content
stringlengths
22
815k
id
int64
0
4.91M
def calculate_EHF_severity( T, T_p95_file=None, EHF_p85_file=None, T_p95_period=None, T_p95_dim=None, EHF_p85_period=None, EHF_p85_dim=None, rolling_dim="time", T_name="t_ref", ): """ Calculate the severity of the Excess Heat Factor index, defined as: EHF_severity = EHF / EHF_p85 where "_p85" denotes the 85th percentile of all positive values using all days in the year and the Excess Heat Factor (EHF) is defined as: EHF = max(0, EHI_sig) * max(1, EHI_accl) with EHI_sig = (T_i + T_i+1 + T_i+2) / 3 – T_p95 EHI_accl = (T_i + T_i+1 + T_i+2) / 3 – (T_i–1 + ... + T_i–30) / 30 T is the daily mean temperature (commonly calculated as the mean of the min and max daily temperatures, usually with daily maximum typically preceding the daily minimum, and the two observations relate to the same 9am-to-9am 24-h period) and T_p95 is the 95th percentile of T using all days in the year. Parameters ---------- T : xarray DataArray Array of daily mean temperature T_p95_file : xarray DataArray, optional Path to a file with the 95th percentiles of T using all days in the year. This should be relative to the project directory. If not provided, T_p95_period and T_p95_dim must be provided EHF_p85_file : xarray DataArray, optional Path to a file with the 85th percentiles of positive EHF using all days in the year. This should be relative to the project directory. If not provided, EHF_p85_period and EHF_p85_dim must be provided T_p95_period : list of str, optional Size 2 iterable containing strings indicating the start and end dates of the period over which to calculate T_p95. Only used if T_p95 is None T_p95_dim : str or list of str, optional The dimension(s) over which to calculate T_p95. Only used if T_p95 is None EHF_p85_period : list of str, optional Size 2 iterable containing strings indicating the start and end dates of the period over which to calculate EHF_p85. Only used if EHF_p85 is None EHF_p85_dim : str or list of str, optional The dimension(s) over which to calculate EHF_p85. Only used if EHF_p85 is None rolling_dim : str, optional The dimension over which to compute the rolling averages in the definition of EHF T_name : str, optional The name of the temperature variable in T References ---------- Nairn et al. 2015: https://doi.org/10.3390/ijerph120100227 """ if EHF_p85_file is None: if (EHF_p85_period is not None) & (EHF_p85_dim is not None): calculate_EHF_p85 = True else: raise ValueError( ( "Must provide either thresholds of the 85th percentile of EHF (E_p85) or details " "of the climatological period and dimensions to use to calculate these thresholds " "(EHF_p85_period and EHF_p85_dim)" ) ) else: EHF_p85_file = PROJECT_DIR / EHF_p85_file EHF_p85 = xr.open_zarr(EHF_p85_file) calculate_EHF_p85 = False EHF = calculate_EHF(T, T_p95_file, T_p95_period, T_p95_dim, rolling_dim, T_name) if calculate_EHF_p85: EHF_p85 = calculate_percentile_thresholds( EHF.where(EHF > 0), 0.85, EHF_p85_period, EHF_p85_dim, frequency=None ) EHF_sev = EHF / EHF_p85 EHF_sev = EHF_sev.rename({"ehf": "ehf_severity"}) EHF_sev["ehf_severity"].attrs["long_name"] = "Severity of the Excess Heat Factor" EHF_sev["ehf_severity"].attrs["standard_name"] = "excess_heat_factor_severity" EHF_sev["ehf_severity"].attrs["units"] = "-" return EHF_sev
24,100
def parse_args(): """Parse input arguments Return: parsed arguments struncture """ parser = argparse.ArgumentParser() subparsers = parser.add_subparsers(dest='type') subparsers.required = True parser_file = subparsers.add_parser('file') parser_file.add_argument( "-i", "--input", help="Input file name.", required=True) parser_file.add_argument( "-d", "--database", help="Token database.", required=True) parser_file.add_argument( "-o", "--output", help="Output file name.", required=True) parser_file = subparsers.add_parser('serial') parser_file.add_argument( "-i", "--input", help="Input serial port name.", required=True) parser_file.add_argument( "-d", "--database", help="Token database.", required=True) parser_file.add_argument( "-o", "--output", help="Output file name. Write to stdout and to file.") return parser.parse_args()
24,101
def arrange_train_data(keypoints: Dict, beg_end_times: List[Tuple], fps: float, MAX_PERSONS: int) -> Dict: """ Arrange data into frames. Add gestures present or not based on time ranges. Generate each frame and also, add dummy when necessary. """ data = {} for key in keypoints.keys(): persons = list(keypoints[key].keys()) persons.remove("start_frame") persons.remove("end_frame") count_persons = len(persons) gestures_xy = [] start_frame, end_frame = keypoints[key]["start_frame"], keypoints[key]["end_frame"] start_time_ms = start_frame/fps*1000 end_time_ms = end_frame/fps*1000 for per_ind in range(1, count_persons+1): per_str = str(per_ind) gestures_xy.append(keypoints[key][per_str]["person_keypoints"]) # dummy to always have MAX_PERSONS (training to be done in matrices (Required_keypoints x Max_persons x window)) dummy = generate_dummy_keypoints() dummy_frames_list = [] for _ in range(start_frame, end_frame+1): dummy_frames_list.append(dummy) for i in range(MAX_PERSONS - count_persons): gestures_xy.append(dummy_frames_list) frame_division_gestures = list(zip(*gestures_xy)) frames_dict = {} for i, frame in enumerate(frame_division_gestures): frames_dict[str(start_frame + i)] = { "frames": frame, "gesture": False } data[key] = frames_dict for be_time in beg_end_times: if be_time[0] > end_time_ms or be_time[1] < start_time_ms: continue elif be_time[0] < start_time_ms and be_time[1] < end_time_ms: bt = start_time_ms et = be_time[1] elif be_time[0] > start_time_ms and be_time[1] < end_time_ms: bt = be_time[0] et = be_time[1] elif be_time[0] < start_time_ms and be_time[1] > end_time_ms: bt = start_time_ms et = end_time_ms elif be_time[0] > start_time_ms and be_time[1] > end_time_ms: bt = be_time[0] et = end_time_ms # Now using bt and et, find the frame indices with gesture begin_at_frame_ind = int(bt*fps/1000+0.5) no_of_frames = int((et-bt)*fps/1000+0.5) end_at_frame_ind = begin_at_frame_ind + no_of_frames if end_at_frame_ind > int((list(data[key].keys()))[-1]): end_at_frame_ind = int((list(data[key].keys()))[-1]) for frame_no in range(begin_at_frame_ind, end_at_frame_ind+1): data[key][str(frame_no)]["gesture"] = True return data
24,102
def length(list): """Return the number of items in the list.""" if list == (): return 0 else: _, tail = list return 1 + length(tail)
24,103
def buzz(x): """ Takes an input `x` and checks to see if x is a number, and if so, also a multiple of 5. If it is both, return 'Buzz'. Otherwise, return the input. """ return 'Buzz' if isinstance(x, Number) and x % 5 == 0 else x
24,104
def _tuple_of_big_endian_int(bit_groups: Iterable[Any]) -> Tuple[int, ...]: """Returns the big-endian integers specified by groups of bits. Args: bit_groups: Groups of descending bits, each specifying a big endian integer with the 1s bit at the end. Returns: A tuple containing the integer for each group. """ return tuple(value.big_endian_bits_to_int(bits) for bits in bit_groups)
24,105
def gene_signature_wizard_main(loomfile=None, signaturefile=None): """ Parameters ---------- loomfile : (Default value = None) signaturefile : (Default value = None) Returns ------- """ print(loomfile) if loomfile is None: loomfile = click.prompt( "Loom file that you would like to augment with a gene signature: ") while not (os.path.isfile(loomfile) and loomfile.endswith('.loom')): loomfile = click.prompt( "Not a loom file. Please select loom file that you would like to augment with cnv/segmentation data: " ) if signaturefile is None: signaturefile = click.prompt( "Gene list that you would like to add as a gene signature (headerless file, single column): " ) signature = np.genfromtxt(signaturefile, dtype=str) with loompy.connect(loomfile, validate=False) as loom: proceed = 'y' if len(np.intersect1d(signature, loom.ra['gene'])) < len(signature): proceed = click.prompt( "The following genes ({} in total) in the given signature\n{}\nare not in the loom file. Would you like to proceed with those that are ({} genes in total)?" .format(len(np.setdiff1d(signature, loom.ra['gene'])), ", ".join(np.setdiff1d(signature, loom.ra['gene'])), len(np.intersect1d(signature, loom.ra['gene']))), type=click.Choice(['n', 'y']), default='y') if proceed == 'y': signature_name = click.prompt( "What would you like to name this signature?", default=signaturefile.split('/')[-1].split('.')[0::-1][0]) loom.ra[signature_name] = np.isin(loom.ra['gene'], signature)
24,106
def create_cert( cert_store: CertificateStore, key_store: KeyStore, cert_minter: CertificateMinter, cert_path: str, issuer_key_name: str, issuer_key_password: str, issuer_key_no_password: bool = False, signing_key_name: str = None, signing_key_password: str = None, signing_key_no_password: bool = False, country: str = None, state: str = None, locality: str = None, organization: str = None, common_name: str = None, duration_days: int = 365, store: bool = True): """Creates a new certificate This function handles the creation of a new certificate. The general notes below are based on the cert_path: ``/server/myserver`` & ``/client/myclient`` A self-signed certificate in which the issuer and the subject are the same. No signing_key_name is needed. ``/root/myroot`` A root CA in which the issuer and the subject are the same. No signing_key_name is needed. ``/root/myroot/intermediate/myintermediate`` An intermediate CA with the issuer being ``/root/myroot``. A signing_key_name is needed ``/root/myroot/intermediate/myintermediate/server/myserver`` A server certificate with the issuer being ``/root/myroot/intermediate/myintermediate``. A signing_key_name is needed ``/root/myroot/server/myserver`` A server certificate with the issuer being ``/root/myroot``. A signing_key_name is needed :param cert_store: the certificate store in which to create the cert as well as holds any issuer certs :type cert_store: CertificateStore :param key_store: the key store holding the various keys :type key_store: KeyStore :param cert_minter: the cert minter :type cert_minter: CertificateMinter :param cert_path: the path of the certificate :type cert_path: str :param issuer_key_name: the key used to sign the certificate :type issuer_key_name: str :param issuer_key_password: the issuer key's password :type issuer_key_password: str :param issuer_key_no_password: indicates that the issuer key doesn't have a password , defaults to False :type issuer_key_no_password: bool, optional :param signing_key_name: the name of the signing key, defaults to None :type signing_key_name: str, optional :param signing_key_password: the password for the signing key , defaults to None :type signing_key_password: str, optional :param signing_key_no_password: indicates if the issuer key doesn't have a password , defaults to False :type signing_key_no_password: bool, optional :param country: the 2-letter country code used in the cert subject, defaults to None :type country: str, optional :param state: used in the cert subject, defaults to None :type state: str, optional :param locality: used in the cert subject, defaults to None :type locality: str, optional :param organization: used in the cert subject, defaults to None :type organization: str, optional :param common_name: used in the cert subject, defaults to None :type common_name: str, optional :param duration_days: the lifespan of the cert in days, defaults to 365 :type duration_days: int, optional :param store: if set to False, the certificate will just be sent to stdout and not stored , defaults to True :type store: bool, optional """ if not issuer_key_name: exit("No issuer key name was provided") if not key_store.exists(issuer_key_name): exit("The requested issuer key ({}) does not exist".format(issuer_key_name)) if duration_days <= 0: exit("Duration days must be positive") if not cert_path: exit("No value was provided for cert_path") cert_details = get_certificate_details(cert_path) if cert_store.exists(cert_details): exit("The certificate already exists") if not common_name: common_name = cert_details.name subject = x509CertificateNameAttributes( common_name=common_name, country_name=country, state_name=state, locality_name=locality, organization_name=organization ) signing_key: PrivateKey = None csr = None if isinstance(cert_details.certificate_type, x509RootCertificateType): # Root certificate issuer = subject elif ((type(cert_details.certificate_type) in [x509ClientCertificateType, x509ServerCertificateType]) and (cert_details.issuer is None)): # Self-signed server/client cert issuer = subject else: # An intermediate cert or signed client/server cert if not signing_key_name: exit("No signing key name was provided") if not key_store.exists(signing_key_name): exit("The requested signing key ({}) does not exist".format( signing_key_name)) # Check the issuer's certificate if cert_details.issuer.certificate_type in [ x509RootCertificateType, x509IntermediateCertificateType]: exit("The certificate's issuer must be a Root or Intermediate CA") if not cert_store.exists(cert_details.issuer): exit("The issuing certificate {} doesn't exist.".format( cert_details.issuer.name)) issuer_cert = cert_store.get(CertificateStoreEntryImpl( details=cert_details.issuer, certificate=None )) issuer = issuer_cert.certificate.subject # Get the signing key (for use with a CSR) if signing_key_no_password: signing_password = None elif signing_key_password: signing_password = signing_key_password else: signing_password = prompt_for_password( prompt="Enter password for key {}: ".format(signing_key_name), validate=False) try: signing_key = key_store.get(key_name=signing_key_name, password=signing_password) except ValueError as e: exit("Failed to access the signing key ({}) - {}".format(issuer_key_name, e)) csr = x509SigningRequest.generate( private_key=signing_key, subject=subject ) # Load the Issuer Key if issuer_key_no_password: issuer_password = None elif issuer_key_password: issuer_password = issuer_key_password else: issuer_password = prompt_for_password( prompt="Enter password for key {}: ".format(issuer_key_name), validate=False) try: issuer_key: PrivateKey = key_store.get(key_name=issuer_key_name, password=issuer_password) except ValueError as e: exit("Failed to access the issuer key ({}) - {}".format(issuer_key_name, e)) if not csr: csr = x509SigningRequest.generate( private_key=issuer_key, subject=issuer ) cert_args = x509CertificateMinter.prepare_mint_args( certificate_type=cert_details.certificate_type, issuer_key=issuer_key, issuer=issuer, csr=csr, duration_days=duration_days ) certificate: Certificate = cert_minter.mint(**cert_args) if store: entry = CertificateStoreEntryImpl(details=cert_details, certificate=certificate) cert_store.add(entry) else: print(str(certificate.public_bytes(), 'utf-8'))
24,107
def read_ss(fn): """Read a sequence of serverStatus JSON documents, one per line""" result = collections.defaultdict(list) for i, line in enumerate(open(fn)): j = json.loads(line) _parse(j, result, ('serverStatus',)) if i>0 and i%100==0: yield result result.clear() yield result
24,108
def make_simple_server(service, handler, host="localhost", port=9090): """Return a server of type TSimple Server. Based on thriftpy's make_server(), but return TSimpleServer instead of TThreadedServer. Since TSimpleServer's constructor doesn't accept kwargs, some arguments of make_server can't be used here. By default: client_timeout: None protocol: TBinaryProtocolFactory transport: TBufferedTransportFactory """ processor = TProcessor(service, handler) if host and port: server_socket = TServerSocket( host=host, port=port, client_timeout=None) else: raise ValueError("Either host/port or unix_socket must be provided.") server = TSimpleServer(processor, server_socket) return server
24,109
def test_random_horizontal_valid_prob_c(): """ Test RandomHorizontalFlip op with c_transforms: valid non-default input, expect to pass """ logger.info("test_random_horizontal_valid_prob_c") original_seed = config_get_set_seed(0) original_num_parallel_workers = config_get_set_num_parallel_workers(1) # Generate dataset data = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False) decode_op = c_vision.Decode() random_horizontal_op = c_vision.RandomHorizontalFlip(0.8) data = data.map(operations=decode_op, input_columns=["image"]) data = data.map(operations=random_horizontal_op, input_columns=["image"]) filename = "random_horizontal_01_c_result.npz" save_and_check_md5(data, filename, generate_golden=GENERATE_GOLDEN) # Restore config setting ds.config.set_seed(original_seed) ds.config.set_num_parallel_workers(original_num_parallel_workers)
24,110
def morph(clm1, clm2, t, lmax): """Interpolate linearly the two sets of sph harm. coeeficients.""" clm = (1 - t) * clm1 + t * clm2 grid_reco = clm.expand(lmax=lmax) # cut "high frequency" components agrid_reco = grid_reco.to_array() pts = [] for i, longs in enumerate(agrid_reco): ilat = grid_reco.lats()[i] for j, value in enumerate(longs): ilong = grid_reco.lons()[j] th = np.deg2rad(90 - ilat) ph = np.deg2rad(ilong) r = value + rbias p = np.array([sin(th) * cos(ph), sin(th) * sin(ph), cos(th)]) * r pts.append(p) return pts
24,111
def cal_tsne_embeds_src_tgt(Xs, ys, Xt, yt, n_components=2, text=None, save_path=None, n_samples=1000, names=None): """ Plot embedding for both source and target domain using tSNE :param Xs: :param ys: :param Xt: :param yt: :param n_components: :param text: :param save_path: :return: """ Xs = Xs[: min(len(Xs), n_samples)] ys = ys[: min(len(ys), n_samples)] Xt = Xt[: min(len(Xt), n_samples)] yt = yt[: min(len(Xt), n_samples)] X = np.concatenate((Xs, Xt), axis=0) tsne = manifold.TSNE(n_components=n_components) X = tsne.fit_transform(X) Xs = X[: len(Xs)] Xt = X[len(Xs):] plot_embedding_src_tgt(Xs, ys, Xt, yt, text, save_path, names=names)
24,112
def read_avg_residuemap(infile): """ Read sequence definition from PSN avg file, returning sequence Map :param infile: File handle pointing to WORDOM avgpsn output file :return: Returns an internal.map.Map object mapping the .pdb residues to WORDOM id's from "Seq" section of the avgpsn-file """ m_start = re.compile("^\*\*\* Seq \*\*\*") m_end = re.compile("^============") m_entry = re.compile("^\s*\d+\s+.:.\d+\s+\d+\.\d+\s*$") residuemap = OrderedDict() reading = False for line in infile: if reading: # Stop reading if end of interaction strength section if m_end.search(line): break else: if m_entry.search(line): [num, resname, normfact] = line.split() residuemap[resname] = int(num) # Start reading when header found elif m_start.search(line): reading = True return residuemap
24,113
def test_metrics_detailed_get_401(orderBy, app, client, session): """Tests API/metrics/<mapper_id> endpoint with invalid data.""" rv = client.get(f"/metrics/1?from=2021-10-10&to=2021-10-31&orderBy={orderBy}") assert rv.status_code == 401
24,114
def get_arguments(): """Run argparse and return arguments.""" try: # Use argparse to handle devices as arguments description = 'htop like application for PostgreSQL replication ' + \ 'activity monitoring.' parser = argparse.ArgumentParser(description=description) # -c / --connectstring parser.add_argument( '-c', '--connectstring', dest='connstr', default='', help='Connectstring (default: "").', metavar='CONNECTSTRING') # -r / --role parser.add_argument( '-r', '--role', dest='role', default=None, help='Role (default: "").', metavar='ROLE') # -C / --no-color parser.add_argument( '-C', '--no-color', dest='nocolor', action='store_true', help="Disable color usage.",) # --debug parser.add_argument( '-x', '--debug', dest='debug', action='store_true', help="Enable debug mode for traceback tracking.") args = parser.parse_args() except (argparse.ArgumentError, argparse.ArgumentTypeError) as err: print('pg_activity: error: %s' % str(err)) print('Try "pg_activity --help" for more information.') sys.exit(1) return args
24,115
def test_post_and_get(good_dataset_uuid, sample_stats, good_post_data, \ headers, good_job_url, good_dataset_url): """ POST stats with a given job_uuid and check that GET retrieves those stats. """ response = requests.post( url=good_dataset_url, headers=headers, json=good_post_data ) response_dict = json.loads(response.text) assert 'status' in response_dict and response_dict['status'] == 'success', \ "POST failed!" response = requests.get(good_job_url) response_dict = json.loads(response.text) assert 'status' in response_dict and response_dict['status'] == 'success', \ "GET failed!" job_dict = response_dict['job_dict'] assert good_dataset_uuid in job_dict, \ "Dataset with UUID {} not found!".format(good_dataset_uuid) dataset_dict = job_dict[good_dataset_uuid] assert 'dataset_stats' in dataset_dict and dataset_dict['dataset_stats'] == sample_stats, \ "Correct stats not received!" assert 'round_num' in dataset_dict and dataset_dict['round_num'] == 1, \ "Correct round not received!"
24,116
def schedule_remove(retval=None): """ schedule(retval=stackless.current) -- switch to the next runnable tasklet. The return value for this call is retval, with the current tasklet as default. schedule_remove(retval=stackless.current) -- ditto, and remove self. """ _scheduler_remove(getcurrent()) r = schedule(retval) return r
24,117
def check_region(read, pair, region): """ determine whether or not reads map to specific region of scaffold """ if region is False: return True for mapping in read, pair: if mapping is False: continue start, length = int(mapping[3]), len(mapping[9]) r = [start, start + length - 1] if get_overlap(r, region) > 0: return True return False
24,118
def test_modulo_formatting( assert_errors, parse_ast_tree, code, prefix, default_options, ): """Testing that the strings violate the rules.""" tree = parse_ast_tree('x = {0}"{1}"'.format(prefix, code)) visitor = WrongStringVisitor(default_options, tree=tree) visitor.run() assert_errors(visitor, [ModuloStringFormatViolation], ( FormattedStringViolation, ))
24,119
def create_template_AL_AR(phi, diff_coef, adv_coef, bc_top_type, bc_bot_type, dt, dx, N): """ creates 2 matrices for transport equation AL and AR Args: phi (TYPE): vector of porosity(phi) or 1-phi diff_coef (float): diffusion coefficient adv_coef (float): advection coefficient bc_top_type (string): type of boundary condition bc_bot_type (string): type of boundary condition dt (float): time step dx (float): spatial step N (int): size of mesh Returns: array: AL and AR matrices """ # TODO: error source somewhere in non constant # porosity profile. Maybe we also need d phi/dx s = phi * diff_coef * dt / dx / dx q = phi * adv_coef * dt / dx AL = spdiags( [-s / 2 - q / 4, phi + s, -s / 2 + q / 4], [-1, 0, 1], N, N, format='csr') # .toarray() AR = spdiags( [s / 2 + q / 4, phi - s, s / 2 - q / 4], [-1, 0, 1], N, N, format='csr') # .toarray() if bc_top_type in ['dirichlet', 'constant']: AL[0, 0] = phi[0] AL[0, 1] = 0 AR[0, 0] = phi[0] AR[0, 1] = 0 elif bc_top_type in ['neumann', 'flux']: AL[0,0] = phi[0] + s[0] # + adv_coef * s[0] * dx / diff_coef] - q[0] * adv_coef * dx / diff_coef] / 2 AL[0, 1] = -s[0] AR[0,0] = phi[0] - s[0] # - adv_coef * s[0] * dx / diff_coef] + q[0] * adv_coef * dx / diff_coef] / 2 AR[0, 1] = s[0] else: print('\nABORT!!!: Not correct top boundary condition type...') sys.exit() if bc_bot_type in ['dirichlet', 'constant']: AL[-1, -1] = phi[-1] AL[-1, -2] = 0 AR[-1, -1] = phi[-1] AR[-1, -2] = 0 elif bc_bot_type in ['neumann', 'flux']: AL[-1, -1] = phi[-1] + s[-1] AL[-1, -2] = -s[-1] # / 2 - s[-1] / 2 AR[-1, -1] = phi[-1] - s[-1] AR[-1, -2] = s[-1] # / 2 + s[-1] / 2 else: print('\nABORT!!!: Not correct bottom boundary condition type...') sys.exit() return AL, AR
24,120
def run(): """ run_watchdog(timeout) -- run tasklets until they are all done, or timeout instructions have passed. Tasklets must provide cooperative schedule() calls. If the timeout is met, the function returns. The calling tasklet is put aside while the tasklets are running. It is inserted back after the function stops, right before the tasklet that caused a timeout, if any. If an exception occours, it will be passed to the main tasklet. Please note that the 'timeout' feature is not yet implemented """ curr = getcurrent() _run_calls.append(curr) _scheduler_remove(curr) try: schedule() assert not _squeue finally: _scheduler_append(curr)
24,121
def millisecond_to_clocktime(value): """Convert a millisecond time to internal GStreamer time.""" return value * Gst.MSECOND
24,122
def SE2_exp(v): """ SE2 matrix exponential """ theta, x, y = v if np.abs(theta) < 1e-6: A = 1 - theta**2/6 + theta**4/120 B = theta/2 - theta**3/24 + theta**5/720 else: A = np.sin(theta)/theta B = (1 - np.cos(theta))/theta V = np.array([[A, -B], [B, A]]) R = np.array([ [np.cos(theta), -np.sin(theta)], [np.sin(theta), np.cos(theta)]]) u = np.array([[x, y]]).T return np.block([ [R, V.dot(u)], [0, 0, 1]])
24,123
def go_register_toolchains(go_version=DEFAULT_VERSION): """See /go/toolchains.rst#go-register-toolchains for full documentation.""" print("bblu go_register_toolchains 11111111111111111111111111111111111111111") if "go_sdk" not in native.existing_rules(): if go_version in SDK_REPOSITORIES: go_download_sdk( name = "go_sdk", sdks = SDK_REPOSITORIES[go_version], ) elif go_version == "host": go_host_sdk( name = "go_sdk" ) else: fail("Unknown go version {}".format(go_version)) # Use the final dictionaries to register all the toolchains for toolchain in _toolchains: name = _label_prefix + toolchain["name"] native.register_toolchains(name)
24,124
def _DotControlFlowGraphsFromBytecodeToQueue( bytecode: str, queue: multiprocessing.Queue ) -> None: """Process a bytecode and submit the dot source or the exception.""" try: queue.put(list(opt_util.DotControlFlowGraphsFromBytecode(bytecode))) except Exception as e: queue.put(DotControlFlowGraphsFromBytecodeError(bytecode, e))
24,125
def evaluate(scores, targets, queries, train_occ, k_list, ci=False, pivotal=True, song_occ=None, metrics_file=None): """ Evaluate continuations induced by `scores` given target `targets`. The arguments are lists, and each item in a list corresponds to one run of the playlist continuation model, typically the run of one fold. Note that the arrays are playlists x songs and not vice-versa. Parameters ---------- scores: list of numpy arrays of shape (num_playlists, num_songs) Probability or score for each (playlist, song) pair. targets: list of sparse csr_matrix's of shape (num_playlists, num_songs) Binary sparse array indicating target playlist continuations. queries: list of sparse csr_matrix's of shape (num playlists, num_songs) Binary sparse array indicating playlist queries. train_occ: list of numpy arrays of shape (num_songs, ) Song occurrences when the model used to predict `scores` was trained. k_list: list Each item is a list length. ci: bool Compute basic Bootstrap confidence intervals if True. pivotal: bool Compute "pivotal" intervals if True, else "percentile" intervals. song_occ: list Test on songs observed `song_occ` times during model training. metrics_file: str File path to save ranks and summarized metrics. """ print('\nEvaluating playlist continuations...') # mask `scores` corresponding to playlist queries for i in range(len(scores)): mask_array_items(scores[i], queries[i]) # evaluate predictions given target continuations rank, rr, avgp, rec = [], [], [], {K: [] for K in k_list} for i in range(len(scores)): rank_i, rr_i, avgp_i, rec_i = compute_metrics(scores[i], targets[i], k_list) rank += rank_i rr += rr_i avgp += avgp_i for K in k_list: rec[K] += rec_i[K] metrics = summarize_metrics(rank, rr, avgp, rec, k_list, ci=ci, pivotal=pivotal) if metrics_file is not None: np.savetxt(metrics_file + '_all_songs.rank', rank) np.savetxt(metrics_file + '_all_songs.rr', rr) np.savetxt(metrics_file + '_all_songs.rec', metrics[3:]) # conduct cold-start analysis if song_occ is not None: # for all but last, keep songs observed exactly song_obs times for occ in song_occ[:-1]: rank, rr, avgp, rec = [], [], [], {K: [] for K in k_list} for i in range(len(scores)): print('\nKeep songs observed {} at training...'.format(occ)) target_i = copy.deepcopy(targets[i]) mask_array_cols(target_i, np.where(train_occ[i] != occ)[0]) rank_i, rr_i, avgp_i, rec_i = compute_metrics(scores[i], target_i, k_list) rank += rank_i rr += rr_i avgp += avgp_i for K in k_list: rec[K] += rec_i[K] summarize_metrics(rank, rr, avgp, rec, k_list, ci=ci, pivotal=pivotal) # for the last, keep songs observed song_occ+ times, included occ = song_occ[-1] rank, rr, avgp, rec = [], [], [], {K: [] for K in k_list} for i in range(len(scores)): print('\nKeep songs observed {}+ (incl.) times at training...'.format(occ)) target_i = copy.deepcopy(targets[i]) mask_array_cols(target_i, np.where(train_occ[i] < occ)[0]) rank_i, rr_i, avgp_i, rec_i = compute_metrics(scores[i], target_i, k_list) rank += rank_i rr += rr_i avgp += avgp_i for K in k_list: rec[K] += rec_i[K] summarize_metrics(rank, rr, avgp, rec, k_list, ci=ci, pivotal=pivotal) # for the last, keep songs observed song_occ- times, not included occ = song_occ[-1] rank, rr, avgp, rec = [], [], [], {K: [] for K in k_list} for i in range(len(scores)): print('\nKeep songs observed {}- (not incl.) times at training...'.format(occ)) target_i = copy.deepcopy(targets[i]) mask_array_cols(target_i, np.where(train_occ[i] >= occ)[0]) rank_i, rr_i, avgp_i, rec_i = compute_metrics(scores[i], target_i, k_list) rank += rank_i rr += rr_i avgp += avgp_i for K in k_list: rec[K] += rec_i[K] summarize_metrics(rank, rr, avgp, rec, k_list, ci=ci, pivotal=pivotal) # for comparability between hybrid and pure collaborative systems, # compare results for songs with 1+ occurrences rank, rr, avgp, rec = [], [], [], {K: [] for K in k_list} for i in range(len(scores)): print('\nKeep songs observed 1+ (incl.) times at training...') target_i = copy.deepcopy(targets[i]) mask_array_cols(target_i, np.where(train_occ[i] == 0)[0]) rank_i, rr_i, avgp_i, rec_i = compute_metrics(scores[i], target_i, k_list) rank += rank_i rr += rr_i avgp += avgp_i for K in k_list: rec[K] += rec_i[K] metrics = summarize_metrics(rank, rr, avgp, rec, k_list, ci=ci, pivotal=pivotal) if metrics_file is not None: np.savetxt(metrics_file + '_inset_songs.rank', rank) np.savetxt(metrics_file + '_inset_songs.rr', rr) np.savetxt(metrics_file + '_inset_songs.rec', metrics[3:])
24,126
def skip_on_hw(func): """Test decorator for skipping tests which should not be run on HW.""" def decorator(f): def decorated(self, *args, **kwargs): if has_ci_ipus(): self.skipTest("Skipping test on HW") return f(self, *args, **kwargs) return decorated return decorator(func)
24,127
def rxns4tag(tag, rdict=None, ver='1.7', wd=None): """ Get a list of all reactions with a given p/l tag Notes ----- - This function is useful, but update to GEOS-Chem flexchem ( in >v11) will make it redundent and therefore this is not being maintained. """ # --- get reaction dictionary if isinstance(rdict, type(None)): rdict = rxn_dict_from_smvlog(wd, ver=ver) # --- Caveats - # to adapt for long line errors in fortran written output errs = ['LO3_36'] # + ['LO3_87'] cerrs = ['RD95'] # + ['LR48'] # To account for reaction where not all channels result in Ox loss errs += ['RD48'] cerrs += ['LO3_87'] if any([(tag == i) for i in errs]): tag = cerrs[errs.index(tag)] # -- loop reactions, if tag in reaction return reaction rxns = [] for n, rxn in enumerate(rdict.values()): expanded_rxn_str = [i.split('+') for i in rxn] expanded_rxn_str = [ item for sublist in expanded_rxn_str for item in sublist] # ( Issue) Why endswith? Restore to use if contains any tag # if any( [ (i.endswith(tag) ) for i in rxn]): # This is because otherwise 'LR10' would be read as 'LR100' # if any( [tag in i for i in rxn]): # <= This will lead to false +ve # However, fortran print statment err for ( LO3_87 ) if any([i.endswith(tag) for i in expanded_rxn_str]): rxns.append([list(rdict.keys())[n]] + rxn) return rxns
24,128
def update_daily_report(site_id, result_date, disease_id): """ Update daily testing activity report (without subtotals per demographic) - called when a new individual test result is registered @param site_id: the test station site ID @param result_date: the result date of the test @param disease_id: the disease ID """ db = current.db s3db = current.s3db table = s3db.disease_case_diagnostics # Count records grouped by result query = (table.site_id == site_id) & \ (table.disease_id == disease_id) & \ (table.result_date == result_date) & \ (table.deleted == False) cnt = table.id.count() rows = db(query).select(table.result, cnt, groupby = table.result, ) total = positive = 0 for row in rows: num = row[cnt] total += num if row.disease_case_diagnostics.result == "POS": positive += num # Look up the daily report rtable = s3db.disease_testing_report query = (rtable.site_id == site_id) & \ (rtable.disease_id == disease_id) & \ (rtable.date == result_date) & \ (rtable.deleted == False) report = db(query).select(rtable.id, rtable.tests_total, rtable.tests_positive, limitby = (0, 1), ).first() if report: # Update report if actual numbers are greater if report.tests_total < total or report.tests_positive < positive: report.update_record(tests_total = total, tests_positive = positive, ) else: # Create report report = {"site_id": site_id, "disease_id": disease_id, "date": result_date, "tests_total": total, "tests_positive": positive, } report_id = rtable.insert(**report) if report_id: current.auth.s3_set_record_owner(rtable, report_id) report["id"] = report_id s3db.onaccept(rtable, report, method="create")
24,129
def DateTime_GetCurrentYear(*args, **kwargs): """DateTime_GetCurrentYear(int cal=Gregorian) -> int""" return _misc_.DateTime_GetCurrentYear(*args, **kwargs)
24,130
def exp_lr_scheduler(optimizer, epoch, init_lr=0.01, lr_decay_epoch=10): """Decay learning rate by a f# model_out_path ="./model/W_epoch_{}.pth".format(epoch) # torch.save(model_W, model_out_path) actor of 0.1 every lr_decay_epoch epochs.""" lr = init_lr * (0.8**(epoch // lr_decay_epoch)) print('LR is set to {}'.format(lr)) for param_group in optimizer.param_groups: param_group['lr'] = lr return optimizer
24,131
def wait(duration): """ Waits the duration, in seconds, you specify. Args: duration (:any:`DoubleValue`): time, in seconds, this function waits. You may specify fractions of seconds. Returns: float: actual seconds waited. This wait is non-blocking, so other tasks will run while this wait executes. """ init_time = DoubleValue(0) init_time.value = seqtime() while seqtime() - init_time.value < duration.value: nivs_yield() init_time.value = seqtime() return init_time.value
24,132
def test_cp_self_2(test_dir: str) -> None: """cp a_file -> . should fail (same file)""" a_file = os.path.join(test_dir, "a_file") sys.argv = ["pycp", a_file, test_dir] with pytest.raises(SystemExit): pycp_main()
24,133
def yesterday_handler(update: Update, context: CallbackContext): """ Diary content upload handler. Uploads incoming messages to db as a note for yesterday. """ # get user timezone user_timezone = Dao.get_user_timezone(update.effective_user) # calculate time at user's user_datetime = update.effective_message.date.astimezone(user_timezone) # get yesterday user_yesterday = user_datetime - datetime.timedelta(days=1) # save message content save_message_content_by_date(update, context, user_yesterday) return ConversationHandler.END
24,134
def get_lens_pos(sequence): """ Calculate positions of lenses. Returns ------- List of tuples with index and position of OPE in sequence. """ d = 0.0 d_ = [] for idx, ope in enumerate(sequence): if ope.is_lens(): d_.append((idx, d)) else: d += ope.get_travel_length() return d_
24,135
def test_product_with_rvs1(): """ Test product_distribution() with an rvs specification. """ d = dit.example_dists.Xor() d_iid = dit.product_distribution(d, [[0,1], [2]]) d_truth = dit.uniform_distribution(3, ['01']) d_truth = dit.modify_outcomes(d_truth, lambda x: ''.join(x)) assert d_truth.is_approx_equal(d_iid)
24,136
def disorientation(orientation_matrix, orientation_matrix1, crystal_structure=None): """Compute the disorientation another crystal orientation. Considering all the possible crystal symmetries, the disorientation is defined as the combination of the minimum misorientation angle and the misorientation axis lying in the fundamental zone, which can be used to bring the two lattices into coincidence. .. note:: Both orientations are supposed to have the same symmetry. This is not necessarily the case in multi-phase materials. :param orientation: an instance of :py:class:`~pymicro.crystal.microstructure.Orientation` class describing the other crystal orientation from which to compute the angle. :param crystal_structure: an instance of the `Symmetry` class describing the crystal symmetry, triclinic (no symmetry) by default. :returns tuple: the misorientation angle in radians, the axis as a numpy vector (crystal coordinates), the axis as a numpy vector (sample coordinates). """ the_angle = np.pi symmetries = crystal_structure.symmetry_operators() (gA, gB) = (orientation_matrix, orientation_matrix1) # nicknames for (g1, g2) in [(gA, gB), (gB, gA)]: for j in range(symmetries.shape[0]): sym_j = symmetries[j] oj = np.dot(sym_j, g1) # the crystal symmetry operator is left applied for i in range(symmetries.shape[0]): sym_i = symmetries[i] oi = np.dot(sym_i, g2) delta = np.dot(oi, oj.T) mis_angle = misorientation_angle_from_delta(delta) if mis_angle < the_angle: # now compute the misorientation axis, should check if it lies in the fundamental zone mis_axis = misorientation_axis_from_delta(delta) the_angle = mis_angle the_axis = mis_axis the_axis_xyz = np.dot(oi.T, the_axis) return the_angle, the_axis, the_axis_xyz
24,137
def response_minify(response): """ minify html response to decrease site traffic """ if not DEBUG and response.content_type == u'text/html; charset=utf-8': response.set_data( minify(response.get_data(as_text=True)) ) return response return response
24,138
def convert_examples_to_features(examples, label_list, max_seq_length, tokenizer): """Loads a data file into a list of `InputBatch`s.""" label_map = {label : i for i, label in enumerate(label_list,1)} features = [] for (ex_index, example) in enumerate(examples): # example : InputExample obj text_spc_tokens = example.text_a aspect_tokens = example.text_b sentence_label = example.sentence_label aspect_label = example.aspect_label polaritiylist = example.polarity # 标记aspect和非aspect tokens = [] labels = [] polarities = [] valid = [] label_mask = [] text_spc_tokens.extend(['[SEP]']) text_spc_tokens.extend(aspect_tokens) enum_tokens = text_spc_tokens # text_scp_tokens : sentence tokens + [SEP] + aspect tokens 注意并不是规范的BERT-SPC格式 sentence_label.extend(['[SEP]']) # sentence_label.extend(['O']) sentence_label.extend(aspect_label) label_lists = sentence_label # if len(enum_tokens) != len(label_lists): # print(enum_tokens) # print(label_lists) for i, word in enumerate(enum_tokens): # spc tokens, 注意这里的enum_tokens并不是标准的bert spc格式, 后边会添加新的符号使之符合标准 token = tokenizer.tokenize(word) # bert tokenizer, 使用bert进行分词 tokens.extend(token) label_1 = label_lists[i] polarity_1 = polaritiylist[i] for m in range(len(token)): if m == 0: labels.append(label_1) polarities.append(polarity_1) valid.append(1) label_mask.append(1) else: # 如果bert对token进一步细分,就会到这里 valid.append(0) if len(tokens) >= max_seq_length - 1: # 为啥剔除后边2个而不是更多? tokens = tokens[0:(max_seq_length - 2)] polarities = polarities[0:(max_seq_length - 2)] labels = labels[0:(max_seq_length - 2)] valid = valid[0:(max_seq_length - 2)] label_mask = label_mask[0:(max_seq_length - 2)] ntokens = [] segment_ids = [] label_ids = [] ntokens.append("[CLS]") segment_ids.append(0) valid.insert(0,1) label_mask.insert(0,1) label_ids.append(label_map["[CLS]"]) # label_ids.append(label_map["O"]) for i, token in enumerate(tokens): ntokens.append(token) segment_ids.append(0) if len(labels) > i: # 感觉这个判断是多余的 label_ids.append(label_map[labels[i]]) ntokens.append("[SEP]") # 得到标准的bert spc格式 segment_ids.append(0) valid.append(1) label_mask.append(1) label_ids.append(label_map["[SEP]"]) # label_ids.append(label_map["O"]) input_ids_spc = tokenizer.convert_tokens_to_ids(ntokens) input_mask = [1] * len(input_ids_spc) label_mask = [1] * len(label_ids) # import numpy as np while len(input_ids_spc) < max_seq_length: # pad input_ids_spc.append(0) input_mask.append(0) segment_ids.append(0) label_ids.append(0) valid.append(1) label_mask.append(0) while len(label_ids) < max_seq_length: label_ids.append(0) label_mask.append(0) while len(polarities) < max_seq_length: polarities.append(-1) assert len(input_ids_spc) == max_seq_length assert len(input_mask) == max_seq_length assert len(segment_ids) == max_seq_length assert len(label_ids) == max_seq_length assert len(valid) == max_seq_length assert len(label_mask) == max_seq_length # if ex_index < 5: # print("*** Example ***") # print("guid: %s" % (example.guid)) # print("tokens: %s" % " ".join( # [str(x) for x in ntokens])) # print("input_ids: %s" % " ".join([str(x) for x in input_ids_spc])) # print("input_mask: %s" % " ".join([str(x) for x in input_mask])) # print("segment_ids: %s" % " ".join([str(x) for x in segment_ids])) # # print("label: %s (id = %d)" % (example.label, label_ids)) # # input_ids_spc = np.array(input_ids_spc) # label_ids = np.array(label_ids) # labels = np.array(labels) # valid = np.array(valid) features.append( InputFeatures(input_ids_spc=input_ids_spc, input_mask=input_mask, # spc 非pad部分的 attention mask segment_ids=segment_ids, # 全为0, bert 的 token_type_ids label_id=label_ids, # aspect抽取的label polarities=polarities, # aspect 对应的情感倾向, 非aspect的标记值是-1 valid_ids=valid, # label_mask=label_mask)) # label_mask和input_mask没区别 return features
24,139
def to_json_compatible_object(obj): """ This function returns a representation of a UAVCAN structure (message, request, or response), or a DSDL entity (array or primitive), or a UAVCAN transfer, as a structure easily able to be transformed into json or json-like serialization Args: obj: Object to convert. Returns: structure which can easily be transformed into a json-like serialization """ if not isinstance(obj, CompoundValue) and hasattr(obj, 'transfer'): output = dict() if hasattr(obj, 'message'): payload = obj.message output['transfer_type'] = 'Message' elif hasattr(obj, 'request'): payload = obj.request output['transfer_type'] = 'Request' elif hasattr(obj, 'response'): payload = obj.response output['transfer_type'] = 'Response' else: raise ValueError('Cannot generate JSON-compatible object representation for %r' % type(obj)) output['source_node_id'] = obj.transfer.source_node_id output['dest_node_id'] = obj.transfer.dest_node_id output['ts_monotonic'] = obj.transfer.ts_monotonic output['ts_real'] = obj.transfer.ts_real output['transfer_priority'] = obj.transfer.transfer_priority output['datatype'] = '{}'.format(payload._type) output['fields'] = _to_json_compatible_object_impl(payload) return output else: return _to_json_compatible_object_impl(obj)
24,140
def rot_box_kalman_filter(initial_state, Q_std, R_std): """ Tracks a 2D rectangular object (e.g. a bounding box) whose state includes position, centroid velocity, dimensions, and rotation angle. Parameters ---------- initial_state : sequence of floats [x, vx, y, vy, w, h, phi] Q_std : float Standard deviation to use for process noise covariance matrix R_std : float Standard deviation to use for measurement noise covariance matrix Returns ------- kf : filterpy.kalman.KalmanFilter instance """ kf = KalmanFilter(dim_x=7, dim_z=5) dt = 1.0 # time step # state mean and covariance kf.x = np.array([initial_state]).T kf.P = np.eye(kf.dim_x) * 500. # no control inputs kf.u = 0. # state transition matrix kf.F = np.eye(kf.dim_x) kf.F[0, 1] = kf.F[2, 3] = dt # measurement matrix - maps from state space to observation space, so # shape is dim_z x dim_x. kf.H = np.zeros([kf.dim_z, kf.dim_x]) # z = Hx. H has nonzero coefficients for the following components of kf.x: # x y w h phi kf.H[0, 0] = kf.H[1, 2] = kf.H[2, 4] = kf.H[3, 5] = kf.H[4, 6] = 1.0 # measurement noise covariance kf.R = np.eye(kf.dim_z) * R_std**2 # process noise covariance for x-vx or y-vy pairs q = Q_discrete_white_noise(dim=2, dt=dt, var=Q_std**2) # diagonal process noise sub-matrix for width, height, and phi qq = Q_std**2*np.eye(3) # process noise covariance matrix for full state kf.Q = block_diag(q, q, qq) return kf
24,141
def validate_schema(path, schema_type): """Validate a single file against its schema""" if schema_type not in _VALID_SCHEMA_TYPES.keys(): raise ValueError(f"No validation schema found for '{schema_type}'") return globals()["validate_" + schema_type](path)
24,142
def setup_test_env(): """Sets up App Engine test environment.""" sys.path.insert(0, APP_DIR) from test_support import test_env test_env.setup_test_env() sys.path.insert(0, THIRD_PARTY) from components import utils utils.fix_protobuf_package()
24,143
def import_vote_internal(vote, principal, file, mimetype): """ Tries to import the given csv, xls or xlsx file. This is the format used by onegov.ballot.Vote.export(). This function is typically called automatically every few minutes during an election day - we use bulk inserts to speed up the import. :return: A list containing errors. """ csv, error = load_csv( file, mimetype, expected_headers=INTERNAL_VOTE_HEADERS, dialect='excel' ) if error: return [error] ballot_results = {} errors = [] added_entity_ids = {} ballot_types = set() status = 'unknown' entities = principal.entities[vote.date.year] for line in csv.lines: line_errors = [] status = line.status or 'unknown' if status not in STATI: line_errors.append(_("Invalid status")) ballot_type = line.type if ballot_type not in BALLOT_TYPES: line_errors.append(_("Invalid ballot type")) ballot_types.add(ballot_type) added_entity_ids.setdefault(ballot_type, set()) ballot_results.setdefault(ballot_type, []) # the id of the entity entity_id = None try: entity_id = validate_integer(line, 'entity_id') except ValueError as e: line_errors.append(e.args[0]) else: if entity_id not in entities and entity_id in EXPATS: entity_id = 0 if entity_id in added_entity_ids[ballot_type]: line_errors.append( _("${name} was found twice", mapping={ 'name': entity_id })) if entity_id and entity_id not in entities: line_errors.append( _("${name} is unknown", mapping={ 'name': entity_id })) else: added_entity_ids[ballot_type].add(entity_id) # Skip expats if not enabled if entity_id == 0 and not vote.expats: continue # Counted counted = line.counted.strip().lower() == 'true' # the yeas try: yeas = validate_integer(line, 'yeas') except ValueError as e: line_errors.append(e.args[0]) # the nays try: nays = validate_integer(line, 'nays') except ValueError as e: line_errors.append(e.args[0]) # the eligible voters try: eligible_voters = validate_integer(line, 'eligible_voters') except ValueError as e: line_errors.append(e.args[0]) # the empty votes try: empty = validate_integer(line, 'empty') except ValueError as e: line_errors.append(e.args[0]) # the invalid votes try: invalid = validate_integer(line, 'invalid') except ValueError as e: line_errors.append(e.args[0]) # now let's do some sanity checks try: if not eligible_voters: line_errors.append(_("No eligible voters")) if (yeas + nays + empty + invalid) > eligible_voters: line_errors.append(_("More cast votes than eligible voters")) except UnboundLocalError: pass # pass the errors if line_errors: errors.extend( FileImportError(error=err, line=line.rownumber) for err in line_errors ) continue # all went well (only keep doing this as long as there are no errors) if not errors: entity = entities.get(entity_id, {}) ballot_results[ballot_type].append( dict( name=entity.get('name', ''), district=entity.get('district', ''), counted=counted, yeas=yeas, nays=nays, eligible_voters=eligible_voters, entity_id=entity_id, empty=empty, invalid=invalid ) ) if errors: return errors if not any((len(results) for results in ballot_results.values())): return [FileImportError(_("No data found"))] # Add the missing entities for ballot_type in ballot_types: remaining = set(entities.keys()) if vote.expats: remaining.add(0) remaining -= added_entity_ids[ballot_type] for entity_id in remaining: entity = entities.get(entity_id, {}) ballot_results[ballot_type].append( dict( name=entity.get('name', ''), district=entity.get('district', ''), counted=False, entity_id=entity_id ) ) # Add the results to the DB vote.clear_results() vote.status = status ballot_ids = {b: vote.ballot(b, create=True).id for b in ballot_types} session = object_session(vote) session.flush() session.bulk_insert_mappings( BallotResult, ( dict(**result, ballot_id=ballot_ids[ballot_type]) for ballot_type in ballot_types for result in ballot_results[ballot_type] ) ) return []
24,144
def get_mail_count(imap, mailbox_list): """ Gets the total number of emails on specified account. Args: imap <imaplib.IMAP4_SSL>: the account to check mailbox_list [<str>]: a list of mailboxes Must be surrounded by double quotes Returns: <int>: total emails """ total = 0 num_mailboxes = len(mailbox_list) for idx, mailbox in enumerate(mailbox_list): print("Counting mail: %d (Mailbox %d of %d) " \ % (total, idx+1, num_mailboxes), end='\r') total += int(imap.select(mailbox)[1][0]) imap.close() print("Counting mail: %d (Mailbox %d of %d) " \ % (total, idx+1, num_mailboxes)) return total
24,145
def get_bdb_path_by_shoulder_model(shoulder_model, root_path=None): """Get the path to a BerkeleyDB minter file in a minter directory hierarchy. The path may or may not exist. The caller may be obtaining the path in which to create a new minter, so the path is not checked. Args: shoulder_model (Shoulder): The Django ORM model for the shoulder to use for the minting. The model may be a legacy record for N2T based minting, or a record from a minter created in EZID. root_path (str, optional): Path to the root of the minter directory hierarchy. If not provided, the default for EZID is used. Returns: pathlib2.Path """ m = shoulder_model minter_uri = m.minter.strip() if not minter_uri: raise nog.exc.MinterNotSpecified( 'A minter has not been specified (minter field in the database is empty)' ) return pathlib2.Path( _get_bdb_root(root_path), '/'.join(minter_uri.split('/')[-2:]), 'nog.bdb', ).resolve()
24,146
def getDefuzzificationMethod(name): """Get an instance of a defuzzification method with given name. Normally looks into the fuzzy.defuzzify package for a suitable class. """ m = __import__("fuzzy.defuzzify."+name, fromlist=[name]) c = m.__dict__[name] return c()
24,147
def celestial(func): """ Transform a point x from cartesian coordinates to celestial coordinates and returns the function evaluated at the probit point y """ def f_transf(ref, x, *args, **kwargs): y = cartesian_to_celestial(x) return func(ref, y, *args) return f_transf
24,148
def _rescale_to_width( img: Image, target_width: int): """Helper function to rescale image to `target_width`. Parameters ---------- img : PIL.Image Input image object to be rescaled. target_width : int Target width (in pixels) for rescaling. Returns ------- PIL.Image Rescaled image object """ w, h = img.size rescaled_img = img.resize(_scale_wh_by_target_width(w, h, target_width)) return rescaled_img
24,149
def make_dpi_aware(): """ https://github.com/PySimpleGUI/PySimpleGUI/issues/1179 """ if int(platform.release()) >= 8: ctypes.windll.shcore.SetProcessDpiAwareness(True)
24,150
def compute_exact_R_P(final_patterns, centones_tab): """ Function tha computes Recall and Precision with exact matches """ true = 0 for tab in final_patterns: for centon in centones_tab[tab]: check = False for p in final_patterns[tab]: if centon == p: check = True if check: true += 1 all_centones = len([x for y in centones_tab.values() for x in y]) all_ours = len([x for y in final_patterns.values() for x in y]) overall_recall = true / all_centones overall_precision = true / all_ours return overall_recall, overall_precision
24,151
def build_embedding(embedding_matrix, max_len, name): """ Build embedding by lda :param max_len: :param name: :return: """ # build embedding with initial weights topic_emmd = Embedding(embedding_matrix.shape[0], embedding_matrix.shape[1], weights=[embedding_matrix], input_length=max_len, trainable=True, name=name) return topic_emmd
24,152
def check_playlist_url(playlist_url): """Check if a playlist URL is well-formated. Parameters ---------- playlist_url : str URL to a YouTube playlist. Returns ------- str If the URL is well-formated, return the playlist ID. Else return `None`. """ match = re.match( r"https?://www\.youtube\.com/playlist\?list=(.+)", playlist_url.strip() ) if match is None: raise ValueError("Incorrect URL: %s" % playlist_url) return match.group(1)
24,153
def test_PipeJsonRpcSendAsync_2(method, params, result, notification): """ Test of basic functionality. Here we don't test for timeout case (it raises an exception). """ value_nonlocal = None def method_handler1(): nonlocal value_nonlocal value_nonlocal = "function_was_called" return 5 def method_handler2(value=2): nonlocal value_nonlocal value_nonlocal = "function_was_called" return value + 10 def method_handler3(*, value=3): nonlocal value_nonlocal value_nonlocal = "function_was_called" return value + 15 class SomeClass: def method_handler4(self, *, value=4): nonlocal value_nonlocal value_nonlocal = "function_was_called" return value + 15 some_class = SomeClass() conn1, conn2 = multiprocessing.Pipe() pc = PipeJsonRpcReceive(conn=conn2, name="comm-server") pc.add_method(method_handler1) # No name is specified, default name is "method_handler1" pc.add_method(method_handler1, "method1") pc.add_method(method_handler2, "method2") pc.add_method(method_handler3, "method3") pc.add_method(some_class.method_handler4, "method4") pc.start() async def send_messages(): nonlocal value_nonlocal p_send = PipeJsonRpcSendAsync(conn=conn1, name="comm-client") p_send.start() for n in range(3): value_nonlocal = None response = await p_send.send_msg(method, params, notification=notification) if not notification: assert response == result, f"Result does not match the expected: {response}" assert value_nonlocal == "function_was_called", "Non-local variable has incorrect value" elif response is not None: assert False, "Response was received for notification." p_send.stop() asyncio.run(send_messages()) pc.stop()
24,154
def browse_runs(driver: Driver = None, key: Dict[str, str] = {}): """ Main function that governs the browsing of projects within a specified Synergos network """ st.title("Orchestrator - Browse Existing Run(s)") ######################## # Step 0: Introduction # ######################## ############################################################ # Step 1: Pull run information from specified orchestrator # ############################################################ st.header("Step 1: Select your run of interest") selected_run_id, _ = render_runs(driver=driver, **key, form_type="display") ######################################################################## # Step 2: Pull associations & relationships of specified collaboration # ######################################################################## # st.header("Step 2: Explore Relationships & Associations")
24,155
def pynx(name, author, cwd): """ Function that holds the logic for the 'pynx' command. :param name: Name of the project :param author: Name of the author :param cwd: Current working directory """ folder_name, folder_path = generate_folder_name_and_path(name, cwd) check_and_create_directory(folder_path) filebuilder.pynx.create_pynx_project(folder_path, name, author) filebuilder.generic.modify_readme_file(folder_path, name, author) click.echo("Successfully created the PyNX project!")
24,156
def _calculate_accuracy(actual: np.ndarray, predictions: np.ndarray) -> None: """Calculates the accuracy of predictions. """ accuracy = sklearn.metrics.accuracy_score(actual, predictions) print(f' Predicted test labels: {predictions}') print(f' Actual test labels: {actual}') print(f' Accuracy: {accuracy * 100:.2f}%')
24,157
def f(t, T): """ returns -1, 0, or 1 based on relationship between t and T throws IndexError """ if(t > 0 and t < float(T/2)): return 1 elif(t == float(T/2)): return 0 elif(t > float(T/2) and t < T): return -1 raise IndexError("Out of function domain")
24,158
def auth0_token(): """ Token for Auth0 API """ auth = settings["auth0"] conn = http.client.HTTPSConnection(auth['domain']) payload = '{' + f"\"client_id\":\"{auth['client']}\"," \ f"\"client_secret\":\"{auth['client-secret']}\"," \ f"\"audience\":\"https://{auth['domain']}/api/v2/\",\"grant_type\":\"client_credentials\"" + '}' headers = {'content-type': "application/json"} conn.request("POST", "/oauth/token", payload, headers) res = conn.getresponse() data = res.read() return json.loads(data.decode("utf-8"))["access_token"]
24,159
def get_ami(region, instance_type): """Returns the appropriate AMI to use for a given region + instance type HVM is always used except for instance types which cannot use it. Based on matrix here: http://aws.amazon.com/amazon-linux-ami/instance-type-matrix/ .. note:: :func:`populate_ami_ids` must be called first to populate the available AMI's. """ if not _POPULATED: raise KeyError('populate_ami_ids must be called first') instances = AWS_AMI_IDS[region] inst_type = "hvm" if instance_type[:2] in ["m1", "m2", "c1", "t1"]: inst_type = "paravirtual" if inst_type not in instances: msg = "Could not find instance type %r in %s for region %s" raise KeyError(msg % (inst_type, list(instances.keys()), region)) return instances[inst_type].id
24,160
def convert_config(cfg): """ Convert some configuration values to different values Args: cfg (dict): dict of sub-dicts, each sub-dict containing configuration keys and values pertinent to a process or algorithm Returns: dict: configuration dict with some items converted to different objects Raises: KeyError: raise KeyError if configuration file is not specified correctly """ # Parse dataset: cfg = _parse_dataset_config(cfg) # Parse YATSM: cfg = _parse_YATSM_config(cfg) return cfg
24,161
def _signals_exist(names): """ Return true if all of the given signals exist in this version of flask. """ return all(getattr(signals, n, False) for n in names)
24,162
def login(): """Route for logging the user in.""" try: if request.method == 'POST': return do_the_login() if session.get('logged_in'): return redirect(url_for('home')) return render_template('login.html') except Exception as e: abort(500, {'message': str(e)})
24,163
def clean_database(): """ If an instance is removed from the Orthanc server that contains de-identified DICOM images, it must also be removed from the database. This function compared the list of instance IDs in the database with those in Orthanc. """ try: logger.debug('Cleaning the database') db = DB(env.pg_host, env.pg_port, env.pg_user, env.pg_pwd, env.pg_db) db_dicom_json = DBDicomJson(db) ids_in_db = db_dicom_json.list_instance_ids() ids_in_orthanc = client.orthanc.list_instance_ids() ids_to_delete = [i for i in ids_in_db if not i in ids_in_orthanc] for instance_id in ids_to_delete: db_dicom_json.delete_instance(instance_id) except Exception as e: logger.error(f'Failed to clean database - {e}')
24,164
def find_commands(management_dir): """ Given a path to a management directory, returns a list of all the command names that are available. Returns an empty list if no commands are defined. """ command_dir = os.path.join(management_dir, 'commands') try: return [f[:-3] for f in os.listdir(command_dir) if not f.startswith('_') and f.endswith('.py')] except OSError: return []
24,165
def randomsplit_permuted_non_fixed_rotated_15(): """ Launch training and evaluation with a pretrained base model from rxnfp. """ launch_training_on_all_splits(experiment='repro_randomsplit', splits=RANDOM_SPLIT, base_model='pretrained', dropout=0.7987, learning_rate=0.00009659, n_permutations=15, random_type='rotated', fixed_perm=False, epochs=10)
24,166
def __screen_info_to_dict(): """ 筛查 :return: """ screen_dict: {str: List[GitLogObject]} = {} for info in git.get_all_commit_info(): if not authors.__contains__(info.name): continue if not info.check_today_time(): continue if screen_dict.__contains__(info.name): screen_dict.get(info.name).append(info.msg) else: screen_dict[info.name] = [info.msg] pass pass return screen_dict
24,167
def parse_flextext(file_name, log=None): """Iterate over glossed examples contained in a flextext file.""" gloss_db = ET.parse(file_name) for example in separate_examples(gloss_db.getroot(), log): example['example'] = merge_glosses( [extract_gloss(e, log) for e in example['example']]) yield example
24,168
def _collapse_edge_by_namespace( graph: BELGraph, victim_namespaces: Strings, survivor_namespaces: str, relations: Strings, ) -> None: """Collapse pairs of nodes with the given namespaces that have the given relationship. :param graph: A BEL Graph :param victim_namespaces: The namespace(s) of the node to collapse :param survivor_namespaces: The namespace of the node to keep :param relations: The relation(s) to search """ relation_filter = build_relation_predicate(relations) source_namespace_filter = build_source_namespace_filter(victim_namespaces) target_namespace_filter = build_target_namespace_filter(survivor_namespaces) edge_predicates = [ relation_filter, source_namespace_filter, target_namespace_filter ] _collapse_edge_passing_predicates(graph, edge_predicates=edge_predicates)
24,169
def bind_prop_arr( prop_name: str, elem_type: Type[Variable], doc: Optional[str] = None, doc_add_type=True, ) -> property: """Convenience wrapper around bind_prop for array properties :meta private: """ if doc is None: doc = f"Wrapper around `variables['{prop_name}']` of type `VariableArray[{elem_type.__name__}]`." if doc_add_type: doc = f"MutableSequence[{_get_python_prop_type(elem_type)}]: {doc}" return bind_prop( prop_name, VariableArray, lambda: VariableArray(elem_type), doc=doc, doc_add_type=False, objtype=True, )
24,170
def generate_profile_yaml_file(destination_type: DestinationType, test_root_dir: str) -> Dict[str, Any]: """ Each destination requires different settings to connect to. This step generates the adequate profiles.yml as described here: https://docs.getdbt.com/reference/profiles.yml """ config_generator = TransformConfig() profiles_config = config_generator.read_json_config(f"../secrets/{destination_type.value.lower()}.json") # Adapt credential file to look like destination config.json if destination_type.value == DestinationType.BIGQUERY.value: profiles_config["credentials_json"] = json.dumps(profiles_config) profiles_config["dataset_id"] = target_schema else: profiles_config["schema"] = target_schema profiles_yaml = config_generator.transform(destination_type, profiles_config) config_generator.write_yaml_config(test_root_dir, profiles_yaml) return profiles_config
24,171
def plot_altitude(target_list={}, observatory=None, utc_offset=0, obs_time=None, show_sun=True, show_moon=True): """plot the position of science target during observation """ # define the observation time delta_hours = np.linspace(-12, 12, 100)*u.hour obstimes = obs_time + delta_hours - utc_offset # observertory altaz_frames = AltAz(location=observatory, obstime=obstimes) target_altaz_list = {} for name, skcoord in target_list.items(): target_altaz_list[name] = skcoord.transform_to(altaz_frames) fig = plt.figure(figsize=(12, 4)) ax = fig.add_subplot(121) for name, pos in target_altaz_list.items(): ax.scatter(delta_hours, pos.alt, label=name, s=8) ax.set_title("Observed on {}".format(obs_time.fits)) # get position of sun and moon sun = get_sun(obstimes).transform_to(altaz_frames) if show_sun: ax.plot(delta_hours, sun.alt, 'r', label='sun') if show_moon: moon = get_moon(obstimes).transform_to(altaz_frames) ax.plot(delta_hours, moon.alt, 'k--', label='moon') ax.fill_between(delta_hours.to('hr').value, -90, 90, sun.alt < -0*u.deg, color='0.5', zorder=0, alpha=0.5) ax.fill_between(delta_hours.to('hr').value, -90, 90, sun.alt < -18*u.deg, color='k', zorder=0, alpha=0.5) ax.set_xlabel('LST offset') ax.set_ylabel('Altitude') # ax.set_ylim(-10, 90) ax.legend(loc='upper right') # plt.tight_layout() ax = fig.add_subplot(122, projection='polar') for name, pos in target_altaz_list.items(): ax.plot(pos.az/180*np.pi, np.cos(pos.alt), label=name, marker='.', ms=8) if show_sun: ax.plot(sun.az/180*np.pi, np.cos(sun.alt), 'r.', label='sun') if show_moon: moon = get_moon(obstimes).transform_to(altaz_frames) ax.plot(moon.az/180*np.pi, np.cos(moon.alt), 'k--', label='moon') ax.set_ylim(0, 1) plt.show()
24,172
def get_foreign_trips(db_connection): """ Gets the time series data for all Foreign visitors from the database Args: db_connection (Psycopg.connection): The database connection Returns: Pandas.DataFrame: The time series data for each unique Foreign visitor. It has the columns cust_id, date, date_diff, calls, calls_in_florence, calls_near_airport """ counts = get_daily_call_counts(db_connection, 'optourism.foreigners_timeseries_daily') return get_trips(counts)
24,173
def get_diagonal_sums(square: Square) -> List[int]: """ Returns a list of the sum of each diagonal. """ topleft = 0 bottomleft = 0 # Seems like this could be more compact i = 0 for row in square.rows: topleft += row[i] i += 1 i = 0 for col in square.columns: bottomleft += col[i] i += 1 return [topleft, bottomleft]
24,174
def CheckComment(line, filename, linenum, next_line_start, error): """Checks for common mistakes in comments. Args: line: The line in question. filename: The name of the current file. linenum: The number of the line to check. next_line_start: The first non-whitespace column of the next line. error: The function to call with any errors found. """ commentpos = line.find('//') if commentpos != -1: # Check if the // may be in quotes. If so, ignore it if re.sub(r'\\.', '', line[0:commentpos]).count('"') % 2 == 0: # Allow one space for new scopes, two spaces otherwise: if (not (Match(r'^.*{ *//', line) and next_line_start == commentpos) and ((commentpos >= 1 and line[commentpos-1] not in string.whitespace) or (commentpos >= 2 and line[commentpos-2] not in string.whitespace))): error(filename, linenum, 'whitespace/comments', 2, 'At least two spaces is best between code and comments') # Checks for common mistakes in TODO comments. comment = line[commentpos:] match = _RE_PATTERN_TODO.match(comment) if match: # One whitespace is correct; zero whitespace is handled elsewhere. leading_whitespace = match.group(1) if len(leading_whitespace) > 1: error(filename, linenum, 'whitespace/todo', 2, 'Too many spaces before TODO') username = match.group(2) if not username: error(filename, linenum, 'readability/todo', 2, 'Missing username in TODO; it should look like ' '"// TODO(my_username): Stuff."') middle_whitespace = match.group(3) # Comparisons made explicit for correctness -- pylint: disable=g-explicit-bool-comparison if middle_whitespace != ' ' and middle_whitespace != '': error(filename, linenum, 'whitespace/todo', 2, 'TODO(my_username) should be followed by a space') # If the comment contains an alphanumeric character, there # should be a space somewhere between it and the // unless # it's a /// or //! Doxygen comment. if (Match(r'//[^ ]*\w', comment) and not Match(r'(///|//\!)(\s+|$)', comment)): error(filename, linenum, 'whitespace/comments', 4, 'Should have a space between // and comment')
24,175
def int_to_base64(i: int) -> str: """ Returns a 12 char length representation of i in base64 """ return base64.b64encode(i.to_bytes(8, 'big'))
24,176
def payment_provider(provider_base_config): """When it doesn't matter if request is contained within provider the fixture can still be used""" return TurkuPaymentProviderV3(config=provider_base_config)
24,177
def gradle_extract_data(build_gradle): """ Extract the project name and dependencies from a build.gradle file. :param Path build_gradle: The path of the build.gradle file :rtype: dict """ # Content for dependencies content_build_gradle = extract_content(build_gradle) match = re.search(r'apply plugin: ("|\')org.ros2.tools.gradle\1', content_build_gradle) if not match: raise RuntimeError("Gradle plugin missing, please add the following to build.gradle: \"apply plugin: 'org.ros2.tools.gradle'\"") return extract_data(build_gradle)
24,178
def start_services(server_argv, portal_argv, doexit=False): """ This calls a threaded loop that launches the Portal and Server and then restarts them when they finish. """ global SERVER, PORTAL processes = Queue.Queue() def server_waiter(queue): try: rc = Popen(server_argv, env=getenv()).wait() except Exception as e: print(PROCESS_ERROR.format(component="Server", traceback=e)) return # this signals the controller that the program finished queue.put(("server_stopped", rc)) def portal_waiter(queue): try: rc = Popen(portal_argv, env=getenv()).wait() except Exception as e: print(PROCESS_ERROR.format(component="Portal", traceback=e)) return # this signals the controller that the program finished queue.put(("portal_stopped", rc)) if portal_argv: try: if not doexit and get_restart_mode(PORTAL_RESTART) == "True": # start portal as interactive, reloadable thread PORTAL = thread.start_new_thread(portal_waiter, (processes, )) else: # normal operation: start portal as a daemon; # we don't care to monitor it for restart PORTAL = Popen(portal_argv, env=getenv()) except IOError as e: print(PROCESS_IOERROR.format(component="Portal", traceback=e)) return try: if server_argv: if doexit: SERVER = Popen(server_argv, env=getenv()) else: # start server as a reloadable thread SERVER = thread.start_new_thread(server_waiter, (processes, )) except IOError as e: print(PROCESS_IOERROR.format(component="Server", traceback=e)) return if doexit: # Exit immediately return # Reload loop while True: # this blocks until something is actually returned. from twisted.internet.error import ReactorNotRunning try: try: message, rc = processes.get() except KeyboardInterrupt: # this only matters in interactive mode break # restart only if process stopped cleanly if (message == "server_stopped" and int(rc) == 0 and get_restart_mode(SERVER_RESTART) in ("True", "reload", "reset")): print(PROCESS_RESTART.format(component="Server")) SERVER = thread.start_new_thread(server_waiter, (processes, )) continue # normally the portal is not reloaded since it's run as a daemon. if (message == "portal_stopped" and int(rc) == 0 and get_restart_mode(PORTAL_RESTART) == "True"): print(PROCESS_RESTART.format(component="Portal")) PORTAL = thread.start_new_thread(portal_waiter, (processes, )) continue break except ReactorNotRunning: break
24,179
def stack_batch_img( img_tensors: Sequence[torch.Tensor], divisible: int = 0, pad_value: float = 0 ) -> torch.Tensor: """ Args :param img_tensors (Sequence[torch.Tensor]): :param divisible (int): :param pad_value (float): value to pad :return: torch.Tensor. """ assert len(img_tensors) > 0 assert isinstance(img_tensors, (tuple, list)) assert divisible >= 0 img_heights = [] img_widths = [] for img in img_tensors: assert img.shape[:-2] == img_tensors[0].shape[:-2] img_heights.append(img.shape[-2]) img_widths.append(img.shape[-1]) max_h, max_w = max(img_heights), max(img_widths) if divisible > 0: max_h = (max_h + divisible - 1) // divisible * divisible max_w = (max_w + divisible - 1) // divisible * divisible batch_imgs = [] for img in img_tensors: padding_size = [0, max_w - img.shape[-1], 0, max_h - img.shape[-2]] batch_imgs.append(F.pad(img, padding_size, value=pad_value)) return torch.stack(batch_imgs, dim=0).contiguous()
24,180
def gen_accessor_declarations(out): """ Generate the declaration of each version independent accessor @param out The file to which to write the decs """ out.write(""" /**************************************************************** * * Unified, per-member accessor function declarations * ****************************************************************/ """) for cls in of_g.standard_class_order: if type_maps.class_is_virtual(cls) and not loxi_utils.class_is_list(cls): continue out.write("\n/* Unified accessor functions for %s */\n" % cls) for m_name in of_g.ordered_members[cls]: if m_name in of_g.skip_members: continue m_type = loxi_utils.member_base_type(cls, m_name) base_name = "%s_%s" % (cls, m_name) gparams = ",\n ".join(param_list(cls, m_name, "get")) get_ret_type = accessor_return_type("get", m_type) sparams = ",\n ".join(param_list(cls, m_name, "set")) set_ret_type = accessor_return_type("set", m_type) bparams = ",\n ".join(param_list(cls, m_name, "bind")) bind_ret_type = accessor_return_type("bind", m_type) if loxi_utils.type_is_of_object(m_type): # Generate bind accessors, but not get accessor out.write(""" extern %(set_ret_type)s %(base_name)s_set( %(sparams)s); extern %(bind_ret_type)s %(base_name)s_bind( %(bparams)s); extern %(m_type)s *%(cls)s_%(m_name)s_get( %(cls)s_t *obj); """ % dict(base_name=base_name, sparams=sparams, bparams=bparams, m_name=m_name, m_type=m_type, cls=cls, set_ret_type=set_ret_type, bind_ret_type=bind_ret_type)) else: out.write(""" extern %(set_ret_type)s %(base_name)s_set( %(sparams)s); extern %(get_ret_type)s %(base_name)s_get( %(gparams)s); """ % dict(base_name=base_name, gparams=gparams, sparams=sparams, get_ret_type=get_ret_type, set_ret_type=set_ret_type)) if loxi_utils.class_is_list(cls): e_type = loxi_utils.list_to_entry_type(cls) out.write(""" extern int %(cls)s_first( %(cls)s_t *list, of_object_t *iter); extern int %(cls)s_next( %(cls)s_t *list, of_object_t *iter); extern int %(cls)s_append_bind( %(cls)s_t *list, of_object_t *iter); extern int %(cls)s_append( %(cls)s_t *list, of_object_t *iter); /** * Iteration macro for list of type %(cls)s * @param list Pointer to the list being iterated over of * type %(cls)s * @param elt Pointer to an element of type %(e_type)s * @param rv On exiting the loop will have the value OF_ERROR_RANGE. */ #define %(u_cls)s_ITER(list, elt, rv) \\ for ((rv) = %(cls)s_first((list), (elt)); \\ (rv) == OF_ERROR_NONE; \\ (rv) = %(cls)s_next((list), (elt))) """ % dict(u_cls=cls.upper(), cls=cls, e_type=e_type))
24,181
def convert_rel_traj_to_abs_traj(traj): """ Converts a relative pose trajectory to an absolute-pose trajectory. The incoming trajectory is processed elemente-wise. Poses at each timestamp are appended to the absolute pose from the previous timestamp. Args: traj: A PoseTrajectory3D object with timestamps as indices containing, at a minimum, columns representing the xyz position and wxyz quaternion-rotation at each timestamp, corresponding to the pose between previous and current timestamps. Returns: A PoseTrajectory3D object with xyz position and wxyz quaternion fields for the relative pose trajectory corresponding to the relative one given in `traj`. """ from evo.core import lie_algebra as lie new_poses = [lie.se3()] # origin at identity for i in range(0, len(traj.timestamps)): abs_pose = np.dot(new_poses[-1], traj.poses_se3[i]) new_poses.append(abs_pose) return trajectory.PoseTrajectory3D(timestamps=traj.timestamps[1:], poses_se3=new_poses)
24,182
def remove(handle): """The remove action allows users to remove a roommate.""" user_id = session['user'] roommate = model.roommate.get_roommate(user_id, handle) # Check if roommate exists if not roommate: return abort(404) if request.method == 'POST': model.roommate.delete_roommate(roommate.id) return redirect(url_for('roommate.overview')) return render_template('/roommate/remove.jinja', roommate=roommate)
24,183
def delete_conversation(bot_id: str): """ Deletes conversation. """ count = get_db().delete(f'conversation.{bot_id}') logger.info(f'{count} conversation(s) deleted for bot {bot_id}.')
24,184
def maxsubarray(list): """ Find a maximum subarray following this idea: Knowing a maximum subarray of list[0..j] find a maximum subarray of list[0..j+1] which is either (I) the maximum subarray of list[0..j] (II) or is a maximum subarray list[i..j+1] for some 0 <= i <= j We can determine (II) in constant time by keeping a max subarray ending at the current j. This is done in the first if of the loop, where the max subarray ending at j is max(previousSumUntilJ + array[j], array[j]) This works because if array[j] + sum so far is less than array[j] then the sum of the subarray so far is negative (and less than array[j] in case it is also negative) so it has a bad impact on the subarray until J sum and we can safely discard it and start anew from array[j] Complexity (n = length of list) Time complexity: O(n) Space complexity: O(1) """ if len(list) == 0: return (-1, -1, 0) # keep the max sum of subarray ending in position j maxSumJ = list[0] # keep the starting index of the maxSumJ maxSumJStart = 0 # keep the sum of the maximum subarray found so far maxSum = list[0] # keep the starting index of the current max subarray found maxStart = 0 # keep the ending index of the current max subarray found maxEnd = 0 for j in range(1, len(list)): if maxSumJ + list[j] >= list[j]: maxSumJ = maxSumJ + list[j] else: maxSumJ = list[j] maxSumJStart = j if maxSum < maxSumJ: maxSum = maxSumJ maxStart = maxSumJStart maxEnd = j return (maxSum, maxStart, maxEnd)
24,185
def set_packet_timeout (address, timeout): """ Adjusts the ACL flush timeout for the ACL connection to the specified device. This means that all L2CAP and RFCOMM data being sent to that device will be dropped if not acknowledged in timeout milliseconds (maximum 1280). A timeout of 0 means to never drop packets. Since this affects all Bluetooth connections to that device, and not just those initiated by this process or PyBluez, a call to this method requires superuser privileges. You must have an active connection to the specified device before invoking this method """ n = round (timeout / 0.625) write_flush_timeout (address, n)
24,186
def get_merged_threadlocal(bound_logger: BindableLogger) -> Context: """ Return a copy of the current thread-local context merged with the context from *bound_logger*. .. versionadded:: 21.2.0 """ ctx = _get_context().copy() ctx.update(structlog.get_context(bound_logger)) return ctx
24,187
def sort_cipher_suites(cipher_suites, ordering): """Sorts the given list of CipherSuite instances in a specific order.""" if ordering == 'asc': return cipher_suites.order_by('name') elif ordering == 'desc': return cipher_suites.order_by('-name') else: return cipher_suites
24,188
def make_1D_distributions(lims, n_points, all_shifts, all_errs, norm=None, max_shifts=None, seed=None): """ Generate 1D distributions of chemical shifts from arrays of shifts and errors of each distribution Inputs: - lims Limits of the distributions - n_points Number of points in the distributions - all_shifts Array of shifts for each distribution - all_errs Array of predicted error for each distribution - norm Distribution normalization to apply None: no normalization "max": top of each distribution set to 1 - max_shifts Maximum number of shifts to consider when constructing the distribution - seed Seed for the random selection of shifts Outputs: - x Array of shielding values to plot the distributions against - ys List of distributions """ # Construct the array of shielding values x = np.linspace(lims[0], lims[1], n_points) # Generate the distributions ys = [] for i, (sh, er) in enumerate(zip(all_shifts, all_errs)): print(" Constructing distribution {}/{}...".format(i+1, len(all_shifts))) ys.append(make_1D_distribution(x, sh, er, norm=norm, max_shifts=max_shifts, seed=seed)) print(" Distribution constructed!\n") return x, ys
24,189
def fill_column_values(df, icol=0): """ Fills empty values in the targeted column with the value above it. Parameters ---------- df: pandas.DataFrame icol: int Returns ------- pandas.DataFrame """ v = df.iloc[:,icol].fillna('').values.tolist() vnew = fill_gaps(v) dfnew = df.copy() # type: pd.DataFrame dfnew.iloc[:,icol] = vnew return dfnew
24,190
def reward(static, tour_indices): """ Euclidean distance between all cities / nodes given by tour_indices """ # Convert the indices back into a tour idx = tour_indices.unsqueeze(1).expand(-1, static.size(1), -1) tour = torch.gather(static.data, 2, idx).permute(0, 2, 1) # Ensure we're always returning to the depot - note the extra concat # won't add any extra loss, as the euclidean distance between consecutive # points is 0 start = static.data[:, :, 0].unsqueeze(1) y = torch.cat((start, tour, start), dim=1) # Euclidean distance between each consecutive point tour_len = torch.sqrt(torch.sum(torch.pow(y[:, :-1] - y[:, 1:], 2), dim=2)) return tour_len.sum(1)
24,191
def test_sls_networks_update(cli_runner, rest_mock): """ Test `cray sls networks update` with various params """ runner, cli, opts = cli_runner network_name = 'foobar' url_template = f'/apis/sls/v1/networks/{network_name}' config = opts['default'] hostname = config['hostname'] payload = f"""{{ "Name": "{network_name}", "FullName": "barfoobar", "IPRanges": ["192.168.1.0/24"], "Type": "ethernet" }}""" fd, path = tempfile.mkstemp(prefix='test_sls_networks_create', suffix='.json') try: with os.fdopen(fd, 'w') as f: f.write(payload) result = runner.invoke(cli, ['sls', 'networks', 'update', path, network_name]) print(result.output) assert result.exit_code == 0 data = json.loads(result.output) assert data['method'].lower() == 'put' body = data.get('body') assert body assert body['Name'] == network_name uri = data['url'].split(hostname)[-1] assert uri == url_template finally: os.remove(path)
24,192
def valid_review_queue_name(request): """ Given a name for a queue, validates the correctness for our review system :param request: :return: """ queue = request.matchdict.get('queue') if queue in all_queues: request.validated['queue'] = queue return True else: _tn = Translator(get_language_from_cookie(request)) add_error(request, 'Invalid queue', _tn.get(_.internalError)) return False
24,193
def is_valid_cluster_dir(path): """Checks whether a given path is a valid postgres cluster Args: pg_ctl_exe - str, path to pg_ctl executable path - str, path to directory Returns: bool, whether or not a directory is a valid postgres cluster """ pg_controldata_exe = which('pg_controldata') cmd = '"{pg_controldata}" "{path}"'.format( pg_controldata=pg_controldata_exe, path=path) proc = subprocess.Popen(cmd, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE) _, err = proc.communicate() if 'No such file or directory' in err.decode('utf-8'): return False else: return True
24,194
def get_best_straight(possible_straights, hand): """ get list of indices of hands that make the strongest straight if no one makes a straight, return empty list :param possible_straights: ({tuple(str): int}) map tuple of connecting cards --> best straight value they make :param hand: (set(str)) set of strings :return: (int) top value in the straight, or 0 if no straight """ highest_straight_value = 0 # e.g. 14 for broadway, 5 for the wheel hand_values = set( ranks_to_sorted_values( ranks=[r for r, _ in hand], aces_high=True, aces_low=True ) ) for connecting_values, max_value in possible_straights.items(): connecting_cards = set(connecting_values) & hand_values if len(connecting_cards) == 2: # we've made a straight! if max_value > highest_straight_value: highest_straight_value = max_value return highest_straight_value
24,195
def stats(request): """ Display statistics for the web site """ from django.shortcuts import render_to_response, RequestContext views = list(View.objects.all().only('internal_url', 'browser')) urls = {} mob_vs_desk = { 'desktop': 0, 'mobile': 0 } for view in views: if is_mobile(view.browser): mob_vs_desk['mobile'] += 1 else: mob_vs_desk['desktop'] += 1 if not urls.has_key(view.internal_url): urls[view.internal_url] = 0 urls[view.internal_url] += 1 stats = [] count = 0 for url in urls: stats.append({'url': url, 'count': urls[url]}) count += urls[url] stats = sorted(stats, key=lambda k: k['count'], reverse=True) return render_to_response('admin/appview/view/display_stats.html', RequestContext(request, { 'stats' : stats, 'total' : count, 'views': mob_vs_desk } ) )
24,196
def show_scatter_plot( content_on_x, content_on_y, x_label, y_label, title, color='#1f77b4'): """Plots scatter plot""" plt.figure(1) plt.scatter(content_on_x, content_on_y, s=2, c=color) plt.xlabel(x_label) plt.ylabel(y_label) plt.title(title) plt.show()
24,197
def build_argparser(): """ Builds argument parser. :return argparse.ArgumentParser """ banner = "%(prog)s - generate a static file representation of a PEP data repository." additional_description = "\n..." parser = _VersionInHelpParser( description=banner, epilog=additional_description) parser.add_argument( "-V", "--version", action="version", version="%(prog)s {v}".format(v=__version__)) parser.add_argument( "-d", "--data", required=False, default=PEPHUB_URL, help="URL/Path to PEP storage tree.") parser.add_argument( "-o", "--out", required=False, default="./out", help="Outpath for generated PEP tree.") parser.add_argument( "-p", "--path", required=False, help="Path to serve the file server at." ) # parser for serve command subparsers = parser.add_subparsers( help="Functions", dest="serve" ) serve_parser = subparsers.add_parser("serve", help="Serve a directory using pythons built-in http library") serve_parser.set_defaults( func=serve_directory ) serve_parser.add_argument( "-f", "--files", required=False, help="Files to serve.", default="./out" ) return parser
24,198
def abc19(): """Solution to exercise C-1.19. Demonstrate how to use Python’s list comprehension syntax to produce the list [ a , b , c , ..., z ], but without having to type all 26 such characters literally. """ a_idx = 97 return [chr(a_idx + x) for x in range(26)]
24,199