content
stringlengths 22
815k
| id
int64 0
4.91M
|
|---|---|
def named(name):
"""
This function is used to decorate middleware functions in order
for their before and after sections to show up during a verbose run.
For examples see documentation to this module and tests.
"""
def new_annotate(mware):
def new_middleware(handler):
new_handler = mware(handler)
def verbose_handler(ctx):
_print_inwards(name)
new_ctx = new_handler(ctx)
_print_outwards(name)
return new_ctx
return verbose_handler
return new_middleware
return new_annotate
| 5,338,500
|
def concatFile(file_list):
""" To combine files in file list.
"""
config = getConfig()
print('[load]concating...')
df_list = []
for f in file_list:
print(f)
tmp = pd.read_csv(config['dir_raw']+f, index_col=None, header=0)
df_list.append(tmp)
df = pd.concat(df_list, axis=0, ignore_index=True)
return df
| 5,338,501
|
def apply_reflection(P, source_idx, target_idx, R, n_forward):
"""Modifies `P` in-place."""
for _source_idx, _target_idx, _R in zip(source_idx, target_idx, R):
if _source_idx < n_forward:
P[_target_idx, -1] += _R * P[_source_idx, -2]
else:
P[_target_idx, 0] += _R * P[_source_idx, 1]
| 5,338,502
|
def multiply_str(char, times):
"""
Return multiplied character in string
"""
return char * times
| 5,338,503
|
def calories_per_item(hundr, weight, number_cookies, output_type):
"""
>>> calories_per_item(430, 0.3, 20, 0)
'One item has 64.5 kcal.'
>>> calories_per_item(430, 0.3, 20, 1)
'One item has 64.5 Calories.'
>>> calories_per_item(1, 1000, 10, 1)
'One item has 1000.0 Calories.'
>>> calories_per_item(1, 1000, 10, 0)
'One item has 1000.0 kcal.'
>>> calories_per_item(0, 1000, 10, 0)
'One item has 0.0 kcal.'
"""
kcal_per_item = hundr * 10 # convert kcal per 100g to kcal per kg
unit = 'kcal'
if output_type == 1: # change output unit based on input
unit = 'Calories'
return 'One item has ' + str((kcal_per_item * weight) / number_cookies) + ' ' + unit + '.'
| 5,338,504
|
def bitcoind_call(*args):
"""
Run `bitcoind`, return OS return code
"""
_, retcode, _ = run_subprocess("/usr/local/bin/bitcoind", *args)
return retcode
| 5,338,505
|
def getItemProduct(db, itemID):
"""
Get an item's linked product id
:param db: database pointer
:param itemID: int
:return: int
"""
# Get the one we want
item = db.session.query(Item).filter(Item.id == itemID).first()
# if the query didn't return anything, raise noresult exception
if (not item):
raise NoResult
# otherwise, return the product_id
else:
# Filter the thing off
return item.product_id
| 5,338,506
|
def add_tech_types(net, tech):
""" Add std_type to an existing net
"""
for i, t in tech.iterrows():
# i is ID of tech, t is tech data
data = dict(c_nf_per_km=t.C,
r_ohm_per_km=t.R,
x_ohm_per_km=t.X,
max_i_ka=t.Imax/1000,
q_mm=t.Section,
type='oh' if t.Type == 'Overhead' else 'cs')
pp.create_std_type(net, name=i, data=data, element='line')
| 5,338,507
|
def find_board(board_id: BoardID) -> Optional[Board]:
"""Return the board with that id, or `None` if not found."""
board = db.session.get(DbBoard, board_id)
if board is None:
return None
return _db_entity_to_board(board)
| 5,338,508
|
def test_isin_pattern_0():
"""
Test IsIn pattern which expresses the IsIn/OneOf semantics.
"""
inputs = Tensor(np.ones([42]), mindspore.float16)
softmax_model = nn.Softmax()
@register_pass(run_only_once=True)
def softmax_relu_pass():
x = Any()
softmax_pattern = Prim(P.Softmax())
call_softmax = Call(softmax_pattern, [x])
relu_pattern = Prim(P.ReLU())
call_relu = Call(relu_pattern, [x])
pattern = OneOf([call_softmax, call_relu])
relu6_pattern = Prim(P.ReLU6())
target = Call(relu6_pattern, [x])
return pattern, target
transformed_repr = get_func_graph(softmax_model, inputs).get_return().expanded_str(2)
unregister_pass(softmax_relu_pass)
assert "ReLU6" in transformed_repr
assert "Softmax" not in transformed_repr
| 5,338,509
|
def ENsimtime():
"""retrieves the current simulation time t as datetime.timedelta instance"""
return datetime.timedelta(seconds= _current_simulation_time.value )
| 5,338,510
|
def solar_true_longitude(solar_geometric_mean_longitude, solar_equation_of_center):
"""Returns the Solar True Longitude with Solar Geometric Mean Longitude,
solar_geometric_mean_longitude, and Solar Equation of Center,
solar_equation_of_center."""
solar_true_longitude = solar_geometric_mean_longitude + solar_equation_of_center
return solar_true_longitude
| 5,338,511
|
def image_to_fingerprint(image, size=FINGERPRINT_SIZE):
"""Create b64encoded image signature for image hash comparisons"""
data = image.copy().convert('L').resize((size, size)).getdata()
return base64.b64encode(bytes(data)).decode()
| 5,338,512
|
def get_indices(
time: str | datetime | date, smoothdays: int = None, forcedownload: bool = False
) -> pandas.DataFrame:
"""
alternative going back to 1931:
ftp://ftp.ngdc.noaa.gov/STP/GEOMAGNETIC_DATA/INDICES/KP_AP/
20 year Forecast data from:
https://sail.msfc.nasa.gov/solar_report_archives/May2016Rpt.pdf
"""
dtime = todatetime(time)
fn = downloadfile(dtime, forcedownload)
# %% load data
dat: pandas.DataFrame = load(fn)
# %% optional smoothing over days
if isinstance(smoothdays, int):
periods = np.rint(timedelta(days=smoothdays) / (dat.index[1] - dat.index[0])).astype(int)
if "f107" in dat:
dat["f107s"] = dat["f107"].rolling(periods, min_periods=1).mean()
if "Ap" in dat:
dat["Aps"] = dat["Ap"].rolling(periods, min_periods=1).mean()
# %% pull out the times we want
i = [dat.index.get_loc(t, method="nearest") for t in dtime]
Indices = dat.iloc[i, :]
return Indices
| 5,338,513
|
def get_args():
"""Get CLI arguments and options
:return: AccuRev branch, git repository location, append option boolean
"""
parser = argparse.ArgumentParser(description='Migrate AccuRev branch history to git')
parser.add_argument('accurevBranch', help='The AccuRev branch which will be migrated', type=is_stream)
parser.add_argument('repoLocation', help='The location of the git repository in which the clone will happen',
action=FullPaths, type=is_valid_dest)
parser.add_argument('-a', '--append', help='Append new AccuRev branch history to an existing git repository',
action='store_true')
args = parser.parse_args()
source = args.accurevBranch
dest = args.repoLocation
append = args.append
return source, dest, append
| 5,338,514
|
def check(device, value):
"""Test for valid setpoint without actually moving."""
value = json.loads(value)
return zmq_single_request("check_value", {"device": device, "value": value})
| 5,338,515
|
def prove(formula, verbose):
"""
:param formula: String representation of a modal formula.
The syntax for such a formula is per the grammar as stipulated in the README.
Example input: "(a|b) & (~c => d)"
:return string showing the outcome of the proof, that is valid or not valid.
"""
try:
sys.setrecursionlimit(15000)
negated_fml = "~(" + str(formula) + ")"
negated_clausal_fml = call_function(verbose, transform, negated_fml, False)
if call_function(verbose, k_prove, negated_clausal_fml) == sat:
return "Psi is NOT valid"
else:
return "Psi is valid"
finally:
sys.setrecursionlimit(1000)
| 5,338,516
|
def _assert_covers_from(covers, y, fol):
"""Assert that each element of `covers` is a subset of `y`."""
for cover in covers:
assert y | ~ cover == fol.true
| 5,338,517
|
def get_projectID(base_url, start, teamID, userID):
"""
Get all the project from jama
Args:
base_url (string): jama instance base url
start (int): start at a specific location
teamID (string): user team ID, for OAuth
userID (string): user ID, for OAuth
Returns:
(dict): Returns JSON object of the Jama API /projects
"""
url = base_url + "/rest/latest/projects?startAt=" +\
str(start) + "&maxResults=50"
return api_caller.get(teamID, userID, url)
| 5,338,518
|
def to_world(points_3d, key2d, root_pos):
""" Trasform coordenates from camera to world coordenates """
_, _, rcams = data_handler.get_data_params()
n_cams = 4
n_joints_h36m = 32
# Add global position back
points_3d = points_3d + np.tile(root_pos, [1, n_joints_h36m])
# Load the appropriate camera
key3d = data_handler.get_key3d(key2d[:3])
subj, _, sname = key3d
subj = int(subj)
cname = sname.split('.')[1] # <-- camera name
scams = {(subj, c+1): rcams[(subj, c+1)] for c in range(n_cams)} # cams of this subject
scam_idx = [scams[(subj, c+1)][-1] for c in range(n_cams)].index(cname) # index of camera used
the_cam = scams[(subj, scam_idx+1)] # <-- the camera used
R, T, f, c, k, p, name = the_cam
assert name == cname
def cam2world_centered(data_3d_camframe):
data_3d_worldframe = cameras.camera_to_world_frame(data_3d_camframe.reshape((-1, 3)), R, T)
data_3d_worldframe = data_3d_worldframe.reshape((-1, n_joints_h36m*3))
# subtract root translation
return data_3d_worldframe - np.tile(data_3d_worldframe[:, :3], (1, n_joints_h36m))
# Apply inverse rotation and translation
return cam2world_centered(points_3d)
| 5,338,519
|
async def test_camera_generic_update(
hass: HomeAssistant, ufp: MockUFPFixture, camera: ProtectCamera
):
"""Tests generic entity update service."""
await init_entry(hass, ufp, [camera])
assert_entity_counts(hass, Platform.CAMERA, 2, 1)
entity_id = "camera.test_camera_high"
assert await async_setup_component(hass, "homeassistant", {})
state = hass.states.get(entity_id)
assert state and state.state == "idle"
ufp.api.update = AsyncMock(return_value=None)
await hass.services.async_call(
"homeassistant",
"update_entity",
{ATTR_ENTITY_ID: entity_id},
blocking=True,
)
state = hass.states.get(entity_id)
assert state and state.state == "idle"
| 5,338,520
|
def remove_tags(pipelineId=None, tagKeys=None):
"""
Removes existing tags from the specified pipeline.
See also: AWS API Documentation
Exceptions
:example: response = client.remove_tags(
pipelineId='string',
tagKeys=[
'string',
]
)
:type pipelineId: string
:param pipelineId: [REQUIRED]\nThe ID of the pipeline.\n
:type tagKeys: list
:param tagKeys: [REQUIRED]\nThe keys of the tags to remove.\n\n(string) --\n\n
:rtype: dict
ReturnsResponse Syntax
{}
Response Structure
(dict) --
Contains the output of RemoveTags.
Exceptions
DataPipeline.Client.exceptions.InternalServiceError
DataPipeline.Client.exceptions.InvalidRequestException
DataPipeline.Client.exceptions.PipelineNotFoundException
DataPipeline.Client.exceptions.PipelineDeletedException
:return: {}
:returns:
DataPipeline.Client.exceptions.InternalServiceError
DataPipeline.Client.exceptions.InvalidRequestException
DataPipeline.Client.exceptions.PipelineNotFoundException
DataPipeline.Client.exceptions.PipelineDeletedException
"""
pass
| 5,338,521
|
def test_insert_items_rebal_right_left_rotation():
"""Test that the tree rebalances on a left right rotation."""
from bst import AVLBST
avl = AVLBST()
avl.insert(85)
avl.insert(2)
avl.insert(88)
avl.insert(79)
avl.insert(55)
assert avl.root.val == 85
assert avl.root.right.val == 88
assert avl.root.left.val == 55
assert avl.root.left.left.val == 2
assert avl.root.left.right.val == 79
avl.insert(50)
assert avl.balance() == 1 or avl.balance() == 0 or avl.balance() == -1
assert avl.root.val == 55
| 5,338,522
|
def orbital_energies_from_filename(filepath):
"""Returns the orbital energies from the given filename through
functional composition
:param filepath: path to the file
"""
return orbital_energies(spe_list(
lines=list(content_lines(filepath, CMNT_STR))))
| 5,338,523
|
def _dict_merge(a, b):
""" `_dict_merge` deep merges b into a and returns the new dict.
"""
if not isinstance(b, dict):
return b
result = deepcopy(a)
for k, v in b.items():
if k in result and isinstance(result[k], dict):
result[k] = _dict_merge(result[k], v)
else:
result[k] = deepcopy(v)
return result
| 5,338,524
|
def flags(flags: int, modstring: str) -> int:
""" Modifies the stat flags according to *modstring*, mirroring the syntax for POSIX `chmod`. """
mapping = {
'r': (stat.S_IRUSR, stat.S_IRGRP, stat.S_IROTH),
'w': (stat.S_IWUSR, stat.S_IWGRP, stat.S_IWOTH),
'x': (stat.S_IXUSR, stat.S_IXGRP, stat.S_IXOTH)
}
target, direction = 'a', None
for c in modstring:
if c in '+-':
direction = c
continue
if c in 'ugoa':
target = c
direction = None # Need a - or + after group specifier.
continue
if c in 'rwx' and direction and direction in '+-':
if target == 'a':
mask = functools.reduce(operator.or_, mapping[c])
else:
mask = mapping[c]['ugo'.index(target)]
if direction == '-':
flags &= ~mask
else:
flags |= mask
continue
raise ValueError('invalid chmod: {!r}'.format(modstring))
return flags
| 5,338,525
|
def _can_contain(ob1, ob2, other_objects, all_obj_locations, end_frame,
min_dist):
""" Return true if ob1 can contain ob2. """
assert len(other_objects) == len(all_obj_locations)
# Only cones do the contains, and can contain spl or smaller sphere/cones,
# cylinders/cubes are too large
if (len(ob1) == 1 and ob1[0][0]['sized'] > ob2[0][0]['sized'] and
ob1[0][0]['shape'] == 'cone' and
ob2[0][0]['shape'] in ['cone', 'sphere', 'spl']):
# Also make sure the moved object will not collide with anything
# there
collisions = [
_obj_overlap(
# ob2 location since the ob1 will be moved to ob2's location
# but will have the size of ob1,
(ob2[0][1].location[0], ob2[0][1].location[1],
ob1[0][1].location[2]),
ob1[0][0]['sized'],
# top objects location at the end point, and its size
other_locations[0][end_frame], other_obj[0][0]['sized'],
min_dist)
for other_obj, other_locations in
zip(other_objects, all_obj_locations)]
if not any(collisions):
return True
return False
| 5,338,526
|
def twolmodel(attr, pulse='on'):
"""
This is the 2-layer ocean model
requires a forcing in W/m2
pulse = on - radiative pulse W/m2
pulse = off - time varyin radaitive forcing W/m2/yr
pulse = time - use output from simple carbon model
"""
#### Parameters ####
yeartosec = 30.25*24*60*60*12
rho = 1025 # density of sea water kg/m3
cw = 3985 # specific heat of sea water J/KgK
###################
# define time steps of the model
timesteps = np.arange(0,attr['endtime']+attr['dt'],attr['dt'])
df = pd.DataFrame(index=timesteps,columns=['T_sfc','T_deep'],data=np.zeros((len(timesteps), 2)))
for t in range(len(timesteps)-1):
if pulse is 'on':
if t == 0:
df.iloc[t+1,df.columns.get_indexer(['T_sfc'])] = df.iloc[t]['T_sfc'] + (attr['dt']*yeartosec/(rho*cw*attr['hsfc'])) * (attr['lb']*df.iloc[t]['T_sfc'] + attr['R'] + attr['beta']*attr['e']*(df.iloc[t]['T_deep'] - df.iloc[t]['T_sfc']))
df.iloc[t+1,df.columns.get_indexer(['T_deep'])] = df.iloc[t]['T_deep'] + (attr['dt']*yeartosec/(rho*cw*attr['hdeep'])) * (attr['beta'] * (df.iloc[t]['T_sfc'] - df.iloc[t]['T_deep']))
else:
df.iloc[t+1,df.columns.get_indexer(['T_sfc'])] = df.iloc[t]['T_sfc'] + (attr['dt']*yeartosec/(rho*cw*attr['hsfc'])) * (attr['lb']*df.iloc[t]['T_sfc'] + 0 + attr['beta']*attr['e']*(df.iloc[t]['T_deep'] - df.iloc[t]['T_sfc']))
df.iloc[t+1,df.columns.get_indexer(['T_deep'])] = df.iloc[t]['T_deep'] + (attr['dt']*yeartosec/(rho*cw*attr['hdeep'])) * (attr['beta'] * (df.iloc[t]['T_sfc'] - df.iloc[t]['T_deep']))
elif pulse is 'off':
df.iloc[t+1,df.columns.get_indexer(['T_sfc'])] = df.iloc[t]['T_sfc'] + (attr['dt']*yeartosec/(rho*cw*attr['hsfc'])) * (attr['lb']*df.iloc[t]['T_sfc'] + attr['R']*timesteps[t] + attr['beta']*attr['e']*(df.iloc[t]['T_deep'] - df.iloc[t]['T_sfc']))
df.iloc[t+1,df.columns.get_indexer(['T_deep'])] = df.iloc[t]['T_deep'] + (attr['dt']*yeartosec/(rho*cw*attr['hdeep'])) * (attr['beta'] * (df.iloc[t]['T_sfc'] - df.iloc[t]['T_deep']))
elif pulse is 'time':
df.iloc[t+1,df.columns.get_indexer(['T_sfc'])] = df.iloc[t]['T_sfc'] + (attr['dt']*yeartosec/(rho*cw*attr['hsfc'])) * (attr['lb']*df.iloc[t]['T_sfc'] + attr['R'][t] + attr['beta']*attr['e']*(df.iloc[t]['T_deep'] - df.iloc[t]['T_sfc']))
df.iloc[t+1,df.columns.get_indexer(['T_deep'])] = df.iloc[t]['T_deep'] + (attr['dt']*yeartosec/(rho*cw*attr['hdeep'])) * (attr['beta'] * (df.iloc[t]['T_sfc'] - df.iloc[t]['T_deep']))
return df
| 5,338,527
|
def save_df_to_s3(df_local, s3_bucket, destination):
"""
Saves a pandas dataframe to S3
Input:
df_local: Dataframe to save
s3_bucket: Bucket name
destination: Prefix
"""
csv_buffer = StringIO()
s3_resource = boto3.resource("s3")
df_local.to_csv(csv_buffer, index=False)
s3_resource.Object(s3_bucket, destination).put(Body=csv_buffer.getvalue())
| 5,338,528
|
def test_set_entity_ids(nlp: Language, patterns: List[Dict[str, Any]]) -> None:
"""It writes ids to entities."""
ruler = SpaczzRuler(nlp, spaczz_patterns=patterns)
nlp.add_pipe(ruler)
doc = nlp("Grint Anderson was prescribed Zithroma.")
assert len(doc.ents) == 2
assert doc.ents[0].label_ == "NAME"
assert doc.ents[0].ent_id_ == "Developer"
assert doc.ents[1].label_ == "DRUG"
assert doc.ents[1].ent_id_ == "Antibiotic"
| 5,338,529
|
def maximumToys(prices, k):
"""Problem solution."""
prices.sort()
c = 0
for toy in prices:
if toy > k:
return c
else:
k -= toy
c += 1
return c
| 5,338,530
|
def batch_process(process, **kwargs):
"""Runs a process on a set of files and batches them into subdirectories.
Arguments:
process ((IN, OUT, Verbosity) -> str): The function to execute on each
file.
Keyword Arguments:
file (Optional[str]): The input files and directories.
outpu_dir (Optional[str]): The output directory.
batch_size (Optional[int]): The size of each subdirectory or the number
of subdirectories, depending on the batch_mode.
batch_mode (Optional[str]): The batch mode. Can be one of 'count' or
'divide'. In count mode, each batch will contain at most the number
of files specified by the batch_size (default 10). In divide mode,
there will be that number of batch directories, and files will be
divided evenly between them.
batch_dir_format (Optional[str]): The format string for batch
subdirectory names. Defaults to 'batch{:03}'
verbosity (int): The verbosity of the output.
Returns:
(None)
"""
# Get values from kwargs:
search_locations = kwargs.get('file', ['.'])
search_locations.extend(kwargs.get('extra_files', []))
extensions = kwargs.get('extensions', [])
recursive = kwargs.get('recursive', False)
output_dir = os.path.abspath(kwargs.get('output_dir', '.'))
no_overwrite = kwargs.get('no_overwrite', [])
verbosity = kwargs.get('verbose', 1)
if kwargs.get('quiet', False):
verbosity = 0
batch_mode = kwargs.get('batch_mode', 'none')
batch_size = kwargs.get('batch_size', 10)
batch_dir_format = kwargs.get('batch_dir_prefix', 'batch{:03}')
# Get files to process
files, file_count = get_files(search_locations,
extensions,
recursive)
if verbosity >= 3:
pprint(kwargs)
# Prepare batching info
if batch_mode == 'none':
batch_count = 0
elif batch_mode == 'divide':
batch_count = batch_size
elif batch_mode == 'count':
batch_count = int(ceil(file_count / batch_size))
batches = []
for batch_num in range(0, batch_count):
batch_name = batch_dir_format.format(batch_num)
batch_path = os.path.join(output_dir, batch_name)
batches.append((batch_path, batch_name))
# Create batch directory.
try:
if verbosity >= 3:
print('Creating directory: {}', os.path.relpath(batch_path))
os.makedirs(batch_path)
except OSError as e:
if e.errno == errno.EEXIST:
# We don't care if directory already exists.
pass
# Assign files to batches using (input_file, output_location)
out = output_dir
assigned_files = []
for i, item in enumerate(files):
if batch_count > 0:
out, short = batches[i % len(batches)]
assigned_files.append((item, out))
# Check for already existing outputs.
existing = get_files(output_dir,
no_overwrite,
recursive=True)[0]
existing = {split_ext(x)[0] : x for x in existing}
if verbosity >= 3:
print('Process preventing extensions:', no_overwrite)
if no_overwrite:
if verbosity >= 1:
print('\n--- Checking for existing files of types: {} ---'
''.format(no_overwrite))
# Function for checking if file exists in output_dir
def check(file_name):
base, ext = split_ext(file_name)
over_written = existing.get(base, False)
if over_written:
existing_ext = split_ext(existing[base])[1]
if existing_ext.endswith(tuple(no_overwrite)):
print('Skip {}{} -> "{}"'
''.format(base, ext, os.path.relpath(existing[base])))
return False
return True
# Filter for files that don't exist in output_dir
assigned_files = [x for x in assigned_files if check(x[0])]
if verbosity >= 1 and len(assigned_files) == 0:
print('--- No files to process ---\n')
return
if verbosity >= 1:
print('\n--- Begin Processing {} files ---'
''.format(len(assigned_files)))
# Process each file:
for item, out in assigned_files:
process(item, out, verbosity=verbosity)
if verbosity >= 1:
print('--- End Processing ---\n')
| 5,338,531
|
async def test_config_bad_key(hass):
"""Check config with bad key."""
config = {"name": "test", "asdf": 5, "platform": "universal"}
config = validate_config(config)
assert "asdf" not in config
| 5,338,532
|
def get_X_HBR_d_t_i(X_star_HBR_d_t):
"""(47)
Args:
X_star_HBR_d_t: 日付dの時刻tにおける負荷バランス時の居室の絶対湿度(kg/kg(DA))
Returns:
日付dの時刻tにおける暖冷房区画iの実際の居室の絶対湿度(kg/kg(DA))
"""
X_star_HBR_d_t_i = np.tile(X_star_HBR_d_t, (5, 1))
return X_star_HBR_d_t_i
| 5,338,533
|
def add_route(url: str,
response: Optional[str] = None,
method: str = 'GET',
response_type: str = 'JSON',
status_code: int = 200,
headers: Optional[Dict[str, str]] = None,
callback: Optional[Callable[[Any], None]] = None,
) -> None:
"""
Add route to app.
:param url: the URL rule as string
:param response: return value
:param method: HTTP method
:param response_type: type of response (JSON, HTML, RSS)
:param status_code: return status code
:param headers: return headers
:param callback: function will be executes before response returns
"""
endpoint = '{url}::{method}::{status_code}'.format(
url=url, method=method, status_code=status_code
)
@app.route(url, endpoint=endpoint, methods=[method])
def handler(*args, **kwargs):
if callback is not None:
callback(request, *args, **kwargs)
json_response = jsonify(response)
if headers is not None:
json_response.headers.update(headers)
return json_response, status_code
| 5,338,534
|
def findUsername(data):
"""Find a username in a Element
Args:
data (xml.etree.ElementTree.Element): XML from PMS as a Element
Returns:
username or None
"""
elem = data.find('User')
if elem is not None:
return elem.attrib.get('title')
return None
| 5,338,535
|
def test_non_unischema_with_many_colums_with_one_shot_iterator(carbon_many_columns_non_unischema_dataset):
"""Just a bunch of read and compares of all values to the expected values"""
with make_batch_carbon_reader(carbon_many_columns_non_unischema_dataset.url, workers_count=1) as reader:
dataset = make_pycarbon_dataset(reader)
iterator = dataset.make_one_shot_iterator()
# Make sure we have static shape info for all fields
for shape in dataset.output_shapes:
# TODO(yevgeni): check that the shapes are actually correct, not just not None
assert shape.dims is not None
# Read a bunch of entries from the dataset and compare the data to reference
with tf.Session() as sess:
iterator = iterator.get_next()
sample = sess.run(iterator)._asdict()
assert set(sample.keys()) == set(carbon_many_columns_non_unischema_dataset.data[0].keys())
| 5,338,536
|
def preprocess_config_factory(args: argparse.Namespace, ref_paths: dict,
dataset_type: str) -> Union[BratsConfig, CamCanConfig, IBSRConfig, CANDIConfig, IXIConfig]:
"""Factory method to create a pre-processing config based on the parsed command line arguments."""
if dataset_type == 'brats':
config = BratsConfig(
dataset_name=args.dataset_name,
dataset_root_path=args.dataset_root_path,
do_pre_processing=args.pre_process,
do_create_dataset=args.create_dataset,
modalities={modality: modality in args.modalities for modality in VALID_BRATS_MODALITIES},
limit_to_n_samples=args.limit_n_samples,
exclude_empty_slices=args.exclude_empty_slices,
do_bias_correction=not args.no_bias_correction,
force_bias_correction=args.force_bias_correction,
do_histogram_matching=not args.no_histogram_matching,
ref_paths=ref_paths,
do_normalization=not args.no_normalization,
normalization_method=args.normalization_method,
shuffle_pre_processing=args.shuffle_pre_processing,
background_value=BACKGROUND_VALUE,
hdf5_out_folder_path=args.hdf5_out_dir_path,
n4_executable_path=N4_EXECUTABLE_PATH,
store_pre_processing_output=not args.no_output,
print_debug=args.print_debug
)
return config
elif dataset_type == 'camcan':
config = CamCanConfig(
dataset_name=args.dataset_name,
dataset_root_path=args.dataset_root_path,
image_modality=args.modality,
limit_to_n_samples=args.limit_n_samples,
exclude_empty_slices=args.exclude_empty_slices,
do_histogram_matching=not args.no_histogram_matching,
ref_paths=ref_paths,
do_normalization=not args.no_normalization,
normalization_method=args.normalization_method,
background_value=args.background_value,
hdf5_out_folder_path=args.hdf5_out_dir_path,
n4_executable_path=N4_EXECUTABLE_PATH,
val_fraction=args.val_fraction,
print_debug=args.print_debug
)
return config
elif dataset_type == 'ixi':
config = IXIConfig(
dataset_name=args.dataset_name,
dataset_root_path=args.dataset_root_path,
image_modality=args.modality,
limit_to_n_samples=args.limit_n_samples,
exclude_empty_slices=args.exclude_empty_slices,
do_histogram_matching=not args.no_histogram_matching,
ref_paths=ref_paths,
do_normalization=not args.no_normalization,
normalization_method=args.normalization_method,
background_value=args.background_value,
hdf5_out_folder_path=args.hdf5_out_dir_path,
n4_executable_path=N4_EXECUTABLE_PATH,
val_fraction=args.val_fraction,
print_debug=args.print_debug
)
return config
elif dataset_type == 'ibsr':
config = IBSRConfig(
dataset_name=args.dataset_name,
dataset_root_path=args.dataset_root_path,
image_modality='t1',
limit_to_n_samples=args.limit_n_samples,
exclude_empty_slices=args.exclude_empty_slices,
do_histogram_matching=not args.no_histogram_matching,
ref_paths=ref_paths,
do_normalization=not args.no_normalization,
normalization_method=args.normalization_method,
background_value=args.background_value,
hdf5_out_folder_path=args.hdf5_out_dir_path,
n4_executable_path=N4_EXECUTABLE_PATH,
val_fraction=args.val_fraction,
print_debug=args.print_debug
)
return config
elif dataset_type == 'candi':
config = CANDIConfig(
dataset_name=args.dataset_name,
dataset_root_path=args.dataset_root_path,
image_modality='t1',
limit_to_n_samples=args.limit_n_samples,
exclude_empty_slices=args.exclude_empty_slices,
do_histogram_matching=not args.no_histogram_matching,
ref_paths=ref_paths,
do_normalization=not args.no_normalization,
normalization_method=args.normalization_method,
background_value=args.background_value,
hdf5_out_folder_path=args.hdf5_out_dir_path,
n4_executable_path=N4_EXECUTABLE_PATH,
val_fraction=args.val_fraction,
print_debug=args.print_debug
)
return config
else:
raise KeyError(f'Given dataset_type {dataset_type} not supported.')
| 5,338,537
|
def GET(request):
"""Get this Prefab."""
request.check_required_parameters(path={'prefabId': 'string'})
prefab = Prefab.from_id(request.params_path['prefabId'])
prefab.check_exists()
prefab.check_user_access(request.google_id)
return Response(200, 'Successfully retrieved prefab', prefab.obj)
| 5,338,538
|
def fix_empty_strings(tweet_dic):
"""空文字列を None に置換する"""
def fix_media_info(media_dic):
for k in ['title', 'description']:
if media_dic.get('additional_media_info', {}).get(k) == '':
media_dic['additional_media_info'][k] = None
return media_dic
for m in tweet_dic.get('entities', {}).get('media', []):
m = fix_media_info(m)
for m in tweet_dic.get('extended_entities', {}).get('media', []):
m = fix_media_info(m)
for m in tweet_dic.get('extended_tweet', {}).get('entities', {}).get('media', []):
m = fix_media_info(m)
for m in tweet_dic.get('extended_tweet', {}).get('extended_entities', {}).get('media', []):
m = fix_media_info(m)
for k in [
'profile_background_image_url',
'profile_background_image_url_https',
'profile_image_url',
'profile_image_url_https',
]:
if tweet_dic.get('user', {}).get(k) == '':
tweet_dic['user'][k] = None
return tweet_dic
| 5,338,539
|
def group_joinrequest(request, group_id):
"""
Handle post request to join a group.
"""
if not request.is_ajax() or request.method != 'POST':
raise Http404
result = {}
content_type = 'application/json; charset=utf-8'
group_id = int(group_id)
group = get_group(group_id)
if not group:
raise Http404
user = request.user.username
# TODO: Group creator is group staff now, but may changed in future.
staff = group.creator_name
if is_group_user(group_id, user):
# Already in the group. Normally, this case should not happen.
err = _(u'You are already in the group.')
return HttpResponseBadRequest(json.dumps({'error': err}),
content_type=content_type)
else:
form = GroupJoinMsgForm(request.POST)
if form.is_valid():
group_join_msg = form.cleaned_data['group_join_msg']
# Send the message to group staff.
use_https = request.is_secure()
domain = RequestSite(request).domain
t = loader.get_template('group/group_join_email.html')
c = {
'staff': staff,
'user': user,
'group_name': group.group_name,
'group_join_msg': group_join_msg,
'site_name': SITE_NAME,
}
try:
send_mail(_(u'apply to join the group'), t.render(Context(c)), None, [staff],
fail_silently=False)
messages.success(request, _(u'Sent successfully, the group admin will handle it.'))
return HttpResponse(json.dumps('success'),
content_type=content_type)
except:
err = _(u'Failed to send. You can try it again later.')
return HttpResponse(json.dumps({'error': err}), status=500,
content_type=content_type)
else:
return HttpResponseBadRequest(json.dumps(form.errors),
content_type=content_type)
| 5,338,540
|
def fibonacci(**kwargs):
"""Fibonacci Sequence as a numpy array"""
n = int(math.fabs(kwargs.pop('n', 2)))
zero = kwargs.pop('zero', False)
weighted = kwargs.pop('weighted', False)
if zero:
a, b = 0, 1
else:
n -= 1
a, b = 1, 1
result = np.array([a])
for i in range(0, n):
a, b = b, a + b
result = np.append(result, a)
if weighted:
fib_sum = np.sum(result)
if fib_sum > 0:
return result / fib_sum
else:
return result
else:
return result
| 5,338,541
|
def temp_directory():
"""This context manager gives the path to a new temporary directory that
is deleted (with all it's content) at the end of the with block.
"""
directory = tempfile.mkdtemp()
try:
yield directory
finally:
shutil.rmtree(directory)
| 5,338,542
|
def read_data():
"""Reads in the data from (currently) only the development file
and returns this as a list. Pops the last element, because it is empty."""
with open('../PMB/parsing/layer_data/4.0.0/en/gold/dev.conll') as file:
data = file.read()
data = data.split('\n\n')
data.pop(-1)
return data
| 5,338,543
|
def argrelextrema(data, comparator, axis=0, order=1, mode='clip'):
"""
Calculate the relative extrema of `data`.
Parameters
----------
data : ndarray
Array in which to find the relative extrema.
comparator : callable
Function to use to compare two data points.
Should take two arrays as arguments.
axis : int, optional
Axis over which to select from `data`. Default is 0.
order : int, optional
How many points on each side to use for the comparison
to consider ``comparator(n, n+x)`` to be True.
mode : str, optional
How the edges of the vector are treated. 'wrap' (wrap around) or
'clip' (treat overflow as the same as the last (or first) element).
Default is 'clip'. See `numpy.take`.
Returns
-------
extrema : tuple of ndarrays
Indices of the maxima in arrays of integers. ``extrema[k]`` is
the array of indices of axis `k` of `data`. Note that the
return value is a tuple even when `data` is one-dimensional.
See Also
--------
argrelmin, argrelmax
Notes
-----
.. versionadded:: 0.11.0
Examples
--------
>>> from scipy.signal import argrelextrema
>>> x = np.array([2, 1, 2, 3, 2, 0, 1, 0])
>>> argrelextrema(x, np.greater)
(array([3, 6]),)
>>> y = np.array([[1, 2, 1, 2],
... [2, 2, 0, 0],
... [5, 3, 4, 4]])
...
>>> argrelextrema(y, np.less, axis=1)
(array([0, 2]), array([2, 1]))
"""
results = _boolrelextrema(data, comparator,
axis, order, mode)
return np.where(results)
| 5,338,544
|
def test_as_airbyte_stream_incremental(mocker):
"""
Should return an incremental refresh AirbyteStream with information matching
the provided Stream interface.
"""
test_stream = StreamStubIncremental()
mocker.patch.object(StreamStubIncremental, "get_json_schema", return_value={})
airbyte_stream = test_stream.as_airbyte_stream()
exp = AirbyteStream(
name="stream_stub_incremental",
json_schema={},
supported_sync_modes=[SyncMode.full_refresh, SyncMode.incremental],
default_cursor_field=["test_cursor"],
source_defined_cursor=True,
source_defined_primary_key=[["primary_key"]],
)
assert exp == airbyte_stream
| 5,338,545
|
def test_get_temperature_rise_no_spec_sheet():
"""get_temperature_rise_spec_sheet() should raise a KeyError when passed an unkown
page number."""
with pytest.raises(KeyError):
inductor.get_temperature_rise_spec_sheet(22)
| 5,338,546
|
def dijkstra(G, s):
"""
find all shortest paths from s to each other vertex in graph G
"""
n = len(G)
visited = [False]*n
weights = [math.inf]*n
path = [None]*n
queue = []
weights[s] = 0
hq.heappush(queue, (0, s))
while len(queue) > 0:
g, u = hq.heappop(queue)
visited[u] = True
for v, w in G[u]:
if not visited[v]:
print(v, w, g, u)
f = g + w
if f < weights[v]:
weights[v] = f
path[v] = u
hq.heappush(queue, (f, v))
return path, weights
| 5,338,547
|
def prepare_create_user_db():
"""Clear a user from the database to be created."""
username = TEST_USERS[0][0]
connection = connect_db()
connection.cursor().execute('DELETE FROM Users WHERE username=%s',
(username,))
connection.commit()
close_db(connection)
return username
| 5,338,548
|
def _getlocal(ui, rpath):
"""Return (path, local ui object) for the given target path.
Takes paths in [cwd]/.hg/hgrc into account."
"""
try:
wd = os.getcwd()
except OSError, e:
raise util.Abort(_("error getting current working directory: %s") %
e.strerror)
path = cmdutil.findrepo(wd) or ""
if not path:
lui = ui
else:
lui = ui.copy()
lui.readconfig(os.path.join(path, ".hg", "hgrc"), path)
if rpath and rpath[-1]:
path = lui.expandpath(rpath[-1])
lui = ui.copy()
lui.readconfig(os.path.join(path, ".hg", "hgrc"), path)
return path, lui
| 5,338,549
|
def get_size_and_sha256(infile):
"""
Returns the size and SHA256 checksum (as hex) of the given file.
"""
h = hashlib.sha256()
size = 0
while True:
chunk = infile.read(8192)
if not chunk:
break
h.update(chunk)
size += len(chunk)
return (size, h.hexdigest())
| 5,338,550
|
def process_log_data(spark, input_data, output_data):
"""
Function to create users, time, and songplays table and to process log data
"""
# get filepath to log data file
log_data = input_data + "log_data/*/*"
# read log data file
df = spark.read.json(log_data)
# filter by actions for song plays
df = df.filter(df.page == 'NextSong')
# extract columns for users table
users_table = (df.select(col('userId').alias('user_id'),
col('firstName').alias('first_name'),
col('lastName').alias('last_name'),
col('gender').alias('gender'),
col('level').alias('level')).distinct()
)
# write users table to parquet files
users_table.write.parquet(output_data + "/users.parquet", mode="overwrite")
# create timestamp column from original timestamp column
get_timestamp = udf(lambda x: x / 1000, IntegerType())
df = df.withColumn('start_time', get_timestamp('ts'))
# create datetime column from original timestamp column
get_datetime = udf(lambda x: F.from_unixtime(x))
df = df.withColumn('date_time', F.from_unixtime('start_time'))
# extract columns to create time table
time_table = (df.select(col('start_time'),
hour('date_time').alias('hour'),
dayofmonth('date_time').alias('day'),
weekofyear('date_time').alias('week'),
month('date_time').alias('month'),
year('date_time').alias('year'),
date_format('date_time', 'E').alias('weekday'))
)
# write time table to parquet files partitioned by year and month
time_table.write.partitionBy(['year', 'month']).parquet(output_data + '/time.parquet', mode='overwrite')
# read in song data to use for songplays table
song_df = spark.read.parquet(output_data + '/songs.parquet')
# extract columns from joined song and log datasets to create songplays table
songplays_table = (
df.withColumn('songplay_id', F.monotonically_increasing_id())
.join(song_df, song_df.title == df.song)
.select('songplay_id',
col('ts').alias('start_time'),
col('userId').alias('user_id'),
col('level').alias('level'),
col('song_id').alias('song_id'),
col("artist_id").alias('artist_id'),
col('sessionId').alias('session_id'),
col('location').alias('location'),
col('userAgent').alias('user_agent'),
year('date_time').alias('year'),
month('date_time').alias('month'))
)
# write songplays table to parquet files partitioned by year and month
songplays_table.write.partitionBy(['year', 'month']).parquet(output_data + "/songplays.parquet", mode='overwrite')
| 5,338,551
|
def cmServiceAbort():
"""CM SERVICE ABORT Section 9.2.7"""
a = TpPd(pd=0x5)
b = MessageType(mesType=0x23) # 00100011
packet = a / b
return packet
| 5,338,552
|
def get_distribution(distribution_id):
"""
Lists inforamtion about specific distribution by id.
:param distribution_id: Id of CDN distribution
"""
cloudfront = CloudFront()
return cloudfront.get_distribution(distribution_id=distribution_id)
| 5,338,553
|
def get_information_per_topic(db_path: str, topic: str, field: str):
""" Query all alert data monitoring rows for a given topic
Parameters
----------
db_path: str
Path to the monitoring database. The database will be created if
it does not exist yet.
topic: str
Topic name of a stream
field: str
Field for which you want the data.
Returns
----------
df: pd.DataFrame
Pandas DataFrame with data of matching alert rows.
Examples
----------
>>> df = get_information_per_topic(db_fn, "tutu", "objectId")
>>> print(len(df))
1
"""
con = sqlite3.connect(db_path)
statement = f"SELECT {field} FROM `{ALERT_TABLE}` WHERE topic = '{topic}';"
# catch error if the DB is empty
try:
df = pd.read_sql_query(statement, con)
alert_id = list(df[field])
except pd.io.sql.DatabaseError as e:
print(e)
alert_id = [""]
return alert_id
| 5,338,554
|
def _testOpen():
"""
>>> from defcon.test.testTools import getTestFontPath
>>> from defcon.objects.font import Font
>>> font = Font(getTestFontPath('TestOpenContour.ufo'))
>>> glyph = font['A']
>>> glyph[0].open
True
>>> glyph[1].open
False
>>> glyph[2].open
True
>>> glyph[3].open
False
"""
| 5,338,555
|
def add_packer_codebuild_job(t, name, environment=None):
""" Add the packer AMI build to the codebuild job """
cfn_name = sanitize_cfn_resource_name(name)
with open(os.path.dirname(os.path.realpath(__file__)) + "/buildspecs/packer.yml") as spec:
build_spec = spec.read()
codebuild_job_environments = [{
'Name': 'CLUSTER_NAME',
'Value': name
}]
if environment:
codebuild_job_environments.append({'Name': 'ENVIRONMENT', 'Value': environment})
PackerRole = Role(
"CodeBuildPackerRole",
AssumeRolePolicyDocument={
"Statement": [{
"Effect": "Allow",
"Action": "sts:AssumeRole",
"Principal": {"Service": [
"codebuild.amazonaws.com",
"ec2.amazonaws.com"
]},
}]
},
Policies=[
Policy(
PolicyName="codebuild-packer",
PolicyDocument={
"Statement": [{
"Effect": "Allow",
"Action": [
"ec2:AttachVolume",
"ec2:AuthorizeSecurityGroupIngress",
"ec2:CopyImage",
"ec2:CreateImage",
"ec2:CreateKeypair",
"ec2:CreateSecurityGroup",
"ec2:CreateSnapshot",
"ec2:CreateTags",
"ec2:CreateVolume",
"ec2:DeleteKeyPair",
"ec2:DeleteSecurityGroup",
"ec2:DeleteSnapshot",
"ec2:DeleteVolume",
"ec2:DeregisterImage",
"ec2:Describe*",
"ec2:DetachVolume",
"ec2:GetPasswordData",
"ec2:ModifyImageAttribute",
"ec2:ModifyInstanceAttribute",
"ec2:ModifySnapshotAttribute",
"ec2:RegisterImage",
"ec2:RunInstances",
"ec2:StopInstances",
"ec2:TerminateInstances",
"iam:PassRole"
],
"Resource": "*"
}, {
"Effect": "Allow",
"Action": ["logs:*"],
"Resource": "*"
}, {
"Effect": "Allow",
"Action": [
"ssm:GetParametersByPath",
"ssm:GetParameters",
"ssm:GetParameter"
],
"Resource": [
"arn:aws:ssm:*:*:parameter/aws/service/ecs*"
]
}, {
"Effect": "Allow",
"Action": "s3:*",
"Resource": [{
"Fn::Sub": "arn:aws:s3:::ecs-cluster-deployer-${AWS::AccountId}-${AWS::Region}"
}, {
"Fn::Sub": "arn:aws:s3:::ecs-cluster-deployer-${AWS::AccountId}-${AWS::Region}/*"
}]
}]
}
)
]
)
PackerInstanceProfile = InstanceProfile(
"PackerInstanceProfile",
InstanceProfileName=f"{cfn_name}PackerInstanceProfile",
Roles=[Ref(PackerRole)]
)
environment = Environment(
ComputeType="BUILD_GENERAL1_SMALL",
Type="LINUX_CONTAINER",
Image="aws/codebuild/standard:2.0",
EnvironmentVariables=codebuild_job_environments,
PrivilegedMode=True
)
PackerCodebuild = Project(
"PackerAMIBuilder",
Name=f"{cfn_name}PackerAMIBuilder",
Artifacts=Artifacts(Type='CODEPIPELINE'),
Environment=environment,
ServiceRole=Ref(PackerRole),
Source=Source(
Type="CODEPIPELINE",
BuildSpec=Sub(build_spec)
)
)
t.add_resource(PackerRole)
t.add_resource(PackerCodebuild)
t.add_resource(PackerInstanceProfile)
| 5,338,556
|
def gripper_client(finger_positions):
"""Send a gripper goal to the action server."""
action_address = '/' + prefix + 'driver/fingers_action/finger_positions'
client = actionlib.SimpleActionClient(action_address,
kinova_msgs.msg.SetFingersPositionAction)
client.wait_for_server()
goal = kinova_msgs.msg.SetFingersPositionGoal()
goal.fingers.finger1 = float(finger_positions[0])
goal.fingers.finger2 = float(finger_positions[1])
goal.fingers.finger3 = float(finger_positions[2])
client.send_goal(goal)
if client.wait_for_result(rospy.Duration(50.0)):
return client.get_result()
else:
client.cancel_all_goals()
rospy.WARN(' the gripper action timed-out')
return None
| 5,338,557
|
def plot_scalar_field(snap: Step, fieldname: str) -> None:
"""Plot scalar field with plate information.
Args:
snap: a :class:`~stagpy._step.Step` of a StagyyData instance.
fieldname: name of the field that should be decorated with plate
informations.
"""
fig, axis, _, _ = field.plot_scalar(snap, fieldname)
if conf.plates.continents:
c_field = np.ma.masked_where(
~_continents_location(snap, at_surface=False),
snap.fields['c'].values[0, :, :, 0])
cmap = colors.ListedColormap(["k", "g", "m"])
with conf.field.context_(colorbar=False):
field.plot_scalar(snap, 'c', c_field, axis, cmap=cmap,
norm=colors.BoundaryNorm([2, 3, 4, 5], cmap.N))
# plotting velocity vectors
field.plot_vec(axis, snap, 'sx' if conf.plates.stress else 'v')
# Put arrow where ridges and trenches are
_plot_plate_limits_field(axis, snap)
saveplot(fig, f'plates_{fieldname}', snap.isnap,
close=conf.plates.zoom is None)
# Zoom
if conf.plates.zoom is not None:
if not 0 <= conf.plates.zoom <= 360:
raise error.InvalidZoomError(conf.plates.zoom)
if 45 < conf.plates.zoom <= 135:
ladd, radd, uadd, dadd = 0.8, 0.8, 0.05, 0.1
elif 135 < conf.plates.zoom <= 225:
ladd, radd, uadd, dadd = 0.05, 0.1, 0.8, 0.8
elif 225 < conf.plates.zoom <= 315:
ladd, radd, uadd, dadd = 0.8, 0.8, 0.1, 0.05
else: # >315 or <=45
ladd, radd, uadd, dadd = 0.1, 0.05, 0.8, 0.8
xzoom = (snap.geom.rcmb + 1) * np.cos(np.radians(conf.plates.zoom))
yzoom = (snap.geom.rcmb + 1) * np.sin(np.radians(conf.plates.zoom))
axis.set_xlim(xzoom - ladd, xzoom + radd)
axis.set_ylim(yzoom - dadd, yzoom + uadd)
saveplot(fig, f'plates_zoom_{fieldname}', snap.isnap)
| 5,338,558
|
def validate_column(column_name,value,lookup_values):
"""Validates columns found in Seq&Treat tuberculosis AST donation spreadsheets.
This function understands either the format of a passed column or uses values
derived from lookup Pandas dataframes to check each value in a spreadsheet.
Args:
column_name (str): the name of the column. Not checked at present!
value: the contents to check
Returns:
True/False
"""
# the SITEID must exist in the table
if column_name=='site_id':
result=str(value) in lookup_values['SITES']
# as must the COUNTRY code
elif column_name=='country_where_sample_taken':
result=value in lookup_values['COUNTRIES']
elif column_name=='instrument_model':
result=value in lookup_values['SEQUENCERS']
elif column_name=='isolate_number':
try:
result=value>0
except:
result=False
elif column_name=='sequence_replicate_number':
result=bool(re.match('^[_0-9]+$',str(value)))
elif column_name in ['dataset_name','lab_id','subject_id']:
if 'nan' in str(value):
return(False)
else:
result=bool(re.match('^[_\-A-Za-z0-9]+$',str(value)))
elif column_name in ['collection_date','submission_date']:
# this will catch nans
if value!=value:
result=True
# otherwise the pandas date converters will have picked it up
else:
result=isinstance(value,datetime.datetime)
elif column_name=='reads_file_1':
result=bool(re.match('^[\-_A-Za-z0-9]+_R1.fastq.gz$',str(value)))
elif column_name=='reads_file_2':
result=bool(re.match('^[\-_A-Za-z0-9]+_R2.fastq.gz$',str(value)))
elif column_name in ['reads_file_1_md5','reads_file_2_md5']:
result=bool(re.match('^[a-z0-9]+$',str(value)))
elif column_name in ['ena_deposited']:
result=value in [True,False]
elif column_name in ['ena_run_accession']:
result=False
if isinstance(value,float) and numpy.isnan(value):
result=True
elif isinstance(value,str):
result=bool(re.match('^(E|D|S)RR[0-9]{6,}$',value))
elif column_name in ['ena_sample_accession']:
result=False
if isinstance(value,float) and numpy.isnan(value):
result=True
elif isinstance(value,str):
result=bool(re.match('^(E|D|S)RS[0-9]{6,}$',value)) or bool(value[:5]=='SAMEA')
elif column_name=='method':
if isinstance(value,float) and numpy.isnan(value):
result=True
else:
result=value in lookup_values['AST_METHODS']
elif column_name=='phenotype':
if isinstance(value,float):
if numpy.isnan(value):
result=True
else:
result=value>0
elif isinstance(value,str):
if value in ['R','S','U']:
return True
else:
if ',' in value:
value=value.replace(',','.')
if '≥' in value:
value=value.replace('≥','>=')
if '≤' in value:
value=value.replace('≤','<=')
if ' ' in value:
value=value.replace(' ','')
# FIXME: hack to allow through incorrect >=32 MICs (should be >32)
if value[:2]=='>=':
try:
result=float(value[2:])>0
except:
result=False
elif value[0]=='>':
try:
result=float(value[1:])>0
except:
result=False
elif value[:2]=='<=':
try:
result=float(value[2:])>0
except:
result=False
# FIXME: hack to allow through incorrect <0.06 MICs (should be <=0.06)
elif value[0]=='<':
try:
result=float(value[1:])>0
except:
result=False
else:
try:
result=float(value)>0
except:
result=False
else:
result=value>0
elif column_name=='cc':
result=False
if isinstance(value,str):
result=value in ['WHO','UK']
elif isinstance(value,float):
if numpy.isnan(value):
return(True)
else:
result=value>0
elif isinstance(value,int):
result=value>0
return result
| 5,338,559
|
def get_html_from_url(url, timeout=None):
"""Get HTML document from URL
Parameters
url (str) : URL to look for
timeout (float) : Inactivity timeout in seconds
Return
The HTML document as a string
"""
resp = reqget(url, timeout=timeout)
return resp.text
| 5,338,560
|
def save_hdf5(connection, filepath):
"""
Save network parameters in HDF5 format.
Parameters
----------
{save_dict.connection}
filepath : str
Path to the HDF5 file that stores network parameters.
Examples
--------
>>> from neupy import layers, storage
>>>
>>> connection = layers.Input(10) > layers.Softmax(3)
>>> storage.save_hdf5(connection, '/path/to/parameters.hdf5')
"""
hdf5 = load_hdf5_module()
connection = extract_connection(connection)
data = save_dict(connection)
with hdf5.File(filepath, mode='w') as f:
layer_names = []
for layer in data['layers']:
layer_name = layer['name']
layer_group = f.create_group(layer_name)
for attrname, attrvalue in layer.items():
if attrname != 'parameters':
layer_group.attrs[attrname] = json.dumps(
attrvalue, default=repr)
for param_name, param in layer['parameters'].items():
dataset = layer_group.create_dataset(
param_name, data=param['value'])
dataset.attrs['trainable'] = param['trainable']
layer_names.append(layer_name)
f.attrs['metadata'] = json.dumps(data['metadata'])
f.attrs['graph'] = json.dumps(data['graph'])
f.attrs['layer_names'] = json.dumps(layer_names)
| 5,338,561
|
def clean(column, output_column=None, file_path=None, df=None, symbols='!@#$%^&*()+={}[]:;’\”/<>',
replace_by_space=True, keep_original=False):
"""
cleans the cell values in a column, creating a new column with the clean values.
Args:
column: the column to be cleaned.
output_column: the name of the column where cleaned column values are stored. If not provided, the name of the new column is the name of the input column with the suffix _clean.
file_path: input file path
df: or input dataframe
symbols: a string containing the set of characters to be removed: default is “!@#$%^&*()+={}[]:;’\”/<>”
replace_by_space: when True (default) all instances of the symbols are replaced by a space. In case of removal of multiple consecutive characters, they’ll be replaced by a single space. The value False causes the symbols to be deleted.
keep_original: when True, the output column will contain the original value and the clean value will be appended, separated by |. Default is False
Returns: a dataframe with the new output clean containing clean values
"""
if file_path is None and df is None:
raise RequiredInputParameterMissingException(
'One of the input parameters is required: {} or {}'.format(file_path, df))
symbols = list(symbols)
if output_column is None:
output_column = '{}_clean'.format(column)
if file_path:
df = pd.read_csv(file_path)
df[output_column] = df[column].map(lambda x: string_clean(x, symbols, replace_by_space, keep_original))
return df
| 5,338,562
|
def len_lt(name, value):
"""
Only succeed if the length of the given register location is less than
the given value.
USAGE:
.. code-block:: yaml
foo:
check.len_lt:
- value: 42
run_remote_ex:
local.cmd:
- tgt: '*'
- func: test.ping
- require:
- check: foo
"""
ret = {"name": name, "result": False, "comment": "", "changes": {}}
if name not in __reg__:
ret["result"] = False
ret["comment"] = "Value {0} not in register".format(name)
return ret
if len(__reg__[name]["val"]) < value:
ret["result"] = True
return ret
| 5,338,563
|
def _ll_to_xy(latitude, longitude, wrfin=None, timeidx=0,
stagger=None, method="cat", squeeze=True, cache=None,
_key=None, as_int=True, **projparams):
"""Return the x,y coordinates for a specified latitude and longitude.
The *latitude* and *longitude* arguments can be a single value or a
sequence of values.
The leftmost dimension of the returned array represents two different
quantities:
- return_val[0,...] will contain the X (west_east) values.
- return_val[1,...] will contain the Y (south_north) values.
Args:
latitude (:obj:`float` or sequence): A single latitude or a sequence
of latitude values to be converted.
longitude (:obj:`float` or sequence): A single longitude or a sequence
of latitude values to be converted.
wrfin (:class:`netCDF4.Dataset`, :class:`Nio.NioFile`, or an \
iterable): WRF-ARW NetCDF
data as a :class:`netCDF4.Dataset`, :class:`Nio.NioFile`
or an iterable sequence of the aforementioned types.
timeidx (:obj:`int` or :data:`wrf.ALL_TIMES`, optional): The
desired time index. This value can be a positive integer,
negative integer, or
:data:`wrf.ALL_TIMES` (an alias for None) to return
all times in the file or sequence. The default is 0.
stagger (:obj:`str`): By default, the latitude and longitude are
returned on the mass grid, but a staggered grid can be chosen
with the following options:
- 'm': Use the mass grid (default).
- 'u': Use the same staggered grid as the u wind component,
which has a staggered west_east (x) dimension.
- 'v': Use the same staggered grid as the v wind component,
which has a staggered south_north (y) dimension.
method (:obj:`str`, optional): The aggregation method to use for
sequences. Must be either 'cat' or 'join'.
'cat' combines the data along the Time dimension.
'join' creates a new dimension for the file index.
The default is 'cat'.
squeeze (:obj:`bool`, optional): Set to False to prevent dimensions
with a size of 1 from being automatically removed from the shape
of the output. Default is True.
cache (:obj:`dict`, optional): A dictionary of (varname, ndarray)
that can be used to supply pre-extracted NetCDF variables to the
computational routines. It is primarily used for internal
purposes, but can also be used to improve performance by
eliminating the need to repeatedly extract the same variables
used in multiple diagnostics calculations, particularly when using
large sequences of files.
Default is None.
_key (:obj:`int`, optional): A caching key. This is used for internal
purposes only. Default is None.
as_int (:obj:`bool`): Set to True to return the x,y values as
:obj:`int`, otherwise they will be returned as :obj:`float`.
**projparams: Map projection keyword arguments to set manually.
Returns:
:class:`xarray.DataArray` or :class:`numpy.ndarray`: The
x,y coordinate value(s) whose leftmost dimension is 2 (0=X, 1=Y).
If xarray is enabled and the *meta* parameter is True, then the result
will be a :class:`xarray.DataArray` object. Otherwise, the result will
be a :class:`numpy.ndarray` object with no metadata.
"""
if wrfin is not None:
(map_proj, truelat1, truelat2, stdlon, ref_lat, ref_lon,
pole_lat, pole_lon, known_x, known_y, dx, dy, latinc,
loninc) = _get_proj_params(wrfin, timeidx, stagger, method, squeeze,
cache, _key)
else:
(map_proj, truelat1, truelat2, stdlon, ref_lat, ref_lon,
pole_lat, pole_lon, known_x, known_y, dx, dy, latinc,
loninc) = _kwarg_proj_params(**projparams)
if isinstance(latitude, Iterable):
lats = np.asarray(latitude)
lons = np.asarray(longitude)
# Note: For scalars, this will make a single element array
lats = lats.ravel()
lons = lons.ravel()
if (lats.size != lons.size):
raise ValueError("'latitude' and 'longitude' "
"must be the same length")
if ref_lat.size == 1:
outdim = [2, lats.size]
extra_dims = [outdim[1]]
else:
# Moving domain will have moving ref_lats/ref_lons
outdim = [2, ref_lat.size, lats.size]
extra_dims = outdim[1:]
result = np.empty(outdim, np.float64)
for left_idxs in iter_left_indexes(extra_dims):
# Left indexes is a misnomer, since these will be on the right
x_idxs = (0,) + left_idxs
y_idxs = (1,) + left_idxs
if ref_lat.size == 1:
ref_lat_val = ref_lat[0]
ref_lon_val = ref_lon[0]
else:
ref_lat_val = ref_lat[left_idxs[-2]]
ref_lon_val = ref_lon[left_idxs[-2]]
lat = lats[left_idxs[-1]]
lon = lons[left_idxs[-1]]
xy = _lltoxy(map_proj, truelat1, truelat2, stdlon,
ref_lat_val, ref_lon_val, pole_lat, pole_lon,
known_x, known_y, dx, dy, latinc, loninc,
lat, lon)
# Note: comes back from fortran as y,x
result[x_idxs] = xy[1]
result[y_idxs] = xy[0]
else:
result = np.empty((2,), np.float64)
fort_out = _lltoxy(map_proj, truelat1, truelat2, stdlon,
ref_lat, ref_lon, pole_lat, pole_lon,
known_x, known_y, dx, dy, latinc, loninc,
latitude, longitude)
# Note, comes back from fortran as y,x. So, need to swap them.
result[0] = fort_out[1]
result[1] = fort_out[0]
# Make indexes 0-based
result = result - 1
if as_int:
result = np.rint(result).astype(int)
return result
| 5,338,564
|
def p_command_box(p):
"""command : BOX NUMBER NUMBER NUMBER NUMBER NUMBER NUMBER
| BOX NUMBER NUMBER NUMBER NUMBER NUMBER NUMBER SYMBOL
| BOX SYMBOL NUMBER NUMBER NUMBER NUMBER NUMBER NUMBER
| BOX SYMBOL NUMBER NUMBER NUMBER NUMBER NUMBER NUMBER SYMBOL"""
cmd = {'op' : p[1], 'constants' : None, 'cs' : None, 'args':[]}
arg_start = 2
if isinstance(p[2], str):
cmd['constants'] = p[2]
arg_start = 3
if len(p) == 9 and isinstance(p[8], str):
cmd['cs'] = p[8]
if len(p) == 10 and isinstance(p[9], str):
cmd['cs'] = p[9]
cmd['args'] = p[arg_start:arg_start+6]
commands.append(cmd)
| 5,338,565
|
def partner_to_partners(apps, schema_editor):
"""
Adds the Partner object in Authorization.partner to the
many-to-many relationship in Authorization.partners
"""
authorization_model = apps.get_model("users", "Authorization")
for authorization in authorization_model.objects.all():
authorization.partners.add(authorization.partner)
| 5,338,566
|
def spawn():
"""
Spawn a machine to package or to slave into the network
:return None:
"""
args = parse_spawn_arguments()
spawn_machine(
assimilate=not args.no_assimilate,
after_assimilate=not args.no_after_assimilate,
after_mesh=not args.no_after_mesh,
provision=not args.no_provision,
server_type=args.server_type,
compute_type=args.compute_type,
only_check_available=args.check_available
)
| 5,338,567
|
def verify_in_person_group(subscription_key):
"""VerifyInPersonGroup.
This will verify whether faces detected as similar in a group are of the same person.
"""
face_base_url = "https://{}.api.cognitive.microsoft.com".format(FACE_LOCATION)
face_client = FaceClient(endpoint=face_base_url, credentials=CognitiveServicesCredentials(subscription_key))
image_url_prefix = "https://csdx.blob.core.windows.net/resources/Face/Images/"
target_image_file_names = ["Family1-Dad1.jpg", "Family1-Dad2.jpg"]
source_image_file_name1 = "Family1-Dad3.jpg"
# Create a person group.
person_group_id = str(uuid.uuid4())
print("Create a person group {}.".format(person_group_id))
face_client.person_group.create(person_group_id=person_group_id, name=person_group_id)
person_id = face_client.person_group_person.create(person_group_id=person_group_id, name="Dad").person_id
# Create a person group person.
p = Person(name="Dad", user_data="Person for sample", person_id=person_id)
print("Create a person group person {}.".format(p.name))
for target_image_file_name in target_image_file_names:
# Add face to the person group.
print("Add face to the person group person {} from image {}.".format(p.name, target_image_file_name))
faces = face_client.person_group_person.add_face_from_url(
person_group_id=person_group_id,
person_id=p.person_id,
url=image_url_prefix + target_image_file_name, user_data=target_image_file_name
)
if not faces:
raise Exception("No persisted face from image {}.".format(target_image_file_name))
# Verification example for faces of the same person.
verify_result = face_client.face.verify_face_to_person(
face_id=_detect_faces_helper(face_client=face_client,
image_url=image_url_prefix + source_image_file_name1)[0].face_id,
person_id=p.person_id,
person_group_id=person_group_id
)
if verify_result.is_identical:
print("Faces from {} & {} are of the same (Positive) person, similarity confidence: {}.".format(source_image_file_name1, p.name, verify_result.confidence))
else:
print("Faces from {} & {} are of different (Negative) persons, similarity confidence: {}.".format(source_image_file_name1, p.name, verify_result.confidence))
# Delete the person group.
print("Delete the person group {}.\n".format(person_group_id))
face_client.person_group.delete(person_group_id=person_group_id)
| 5,338,568
|
def onedsinusoid(x,H,A,omega,phi):
"""
Returns a 1-dimensional sinusoid of form
H+A*np.sin(omega*x+phi)
"""
phi = np.pi/180 * phi
return H+A*np.sin(omega*x+phi)
| 5,338,569
|
def _make_wrapper_func(func_name):
"""
make_eus_instance()から呼ばれるEus_pkgクラスコンストラクタにて、eusの関数名のエントリからラッパー関数を作成する際の補助関数。
引数部の構築は_translate_args()を用いて行う。
Args:
func_name (str): もとのEuslispでの関数名でpkg::を含む。なお、関数は内部シンボルと仮定している。(exportされてたら外部シンボルアクセス:(1個)を使わなければならない)。
Returns:
wrapper (function): 複数引数, キーワード引数を適切にEuslispで処理可能な形で変換しS式を送り込む処理を行う関数
"""
def wrapper(*args, **kwargs):
# TODO: checking phase here
# mapping phase
if len(args) == len(wrapper.arg_constructors):
args = tuple([constructor(arg) if not isinstance(arg, Eus_proxy) and constructor is not None else arg for arg, constructor in zip(args, wrapper.arg_constructors)]) # wrapper.arg_constructorsの要素constructorがNoneであることもある。下記logging phaseを見よ
if len(kwargs) == len(wrapper.kwarg_constructors):
kwargs = {key:(wrapper.kwarg_constructors[key](kwargs[key]) if not isinstance(kwargs[key], Eus_proxy) else kwargs[key]) for key in wrapper.kwarg_constructors}
# evaluation phase
result = eval_foreign_vm_proxy('({}{})'.format(func_name, _translate_args(args, kwargs)))
# logging phase (ここに来ている時点でevaluation phaseにてEusErrorは投げられていないことがわかる。今回の型は正当である)
# logging時にargの要素やkwargのvalueがproxyでなかった場合(つまりデフォルトルールでの変換が行われた場合)、Noneをarg_constructorsに登録する
# proxyのクラスからコンストラクタを特定する上で、nil-terminated cons vs. non-nil-terminated consの競合が発生する。使用頻度を考えてEusListの方であろうと決め打ちを行うことにする!
# for ind, elm in enumerate(args):
# if isinstance(elm, Eus_proxy):
# pass
# else:
# pass
# for ind, key in enumerate(kwargs):
# if isinstance(key, Eus_proxy):
# pass
# else:
# pass
return result
wrapper.arg_constructors = []
wrapper.kwarg_constructors = {}
wrapper.arg_possible_types = []
wrapper.kwarg_possible_types = {}
return wrapper
| 5,338,570
|
def number_in_english(number):
"""Returns the given number in words
>>> number_in_english(0)
'zero'
>>> number_in_english(5)
'five'
>>> number_in_english(11)
'eleven'
>>> number_in_english(745)
'seven hundred and fourty five'
>>> number_in_english(1380)
'one thousand three hundred and eighty'
>>> number_in_english(3204000)
'three million two hundred four thousand'
>>> number_in_english(15000)
'fifteen thousand'
>>> number_in_english(1005)
'one thousand and five'
"""
if not number:
return 'zero'
# split number into blocks of 3
# e.g. 1234567 -> ['567', '234', '1']
numBlocks = int(ceil((log10(number)+1)/3)) # number of digits / 3
number_split = [(number//1000**x)%1000 for x in range(numBlocks)]
# translate each block individual and add the word for the power
# start with the lowest power
word = ''
for n, p in zip(number_split, powers):
if n:
# only the tenner block can have an 'and' (e.g. 'one hundred and five' but not 'one million and one thousand')
word = _hundred_in_english(n, (p == '')) + ' ' + p + ' ' + word
# remove 'and' that was added but is not precede by a number (e.g. 5 -> 'and five')
if word.startswith('and'):
word = word.replace('and', '')
return word.strip()
| 5,338,571
|
def create_app(environment):
"""Factory Method that creates an instance of the app with the given config.
Args:
environment (str): Specify the configuration to initilize app with.
Returns:
app (Flask): it returns an instance of Flask.
"""
app = Flask(__name__)
app.config.from_object(env_configuration[environment])
db.init_app(app)
api = Api(
app=app,
default='Api',
default_label="Available Endpoints",
title='MovieBuff API',
version='2.0.0',
description="""MovieBuff Api Endpoint Documentation 📚"""
)
# enable cross origin resource sharing
CORS(app)
api.add_resource(Users, "/api/v2/auth/<string:operation>",
endpoint="user")
api.add_resource(Movies, "/api/v2/movie", endpoint="movie")
api.add_resource(Categories, "/api/v2/movie/category",
"/api/v2/movie/category/<string:category_id>",
endpoint="category")
api.add_resource(UserMovieRatings, "/api/v2/movie/ratings",
endpoint="ratings")
api.add_resource(Search,
"/api/v2/movie/search", endpoint="search")
# handle default 404 exceptions
@app.errorhandler(404)
def resource_not_found(error):
response = jsonify(dict(
error='Not found',
message='The requested URL was not found on the server.'))
response.status_code = 404
return response
# handle default 500 exceptions
@app.errorhandler(500)
def internal_server_error(error):
response = jsonify(dict(
error='Internal server error',
message="The server encountered an internal error."))
response.status_code = 500
return response
return app
| 5,338,572
|
def heating_design_temp(tmy_id):
"""Returns the heating design temperature (deg F) for the TMY3 site
identified by 'tmy_id'.
"""
return df_tmy_meta.loc[tmy_id].heating_design_temp
| 5,338,573
|
def tonal_int(x):
"""
>>> tonal_int((4,7))
7
>>> tonal_int((4,7,2))
31
>>> tonal_int((6,11,-1))
-1
>>> tonal_int((0,-1,-1))
-13
>>> tonal_int((6,0,0))
12
>>> tonal_int((0,11,0))
-1
>>> tonal_int((0,11))
-1
>>> tonal_int((2, 0))
0
"""
if len(x) == 2:
x = _tonal_unmodulo(x)
return x[1]
d = x[0]
c = x[1]
base_c = MS[d].c
# Example: Cb --- base=0 c=11 c-base=11 11 - 12 = -1
if c - base_c > 3:
c = c - C_LEN
# Example: B# --- base=11 c=0 c-base=-11 c+C_LEN =12
if c - base_c < -3:
c = c + C_LEN
return c + x[2]*(C_LEN)
| 5,338,574
|
def read_vcf(vcf_file, gene_filter=None, experimentalDesig=None):
"""
Reads an vcf v4.0 or 4.1 file and generates :class:`~epytope.Core.Variant.Variant` objects containing
all annotated :class:`~epytope.Core.Transcript.Transcript` ids an outputs a list :class:`~epytope.Core.Variant.Variant`.
Only the following variants are considered by the reader where synonymous labeled variants will not be integrated into any variant:
filter_variants = ['missense_variant', 'frameshift_variant', 'stop_gained', 'missense_variant&splice_region_variant', "synonymous_variant", "inframe_deletion", "inframe_insertion"]
:param str vcf_file: The path ot the vcf file
:param list(str) gene_filter: A list of gene names of interest (only variants associated with these genes
are generated)
:return: List of :class:`~epytope.Core.Variant.Variants fully annotated
:rtype: Tuple of (list(:class:`~epytope.Core.Variant.Variant`), list(transcript_ids)
"""
vl = list()
with open(vcf_file, 'rb') as tsvfile:
vcf_reader = vcf.Reader(open(vcf_file, 'r'))
vl = [r for r in vcf_reader]
list_vars = []
transcript_ids = []
genotye_dict = {"het": False, "hom": True, "ref": True}
for num, record in enumerate(vl):
c = record.CHROM.strip('chr') # chrom
p = record.POS - 1 # vcf is 1-based & epytope 0-based
variation_dbid = record.ID # e.g. rs0123
r = str(record.REF) # reference nuc (seq)
v_list = record.ALT # list of variants
q = record.QUAL # ?
f = record.FILTER # empty if PASS, content otherwise
# I guess we shouldn't expect that keyword to be there ?!
#z = record.INFO['SOMATIC'] #if true somatic
vt = VariationType.UNKNOWN
if record.is_snp:
vt = VariationType.SNP
elif record.is_indel:
if len(v_list)%3 == 0: # no frameshift
if record.is_deletion:
vt = VariationType.DEL
else:
vt = VariationType.INS
else: # frameshift
if record.is_deletion:
vt = VariationType.FSDEL
else:
vt = VariationType.FSINS
gene = None
# WHICH VARIANTS TO FILTER ?
filter_variants = ['missense_variant', 'frameshift_variant', 'stop_gained', 'missense_variant&splice_region_variant', "synonymous_variant", "inframe_deletion", "inframe_insertion"]
for alt in v_list:
isHomozygous = False
if 'HOM' in record.INFO:
#TODO set by AF & FILTER as soon as available
isHomozygous = record.INFO['HOM'] == 1
elif 'SGT' in record.INFO:
zygosity = record.INFO['SGT'].split("->")[1]
if zygosity in genotye_dict:
isHomozygous = genotye_dict[zygosity]
else:
if zygosity[0] == zygosity[1]:
isHomozygous = True
else:
isHomozygous = False
else:
for sample in record.samples:
if 'GT' in sample.data:
isHomozygous = sample.data['GT'] == '1/1'
if "ANN" in record.INFO and record.INFO['ANN']:
isSynonymous = False
coding = dict()
for annraw in record.INFO['ANN']: # for each ANN only add a new coding! see GSvar
annots = annraw.split('|')
obs, a_mut_type, impact, a_gene, a_gene_id, feature_type, transcript_id, exon, tot_exon, trans_coding, prot_coding, cdna, cds, aa, distance, warns = annots
if a_mut_type in filter_variants:
tpos = 0
ppos = 0
# get cds/protein positions and convert mutation syntax to epytope format
if trans_coding != '':
positions = re.findall(r'\d+', trans_coding)
ppos = int(positions[0]) - 1
if prot_coding != '':
positions = re.findall(r'\d+', prot_coding)
tpos = int(positions[0]) - 1
isSynonymous = (a_mut_type == "synonymous_variant")
#rather take gene_id than gene name
gene = a_gene_id
#REFSEQ specific ? Do have to split because of biomart ?
transcript_id = transcript_id.split(".")[0]
#TODO vcf are not REFSEQ only
#coding string not parsed anyway ? just use the one given by SnpEff
coding[transcript_id] = MutationSyntax(transcript_id, ppos, tpos, trans_coding, prot_coding)
transcript_ids.append(transcript_id)
if coding and not isSynonymous:
if vt == VariationType.SNP:
pos, reference, alternative = p, str(r), str(alt)
elif vt == VariationType.DEL or vt == VariationType.FSDEL:
if alt != '-':
pos, reference, alternative = p + len(alt), r[len(alt):], '-'
else:
pos, reference, alternative = p, str(r), str(alt)
elif vt == VariationType.INS or vt == VariationType.FSINS:
if r != '-':
if alt != '-':
pos, reference, alternative = p + len(r), '-', str(alt)[len(r):]
else:
pos, reference, alternative = p + len(r), '-', str(alt)
else:
pos, reference, alternative = p, str(r), str(alt)
var = Variant("line" + str(num), vt, c, pos, reference, alternative, coding, isHomozygous, isSynonymous, experimentalDesign=experimentalDesig)
var.gene = gene
var.log_metadata("vardbid", variation_dbid)
list_vars.append(var)
else:
warnings.warn("Skipping unannotated variant", UserWarning)
return list_vars, transcript_ids
| 5,338,575
|
def serial_read_and_publish(ser, mqtt):
"""thread for reading serial data and publishing to MQTT client"""
ser.flushInput()
while True:
line = ser.readline() # this is blocking
line = line.decode()
if debug:
print()
cleaned_line = line.replace('\r', '').replace('\n', '')
print("Received from ninja cape:\n{}".format(cleaned_line))
# split the JSON packet up here and publish on MQTT
json_data = json.loads(line)
if 'DEVICE' in json_data:
# Received device update
try:
device = str(json_data['DEVICE'][0]['D']) + "_" + str(json_data['DEVICE'][0]['G'])
message = str(json_data['DEVICE'][0]['DA'])
except KeyError as e:
print("Error while extracting device or message from received DEVICE JSON data: {}".format(e))
else:
# No exceptions - data ok
topic = "ninjaCape/input/" + device
print("Publishing MQTT: topic='{}', message='{}'".format(topic, message))
mqtt.publish(topic, message)
elif 'ACK' in json_data:
# Received ACK
# {"ACK":[{"G":"0","V":0,"D":1007,"DA":"FFFF00"}]}
try:
device = str(json_data['ACK'][0]['D']) + "_" + str(json_data['ACK'][0]['G'])
message = str(json_data['ACK'][0]['DA'])
except KeyError as e:
print("Error while extracting device or message from received ACK JSON data: {}".format(e))
else:
print("ACK from ninjaCape: device='{}', message='{}'".format(device, message))
else:
print("Unknown message type: {}".format(json_data))
| 5,338,576
|
def tid() -> Tuple[int, int, int]:
"""
Return the current thread indices for a 3d kernel launch. Use ``i,j,k = wp.tid()`` syntax to retrieve the coordinates inside the kernel thread grid.
"""
...
| 5,338,577
|
def sqrtmod(a, p):
"""
Returns a square root of a modulo p.
Input:
a -- an integer that is a perfect
square modulo p (this is checked)
p -- a prime
Output:
int -- a square root of a, as an integer
between 0 and p-1.
Examples:
>>> sqrtmod(4, 5) # p == 1 (mod 4)
3 #rand
>>> sqrtmod(13, 23) # p == 3 (mod 4)
6 #rand
>>> sqrtmod(997, 7304723089) # p == 1 (mod 4)
761044645L #rand
"""
a %= p
if p == 2: return a
assert legendre(a, p) == 1, "a must be a square mod p."
if p%4 == 3: return powermod(a, (p+1)/4, p)
def mul(x, y): # multiplication in R # (1)
return ((x[0]*y[0] + a*y[1]*x[1]) % p, \
(x[0]*y[1] + x[1]*y[0]) % p)
def pow(x, n): # exponentiation in R # (2)
ans = (1,0)
xpow = x
while n != 0:
if n%2 != 0: ans = mul(ans, xpow)
xpow = mul(xpow, xpow)
n /= 2
return ans
while True:
z = randrange(2,p)
u, v = pow((1,z), (p-1)/2)
if v != 0:
vinv = inversemod(v, p)
for x in [-u*vinv, (1-u)*vinv, (-1-u)*vinv]:
if (x*x)%p == a: return x%p
assert False, "Bug in sqrtmod."
| 5,338,578
|
def hints(missing_includes):
"""Output hints for how to configure missing includes on some platforms"""
if platform.system() == "Darwin" and "GL/glut.h" in missing_includes:
print("""
NOTE: On macOS, include GLUT/glut.h instead of GL/glut.h.
Suggested code:
# ifdef __APPLE__
# include <GLUT/glut.h>
# else
# include <GL/glut.h>
# endif
""")
if platform.system() == "Darwin" and "GL/gl.h" in missing_includes:
print("""
NOTE: On macOS, include OpenGL/gl.h instead of GL/gl.h.
Suggested code:
# ifdef __APPLE__
# include <OpenGL/gl.h>
# else
# include <GL/gl.h>
# endif
""")
| 5,338,579
|
def DrtVariableExpression(variable):
"""
This is a factory method that instantiates and returns a subtype of
``DrtAbstractVariableExpression`` appropriate for the given variable.
"""
if is_indvar(variable.name):
return DrtIndividualVariableExpression(variable)
elif is_funcvar(variable.name):
return DrtFunctionVariableExpression(variable)
elif is_eventvar(variable.name):
return DrtEventVariableExpression(variable)
else:
return DrtConstantExpression(variable)
| 5,338,580
|
def init_db():
"""Initiate the database."""
with app.app_context():
db = get_db()
with app.open_resource('schema.sql', mode='r') as f:
db.cursor().executescript(f.read())
db.commit()
| 5,338,581
|
def ShowNexuses(cmd_args=None):
""" Show Nexus.
usage: shownexues
"""
nexus_summaries = []
nexuses = kern.globals.nx_head
for nx in IterateRBTreeEntry(nexuses, 'struct kern_nexus*', 'nx_link'):
nexus_summaries.append(GetStructNexusSummary(nx))
nexus_summaries.sort()
for nx_str in nexus_summaries:
print "{0:s}".format(nx_str)
| 5,338,582
|
def process_cv_results(cv_results):
"""
This function reformats the .cv_results_ attribute of a fitted randomized
search (or grid search) into a dataframe with only the columns we care
about.
Args
--------------
cv_results : the .cv_results_ attribute of a fitted randomized search
(or grid search) object
Returns
--------------
a sorted dataframe with select information
"""
results = pd.DataFrame(cv_results)
cols = ['mean_test_score', 'mean_train_score', 'std_test_score']
if 'mean_train_score' not in cv_results.keys():
cols = ['mean_test_score', 'std_test_score']
cols += [c for c in results.columns.values if c.startswith('param_')]
return results[cols].sort_values(by='mean_test_score', ascending=False)
| 5,338,583
|
def cbow(currentWord, C, contextWords, tokens, inputVectors, outputVectors,
dataset, word2vecCostAndGradient = softmaxCostAndGradient):
""" CBOW model in word2vec """
# Implement the continuous bag-of-words model in this function.
# Input/Output specifications: same as the skip-gram model
# We will not provide starter code for this function, but feel
# free to reference the code you previously wrote for this
# assignment!
#################################################################
# IMPLEMENTING CBOW IS EXTRA CREDIT, DERIVATIONS IN THE WRIITEN #
# ASSIGNMENT ARE NOT! #
#################################################################
cost = 0
gradIn = np.zeros(inputVectors.shape)
gradOut = np.zeros(outputVectors.shape)
### YOUR CODE HERE
#raise NotImplementedError
### END YOUR CODE
return cost, gradIn, gradOut
| 5,338,584
|
def generate_dlf_yaml(in_yaml):
"""
Generate DLF-compatible YAML configuration file using
"templates/dlf_out.yaml" as template.
:param in_yaml: dict representation of a YAML document defining
placeholder values in "templates/dlf_out.yaml"
:type in_yaml: dict
:raises PlaceholderNotFoundError: a {{...}} placeholder referenced
in "templates/dlf_out.yaml" was not found
:raises ValueError in_yaml is not of type dict
:return: DLF-compatible YAML file
:rtype: str
"""
dlf_yaml_dict = generate_dlf_yaml_dict(in_yaml)
dlf_yaml = yaml.safe_dump(dlf_yaml_dict,
default_flow_style=False,
allow_unicode=True,
sort_keys=False)
return dlf_yaml
| 5,338,585
|
def dice_coefficient(x, target):
"""
Dice Loss: 1 - 2 * (intersection(A, B) / (A^2 + B^2))
:param x:
:param target:
:return:
"""
eps = 1e-5
n_inst = x.size(0)
x = x.reshape(n_inst, -1)
target = target.reshape(n_inst, -1)
intersection = (x * target).sum(dim=1)
union = (x ** 2.0).sum(dim=1) + (target ** 2.0).sum(dim=1) + eps
loss = 1. - (2 * intersection / union)
return loss
| 5,338,586
|
def batch_intersection_union(output, target, nclass):
"""mIoU"""
# inputs are numpy array, output 4D, target 3D
predict = np.argmax(output, axis=1) + 1 # [N,H,W]
target = target.astype(float) + 1 # [N,H,W]
predict = predict.astype(float) * np.array(target > 0).astype(float)
intersection = predict * np.array(predict == target).astype(float)
# areas of intersection and union
# element 0 in intersection occur the main difference from np.bincount. set boundary to -1 is necessary.
area_inter, _ = np.array(np.histogram(intersection, bins=nclass, range=(1, nclass+1)))
area_pred, _ = np.array(np.histogram(predict, bins=nclass, range=(1, nclass+1)))
area_lab, _ = np.array(np.histogram(target, bins=nclass, range=(1, nclass+1)))
area_all = area_pred + area_lab
area_union = area_all - area_inter
return area_inter, area_union
| 5,338,587
|
def plot_pairs_corr(base="CFs_Result",
xlim=[-10,10],
figsize=(8,4),
exclude_folders=["Logs","Plot"],cmap="PiYG"):
"""
Plot ambient noise results of each pair under the base path
Parameters
base: base path for the cross-correlation result
xlim: lag time range for plot in seconds
figsize: figure size for plot
exclude_folders: exclude folders as they are not station pair folders
"""
for item in os.listdir(base):
item_path = os.path.join(base,item)
if os.path.isdir(item_path) and item not in exclude_folders:
sta_pair = item
fig,ax = plt.subplots(1,1,figsize=figsize)
status = plot_corr(ax,sta_pair,base,xlim=xlim,cmap=cmap)
if status == True:
fig.savefig(os.path.join(base,sta_pair,f"{sta_pair}.pdf"))
| 5,338,588
|
def StepFailure(check, step_odict, step):
"""Assert that a step failed.
Args:
step (str) - The step to check for a failure.
Usage:
yield (
TEST
+ api.post_process(StepFailure, 'step-name')
)
"""
check(step_odict[step].status == 'FAILURE')
| 5,338,589
|
def convert(trainset,testset,seed=1,batch_size=128, num_workers=2,pin_memory=True):
"""
Converts DataSet Object to DataLoader
"""
SEED = 1
cuda = torch.cuda.is_available()
torch.manual_seed(SEED)
if cuda:
torch.cuda.manual_seed(SEED)
dataloader_args = dict(shuffle=True, batch_size=128, num_workers=2, pin_memory=pin_memory) if cuda else dict(shuffle=True, batch_size=64)
trainloader = torch.utils.data.DataLoader(trainset, **dataloader_args)
testloader = torch.utils.data.DataLoader(testset, **dataloader_args)
return trainloader, testloader
| 5,338,590
|
def exit():
"""quits the application"""
System.exit(0)
| 5,338,591
|
def test_pipeline_target_encoding_correct():
"""
The correct processing of the categorical target at the Pipeline
is tested. Moreover, target contains nans and has incorrect shape.
Source and predicted labels should not differ.
"""
classification_data = data_with_categorical_target(with_nan=True)
pipeline = Pipeline(PrimaryNode('dt'))
pipeline.fit(classification_data)
predicted = pipeline.predict(classification_data, output_mode='labels')
predicted_labels = predicted.predict
assert predicted_labels[0] == 'blue'
assert predicted_labels[-1] == 'di'
| 5,338,592
|
def build_gradcam(img_path, heatmap, color_map, original_image_colormap, alpha=0.5):
"""
Builds the gradcam.
Args:
img_path (_type_): Image path.
heatmap (_type_): Heatmap.
color_map (_type_): Color map.
original_image_colormap (_type_): Original image colormap.
alpha (float, optional): Alpha. Defaults to 0.5.
Returns:
_type_: Gradcam.
"""
img = keras.preprocessing.image.load_img(img_path, color_mode=original_image_colormap)
img = keras.preprocessing.image.img_to_array(img)
heatmap = np.uint8(255 * heatmap)
jet = cm.get_cmap(color_map)
jet_colors = jet(np.arange(256))[:, :3]
jet_heatmap = jet_colors[heatmap]
jet_heatmap = keras.preprocessing.image.array_to_img(jet_heatmap)
jet_heatmap = jet_heatmap.resize((img.shape[1], img.shape[0]))
jet_heatmap = keras.preprocessing.image.img_to_array(jet_heatmap)
superimposed_img = jet_heatmap * alpha + img
superimposed_img = keras.preprocessing.image.array_to_img(superimposed_img)
return superimposed_img
| 5,338,593
|
def delete_data():
"""
テストで使用したデータの削除
zabbix関連テーブルは試験後に削除されているので不要
"""
# テーブル初期化
RuleType.objects.all().delete()
DataObject.objects.all().delete()
| 5,338,594
|
def sample_joint_comorbidities(age, country):
"""
Default country is China.
For other countries pass value for country from {us, Republic of Korea, japan, Spain, italy, uk, France}
"""
return sample_joint(age, p_comorbidity(country, 'diabetes'), p_comorbidity(country, 'hypertension'))
| 5,338,595
|
def generate_tsdf_3d_ewa_image(depth_image, camera,
camera_extrinsic_matrix=np.eye(4, dtype=np.float32),
field_shape=np.array([128, 128, 128]), default_value=1,
voxel_size=0.004,
array_offset=np.array([-64, -64, 64]),
narrow_band_width_voxels=20, back_cutoff_voxels=np.inf,
gaussian_covariance_scale=1.0):
"""
Generate 3D TSDF field based on elliptical Gaussian averages (EWA) of depth values from the provided image.
Elliptical Gaussian filters are projected from spherical 3D Gaussian functions onto the depth image and convolved
with a circular 2D Gaussain filter before averaging the depth values.
:type depth_image: np.ndarray
:param depth_image: depth image to use
:type camera: calib.camera.DepthCamera
:param camera: camera used to generate the depth image
:param voxel_size: voxel size, in meters
:param array_offset: offset of the TSDF grid from the world origin
:param camera_extrinsic_matrix: matrix representing transformation of the camera (incl. rotation and translation)
[ R | T]
[ 0 | 1]
:param default_value: default initial TSDF value
:param field_shape: shape of the TSDF grid to generate
:param narrow_band_width_voxels: span (in voxels) where signed distance is between -1 and 1
:param back_cutoff_voxels: where to truncate the negative voxel values (currently not supported!)
:param gaussian_covariance_scale: scale of elliptical gaussians (relative to voxel size)
:return: resulting 3D TSDF
"""
# TODO: use back_cutoff_voxels for additional limit on
# "if signed_distance < -narrow_band_half_width" (maybe?)
if default_value == 1:
field = np.ones(field_shape, dtype=np.float32)
elif default_value == 0:
field = np.zeros(field_shape, dtype=np.float32)
else:
field = np.ndarray(field_shape, dtype=np.float32)
field.fill(default_value)
camera_intrinsic_matrix = camera.intrinsics.intrinsic_matrix
depth_ratio = camera.depth_unit_ratio
narrow_band_half_width = narrow_band_width_voxels / 2 * voxel_size # in metric units
w_voxel = 1.0
camera_rotation_matrix = camera_extrinsic_matrix[0:3, 0:3]
covariance_voxel_sphere_world_space = np.eye(3) * (gaussian_covariance_scale * voxel_size)
covariance_camera_space = camera_rotation_matrix.dot(covariance_voxel_sphere_world_space) \
.dot(camera_rotation_matrix.T)
image_space_scaling_matrix = camera.intrinsics.intrinsic_matrix[0:2, 0:2]
squared_radius_threshold = 4.0 * gaussian_covariance_scale * voxel_size
for z_field in range(field_shape[2]):
for y_field in range(field_shape[1]):
for x_field in range(field_shape[0]):
# coordinates deliberately flipped here to maintain consistency between Python & C++ implementations
# Eigen Tensors being used are column-major, whereas here we use row-major layout by default
x_voxel = (z_field + array_offset[0]) * voxel_size
y_voxel = (y_field + array_offset[1]) * voxel_size
z_voxel = (x_field + array_offset[2]) * voxel_size
voxel_world = np.array([[x_voxel, y_voxel, z_voxel, w_voxel]], dtype=np.float32).T
voxel_camera = camera_extrinsic_matrix.dot(voxel_world).flatten()[:3]
if voxel_camera[2] <= near_clipping_distance:
continue
# distance along ray from camera to voxel center
ray_distance = np.linalg.norm(voxel_camera)
# squared distance along optical axis from camera to voxel
z_cam_squared = voxel_camera[2] ** 2
inv_z_cam = 1 / voxel_camera[2]
projection_jacobian = \
np.array([[inv_z_cam, 0, -voxel_camera[0] / z_cam_squared],
[0, inv_z_cam, -voxel_camera[1] / z_cam_squared],
[voxel_camera[0] / ray_distance, voxel_camera[1] / ray_distance,
voxel_camera[2] / ray_distance]])
remapped_covariance = projection_jacobian.dot(covariance_camera_space) \
.dot(projection_jacobian.T)
final_covariance = image_space_scaling_matrix.dot(remapped_covariance[0:2, 0:2]).dot(
image_space_scaling_matrix.T) + np.eye(2)
Q = np.linalg.inv(final_covariance)
gaussian = eg.EllipticalGaussian(eg.ImplicitEllipse(Q=Q, F=squared_radius_threshold))
voxel_image = (camera_intrinsic_matrix.dot(voxel_camera) / voxel_camera[2])[:2]
voxel_image = voxel_image.reshape(-1, 1)
bounds_max = gaussian.ellipse.get_bounds()
result = find_sampling_bounds_helper(bounds_max, depth_image, voxel_image)
if result is None:
continue
else:
(start_x, end_x, start_y, end_y) = result
weights_sum = 0.0
depth_sum = 0
for y_sample in range(start_y, end_y):
for x_sample in range(start_x, end_x):
sample_centered = np.array([[x_sample],
[y_sample]], dtype=np.float64) - voxel_image
dist_sq = gaussian.get_distance_from_center_squared(sample_centered)
if dist_sq > squared_radius_threshold:
continue
weight = gaussian.compute(dist_sq)
surface_depth = depth_image[y_sample, x_sample] * depth_ratio
if surface_depth <= 0.0:
continue
depth_sum += weight * surface_depth
weights_sum += weight
if depth_sum <= 0.0:
continue
final_depth = depth_sum / weights_sum
signed_distance = final_depth - voxel_camera[2]
field[z_field, y_field, x_field] = common.compute_tsdf_value(signed_distance, narrow_band_half_width)
return field
| 5,338,596
|
def locate(name):
"""
Locate the object for the given name
"""
obj = pydoc.locate(name)
if not obj:
obj = globals().get(name, None)
return obj
| 5,338,597
|
def qmap(func, q, eos_marker=EOS):
""" Converts queue to an iterator.
For every `item` in the `q` that is not `eos_marker`, `yield proc(item)`
Takes care of calling `.task_done()` on every item extracted from the queue.
"""
while True:
item = q.get(block=True)
if item is eos_marker:
q.task_done()
break
else:
try:
yield func(item)
finally:
q.task_done()
| 5,338,598
|
def get_mesh_deforms(mesh, deforms, origin, **kwargs):
"""
input : mesh object
deforms forward for mesh?!
origin (from volume)
output: PointSet of mesh vertices (duplicates removed) and list with
deforms (PointSets) of mesh vertices
"""
from stentseg.utils import PointSet
from stentseg.utils.centerline import points_from_mesh
# for vertice in mesh._vertices:
# vertice[-1] = vertice[-1]*-1 # x,y,z with z flipped
# # Turn surfacepoints into a pointset
# pp = PointSet(3, dtype='float32')
# [pp.append(*p) for p in mesh._vertices]
pp = points_from_mesh(mesh, **kwargs) # removes duplicates
# Get deformation for all points
pp_deforms = []
samplePoints = pp - PointSet([o for o in reversed(origin)], dtype='float32')
for deform in deforms:
delta_z = deform.get_field_in_points(samplePoints, 0).reshape(-1, 1)
delta_y = deform.get_field_in_points(samplePoints, 1).reshape(-1, 1)
delta_x = deform.get_field_in_points(samplePoints, 2).reshape(-1, 1)
delta = PointSet( np.concatenate((delta_x, delta_y, delta_z), axis=1) )
pp_deforms.append(delta)
return pp, pp_deforms
| 5,338,599
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.