content
stringlengths
22
815k
id
int64
0
4.91M
def capitalize_title(title): """Convert the first letter of each word in the title to uppercase if needed. :param title: str - title string that needs title casing. :return: str - title string in title case (first letters capitalized). """ pass
5,335,700
def persist_bra(con: Connection, bra: List[Dict]): """ This function is dumb, because it does not take care of the case when bra already exist """ with con.begin(): for entities in bra: for e, data in entities.items(): # https://docs.sqlalchemy.org/en/13/core/tutorial.html#executing-multiple-statements if isinstance(data, Generator): # execute is not capable of understanding a generator. But it understand list. # behind the scene, the DBAPI `executemany` is called. intermediate_data = list() for x in data: if x: intermediate_data.append(x) data = intermediate_data # data can be null (generator yield None) then no need to execute if data: con.execute(insert(e), data)
5,335,701
def compare_dicts(cloud1, cloud2): """ Compare the dicts containing cloud images or flavours """ if len(cloud1) != len(cloud2): return False for item in cloud1: if item in cloud2: if cloud1[item] != cloud2[item]: return False else: return False return True
5,335,702
def ajax_stats(): """ 获取客户统计 :return: """ time_based = request.args.get('time_based', 'hour') result_customer_middleman = customer_middleman_stats(time_based) result_customer_end_user = customer_end_user_stats(time_based) line_chart_data = { 'labels': [label for label, _ in result_customer_middleman], 'datasets': [ { 'label': '同行', 'backgroundColor': 'rgba(220,220,220,0.5)', 'borderColor': 'rgba(220,220,220,1)', 'pointBackgroundColor': 'rgba(220,220,220,1)', 'pointBorderColor': '#fff', 'pointBorderWidth': 2, 'data': [data for _, data in result_customer_middleman] }, { 'label': '终端', 'backgroundColor': 'rgba(151,187,205,0.5)', 'borderColor': 'rgba(151,187,205,1)', 'pointBackgroundColor': 'rgba(151,187,205,1)', 'pointBorderColor': '#fff', 'pointBorderWidth': 2, 'data': [data for _, data in result_customer_end_user] } ] } return json.dumps(line_chart_data, default=json_default)
5,335,703
def check_output(dut, trace): """Check data written to the output FIFO for correctness. The coroutine monitors the data written to the FIFO and checks whether it matches the data of the input trace file. """ # get trace size trace_size = trace.size() # check data written to fifo for correctness for i in range(trace_size*8/AXI_BIT_WIDTH): # wait for fifo wr enable while True: yield RisingEdge(dut.clk) # make sure module active status signal is high check_value("status_active_o", int(dut.status_active_o), 1) if int(dut.fifo_wr_en_o): # output fifo data is valid break # the order of the 8 byte words is reversed in the 64 byte output word output = (int(dut.fifo_din_o) & 2**64-1) << 448 output |= ((int(dut.fifo_din_o) >> 64) & 2**64-1) << 384 output |= ((int(dut.fifo_din_o) >> 128) & 2**64-1) << 320 output |= ((int(dut.fifo_din_o) >> 192) & 2**64-1) << 256 output |= ((int(dut.fifo_din_o) >> 256) & 2**64-1) << 192 output |= ((int(dut.fifo_din_o) >> 320) & 2**64-1) << 128 output |= ((int(dut.fifo_din_o) >> 384) & 2**64-1) << 64 output |= (int(dut.fifo_din_o) >> 448) & 2**64-1 # get exepcted output output_ref = trace.read_reverse_byte_order(i*AXI_BIT_WIDTH/8, AXI_BIT_WIDTH/8) # make sure values match check_value("fifo_din_o", output_ref, output) # wait one clock cycle and make sure active signal is low then yield RisingEdge(dut.clk) check_value("status_active_o", int(dut.status_active_o), 0)
5,335,704
def str2int(string_with_int): """ Collect digits from a string """ return int("".join([char for char in string_with_int if char in string.digits]) or 0)
5,335,705
def grid_to_3d(reward: np.ndarray) -> np.ndarray: """Convert gridworld state-only reward R[i,j] to 3D reward R[s,a,s'].""" assert reward.ndim == 2 reward = reward.flatten() ns = reward.shape[0] return state_to_3d(reward, ns, 5)
5,335,706
def find_routes(paths) -> list: """returns routes as tuple from path as list\ like 1,2,3 --> (1,2)(2,3)""" routes = [] for path in paths: for i in range(len(path)): try: route = (path[i], path[i + 1]) if route not in routes: routes.append(route) except IndexError: pass return routes
5,335,707
def plot_class_distributions( training_data_filepath, test_data_filepath, figures_folderpath ): """Plots the training set and test set class distributions""" # Load the training and test data project_dir = Path(__file__).resolve().parents[2] train_set_path = str(project_dir) + training_data_filepath _, train_labels = torch.load(train_set_path) test_set_path = str(project_dir) + test_data_filepath _, test_labels = torch.load(test_set_path) # Plot the data distribution of the fish train and test sets names = ["Training", "Test"] labels = [train_labels, test_labels] for i in range(2): f = plt.figure(figsize=(12, 8)) plt.hist(labels[i].numpy(), density=False, bins=30) plt.ylabel("Count") plt.xlabel("Class ID") f.savefig( project_dir.joinpath(figures_folderpath).joinpath( names[i] + "_Class_Distribution.pdf" ), bbox_inches="tight", )
5,335,708
def z_step_ncg_hess_(Z, v, Y, F, phi, C_Z, eta_Z): """A wrapper of the hess-vector product for ncg calls.""" return z_step_tron_hess(v, Y, F, phi, C_Z, eta_Z)
5,335,709
def test_table_no_envvar(): """Tests that `table()` raises an exception in the absence of the table name env var.""" assert 'DYNAMODB_TABLE' not in os.environ dynamodb._table = None with pytest.raises(RuntimeError): dynamodb.table()
5,335,710
def list_servers(**kwargs) -> "list[NovaServer]": """List all servers under the current project. Args: kwargs: Keyword arguments, which will be passed to :func:`novaclient.v2.servers.list`. For example, to filter by instance name, provide ``search_opts={'name': 'my-instance'}`` Returns: All servers associated with the current project. """ return nova().servers.list(**kwargs)
5,335,711
def resolve_xref( app: Sphinx, env: BuildEnvironment, node: nodes.Node, contnode: nodes.Node, ) -> Optional[nodes.reference]: """ Resolve as-yet-unresolved XRefs for :rst:role:`tconf` roles. :param app: The Sphinx application. :param env: The Sphinx build environment. :param node: The cross reference node which has not yet been. :param contnode: The child node of the reference node, which provides the formatted text. """ if not isinstance(node, nodes.Element): # pragma: no cover return None if node.get("refdomain", None) != "std": # pragma: no cover return None elif node.get("reftype", None) != "tconf": # pragma: no cover return None elif not node.get("reftarget"): # pragma: no cover return None std_domain = cast(StandardDomain, env.get_domain("std")) objtypes = std_domain.objtypes_for_role("tconf") or [] reftarget = node["reftarget"] candidates = [] for (obj_type, obj_name), (docname, labelid) in std_domain.objects.items(): if not docname: # pragma: no cover continue if obj_type in objtypes: if obj_name.endswith(f".{reftarget}"): candidates.append((docname, labelid, obj_name)) if not candidates: return None # pragma: no cover elif len(candidates) > 1: logger.warning( __("more than one target found for cross-reference %r: %s"), reftarget, ", ".join(c[2] for c in candidates), type="ref", subtype="tconf", location=node, ) return make_refnode( app.builder, env.docname, candidates[0][0], # docname candidates[0][1], # labelid contnode, )
5,335,712
def deploy_tester_contract( web3, contracts_manager, deploy_contract, contract_deployer_address, get_random_address, ): """Returns a function that can be used to deploy a named contract, using conract manager to compile the bytecode and get the ABI""" def f(contract_name, libs=None, args=None): json_contract = contracts_manager.get_contract(contract_name) contract = deploy_contract( web3, contract_deployer_address, json_contract['abi'], json_contract['bin'], args, ) return contract return f
5,335,713
def ccsValidator(results=None): """ Persist standard file patterns, e.g., '*.fits', 'pd-values*.txt', 'Photo*.txt', using lcatr.schema. """ if results is None: results = [] files = glob.glob('*/*.fits') files += glob.glob('*/*.txt') files += glob.glob('pd-values*.txt') files += glob.glob('*.png') files += glob.glob('*.seq') unique_files = set(files) results.extend([lcatr.schema.fileref.make(item) for item in unique_files]) results.extend(siteUtils.jobInfo()) results = siteUtils.persist_ccs_versions(results) #hn results = siteUtils.persist_reb_info(results) lcatr.schema.write_file(results) lcatr.schema.validate_file()
5,335,714
def make_hashable_params(params): """ Checks to make sure that the parameters submitted is hashable. Args: params(dict): Returns: """ tuple_params = [] for key, value in params.items(): if isinstance(value, dict): dict_tuple = tuple([(key2, value2) for key2, value2 in value.items()]) tuple_params.append(dict_tuple) else: if isinstance(value, (list, set)): tuple_params.append((key, tuple(value))) else: tuple_params.append((key, value)) tuple_params = tuple(tuple_params) try: hash(tuple_params) except TypeError: raise TypeError('The values of keywords given to this class must be hashable.') return tuple_params
5,335,715
def check_member_role(member: discord.Member, role_id: int) -> bool: """ Checks if the Member has the Role """ return any(role.id == role_id for role in member.roles)
5,335,716
def test_to_graph_should_return_dct_identifier_as_graph() -> None: """It returns a dct_identifier graph isomorphic to spec.""" simpletype = SimpleType() simpletype.identifier = "http://example.com/simpletypes/1" simpletype.dct_identifier = "123456789" src = """ @prefix dct: <http://purl.org/dc/terms/> . @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> . @prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> . @prefix dcat: <http://www.w3.org/ns/dcat#> . @prefix modelldcatno: <https://data.norge.no/vocabulary/modelldcatno#> . <http://example.com/simpletypes/1> a modelldcatno:SimpleType ; dct:identifier "123456789"; . """ g1 = Graph().parse(data=simpletype.to_rdf(), format="turtle") g2 = Graph().parse(data=src, format="turtle") assert_isomorphic(g1, g2)
5,335,717
def tag_bedpe(b, beds, verbose=False): """ Tag each end of a BEDPE with a set of (possibly many) query BED files. For example, given a BEDPE of interacting fragments from a Hi-C experiment, identify the contacts between promoters and ChIP-seq peaks. In this case, promoters and ChIP-seq peaks of interest would be provided as BED files. The strategy is to split the BEDPE into two separate files. Each file is intersected independently with the set of queries. The results are then iterated through in parallel to tie the ends back together. It is this iterator that is returned (see example below). Parameters ---------- bedpe : str BEDPE-format file. Must be name-sorted. queries : dict Dictionary of BED/GFF/GTF/VCF files to use. After splitting the BEDPE, these query files (values in the dictionary) will be passed as the `-b` arg to `bedtools intersect`. The keys are passed as the `names` argument for `bedtools intersect`. Returns ------- Tuple of (iterator, n, extra). `iterator` is described below. `n` is the total number of lines in the BEDPE file, which is useful for calculating percentage complete for downstream work. `extra` is the number of extra fields found in the BEDPE (also useful for downstream processing). `iterator` yields tuples of (label, end1_hits, end2_hits) where `label` is the name field of one line of the original BEDPE file. `end1_hits` and `end2_hits` are each iterators of BED-like lines representing all identified intersections across all query BED files for end1 and end2 for this pair. Recall that BEDPE format defines a single name and a single score for each pair. For each item in `end1_hits`, the fields are:: chrom1 start1 end1 name score strand1 [extra fields] query_label fields_from_query_intersecting_end1 where `[extra fields]` are any additional fields from the original BEDPE, `query_label` is one of the keys in the `beds` input dictionary, and the remaining fields in the line are the intersecting line from the corresponding BED file in the `beds` input dictionary. Similarly, each item in `end2_hits` consists of: chrom2 start2 end2 name score strand2 [extra fields] query_label fields_from_query_intersecting_end2 At least one line is reported for every line in the BEDPE file. If there was no intersection, the standard BEDTools null fields will be shown. In `end1_hits` and `end2_hits`, a line will be reported for each hit in each query. Example ------- Consider the following BEDPE (where "x1" is an aribtrary extra field). >>> bedpe = pybedtools.example_bedtool('test_bedpe.bed') >>> print(bedpe) # doctest: +NORMALIZE_WHITESPACE chr1 1 10 chr1 50 90 pair1 5 + - x1 chr1 2 15 chr1 200 210 pair2 1 + + y1 <BLANKLINE> And the following transcription start sites (TSSes) in BED4 format: >>> tsses = pybedtools.example_bedtool('test_tsses.bed') >>> print(tsses) # doctest: +NORMALIZE_WHITESPACE chr1 5 6 gene1 chr1 60 61 gene2 chr1 88 89 gene3 <BLANKLINE> And the following called peaks as BED6: >>> peaks = pybedtools.example_bedtool('test_peaks.bed') >>> print(peaks) # doctest: +NORMALIZE_WHITESPACE chr1 3 4 peak1 50 . <BLANKLINE> Then we can get the following iterator, n, and extra: >>> from pybedtools.contrib.long_range_interaction import tag_bedpe >>> iterator, n, extra = tag_bedpe(bedpe, {'tss': tsses, 'pk': peaks}) >>> print(n) 2 >>> print(extra) 1 The following illustrates that each item in the iterator represents one pair, and each item in each group represents an intersection with one end: >>> for (label, end1_hits, end2_hits) in iterator: ... print('PAIR = {}'.format(label)) ... print('end1_hits:') ... for i in end1_hits: ... print(i, end='') ... print('end2_hits:') ... for i in end2_hits: ... print(i, end='') # doctest: +NORMALIZE_WHITESPACE PAIR = pair1 end1_hits: chr1 1 10 pair1 5 + x1 pk chr1 3 4 peak1 50 . 1 chr1 1 10 pair1 5 + x1 tss chr1 5 6 gene1 1 end2_hits: chr1 50 90 pair1 5 - x1 tss chr1 60 61 gene2 1 chr1 50 90 pair1 5 - x1 tss chr1 88 89 gene3 1 PAIR = pair2 end1_hits: chr1 2 15 pair2 1 + y1 pk chr1 3 4 peak1 50 . 1 chr1 2 15 pair2 1 + y1 tss chr1 5 6 gene1 1 end2_hits: chr1 200 210 pair2 1 + y1 . -1 -1 . -1 . 0 See the `cis_trans_interactions()` function for one way of summarizing these data. """ b = pybedtools.BedTool(b) # Figure out if the supplied bedpe had any extra fields. If so, the fields # are repeated in each of the split output files. observed = b.field_count() extra = observed - 10 extra_inds = [10 + i for i in range(extra)] end1_fn = pybedtools.BedTool._tmp() end2_fn = pybedtools.BedTool._tmp() # Performance notes: # We don't need the overhead of converting every line into # a pybedtools.Interval object just so we can grab the fields. Doing so # takes 3.5x more time than simply splitting each line on a tab. if verbose: print('splitting BEDPE into separate files') n = 0 with open(end1_fn, 'w') as end1_out, open(end2_fn, 'w') as end2_out: for line in open(b.fn): n += 1 f = line.strip().split('\t') end1_out.write( '\t'.join( (f[i] for i in [0, 1, 2, 6, 7, 8] + extra_inds)) + '\n') end2_out.write( '\t'.join( (f[i] for i in [3, 4, 5, 6, 7, 9] + extra_inds)) + '\n') # Performance notes: # # For small BEDPE and large set of query files, it would be faster to sort # these independently, intersect with sorted=True, and then re-sort by name # for the grouping. For large BEDPE, I don't think the sorted=True # performance gain outweighs the hit from sorting twice. # # On the other hand, if BEDPE was coord-sorted in the first place, only # end2 would need to be sorted and re-sorted. On the other (third!?) hand, # BEDPE creation from BAM implies name-sorting, so it's probably not # reasonable to assume coord-sorted. # # In the end: don't do any sorting. end1_bt = pybedtools.BedTool(end1_fn) end2_bt = pybedtools.BedTool(end2_fn) names, fns = [], [] for name, fn in beds.items(): names.append(name) if isinstance(fn, pybedtools.BedTool): fns.append(fn.fn) else: fns.append(fn) if verbose: print('intersecting end 1') end1_hits = end1_bt.intersect(list(fns), names=names, wao=True) if verbose: print('intersecting end 2') end2_hits = end2_bt.intersect(list(fns), names=names, wao=True) grouped_end1 = itertools.groupby(end1_hits, lambda f: f[3]) grouped_end2 = itertools.groupby(end2_hits, lambda f: f[3]) def gen(): for (label1, group1), (label2, group2) \ in itertools.izip(grouped_end1, grouped_end2): assert label1 == label2 yield label1, group1, group2 return gen(), n, extra
5,335,718
def my_example_serial(datadir="./data", firstfile=0, lastfile=11): """ Calculates the mean for numbers across different data files. Is only run on one process to validate the results of `my_example()`. If the data files do not exist, creates files containing random numbers. Parameters ---------- datadir: String. Default: './data'. The directory the data files are located in. firstfile, lastfile: Integers. Default: 0, 11. The range of file numbers that are being read. Returns ---------- None. """ print("Running my example in serial.") # Check to see if the data directory exists. if not os.path.exists(datadir) and rank == 0: os.makedirs(datadir) # If there aren't any data files, create some data. fname = "{0}/data_{1}.txt".format(datadir, firstfile) if not os.path.isfile(fname): create_data(datadir=datadir, firstfile=firstfile, lastfile=lastfile) sum_local = 0 # Initialize. N_local = 0 # Now each Task will get its own set of files to read in. # This loop ensures each file is only read one. for filenr in range(firstfile, lastfile + 1): fname = "{0}/data_{1}.txt".format(datadir, filenr) data_thisfile = np.loadtxt(fname) # Sum up the data from this file. sum_local += sum(data_thisfile) N_local += len(data_thisfile) print("There were {0} values processed with a sum of {1} and mean of {2}" .format(N_local, sum_local, sum_local / N_local))
5,335,719
def point(x: float, y: float, z: float) -> Tuple: """Create a point.""" return Tuple(x, y, z, 1.0)
5,335,720
def partial_pipeline_data(backend, user=None, *args, **kwargs): # pragma: no cover """ Add the session key to a signed base64 encoded signature on the email request. """ data = backend.strategy.request_data() if 'signature' in data: try: signed_details = signing.loads(data['signature'], key=settings.SECRET_KEY) session = Session.objects.get(pk=signed_details['session_key']) except (BadSignature, Session.DoesNotExist) as e: raise InvalidEmail(backend) session_details = session.get_decoded() backend.strategy.session_set('email_validation_address', session_details['email_validation_address']) backend.strategy.session_set('next', session_details.get('next')) backend.strategy.session_set('partial_pipeline', session_details['partial_pipeline']) backend.strategy.session_set(backend.name + '_state', session_details.get(backend.name + '_state')) backend.strategy.session_set(backend.name + 'unauthorized_token_name', session_details.get(backend.name + 'unauthorized_token_name')) partial = backend.strategy.session_get('partial_pipeline', None) if partial: idx, backend_name, xargs, xkwargs = \ backend.strategy.partial_from_session(partial) if backend_name == backend.name: kwargs.setdefault('pipeline_index', idx) if user: # don't update user if it's None kwargs.setdefault('user', user) kwargs.setdefault('request', backend.strategy.request_data()) xkwargs.update(kwargs) return xargs, xkwargs else: backend.strategy.clean_partial_pipeline()
5,335,721
def arrayinv(F, Fx): """ Args: F: dx.ds function value at x Fx: dx.dx.ds derivative of function at x Returns: """ return np.array([np.linalg.solve(a, b) for a, b in zip(Fx.swapaxes(0,2), F.T)]).T
5,335,722
def schedule_list(req): """List scheduled jobs """ schedule = [] if os.path.exists(SCHEDULE): with open(SCHEDULE) as f: for n, a, t in csv.reader(f): schedule.append({'Name': n, 'Timer': t, 'Action': a}) return {'Err': '', 'Schedule': schedule}
5,335,723
def mil(val): """convert mil to mm""" return float(val) * 0.0254
5,335,724
def ask_number(question, low, high): """Poproś o podanie liczby z określonego zakresu.""" response = None while type(response) != int: try: response = int(input(question)) while response not in range(low, high): response = int(input(question)) except ValueError: print("Value must be a number") return response
5,335,725
def CheckGypFile(gypfile): """Check |gypfile| for common mistakes.""" if not os.path.exists(gypfile): # The file has been deleted. return with open(gypfile) as fp: return CheckGypData(gypfile, fp.read())
5,335,726
def _beams_longitude_latitude( ping_header: PingHeader, along_track: numpy.ndarray, across_track: numpy.ndarray ) -> Tuple[numpy.ndarray, numpy.ndarray]: """ Calculate the longitude and latitude for each beam. https://en.wikipedia.org/wiki/Geographic_coordinate_system For lonitude and latitude calculations: * lat_m_sf = A - B * cos(2 * lat) + C * cos(4 * lat) - D * cos(6 * lat) * lon_m_sf = E * cos(lat) - F * cos(3 * lat) + G * cos(5 * lat) """ # see https://math.stackexchange.com/questions/389942/why-is-it-necessary-to-use-sin-or-cos-to-determine-heading-dead-reckoning # noqa: E501 lat_radians = math.radians(ping_header.latitude) coef_a = WGS84Coefficients.A.value coef_b = WGS84Coefficients.B.value coef_c = WGS84Coefficients.C.value coef_d = WGS84Coefficients.D.value coef_e = WGS84Coefficients.E.value coef_f = WGS84Coefficients.F.value coef_g = WGS84Coefficients.G.value lat_mtr_sf = ( coef_a - coef_b * math.cos(2 * lat_radians) + coef_c * math.cos(4 * lat_radians) - coef_d * math.cos(6 * lat_radians) ) lon_mtr_sf = ( coef_e * math.cos(lat_radians) - coef_f * math.cos(3 * lat_radians) + coef_g * math.cos(5 * lat_radians) ) delta_x = math.sin(math.radians(ping_header.heading)) delta_y = math.cos(math.radians(ping_header.heading)) lon2 = ( ping_header.longitude + delta_y / lon_mtr_sf * across_track + delta_x / lon_mtr_sf * along_track ) lat2 = ( ping_header.latitude - delta_x / lat_mtr_sf * across_track + delta_y / lat_mtr_sf * along_track ) return lon2, lat2
5,335,727
def true_range_nb(high: tp.Array2d, low: tp.Array2d, close: tp.Array2d) -> tp.Array2d: """Calculate true range.""" prev_close = generic_nb.fshift_nb(close, 1) tr1 = high - low tr2 = np.abs(high - prev_close) tr3 = np.abs(low - prev_close) tr = np.empty(prev_close.shape, dtype=np.float_) for col in range(tr.shape[1]): for i in range(tr.shape[0]): tr[i, col] = max(tr1[i, col], tr2[i, col], tr3[i, col]) return tr
5,335,728
def laplacian_operator(data): """ apply laplacian operator on data """ lap = [] lap.append(0.0) for index in range(1, len(data) - 1): lap.append((data[index + 1] + data[index - 1]) / 2.0 - data[index]) lap.append(0.0) return lap
5,335,729
def _stringmatcher(pattern): """ accepts a string, possibly starting with 're:' or 'literal:' prefix. returns the matcher name, pattern, and matcher function. missing or unknown prefixes are treated as literal matches. helper for tests: >>> def test(pattern, *tests): ... kind, pattern, matcher = _stringmatcher(pattern) ... return (kind, pattern, [bool(matcher(t)) for t in tests]) exact matching (no prefix): >>> test('abcdefg', 'abc', 'def', 'abcdefg') ('literal', 'abcdefg', [False, False, True]) regex matching ('re:' prefix) >>> test('re:a.+b', 'nomatch', 'fooadef', 'fooadefbar') ('re', 'a.+b', [False, False, True]) force exact matches ('literal:' prefix) >>> test('literal:re:foobar', 'foobar', 're:foobar') ('literal', 're:foobar', [False, True]) unknown prefixes are ignored and treated as literals >>> test('foo:bar', 'foo', 'bar', 'foo:bar') ('literal', 'foo:bar', [False, False, True]) """ if pattern.startswith('re:'): pattern = pattern[3:] try: regex = re.compile(pattern) except re.error, e: raise error.ParseError(_('invalid regular expression: %s') % e) return 're', pattern, regex.search elif pattern.startswith('literal:'): pattern = pattern[8:] return 'literal', pattern, pattern.__eq__
5,335,730
def enu_to_ecef(ref_lat_rad, ref_lon_rad, ref_alt_m, e_m, n_m, u_m): """Convert ENU coordinates relative to reference location to ECEF coordinates. This converts local east-north-up (ENU) coordinates relative to a given reference position to earth-centered, earth-fixed (ECEF) cartesian coordinates. The reference position is specified by its geodetic latitude, longitude and altitude. Parameters ---------- ref_lat_rad, ref_lon_rad : float or array Geodetic latitude and longitude of reference position, in radians ref_alt_m : float or array Geodetic altitude of reference position, in metres above WGS84 ellipsoid e_m, n_m, u_m : float or array East, North, Up coordinates, in metres Returns ------- x_m, y_m, z_m : float or array X, Y, Z coordinates, in metres """ # ECEF coordinates of reference point ref_x_m, ref_y_m, ref_z_m = lla_to_ecef(ref_lat_rad, ref_lon_rad, ref_alt_m) sin_lat, cos_lat = np.sin(ref_lat_rad), np.cos(ref_lat_rad) sin_lon, cos_lon = np.sin(ref_lon_rad), np.cos(ref_lon_rad) x_m = ref_x_m - sin_lon*e_m - sin_lat*cos_lon*n_m + cos_lat*cos_lon*u_m y_m = ref_y_m + cos_lon*e_m - sin_lat*sin_lon*n_m + cos_lat*sin_lon*u_m z_m = ref_z_m + cos_lat*n_m + sin_lat*u_m return x_m, y_m, z_m
5,335,731
def yield_nodes(sitemap): """Generator for all node specifications in a sitemap. It yields tuples `(code, depth)` whereas `code` is a string representation of the node and `depth` is a number corresponding to the depth the node corresponds to. """ max_headline_depth = 6 headline_re = r"(={1,%s})(.*)\1" % max_headline_depth list_re = r"([*]+)(.*)" for line in sitemap.splitlines(): for regex, depth_start in ((headline_re, 0), (list_re, max_headline_depth)): match = re.match(regex, line) if match: code = match.group(2).strip() depth = depth_start + len(match.group(1)) yield create_empty_node(code, depth)
5,335,732
def is_file_url(share_url: str) -> bool: """判断是否为文件的分享链接""" base_pat = r'https?://[a-zA-Z0-9-]*?\.?lanzou[a-z].com/.+' # 子域名可个性化设置或者不存在 user_pat = r'https?://[a-zA-Z0-9-]*?\.?lanzou[a-z].com/i[a-zA-Z0-9]{5,}/?' # 普通用户 URL 规则 if not re.fullmatch(base_pat, share_url): return False elif re.fullmatch(user_pat, share_url): return True else: # VIP 用户的 URL 很随意 try: html = requests.get(share_url, headers=headers).text html = remove_notes(html) return True if re.search(r'class="fileinfo"|id="file"|文件描述', html) else False except (requests.RequestException, Exception): return False
5,335,733
def get_compton_fraction_artis(energy): """Gets the Compton scattering/absorption fraction and angle following the scheme in ARTIS Parameters ---------- energy : float Energy of the gamma-ray Returns ------- float Scattering angle float Compton scattering fraction """ energy_norm = kappa_calculation(energy) fraction_max = 1.0 + 2.0 * energy_norm fraction_min = 1.0 normalization = np.random.random() * compton_opacity_partial( energy_norm, fraction_max ) epsilon = 1.0e20 count = 0 while epsilon > 1.0e-4: fraction_try = (fraction_max + fraction_min) / 2.0 sigma_try = compton_opacity_partial(energy_norm, fraction_try) if sigma_try > normalization: fraction_max = fraction_try epsilon = (sigma_try - normalization) / normalization else: fraction_min = fraction_try epsilon = (normalization - sigma_try) / normalization count += 1 if count > 1000: print("Error, failure to get a Compton fraction") break angle = np.arccos(1.0 - ((fraction_try - 1) / energy_norm)) return angle, fraction_try
5,335,734
def ConfigureNoOpAuthIfNeeded(): """Sets up no-op auth handler if no boto credentials are configured.""" if not HasConfiguredCredentials(): if (config.has_option('Credentials', 'gs_service_client_id') and not HAS_CRYPTO): if system_util.InvokedViaCloudSdk(): raise CommandException('\n'.join( textwrap.wrap( 'Your gsutil is configured with an OAuth2 service account, but ' 'you do not have PyOpenSSL or PyCrypto 2.6 or later installed. ' 'Service account authentication requires one of these libraries; ' 'please reactivate your service account via the gcloud auth ' 'command and ensure any gcloud packages necessary for ' 'service accounts are present.'))) else: raise CommandException('\n'.join( textwrap.wrap( 'Your gsutil is configured with an OAuth2 service account, but ' 'you do not have PyOpenSSL or PyCrypto 2.6 or later installed. ' 'Service account authentication requires one of these libraries; ' 'please install either of them to proceed, or configure a ' 'different type of credentials with "gsutil config".'))) else: # With no boto config file the user can still access publicly readable # buckets and objects. from gslib import no_op_auth_plugin # pylint: disable=unused-variable
5,335,735
def is_argspec_compatible_with_types(argspec, *args, **kwargs): """Determines if functions matching 'argspec' accept given 'args'/'kwargs'. Args: argspec: An instance of inspect.ArgSpec to verify agains the arguments. *args: Zero or more positional arguments, all of which must be instances of computation_types.Type or something convertible to it by computation_types.to_type(). **kwargs: Zero or more keyword arguments, all of which must be instances of computation_types.Type or something convertible to it by computation_types.to_type(). Returns: True or false, depending on the outcome of the test. Raises: TypeError: if the arguments are of the wrong computation_types. """ try: callargs = get_callargs_for_argspec(argspec, *args, **kwargs) if not argspec.defaults: return True except TypeError: return False # As long as we have been able to construct 'callargs', and there are no # default values to verify against the given types, there is nothing more # to do here, otherwise we have to verify the types of defaults against # the types we've been given as parameters to this function. num_specargs_without_defaults = len(argspec.args) - len(argspec.defaults) for idx, default_value in enumerate(argspec.defaults): if default_value is not None: arg_name = argspec.args[num_specargs_without_defaults + idx] call_arg = callargs[arg_name] if call_arg is not default_value: arg_type = computation_types.to_type(call_arg) default_type = type_utils.infer_type(default_value) if not type_utils.is_assignable_from(arg_type, default_type): return False return True
5,335,736
def get_span_feats_stopwords(stopwords): """Get a span dependency tree unary function""" return partial(get_span_feats, stopwords=stopwords)
5,335,737
def get_argument_parser(argparser): """Augments the given ArgumentParser for use with the Bonobo ETL framework.""" return bonobo.get_argument_parser(parser=argparser)
5,335,738
def input_file_path(directory: str, file_name: str) -> Path: """Given the string paths to the result directory, and the input file return the path to the file. 1. check if the input_file is an absolute path, and if so, return that. 2. if the input_file is a relative path, combine it with the result_directory and return that. The resultant path must exist and be a file, otherwise raise an FileNotFoundException. """ path_to_file = Path(file_name) if path_to_file.is_absolute() and path_to_file.is_file(): return path_to_file input_directory_path = Path(directory) path_to_file = input_directory_path / path_to_file if path_to_file.is_file(): return path_to_file.resolve() else: raise FileNotFoundError( 'did not find the input file using result_directory={directory}, input_file={input_file}'.format( directory=directory, input_file=file_name ) )
5,335,739
def identify_in_large_person_group(subscription_key): """IdentifyInLargePersonGroup. This will identify faces in a large person group. """ face_base_url = "https://{}.api.cognitive.microsoft.com".format(FACE_LOCATION) face_client = FaceClient(endpoint=face_base_url, credentials=CognitiveServicesCredentials(subscription_key)) image_url_prefix = "https://csdx.blob.core.windows.net/resources/Face/Images/" target_image_file_dictionary = { "Family1-Dad": ["Family1-Dad1.jpg", "Family1-Dad2.jpg"], "Family1-Mom": ["Family1-Mom1.jpg", "Family1-Mom2.jpg"], "Family1-Son": ["Family1-Son1.jpg", "Family1-Son2.jpg"], "Family1-Daughter": ["Family1-Daughter1.jpg", "Family1-Daughter2.jpg"], "Family2-Lady": ["Family2-Lady1.jpg", "Family2-Lady2.jpg"], "Family2-Man": ["Family2-Man1.jpg", "Family2-Man2.jpg"] } source_image_file_name = "identification1.jpg" # Create a large person group. large_person_group_id = str(uuid.uuid4()) print("Create a large person group {}.".format(large_person_group_id)) face_client.large_person_group.create(large_person_group_id=large_person_group_id, name=large_person_group_id) for target_image_file_dictionary_name in target_image_file_dictionary.keys(): person_id = face_client.large_person_group_person.create(large_person_group_id=large_person_group_id, name=target_image_file_dictionary_name).person_id # Create a person group person. person = Person(name=target_image_file_dictionary_name, user_data="Person for sample", person_id=person_id) print("Create a large person group person {}.".format(person.name)) for target_image_file_name in target_image_file_dictionary[target_image_file_dictionary_name]: # Add face to the person group person print("Add face to the large person group person {} from image.".format(target_image_file_dictionary_name, target_image_file_name)) face = face_client.large_person_group_person.add_face_from_url( large_person_group_id=large_person_group_id, person_id=person.person_id, url=image_url_prefix + target_image_file_name, user_data=target_image_file_name ) if not face: raise Exception("No persisted face from image {}".format(target_image_file_name)) # Start to train the large person group. print("Train large person group {}.".format(large_person_group_id)) face_client.large_person_group.train(large_person_group_id=large_person_group_id) training_status = face_client.large_person_group.get_training_status(large_person_group_id=large_person_group_id) print("Training status is {}".format(training_status.status)) if training_status.status == TrainingStatusType.failed: raise Exception("Training failed with message {}.".format(training_status.message)) # Detect faces from source image url and add detected face ids to source_face_ids source_face_ids = [detected_face.face_id for detected_face in _detect_faces_helper(face_client=face_client, image_url=image_url_prefix + source_image_file_name)] # Identify example of identifying faces towards large person group. identify_results = face_client.face.identify(face_ids=source_face_ids, large_person_group_id=large_person_group_id) if not identify_results: print("No person identified in the large person group for faces from the {}.".format(source_image_file_name)) return for identify_result in identify_results: person = face_client.large_person_group_person.get(large_person_group_id=large_person_group_id, person_id=identify_result.candidates[0].person_id) print("Person {} is identified for face: {} - {}, confidence: {}.".format( person.name, source_image_file_name, identify_result.face_id, identify_result.candidates[0].confidence) ) # Delete the person group. face_client.large_person_group.delete(large_person_group_id=large_person_group_id) print("Delete the large person group {}.\n".format(large_person_group_id))
5,335,740
def loss(S, K, n_samples=None): """Loss function for time-varying graphical lasso.""" if n_samples is None: n_samples = np.ones(S.shape[0]) return sum( -ni * logl(emp_cov, precision) for emp_cov, precision, ni in zip(S, K, n_samples))
5,335,741
def test_depth(): """Node.depth.""" root = Node("root") s0 = Node("sub0", parent=root) s0b = Node("sub0B", parent=s0) s0a = Node("sub0A", parent=s0) s1 = Node("sub1", parent=root) s1c = Node("sub1C", parent=s1) s1ca = Node("sub1Ca", parent=s1c) eq_(root.depth, 0) eq_(s0.depth, 1) eq_(s0b.depth, 2) eq_(s0a.depth, 2) eq_(s1.depth, 1) eq_(s1c.depth, 2) eq_(s1ca.depth, 3)
5,335,742
def flat_dict(df): """ Add each key-value of a nested dictionary that is saved in a dataframe, as a new column """ for col in df.columns: if type(df[col][0]) == dict: df = pd.concat( [df.drop([col], axis=1), df[col].apply(pd.Series)], axis=1) # sometimes a column is dropped but column 0 stays df = df.drop([0], axis=1, errors='ignore') return df
5,335,743
def train_agent(agent, environment, plot_flag=True, *args, **kwargs): """Train an agent in an environment. Parameters ---------- agent: AbstractAgent environment: AbstractEnvironment plot_flag: bool, optional. Other Parameters ---------------- See rollout_agent. """ agent.train() rollout_agent(environment, agent, *args, **kwargs) if plot_flag: for key in agent.logger.keys: plt.plot(agent.logger.get(key)) plt.xlabel("Episode") plt.ylabel(" ".join(key.split("_")).title()) plt.title(f"{agent.name} in {environment.name}") plt.show() print(agent)
5,335,744
async def run_setup_pys( targets_with_origins: TargetsWithOrigins, setup_py_subsystem: SetupPySubsystem, console: Console, python_setup: PythonSetup, distdir: DistDir, workspace: Workspace, union_membership: UnionMembership, ) -> SetupPy: """Run setup.py commands on all exported targets addressed.""" validate_args(setup_py_subsystem.args) # Get all exported targets, ignoring any non-exported targets that happened to be # globbed over, but erroring on any explicitly-requested non-exported targets. exported_targets: List[ExportedTarget] = [] explicit_nonexported_targets: List[Target] = [] for target_with_origin in targets_with_origins: tgt = target_with_origin.target if tgt.has_field(PythonProvidesField): exported_targets.append(ExportedTarget(tgt)) elif isinstance(target_with_origin.origin, AddressLiteralSpec): explicit_nonexported_targets.append(tgt) if explicit_nonexported_targets: raise TargetNotExported( "Cannot run setup.py on these targets, because they have no `provides=` clause: " f'{", ".join(so.address.spec for so in explicit_nonexported_targets)}' ) if setup_py_subsystem.transitive: # Expand out to all owners of the entire dep closure. transitive_targets = await Get( TransitiveTargets, Addresses(et.target.address for et in exported_targets) ) owners = await MultiGet( Get(ExportedTarget, OwnedDependency(tgt)) for tgt in transitive_targets.closure if is_ownable_target(tgt, union_membership) ) exported_targets = list(FrozenOrderedSet(owners)) py2 = is_python2( python_setup.compatibilities_or_constraints( target_with_origin.target.get(PythonInterpreterCompatibility).value for target_with_origin in targets_with_origins ) ) chroots = await MultiGet( Get(SetupPyChroot, SetupPyChrootRequest(exported_target, py2)) for exported_target in exported_targets ) # If args were provided, run setup.py with them; Otherwise just dump chroots. if setup_py_subsystem.args: setup_py_results = await MultiGet( Get( RunSetupPyResult, RunSetupPyRequest(exported_target, chroot, setup_py_subsystem.args), ) for exported_target, chroot in zip(exported_targets, chroots) ) for exported_target, setup_py_result in zip(exported_targets, setup_py_results): addr = exported_target.target.address.spec console.print_stderr(f"Writing dist for {addr} under {distdir.relpath}/.") workspace.write_digest(setup_py_result.output, path_prefix=str(distdir.relpath)) else: # Just dump the chroot. for exported_target, chroot in zip(exported_targets, chroots): addr = exported_target.target.address.spec provides = exported_target.provides setup_py_dir = distdir.relpath / f"{provides.name}-{provides.version}" console.print_stderr(f"Writing setup.py chroot for {addr} to {setup_py_dir}") workspace.write_digest(chroot.digest, path_prefix=str(setup_py_dir)) return SetupPy(0)
5,335,745
def test_safety_check(mocker, url, safety_check, should_error): """ Test kf_utils.dataservice.delete.safe_delete """ # Setup mocks mock_session = mocker.patch("kf_utils.dataservice.delete.Session")() mock_resp = MagicMock() mock_session.delete.return_value = mock_resp kfids = [f"PT_{i}" for i in range(2)] if should_error: with pytest.raises(Exception) as e: delete_kfids(url, kfids, safety_check=safety_check) assert "safety_check is ENABLED" in str(e) else: delete_kfids(url, kfids, safety_check=safety_check)
5,335,746
def list_tasks(): """ 显示所有任务列表,方便管理任务 :return: """ try: task_id = request.args.get("task_id") task_status = request.args.get('status') # 构造条件查询元组 task_info_list = list() tasks = TaskService.get_tasks_url_num(task_id=task_id, task_status=task_status) for task in tasks: hook_rule = task.hook_rule # RedisService.get_task(task.id)["hook_rule"] unscaned_urls_num = task.unscaned_urls_num scaned_urls_num = task.scaned_urls_num total_url_num = unscaned_urls_num + scaned_urls_num if task.task_status in [TaskStatus.KILLED, TaskStatus.DONE]: percent = 100 else: percent = 0 if total_url_num == 0 else int((scaned_urls_num / total_url_num) * 100) task_info_list.append({'receiver_emails': task.receivers_email, 'task_name': task.task_name, 'create_time': task.created_time.strftime("%Y-%m-%d %H:%M"), 'percent': percent, 'unscaned_url_num': unscaned_urls_num, 'scaned_url_num': scaned_urls_num, 'total_url_num': total_url_num, 'hook_rule': hook_rule, 'task_id': task.id, 'task_access_key': task.access_key, 'task_status': task.task_status, "create_user_name": task.create_user_name}) task_info_list.reverse() response = jsonify(status=200, message="查询成功", data=task_info_list) return response except Exception as e: logger.exception("show_current_tasks rasie error") if isinstance(e, BaseHunterException): return jsonify(status=400, message=str(e), data={"extra_info": "查询任务时传入非法的task_id"}) return jsonify(status=500, message="未知异常", data={"extra_info": "查询任务时出现未知异常,请联系管理员查看异常日志"})
5,335,747
def CRUD_remote_followers(author: Author, follower_dict_list: list): """ This will create, update or delete followers based on the remote responses args: author - The author to update the followers on follower_dict_list - The list of followers in private dict form to add to the author's list of followers return: None """ try: for author_dict in follower_dict_list: Author.objects.update_or_create(id=author_dict['id'], defaults=author_dict) ids = [author_dict['id'] for author_dict in follower_dict_list] followers = Author.objects.filter(id__in=ids) author.followers.set(followers) except Exception as e: print("CRUD_remote_followers exception : {}\n\n{}".format(type(e), str(e)))
5,335,748
def make_fixed_size( protein, shape_schema, msa_cluster_size, extra_msa_size, num_res=0, num_templates=0, ): """Guess at the MSA and sequence dimension to make fixed size.""" pad_size_map = { NUM_RES: num_res, NUM_MSA_SEQ: msa_cluster_size, NUM_EXTRA_SEQ: extra_msa_size, NUM_TEMPLATES: num_templates, } for k, v in protein.items(): # Don't transfer this to the accelerator. if k == "extra_cluster_assignment": continue shape = list(v.shape) schema = shape_schema[k] msg = "Rank mismatch between shape and shape schema for" assert len(shape) == len(schema), f"{msg} {k}: {shape} vs {schema}" pad_size = [ pad_size_map.get(s2, None) or s1 for (s1, s2) in zip(shape, schema) ] padding = [(0, p - v.shape[i]) for i, p in enumerate(pad_size)] padding.reverse() padding = list(itertools.chain(*padding)) if padding: protein[k] = torch.nn.functional.pad(v, padding) protein[k] = torch.reshape(protein[k], pad_size) return protein
5,335,749
def codegen_reload_data(): """Parameters to codegen used to generate the fn_urlhaus package""" reload_params = {"package": u"fn_urlhaus", "incident_fields": [], "action_fields": [], "function_params": [u"urlhaus_artifact_type", u"urlhaus_artifact_value"], "datatables": [], "message_destinations": [u"fn_urlhaus"], "functions": [u"fn_urlhaus", u"fn_urlhaus_submission"], "phases": [], "automatic_tasks": [], "scripts": [], "workflows": [u"example_urlhaus_lookup", u"example_urlhaus_url_submission"], "actions": [u"Example: URLhaus Lookup", u"Example: URLhaus URL Submission"] } return reload_params
5,335,750
def urls(page, baseurl=auto, direct=True, prev=True, next=True): """ Return a list of pagination URLs extracted form the page. When baseurl is None relative URLs are returned; pass baseurl to get absolute URLs. ``prev``, ``next`` and ``direct`` arguments control whether to return 'next page', 'previous page' links and links to specific pages. By default, all link types are returned. """ return get_shared_autopager().urls(page, baseurl, direct, prev, next)
5,335,751
def sinc_filter(audio: tf.Tensor, cutoff_frequency: tf.Tensor, window_size: int = 512, sample_rate: int = None, padding: Text = 'same') -> tf.Tensor: """Filter audio with sinc low-pass filter. Args: audio: Input audio. Tensor of shape [batch, audio_timesteps]. cutoff_frequency: Frequency cutoff for low-pass sinc filter. If the sample_rate is given, cutoff_frequency is in Hertz. If sample_rate is None, cutoff_frequency is normalized ratio (frequency/nyquist) in the range [0, 1.0]. Shape [batch_size, n_time, 1]. window_size: Size of the Hamming window to apply to the impulse. sample_rate: Optionally provide the sample rate. padding: Either 'valid' or 'same'. For 'same' the final output to be the same size as the input audio (audio_timesteps). For 'valid' the audio is extended to include the tail of the impulse response (audio_timesteps + window_size - 1). Returns: Filtered audio. Tensor of shape [batch, audio_timesteps + window_size - 1] ('valid' padding) or shape [batch, audio_timesteps] ('same' padding). """ impulse_response = sinc_impulse_response(cutoff_frequency, window_size=window_size, sample_rate=sample_rate) return fft_convolve(audio, impulse_response, padding=padding)
5,335,752
def _getDataFlows(blocks): """ Given a block dictonary from bifrost.proclog.load_by_pid(), return a list of chains that give the data flow. """ # Find out what rings we have to work with and which blocks are sources # or sinks rings = [] sources, sourceRings = [], [] sinks, sinkRings = [], [] for block in blocks.keys(): rins, routs = [], [] rFound = False for log in blocks[block].keys(): if log not in ('in', 'out'): continue for key in blocks[block][log]: if key[:4] == 'ring': rFound = True value = blocks[block][log][key] if value not in rings: rings.append( value ) if log == 'in': if value not in rins: rins.append( value ) else: if value not in routs: routs.append( value ) if rFound: if len(rins) == 0: sources.append( block ) sourceRings.extend( routs ) if len(routs) == 0: sinks.append( block ) sinkRings.extend( rins ) # Find out the chains chains = [] for refRing in rings: for block in blocks.keys(): rins, routs = [], [] for log in blocks[block].keys(): if log not in ('in', 'out'): continue for key in blocks[block][log]: if key[:4] == 'ring': value = blocks[block][log][key] if log == 'in': if value not in rins: rins.append( value ) else: if value not in routs: routs.append( value ) if refRing in routs: refBlock = block refROuts = routs for block in blocks.keys(): rins, routs = [], [] dtype = None for log in blocks[block].keys(): if log.startswith('sequence'): try: bits = blocks[block][log]['nbit'] if blocks[block][log]['complex']: bits *= 2 name = 'cplx' if blocks[block][log]['complex'] else 'real' dtype = '%s%i' % (name, bits) except KeyError: pass elif log not in ('in', 'out'): continue for key in blocks[block][log]: if key[:4] == 'ring': value = blocks[block][log][key] if log == 'in': if value not in rins: rins.append( value ) else: if value not in routs: routs.append( value ) for ring in rins: if ring in refROuts: #print refRing, rins, block chains.append( {'link':(refBlock,block), 'dtype':dtype} ) # Find out the associations (based on core binding) associations = [] for block in blocks: refBlock = block refCores = [] for i in xrange(32): try: refCores.append( blocks[block]['bind']['core%i' % i] ) except KeyError: break if len(refCores) == 0: continue for block in blocks: if block == refBlock: continue cores = [] for i in xrange(32): try: cores.append( blocks[block]['bind']['core%i' % i] ) except KeyError: break if len(cores) == 0: continue for core in cores: if core in refCores: if (refBlock,block) not in associations: if (block,refBlock) not in associations: associations.append( (refBlock, block) ) return sources, sinks, chains, associations
5,335,753
def find_lowest_cost_node(costs: dict, processed: list) -> dict: """Return the node with the lowest cost""" lowest_cost = float("inf") # Infinity lowest_cost_node = None for node in costs: cost = costs[node] if cost < lowest_cost and node not in processed: lowest_cost = cost lowest_cost_node = node return lowest_cost_node
5,335,754
def main(options): """Parse options and find out what to do""" if options.graph=='numsites': tms=[] sites=[] import pylab for sitenum in range(1,10): options.kin_sites=sitenum options.plot=False xs,ys,Tm=kinetic(options) pylab.plot(xs,ys,'o-',label='%d sites. Tm: %5.1f' %(sitenum,Tm),linewidth=2) sites.append(sitenum) tms.append(Tm) pylab.xlabel('Temperature (C)') pylab.ylabel('Residual activity (%)') pylab.ylim([0.0,100.0]) pylab.legend() pylab.title('Number of protease sites') pylab.show() # pylab.clf() pylab.plot(sites,tms,'ro-',linewidth=2) pylab.xlabel('Number of sites') pylab.ylabel('T50') pylab.show() return elif options.graph=='twosites': # fast / slow site, + stabilization import pylab std_reactions=[[1E10,1E5,5E4,1E10], [1E10,9E4,5E4,1E10]] for stab1,stab2 in [[0,0],[options.stab,0],[0,options.stab],[options.stab,options.stab]]: import string,copy options.reactions=copy.deepcopy(std_reactions) options.reactions[0][1]=options.reactions[0][1]+stab1*1000.0 options.reactions[1][1]=options.reactions[1][1]+stab2*1000.0 #options.reactions[0]=string.join(options.reactions[0],',') #options.reactions[1]=string.join(options.reactions[1],',') # options.plot=False #print options.reactions #print std_reactions,'R' xs,ys,Tm=kinetic(options) pylab.plot(xs,ys,'o-',label='%5.1f,%5.1f, T50: %5.1f' %(stab1,stab2,Tm)) pylab.legend() pylab.suptitle('Ea1: %3.2e kJ/mol, Ea2 %3.2e kJ/mol stab: %5.1f kJ/mol' %(std_reactions[0][1],std_reactions[1][1],options.stab)) pylab.title('Two sites') pylab.show() if options.unfoldtype=='kinetic': kinetic(options) elif options.unfoldtype=='equilibrium': equilibrium(options) else: raise Exception('unknown unfolding type: %s' %options.unfoldtype) # return
5,335,755
def scale_img(image, random_coordinate=False): """ 对原图大小进行处理, :param image: :param random_coordinate: :return: """ h, w, c = image.shape if max(h, w) > 640: f_scale = min(640./h, 640./w) # scale factor image = cv2.resize(src=image, dsize=None, fx=f_scale, fy=f_scale, interpolation=cv2.INTER_CUBIC) else: f_scale = 1. h_s, w_s, c_s = image.shape # h scaled image_full = 255 * np.zeros((640, 640, c), dtype=np.uint8) if random_coordinate: # random coordinate h_random = np.random.randint(0, 640 - h + 1) w_random = np.random.randint(0, 640 - w + 1) image_full[h_random:h_random + h_s, w_random:w_random + w_s, :] = image.astype(np.uint8) else: image_full[0:h_s, 0:w_s, :] = image.astype(np.uint8) return image_full / 255., f_scale
5,335,756
def magnitude(v: Vector) -> float: """computes the magnitude (length) of a vector""" return math.sqrt(sum_of_squares(v))
5,335,757
def pew(text): """PEW -- Percentage of Echomimetic (onomatopoeic) Words.""" pew = None onomatopoeic_words_num = 0 path = '/tmp/onomatopoeic_words_en-1.0.txt' if not os.path.exists(path): url = 'https://raw.githubusercontent.com/korniichuk/phd/master/resources/onomatopoeic_words_en-1.0.txt' # noqa: E501 r = requests.get(url) with open(path, 'w') as f: f.write(r.text) with open(path, 'r') as f: onomatopoeic_words = f.read().splitlines() words_num, words = word_counter(text, 'en') for word in words: word_lower = word.lower().strip() if word_lower in onomatopoeic_words: onomatopoeic_words_num += 1 if words_num != 0: pew = onomatopoeic_words_num / words_num return pew
5,335,758
def topngbytes(name, rows, x, y, **k): """ Convenience function for creating a PNG file "in memory" as a string. Creates a :class:`Writer` instance using the keyword arguments, then passes `rows` to its :meth:`Writer.write` method. The resulting PNG file is returned as bytes. `name` is used to identify the file for debugging. """ import os if os.environ.get('PYPNG_TEST_FILENAME'): print(name, file=sys.stderr) f = BytesIO() w = png.Writer(x, y, **k) w.write(f, rows) if os.environ.get('PYPNG_TEST_TMP'): w = open(name, 'wb') w.write(f.getvalue()) w.close() return f.getvalue()
5,335,759
def supply_domes1finesk(): """ Real Name: b'"Supply Domes-1Finesk"' Original Eqn: b'MIN("Domes-1 Demad finesk" (Time), (outflow Finesk) )' Units: b'MCM/Month' Limits: (None, None) Type: component b'' """ return np.minimum(domes1_demad_finesk(time()), (outflow_finesk()))
5,335,760
def poll(handle): """ Polls an push_pull handle to determine whether underlying asynchronous operation has completed. After `poll()` returns `True`, `synchronize()` will return without blocking. Arguments: handle: A handle returned by an push_pull asynchronous operation. Returns: A flag indicating whether the operation has completed. """ return c_lib.byteps_torch_poll(handle) != 0
5,335,761
def _increase_explicit_hydrogen_for_bond_atom( rwmol: Chem.rdchem.RWMol, remove_bidx: bool, bidx: int, remove_eidx: bool, eidx: int, ai_to_remove: list, ) -> Tuple[Chem.rdchem.RWMol, list]: """Increase number of explicit hydrogens for atom in a bond. Args: rwmol: An RDKit RWmolecule (rdkit.Chem.rdchem.RWMol) remove_bidx: Begin atom in bond will increase explicit hydrogens (bool) remove_eidx: End atom in bond will increase explicit hydrogens (bool) Returns: Tuple with an RDKit RWmolecule and an updated list to remove (rdkit.Chem.rdchem.RWMol, list). """ if remove_bidx or remove_eidx: if remove_bidx: ai_to_remove.append(bidx) _increase_explicit_hydrogens(rwmol, eidx) if remove_eidx: ai_to_remove.append(eidx) _increase_explicit_hydrogens(rwmol, bidx) rwmol.RemoveBond(bidx, eidx) return rwmol, ai_to_remove
5,335,762
def maybe_download(filename, work_directory, source_url): """Download the data from source url, unless it's already here. Args: filename: string, name of the file in the directory. work_directory: string, path to working directory. source_url: url to download from if file doesn't exist. Returns: Path to resulting file. """ if not gfile.Exists(work_directory): gfile.MakeDirs(work_directory) filepath = os.path.join(work_directory, filename) if not gfile.Exists(filepath): with tempfile.NamedTemporaryFile() as tmpfile: temp_file_name = tmpfile.name urllib.request.urlretrieve(source_url, temp_file_name) gfile.Copy(temp_file_name, filepath) with gfile.GFile(filepath) as f: size = f.Size() print('Successfully downloaded', filename, size, 'bytes.') return filepath
5,335,763
def step_i_get_the_entity_with_params_in_filename( context, service_name, filename ): """ :type context: behave.runner.Context :type service_name: str :type filename: str """ location = context.json_location data = read_json_from_file(filename, location) keys = data.keys() suffix = "?" for key in keys: suffix = "{0}{1}={2}&".format(suffix, key, data[key]) # trim trailing & suffix = suffix.rstrip("&") context.services[service_name]["param_data"] = data service_client = context.services[service_name]["client"] context.services[service_name]["resp"] = service_client.get( resource_id=context.services[service_name]["id"], url_suffix=suffix )
5,335,764
def plot_historical_actuals_forecast(e, title=None, ylabel='', include_pred_int=False, years_prior_include=2, forecast_display_start=None, e2=None): """Produce a plot of the ensemble forecasts Returns ---------- plt object """ if e.forecast['consensus'] is None: raise Exception('No forecast found.') if title is None and e.validation['consensus'] is not None: title = 'Training, forecast and actuals' if title is None and e.validation['consensus'] is None: title = 'Training and forecast' fig, ax = plt.subplots(figsize=(13, 11)) fig.suptitle(title, fontsize=24) plt.ylabel(ylabel, fontsize=20) plt.rc('legend', fontsize=18) plt.rc('ytick', labelsize=18) plt.rc('xtick', labelsize=18) plt.xticks(rotation = 30) ax.xaxis.set_major_locator(mdates.AutoDateLocator(maxticks=12)) ax.xaxis.set_major_formatter(mdates.DateFormatter('%m-%d-%y')) ax.yaxis.set_major_formatter(FuncFormatter(human_format)) if forecast_display_start is None: forecast_display_start = min(e.forecast['consensus'].dt) forecast_mask = (e.forecast['consensus'].dt >= forecast_display_start) forecast_len = forecast_mask.sum() max_vals = [] for yp in list(range(1, years_prior_include + 1)): if len(e.periods_agg) > 0 and max(e.periods_agg) > 1: agg_str = 'period' + str(max(e.periods_agg)) range_train_yp = {'min':(forecast_display_start - _datetime_delta(yp, 'Y') + _datetime_delta(yp, 'D')), 'max':(max(e.forecast['consensus'].dt) - _datetime_delta(yp, 'Y') + _datetime_delta(yp, 'D'))} training_mask = ( (e.training['aggregated'][agg_str].dt >= range_train_yp['min']) & (e.training['aggregated'][agg_str].dt <= range_train_yp['max'])) train_len = training_mask.sum() fp = plt.plot(e.forecast['consensus'].dt.loc[forecast_mask][:train_len], e.training['aggregated'][agg_str].actual.loc[ training_mask][:forecast_len], label='actuals ' + str(int(yp)) + 'YA', linewidth=4) history_len = e.training['aggregated'][agg_str].shape[0] max_vals = max_vals + [max( e.training['aggregated'][agg_str].actual.loc[ training_mask][:forecast_len])] else: range_train_yp = {'min':(forecast_display_start - _datetime_delta(yp, 'Y')), 'max':(max(e.forecast['consensus'].dt) - _datetime_delta(yp, 'Y'))} training_mask = ( (e.training['history'].dt >= range_train_yp['min']) & (e.training['history'].dt <= range_train_yp['max'])) fp = plt.plot(e.forecast['consensus'].dt.loc[forecast_mask], e.training['history'].actual.loc[training_mask], label='actuals ' + str(int(yp)) + 'YA', linewidth=2) history_len = e.training['history'].shape[0] max_vals = max_vals + [max( e.training['history'].actual.loc[training_mask])] total_len = history_len + e.forecast['consensus'].shape[0] fp = plt.plot(e.forecast['consensus'].dt.loc[forecast_mask], e.forecast['consensus'].forecast.loc[forecast_mask], label='forecast', linewidth=2 + 2 * int(total_len < 400), c='indianred') max_vals = max_vals + [max( e.forecast['consensus'].forecast.loc[forecast_mask])] if include_pred_int: fp = plt.fill_between(e.forecast['consensus'].dt.loc[forecast_mask], e.forecast['consensus'].forecast_lower.loc[ forecast_mask], e.forecast['consensus'].forecast_upper.loc[ forecast_mask], color='indianred', alpha=0.3, label=str(round( e.pred_level * 100)) + '% prediction band') max_vals = max_vals + [max(e.forecast['consensus'].forecast_upper.loc[ forecast_mask])] if (e.validation['consensus'] is not None and len(e.validation['consensus']) > 0): fp = plt.plot(e.validation['consensus'].dt.loc[forecast_mask], e.validation['consensus'].actual.loc[forecast_mask], label='actuals', c='mediumseagreen', linewidth=2 + 2 * int(total_len < 400)) max_vals = max_vals + [max( e.validation['consensus'].actual.loc[forecast_mask])] if (e2 is not None and len(e.forecast['consensus'].dt) > 0): forecast_mask2 = (e2.forecast['consensus'].dt >= forecast_display_start) fp = plt.plot(e2.forecast['consensus'].dt.loc[forecast_mask2], e2.forecast['consensus'].forecast.loc[forecast_mask2], label='latest forecast', linewidth=2 + 2 * int(total_len < 400), c='purple') max_vals = max_vals + [max( e2.forecast['consensus'].forecast.loc[forecast_mask2])] plt.ylim([0, 1.05 * max(max_vals)]) plt.legend(loc='lower center', ncol=3, framealpha=0.05) plt.grid() return fp
5,335,765
def f2(a, b): """ concurrent_num = 600 不用怕,因为这是智能线程池,如果函数耗时短,不会真开那么多线程。 这个例子是测试函数耗时是动态变化的,这样就不可能通过提前设置参数预估函数固定耗时和搞鬼了。看看能不能实现qps稳定和线程池自动扩大自动缩小 要说明的是打印的线程数量也包含了框架启动时候几个其他的线程,所以数量不是刚好和所需的线程计算一样的。 ## 可以在运行控制台搜索 新启动线程 这个关键字,看看是不是何时适合扩大线程数量。 ## 可以在运行控制台搜索 停止线程 这个关键字,看看是不是何时适合缩小线程数量。 """ result = a + b sleep_time = 0.01 if time.time() - t_start > 60: # 先测试函数耗时慢慢变大了,框架能不能按需自动增大线程数量 sleep_time = 7 if time.time() - t_start > 120: sleep_time = 31 if time.time() - t_start > 200: sleep_time = 79 if time.time() - t_start > 400: # 最后把函数耗时又减小,看看框架能不能自动缩小线程数量。 sleep_time = 0.8 if time.time() - t_start > 500: sleep_time = None print(f'{time.strftime("%H:%M:%S")} ,当前线程数量是 {threading.active_count()}, {a} + {b} 的结果是 {result}, sleep {sleep_time} 秒') if sleep_time is not None: time.sleep(sleep_time) # 模拟做某事需要阻塞n秒种,必须用并发绕过此阻塞。 return result
5,335,766
def minimize_loss_single_machine_manual(loss, accuracy, layer_collection, device=None, session_config=None): """Minimize loss with K-FAC on a single machine(Illustrative purpose only). This function does inverse and covariance computation manually for illustrative pupose. Check `minimize_loss_single_machine` for automatic inverse and covariance op placement and execution. A single Session is responsible for running all of K-FAC's ops. The covariance and inverse update ops are placed on `device`. All model variables are on CPU. Args: loss: 0-D Tensor. Loss to be minimized. accuracy: 0-D Tensor. Accuracy of classifier on current minibatch. layer_collection: LayerCollection instance describing model architecture. Used by K-FAC to construct preconditioner. device: string or None. The covariance and inverse update ops are run on this device. If empty or None, the default device will be used. (Default: None) session_config: None or tf.ConfigProto. Configuration for tf.Session(). Returns: final value for 'accuracy'. """ device_list = [] if not device else [device] # Train with K-FAC. g_step = tf.train.get_or_create_global_step() optimizer = kfac.KfacOptimizer( learning_rate=0.0001, cov_ema_decay=0.95, damping=0.001, layer_collection=layer_collection, placement_strategy="round_robin", cov_devices=device_list, inv_devices=device_list, trans_devices=device_list, momentum=0.9) (cov_update_thunks, inv_update_thunks) = optimizer.make_vars_and_create_op_thunks() def make_update_op(update_thunks): update_ops = [thunk() for thunk in update_thunks] return tf.group(*update_ops) cov_update_op = make_update_op(cov_update_thunks) with tf.control_dependencies([cov_update_op]): inverse_op = tf.cond( tf.equal(tf.mod(g_step, _INVERT_EVERY), 0), lambda: make_update_op(inv_update_thunks), tf.no_op) with tf.control_dependencies([inverse_op]): with tf.device(device): train_op = optimizer.minimize(loss, global_step=g_step) tf.logging.info("Starting training.") with tf.train.MonitoredTrainingSession(config=session_config) as sess: while not sess.should_stop(): global_step_, loss_, accuracy_, _ = sess.run( [g_step, loss, accuracy, train_op]) if global_step_ % _REPORT_EVERY == 0: tf.logging.info("global_step: %d | loss: %f | accuracy: %s", global_step_, loss_, accuracy_) return accuracy_
5,335,767
def downgrade(): """"Downgrade database schema and/or data back to the previous revision.""" op.drop_column('workflows', 'repeat_multiplier') op.drop_column('workflows', 'unit') op.drop_column('workflows', 'repeat_every')
5,335,768
def bass_call_0(function, *args): """Makes a call to bass and raises an exception if it fails. Does not consider 0 an error.""" res = function(*args) if res == -1: code = BASS_ErrorGetCode() raise BassError(code, get_error_description(code)) return res
5,335,769
def saveFigures(folder, name, summaryDict): """ :param folder: the folder where we want to save it :param name: the name of the figures :param summaryDict: the data of the training we want to plot Save the plot of the evolution of the training loss and the testing loss through the epochs Save the plot of the evolution of the training accuracy and the testing loss accuracy the epochs """ loss_train = summaryDict['loss_train'] loss_test = summaryDict['loss_test'] acc_train = summaryDict['acc_train'] acc_test = summaryDict['acc_test'] nb_epochs = summaryDict['nb_epochs'] best_epoch = summaryDict['best_model']['epoch'] best_loss_train = summaryDict['best_model']['loss_train'] best_acc_train = summaryDict['best_model']['acc_train'] best_loss_test = summaryDict['best_model']['loss_test'] best_acc_test = summaryDict['best_model']['acc_test'] min_loss = min(min(loss_train), min(loss_test)) max_loss = max(max(loss_train), max(loss_test)) min_acc = min(min(acc_train), min(acc_test)) max_acc = max(max(acc_train), max(acc_test)) x = np.arange(1, nb_epochs + 1) # Save of the loss plt.figure() plt.plot(x, loss_train, 'steelblue', label='Training Loss') plt.plot(x, loss_test, 'darkorange', label='Testing Loss') plt.title('Variation of the Loss through the epochs\n' + name) plt.xlabel('Epoch') plt.ylabel('Loss value') plt.plot([1, nb_epochs], [best_loss_train, best_loss_train], 'steelblue', linestyle='--', label='Model training loss : {0}'.format(round(best_loss_train, 4))) plt.plot([1, nb_epochs], [best_loss_test, best_loss_test], color='darkorange', linestyle='--', label='Model testing loss : {0}'.format(round(best_loss_test, 4))) plt.plot([best_epoch, best_epoch], [min_loss, max_loss], color='dimgray', linestyle='--', label='Best Epoch : {0}'.format(best_epoch)) plt.legend() plt.grid() plt.savefig(os.path.join(folder, 'LossFigure_' + name + '.png')) # Save the accuracy plt.figure() plt.plot(x, acc_train, 'steelblue', label='Training Accuracy') plt.plot(x, acc_test, 'darkorange', label='Testing Accuracy') plt.title('Variation of the Accuracy through the epochs\n' + name) plt.xlabel('Epoch') plt.ylabel('Accuracy value (%)') plt.plot([1, nb_epochs], [best_acc_train, best_acc_train], color='steelblue', linestyle='--', label='Model train accuracy : {0}'.format(round(best_acc_train, 2))) plt.plot([1, nb_epochs], [best_acc_test, best_acc_test], color='darkorange', linestyle='--', label='Model test accuracy : {0}'.format(round(best_acc_test, 2))) plt.plot([best_epoch, best_epoch], [min_acc, max_acc], color='dimgray', linestyle='--', label='Best Epoch : {0}'.format(best_epoch)) plt.legend() plt.grid() plt.savefig(os.path.join(folder, 'AccuracyFigure_' + name + '.png'))
5,335,770
def port_speed(value : str | None = None) -> int | None: """Port speed -> Mb/s parcer""" if value is None: return None elif value == "X": return 0 elif value == "M": return 100 elif value == "G": return 1000 elif value == "Q": return 2500 else: raise(AsusRouterNotImplementedError(value))
5,335,771
def convert_flag_frame_to_strings(flag_frame, sep=', ', empty='OK'): """ Convert the `flag_frame` output of :py:func:`~convert_mask_into_dataframe` into a pandas.Series of strings which are the active flag names separated by `sep`. Any row where all columns are false will have a value of `empty`. Parameters ---------- flag_frame : pandas.DataFrame Boolean DataFrame with descriptive column names sep : str String to separate column names by empty : str String to replace rows where no columns are True Returns ------- pandas.Series Of joined column names from `flag_frame` separated by `sep` if True. Has the same index as `flag_frame`. """ return np.logical_and(flag_frame, flag_frame.columns + sep).replace( False, '').sum(axis=1).str.rstrip(sep).replace('', empty)
5,335,772
def pp_file_to_dataframe(pp_filename): """ read a pilot point file to a pandas Dataframe Parameters ---------- pp_filename : str pilot point file Returns ------- df : pandas.DataFrame a dataframe with pp_utils.PP_NAMES for columns """ df = pd.read_csv(pp_filename, delim_whitespace=True, header=None, names=PP_NAMES,usecols=[0,1,2,3,4]) df.loc[:,"name"] = df.name.apply(str).apply(str.lower) return df
5,335,773
def get_ps_lib_dirs(): """ Add directory to list as required """ polysync_install = os.path.join('/', 'usr', 'local', 'polysync') polysync_lib = os.path.join(polysync_install, 'lib') polysync_vendor = os.path.join(polysync_install, 'vendor', 'lib') return [ polysync_lib, polysync_vendor, ]
5,335,774
def edit_product(request, product_id): """ Edit a product in the store """ if not request.user.is_superuser: messages.error(request, 'Sorry, only store owners can do that.') return redirect(reverse('home')) product = get_object_or_404(Product, pk=product_id) if request.method == 'POST': form = ProductForm(request.POST, request.FILES, instance=product) if form.is_valid(): form.save() messages.success(request, 'Successfully updated product!') return redirect(reverse('individual_product', args=[product.id])) else: messages.error( request, 'Failed to update product. ' 'Please ensure the form is valid.') else: form = ProductForm(instance=product) messages.info(request, f'You are editing {product.name}') template = 'products/edit_product.html' context = { 'form': form, 'product': product, } return render(request, template, context)
5,335,775
def _resolve_target(target, target_frame='icrs'): """Return an `astropy.coordinates.SkyCoord` form `target` and its frame.""" if target_frame == 'icrs': return parse_coordinates(target) return SkyCoord(target, frame=target_frame)
5,335,776
def iter_fragments(fragiter, start_frag_id = None, stop_frag_id = None): """Given a fragment iterator and a start and end fragment id, return an iterator which yields only fragments within the range. """ if start_frag_id and stop_frag_id: dpred = lambda f: fragment_id_lt(f.fragment_id, start_frag_id) tpred = lambda f: fragment_id_le(f.fragment_id, stop_frag_id) return itertools.takewhile(tpred, itertools.dropwhile(dpred, fragiter)) elif start_frag_id and not stop_frag_id: dpred = lambda f: fragment_id_lt(f.fragment_id, start_frag_id) return itertools.dropwhile(dpred, fragiter) elif not start_frag_id and stop_frag_id: tpred = lambda f: fragment_id_le(f.fragment_id, stop_frag_id) return itertools.takewhile(tpred, fragiter) return fragiter
5,335,777
def _remove_candidate(cells, candidate: int, SUDOKU_SIZE: int) -> None: """ Remove the candidate from the cells in place cells: an object supporting __len__ and __getitem__ (np.ndarray or np.flatiter) """ for i in range(len(cells)): if cells[i] == -1: continue # Example of the following code: # if we have SUDOKU_SIZE = 9 and candidate = 4, # mask = 0b111111111 # bit = 0b000001000 # mask ^ bit = 0b111110111 # and so the cell will set to zero the conresponding bit mask = (1 << SUDOKU_SIZE) - 1 bit = 1 << (candidate - 1) cells[i] &= mask ^ bit
5,335,778
def evaluate_gpt_with_distgen(settings, archive_path=None, merit_f=None, gpt_input_file=None, distgen_input_file=None, workdir=None, use_tempdir=True, gpt_bin='$GPT_BIN', timeout=2500, auto_phase=False, verbose=False, gpt_verbose=False, asci2gdf_bin='$ASCI2GDF_BIN', kill_msgs=DEFAULT_KILL_MSGS ): """ Simple evaluate GPT. Similar to run_astra_with_distgen, but returns a flat dict of outputs. Will raise an exception if there is an error. """ G = run_gpt_with_distgen(settings=settings, gpt_input_file=gpt_input_file, distgen_input_file=distgen_input_file, workdir=workdir, use_tempdir=use_tempdir, gpt_bin=gpt_bin, timeout=timeout, auto_phase=auto_phase, verbose=verbose, gpt_verbose=gpt_verbose, asci2gdf_bin=asci2gdf_bin, kill_msgs=kill_msgs) if merit_f: merit_f = tools.get_function(merit_f) output = merit_f(G) else: output = default_gpt_merit(G) if output['error']: raise ValueError('error occured!') #Recreate Generator object for fingerprint, proper archiving # TODO: make this cleaner gen = Generator() gen.input = G.distgen_input fingerprint = fingerprint_gpt_with_distgen(G, gen) output['fingerprint'] = fingerprint if archive_path: path = tools.full_path(archive_path) assert os.path.exists(path), f'archive path does not exist: {path}' archive_file = os.path.join(path, fingerprint+'.h5') output['archive'] = archive_file # Call the composite archive method archive_gpt_with_distgen(G, gen, archive_file=archive_file) return output
5,335,779
def bst_right_imbalanced(): """Bst that extends right.""" from bst import BST test_bst = BST((1, 2, 3, 4, 5, 6, 7, 8, 9, 10)) return test_bst
5,335,780
def retry(exception_to_check, tries=4, delay=0.5, backoff=2, logger=None): """Retry calling the decorated function using an exponential backoff. Args: exception_to_check (Exception): the exception to check. may be a tuple of exceptions to check tries (int): number of times to try (not retry) before giving up delay (float, int): initial delay between retries in seconds backoff (int): backoff multiplier e.g. value of 2 will double the delay each retry logger (logging.Logger): logger to use. If None, print """ def deco_retry(func): @wraps(func) def f_retry(*args, **kwargs): mtries, mdelay = tries, delay while mtries > 1: try: return func(*args, **kwargs) except exception_to_check as exc: msg = "%s, Retrying in %s seconds..." % (str(exc), mdelay) if logger: logger.warning(msg) time.sleep(mdelay) mtries -= 1 mdelay *= backoff return func(*args, **kwargs) return f_retry # true decorator return deco_retry
5,335,781
def create_wham_whamr_csv( datapath, savepath, fs, version="min", savename="whamr_", set_types=["tr", "cv", "tt"], add_reverb=True, ): """ This function creates the csv files to get the speechbrain data loaders for the whamr dataset. Arguments: datapath (str) : path for the wsj0-mix dataset. savepath (str) : path where we save the csv file fs (int) : the sampling rate version (str) : min or max savename (str) : the prefix to use for the .csv files set_types (list) : the sets to create """ if fs == 8000: sample_rate = "8k" elif fs == 16000: sample_rate = "16k" else: raise ValueError("Unsupported sampling rate") if add_reverb: mix_both = "mix_both_reverb/" s1 = "s1_anechoic/" s2 = "s2_anechoic/" else: mix_both = "mix_both/" s1 = "s1/" s2 = "s2/" for set_type in set_types: mix_path = os.path.join( datapath, "wav{}".format(sample_rate), version, set_type, mix_both, ) s1_path = os.path.join( datapath, "wav{}".format(sample_rate), version, set_type, s1, ) s2_path = os.path.join( datapath, "wav{}".format(sample_rate), version, set_type, s2, ) noise_path = os.path.join( datapath, "wav{}".format(sample_rate), version, set_type, "noise/" ) # rir_path = os.path.join( # datapath, "wav{}".format(sample_rate), version, set_type, "rirs/" # ) files = os.listdir(mix_path) mix_fl_paths = [mix_path + fl for fl in files] s1_fl_paths = [s1_path + fl for fl in files] s2_fl_paths = [s2_path + fl for fl in files] noise_fl_paths = [noise_path + fl for fl in files] # rir_fl_paths = [rir_path + fl + ".t" for fl in files] csv_columns = [ "ID", "duration", "mix_wav", "mix_wav_format", "mix_wav_opts", "s1_wav", "s1_wav_format", "s1_wav_opts", "s2_wav", "s2_wav_format", "s2_wav_opts", "noise_wav", "noise_wav_format", "noise_wav_opts", # "rir_t", # "rir_format", # "rir_opts", ] with open( os.path.join(savepath, savename + set_type + ".csv"), "w" ) as csvfile: writer = csv.DictWriter(csvfile, fieldnames=csv_columns) writer.writeheader() for (i, (mix_path, s1_path, s2_path, noise_path),) in enumerate( zip( mix_fl_paths, s1_fl_paths, s2_fl_paths, noise_fl_paths, # rir_fl_paths, ) ): row = { "ID": i, "duration": 1.0, "mix_wav": mix_path, "mix_wav_format": "wav", "mix_wav_opts": None, "s1_wav": s1_path, "s1_wav_format": "wav", "s1_wav_opts": None, "s2_wav": s2_path, "s2_wav_format": "wav", "s2_wav_opts": None, "noise_wav": noise_path, "noise_wav_format": "wav", "noise_wav_opts": None, # "rir_t": rir_path, # "rir_format": ".t", # "rir_opts": None, } writer.writerow(row)
5,335,782
def test_FUNC_call_WITH_not_existing_endpoint_EXPECT_not_found() -> None: """ Check whether the call failed. :return: No return. """ with pook.use(): pook.get("https://example.com/does-not-exist", status=404) with pytest.raises(InternalError, match="Http call failed with status: 404."): HttpCall.call('GET', "https://example.com/does-not-exist")
5,335,783
def bio_ner_to_tsv(dataDir, readFile, wrtDir, transParamDict, isTrainFile=False): """ This function transforms the BIO style data and transforms into the tsv format required for NER. Following transformed files are written at wrtDir, - NER transformed tsv file. - NER label map joblib file. For using this transform function, set ``transform_func`` : **bio_ner_to_tsv** in transform file. Args: dataDir (:obj:`str`) : Path to the directory where the raw data files to be read are present.. readFile (:obj:`str`) : This is the file which is currently being read and transformed by the function. wrtDir (:obj:`str`) : Path to the directory where to save the transformed tsv files. transParamDict (:obj:`dict`, defaults to :obj:`None`): Dictionary requiring the following parameters as key-value - ``save_prefix`` (defaults to 'bio_ner') : save file name prefix. - ``col_sep`` : (defaults to " ") : separator for columns - ``tag_col`` (defaults to 1) : column number where label NER tag is present for each row. Counting starts from 0. - ``sen_sep`` (defaults to " ") : end of sentence separator. """ transParamDict.setdefault("save_prefix", "bio_ner") transParamDict.setdefault("tag_col", 1) transParamDict.setdefault("col_sep", " ") transParamDict.setdefault("sen_sep", "\n") f = open(os.path.join(dataDir,readFile)) nerW = open(os.path.join(wrtDir, '{}_{}.tsv'.format(transParamDict["save_prefix"], readFile.split('.')[0])), 'w') labelMapNer = {} sentence = [] senLens = [] labelNer = [] uid = 0 print("Making data from file {} ...".format(readFile)) for i, line in enumerate(f): if i%5000 == 0: print("Processing {} rows...".format(i)) line = line.strip(' ') #don't use strip empty as it also removes \n wordSplit = line.rstrip('\n').split(transParamDict["col_sep"]) if len(line)==0 or line[0]==transParamDict["sen_sep"]: if len(sentence) > 0: nerW.write("{}\t{}\t{}\n".format(uid, labelNer, sentence)) senLens.append(len(sentence)) #print("len of sentence :", len(sentence)) sentence = [] labelNer = [] uid += 1 continue sentence.append(wordSplit[0]) labelNer.append(wordSplit[int(transParamDict["tag_col"])]) if isTrainFile: if wordSplit[int(transParamDict["tag_col"])] not in labelMapNer: # ONLY TRAIN FILE SHOULD BE USED TO CREATE LABEL MAP FILE. labelMapNer[wordSplit[-1]] = len(labelMapNer) print("NER File Written at {}".format(wrtDir)) #writing label map if labelMapNer != {} and isTrainFile: print("Created NER label map from train file {}".format(readFile)) print(labelMapNer) labelMapNerPath = os.path.join(wrtDir, "{}_{}_label_map.joblib".format(transParamDict["save_prefix"], readFile.split('.')[0]) ) joblib.dump(labelMapNer, labelMapNerPath) print("label Map NER written at {}".format(labelMapNerPath)) f.close() nerW.close() print('Max len of sentence: ', max(senLens)) print('Mean len of sentences: ', sum(senLens)/len(senLens)) print('Median len of sentences: ', median(senLens))
5,335,784
def read_key_value_pairs_from_file(*path): """ Read key value pairs from a file (each pair on a separate line). Key and value are separated by ' ' as often used by the kernel. @return a generator of tuples """ with open(os.path.join(*path)) as f: for line in f: yield line.split(' ', 1)
5,335,785
def HESSIAN_DIAG(fn): """Generates a function which computes per-argument partial Hessians.""" def h_fn(*args, **kwargs): args = (args,) if not isinstance(args, (tuple, list)) else tuple(args) ret = [ jaxm.hessian( lambda arg: fn(*args[:i], arg, *args[i + 1 :], **kwargs) )(arg) for (i, arg) in enumerate(args) ] return ret return h_fn
5,335,786
def match_xy(x1, y1, x2, y2, neighbors=1): """Match x1 & y1 to x2 & y2, neighbors nearest neighbors. Finds the neighbors nearest neighbors to each point in x2, y2 among all x1, y1.""" from scipy.spatial import cKDTree vec1 = numpy.array([x1, y1]).T vec2 = numpy.array([x2, y2]).T kdt = cKDTree(vec1) dist, idx = kdt.query(vec2, neighbors) m1 = idx.ravel() m2 = numpy.repeat(numpy.arange(len(vec2), dtype='i4'), neighbors) dist = dist.ravel() dist = dist m = m1 < len(x1) # possible if fewer than neighbors elements in x1. return m1[m], m2[m], dist[m]
5,335,787
def make_doc(): """ Only used for sphinx documentation """ doc_app = Flask(__name__) doc_app.register_blueprint(blueprint()) return doc_app
5,335,788
def test_class_named_argument_default_value(): """Allow classes as default argument values if argument name ends with `_class`.""" class Foo: pass class Bar: def __init__(self, foo_class=Foo): self.foo_class = foo_class class Container(Injector): bar = Bar assert Container.bar.foo_class is Foo
5,335,789
def get_participants(reaction): """ get iterator for the reaction participants (reactants + products) @type reaction: libsbml.Reaction @rtype: Iterator """ for s in reaction.getListOfReactants(): yield s for s in reaction.getListOfProducts(): yield s
5,335,790
def logout(request): """Logs out the user""" user_logout(request) return redirect(auth_views.login)
5,335,791
def test_cannot_start_in_midworkflow(sample_data1): """Ensures that intermediate fates do not create labors when no labor exists. Given a Fate C -> D, and intermediate Fate D -> E, Throw event D and ensure Labor D is not created since Labor C does not exist. """ labors = sample_data1.query(Labor).all() assert len(labors) == 0 event_type_d = sample_data1.query(EventType).get(4) host = sample_data1.query(Host).get(1) Event.create(sample_data1, host, "system", event_type_d) event = ( sample_data1.query(Event) .order_by(desc(Event.id)).first() ) assert event.host == host assert event.event_type == event_type_d labors = Labor.get_open_unacknowledged(sample_data1) assert len(labors) == 0
5,335,792
def test_invalid_not_square(): """ Tests that an error is raised when constructing an operator with a matrix which is not square. """ with pytest.raises(ValueError): sr.RealSpaceOperator([[0, 1]])
5,335,793
def to_pydot(obj): """Specify either of the following options: a dot string (filename or text), a networkx graph, a pydot graph, an igraph graph, or a callable function. The function will be called with a filename to write it's dot output to.""" if isinstance(obj, pydot.Graph): return obj elif isinstance(obj, str): if os.path.isfile(obj): return pydot.graph_from_dot_file(obj)[0] else: return pydot.graph_from_dot_data(obj)[0] elif is_networkx(obj): return nx_pydot.to_pydot(obj) elif is_igraph(obj): with tempfile.NamedTemporaryFile(mode='w+') as f: obj.write_dot(f.name) return pydot.graph_from_dot_file(f.name)[0] elif callable(obj): with tempfile.NamedTemporaryFile(mode='w+') as f: obj(f.name) return pydot.graph_from_dot_file(f.name)[0] elif hasattr(obj, 'to_dot') and callable(obj.to_dot): return to_pydot(obj.to_dot()) else: raise TypeError("Can't convert to pydot")
5,335,794
def workout_train_chunk_length(inp_len: int, resampling_factor: int = 1, num_encoders: int = 5, kernel: int = 8, stride: int = 2) -> int: """ Given inp_len, return the chunk size for training """ out_len = inp_len * resampling_factor for _ in range(num_encoders): out_len = math.ceil((out_len - kernel) / stride) + 1 for _ in range(num_encoders): out_len = (out_len - 1) * stride + kernel return math.ceil(out_len / resampling_factor)
5,335,795
def asin(e): """ :rtype: Column """ return col(Asin(parse(e)))
5,335,796
def display_summary(codebase, scan_names, processes, errors, echo_func=echo_stderr): """ Display a scan summary. """ error_messages, summary_messages = get_displayable_summary( codebase, scan_names, processes, errors) for msg in error_messages: echo_func(msg, fg='red') for msg in summary_messages: echo_func(msg)
5,335,797
def gs_exists(gs_url): """Check if gs_url points to a valid file we can access""" # If gs_url is not accessible, the response could be one of: # 1. "You aren't authorized to read ..." # 2. "No URLs matched: ..." # and it would have a non-0 status, which would be raised. # # Otherwise, it would return a bunch of information about the file, # one of them being "Creation time". try: res = run_cmd(f"gsutil stat {gs_url}") return "Creation time:" in res.stdout.decode("utf-8") except subprocess.CalledProcessError: return False
5,335,798
def unblock_expired_blacklistings(): """ Some timestamps are set on blacklisted until their time stamp is hit. This task is for unblocking those at their given date within whatever time interval you choose to perform the task. """ blacklisted_emails = BlacklistEmail.objects.filter( is_blocked=True, blocked_until__isnull=False, blocked_until__gte=datetime.now() ) blacklisted_domains = BlacklistDomain.objects.filter( is_blocked=True, blocked_until__isnull=False, blocked_until__gte=datetime.now() ) if blacklisted_emails: blacklisted_emails.update(is_blocked=False) if blacklisted_domains: blacklisted_domains.update(is_blocked=False)
5,335,799