content
stringlengths
22
815k
id
int64
0
4.91M
def _load_from_url(url: str, chinese_only=False) -> Mapping[str, DictionaryEntry]: """Reads the dictionary from a local file """ logging.info('Opening the dictionary remotely') with urllib.request.urlopen(url) as dict_file: data = dict_file.read().decode('utf-8') return _load_dictionary(data.splitlines(), chinese_only)
5,342,100
def get_images(): """ Canned response for glance images list call """ return images
5,342,101
def firstUniqChar(self, s): """ :type s: str :rtype: int """ letters = 'abcdefghijklmnopqrstuvwxyz' index = [s.index(l) for l in letters if s.count(l) == 1] return min(index) if len(index) > 0 else -1
5,342,102
def get_form_class_for_class(klass): """ A helper function for creating a model form class for a model on the fly. This is used with models (usually part of an inheritance hierarchy) which define a function **get_editable_fields** which returns an iterable of the field names which should be placed in the form. """ meta_dict = dict(model=klass) if hasattr(klass, 'get_editable_fields'): meta_dict['fields'] = klass.get_editable_fields() meta = type('Meta', (),meta_dict) modelform_class = type('modelform', (forms.ModelForm,), {"Meta": meta}) return modelform_class
5,342,103
def dict_remove_key(d, key, default=None): """ removes a key from dict __WITH__ side effects Returns the found value if it was there (default=None). It also modifies the original dict. """ return d.pop(key, default)
5,342,104
def write_pickle(obj, path, makedir=True): """Write object in Python pickle format.""" # TODO: use normal pickling by implementing pickling protocol for Network # class http://docs.python.org/library/pickle.html#the-pickle-protocol # TODO: find out origin of maximum recursion depth problem, hack solution: sys.setrecursionlimit(6000) try: os.makedirs(os.path.split(path)[0]) except OSError, e: if e.errno!=errno.EEXIST and e.filename!='': raise fh = _get_fh(str(path), mode='wb') pickle.dump(obj, fh, pickle.HIGHEST_PROTOCOL) fh.close() logger.info('instance of %s saved in %s' % (str(obj.__class__), path))
5,342,105
def momentum(snap: Snap, mask: Optional[ndarray] = None) -> ndarray: """Calculate the total momentum vector on a snapshot. Parameters ---------- snap The Snap object. mask Mask the particle arrays. Default is None. Returns ------- ndarray The total momentum as a vector (px, py, pz). """ mass: ndarray = snap['mass'] vel: ndarray = snap['velocity'] if mask is None: return (mass * vel).sum(axis=0) return (mass * vel)[mask].sum(axis=0)
5,342,106
def limit_epochs(tensor, num_epochs=None, name=None): """Returns tensor num_epochs times and then raises an OutOfRange error. Args: tensor: Any Tensor. num_epochs: An integer (optional). If specified, limits the number of steps the output tensor may be evaluated. name: A name for the operations (optional). Returns: tensor or OutOfRange. """ if num_epochs is None: return tensor if num_epochs <= 0: raise ValueError("num_epochs must be > 0 not %d." % num_epochs) with ops.op_scope([tensor], name, "limit_epochs") as name: zero64 = constant_op.constant(0, dtype=types.int64) epochs = variables.Variable(zero64, name="epochs") counter = epochs.count_up_to(num_epochs) with ops.control_dependencies([counter]): return array_ops.identity(tensor, name=name)
5,342,107
def init_app(app): """Register database functions with app.""" app.teardown_appcontext(close_db) app.cli.add_command(init_db_command) app.cli.add_command(mock_db_command)
5,342,108
def hex_machine(emit): """ State machine for hex escaped characters in strings Args: emit (callable): callback for parsed value (number) Returns: callable: hex-parsing state machine """ left = 4 num = 0 def _hex(byte_data): nonlocal num, left if 0x30 <= byte_data <= 0x39: # 0-9 i = byte_data - 0x30 elif 0x61 <= byte_data <= 0x66: # a-f i = byte_data - 0x57 elif 0x41 <= byte_data <= 0x46: # A-F i = byte_data - 0x37 else: raise Exception( "Invalid hex char in string hex escape: " + hex(byte_data)) left -= 1 num |= i << (left * 4) if left: return _hex return emit(num) return _hex
5,342,109
def write_json_to_file(file: str, data: Union[dict, list]): """ Creates a manifest to the file containing it's sha256sum and the installation result :param file: File to write to :param data: Dict to write :return: """ with open(file, "w", encoding="utf-8") as file_handle: json.dump(data, file_handle, ensure_ascii=False)
5,342,110
def isbns(self, key, value): """Translates isbns fields.""" _isbns = self.get("identifiers", []) for v in force_list(value): subfield_u = clean_val("u", v, str) isbn = { "value": clean_val("a", v, str) or clean_val("z", v, str), "scheme": "ISBN", } if not isbn["value"]: raise IgnoreKey("identifiers") if subfield_u: volume = re.search(r"(\(*v[.| ]*\d+.*\)*)", subfield_u) if volume: volume = volume.group(1) subfield_u = subfield_u.replace(volume, "").strip() existing_volume = self.get("volume") if existing_volume: raise ManualImportRequired(subfield="u") self["volume"] = volume # WARNING! vocabulary document_identifiers_materials material = mapping( IDENTIFIERS_MEDIUM_TYPES, subfield_u, field=key, subfield="u" ) if material: isbn.update({"material": material}) if isbn not in _isbns: _isbns.append(isbn) return _isbns
5,342,111
def create_user(name, age, occupation): """ Function to post a new user. Parameters ---------- name : str Name of the user. age : int Age of the user. occupation : str Occupation of the user. Returns ------- message : str request_status : int HTTP response status code. `400` "User already exists" `201` "Created User `name`" Examples -------- >>> create_user(name = "micha", age= 28, occupation = 'PhD Student') "Created User micha", 201 """ # create a user user = dict( name = name, age = age, occupation = occupation, ) # post it (as shortcut) resp = requests.post("{}/user/{}".format(server,name), json=user) if resp.status_code == 400: return "User already exists", resp.status_code elif resp.status_code == 201: return "Created User {}".format(name), resp.status_code else: raise ApiError("Some unexpected ERROR code: {}".format(resp.status_code))
5,342,112
def gauss_dataset(dim, size=1e6): """ Creates a dataloader of randomly sampled gaussian noise The returned dataloader produces batsize batches of dim-sized vectors """ def samplef(bsize): return torch.randn(bsize, dim) ret = SampleDataset(samplef, size=size) return ret
5,342,113
def nightwatch_environment(request): # convenience spelling """Run tests against this environment (staging, production, etc.)""" return request.config.getoption('--nightwatch-environment')
5,342,114
def get_hrs(pid_arg): """ Pulls all recorded heart rate data for a patient from the database Args: pid_arg: patient_id to pull heart rate data for Returns: list: containing all recorded heart rates """ u5 = User.objects.raw({"_id": pid_arg}).first() return u5.heart_rate
5,342,115
def resolve(match, *objects): """Given an array of objects and a regex match, this function returns the first matched group if it exists in one of the objects, otherwise returns the orginial fully matches string by the regex. Example: if regex = \\\.([a-z]) and string = test\.abc, then the match = {group0: \.abc, group1: abc}. Assuimg one object: - obj = {abc: def}, then we return 'def' - obj = {test: value}, then we return \.abc Args: objects (array[dict]): the array of objects we use to look up the key in match.group(1) match: the regex match object Returns: str: the value of the matched group(1) in the first object found if exists, otherwise returns the fully matched string. """ for obj in objects: if obj is not None and match.group(1) in obj: return str(obj[match.group(1)]) return match.group(0)
5,342,116
def Collider_CollisionGroupsWorkflow(): # type: () -> None """ Summary: Runs an automated test to ensure PhysX collision groups dictate whether collisions happen or not. The test has two phases (A and B) for testing collision groups under different circumstances. Phase A is run first and upon success Phase B starts. Level Description: Entities can be divided into 2 groups for the two phases, A and B. Each phase has identical entities with exception to Terrain, where Terrain_A has a collision group/layer set for demo_group1/demo1 and Terrain_B has a collision group/layer set for demo_group2/demo2. Each Phase has two boxes, Box_1 and Box_2, where each box has it's collision group/layer set to it's number (1 or 2). Each box is positioned just above the Terrain with gravity enabled. All entities for Phase B are deactivated by default. If Phase A is setup and executed successfully it's entities are deactivated and Phase B's entities are activated and validated before running the Phase B test. Expected behavior: When Phase A starts, it's two boxes should fall toward the terrain. Once the boxes' behavior is validated the entities from Phase A are deactivated and Phase B's entities are activated. Like in Phase A, the boxes in Phase B should fall towards the terrain. If all goes as expected Box_1_A and Box_2_B should collide with teh terrain, and Box_2A and Box_1_B should fall through the terrain. Test Steps: 0) [Define helper classes and functions] 1) Load the level 2) Enter game mode 3) Retrieve and validate entities 4) Phase A a) set up b) execute test c) log results (deactivate Phase A entities) 5) Phase B a) set up (activate Phase B entities) b) execute test c) log results 6) close editor Note: - This test file must be called from the Open 3D Engine Editor command terminal - Any passed and failed tests are written to the Editor.log file. Parsing the file or running a log_monitor are required to observe the test results. - The level for this test uses two PhysX Terrains and must be run with cmdline argument "-autotest_mode" to suppress the warning for having multiple terrains. :return: None """ import os import sys from editor_python_test_tools.utils import Report from editor_python_test_tools.utils import TestHelper as helper import azlmbr.legacy.general as general import azlmbr.bus import azlmbr # ******* Helper Classes ******** # Phase A's test results class PhaseATestData: total_results = 2 box_1_collided = False box_1_fell_through = True box_2_collided = False box_2_fell_through = False box_1 = None box_2 = None terrain = None box_1_pos = None box_2_pos = None terrain_pos = None @staticmethod # Quick check for validating results for Phase A def valid(): return ( PhaseATestData.box_1_collided and PhaseATestData.box_2_fell_through and not PhaseATestData.box_1_fell_through and not PhaseATestData.box_2_collided ) # Phase B's test results class PhaseBTestData: total_results = 2 box_1_collided = False box_1_fell_through = False box_2_collided = False box_2_fell_through = True box_1 = None box_2 = None terrain = None box_1_pos = None box_2_pos = None terrain_pos = None @staticmethod # Quick check for validating results for Phase B def valid(): return ( not PhaseBTestData.box_1_collided and not PhaseBTestData.box_2_fell_through and PhaseBTestData.box_1_fell_through and PhaseBTestData.box_2_collided ) # **** Helper Functions **** # ** Validation helpers ** # Attempts to validate an entity based on the name parameter def validate_entity(entity_name, msg_tuple): # type: (str, (str, str)) -> EntityId entity_id = general.find_game_entity(entity_name) Report.critical_result(msg_tuple, entity_id.IsValid()) return entity_id # Attempts to retrieve an entity's initial position and logs result def validate_initial_position(entity_id, msg_tuple): # type: (EntityId, (str, str)) -> azlmbr.math.Vector3 # Attempts to validate and return the entity's initial position. # logs the result to Report.result() using the tuple parameter pos = azlmbr.components.TransformBus(azlmbr.bus.Event, "GetWorldTranslation", entity_id) valid = not (pos is None or pos.IsZero()) entity_name = azlmbr.entity.GameEntityContextRequestBus(azlmbr.bus.Broadcast, "GetEntityName", entity_id) Report.critical_result(msg_tuple, valid) Report.info_vector3(pos, "{} initial position:".format(entity_name)) return pos # ** Phase completion checks checks ** # Checks if we are done collecting data for phase A def done_collecting_results_a(): # type: () -> bool # Update positions PhaseATestData.box_1_pos = azlmbr.components.TransformBus( azlmbr.bus.Event, "GetWorldTranslation", PhaseATestData.box_1 ) PhaseATestData.box_2_pos = azlmbr.components.TransformBus( azlmbr.bus.Event, "GetWorldTranslation", PhaseATestData.box_2 ) # Check for boxes to fall through terrain if PhaseATestData.box_1_pos.z < PhaseATestData.terrain_pos.z: PhaseATestData.box_1_fell_through = True else: PhaseATestData.box_1_fell_through = False if PhaseATestData.box_2_pos.z < PhaseATestData.terrain_pos.z: PhaseATestData.box_2_fell_through = True else: PhaseATestData.box_2_fell_through = False results = 0 if PhaseATestData.box_1_collided or PhaseATestData.box_1_fell_through: results += 1 if PhaseATestData.box_2_collided or PhaseATestData.box_2_fell_through: results += 1 return results == PhaseATestData.total_results # Checks if we are done collecting data for phase B def done_collecting_results_b(): # type: () -> bool # Update positions PhaseBTestData.box_1_pos = azlmbr.components.TransformBus( azlmbr.bus.Event, "GetWorldTranslation", PhaseBTestData.box_1 ) PhaseBTestData.box_2_pos = azlmbr.components.TransformBus( azlmbr.bus.Event, "GetWorldTranslation", PhaseBTestData.box_2 ) # Check for boxes to fall through terrain if PhaseBTestData.box_1_pos.z < PhaseBTestData.terrain_pos.z: PhaseBTestData.box_1_fell_through = True else: PhaseBTestData.box_1_fell_through = False if PhaseBTestData.box_2_pos.z < PhaseBTestData.terrain_pos.z: PhaseBTestData.box_2_fell_through = True else: PhaseBTestData.box_2_fell_through = False results = 0 if PhaseBTestData.box_1_collided or PhaseBTestData.box_1_fell_through: results += 1 if PhaseBTestData.box_2_collided or PhaseBTestData.box_2_fell_through: results += 1 return results == PhaseBTestData.total_results # **** Event Handlers **** # Collision even handler for Phase A def on_collision_begin_a(args): # type: ([EntityId]) -> None collider_id = args[0] if (not PhaseATestData.box_1_collided) and PhaseATestData.box_1.Equal(collider_id): Report.info("Box_1_A / Terrain_A collision detected") PhaseATestData.box_1_collided = True if (not PhaseATestData.box_2_collided) and PhaseATestData.box_2.Equal(collider_id): Report.info("Box_2_A / Terrain_A collision detected") PhaseATestData.box_2_collided = True # Collision event handler for Phase B def on_collision_begin_b(args): # type: ([EntityId]) -> None collider_id = args[0] if (not PhaseBTestData.box_1_collided) and PhaseBTestData.box_1.Equal(collider_id): Report.info("Box_1_B / Terrain_B collision detected") PhaseBTestData.box_1_collided = True if (not PhaseBTestData.box_2_collided) and PhaseBTestData.box_2.Equal(collider_id): Report.info("Box_2_B / Terrain_B collision detected") PhaseBTestData.box_2_collided = True TIME_OUT = 1.5 # 1) Open level helper.init_idle() helper.open_level("Physics", "Collider_CollisionGroupsWorkflow") # 2) Enter game mode helper.enter_game_mode(Tests.enter_game_mode) # 3) Retrieve and validate entities PhaseATestData.box_1 = validate_entity("Box_1_A", Tests.box_1_a_valid) PhaseATestData.box_2 = validate_entity("Box_2_A", Tests.box_2_a_valid) PhaseATestData.terrain = validate_entity("Terrain_Entity_A", Tests.terrain_a_valid) PhaseBTestData.box_1 = validate_entity("Box_1_B", Tests.box_1_b_valid) PhaseBTestData.box_2 = validate_entity("Box_2_B", Tests.box_2_b_valid) PhaseBTestData.terrain = validate_entity("Terrain_Entity_B", Tests.terrain_b_valid) # Make sure Phase B objects are disabled azlmbr.entity.GameEntityContextRequestBus(azlmbr.bus.Broadcast, "DeactivateGameEntity", PhaseBTestData.box_1) azlmbr.entity.GameEntityContextRequestBus(azlmbr.bus.Broadcast, "DeactivateGameEntity", PhaseBTestData.box_2) azlmbr.entity.GameEntityContextRequestBus(azlmbr.bus.Broadcast, "DeactivateGameEntity", PhaseBTestData.terrain) # 4) *********** Phase A ***************** # 4.a) ** Set Up ** Report.info(" **** Beginning Phase A **** ") # Locate Phase A entities PhaseATestData.box_1_pos = validate_initial_position(PhaseATestData.box_1, Tests.box_1_a_pos_found) PhaseATestData.box_2_pos = validate_initial_position(PhaseATestData.box_2, Tests.box_2_a_pos_found) PhaseATestData.terrain_pos = validate_initial_position(PhaseATestData.terrain, Tests.terrain_a_pos_found) # Assign Phase A event handler handler_a = azlmbr.physics.CollisionNotificationBusHandler() handler_a.connect(PhaseATestData.terrain) handler_a.add_callback("OnCollisionBegin", on_collision_begin_a) # 4.b) Execute Phase A if not helper.wait_for_condition(done_collecting_results_a, TIME_OUT): Report.info("Phase A timed out: make sure the level is set up properly or adjust time out threshold") # 4.c) Log results for Phase A Report.result(Tests.box_1_a_did_collide_with_terrain, PhaseATestData.box_1_collided) Report.result(Tests.box_1_a_did_not_pass_through_terrain, not PhaseATestData.box_1_fell_through) Report.info_vector3(PhaseATestData.box_1_pos, "Box_1_A's final position:") Report.result(Tests.box_2_a_did_pass_through_terrain, PhaseATestData.box_2_fell_through) Report.result(Tests.box_2_a_did_not_collide_with_terrain, not PhaseATestData.box_2_collided) Report.info_vector3(PhaseATestData.box_2_pos, "Box_2_A's final position:") if not PhaseATestData.valid(): Report.info("Phase A failed test") # Deactivate entities for Phase A azlmbr.entity.GameEntityContextRequestBus(azlmbr.bus.Broadcast, "DeactivateGameEntity", PhaseATestData.box_1) azlmbr.entity.GameEntityContextRequestBus(azlmbr.bus.Broadcast, "DeactivateGameEntity", PhaseATestData.box_2) azlmbr.entity.GameEntityContextRequestBus(azlmbr.bus.Broadcast, "DeactivateGameEntity", PhaseATestData.terrain) # 5) *********** Phase B ***************** # 5.a) ** Set Up ** Report.info(" *** Beginning Phase B *** ") # Activate entities for Phase B azlmbr.entity.GameEntityContextRequestBus(azlmbr.bus.Broadcast, "ActivateGameEntity", PhaseBTestData.box_1) azlmbr.entity.GameEntityContextRequestBus(azlmbr.bus.Broadcast, "ActivateGameEntity", PhaseBTestData.box_2) azlmbr.entity.GameEntityContextRequestBus(azlmbr.bus.Broadcast, "ActivateGameEntity", PhaseBTestData.terrain) # Initialize positions for Phase B PhaseBTestData.box_1_pos = validate_initial_position(PhaseBTestData.box_1, Tests.box_1_b_pos_found) PhaseBTestData.box_2_pos = validate_initial_position(PhaseBTestData.box_2, Tests.box_2_b_pos_found) PhaseBTestData.terrain_pos = validate_initial_position(PhaseBTestData.terrain, Tests.terrain_b_pos_found) # Assign Phase B event handler handler_b = azlmbr.physics.CollisionNotificationBusHandler() handler_b.connect(PhaseBTestData.terrain) handler_b.add_callback("OnCollisionBegin", on_collision_begin_b) # 5.b) Execute Phase B if not helper.wait_for_condition(done_collecting_results_b, TIME_OUT): Report.info("Phase B timed out: make sure the level is set up properly or adjust time out threshold") # 5.c) Log results for Phase B Report.result(Tests.box_1_b_did_not_collide_with_terrain, not PhaseBTestData.box_1_collided) Report.result(Tests.box_1_b_did_pass_through_terrain, PhaseBTestData.box_1_fell_through) Report.info_vector3(PhaseBTestData.box_1_pos, "Box_1_B's final position:") Report.result(Tests.box_2_b_did_not_pass_through_terrain, not PhaseBTestData.box_2_fell_through) Report.result(Tests.box_2_b_did_collide_with_terrain, PhaseBTestData.box_2_collided) Report.info_vector3(PhaseBTestData.box_2_pos, "Box_2_B's final position:") if not PhaseBTestData.valid(): Report.info("Phase B failed test") # 6) Exit Game mode helper.exit_game_mode(Tests.exit_game_mode) Report.info(" **** TEST FINISHED ****")
5,342,117
def _timestamp(zone="Europe/Istanbul") -> int: """Return timestamp of now.""" return int(time.mktime(datetime.now(timezone(zone)).timetuple()))
5,342,118
def sumReplacements(tex, functionName): """ Search tex file for the keyString "\\apisummary{" and its matching parenthesis. All text between will be processed such that there are no consecutive spaces, no tabs, and unnecessary "\\n". The text will then have all the macros replaced and put back into its corresponding place in the text file. The strings "./ sectionStart" and "./ sectionEnd" are appending at the beginning and end of the processed text, respectively, for differenti- ation between the text with sections and "dangling text". These strings will not appear in the manpage as any line that begins with a period will be treated as a comment. """ startOfText = tex.find("\\apisummary{") endOfText = findMatchingBrace(tex, tex.find("{", startOfText)) sectionText = cleanText(tex[startOfText:endOfText]) tex = tex[:startOfText] + \ "./ sectionStart\n" + \ ".SH NAME\n" + functionName + " \- " \ + sectionText + "\n" + \ "./ sectionEnd\n" + tex[endOfText+1:] tex = tex.replace("\\apisummary{", "") return tex
5,342,119
def parse_args(args): """ Parse command line parameters Parameters ---------- args : list command line parameters as list of strings Returns ------- argparse.Namespace : obj command line parameters namespace """ parser = argparse.ArgumentParser( description="Create mesh and linear system of a PDE via Galerkins method." ) parser.add_argument( "-f", "--file", dest="data_path", help="filepath to save data at", default="../../data/Galerkins_method/", type=str, ) parser.add_argument( "-r", "--resolutions", dest="resolutions", help="Mesh resolutions.", default=[6, 128], type=list, ) return parser.parse_args(args)
5,342,120
def rle(seq, keyfunc=None): """ Run-length encode a sequence of values. This implements a generator which yields tuples `(symbol, begin, end)`. `begin` and `end` are indices into the passed sequence, begin inclusive and end exclusive. :param iterable seq: :param function keyfunc: optional, a function to specify how values should be grouped. Defaults to lambda x: x. """ idx = None for idx, symbol in enumerate(seq): if idx == 0: begin_symbol = symbol begin_idx = idx else: if keyfunc is None: unequal = symbol != begin_symbol else: unequal = keyfunc(symbol) != keyfunc(begin_symbol) if unequal: yield (begin_symbol, begin_idx, idx) begin_symbol = symbol begin_idx = idx if idx is not None: yield (begin_symbol, begin_idx, idx + 1)
5,342,121
def path(path: Union[str, List[str]], *, disable_stage_removal: Optional[bool] = False): """Validate the path in the event against the given path(s). The following APIErrorResponse subclasses are used: PathNotFoundError: When the path doesn't match. Args: path: A path literal or list of path literals to validate against. disable_stage_removal (bool): preserve the original path with stage. """ return _get_decorator( validate_path, path=path, disable_stage_removal=disable_stage_removal )
5,342,122
def get_last_id(statefile): """Retrieve last status ID from a file""" debug_print('Getting last ID from %s' % (statefile,)) try: f = open(statefile,'r') id = int(f.read()) f.close() except IOError: debug_print('IOError raised, returning zero (0)') return 0 debug_print('Got %d' % (id,)) return id
5,342,123
def inference_fn(trained_model, remove, fixed_params, overwrite_fixed_params=False, days_of_purchases=710, days_of_clicks=710, lifespan_of_items=710, **params): """ Function to run inference inside the hyperparameter loop and calculate metrics. Parameters ---------- trained_model: Model trained during training of hyperparameter loop. remove: Percentage of data removed. See src.utils_data for more details. fixed_params: All parameters used during training of hyperparameter loop. See src.utils_data for more details. overwrite_fixed_params: If true, training parameters will overwritten by the parameters below. Can be useful if need to test the model on different parameters, e.g. that includes older clicks or purchases. days_of_purchases, days_of_clicks, lifespan_of_items: All parameters that can overwrite the training parameters. Only useful if overwrite_fixed_params is True. params: All other parameters used during training. Returns ------- recall: Recall on the test set. Relevant to compare with recall computed on hyperparametrization test set (since parameters like 'remove' and all overwritable parameters are different) Saves to file ------------- Metrics computed on the test set. """ # Import parameters if isinstance(fixed_params, str): path = fixed_params fixed_params = read_data(path) class objectview(object): def __init__(self, d): self.__dict__ = d fixed_params = objectview(fixed_params) if 'params' in params.keys(): # if isinstance(params['params'], str): path = params['params'] params = read_data(path) # Initialize data data_paths = DataPaths() fixed_params.remove = remove if overwrite_fixed_params: fixed_params.days_of_purchases = days_of_purchases fixed_params.days_of_clicks = days_of_clicks fixed_params.lifespan_of_items = lifespan_of_items data = DataLoader(data_paths, fixed_params) # Get graph valid_graph = create_graph( data.graph_schema, ) valid_graph = assign_graph_features(valid_graph, fixed_params, data, **params, ) dim_dict = {'user': valid_graph.nodes['user'].data['features'].shape[1], 'item': valid_graph.nodes['item'].data['features'].shape[1], 'out': params['out_dim'], 'hidden': params['hidden_dim']} all_sids = None if 'sport' in valid_graph.ntypes: dim_dict['sport'] = valid_graph.nodes['sport'].data['features'].shape[1] all_sids = np.arange(valid_graph.num_nodes('sport')) # get training and test ids ( train_graph, train_eids_dict, valid_eids_dict, subtrain_uids, valid_uids, test_uids, all_iids, ground_truth_subtrain, ground_truth_valid, all_eids_dict ) = train_valid_split( valid_graph, data.ground_truth_test, fixed_params.etype, fixed_params.subtrain_size, fixed_params.valid_size, fixed_params.reverse_etype, fixed_params.train_on_clicks, fixed_params.remove_train_eids, params['clicks_sample'], params['purchases_sample'], ) ( edgeloader_train, edgeloader_valid, nodeloader_subtrain, nodeloader_valid, nodeloader_test ) = generate_dataloaders(valid_graph, train_graph, train_eids_dict, valid_eids_dict, subtrain_uids, valid_uids, test_uids, all_iids, fixed_params, num_workers, all_sids, embedding_layer=params['embedding_layer'], n_layers=params['n_layers'], neg_sample_size=params['neg_sample_size'], ) num_batches_test = math.ceil((len(test_uids) + len(all_iids)) / fixed_params.node_batch_size) # Import model if isinstance(trained_model, str): path = trained_model trained_model = ConvModel(valid_graph, params['n_layers'], dim_dict, params['norm'], params['dropout'], params['aggregator_type'], fixed_params.pred, params['aggregator_hetero'], params['embedding_layer'], ) trained_model.load_state_dict(torch.load(path, map_location=device)) if cuda: trained_model = trained_model.to(device) trained_model.eval() with torch.no_grad(): embeddings = get_embeddings(valid_graph, params['out_dim'], trained_model, nodeloader_test, num_batches_test, cuda, device, params['embedding_layer'], ) for ground_truth in [data.ground_truth_purchase_test, data.ground_truth_test]: precision, recall, coverage = get_metrics_at_k( embeddings, valid_graph, trained_model, params['out_dim'], ground_truth, all_eids_dict[('user', 'buys', 'item')], fixed_params.k, True, # Remove already bought cuda, device, fixed_params.pred, params['use_popularity'], params['weight_popularity'], ) sentence = ("TEST Precision " "{:.3f}% | Recall {:.3f}% | Coverage {:.2f}%" .format(precision * 100, recall * 100, coverage * 100)) print(sentence) save_txt(sentence, data_paths.result_filepath, mode='a') return recall
5,342,124
def main(): """Gitlab."""
5,342,125
def initialize_mean_variance(args): """Initialize the current mean and variance values semi-intelligently. Inspired by the kmeans++ algorithm: iteratively choose new centers from the data by weighted sampling, favoring points that are distant from those already chosen """ X = args.X.reshape(args.X.shape[0] * args.X.shape[1], args.X.shape[2]) # kmeans++ inspired choice centers = [random.choice(X)] min_dists = scipy.array([distance(centers[-1], x) for x in X]) for l in range(1, args.K): weights = min_dists * min_dists new_center = weighted_sample(zip(weights, X), 1).next() centers.append(new_center) min_dists = scipy.fmin(min_dists, scipy.array([distance(centers[-1], x) for x in X])) means = scipy.array(centers) # for the variance, get the variance of the data in this cluster variances = [] for c in centers: idxs = tuple(i for i, (x, m) in enumerate(zip(X, min_dists)) if distance(c, x) == m) v = scipy.var(X[idxs, :], axis=0) variances.append(v) variances = scipy.array(variances) + args.pseudocount #import pdb; pdb.set_trace() #for k in range(args.K): # print sp.sqrt(variances[k,:]) variances[variances < .1] = .1 return means, variances
5,342,126
def verify_file_checksum(path, expected_checksum): """Verifies the sha256 checksum of a file.""" actual_checksum = calculate_file_checksum(path) return actual_checksum == expected_checksum
5,342,127
def float_to_str(f, p=20): """ 将给定的float转换为字符串,而无需借助科学计数法。 @param f 浮点数参数 @param p 精读 """ if type(f) == str: f = float(f) ctx = decimal.Context(p) d1 = ctx.create_decimal(repr(f)) return format(d1, 'f')
5,342,128
def get_classes(parsed) -> List[ClassDef]: """Returns classes identified in parsed Python code.""" return [ element for element in parsed.body if isinstance(element, ClassDef) ]
5,342,129
def get_steps(r): """Clone OSA.""" nextsteps = [] nextsteps.append( steps.SimpleCommandStep( 'git-clone-osa', ('git clone %s/openstack/openstack-ansible ' '/opt/openstack-ansible' % r.complete['git-mirror-openstack']), **r.kwargs ) ) nextsteps.append( steps.KwargsStep( 'kwargs-osa', r, { 'cwd': '/opt/openstack-ansible', 'env': { 'ANSIBLE_ROLE_FETCH_MODE': 'git-clone', 'ANSIBLE_DEBUG': _ansible_debug(r), 'ANSIBLE_KEEP_REMOTE_FILES': '1' } }, **r.kwargs ) ) if utils.is_ironic(r): nextsteps.append( steps.KwargsStep( 'kwargs-ironic', r, { 'env': { 'BOOTSTRAP_OPTS': 'nova_virt_type=ironic' } }, **r.kwargs ) ) if r.complete['enable-ceph'] == 'yes': if r.complete['osa-branch'] in ['stable/mitaka', 'stable/newton']: # This isn't implemented for these releases pass else: nextsteps.append( steps.KwargsStep( 'kwargs-ceph', r, { 'env': { 'SCENARIO': 'ceph' } }, **r.kwargs ) ) return nextsteps
5,342,130
def check_java(interface): """ Checks for the presence of a minimally useful java on the user's system. """ interface.info("""\ I'm compiling a short test program, to see if you have a working JDK on your system. """) SOURCE = """\ class test { public static void main(String args[]) { } } """ f = file("test.java", "w") f.write(SOURCE) f.close() if not run(plat.javac, "test.java"): interface.info("""\ I was unable to use javac to compile a test file. If you haven't installed the JDK yet, please download it from: http://www.oracle.com/technetwork/java/javase/downloads/index.html The JDK is different from the JRE, so it's possible you have Java without having the JDK.""") interface.fail("""\ Without a working JDK, I can't continue. """) interface.success("The JDK is present and working. Good!") os.unlink("test.java") os.unlink("test.class")
5,342,131
def test_list_nmtoken_max_length_1_nistxml_sv_iv_list_nmtoken_max_length_2_2(mode, save_output, output_format): """ Type list/NMTOKEN is restricted by facet maxLength with value 6. """ assert_bindings( schema="nistData/list/NMTOKEN/Schema+Instance/NISTSchema-SV-IV-list-NMTOKEN-maxLength-2.xsd", instance="nistData/list/NMTOKEN/Schema+Instance/NISTXML-SV-IV-list-NMTOKEN-maxLength-2-2.xml", class_name="NistschemaSvIvListNmtokenMaxLength2", version="1.1", mode=mode, save_output=save_output, output_format=output_format, structure_style="filenames", )
5,342,132
def create_index( corpus_f: str, model_name_or_path: str, output_f: str, mode: str = "sent2vec", batch_size: int = 64, use_cuda: bool = False, ): """Given a corpus file `corpus_f` and a sent2vec model `sent2vec_f`, convert the sentences in the corpus (line-by-line) to vector representations, normalise them (L2norm), and add them to a Flat FAISS index. Finally, save the index to `output_f`. :param corpus_f: path to the corpus file, with one sentence per line :param model_name_or_path: path to the binary sent2vec model (when mode=="sent2vec") or model name of the stransformer to use :param output_f: path to save the FAISS index to :param mode: whether to use "sent2vec" or "stransformers" (sentence-transformers) :param batch_size: batch_size to use to create sent2vec embeddings or sentence-transformers embeddings :param use_cuda: whether to use GPU when using sentence-transformers :return: the created FAISS index """ if not FAISS_AVAILABLE: raise ImportError( "Faiss not installed. Please install the right version before continuing. If you have a " "CUDA-enabled device and want to use GPU acceleration, you can `pip install faiss-gpu`." " Otherwise, install faiss-cpu. For more, see https://github.com/facebookresearch/faiss" ) if mode == "sent2vec": if not SENT2VEC_AVAILABLE: raise ImportError( "Requested 'sent2vec', but module not installed. Install the right version from" " https://github.com/epfml/sent2vec" ) try: model = sent2vec.Sent2vecModel() except AttributeError as exc: raise AttributeError( "'sent2vec' does not have attribute Sent2vecModel. You may have uninstalled an" " incorrect version of sent2vec. The correct version can be found here:" " https://github.com/epfml/sent2vec" ) from exc logger.info(f"Loading sent2vec model of {model_name_or_path}") model.load_model(model_name_or_path, inference_mode=True) hidden_size = model.get_emb_size() elif mode == "stransformers": if not STRANSFORMERS_AVAILABLE: raise ImportError( "Requested 'stransformers', but module not installed. Please install the library" " before continuing. https://github.com/UKPLab/sentence-transformers#installation" ) logger.info(f"Loading SentenceTransformer model {model_name_or_path}") model = SentenceTransformer(model_name_or_path, device="cuda" if use_cuda else "cpu") hidden_size = model.encode(["This is a test ."]).shape[1] else: raise ValueError("'mode' must be 'sent2vec' or 'stransformers'") logger.info(f"Creating empty index with hidden_size {hidden_size:,}...") # We want to do cosine similarity search, so we use inner product as suggested here: # https://github.com/facebookresearch/faiss/wiki/MetricType-and-distances#how-can-i-index-vectors-for-cosine-similarity index = faiss.index_factory(hidden_size, "Flat", faiss.METRIC_INNER_PRODUCT) vecs = [] n_lines = get_n_lines(corpus_f) logger.info("Converting corpus into vectors. This can take a while...") batch = [] with open(corpus_f, encoding="utf-8") as fhin: for line_idx, line in tqdm(enumerate(fhin, 1), total=n_lines, unit="line"): line = line.rstrip() if line: batch.append(line) if len(batch) == batch_size or line_idx == n_lines: if mode == "sent2vec": # Normalize vectors for cosine distance as suggested here: # https://github.com/facebookresearch/faiss/wiki/MetricType-and-distances#how-can-i-index-vectors-for-cosine-similarity vecs.extend(model.embed_sentences(batch)) else: vecs.extend(model.encode(batch, batch_size=batch_size, show_progress_bar=False)) batch = [] logger.info(f"Number of entries: {len(vecs)}") logger.info("Normalizing vectors...") sent_vecs = np.array(vecs) # normalize_L2 works in-place so do not assign faiss.normalize_L2(sent_vecs) logger.info("Adding vectors to index...") index.add(sent_vecs) logger.info(f"Saving index to {output_f}...") faiss.write_index(index, output_f) return index
5,342,133
def _convert_and_call(function, *args, **kwargs): """ Use annotation to convert args and kwargs to the correct type before calling function If __annotations__ is not present (py2k) or empty, do not perform any conversion. This tries to perform the conversion by calling the type (works for int,str). If calling the type results in an error, no conversion is performed. """ args = list(args) if PY3K: argspec = inspect.getfullargspec(function) annot = argspec.annotations log.debug("Function's annotations are: %s", annot) for i, arg in enumerate(argspec.args): i=i-1 # cls/ self does not count if arg in annot: log.debug("For arg %s: i=%s, args=%s", arg, i, args) if i<len(args): args[i]=_try_convert(args[i], annot[arg]) elif arg in kwargs: kwargs[arg]=_try_convert(kwargs[arg], annot[arg]) else: log.debug("No annotation present for %s", arg) log.debug("Calling %s with args=%s, kwargs=%s", function.__name__, args, kwargs) return function(*args, **kwargs)
5,342,134
def import_module(name, path): """ correct way of importing a module dynamically in python 3. :param name: name given to module instance. :param path: path to module. :return: module: returned module instance. """ spec = importlib.util.spec_from_file_location(name, path) module = importlib.util.module_from_spec(spec) spec.loader.exec_module(module) return module
5,342,135
def response_ssml_text_and_prompt(output, endsession, reprompt_text): """ create a Ssml response with prompt """ return { 'outputSpeech': { 'type': 'SSML', 'ssml': "<speak>" + output + "</speak>" }, 'reprompt': { 'outputSpeech': { 'type': 'SSML', 'ssml': "<speak>" + reprompt_text + "</speak>" } }, 'shouldEndSession': endsession }
5,342,136
def test_queryset_serialization(): """Verify that querysets may be serialized.""" articles = Article.objects.all() request = factory.get('/') assert Serializer(articles).serialize(request) == [ { 'id': 1, 'title': 'Title', 'content': 'Content', 'is_published': False, 'created_at': '1970-01-01T00:00:00', 'author': { 'id': 1, 'name': 'John Doe' }, 'tags': [{ 'id': 1, 'name': 'sports' }] }, { 'id': 2, 'title': 'Another title', 'content': 'Another content', 'is_published': False, 'created_at': '1970-01-01T00:00:00', 'author': { 'id': 1, 'name': 'John Doe' }, 'tags': [{ 'id': 1, 'name': 'sports' }] } ] assert JSONSerializer(articles).serialize(request) assert JSONPSerializer(articles).serialize(request) assert XMLSerializer(articles).serialize(request)
5,342,137
def getAreaQuantityQuantUnit(words): """ from training data: count perc cum_sum cum_perc kind_c hectare 7 58.333333 7 58.333333 acre 2 16.666667 9 75.000000 meter 1 8.333333 10 83.333333 square-foot 1 8.333333 11 91.666667 square-meter 1 8.333333 12 100.000000 """ allWords = ' '.join(words) unitKind = 'hectare' quant = None units = ['hectare', 'acre', 'euro', 'meter', 'square-foot', 'square-meter' ] for u in units: if u in allWords : unitKind=u; break if 'square foot' in allWords : unitKind='square-foot' if 'square feet' in allWords : unitKind='square-foot' if 'square meter' in allWords : unitKind='square-meter' m = re.search(r'([0-9,\.]+)', allWords.lower()) if m: quant = m.group(1) quant = quant.replace(",", "") quant = float(quant) if quant=='.': quant=None if not quant: q = text2int(allWords) if q: quant = q else: m = text2int(allWords) if m: quant *= m if not quant: quant = 1 quant = ('%f' % quant).rstrip('0').rstrip('.') return quant, unitKind #subGraph['attrDict_p'] = attrDict_p
5,342,138
def add_user( username: str, password: Optional[str] = None, shell: str = "/bin/bash", system_user: bool = False, primary_group: str = None, secondary_groups: List[str] = None, uid: int = None, home_dir: str = None, ) -> str: """Add a user to the system. Will log but otherwise succeed if the user already exists. Arguments: username: Username to create password: Password for user; if ``None``, create a system user shell: The default shell for the user system_user: Whether to create a login or system user primary_group: Primary group for user; defaults to username secondary_groups: Optional list of additional groups uid: UID for user being created home_dir: Home directory for user Returns: The password database entry struct, as returned by `pwd.getpwnam` """ try: if uid: user_info = pwd.getpwuid(int(uid)) logger.info("user '%d' already exists", uid) return user_info user_info = pwd.getpwnam(username) logger.info("user with uid '%s' already exists", username) return user_info except KeyError: logger.info("creating user '%s'", username) cmd = ["useradd", "--shell", shell] if uid: cmd.extend(["--uid", str(uid)]) if home_dir: cmd.extend(["--home", str(home_dir)]) if password: cmd.extend(["--password", password, "--create-home"]) if system_user or password is None: cmd.append("--system") if not primary_group: try: grp.getgrnam(username) primary_group = username # avoid "group exists" error except KeyError: pass if primary_group: cmd.extend(["-g", primary_group]) if secondary_groups: cmd.extend(["-G", ",".join(secondary_groups)]) cmd.append(username) check_output(cmd, stderr=STDOUT) user_info = pwd.getpwnam(username) return user_info
5,342,139
def xyz_insert(weeded_list): """Inserts geometries into both orca and gaussian input files""" extension = ".inp" if preferences.comp_software == "orca" else preferences.gauss_ext sub_folder = os.path.join(os.getcwd(),"inserted_input_files") if os.path.exists(sub_folder): print("'inserted_input_files' directory already exists in current directory!") print("Please remove it and try again!") return os.mkdir(sub_folder) for i in weeded_list: try: xyz = XyzFile(read_item(i)) if preferences.comp_software == "orca": comp_input = InpFile(read_item(i.replace(".xyz",extension))) else: comp_input = GjfFile(read_item(i.replace(".xyz",extension))) comp_input = comp_input.replace_cord(xyz) with open(os.path.join(sub_folder,i.replace(".xyz",extension)),"w") as file: file.write(comp_input.return_print) except FileNotFoundError: print("file " + i.replace(".xyz",extension) + " could not be found!") print("\nJob done!\nPlease lookup the inserted_input_files directory\n") return
5,342,140
def main(): """Do nothing.""" pass
5,342,141
def tokenize_and_align(tokenizer, words, cased=False): """Splits up words into subword-level tokens.""" words = ["[CLS]"] + list(words) + ["[SEP]"] basic_tokenizer = tokenizer.basic_tokenizer tokenized_words = [] for word in words: word = tokenization.convert_to_unicode(word) word = basic_tokenizer._clean_text(word) if word == "[CLS]" or word == "[SEP]": word_toks = [word] else: if not cased: word = word.lower() word = basic_tokenizer._run_strip_accents(word) word_toks = basic_tokenizer._run_split_on_punc(word) tokenized_word = [] for word_tok in word_toks: tokenized_word += tokenizer.wordpiece_tokenizer.tokenize(word_tok) tokenized_words.append(tokenized_word) assert len(tokenized_words) == len(words) return tokenized_words
5,342,142
def _vagrant_format_results(line): """Extract fields from vm status line. :param line: Status line for a running vm :type line: str :return: (<vm directory path>, <vm status>) :rtype: tuple of strings """ line_split = line.split() return (line_split[-1], line_split[-2],)
5,342,143
def rect_to_xys(rect, image_shape): """Convert rect to xys, i.e., eight points The `image_shape` is used to to make sure all points return are valid, i.e., within image area """ h, w = image_shape[0:2] def get_valid_x(x): if x < 0: return 0 if x >= w: return w - 1 return x def get_valid_y(y): if y < 0: return 0 if y >= h: return h - 1 return y rect = ((rect[0], rect[1]), (rect[2], rect[3]), rect[4]) points = cv2.cv.BoxPoints(rect) points = np.int0(points) for i_xy, (x, y) in enumerate(points): x = get_valid_x(x) y = get_valid_y(y) points[i_xy, :] = [x, y] points = np.reshape(points, -1) return points
5,342,144
def determine_aws_service_name( request: Request, services: ServiceCatalog = get_service_catalog() ) -> Optional[str]: """ Tries to determine the name of the AWS service an incoming request is targeting. :param request: to determine the target service name of :param services: service catalog (can be handed in for caching purposes) :return: service name string (or None if the targeting service could not be determined exactly) """ signing_name, target_prefix, operation, host, path = _extract_service_indicators(request) candidates = set() # 1. check the signing names if signing_name: signing_name_candidates = services.by_signing_name(signing_name) if len(signing_name_candidates) == 1: # a unique signing-name -> service name mapping is the case for ~75% of service operations return signing_name_candidates[0] # try to find a match with the custom signing name rules custom_match = custom_signing_name_rules(signing_name, path) if custom_match: return custom_match # still ambiguous - add the services to the list of candidates candidates.update(signing_name_candidates) # 2. check the target prefix if target_prefix and operation: target_candidates = services.by_target_prefix(target_prefix) if len(target_candidates) == 1: # a unique target prefix return target_candidates[0] # still ambiguous - add the services to the list of candidates candidates.update(target_candidates) # exclude services where the operation is not contained in the service spec for service_name in list(candidates): service = services.get(service_name) if operation not in service.operation_names: candidates.remove(service_name) else: # exclude services which have a target prefix (the current request does not have one) for service_name in list(candidates): service = services.get(service_name) if service.metadata.get("targetPrefix") is not None: candidates.remove(service_name) if len(candidates) == 1: return candidates.pop() # 3. check the path if path: # iterate over the service spec's endpoint prefix for prefix, services_per_prefix in services.endpoint_prefix_index.items(): if path.startswith(prefix): if len(services_per_prefix) == 1: return services_per_prefix[0] candidates.update(services_per_prefix) # try to find a match with the custom path rules custom_path_match = custom_path_addressing_rules(path) if custom_path_match: return custom_path_match # 4. check the host (custom host addressing rules) if host: custom_host_match = custom_host_addressing_rules(host) if custom_host_match: return custom_host_match # 5. check the query / form-data values = request.values if "Action" in values and "Version" in values: # query / ec2 protocol requests always have an action and a version (the action is more significant) query_candidates = services.by_operation(values["Action"]) if len(query_candidates) == 1: return query_candidates[0] for service in list(query_candidates): service_model = services.get(service) if values["Version"] != service_model.api_version: # the combination of Version and Action is not unique, add matches to the candidates query_candidates.remove(service) if len(query_candidates) == 1: return query_candidates[0] candidates.update(query_candidates) # 6. check the legacy rules in the end legacy_match = legacy_rules(request) if legacy_match: return legacy_match LOG.warning("could not uniquely determine service from request, candidates=%s", candidates) if signing_name: return signing_name if candidates: return candidates.pop() return None
5,342,145
def comorder(node): """层序遍历, 广度优先搜索bfs 通过队列来实现 """ q = Queue() q.put(node) if node.data != None: # 循环取出node while q.empty() != True: node = q.get(0) print(node.data, end='') if node.node_left: q.put(node.node_left) if node.node_right: q.put(node.node_right)
5,342,146
def file_senzing_info(): """#!/usr/bin/env bash # --- Main -------------------------------------------------------------------- SCRIPT_DIR="$( cd "$( dirname "${{BASH_SOURCE[0]}}" )" >/dev/null 2>&1 && pwd )" PROJECT_DIR="$(dirname ${{SCRIPT_DIR}})" source ${{SCRIPT_DIR}}/docker-environment-vars.sh RED='\033[0;31m' GREEN='\033[0;32m' NC='\033[0m' # No Color COLUMN_WIDTH_1=${{#SENZING_PROJECT_NAME}} COLUMN_WIDTH=$((${{COLUMN_WIDTH_1}}+16)) DOCKER_CONTAINERS=( "${{SENZING_DOCKER_CONTAINER_NAME_SENZING_API_SERVER}};${{SENZING_DOCKER_PORT_SENZING_API_SERVER}};senzing/senzing-api-server:${{SENZING_DOCKER_IMAGE_VERSION_SENZING_API_SERVER}}" "${{SENZING_DOCKER_CONTAINER_NAME_SENZING_DEBUG}};----;senzing/senzing-debug:${{SENZING_DOCKER_IMAGE_VERSION_SENZING_DEBUG}}" "${{SENZING_DOCKER_CONTAINER_NAME_JUPYTER}};${{SENZING_DOCKER_PORT_JUPYTER}};senzing/jupyter:${{SENZING_DOCKER_IMAGE_VERSION_JUPYTER}}" "${{SENZING_DOCKER_CONTAINER_NAME_PHPPGADMIN}};${{SENZING_DOCKER_PORT_PHPPGADMIN_HTTP}};senzing/phppgadmin:${{SENZING_DOCKER_IMAGE_VERSION_PHPPGADMIN}}" "${{SENZING_DOCKER_CONTAINER_NAME_PORTAINER}};${{SENZING_DOCKER_PORT_PORTAINER}};portainer/portainer:${{SENZING_DOCKER_IMAGE_VERSION_PORTAINER}}" "${{SENZING_DOCKER_CONTAINER_NAME_POSTGRES}};${{SENZING_DOCKER_PORT_POSTGRES}};postgres:${{SENZING_DOCKER_IMAGE_VERSION_POSTGRES}}" "${{SENZING_DOCKER_CONTAINER_NAME_QUICKSTART}};${{SENZING_DOCKER_PORT_ENTITY_SEARCH_WEB_APP}};senzing/web-app-demo:${{SENZING_DOCKER_IMAGE_VERSION_WEB_APP_DEMO}}" "${{SENZING_DOCKER_CONTAINER_NAME_SQLITE_WEB}};${{SENZING_DOCKER_PORT_SENZING_SQLITE_WEB}};coleifer/sqlite-web:${{SENZING_DOCKER_IMAGE_VERSION_SQLITE_WEB}}" "${{SENZING_DOCKER_CONTAINER_NAME_SSHD}};${{SENZING_DOCKER_PORT_SSHD}};senzing/sshd:${{SENZING_DOCKER_IMAGE_VERSION_SSHD}}" "${{SENZING_DOCKER_CONTAINER_NAME_STREAM_LOADER}};----;senzing/stream-loader:${{SENZING_DOCKER_IMAGE_VERSION_STREAM_LOADER}}" "${{SENZING_DOCKER_CONTAINER_NAME_STREAM_PRODUCER}};----;senzing/stream-producer:${{SENZING_DOCKER_IMAGE_VERSION_STREAM_PRODUCER}}" "${{SENZING_DOCKER_CONTAINER_NAME_SWAGGERAPI_SWAGGER_UI}};${{SENZING_DOCKER_PORT_SENZING_SWAGGERAPI_SWAGGER_UI}};swaggerapi/swagger-ui:${{SENZING_DOCKER_IMAGE_VERSION_SWAGGERAPI_SWAGGER_UI}}" "${{SENZING_DOCKER_CONTAINER_NAME_ENTITY_SEARCH_WEB_APP}};${{SENZING_DOCKER_PORT_ENTITY_SEARCH_WEB_APP}};senzing/entity-search-web-app:${{SENZING_DOCKER_IMAGE_VERSION_ENTITY_SEARCH_WEB_APP}}" "${{SENZING_DOCKER_CONTAINER_NAME_WEB_APP_DEMO}};${{SENZING_DOCKER_PORT_ENTITY_SEARCH_WEB_APP}};senzing/web-app-demo:${{SENZING_DOCKER_IMAGE_VERSION_WEB_APP_DEMO}}" "${{SENZING_DOCKER_CONTAINER_NAME_XTERM}};${{SENZING_DOCKER_PORT_XTERM}};senzing/xterm:${{SENZING_DOCKER_IMAGE_VERSION_XTERM}}" "${{SENZING_DOCKER_CONTAINER_NAME_RABBITMQ}};${{SENZING_DOCKER_PORT_RABBITMQ_UI}};bitnami/rabbitmq:${{SENZING_DOCKER_IMAGE_VERSION_RABBITMQ}}" ) echo "${{SENZING_HORIZONTAL_RULE}}" echo "${{SENZING_HORIZONTAL_RULE:0:2}} senzing-info.sh {environment_version} ({environment_updated})" if [[ ( -n "$(command -v jq)" ) ]]; then G2_BUILD_VERSION_FILE=${{PROJECT_DIR}}/g2BuildVersion.json if [ -f "${{PROJECT_DIR}}/g2/g2BuildVersion.json" ]; then G2_BUILD_VERSION_FILE=${{PROJECT_DIR}}/g2/g2BuildVersion.json fi SENZING_VERSION_API=$(jq --raw-output ".VERSION" ${{G2_BUILD_VERSION_FILE}}) SENZING_VERSION_DATA=$(jq --raw-output ".DATA_VERSION" ${{G2_BUILD_VERSION_FILE}}) echo "${{SENZING_HORIZONTAL_RULE:0:2}} senzing api: ${{SENZING_VERSION_API}} data: ${{SENZING_VERSION_DATA}}" fi echo "${{SENZING_HORIZONTAL_RULE:0:2}}" for DOCKER_CONTAINER in ${{DOCKER_CONTAINERS[@]}}; do IFS=";" read -r -a CONTAINER_DATA <<< "${{DOCKER_CONTAINER}}" CONTAINER_NAME="${{CONTAINER_DATA[0]}} " CONTAINER_PORT="${{CONTAINER_DATA[1]}}" CONTAINER_VERSION="${{CONTAINER_DATA[2]}}" if [ "$( docker container inspect -f '{{{{.State.Status}}}}' ${{CONTAINER_NAME}} 2>/dev/null )" == "running" ]; then printf "${{SENZING_HORIZONTAL_RULE:0:2}} %-${{COLUMN_WIDTH}}s ${{GREEN}}up${{NC}} http://${{SENZING_DOCKER_HOST_IP_ADDR}}:${{CONTAINER_PORT}} ${{CONTAINER_VERSION}}\\n" ${{CONTAINER_NAME}} else printf "${{SENZING_HORIZONTAL_RULE:0:2}} %-${{COLUMN_WIDTH}}s ${{RED}}down${{NC}} http://${{SENZING_DOCKER_HOST_IP_ADDR}}:${{CONTAINER_PORT}} ${{CONTAINER_VERSION}}\\n" ${{CONTAINER_NAME}} fi done echo "${{SENZING_HORIZONTAL_RULE:0:2}}" echo "${{SENZING_HORIZONTAL_RULE:0:2}} For more information:" echo "${{SENZING_HORIZONTAL_RULE:0:2}} ${{SENZING_REFERENCE_URL}}#senzing-info" echo "${{SENZING_HORIZONTAL_RULE}}" """ return 0
5,342,147
def remove_barrier(tape): """Quantum function transform to remove Barrier gates. Args: qfunc (function): A quantum function. Returns: function: the transformed quantum function **Example** Consider the following quantum function: .. code-block:: python def qfunc(x, y): qml.Hadamard(wires=0) qml.Hadamard(wires=1) qml.Barrier(wires=[0,1]) qml.PauliX(wires=0) return qml.expval(qml.PauliZ(0)) The circuit before optimization: >>> dev = qml.device('default.qubit', wires=2) >>> qnode = qml.QNode(qfunc, dev) >>> print(qml.draw(qnode)(1, 2)) 0: ──H──╭||──X──┤ ⟨Z⟩ 1: ──H──╰||─────┤ We can remove the Barrier by running the ``remove_barrier`` transform: >>> optimized_qfunc = remove_barrier(qfunc) >>> optimized_qnode = qml.QNode(optimized_qfunc, dev) >>> print(qml.draw(optimized_qnode)(1, 2)) 0: ──H──X──┤ ⟨Z⟩ 1: ──H─────┤ """ # Make a working copy of the list to traverse list_copy = tape.operations.copy() while len(list_copy) > 0: current_gate = list_copy[0] # Remove Barrier gate if current_gate.name != "Barrier": apply(current_gate) list_copy.pop(0) continue # Queue the measurements normally for m in tape.measurements: apply(m)
5,342,148
async def async_get_config_entry_diagnostics( hass: HomeAssistant, entry: ConfigEntry ) -> dict[str, Any]: """Return diagnostics for a config entry.""" coordinator: DataUpdateCoordinator[Domain] = hass.data[DOMAIN][entry.entry_id] return { "creation_date": coordinator.data.creation_date, "expiration_date": coordinator.data.expiration_date, "last_updated": coordinator.data.last_updated, "status": coordinator.data.status, "statuses": coordinator.data.statuses, "dnssec": coordinator.data.dnssec, }
5,342,149
def binary_to_single(param_dict: Dict[str, float], star_index: int) -> Dict[str, float]: """ Function for converting a dictionary with atmospheric parameters of a binary system to a dictionary of parameters for one of the two stars. Parameters ---------- param_dict : dict Dictionary with the atmospheric parameters of both stars. The keywords end either with ``_0`` or ``_1`` that correspond with ``star_index=0`` or ``star_index=1``. star_index : int Star index (0 or 1) that is used for the parameters in ``param_dict``. Returns ------- dict Dictionary with the parameters of the selected star. """ new_dict = {} for key, value in param_dict.items(): if star_index == 0 and key[-1] == "0": new_dict[key[:-2]] = value elif star_index == 1 and key[-1] == "1": new_dict[key[:-2]] = value elif key in ["teff", "logg", "feh", "c_o_ratio", "fsed", "radius", "distance"]: new_dict[key] = value return new_dict
5,342,150
def welcome(): """List all available api routes.""" return ( """Available Routes: /api/v1.0/precipitation Convert the query results to a dictionary using date as the key and prcp as the value. Return the JSON representation of your dictionary. /api/v1.0/stations Return a JSON list of stations from the dataset. /api/v1.0/tobs Return a JSON list of temperature observations (TOBS) for the previous year. /api/v1.0/start_date /api/v1.0/start_date/end_date Return a JSON list of the minimum temperature, the average temperature, and the max temperature for a given start or start-end range. When given the start only, calculate TMIN, TAVG, and TMAX for all dates greater than and equal to the start date. When given the start and the end date, calculate the TMIN, TAVG, and TMAX for dates between the start and end date inclusive. """ )
5,342,151
def armenian_input_latin(field, text): """ Prepare a string from one of the query fields for subsequent processing: replace latin characters with Armenian equivalents. """ if field not in ('wf', 'lex', 'lex2', 'trans_ru', 'trans_ru2'): return text textTrans = '' for c in re.findall('.[\'_]+|.', text): try: c = dictLat2Arm[c] except KeyError: try: c = dictLat2Arm[c.lower()].upper() except KeyError: pass textTrans += c return textTrans
5,342,152
def create_audit_directory(): """ Creates directory for analyze_iam_policy audit files and places audit files there. """ audit_directory_path = HOME + CONFIG_DIRECTORY + AUDIT_DIRECTORY_FOLDER create_directory_if_it_doesnt_exist(audit_directory_path) destination = audit_directory_path existing_audit_files_directory = os.path.abspath(os.path.dirname(__file__)) + '/data/audit/' source = existing_audit_files_directory file_list = list_files_in_directory(existing_audit_files_directory) for file in file_list: if file.endswith(".txt"): shutil.copy(source + '/' + file, destination) print("copying " + file + " to " + destination)
5,342,153
def df_style_cell(*styles: Union[ Tuple[Callable[['cell'], bool], 'style'], Tuple['cell', 'style'], Callable[['cell'], Optional['style']], ]) -> Callable[['cell'], 'style']: """ Shorthand for df.style.applymap(...). Example usage: df.style.applymap(df_style_cell( (lambda x: 0 < x < 1, 'color: red'), (0, 'color: green'), lambda x: 'background: %s' % to_rgb_hex(x), )) """ def f(x): y = None for style in styles: if isinstance(style, tuple) and isinstance(style[0], types.FunctionType) and style[0](x): y = style[1] elif isinstance(style, tuple) and x == style[0]: y = style[1] elif isinstance(style, types.FunctionType): y = style(x) if y: break return y or '' return f
5,342,154
def _interactive_pick( plotter, model, picking_list: Optional[list] = None, key: str = "groups", label_size: int = 12, checkbox_size: int = 27, checkbox_color: Union[str, tuple, list] = "blue", checkbox_position: tuple = (5.0, 5.0), ): """Add a checkbox button widget to the scene.""" def toggle_vis(flag): actor.SetVisibility(flag) if picking_list is not None: if flag is True: picking_list.append(model) elif flag is False and model in picking_list: picking_list.remove(model) # Make a separate callback for each widget actor = plotter.add_mesh( model, scalars=f"{key}_rgba", rgba=True, render_points_as_spheres=True, point_size=10, ) plotter.add_checkbox_button_widget( toggle_vis, value=True, position=checkbox_position, size=checkbox_size, border_size=3, color_on=checkbox_color, color_off="white", background_color=checkbox_color, ) plotter.add_text( f"\n {model[key][0]}", position=checkbox_position, font_size=label_size, color="black", font="arial", )
5,342,155
def bbox_transform(boxes, deltas, weights=(1.0, 1.0, 1.0, 1.0)): """Forward transform that maps proposal boxes to predicted ground-truth boxes using bounding-box regression deltas. See bbox_transform_inv for a description of the weights argument. """ if boxes.shape[0] == 0: return np.zeros((0, deltas.shape[1]), dtype=deltas.dtype) boxes = boxes.astype(deltas.dtype, copy=False) widths = boxes[:, 2] - boxes[:, 0] + 1.0 heights = boxes[:, 3] - boxes[:, 1] + 1.0 ctr_x = boxes[:, 0] + 0.5 * widths ctr_y = boxes[:, 1] + 0.5 * heights wx, wy, ww, wh = weights dx = deltas[:, 0::4] / wx dy = deltas[:, 1::4] / wy dw = deltas[:, 2::4] / ww dh = deltas[:, 3::4] / wh # Prevent sending too large values into np.exp() dw = np.minimum(dw, np.log(1000. / 16.)) dh = np.minimum(dh, np.log(1000. / 16.)) pred_ctr_x = dx * widths[:, np.newaxis] + ctr_x[:, np.newaxis] pred_ctr_y = dy * heights[:, np.newaxis] + ctr_y[:, np.newaxis] pred_w = np.exp(dw) * widths[:, np.newaxis] pred_h = np.exp(dh) * heights[:, np.newaxis] pred_boxes = np.zeros(deltas.shape, dtype=deltas.dtype) # x1 pred_boxes[:, 0::4] = pred_ctr_x - 0.5 * pred_w # y1 pred_boxes[:, 1::4] = pred_ctr_y - 0.5 * pred_h # x2 (note: "- 1" is correct; don't be fooled by the asymmetry) pred_boxes[:, 2::4] = pred_ctr_x + 0.5 * pred_w - 1 # y2 (note: "- 1" is correct; don't be fooled by the asymmetry) pred_boxes[:, 3::4] = pred_ctr_y + 0.5 * pred_h - 1 return pred_boxes
5,342,156
def get_item_tds(item_id): """ Method conntect to ILS to retrieve item information and generates an html table cells with the information. :param item_id: Item id :rtype: HTML string """ item_bot = ItemBot(opac_url=ils_settings.OPAC_URL,item_id=item_id) output_html = "<td>{0}</td><td>{1}</td><td>{2}</td>".format(item_bot.status(), item_bot.location(), item_bot.callnumber()) return mark_safe(output_html)
5,342,157
def get_data(): """ Reads the data files. """ pass
5,342,158
def query_ports(session, switch_resource_id, **kwargs): """ Retrieve multiple :class:`Port` objects from database. switch_resource_id is optional # TODO: Implement and document query_ports() correctly """ # TODO: Add csv output option to query_ports() # Check all arguments before querying Port.check_params(**kwargs) # Query pts = session.query(Port) # Filter by switch if given if switch_resource_id is not None: sw = query_switch(session, switch_resource_id) if sw is None: raise ValueError('Given switch does not exist') pts = pts.filter_by(_switch_id = sw._switch_id) # Filter for key, val in kwargs.items(): if key == 'vlans': for vlan in val: pts = pts.filter(Port._vlans.contains(vlan)) else: raise NotImplementedError('query_ports() is not yet implemented') return pts.all()
5,342,159
def run(prefix): """ Exercise TensorMol calculator works together with Q|R. """ tm = TensormolCalculator() energy, gradient = tm.run_qr(tm.atoms.mols[0]) assert approx_equal(energy, -7.01911003671) assert approx_equal(gradient, [[54.72373444954559, 43.50211011650701, 55.0681687461352], [-110.79126231492444, 25.98146937078293, -11.155392610622426], [5.433491436770188, 6.52893640005011, 28.622889693640612], [-71.50338529045021, -3.6578466193136236, -14.458647838597882], [14.741859019844105, 13.126236850151095, 14.380723899173134], [-4.593095522329837, -6.852591886564875, -16.283703321909563], [70.52208042638348, -59.5259141945174, -20.292972622828866], [-56.19796768577346, 9.263974807632003, -51.28296067705901], [2.6644043343068895, -16.47976823726328, 14.091653049606416], [8.678765929867977, -11.392644499808615, -9.866803503526413], [-79.61664600629528, 37.13009889787888, -10.907654880253387], [128.39042327657435, -29.74868016959136, 41.756884083846124], [-15.024960893702614, 18.255828278610956, -14.611452494117255], [21.28006335078961, -0.2172458532869804, -25.080542379037084], [14.285160386794596, 4.564534513048582, -18.32772914956326], [2.439490468899258, 10.79255266315983, 26.174699521010446], [1.7264958417478928, 15.38243123306247, -42.04282200366032], [23.94582040213049, -28.693705758494268, 18.005391717834794], [-39.190252757996774, -23.244663074400655, 22.006558947672374], [-7.5440689820869435, -17.155966192899715, -22.01783573379451], [-14.229515476296564, 13.503061551269198, 17.968817012420786], [-42.692458567404834, 31.55037444695317, 62.63401289342725], [3.224648029245346, 17.928547580646576, -4.524288383451061], [-14.150630324115214, 1.2147768632076443, 1.967302103238517], [-11.589212064363652, -6.444221705381739, -4.77406901682601], [-5.5705251392947135, -49.58353381805122, 17.851453490207053], [12.42994083133531, -31.32628534955386, 0.5620932081847977], [-15.209140041336132, 2.6841055262949185, 18.113311015189275], [-38.73187194009035, -15.72274317196305, -11.82050674146153], [36.242545183467506, -10.805354680557413, -12.277902260267444], [15.232739148782514, -4.663316010381281, 8.999606560034826], [59.63334514038209, 26.088864339029772, 11.30765051583584], [15.608156356402093, 27.943937629842292, -43.96675247210592], [18.13331849770548, 7.431414655697998, 16.906001192291857], [17.86199385016078, -8.699557589383213, 33.00195465513993], [-10.848074631757044, 39.029932538400196, -25.227204796906726], [-39.85554941979901, 1.527429754721101, -19.432085940661143], [31.92966974414988, -30.73366946479253, -4.944928236082764], [3.6813964573627045, -4.724979244557905, -38.6569203686534], [14.529074495458673, 6.242069503845828, 12.534003126275708]], 0.001)
5,342,160
def build_data_request(mac, request_type='current', interval=1, units='english'): """ Creates RainWise API request for Recent Data based on station mac, format (optional), and units (optional) """ # Check if interval requested is valid interval if interval not in [1, 5, 10, 15, 30, 60]: raise ValueError('Invalid Request: Parameter interval must be 1, 5, 10, 15, 30, or 60') # Check if units requested are valid units if units.lower() not in ['english', 'metric']: raise ValueError('Invalid Request: Parameter units must be english or metric') # Build request URL for current conditions if request_type == 'current': return f'http://api.rainwise.net/main/v1.4/get-data.php?mac={mac}&format=json' # Build request URL for recent data elif request_type == 'recent': return f'http://api.rainwise.net/main/v1.4/get-recent.php?mac={mac}&interval={interval}&units={units}&format=json' raise ValueError('Invalid Request: Parameter request_type must be either ''current'' or ''recent''')
5,342,161
def load_acs_access_to_car() -> pd.DataFrame: """Function to merge the two files for the QOL outputs and do some standard renaming. Because these are QOL indicators they remain in the same csv output with columns indicating year""" df_0812 = pd.read_excel( "./resources/ACS_PUMS/EDDT_ACS2008-2012.xlsx", sheet_name="ACS08-12", dtype={"Geog": str}, ) df_1519 = pd.read_excel( "./resources/ACS_PUMS/EDDT_ACS2015-2019.xlsx", sheet_name="ACS15-19", dtype={"Geog": str}, ) df = pd.merge(df_0812, df_1519, on="Geog", how="left") df = df.filter(regex="Geog|Wk16p|CWCar") df = df.replace( { "Geog": { "Bronx": "BX", "Brooklyn": "BK", "Manhattan": "MN", "Queens": "QN", "Staten Island": "SI", "NYC": "citywide", } } ) df.set_index("Geog", inplace=True) return df
5,342,162
def canonicalize(top_dir): """ Canonicalize filepath. """ return os.path.realpath(top_dir)
5,342,163
def test_cpu_limit(): """Test the cpu n argument.""" if 'cpu' in fresnel.Device.available_modes: fresnel.Device(mode='cpu', n=2)
5,342,164
def elastic_transform(image, alpha, sigma, random_state=None): """Elastic deformation of images as described in [Simard2003]_. .. [Simard2003] Simard, Steinkraus and Platt, "Best Practices for Convolutional Neural Networks applied to Visual Document Analysis", in Proc. of the International Conference on Document Analysis and Recognition, 2003. """ assert len(image.shape) == 2 if random_state is None: random_state = np.random.RandomState(None) shape = image.shape dx = gaussian_filter((random_state.rand(*shape) * 2 - 1), sigma, mode="constant", cval=0) * alpha dy = gaussian_filter((random_state.rand(*shape) * 2 - 1), sigma, mode="constant", cval=0) * alpha x, y = np.meshgrid(np.arange(shape[0]), np.arange(shape[1]), indexing='ij') indices = np.reshape(x + dx, (-1, 1)), np.reshape(y + dy, (-1, 1)) return map_coordinates(image, indices, order=1).reshape(shape)
5,342,165
def convert_epoch_to_mysql_timestamp(epoch_timestamp): """ Converts a given epoch timestamp in seconds to the MySQL datetime format. :param epoch_timestamp: The timestamp as seconds since epoch time :return: The MySQL timestamp string in the format 'Y-m-d HH:MM:SS' :rtype: str """ try: epoch = time.strftime('%Y-%m-%d %H:%M:%S', time.gmtime(epoch_timestamp)) return epoch except Exception as e: print(e) return None
5,342,166
def _ensure_eventlet(func): """Decorator that verifies we have the needed eventlet components.""" @six.wraps(func) def wrapper(*args, **kwargs): if not _utils.EVENTLET_AVAILABLE or greenthreading is None: raise RuntimeError('Eventlet is needed to wait on green futures') return func(*args, **kwargs) return wrapper
5,342,167
def ReplaceOldWithNewFile(orig_file='', new_temp_file=''): """ Compare original file and the new temp file ( contents and permissions). If they are the same, just remove the temp version. ( maybe not needed, handled in calling function) If they are different, backup original and then replace teh orig_file with the new_temp_file Return code values: 0: No changes made 1: Changes made """ ## Well I've broken this by moving it to another module. ## I need to read up on logging, and logging config files # https://docs.python.org/3.8/howto/logging.html#configuring-logging import os import time import shutil # If file exists, try: type(logMessage) ## check if logMessage is already set up except: from general_functions import LogMessage logMessage=LogMessage() # test just using default log file if os.path.exists(orig_file): import filecmp #content_matches=filecmp.cmp(orig_file,new_temp_file) #permission_matches=os.stat(orig_file).st_mode == os.stat(new_temp_file).st_mode #user_matches=os.stat(orig_file).st_uid == os.stat(new_temp_file).st_uid #group_matches=os.stat(orig_file).st_gid == os.stat(new_temp_file).st_gid orig_permission=os.stat(orig_file).st_mode new_permission=os.stat(new_temp_file).st_mode orig_user=os.stat(orig_file).st_uid new_user=os.stat(new_temp_file).st_uid orig_group=os.stat(orig_file).st_gid new_group=os.stat(new_temp_file).st_gid content_matches=filecmp.cmp(orig_file,new_temp_file) permission_matches=orig_permission == new_permission user_matches=orig_user == new_user group_matches=orig_group == new_group logMessage.info( 'Checking file ' + orig_file + '. content_matches:' + str(content_matches) + '; permission_matches:' + str(permission_matches) + '; user_matches:' + str(user_matches) + '; group_matches:' + str(group_matches)) if content_matches and permission_matches and user_matches and group_matches: logMessage.info(orig_file + ' is unchanged.') os.remove(new_temp_file) return 0 else: logMessage.info( orig_file + 'Permission: ' + str(orig_permission) + ', owner: ' + str(orig_user) + ', group :' + str(orig_group) ) logMessage.info( new_temp_file + 'Permission: ' + str(new_permission) + ', owner: ' + str(new_user) + ', group :' + str(new_group) ) # backup the original file t = time.localtime() backupfile=orig_file + time.strftime('%Y%m%d_%H%M%S', t) shutil.copyfile(orig_file,backupfile) else: logMessage.info(orig_file + ' - does not exist. Creating new file.') ## Only got to here if does not match (ie new or different) logMessage.info(orig_file + ' - has been amended. ( to match ' + new_temp_file + ' )') #shutil.copyfile(new_temp_file, orig_file) shutil.move(new_temp_file, orig_file) ## On some test servers this doesn't end up with correct ownership and permissions. So adding this to get round it try: os.chown(orig_file,new_user,new_group) except PermissionError: logMessage.error('Unable to set ownership on ' + orig_file + '. Trying to change to chown ' + new_user + ':' + new_group() ) try: os.chmod(orig_file,new_permission) except: logMessage.error('Unable to set permissions on ' + orig_file + '. Trying to change to chmod ' + orig_file + ' ' + new_permission ) return 1
5,342,168
def check_public_key(pk): """ Checks if a given string is a public (or at least if it is formatted as if it is). :param pk: ECDSA public key to be checked. :type pk: hex str :return: True if the key matches the format, raise exception otherwise. :rtype: bool """ prefix = pk[0:2] l = len(pk) if prefix not in ["02", "03", "04"]: raise Exception("Wrong public key format.") if prefix == "04" and l != 130: raise Exception( "Wrong length for an uncompressed public key: " + str(l)) elif prefix in ["02", "03"] and l != 66: raise Exception("Wrong length for a compressed public key: " + str(l)) else: return True
5,342,169
def write_json(data): """ Writing dictionary contents to a json file. Args: data (dict) -- The dictionary that will be placed into the json file. Returns: JsonPath -- The path to the json file. """ with open(_UI_CONFIGURATION, 'w') as json_file: json.dump(data, json_file)
5,342,170
def empty_tree(input_list): """Recursively iterate through values in nested lists.""" for item in input_list: if not isinstance(item, list) or not empty_tree(item): return False return True
5,342,171
def main(): """ Calls the TEST functions in this module. """ run_test_problem1()
5,342,172
def validate_config_params(optimo_url, version, access_key): """Validates and normalizes the parameters passed to :class:`optimo.api.OptimoAPI` constructor. :param optimo_url: string url of the optimoroute's service :param version: ``int`` or ``str`` denoting the API version :param access_key: string access key provided by optimoroute :return: ``tuple`` of the, possibly adjusted, passed parameters. :raises OptimoError: On providing incomplete or invalid config data """ if not optimo_url or not isinstance(optimo_url, basestring): raise OptimoError("'optimo_url' must be a url string") validate_url(optimo_url) if not version or not isinstance(version, basestring) or not \ version.startswith('v'): raise OptimoError("'version' must be a string denoting the API version " "you want to use('v1', 'v2', etc") if not access_key or not isinstance(access_key, basestring): raise OptimoError("'access_key' must be the string access key provided " "to you by optimoroute") return optimo_url, version, access_key
5,342,173
def deque_and_stack(): """Solution to exercise R-6.14. Repeat the previous problem using the deque D and an initially empty stack S. -------------------------------------------------------------------------- Solution: -------------------------------------------------------------------------- 0. Initial state Deque [1, 2, 3, 4, 5, 6, 7, 8] Stack [] 1. popright() 4 nums to S Deque [1, 2, 3, 4] from D Stack [8, 7, 6, 5] 2. popright() 1 num from D, Deque [4, 1, 2, 3] addleft() that num to D Stack [8, 7, 6, 5] 3. addright() 1 nums to D Deque [4, 1, 2, 3, 5] from S Stack [8, 7, 6] 4. popleft() 1 num from D, Deque [1, 2, 3, 5, 4] addright() that num to D Stack [8, 7, 6] 5. addright() 3 nums to D Deque [1, 2, 3, 5, 4, 6, 7, 8] from S Stack [] """ deq = deque([1, 2, 3, 4, 5, 6, 7, 8]) stack = ArrayStack() for _ in range(4): stack.push(deq.pop()) # Step 1 deq.appendleft(deq.pop()) # Step 2 deq.append(stack.pop()) # Step 3 deq.append(deq.popleft()) # Step 4 for _ in range(3): deq.append(stack.pop()) # Step 5 return deq, stack
5,342,174
def test_save_fails_without_path(): """User asked for save without specifying path""" with pytest.raises(ValueError): watchdog = PrivacyWatchdog( udl, target_delta=1e-5, target_epsilon=1.0, abort=True, save=True, path=None )
5,342,175
def apply_subst(name, user): """ user.username forced in lowercase (VMware Horizon) """ name = re.sub(r'_SCIPER_DIGIT_', user.sciper_digit, name) name = re.sub(r'_SCIPER_', user.sciper, name) name = re.sub(r'_USERNAME_', user.username.lower(), name) name = re.sub(r'_HOME_DIR_', user.home_dir, name) name = re.sub(r'_GROUPNAME_', user.groupname, name) name = re.sub(r'_DOMAIN_', user.domain, name) name = re.sub(r'_UID_', user.uid, name) name = re.sub(r'_GID_', user.gid, name) name = re.sub(r'_FSTYPE_', user.automount_fstype, name) name = re.sub(r'_HOST_', user.automount_host, name) name = re.sub(r'_PATH_', user.automount_path, name) name = re.sub(r'_OPTIONS_', user.automount_options, name) return name
5,342,176
def train_word2vec(): """ train word2vec model :return: """ class MyCorpus(object): def __init__(self): pass def __iter__(self): for fname in os.listdir(TEXT_DIR): text = read_document_from_text(os.path.join(TEXT_DIR, fname)) segmented_words = '/'.join(cut_words(''.join(text))).split('/') yield segmented_words sentences = MyCorpus() model = gensim.models.Word2Vec(sentences, workers=8) model.save(WORD2VEC_SAVE_PATH)
5,342,177
def A_real_deph(Q_deph, Kt_real_deph, deltaT_diff_deph): """ Calculates the real heatransfer area. Parameters ---------- Q_deph : float The heat load of dephlegmator, [W] , [J/s] deltaT_diff_deph : float The coefficient difference of temperatures, [degrees celcium] Kt_real_deph : float The heat ransfer coefficient [W/(m**2 * degrees celcium)] Returns ------- A_real_deph : float The real heat ransfer area, [m**2] References ---------- Романков, формула 4.72, стр.168 """ return Q_deph / (Kt_real_deph * deltaT_diff_deph)
5,342,178
def is_1d_like(oned_like_object: Union[np.ndarray, np.void]) -> bool: """ Checks if the input is either a 1D numpy array or a structured numpy row. Parameters ---------- oned_like_object : Union[numpy.ndarray, numpy.void] The object to be checked. Raises ------ TypeError The input is neither a numpy ndarray -- array-like object -- nor a numpy void -- a row of a structured numpy array. Returns ------- is_1d_like_array : boolean True if the input is either a 1-dimensional numpy array or a row of a structured numpy array, False otherwise. """ is_1d_like_array = False if isinstance(oned_like_object, np.void): is_1d_like_array = is_structured_row(oned_like_object) elif isinstance(oned_like_object, np.ndarray): is_1d_like_array = is_1d_array(oned_like_object) else: raise TypeError('The input should either be a numpy array-like object ' '(numpy.ndarray) or a row of a structured numpy array ' '(numpy.void).') return is_1d_like_array
5,342,179
def PDef (inDict): """ Create TableDesc from the contents of a Python Dictionary Returns new Table Descriptor inDict = Python dictionary with values, must be in the form produced by PGetDict """ ################################################################ # outTD = TableDesc(inDict["Table name"]) outTD.me = Obit.TableDescDef(inDict) # Check if len(outTD.Dict) <= 0: raise RuntimeError("Failed to create valid Table Descriptor") return outTD # end PDef
5,342,180
def minf(ar, min_val=nan): """ Gets the minimum value in the entire N-D array. @param ar The array. """ sa = shape(ar) np = 1 for n in sa: np *= n ar2 = reshape(ar, np) ar2 = delete(ar2, get_nan_inds(ar2), 0) cinds = [] if not isnan(min_val): for ii in range(0, len(ar2)): if ar2[ii] <= min_val: cinds.append(ii) if len(cinds) > 0: ar2 = delete(ar2, cinds, 0) if size(ar2) == 0: return nan return min(ar2)
5,342,181
def read_from_netcdf(netcdf_file_name=None): """Reads boundary from NetCDF file. :param netcdf_file_name: Path to input file. If None, will look for file in repository. :return: latitudes_deg: See doc for `_check_boundary`. :return: longitudes_deg: Same. """ if netcdf_file_name is None: module_dir_name = os.path.dirname(__file__) parent_dir_name = '/'.join(module_dir_name.split('/')[:-1]) netcdf_file_name = '{0:s}/conus_polygon.nc'.format(parent_dir_name) dataset_object = netCDF4.Dataset(netcdf_file_name) latitudes_deg = numpy.array( dataset_object.variables[NETCDF_LATITUDES_KEY][:] ) longitudes_deg = numpy.array( dataset_object.variables[NETCDF_LONGITUDES_KEY][:] ) dataset_object.close() longitudes_deg = _check_boundary( latitudes_deg=latitudes_deg, longitudes_deg=longitudes_deg ) return latitudes_deg, longitudes_deg
5,342,182
def update_pins(session): """ Update the python and docker pins version inplace. """ session.install("-e", ".[dev]") session.run("python", "bin/update_pythons.py", "--force") session.run("python", "bin/update_docker.py")
5,342,183
def generate_sector(size: int, object_weight: list) -> dict: """ Generates an Sector with Weighted Spawns Args: size: Int Representing the Size of the Sector (Size X Size) object_weight: An Nested List with Object / Value Types Examples: generate_sector(6, [["*", 50], ["#", 10]]) would output an Map File where * is far more Common than # Returns: An Dict with Lists inside which Represent the Map Data per Row """ if size is 0: raise ValueError("The Sector Size cant be 0") size += 1 output = {} placed_player = False totals = [] running_total = 0 for w in object_weight: running_total += w[1] totals.append(running_total) def next(): """ Gets an Random Object from the Object - Weight List """ ran = random.random() * totals[-1] i = bisect.bisect_right(totals, ran) return object_weight[i][0] for x in range(1, size): row = [] for y in range(1, size): object = next() if placed_player is False and object is "@": row.append(object) placed_player = True continue elif placed_player is True and object is "@": while object is "@": object = next() row.append(object) output[x] = row return output
5,342,184
def run(port): """Run the daemon.""" reactor.listenTCP(port, NAFactory()) LOG.info('*** Tiedot NA Server starting @ port {}.'.format(port)) reactor.run()
5,342,185
def rbf_kernel(theta, h=-1): """Radial basis function kernel.""" sq_dist = _pdist(theta) pairwise_dists = _squareform(sq_dist) ** 2 if h < 0: # if h < 0, using median trick h = _numpy.median(pairwise_dists) h = _numpy.sqrt(0.5 * h / _numpy.log(theta.shape[0] + 1)) # compute the rbf kernel Kxy = _numpy.exp(-pairwise_dists / h ** 2 / 2) dxkxy = -_numpy.matmul(Kxy, theta) sumkxy = _numpy.sum(Kxy, axis=1) for i in range(theta.shape[1]): dxkxy[:, i] = dxkxy[:, i] + _numpy.multiply(theta[:, i], sumkxy) dxkxy = dxkxy / (h ** 2) return (Kxy, dxkxy)
5,342,186
def get_default_out_of_workspace_subcommands(): """Returns a dict of default out-of-workspace subcommands as <name: `CliCommand`>s :return: A dict of <name: `CliCommand`> """ new_cmd = NewCommand() return {new_cmd.name(): new_cmd}
5,342,187
def test_json_view(): """Turns a Python object into a response.""" def func(request): return {'x': 1} response = decorators.json_view(func)(mock.Mock()) assert isinstance(response, http.HttpResponse) eq_(response.content, '{"x": 1}') eq_(response['Content-Type'], 'application/json') eq_(response.status_code, 200)
5,342,188
def compile(what, mimetype, cwd=None, uri_cwd=None, debug=None): """ Compile a given text based on mimetype. The text to compile must be provided as a Unicode object and this function must return the compiled text as a Unicode object. """ try: compiler = compilers[mimetype.lower()] except KeyError: raise RuntimeError('Compiler for mimetype %s not found.' % mimetype) return compiler.compile(what, mimetype.lower(), cwd=cwd, uri_cwd=uri_cwd, debug=debug)
5,342,189
def run_model(idx): """ Run BART on idx index from dataset. Args: idx (int): The index of the dataset. Returns: tuple: tuple with fname: Filename slice_num: Slice number. prediction: Reconstructed image. """ masked_kspace, reg_wt, fname, slice_num, crop_size, num_low_freqs = dataset[idx] prediction = cs_total_variation( args, masked_kspace, reg_wt, crop_size, num_low_freqs ) return fname, slice_num, prediction
5,342,190
def _saveJob(event): """ When a job is saved, if it is a docker run task, add the Dask Bokeh port to the list of exposed ports. """ job = event.info try: from bson import json_util jobkwargs = json_util.loads(job['kwargs']) if ('docker_run_args' not in jobkwargs['task'] and 'scheduler' in jobkwargs['inputs']): jobkwargs['task']['docker_run_args'] = {'ports': {'8787': None}} job['kwargs'] = json_util.dumps(jobkwargs) except Exception: pass
5,342,191
async def test_invoke_default_fail(default_listener, inter): """Test a default listener invocation that fails during param conversion.""" inter.component.custom_id = "default_listener<>abc" with pytest.raises(components.exceptions.ConversionError) as exc_info: await default_listener(inter) assert isinstance(exc_info.value.errors[0], components.exceptions.MatchFailure)
5,342,192
def is_tt_tensor(arg) -> bool: """Determine whether the object is a `TT-Tensor` or `WrappedTT` with underlying `TT-Tensor`. :return: `True` if `TT-Tensor` or `WrappedTT(TT-Tensor)`, `False` otherwise :rtype: bool """ return isinstance(arg, TT) or (isinstance(arg, WrappedTT) and not arg.tt.is_tt_matrix)
5,342,193
def wait_for_event(event): """wait for the event to be set before doing anything""" print('wait_for_event: starting') event.wait() print('wait_for_event: event.is_set()-> ', event.is_set())
5,342,194
def ensure_node(): """ Ensure nodejs from nodesource is installed """ key = b""" -----BEGIN PGP PUBLIC KEY BLOCK----- Version: GnuPG v1 Comment: GPGTools - https://gpgtools.org mQINBFObJLYBEADkFW8HMjsoYRJQ4nCYC/6Eh0yLWHWfCh+/9ZSIj4w/pOe2V6V+ W6DHY3kK3a+2bxrax9EqKe7uxkSKf95gfns+I9+R+RJfRpb1qvljURr54y35IZgs fMG22Np+TmM2RLgdFCZa18h0+RbH9i0b+ZrB9XPZmLb/h9ou7SowGqQ3wwOtT3Vy qmif0A2GCcjFTqWW6TXaY8eZJ9BCEqW3k/0Cjw7K/mSy/utxYiUIvZNKgaG/P8U7 89QyvxeRxAf93YFAVzMXhoKxu12IuH4VnSwAfb8gQyxKRyiGOUwk0YoBPpqRnMmD Dl7SdmY3oQHEJzBelTMjTM8AjbB9mWoPBX5G8t4u47/FZ6PgdfmRg9hsKXhkLJc7 C1btblOHNgDx19fzASWX+xOjZiKpP6MkEEzq1bilUFul6RDtxkTWsTa5TGixgCB/ G2fK8I9JL/yQhDc6OGY9mjPOxMb5PgUlT8ox3v8wt25erWj9z30QoEBwfSg4tzLc Jq6N/iepQemNfo6Is+TG+JzI6vhXjlsBm/Xmz0ZiFPPObAH/vGCY5I6886vXQ7ft qWHYHT8jz/R4tigMGC+tvZ/kcmYBsLCCI5uSEP6JJRQQhHrCvOX0UaytItfsQfLm EYRd2F72o1yGh3yvWWfDIBXRmaBuIGXGpajC0JyBGSOWb9UxMNZY/2LJEwARAQAB tB9Ob2RlU291cmNlIDxncGdAbm9kZXNvdXJjZS5jb20+iQI4BBMBAgAiBQJTmyS2 AhsDBgsJCAcDAgYVCAIJCgsEFgIDAQIeAQIXgAAKCRAWVaCraFdigHTmD/9OKhUy jJ+h8gMRg6ri5EQxOExccSRU0i7UHktecSs0DVC4lZG9AOzBe+Q36cym5Z1di6JQ kHl69q3zBdV3KTW+H1pdmnZlebYGz8paG9iQ/wS9gpnSeEyx0Enyi167Bzm0O4A1 GK0prkLnz/yROHHEfHjsTgMvFwAnf9uaxwWgE1d1RitIWgJpAnp1DZ5O0uVlsPPm XAhuBJ32mU8S5BezPTuJJICwBlLYECGb1Y65Cil4OALU7T7sbUqfLCuaRKxuPtcU VnJ6/qiyPygvKZWhV6Od0Yxlyed1kftMJyYoL8kPHfeHJ+vIyt0s7cropfiwXoka 1iJB5nKyt/eqMnPQ9aRpqkm9ABS/r7AauMA/9RALudQRHBdWIzfIg0Mlqb52yyTI IgQJHNGNX1T3z1XgZhI+Vi8SLFFSh8x9FeUZC6YJu0VXXj5iz+eZmk/nYjUt4Mtc pVsVYIB7oIDIbImODm8ggsgrIzqxOzQVP1zsCGek5U6QFc9GYrQ+Wv3/fG8hfkDn xXLww0OGaEQxfodm8cLFZ5b8JaG3+Yxfe7JkNclwvRimvlAjqIiW5OK0vvfHco+Y gANhQrlMnTx//IdZssaxvYytSHpPZTYw+qPEjbBJOLpoLrz8ZafN1uekpAqQjffI AOqW9SdIzq/kSHgl0bzWbPJPw86XzzftewjKNbkCDQRTmyS2ARAAxSSdQi+WpPQZ fOflkx9sYJa0cWzLl2w++FQnZ1Pn5F09D/kPMNh4qOsyvXWlekaV/SseDZtVziHJ Km6V8TBG3flmFlC3DWQfNNFwn5+pWSB8WHG4bTA5RyYEEYfpbekMtdoWW/Ro8Kmh 41nuxZDSuBJhDeFIp0ccnN2Lp1o6XfIeDYPegyEPSSZqrudfqLrSZhStDlJgXjea JjW6UP6txPtYaaila9/Hn6vF87AQ5bR2dEWB/xRJzgNwRiax7KSU0xca6xAuf+TD xCjZ5pp2JwdCjquXLTmUnbIZ9LGV54UZ/MeiG8yVu6pxbiGnXo4Ekbk6xgi1ewLi vGmz4QRfVklV0dba3Zj0fRozfZ22qUHxCfDM7ad0eBXMFmHiN8hg3IUHTO+UdlX/ aH3gADFAvSVDv0v8t6dGc6XE9Dr7mGEFnQMHO4zhM1HaS2Nh0TiL2tFLttLbfG5o QlxCfXX9/nasj3K9qnlEg9G3+4T7lpdPmZRRe1O8cHCI5imVg6cLIiBLPO16e0fK yHIgYswLdrJFfaHNYM/SWJxHpX795zn+iCwyvZSlLfH9mlegOeVmj9cyhN/VOmS3 QRhlYXoA2z7WZTNoC6iAIlyIpMTcZr+ntaGVtFOLS6fwdBqDXjmSQu66mDKwU5Ek fNlbyrpzZMyFCDWEYo4AIR/18aGZBYUAEQEAAYkCHwQYAQIACQUCU5sktgIbDAAK CRAWVaCraFdigIPQEACcYh8rR19wMZZ/hgYv5so6Y1HcJNARuzmffQKozS/rxqec 0xM3wceL1AIMuGhlXFeGd0wRv/RVzeZjnTGwhN1DnCDy1I66hUTgehONsfVanuP1 PZKoL38EAxsMzdYgkYH6T9a4wJH/IPt+uuFTFFy3o8TKMvKaJk98+Jsp2X/QuNxh qpcIGaVbtQ1bn7m+k5Qe/fz+bFuUeXPivafLLlGc6KbdgMvSW9EVMO7yBy/2JE15 ZJgl7lXKLQ31VQPAHT3an5IV2C/ie12eEqZWlnCiHV/wT+zhOkSpWdrheWfBT+ac hR4jDH80AS3F8jo3byQATJb3RoCYUCVc3u1ouhNZa5yLgYZ/iZkpk5gKjxHPudFb DdWjbGflN9k17VCf4Z9yAb9QMqHzHwIGXrb7ryFcuROMCLLVUp07PrTrRxnO9A/4 xxECi0l/BzNxeU1gK88hEaNjIfviPR/h6Gq6KOcNKZ8rVFdwFpjbvwHMQBWhrqfu G3KaePvbnObKHXpfIKoAM7X2qfO+IFnLGTPyhFTcrl6vZBTMZTfZiC1XDQLuGUnd sckuXINIU3DFWzZGr0QrqkuE/jyr7FXeUJj9B7cLo+s/TXo+RaVfi3kOc9BoxIvy /qiNGs/TKy2/Ujqp/affmIMoMXSozKmga81JSwkADO1JMgUy6dApXz9kP4EE3g== =CLGF -----END PGP PUBLIC KEY BLOCK----- """.strip() apt.trust_gpg_key(key) apt.add_source('nodesource', 'https://deb.nodesource.com/node_10.x', 'main') apt.install_packages(['nodejs'])
5,342,195
def top_predicted_outcomes(proba_pred, index_to_outcome_dict, N_top = 3): """ extract the most likely outcomes based on a 1d-array of predicted probabilities Parameters ---------- proba_pred: numpy 1d-array array containing the predicted probabilities index_to_outcome_dict: dict reversed index systen for the outcomes Returns ------- dict top outcomes along with their probability of occurrences """ # extract the indices of the top 'N_top' outcomes idxs_top = np.argsort(proba_pred)[::-1][:N_top] # top outcomes top_outcomes = {index_to_outcome_dict[i+1]:proba_pred[i] for i in idxs_top} return top_outcomes
5,342,196
def parse_kafka_table(beamsqltable, name, logger): # loop through the kafka structure # map all key value pairs to 'key' = 'value', # except properties """ parse kafka parameter """ ddl = "" kafka = beamsqltable.spec.get("kafka") if not kafka: message = f"Beamsqltable {name} has no Kafka connector descriptor." logger.warning(message) return None # check mandatory fields in Kafka, topic, bootstrap.server if not kafka.get("topic"): message = f"Beamsqltable {name} has no kafka topic." logger.warning(message) return None try: _ = kafka["properties"]["bootstrap.servers"] except KeyError: message = f"Beamsqltable {name} has no kafka bootstrap servers found" logger.warning(message) return None # the other fields are inserted, there is not a check for valid fields yet for kafka_key, kafka_value in kafka.items(): # properties are iterated separately if kafka_key == 'properties': for property_key, property_value in kafka_value.items(): ddl += f",'properties.{property_key}' = '{property_value}'" else: ddl += f", '{kafka_key}' = '{kafka_value}'" key_format = kafka.get("key.format") if key_format is None: message = f"Beamsqltable {name} has no key.format but it is mandatory \ for upsert-kafka" logger.warning(message) return None return ddl
5,342,197
def submit(client, job_path, output_job_path, files): """ Submit a new Fuzzing Job via the MSRD REST API. """ with open(job_path) as input_job_file: job = json.load(input_job_file) job = add_file_info_to_job(client, job, files) if output_job_path: with open(output_job_path) as out_file: json.dump(job, out_file, indent=2) print_response(client.submit_job(job))
5,342,198
def linear_operator_from_num_variables(num_variables, type_, W): """Generates the linear operator for the TV lasso Nesterov function from number of variables. Parameters: ---------- num_variables : Integer. The total number of variables, including the intercept variable(s). """ A = list() for k in range(0,num_variables): Ak = Ak_from_pairs(k,num_variables,type_,W) A.append(Ak.tocsr()) return A
5,342,199