - - - parcels_old : dictionary old connected component sample assignments parcels_new : dictionary new connected component sample assignments Returns: - - - - deltaC : int number of vertices that changed label """ new = set(map(len, parcels_new.values())) old = set(map(len, parcels_old.values())) deltaC = np.int32(list(new.difference(old))).sum() if normed: deltaC = deltaC / np.sum(list(new)) return deltaC
9,782
def increment(number): """Increases a given number by 1""" return number + 1
9,783
def get_recent_added_companies(parser, token): """ Gets any number of the recent added comapnies. Syntax:: {% get_recent_added_companies [limit] as [var_name] %} """ return base_tag(parser, token, RecentCreatedCompanies)
9,784
def search_data(templates, pols, matched_pols=False, reverse_nesting=False, flatten=False): """ Glob-parse data templates to search for data files. Parameters ---------- templates : str or list A glob-parsable search string, or list of such strings, with a {pol} spot for string formatting. Ex. ["zen.even.{pol}.LST.*.HH.uv"] pols : str or list A polarization string, or list of polarization strings, to search for. Ex. ["xx", "yy"] matched_pols : boolean If True, only use datafiles that are present for all polarizations. reverse_nesting : boolean If True, flip the nesting of datafiles to be datafile-polarization. By default, the output is polarization-datafile. flatten : boolean If True, flatten the nested output datafiles to a single hierarchy. Returns ------- datafiles : list A nested list of paths to datafiles. By default, the structure is polarization-datafile nesting. If reverse_nesting, then the structure is flipped to datafile-polarization structure. datapols : list List of polarizations for each file in datafile """ # type check if isinstance(templates, (str, np.str)): templates = [templates] if isinstance(pols, (str, np.str, np.integer, int)): pols = [pols] # search for datafiles datafiles = [] datapols = [] for pol in pols: dps = [] dfs = [] for template in templates: _dfs = glob.glob(template.format(pol=pol)) if len(_dfs) > 0: dfs.extend(_dfs) dps.extend([pol for df in _dfs]) if len(dfs) > 0: datafiles.append(sorted(dfs)) datapols.append(dps) # get unique files allfiles = [item for sublist in datafiles for item in sublist] allpols = [item for sublist in datapols for item in sublist] unique_files = set() for _file in allfiles: for pol in pols: if ".{pol}.".format(pol=pol) in _file: unique_files.update(set([_file.replace(".{pol}.".format(pol=pol), ".{pol}.")])) break unique_files = sorted(unique_files) # check for unique files with all pols if matched_pols: Npols = len(pols) _templates = [] for _file in unique_files: goodfile = True for pol in pols: if _file.format(pol=pol) not in allfiles: goodfile = False if goodfile: _templates.append(_file) # achieve goal by calling search_data with new _templates that are polarization matched datafiles, datapols = search_data(_templates, pols, matched_pols=False, reverse_nesting=False) # reverse nesting if desired if reverse_nesting: datafiles = [] datapols = [] for _file in unique_files: dfs = [] dps = [] for pol in pols: df = _file.format(pol=pol) if df in allfiles: dfs.append(df) dps.append(pol) datafiles.append(dfs) datapols.append(dps) # flatten if flatten: datafiles = [item for sublist in datafiles for item in sublist] datapols = [item for sublist in datapols for item in sublist] return datafiles, datapols
9,785
def normalize_word(word): """ :type word: str :rtype: str """ acronym_pattern = r'^(?:[A-Z]\.)+$' if re.match(pattern=acronym_pattern, string=word): word = word.replace('.', '') if word.lower() in _REPLACE_WORDS: replacement = _REPLACE_WORDS[word.lower()] if word.islower(): return replacement.lower() elif word.isupper(): return replacement.upper() elif word[0].isupper() and word[1:].islower(): return replacement.capitalize() else: return replacement else: return word
9,786
def _ggm_qsize_prob_gt_0_whitt_5_2(arr_rate, svc_rate, c, ca2, cs2): """ Return the approximate P(Q>0) in G/G/m queue using Whitt's simple approximation involving rho and P(W>0). This approximation is exact for M/M/m and has strong theoretical support for GI/M/m. It's described by Whitt as "crude" but is "a useful quick approximation". See Section 5 of Whitt, Ward. "Approximations for the GI/G/m queue" Production and Operations Management 2, 2 (Spring 1993): 114-161. In particular, this is Equation 5.2. Parameters ---------- arr_rate : float average arrival rate to queueing system svc_rate : float average service rate (each server). 1/svc_rate is mean service time. c : int number of servers cv2_svc_time : float squared coefficient of variation for service time distribution Returns ------- float ~ P(Q > 0) """ rho = arr_rate / (svc_rate * float(c)) pdelay = ggm_prob_wait_whitt(arr_rate, svc_rate, c, ca2, cs2) prob_gt_0 = rho * pdelay return prob_gt_0
9,787
def pds3_label_gen_date(file): """Returns the creation date of a given PDS3 label. :param path: File path :type path: str :return: Creation date :rtype: str """ generation_date = "N/A" with open(file, "r") as f: for line in f: if "PRODUCT_CREATION_TIME" in line: generation_date = line.split("=")[1].strip() return generation_date
9,788
def harmony(*args): """ Takes an arbitrary number of floats and prints their harmonic medium value. Calculation is done with formula: number_of_args \ (1 \ item1 + 1 \ item2 + ...) Args: *args (tuple): number of arguments with a type: float, integer Returns: float: harmonic medium value """ result = 0 if 0 in args: return 0.0 for item in args: result += 1 / item return len(args) / result
9,789
def node_gdf_from_graph(G, crs = 'epsg:4326', attr_list = None, geometry_tag = 'geometry', xCol='x', yCol='y'): """ Function for generating GeoDataFrame from Graph :param G: a graph object G :param crs: projection of format {'init' :'epsg:4326'}. Defaults to WGS84. note: here we are defining the crs of the input geometry - we do NOT reproject to this crs. To reproject, consider using geopandas' to_crs method on the returned gdf. :param attr_list: list of the keys which you want to be moved over to the GeoDataFrame, if not all. Defaults to None, which will move all. :param geometry_tag: specify geometry attribute of graph, default 'geometry' :param xCol: if no shapely geometry but Longitude present, assign here :param yCol: if no shapely geometry but Latitude present, assign here :returns: a geodataframe of the node objects in the graph """ nodes = [] keys = [] # finds all of the attributes if attr_list is None: for u, data in G.nodes(data = True): keys.append(list(data.keys())) flatten = lambda l: [item for sublist in l for item in sublist] attr_list = list(set(flatten(keys))) if geometry_tag in attr_list: non_geom_attr_list = attr_list non_geom_attr_list.remove(geometry_tag) else: non_geom_attr_list = attr_list if 'node_ID' in attr_list: non_geom_attr_list = attr_list non_geom_attr_list.remove('node_ID') z = 0 for u, data in G.nodes(data = True): if geometry_tag not in attr_list and xCol in attr_list and yCol in attr_list : try: new_column_info = { 'node_ID': u, 'geometry': Point(data[xCol], data[yCol]), 'x': data[xCol], 'y': data[yCol]} except: print('Skipped due to missing geometry data:',(u, data)) else: try: new_column_info = { 'node_ID': u, 'geometry': data[geometry_tag], 'x':data[geometry_tag].x, 'y':data[geometry_tag].y} except: print((u, data)) for i in non_geom_attr_list: try: new_column_info[i] = data[i] except: pass nodes.append(new_column_info) z += 1 nodes_df = pd.DataFrame(nodes) nodes_df = nodes_df[['node_ID', *non_geom_attr_list, geometry_tag]] nodes_df = nodes_df.drop_duplicates(subset = ['node_ID'], keep = 'first') nodes_gdf = gpd.GeoDataFrame(nodes_df, geometry = nodes_df.geometry, crs = crs) return nodes_gdf
9,790
def views(): """ Used for the creation of Orientation objects with `Orientations.from_view_up` """ return [[1, 0, 0], [2, 0, 0], [-1, 0, 0]]
9,791
def savePlot(widget, default_file_type, old_file_path=None): """Saves a plot in the specified file format. :param widget: graphics widget. :param default_file_type: default save file type. :param old_file_path: file path from a previous save operation. :return: returns file path, returns empty string or old file path when user cancels save. """ gr_file_types = {**gr.PRINT_TYPE, **gr.GRAPHIC_TYPE} save_types = ";;".join(sorted(set(gr_file_types.values()))) default_file = 'untitled' if old_file_path: default_file = path.splitext(old_file_path)[0] file_path, _ = QFileDialog.getSaveFileName(None, 'Save as...', default_file, filter=save_types, initialFilter=default_file_type) if not file_path: return "" if not old_file_path else old_file_path file_ext = path.splitext(file_path)[1] if file_ext.lower()[1:] in gr_file_types: widget.save(file_path) else: raise TypeError("Unsupported file format {}".format(file_ext)) return file_path
9,792
def check_closed(f): """Decorator that checks if connection/cursor is closed.""" def g(self, *args, **kwargs): if self.closed: raise exceptions.Error(f'{self.__class__.__name__} already closed') return f(self, *args, **kwargs) return g
9,793
def generate_glove_vecs(revs): """ This function generates GloVe vectors based on the training data. This function can be more optimized in future. :return: A dictionary containing words as keys and their GloVe vectors as the corresponding values. :rtype: dict """ os.chdir("GloVe") subprocess.call(['python3', 'setup.py', 'cythonize']) os.system("pip3 install -e .") os.chdir("..") example.main_ex(revs) word_vectors = pickle.load(open("glove.model", "rb"))["words_and_vectors"] return word_vectors
9,794
def test_valid_nym_with_fees(fees, helpers, nodeSetWithIntegratedTokenPlugin, sdk_wallet_steward, address_main, sdk_pool_handle, sdk_wallet_trustee, mint_tokens, looper): """ Steps: 1. Checks that nym with fees will be rejected, because fees are not set 2. Send auth_rule txn with fees in metadata 3. Resend nym with fees and check, that it will be stored """ current_amount = get_amount_from_token_txn(mint_tokens) seq_no = 1 with pytest.raises(RequestRejectedException, match="Fees are not required for this txn type"): current_amount, seq_no, _ = send_and_check_nym_with_fees(helpers, {FEES: fees}, seq_no, looper, [address_main], current_amount) helpers.general.do_set_fees(fees, fill_auth_map=False) original_action = add_new_identity_owner original_constraint = auth_map.get(add_new_identity_owner.get_action_id()) original_constraint.set_metadata({'fees': NYM_FEES_ALIAS}) sdk_send_and_check_auth_rule_request(looper, sdk_pool_handle, sdk_wallet_trustee, auth_action=ADD_PREFIX, auth_type=NYM, field=original_action.field, new_value=original_action.value, old_value=None, constraint=original_constraint.as_dict) current_amount, seq_no, _ = send_and_check_nym_with_fees(helpers, {FEES: fees}, seq_no, looper, [address_main], current_amount) ensure_all_nodes_have_same_data(looper, nodeSetWithIntegratedTokenPlugin)
9,795
def poll_input_files(): """ Polls the specified input folder for any new files. This is done by tracking the difference in results. This could be faster by leveraging the WIN32 FileChangeAPI, but this code aims to be more cross-platform and easier to digest. """ global POLL_DELAY global INITIAL_FILE_LIST newFiles = dict ([(f, None) for f in os.listdir (INPUT_FILE_LOCATION)]) added = [f for f in newFiles if not f in INITIAL_FILE_LIST] if added: POLL_DELAY = 0.25 listOfAdded = ", ".join(added) logging.info(f"Found: {listOfAdded}") compute_results(added[0]) INITIAL_FILE_LIST = newFiles
9,796
def get_diff_comparison_score(git_commit, review_url, git_checkout_path, cc): # pragma: no cover """Reads the diff for a specified commit Args: git_commit(str): a commit hash review_url(str): a rietveld review url git_checkout_path(str): path to a local git checkout cc: a cursor for the Cloud SQL connection Return: score(float): a score in [0,1] where 0 is no similarity and 1 is a perfect match """ git_diff = get_git_diff(git_commit, git_checkout_path) comparable_git_diff = [x for x in git_diff if x.startswith('+') \ or x.startswith('-')] rietveld_diff = get_rietveld_diff(review_url, cc, git_checkout_path) comparable_rietveld_diff = [x for x in rietveld_diff if x.startswith('+') \ or x.startswith('-')] matching = list(set(comparable_git_diff) - set(comparable_rietveld_diff)) total = max(len(comparable_git_diff), len(comparable_rietveld_diff)) score = 1 - float(len(matching)) / total if total != 0 else 0 return score
9,797
def pack(pieces=()): """ Join a sequence of strings together. :param list pieces: list of strings :rtype: bytes """ return b''.join(pieces)
9,798
def list_programs(plugin, item_id, **kwargs): """ Build programs listing - Les feux de l'amour - ... """ resp = urlquick.get(URL_ROOT) root = resp.parse() for program_datas in root.iterfind(".//a"): if program_datas.get('href'): if 'emission/' in program_datas.get('href'): program_title = program_datas.text if URL_ROOT in program_datas.get('href'): program_url = program_datas.get('href') else: program_url = URL_ROOT + program_datas.get('href') item = Listitem() item.label = program_title item.set_callback(list_videos, item_id=item_id, program_url=program_url) item_post_treatment(item) yield item
9,799