content
stringlengths
22
815k
id
int64
0
4.91M
def _safe_isnan(x): """Wrapper for isnan() so it won't fail on non-numeric values.""" try: return isnan(x) except TypeError: return False
5,341,200
def get_system( context, system_id = None ): """ Finds a system matching the given identifier and returns its resource Args: context: The Redfish client object with an open session system_id: The system to locate; if None, perform on the only system Returns: The system resource """ system_uri_pattern = "/redfish/v1/Systems/{}" avail_systems = None # If given an identifier, get the system directly if system_id is not None: system = context.get( system_uri_pattern.format( system_id ) ) # No identifier given; see if there's exactly one member else: avail_systems = get_system_ids( context ) if len( avail_systems ) == 1: system = context.get( system_uri_pattern.format( avail_systems[0] ) ) else: raise RedfishSystemNotFoundError( "Service does not contain exactly one system; a target system needs to be specified: {}".format( ", ".join( avail_systems ) ) ) # Check the response and return the system if the response is good try: verify_response( system ) except: if avail_systems is None: avail_systems = get_system_ids( context ) raise RedfishSystemNotFoundError( "Service does not contain a system called {}; valid systems: {}".format( system_id, ", ".join( avail_systems ) ) ) from None return system
5,341,201
def train_unloading_station_pop(station, train, escalator): """ calculate the population of the platform while people are disembarking from the train. Each run reprisents the passing of one second in time. """ """ People exit the train, but first we need to calculate the train boarding, and exiting rate. if there are fewer spaces on the platform than the maximum boarding rate of the trains, then the rate at which people can exit the train in one second is equal to the number of empty spaces on the platform. """ if (station.capacity - station.pop) < (train.board_rate * train.cars) and \ (station.capacity - station.pop) > 0 and \ train.travelers_exiting >= (train.board_rate * train.cars): exit_train_rate = (station.capacity - station.pop) elif (station.capacity - station.pop) <= 0: print("station is at capapcity!") exit_train_rate = 0 elif train.travelers_exiting <= (train.board_rate * train.cars) and \ (station.capacity - station.pop) >= train.travelers_exiting: exit_train_rate = train.travelers_exiting else: exit_train_rate = (train.board_rate * train.cars) print("exit train rate:", exit_train_rate, "\n") if train.travelers_exiting - exit_train_rate >= 0: train.travelers_exiting -= exit_train_rate train.pop -= exit_train_rate else: train.pop = train.pop - train.travelers_exiting train.travelers_exiting = 0 station.travelers_arriving += exit_train_rate - \ int(station.escalators_exiting * escalator.rate) station.travelers_departing += int(station.escalators_entering * escalator.rate)
5,341,202
def assert_no_cycle( g: networkx.DiGraph ) -> None: """If the graph has cycles, throws AssertionError. This can be used to make sure that a refinements graph is a DAG. Parameters ---------- g : A refinements graph. """ logger.debug('Looking for cycles in belief graph') try: cyc = networkx.algorithms.cycles.find_cycle(g) except networkx.exception.NetworkXNoCycle: return msg = 'Cycle found in hierarchy graph: %s' % cyc assert False, msg
5,341,203
def cartesian_to_polar(x, y, xorigin=0.0, yorigin=0.0): """ Helper function to convert Cartesian coordinates to polar coordinates (centred at a defined origin). In the polar coordinates, theta is an angle measured clockwise from the Y axis. :Parameters: x: float X coordinate of point y: float Y coordinate of point xorigin: float (optional) X coordinate of origin (if not zero) yorigin: float (optional) Y coordinate of origin (if not zero) :Returns: (r, theta): tuple of 2 floats Polar coordinates of point. NOTE: theta is in radians. """ xdiff = float(x) - float(xorigin) ydiff = float(y) - float(yorigin) distsq = (xdiff * xdiff) + (ydiff * ydiff) r = math.sqrt(distsq) theta = PIBY2 - math.atan2(ydiff, xdiff) # Adjust theta to be in the range 0 - 2*PI while theta < 0.0: theta += PI2 while theta > PI2: theta -= PI2 return (r, theta)
5,341,204
def keypoint_dict_to_struct(keypoint_dict): """ parse a keypoint dictionary form into a keypoint info structure """ keypoint_info_struct = KeypointInfo() if 'keypoints' in keypoint_dict: for k in keypoint_dict['keypoints']: keypoint = keypoint_info_struct.keypoints.add() keypoint.xloc = k[0] keypoint.yloc = k[1] if 'jacobians' in keypoint_dict: for j in keypoint_dict['jacobians']: jacobian = keypoint_info_struct.jacobians.add() jacobian.d11 = j[0][0] jacobian.d12 = j[0][1] jacobian.d21 = j[1][0] jacobian.d22 = j[1][1] keypoint_info_struct.pts = keypoint_dict['pts'] keypoint_info_struct.index = keypoint_dict['index'] return keypoint_info_struct
5,341,205
def softmax_regression(img): """ 定义softmax分类器: 只通过一层简单的以softmax为激活函数的全连接层,可以得到分类的结果 Args: img -- 输入的原始图像数据 Return: predict -- 分类的结果 """ predict = paddle.layer.fc( input=img, size=10, act=paddle.activation.Softmax()) return predict
5,341,206
def BlockdevWipe(disk, offset, size): """Wipes a block device. @type disk: L{objects.Disk} @param disk: the disk object we want to wipe @type offset: int @param offset: The offset in MiB in the file @type size: int @param size: The size in MiB to write """ try: rdev = _RecursiveFindBD(disk) except errors.BlockDeviceError: rdev = None if not rdev: _Fail("Cannot wipe device %s: device not found", disk.iv_name) if offset < 0: _Fail("Negative offset") if size < 0: _Fail("Negative size") if offset > rdev.size: _Fail("Wipe offset is bigger than device size") if (offset + size) > rdev.size: _Fail("Wipe offset and size are bigger than device size") _DumpDevice("/dev/zero", rdev.dev_path, offset, size, True)
5,341,207
def incremental_quality( wavelength: ndarray, flux: ndarray, *, mask: Optional[Union[Quantity, ndarray]] = None, percent: Union[int, float] = 10, **kwargs, ) -> Tuple[ndarray, ndarray]: """Determine spectral quality in incremental sections. Parameters ---------- wavelength: array-like or Quantity Wavelength of spectrum. flux: array-like or Quantity Flux of spectrum. mask: array-like, Quantity or None Pixel weight mask. percent: Union[int, float] (default=10) The percent size of chunk around each wavelength position. kwargs: Extra arguments passed onto quality() (including mask). Returns ------- x: ndarray Central wavelength values of each section. q: ndarray Spectral quality for each section. """ positions = log_chunks(wavelength, percent) qualities = [] for pos1, pos2 in zip(positions[:-1], positions[1:]): pos_mask = (wavelength >= pos1) & (wavelength < pos2) if np.sum(pos_mask) <= 1: # 1 or less points in this section continue x = wavelength[pos_mask] y = flux[pos_mask] if mask is not None: z = mask[pos_mask] else: z = mask # None try: q = quality(x, y, mask=z, **kwargs) except: q = np.nan qualities.append([np.nanmean(x), q]) x, q = np.asarray(qualities).T return x, q
5,341,208
def plot_ci_forest(n, ci_term, estimator, features, targets): """confidence interval plot for forest estimator""" """ Parameters ---------- n: int The n timestamp of prediction going to be plotted ci_term: """ predictions = [] for est in estimator.estimators_: predictions.append(est.predict(features.iloc[n,:].to_numpy().reshape(1,-1))) predictions = np.array(predictions) prediction_list = predictions.reshape(predictions.shape[0], predictions.shape[2]) fig = plt.figure(figsize=(16,7)) plt.plot(np.quantile(prediction_list, 0.5, axis = 0), 'gx-', label='Prediction') plt.plot(np.quantile(prediction_list, ci_term, axis = 0), 'g--', label='{} % lower bond'.format(ci_term*100)) plt.plot(np.quantile(prediction_list, 1-ci_term, axis = 0), 'g--', label='{} % upper bond'.format(100-ci_term*100)) plt.plot(targets.iloc[n,:].to_numpy(), 'ro', label='Ground truth') plt.xlabel('hours', **font) plt.ylabel('KWh', **font) plt.legend(loc='upper left', fontsize = 15) plt.show()
5,341,209
def get_platform(): """Gets the users operating system. Returns: An `int` representing the users operating system. 0: Windows x86 (32 bit) 1: Windows x64 (64 bit) 2: Mac OS 3: Linux If the operating system is unknown, -1 will be returned. """ return defaultdict(lambda: -1, { "Windows": 1 if platform.machine().endswith("64") else 0, "Darwin": 2, "Linux:": 3, })[platform.system()]
5,341,210
def count_number_of_digits_with_unique_segment_numbers(displays: str) -> int: """Counts the number of 1, 4, 7 or 8s in the displays.""" displays = [Display.from_string(d) for d in displays.splitlines()] num_digits = 0 for display in displays: num_digits += sum(len(c) in (2, 3, 4, 7) for c in display.output_value) return num_digits
5,341,211
def svo_filter_url(telescope, photofilter, zeropoint='AB'): """ Returns the URL where the filter transmission curve is hiding. Requires arguments: telescope: SVO-like name of Telescope/Source of photometric system. photofilter: SVO-like name of photometric filter. Optional: zeropoint: String. Either 'AB', 'Vega', or 'ST'. Output: url: URL of the relevant file. """ url = 'http://svo2.cab.inta-csic.es/theory/fps3/fps.php?' + \ 'PhotCalID=' + telescope + '/' + photofilter + '/' + zeropoint return url
5,341,212
def calculate_sampling_rate(timestamps): """ Parameters ---------- x : array_like of timestamps, float (unit second) Returns ------- float : sampling rate """ if isinstance(timestamps[0], float): timestamps_second = timestamps else: try: v_parse_datetime = np.vectorize(parse_datetime) timestamps = v_parse_datetime(timestamps) timestamps_second = [] timestamps_second.append(0) for i in range(1, len(timestamps)): timestamps_second.append((timestamps[i] - timestamps[ i - 1]).total_seconds()) except Exception: sampling_rate = None pass steps = np.diff(timestamps_second) sampling_rate = round(1 / np.min(steps[steps != 0])) return sampling_rate
5,341,213
async def main(inventory: List[str], macaddr: MacAddress): """ Given an inventory of devices and the MAC address to locate, try to find the location of the end-host. As a result of checking the network, the User will see an output of either "found" identifying the network device and port, or "Not found". Parameters ---------- inventory: List[str] The list of network devices to check. macaddr: MacAddress The end-host MAC addresss to locate """ with Progress() as progressbar: found = await _search_network( inventory, macaddr=macaddr, progressbar=progressbar ) if not found: print("Not found.") return print(f"Found {macaddr} on device {found.device}, interface {found.interface}")
5,341,214
def compute_ss0(y, folds): """ Compute the sum of squares based on null models (i.e., always predict the average `y` of the training data). Parameters ---------- y : ndarray folds : list of ndarray Each element is an ndarray of integers, which are the indices of members of the fold. Returns ------- ss0 : float The sum of squares based on null models. """ yhat0 = np.zeros_like(y) for test_idx in folds: m = np.ones_like(y, dtype=bool) m[test_idx] = False yhat0[test_idx] = y[m].mean() ss0 = np.sum((y - yhat0)**2) return ss0
5,341,215
def read_logging_data(folder_path): """ Description:\n This function reads all csv files in the folder_path folder into one dataframe. The files should be in csv format and the name of each file should start with 'yrt' and contain '_food_data' in the middle. For example, yrt1999_food_data123.csv is a valid file name that would be read into the dataframe if it exists in the folder_path folder. Input:\n - folder_path(string) : path to the folder that contain the data. Output:\n - a dataframe contains all the csv files in the folder given. """ data_lst = glob.glob('{}/yrt*_food_data*.csv'.format(folder_path)) dfs = [] for x in data_lst: dfs.append(pd.read_csv(x)) df = pd.concat(dfs) return df.reset_index(drop=True)
5,341,216
def get_user_strlist_options(*args): """ get_user_strlist_options(out) """ return _ida_kernwin.get_user_strlist_options(*args)
5,341,217
def SendKey(key: int, waitTime: float = OPERATION_WAIT_TIME) -> None: """ Simulate typing a key. key: int, a value in class `Keys`. """ keybd_event(key, 0, KeyboardEventFlag.KeyDown | KeyboardEventFlag.ExtendedKey, 0) keybd_event(key, 0, KeyboardEventFlag.KeyUp | KeyboardEventFlag.ExtendedKey, 0) time.sleep(waitTime)
5,341,218
def coord_sampler(img, coords): """ Sample img batch at integer (x,y) coords img: [B,C,H,W], coords: [B,2,N] returns: [B,C,N] points """ B,C,H,W = img.shape N = coords.shape[2] batch_ref = torch.meshgrid(torch.arange(B), torch.arange(N))[0] out = img[batch_ref, :, coords[:,1,:], coords[:,0,:]] return out.permute(0,2,1)
5,341,219
def directory(name, *args): """ Returns the directory with the specified name, as an absolute path. :param name: The name of the directory. One of "textures" or "models". :args Elements that will be appended to the named directory. :return: The full path of the named directory. """ top = os.path.dirname(os.path.dirname(os.path.dirname(os.path.realpath(__file__)))) dirs = { 'bin': 'bin', 'config': 'bin', 'top': '', 'textures': 'core/assets/minecraft/textures', 'blockstates': 'core/assets/minecraft/blockstates', 'models': "core/assets/minecraft/models", 'minecraft': "core/assets/minecraft", 'site': 'site', 'core': 'core', } is_defaults = name == 'defaults' if is_defaults: name = args[0] args = args[1:] path = dirs[name] if is_defaults: path = path.replace('core/', 'default_resourcepack/') path = os.path.join(top, path) for arg in args: for part in arg.split('/'): path = os.path.join(path, part) return path
5,341,220
def adapt_ListOfX(adapt_X): """This will create a multi-column adapter for a particular type. Note that the type must itself need to be in array form. Therefore this function serves to seaprate out individual lists into multiple big lists. E.g. if the X adapter produces array (a,b,c) then this adapter will take an list of Xs and produce a master array: ((a1,a2,a3),(b1,b2,b3),(c1,c2,c3)) Takes as its argument the adapter for the type which must produce an SQL array string. Note that you should NOT put the AsIs in the adapt_X function. The need for this function arises from the fact that we may want to actually handle list-creating types differently if they themselves are in a list, as in the example above, we cannot simply adopt a recursive strategy. Note that master_list is the list representing the array. Each element in the list will represent a subarray (column). If there is only one subarray following processing then the outer {} are stripped to give a 1 dimensional array. """ def adapter_function(param): if not AsIs: raise ImportError('There was a problem importing psycopg2.') param = param.value result_list = [] for element in param: # Where param will be a list of X's result_list.append(adapt_X(element)) test_element = result_list[0] num_items = len(test_element.split(",")) master_list = [] for x in range(num_items): master_list.append("") for element in result_list: element = element.strip("{").strip("}") element = element.split(",") for x in range(num_items): master_list[x] = master_list[x] + element[x] + "," if num_items > 1: master_sql_string = "{" else: master_sql_string = "" for x in range(num_items): # Remove trailing comma master_list[x] = master_list[x].strip(",") master_list[x] = "{" + master_list[x] + "}" master_sql_string = master_sql_string + master_list[x] + "," master_sql_string = master_sql_string.strip(",") if num_items > 1: master_sql_string = master_sql_string + "}" return AsIs("'{}'".format(master_sql_string)) return adapter_function
5,341,221
def add_sighting(pokemon_name): """Add new sighting to a user's Pokédex.""" user_id = session.get('user_id') user = User.query.get_or_404(user_id) pokemon = Pokemon.query.filter_by(name=pokemon_name).first_or_404() # 16% chance logging a sighting of a Pokémon with ditto_chance = True will # instead be logged as a Ditto # Through manual spamming I tested this, and it does work! if pokemon.chance_of_ditto(): pokemon = Pokemon.query.filter_by(name='Ditto').first_or_404() pokemon_id = pokemon.pokemon_id user_sighting = Sighting.query.filter((Sighting.user_id == user_id) & (Sighting.pokemon_id == pokemon_id)).one_or_none() # Ensuring unique Pokémon only in a user's sightings if user_sighting is None: new_sighting = Sighting(user_id=user_id, pokemon_id=pokemon_id) new_sighting.save() flash('Professor Willow: Wonderful! Your work is impeccable. Keep up the good work!') return redirect(f'/user/{user_id}') else: flash('Professor Willow: You\'ve already seen this Pokémon!') return redirect(f'/user/{user_id}')
5,341,222
def edit_colors_names_group(colors, names): """ idx map to colors and its names. names index is 1 increment up based on new indexes (only 0 - 7) """ # wall colors[0] = np.array([120, 120, 120], dtype = np.uint8) names[1] = 'wall' # floor colors[1] = np.array([80, 50, 50], dtype = np.uint8) names[2] = 'floor' # plant colors[2] = np.array([4, 200, 3], dtype = np.uint8) names[3] = 'plant' # ceiling colors[3] = np.array([120, 120, 80], dtype = np.uint8) names[4] = 'ceiling' # furniture colors[4] = np.array([204, 5, 255], dtype = np.uint8) names[5] = 'furniture' # person colors[5] = np.array([150, 5, 61], dtype = np.uint8) names[6] = 'person' # door colors[6] = np.array([8, 255, 51], dtype = np.uint8) names[7] = 'door' # objects colors[7] = np.array([6, 230, 230], dtype = np.uint8) names[8] = 'objects' return colors, names
5,341,223
def download_last_year(): """下载当年国债利率数据至本地""" content_type = 'application/x-msdownload' url = 'http://yield.chinabond.com.cn/cbweb-mn/yield_main?locale=zh_CN#' driver = make_headless_browser_with_auto_save_path( DATA_DIR, content_type) driver.get(url) time.sleep(1) # driver.execute_script("window.scrollTo(0, document.body.scrollHeight);") css = '.t1 > tbody:nth-child(1) > tr:nth-child(1) > td:nth-child(4) > a:nth-child(1)' driver.find_element_by_css_selector(css).click() driver.switch_to.window(driver.window_handles[-1]) time.sleep(1) try: d_btn_css = 'body > form:nth-child(1) > table:nth-child(2) > tbody:nth-child(1) > tr:nth-child(3) > td:nth-child(1) > a:nth-child(1) > h4:nth-child(1)' driver.find_element_by_css_selector(d_btn_css).click() # 等待下载完成后才关闭浏览器 time.sleep(1) except Exception as e: print(f'{e!r}') download_path = os.path.join(expanduser('~'), 'Downloads') for root, _, files in os.walk(download_path): for name in files: if name.endswith("xlsx") and name.find('中债国债收益率曲线标准期限信息'): src = os.path.join(root, name) dst = os.path.join(DATA_DIR,f'{datetime.date.today().year}.xlsx') move(src, dst) break driver.quit()
5,341,224
def check(a, b, obj_type): """ Check that the sent and recv'd data matches. """ if obj_type in ("bytes", "memoryview"): assert a == b elif obj_type == "numpy": import numpy as np np.testing.assert_array_equal(a, b) elif obj_type == "cupy": import cupy cupy.testing.assert_array_equal(a, b) elif obj_type == "numba": import numba import numba.cuda import numpy as np np_a = a.copy_to_host() np_b = b.copy_to_host() np.testing.assert_array_equal(np_a, np_b) else: raise ValueError(obj_type)
5,341,225
def semidoc_mass_dataset(params, file_names, num_hosts, num_core_per_host, seq_len, num_predict, is_training, use_bfloat16=False, num_threads=64, record_shuffle_size=256, sequence_shuffle_size=2048): # pylint: disable=g-doc-args """Get semi-doc level mass dataset. Notes: - Each sequence comes from the same document (except for boundary cases). This is different from the standard sent-level mass dataset. - No consecutivity is ensured across batches, which is different from the standard doc-level mass dataset. - Effectively, semi-doc dataset maintains short range (seq_len) dependency, which is more random than doc-level and less random than sent-level. Returns: a tf.data.Dataset """ # pylint: enable=g-doc-args bsz_per_core = params["batch_size"] if num_hosts > 1: host_id = params["context"].current_host else: host_id = 0 ##### Split input files across hosts if len(file_names) >= num_hosts: file_paths = file_names[host_id::num_hosts] else: file_paths = file_names tf.logging.info("Host %d handles %d files:", host_id, len(file_paths)) ##### Parse records dataset = tf.data.Dataset.from_tensor_slices(file_paths) dataset = parse_record(dataset=dataset, parser=get_record_parser(), is_training=is_training, num_threads=num_threads, file_shuffle_size=len(file_paths), record_shuffle_size=record_shuffle_size) # process dataset dataset = mass_process(dataset, seq_len, num_predict, use_bfloat16) # Sequence level shuffle if is_training and sequence_shuffle_size: tf.logging.info("Seqeunce level shuffle with size %d", sequence_shuffle_size) dataset = dataset.shuffle(buffer_size=sequence_shuffle_size) # batching dataset = dataset.batch(bsz_per_core, drop_remainder=True) # Prefetch dataset = dataset.prefetch(num_core_per_host) return dataset
5,341,226
def ListChrootSnapshots(buildroot): """Wrapper around cros_sdk --snapshot-list.""" cmd = ['cros_sdk', '--snapshot-list'] cmd_snapshots = RunBuildScript( buildroot, cmd, chromite_cmd=True, stdout=True) return cmd_snapshots.output.splitlines()
5,341,227
async def post_github_webhook( request: Request, logger: BoundLogger = Depends(logger_dependency), http_client: httpx.AsyncClient = Depends(http_client_dependency), arq_queue: ArqQueue = Depends(arq_dependency), ) -> Response: """Process GitHub webhook events.""" if not config.enable_github_app: return Response( "GitHub App is not enabled", status_code=status.HTTP_501_NOT_IMPLEMENTED, ) body = await request.body() if config.github_webhook_secret is None: return Response( "The webhook secret is not configured", status_code=status.HTTP_501_NOT_IMPLEMENTED, ) webhook_secret = config.github_webhook_secret.get_secret_value() event = Event.from_http(request.headers, body, secret=webhook_secret) # Bind the X-GitHub-Delivery header to the logger context; this identifies # the webhook request in GitHub's API and UI for diagnostics logger = logger.bind(github_delivery=event.delivery_id) logger.debug("Received GitHub webhook", payload=event.data) # Give GitHub some time to reach internal consistency. await asyncio.sleep(1) await webhook_router.dispatch(event, logger, arq_queue) return Response(status_code=status.HTTP_202_ACCEPTED)
5,341,228
def _load_cache(b_cache_path): """ Loads the cache file requested if possible. The file must not be world writable. """ cache_version = 1 if not os.path.isfile(b_cache_path): display.vvvv("Creating Galaxy API response cache file at '%s'" % to_text(b_cache_path)) with open(b_cache_path, 'w'): os.chmod(b_cache_path, 0o600) cache_mode = os.stat(b_cache_path).st_mode if cache_mode & stat.S_IWOTH: display.warning("Galaxy cache has world writable access (%s), ignoring it as a cache source." % to_text(b_cache_path)) return with open(b_cache_path, mode='rb') as fd: json_val = to_text(fd.read(), errors='surrogate_or_strict') try: cache = json.loads(json_val) except ValueError: cache = None if not isinstance(cache, dict) or cache.get('version', None) != cache_version: display.vvvv("Galaxy cache file at '%s' has an invalid version, clearing" % to_text(b_cache_path)) cache = {'version': cache_version} # Set the cache after we've cleared the existing entries with open(b_cache_path, mode='wb') as fd: fd.write(to_bytes(json.dumps(cache), errors='surrogate_or_strict')) return cache
5,341,229
def nmad_filter( dh_array: np.ndarray, inlier_mask: np.ndarray, nmad_factor: float = 5, max_iter: int = 20, verbose: bool = False ) -> np.ndarray: """ Iteratively remove pixels where the elevation difference (dh_array) in stable terrain (inlier_mask) is larger \ than nmad_factor * NMAD. Iterations will stop either when the NMAD change is less than 0.1, or after max_iter iterations. :params dh_array: 2D array of elevation difference. :params inlier_mask: 2D boolean array of areas to include in the analysis (inliers=True). :param nmad_factor: The factor by which the stable dh NMAD has to be multiplied to calculate the outlier threshold :param max_iter: Maximum number of iterations (normally not reached, just for safety) :param verbose: set to True to print some statistics to screen. :returns: 2D boolean array with updated inliers set to True """ # Mask unstable terrain dh_stable = dh_array.copy() dh_stable.mask[~inlier_mask] = True nmad_before = xdem.spatialstats.nmad(dh_stable) if verbose: print(f"NMAD before: {nmad_before:.2f}") print("Iteratively remove large outliers") # Iteratively remove large outliers for i in range(max_iter): outlier_threshold = nmad_factor * nmad_before dh_stable.mask[np.abs(dh_stable) > outlier_threshold] = True nmad_after = xdem.spatialstats.nmad(dh_stable) if verbose: print(f"Remove pixels where abs(value) > {outlier_threshold:.2f} -> New NMAD: {nmad_after:.2f}") # If NMAD change is loweer than a set threshold, stop iterations, otherwise stop after max_iter if nmad_before - nmad_after < 0.1: break nmad_before = nmad_after return ~dh_stable.mask
5,341,230
def process_contexts(server, contexts, p_ctx, error=None): """Method to be called in the auxiliary context.""" for ctx in contexts: ctx.descriptor.aux.initialize_context(ctx, p_ctx, error) if error is None or ctx.descriptor.aux.process_exceptions: ctx.descriptor.aux.process_context(server, ctx)
5,341,231
def setup_output_vcf(outname, t_vcf): """ Create an output vcf.Writer given the input vcf file as a templte writes the full header and Adds info fields: sizeCat MEF Returns a file handler and a dict with {individual_id: column in vcf} """ out = open(outname, 'w') line = t_vcf.readline() samp_columns = {} while not line.startswith("#CHROM"): out.write(line) line = t_vcf.readline() # edit the header out.write('##INFO=<ID=sizeCat,Number=A,Type=String,Description="Size category of variant">\n') out.write('##INFO=<ID=MEF,Number=.,Type=String,Description="Names of families that contain mendelian error">\n') out.write(line) for pos, iid in enumerate(line.strip().split('\t')[9:]): samp_columns[iid] = pos + 9 return out, samp_columns
5,341,232
def load_json_file(): """loads the json file""" dirname = os.path.dirname(os.path.abspath(__file__)) json_filepath = os.path.join(dirname, "rps101_data.json") with open(json_filepath) as f: json_load = json.load(f) return json_load
5,341,233
def validate_processing_hooks(): """Validate the enabled processing hooks. :raises: MissingHookError on missing or failed to load hooks :raises: RuntimeError on validation failure :returns: the list of hooks passed validation """ hooks = [ext for ext in processing_hooks_manager()] enabled = set() errors = [] for hook in hooks: deps = getattr(hook.obj, 'dependencies', ()) missing = [d for d in deps if d not in enabled] if missing: errors.append('Hook %(hook)s requires the following hooks to be ' 'enabled before it: %(deps)s. The following hooks ' 'are missing: %(missing)s.' % {'hook': hook.name, 'deps': ', '.join(deps), 'missing': ', '.join(missing)}) enabled.add(hook.name) if errors: raise RuntimeError("Some hooks failed to load due to dependency " "problems:\n%s" % "\n".join(errors)) return hooks
5,341,234
def rnn_stability_loss(rnn_output, beta): """ REGULARIZING RNNS BY STABILIZING ACTIVATIONS https://arxiv.org/pdf/1511.08400.pdf :param rnn_output: [time, batch, features] :return: loss value """ if beta == 0.0: return 0.0 # [time, batch, features] -> [time, batch] l2 = tf.sqrt(tf.reduce_sum(tf.square(rnn_output), axis=-1)) # [time, batch] -> [] return beta * tf.reduce_mean(tf.square(l2[1:] - l2[:-1]))
5,341,235
def test_http_request_proxy_error_based_on_status(mock_base_http_request, client): """ When http request return status code 407 then appropriate error message should display. """ # Configure mock_base_http_request.return_value = mock_http_response(status=407) # Execute with pytest.raises(ValueError) as e: client.http_request('GET', '/test/url/suffix') # Assert assert 'Proxy Error - cannot connect to proxy. Either try clearing the \'Use system proxy\' check-box or check ' \ 'the host, authentication details and connection details for the proxy.' == str(e.value)
5,341,236
def import_csv_to_calendar_api(): """The main route of the Project.\ If requested with a GET: renders the page of the import operation. If requested with POST: Starts importing events in the file to be uploaded present in the POST data. """ if request.method == "GET": return make_response(render_template('import.html.j2'), 200) elif request.method == "POST": max_events = int(request.form["max_events"]) if max_events == 0: max_events = None events_freq = int(request.form["events_freq"]) if 'file' not in request.files: flash(("No file part"), category='danger') return redirect(request.url) file = request.files['file'] if file.filename == "": flash("No file selected for upload", category='danger') return redirect(request.url) if file and allowed_file(file.filename): filename = secure_filename(file.filename) file__path = os.path.join(app.config["UPLOAD_FOLDER"], filename) file.save(file__path) operation_now = import_oprtation(number_events=max_events, filename=filename) db.session.add(operation_now) try: op_id = db.session.query(import_oprtation).order_by( import_oprtation.id.desc()).first().id except Exception as e: print(e) db.session.commit() all_events = csv_tt_to_json_events(file__path, dates, max_events=max_events, events_freq=events_freq) for event in all_events: resource = None teachers = [] std_sets_emails = [] if "resource" in event["attendees"][-1].keys(): resource = event["attendees"][-1] event["attendees"].remove(resource) for ev_att in event["attendees"]: if Teacher.query.filter_by( teacher_email=ev_att["email"]).first(): teachers.append(ev_att) else: std_sets_emails.append(ev_att) event["attendees"].clear() event["attendees"].extend(teachers) if resource is not None: event["attendees"].append(resource) for std_mail in std_sets_emails: cal_rec = Calendar.query.filter_by( std_email=std_mail["email"]).first() if cal_rec: calendar_id = cal_rec.calendar_id_google else: print("Calendar does not exist") pprint(event) print("_________") continue resp = google.post( "/calendar/v3/calendars/{}/events".format(calendar_id), json=event, params={"sendUpates": "none"}) if resp.status_code == 200: gevent_id = resp.json()["id"] try: event_logged = events__log( gevent_id=gevent_id, gcalendar_id=calendar_id, import_id=op_id) except Exception as e: print(e) print(event) try: db.session.add(event_logged) db.session.commit() except Exception as e: print(e) else: print("Could not insert event") print(resp.text) flash(("Added {} events to calendar".format(len(all_events))), category='success') return redirect(url_for('import_csv_to_calendar_api')) else: flash('Allowed file types are: csv', category="info") return redirect(request.url)
5,341,237
def xproto_fields(m, table): """ Generate the full list of models for the xproto message `m` including fields from the classes it inherits. Inserts the special field "id" at the very beginning. Each time we descend a new level of inheritance, increment the offset field numbers by 100. The base class's fields will be numbered from 1-99, the first descendant will be number 100-199, the second descdendant numbered from 200-299, and so on. This assumes any particular model as at most 100 fields. """ model_fields = [x.copy() for x in m["fields"]] for field in model_fields: field["accessor"] = m["fqn"] fields = xproto_base_fields(m, table) + model_fields # The "id" field is a special field. Every model has one. Put it up front and pretend it's part of the if not fields: raise Exception( "Model %s has no fields. Check for missing base class." % m["name"] ) id_field = { "type": "int32", "name": "id", "options": {}, "id": "1", "accessor": fields[0]["accessor"], } fields = [id_field] + fields # Walk through the list of fields. They will be in depth-first search order from the base model forward. Each time # the model changes, offset the protobuf field numbers by 100. offset = 0 last_accessor = fields[0]["accessor"] for field in fields: if field["accessor"] != last_accessor: last_accessor = field["accessor"] offset += 100 field_id = int(field["id"]) if (field_id < 1) or (field_id >= 100): raise Exception( "Only field numbers from 1 to 99 are permitted, field %s in model %s" % (field["name"], field["accessor"]) ) field["id"] = int(field["id"]) + offset # Check for duplicates fields_by_number = {} for field in fields: id = field["id"] dup = fields_by_number.get(id) if dup: raise Exception( "Field %s has duplicate number %d with field %s in model %s" % (field["name"], id, dup["name"], field["accessor"]) ) fields_by_number[id] = field return fields
5,341,238
def HyBO(objective=None, n_eval=200, path=None, parallel=False, store_data=True, problem_id=None, **kwargs): """ :param objective: :param n_eval: :param path: :param parallel: :param kwargs: :return: """ acquisition_func = expected_improvement n_vertices = adj_mat_list = None eval_inputs = eval_outputs = log_beta = sorted_partition = lengthscales = None time_list = elapse_list = pred_mean_list = pred_std_list = pred_var_list = None if objective is not None: exp_dir = experiment_directory() objective_id_list = [objective.__class__.__name__] if hasattr(objective, 'random_seed_info'): objective_id_list.append(objective.random_seed_info) if hasattr(objective, 'data_type'): objective_id_list.append(objective.data_type) objective_id_list.append('HyBO') if problem_id is not None: objective_id_list.append(problem_id) objective_name = '_'.join(objective_id_list) model_filename, data_cfg_filaname, logfile_dir = model_data_filenames(exp_dir=exp_dir, objective_name=objective_name) n_vertices = objective.n_vertices adj_mat_list = objective.adjacency_mat grouped_log_beta = torch.ones(len(objective.fourier_freq)) log_order_variances = torch.zeros((objective.num_discrete + objective.num_continuous)) fourier_freq_list = objective.fourier_freq fourier_basis_list = objective.fourier_basis suggested_init = objective.suggested_init # suggested_init should be 2d tensor n_init = suggested_init.size(0) num_discrete = objective.num_discrete num_continuous = objective.num_continuous lengthscales = torch.zeros((num_continuous)) print("******************* initializing kernel ****************") kernel = MixedDiffusionKernel(log_order_variances=log_order_variances, grouped_log_beta=grouped_log_beta, fourier_freq_list=fourier_freq_list, fourier_basis_list=fourier_basis_list, lengthscales=lengthscales, num_discrete=num_discrete, num_continuous=num_continuous) surrogate_model = GPRegression(kernel=kernel) eval_inputs = suggested_init eval_outputs = torch.zeros(eval_inputs.size(0), 1, device=eval_inputs.device) for i in range(eval_inputs.size(0)): eval_outputs[i] = objective.evaluate(eval_inputs[i]) assert not torch.isnan(eval_outputs).any() log_beta = eval_outputs.new_zeros(num_discrete) log_order_variance = torch.zeros((num_discrete + num_continuous)) sorted_partition = [[m] for m in range(num_discrete)] lengthscale = torch.zeros((num_continuous)) time_list = [time.time()] * n_init elapse_list = [0] * n_init pred_mean_list = [0] * n_init pred_std_list = [0] * n_init pred_var_list = [0] * n_init surrogate_model.init_param(eval_outputs) print('(%s) Burn-in' % time.strftime('%H:%M:%S', time.localtime())) sample_posterior = posterior_sampling(surrogate_model, eval_inputs, eval_outputs, n_vertices, adj_mat_list, log_order_variance, log_beta, lengthscale, sorted_partition, n_sample=1, n_burn=1, n_thin=1) log_order_variance = sample_posterior[1][0] log_beta = sample_posterior[2][0] lengthscale = sample_posterior[3][0] sorted_partition = sample_posterior[4][0] print('') else: surrogate_model, cfg_data, logfile_dir = load_model_data(path, exp_dir=experiment_directory()) for _ in range(n_eval): start_time = time.time() reference = torch.min(eval_outputs, dim=0)[0].item() print('(%s) Sampling' % time.strftime('%H:%M:%S', time.localtime())) sample_posterior = posterior_sampling(surrogate_model, eval_inputs, eval_outputs, n_vertices, adj_mat_list, log_order_variance, log_beta, lengthscale, sorted_partition, n_sample=10, n_burn=0, n_thin=1) hyper_samples, log_order_variance_samples, log_beta_samples, lengthscale_samples, partition_samples, freq_samples, basis_samples, edge_mat_samples = sample_posterior log_order_variance = log_order_variance_samples[-1] log_beta = log_beta_samples[-1] lengthscale = lengthscale_samples[-1] sorted_partition = partition_samples[-1] print('\n') # print(hyper_samples[0]) # print(log_order_variance) # print(log_beta) # print(lengthscale) # print(sorted_partition) # print('') x_opt = eval_inputs[torch.argmin(eval_outputs)] inference_samples = inference_sampling(eval_inputs, eval_outputs, n_vertices, hyper_samples, log_order_variance_samples, log_beta_samples, lengthscale_samples, partition_samples, freq_samples, basis_samples, num_discrete, num_continuous) suggestion = next_evaluation(objective, x_opt, eval_inputs, inference_samples, partition_samples, edge_mat_samples, n_vertices, acquisition_func, reference, parallel) next_eval, pred_mean, pred_std, pred_var = suggestion processing_time = time.time() - start_time print("next_eval", next_eval) eval_inputs = torch.cat([eval_inputs, next_eval.view(1, -1)], 0) eval_outputs = torch.cat([eval_outputs, objective.evaluate(eval_inputs[-1]).view(1, 1)]) assert not torch.isnan(eval_outputs).any() time_list.append(time.time()) elapse_list.append(processing_time) pred_mean_list.append(pred_mean.item()) pred_std_list.append(pred_std.item()) pred_var_list.append(pred_var.item()) displaying_and_logging(logfile_dir, eval_inputs, eval_outputs, pred_mean_list, pred_std_list, pred_var_list, time_list, elapse_list, hyper_samples, log_beta_samples, lengthscale_samples, log_order_variance_samples, store_data) print('Optimizing %s with regularization %.2E up to %4d visualization random seed : %s' % (objective.__class__.__name__, objective.lamda if hasattr(objective, 'lamda') else 0, n_eval, objective.random_seed_info if hasattr(objective, 'random_seed_info') else 'none'))
5,341,239
def write_asset(asset, target_directory): """Write file represented by asset to target_directory Args: asset (dict): an asset dict target_directory (str): path to a directory in which all files will be written """ target_path = os.path.join( target_directory, asset["target_location"], asset["target_name"] ) os.makedirs(os.path.dirname(target_path), exist_ok=True) if "copy_method" in asset: copy_file_asset(asset, target_path) elif "bytes" in asset: logger.debug(f"Writing asset bytes to {target_path}.") with open(target_path, "wb") as f: f.write(asset["bytes"]) else: raise ConfigError( "Cannot write asset. Asset must have either a `copy_method` or `bytes` key." )
5,341,240
def test(all=False): """Alias of `invoke test_osf`. """ if all: test_all() else: test_osf()
5,341,241
def create_decomp_expand_fn(custom_decomps, dev, decomp_depth=10): """Creates a custom expansion function for a device that applies a set of specified custom decompositions. Args: custom_decomps (Dict[Union(str, qml.operation.Operation), Callable]): Custom decompositions to be applied by the device at runtime. dev (qml.Device): A quantum device. decomp_depth: The maximum depth of the expansion. Returns: Callable: A custom expansion function that a device can call to expand its tapes within a context manager that applies custom decompositions. **Example** Suppose we would like a custom expansion function that decomposes all CNOTs into CZs. We first define a decomposition function: .. code-block:: python def custom_cnot(wires): return [ qml.Hadamard(wires=wires[1]), qml.CZ(wires=[wires[0], wires[1]]), qml.Hadamard(wires=wires[1]) ] We then create the custom function (passing a device, in order to pick up any additional stopping criteria the expansion should have), and then register the result as a custom function of the device: >>> custom_decomps = {qml.CNOT : custom_cnot} >>> expand_fn = qml.transforms.create_decomp_expand_fn(custom_decomps, dev) >>> dev.custom_expand(expand_fn) """ custom_op_names = [op if isinstance(op, str) else op.__name__ for op in custom_decomps.keys()] # Create a new expansion function; stop at things that do not have # custom decompositions, or that satisfy the regular device stopping criteria custom_fn = qml.transforms.create_expand_fn( decomp_depth, stop_at=qml.BooleanFn(lambda obj: obj.name not in custom_op_names), device=dev, ) # Finally, we set the device's custom_expand_fn to a new one that # runs in a context where the decompositions have been replaced. def custom_decomp_expand(self, circuit, max_expansion=decomp_depth): with _custom_decomp_context(custom_decomps): return custom_fn(circuit, max_expansion=max_expansion) return custom_decomp_expand
5,341,242
def get_lats_map(floor: float, ceil: float) -> Dict[int, List[float]]: """ Get map of lats in full minutes with quarter minutes as keys. Series considers lat range is [-70;69] and how objects are stored in s3. """ full = full_minutes([floor, ceil]) out = {d: [d + dd for dd in OBJ_COORD_PARTS] for d in full[1:-1]} start = full[0] out[start] = [start + d for d in OBJ_COORD_PARTS if start + d >= floor] end = full[-1] out[end] = [end + d for d in OBJ_COORD_PARTS if end + d <= ceil] return {k: d for k, d in out.items() if -70 <= k < 70}
5,341,243
def format_dict(body: Dict[Any, Any]) -> str: """ Formats a dictionary into a multi-line bulleted string of key-value pairs. """ return "\n".join( [f" - {k} = {getattr(v, 'value', v)}" for k, v in body.items()] )
5,341,244
def block3(x, filters, kernel_size=3, stride=1, groups=32, conv_shortcut=True, name=None): """A residual block. # Arguments x: input tensor. filters: integer, filters of the bottleneck layer. kernel_size: default 3, kernel size of the bottleneck layer. stride: default 1, stride of the first layer. groups: default 32, group size for grouped convolution. conv_shortcut: default True, use convolution shortcut if True, otherwise identity shortcut. name: string, block label. # Returns Output tensor for the residual block. """ bn_axis = 3 if backend.image_data_format() == 'channels_last' else 1 if conv_shortcut is True: shortcut = Conv2D((64 // groups) * filters, 1, strides=stride, use_bias=False, name=name + '_0_conv')(x) shortcut = BatchNormalization(axis=bn_axis, epsilon=1.001e-5, name=name + '_0_bn')(shortcut) else: shortcut = x x = Conv2D(filters, 1, use_bias=False, name=name + '_1_conv')(x) x = BatchNormalization(axis=bn_axis, epsilon=1.001e-5, name=name + '_1_bn')(x) x = Activation('relu', name=name + '_1_relu')(x) c = filters // groups x = ZeroPadding2D(padding=((1, 1), (1, 1)), name=name + '_2_pad')(x) x = DepthwiseConv2D(kernel_size, strides=stride, depth_multiplier=c, use_bias=False, name=name + '_2_conv')(x) print x_shape = backend.int_shape(x)[1:-1] x = Reshape(x_shape + (groups, c, c))(x) output_shape = x_shape + (groups, c) if backend.backend() == 'theano' else None x = Lambda(lambda x: sum([x[:, :, :, :, i] for i in range(c)]), output_shape=output_shape, name=name + '_2_reduce')(x) x = Reshape(x_shape + (filters,))(x) x = BatchNormalization(axis=bn_axis, epsilon=1.001e-5, name=name + '_2_bn')(x) x = Activation('relu', name=name + '_2_relu')(x) x = Conv2D((64 // groups) * filters, 1, use_bias=False, name=name + '_3_conv')(x) x = BatchNormalization(axis=bn_axis, epsilon=1.001e-5, name=name + '_3_bn')(x) x = Add(name=name + '_add')([shortcut, x]) x = Activation('relu', name=name + '_out')(x) return x
5,341,245
def test_docstring_remove(): """Test removal of docstrings with optimize=2.""" import ast import marshal code = """ 'module_doc' def f(): 'func_doc' class C: 'class_doc' """ tree = ast.parse(code) for to_compile in [code, tree]: compiled = compile(to_compile, "<test>", "exec", optimize=2) ns = {} exec(compiled, ns) assert '__doc__' not in ns assert ns['f'].__doc__ is None assert ns['C'].__doc__ is None # Check that the docstrings are gone from the bytecode and not just # inaccessible. marshalled = str(marshal.dumps(compiled)) assert 'module_doc' not in marshalled assert 'func_doc' not in marshalled assert 'class_doc' not in marshalled
5,341,246
def random_sleep(n): """io""" time.sleep(2) return n
5,341,247
def yolo2_mobilenet_body(inputs, num_anchors, num_classes, alpha=1.0): """Create YOLO_V2 MobileNet model CNN body in Keras.""" mobilenet = MobileNet(input_tensor=inputs, weights='imagenet', include_top=False, alpha=alpha) # input: 416 x 416 x 3 # mobilenet.output : 13 x 13 x (1024*alpha) # conv_pw_11_relu(layers[73]) : 26 x 26 x (512*alpha) conv_head1 = compose( DarknetConv2D_BN_Leaky(int(1024*alpha), (3, 3)), DarknetConv2D_BN_Leaky(int(1024*alpha), (3, 3)))(mobilenet.output) # conv_pw_11_relu output shape: 26 x 26 x (512*alpha) conv_pw_11_relu = mobilenet.layers[73].output conv_head2 = DarknetConv2D_BN_Leaky(int(64*alpha), (1, 1))(conv_pw_11_relu) # TODO: Allow Keras Lambda to use func arguments for output_shape? conv_head2_reshaped = Lambda( space_to_depth_x2, output_shape=space_to_depth_x2_output_shape, name='space_to_depth')(conv_head2) x = Concatenate()([conv_head2_reshaped, conv_head1]) x = DarknetConv2D_BN_Leaky(int(1024*alpha), (3, 3))(x) x = DarknetConv2D(num_anchors * (num_classes + 5), (1, 1), name='predict_conv')(x) return Model(inputs, x)
5,341,248
def LeastSquare_nonlinearFit_general( X, Y, func, func_derv, guess, weights=None, maxRelativeError=1.0e-5, maxIteratitions=100, ): """Computes a non-linear fit using the least square method following: http://ned.ipac.caltech.edu/level5/Stetson/Stetson2_2_1.html It takes the following arguments: X - array of x-parameters Y - y-array func - the function f(X,parameters) func_derv - a function that returns a 2D array giving along the columns the derivatives of the function 'f' with respect to each fit parameter ( df /dp_i ) guess - a first guess for the fit parameters weights - the weights associated to each point maxRelativeError - stop the iteration once the error in each parameter is below this threshold maxIterations - stop the iteration after this many steps Returns: parameters, fit_error, chi_square, noPoints, succes (True if successful) """ functionName = "'analysis.LeastSquare_nonlinearFit_general'" if weights is None: weights = Y.copy() weights[:] = 1 noPoints = Y.size # number of data points used for the fit noParams = len(guess) # number of fit parameters # iterate starting with the initial guess until finding the best fit parameters a = guess iteration, notConverged = 0, True while iteration < maxIteratitions and notConverged: tempX = func_derv( X, a ) # the derivatives for the current parameter values tempDiff = Y - func( X, a ) # the difference between function values and Y-values std = (weights * tempDiff ** 2).sum() # the current sum of the squares step = np.linalg.lstsq(tempX, tempDiff)[0] while True: a2 = a + step tempStd = ( weights * (Y - func(X, a2)) ** 2 ).sum() # the sum of the squares for the new parameter values if tempStd > std: step /= ( 2.0 ) # wrong estimate for the step since it increase the deviation from Y values; decrease step by factor of 2 else: a += step break if (np.abs(step / a) < maxRelativeError).all(): notConverged = False # the iteration has converged iteration += 1 print(iteration, a, step, std, tempStd) # compute the standard deviation for the best fit parameters derivatives = func_derv(X, a) M = np.zeros((noParams, noParams), np.float64) for i in range(noParams): for j in range(i, noParams): M[i, j] = (weights * derivatives[:, i] * derivatives[:, j]).sum() M[j, i] = M[i, j] Minv = np.linalg.inv(M) chiSquare = (weights * (Y - func(X, a)) ** 2).sum() / ( noPoints - noParams ) # fit residuals a_error = np.zeros(noParams, np.float64) for i in range(noParams): a_error[i] = (chiSquare * Minv[i, i]) ** 0.5 return a, a_error, chiSquare, noPoints, iteration < maxIteratitions
5,341,249
def _get_extracted_csv_table(relevant_subnets, tablename, input_path, sep=";"): """ Returns extracted csv data of the requested SimBench grid. """ csv_table = read_csv_data(input_path, sep=sep, tablename=tablename) if tablename == "Switch": node_table = read_csv_data(input_path, sep=sep, tablename="Node") bus_bus_switches = set(get_bus_bus_switch_indices_from_csv(csv_table, node_table)) else: bus_bus_switches = {} extracted_csv_table = _extract_csv_table_by_subnet(csv_table, tablename, relevant_subnets, bus_bus_switches=bus_bus_switches) return extracted_csv_table
5,341,250
def main(): """ Runs the main parsing function on each list of powers and saves the resulting data. """ for power_type in [ARCANA, ARCANE_DISCOVERY, DOMAIN, EXPLOIT, HEX, SPELL]: powers = parse_powers( power_type['requests'], power_type['list_regex'], power_type['defaults'], power_type['power_regexes'], power_type['process_fn'], power_type['exceptions_fn'] ) save_json(powers, power_type['filename'])
5,341,251
def has_prefix(sub_s): """ :param sub_s: (str) A substring that is constructed by neighboring letters on a 4x4 square grid. :return: (bool) If there is any words with prefix stored in sub_s. """ for word in vocabulary_list: if word.strip().startswith(sub_s): return True # Check all vocabularies in dictionary.txt, if there is no vocabulary start with sub_s then return false. return False
5,341,252
def test_prompt_for_both_mnemonics(mock_bitcoincore): """Test prompting for both mnemonic and recovery mnemonic""" mock_bitcoincore.return_value = AuthServiceProxy('testnet_txs') estimate = {'blocks': 3, 'feerate': 1, } mock_bitcoincore.return_value.estimatesmartfee.return_value = estimate with mock.patch('garecovery.recoverycli.user_input') as user_input_: mnemonic = open(datafile('mnemonic_6.txt')).read() mnemonic = ' '.join(mnemonic.split()) recovery_mnemonic = open(datafile('mnemonic_7.txt')).read() recovery_mnemonic = ' '.join(recovery_mnemonic.split()) user_input_.side_effect = (mnemonic, recovery_mnemonic) output = get_output([ '--rpcuser=abc', '--rpcpassword=abc', '2of3', '--network=testnet', '--key-search-depth={}'.format(key_depth), '--search-subaccounts={}'.format(sub_depth), '--destination-address={}'.format(destination_address), ]) user_input_.assert_has_calls([ mock.call('mnemonic/hex seed: '), mock.call('recovery mnemonic/hex seed: '), ]) assert output.strip() == open(datafile("signed_2of3_5")).read().strip()
5,341,253
def test_jenkinslts_repofile_isfile(host): """ Tests if jenkins repo files for DEBIAN/EL systems is file type. """ assert host.file(DEBIAN_REPO_FILE).is_file or \ host.file(EL_REPO_FILE).is_file
5,341,254
def work_out_entity(context,entity): """ One of Arkestra's core functions """ # first, try to get the entity from the context entity = context.get('entity', None) if not entity: # otherwise, see if we can get it from a cms page request = context['request'] if request.current_page: entity = entity_for_page(request.current_page) else: # we must be in a plugin, either in the page or in admin page = context['plugin'].get("page", None) if page: entity = entity_for_page(page) else: entity = None return entity
5,341,255
def rectify(link:str, parent:str, path:str): """A function to check a link and verify that it should be captured or not. For e.g. any external URL would be blocked. It would also take care that all the urls are properly formatted. Args: **link (str)**: the link to rectify. **parent (str)**: the complete url of the page from which the link was found. **path (str)**: the path (after the domain) of the page from which the link was found. Returns: **str**: the properly formatted link. """ if (link.startswith("#")) or (":" in link) or ("../" in link): return path if not link.startswith("/"): if parent.endswith("/"): if not path.endswith("/"): path += "/" return path + link else: path = "/".join(path.split("/")[:-1])+"/" return path + link return link
5,341,256
def send_start_run_message(run_number: int, instrument_name: str, broker_address: str=default_broker_address, broker_version: str=default_broker_version): """Send a run start message to topic <instrument_name>_runInfo on the given broker""" builder = flatbuffers.Builder(0) name = builder.CreateString(instrument_name) run_info.RunStart.RunStartStart(builder) run_info.RunStart.RunStartAddStartTime(builder, current_time_ns()) run_info.RunStart.RunStartAddRunNumber(builder, run_number) run_info.RunStart.RunStartAddInstrumentName(builder, name) run_start = run_info.RunStart.RunStartEnd(builder) run_info.RunInfo.RunInfoStart(builder) run_info.RunInfo.RunInfoAddInfoTypeType(builder, run_info.InfoTypes.InfoTypes().RunStart) run_info.RunInfo.RunInfoAddInfoType(builder, run_start) info = run_info.RunInfo.RunInfoEnd(builder) builder.Finish(info) message = prepare_flatbuffer_message(builder, b'ba57') topic_name = "{}_runInfo".format(instrument_name).encode() send_message(message, topic_name, broker_address, broker_version)
5,341,257
def cleanup_3(): """ 1. Sort keys of each json file. 2. rename media filenames with zero padding. """ sorted_keys = [ "id", "name", "description", "collection_name", "collection_description", "transaction_time", "eth_price", "eth_price_decimal", "usd_price", "usd_volume", "usd_marketcap", "media_filenames", "has_audio_in_video", ] for filename in os.listdir(new_json_dir): if filename.endswith(".json"): json_path = new_json_dir / filename new_data = dict() with json_path.open() as f: data = json.load(f) f.close() int_id = int(data["id"]) padded_id: str = f"{int_id:05}" for key in sorted_keys: if key == "media_filenames": media_filenames = data.get(key, []) new_media_filenames = [] for media_filename in media_filenames: extension = Path(media_filename).suffix new_name = f"{padded_id}{extension}" new_media_filenames.append(new_name) new_path = media_dir / new_name if not new_path.is_file(): print(f"Missing file: {new_name}") new_data[key] = new_media_filenames else: new_data[key] = data.get(key) with json_path.open("w") as f: json.dump(new_data, f, indent=4)
5,341,258
def nested_pids_and_relations(app, db): """Fixture for a nested PIDs and the expected serialized relations.""" # Create some PIDs and connect them into different nested PID relations pids = {} for idx in range(1, 12): pid_value = str(idx) p = PersistentIdentifier.create('recid', pid_value, object_type='rec', status=PIDStatus.REGISTERED) pids[idx] = p VERSION = resolve_relation_type_config('version').id # 1 (Version) # / | \ # 2 3 4 PIDRelation.create(pids[1], pids[2], VERSION, 0) PIDRelation.create(pids[1], pids[3], VERSION, 1) PIDRelation.create(pids[1], pids[4], VERSION, 2) # Define the expected PID relation tree for of the PIDs expected_relations = {} expected_relations[4] = { u'relations': { 'version': [ {u'children': [{u'pid_type': u'recid', u'pid_value': u'2'}, {u'pid_type': u'recid', u'pid_value': u'3'}, {u'pid_type': u'recid', u'pid_value': u'4'}], u'index': 2, u'is_child': True, u'previous': {'pid_type': 'recid', 'pid_value': '3'}, u'next': None, u'is_last': True, u'is_parent': False, u'parent': {u'pid_type': u'recid', u'pid_value': u'1'}, u'type': 'version' } ], } } return pids, expected_relations
5,341,259
def test_siren_not_existing_year(host, siren, year): """ Test the /company/siren/year endpoint. Should return a JSON and RC 404. :param host: Fixture of the API host. :param siren: Parametrise fixture of a SIREN. :param year: Parametrise fixture of the year to return. """ response = get("http://" + host + "/company/siren/" + str(siren) + "/" + str(year)) assert response.status_code == 404, "WRONG HTTP RETURN CODE" assert loads(response.text) is not None, "NOT RETURNING A JSON"
5,341,260
def get_classifier(classifier): """ Run given classifier on GLoVe embedding model """ if classifier is None: exit(1) print('Running ', classifier) get_predictive_model(classifier) #return classifier
5,341,261
def main(): """Main entry point""" algorithms = [ # selectionsort, insertionsort, # Uncommend these lines after implementing algorithms # bubblesort, # quicksort, # mergesort, # heapsort, ] benchmark(algorithms, max_array_size, initial_array_size=100, step=5) plot_time() # plot_access()
5,341,262
def indentsize(line): """Return the indent size, in spaces, at the start of a line of text.""" expline = line.expandtabs() return len(expline) - len(expline.lstrip())
5,341,263
def keyup_events(event, debug,): """ Check events for when a key is released """ debug.check_strokes(event.key)
5,341,264
def reprocess_subtitle_file(path, max_chars=30, max_stretch_time=3, max_oldest_start=10): """Combine subtitles across a time period""" file_name, ext = os.path.splitext(path) compressed_subtitle_file = file_name + '.ass' subs = pysubs2.load(path) compressed_subs = compress(subs, max_chars, max_stretch_time, max_oldest_start) compressed_subs.save(compressed_subtitle_file) logger.info(f'Combined {len(subs)} subtitles from {path} to {len(compressed_subs)} in {compressed_subtitle_file}') return compressed_subtitle_file, subs[len(subs) - 1].end
5,341,265
def read_github_repos(repo_names): """ENTRY POINT: Yields GitHub repos information as dictionaries from database.""" for repo_name in repo_names: repo = GitHubRepo.query.filter_by(name=repo_name).first() yield { "name": repo.name, "full_name": repo.full_name, "description": repo.description, "license": repo.license, "private": repo.private, "stars": repo.stars, "forks": repo.forks, "commits": repo.commits, "open_issues": repo.open_issues, "languages": [{"name": lang.name, "color": lang.color} for lang in repo.languages], "url": repo.url, }
5,341,266
def load(dataFormat,path,ignoreEntities=[],ignoreComplexRelations=True): """ Load a corpus from a variety of formats. If path is a directory, it will try to load all files of the corresponding data type. For standoff format, it will use any associated annotations files (with suffixes .ann, .a1 or .a2) :param dataFormat: Format of the data files to load ('standoff','biocxml','pubannotation','simpletag') :param path: Path to data. Can be directory or an individual file. Should be the txt file for standoff. :param ignoreEntities: List of entity types to ignore while loading :param ignoreComplexRelations: Whether to filter out relations where one argument is another relation (must be True as kindred doesn't currently support complex relations) :type dataFormat: str :type path: str :type ignoreEntities: list :type ignoreComplexRelations: bool :return: Corpus of loaded documents :rtype: kindred.Corpus """ assert dataFormat in ['standoff','biocxml','pubannotation','simpletag'] assert ignoreComplexRelations == True, "ignoreComplexRelations must be True as kindred doesn't currently support complex relations" corpus = kindred.Corpus() if os.path.isdir(path): directory = path filenames = sorted(list(os.listdir(directory))) for filename in filenames: if dataFormat == 'standoff' and filename.endswith('.txt'): absPath = os.path.join(directory, filename) doc = loadDataFromStandoff(absPath,ignoreEntities=ignoreEntities) corpus.addDocument(doc) elif dataFormat == 'biocxml' and filename.endswith('.bioc.xml'): absPath = os.path.join(directory, filename) tempCorpus = loadDataFromBioC(absPath,ignoreEntities=ignoreEntities) corpus.documents += tempCorpus.documents elif dataFormat == 'pubannotation' and filename.endswith('.json'): absPath = os.path.join(directory, filename) doc = loadDataFromPubAnnotationJSON(absPath,ignoreEntities=ignoreEntities) corpus.addDocument(doc) elif dataFormat == 'simpletag' and filename.endswith('.simple'): absPath = os.path.join(directory, filename) with open(absPath,'r') as f: filecontents = f.read().strip() doc = parseSimpleTag(filecontents,ignoreEntities=ignoreEntities) doc.sourceFilename = filename corpus.addDocument(doc) if len(corpus.documents) == 0: raise RuntimeError("No documents loaded from directory (%s). Are you sure this directory contains the corpus (format: %s)" % (path,dataFormat)) elif dataFormat == 'standoff': doc = loadDataFromStandoff(path,ignoreEntities=ignoreEntities) corpus.addDocument(doc) elif dataFormat == 'biocxml': corpus = loadDataFromBioC(path,ignoreEntities=ignoreEntities) elif dataFormat == 'pubannotation': doc = loadDataFromPubAnnotationJSON(path,ignoreEntities=ignoreEntities) corpus.addDocument(doc) elif dataFormat == 'simpletag': with open(path,'r') as f: filecontents = f.read().strip() doc = parseSimpleTag(filecontents,ignoreEntities=ignoreEntities) doc.sourceFilename = os.path.basename(path) corpus.addDocument(doc) return corpus
5,341,267
def test_edit_report_change_invalid_date(client, user, db_setup): """verifty that we can post data with a different date and change the report in the database.""" report = Report.objects.get(reported_by__first_name="Homer") url = reverse("tfat:edit_report", kwargs={"report_id": report.id}) data = {"report_date": "not a date"} client.login(username=user.email, password="Abcd1234") response = client.post(url, data) content = str(response.content) assert "Enter a valid date/time." in content
5,341,268
def read(*parts): """ Build an absolute path from *parts* and return the contents of the resulting file. Assumes UTF-8 encoding. """ here = os.path.abspath(os.path.dirname(__file__)) with codecs.open(os.path.join(here, *parts), "rb", "utf-8") as f: return f.read()
5,341,269
def read_idl_catalog(filename_sav, expand_extended=True): """ Read in an FHD-readable IDL .sav file catalog. Deprecated. Use `SkyModel.read_fhd_catalog` instead. Parameters ---------- filename_sav: str Path to IDL .sav file. expand_extended: bool If True, return extended source components. Default: True Returns ------- :class:`pyradiosky.SkyModel` """ warnings.warn( "This function is deprecated, use `SkyModel.read_fhd_catalog` instead. " "This function will be removed in version 0.2.0.", category=DeprecationWarning, ) skyobj = SkyModel() skyobj.read_fhd_catalog( filename_sav, expand_extended=expand_extended, ) return skyobj
5,341,270
def guid2bytes(s): """Converts a GUID to the serialized bytes representation""" assert isinstance(s, str) assert len(s) == 36 p = struct.pack return b"".join([ p("<IHH", int(s[:8], 16), int(s[9:13], 16), int(s[14:18], 16)), p(">H", int(s[19:23], 16)), p(">Q", int(s[24:], 16))[2:], ])
5,341,271
def config(config_class=None, name="config", group=None): """ Class decorator that registers a custom configuration class with `Hydra's ConfigStore API <https://hydra.cc/docs/tutorials/structured_config/config_store>`_. If defining your own custom configuration class, your class must do the following: * Register with `Hydra's ConfigStore API <https://hydra.cc/docs/tutorials/structured_config/config_store>`_ (which this decorator does for you). * Register as a `@dataclass <https://docs.python.org/3/library/dataclasses.html>`_. Example:: @config(name="db") @dataclass class DBConfig(BaseConfig): host: str = "localhost" .. note:: Make sure @dataclass comes after @config. This also supports `Hydra Config Groups <https://hydra.cc/docs/tutorials/structured_config/config_groups>`_, example:: @config @dataclass class Config(BaseConfig): db: Any = MISSING @config(name="mysql", group="db") @dataclass class MySqlConfig: host: str = "mysql://localhost" @config(name="postgres", group="db") @dataclass class PostgresConfig: host: str = "postgres://localhost" postgres_specific_data: str = "some special data" Then when running the job you can do the following:: $ python3 -m project_package db=mysql :param name: Name of the configuration, used to locate overrides. :type name: str :param group: Group name to support Hydra Config Groups. :type group: str """ @functools.wraps(config_class) def wrapper(config_class, name, group): cs = ConfigStore.instance() cs.store(name=name, node=config_class, group=group) return config_class if config_class: return wrapper(config_class, name, group) def recursive_wrapper(config_class): return config(config_class, name, group) return recursive_wrapper
5,341,272
def display_title_screen(): """ Displays the title screen """ global screen _done = False background_music.play() screen = pygame.display.set_mode(size , FULLSCREEN) while not _done: _done = _button_press("return") screen.blit(title_screen,(0,0)) pygame.display.flip() clock.tick(60) background_music.stop()
5,341,273
def truncate_words(text, max_chars, break_words=False, padding=0): """ Truncate a string to max_chars, optionally truncating words """ if break_words: return text[:-abs(max_chars - len(text)) - padding] words = [] for word in text.split(): length = sum(map(len, words)) + len(word) + len(words) - 1 + padding if length >= max_chars: break words.append(word) return ' '.join(words)
5,341,274
def test__save_to_cloud_storage(mocker): """ Test saving examples, outputs and meta to bucket Args: mocker: mocker fixture from pytest-mocker """ upload_blob_mock = mocker.patch( "cd_helper.CDHelper._upload_blob", return_value=upload_blob) write_to_os_mock = mocker.patch( "cd_helper.CDHelper._write_to_local_fs", return_value={"": ""}) example = Example( name="name", pipeline_id="pipeline_id", sdk=SDK_JAVA, filepath="filepath", code="code_of_example", output="output_of_example", status=STATUS_UNSPECIFIED, tag=None, link="link") CDHelper()._save_to_cloud_storage([example]) write_to_os_mock.assert_called_with(example) upload_blob_mock.assert_called_with(source_file="", destination_blob_name="")
5,341,275
def interpolate_mean_tpr(FPRs=None, TPRs=None, df_list=None): """ mean_fpr, mean_tpr = interpolate_mean_tpr(FPRs=None, TPRs=None, df_list=None) FPRs: False positive rates (list of n arrays) TPRs: True positive rates (list of n arrays) df_list: DataFrames with TPR, FPR columns (list of n DataFrames) """ # seed empty linspace mean_tpr, mean_fpr = 0, np.linspace(0, 1, 101) if TPRs and FPRs: for idx, PRs in enumerate(zip(FPRs, TPRs)): mean_tpr += np.interp(mean_fpr, PRs[0], PRs[1]) elif df_list: for idx, df_ in enumerate(df_list): mean_tpr += np.interp(mean_fpr, df_.FPR, df_.TPR) else: print("Please give valid inputs.") return None, None # normalize by length of inputs (# indices looped over) mean_tpr /= (idx+1) # add origin point mean_fpr = np.insert(mean_fpr, 0, 0) mean_tpr = np.insert(mean_tpr, 0, 0) return mean_fpr, mean_tpr
5,341,276
def _generate_copy_from_codegen_rule(plugin, target_name, thrift_src, file): """Generates a rule that copies a generated file from the plugin codegen output directory out into its own target. Returns the name of the generated rule. """ invoke_codegen_rule_name = _invoke_codegen_rule_name( plugin, target_name, thrift_src, ) plugin_path_prefix = "gen-cpp2-{}".format(plugin.name) rule_name = _copy_from_codegen_rule_name(plugin, target_name, thrift_src, file) cmd = " && ".join( [ "mkdir `dirname $OUT`", "cp $(location :{})/{} $OUT".format(invoke_codegen_rule_name, file), ], ) fb_native.genrule( name = rule_name, out = "{}/{}".format(plugin_path_prefix, file), cmd = cmd, ) return rule_name
5,341,277
def mir_right(data): """ Append Mirror to right """ return np.append(data[...,::-1],data,axis=-1)
5,341,278
def simulate_master( mpi_comm, n_simulation_problem_batches_per_process, origin_simulation_problem, simulation_problem_variations, predecessor_node_lists, truth_tables, max_t, n_simulation_problems, db_conn, output_directory): """ Top-level function of Simulate mode for master. For every combination of initial state, fixed nodes, and perturbations simulates for requested number of steps. :param mpi_comm: MPI communicator object :param n_simulation_problem_batches_per_process: number of batches to split single process load into :param origin_simulation_problem: simulation problem to start variations from :param simulation_problem_variations: variations of simulation problems :param predecessor_node_lists: list of predecessor node lists :param truth_tables: list of dicts (key: tuple of predecessor node states, value: resulting node state) :param max_t: maximum simulation time :param n_simulation_problems: number of simulations to perform :param db_conn: database connection, for storing simulations :param output_directory: output directory path :return: None """ n_processes_text = '{} worker processes'.format(mpi_comm.n_workers) if \ mpi_comm.n_workers > 0 else 'Single process' logging.getLogger().info('{} will be used to perform {} simulations...'.format( n_processes_text, n_simulation_problems)) _simulate_until_max_t = partial(simulate_until_max_t, max_t) generic_master( mpi_comm, n_simulation_problems, n_simulation_problem_batches_per_process, _simulate_until_max_t, origin_simulation_problem, simulation_problem_variations, predecessor_node_lists, truth_tables, set(), None, store_simulation, [], write_simulations_to_db, db_conn, True, max_t, output_directory, inf)
5,341,279
def _add_policies_to_role_authorization_scope( scope_checker: RoleAuthorizationScopeChecker, system_id: str, policies: List[PolicyBean] ): """添加权限到分级管理员的范围里""" # 需要被添加的策略列表 need_added_policies = [] # Note: 以下代码里有调用 scope_checker 的 protected 方法是因为暂时不侵入修改scope_checker来提供一个public方法 try: scope_checker._check_system_in_scope(system_id) # 如果不需要整个系统都添加,则遍历每条权限进行判断 for p in policies: try: scope_checker._check_policy_in_scope(system_id, p) except APIException: # 校验不通过的,则需要添加到分级管理员范围内 need_added_policies.append(p) except APIException: # 整个系统都不在分级管理员的授权范围内,则所有policies都需要添加到分级管理员范围内 need_added_policies = policies if len(need_added_policies) == 0: return # 获取分级管理员可授权范围 role_id = scope_checker.role.id auth_scopes: List[AuthScopeSystem] = RoleBiz().list_auth_scope(role_id) # 找到对应要变更的系统位置 index = -1 for idx, auth_scope in enumerate(auth_scopes): if auth_scope.system_id == system_id: index = idx break # 新老策略进行合并 policies_dict = {p.id: PolicyBean.parse_obj(p) for p in auth_scopes[index].actions} if index != -1 else {} for policy in need_added_policies: # 不在,表示新增的 if policy.action_id not in policies_dict: policies_dict[policy.action_id] = policy continue # 策略合并 policy.add_related_resource_types(policies_dict[policy.action_id].related_resource_types) policies_dict[policy.action_id] = policy auth_scope = AuthScopeSystem( system_id=system_id, actions=parse_obj_as(List[AuthScopeAction], [p.dict() for p in policies_dict.values()]) ) # 若系统不在可授权范围内,则直接追加,否则替换掉 if index == -1: auth_scopes.append(auth_scope) else: auth_scopes[index] = auth_scope # 保存 RoleScope.objects.filter(role_id=role_id, type=RoleScopeType.AUTHORIZATION.value).update( content=json_dumps([one.dict() for one in auth_scopes]), )
5,341,280
def mask_nms(masks, bbox_scores, instances_confidence_threshold=0.5, overlap_threshold=0.7): """ NMS-like procedure used in Panoptic Segmentation Remove the overlap areas of different instances in Instance Segmentation """ panoptic_seg = np.zeros(masks.shape[:2], dtype=np.uint8) sorted_inds = list(range(len(bbox_scores))) current_segment_id = 0 segments_score = [] for inst_id in sorted_inds: score = bbox_scores[inst_id] if score < instances_confidence_threshold: break mask = masks[:, :, inst_id] mask_area = mask.sum() if mask_area == 0: continue intersect = (mask > 0) & (panoptic_seg > 0) intersect_area = intersect.sum() if intersect_area * 1.0 / mask_area > overlap_threshold: continue if intersect_area > 0: mask = mask & (panoptic_seg == 0) current_segment_id += 1 # panoptic_seg[np.where(mask==1)] = current_segment_id # panoptic_seg = panoptic_seg + current_segment_id*mask panoptic_seg = np.where(mask == 0, panoptic_seg, current_segment_id) segments_score.append(score) # print(np.unique(panoptic_seg)) return panoptic_seg, segments_score
5,341,281
def table_to_lookup(table): """Converts the contents of a dynamodb table to a dictionary for reference. Uses dump_table to download the contents of a specified table, then creates a route lookup dictionary where each key is (route id, express code) and contains elements for avg_speed, and historic_speeds. Args: table: A boto3 Table object from which all data will be read into memory and returned. Returns: A dictionary with (route id, segment id) keys and average speed (num), historic speeds (list), and local express code (str) data. """ # Put the data in a dictionary to reference when adding speeds to geojson items = dump_table(table) route_lookup = {} for item in items: if 'avg_speed_m_s' in item.keys(): route_id = int(item['route_id']) local_express_code = item['local_express_code'] hist_speeds = [float(i) for i in item['historic_speeds']] route_lookup[(route_id, local_express_code)] = { 'avg_speed_m_s': float(item['avg_speed_m_s']), 'historic_speeds': hist_speeds } return route_lookup
5,341,282
def yaml2bib( bib_fname: str, dois_yaml: str, replacements_yaml: Optional[str], static_bib: Optional[str], doi2bib_database: str, crossref_database: str, email: str, ) -> None: """Convert a yaml file to bib file with the correct journal abbreviations. Parameters ---------- bib_fname: str Output file. (default: ``'dissertation.bib'``) dois_yaml: str The ``key: doi`` YAML file, may contain wildcards (``*``). (default: ``'bib.yaml'``, example: ``'*/*.yaml'``) replacements_yaml: str Replacements to perform, might be ``None``. (default: ``None``, example: ``'replacements.yaml'``) static_bib: str Static bib entries, might be ``None``, may contain wildcards (``*``). (default: ``None``, example: ``'chapter_*/not_on_crossref.bib'``) doi2bib_database: str The doi2bib database folder 📁 to not query doi.org more than needed. (default: ``'yaml2bib-doi2bib.db'``) crossref_database: str The Crossref database folder 📁 to not query crossref.org more than needed. (default: ``'yaml2bib-doi2bib.db'``) email: str E-mail 📧 for crossref.org, such that one can make faster API. (default: ``'anonymous'``, example: ``'bas@nijho.lt'``) Returns ------- None Examples -------- Example invocation for my `thesis <https://gitlab.kwant-project.org/qt/basnijholt/thesis-bas-nijholt>`_. .. code-block:: bash yaml2bib \\ --bib_fname "dissertation.bib" \\ --dois_yaml "*/*.yaml" \\ --replacements_yaml "replacements.yaml" \\ --static_bib "chapter_*/not_on_crossref.bib" \\ --email "bas@nijho.lt" """ etiquette = crossref.restful.Etiquette("publist", contact_email=email) works = crossref.restful.Works(etiquette=etiquette) dois = parse_doi_yaml(dois_yaml) replacements = parse_replacements_yaml(replacements_yaml) entries = get_bib_entries( dois, replacements, doi2bib_database, crossref_database, works ) bib_files = static_bib_entries(static_bib) write_output(entries, bib_files, bib_fname)
5,341,283
def _initialize_weights(variable_scope, n_head, n_input, n_hidden): """ initialize the weight of Encoder with multiple heads, and Decoder """ with tf.variable_scope(variable_scope, reuse=tf.AUTO_REUSE): all_weights = dict() ## forward, Each head has the same dimension ad n_hidden n_head_hidden = n_hidden/n_head # n_head_hidden = n_hidden for i in range(n_head): index = i + 1 weight_key = 'w1_%d' % index bias_key = 'b1_%d' % index all_weights[weight_key] = tf.get_variable(weight_key, shape=[n_input, n_head_hidden], initializer=tf.contrib.layers.xavier_initializer()) all_weights[bias_key] = tf.Variable(tf.zeros([n_head_hidden], dtype = tf.float32), name = bias_key) ## reconstruct all_weights['w2'] = tf.Variable(tf.zeros([n_hidden, n_input], dtype = tf.float32), name = 'w2') all_weights['b2'] = tf.Variable(tf.zeros([n_input], dtype = tf.float32), name = 'b2') ## DEBUG: for key in all_weights.keys(): tensor = all_weights[key] print ("DEBUG: Shape of Weight %s" % key) print (tensor.shape) return all_weights
5,341,284
def add_run_qc_command(cmdparser): """ Create a parser for the 'run_qc' command """ p = cmdparser.add_command('run_qc',help="Run QC procedures", description="Run QC procedures for sequencing " "projects in ANALYSIS_DIR.") # Defaults default_nthreads = __settings.qc.nprocessors fastq_screen_subset = __settings.qc.fastq_screen_subset max_concurrent_jobs = __settings.general.max_concurrent_jobs max_cores = __settings.general.max_cores max_batches = __settings.general.max_batches enable_conda = ("yes" if __settings.conda.enable_conda else "no") conda_env_dir = __settings.conda.env_dir # Build parser p.add_argument('--projects',action='store', dest='project_pattern',default=None, help="simple wildcard-based pattern specifying a " "subset of projects and samples to run the QC on. " "PROJECT_PATTERN should be of the form 'pname[/sname]', " "where 'pname' specifies a project (or set of " "projects) and 'sname' optionally specifies a sample " "(or set of samples).") p.add_argument('--fastq_screen_subset',action='store',dest='subset', type=int,default=fastq_screen_subset, help="specify size of subset of total reads to use for " "fastq_screen (i.e. --subset option); (default %d, set to " "0 to use all reads)" % fastq_screen_subset) p.add_argument('-t','--threads',action='store',dest="nthreads", type=int,default=default_nthreads, help="number of threads to use for QC script " "(default: %s)" % ('taken from job runner' if not default_nthreads else default_nthreads,)) p.add_argument('--ungzip-fastqs',action='store_true',dest='ungzip_fastqs', help="create decompressed copies of fastq.gz files") p.add_argument('--max-jobs',action='store', dest='max_jobs',default=max_concurrent_jobs,type=int, help="explicitly specify maximum number of concurrent QC " "jobs to run (default %s, change in settings file)" % max_concurrent_jobs) p.add_argument('--qc_dir',action='store',dest='qc_dir',default='qc', help="explicitly specify QC output directory (nb if " "supplied then the same QC_DIR will be used for each " "project. Non-absolute paths are assumed to be relative to " "the project directory). Default: 'qc'") p.add_argument('--fastq_dir',action='store',dest='fastq_dir',default=None, help="explicitly specify subdirectory of DIR with " "Fastq files to run the QC on.") p.add_argument("--10x_chemistry", choices=sorted(CELLRANGER_ASSAY_CONFIGS.keys()), dest="cellranger_chemistry",default="auto", help="assay configuration for 10xGenomics scRNA-seq; if " "set to 'auto' (the default) then cellranger will attempt " "to determine this automatically") p.add_argument('--10x_transcriptome',action='append', metavar='ORGANISM=REFERENCE', dest='cellranger_transcriptomes', help="specify cellranger transcriptome reference datasets " "to associate with organisms (overrides references defined " "in config file)") p.add_argument('--10x_premrna_reference',action='append', metavar='ORGANISM=REFERENCE', dest='cellranger_premrna_references', help="specify cellranger pre-mRNA reference datasets " "to associate with organisms (overrides references defined " "in config file)") p.add_argument('--report',action='store',dest='html_file',default=None, help="file name for output HTML QC report (default: " "<QC_DIR>_report.html)") add_runner_option(p) add_modulefiles_option(p) # Conda options conda = p.add_argument_group("Conda dependency resolution") conda.add_argument('--enable-conda',choices=["yes","no"], dest="enable_conda",default=enable_conda, help="use conda to resolve task dependencies; can " "be 'yes' or 'no' (default: %s)" % enable_conda) conda.add_argument('--conda-env-dir',action='store', dest="conda_env_dir",default=conda_env_dir, help="specify directory for conda enviroments " "(default: %s)" % ('temporary directory' if not conda_env_dir else conda_env_dir)) # Job control options job_control = p.add_argument_group("Job control options") job_control.add_argument('-j','--maxjobs',type=int,action='store', dest="max_jobs",metavar='NJOBS', default=max_concurrent_jobs, help="maxiumum number of jobs to run " "concurrently (default: %s)" % (max_concurrent_jobs if max_concurrent_jobs else 'no limit')) job_control.add_argument('-c','--maxcores',type=int,action='store', dest='max_cores',metavar='NCORES', default=max_cores, help="maximum number of cores available for " "running jobs (default: %s)" % (max_cores if max_cores else 'no limit')) job_control.add_argument('-b','--maxbatches',type=int,action='store', dest='max_batches',metavar='NBATCHES', default=__settings.general.max_batches, help="enable dynamic batching of pipeline " "jobs with maximum number of batches set to " "NBATCHES (default: %s)" % (max_batches if max_batches else 'no batching')) # Advanced options advanced = p.add_argument_group('Advanced/debugging options') advanced.add_argument('--verbose',action="store_true", dest="verbose",default=False, help="run pipeline in 'verbose' mode") advanced.add_argument('--work-dir',action="store", dest="working_dir",default=None, help="specify the working directory for the " "pipeline operations") add_debug_option(advanced) # Deprecated options deprecated = p.add_argument_group('Deprecated/defunct options') deprecated.add_argument('--no-ungzip-fastqs',action='store_true', dest='no_ungzip_fastqs', help="don't create uncompressed copies of " "fastq.gz files (does nothing; this is now the " "default, use --ungzip-fastqs to turn on " "decompression)") p.add_argument('analysis_dir',metavar="ANALYSIS_DIR",nargs="?", help="auto_process analysis directory (optional: defaults " "to the current directory)")
5,341,285
def sh(cmd, stdin="", sleep=False): """ run a command, send stdin and capture stdout and exit status""" if sleep: time.sleep(0.5) # process = Popen(cmd.split(), stdin=PIPE, stdout=PIPE) process = Popen(cmd, shell=True, stdin=PIPE, stdout=PIPE) process.stdin.write(bytes(stdin, "utf-8")) stdout = process.communicate()[0].decode('utf-8').strip() process.stdin.close() returncode = process.returncode return returncode, stdout
5,341,286
def array_to_slide(arr: np.ndarray) -> openslide.OpenSlide: """converts a numpy array to a openslide.OpenSlide object Args: arr (np.ndarray): input image array Returns: openslide.OpenSlide: a slide object from openslide """ assert isinstance(arr, np.ndarray) slide = openslide.ImageSlide(Image.fromarray(arr)) return slide
5,341,287
def baseline_replacement_by_blur(arr: np.array, patch_slice: Sequence, blur_kernel_size: int = 15, **kwargs) -> np.array: """ Replace a single patch in an array by a blurred version. Blur is performed via a 2D convolution. blur_kernel_size controls the kernel-size of that convolution (Default is 15). Assumes unbatched channel first format. """ nr_channels = arr.shape[0] # Create blurred array. blur_kernel_size = (1, *([blur_kernel_size] * (arr.ndim - 1))) kernel = np.ones(blur_kernel_size, dtype=arr.dtype) kernel *= 1.0 / np.prod(blur_kernel_size) kernel = np.tile(kernel, (nr_channels, 1, *([1] * (arr.ndim - 1)))) if arr.ndim == 3: arr_avg = conv2D_numpy( x=arr, kernel=kernel, stride=1, padding=0, groups=nr_channels, pad_output=True, ) elif arr.ndim == 2: raise NotImplementedError("1d support not implemented yet") else: raise ValueError("Blur supports only 2d inputs") # Perturb array. arr_perturbed = copy.copy(arr) arr_perturbed[patch_slice] = arr_avg[patch_slice] return arr_perturbed
5,341,288
def admit_dir(file): """ create the admit directory name from a filename This filename can be a FITS file (usually with a .fits extension or a directory, which would be assumed to be a CASA image or a MIRIAD image. It can be an absolute or relative address """ loc = file.rfind('.') ext = '.admit' if loc < 0: return file + ext else: if file[loc:] == ext: print "Warning: assuming a re-run on existing ",file return file return file[:loc] + ext
5,341,289
def grad(values: list[int], /) -> list[int]: """Compute the gradient of a sequence of values.""" return [v2 - v1 for v1, v2 in zip(values, values[1:])]
5,341,290
def subtract( num1: Union[int, float], num2: Union[int, float], *args ) -> Union[int, float]: """Subtracts given numbers""" sub: Union[int, float] = num1 - num2 for num in args: sub -= num return sub
5,341,291
def get_submodules(module): """ Attempts to find all submodules of a given module object """ _skip = [ "numpy.f2py", "numpy.f2py.__main__", "numpy.testing.print_coercion_tables", ] try: path = module.__path__ except Exception: path = [getfile(module)] modules = {_name(module): module} for importer, modname, ispkg in pkgutil.walk_packages( path=path, prefix=_name(module) + ".", onerror=lambda x: None, ): # Some known packages cause issues if modname in _skip: continue try: modules[modname] = importlib.import_module(modname) except Exception: pass return modules
5,341,292
def ucr_context_cache(vary_on=()): """ Decorator which caches calculations performed during a UCR EvaluationContext The decorated function or method must have a parameter called 'context' which will be used by this decorator to store the cache. """ def decorator(fn): assert 'context' in fn.__code__.co_varnames assert isinstance(vary_on, tuple) @wraps(fn) def _inner(*args, **kwargs): # shamelessly stolen from quickcache callargs = inspect.getcallargs(fn, *args, **kwargs) context = callargs['context'] prefix = '{}.{}'.format( fn.__name__[:40] + (fn.__name__[40:] and '..'), hashlib.md5(inspect.getsource(fn).encode('utf-8')).hexdigest()[-8:] ) cache_key = (prefix,) + tuple(callargs[arg_name] for arg_name in vary_on) if context.exists_in_cache(cache_key): return context.get_cache_value(cache_key) res = fn(*args, **kwargs) context.set_cache_value(cache_key, res) return res return _inner return decorator
5,341,293
def extract_value(item, key): """Get the value for the given key or return an empty string if no value is found.""" value = item.find(key).text if value is None: value = "" else: value = sanitize_value(value) return value
5,341,294
def create_train_test_split(data: pd.DataFrame, split_size: float = .8, seed: int = 42) -> list: """ takes the final data set and splits it into random train and test subsets. Returns a list containing train-test split of inputs Args: data: dataset to be split into train/test split_size: the size of the train dataset (default .8) seed: pass an int for reproducibility purposes Returns: A list containing train-test split of inputs """ # assert split size between 0 and 1 assert 0 <= split_size <= 1, "split_size out of bounds" assert isinstance(data, pd.DataFrame), "no DataFrame provided" assert isinstance(seed, int), "provided seed is no integer" # split into features and target # features = data.drop('target', axis=1) # target = data['target'] # stratify by the target to ensure equal distribution return train_test_split(data, train_size=split_size, random_state=seed, shuffle=True)
5,341,295
def add_devices(session, devices): """ Adds the devices in the list to the data store Args: session: Active database session devices: list of Device classes """ _add(session, devices) session.commit()
5,341,296
def calcRotationVector(vertexSelection, norm): """None""" pass
5,341,297
def get_vec(text, model, stopwords): """ Transform text pandas series in array with the vector representation of the sentence using fasttext model """ array_fasttext = np.array([sent2vec(x, model, stopwords) for x in text]) return array_fasttext
5,341,298
def convert_to_npz(kwargs): """ :param kwargs: npy-file:path or name:namestr and destination:path """ assert "identifier" in kwargs.keys(), "you need to define at least a npyfile-identifier" identifier = kwargs["identifier"] if "folder" in kwargs.keys(): folder = kwargs["folder"] else: folder = "" dest = kwargs["destination"] if "name" in kwargs.keys(): name = kwargs["name"] else: name = identifier npy_file = os.path.join(folder, identifier+".npy") data = np.load(npy_file) np.savez_compressed(os.path.join(dest, identifier + ".npz"), **{name:data}) if "verbose" in kwargs.keys() and kwargs["verbose"]: print("converted file {} to npz".format(npy_file))
5,341,299