content
stringlengths
22
815k
id
int64
0
4.91M
def update_metric(task, metric, results): """ Update metric arrording to the task. """ pred = np.array(results[0]) label = np.array(results[1]) loss = np.array(results[2]) if task == 'pretrain': cross_entropy = np.array(results[3]) metric.update(pred, label, cross_entropy) else: metric.update(pred, label)
5,337,100
def hxlvalidate_main(args, stdin=STDIN, stdout=sys.stdout, stderr=sys.stderr): """ Run hxlvalidate with command-line arguments. @param args A list of arguments, excluding the script name @param stdin Standard input for the script @param stdout Standard output for the script @param stderr Standard error for the script """ parser = make_args('Validate a HXL dataset.') parser.add_argument( '-s', '--schema', help='Schema file for validating the HXL dataset (if omitted, use the default core schema).', metavar='schema', default=None ) parser.add_argument( '-a', '--all', help='Include all rows in the output, including those without errors', action='store_const', const=True, default=False ) parser.add_argument( '-e', '--error-level', help='Minimum error level to show (defaults to "info") ', choices=['info', 'warning', 'error'], metavar='info|warning|error', default='info' ) args = parser.parse_args(args) do_common_args(args) with make_input(args, stdin) as input, make_output(args, stdout) as output: class Counter: infos = 0 warnings = 0 errors = 0 def callback(e): """Show a validation error message.""" if e.rule.severity == 'info': if args.error_level != 'info': return Counter.infos += 1 elif e.rule.severity == 'warning': if args.error_level == 'error': return Counter.warnings += 1 else: Counter.errors += 1 message = '[{}] '.format(e.rule.severity) if e.row: if e.rule: message += "{},{}: ".format(e.row.row_number + 1, e.rule.tag_pattern) else: message += "{}: ".format(e.row.row_number + 1) elif e.rule: message += "<dataset>,{}: ".format(e.rule.tag_pattern) else: message += "<dataset>: " if e.value: message += '"{}" '.format(e.value) if e.message: message += e.message message += "\n" output.write(message) output.write("Validating {} with schema {} ...\n".format(args.infile or "<standard input>", args.schema or "<default>")) source = hxl.io.data(input) if args.schema: with make_input(args, None, args.schema) as schema_input: schema = hxl.schema(schema_input, callback=callback) else: schema = hxl.schema(callback=callback) schema.validate(source) if args.error_level == 'info': output.write("{:,} error(s), {:,} warnings, {:,} suggestions\n".format(Counter.errors, Counter.warnings, Counter.infos)) elif args.error_level == 'warning': output.write("{:,} error(s), {:,} warnings\n".format(Counter.errors, Counter.warnings)) else: output.write("{:,} error(s)\n".format(Counter.errors)) if Counter.errors > 0: output.write("Validation failed.\n") return EXIT_ERROR else: output.write("Validation succeeded.\n") return EXIT_OK
5,337,101
def fix_bayes_factor(bayes_factor): """ If one of the bayes factors is 'inf' we get a string instead of a tuple back. This is hacky but fixes that. """ # Maximum cut off for Bayes factor value max_bf = 1e12 if type(bayes_factor) == str: bayes_factor = bayes_factor.split(",") bayes_factor = [min(float(x), max_bf) for x in bayes_factor] bayes_factor = tuple(bayes_factor) bayes_factor = bayes_factor[0] return bayes_factor
5,337,102
def save_model(model_dir, cur_time, model, name): """save a single model""" filename = os.path.join(model_dir, "{}_{}.h5") model.save_weights(filename.format(cur_time, name))
5,337,103
def load_config_vars(target_config, source_config): """Loads all attributes from source config into target config @type target_config: TestRunConfigManager @param target_config: Config to dump variables into @type source_config: TestRunConfigManager @param source_config: The other config @return: True """ # Overwrite all attributes in config with new config for attr in dir(source_config): # skip all private class attrs if attr.startswith('_'): continue val = getattr(source_config, attr) if val is not None: setattr(target_config, attr, val)
5,337,104
def test__eq___dict__nested_data(nested_data): """ Test equality for stub. """ actual = nested_data.copy() assert actual == nested_data
5,337,105
def parse_and_save(local_file_location): """ Iterate through given local xml file line by line and write to default csv location :param local_file_location: str :return: void """ context = eTree.iterparse(local_file_location) for event, element in context: if event == "end" and element.tag == 'Listings': for listing in element: if listing_valid(listing): listing_fields = get_get_fields(listing) write_listing_to_csv(listing_fields)
5,337,106
def fiebelkorn_binning(x_trial, t_trial): """ Given accuracy and time-points, find the time-smoothed average accuracy Parameters ---------- x_trial : np.ndarray Accuracy (Hit: 1, Miss: 0) of each trial t_trial : np.ndarray The time-stamp of each trial Returns ------- x_bin : np.ndarray The average accuracy within each time bin t_bin : np.ndarray The centers of each time bin """ details = behav_details['fiebelkorn'] # Time-stamps of the center of each bin t_bin = np.arange(details['t_start'], details['t_end'] + 1e-10, details['bin_step']) # Accuracy within each bin x_bin = [] for i_bin in range(len(t_bin)): bin_center = t_bin[i_bin] bin_start = bin_center - (details['bin_width'] / 2) bin_end = bin_center + (details['bin_width'] / 2) bin_sel = (bin_start <= t_trial) & (t_trial <= bin_end) x_bin_avg = np.mean(x_trial[bin_sel]) x_bin.append(x_bin_avg) x_bin = np.array(x_bin) return x_bin, t_bin
5,337,107
def get_fastest_while_jump(condition:str, jump_tag:str, verdicts: list) -> list: """Verdicts like ["while", "a", "<", "10"] """ result = [] jumpables = ("===", ) + tuple(INVERT_TABLE.keys()) if len(verdicts) == 2: result.append(F"jump-if {jump_tag} {verdicts[1]} != false") elif verdicts[2] in jumpables: result.append(F"jump-if {jump_tag} " + (" ".join(verdicts[1:]) ) ) else: result.append(create_temporary_xlet(condition, verdicts[1:])) result.append(F"jump-if {jump_tag} {condition} != false") return result
5,337,108
def test_run_analysis(noise_dataset): """Test that run_analysis runs. """ X, y = noise_dataset run_analysis(X, y, [2, 3], [1, 2, 3], [0, 1, 2], 2, 3)
5,337,109
async def test_misc_upgrade_ledger_with_old_auth_rule( docker_setup_and_teardown, pool_handler, wallet_handler, get_default_trustee ): """ set up 1.1.50 sovrin + 1.9.0 node + 1.9.0 plenum + 1.0.0 plugins stable to fail (upgrade to 1.1.52 sovrin) set up 1.9.0~dev1014 node + 1.9.0~dev829 plenum master (no plugins env) (upgrade to 1.9.2~dev1061 node) set up 1.1.135 sovrin + 1.9.0~dev1014 node + 1.9.0~dev829 plenum + 1.0.0~dev59 plugins master (prod env) (upgrade to 1.1.136 sovrin) """ # create extra node new_node = pool_starter( pool_builder( DOCKER_BUILD_CTX_PATH, DOCKER_IMAGE_NAME, 'new_node', NETWORK_NAME, 1 ) )[0] GENESIS_PATH = '/var/lib/indy/sandbox/' # put both genesis files print(new_node.exec_run(['mkdir', GENESIS_PATH], user='indy')) for _, prefix in enumerate(['pool', 'domain']): bits, stat = client.containers.get('node1'). \ get_archive('{}{}_transactions_genesis'.format(GENESIS_PATH, prefix)) assert new_node.put_archive(GENESIS_PATH, bits) new_ip = '10.0.0.6' PORT_1 = '9701' PORT_2 = '9702' new_alias = 'Node5' # initialize assert new_node.exec_run( ['init_indy_node', new_alias, new_ip, PORT_1, new_ip, PORT_2, '000000000000000000000000000node5'], user='indy' ).exit_code == 0 # upgrade plenum_ver = '1.9.2~dev872' plenum_pkg = 'indy-plenum' node_ver = '1.9.2~dev1064' node_pkg = 'indy-node' sovrin_ver = '1.1.143' sovrin_pkg = 'sovrin' plugin_ver = '1.0.2~dev80' assert new_node.exec_run( ['apt', 'update'], user='root' ).exit_code == 0 assert new_node.exec_run( ['apt', 'install', '{}={}'.format(sovrin_pkg, sovrin_ver), '{}={}'.format(node_pkg, node_ver), '{}={}'.format(plenum_pkg, plenum_ver), '{}={}'.format('sovtoken', plugin_ver), '{}={}'.format('sovtokenfees', plugin_ver), '-y'], user='root' ).exit_code == 0 # # node only upgrade # assert new_node.exec_run( # ['apt', 'update'], # user='root' # ).exit_code == 0 # assert new_node.exec_run( # ['apt', 'install', '{}={}'.format(node_pkg, node_ver), '-y'], # user='root' # ).exit_code == 0 # start assert new_node.exec_run( ['systemctl', 'start', 'indy-node'], user='root' ).exit_code == 0 trustee_did, _ = get_default_trustee steward_did, steward_vk = await did.create_and_store_my_did(wallet_handler, '{}') res = await send_nym( pool_handler, wallet_handler, trustee_did, steward_did, steward_vk, 'Steward5', 'STEWARD' ) assert res['op'] == 'REPLY' dests = [ 'Gw6pDLhcBcoQesN72qfotTgFa7cbuqZpkX3Xo6pLhPhv', '8ECVSk179mjsjKRLWiQtssMLgp6EPhWXtaYyStWPSGAb', 'DKVxG2fXXTU8yT5N7hGEbXB3dfdAnYv1JczDUHpmDxya', '4PS3EDQ3dW1tci1Bp6543CfuuebjFrg36kLAUcskGfaA' ] init_time = 1 name = 'upgrade'+'_'+sovrin_ver+'_'+datetime.now(tz=timezone.utc).strftime('%Y-%m-%dT%H:%M:%S%z') action = 'start' _sha256 = hashlib.sha256().hexdigest() _timeout = 5 docker_4_schedule = json.dumps( dict( {dest: datetime.strftime( datetime.now(tz=timezone.utc) + timedelta(minutes=init_time+i*5), '%Y-%m-%dT%H:%M:%S%z' ) for dest, i in zip(dests, range(len(dests)))} ) ) reinstall = False force = False # set rule for cred def adding req = await ledger.build_auth_rule_request(trustee_did, '102', 'ADD', '*', None, '*', json.dumps({ 'constraint_id': 'ROLE', 'role': '2', 'sig_count': 1, 'need_to_be_owner': False, 'metadata': {} })) res1 = json.loads(await ledger.sign_and_submit_request(pool_handler, wallet_handler, trustee_did, req)) print(res1) assert res1['op'] == 'REPLY' # schedule pool upgrade version = '1.9.2.dev1064' # overwrite for upgrade txn (for indy-node only) req = await ledger.build_pool_upgrade_request( trustee_did, name, sovrin_ver, action, _sha256, _timeout, docker_4_schedule, None, reinstall, force, sovrin_pkg ) res2 = json.loads(await ledger.sign_and_submit_request(pool_handler, wallet_handler, trustee_did, req)) print(res2) assert res2['op'] == 'REPLY' # # INDY-2216 # print(client.containers.list()) # # for node in client.containers.list()[1:]: # assert node.exec_run( # ['systemctl', 'stop', 'indy-node'], # user='root' # ).exit_code == 0 # # for node in client.containers.list()[1:]: # assert node.exec_run( # ['apt', 'update'], # user='root' # ).exit_code == 0 # print( # node.exec_run( # ['apt', 'install', # '{}={}'.format(sovrin_pkg, sovrin_ver), # '{}={}'.format(node_pkg, node_ver), # '{}={}'.format(plenum_pkg, plenum_ver), # '{}={}'.format('sovtoken', plugin_ver), # '{}={}'.format('sovtokenfees', plugin_ver), # '-y', # '--allow-change-held-packages'], # user='root' # ) # ) # # for node in client.containers.list()[1:]: # assert node.exec_run( # ['systemctl', 'start', 'indy-node'], # user='root' # ).exit_code == 0 # # ------------------------ # wait until upgrade is finished await asyncio.sleep(4*5*60) # add 5th node res3 = await send_node( pool_handler, wallet_handler, ['VALIDATOR'], steward_did, EXTRA_DESTS[0], new_alias, EXTRA_BLSKEYS[0], EXTRA_BLSKEY_POPS[0], new_ip, int(PORT_2), new_ip, int(PORT_1) ) assert res3['op'] == 'REPLY' await ensure_pool_is_in_sync(nodes_num=5) # set rule for schema adding with off ledger parameters req = await ledger.build_auth_rule_request(trustee_did, '101', 'ADD', '*', None, '*', json.dumps({ 'constraint_id': 'OR', 'auth_constraints': [ { 'constraint_id': 'ROLE', 'role': '0', 'sig_count': 1, 'need_to_be_owner': False, 'off_ledger_signature': False, 'metadata': {} }, { 'constraint_id': 'ROLE', 'role': '*', 'sig_count': 0, 'need_to_be_owner': False, 'off_ledger_signature': True, 'metadata': {} } ] })) res4 = json.loads(await ledger.sign_and_submit_request(pool_handler, wallet_handler, trustee_did, req)) print(res4) assert res4['op'] == 'REPLY' # set rule for revoc reg def adding req = await ledger.build_auth_rule_request(trustee_did, '113', 'ADD', '*', None, '*', json.dumps({ 'constraint_id': 'ROLE', 'role': '2', 'sig_count': 1, 'need_to_be_owner': False, 'metadata': {} })) res5 = json.loads(await ledger.sign_and_submit_request(pool_handler, wallet_handler, trustee_did, req)) print(res5) assert res5['op'] == 'REPLY' await ensure_pool_performs_write_read(pool_handler, wallet_handler, trustee_did, nyms_count=25) await ensure_pool_is_in_sync(nodes_num=5) await ensure_state_root_hashes_are_in_sync(pool_handler, wallet_handler, trustee_did)
5,337,110
def ChangeUserPath(args): """Function to change or create the user repository path. This is where all the user's data is stored.""" global user_datapath if user_datapath: sys.stdout.write("Current user_datapath is: %s\n" % user_datapath) elif savedpath: sys.stdout.write("Saved user_datapath: %s was not found\n" % savedpath) p = input("Please provide a path to place a user repository (s to skip):\n") if p.lower() == "s": return False newpath = os.path.abspath(os.path.join(p, "ABangleData/")) # Handle some potential errors - this may not be completely robust. if not os.path.exists(newpath): try: os.mkdir(newpath) except OSError as exe: if str(exe).startswith("[Errno 13]"): sys.stderr.write("No write privelages for %s.\n" % os.path.abspath(p)) else: sys.stderr.write( "Path %s does not exist. Please provide an existing path to create a repository\n" % os.path.abspath(p) ) return False elif not (os.access(newpath, os.R_OK) and os.access(newpath, os.W_OK)): sys.stderr.write("No read/write privelages for %s.\n" % newpath) return False if not os.path.exists(os.path.join(newpath, "user_fvs")): try: os.mkdir(os.path.join(newpath, "user_fvs")) except OSError as exe: if str(exe).startswith("[Errno 13]"): sys.stderr.write("No write privelages for %s.\n" % os.path.abspath(p)) return False elif not (os.access(newpath, os.R_OK) and os.access(newpath, os.W_OK)): sys.stderr.write("No read/write privelages for %s.\n" % newpath) return False user_datapath = newpath ufname = open(os.path.join(path, "config/userdatapath.txt"), "w") ufname.write(user_datapath) ufname.close() # Create the data store files. CreateStore() return True
5,337,111
def absolute_path_without_git(directory): """ return the absolute path of local git repo """ return os.path.abspath(directory + "/..")
5,337,112
def find_template(fname): """Find absolute path to template. """ for dirname in tuple(settings.TEMPLATE_DIRS) + get_app_template_dirs('templates'): tmpl_path = os.path.join(dirname, fname) # print "TRYING:", tmpl_path if os.path.exists(tmpl_path): return tmpl_path raise IOError(fname + " not found.")
5,337,113
def create_hcp_sets(skeleton, side, directory, batch_size, handedness=0): """ Creates datasets from HCP data IN: skeleton: boolean, True if input is skeleton, False otherwise, side: str, 'right' or 'left' handedness: int, 0 if mixed ind, 1 if right handed, 2 if left handed directory: str, folder in which save the results batch_size: int, size of training batches weights: list, list of weights to apply to skeleton values OUT: root_dir: created directory where results will be stored dataset_train_loader, dataset_val_loader, dataset_test_loader: loaders that will be used for training and testing """ print(torch.cuda.current_device()) date_exp = date.today().strftime("%d%m%y") if skeleton == True: skel = 'skeleton' loss_type = 'CrossEnt' root_dir = directory + side + '_hemi_' + skel + '_' + date_exp + '_' +loss_type + '_' + str(handedness) + '_2classes/' else: skel = 'norm_spm' loss_type = 'L2' root_dir = directory + side + '_hemi_' + skel + '_' + date_exp + '_' +loss_type + '_' + str(handedness) +'/' #print("Parameters : skeleton: {}, side: {}, weights: {}, loss_type: {}".format(skeleton, side, weights, loss_type)) print(root_dir) save_results.create_folder(root_dir) if skeleton: data_dir = '/neurospin/dico/lguillon/skeleton/sts_crop/' #data_dir = '/home_local/lg261972/data/' if handedness == 0: input_data = 'sts_crop_skeleton_' + side tmp = pd.read_pickle(data_dir + input_data +'.pkl') filenames = list(tmp.columns) tmp = torch.from_numpy(np.array([tmp.loc[0].values[k] for k in range(len(tmp))])) else: if handedness == 1: input_data = side + '_hemi_rightH_sts_crop_skeleton' else: input_data = side + '_hemi_leftH_sts_crop_skeleton' print(input_data) tmp = pd.read_pickle(data_dir + input_data +'.pkl') filenames = tmp.Subject.values print(len(filenames)) tmp = torch.from_numpy(np.array([tmp.loc[k].values[0] for k in range(len(tmp))])) else: data_dir = '/neurospin/dico/lguillon/hcp_cs_crop/sts_crop/'+ side + '_hemi/' data_dir = '/home_local/lg261972/data/' if handedness == 0: input_data = 'sts_crop_' + side tmp = pd.read_pickle(data_dir + input_data +'.pkl') filenames = list(tmp.columns) tmp = torch.from_numpy(np.array([tmp.loc[0].values[k] for k in range(len(tmp))])) else: if handedness == 1: input_data = side + '_hemi_rightH_sts_crop' else: input_data = side + '_hemi_leftH_sts_crop' print(input_data) tmp = pd.read_pickle(data_dir + input_data +'.pkl') filenames = tmp.Subject.values print(len(filenames)) tmp = torch.from_numpy(np.array([tmp.loc[k].values[0] for k in range(len(tmp))])) tmp = tmp.to('cuda') hcp_dataset = TensorDataset(filenames=filenames, data_tensor=tmp, skeleton=skeleton, vae=False) # Split training set into train, val and test partition = [0.7, 0.2, 0.1] print([round(i*(len(hcp_dataset))) for i in partition]) train_set, val_set, test_set = torch.utils.data.random_split(hcp_dataset, [round(i*(len(hcp_dataset))) for i in partition]) #train_set = AugDatasetTransformer(train_set) #val_set = AugDatasetTransformer(val_set) #test_set = AugDatasetTransformer(test_set) dataset_train_loader = torch.utils.data.DataLoader(train_set, batch_size=batch_size, shuffle=True, num_workers=0) dataset_val_loader = torch.utils.data.DataLoader(val_set, shuffle=True, num_workers=0) dataset_test_loader = torch.utils.data.DataLoader(test_set, shuffle=True, num_workers=0) print("Dataset generated \n Size of training dataset :", len(dataset_train_loader)) return root_dir, dataset_train_loader, dataset_val_loader, dataset_test_loader
5,337,114
def rtrim(n): """Returns a transform that removes the rightmost n points """ def t(xarr, yarr, *args): return (xarr[:-n], yarr[:-n]) + args t.__name__ = b'rtrim({})'.format(n) return t
5,337,115
def analyze_avg_prof_quality_by_department(dict_cursor, departmentID, campus): """ >>> analyze_avg_prof_quality_by_department(dict_cursor, 'CSC', 'St. George') CSC enthusiasm 3.95 course_atmosphere 3.90 ... (This is not complete) """ return __analyze_data_by_DB_GETMETHOD_WITH_TWO_ARGS(DEPARTMENT_QUALITY_BY_DID, dict_cursor, departmentID, campus)
5,337,116
def audit(environ): """Check a wmt-exe environment. Parameters ---------- environ : dict Environment variables. Returns ------- str Warnings/errors. """ from os import linesep messages = [] for command in ['TAIL', 'CURL', 'BASH']: messages.append(check_is_executable(environ[command])) for path_var in ['PYTHONPATH', 'LD_LIBRARY_PATH', 'PATH', 'CLASSPATH']: for item in environ[path_var].split(pathsep): messages.append(check_is_dir(item)) for path_var in ['SIDL_DLL_PATH']: for item in environ[path_var].split(';'): messages.append(check_is_dir(item)) for module in ['csdms', 'csdms.model']: messages.append(check_is_module(module, env=environ)) for component in find_components(env=environ): module = '.'.join(['csdms.model', component]) messages.append(check_is_module(module, env=environ)) for component in find_components(env=environ): module = '.'.join(['csdms.model', component]) messages.append(check_is_component(module, component, env=environ)) return linesep.join(messages)
5,337,117
def parse_to_json(data_str): """ Convert string to a valid json object """ json_obj_list = [] obj = data_str.split('%') for record in obj: attributes = re.split(',', record) data = json.dumps(attributes) data = re.sub(r':', '":"', data) data = re.sub(r'\[', '{', data) data = re.sub(r']', '}', data) json_obj_list.append(data) return json_obj_list
5,337,118
def plot_ROC( y_test: pd.Series, y_prob: pd.Series, model_name: str, output_folder: str='/mnt/data/figures', save_plot: bool=True): """Plot one ROC curve""" # Instantiate fpr = dict() tpr = dict() roc_auc = dict() # Calculate x and y for ROC-curve fpr, tpr, _ = roc_curve(y_test, y_prob) roc_auc = auc(fpr, tpr) #print (fpr.shape, tpr.shape, roc_auc)# DEBUG #Plot of a ROC curve for a specific class plt.figure() plt.plot(fpr, tpr, color='#336699', label='AUC: {:0.2f})'.format(roc_auc))#lw=2, plt.plot([0, 1], [0, 1], color='grey', linestyle='--')#lw=2, plt.xlim([0.0, 1.0]) plt.ylim([0.0, 1.05]) plt.xlabel('1 - Specificity') plt.ylabel('Sensitivity') #plt.title('Receiver operating characteristic') plt.legend(loc="lower right") if len(output_folder)<1: raise ValueError(f"Invalid output folder given to save ROC plot: {output_folder}.") if save_plot: output_fpath = str(get_output_filepath(output_folder, 'roc', 'roc_{model_name}')) plt.savefig(output_fpath, bbox_inches='tight', dpi=300) logging.info(f"Saving ROC-AUC Model Comparison Plot to:\n{output_fpath}") plt.show()
5,337,119
def calculate_elbo(model, X, recon_X): """ Compute the ELBO of the model with reconstruction error and KL divergence.. """ rec_loss = - np.sum(X * np.log(1e-8 + recon_X) + (1 - X) * np.log(1e-8 + 1 - recon_X), 1) mu, logvar = model.transform(X) kl = -0.5 * np.sum(1 + logvar - mu ** 2 - np.exp(logvar), 1) elbo = np.mean(rec_loss + kl) return elbo
5,337,120
def dice_loss(pred, target): """ Dice Loss based on Dice Similarity Coefficient (DSC) @param pred: torch.tensor, model prediction @param target: torch.tensor, ground truth label """ return 1 - dice_coeff(pred, target)
5,337,121
def parse(transaction): """ Parses Bitcoin Transaction into it's component parts""" byteStringLength = 2 # Version version = struct.unpack('<L', transaction[0:4*byteStringLength].decode("hex"))[0] offset = 4*byteStringLength # print "Version is: " + str(version) # Inputs varLength, inputCount = translationUtil.unformatVarInt(transaction[offset:offset+9*byteStringLength].decode("hex")) # print "Input Count is: " + str(inputCount) offset += varLength*byteStringLength inputs = [] for i in range(0, inputCount): # Hash of input (previous output) transaction inHash = (transaction[offset:offset+64].decode("hex"))[::-1].encode("hex") offset += 64 # Index of reference within input (previous output) transaction inIndex = struct.unpack('<L', transaction[offset:offset+4*byteStringLength].decode("hex"))[0] offset += 4*byteStringLength # Script signature length varLength, scriptLen = translationUtil.unformatVarInt(transaction[offset:offset+9*byteStringLength].decode("hex")) offset += varLength*byteStringLength # Script script = transaction[offset:offset+scriptLen*byteStringLength].decode("hex") offset += scriptLen*byteStringLength # Sequence sequence = struct.unpack('<L', transaction[offset:offset+4*byteStringLength].decode("hex"))[0] offset += 4*byteStringLength # Append # print "Input {0} is: {1}, {2}, {3}, {4}".format(i, inHash, inIndex, script, sequence) inputs.append([inHash, inIndex, script, sequence]) # Outputs varLength, outputCount = translationUtil.unformatVarInt(transaction[offset:offset+9*byteStringLength].decode("hex")) # print "Output Count is: {0}".format(outputCount) offset += varLength*byteStringLength outputs = [] for i in range(0, outputCount): # Index of reference within input (previous output) transaction value = struct.unpack('<Q', transaction[offset:offset+8*byteStringLength].decode("hex"))[0] offset += 8*byteStringLength # Script signature length varLength, scriptLen = translationUtil.unformatVarInt(transaction[offset:offset+9*byteStringLength].decode("hex")) offset += varLength*2 # Script script = transaction[offset:offset+scriptLen*byteStringLength].decode("hex") offset += scriptLen*byteStringLength # Append # print "Output {0} is: {1}, {2}".format(i, value, script) outputs.append([value, script]) # Block Lock Time blockLockTime = struct.unpack('<L', transaction[offset:offset+4*byteStringLength].decode("hex"))[0] # print "Block Lock Time is: " + str(blockLockTime) return (version, inputs, outputs, blockLockTime)
5,337,122
def get_version(): """Get project version """ version_file_path = os.path.join( os.path.dirname(__file__), 'spowtd', 'VERSION.txt') with open(version_file_path) as version_file: version_string = version_file.read().strip() version_string_re = re.compile('[0-9.]+') match = version_string_re.match(version_string) if match is None: raise ValueError( 'version string "{}" does not match regexp "{}"' .format(version_string, version_string_re.pattern)) return match.group(0)
5,337,123
def get_related_items_by_type(parser, token): """Gets list of relations from object identified by a content type. Syntax:: {% get_related_items_by_type [content_type_app_label.content_type_model] for [object] as [varname] [direction] %} """ tokens = token.contents.split() if len(tokens) not in (6, 7): raise template.TemplateSyntaxError( "%r tag requires 6 arguments" % tokens[0] ) if tokens[2] != 'for': raise template.TemplateSyntaxError( "Third argument in %r tag must be 'for'" % tokens[0] ) if tokens[4] != 'as': raise template.TemplateSyntaxError( "Fifth argument in %r tag must be 'as'" % tokens[0] ) direction = 'forward' if len(tokens) == 7: direction = tokens[6] return GetRelatedItemsByTypeNode( name=tokens[1], obj=tokens[3], as_var=tokens[5], direction=direction )
5,337,124
def stitch_valleys(valley_list): """Returns a stitched list of valleys to extract seq from.""" valley_collection = utils.LocusCollection(valley_list, 1) stitched_valley_collection = valley_collection.stitch_collection() loci = [] regions = [] for valley in stitched_valley_collection.get_loci(): if [valley.chr, valley.start, valley.end] not in regions: loci.append(valley) regions.append([valley.chr, valley.start, valley.end]) return loci
5,337,125
def kepoutlier(infile, outfile=None, datacol='SAP_FLUX', nsig=3.0, stepsize=1.0, npoly=3, niter=1, operation='remove', ranges='0,0', plot=False, plotfit=False, overwrite=False, verbose=False, logfile='kepoutlier.log'): """ kepoutlier -- Remove or replace statistical outliers from time series data kepoutlier identifies data outliers relative to piecemeal best-fit polynomials. Outliers are either removed from the output time series or replaced by a noise-treated value defined by the polynomial fit. Identified outliers and the best fit functions are optionally plotted for inspection purposes. Parameters ---------- infile : str The name of a MAST standard format FITS file containing a Kepler light curve within the first data extension. outfile : str The name of the output FITS file. ``outfile`` will be direct copy of infile with either data outliers removed (i.e. the table will have fewer rows) or the outliers will be corrected according to a best-fit function and a noise model. datacol : str The column name containing data stored within extension 1 of infile. This data will be searched for outliers. Typically this name is SAP_FLUX (Simple Aperture Photometry fluxes) or PDCSAP_FLUX (Pre-search Data Conditioning fluxes). nsig : float The sigma clipping threshold. Data deviating from a best fit function by more than the threshold will be either removed or corrected according to the user selection of operation. stepsize : float The data within datacol is unlikely to be well represented by a single polynomial function. stepsize splits the data up into a series of time blocks, each is fit independently by a separate function. The user can provide an informed choice of stepsize after inspecting the data with the kepdraw tool. Units are days. npoly : int The polynomial order of each best-fit function. niter : int If outliers are found in a particular data section, that data will be removed temporarily and the time series fit again. This will be iterated niter times before freezing upon the best available fit. operation : str * ``remove`` throws away outliers. The output data table will smaller or equal in size to the input table. * ``replace`` replaces outliers with a value that is consistent with the best-fit polynomial function and a random component defined by the rms of the data relative to the fit and calculated using the inverse normal cumulative function and a random number generator. ranges : str The user can choose specific time ranges of data on which to work. This could, for example, avoid removing known stellar flares from a dataset. Time ranges are supplied as comma-separated pairs of Barycentric Julian Dates (BJDs). Multiple ranges are separated by a semi-colon. An example containing two time ranges is:: '2455012.48517,2455014.50072;2455022.63487,2455025.08231' If the user wants to correct the entire time series then providing ``ranges = '0,0'`` will tell the task to operate on the whole time series. plot : bool Plot the data and outliers? plotfit : bool Overlay the polynomial fits upon the plot? overwrite : bool Overwrite the output file? verbose : bool Print informative messages and warnings to the shell and logfile? logfile : str Name of the logfile containing error and warning messages. Examples -------- .. code-block:: bash $ kepoutlier kplr002437329-2010355172524_llc.fits --datacol SAP_FLUX --nsig 4 --stepsize 5 --npoly 2 --niter 10 --operation replace --verbose --plot --plotfit .. image:: ../_static/images/api/kepoutlier.png :align: center """ if outfile is None: outfile = infile.split('.')[0] + "-{}.fits".format(__all__[0]) # log the call hashline = '--------------------------------------------------------------' kepmsg.log(logfile, hashline, verbose) call = ('KEPOUTLIER -- ' + ' infile={}'.format(infile) + ' outfile={}'.format(outfile) + ' datacol={}'.format(datacol) + ' nsig={}'.format(nsig) + ' stepsize={}'.format(stepsize) + ' npoly={}'.format(npoly) + ' niter={}'.format(niter) + ' operation={}'.format(operation) + ' ranges={}'.format(ranges) + ' plot={}'.format(plot) + ' plotfit={}'.format(plotfit) + ' overwrite={}'.format(overwrite) + ' verbose={}'.format(verbose) + ' logfile={}'.format(logfile)) kepmsg.log(logfile, call+'\n', verbose) # start time kepmsg.clock('KEPOUTLIER started at', logfile, verbose) # overwrite output file if overwrite: kepio.overwrite(outfile, logfile, verbose) if kepio.fileexists(outfile): errmsg = ('ERROR -- KEPOUTLIER: {} exists. Use overwrite=True' .format(outfile)) kepmsg.err(logfile, errmsg, verbose) # open input file instr = pyfits.open(infile) tstart, tstop, bjdref, cadence = kepio.timekeys(instr, infile, logfile, verbose) try: work = instr[0].header['FILEVER'] cadenom = 1.0 except: cadenom = cadence # fudge non-compliant FITS keywords with no values instr = kepkey.emptykeys(instr, infile, logfile, verbose) # read table structure table = kepio.readfitstab(infile, instr[1], logfile, verbose) # filter input data table try: nanclean = instr[1].header['NANCLEAN'] except: time = kepio.readtimecol(infile, table, logfile, verbose) flux = kepio.readfitscol(infile, table, datacol, logfile, verbose) finite_data_mask = np.isfinite(time) & np.isfinite(flux) & (flux != 0) table = table[finite_data_mask] instr[1].data = table comment = 'NaN cadences removed from data' kepkey.new('NANCLEAN', True, comment, instr[1], outfile, logfile, verbose) # read table columns try: intime = instr[1].data.field('barytime') + 2.4e6 except: intime = kepio.readfitscol(infile, instr[1].data, 'time', logfile, verbose) indata = kepio.readfitscol(infile, instr[1].data, datacol, logfile, verbose) intime = intime + bjdref indata = indata / cadenom # time ranges for region to be corrected t1, t2 = kepio.timeranges(ranges, logfile, verbose) cadencelis = kepstat.filterOnRange(intime, t1, t2) # find limits of each time step tstep1, tstep2 = [], [] work = intime[0] while work < intime[-1]: tstep1.append(work) tstep2.append(np.array([work + stepsize, intime[-1]], dtype='float64').min()) work += stepsize # find cadence limits of each time step cstep1, cstep2 = [], [] work1 = 0 work2 = 0 for i in range(len(intime)): if intime[i] >= intime[work1] and intime[i] < intime[work1] + stepsize: work2 = i else: cstep1.append(work1) cstep2.append(work2) work1 = i work2 = i cstep1.append(work1) cstep2.append(work2) outdata = indata * 1.0 # comment keyword in output file kepkey.history(call, instr[0], outfile, logfile, verbose) # clean up x-axis unit intime0 = (tstart // 100) * 100.0 ptime = intime - intime0 xlab = 'BJD $-$ {}'.format(intime0) # clean up y-axis units pout = indata * 1.0 nrm = len(str(int(pout.max())))-1 pout = pout / 10**nrm ylab = '10$^%d$ e$^-$ s$^{-1}$' % nrm # data limits xmin = ptime.min() xmax = ptime.max() ymin = pout.min() ymax = pout.max() xr = xmax - xmin yr = ymax - ymin ptime = np.insert(ptime, [0], [ptime[0]]) ptime = np.append(ptime, [ptime[-1]]) pout = np.insert(pout, [0], [0.0]) pout = np.append(pout, 0.0) # plot light curve if plot: plt.figure() plt.clf() # plot data ax = plt.axes([0.06, 0.1, 0.93, 0.87]) # force tick labels to be absolute rather than relative plt.gca().xaxis.set_major_formatter(plt.ScalarFormatter(useOffset=False)) plt.gca().yaxis.set_major_formatter(plt.ScalarFormatter(useOffset=False)) plt.plot(ptime, pout, color='#0000ff', linestyle='-', linewidth=1.0) plt.fill(ptime, pout, color='#ffff00', linewidth=0.0, alpha=0.2) plt.xlabel(xlab, {'color' : 'k'}) plt.ylabel(ylab, {'color' : 'k'}) plt.grid() # loop over each time step, fit data, determine rms masterfit = indata * 0.0 mastersigma = np.zeros(len(masterfit)) functype = getattr(kepfunc, 'poly' + str(npoly)) for i in range(len(cstep1)): pinit = [indata[cstep1[i]:cstep2[i]+1].mean()] if npoly > 0: for j in range(npoly): pinit.append(0.0) pinit = np.array(pinit, dtype='float32') try: coeffs, errors, covar, iiter, sigma, chi2, dof, fit, plotx, ploty = \ kepfit.lsqclip(functype, pinit, intime[cstep1[i]:cstep2[i]+1] - intime[cstep1[i]], indata[cstep1[i]:cstep2[i]+1], None, nsig, nsig, niter, logfile, verbose) for j in range(len(coeffs)): masterfit[cstep1[i]: cstep2[i] + 1] += (coeffs[j] * (intime[cstep1[i]:cstep2[i]+1] - intime[cstep1[i]]) ** j) for j in range(cstep1[i], cstep2[i] + 1): mastersigma[j] = sigma if plotfit: plt.plot(plotx + intime[cstep1[i]] - intime0, ploty / 10 ** nrm, 'g', lw=3) except: for j in range(cstep1[i], cstep2[i] + 1): masterfit[j] = indata[j] mastersigma[j] = 1.0e10 message = ('WARNING -- KEPOUTLIER: could not fit range ' + str(intime[cstep1[i]]) + '-' + str(intime[cstep2[i]])) kepmsg.warn(logfile, message, verbose) # reject outliers rejtime, rejdata = [], [] naxis2 = 0 for i in tqdm(range(len(masterfit))): if (abs(indata[i] - masterfit[i]) > nsig * mastersigma[i] and i in cadencelis): rejtime.append(intime[i]) rejdata.append(indata[i]) if operation == 'replace': [rnd] = kepstat.randarray([masterfit[i]], [mastersigma[i]]) table[naxis2] = table[i] table.field(datacol)[naxis2] = rnd naxis2 += 1 else: table[naxis2] = table[i] naxis2 += 1 instr[1].data = table[:naxis2] if plot: rejtime = np.array(rejtime, dtype='float64') rejdata = np.array(rejdata, dtype='float32') plt.plot(rejtime - intime0, rejdata / 10 ** nrm, 'ro') # plot ranges plt.xlim(xmin - xr * 0.01, xmax + xr * 0.01) if ymin >= 0.0: plt.ylim(ymin - yr * 0.01, ymax + yr * 0.01) else: plt.ylim(1.0e-10, ymax + yr * 0.01) # render plot plt.show() # write output file print("Writing output file {}...".format(outfile)) instr.writeto(outfile) # close input file instr.close() kepmsg.clock('KEPOUTLIER completed at', logfile, verbose)
5,337,126
def no_gcab_namespace(name, *args): """ Mock gi.require_version() to raise an ValueError to simulate that GCab bindings are not available. We mock importing the whole 'gi', so that this test can be run even when the 'gi' package is not available. """ if name.startswith("gi"): m = mock.Mock() m.require_version.side_effect = ValueError return m return orig_import(name, *args)
5,337,127
def _start_beamtime( PI_last, saf_num, experimenters=[], wavelength=None, test=False ): """function for start a beamtime""" # check status first active_beamtime = glbl.get('_active_beamtime') if active_beamtime is False: raise xpdAcqError("It appears that end_beamtime may have been " "run.\nIf you wish to start a new beamtime, " "please open a new terminal and proceed " "with the standard starting sequence.") # check directory home_dir = glbl_dict['home'] if not os.path.exists(home_dir): raise RuntimeError( "WARNING: fundamental directory {} does not " "exist.\nPlease contact beamline staff immediately".format( home_dir ) ) f_list = os.listdir(home_dir) if len(f_list) != 0: raise FileExistsError( "There are more than one files/directories:\n" "{}\n" "under {}.\n" "have you run '_end_beamtime()' yet?".format(f_list, home_dir) ) elif len(f_list) == 0: _make_clean_env() print("INFO: initiated requried directories for experiment") bt = Beamtime(PI_last, saf_num, experimenters, wavelength=wavelength) os.chdir(home_dir) print( "INFO: to link newly created beamtime object to xrun, " "please do\n" ">>> xrun.beamtime = bt" ) # copy default Ni24.D to xpdUser/user_analysis src = os.path.join(DATA_DIR, "Ni24.D") dst = os.path.join(glbl_dict["usrAnalysis_dir"], "Ni24.D") shutil.copy(src, dst) _load_beamline_config( glbl["blconfig_path"], test=test ) # pre-populated scan plan for expo in EXPO_LIST: ScanPlan(bt, ct, expo) # inject beamtime state glbl['_active_beamtime'] = True return bt
5,337,128
def logger(module_name: str): """Инициализация и конфигурирования логгера""" logging.basicConfig( level=logging.INFO, format='[%(levelname)s][%(asctime)s] %(name)s: %(message)s' ) return logging.getLogger(module_name)
5,337,129
def cast(op_name: str, expr: Expr, in_xlayers: List[XLayer]) -> XLayer: """ Conversion of Relay 'clip' layer Relay ----- Type: tvm.relay.op.clip Ref: https://docs.tvm.ai/langref/relay_op.html Parameters: - a (relay.Expr) The input tensor. - a_min (float) The clip minimum. - a_max (float) The clip maximum. """ a_min = float(expr.attrs.a_min) a_max = float(expr.attrs.a_max) logger.debug("clip: {}".format(op_name)) X = px.ops.clip(op_name, in_xlayers[0], a_min, a_max, relay_id=[hash(expr)]) logger.debug("-- outshape: {}".format(list(X.shapes))) return X
5,337,130
def __generation_dec(n: int, m: int, x_min: np.array, x_max: np.array) -> np.matrix: """ :param n: num rows in returned matrix :param m: num cols in returned matrix :param x_min: float array, min possible nums in cols of returned matrix :param x_max: float array, max possible nums in cols of returned matrix :return: n times m float matrix with nums in col number i in [x_min[i], x_max[i]) """ assert n > 0, "n should be positive" assert m > 0, "m should be positive" assert x_min.shape == (m, ), "x_min should be of shape (m, )" assert x_max.shape == (m, ), "x_max should be of shape (m, )" return np.random.uniform(low=x_min, high=x_max, size=(n, m))
5,337,131
def create_queue(domains, main_domains): """ 创建首次探测的任务队列 """ for i, d in enumerate(domains): queue.put((d,main_domains[i]))
5,337,132
def apply_tariff(kwh, hour): """Calculates cost of electricity for given hour.""" if 0 <= hour < 7: rate = 12 elif 7 <= hour < 17: rate = 20 elif 17 <= hour < 24: rate = 28 else: raise ValueError(f'Invalid hour: {hour}') return rate * kwh
5,337,133
def _compound_smiles(compound: reaction_pb2.Compound) -> str: """Returns the compound SMILES, if defined.""" for identifier in compound.identifiers: if identifier.type == identifier.SMILES: return identifier.value return ""
5,337,134
def convert_pdf_to_txt(pdf, startpage=None): """Convert a pdf file to text and return the text. This method requires pdftotext to be installed. Parameters ---------- pdf : str path to pdf file startpage : int, optional the first page we try to convert Returns ------- str the converted text """ if startpage is not None: startpageargs = ['-f', str(startpage)] else: startpageargs = [] stdout = subprocess.Popen(["pdftotext", "-q"] + startpageargs + [pdf, "-"], stdout=subprocess.PIPE).communicate()[0] # python2 and 3 if not isinstance(stdout, str): stdout = stdout.decode() return stdout
5,337,135
def cross_correlizer(sample_rate, max_itd, max_frequency): """ Convenience function for creating a CrossCorrelizer with appropriate parameters. sample_rate : the sample rate of the wav files to expect. max_itd : the maximum interaural time difference to test. max_frequency : the highest frequency to test. """ shift_max = int(np.ceil(max_itd * sample_rate)) shift_steps = int(float(sample_rate) / max_frequency / 2.) return CrossCorrelizer(sample_rate, shift_max, shift_steps)
5,337,136
def log_angle_distributions(args, pred_ang, src_seq): """ Logs a histogram of predicted angles to wandb. """ # Remove batch-level masking batch_mask = src_seq.ne(VOCAB.pad_id) pred_ang = pred_ang[batch_mask] inv_ang = inverse_trig_transform(pred_ang.view(1, pred_ang.shape[0], -1)).cpu().detach().numpy() pred_ang = pred_ang.cpu().detach().numpy() wandb.log({"Predicted Angles (sin cos)": wandb.Histogram(np_histogram=np.histogram(pred_ang)), "Predicted Angles (radians)": wandb.Histogram(np_histogram=np.histogram(inv_ang))}, commit=False) for sincos_idx in range(pred_ang.shape[-1]): wandb.log({f"Predicted Angles (sin cos) - {sincos_idx:02}": wandb.Histogram(np_histogram=np.histogram(pred_ang[:,sincos_idx]))}, commit=False) for rad_idx in range(inv_ang.shape[-1]): wandb.log({f"Predicted Angles (radians) - {rad_idx:02}": wandb.Histogram(np_histogram=np.histogram(inv_ang[0,:,rad_idx]))}, commit=False)
5,337,137
def save_token(token: str) -> None: """Store the token in the cache.""" cachedir = Path(platformdirs.user_cache_dir(APP_NAME)) tokencache = cachedir / "token" tokencache.parent.mkdir(exist_ok=True) tokencache.write_text(token)
5,337,138
def batchmark(avatar_list_path: str, getchu_data_path: str, list_output_path: str, avatar_output_path: str) -> None: """ :return: """ years = utils.get_release_years_hot_map(avatar_list_path, getchu_data_path) with open(avatar_list_path) as fin: avatar_path = fin.readlines() avatar_path = list(map(lambda each: each.split(' '), avatar_path)) avatar_path = list(map(lambda each: [each[0], each[-1].strip('\n')], avatar_path)) fz = len(str(len(avatar_path))) new_id = 0 with open(list_output_path, 'w') as fout: for each in avatar_path: file_path = each[-1][3:] id = each[0] img = Image.open(file_path) feat = get_main_tag(img) if len(feat) == 0: continue feat = reduce(lambda x, y: x + ';' + y, feat) save_path = os.path.join(avatar_output_path, str(new_id).zfill(fz)+'.jpg') print('{},{},{},{}'.format(str(new_id).zfill(fz), years[int(id)], feat, save_path)) fout.write('{},{},{},{}\n'.format(str(new_id).zfill(fz), years[int(id)], feat, save_path)) shutil.copyfile(file_path, save_path) new_id += 1
5,337,139
def close_sessions(tsm: SMContext): """ Resets and Closes all the NI-SCOPE instruments sessions from the pinmap file associated with the Semiconductor Module Context. Args: tsm (SMContext): TestStand semiconductor module context """ sessions = tsm.get_all_niscope_sessions() for session in sessions: session.reset() session.close()
5,337,140
def plot_precision_recall_at_k( predicate_df, idx_flip, max_k=100, give_random=True, give_ensemble=True ): """ Plots precision/recall at `k` values for flipped label experiments. Returns an interactive altair visualisation. Make sure it is installed beforehand. Arguments: predicate_df: the dataframe with predicates from `ensemble.get_predicates` idx_flip: array that indicates if labels are wrong max_k: the maximum value for `k` to consider give_random: plot the "at k" statistics for the randomly selected lower bound give_ensemble: plot the "at k" statistics from the reason ensemble """ import altair as alt alt.data_transformers.disable_max_rows() # We combine the results in dataframes plot_df = calculate_precision_recall_at_k( predicate_df=predicate_df, idx_flip=idx_flip, max_k=max_k, give_random=give_random, give_ensemble=give_ensemble, ) # So that we may plot it. return ( alt.Chart(plot_df) .mark_line() .encode(x="k", y="value", color="variable", strokeDash="setting") .interactive() )
5,337,141
def has_permissions( permissions: int, required: List[Union[int, BasePermission]] ) -> bool: """Returns `True` if `permissions` has all required permissions""" if permissions & Administrator().value: return True all_perms = 0 for perm in required: if isinstance(perm, int): all_perms |= perm else: all_perms |= perm.value return permissions & all_perms == all_perms
5,337,142
def input_to_stations(inout_folder,file_in,file_out,forced_stations=[],v=0): """ Convert DiFX/.input into CorrelX/stations.ini. Parameters ---------- inout_folder : str path to folder containing .input file, and where newly created stations.ini file will be placed. file_in : str .input filename. file_out : str stations.ini filename. forced_files : list of str,optional list of str with station names (for overriding values from .input). v : int verbose if 1. Returns ------- None """ clock_line = "" lines_out=[] not_first=0 full_input_file=inout_folder+"/"+file_in full_output_file=inout_folder+"/"+file_out summary_file=inout_folder+"/"+file_out+"_report" if forced_stations!=[]: print(" Forcing station names: "+','.join(list(map(str,set(forced_stations))))) print(" Processing "+full_input_file+" ...") # ### --- Process .input and prepare stations.ini --- with open(full_input_file, 'r') as f: lines = f.readlines() for line in lines: if C_DIFX_INPUT_TELESCOPE_NAME in line: # Station name st_id = get_last_num(line) st_name = get_value_im(line) if forced_stations!=[]: st_name=forced_stations[int(st_id)] if not_first: lines_out.append("") lines_out.append(INI_HF+st_name+INI_HL) lines_out.append(C_INI_ST_ID+INI_SEP+st_id) not_first=1 elif C_DIFX_INPUT_CLOCK_REF_MJD in line: # Station clock epoch clock_ref = get_value_im(line) lines_out.append(C_INI_ST_CLOCK_REF+INI_SEP+clock_ref) elif C_DIFX_INPUT_CLOCK_COEFF in line: # Station clock polynomial [st,order,value]=get_coeff(line) if order=="0": value0=value else: clock_line = C_INI_ST_CLOCK_POLY+INI_SEP+value0+INI_VEC+value lines_out.append(clock_line) write_lines_to_f(lines_out,full_output_file) if v==1: print("File contents:") for ii in lines_out: print(" "+ii) print("Done.")
5,337,143
def mat_to_xyz(mat: NDArrayFloat) -> NDArrayFloat: """Convert a 3D rotation matrix to a sequence of _extrinsic_ rotations. In other words, 3D rotation matrix and returns a sequence of Tait-Bryan angles representing the transformation. Reference: https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix Reference: https://en.wikipedia.org/wiki/Euler_angles#Tait%E2%80%93Bryan_angles_2 Args: mat: (...,3,3) Rotation matrix. Returns: (...,3) Tait-Bryan angles (in radians) formulated for a sequence of extrinsic rotations. """ xyz_rad: NDArrayFloat = Rotation.from_matrix(mat).as_euler("xyz", degrees=False) return xyz_rad
5,337,144
def get_user_gravatar(user_id): """ Gets link to user's gravatar from serializer. Usage:: {% get_user_gravatar user_id %} Examples:: {% get_user_gravatar 1 %} {% get_user_gravatar user.id %} """ try: user = User.objects.get(pk=user_id) except User.DoesNotExist: return static('img/anonymous.png') if not user.email: return static('img/anonymous.png') url_base = 'https://www.gravatar.com/avatar/{}?d=mp' user_hash = hashlib.md5(user.email.lower().encode('utf-8')).hexdigest() return url_base.format(user_hash)
5,337,145
def natural_key(s): """Converts string ``s`` into a tuple that will sort "naturally" (i.e., ``name5`` will come before ``name10`` and ``1`` will come before ``A``). This function is designed to be used as the ``key`` argument to sorting functions. :param s: the str/unicode string to convert. :rtype: tuple """ # Use _nkre to split the input string into a sequence of # digit runs and non-digit runs. Then use _nkconv() to convert # the digit runs into ints and the non-digit runs to lowercase. return tuple(_nkconv(m) for m in _nkre.findall(s))
5,337,146
def read_ValidationSets_Sources(): """Read and return ValidationSets_Sources.csv file""" df = pd.read_csv(data_dir + 'ValidationSets_Sources.csv',header=0, dtype={"Year":"str"}) return df
5,337,147
def igcd_lehmer(a, b): """Computes greatest common divisor of two integers. Euclid's algorithm for the computation of the greatest common divisor gcd(a, b) of two (positive) integers a and b is based on the division identity a = q*b + r, where the quotient q and the remainder r are integers and 0 <= r < b. Then each common divisor of a and b divides r, and it follows that gcd(a, b) == gcd(b, r). The algorithm works by constructing the sequence r0, r1, r2, ..., where r0 = a, r1 = b, and each rn is the remainder from the division of the two preceding elements. In Python, q = a // b and r = a % b are obtained by the floor division and the remainder operations, respectively. These are the most expensive arithmetic operations, especially for large a and b. Lehmer's algorithm is based on the observation that the quotients qn = r(n-1) // rn are in general small integers even when a and b are very large. Hence the quotients can be usually determined from a relatively small number of most significant bits. The efficiency of the algorithm is further enhanced by not computing each long remainder in Euclid's sequence. The remainders are linear combinations of a and b with integer coefficients derived from the quotients. The coefficients can be computed as far as the quotients can be determined from the chosen most significant parts of a and b. Only then a new pair of consecutive remainders is computed and the algorithm starts anew with this pair. References ========== .. [1] https://en.wikipedia.org/wiki/Lehmer%27s_GCD_algorithm """ a, b = abs(as_int(a)), abs(as_int(b)) if a < b: a, b = b, a # The algorithm works by using one or two digit division # whenever possible. The outer loop will replace the # pair (a, b) with a pair of shorter consecutive elements # of the Euclidean gcd sequence until a and b # fit into two Python (long) int digits. nbits = 2*int_info.bits_per_digit while a.bit_length() > nbits and b != 0: # Quotients are mostly small integers that can # be determined from most significant bits. n = a.bit_length() - nbits x, y = int(a >> n), int(b >> n) # most significant bits # Elements of the Euclidean gcd sequence are linear # combinations of a and b with integer coefficients. # Compute the coefficients of consecutive pairs # a' = A*a + B*b, b' = C*a + D*b # using small integer arithmetic as far as possible. A, B, C, D = 1, 0, 0, 1 # initial values while True: # The coefficients alternate in sign while looping. # The inner loop combines two steps to keep track # of the signs. # At this point we have # A > 0, B <= 0, C <= 0, D > 0, # x' = x + B <= x < x" = x + A, # y' = y + C <= y < y" = y + D, # and # x'*N <= a' < x"*N, y'*N <= b' < y"*N, # where N = 2**n. # Now, if y' > 0, and x"//y' and x'//y" agree, # then their common value is equal to q = a'//b'. # In addition, # x'%y" = x' - q*y" < x" - q*y' = x"%y', # and # (x'%y")*N < a'%b' < (x"%y')*N. # On the other hand, we also have x//y == q, # and therefore # x'%y" = x + B - q*(y + D) = x%y + B', # x"%y' = x + A - q*(y + C) = x%y + A', # where # B' = B - q*D < 0, A' = A - q*C > 0. if y + C <= 0: break q = (x + A) // (y + C) # Now x'//y" <= q, and equality holds if # x' - q*y" = (x - q*y) + (B - q*D) >= 0. # This is a minor optimization to avoid division. x_qy, B_qD = x - q*y, B - q*D if x_qy + B_qD < 0: break # Next step in the Euclidean sequence. x, y = y, x_qy A, B, C, D = C, D, A - q*C, B_qD # At this point the signs of the coefficients # change and their roles are interchanged. # A <= 0, B > 0, C > 0, D < 0, # x' = x + A <= x < x" = x + B, # y' = y + D < y < y" = y + C. if y + D <= 0: break q = (x + B) // (y + D) x_qy, A_qC = x - q*y, A - q*C if x_qy + A_qC < 0: break x, y = y, x_qy A, B, C, D = C, D, A_qC, B - q*D # Now the conditions on top of the loop # are again satisfied. # A > 0, B < 0, C < 0, D > 0. if B == 0: # This can only happen when y == 0 in the beginning # and the inner loop does nothing. # Long division is forced. a, b = b, a % b continue # Compute new long arguments using the coefficients. a, b = A*a + B*b, C*a + D*b # Small divisors. Finish with the standard algorithm. while b: a, b = b, a % b return a
5,337,148
def init(start): """Initializes n.""" global n n = start print "Input is", n
5,337,149
def delete_records(connection): """Delete comment record.""" execute_query(connection, delete_comment)
5,337,150
def regular_polygon_area_equivalent_radius(n, radius=1.0): """ Compute equivalent radius to obtain same surface as circle. \theta = \frac{2 \pi}{n} r_{eqs} = \sqrt{\frac{\theta r^2}{\sin{\theta}}} :param radius: circle radius :param n: number of regular polygon segments :return: equivalent regular polynom surface """ theta = 2 * np.pi / n r = np.sqrt((theta * radius ** 2) / np.sin(theta)) return r
5,337,151
def get_dashboard_list(project_id=None, page=1, page_size=25, token_info=None, user=None): """Get a list of dashboards :param project_id: Filter dashboards by project ID :type project_id: str :param user_id: Filter dashboards by user ID :type user_id: str :param limit: Limit the dashboards :type limit: int :param offset: Offset the dashboards :type offset: int :rtype: DashboardList """ query = Dashboard.query project = None if "project_id" in connexion.request.args: project = Project.query.get(connexion.request.args["project_id"]) if project: if not project_has_user(project, user): return "Forbidden", 403 query = query.filter(Dashboard.project_id == project_id) offset = (page * page_size) - page_size total_items = query.count() total_pages = (total_items // page_size) + (1 if total_items % page_size > 0 else 0) dashboards = query.offset(offset).limit(page_size).all() return { "dashboards": [dashboard.to_dict() for dashboard in dashboards], "pagination": { "page": page, "pageSize": page_size, "totalItems": total_items, "totalPages": total_pages, }, }
5,337,152
def test_non_iterable_relations(): """Test that ValueError is raised if link data has a non-iterable object for relations. 1. Create a link parser for a dictionary with non-iterable relations. 2. Try to call parse_relations method. 3. Check that ValueError is raised. 4. Check the error message. """ with pytest.raises(ValueError) as error_info: LinkParser(data={"rel": None}).parse_relations() assert error_info.value.args[0] == "Failed to iterate over relations from link data", ( "Wrong error" )
5,337,153
def get_download_link(url, quality_type=2, get_dlink_only=True, is_merge=False, is_remain=True): """ 获取视频链接 :param url: 源地址 :param quality_type:分辨率类型(1: lowChapters 2: chapters 3: chapters2 4: chapters3 5: chapters4) :param get_dlink_only: 是否仅获取链接 :param is_merge: 是否合并分段视频 :param is_remain: 是否保留临时目录 :return: """ pid = get_pid_by_url(url) if not pid: return target_url = const.API_URL + '?pid=' + pid data = json.loads(get_html(target_url, const.USER_AGENT, const.REFER_URL)) result = list() temp_list = list() if data['ack'] == 'no': return title = data['title'] video = data['video'] valid_chapter_num = video['validChapterNum'] chapters = [x for x in video.keys() if 'hapters' in x] chapters[1:] = sorted(chapters[1:]) if quality_type < 1: quality_type = 1 if quality_type > valid_chapter_num: quality_type = valid_chapter_num video_list = video[chapters[quality_type - 1]] for x in video_list: url = x['url'] if isinstance(url, unicode): url = url.encode('utf8') result.append(url) temp_list.append('file\t' + '\'' + url.split('/')[-1] + '\'') if not result: return save_to_file(result, title + '.txt', const.BASE_VIDEO_DIR) save_to_file(temp_list, const.TMP_FILE, const.TMP_DIR) if not get_dlink_only: ext = r1(r'\.([^.]+)$', result[0]) assert ext in ('flv', 'mp4') download_videos(title + '.%s' % ext, dlinks=result, is_merge=is_merge, is_remain=is_remain)
5,337,154
def create_document(Content=None, Requires=None, Attachments=None, Name=None, VersionName=None, DocumentType=None, DocumentFormat=None, TargetType=None, Tags=None): """ Creates a Systems Manager (SSM) document. An SSM document defines the actions that Systems Manager performs on your managed instances. For more information about SSM documents, including information about supported schemas, features, and syntax, see AWS Systems Manager Documents in the AWS Systems Manager User Guide . See also: AWS API Documentation Exceptions :example: response = client.create_document( Content='string', Requires=[ { 'Name': 'string', 'Version': 'string' }, ], Attachments=[ { 'Key': 'SourceUrl'|'S3FileUrl'|'AttachmentReference', 'Values': [ 'string', ], 'Name': 'string' }, ], Name='string', VersionName='string', DocumentType='Command'|'Policy'|'Automation'|'Session'|'Package'|'ApplicationConfiguration'|'ApplicationConfigurationSchema'|'DeploymentStrategy'|'ChangeCalendar', DocumentFormat='YAML'|'JSON'|'TEXT', TargetType='string', Tags=[ { 'Key': 'string', 'Value': 'string' }, ] ) :type Content: string :param Content: [REQUIRED]\nThe content for the new SSM document in JSON or YAML format. We recommend storing the contents for your new document in an external JSON or YAML file and referencing the file in a command.\nFor examples, see the following topics in the AWS Systems Manager User Guide .\n\nCreate an SSM document (AWS API)\nCreate an SSM document (AWS CLI)\nCreate an SSM document (API)\n\n :type Requires: list :param Requires: A list of SSM documents required by a document. This parameter is used exclusively by AWS AppConfig. When a user creates an AppConfig configuration in an SSM document, the user must also specify a required document for validation purposes. In this case, an ApplicationConfiguration document requires an ApplicationConfigurationSchema document for validation purposes. For more information, see AWS AppConfig in the AWS Systems Manager User Guide .\n\n(dict) --An SSM document required by the current document.\n\nName (string) -- [REQUIRED]The name of the required SSM document. The name can be an Amazon Resource Name (ARN).\n\nVersion (string) --The document version required by the current document.\n\n\n\n\n :type Attachments: list :param Attachments: A list of key and value pairs that describe attachments to a version of a document.\n\n(dict) --Identifying information about a document attachment, including the file name and a key-value pair that identifies the location of an attachment to a document.\n\nKey (string) --The key of a key-value pair that identifies the location of an attachment to a document.\n\nValues (list) --The value of a key-value pair that identifies the location of an attachment to a document. The format for Value depends on the type of key you specify.\n\nFor the key SourceUrl , the value is an S3 bucket location. For example: 'Values': [ 's3://my-bucket/my-folder' ]\nFor the key S3FileUrl , the value is a file in an S3 bucket. For example: 'Values': [ 's3://my-bucket/my-folder/my-file.py' ]\nFor the key AttachmentReference , the value is constructed from the name of another SSM document in your account, a version number of that document, and a file attached to that document version that you want to reuse. For example: 'Values': [ 'MyOtherDocument/3/my-other-file.py' ] However, if the SSM document is shared with you from another account, the full SSM document ARN must be specified instead of the document name only. For example: 'Values': [ 'arn:aws:ssm:us-east-2:111122223333:document/OtherAccountDocument/3/their-file.py' ]\n\n\n(string) --\n\n\nName (string) --The name of the document attachment file.\n\n\n\n\n :type Name: string :param Name: [REQUIRED]\nA name for the Systems Manager document.\n\nWarning\nYou can\'t use the following strings as document name prefixes. These are reserved by AWS for use as document name prefixes:\n\naws-\namazon\namzn\n\n\n :type VersionName: string :param VersionName: An optional field specifying the version of the artifact you are creating with the document. For example, 'Release 12, Update 6'. This value is unique across all versions of a document, and cannot be changed. :type DocumentType: string :param DocumentType: The type of document to create. :type DocumentFormat: string :param DocumentFormat: Specify the document format for the request. The document format can be JSON, YAML, or TEXT. JSON is the default format. :type TargetType: string :param TargetType: Specify a target type to define the kinds of resources the document can run on. For example, to run a document on EC2 instances, specify the following value: /AWS::EC2::Instance. If you specify a value of \'/\' the document can run on all types of resources. If you don\'t specify a value, the document can\'t run on any resources. For a list of valid resource types, see AWS resource and property types reference in the AWS CloudFormation User Guide . :type Tags: list :param Tags: Optional metadata that you assign to a resource. Tags enable you to categorize a resource in different ways, such as by purpose, owner, or environment. For example, you might want to tag an SSM document to identify the types of targets or the environment where it will run. In this case, you could specify the following key name/value pairs:\n\nKey=OS,Value=Windows\nKey=Environment,Value=Production\n\n\nNote\nTo add tags to an existing SSM document, use the AddTagsToResource action.\n\n\n(dict) --Metadata that you assign to your AWS resources. Tags enable you to categorize your resources in different ways, for example, by purpose, owner, or environment. In Systems Manager, you can apply tags to documents, managed instances, maintenance windows, Parameter Store parameters, and patch baselines.\n\nKey (string) -- [REQUIRED]The name of the tag.\n\nValue (string) -- [REQUIRED]The value of the tag.\n\n\n\n\n :rtype: dict ReturnsResponse Syntax { 'DocumentDescription': { 'Sha1': 'string', 'Hash': 'string', 'HashType': 'Sha256'|'Sha1', 'Name': 'string', 'VersionName': 'string', 'Owner': 'string', 'CreatedDate': datetime(2015, 1, 1), 'Status': 'Creating'|'Active'|'Updating'|'Deleting'|'Failed', 'StatusInformation': 'string', 'DocumentVersion': 'string', 'Description': 'string', 'Parameters': [ { 'Name': 'string', 'Type': 'String'|'StringList', 'Description': 'string', 'DefaultValue': 'string' }, ], 'PlatformTypes': [ 'Windows'|'Linux', ], 'DocumentType': 'Command'|'Policy'|'Automation'|'Session'|'Package'|'ApplicationConfiguration'|'ApplicationConfigurationSchema'|'DeploymentStrategy'|'ChangeCalendar', 'SchemaVersion': 'string', 'LatestVersion': 'string', 'DefaultVersion': 'string', 'DocumentFormat': 'YAML'|'JSON'|'TEXT', 'TargetType': 'string', 'Tags': [ { 'Key': 'string', 'Value': 'string' }, ], 'AttachmentsInformation': [ { 'Name': 'string' }, ], 'Requires': [ { 'Name': 'string', 'Version': 'string' }, ] } } Response Structure (dict) -- DocumentDescription (dict) -- Information about the Systems Manager document. Sha1 (string) -- The SHA1 hash of the document, which you can use for verification. Hash (string) -- The Sha256 or Sha1 hash created by the system when the document was created. Note Sha1 hashes have been deprecated. HashType (string) -- The hash type of the document. Valid values include Sha256 or Sha1 . Note Sha1 hashes have been deprecated. Name (string) -- The name of the Systems Manager document. VersionName (string) -- The version of the artifact associated with the document. Owner (string) -- The AWS user account that created the document. CreatedDate (datetime) -- The date when the document was created. Status (string) -- The status of the Systems Manager document. StatusInformation (string) -- A message returned by AWS Systems Manager that explains the Status value. For example, a Failed status might be explained by the StatusInformation message, "The specified S3 bucket does not exist. Verify that the URL of the S3 bucket is correct." DocumentVersion (string) -- The document version. Description (string) -- A description of the document. Parameters (list) -- A description of the parameters for a document. (dict) -- Parameters specified in a System Manager document that run on the server when the command is run. Name (string) -- The name of the parameter. Type (string) -- The type of parameter. The type can be either String or StringList. Description (string) -- A description of what the parameter does, how to use it, the default value, and whether or not the parameter is optional. DefaultValue (string) -- If specified, the default values for the parameters. Parameters without a default value are required. Parameters with a default value are optional. PlatformTypes (list) -- The list of OS platforms compatible with this Systems Manager document. (string) -- DocumentType (string) -- The type of document. SchemaVersion (string) -- The schema version. LatestVersion (string) -- The latest version of the document. DefaultVersion (string) -- The default version. DocumentFormat (string) -- The document format, either JSON or YAML. TargetType (string) -- The target type which defines the kinds of resources the document can run on. For example, /AWS::EC2::Instance. For a list of valid resource types, see AWS resource and property types reference in the AWS CloudFormation User Guide . Tags (list) -- The tags, or metadata, that have been applied to the document. (dict) -- Metadata that you assign to your AWS resources. Tags enable you to categorize your resources in different ways, for example, by purpose, owner, or environment. In Systems Manager, you can apply tags to documents, managed instances, maintenance windows, Parameter Store parameters, and patch baselines. Key (string) -- The name of the tag. Value (string) -- The value of the tag. AttachmentsInformation (list) -- Details about the document attachments, including names, locations, sizes, and so on. (dict) -- An attribute of an attachment, such as the attachment name. Name (string) -- The name of the attachment. Requires (list) -- A list of SSM documents required by a document. For example, an ApplicationConfiguration document requires an ApplicationConfigurationSchema document. (dict) -- An SSM document required by the current document. Name (string) -- The name of the required SSM document. The name can be an Amazon Resource Name (ARN). Version (string) -- The document version required by the current document. Exceptions SSM.Client.exceptions.DocumentAlreadyExists SSM.Client.exceptions.MaxDocumentSizeExceeded SSM.Client.exceptions.InternalServerError SSM.Client.exceptions.InvalidDocumentContent SSM.Client.exceptions.DocumentLimitExceeded SSM.Client.exceptions.InvalidDocumentSchemaVersion :return: { 'DocumentDescription': { 'Sha1': 'string', 'Hash': 'string', 'HashType': 'Sha256'|'Sha1', 'Name': 'string', 'VersionName': 'string', 'Owner': 'string', 'CreatedDate': datetime(2015, 1, 1), 'Status': 'Creating'|'Active'|'Updating'|'Deleting'|'Failed', 'StatusInformation': 'string', 'DocumentVersion': 'string', 'Description': 'string', 'Parameters': [ { 'Name': 'string', 'Type': 'String'|'StringList', 'Description': 'string', 'DefaultValue': 'string' }, ], 'PlatformTypes': [ 'Windows'|'Linux', ], 'DocumentType': 'Command'|'Policy'|'Automation'|'Session'|'Package'|'ApplicationConfiguration'|'ApplicationConfigurationSchema'|'DeploymentStrategy'|'ChangeCalendar', 'SchemaVersion': 'string', 'LatestVersion': 'string', 'DefaultVersion': 'string', 'DocumentFormat': 'YAML'|'JSON'|'TEXT', 'TargetType': 'string', 'Tags': [ { 'Key': 'string', 'Value': 'string' }, ], 'AttachmentsInformation': [ { 'Name': 'string' }, ], 'Requires': [ { 'Name': 'string', 'Version': 'string' }, ] } } :returns: (string) -- """ pass
5,337,155
def set(launcher, command): """Set a launcher""" config.launchers.writable[launcher] = command config.launchers.write()
5,337,156
def _ssim(X, Y, filter, K=(0.01, 0.03)): """ Calculate ssim index for X and Y""" K1, K2 = K # batch, channel, [depth,] height, width = X.shape C1 = K1 ** 2 C2 = K2 ** 2 filter = filter.to(X.device, dtype=X.dtype) mu_x = gaussian_filter(X, filter) mu_y = gaussian_filter(Y, filter) mu_x_sq = mu_x.pow(2) mu_y_sq = mu_y.pow(2) mu_x_mu_y = mu_x * mu_y sigma_x_sq = (gaussian_filter(X * X, filter) - mu_x_sq) sigma_y_sq = (gaussian_filter(Y * Y, filter) - mu_y_sq) sigma_xy = (gaussian_filter(X * Y, filter) - mu_x_mu_y) cs_map = (2 * sigma_xy + C2) / (sigma_x_sq + sigma_y_sq + C2) # set alpha=beta=gamma=1 ssim_map = ((2 * mu_x_mu_y + C1) / (mu_x_sq + mu_y_sq + C1)) ssim_map *= cs_map ssim_per_channel = torch.flatten(ssim_map, 2).mean(-1) cs = torch.flatten(cs_map, 2).mean(-1) return ssim_per_channel, cs
5,337,157
def get_all_messages(notification_queue, **kwargs): """ Get all messages on the specified notification queue Variables: complete_queue => Queue to get the message from Arguments: None Data Block: None Result example: [] # List of messages """ resp_list = [] u = NamedQueue("nq-%s" % notification_queue, host=config.core.redis.persistent.host, port=config.core.redis.persistent.port, db=config.core.redis.persistent.db) while True: msg = u.pop(blocking=False) if msg is None: break resp_list.append(msg) return make_api_response(resp_list)
5,337,158
def ssa_reconstruct(pc, v, k): """ from Vimal Series reconstruction for given SSA decomposition using vector of components :param pc: matrix with the principal components from SSA :param v: matrix of the singular vectors from SSA :param k: vector with the indices of the components to be reconstructed :return: the reconstructed time series """ if np.isscalar(k): k = [k] if pc.ndim != 2: raise ValueError('pc must be a 2-dimensional matrix') if v.ndim != 2: raise ValueError('v must be a 2-dimensional matrix') t, dim = pc.shape n_points = t + (dim - 1) if any(filter(lambda x: dim < x or x < 0, k)): raise ValueError('k must be vector of indexes from range 0..%d' % dim) pc_comp = np.asarray(np.matrix(pc[:, k]) * np.matrix(v[:, k]).T) xr = np.zeros(n_points) times = np.zeros(n_points) # reconstruction loop for i in range(dim): xr[i: t + i] = xr[i: t + i] + pc_comp[:, i] times[i: t + i] = times[i: t + i] + 1 xr = (xr / times) * np.sqrt(t) return xr
5,337,159
def loadImtoolrc(imtoolrc=None): """ Locates, then reads in IMTOOLRC configuration file from system or user-specified location, and returns the dictionary for reference. """ # Find the IMTOOLRC file. Except as noted below, this order # matches what ximtool and ds9 use. _home = os.getenv("HOME") # Look for path to directory where this module is installed # This will be last-resort location for IMTOOLRC that was # distributed with this module. _module_path = os.path.split(__file__)[0] #### # list of file names to look for; ok to have None to skip an entry _name_list = [] # There are two environment variables that might set the location # of imtoolrc: # getenv('imtoolrc') _name_list.append(os.getenv(_default_imtoolrc_env[0])) # getenv('IMTOOLRC') _name_list.append(os.getenv(_default_imtoolrc_env[1])) # ~/.imtoolrc if 'HOME' in os.environ : _name_list.append( os.path.join(os.environ['HOME'], ".imtoolrc") ) _name_list.append(sys.prefix+os.sep+_default_local_imtoolrc) # /usr/local/lib/imtoolrc _name_list.append(_default_system_imtoolrc) # $iraf/dev/imtoolrc - this is not in ds9 or NOAO's ximtool, # but it is in the AURA Unified Release ximtool. This is the # one place on your system where you can be certain that # imtoolrc is really there. Eventually, we will make a patch # to add this to ds9 and to IRAF. if 'iraf' in os.environ : _name_list.append( os.path.join( os.environ['iraf'], 'dev', 'imtoolrc') ) # special to numdisplay: use imtoolrc that is in the package directory. # Basically, this is our way of having a built-in default table. _name_list.append(_module_path+os.sep+'imtoolrc') #### # Search all possible IMTOOLRC names in list # and open the first one found... for name in _name_list: try: if name: _fdin = open(name) break except OSError as error: pass #Parse the file, line by line and populate the dictionary _lines = _fdin.readlines() _fdin.close() # Build a dictionary for the entire IMTOOL table # It will be indexed by configno. fbdict = {} for line in _lines: # Strip out any blanks/tabs, Python 3 compat line = line.strip() # Ignore empty lines if len(line) > 1: _lsp = line.split() # Also, ignore comment lines starting with '#' if _lsp[0] != '#': configno = int(_lsp[0]) _dict = {'nframes':int(_lsp[1]),'width':int(_lsp[2]),'height':int(_lsp[3]),'name':_lsp[5]} fbdict[configno] = _dict return fbdict
5,337,160
def get_theo_joints_pm(W, b, beta): """calculate the theoretical state distribution for a Boltzmann machine """ N = len(b) joints = [] states = get_states(N) for s in states: joints.append(np.exp(-1. * get_energy(W, b, (2. * s - 1.), beta))) joints /= np.sum(joints) return joints
5,337,161
def tail(the_file: BinaryIO, lines_2find: int = 20) -> list[bytes]: """ From http://stackoverflow.com/questions/136168/get-last-n-lines-of-a-file-with-python-similar-to-tail """ lines_found: int = 0 total_bytes_scanned: int = 0 the_file.seek(0, 2) bytes_in_file: int = the_file.tell() while lines_2find + 1 > lines_found and bytes_in_file > total_bytes_scanned: byte_block: int = min(1024, bytes_in_file - total_bytes_scanned) the_file.seek(-(byte_block + total_bytes_scanned), 2) total_bytes_scanned += byte_block lines_found += the_file.read(1024).count(b"\n") the_file.seek(-total_bytes_scanned, 2) line_list: list[bytes] = list(the_file.readlines()) return line_list[-lines_2find:] # We read at least 21 line breaks from the bottom, block by block for speed # 21 to ensure we don't get a half line
5,337,162
def add_device_tag_command(client, args): """ Command to add tag to an existing admin devices entry """ site, concentrator, map = get_site_params() transmitter_id = args.get('transmitter_id') tag = args.get('tag') result = client.add_device_tag(site=site, concentrator=concentrator, map=map, transmitter_id=transmitter_id, tag=tag) if 'status' not in result: return_error('Failed to add device tag') return result['status'], {}, result
5,337,163
def CommaSeparatedFloats(sFloatsCSV): """Read comma-separated floats from string. [sFloatsCSV]: string, contains comma-separated floats. <retval>: list, floats parsed from string. """ return [float(sFloat) for sFloat in sFloatsCSV.replace(" ","").split(",")]
5,337,164
def merge_channels(image_list): """ Merge channels of multiple scalar ANTsImage types into one multi-channel ANTsImage ANTsR function: `mergeChannels` Arguments --------- image_list : list/tuple of ANTsImage types scalar images to merge Returns ------- ANTsImage Example ------- >>> import ants >>> image = ants.image_read(ants.get_ants_data('r16'), 'float') >>> image2 = ants.image_read(ants.get_ants_data('r16'), 'float') >>> image3 = ants.merge_channels([image,image2]) >>> image3.components == 2 """ inpixeltype = image_list[0].pixeltype dimension = image_list[0].dimension components = len(image_list) for image in image_list: if not isinstance(image, iio.ANTsImage): raise ValueError('list may only contain ANTsImage objects') if image.pixeltype != inpixeltype: raise ValueError('all images must have the same pixeltype') libfn = utils.get_lib_fn('mergeChannels%s' % image_list[0]._libsuffix) image_ptr = libfn([image.pointer for image in image_list]) return iio.ANTsImage(pixeltype=inpixeltype, dimension=dimension, components=components, pointer=image_ptr)
5,337,165
def get_var(name: str, options: dict) -> str: """ Returns the value from the given dict with key 'INPUT_$key', or if this does not exist, key 'key'. """ return options.get('INPUT_{}'.format(name)) or options.get(name)
5,337,166
def get_filenames(is_training, data_dir, num_files=1014): """Return filenames for dataset.""" if is_training: return [ os.path.join(data_dir, "train-%05d-of-01014" % i) for i in range(num_files) ] else: return [ os.path.join(data_dir, "validation-%05d-of-00128" % i) for i in range(128) ]
5,337,167
def clear_reaction_role_message(message: discord.Message, emoji: typing.Union[discord.Emoji, str]): """ Removes the message for a reaction role :param message: Message that has the reaction role :param emoji: Emoji for the reaction role """ global guilds, raw_settings combo_id = str(message.channel.id) + str(message.id) guilds[message.guild]["reaction_roles"][message]["emojis"][emoji]["message"] = None if isinstance(emoji, str): raw_settings["guilds"][str(message.guild.id)]["reaction_roles"][combo_id]["emojis"][emoji]["message"] = None else: raw_settings["guilds"][str(message.guild.id)]["reaction_roles"][combo_id]["emojis"][str(emoji.id)]["message"] \ = None save_json(os.path.join("config", "settings.json"), raw_settings)
5,337,168
def create_txt_response(name, txt_records): """ Returns an RRSet containing the 'txt_records' as the result of a DNS query for 'name'. This takes advantage of the fact that an Answer object mostly behaves like an RRset. """ return dns.rrset.from_text_list(name, 60, "IN", "TXT", txt_records)
5,337,169
def test_crps_gaussian_on_test_set(supply_test_set): """Test CRPS on the test set for some dummy values.""" assert np.abs(crps_gaussian(*supply_test_set) - 0.59080610693) < 1e-6
5,337,170
def FatalTimeout(max_run_time): """ContextManager that exits the program if code is run for too long. This implementation is fairly simple, thus multiple timeouts cannot be active at the same time. Additionally, if the timeout has elapsed, it'll trigger a SystemExit exception within the invoking code, ultimately propagating that past itself. If the underlying code tries to suppress the SystemExit, once a minute it'll retrigger SystemExit until control is returned to this manager. Args: max_run_time: a positive integer. """ max_run_time = int(max_run_time) if max_run_time <= 0: raise ValueError("max_run_time must be greater than zero") # pylint: disable=W0613 def kill_us(sig_num, frame): # While this SystemExit *should* crash it's way back up the # stack to our exit handler, we do have live/production code # that uses blanket except statements which could suppress this. # As such, keep scheduling alarms until our exit handler runs. # Note that there is a potential conflict via this code, and # RunCommand's kill_timeout; thus we set the alarming interval # fairly high. signal.alarm(60) raise SystemExit("Timeout occurred- waited %i seconds, failing." % max_run_time) original_handler = signal.signal(signal.SIGALRM, kill_us) remaining_timeout = signal.alarm(max_run_time) if remaining_timeout: # Restore things to the way they were. signal.signal(signal.SIGALRM, original_handler) signal.alarm(remaining_timeout) # ... and now complain. Unfortunately we can't easily detect this # upfront, thus the reset dance above. raise Exception("_Timeout cannot be used in parallel to other alarm " "handling code; failing") try: yield finally: # Cancel the alarm request and restore the original handler. signal.alarm(0) signal.signal(signal.SIGALRM, original_handler)
5,337,171
def bit_xor(*arguments): """ Bitwise XOR function. """ return ast.BitXor(*arguments)
5,337,172
def create_compile_order_file(project_file, compile_order_file, vivado_path=None): """ Create compile file from Vivado project """ print( "Generating Vivado project compile order into %s ..." % abspath(compile_order_file) ) if not exists(dirname(compile_order_file)): makedirs(dirname(compile_order_file)) print("Extracting compile order ...") run_vivado( join(dirname(__file__), "tcl", "extract_compile_order.tcl"), tcl_args=[project_file, compile_order_file], vivado_path=vivado_path, )
5,337,173
def test_uncollectable_incref(testdir): """ Test with the Yagot plugin enabled for uncollectable objects and uncollectable object produced with increased reference count. """ test_code = """ import sys import gc import yagot import test_leaky def test_leak(): l1 = [1, 2] assert gc.is_tracked(l1) assert sys.getrefcount(l1) == 2 test_leaky.incref(l1) assert sys.getrefcount(l1) == 3 """ testdir.makepyfile(test_code) result = testdir.runpytest('--yagot', '--yagot-leaks-only') result.stdout.fnmatch_lines([ '*There were 1 uncollectable object(s) ' 'caused by function test_leak.py::test_leak*', ]) assert result.ret == 1
5,337,174
def remove_r(file_new, file_old, file_save): """从file_new文件中去除file_old中的重复行,并将结果保存在file_save文件中。 注意文件读取时的编码转换。 """ file_dir = _temp_file_path file_new = os.path.join(_temp_file_path, file_new) file_old = os.path.join(_temp_file_path, file_old) file_save = os.path.join(_temp_file_path, file_save) with codecs.open(file_old, 'r', 'utf-8') as f_o: stock_id = re.findall(r'\["(\d+)"', str(f_o.read())) with codecs.open(file_new, 'r', 'utf-8') as f_n: for line in f_n: stock_id_new = re.findall(r'\["(\d+)"', str(line)) if stock_id_new[0] not in stock_id: write_stock_file(line, file_save) else: print('{0}行重复,已去除!\n'.format(stock_id_new[0])) print('任务结束,去重后的数据存入{0}\n'.format(file_save))
5,337,175
def get_chromiumdir(platform, release): """ Args: platform (str): a sys.platform str Returns: str: path to Chromium User Data Directory http://www.chromium.org/user-experience/user-data-directory """ if platform == 'darwin': chromedir = os.path.expanduser( '~/Library/Application Support/Chromium') elif platform.startswith('linux'): chromedir = os.path.expanduser( '~/.config/chromium') elif platform == 'win32': if release == 'XP': chromedir = os.path.expanduser( '~\Local Settings\Application Data\Chromium\User Data') else: chromedir = os.path.expanduser( '~\AppData\Local\Chromium\User Data') else: raise NotImplementedError("Unknown platform: %r" % platform) return [chromedir]
5,337,176
def make_ts_scorer( score_func, greater_is_better=True, needs_proba=False, needs_threshold=False, **kwargs, ): """Make a scorer from a performance metric or loss function. This factory function wraps scoring functions for use in `~sklearn.model_selection.GridSearchCV` and `~sklearn.model_selection.cross_validate`. It takes a score function, such as ``accuracy_score``, ``mean_squared_error``, ``adjusted_rand_index`` or ``average_precision`` and returns a callable that scores an estimator's output. Read more in the :ref:`User Guide <scoring>`. Parameters ---------- score_func : callable, Score function (or loss function) with signature ``score_func(y, y_pred, **kwargs)``. greater_is_better : boolean Whether score_func is a score function (default), meaning high is good, or a loss function, meaning low is good. In the latter case, the scorer object will sign-flip the outcome of the score_func. needs_proba : boolean Not yet implemented, kept only to be compatible with the scikit-learn API needs_threshold : boolean Not yet implemented, kept only to be compatible with the scikit-learn API **kwargs : additional arguments Additional parameters to be passed to score_func. Returns ------- callable scorer object that returns a scalar score """ sign = 1 if greater_is_better else -1 if needs_proba and needs_threshold: raise ValueError("Set either needs_proba or needs_threshold to True," " but not both.") if needs_proba: raise NotImplementedError("Usage/evaluation of prediction probabilities are not yet implemented.") elif needs_threshold: raise NotImplementedError("Evaluation of decision function output is not yet implemented.") else: cls = _TSPredictScorer return cls(score_func, sign, kwargs)
5,337,177
def pfas(x): """Parse a JSON array of PFA expressions as a PFA abstract syntax trees. :type x: open JSON file, JSON string, or Pythonized JSON :param x: PFA expressions in a JSON array :rtype: list of titus.pfaast.Expression :return: parsed expressions as a list of abstract syntax trees """ return jsonToAst.exprs(x)
5,337,178
def overlap(x, y, a, b): """Finds the overlap of (x, y) and (a, b). Assumes an overlap exists, i.e. y >= a and b >= x. """ c = clamp(x, a, b) d = clamp(y, a, b) return c, d
5,337,179
def topological_sort(g): """ Returns a list of vertices in directed acyclic graph g in topological order. """ ready = [] topo = [] in_count = {} for v in g.vertices(): in_count[v] = g.degree(v, outgoing=False) if in_count[v] == 0: # v has no constraints, i.e no incoming edges ready.append(v) while len(ready) > 0: u = ready.pop() topo.append(u) for e in g.incident_edges(u): v = e.opposite(u) in_count[v] -= 1 # v now no longer has u as a constraint if in_count[v] == 0: ready.append(v) return topo
5,337,180
def probability_of_failure_in_any_period(p, n): """ Returns the probability that a failure (of probability p in one period) happens once or more in n periods. The probability of failure in one period is p, so the probability of not failing is (1 - p). So the probability of not failing over n periods is (1 - p) ** n, and the probability of one or more failures in n periods is: 1 - (1 - p) ** n Doing the math without losing precision is tricky. After the binomial expansion, you get (for even n): a = 1 - (1 - choose(n, 1) * p + choose(n, 2) p**2 - p**3 + p**4 ... + choose(n, n) p**n) For odd n, the last term is negative. To avoid precision loss, we don't want to to (1 - p) if p is really tiny, so we'll cancel out the 1 and get: you get: a = choose(n, 1) * p - choose(n, 2) * p**2 ... """ if p < 0.01: # For tiny numbers, (1 - p) can lose precision. # First, compute the result for the integer part n_int = int(n) result = 0.0 sign = 1 for i in range(1, n_int + 1): p_exp_i = p ** i if p_exp_i != 0: result += sign * choose(n_int, i) * (p ** i) sign = -sign # Adjust the result to include the fractional part # What we want is: 1.0 - (1.0 - result) * ((1.0 - p) ** (n - n_int)) # Which gives this when refactored: result = 1.0 - ((1.0 - p) ** (n - n_int)) + result * ((1.0 - p) ** (n - n_int)) return result else: # For high probabilities of loss, the powers of p don't # get small faster than the coefficients get big, and weird # things happen return 1.0 - (1.0 - p) ** n
5,337,181
def stage_1(transformed_token_list): """Checks tokens against ngram to unigram dictionary""" dict_data = pd.read_excel(v.stage_1_input_path, sheet_name=v.input_file_sheet_name) selected_correct_token_data = pd.DataFrame(dict_data, columns=v.stage_1_input_file_columns) transformed_state_1 = [] for sentence in transformed_token_list: for row in selected_correct_token_data.itertuples(): b = list(literal_eval(row.ngram)) ngram = '' for word in b: ngram += (' ' + word) split_bigram = ngram.strip().split(' ') split_sentence = sentence.strip().split(' ') if ngram.strip() in sentence and split_bigram[0] in split_sentence and split_bigram[1] in split_sentence: sentence = sentence.replace(ngram.strip(), row.unigram) transformed_state_1.append(sentence) print_to_file(v.stage_1_output_path, transformed_state_1, v.input_file_columns) return transformed_state_1
5,337,182
def _perform_sanity_checks(config, extra_metadata): """ Method to perform sanity checks on current classification run. :param config: dirbs config instance :param extra_metadata: job extra metadata dict obj :return: bool (true/false) """ curr_conditions = [c.as_dict() for c in config.conditions] curr_operators = [op.as_dict() for op in config.region_config.operators] curr_amnesty = config.amnesty_config.as_dict() if curr_conditions == extra_metadata['conditions'] and \ curr_operators == extra_metadata['operators'] and \ curr_amnesty == extra_metadata['amnesty']: return True return False
5,337,183
def get_key_from_id(id : str) -> str: """ Gets the key from an id. :param id: :return: """ assert id in KEYMAP, "ID not found" return KEYMAP[id]
5,337,184
def CreateFromDict(registration_dict): """Returns the content of the header file.""" template = string.Template("""\ // Copyright 2017 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // This file is autogenerated by // base/android/jni_generator/jni_registration_generator.py // Please do not change its content. #ifndef HEADER_GUARD #define HEADER_GUARD #include <jni.h> #include "base/android/jni_generator/jni_generator_helper.h" #include "base/android/jni_int_wrapper.h" // Step 1: Forward declaration. ${FORWARD_DECLARATIONS} // Step 2: Main dex and non-main dex registration functions. bool RegisterMainDexNatives(JNIEnv* env) { ${REGISTER_MAIN_DEX_NATIVES} return true; } bool RegisterNonMainDexNatives(JNIEnv* env) { ${REGISTER_NON_MAIN_DEX_NATIVES} return true; } #endif // HEADER_GUARD """) if len(registration_dict['FORWARD_DECLARATIONS']) == 0: return '' return jni_generator.WrapOutput(template.substitute(registration_dict))
5,337,185
def cmu_indic(corpus_dir: Pathlike, output_dir: Pathlike): """CMU Indic data preparation.""" prepare_cmu_indic(corpus_dir, output_dir=output_dir)
5,337,186
def controller_add_raw_commands_not_privileged(): """ This view allows a client to send a raw command to a CISCO device in not privileged EXEC mode :return: <dict> result of the operation. check documentation for details """ # TODO: convert print screens to app.logger.debug("message") print("OUTPUT - Entering function: controller_add_raw_commands_not_privileged") # START COUNTING TIME FOR LOGGING PURPOSES start_time = datetime.now() # GETTING CLIENT INFO, FOR LOGGING client_info = get_http_request_info(request) # OUTPUT MESSAGES IN DEBUG MODE- ( WE CAN CREATE A DEBUG MODE FOR LOGGING ) message = "OUTPUT - WEBSERVICE URI: \t'{}'".format(client_info["REQUEST_URI"]) print(message) message = ("OUTPUT - REQUEST_INFORMATION " + str(client_info)) # ----- --- Below line is just to remember us that we could create a debug mode log with messages like these one. # logger_engine.debug(message) print("OUTPUT - starting time: {}".format(start_time)) print(message) print("OUTPUT - Let´s request data from client - CHECK IF DATA IS VALID") data = request_data(client_info) print("OUTPUT - data: ", data) if isinstance(data[0], dict): if data[0]["STATUS"] == "Failure": print("OUTPUT - WE HAVE FOUND AN ERROR......") end_time = datetime.now() total_time = end_time - start_time if data[0]["ERROR"] == "1": print("OUTPUT - ERROR 1. LETS RAISE INVALID_USAGE function amd inform client ") print("OUTPUT - data", data) # CREATE ERROR OBJECT logger_obj = NetworkAutomateLogs(start_time, end_time, total_time, client_info, current_app.logger, user_data_for_logging= None) # CALL METHOD FOR ERROR 1 ( CHECK ERROR-CATALOG.txt for details ) logger_obj.error_1_json_data(data[0]) # CREATE A JSON LOG logger_obj.create_json_log() raise InvalidUsage("Bad request!", status_code=400, payload=logger_obj.error_dict) if data[0]["ERROR"] == "2": print("OUTPUT - ERROR 2. LETS RAISE INVALID_USAGE function amd inform client ") print("OUTPUT - data", data) # CREATE ERROR OBJECT logger_obj = NetworkAutomateLogs(start_time, end_time, total_time, client_info, current_app.logger, user_data_for_logging=data[1]) # CALL METHOD FOR ERROR 2 ( CHECK ERROR-CATALOG.txt for details logger_obj.error_2_fundamental_data_required(data[0]) # CREATE A JSON LOG logger_obj.create_json_log() raise InvalidUsage("Bad request!", status_code=400, payload=logger_obj.error_dict) if data[0]["ERROR"] == "3": print("OUTPUT - ERROR 3. LETS RAISE INVALID_USAGE function amd inform client ") print("OUTPUT - data", data) # CREATE ERROR OBJECT #EXAMPLE HOW DATA SHOULD BE :OUTPUT - \ # data ({'STATUS': 'Failure', 'ERROR': '3', 'TYPE': 'WEBSERVICE DATA FAILURE', 'MESSAGE': # 'Please, send an ip key in your dictionary'}, {'ips': '192.168.7.1'}) ------ ------- is a tuple logger_obj = NetworkAutomateLogs(start_time, end_time, total_time, client_info, current_app.logger, user_data_for_logging=data[1]) # CALL METHOD FOR ERROR 3 ( CHECK ERROR-CATALOG.txt for details logger_obj.error_webservice_data_failure(data[0]) # CREATE A JSON LOG logger_obj.create_json_log() raise InvalidUsage("Bad request!", status_code=400, payload=logger_obj.error_dict) print("=" * 79) print("OUTPUT - data is OK! ") print("OUTPUT - data[0]", data[0]) print("OUTPUT - data[1]", data[1]) print("=" * 79) # CHECK IF IS PORT # MAKE A COPY OF CLIENT DATA for logging purposes user_data_for_logging = dict((k, v) for k, v in data[2].items()) print("OUTPUT - user_data_for_logging:", user_data_for_logging) # LETS REMOVE THE KEYS, VLAN_ID AND VLAN_NAME AND STORE THEIR VALUES ON NEW VARIABLES. Construct a dictionary with # vlan_id an vlan_name send later. there are a case where client doesn 't send to US vlan_name and we # have to process theses kind of behavior command_to_send = data[1].pop("command_to_send") print("OUTPUT - command_list_to_send: {}".format(command_to_send)) # CHECK IF CLIENT WANTS A SPECIFIC PORT FOR CONNECTION to device. SET TO NONE if not if isinstance(data[1], dict): if 'port' in data[1].keys(): port = data[1].pop("port") else: port = None if data[0]["CONNECTIONS"] == "both": # ------- first try a telnet connection --------------- connection = ConnectToDevice(data[1], connection_type="TELNET", port=port) # LETS START CONFIGURING result = connection.configure_add_raw_commands_not_privileged(command_to_send=command_to_send) # result = connection.get_show_run() print("OUTPUT - result of telnet connection: ", result) print("OUTPUT - type(result): ", type(result)) print("OUTPUT - result is a list with one dictionary unstructured data") result_telnet = result end_time = datetime.now() total_time = end_time - start_time # - ------- At these point we should check if telnet was successful --------------------- if isinstance(result_telnet, dict): if result_telnet["STATUS"] == "Failure": del connection print("OUTPUT - Perform a ssh connection because telnet failed ") # -- ------ Perform a ssh connection because telnet failed ---------- connection_new = ConnectToDevice(data[1], connection_type="SSH", port=port) # LETS START CONFIGURING result = connection_new .configure_add_raw_commands_not_privileged(command_to_send=command_to_send) print("OUTPUT - result of ssh connection: ", result) print("OUTPUT - type(result): ", type(result)) print("OUTPUT - result is a list with one dictionary unstructured data") result_ssh = result if isinstance(result, dict): # ---- Check if ssh connection was successful. if not, inform client of both fails and log if result["STATUS"] == "Failure": # Expecting here to appear error 4 -------- HANDLE ERROR # first handle error 4 if result["ERROR"] == "4": # CREATE ERROR OBJECT logger_obj = NetworkAutomateLogs(start_time, end_time, total_time, client_info, current_app.logger, user_data_for_logging=user_data_for_logging) # CALL METHOD FOR BOTH CONNECTION ERROR logger_obj.error_both_connection_fails("Failed connection to device", result_ssh, result_telnet) # CREATE A JSON LOG logger_obj.create_json_log() print("OUTPUT - result: {}".format(result)) raise InvalidUsage("Bad request!", status_code=513, payload=logger_obj.error_dict) # Error 8 FOR NOW THESE ERROR DOESN EXIST YET - LATER WE MAY NEED IT # if result["ERROR"] == "8": # CREATE ERROR OBJECT # logger_obj = NetworkAutomateLogs(start_time, end_time, total_time, client_info, logger_engine, # user_data_for_logging=user_data_for_logging) # CALL METHOD FOR ERROR # logger_obj.error_operation_error(result) # CREATE A JSON LOG # logger_obj.create_json_log() # raise InvalidUsage("Bad request!", status_code=513, payload=logger_obj.error_dict) # ----- ----- connection to device Successful. ------ Build log and return info to client ---- # Connection to device:Successful. OPERATION SUCCESSFUL ------ Build log and return interface config to client ---- # --------- CREATE success LOG ------- logger_obj = NetworkAutomateLogs(start_time, end_time, total_time, client_info, current_app.logger, user_data_for_logging=user_data_for_logging) success_dict = {"STATUS": "Success", "MESSAGE": "Check results. Whenever possible, we will try to output Structured and Unstructured " "data " "captured from de Network Device CLI. We have to be careful on what commands we are " "trying to send, because we are not in privileged mode, and sometimes we are not " "authorized to run them on the device and the output will be something like: e.g.( " " ^\n% Invalid input detected at '^' marker.\n )", "STRUCTURED_RESULT": result[0], "UNSTRUCTURED_RESULT": result[1] } final_dict = {"NETWORK AUTOMATE RESPONSE": success_dict} # CALL METHOD FOR success messages logger_obj.sucess_add_raw_commands(success_dict) # CREATE A JSON LOG logger_obj.create_json_log() # GIVE RESPONSE TO VIEW, for client return final_dict # What differ a ssh or telnet connection is only the device driver used by netmiko, so the first thing we should do, # is to know which connection the client want us to perform. # ------ we will pass these choice to the class "ConnectToDevice". --------------- if data[0]["CONNECTIONS"] == "telnet": connection = ConnectToDevice(data=data[1], connection_type="TELNET", port=port) if data[0]["CONNECTIONS"] == "ssh": connection = ConnectToDevice(data=data[1], connection_type="SSH", port=port) # LETS START CONFIGURING result = connection.configure_add_raw_commands_not_privileged(command_to_send=command_to_send) print("OUTPUT - configure_add_raw_commands ended ....") print("="*79) print("OUTPUT - result: ", result) print("OUTPUT - type(result): ", type(result)) # "OUTPUT - result[0] is a list with one dictionary with structured data and a dictionary with unstructured data") # TIME FOR LOGGING PURPOSES end_time = datetime.now() total_time = end_time - start_time # ---- At these point, if the connection object return an error ( like connection error or other ) we should # report these and inform client if isinstance(result, dict): if result["STATUS"] == "Failure": # if status is failure , we are EXPECTING HERE ERROR 4, 3 or 6 # first Error 4 if result["ERROR"] == "4": # CREATE ERROR OBJECT logger_obj = NetworkAutomateLogs(start_time, end_time, total_time, client_info, current_app.logger, user_data_for_logging=user_data_for_logging) # CALL METHOD FOR ERROR logger_obj. error_netmiko(result) # CREATE A JSON LOG logger_obj.create_json_log() raise InvalidUsage("Bad request!", status_code=512, payload=logger_obj.error_dict) # Connection to device: Successful. OPERATION SUCCESSFUL ------ Build log and return info to client ---- # --------- CREATE success LOG ------- logger_obj = NetworkAutomateLogs(start_time, end_time, total_time, client_info, current_app.logger, user_data_for_logging=user_data_for_logging) success_dict = {"STATUS": "Success", "MESSAGE": "Check results. Whenever possible, we will try to output Structured and Unstructured data" " captured from de Network Device CLI. We have to be careful on what commands we are " "trying to send, because we are not in privileged mode, and sometimes we are not " "authorized to run them on the device and the output will be something like: e.g.( " " ^\n% Invalid input detected at '^' marker.\n )", "STRUCTURED_RESULT": result[0], "UNSTRUCTURED_RESULT": result[1] } final_dict = {"NETWORK AUTOMATE RESPONSE": success_dict} # CALL METHOD FOR success messages logger_obj.sucess_add_raw_commands(success_dict) # CREATE A JSON LOG logger_obj.create_json_log() # GIVE RESPONSE TO Client return final_dict
5,337,187
def static_message_fixture(tmpdir_factory, prefix, message, suffix): """A fixture which provides a static message.""" filename = tmpdir_factory.mktemp('data').join('static_message.txt').strpath file_contents = "{0}{1}{2}".format(prefix, message, suffix) with open(filename, 'w') as f: f.write(file_contents) return filename
5,337,188
def entropy_image(filename,bins=30): """ extracts the renyi entropy of image stored under filename. """ img = cv2.imread(filename,0)/255.0 # gray images p,_ = np.histogram( img, range=[0.0,1.0],bins=bins ) return -np.log(np.dot(p,p)/(np.sum(p)**2.0))
5,337,189
def satisfies_constraint(kel: dict, constraint: dict) -> bool: """Determine whether knowledge graph element satisfies constraint. If the constrained attribute is missing, returns False. """ try: attribute = next( attribute for attribute in kel.get("attributes", None) or [] if attribute["attribute_type_id"] == constraint["id"] ) except StopIteration: return False return constraint.get("not", False) != operator_map[constraint["operator"]]( attribute["value"], constraint["value"], )
5,337,190
def static_unroll(core, input_sequence, initial_state, time_major=True): """Performs a static unroll of an RNN. An *unroll* corresponds to calling the core on each element of the input sequence in a loop, carrying the state through:: state = initial_state for t in range(len(input_sequence)): outputs, state = core(input_sequence[t], state) A *static* unroll replaces a loop with its body repeated multiple times when executed inside :func:`jax.jit`:: state = initial_state outputs0, state = core(input_sequence[0], state) outputs1, state = core(input_sequence[1], state) outputs2, state = core(input_sequence[2], state) ... See :func:`dynamic_unroll` for a loop-preserving unroll function. Args: core: An :class:`RNNCore` to unroll. input_sequence: An arbitrarily nested structure of tensors of shape ``[T, ...]`` if time-major=True, or ``[B, T, ...]`` if time_major=False, where ``T`` is the number of time steps. initial_state: An initial state of the given core. time_major: If True, inputs are expected time-major, otherwise they are expected batch-major. Returns: A tuple with two elements: * **output_sequence** - An arbitrarily nested structure of tensors of shape ``[T, ...]`` if time-major, otherwise ``[B, T, ...]``. * **final_state** - Core state at time step ``T``. """ output_sequence = [] time_axis = 0 if time_major else 1 num_steps = jax.tree_leaves(input_sequence)[0].shape[time_axis] state = initial_state for t in range(num_steps): if time_major: inputs = jax.tree_map(lambda x, _t=t: x[_t], input_sequence) else: inputs = jax.tree_map(lambda x, _t=t: x[:, _t], input_sequence) outputs, state = core(inputs, state) output_sequence.append(outputs) # Stack outputs along the time axis. output_sequence = jax.tree_multimap( lambda *args: jnp.stack(args, axis=time_axis), *output_sequence) return output_sequence, state
5,337,191
def setup_argparse(parser: argparse.ArgumentParser) -> None: """Main entry point for subcommand.""" subparsers = parser.add_subparsers(dest="case_cmd") setup_argparse_list(subparsers.add_parser("list", help="List cases.")) setup_argparse_list_import( subparsers.add_parser("list-import-info", help="List case import infos.") ) setup_argparse_create_import( subparsers.add_parser("create-import-info", help="Create case import infos.") )
5,337,192
def getElementByClass(className: str, fileName: str) -> List[Tuple[int, str]]: """Returns first matching tag from an HTML/XML document""" nonN: List[str] = [] with open(fileName, "r+") as f: html: List[str] = f.readlines() for line in html: nonN.append(line.replace("\n", "")) pattern: str = f'class="{className}"' patternAlt: str = f"class='{className}'" matches: List[Tuple[int, str]] = [] for line in nonN: if pattern in line or patternAlt in line: lineNo = nonN.index(line) + 1 matches.append((int(lineNo), line)) break return matches
5,337,193
def sms_outbound_gateway(): """ SMS Outbound Gateway selection for the messaging framework """ # CRUD Strings s3.crud_strings["msg_sms_outbound_gateway"] = Storage( label_create = T("Create SMS Outbound Gateway"), title_display = T("SMS Outbound Gateway Details"), title_list = T("SMS Outbound Gateways"), title_update = T("Edit SMS Outbound Gateway"), label_list_button = T("List SMS Outbound Gateways"), label_delete_button = T("Delete SMS Outbound Gateway"), msg_record_created = T("SMS Outbound Gateway added"), msg_record_modified = T("SMS Outbound Gateway updated"), msg_record_deleted = T("SMS Outbound Gateway deleted"), msg_list_empty = T("No SMS Outbound Gateways currently registered"), ) return s3_rest_controller()
5,337,194
def write_graph(g, json_file): """Write networkx graph to JSON. :param g: networkx graph :type networkx.Graph :param json_file: path to dump JSON graph :type: string """ d = nx.readwrite.json_graph.node_link_data(g) with open(json_file, 'w') as f: json.dump(d, f) return
5,337,195
def _insert_volume(_migration, volume_number, volume_obj): """Find or create the corresponding volume, and insert the attribute.""" volumes = _migration["volumes"] volume_obj = deepcopy(volume_obj) volume_obj["volume"] = volume_number volumes.append(volume_obj) return volume_obj
5,337,196
def create_vnet(credentials, subscription_id, **kwargs): """ Create a Batch account :param credentials: msrestazure.azure_active_directory.AdalAuthentication :param subscription_id: str :param **resource_group: str :param **virtual_network_name: str :param **subnet_name: str :param **region: str """ network_client = NetworkManagementClient(credentials, subscription_id) resource_group_name = kwargs.get("resource_group", DefaultSettings.resource_group) virtual_network_name = kwargs.get("virtual_network_name", DefaultSettings.virtual_network_name) subnet_name = kwargs.get("subnet_name", DefaultSettings.subnet_name) # get vnet, and subnet if they exist virtual_network = subnet = None try: virtual_network = network_client.virtual_networks.get( resource_group_name=resource_group_name, virtual_network_name=virtual_network_name, ) except CloudError as e: pass if virtual_network: confirmation_prompt = "A virtual network with the same name ({}) was found. \n"\ "Please note that the existing address space and subnets may be changed or destroyed. \n"\ "Do you want to use this virtual network? (y/n): ".format(virtual_network_name) deny_error = AccountSetupError("Virtual network already exists, not recreating.") unrecognized_input_error = AccountSetupError("Input not recognized.") prompt_for_confirmation(confirmation_prompt, deny_error, unrecognized_input_error) virtual_network = network_client.virtual_networks.create_or_update( resource_group_name=resource_group_name, virtual_network_name=kwargs.get("virtual_network_name", DefaultSettings.virtual_network_name), parameters=VirtualNetwork( location=kwargs.get("region", DefaultSettings.region), address_space=AddressSpace(["10.0.0.0/24"]) ) ) virtual_network = virtual_network.result() subnet = network_client.subnets.create_or_update( resource_group_name=resource_group_name, virtual_network_name=virtual_network_name, subnet_name=subnet_name, subnet_parameters=Subnet( address_prefix='10.0.0.0/24' ) ) return subnet.result().id
5,337,197
def to_inorder_iterative(root: dict, allow_none_value: bool = False) -> list: """ Convert a binary tree node to depth-first in-order list (iteratively). """ node = root node_list = [] stack = [] while node or len(stack) > 0: if node: stack.append(node) # push a node into the stack node = node.get('left') else: node = stack[-1] del stack[-1] # pop the node from stack node_value = node.get('value') if node_value is not None or allow_none_value: node_list.append(node_value) node = node.get('right') return node_list
5,337,198
def test_plaintext_and_anoncrypt_raises_error(alice): """Test specifying both plaintext and anoncrypt raises an error.""" with pytest.raises(ValueError): alice.pack({"test": "test"}, plaintext=True, anoncrypt=True)
5,337,199