content
stringlengths
22
815k
id
int64
0
4.91M
def calc_power_VARIANT(input_data, working_dir, t_pt=0): """Calculate the power distributions from VARIANT Parameters ---------- data : dict DASSH input data dictionary working_dir : str Path to current working directory Returns ------- dict DASSH Power objects for each type of assembly in the problem; different objects are required because different assemblies can have different unrodded region specifications """ cwd = os.getcwd() if working_dir != '': os.chdir(working_dir) # Identify VARPOW keys for fuel and coolant fuel_type = input_data['Power']['ARC']['fuel_material'].lower() fuel_id = _FUELS[fuel_type] if type(fuel_id) == dict: alloy_type = input_data['Power']['ARC']['fuel_alloy'].lower() fuel_id = fuel_id[alloy_type] coolant_heating = input_data['Power']['ARC']['coolant_heating'] if coolant_heating is None: coolant_heating = input_data['Core']['coolant_material'] if coolant_heating.lower() not in _COOLANTS.keys(): module_logger.error('Unknown coolant specification for ' 'heating calculation; must choose ' 'from options: Na, NaK, Pb, Pb-Bi') else: cool_id = _COOLANTS[coolant_heating.lower()] # Run VARPOW, rename output files path2varpow = os.path.dirname(os.path.abspath(__file__)) if sys.platform == 'darwin': path2varpow = os.path.join(path2varpow, 'varpow_osx.x') elif 'linux' in sys.platform: path2varpow = os.path.join(path2varpow, 'varpow_linux.x') else: raise SystemError('DASSH currently supports only Linux and OSX') with open('varpow_stdout.txt', 'w') as f: subprocess.call([path2varpow, str(fuel_id), str(cool_id), input_data['Power']['ARC']['pmatrx'][t_pt], input_data['Power']['ARC']['geodst'][t_pt], input_data['Power']['ARC']['ndxsrf'][t_pt], input_data['Power']['ARC']['znatdn'][t_pt], input_data['Power']['ARC']['nhflux'][t_pt], input_data['Power']['ARC']['ghflux'][t_pt]], stdout=f) subprocess.call(['mv', 'MaterialPower.out', 'varpow_MatPower.out']) subprocess.call(['mv', 'VariantMonoExponents.out', 'varpow_MonoExp.out']) subprocess.call(['mv', 'Output.VARPOW', 'VARPOW.out']) os.chdir(cwd) return import_power_VARIANT(input_data, working_dir, t_pt)
5,344,400
def from_float32(buffer): """Interprets an arbitrary string or NumPy array as Vax single-precision floating-point binary values, and returns the equivalent array in IEEE values.""" # Convert the buffer to 2-byte elements if isinstance(buffer, (str, np.str_, bytes, bytearray)): pairs = np.fromstring(buffer, dtype='uint16') pairs = pairs.reshape(pairs.size//2, 2) newshape = (pairs.size//2,) else: buffer = np.asarray(buffer) pairs = buffer.view('uint16') assert pairs.shape[-1] % 2 == 0, \ 'buffer shape is incompatible with 4-byte elements' if buffer.itemsize == 1: newshape = buffer.shape[:-1] + (buffer.shape//4,) elif buffer.itemsize == 2: newshape = buffer.shape[:-1] + (buffer.shape//2,) elif buffer.itemsize == 4: newshape = buffer.shape[:-1] + (1,) else: newshape = buffer.shape + (buffer.itemsize//4,) if newshape[-1] == 1: newshape = newshape[:-1] # Perform a pairwise swap of the two-byte elements swapped = np.empty(pairs.shape, dtype='uint16') swapped[...,:] = pairs[...,::-1] # The results are in LSB IEEE format aside from a scale factor of four ieee = swapped.view('<f4') / 4. return ieee.reshape(newshape)
5,344,401
def p_cmdexpr_xmlunescape(p): """cmdexpr : XMLUNESCAPE | XMLUNESCAPE arglist | XMLUNESCAPE MACRO"""
5,344,402
def draw_bound_box_on_image(image, xmin, ymin, xmax, ymax, vis=True): """ :param image: :param xmin, ymin, xmax, ymax: 归一化后的边角坐标 :param vis: :return: """ pil_image = PIL.Image.fromarray(image) draw = ImageDraw(pil_image) xmin *= pil_image.width xmax *= pil_image.width ymin *= pil_image.height ymax *= pil_image.height xmin, ymin, xmax, ymax = [int(it) for it in [xmin, ymin, xmax, ymax]] draw.line([(xmin, ymin), (xmax, ymin), (xmax, ymax), (xmin, ymax), (xmin, ymin)], width=4, fill='blue') np.copyto(image, np.array(pil_image))
5,344,403
def get_file_stats(file_name, entity_type='file', lineno=None, cursorpos=None, plugin=None, language=None, local_file=None): """Returns a hash of information about the entity.""" language = standardize_language(language, plugin) stats = { 'language': language, 'dependencies': [], 'lines': None, 'lineno': lineno, 'cursorpos': cursorpos, } if entity_type == 'file': lexer = get_lexer(language) if not language: language, lexer = guess_language(file_name, local_file) parser = DependencyParser(local_file or file_name, lexer) stats.update({ 'language': use_root_language(language, lexer), 'dependencies': parser.parse(), 'lines': number_lines_in_file(local_file or file_name), }) return stats
5,344,404
def setup(app: sphinx.application.Sphinx) -> dict[str, object]: """Called by Sphinx to set up the extension.""" app.add_config_value("gaphor_models", {}, "env", [dict]) app.add_directive("diagram", DiagramDirective) app.connect("config-inited", config_inited) return { "version": "0.1", "parallel_read_safe": True, "parallel_write_safe": True, }
5,344,405
def create_vmhc(use_ants, flirt_only=False, name='vmhc_workflow', ants_threads=1): """ Compute the map of brain functional homotopy, the high degree of synchrony in spontaneous activity between geometrically corresponding interhemispheric (i.e., homotopic) regions. Parameters ---------- None Returns ------- vmhc_workflow : workflow Voxel Mirrored Homotopic Connectivity Analysis Workflow Notes ----- `Source <https://github.com/FCP-INDI/C-PAC/blob/master/CPAC/vmhc/vmhc.py>`_ Workflow Inputs:: inputspec.brain : string (existing nifti file) Anatomical image(without skull) inputspec.symmetric_brain : string (existing nifti file) MNI152_T1_2mm_symmetric_brain.nii.gz inputspec.rest_res_filt : string (existing nifti file) Band passed Image with nuisance signal regressed out(and optionally scrubbed). Recommended bandpass filter (0.001,0.1) ) inputspec.reorient : string (existing nifti file) RPI oriented anatomical data inputspec.example_func2highres_mat : string (existing affine transformation .mat file) Specifies an affine transform that should be applied to the example_func before non linear warping inputspec.standard_for_func: string (existing nifti file) MNI152_T1_standard_resolution_brain.nii.gz inputspec.symmetric_skull : string (existing nifti file) MNI152_T1_2mm_symmetric.nii.gz inputspec.twomm_brain_mask_dil : string (existing nifti file) MNI152_T1_2mm_brain_mask_symmetric_dil.nii.gz inputspec.config_file_twomm_symmetric : string (existing .cnf file) T1_2_MNI152_2mm_symmetric.cnf inputspec.rest_mask : string (existing nifti file) A mask functional volume(derived by dilation from motion corrected functional volume) fwhm_input.fwhm : list (float) For spatial smoothing the Z-transformed correlations in MNI space. Generally the value of this parameter is 1.5 or 2 times the voxel size of the input Image. inputspec.mean_functional : string (existing nifti file) The mean functional image for use in the func-to-anat registration matrix conversion to ITK (ANTS) format, if the user selects to use ANTS. Workflow Outputs:: outputspec.highres2symmstandard : string (nifti file) Linear registration of T1 image to symmetric standard image outputspec.highres2symmstandard_mat : string (affine transformation .mat file) An affine transformation .mat file from linear registration and used in non linear registration outputspec.highres2symmstandard_warp : string (nifti file) warp file from Non Linear registration of T1 to symmetrical standard brain outputspec.fnirt_highres2symmstandard : string (nifti file) Non Linear registration of T1 to symmetrical standard brain outputspec.highres2symmstandard_jac : string (nifti file) jacobian determinant image from Non Linear registration of T1 to symmetrical standard brain outputspec.rest_res_2symmstandard : string (nifti file) nonlinear registration (func to standard) image outputspec.VMHC_FWHM_img : string (nifti file) pearson correlation between res2standard and flipped res2standard outputspec.VMHC_Z_FWHM_img : string (nifti file) Fisher Z transform map outputspec.VMHC_Z_stat_FWHM_img : string (nifti file) Z statistic map Order of commands: - Perform linear registration of Anatomical brain in T1 space to symmetric standard space. For details see `flirt <http://www.fmrib.ox.ac.uk/fsl/flirt/index.html>`_:: flirt -ref MNI152_T1_2mm_symmetric_brain.nii.gz -in mprage_brain.nii.gz -out highres2symmstandard.nii.gz -omat highres2symmstandard.mat -cost corratio -searchcost corratio -dof 12 -interp trilinear - Perform nonlinear registration (higres to standard) to symmetric standard brain. For details see `fnirt <http://fsl.fmrib.ox.ac.uk/fsl/fnirt/>`_:: fnirt --in=head.nii.gz --aff=highres2symmstandard.mat --cout=highres2symmstandard_warp.nii.gz --iout=fnirt_highres2symmstandard.nii.gz --jout=highres2symmstandard_jac.nii.gz --config=T1_2_MNI152_2mm_symmetric.cnf --ref=MNI152_T1_2mm_symmetric.nii.gz --refmask=MNI152_T1_2mm_brain_mask_symmetric_dil.nii.gz --warpres=10,10,10 - Perform spatial smoothing on the input functional image(inputspec.rest_res_filt). For details see `PrinciplesSmoothing <http://imaging.mrc-cbu.cam.ac.uk/imaging/PrinciplesSmoothing>`_ `fslmaths <http://www.fmrib.ox.ac.uk/fslcourse/lectures/practicals/intro/index.htm>`_:: fslmaths rest_res_filt.nii.gz -kernel gauss FWHM/ sqrt(8-ln(2)) -fmean -mas rest_mask.nii.gz rest_res_filt_FWHM.nii.gz - Apply nonlinear registration (func to standard). For details see `applywarp <http://www.fmrib.ox.ac.uk/fsl/fnirt/warp_utils.html#applywarp>`_:: applywarp --ref=MNI152_T1_2mm_symmetric.nii.gz --in=rest_res_filt_FWHM.nii.gz --out=rest_res_2symmstandard.nii.gz --warp=highres2symmstandard_warp.nii.gz --premat=example_func2highres.mat - Copy and L/R swap the output of applywarp command (rest_res_2symmstandard.nii.gz). For details see `fslswapdim <http://fsl.fmrib.ox.ac.uk/fsl/fsl4.0/avwutils/index.html>`_:: fslswapdim rest_res_2symmstandard.nii.gz -x y z tmp_LRflipped.nii.gz - Calculate pearson correlation between rest_res_2symmstandard.nii.gz and flipped rest_res_2symmstandard.nii.gz(tmp_LRflipped.nii.gz). For details see `3dTcorrelate <http://afni.nimh.nih.gov/pub/dist/doc/program_help/3dTcorrelate.html>`_:: 3dTcorrelate -pearson -polort -1 -prefix VMHC_FWHM.nii.gz rest_res_2symmstandard.nii.gz tmp_LRflipped.nii.gz - Fisher Z Transform the correlation. For details see `3dcalc <http://afni.nimh.nih.gov/pub/dist/doc/program_help/3dcalc.html>`_:: 3dcalc -a VMHC_FWHM.nii.gz -expr 'log((a+1)/(1-a))/2' -prefix VMHC_FWHM_Z.nii.gz - Calculate the number of volumes(nvols) in flipped rest_res_2symmstandard.nii.gz(tmp_LRflipped.nii.gz) :: -Use Nibabel to do this - Compute the Z statistic map :: 3dcalc -a VMHC_FWHM_Z.nii.gz -expr 'a*sqrt('${nvols}'-3)' -prefix VMHC_FWHM_Z_stat.nii.gz Workflow: .. image:: ../images/vmhc_graph.dot.png :width: 500 Workflow Detailed: .. image:: ../images/vmhc_detailed_graph.dot.png :width: 500 References ---------- .. [1] Zuo, X.-N., Kelly, C., Di Martino, A., Mennes, M., Margulies, D. S., Bangaru, S., Grzadzinski, R., et al. (2010). Growing together and growing apart: regional and sex differences in the lifespan developmental trajectories of functional homotopy. The Journal of neuroscience : the official journal of the Society for Neuroscience, 30(45), 15034-43. doi:10.1523/JNEUROSCI.2612-10.2010 Examples -------- >>> vmhc_w = create_vmhc() >>> vmhc_w.inputs.inputspec.symmetric_brain = 'MNI152_T1_2mm_symmetric_brain.nii.gz' >>> vmhc_w.inputs.inputspec.symmetric_skull = 'MNI152_T1_2mm_symmetric.nii.gz' >>> vmhc_w.inputs.inputspec.twomm_brain_mask_dil = 'MNI152_T1_2mm_brain_mask_symmetric_dil.nii.gz' >>> vmhc_w.inputs.inputspec.config_file_twomm = 'T1_2_MNI152_2mm_symmetric.cnf' >>> vmhc_w.inputs.inputspec.standard_for_func= 'MNI152_T1_2mm.nii.gz' >>> vmhc_w.inputs.fwhm_input.fwhm = [4.5, 6] >>> vmhc_w.get_node('fwhm_input').iterables = ('fwhm', [4.5, 6]) >>> vmhc_w.inputs.inputspec.rest_res = os.path.abspath('/home/data/Projects/Pipelines_testing/Dickstein/subjects/s1001/func/original/rest_res_filt.nii.gz') >>> vmhc_w.inputs.inputspec.reorient = os.path.abspath('/home/data/Projects/Pipelines_testing/Dickstein/subjects/s1001/anat/mprage_RPI.nii.gz') >>> vmhc_w.inputs.inputspec.brain = os.path.abspath('/home/data/Projects/Pipelines_testing/Dickstein/subjects/s1001/anat/mprage_brain.nii.gz') >>> vmhc_w.inputs.inputspec.example_func2highres_mat = os.path.abspath('/home/data/Projects/Pipelines_testing/Dickstein/subjects/s1001/func/original/reg/example_func2highres.mat') >>> vmhc_w.inputs.inputspec.rest_mask = os.path.abspath('/home/data/Projects/Pipelines_testing/Dickstein/subjects/s1001/func/original/rest_mask.nii.gz') >>> vmhc_w.run() # doctest: +SKIP """ vmhc = pe.Workflow(name=name) inputNode = pe.Node(util.IdentityInterface(fields=['rest_res', 'example_func2highres_mat', 'rest_mask', 'standard_for_func', 'mean_functional', 'brain', 'flirt_linear_aff', 'fnirt_nonlinear_warp', 'ants_symm_initial_xfm', 'ants_symm_rigid_xfm', 'ants_symm_affine_xfm', 'ants_symm_warp_field']), name='inputspec') outputNode = pe.Node(util.IdentityInterface(fields=['rest_res_2symmstandard', 'VMHC_FWHM_img', 'VMHC_Z_FWHM_img', 'VMHC_Z_stat_FWHM_img']), name='outputspec') inputnode_fwhm = pe.Node(util.IdentityInterface(fields=['fwhm']), name='fwhm_input') if use_ants == False: # Apply nonlinear registration (func to standard) func_to_standard = pe.Node(interface=fsl.ApplyWarp(), name='func_to_standard') elif use_ants == True: # ANTS warp image etc. fsl_to_itk_vmhc = create_wf_c3d_fsl_to_itk(0, name='fsl_to_itk_vmhc') collect_transforms_vmhc = create_wf_collect_transforms(0, name='collect_transforms_vmhc') apply_ants_xfm_vmhc = create_wf_apply_ants_warp(map_node=False, name='apply_ants_xfm_vmhc', ants_threads=ants_threads) # this has to be 3 instead of default 0 because it is a 4D file apply_ants_xfm_vmhc.inputs.inputspec.input_image_type = 3 # copy and L/R swap file copy_and_L_R_swap = pe.Node(interface=fsl.SwapDimensions(), name='copy_and_L_R_swap') copy_and_L_R_swap.inputs.new_dims = ('-x', 'y', 'z') # calculate vmhc pearson_correlation = pe.Node(interface=preprocess.TCorrelate(), name='pearson_correlation') pearson_correlation.inputs.pearson = True pearson_correlation.inputs.polort = -1 pearson_correlation.inputs.outputtype = 'NIFTI_GZ' try: z_trans = pe.Node(interface=preprocess.Calc(), name='z_trans') z_stat = pe.Node(interface=preprocess.Calc(), name='z_stat') except AttributeError: from nipype.interfaces.afni import utils as afni_utils z_trans = pe.Node(interface=afni_utils.Calc(), name='z_trans') z_stat = pe.Node(interface=afni_utils.Calc(), name='z_stat') z_trans.inputs.expr = 'log((1+a)/(1-a))/2' z_trans.inputs.outputtype = 'NIFTI_GZ' z_stat.inputs.outputtype = 'NIFTI_GZ' NVOLS = pe.Node(util.Function(input_names=['in_files'], output_names=['nvols'], function=get_img_nvols), name='NVOLS') generateEXP = pe.Node(util.Function(input_names=['nvols'], output_names=['expr'], function=get_operand_expression), name='generateEXP') smooth = pe.Node(interface=fsl.MultiImageMaths(), name='smooth') if use_ants == False: vmhc.connect(inputNode, 'rest_res', smooth, 'in_file') vmhc.connect(inputnode_fwhm, ('fwhm', set_gauss), smooth, 'op_string') vmhc.connect(inputNode, 'rest_mask', smooth, 'operand_files') vmhc.connect(inputNode, 'standard_for_func', func_to_standard, 'ref_file') if not flirt_only: vmhc.connect(inputNode, 'fnirt_nonlinear_warp', func_to_standard, 'field_file') vmhc.connect(smooth, 'out_file', func_to_standard, 'in_file') vmhc.connect(inputNode, 'example_func2highres_mat', func_to_standard, 'premat') else: func_to_anat = pe.Node(interface=fsl.ApplyWarp(), name='func_to_anat') vmhc.connect(smooth, 'out_file', func_to_anat, 'in_file') vmhc.connect(inputNode, 'brain', func_to_anat, 'ref_file') vmhc.connect(inputNode, 'example_func2highres_mat', func_to_anat, 'premat') vmhc.connect(func_to_anat, 'out_file', func_to_standard, 'in_file') vmhc.connect(inputNode, 'flirt_linear_aff', func_to_standard, 'premat') vmhc.connect(func_to_standard, 'out_file', copy_and_L_R_swap, 'in_file') vmhc.connect(func_to_standard, 'out_file', pearson_correlation, 'xset') elif use_ants == True: # connections for ANTS stuff # functional apply warp stuff vmhc.connect(inputNode, 'rest_res', smooth, 'in_file') vmhc.connect(inputnode_fwhm, ('fwhm', set_gauss), smooth, 'op_string') vmhc.connect(inputNode, 'rest_mask', smooth, 'operand_files') vmhc.connect(smooth, 'out_file', apply_ants_xfm_vmhc, 'inputspec.input_image') vmhc.connect(inputNode, 'ants_symm_initial_xfm', collect_transforms_vmhc, 'inputspec.linear_initial') vmhc.connect(inputNode, 'ants_symm_rigid_xfm', collect_transforms_vmhc, 'inputspec.linear_rigid') vmhc.connect(inputNode, 'ants_symm_affine_xfm', collect_transforms_vmhc, 'inputspec.linear_affine') vmhc.connect(inputNode, 'ants_symm_warp_field', collect_transforms_vmhc, 'inputspec.warp_file') # func->anat matrix (bbreg) vmhc.connect(inputNode, 'example_func2highres_mat', fsl_to_itk_vmhc, 'inputspec.affine_file') vmhc.connect(inputNode, 'brain', fsl_to_itk_vmhc, 'inputspec.reference_file') vmhc.connect(inputNode, 'mean_functional', fsl_to_itk_vmhc, 'inputspec.source_file') vmhc.connect(fsl_to_itk_vmhc, 'outputspec.itk_transform', collect_transforms_vmhc, 'inputspec.fsl_to_itk_affine') vmhc.connect(inputNode, 'standard_for_func', apply_ants_xfm_vmhc, 'inputspec.reference_image') vmhc.connect(collect_transforms_vmhc, 'outputspec.transformation_series', apply_ants_xfm_vmhc, 'inputspec.transforms') vmhc.connect(apply_ants_xfm_vmhc, 'outputspec.output_image', copy_and_L_R_swap, 'in_file') vmhc.connect(apply_ants_xfm_vmhc, 'outputspec.output_image', pearson_correlation, 'xset') vmhc.connect(copy_and_L_R_swap, 'out_file', pearson_correlation, 'yset') vmhc.connect(pearson_correlation, 'out_file', z_trans, 'in_file_a') vmhc.connect(copy_and_L_R_swap, 'out_file', NVOLS, 'in_files') vmhc.connect(NVOLS, 'nvols', generateEXP, 'nvols') vmhc.connect(z_trans, 'out_file', z_stat, 'in_file_a') vmhc.connect(generateEXP, 'expr', z_stat, 'expr') if use_ants == False: vmhc.connect(func_to_standard, 'out_file', outputNode, 'rest_res_2symmstandard') elif use_ants == True: # ANTS warp outputs to outputnode vmhc.connect(apply_ants_xfm_vmhc, 'outputspec.output_image', outputNode, 'rest_res_2symmstandard') vmhc.connect(pearson_correlation, 'out_file', outputNode, 'VMHC_FWHM_img') vmhc.connect(z_trans, 'out_file', outputNode, 'VMHC_Z_FWHM_img') vmhc.connect(z_stat, 'out_file', outputNode, 'VMHC_Z_stat_FWHM_img') return vmhc
5,344,406
def get_chunk_index(connection, db, # pylint: disable=too-many-arguments tbl, chunk, ch_db='percona', ch_tbl='checksums'): """ Get index that was used to cut the chunk :param connection: MySQLDb connection :param db: database of the chunk :param tbl: table of the chunk :param chunk: chunk id :param ch_db: Database where checksums are stored. Default percona. :param ch_tbl: Table where checksums are stored. Default checksums. :return: index name or None if no index was used """ cur = connection.cursor() query = "SELECT chunk_index FROM `%s`.`%s` " \ "WHERE db='%s' AND tbl='%s' AND chunk = %s" LOG.info('Executing %s', query % (ch_db, ch_tbl, db, tbl, chunk)) cur.execute(query % (ch_db, ch_tbl, db, tbl, chunk)) return cur.fetchone()[0]
5,344,407
def _get_tree(code): """Return an AST tree of the JS passed in `code`.""" if not code: return # Acceptable unicode characters still need to be stripped. Just remove the # slash: a character is necessary to prevent bad identifier errors. code = JS_ESCAPE.sub("u", unicodehelper.decode(code)) shell_obj = subprocess.Popen( ["node", "./acorn.js"], shell=False, stdin=subprocess.PIPE, stderr=subprocess.PIPE, stdout=subprocess.PIPE) data, stderr = shell_obj.communicate(code.encode('utf-8')) if stderr: raise RuntimeError('Error calling acorn: %s' % stderr) if not data: raise JSReflectException("Reflection failed") parsed = json.loads(unicodehelper.decode(data), strict=False) if parsed.get("error"): raise JSReflectException( parsed["error_message"]).line_num(parsed["line_number"]) return parsed
5,344,408
def initial_assignment_alpha_MSS(agents: List[AdditiveAgent], items: List[str], alpha: float)->Allocation: """ Initial division for allocting agents according to their alpha-MMS. :param agents: valuations of agents, normalized such that MMS=1 for all agents, and valuation are ordered in ascending order :param items: items names sorted from the highest valued to the lowest :param alpha: parameter for how much to approximate MMS allocation. :return Allocation: whats been allocated so far (in this function), items and agents are update during function >>> ### allocation for 1 agent, 1 object (this pass!) >>> a = AdditiveAgent({"x": 1}, name="Alice") >>> agents=[a] >>> a1 = initial_assignment_alpha_MSS(agents,['x'],0.75) >>> print(a1, agents) Alice gets {x} with value nan. [] >>> ### allocation for 1 agent, 2 object >>> b = AdditiveAgent({"x": 0.5, "y": 0.4}, name="Blice") >>> agents=[b] >>> a1 = initial_assignment_alpha_MSS(agents,['x','y'],0.6) >>> print(a1, agents) Blice gets {x,y} with value nan. [] >>> ### allocation for 2 agent, 2 object >>> a = AdditiveAgent({"x": 0.8, "y": 0.7}, name="Alice") >>> b = AdditiveAgent({"x": 0.7, "y": 0.7}, name="Blice") >>> agents=[a,b] >>> a1= initial_assignment_alpha_MSS(agents,['x','y'],0.6) >>> print(a1, agents) Alice gets {x} with value nan. Blice gets {y} with value nan. [] >>> ### allocation for 2 agent, 8 object >>> a = AdditiveAgent({"x1": 0.647059, "x2": 0.588235, "x3": 0.470588, "x4": 0.411765, "x5": 0.352941, "x6": 0.294118, "x7": 0.176471, "x8": 0.117647}, name="A") >>> b = AdditiveAgent({"x1": 1.298701, "x2": 0.714286, "x3": 0.649351, "x4": 0.428571, "x5": 0.155844, "x6": 0.064935, "x7": 0.051948, "x8": 0.012987}, name="B") >>> c = AdditiveAgent({"x1": 0.6, "x2": 0.6, "x3": 0.48, "x4": 0.36, "x5": 0.32, "x6": 0.32, "x7": 0.28, "x8": 0.04}, name="C") >>> agents=[a,b,c] >>> a1 = initial_assignment_alpha_MSS(agents,['x1','x2','x3','x4','x5','x6','x7','x8'],0.75) >>> print(a1, agents) # x6, x7, x8 weren't divided A gets {x3,x4} with value nan. B gets {x1} with value nan. C gets {x2,x5} with value nan. [] """ ag_alloc = {} n = len(agents)-1 #if thereare less object than agents, mms is 0 for every one. if(n+1>len(items)): return Allocation(ag_alloc,agents) #return None names_agents=agent_names_from(agents) while(True): # for every agents check if s1/s2/s3/s3>=alpha num_items=len(items) #fill si bundles s1_bundle,s2_bundle,s3_bundle,s4_bundle=[],[],[],[] #check index not out of bound if num_items>0: s1_bundle=[items[0]] if num_items>n+1: s2_bundle=[items[n] , items[n+1]] if num_items>2*(n+1): if 2*(n+1)-2>0: s3_bundle=[items[(2*(n+1))-2], items[2*(n+1)-1] , items[2*(n+1)]] s4_bundle=[items[0], items[2*(n+1)]] s=[s1_bundle,s2_bundle,s3_bundle, s4_bundle] for si in s: willing_agent_index=willing_agent(agents,si,alpha) if willing_agent_index!=None: # give bundle to agent ag_alloc[agents[willing_agent_index]._name] = si # remove given items agent for item in si: items.remove(item) agents.pop(willing_agent_index) # update number of agents n = n - 1 # go to begining of outside loop and redefine the si bundles break elif si==s4_bundle: # no agent is satisfied by any of the si bundles return Allocation (names_agents,ag_alloc)
5,344,409
def start_interactive_mode(result): """starts an interactive shell so that the user can inspect errors """ debuggers = result.debuggers descrs = result.error_descrs + result.fail_descrs if len(debuggers) == 1: # don't ask for test name if there's only one failure debuggers[0].start() else: while True: testindex = 0 print "Choose a test to debug:" # order debuggers in the same way than errors were printed print "\n".join(['\t%s : %s' % (i, descr) for i, (_, descr) in enumerate(descrs)]) print "Type 'exit' (or ^D) to quit" print try: todebug = raw_input('Enter a test name: ') if todebug.strip().lower() == 'exit': print break else: try: testindex = int(todebug) debugger = debuggers[descrs[testindex][0]] except (ValueError, IndexError): print "ERROR: invalid test number %r" % (todebug, ) else: debugger.start() except (EOFError, KeyboardInterrupt): print break
5,344,410
def find_furious_yaml(config_file=__file__): """ Traverse directory trees to find a furious.yaml file Begins with the location of this file then checks the working directory if not found Args: config_file: location of this file, override for testing Returns: the path of furious.yaml or None if not found """ checked = set() result = _find_furious_yaml(os.path.dirname(config_file), checked) if not result: result = _find_furious_yaml(os.getcwd(), checked) return result
5,344,411
def comp_axes( self, axes_list, machine=None, axes_dict_in=None, is_periodicity_a=None, is_periodicity_t=None, per_a=None, is_antiper_a=None, per_t=None, is_antiper_t=None, ): """Compute simulation axes such as time / angle / phase axes, with or without periodicities and including normalizations Parameters ---------- self : Input an Input object machine : Machine a Machine object axes_list: list List of axes name to return in axes dict axes_dict: {Data} dict of axes containing time and angle axes (with or without (anti-)periodicity) is_periodicity_a: bool True if spatial periodicity is requested is_periodicity_t: bool True if time periodicity is requested per_a : int angle periodicity is_antiper_a : bool if the angle axis is antiperiodic per_t : int time periodicity is_antiper_t : bool if the time axis is antiperiodic Returns ------- axes_dict: {Data} dict of axes containing requested axes """ if len(axes_list) == 0: raise Exception("axes_list should not be empty") if self.parent is not None: simu = self.parent else: simu = None if hasattr(simu, "parent") and simu.parent is not None: output = simu.parent else: output = None if (axes_list is None or len(axes_list) == 0) and ( axes_dict_in is None or len(axes_dict_in) == 0 ): raise Exception( "Cannot calculate axes if both axes list and axes dict are None" ) if machine is None: # Fetch machine from input if hasattr(simu, "machine") and simu.machine is not None: machine = simu.machine else: raise Exception("Cannot calculate axes if simu.machine is None") # Get machine pole pair number p = machine.get_pole_pair_number() # Fill periodicity parameters that are None if per_a is None or is_antiper_a is None or per_t is None or is_antiper_t is None: if output is not None: # Get time and space (anti-)periodicities from the output ( per_a_0, is_antiper_a_0, per_t_0, is_antiper_t_0, ) = output.get_machine_periodicity() else: # Compute time and space (anti-)periodicities from the machine per_a_0, is_antiper_a_0 = machine.comp_periodicity_spatial() per_t_0, is_antiper_t_0, _, _ = machine.comp_periodicity_time() if is_periodicity_t is None or is_periodicity_t: # Enforce None values to machine time periodicity per_t = per_t_0 if per_t is None else per_t is_antiper_t = is_antiper_t_0 if is_antiper_t is None else is_antiper_t if is_periodicity_t is None: # Check time periodicity is included is_periodicity_t = per_t > 1 or is_antiper_t elif not is_periodicity_t: # Remove time periodicity per_t = 1 is_antiper_t = False if is_periodicity_a is None or is_periodicity_a: # Enforce None values to machine periodicity per_a = per_a_0 if per_a is None else per_a is_antiper_a = is_antiper_a_0 if is_antiper_a is None else is_antiper_a if is_periodicity_a is None: # Enforce requested angle periodicity is_periodicity_a = per_a > 1 or is_antiper_a elif not is_periodicity_a: # Remove angle periodicity per_a = 1 is_antiper_a = False # Init axes_dict axes_dict = dict() # Get time axis if "time" in axes_list: # Check if Time is already in input dict of axes if axes_dict_in is not None and "time" in axes_dict_in: Time_in = axes_dict_in["time"] else: Time_in = None # Calculate time axis Time = self.comp_axis_time(p, per_t, is_antiper_t, Time_in) # Store time axis in dict axes_dict["time"] = Time # Get angle axis if "angle" in axes_list: # Airgap radius Rag = machine.comp_Rgap_mec() # Check if Angle is already in input dict of axes if axes_dict_in is not None and "angle" in axes_dict_in: Angle_in = axes_dict_in["angle"] else: Angle_in = None # Calculate angle axis Angle = self.comp_axis_angle(p, Rag, per_a, is_antiper_a, Angle_in) # Store angle axis in dict axes_dict["angle"] = Angle if "phase_S" in axes_list: # Check if Phase is already in input dict of axes stator_label = "phase_" + machine.stator.get_label() if axes_dict_in is not None and stator_label in axes_dict_in: Phase_in = axes_dict_in[stator_label] else: Phase_in = None # Calculate stator phase axis Phase = self.comp_axis_phase(machine.stator, Phase_in) if Phase is not None: # Store phase axis in dict axes_dict[stator_label] = Phase if "phase_R" in axes_list: # Check if Phase is already in input dict of axes rotor_label = "phase_" + machine.rotor.get_label() if axes_dict_in is not None and rotor_label in axes_dict_in: Phase_in = axes_dict_in[rotor_label] else: Phase_in = None # Calculate rotor phase axis per_a_phase = 2 * per_a if is_antiper_a else per_a Phase = self.comp_axis_phase(machine.rotor, per_a_phase, Phase_in) if Phase is not None: # Store phase axis in dict axes_dict[rotor_label] = Phase return axes_dict
5,344,412
def update_credentials(): """ Update the credentials zip file """ from base.application import create_app app = create_app() app.app_context().push() click.secho("Zipping env_config", fg='green') zipdir('env_config/', 'env_config.zip') zip_creds = get_item('credential', 'travis-ci-cred') click.secho("Encrypting credentials", fg='green') if os.path.exists("env_config.zip.enc"): os.remove("env_config.zip.enc") comm = ['travis', 'encrypt-file', 'env_config.zip', "--org", '--key', zip_creds['key'], '--iv', zip_creds['iv']] print(' '.join(comm)) out, err = Popen(comm, stdout=PIPE, stderr=PIPE).communicate() secho(str(out, 'utf-8'), fg='green') if err: exit(secho(str(err, 'utf-8'), fg='red')) os.remove("env_config.zip")
5,344,413
def update_person(s, I_ID, firstname, lastname, dob, phonenum=None): """This function will update a person's records. """ pers = s.query(Person).filter(Person.id == I_ID).one() pers.first_name = firstname pers.last_name = lastname pers.DOB = dob pers.phone = phonenum pers.age = age(dob) s.commit()
5,344,414
def clean_vehicles(country): """Delete all vehicles from given country.""" with elastic() as client: search = Vehicle.search(using=client).filter("term", country=country) count = search.count() search.delete() return count
5,344,415
def render_template( env: NativeEnvironment, template: Union[Text, Path], context: Any, ) -> Any: """Utility function for rendering Jinja2 text or file templates. Args: env: The Jinja2 environment to use for rendering template: The template string or file to render context: The context variables to use for rendering Returns: The rendered template string or data structure """ # convert strings to template if isinstance(template, Path): _template = env.get_template(str(template)) else: _template = env.from_string(template) value = _template.render(**context) if isinstance(value, Undefined): value._fail_with_undefined_error() return value
5,344,416
def _get_template_dirs(type="plugin"): """Return a list of directories where templates may be located. """ template_dirs = [ os.path.expanduser(os.path.join("~", ".rapport", "templates", type)), os.path.join("rapport", "templates", type) # Local dev tree ] return template_dirs
5,344,417
def aspect_ToCString(*args): """ * Translates an ExtendedString to a CString depending of the local format. :param aString: :type aString: TCollection_ExtendedString & :rtype: char * """ return _Aspect.aspect_ToCString(*args)
5,344,418
def execute(args, parser): """Executes the :ref:`authorise <authorise-cli>` command.""" print('To generate a personal access token do the following:') print(' 1. Login to your GitHub account') print(' 2. Go to Settings -> Developer settings -> Personal access tokens') print(' 3. Click "Generate new token"') print(' 4. In the Note field enter a description for the token (e.g., msl-package-manager)') print(' 5. Optional: Select the scopes that you want to associate with the token') print(' 6. Click "Generate token"') print(' 7. Copy the token to your clipboard and paste it in the terminal when asked') print() print('For more detailed instructions see') print('https://docs.github.com/en/github/authenticating-to-github/creating-a-personal-access-token') print() authorise()
5,344,419
def suites_list(request): """List suites.""" return TemplateResponse( request, "manage/suite/suites.html", { "suites": model.Suite.objects.select_related().annotate( case_count=NotDeletedCount("cases", distinct=True)), } )
5,344,420
def main(): """Runs your solution -- no need to update (except to maybe try out different databases).""" # Sample implementation of the autocomplete API database = ["abracadara", "al", "alice", "alicia", "allen", "alter", "altercation", "bob", "element", "ello", "eve", "evening", "event", "eventually", "mallory"] database = ["abracadara", "al", "alice", "alicia", "allen", "alter", "altercation", "bob", "element", "ello", "eve", "evening", "event", "eventually", "mallory", "z", "za", "zb", "zc", "zd", "ze", "zf", "zh", "zj", "zz", "zzz", "zzzz", "zzzzz", "zzzzzzzz", "zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz", "zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz", "zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzza", "zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzb"] query = lambda prefix: [d for d in database if d.startswith(prefix)][:5] assert extract(query) == database
5,344,421
def push_gitlab_event_dict(): """ Cleared version of the push gitlab webhook content. """ return { "object_kind": "push", "event_name": "push", "before": "0e27f070efa4bef2a7c0168f07a0ac36ef90d8cb", "after": "cb2859505e101785097e082529dced35bbee0c8f", "ref": "refs/heads/build-branch", "checkout_sha": "cb2859505e101785097e082529dced35bbee0c8f", "user_id": 5647360, "user_name": "Shreyas Papinwar", "user_username": "shreyaspapi", "user_email": "", "user_avatar": "https://assets.gitlab-static.net/uploads/-" "/system/user/avatar/5647360/avatar.png", "project_id": 18032222, "project": { "id": 18032222, "name": "Hello there", "description": "Hehehehe", "web_url": "https://gitlab.com/the-namespace/repo-name", "git_ssh_url": "git@gitlab.com:the-namespace/repo-name.git", "git_http_url": "https://gitlab.com/the-namespace/repo-name.git", "namespace": "Testing packit", "visibility_level": 20, "path_with_namespace": "the-namespace/repo-name", "default_branch": "master", "homepage": "https://gitlab.com/the-namespace/repo-name", "url": "git@gitlab.com:the-namespace/repo-name.git", "ssh_url": "git@gitlab.com:the-namespace/repo-name.git", "http_url": "https://gitlab.com/the-namespace/repo-name.git", }, "commits": [ { "id": "cb2859505e101785097e082529dced35bbee0c8f", "message": "Update README.md", "title": "Update README.md", "timestamp": "2020-06-04T23:14:57+00:00", "url": "https://gitlab.com/the-namespace/repo-name/-/commit/" "cb2859505e101785097e082529dced35bbee0c8f", "author": {"name": "Shreyas Papinwar", "email": "spapinwar@gmail.com"}, "added": [], "modified": ["README.md"], "removed": [], } ], "total_commits_count": 1, "push_options": {}, "repository": { "name": "Hello there", "url": "git@gitlab.com:the-namespace/repo-name.git", "description": "Hehehehe", "homepage": "https://gitlab.com/the-namespace/repo-name", "git_http_url": "https://gitlab.com/the-namespace/repo-name.git", "git_ssh_url": "git@gitlab.com:the-namespace/repo-name.git", "visibility_level": 20, }, }
5,344,422
def compute_rotation_effects(VD, settings, EW_small, GAMMA, len_mach, X, CHORD, XLE, XBAR, rhs, COSINP, SINALF, PITCH, ROLL, YAW, STB, RNMAX): """ This computes the effects of the freestream and aircraft rotation rate on CLE, the induced flow at the leading edge Assumptions: Several of the values needed in this calculation have been computed earlier and stored in VD Normally, VORLAX skips the calculation implemented in this function for linear chordwise spacing (the if statement below). However, since the trends are correct, albeit underestimated, this calculation is being forced here. """ LE_ind = VD.leading_edge_indices RNMAX = VD.panels_per_strip ##spacing = settings.spanwise_cosine_spacing ##if spacing == False: # linear spacing is LAX==1 in VORLAX ## return 0 #CLE not calculated till later for linear spacing # Computate rotational effects (pitch, roll, yaw rates) on LE suction # pick leading edge strip values for EW and reshape GAMMA -> gamma accordingly EW = EW_small[: ,LE_ind, :] n_tot_strips = EW.shape[1] gamma = np.array(np.split(np.repeat(GAMMA, n_tot_strips, axis=0), len_mach)) CLE = (EW*gamma).sum(axis=2) # Up till EFFINC, some of the following values were computed in compute_RHS_matrix(). # EFFINC and ALOC are calculated the exact same way, except for the XGIRO term. # LOCATE VORTEX LATTICE CONTROL POINT WITH RESPECT TO THE # ROTATION CENTER (XBAR, 0, ZBAR). THE RELATIVE COORDINATES # ARE XGIRO, YGIRO, AND ZGIRO. XGIRO = X - CHORD*XLE - np.repeat(XBAR, RNMAX[LE_ind]) YGIRO = rhs.YGIRO ZGIRO = rhs.ZGIRO # VX, VY, VZ ARE THE FLOW ONSET VELOCITY COMPONENTS AT THE LEADING # EDGE (STRIP MIDPOINT). VX, VY, VZ AND THE ROTATION RATES ARE # REFERENCED TO THE FREE STREAM VELOCITY. VX = rhs.VX VY = (COSINP - YAW *XGIRO + ROLL *ZGIRO) VZ = (SINALF - ROLL *YGIRO + PITCH*XGIRO) # CCNTL, SCNTL, SID, and COD were computed in compute_RHS_matrix() # EFFINC = COMPONENT OF ONSET FLOW ALONG NORMAL TO CAMBERLINE AT # LEADING EDGE. EFFINC = VX *rhs.SCNTL + VY *rhs.CCNTL *rhs.SID - VZ *rhs.CCNTL *rhs.COD CLE = CLE - EFFINC[:,LE_ind] CLE = np.where(STB > 0, CLE /RNMAX[LE_ind] /STB, CLE) return CLE
5,344,423
def setup(): """ Sets up the database session """ global connection connection = MySQLdb.connect(host=config.get('mysql.host'), user=config.get('mysql.user'), passwd=config.get('mysql.password'), db=config.get('mysql.db'), ssl={'ca' : config.get('mysql.cert')}) init_model(connection)
5,344,424
def introduction(course): """This method represents route to 'courses/<course>/intro.html' where the character introduction is rendered. This method handles both GET and POST requests. Args: course (string): Name of the course. Returns: render_template: Returns rendered 'courses/<course>/intro.html' template. """ courseClass = class_for_name("project.models", course.capitalize()) introLevel = courseClass.query.filter_by(email=current_user.email).first().get_introLevel() letters = introduceLetters(course, introLevel) return render_template('courses/introduction.html', letters=letters, course=course)
5,344,425
def available_formats(): """Return the available formats for reading and writing Returns ------- tuple: tuple of sets. First set are the available formats for reading. Second set are the available sets for writing. """ import pesummary.core.file.formats import pesummary.gw.file.formats import pkgutil import importlib read_formats, write_formats = [], [] modules = { "gw": pesummary.gw.file.formats, "core": pesummary.core.file.formats } for package in ["core", "gw"]: formats = [ a for _, a, _ in pkgutil.walk_packages(path=modules[package].__path__) ] for _format in formats: _submodule = importlib.import_module( "pesummary.{}.file.formats.{}".format(package, _format) ) if hasattr(_submodule, "write_{}".format(_format)): write_formats.append(_format) if hasattr(_submodule, "read_{}".format(_format)): read_formats.append(_format) return set(read_formats), set(write_formats)
5,344,426
def bbox_from_openpose(openpose_file, rescale=1.2, detection_thresh=0.2): """Get center and scale for bounding box from openpose detections.""" with open(openpose_file, 'r') as f: keypoints = json.load(f)['people'][0]['pose_keypoints_2d'] keypoints = np.reshape(np.array(keypoints), (-1, 3)) valid = keypoints[:, -1] > detection_thresh valid_keypoints = keypoints[valid][:, :-1] center = valid_keypoints.mean(axis=0) bbox_size = (valid_keypoints.max(axis=0) - valid_keypoints.min(axis=0)).max() # adjust bounding box tightness scale = bbox_size / 200.0 scale *= rescale return center, scale
5,344,427
def test_g_year_month_enumeration004_1194_g_year_month_enumeration004_1194_v(mode, save_output, output_format): """ TEST :Facet Schemas for string : facet=enumeration and value=2001-03 2000-10 2001-12 and document value=2001-03 """ assert_bindings( schema="msData/datatypes/Facets/gYearMonth/gYearMonth_enumeration004.xsd", instance="msData/datatypes/Facets/gYearMonth/gYearMonth_enumeration004.xml", class_name="Test", version="1.1", mode=mode, save_output=save_output, output_format=output_format, structure_style="filenames", )
5,344,428
def datasets(tablefmt: str): """List datasets.""" click.echo(_help_datasets(tablefmt))
5,344,429
def test_main_fails_on_requests_error( runner: CliRunner, mock_requests_get: Mock ) -> None: """It exits with exit code 1 if wikipedia throws exception.""" mock_requests_get.side_effect = Exception("Boom") result = runner.invoke(console.main) assert result.exit_code == 1
5,344,430
def calc_KPs(TempC, Sal, P=None): """ Calculate equilibrium constants for P species. KP1 = H3PO4 KP2 = H2PO4 KP3 = HPO4 Chapter 5, Section 7.2.5 of Dickson, Sabine and Christian (2007, http://cdiac.ornl.gov/oceans/Handbook_2007.html) **WITHOUT APPROX PH SCALE CONVERSION IN CONSTANT** (See footnote 5 in 'Best Practices' Guide) This produces constants on SWS pH Scale. Must be converted to Total scale before use. Parameters ---------- TempC : array-like Temperature in Celcius. Sal : array-like Salinity in PSU P : array-like Pressure in bar Returns ------- dict of KPs """ TempK = TempC + 273.15 lnTempK = np.log(TempK) a0, a1, a2, a3, a4, a5, a6 = ( -4576.752, 115.54, -18.453, -106.736, 0.69171, -0.65643, -0.01844, ) b0, b1, b2, b3, b4, b5, b6 = ( -8814.715, 172.1033, -27.927, -160.340, 1.3566, 0.37335, -0.05778, ) c0, c1, c3, c4, c5, c6 = (-3070.75, -18.126, 17.27039, 2.81197, -44.99486, -0.09984) KP1 = np.exp( a0 / TempK + a1 + a2 * lnTempK + (a3 / TempK + a4) * Sal ** 0.5 + (a5 / TempK + a6) * Sal ) KP2 = np.exp( b0 / TempK + b1 + b2 * lnTempK + (b3 / TempK + b4) * Sal ** 0.5 + (b5 / TempK + b6) * Sal ) KP3 = np.exp( c0 / TempK + c1 + (c3 / TempK + c4) * Sal ** 0.5 + (c5 / TempK + c6) * Sal ) # parameters from Table 5 of Millero 2007 (doi:10.1021/cr0503557) # Checked against CO2SYS if P is not None: ppar = { "KP1": [-14.51, 0.1211, -0.000321, -2.67, 0.0427], "KP2": [-23.12, 0.1758, -2.647e-3, -5.15, 0.09], "KP3": [-26.57, 0.2020, -3.042e-3, -4.08, 0.0714], } KP1 *= prescorr(P, TempC, *ppar["KP1"]) KP2 *= prescorr(P, TempC, *ppar["KP2"]) KP3 *= prescorr(P, TempC, *ppar["KP3"]) return {"KP1": KP1, "KP2": KP2, "KP3": KP3}
5,344,431
def evaluate_model_sector_prediction( model, test_data_x, test_data_y, test_data_industry, test_data_size, mode_classifier=True, max_seq_length=512, batch_size=8, ): """This is a function to predict the sector given the input text ids""" model = model.eval() pred_label_test = [] answer_label_test = [] pred_industry_test = [] answer_indesutry_test = [] pred_label_prob_list = [] pred_industry_prob_list = [] for data_index in range(0, len(test_data_x), batch_size): data_batch = test_data_x[data_index : data_index + batch_size] doc_batch = [doc[0] for doc in data_batch] logits = 0 industry_logits_all = 0 """formatting the input data""" input_array_doc = [] for doc_batch_index, input_ids in enumerate(doc_batch): input_array = np.zeros(max_seq_length, dtype=np.int) input_array[: min(max_seq_length, 1)] = input_ids[: min(max_seq_length, 1)] input_array_doc.append(input_array) input_ids = LongTensor(np.array(input_array_doc).astype(np.int32)) """getting the model's output""" label_logits, industry_logits = model(input_ids) """getting the values of the predicted probabilities""" logits += label_logits industry_logits_all += industry_logits pred_label = np.argmax(logits.detach().to("cpu").numpy(), axis=1) pred_industry = np.argmax( industry_logits_all.detach().to("cpu").numpy(), axis=1 ) """creating the output lists for the predicted values""" pred_label_test += list(pred_label) pred_industry_test += list(pred_industry) answer_label_test += list(test_data_y[data_index : data_index + batch_size]) answer_indesutry_test += list( test_data_industry[data_index : data_index + batch_size] ) """printing classification metrics of the sectors""" target_sectors = [0, 1, 2, 3, 4, 5, 6, 7, 8] print(classification_report(answer_label_test, pred_label_test, target_sectors)) return ( pred_label_test, answer_label_test, pred_industry_test, answer_indesutry_test, )
5,344,432
def is_no_op(module: Module) -> bool: """Return whether the module does no operation in graph. Args: module: module Returns: whether module is no operation """ no_op_modules = (Sequential, _Branch, Parallel, ReduceTuple, GraphModule) return isinstance(module, no_op_modules)
5,344,433
def check_dirs_make(dir_fullpaths:list): """ Check if a directory exists. If not, create it. @type dir_fullpaths: list @param dir_fullpaths: Paths to directorys to check """ for dir_fullpath in dir_fullpaths: if not os.path.isdir(dir_fullpath): os.mkdir(dir_fullpath)
5,344,434
def process_json_file(filename): """The entry point - loops through data files and loads each in""" assert isinstance(filename, str) if os.path.isdir(filename): LOGGER.info("Filename points to a directory") return else: LOGGER.info('Processing {}'.format(filename)) with open(filename) as f: model_specs = json.load(f) assert isinstance(model_specs, list) assert len(model_specs) > 0 for model_spec in model_specs: try: _process_model_spec(model_spec) except Exception as ex: # Broad catch to allow debug messages import traceback traceback.print_exc() LOGGER.error( '{} when processing {:.1000}'.format(ex, model_spec))
5,344,435
def has_ext(path_name, *, multiple=None, if_all_ext=False): """ Determine if the given path name has an extension """ base = os.path.basename(path_name) count = base.count(EXT) if not if_all_ext and base[0] == EXT and count != 0: count -= 1 if multiple is None: return count >= 1 elif multiple: return count > 1 else: return count == 1
5,344,436
def index_directory(directory, labels, formats, class_names=None, shuffle=True, seed=None, follow_links=False): """Make list of all files in the subdirs of `directory`, with their labels. Args: directory: The target directory (string). labels: Either "inferred" (labels are generated from the directory structure), None (no labels), or a list/tuple of integer labels of the same size as the number of valid files found in the directory. Labels should be sorted according to the alphanumeric order of the image file paths (obtained via `os.walk(directory)` in Python). formats: Allowlist of file extensions to index (e.g. ".jpg", ".txt"). class_names: Only valid if "labels" is "inferred". This is the explict list of class names (must match names of subdirectories). Used to control the order of the classes (otherwise alphanumerical order is used). shuffle: Whether to shuffle the data. Default: True. If set to False, sorts the data in alphanumeric order. seed: Optional random seed for shuffling. follow_links: Whether to visits subdirectories pointed to by symlinks. Returns: tuple (file_paths, labels, class_names). file_paths: list of file paths (strings). labels: list of matching integer labels (same length as file_paths) class_names: names of the classes corresponding to these labels, in order. """ if labels is None: # in the no-label case, index from the parent directory down. subdirs = [''] class_names = subdirs else: subdirs = [] for subdir in sorted(os.listdir(directory)): if os.path.isdir(os.path.join(directory, subdir)): subdirs.append(subdir) if not class_names: class_names = subdirs else: if set(class_names) != set(subdirs): raise ValueError( 'The `class_names` passed did not match the ' 'names of the subdirectories of the target directory. ' 'Expected: %s, but received: %s' % (subdirs, class_names)) class_indices = dict(zip(class_names, range(len(class_names)))) # Build an index of the files # in the different class subfolders. pool = multiprocessing.pool.ThreadPool() results = [] filenames = [] for dirpath in (os.path.join(directory, subdir) for subdir in subdirs): results.append( pool.apply_async(index_subdirectory, (dirpath, class_indices, follow_links, formats))) labels_list = [] for res in results: partial_filenames, partial_labels = res.get() labels_list.append(partial_labels) filenames += partial_filenames if labels not in ('inferred', None): if len(labels) != len(filenames): raise ValueError('Expected the lengths of `labels` to match the number ' 'of files in the target directory. len(labels) is %s ' 'while we found %s files in %s.' % ( len(labels), len(filenames), directory)) else: i = 0 labels = np.zeros((len(filenames),), dtype='int32') for partial_labels in labels_list: labels[i:i + len(partial_labels)] = partial_labels i += len(partial_labels) if labels is None: print('Found %d files.' % (len(filenames),)) else: print('Found %d files belonging to %d classes.' % (len(filenames), len(class_names))) pool.close() pool.join() file_paths = [os.path.join(directory, fname) for fname in filenames] if shuffle: # Shuffle globally to erase macro-structure if seed is None: seed = np.random.randint(1e6) rng = np.random.RandomState(seed) rng.shuffle(file_paths) rng = np.random.RandomState(seed) rng.shuffle(labels) return file_paths, labels, class_names
5,344,437
def execute_actions(protocol, device, actions): """ iterate through the actions and call the execute method at the Protocol class :param protocol: :param device: :param actions: :return: """ for action in actions: protocol.execute(device, action)
5,344,438
def test_cray_config_unset(cli_runner): """ Test `cray init` for creating the default configuration """ runner, cli, opts = cli_runner config = opts['default'] configname = config['configname'] filep = '.config/cray/configurations/{}'.format(configname) with open(filep, encoding='utf-8') as f: original_data = toml.load(f) result = runner.invoke(cli, ['config', 'unset', 'auth.login.username']) assert result.exit_code == 0 assert os.path.isfile(filep) with open(filep, encoding='utf-8') as f: data = toml.load(f) assert data != original_data assert data['auth']['login'].get('username') is None
5,344,439
def bugprint(content: object): """ Only prints message if in debug mode :type content: str :param content: the string to print """ if LOG is not None and LOG == 1: print(content)
5,344,440
def colors_from_cmap(length=50, cmap=None, start=None, stop=None): """Return color cycle from a given colormap. Parameters ---------- length : int The number of colors in the cycle. When `length` is large (> ~10), it is difficult to distinguish between successive lines because successive colors are very similar. cmap : str Name of a matplotlib colormap (see matplotlib.pyplot.cm). start, stop: 0 <= float <= 1 Limit colormap to this range (start < stop 1). You should limit the range of colormaps with light values (assuming a white background). Some colors have default start/stop values (see `CMAP_RANGE`). Returns ------- colors : list List of RGBA colors. See Also -------- cycle_cmap """ if cmap is None: cmap = config['color']['cmap'] if isinstance(cmap, basestring): cmap = getattr(plt.cm, cmap) crange = CMAP_RANGE.get(cmap.name, (0, 1)) if start is not None: crange[0] = start if stop is not None: crange[1] = stop assert 0 <= crange[0] <= 1 assert 0 <= crange[1] <= 1 idx = np.linspace(crange[0], crange[1], num=length) return cmap(idx)
5,344,441
def mag_thresh(img, sobel_kernel=3, mag_thresh=(30, 100)): """ Return the magnitude of the gradient for a given sobel kernel size and threshold values """ # Apply the following steps to img # 1) Convert to grayscale gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY) # 2) Take the gradient in x and y separately sobelx = cv2.Sobel(gray, cv2.CV_64F, 1, 0, ksize=sobel_kernel) sobely = cv2.Sobel(gray, cv2.CV_64F, 0, 1, ksize=sobel_kernel) # 3) Calculate the gradient magnitude mag_sobel = np.sqrt(sobelx**2 + sobely**2) # 4) Scale to 8-bit (0 - 255) and convert to type = np.uint8 scaled_sobel = np.uint8(255*mag_sobel/np.max(mag_sobel)) # 5) Create a binary mask where mag thresholds are met, zeros otherwise binary_output = np.zeros_like(scaled_sobel) binary_output[(scaled_sobel >= mag_thresh[0] ) & (scaled_sobel <= mag_thresh[1])] = 1 # 6) Return this mask as your binary_output image return binary_output
5,344,442
def mean_absolute_percentage_error(predictions, targets): """Calculate mean absolute percentage error""" mask = (targets != 0.0) return (np.fabs(targets - predictions)/targets)[mask].mean()*100.0
5,344,443
def make_net_xds_list(data_xds_list, coords_per_xds): """Construct a list of dicts of xarray.Datasets to house the net gains. Args: data_xds_list: A List of xarray.Dataset objects containing MS data. coords_per_xds: A List of Dicts containing dataset coords. Returns: net_gain_xds_list: A List of xarray.Dataset objects to house the net gains. """ net_gain_xds_list = [] for data_xds, xds_coords in zip(data_xds_list, coords_per_xds): net_t_chunks = np.tile(data_xds.UTIME_CHUNKS, 2).reshape(2, -1) net_f_chunks = np.tile(data_xds.chunks["chan"], 2).reshape(2, -1) # Create a default config object, consistent with the net gain. # NOTE: If we have a direction-dependent model, assume the net gain # is also direction dependent. config = Gain(direction_dependent=bool(data_xds.dims["dir"])) net_obj = TERM_TYPES["complex"]("NET", config, data_xds, xds_coords, net_t_chunks, net_f_chunks) net_gain_xds_list.append(net_obj.make_xds()) return net_gain_xds_list
5,344,444
def sort_dict(d, key=None, reverse=False): """ Sorts a dict by value. Args: d: Input dictionary key: Function which takes an tuple (key, object) and returns a value to compare and sort by. By default, the function compares the values of the dict i.e. key = lambda t : t[1] reverse: Allows to reverse sort order. Returns: OrderedDict object whose keys are ordered according to their value. """ kv_items = list(d.items()) # Sort kv_items according to key. if key is None: kv_items.sort(key=lambda t: t[1], reverse=reverse) else: kv_items.sort(key=key, reverse=reverse) # Build ordered dict. return collections.OrderedDict(kv_items)
5,344,445
def check_builds(): """Base task""" response = requests.get( url=urljoin(Config.SISENSE_URL, "v2/builds"), headers=Config.SISENSE_HEADERS ) builds = pd.DataFrame(data=response.json()) failed_builds = builds.loc[(builds.status == "failed")] # for each failed cube: for build in failed_builds.to_dict(orient="records"): # check if failed cube is already recorded (oid), if not record recorded_failure = ( session.query(FailedBuilds).filter(FailedBuilds.oid == build["oid"]).first() ) if recorded_failure is None: # record record_failure( build["oid"], build["datamodelId"], build["datamodelTitle"], build["instanceId"], ) # save log and get elements for log card error_dict = get_logs(build["datamodelId"], build["datamodelTitle"]) # prepare card (so look into log) card = make_teams_card( build["datamodelTitle"], error_dict["timestamp"], error_dict["error_message"], error_dict["file_link"], ) # send card send_teams_card(card) return error_dict
5,344,446
def comp_neworig(tileid,dirn='/global/cfs/cdirs/desi/survey/catalogs/testfiberassign/SV3rerun/orig/'): """ check that new matches the original """ ts = str(tileid).zfill(6) fa = fitsio.read('/global/cfs/cdirs/desi/target/fiberassign/tiles/trunk/'+ts[:3]+'/fiberassign-'+ts+'.fits.gz') fn = fitsio.read(dirn+'fba-'+ts+'.fits') w = fn['DEVICE_TYPE'] == 'POS' fn = fn[w] wn = fn['TARGETID'] >= 0 fn = fn[wn] print(len(fn)) wa = fa['TARGETID'] >= 0 fa = fa[wa] print(len(fa)) ws = np.isin(fn['TARGETID'],fa['TARGETID']) print(np.sum(ws)) if np.sum(ws) == len(fa) and len(fa) == len(fn): return True else: return False
5,344,447
def create_cluster(config): """Create a PostgreSQL cluster for verification. Once the cluster is initialized, access should be strictly controlled. The postgresql.conf and pg_hba.conf should be set, and a random password set for the postgres user. """ cluster_path = os.path.join(config['working_path'], 'pgsql_cluster') initdb = os.path.join(config['postgresql']['bin_path'], 'initdb') password_file = os.path.join(config['working_path'], '.password') password = str(uuid.uuid4()) pathlib.Path(password_file).touch(mode=0o600, exist_ok=False) with open(password_file, 'w') as pw_fh: pw_fh.write('{}\n'.format(password)) args = '{} --auth-host=reject --auth-local=md5 --username=postgres --pwfile={} --pgdata={}'.format( initdb, password_file, cluster_path ) subprocess.run(args, shell=True, check=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE) with open(password_file, 'w') as pw_fh: pw_fh.write('*:*:*:*:{}\n'.format(password)) # Set the UNIX socket directory to be used. socket_path = os.path.join(config['working_path'], 'sockets') os.makedirs(socket_path, exist_ok=True) with open(os.path.join(cluster_path, 'postgresql.conf'), 'a') as conf: conf.write('# Custom settings.\n') conf.write("listen_addresses = ''\n") conf.write("unix_socket_directories = '{}'\n".format(socket_path))
5,344,448
def _get_widget_handler(webmanager): """ Returns a handler to get the widgets :param WebManager webmanager: :return tornado.web.RequestHandler: """ class WidgetHandler(web.RequestHandler): """ Handler for all communications over WebSockets """ def get(self): """ Called when a client connection is closed """ webmanager.on_get_widgets(self) return WidgetHandler
5,344,449
def get_model_field_type(model, field_label): """ Returns model's field type. """ return FIELD_TYPES_MAPPING.get(type(get_model_field(model, field_label)), 'STRING')
5,344,450
def test_yt32(): """ Testing permutations with Young tableaux without the shape [2,2] Expected answer is 25 mesh patterns (some classical) Suffices to look at permutations up to length 6 """ A = read_bisc_file(ppf + "yt_perm_avoids_32_good_len8") B = read_bisc_file(ppf + "yt_perm_avoids_32_bad_len8") # Too short assert bisc(A, 4, 4) == {} assert bisc(A, 5, 5) == { 5: { Perm((0, 2, 1, 4, 3)): [set()], Perm((0, 2, 4, 1, 3)): [set()], Perm((0, 3, 1, 4, 2)): [set()], Perm((0, 3, 4, 1, 2)): [set()], Perm((1, 0, 2, 4, 3)): [set()], Perm((1, 0, 3, 2, 4)): [set()], Perm((1, 0, 3, 4, 2)): [set()], Perm((1, 0, 4, 2, 3)): [set()], Perm((1, 2, 0, 4, 3)): [set()], Perm((1, 2, 4, 0, 3)): [set()], Perm((1, 3, 0, 2, 4)): [set()], Perm((1, 3, 0, 4, 2)): [set()], Perm((1, 3, 4, 0, 2)): [set()], Perm((1, 4, 0, 2, 3)): [set()], Perm((2, 0, 1, 4, 3)): [set()], Perm((2, 0, 3, 1, 4)): [set()], Perm((2, 0, 3, 4, 1)): [set()], Perm((2, 0, 4, 1, 3)): [set()], Perm((2, 3, 0, 1, 4)): [set()], Perm((2, 3, 0, 4, 1)): [set()], Perm((2, 3, 4, 0, 1)): [set()], Perm((2, 4, 0, 1, 3)): [set()], Perm((3, 0, 1, 4, 2)): [set()], Perm((3, 0, 4, 1, 2)): [set()], Perm((3, 4, 0, 1, 2)): [set()], } } # Should get expected answer assert bisc(A, 5, 6) == { 5: { Perm((0, 2, 1, 4, 3)): [set()], Perm((0, 2, 4, 1, 3)): [{(3, 3)}], Perm((0, 3, 1, 4, 2)): [{(3, 3)}], Perm((0, 3, 4, 1, 2)): [set()], Perm((1, 0, 2, 4, 3)): [set()], Perm((1, 0, 3, 2, 4)): [set()], Perm((1, 0, 3, 4, 2)): [set()], Perm((1, 0, 4, 2, 3)): [set()], Perm((1, 2, 0, 4, 3)): [set()], Perm((1, 2, 4, 0, 3)): [{(3, 3)}], Perm((1, 3, 0, 2, 4)): [{(2, 2)}], Perm((1, 3, 0, 4, 2)): [set()], Perm((1, 3, 4, 0, 2)): [set()], Perm((1, 4, 0, 2, 3)): [{(2, 2)}], Perm((2, 0, 1, 4, 3)): [set()], Perm((2, 0, 3, 1, 4)): [{(2, 2)}], Perm((2, 0, 3, 4, 1)): [{(2, 2)}], Perm((2, 0, 4, 1, 3)): [set()], Perm((2, 3, 0, 1, 4)): [set()], Perm((2, 3, 0, 4, 1)): [set()], Perm((2, 3, 4, 0, 1)): [set()], Perm((2, 4, 0, 1, 3)): [set()], Perm((3, 0, 1, 4, 2)): [{(3, 3)}], Perm((3, 0, 4, 1, 2)): [set()], Perm((3, 4, 0, 1, 2)): [set()], } } assert bisc(A, 5, 7) == { 5: { Perm((0, 2, 1, 4, 3)): [set()], Perm((0, 2, 4, 1, 3)): [{(3, 3)}], Perm((0, 3, 1, 4, 2)): [{(3, 3)}], Perm((0, 3, 4, 1, 2)): [set()], Perm((1, 0, 2, 4, 3)): [set()], Perm((1, 0, 3, 2, 4)): [set()], Perm((1, 0, 3, 4, 2)): [set()], Perm((1, 0, 4, 2, 3)): [set()], Perm((1, 2, 0, 4, 3)): [set()], Perm((1, 2, 4, 0, 3)): [{(3, 3)}], Perm((1, 3, 0, 2, 4)): [{(2, 2)}], Perm((1, 3, 0, 4, 2)): [set()], Perm((1, 3, 4, 0, 2)): [set()], Perm((1, 4, 0, 2, 3)): [{(2, 2)}], Perm((2, 0, 1, 4, 3)): [set()], Perm((2, 0, 3, 1, 4)): [{(2, 2)}], Perm((2, 0, 3, 4, 1)): [{(2, 2)}], Perm((2, 0, 4, 1, 3)): [set()], Perm((2, 3, 0, 1, 4)): [set()], Perm((2, 3, 0, 4, 1)): [set()], Perm((2, 3, 4, 0, 1)): [set()], Perm((2, 4, 0, 1, 3)): [set()], Perm((3, 0, 1, 4, 2)): [{(3, 3)}], Perm((3, 0, 4, 1, 2)): [set()], Perm((3, 4, 0, 1, 2)): [set()], } } # Looking for longer patterns assert bisc(A, 6, 7) == { 5: { Perm((0, 2, 1, 4, 3)): [set()], Perm((0, 2, 4, 1, 3)): [{(3, 3)}], Perm((0, 3, 1, 4, 2)): [{(3, 3)}], Perm((0, 3, 4, 1, 2)): [set()], Perm((1, 0, 2, 4, 3)): [set()], Perm((1, 0, 3, 2, 4)): [set()], Perm((1, 0, 3, 4, 2)): [set()], Perm((1, 0, 4, 2, 3)): [set()], Perm((1, 2, 0, 4, 3)): [set()], Perm((1, 2, 4, 0, 3)): [{(3, 3)}], Perm((1, 3, 0, 2, 4)): [{(2, 2)}], Perm((1, 3, 0, 4, 2)): [set()], Perm((1, 3, 4, 0, 2)): [set()], Perm((1, 4, 0, 2, 3)): [{(2, 2)}], Perm((2, 0, 1, 4, 3)): [set()], Perm((2, 0, 3, 1, 4)): [{(2, 2)}], Perm((2, 0, 3, 4, 1)): [{(2, 2)}], Perm((2, 0, 4, 1, 3)): [set()], Perm((2, 3, 0, 1, 4)): [set()], Perm((2, 3, 0, 4, 1)): [set()], Perm((2, 3, 4, 0, 1)): [set()], Perm((2, 4, 0, 1, 3)): [set()], Perm((3, 0, 1, 4, 2)): [{(3, 3)}], Perm((3, 0, 4, 1, 2)): [set()], Perm((3, 4, 0, 1, 2)): [set()], }, 6: {Perm((2, 5, 0, 3, 4, 1)): [set()], Perm((4, 1, 2, 5, 0, 3)): [set()]}, } SG = bisc(A, 6, 8) assert SG == { 5: { Perm((0, 2, 1, 4, 3)): [set()], Perm((0, 2, 4, 1, 3)): [{(3, 3)}], Perm((0, 3, 1, 4, 2)): [{(3, 3)}], Perm((0, 3, 4, 1, 2)): [set()], Perm((1, 0, 2, 4, 3)): [set()], Perm((1, 0, 3, 2, 4)): [set()], Perm((1, 0, 3, 4, 2)): [set()], Perm((1, 0, 4, 2, 3)): [set()], Perm((1, 2, 0, 4, 3)): [set()], Perm((1, 2, 4, 0, 3)): [{(3, 3)}], Perm((1, 3, 0, 2, 4)): [{(2, 2)}], Perm((1, 3, 0, 4, 2)): [set()], Perm((1, 3, 4, 0, 2)): [set()], Perm((1, 4, 0, 2, 3)): [{(2, 2)}], Perm((2, 0, 1, 4, 3)): [set()], Perm((2, 0, 3, 1, 4)): [{(2, 2)}], Perm((2, 0, 3, 4, 1)): [{(2, 2)}], Perm((2, 0, 4, 1, 3)): [set()], Perm((2, 3, 0, 1, 4)): [set()], Perm((2, 3, 0, 4, 1)): [set()], Perm((2, 3, 4, 0, 1)): [set()], Perm((2, 4, 0, 1, 3)): [set()], Perm((3, 0, 1, 4, 2)): [{(3, 3)}], Perm((3, 0, 4, 1, 2)): [set()], Perm((3, 4, 0, 1, 2)): [set()], }, 6: {Perm((2, 5, 0, 3, 4, 1)): [set()], Perm((4, 1, 2, 5, 0, 3)): [set()]}, } assert patterns_suffice_for_bad(SG, 7, B) == (True, []) assert run_clean_up(SG, B, limit_monitors=25) == ( [ [ (5, 0, 0), (5, 1, 0), (5, 2, 0), (5, 3, 0), (5, 4, 0), (5, 5, 0), (5, 6, 0), (5, 7, 0), (5, 8, 0), (5, 9, 0), (5, 10, 0), (5, 11, 0), (5, 12, 0), (5, 13, 0), (5, 14, 0), (5, 15, 0), (5, 16, 0), (5, 17, 0), (5, 18, 0), (5, 19, 0), (5, 20, 0), (5, 21, 0), (5, 22, 0), (5, 23, 0), (5, 24, 0), ] ], { (5, 0, 0): (Perm((0, 2, 1, 4, 3)), set()), (5, 1, 0): (Perm((0, 2, 4, 1, 3)), {(3, 3)}), (5, 2, 0): (Perm((0, 3, 1, 4, 2)), {(3, 3)}), (5, 3, 0): (Perm((0, 3, 4, 1, 2)), set()), (5, 4, 0): (Perm((1, 0, 2, 4, 3)), set()), (5, 5, 0): (Perm((1, 0, 3, 2, 4)), set()), (5, 6, 0): (Perm((1, 0, 3, 4, 2)), set()), (5, 7, 0): (Perm((1, 0, 4, 2, 3)), set()), (5, 8, 0): (Perm((1, 2, 0, 4, 3)), set()), (5, 9, 0): (Perm((1, 2, 4, 0, 3)), {(3, 3)}), (5, 10, 0): (Perm((1, 3, 0, 2, 4)), {(2, 2)}), (5, 11, 0): (Perm((1, 3, 0, 4, 2)), set()), (5, 12, 0): (Perm((1, 3, 4, 0, 2)), set()), (5, 13, 0): (Perm((1, 4, 0, 2, 3)), {(2, 2)}), (5, 14, 0): (Perm((2, 0, 1, 4, 3)), set()), (5, 15, 0): (Perm((2, 0, 3, 1, 4)), {(2, 2)}), (5, 16, 0): (Perm((2, 0, 3, 4, 1)), {(2, 2)}), (5, 17, 0): (Perm((2, 0, 4, 1, 3)), set()), (5, 18, 0): (Perm((2, 3, 0, 1, 4)), set()), (5, 19, 0): (Perm((2, 3, 0, 4, 1)), set()), (5, 20, 0): (Perm((2, 3, 4, 0, 1)), set()), (5, 21, 0): (Perm((2, 4, 0, 1, 3)), set()), (5, 22, 0): (Perm((3, 0, 1, 4, 2)), {(3, 3)}), (5, 23, 0): (Perm((3, 0, 4, 1, 2)), set()), (5, 24, 0): (Perm((3, 4, 0, 1, 2)), set()), (6, 0, 0): (Perm((2, 5, 0, 3, 4, 1)), set()), (6, 1, 0): (Perm((4, 1, 2, 5, 0, 3)), set()), }, )
5,344,451
def touch(path): """Creates an empty file at the specified path.""" perms = (os.O_WRONLY | os.O_CREAT | os.O_NONBLOCK | os.O_NOCTTY) fd = None try: fd = os.open(path, perms) os.utime(path, None) finally: if fd is not None: os.close(fd)
5,344,452
def prepare_elements_default_wallet(my_node): """this will collect the free coins we have created with -initialfreecoins=2100000000000000 and transfer them to the default-wallet """ rpc = my_node.rpcconn.get_rpc() wallet = rpc.wallet("") freehash = rpc.getblockhash(0) freetxid = rpc.getblock(freehash)["tx"][1] logger.debug(f"freetxid: {freetxid}") if rpc.gettxout(freetxid, 0): # unspent! tx = rpc.getrawtransaction(freetxid, 1) fee = 1000e-8 value = round(tx["vout"][0]["value"] - fee, 8) addr = wallet.getnewaddress() unconfidential = wallet.getaddressinfo(addr)["unconfidential"] rawtx = wallet.createrawtransaction( [{"txid": freetxid, "vout": 0}], # inputs [{unconfidential: value}, {"fee": fee}], ) wallet.sendrawtransaction(rawtx) rpc.generatetoaddress(101, unconfidential)
5,344,453
def test_set_nonexisting_working_dir(known_dirs): """Working dir not added to sys paths if not exist.""" p = '/arb/path' assert sys.path == ['arb'] moduleloader.set_working_directory(p) assert sys.path == ['arb'] assert moduleloader._known_dirs == {p}
5,344,454
def Normalize_Column_Scores(df, columns, norm_type = 'divide_by_max'): """Normalizes scores for specified columns in a pandas dataframe Parameters ---------- df : a pandas DataFrame object that contains the specified columns columns: a list object that includes the columns to normalize norm_type : a string specifying the type of normalization to perform - 'divide_by_max' divides all values by the maximum value - 'range_norm' divides all values (+ the min) by the range of values in the column - 'z_norm' computes a z-score based on the mean and standard deviation of values - 'divide_by_sum' divides all values by the sum of the values - 'vector' dives all values by the square root of the sum of the squares of all values Yields ------ temp_df: a copy of the passed dataframe with the normalizations performed Examples -------- >>> import pandas as pd >>> import numpy as np >>> import mcdm_functions as mcfunc >>> data_dict = {'Product': ['A', 'B', 'C', 'D'], 'Product Advantage': [13.1,13.2,12.2,13.2], 'Strategic Alignment': [9.8,8.2,10.0,9.6], 'Technical Feasibility': [20.0,18.7,18.5,17.1], 'Market Attractiveness': [15.5,12.3,13.1,13.1]} >>> score_data = pd.DataFrame(data_dict) >>> score_data = score_data.set_index('Product') >>> print(score_data) Market Attractiveness Product Advantage Strategic Alignment \ Product A 15.5 13.1 9.8 B 12.3 13.2 8.2 C 13.1 12.2 10.0 D 13.1 13.2 9.6 Technical Feasibility Product A 20.0 B 18.7 C 18.5 D 17.1 >>> columns = ['Market Attractiveness','Product Advantage'] >>> temp = mcfunc.Normalize_Column_Scores(score_data,columns) >>> print(temp) Market Attractiveness Product Advantage Strategic Alignment \ Product A 1.000000 13.1 9.8 B 0.793548 13.2 8.2 C 0.845161 12.2 10.0 D 0.845161 13.2 9.6 Technical Feasibility Product A 20.0 B 18.7 C 18.5 D 17.1 """ temp_df = df.copy() for column in columns: if norm_type is 'divide_by_max': max_entry = temp_df[column].max() temp_df[column] = temp_df[column]/max_entry elif norm_type is 'range_norm': min_entry = temp_df[column].min() max_entry = temp_df[column].max() temp_df[column] = (temp_df[column]-min_entry)/(max_entry - min_entry) elif norm_type is 'z_norm': mean = temp_df[column].mean() sd = temp_df[column].std() temp_df[column] = (temp_df[column]-mean)/sd elif norm_type is 'divide_by_sum': temp_df[column] = temp_df[column]/temp_df[column].sum() elif norm_type is 'vector': values = temp_df[column].values values_squared = values**2 vector_norm = values/np.sqrt(np.sum(values_squared)) temp_df[column] = vector_norm else: print('You did not enter a valid type, so no changes were made') return temp_df
5,344,455
def custom_pdf_merge(doctype,docid,attach_to_og_doc=False,doc_to_merge={}): """ doc_to_merge = { "dt_to_merge": "", ##doctype on which merge is to be performed "dt_to_merge_id": "", ##docid on which merge is to be performed "attach_fieldname": "", ##fieldname of the attach field through which CAD doc is uploaded (Ex:assembly_drawing) "print_format": "", ##preferred print format of docid "attach_to_doc": True/False, ##should the merged pdf be attached to dt_to_merge_id "other_attachments_to_merge": [list of file names] ##list of pdfs attached to dt_to_merge_id that need to be merged along with attach_fieldname } """ doc_to_merge=json.loads(doc_to_merge) file_path = frappe.utils.get_url() dir_path_idx = file_path.find('/')+2 dir_path =file_path[dir_path_idx:] mergeFile = PyPDF2.PdfFileMerger() final_merged_file = _("/private/files/Merged_{}.pdf").format(doc_to_merge['dt_to_merge_id']) # Generate pdf of original record org_pdf = doc_to_merge['dt_to_merge_id'] + ".pdf" doc_pdf = frappe.attach_print(doc_to_merge['dt_to_merge'], doc_to_merge['dt_to_merge_id'], str(doc_to_merge['dt_to_merge_id']), print_format=doc_to_merge['print_format']) docfile = open(org_pdf,"wb") docfile.write(doc_pdf["fcontent"]) # Append pdf of original record og_doc_to_merge = PyPDF2.PdfFileReader(org_pdf,'rb') mergeFile.append(og_doc_to_merge,'rb') attachment_filename = frappe.get_value(doc_to_merge['dt_to_merge'], doc_to_merge['dt_to_merge_id'], doc_to_merge['attach_fieldname']) idx = attachment_filename.rfind('/')+1 attachment_filename = attachment_filename[idx:] # Fetch attachment details attached_doc = frappe.get_all("File", fields=["name", "file_name", "file_url"] , filters = { "attached_to_name": doc_to_merge['dt_to_merge_id'], "attached_to_doctype": doc_to_merge['dt_to_merge'], "file_name":attachment_filename}) if 'other_attachments_to_merge' in doc_to_merge: other_attachments_str = ",".join(doc_to_merge['other_attachments_to_merge']) else: other_attachments_str = '' other_attached_docs = frappe.get_all("File", fields=['name','file_name','file_url'], filters={ "attached_to_name": doc_to_merge['dt_to_merge_id'], "attached_to_doctype": doc_to_merge['dt_to_merge'], "file_name":['in',other_attachments_str] }) old_merged_doc = frappe.get_all("File", fields=['name','file_name','file_url'], filters={ "attached_to_name": ['in',(docid,doc_to_merge['dt_to_merge_id'])], "attached_to_doctype": ['in',(doctype,doc_to_merge['dt_to_merge'])], "file_name":['like','Merged_'+doc_to_merge['dt_to_merge_id']+'.pdf'] }) # Delete old Merged file for doc in old_merged_doc: frappe.delete_doc("File",doc.name) # Append main attachment to merge file if attached_doc: if not attached_doc[0].file_url.startswith('/private'): url = '/public' + attached_doc[0].file_url to_merge =PyPDF2.PdfFileReader(dir_path + url) mergeFile.append(to_merge,'rb') # Append other attachments to final pdf for pdfs in other_attached_docs: if not pdfs.file_url.startswith('/private'): url = '/public' + pdfs.file_url to_merge =PyPDF2.PdfFileReader(dir_path + url) mergeFile.append(to_merge,'rb') if mergeFile: mergeFile.write(dir_path + final_merged_file) mergeFile.close() file_stats = os.stat(dir_path + final_merged_file) file_size = file_stats.st_size if attach_to_og_doc == 1: merged_file = frappe.get_doc({ "doctype": "File", "file_name": "Merged_"+doc_to_merge['dt_to_merge_id']+".pdf", "file_url": final_merged_file, "attached_to_doctype": doctype, "attached_to_name": docid, "file_size":file_size, "is_private": 1 }) merged_file.insert() merged_file = frappe.get_doc({ "doctype": "File", "file_name": "Merged_"+doc_to_merge['dt_to_merge_id']+".pdf", "file_url":final_merged_file, "attached_to_doctype": 'BOM', "attached_to_name": doc_to_merge['dt_to_merge_id'], "file_size":file_size, "is_private": 1 }) merged_file.insert() return {'file_url' : merged_file.file_url, 'attached_to' : merged_file.attached_to_name}
5,344,456
def test_schema_from_parquet_with_namespace(filename): """Test the creation of a new model from a parquet file.""" origin = Path(__file__).parent / "data" / "original" / filename target_dir = Path(__file__).parent / "data" / "schemas" namespace = "pydf" schema = Schema.from_parquet( str(origin), str(target_dir), namespace=namespace ) name = f"{filename.split('.')[0].title()}{namespace.title()}" assert schema["name"] == name
5,344,457
def find_most_common_word(sentence): """Return the most common word in the sentence.""" # Change to lowercase and strip out punctuation sentence = clean_sentence(sentence) list_of_words = sentence.split() word_to_count = dict() # Create a histogram of the occurrence of all words for word in list_of_words: if word not in word_to_count: word_to_count[word] = 1 else: word_to_count[word] += 1 most_common_word = '' highest_count = 0 # Find highest count in the histogram for word, count in word_to_count.items(): if count > highest_count: most_common_word, highest_count = word, count return most_common_word
5,344,458
def fast_rcnn_inference(boxes, scores, image_shapes, predictions, score_thresh, nms_thresh, topk_per_image): """ Call `fast_rcnn_inference_single_image` for all images. Args: boxes (list[Tensor]): A list of Tensors of predicted class-specific or class-agnostic boxes for each image. Element i has shape (Ri, K * 4) if doing class-specific regression, or (Ri, 4) if doing class-agnostic regression, where Ri is the number of predicted objects for image i. This is compatible with the output of :meth:`FastRCNNOutputLayers.predict_boxes`. scores (list[Tensor]): A list of Tensors of predicted class scores for each image. Element i has shape (Ri, K + 1), where Ri is the number of predicted objects for image i. Compatible with the output of :meth:`FastRCNNOutputLayers.predict_probs`. image_shapes (list[tuple]): A list of (width, height) tuples for each image in the batch. score_thresh (float): Only return detections with a confidence score exceeding this threshold. nms_thresh (float): The threshold to use for box non-maximum suppression. Value in [0, 1]. topk_per_image (int): The number of top scoring detections to return. Set < 0 to return all detections. Returns: instances: (list[Instances]): A list of N instances, one for each image in the batch, that stores the topk most confidence detections. kept_indices: (list[Tensor]): A list of 1D tensor of length of N, each element indicates the corresponding boxes/scores index in [0, Ri) from the input, for image i. """ result_per_image = [ fast_rcnn_inference_single_image( boxes_per_image, scores_per_image, image_shape, score_thresh, nms_thresh, topk_per_image, prediction ) for scores_per_image, boxes_per_image, image_shape, prediction in zip(scores, boxes, image_shapes, predictions) ] return [x[0] for x in result_per_image], [x[1] for x in result_per_image]
5,344,459
def GetVar(doc:NexDoc, varNumber, varType) -> NexVar: """Returns the reference to the specified variable.""" return NexRun("GetVar", locals())
5,344,460
def full_issuance(cfr_title, cfr_part, version): """Create a full regulation tree from a notice""" process_version_if_needed(cfr_title, cfr_part, version) process_tree_if_needed(cfr_title, cfr_part, version)
5,344,461
def putversenotes(): """Serves AJAX call for json data to save notes. See also [M:NOTESAVE.putVerseNotes][notesave.NOTESAVE.putVerseNotes]. Client code: [{noteverse.sendnotes}][noteversesendnotes] """ session.forget(response) Books = BOOKS() Note = NOTE(Books) NoteSave = NOTESAVE(Note) return NoteSave.putVerseNotes()
5,344,462
def prepend(list, item): """Adds the provided item to the front of the list.""" list.insert(0, item)
5,344,463
def _valid_multiview_args(cfg_user, logger): """ Validates the "multiview" parameters of a json configuration file used for training. The function returns False if an error has occurred and True if all settings have passed the check. :param cfg_user: EasyDict, json configuration file imported as dictionary :param logger: logger instance :return: boolean, True if no errors have been detected, False otherwise """ error = False # Extract the input channel configuration (use the default setting if not specified by the user) if 'model' in cfg_user and 'input_channels' in cfg_user.model: # Use user setting input_config = cfg_user.model.input_channels else: # Use default setting input_config = cfg_default.model.input_channels if input_config != 'geom-multiview' and 'multiview' in cfg_user: logger.warning(f"The argument 'model': 'input_channels' is set to '{input_config}'. Hence, the multiview " "settings will be ignored.\n") elif input_config == 'geom-multiview' and 'multiview' in cfg_user: if not all_keys_known(cfg_user.multiview, arguments.MULTIVIEW_KEYS, logger): error = True if 'config' in cfg_user.multiview and cfg_user.multiview.config not in arguments.MULTIVIEW_CONFIG: logger.error(f"Unknown multiview configuration: '{cfg_user.multiview.config}'. Choose among " f"{arguments.MULTIVIEW_CONFIG} to specify 'config'.\n") error = True if error: logger.info('\n') else: logger.info('Settings check: ok.\n\n') return not error
5,344,464
def generate_extension(project=None, outdir=None, *, _project_from_raw=info.Project.from_raw, _abspath=os.path.abspath, _projfiles=None, _gen=None, ): """Produce all needed files to build an extension from the given root.""" project = _project_from_raw(project) # No need to validate. if outdir: outdir = _abspath(outdir) else: outdir = os.path.join(project.root, OUT_DIR) if _projfiles is None: _projfiles = _get_project_files(project.root) return (_gen or _generate)( project.root, project.cfg, _projfiles, outdir, )
5,344,465
def apply_gradient_descent(var_list, obj, learning_rate = 0.01): """ Sets up the gradient descent optimizer Args: var_list: List of variables to optimizer over. obj: Node of the objective to minimize Notes: learning_rate: What learning rate to run with. (Default = ``0.01``) Set with ``LR`` """ back_prop = tf.train.GradientDescentOptimizer( learning_rate = learning_rate, name = 'gradient_descent' ).minimize(loss = obj, \ var_list = var_list ) return back_prop
5,344,466
def save_to_csv(dealtime,number,vercode, amount): """ 写入内容到csv """ dealtime = dealtime.split(' ')[0] # 切割时间取年月日 number = number + '\t' vercode = vercode + '\t' amount = amount[0] data = (dealtime, number, vercode, amount) file_path = strftime("jd-assistant_%Y_%m.csv") # 按照当前系统时间创建文件 # 判断文件是否存在 if os.path.exists(file_path): # 处理数据并写入 with open(file_path, 'a+', newline='') as csvfile: writer = csv.writer(csvfile) writer.writerow(data) else: # 创建文件 处理数据并写入 header = ('下单时间', '订单号', '验证码', '实付金额') with open(file_path, 'a+', newline='') as f: writer = csv.writer(f) writer.writerow(header) with open(file_path, 'a+', newline='') as csvfile: writer = csv.writer(csvfile) writer.writerow(data)
5,344,467
def make_cls_accept_cls_annotated_deps(cls: type[T]) -> type[T]: """ Make class `cls` accept class-annotated dependencies, performing following modifications: - Update `__init__` function to set any class-annotated dependencies as instance attributes - Update `__signature__` attribute to indicate to FastAPI what arguments should be passed to the initializer """ old_init: Callable[..., None] = cls.__init__ old_signature = inspect.signature(old_init) old_params = list(old_signature.parameters.values())[1:] # drop `self` param new_params = [ param for param in old_params if param.kind not in {Parameter.VAR_POSITIONAL, Parameter.VAR_KEYWORD} ] dep_names: list[str] = [] for name, hint in get_type_hints(cls).items(): if is_classvar(hint): continue dep_names.append(name) new_params.append( Parameter( name=name, kind=Parameter.KEYWORD_ONLY, annotation=hint, default=getattr(cls, name, Ellipsis), ) ) new_signature = old_signature.replace(parameters=new_params) def new_init(self: T, *args, **kwargs) -> None: for dep_name in dep_names: dep_value = kwargs.pop(dep_name) setattr(self, dep_name, dep_value) old_init(self, *args, **kwargs) setattr(cls, "__init__", new_init) setattr(cls, "__signature__", new_signature) return cls
5,344,468
def getReviewRedirect(entity, params): """Returns the redirect to review the specified entity. """ return '/%s/review/%s' % ( params['url_name'], entity.key().id_or_name())
5,344,469
def leapfrog_step(state, target_log_prob_fn, kinetic_energy_fn, step_size, rng=None): """Single step of leapfrog. Notes ===== The canonical distribution is related to the energy of the system by p(p, \theta) = 1/Zexp(-H(\theta, p)/T) For now, we assume that the kinetic energy takes the form K(p) = sum_i(p_i^2/(2m_i)) """ del rng p, q, q_grad = state.momentum, state.state, state.state_grads p_half = tree_util.tree_multimap(lambda p, qg: p + 0.5 * step_size * qg, p, q_grad) _, grad_p_half = utils.call_fn_value_and_grad(kinetic_energy_fn, p_half) q_full = tree_util.tree_multimap(lambda q, ph: q + step_size * ph, q, grad_p_half) logprob, q_full_grad = utils.call_fn_value_and_grad(target_log_prob_fn, q_full) p_full = tree_util.tree_multimap(lambda ph, qg: ph + 0.5 * step_size * qg, p_half, q_full_grad) return IntegratorState(q_full, q_full_grad, logprob, p_full)
5,344,470
def test_atomic_string_max_length_1_nistxml_sv_iv_atomic_string_max_length_2_4(mode, save_output, output_format): """ Type atomic/string is restricted by facet maxLength with value 969. """ assert_bindings( schema="nistData/atomic/string/Schema+Instance/NISTSchema-SV-IV-atomic-string-maxLength-2.xsd", instance="nistData/atomic/string/Schema+Instance/NISTXML-SV-IV-atomic-string-maxLength-2-4.xml", class_name="NistschemaSvIvAtomicStringMaxLength2", version="1.1", mode=mode, save_output=save_output, output_format=output_format, structure_style="filenames", )
5,344,471
def get_plugins_json(url: str = "https://repobee.org/plugins.json") -> dict: """Fetch and parse the plugins.json file. Args: url: URL to the plugins.json file. Returns: A dictionary with the contents of the plugins.json file. """ resp = requests.get(url) if resp.status_code != 200: plug.log.error(resp.content.decode("utf8")) raise plug.PlugError(f"could not fetch plugins.json from '{url}'") return resp.json()
5,344,472
def add_available_prefixes(parent, prefix_list): """ Create fake Prefix objects for all unallocated space within a prefix. """ # Find all unallocated space available_prefixes = IPSet(parent) ^ IPSet([p.prefix for p in prefix_list]) available_prefixes = [Prefix(prefix=p) for p in available_prefixes.iter_cidrs()] # Concatenate and sort complete list of children prefix_list = list(prefix_list) + available_prefixes prefix_list.sort(key=lambda p: p.prefix) return prefix_list
5,344,473
def isready() -> bool: """Is the embedded R ready for use.""" INITIALIZED = RPY_R_Status.INITIALIZED return bool( rpy2_embeddedR_isinitialized == INITIALIZED.value )
5,344,474
def yolo2_loss(args, anchors, num_classes, label_smoothing=0, use_crossentropy_loss=False, use_crossentropy_obj_loss=False, rescore_confidence=False): """YOLOv2 loss function. Parameters ---------- yolo_output : tensor Final convolutional layer features. true_boxes : tensor Ground truth boxes tensor with shape [batch, num_true_boxes, 5] containing box x_center, y_center, width, height, and class. y_true : array output of preprocess_true_boxes, with shape [conv_height, conv_width, num_anchors, 6] anchors : tensor Anchor boxes for model. num_classes : int Number of object classes. rescore_confidence : bool, default=False If true then set confidence target to IOU of best predicted box with the closest matching ground truth box. Returns ------- total_loss : float total mean YOLOv2 loss across minibatch """ (yolo_output, true_boxes, y_true) = args num_anchors = len(anchors) yolo_output_shape = K.shape(yolo_output) input_shape = yolo_output_shape[1:3] * 32 object_scale = 5 no_object_scale = 1 class_scale = 1 coordinates_scale = 1 object_mask = y_true[..., 4:5] pred_xy, pred_wh, pred_confidence, pred_class_prob = yolo2_head( yolo_output, anchors, num_classes, input_shape) # Unadjusted box predictions for loss. # TODO: Remove extra computation shared with yolo2_head. batch_size = yolo_output_shape[0] # batch size, tensor batch_size_f = K.cast(batch_size, K.dtype(yolo_output)) feats = K.reshape(yolo_output, [ -1, yolo_output_shape[1], yolo_output_shape[2], num_anchors, num_classes + 5 ]) pred_boxes = K.concatenate( (K.sigmoid(feats[..., 0:2]), feats[..., 2:4]), axis=-1) # TODO: Adjust predictions by image width/height for non-square images? # IOUs may be off due to different aspect ratio. # Expand pred x,y,w,h to allow comparison with ground truth. # batch, conv_height, conv_width, num_anchors, num_true_boxes, box_params pred_xy = K.expand_dims(pred_xy, 4) pred_wh = K.expand_dims(pred_wh, 4) pred_wh_half = pred_wh / 2. pred_mins = pred_xy - pred_wh_half pred_maxes = pred_xy + pred_wh_half true_boxes_shape = K.shape(true_boxes) # batch, conv_height, conv_width, num_anchors, num_true_boxes, box_params true_boxes = K.reshape(true_boxes, [ true_boxes_shape[0], 1, 1, 1, true_boxes_shape[1], true_boxes_shape[2] ]) true_xy = true_boxes[..., 0:2] true_wh = true_boxes[..., 2:4] # Find IOU of each predicted box with each ground truth box. true_wh_half = true_wh / 2. true_mins = true_xy - true_wh_half true_maxes = true_xy + true_wh_half intersect_mins = K.maximum(pred_mins, true_mins) intersect_maxes = K.minimum(pred_maxes, true_maxes) intersect_wh = K.maximum(intersect_maxes - intersect_mins, 0.) intersect_areas = intersect_wh[..., 0] * intersect_wh[..., 1] pred_areas = pred_wh[..., 0] * pred_wh[..., 1] true_areas = true_wh[..., 0] * true_wh[..., 1] union_areas = pred_areas + true_areas - intersect_areas iou_scores = intersect_areas / union_areas # Best IOUs for each location. best_ious = K.max(iou_scores, axis=4) # Best IOU scores. best_ious = K.expand_dims(best_ious) # A detector has found an object if IOU > thresh for some true box. object_detections = K.cast(best_ious > 0.6, K.dtype(best_ious)) # TODO: Darknet region training includes extra coordinate loss for early # training steps to encourage predictions to match anchor priors. # Determine confidence weights from object and no_object weights. # NOTE: YOLOv2 does not use binary cross-entropy. Here we try it. no_object_weights = (no_object_scale * (1 - object_detections) * (1 - object_mask)) if use_crossentropy_obj_loss: no_objects_loss = no_object_weights * K.binary_crossentropy(K.zeros(K.shape(pred_confidence)), pred_confidence, from_logits=False) if rescore_confidence: objects_loss = (object_scale * object_mask * K.binary_crossentropy(best_ious, pred_confidence, from_logits=False)) else: objects_loss = (object_scale * object_mask * K.binary_crossentropy(K.ones(K.shape(pred_confidence)), pred_confidence, from_logits=False)) else: no_objects_loss = no_object_weights * K.square(-pred_confidence) if rescore_confidence: objects_loss = (object_scale * object_mask * K.square(best_ious - pred_confidence)) else: objects_loss = (object_scale * object_mask * K.square(1 - pred_confidence)) confidence_loss = objects_loss + no_objects_loss # Classification loss for matching detections. # NOTE: YOLOv2 does not use categorical cross-entropy loss. # Here we try it. matching_classes = K.cast(y_true[..., 5], 'int32') matching_classes = K.one_hot(matching_classes, num_classes) if label_smoothing: matching_classes = _smooth_labels(matching_classes, label_smoothing) if use_crossentropy_loss: classification_loss = (class_scale * object_mask * K.expand_dims(K.categorical_crossentropy(matching_classes, pred_class_prob, from_logits=False), axis=-1)) else: classification_loss = (class_scale * object_mask * K.square(matching_classes - pred_class_prob)) # Coordinate loss for matching detection boxes. matching_boxes = y_true[..., 0:4] coordinates_loss = (coordinates_scale * object_mask * K.square(matching_boxes - pred_boxes)) confidence_loss_sum = K.sum(confidence_loss) / batch_size_f classification_loss_sum = K.sum(classification_loss) / batch_size_f coordinates_loss_sum = K.sum(coordinates_loss) / batch_size_f total_loss = 0.5 * ( confidence_loss_sum + classification_loss_sum + coordinates_loss_sum) # Fit for tf 2.0.0 loss shape total_loss = K.expand_dims(total_loss, axis=-1) return total_loss, coordinates_loss_sum, confidence_loss_sum, classification_loss_sum
5,344,475
def create_compressed_model(model: tf.keras.Model, config: NNCFConfig, compression_state: Optional[Dict[str, Any]] = None) \ -> Tuple[CompressionAlgorithmController, tf.keras.Model]: """ The main function used to produce a model ready for compression fine-tuning from an original TensorFlow Keras model and a configuration object. :param model: The original model. Should have its parameters already loaded from a checkpoint or another source. :param config: A configuration object used to determine the exact compression modifications to be applied to the model. :param compression_state: compression state to unambiguously restore the compressed model. Includes builder and controller states. If it is specified, trainable parameter initialization will be skipped during building. :return: A tuple (compression_ctrl, compressed_model) where - compression_ctrl: The controller of the compression algorithm. - compressed_model: The model with additional modifications necessary to enable algorithm-specific compression during fine-tuning. """ model = get_built_model(model, config) original_model_accuracy = None if is_accuracy_aware_training(config, compression_config_passed=True): if config.has_extra_struct(ModelEvaluationArgs): evaluation_args = config.get_extra_struct(ModelEvaluationArgs) original_model_accuracy = evaluation_args.eval_fn(model) builder = create_compression_algorithm_builder(config, should_init=not compression_state) if compression_state: builder.load_state(compression_state[BaseController.BUILDER_STATE]) compressed_model = builder.apply_to(model) compression_ctrl = builder.build_controller(compressed_model) compressed_model.original_model_accuracy = original_model_accuracy if isinstance(compressed_model, tf.keras.Model): compressed_model.accuracy_aware_fit = types.MethodType(accuracy_aware_fit, compressed_model) return compression_ctrl, compressed_model
5,344,476
def load_misc_config(): """Load misc configuration. Returns: Misc object for misc config. """ return Misc(config.load_config('misc.yaml'))
5,344,477
async def test_wrong_device_now_has_our_ip(hass: HomeAssistant) -> None: """Test setup is retried when the wrong device is found.""" bulb = _mocked_wizlight(None, None, FAKE_SOCKET) bulb.mac = "dddddddddddd" _, entry = await async_setup_integration(hass, wizlight=bulb) assert entry.state is config_entries.ConfigEntryState.SETUP_RETRY
5,344,478
def filter_activations_remove_neurons(X, neurons_to_remove): """ Filter activations so that they do not contain specific neurons. .. note:: The returned value is a view, so modifying it will modify the original matrix. Parameters ---------- X : numpy.ndarray Numpy Matrix of size [``NUM_TOKENS`` x ``NUM_NEURONS``]. Usually the output of ``interpretation.utils.create_tensors`` neurons_to_remove : list or numpy.ndarray List of neurons to remove Returns ------- filtered_X : numpy.ndarray view Numpy Matrix of size [``NUM_TOKENS`` x ``NUM_NEURONS - len(neurons_to_remove)``] """ neurons_to_keep = np.arange(X.shape[1]) neurons_to_keep[neurons_to_remove] = -1 neurons_to_keep = np.where(neurons_to_keep != -1)[0] return X[:, neurons_to_keep]
5,344,479
def adaptive_threshold(im, block_size, constant, mode=cv2.THRESH_BINARY): """ Performs an adaptive threshold on an image Uses cv2.ADAPTIVE_THRESH_GAUSSIAN_C: threshold value is the weighted sum of neighbourhood values where weights are a gaussian window. Uses cv2.THRESH_BINARY: Pixels below the threshold set to black Pixels above the threshold set to white Parameters ---------- img: numpy array containing an image block_size: the size of the neighbourhood area constant: subtracted from the weighted sum """ out = cv2.adaptiveThreshold( im, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, mode, block_size, constant ) return out
5,344,480
def get_loss(stochastic, variance_regularizer): """Get appropriate loss function for training. Parameters ---------- stochastic : bool determines if policy to be learned is deterministic or stochastic variance_regularizer : float regularization hyperparameter to penalize high variance policies Returns ------- Keras loss function to use for imitation learning. """ if stochastic: return negative_log_likelihood_loss(variance_regularizer) else: return tf.keras.losses.mean_squared_error
5,344,481
def simul_growth_ho_amir(nbstart, run_time, params, name): """Simulate the Ho and Amir model (Front. in Microbiol. 2015) with inter-initiation per origin adder and timer from initiation to division Parameters ---------- nbstart : int number of cells to simulate run_time: int number of iterations params: dict experimental parameters name: str name of runs Returns ------- cells : list of dict Each element of the list is a cell cycle defined by a dictionary of features (Lb, Ld etc.) """ #initialize birth length and growth rate L0 = np.exp(np.random.normal(params['Lb_logn_mu'],params['Lb_logn_sigma'],size=nbstart)) tau = np.exp(np.random.normal(params['tau_logn_mu'], params['tau_logn_sigma'], size=nbstart)) #standard value of growth rate. Used to scale the noise appropriately normval = np.exp(params['tau_logn_mu']) #initialize the inter-initiation adder (exact procedure doesn't really matter here) #as all cells start with n_ori = 1, there's no initiation to division adder running DLi = np.random.normal(params['DLi_mu'], params['DLi_sigma'], size=nbstart) #time from initiation to division tid_mu = 90 tid_var = 5 Tid = np.random.normal(tid_mu, tid_var, size=nbstart) #initialize cell infos as a list of dictionaries. All cells start with n_ori = 1 cells = {} for x in range(nbstart): dict1 = {'Lb': L0[x],'L':L0[x], 'gen': str(x), 'tau':tau[x], 'Lt': [[0,L0[x],1]], 'finish': False, 'born':0, 'DLi': [[0,DLi[x]]],'DLdLi': [],'Li':[],'Ti':[], 'numori':1,'Ld':np.nan, 'numori_born':1,'name': name,'mLi':np.nan, 'mLd':np.nan, 'rfact':0.5, 'Tid': [[0,Tid[x]]]} cells[str(x)] = dict1 for t in range(run_time): divide_cell = [] for x in cells: if cells[x]['finish']==False: #update cell size cells[x]['L'] = cells[x]['L']*(2**(1/cells[x]['tau'])) cells[x]['Lt'].append([t,cells[x]['L'],cells[x]['numori']]) #increment the most recent inter-initiation adder cells[x]['DLi'][-1][0] = cells[x]['DLi'][-1][0]+(cells[x]['Lt'][-1][1]-cells[x]['Lt'][-2][1]) #if at least one volume counter since RI is running, increment all of them if len(cells[x]['DLdLi'])>0: cells[x]['DLdLi'] = [[k[0]+(cells[x]['Lt'][-1][1]-cells[x]['Lt'][-2][1]),k[1]] for k in cells[x]['DLdLi']] cells[x]['Tid'] = [[k[0]+1,k[1]] for k in cells[x]['Tid']] #if a volume counter has reached its limit divide if len(cells[x]['DLdLi'])>0: if (cells[x]['numori']>1) and (cells[x]['Tid'][0][0]>cells[x]['Tid'][0][1]): cells[x]['finish'] = True#tag cell as finished cells[x]['Ld'] = cells[x]['L'] cells[x]['Td'] = len(cells[x]['Lt']) cells[x]['Td_abs'] = t cells[x]['d_Ld_Lb'] = cells[x]['L']-cells[x]['Lb'] #assign the correct adders (the oldest ones) to the cell that just divided cells[x]['final_DLdLi'] = cells[x]['DLdLi'][0][0] cells[x]['final_DLi'] = cells[x]['DLi'][0][1] cells[x]['final_Li'] = cells[x]['Li'][0] cells[x]['final_Tid'] = cells[x]['Tid'][0][1] #for each accumulated variable suppress the oldest one if len(cells[x]['DLdLi'])==1: cells[x]['DLdLi'] = [] else: cells[x]['DLdLi'].pop(0) if len(cells[x]['Tid'])==1: cells[x]['Tid'] = [] else: cells[x]['Tid'].pop(0) if len(cells[x]['DLi'])==1: cells[x]['DLi'] = [] else: cells[x]['DLi'].pop(0) if len(cells[x]['Li'])==1: cells[x]['Li'] = [] else: cells[x]['Li'].pop(0) divide_cell.append(x) #if the added volume has reached its limit make new RI if cells[x]['DLi'][-1][0]>cells[x]['DLi'][-1][1]: #duplicate origin cells[x]['numori'] = cells[x]['numori']*2 #Version where adder is noisy itself newdli = cells[x]['numori']*np.random.normal(params['DLi_mu'], params['DLi_sigma']) cells[x]['DLi'].append([0,newdli]) cells[x]['Li'].append(cells[x]['L']) #temporarilly store TL_S as absolute time cells[x]['Ti'].append(t) #Version where adder itself is noisy new_dv = cells[x]['numori']*np.exp(np.random.normal(params['DLdLi_logn_mu'], params['DLdLi_logn_sigma'])) cells[x]['DLdLi'].append([0,new_dv]) cells[x]['Tid'].append([0,np.random.normal(tid_mu, tid_var, size=1)]) for x in divide_cell: #Draw division ratio rfact = 1/(1+np.random.normal(1,params['div_ratio'])) #Create new cell using mother information new_tau = np.exp(correlated_normal(np.log(cells[x]['tau']), params['tau_logn_mu'], params['tau_logn_sigma'], params['tau_corr'])) new_Lb = copy.deepcopy(rfact*cells[x]['L']) new_L = copy.deepcopy(rfact*cells[x]['L']) new_Lt = [[t,copy.deepcopy(rfact*cells[x]['L']),copy.deepcopy(cells[x]['numori'])/2]] new_DLi = copy.deepcopy([[rfact*y[0],rfact*y[1]] for y in cells[x]['DLi']]) new_DLdLi = copy.deepcopy([[rfact*y[0],rfact*y[1]] for y in cells[x]['DLdLi']]) new_Tid = copy.deepcopy(cells[x]['Tid']) new_Li = copy.deepcopy([rfact*y for y in cells[x]['Li']]) new_numori = copy.deepcopy(cells[x]['numori'])/2 mother_initL = copy.deepcopy(cells[x]['final_Li'])/2 mother_Ld = copy.deepcopy(cells[x]['Ld']) dict1 = {'Lb': new_Lb,'L': new_L, 'gen': str(x)+'B', 'tau': new_tau,'Lt': new_Lt, 'finish': False, 'born':t, 'DLi': new_DLi,'DLdLi': new_DLdLi,'Tid': new_Tid, 'Li':new_Li,'Ti':[], 'numori':new_numori, 'numori_born':copy.deepcopy(new_numori),'Ld':np.nan, 'name': name,'mLi': mother_initL, 'mLd':mother_Ld, 'rfact':rfact} cells[x+'B'] = copy.deepcopy(dict1) #keep oldest timer as final timer and give daughter remaining ones. Caclulate initiation time based on cell birth. TL_S_val = copy.deepcopy(cells[x]['Ti'].pop(0)) cells[x+'B']['Ti'] = copy.deepcopy(cells[x]['Ti']) cells[x]['Ti'] = TL_S_val-copy.deepcopy(cells[x]['born']) for x in cells: if len(cells[x]['Li'])>0: cells[x]['Li'] = np.nan return cells
5,344,482
def variable_id(variable): """Return variable identification for .dot file""" if isinstance(variable, FileAccess): return "a_{}".format(variable.id) act_id = variable.activation_id act_id = "global" if act_id == -1 else act_id return "v_{}_{}".format(act_id, variable.id)
5,344,483
def node_set_power_state(request, node_id, state, soft=False): """Set power state for a given node. :param request: HTTP request. :param node_id: The UUID or name of the node. :param state: the power state to set ['on', 'off', 'reboot']. :param soft: flag for graceful power 'off' or reboot :return: node. http://docs.openstack.org/developer/python-ironicclient/api/ironicclient.v1.node.html#ironicclient.v1.node.NodeManager.set_power_state """ return ironicclient(request).node.set_power_state(node_id, state, soft)
5,344,484
def __sympyToC_Grad(exprs: list, doOpts: bool = False) -> str: """ creates C code from a list of sympy functions (somewhat optimized). source: https://stackoverflow.com/questions/22665990/optimize-code-generated-by-sympy and modified """ tmpsyms = sympy.numbered_symbols("tmp") if doOpts: symbols, simple = sympy.cse(exprs, symbols=tmpsyms, optimizations="basic", order='none') else: symbols, simple = sympy.cse(exprs, symbols=tmpsyms) c_code = "" for s in symbols: c_code += " double " +sympy.ccode(s[0]) + " = " + sympy.ccode(s[1]) + ";\n" for i,s in enumerate(simple): c_code += f" out({i}) = " + sympy.ccode(s) + ";\n" return c_code
5,344,485
def startServer(mock=True, mockS3=False): """ Test cases that communicate with the server should call this function in their setUpModule() function. """ # If the server starts, a database will exist and we can remove it later dbName = cherrypy.config['database']['uri'].split('/')[-1] usedDBs[dbName] = True # By default, this passes "[]" to "plugins", disabling any installed plugins server = setupServer(mode=ServerMode.TESTING, plugins=enabledPlugins) if mock: cherrypy.server.unsubscribe() cherrypy.engine.start() # Make server quiet (won't announce start/stop or requests) cherrypy.config.update({'environment': 'embedded'}) # Log all requests if we asked to do so if 'cherrypy' in os.environ.get('EXTRADEBUG', '').split(): cherrypy.config.update({'log.screen': True}) logHandler = logging.StreamHandler(sys.stdout) logHandler.setLevel(logging.DEBUG) cherrypy.log.error_log.addHandler(logHandler) # Tell CherryPy to throw exceptions in request handling code cherrypy.config.update({'request.throw_errors': True}) mockSmtp.start() if mockS3: global mockS3Server mockS3Server = mock_s3.startMockS3Server() return server
5,344,486
def get_loans(m='BTC_ETH'): """ """ pass
5,344,487
def index(): """User friendly index page at the root of the server guides the user to the reportss """ return render_template('index.html')
5,344,488
def read_lookup(infile): """ ----------------------------------------------------------------------------- Read data from a lookup database. Inputs: infile [string] Input file containing the lookup data base. Outputs: [tuple] each element of the tuple is a numpy array. The elements in order are x-coordinates, y-coordinates, data value at those coordiantes. The data values are real or complex depending on whether the lookup table has an 'imag_value' column ----------------------------------------------------------------------------- """ if not isinstance(infile, str): raise TypeError('Input parameter infile must be of string data type') try: cols = ascii.read(infile, data_start=1, comment='#') except IOError: raise IOError('Could not read the specified file: '+infile) if 'imag_value' in cols.colnames: return cols['x'].data, cols['y'].data, cols['real_value'].data+1j*cols['imag_value'].data else: return cols['x'].data, cols['y'].data, cols['real_value'].data
5,344,489
def sum_function(context, nodeset, string): """ The dyn:sum function calculates the sum for the nodes passed as the first argument, where the value of each node is calculated dynamically using an XPath expression passed as a string as the second argument. http://www.exslt.org/dyn/functions/sum/index.html """ nodeset = nodeset.evaluate_as_nodeset(context) string = string.evaluate_as_string(context) try: expr = parse_xpath(string) except XPathError: lines = traceback.format_exception(*sys.exc_info()) lines[:1] = [("Syntax error in XPath expression '%(expr)s', " "lower-level traceback:\n") % {'expr': string}] context.processor.warning(''.join(lines)) return datatypes.nodeset() return sum(map(datatypes.number, _map(context, nodeset, expr)))
5,344,490
def event_detail(request, id): """ Return a JSON dict mapping for event given id """ event = get_object_or_404(Event, pk=id) event_dict = { "success": 1, "result": [{ "id": event.id, "title": event.title, "description": event.description, "created_date": event.created_date.strftime('%Y/%m/%d'), "location": event.location }] } return HttpResponse(json.dumps(event_dict), content_type="application/json")
5,344,491
def main(args): """ Main interface """ if args.outdir != '' and not os.path.isdir(args.outdir): os.makedirs(args.outdir) # load metdata {seq_uuid : taxon} idx, ntaxa = load_meta(args.metadata) # load clusters clst = {} clst['rrna'] = load_uclust(args.uclust, idx) clst['cds'] = load_membership(args.membership, idx) # finding core clusters core = {} core['rrna'] = get_core_clusters(clst['rrna'], 'rrna', ntaxa, args.perc_genomes_rrna, args.max_clusters_rrna, args.copies_per_genome_rrna) core['cds'] = get_core_clusters(clst['cds'], 'cds', ntaxa, args.perc_genomes_cds, args.max_clusters_cds, args.copies_per_genome_cds) # getting seq ids per core cluster core_ids = {} core_ids['rrna'] = get_seq_ids_uclust(args.uclust, core['rrna']) core_ids['cds'] = get_seq_ids(args.membership, core['cds']) # parsing sequence ## indexing, then writing sequence files per cluster genes = Fasta(args.nuc_fasta) clust_idx = parse_seqs(genes, core_ids, args.outdir, ext='fna') ## indexing, then writing sequence files per cluster genes = Fasta(args.aa_fasta) clust_idx = parse_seqs(genes, core_ids, args.outdir, ext='faa', allow_missing=True) # core gene cluster metadata with cluster info clust2metadata(core_ids, args.metadata, args.membership, clust_idx, args.outdir)
5,344,492
def test_backup(dbsession, ini_settings): """Execute backup script with having our settings content.""" f = NamedTemporaryFile(delete=False) temp_fname = f.name f.close() ini_settings["websauna.backup_script"] = "websauna.tests:backup_script.bash" ini_settings["backup_test.filename"] = temp_fname # We have some scoping issues with the dbsession here, make sure we close transaction at the end of the test with transaction.manager: init = get_init(dict(__file__=ini_settings["_ini_file"]), ini_settings) init.run() testing.setUp(registry=init.config.registry) # Check we have faux AWS variable to export secrets = get_secrets(get_current_registry()) assert "aws.access_key_id" in secrets try: # This will run the bash script above backup_site() # The result should be generated here assert os.path.exists(temp_fname) contents = io.open(temp_fname).read() # test-secrets.ini, AWS access key assert contents.strip() == "foo" finally: testing.tearDown()
5,344,493
def prepare_state(qubits: list[cirq.Qid], x: int) -> list[cirq.Gate]: """Prepare qubits into an initial state. Args: qubits: The qubits to prepare. x: The initial state of the qubits. Must be non-negative. Returns: A list of gates to prepare the qubits. Raises: ValueError: If `x` is negative. """ gates = list() if size_in_bits(x) > len(qubits): logging.warning(f"prepare_state: `x` ({x}) cannot fit into {len(qubits)} qubits; some bits will be dropped.") for q in qubits: if x % 2: gates.append(cirq.X(q)) x >>= 1 return gates
5,344,494
def manage(id): """Manage room request.""" room_request = RoomRequest.query.get(id) if room_request is None: return abort(404) return render_template('room_request/manage.html', room_request=room_request)
5,344,495
def ger(self, y): """Computer an outer product between two vectors""" assert self.dim() == 1 and y.dim() == 1, "Outer product must be on 1D tensors" return self.view((-1, 1)).matmul(y.view((1, -1)))
5,344,496
def test_resolution_norm(): """Tests resolution gaussian """ p = np.array([0., 0., 1., 0., 0., 1.43, 23867.71, 22311.93, 20739.82]) a, b = np.linspace(-1, 1, 501), np.linspace(-1, 1, 501) q = np.meshgrid(a, b, sparse=True) y = functions.resolution(p, q) integ = simps(simps(y, b), a) assert (abs(integ - 1.) < 1e-5)
5,344,497
def interpret(input, debug=False): """Downloads data and runs commands as per the Arx file.""" if debug: log.configure(level='debug') data = yaml.load(input.read()) task = Task(data) task.run()
5,344,498
def delete_request(user_id): # удаление запроса """ :param user_id: user_id :return: удаление запроса """ global connect global cursor cursor.execute("DELETE FROM Requests WHERE toUserID={0}".format(user_id)) connect.commit()
5,344,499