content
stringlengths
22
815k
id
int64
0
4.91M
def p_nonempty_name_list(p): """name_list : ID | name_list COMMA ID """ p[0] = processList(p, 3)
6,400
def count_infected(pop): """ counts number of infected """ return sum(p.is_infected() for p in pop)
6,401
def esum(expr_iterable): """ Expression sum :param term_iterable: :return: """ var_dict = {} constant = 0 for expr in expr_iterable: for (var_name, coef) in expr.var_dict.items(): if coef not in var_dict: var_dict[var_name] = coef else: var_dict[var_name] += coef constant += expr.constant return Expression.from_var_dict( var_dict, constant )
6,402
def _prompt(func, prompt): """Prompts user for data. This is for testing.""" return func(prompt)
6,403
def fsflow(): """ fsflow() Defined at ../src/fsflow.f lines 93-211 """ _min3p.f90wrap_fsflow()
6,404
def show_trace(func, *args, **kwargs): # noinspection PyShadowingNames """ Display epic argument and context call information of given function. >>> @show_trace >>> def complex_function(a, b, c, **kwargs): ... >>> complex_function('alpha', 'beta', False, debug=True) calling haystack.submodule.complex_function with args: ({'a': 'alpha', 'b': 'beta', 'c': False},) kwargs: {'debug': True} >>> :param func: the decorated function :param args: the positional args of the function :param kwargs: the keyword args of the function :return: the function return value """ func = Func(func) print( f"Calling {func.full_name} with: \n " f"args: {args} \n " f"kwargs: {kwargs}" ) return func(*args, **kwargs)
6,405
def download(token, data_dir, file=None): """ Download produced data files from Zenodo token : Your Access Toekn, get it from https://zenodo.org/account/settings/applications/tokens/new/ data_dir : Provide the files' names you want to save data in file : Name of the particular file you want to downlaod, e.g. descendants.zip. If None, it downloads all the data """ import requests import numpy as np import os record_id = 5770883 # Our repository's record ID on zenodo.org r = requests.get(f"https://zenodo.org/api/records/{record_id}", params={'access_token': token}) download_urls = np.array([f['links']['self'] for f in r.json()['files']]) filenames = np.array([f['key'] for f in r.json()['files']]) print(r.status_code) if file is None: file = filenames else : file= [file] for fname in file: ind = np.where(filenames==fname)[0][0] print("Downloading:", fname, ' from ', download_urls[ind]) r = requests.get(download_urls[ind], params={'access_token': token}) with open(os.path.join(data_dir, fname), 'wb') as f: f.write(r.content)
6,406
def record_editor(project_path: Path, debug: bool = False) -> List[Path]: """ Records ezvi running for each instructions file in a project. The files to record a found using `fetch_project_editor_instructions()`. Args: project_path (Path): The path towards the project from which the `ezvi` instructions will be recorded. debug (bool, optional): Whether or not to use this function in debug mode. Debug mode shows `ezvi`'s output on the user's terminal. Defaults to False. Returns: List[Path]: A list of paths towards each recording that has been created. """ all_editor_instructions: List[Path] = fetch_project_editor_instructions(project_path) all_editor_recordings: List[Path] = [] console: Console = Console() with console.status("[bold green]Recording editor...") as status: for instruction in all_editor_instructions: save_path: Path = ( instruction.parent.parent / Path("asciicasts") / instruction.name ).with_suffix(".cast") if save_path.exists(): os.remove(save_path) subprocess.run( ["asciinema", "rec", "-c", f"runner {instruction}", str(save_path)], capture_output=not debug, ) console.log(f"Video contents in file {instruction} have been recorded.") all_editor_recordings.append(save_path) return all_editor_recordings
6,407
def to_percent__xy(x, y): """ To percent with 2 decimal places by diving inputs. :param x: :param y: :return: """ return '{:.2%}'.format(x / y)
6,408
def test_compute_distances13(adata_cdr3, adata_cdr3_mock_distance_calculator): """Test for #174. Gracefully handle the case when there are IR.""" adata_cdr3.obs["IR_VJ_1_junction_aa"] = np.nan adata_cdr3.obs["IR_VDJ_1_junction_aa"] = np.nan adata_cdr3.obs["has_ir"] = "False" # test both receptor arms, primary chain only ir.pp.ir_dist(adata_cdr3, metric=adata_cdr3_mock_distance_calculator, sequence="aa") with pytest.raises(ValueError): cn = ClonotypeNeighbors( adata_cdr3, receptor_arms="all", dual_ir="primary_only", distance_key="ir_dist_aa_custom", sequence_key="junction_aa", )
6,409
def test_update_auto_refresh(ctx): """ Test the ViewContext.update_auto_refresh method. """ # reset parameter because called in constructor del ctx.parameters[AUTO] # test call with default valid value ctx.update_auto_refresh() assert not ctx.parameters[AUTO] # reset parameter del ctx.parameters[AUTO] # test call with other valid value ctx.http_context.form[AUTO] = 't' ctx.update_auto_refresh() assert ctx.parameters[AUTO] # reset parameter del ctx.parameters[AUTO] # test call with invalid value ctx.http_context.form[AUTO] = 'not a boolean' ctx.update_auto_refresh() assert not ctx.parameters[AUTO]
6,410
def generic_constructor(value, name=None, strict=False, allow_downcast=None): """SharedVariable Constructor""" return SharedVariable(type=generic, value=value, name=name, strict=strict, allow_downcast=allow_downcast)
6,411
def u_scheme(tree, neighbours): """Calculates the u-:ref:`scheme <presolve>`. """ unique_neighbours = torch.sort(neighbours, 1, descending=True).values unique_neighbours[:, 1:][unique_neighbours[:, 1:] == unique_neighbours[:, :-1]] = -1 pairs = torch.stack([tree.id[:, None].expand_as(neighbours), unique_neighbours], -1) pairs = pairs[(pairs >= 0).all(-1) & tree.terminal[pairs].all(-1)] partner_is_larger = tree.depths[pairs[:, 0]] > tree.depths[pairs[:, 1]] smaller_partners = torch.flip(pairs[partner_is_larger], (1,)) pairs = torch.cat([pairs, smaller_partners]) return ragged.from_pairs(pairs, len(tree.id), len(tree.id))
6,412
def find_and_open_file(f): """ Looks in open windows for `f` and focuses the related view. Opens file if not found. Returns associated view in both cases. """ for w in sublime.windows(): for v in w.views(): if normpath(f) == v.file_name(): w.focus_view(v) return v return sublime.active_window().open_file(f)
6,413
def stochastic_fit(input_data: object) -> FitParams: """ Acquire parameters for the stochastic input signals. """ params = FitParams(0.000036906289210966747, 0.014081285145600045) return params
6,414
def unconfigure_radius_automate_tester(device, server_name, username): """ Unconfigure Radius Automate Tester. Args: device (`obj`): Device object server_name ('str'): Radius server name username ('str'): Identity Username to query radius server Return: None Raise: SubCommandFailure: Failed configuring """ try: device.configure([ "radius server {server_name}".format(server_name=server_name), "no automate-tester username {username}".format(username=username) ]) except SubCommandFailure: raise SubCommandFailure( "Could not unconfigure Radius automate tester" )
6,415
def sort_features_by_normalization( normalization_parameters: Dict[int, NormalizationParameters] ) -> Tuple[List[int], List[int]]: """ Helper function to return a sorted list from a normalization map. Also returns the starting index for each feature type""" # Sort features by feature type sorted_features: List[int] = [] feature_starts: List[int] = [] assert isinstance( list(normalization_parameters.keys())[0], str ), "Normalization Parameters need to be str" for feature_type in identify_types.FEATURE_TYPES: feature_starts.append(len(sorted_features)) for feature in sorted(normalization_parameters.keys()): norm = normalization_parameters[feature] if norm.feature_type == feature_type: sorted_features.append(feature) return sorted_features, feature_starts
6,416
def main(): """Main method that retrieves the devices""" # Calculate Execution Time - Start now = datetime.datetime.now() print("Current date and time when script starts: " + now.strftime("%Y-%m-%d %H:%M:%S")) # Connect to Switch conn_pre = paramiko.SSHClient() conn_pre.set_missing_host_key_policy(paramiko.AutoAddPolicy()) conn_pre.connect(HOST_SW, 22, USER_SW, PASS_SW) conn = conn_pre.invoke_shell() conn.send("term len 0 \n") time.sleep(.5) output = conn.recv(65535) Config_Profile(conn, SatIP, SatPort) Register(conn, token) conn.send("show license summary \n") time.sleep(1) output = conn.recv(65535) print(output) # Calculate Execution Time - End now = datetime.datetime.now() print("Current date and time when script finished: " + now.strftime("%Y-%m-%d %H:%M:%S")) conn.close()
6,417
def block_sort(): """ Do from here: https://en.wikipedia.org/wiki/Block_sort :return: None """ return None
6,418
def improve_dictionary(file_to_open): """Implementation of the -w option. Improve a dictionary by interactively questioning the user.""" kombinacija = {} komb_unique = {} if not os.path.isfile(file_to_open): exit("Error: file " + file_to_open + " does not exist.") chars = CONFIG["global"]["chars"] years = CONFIG["global"]["years"] numfrom = CONFIG["global"]["numfrom"] numto = CONFIG["global"]["numto"] fajl = open(file_to_open, "r") listic = fajl.readlines() listica = [] for x in listic: listica += x.split() print("\r\n *************************************************") print(" * \033[1;31mWARNING!!!\033[1;m *") print(" * Using large wordlists in some *") print(" * options bellow is NOT recommended! *") print(" *************************************************\r\n") conts = input( "> Do you want to concatenate all words from wordlist? Y/[N]: " ).lower() if conts == "y" and len(listic) > CONFIG["global"]["threshold"]: print( "\r\n[-] Maximum number of words for concatenation is " + str(CONFIG["global"]["threshold"]) ) print("[-] Check configuration file for increasing this number.\r\n") conts = input( "> Do you want to concatenate all words from wordlist? Y/[N]: " ).lower() cont = [""] if conts == "y": for cont1 in listica: for cont2 in listica: if listica.index(cont1) != listica.index(cont2): cont.append(cont1 + cont2) spechars = [""] spechars1 = input( "> Do you want to add special chars at the end of words? Y/[N]: " ).lower() if spechars1 == "y": for spec1 in chars: spechars.append(spec1) for spec2 in chars: spechars.append(spec1 + spec2) for spec3 in chars: spechars.append(spec1 + spec2 + spec3) randnum = input( "> Do you want to add some random numbers at the end of words? Y/[N]:" ).lower() leetmode = input("> Leet mode? (i.e. leet = 1337) Y/[N]: ").lower() # init for i in range(6): kombinacija[i] = [""] kombinacija[0] = list(komb(listica, years)) if conts == "y": kombinacija[1] = list(komb(cont, years)) if spechars1 == "y": kombinacija[2] = list(komb(listica, spechars)) if conts == "y": kombinacija[3] = list(komb(cont, spechars)) if randnum == "y": kombinacija[4] = list(concats(listica, numfrom, numto)) if conts == "y": kombinacija[5] = list(concats(cont, numfrom, numto)) print("\r\n[+] Now making a dictionary...") print("[+] Sorting list and removing duplicates...") for i in range(6): komb_unique[i] = list(dict.fromkeys(kombinacija[i]).keys()) komb_unique[6] = list(dict.fromkeys(listica).keys()) komb_unique[7] = list(dict.fromkeys(cont).keys()) # join the lists uniqlist = [] for i in range(8): uniqlist += komb_unique[i] unique_lista = list(dict.fromkeys(uniqlist).keys()) unique_leet = [] if leetmode == "y": for ( x ) in ( unique_lista ): # if you want to add more leet chars, you will need to add more lines in cupp.cfg too... x = make_leet(x) # convert to leet unique_leet.append(x) unique_list = unique_lista + unique_leet unique_list_finished = [] unique_list_finished = [ x for x in unique_list if len(x) > CONFIG["global"]["wcfrom"] and len(x) < CONFIG["global"]["wcto"] ] print_to_file(file_to_open + ".cupp.txt", unique_list_finished) fajl.close()
6,419
def prep_ground_truth(paths, box_data, qgt): """adds dbidx column to box data, sets dbidx in qgt and sorts qgt by dbidx """ orig_box_data = box_data orig_qgt = qgt path2idx = dict(zip(paths, range(len(paths)))) mapfun = lambda x : path2idx.get(x,-1) box_data = box_data.assign(dbidx=box_data.file_path.map(mapfun).astype('int')) box_data = box_data[box_data.dbidx >= 0].reset_index(drop=True) new_ids = qgt.index.map(mapfun) qgt = qgt[new_ids >= 0] qgt = qgt.set_index(new_ids[new_ids >= 0]) qgt = qgt.sort_index() ## Add entries for files with no labels... qgt = qgt.reindex(np.arange(len(paths))) # na values will be ignored... assert len(paths) == qgt.shape[0], 'every path should be in the ground truth' return box_data, qgt
6,420
def top_1_pct_share(df, col, w=None): """Calculates top 1% share. :param df: DataFrame. :param col: Name of column in df representing value. :param w: Column representing weight in df. :returns: The share of w-weighted val held by the top 1%. """ return top_x_pct_share(df, col, 0.01, w)
6,421
def containsdupevalues(structure) -> bool or None: """Returns True if the passed dict has duplicate items/values, False otherwise. If the passed structure is not a dict, returns None.""" if isinstance(structure, dict): # fast check for dupe keys rev_dict = {} for key, value in structure.items(): rev_dict.setdefault(value, set()).add(key) dupes = list(filter(lambda x: len(x) > 1, rev_dict.values())) if dupes: return True else: return False return None
6,422
def test_energy_one_socket(fs_one_socket, sensor_param): """ Create a sensor with given parameters (see printed output) and get energy of monitored devices The machine contains only one socket Test: - return value of the function """ sensor = Sensor(sensor_param.devices, sensor_param.sockets) assert sensor.energy() == sensor_param.one_socket_result
6,423
def only_letters(answer): """Checks if the string contains alpha-numeric characters Args: answer (string): Returns: bool: """ match = re.match("^[a-z0-9]*$", answer) return bool(match)
6,424
def get_initial_conditions(scenario, reporting_unit): """ Retreive the initial conditions from a given reporting unit. """ feature = dict( geometry=json.loads(reporting_unit.polygon.json), type='Feature', properties={} ) # Collect zonal stats from rasters bps_stats, bps_raster = zonal_stats(feature, BPS_TIF) sclass_stats, sclass_raster = zonal_stats(feature, SCLASS_TIF) # The count of the area that *is not* masked, i.e. the count within the reporting unit count = bps_raster.count() # Yield each set of initial conditions for value in bps_stats: if value in BPS_MAPPING: # If the raster value is not found, skip it try: bps_model_code = int(BPS_MAPPING[value]) except ValueError: continue stratum = Stratum.objects.filter(name=BPS_MAPPING[value], project=scenario.project) # Not all BpS vegetation types have a STM model. Since we can't model them, we skip them. if not stratum: continue stratum = stratum.first() stateclass_names = [] for sclass_type, lookup in SCLASS_ALL_MAPPINGS: if bps_model_code in lookup: name = lookup[bps_model_code] if name: stateclass_names.append((sclass_type, name)) sclass_locations = sclass_raster[numpy.where(bps_raster == value)] sclass_keys_found, sclass_counts = numpy.unique(sclass_locations, return_counts=True) for i, name_tuple in enumerate(stateclass_names): name, stateclass = name_tuple if i not in sclass_keys_found: relative_amount = 0.0 else: sclass_idx = list(sclass_keys_found).index(i) relative_amount = sclass_counts[sclass_idx] / count * 100.0 # Percent of the state class over the total number of cells stateclass = StateClass.objects.filter(name=stateclass, project=scenario.project).first() yield { 'scenario': scenario, 'relative_amount': relative_amount, 'stratum': stratum, 'stateclass': stateclass, 'reporting_unit': reporting_unit }
6,425
def test_input1(): """input1""" run('input1.txt', ' 1:foo boo', 0)
6,426
def is_finally_visible_func(*args): """ is_finally_visible_func(pfn) -> bool Is the function visible (event after considering 'SCF_SHHID_FUNC' )? @param pfn (C++: func_t *) """ return _ida_funcs.is_finally_visible_func(*args)
6,427
def _losetup_list(): """ List all the loopback devices on the system. :returns: A ``list`` of 2-tuple(FilePath(device_file), FilePath(backing_file)) """ output = check_output( ["losetup", "--all"] ).decode('utf8') return _losetup_list_parse(output)
6,428
def test_compartmentModel_fit_model_returns_bool(preparedmodel): """Test whether the fit routine reports sucess of fitting """ return_value = preparedmodel.fit_model() assert (isinstance(return_value, bool))
6,429
def gaussian_product_center(a,A,b,B): """ """ A = np.array(A) B = np.array(B) return (a*A+b*B)/(a+b)
6,430
def test_gms_get_assertions_on_dataset_field(): """lists all assertion urns including those which may not have executed""" dataset_urn = make_dataset_urn("postgres", "fooTable") field_urn = make_schema_field_urn(dataset_urn, "col1") response = requests.get( f"{GMS_ENDPOINT}/relationships?direction=INCOMING&urn={urllib.parse.quote(field_urn)}&types=Asserts" ) response.raise_for_status() data = response.json() assert len(data["relationships"]) == 1
6,431
async def async_setup_platform( hass, config, async_add_entities, discovery_info=None ): # pylint: disable=unused-argument """Setup binary_sensor platform.""" name = discovery_info[CONF_NAME] entities = [] for resource in discovery_info[CONF_RESOURCES]: sensor_type = resource.lower() if sensor_type not in BINARY_SENSOR_TYPES: continue entities.append(WattBoxBinarySensor(hass, name, sensor_type)) async_add_entities(entities, True)
6,432
def starting(date): """validate starting""" validate_time(date) validate_time_range(date)
6,433
def test_stack_describe_contains_local_stack() -> None: """Test that the stack describe command contains the default local stack""" runner = CliRunner() result = runner.invoke(describe_stack) assert result.exit_code == 0 assert "default" in result.output
6,434
def comparison_plot(cn_see, option='corr', plot_orientation='horizontal', cbar_orientation='vertical', cbar_indiv_range=None, title=True, title_suffix='', titles_='', share_colorbar=False, plot_colormap='jet', plot_num_samples=1000, remove_small_val_th=3, remove_small_val=False, plot_size = 12, cbar_ticks_number=None, save_fig=False, save_fig_name='corr_'): """ """ num_plots = len(cn_see) if share_colorbar: min_dim=4 else: min_dim=3 if titles_=='' and num_plots==2: titles_=['original ','denoised '] if num_plots==2: cn_see.append(cn_see[0]-cn_see[1]) titles_.append('residual ') if plot_orientation == 'horizontal': d1, d2 = min_dim,1 sharex = True sharey = False elif plot_orientation =='vertical': d1, d2 = 1,min_dim sharex = False sharey = True Cn_all =[] ####################### # Calculate Cn to plot ####################### for ii, array in enumerate(cn_see): #print(array.shape) if option =='corr': # Correlation Cn, _ = correlation_pnr(array, gSig=None, remove_small_val=remove_small_val, remove_small_val_th=remove_small_val_th, center_psf=False)#, #swap_dim=True) # 10 no ds title_prefix = 'Local correlation: ' elif option =='var': #Variance Cn = array.var(2)/array.shape[2] title_prefix = 'Pixel variance: ' #print(Cn.min()) #print(Cn.max()) elif option =='pnr': # PNR _, Cn = correlation_pnr(array, gSig=None, remove_small_val=remove_small_val, remove_small_val_th=remove_small_val_th, center_psf=False)#, #swap_dim=True) title_prefix = 'PNR: ' elif option=='input': Cn =array - array.min() Cn = Cn/Cn.max() title_prefix = 'Single Frame: ' elif option=='snr': Cn1 = array.std(2) Cn2 = denoise.noise_level(array) Cn = Cn1/Cn2 title_prefix = 'SNR: ' else: title_prefix = '' print ('%s range [%.1e %.1e]'%(title_prefix, Cn.min(), Cn.max())) Cn_all.append(Cn) ####################### # Plot configuration ####################### vmax_ = list(map(np.max,Cn_all)) vmin_ = list(map(np.min,Cn_all)) if share_colorbar: vmax_ = [max(vmax_)]*3 vmin_ = [min(vmin_)]*3 if cbar_indiv_range is not None: for ii,range_ in enumerate(cbar_indiv_range): vmin_[ii]=range_[0] vmax_[ii]=range_[1] dim2, dim1 = Cn.shape x_ticks= np.linspace(0,dim1,5).astype('int') y_ticks= np.linspace(0,dim2,5).astype('int') fig, axarr = plt.subplots(d1,d2, figsize=(d1*plot_size,d2*plot_size), sharex=sharex, sharey=sharey) #cbar_enable= [False,False,True] cbar_enable= not share_colorbar for ii, Cn in enumerate(Cn_all): show_img(Cn, ax =axarr[ii], cbar_orientation=cbar_orientation, vmin=vmin_[ii], vmax=vmax_[ii], plot_colormap=plot_colormap, cbar_ticks_number=cbar_ticks_number, cbar_enable=cbar_enable) axarr[ii].set_xticks(x_ticks) axarr[ii].set_yticks(y_ticks) axarr[ii].set_xticklabels([]) axarr[ii].set_yticklabels([]) if title: axarr[ii].set_title(title_prefix + titles_[ii] + title_suffix) plt.tight_layout() if save_fig: save_fig_name = save_fig_name+'comparison_plot_'+'.pdf' plt.savefig(save_fig_name) else: plt.show() return
6,435
def read_yaml_file(yaml_path): """Loads a YAML file. :param yaml_path: the path to the yaml file. :return: YAML file parsed content. """ if is_file(yaml_path): try: file_content = sudo_read(yaml_path) yaml = YAML(typ='safe', pure=True) return yaml.safe_load(file_content) except YAMLError as e: raise YAMLError('Failed to load yaml file {0}, due to {1}' ''.format(yaml_path, str(e))) return None
6,436
async def test_parse_gcj02_position(caplog): """Test conversion of GCJ02 to WGS84 for china.""" account = await get_mocked_account(get_region_from_name("china")) vehicle = account.get_vehicle(VIN_F48) vehicle_test_data = { "properties": { "vehicleLocation": { "address": {"formatted": "some_formatted_address"}, "coordinates": {"latitude": 39.83492, "longitude": 116.23221}, "heading": 123, }, "lastUpdatedAt": "2021-11-14T20:20:21Z", }, "status": { "FuelAndBattery": [], "lastUpdatedAt": "2021-11-14T20:20:21Z", }, } vehicle.update_state(dict(vehicle.data, **vehicle_test_data)) # Update twice to test against slowly crawling position due to GCJ02 to WGS84 conversion vehicle.update_state(dict(vehicle.data, **vehicle_test_data)) assert (39.8337, 116.22617) == ( round(vehicle.vehicle_location.location[0], 5), round(vehicle.vehicle_location.location[1], 5), ) assert len(get_deprecation_warning_count(caplog)) == 0
6,437
def _InUse(resource): """All the secret names (local names & remote aliases) in use. Args: resource: Revision Returns: List of local names and remote aliases. """ return ([ source.secretName for source in resource.template.volumes.secrets.values() ] + [ source.secretKeyRef.name for source in resource.template.env_vars.secrets.values() ])
6,438
def filter_dwnmut(gene_data): """Removes the variants upstream to Frameshift/StopGain mutation. Args: - gene_data(dictionary): gene_transcript wise variants where there is at least one Frameshift/Stopgain mutation. Returns: - flt_data(dictionary): gene_transcript wise variants where there is at least one Frameshift/StopGain mutation and at least one downstream coding exonic variant. """ rfgene = Refgene() flt_gene_data = {} for gene_info, val in gene_data.items(): trans_id = gene_info[1] strand = rfgene.get_strand(trans_id) if not strand: continue for e in val: t = {} variants = e.keys() if strand == '+': variants.sort() elif strand == '-': variants.sort(reverse=True) size = 0 mut_type = '' flag = False for var in variants: if flag == False and e[var][0] == 'StopGain': mut_type = 'StopGain' t[tuple(list(var) + ['#'])] = e[var] flag = True elif flag == False and e[var][0].startswith('FrameShift'): if e[var][0][10:] == 'Insert': size += len(var[4]) - 1 elif e[var][0][10:] == 'Delete': size -= len(var[3]) - 1 t[tuple(list(var) + ['#'])] = e[var] flag = True elif flag == True: if mut_type == 'StopGain': t[var] = e[var] elif e[var][0].startswith('FrameShift'): if e[var][0][10:] == 'Insert': size += len(var[4]) - 1 elif e[var][0][10:] == 'Delete': size -= len(var[3]) - 1 t[var] = e[var] if size == 0 or divmod(size, 3)[1] == 0: flag = False elif e[var][0].startswith('NonFrameShift'): if e[var][0][13:] == 'Insert': size += len(var[4]) - 1 elif e[var][0][13:] == 'Delete': size -= len(var[3]) - 1 t[var] = e[var] if size == 0 or divmod(size, 3)[1] == 0: flag = False else: t[var] = e[var] if len(t) > 1: key = tuple(list(gene_info) + [strand]) if key not in flt_gene_data: flt_gene_data[key] = [t] else: if t != flt_gene_data[key][0]: flt_gene_data[key].append(t) return flt_gene_data
6,439
def format_scwgbs_file(file_path): """ Format a scwgbs file to a more usable manner :param file_path: The path of the file to format :type file_path: str :return: A dict where each key is a chr and the value is an array with all the scwgbs reads :rtype: dict """ chr_dict = extract_cols(file_path) chr_dict = combine_strands(chr_dict) return chr_dict
6,440
def connect_signals(): """ Hooks up all the event handlers to our callbacks above. """ review_request_published.connect(review_request_published_cb, sender=ReviewRequest) review_published.connect(review_published_cb, sender=Review) reply_published.connect(reply_published_cb, sender=Review) hipchat.config.init_cfg('/home/ubuntu/reviewboard/hipchat.cfg')
6,441
def test_manifest_v2_all_pass(_, setup_route): """ Run a valid manifest through all V2 validators """ validators = get_all_validators(False, "2.0.0") for validator in validators: # Currently skipping SchemaValidator because of no context object and config if isinstance(validator, v2_validators.SchemaValidator): continue validator.validate('active_directory', JSONDict(input_constants.V2_VALID_MANIFEST), False) assert not validator.result.failed, validator.result assert not validator.result.fixed
6,442
def ls_generator_loss(scores_fake): """ Computes the Least-Squares GAN loss for the generator. Inputs: - scores_fake: PyTorch Tensor of shape (N,) giving scores for the fake data. Outputs: - loss: A PyTorch Tensor containing the loss. """ loss = None #################################### # YOUR CODE HERE # #################################### labels = torch.ones_like(scores_fake) loss = 1/2 * mse_loss(scores_fake, labels, reduction = 'mean') ########## END ########## return loss
6,443
def test_d3_4_28v03_d3_4_28v03i(mode, save_output, output_format): """ Tests the simpleType dateTimeStamp and its facets pattern, used in lists """ assert_bindings( schema="ibmData/valid/D3_4_28/d3_4_28v03.xsd", instance="ibmData/valid/D3_4_28/d3_4_28v03.xml", class_name="Root", version="1.1", mode=mode, save_output=save_output, output_format=output_format, structure_style="filenames", )
6,444
def rmsd(predicted, reference): """ Calculate root-mean-square deviation (RMSD) between two variables. Calculates the root-mean-square deviation between two variables PREDICTED and REFERENCE. The RMSD is calculated using the formula: RMSD^2 = sum_(n=1)^N [(p_n - r_n)^2]/N where p is the predicted values, r is the reference values, and N is the total number of values in p & r. Note that p & r must have the same number of values. Input: PREDICTED : predicted values REFERENCE : reference values Output: R : root-mean-square deviation (RMSD) Author: Peter A. Rochford Symplectic, LLC www.thesymplectic.com prochford@thesymplectic.com Created on Dec 9, 2016 """ # Check that dimensions of predicted and reference fields match utils.check_arrays(predicted, reference) # Calculate the RMSE r = np.sqrt(np.sum(np.square(predicted - reference)) / len(predicted)) return r
6,445
def _get_ranks_for_sequence(logits: np.ndarray, labels: np.ndarray) -> List[float]: """Returns ranks for a sequence. Args: logits: Logits of a single sequence, dim = (num_tokens, vocab_size). labels: Target labels of a single sequence, dim = (num_tokens, 1). Returns: An array of ranks for tokens in the sequence, dim = (num_tokens, 1). """ sequence_ranks = [] for logit, label in zip(logits, labels.astype(int)): rank = rankdata(-logit, method='min')[label] - 1.0 sequence_ranks.append(rank) return sequence_ranks
6,446
def eval_model_on_grid(model, bbox, tx, voxel_grid_size, cell_vox_min=None, cell_vox_max=None, print_message=True): """ Evaluate the trained model (output of fit_model_to_pointcloud) on a voxel grid. :param model: The trained model returned from fit_model_to_pointcloud :param bbox: The bounding box defining the region of space on which to evaluate the model (represented as the pair (origin, size)) :param tx: An affine transformation which transforms points in world coordinates to model coordinates before evaluating the model (the second return value of fit_model_to_grid). The transformation is represented as a tuple (t, s) where t is a translation and s is scale. :param voxel_grid_size: The size of the voxel grid on which to reconstruct :param cell_vox_min: If not None, reconstruct on the subset of the voxel grid starting at these indices. :param cell_vox_max: If not None, reconstruct on the subset of the voxel grid ending at these indices. :param print_message: If true, print status messages to stdout. :return: A tensor representing the model evaluated on a grid. """ bbox_origin, bbox_size = bbox voxel_size = bbox_size / voxel_grid_size # size of a single voxel cell if cell_vox_min is None: cell_vox_min = torch.tensor([0, 0, 0], dtype=torch.int32) if cell_vox_max is None: cell_vox_max = voxel_grid_size if print_message: print(f"Evaluating model on grid of size {[_.item() for _ in (cell_vox_max - cell_vox_min)]}.") eval_start_time = time.time() xmin = bbox_origin + (cell_vox_min + 0.5) * voxel_size xmax = bbox_origin + (cell_vox_max - 0.5) * voxel_size xmin = affine_transform_pointcloud(xmin.unsqueeze(0), tx).squeeze() xmax = affine_transform_pointcloud(xmax.unsqueeze(0), tx).squeeze() xmin, xmax = xmin.numpy(), xmax.numpy() cell_vox_size = (cell_vox_max - cell_vox_min).numpy() xgrid = np.stack([_.ravel() for _ in np.mgrid[xmin[0]:xmax[0]:cell_vox_size[0] * 1j, xmin[1]:xmax[1]:cell_vox_size[1] * 1j, xmin[2]:xmax[2]:cell_vox_size[2] * 1j]], axis=-1) xgrid = torch.from_numpy(xgrid).to(model.alpha_.dtype) xgrid = torch.cat([xgrid, torch.ones(xgrid.shape[0], 1).to(xgrid)], dim=-1).to(model.alpha_.dtype) ygrid = model.predict(xgrid).reshape(tuple(cell_vox_size.astype(np.int))).detach().cpu() if print_message: print(f"Evaluated model in {time.time() - eval_start_time}s.") return ygrid
6,447
def create_gop(mpeg_file_object: IO[bytes]) -> bytes: """Create an index that allows faster seeking. Note: as far as I can tell, this is not a standard GOP / group of pictures structure. It is an index that maps frame numbers to stream offsets. This is referred to as `GOPList` in MoonShell: misctools/DPGTools/sources/_encvideo.pas and simply as `GOP` in other implementations.""" def row_to_frame(row: Iterable[str]) -> Mapping[str, str]: frame = {} for item in row: if item == "frame": continue key, value = item.split("=", 1) frame[key] = value return frame mpeg_file_object.seek(0) cmd = [ FFPROBE, "-hide_banner", "-print_format", "compact", "-show_frames", "-select_streams", "v", "-", ] gop = b"" frame_number = 0 try: process = subprocess.Popen( cmd, stdin=mpeg_file_object, stdout=subprocess.PIPE, stderr=subprocess.PIPE, universal_newlines=True, ) except OSError as os_err: if os_err.errno == errno.ENOENT: raise ExternalCommandNotFoundError(cmd) raise os_err for row in csv.reader(process.stdout, delimiter="|"): if not row or row[0] != "frame": continue frame = row_to_frame(row) if frame["pict_type"] == "I": gop += struct.pack("<l", frame_number) gop += struct.pack("<l", int(frame["pkt_pos"])) frame_number += 1 process.wait() if process.returncode != 0: stderr = process.stderr.read() raise ExternalCommandFailedError(process.returncode, process.args, stderr) return gop
6,448
def add_path_arguments(parser) -> None: """Adds common presubmit check options to an argument parser.""" parser.add_argument( 'paths', nargs='*', type=Path, help=( 'Paths to which to restrict the presubmit checks. ' 'Directories are expanded with git ls-files. ' 'If --base is provided, all paths are interpreted as Git paths.')) parser.add_argument( '-b', '--base', metavar='COMMIT', help=('Git revision against which to diff for changed files. ' 'If none is provided, the entire repository is used.')) parser.add_argument( '-e', '--exclude', metavar='REGULAR_EXPRESSION', default=[], action='append', type=re.compile, help='Exclude paths matching any of these regular expressions.')
6,449
def beam_search(model, test_data_src, beam_size, max_decoding_time_step): """ Run beam search to construct hypotheses for a list of src-language sentences. @param model : Model @param test_data_src (List[List[str]]): List of sentences (words) in source language, from test set. @param beam_size (int): beam_size (# of hypotheses to hold for a translation at every step) @param max_decoding_time_step (int): maximum sentence length that Beam search can produce @returns hypotheses (List[List[Hypothesis]]): List of Hypothesis translations for every source sentence. """ model.eval() hypotheses = [] with torch.no_grad(): for src_sent in tqdm(test_data_src, desc='Decoding'): example_hyps = model.beam_search(src_sent, beam_size=beam_size, max_decoding_time_step=max_decoding_time_step) hypotheses.append(example_hyps) return hypotheses
6,450
def main(): """ Example of partial loading of a scene Loads only some objects (by category) and in some room types """ logging.info("*" * 80 + "\nDescription:" + main.__doc__ + "*" * 80) settings = MeshRendererSettings(enable_shadow=True, msaa=False) if platform == "darwin": settings.texture_scale = 0.5 s = Simulator(mode="gui_interactive", image_width=512, image_height=512, rendering_settings=settings) scene = InteractiveIndoorScene( "Rs_int", texture_randomization=False, object_randomization=False, load_object_categories=["swivel_chair"], load_room_types=["living_room"], ) s.import_scene(scene) while True: s.step()
6,451
def filter_months(c, months): """Filters the collection by matching its date-time index with the specified months.""" indices = find_all_in(get_months(c), get_months(months)) return take_at(c, indices)
6,452
def kmode_fisher(ks,mus,param_list,dPgg,dPgv,dPvv,fPgg,fPgv,fPvv,Ngg,Nvv, \ verbose=False): """ Fisher matrix for fields g(k,mu) and v(k,mu). Returns F[g+v] and F[g] dPgg, dPgv, dPvv are dictionaries of derivatives. fPgg, fPgv, fPvv are fiducial powers. """ from orphics.stats import FisherMatrix # Populate Fisher matrix num_params = len(param_list) param_combs = itertools.combinations_with_replacement(param_list,2) Fisher = np.zeros((num_params,num_params)) FisherG = np.zeros((num_params,num_params)) for param1,param2 in param_combs: i = param_list.index(param1) j = param_list.index(param2) if verbose: print("Calculating Fisher for ",param1,param2) integral = 0. integralG = 0. dCov1 = np.array([[dPgg[param1],dPgv[param1]], [dPgv[param1],dPvv[param1]]]) dCov2 = np.array([[dPgg[param2],dPgv[param2]], [dPgv[param2],dPvv[param2]]]) Cov = np.array([[Pgg_fid+Ngg,Pgv_fid], [Pgv_fid,Pvv_fid+Nvv]]) # Integrate over mu and k for mu_id,mu in enumerate(mus[:-1]): dmu = mus[mu_id+1]-mus[mu_id] for k_id,k in enumerate(ks[:-1]): dk = ks[k_id+1]-ks[k_id] dC1 = dCov1[:,:,mu_id,k_id] dC2 = dCov2[:,:,mu_id,k_id] Cinv = np.linalg.inv(Cov[:,:,mu_id,k_id]) CinvG = 1./Cov[0,0,mu_id,k_id] trace = np.trace(np.dot(np.dot(dC1,Cinv),np.dot(dC2,Cinv))) traceG = dC1[0,0]*dC2[0,0]*CinvG**2. pref = (k**2.)*dk*V/(2.*np.pi)**2./2.*dmu integral += pref*trace integralG += pref*traceG Fisher[i,j] = integral if j!=i: Fisher[j,i] = integral FisherG[i,j] = integralG if j!=i: FisherG[j,i] = integralG return stats.FisherMatrix(Fisher,param_list), \ stats.FisherMatrix(FisherG,param_list)
6,453
def main(args): """ Downloads the necessary catalogues to perform the 1- and 2-halo conformity analysis """ ## Reading all elements and converting to python dictionary param_dict = vars(args) ## ---- Adding to `param_dict` ---- param_dict = add_to_dict(param_dict) ## Checking for correct input param_vals_test(param_dict) # Creating instance of `ReadML` with the input parameters param_dict['rs_args'] = RedSeq(**param_dict) ## Program message Prog_msg = param_dict['Prog_msg'] ## Creating folder directory proj_dict = param_dict['rs_args'].proj_dict proj_dict = directory_skeleton(param_dict, proj_dict) ## Downloading data download_directory(param_dict, proj_dict) # Cleaning up the data and saving to file param_dict['rs_args'].extract_filtered_data(catl_kind='master', return_pd=False, remove_file=param_dict['remove_files'])
6,454
def detect_device(model): """ Tries to determine the best-matching device for the given model """ model = model.lower() # Try matching based on prefix, this is helpful to map e.g. # FY2350H to FY2300 for device in wavedef.SUPPORTED_DEVICES: if device[:4] == model[:4]: return device raise wavedef.UnsupportedDeviceError( "Unable to autodetect device '%s'. " "Use FYGen(device_name='fy2300') with one of the supported devices, " "beware that the waveforms might not match up." "Supported devices: %s" % ( model, ', '.join(wavedef.SUPPORTED_DEVICES) ) )
6,455
def re_identify_image_metadata(filename, image_names_pattern): """ Apply a regular expression to the *filename* and return metadata :param filename: :param image_names_pattern: :return: a list with metadata derived from the image filename """ match = re.match(image_names_pattern, filename) return None if match is None else match.groups()
6,456
def test_superoperator_to_kraus_fixed_values(superoperator, expected_kraus_operators): """Verifies that cirq.kraus_to_superoperator computes the correct channel matrix.""" actual_kraus_operators = cirq.superoperator_to_kraus(superoperator) for i in (0, 1): for j in (0, 1): input_rho = np.zeros((2, 2)) input_rho[i, j] = 1 actual_rho = apply_kraus_operators(actual_kraus_operators, input_rho) expected_rho = apply_kraus_operators(expected_kraus_operators, input_rho) assert np.allclose(actual_rho, expected_rho)
6,457
def train(): """given 20 players, run the tournament to make qlearner learn with variable tournament parameters""" players = setup_opponents() #players = [axl.Random(), axl.Random(), axl.Random(), axl.Random(), axl.Random(), axl.Random(), axl.Random(), axl.Random(), axl.Random(), axl.Random(), axl.Random(), axl.Random(), axl.Random(), axl.Random(), axl.Random(), axl.Random(), axl.Random(), axl.Random(), axl.Random(), axl.Random()] #players.append(axl.TitForTat()) for player in tqdm(players): match = axl.Match([axl.RiskyQLearner(), player], prob_end = 0.001, p_A = random.choice([0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 1])) match.play()
6,458
def load_config(config_file: str) -> dict: """ Function to load yaml configuration file :param config_file: name of config file in directory """ try: with open(config_file) as file: config = yaml.safe_load(file) except IOError as e: print(e) sys.exit(1) return config
6,459
def LoginGoogleAccount(action_runner, credential='googletest', # Recommended credential. credentials_path=login_utils.DEFAULT_CREDENTIAL_PATH): """Logs in into Google account. This function navigates the tab into Google's login page and logs in a user using credentials in |credential| part of the |credentials_path| file. Args: action_runner: Action runner responsible for running actions on the page. credential: The credential to retrieve from the credentials file (type string). credentials_path: The string that specifies the path to credential file. NOTE: it's recommended to use 'googletest' credential from page_sets/data/credentials.json credential since it is a Google test account and will not trigger anti-bot verification. Other google credentials are kept until all telemetry pages are updated to use the 'googletest' credential. Raises: exceptions.Error: See ExecuteJavaScript() for a detailed list of possible exceptions. """ account_name, password = login_utils.GetAccountNameAndPassword( credential, credentials_path=credentials_path) action_runner.Navigate( 'https://accounts.google.com/ServiceLogin?continue=' 'https%3A%2F%2Faccounts.google.com%2FManageAccount') # Wait until either the email or password input is visible. action_runner.WaitForJavaScriptCondition('{{ @a }} || {{ @b }}', a=_EMAIL_INPUT_VISIBLE_CONDITION, b=_PASSWORD_INPUT_VISIBLE_CONDITION) # If the email input is visible, this is the first Google login within the # browser session, so we must enter both email and password. Otherwise, only # password is required. if action_runner.EvaluateJavaScript(_EMAIL_INPUT_VISIBLE_CONDITION): login_utils.InputWithSelector(action_runner, account_name, _EMAIL_SELECTOR) action_runner.ClickElement(selector=_EMAIL_NEXT_SELECTOR) login_utils.InputWithSelector(action_runner, password, _PASSWORD_SELECTOR) action_runner.ClickElement(selector=_SIGNIN_SELECTOR) action_runner.WaitForElement(text='My Account')
6,460
async def test_application_state( hass: HomeAssistant, mock_config_entry: MockConfigEntry, mock_device: RokuDevice, mock_roku: MagicMock, ) -> None: """Test the creation and values of the Roku selects.""" entity_registry = er.async_get(hass) entity_registry.async_get_or_create( SELECT_DOMAIN, DOMAIN, "1GU48T017973_application", suggested_object_id="my_roku_3_application", disabled_by=None, ) mock_config_entry.add_to_hass(hass) await hass.config_entries.async_setup(mock_config_entry.entry_id) await hass.async_block_till_done() state = hass.states.get("select.my_roku_3_application") assert state assert state.attributes.get(ATTR_ICON) == "mdi:application" assert state.attributes.get(ATTR_OPTIONS) == [ "Home", "Amazon Video on Demand", "Free FrameChannel Service", "MLB.TV" + "\u00AE", "Mediafly", "Netflix", "Pandora", "Pluto TV - It's Free TV", "Roku Channel Store", ] assert state.state == "Home" entry = entity_registry.async_get("select.my_roku_3_application") assert entry assert entry.unique_id == "1GU48T017973_application" await hass.services.async_call( SELECT_DOMAIN, SERVICE_SELECT_OPTION, { ATTR_ENTITY_ID: "select.my_roku_3_application", ATTR_OPTION: "Netflix", }, blocking=True, ) assert mock_roku.launch.call_count == 1 mock_roku.launch.assert_called_with("12") mock_device.app = mock_device.apps[1] async_fire_time_changed(hass, dt_util.utcnow() + SCAN_INTERVAL) await hass.async_block_till_done() state = hass.states.get("select.my_roku_3_application") assert state assert state.state == "Netflix" await hass.services.async_call( SELECT_DOMAIN, SERVICE_SELECT_OPTION, { ATTR_ENTITY_ID: "select.my_roku_3_application", ATTR_OPTION: "Home", }, blocking=True, ) assert mock_roku.remote.call_count == 1 mock_roku.remote.assert_called_with("home") mock_device.app = Application( app_id=None, name="Roku", version=None, screensaver=None ) async_fire_time_changed(hass, dt_util.utcnow() + (SCAN_INTERVAL * 2)) await hass.async_block_till_done() state = hass.states.get("select.my_roku_3_application") assert state assert state.state == "Home"
6,461
def remove(filepath_list): """移除中间文件""" for path in filepath_list + [CONCAT_FILE]: if os.path.exists(path): os.remove(path)
6,462
async def admin_cmd_make_role_menu(message : discord.Message, args : str, isDM : bool): """Create a reaction role menu, allowing users to self-assign or remove roles by adding and removing reactions. Each guild may have a maximum of cfg.maxRoleMenusPerGuild role menus active at any one time. Option reactions must be either unicode, or custom to the server where the menu is being created. args must contain a menu subject and new line, followed by a newline-separated list of emoji-option pairs, where each pair is separated with a space. For example: 'Number Roles\n0️⃣ @Role-1\n1️⃣ @Role-2\n2️⃣ @Role-3' will produce three options: - Toggling the 0️⃣ reaction will toggle user ownership of @Role-1 - Toggling the 1️⃣ reaction will toggle user ownership of @Role-2 - Toggling the 2️⃣ reaction will toggle user ownership of @Role-3 Where the subject of the menu is 'Number Roles'. The menu subject is optional. To not provide a subject, simply start args with a new line. args may also optionally contain the following keyword arguments, given as argname=value - target : A role or user to restrict participants by. Must be a user or role mention, not ID. - days : The number of days that the menu should run for. Must be at least one, or unspecified. - hours : The number of hours that the menu should run for. Must be at least one, or unspecified. - minutes : The number of minutes that the menu should run for. Must be at least one, or unspecified. - seconds : The number of seconds that the menu should run for. Must be at least one, or unspecified. Reaction menus can be forced to run forever. To do this, specify ALL run time kwargs as 'off'. TODO: Change options list formatting from comma separated to new line separated TODO: Support target IDs TODO: Implement single choice/grouped roles TODO: Change non-expiring menu specification from all kwargs 'off' to a special kwarg 'on' :param discord.Message message: the discord message calling the command :param str args: A comma-separated list of space-separated emoji-option pairs, and optionally any kwargs as specified in this function's docstring :param bool isDM: Whether or not the command is being called from a DM channel """ requestedBBGuild = botState.guildsDB.getGuild(message.guild.id) if requestedBBGuild.ownedRoleMenus >= cfg.maxRoleMenusPerGuild: await message.reply(mention_author=False, content=":x: Guilds can have at most " + str(cfg.maxRoleMenusPerGuild) + " role menus!") return requestedBBGuild.ownedRoleMenus += 1 botRole = None potentialRoles = [] for currRole in message.guild.me.roles: if currRole.name == message.guild.me.name and currRole.managed: potentialRoles.append(currRole) if potentialRoles == []: await message.reply(mention_author=False, content=":x: I can't find my '" + message.guild.me.name + "' role! Have you renamed it?") return botRole = potentialRoles[-1] reactionRoles = {} kwArgs = {} argsSplit = args.split("\n") if len(argsSplit) < 2: await message.reply(mention_author=False, content=":x: Invalid arguments! Please provide your menu title, followed by a new line, " \ + "then a new line-separated series of options.\nFor more info, see `" \ + requestedBBGuild.commandPrefix + "admin-help`") return menuSubject = argsSplit[0] argPos = 0 for arg in argsSplit[1:]: if arg == "": continue argPos += 1 try: roleStr, dumbReact = arg.strip(" ").split(" ")[1], lib.emojis.BasedEmoji.fromStr(arg.strip(" ").split(" ")[0]) except (ValueError, IndexError): for kwArg in ["target=", "days=", "hours=", "seconds=", "minutes=", "multiplechoice="]: if arg.lower().startswith(kwArg): kwArgs[kwArg[:-1]] = arg[len(kwArg):] break # except lib.emojis.UnrecognisedCustomEmoji: # await message.reply(mention_author=False, content=":x: I don't know your " + str(argPos) + lib.stringTyping.getNumExtension(argPos) \ # + " emoji!\nYou can only use built in emojis, or custom emojis " \ # + "that are in this server.") # return else: if dumbReact.sendable == "None": await message.reply(mention_author=False, content=":x: I don't know your " + str(argPos) + lib.stringTyping.getNumExtension(argPos) \ + " emoji!\nYou can only use built in emojis, or custom emojis that " \ + "are in this server.") return if dumbReact is None: await message.reply(mention_author=False, content=":x: Invalid emoji: " + arg.strip(" ").split(" ")[1]) return elif dumbReact.isID: localEmoji = False for localEmoji in message.guild.emojis: if localEmoji.id == dumbReact.id: localEmoji = True break if not localEmoji: await message.reply(mention_author=False, content=":x: I don't know your " + str(argPos) \ + lib.stringTyping.getNumExtension(argPos) + " emoji!\n" \ + "You can only use built in emojis, or custom emojis " \ + "that are in this server.") return if dumbReact in reactionRoles: await message.reply(mention_author=False, content=":x: Cannot use the same emoji for two options!") return role = message.guild.get_role(int(roleStr.lstrip("<@&").rstrip(">"))) if role is None: await message.reply(mention_author=False, content=":x: Unrecognised role: " + roleStr) return elif role.position > botRole.position: await message.reply(mention_author=False, content=":x: I can't grant the **" + role.name + "** role!\nMake sure it's below my '" \ + botRole.name + "' role in the server roles list.") reactionRoles[dumbReact] = role if len(reactionRoles) == 0: await message.reply(mention_author=False, content=":x: No roles given!") return targetRole = None targetMember = None if "target" in kwArgs: if lib.stringTyping.isRoleMention(kwArgs["target"]): targetRole = message.guild.get_role(int(kwArgs["target"].lstrip("<@&").rstrip(">"))) if targetRole is None: await message.reply(mention_author=False, content=":x: Unknown target role!") return elif lib.stringTyping.isMention(kwArgs["target"]): targetMember = message.guild.get_member(int(kwArgs["target"].lstrip("<@!").rstrip(">"))) if targetMember is None: await message.reply(mention_author=False, content=":x: Unknown target user!") return else: await message.reply(mention_author=False, content=":x: Invalid target role/user!") return timeoutDict = {} for timeName in ["days", "hours", "minutes", "seconds"]: if timeName in kwArgs: if kwArgs[timeName].lower() == "off": timeoutDict[timeName] = -1 else: if not lib.stringTyping.isInt(kwArgs[timeName]) or int(kwArgs[timeName]) < 1: await message.reply(mention_author=False, content=":x: Invalid number of " + timeName + " before timeout!") return timeoutDict[timeName] = int(kwArgs[timeName]) timeoutExists = False for timeName in timeoutDict: if timeoutDict[timeName] != -1: timeoutExists = True timeoutExists = timeoutExists or timeoutDict == {} menuMsg = await message.reply(mention_author=False, content="‎") if timeoutExists: timeoutDelta = timedelta(**cfg.timeouts.roleMenuExpiry if timeoutDict == {} else timeoutDict) timeoutTT = timedTask.TimedTask(expiryDelta=timeoutDelta, expiryFunction=reactionRolePicker.markExpiredRoleMenu, expiryFunctionArgs=menuMsg.id) botState.reactionMenusTTDB.scheduleTask(timeoutTT) else: timeoutTT = None menu = reactionRolePicker.ReactionRolePicker(menuMsg, reactionRoles, message.guild, targetRole=targetRole, targetMember=targetMember, timeout=timeoutTT, titleTxt=menuSubject) await menu.updateMessage() botState.reactionMenusDB[menuMsg.id] = menu
6,463
def PSF_Moffat(alpha,beta,x,y): """ Compute the PSF of the instrument with a Moffat function Parameters ----------- alpha: float radial parameter beta: float power indice of the function x: float position along the x axis y: float position along the y axis wavelength: float effective wavelength of the filter in angstrom Returns: --------- psf: array psf of the instrument """ psf = (beta-1.)/(np.pi*alpha*alpha) * (1.+(x*x+y*y)/(alpha*alpha))**(-beta) return psf
6,464
def _tf_range_for_stmt(iter_, extra_test, body, get_state, set_state, init_vars, basic_symbol_names, composite_symbol_names, opts): """Overload of for_stmt that iterates over a TF range (and elides it).""" _disallow_undefs_into_loop(*init_vars) start, limit, delta = iter_.op.inputs def while_body(iterate, *loop_vars): new_vars = body(iterate, *loop_vars) loop_vars = (iterate + delta,) if new_vars: loop_vars += new_vars return loop_vars def while_cond(iterate, *loop_vars): """Cond function for `tf.while_loop`.""" main_test = math_ops.logical_or( math_ops.logical_and(delta >= 0, iterate < limit), math_ops.logical_and(delta < 0, iterate > limit)) if extra_test is not None: return control_flow_ops.cond( main_test, lambda: extra_test(*loop_vars), lambda: False, ) return main_test opts['maximum_iterations'] = math_ops.cast( misc.get_range_len(start, limit, delta), dtypes.int32) results = _tf_while_stmt( while_cond, while_body, get_state, set_state, (start,) + init_vars, ('<internal iterate>',) + basic_symbol_names, composite_symbol_names, opts, ) # Note: the iteration index is not returned by the while loop, however # if a symbol with the same name exists outside the loop, it will be captured # by the loop variables and ultimately updated correctly. if isinstance(results, (tuple, list)): assert len(results) >= 1 # Has at least the iterate. if len(results) > 1: results = results[1:] else: results = () return results
6,465
def _import_class(module_and_class_name: str) -> type: """Import class from a module, e.g. 'text_recognizer.models.MLP'""" module_name, class_name = module_and_class_name.rsplit(".", 1) # splits into 2 elements at "." module = importlib.import_module(module_name) class_ = getattr(module, class_name) # gives us model.class_name attribute (ex: jacques = Person(), jacques.age -> 28) return class_
6,466
def mark_task(func): """Mark function as a defacto task (for documenting purpose)""" func._is_task = True return func
6,467
def dict_diff(left: Map, right: Map) -> t.List[t.Dict]: """Get the difference between 2 dict-like objects Args: left (Map): The left dict-like object right (Map): The right dict-like object The value returned is a list of dictionaries with keys ["path", "left", "right"] which contain the query path and the differences between the left and right mapping. If a key is missing in either mapping, it will be indicated as a "None". `math.nan` (not-a-number) is used for default values in the comparison because of the property: `math.nan != math.nan`. Simple None cannot be used, since it would not handle keys that both have a value of None. In general, this function might report false-positives for keys that contain the math.nan (or np.nan) value simply due to this property. There is no workaround available. """ left_paths = set(get_valid_access_paths(left, _leaf_only=True, _use_lists=False)) right_paths = set(get_valid_access_paths(right, _leaf_only=True, _use_lists=False)) return list( { "path": path, "left": getitem(left, path, math.nan), "right": getitem(right, path, math.nan), } for path in left_paths.union(right_paths) if getitem(left, path, math.nan) != getitem(right, path, math.nan) )
6,468
def make_slack_message_divider() -> dict: """Generates a simple divider for a Slack message. Returns: The generated divider. """ return {'type': 'divider'}
6,469
def sandbox_multibranch(log_dir, request): """Multi-branch sandbox fixture. Parameterized by map of branches. This fixture is identical to `sandbox` except that each node_id is mapped to a pair (git revision, protocol version). For instance, suppose a mapping: MAP = { 0: ('zeronet', 'alpha'), 1:('mainnet', '004-Pt24m4xi'), 2: ('alphanet', '003-PsddFKi3' } If we annotate the class test as follows. @pytest.mark.parametrize('sandbox_multibranch', [MAP], indirect=True) The executables (node, baker, endorser) - for node_id 0 will be looked up in `TEZOS_BINARY/zeronet`, - for node_id 1 will be looked up in `TEZOS_BINARY/mainnet` and so on... baker and endorser will use the specified protocol version, according to the tezos executables naming conventions. """ if paths.TEZOS_BINARIES is None: pytest.skip() branch_map = request.param assert branch_map is not None num_peers = max(branch_map) + 1 with SandboxMultiBranch(paths.TEZOS_BINARIES, constants.IDENTITIES, constants.GENESIS_PK, num_peers=num_peers, log_dir=log_dir, branch_map=branch_map) as sandbox: yield sandbox # this assertion checks that deamons (baker, endorser, node...) didn't # fail unexpected. assert sandbox.are_daemons_alive()
6,470
def ensure_access(file): """Ensure we can access a directory and die with an error if we can't.""" if not can_access(file): tty.die("Insufficient permissions for %s" % file)
6,471
def username(): """ Return username from env. """ return os.environ["USER"]
6,472
def get_history(filename: str, extension: int = 0) -> str: """ Returns the HISTOR header lines. Args: filename: image filename. extension: image extension number. Returns: string containing all HISTORY lines. """ filename = azcam.utils.make_image_filename(filename) hdr = pyfits.getheader(filename, extension) history = hdr["HISTORY"] return str(history)
6,473
def product_detail(request, product_id): """ A view to show one product's details """ product = get_object_or_404(Product, pk=product_id) review_form = ReviewForm() reviews = Review.objects.filter(product_id=product_id).order_by('-created_at') context = { 'product': product, 'review_form': review_form, 'reviews': reviews, } return render(request, 'products/product_detail.html', context)
6,474
def deserialize_response_content(response): """Convert utf-8 encoded string to a dict. Since the response is encoded in utf-8, it gets decoded to regular python string that will be a json string. That gets converted to python dictionary. Note: Do not use this method to process non-json response.content :param requests.models.Response response: object that includes attributes status code and content :return: response content as decoded dictionary :rtype: dict """ if response.content: decoded = response.content.decode("utf-8") if len(decoded) > 0: return json.loads(decoded) return {}
6,475
def _remove_header_create_bad_object(remove, client=None): """ Create a new bucket, add an object without a header. This should cause a failure """ bucket_name = get_new_bucket() if client == None: client = get_client() key_name = 'foo' # remove custom headers before PutObject call def remove_header(**kwargs): if (remove in kwargs['params']['headers']): del kwargs['params']['headers'][remove] client.meta.events.register('before-call.s3.PutObject', remove_header) e = assert_raises(ClientError, client.put_object, Bucket=bucket_name, Key=key_name, Body='bar') return e
6,476
def SpawnObjectsTab(): """This function creates a layout containing the object spawning functionality. Returns: str : The reference to the layout. """ ### Create main Layout for the tab mainTab = cmds.columnLayout(adjustableColumn=True, columnAttach=('both', 20)) cmds.separator(height=10, style="none") cmds.text(label="Asset Gallery:", align="left") ### Asset Name Text Field cmds.separator(height=10, style="none") SpawnObjectsTab.UserField = cmds.textFieldButtonGrp(placeholderText="Write Asset's Name", buttonLabel="Save Asset", buttonCommand=lambda: saveAsset(), ann="Assign a name for the asset that will be used in the outliner and in the directory hierarchy.") ### Asset Gallery Layout cmds.separator(height=10, style="none") cmds.scrollLayout(childResizable=True, height=305, width=455, backgroundColor=(.2,.2,.2)) global objectScroll objectScroll = cmds.gridLayout(cellWidthHeight=(150,150), autoGrow=True) populateGallery() # Creates Icons cmds.setParent(mainTab) # Exit scroll layout ### Choose between Arnold StandIn and Assembly Reference cmds.separator(height=10, style="none") global loadMethodRadio cmds.rowLayout(numberOfColumns=3, adjustableColumn=3) loadMethodRadio = cmds.radioCollection() cmds.radioButton("standin", label="Load as Arnold StandIn", select=True, ann="Arnold standIns bring materials. Render in Arnold to see them.") # Radio button for StandIn cmds.separator(width=20, style="none") cmds.radioButton("assembly", label="Load as Assembly Reference", ann="Assembly references can change their representation mode.") # Radio button for Assembly cmds.setParent(mainTab) ### Choose how to set the location of the object cmds.separator(height=10) cmds.text(label="Spawning method:", align="left") cmds.separator(height=5, style="none") cmds.rowLayout(numberOfColumns=4, adjustableColumn=4, columnAttach4=("both","both","both","both"), columnOffset4=(10,10,10,10)) global placingRadio placingRadio = cmds.radioCollection() # Create only one copy cmds.radioButton("single", label="Single Object", select=True, onCommand=lambda x: cmds.columnLayout(randomControlLayout, edit=True, enable=False), offCommand=lambda x: cmds.columnLayout(randomControlLayout, edit=True, enable=True), ann="Create one single object. MMC and drag to scene does the same.") # Create copies along a curve cmds.radioButton("curve", label="Along Curve", ann="Spawn assets along a previously created curve") # Create copies between a range in world space cmds.radioButton("range", label="In Range", onCommand=lambda x: cmds.columnLayout(rangeLayout, edit=True, visible=True), offCommand=lambda x: cmds.columnLayout(rangeLayout, edit=True, visible=False), ann="Creates objects in a defined range of coordinates.") # Create copies on a mesh's surface cmds.radioButton("mesh", label="On Mesh", ann="Locate assets on the surface of a selected mesh.") cmds.setParent(mainTab) ### Randomization parameters cmds.separator(height=10, style="none") randomControlLayout = cmds.columnLayout(enable=False) # How many copies SpawnObjectsTab.BuildingAmount = cmds.intSliderGrp(label="Building Number", field=True, value=10, min=2, max=50, fieldMaxValue=200) # Deviation from original rotation SpawnObjectsTab.RandomRotation = cmds.floatSliderGrp(label="Random Rotation", field=True, value=15, min=0, max=360) # Deviation from orignal scale SpawnObjectsTab.RandomScale = cmds.floatSliderGrp(label="Random Scale", field=True, value=0, min=0, max=10) cmds.setParent(mainTab) ### Range spawning parameters rangeLayout = cmds.columnLayout(visible=False) # Min x, y and z coordinates SpawnObjectsTab.MinimumField = cmds.floatFieldGrp(label="Minimum Range: ", numberOfFields=3) # Max x, y and z coordinates SpawnObjectsTab.MaximumField = cmds.floatFieldGrp(label="Maximum Range: ", numberOfFields=3) cmds.setParent(mainTab) ### Finalize cmds.separator(height=10, style="none") cmds.button(label='Load Selected Objects', command=lambda x: choosePlacement(x)) cmds.setParent('..') # Exit column layout return mainTab
6,477
def train_val_test_split(relevant_data: List[str], seed: int = 42) -> Tuple[List[str], List[str], List[str]]: """Splits a list in seperate train, validate and test datasets. TODO: add params for train / val / test sizes :param relevant_data: The list to be divided, generaly a list of filenames. :dtype relevant_data: List[str] """ relevant_data = sorted(relevant_data) # Ensures the input to the split is always the same train, rest = train_test_split(relevant_data, test_size=0.3, shuffle=True, random_state=seed) # 70% to train val, test = train_test_split(rest, test_size=0.5, shuffle=True, random_state=seed) # Divide the remaining 30% equally over val and test return train, val, test
6,478
def create_boxplots_ratio_3(arr1, arr2, arr3, labels, m, n, lambda_max, title, ticks, no_vars, range_1, range_2, region, function_type, func_evals): """Create boxplots.""" plt.figure(figsize=(5, 5)) plt.ylim(range_1, range_2) bpl = plt.boxplot(arr1.T, positions=np.array(range(len(arr1)))*3.0-0.6) bpc = plt.boxplot(arr2.T, positions=np.array(range(len(arr1)))*3.0) bpr = plt.boxplot(arr3.T, positions=np.array(range(len(arr2)))*3.0+0.6) set_box_color(bpl, 'green') set_box_color(bpc, 'navy') set_box_color(bpr, 'purple') plt.plot([], c='green', label=labels[0]) plt.plot([], c='navy', label=labels[1]) plt.plot([], c='purple', label=labels[2]) plt.xlabel(r'SNR', size=14) plt.xticks(np.arange(0, len(ticks) * 3, 3), ticks, size=15) plt.yticks(fontsize=14) plt.tight_layout() plt.savefig('%s_ratio_m_%s_n_%s_lambda_max_%s_%s_%s_%s_%s.png' % (title, m, n, lambda_max, no_vars, region, function_type, func_evals))
6,479
def getShdomDirections(Y_shdom, X_shdom, fov=math.pi/2): """Calculate the (SHDOM) direction of each pixel. Directions are calculated in SHDOM convention where the direction is of the photons. """ PHI_shdom = np.pi + np.arctan2(Y_shdom, X_shdom) PSI_shdom = -np.pi + fov * np.sqrt(X_shdom**2 + Y_shdom**2) return PHI_shdom, PSI_shdom
6,480
def twos_comp(val, bits): """returns the 2's complement of int value val with n bits - https://stackoverflow.com/questions/1604464/twos-complement-in-python""" if (val & (1 << (bits - 1))) != 0: # if sign bit is set e.g., 8bit: 128-255 val = val - (1 << bits) # compute negative value return val & ((2 ** bits) - 1) # return positive value as is
6,481
def get_batch(source, i, cnf): """ Gets a batch shifted over by shift length """ seq_len = min(cnf.batch_size, len(source) - cnf.forecast_window - i) data = source[i : i + seq_len] target = source[ i + cnf.forecast_window : i + cnf.forecast_window + seq_len ].reshape(-1) return data, target
6,482
def test_list_language_min_length_2_nistxml_sv_iv_list_language_min_length_3_1(mode, save_output, output_format): """ Type list/language is restricted by facet minLength with value 7. """ assert_bindings( schema="nistData/list/language/Schema+Instance/NISTSchema-SV-IV-list-language-minLength-3.xsd", instance="nistData/list/language/Schema+Instance/NISTXML-SV-IV-list-language-minLength-3-1.xml", class_name="NistschemaSvIvListLanguageMinLength3", version="1.1", mode=mode, save_output=save_output, output_format=output_format, structure_style="filenames", )
6,483
def verify_df(df, constraints_path, epsilon=None, type_checking=None, repair=True, report='all', **kwargs): """ Verify that (i.e. check whether) the Pandas DataFrame provided satisfies the constraints in the JSON ``.tdda`` file provided. Mandatory Inputs: *df*: A Pandas DataFrame, to be checked. *constraints_path*: The path to a JSON ``.tdda`` file (possibly generated by the discover_df function, below) containing constraints to be checked. Or, alternatively, an in-memory dictionary containing the structured contents of a ``.tdda`` file. Optional Inputs: *epsilon*: When checking minimum and maximum values for numeric fields, this provides a tolerance. The tolerance is a proportion of the constraint value by which the constraint can be exceeded without causing a constraint violation to be issued. For example, with epsilon set to 0.01 (i.e. 1%), values can be up to 1% larger than a max constraint without generating constraint failure, and minimum values can be up to 1% smaller that the minimum constraint value without generating a constraint failure. (These are modified, as appropriate, for negative values.) If not specified, an *epsilon* of 0 is used, so there is no tolerance. NOTE: A consequence of the fact that these are proportionate is that min/max values of zero do not have any tolerance, i.e. the wrong sign always generates a failure. *type_checking*: ``strict`` or ``sloppy``. Because Pandas silently, routinely and automatically "promotes" integer and boolean columns to reals and objects respectively if they contain nulls, strict type checking can be problematical in Pandas. For this reason, ``type_checking`` defaults to ``sloppy``, meaning that type changes that could plausibly be attributed to Pandas type promotion will not generate constraint values. If this is set to strict, a Pandas ``float`` column ``c`` will only be allowed to satisfy a an ``int`` type constraint if:: c.dropnulls().astype(int) == c.dropnulls() Similarly, Object fields will satisfy a ``bool`` constraint only if:: c.dropnulls().astype(bool) == c.dropnulls() *repair*: A boolean to specify whether to try to use the information in the constraints to attempt to repair potentially-incorrect type inferrences made when constructing the dataframe. When the dataframe has been loaded from a .csv file, this can often be useful (but should not be used with dataframes that have come from a more reliable source). *report*: ``all`` or ``fields``. This controls the behaviour of the :py:meth:`~tdda.constraints.pd.constraints.PandasVerification.__str__` method on the resulting :py:class:`~tdda.constraints.pd.constraints.PandasVerification` object (but not its content). The default is ``all``, which means that all fields are shown, together with the verification status of each constraint for that field. If report is set to ``fields``, only fields for which at least one constraint failed are shown. Returns: :py:class:`~tdda.constraints.pd.constraints.PandasVerification` object. This object has attributes: - *passes* --- Number of passing constriants - *failures* --- Number of failing constraints It also has a :py:meth:`~tdda.constraints.pd.constraints.PandasVerification.to_frame()` method for converting the results of the verification to a Pandas DataFrame, and a :py:meth:`~tdda.constraints.pd.constraints.PandasVerification.__str__` method to print both the detailed and summary results of the verification. Example usage:: import pandas as pd from tdda.constraints import verify_df df = pd.DataFrame({'a': [0, 1, 2, 10, np.NaN], 'b': ['one', 'one', 'two', 'three', np.NaN]}) v = verify_df(df, 'example_constraints.tdda') print('Constraints passing: %d\\n' % v.passes) print('Constraints failing: %d\\n' % v.failures) print(str(v)) print(v.to_frame()) See *simple_verification.py* in the :ref:`constraint_examples` for a slightly fuller example. """ pdv = PandasConstraintVerifier(df, epsilon=epsilon, type_checking=type_checking) if isinstance(constraints_path, dict): constraints = DatasetConstraints() constraints.initialize_from_dict(native_definite(constraints_path)) else: constraints = DatasetConstraints(loadpath=constraints_path) if repair: pdv.repair_field_types(constraints) return pdv.verify(constraints, VerificationClass=PandasVerification, report=report, **kwargs)
6,484
def logical_and(image1, image2): """Logical AND between two videos. At least one of the videos must have mode "1". .. code-block:: python out = ((image1 and image2) % MAX) :rtype: :py:class:`~PIL.Image.Image` """ image1.load() image2.load() return image1._new(image1.im.chop_and(image2.im))
6,485
def crusader_action(party_sorted_by_rank, hero, raid_info, enemy_formation): """[ Ideal skill load-out: smite, stunning blow, holy lance, inspiring cry ]""" global UpdatedPartyOrder party = party_sorted_by_rank list_of_attacks = ['smite', 'holy_lance'] stall_count = raid_info['battle']['round_stall_count'] stall_accelerated = raid_info['battle']['previous_stall_accelerated'] stall = False if stall_count >= 2 or stall_accelerated else True attack, stun_chance, target = None, None, None swap_distance = 1 if 'stunning_blow' in hero.skills: stun_level = hero.skills['stunning_blow'] stun_chance = AttackSkills['stunning_blow'][2][stun_level] enemies_not_dead_already = [enemy for enemy in enemy_formation if not enemy.alreadyGoingToDie] enemy = enemies_not_dead_already[0] if len(enemies_not_dead_already) > 0 else None # stall if only one weak enemy left and need to heal or stress heal if (len(enemies_not_dead_already) == 0 or (len(enemies_not_dead_already) == 1 and (enemies_not_dead_already[0].threat < 4 or enemies_not_dead_already[0].stunned) and stall)) \ and ((any(ally.percentHp < 80 for ally in party) and any(ally.healer for ally in party)) or (any(ally.stress > 0 for ally in party) and any(ally.stressHealer for ally in party))): if len(enemies_not_dead_already) == 1 \ and not (enemy.name == 'Bone Arbalist' and (3 in enemy.rank or 4 in enemy.rank)): enemy = enemies_not_dead_already[0] can_stun = stun_chance - enemy.stunResist >= 55 if 'inspiring_cry' in hero.skills \ and (any(ally.effectiveHp == 0 for ally in party) or (enemy.threat <= 2 or enemy.stunned or (enemy.threat < 4 and enemy.canBeKilledIn1Hit) and any(ally.stress > 0 for ally in party))): attack = 'inspiring_cry' elif (1 == hero.rank or 2 == hero.rank) and (2 in enemy.rank or 1 in enemy.rank) \ and not enemy.stunned and can_stun and not enemy.canBeKilledIn1Hit: attack = 'stunning_blow' target = enemy else: attack = 'swap' if hero.rank != 1 or (hero.rank == 1 and party[1].heroClass not in BackLineClasses) \ else None swap_distance = -1 if hero.rank == 1 and party[1].heroClass not in BackLineClasses else 1 # stress heal if main threat is dealt with, or heal if ally is on deaths door or can stop from reaching deaths door if attack is None and stall and 'inspiring_cry' in hero.skills \ and (any(ally.effectiveHp == 0 for ally in party) or (len(enemies_not_dead_already) < 3 and any(ally.stress > 0 for ally in party) and not any(enemy.threat > 2 or (enemy.threat > 3 and not enemy.stunned) for enemy in enemies_not_dead_already))): attack = 'inspiring_cry' # stun enemy if can't kill if attack is None and (hero.rank == 1 or hero.rank == 2) and 'stunning_blow' in hero.skills: if any(stun_chance - enemy.stunResist >= 55 and not enemy.stunned and not enemy.canBeKilledIn1Hit and (1 in enemy.rank or 2 in enemy.rank) for enemy in enemies_not_dead_already): attack = 'stunning_blow' elif attack is None or (hero.rank == 3 or hero.rank == 4): # holy lance if rank 3 or 4, and not front line on next rank, and enemy on rank 2 if any(2 in enemy.rank or 3 in enemy.rank or 4 in enemy.rank for enemy in enemies_not_dead_already) \ and 'holy_lance' in hero.skills and party[hero.rank-2].heroClass not in FrontLineClasses: attack = 'holy_lance' elif hero.rank == 3 and party[1] in BackLineClasses \ or (not any(ally.stress > 0 for ally in party) and party[hero.rank-2].heroClass not in FrontLineClasses): attack = 'swap' elif 'inspiring_cry' in hero.skills: attack = 'inspiring_cry' else: attack = 'swap' if attack == 'swap': swap_hero(hero, swap_distance, UpdatedPartyOrder, debug=Debug) elif attack == 'stunning_blow': find_target_and_stun(hero, enemies_not_dead_already, attack, stun_chance, UpdatedPartyOrder, target) elif attack == 'inspiring_cry': target = next((ally for ally in party if ally.currentHp == 0), None) if target is None: target = next((ally for ally in party if ally.effectiveHp == 0), None) if target is None: party.sort(key=lambda k: k.stress, reverse=True) target = party[0] heal_target(hero, target, attack, debug=Debug) else: # Find target and attack enemy if attack is not None: list_of_attacks.insert(0, attack) find_target_and_attack(raid_info, enemy_formation, hero, party, list_of_attacks, UpdatedPartyOrder)
6,486
def predict(endpoint_id: str, instance: object) -> object: """Send a prediction request to a uCAIP model endpoint Args: endpoint_id (str): ID of the uCAIP endpoint instance (object): The prediction instance, should match the input format that the endpoint expects Returns: object: Prediction results from the model """ return UCAIPService.get().predict_tables(endpoint_id, instance)
6,487
def positionNoFlag(PosName, coords): """This function writes the postion with no flags, on the format P1=(X,Y,Z,A,B,C)""" definePosition(PosName, coords, True, [0,0])
6,488
async def resolve_address(ipaddr, *args, **kwargs): """Use a resolver to run a reverse query for PTR records. See ``dns.asyncresolver.Resolver.resolve_address`` for more information on the parameters. """ return await get_default_resolver().resolve_address(ipaddr, *args, **kwargs)
6,489
def _stringify(item): """ Private funtion which wraps all items in quotes to protect from paths being broken up. It will also unpack lists into strings :param item: Item to stringify. :return: string """ if isinstance(item, (list, tuple)): return '"' + '" "'.join(item) + '"' if isinstance(item, str) and len(item) == 0: return None return '"%s"' % item
6,490
def _get_tree_filter(attrs, vecvars): """ Pull attributes and input/output vector variables out of a tree System. Parameters ---------- attrs : list of str Names of attributes (may contain dots). vecvars : list of str Names of variables contained in the input or output vectors. Returns ------- function A function that takes a System and returns a list of name value pairs. """ def _finder(system): found = [] for attr in attrs: parts = attr.split('.') # allow attrs with dots try: obj = system for p in parts: obj = getattr(obj, p) found.append((attr, obj)) except AttributeError: pass for var in vecvars: if var in system._outputs: found.append((var, system._outputs[var])) elif var in system._inputs: found.append((var, system._inputs[var])) return found return _finder
6,491
def db(sql, action): """Create or Drop tables from a database""" db = SQL(sql) settings.SQL = sql # auth_mod = importlib.import_module("labfunctions.auth.models") wf_mod = importlib.import_module("labfunctions.models") if action == "create": db.create_all() click.echo("Created...") elif action == "drop": db.drop_all() click.echo("Droped...") elif action == "upgrade": alembic_ugprade(sql) else: click.echo("Wrong param...")
6,492
def gradient2(Y,x,sum_p): """ Description ----------- Used to calculate the gradients of the beta values (excluding the first). Parameters ---------- Y: label (0 or 1) x: flux value sum_p: sum of all beta values (see 'param_sum' function) Returns ------- num/denom: gradient value """ if Y == 1: num = -x * np.exp(-sum_p) denom = 1 + np.exp(-sum_p) elif Y == 0: num = x denom = 1 + np.exp(-sum_p) return num/denom
6,493
def test_dramatiq_collector_returns_queues_sizes(dramatiq_queue): """ DramatiqCollector returns a correct list of queues sizes. GIVEN: There is a Dramatiq queue in Redis. WHEN: _get_queues_sizes method is called with a list of valid queues names. THEN: A list of tuples with correct queues names and theirs sizes is returned. """ queues_sizes = DramatiqCollector._get_queues_sizes([b"dramatiq:fake.msgs"]) assert queues_sizes == [("dramatiq:fake.msgs", 2)]
6,494
def test_dataset(args, valid_loader): """ return the required model depending on the arguments: """ test_data = next(iter(valid_loader)) print("Input dimension:") if args.model_type == "diagnosis": print(test_data["img"][args.perspectives[0]].shape) print(torch.min(test_data["img"][args.perspectives[0]])) print(torch.max(test_data["img"][args.perspectives[0]])) else: print(test_data["img"].shape) print(torch.min(test_data["img"])) print(torch.max(test_data["img"]))
6,495
def takeBlock2(aList, row_list, col_list): """ Take sublist given from rows specified by row_list and column specified by col_list from a doublely iterated list. The convention for the index of the rows and columns are the same as in slicing. """ result = [] for row in row_list: result.append(map(lambda column: aList[row][column], col_list)) return result
6,496
def err_callback(signum: signal.Signals, frame: Any) -> None: """Callback that raises Timeout.ContextTimeout""" raise ContextTimeout()
6,497
def param(key, desired_type=None): """Return a decorator to parse a JSON request value.""" def decorator(view_func): """The actual decorator""" @wraps(view_func) def inner(*args, **kwargs): data = request.get_json() # May raise a 400 try: value = data[key] except (KeyError, TypeError): abort(400, "Missing JSON value '{0}'.".format(key)) if desired_type and not isinstance(value, desired_type): # For the error message if desired_type == text_type: type_name = 'string' else: type_name = desired_type.__name__ abort(400, ("Expected '{0}' to be type {1}." .format(key, type_name))) # Success, pass through to view function kwargs[key] = value return view_func(*args, **kwargs) return inner return decorator
6,498
def make_client(instance): """Returns a client to the ClientManager.""" tacker_client = utils.get_client_class( API_NAME, instance._api_version[API_NAME], API_VERSIONS) LOG.debug('Instantiating tacker client: %s', tacker_client) kwargs = {'service_type': 'nfv-orchestration', 'region_name': instance._region_name, 'endpoint_type': instance._interface, 'interface': instance._interface, 'session': instance.session } client = tacker_client(**kwargs) return client
6,499