content
stringlengths
22
815k
id
int64
0
4.91M
def binary_get_bucket_for_node(buckets: List[KBucket], node: Node) -> KBucket: """Given a list of ordered buckets, returns the bucket for a given node.""" bucket_ends = [bucket.end for bucket in buckets] bucket_position = bisect.bisect_left(bucket_ends, node.id) # Prevents edge cases where bisect_left returns an out of range index try: bucket = buckets[bucket_position] assert bucket.start <= node.id <= bucket.end return bucket except (IndexError, AssertionError): raise ValueError("No bucket found for node with id {}".format(node.id))
5,336,000
def trajectory(identifier,x,y,path_save): """ Returns the trajectory of Identifier""" plt.figure() plt.plot(x, y, '.-') plt.plot(x[0], y[0], 'ro') plt.plot(x[-1], y[-1], 'go') plt.grid() plt.xlabel("x meters") plt.ylabel("y meters") plt.legend(['Trayectory','Initial Point','Final Point']) plt.title(f'Trajectory subject {identifier}') plt.savefig(f'{path_save}/trajectory_subject_{identifier}.png') plt.close('all')
5,336,001
def darken(color, factor=0.7): """Return darkened color as a ReportLab RGB color. Take a passed color and returns a Reportlab color that is darker by the factor indicated in the parameter. """ newcol = color_to_reportlab(color) for a in ["red", "green", "blue"]: setattr(newcol, a, factor * getattr(newcol, a)) return newcol
5,336,002
def load_experiments(uuid_list, db_root, dbid): # pragma: io """Generator to load the results of the experiments. Parameters ---------- uuid_list : list(uuid.UUID) List of UUIDs corresponding to experiments to load. db_root : str Root location for data store as requested by the serializer used. dbid : str Name of the data store as requested by the serializer used. Yields ------ meta_data : (str, str, str) The `meta_data` contains a `tuple` of `str` with ``test_case, optimizer, uuid``. data : (:class:`xarray:xarray.Dataset`, :class:`xarray:xarray.Dataset`, :class:`xarray:xarray.Dataset` list(float)) The `data` contains a tuple of ``(perf_ds, time_ds, suggest_ds, sig)``. The `perf_ds` is a :class:`xarray:xarray.Dataset` containing the evaluation results with dimensions ``(ITER, SUGGEST)``, each variable is an objective. The `time_ds` is an :class:`xarray:xarray.Dataset` containing the timing results of the form accepted by `summarize_time`. The coordinates must be compatible with `perf_ds`. The suggest_ds is a :class:`xarray:xarray.Dataset` containing the inputs to the function evaluations. Each variable is a function input. Finally, `sig` contains the `test_case` signature and must be `list(float)`. """ uuids_seen = set() for uuid_ in uuid_list: logger.info(uuid_.hex) # Load perf and timing data perf_ds, meta = XRSerializer.load(db_root, db=dbid, key=cc.EVAL, uuid_=uuid_) time_ds, meta_t = XRSerializer.load(db_root, db=dbid, key=cc.TIME, uuid_=uuid_) assert meta == meta_t, "meta data should between time and eval files" suggest_ds, meta_t = XRSerializer.load(db_root, db=dbid, key=cc.SUGGEST_LOG, uuid_=uuid_) assert meta == meta_t, "meta data should between suggest and eval files" # Get signature to pass out as well _, sig = meta["signature"] logger.info(meta) logger.info(sig) # Build the new indices for combined data, this could be put in function for easier testing eval_args = unserializable_dict(meta["args"]) # Unpack meta-data test_case = SklearnModel.test_case_str( eval_args[CmdArgs.classifier], eval_args[CmdArgs.data], eval_args[CmdArgs.metric] ) optimizer = str_join_safe( ARG_DELIM, (eval_args[CmdArgs.optimizer], eval_args[CmdArgs.opt_rev], eval_args[CmdArgs.rev]) ) args_uuid = eval_args[CmdArgs.uuid] # Check UUID sanity assert isinstance(args_uuid, str) assert args_uuid == uuid_.hex, "UUID meta-data does not match filename" assert args_uuid not in uuids_seen, "uuids being reused between studies" uuids_seen.add(args_uuid) # Return key -> data so this generator can be iterated over in dict like manner meta_data = (test_case, optimizer, args_uuid) data = (perf_ds, time_ds, suggest_ds, sig) yield meta_data, data
5,336,003
def fetch_all_tiles(session): """Fetch all tiles.""" return session.query(Tile).all()
5,336,004
def transaction_update_spents(txs, address): """ Update spent information for list of transactions for a specific address. This method assumes the list of transaction complete and up-to-date. This methods loops through all the transaction and update all transaction outputs for given address, checks if the output is spent and add the spending transaction ID and index number to the outputs. The same list of transactions with updates outputs will be returned :param txs: Complete list of transactions for given address :type txs: list of Transaction :param address: Address string :type address: str :return list of Transaction: """ spend_list = {} for t in txs: for inp in t.inputs: if inp.address == address: spend_list.update({(inp.prev_txid.hex(), inp.output_n_int): t}) address_inputs = list(spend_list.keys()) for t in txs: for to in t.outputs: if to.address != address: continue spent = True if (t.txid, to.output_n) in address_inputs else False txs[txs.index(t)].outputs[to.output_n].spent = spent if spent: spending_tx = spend_list[(t.txid, to.output_n)] spending_index_n = \ [inp for inp in txs[txs.index(spending_tx)].inputs if inp.prev_txid.hex() == t.txid and inp.output_n_int == to.output_n][0].index_n txs[txs.index(t)].outputs[to.output_n].spending_txid = spending_tx.txid txs[txs.index(t)].outputs[to.output_n].spending_index_n = spending_index_n return txs
5,336,005
def count_tilings(n: int) -> int: """Returns the number of unique ways to tile a row of length n >= 1.""" if n < 5: # handle recursive base case return 2**(n - 1) else: # place each tile at end of row and recurse on remainder return (count_tilings(n - 1) + count_tilings(n - 2) + count_tilings(n - 3) + count_tilings(n - 4))
5,336,006
def _meters_per_pixel(zoom, lat=0.0, tilesize=256): """ Return the pixel resolution for a given mercator tile zoom and lattitude. Parameters ---------- zoom: int Mercator zoom level lat: float, optional Latitude in decimal degree (default: 0) tilesize: int, optional Mercator tile size (default: 256). Returns ------- Pixel resolution in meters """ return (math.cos(lat * math.pi / 180.0) * 2 * math.pi * 6378137) / ( tilesize * 2 ** zoom )
5,336,007
def _generate_submit_id(): """Generates a submit id in form of <timestamp>-##### where ##### are 5 random digits.""" timestamp = int(time()) return "%d-%05d" % (timestamp, random.randint(0, 99999))
5,336,008
def draw_from_simplex(ndim: int, nsample: int = 1) -> np.ndarray: """Draw uniformly from an n-dimensional simplex. Args: ndim: Dimensionality of simplex to draw from. nsample: Number of samples to draw from the simplex. Returns: A matrix of shape (nsample, ndim) that sums to one along axis 1. """ if ndim < 1: raise ValueError("Cannot generate less than 1D samples") if nsample < 1: raise ValueError("Generating less than one sample doesn't make sense") rand = np.random.uniform(size=(nsample, ndim-1)) unsorted = np.concatenate( [np.zeros(shape=(nsample,1)), rand, np.ones(shape=(nsample,1))], axis=1 ) sorted = np.sort(unsorted, axis=1) diff_arr = np.concatenate([[-1., 1.], np.zeros(ndim-1)]) diff_mat = np.array([np.roll(diff_arr, i) for i in range(ndim)]).T res = sorted @ diff_mat return res
5,336,009
def py2melProc(function, returnType='None', procName='None', evaluateInputs='True', argTypes='None'): """ This is a work in progress. It generates and sources a mel procedure which wraps the passed python function. Theoretically useful for calling your python scripts in scenarios where Maya does not yet support python callbacks. The function is inspected in order to generate a MEL procedure which relays its arguments on to the python function. However, Python features a very versatile argument structure whereas MEL does not. - python args with default values (keyword args) will be set to their MEL analogue, if it exists. - normal python args without default values default to strings. If 'evaluteInputs' is True, string arguments passed to the MEL wrapper proc will be evaluated as python code before being passed to your wrapped python function. This allows you to include a typecast in the string representing your arg:: myWrapperProc( "Transform('persp')" ); - *args : not yet implemented - **kwargs : not likely to be implemented function This can be a callable python object or the full, dotted path to the callable object as a string. If passed as a python object, the object's __name__ and __module__ attribute must point to a valid module where __name__ can be found. If a string representing the python object is passed, it should include all packages and sub-modules, along with the function's name: 'path.to.myFunc' procName Optional name of the mel procedure to be created. If None, the name of the function will be used. evaluateInputs If True (default), string arguments passed to the generated mel procedure will be evaluated as python code, allowing you to pass a more complex python objects as an argument. For example: In python: >>> import pymel.tools.py2mel as py2mel >>> def myFunc( arg ): ... for x in arg: ... print x >>> py2mel.py2melProc( myFunc, procName='myFuncWrapper', evaluateInputs=True ) Then, in mel:: // execute the mel-to-python wrapper procedure myFuncWrapper("[ 1, 2, 3]"); the string "[1,2,3]" will be converted to a python list [1,2,3] before it is executed by the python function myFunc """ pass
5,336,010
def test_download_tile(): """ Tests the download_tile function. Tests the download_tile function which is supposed to return a base64 string when the as_base64 argument is set to true. We don't actually test the values of this function because it scales down dynamically based on the availability of the tile on this zoom level. It's dependent on the get_zoom_level_image function which has this inherent property. """ res = ARCGIS.download_tile(1, 1, as_base64=True) assert 'bounds' in res assert 'coordinate_pixel' in res assert 'zoom' in res assert 'base64' in res
5,336,011
def manhattanDistance( xy1, xy2 ): """Returns the Manhattan distance between points xy1 and xy2""" return abs( xy1[0] - xy2[0] ) + abs( xy1[1] - xy2[1] )
5,336,012
def delete_policy_command(): """ Command to delete an existing policy in Symantec MC :return: An entry indicating whether the deletion was successful """ uuid = demisto.args()['uuid'] force = demisto.args().get('force') delete_policy_request(uuid, force) return_outputs('Policy deleted successfully', {}, {})
5,336,013
def Linear(in_features, out_features, dropout=0.0, bias=True): """Weight-normalized Linear layer (input: B x T x C)""" m = nn.Linear(in_features, out_features, bias=bias) m.weight.data.normal_(mean=0, std=math.sqrt((1 - dropout) / in_features)) m.bias.data.zero_() return nn.utils.weight_norm(m)
5,336,014
def download_and_save_DistilBERT_model(name): """Download and save DistilBERT transformer model to MODELS_DIR""" print(f"Downloading: {name}") try: os.makedirs(MODELS_DIR + f"{name}") except FileExistsError as _e: pass model = DistilBertForQuestionAnswering.from_pretrained(f"{name}") tokenizer = DistilBertTokenizer.from_pretrained(f"{name}") model.save_pretrained(MODELS_DIR + f"{name}") tokenizer.save_pretrained(MODELS_DIR + f"{name}") return
5,336,015
def homogeneous_type(obj): """ Checks that the type is "homogeneous" in that all lists are of objects of the same type, etc. """ return same_types(obj, obj)
5,336,016
def crosscorr(f, g): """ Takes two vectors of the same size, subtracts the vector elements by their respective means, and passes one over the other to construct a cross-correlation vector """ N = len(f) r = np.array([], dtype=np.single) r1 = np.array([], dtype=np.single) r2 = np.array([], dtype=np.single) f = f - np.mean(f) g = g - np.mean(g) for i in range(N-1): r1i = np.dot(f[N-i-1:N], g[0:i+1]) r2i = np.dot(f[0:N-i-1], g[i+1:N]) r1 = np.append(r1, r1i) r2 = np.append(r2, r2i) r = np.append(r, r1) r = np.append(r, np.dot(f, g)) r = np.append(r, r2) return r/N
5,336,017
def serialize_event(event): """ Serialization of Weboob ``BaseCalendarEvent`` object to schema.org representation. :param event: The Weboob ``BaseCalendarEvent`` object to serialize. """ serialized = { '@type': 'Event', '@context': 'http://schema.org/', 'identifier': event.id, 'about': event.summary, 'description': event.description, } if event.start_date: serialized['startDate'] = event.start_date if event.end_date: serialized['endDate'] = event.end_date if event.start_date and event.end_date: serialized['duration'] = event.end_date - event.start_date location = '' if event.location: location = event.location if event.city: location += ' %s' % (event.city) if location: event.location = { '@type': 'Place', 'description': location.strip() } if event.event_planner: serialized['organizer'] = { '@type': 'Organization', 'name': event.event_planner, } if not empty(event.price): serialized['isAccessibleForFree'] = (event.price == 0) serialized['offers'] = { '@type': 'Offer', 'price': event.price, } if not empty(event.status): if event.status == 'CONFIRMED': serialized['eventStatus'] = 'EventScheduled' elif event.status == 'CANCELLED': serialized['eventStatus'] = 'EventCancelled'
5,336,018
def nearest_neighbors(point_cloud_A, point_cloud_B, alg='knn'): """Find the nearest (Euclidean) neighbor in point_cloud_B (model) for each point in point_cloud_A (data). Parameters ---------- point_cloud_A: Nx3 numpy array data points point_cloud_B: Mx3 numpy array model points Returns ------- distances: (N, ) numpy array Euclidean distances from each point in point_cloud_A to its nearest neighbor in point_cloud_B. indices: (N, ) numpy array indices in point_cloud_B of each point_cloud_A point's nearest neighbor - these are the c_i's """ assert 3 == point_cloud_A.shape[1] and 3 == point_cloud_B.shape[1] n, m = point_cloud_A.shape[0], point_cloud_B.shape[0] assert n == m distances = np.zeros(n) indices = np.zeros(n) if alg == 'knn': nbrs = NearestNeighbors(n_neighbors=1).fit(point_cloud_B) d, ids = nbrs.kneighbors(point_cloud_A) distances = np.array(d).flatten() indices = np.array(ids).flatten() elif alg == 'hungarian': cost = np.zeros((n, m)) for i, j in product(range(n), range(m)): cost[i,j] = norm(point_cloud_A[i,:]- point_cloud_B[j,:]) row_ids, indices = linear_sum_assignment(cost) distances = cost[row_ids, indices] else: raise NotImplementedError('NN algorithm must be one of: {}'.format(NN_ALGS)) return distances, indices
5,336,019
def ialign(images, reference=None, mask=None, fill_value=0.0, fast=True): """ Generator of aligned diffraction images. Parameters ---------- images : iterable Iterable of ndarrays of shape (N,M) reference : `~numpy.ndarray`, shape (M,N) Images in `images` will be aligned onto the `reference` image. If 'reference' is None (default), the first image in the 'images' stream is used as a reference mask : `~numpy.ndarray` or None, optional Mask that evaluates to True on valid pixels. fill_value : float, optional Edges will be filled with `fill_value` after alignment. fast : bool, optional If True (default), alignment is done on images cropped to half (one quarter area). Disable for small images, e.g. 256x256. Yields ------ aligned : `~numpy.ndarray` Aligned image. If `reference` is None, the first aligned image is the reference. See Also -------- skued.align : align a single diffraction pattern onto a reference. """ images = iter(images) if reference is None: reference = next(images) yield reference yield from map( partial( align, reference=reference, mask=mask, fill_value=fill_value, fast=fast ), images, )
5,336,020
def us_1040(form_values, year="latest"): """Compute US federal tax return.""" _dispatch = { "latest": (ots_2020.us_main, data.US_1040_2020), "2020": (ots_2020.us_main, data.US_1040_2020), "2019": (ots_2019.us_main, data.US_1040_2019), "2018": (ots_2018.us_main, data.US_1040_2018), "2017": (ots_2017.us_main, data.US_1040_2017), } main_fn, schema = _dispatch[str(year)] return helpers.parse_ots_return( main_fn(helpers.generate_ots_return(form_values, schema["input_wrap"])), schema["output_wrap"], )
5,336,021
def resolve_service_deps(services: list) -> dict: """loop through services and handle needed_by""" needed_by = {} for name in services: service = services.get(name) needs = service.get_tasks_needed_by() for need, provides in needs.items(): needed_by[need] = list(set(needed_by.get(need, []) + provides)) for name in services: service = services.get(name) service.update_task_requires(needed_by) return services
5,336,022
def rolling_window(series, window_size): """ Transforms an array of series into an array of sliding window arrays. If the passed in series is a matrix, each column will be transformed into an array of sliding windows. """ return np.array( [ series[i : (i + window_size)] for i in range(0, series.shape[0] - window_size + 1) ] )
5,336,023
def reply_published_cb(sender, user, reply, trivial, **kwargs): """Send e-mail when a review reply is published. Listens to the :py:data:`~reviewboard.reviews.signals.reply_published` signal and sends an e-mail if this type of notification is enabled (through ``mail_send_review_mail`` site configuration). """ siteconfig = SiteConfiguration.objects.get_current() if siteconfig.get('mail_send_review_mail') and not trivial: mail_reply(reply, user)
5,336,024
def ldns_key_set_inception(*args): """LDNS buffer.""" return _ldns.ldns_key_set_inception(*args)
5,336,025
def verifyIP(ip): """Verifies an IP is valid""" try: #Split ip and integer-ize it octets = [int(x) for x in ip.split('.')] except ValueError: return False #First verify length if len(octets) != 4: return False #Then check octet values for octet in octets: if octet < 0 or octet > 255: return False return True
5,336,026
def test_fixtures1(testapp): """ This test is not really exhaustive. Still need to inspect the sql log to verify fixture correctness. """ res = testapp.get('/awards').maybe_follow() items = res.json['@graph'] assert len(items) == 1 # Trigger an error item = {'foo': 'bar'} res = testapp.post_json('/awards', item, status=422) assert res.json['errors'] res = testapp.get('/awards').maybe_follow() items = res.json['@graph'] assert len(items) == 1 item = { 'name': 'NIS39339', 'title': 'Grant to make snow', 'project': 'ENCODE', 'rfa': 'ENCODE3', } testapp.post_json('/awards', item, status=201) res = testapp.get('/awards').maybe_follow() items = res.json['@graph'] assert len(items) == 2 # Trigger an error item = {'foo': 'bar'} res = testapp.post_json('/awards', item, status=422) assert res.json['errors'] res = testapp.get('/awards').maybe_follow() items = res.json['@graph'] assert len(items) == 2
5,336,027
def bayesdb_deregister_backend(bdb, backend): """Deregister `backend`, which must have been registered in `bdb`.""" name = backend.name() assert name in bdb.backends assert bdb.backends[name] == backend del bdb.backends[name]
5,336,028
def get_datetime_now(t=None, fmt='%Y_%m%d_%H%M_%S'): """Return timestamp as a string; default: current time, format: YYYY_DDMM_hhmm_ss.""" if t is None: t = datetime.now() return t.strftime(fmt)
5,336,029
def is_firstline(text, medicine, disease): """Detect if first-line treatment is mentioned with a medicine in a sentence. Use keyword matching to detect if the keywords "first-line treatment" or "first-or second-line treatment", medicine name, and disease name all appear in the sentence. Parameters ---------- text : str A single sentence. medicine : str A medicine's name. Returns ------- bool Return True if the medicine and first-line treatment are mentioned in the sentence, False otherwise. Examples -------- Import the module >>> from biomarker_nlp import biomarker_extraction Example >>> txt = "TECENTRIQ, in combination with carboplatin and etoposide, is indicated for the first-line treatment of adult patients with extensive-stage small cell lung cancer (ES-SCLC)." >>> medicine = "TECENTRIQ" >>> disease = "small cell lung cancer" >>> biomarker_extraction.is_firstline(text = txt, medicine = medicine, disease = disease) True """ text = text.lower() medicine = medicine.lower() disease = disease.lower() if medicine in text and ('first-line treatment' in text or 'first-or second-line treatment' in text) and disease in text: return True else: return False
5,336,030
def mac_address(addr): """ mac_address checks that a given string is in MAC address format """ mac = addr.upper() if not _mac_address_pattern.fullmatch(mac): raise TypeError('{} does not match a MAC address pattern'.format(addr)) return mac
5,336,031
def savez(d,filepath): """ Save a sparse matrix to file in numpy binary format. Parameters ---------- d : scipy sparse matrix The sparse matrix to save. filepath : str The filepath to write to. """ np.savez(filepath,row=d.row,col=d.col,data=d.data,shape=d.shape)
5,336,032
def py3_classifiers(): """Fetch the Python 3-related trove classifiers.""" url = 'https://pypi.python.org/pypi?%3Aaction=list_classifiers' response = urllib_request.urlopen(url) try: try: status = response.status except AttributeError: #pragma: no cover status = response.code if status != 200: #pragma: no cover msg = 'PyPI responded with status {0} for {1}'.format(status, url) raise ValueError(msg) data = response.read() finally: response.close() classifiers = data.decode('utf-8').splitlines() base_classifier = 'Programming Language :: Python :: 3' return (classifier for classifier in classifiers if classifier.startswith(base_classifier))
5,336,033
def match(i, j): """ returns (red, white) count, where red is matches in color and position, and white is a match in color but not position """ red_count = 0 # these are counts only of the items that are not exact matches i_colors = [0]*6 j_colors = [0]*6 for i_c, j_c in zip(color_inds(i), color_inds(j)): if i_c == j_c: red_count += 1 else: i_colors[i_c] += 1 j_colors[j_c] += 1 white_count = 0 for i_c, j_c in zip(i_colors, j_colors): white_count += min(i_c, j_c) return (red_count, white_count)
5,336,034
def main(): """Do Something""" form = cgi.FieldStorage() vote = form.getfirst('vote', 'missing') ssw("Content-type: application/json\n") j = do(vote) ssw("\n") # Finalize headers ssw(json.dumps(j))
5,336,035
def time_delay_runge_kutta_4(fun, t_0, y_0, tau, history=None, steps=1000, width=1): """ apply the classic Runge Kutta method to a time delay differential equation f: t, y(t), y(t-tau) -> y'(t) """ width = float(width) if not isinstance(y_0, np.ndarray): y_0 = np.ones((1,), dtype=np.float)*y_0 dim = len(y_0) hist_steps = np.floor(tau/width) assert tau/width == hist_steps, "tau must be a multiple of width" hist_steps = int(hist_steps) if history is None: history = np.zeros((hist_steps, dim), dtype=np.float) else: assert len(history) == hist_steps fun_eval = np.zeros((steps+1+hist_steps, dim), dtype=y_0.dtype) fun_eval[:hist_steps] = history fun_eval[hist_steps] = y_0 for step in range(steps): k_1 = fun(t_0, y_0, fun_eval[step]) k_2 = fun(t_0 + width/2, y_0 + width/2*k_1, fun_eval[step]) k_3 = fun(t_0 + width/2, y_0 + width/2*k_2, fun_eval[step]) k_4 = fun(t_0 + width, y_0 + width*k_3, fun_eval[step]) t_0 += width y_0 += width*(k_1 + 2*k_2 + 2*k_3 + k_4)/6 fun_eval[step+1+hist_steps] = y_0 return fun_eval[hist_steps:]
5,336,036
def Vstagger_to_mass(V): """ V are the data on the top and bottom of a grid box A simple conversion of the V stagger grid to the mass points. Calculates the average of the top and bottom value of a grid box. Looping over all rows reduces the staggered grid to the same dimensions as the mass point. Useful for converting V, XLAT_V, and XLONG_V to masspoints Differnce between XLAT_V and XLAT is usually small, on order of 10e-5 (row_j1+row_j2)/2 = masspoint_inrow Input: Vgrid with size (##+1, ##) Output: V on mass points with size (##,##) """ # create the first column manually to initialize the array with correct dimensions V_masspoint = (V[0,:]+V[1,:])/2. # average of first and second column V_num_rows = int(V.shape[0])-1 # we want one less row than we have # Loop through the rest of the rows # We want the same number of rows as we have columns. # Take the first and second row, average them, and store in first row in V_masspoint for row in range(1,V_num_rows): row_avg = (V[row,:]+V[row+1,:])/2. # Stack those onto the previous for the final array V_masspoint = np.row_stack((V_masspoint,row_avg)) return V_masspoint
5,336,037
def verify_l4_block_pow(hash_type: SupportedHashes, block: "l4_block_model.L4BlockModel", complexity: int = 8) -> bool: """Verify a level 4 block with proof of work scheme Args: hash_type: SupportedHashes enum type block: L4BlockModel with appropriate data to verify Returns: Boolean if valid hashed block with appropriate nonce """ # Get hash for PoW calculation to compare hash_bytes = hash_l4_block(hash_type, block, block.nonce) # Make sure it matches complexity requirements if not check_complexity(hash_bytes, complexity): return False # Check that the hash bytes match what the block provided return hash_bytes == base64.b64decode(block.proof)
5,336,038
def test_add_theme(test_client, sample_data): """ GIVEN a project WHEN add theme is called THEN the theme should appear in the get tasks reponse for that project """ theme_data = { 'project_id': 1, 'title': 'test theme' } r = test_client.post('/add_theme', json=theme_data) r2 = test_client.get(f'/get_tasks?project_id={1}') r2_body = r2.json assert r2_body['themes'][0]['title'] == 'test theme 11'
5,336,039
def Run(): """Does coverage operations based on command line args.""" # TODO: do we want to support combining coverage for a single target try: parser = optparse.OptionParser(usage="usage: %prog --combine-coverage") parser.add_option( "-c", "--combine-coverage", dest="combine_coverage", default=False, action="store_true", help="Combine coverage results stored given " "android root path") parser.add_option( "-t", "--tidy", dest="tidy", default=False, action="store_true", help="Run tidy on all generated html files") options, args = parser.parse_args() coverage = CoverageGenerator(None) if options.combine_coverage: coverage.CombineCoverage() if options.tidy: coverage.TidyOutput() except errors.AbortError: logger.SilentLog("Exiting due to AbortError")
5,336,040
def report_reply(report_id): """ Replies to an existing report. The email reply is constructed and sent to the email address that original reported the phish. Args: report_id - str - The urlsafe key for the EmailReport TODO: Make this a nice template or something """ report = EmailReport.get_by_id(report_id) if not report: return json_error(404, 'Report not found', {}) sender_address = g.user.email() response = EmailResponse.from_dict(request.get_json()) if not response: return json_error(400, 'Invalid JSON', {}) response.responder = sender_address response.subject = render_template_string(response.subject, report=report) response.content = render_template_string(response.content, report=report) try: response_key = response.put() report.responses.append(response_key) if not report.date_responded: report.date_responded = datetime.now() event_key = EventReportResponded( response=response, report=report).put() report.events.append(event_key) report.put() email_provider.send( to=report.reported_by, sender=g.user.email(), subject=response.subject, body=response.content) except Exception as e: return json_error(400, str(e), {}) return jsonify(report.to_dict())
5,336,041
def file_reader(file_name): """file_reader""" data = None with open(file_name, "r") as f: for line in f.readlines(): data = eval(line) f.close() return data
5,336,042
def train(model, data, params): """ Trains a model. Inputs: model (ATISModel): The model to train. data (ATISData): The data that is used to train. params (namespace): Training parameters. """ # Get the training batches. log = Logger(os.path.join(params.logdir, params.logfile), "w") num_train_original = atis_data.num_utterances(data.train_data) log.put("Original number of training utterances:\t" + str(num_train_original)) eval_fn = evaluate_utterance_sample trainbatch_fn = data.get_utterance_batches trainsample_fn = data.get_random_utterances validsample_fn = data.get_all_utterances batch_size = params.batch_size if params.interaction_level: batch_size = 1 eval_fn = evaluate_interaction_sample trainbatch_fn = data.get_interaction_batches trainsample_fn = data.get_random_interactions validsample_fn = data.get_all_interactions maximum_output_length = params.train_maximum_sql_length train_batches = trainbatch_fn(batch_size, max_output_length=maximum_output_length, randomize=not params.deterministic) if params.num_train >= 0: train_batches = train_batches[:params.num_train] training_sample = trainsample_fn(params.train_evaluation_size, max_output_length=maximum_output_length) valid_examples = validsample_fn(data.valid_data, max_output_length=maximum_output_length) num_train_examples = sum([len(batch) for batch in train_batches]) num_steps_per_epoch = len(train_batches) log.put( "Actual number of used training examples:\t" + str(num_train_examples)) log.put("(Shortened by output limit of " + str(maximum_output_length) + ")") log.put("Number of steps per epoch:\t" + str(num_steps_per_epoch)) log.put("Batch size:\t" + str(batch_size)) print( "Kept " + str(num_train_examples) + "/" + str(num_train_original) + " examples") print( "Batch size of " + str(batch_size) + " gives " + str(num_steps_per_epoch) + " steps per epoch") # Keeping track of things during training. epochs = 0 patience = params.initial_patience learning_rate_coefficient = 1. previous_epoch_loss = float('inf') previous_valid_acc = 0. maximum_validation_accuracy = 0. maximum_string_accuracy = 0. countdown = int(patience) if params.scheduler: scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(model.trainer, mode='min', ) keep_training = True step = 0 while keep_training: log.put("Epoch:\t" + str(epochs)) model.set_dropout(params.dropout_amount) model.train() if not params.scheduler: model.set_learning_rate(learning_rate_coefficient * params.initial_learning_rate) # Run a training step. if params.interaction_level: epoch_loss, step = train_epoch_with_interactions( train_batches, params, model, randomize=not params.deterministic, db2id=data.db2id, id2db=data.id2db, step=step) else: epoch_loss = train_epoch_with_utterances( train_batches, model, randomize=not params.deterministic) log.put("train epoch loss:\t" + str(epoch_loss)) model.set_dropout(0.) model.eval() # Run an evaluation step on a sample of the training data. train_eval_results = eval_fn(training_sample, model, params.train_maximum_sql_length, name=os.path.join(params.logdir, "train-eval"), write_results=True, gold_forcing=True, metrics=TRAIN_EVAL_METRICS)[0] for name, value in train_eval_results.items(): log.put( "train final gold-passing " + name.name + ":\t" + "%.2f" % value) # Run an evaluation step on the validation set. valid_eval_results = eval_fn(valid_examples, model, params.eval_maximum_sql_length, name=os.path.join(params.logdir, "valid-eval"), write_results=True, gold_forcing=True, metrics=VALID_EVAL_METRICS)[0] for name, value in valid_eval_results.items(): log.put("valid gold-passing " + name.name + ":\t" + "%.2f" % value) valid_loss = valid_eval_results[Metrics.LOSS] valid_token_accuracy = valid_eval_results[Metrics.TOKEN_ACCURACY] string_accuracy = valid_eval_results[Metrics.STRING_ACCURACY] if params.scheduler: scheduler.step(valid_loss) if valid_loss > previous_epoch_loss and valid_token_accuracy < previous_valid_acc and step >= params.warmup_step: learning_rate_coefficient *= params.learning_rate_ratio log.put( "learning rate coefficient:\t" + str(learning_rate_coefficient)) previous_epoch_loss = valid_loss previous_valid_acc = valid_token_accuracy saved = False if not saved and string_accuracy > maximum_string_accuracy: maximum_string_accuracy = string_accuracy patience = patience * params.patience_ratio countdown = int(patience) last_save_file = os.path.join(params.logdir, "save_" + str(epochs)) model.save(last_save_file) log.put( "maximum string accuracy:\t" + str(maximum_string_accuracy)) log.put("patience:\t" + str(patience)) log.put("save file:\t" + str(last_save_file)) else: log.put("still saved") last_save_file = os.path.join(params.logdir, "save_" + str(epochs)) model.save(last_save_file) if countdown <= 0: keep_training = False countdown -= 1 log.put("countdown:\t" + str(countdown)) log.put("") epochs += 1 log.put("Finished training!") log.close() return last_save_file
5,336,043
def check_auth(username, password): """This function is called to check if a username / password combination is valid. """ account = model.authenticate(username, password) if account is None: return AuthResponse.no_account if not model.hasAssignedBlock(account): return AuthResponse.no_block return AuthResponse.success
5,336,044
def plot_energy_ratio( reference_power_baseline, test_power_baseline, wind_speed_array_baseline, wind_direction_array_baseline, reference_power_controlled, test_power_controlled, wind_speed_array_controlled, wind_direction_array_controlled, wind_direction_bins, confidence=95, n_boostrap=None, wind_direction_bin_p_overlap=None, axarr=None, base_color="b", con_color="g", label_array=None, label_pchange=None, plot_simple=False, plot_ratio_scatter=False, marker_scale=1.0, show_count=True, hide_controlled_case=False, ls="--", marker=None, ): """ Plot the balanced energy ratio. Function mainly acts as a wrapper to call calculate_balanced_energy_ratio and plot the results. Args: reference_power_baseline (np.array): Array of power of reference turbine in baseline conditions. test_power_baseline (np.array): Array of power of test turbine in baseline conditions. wind_speed_array_baseline (np.array): Array of wind speeds in baseline conditions. wind_direction_array_baseline (np.array): Array of wind directions in baseline case. reference_power_controlled (np.array): Array of power of reference turbine in controlled conditions. test_power_controlled (np.array): Array of power of test turbine in controlled conditions. wind_speed_array_controlled (np.array): Array of wind speeds in controlled conditions. wind_direction_array_controlled (np.array): Array of wind directions in controlled case. wind_direction_bins (np.array): Wind directions bins. confidence (int, optional): Confidence level to use. Defaults to 95. n_boostrap (int, optional): Number of bootstaps, if none, _calculate_bootstrap_iterations is called. Defaults to None. wind_direction_bin_p_overlap (np.array, optional): Percentage overlap between wind direction bin. Defaults to None. axarr ([axes], optional): list of axes to plot to. Defaults to None. base_color (str, optional): Color of baseline in plots. Defaults to 'b'. con_color (str, optional): Color of controlled in plots. Defaults to 'g'. label_array ([str], optional): List of labels to apply Defaults to None. label_pchange ([type], optional): Label for percentage change. Defaults to None. plot_simple (bool, optional): Plot only the ratio, no confidence. Defaults to False. plot_ratio_scatter (bool, optional): Include scatter plot of values, sized to indicate counts. Defaults to False. marker_scale ([type], optional): Marker scale. Defaults to 1. show_count (bool, optional): Show the counts as scatter plot hide_controlled_case (bool, optional): Option to hide the control case from plots, for demonstration """ if axarr is None: fig, axarr = plt.subplots(3, 1, sharex=True) if label_array is None: label_array = ["Baseline", "Controlled"] if label_pchange is None: label_pchange = "Energy Gain" ( ratio_array_base, lower_ratio_array_base, upper_ratio_array_base, counts_ratio_array_base, ratio_array_con, lower_ratio_array_con, upper_ratio_array_con, counts_ratio_array_con, diff_array, lower_diff_array, upper_diff_array, counts_diff_array, p_change_array, lower_p_change_array, upper_p_change_array, counts_p_change_array, ) = calculate_balanced_energy_ratio( reference_power_baseline, test_power_baseline, wind_speed_array_baseline, wind_direction_array_baseline, reference_power_controlled, test_power_controlled, wind_speed_array_controlled, wind_direction_array_controlled, wind_direction_bins, confidence=95, n_boostrap=n_boostrap, wind_direction_bin_p_overlap=wind_direction_bin_p_overlap, ) if plot_simple: ax = axarr[0] ax.plot( wind_direction_bins, ratio_array_base, label=label_array[0], color=base_color, ls=ls, marker=marker, ) if not hide_controlled_case: ax.plot( wind_direction_bins, ratio_array_con, label=label_array[1], color=con_color, ls=ls, marker=marker, ) ax.axhline(1, color="k") ax.set_ylabel("Energy Ratio (-)") ax = axarr[1] ax.plot( wind_direction_bins, diff_array, label=label_pchange, color=con_color, ls=ls, marker=marker, ) ax.axhline(0, color="k") ax.set_ylabel("Change in Energy Ratio (-)") ax = axarr[2] ax.plot( wind_direction_bins, p_change_array, label=label_pchange, color=con_color, ls=ls, marker=marker, ) ax.axhline(0, color="k") ax.set_ylabel("% Change in Energy Ratio (-)") else: ax = axarr[0] ax.plot( wind_direction_bins, ratio_array_base, label=label_array[0], color=base_color, ls="-", marker=".", ) ax.fill_between( wind_direction_bins, lower_ratio_array_base, upper_ratio_array_base, alpha=0.3, color=base_color, label="_nolegend_", ) if show_count: ax.scatter( wind_direction_bins, ratio_array_base, s=counts_ratio_array_base * marker_scale, label="_nolegend_", color=base_color, marker="o", alpha=0.2, ) if not hide_controlled_case: ax.plot( wind_direction_bins, ratio_array_con, label=label_array[1], color=con_color, ls="-", marker=".", ) ax.fill_between( wind_direction_bins, lower_ratio_array_con, upper_ratio_array_con, alpha=0.3, color=con_color, label="_nolegend_", ) if show_count: ax.scatter( wind_direction_bins, ratio_array_con, s=counts_ratio_array_con * marker_scale, label="_nolegend_", color=con_color, marker="o", alpha=0.2, ) ax.axhline(1, color="k") ax.set_ylabel("Energy Ratio (-)") ax = axarr[1] ax.plot( wind_direction_bins, diff_array, label=label_pchange, color=con_color, ls="-", marker=".", ) ax.fill_between( wind_direction_bins, lower_diff_array, upper_diff_array, alpha=0.3, color=con_color, label="_nolegend_", ) if show_count: ax.scatter( wind_direction_bins, diff_array, s=counts_diff_array * marker_scale, label="_nolegend_", color=con_color, marker="o", alpha=0.2, ) ax.axhline(0, color="k") ax.set_ylabel("Change in Energy Ratio (-)") ax = axarr[2] ax.plot( wind_direction_bins, p_change_array, label=label_pchange, color=con_color, ls="-", marker=".", ) ax.fill_between( wind_direction_bins, lower_p_change_array, upper_p_change_array, alpha=0.3, color=con_color, label="_nolegend_", ) if show_count: ax.scatter( wind_direction_bins, p_change_array, s=counts_p_change_array * marker_scale, label="_nolegend_", color=con_color, marker="o", alpha=0.2, ) ax.axhline(0, color="k") ax.set_ylabel("% Change in Energy Ratio (-)") for ax in axarr: ax.grid(True) ax.set_xlabel("Wind Direction (Deg)") return diff_array
5,336,045
def dir_is_cachedir(path): """Determines whether the specified path is a cache directory (and therefore should potentially be excluded from the backup) according to the CACHEDIR.TAG protocol (http://www.brynosaurus.com/cachedir/spec.html). """ tag_contents = b'Signature: 8a477f597d28d172789f06886806bc55' tag_path = os.path.join(path, 'CACHEDIR.TAG') try: if os.path.exists(tag_path): with open(tag_path, 'rb') as tag_file: tag_data = tag_file.read(len(tag_contents)) if tag_data == tag_contents: return True except OSError: pass return False
5,336,046
def update_programmer_menu(arduino_info): """.""" programmer_names = arduino_info['programmers'].get('names', []) text = '\t' * 0 + '[\n' text += '\t' * 1 + '{\n' text += '\t' * 2 + '"caption": "Arduino",\n' text += '\t' * 2 + '"mnemonic": "A",\n' text += '\t' * 2 + '"id": "arduino",\n' text += '\t' * 2 + '"children":\n' text += '\t' * 2 + '[\n' text += '\t' * 3 + '{\n' text += '\t' * 4 + '"caption": "Programmer",\n' text += '\t' * 4 + '"id": "stino_programmer",\n' text += '\t' * 4 + '"children":\n' text += '\t' * 4 + '[\n' text += '\t' * 5 + '{\n' text += '\t' * 6 + '"caption": "Refresh",\n' text += '\t' * 6 + '"id": "stino_refresh_programmers",\n' text += '\t' * 6 + '"command": "stino_refresh_programmers"\n' text += '\t' * 5 + '},\n' text += '\t' * 5 + '{"caption": "-"}' for programmer_name in programmer_names: text += ',\n' text += '\t' * 5 + '{\n' text += '\t' * 6 + '"caption": "%s",\n' % programmer_name text += '\t' * 6 + '"id": "stino_programmer_%s",\n' % programmer_name text += '\t' * 6 + '"command": "stino_select_programmer",\n' text += '\t' * 6 text += '"args": {"programmer_name": "%s"},\n' % programmer_name text += '\t' * 6 + '"checkbox": true\n' text += '\t' * 5 + '}' text += '\n' + '\t' * 4 + ']\n' text += '\t' * 3 + '}\n' text += '\t' * 2 + ']\n' text += '\t' * 1 + '}\n' text += '\t' * 0 + ']\n' write_menu('programmer', text)
5,336,047
def first_position(): """Sets up two positions in the Upper left .X.Xo. X.Xoo. XXX... ...... Lower right ...... ..oooo .oooXX .oXXX. (X = black, o = white) They do not overlap as the Positions are size_limit 9 or greater. """ def position_moves(s): rest_of_row = '.'*(s-5) first_three = rest_of_row.join([ '.X.Xo', 'X.Xoo', 'XXX..','']) last_three = rest_of_row.join(['', '.oooo', 'oooXX', 'oXXX.',]) board = first_three + '.'*s*(s-6) + last_three position = go.Position(size=s) moves_played = defaultdict() for pt, symbol in enumerate(board): if symbol == 'X': position.move(move_pt=pt, colour=go.BLACK) moves_played[pt] = go.BLACK elif symbol == 'o': position.move(move_pt=pt, colour=go.WHITE) moves_played[pt] = go.WHITE return position, moves_played return position_moves
5,336,048
def _create_teams( pool: pd.DataFrame, n_iterations: int = 500, n_teams: int = 10, n_players: int = 10, probcol: str = 'probs' ) -> np.ndarray: """Creates initial set of teams Returns: np.ndarray of shape axis 0 - number of iterations axis 1 - number of teams in league axis 2 - number of players on team """ # get the teams, which are represented as 3D array # axis 0 = number of iterations (leagues) # axis 1 = number of teams in league # axis 2 = number of players on team arr = _multidimensional_shifting( elements=pool.index.values, num_samples=n_iterations, sample_size=n_teams * n_players, probs=pool[probcol] ) return arr.reshape(n_iterations, n_teams, n_players)
5,336,049
def add_logger_filehandler(logger, filepath): """Adds additional file handler to the logger Args: logger: logger from `logging` module filepath: output logging file """ # create file handler which logs even debug messages fh = logging.FileHandler(filepath) fh.setLevel(logger.level) fh.setFormatter(LOGGING_FORMATTER) logger.addHandler(fh)
5,336,050
def calculate_magnitude(data: np.ndarray) -> np.ndarray: """Calculates the magnitude for given (x,y,z) axes stored in numpy array""" assert data.shape[1] == 3, f"Numpy array should have 3 axes, got {data.shape[1]}" return np.sqrt(np.square(data).sum(axis=1))
5,336,051
def clean_str(string: str) -> str: """ Cleans strings for SQL insertion """ return string.replace('\n', ' ').replace("'", "’")
5,336,052
def _main() -> None: """urlretriveの進捗表示にtqdmを利用する。 Note: - 参考文献: tqdm – PythonとCLIの高速で拡張できるプログレスバー: `https://githubja.com/tqdm/tqdm` """ URL = "http://archive.ics.uci.edu/ml/machine-learning-databases/00264/EEG%20Eye%20State.arff" with TqdmUpTo(unit="B", unit_scale=True, miniters=1, desc=URL.split("/")[-1]) as t: request.urlretrieve(URL, filename=os.devnull, reporthook=t.update_to, data=None)
5,336,053
def zeros(shape, name=None): """All zeros.""" return tf.get_variable(name=name, shape=shape, dtype=tf.float32, initializer=tf.zeros_initializer())
5,336,054
def test_julia_single_output_cpu_reducesum(): """ Feature: custom julia operator, multiple inputs, single output, CPU, GRAPH_MODE Description: pre-write xxx.jl, custom operator launches xxx.jl Expectation: nn result matches numpy result """ system = platform.system() if system != 'Linux': pass else: context.set_context(mode=context.GRAPH_MODE, device_target='CPU') julia_reducesum_test("reducesum.jl:ReduceSum:foo!", reducesum)
5,336,055
def test_wf_ndstate_cachelocations_updatespl(plugin, tmpdir): """ Two wfs with identical inputs and node state (that is set after adding the node!); the second wf has cache_locations and should not recompute the results """ cache_dir1 = tmpdir.mkdir("test_wf_cache3") cache_dir2 = tmpdir.mkdir("test_wf_cache4") wf1 = Workflow(name="wf", input_spec=["x", "y"], cache_dir=cache_dir1) wf1.add( multiply(name="mult", x=wf1.lzin.x, y=wf1.lzin.y).split(splitter=("x", "y")) ) wf1.add(add2_wait(name="add2", x=wf1.mult.lzout.out)) wf1.set_output([("out", wf1.add2.lzout.out)]) wf1.inputs.x = [2, 20] wf1.inputs.y = [3, 4] wf1.plugin = plugin t0 = time.time() with Submitter(plugin=plugin) as sub: sub(wf1) t1 = time.time() - t0 results1 = wf1.result() assert results1.output.out == [8, 82] wf2 = Workflow( name="wf", input_spec=["x", "y"], cache_dir=cache_dir2, cache_locations=cache_dir1, ) wf2.add(multiply(name="mult", x=wf2.lzin.x, y=wf2.lzin.y)) wf2.add(add2_wait(name="add2", x=wf2.mult.lzout.out)) wf2.mult.split(splitter=("x", "y")) wf2.set_output([("out", wf2.add2.lzout.out)]) wf2.inputs.x = [2, 20] wf2.inputs.y = [3, 4] wf2.plugin = plugin t0 = time.time() with Submitter(plugin=plugin) as sub: sub(wf2) t2 = time.time() - t0 results2 = wf2.result() assert results2.output.out == [8, 82] # for win and dask/slurm the time for dir creation etc. might take much longer if not sys.platform.startswith("win") and plugin == "cf": # checking the execution time assert t1 > 2 assert t2 < 1 # checking all directories assert wf1.output_dir.exists() # checking if the second wf didn't run again # checking all directories assert not wf2.output_dir.exists()
5,336,056
def parseTemplate(bStream): """Parse the Template in current byte stream, it terminates when meets an object. :param bStream: Byte stream :return: The template. """ template = Template() eof = endPos(bStream) while True: currPos = bStream.tell() if currPos <eof: desc = '{0:08b}'.format(readUSHORT(bStream)) bStream.seek(currPos, io.SEEK_SET) if ComponentRole[desc[:3]] == OBJECT: return template else: assert(int(desc[3])) # all components in Template must have label. template._attrList.append(parseAttributeInTemplate(bStream)) else: logger.warning("Encounter a Set without Objects") break
5,336,057
def explode(req: str): """Returns the exploded dependency list for a requirements file. As requirements files can include other requirements files with the -r directive, it can be useful to see a flattened version of all the constraints. This method unrolls a requirement file and produces a list of strings for each constraint line in the order of inclusion. Args: req: path to a requirements file. Returns: list of lines of requirements """ res = [] d = os.path.dirname(req) with open(req) as f: for l in f.readlines(): l = l.rstrip("\n") l = l.lstrip(" ") if l.startswith("-r"): include = l.lstrip(" ").lstrip("-r").lstrip(" ") # assuming relative includes always res += explode(os.path.join(d, include)) elif l: res += [l] return res
5,336,058
def test_account_purchase_history_default_list(session, client, jwt, app): """Assert that the endpoint returns 200.""" token = jwt.create_jwt(get_claims(), token_header) headers = {'Authorization': f'Bearer {token}', 'content-type': 'application/json'} # Create 11 payments for i in range(11): rv = client.post('/api/v1/payment-requests', data=json.dumps(get_payment_request()), headers=headers) invoice: Invoice = Invoice.find_by_id(rv.json.get('id')) pay_account: PaymentAccount = PaymentAccount.find_by_id(invoice.payment_account_id) rv = client.post(f'/api/v1/accounts/{pay_account.auth_account_id}/payments/queries', data=json.dumps({}), headers=headers) assert rv.status_code == 200 # Assert the total is coming as 10 which is the value of default TRANSACTION_REPORT_DEFAULT_TOTAL assert rv.json.get('total') == 10
5,336,059
def plot_word_wpm_distribution(word_speeds, filter_func=lambda c: True): """Plots a distribution over average speeds of unique words.""" df = pd.read_csv( word_speeds, header=None, names=["word", "duration", "wpm", "timestamp"] ) gdf = list(filter(lambda t: filter_func(t[0]), df.groupby(["word"]))) wpms = [df["wpm"].median() for word, df in gdf] ax = sns.histplot(wpms, kde=True, stat="probability") ax.set_title("percentage of words typed at a certain speed") ax.set_xlabel("typing speed in wpm") ax.set_ylabel("percentage of words") show_diagram()
5,336,060
def run1b(): """Run the Task2B program""" # Initialize stations = build_station_list() # stations: [(name, ...), (), ...] centre = (52.2053, 0.1218) distance_sort_list = stations_by_distance(stations, centre) # Build dictionary that maps station to town name_town_dict = {} for station in stations: name_town_dict[station.name] = station.town # Build list of tuples (name, town, distance) item_list = [] for item in distance_sort_list: # item: (station.name, d) key = item[0] new_item = (key, name_town_dict[key], item[1]) item_list.append(new_item) # Print first and last ten items in list closest = item_list[:10] farthest = item_list[-10:] print(closest) print(farthest)
5,336,061
def draw_lidar( pc, color=None, fig=None, bgcolor=(0, 0, 0), pts_scale=0.3, pts_mode="sphere", pts_color=None, color_by_intensity=False, pc_label=False, pc_range=[], ): """ Draw lidar points Args: pc: numpy array (n,3) of XYZ color: numpy array (n) of intensity or whatever fig: mayavi figure handler, if None create new one otherwise will use it Returns: fig: created or used fig """ xmin, xmax, ymin, ymax, zmin, zmax = pc_range pts_mode = "point" print("====================", pc.shape) if fig is None: fig = mlab.figure( figure=None, bgcolor=bgcolor, fgcolor=None, engine=None, size=(1600, 1000) ) if color is None: color = pc[:, 2] mlab.points3d( pc[:, 0], pc[:, 1], pc[:, 2], color, color=pts_color, mode=pts_mode, colormap="gnuplot", scale_factor=pts_scale, figure=fig, vmax=zmax, vmin=zmin, ) # draw origin mlab.points3d(0, 0, 0, color=(1, 1, 1), mode="sphere", scale_factor=0.2) # draw axis axes = np.array( [[2.0, 0.0, 0.0, 0.0], [0.0, 2.0, 0.0, 0.0], [0.0, 0.0, 2.0, 0.0]], dtype=np.float64, ) mlab.plot3d( [0, axes[0, 0]], [0, axes[0, 1]], [0, axes[0, 2]], color=(1, 0, 0), tube_radius=None, figure=fig, ) mlab.plot3d( [0, axes[1, 0]], [0, axes[1, 1]], [0, axes[1, 2]], color=(0, 1, 0), tube_radius=None, figure=fig, ) mlab.plot3d( [0, axes[2, 0]], [0, axes[2, 1]], [0, axes[2, 2]], color=(0, 0, 1), tube_radius=None, figure=fig, ) # draw fov (todo: update to real sensor spec.) a_ymin = abs(ymin) a_ymax = abs(ymax) fov = np.array( [[a_ymax, a_ymax, 0.0, 0.0], [a_ymin, -a_ymin, 0.0, 0.0]], dtype=np.float64 # 45 degree ) mlab.plot3d( [0, fov[0, 0]], [0, fov[0, 1]], [0, fov[0, 2]], color=(1, 1, 1), tube_radius=None, line_width=1, figure=fig, ) mlab.plot3d( [0, fov[1, 0]], [0, fov[1, 1]], [0, fov[1, 2]], color=(1, 1, 1), tube_radius=None, line_width=1, figure=fig, ) # draw square region TOP_Y_MIN = ymin TOP_Y_MAX = ymax TOP_X_MIN = xmin TOP_X_MAX = xmax #TOP_Z_MIN = -2.0 #TOP_Z_MAX = 0.4 x1 = TOP_X_MIN x2 = TOP_X_MAX y1 = TOP_Y_MIN y2 = TOP_Y_MAX mlab.plot3d( [x1, x1], [y1, y2], [0, 0], color=(0.5, 0.5, 0.5), tube_radius=0.1, line_width=1, figure=fig, ) mlab.plot3d( [x2, x2], [y1, y2], [0, 0], color=(0.5, 0.5, 0.5), tube_radius=0.1, line_width=1, figure=fig, ) mlab.plot3d( [x1, x2], [y1, y1], [0, 0], color=(0.5, 0.5, 0.5), tube_radius=0.1, line_width=1, figure=fig, ) mlab.plot3d( [x1, x2], [y2, y2], [0, 0], color=(0.5, 0.5, 0.5), tube_radius=0.1, line_width=1, figure=fig, ) # mlab.orientation_axes() mlab.view( azimuth=180, elevation=70, focalpoint=[12.0909996, -1.04700089, -2.03249991], distance=62.0, figure=fig, ) return fig
5,336,062
def load_circuit(filename:str): """ Reads a MNSensitivity cicuit file (.mc) and returns a Circuit list (format is 1D array of tuples, the first element contains a Component object, the 2nd a SER/PAL string). Format of the .mc file is: * each line contains a Component object init string (See Component class doc string to see format) after an orientation string (SER or PAL, specifies if the component is series or parallel to ground). * Comments can be specified by '#' * Blank lines are skipped * Components with earliest line number is assumed closest to source, last line number closest to load, and progressively inbetween. """ circuit = [] lnum = 0 #Open file... with open(filename) as file: #For each line... while True: #Read line... line = file.readline() lnum += 1; if not line: break; #Break into tokens... words = line.split() if len(words) == 0: continue #Skip comments if words[0] == "#" or words[0][0] == '#': continue if len(words) < 5: print(f"ERROR: Fewer than 5 words on line {lnum}.") print(words) return [] try: idx = line.find(" ") new_comp = Component(line[idx+1:]) except: print(f"Failed to interpret component string on line {lnum}.") return [] if words[0].upper() == "SER": circuit.append( (new_comp, "SER") ) elif words[0].upper() == "PAL": circuit.append( (new_comp, "PAL") ) else: unrectok = words[0] print(f"ERROR: Unrecognized orientation token '{unrectok}' on line {lnum}. Acceptable tokens are 'SER' and 'PAL'.") return [] return circuit
5,336,063
def get_output_attribute(out, attribute_name, cuda_device, reduction="sum"): """ This function handles processing/reduction of output for both DataParallel or non-DataParallel situations. For the case of multiple GPUs, This function will sum all values for a certain output attribute in various batches together. Parameters --------------------- :param out: Dictionary, output of model during forward pass, :param attribute_name: str, :param cuda_device: list or int :param reduction: (string, optional) reduction to apply to the output. Default: 'sum'. """ if isinstance(cuda_device, list): if reduction == "sum": return out[attribute_name].sum() elif reduction == "mean": return out[attribute_name].sum() / float(len(out[attribute_name])) else: raise ValueError("invalid reduction type argument") else: return out[attribute_name]
5,336,064
def get_ref_aidxs(df_fs): """Part of the hotfix for redundant FCGs. I did not record the occurrence id in the graphs, which was stupid. So now I need to use the df_fs to get the information instead. Needs to be used with fid col, which is defined in filter_out_fcgs_ffs_all. """ return {k: v for k, v in zip(df_fs['fid'], df_fs['_aidxf'])}
5,336,065
def set_clear_color(color='black'): """Set the screen clear color This is a wrapper for gl.glClearColor. Parameters ---------- color : str | tuple | instance of Color Color to use. See vispy.color.Color for options. """ gl.glClearColor(*Color(color).rgba)
5,336,066
def format_info(info): """ Print info neatly """ sec_width = 64 eq = ' = ' # find key width key_widths = [] for section, properties in info.items(): for prop_key, prop_val in properties.items(): if type(prop_val) is dict: key_widths.append(len(max(list(prop_val.keys()), key=len)) + 4) else: key_widths.append(len(prop_key)) key_width = max(key_widths) # format items msg = [] for section, properties in info.items(): n0 = (sec_width - 2 - len(section)) // 2 n1 = n0 if n0 * 2 + 2 + len(section) == sec_width else n0 + 1 msg.append('\n' + '=' * n0 + f' {section} ' + '=' * n1) for prop_key, prop_val in properties.items(): if type(prop_val) is dict: msg.append((prop_key + ' ').ljust(sec_width, '_')) for sub_key, sub_val in prop_val.items(): msg.append(' ' * 4 + sub_key.ljust(key_width - 4) + eq + str(sub_val)) else: msg.append(prop_key.ljust(key_width) + eq + str(prop_val)) msg.append('=' * (n0 + n1 + 2 + len(section))) return '\n'.join(msg)
5,336,067
def server_handle_hallu_message( msg_output, controller, mi_info, options, curr_iter): """ Petridish server handles the return message of a forked process that watches over a halluciniation job. """ log_dir_root = logger.get_logger_dir() q_child = controller.q_child model_str, model_iter, _parent_iter, search_depth = msg_output # Record performance in the main log jr = parse_remote_stop_file(_mi_to_dn(log_dir_root, model_iter)) if jr is None: # job failure: reap the virtual resource and move on. logger.info('Failed mi={}'.format(model_iter)) return curr_iter (fp, ve, te, hallu_stats, l_op_indices, l_op_omega) = ( jr['fp'], jr['ve'], jr['te'], jr['l_stats'], jr['l_op_indices'], jr['l_op_omega'] ) logger.info( ("HALLU : mi={} val_err={} test_err={} " "Gflops={} hallu_stats={}").format( model_iter, ve, te, fp * 1e-9, hallu_stats)) mi_info[model_iter].ve = ve mi_info[model_iter].fp = fp ## compute hallucination related info in net_info net_info = net_info_from_str(model_str) hallu_locs = net_info.contained_hallucination() # contained hallu_indices = net_info.sorted_hallu_indices(hallu_locs) # feature selection based on params l_fs_ops, l_fs_omega = feature_selection_cutoff( l_op_indices, l_op_omega, options) separated_hallu_info = net_info.separate_hallu_info_by_cname( hallu_locs, hallu_indices, l_fs_ops, l_fs_omega) ## Select a subset of hallucination to add to child model l_selected = [] # sort by -cos(grad, hallu) for the indices, 0,1,2,...,n_hallu-1. processed_stats = [process_hallu_stats_for_critic_feat([stats]) \ for stats in hallu_stats] logger.info('processed_stats={}'.format(processed_stats)) logger.info('separated_hallu_info={}'.format(separated_hallu_info)) # greedy select with gradient boosting l_greedy_selected = [] if options.n_greed_select_per_init: greedy_order = sorted( range(len(hallu_indices)), key=lambda i : - processed_stats[i][0]) min_select = options.n_hallus_per_select max_select = max(min_select, len(hallu_indices) // 2) for selected_len in range(min_select, max_select + 1): selected = greedy_order[:selected_len] l_greedy_selected.append(selected) n_greedy_select = len(l_greedy_selected) if n_greedy_select > options.n_greed_select_per_init: # random choose l_greedy_selected = list(np.random.choice( l_greedy_selected, options.n_greed_select_per_init, replace=False)) # random select a subset l_random_selected = [] if options.n_rand_select_per_init: # also try some random samples l_random_selected = online_sampling( itertools.combinations( range(len(hallu_indices)), options.n_hallus_per_select ), options.n_rand_select_per_init) np.random.shuffle(l_random_selected) l_selected = l_greedy_selected + l_random_selected ## for each selected subset of hallu, make a model for q_child # since more recent ones tend to be better, # we insert in reverse order, so greedy are inserted later. for selected in reversed(l_selected): # new model description child_info = copy.deepcopy(net_info) l_hi = [ hallu_indices[s] for s in selected ] child_info = child_info.select_hallucination( l_hi, separated_hallu_info) # Compute initialization stat stat = process_hallu_stats_for_critic_feat( [hallu_stats[s] for s in selected]) # update mi_info curr_iter += 1 child_str = child_info.to_str() mi_info.append(ModelSearchInfo( curr_iter, model_iter, search_depth+1, None, None, child_str, stat)) controller.add_one_to_queue( q_child, mi_info, curr_iter, child_info) return curr_iter
5,336,068
def logger(status=False, perf_time=None): """Show the log of the app :param status: show status of app. :param perf_time : show the time passed for generate files """ file = open("build_log.txt", "a") if not status: file.write("Failed " + str(datetime.datetime.now()) + "\n") else: file.write("Success " + str(datetime.datetime.now()) + "\n") file.write("Generation Time: " + str(perf_time) + "\n") file.close()
5,336,069
def pBottleneckSparse_model(inputs, train=True, norm=True, **kwargs): """ A pooled shallow bottleneck convolutional autoencoder model.. """ # propagate input targets outputs = inputs # dropout = .5 if train else None input_to_network = inputs['images'] shape = input_to_network.get_shape().as_list() stride = 16 hidden_size = 2#np.ceil(shape[1]/stride) deconv_size = 12#(shape[1]/hidden_size).astype(int) ### YOUR CODE HERE with tf.variable_scope('conv1') as scope: convweights = tf.get_variable(shape=[7, 7, 3, 64], dtype=tf.float32, initializer=tf.contrib.layers.xavier_initializer(), name='weights') conv = tf.nn.conv2d(input_to_network, convweights,[1, 4, 4, 1], padding='SAME') biases = tf.get_variable(initializer=tf.constant_initializer(0), shape=[64], dtype=tf.float32, trainable=True, name='biases') bias = tf.nn.bias_add(conv, biases) relu = tf.nn.relu(bias, name='relu') pool = tf.nn.max_pool(value=relu, ksize=[1, 4, 4, 1], strides=[1, 4, 4, 1], padding='SAME', name='pool') # assign layers to output outputs['input'] = input_to_network outputs['conv1_kernel'] = convweights outputs['conv1'] = relu outputs['pool1'] = pool outputs['convweights'] = convweights print(outputs['input'].shape) print(outputs['conv1'].shape) print(outputs['pool1'].shape) with tf.variable_scope('deconv2') as scope: deconvweights = tf.get_variable(shape=[deconv_size, deconv_size, 3, 64], dtype=tf.float32, initializer=tf.contrib.layers.xavier_initializer(), name='weights') deconvRegularizer = tf.nn.l2_loss(deconvweights) deconv = tf.nn.conv2d_transpose(outputs['pool1'], deconvweights, outputs['input'].shape, [1, 12, 12, 1], padding='VALID', name=None) # assign layers to output outputs['deconv2'] = deconv outputs['deconvweights'] = deconvweights ### END OF YOUR CODE for k in ['input','conv1', 'deconv2']: assert k in outputs, '%s was not found in outputs' % k return outputs, {}
5,336,070
def CoarseDropout(p=0, size_px=None, size_percent=None, per_channel=False, min_size=4, name=None, deterministic=False, random_state=None, mask=None): """ Augmenter that sets rectangular areas within images to zero. In contrast to Dropout, these areas can have larger sizes. (E.g. you might end up with three large black rectangles in an image.) Note that the current implementation leads to correlated sizes, so when there is one large area that is dropped, there is a high likelihood that all other dropped areas are also large. This method is implemented by generating the dropout mask at a lower resolution (than the image has) and then upsampling the mask before dropping the pixels. dtype support:: See ``imgaug.augmenters.arithmetic.MultiplyElementwise``. Parameters ---------- p : float or tuple of float or imgaug.parameters.StochasticParameter, optional The probability of any pixel being dropped (i.e. set to zero). * If a float, then that value will be used for all pixels. A value of 1.0 would mean, that all pixels will be dropped. A value of 0.0 would lead to no pixels being dropped. * If a tuple ``(a, b)``, then a value p will be sampled from the range ``a <= p <= b`` per image and be used as the pixel's dropout probability. * If a StochasticParameter, then this parameter will be used to determine per pixel whether it should be dropped (sampled value of 0) or shouldn't (sampled value of 1). size_px : int or tuple of int or imgaug.parameters.StochasticParameter, optional The size of the lower resolution image from which to sample the dropout mask in absolute pixel dimensions. * If an integer, then that size will be used for both height and width. E.g. a value of 3 would lead to a ``3x3`` mask, which is then upsampled to ``HxW``, where ``H`` is the image size and W the image width. * If a tuple ``(a, b)``, then two values ``M``, ``N`` will be sampled from the range ``[a..b]`` and the mask will be generated at size ``MxN``, then upsampled to ``HxW``. * If a StochasticParameter, then this parameter will be used to determine the sizes. It is expected to be discrete. size_percent : float or tuple of float or imgaug.parameters.StochasticParameter, optional The size of the lower resolution image from which to sample the dropout mask *in percent* of the input image. * If a float, then that value will be used as the percentage of the height and width (relative to the original size). E.g. for value p, the mask will be sampled from ``(p*H)x(p*W)`` and later upsampled to ``HxW``. * If a tuple ``(a, b)``, then two values ``m``, ``n`` will be sampled from the interval ``(a, b)`` and used as the percentages, i.e the mask size will be ``(m*H)x(n*W)``. * If a StochasticParameter, then this parameter will be used to sample the percentage values. It is expected to be continuous. per_channel : bool or float, optional Whether to use the same value (is dropped / is not dropped) for all channels of a pixel (False) or to sample a new value for each channel (True). If this value is a float ``p``, then for ``p`` percent of all images `per_channel` will be treated as True, otherwise as False. min_size : int, optional Minimum size of the low resolution mask, both width and height. If `size_percent` or `size_px` leads to a lower value than this, `min_size` will be used instead. This should never have a value of less than 2, otherwise one may end up with a ``1x1`` low resolution mask, leading easily to the whole image being dropped. name : None or str, optional See :func:`imgaug.augmenters.meta.Augmenter.__init__`. deterministic : bool, optional See :func:`imgaug.augmenters.meta.Augmenter.__init__`. random_state : None or int or numpy.random.RandomState, optional See :func:`imgaug.augmenters.meta.Augmenter.__init__`. Examples -------- >>> aug = iaa.CoarseDropout(0.02, size_percent=0.5) drops 2 percent of all pixels on an lower-resolution image that has 50 percent of the original image's size, leading to dropped areas that have roughly 2x2 pixels size. >>> aug = iaa.CoarseDropout((0.0, 0.05), size_percent=(0.05, 0.5)) generates a dropout mask at 5 to 50 percent of image's size. In that mask, 0 to 5 percent of all pixels are dropped (random per image). >>> aug = iaa.CoarseDropout((0.0, 0.05), size_px=(2, 16)) same as previous example, but the lower resolution image has 2 to 16 pixels size. >>> aug = iaa.CoarseDropout(0.02, size_percent=0.5, per_channel=True) drops 2 percent of all pixels at 50 percent resolution (2x2 sizes) in a channel-wise fashion, i.e. it is unlikely for any pixel to have all channels set to zero (black pixels). >>> aug = iaa.CoarseDropout(0.02, size_percent=0.5, per_channel=0.5) same as previous example, but the `per_channel` feature is only active for 50 percent of all images. """ if ia.is_single_number(p): p2 = iap.Binomial(1 - p) elif ia.is_iterable(p): ia.do_assert(len(p) == 2) ia.do_assert(p[0] < p[1]) ia.do_assert(0 <= p[0] <= 1.0) ia.do_assert(0 <= p[1] <= 1.0) p2 = iap.Binomial(iap.Uniform(1 - p[1], 1 - p[0])) elif isinstance(p, iap.StochasticParameter): p2 = p else: raise Exception("Expected p to be float or int or StochasticParameter, got %s." % (type(p),)) if size_px is not None: p3 = iap.FromLowerResolution(other_param=p2, size_px=size_px, min_size=min_size) elif size_percent is not None: p3 = iap.FromLowerResolution(other_param=p2, size_percent=size_percent, min_size=min_size) else: raise Exception("Either size_px or size_percent must be set.") if name is None: name = "Unnamed%s" % (ia.caller_name(),) return MultiplyElementwise(p3, per_channel=per_channel, name=name, deterministic=deterministic, random_state=random_state, mask=mask)
5,336,071
def main(): """ The whole sett-up. Here everything is called. """ wn = turtle.Screen() ourTurtle = turtle.Turtle() size = 600 # width is 90% of screen, height is 80% of screen. Screen appears at the center of screen wn.setup(width=0.9, height=0.9, startx=None, starty=None) ourTurtle.shape("turtle") function_2(size) # Function call to function_2 function_1(ourTurtle, size) # Function call to function_1 wn.exitonclick()
5,336,072
def chenneling(x): """ This function makes the dataset suitable for training. Especially, gray scale image does not have channel information. This function forces one channel to be created for gray scale images. """ # if grayscale image if(len(x.shape) == 3): C = 1 N, H, W = x.shape x = np.asarray(x).reshape((N, H, W, C)) else: # color image pass x = x.transpose(0, 3, 1, 2) x = x.astype(float) return x
5,336,073
def _get_ordered_label_map(label_map): """Gets label_map as an OrderedDict instance with ids sorted.""" if not label_map: return label_map ordered_label_map = collections.OrderedDict() for idx in sorted(label_map.keys()): ordered_label_map[idx] = label_map[idx] return ordered_label_map
5,336,074
def eight_interp(x, a0, a1, a2, a3, a4, a5, a6, a7): """``Approximation degree = 8`` """ return ( a0 + a1 * x + a2 * (x ** 2) + a3 * (x ** 3) + a4 * (x ** 4) + a5 * (x ** 5) + a6 * (x ** 6) + a7 * (x ** 7) )
5,336,075
def create_ec2_instance(image_id, instance_type, keypair_name, user_data): """Provision and launch an EC2 instance The method returns without waiting for the instance to reach a running state. :param image_id: ID of AMI to launch, such as 'ami-XXXX' :param instance_type: string, such as 't2.micro' :param keypair_name: string, name of the key pair :return Dictionary containing information about the instance. If error, returns None. """ # Provision and launch the EC2 instance ec2_client = boto3.client('ec2') try: response = ec2_client.run_instances(ImageId=image_id, InstanceType=instance_type, KeyName=keypair_name, MinCount=1, MaxCount=1, UserData=user_data, SecurityGroups=[ 'AllowSSHandOSB', ] ) instance = response['Instances'][0] except ClientError as e: logging.error(e) return None return response['Instances'][0]
5,336,076
def get_pop(state): """Returns the population of the passed in state Args: - state: state in which to get the population """ abbrev = get_abbrev(state) return int(us_areas[abbrev][1]) if abbrev != '' else -1
5,336,077
def GitHub_post(data, url, *, headers): """ POST the data ``data`` to GitHub. Returns the json response from the server, or raises on error status. """ r = requests.post(url, headers=headers, data=json.dumps(data)) GitHub_raise_for_status(r) return r.json()
5,336,078
def subsample(inputs, factor, scope=None): """Subsample the input along the spatial dimensions. Args: inputs: A `Tensor` of size [batch, height_in, width_in, channels]. factor: The subsampling factor. scope: Optional variable_scope. Returns: output: A `Tensor` of size [batch, height_out, width_out, channels] with the input, either intact (if factor == 1) or subsampled (if factor > 1). """ if factor == 1: return inputs else: return slim.max_pool2d(inputs, [1, 1], stride=factor, scope=scope)
5,336,079
def password_reset(*args, **kwargs): """ Override view to use a custom Form """ kwargs['password_reset_form'] = PasswordResetFormAccounts return password_reset_base(*args, **kwargs)
5,336,080
def update_tab_six_two( var, time_filter, month, hour, data_filter, filter_var, min_val, max_val, normalize, global_local, df, ): """Update the contents of tab size. Passing in the info from the dropdown and the general info.""" df = pd.read_json(df, orient="split") time_filter_info = [time_filter, month, hour] data_filter_info = [data_filter, filter_var, min_val, max_val] heat_map = custom_heatmap(df, global_local, var, time_filter_info, data_filter_info) no_display = {"display": "none"} if data_filter: return ( heat_map, {}, barchart(df, var, time_filter_info, data_filter_info, normalize), {}, ) return heat_map, no_display, {"data": [], "layout": {}, "frames": []}, no_display
5,336,081
async def blog_api(request: Request, year: int, month: int, day: int, title: str) -> json: """Handle blog.""" blog_date = {"year": year, "month": month, "day": day} req_blog = app.blog.get(xxh64(unquote(title)).hexdigest()) if req_blog: if all( map(lambda x: req_blog["date"][x] == blog_date[x], req_blog["date"])): return json( { "message": f"Hope you enjoy \"{unquote(title)}\"", "status": request.headers, "error": None, "results": req_blog }, status = 200) else: return redirect(f"/{req_blog['blog_path']}") else: raise BlogNotFound(f"Blog \"{unquote(title)}\" Not Found!")
5,336,082
def coherence_score_umass(X, inv_vocabulary, top_words, normalized=False): """ Extrinsic UMass coherence measure Parameter ---------- X : array-like, shape=(n_samples, n_features) Document word matrix. inv_vocabulary: dict Dictionary of index and vocabulary from vectorizer. top_words: list List of top words for each topic-sentiment pair normalized: bool If true, return to NPMI Returns ----------- score: float """ wordoccurances = (X > 0).astype(int) N = X.shape[0] totalcnt = 0 PMI = 0 NPMI = 0 for allwords in top_words: for word1 in allwords: for word2 in allwords: if word1 != word2: ind1 = inv_vocabulary[word1] ind2 = inv_vocabulary[word2] if ind1 > ind2: denominator = (np.count_nonzero(wordoccurances > 0, axis=0)[ ind1]/N) * (np.count_nonzero(wordoccurances > 0, axis=0)[ind2]/N) numerator = ( (np.matmul(wordoccurances[:, ind1], wordoccurances[:, ind2])) + 1) / N PMI += np.log(numerator) - np.log(denominator) NPMI += (np.log(denominator) / np.log(numerator)) - 1 totalcnt += 1 if normalized: score = NPMI / totalcnt else: score = PMI / totalcnt return score
5,336,083
def quiz_f(teq): """ Function to fill in the blank quiz Params: teq: dict """ # Init LED happy image display.show(Image.HAPPY) # This is an advanced topic as well however this little function # cleans out the unnecessary global objects or variables on what # we call the heap area in memory gc.collect() # Init score object score = 0 # Here we iterate through our quiz database for key in teq: print(key) say(str(key), speed=SPEED) response = input('ANSWER: ') response = response.lower() correct_answer = teq[key].lower() if response == correct_answer: display.show(Image.SURPRISED) print('CORRECT!') say('CORRECT!', speed=SPEED) display.show(Image.HAPPY) score += 1 else: display.show(Image.SURPRISED) print('The correct answer is {0}.'.format(teq[key])) say('The correct answer is', speed=SPEED) say(str(teq[key]), speed=SPEED) display.show(Image.HAPPY) time.sleep(1) gc.collect() # Here we reply to the student their score display.show(Image.SURPRISED) print('You got {0} out of {1} correct!'.format(score, len(teq))) say('You got', speed=SPEED) say(str(score), speed=SPEED) say('out of', speed=SPEED) say(str(len(teq)), speed=SPEED) say('correct!', speed=SPEED) # If student got a perfect score respond appropriately # or provide an encouring message to retry the quiz if score == len(teq): print('You got a perfect score!') say('You got a perfect score!', speed=SPEED) print('Well done!') say('Well done!, ', speed=SPEED) print('I am so proud of you!') say('I am so proud of you!', speed=SPEED) play(POWER_UP) else: print('You are doing a great job!') say('You are doing a great job!', speed=SPEED) print('I would LOVE for you to try again!') say('I would LOVE for you to try again!', speed=SPEED) # Display happy response at the end of the quiz display.show(Image.HAPPY) gc.collect()
5,336,084
def _splitaddr(addr): """ splits address into character and decimal :param addr: :return: """ col='';rown=0 for i in range(len(addr)): if addr[i].isdigit(): col = addr[:i] rown = int(addr[i:]) break elif i==len(addr)-1: col=addr return col,rown
5,336,085
def checksum(data): """ :return: int """ assert isinstance(data, bytes) assert len(data) >= MINIMUM_MESSAGE_SIZE - 2 assert len(data) <= MAXIMUM_MESSAGE_SIZE - 2 __checksum = 0 for data_byte in data: __checksum += data_byte __checksum = -(__checksum % 256) + 256 try: __checksum = bytes([__checksum]) except ValueError: __checksum = bytes([0]) return __checksum
5,336,086
def as_character( x, str_dtype=str, _na=np.nan, ): """Convert an object or elements of an iterable into string Aliases `as_str` and `as_string` Args: x: The object str_dtype: The string dtype to convert to _na: How NAs should be casted. Specify np.nan will keep them unchanged. But the dtype will be object then. Returns: When x is an array or a series, return x.astype(str). When x is iterable, convert elements of it into strings Otherwise, convert x to string. """ return _as_type(x, str_dtype, na=_na)
5,336,087
def test_logger(request: HttpRequest) -> HttpResponse: """ Generate a log to test logging setup. Use a GET parameter to specify level, default to INFO if absent. Value can be INFO, WARNING, ERROR, EXCEPTION, UNCATCHED_EXCEPTION. Use a GET parameter to specify message, default to "Test logger" Example: test_logger?level=INFO&message=Test1 :param request: HttpRequest request :return: HttpResponse web response """ message = request.GET.get("message", "Test logger") level = request.GET.get("level", "INFO") if level not in ("INFO", "WARNING", "ERROR", "EXCEPTION", "UNCATCHED_EXCEPTION"): level = "INFO" if level == "INFO": logger.info(message) elif level == "WARNING": logger.warning(message) elif level == "ERROR": logger.error(message) elif level == "EXCEPTION": try: raise Exception(message) except Exception: logger.exception("test_logger") else: assert level == "UNCATCHED_EXCEPTION", "should never happen" raise Exception(message) return HttpResponse("ok")
5,336,088
def cvm_informes (year: int, mth: int) -> pd.DataFrame: """Downloads the daily report (informe diario) from CVM for a given month and year\n <b>Parameters:</b>\n year (int): The year of the report the function should download\n mth (int): The month of the report the function should download\n <b>Returns:</b>\n pd.DataFrame: Pandas dataframe with the report for the given month and year. If the year is previous to 2017, will contain data regarding the whole year """ if int(year) >= 2017: #uses download process from reports after the year of 2017 try: mth = f"{mth:02d}" year = str(year) #creates url using the parameters provided to the function url = 'http://dados.cvm.gov.br/dados/FI/DOC/INF_DIARIO/DADOS/inf_diario_fi_'+year+mth+'.csv' #reads the csv returned by the link cotas = pd.read_csv(url, sep =';') cotas['DT_COMPTC'] = pd.to_datetime(cotas['DT_COMPTC']) #casts date column to datetime try: #removes column present in only a few reports to avoid inconsistency when making the union of reports cotas.drop(columns = ['TP_FUNDO'], inplace = True) except KeyError: pass return cotas except HTTPError: print('theres no report for this date yet!.\n') if int(year) < 2017: try: year = str(year) url = 'http://dados.cvm.gov.br/dados/FI/DOC/INF_DIARIO/DADOS/HIST/inf_diario_fi_' + year + '.zip' #sends request to the url r = requests.get(url, stream=True, allow_redirects=True) with open('informe' + year + '.zip', 'wb') as fd: #writes the .zip file downloaded fd.write(r.content) zip_inf = zipfile.ZipFile('informe' + year + '.zip') #opens the .zip file #le os arquivos csv dentro do arquivo zip informes = [pd.read_csv(zip_inf.open(f), sep=";") for f in zip_inf.namelist()] cotas = pd.concat(informes,ignore_index=True) cotas['DT_COMPTC'] = pd.to_datetime(cotas['DT_COMPTC']) #casts date column to datetime zip_inf.close() #fecha o arquivo zip os.remove('informe' + year + '.zip') #deletes .zip file return cotas except Exception as E: print(E)
5,336,089
def remoteness(N): """ Compute the remoteness of N. Parameters ---------- N : Nimber The nimber of interest. Returns ------- remote : int The remoteness of N. """ if N.n == 0: return 0 remotes = {remoteness(n) for n in N.left} if all(remote % 2 == 1 for remote in remotes): return 1 + max(remotes) else: return 1 + min(remote for remote in remotes if remote % 2 == 0)
5,336,090
def breakfast_analysis_variability(in_path,identifier, date_col, time_col, min_log_num=2, min_separation=4, plot=True): """ Description:\n This function calculates the variability of loggings in good logging day by subtracting 5%,10%,25%,50%,75%,90%,95% quantile of breakfast time from the 50% breakfast time. It can also make a histogram that represents the 90%-10% interval for all subjects.\n Input:\n - in_path (str, pandas df): input path, file in pickle, csv or panda dataframe format. - identitfier(str) : participants' unique identifier such as id, name, etc. - date_col(str) : the column that represents the dates. - time_col(str) : the column that represents the float time. - min_log_num (count,int): filtration criteria on the minimum number of loggings each day. - min_seperation(hours,int): filtration criteria on the minimum separations between the earliest and latest loggings each day. - plot(bool) : Whether generating a histogram for breakfast variability. Default = True. Return:\n - A dataframe that contains 5%,10%,25%,50%,75%,90%,95% quantile of breakfast time minus 50% time for each subjects from the in_path file.\n Requirements:\n in_path file must have the following columns:\n - unique_code\n - date\n - local_time\n """ df = universal_key(in_path) # leave only the loggings in a good logging day df['in_good_logging_day'] = in_good_logging_day(df, identifier, time_col, min_log_num, min_separation) df = df[df['in_good_logging_day']==True] breakfast_series = df.groupby(['unique_code', 'date'])['local_time'].min().groupby('unique_code').quantile([0.05, 0.10, 0.25, 0.5, 0.75, 0.90, 0.95]) breakfast_df = pd.DataFrame(breakfast_series) all_rows = [] for index in breakfast_df.index: tmp_dict = dict(breakfast_series[index[0]]) tmp_dict['id'] = index[0] all_rows.append(tmp_dict) breakfast_summary_df = pd.DataFrame(all_rows, columns = ['id', 0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95])\ .rename(columns = {0.05: '5%', 0.1: '10%', 0.25: '25%', 0.5: '50%', 0.75: '75%', 0.9: '90%', 0.95: '95%'})\ .drop_duplicates().reset_index(drop = True) breakfast_variability_df = breakfast_summary_df.copy() for col in breakfast_variability_df.columns: if col == 'id' or col == '50%': continue breakfast_variability_df[col] = breakfast_variability_df[col] - breakfast_variability_df['50%'] breakfast_variability_df['50%'] = breakfast_variability_df['50%'] - breakfast_variability_df['50%'] if plot == True: fig, ax = plt.subplots(1, 1, figsize = (10, 10), dpi=80) sns_plot = sns.distplot( breakfast_variability_df['90%'] - breakfast_variability_df['10%'] ) ax.set(xlabel='Variation Distribution for Breakfast (90% - 10%)', ylabel='Kernel Density Estimation') return breakfast_variability_df
5,336,091
def _sdss_wcs_to_log_wcs(old_wcs): """ The WCS in the SDSS files does not appear to follow the WCS standard - it claims to be linear, but is logarithmic in base-10. The wavelength is given by: λ = 10^(w0 + w1 * i) with i being the pixel index starting from 0. The FITS standard uses a natural log with a sightly different formulation, see WCS Paper 3 (which discusses spectral WCS). This function does the conversion from the SDSS WCS to FITS WCS. """ w0 = old_wcs.wcs.crval[0] w1 = old_wcs.wcs.cd[0,0] crval = 10 ** w0 cdelt = crval * w1 * np.log(10) cunit = old_wcs.wcs.cunit[0] or Unit('Angstrom') ctype = "WAVE-LOG" w = WCS(naxis=1) w.wcs.crval[0] = crval w.wcs.cdelt[0] = cdelt w.wcs.ctype[0] = ctype w.wcs.cunit[0] = cunit w.wcs.set() return w
5,336,092
def request_records(request): """show the datacap request records""" address = request.POST.get('address') page_index = request.POST.get('page_index', '1') page_size = request.POST.get('page_size', '5') page_size = interface.handle_page(page_size, 5) page_index = interface.handle_page(page_index, 1) msg_code, msg_data = interface.request_record(address=address) obj = Page(msg_data, page_size).page(page_index) data_list = [] for i in obj.get('objects'): msg_cid = i.msg_cid assignee = i.assignee comments_url = i.comments_url data_list.append({ 'assignee': assignee, 'created_at': i.created_at.strftime('%Y-%m-%d %H:%M:%S') if i.created_at else i.created_at, 'region': i.region, 'request_datacap': i.request_datacap, 'status': i.status, 'allocated_datacap': i.allocated_datacap, 'msg_cid': msg_cid, 'url': interface.get_req_url(i.comments_url), 'height': get_height(msg_cid), 'name': i.name, 'media': i.media, 'github_url': get_github_url(comments_url), 'issue_id': get_api_issue_id(comments_url), 'notary': get_notary_by_github_account(assignee), }) return format_return(0, data={"objs": data_list, "total_page": obj.get('total_page'), "total_count": obj.get('total_count')})
5,336,093
def custom_db(app, CustomMetadata): """Database fixture.""" InvenioDB(app) if not database_exists(str(db_.engine.url)): create_database(str(db_.engine.url)) db_.create_all() yield db_ db_.session.remove() db_.drop_all()
5,336,094
def extendCorrespondingAtomsDictionary(names, str1, str2): """ extends the pairs based on list1 & list2 """ list1 = str1.split() list2 = str2.split() for i in range(1, len(list1)): names[list1[0]][list2[0]].append([list1[i], list2[i]]) names[list2[0]][list1[0]].append([list2[i], list1[i]]) return None
5,336,095
def _device_name(data): """Return name of device tracker.""" if ATTR_BEACON_ID in data: return "{}_{}".format(BEACON_DEV_PREFIX, data['name']) return data['device']
5,336,096
def get_share_path( storage_server: StorageServer, storage_index: bytes, sharenum: int ) -> FilePath: """ Get the path to the given storage server's storage for the given share. """ return ( FilePath(storage_server.sharedir) .preauthChild(storage_index_to_dir(storage_index)) .child("{}".format(sharenum)) )
5,336,097
def focal_loss_with_prob(prob, target, weight=None, gamma=2.0, alpha=0.25, reduction='mean', avg_factor=None): """A variant of Focal Loss used in TOOD.""" target_one_hot = prob.new_zeros(len(prob), len(prob[0]) + 1) target_one_hot = target_one_hot.scatter_(1, target.unsqueeze(1), 1)[:, :-1] flatten_alpha = torch.empty_like(prob).fill_(1 - alpha) flatten_alpha[target_one_hot == 1] = alpha pt = torch.where(target_one_hot == 1, prob, 1 - prob) ce_loss = F.binary_cross_entropy(prob, target_one_hot, reduction='none') loss = flatten_alpha * torch.pow(1 - pt, gamma) * ce_loss if weight is not None: weight = weight.reshape(-1, 1) loss = weight_reduce_loss(loss, weight, reduction, avg_factor) return loss
5,336,098
def root_key_from_seed(seed): """This derives your master key the given seed. Implemented in ripple-lib as ``Seed.prototype.get_key``, and further is described here: https://ripple.com/wiki/Account_Family#Root_Key_.28GenerateRootDeterministicKey.29 """ seq = 0 while True: private_gen = from_bytes(first_half_of_sha512( b''.join([seed, to_bytes(seq, 4)]))) seq += 1 if curves.SECP256k1.order >= private_gen: break public_gen = curves.SECP256k1.generator * private_gen # Now that we have the private and public generators, we apparently # have to calculate a secret from them that can be used as a ECDSA # signing key. secret = i = 0 public_gen_compressed = ecc_point_to_bytes_compressed(public_gen) while True: secret = from_bytes(first_half_of_sha512( b"".join([ public_gen_compressed, to_bytes(0, 4), to_bytes(i, 4)]))) i += 1 if curves.SECP256k1.order >= secret: break secret = (secret + private_gen) % curves.SECP256k1.order # The ECDSA signing key object will, given this secret, then expose # the actual private and public key we are supposed to work with. key = SigningKey.from_secret_exponent(secret, curves.SECP256k1) # Attach the generators as supplemental data key.private_gen = private_gen key.public_gen = public_gen return key
5,336,099