content
stringlengths
22
815k
id
int64
0
4.91M
def drag_eqn(times,g,r): """define scenario and integrate""" param = np.array([ g, r]) hinit = np.array([0.0,0.0]) # initial values (position and velocity, respectively) h = odeint(deriv, hinit, times, args = (param,)) return h[:,0], h[:,1]
5,340,800
async def async_setup_entry( hass: HomeAssistant, entry: ConfigEntry, async_add_entities: AddEntitiesCallback ) -> None: """Set up LGE device climate based on config_entry.""" entry_config = hass.data[DOMAIN] lge_devices = entry_config.get(LGE_DEVICES) if not lge_devices: return _LOGGER.debug("Starting LGE ThinQ climate setup...") lge_climates = [] # AC devices lge_climates.extend( [ LGEACClimate(lge_device) for lge_device in lge_devices.get(DeviceType.AC, []) ] ) # Refrigerator devices lge_climates.extend( [ LGERefrigeratorClimate(lge_device, refrigerator_desc) for refrigerator_desc in REFRIGERATOR_CLIMATE for lge_device in lge_devices.get(DeviceType.REFRIGERATOR, []) ] ) async_add_entities(lge_climates)
5,340,801
def virtual_potential_temperature_monc(theta, thref, q_v, q_cl): """ Virtual potential temperature. Derived variable name: th_v_monc Approximate form as in MONC Parameters ---------- theta : numpy array or xarray DataArray Potential Temperature. (K) thref : numpy array or xarray DataArray Reference Potential Temperature (usually 1D). (K) q_v : numpy array or xarray DataArray specific humidity q_cl : numpy array or xarray DataArray specific cloud liquid water content. Returns ------- theta_v: numpy array or xarray DataArray Virtual potential temperature (K) """ th_v = theta + thref * (tc.c_virtual * q_v - q_cl) if type(th_v) is xr.core.dataarray.DataArray: th_v.name = 'th_v_monc' return th_v
5,340,802
def promote_user(username): """Give admin privileges from a normal user.""" user = annotator.credentials.find_one({'username': username}) if user: if user['admin']: flash("User {0} is already an administrator".format(username), 'warning') else: annotator.credentials.update_one(user, {'$set': {'admin': True}}) flash("User {0} promoted to administrator successfully".format(username), 'info') else: flash("Cannot promote unknown user {0} to administrator".format(username), 'warning') return redirect(url_for('manage_users'))
5,340,803
def shutdown(): """ ensures the C++ node handle is shut down cleanly. It's good to call this a the end of any program where you called rospy_and_cpp_init """ rospy.signal_shutdown('ros_init shutdown') roscpp_initializer.shutdown()
5,340,804
def slide_number_from_xml_file(filename): """ Integer slide number from filename Assumes /path/to/Slidefile/somekindofSlide36.something """ return int(filename[filename.rfind("Slide") + 5:filename.rfind(".")])
5,340,805
def massivescan(websites): """scan multiple websites / urls""" # scan each website one by one vulnerables = [] for website in websites: io.stdout("scanning {}".format(website)) if scanner.scan(website): io.stdout("SQL injection vulnerability found") vulnerables.append(website) if vulnerables: return vulnerables io.stdout("no vulnerable websites found") return False
5,340,806
def is_strong_pass(password): """ Verify the strength of 'password' Returns a dict indicating the wrong criteria A password is considered strong if: 8 characters length or more 1 digit or more 1 symbol or more 1 uppercase letter or more 1 lowercase letter or more """ # calculating the length length_error = len(password) < 8 # searching for digits digit_error = re.search(r"\d", password) is None # searching for uppercase uppercase_error = re.search(r"[A-Z]", password) is None # searching for lowercase lowercase_error = re.search(r"[a-z]", password) is None # searching for symbols symbol_error = re.search(r"[ !#$@%&'()*+,-./[\\\]^_`{|}~" + r'"]', password) is None # overall result password_ok = not (length_error or digit_error or uppercase_error or lowercase_error or symbol_error) return password_ok
5,340,807
def plot_config(config, settings=None): """ plot_config: obj -> obj --------------------------------------------------------------- Sets the defaults for a custom experiment plot configuration object from configobj. The defaults are only set if the setting does not exist (thus, it is implied that the user needs a default). Required Parameters ------------------- * config: obj The configobj instance object to scan if defaults have been customized. Optional Parameters ------------------- * settings: None The global settings to use if it exists, otherwise use the defaults. Returns ------- * config: obj The configobj instance after defaults have been set if applicable. --------------------------------------------------------------- """ config = _global_config(config, settings) config['plot_style'] = 'whitegrid' if 'plot_style' not in config else config['plot_style'] config['plot_color'] = 'gray' if 'plot_color' not in config else config['plot_color'] config['plot_dpi'] = 300 if 'plot_dpi' not in config else config['plot_dpi'] config['plot_ext'] = '.png' if 'plot_ext' not in config else config['plot_ext'] return config
5,340,808
async def notify(event): """Notify all subscribers of ``event``.""" for subscriber in async_subscribers: await subscriber(event)
5,340,809
def clear_waf_timestamp_files(conf): """ Remove timestamp files to force builds of generate_uber_files and project gen even if some command after configure failes :param conf: """ # Remove timestamp files to force builds even if some command after configure fail force_timestamp_files = CONFIGURE_FORCE_TIMESTAMP_FILES for force_timestamp_file in force_timestamp_files: try: force_timestamp_node = conf.get_bintemp_folder_node().make_node(force_timestamp_file) os.stat(force_timestamp_node.abspath()) except OSError: pass else: force_timestamp_node.delete() # Add timestamp files for files generated by configure check_timestamp_files = CONFIGURE_TIMESTAMP_FILES for check_timestamp_file in check_timestamp_files: check_timestamp_node = conf.get_bintemp_folder_node().make_node(check_timestamp_file) check_timestamp_node.write('')
5,340,810
def load_spectrogram(spectrogram_path): """Load a cante100 dataset spectrogram file. Args: spectrogram_path (str): path to audio file Returns: np.array: spectrogram """ if not os.path.exists(spectrogram_path): raise IOError("spectrogram_path {} does not exist".format(spectrogram_path)) parsed_spectrogram = np.genfromtxt(spectrogram_path, delimiter=' ') spectrogram = parsed_spectrogram.astype(np.float) return spectrogram
5,340,811
def evaluate_fN(model, NHI): """ Evaluate an f(N,X) model at a set of NHI values Parameters ---------- NHI : array log NHI values Returns ------- log_fN : array f(NHI,X) values """ # Evaluate without z dependence log_fNX = model.__call__(NHI) return log_fNX
5,340,812
def generate_volume_data(img_data): """ Generate volume data from img_data. :param img_data: A NIfTI.get_data object, img_data[:][x][y][z] is the tensor matrix information of voxel (x,y,z)img_data: :return: vtkImageData object which stores volume render object. """ dims = [148, 190, 160] # size of input data. Temporarily only support test file. #TODO: Modify the code to handle more files. image = vtk.vtkImageData() image.SetDimensions(dims[0] - 2 , dims[1] - 2 , dims[2] - 2 ) image.SetSpacing(1, 1, 1) # set spacing image.SetOrigin(0, 0, 0) image.SetExtent(0, dims[0] - 1, 0, dims[1] - 1, 0, dims[2] - 1) image.AllocateScalars(vtk.VTK_UNSIGNED_SHORT, 1) for z in range(0, dims[2]-1): for y in range(0, dims[1]-1 ): for x in range(0, dims[0]-1 ): scalardata = img_data[0][x][y][z] # set confidence as each voxel's scalardata image.SetScalarComponentFromFloat(x, y, z, 0, scalardata) return image
5,340,813
def pipe(bill_texts_df): """ soup = bs(text, 'html.parser') raw_text = extractRawText(soup) clean_text = cleanRawText(raw_text) metadata = extract_metadata(soup) """ bill_texts_df['soup'] = \ bill_texts_df['html'].apply(lambda x: bs(x, 'html.parser')) bill_texts_df['content'] = \ bill_texts_df['soup'].apply(lambda x: extractRawText(x.body)) bill_texts_df['long_title'] = \ bill_texts_df['soup'].apply(lambda x: extractLongTitle(x.body)) bill_texts_df['table_info'] = \ bill_texts_df['soup'].apply(lambda x: extractTableContent(x.body)) return None
5,340,814
def _as_static(data, fs): """Get data into the Pyglet audio format.""" fs = int(fs) if data.ndim not in (1, 2): raise ValueError('Data must have one or two dimensions') n_ch = data.shape[0] if data.ndim == 2 else 1 audio_format = AudioFormat(channels=n_ch, sample_size=16, sample_rate=fs) data = data.T.ravel('C') data[data < -1] = -1 data[data > 1] = 1 data = (data * (2 ** 15)).astype('int16').tostring() return StaticMemorySourceFixed(data, audio_format)
5,340,815
def plot_success(exp_data_dict, # task_names, exp_names, title_str='Success Rate (%)', y_label_str="Success Rate (%)"): """ :param exp_data_dict: [name:list(1,2,3)] :param task_names: ['Reaching task', 'Lifting task', ] :param exp_names: ['PNO', 'PNR', 'POR'] :param title_str: 'Fig' :param y_label_str: 'Success Rate (%)' :return: None """ bar_width = 0.6 # 有i个实验,在不同任务中的位置。 x_axis_tick = np.arange(len(exp_data_dict)) values = [] labels = [] for key, value in exp_data_dict.items(): values.append(value[0]) labels.append(key) print("x_axis_tick:", x_axis_tick) print("values:", values) print("labels:", labels) for index in range(len(exp_data_dict)): rect_mean = plt.bar(x=x_axis_tick[index], height=values[index], width=bar_width, align="center", label=labels[index], ) # 给legend赋值字体大小 # plt.legend(loc=0, numpoints=1) plt.legend(loc='upper center', borderaxespad=0., ) leg = plt.gca().get_legend() text = leg.get_texts() plt.setp(text, fontsize=legendFontSize) # 给每个柱状图都标上均值,按照规律来。 for i, y in enumerate(values): plt.text(x_axis_tick[i], 1*y + 1.5, '%s' % round(y, 2), ha='center', FontSize=barFontSize) plt.xticks(x_axis_tick, labels, FontSize=xTicksFontSize) # 确保y轴标签处于0-100,每隔20一个, y_ticks = np.arange(0, 120, 20) print("y_ticks:", y_ticks) plt.yticks(y_ticks, FontSize=yTicksFontSize) plt.ylabel(y_label_str, FontSize=yLabelFontSize) # plt.title(title_str, FontSize=titleFontSize) plt.show()
5,340,816
def preprocess_data(cubes, time_slice: dict = None): """Regrid the data to the first cube and optional time-slicing.""" # Increase TEST_REVISION anytime you make changes to this function. if time_slice: cubes = [extract_time(cube, **time_slice) for cube in cubes] first_cube = cubes[0] # regrid to first cube regrid_kwargs = { 'grid': first_cube, 'scheme': iris.analysis.Nearest(), } cubes = [cube.regrid(**regrid_kwargs) for cube in cubes] return cubes
5,340,817
def password_to_str(password): """ 加密 :param password: :return: """ def add_to_16(password): while len(password) % 16 != 0: password += '\0' return str.encode(password) # 返回bytes key = 'saierwangluo' # 密钥 aes = AES.new(add_to_16(key), AES.MODE_ECB) # 初始化aes加密器 des3 = DES3.new(add_to_16(key), DES3.MODE_ECB) # 初始化3des加密器 # aes加密 encrypted_text = str( base64.encodebytes( aes.encrypt(add_to_16(password))), encoding='utf8' ).replace('\n', '') des_encrypted_text = str( base64.encodebytes(des3.encrypt(add_to_16(encrypted_text))), encoding='utf8' ).replace('\n', '') # 3des加密 # 返回加密后数据 return des_encrypted_text
5,340,818
def email_checker_mailru(request: Request, email: str): """ This API check email from mail.ru<br> <pre> :return: JSON<br> </pre> Example:<br> <br> <code> https://server1.majhcc.xyz/api/email/checker/mailru?email=oman4omani@mail.ru """ from src.Emails.checker.mailru import checker # regex mail.ru if re.match(r'^[a-zA-Z0-9.!#$%&’*+/=?^_`{|}~-]@mail\.ru', email): try: result = checker(email) if result: return { 'status': 'success', 'available': True } elif not result: return { 'status': 'success', 'available': False } elif result == None: return { 'status': 'error please try again or contact us ==> instagram: @majhcc' } else: return { 'status': 'error please try again or contact us ==> instagram: @majhcc' } except Exception as e: data = { 'content': f'Check email from mail.ru api Error: ***{str(e)}***' } requests.post(WEBHOOKURL, data=data) return { 'status': 'error please try again or contact us ==> instagram: @majhcc'} else: return { 'status': 'error', 'result': 'Invalid email' }
5,340,819
def guild_only() -> Callable: """A :func:`.check` that indicates this command must only be used in a guild context only. Basically, no private messages are allowed when using the command. This check raises a special exception, :exc:`.NoPrivateMessage` that is inherited from :exc:`.CheckFailure`. """ def predicate(ctx: InteractionContext) -> bool: if ctx.guild is None: raise NoPrivateMessage() return True return check(predicate)
5,340,820
def make_lvis_metrics( save_folder=None, filename_prefix="model_output", iou_types: Union[str, List[str]] = "bbox", summarize_to_stdout: bool = True, evaluator_factory: Callable[ [Any, List[str]], DetectionEvaluator ] = LvisEvaluator, gt_api_def: Sequence[ SupportedDatasetApiDef ] = DEFAULT_SUPPROTED_DETECTION_DATASETS, ): """ Returns an instance of :class:`DetectionMetrics` initialized for the LVIS dataset. :param save_folder: path to the folder where to write model output files. Defaults to None, which means that the model output of test instances will not be stored. :param filename_prefix: prefix common to all model outputs files. Ignored if `save_folder` is None. Defaults to "model_output" :param iou_types: list of (or a single string) strings describing the iou types to use when computing metrics. Defaults to "bbox". Valid values are "bbox" and "segm". :param summarize_to_stdout: if True, a summary of evaluation metrics will be printed to stdout (as a table) using the Lvis API. Defaults to True. :param evaluator_factory: Defaults to :class:`LvisEvaluator` constructor. :param gt_api_def: Defaults to the list of supported datasets (LVIS is supported in Avalanche through class:`LvisDataset`). :return: A metric plugin that can compute metrics on the LVIS dataset. """ return DetectionMetrics( evaluator_factory=evaluator_factory, gt_api_def=gt_api_def, save_folder=save_folder, filename_prefix=filename_prefix, iou_types=iou_types, summarize_to_stdout=summarize_to_stdout, )
5,340,821
def _calculate_cos_loop(graph, threebody_cutoff=4.0): """ Calculate the cosine theta of triplets using loops Args: graph: List Returns: a list of cosine theta values """ pair_vector = get_pair_vector_from_graph(graph) _, _, n_sites = tf.unique_with_counts(graph[Index.BOND_ATOM_INDICES][:, 0]) start_index = 0 cos = [] for n_site in n_sites: for i in range(n_site): for j in range(n_site): if i == j: continue vi = pair_vector[i + start_index].numpy() vj = pair_vector[j + start_index].numpy() di = np.linalg.norm(vi) dj = np.linalg.norm(vj) if (di <= threebody_cutoff) and (dj <= threebody_cutoff): cos.append(vi.dot(vj) / np.linalg.norm(vi) / np.linalg.norm(vj)) start_index += n_site return cos
5,340,822
def load_plugin(): """ Returns plugin available in this module """ return HostTestPluginCopyMethod_Firefox()
5,340,823
def temp_url_page(rid): """ Temporary page where receipts are stored. The user, which visits it first, get the receipt. :param rid: (str) receipt id (user is assigned to receipt with this id) """ if not user_handler.assign_rid_user(rid, flask.session['username']): logging.warn('Trying to steal receipt! {ip} has visited page: {url}! Cancelling request!'. format(ip=flask.request.remote_addr, url=flask.request.url)) flask.abort(400) return return flask.redirect(flask.url_for('dashboard_page'))
5,340,824
def extract_dependencies(content): """ Extract the dependencies from the CMake code. The `find_package()` and `pkg_check_modules` calls must be on a single line and the first argument must be a literal string for this function to be able to extract the dependency name. :param str content: The CMake source code :returns: The dependencies name :rtype: list """ return \ extract_find_package_calls(content) | \ _extract_pkg_config_calls(content)
5,340,825
def _block(x, out_channels, name, conv=conv2d, kernel=(3, 3), strides=(2, 2), dilations=(1, 1), update_collection=None, act=tf.nn.leaky_relu, pooling='avg', padding='SAME', batch_norm=False): """Builds the residual blocks used in the discriminator in GAN. Args: x: The 4D input vector. out_channels: Number of features in the output layer. name: The variable scope name for the block. conv: Convolution function. Options conv2d or snconv2d kernel: The height and width of the convolution kernel filter (Default value = (3, 3)) strides: Rate of convolution strides (Default value = (2, 2)) dilations: Rate of convolution dilation (Default value = (1, 1)) update_collection: The update collections used in the in the spectral_normed_weight. (Default value = None) downsample: If True, downsample the spatial size the input tensor . If False, the spatial size of the input tensor is unchanged. (Default value = True) act: The activation function used in the block. (Default value = tf.nn.relu) pooling: Strategy of pooling. Default: average pooling. Otherwise, no pooling, just using strides padding: Padding type (Default value = 'SAME') batch_norm: A flag that determines if batch norm should be used (Default value = False) Returns: A tensor representing the output of the operation. """ with tf.variable_scope(name): if batch_norm: bn0 = BatchNorm(name='bn_0') bn1 = BatchNorm(name='bn_1') input_channels = x.shape.as_list()[-1] x_0 = x x = conv(x, out_channels, kernel, dilations=dilations, name='conv1', padding=padding) if batch_norm: x = bn0(x) x = act(x, name="before_downsampling") x = down_sampling(x, conv, pooling, out_channels, kernel, strides, update_collection, 'conv2', padding) if batch_norm: x = bn1(x) if strides[0] > 1 or strides[1] > 1 or input_channels != out_channels: x_0 = down_sampling(x_0, conv, pooling, out_channels, kernel, strides, update_collection, 'conv3', padding) out = x_0 + x # No RELU: http://torch.ch/blog/2016/02/04/resnets.html return out
5,340,826
def createLaplaceGaussianKernel(sigma, size): """构建高斯拉普拉斯卷积核 Args: sigma ([float]): 高斯函数的标准差 size ([tuple]): 高斯核的大小,奇数 Returns: [ndarray]: 高斯拉普拉斯卷积核 """ H, W = size r, c = np.mgrid[0:H:1, 0:W:1] r = r - (H - 1) / 2 c = c - (W - 1) / 2 sigma2 = pow(sigma, 2.0) norm2 = np.power(r, 2.0) + np.power(c, 2.0) LoGKernel = (norm2 / sigma2 - 2)*np.exp(-norm2 / (2 * sigma2)) return LoGKernel
5,340,827
def test_datafile_success(session_obj): """ Normally a good practice is to have expected response as a string like in other tests. Here we are exceptionally making expected response a dict for easier comparison. String was causing some issues with extra white space characters. :param session_obj: session object """ payload = '{"userId": "matjaz", "userAttributes": {"attr_1": "hola"}}' params = {"featureKey": "feature_1"} resp = create_and_validate_request_and_response(ENDPOINT_DATAFILE, 'get', session_obj, bypass_validation_request=False, payload=payload, params=params) assert expected_response == resp.json() assert resp.status_code == 200, resp.text
5,340,828
def test_DeAST_class(): """Can the DeAST class be instantiated?""" from ast import NodeVisitor from deast import DeAST deaster = DeAST() assert isinstance(deaster, DeAST) assert isinstance(deaster, NodeVisitor)
5,340,829
def is_file_type(fpath, filename, ext_list): """Returns true if file is valid, not hidden, and has extension of given type""" file_parts = filename.split('.') # invalid file if not os.path.isfile(os.path.join(fpath, filename)): return False # hidden file elif filename.startswith('.'): return False # no extension elif len(file_parts) < 2: return False # check file type extension = file_parts[-1].lower() if extension in ext_list: return True else: return False
5,340,830
def xp_rirgen2(room, source_loc, mic_loc, c=340, fs=16000, t60=0.5, beta=None, nsamples=None, htw=None, hpfilt=True, method=1): """Generates room impulse responses corresponding to each source-microphone pair placed in a room. Args: room (numpy/cupy array) = room dimensions in meters, shape: (3, 1) source_loc (numpy/cupy array) = source locations in meters, shape: (3, nsrc) mic_loc (numpy/cupy array) = microphone locations in meters, shape: (3, nmic) kwargs: c (float) = speed of sound in meters/second (default: 340) fs (float) = sampling rate in Hz (default: 16000) t60 (float) = t60 or rt60 in seconds or None to use beta parameters (default: 0.5) beta (numpy/cupy array) = beta parameters of reflections for each side, shape (6,1) (default: None) nsamples (int) = number of output samples (default: auto from t60) htw (int) = half size in samples of the time window used for sinc function interpolation (default automatic) hpfilt (bool) = use post-generation highpass filter or not (default True) method (int) = 1 or 2, 2 is not tested thoroughly and is very slow, so use 1 always (default 1) Returns: room impulse responses in time-domain of shape (nsrc, nmic, nsamples) Notes: 1. If input arrays are cupy arrays (on GPU), the code runs with cupy, otherwise with numpy 2. if you do not want to install cupy or not interested in GPU processing, remove line "import cupy" and replace "xp=cupy.get..." with "xp=np" .. seealso:: :func:`pyrirgen.RirGenerator` .. seealso:: :url:https://github.com/ehabets/RIR-Generator/blob/master/rir_generator.cpp >>> ### DOCTEST ### >>> room = np.array([4,7,3]).reshape(3,1) >>> source_loc = np.random.uniform(0,1,(3,2)) * room >>> mic_loc = np.random.uniform(0,1,(3,4)) * room >>> t60=0.3 >>> rirs_np = xp_rirgen(room, source_loc, mic_loc, t60=t60) >>> #import matplotlib.pyplot as plt >>> #plt.plot(rirs_np[0,0,:] , label='rir for src1 and mic1') >>> croom = cupy.array(room) >>> csource_loc = cupy.array(source_loc) >>> cmic_loc = cupy.array(mic_loc) >>> rirs_cp = xp_rirgen(croom, csource_loc, cmic_loc, t60=t60) >>> cupy.testing.assert_allclose(rirs_np, cupy.asnumpy(rirs_cp), atol=1e-5, rtol=1e-5) >>> beta = np.random.uniform(0.1, 0.9, size=6) >>> rirs_np = xp_rirgen(room, source_loc, mic_loc, beta=beta, t60=None) >>> cbeta = cupy.array(beta) >>> rirs_cp = xp_rirgen(croom, csource_loc, cmic_loc, beta=cbeta, t60=None) >>> cupy.testing.assert_allclose(rirs_np, cupy.asnumpy(rirs_cp), atol=1e-5, rtol=1e-5) """ # xp = cupy.get_array_module(room, source_loc, mic_loc, beta) xp if beta is None and t60 is None: raise Exception('Either t60 or beta array must be provided') elif beta is None: V = xp.prod(room) S = 2 * (room[0] * room[2] + room[1] * room[2] + room[0] * room[1]) alpha = 24 * V * xp.log(10) / (c * S * t60) if alpha < 1: beta = xp.ones(6, ) * xp.sqrt(1 - alpha) else: raise Exception('t60 value {} too small for the room'.format(t60)) else: if xp.max(beta) >= 1.0 or xp.min(beta) <= 0.0: raise Exception('beta array values should be in the interval (0,1).') if t60 is not None: print('Overwriting provided t60 value using provided beta array') alpha = 1 - beta**2 V = xp.prod(room) Se = 2 * (room[1] * room[2] * (alpha[0] + alpha[1]) + room[0] * room[2] * (alpha[2] + alpha[3]) + room[0] * room[1] * (alpha[4] + alpha[5])) t60 = 24 * xp.log(10.0) * V / (c * Se); if htw is None: htw = np.minimum(32, int(xp.min(room) / 10 / c * fs)) tw_idx = xp.arange(0, 2 * htw).reshape(2 * htw, 1) try: assert(xp.all(room.T - mic_loc.T > 0) and xp.all(room.T - source_loc.T > 0)) assert(xp.all(mic_loc.T > 0) and xp.all(source_loc.T > 0)) except: raise Exception('Room dimensions and source and mic locations are not compatible.') cTs = c / fs # convert distances in meters to time-delays in samples room = room / cTs mic_loc = mic_loc / cTs src_loc = source_loc / cTs nmic = mic_loc.shape[-1] nsrc = source_loc.shape[-1] if nsamples is None: nsamples = int(fs * t60) def get_reflection_candidates(): nxrefl = int(nsamples / (room[0])) nyrefl = int(nsamples / (room[1])) nzrefl = int(nsamples / (room[2])) xro = xp.arange(-nxrefl, nxrefl + 1) yro = xp.arange(-nyrefl, nyrefl + 1) zro = xp.arange(-nzrefl, nzrefl + 1) xr = xro.reshape(2 * nxrefl + 1, 1, 1) yr = yro.reshape(1, 2 * nyrefl + 1, 1) zr = zro.reshape(1, 1, 2 * nzrefl + 1) RoughDelays = xp.sqrt((2 * xr * room[0]) ** 2 + (2 * yr * room[1]) ** 2 + (2 * zr * room[2]) ** 2) RoughGains = (beta[0] * beta[1]) ** xp.abs(xr) * (beta[2] * beta[3]) ** xp.abs(yr) * (beta[4] * beta[5]) ** xp.abs(zr) / ( RoughDelays + 0.5 / c * fs) # assume src-mic distance at least .5 metres maxgain = xp.max(RoughGains) vreflidx = xp.vstack(xp.nonzero(xp.logical_and(RoughDelays < nsamples, RoughGains > maxgain / 1.0e4))) nrefl = vreflidx.shape[-1] reflidx = xp.arange(nrefl).reshape(1, 1, nrefl, 1, 1, 1) xrefl = xro[vreflidx[..., reflidx][0]] yrefl = yro[vreflidx[..., reflidx][1]] zrefl = zro[vreflidx[..., reflidx][2]] return xrefl, yrefl, zrefl xrefl, yrefl, zrefl = get_reflection_candidates() def get_delays_and_gains(): xside = xp.arange(0, 2).reshape(1, 1, 1, 2, 1, 1) yside = xp.arange(0, 2).reshape(1, 1, 1, 1, 2, 1) zside = xp.arange(0, 2).reshape(1, 1, 1, 1, 1, 2) imic = xp.arange(nmic).reshape(1, nmic, 1, 1, 1, 1) isrc = xp.arange(nsrc).reshape(nsrc, 1, 1, 1, 1, 1) Delays = xp.sqrt((2 * xrefl * room[0] - mic_loc[0, imic] + (1 - 2 * xside) * src_loc[0, isrc]) ** 2 + (2 * yrefl * room[1] - mic_loc[1, imic] + (1 - 2 * yside) * src_loc[1, isrc]) ** 2 + (2 * zrefl * room[2] - mic_loc[2, imic] + (1 - 2 * zside) * src_loc[2, isrc]) ** 2) Refl_x = beta[0] ** (xp.abs(xrefl - xside)) * beta[1] ** (xp.abs(xrefl)) Refl_y = beta[2] ** (xp.abs(yrefl - yside)) * beta[3] ** (xp.abs(yrefl)) Refl_z = beta[4] ** (xp.abs(zrefl - zside)) * beta[5] ** (xp.abs(zrefl)) Gains = Refl_x * Refl_y * Refl_z / (4 * np.pi * Delays * cTs) # Gains[Delays > nsamples] = 0.0 return Delays, Gains Delays, Gains = get_delays_and_gains() rirs = xp.zeros((nsrc, nmic, nsamples), dtype=np.float32) for src in xp.arange(nsrc): for mic in xp.arange(nmic): dnow = Delays[src, mic, ...].flatten() gnow = Gains[src, mic, ...].flatten() if method == 1: gnow = gnow[dnow < nsamples - htw - 2] dnow = dnow[dnow < nsamples - htw - 2] dnow_floor = xp.floor(dnow) dnow_dist = dnow - dnow_floor dnow_floor = dnow_floor.reshape(1, dnow.shape[0]) dnow_dist = dnow_dist.reshape(1, dnow.shape[0]) gnow = gnow.reshape(1, dnow.shape[0]) dnow_ext = dnow_floor + tw_idx - htw + 1 garg = np.pi * (-dnow_dist + 1 + tw_idx - htw) gnow_ext = gnow * 0.5 * (1.0 - xp.cos(np.pi + garg / htw)) * xp.where(garg == 0.0, 1.0, xp.sin(garg) / garg) dnow = dnow_ext.flatten().astype(np.uint32) gnow = gnow_ext.flatten().astype(np.float32) rirnow = xp.zeros((nsamples,), dtype=np.float32) if xp == np: np.add.at(rirnow, dnow, gnow) else: xp.scatter_add(rirnow, dnow, gnow) rirs[src, mic, ...] = rirnow elif method == 2: ## this is too slow and may not be accurate as well gnow = gnow[dnow < nsamples] dnow = dnow[dnow < nsamples] frange = xp.arange(0, 0.5 + 0.5 / nsamples, 1.0 / nsamples) rirfft = xp.zeros(frange.shape, dtype=np.complex128) for i in range(len(frange)): rirfft[i] = xp.sum(gnow * xp.exp(-1j * 2 * np.pi * frange[i] * dnow)) rirs[src, mic, :] = xp.real(xp.fft.irfft(rirfft)).astype(dtype=np.float32) if hpfilt: rirs[:, :, 1:-1] += -0.5 * rirs[:, :, 2:] -0.5 * rirs[:, : , :-2] return rirs
5,340,831
def mean_bias_removal(hindcast, alignment, cross_validate=True, **metric_kwargs): """Calc and remove bias from py:class:`~climpred.classes.HindcastEnsemble`. Args: hindcast (HindcastEnsemble): hindcast. alignment (str): which inits or verification times should be aligned? - maximize/None: maximize the degrees of freedom by slicing ``hind`` and ``verif`` to a common time frame at each lead. - same_inits: slice to a common init frame prior to computing metric. This philosophy follows the thought that each lead should be based on the same set of initializations. - same_verif: slice to a common/consistent verification time frame prior to computing metric. This philosophy follows the thought that each lead should be based on the same set of verification dates. cross_validate (bool): Use properly defined mean bias removal function. This excludes the given initialization from the bias calculation. With False, include the given initialization in the calculation, which is much faster but yields similar skill with a large N of initializations. Defaults to True. Returns: HindcastEnsemble: bias removed hindcast. """ if hindcast.get_initialized().lead.attrs["units"] != "years": warnings.warn( "HindcastEnsemble.remove_bias() is still experimental and is only tested " "for annual leads. Please consider contributing to " "https://github.com/pangeo-data/climpred/issues/605" ) def bias_func(a, b, **kwargs): return a - b bias_metric = Metric("bias", bias_func, True, False, 1) # calculate bias lead-time dependent bias = hindcast.verify( metric=bias_metric, comparison="e2o", dim=[], # not used by bias func, therefore best to add [] here alignment=alignment, **metric_kwargs, ).squeeze() # how to remove bias if cross_validate: # more correct mean_bias_func = _mean_bias_removal_cross_validate else: # faster mean_bias_func = _mean_bias_removal_quick bias_removed_hind = mean_bias_func(hindcast._datasets["initialized"], bias, "init") bias_removed_hind = bias_removed_hind.squeeze() # remove groupby label from coords for c in ["dayofyear", "skill", "week", "month"]: if c in bias_removed_hind.coords and c not in bias_removed_hind.dims: del bias_removed_hind.coords[c] # replace raw with bias reducted initialized dataset hindcast_bias_removed = hindcast.copy() hindcast_bias_removed._datasets["initialized"] = bias_removed_hind return hindcast_bias_removed
5,340,832
def request_sudoku_valid(sudoku: str) -> bool: """valid request""" is_valid = False provider_request = requests.get(f"{base_url}/valid/{sudoku}") if provider_request.status_code == 200: request_data = provider_request.json() is_valid = request_data["result"] # TODO: else raise exception return is_valid
5,340,833
def index(): """ vista principal """ return "<i>API RestFull PARCES Version 0.1</i>"
5,340,834
def show_config(ctx): """ Prints the resolved config to the console """ click.echo(ctx.obj["config"].to_yaml())
5,340,835
def tag(dicts, key, value): """Adds the key value to each dict in the sequence""" for d in dicts: d[key] = value return dicts
5,340,836
def init_emitter(): """Ensure emit is always clean, and initted (in test mode). Note that the `init` is done in the current instance that all modules already acquired. """ # init with a custom log filepath so user directories are not involved here; note that # we're not using pytest's standard tmp_path as Emitter would write logs there, and in # effect we would be polluting that temporary directory (potentially messing with # tests, that may need that empty), so we use another one. temp_fd, temp_logfile = tempfile.mkstemp(prefix="emitter-logs") os.close(temp_fd) temp_logfile = pathlib.Path(temp_logfile) messages.TESTMODE = True messages.emit.init( messages.EmitterMode.QUIET, "test-emitter", "Hello world", log_filepath=temp_logfile ) yield # end machinery (just in case it was not ended before; note it's ok to "double end") messages.emit.ended_ok() temp_logfile.unlink()
5,340,837
def plot_roc(fpr, tpr): """Plot the ROC curve""" plt.plot(fpr, tpr) plt.title('Receiver Operating Characteristic (ROC)') plt.legend(bbox_to_anchor=(1.05, 1), loc=2) plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.savefig(Directories.ROC_CURVE_DIR.value) plt.show() plt.close()
5,340,838
def openpairshelf(filename, flag='c', protocol=None, writeback=False): """Returns a ProteinPairDB object, with similar functionality to shelve.open()""" return ProteinPairDB(filename, flag, protocol, writeback)
5,340,839
def createUser(emailid, password, contact_no, firstname, lastname, category, address, description, company_url, image_url, con=None, cur=None, db=None): """ Tries to create a new user with the given data. Returns: - dict: dict object containing all user data, if query was successfull - False: If query was unsuccessful """ sql = """Insert into users( emailid, password, firstname, lastname, contact_no, category, address, description, company_url, image_url ) values (%s,%s,%s,%s,%s,%s,%s,%s,%s,%s)""" db(sql, (emailid, password, firstname, lastname, contact_no, category, address, description, company_url, image_url)) con.commit() # close database connection user = getUserUsingEmail(emailid) return user or False
5,340,840
def sensor_pull_storage(appname, accesskey, timestring, *,data_folder = None, ttn_version=3): """ Pull data from TTN via the TTN storage API. appname is the name of the TTN app accesskey is the full accesskey from ttn. For TTN V3, this is is the secret that is output when a key is created. For TTN V2, this is the string from the console, starting with 'ttn-acount-v2.' timestring indicates amount of data needed, e.g. '100h'. ttn_version should be 2 or 3; 3 is default. If data_folder is supplied, it is a string or a Path; it is taken as a directory, and the name "sensors_lastperiod.json" is appended to form an output file name, and the data is written to the resulting file, replacing any previous contents. Otherwise, the data is returned as a Python array (for V3) or a string (for V2). We've not really tested V2 extensively. """ args = [ "curl" ] if ttn_version == 2: args += [ "-X", "GET", "--header", "Accept: application/json", "--header", f"Authorization: key {accesskey}", f"https://{appname}.data.thethingsnetwork.org/api/v2/query?last={timestring}" ] elif ttn_version == 3: args += [ "-G", f"https://nam1.cloud.thethings.network/api/v3/as/applications/{appname}/packages/storage/uplink_message", "--header", f"Authorization: Bearer {accesskey}", "--header", "Accept: text/event-stream", "-d", f"last={timestring}", "-d", "field_mask=up.uplink_message.decoded_payload", ] else: raise FetchError(f"Illegal ttn_version (not 2 or 3)") # if the user supplied a data_folder, than tack on the args. # list1 += list2 syntax means "append each element of list2 to list 1" # pathlib.Path allows if data_folder != None: args += [ "-o", pathlib.Path(data_folder, "sensors_lastperiod.json") ] result = subprocess.run( args, shell=False, check=True, capture_output=True ) sresult = result.stdout if ttn_version == 3: return list(map(json.loads, re.sub(r'\n+', '\n', sresult.decode()).splitlines())) else: return sresult
5,340,841
async def discordView(cls:"PhaazebotWeb", WebRequest:ExtendedRequest) -> Response: """ Default url: /discord/view/{guild_id:\d+} """ PhaazeDiscord:"PhaazebotDiscord" = cls.BASE.Discord if not PhaazeDiscord: return await cls.Tree.errors.notAllowed(cls, WebRequest, msg="Discord module is not active") guild_id:str = WebRequest.match_info.get("guild_id", "") Guild:discord.Guild = discord.utils.get(PhaazeDiscord.guilds, id=int(guild_id)) if not Guild: return await cls.Tree.Discord.discordinvite.discordInvite(WebRequest, msg=f"Phaaze is not on this Server", guild_id=guild_id) ViewPage:HTMLFormatter = HTMLFormatter("Platforms/Web/Content/Html/Discord/view.html") ViewPage.replace( guild_id=Guild.id, guild_icon_url=Guild.icon_url, guild_name=Guild.name ) site:str = cls.HTMLRoot.replace( replace_empty=True, title="Phaaze | Discord - View", header=getNavbar(active="discord"), main=ViewPage ) return cls.response( body=site, status=200, content_type='text/html' )
5,340,842
def update_max_braking_decel(vehicle, mbd): """ Updates the max braking decel of the vehicle :param vehicle: vehicle :param mbd: new max braking decel :type vehicle: VehicleProfile :return: Updated vehicle """ return vehicle.update_max_braking_decel(mbd)
5,340,843
def get_outlier_removal_mask(xcoords, ycoords, nth_neighbor=10, quantile=.9): """ Parameters ---------- xcoords : ycoords : nth_neighbor : (Default value = 10) quantile : (Default value = .9) Returns ------- """ from scipy.spatial.distance import pdist, squareform D = squareform(pdist(np.vstack((xcoords, ycoords)).T)) distances = D[np.argsort(D, axis=0)[nth_neighbor - 1, :], 0] return distances <= np.quantile(distances, quantile)
5,340,844
def _kp(a, b): """Special case Kronecker tensor product of a[i] and b[i] at each time interval i for i = 0 .. N-1 It is specialized for the case where both a and b are shape N x m x 1 """ if a.shape != b.shape or a.shape[-1] != 1: raise(ValueError) N = a.shape[0] # take the outer product over the last two axes, then reshape: return np.einsum('ijk,ilk->ijkl', a, b).reshape(N, -1, 1)
5,340,845
def omics(): """Manage -omics."""
5,340,846
def strategy(history, alivePlayers, whoami, memory): """ history contains all previous rounds (key : id of player (shooter), value : id of player (target)) alivePlayers is a list of all player ids whoami is your own id (to not kill yourself by mistake) memory is None by default and transferred over (if you set it to 1, it will be 1 in the next round) memory is NOT shared between games (subject to changes) """ # Your code would be here but this strategy is dumb... """ You must return an id of a player (if not : you shoot in the air) Memory must be set to something but can be anything (None included ) """ return alivePlayers[0], None
5,340,847
def parse_fn(serialized_example: bytes) -> FeaturesType: """Parses and converts Tensors for this module's Features. This casts the audio_raw_pcm16 feature to float32 and scales it into the range [-1.0, 1.0]. Args: serialized_example: A serialized tf.train.ExampleProto with the features dict keys declared in the :py:class:Features enum. Returns: Tensor-valued dict of features. The keys are those declared in the :py:class:Features enum. """ features = tf.io.parse_single_example( serialized_example, {f.value.name: f.value.spec for f in Features}) audio_key: str = Features.AUDIO.value.name features[audio_key] = tf.cast(tf.io.decode_raw(features[audio_key], tf.int16), tf.float32) / np.iinfo(np.int16).max return features
5,340,848
def cli(ctx: click.Context) -> int: """ Method used to declare root CLI command through decorators. """ return 0
5,340,849
def parse_clock(line): """Parse clock information""" search = parse(REGEX_CLOCK, line) if search: return int(search.group('clock')) else: return None
5,340,850
def block_latest(self, **kwargs): """ Return the latest block available to the backends, also known as the tip of the blockchain. https://docs.blockfrost.io/#tag/Cardano-Blocks/paths/~1blocks~1latest/get :param return_type: Optional. "object", "json" or "pandas". Default: "object". :type return_type: str :returns BlockResponse object. :rtype BlockResponse :raises ApiError: If API fails :raises Exception: If the API response is somehow malformed. """ return requests.get( url=f"{self.url}/blocks/latest", headers=self.default_headers )
5,340,851
def get_courses(): """ Route to display all courses """ params = format_dict(request.args) if params: try: result = Course.query.filter_by(**params).order_by(Course.active.desc()) except InvalidRequestError: return { 'message': 'One or more parameter(s) does not exist' }, 400 else: result = Course.query.order_by(Course.active.desc()) return { "courses": [c.serialize for c in result] }
5,340,852
def zero_adam_param_states(state: flax.optim.OptimizerState, selector: str): """Applies a gradient for a set of parameters. Args: state: a named tuple containing the state of the optimizer selector: a path string defining which parameters to freeze. Returns: A tuple containing the new parameters and the new optimizer state. """ step = state.step params = flax.core.unfreeze(state.param_states) flat_params = { "/".join(k): v for k, v in traverse_util.flatten_dict(params).items() } for k in flat_params: if k.startswith(selector): v = flat_params[k] # pylint: disable=protected-access flat_params[k] = flax.optim.adam._AdamParamState( jnp.zeros_like(v.grad_ema), jnp.zeros_like(v.grad_sq_ema) ) new_param_states = traverse_util.unflatten_dict( {tuple(k.split("/")): v for k, v in flat_params.items()} ) new_param_states = dict(flax.core.freeze(new_param_states)) new_state = flax.optim.OptimizerState(step, new_param_states) return new_state
5,340,853
def main(): """ Main Function. """ inputQuery = input("Enter query string:") tic = time.time() docsAsShingleSets, allShingles, PostingDict, docIDlist = shingle(inputQuery) toc = time.time() print("Time taken = ", toc-tic) tic = time.time() matrix = matrixGenerator(allShingles,PostingDict) print(matrix) toc = time.time() print("Time taken = ", toc-tic) tic = time.time() sign_matrix = find_sign_matrix(matrix,len(allShingles)) toc = time.time() print("Time taken = ", toc-tic) tic = time.time() BANDS=20 docth,buckets = lsh(BANDS,docIDlist,sign_matrix) toc = time.time() print("Time taken = ", toc-tic) query_id = len(docAsShingleSets)-1 inputDocID=query_id tic = time.time() sim_docs = get_similar(int(inputDocID),docIDlist,buckets,docth,docsAsShingleSets,sign_matrix) print("\n Calculating Jaccard similarities....\n") found = 0 for sim, doc in sim_docs: if sim >= threshold: found = 1 print('Document Name: ' + str(doc), 'Similarity: ' + str(sim) + '\n') if found == 0: print("NO similar docs for the given threshold") toc = time.time() print("Time taken = ", toc-tic)
5,340,854
def leftFitNormal(population): """ Obtain mode and standard deviation from the left side of a population. >>> pop = np.random.normal(loc=-20, scale=3, size=15000) >>> mode, sigma = leftFitNormal(pop) >>> -22 < mode < -18 True >>> round(sigma) 3 >>> pop[pop > -18] += 10 # perturb right side >>> mode, sigma = leftFitNormal(pop) >>> -22 < mode < -18 True >>> round(sigma) == 3 True >>> pop[pop < -22] -= 10 # perturb left side >>> mode, sigma = leftFitNormal(pop) >>> -22 < mode < -18 True >>> round(sigma) == 3 False """ # TODO: Can this function be omitted? # Quick alternative robust fit: # median = np.nanmedian(population) # MADstd = np.nanmedian(np.abs(population - median)) * 1.4826 # Could still modify this estimator to ignore samples > median. # Note, if the distribution is right-skewed or bimodal (e.g. if there is # some land amongst mostly open water) then other relative frequencies # will proportionally be depressed, favouring the fit of a broader # Gaussian (perhaps also shifted slightly rightward) to the left side # of the histogram (compared to if the distribution was normal). # Could address this by normalising the interval area. # # Currently the tests for perturbed distributions bypass this limitation # by _conditionally_ replacing existing samples, rather than by mixing # additional components into the population i.e. avoiding # pop[:5000] = np.linspace(-15, -5, 5000). std = np.nanstd(population) # naive initial estimate Y, X = hist_fixedwidth(population) # Take left side of distribution pos = Y.argmax() mode = X[pos] X = X[:pos+1] Y = Y[:pos+1] # fit gaussian to (left side of) distribution def gaussian(x, mean, sigma): return np.exp(-0.5 * ((x - mean)/sigma)**2) / (sigma * (2*np.pi)**0.5) (mean, std), cov = scipy.optimize.curve_fit(gaussian, X, Y, p0=[mode, std]) return mode, std
5,340,855
def test_neg_init(): """ Tests that init does not run main on package import """ with mock.patch.object(__main__, "__name__", "not-main"): assert __main__.init() is None
5,340,856
def get_stock_market_list(corp_cls: str, include_corp_name=True) -> dict: """ 상장 회사 dictionary 반환 Parameters ---------- corp_cls: str Y: stock market(코스피), K: kosdaq market(코스닥), N: konex Market(코넥스) include_corp_name: bool, optional if True, returning dictionary includes corp_name(default: True) Returns ------- dict of {stock_code: information} 상장 회사 정보 dictionary 반환( 회사 이름, 섹터, 물품) """ if corp_cls.upper() == 'E': raise ValueError('ETC market is not supported') corp_cls_to_market = { "Y": "stockMkt", "K": "kosdaqMkt", "N": "konexMkt", } url = 'http://kind.krx.co.kr/corpgeneral/corpList.do' referer = 'http://kind.krx.co.kr/corpgeneral/corpList.do?method=loadInitPage' market_type = corp_cls_to_market[corp_cls.upper()] payload = { 'method': 'download', 'pageIndex': 1, 'currentPageSize': 5000, 'orderMode': 3, 'orderStat': 'D', 'searchType': 13, 'marketType': market_type, 'fiscalYearEnd': 'all', 'location': 'all', } stock_market_list = dict() resp = request.post(url=url, payload=payload, referer=referer) html = BeautifulSoup(resp.text, 'html.parser') rows = html.find_all('tr') for row in rows: cols = row.find_all('td') if len(cols) > 0: corp_name = cols[0].text.strip() stock_code = cols[1].text.strip() sector = cols[2].text.strip() product = cols[3].text.strip() corp_info = {'sector': sector, 'product': product, 'corp_cls': corp_cls} if include_corp_name: corp_info['corp_name'] = corp_name stock_market_list[stock_code] = corp_info return stock_market_list
5,340,857
def evaluate_template(template: dict) -> dict: """ This function resolves the template by parsing the T2WML expressions and replacing them by the class trees of those expressions :param template: :return: """ response = dict() for key, value in template.items(): if key == 'qualifier': response[key] = [] for i in range(len(template[key])): temp_dict = dict() for k, v in template[key][i].items(): if isinstance(v, (ItemExpression, ValueExpression, BooleanEquation)): col, row, temp_dict[k] = v.evaluate_and_get_cell(bindings) temp_dict['cell'] = get_actual_cell_index((col, row)) else: temp_dict[k] = v if "property" in temp_dict and temp_dict["property"] == "P585": if "format" in temp_dict: try: datetime_string, precision = parse_datetime_string(temp_dict["value"], additional_formats=[temp_dict["format"]]) if "precision" not in temp_dict: temp_dict["precision"] = int(precision.value.__str__()) else: temp_dict["precision"] = translate_precision_to_integer(temp_dict["precision"]) temp_dict["value"] = datetime_string except Exception as e: raise e response[key].append(temp_dict) else: if isinstance(value, (ItemExpression, ValueExpression, BooleanEquation)): col, row, response[key] = value.evaluate_and_get_cell(bindings) if key == "item": response['cell'] = get_actual_cell_index((col, row)) else: response[key] = value return response
5,340,858
def get_CommandeProduits(path, prefix='CP_',cleaned=False): """ Read CSV (CommandeProduits) into Dataframe. All relevant columns are kept and renamed with prefix. Args: path (str): file path to CommandeProduits.csv prefix (str): All relevant columns are renamed with prefix Returns: df (Dataframe): Resulting dataframe """ col = {'Id':prefix+'Id', 'Commande_Id':'Commande_Id', 'OffreProduit_Id':'OffreProduit_Id', 'QuantiteTotale':prefix+'QuantiteTotale', 'QuantiteUnite':prefix+'QuantiteUnite', 'QuantiteValeur':prefix+'QuantiteValeur', 'MontantTotal':prefix+'MontantTotal', 'Weight':prefix+'Weight'} dt = {'Id': 'int64', 'Commande_Id': 'int64', 'OffreProduit_Id':'int64', 'QuantiteTotale':'float64', 'QuantiteUnite':'object', 'QuantiteValeur':'float64', 'MontantTotal':'float64', 'Weight':'float64'} if not cleaned: df = pd.read_csv(path, sep='\t', encoding='utf-8', usecols=list(col.keys()), dtype=dt) df = df.rename(index=str, columns=col) else: df = pd.read_csv(path, sep='\t', encoding='utf-8',index_col=0) return df
5,340,859
def hist_equal(image, hist): """ Equalize an image based on a histogram. Parameters ---------- image : af.Array - A 2 D arrayfire array representing an image, or - A multi dimensional array representing batch of images. hist : af.Array - Containing the histogram of an image. Returns --------- output : af.Array - The equalized image. """ output = Array() safe_call(backend.get().af_hist_equal(c_pointer(output.arr), image.arr, hist.arr)) return output
5,340,860
def get_close_icon(x1, y1, height, width): """percentage = 0.1 height = -1 while height < 15 and percentage < 1.0: height = int((y2 - y1) * percentage) percentage += 0.1 return (x2 - height), y1, x2, (y1 + height)""" return x1, y1, x1 + 15, y1 + 15
5,340,861
def train_model(network, data, labels, batch_size, epochs, validation_data=None, verbose=True, shuffle=False): """ Train """ model = network.fit( data, labels, batch_size=batch_size, epochs=epochs, validation_data=validation_data, shuffle=shuffle, verbose=verbose) return model
5,340,862
def taoyuan_agrichannel_irrigation_transfer_loss_rate(): """ Real Name: TaoYuan AgriChannel Irrigation Transfer Loss Rate Original Eqn: 0 Units: m3/m3 Limits: (None, None) Type: constant Subs: None This is "no loss rate" version. """ return 0
5,340,863
def mocked_requests() -> MockedRequests: """Return mocked requests library.""" mocked_requests = MockedRequests() with patch("libdyson.cloud.account.requests.request", mocked_requests.request): yield mocked_requests
5,340,864
def Setup(): """Sets up the logging environment.""" build_info = buildinfo.BuildInfo() log_file = r'%s\%s' % (GetLogsPath(), constants.BUILD_LOG_FILE) file_util.CreateDirectories(log_file) debug_fmt = ('%(levelname).1s%(asctime)s.%(msecs)03d %(process)d {} ' '%(filename)s:%(lineno)d] %(message)s').format( build_info.ImageID()) info_fmt = '%(levelname).1s%(asctime)s %(filename)s:%(lineno)d] %(message)s' debug_formatter = logging.Formatter(debug_fmt, datefmt=DATE_FMT) info_formatter = logging.Formatter(info_fmt, datefmt=DATE_FMT) # Set default logger logger = logging.getLogger() logger.setLevel(logging.DEBUG) # Create empty list of handlers to enable multiple streams. logger.handlers = [] # Create console handler and set level ch = logging.StreamHandler() ch.setLevel(logging.INFO) ch.setFormatter(info_formatter) logger.addHandler(ch) # Create file handler and set level try: fh = logging.FileHandler(log_file) except IOError: raise LogError('Failed to open log file %s.' % log_file) fh.setLevel(logging.DEBUG) fh.setFormatter(debug_formatter) logger.addHandler(fh) # Create Event Log handler and set level if not winpe.check_winpe(): eh = logging.handlers.NTEventLogHandler('GlazierBuildLog') eh.setLevel(logging.DEBUG) eh.setFormatter(debug_formatter) logger.addHandler(eh)
5,340,865
def test_camera_association(focuser): """ Test association of Focuser with Camera after initialisation (getter, setter) """ sim_camera_1 = Camera() sim_camera_2 = Camera() # Cameras in the fixture haven't been associated with a Camera yet, this should work focuser.camera = sim_camera_1 assert focuser.camera is sim_camera_1 # Attempting to associate with a second Camera should fail, though. focuser.camera = sim_camera_2 assert focuser.camera is sim_camera_1
5,340,866
def lambda_handler(event, context): """ Find and replace following words and outputs the result. Oracle -> Oracle© Google -> Google© Microsoft -> Microsoft© Amazon -> Amazon© Deloitte -> Deloitte© Example input: “We really like the new security features of Google Cloud”. Expected output: “We really like the new security features of Google© Cloud”. """ # Return 400 if event is none or strToReplace is blank if not event or not event['strToReplace']: return { 'statusCode': 400, 'body': "Input string not provided." } # Input String replacementString = event['strToReplace'] # Dictionary of words with replacement words wordsToReplaceDict = {'Oracle': 'Oracle©', 'Google': 'Google©', 'Microsoft': 'Microsoft©', 'Amazon': 'Amazon©', 'Deloitte': 'Deloitte©'} # Iterate over all key-value pairs in dictionary for key, value in wordsToReplaceDict.items(): # Replace words in string replacementString = replacementString.replace(key, value) return { 'statusCode': 200, 'body': replacementString }
5,340,867
def update_inv(X, X_inv, i, v): """Computes a rank 1 update of the the inverse of a symmetrical matrix. Given a symmerical matrix X and its inverse X^{-1}, this function computes the inverse of Y, which is a copy of X, with the i'th row&column replaced by given vector v. Parameters ---------- X : ndarray, shape (N, N) A symmetrical matrix. X_inv : nparray, shape (N, N) The inverse of X_inv. i : int The index of the row/column to replace. v : ndarray, shape (N,) The values to replace the row/column with. Returns ------- Y_inv : ndarray, shape (N, N) The inverse of Y. """ U = v[:, np.newaxis] - X[:, [i]] mask = np.zeros((len(U), 1)) mask[i] = 1 U = np.hstack((U, mask)) V = U[:, [1, 0]].T V[1, i] = 0 C = np.eye(2) X_inv_U = X_inv.dot(U) V_X_inv = V.dot(X_inv) Y_inv = X_inv - X_inv_U.dot(pinv(C + V_X_inv.dot(U))).dot(V_X_inv) return Y_inv
5,340,868
def read_barcode_lineno_map(stream): """Build a map of barcodes to line number from a stream This builds a one based dictionary of barcode to line numbers. """ barcodes = {} reader = csv.reader(stream, delimiter="\t") for i, line in enumerate(reader): barcodes[line[0]] = i + 1 return barcodes
5,340,869
def match_in_candidate_innings(entry, innings, summary_innings, entities): """ :param entry: :param innings: innings to be searched in :param summary_innings: innings mentioned in the summary segment :param entities: total entities in the segment :return: """ entities_in_summary_inning = set() for summary_inning in summary_innings: intersection = get_matching_entities_in_inning(entry, summary_inning, entities) entities_in_summary_inning.update(intersection) entities_not_found = entities.difference(entities_in_summary_inning) matched_inning = -1 if len(entities_not_found) > 1: remaining_inings = set(innings).difference(set(summary_innings)) orderered_remaining_innings = [inning for inning in innings if inning in remaining_inings] matched_inning = get_inning_all_entities_set_intersection(entry, orderered_remaining_innings, entities_not_found) return matched_inning
5,340,870
def checkpoint( name: Optional[str] = None, on_error: bool = True, cond: Union[bool, Callable[..., bool]] = False, ) -> Callable[[Callable], Any]: """ Create a checkpointing decorator. Args: ckpt_name (Optional[str]): Name of the checkpoint when saved. on_error (bool): Whether to save checkpoint when an error occurs. cond (Union[bool, Callable[..., bool]]): Condition under which to save checkpoint. If a Callable, all parameters of the wrapped function should be passed and it has to return a boolean. Returns: A decorator function. """ def ckpt_worker(func: Callable): if name is None: ckpt_name = func.__name__ else: ckpt_name = name return CkptWrapper(func=func, ckpt_name=ckpt_name, on_error=on_error, cond=cond) return ckpt_worker
5,340,871
def log_batch_stats(observes, actions, advantages, disc_sum_rew, episode, logger): """ Log various batch statistics """ logger.log({'_mean_obs': np.mean(observes), '_min_obs': np.min(observes), '_max_obs': np.max(observes), '_std_obs': np.mean(np.var(observes, axis=0)), '_mean_act': np.mean(actions), '_min_act': np.min(actions), '_max_act': np.max(actions), '_std_act': np.mean(np.var(actions, axis=0)), '_mean_adv': np.mean(advantages), '_min_adv': np.min(advantages), '_max_adv': np.max(advantages), '_std_adv': np.var(advantages), '_mean_discrew': np.mean(disc_sum_rew), '_min_discrew': np.min(disc_sum_rew), '_max_discrew': np.max(disc_sum_rew), '_std_discrew': np.var(disc_sum_rew), '_Episode': episode })
5,340,872
def return_int(bit_len, unsigned=False): """ This function return the decorator that change return value to valid value. The target function of decorator should return only one value e.g. func(*args, **kargs) -> value: """ if bit_len not in VALID_BIT_LENGTH_OF_INT: err = "Value of bit_len should be the one of {}, but your bit_len={}." raise ByteDatasValueError(err.format(VALID_BIT_LENGTH_OF_INT, bit_len)) # calculate max_value for changing raw value to valid value max_value = 2**bit_len def decorator(function): """decorator function""" @wraps(function) def wrapper(*args, **kwargs): """ change valid to positive if value < 0 check value than call function or return False directly """ value = function(*args, **kwargs) if value >= max_value or value < 0: err = ("Returned value of {} should be between 0 and {}, but your " "value = {}.") raise ByteDatasValueError(err.format(function.__name__, max_value, value)) if unsigned is False: # if value > max_value//2 , it means the top bit of value is # 1 , it is a negative value, so we should change it to negative value = value - max_value if value > max_value//2 else value return value return wrapper return decorator
5,340,873
def get_integral_curve(f, init_xy, x_end, delta): """ solve ode 'dy/dx=f(x,y)' with Euler method """ (x, y) = init_xy xs, ys = [x], [y] for i in np.arange(init_xy[0], x_end, delta): y += delta*f(x, y) x += delta xs.append(x) ys.append(y) return xs, ys
5,340,874
def compute_atime_posteriors(sg, proposals, global_srate=1.0, use_ar=False, raw_data=False, event_idx=None): """ compute the bayesian cross-correlation (logodds of signal under an AR noise model) for all signals in the historical library, against all signals in the current SG. This is quite expensive so should in general be run only once, and the results cached. """ atime_lls = [] i = 0 for idx, (x, signals) in enumerate(proposals): if event_idx is not None and event_idx != idx: continue sta_lls = dict() for (sta, chan, band, phase), c in signals.items(): wns = sg.station_waves[sta] if len(wns) == 0: continue elif len(wns) > 1: raise Exception("haven't worked out correlation proposals with multiple wns from same station") wn = wns[0] if raw_data: sdata = wn.get_value().data.copy() sdata[np.isnan(sdata)] = 0.0 else: sdata = wn.unexplained_kalman() if use_ar: lls = ar_advantage(sdata, c, wn.nm) else: normed_sdata = sdata / wn.nm_env.c #np.std(sdata) lls = np.sqrt(iid_advantage(normed_sdata, c)) # sqrt for laplacian noise, essentially tt_array, tt_mean = build_ttr_model_array(sg, x, sta, wn.srate, phase=phase) origin_ll, origin_stime = atime_likelihood_to_origin_likelihood(lls, wn.st, wn.srate, tt_mean, tt_array, global_srate) signal_scale = wn.nm_env.c sta_lls[(wn.label, phase)] = origin_ll, origin_stime, signal_scale sg.logger.info("computed advantage for %s %s %s" % (x, wn.label, phase)) i += 1 atime_lls.append((x, sta_lls)) return atime_lls
5,340,875
def search4vowels(pharse :str) -> set: """"Return any vowels found in a supplied word.""" vowels = set('aeiou') return vowels.intersection(set(pharse))
5,340,876
async def set_time(ctx, time: int): """Configures the timer countdown duration.""" if time <= 0: # Force duration to be 1 minute or longer em = Embed(title=':warning: Invalid `settime` Command Usage', description='Invalid timer duration. Duration must be 1+ minutes. \nFormat: `settime #`', color=MsgColors.YELLOW.value) else: config.set('CURRENT_SETTINGS', 'time', str(time)) with open('settings.ini', 'w') as configFile: config.write(configFile) em = Embed(title=':gear: Timer Duration Changed', description='Timer duration has been set to `' + str(time) + ' minute(s)`.', color=MsgColors.BLACK.value) await ctx.send(embed=em)
5,340,877
def rsort(s): """Sort sequence s in ascending order. >>> rsort([]) [] >>> rsort([1]) [1] >>> rsort([1, 1, 1]) [1, 1, 1] >>> rsort([1, 2, 3]) [1, 2, 3] >>> rsort([3, 2, 1]) [1, 2, 3] >>> rsort([1, 2, 1]) [1, 1, 2] >>> rsort([1,2,3, 2, 1]) [1, 1, 2, 2, 3] """ if len(s) <= 1: return s else: return [rmin(s)]+rsort(remove(rmin(s),s))
5,340,878
def xdg_data_home(): """Base directory where user specific data files should be stored.""" value = os.getenv('XDG_DATA_HOME') or '$HOME/.local/share/' return os.path.expandvars(value)
5,340,879
def read_starlight_output_syn_spec(lines): """ read syn_spec of starlight output """ Nl_obs = len(lines) wave = Column(np.zeros((Nl_obs, ), dtype=np.float), 'wave') flux_obs = Column(np.zeros((Nl_obs, ), dtype=np.float), 'flux_obs') flux_syn = Column(np.zeros((Nl_obs, ), dtype=np.float), 'flux_syn') weight = Column(np.zeros((Nl_obs, ), dtype=np.float), 'weight') for i, line in enumerate(lines): line_split = line.split() wave[i] = np.float(line_split[0]) flux_obs[i] = np.float(line_split[1]) flux_syn[i] = np.float(line_split[2]) weight[i] = np.float(line_split[3]) return Table([wave, flux_obs, flux_syn, weight])
5,340,880
def print_buttons(ids): """ids - [(int, str), ...] """ for ID,name in ids[::-1]: print (f'<button id="button{ID}">') print (name) print ('</button>')
5,340,881
def get_stations_trips(station_id): """ https://api.rasp.yandex.net/v1.0/schedule/ ? apikey=<ключ> & format=<формат> & station=<код станции> & lang=<язык> & [date=<дата>] & [transport_types=<тип транспорта>] & [system=<текущая система кодирования>] & [show_systems=<коды в ответе>] """ params = { 'apikey': RASP_KEY, 'format': 'json', 'station': station_id, 'lang': 'ua', 'transport_types': 'suburban' } url = 'https://api.rasp.yandex.net/v1.0/schedule/' return get_json(url, params)
5,340,882
def createDir(dirPath): """ Creates a directory if it does not exist. :type dirPath: string :param dirPath: the path of the directory to be created. """ try: if os.path.dirname(dirPath) != "": os.makedirs(os.path.dirname(dirPath), exist_ok=True) # Python 3.2+ except TypeError: try: # Python 3.2- if os.path.dirname(dirPath) != "": os.makedirs(os.path.dirname(dirPath)) except OSError as exception: if exception.errno != 17: raise
5,340,883
def _compute_pairwise_kpt_distance(a, b): """ Args: a, b (poses): Two sets of poses to match Each "poses" is represented as a list of 3x17 or 4x17 np.ndarray """ res = np.zeros((len(a), len(b))) for i in range(len(a)): for j in range(len(b)): res[i, j] = pck_distance(a[i], b[j]) return res
5,340,884
def _extract_dialog_node_name(dialog_nodes): """ For each dialog_node (node_id) of type *standard*, check if *title exists*. If exists, use the title for the node_name. otherwise, use the dialog_node For all other cases, use the dialog_node dialog_node: (dialog_node_title, dialog_node_type) In the case of Login Issues, "title": "Login Issue", "dialog_node": "Login Issues", the record will be created as: "Login Issues": ("Login Issue", "standard") """ nodes_dict = {} nodes_type = {} for obj in dialog_nodes: if (obj['type']=='standard') and ('title' in obj): if (obj['title'] is not None): nodes_dict[obj['dialog_node']] = (obj['title'],obj['type']) else: nodes_dict[obj['dialog_node']] = (obj['dialog_node'],obj['type']) else: nodes_dict[obj['dialog_node']] = (obj['dialog_node'],obj['type']) return nodes_dict
5,340,885
def _get_content(tax_id): """Get Kazusa content, either from cached file or remotely.""" target_file = os.path.join(DATA_DIR, "%s.txt" % tax_id) if not os.path.exists(target_file): url = ( "http://www.kazusa.or.jp/codon/cgi-bin/showcodon.cgi?" + "aa=1&style=N&species=%s" % tax_id ) urlretrieve(url, target_file) with open(target_file) as fle: return fle.read()
5,340,886
def create_supervisor_config_file( site_dir_name, wwwhisper_path, site_config_path, supervisor_config_path): """Creates site-specific supervisor config file. The file allows to start the wwwhisper application for the site. """ settings = """[program:wwwhisper-%s] command=%s/run_wwwhisper_for_site.sh -d %s user=%s group=%s autorestart=true stopwaitsecs=2 stopsignal=INT stopasgroup=true """ % (site_dir_name, wwwhisper_path, site_config_path, WWWHISPER_USER, WWWHISPER_GROUP) write_to_file( supervisor_config_path, SUPERVISOR_CONFIG_FILE, settings)
5,340,887
def search_all_entities(bsp, **search: Dict[str, str]) -> Dict[str, List[Dict[str, str]]]: """search_all_entities(key="value") -> {"LUMP": [{"key": "value", ...}]}""" out = dict() for LUMP_name in ("ENTITIES", *(f"ENTITIES_{s}" for s in ("env", "fx", "script", "snd", "spawn"))): entity_lump = getattr(bsp, LUMP_name, shared.Entities(b"")) results = entity_lump.search(**search) if len(results) != 0: out[LUMP_name] = results return out
5,340,888
def pull_verbose(docker_client, repository, tag=None, log=True): """ Use low-level docker-py API to show status while pulling docker containers. Attempts to replicate docker command line output log - if True, logs the output, if False, prints the output """ for update in docker_client.api.pull(repository, tag=tag, stream=True, decode=True): tokens = [] for key in ("id", "status", "progress"): value = update.get(key) if value is not None: tokens.append(value) output = ": ".join(tokens) if log: logger.info(output) else: print(output)
5,340,889
def expose_all(root_module: types.ModuleType, container_type: type): """ exposes all sub-modules and namespaces to be available under given container type (class) Args: root_module (types.ModuleType): module ns_type (type): namepace type (class) """ for path in root_module.__path__: for name in os.listdir(path): if not os.path.isdir(os.path.join(path, name)) or name == "__pycache__" or name.startswith("_"): continue lazy_import_property = get_lazy_import_property(name, root_module, container_type) setattr(container_type, name, lazy_import_property)
5,340,890
def is_probably_beginning_of_sentence(line): """Return True if this line begins a new sentence.""" # Check heuristically for a parameter list. for token in ['@', '-', r'\*']: if re.search(r'\s' + token + r'\s', line): return True stripped_line = line.strip() is_beginning_of_sentence = re.match(r'[^\w"\'`\(\)]', stripped_line) is_pydoc_ref = re.match(r'^:\w+:', stripped_line) return is_beginning_of_sentence and not is_pydoc_ref
5,340,891
def default_attack_handler(deck, discard, hand, turn, supply, attack): """Handle some basic attacks in a default manner. Returns True iff the attack was handled.""" covertool.cover("domsim.py:219") if attack == COUNCIL_ROOM: # Not really an attack, but this is an easy way to handle it. covertool.cover("domsim.py:221") hand += draw(deck, discard, 1) covertool.cover("domsim.py:222") return True elif MOAT in hand: covertool.cover("domsim.py:224") return True elif attack == MINION and len(hand) > 4: covertool.cover("domsim.py:226") discard += hand covertool.cover("domsim.py:227") hand[:] = draw(deck, discard, 4) covertool.cover("domsim.py:228") return True elif attack == WITCH: covertool.cover("domsim.py:230") gain(CURSE, supply, discard) covertool.cover("domsim.py:231") return True elif attack == SEA_HAG: covertool.cover("domsim.py:233") discard += draw(deck, discard, 1) covertool.cover("domsim.py:234") gain(CURSE, supply, deck) covertool.cover("domsim.py:235") return True else: covertool.cover("domsim.py:237") return False
5,340,892
def solve_word_jumble(word_perms): """Solve a word jumble by unscrambling four jumbles, then a final jumble. Parameters: - words: list of strings, each is the scrambled letters for a single word - circles: list of strings, each marks whether the letter at that position in the solved anagram word will be used to solve the final jumble. This string contains only two different characters: 1. O (letter "oh") = the letter is in the final jumble 2. _ (underscore) = the letter is not in the final jumble - final: list of strings in the same format as circles parameter that shows how the final jumble's letters are arranged into a word or phrase.""" # Get all English words in the built-in dictionary all_words = get_file_lines()
5,340,893
def deprecate(remove_in, use_instead, module_name=None, name=None): """ Decorator that marks a function or class as deprecated. When the function or class is used, a warning will be issued. Args: remove_in (str): The version in which the decorated type will be removed. use_instead (str): The function or class to use instead. module_name (str): The name of the containing module. This will be used to generate more informative warnings. Defaults to None. name (str): The name of the object being deprecated. If not provided, this is automatically determined based on the decorated type. Defaults to None. """ def deprecate_impl(obj): if config.INTERNAL_CORRECTNESS_CHECKS and version(polygraphy.__version__) >= version(remove_in): G_LOGGER.internal_error("{:} should have been removed in version: {:}".format(obj, remove_in)) nonlocal name name = name or obj.__name__ if inspect.ismodule(obj): class DeprecatedModule(object): def __getattr__(self, attr_name): warn_deprecated(name, use_instead, remove_in, module_name) self = obj return getattr(self, attr_name) def __setattr__(self, attr_name, value): warn_deprecated(name, use_instead, remove_in, module_name) self = obj return setattr(self, attr_name, value) DeprecatedModule.__doc__ = "Deprecated: Use {:} instead".format(use_instead) return DeprecatedModule() elif inspect.isclass(obj): class Deprecated(obj): def __init__(self, *args, **kwargs): warn_deprecated(name, use_instead, remove_in, module_name) super().__init__(*args, **kwargs) Deprecated.__doc__ = "Deprecated: Use {:} instead".format(use_instead) return Deprecated elif inspect.isfunction(obj): def wrapped(*args, **kwargs): warn_deprecated(name, use_instead, remove_in, module_name) return obj(*args, **kwargs) wrapped.__doc__ = "Deprecated: Use {:} instead".format(use_instead) return wrapped else: G_LOGGER.internal_error("deprecate is not implemented for: {:}".format(obj)) return deprecate_impl
5,340,894
def get_available_processors(): """Return the list of available processors modules.""" modules = [item.replace('.py', '') for item in os.listdir(PROCESSORS_DIR) if isfile(join(PROCESSORS_DIR, item))] return modules
5,340,895
def append_after(filename="", search_string="", new_string=""): """ Inserts a line of text to a file, after each line containing a specific string. """ out = "" with open(filename, 'r') as f: for line in f: out += line if search_string in line: out += new_string with open(filename, 'w') as f: f.write(out)
5,340,896
def hello_world(): """return bool if exists -> take in email""" email = request.json['email'] c = conn.cursor() c.execute("select * from Users where Users.email = {}".format(email)) result = False conn.commit() conn.close() return result
5,340,897
def get_model_relations( model: Callable, model_args: Optional[tuple] = None, model_kwargs: Optional[dict] = None, ): """ Infer relations of RVs and plates from given model and optionally data. See https://github.com/pyro-ppl/pyro/issues/949 for more details. This returns a dictionary with keys: - "sample_sample" map each downstream sample site to a list of the upstream sample sites on which it depend; - "sample_dist" maps each sample site to the name of the distribution at that site; - "plate_sample" maps each plate name to a list of the sample sites within that plate; and - "observe" is a list of observed sample sites. For example for the model:: def model(data): m = pyro.sample('m', dist.Normal(0, 1)) sd = pyro.sample('sd', dist.LogNormal(m, 1)) with pyro.plate('N', len(data)): pyro.sample('obs', dist.Normal(m, sd), obs=data) the relation is:: {'sample_sample': {'m': [], 'sd': ['m'], 'obs': ['m', 'sd']}, 'sample_dist': {'m': 'Normal', 'sd': 'LogNormal', 'obs': 'Normal'}, 'plate_sample': {'N': ['obs']}, 'observed': ['obs']} :param callable model: A model to inspect. :param model_args: Optional tuple of model args. :param model_kwargs: Optional dict of model kwargs. :rtype: dict """ if model_args is None: model_args = () if model_kwargs is None: model_kwargs = {} with torch.random.fork_rng(), torch.no_grad(), pyro.validation_enabled(False): with TrackProvenance(): trace = poutine.trace(model).get_trace(*model_args, **model_kwargs) sample_sample = {} sample_dist = {} plate_sample = defaultdict(list) observed = [] for name, site in trace.nodes.items(): if site["type"] != "sample" or site_is_subsample(site): continue sample_sample[name] = [ upstream for upstream in get_provenance(site["fn"].log_prob(site["value"])) if upstream != name ] sample_dist[name] = _get_dist_name(site["fn"]) for frame in site["cond_indep_stack"]: plate_sample[frame.name].append(name) if site["is_observed"]: observed.append(name) def _resolve_plate_samples(plate_samples): for p, pv in plate_samples.items(): pv = set(pv) for q, qv in plate_samples.items(): qv = set(qv) if len(pv & qv) > 0 and len(pv - qv) > 0 and len(qv - pv) > 0: plate_samples_ = plate_samples.copy() plate_samples_[q] = pv & qv plate_samples_[q + "__CLONE"] = qv - pv return _resolve_plate_samples(plate_samples_) return plate_samples plate_sample = _resolve_plate_samples(plate_sample) # convert set to list to keep order of variables plate_sample = { k: [name for name in trace.nodes if name in v] for k, v in plate_sample.items() } return { "sample_sample": sample_sample, "sample_dist": sample_dist, "plate_sample": dict(plate_sample), "observed": observed, }
5,340,898
def progress_enabled(): """ Checks if progress is enabled. To disable: export O4_PROGRESS=false """ return os.environ.get('O4_PROGRESS', 'true') == 'true'
5,340,899