content
stringlengths
22
815k
id
int64
0
4.91M
def test_function(client: Client) -> str: """ Performs test connectivity by valid http response :param client: client object which is used to get response from api :return: raise ValueError if any error occurred during connection """ client.http_request(method='GET', url_suffix=URL_SUFFIX['TEST_MODULE']) return 'ok'
5,339,400
def _close_output(out_file: TextIOWrapper): """ Closes the output. Does not close stdout. :param out_file: File object to close """ if out_file is not sys.stdout: out_file.close()
5,339,401
def load_tests(loader, tests, ignore): """Create tests from all docstrings by walking the package hierarchy.""" modules = pkgutil.walk_packages(rowan.__path__, rowan.__name__ + ".") for _, module_name, _ in modules: tests.addTests(doctest.DocTestSuite(module_name, globs={"rowan": rowan})) return tests
5,339,402
def k_hot_array_from_string_list(context, typename, entity_names): """Create a numpy array encoding a k-hot set. Args: context: a NeuralExpressionContext typename: type of entity_names entity_names: list of names of type typename Returns: A k-hot-array representation of the set of entity_names. For frozen dictionaries, unknown entity names are mapped to the unknown_id of their type or discarded if the unknown_value of the type is None. Unknown entity names will throw an nql.EntityNameException for non-frozen dictionaries. It is possible for this method to return an all-zeros array. """ # Empty string is not a valid entity_name. ids = [context.get_id(e, typename) for e in entity_names if e] # None is not a valid id. valid_ids = [x for x in ids if x is not None] max_id = context.get_max_id(typename) result = np.zeros((max_id,), dtype='float32') if valid_ids: result[valid_ids] = 1. return result
5,339,403
def get_validation_data_iter(data_loader: RawParallelDatasetLoader, validation_sources: List[str], validation_target: str, buckets: List[Tuple[int, int]], bucket_batch_sizes: List[BucketBatchSize], source_vocabs: List[vocab.Vocab], target_vocab: vocab.Vocab, max_seq_len_source: int, max_seq_len_target: int, batch_size: int, fill_up: str) -> 'ParallelSampleIter': """ Returns a ParallelSampleIter for the validation data. """ logger.info("=================================") logger.info("Creating validation data iterator") logger.info("=================================") validation_length_statistics = analyze_sequence_lengths(validation_sources, validation_target, source_vocabs, target_vocab, max_seq_len_source, max_seq_len_target) validation_sources_sentences = [SequenceReader(source, vocab, add_bos=False) for source, vocab in zip(validation_sources, source_vocabs)] validation_target_sentences = SequenceReader(validation_target, target_vocab, add_bos=True, limit=None) validation_data_statistics = get_data_statistics(validation_sources_sentences, validation_target_sentences, buckets, validation_length_statistics.length_ratio_mean, validation_length_statistics.length_ratio_std, source_vocabs, target_vocab) validation_data_statistics.log(bucket_batch_sizes) validation_data = data_loader.load(validation_sources_sentences, validation_target_sentences, validation_data_statistics.num_sents_per_bucket).fill_up(bucket_batch_sizes, fill_up) return ParallelSampleIter(data=validation_data, buckets=buckets, batch_size=batch_size, bucket_batch_sizes=bucket_batch_sizes, num_factors=len(validation_sources))
5,339,404
def _serialize_property( target_expr: str, value_expr: str, a_property: mapry.Property, auto_id: _AutoID, cpp: mapry.Cpp) -> str: """ Generate the code to serialize the property. The value as the property is given as ``value_expr`` and serialized into the ``target_expr``. :param target_expr: C++ expression of the Json::Value to be set :param value_expr: C++ expression of the value to be serialized :param a_property: the property definition :param auto_id: generator of unique identifiers :param cpp: C++ settings :return: generated serialization code """ if not a_property.optional: return _serialize_value( target_expr=target_expr, value_expr=value_expr, a_type=a_property.type, auto_id=auto_id, cpp=cpp) ## # Handle optional property ## deref_value_expr = "(*{})".format(value_expr) serialization = _serialize_value( target_expr=target_expr, value_expr=deref_value_expr, a_type=a_property.type, auto_id=auto_id, cpp=cpp) return _SERIALIZE_OPTIONAL_PROPERTY_TPL.render( value_expr=value_expr, serialization=serialization)
5,339,405
def read_raw_data(pattern): """:return X""" if isinstance(pattern, basestring): fpaths = glob.glob(pattern) elif isinstance(pattern, list): fpaths = pattern X = [] for fpath in fpaths: print 'loading file {} ... ' . format(fpath) X.extend(loadtxt(fpath)) return X
5,339,406
def warp_affine_rio(src: np.ndarray, dst: np.ndarray, A: Affine, resampling: Resampling, src_nodata: Nodata = None, dst_nodata: Nodata = None, **kwargs) -> np.ndarray: """ Perform Affine warp using rasterio as backend library. :param src: image as ndarray :param dst: image as ndarray :param A: Affine transformm, maps from dst_coords to src_coords :param resampling: str|rasterio.warp.Resampling resampling strategy :param src_nodata: Value representing "no data" in the source image :param dst_nodata: Value to represent "no data" in the destination image **kwargs -- any other args to pass to ``rasterio.warp.reproject`` :returns: dst """ crs = _WRP_CRS src_transform = Affine.identity() dst_transform = A if isinstance(resampling, str): resampling = resampling_s2rio(resampling) # GDAL support for int8 is patchy, warp doesn't support it, so we need to convert to int16 if src.dtype.name == 'int8': src = src.astype('int16') if dst.dtype.name == 'int8': _dst = dst.astype('int16') else: _dst = dst rasterio.warp.reproject(src, _dst, src_transform=src_transform, dst_transform=dst_transform, src_crs=crs, dst_crs=crs, resampling=resampling, src_nodata=src_nodata, dst_nodata=dst_nodata, **kwargs) if dst is not _dst: # int8 workaround copy pixels back to int8 np.copyto(dst, _dst, casting='unsafe') return dst
5,339,407
def encode_integer_leb128(value: int) -> bytes: """Encode an integer with signed LEB128 encoding. :param int value: The value to encode. :return: ``value`` encoded as a variable-length integer in LEB128 format. :rtype: bytes """ if value == 0: return b"\0" # Calculate the number of bits in the integer and round up to the nearest multiple # of 7. We need to add 1 bit because bit_length() only returns the number of bits # required to encode the magnitude, but not the sign. n_bits = value.bit_length() + 1 if n_bits % 7: n_bits += 7 - (n_bits % 7) # Bit operations force a negative integer to its unsigned two's-complement # representation, e.g. -127 & 0xff = 0x80, -10 & 0xfff = 0xff6, etc. We use this to # sign-extend the number *and* make it unsigned. Once it's unsigned, we can use # ULEB128. mask = (1 << n_bits) - 1 value &= mask output = bytearray(n_bits // 7) for i in range(n_bits // 7): output[i] = 0x80 | (value & 0x7F) value >>= 7 # Last byte shouldn't have the high bit set. output[-1] &= 0x7F return bytes(output)
5,339,408
def test_MS2DeepScoreMonteCarlo_score_pair(average_type): """Test score calculation using *.pair* method.""" spectrums, _, similarity_measure = get_test_ms2_deep_score_instance(n_ensembles=5, average_type=average_type) score = similarity_measure.pair(spectrums[0], spectrums[1]) assert score['score'].dtype == np.float64, "Expected float as score." assert score['score'] > 0.65 and score['score'] < 0.9, "Expected score in different range" assert score['uncertainty'].dtype == np.float64, "Expected float as uncertainty." if average_type == 'median': assert score['uncertainty'] > 0.01 and score['uncertainty'] < 0.12, \ "Expected uncertainty in different range" else: assert score['uncertainty'] > 0.01 and score['uncertainty'] < 0.06, \ "Expected uncertainty in different range"
5,339,409
def google_sen_new(text_content): """ Analyzing Entity Sentiment in a String Args: text_content The text content to analyze """ # text_content = 'Grapes are good. Bananas are bad.' Available types: PLAIN_TEXT, HTML client = language_v1.LanguageServiceClient() type_ = enums.Document.Type.PLAIN_TEXT language = "en" document = {"content": text_content, "type": type_, "language": language} # Available values: NONE, UTF8, UTF16, UTF32 encoding_type = enums.EncodingType.UTF8 response = client.analyze_entity_sentiment(document, encoding_type=encoding_type) result_dict = {} # "entity":[] for entity in response.entities: result_list = [] result_list.append(entity.name) # Get entity type, e.g. PERSON, LOCATION, ADDRESS, NUMBER, et al result_list.append(enums.Entity.Type( entity.type).name) # Get the salience score associated with the entity in the [0, 1.0] range result_list.append( entity.salience) # Get the aggregate sentiment expressed for this entity in the provided document. sentiment = entity.sentiment result_list.append(sentiment.score) result_list.append(sentiment.magnitude) result_dict[entity] = result_list return result_dict
5,339,410
def _create_ip_config_data(): """ This loads into a map the result of IPCONFIG command. """ map_ipconfigs = dict() curr_itf = "" proc = subprocess.Popen(['ipconfig', '/all'], stdout=subprocess.PIPE) for curr_line in proc.stdout.readlines(): curr_line = curr_line.decode("utf-8").rstrip() if curr_line: if curr_line[0] != " ": curr_itf = curr_line.strip() if curr_itf[-1] == ":": curr_itf = curr_itf[:-1] map_ipconfigs[curr_itf] = [] else: idx_colon = curr_line.find(":") if idx_colon >= 0: curr_key = curr_line[:idx_colon].replace(". ","").strip() curr_val = curr_line[idx_colon+1:].strip() else: curr_val = curr_line.strip() map_ipconfigs[curr_itf].append((curr_key, curr_val)) return map_ipconfigs
5,339,411
def simplify_polygon_by(points, is_higher, should_stop, refresh_node): """ Simplify the given polygon by greedily removing vertices using a given priority. This is generalized from Visvalingam's algorithm, which is described well here: http://bost.ocks.org/mike/simplify/ is_higher = function(a,b) returns node higher in priority to be removed. should_stop = function(a) returns True if given highest priority node stops simplification. refresh_node = function(a) refreshes attributes dependent on adjacent vertices. """ length = len(points) # build nodes nodes = [VertexNode(p) for p in points] # connect nodes for i in xrange(length): prev_i = (i+length-1) % length next_i = (i+1) % length node = nodes[i] node.prev_node = nodes[prev_i] node.next_node = nodes[next_i] refresh_node(node) node.orig_index = i def on_index_change(node,i): """Callback that allows a node to know its location in the heap.""" node.heap_index = i heap = Heap(nodes, is_higher, on_index_change) while True: node = heap.peek() if should_stop(node): break heap.pop() # Close gap in doubly-linked list. prev_node, next_node = node.prev_node, node.next_node prev_node.next_node = next_node next_node.prev_node = prev_node # Refresh vertices that have new adjacents. refresh_node(prev_node) heap.reorder_node(prev_node.heap_index) refresh_node(next_node) heap.reorder_node(next_node.heap_index) # Return remaining points in their original order. return [node.point for node in sorted(heap.array, key=(lambda node: node.orig_index))]
5,339,412
def main(argv): """Main entry for Dataflow python job launcher. expected input args are as follows: project - Required. The project of which the resource will be launched. Location - Required. The region of which the resource will be launched. python_module_path - The gcs path to the python file or folder to run. temp_location - A GCS path for Dataflow to stage temporary job files created during the execution of the pipeline. requirements_file_path - The gcs or local path to the requirements file. args - The list of args to pass to the python file. gcp_resources - A placeholder output for returning the gcp_resouces proto. Args: argv: A list of system arguments. """ parsed_args = _parse_args(argv) dataflow_python_job_remote_runner.create_python_job(**parsed_args)
5,339,413
def get_builder(slug): """ Get the Builder object for a given slug name. Args: slug - The slug name of the installable software """ for builder in Index().index: if builder.slug == slug: return builder return False
5,339,414
def preprocess_normscale(patient_data, result, index, augment=True, metadata=None, normscale_resize_and_augment_function=normscale_resize_and_augment, testaug=False): """Normalizes scale and augments the data. Args: patient_data: the data to be preprocessed. result: dict to store the result in. index: index indicating in which slot the result dict the data should go. augment: flag indicating wheter augmentation is needed. metadata: metadata belonging to the patient data. """ if augment: if testaug: augmentation_params = sample_test_augmentation_parameters() else: augmentation_params = sample_augmentation_parameters() else: augmentation_params = None zoom_factor = None # Iterate over different sorts of data for tag, data in patient_data.items(): if tag in metadata: metadata_tag = metadata[tag] desired_shape = result[tag][index].shape cleaning_processes = getattr(config(), 'cleaning_processes', []) cleaning_processes_post = getattr(config(), 'cleaning_processes_post', []) if tag.startswith("sliced:data:singleslice"): # Cleaning data before extracting a patch data = clean_images( [patient_data[tag]], metadata=metadata_tag, cleaning_processes=cleaning_processes) # Augment and extract patch # Decide which roi to use. shift_center = (None, None) if getattr(config(), 'use_hough_roi', False): shift_center = metadata_tag["hough_roi"] patient_3d_tensor = normscale_resize_and_augment_function( data, output_shape=desired_shape[-2:], augment=augmentation_params, pixel_spacing=metadata_tag["PixelSpacing"], shift_center=shift_center[::-1])[0] if augmentation_params is not None: zoom_factor = augmentation_params["zoom_x"] * augmentation_params["zoom_y"] else: zoom_factor = 1.0 # Clean data further patient_3d_tensor = clean_images( patient_3d_tensor, metadata=metadata_tag, cleaning_processes=cleaning_processes_post) if "area_per_pixel:sax" in result: raise NotImplementedError() if augmentation_params and not augmentation_params.get("change_brightness", 0) == 0: patient_3d_tensor = augment_brightness(patient_3d_tensor, augmentation_params["change_brightness"]) put_in_the_middle(result[tag][index], patient_3d_tensor, True) elif tag.startswith("sliced:data:randomslices"): # Clean each slice separately data = [ clean_images([slicedata], metadata=metadata, cleaning_processes=cleaning_processes)[0] for slicedata, metadata in zip(data, metadata_tag)] # Augment and extract patches shift_centers = [(None, None)] * len(data) if getattr(config(), 'use_hough_roi', False): shift_centers = [m["hough_roi"] for m in metadata_tag] patient_3d_tensors = [ normscale_resize_and_augment_function( [slicedata], output_shape=desired_shape[-2:], augment=augmentation_params, pixel_spacing=metadata["PixelSpacing"], shift_center=shift_center[::-1])[0] for slicedata, metadata, shift_center in zip(data, metadata_tag, shift_centers)] if augmentation_params is not None: zoom_factor = augmentation_params["zoom_x"] * augmentation_params["zoom_y"] else: zoom_factor = 1.0 # Clean data further patient_3d_tensors = [ clean_images([patient_3d_tensor], metadata=metadata, cleaning_processes=cleaning_processes_post)[0] for patient_3d_tensor, metadata in zip(patient_3d_tensors, metadata_tag)] patient_4d_tensor = _make_4d_tensor(patient_3d_tensors) if augmentation_params and not augmentation_params.get("change_brightness", 0) == 0: patient_4d_tensor = augment_brightness(patient_4d_tensor, augmentation_params["change_brightness"]) if "area_per_pixel:sax" in result: raise NotImplementedError() put_in_the_middle(result[tag][index], patient_4d_tensor, True) elif tag.startswith("sliced:data:sax:locations"): pass # will be filled in by the next one elif tag.startswith("sliced:data:sax:is_not_padded"): pass # will be filled in by the next one elif tag.startswith("sliced:data:sax"): # step 1: sort (data, metadata_tag) with slice_location_finder slice_locations, sorted_indices, sorted_distances = slice_location_finder({i: metadata for i,metadata in enumerate(metadata_tag)}) data = [data[idx] for idx in sorted_indices] metadata_tag = [metadata_tag[idx] for idx in sorted_indices] slice_locations = np.array([slice_locations[idx]["relative_position"] for idx in sorted_indices]) slice_locations = slice_locations - (slice_locations[-1] + slice_locations[0])/2.0 data = [ clean_images([slicedata], metadata=metadata, cleaning_processes=cleaning_processes)[0] for slicedata, metadata in zip(data, metadata_tag)] # Augment and extract patches shift_centers = [(None, None)] * len(data) if getattr(config(), 'use_hough_roi', False): shift_centers = [m["hough_roi"] for m in metadata_tag] patient_3d_tensors = [ normscale_resize_and_augment_function( [slicedata], output_shape=desired_shape[-2:], augment=augmentation_params, pixel_spacing=metadata["PixelSpacing"], shift_center=shift_center[::-1])[0] for slicedata, metadata, shift_center in zip(data, metadata_tag, shift_centers)] if augmentation_params is not None: zoom_factor = augmentation_params["zoom_x"] * augmentation_params["zoom_y"] else: zoom_factor = 1.0 # Clean data further patient_3d_tensors = [ clean_images([patient_3d_tensor], metadata=metadata, cleaning_processes=cleaning_processes_post)[0] for patient_3d_tensor, metadata in zip(patient_3d_tensors, metadata_tag)] patient_4d_tensor = _make_4d_tensor(patient_3d_tensors) if augmentation_params and not augmentation_params.get("change_brightness", 0) == 0: patient_4d_tensor = augment_brightness(patient_4d_tensor, augmentation_params["change_brightness"]) # Augment sax order if augmentation_params and augmentation_params.get("flip_sax", 0) > 0.5: patient_4d_tensor = patient_4d_tensor[::-1] slice_locations = slice_locations[::-1] # Put data (images and metadata) in right location put_in_the_middle(result[tag][index], patient_4d_tensor, True) if "sliced:data:sax:locations" in result: eps_location = 1e-7 is_padded = np.array([False]*len(result["sliced:data:sax:locations"][index])) put_in_the_middle(result["sliced:data:sax:locations"][index], slice_locations + eps_location, True, is_padded) if "sliced:data:sax:distances" in result: eps_location = 1e-7 sorted_distances.append(0.0) # is easier for correct padding is_padded = np.array([False]*len(result["sliced:data:sax:distances"][index])) put_in_the_middle(result["sliced:data:sax:distances"][index], np.array(sorted_distances) + eps_location, True, is_padded) if "sliced:data:sax:is_not_padded" in result: result["sliced:data:sax:is_not_padded"][index] = np.logical_not(is_padded) elif tag.startswith("sliced:data:chanzoom:2ch"): # step 1: sort (data, metadata_tag) with slice_location_finder slice_locations, sorted_indices, sorted_distances = slice_location_finder({i: metadata for i,metadata in enumerate(metadata_tag[2])}) top_slice_metadata = metadata_tag[2][sorted_indices[0]] bottom_slice_metadata = metadata_tag[2][sorted_indices[-1]] ch2_metadata = metadata_tag[1] ch4_metadata = metadata_tag[0] trf_2ch, trf_4ch = get_chan_transformations( ch2_metadata=ch2_metadata, ch4_metadata=ch4_metadata, top_point_metadata = top_slice_metadata, bottom_point_metadata = bottom_slice_metadata, output_width=desired_shape[-1] ) ch4_3d_patient_tensor, ch2_3d_patient_tensor = [], [] ch4_data = data[0] ch2_data = data[1] if ch4_data is None and ch2_data is not None: ch4_data = ch2_data ch4_metadata = ch2_metadata if ch2_data is None and ch4_data is not None: ch2_data = ch4_data ch2_metadata = ch4_metadata for ch, ch_result, transform, metadata in [(ch4_data, ch4_3d_patient_tensor, trf_4ch, ch4_metadata), (ch2_data, ch2_3d_patient_tensor, trf_2ch, ch2_metadata)]: tform_shift_center, tform_shift_uncenter = build_center_uncenter_transforms(desired_shape[-2:]) zoom_factor = np.sqrt(np.abs(np.linalg.det(transform.params[:2,:2])) * np.prod(metadata["PixelSpacing"])) normalise_zoom_transform = build_augmentation_transform(zoom_x=zoom_factor, zoom_y=zoom_factor) if augmentation_params: augment_tform = build_augmentation_transform(**augmentation_params) total_tform = tform_shift_uncenter + augment_tform + normalise_zoom_transform + tform_shift_center + transform else: total_tform = tform_shift_uncenter + normalise_zoom_transform + tform_shift_center + transform ch_result[:] = [fast_warp(c, total_tform, output_shape=desired_shape[-2:]) for c in ch] # print "zoom factor:", zoom_factor if augmentation_params is not None: zoom_factor = augmentation_params["zoom_x"] * augmentation_params["zoom_y"] else: zoom_factor = 1.0 # Clean data further ch4_3d_patient_tensor = clean_images(np.array([ch4_3d_patient_tensor]), metadata=ch4_metadata, cleaning_processes=cleaning_processes_post)[0] ch2_3d_patient_tensor = clean_images(np.array([ch2_3d_patient_tensor]), metadata=ch2_metadata, cleaning_processes=cleaning_processes_post)[0] # Put data (images and metadata) in right location put_in_the_middle(result["sliced:data:chanzoom:2ch"][index], ch2_3d_patient_tensor, True) put_in_the_middle(result["sliced:data:chanzoom:4ch"][index], ch4_3d_patient_tensor, True) elif tag.startswith("sliced:data:shape"): raise NotImplementedError() elif tag.startswith("sliced:data"): # put time dimension first, then axis dimension data = clean_images(patient_data[tag], metadata=metadata_tag) patient_4d_tensor, zoom_ratios = resize_and_augment(data, output_shape=desired_shape[-2:], augment=augmentation_parameters) if "area_per_pixel:sax" in result: result["area_per_pixel:sax"][index] = zoom_ratios[0] * np.prod(metadata_tag[0]["PixelSpacing"]) if "noswitch" not in tag: patient_4d_tensor = np.swapaxes(patient_4d_tensor,1,0) put_in_the_middle(result[tag][index], patient_4d_tensor) elif tag.startswith("sliced:meta:all"): # TODO: this probably doesn't work very well yet result[tag][index] = patient_data[tag] elif tag.startswith("sliced:meta:PatientSex"): result[tag][index][0] = -1. if patient_data[tag]=='M' else 1. elif tag.startswith("sliced:meta:PatientAge"): number, letter = patient_data[tag][:3], patient_data[tag][-1] letter_rescale_factors = {'D': 365.25, 'W': 52.1429, 'M': 12., 'Y': 1.} result[tag][index][0] = float(patient_data[tag][:3]) / letter_rescale_factors[letter] if augmentation_params and zoom_factor: label_correction_function = lambda x: x * zoom_factor classification_correction_function = lambda x: utils.zoom_array(x, 1./zoom_factor) return label_correction_function, classification_correction_function else: return lambda x: x, lambda x: x
5,339,415
def get_contact_lookup_list(): """get contact lookup list""" try: return jsonify(Contact.get_contact_choices()) except Exception as e: return e.message
5,339,416
def argmax(X, axis=None): """ Return tuple (values, indices) of the maximum entries of matrix :param:`X` along axis :param:`axis`. Row major order. :param X: Target matrix. :type X: :class:`scipy.sparse` of format csr, csc, coo, bsr, dok, lil, dia or :class:`numpy.matrix` :param axis: Specify axis along which to operate. If not specified, whole matrix :param:`X` is considered. :type axis: `int` """ if sp.isspmatrix(X): X = X.tocsr() assert axis == 0 or axis == 1 or axis is None, "Incorrect axis number." res = [[float('-inf'), 0] for _ in range(X.shape[1 - axis])] if axis is not None else [float('-inf'), 0] def _caxis(row, col): if X[row, col] > res[col][0]: res[col] = (X[row, col], row) def _raxis(row, col): if X[row, col] > res[row][0]: res[row] = (X[row, col], col) def _naxis(row, col): if X[row, col] > res[0]: res[0] = X[row, col] res[1] = row * X.shape[0] + col check = _caxis if axis == 0 else _raxis if axis == 1 else _naxis [check(row, col) for row in range(X.shape[0]) for col in range(X.shape[1])] if axis is None: return res elif axis == 0: t = list(zip(*res)) return list(t[0]), np.mat(t[1]) else: t = list(zip(*res)) return list(t[0]), np.mat(t[1]).T else: idxX = np.asmatrix(X).argmax(axis) if axis is None: eX = X[idxX // X.shape[1], idxX % X.shape[1]] elif axis == 0: eX = [X[idxX[0, idx], col] for idx, col in zip(range(X.shape[1]), range(X.shape[1]))] else: eX = [X[row, idxX[idx, 0]] for row, idx in zip(range(X.shape[0]), range(X.shape[0]))] return eX, idxX
5,339,417
def show_new_high_score(): """ If a new high score is achieved, the score and winning player is displayed """ print("new_high_score") myfont = pygame.font.SysFont("Comic Sans MS", 30) winner = "left" if cfg.l_score > cfg.r_score else "right" score = str(cfg.new_high_score) print(score) text = myfont.render(f"{winner} player, new highest score! {score} points!!!", 1, white) cfg.window.blit(text, (win_width/9, win_height/2))
5,339,418
def plot_pdn(Px, Tx, pdi_nCO_v, pdi_mu_v, Tmin, Tmax, Pmin, Pmax, iso_names): """Generate plots for a size n""" # extract the dimensions of the simulations pdi_nCO_v = pdi_nCO_v.copy() pdi_mu_v = pdi_mu_v.copy() if len(pdi_nCO_v.shape) == 2: # add one more dimension if only two provided pdi_nCO_v = pdi_nCO_v[np.newaxis, :] pdi_mu_v = pdi_mu_v[np.newaxis, :] # the tensor has 3 dimension: the isomer structure, temperature, and pressure # set the dimensions to be consistent with the input n_sim, nT, nP = pdi_nCO_v.shape # reaction condition vector Tv = np.linspace(Tmin, Tmax, nT) Pv = np.logspace(Pmin, Pmax, nP) # Partial pressure of CO in bar for xi in range(n_sim): # Select an isomer # Plot the heatmap, Tv is for the rows so it becomes yv, Pv is for the columns for xv pdix_mu_v = pdi_mu_v[xi, :, :] pdix_nCO_v = pdi_nCO_v[xi, :, :] # for chemical potential mu_fig_i = plot_heatmap(Pv, Tv, -4, 0, pdix_mu_v) # for the number of CO mco_fig_i = plot_heatmap(Pv, Tv, 0, 2 , pdix_nCO_v)
5,339,419
def test_verify_sub_value_NotOK_wrong_sub(): """ arg=None """ _info = setup_conv() conv = _info['conv'] # Need an IdToken and an AuthorizationRequest with a claims request ar = { 'scope': 'openid', 'redirect_uri': 'https://example.com/cb', 'client_id': 'client', 'response_type': 'code', 'state': 'state', 'claims': { 'id_token': { 'sub': {'value': 'foo'} } } } _ar = AuthorizationRequest(**ar) _url = _ar.request('https://guarded-cliffs-8635.herokuapp.com/auth') conv.events.store(EV_REDIRECT_URL, _url) conv.events.store(EV_PROTOCOL_REQUEST, _ar) # Access token response with id_token with 'sub' claims conv.events.store(EV_PROTOCOL_RESPONSE, ACCESS_TOKEN_RESPONSE_2) chk = VerifySubValue() kwargs = {} chk._kwargs = kwargs _ = chk._func(conv) assert chk._status == ERROR
5,339,420
def posts(): """ Function accessed by AJAX to handle a Series of Posts """ try: series_id = request.args[0] except: raise HTTP(400) try: recent = request.args[1] except: recent = 5 table = s3db.cms_post # List of Posts in this Series query = (table.series_id == series_id) posts = db(query).select(table.name, table.body, table.avatar, table.created_by, table.created_on, limitby=(0, recent)) output = UL(_id="comments") import hashlib for post in posts: author = B(T("Anonymous")) if post.created_by: utable = s3db.auth_user ptable = s3db.pr_person ltable = s3db.pr_person_user query = (utable.id == post.created_by) left = [ltable.on(ltable.user_id == utable.id), ptable.on(ptable.pe_id == ltable.pe_id)] row = db(query).select(utable.email, ptable.first_name, ptable.middle_name, ptable.last_name, left=left, limitby=(0, 1)).first() if row: person = row.pr_person user = row[utable._tablename] username = s3_fullname(person) email = user.email.strip().lower() hash = hashlib.md5(email).hexdigest() url = "http://www.gravatar.com/%s" % hash author = B(A(username, _href=url, _target="top")) header = H4(post.name) if post.avatar: avatar = s3base.s3_avatar_represent(post.created_by) else: avatar = "" row = LI(DIV(avatar, DIV(DIV(header, _class="comment-header"), DIV(XML(post.body), _class="comment-body"), _class="comment-text"), DIV(DIV(post.created_on, _class="comment-date"), _class="fright"), DIV(author, _class="comment-footer"), _class="comment-box")) output.append(row) return XML(output)
5,339,421
def resolve_game_object_y_collision(moving, static): """Resolves a collision by moving an object along the y axis. Args: moving (:obj:`engine.game_object.PhysicalGameObject`): The object to move along the y axis. static (:obj:`engine.game_object.PhysicalGameObject`): The object to leave as-is. Returns: The change in the velocity of the object along the y axis. """ has_overlap = geometry.detect_overlap_1d( moving.x, moving.width, static.x, static.width) if has_overlap: # Overlap detected along x-axis, resolve collision on y-axis return _resolve_game_object_axis_collision(moving, static, 'y') return 0
5,339,422
def update(): """The program starts here""" global current_level # Initialization (only runs on start/restart) # player = Player() dino = DinoSprite() group = pg.sprite.Group(dino) sp = spritesheet("tileset48.png") wall, wall_floor, floor = sp.images_at( [(48, y, 16*3, 16*3) for y in range(22*3, 22*3 + 16*3 * 3, 16*3)]) tile_wall = Tile(wall) tile_wall_floor = Tile(wall_floor) tile_floor = Tile(floor) walls, goals, start = parse_level(levels[current_level]) dino.centerx = start[0] dino.centery = start[1] # Main update loop j = 0 food_target = 10 start_time = time.time() time_for_win = 30 while True: # update_player(dino, delta()) group.update(delta()) # group.draw(pg.display.get_surface()) window = pg.display.get_surface() for y, line in enumerate(levels[current_level].split('\n')): for x, tile in enumerate(line): if tile == '#': img = tile_wall else: img = tile_floor # draw_transformed(img.image, ((x * 48)/2, (y * 48)/2)) draw_transformed(img.image, (x * 48 - 48/2, y * 48 - 48/2)) dino.draw() for wall in walls: # window = pg.display.get_surface() # pg.draw.rect(window, pg.Color(100, 100, 100), wall) # draw_transformed(img, (self.centerx, self.centery), scale=(0.1,0.1)) player_vel, wall_vel, overlap = solve_rect_overlap(dino, wall, dino.velocity, mass_b=0, bounce=0.00) dino.velocity = player_vel for i, goal in enumerate(goals): window = pg.display.get_surface() pg.draw.rect(window, pg.Color(20, 100, 20), goal) normal, depth = overlap_data(dino, goal) if depth > 0: j += 1 del goals[i] # dino.width += 2 # dino.height += 2 dino.scale *= 1.1 random_food(goals) # draw_text(f"Level: {current_level + 1}", (0, 0)) draw_text(f'Food eaten: {j}/{food_target}', (0,0)) draw_text(f"Time left: {start_time + time_for_win - time.time():.2f}", (0, 20)) if j >= food_target and (time.time()-start_time<time_for_win) : #yield draw_text("Du vann", (220, 200)) yield pg.time.delay(1000) break elif (time.time()-start_time>time_for_win): draw_text("Du Förlora", (220, 200)) yield pg.time.delay(1000) break # Main loop ends here, put your code above this line yield
5,339,423
def filter_all(fn, *l): """ Runs the filter function on all items in a list of lists :param fn: Filter function :param l: list of lists to filter :return: list of filtered lists >>> filter_all(lambda x: x != "", ['a'], ['b'], [""], ["d"]) [['a'], ['b'], [], ['d']] """ return [filter(fn, lst) for lst in chain(*l)]
5,339,424
async def reply_on_message(message: types.Message): """Replies on user message.""" payload, url = _get_server_payload_for_user(message) async with aiohttp.ClientSession(auth=AUTH) as session: async with session.post(url, data=payload, headers=HEADERS) as server_response: await reply_using_server_response(server_response, message)
5,339,425
def get_test_runners(args): """ Get Test Runners """ res = list() qitest_jsons = args.qitest_jsons or list() # first case: qitest.json in current working directory test_runner = get_test_runner(args) if test_runner: res.append(test_runner) # second case: qitest.json specified with --qitest-json for qitest_json in qitest_jsons: test_runner = get_test_runner(args, qitest_json=qitest_json) res.append(test_runner) # third case: parsing build projects build_projects_runners = parse_build_projects(args) # avoid appending a test_runner guessed from a build project # when res already contains a test runner computed from a # --qitest-json argument known_cwds = [x.cwd for x in res] for test_runner in build_projects_runners: if test_runner.cwd not in known_cwds: res.append(test_runner) if args.coverage and not build_projects_runners: raise Exception("""--coverage can only be used from a qibuild CMake project\n""") elif args.coverage: return build_projects_runners if not res: raise EmptyTestListException("Nothing found to test") return res
5,339,426
def test_decorator_return_val(): """ Tests tha the decorator returns value. """ returned = on_completed() assert returned == "It works!"
5,339,427
def test_build_package_name(tmp_path, monkeypatch): """The zip file name comes from the metadata.""" to_be_zipped_dir = tmp_path / BUILD_DIRNAME to_be_zipped_dir.mkdir() # the metadata metadata_data = {'name': 'name-from-metadata'} metadata_file = tmp_path / 'metadata.yaml' with metadata_file.open('wt', encoding='ascii') as fh: yaml.dump(metadata_data, fh) # zip it monkeypatch.chdir(tmp_path) # so the zip file is left in the temp dir builder = Builder({ 'from': pathlib.Path(str(tmp_path)), # bad support for tmp_path's pathlib2 in Py3.5 'entrypoint': 'whatever', 'requirement': [], }) zipname = builder.handle_package() assert zipname == "name-from-metadata.charm"
5,339,428
def save_image(image, path): """Save an image as a png file.""" min_val = image.min() if min_val < 0: image = image + min_val scipy.misc.imsave(path, image) print('[#] Image saved {}.'.format(path))
5,339,429
def get_preselected_facets(params, all_categories): """ Resolve all facets that have been determined by the GET parameters. Args: params: Contains the categories/facets all_categories: Returns: dict: Contains all sorted facets """ ret_arr = {} iso_cat = params.get("isoCategories", "") custom_cat = params.get("customCategories", "") inspire_cat = params.get("inspireThemes", "") org_cat = params.get("registratingDepartments", "") # resolve ids by iterating all_categories all_iso_cat = all_categories[0] all_inspire_cat = all_categories[1] all_custom_cat = all_categories[2] all_org_cat = all_categories[3] iso_preselect = __resolve_single_facet(iso_cat, all_iso_cat) inspire_preselect = __resolve_single_facet(inspire_cat, all_inspire_cat) custom_preselect = __resolve_single_facet(custom_cat, all_custom_cat) org_preselect = __resolve_single_facet(org_cat, all_org_cat) if len(iso_preselect) > 0: ret_arr["ISO 19115"] = iso_preselect if len(inspire_preselect) > 0: ret_arr["INSPIRE"] = inspire_preselect if len(custom_preselect) > 0: ret_arr["Custom"] = custom_preselect if len(org_preselect) > 0: ret_arr["Organizations"] = org_preselect return ret_arr
5,339,430
def has_joined(*args: list, **kwargs) -> str: """ Validates the user's joining the channel after being required to join. :param args: *[0] -> first name :param kwargs: :return: Generated validation message """ first_name = args[0] text = f"{_star_struck}{_smiling_face_with_heart} بسیار خب " \ f"<b>{first_name}</b> " \ f", حالا تمام دسترسی ها رو داری{_party_popper}{_confetti_ball}\n\n" \ f"تبریک از طرف @chromusic_fa {_red_heart}\n" \ f"با خیال راحت هر فایل صوتی رو سرچ کن {_face_blowing_a_kiss}" return text
5,339,431
def depth_residual_regresssion_subnet(x, flg, regular, subnet_num): """Build a U-Net architecture""" """ Args: x is the input, 4-D tensor (BxHxWxC) flg represent weather add the BN regular represent the regularizer number Return: output is 4-D Tensor (BxHxWxC) """ pref = 'depth_regression_subnet_' + str(subnet_num) + '_' # whether to train flag train_ae = flg # define initializer for the network keys = ['conv', 'upsample'] keys_avoid = ['OptimizeLoss'] inits = [] init_net = None if init_net != None: for name in init_net.get_variable_names(): # select certain variables flag_init = False for key in keys: if key in name: flag_init = True for key in keys_avoid: if key in name: flag_init = False if flag_init: name_f = name.replace('/', '_') num = str(init_net.get_variable_value(name).tolist()) # self define the initializer function from tensorflow.python.framework import dtypes from tensorflow.python.ops.init_ops import Initializer exec( "class " + name_f + "(Initializer):\n def __init__(self,dtype=tf.float32): self.dtype=dtype \n def __call__(self,shape,dtype=None,partition_info=None): return tf.cast(np.array(" + num + "),dtype=self.dtype)\n def get_config(self):return {\"dtype\": self.dtype.name}") inits.append(name_f) # autoencoder n_filters = [ 128, 96, 64, 32, 16, 1, ] filter_sizes = [ 3, 3, 3, 3, 3, 3, ] pool_sizes = [ \ 1, 1, 1, 1, 1, 1, ] pool_strides = [ 1, 1, 1, 1, 1, 1, ] skips = [ \ False, False, False, False, False, False, ] # change space ae_inputs = tf.identity(x, name='ae_inputs') # prepare input current_input = tf.identity(ae_inputs, name="input") #################################################################################################################### # convolutional layers: depth regression feature = [] for i in range(0, len(n_filters)): name = pref + "conv_" + str(i) # define the initializer if name + '_bias' in inits: bias_init = eval(name + '_bias()') else: bias_init = tf.zeros_initializer() if name + '_kernel' in inits: kernel_init = eval(name + '_kernel()') else: kernel_init = None if i == (len(n_filters) - 1): activation = None else: activation = relu # convolution current_input = tf.layers.conv2d( inputs=current_input, filters=n_filters[i], kernel_size=[filter_sizes[i], filter_sizes[i]], padding="same", activation=activation, trainable=train_ae, kernel_initializer=kernel_init, bias_initializer=bias_init, name=name, ) if pool_sizes[i] == 1 and pool_strides[i] == 1: feature.append(current_input) else: feature.append( tf.layers.max_pooling2d( \ inputs=current_input, pool_size=[pool_sizes[i], pool_sizes[i]], strides=pool_strides[i], name=pref + "pool_" + str(i) ) ) current_input = feature[-1] depth_coarse = tf.identity(feature[-1], name='depth_coarse_output') return depth_coarse
5,339,432
def dist2(x, c): """ Calculates squared distance between two sets of points. Parameters ---------- x: numpy.ndarray Data of shape `(ndata, dimx)` c: numpy.ndarray Centers of shape `(ncenters, dimc)` Returns ------- n2: numpy.ndarray Squared distances between each pair of data from x and c, of shape `(ndata, ncenters)` """ assert x.shape[1] == c.shape[1], \ 'Data dimension does not match dimension of centers' x = np.expand_dims(x, axis=0) # new shape will be `(1, ndata, dimx)` c = np.expand_dims(c, axis=1) # new shape will be `(ncenters, 1, dimc)` # We will now use broadcasting to easily calculate pairwise distances n2 = np.sum((x - c) ** 2, axis=-1) return n2
5,339,433
def process_name(i: int, of: int) -> str: """Return e.g. '| | 2 |': an n-track name with track `i` (here i=2) marked. This makes it easy to follow each process's log messages, because you just go down the line until you encounter the same number again. Example: The interleaved log of four processes that each simulate a car visiting a charging station. The processes have been named with `process_name()`, and their log messages start with their `self.name`. (Car #2 does not turn up in this snippet.) | | | 3 arriving at 6 | 1 | | starting to charge at 7 0 | | | starting to charge at 7 | 1 | | leaving the bcs at 9 """ lines = ["|"] * of lines[i] = str(i) return " ".join(lines)
5,339,434
def cards_db(db): """ CardsDB object that's empty. """ db.delete_all() return db
5,339,435
def _geo_connected(geo, rxn): """ Assess if geometry is connected. Right now only works for minima """ # Determine connectivity (only for minima) if rxn is not None: gra = automol.geom.graph(geo) conns = automol.graph.connected_components(gra) lconns = len(conns) else: lconns = 1 # Check connectivity if lconns == 1: connected = True else: ioprinter.bad_conformer('disconnected') connected = False return connected
5,339,436
def scale_to_range(image, dest_range=(0,1)): """ Scale an image to the given range. """ return np.interp(image, xp=(image.min(), image.max()), fp=dest_range)
5,339,437
def files(): """Hypothesis strategy for generating objects pyswagger can use as file handles to populate `file` format parameters. Generated values take the format: `dict('data': <file object>)`""" return file_objects().map(lambda x: {"data": x})
5,339,438
def get_histograms( query: Optional[str] = None, delta: Optional[bool] = None ) -> Generator[dict, dict, list[Histogram]]: """Get Chrome histograms. Parameters ---------- query: Optional[str] Requested substring in name. Only histograms which have query as a substring in their name are extracted. An empty or absent query returns all histograms. delta: Optional[bool] If true, retrieve delta since last call. Returns ------- histograms: list[Histogram] Histograms. **Experimental** """ response = yield { "method": "Browser.getHistograms", "params": filter_none({"query": query, "delta": delta}), } return [Histogram.from_json(h) for h in response["histograms"]]
5,339,439
def energy_decay_curve_chu_lundeby( data, sampling_rate, freq='broadband', noise_level='auto', is_energy=False, time_shift=True, channel_independent=False, normalize=True, plot=False): """ This function combines Chu's and Lundeby's methods: The estimated noise level is subtracted before backward integration, the impulse response is truncated at the intersection time, and the correction for the truncation is applied [1, 2, 3]_ Parameters ---------- data : ndarray, double The room impulse response with dimension [..., n_samples] sampling_rate: integer The sampling rate of the room impulse response. freq: integer OR string The frequency band. If set to 'broadband', the time window of the Lundeby-algorithm will not be set in dependence of frequency. noise_level: ndarray, double OR string If not specified, the noise level is calculated based on the last 10 percent of the RIR. Otherwise specify manually for each channel as array. is_energy: boolean Defines, if the data is already squared. time_shift : boolean Defines, if the silence at beginning of the RIR should be removed. channel_independent : boolean Defines, if the time shift and normalizsation is done channel-independently or not. normalize : boolean Defines, if the energy decay curve should be normalized in the end or not. plot: Boolean Specifies, whether the results should be visualized or not. Returns ------- energy_decay_curve: ndarray, double Returns the noise handeled edc. References ---------- .. [1] Lundeby, Virgran, Bietz and Vorlaender - Uncertainties of Measurements in Room Acoustics - ACUSTICA Vol. 81 (1995) .. [2] W. T. Chu. “Comparison of reverberation measurements using Schroeder’s impulse method and decay-curve averaging method”. In: Journal of the Acoustical Society of America 63.5 (1978), pp. 1444–1450. .. [3] M. Guski, “Influences of external error sources on measurements of room acoustic parameters,” 2015. """ energy_data, n_channels, data_shape = preprocess_rir( data, is_energy=is_energy, time_shift=time_shift, channel_independent=channel_independent) n_samples = energy_data.shape[-1] subtraction = subtract_noise_from_squared_rir( energy_data, noise_level=noise_level) intersection_time, late_reverberation_time, noise_level = \ intersection_time_lundeby( energy_data, sampling_rate=sampling_rate, freq=freq, initial_noise_power=noise_level, is_energy=True, time_shift=False, channel_independent=False, plot=False) time_vector = smooth_rir(energy_data, sampling_rate)[2] energy_decay_curve = np.zeros([n_channels, n_samples]) for idx_channel in range(0, n_channels): intersection_time_idx = np.argmin(np.abs( time_vector - intersection_time[idx_channel])) if noise_level == 'auto': p_square_at_intersection = estimate_noise_energy( energy_data[idx_channel], is_energy=True) else: p_square_at_intersection = noise_level[idx_channel] # calculate correction term according to DIN EN ISO 3382 correction = (p_square_at_intersection * late_reverberation_time[idx_channel] * (1 / (6*np.log(10))) * sampling_rate) energy_decay_curve[idx_channel, :intersection_time_idx] = \ ra.schroeder_integration( subtraction[idx_channel, :intersection_time_idx], is_energy=True) energy_decay_curve[idx_channel] += correction if normalize: # Normalize the EDC... if not channel_independent: # ...by the first element of each channel. energy_decay_curve = (energy_decay_curve.T / energy_decay_curve[..., 0]).T else: # ...by the maximum first element of each channel. max_start_value = np.amax(energy_decay_curve[..., 0]) energy_decay_curve /= max_start_value energy_decay_curve[..., intersection_time_idx:] = np.nan if plot: plt.figure(figsize=(15, 3)) plt.subplot(131) plt.plot(time_vector, 10*np.log10(energy_data.T)) plt.xlabel('Time [s]') plt.ylabel('Squared IR [dB]') plt.subplot(132) plt.plot(time_vector, 10*np.log10(subtraction.T)) plt.xlabel('Time [s]') plt.ylabel('Noise subtracted IR [dB]') plt.subplot(133) plt.plot(time_vector[0:energy_decay_curve.shape[-1]], 10*np.log10( energy_decay_curve.T)) plt.xlabel('Time [s]') plt.ylabel('Tr. EDC with corr. & subt. [dB]') plt.tight_layout() # Recover original data shape: energy_decay_curve = np.reshape(energy_decay_curve, data_shape) energy_decay_curve = np.squeeze(energy_decay_curve) return energy_decay_curve
5,339,440
def sinkhorn( p, q, metric="euclidean", ): """ Returns the earth mover's distance between two point clouds Parameters ---------- cloud1 : 2-D array First point cloud cloud2 : 2-D array Second point cloud Returns ------- distance : float The distance between the two point clouds """ p_weights = np.ones(len(p)) / len(p) q_weights = np.ones(len(q)) / len(q) pairwise_dist = np.ascontiguousarray( pairwise_distances(p, Y=q, metric=metric, n_jobs=-1) ) result = pot.sinkhorn2( p_weights, q_weights, pairwise_dist, reg=0.05, numItermax=100, return_matrix=False, ) return np.sqrt(result)
5,339,441
def generate_s3_events(cluster_name, cluster_dict, config): """Add the S3 Events module to the Terraform cluster dict. Args: cluster_name (str): The name of the currently generating cluster cluster_dict (defaultdict): The dict containing all Terraform config for a given cluster. config (dict): The loaded config from the 'conf/' directory Returns: bool: Result of applying the s3_events module """ s3_event_buckets = config['clusters'][cluster_name]['modules']['s3_events'] generate_s3_events_by_bucket(cluster_name, cluster_dict, config, s3_event_buckets) return True
5,339,442
def _check_predictor_matrix( predictor_matrix, allow_nan=False, min_num_dimensions=3, max_num_dimensions=5): """Checks predictor matrix for errors. :param predictor_matrix: numpy array of predictor images. Dimensions may be E x M x N, E x M x N x C, or E x M x N x T x C. :param allow_nan: Boolean flag. If allow_nan = False and this method finds a NaN, it will error out. :param min_num_dimensions: Minimum number of dimensions expected in `predictor_matrix`. :param max_num_dimensions: Max number of dimensions expected in `predictor_matrix`. """ if allow_nan: error_checking.assert_is_real_numpy_array(predictor_matrix) else: error_checking.assert_is_numpy_array_without_nan(predictor_matrix) num_dimensions = len(predictor_matrix.shape) error_checking.assert_is_geq(num_dimensions, min_num_dimensions) error_checking.assert_is_leq(num_dimensions, max_num_dimensions)
5,339,443
def cluster_seg(bt, seg_list, radius): """ Fetch segments which align themself for a given tolerance. """ cluster, seen_ix = [], set() for i, seg in enumerate(seg_list): if i not in seen_ix: sim_seg_ix = list(bt.query_radius([seg], radius)[0]) seen_ix |= set(sim_seg_ix) cluster.append(sim_seg_ix) return _find_connected_components(cluster)
5,339,444
def stage_grid( Dstg, A, dx_c, tte, min_Rins=None, recamber=None, stag=None, resolution=1. ): """Generate an H-mesh for a turbine stage.""" # Change scaling factor on grid points # Distribute the spacings between stator and rotor dx_c = np.array([[dx_c[0], dx_c[1] / 2.0], [dx_c[1] / 2.0, dx_c[2]]]) # Streamwise grids for stator and rotor x_c, ilte = streamwise_grid(dx_c, resolution=resolution) x = [x_ci * Dstg.cx[0] for x_ci in x_c] # Generate radial grid Dr = np.array([Dstg.Dr[:2], Dstg.Dr[1:]]) r = merid_grid(x_c, Dstg.rm, Dr, resolution=resolution) # Evaluate radial blade angles r1 = r[0][ilte[0][0], :] spf = (r1 - r1.min()) / r1.ptp() chi = np.stack((Dstg.free_vortex_vane(spf), Dstg.free_vortex_blade(spf))) # If recambering, then tweak the metal angles if not recamber is None: dev = np.reshape(recamber, (2, 2, 1)) dev[1] *= -1 # Reverse direction of rotor angles chi += dev # Get sections (normalised by axial chord for now) sect = [ geometry.radially_interpolate_section( spf, chii, spf, tte, Ai, stag=stagi ) for chii, Ai, stagi in zip(chi, A, stag) ] # If we have asked for a minimum inscribed circle, confirm that the # constraint is not violated if min_Rins: for i, row_sect in enumerate(sect): for rad_sect in row_sect: current_radius = geometry.largest_inscribed_circle(rad_sect.T) if current_radius < min_Rins: raise geometry.GeometryConstraintError( ( "Row %d, Thickness is too small for the constraint " "inscribed circle: %.3f < %.3f" % (i, current_radius, min_Rins) ) ) # Now we can do b2b grids rt = [b2b_grid(*args, resolution=resolution) for args in zip(x, r, Dstg.s, Dstg.cx, sect)] # Offset the rotor so it is downstream of stator x[1] = x[1] + x[0][-1] - x[1][0] # fig, ax = plt.subplots() # ax.plot(x[0],rt[0][:,0,(0,-1)]) # ax.plot(x[1],rt[1][:,0,(0,-1)]) # ax.axis('equal') # plt.savefig('sect.pdf') # quit() return x, r, rt, ilte
5,339,445
def get_best_trial(trial_list, metric): """Retrieve the best trial.""" return max(trial_list, key=lambda trial: trial.last_result.get(metric, 0))
5,339,446
def connect_signals(**kwargs): """ Listens to the ``initializing`` signal and tells other modules to connect their signals. This is done so as to guarantee that django is loaded first. """ from reviewboard.notifications import email, webhooks email.connect_signals() webhooks.connect_signals()
5,339,447
def director_score(): """ use .agg() operation to pass .count() and .sum() counts the number of movies for each director. sum the IMDB score of the movies from each director. renames columns, sort the values in descending order. calculates average score and create a new column. """ gb_director_score = df.groupby('Director').agg( { 'Title': 'count', 'IMDB Score': 'sum'}).rename( columns={ 'Title': 'Number of movies', 'IMDB Score': 'Total IMDB Score'}).sort_values( by=[ 'Number of movies', 'Total IMDB Score'], ascending=False).reset_index() gb_director_score['Average Score'] = ( gb_director_score["Total IMDB Score"] / gb_director_score["Number of movies"]).round(2) print(f"""{Fore.YELLOW + Style.BRIGHT} The average score of the most prolific directors: {Style.RESET_ALL}{gb_director_score.head(10).to_string(index=False)}\n""") welcome()
5,339,448
def plot_confusion_matrix(cm, xticks, yticks, normalize=False, ignore_main_diagonal=False, cmap=plt.cm.binary): """ plots a confusion matrix using matplotlib Parameters ---------- cm : (tensor or numpy array) confusion matrix e.g. from tf.math.confusion_matrix(y_test, y_pred) xticks : (list) x tick labels yticks : (list) x tick labels normalize : (bool), optional scales cm to 1. The default is False. ignore_main_diagonal : (bool), optional sets the main diagonal to zero. The default is False. cmap : matplotlib colormap, optional Returns ------- None. """ cm = np.array(cm) if normalize: # normalize to 1.0 cm = cm / cm.max() if ignore_main_diagonal: # set main diagonal to zero for i in range(len(cm)): cm[i, i] = 0 plt.imshow(cm, cmap=cmap) plt.xticks(ticks=range(len(xticks)), labels=xticks, rotation=90) plt.yticks(ticks=range(len(yticks)), labels=yticks) plt.xlabel("predicted class") plt.ylabel("actual class") # put numbers inside the heatmap thresh = cm.max() / 2. for i, row in enumerate(cm): for j, val in enumerate(row): plt.text(j, i, format(int(val)), horizontalalignment="center", color = "white" if val > thresh else "black") plt.colorbar()
5,339,449
def processMultiplierSegment(segment, source_dir_band, wind_prj, bear_prj, dst_band): """ Calculates local wind multiplier data by image segments and writes to corresponding segment of output file :param segment: image segment specified by [x_offset, y_offset, width, height, segment_count, total_segments] :param source_dir_band: 8 band array representing wind mulitpliers data in 8 directions :param wind_prj: band representing gust data :param bear_prj: band representing bear data :param dst_band: band of output file """ band_numbers_for_indices_in_geotiff = [2, 3, 1, 6, 5, 7, 8, 4, 2] indices = { 0: {'dir': 'n', 'min': 0., 'max': 22.5}, 1: {'dir': 'ne', 'min': 22.5, 'max': 67.5}, 2: {'dir': 'e', 'min': 67.5, 'max': 112.5}, 3: {'dir': 'se', 'min': 112.5, 'max': 157.5}, 4: {'dir': 's', 'min': 157.5, 'max': 202.5}, 5: {'dir': 'sw', 'min': 202.5, 'max': 247.5}, 6: {'dir': 'w', 'min': 247.5, 'max': 292.5}, 7: {'dir': 'nw', 'min': 292.5, 'max': 337.5}, 8: {'dir': 'n', 'min': 337.5, 'max': 360.} } [x_offset, y_offset, width, height, segment_id, total_segments] = segment log.debug("Processing segment {0}/{1}: {2} {3} {4} {5}" .format(segment_id, total_segments, x_offset, y_offset, width, height)) with threadLock_gust: wind_data = wind_prj.ReadAsArray(x_offset, y_offset, width, height) with threadLock_bear: bear_data = bear_prj.ReadAsArray(x_offset, y_offset, width, height) m4_all = loadAllBandArrayData(source_dir_band, segment_info=segment) local = np.zeros([height, width], dtype='float32') for i in list(indices.keys()): m4 = m4_all[band_numbers_for_indices_in_geotiff[i] - 1] idx = np.where((bear_data >= indices[i]['min']) & (bear_data < indices[i]['max'])) local[idx] = wind_data[idx] * m4[idx] with threadLock_out: dst_band.WriteArray(local, x_offset, y_offset) print('\rProgress: {0:.2f}'.format((segment_id * 100) / total_segments), "%", end="") if segment_id % int(math.ceil(total_segments / 20)) == 0: if log.getLogger(__name__).getEffectiveLevel() == log.DEBUG: print("") log.debug('Progress: {0} %'.format(int((segment_id * 100) / total_segments)))
5,339,450
def make_registry_metaclass(registry_store): """Return a new Registry metaclass.""" if not isinstance(registry_store, dict): raise TypeError("'registry_store' argument must be a dict") class Registry(type): """A metaclass that stores a reference to all registered classes.""" def __new__(mcs, class_name, base_classes, class_dict): """Create and returns a new instance of Registry. The registry is a class named 'class_name' derived from 'base_classes' that defines 'class_dict' as additional attributes. The returned class is added to 'registry_store' using class_dict["REGISTERED_NAME"] as the name, or 'class_name' if the "REGISTERED_NAME" attribute isn't defined. If the sentinel value 'LEAVE_UNREGISTERED' is specified as the name, then the returned class isn't added to 'registry_store'. The returned class will have the "REGISTERED_NAME" attribute defined either as its associated key in 'registry_store' or the 'LEAVE_UNREGISTERED' sentinel value. """ registered_name = class_dict.setdefault("REGISTERED_NAME", class_name) cls = type.__new__(mcs, class_name, base_classes, class_dict) if registered_name is not LEAVE_UNREGISTERED: if registered_name in registry_store: raise ValueError("The name %s is already registered; a different value for the" " 'REGISTERED_NAME' attribute must be chosen" % (registered_name)) registry_store[registered_name] = cls return cls return Registry
5,339,451
def test_chairman_info( session: Session, id: int, true_title: str, true_firstname: str, true_lastname: str ) -> None: """Test that chairman info is correctly parsed.""" [element] = session.xml_transcript.xpath(f"(. //*[local-name() = 'Toimenpide'])[{id}]") title, firstname, lastname = session.get_chairman_info(element) assert title == true_title assert firstname == true_firstname assert lastname == true_lastname
5,339,452
def bind11(reactant, max_helix = True): """ Returns a list of reaction pathways which can be produced by 1-1 binding reactions of the argument complex. The 1-1 binding reaction is the hybridization of two complementary unpaired domains within a single complex to produce a single unpseudoknotted product complex. """ reactions = set() structure = list(reactant.pair_table) for (strand_index, strand) in enumerate(structure): for (domain_index, domain) in enumerate(strand): # The displacing domain must be free if structure[strand_index][domain_index] is not None : continue start_loc = (strand_index, domain_index) # search (one direction) around the loop for an open domain that can be bound. results = find_on_loop(reactant, start_loc, filter_bind11) assert len(results) == len(find_on_loop(reactant, start_loc, filter_bind11, direction = -1)) for e, (invader, before, target, after) in enumerate(results): if max_helix: invader, before, target, after = zipper( reactant, invader[0], before, target[0], after, filter_bind11) results[e] = list(map(Loop, [invader, before, target, after])) # build products for (loc1s, before, loc2s, after) in results: # Should be reversed loc2s right? assert [x == ~y for x,y in zip(loc1s.domains, loc2s.domains)] product = do_bind11(reactant, loc1s.domain_locs, loc2s.domain_locs) reaction = PepperReaction([reactant], [product], 'bind11') if reaction.rate_constant[0] is None: reaction.rate_constant = (unimolecular_binding_rate(loc1s.dlength, before, after), '/s') reactions.add(reaction) return sorted(reactions)
5,339,453
def test_three_code_wars(): """Test function that emulates test.assert_equals(nth_even(3), 4).""" from get_nth_even_number import nth_even assert nth_even(3) == 4
5,339,454
def benchmark(): """ Some basic performance benchmarks. You are encouraged to implement your own 'next' function! """ sg = SudokuGames(end=24) iter_, recu_ = Sudoku.solve_iterative, Sudoku.solve_recursive # tuple of pairs that define the solver function. First element picks the # flavour (iterative or recursive), second element picks the 'next' # function (see documentation for Sudoku.most_constrained_zero) solve_funs = ( (iter_, Sudoku.most_constrained_zero), (iter_, Sudoku.most_constrained_zero_alt1), (iter_, Sudoku.most_constrained_zero_alt2) ) seed(0) table = sample(sg.sudoku17.items(), 1)[0][1] # table = SudokuGames.samples[2] print(f'\nSudoku to solve:\n{table}') sud = None num_runs = 20 for meth, next_fun in solve_funs: tt = 0 for n in range(num_runs): sud = Sudoku(table) meth(sud, next_fun) tt += sud.solve_time print(f'\nSolving {num_runs} times with {next_fun.__name__}() ' f'({meth.__name__.split("_")[1]}): \n' f'{tt/num_runs*1000: 0.1f} ms/sudoku\n{sud.solution}')
5,339,455
def main(url, owner, repo, outdir=None, suffix=None): """Route request.""" token, api_url = parse_url(url) dl_assets = get_latest_assets(api_url, owner, repo, token, suffix) if outdir is not None and not os.path.isdir(outdir): os.makedirs(outdir) for pkg_name, pkg_url in dl_assets: local_path = pkg_name if outdir is None else os.path.join(outdir, pkg_name) handle_redirects(pkg_url, local_path, token)
5,339,456
def main(): """ Creates a knowledge resource from triplets file: first step, receives the entire triplets file and saves the following files: '_path_to_id.db', '_id_to_path.db', '_term_to_id.db', '_id_to_term.db' """ # Get the arguments args = docopt("""Creates a knowledge resource from triplets file: first step, receives the entire triplets file and saves the following files: '_path_to_id.db', '_id_to_path.db', '_term_to_id.db', '_id_to_term.db' Usage: create_resource_from_corpus_1.py <frequent_paths_file> <terms_file> <resource_prefix> <frequent_paths_file> = the file containing the frequent paths, that should be included in the resource. Similarly to Snow et al. (2004), we considered only paths that occurred with 5 different term-pairs in the corpus. <terms_file> = the file containing all the terms (=vocabulary). <resource_prefix> = the file names' prefix for the resource files """) frequent_paths_file = args['<frequent_paths_file>'] terms_file = args['<terms_file>'] resource_prefix = args['<resource_prefix>'] # Load the frequent paths print('Saving the paths...') with codecs.open(frequent_paths_file, 'r', 'utf-8') as f_in: frequent_paths = set([line.strip() for line in f_in]) # Save the paths path_to_id = {path: i for i, path in enumerate(list(frequent_paths))} path_to_id_db = bsddb3.btopen(resource_prefix + '_path_to_id.db', 'c') id_to_path_db = bsddb3.btopen(resource_prefix + '_id_to_path.db', 'c') for path, id in path_to_id.items(): id, path = str(id), str(path) path_to_id_db[path] = id id_to_path_db[id] = path path_to_id_db.sync() id_to_path_db.sync() # frequent_paths = None # TODO delete? # Load the terms print('Saving the terms...') with codecs.open(terms_file, 'r', 'utf-8') as f_in: terms = [line.strip() for line in f_in] # Save the terms term_to_id = {term: i for i, term in enumerate(terms)} term_to_id_db = bsddb3.btopen(resource_prefix + '_term_to_id.db', 'c') id_to_term_db = bsddb3.btopen(resource_prefix + '_id_to_term.db', 'c') for term, id_ in term_to_id.items(): id_, term = str(id_), str(term) term_to_id_db[term] = id_ id_to_term_db[id_] = term term_to_id_db.sync() id_to_term_db.sync()
5,339,457
def get_all_movie_props(movies_set: pd.DataFrame, flag: int, file_path: str): """ Function that returns the data frame of all movie properties from dbpedia :param movies_set: data set of movies with columns movie id and movie dbpedia uri :param flag: 1 to generate the data frame from scratch and 0 to read from file :param file_path: file path to read if flag is not 0 :return: the data frame of all movie properties from dbpedia """ cols = ['movie_id', 'prop', 'obj'] if flag == 1: all_movie_props = obtain_all_movie_props(movies_set, cols) all_movie_props.to_csv(file_path, mode='w', header=False, index=False) else: all_movie_props = pd.read_csv(file_path, header=None) all_movie_props.columns = cols all_movie_props = all_movie_props.set_index(cols[0]) return all_movie_props
5,339,458
def convert_to_clocks(duration, f_sampling=200e6, rounding_period=None): """ convert a duration in seconds to an integer number of clocks f_sampling: 200e6 is the CBox sampling frequency """ if rounding_period is not None: duration = max(duration//rounding_period, 1)*rounding_period clock_duration = int(duration*f_sampling) return clock_duration
5,339,459
def _add_supplemental_plot_info(infos_copy, item, common_data): """Add supplemental info to plot description""" suppl_info = [] if item.get('dpSupplementalMessage'): # Short information about future release of tv show season or other suppl_info.append(item['dpSupplementalMessage']) # The 'sequiturEvidence' dict can be of type 'hook' or 'watched' if (item.get('sequiturEvidence') and item['sequiturEvidence'].get('type') == 'hook' and item['sequiturEvidence'].get('value')): # Short information about the actors career/awards and similarities/connections with others films or tv shows suppl_info.append(item['sequiturEvidence']['value']['text']) suppl_text = '[CR][CR]'.join(suppl_info) plot = infos_copy.get('Plot', '') plotoutline = infos_copy.get('PlotOutline', '') if suppl_text: suppl_text = _colorize_text(common_data['supplemental_info_color'], suppl_text) if plot: plot += '[CR][CR]' if plotoutline: plotoutline += '[CR][CR]' infos_copy.update({'Plot': plot + suppl_text}) infos_copy.update({'PlotOutline': plotoutline + suppl_text})
5,339,460
def account_approved(f): """Checks whether user account has been approved, raises a 401 error otherwise . """ def decorator(*args, **kwargs): if not current_user: abort(401, {'message': 'Invalid user account.'}) elif not current_user.is_approved: abort(401, {'message': 'Account has not yet been approved.'}) return f(*args, **kwargs) return decorator
5,339,461
def multiply(x): """Multiply operator. >>> multiply(2)(1) 2 """ def multiply(y): return y * x return multiply
5,339,462
def tally_transactions(address, txs): """Calculate the net value of all deposits, withdrawals and fees :param address: Address of the account :param txs: Transactions JSON for the address :returns: The total net value of all deposits, withdrawals and fees """ send_total = 0 for item in txs['result']: if item['success']: # Check for deposits/withdrawals if "MsgSend" in item['messageTypes']: if item['messages'][0]['content']['toAddress'] != address: # Remove withdrawals send_total -= translate_basecro_to_cro(Decimal(item['messages'][0]['content']['amount'][0]['amount'])) else: # Add deposits send_total += translate_basecro_to_cro(Decimal(item['messages'][0]['content']['amount'][0]['amount'])) # Remove fees send_total -= translate_basecro_to_cro(Decimal(item['fee'][0]['amount'])) return send_total
5,339,463
def test_fft3d(): """Test 3d fft core function.""" arr3d_f = fourier.fft3d(arr3d, mode="forward") assert arr3d_f.shape == (n_pixels, n_pixels, n_pixels) arr3d_r = fourier.fft3d(arr3d_f, mode="inverse") assert arr3d_r.shape == (n_pixels, n_pixels, n_pixels)
5,339,464
def expose(policy): """ Annotate a method to permit access to contexts matching an authorization policy. The annotation may be specified multiple times. Methods lacking any authorization policy are not accessible. :: @mitogen.service.expose(policy=mitogen.service.AllowParents()) def unsafe_operation(self): ... :param mitogen.service.Policy policy: The policy to require. """ def wrapper(func): func.mitogen_service__policies = [policy] + getattr( func, "mitogen_service__policies", [] ) return func return wrapper
5,339,465
def _bytes_feature(value): """Creates a bytes feature from the passed value. Args: value: An numpy array. Returns: A TensorFlow feature. """ return tf.train.Feature( bytes_list=tf.train.BytesList( value=[value.astype(np.float32).tostring()]))
5,339,466
def get_cell_phase( adata: anndata.AnnData, layer: str = None, gene_list: Union[OrderedDict, None] = None, refine: bool = True, threshold: Union[float, None] = 0.3, ) -> pd.DataFrame: """Compute cell cycle phase scores for cells in the population Arguments --------- adata: :class:`~anndata.AnnData` layer: `str` or None (default: `None`) The layer of data to use for calculating correlation. If None, use adata.X. gene_list: `OrderedDict` or None (default: `None`) OrderedDict of marker genes to use for cell cycle phases. If None, the default list will be used. refine: `bool` (default: `True`) whether to refine the gene lists based on how consistent the expression is among the groups threshold: `float` or None (default: `0.3`) threshold on correlation coefficient used to discard genes (expression of each gene is compared to the bulk expression of the group and any gene with a correlation coefficient less than this is discarded) Returns ------- Cell cycle scores indicating the likelihood a given cell is in a given cell cycle phase """ # get list of genes if one is not provided if gene_list is None: cell_phase_genes = get_cell_phase_genes(adata, layer, refine=refine, threshold=threshold) else: cell_phase_genes = gene_list adata.uns["cell_phase_genes"] = cell_phase_genes # score each cell cycle phase and Z-normalize phase_scores = pd.DataFrame(batch_group_score(adata, layer, cell_phase_genes)) normalized_phase_scores = phase_scores.sub(phase_scores.mean(axis=1), axis=0).div(phase_scores.std(axis=1), axis=0) normalized_phase_scores_corr = normalized_phase_scores.transpose() normalized_phase_scores_corr["G1-S"] = [1, 0, 0, 0, 0] normalized_phase_scores_corr["S"] = [0, 1, 0, 0, 0] normalized_phase_scores_corr["G2-M"] = [0, 0, 1, 0, 0] normalized_phase_scores_corr["M"] = [0, 0, 0, 1, 0] normalized_phase_scores_corr["M-G1"] = [0, 0, 0, 0, 1] phase_list = ["G1-S", "S", "G2-M", "M", "M-G1"] # final scores for each phaase are correlation of expression profile with vectors defined above cell_cycle_scores = normalized_phase_scores_corr.corr() tmp = -len(phase_list) cell_cycle_scores = cell_cycle_scores[tmp:].transpose()[: -len(phase_list)] # pick maximal score as the phase for that cell cell_cycle_scores["cell_cycle_phase"] = cell_cycle_scores.idxmax(axis=1) cell_cycle_scores["cell_cycle_phase"] = cell_cycle_scores["cell_cycle_phase"].astype("category") cell_cycle_scores["cell_cycle_phase"].cat.set_categories(phase_list, inplace=True) def progress_ratio(x, phase_list): ind = phase_list.index(x["cell_cycle_phase"]) return x[phase_list[(ind - 1) % len(phase_list)]] - x[phase_list[(ind + 1) % len(phase_list)]] # interpolate position within given cell cycle phase cell_cycle_scores["cell_cycle_progress"] = cell_cycle_scores.apply( lambda x: progress_ratio(x, list(phase_list)), axis=1 ) cell_cycle_scores.sort_values( ["cell_cycle_phase", "cell_cycle_progress"], ascending=[True, False], inplace=True, ) # order of cell within cell cycle phase cell_cycle_scores["cell_cycle_order"] = cell_cycle_scores.groupby("cell_cycle_phase").cumcount() cell_cycle_scores["cell_cycle_order"] = cell_cycle_scores.groupby("cell_cycle_phase")["cell_cycle_order"].apply( lambda x: x / (len(x) - 1) ) return cell_cycle_scores
5,339,467
def pm_callback(sender, **kwargs): """ Post Migrate callbghack Re/load sql files and move models to schemas """ load_sql_files(sender) move_models_to_schemas(sender)
5,339,468
def variational_lower_bound(prediction): """ This is the variational lower bound derived in Auto-Encoding Variational Bayes, Kingma & Welling, 2014 :param [posterior_means, posterior_logvar, data_means, data_logvar, originals] posterior_means: predicted means for the posterior posterior_logvar: predicted log variances for the posterior data_means: predicted mean parameter for the voxels modelled as Gaussians data_logvar: predicted log variance parameter for the voxels modelled as Gaussians originals: the original inputs :return: """ # log_2pi = np.log(2*np.pi) log_2pi = 1.837877 assert len(prediction) >= 5, \ "please see the returns of network/vae.py" \ "for the prediction list format" posterior_means, posterior_logvar = prediction[:2] data_means, data_logvar = prediction[2:4] originals = prediction[4] squared_diff = tf.square(data_means - originals) log_likelihood = \ data_logvar + log_2pi + tf.exp(-data_logvar) * squared_diff # batch_size = tf.shape(log_likelihood)[0] batch_size = log_likelihood.get_shape().as_list()[0] log_likelihood = tf.reshape(log_likelihood, shape=[batch_size, -1]) log_likelihood = -0.5 * tf.reduce_sum(log_likelihood, axis=[1]) KL_divergence = 1 + posterior_logvar \ - tf.square(posterior_means) \ - tf.exp(posterior_logvar) KL_divergence = -0.5 * tf.reduce_sum(KL_divergence, axis=[1]) return tf.reduce_mean(KL_divergence - log_likelihood)
5,339,469
def didGen(vk, method="dad"): """ didGen accepts an EdDSA (Ed25519) key in the form of a byte string and returns a DID. :param vk: 32 byte verifier/public key from EdDSA (Ed25519) key :param method: W3C did method string. Defaults to "dad". :return: W3C DID string """ if vk is None: return None # convert verkey to jsonable unicode string of base64 url-file safe vk64u = base64.urlsafe_b64encode(vk).decode("utf-8") return "did:{0}:{1}".format(method, vk64u)
5,339,470
def part_1( pwd_data ): """ For each line in pwd_data: * element 0 contains the min/max counts. It is stored as <str>-<str> it will need to be split and each of the 2 new elements cast to ints. * element 1 contains the character to count in the provided password string. It will have a trailing : character that will need to be stripped. * element 2 is the password string The character in element 1 must exist in the password a number of times between the min and max values provided. Args: pwd_data ([list]): """ good_passwords = 0 for x in pwd_data: min, max = x[ 0 ].split( '-' ) if int( min ) <= x[ 2 ].count( x[ 1 ].rstrip( ':' ) ) <= int( max ): good_passwords += 1 print( good_passwords )
5,339,471
def load_dataset(datapath): """Extract class label info """ with open(datapath + "/experiment_dataset.dat", "rb") as f: data_dict = pickle.load(f) return data_dict
5,339,472
def deleteupload(): """Deletes an upload. An uploads_id is given and that entry is then removed from the uploads table in the database. """ uploads_id = request.args.get('uploads_id') if not uploads.exists(uploads_id=uploads_id): return bad_json_response( 'BIG OOPS: Something went wrong deleting the file.' ) uploads.delete(uploads_id=uploads_id) return good_json_response('success')
5,339,473
def read(fn, offset, length, hdfs=None): """ Read a block of bytes from a particular file """ with hdfs.open(fn, 'r') as f: f.seek(offset) bytes = f.read(length) logger.debug("Read %d bytes from %s:%d", len(bytes), fn, offset) return bytes
5,339,474
def load_json(filename: str) -> Dict: """Read JSON file from metadata folder Args: filename: Name of metadata file Returns: dict: Dictionary of data """ filepath = ( Path(__file__).resolve().parent.parent.joinpath("metadata").joinpath(filename) ) metadata: Dict = json.loads(filepath.read_text()) return metadata
5,339,475
def assert_db_got_replaced(rotkehlchen_instance: Rotkehlchen, username: str): """For environment setup with setup_starting_environment make sure DB is replaced""" # At this point pulling data from rotkehlchen server should have worked # and our database should have been replaced. The new data have different # main currency assert rotkehlchen_instance.data.db.get_main_currency() == A_GBP # Also check a copy of our old DB is kept around. directory = os.path.join(rotkehlchen_instance.data.data_directory, username) files = list(os.path.join(directory, f) for f in os.listdir(directory)) assert len(files) == 2 # The order of the files is not guaranteed assert 'rotkehlchen.db' in files[0] or 'rotkehlchen.db' in files[1] assert 'backup' in files[0] or 'backup' in files[1]
5,339,476
def main(): """Given a dashboard title, get the ids of all dashboards with matching titles and move them to trash. $ python soft_delete_dashboard.py "An Unused Dashboard" """ dashboard_title = sys.argv[1] if len(sys.argv) > 1 else "" if not dashboard_title: raise sdk_exceptions.ArgumentError("Please provide: <dashboardTitle>") dashboards = get_dashboards(dashboard_title) delete_dashboards(dashboards)
5,339,477
def get_riemann_sum(x, delta_x): """ Returns the riemann `sum` given a `function` and the input `x` and `delta_x` Parameters ---------- x : list List of numbers returned by `np.linspace` given a lower and upper bound, and the number of intervals delta_x : The interval Returns ------- float The integral sum """ return sum(f(x)*delta_x)
5,339,478
def initialize_library(verbose): """ Sets the native library verbosity Args: verbose: Set to 1 for redirecting native library logs to stderr. For full debug information, compile the RQRMI library with DEBUG flag. """ global _library_initialzied if _library_initialzied: return if verbose: print('*** For maximum debug information on the RQRMI library, compile library with debug flag ***') rqrmilib.initialize(1) else: rqrmilib.initialize(0) _library_initialzied=True
5,339,479
def MPO_rand(n, bond_dim, phys_dim=2, normalize=True, cyclic=False, herm=False, dtype=float, **mpo_opts): """Generate a random matrix product state. Parameters ---------- n : int The number of sites. bond_dim : int The bond dimension. phys_dim : int, optional The physical (site) dimensions, defaults to 2. normalize : bool, optional Whether to normalize the operator such that ``trace(A.H @ A) == 1``. cyclic : bool, optional Generate a MPO with periodic boundary conditions or not, default is open boundary conditions. dtype : {float, complex} or numpy dtype, optional Data type of the tensor network. herm : bool, optional Whether to make the matrix hermitian (or symmetric if real) or not. mpo_opts Supplied to :class:`~quimb.tensor.tensor_1d.MatrixProductOperator`. """ cyc_shp = (bond_dim,) if cyclic else () shapes = [(*cyc_shp, bond_dim, phys_dim, phys_dim), *((bond_dim, bond_dim, phys_dim, phys_dim),) * (n - 2), (bond_dim, *cyc_shp, phys_dim, phys_dim)] def gen_data(shape): data = randn(shape, dtype=dtype) if not herm: return data trans = (0, 2, 1) if len(shape) == 3 else (0, 1, 3, 2) return data + data.transpose(*trans).conj() arrays = map(lambda x: x / norm_fro_dense(x)**(1 / (x.ndim - 1)), map(gen_data, shapes)) rmpo = MatrixProductOperator(arrays, **mpo_opts) if normalize: rmpo /= (rmpo.H @ rmpo)**0.5 return rmpo
5,339,480
def test_api_exception(symbol='invalid'): """Test API response Exception""" with pytest.raises(CryptowatchAPIException): client.get_assets(symbol)
5,339,481
def get_short_size(size_bytes): """ Get a file size string in short format. This function returns: "B" size (e.g. 2) when size_bytes < 1KiB "KiB" size (e.g. 345.6K) when size_bytes >= 1KiB and size_bytes < 1MiB "MiB" size (e.g. 7.8M) when size_bytes >= 1MiB size_bytes: File size in bytes """ if size_bytes < 1024: return str(size_bytes) if size_bytes < 1048576: return f"{size_bytes / 1024:.1f}K" return f"{size_bytes / 1048576:.1f}M"
5,339,482
def stop_evennia(): """ This instructs the Portal to stop the Server and then itself. """ def _portal_stopped(*args): print("... Portal stopped.\nEvennia shut down.") _reactor_stop() def _server_stopped(*args): print("... Server stopped.\nStopping Portal ...") send_instruction(PSHUTD, {}) wait_for_status(False, None, _portal_stopped) def _portal_running(response): prun, srun, ppid, spid, _, _ = _parse_status(response) if srun: print("Server stopping ...") send_instruction(SSHUTD, {}) wait_for_status_reply(_server_stopped) else: print("Server already stopped.\nStopping Portal ...") send_instruction(PSHUTD, {}) wait_for_status(False, None, _portal_stopped) def _portal_not_running(fail): print("Evennia not running.") _reactor_stop() send_instruction(PSTATUS, None, _portal_running, _portal_not_running)
5,339,483
def pair_setup( auth_type: AuthenticationType, connection: HttpConnection ) -> PairSetupProcedure: """Return procedure object used for Pair-Setup.""" _LOGGER.debug("Setting up new AirPlay Pair-Setup procedure with type %s", auth_type) if auth_type == AuthenticationType.Legacy: srp = LegacySRPAuthHandler(new_credentials()) srp.initialize() return AirPlayLegacyPairSetupProcedure(connection, srp) if auth_type == AuthenticationType.HAP: srp = SRPAuthHandler() srp.initialize() return AirPlayHapPairSetupProcedure(connection, srp) raise exceptions.NotSupportedError( f"authentication type {auth_type} does not support Pair-Setup" )
5,339,484
def score_from_srl(srl_path, truth_path, freq, verbose=False): """ Given source list output by PyBDSF and training truth catalogue, calculate the official score for the sources identified in the srl. Args: srl_path (`str`): Path to source list (.srl file) truth_path (`str`): Path to training truth catalogue freq (`int`): Image frequency band (560, 1400 or 9200 MHz) verbose (`bool`): True to print out size ratio info """ truth_df = load_truth_df(truth_path) # Predict size ID and correct the Maj and Min values: cat_df = cat_df_from_srl(srl_path) scorer = Sdc1Scorer(cat_df, truth_df, freq) score = scorer.run(train=True, detail=True, mode=1) return score
5,339,485
def get_feature_read(key, max_num_bbs=None): """Choose the right feature function for the given key to parse TFRecords Args: key: the feature name max_num_bbs: Max number of bounding boxes (used for `bounding_boxes` and `classes`) max_num_groups: Number of pre-defined groups (used for `clustered_bounding_boxes`) """ if key in ['im_id', 'num_boxes']: return tf.FixedLenFeature((), tf.int64) elif key in ['bounding_boxes']: assert max_num_bbs is not None return tf.FixedLenFeature((max_num_bbs, 4), tf.float32) elif key in ['classes']: assert max_num_bbs is not None return tf.FixedLenFeature((max_num_bbs,), tf.int64) else: raise SystemExit("Unknown feature", key)
5,339,486
def kernel(cc, eris, t1=None, t2=None, max_cycle=50, tol=1e-8, tolnormt=1e-6, verbose=logger.INFO): """Exactly the same as pyscf.cc.ccsd.kernel, which calls a *local* energy() function.""" if isinstance(verbose, logger.Logger): log = verbose else: log = logger.Logger(cc.stdout, verbose) if t1 is None and t2 is None: t1, t2 = cc.init_amps(eris)[1:] elif t1 is None: nocc = cc.nocc nvir = cc.nmo - nocc t1 = numpy.zeros((nocc,nvir), eris.dtype) elif t2 is None: t2 = cc.init_amps(eris)[2] cput1 = cput0 = (time.clock(), time.time()) nocc, nvir = t1.shape eold = 0 eccsd = 0 if cc.diis: adiis = lib.diis.DIIS(cc, cc.diis_file) adiis.space = cc.diis_space else: adiis = lambda t1,t2,*args: (t1,t2) conv = False for istep in range(max_cycle): t1new, t2new = cc.update_amps(t1, t2, eris) normt = numpy.linalg.norm(t1new-t1) + numpy.linalg.norm(t2new-t2) t1, t2 = t1new, t2new t1new = t2new = None if cc.diis: t1, t2 = cc.diis(t1, t2, istep, normt, eccsd-eold, adiis) eold, eccsd = eccsd, energy(cc, t1, t2, eris) log.info('istep = %d E(CCSD) = %.15g dE = %.9g norm(t1,t2) = %.6g', istep, eccsd, eccsd - eold, normt) cput1 = log.timer('CCSD iter', *cput1) if abs(eccsd-eold) < tol and normt < tolnormt: conv = True break log.timer('CCSD', *cput0) return conv, eccsd, t1, t2
5,339,487
def test_generate_import_code_2(): """Assert that generate_import_code() returns the correct set of dependancies and dependancies are importable.""" pipeline_string = ( 'KNeighborsClassifier(CombineDFs(' 'DecisionTreeClassifier(input_matrix, DecisionTreeClassifier__criterion=gini, ' 'DecisionTreeClassifier__max_depth=8,DecisionTreeClassifier__min_samples_leaf=5,' 'DecisionTreeClassifier__min_samples_split=5), ZeroCount(input_matrix))' 'KNeighborsClassifier__n_neighbors=10, ' 'KNeighborsClassifier__p=1,KNeighborsClassifier__weights=uniform' ) pipeline = creator.Individual.from_string(pipeline_string, tpot_obj._pset) import_code = generate_import_code(pipeline, tpot_obj.operators) expected_code = """import numpy as np import pandas as pd from sklearn.model_selection import train_test_split from sklearn.neighbors import KNeighborsClassifier from sklearn.pipeline import make_pipeline, make_union from sklearn.tree import DecisionTreeClassifier from tpot.builtins import StackingEstimator, ZeroCount """ exec(import_code) # should not raise error assert expected_code == import_code
5,339,488
def on_session_started(session_started_request, session): """ Called when the session starts Can be used to initialize values if used across intents. """ print("on_session_started requestId=" + session_started_request['requestId'] + ", sessionId=" + session['sessionId'])
5,339,489
def get_arguments(): """parse provided command line arguments""" parser = argparse.ArgumentParser() parser.add_argument( "--server", help="Where to send the output - use https URL to POST " "to the dognews server API, or a file name to save locally as json", required=True) parser.add_argument( "--imagefolder", help="Where to save the thumbnails", required=True) parser.add_argument( "--token", help="Authentication token associated with the submit-bot user, generated in the dognews server app", required=True) return parser.parse_args()
5,339,490
async def getAllDestinyIDs(): """Returns a list with all discord members destiny ids""" select_sql = """ SELECT destinyID FROM "discordGuardiansToken";""" async with (await get_connection_pool()).acquire(timeout=timeout) as connection: result = await connection.fetch(select_sql) return [x[0] for x in result]
5,339,491
def login(): """Handles login for Gello.""" form = LoginForm() if form.validate_on_submit(): user = User.query.filter_by(email=form.email.data).first() if user is not None and user.verify_password(form.password.data): login_user(user, form.remember_me.data) return redirect(request.args.get('next') or url_for('main.index')) flash('Invalid username or password.') return render_template('auth/login.html', form=form)
5,339,492
def create_loss_functions(interconnector_coefficients, demand_coefficients, demand): """Creates a loss function for each interconnector. Transforms the dynamic demand dependendent interconnector loss functions into functions that only depend on interconnector flow. i.e takes the function f and creates g by pre-calculating the demand dependent terms. f(inter_flow, flow_coefficient, nsw_demand, nsw_coefficient, qld_demand, qld_coefficient) = inter_losses becomes g(inter_flow) = inter_losses The mathematics of the demand dependent loss functions is described in the :download:`Marginal Loss Factors documentation section 3 to 5 <../../docs/pdfs/Marginal Loss Factors for the 2020-21 Financial year.pdf>`. Examples -------- >>> import pandas as pd Some arbitrary regional demands. >>> demand = pd.DataFrame({ ... 'region': ['VIC1', 'NSW1', 'QLD1', 'SA1'], ... 'loss_function_demand': [6000.0 , 7000.0, 5000.0, 3000.0]}) Loss model details from 2020 Jan NEM web LOSSFACTORMODEL file >>> demand_coefficients = pd.DataFrame({ ... 'interconnector': ['NSW1-QLD1', 'NSW1-QLD1', 'VIC1-NSW1', 'VIC1-NSW1', 'VIC1-NSW1'], ... 'region': ['NSW1', 'QLD1', 'NSW1', 'VIC1', 'SA1'], ... 'demand_coefficient': [-0.00000035146, 0.000010044, 0.000021734, -0.000031523, -0.000065967]}) Loss model details from 2020 Jan NEM web INTERCONNECTORCONSTRAINT file >>> interconnector_coefficients = pd.DataFrame({ ... 'interconnector': ['NSW1-QLD1', 'VIC1-NSW1'], ... 'loss_constant': [0.9529, 1.0657], ... 'flow_coefficient': [0.00019617, 0.00017027], ... 'from_region_loss_share': [0.5, 0.5]}) Create the loss functions >>> loss_functions = create_loss_functions(interconnector_coefficients, demand_coefficients, demand) Lets use one of the loss functions, first get the loss function of VIC1-NSW1 and call it g >>> g = loss_functions[loss_functions['interconnector'] == 'VIC1-NSW1']['loss_function'].iloc[0] Calculate the losses at 600 MW flow >>> print(g(600.0)) -70.87199999999996 Now for NSW1-QLD1 >>> h = loss_functions[loss_functions['interconnector'] == 'NSW1-QLD1']['loss_function'].iloc[0] >>> print(h(600.0)) 35.70646799999993 Parameters ---------- interconnector_coefficients : pd.DataFrame ====================== ======================================================================================== Columns: Description: interconnector unique identifier of a interconnector (as `str`) loss_constant the constant term in the interconnector loss factor equation (as np.float64) flow_coefficient the coefficient of the interconnector flow variable in the loss factor equation (as np.float64) from_region_loss_share the proportion of loss attribute to the from region, remainer are attributed to the to region (as np.float64) ====================== ======================================================================================== demand_coefficients : pd.DataFrame ================== ========================================================================================= Columns: Description: interconnector unique identifier of a interconnector (as `str`) region the market region whose demand the coefficient applies too, required (as `str`) demand_coefficient the coefficient of regional demand variable in the loss factor equation (as `np.float64`) ================== ========================================================================================= demand : pd.DataFrame ==================== ===================================================================================== Columns: Description: region unique identifier of a region (as `str`) loss_function_demand the estimated regional demand, as calculated by initial supply + demand forecast, in MW (as `np.float64`) ==================== ===================================================================================== Returns ------- pd.DataFrame loss_functions ================ ============================================================================================ Columns: Description: interconnector unique identifier of a interconnector (as `str`) loss_function a `function` object that takes interconnector flow (as `float`) an input and returns interconnector losses (as `float`). ================ ============================================================================================ """ demand_loss_factor_offset = pd.merge(demand_coefficients, demand, 'inner', on=['region']) demand_loss_factor_offset['offset'] = demand_loss_factor_offset['loss_function_demand'] * \ demand_loss_factor_offset['demand_coefficient'] demand_loss_factor_offset = demand_loss_factor_offset.groupby('interconnector', as_index=False)['offset'].sum() loss_functions = pd.merge(interconnector_coefficients, demand_loss_factor_offset, 'left', on=['interconnector']) loss_functions['loss_constant'] = loss_functions['loss_constant'] + loss_functions['offset'].fillna(0) loss_functions['loss_function'] = \ loss_functions.apply(lambda x: create_function(x['loss_constant'], x['flow_coefficient']), axis=1) return loss_functions.loc[:, ['interconnector', 'loss_function', 'from_region_loss_share']]
5,339,493
def num2proto(pnum): """Protocol number to name""" # Look for the common ones first if pnum == 6: return "tcp" elif pnum == 17: return "udp" elif pnum == 1: return "icmp" elif pnum == 58: # Use the short form of icmp-ipv6 when appropriate return "icmpv6" # Get cached proto table, else create new one global proto_table if not bool(proto_table): proto_table = ProtocolTable() pname = proto_table[pnum] # If not found, return the number as a string if pname == "Unassigned": return str(pnum) return pname
5,339,494
def get_problem_size(problem_size, params): """compute current problem size""" if callable(problem_size): problem_size = problem_size(params) if isinstance(problem_size, (str, int, np.integer)): problem_size = (problem_size, ) current_problem_size = [1, 1, 1] for i, s in enumerate(problem_size): if isinstance(s, str): current_problem_size[i] = int( eval(replace_param_occurrences(s, params))) elif isinstance(s, (int, np.integer)): current_problem_size[i] = s else: raise TypeError( "Error: problem_size should only contain strings or integers") return current_problem_size
5,339,495
def zip_dir(path): """ Create a zip archive containing all files and dirs rooted in path. The archive is created in memory and a file handler is returned by the function. Args: path: directory containing the resources to archive. Return: file_out: file handler pointing to the compressed archive. """ file_out = BytesIO() with zipfile.ZipFile(file_out, "w", zipfile.ZIP_DEFLATED) as ziph: for root, _, files in os.walk(path): for file in files: ziph.write(os.path.join(root, file), os.path.relpath(os.path.join(root, file), start=path)) file_out.seek(0) return file_out
5,339,496
def interpolate(x, size=None, scale_factor=None, mode='nearest', align_corners=False, align_mode=0, data_format='NCHW', name=None): """ This op resizes a batch of images. The input must be a 3-D Tensor of the shape (num_batches, channels, in_w) or 4-D (num_batches, channels, in_h, in_w), or a 5-D Tensor of the shape (num_batches, channels, in_d, in_h, in_w) or (num_batches, in_d, in_h, in_w, channels), Where in_w is width of the input tensor, in_h is the height of the input tensor, in_d is the depth of the intput tensor. and the resizing only applies on the three dimensions(depth, height and width). Supporting resample methods: 'linear' : Linear interpolation 'bilinear' : Bilinear interpolation 'trilinear' : Trilinear interpolation 'nearest' : Nearest neighbor interpolation 'bicubic' : Bicubic interpolation 'area': Area interpolation Linear interpolation is the method of using a line connecting two known quantities to determine the value of an unknown quantity between the two known quantities. Nearest neighbor interpolation is to perform nearest neighbor interpolation in both the 3rd dimension(in height direction) and the 4th dimension(in width direction) on input tensor. Bilinear interpolation is an extension of linear interpolation for interpolating functions of two variables (e.g. H-direction and W-direction in this op) on a rectilinear 2D grid. The key idea is to perform linear interpolation first in one direction, and then again in the other direction. Trilinear interpolation is an extension of linear interpolation for interpolating functions of three variables (e.g. D-direction, H-direction and W-direction in this op) on a rectilinear 3D grid. The linear interpolation is performed on three directions. align_corners and align_mode are optional parameters,the calculation method of interpolation can be selected by them. Bicubic interpolation is an extension of cubic interpolation for interpolating data points on a two-dimensional regular grid. The interpolated surface is smoother than corresponding surfaces obtained by bilinear interpolation or nearest-neighbor interpolation. Area interpolation is to perform area interpolation in both the 3rd dimension(in height direction) , the 4th dimension(in width direction) and the 5th dimension(in depth direction) on input tensor. Set to area will directly call `paddle.nn.functional.adaptive_avg_pool1d` or `paddle.nn.functional.adaptive_avg_pool2d` or `paddle.nn.functional.adaptive_avg_pool3d`. Example: .. code-block:: text For scale_factor: if align_corners = True && out_size > 1 : scale_factor = (in_size-1.0)/(out_size-1.0) else: scale_factor = float(in_size/out_size) Linear interpolation: if: align_corners = False , align_mode = 0 input : (N,C,W_in) output: (N,C,W_out) where: W_out = (W_{in}+0.5) * scale_{factor} - 0.5 else: input : (N,C,W_in) output: (N,C,W_out) where: W_out = W_{in} * scale_{factor} Nearest neighbor interpolation: align_corners = False input : (N,C,H_in,W_in) output: (N,C,H_out,W_out) where: H_out = floor (H_{in} * scale_{factor}) W_out = floor (W_{in} * scale_{factor}) Bilinear interpolation: if: align_corners = False , align_mode = 0 input : (N,C,H_in,W_in) output: (N,C,H_out,W_out) where: H_out = (H_{in}+0.5) * scale_{factor} - 0.5 W_out = (W_{in}+0.5) * scale_{factor} - 0.5 else: input : (N,C,H_in,W_in) output: (N,C,H_out,W_out) where: H_out = H_{in} * scale_{factor} W_out = W_{in} * scale_{factor} Bicubic interpolation: if: align_corners = False input : (N,C,H_in,W_in) output: (N,C,H_out,W_out) where: H_out = (H_{in}+0.5) * scale_{factor} - 0.5 W_out = (W_{in}+0.5) * scale_{factor} - 0.5 else: input : (N,C,H_in,W_in) output: (N,C,H_out,W_out) where: H_out = H_{in} * scale_{factor} W_out = W_{in} * scale_{factor} Trilinear interpolation: if: align_corners = False , align_mode = 0 input : (N,C,D_in,H_in,W_in) output: (N,C,D_out,H_out,W_out) where: D_out = (D_{in}+0.5) * scale_{factor} - 0.5 H_out = (H_{in}+0.5) * scale_{factor} - 0.5 W_out = (W_{in}+0.5) * scale_{factor} - 0.5 else: input : (N,C,D_in,H_in,W_in) output: (N,C,D_out,H_out,W_out) where: D_out = D_{in} * scale_{factor} H_out = H_{in} * scale_{factor} W_out = W_{in} * scale_{factor} For details of linear interpolation, please refer to Wikipedia: https://en.wikipedia.org/wiki/Linear_interpolation. For details of nearest neighbor interpolation, please refer to Wikipedia: https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation. For details of bilinear interpolation, please refer to Wikipedia: https://en.wikipedia.org/wiki/Bilinear_interpolation. For details of trilinear interpolation, please refer to Wikipedia: https://en.wikipedia.org/wiki/Trilinear_interpolation. For details of bicubic interpolation, please refer to Wikipedia: https://en.wikipedia.org/wiki/Bicubic_interpolation Parameters: x (Tensor): 3-D, 4-D or 5-D Tensor, its data type is float32, float64, or uint8, its data format is specified by :attr:`data_format`. size (list|tuple|Tensor|None): Output shape of image resize layer, the shape is (out_w, ) when input is a 3-D Tensor, the shape is (out_h, out_w) when input is a 4-D Tensor and is (out_d, out_h, out_w) when input is a 5-D Tensor. Default: None. If a list/tuple, each element can be an integer or a Tensor of shape: [1]. If a Tensor, its dimensions size should be a 1. scale_factor (float|Tensor|list|tuple|None): The multiplier for the input height or width. At least one of :attr:`size` or :attr:`scale_factor` must be set. And :attr:`size` has a higher priority than :attr:`scale_factor`.Has to match input size if it is either a list or a tuple or a Tensor. Default: None. mode (str): The resample method. It supports 'linear', 'area', 'nearest', 'bilinear', 'bicubic' and 'trilinear' currently. Default: 'nearest' align_corners(bool) : An optional bool, If True, the centers of the 4 corner pixels of the input and output tensors are aligned, preserving the values at the corner pixels.This only has an effect when 'linear', 'bilinear', 'bicubic' or 'trilinear'. Default: False align_mode(int) : An optional for linear/bilinear/trilinear interpolation. Refer to the formula in the example above, it can be \'0\' for src_idx = scale_factor*(dst_indx+0.5)-0.5 , can be \'1\' for src_idx = scale_factor*dst_index. data_format (str, optional): Specify the data format of the input, and the data format of the output will be consistent with that of the input. An optional string from:`NCW`, `NWC`, `"NCHW"`, `"NHWC"`, `"NCDHW"`, `"NDHWC"`. The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of: `[batch_size, input_channels, input_height, input_width]`. When it is `"NCHW"`, the data is stored in the order of: `[batch_size, input_channels, input_depth, input_height, input_width]`. name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` Returns: A 3-D Tensor of the shape (num_batches, channels, out_w) or (num_batches, out_w, channels), A 4-D Tensor of the shape (num_batches, channels, out_h, out_w) or (num_batches, out_h, out_w, channels), or 5-D Tensor of the shape (num_batches, channels, out_d, out_h, out_w) or (num_batches, out_d, out_h, out_w, channels). Raises: TypeError: size should be a list or tuple or Tensor. ValueError: The 'mode' of image_resize can only be 'linear', 'bilinear', 'trilinear', 'bicubic', 'area' or 'nearest' currently. ValueError: 'linear' only support 3-D tensor. ValueError: 'bilinear' and 'bicubic' only support 4-D tensor. ValueError: 'nearest' only support 4-D or 5-D tensor. ValueError: 'trilinear' only support 5-D tensor. ValueError: One of size and scale_factor must not be None. ValueError: size length should be 1 for input 3-D tensor. ValueError: size length should be 2 for input 4-D tensor. ValueError: size length should be 3 for input 5-D tensor. ValueError: scale_factor should be greater than zero. TypeError: align_corners should be a bool value ValueError: align_mode can only be '0' or '1' ValueError: data_format can only be 'NCW', 'NWC', 'NCHW', 'NHWC', 'NCDHW' or 'NDHWC'. Examples: .. code-block:: python import paddle import numpy as np import paddle.nn.functional as F # given out size input_data = np.random.rand(2,3,6,10).astype("float32") x = paddle.to_tensor(input_data) output_1 = F.interpolate(x=x, size=[12,12]) print(output_1.shape) # [2L, 3L, 12L, 12L] # given scale output_2 = F.interpolate(x=x, scale_factor=[2,1]) print(output_2.shape) # [2L, 3L, 12L, 10L] # bilinear interp output_3 = F.interpolate(x=x, scale_factor=[2,1], mode="bilinear") print(output_2.shape) # [2L, 3L, 12L, 10L] """ data_format = data_format.upper() resample = mode.upper() resample_type = mode.lower() resample_methods = [ 'LINEAR', 'BILINEAR', 'TRILINEAR', 'NEAREST', 'BICUBIC', 'AREA', ] if resample not in resample_methods: raise ValueError( "The 'resample' of image_resize can only be 'area', 'linear', 'bilinear', 'trilinear', " " 'bicubic' or 'nearest' currently.") if resample in ['LINEAR'] and len(x.shape) != 3: raise ValueError("'linear' only support 3-D tensor.") if resample in ['NEAREST'] and len(x.shape) != 4 and len(x.shape) != 5: raise ValueError("'NEAREST' only support 4-D or 5-D tensor.") if resample in ['BILINEAR', 'BICUBIC'] and len(x.shape) != 4: raise ValueError("'bilinear' and 'bicubic' only support 4-D tensor.") if resample == 'TRILINEAR' and len(x.shape) != 5: raise ValueError("'trilinear'only support 5-D tensor.") if size is None and scale_factor is None: raise ValueError("One of size and scale_factor must not be None.") if not isinstance(align_corners, bool): raise TypeError("Attr align_corners should be a bool value") if align_mode != 0 and align_mode != 1: raise ValueError("align_mode can only be 0 or 1") if align_corners != 0 and resample == 'NEAREST': raise ValueError( "align_corners option can only be set with the interpolating modes: linear | bilinear | bicubic | trilinear" ) if resample == 'AREA': if isinstance(size, list) or isinstance(size, tuple) or isinstance( size, Variable): if len(size) == 0: raise ValueError("output size can not be empty") if len(x.shape) == 3: return paddle.nn.functional.adaptive_avg_pool1d(x, size) elif len(x.shape) == 4: return paddle.nn.functional.adaptive_avg_pool2d(x, size) elif len(x.shape) == 5: return paddle.nn.functional.adaptive_avg_pool3d(x, size) helper = LayerHelper('{}_interp_v2'.format(resample_type), **locals()) dtype = helper.input_dtype(input_param_name='x') if len(x.shape) == 3 and data_format not in ['NCW', 'NWC']: raise ValueError( "Got wrong value for param `data_format`: " + data_format + " received but only `NCW` or `NWC` supported for 3-D input.") elif len(x.shape) == 4 and data_format not in ['NCHW', 'NHWC']: raise ValueError( "Got wrong value for param `data_format`: " + data_format + " received but only `NCHW` or `NHWC` supported for 4-D input.") elif len(x.shape) == 5 and data_format not in ['NCDHW', 'NDHWC']: raise ValueError( "Got wrong value for param `data_format`: " + data_format + " received but only `NCDHW` or `NDHWC` supported for 5-D input.") def _is_list_or_turple_(data): return (isinstance(data, list) or isinstance(data, tuple)) if data_format == 'NCHW' or data_format == 'NCDHW' or data_format == 'NCW': data_layout = 'NCHW' if data_format == 'NHWC' or data_format == 'NDHWC' or data_format == 'NWC': data_layout = 'NHWC' if resample == 'NEAREST': align_corners = False inputs = {"X": x} attrs = { "out_d": -1, "out_h": -1, "out_w": -1, "interp_method": resample_type, "align_corners": align_corners, "align_mode": align_mode, "data_layout": data_layout } out_shape = size scale = scale_factor if out_shape is not None and scale is not None: raise ValueError("Only one of size or scale_factor should be defined.") if out_shape is not None: if isinstance(out_shape, Variable) and not in_dynamic_mode(): out_shape.stop_gradient = True inputs['OutSize'] = out_shape else: if in_dynamic_mode(): if isinstance(out_shape, Variable): out_shape = list(out_shape.numpy()) for i, dim in enumerate(out_shape): if isinstance(dim, Variable): out_shape[i] = dim.numpy()[0] if not (_is_list_or_turple_(out_shape)): raise TypeError("size should be a list or tuple or Variable.") # Validate the shape contain_var = False for dim_idx, dim_size in enumerate(out_shape): if isinstance(dim_size, Variable): contain_var = True continue assert dim_size > 0, ( "Each dimension size given in out_shape must be greater than 0." ) if contain_var: new_size_tensor = [] size_list = [] for dim in out_shape: if isinstance(dim, Variable): dim.stop_gradient = True new_size_tensor.append(dim) size_list.append(-1) else: assert (isinstance(dim, int)) temp_out = helper.create_variable_for_type_inference( 'int32') fill_constant( [1], 'int32', dim, force_cpu=True, out=temp_out) new_size_tensor.append(temp_out) size_list.append(dim) inputs['SizeTensor'] = new_size_tensor if len(x.shape) == 3: if len(out_shape) != 1: raise ValueError( "size length should be 2 for input 3-D tensor") if contain_var: attrs['out_w'] = size_list[0] else: out_shape = list(map(int, out_shape)) attrs['out_w'] = out_shape[0] if len(x.shape) == 4: if len(out_shape) != 2: raise ValueError("size length should be 2 for " "input 4-D tensor.") if contain_var: attrs['out_h'] = size_list[0] attrs['out_w'] = size_list[1] else: out_shape = list(map(int, out_shape)) attrs['out_h'] = out_shape[0] attrs['out_w'] = out_shape[1] if len(x.shape) == 5: if len(out_shape) != 3: raise ValueError("size length should be 3 for " "input 5-D tensor.") if contain_var: attrs['out_d'] = size_list[0] attrs['out_h'] = size_list[1] attrs['out_w'] = size_list[2] else: out_shape = list(map(int, out_shape)) attrs['out_d'] = out_shape[0] attrs['out_h'] = out_shape[1] attrs['out_w'] = out_shape[2] else: if in_dynamic_mode() and isinstance(scale, Variable): scale = list(scale.numpy()) if isinstance(scale, Variable): scale.stop_gradient = True inputs["Scale"] = scale elif isinstance(scale, float) or isinstance(scale, int): if scale <= 0: raise ValueError("Attr(scale) should be greater than zero.") scale_list = [] for i in range(len(x.shape) - 2): scale_list.append(scale) attrs['scale'] = list(map(float, scale_list)) elif isinstance(scale, list) or isinstance(scale, tuple): if len(scale) != len(x.shape) - 2: raise ValueError("scale_shape length should be {} for " "input {}-D tensor.".format( len(x.shape) - 2, len(x.shape))) for value in scale: if value <= 0: raise ValueError("Attr(scale) should be greater than zero.") attrs['scale'] = list(map(float, scale)) else: raise TypeError( "Attr(scale)'s type should be float, int, list, tuple, or Tensor." ) if in_dynamic_mode(): attr_list = [] for k, v in attrs.items(): attr_list.append(k) attr_list.append(v) dy_attr = tuple(attr_list) if resample_type == "linear": out = _C_ops.linear_interp_v2(x, *dy_attr) elif resample_type == "bilinear": out = _C_ops.bilinear_interp_v2(x, *dy_attr) elif resample_type == "trilinear": out = _C_ops.trilinear_interp_v2(x, *dy_attr) elif resample_type == "nearest": out = _C_ops.nearest_interp_v2(x, *dy_attr) elif resample_type == "bicubic": out = _C_ops.bicubic_interp_v2(x, *dy_attr) return out out = helper.create_variable_for_type_inference(dtype) helper.append_op( type='{}_interp_v2'.format(resample_type), inputs=inputs, outputs={"Out": out}, attrs=attrs) return out
5,339,497
def encode_auth_token(user_id): """ Generates the Auth Token :return: string """ try: payload = { 'exp': datetime.datetime.utcnow() + datetime.timedelta(days=90), 'iat': datetime.datetime.utcnow(), 'sub': user_id } return jwt.encode( payload, app.config.get('SECRET_KEY'), algorithm='HS256' ) except Exception as e: return e
5,339,498
def count_weighted_pairs_3d_cuda_fix( x1, y1, z1, w1, x2, y2, z2, w2, rbins_squared, result): """Naively count Npairs(<r), the total number of pairs that are separated by a distance less than r, for each r**2 in the input rbins_squared. """ start = cuda.grid(1) stride = cuda.gridsize(1) n1 = x1.shape[0] n2 = x2.shape[0] nbins = rbins_squared.shape[0] i = start while i < n1: px = x1[i] py = y1[i] pz = z1[i] pw = w1[i] j = 0 while j < n2: qx = x2[j] qy = y2[j] qz = z2[j] qw = w2[j] dx = px-qx dy = py-qy dz = pz-qz wprod = pw*qw dsq = dx*dx + dy*dy + dz*dz k = nbins-1 while dsq <= rbins_squared[k]: cuda.atomic.add(result, k-1, wprod) k = k-1 if k <= 0: break j+=1 i+=stride
5,339,499