content
stringlengths
22
815k
id
int64
0
4.91M
def get_point_callback(event, x, y, flags, param): """ cv2鼠标回调函数 """ global points if event == cv2.EVENT_MBUTTONDOWN: points.append([x, y])
24,700
def make_optimiser_form(optimiser): """Make a child form for the optimisation settings. :param optimiser: the Optimiser instance :returns: a subclass of FlaskForm; NB not an instance! """ # This sets up the initial form with the optimiser's parameters OptimiserForm = make_component_form(optimiser) # Now add options for specifying objectives OptimiserForm.obj_min_A = BooleanField('Minimise A', default=True) OptimiserForm.obj_min_sigma_varA = BooleanField('Minimise variance in A') OptimiserForm.obj_min_B = BooleanField('Minimise B') OptimiserForm.obj_max_C = BooleanField('Maximise C') # Options saying which variables to optimise OptimiserForm.var_bool_param = BooleanField( 'Optimise the choice of a binary option', default=True) OptimiserForm.var_int_param = BooleanField('Optimise the range of an integer', default=True) return OptimiserForm
24,701
def prepare_for_evaluate(test_images, test_label): """ It will preprocess and return the images and labels for tesing. :param original images for testing :param original labels for testing :return preprocessed images :return preprocessed labels """ test_d = np.stack([preprocessing_for_testing(test_images[i]) for i in range(10000)], axis=0) test_new_image, test_new_label = test_d, test_label # Shuffle for 20 times for time in range(20): test_new_image, test_new_label = shuffle(test_d, test_label, random_state=randint(0, test_images.shape[0])) return test_new_image, test_new_label
24,702
def ab_group_to_dict(group): """Convert ABGroup to Python dict. Return None if group is empty.""" d = {'name': '', 'emails': [], 'is_group': True, 'is_company': False} d['name'] = group.valueForProperty_(AB.kABGroupNameProperty) for person in group.members(): identifier = group.distributionIdentifierForProperty_person_( AB.kABEmailProperty, person) if identifier: emails = person.valueForProperty_(AB.kABEmailProperty) email = emails.valueAtIndex_( emails.indexForIdentifier_(identifier)) # log.debug('{} is in group {}'.format(email, d['name'])) d['emails'].append(email) if not len(d['emails']): return None return d
24,703
async def async_setup(hass, config): """Set up the PEVC modbus component.""" hass.data[DOMAIN] = {} return True
24,704
def process_attribute_fields(sender, instance, created, **kwargs): """This function is attached to each :class:`Entity` subclass's post_save signal. Any :class:`Attribute`\ s managed by :class:`AttributeProxyField`\ s which have been removed will be deleted, and any new attributes will be created.""" if ATTRIBUTE_REGISTRY in instance.__dict__: registry = instance.__dict__[ATTRIBUTE_REGISTRY] instance.attribute_set.filter(key__in=[field.attribute_key for field in registry['removed']]).delete() for field in registry['added']: # TODO: Should this perhaps just use instance.attributes[field.attribute_key] = getattr(instance, field.name, None)? # (Would eliminate the need for field.value_class.) try: attribute = instance.attribute_set.get(key=field.attribute_key) except Attribute.DoesNotExist: attribute = Attribute() attribute.entity = instance attribute.key = field.attribute_key attribute.set_value(value=getattr(instance, field.name, None), value_class=field.value_class) del instance.__dict__[ATTRIBUTE_REGISTRY]
24,705
def write_line_test_results(result_dict_outflows, comp_dict_outflows, result_dict_no_outflows, comp_dict_no_outflows, fit_mask, run_dir, binnum=None, spaxelx=None, spaxely=None): """ Writes results of outflow testing. Creates FITS tables for the best-fit parameters and best-fit components for each the outflow and no-outflow test results. """ # # # Write Outflow model FITS tables # Extract elements from dictionaries par_names = [] par_best = [] sig = [] for key in result_dict_outflows: par_names.append(key) par_best.append(result_dict_outflows[key]['med']) sig.append(result_dict_outflows[key]['std']) if 0: for i in range(0,len(par_names),1): print(par_names[i],par_best[i],sig[i]) # Write best-fit parameters to FITS table col1 = fits.Column(name='parameter', format='30A', array=par_names) col2 = fits.Column(name='best_fit' , format='E' , array=par_best) col3 = fits.Column(name='sigma' , format='E' , array=sig) cols = fits.ColDefs([col1,col2,col3]) hdu = fits.BinTableHDU.from_columns(cols) hdr = fits.PrimaryHDU() hdul = fits.HDUList([hdr, hdu]) if binnum is not None: hdr.header.append(('BINNUM', binnum, 'bin index of the spaxel (Voronoi)'), end=True) if spaxelx is not None and spaxely is not None: hdu2 = fits.BinTableHDU.from_columns(fits.ColDefs([ fits.Column(name='spaxelx', array=spaxelx, format='E'), fits.Column(name='spaxely', array=spaxely, format='E') ])) hdul.append(hdu2) hdul.writeto(run_dir.joinpath('log/line_par_table.fits'),overwrite=True) # Write best-fit components to FITS file cols = [] # Construct a column for each parameter and chain for key in comp_dict_outflows: cols.append(fits.Column(name=key, format='E', array=comp_dict_outflows[key])) # Add fit mask to cols cols.append(fits.Column(name="MASK", format='E', array=fit_mask)) # Write to fits cols = fits.ColDefs(cols) hdu = fits.BinTableHDU.from_columns(cols) hdr = fits.PrimaryHDU() hdul = fits.HDUList([hdr, hdu]) if binnum is not None: hdr.header.append(('BINNUM', binnum, 'bin index of the spaxel (Voronoi)'), end=True) if spaxelx is not None and spaxely is not None: hdu2 = fits.BinTableHDU.from_columns(fits.ColDefs([ fits.Column(name='spaxelx', array=spaxelx, format='E'), fits.Column(name='spaxely', array=spaxely, format='E') ])) hdul.append(hdu2) hdul.writeto(run_dir.joinpath('log/line_best_model_components.fits'),overwrite=True) # # # Write No-outflow model FITS tables par_names = [] par_best = [] sig = [] for key in result_dict_no_outflows: par_names.append(key) par_best.append(result_dict_no_outflows[key]['med']) sig.append(result_dict_no_outflows[key]['std']) if 0: for i in range(0,len(par_names),1): print(par_names[i],par_best[i],sig[i]) # Write best-fit parameters to FITS table col1 = fits.Column(name='parameter', format='30A', array=par_names) col2 = fits.Column(name='best_fit' , format='E' , array=par_best) col3 = fits.Column(name='sigma' , format='E' , array=sig) cols = fits.ColDefs([col1,col2,col3]) hdu = fits.BinTableHDU.from_columns(cols) hdr = fits.PrimaryHDU() hdul = fits.HDUList([hdr, hdu]) if binnum is not None: hdr.header.append(('BINNUM', binnum, 'bin index of the spaxel (Voronoi)'), end=True) if spaxelx is not None and spaxely is not None: hdu2 = fits.BinTableHDU.from_columns(fits.ColDefs([ fits.Column(name='spaxelx', array=spaxelx, format='E'), fits.Column(name='spaxely', array=spaxely, format='E') ])) hdul.append(hdu2) hdul.writeto(run_dir.joinpath('log/no_line_par_table.fits'),overwrite=True) # Write best-fit components to FITS file cols = [] # Construct a column for each parameter and chain for key in comp_dict_no_outflows: cols.append(fits.Column(name=key, format='E', array=comp_dict_no_outflows[key])) # Add fit mask to cols cols.append(fits.Column(name="MASK", format='E', array=fit_mask)) # Write to fits cols = fits.ColDefs(cols) hdu = fits.BinTableHDU.from_columns(cols) hdu.writeto(run_dir.joinpath('log', 'no_line_best_model_components.fits'),overwrite=True) # return
24,706
def deserialize_value(val: str) -> Any: """Deserialize a json encoded string in to its original value""" return _unpack_value( seven.json.loads(check.str_param(val, "val")), whitelist_map=_WHITELIST_MAP, descent_path="", )
24,707
def gen_signature(priv_path, pub_path, sign_path, passphrase=None): """ creates a signature for the given public-key with the given private key and writes it to sign_path """ with salt.utils.files.fopen(pub_path) as fp_: mpub_64 = fp_.read() mpub_sig = sign_message(priv_path, mpub_64, passphrase) mpub_sig_64 = binascii.b2a_base64(mpub_sig) if os.path.isfile(sign_path): return False log.trace( "Calculating signature for %s with %s", os.path.basename(pub_path), os.path.basename(priv_path), ) if os.path.isfile(sign_path): log.trace( "Signature file %s already exists, please remove it first and " "try again", sign_path, ) else: with salt.utils.files.fopen(sign_path, "wb+") as sig_f: sig_f.write(salt.utils.stringutils.to_bytes(mpub_sig_64)) log.trace("Wrote signature to %s", sign_path) return True
24,708
def stringify(value): """ PHPCS uses a , separated strings in many places because of how it handles options we have to do bad things with string concatenation. """ if isinstance(value, six.string_types): return value if isinstance(value, collections.Iterable): return ','.join(value) return str(value)
24,709
def _DISABLED_test_flash_obround(): """Umaco example a simple obround flash with and without a hole""" _test_render('resources/example_flash_obround.gbr', 'golden/example_flash_obround.png')
24,710
def read_requirements_file(path): """ reads requirements.txt file """ with open(path) as f: requires = [] for line in f.readlines(): if not line: continue requires.append(line.strip()) return requires
24,711
def vsa_get_all(context): """ Get all Virtual Storage Array records. """ session = get_session() return session.query(models.VirtualStorageArray).\ options(joinedload('vsa_instance_type')).\ filter_by(deleted=can_read_deleted(context)).\ all()
24,712
def scamp(filename, config, accuracy=0.5, itermax=10, band=None, useweight=False, CheckPlot=False, verbose="NORMAL"): """Compute astrometric solution of astronomical image using scamp""" path = os.path.dirname(filename) imagelist = np.atleast_1d(filename) for ima in imagelist: print("Performing astrometric calibration on %s using SCAMP." % ima) # print ('You required astrometric precision of %.3f arcsec.' % accuracy) root = os.path.splitext(ima)[0] _name = root.split("/")[-1] if CheckPlot: plot_fmt = "PNG" plotnames = ( "%s_fgroups,%s_distort,%s_astr_interror2d,%s_astr_interror1d,%s_astr_referror2d,%s_astr_referror1d,%s_astr_chi2,%s_psphot_error" % (root, root, root, root, root, root, root, root) ) plottypes = "FGROUPS,DISTORTION,ASTR_INTERROR2D,ASTR_INTERROR1D,ASTR_REFERROR2D,ASTR_REFERROR1D,ASTR_CHI2,PHOT_ERROR" else: plot_fmt = "NULL" plotnames = " " plottypes = " " if config["telescope"] == "PS1" and band is not None: astref_band = band else: astref_band = "DEFAULT" #  Initialise the while loop i = 0 #  Dummy offset mean_offset = 100 while (mean_offset >= accuracy) and (i <= itermax): i += 1 #  Create catalog using sextractor # print ('Create FITS-LDAC file from SExtractor') subprocess.call( [ "sex", "-c", config["scamp"]["sextractor"], "-PARAMETERS_NAME", config["scamp"]["param"], "-VERBOSE_TYPE", verbose, "-FILTER_NAME", config['sextractor']['convFilter'], ima, ] ) #  Run SCAMP subprocess.call( [ "scamp", "prepscamp.cat", "-c", config["scamp"]["conf"], "-ASTREF_BAND", astref_band, "-CHECKPLOT_DEV", plot_fmt, "-CHECKPLOT_NAME", plotnames, "-CHECKPLOT_TYPE", plottypes, "-VERBOSE_TYPE", verbose, ] ) #  Check astrometry offset with open("scamp.xml") as fd: doc = xmltodict.parse(fd.read()) """ offset = doc['VOTABLE']['RESOURCE']['RESOURCE']['TABLE'][0]['DATA']['TABLEDATA']['TR']['TD'][34] offset = offset.split(' ') offset_axis1 = float(offset[0]) offset_axis2 = float(offset[1]) """ header = header_from_string("prepscamp.head") offset_axis1 = float(header["ASTRRMS1"] * 3600) offset_axis2 = float(header["ASTRRMS2"] * 3600) mean_offset = np.mean([offset_axis1, offset_axis2]) print( "Astrometric precision after run %d: %.2f arcseconds. Required: %.2f." % (i, mean_offset, accuracy) ) pixelscale = doc["VOTABLE"]["RESOURCE"]["RESOURCE"]["TABLE"][0]["DATA"][ "TABLEDATA" ]["TR"]["TD"][18].split(" ") pixelscale = [float(pixelscale[0]) / 3600, float(pixelscale[1]) / 3600] # Update header of input fits file update_headers_scamp(ima, "prepscamp.head", pixelscale) # cp_p('prepscamp.cat', _name.split('.')[0]+'.cat') #  Delete temporary files clean_tmp_files(ima, soft="scamp") print("\n")
24,713
def find_files_match_names_across_dirs(list_path_pattern, drop_none=True): """ walk over dir with images and segmentation and pair those with the same name and if the folder with centers exists also add to each par a center .. note:: returns just paths :param list(str) list_path_pattern: list of paths with image name patterns :param bool drop_none: drop if there are some none - missing values in rows :return: DF<path_1, path_2, ...> >>> def _mp(d, n): ... return os.path.join(update_path('data_images'), ... 'drosophila_ovary_slice', d, n) >>> df = find_files_match_names_across_dirs([_mp('image', '*.jpg'), ... _mp('segm', '*.png'), ... _mp('center_levels', '*.csv')]) >>> len(df) > 0 True >>> df.columns.tolist() ['path_1', 'path_2', 'path_3'] >>> df = find_files_match_names_across_dirs([_mp('image', '*.png'), ... _mp('segm', '*.jpg'), ... _mp('center_levels', '*.csv')]) >>> len(df) 0 """ list_path_pattern = [pp for pp in list_path_pattern if pp is not None] assert len(list_path_pattern) > 1, 'at least 2 paths required' for p in list_path_pattern: assert os.path.exists(os.path.dirname(p)), \ 'missing "%s"' % os.path.dirname(p) def _get_name(path, pattern='*'): name = os.path.splitext(os.path.basename(path))[0] for s in pattern.split('*'): name = name.replace(s, '') return name def _get_paths_names(path_pattern): paths_ = glob.glob(path_pattern) if not paths_: return [None], [None] names_ = [_get_name(p, os.path.basename(path_pattern)) for p in paths_] return paths_, names_ logging.info('find match files...') paths_0, names_0 = _get_paths_names(list_path_pattern[0]) list_paths = [paths_0] for path_pattern_n in list_path_pattern[1:]: paths_n = [None] * len(paths_0) name_pattern = os.path.basename(path_pattern_n) list_files = glob.glob(path_pattern_n) logging.debug('found %i files in %s', len(list_files), path_pattern_n) for path_n in list_files: name_n = _get_name(path_n, name_pattern) if name_n in names_0: idx = names_0.index(name_n) paths_n[idx] = path_n list_paths.append(paths_n) col_names = ['path_%i' % (i + 1) for i in range(len(list_paths))] df_paths = pd.DataFrame(list(zip(*list_paths)), columns=col_names) # filter None if drop_none: df_paths.dropna(inplace=True) return df_paths
24,714
def thread_it(obj, timeout = 10): """ General function to handle threading for the physical components of the system. """ thread = threading.Thread(target = obj.run()) thread.start() # Run the 'run' function in the obj obj.ready.wait(timeout = timeout) # Clean up thread.join() obj.ready.clear() return None
24,715
def _subsize_sub_pixel_align_cy_ims(pixel_aligned_cy_ims, subsize, n_samples): """ The inner loop of _sub_pixel_align_cy_ims() that executes on a "subsize" region of the larger image. Is subsize is None then it uses the entire image. """ n_max_failures = n_samples * 2 sub_pixel_offsets = np.zeros((n_samples, pixel_aligned_cy_ims.shape[0], 2)) pixel_aligned_cy0_im = pixel_aligned_cy_ims[0] im_mea = pixel_aligned_cy_ims.shape[-1] assert pixel_aligned_cy_ims.shape[-2] == im_mea def _subregion(im, pos): if subsize is None: return im else: return imops.crop(im, off=pos, dim=WH(subsize, subsize), center=False) sample_i = 0 n_failures = 0 while sample_i < n_samples and n_failures < n_max_failures: try: if subsize is None: pos = XY(0, 0) else: pos = XY( np.random.randint(0, im_mea - subsize - 16), np.random.randint(0, im_mea - subsize - 16), ) subregion_pixel_aligned_cy0_im = _subregion(pixel_aligned_cy0_im, pos) for cy_i, pixel_aligned_cy_im in enumerate(pixel_aligned_cy_ims): if cy_i == 0: continue # Use a small region to improve speed subregion_pixel_aligned_cy_im = _subregion(pixel_aligned_cy_im, pos) try: _dy, _dx = _subpixel_align_one_im( subregion_pixel_aligned_cy0_im, subregion_pixel_aligned_cy_im, ) sub_pixel_offsets[sample_i, cy_i, :] = (_dy, _dx) except Exception: # This is a general exception handler because there # are a number of ways that the _subpixel_align_one_im # can fail including linear algebera, etc. All # of which end up with a skip and a retry. n_failures += 1 raise AlignmentError sample_i += 1 except AlignmentError: # Try again with a new pos if n_failures >= n_max_failures: raise AlignmentError return np.mean(sub_pixel_offsets, axis=0)
24,716
def obj_setclass(this, klass): """ set Class for `this`!! """ return this.setclass(klass)
24,717
def format(number, separator=' ', format=None, add_check_digit=False): """Reformat the number to the standard presentation format. The separator used can be provided. If the format is specified (either 'hex' or 'dec') the number is reformatted in that format, otherwise the current representation is kept. If add_check_digit is True a check digit will be added if it is not present yet.""" # first parse the number number, cd = _parse(number) # format conversions if needed if format == 'dec' and len(number) == 14: # convert to decimal number = '%010d%08d' % (int(number[0:8], 16), int(number[8:14], 16)) if cd: cd = calc_check_digit(number) elif format == 'hex' and len(number) == 18: # convert to hex number = '%08X%06X' % (int(number[0:10]), int(number[10:18])) if cd: cd = calc_check_digit(number) # see if we need to add a check digit if add_check_digit and not cd: cd = calc_check_digit(number) # split number according to format if len(number) == 14: number = [number[i * 2:i * 2 + 2] for i in range(7)] + [cd] else: number = (number[:5], number[5:10], number[10:14], number[14:], cd) return separator.join(x for x in number if x)
24,718
def parse_equal_statement(line): """Parse super-sequence statements""" seq_names = line.split()[1:] return seq_names
24,719
def rect(*args, **kwargs): # real signature unknown """ Convert from polar coordinates to rectangular coordinates. """ pass
24,720
def B5(n): """Factor Variables B5.""" return np.maximum(0, c4(n) - 3 * np.sqrt(1 - c4(n) ** 2))
24,721
def test_mnist_dataset(): """Test case for MNIST Dataset. """ mnist_filename = os.path.join( os.path.dirname(os.path.abspath(__file__)), "test_mnist", "mnist.npz") with np.load(mnist_filename) as f: (x_test, y_test) = f['x_test'], f['y_test'] image_filename = os.path.join( os.path.dirname(os.path.abspath(__file__)), "test_mnist", "t10k-images-idx3-ubyte.gz") label_filename = os.path.join( os.path.dirname(os.path.abspath(__file__)), "test_mnist", "t10k-labels-idx1-ubyte.gz") image_dataset = mnist_io.MNISTImageDataset(image_filename) label_dataset = mnist_io.MNISTLabelDataset(label_filename) i = 0 for m_x in image_dataset: v_x = x_test[i] assert np.alltrue(v_x == m_x.numpy()) i += 1 assert i == len(y_test) i = 0 for m_y in label_dataset: v_y = y_test[i] assert np.alltrue(v_y == m_y.numpy()) i += 1 assert i == len(y_test) dataset = mnist_io.MNISTDataset( image_filename, label_filename) i = 0 for (m_x, m_y) in dataset: v_x = x_test[i] v_y = y_test[i] assert np.alltrue(v_y == m_y.numpy()) assert np.alltrue(v_x == m_x.numpy()) i += 1 assert i == len(y_test)
24,722
def y_yhat_plots(y, yh, title="y and y_score", y_thresh=0.5): """Output plots showing how y and y_hat are related: the "confusion dots" plot is analogous to the confusion table, and the standard ROC plot with its AOC value. The y=1 threshold can be changed with the y_thresh parameter. """ # The predicted y value with threshold = y_thresh y_pred = 1.0 * (yh > y_thresh) # Show table of actual and predicted counts crosstab = pd.crosstab(y, y_pred, rownames=[ 'Actual'], colnames=[' Predicted']) print("\nConfusion matrix (y_thresh={:.3f}):\n\n".format(y_thresh), crosstab) # Calculate the various metrics and rates tn = crosstab[0][0] fp = crosstab[1][0] fn = crosstab[0][1] tp = crosstab[1][1] ##print(" tn =",tn) ##print(" fp =",fp) ##print(" fn =",fn) ##print(" tp =",tp) this_fpr = fp / (fp + tn) this_fnr = fn / (fn + tp) this_recall = tp / (tp + fn) this_precision = tp / (tp + fp) this_accur = (tp + tn) / (tp + fn + fp + tn) this_posfrac = (tp + fn) / (tp + fn + fp + tn) print("\nResults:\n") print(" False Pos = ", 100.0 * this_fpr, "%") print(" False Neg = ", 100.0 * this_fnr, "%") print(" Recall = ", 100.0 * this_recall, "%") print(" Precision = ", 100.0 * this_precision, "%") print("\n Accuracy = ", 100.0 * this_accur, "%") print(" Pos. fract. = ", 100.0 * this_posfrac, "%") # Put them in a dataframe ysframe = pd.DataFrame([y, yh, y_pred], index=[ 'y', 'y-hat', 'y-pred']).transpose() # If the yh is discrete (0 and 1s only) then blur it a bit # for a better visual dots plot if min(abs(yh - 0.5)) > 0.49: ysframe["y-hat"] = (0.51 * ysframe["y-hat"] + 0.49 * np.random.rand(len(yh))) # Make a "confusion dots" plot # Add a blurred y column ysframe['y (blurred)'] = y + 0.1 * np.random.randn(len(y)) # Plot the real y (blurred) vs the predicted probability # Note the flipped ylim values. ysframe.plot.scatter('y-hat', 'y (blurred)', figsize=(12, 5), s=2, xlim=(0.0, 1.0), ylim=(1.8, -0.8)) # show the "correct" locations on the plot plt.plot([0.0, y_thresh], [0.0, 0.0], '-', color='green', linewidth=5) plt.plot([y_thresh, y_thresh], [0.0, 1.0], '-', color='gray', linewidth=2) plt.plot([y_thresh, 1.0], [1.0, 1.0], '-', color='green', linewidth=5) plt.title("Confusion-dots Plot: " + title, fontsize=16) # some labels ythr2 = y_thresh/2.0 plt.text(ythr2 - 0.03, 1.52, "FN", fontsize=16, color='red') plt.text(ythr2 + 0.5 - 0.03, 1.52, "TP", fontsize=16, color='green') plt.text(ythr2 - 0.03, -0.50, "TN", fontsize=16, color='green') plt.text(ythr2 + 0.5 - 0.03, -0.50, "FP", fontsize=16, color='red') plt.show() # Make the ROC curve # Set the y-hat as the index and sort on it ysframe = ysframe.set_index('y-hat').sort_index() # Put y-hat back as a column (but the sorting remains) ysframe = ysframe.reset_index() # Initialize the counts for threshold = 0 p_thresh = 0 FN = 0 TN = 0 TP = sum(ysframe['y']) FP = len(ysframe) - TP # Assemble the fpr and recall values recall = [] fpr = [] # Go through each sample in y-hat order, # advancing the threshold and adjusting the counts for iprob in range(len(ysframe['y-hat'])): p_thresh = ysframe.iloc[iprob]['y-hat'] if ysframe.iloc[iprob]['y'] == 0: FP -= 1 TN += 1 else: TP -= 1 FN += 1 # Recall and FPR: recall.append(TP / (TP + FN)) fpr.append(FP / (FP + TN)) # Put recall and fpr in the dataframe ysframe['Recall'] = recall ysframe['FPR'] = fpr # - - - ROC - - - could be separate routine zoom_in = False # Calculate the area under the ROC roc_area = 0.0 for ifpr in range(1, len(fpr)): # add on the bit of area (note sign change, going from high fpr to low) roc_area += 0.5 * (recall[ifpr] + recall[ifpr - 1] ) * (fpr[ifpr - 1] - fpr[ifpr]) plt.figure(figsize=(8, 8)) plt.title("ROC: " + title, size=16) plt.plot(fpr, recall, '-b') # Set the scales if zoom_in: plt.xlim(0.0, 0.10) plt.ylim(0.0, 0.50) else: # full range: plt.xlim(0.0, 1.0) plt.ylim(0.0, 1.0) # The reference line plt.plot([0., 1.], [0., 1.], '--', color='orange') # The point at the y_hat = y_tresh threshold if True: plt.plot([this_fpr], [this_recall], 'o', c='blue', markersize=15) plt.xlabel('False Postive Rate', size=16) plt.ylabel('Recall', size=16) plt.annotate('y_hat = {:.2f}'.format(y_thresh), xy=(this_fpr + 0.015, this_recall), size=14, color='blue') plt.annotate(' Pos.Fraction = ' + ' {:.0f}%'.format(100 * this_posfrac), xy=(this_fpr + 0.02, this_recall - 0.03), size=14, color='blue') # Show the ROC area (shows on zoomed-out plot) plt.annotate('ROC Area = ' + str(roc_area) [:5], xy=(0.4, 0.1), size=16, color='blue') # Show the plot plt.show() return ysframe
24,723
def _derive_scores(model, txt_file, base_words): """ Takes a model, a text file, and a list of base words. Returns a dict of {base_word: score}, where score is an integer between 0 and 100 which represents the average similarity of the text to the given word. """ with open(txt_file, 'r') as f: text = f.read() words = sample_words(text) # This is a list of dicts of the form {base_word: score}. raw_scores = [_single_word_score(model, base_words, word) for word in words] summed_scores = {} for base_word in base_words: summed_scores[base_word] = sum([item[base_word] for item in raw_scores]) summed_scores[base_word] = round( 100 * summed_scores[base_word] / len(words) ) return summed_scores
24,724
def verifyRRD(fix_rrd=False): """ Go through all known monitoring rrds and verify that they match existing schema (could be different if an upgrade happened) If fix_rrd is true, then also attempt to add any missing attributes. """ global rrd_problems_found global monitorAggregatorConfig mon_dir = monitorAggregatorConfig.monitor_dir status_dict = {} completed_stats_dict = {} completed_waste_dict = {} counts_dict = {} # initialize the RRD dictionaries to match the current schema for verification for tp in list(status_attributes.keys()): if tp in list(type_strings.keys()): tp_str = type_strings[tp] attributes_tp = status_attributes[tp] for a in attributes_tp: status_dict[f"{tp_str}{a}"] = None for jobrange in glideFactoryMonitoring.getAllJobRanges(): completed_stats_dict[f"JobsNr_{jobrange}"] = None for timerange in glideFactoryMonitoring.getAllTimeRanges(): completed_stats_dict[f"Lasted_{timerange}"] = None completed_stats_dict[f"JobsLasted_{timerange}"] = None for jobtype in glideFactoryMonitoring.getAllJobTypes(): for timerange in glideFactoryMonitoring.getAllMillRanges(): completed_waste_dict[f"{jobtype}_{timerange}"] = None for jobtype in ("Entered", "Exited", "Status"): for jobstatus in ("Wait", "Idle", "Running", "Held"): counts_dict[f"{jobtype}{jobstatus}"] = None for jobstatus in ("Completed", "Removed"): counts_dict["{}{}".format("Entered", jobstatus)] = None # FROM: lib2to3.fixes.fix_ws_comma # completed_waste_dict["%s_%s"%(jobtype, timerange)]=None # # for jobtype in ('Entered', 'Exited', 'Status'): # for jobstatus in ('Wait', 'Idle', 'Running', 'Held'): # counts_dict["%s%s"%(jobtype, jobstatus)]=None # for jobstatus in ('Completed', 'Removed'): # counts_dict["%s%s"%('Entered', jobstatus)]=None # # verifyHelper(os.path.join(total_dir, # "Status_Attributes.rrd"), status_dict, fix_rrd) # verifyHelper(os.path.join(total_dir, # "Log_Completed.rrd"), # glideFactoryMonitoring.getLogCompletedDefaults(), fix_rrd) # verifyHelper(os.path.join(total_dir, # "Log_Completed_Stats.rrd"), completed_stats_dict, fix_rrd) # verifyHelper(os.path.join(total_dir, # "Log_Completed_WasteTime.rrd"), completed_waste_dict, fix_rrd) # verifyHelper(os.path.join(total_dir, # "Log_Counts.rrd"), counts_dict, fix_rrd) # for filename in os.listdir(dir): # if filename[:6]=="entry_": # entrydir=os.path.join(dir, filename) # for subfilename in os.listdir(entrydir): # if subfilename[:9]=="frontend_": # current_dir=os.path.join(entrydir, subfilename) # verifyHelper(os.path.join(current_dir, # "Status_Attributes.rrd"), status_dict, fix_rrd) # verifyHelper(os.path.join(current_dir, # "Log_Completed.rrd"), # glideFactoryMonitoring.getLogCompletedDefaults(), fix_rrd) # verifyHelper(os.path.join(current_dir, # "Log_Completed_Stats.rrd"), completed_stats_dict, fix_rrd) # verifyHelper(os.path.join(current_dir, # "Log_Completed_WasteTime.rrd"), # completed_waste_dict, fix_rrd) # verifyHelper(os.path.join(current_dir, # "Log_Counts.rrd"), counts_dict, fix_rrd) # return not rrd_problems_found completed_dict = glideFactoryMonitoring.getLogCompletedDefaults() rrdict = { "Status_Attributes.rrd": status_dict, "Log_Completed.rrd": completed_dict, "Log_Completed_Stats.rrd": completed_stats_dict, "Log_Completed_WasteTime.rrd": completed_waste_dict, "Log_Counts.rrd": counts_dict, } for dir_name, sdir_name, f_list in os.walk(mon_dir): for file_name in f_list: if file_name in list(rrdict.keys()): verifyHelper(os.path.join(dir_name, file_name), rrdict[file_name], fix_rrd) return not rrd_problems_found
24,725
def features_ids_argument_parser() -> ArgumentParser: """ Creates a parser suitable to parse the argument describing features ids in different subparsers """ parser = ArgumentParser(add_help=False, parents=[collection_option_parser()]) parser.add_argument(FEATURES_IDS_ARGNAME, nargs='+', help='features identifiers or features UUIDs') return parser
24,726
def isolate_blue_blocks(image, area_min=10, side_ratio=0.5): """Return a sequence of masks on the original area showing significant blocks of blue.""" contours, _ = cv2.findContours( blue(image).astype(np.uint8) * 255, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE ) rects = [] for c in contours: x, y, w, h = cv2.boundingRect(c) if min(w, h) / max(w, h) > side_ratio and cv2.contourArea(c) > area_min: rects.append((x, y, w, h)) masks = np.zeros_like() return filtered
24,727
def read_gtf( filepath_or_buffer: Union[str, StringIO, Path], expand_attribute_column: bool = True, infer_biotype_column: bool = False, column_converters: Optional[Dict[str, Callable[..., str]]] = None, usecols: Optional[List[str]] = None, features: Optional[Tuple[str]] = None, chunksize: int = 1024 * 1024, ) -> pd.DataFrame: """ Parse a GTF into a dictionary mapping column names to sequences of values. Parameters ---------- filepath_or_buffer : str or buffer object Path to GTF file (may be gzip compressed) or buffer object such as StringIO expand_attribute_column : bool Replace strings of semi-colon separated key-value values in the 'attribute' column with one column per distinct key, with a list of values for each row (using None for rows where key didn't occur). infer_biotype_column : bool Due to the annoying ambiguity of the second GTF column across multiple Ensembl releases, figure out if an older GTF's source column is actually the gene_biotype or transcript_biotype. column_converters : dict, optional Dictionary mapping column names to conversion functions. Will replace empty strings with None and otherwise passes them to given conversion function. usecols : list of str or None Restrict which columns are loaded to the give set. If None, then load all columns. features : set of str or None Drop rows which aren't one of the features in the supplied set chunksize : int """ if isinstance(filepath_or_buffer, str): filepath_or_buffer = Path(filepath_or_buffer) if isinstance(filepath_or_buffer, Path) and not filepath_or_buffer.exists(): logger.exception(f"GTF file does not exist: {filepath_or_buffer}") raise FileNotFoundError if expand_attribute_column: result_df = parse_gtf_and_expand_attributes( filepath_or_buffer, chunksize=chunksize, restrict_attribute_columns=usecols ) else: result_df = parse_gtf( filepath_or_buffer, chunksize=chunksize, features=features ) if column_converters: for column_name in column_converters: result_df[column_name] = result_df[column_name].astype( column_converters[column_name], errors="ignore" ) # Hackishly infer whether the values in the 'source' column of this GTF # are actually representing a biotype by checking for the most common # gene_biotype and transcript_biotype value 'protein_coding' if infer_biotype_column: unique_source_values = result_df["source"].unique() if "protein_coding" in unique_source_values: column_names = result_df.columns.unique() # Disambiguate between the two biotypes by checking if # gene_biotype is already present in another column. If it is, # the 2nd column is the transcript_biotype (otherwise, it's the # gene_biotype) if "gene_biotype" not in column_names: logger.info("Using column 'source' to replace missing 'gene_biotype'") result_df["gene_biotype"] = result_df["source"] if "transcript_biotype" not in column_names: logger.info( "Using column 'source' to replace missing 'transcript_biotype'" ) result_df["transcript_biotype"] = result_df["source"] if usecols is not None: column_names = result_df.columns.unique() valid_columns = [c for c in usecols if c in column_names] result_df = result_df[valid_columns] return result_df
24,728
def version_in(dirname, indexname = None): """Returns a tuple of (release_version, format_version), where release_version is the release version number of the Whoosh code that created the index -- e.g. (0, 1, 24) -- and format_version is the version number of the on-disk format used for the index -- e.g. -102. The second number (format version) may be useful for figuring out if you need to recreate an index because the format has changed. However, you can just try to open the index and see if you get an IndexVersionError exception. Note that the release and format version are available as attributes on the Index object in Index.release and Index.version. :param dirname: the file path of a directory containing an index. :param indexname: the name of the index. If None, the default index name is used. :returns: ((major_ver, minor_ver, build_ver), format_ver) """ from whoosh.filedb.filestore import FileStorage storage = FileStorage(dirname) return version(storage, indexname=indexname)
24,729
def extract_pz( ctable, suffix="SAC_PZ", outdir=".", keep_sensitivity=False, filter_by_chid=None, filter_by_name=None, filter_by_component=None, ): """Extract instrumental response in SAC PZ format from channel table. .. warning:: Only works for instrumental responses of Hi-net network. RESP files of F-net network can be downloaded from `F-net website <http://www.fnet.bosai.go.jp/st_info/response.php?LANG=en>`_. Parameters ---------- ctable: str Channel table file. suffix: str Suffix of SAC PZ files. Defaults to ``SAC_PZ``. outdir: str Output directory. Defaults to current directory. keep_sensivity: bool win2sac automatically removes sensivity from waveform data during win32 format to SAC format conversion. So the generated polezero file should omit the sensitivity. filter_by_id: list of str or wildcard Filter channels by ID. filter_by_name: list of str or wildcard Filter channels by name. filter_by_component: list of str or wildcard Filter channels by component. Examples -------- >>> extract_pz("0101_20100101.ch") Extract all channel with specified suffix and output directory: >>> extract_pz("0101_20100101.ch", suffix="", outdir="20100101000") Extract only specified channels: >>> extract_pz( ... "0101_20100101.ch", filter_by_name="N.NA*", filter_by_component="[NE]" ... ) """ if not ctable: logger.error("ctable is `None'. Data requests may fail. Skipped.") return channels = _get_channels(ctable) if filter_by_chid or filter_by_name or filter_by_component: channels = _filter_channels( channels, filter_by_chid, filter_by_name, filter_by_component ) if not os.path.exists(outdir): os.makedirs(outdir, exist_ok=True) for channel in channels: _extract_sacpz( channel, suffix=suffix, outdir=outdir, keep_sensitivity=keep_sensitivity )
24,730
def apply_pairs(fn, convert, *args): """non-public""" if len(args) == 2: fn([convert(args[0])], [args[1]]) else: a1, a2 = unzip(args[0]) fn(convert(a1), list(a2))
24,731
def scrub_old_style_ceph(): """Purge any legacy ceph configuration from install""" # NOTE: purge old override file - no longer needed if os.path.exists('/etc/init/cinder-volume.override'): os.remove('/etc/init/cinder-volume.override') # NOTE: purge any CEPH_ARGS data from /etc/environment env_file = '/etc/environment' ceph_match = re.compile("^CEPH_ARGS.*").search with open(env_file, 'rt') as input_file: with NamedTemporaryFile(mode='wt', delete=False, dir=os.path.dirname(env_file)) as outfile: for line in input_file: if not ceph_match(line): print(line, end='', file=outfile) os.rename(outfile.name, input_file.name)
24,732
def trimAlphaNum(value): """ Trims alpha numeric characters from start and ending of a given value >>> trimAlphaNum(u'AND 1>(2+3)-- foobar') u' 1>(2+3)-- ' """ while value and value[-1].isalnum(): value = value[:-1] while value and value[0].isalnum(): value = value[1:] return value
24,733
def hrm_job_title_represent(id, row=None): """ FK representation """ if row: return row.name elif not id: return current.messages.NONE db = current.db table = db.hrm_job_title r = db(table.id == id).select(table.name, limitby = (0, 1)).first() try: return r.name except: return current.messages.UNKNOWN_OPT
24,734
def test_update_exception_w_obj(client): """ Verify the Client raises an exception if update is called with unsupporte type """ with pytest.raises(TypeError) as exc: client.update(1) assert "support updating objects of type" in str(exc)
24,735
def is_empty_array_expr(ir: irast.Base) -> bool: """Return True if the given *ir* expression is an empty array expression. """ return ( isinstance(ir, irast.Array) and not ir.elements )
24,736
def get_raw_entity_names_from_annotations(annotations): """ Args: annotated_utterance: annotated utterance Returns: Wikidata entities we received from annotations """ raw_el_output = annotations.get("entity_linking", [{}]) entities = [] try: if raw_el_output: if isinstance(raw_el_output[0], dict): entities = raw_el_output[0].get("entity_ids", []) if isinstance(raw_el_output[0], list): entities = raw_el_output[0][0] except Exception as e: error_message = f"Wrong entity linking output format {raw_el_output} : {e}" sentry_sdk.capture_exception(e) logger.exception(error_message) return entities
24,737
def CheckFileStoragePathVsEnabledDiskTemplates( logging_warn_fn, file_storage_dir, enabled_disk_templates): """Checks whether the given file storage directory is acceptable. @see: C{CheckFileBasedStoragePathVsEnabledDiskTemplates} """ CheckFileBasedStoragePathVsEnabledDiskTemplates( logging_warn_fn, file_storage_dir, enabled_disk_templates, constants.DT_FILE)
24,738
def nextPara(file, line): """Go forward one paragraph from the specified line and return the line number of the first line of that paragraph. Paragraphs are delimited by blank lines. It is assumed that the current line is standalone (which is bogus). - file is an array of strings - line is the starting point (zero-based)""" maxLine = len(file) - 1 # Skip over current paragraph while (line != maxLine and not isempty(file[line])): line = line + 1 # Skip over white space while (line != maxLine and isempty(file[line])): line = line + 1 return line
24,739
def test_generate_all(pytester, file_creator): """Generated testfiles are saved and not collected, then collected and tested. Note that tests/test_example.py is collected by pytest normally since it is not a .md file. When running pytest on generated test files, the pytest --doctest-modules is needed to test the Python interactive sessions. """ file_creator.populate_all(pytester_object=pytester) rr = pytester.runpytest( "-v", "--phmdoctest-generate", ".gendir", ".", ) assert rr.ret == pytest.ExitCode.OK rr.assert_outcomes(passed=1) rr.stdout.fnmatch_lines( [ "*tests/test_example.py::test_example*", ] ) assert Path(".gendir").exists() assert Path(".gendir/test_doc__directive2.py").exists() assert Path(".gendir/test_doc__project.py").exists() assert Path(".gendir/test_README.py").exists() assert len(list(Path(".gendir").iterdir())) == 3 # Files with no Python fenced code blocks did not get collected. assert not Path(".gendir/test_CONTRIBUTING.py").exists() rr2 = pytester.runpytest("tests", ".gendir", "-v", "--doctest-modules") assert rr2.ret == pytest.ExitCode.OK rr2.assert_outcomes(passed=10) rr2.stdout.fnmatch_lines( [ "*tests/test_example.py::test_example*", "*.gendir/test_README.py::test_README.session_00001_line_24*", "*.gendir/test_README.py::test_code_10_output_17*", "*.gendir/test_doc__directive2.py::test_code_25_output_32*", "*.gendir/test_doc__directive2.py::test_code_42_output_47*", "*.gendir/test_doc__directive2.py::test_code_52_output_56*", "*.gendir/test_doc__project.py::test_doc__project.session_00001_line_31*", "*.gendir/test_doc__project.py::test_doc__project.session_00002_line_46 PASSED*", "*.gendir/test_doc__project.py::test_doc__project.session_00003_line_55 PASSED*", "*.gendir/test_doc__project.py::test_code_12_output_19*", ], consecutive=True, )
24,740
def build_asignar_anexos_query(filters, request): """ Construye el query de búsqueda a partir de los filtros. """ return filters.buildQuery().filter(ambito__path__istartswith=request.get_perfil().ambito.path).order_by('nombre')
24,741
def WriteResult(state, num): """保存结果""" fileObject = open('results/result%04d.txt'%num, 'w') for i in range(5,-1,-1): for j in range(5-i): for m in range(i): fileObject.write(" ") for k in range(5-i): fileObject.write(str(state[i,j,k])+" ") fileObject.write('\n') fileObject.write('\n') fileObject.write('\n') fileObject.close()
24,742
def tang_save_features(data, labels, groundtruthfilename='100p'): """temp kludge """ [height, width, nbands] = data.shape x = tf.placeholder(tf.float32, shape=(19,19,nbands+18)) feat = tang_net(x) sess = tf.Session() sess.run(tf.global_variables_initializer()) padded_data = np.pad(data, ((9,9),(9,9),(9,9)), 'reflect') all_pixels = np.array(list(itertools.product(range(width),range(height)))) labelled_pixels = all_pixels[:10] print('requesting %d MB memory' % (labelled_pixels.shape[0] * 271*nbands * 4 / 1000000.0)) labelled_pix_feat = np.zeros((labelled_pixels.shape[0], 271*nbands), dtype=np.float32) for pixel_i, pixel in enumerate(tqdm(labelled_pixels)): # this iterates through columns first [pixel_x, pixel_y] = pixel subimg = padded_data[pixel_y:(pixel_y+19), pixel_x:(pixel_x+19), :] feed_dict = {x: subimg} labelled_pix_feat[pixel_i,:] = sess.run(feat, feed_dict) pdb.set_trace() flat_labels = labels.transpose().reshape(height*width) trainY = flat_labels[flat_labels!=0] print('starting training') start = time.time() clf = SVC(kernel='linear') clf.fit(labelled_pix_feat, trainY) end = time.time() print(end - start) # now start predicting the full image, 1 column at a time col_feat = np.zeros((height, 271*nbands), dtype=np.float32) pred_image = np.zeros((height,width), dtype=int) test_flags = '-q' for pixel_x in tqdm(range(width)): # get feat for pixel_y in range(height): subimg = padded_data[pixel_y:(pixel_y+19), pixel_x:(pixel_x+19), :] feed_dict = {x: subimg} col_feat[pixel_y,:] = sess.run(feat, feed_dict) # get pred for feat # dontcare = [0] * height p_label = clf.predict(col_feat); pred_image[:,pixel_x] = np.array(p_label).astype(int) imgmatfiledata = {} imgmatfiledata[u'imgHat'] = pred_image imgmatfiledata[u'groundtruthfilename'] = groundtruthfilename hdf5storage.write(imgmatfiledata, filename=groundtruthfilename+'_100p_tang_fullimg.mat', matlab_compatible=True) print('done making img, run hundredpercent_img_figures.m')
24,743
def validate_paths(paths_A, paths_B, strict=True, keys_ds=None): """ Validate the constructed images path lists are consistent. Can allow using B/HR and A/LR folders with different amount of images Parameters: paths_A (str): the path to domain A paths_B (str): the path to domain B keys_ds (list): the paired 'dataroot_' properties names expected in the Dataset. strict (bool): If strict = True, will make sure both lists only contains images if properly paired in the other dataset, otherwise will fill missing images paths in LR/A with 'None' to be taken care of later (ie. with on-the-fly generation) Examples of OTF usage: - If an LR image pair is not found, downscale HR on the fly, else, use the LR - If all LR are provided and 'lr_downscale' is enabled, randomize use of provided LR and OTF LR for augmentation """ if keys_ds is None: keys_ds = ['LR', 'HR'] if not strict: assert len(paths_B) >= len(paths_A), \ '{} dataset contains less images than {} dataset - {}, {}.'.format(\ keys_ds[1], keys_ds[0], len(paths_B), len(paths_A)) if len(paths_A) < len(paths_B): print('{} contains less images than {} dataset - {}, {}. Will generate missing images on the fly.'.format( keys_ds[0], keys_ds[1], len(paths_A), len(paths_B))) i=0 tmp_A = [] tmp_B = [] for idx in range(0, len(paths_B)): B_head, B_tail = os.path.split(paths_B[idx]) if i < len(paths_A): A_head, A_tail = os.path.split(paths_A[i]) if A_tail == B_tail: A_img_path = os.path.join(A_head, A_tail) tmp_A.append(A_img_path) i+=1 if strict: B_img_path = os.path.join(B_head, B_tail) tmp_B.append(B_img_path) else: if not strict: A_img_path = None tmp_A.append(A_img_path) else: #if the last image is missing if not strict: A_img_path = None tmp_A.append(A_img_path) paths_A = tmp_A paths_B = tmp_B if strict else paths_B assert len(paths_A) == len(paths_B) return paths_A, paths_B
24,744
def _median(data): """Return the median (middle value) of numeric data. When the number of data points is odd, return the middle data point. When the number of data points is even, the median is interpolated by taking the average of the two middle values: >>> median([1, 3, 5]) 3 >>> median([1, 3, 5, 7]) 4.0 """ data = sorted(data) n = len(data) if n == 0: raise ValueError("no median for empty data") if n % 2 == 1: return data[n // 2] else: i = n // 2 return (data[i - 1] + data[i]) / 2
24,745
def num_translate(value: str) -> str: """переводит числительное с английского на русский """ str_out = NUM_DICT.get(value) return str_out
24,746
def test_code_fixture(db_test_app): """ Test the localhost fixture """ code_echo = db_test_app.code_echo assert code_echo.uuid is not None code_echo.get_remote_exec_path()
24,747
def send_email(self, record_id): # pylint: disable=no-member,too-many-arguments,too-many-statements """ send out single email """ print(f"task:working on id - {record_id}") print(f"attempt no: {self.request.retries}") session = None db_session = None record = None try: session = create_session() db_session = session() record = db_session.query(HistoryModel).filter(HistoryModel.id == record_id).one() data = record.request message = Mail() #One line settings """ message.from_email = From(data['from']['email'], data['from']['name']) message.subject = Subject(data['subject']) if 'asm' in data.keys() and data['asm'] is not None and data['asm']['group_id'] != '': message.asm = Asm(GroupId(data['asm']['group_id']), GroupsToDisplay(data['asm']['groups_to_display'])) func_switcher = { "to": HelperService.get_emails, "cc": HelperService.get_emails, "bcc": HelperService.get_emails, "content": HelperService.get_content, "attachments": HelperService.get_attachments, "custom_args": HelperService.get_custom_args } message.to = func_switcher.get("to")(data['to'], 'to') data_keys = data.keys() if 'cc' in data_keys: message.cc = func_switcher.get("cc")(data['cc'], 'cc') if 'bcc' in data_keys: message.bcc = func_switcher.get("bcc")(data['bcc'], 'bcc') if 'template' in data_keys and not 'content' in data_keys: data['content'] = generate_template_content(data['template']) data_keys = data.keys() if 'content' in data_keys: message.content = func_switcher.get("content")(data['content']) if 'attachments' in data_keys: message.attachment = func_switcher.get("attachments")(data['attachments']) if 'custom_args' in data_keys: message.custom_arg = func_switcher.get("custom_args")(data['custom_args']) #logging.warning(message.get()) sendgrid_client = sendgrid.SendGridAPIClient(api_key=os.environ.get('SENDGRID_API_KEY')) response = sendgrid_client.send(message) print(f"response: {response.body}") print(f"status: {response.status_code}") record.email_content = [c.get() for c in message.contents] record.result = response.body record.processed_timestamp = datetime.datetime.now(LOCAL_TZ) db_session.commit() except HTTPError as err: print(f"send_grid error: {err.to_dict}") except Exception as err: # pylint: disable=broad-except print(f"task Error: {err}") print(traceback.format_exc()) if self.request.retries >= self.max_retries: print(ERR_MSG_MAX_RETRIES) rollback(db_session, record) raise err finally: db_session.close() print(f"task:finished with id - {record_id}")
24,748
def get_patch_shape(corpus_file): """Gets the patch shape (height, width) from the corpus file. Args: corpus_file: Path to a TFRecords file. Returns: A tuple (height, width), extracted from the first record. Raises: ValueError: if the corpus_file is empty. """ example = tf.train.Example() try: example.ParseFromString(next(tf.python_io.tf_record_iterator(corpus_file))) except StopIteration as e: raise ValueError('corpus_file cannot be empty: %s' % e) return (example.features.feature['height'].int64_list.value[0], example.features.feature['width'].int64_list.value[0])
24,749
def _TopologicallySortedEnvVarKeys(env): """Takes a dict |env| whose values are strings that can refer to other keys, for example env['foo'] = '$(bar) and $(baz)'. Returns a list L of all keys of env such that key2 is after key1 in L if env[key2] refers to env[key1]. Throws an Exception in case of dependency cycles. """ # Since environment variables can refer to other variables, the evaluation # order is important. Below is the logic to compute the dependency graph # and sort it. regex = re.compile(r'\$\{([a-zA-Z0-9\-_]+)\}') def GetEdges(node): # Use a definition of edges such that user_of_variable -> used_varible. # This happens to be easier in this case, since a variable's # definition contains all variables it references in a single string. # We can then reverse the result of the topological sort at the end. # Since: reverse(topsort(DAG)) = topsort(reverse_edges(DAG)) matches = set([v for v in regex.findall(env[node]) if v in env]) for dependee in matches: assert '${' not in dependee, 'Nested variables not supported: ' + dependee return matches try: # Topologically sort, and then reverse, because we used an edge definition # that's inverted from the expected result of this function (see comment # above). order = gyp.common.TopologicallySorted(env.keys(), GetEdges) order.reverse() return order except gyp.common.CycleError as e: raise GypError( 'Xcode environment variables are cyclically dependent: ' + str(e.nodes))
24,750
def get_children_as_dict(parent): """For a given parent object, return all children as a dictionary with the childs tag as key""" child_list = getChildElementsListWithSpecificXpath(parent, "*") child_dict = {} for child in child_list: value = get_children_as_dict(child) if child.tag not in child_dict: child_dict[child.tag] = [value] if value != {} else [child.text] else: child_dict[child.tag].append(value if value != {} else child.text) return child_dict
24,751
def markdown(build_reset, monkeypatch): """Create markdown and text widgets.""" app = App(__name__, sidebar=True) app.add(mark) app.add_sidebar(side) app.add_sidebar(text) app.subscribe(text.on_change)(write) # pylint: disable=protected-access app._build() with server_check(app) as server: yield server
24,752
def test_create_vmis_proper_dpg(vmi_service, database, vnc_api_client, vm_model, vmi_model, vn_model_1, vn_model_2): """ A new VMI is being created with proper DPG. """ vmi_model.vcenter_port.portgroup_key = 'dvportgroup-1' database.vmis_to_update.append(vmi_model) database.save(vn_model_1) database.save(vn_model_2) vmi_service.update_vmis() assert database.get_all_vmi_models() == [vmi_model] assert vmi_model.vm_model == vm_model assert vmi_model.vn_model == vn_model_1 assert vmi_model in database.ports_to_update assert vmi_model in database.vlans_to_update assert 'vnc-vn-uuid-1' in [ref['uuid'] for ref in vmi_model.vnc_vmi.get_virtual_network_refs()] vnc_api_client.update_vmi.assert_called_once()
24,753
def load_ascii_font(font_name): """ Load ascii font from a txt file. Parameter --------- font_name: name of the font (str). Return ------ font: font face from the file (dic). Version ------- Specification: Nicolas Van Bossuyt (v1. 27/02/17) Notes ----- Load font in figlet format (http://www.figlet.org). """ chars = " !\"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\\]^_'abcdefghijklmnopqrstuvwxyz{|}~ÄÖÜäöüβ" font = {} char_index = 0 current_char = '' current_char_width = 0 font_path = 'art/%s' % (font_name) if not path.isfile(font_path): return None f = open(font_path, 'r') for line in f: current_char_width = len(line.replace('@', '')) - 1 current_char += line.replace('@', '') if line.endswith('@@\n'): font[chars[char_index]] = {} font[chars[char_index]]['text'] = current_char font[chars[char_index]]['width'] = current_char_width current_char = '' char_index += 1 f.close() return font
24,754
def get_multi_tower_fn(num_gpus, variable_strategy, model_fn, device_setter_fn, lr_provider): """Returns a function that will build the resnet model. Args: num_gpus: number of GPUs to use (obviously) variable_strategy: "GPU" or "CPU" model_fn: The function providing the model as in loss, gradvars, preds = model_fn(is_training, features, labels, data_format, params) lr_provider: a function that takes a tf.train.get_global_step() and returns a learning rate value for that step device_setter_fn: A device setter """ def _multi_tower_model_fn(features, labels, mode, params): """A model function that distributes models amongst towers. Support single host, one or more GPU training. Parameter distribution can be either one of the following scheme. 1. CPU is the parameter server and manages gradient updates. 2. Parameters are distributed evenly across all GPUs, and the first GPU manages gradient updates. Args: features: a list of tensors, one for each tower labels: a list of tensors, one for each tower mode: ModeKeys.TRAIN or EVAL params: Hyperparameters suitable for tuning Returns: A EstimatorSpec object. """ is_training = (mode == tf.estimator.ModeKeys.TRAIN) momentum = params.momentum tower_features = features tower_labels = labels tower_losses = [] tower_gradvars = [] tower_preds = [] # channels first (NCHW) is normally optimal on GPU and channels last (NHWC) # on CPU. The exception is Intel MKL on CPU which is optimal with # channels_last. data_format = params.data_format if not data_format: if num_gpus == 0: data_format = 'channels_last' else: data_format = 'channels_first' if num_gpus == 0: num_devices = 1 device_type = 'cpu' else: num_devices = num_gpus device_type = 'gpu' for i in range(num_devices): worker_device = '/{}:{}'.format(device_type, i) device_setter = device_setter_fn( variable_strategy, worker_device, num_gpus) with tf.variable_scope('neural_network', reuse=bool(i != 0)): with tf.name_scope('tower_%d' % i) as name_scope: with tf.device(device_setter): loss, gradvars, preds = \ model_fn(is_training, tower_features[i], tower_labels[i], data_format, params) tower_losses.append(loss) tower_gradvars.append(gradvars) tower_preds.append(preds) if i == 0: # Only trigger batch_norm moving mean and variance update from # the 1st tower. Ideally, we should grab the updates from all # towers but these stats accumulate extremely fast so we can # ignore the other stats from the other towers without # significant detriment. update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS, name_scope) # Now compute global loss and gradients. gradvars = [] with tf.name_scope('gradient_averaging'): all_grads = {} for grad, var in itertools.chain(*tower_gradvars): if grad is not None: all_grads.setdefault(var, []).append(grad) for var, grads in six.iteritems(all_grads): # Average gradients on the same device as the variables # to which they apply. with tf.device(var.device): if len(grads) == 1: avg_grad = grads[0] else: avg_grad = tf.multiply(tf.add_n(grads), 1. / len(grads)) gradvars.append((avg_grad, var)) # Device that runs the ops to apply global gradient updates. consolidation_device = '/gpu:0' if variable_strategy == 'GPU' else '/cpu:0' with tf.device(consolidation_device): learning_rate = lr_provider(tf.train.get_global_step()) loss = tf.reduce_mean(tower_losses, name='loss') examples_sec_hook = reporting_utils.ExamplesPerSecondHook( params.train_batch_size, every_n_steps=10) tensors_to_log = {'learning_rate': learning_rate, 'loss': loss} logging_hook = tf.train.LoggingTensorHook( tensors=tensors_to_log, every_n_iter=100) train_hooks = [logging_hook, examples_sec_hook] optimizer = tf.train.MomentumOptimizer( learning_rate=learning_rate, momentum=momentum) if params.sync: raise ValueError("We don't support parallel processing at the moment.") # optimizer = tf.train.SyncReplicasOptimizer( # optimizer, replicas_to_aggregate=num_workers) # sync_replicas_hook = optimizer.make_session_run_hook(params.is_chief) # train_hooks.append(sync_replicas_hook) train_op = [ optimizer.apply_gradients( gradvars, global_step=tf.train.get_global_step()) ] # noinspection PyUnboundLocalVariable train_op.extend(update_ops) train_op = tf.group(*train_op) predictions = { 'classes': tf.concat([p['classes'] for p in tower_preds], axis=0), 'probabilities': tf.concat([p['probabilities'] for p in tower_preds], axis=0) } stacked_labels = tf.concat(labels, axis=0) metrics = { 'accuracy': tf.metrics.accuracy(stacked_labels, predictions['classes']) } # noinspection PyUnboundLocalVariable return tf.estimator.EstimatorSpec( mode=mode, predictions=predictions, loss=loss, train_op=train_op, training_hooks=train_hooks, eval_metric_ops=metrics) return _multi_tower_model_fn
24,755
def _check_num_classes_binary( num_classes: int, multiclass: tp.Optional[bool], implied_classes: tp.Optional[int] ) -> None: """This checks that the consistency of `num_classes` with the data and `multiclass` param for binary data.""" if implied_classes is not None and implied_classes != 2: raise ValueError( "If `preds` have one dimension more than `target`, then `num_classes` should be 2 for binary data." ) if num_classes > 2: raise ValueError("Your data is binary, but `num_classes` is larger than 2.") if num_classes == 2 and not multiclass: raise ValueError( "Your data is binary and `num_classes=2`, but `multiclass` is not True." " Set it to True if you want to transform binary data to multi-class format." ) if num_classes == 1 and multiclass: raise ValueError( "You have binary data and have set `multiclass=True`, but `num_classes` is 1." " Either set `multiclass=None`(default) or set `num_classes=2`" " to transform binary data to multi-class format." )
24,756
def extract_by_css( content: str, selector: str, *, first: bool = True ) -> Union[str, list]: """Extract values from HTML content using CSS selector. :param content: HTML content :param selector: CSS selector :param first: (optional) return first found element or all of them :return: value of the 1st found element or emtpy string if not found; or a list of all found elements """ extracted = ScrapySelector(text=content).css(selector).extract() if first: result = extracted[0] if len(extracted) > 0 else "" else: result = extracted return result
24,757
def generate_styles(): """ Create custom style rules """ # Set navbar so it's always at the top css_string = "#navbar-top{background-color: white; z-index: 100;}" # Set glossdef tip css_string += "a.tip{text-decoration:none; font-weight:bold; cursor:pointer; color:#2196F3;}" css_string += "a.tip:hover{position: relative;border-bottom: 1px dashed #2196F3;}" # Set glossdef span css_string += "a.tip span{display: none;background-color: white;font-weight: normal;border:1px solid gray;width: 250px;}" css_string += "a.tip:hover span{display: block;position: absolute;z-index: 100;padding: 5px 15px;}" return css_string
24,758
def get_config_file() -> Path: """ Get default config file. """ return get_project_root()/'data/config/config.yaml'
24,759
def kilometers_to_miles(dist_km): """Converts km distance to miles PARAMETERS ---------- dist_km : float Scalar distance in kilometers RETURNS ------- dist_mi : float Scalar distance in kilometers """ return dist_km / 1.609344
24,760
def test_Image_tmax_fallback(tmax_source, xy, expected, tol=0.001): """Test getting Tmax median value when daily doesn't exist To test this, move the test date into the future """ input_img = ee.Image.constant([300, 0.8]).rename(['lst', 'ndvi']) \ .set({'system:index': SCENE_ID, 'system:time_start': ee.Date(SCENE_DATE).update(2099).millis()}) output_img = model.Image(input_img, tmax_source=tmax_source)._tmax output = utils.point_image_value(ee.Image(output_img), xy) assert abs(output['tmax'] - expected) <= tol
24,761
def test_get_bitinformation_dtype(rasm, dtype): """Test xb.get_bitinformation returns correct number of bits depending on dtype.""" ds = rasm.astype(dtype) v = list(ds.data_vars)[0] dtype_bits = dtype.replace("float", "") assert len(xb.get_bitinformation(ds, dim="x")[v].coords["bit" + dtype_bits]) == int( dtype_bits )
24,762
def test_atomic_any_uri_max_length_3_nistxml_sv_iv_atomic_any_uri_max_length_4_1(mode, save_output, output_format): """ Type atomic/anyURI is restricted by facet maxLength with value 31. """ assert_bindings( schema="nistData/atomic/anyURI/Schema+Instance/NISTSchema-SV-IV-atomic-anyURI-maxLength-4.xsd", instance="nistData/atomic/anyURI/Schema+Instance/NISTXML-SV-IV-atomic-anyURI-maxLength-4-1.xml", class_name="NistschemaSvIvAtomicAnyUriMaxLength4", version="1.1", mode=mode, save_output=save_output, output_format=output_format, structure_style="filenames", )
24,763
def _objc_provider_framework_name(path): """Returns the name of the framework from an `objc` provider path. Args: path: A path that came from an `objc` provider. Returns: A string containing the name of the framework (e.g., `Foo` for `Foo.framework`). """ return path.rpartition("/")[2].partition(".")[0]
24,764
def create(rosdistro_index_url, extend_path, dir, name, build_tool, verbose): """Creates a new workspace, saves it, and switches to it if it is the first workspace. :param rosdistro_index_url: The rosdistro to use :param extend_path: Parent workspace to use. :param dir: Where to create the workspace :param name: Name of the new workspace. :param name: Create the workspace with colcon, instead of catkin_tools :param verbose: Unused. """ # also allow files if os.path.isfile(rosdistro_index_url): rosdistro_index_url = 'file://%s' % os.path.realpath(rosdistro_index_url) try: urlopen(rosdistro_index_url) except (ValueError, URLError) as e: logger.error(e) return 1 if not os.path.isdir(dir): logger.error('target path is not a directory') return 1 enclosing_workspace = find_enclosing_workspace(dir) if enclosing_workspace: logger.error("Its not allowed to create a worksapce inside another workspace, other workspace found here:\n%s", enclosing_workspace) return 1 # try to guess which build tool to use if os.path.exists(os.path.join(extend_path, '.catkin')): build_tool = 'catkin_tools' else: build_tool = 'colcon' if build_tool == 'catkin_tools': result = create_workspace_with_catkin_tools(extend_path, dir) elif build_tool == 'colcon': result = create_workspace_with_colcon(extend_path, dir) if result: return result save(dir, name, verbose) save_config(dir, rosdistro_index_url=rosdistro_index_url)
24,765
def sample_publisher(name='EA'): """Create and return a sample publisher""" return Publisher.objects.create(name=name)
24,766
def AddGlobalFile(gfile): """ Add a global file to the cmd string. @return string containing knob """ string = '' if gfile: string = ' --global_file ' + gfile return string
24,767
def get_scale_sequence(scale_0, v_init, a, n_frames): """ simulates an object's size change from an initial velocity and an acceleration type """ scale = scale_0 sequence = [scale] # TODO # friction, sinusoidal for i in range(n_frames-1): scale = max(0.05, scale + v_init) if not isinstance(a, str): v_init = v_init + a sequence.append(scale) return sequence
24,768
def read_file(filename): """Opens the file with the given filename and creates the puzzle in it. Returns a pair consisting of the puzzle grid and the list of clues. Assumes that the first line gives the size. Afterwards, the rows and clues are given. The description of the rows and clues may interleave arbitrarily. """ size = 0 out_list = [] rows = [] clues = [] with open(filename, 'r') as file: for line in file: line = line.replace('\n', '') line = split_type(line) if line[0] == 'SIZE': size = int(line[1]) elif line[0] == 'ROW': rows.append(read_row(line[1])) else: clues.append(read_clue(line[1])) return (rows, clues)
24,769
def login_user(request): """View to login a new user""" user = authenticate(username=request.POST['EMail'][:30], password=request.POST['Password']) if user is not None: if user.is_active: login(request, user) send_email("ROCK ON!!!", "User login - " + user.first_name + " " + user.last_name) # Redirect to a success page. return HttpResponse('success') else: # Return a 'disabled account' error message return HttpResponse('Account disabled') else: # Return an 'invalid login' error message. return HttpResponse('Invalid username or password')
24,770
def update_signature_approved(signature, value): """Helper function to update the signature approval status and send emails if necessary.""" previous = signature.get_signature_approved() signature.set_signature_approved(value) email_approval = cla.conf['EMAIL_ON_SIGNATURE_APPROVED'] if email_approval and not previous and value: # Just got approved. subject, body, recipients = get_signature_approved_email_content(signature) get_email_service().send(subject, body, recipients)
24,771
def gdf_convex_hull(gdf): """ Creates a convex hull around the total extent of a GeoDataFrame. Used to define a polygon for retrieving geometries within. When calculating densities for urban blocks we need to retrieve the full extent of e.g. buildings within the blocks, not crop them to an arbitrary bounding box. Parameters ---------- gdf : geodataframe currently accepts a projected gdf Returns ------- shapely polygon """ ### INSERT CHECK FOR CRS HERE? # project gdf back to geographic coordinates as footprints_from_polygon # requires it gdf_temp = ox.projection.project_gdf(gdf, to_latlong=True) # determine the boundary polygon to fetch buildings within # buffer originally 0.000225, buffer actually needs to go whole block away # to get complete highways therefor trying 0.001 boundary=gdf_temp.cascaded_union.convex_hull.buffer(0.001) # NOTE - maybe more efficient to generate boundary first then reproject second? return boundary
24,772
def room_operating_mode(mode: str) -> Dict[str, Any]: """Payload to set operating mode for :class:`~pymultimatic.model.component.Room`. """ return {"operationMode": mode}
24,773
def _validate_options(data: Dict[str, Any]) -> Dict[str, Any]: """ Looks up the exporter_type from the data, selects the correct export options serializer based on the exporter_type and finally validates the data using that serializer. :param data: A dict of data to serialize using an exporter options serializer. :return: validated export options data """ option_serializers = table_exporter_registry.get_option_serializer_map() validated_exporter_type = validate_data(BaseExporterOptionsSerializer, data) serializer = option_serializers[validated_exporter_type["exporter_type"]] return validate_data(serializer, data)
24,774
def LodeCross(m=1.2, clr='black', ls='dashed', lw=1, zorder=0, **kwargs): """ Draw cross for Lode diagram =========================== """ xmin, xmax = gca().get_xlim() ymin, ymax = gca().get_ylim() if xmin > 0.0: xmin = 0.0 if xmax < 0.0: xmax = 0.0 if ymin > 0.0: ymin = 0.0 if ymax < 0.0: ymax = 0.0 dx = abs(xmax - xmin) dy = abs(ymax - ymin) d = m * max(dx, dy) #print('dx=',dx,' dy=',dy,' d=',d) #d = sqrt((xmax-xmin)*2.0 + (ymax-ymin)*2.0) c30, s30 = sqrt(3.0)/2.0, 0.5 c60, s60 = 0.5, sqrt(3.0)/2.0 plot([0,0], [0,d*c30], color=clr, ls=ls, lw=lw, zorder=zorder, **kwargs) plot([0,-d*s30],[0,d*c30], color=clr, ls=ls, lw=lw, zorder=zorder, **kwargs) plot([0,-d*s60],[0,d*c60], color=clr, ls=ls, lw=lw, zorder=zorder, **kwargs)
24,775
def householder_name (name, rank): """Returns if the name conforms to Householder notation. >>> householder_name('A_1', 2) True >>> householder_name('foobar', 1) False """ base, _, _ = split_name(name) if base in ['0', '1']: return True elif rank == 0: if base in GREEK_ALPHA: return True elif rank == 1: if len(base) == 1 and base.isalpha() and base.islower(): return True elif rank == 2: if len(base) == 1 and base.isupper() and base.isalpha(): return True return False
24,776
def calculateDerivatives(x,t,id): """ dxdt, x0, id_, x_mean = calculateDerivatives(x,t,id) Missing data is assumed to be encoded as np.nan """ nm = ~np.isnan(t) & ~np.isnan(x) # not missing id_u = np.unique(id) id_ = [] dxdt = [] x0 = [] x_mean = [] for k in range(0,len(id_u)): rowz = id==id_u[k] rowz = rowz & nm t_k = t[rowz] x_k = x[rowz] if np.sum(rowz)>1: # Gradient via linear regression lm = np.polyfit(t_k,x_k,1) id_.append(id_u[k]) dxdt.append(lm[0]) x0.append(lm[1]) x_mean.append(np.nanmean(x_k)) print('k = {0} \n * n = {1}\n * dx/dt = {2} | x0 = {3} | mean(x) = {4}'.format(k,sum(rowz),dxdt[-1],x0[-1],x_mean[-1])) #plt.plot(t[rowz],x[rowz],'x') #plt.plot([min(t[rowz]),max(t[rowz])],[min(t[rowz]),max(t[rowz])]*dxdt[-1] + x0[-1],'-') #plt.show() # Remove any nan dxdt_isnan = np.isnan(dxdt) x0_isnan = np.isnan(x0) dxdt = np.delete(dxdt,np.where(dxdt_isnan | x0_isnan)[0]) x0 = np.delete(x0,np.where(dxdt_isnan | x0_isnan)[0]) id_u = np.delete(id_u,np.where(dxdt_isnan | x0_isnan)[0]) return dxdt, x0, id_, x_mean
24,777
def DeployConnectAgent(args, service_account_key_data, image_pull_secret_data, membership_ref): """Deploys the GKE Connect agent to the cluster. Args: args: arguments of the command. service_account_key_data: The contents of a Google IAM service account JSON file image_pull_secret_data: The contents of image pull secret to use for private registries. membership_ref: The membership should be associated with the connect agent in the format of `project/[PROJECT]/location/global/memberships/[MEMBERSHIP]`. Raises: exceptions.Error: If the agent cannot be deployed properly calliope_exceptions.MinimumArgumentException: If the agent cannot be deployed properly """ kube_client = kube_util.KubernetesClient(args) project_id = properties.VALUES.core.project.GetOrFail() log.status.Print('Generating connect agent manifest...') full_manifest = _GenerateManifest(args, service_account_key_data, image_pull_secret_data, False, membership_ref) # Generate a manifest file if necessary. if args.manifest_output_file: try: files.WriteFileContents( files.ExpandHomeDir(args.manifest_output_file), full_manifest, private=True) except files.Error as e: exceptions.Error('could not create manifest file: {}'.format(e)) log.status.Print(MANIFEST_SAVED_MESSAGE.format(args.manifest_output_file)) return log.status.Print('Deploying GKE Connect agent to cluster...') namespace = _GKEConnectNamespace(kube_client, project_id) # Delete the ns if necessary kube_util.DeleteNamespaceForReinstall(kube_client, namespace) # TODO(b/138816749): add check for cluster-admin permissions _PurgeAlphaInstaller(kube_client, namespace, project_id) # # Create or update the agent install deployment and related resources. _, err = kube_client.Apply(full_manifest) if err: raise exceptions.Error( 'Failed to apply manifest to cluster: {}'.format(err)) # TODO(b/131925085): Check connect agent health status.
24,778
def SolveCaptcha(api_key, site_key, url): """ Uses the 2Captcha service to solve Captcha's for you. Captcha's are held in iframes; to solve the captcha, you need a part of the url of the iframe. The iframe is usually inside a div with id=gRecaptcha. The part of the url we need is the query parameter k, this is called the site_key: www.google.com/recaptcha/api2/anchor?ar=1&k=6LcleDIUAAAAANqkex-vX88sMHw8FXuJQ3A4JKK9&co=aHR0cHM6Ly93d3cuZGljZS5jb206NDQz&hl=en&v=oqtdXEs9TE9ZUAIhXNz5JBt_&size=normal&cb=rpcg9w84syix k=6LcleDIUAAAAANqkex-vX88sMHw8FXuJQ3A4JKK9 Here the site_key is 6LcleDIUAAAAANqkex-vX88sMHw8FXuJQ3A4JKK9 You also need to supply the url of the current page you're on. This function will return a string with the response key from captcha validating the test. This needs to be inserted into an input field with the id=g-recaptcha-response. :param api_key: The 2Captcha API key. :param site_key: The site_key extracted from the Captcha iframe url :param url: url of the site you're on :return: The response from captcha validating the test """ print("Solving Captcha...") print("Sending Request...") request_response = requests.get("https://2captcha.com/in.php?", params={ "googlekey": site_key, "method": "userrecaptcha", "pageurl": url, "key": api_key, "json": 1, "invisible": 0, }) request_response.raise_for_status() print("Waiting for Response...") time.sleep(30) answer_response_json = {'status': 0, 'request': 'CAPCHA_NOT_READY'} while answer_response_json['request'] == 'CAPCHA_NOT_READY': answer_response = requests.get("https://2captcha.com/res.php", params={ "key": api_key, "action": "get", "id": request_response.json()['request'], "json": 1 }) answer_response_json = answer_response.json() print(answer_response_json) time.sleep(5) if answer_response_json['status'] == 1: print("Solved!") return answer_response_json['request'] elif answer_response_json['request'] == 'ERROR_CAPTCHA_UNSOLVABLE': raise TimeoutError("ERROR_CAPTCHA_UNSOLVABLE") else: raise Exception(answer_response_json['request'])
24,779
def send_asset(asset_file_name): """Return an asset. Args: asset_file_name: The path of the asset file relative to the assets folder. Returns: The asset specified in the URL. """ asset_path = f"assets/{asset_file_name}" asset_size = os.path.getsize(asset_path) with open(asset_path, "rb") as asset_file: asset_etag = RangeRequest.make_etag(asset_file) asset_response = RangeRequest( open(asset_path, "rb"), # noqa: WPS515 etag=asset_etag, last_modified=server_boot_time, size=asset_size, ).make_response() asset_response.mimetype = mimetypes.guess_type(asset_file_name)[0] return asset_response
24,780
def clean_crn(crn, duplicates = True, trivial = True, inter = None): """Takes a crn and removes trivial / duplicate reactions. """ new = [] seen = set() for [R, P] in crn: lR = sorted(interpret(R, inter)) if inter else sorted(R) lP = sorted(interpret(P, inter)) if inter else sorted(P) tR = tuple(lR) tP = tuple(lP) if trivial and tR == tP: continue if duplicates and (tR, tP) in seen: continue new.append([lR, lP]) seen.add((tR, tP)) return new
24,781
def to_libsvm(data, target, save_to=None): """ tranforms a dataset to libsvm format """ le = LabelEncoder() target_t = le.fit_transform(data.data[target].to_ndarray()) groups = [group for group in data.groups if group != target] with open(save_to, 'w') as f: for row in libsvm_row(target_t, data.data[groups].to_ndarray()): f.write(" ".join(row)) f.write("\n")
24,782
def bwa_index(fasta): """ Create a BWA index. """ shared.run_command( [BIN['bwa'], 'index', fasta], )
24,783
def get_db_mapping(mesh_id): """Return mapping to another name space for a MeSH ID, if it exists. Parameters ---------- mesh_id : str The MeSH ID whose mappings is to be returned. Returns ------- tuple or None A tuple consisting of a DB namespace and ID for the mapping or None if not available. """ return mesh_to_db.get(mesh_id)
24,784
def MC_dBESQ_gateway(N = 10**6, t = 0, n0 = 0, test = 'laguerre', method = 'laguerre', args = [], num_decimal = 4): """ Monte Carlo estimator of expected dBESQ using birth-death simulation, exact BESQ solution, dLaguerre simulation or PDE systems. :param N: int, Number of simulations :param T: positive float, Simulation horizon :param x0: initial value of X :param method: simulation method, currently support {'birth-death', 'exact-besq', 'laguerre', 'pde'} :param test: defines test function :args: arguments to define test function """ if method == 'birth-death': if test == 'laguerre': f = lambda n : eval_laguerre(n, 1) xt_array = bd_simulator(t, x0=n0, num_paths=N, method='bessel', num_threads=4) return np.mean(f(xt_array)).round(num_decimal) elif method == 'exact-besq': if test == 'laguerre': return np.mean(exp(-t+1)*jv(0, 2*np.sqrt(np.random.gamma(n0+1)))).round(num_decimal) elif method == 'laguerre': if test == 'laguerre': f = lambda n : eval_laguerre(n, 1) s = log(t / 2) def poisson_x0(): return np.random.poisson(np.random.gamma(n0+1)) xt_array = bd_simulator(s, x0=poisson_x0, num_paths=N, method='laguerre', num_threads=4) return np.mean(f(np.random.poisson(t/2 *np.random.gamma(xt_array+1)))).round(num_decimal)
24,785
def locate_app(app_id): """Attempts to locate the application.""" if app_id is None: return find_app_in_cwd() if ':' in app_id: module, app_obj = app_id.split(':', 1) else: module = app_id app_obj = None __import__(module) mod = sys.modules[module] if app_obj is None: app = find_best_app(mod) else: app = getattr(mod, app_obj, None) if app is None: raise RuntimeError('Failed to find application in module "%s"' % module) return app
24,786
def test_owe_transition_mode_multi_bss(dev, apdev): """Opportunistic Wireless Encryption transition mode (multi BSS)""" try: run_owe_transition_mode_multi_bss(dev, apdev) finally: dev[0].request("SCAN_INTERVAL 5")
24,787
def resolve_image(image): """ Resolve an informal image tag into a full Docker image tag. Any tag available on Docker Hub for Neo4j can be used, and if no 'neo4j:' prefix exists, this will be added automatically. The default edition is Community, unless a cluster is being created in which case Enterprise edition is selected instead. Explicit selection of Enterprise edition can be made by adding an '-enterprise' suffix to the image tag. If a 'file:' URI is passed in here instead of an image tag, the Docker image will be loaded from that file instead. Examples of valid tags: - 3.4.6 - neo4j:3.4.6 - latest - file:/home/me/image.tar """ if image.startswith("file:"): return load_image_from_file(image[5:]) elif ":" in image: return image else: return "neo4j:" + image
24,788
def _cifar_meanstd_normalize(image): """Mean + stddev whitening for CIFAR-10 used in ResNets. Args: image: Numpy array or TF Tensor, with values in [0, 255] Returns: image: Numpy array or TF Tensor, shifted and scaled by mean/stdev on CIFAR-10 dataset. """ # Channel-wise means and std devs calculated from the CIFAR-10 training set cifar_means = [125.3, 123.0, 113.9] cifar_devs = [63.0, 62.1, 66.7] rescaled_means = [x / 255. for x in cifar_means] rescaled_devs = [x / 255. for x in cifar_devs] image = (image - rescaled_means) / rescaled_devs return image
24,789
def get_value_counts_and_frequencies(elem: Variable, data: pd.DataFrame) -> Categories: """Call function to generate frequencies depending on the variable type Input: elem: dict data: pandas DataFrame Output: statistics: OrderedDict """ statistics: Categories = Categories() _scale = elem["scale"] statistics.update(get_categorical_frequencies(elem, data)) return statistics
24,790
def determineLinearRegions(data, minLength=.1, minR2=.96, maxSlopeInterceptDiff=.75): """ Determine regions of a plot that are approximately linear by performing linear least-squares on a rolling window. Parameters ---------- data : array_like Data within which linear regions are to be identified minLength : int or float The minimum length of a linear segment, either as an integer number of indices, or as a float fraction of the overall data length. minR2 : float The minimum r-squared value for a region to be considered linear. maxSlopeInterceptDiff : float The float percentage difference allowed between slopes and intercepts of adjacent slices for them to be considered the same region. Returns ------- regionIndices : np.ndarray[N,2] The start and end indices for the N detected regions. slopes : np.ndarray[N] The slope of each region. intercepts : np.ndarray[N] The intercept of each region. """ if minLength < 1: minLinSteps = int(len(data)*minLength) else: minLinSteps = int(minLength) inLinearRegion = False linearRegions = [] slopes = [] intercepts = [] # Perform least squares on a rolling window i = 0 while i < len(data) - minLinSteps: xArr = np.arange(i, i+minLinSteps) slope, intercept, r2, p_value, std_err = linregress(xArr, data[i:i+minLinSteps]) if np.abs(r2) > minR2: if inLinearRegion: # Calculate how different new slope is from old one if np.abs((np.mean(slopes[-1]) - slope) / np.mean(slopes[-1])) < maxSlopeInterceptDiff and np.abs((np.mean(intercepts[-1]) - intercept) / np.mean(intercepts[-1])) < maxSlopeInterceptDiff: # This is still the same linear region, so we extend the bounds linearRegions[-1][1] = i+minLinSteps # And average in the slopes and intercepts slopes[-1] += [slope] intercepts[-1] += [intercept] else: # Otherwise, we have a new linear region, which we start # at the end of the other one i = linearRegions[-1][1] inLinearRegion = False continue else: # New linear region linearRegions.append([i, i+minLinSteps]) slopes.append([slope]) intercepts.append([intercept]) inLinearRegion = True else: inLinearRegion = False i += 1 slopes = np.array([np.mean(s) for s in slopes]) intercepts = np.array([np.mean(inter) for inter in intercepts]) return np.array(linearRegions), slopes, intercepts
24,791
def compute_dispersion(aperture, beam, dispersion_type, dispersion_start, mean_dispersion_delta, num_pixels, redshift, aperture_low, aperture_high, weight=1, offset=0, function_type=None, order=None, Pmin=None, Pmax=None, *coefficients): """ Compute a dispersion mapping from a IRAF multi-spec description. :param aperture: The aperture number. :param beam: The beam number. :param dispersion_type: An integer representing the dispersion type: 0: linear dispersion 1: log-linear dispersion 2: non-linear dispersion :param dispersion_start: The value of the dispersion at the first physical pixel. :param mean_dispersion_delta: The mean difference between dispersion pixels. :param num_pixels: The number of pixels. :param redshift: The redshift of the object. This is accounted for by adjusting the dispersion scale without rebinning: >> dispersion_adjusted = dispersion / (1 + redshift) :param aperture_low: The lower limit of the spatial axis used to compute the dispersion. :param aperture_high: The upper limit of the spatial axis used to compute the dispersion. :param weight: [optional] A multiplier to apply to all dispersion values. :param offset: [optional] A zero-point offset to be applied to all the dispersion values. :param function_type: [optional] An integer representing the function type to use when a non-linear dispersion mapping (i.e. `dispersion_type = 2`) has been specified: 1: Chebyshev polynomial 2: Legendre polynomial 3: Cubic spline 4: Linear spline 5: Pixel coordinate array 6: Sampled coordinate array :param order: [optional] The order of the Legendre or Chebyshev function supplied. :param Pmin: [optional] The minimum pixel value, or lower limit of the range of physical pixel coordinates. :param Pmax: [optional] The maximum pixel value, or upper limit of the range of physical pixel coordinates. :param coefficients: [optional] The `order` number of coefficients that define the Legendre or Chebyshev polynomial functions. :returns: An array containing the computed dispersion values. """ if dispersion_type in (0, 1): # Simple linear or logarithmic spacing dispersion = \ dispersion_start + np.arange(num_pixels) * mean_dispersion_delta if dispersion_start == 1: dispersion = 10.**dispersion elif dispersion_type == 2: # Non-linear mapping. if function_type is None: raise ValueError("function type required for non-linear mapping") elif function_type not in range(1, 7): raise ValueError( "function type {0} not recognised".format(function_type)) if function_type == 1: order = int(order) n = np.linspace(-1, 1, Pmax - Pmin + 1) temp = np.zeros((Pmax - Pmin + 1, order), dtype=float) temp[:, 0] = 1 temp[:, 1] = n for i in range(2, order): temp[:, i] = 2 * n * temp[:, i-1] - temp[:, i-2] for i in range(0, order): temp[:, i] *= coefficients[i] dispersion = temp.sum(axis=1) elif function_type == 2: # Legendre polynomial. if None in (order, Pmin, Pmax, coefficients): raise TypeError("order, Pmin, Pmax and coefficients required " "for a Chebyshev or Legendre polynomial") Pmean = (Pmax + Pmin)/2 Pptp = Pmax - Pmin x = (np.arange(num_pixels) + 1 - Pmean)/(Pptp/2) p0 = np.ones(num_pixels) p1 = mean_dispersion_delta dispersion = coefficients[0] * p0 + coefficients[1] * p1 for i in range(2, int(order)): if function_type == 1: # Chebyshev p2 = 2 * x * p1 - p0 else: # Legendre p2 = ((2*i - 1)*x*p1 - (i - 1)*p0) / i dispersion += p2 * coefficients[i] p0, p1 = (p1, p2) elif function_type == 3: # Cubic spline. if None in (order, Pmin, Pmax, coefficients): raise TypeError("order, Pmin, Pmax and coefficients required " "for a cubic spline mapping") s = (np.arange(num_pixels, dtype=float) + 1 - Pmin)/(Pmax - Pmin) \ * order j = s.astype(int).clip(0, order - 1) a, b = (j + 1 - s, s - j) x = np.array([ a**3, 1 + 3*a*(1 + a*b), 1 + 3*b*(1 + a*b), b**3]) dispersion = np.dot(np.array(coefficients), x.T) else: raise NotImplementedError("function type not implemented yet") else: raise ValueError( "dispersion type {0} not recognised".format(dispersion_type)) # Apply redshift correction. dispersion = weight * (dispersion + offset) / (1 + redshift) return dispersion
24,792
async def websocket_remove_node( hass: HomeAssistant, connection: ActiveConnection, msg: dict, entry: ConfigEntry, client: Client, ) -> None: """Remove a node from the Z-Wave network.""" controller = client.driver.controller @callback def async_cleanup() -> None: """Remove signal listeners.""" for unsub in unsubs: unsub() @callback def forward_event(event: dict) -> None: connection.send_message( websocket_api.event_message(msg[ID], {"event": event["event"]}) ) @callback def node_removed(event: dict) -> None: node = event["node"] node_details = { "node_id": node.node_id, } connection.send_message( websocket_api.event_message( msg[ID], {"event": "node removed", "node": node_details} ) ) connection.subscriptions[msg["id"]] = async_cleanup unsubs = [ controller.on("exclusion started", forward_event), controller.on("exclusion failed", forward_event), controller.on("exclusion stopped", forward_event), controller.on("node removed", node_removed), ] result = await controller.async_begin_exclusion() connection.send_result( msg[ID], result, )
24,793
def _fix_google_module(): """Reloads the google module to prefer our third_party copy. When Python is not invoked with the -S option, it may preload the google module via .pth file. This leads to the "site_packages" version being preferred over gsutil "third_party" version. To force the "third_party" version, insert the path at the start of sys.path and reload the google module. This is a hacky. Reloading is required for the rare case that users have google-auth already installed in their Python environment. Note that this reload may cause an issue for Python 3.5.3 and lower because of the weakref issue, fixed in Python 3.5.4: https://github.com/python/cpython/commit/9cd7e17640a49635d1c1f8c2989578a8fc2c1de6. """ if 'google' not in sys.modules: return import importlib # pylint: disable=g-import-not-at-top importlib.reload(sys.modules['google'])
24,794
def _remove_edgetpu_model(data_dir): """Removes edgetpu models recursively from given folder. Filenames with suffix `_edgetpu.tflite` will be removed. Args: data_dir: string, path to folder. """ print("Removing edgetpu models from ", data_dir) edgetpu_model_list = glob.glob( os.path.join(data_dir, "**/*_edgetpu.tflite"), recursive=True) models_to_skip = _get_models_to_skip() for model_path in edgetpu_model_list: if models_to_skip and os.path.basename(model_path).replace( "_edgetpu.tflite", "") in models_to_skip: print("Skipping %s" % (model_path)) continue print("Removing model: %s" % (os.path.join(data_dir, model_path))) os.remove(os.path.join(data_dir, model_path))
24,795
def test_shutil_ignore_function(): """ >>> test_shutil_ignore_function() """ # Setup path_test_dir = pathlib.Path(__file__).parent.resolve() path_source_dir = path_test_dir / "example" path_target_dir = path_test_dir / "target" shutil.rmtree(path_target_dir, ignore_errors=True) # Test ignore_parser = igittigitt.IgnoreParser() ignore_parser.parse_rule_files(base_dir=path_source_dir, filename=".test_gitignore") shutil.copytree( path_source_dir, path_target_dir, ignore=ignore_parser.shutil_ignore, ) assert len(list(path_target_dir.glob("**/*"))) == 9 # Teardown shutil.rmtree(path_target_dir, ignore_errors=True)
24,796
def normalize_pcp_area(pcp): """ Normalizes a pcp so that the sum of its content is 1, outputting a pcp with up to 3 decimal points. """ pcp = np.divide(pcp, np.sum(pcp)) new_format = [] for item in pcp: new_format.append(item) return np.array(new_format)
24,797
def calc_line_flux(spec, ws, ivar, w0, w1, u_flux): """ calculate the flux and flux error of the line within the range w0 and w1 using trapz rule""" u_spec = spec.unit u_ws = ws.unit ivar = ivar.to(1./(u_spec**2)) spec_uless = np.array(spec) ws_uless = np.array(ws) ivar_uless = np.array(ivar) if ivar.unit != (1./(spec.unit**2)): raise Exception("[spector] spec and ivar units inconsistent") # select region to integrate select_ws = (ws_uless > w0) & (ws_uless < w1) ws_sel = ws_uless[select_ws] spec_sel = spec_uless[select_ws] ivar_sel = ivar_uless[select_ws] var_sel = 1./ivar_sel # integrate f, fvar = trapz_var(x=ws_sel, y=spec_sel, yvar=var_sel) f = (f*u_spec*u_ws).to(u_flux) ferr = (np.sqrt(fvar)*u_spec*u_ws).to(u_flux) return f, ferr
24,798
def main(): """ fonction principale """ if len(sys.argv) >= 2 and sys.argv[1] == 'find': if len(sys.argv) > 2: name = sys.argv[2] else: name = None data = find_gce(name=name) if len(data) > 0: data = data[0] print("{}:{}".format(data[0], data[3])) else: print("Test GCE") gce = find_first_gce() print("Device:", gce) # teleinfo print("Teleinfo:") for key, value in sorted(teleinfo(gce=gce).items()): text = '?' for i, j in TELEINFO_ERDF.items(): if key.endswith(i): text = j print("%20s : %-14s %s" % (key, value, text)) # compteurs cpt = compteurs(gce=gce) print("Compteurs:") print("%20s : %-14s %s" % ("C1", cpt['Day_C1'], 'Compteur 1')) print("%20s : %-14s %s" % ("C2", cpt['Day_C2'], 'Compteur 2')) # # résumé des données # data = donnees(gce=gce) # for key, value in sorted(data.items()): # print("%20s : %-14s" % (key, value)) # # status # data = status(gce=gce) # for key, value in sorted(data.items()): # print("%20s : %-14s" % (key, value))
24,799