content
stringlengths
22
815k
id
int64
0
4.91M
def main(argv=None): """script main. parses command line options in sys.argv, unless *argv* is given. """ if argv is None: argv = sys.argv try: optlist, args = getopt.getopt( sys.argv[1:], param_short_options, param_long_options) except getopt.error, msg: print USAGE, msg sys.exit(2) for o, a in optlist: if o in ("-v", "--verbose"): param_loglevel = int(a) elif o in ("-h", "--help"): print USAGE sys.exit(0) elif o in ("--version", ): print "version=" sys.exit(0) elif o in ("-f", "--format"): param_format = a elif o in ("-i", "--max-intron"): param_max_intron = int(a) elif o in ("-d", "--max-difference"): param_max_difference = int(a) elif o in ("-o", "--max-overlap"): param_max_overlap = int(a) elif o in ("-c", "--contigs-tsv-file"): param_filename_contigs = a elif o in ("-g", "--genome-file"): param_genome_file = a elif o in ("-j", "--join-pattern"): param_filename_join_pattern = a elif o in ("-s", "--filename-sizes"): param_filename_sizes = a if len(args) > 0: print USAGE, "no arguments required." sys.exit(2) print E.GetHeader() print E.GetParams() ninput = 0 max_id = 0 contig_sizes = Genomics.ReadContigSizes(open(param_filename_contigs, "r")) ########################################################################## # reading predictions contig = {} tmp_predictions, filename_tmp_predictions = tempfile.mkstemp() os.close(tmp_predictions) tmp_predictions = PredictionFile.PredictionFile() tmp_predictions.open(filename_tmp_predictions, "w") if param_format == "predictions": last_entry = None entries = [] for line in sys.stdin: if line[0] == "#": continue entry = PredictionParser.PredictionParserEntry(expand=1) try: entry.Read(line) except ValueError: print "# warning: parsing error in line %s" % line[:-1] continue ninput += 1 max_id = max(entry.mPredictionId, max_id) if entry.mSbjctToken not in contig: contig[entry.mSbjctToken] = BoundaryPredictions() contig[entry.mSbjctToken].update(entry) tmp_predictions.append(entry) if param_loglevel >= 4: for c in contig.keys(): print "######start of %s #####################################################" % c print "#", str(contig[c]) print "######end of %s #####################################################" % c tmp_predictions.close() max_id += 1 first_pseudo_id = max_id cc = contig.keys() ########################################################################## # get pairs of colinear predictions on different contigs results = [] if param_loglevel >= 1: print "# finished parsing %i contigs" % len(cc) sys.stdout.flush() for c1 in range(len(cc) - 1): if param_loglevel >= 1: print "# processing: %i/%i" % (c1 + 1, len(cc)) sys.stdout.flush() for c2 in range(c1 + 1, len(cc)): r = CheckCollinearity(contig[cc[c1]], contig[cc[c2]]) if r and param_loglevel >= 3: print "# --------------------------------------------------------" print "# %s and %s are collinear" % (cc[c1], cc[c2]) for r1, r2 in r: print "# ----------------------" print "#", str(r1) print "#", str(r2) results += r ########################################################################## # cluster co-linear predictions on different contigs by sbjct_token queries = {} for r1, r2 in results: if r1.mQueryToken not in queries: queries[r1.mQueryToken] = {} queries[r1.mQueryToken][r1.mPredictionId] = r1 queries[r1.mQueryToken][r2.mPredictionId] = r2 nnew = 0 ncancelled = 0 # set of contigs joined map_contig2new = {} # names of new contigs new_contigs = {} # remove old contig file, if it already exists. if param_filename_join_pattern and "%s" not in param_filename_join_pattern: if os.path.exists(param_filename_join_pattern): os.remove(param_filename_join_pattern) if param_filename_sizes: outfile_sizes = open(param_filename_sizes, "w") else: outfile_sizes = None ########################################################################## # join contigs for q in queries.keys(): s = queries[q].values() s.sort( lambda x, y: cmp((x.mQueryFrom, x.mQueryTo), (y.mQueryFrom, y.mQueryTo))) if param_loglevel >= 2: print "# -----------------------------------------------" print "# predictions to be joined for query=", q for p in s: print "#", str(p) print "# -----------------------------------------------" new_prediction = s[0].GetCopy() last_contig_size = contig_sizes[new_prediction.mSbjctToken] do_cancel = False contigs = [] if param_filename_join_pattern: contigs.append(GetContig(new_prediction)) for p in s[1:]: overlap = new_prediction.mQueryTo - p.mQueryFrom + 1 if overlap > 0: if overlap > param_max_overlap or \ 100 * (p.mQueryTo - p.mQueryFrom + 1) / overlap > param_max_relative_overlap: print "# dodgy prediction sequence (overlap = %i), joining of contigs cancelled." % overlap sys.stdout.flush() do_cancel = True break if param_filename_join_pattern: contigs.append(GetContig(p)) new_prediction.Add(p, combine_contig=True, allow_overlap=True, contig_size=last_contig_size) last_contig_size += contig_sizes[p.mSbjctToken] if do_cancel: ncancelled += 1 continue nnew += 1 new_prediction.mPredictionId = max_id new_prediction.mSbjctStrand = "+" max_id += 1 print "# joining\t" + string.join(map(lambda x: x.mSbjctToken + x.mSbjctStrand, s), "\t") if param_filename_join_pattern and len(contigs) > 0: new_contig = string.join( map(lambda x: x[0], contigs), param_separator_contigs) # do not write the same contig twice if new_contig not in new_contigs: new_contigs[new_contig] = 1 lcontig = len(string.join(map(lambda x: x[1], contigs), "")) # check if contig already part of a different joined contig l = 0 for id, sequence, switch in contigs: if id in map_contig2new: print "# WARNING: contig %s already joined" % id map_contig2new[id] = ( new_contig, switch, l, lcontig - l - len(sequence)) l += len(sequence) # write new contig if "%s" in param_filename_join_pattern: filename_genome = param_filename_join_pattern % new_contig outfile = open(filename_genome, "w") else: filename_genome = param_filename_join_pattern outfile = open(filename_genome, "a") if outfile_sizes: outfile_sizes.write("%s\t%i\t0\n" % (new_contig, lcontig)) outfile.write( ">" + new_contig + "\n" + string.join(map(lambda x: x[1], contigs), "") + "\n") outfile.close() print str(new_prediction) if outfile_sizes: outfile_sizes.close() ########################################################################## # move other predictions into the new contigs by translating their # coordinates tmp_predictions.open(mode="r") noutput = 0 ntranslated = 0 for p in tmp_predictions: if p.mSbjctToken in map_contig2new: p.mSbjctToken, switch, offset_pos, offset_neg = map_contig2new[ p.mSbjctToken] if (switch and p.mSbjctStrand == "+") or \ (not switch and p.mSbjctStrand == "-"): offset = offset_neg else: offset = offset_pos # change strand for inverted contigs if switch: if p.mSbjctStrand == "+": p.mSbjctStrand = "-" else: p.mSbjctStrand = "+" p.mSbjctGenomeFrom += offset p.mSbjctGenomeTo += offset ntranslated += 1 noutput += 1 print str(p) if param_loglevel >= 1: print "## nread=%i, nnew=%i, noutput=%i, ntranslated=%i, first_id=%i" %\ (ninput, nnew, noutput, ntranslated, first_pseudo_id) print "# ncontigs=%i, npairs=%i, nqueries=%i, nnew=%i, njoined=%i, ncancelled=%i" %\ (len(contig), len(results), len(queries), len(new_contigs), len(map_contig2new), ncancelled) os.remove(filename_tmp_predictions) print E.GetFooter()
23,600
def run_fn(fn_args: TrainerFnArgs): """Train the model based on given args. Args: fn_args: Holds args used to train the model as name/value pairs. """ # get transform component output tf_transform_output = tft.TFTransformOutput(fn_args.transform_output) # read input data train_dataset = fn_args.data_accessor.tf_dataset_factory( fn_args.train_files, dataset_options.TensorFlowDatasetOptions( batch_size=fn_args.custom_config["batch_size"], ), tf_transform_output.transformed_metadata.schema, ) eval_dataset = fn_args.data_accessor.tf_dataset_factory( fn_args.eval_files, dataset_options.TensorFlowDatasetOptions( batch_size=fn_args.custom_config["batch_size"], ), tf_transform_output.transformed_metadata.schema, ) # instantiate model model = build_model( fn_args.custom_config["input_features"], fn_args.custom_config["window_size"], fn_args.custom_config["outer_units"], fn_args.custom_config["inner_units"], ) # tf callbacks for tensorboard tensorboard_callback = tf.keras.callbacks.TensorBoard( log_dir=fn_args.model_run_dir, update_freq="batch", ) # validation_data = list(eval_dataset.as_numpy_iterator()) # train model model.fit( train_dataset, # train_dataset.as_numpy_iterator(), steps_per_epoch=fn_args.train_steps, validation_data=eval_dataset, validation_steps=fn_args.eval_steps, callbacks=[tensorboard_callback], ) # Build signatures model.tft_layer = tf_transform_output.transform_features_layer() @tf.function def _serve_tf_examples_fn(**input_features): # """Returns the output to be used in the serving signature.""" preprocessed_features = model.tft_layer(input_features) autoencoded_features = model(preprocessed_features) return { **{ f"input_features::{f}": input_features[f] for f in input_features.keys() }, **{ f"preprocessed_features::{f}": preprocessed_features[f] for f in preprocessed_features.keys() }, # Output tensor names are of the form: # lstm_autoencoder_model/decoder/{feature_name}/Reshape_1:0 **{ f"output_features::{f.name.split('/')[2]}": f for f in autoencoded_features }, } _input_tf_specs = { f: tf.TensorSpec( shape=[None, fn_args.custom_config["window_size"]], dtype=tf.float32, name=f ) for f in fn_args.custom_config["input_features"] } signatures = { "serving_default": _serve_tf_examples_fn.get_concrete_function( **_input_tf_specs ) } # Save model (this is the effective output of this function) model.save(fn_args.serving_model_dir, save_format="tf", signatures=signatures)
23,601
def log_likelihood(X, Y, Z, data, boolean=True, **kwargs): """ Log likelihood ratio test for conditional independence. Also commonly known as G-test, G-squared test or maximum likelihood statistical significance test. Tests the null hypothesis that X is independent of Y given Zs. Parameters ---------- X: int, string, hashable object A variable name contained in the data set Y: int, string, hashable object A variable name contained in the data set, different from X Z: list (array-like) A list of variable names contained in the data set, different from X and Y. This is the separating set that (potentially) makes X and Y independent. Default: [] data: pandas.DataFrame The dataset on which to test the independence condition. boolean: bool If boolean=True, an additional argument `significance_level` must be specified. If p_value of the test is greater than equal to `significance_level`, returns True. Otherwise returns False. If boolean=False, returns the chi2 and p_value of the test. Returns ------- If boolean = False, Returns 3 values: chi: float The chi-squre test statistic. p_value: float The p_value, i.e. the probability of observing the computed chi-square statistic (or an even higher value), given the null hypothesis that X \u27C2 Y | Zs. dof: int The degrees of freedom of the test. If boolean = True, returns: independent: boolean If the p_value of the test is greater than significance_level, returns True. Else returns False. References ---------- [1] https://en.wikipedia.org/wiki/G-test Examples -------- >>> import pandas as pd >>> import numpy as np >>> data = pd.DataFrame(np.random.randint(0, 2, size=(50000, 4)), columns=list('ABCD')) >>> data['E'] = data['A'] + data['B'] + data['C'] >>> log_likelihood(X='A', Y='C', Z=[], data=data, boolean=True, significance_level=0.05) True >>> log_likelihood(X='A', Y='B', Z=['D'], data=data, boolean=True, significance_level=0.05) True >>> log_likelihood(X='A', Y='B', Z=['D', 'E'], data=data, boolean=True, significance_level=0.05) False """ return power_divergence( X=X, Y=Y, Z=Z, data=data, boolean=boolean, lambda_="log-likelihood", **kwargs )
23,602
def conjugada_matriz_vec(mat:list): """ Funcion que realiza la conjugada de una matriz o vector complejo. :param mat: Lista que representa la matriz o vector complejo. :return: lista que representa la matriz o vector resultante. """ fila = len(mat) columnas = len(mat[0]) resul = [] for i in range(fila): resul.append([]) for j in range(columnas): resul[i].append(conjugado_complejos(mat[i][j])) return resul
23,603
def features2matrix(feature_list): """ Args: feature_list (list of Feature): Returns: (np.ndarray, list of str): matrix and list of key of features """ matrix = np.array([feature.values for feature in feature_list], dtype=float) key_lst = [feature.key for feature in feature_list] return matrix, key_lst
23,604
def GenDataFrameFromPath(path, pattern='*.png', fs=False): """ generate a dataframe for all file in a dir with the specific pattern of file name. use: GenDataFrameFromPath(path, pattern='*.png') """ fnpaths = list(path.glob(pattern)) df = pd.DataFrame(dict(zip(['fnpath'], [fnpaths]))) df['dir'] = df['fnpath'].apply(lambda x: x.parent) df['fn'] = df['fnpath'].apply(lambda x: x.name) if fs: df['size'] = df['fnpath'].apply(lambda x: os.path.getsize(x)) return df
23,605
def is_heading(line): """Determine whether a given line is a section header that describes subsequent lines of a report. """ has_cattle = re.search(r'steer?|hfrs?|calves|cows?|bulls?', line, re.IGNORECASE) has_price = re.search(r'\$[0-9]+\.[0-9]{2}', line) return bool(has_cattle) and not bool(has_price)
23,606
def get_channel_messages(channel_id): """ Holt fuer einen bestimmten Kanal die Nachrichten aus der Datenbank""" session = get_cassandra_session() future = session.execute_async("SELECT * FROM messages WHERE channel_id=%s", (channel_id,)) try: rows = future.result() except Exception: log.exeception() messages = [] for row in rows: messages.append({ 'channel_id': row.channel_id, 'message_id': row.message_id, 'author_id': row.author_id, 'message': row.message }) return jsonify({'messages': messages}), 200
23,607
def train(traj, pol, targ_pol, qf, targ_qf, optim_pol, optim_qf, epoch, batch_size, # optimization hypers tau, gamma, # advantage estimation sampling, ): """ Train function for deep deterministic policy gradient Parameters ---------- traj : Traj Off policy trajectory. pol : Pol Policy. targ_pol : Pol Target Policy. qf : SAVfunction Q function. targ_qf : SAVfunction Target Q function. optim_pol : torch.optim.Optimizer Optimizer for Policy. optim_qf : torch.optim.Optimizer Optimizer for Q function. epoch : int Number of iteration. batch_size : int Number of batches. tau : float Target updating rate. gamma : float Discounting rate. sampling : int Number of samping in calculating expectation. Returns ------- result_dict : dict Dictionary which contains losses information. """ pol_losses = [] qf_losses = [] logger.log("Optimizing...") for batch in traj.iterate(batch_size, epoch): qf_bellman_loss = lf.bellman( qf, targ_qf, targ_pol, batch, gamma, sampling=sampling) optim_qf.zero_grad() qf_bellman_loss.backward() optim_qf.step() pol_loss = lf.ag(pol, qf, batch, sampling) optim_pol.zero_grad() pol_loss.backward() optim_pol.step() for q, targ_q, p, targ_p in zip(qf.parameters(), targ_qf.parameters(), pol.parameters(), targ_pol.parameters()): targ_p.detach().copy_((1 - tau) * targ_p.detach() + tau * p.detach()) targ_q.detach().copy_((1 - tau) * targ_q.detach() + tau * q.detach()) qf_losses.append(qf_bellman_loss.detach().cpu().numpy()) pol_losses.append(pol_loss.detach().cpu().numpy()) logger.log("Optimization finished!") return dict(PolLoss=pol_losses, QfLoss=qf_losses, )
23,608
def test_create_secure_wireless_failure(mocked_secure_wireless_create_failure, capfd): """ Test : Create secure wireless connection w/failure """ with pytest.raises(SystemExit): nmcli.main() assert nmcli.Nmcli.execute_command.call_count == 2 arg_list = nmcli.Nmcli.execute_command.call_args_list get_available_options_args, get_available_options_kw = arg_list[0] assert get_available_options_args[0][0] == '/usr/bin/nmcli' assert get_available_options_args[0][1] == 'con' assert get_available_options_args[0][2] == 'edit' assert get_available_options_args[0][3] == 'type' assert get_available_options_args[0][4] == 'wifi' get_available_options_data = get_available_options_kw['data'].split() for param in ['print', '802-11-wireless-security', 'quit', 'yes']: assert param in get_available_options_data add_args, add_kw = arg_list[1] assert add_args[0][0] == '/usr/bin/nmcli' assert add_args[0][1] == 'con' assert add_args[0][2] == 'add' assert add_args[0][3] == 'type' assert add_args[0][4] == 'wifi' assert add_args[0][5] == 'con-name' assert add_args[0][6] == 'non_existent_nw_device' add_args_text = list(map(to_text, add_args[0])) for param in ['connection.interface-name', 'wireless_non_existant', 'ipv4.addresses', '10.10.10.10/24', '802-11-wireless.ssid', 'Brittany', '802-11-wireless-security.key-mgmt', 'wpa-psk']: assert param in add_args_text out, err = capfd.readouterr() results = json.loads(out) assert results.get('failed') assert 'changed' not in results
23,609
async def bot_start(message: types.Message): """ The function is designed to welcome a new bot user. """ await types.ChatActions.typing() first_name = message.from_user.first_name devs_id = await mention_html("no_n1ce", "Nikita") await message.answer( text=f"Привет, {first_name}! Я создатель этого разговорного чат-бота 🤔." f" По всем вопросам, можешь написать мне {devs_id}!", parse_mode=types.ParseMode.HTML)
23,610
def upsample_gtiff(files: list, scale: float) -> list: """ Performs array math to artificially increase the resolution of a geotiff. No interpolation of values. A scale factor of X means that the length of a horizontal and vertical grid cell decreases by X. Be careful, increasing the resolution by X increases the file size by ~X^2 Args: files: A list of absolute paths to the appropriate type of files (even if len==1) scale: A positive integer used as the multiplying factor to increase the resolution. Returns: list of paths to the geotiff files created """ # Read raster dimensions raster_dim = rasterio.open(files[0]) width = raster_dim.width height = raster_dim.height lon_min = raster_dim.bounds.left lon_max = raster_dim.bounds.right lat_min = raster_dim.bounds.bottom lat_max = raster_dim.bounds.top # Geotransform for each resampled raster (east, south, west, north, width, height) affine_resampled = rasterio.transform.from_bounds(lon_min, lat_min, lon_max, lat_max, width * scale, height * scale) # keep track of the new files new_files = [] # Resample each GeoTIFF for file in files: rio_obj = rasterio.open(file) data = rio_obj.read( out_shape=(int(rio_obj.height * scale), int(rio_obj.width * scale)), resampling=Resampling.nearest ) # Convert new resampled array from 3D to 2D data = np.squeeze(data, axis=0) # Specify the filepath of the resampled raster new_filepath = os.path.splitext(file)[0] + '_upsampled.tiff' new_files.append(new_filepath) # Save the GeoTIFF with rasterio.open( new_filepath, 'w', driver='GTiff', height=data.shape[0], width=data.shape[1], count=1, dtype=data.dtype, nodata=np.nan, crs=rio_obj.crs, transform=affine_resampled, ) as dst: dst.write(data, 1) return new_files
23,611
def merge_dicts(dict1, dict2): """ _merge_dicts Merges two dictionaries into one. INPUTS @dict1 [dict]: First dictionary to merge. @dict2 [dict]: Second dictionary to merge. RETURNS @merged [dict]: Merged dictionary """ merged = {**dict1, **dict2} return merged
23,612
def check_api_acls(acls, optional=False): """Checks if the user provided an API token with its request and if this token allows the user to access the endpoint desired. :arg acls: A list of access control :arg optional: Only check the API token is valid. Skip the ACL validation. """ import pagure.api import pagure.lib.query if authenticated(): return flask.g.token = None flask.g.fas_user = None token = None token_str = None if "Authorization" in flask.request.headers: authorization = flask.request.headers["Authorization"] if "token" in authorization: token_str = authorization.split("token", 1)[1].strip() token_auth = False error_msg = None if token_str: token = pagure.lib.query.get_api_token(flask.g.session, token_str) if token: if token.expired: error_msg = "Expired token" else: flask.g.authenticated = True # Some ACLs are required if acls: token_acls_set = set(token.acls_list) needed_acls_set = set(acls or []) overlap = token_acls_set.intersection(needed_acls_set) # Our token has some of the required ACLs: auth successful if overlap: token_auth = True flask.g.fas_user = token.user # To get a token, in the `fas` auth user must have # signed the CLA, so just set it to True flask.g.fas_user.cla_done = True flask.g.token = token flask.g.authenticated = True # Our token has none of the required ACLs -> auth fail else: error_msg = "Missing ACLs: %s" % ", ".join( sorted(set(acls) - set(token.acls_list)) ) # No ACL required else: if optional: token_auth = True flask.g.fas_user = token.user # To get a token, in the `fas` auth user must have # signed the CLA, so just set it to True flask.g.fas_user.cla_done = True flask.g.token = token flask.g.authenticated = True else: error_msg = "Invalid token" elif optional: return else: error_msg = "Invalid token" if not token_auth: output = { "error_code": pagure.api.APIERROR.EINVALIDTOK.name, "error": pagure.api.APIERROR.EINVALIDTOK.value, "errors": error_msg, } jsonout = flask.jsonify(output) jsonout.status_code = 401 return jsonout
23,613
def get_data(): """ Return data files :return: """ data = {} for df in get_manifest(): d, f = os.path.split(df) if d not in data: data[d] = [df] else: data[d].append(df) return list(data.items())
23,614
def china_province_head_fifteen(): """ 各省前15数据 :return: """ return db_request_service.get_china_province_head_fifteen(ChinaTotal, ChinaProvince)
23,615
def exec_sedml_docs_in_archive(sed_doc_executer, archive_filename, out_dir, apply_xml_model_changes=False, sed_doc_executer_supported_features=(Task, Report, DataSet, Plot2D, Curve, Plot3D, Surface), report_formats=None, plot_formats=None, bundle_outputs=None, keep_individual_outputs=None, sed_doc_executer_logged_features=(Task, Report, DataSet, Plot2D, Curve, Plot3D, Surface)): """ Execute the SED-ML files in a COMBINE/OMEX archive (execute tasks and save outputs) Args: sed_doc_executer (:obj:`types.FunctionType`): function to execute each SED document in the archive. The function must implement the following interface:: def sed_doc_executer(doc, working_dir, base_out_path, rel_out_path=None, apply_xml_model_changes=False, report_formats=None, plot_formats=None, log=None, indent=0): ''' Execute the tasks specified in a SED document and generate the specified outputs Args: doc (:obj:`SedDocument` of :obj:`str`): SED document or a path to SED-ML file which defines a SED document working_dir (:obj:`str`): working directory of the SED document (path relative to which models are located) out_path (:obj:`str`): path to store the outputs * CSV: directory in which to save outputs to files ``{out_path}/{rel_out_path}/{report.id}.csv`` * HDF5: directory in which to save a single HDF5 file (``{out_path}/reports.h5``), with reports at keys ``{rel_out_path}/{report.id}`` within the HDF5 file rel_out_path (:obj:`str`, optional): path relative to :obj:`out_path` to store the outputs apply_xml_model_changes (:obj:`bool`, optional): if :obj:`True`, apply any model changes specified in the SED-ML file report_formats (:obj:`list` of :obj:`ReportFormat`, optional): report format (e.g., csv or h5) plot_formats (:obj:`list` of :obj:`PlotFormat`, optional): plot format (e.g., pdf) log (:obj:`SedDocumentLog`, optional): execution status of document indent (:obj:`int`, optional): degree to indent status messages ''' archive_filename (:obj:`str`): path to COMBINE/OMEX archive out_dir (:obj:`str`): path to store the outputs of the archive * CSV: directory in which to save outputs to files ``{ out_dir }/{ relative-path-to-SED-ML-file-within-archive }/{ report.id }.csv`` * HDF5: directory in which to save a single HDF5 file (``{ out_dir }/reports.h5``), with reports at keys ``{ relative-path-to-SED-ML-file-within-archive }/{ report.id }`` within the HDF5 file apply_xml_model_changes (:obj:`bool`): if :obj:`True`, apply any model changes specified in the SED-ML files before calling :obj:`task_executer`. sed_doc_executer_supported_features (:obj:`list` of :obj:`type`, optional): list of the types of elements that the SED document executer supports. Default: tasks, reports, plots, data sets, curves, and surfaces. report_formats (:obj:`list` of :obj:`ReportFormat`, optional): report format (e.g., csv or h5) plot_formats (:obj:`list` of :obj:`PlotFormat`, optional): report format (e.g., pdf) bundle_outputs (:obj:`bool`, optional): if :obj:`True`, bundle outputs into archives for reports and plots keep_individual_outputs (:obj:`bool`, optional): if :obj:`True`, keep individual output files sed_doc_executer_logged_features (:obj:`list` of :obj:`type`, optional): list of the types fo elements which that the SED document executer logs. Default: tasks, reports, plots, data sets, curves, and surfaces. Returns: :obj:`CombineArchiveLog`: log """ config = get_config() # process arguments if report_formats is None: report_formats = [ReportFormat(format_value) for format_value in config.REPORT_FORMATS] if plot_formats is None: plot_formats = [PlotFormat(format_value) for format_value in config.PLOT_FORMATS] if bundle_outputs is None: bundle_outputs = config.BUNDLE_OUTPUTS if keep_individual_outputs is None: keep_individual_outputs = config.KEEP_INDIVIDUAL_OUTPUTS verbose = config.VERBOSE # create temporary directory to unpack archive archive_tmp_dir = tempfile.mkdtemp() # unpack archive and read metadata archive = CombineArchiveReader.run(archive_filename, archive_tmp_dir) # determine files to execute sedml_contents = get_sedml_contents(archive) if not sedml_contents: warn("COMBINE/OMEX archive '{}' does not contain any executing SED-ML files".format(archive_filename), NoSedmlWarning) # print summary of SED documents print(get_summary_sedml_contents(archive, archive_tmp_dir)) # create output directory if not os.path.isdir(out_dir): os.makedirs(out_dir) # initialize status and output supported_features = sed_doc_executer_supported_features logged_features = sed_doc_executer_logged_features if SedDocument not in supported_features: supported_features = tuple(list(supported_features) + [SedDocument]) if SedDocument not in logged_features: logged_features = tuple(list(logged_features) + [SedDocument]) log = init_combine_archive_log(archive, archive_tmp_dir, supported_features=supported_features, logged_features=logged_features) log.status = Status.RUNNING log.out_dir = out_dir log.export() start_time = datetime.datetime.now() # execute SED-ML files: execute tasks and save output exceptions = [] for i_content, content in enumerate(sedml_contents): content_filename = os.path.join(archive_tmp_dir, content.location) content_id = os.path.relpath(content_filename, archive_tmp_dir) print('Executing SED-ML file {}: {} ...'.format(i_content, content_id)) doc_log = log.sed_documents[content_id] doc_log.status = Status.RUNNING doc_log.export() with capturer.CaptureOutput(merged=True, relay=verbose) as captured: doc_start_time = datetime.datetime.now() try: working_dir = os.path.dirname(content_filename) sed_doc_executer(content_filename, working_dir, out_dir, os.path.relpath(content_filename, archive_tmp_dir), apply_xml_model_changes=apply_xml_model_changes, report_formats=report_formats, plot_formats=plot_formats, log=doc_log, indent=1) doc_log.status = Status.SUCCEEDED except Exception as exception: exceptions.append(exception) doc_log.status = Status.FAILED doc_log.exception = exception # update status doc_log.output = captured.get_bytes().decode() doc_log.duration = (datetime.datetime.now() - doc_start_time).total_seconds() doc_log.export() print('') if bundle_outputs: print('Bundling outputs ...') # bundle CSV files of reports into zip archive archive_paths = [os.path.join(out_dir, '**', '*.' + format.value) for format in report_formats if format != ReportFormat.h5] archive = build_archive_from_paths(archive_paths, out_dir) if archive.files: ArchiveWriter().run(archive, os.path.join(out_dir, config.REPORTS_PATH)) # bundle PDF files of plots into zip archive archive_paths = [os.path.join(out_dir, '**', '*.' + format.value) for format in plot_formats] archive = build_archive_from_paths(archive_paths, out_dir) if archive.files: ArchiveWriter().run(archive, os.path.join(out_dir, config.PLOTS_PATH)) # cleanup temporary files print('Cleaning up ...') if not keep_individual_outputs: path_patterns = ( [os.path.join(out_dir, '**', '*.' + format.value) for format in report_formats if format != ReportFormat.h5] + [os.path.join(out_dir, '**', '*.' + format.value) for format in plot_formats] ) for path_pattern in path_patterns: for path in glob.glob(path_pattern, recursive=True): os.remove(path) for dir_path, dir_names, file_names in os.walk(out_dir, topdown=False): for dir_name in list(dir_names): full_dir_name = os.path.join(dir_path, dir_name) if not os.path.isdir(full_dir_name): dir_names.remove(dir_name) elif not os.listdir(full_dir_name): # not reachable because directory would # have already been removed by the iteration for the directory shutil.rmtree(full_dir_name) # pragma: no cover dir_names.remove(dir_name) # pragma: no cover if not dir_names and not file_names: shutil.rmtree(dir_path) shutil.rmtree(archive_tmp_dir) # update status log.status = Status.FAILED if exceptions else Status.SUCCEEDED log.duration = (datetime.datetime.now() - start_time).total_seconds() log.finalize() log.export() # summarize execution print('') print('============= SUMMARY =============') print(get_summary_combine_archive_log(log)) # raise exceptions if exceptions: msg = 'The COMBINE/OMEX did not execute successfully:\n\n {}'.format( '\n\n '.join(str(exceptions).replace('\n', '\n ') for exceptions in exceptions)) raise CombineArchiveExecutionError(msg) # return log return log
23,616
def pipeline(x_train, y_train, x_test, y_test, param_dict=None, problem='classification'): """Trains and evaluates a DNN classifier. Args: x_train: np.array or scipy.sparse.*matrix array of features of training data y_train: np.array 1-D array of class labels of training data x_test: np.array or scipy.sparse.*matrix array of features of test data y_test: np.array 1-D array of class labels of the test data param_dict: {string: ?} dictionary of parameters of their values problem: string type of learning problem; values = 'classification', 'regression' Returns: model: Keras.models.Model trained Keras model metrics: {str: float} dictionary of metric scores """ assert problem in ['classification', 'regression'] if param_dict is None: param_dict = {'epochs': 10, 'batch_size': 256} num_feature = x_train.shape[1] is_sparse = sparse.issparse(x_train) param_dict = param_dict.copy() num_epoch = param_dict.pop('epochs') batch_size = param_dict.pop('batch_size') if problem == 'regression': num_output = 1 loss = 'mean_squared_error' model_init = KerasRegressor else: num_output = len(set(y_train)) loss = 'categorical_crossentropy' model_init = FunctionalKerasClassifier build_fn = pseudo_partial( keras_build_fn, num_feature=num_feature, num_output=num_output, is_sparse=is_sparse, loss=loss, **param_dict) model = model_init( build_fn=build_fn, epochs=num_epoch, batch_size=batch_size, shuffle=True, verbose=False) return generic_pipeline( model, x_train, y_train, x_test, y_test, problem=problem)
23,617
def test_convolve_lti(u, h): """Test whether :func:`acoustics.signal.convolve` behaves properly when performing a convolution with a time-invariant system. """ H = np.tile(h, (len(u), 1)).T np.testing.assert_array_almost_equal(convolveLTV(u,H), convolveLTI(u,h)) np.testing.assert_array_almost_equal(convolveLTV(u,H,mode='full'), convolveLTI(u,h,mode='full')) np.testing.assert_array_almost_equal(convolveLTV(u,H,mode='valid'), convolveLTI(u,h,mode='valid')) np.testing.assert_array_almost_equal(convolveLTV(u,H,mode='same'), convolveLTI(u,h,mode='same'))
23,618
def p_command_statement_input_2(t): """ command_statement_input : object_list """ pass
23,619
def model_selection(modelname, num_out_classes, dropout=None): """ :param modelname: :return: model, image size, pretraining<yes/no>, input_list """ if modelname == 'xception': return TransferModel(modelchoice='xception', num_out_classes=num_out_classes) # , 299, \True, ['image'], None elif modelname == 'resnet18': return TransferModel(modelchoice='resnet18', dropout=dropout, num_out_classes=num_out_classes) # , \224, True, ['image'], None elif modelname == 'xception_concat': return TransferModel(modelchoice='xception_concat', num_out_classes=num_out_classes) else: raise NotImplementedError(modelname)
23,620
def insert_into_solr(): """ Inserts records into an empty solr index which has already been created. It inserts frequencies of each noun phrase per file along with the arxiv identifier (from the file name) and the published date (obtained from the arxiv_metadata Solr index).""" solr = pysolr.Solr('http://localhost:8983/solr/nounphrases') folderpath = '/home/ashwath/Files/NPFiles' # Create an empty counter and update counts for phrases in each file inside the for loop. phrase_counter = Counter() for filepath in iglob(os.path.join(folderpath, '*.nps.txt')): # Insert all the phrases in a file into Solr in a list list_for_solr = [] with open(filepath, "r") as file: # Get the filename without extension (only 1st 2 parts # of filename after splitting) filename= os.path.basename(filepath) filename = '.'.join(filename.split('.')[0:2]) # published date is a default dict with lists as values. published_date = search_solr(filename, 'arxiv_metadata', 'arxiv_identifier') # Line is tab-separated (phrase, start, end). We want only phrase # Don't add useless phrases to list 'phrases'. Use a generator # expression instead of a list comprehension phrases = (line.split("\t")[0].lower().strip() for line in file if line.split("\t")[0].lower().strip() != "") temp_phrase_counter = Counter(phrases) for phrase, frequency in temp_phrase_counter.items(): solr_content = {} solr_content['phrase'] = phrase solr_content['num_occurrences'] = frequency solr_content['published_date'] = published_date solr_content['arxiv_identifier'] = filename list_for_solr.append(solr_content) # Upload to Solr file by file solr.add(list_for_solr)
23,621
def make_binary_kernel(kernel_shape, sparsity): """ Create a random binary kernel """ filter_1d_sz = kernel_shape[0] filter_2d_sz = filter_1d_sz * kernel_shape[1] filter_3d_sz = filter_2d_sz * kernel_shape[2] filter_4d_sz = filter_3d_sz * kernel_shape[3] sparsity_int = np.ceil(sparsity * filter_4d_sz).astype(int) pos_cutoff = sparsity_int // 2 binary_kernel = np.zeros(kernel_shape, dtype=np.int8) # We need to pick randomly elements that wont be 0s one_d_ind = np.random.choice(range(filter_4d_sz), sparsity_int, replace=False) # Pick elements to be 1s ind = (one_d_ind[:pos_cutoff] % filter_3d_sz % filter_2d_sz % filter_1d_sz, one_d_ind[:pos_cutoff] % filter_3d_sz % filter_2d_sz // filter_1d_sz, one_d_ind[:pos_cutoff] % filter_3d_sz // filter_2d_sz, one_d_ind[:pos_cutoff] // filter_3d_sz) binary_kernel[ind] = 1 # Pick elements to be -1s ind = (one_d_ind[pos_cutoff:] % filter_3d_sz % filter_2d_sz % filter_1d_sz, one_d_ind[pos_cutoff:] % filter_3d_sz % filter_2d_sz // filter_1d_sz, one_d_ind[pos_cutoff:] % filter_3d_sz // filter_2d_sz, one_d_ind[pos_cutoff:] // filter_3d_sz) binary_kernel[ind] = -1
23,622
def Packet_computeBinaryPacketLength(startOfPossibleBinaryPacket): """Packet_computeBinaryPacketLength(char const * startOfPossibleBinaryPacket) -> size_t""" return _libvncxx.Packet_computeBinaryPacketLength(startOfPossibleBinaryPacket)
23,623
def build_check_query(check_action: Action) -> str: """Builds check query from action item Parameters ---------- check_action : action check action to build query from Returns ------- str query to execute """ return f""" UPDATE todos SET completed = 1 WHERE name LIKE '{check_action.pattern}'; """
23,624
def gen_positions(n, n_boulders): """Generates state codes for boulders. Includes empty rows Parameters: n: number of rows/columns n_boulders: number of boulders per row return value: Possible boulder and alien states """ boulder_positions=[]; b_p=[] alien_positions_with_0=["{}1{}".format('0'*(n-i-1),'0'*(i)) for i in range(n)]+['0'*n] if n_boulders==1: return alien_positions_with_0, alien_positions_with_0[0:n] else: positions=[] position_index=list(itertools.combinations(range(n), n_boulders)) for tup in position_index: pos='' for i in range(n): if i in tup: pos+='1' else: pos+='0' positions.append(pos) if '0'*n not in boulder_positions: positions.append('0'*n) return positions, alien_positions_with_0[0:n]
23,625
def analysis_linear_correlation(data1:np.array, data2:np.array, alpha:float = .05, return_corr:bool = True, verbose:bool = False)->bool: """ ## Linear correlation analysis to test independence for numerical / ordinal variables. data1, date2 -- 1D data to be tested. alpha -- Significance level (default, 0.05). return_corr -- If is True, return correlation value and his p-value (default, False). verbose -- Display extra information (default, False). return -- boolean according test result. """ # get types type1 = data1.dtype type2 = data2.dtype # get size n = len(data1) # ord - ord if type1 == "int64" and type2 == "int64": # number of categories ncat1 = len(np.unique(data1)) ncat2 = len(np.unique(data2)) # analysis if ncat1 >= 5 and ncat2 >= 5: result = correlation_spearman(data1, data2, alpha = alpha, return_corr = return_corr, verbose = verbose) else: result = correlation_kendalltau(data1, data2, alpha = alpha, return_corr = return_corr, verbose = verbose) # num - num if type1 == "float64" and type2 == "float64": # test if variables are gaussian if n >= 5000: is_normal1 = test_anderson(data1, alpha = alpha) is_normal2 = test_anderson(data2, alpha = alpha) else: is_normal1 = test_shapiro(data1, alpha = alpha) is_normal2 = test_shapiro(data2, alpha = alpha) # analysis if n >= 100: result = correlation_pearson(data1, data2, alpha = alpha, return_corr = return_corr, verbose = verbose) else: if is_normal1 and is_normal2: result = correlation_pearson(data1, data2, alpha = alpha, return_corr = return_corr, verbose = verbose) else: result = correlation_spearman(data1, data2, alpha = alpha, return_corr = return_corr, verbose = verbose) # num - ord if (type1 == "float64" and type2 == "int64") or (type1 == "int64" and type2 == "float64"): # number of categories if type1 == "int64": ncat = len(np.unique(data1)) else: ncat = len(np.unique(data2)) # analysis if ncat < 5: result = correlation_kendalltau(data1, data2, alpha = alpha, return_corr = return_corr, verbose = verbose) else: if n >= 100: result = correlation_pearson(data1, data2, alpha = alpha, return_corr = return_corr, verbose = verbose) else: result = correlation_spearman(data1, data2, alpha = alpha, return_corr = return_corr, verbose = verbose) # return return result
23,626
def sha256(buffer=None): """Secure Hash Algorithm 2 (SHA-2) with 256 bits hash value.""" return Hash("sha256", buffer)
23,627
def go(): """ Simple message queuing broker Same as request-reply broker but using QUEUE device """ # Create ROUTER socket. Socket facing clients frontend = yield from aiozmq.create_zmq_stream(zmq.ROUTER, bind='tcp://*:5559') # create DEALER socket. Socket facing services backend = yield from aiozmq.create_zmq_stream(zmq.DEALER, bind='tcp://*:5560') # create QUEUE device #TODO: not sure that this is the best way to do it zmq.device(zmq.QUEUE, frontend.transport._zmq_sock, backend.transport._zmq_sock)
23,628
def nmc_eig(model, design, observation_labels, target_labels=None, N=100, M=10, M_prime=None, independent_priors=False): """ Nested Monte Carlo estimate of the expected information gain (EIG). The estimate is, when there are not any random effects, .. math:: \\frac{1}{N}\\sum_{n=1}^N \\log p(y_n | \\theta_n, d) - \\frac{1}{N}\\sum_{n=1}^N \\log \\left(\\frac{1}{M}\\sum_{m=1}^M p(y_n | \\theta_m, d)\\right) The estimate is, in the presence of random effects, .. math:: \\frac{1}{N}\\sum_{n=1}^N \\log \\left(\\frac{1}{M'}\\sum_{m=1}^{M'} p(y_n | \\theta_n, \\widetilde{\\theta}_{nm}, d)\\right)- \\frac{1}{N}\\sum_{n=1}^N \\log \\left(\\frac{1}{M}\\sum_{m=1}^{M} p(y_n | \\theta_m, \\widetilde{\\theta}_{m}, d)\\right) The latter form is used when `M_prime != None`. :param function model: A pyro model accepting `design` as only argument. :param torch.Tensor design: Tensor representation of design :param list observation_labels: A subset of the sample sites present in `model`. These sites are regarded as future observations and other sites are regarded as latent variables over which a posterior is to be inferred. :param list target_labels: A subset of the sample sites over which the posterior entropy is to be measured. :param int N: Number of outer expectation samples. :param int M: Number of inner expectation samples for `p(y|d)`. :param int M_prime: Number of samples for `p(y | theta, d)` if required. :param bool independent_priors: Only used when `M_prime` is not `None`. Indicates whether the prior distributions for the target variables and the nuisance variables are independent. In this case, it is not necessary to sample the targets conditional on the nuisance variables. :return: EIG estimate :rtype: `torch.Tensor` """ if isinstance(observation_labels, str): # list of strings instead of strings observation_labels = [observation_labels] if isinstance(target_labels, str): target_labels = [target_labels] # Take N samples of the model expanded_design = lexpand(design, N) # N copies of the model trace = poutine.trace(model).get_trace(expanded_design) trace.compute_log_prob() if M_prime is not None: y_dict = {l: lexpand(trace.nodes[l]["value"], M_prime) for l in observation_labels} theta_dict = {l: lexpand(trace.nodes[l]["value"], M_prime) for l in target_labels} theta_dict.update(y_dict) # Resample M values of u and compute conditional probabilities # WARNING: currently the use of condition does not actually sample # the conditional distribution! # We need to use some importance weighting conditional_model = pyro.condition(model, data=theta_dict) if independent_priors: reexpanded_design = lexpand(design, M_prime, 1) else: # Not acceptable to use (M_prime, 1) here - other variables may occur after # theta, so need to be sampled conditional upon it reexpanded_design = lexpand(design, M_prime, N) retrace = poutine.trace(conditional_model).get_trace(reexpanded_design) retrace.compute_log_prob() conditional_lp = sum(retrace.nodes[l]["log_prob"] for l in observation_labels).logsumexp(0) \ - math.log(M_prime) else: # This assumes that y are independent conditional on theta # Furthermore assume that there are no other variables besides theta conditional_lp = sum(trace.nodes[l]["log_prob"] for l in observation_labels) y_dict = {l: lexpand(trace.nodes[l]["value"], M) for l in observation_labels} # Resample M values of theta and compute conditional probabilities conditional_model = pyro.condition(model, data=y_dict) # Using (M, 1) instead of (M, N) - acceptable to re-use thetas between ys because # theta comes before y in graphical model reexpanded_design = lexpand(design, M, 1) # sample M theta retrace = poutine.trace(conditional_model).get_trace(reexpanded_design) retrace.compute_log_prob() marginal_lp = sum(retrace.nodes[l]["log_prob"] for l in observation_labels).logsumexp(0) \ - math.log(M) terms = conditional_lp - marginal_lp nonnan = (~torch.isnan(terms)).sum(0).type_as(terms) terms[torch.isnan(terms)] = 0. return terms.sum(0)/nonnan
23,629
def _orient_eigs(eigvecs, phasing_track, corr_metric=None): """ Orient each eigenvector deterministically according to the orientation that correlates better with the phasing track. Parameters ---------- eigvecs : 2D array (n, k) `k` eigenvectors (as columns). phasing_track : 1D array (n,) Reference track for determining orientation. corr_metric: spearmanr, pearsonr, var_explained, MAD_explained Correlation metric to use for selecting orientations. Returns ------- 2D array (n, k) Reoriented `k` eigenvectors. Notes ----- This function does NOT change the order of the eigenvectors. """ for i in range(eigvecs.shape[1]): mask = np.isfinite(eigvecs[:, i]) & np.isfinite(phasing_track) if corr_metric is None or corr_metric == "spearmanr": corr = scipy.stats.spearmanr(phasing_track[mask], eigvecs[mask, i])[0] elif corr_metric == "pearsonr": corr = scipy.stats.pearsonr(phasing_track[mask], eigvecs[mask, i])[0] elif corr_metric == "var_explained": corr = scipy.stats.pearsonr(phasing_track[mask], eigvecs[mask, i])[0] # multiply by the sign to keep the phasing information corr = np.sign(corr) * corr * corr * np.var(eigvecs[mask, i]) elif corr_metric == "MAD_explained": corr = ( numutils.COMED(phasing_track[mask], eigvecs[mask, i]) * numutils.MAD(eigvecs[mask, i]) ) else: raise ValueError("Unknown correlation metric: {}".format(corr_metric)) eigvecs[:, i] = np.sign(corr) * eigvecs[:, i] return eigvecs
23,630
def test_atomic_positive_integer_max_inclusive_4_nistxml_sv_iv_atomic_positive_integer_max_inclusive_5_5(mode, save_output, output_format): """ Type atomic/positiveInteger is restricted by facet maxInclusive with value 999999999999999999. """ assert_bindings( schema="nistData/atomic/positiveInteger/Schema+Instance/NISTSchema-SV-IV-atomic-positiveInteger-maxInclusive-5.xsd", instance="nistData/atomic/positiveInteger/Schema+Instance/NISTXML-SV-IV-atomic-positiveInteger-maxInclusive-5-5.xml", class_name="NistschemaSvIvAtomicPositiveIntegerMaxInclusive5", version="1.1", mode=mode, save_output=save_output, output_format=output_format, structure_style="filenames", )
23,631
def test_ihex_cut_1(datadir, capsys): """測試切割頁面函式 NOTE: 此函式輸入資料須為經過padding之codeblock 大小須符合 pgsz * N """ input = [ { 'address': 0, 'data': b'\x00\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0A\x0B\x0C\x0D\x0E\x0F' }, { 'address': 0xABCD0010, 'data': b'\x01\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0A\x0B\x0C\x0D\x0E\x0F' } ] space_data = 0xFF page_size = 4 space_padding = b'\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF' predict = [ { 'address': 0, 'data': b'\x00\x01\x02\x03' }, { 'address': 4, 'data': b'\x04\x05\x06\x07' }, { 'address': 8, 'data': b'\x08\x09\x0A\x0B' }, { 'address': 12, 'data': b'\x0C\x0D\x0E\x0F' }, { 'address': 0xABCD0010, 'data': b'\x01\x01\x02\x03' }, { 'address': 0xABCD0014, 'data': b'\x04\x05\x06\x07' }, { 'address': 0xABCD0018, 'data': b'\x08\x09\x0A\x0B' }, { 'address': 0xABCD001C, 'data': b'\x0C\x0D\x0E\x0F' } ] real = ihex.cut_to_pages(input, page_size) assert(real == predict)
23,632
def transform(item_paths, output_dir, compresslevel=0): """Transform the bmeg input to gen3 output directory.""" projects_emitter = emitter('project', output_dir=output_dir) experiments_emitter = emitter('experiment', output_dir=output_dir) cases_emitter = emitter('case', output_dir=output_dir) demographics_emitter = emitter('demographic', output_dir=output_dir) cases = {} projects = {} experiments = {} for p in ['source/ccle/InProject.Edge.json.gz', 'source/ccle/maf.InProject.Edge.json.gz']: for line in reader(p): # # ['type', 'project_id', '*submitter_id', '*cases.submitter_id', 'ethnicity', 'gender', 'race', 'year_of_birth', 'year_of_death'] project_submitter_id = line['to'] project_name = project_submitter_id.replace('Project:', '') project_name = 'ccle' project = {'type': 'project', "code": project_name, "name": project_name, "state": "open", "availability_type": "Open", "dbgap_accession_number": project_name} projects[project_name] = project experiment_submitter_id = "experiment-{}".format(project_submitter_id.replace('Project:', '')) experiment = {"type": "experiment", "projects": [{"code": project_name}], "submitter_id": experiment_submitter_id} experiment["experimental_description"] = project_submitter_id.replace('Project:', '') experiments[experiment_submitter_id] = experiment case = {'type': 'case', '*experiments': {'submitter_id': experiment_submitter_id}} case_submitter_id = line['from'] case['submitter_id'] = case_submitter_id cases[case_submitter_id] = case for project in projects: projects_emitter.write(projects[project]) for experiment in experiments: experiments_emitter.write(experiments[experiment]) projects_emitter.close() experiments_emitter.close() for p in item_paths: # ['MRN', 'OPTR', 'Date Of Initial Diagnosis', 'Sequence Number', 'Cancer Status', 'cEarliest Chemo Date', 'cEarliest Chemo Date Source', 'cErrorList', 'cEventCount', 'cNeoadjuvant Treatment', 'Count', 'cParent Specimen Count', 'Date of Most Definitive Surgical Resection', 'Tumor Size', 'Type Of First Recurrence', 'Case_ICD::Transformation', 'Case_Patient::Sex'] for line in reader(p): # {"_id": "Individual:CCLE:ACH-001665", "gid": "Individual:CCLE:ACH-001665", "label": "Individual", "data": {"individual_id": "CCLE:ACH-001665", "ccle_attributes": {"gender": "Male"}}} case_submitter_id = line['gid'] # # ['type', 'project_id', '*submitter_id', '*cases.submitter_id', 'ethnicity', 'gender', 'race', 'year_of_birth', 'year_of_death'] case = cases[case_submitter_id] cases_emitter.write(case) # # # type project_id *submitter_id *cases.submitter_id ethnicity gender race year_of_birth year_of_death demographic = {'type': 'demographic', '*submitter_id': 'demographic-{}'.format(case_submitter_id), '*cases': {'submitter_id': case_submitter_id}} data = line['data'] demographic['gender'] = data.get('gender', 'unknown').lower() if demographic['gender'] not in ['male', 'female']: demographic['gender'] = 'unknown' demographics_emitter.write(demographic) # # # ['type', 'project_id', 'submitter_id', 'cases.submitter_id', # # '*age_at_diagnosis', '*classification_of_tumor', '*days_to_last_follow_up', '*days_to_last_known_disease_status', '*days_to_recurrence', '*last_known_disease_status', '*morphology', '*primary_diagnosis', '*progression_or_recurrence', '*site_of_resection_or_biopsy', '*tissue_or_organ_of_origin', '*tumor_grade', '*tumor_stage', '*vital_status', # 'ajcc_clinical_m', 'ajcc_clinical_n', 'ajcc_clinical_stage', 'ajcc_clinical_t', # # 'ajcc_pathologic_m', 'ajcc_pathologic_n', 'ajcc_pathologic_stage', 'ajcc_pathologic_t', 'ann_arbor_b_symptoms', 'ann_arbor_clinical_stage', 'ann_arbor_extranodal_involvement', 'ann_arbor_pathologic_stage', 'burkitt_lymphoma_clinical_variant', 'cause_of_death', 'circumferential_resection_margin', 'colon_polyps_history', 'days_to_birth', 'days_to_death', 'days_to_hiv_diagnosis', 'days_to_new_event', 'figo_stage', 'hiv_positive', 'hpv_positive_type', 'hpv_status', 'laterality', # # 'ldh_level_at_diagnosis', 'ldh_normal_range_upper', 'lymph_nodes_positive', 'lymphatic_invasion_present', 'method_of_diagnosis', 'new_event_anatomic_site', 'new_event_type', 'perineural_invasion_present', 'prior_malignancy', 'prior_treatment', 'residual_disease', 'vascular_invasion_present', 'year_of_diagnosis'] # diagnosis = {'type': 'diagnosis', '*submitter_id': 'diagnosis-{}'.format(case_submitter_id), '*cases': {'submitter_id': case_submitter_id}} # diagnosis['*age_at_diagnosis'] = None # diagnosis['*classification_of_tumor'] = 'Unknown' # ['primary', 'metastasis', 'recurrence', 'other', 'Unknown', 'not reported', 'Not Allowed To Collect'] # diagnosis['*days_to_last_follow_up'] = None # diagnosis['*days_to_last_known_disease_status'] = None # diagnosis['*days_to_recurrence'] = None # # [ 'Distant met recurrence/progression', # # 'Loco-regional recurrence/progression', # # 'Biochemical evidence of disease without structural correlate', # # 'Tumor free', # # 'Unknown tumor status', # # 'With tumor', # # 'not reported', # # 'Not Allowed To Collect'] # disease_status = { # 'Evidence of this tumor': 'With tumor', # 'No evidence of this tumor': 'Tumor free', # 'Unknown, indeterminate whether this tumor is present; not stated': 'Unknown tumor status' # } # # diagnosis['*last_known_disease_status'] = disease_status.get(line['Cancer Status'], 'Unknown tumor status') # diagnosis['*morphology'] = 'tumor_size={}'.format(line['Tumor Size']) # "None is not of type 'string'") # diagnosis['*primary_diagnosis'] = line['Case_ICD::Transformation'] # diagnosis['*progression_or_recurrence'] = 'unknown' # ['yes', 'no', 'unknown', 'not reported', 'Not Allowed To Collect'] # diagnosis['*site_of_resection_or_biopsy'] = 'unknown' # diagnosis['*tissue_or_organ_of_origin'] = 'pancrease' # diagnosis['*tumor_grade'] = 'unknown' # "None is not of type 'string'") # diagnosis['*tumor_stage'] = 'unknown' # "None is not of type 'string'") # diagnosis['*vital_status'] = 'unknown' # # diagnosis_emitter.write(diagnosis) cases_emitter.close() demographics_emitter.close()
23,633
def test_CreativeProject_auto_multivariate_functional(max_iter, max_response, error_lim, model_type): """ test that auto method works for a particular multivariate (bivariate) function """ # define data covars = [(0.5, 0, 1), (0.5, 0, 1)] # covariates come as a list of tuples (one per covariate: (<initial_guess>, <min>, <max>)) # define response function def f(x): return (-(6 * x['covar0'].iloc[0] - 2) ** 2 * np.sin(12 * x['covar0'].iloc[0] - 4)) * (-(6 * x['covar1'].iloc[0] - 2) ** 2 * np.sin(12 * x['covar1'].iloc[0] - 4)) # initialize class instance cc = TuneSession(covars=covars, model=model_type) # run the auto-method cc.auto(response_samp_func=f, max_iter=max_iter) # assert that max_iter steps taken by optimizer assert cc.model["covars_sampled_iter"] == max_iter assert cc.model["covars_proposed_iter"] == max_iter assert cc.model["response_sampled_iter"] == max_iter # assert that training and test data is stored assert cc.train_X.shape[0] == max_iter assert cc.proposed_X.shape[0] == max_iter assert cc.train_X.shape[0] == max_iter assert cc.train_X.shape[1] == 2 # check that it's bivariate train_X # assert that best response is stored at each step assert cc.covars_best_response_value.shape[0] == max_iter assert cc.best_response_value.shape[0] == max_iter # assert that the correct maximum and covariate values for that spot are identified THEORETICAL_MAX_COVAR = 1.0 for it in range(len(covars)): assert abs(cc.covars_best_response_value[-1, it].item() - THEORETICAL_MAX_COVAR)/THEORETICAL_MAX_COVAR \ < error_lim assert abs(cc.best_response_value[-1].item() - max_response)/max_response < error_lim
23,634
def applyCustomTitles(titles): """ Creates 'chapters-new.xml' which has the user created chapter names. """ # Read 'chapters.xml' into a string. with open('chapters.xml', 'rb') as f: xmlstr = f.read() # Since ElementTree doesn't have support for reading/writing the # DOCTYPE line from xml we need to do it manually. for x in xmlstr.split(b'\n'): if b'DOCTYPE' in x: doctype = x break # Parse xml data that we previously read. root = ET.fromstring(xmlstr) # Modify chapter names. index = 0 for chapStr in root.iter('ChapterString'): chapStr.text = titles[index] index += 1 # Creates a list from the new xml, so that we can easily write the DOCTYPE # line in the correct place. newxmllist = ET.tostring(root, encoding='utf8', method='xml').split(b'\n') with open('chapters-new.xml', 'wb') as f: f.write(newxmllist[0] + b'\n') f.write(doctype + b'\n') for line in newxmllist[1:]: line += b'\n' f.write(line)
23,635
def test_remove_field(): """Tests whether removing a field properly removes the index.""" test = migrations.remove_field( HStoreField(uniqueness=["beer"]), ["CREATE UNIQUE", "DROP INDEX"] ) with test as calls: assert len(calls.get("CREATE UNIQUE", [])) == 0 assert len(calls.get("DROP INDEX", [])) == 1
23,636
def configure_logging(verbose: int = 0) -> None: """Set loglevel. If ``-v`` flag passed to commandline decrease runtime loglevel for every repeat occurrence. ``-vvvv`` will always set logging to ``DEBUG``. Default loglevel is set in the toml config and overridden by environment variable if there is one. :param verbose: Level to raise log verbosity by. """ levels = ("DEBUG", "INFO", "WARNING", "ERROR", "CRITICAL") config = toml["logging"] # create logging dir and it's parents if they do not exist already _Path(config["handlers"]["default"]["filename"]).expanduser().parent.mkdir( exist_ok=True, parents=True ) # tweak loglevel if commandline argument is provided config["root"]["level"] = levels[ max(0, levels.index(config["root"]["level"]) - verbose) ] # load values to ``logging`` _logging_config.dictConfig(toml["logging"])
23,637
def crossValidate(x, y, cv=5, K=None): """ :param y: N*L ranking vectors :return: """ results = {"perf": []} ## cross validation ## np.random.seed(1100) kf = KFold(n_splits=cv, shuffle=True, random_state=0) for train, test in kf.split(x): x_train = x[train, :] y_train = y[train, :] x_test = x[test, :] y_test = y[test, :] # y_pred = KNN(K=K).fit(x_train, y_train).predict(x_test) y_pred = multithreadPredict(x_test, KNN(K=K).fit(x_train, y_train)) print y_pred # print y_pred ### test results["perf"].append(perfMeasure(y_pred, y_test, rankopt=True)) # print results["perf"][-1] for key in results.keys(): item = np.array(results[key]) mean = np.nanmean(item, axis=0) std = np.nanstd(item, axis=0) results[key] = [mean, std] return results
23,638
def make_word_groups(vocab_words): """ :param vocab_words: list of vocabulary words with a prefix. :return: str of prefix followed by vocabulary words with prefix applied, separated by ' :: '. This function takes a `vocab_words` list and returns a string with the prefix and the words with prefix applied, separated by ' :: '. """ vocab_words.reverse() prefix = vocab_words.pop() new_list = [prefix] vocab_words.reverse() for i in range(len(vocab_words)): new_list.append(prefix + vocab_words[i]) # print(new_list) return " :: ".join(new_list)
23,639
def sync(input, output, all, overwrite): """Synchronise all your files between two places""" print("Syncing")
23,640
def gpi_g10s40(rescale=False): """ Multiply by the 'rescale' factor to adjust hole sizes and centers in entrance pupil (PM) (Magnify the physical mask coordinates up to the primary mirror size) """ demag = gpi_mag_asdesigned() if rescale: demag = demag/rescale # rescale 1.1 gives a bigger mask in PM pupil space print ("gpi_g10s4...") hdia, ctrs = gpi_g10s40_asmanufactured(1.0/demag) # meters return hdia, ctrs """ From GPI FPRD 2008 http://dms.hia.nrc.ca/view.php?fDocumentId=1398 Filter 1/2 pwr bandwidth name wavelen/um % Y 0.95-1.14 18 J 1.12-1.35 19 H 1.50-1.80 18 K1 1.9-2.19 14 K2 2.13-2.4 12 Spectral Resolution 34-36 35-39 44-49 62-70 75-83 # spectral pixels 12-13 13-15 16-18 18-20 18-20 pixels 14mas are nyquist at 1.1 """
23,641
def test_close_sections(): """Parse sections without blank lines in between.""" def f(x, y, z): """ Parameters ---------- x : X y : Y z : Z Raises ------ Error2 error. Error1 error. Returns ------- str value """ return x + y + z sections, errors = parse(inspect.getdoc(f), inspect.signature(f)) assert len(sections) == 3 assert not errors
23,642
def get_good_contours(proc_image, image, bb, savedir, max_num_add=None): """ Adapted from `click_and_crop_v3.py`, except that we have to make the contours. Here, we're going to inspect and check that the contours are reasonable. Returns a list of processed contours that I'll then use for later. """ cv2.imshow("Now detecting contours for this image.", proc_image) key = cv2.waitKey(0) if key in utils.ESC_KEYS: sys.exit() (cnts, _) = cv2.findContours(proc_image, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) processed = [] for c in cnts: try: # Find the centroids of the contours in _pixel_space_. :) M = cv2.moments(c) cX = int(M["m10"] / M["m00"]) cY = int(M["m01"] / M["m00"]) if utils.filter_point(cX,cY,xlower=bb[0],xupper=bb[0]+bb[2],ylower=bb[1],yupper=bb[1]+bb[3]): continue # Now fit an ellipse! ellipse = cv2.fitEllipse(c) cv2.ellipse(image, ellipse, (0,255,0), 2) name = "Is this ellipse good? ESC to skip it, else add it." cv2.namedWindow(name, cv2.WINDOW_NORMAL) cv2.resizeWindow(name, 2000, 4000) cv2.imshow(name, image) firstkey = cv2.waitKey(0) if firstkey not in utils.ESC_KEYS: angle = ellipse[2] yaw = utils.opencv_ellipse_angle_to_robot_yaw(angle) processed.append( (cX,cY,angle,yaw) ) cv2.circle(img=image, center=(cX,cY), radius=5, color=(0,0,255), thickness=-1) cv2.putText(img=image, text="{},{:.1f}".format(len(processed), angle), org=(cX,cY), fontFace=cv2.FONT_HERSHEY_SIMPLEX, fontScale=1, color=(255,0,0), thickness=2) if (max_num_add is not None) and (len(processed) == max_num_add): break except: pass assert len(processed) >= 1 cv2.destroyAllWindows() # Save images for debugging. Then return the processed list. cv2.imshow("FINAL IMAGE before saving (PRESS ESC IF BAD).", image) key = cv2.waitKey(0) if key in utils.ESC_KEYS: sys.exit() cv2.imwrite(savedir, image) return processed
23,643
def _int_converter(value): """Convert string value to int. We do not use the int converter default exception since we want to make sure the exact http response code. Raises: exception_handler.BadRequest if value can not be parsed to int. Examples: /<request_path>?count=10 parsed to {'count': '10'} and it should be converted to {'count': 10}. """ try: return int(value) except Exception: raise exception_handler.BadRequest( '%r type is not int' % value )
23,644
def plot_iminuit_contours(): """plot the confidence contours obtained from the sherpa fit """ log.info("plotting parameters contours obtained from iminuit") # where to take the results, configurations for the individual butterflies instruments = ["fermi", "magic", "veritas", "fact", "hess", "joint"] labels = ["Fermi-LAT", "MAGIC", "VERITAS", "FACT", "H.E.S.S.", "joint fit"] colors = COLORS lss = ["--", "--", "--", "--", "--", "-"] fig, axarr = plt.subplots(1, 3, figsize=(16, 5)) # with one loop we realize all the contour plots for instrument, label, color, ls in zip(instruments, labels, colors, lss): path = config.repo_path / f"results/fit/gammapy/{instrument}" contours_path = path / "fit_1.0_sigma_contours_logparabola.npy" results_path = path / "fit_results_logparabola.yaml" if not path.exists(): log.warning(f"Missing: {path} . Skipping.") continue # load the contours and the results of the fit contours = np.load(contours_path).tolist() results = load_yaml(results_path) # true values to be plotted amplitude = float(results["parameters"][0]["value"]) alpha = float(results["parameters"][2]["value"]) beta = float(results["parameters"][3]["value"]) # amplitude vs alpha amplitude_alpha = contours["contour_amplitude_alpha"] axarr[0].plot( amplitude_alpha["amplitude"] * 10, amplitude_alpha["alpha"], marker="", ls="-", lw=2.5, color=color, ) # plot actual value axarr[0].plot( amplitude * 1e11, alpha, marker="X", markersize=7, color=color, lw=2.5 ) axarr[0].set_xlabel( r"$\phi_0 \,/\,(10^{-11}\,{\rm TeV} \, {\rm cm}^{-2} {\rm s}^{-1})$", size=FONTSIZE_CONTOURS, ) axarr[0].set_ylabel(r"$\Gamma$", size=FONTSIZE_CONTOURS) # make axis thicker for axis in ["top", "bottom", "left", "right"]: axarr[0].spines[axis].set_linewidth(2.5) axarr[0].set_yticks([2.2, 2.4, 2.6, 2.8]) axarr[0].set_ylim([2.1, 2.9]) axarr[0].set_xticks([3, 4, 5]) axarr[0].set_xlim([2.8, 5.2]) axarr[0].tick_params( "both", length=7, width=1.6, which="major", labelsize=FONTSIZE_CONTOURS ) axarr[0].tick_params( "both", length=4, width=1.6, which="minor", labelsize=FONTSIZE_CONTOURS ) # amplitude vs beta amplitude_beta = contours["contour_amplitude_beta"] axarr[1].plot( amplitude_beta["amplitude"] * 10, # contour have a scale factor of 1e-10, parameters are in units of 1e-11 amplitude_beta["beta"], marker="", ls="-", lw=2.5, color=color, ) # plot actual value axarr[1].plot(amplitude * 1e11, beta, marker="X", markersize=7, color=color) axarr[1].set_xlabel( r"$\phi_0 \,/\,(10^{-11}\,{\rm TeV} \, {\rm cm}^{-2} {\rm s}^{-1})$", size=FONTSIZE_CONTOURS, ) axarr[1].set_ylabel(r"$\beta$", size=FONTSIZE_CONTOURS) axarr[1].set_xticks([3, 4, 5]) axarr[1].set_xlim([2.8, 5.2]) axarr[1].set_yticks([0.2, 0.4, 0.6]) axarr[1].set_ylim([0.0, 0.8]) # make axis thicker for axis in ["top", "bottom", "left", "right"]: axarr[1].spines[axis].set_linewidth(2.5) axarr[1].tick_params( "both", length=7, width=1.6, which="major", labelsize=FONTSIZE_CONTOURS ) axarr[1].tick_params( "both", length=4, width=1.6, which="minor", labelsize=FONTSIZE_CONTOURS ) # alpha vs beta alpha_beta = contours["contour_alpha_beta"] axarr[2].plot( alpha_beta["alpha"], alpha_beta["beta"], marker="", ls="-", lw=2.5, color=color, ) # plot actual value axarr[2].plot(alpha, beta, marker="X", markersize=7, color=color) axarr[2].set_xlabel(r"$\Gamma$", size=FONTSIZE_CONTOURS) axarr[2].set_ylabel(r"$\beta$", size=FONTSIZE_CONTOURS) axarr[2].set_xticks([2.2, 2.4, 2.6, 2.8]) axarr[2].set_xlim([2.1, 2.9]) axarr[2].set_yticks([0.2, 0.4, 0.6]) axarr[2].set_ylim([0.0, 0.8]) # make axis thicker for axis in ["top", "bottom", "left", "right"]: axarr[2].spines[axis].set_linewidth(2.5) axarr[2].tick_params( "both", length=7, width=1.6, which="major", labelsize=FONTSIZE_CONTOURS ) axarr[2].tick_params( "both", length=4, width=1.6, which="minor", labelsize=FONTSIZE_CONTOURS ) # legend import matplotlib.lines as mlines fermi = mlines.Line2D( [], [], color=COLORS[0], marker="", ls="-", lw=2.5, label="Fermi-LAT" ) magic = mlines.Line2D( [], [], color=COLORS[1], marker="", ls="-", lw=2.5, label="MAGIC" ) veritas = mlines.Line2D( [], [], color=COLORS[2], marker="", ls="-", lw=2.5, label="VERITAS" ) fact = mlines.Line2D( [], [], color=COLORS[3], marker="", ls="-", lw=2.5, label="FACT" ) hess = mlines.Line2D( [], [], color=COLORS[4], marker="", ls="-", lw=2.5, label="H.E.S.S." ) joint = mlines.Line2D( [], [], color=COLORS[5], marker="", ls="-", lw=2.5, label="joint fit" ) box = axarr[2].get_position() axarr[2].set_position([box.x0, box.y0, box.width * 0.97, box.height]) # plot the legend on top of the central plot axarr[2].legend( handles=[fermi, magic, veritas, fact, hess, joint], loc="center left", fontsize=FONTSIZE_CONTOURS, bbox_to_anchor=(1., 0.5), ) plt.tight_layout() filename = "results/figures/iminuit_logparabola_contour.png" filename_pdf = "results/figures/iminuit_logparabola_contour.pdf" fig.savefig(filename) log.info(f"Writing {filename}") fig.savefig(filename) fig.savefig(filename_pdf)
23,645
def split_rule(rules, rule_name, symbols_to_extract: List[str], subrule_name: str): """ Let only options which are starting with symbols from symbols_to_extract. Put the rest to a subrule. """ r = rule_by_name(rules, rule_name) assert isinstance(r.body, Antlr4Selection), r sub_options = Antlr4Selection([]) for o in r.body: start_symbols = set() _direct_left_corner(o, start_symbols, allow_eps_in_sel=True) if not start_symbols.intersection(symbols_to_extract): sub_options.append(o) r.body = Antlr4Selection([o for o in r.body if not (o in sub_options)]) r.body.insert(0, Antlr4Symbol(subrule_name, False)) if len(r.body) == 1: r.body = r.body[0] assert len(sub_options) > 0 if len(sub_options) == 1: sub_options = sub_options[0] else: sub_options = Antlr4Selection(sub_options) sub_r = Antlr4Rule(subrule_name, sub_options) rules.insert(rules.index(r), sub_r) return sub_r
23,646
def ESS(works_prev, works_incremental): """ compute the effective sample size (ESS) as given in Eq 3.15 in https://arxiv.org/abs/1303.3123. Parameters ---------- works_prev: np.array np.array of floats representing the accumulated works at t-1 (unnormalized) works_incremental: np.array np.array of floats representing the incremental works at t (unnormalized) Returns ------- normalized_ESS: float effective sample size """ prev_weights_normalized = np.exp(-works_prev - logsumexp(-works_prev)) incremental_weights_unnormalized = np.exp(-works_incremental) ESS = np.dot(prev_weights_normalized, incremental_weights_unnormalized)**2 / np.dot(np.power(prev_weights_normalized, 2), np.power(incremental_weights_unnormalized, 2)) normalized_ESS = ESS / len(prev_weights_normalized) assert normalized_ESS >= 0.0 - DISTRIBUTED_ERROR_TOLERANCE and normalized_ESS <= 1.0 + DISTRIBUTED_ERROR_TOLERANCE, f"the normalized ESS ({normalized_ESS} is not between 0 and 1)" return normalized_ESS
23,647
def new_line_over(): """Creates a new line over the cursor. The cursor is also moved to the beginning of the new line. It is not possible to create more than one new line over the cursor at a time for now. Usage: `In a config file:` .. code-block:: yaml - new_line_over: `Using the API:` .. code-block:: python ezvi.tools.new_line_over() :rtype: str :return: Characters that would be used in ``Vi`` to add a new line over the cursor. """ to_write = "O" + ESCAPE return to_write
23,648
def lambda_handler(event, context): """Calls custom job waiter developed by user Arguments: event {dict} -- Dictionary with details on previous processing step context {dict} -- Dictionary with details on Lambda context Returns: {dict} -- Dictionary with Processed Bucket, Key(s) and Job Details """ try: logger.info("Lambda event is [{}]".format(event)) logger.info(event["body"]) source_bucket = event["body"]["bucket"] job_name = event["body"]["targetJob"] ddb_table = event["body"]["targetDDBTable"] token = event["body"]["token"] s3_prefix_key_proc = event["body"]["keysRawProc"] logger.info( "[{}] [{}] [{}] [{}]".format( source_bucket, s3_prefix_key_proc, job_name, ddb_table, ) ) # Submitting a new Glue Job job_response = client.start_job_run( JobName=job_name, Arguments={ # Specify any arguments needed based on bucket and keys (e.g. input/output S3 locations) "--job-bookmark-option": "job-bookmark-enable", "--additional-python-modules": "pyarrow==2,awswrangler==2.9.0", # Custom arguments below "--TARGET_DDB_TABLE": ddb_table, "--S3_BUCKET": source_bucket, "--S3_PREFIX_PROCESSED": s3_prefix_key_proc[0] # }, MaxCapacity=2.0, ) logger.info("Response is [{}]".format(job_response)) # Collecting details about Glue Job after submission (e.g. jobRunId for Glue) json_data = json.loads(json.dumps(job_response, default=datetimeconverter)) job_details = { "jobName": job_name, "jobRunId": json_data.get("JobRunId"), "jobStatus": "STARTED", "token": token, } response = {"jobDetails": job_details} except Exception as e: logger.error("Fatal error", exc_info=True) sagemaker.send_pipeline_execution_step_failure( CallbackToken=token, FailureReason="error" ) raise e return response
23,649
def put_path(components, value): """Recursive function to put value in component""" if len(components) > 1: new = components.pop(0) value = put_path(components, value) else: new = components[0] return {new: value}
23,650
def con_orthogonal_checkboard(X,c_v1,c_v2,c_v3,c_v4,num,N): """for principal / isothermic / developable mesh / aux_diamond / aux_cmc (v1-v3)*(v2-v4)=0 """ col = np.r_[c_v1,c_v2,c_v3,c_v4] row = np.tile(np.arange(num),12) d1 = X[c_v2]-X[c_v4] d2 = X[c_v1]-X[c_v3] d3 = X[c_v4]-X[c_v2] d4 = X[c_v3]-X[c_v1] data = np.r_[d1,d2,d3,d4] H = sparse.coo_matrix((data,(row,col)), shape=(num, N)) r = np.einsum('ij,ij->i',d1.reshape(-1,3, order='F'),d2.reshape(-1,3, order='F')) return H,r
23,651
def _do_callback(s, begin, end, taglist, cont_handler, attrlookup): """internal function to convert the tagtable into ContentHandler events 's' is the input text 'begin' is the current position in the text 'end' is 1 past the last position of the text allowed to be parsed 'taglist' is the tag list from mxTextTools.parse 'cont_handler' is the SAX ContentHandler 'attrlookup' is a dict mapping the encoded tag name to the element info """ # bind functions to local names for a slight speedup characters = cont_handler.characters startElement = cont_handler.startElement endElement = cont_handler.endElement for tag, l, r, subtags in taglist: # If the tag's beginning is after the current position, then # the text from here to the tag's beginning are characters() assert begin <= l, "begin = %d and l = %d" % (begin, l) if begin < l: characters(s[begin:l]) if tag.startswith(">"): # Named groups doesn't create ">ignore" tags, so pass them on # to the ContentHandler. Unnamed groups still need a name so # mxTextTools can create subtags for them. I named them # ">ignore" - don't create events for them. if not tag == ">ignore": assert tag.startswith(">G"),"Unknown special tag %s" % repr(tag) # This needs a lookup to get the full attrs realtag, attrs = attrlookup[tag] startElement(realtag, attrs) else: # Normal tags startElement(tag, _attribute_list) # Recurse if it has any children if subtags: _do_callback(s, l, r, subtags, cont_handler, attrlookup) else: characters(s[l:r]) begin = r if tag.startswith(">"): if tag.startswith(">G"): realtag, attrs = attrlookup[tag] endElement(realtag) else: endElement(tag) # anything after the last tag and before the end of the current # range are characters if begin < end: characters(s[begin:end])
23,652
def _PropertyGridInterface_GetPropertyValues(self, dict_=None, as_strings=False, inc_attributes=False): """ Returns all property values in the grid. :param `dict_`: A to fill with the property values. If not given, then a new one is created. The dict_ can be an object as well, in which case it's __dict__ is used. :param `as_strings`: if True, then string representations of values are fetched instead of native types. Useful for config and such. :param `inc_attributes`: if True, then property attributes are added in the form of "@<propname>@<attr>". :returns: A dictionary with values. It is always a dictionary, so if dict_ was and object with __dict__ attribute, then that attribute is returned. """ if dict_ is None: dict_ = {} elif hasattr(dict_,'__dict__'): dict_ = dict_.__dict__ getter = self.GetPropertyValue if not as_strings else self.GetPropertyValueAsString it = self.GetVIterator(PG_ITERATE_PROPERTIES) while not it.AtEnd(): p = it.GetProperty() name = p.GetName() dict_[name] = getter(p) if inc_attributes: attrs = p.GetAttributes() if attrs and len(attrs): dict_['@%s@attr'%name] = attrs it.Next() return dict_
23,653
def get_pipelines(exp_type, cal_ver=None, context=None): """Given `exp_type` and `cal_ver` and `context`, locate the appropriate SYSTEM CRDSCFG reference file and determine the sequence of pipeline .cfgs required to process that exp_type. """ context = _get_missing_context(context) cal_ver = _get_missing_calver(cal_ver) with log.augment_exception("Failed determining required pipeline .cfgs for", "EXP_TYPE", srepr(exp_type), "CAL_VER", srepr(cal_ver)): config_manager = _get_config_manager(context, cal_ver) return config_manager.exptype_to_pipelines(exp_type)
23,654
def distance_to_line(p,a,b): """ Computes the perpendicular distance from a point to an infinite line. Parameters ---------- p : (x,y) Coordinates of a point. a : (x,y) Coordinates of a point on a line. b : (x,y) Coordinates of another point on a line. Returns ---------- float The Euclidean distance from p to the infinite line through a & b. """ # code by BJK # area of triangle formed between point and line segment trianglearea=abs(area([a,b,p])) # length of line segment line_length=distance(a,b) # make sure line segment has a length if line_length==0: # a & b are the same, so just calculate distance between points return distance(p,a) else: # the distance we want is the height of the triangle # area is 1/2 base x height so height is 2*area/base return 2*trianglearea/line_length
23,655
def list(): """ List current config settings """ downloader = create_downloader() click.echo(f"""Download german if available:\t{downloader.config.german or False} Download japanese if available:\t{downloader.config.japanese or False} Highest download quality:\t{downloader.config.quality.name if downloader.config.quality else "-"}""")
23,656
def rate_limited_imap(f, l): """A threaded imap that does not produce elements faster than they are consumed""" pool = ThreadPool(1) res = None for i in l: res_next = pool.apply_async(f, (i, )) if res: yield res.get() res = res_next yield res.get()
23,657
def test(model, dataloader, criterion, params): """Test the model using the testloader.""" model.eval() test_loss = 0 test_correct = 0 test_inputs = 0 bar = tqdm(enumerate(dataloader), total=len(dataloader), desc='Test: ') with torch.no_grad(): for _, (inputs, labels) in bar: inputs = inputs.to(params['device']) labels = labels.to(params['device']) outputs = model(inputs) loss = criterion(outputs, labels) probabilities_task = F.softmax(outputs, dim=1) _, predicted_task = torch.max(probabilities_task, 1) test_loss += loss.sum().item() test_correct += (predicted_task == labels).sum().item() test_inputs += len(labels) bar.set_postfix_str(f'Loss Test: {test_loss / test_inputs:.4f}, ' f'Acc Test: {test_correct / test_inputs:.4f}')
23,658
def pearsonr(A, B): """ A broadcasting method to compute pearson r and p ----------------------------------------------- Parameters: A: matrix A, (i*k) B: matrix B, (j*k) Return: rcorr: matrix correlation, (i*j) pcorr: matrix correlation p, (i*j) Example: >>> rcorr, pcorr = pearsonr(A, B) """ if isinstance(A,list): A = np.array(A) if isinstance(B,list): B = np.array(B) if np.ndim(A) == 1: A = A[None,:] if np.ndim(B) == 1: B = B[None,:] A_mA = A - A.mean(1)[:, None] B_mB = B - B.mean(1)[:, None] ssA = (A_mA**2).sum(1) ssB = (B_mB**2).sum(1) rcorr = np.dot(A_mA, B_mB.T)/np.sqrt(np.dot(ssA[:,None], ssB[None])) df = A.T.shape[1] - 2 r_forp = rcorr*1.0 r_forp[r_forp==1.0] = 0.0 t_squared = rcorr.T**2*(df/((1.0-rcorr.T)*(1.0+rcorr.T))) pcorr = special.betainc(0.5*df, 0.5, df/(df+t_squared)) return rcorr, pcorr
23,659
def test_get_team_member(client, jwt, session): """Assert that the endpoint returns the success status.""" team = create_team(client, jwt, member_role=ProjectRoles.Manager) response = _get_team_member_(client, jwt, str(team['projectId']), str(team['id'])) assert response.status_code == HTTPStatus.OK
23,660
def test_lovasz(S): """ >>> ha = qudit('a', 3) >>> np.random.seed(1) >>> S = TensorSubspace.create_random_hermitian(ha, 5, tracefree=True).perp() >>> test_lovasz(S) t: 3.8069736 total err: 0.0000000 total err: 0.0000000 duality gap: 0.0000000 """ cvxopt.solvers.options['show_progress'] = False cvxopt.solvers.options['abstol'] = float(1e-8) cvxopt.solvers.options['reltol'] = float(1e-8) info = lovasz_theta(S, True) assert info['sdp_stats']['status'] == 'optimal' print('t: %.7f' % info['t']) (tp, errp) = check_lovasz_primal(S, *[ info[x] for x in 'rho,T'.split(',') ]) (td, errd) = check_lovasz_dual(S, *[ info[x] for x in 'Y'.split(',') ]) print('duality gap: %.7f' % (td-tp))
23,661
def inst_bench(dt, gt, bOpts, tp=None, fp=None, score=None, numInst=None): """ ap, rec, prec, npos, details = inst_bench(dt, gt, bOpts, tp = None, fp = None, sc = None, numInst = None) dt - a list with a dict for each image and with following fields .boxInfo - info that will be used to cpmpute the overlap with ground truths, a list .sc - score gt .boxInfo - info used to compute the overlap, a list .diff - a logical array of size nGtx1, saying if the instance is hard or not bOpt .minoverlap - the minimum overlap to call it a true positive [tp], [fp], [sc], [numInst] Optional arguments, in case the inst_bench_image is being called outside of this function """ details = None if tp is None: # We do not have the tp, fp, sc, and numInst, so compute them from the structures gt, and out tp = [] fp = [] numInst = [] score = [] dupDet = [] instId = [] ov = [] for i in range(len(gt)): # Sort dt by the score sc = dt[i]["sc"] bb = dt[i]["boxInfo"] ind = np.argsort(sc, axis=0) ind = ind[::-1] if len(ind) > 0: sc = np.vstack((sc[i, :] for i in ind)) bb = np.vstack((bb[i, :] for i in ind)) else: sc = np.zeros((0, 1)).astype(np.float) bb = np.zeros((0, 4)).astype(np.float) dtI = dict({"boxInfo": bb, "sc": sc}) tp_i, fp_i, sc_i, numInst_i, dupDet_i, instId_i, ov_i = inst_bench_image( dtI, gt[i], bOpts ) tp.append(tp_i) fp.append(fp_i) score.append(sc_i) numInst.append(numInst_i) dupDet.append(dupDet_i) instId.append(instId_i) ov.append(ov_i) details = { "tp": list(tp), "fp": list(fp), "score": list(score), "dupDet": list(dupDet), "numInst": list(numInst), "instId": list(instId), "ov": list(ov), } tp = np.vstack(tp[:]) fp = np.vstack(fp[:]) sc = np.vstack(score[:]) cat_all = np.hstack((tp, fp, sc)) ind = np.argsort(cat_all[:, 2]) cat_all = cat_all[ind[::-1], :] tp = np.cumsum(cat_all[:, 0], axis=0) fp = np.cumsum(cat_all[:, 1], axis=0) thresh = cat_all[:, 2] npos = np.sum(numInst, axis=0) # Compute precision/recall rec = tp / npos prec = np.divide(tp, (fp + tp)) ap = VOCap(rec, prec) return ap, rec, prec, npos, details
23,662
def getpid(): # real signature unknown; restored from __doc__ """ getpid() -> pid Return the current process id """ pass
23,663
def _tee( cmd: str, executable: str, abort_on_error: bool ) -> Tuple[int, List[str]]: """ Execute command "cmd", capturing its output and removing empty lines. :return: list of strings """ _LOG.debug("cmd=%s executable=%s", cmd, executable) rc, output = hsysinte.system_to_string(cmd, abort_on_error=abort_on_error) hdbg.dassert_isinstance(output, str) output1 = output.split("\n") _LOG.debug("output1= (%d)\n'%s'", len(output1), "\n".join(output1)) # output2 = hprint.remove_empty_lines_from_string_list(output1) _LOG.debug("output2= (%d)\n'%s'", len(output2), "\n".join(output2)) _dassert_list_of_strings(output2) return rc, output2
23,664
def normalized_str(token): """ Return as-is text for tokens that are proper nouns or acronyms, lemmatized text for everything else. Args: token (``spacy.Token`` or ``spacy.Span``) Returns: str """ if isinstance(token, SpacyToken): return token.text if preserve_case(token) else token.lemma_ elif isinstance(token, SpacySpan): return ' '.join(subtok.text if preserve_case(subtok) else subtok.lemma_ for subtok in token) else: msg = 'Input must be a spacy Token or Span, not {}.'.format(type(token)) raise TypeError(msg)
23,665
def scatter_nd(*args, **kwargs): """ See https://www.tensorflow.org/api_docs/python/tf/scatter_nd . """ return tensorflow.scatter_nd(*args, **kwargs)
23,666
def validate_element(element, validator, csv_schema=SCHEMA): """Raise ValidationError if element does not match schema""" if validator.validate(element, csv_schema) is not True: field, errors = next(iter(validator.errors.items())) message_string = '''\nElement of type '{0}' has the following errors:\n{1}''' error_string = pprint.pformat(errors) raise Exception(message_string.format(field, error_string))
23,667
def format_errors(errors, indent=0, prefix='', suffix=''): """ string: "example" "example" dict: "example": - """ if is_single_item_iterable(errors): errors = errors[0] if isinstance(errors, SINGULAR_TYPES): yield indent_message(repr(errors), indent, prefix=prefix, suffix=suffix) elif isinstance(errors, collections.Mapping): for key, value in errors.items(): assert isinstance(key, SINGULAR_TYPES), type(key) if isinstance(value, SINGULAR_TYPES): message = "{0}: {1}".format(repr(key), repr(value)) yield indent_message(message, indent, prefix=prefix, suffix=suffix) else: yield indent_message(repr(key), indent, prefix=prefix, suffix=':') for message in format_errors(value, indent + 4, prefix='- '): yield message elif is_non_string_iterable(errors): # for making the rhs of the numbers line up extra_indent = int(math.ceil(math.log10(len(errors)))) + 2 for index, value in enumerate(errors): list_prefix = "{0}. ".format(index) messages = format_errors( value, indent=indent + extra_indent - len(list_prefix), prefix=list_prefix, ) for message in messages: yield message else: assert False, "should not be possible"
23,668
def concatenate_sequences(X: Union[list, np.ndarray], y: Union[list, np.ndarray], sequence_to_value: bool = False) \ -> Tuple[np.ndarray, np.ndarray, np.ndarray]: """ Concatenate multiple sequences to scikit-learn compatible numpy arrays. ´Parameters ----------- X : Union[list, np.ndarray] of shape=(n_sequences, ) All sequences. Note that all elements in ```X``` must have at least one equal dimension. y : Union[list, np.ndarray] of shape=(n_sequences, ) All sequences. Note that all elements in ```X``` must have at least one equal dimension. sequence_to_value : bool, default=False If true, expand each element of y to the sequence length Returns ------- X : np.ndarray of shape=(n_samples, n_features) Input data where n_samples is the accumulated length of all sequences y : np.ndarray of shape=(n_samples, n_features) or shape=(n_samples, ) Target data where n_samples is the accumulated length of all sequences sequence_ranges : Union[None, np.ndarray] of shape=(n_sequences, 2) Sequence border indicator matrix """ if isinstance(X, list): X = np.asarray(X) if isinstance(y, list): y = np.asarray(y) X = np.array(X) y = np.array(y) if sequence_to_value: for k, _ in enumerate(y): y[k] = np.repeat(y[k], X[k].shape[0]) check_consistent_length(X, y) sequence_ranges: np.ndarray = np.ndarray([]) if X.ndim == 1: sequence_ranges = np.zeros((X.shape[0], 2), dtype=int) sequence_ranges[:, 1] = np.cumsum([X[k].shape[0] for k, _ in enumerate(X)]) sequence_ranges[1:, 0] = sequence_ranges[:-1, 1] for k, _ in enumerate(X): X[k], y[k] = check_X_y(X[k], y[k], multi_output=True) return np.concatenate(X), np.concatenate(y), sequence_ranges
23,669
def print_help_page(bot, file=sys.stdout): """print help page""" def p(text): print(text, file=file) plugin = bot.get_plugin(Commands) title = "Available Commands for {nick} at {host}".format(**bot.config) p("=" * len(title)) p(title) p("=" * len(title)) p('') p('.. contents::') p('') modules = {} for name, (predicates, callback) in plugin.items(): commands = modules.setdefault(callback.__module__, []) commands.append((name, callback, predicates)) for module in sorted(modules): p(module) p('=' * len(module)) p('') for name, callback, predicates in sorted(modules[module]): p(name) p('-' * len(name)) p('') doc = callback.__doc__ doc = doc.replace('%%', bot.config.cmd) for line in doc.split('\n'): line = line.strip() if line.startswith(bot.config.cmd): line = ' ``{}``'.format(line) p(line) if 'permission' in predicates: p('*Require {0[permission]} permission.*'.format(predicates)) if predicates.get('public', True) is False: p('*Only available in private.*') p('')
23,670
def get_export_table_operator(table_name, dag=None): """Get templated BigQueryToCloudStorageOperator. Args: table_name (string): Name of the table to export. dag (airflow.models.DAG): DAG used by context_manager. e.g. `with get_dag() as dag: get_export_table_operator(..., dag=dag)`. Defaults to None. Returns: airflow.contrib.operators.bigquery_operator.BigQueryOperator """ if dag is None: logger.warning('No DAG context was found. The operator may not be associated to any DAG nor appeared in Web UI') date_descriptor = '{{ ds_nodash }}' table_name_with_date_descriptor = \ '{table_name}{date_descriptor}'.format( table_name=table_name, date_descriptor=date_descriptor) return BigQueryToCloudStorageOperator( dag=dag or models._CONTEXT_MANAGER_DAG, task_id='{experiment_name}.{table_name}.export' .format( experiment_name=get_config('experiment_name'), table_name=table_name), source_project_dataset_table='{gcp_project_name}.{database_name}.{table_name}' .format( gcp_project_name=get_config('gcp_project_name'), database_name='%s_database' % get_config('experiment_name'), table_name=table_name_with_date_descriptor), # TODO: 1GB以上のデータに対応 # https://cloud.google.com/bigquery/exporting-data-from-bigquery#exportingmultiple destination_cloud_storage_uris=[ 'gs://{bucket_name}/{experiment_name}/exported_tables/' '{table_name}/{date_descriptor}/' 'out.csv.gzip'.format( bucket_name=get_config('bucket_name'), experiment_name=get_config('experiment_name'), date_descriptor=date_descriptor, table_name=table_name)], compression="GZIP")
23,671
def test_winner_solver_after_run(): """Assert that the solver is the winning model after run.""" atom = ATOMClassifier(X_class, y_class, random_state=1) atom.run("LR") atom.branch = "fs_branch" atom.feature_selection(strategy="sfm", solver=None, n_features=8) assert atom.pipeline[0].sfm.estimator_ is atom.winner.estimator
23,672
def run_command_with_code(cmd, redirect_output=True, check_exit_code=True): """Runs a command in an out-of-process shell. Returns the output of that command. Working directory is self.root. """ if redirect_output: stdout = sp.PIPE else: stdout = None proc = sp.Popen(cmd, stdout=stdout, stderr=sp.PIPE) output = proc.communicate()[0] if check_exit_code and proc.returncode != 0: log.error('Command "%s" failed.\n%s', ' '.join(cmd), output) return output, proc.returncode
23,673
async def delete_project( delete_project_request: DeleteProject, token: str = Depends(oauth2_scheme) ): """[API router to delete project on AWS Rekognition] Args: delete_project_request (DeleteProject): [AWS Rekognition create project request] token (str, optional): [Bearer token for authentication]. Defaults to Depends(oauth2_scheme). Raises: HTTPException: [Unauthorized exception when invalid token is passed] error: [Exception in underlying controller] Returns: [DeleteProjectResponse]: [AWS Rekognition delete project response] """ try: logging.info("Calling /aws/rekog/delete_project endpoint") logging.debug(f"Request: {delete_project_request}") if decodeJWT(token=token): response = ProjectController().delete_project( request=delete_project_request ) return DeleteProjectResponse(**response) else: raise HTTPException( status_code=status.HTTP_401_UNAUTHORIZED, detail="Invalid access token", headers={"WWW-Authenticate": "Bearer"}, ) except Exception as error: logging.error(f"Error in /aws/rekog/delete_project endpoint: {error}") raise error
23,674
def _create_element_invocation(span_: span.Span, callee: Union[ast.NameRef, ast.ModRef], arg_array: ast.Expr) -> ast.Invocation: """Creates a function invocation on the first element of the given array. We need to create a fake invocation to deduce the type of a function in the case where map is called with a builtin as the map function. Normally, map functions (including parametric ones) have their types deduced when their ast.Function nodes are encountered (where a similar fake ast.Invocation node is created). Builtins don't have ast.Function nodes, so that inference can't occur, so we essentually perform that synthesis and deduction here. Args: span_: The location in the code where analysis is occurring. callee: The function to be invoked. arg_array: The array of arguments (at least one) to the function. Returns: An invocation node for the given function when called with an element in the argument array. """ annotation = ast.TypeAnnotation( span_, scanner.Token(scanner.TokenKind.KEYWORD, span_, scanner.Keyword.U32), ()) index_number = ast.Number( scanner.Token(scanner.TokenKind.KEYWORD, span_, '32'), annotation) index = ast.Index(span_, arg_array, index_number) return ast.Invocation(span_, callee, (index,))
23,675
def evaluate(feature_dir, prefix, settings, total_runs=10): """to evaluate and rank results for SYSU_MM01 dataset Arguments: feature_dir {str} -- a dir where features are saved prefix {str} -- prefix of file names """ gallery_cams, probe_cams = gen_utils.get_cam_settings(settings) all_cams = list(set(gallery_cams + probe_cams)) # get unique cams features = {} # get permutation indices cam_permutations = gen_utils.get_cam_permutation_indices(all_cams) # get test ids test_ids = gen_utils.get_test_ids() for cam_index in all_cams: # read features cam_feature_file = osp.join(feature_dir, (prefix + "_cam{}").format(cam_index)) features["cam" + str(cam_index)] = gen_utils.load_feature_file(cam_feature_file) # perform testing print(list(features.keys())) cam_id_locations = [1, 2, 2, 4, 5, 6] # camera 2 and 3 are in the same location mAPs = [] cmcs = [] for run_index in range(total_runs): print("trial #{}".format(run_index)) X_gallery, Y_gallery, cam_gallery, X_probe, Y_probe, cam_probe = gen_utils.get_testing_set( features, cam_permutations, test_ids, run_index, cam_id_locations, gallery_cams, probe_cams, settings, ) # print(X_gallery.shape, Y_gallery.shape, cam_gallery.shape, X_probe.shape, Y_probe.shape, cam_probe.shape) dist = gen_utils.euclidean_dist(X_probe, X_gallery) cmc = gen_utils.get_cmc_multi_cam( Y_gallery, cam_gallery, Y_probe, cam_probe, dist ) mAP = gen_utils.get_mAP_multi_cam( Y_gallery, cam_gallery, Y_probe, cam_probe, dist ) print("rank 1 5 10 20", cmc[[0, 4, 9, 19]]) print("mAP", mAP) cmcs.append(cmc) mAPs.append(mAP) # find mean mAP and cmc cmcs = np.array(cmcs) # 10 x #gallery mAPs = np.array(mAPs) # 10 mean_cmc = np.mean(cmcs, axis=0) mean_mAP = np.mean(mAPs) print("mean rank 1 5 10 20", mean_cmc[[0, 4, 9, 19]]) print("mean mAP", mean_mAP)
23,676
def test_door_pause_protocol(enable_door_safety_switch): """ Test that when the door safety switch is enabled, pause cannot be resumed until the door is closed """ pause_mgr = PauseManager(door_state=DoorState.CLOSED) assert pause_mgr.queue == [] pause_mgr.set_door(door_state=DoorState.OPEN) pause_mgr.pause(PauseType.PAUSE) assert pause_mgr.queue == [PauseType.PAUSE] with pytest.raises(PauseResumeError): pause_mgr.resume(PauseType.PAUSE) assert pause_mgr.queue == [PauseType.PAUSE] pause_mgr.set_door(door_state=DoorState.CLOSED) assert pause_mgr.queue == [PauseType.PAUSE] pause_mgr.resume(PauseType.PAUSE) assert pause_mgr.queue == []
23,677
def _CreateClassToFileNameDict(test_apk): """Creates a dict mapping classes to file names from size-info apk.""" constants.CheckOutputDirectory() test_apk_size_info = os.path.join(constants.GetOutDirectory(), 'size-info', os.path.basename(test_apk) + '.jar.info') class_to_file_dict = {} # Some tests such as webview_cts_tests use a separately downloaded apk to run # tests. This means the apk may not have been built by the system and hence # no size info file exists. if not os.path.exists(test_apk_size_info): logging.debug('Apk size file not found. %s', test_apk_size_info) return class_to_file_dict with open(test_apk_size_info, 'r') as f: for line in f: file_class, file_name = line.rstrip().split(',', 1) # Only want files that are not prebuilt. if file_name.startswith('../../'): class_to_file_dict[file_class] = str( file_name.replace('../../', '//', 1)) return class_to_file_dict
23,678
def main(): """main function """ bcl2fastq_qc_script = os.path.abspath(os.path.join( os.path.dirname(sys.argv[0]), "bcl2fastq_qc.py")) assert os.path.exists(bcl2fastq_qc_script) parser = argparse.ArgumentParser(description=__doc__) parser.add_argument('-t', "--testing", action='store_true', help="Use MongoDB test server") default = 14 parser.add_argument('-w', '--win', type=int, default=default, help="Number of days to look back (default {})".format(default)) parser.add_argument('-n', "--dry-run", action='store_true', help="Dry run") parser.add_argument('--no-mail', action='store_true', help="Don't send email on detected failures") parser.add_argument('-v', '--verbose', action='count', default=0, help="Increase verbosity") parser.add_argument('-q', '--quiet', action='count', default=0, help="Decrease verbosity") args = parser.parse_args() # Repeateable -v and -q for setting logging level. # See https://www.reddit.com/r/Python/comments/3nctlm/what_python_tools_should_i_be_using_on_every/ # and https://gist.github.com/andreas-wilm/b6031a84a33e652680d4 # script -vv -> DEBUG # script -v -> INFO # script -> WARNING # script -q -> ERROR # script -qq -> CRITICAL # script -qqq -> no logging at all logger.setLevel(logging.WARN + 10*args.quiet - 10*args.verbose) if not is_production_user(): logger.warning("Not a production user. Skipping DB update") sys.exit(1) connection = mongodb_conn(args.testing) if connection is None: sys.exit(1) db = connection.gisds.runcomplete epoch_present, epoch_back = generate_window(args.win) results = db.find({"analysis.Status": "SUCCESS", "analysis.QC_status" : {"$exists": 0}, "timestamp": {"$gt": epoch_back, "$lt": epoch_present}}) logger.info("Found %s runs", results.count()) for record in results: run_number = record['run'] analysis = record['analysis'] #for analysis in record['analysis']: for (analysis_count, analysis) in enumerate(record['analysis']): out_dir = analysis["out_dir"] analysis_id = analysis['analysis_id'] status = analysis['Status'] #Check if bcl2Fastq is completed successfully if analysis['Status'] != "SUCCESS": logger.info("Analysis is not completed successfully under %s", out_dir) continue if not os.path.exists(out_dir): logger.critical("Following directory listed in DB doesn't exist: %s", out_dir) continue if args.testing: bcl2fastq_qc_out = os.path.join(out_dir, "bcl2fastq_qc.test.txt") else: bcl2fastq_qc_out = os.path.join(out_dir, "bcl2fastq_qc.txt") if os.path.exists(bcl2fastq_qc_out): logger.critical("Refusing to overwrite existing file %s. Skipping QC check", bcl2fastq_qc_out) continue bcl2fastq_qc_cmd = [bcl2fastq_qc_script, '-d', out_dir] if args.no_mail: bcl2fastq_qc_cmd.append("--no-mail") if args.dry_run: logger.warning("Skipped following run: %s", out_dir) continue try: QC_status = "analysis.{}.QC_status".format(analysis_count) status = subprocess.check_output(bcl2fastq_qc_cmd, stderr=subprocess.STDOUT) if "QC_FAILED" in str(status): db.update({"run": run_number, 'analysis.analysis_id' : analysis_id}, {"$set": {QC_status: "FAILED"}}) logger.info("Demux QC failed for run: %s", run_number) else: db.update({"run": run_number, 'analysis.analysis_id' : analysis_id}, {"$set": {QC_status: "SUCCESS"}}) logger.info("Demux QC SUCCESS for run: %s", run_number) with open(bcl2fastq_qc_out, 'w') as fh: fh.write(status.decode()) except subprocess.CalledProcessError as e: logger.fatal("The following command failed with return code %s: %s", e.returncode, ' '.join(bcl2fastq_qc_cmd)) logger.fatal("Output: %s", e.output.decode()) logger.fatal("Exiting") connection.close()
23,679
def train_deeper_better(train_data, train_labels, test_data, test_labels, params): """Same as 'train_deeper', but now with tf.contrib.data.Dataset input pipeline.""" default_params = { 'regularization_coeff': 0.00001, 'keep_prob': 0.5, 'batch_size': 128, 'fc1_size': 2048, 'fc2_size': 1024, 'fc3_size': 1024, 'fc4_size': 1024, 'fc5_size': 512, 'activation': 'relu', } activation_funcs = { 'relu': tf.nn.relu, 'tanh': tf.nn.tanh, } def get_param(name): if name in params: return params[name] logger.warning('%s not found in param, use default value %r', name, default_params[name]) return default_params[name] regularization_coeff = get_param('regularization_coeff') keep_prob_param = get_param('keep_prob') batch_size = int(get_param('batch_size')) fc1_size = int(get_param('fc1_size')) fc2_size = int(get_param('fc2_size')) fc3_size = int(get_param('fc3_size')) fc4_size = int(get_param('fc4_size')) fc5_size = int(get_param('fc5_size')) activation_func = activation_funcs[get_param('activation')] save_restore = False time_limit_seconds = 3600 saver_path = join(SAVER_FOLDER, train_deeper_better.__name__) graph = tf.Graph() with graph.as_default(): tf.set_random_seed(52) global_step_tensor = tf.contrib.framework.get_or_create_global_step() epoch_tensor = tf.Variable(0, trainable=False, name='epoch') next_epoch = tf.assign_add(epoch_tensor, 1) # dataset definition dataset = Dataset.from_tensor_slices({'x': train_data, 'y': train_labels}) dataset = dataset.shuffle(buffer_size=10000) dataset = dataset.batch(batch_size) iterator = dataset.make_initializable_iterator() sample = iterator.get_next() x = sample['x'] y = sample['y'] # actual computation graph keep_prob = tf.placeholder(tf.float32) is_training = tf.placeholder(tf.bool, name='is_training') regularizer = tf.contrib.layers.l2_regularizer(scale=regularization_coeff) def fully_connected(x, size, name): return dense_regularized( x, size, is_training, keep_prob, regularizer, name, activation_func, ) fc1 = fully_connected(x, fc1_size, 'fc1') fc2 = fully_connected(fc1, fc2_size, 'fc2') fc3 = fully_connected(fc2, fc3_size, 'fc3') fc4 = fully_connected(fc3, fc4_size, 'fc4') fc5 = fully_connected(fc4, fc5_size, 'fc5') logits = dense(fc5, NUM_CLASSES, regularizer, 'logits') layer_summaries(logits, 'logits_summaries') with tf.name_scope('accuracy'): accuracy = tf.reduce_mean( tf.cast(tf.equal(tf.argmax(y, 1), tf.argmax(logits, 1)), tf.float32), ) accuracy_percent = 100 * accuracy tf.summary.scalar('accuracy_percent', accuracy_percent) with tf.name_scope('loss'): regularization_losses = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES) regularization_loss = tf.reduce_sum(regularization_losses) cross_entropy_loss = tf.reduce_mean( tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=y), ) loss = cross_entropy_loss + regularization_loss tf.summary.scalar('regularization_loss', regularization_loss) tf.summary.scalar('cross_entropy_loss', cross_entropy_loss) tf.summary.scalar('loss', loss) update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS) with tf.control_dependencies(update_ops): # ensures that we execute the update_ops before performing the train_op # needed for batch normalization (apparently) optimizer = tf.train.AdamOptimizer(learning_rate=(1e-4), epsilon=1e-3) train_op = optimizer.minimize(loss, global_step=global_step_tensor) all_summaries = tf.summary.merge_all() train_writer = tf.summary.FileWriter(join(SUMMARY_FOLDER, 'train')) batch_writer = tf.summary.FileWriter(join(SUMMARY_FOLDER, 'batch')) test_writer = tf.summary.FileWriter(join(SUMMARY_FOLDER, 'test')) saver = tf.train.Saver(max_to_keep=3) test_accuracy = 0 best_accuracy = 0 with tf.Session(graph=graph) as sess: restored = False if save_restore: try: saver.restore(sess, tf.train.latest_checkpoint(checkpoint_dir=SAVER_FOLDER)) restored = True except ValueError as exc: logger.info('Could not restore previous session! %r', exc) logger.info('Starting from scratch!') if not restored: tf.global_variables_initializer().run() logger.info('Starting training...') start_time = time.time() def enough(): if time_limit_seconds is None: return False elapsed = time.time() - start_time return elapsed > time_limit_seconds epoch = epoch_tensor.eval() new_epoch = True while not enough(): logger.info('Starting new epoch #%d!', epoch) sess.run(iterator.initializer, feed_dict={}) while not enough(): step = tf.train.global_step(sess, tf.train.get_global_step()) try: sess.run(train_op, feed_dict={keep_prob: keep_prob_param, is_training: True}) if new_epoch: new_epoch = False l, reg_l, ac, summaries = sess.run( [loss, regularization_loss, accuracy_percent, all_summaries], feed_dict={keep_prob: keep_prob_param, is_training: False}, ) batch_writer.add_summary(summaries, global_step=step) logger.info( 'Minibatch loss: %f, reg loss: %f, accuracy: %.2f%%', l, reg_l, ac, ) except tf.errors.OutOfRangeError: logger.info('End of epoch #%d', epoch) break # end of epoch previous_epoch = epoch epoch = next_epoch.eval() new_epoch = True if previous_epoch % 5 == 0 and save_restore: saver.save(sess, saver_path, global_step=previous_epoch) def get_eval_dict(data, labels): """Data for evaluation.""" return {x: data, y: labels, keep_prob: 1, is_training: False} train_l, train_ac, summaries = sess.run( [loss, accuracy_percent, all_summaries], feed_dict=get_eval_dict(train_data[:10000], train_labels[:10000]), ) train_writer.add_summary(summaries, global_step=step) test_l, test_accuracy, summaries = sess.run( [loss, accuracy_percent, all_summaries], feed_dict=get_eval_dict(test_data, test_labels), ) test_writer.add_summary(summaries, global_step=step) best_accuracy = max(best_accuracy, test_accuracy) logger.info('Train loss: %f, train accuracy: %.2f%%', train_l, train_ac) logger.info( 'Test loss: %f, TEST ACCURACY: %.2f%% BEST ACCURACY %.2f%% <<<<<<<', test_l, test_accuracy, best_accuracy, ) return best_accuracy
23,680
def assert_almost_equal( actual: Tuple[numpy.float64, numpy.float64], desired: numpy.ndarray, decimal: int ): """ usage.statsmodels: 4 """ ...
23,681
def test_data(landsat_number): """ Downloads a dataset for testing from Landsat 4, 5, 7, or 8 *Note that you must be signed into earthexplorer.usgs.gov Inputs: landsat_number 4, 5, 7, or 8 - the desired Landsat satellites to sample data from """ #ensure the input landsat number is integer type landsat = int(landsat_number) #open the earthexplorer url for the given landsat number if landsat == 8: url = "http://earthexplorer.usgs.gov/download/4923/LC80410362014232LGN00/STANDARD" webbrowser.open(url) elif landsat == 7: url = "http://earthexplorer.usgs.gov/download/3372/LE70410362003114EDC00/STANDARD" webbrowser.open(url) elif landsat == 5: url = "http://earthexplorer.usgs.gov/download/3119/LT50410362011208PAC01/STANDARD" webbrowser.open(url) elif landsat == 4: url = "http://earthexplorer.usgs.gov/download/3119/LT40410361990014XXX01/STANDARD" webbrowser.open(url) else: print "Please enter 4, 5, 7, or 8" return
23,682
def clear_file(filename: str): """Method to clean file.""" open(filename, 'w').close()
23,683
def redirect_return(): """Redirects back from page with url generated by url_return.""" return redirect(str(Url.get_return()))
23,684
def ButtonDisplay(hand_view): """ This updates draw pile and action buttons. It is called in HandView.update each render cycle. """ loc_xy = (hand_view.draw_pile.x, hand_view.draw_pile.y) hand_view.draw_pile.draw(hand_view.display, loc_xy, hand_view.draw_pile.outline_color) # update discard info and redraw discard_info = hand_view.controller.getDiscardInfo() hand_view.top_discard = discard_info[0] hand_view.pickup_pile_sz = discard_info[1] if hand_view.pickup_pile_sz > 0: # pickup_pile needs new clickable image each time any player discards or picks up the pile. # Next few lines insure pickup_pile image is up to date. hand_view.top_discard_wrapped = UICardWrapper(hand_view.top_discard, (100, 25), UIC.scale) hand_view.pickup_pile = hand_view.top_discard_wrapped.img_clickable loc_xy = (hand_view.pickup_pile.x, hand_view.pickup_pile.y) # UICardWrapper sets outline color to no outline, next line resets outline to proper value. hand_view.pickup_pile.outline_color = hand_view.pickup_pile_outline hand_view.pickup_pile.draw(hand_view.display, loc_xy, hand_view.pickup_pile.outline_color) hand_view.labelMedium(str(hand_view.pickup_pile_sz), 150, 35) if hand_view.controller._state.round == -1: hand_view.ready_yes_btn.draw(hand_view.display, hand_view.ready_yes_btn.outline_color) hand_view.ready_no_btn.draw(hand_view.display, hand_view.ready_no_btn.outline_color) else: hand_view.labelMedium(str(Meld_Threshold[hand_view.controller._state.round]) + " points to meld", hand_view.round_indicator_xy[0], hand_view.round_indicator_xy[1]) hand_view.sort_status_btn.draw(hand_view.display, hand_view.sort_status_btn.outline_color) hand_view.sort_btn.draw(hand_view.display, hand_view.sort_btn.outline_color) hand_view.prepare_card_btn.draw(hand_view.display, hand_view.prepare_card_btn.outline_color) hand_view.clear_prepared_cards_btn.draw(hand_view.display, hand_view.clear_prepared_cards_btn.outline_color) hand_view.clear_selected_cards_btn.draw(hand_view.display, hand_view.clear_selected_cards_btn.outline_color) hand_view.play_prepared_cards_btn.draw(hand_view.display, hand_view.play_prepared_cards_btn.outline_color) hand_view.discard_action_btn.draw(hand_view.display, hand_view.discard_action_btn.outline_color) hand_view.heart_btn.draw(hand_view.display, hand_view.heart_btn.outline_color) return
23,685
def setup(coresys: CoreSys) -> EvaluateBase: """Initialize evaluation-setup function.""" return EvaluateOperatingSystem(coresys)
23,686
def _weight_initializers(seed=42): """Function returns initilializers to be used in the model.""" kernel_initializer = tf.keras.initializers.TruncatedNormal( mean=0.0, stddev=0.02, seed=seed ) bias_initializer = tf.keras.initializers.Zeros() return kernel_initializer, bias_initializer
23,687
def unot(b: bool) -> bool: """ """ ...
23,688
def inputs(eval_data, data_dir, batch_size): """Construct input for eye evaluation using the Reader ops. Args: eval_data: bool, indicating if one should use the train or eval data set. data_dir: Path to the eye data directory. batch_size: Number of images per batch. Returns: images: Images. 4D tensor of [batch_size, IMAGE_SIZE, IMAGE_SIZE, 3] size. labels: Labels. 1D tensor of [batch_size] size. """ if not eval_data: data_dir = os.path.join(data_dir, 'tr') filenames = [] for folder_name in LABLES: folder_path = os.path.join(data_dir, folder_name) filenames += [os.path.join(folder_path, f) for f in os.listdir(folder_path)] num_examples_per_epoch = NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN else: data_dir = os.path.join(data_dir, 'te') filenames = [] for folder_name in LABLES: folder_path = os.path.join(data_dir, folder_name) filenames += [os.path.join(folder_path, f) for f in os.listdir(folder_path)] num_examples_per_epoch = NUM_EXAMPLES_PER_EPOCH_FOR_EVAL # Create a queue that produces the filenames to read. filename_queue = tf.train.string_input_producer(filenames) # Read examples from files in the filename queue. read_input = read_eye(filename_queue) reshaped_image = tf.cast(read_input.uint8image, tf.float32) height = IMAGE_SIZE width = IMAGE_SIZE # Image processing for evaluation. # Crop the central [height, width] of the image. resized_image = tf.image.resize_image_with_crop_or_pad(reshaped_image, width, height) # Subtract off the mean and divide by the variance of the pixels. float_image = tf.image.per_image_whitening(resized_image) # Fix the shape of Tensor float_image.set_shape([height, width, 3]) # Ensure that the random shuffling has good mixing properties. min_fraction_of_examples_in_queue = 0.1 min_queue_examples = int(num_examples_per_epoch * min_fraction_of_examples_in_queue) # Generate a batch of images and labels by building up a queue of examples. return _generate_image_and_label_batch(float_image, read_input.label, min_queue_examples, batch_size, shuffle=False)
23,689
def test_queryparser_stoplist_iter(): """Test QueryParser stoplist iterator. """ stemmer = xapian.Stem('en') # Check behaviour without having set a stoplist. queryparser = xapian.QueryParser() queryparser.set_stemmer(stemmer) queryparser.set_stemming_strategy(queryparser.STEM_SOME) expect([term for term in queryparser.stoplist()], []) query = queryparser.parse_query('to be or not to be is the questions') expect([term for term in queryparser.stoplist()], []) expect(str(query), 'Xapian::Query((Zto:(pos=1) OR Zbe:(pos=2) OR Zor:(pos=3) OR ' 'Znot:(pos=4) OR Zto:(pos=5) OR Zbe:(pos=6) OR Zis:(pos=7) OR ' 'Zthe:(pos=8) OR Zquestion:(pos=9)))') # Check behaviour with a stoplist, but no stemmer queryparser = xapian.QueryParser() stopper = xapian.SimpleStopper() stopper.add('to') stopper.add('not') stopper.add('question') queryparser.set_stopper(stopper) expect([term for term in queryparser.stoplist()], []) query = queryparser.parse_query('to be or not to be is the questions') expect([term for term in queryparser.stoplist()], ['to', 'not', 'to']) expect(str(query), 'Xapian::Query((be:(pos=2) OR or:(pos=3) OR ' 'be:(pos=6) OR is:(pos=7) OR ' 'the:(pos=8) OR questions:(pos=9)))') # Check behaviour with a stoplist and a stemmer queryparser.set_stemmer(stemmer) queryparser.set_stemming_strategy(queryparser.STEM_SOME) expect([term for term in queryparser.stoplist()], ['to', 'not', 'to']) # Shouldn't have changed since previous query. query = queryparser.parse_query('to be or not to be is the questions') expect([term for term in queryparser.stoplist()], ['to', 'not', 'to']) expect(str(query), 'Xapian::Query((Zbe:(pos=2) OR Zor:(pos=3) OR ' 'Zbe:(pos=6) OR Zis:(pos=7) OR ' 'Zthe:(pos=8) OR Zquestion:(pos=9)))')
23,690
def build_docker_image_docker(context, docker_file, external_docker_name, push_connection: Connection, pull_connection: typing.Optional[Connection] = None): """ Build and push docker image :param context: docker build context :param docker_file: Dockerfile name (relative to docker build context) :param external_docker_name: external docker image target name, without host :param push_connection: connection for pushing Docker images to :param pull_connection: (Optional) connection for pulling Docker image during build from :return: """ logging.debug('Building docker client from ENV variables') client = docker.from_env() # Authorize for pull if pull_connection: logging.debug('Trying to authorize user fo pulling sources') _authorize_docker(client, pull_connection) # Build image streamer = client.api.build(path=context, rm=True, dockerfile=docker_file, tag=external_docker_name) for chunk in streamer: if isinstance(chunk, bytes): chunk = chunk.decode('utf-8') try: chunk_json = json.loads(chunk) if 'stream' in chunk_json: for line in chunk_json['stream'].splitlines(): LOGGER.info(line.strip()) except json.JSONDecodeError: LOGGER.info(chunk) # Tag for pushing remote_tag = f'{push_connection.spec.uri}/{external_docker_name}' local_built = client.images.get(external_docker_name) local_built.tag(remote_tag) # Push log_generator = client.images.push(repository=remote_tag, stream=True, auth_config={ 'username': push_connection.spec.username, 'password': push_connection.spec.password }) for line in log_generator: if isinstance(line, bytes): line = line.decode('utf-8') LOGGER.info(line) client.images.remove(remote_tag) client.images.remove(external_docker_name)
23,691
def get_non_ready_rs_pod_names(namespace): """ get names of rs pods that are not ready """ pod_names = [] rs_pods = get_pods(namespace, selector='redis.io/role=node') if not rs_pods: logger.info("Namespace '%s': cannot find redis enterprise pods", namespace) return [] for rs_pod in rs_pods: pod_name = rs_pod['metadata']['name'] if "status" in rs_pod and "containerStatuses" in rs_pod["status"]: for container_status_entry in rs_pod["status"]["containerStatuses"]: container_name = container_status_entry['name'] is_ready = container_status_entry["ready"] if container_name == RLEC_CONTAINER_NAME and not is_ready: pod_names.append(pod_name) return pod_names
23,692
async def test_async_get_book(aresponses, readarr_client: ReadarrClient) -> None: """Test getting book info.""" aresponses.add( "127.0.0.1:8787", f"/api/{READARR_API}/book/0", "GET", aresponses.Response( status=200, headers={"Content-Type": "application/json"}, text=load_fixture("readarr/book.json"), ), match_querystring=True, ) data = await readarr_client.async_get_book(bookid=0) assert isinstance(data[0].id, int) assert data[0].title == "string" assert data[0].authorTitle == "string" assert data[0].seriesTitle == "string" assert data[0].disambiguation == "string" assert data[0].overview == "string" assert isinstance(data[0].authorId, int) assert data[0].foreignBookId == "string" assert isinstance(data[0].titleSlug, int) assert data[0].monitored is True assert data[0].anyEditionOk is True assert isinstance(data[0].ratings.votes, int) assert isinstance(data[0].ratings.value, float) assert isinstance(data[0].ratings.popularity, int) assert data[0].releaseDate == datetime(2021, 12, 7, 9, 7, 35, 508000) assert isinstance(data[0].pageCount, int) assert data[0].genres[0] == "string" assert isinstance(data[0].author.id, int) assert isinstance(data[0].author.authorMetadataId, int) assert data[0].author.status == "string" assert data[0].author.ended is True assert data[0].author.authorName == "string" assert data[0].author.authorNameLastFirst == "string" assert data[0].author.foreignAuthorId == "string" assert isinstance(data[0].author.titleSlug, int) assert data[0].author.overview == "string" assert data[0].author.disambiguation == "string" assert data[0].author.links[0].url == "string" assert data[0].author.links[0].name == "string" _book = data[0].author.nextBook assert isinstance(_book.id, int) assert isinstance(_book.authorMetadataId, int) assert _book.foreignBookId == "string" assert isinstance(_book.titleSlug, int) assert _book.title == "string" assert _book.releaseDate == datetime(2021, 12, 7, 9, 7, 35, 508000) assert _book.links[0].url == "string" assert _book.links[0].name == "string" assert _book.genres[0] == "string" assert isinstance(_book.ratings.votes, int) assert isinstance(_book.ratings.value, float) assert isinstance(_book.ratings.popularity, int) assert _book.cleanTitle == "string" assert _book.monitored is True assert _book.anyEditionOk is True assert _book.lastInfoSync == datetime(2021, 12, 7, 9, 7, 35, 508000) assert _book.added == datetime(2021, 12, 7, 9, 7, 35, 508000) assert _book.addOptions.addType == AddTypes.AUTOMATIC.value assert _book.addOptions.searchForNewBook is True _value = _book.authorMetadata.value assert isinstance(_value.id, int) assert _value.foreignAuthorId == "string" assert isinstance(_value.titleSlug, int) assert _value.name == "string" assert _value.sortName == "string" assert _value.nameLastFirst == "string" assert _value.sortNameLastFirst == "string" assert _value.aliases[0] == "string" assert _value.overview == "string" assert _value.disambiguation == "string" assert _value.gender == "string" assert _value.hometown == "string" assert _value.born == datetime(2021, 12, 7, 9, 7, 35, 508000) assert _value.died == datetime(2021, 12, 7, 9, 7, 35, 509000) assert _value.status == "string" assert _value.images[0].url == "string" assert _value.images[0].coverType == ImageType.POSTER.value assert _value.images[0].extension == "string" assert _value.links[0].url == "string" assert _value.links[0].name == "string" assert _value.genres[0] == "string" assert isinstance(_value.ratings.votes, int) assert isinstance(_value.ratings.value, float) assert isinstance(_value.ratings.popularity, int) assert data[0].author.nextBook.authorMetadata.isLoaded is True _value = data[0].author.nextBook.author.value assert isinstance(_value.id, int) assert isinstance(_value.authorMetadataId, int) assert _value.cleanName == "string" assert _value.monitored is True assert _value.lastInfoSync == datetime(2021, 12, 7, 9, 7, 35, 509000) assert _value.path == "string" assert _value.rootFolderPath == "string" assert _value.added == datetime(2021, 12, 7, 9, 7, 35, 509000) assert isinstance(_value.qualityProfileId, int) assert isinstance(_value.metadataProfileId, int) assert isinstance(_value.tags[0], int) assert _value.addOptions.monitor == MonitoringOptionsType.ALL.value assert _value.addOptions.booksToMonitor[0] == "string" assert _value.addOptions.monitored is True assert _value.addOptions.searchForMissingBooks is True assert isinstance(_value.metadata.value.id, int) assert _value.metadata.value.foreignAuthorId == "string" assert isinstance(_value.metadata.value.titleSlug, int) assert _value.metadata.value.name == "string" assert _value.metadata.value.sortName == "string" assert _value.metadata.value.nameLastFirst == "string" assert _value.metadata.value.sortNameLastFirst == "string" assert _value.metadata.value.aliases[0] == "string" assert _value.metadata.value.overview == "string" assert _value.metadata.value.disambiguation == "string" assert _value.metadata.value.gender == "string" assert _value.metadata.value.hometown == "string" assert _value.metadata.value.born == datetime(2021, 12, 7, 9, 7, 35, 509000) assert _value.metadata.value.died == datetime(2021, 12, 7, 9, 7, 35, 509000) assert _value.metadata.value.status == "string" assert _value.metadata.value.images[0].url == "string" assert _value.metadata.value.images[0].coverType == ImageType.POSTER.value assert _value.metadata.value.images[0].extension == "string" assert _value.metadata.value.links[0].url == "string" assert _value.metadata.value.links[0].name == "string" assert _value.metadata.value.genres[0] == "string" assert isinstance(_value.metadata.value.ratings.votes, int) assert isinstance(_value.metadata.value.ratings.value, float) assert isinstance(_value.metadata.value.ratings.popularity, int) assert _value.metadata.isLoaded is True assert isinstance(_value.qualityProfile.value.id, int) assert _value.qualityProfile.value.name == "string" assert _value.qualityProfile.value.upgradeAllowed is True assert isinstance(_value.qualityProfile.value.cutoff, int) assert isinstance(_value.qualityProfile.value.items[0].id, int) assert _value.qualityProfile.value.items[0].name == "string" assert isinstance(_value.qualityProfile.value.items[0].quality.id, int) assert _value.qualityProfile.value.items[0].quality.name == "string" assert _value.qualityProfile.value.items[0].items[0] is None assert _value.qualityProfile.value.items[0].allowed is True assert _value.qualityProfile.isLoaded is True assert isinstance(_value.metadataProfile.value.id, int) assert _value.metadataProfile.value.name == "string" assert isinstance(_value.metadataProfile.value.minPopularity, int) assert _value.metadataProfile.value.skipMissingDate is True assert _value.metadataProfile.value.skipMissingIsbn is True assert _value.metadataProfile.value.skipPartsAndSets is True assert _value.metadataProfile.value.skipSeriesSecondary is True assert _value.metadataProfile.value.allowedLanguages == "string" assert isinstance(_value.metadataProfile.value.minPages, int) assert _value.metadataProfile.value.ignored == "string" assert _value.metadataProfile.isLoaded is True assert _value.books.value[0] is None assert _value.books.isLoaded is True assert isinstance(_value.series.value[0].id, int) assert _value.series.value[0].foreignSeriesId == "string" assert _value.series.value[0].title == "string" assert _value.series.value[0].description == "string" assert _value.series.value[0].numbered is True assert isinstance(_value.series.value[0].workCount, int) assert isinstance(_value.series.value[0].primaryWorkCount, int) assert _value.series.value[0].books.value[0] is None assert _value.series.value[0].books.isLoaded is True assert _value.series.value[0].foreignAuthorId == "string" assert _value.series.isLoaded is True assert _value.name == "string" assert _value.foreignAuthorId == "string" assert data[0].author.nextBook.author.isLoaded is True _value = data[0].author.nextBook.editions.value[0] assert isinstance(_value.id, int) assert isinstance(_value.bookId, int) assert _value.foreignEditionId == "string" assert isinstance(_value.titleSlug, int) assert _value.isbn13 == "string" assert _value.asin == "string" assert _value.title == "string" assert _value.language == "string" assert _value.overview == "string" assert _value.format == "string" assert _value.isEbook is True assert _value.disambiguation == "string" assert _value.publisher == "string" assert isinstance(_value.pageCount, int) assert _value.releaseDate == datetime(2021, 12, 7, 9, 7, 35, 509000) assert _value.images[0].url == "string" assert _value.images[0].coverType == ImageType.POSTER.value assert _value.images[0].extension == "string" assert _value.links[0].url == "string" assert _value.links[0].name == "string" assert isinstance(_value.ratings.votes, int) assert isinstance(_value.ratings.value, float) assert isinstance(_value.ratings.popularity, int) assert _value.monitored is True assert _value.manualAdd is True assert _value.book.isLoaded is True _valu = _value.bookFiles.value[0] assert isinstance(_valu.id, int) assert _valu.path == "string" assert isinstance(_valu.size, int) assert _valu.modified == datetime(2021, 12, 7, 9, 7, 35, 509000) assert _valu.dateAdded == datetime(2021, 12, 7, 9, 7, 35, 509000) assert _valu.sceneName == "string" assert _valu.releaseGroup == "string" assert isinstance(_valu.quality.quality.id, int) assert _valu.quality.quality.name == "string" assert isinstance(_valu.quality.revision.version, int) assert isinstance(_valu.quality.revision.real, int) assert _valu.quality.revision.isRepack is True assert _valu.mediaInfo.audioFormat == "string" assert isinstance(_valu.mediaInfo.audioBitrate, int) assert isinstance(_valu.mediaInfo.audioChannels, float) assert isinstance(_valu.mediaInfo.audioBits, int) assert _valu.mediaInfo.audioSampleRate == "string" assert isinstance(_valu.editionId, int) assert isinstance(_valu.calibreId, int) assert isinstance(_valu.part, int) _val = _valu.author.value assert isinstance(_val.id, int) assert isinstance(_val.authorMetadataId, int) assert _val.cleanName == "string" assert _val.monitored is True assert _val.lastInfoSync == datetime(2021, 12, 7, 9, 7, 35, 509000) assert _val.path == "string" assert _val.rootFolderPath == "string" assert _val.added == datetime(2021, 12, 7, 9, 7, 35, 509000) assert isinstance(_val.qualityProfileId, int) assert isinstance(_val.metadataProfileId, int) assert isinstance(_val.tags[0], int) assert _val.addOptions.monitor == MonitoringOptionsType.ALL.value assert _val.addOptions.booksToMonitor[0] == "string" assert _val.addOptions.monitored is True assert _val.addOptions.searchForMissingBooks is True assert isinstance(_val.metadata.value.id, int) assert _val.metadata.value.foreignAuthorId == "string" assert isinstance(_val.metadata.value.titleSlug, int) assert _val.metadata.value.name == "string" assert _val.metadata.value.sortName == "string" assert _val.metadata.value.nameLastFirst == "string" assert _val.metadata.value.sortNameLastFirst == "string" assert _val.metadata.value.aliases[0] == "string" assert _val.metadata.value.overview == "string" assert _val.metadata.value.disambiguation == "string" assert _val.metadata.value.gender == "string" assert _val.metadata.value.hometown == "string" assert _val.metadata.value.born == datetime(2021, 12, 7, 9, 7, 35, 509000) assert _val.metadata.value.died == datetime(2021, 12, 7, 9, 7, 35, 509000) assert _val.metadata.value.status == "string" assert _val.metadata.value.images[0].url == "string" assert _val.metadata.value.images[0].coverType == ImageType.POSTER.value assert _val.metadata.value.images[0].extension == "string" assert _val.metadata.value.links[0].url == "string" assert _val.metadata.value.links[0].name == "string" assert _val.metadata.value.genres[0] == "string" assert isinstance(_val.metadata.value.ratings.votes, int) assert isinstance(_val.metadata.value.ratings.value, float) assert isinstance(_val.metadata.value.ratings.popularity, int) assert _val.metadata.isLoaded is True assert isinstance(_val.qualityProfile.value.id, int) assert _val.qualityProfile.value.name == "string" assert _val.qualityProfile.value.upgradeAllowed is True assert isinstance(_val.qualityProfile.value.cutoff, int) assert isinstance(_val.qualityProfile.value.items[0].id, int) assert _val.qualityProfile.value.items[0].name == "string" assert _val.qualityProfile.value.items[0].name == "string" assert isinstance(_val.qualityProfile.value.items[0].quality.id, int) assert _val.qualityProfile.value.items[0].quality.name == "string" assert _val.qualityProfile.value.items[0].items[0] is None assert _val.qualityProfile.value.items[0].allowed is True assert _val.qualityProfile.isLoaded is True assert isinstance(_val.metadataProfile.value.id, int) assert _val.metadataProfile.value.name == "string" assert isinstance(_val.metadataProfile.value.minPopularity, int) assert _val.metadataProfile.value.skipMissingDate is True assert _val.metadataProfile.value.skipMissingIsbn is True assert _val.metadataProfile.value.skipPartsAndSets is True assert _val.metadataProfile.value.skipSeriesSecondary is True assert _val.metadataProfile.value.allowedLanguages == "string" assert isinstance(_val.metadataProfile.value.minPages, int) assert _val.metadataProfile.value.ignored == "string" assert _val.metadataProfile.isLoaded is True assert _val.books.value[0] is None assert _val.books.isLoaded is True assert isinstance(_val.series.value[0].id, int) assert _val.series.value[0].foreignSeriesId == "string" assert _val.series.value[0].title == "string" assert _val.series.value[0].description == "string" assert _val.series.value[0].numbered is True assert isinstance(_val.series.value[0].workCount, int) assert isinstance(_val.series.value[0].primaryWorkCount, int) assert _val.series.value[0].books.value[0] is None assert _val.series.value[0].books.isLoaded is True assert _val.series.value[0].foreignAuthorId == "string" assert _val.series.isLoaded is True assert _val.name == "string" assert _val.foreignAuthorId == "string" assert _value.bookFiles.value[0].author.isLoaded is True assert _value.bookFiles.value[0].edition.isLoaded is True assert isinstance(_value.bookFiles.value[0].partCount, int) assert _value.bookFiles.isLoaded is True value = data[0].author.nextBook assert isinstance(value.seriesLinks.value[0].id, int) assert value.seriesLinks.value[0].position == "string" assert isinstance(value.seriesLinks.value[0].seriesId, int) assert isinstance(value.seriesLinks.value[0].bookId, int) assert value.seriesLinks.value[0].isPrimary is True assert isinstance(value.seriesLinks.value[0].series.value.id, int) assert value.seriesLinks.value[0].series.value.foreignSeriesId == "string" assert value.seriesLinks.value[0].series.value.title == "string" assert value.seriesLinks.value[0].series.value.description == "string" assert value.seriesLinks.value[0].series.value.numbered is True assert isinstance(value.seriesLinks.value[0].series.value.workCount, int) assert isinstance(value.seriesLinks.value[0].series.value.primaryWorkCount, int) assert value.seriesLinks.value[0].series.value.books.value[0] is None assert value.seriesLinks.value[0].series.value.books.isLoaded is True assert value.seriesLinks.value[0].series.value.foreignAuthorId == "string" assert value.seriesLinks.value[0].series.isLoaded is True assert value.seriesLinks.value[0].book.isLoaded is True assert value.seriesLinks.isLoaded is True _book = data[0].author.lastBook assert isinstance(_book.id, int) assert isinstance(_book.authorMetadataId, int) assert _book.foreignBookId == "string" assert isinstance(_book.titleSlug, int) assert _book.title == "string" assert _book.releaseDate == datetime(2021, 12, 7, 9, 7, 35, 509000) assert _book.links[0].url == "string" assert _book.links[0].name == "string" assert _book.genres[0] == "string" assert isinstance(_book.ratings.votes, int) assert isinstance(_book.ratings.value, float) assert isinstance(_book.ratings.popularity, int) assert _book.cleanTitle == "string" assert _book.monitored is True assert _book.anyEditionOk is True assert _book.lastInfoSync == datetime(2021, 12, 7, 9, 7, 35, 509000) assert _book.added == datetime(2021, 12, 7, 9, 7, 35, 509000) assert _book.addOptions.addType == AddTypes.AUTOMATIC.value assert _book.addOptions.searchForNewBook is True _value = _book.authorMetadata.value assert isinstance(_value.id, int) assert _value.foreignAuthorId == "string" assert isinstance(_value.titleSlug, int) assert _value.name == "string" assert _value.sortName == "string" assert _value.nameLastFirst == "string" assert _value.sortNameLastFirst == "string" assert _value.aliases[0] == "string" assert _value.overview == "string" assert _value.disambiguation == "string" assert _value.gender == "string" assert _value.hometown == "string" assert _value.born == datetime(2021, 12, 7, 9, 7, 35, 509000) assert _value.died == datetime(2021, 12, 7, 9, 7, 35, 509000) assert _value.status == "string" assert _value.images[0].url == "string" assert _value.images[0].coverType == ImageType.POSTER.value assert _value.images[0].extension == "string" assert _value.links[0].url == "string" assert _value.links[0].name == "string" assert _value.genres[0] == "string" assert isinstance(_value.ratings.votes, int) assert isinstance(_value.ratings.value, float) assert isinstance(_value.ratings.popularity, int) assert data[0].author.lastBook.authorMetadata.isLoaded is True _value = data[0].author.lastBook.author.value assert isinstance(_value.id, int) assert isinstance(_value.authorMetadataId, int) assert _value.cleanName == "string" assert _value.monitored is True assert _value.lastInfoSync == datetime(2021, 12, 7, 9, 7, 35, 509000) assert _value.path == "string" assert _value.rootFolderPath == "string" assert _value.added == datetime(2021, 12, 7, 9, 7, 35, 509000) assert isinstance(_value.qualityProfileId, int) assert isinstance(_value.metadataProfileId, int) assert isinstance(_value.tags[0], int) assert _value.addOptions.monitor == MonitoringOptionsType.ALL.value assert _value.addOptions.booksToMonitor[0] == "string" assert _value.addOptions.monitored is True assert _value.addOptions.searchForMissingBooks is True assert isinstance(_value.metadata.value.id, int) assert _value.metadata.value.foreignAuthorId == "string" assert isinstance(_value.metadata.value.titleSlug, int) assert _value.metadata.value.name == "string" assert _value.metadata.value.sortName == "string" assert _value.metadata.value.nameLastFirst == "string" assert _value.metadata.value.sortNameLastFirst == "string" assert _value.metadata.value.aliases[0] == "string" assert _value.metadata.value.overview == "string" assert _value.metadata.value.disambiguation == "string" assert _value.metadata.value.gender == "string" assert _value.metadata.value.hometown == "string" assert _value.metadata.value.born == datetime(2021, 12, 7, 9, 7, 35, 509000) assert _value.metadata.value.died == datetime(2021, 12, 7, 9, 7, 35, 509000) assert _value.metadata.value.status == "string" assert _value.metadata.value.images[0].url == "string" assert _value.metadata.value.images[0].coverType == ImageType.POSTER.value assert _value.metadata.value.images[0].extension == "string" assert _value.metadata.value.links[0].url == "string" assert _value.metadata.value.links[0].name == "string" assert _value.metadata.value.genres[0] == "string" assert isinstance(_value.metadata.value.ratings.votes, int) assert isinstance(_value.metadata.value.ratings.value, float) assert isinstance(_value.metadata.value.ratings.popularity, int) assert _value.metadata.isLoaded is True assert isinstance(_value.qualityProfile.value.id, int) assert _value.qualityProfile.value.name == "string" assert _value.qualityProfile.value.upgradeAllowed is True assert isinstance(_value.qualityProfile.value.cutoff, int) assert isinstance(_value.qualityProfile.value.items[0].id, int) assert _value.qualityProfile.value.items[0].name == "string" assert isinstance(_value.qualityProfile.value.items[0].quality.id, int) assert _value.qualityProfile.value.items[0].quality.name == "string" assert _value.qualityProfile.value.items[0].items[0] is None assert _value.qualityProfile.value.items[0].allowed is True assert _value.qualityProfile.isLoaded is True assert isinstance(_value.metadataProfile.value.id, int) assert _value.metadataProfile.value.name == "string" assert isinstance(_value.metadataProfile.value.minPopularity, int) assert _value.metadataProfile.value.skipMissingDate is True assert _value.metadataProfile.value.skipMissingIsbn is True assert _value.metadataProfile.value.skipPartsAndSets is True assert _value.metadataProfile.value.skipSeriesSecondary is True assert _value.metadataProfile.value.allowedLanguages == "string" assert isinstance(_value.metadataProfile.value.minPages, int) assert _value.metadataProfile.value.ignored == "string" assert _value.metadataProfile.isLoaded is True assert _value.books.value[0] is None assert _value.books.isLoaded is True assert isinstance(_value.series.value[0].id, int) assert _value.series.value[0].foreignSeriesId == "string" assert _value.series.value[0].title == "string" assert _value.series.value[0].description == "string" assert _value.series.value[0].numbered is True assert isinstance(_value.series.value[0].workCount, int) assert isinstance(_value.series.value[0].primaryWorkCount, int) assert _value.series.value[0].books.value[0] is None assert _value.series.value[0].books.isLoaded is True assert _value.series.value[0].foreignAuthorId == "string" assert _value.series.isLoaded is True assert _value.name == "string" assert _value.foreignAuthorId == "string" assert data[0].author.lastBook.author.isLoaded is True _value = data[0].author.lastBook.editions.value[0] assert isinstance(_value.id, int) assert isinstance(_value.bookId, int) assert _value.foreignEditionId == "string" assert isinstance(_value.titleSlug, int) assert _value.isbn13 == "string" assert _value.asin == "string" assert _value.title == "string" assert _value.language == "string" assert _value.overview == "string" assert _value.format == "string" assert _value.isEbook is True assert _value.disambiguation == "string" assert _value.publisher == "string" assert isinstance(_value.pageCount, int) assert _value.releaseDate == datetime(2021, 12, 7, 9, 7, 35, 509000) assert _value.images[0].url == "string" assert _value.images[0].coverType == ImageType.POSTER.value assert _value.images[0].extension == "string" assert _value.links[0].url == "string" assert _value.links[0].name == "string" assert isinstance(_value.ratings.votes, int) assert isinstance(_value.ratings.value, float) assert isinstance(_value.ratings.popularity, int) assert _value.monitored is True assert _value.manualAdd is True assert _value.book.isLoaded is True _val = _value.bookFiles.value[0] assert isinstance(_val.id, int) assert _val.path == "string" assert isinstance(_val.size, int) assert _val.modified == datetime(2021, 12, 7, 9, 7, 35, 509000) assert _val.dateAdded == datetime(2021, 12, 7, 9, 7, 35, 509000) assert _val.sceneName == "string" assert _val.releaseGroup == "string" assert isinstance(_val.quality.quality.id, int) assert _val.quality.quality.name == "string" assert isinstance(_val.quality.revision.version, int) assert isinstance(_val.quality.revision.real, int) assert _val.quality.revision.isRepack is True assert _val.mediaInfo.audioFormat == "string" assert isinstance(_val.mediaInfo.audioBitrate, int) assert isinstance(_val.mediaInfo.audioChannels, float) assert isinstance(_val.mediaInfo.audioBits, int) assert _val.mediaInfo.audioSampleRate == "string" assert isinstance(_val.editionId, int) assert isinstance(_val.calibreId, int) assert isinstance(_val.part, int) assert isinstance(_val.author.value.id, int) assert isinstance(_val.author.value.authorMetadataId, int) assert _val.author.value.cleanName == "string" assert _val.author.value.monitored is True assert _val.author.value.lastInfoSync == datetime(2021, 12, 7, 9, 7, 35, 509000) assert _val.author.value.path == "string" assert _val.author.value.rootFolderPath == "string" assert _val.author.value.added == datetime(2021, 12, 7, 9, 7, 35, 510000) assert isinstance(_val.author.value.qualityProfileId, int) assert isinstance(_val.author.value.metadataProfileId, int) assert isinstance(_val.author.value.tags[0], int) assert _val.author.value.addOptions.monitor == MonitoringOptionsType.ALL.value assert _val.author.value.addOptions.booksToMonitor[0] == "string" assert _val.author.value.addOptions.monitored is True assert _val.author.value.addOptions.searchForMissingBooks is True _valu = _val.author.value.metadata.value assert isinstance(_valu.id, int) assert _valu.foreignAuthorId == "string" assert isinstance(_valu.titleSlug, int) assert _valu.name == "string" assert _valu.sortName == "string" assert _valu.nameLastFirst == "string" assert _valu.sortNameLastFirst == "string" assert _valu.aliases[0] == "string" assert _valu.overview == "string" assert _valu.disambiguation == "string" assert _valu.gender == "string" assert _valu.hometown == "string" assert _valu.born == datetime(2021, 12, 7, 9, 7, 35, 510000) assert _valu.died == datetime(2021, 12, 7, 9, 7, 35, 510000) assert _valu.status == "string" assert _valu.images[0].url == "string" assert _valu.images[0].coverType == ImageType.POSTER.value assert _valu.images[0].extension == "string" assert _valu.links[0].url == "string" assert _valu.links[0].name == "string" assert _valu.genres[0] == "string" assert isinstance(_valu.ratings.votes, int) assert isinstance(_valu.ratings.value, float) assert isinstance(_valu.ratings.popularity, int) assert _val.author.value.metadata.isLoaded is True assert isinstance(_val.author.value.qualityProfile.value.id, int) assert _val.author.value.qualityProfile.value.name == "string" assert _val.author.value.qualityProfile.value.upgradeAllowed is True assert isinstance(_val.author.value.qualityProfile.value.cutoff, int) assert isinstance(_val.author.value.qualityProfile.value.items[0].id, int) assert _val.author.value.qualityProfile.value.items[0].name == "string" assert _val.author.value.qualityProfile.value.items[0].name == "string" assert isinstance(_val.author.value.qualityProfile.value.items[0].quality.id, int) assert _val.author.value.qualityProfile.value.items[0].quality.name == "string" assert _val.author.value.qualityProfile.value.items[0].items[0] is None assert _val.author.value.qualityProfile.value.items[0].allowed is True assert _val.author.value.qualityProfile.isLoaded is True assert isinstance(_val.author.value.metadataProfile.value.id, int) assert _val.author.value.metadataProfile.value.name == "string" assert isinstance(_val.author.value.metadataProfile.value.minPopularity, int) assert _val.author.value.metadataProfile.value.skipMissingDate is True assert _val.author.value.metadataProfile.value.skipMissingIsbn is True assert _val.author.value.metadataProfile.value.skipPartsAndSets is True assert _val.author.value.metadataProfile.value.skipSeriesSecondary is True assert _val.author.value.metadataProfile.value.allowedLanguages == "string" assert isinstance(_val.author.value.metadataProfile.value.minPages, int) assert _val.author.value.metadataProfile.value.ignored == "string" assert _val.author.value.metadataProfile.isLoaded is True assert _val.author.value.books.value[0] is None assert _val.author.value.books.isLoaded is True assert isinstance(_val.author.value.series.value[0].id, int) assert _val.author.value.series.value[0].foreignSeriesId == "string" assert _val.author.value.series.value[0].title == "string" assert _val.author.value.series.value[0].description == "string" assert _val.author.value.series.value[0].numbered is True assert isinstance(_val.author.value.series.value[0].workCount, int) assert isinstance(_val.author.value.series.value[0].primaryWorkCount, int) assert _val.author.value.series.value[0].books.value[0] is None assert _val.author.value.series.value[0].books.isLoaded is True assert _val.author.value.series.value[0].foreignAuthorId == "string" assert _val.author.value.series.isLoaded is True assert _val.author.value.name == "string" assert _val.author.value.foreignAuthorId == "string" assert _val.author.isLoaded is True assert _val.edition.isLoaded is True assert isinstance(_val.partCount, int) assert _value.bookFiles.isLoaded is True value = data[0].author.lastBook assert isinstance(value.seriesLinks.value[0].id, int) assert value.seriesLinks.value[0].position == "string" assert isinstance(value.seriesLinks.value[0].seriesId, int) assert isinstance(value.seriesLinks.value[0].bookId, int) assert value.seriesLinks.value[0].isPrimary is True assert isinstance(value.seriesLinks.value[0].series.value.id, int) assert value.seriesLinks.value[0].series.value.foreignSeriesId == "string" assert value.seriesLinks.value[0].series.value.title == "string" assert value.seriesLinks.value[0].series.value.description == "string" assert value.seriesLinks.value[0].series.value.numbered is True assert isinstance(value.seriesLinks.value[0].series.value.workCount, int) assert isinstance(value.seriesLinks.value[0].series.value.primaryWorkCount, int) assert value.seriesLinks.value[0].series.value.books.value[0] is None assert value.seriesLinks.value[0].series.value.books.isLoaded is True assert value.seriesLinks.value[0].series.value.foreignAuthorId == "string" assert value.seriesLinks.value[0].series.isLoaded is True assert value.seriesLinks.value[0].book.isLoaded is True assert value.seriesLinks.isLoaded is True assert data[0].author.images[0].url == "string" assert data[0].author.images[0].coverType == ImageType.POSTER.value assert data[0].author.images[0].extension == "string" assert data[0].author.remotePoster == "string" assert data[0].author.path == "string" assert isinstance(data[0].author.qualityProfileId, int) assert isinstance(data[0].author.metadataProfileId, int) assert data[0].author.monitored is True assert data[0].author.rootFolderPath == "string" assert data[0].author.genres[0] == "string" assert data[0].author.cleanName == "string" assert data[0].author.sortName == "string" assert data[0].author.sortNameLastFirst == "string" assert isinstance(data[0].author.tags[0], int) assert data[0].author.added == datetime(2021, 12, 7, 9, 7, 35, 510000) assert data[0].author.addOptions.monitor == MonitoringOptionsType.ALL.value assert data[0].author.addOptions.booksToMonitor[0] == "string" assert data[0].author.addOptions.monitored is True assert data[0].author.addOptions.searchForMissingBooks is True assert isinstance(data[0].author.ratings.votes, int) assert isinstance(data[0].author.ratings.value, float) assert isinstance(data[0].author.ratings.popularity, int) assert isinstance(data[0].author.statistics.bookFileCount, int) assert isinstance(data[0].author.statistics.bookCount, int) assert isinstance(data[0].author.statistics.availableBookCount, int) assert isinstance(data[0].author.statistics.totalBookCount, int) assert isinstance(data[0].author.statistics.sizeOnDisk, int) assert isinstance(data[0].author.statistics.percentOfBooks, float) assert data[0].images[0].url == "string" assert data[0].images[0].coverType == ImageType.POSTER.value assert data[0].images[0].extension == "string" assert data[0].links[0].url == "string" assert data[0].links[0].name == "string" assert isinstance(data[0].statistics.bookFileCount, int) assert isinstance(data[0].statistics.bookCount, int) assert isinstance(data[0].statistics.totalBookCount, int) assert isinstance(data[0].statistics.sizeOnDisk, int) assert isinstance(data[0].statistics.percentOfBooks, float) assert data[0].added == datetime(2021, 12, 7, 9, 7, 35, 510000) assert data[0].addOptions.addType == AddTypes.AUTOMATIC.value assert data[0].addOptions.searchForNewBook is True assert data[0].remoteCover == "string" assert isinstance(data[0].editions[0].id, int) assert isinstance(data[0].editions[0].bookId, int) assert data[0].editions[0].foreignEditionId == "string" assert isinstance(data[0].editions[0].titleSlug, int) assert data[0].editions[0].isbn13 == "string" assert data[0].editions[0].asin == "string" assert data[0].editions[0].title == "string" assert data[0].editions[0].language == "string" assert data[0].editions[0].overview == "string" assert data[0].editions[0].format == "string" assert data[0].editions[0].isEbook is True assert data[0].editions[0].disambiguation == "string" assert data[0].editions[0].publisher == "string" assert isinstance(data[0].editions[0].pageCount, int) assert data[0].editions[0].releaseDate == datetime(2021, 12, 7, 9, 7, 35, 510000) assert data[0].editions[0].images[0].url == "string" assert data[0].editions[0].images[0].coverType == ImageType.POSTER.value assert data[0].editions[0].images[0].extension == "string" assert data[0].editions[0].links[0].url == "string" assert data[0].editions[0].links[0].name == "string" assert isinstance(data[0].editions[0].ratings.votes, int) assert isinstance(data[0].editions[0].ratings.value, float) assert isinstance(data[0].editions[0].ratings.popularity, int) assert data[0].editions[0].monitored is True assert data[0].editions[0].manualAdd is True assert data[0].editions[0].remoteCover == "string" assert data[0].editions[0].grabbed is True assert data[0].grabbed is True
23,693
def lookup_material_probase(information_extractor, query, num): """Lookup material in Probase""" material_params = { 'instance': query, 'topK': num } result = information_extractor.lookup_probase(material_params) rank = information_extractor.rank_probase_result_material(result) return rank
23,694
def get_unexpected_exit_events(op): """Return all unexpected exit status events.""" events = get_events(op) if not events: return None return [e for e in events if is_unexpected_exit_status_event(e)]
23,695
def count_reads(config_file, input_dir, tmp_dir, output_dir, read_counts_file, log_file, run_config): """ Count reads using :py:mod:`riboviz.tools.count_reads`. :param config_file: Configuration file (input) :type config_file: str or unicode :param input_dir: Input directory :type input_dir: str or unicode :param tmp_dir: Temporary directory :type tmp_dir: str or unicode :param output_dir: Output directory :type output_dir: str or unicode :param read_counts_file: Read counts file (output) :type read_counts_file: str or unicode :param log_file: Log file (output) :type log_file: str or unicode :param run_config: Run-related configuration :type run_config: RunConfigTuple :raise FileNotFoundError: if ``python`` cannot be found :raise AssertionError: if ``python`` returns a non-zero exit \ code """ LOGGER.info("Count reads. Log: %s", log_file) cmd = ["python", "-m", count_reads_module.__name__, "-c", config_file, "-i", input_dir, "-t", tmp_dir, "-o", output_dir, "-r", read_counts_file] process_utils.run_logged_command(cmd, log_file, run_config.cmd_file, run_config.is_dry_run)
23,696
async def delete_user(username: str) -> GenericResponse: """Delete concrete user by username""" try: await MongoDbWrapper().remove_user(username) except Exception as exception_message: raise DatabaseException(error=exception_message) return GenericResponse(detail="Deleted user")
23,697
def concat_files(concat_filename="similar.txt"): """ searches for a file named similar.txt in sub directories and writes the content of this to a file in the main directory """ inpath = concatPath("") outstring = "" for (dirpath, dirnames, filenames) in os.walk(inpath): if not inpath == dirpath: continue for dirname in dirnames: filename = dirname + os.sep + concat_filename if not os.path.isfile(filename): continue ifile = open(filename, "r") for line in ifile.readlines(): outstring += line ifile.close() os.remove(filename) writeToFile(inpath + os.sep + concat_filename, outstring)
23,698
def get_changelog(): """download ChangeLog.txt from github, extract latest version number, return a tuple of (latest_version, contents) """ # url will be chosen depend on frozen state of the application source_code_url = 'https://github.com/pyIDM/pyIDM/raw/master/ChangeLog.txt' new_release_url = 'https://github.com/pyIDM/pyIDM/releases/download/extra/ChangeLog.txt' url = new_release_url if config.FROZEN else source_code_url # url = new_release_url # get BytesIO object log('check for PyIDM latest version ...') buffer = download(url, verbose=False) if buffer: # convert to string contents = buffer.getvalue().decode() # extract version number from contents latest_version = contents.splitlines()[0].replace(':', '').strip() return latest_version, contents else: log("check_for_update() --> couldn't check for update, url is unreachable") return None
23,699