content
stringlengths 22
815k
| id
int64 0
4.91M
|
|---|---|
def convert_string(inpt):
"""Return string value from input lit_input
>>> convert_string(1)
'1'
"""
if PY2:
return str(inpt).decode()
else:
return str(inpt)
| 5,338,800
|
def get_ipc_kernel(imdark, tint, boxsize=5, nchans=4, bg_remove=True,
hotcut=[5000,50000], calc_ppc=False,
same_scan_direction=False, reverse_scan_direction=False):
""" Derive IPC/PPC Convolution Kernels
Find the IPC and PPC kernels used to convolve detector pixel data.
Finds all hot pixels within hotcut parameters and measures the
average relative flux within adjacent pixels.
Parameters
==========
Keyword Parameters
==================
boxsize : int
Size of the box. Should be odd, but if even, then adds +1.
bg_remove : bool
Remove the average dark current values for each hot pixel cut-out.
Only works if boxsize>3.
hotcut : array-like
Min and max values of hot pixels (above bg and bias) to cosider.
calc_ppc : bool
Calculate and return post-pixel coupling?
same_scan_direction : bool
Are all the output channels read in the same direction?
By default fast-scan readout direction is ``[-->,<--,-->,<--]``
If ``same_scan_direction``, then all ``-->``
reverse_scan_direction : bool
If ``reverse_scan_direction``, then ``[<--,-->,<--,-->]`` or all ``<--``
"""
ny, nx = imdark.shape
chsize = int(ny / nchans)
imtemp = imdark * tint
boxhalf = int(boxsize/2)
boxsize = int(2*boxhalf + 1)
distmin = np.ceil(np.sqrt(2.0) * boxhalf)
# Get rid of pixels around border
pixmask = ((imtemp>hotcut[0]) & (imtemp<hotcut[1]))
pixmask[0:4+boxhalf, :] = False
pixmask[-4-boxhalf:, :] = False
pixmask[:, 0:4+boxhalf] = False
pixmask[:, -4-boxhalf:] = False
# Ignore borders between amplifiers
for ch in range(1, nchans):
x1 = ch*chsize - boxhalf
x2 = x1 + 2*boxhalf
pixmask[:, x1:x2] = False
indy, indx = np.where(pixmask)
nhot = len(indy)
if nhot < 2:
print("No hot pixels found!")
return None
# Only want isolated pixels
# Get distances for every pixel
# If too close, then set equal to 0
for i in range(nhot):
d = np.sqrt((indx-indx[i])**2 + (indy-indy[i])**2)
ind_close = np.where((d>0) & (d<distmin))[0]
if len(ind_close)>0: pixmask[indy[i], indx[i]] = 0
indy, indx = np.where(pixmask)
nhot = len(indy)
if nhot < 2:
print("No hot pixels found!")
return None
# Stack all hot pixels in a cube
hot_all = []
for iy, ix in zip(indy, indx):
x1, y1 = np.array([ix,iy]) - boxhalf
x2, y2 = np.array([x1,y1]) + boxsize
sub = imtemp[y1:y2, x1:x2]
# Flip channels along x-axis for PPC
if calc_ppc:
# Check if an even or odd channel (index 0)
for ch in np.arange(0,nchans,2):
even = True if (ix > ch*chsize) and (ix < (ch+1)*chsize-1) else False
if same_scan_direction:
flip = True if reverse_scan_direction else False
elif even:
flip = True if reverse_scan_direction else False
else:
flip = False if reverse_scan_direction else True
if flip: sub = sub[:,::-1]
hot_all.append(sub)
hot_all = np.array(hot_all)
# Remove average dark current values
if boxsize>3 and bg_remove==True:
for im in hot_all:
im -= np.median([im[0,:], im[:,0], im[-1,:], im[:,-1]])
# Normalize by sum in 3x3 region
norm_all = hot_all.copy()
for im in norm_all:
im /= im[boxhalf-1:boxhalf+2, boxhalf-1:boxhalf+2].sum()
# Take average of normalized stack
ipc_im_avg = np.median(norm_all, axis=0)
# ipc_im_sig = robust.medabsdev(norm_all, axis=0)
corner_val = (ipc_im_avg[boxhalf-1,boxhalf-1] +
ipc_im_avg[boxhalf+1,boxhalf+1] +
ipc_im_avg[boxhalf+1,boxhalf-1] +
ipc_im_avg[boxhalf-1,boxhalf+1]) / 4
if corner_val<0: corner_val = 0
# Determine post-pixel coupling value?
if calc_ppc:
ipc_val = (ipc_im_avg[boxhalf-1,boxhalf] + \
ipc_im_avg[boxhalf,boxhalf-1] + \
ipc_im_avg[boxhalf+1,boxhalf]) / 3
if ipc_val<0: ipc_val = 0
ppc_val = ipc_im_avg[boxhalf,boxhalf+1] - ipc_val
if ppc_val<0: ppc_val = 0
k_ipc = np.array([[corner_val, ipc_val, corner_val],
[ipc_val, 1-4*ipc_val, ipc_val],
[corner_val, ipc_val, corner_val]])
k_ppc = np.zeros([3,3])
k_ppc[1,1] = 1 - ppc_val
k_ppc[1,2] = ppc_val
return (k_ipc, k_ppc)
# Just determine IPC
else:
ipc_val = (ipc_im_avg[boxhalf-1,boxhalf] +
ipc_im_avg[boxhalf,boxhalf-1] +
ipc_im_avg[boxhalf,boxhalf+1] +
ipc_im_avg[boxhalf+1,boxhalf]) / 4
if ipc_val<0: ipc_val = 0
kernel = np.array([[corner_val, ipc_val, corner_val],
[ipc_val, 1-4*ipc_val, ipc_val],
[corner_val, ipc_val, corner_val]])
return kernel
| 5,338,801
|
def magma_finalize():
"""
Finalize MAGMA.
"""
status = _libmagma.magma_finalize()
magmaCheckStatus(status)
| 5,338,802
|
def get_description():
""" Return a dict describing how to call this plotter """
desc = dict()
desc['data'] = True
desc['cache'] = 86400
desc['description'] = """This plot presents the trailing X number of days
temperature or precipitation departure from long term average. You can
express this departure either in Absolute Departure or as a Standard
Deviation. The Standard Deviation option along with precipitation is
typically called the "Standardized Precipitation Index".
<p>The plot also contains an underlay with the weekly US Drought Monitor
that is valid for the station location. If you plot a climate district
station, you get the US Drought Monitor valid for the district centroid.
If you plot a statewide average, you get no USDM included.
"""
today = datetime.date.today()
sts = today - datetime.timedelta(days=720)
desc['arguments'] = [
dict(type='station', name='station', default='IA0200',
label='Select Station:', network='IACLIMATE'),
dict(type='int', name='p1', default=31,
label='First Period of Days'),
dict(type='int', name='p2', default=91,
label='Second Period of Days'),
dict(type='int', name='p3', default=365,
label='Third Period of Days'),
dict(type='date', name='sdate', default=sts.strftime("%Y/%m/%d"),
min='1893/01/01',
label='Start Date of Plot'),
dict(type='date', name='edate', default=today.strftime("%Y/%m/%d"),
min='1893/01/01',
label='End Date of Plot'),
dict(type='select', name='pvar', default='precip', options=PDICT,
label='Which variable to plot?'),
dict(type='select', name='how', default='diff', options=PDICT2,
label='How to Express Departure?'),
]
return desc
| 5,338,803
|
def SpringH(z,m,k):
""" with shapes (bs,2nd)"""
D = z.shape[-1] # of ODE dims, 2*num_particles*space_dim
q = z[:,:D//2].reshape(*m.shape,-1)
p = z[:,D//2:].reshape(*m.shape,-1)
return EuclideanK(p,m) + SpringV(q,k)
| 5,338,804
|
def write_sushi_input_files(lhafile):
""" Add SusHi-related blocks to LHA file """
outfiles = {}
for higgsname, higgstype in {'H': 12, 'A': 21}.iteritems():
lha = LHA(lhafile)
sushi = Block('SUSHI', comment='SusHi specific')
sushi.add(Entry([1, 2], comment='Select 2HDM'))
sushi.add(Entry([2, higgstype], comment='h / H / A'))
sushi.add(Entry([3, 0], comment='p-p collisions'))
sushi.add(Entry([4, 13000], comment='E_cm'))
sushi.add(Entry([5, 2], comment='ggH at NNLO'))
sushi.add(Entry([6, 2], comment='bbH at NNLO'))
sushi.add(Entry([7, 2], comment='SM EW content'))
sushi.add(Entry([19, 1], comment='Verbosity'))
sushi.add(Entry([20, 0], comment='All processes'))
lha.add_block(sushi)
thdm = Block('2HDM', '2HDM parameters')
#thdm.add(Entry([1], comment='Type I'))
#thdm.add(Entry([2], comment='Type II'))
thdm.add(Entry([4], comment='Type IV'))
lha.add_block(thdm)
distrib = Block('DISTRIB', comment='Kinematic requirements')
distrib.add(Entry([1, 0], comment='Sigma total'))
distrib.add(Entry([2, 0], comment='Disable pT cut'))
#distrib.add(Entry([21, GENER_SETTINGS['higgs_pt_min']], comment='Min higgs pT'))
distrib.add(Entry([3, 0], comment='Disable eta cut'))
#distrib.add(Entry([32, GENER_SETTINGS['higgs_eta_max']], comment='Max eta'))
distrib.add(Entry([4, 1], comment='Use eta, not y'))
lha.add_block(distrib)
pdfspec = Block('PDFSPEC')
pdfspec.add(Entry([1, 'MMHT2014lo68cl.LHgrid'], comment='Name of pdf (lo)'))
pdfspec.add(Entry([2, 'MMHT2014nlo68cl.LHgrid'], comment='Name of pdf (nlo)'))
pdfspec.add(Entry([3, 'MMHT2014nnlo68cl.LHgrid'], comment='Name of pdf (nnlo)'))
pdfspec.add(Entry([4, 'MMHT2014nnlo68cl.LHgrid'], comment='Name of pdf (n3lo)'))
pdfspec.add(Entry([10, 0], comment='Set number'))
lha.add_block(pdfspec)
lha.get_block('SMINPUTS').add(Entry([8, 1.275], comment='m_c'))
# Write output
suffix = '_%s_sushi.in' % higgsname
outname = lhafile.replace('.lha', suffix)
lha.write(outname)
outfiles[higgsname] = outname
return outfiles
| 5,338,805
|
def test_fetch_market_trade_data_dataframe():
"""Tests downloading of market and trade/order data from dataframe
"""
from tcapy.data.databasesource import DatabaseSourceCSV
### Get market data
market_loader = Mediator.get_tca_market_trade_loader()
market_data_store = DatabaseSourceCSV(market_data_database_csv=csv_market_data_store).fetch_market_data(
ticker=ticker, start_date=start_date, finish_date=finish_date)
dataframe_trade_order_mapping = OrderedDict()
for k in csv_trade_order_mapping.keys():
dataframe_trade_order_mapping[k] = DatabaseSourceCSV(trade_data_database_csv=csv_trade_order_mapping[k]).fetch_trade_order_data(
ticker=ticker, start_date=start_date, finish_date=finish_date)
# for a high level trade data request, we need to use TCA request, because it usually involves some
# market data download (we are assuming that the market data is being downloaded from our arctic database)
# eg. for converting notionals to reporting currency
tca_request = TCARequest(
start_date=start_date, finish_date=finish_date, ticker=ticker,
trade_data_store='dataframe', market_data_store=market_data_store,
trade_order_mapping=dataframe_trade_order_mapping
)
for t in trade_order_list:
trade_order_df = market_loader.get_trade_order_data(tca_request, t)
try:
trade_order_df = Mediator.get_volatile_cache().get_dataframe_handle(trade_order_df)
except:
pass
assert not trade_order_df.empty \
and trade_order_df.index[0] >= pd.Timestamp(start_date).tz_localize('utc') \
and trade_order_df.index[-1] <= pd.Timestamp(finish_date).tz_localize('utc')
### Test using DataFactory and DatabaseSource
from tcapy.data.datafactory import DataFactory
data_factory = DataFactory()
for t in trade_order_list:
### Test using DataFactory
trade_request = TradeRequest(start_date=start_date, finish_date=finish_date, ticker=ticker,
data_store='dataframe', trade_order_mapping=dataframe_trade_order_mapping,
trade_order_type=t)
trade_order_df = data_factory.fetch_table(trade_request)
assert not trade_order_df.empty \
and trade_order_df.index[0] >= pd.Timestamp(start_date).tz_localize('utc') \
and trade_order_df.index[-1] <= pd.Timestamp(finish_date).tz_localize('utc')
### Test using DatabaseSourceDataFrame
from tcapy.data.databasesource import DatabaseSourceDataFrame
database_source = DatabaseSourceDataFrame()
trade_order_df = database_source.fetch_trade_order_data(start_date, finish_date, ticker,
table_name=dataframe_trade_order_mapping[t])
assert not trade_order_df.empty \
and trade_order_df.index[0] >= pd.Timestamp(start_date).tz_localize('utc') \
and trade_order_df.index[-1] <= pd.Timestamp(finish_date).tz_localize('utc')
| 5,338,806
|
def pytest_collection(session): # pylint: disable=unused-argument
"""Monkey patch lru_cache, before any module imports occur."""
# Gotta hold on to this before we patch it away
old_lru_cache = functools.lru_cache
@wraps(functools.lru_cache)
def lru_cache_wrapper(*args, **kwargs):
"""Wrap lru_cache decorator, to track which functions are decorated."""
# Apply lru_cache params (maxsize, typed)
decorated_function = old_lru_cache(*args, **kwargs)
# Mimicking lru_cache: https://github.com/python/cpython/blob/v3.7.2/Lib/functools.py#L476-L478
@wraps(decorated_function)
def decorating_function(user_function):
"""Wraps the user function, which is what everyone is actually using. Including us."""
wrapper = decorated_function(user_function)
CACHED_FUNCTIONS.append(wrapper)
return wrapper
return decorating_function
# Monkey patch the wrapped lru_cache decorator
functools.lru_cache = lru_cache_wrapper
yield
# Be a good citizen and undo our monkeying
functools.lru_cache = old_lru_cache
| 5,338,807
|
def __graph_laplacian(mtx):
""" Compute the Laplacian of the matrix.
.. math::
"""
L = np.diag(np.sum(mtx, 0)) - mtx
return L
| 5,338,808
|
def moon_illumination(phase: float) -> float:
"""Calculate the percentage of the moon that is illuminated.
Currently this value increases approximately linearly in time from new moon
to full, and then linearly back down until the next new moon.
Args:
phase: float
The phase angle of the Moon, in degrees.
Returns:
illumination: flaot
The percentage of the Moon that is illuminated.
"""
return 100 * (1 - np.abs(phase - 180) / 180)
| 5,338,809
|
def integ_test(gateway_host=None, test_host=None, destroy_vm="True"):
"""
Run the integration tests. This defaults to running on local vagrant
machines, but can also be pointed to an arbitrary host (e.g. amazon) by
passing "address:port" as arguments
gateway_host: The ssh address string of the machine to run the gateway
services on. Formatted as "host:port". If not specified, defaults to
the `cwag` vagrant box.
test_host: The ssh address string of the machine to run the tests on
on. Formatted as "host:port". If not specified, defaults to the
`cwag_test` vagrant box.
"""
destroy_vm = bool(strtobool(destroy_vm))
# Setup the gateway: use the provided gateway if given, else default to the
# vagrant machine
if not gateway_host:
vagrant_setup("cwag", destroy_vm)
else:
ansible_setup(gateway_host, "cwag", "cwag_dev.yml")
execute(_copy_config)
execute(_start_gateway)
# Run the tests: use the provided test machine if given, else default to
# the vagrant machine
if not test_host:
vagrant_setup("cwag_test", destroy_vm)
else:
ansible_setup(test_host, "cwag_test", "cwag_test.yml")
execute(_start_ue_simulator)
execute(_run_unit_tests)
execute(_run_integ_tests)
| 5,338,810
|
def convex_hull_mask_iou(points_uv, im_shape, gt_hull_mask):
"""Computes masks by calculating a convex hull from points. Creates two masks (if possible),
one for the estimated foreground pixels and one for the estimated background pixels.
Args:
points_uv: (2, N) Points in u, v coordinates
im_shape: image shape [image_height, im_width]
gt_hull_mask: mask created by calculating convex hull
Returns:
best_iou: best mask iou calculated from the calculated hull masks and the ground truth hull
mask
"""
im_height, im_width = im_shape
# Segment the points into background and foreground
if len(set(points_uv[0])) > 1:
thresh = filters.threshold_li(points_uv[0])
pred_seg_1 = points_uv[0] > thresh
pred_seg_2 = points_uv[0] < thresh
segs = [pred_seg_1, pred_seg_2]
else:
# There is only one unique point so a threshold cannot be made
segs = [np.full(points_uv[0].shape, True, dtype=bool)]
mask_list = []
# Loop over both segments since it is uncertain which segment is foreground or background
for seg in segs:
# Obtain the coordinates of the pixels
pred_u = np.int32(points_uv[0][seg])
pred_v = np.int32(points_uv[1][seg])
# Remove duplicate coordinates by forming a set
coords = set(zip(pred_u, pred_v))
# Convex hull calculation requires a numpy array
coords = np.array(list(coords))
# Need at least 3 points to create convex hull
if len(coords) < 3:
continue
# Points must not lie along a single line in order to create convex hull
elif any(np.all(coords == coords[0, :], axis=0)):
continue
else:
hull = ConvexHull(coords)
img = Image.new('L', (im_width, im_height), 0)
vertices = list(zip(coords[hull.vertices, 0], coords[hull.vertices, 1]))
ImageDraw.Draw(img).polygon(vertices, outline=1, fill=1)
mask = np.array(img)
mask_list.append(mask)
best_iou = 0
for mask in mask_list:
iou = evaluation.mask_iou(mask, gt_hull_mask)
if iou > best_iou:
best_iou = iou
return best_iou
| 5,338,811
|
def remove_dataset_from_disk(interval_list_dataset, version=None, dest_path=CACHE_PATH):
"""
Remove the full-seq dataset from the disk.
Parameters:
interval_list_dataset (str or Path): Either a path or a name of dataset included in this package.
version (int): Version of the dataset.
dest_path (str or Path): Folder to store the full-seq dataset.
"""
interval_list_dataset = _guess_location(interval_list_dataset)
metadata = _check_dataset_existence(interval_list_dataset, version)
dataset_name = _get_dataset_name(interval_list_dataset)
path = Path(dest_path) / dataset_name
if path.exists():
shutil.rmtree(path)
| 5,338,812
|
def run(text, base_dir, debug_filename, symbols = set()):
"""Rudimentary resolver for the following preprocessor commands:
// #include <some-file>
(no check for cyclic includes!)
// #ifdef | #if <symbol>
// <contents>
// [ #elif
// <alt-contents> ]*
// [ #else
// <alt-contents> ]
// #endif
"""
out = []
stack = []
lines = text.split('\n')
l_iter = iter(zip(range(1, len(lines)+1),lines))
push_line = None
nline = -1
def error(msg):
raise Exception(msg + ' @ ' + debug_filename + ':' + str(nline))
while True:
try:
nline, line = push_line or next(l_iter)
push_line = None
except StopIteration:
break
match = line_re.match(line)
if match:
skip_branch = False
cmd = match.group(1)
if cmd == 'include':
name = match.group(2).strip('<>"\'')
fpath = os.path.join(base_dir, name)
print 'handling js #include: ' + fpath
with open( fpath, 'rt' ) as inp:
out.append(run(inp.read(), os.path.split(fpath)[1], name, symbols))
elif cmd in ['if', 'ifdef', 'ifndef']:
val = eval_conditional(match.group(2), symbols)
if cmd == 'ifndef':
val = not val
print('eval: ' + cmd + ' ' + match.group(2) + ' as ' + str(val))
skip_branch = not val
stack.append(val)
elif cmd in ['else', 'elif']:
if not stack:
error('syntax error, unexpected ' + cmd)
# has been handled before?
if stack[-1]:
skip_branch = True
elif cmd != 'elif' or eval_conditional(match.group(2), symbols):
stack[-1] = True
else:
skip_branch = True
elif cmd == 'endif':
if not stack:
error('syntax error, unexpected endif')
continue
stack.pop()
else:
error('define/ifdef/endif/else currently ignored')
if skip_branch:
# skip everything up to the next elif/else/endif at the same nesting level
nesting = 1
while True:
try:
nline, line = next(l_iter)
match = line_re.match(line)
if match:
done = False
cmd = match.group(1)
if cmd in ['if', 'ifdef']:
nesting += 1
elif cmd == 'endif':
nesting -= 1
if nesting == 0:
done = True
if cmd in ['else', 'elif'] and nesting == 1:
done = True
if done:
push_line = nline, line
break
except StopIteration:
error('syntax error, unexpected EOF')
return
else:
out.append(line)
return '\n'.join(out)
| 5,338,813
|
def load_callback(module: ModuleType, event: Event) -> Callable[..., Awaitable[None]]:
"""
Load the callback function from the handler module
"""
callback = getattr(module, "handler")
if not inspect.iscoroutinefunction(callback):
raise TypeError(
f"expected 'coroutine function' for 'handler', got {type(callback).__name__!r}"
)
signature = inspect.signature(callback)
params = dict(signature.parameters)
# Construct the model from the callback for manual events
if isinstance(event, ManualEvent):
expect_returns(signature, None, Response, allow_unannotated=True)
event.model = build_model_from_params(params)
# Ensure the signature is passed the same parameters as the event sends
elif isinstance(event, AutomatedEvent):
expect_returns(signature, None, allow_unannotated=True)
# Get the model parameters
model_signature = inspect.signature(event.input_validator)
model_params = dict(model_signature.parameters)
validate_automated_signature(params, model_params)
return callback
| 5,338,814
|
def read_config_key(fname='', existing_dict=None, delim=None):
"""
Read a configuration key.
"""
# Check file existence
if os.path.isfile(fname) is False:
logger.error("I tried to read key "+fname+" but it does not exist.")
return(existing_dict)
logger.info("Reading: "+fname)
# Expected Format
expected_words = 3
expected_format = "config_type config_name params_as_dict"
# Open File
infile = open(fname, 'r')
# Initialize the dictionary
if existing_dict is None:
out_dict = {}
else:
out_dict = existing_dict
# Loop over the lines
lines_read = 0
while True:
line = infile.readline()
if len(line) == 0:
break
if skip_line(line, expected_words=expected_words, delim=delim, expected_format=expected_format):
continue
this_type, this_value, this_params = parse_one_line(line, delim=delim)
# Check if the type of entry is new
if (this_type in out_dict.keys()) == False:
out_dict[this_type] = {}
# Initialize a configuration on the first entry - configs can have several lines
if (this_value not in out_dict[this_type].keys()):
out_dict[this_type][this_value] = {}
# Parse the parameters as a literal
try:
this_params_dict = ast.literal_eval(this_params)
except:
logger.error("Could not parse parameters as a dictionary. Line is: ")
logger.error(line)
continue
# Now read in parameters. To do this, define templates for
# expected fields and data types for each type of
# configuration. Check to match these.
if this_type == "array_tag":
expected_params = {
'timebin':'0s',
}
if this_type == "interf_config":
expected_params = {
'array_tags':[],
'res_min_arcsec':0.0,
'res_max_arcsec':0.0,
'res_min_pc':0.0,
'res_max_pc':0.0,
'res_step_factor':1.0,
'res_list':[],
'clean_scales_arcsec':[]
}
if this_type == "feather_config":
expected_params = {
'interf_config':'',
'res_min_arcsec':0.0,
'res_max_arcsec':0.0,
'res_step_factor':1.0,
'res_min_pc':0.0,
'res_max_pc':0.0,
'res_list':[]
}
if this_type == "line_product":
expected_params = {
'line_tag':'',
'channel_kms':0.0,
'statwt_edge_kms':50.0,
'fitorder':0,
'combinespw':False,
'lines_to_flag':[],
}
if this_type == "cont_product":
expected_params = {
'freq_ranges_ghz':[],
'channel_ghz':0.0,
'lines_to_flag':[]
}
# Check configs for expected name and data type
for this_key in this_params_dict.keys():
if this_key not in expected_params.keys():
logger.error('Got an unexpected parameter key. Line is:')
logger.error(line)
continue
if type(this_params_dict[this_key]) != type(expected_params[this_key]):
logger.error('Got an unexpected parameter type for parameter '+str(this_key)+'. Line is:')
logger.error(line)
continue
if this_key in out_dict[this_type][this_value].keys():
logger.debug("Got a repeat parameter definition for "+this_type+" "+this_value)
logger.debug("Parameter "+this_key+" repeats. Using the latest value.")
out_dict[this_type][this_value][this_key] = this_params_dict[this_key]
lines_read += 1
infile.close()
logger.info("Read "+str(lines_read)+" lines into a configuration definition dictionary.")
return(out_dict)
| 5,338,815
|
def animeuser_auto_logical_delete():
"""一定の日数以上生き残ってしまったAnimeUserを論理削除します"""
logical_divide_day: str = os.getenv("LOGICAL_DIVIDE_DAY", default="3")
logical_divide_day_int: int = int(logical_divide_day)
divide_datetime: datetime.datetime = datetime.datetime.now() - datetime.timedelta(
days=logical_divide_day_int
)
animeroom_queryset = AnimeUser.objects.alive().filter(
updated_at__lte=divide_datetime
)
animeroom_queryset.delete()
animeroom_queryset.save()
| 5,338,816
|
def start_app() -> None:
"""Start Experiment Registry."""
bcipy_gui = app(sys.argv)
ex = ExperimentRegistry(
title='Experiment Registry',
height=700,
width=600,
background_color='black')
sys.exit(bcipy_gui.exec_())
| 5,338,817
|
def launch_lambdas(total_count, lambda_arn, lambda_args, dlq_arn, cubes_arn, downsample_queue_url, receipt_handle):
"""Launch lambdas to process all of the target cubes to downsample
Launches an initial set of lambdas and monitors the cubes SQS queue to
understand the current status. If the count in the queue doesn't change
for UNCHANGING_LAUNCH cycles then it will calculate how many more lambdas
to launch and launch them.
If the queue count doesn't change after launching more lambdas an exception
will eventually be raised so the activity is not hanging forever.
Args:
total_count (int): The initial number of lambdas to launch
lambda_arn (str): Name or ARN of the lambda function to invoke
lambda_args (str): The lambda payload to pass when invoking
dlq_arn (str): ARN of the SQS DLQ to monitor for error messages
cubes_arn (str): ARN of the input cubes SQS queue to monitor for
completion of the downsample
downsample_queue_url (str): URL of downsample job queue
receipt_handle (str): Handle of message from downsample queue
"""
per_lambda = ceildiv(total_count, POOL_SIZE)
d,m = divmod(total_count, per_lambda)
counts = [per_lambda] * d
if m > 0:
counts += [m]
assert sum(counts) == total_count, "Didn't calculate counts per lambda correctly"
log.debug("Launching {} lambdas in chunks of {} using {} processes".format(total_count, per_lambda, POOL_SIZE))
args = ((count, lambda_arn, lambda_args, dlq_arn)
for count in counts)
start = datetime.now()
with Pool(POOL_SIZE) as pool:
pool.starmap(invoke_lambdas, args)
stop = datetime.now()
log.info("Launched {} lambdas in {}".format(total_count, stop - start))
# Finished launching lambdas, need to wait for all to finish
log.info("Finished launching lambdas")
polling_start = datetime.now()
previous_count = 0
count_count = 1
zero_count = 0
while True:
if check_queue(dlq_arn) > 0:
raise FailedLambdaError()
count = check_queue(cubes_arn)
log.debug("Status polling - count {}".format(count))
log.debug("Throttling count {}".format(lambda_throttle_count(lambda_arn)))
if count == previous_count:
count_count += 1
if count_count == UNCHANGING_MAX:
raise ResolutionHierarchyError("Status polling stuck at {} items for {}".format(count, polling_start - datetime.now()))
if count_count == UNCHANGING_THROTTLE:
# If the throttle count is increasing -> Sleep
# If the throttle count is decreasing
# If the cubes queue count has changed -> Continue regular polling
# If the cubes queue count has not changed -> Sleep
# If the throttle count is zero -> Continue regular polling
#
# This means that this loop will block until throttle has stopped / cubes
# in the queue have been processed.
#
# If throttling stops and no cubes have been processed the UNCHANGING_MAX
# threashold is the last guard so the activity doesn't hang
prev_throttle = 0
while True:
throttle = lambda_throttle_count(lambda_arn)
if throttle < prev_throttle and check_queue(cubes_arn) != count:
# If the throttle count is decreasing and the queue count has
# changed continue the regular polling cycle
break
if throttle == 0:
# No throttling happening
break
if throttle > 0:
# Don't update count is there was an error getting the current count
prev_throttle = throttle
# Tell SQS we're still alive
update_visibility_timeout(downsample_queue_url, receipt_handle)
time.sleep(MAX_LAMBDA_TIME.seconds)
if check_queue(dlq_arn) > 0:
raise FailedLambdaError()
if count_count == UNCHANGING_LAUNCH:
# We have noticed that the last few messages are spread across multiple AWS queue servers and
# A single lambda requesting 10 messages will only get messages from a single queue server. So we
# pad the number of lambdas by EXTRAS_LAMBDAS to avoid extra looping cycles.
needed = ceildiv(count, BUCKET_SIZE)
if needed > 0:
log.debug("Launching {} more lambdas".format(needed))
start = datetime.now()
invoke_lambdas(needed + EXTRA_LAMBDAS, lambda_arn, lambda_args, dlq_arn)
stop = datetime.now()
log.debug("Launched {} lambdas with {} extra in {}".format(needed, EXTRA_LAMBDAS, stop - start))
else:
previous_count = count
count_count = 1
if count == 0:
zero_count += 1
if zero_count == ZERO_COUNT:
log.info("Finished polling for lambda completion")
break
else:
log.info("Zero cubes left, waiting to make sure lambda finishes")
else:
zero_count = 0
# Tell SQS we're still alive
update_visibility_timeout(downsample_queue_url, receipt_handle)
time.sleep(MAX_LAMBDA_TIME.seconds)
| 5,338,818
|
def send_result_mail(adress, link):
"""Create and send a mail with the download link to adress."""
# parse adress
if "," in adress:
splitchar = ","
elif ";" in adress:
splitchar = ";"
else:
splitchar = " "
toadress = adress.split(splitchar)
toadress = [i.strip() for i in toadress]
server = "localhost"
fromadress = "sb-sparv@svenska.gu.se"
subject = "Your corpus is done!"
txt = "Dear Sparv User,\n\n"
txt += "You can download the annotated corpus by clicking on the following link:\n\n" + link
txt += "\n\nPlease note that the corpus will be removed after seven days."
txt += "\n\nYours,\nSparv\nhttp://spraakbanken.gu.se/sparv\nsb-sparv@svenska.gu.se"
# Prepare actual message
message = "\From: %s\nTo: %s\nSubject: %s\n\n%s" % (fromadress, ", ".join(toadress), subject, txt)
# Send the mail
server = smtplib.SMTP(server)
server.sendmail(fromadress, toadress, message)
server.quit()
| 5,338,819
|
def examples(conf, concept, positives, vocab, neg_count=None):
"""
Builds positive and negative examples.
"""
if neg_count is None:
neg_count = conf.getint('sample','neg_count')
while True:
for (chosen_idx, idces), e_token_indices in positives:
if len(chosen_idx) ==1:
# FIXME: only taking into account those that have exactly one gold concept
c_token_indices = concept.vectorize[chosen_idx[0]]
import random
negative_token_indices = [concept.vectorize[i] for i in random.sample(list(set([*range(len(concept.names))])-set(idces)),neg_count)]
entity_inputs = np.tile(pad_sequences([e_token_indices], padding='post', maxlen=conf.getint('embedding','length')), (len(negative_token_indices)+1, 1)) # Repeat the same entity for all concepts
concept_inputs = pad_sequences([c_token_indices]+negative_token_indices, padding='post', maxlen=conf.getint('embedding','length'))
# concept_inputs = np.asarray([[concept_dict[cid]] for cid in [concept_id]+negative_concepts])
# import pdb; pdb.set_trace()
distances = [1] + [0]*len(negative_token_indices)
data = {
'inp_mentions': entity_inputs,
'inp_candidates': concept_inputs,
'prediction_layer': np.asarray(distances),
}
yield data, data
| 5,338,820
|
def molmer_sorensen(theta, N=None, targets=[0, 1]):
"""
Quantum object of a Mølmer–Sørensen gate.
Parameters
----------
theta: float
The duration of the interaction pulse.
N: int
Number of qubits in the system.
target: int
The indices of the target qubits.
Returns
-------
molmer_sorensen_gate: :class:`qutip.Qobj`
Quantum object representation of the Mølmer–Sørensen gate.
"""
if targets != [0, 1] and N is None:
N = 2
if N is not None:
return expand_operator(molmer_sorensen(theta), N, targets=targets)
return Qobj(
[
[np.cos(theta/2.), 0, 0, -1.j*np.sin(theta/2.)],
[0, np.cos(theta/2.), -1.j*np.sin(theta/2.), 0],
[0, -1.j*np.sin(theta/2.), np.cos(theta/2.), 0],
[-1.j*np.sin(theta/2.), 0, 0, np.cos(theta/2.)]
],
dims=[[2, 2], [2, 2]])
| 5,338,821
|
def verify_path(path):
"""check if the project path is correct"""
if not os.path.exists(path) or not os.path.isdir(path):
error('Path specified for project creation does not exist or is not a directory')
| 5,338,822
|
def get_pixel_dist(pixel, red, green, blue):
"""
Returns the color distance between pixel and mean RGB value
Input:
pixel (Pixel): pixel with RGB values to be compared
red (int): average red value across all images
green (int): average green value across all images
blue (int): average blue value across all images
Returns:
dist (int): color distance between red, green, and blue pixel values
"""
color_distance = math.sqrt((pixel.red - red)**2 + (pixel.green - green)**2 + (pixel.blue - blue)**2)
return color_distance
| 5,338,823
|
def test_capture_log(allured_testdir, logging):
"""
>>> import logging
>>> import pytest
>>> import allure
>>> logger = logging.getLogger(__name__)
>>> @pytest.fixture
... def fixture(request):
... logger.info("Start fixture")
... def finalizer():
... logger.info("Stop fixture")
... request.addfinalizer(finalizer)
>>> def test_capture_log_example(fixture):
... logger.info("Start test")
... with allure.step("Step"):
... logger.info("Start step")
"""
allured_testdir.parse_docstring_source()
params = [] if logging else ["-p", "no:logging"]
if_logging_ = is_ if logging else is_not
allured_testdir.run_with_allure("--log-cli-level=INFO", *params)
assert_that(allured_testdir.allure_report,
has_property("attachments",
all_of(
if_logging_(has_value(contains_string("Start fixture"))),
if_logging_(has_value(contains_string("Stop fixture"))),
if_logging_(has_value(contains_string("Start test"))),
if_logging_(has_value(contains_string("Start step")))
)
)
)
| 5,338,824
|
def list_children_shapes(node, all_hierarchy=True, full_path=True):
"""
Returns a list of children shapes of the given node
:param node:
:param all_hierarchy:
:param full_path:
:return:
"""
raise NotImplementedError()
| 5,338,825
|
def structure_pmu(array: np.ndarray) -> np.ndarray:
"""Helper function to convert 4 column array into structured array
representing 4-momenta of particles.
Parameters
----------
array : numpy ndarray of floats, with shape (num particles, 4)
The 4-momenta of the particles, arranged in columns.
Columns must be in order (x, y, z, e).
See also
--------
structure_pmu_components : structured array from seperate 1d arrays
of momentum components.
Notes
-----
As the data-type of the input needs to be recast, the output is
a copy of the original data, not a view on it. Therefore it uses
additional memory, so later changes to the original will not
affect the returned array, and vice versa.
"""
if array.dtype != _types.pmu:
struc_array = array.astype(_types.pmu[0][1])
struc_array = struc_array.view(dtype=_types.pmu, type=np.ndarray)
struc_pmu = struc_array.copy().squeeze()
else:
struc_pmu = array
return struc_pmu
| 5,338,826
|
def _log_from_checkpoint(args):
"""Infer logging directory from checkpoint file."""
int_dir, checkpoint_name = os.path.split(args.checkpoint)
logdir = os.path.dirname(int_dir)
checkpoint_num = int(checkpoint_name.split('_')[1])
_log_args(logdir, args, modified_iter=checkpoint_num)
return logdir, checkpoint_num
| 5,338,827
|
def url_query_parameter(url, parameter, default=None, keep_blank_values=0):
"""Return the value of a url parameter, given the url and parameter name
General case:
>>> import w3lib.url
>>> w3lib.url.url_query_parameter("product.html?id=200&foo=bar", "id")
'200'
>>>
Return a default value if the parameter is not found:
>>> w3lib.url.url_query_parameter("product.html?id=200&foo=bar", "notthere", "mydefault")
'mydefault'
>>>
Returns None if `keep_blank_values` not set or 0 (default):
>>> w3lib.url.url_query_parameter("product.html?id=", "id")
>>>
Returns an empty string if `keep_blank_values` set to 1:
>>> w3lib.url.url_query_parameter("product.html?id=", "id", keep_blank_values=1)
''
>>>
"""
queryparams = parse_qs(
urlsplit(str(url))[3],
keep_blank_values=keep_blank_values
)
return queryparams.get(parameter, [default])[0]
| 5,338,828
|
def read_ground_stations_extended(filename_ground_stations_extended):
"""
Reads ground stations from the input file.
:param filename_ground_stations_extended: Filename of ground stations basic (typically /path/to/ground_stations.txt)
:return: List of ground stations
"""
ground_stations_extended = []
gid = 0
with open(filename_ground_stations_extended, 'r') as f:
for line in f:
split = line.split(',')
if len(split) != 8:
raise ValueError("Extended ground station file has 8 columns: " + line)
if int(split[0]) != gid:
raise ValueError("Ground station id must increment each line")
ground_station_basic = {
"gid": gid,
"name": split[1],
"latitude_degrees_str": split[2],
"longitude_degrees_str": split[3],
"elevation_m_float": float(split[4]),
"cartesian_x": float(split[5]),
"cartesian_y": float(split[6]),
"cartesian_z": float(split[7]),
}
ground_stations_extended.append(ground_station_basic)
gid += 1
return ground_stations_extended
| 5,338,829
|
def _stdin_yaml_arg():
"""
@return: iterator for next set of service args on stdin. Iterator returns a list of args for each call.
@rtype: iterator
"""
import yaml
import select
loaded = None
poll = select.poll()
poll.register(sys.stdin, select.POLLIN)
try:
arg = 'x'
while not rospy.is_shutdown() and arg != '\n':
buff = ''
while arg != '\n' and arg.strip() != '---':
val = poll.poll(1.0)
if not val:
continue
arg = sys.stdin.readline() + '\n'
if arg.startswith('... logging'):
# temporary, until we fix rospy logging
continue
elif arg.strip() != '---':
buff = buff + arg
try:
loaded = yaml.load(buff.rstrip())
except Exception as e:
print("Invalid YAML: %s"%str(e), file=sys.stderr)
if loaded is not None:
yield loaded
else:
# EOF reached, this will raise GeneratorExit
return
# reset arg
arg = 'x'
except select.error:
return
| 5,338,830
|
def main():
"""
Converts characters to uppercase,
then output the complementary sequence through the newly created function (build_complement())
"""
dna = input('Please give me a DNA strand and I\'ll find the complement: ')
# Converts characters to uppercase
dna = dna.upper
ans = build_complement(dna)
print('The complement of ' + str(dna) + ' is ' + str(ans))
| 5,338,831
|
def quiet_py4j():
"""Suppress spark logging for the test context."""
logger = logging.getLogger('py4j')
logger.setLevel(logging.WARN)
| 5,338,832
|
def send_email(destination, code):
"""
Send the validation email.
"""
if 'CLOUD' not in os.environ:
# If the application is running locally, use config.ini anf if not, set environment variables
config = configparser.ConfigParser()
config.read_file(open('config.ini'))
# Sender email and account password
sender = config['SENDER']['from']
password = config['SENDER_PASSWORD']['psw']
else:
sender = os.environ['SENDER']
password = os.environ['SENDER_PASSWORD']
ret = False
try:
text = "Code: {}".format(code)
message = """\
From: %s
To: %s
Subject: %s
%s
""" % (sender, destination, 'Agnes', text)
# TODO Improve the email format. Let it more Readable
# Log in to server using secure context and send email
context = ssl.create_default_context()
with smtplib.SMTP_SSL("smtp.gmail.com", 465, context=context) as server:
server.login(sender, password)
server.sendmail(sender, destination, message)
logger.debug('Sending email to {}'.format(destination))
ret = True
except Exception as e:
logger.exception(e, exc_info=False)
finally:
return ret
| 5,338,833
|
def shortPrescID():
"""Create R2 (short format) Prescription ID
Build the prescription ID and add the required checkdigit.
Checkdigit is selected from the PRESCRIPTION_CHECKDIGIT_VALUES constant
"""
_PRESC_CHECKDIGIT_VALUES = '0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ+'
hexString = str(uuid.uuid1()).replace('-', '').upper()
prescriptionID = hexString[:6] + '-Z' + hexString[6:11] + '-' + hexString[12:17]
prscID = prescriptionID.replace('-', '')
prscIDLength = len(prscID)
runningTotal = 0
for stringPosition in range(prscIDLength):
runningTotal = runningTotal + int(prscID[stringPosition], 36) * (2 ** (prscIDLength - stringPosition))
checkValue = (38 - runningTotal % 37) % 37
checkValue = _PRESC_CHECKDIGIT_VALUES[checkValue]
prescriptionID += checkValue
return prescriptionID
| 5,338,834
|
def rmse(predictions, verbose=True):
"""Compute RMSE (Root Mean Squared Error).
.. math::
\\text{RMSE} = \\sqrt{\\frac{1}{|\\hat{R}|} \\sum_{\\hat{r}_{ui} \in
\\hat{R}}(r_{ui} - \\hat{r}_{ui})^2}.
Args:
predictions (:obj:`list` of :obj:`Prediction\
<surprise.prediction_algorithms.predictions.Prediction>`):
A list of predictions, as returned by the :meth:`test()
<surprise.prediction_algorithms.algo_base.AlgoBase.test>` method.
verbose: If True, will print computed value. Default is ``True``.
Returns:
The Root Mean Squared Error of predictions.
Raises:
ValueError: When ``predictions`` is empty.
"""
if not predictions:
raise ValueError('Prediction list is empty.')
mse = np.mean([float((true_r - est)**2)
for (_, _, true_r, est, _) in predictions])
rmse_ = np.sqrt(mse)
if verbose:
print('RMSE: {0:1.4f}'.format(rmse_))
return rmse_
| 5,338,835
|
def test_cbv_proxyidmixin_should_succeed(quantity: int, client) -> None:
"""Tests if CBVs using ProxydMixin can retrieve objects correctly"""
int_persons = baker.make("appmock.PersonIntegerPK", _quantity=quantity)
uuid_persons = baker.make("appmock.PersonUUIDPK", _quantity=quantity)
for person in int_persons:
url = reverse("class-person-int-detail", kwargs={"pk": person.id_})
res = client.get(url)
assert decode(person.id_) == res.context["person"].pk
for person in uuid_persons:
url = reverse("class-person-uuid-detail", kwargs={"pk": person.id_})
res = client.get(url)
assert decode(person.id_) == res.context["person"].pk
| 5,338,836
|
def join_csvs(column,
csvs_in,
csv_out,
encoding_in='utf-8',
encoding_out='utf-8'):
"""Outer join a comma-delimited list of csvs on a given column.
Common encodings include: utf-8, cp1252.
"""
dfs = [read_csv(csv_in, encoding_in) for csv_in in csvs_in.split(',')]
df = pd_outer_join(dfs, column)
df.to_csv(csv_out, encoding=encoding_out)
| 5,338,837
|
def get_module_docstring(path):
"""get a .py file docstring, without actually executing the file"""
with open(path) as f:
return ast.get_docstring(ast.parse(f.read()))
| 5,338,838
|
def get_authenticate_kwargs(oauth_credentials=None, http_=None):
"""Returns a dictionary with keyword arguments for use with discovery
Prioritizes oauth_credentials or a http client provided by the user
If none provided, falls back to default credentials provided by google's command line
utilities. If that also fails, tries using httplib2.Http()
Used by `gcs.GCSClient` and `bigquery.BigQueryClient` to initiate the API Client
"""
if oauth_credentials:
authenticate_kwargs = {
"credentials": oauth_credentials
}
elif http_:
authenticate_kwargs = {
"http": http_
}
else:
# neither http_ or credentials provided
try:
# try default credentials
oauth_credentials = oauth2client.client.GoogleCredentials.get_application_default()
authenticate_kwargs = {
"credentials": oauth_credentials
}
except oauth2client.client.GoogleCredentials.ApplicationDefaultCredentialsError:
# try http using httplib2
authenticate_kwargs = {
"http": httplib2.Http()
}
return authenticate_kwargs
| 5,338,839
|
def marginal_expectation(distribution: Tensor, axes: AxesLike, integrals: Union[Callable, Sequence[Callable]],
*args, **kwargs):
"""
Computes expectations along the ``axes`` according to ``integrals`` independently.
``args`` and ``kwargs`` are passed to ``integral`` as additional arguments.
"""
axes = np.core.numeric.normalize_axis_tuple(axes, distribution.ndim, 'axes')
if callable(integrals):
integrals = [integrals]
if len(integrals) == 1:
integrals = [integrals[0]] * len(axes)
for axis, integral in zip_equal(axes, integrals):
# sum over other axes, but allow for reduction of `axis`
other_axes = list(axes)
other_axes.remove(axis)
other_axes = np.array(other_axes)
other_axes[other_axes > axis] -= 1
yield expectation(distribution, axis, integral, *args, **kwargs).sum(tuple(other_axes))
| 5,338,840
|
def get_transforms(size=128, mobilenet=False):
"""
Gets all the torchvision transforms we will be applying to the dataset.
"""
# These are the transformations that we will do to our dataset
# For X transforms, let's do some of the usual suspects and convert to tensor.
# Don't forget to normalize to [0.0, 1.0], FP32
# and don't forget to resize to the same size every time.
x_transforms = [
T.Resize((size, size)),
T.RandomApply([
T.RandomAffine(degrees=20, translate=(0.1, 0.1)),
T.RandomHorizontalFlip(p=0.5),
T.RandomRotation(degrees=(-30, 30)),
T.RandomVerticalFlip(p=0.5),
], p=0.5),
T.ColorJitter(brightness=0.5),
T.ToTensor(), # Converts to FP32 [0.0, 1.0], Tensor type
]
# Pretrained MobileNetV2 requires normalizing like this:
if mobilenet:
x_transforms.append(T.Normalize(mean=MOBILENET_MEAN, std=MOBILENET_STD))
# For Y transforms, we need to make sure that we do the same thing to the ground truth,
# since we are trying to recreate the image.
y_transforms = [
T.Resize((size, size), interpolation=Image.NEAREST), # Make sure we don't corrupt the labels
T.RandomApply([
T.RandomAffine(degrees=20, translate=(0.1, 0.1)),
T.RandomHorizontalFlip(p=0.5),
T.RandomRotation(degrees=(-30, 30)),
T.RandomVerticalFlip(p=0.5),
], p=0.5),
]
return x_transforms, y_transforms
| 5,338,841
|
def transform(f, a, b, c, d):
"""
Transform a given function linearly.
If f(t) is the original function, and a, b, c, and d are the parameters in
order, then the return value is the function
F(t) = af(cx + d) + b
"""
return lambda x: a * f(c * x + d) + b
| 5,338,842
|
def delete_rules(request):
"""
Deletes the rules with the given primary key.
"""
if request.method == 'POST':
rules_id = strip_tags(request.POST['post_id'])
post = HouseRules.objects.get(pk=rules_id)
post.filepath.delete() # Delete actual file
post.delete()
return redirect('archive-rules')
| 5,338,843
|
def display_word(word, secret_word, word_to_guess):
"""Function to edit the word to display and the word to guess (word to display
is the test word with its colored letter and the word to guess is the word
with spaces in it, for each missing letter).
Args:
word (str): the input word
secret_word (str): the secret word that the user have to find
word_to_guess (str): the word with spaces for each missing letter
Returns:
str: the word to guess, to update it at each try
"""
word_to_display = ""
indexes = []
# We need to do the dictio at each input because we need to edit it for
# each test word. It will be needed to not display several yellow letter
# when there should be only one.
dictio = letters_dict(secret_word)
# For each letter in the word
for letter_index in range(len(word)):
word_letter = word[letter_index]
# If the letter is the same at the same place in the secret_word
if word_letter==secret_word[letter_index]:
# Colors the letter in green
word_to_display += colored(word_letter, "green")
# Adds the index to a list
indexes.append(letter_index)
dictio[word_letter] -= 1
# If the letter is not the same at the same place in the secret word
# but is in the word anyway
elif word_letter in secret_word:
if dictio[word_letter]>0:
# Colors the letter in yellow and substract 1 to the dictionary
# of letters, if it's not 0
word_to_display += colored(word_letter, "yellow")
dictio[word_letter] -= 1
else:
# If there's 0 for the letter in the dictionary, it's because we
# already encountered them all, so we don't color it
word_to_display += word_letter
else:
word_to_display += word_letter
# Transforms the word to guess as a list, within each letter is one element
word_to_guess_list = list(word_to_guess)
for index in range(len(secret_word)):
if index in indexes:
# If the user have found a letter, replaces the space (_) by it
word_to_guess_list[index] = secret_word[index]
# Reforms the word
word_to_guess = "".join(word_to_guess_list)
return word_to_display, word_to_guess
| 5,338,844
|
def test_append_new_event(init_context):
"""
Append new event
"""
pc = init_context
pc.append_event("test", Arguments("test", a=1))
pc.append_event("test1", Arguments("test1", a=2))
pc.append_event("test2", Arguments("test2", a=3))
e1 = pc.event_queue.get()
e2 = pc.event_queue.get()
e3 = pc.event_queue.get()
assert e1.args.a == 1 and e2.args.a == 2 and e3.args.a == 3, "Unexpected event arguments"
| 5,338,845
|
def fixPythonImportPath():
"""
Add main.py's folder to Python's import paths.
We need this because by default Macros and UNO components can only import files located in `pythonpath` folder,
which must be in extension's root folder. This requires extra configuration in IDE and project structure becomes
somewhat ugly
TODO Py3.5: use pathlib
"""
import sys
from inspect import getsourcefile
from os.path import dirname, join, abspath, pardir
# a hack to get this file's location, because `__file__` and `sys.argv` are not defined inside macro
thisFilePath = getsourcefile(lambda: 0)
# relative path to parent dir like `<path to py macros or extension>\writer2wiki-ext\writer2wiki\..`
parentDir = join(dirname(thisFilePath), pardir)
parentDirAbs = abspath(parentDir)
if parentDirAbs not in sys.path:
log.debug('appending dir: ' + parentDirAbs)
sys.path.append(parentDirAbs)
else:
log.debug('NOT appending ' + parentDirAbs)
| 5,338,846
|
def plot_imfs(signal, time_samples, imfs, fignum=None):
"""Visualize decomposed signals.
:param signal: Analyzed signal
:param time_samples: time instants
:param imfs: intrinsic mode functions of the signal
:param fignum: (optional) number of the figure to display
:type signal: array-like
:type time_samples: array-like
:type imfs: array-like of shape (n_imfs, length_of_signal)
:type fignum: int
:return: None
:Example:
>>> plot_imfs(signal)
.. plot:: ../../docs/examples/emd_fmsin.py
"""
n_imfs = imfs.shape[0]
plt.figure(num=fignum)
axis_extent = max(np.max(np.abs(imfs[:-1, :]), axis=0))
# Plot original signal
ax = plt.subplot(n_imfs, 1, 1)
ax.plot(time_samples, signal)
ax.axis([time_samples[0], time_samples[-1], signal.min(), signal.max()])
ax.tick_params(which='both', left=False, bottom=False, labelleft=False,
labelbottom=False)
ax.grid(False)
ax.set_ylabel('Signal')
ax.set_title('Empirical Mode Decomposition')
# Plot the IMFs
for i in range(n_imfs - 1):
ax = plt.subplot(n_imfs, 1, i + 2)
ax.plot(time_samples, imfs[i, :])
ax.axis([time_samples[0], time_samples[-1], -axis_extent, axis_extent])
ax.tick_params(which='both', left=False, bottom=False, labelleft=False,
labelbottom=False)
ax.grid(False)
ax.set_ylabel('imf' + str(i + 1))
# Plot the residue
ax = plt.subplot(n_imfs + 1, 1, n_imfs + 1)
ax.plot(time_samples, imfs[-1, :], 'r')
ax.axis('tight')
ax.tick_params(which='both', left=False, bottom=False, labelleft=False,
labelbottom=False)
ax.grid(False)
ax.set_ylabel('res.')
plt.show()
| 5,338,847
|
def get_config_cache(course_pk: 'int') -> dict:
"""Cacheからコンフィグを取得する.存在しない場合,新たにキャッシュを生成して格納後,コンフィグを返す."""
cache_key = f"course-config-{course_pk}"
cached_config = cache.get(cache_key, None)
if cached_config is None:
config = Config.objects.filter(course_id=course_pk).first()
cached_config = set_config_from_instance(config)
return cached_config
| 5,338,848
|
def log_command(func):
"""
Logging decorator for logging bot commands and info
"""
def log_command(*args, **kwargs):
slack, command, event = args
user = slack.user_info(event["user"])
log_line = 'USER: %s | CHANNEL ID: %s | COMMAND: %s | TEXT: %s'
command_info = log_line % (user["user"]["name"],
event["channel"],
command,
event["text"])
logging.info(command_info)
command = func(*args, **kwargs)
return command
return log_command
| 5,338,849
|
def expand_home_folder(path):
"""Checks if path starts with ~ and expands it to the actual
home folder."""
if path.startswith("~"):
return os.environ.get('HOME') + path[1:]
return path
| 5,338,850
|
def calc_stats(scores_summ, curr_lines, curr_idx, CI=0.95, ext_test=None,
stats="mean", shuffle=False):
"""
calc_stats(scores_summ, curr_lines, curr_idx)
Calculates statistics on scores from runs with specific analysis criteria
and records them in the summary scores dataframe.
Required args:
- scores_summ (pd DataFrame): DataFrame containing scores summary
- curr_lines (pd DataFrame) : DataFrame lines corresponding to specific
analysis criteria
- curr_idx (int) : Current row in the scores summary
DataFrame
Optional args:
- CI (num) : Confidence interval around which to collect
percentile values
default: 0.95
- extra_test (str): Name of extra test set, if any (None if none)
default: None
- stats (str) : stats to take, i.e., "mean" or "median"
default: "mean"
- shuffle (bool) : If True, data is for shuffled, and will be averaged
across runs before taking stats
default: False
Returns:
- scores_summ (pd DataFrame): Updated DataFrame containing scores, as
well as epoch_n, runs_total, runs_nan
summaries
"""
scores_summ = copy.deepcopy(scores_summ)
# score labels to perform statistics on
sc_labs = ["epoch_n"] + logreg_util.get_sc_labs(
True, ext_test_name=ext_test)
# avoids accidental nuisance dropping by pandas
curr_lines["epoch_n"] = curr_lines["epoch_n"].astype(float)
if shuffle: # group runs and take mean or median across
scores_summ.loc[curr_idx, "mouse_n"] = -1
keep_lines = \
[col for col in curr_lines.columns if col in sc_labs] + ["run_n"]
grped_lines = curr_lines[keep_lines].groupby("run_n", as_index=False)
if stats == "mean":
curr_lines = grped_lines.mean() # automatically skips NaNs
elif stats == "median":
curr_lines = grped_lines.median() # automatically skips NaNs
else:
gen_util.accepted_values_error("stats", stats, ["mean", "median"])
# calculate n_runs (without nans and with)
scores_summ.loc[curr_idx, "runs_total"] = len(curr_lines)
scores_summ.loc[curr_idx, "runs_nan"] = curr_lines["epoch_n"].isna().sum()
# percentiles to record
ps, p_names = math_util.get_percentiles(CI)
for sc_lab in sc_labs:
if sc_lab in curr_lines.keys():
cols = []
vals = []
data = curr_lines[sc_lab].astype(float)
for stat in ["mean", "median"]:
cols.extend([stat])
vals.extend(
[math_util.mean_med(data, stats=stat, nanpol="omit")])
for error in ["std", "sem"]:
cols.extend([error])
vals.extend([math_util.error_stat(
data, stats="mean", error=error, nanpol="omit")])
# get 25th and 75th quartiles
cols.extend(["q25", "q75"])
vals.extend(math_util.error_stat(
data, stats="median", error="std", nanpol="omit"))
# get other percentiles (for CI)
cols.extend(p_names)
vals.extend(math_util.error_stat(
data, stats="median", error="std", nanpol="omit", qu=ps))
# get MAD
cols.extend(["mad"])
vals.extend([math_util.error_stat(
data, stats="median", error="sem", nanpol="omit")])
# plug in values
cols = [f"{sc_lab}_{name}" for name in cols]
gen_util.set_df_vals(scores_summ, curr_idx, cols, vals)
return scores_summ
| 5,338,851
|
def report_date_time() -> str:
"""Return the report date requested as query parameter."""
report_date_string = dict(bottle.request.query).get("report_date")
return str(report_date_string).replace("Z", "+00:00") if report_date_string else iso_timestamp()
| 5,338,852
|
def assign_colour_label_data(catl):
"""
Assign colour label to data
Parameters
----------
catl: pandas Dataframe
Data catalog
Returns
---------
catl: pandas Dataframe
Data catalog with colour label assigned as new column
"""
logmstar_arr = catl.logmstar.values
u_r_arr = catl.modelu_rcorr.values
colour_label_arr = np.empty(len(catl), dtype='str')
for idx, value in enumerate(logmstar_arr):
# Divisions taken from Moffett et al. 2015 equation 1
if value <= 9.1:
if u_r_arr[idx] > 1.457:
colour_label = 'R'
else:
colour_label = 'B'
if value > 9.1 and value < 10.1:
divider = 0.24 * value - 0.7
if u_r_arr[idx] > divider:
colour_label = 'R'
else:
colour_label = 'B'
if value >= 10.1:
if u_r_arr[idx] > 1.7:
colour_label = 'R'
else:
colour_label = 'B'
colour_label_arr[idx] = colour_label
catl['colour_label'] = colour_label_arr
return catl
| 5,338,853
|
def get_policy(arn):
"""Get info about a policy."""
client = get_client("iam")
response = client.get_policy(PolicyArn=arn)
return response
| 5,338,854
|
def get_file_xml(filename):
"""
:param filename: the filename, without the .xml suffix, in the tests/xml directory
:return: returns the specified file's xml
"""
file = os.path.join(XML_DIR, filename + '.xml')
with open(file, 'r') as f:
xml = f.read()
return xml
| 5,338,855
|
def _write_roadways(roadway_feature_class, condition):
"""Writes roadway feature class to STAMINA syntax
Arguments:
roads_feature_class {String} -- Path to feature class
condition {String} -- Existing, NoBuild, or Build. Determines fields to use from geospatial template
Returns:
[string] -- [roadways]
"""
roadway_count = len([row for row in shapefile.Reader(roadway_feature_class)])
with shapefile.Reader(roadway_feature_class) as roadways:
roadway_string = "2,{}\n".format(roadway_count)
flds = validate_roadway_field(condition)
for row in roadways.shapeRecords():
road = row.record["road_name"]
speed = row.record["speed"]
auto = round(row.record[flds[0]], 0)
medium = round(row.record[flds[1]], 0)
heavy = round(row.record[flds[2]], 0)
roadway_string += "{}\n".format(road)
roadway_string += "CARS {} {}\n".format(auto, speed)
roadway_string += "MT {} {}\n".format(medium, speed)
roadway_string += "HT {} {}\n".format(heavy, speed)
roadway_string += _write_roadway_points(row.shape)
roadway_string += roadway_separator()
return roadway_string
| 5,338,856
|
def detect_backends() -> tuple:
"""
Registers all available backends and returns them.
This includes only backends for which the minimal requirements are fulfilled.
Returns:
`tuple` of `phi.math.backend.Backend`
"""
try:
from .tf import TF_BACKEND
except ImportError:
pass
try:
from .torch import TORCH_BACKEND
except ImportError:
pass
try:
from .jax import JAX_BACKEND
except ImportError:
pass
from .math.backend import BACKENDS
return tuple(BACKENDS)
| 5,338,857
|
def WriteMobileRankings(IncludedTitles, TxtFile, TitleMin = DefaultTitleMin, SortedBy = DefaultSort, SortedByTie = DefaultSortTie, LinesBetween = DefaultLines):
"""Writes a TxtFile for the titles in IncludedTitles, in a mobile friendly format.
IncludedTitles: a list of string(s) in Titles; the Title(s) whose rankings are to be written.
TxtFile: a string; the name of the file to be written.
TitleMin: the number of titles if the Title is 'Overall'.
SortedBy: a string in Sortings; the primary method of sorting.
SortedByTie: a string in Sortings; the method of sorting in the event of a tie.
Example: WriteMobileRankings(['Melee', 'Sm4sh'], 'MeleeSm4shRankingsMobile', TitleMin = 2, SortedBy = 'Low', SortedByTie = 'Middle', LinesBetween = 2)"""
TxtFile = Addtxt(TxtFile)
f = open(TxtFile, 'w')
if type(IncludedTitles) != list:
IncludedTitles = [IncludedTitles]
f.write('Place - Tag / Name: Games Played\n(Best Title(s) if Overall)\nLow, Middle, High Estimates\n\n')
for Title in IncludedTitles:
f.write(Title + '\n')
Rankings = RankingList(Title, TitleMin, SortedBy, SortedByTie)
if Title == 'Overall':
Dict = OverallPersonDict(TitleMin, SortedBy, SortedByTie)
TitleTotal = 0
for i in range(len(Rankings)):
Person = Rankings[i]
f.write(str(Person[0]) + ' - ' + \
Person[4] + ' / ' + \
Person[5] + ': ' + \
str(Person[7]) + '\n' + \
str(Person[6])[1:-1].replace("'", '') + '\n' + \
format(Person[1], Rounding) + ', ' + \
format(Person[2], Rounding) + ', ' + \
format(Person[3], Rounding) + '\n\n')
TitleTotal += Rankings[i][7]
else:
Dict = TitleDict(Title)
TitleTotal = 0
for i in range(len(Rankings)):
Person = Rankings[i]
f.write(str(Person[0]) + ' - ' + \
Person[4] + ' / ' + \
Person[5] + ': ' + \
str(Person[6]) + '\n' + \
format(Person[1], Rounding) + ', ' + \
format(Person[2], Rounding) + ', ' + \
format(Person[3], Rounding) + '\n\n')
TitleTotal += Rankings[i][6]
f.write('Total Games: ' + str(TitleTotal))
if Title != (IncludedTitles)[-1]:
f.write('\n'*(LinesBetween + 1))
f = open(TxtFile, 'r+')
f.close()
| 5,338,858
|
def mix_audio(word_path=None,
bg_path=None,
word_vol=1.0,
bg_vol=1.0,
sample_time=1.0,
sample_rate=16000):
"""
Read in a wav file and background noise file. Resample and adjust volume as
necessary.
"""
# If no word file is given, just return random background noise
if word_path == None:
waveform = [0] * int(sample_time * sample_rate)
fs = sample_rate
else:
# Open wav file, resample, mix to mono
waveform, fs = librosa.load(word_path, sr=sample_rate, mono=True)
# Pad 0s on the end if not long enough
if len(waveform) < sample_time * sample_rate:
waveform = np.append(waveform, np.zeros(int((sample_time *
sample_rate) - len(waveform))))
# Truncate if too long
waveform = waveform[:int(sample_time * sample_rate)]
# If no background noise is given, just return the waveform
if bg_path == None:
return waveform
# Open background noise file
bg_waveform, fs = librosa.load(bg_path, sr=fs)
# Pick a random starting point in background file
max_end = len(bg_waveform) - int(sample_time * sample_rate)
start_point = random.randint(0, max_end)
end_point = start_point + int(sample_time * sample_rate)
# Mix the two sound samples (and multiply by volume)
waveform = [0.5 * word_vol * i for i in waveform] + \
(0.5 * bg_vol * bg_waveform[start_point:end_point])
return waveform
| 5,338,859
|
def analytical_pulse_width(ekev):
"""
Estimate analytical_pulse_width (FWHM) from radiation energy (assumes symmetrical beam)
:param ekev: radiation energy [keV]
:return sig: Radiation pulse width (FWHM) [m]
"""
sig = np.log((7.4e03/ekev))*6
return sig/1e6
| 5,338,860
|
def progress_timeout(progress_bar):
"""
Update the progress of the timer on a timeout tick.
Parameters
----------
progress_bar : ProgressBar
The UI progress bar object
Returns
-------
bool
True if continuing timer, False if done.
"""
global time_remaining, time_total
time_remaining -= 1
new_val = 1 - (time_remaining / time_total)
if new_val >= 1:
progress_bar.pb.set_text("Coffee extraction done.")
play_endsound()
return False
progress_bar.pb.set_fraction(new_val)
progress_bar.pb.set_text("{0:.1f} % Brewed ({1:01d}:{2:02d} Remaining)"
.format(new_val * 100, time_remaining / 60, time_remaining % 60))
return True
| 5,338,861
|
def socket_file(module_name):
"""
Get the absolute path to the socket file for the named module.
"""
module_name = realname(module_name)
return join(sockets_directory(), module_name + '.sock')
| 5,338,862
|
def test_create_kernel(tmpdir):
"""Creates a new directory '3-kernel' and all its input files."""
dirname = '3-kernel'
d = tmpdir.join(dirname)
expected_dir = os.path.join(fixtures_dir, dirname)
bgw.create_kernel(config, tmpdir.realpath())
with open(os.path.join(expected_dir, 'kernel.inp.expected'), 'r') as f:
assert d.join('kernel.inp').read() == f.read()
with open(os.path.join(expected_dir, 'clean.expected'), 'r') as f:
assert d.join('clean').read() == f.read()
| 5,338,863
|
def create_notification_entry(testcase_id, user_email):
"""Create a entry log for sent notification."""
notification = data_types.Notification()
notification.testcase_id = testcase_id
notification.user_email = user_email
notification.put()
| 5,338,864
|
def postBuild(id: str):
"""Register a new build.
Args:
id: Identifier of Repository for which build is to be registered.
Returns:
build_id: Identifier of Build created.
"""
return register_builds(
id, request.headers["X-Project-Access-Token"], request.json
)
| 5,338,865
|
def submit(g_nocaptcha_response_value, secret_key, remoteip):
"""
Submits a reCAPTCHA request for verification. Returns RecaptchaResponse
for the request
recaptcha_response_field -- The value of recaptcha_response_field
from the form
secret_key -- your reCAPTCHA private key
remoteip -- the user's ip address
"""
if not (g_nocaptcha_response_value and len(g_nocaptcha_response_value)):
return RecaptchaResponse(
is_valid=False,
error_codes=['incorrect-captcha-sol']
)
params = urlencode({
'secret': want_bytes(secret_key),
'remoteip': want_bytes(remoteip),
'response': want_bytes(g_nocaptcha_response_value),
})
if not PY2:
params = params.encode('utf-8')
req = Request(
url=VERIFY_URL, data=params,
headers={
'Content-type': 'application/x-www-form-urlencoded',
'User-agent': 'noReCAPTCHA Python'
}
)
httpresp = urlopen(req)
try:
res = force_text(httpresp.read())
return_values = json.loads(res)
except (ValueError, TypeError):
return RecaptchaResponse(
is_valid=False,
error_codes=['json-read-issue']
)
except:
return RecaptchaResponse(
is_valid=False,
error_codes=['unknown-network-issue']
)
finally:
httpresp.close()
return_code = return_values.get("success", False)
error_codes = return_values.get('error-codes', [])
logger.debug("%s - %s" % (return_code, error_codes))
if return_code is True:
return RecaptchaResponse(is_valid=True)
else:
return RecaptchaResponse(is_valid=False, error_codes=error_codes)
| 5,338,866
|
def boundary(shape, n_size, n):
""" Shape boundaries & their neighborhoods
@param shape 2D_bool_numpy_array: True if pixel in shape
@return {index: neighborhood}
index: 2D_int_tuple = index of neighborhood center in shape
neighborhood: 2D_bool_numpy_array of size n_size
Boundaries are shape pixels inside the shape having 1 or more 4-neighbors
outside the shape.
"""
return {i: shape[n(i)]
for i in np.ndindex(shape.shape)
if is_boundary_pixel(shape,i,n_size)}
| 5,338,867
|
def centered_mols(self, labels, return_trans=False):
"""
Return the molecules translated at the origin with a corresponding cell
Parameters
----------
labels : int or list of ints
The labels of the atoms to select
print_centro : bool
Print the translation vector which was detected as -centroid
Returns
-------
mol : Mol object
The selected molecules with their centroid at the origin
mod_cell : Mol object
The new confined cell corresponding to the now translated molecules
"""
mol, mod_cell = self.complete_mol(labels)
centro = mol.centroid()
mol.translate(-centro)
mod_cell.translate(-centro)
mod_cell = mod_cell.confined()
if return_trans:
return mol, mod_cell, -centro
else:
return mol, mod_cell
| 5,338,868
|
def binary_accuracy(output: torch.Tensor, target: torch.Tensor) -> float:
"""Computes the accuracy for binary classification"""
with torch.no_grad():
batch_size = target.size(0)
pred = (output >= 0.5).float().t().view(-1)
correct = pred.eq(target.view(-1)).float().sum()
correct.mul_(100.0 / batch_size)
return correct
| 5,338,869
|
def arp(ipaddress):
"""Clear IP ARP table"""
if ipaddress is not None:
command = 'sudo ip -4 neigh show {}'.format(ipaddress)
(out, err) = run_command(command, return_output=True)
if not err and 'dev' in out:
outputList = out.split()
dev = outputList[outputList.index('dev') + 1]
command = 'sudo ip -4 neigh del {} dev {}'.format(ipaddress, dev)
else:
click.echo("Neighbor {} not found".format(ipaddress))
return
else:
command = "sudo ip -4 -s -s neigh flush all"
run_command(command)
| 5,338,870
|
def prepare_config(config):
"""
Prepares a dictionary to be stored as a json.
Converts all numpy arrays to regular arrays
Args:
config: The config with numpy arrays
Returns:
The numpy free config
"""
c = {}
for key, value in config.items():
if isinstance(value, np.ndarray):
value = value.tolist()
c[key] = value
return c
| 5,338,871
|
def load_config(path='config.json'):
"""
Loads configruation from config.json file.
Returns station mac address, interval, and units for data request
"""
# Open config JSON
with open(path) as f:
# Load JSON file to dictionary
config = json.load(f)
# Return mac address, interval, and units
return (config['station_max_address'], int(config['interval']), config['units'])
| 5,338,872
|
def log_px_z(pred_logits, outcome):
"""
Returns Bernoulli log probability.
:param pred_logits: logits for outcome 1
:param outcome: datapoint
:return: log Bernoulli probability of outcome given logits in pred_logits
"""
pred = pred_logits.view(pred_logits.size(0), -1)
y = outcome.view(outcome.size(0), -1)
return -torch.sum(torch.max(pred, torch.tensor(0., device=pred.device)) - pred * y +
torch.log(1 + torch.exp(-torch.abs(pred))), 1)
| 5,338,873
|
def test_one_epoch(sess, ops, data_input):
""" ops: dict mapping from string to tf ops """
is_training = False
loss_sum = 0
num_batches = data_input.num_test // BATCH_SIZE
acc_a_sum = [0] * 5
acc_s_sum = [0] * 5
preds = []
labels_total = []
acc_a = [0] * 5
acc_s = [0] * 5
for batch_idx in range(num_batches):
if "_io" in MODEL_FILE:
imgs, labels = data_input.load_one_batch(BATCH_SIZE, reader_type="io")
if "resnet" in MODEL_FILE or "inception" in MODEL_FILE or "densenet" in MODEL_FILE:
imgs = MODEL.resize(imgs)
feed_dict = {ops['imgs_pl']: imgs,
ops['labels_pl']: labels,
ops['is_training_pl']: is_training}
else:
imgs, others, labels = data_input.load_one_batch(BATCH_SIZE)
if "resnet" in MODEL_FILE or "inception" in MODEL_FILE or "densenet" in MODEL_FILE:
imgs = MODEL.resize(imgs)
feed_dict = {ops['imgs_pl'][0]: imgs,
ops['imgs_pl'][1]: others,
ops['labels_pl']: labels,
ops['is_training_pl']: is_training}
loss_val, pred_val = sess.run([ops['loss'], ops['pred']],
feed_dict=feed_dict)
preds.append(pred_val)
labels_total.append(labels)
loss_sum += np.mean(np.square(np.subtract(pred_val, labels)))
for i in range(5):
acc_a[i] = np.mean(np.abs(np.subtract(pred_val[:, 1], labels[:, 1])) < (1.0 * (i+1) / 180 * scipy.pi))
acc_a_sum[i] += acc_a[i]
acc_s[i] = np.mean(np.abs(np.subtract(pred_val[:, 0], labels[:, 0])) < (1.0 * (i+1) / 20))
acc_s_sum[i] += acc_s[i]
log_string('test mean loss: %f' % (loss_sum / float(num_batches)))
for i in range(5):
log_string('test accuracy (angle-%d): %f' % (float(i+1), (acc_a_sum[i] / float(num_batches))))
log_string('test accuracy (speed-%d): %f' % (float(i+1), (acc_s_sum[i] / float(num_batches))))
preds = np.vstack(preds)
labels = np.vstack(labels_total)
a_error, s_error = mean_max_error(preds, labels, dicts=get_dicts())
log_string('test error (mean-max): angle:%.2f speed:%.2f' %
(a_error / scipy.pi * 180, s_error * 20))
a_error, s_error = max_error(preds, labels)
log_string('test error (max): angle:%.2f speed:%.2f' %
(a_error / scipy.pi * 180, s_error * 20))
a_error, s_error = mean_topk_error(preds, labels, 5)
log_string('test error (mean-top5): angle:%.2f speed:%.2f' %
(a_error / scipy.pi * 180, s_error * 20))
a_error, s_error = mean_error(preds, labels)
log_string('test error (mean): angle:%.2f speed:%.2f' %
(a_error / scipy.pi * 180, s_error * 20))
print (preds.shape, labels.shape)
np.savetxt(os.path.join(TEST_RESULT_DIR, "preds_val.txt"), preds)
np.savetxt(os.path.join(TEST_RESULT_DIR, "labels_val.txt"), labels)
# plot_acc(preds, labels)
| 5,338,874
|
def main():
""" Main function for handling user arguments
"""
parser = argparse.ArgumentParser(description='Check windows hashdumps against http://cracker.offensive-security.com')
parser.add_argument('priority_code', help='Priority code provided by PWK course console')
parser.add_argument('hash_dump', default='-', nargs='?',
help='LM/NTLM hash to be sent to cracker; default reads from STDIN')
args = parser.parse_args()
if args.hash_dump == "-":
for line in sys.stdin.readlines():
crack_input(args.priority_code, line.strip())
else:
crack_input(args.priority_code, args.hash_dump)
| 5,338,875
|
def stderr_redirector(stream: typing.BinaryIO):
"""A context manager that redirects Python stderr and C stderr to the given binary I/O stream."""
def _redirect_stderr(to_fd):
"""Redirect stderr to the given file descriptor."""
# Flush the C-level buffer stderr
libc.fflush(c_stderr)
# Flush and close sys.stderr - also closes the file descriptor (fd)
sys.stderr.close()
# Make original_stderr_fd point to the same file as to_fd
os.dup2(to_fd, original_stderr_fd)
# Create a new sys.stderr that points to the redirected fd
sys.stderr = io.TextIOWrapper(os.fdopen(original_stderr_fd, 'wb'))
# The original fd stderr points to. Usually 2 on POSIX systems.
original_stderr_fd = sys.stderr.fileno()
# Save a copy of the original stderr fd in saved_stderr_fd
saved_stderr_fd = os.dup(original_stderr_fd)
# Create a temporary file and redirect stderr to it
tfile = tempfile.TemporaryFile(mode='w+b')
try:
_redirect_stderr(tfile.fileno())
# Yield to caller, then redirect stderr back to the saved fd
yield
_redirect_stderr(saved_stderr_fd)
# Copy contents of temporary file to the given stream
tfile.flush()
tfile.seek(0, io.SEEK_SET)
stream.write(tfile.read())
finally:
tfile.close()
os.close(saved_stderr_fd)
| 5,338,876
|
def _sort_rows(matrix, num_rows):
"""Sort matrix rows by the last column.
Args:
matrix: a matrix of values (row,col).
num_rows: (int) number of sorted rows to return from the matrix.
Returns:
Tensor (num_rows, col) of the sorted matrix top K rows.
"""
tmatrix = tf.transpose(a=matrix, perm=[1, 0])
sorted_tmatrix = tf.nn.top_k(tmatrix, num_rows)[0]
return tf.transpose(a=sorted_tmatrix, perm=[1, 0])
| 5,338,877
|
def partial_at(func, indices, *args):
"""Partial function application for arguments at given indices."""
@functools.wraps(func)
def wrapper(*fargs, **fkwargs):
nargs = len(args) + len(fargs)
iargs = iter(args)
ifargs = iter(fargs)
posargs = (next((ifargs, iargs)[i in indices]) for i in range(nargs))
# posargs = list( posargs )
# print( 'posargs', posargs )
return func(*posargs, **fkwargs)
return wrapper
| 5,338,878
|
def try_load_module(module_name):
"""
Import a module by name, print the version info and file name.
Return None on failure.
"""
try:
import importlib
mod = importlib.import_module(module_name)
print green("%s %s:" % (module_name, mod.__version__)), mod.__file__
return mod
except ImportError:
print yellow("Could not find nltk")
return None
| 5,338,879
|
def test_VaultFile_load(
testcase, vault_yaml, password, server_schema, exp_data, exp_encrypted):
"""
Test function for VaultFile._load_vault_file()
"""
with TempDirectory() as tmp_dir:
# Create the vault file
filename = 'tmp_vault.yml'
filepath = os.path.join(tmp_dir.path, filename)
if isinstance(vault_yaml, six.text_type):
vault_yaml = vault_yaml.encode('utf-8')
tmp_dir.write(filename, vault_yaml)
if password:
vault = easy_vault.EasyVault(filepath, password)
vault.encrypt()
del vault
# The code to be tested
act_data, act_encrypted = _load_vault_file(
filepath, password, use_keyring=False, use_prompting=False,
verbose=False, server_schema=server_schema)
# Ensure that exceptions raised in the remainder of this function
# are not mistaken as expected exceptions
assert testcase.exp_exc_types is None, \
"Expected exception not raised: {}". \
format(testcase.exp_exc_types)
assert act_data == exp_data
assert act_encrypted == exp_encrypted
| 5,338,880
|
def project_image(request, uid):
"""
GET request : return project image
PUT request : change project image
"""
project = Project.objects.filter(uid=uid).first()
imgpath = project.image.path if project.image else get_thumbnail()
if request.method == "PUT":
file_object = request.data.get("file")
imgpath = change_image(obj=project, file_object=file_object)
data = open(imgpath, "rb") .read()
return HttpResponse(content=data, content_type="image/jpeg")
| 5,338,881
|
def validate(prefix: str, identifier: str) -> Optional[bool]:
"""Validate the identifier against the prefix's pattern, if it exists.
:param prefix: The prefix in the CURIE
:param identifier: The identifier in the CURIE
:return: Whether this identifier passes validation, after normalization
>>> validate("chebi", "1234")
True
>>> validate("chebi", "CHEBI:12345")
True
>>> validate("chebi", "CHEBI:ABCD")
False
"""
resource = get_resource(prefix)
if resource is None:
return None
return resource.validate_identifier(identifier)
| 5,338,882
|
def test_correct_config():
"""Test whether config parser properly parses configuration file"""
flexmock(builtins, open=StringIO(correct_config))
res_key, res_secret = twitter.parse_configuration("some_path")
assert res_key == key
assert res_secret == secret
| 5,338,883
|
def laplacian_positional_encoding(g, pos_enc_dim):
"""
Graph positional encoding v/ Laplacian eigenvectors
"""
# Laplacian
A = g.adjacency_matrix_scipy(return_edge_ids=False).astype(float)
N = sp.diags(dgl.backend.asnumpy(g.in_degrees()).clip(1) ** -0.5, dtype=float)
L = sp.eye(g.number_of_nodes()) - N * A * N
# Eigenvectors with scipy
#EigVal, EigVec = sp.linalg.eigs(L, k=pos_enc_dim+1, which='SR')
EigVal, EigVec = sp.linalg.eigs(L, k=pos_enc_dim+1, which='SR', tol=1e-2)
EigVec = EigVec[:, EigVal.argsort()] # increasing order
out = torch.from_numpy(EigVec[:,1:pos_enc_dim+1]).float()
return out
| 5,338,884
|
async def replace_chain():
""" replaces the current chain with the most recent and longest chain """
blockchain.replace_chain()
blockchain.is_chain_valid(chain=blockchain.chain)
return{'message': 'chain has been updated and is valid',
'longest chain': blockchain.chain}
| 5,338,885
|
def ucb(bufferx,
objective_weights,
regression_models,
param_space,
scalarization_method,
objective_limits,
iteration_number,
model_type,
classification_model=None,
number_of_cpus=0):
"""
Multi-objective ucb acquisition function as detailed in https://arxiv.org/abs/1805.12168.
The mean and variance of the predictions are computed as defined by Hutter et al.: https://arxiv.org/pdf/1211.0906.pdf
:param bufferx: a list of tuples containing the points to predict and scalarize.
:param objective_weights: a list containing the weights for each objective.
:param regression_models: the surrogate models used to evaluate points.
:param param_space: a space object containing the search space.
:param scalarization_method: a string indicating which scalarization method to use.
:param evaluations_per_optimization_iteration: how many configurations to return.
:param objective_limits: a dictionary with estimated minimum and maximum values for each objective.
:param iteration_number: an integer for the current iteration number, used to compute the beta
:param classification_model: the surrogate model used to evaluate feasibility constraints
:param number_of_cpus: an integer for the number of cpus to be used in parallel.
:return: a list of scalarized values for each point in bufferx.
"""
beta = np.sqrt(0.125*np.log(2*iteration_number + 1))
augmentation_constant = 0.05
prediction_means = {}
prediction_variances = {}
number_of_predictions = len(bufferx)
tmp_objective_limits = copy.deepcopy(objective_limits)
prediction_means, prediction_variances = models.compute_model_mean_and_uncertainty(bufferx, regression_models, model_type, param_space, var=True)
if classification_model != None:
classification_prediction_results = models.model_probabilities(bufferx, classification_model, param_space)
feasible_parameter = param_space.get_feasible_parameter()[0]
true_value_index = classification_model[feasible_parameter].classes_.tolist().index(True)
feasibility_indicator = classification_prediction_results[feasible_parameter][:,true_value_index]
else:
feasibility_indicator = [1]*number_of_predictions # if no classification model is used, then all points are feasible
# Compute scalarization
if (scalarization_method == "linear"):
scalarized_predictions = np.zeros(number_of_predictions)
beta_factor = 0
for objective in regression_models:
scalarized_predictions += objective_weights[objective]*prediction_means[objective]
beta_factor += objective_weights[objective]*prediction_variances[objective]
scalarized_predictions -= beta*np.sqrt(beta_factor)
scalarized_predictions = scalarized_predictions*feasibility_indicator
# The paper does not propose this, I applied their methodology to the original tchebyshev to get the approach below
# Important: since this was not proposed in the paper, their proofs and bounds for the modified_tchebyshev may not be valid here.
elif(scalarization_method == "tchebyshev"):
scalarized_predictions = np.zeros(number_of_predictions)
total_values = np.zeros(number_of_predictions)
for objective in regression_models:
scalarized_values = objective_weights[objective] * np.absolute(prediction_means[objective] - beta*np.sqrt(prediction_variances[objective]))
total_values += scalarized_values
scalarized_predictions = np.maximum(scalarized_values, scalarized_predictions)
scalarized_predictions += augmentation_constant*total_values
scalarized_predictions = scalarized_predictions*feasibility_indicator
elif(scalarization_method == "modified_tchebyshev"):
scalarized_predictions = np.full((number_of_predictions), float("inf"))
reciprocated_weights = reciprocate_weights(objective_weights)
for objective in regression_models:
scalarized_value = reciprocated_weights[objective] * (prediction_means[objective] - beta*np.sqrt(prediction_variances[objective]))
scalarized_predictions = np.minimum(scalarized_value, scalarized_predictions)
scalarized_predictions = scalarized_predictions*feasibility_indicator
scalarized_predictions = -scalarized_predictions # We will minimize later, but we want to maximize instead, so we invert the sign
else:
print("Error: unrecognized scalarization method:", scalarization_method)
raise SystemExit
return scalarized_predictions, tmp_objective_limits
| 5,338,886
|
def np_array_to_binary_vector(np_arr):
""" Converts a NumPy array to the RDKit ExplicitBitVector type. """
binary_vector = DataStructs.ExplicitBitVect(len(np_arr))
binary_vector.SetBitsFromList(np.where(np_arr)[0].tolist())
return binary_vector
| 5,338,887
|
def augment_features(data, feature_augmentation):
"""
Augment features for a given data matrix.
:param data: Data matrix.
:param feature_augmentation: Function applied to augment the features.
:return: Augmented data matrix.
"""
if data is not None and feature_augmentation is not None:
if isinstance(feature_augmentation, list):
for augmentation_function in feature_augmentation:
data = augmentation_function(data)
else:
data = feature_augmentation(data)
return data
| 5,338,888
|
def _get_data_from_empty_list(source, fields='*', first_row=0, count=-1, schema=None):
""" Helper function for _get_data that handles empty lists. """
fields = get_field_list(fields, schema)
return {'cols': _get_cols(fields, schema), 'rows': []}, 0
| 5,338,889
|
def setup(bot: Monty) -> None:
"""Load the TokenRemover cog."""
bot.add_cog(TokenRemover(bot))
| 5,338,890
|
def copy_keys_except(dic, *keys):
"""Return a copy of the dict without the specified items.
"""
ret = dic.copy()
for key in keys:
try:
del ret[key]
except KeyError:
pass
return ret
| 5,338,891
|
def get_params(img, scale, ratio):
"""Get parameters for ``crop`` for a random sized crop.
Args:
img (PIL Image): Image to be cropped.
scale (tuple): range of size of the origin size cropped
ratio (tuple): range of aspect ratio of the origin aspect ratio cropped
Returns:
tuple: params (i, j, h, w) to be passed to ``crop`` for a random
sized crop.
"""
area = img.size[0] * img.size[1]
for attempt in range(10):
target_area = random.uniform(*scale) * area
log_ratio = (math.log(ratio[0]), math.log(ratio[1]))
aspect_ratio = math.exp(random.uniform(*log_ratio))
w = int(round(math.sqrt(target_area * aspect_ratio)))
h = int(round(math.sqrt(target_area / aspect_ratio)))
if w <= img.size[0] and h <= img.size[1]:
i = random.randint(0, img.size[1] - h)
j = random.randint(0, img.size[0] - w)
return i, j, h, w
# Fallback to central crop
in_ratio = img.size[0] / img.size[1]
if in_ratio < min(ratio):
w = img.size[0]
h = int(round(w / min(ratio)))
elif in_ratio > max(ratio):
h = img.size[1]
w = int(round(h * max(ratio)))
else: # whole image
w = img.size[0]
h = img.size[1]
i = (img.size[1] - h) // 2
j = (img.size[0] - w) // 2
return i, j, h, w
| 5,338,892
|
async def start_time() -> Any:
"""
Returns the contest start time.
"""
return schemas.Timestamp(timestamp=settings.EVENT_START_TIME)
| 5,338,893
|
def reshape(v, shape):
"""Implement `reshape`."""
return np.reshape(v, shape)
| 5,338,894
|
def generate_html_from_module(module):
"""
Extracts a module documentations from a module object into a HTML string
uses a pre-written builtins list in order to exclude built in functions
:param module: Module object type to extract documentation from
:return: String representation of an HTML file
"""
html_content = f"<html><head><title>{module.__name__} Doc</title></head><body><h1>Module {module.__name__}:</h1>"
html_content += f"Function {module.__doc__}"
for function in module.__dict__:
if callable(getattr(module, function)):
html_content += f"<h2>Function {function}:</h2>"
html_content += f"{getattr(module, function).__doc__}"
html_content += f"<h3>Annotations:</h3>"
for annotation in getattr(module, function).__annotations__.keys():
html_content += f"{annotation} <br>"
html_content += "</body></html>"
return html_content
| 5,338,895
|
def _phi(r, order):
"""Coordinate-wise nonlinearity used to define the order of the
interpolation.
See https://en.wikipedia.org/wiki/Polyharmonic_spline for the definition.
Args:
r: input op
order: interpolation order
Returns:
phi_k evaluated coordinate-wise on r, for k = r
"""
# using EPSILON prevents log(0), sqrt0), etc.
# sqrt(0) is well-defined, but its gradient is not
with tf.name_scope("phi"):
if order == 1:
r = tf.maximum(r, EPSILON)
r = tf.sqrt(r)
return r
elif order == 2:
return 0.5 * r * tf.math.log(tf.maximum(r, EPSILON))
elif order == 4:
return 0.5 * tf.square(r) * tf.math.log(tf.maximum(r, EPSILON))
elif order % 2 == 0:
r = tf.maximum(r, EPSILON)
return 0.5 * tf.pow(r, 0.5 * order) * tf.math.log(r)
else:
r = tf.maximum(r, EPSILON)
return tf.pow(r, 0.5 * order)
| 5,338,896
|
def updated_topology_description(topology_description, server_description):
"""Return an updated copy of a TopologyDescription.
:Parameters:
- `topology_description`: the current TopologyDescription
- `server_description`: a new ServerDescription that resulted from
a hello call
Called after attempting (successfully or not) to call hello on the
server at server_description.address. Does not modify topology_description.
"""
address = server_description.address
# These values will be updated, if necessary, to form the new
# TopologyDescription.
topology_type = topology_description.topology_type
set_name = topology_description.replica_set_name
max_set_version = topology_description.max_set_version
max_election_id = topology_description.max_election_id
server_type = server_description.server_type
# Don't mutate the original dict of server descriptions; copy it.
sds = topology_description.server_descriptions()
# Replace this server's description with the new one.
sds[address] = server_description
if topology_type == TOPOLOGY_TYPE.Single:
# Set server type to Unknown if replica set name does not match.
if (set_name is not None and
set_name != server_description.replica_set_name):
error = ConfigurationError(
"client is configured to connect to a replica set named "
"'%s' but this node belongs to a set named '%s'" % (
set_name, server_description.replica_set_name))
sds[address] = server_description.to_unknown(error=error)
# Single type never changes.
return TopologyDescription(
TOPOLOGY_TYPE.Single,
sds,
set_name,
max_set_version,
max_election_id,
topology_description._topology_settings)
if topology_type == TOPOLOGY_TYPE.Unknown:
if server_type in (SERVER_TYPE.Standalone, SERVER_TYPE.LoadBalancer):
if len(topology_description._topology_settings.seeds) == 1:
topology_type = TOPOLOGY_TYPE.Single
else:
# Remove standalone from Topology when given multiple seeds.
sds.pop(address)
elif server_type not in (SERVER_TYPE.Unknown, SERVER_TYPE.RSGhost):
topology_type = _SERVER_TYPE_TO_TOPOLOGY_TYPE[server_type]
if topology_type == TOPOLOGY_TYPE.Sharded:
if server_type not in (SERVER_TYPE.Mongos, SERVER_TYPE.Unknown):
sds.pop(address)
elif topology_type == TOPOLOGY_TYPE.ReplicaSetNoPrimary:
if server_type in (SERVER_TYPE.Standalone, SERVER_TYPE.Mongos):
sds.pop(address)
elif server_type == SERVER_TYPE.RSPrimary:
(topology_type,
set_name,
max_set_version,
max_election_id) = _update_rs_from_primary(sds,
set_name,
server_description,
max_set_version,
max_election_id)
elif server_type in (
SERVER_TYPE.RSSecondary,
SERVER_TYPE.RSArbiter,
SERVER_TYPE.RSOther):
topology_type, set_name = _update_rs_no_primary_from_member(
sds, set_name, server_description)
elif topology_type == TOPOLOGY_TYPE.ReplicaSetWithPrimary:
if server_type in (SERVER_TYPE.Standalone, SERVER_TYPE.Mongos):
sds.pop(address)
topology_type = _check_has_primary(sds)
elif server_type == SERVER_TYPE.RSPrimary:
(topology_type,
set_name,
max_set_version,
max_election_id) = _update_rs_from_primary(sds,
set_name,
server_description,
max_set_version,
max_election_id)
elif server_type in (
SERVER_TYPE.RSSecondary,
SERVER_TYPE.RSArbiter,
SERVER_TYPE.RSOther):
topology_type = _update_rs_with_primary_from_member(
sds, set_name, server_description)
else:
# Server type is Unknown or RSGhost: did we just lose the primary?
topology_type = _check_has_primary(sds)
# Return updated copy.
return TopologyDescription(topology_type,
sds,
set_name,
max_set_version,
max_election_id,
topology_description._topology_settings)
| 5,338,897
|
def test_success(database):
""" Testing valid program activity name for the corresponding TAS/TAFS as defined in Section 82 of OMB Circular
A-11.
"""
populate_publish_status(database)
af_1 = AwardFinancialFactory(row_number=1, agency_identifier='test', submission_id=1, main_account_code='test',
program_activity_name='test', program_activity_code='test')
af_2 = AwardFinancialFactory(row_number=2, agency_identifier='test', submission_id=1, main_account_code='test',
program_activity_name='test', program_activity_code='test')
pa = ProgramActivityFactory(fiscal_year_quarter='FY17Q1', agency_id='test', allocation_transfer_id='test',
account_number='test', program_activity_name='test', program_activity_code='test')
submission = SubmissionFactory(submission_id=1, reporting_fiscal_year='2017', reporting_fiscal_period=3,
publish_status_id=PUBLISH_STATUS_DICT['unpublished'])
assert number_of_errors(_FILE, database, models=[af_1, af_2, pa], submission=submission) == 0
| 5,338,898
|
def get_absolute_filepath(filepath: str) -> str:
"""Returns absolute filepath of the file/folder from the given `filepath` (along with the extension, if any)"""
absolute_filepath = os.path.realpath(path=filepath)
return absolute_filepath
| 5,338,899
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.