content
stringlengths
22
815k
id
int64
0
4.91M
def _transpose_list_array(x): """Transposes a list matrix """ n_dims = len(x) assert n_dims > 0 n_samples = len(x[0]) rows = [None] * n_samples for i in range(n_samples): r = [None] * n_dims for j in range(n_dims): r[j] = x[j][i] rows[i] = r return rows
21,700
def load_businessgroup(request): """ Business Group Dependent/Chained Dropdown List """ business_type_id = request.GET.get('business_type') business_group_list = BusinessGroup.objects.filter( business_type_id=business_type_id).order_by('name') context = {'business_group_list': business_group_list} return render(request, 'app_sme12/form_partial/bus_group_dropdown_list_options.html', context)
21,701
def seed_normalization(train_X, train_Y, test_X, testY, nor_method=0, merge=0, column=0): """ 0 for minmax 1 for standard, 2 for nothing :param nor_method: :param merge:是否训练集测试集一起归一化 :return: """ # imp_mean = SimpleImputer(missing_values=np.nan, strategy="mean") imp_mean = KNNImputer(n_neighbors=10,weights="uniform") train_X = imp_mean.fit_transform(train_X) test_X = imp_mean.fit_transform(test_X) if column == 0: if nor_method == 0: scaler = MinMaxScaler() elif nor_method == 1: scaler = StandardScaler() elif nor_method == 2: scaler = Normalizer() elif nor_method == 3: scaler = Pipeline([('min_max', MinMaxScaler()), ('standard', StandardScaler())]) else: return train_X, train_Y, test_X, testY if merge == 0: scaler.fit(np.vstack((train_X, test_X))) train_X = scaler.transform(train_X) test_X = scaler.transform(test_X) elif merge == 1: scaler.fit(train_X) train_X = scaler.transform(train_X) test_X = scaler.transform(test_X) else: train_X = scaler.fit_transform(train_X) test_X = scaler.fit_transform(test_X) #scaler.fit(np.vstack((train_X, test_X))) return train_X, train_Y, test_X, testY else: train_X = train_X.T x_mean = np.mean(train_X, axis=0) x_std = np.std(train_X, axis=0) train_X = (train_X - x_mean) / (x_mean - x_std) test_X = test_X.T x_mean = np.mean(test_X, axis=0) x_std = np.std(test_X, axis=0) test_X = (test_X - x_mean) / (x_mean - x_std) return train_X.T, train_Y, test_X.T, testY
21,702
def combine_matrix_runs(path, runs, pacc_file): """Combine a set of transition matrix files. Args: path: The base path containing the data to combine. runs: The list of runs to combine. pacc_file: The name of the file to combine. Returns: A TransitionMatrix object with the combined data. """ true_path = pathlib.Path(path) return combine_matrices([read_matrix(true_path / run / pacc_file) for run in runs])
21,703
def submit_tweet_with_media(message, mediafile, tweet_to_reply=None, handle=None): """ imfile is the path to an media tweet_to_reply is a tweet that you're replying to, if not None """ if not handle: handle = twitter_handle() media_ids = handle.upload_media(media=open(mediafile)) if tweet_to_reply is None: handle.update_status(status=message, media_ids=media_ids['media_id']) else: # must mention user's name for it to be a reply message += ' @' + tweet_to_reply['user']['screen_name'] handle.update_status(status=message, in_reply_to_status_id=tweet_to_reply['id'], media_ids=media_ids['media_id'])
21,704
def get_pkg_descr(package, version=None, last_modified=None): """ Get package description from registry """ json_data = fetch_page('http://registry.npmjs.org/%s' % package, last_modified=last_modified) if json_data is None: # NB: empty string is not None but will fail the check return None else: return json.loads(json_data)
21,705
def has_pattern(str_or_strlist): """When passed a string, equivalent to calling looks_like_pattern. When passed a string list, returns True if any one of the strings looks like a pattern, False otherwise.""" strlist = [str_or_strlist] if isinstance(str_or_strlist, str) else str_or_strlist return len([s for s in strlist if looks_like_pattern(s)]) > 0
21,706
def update_hidden_area(*args): """update_hidden_area(hidden_area_t ha) -> bool""" return _idaapi.update_hidden_area(*args)
21,707
def after_update_forecast_datasets(msg, config, checklist): """Calculate the list of workers to launch after the update_forecast_datasets worker ends. :arg msg: Nowcast system message. :type msg: :py:class:`nemo_nowcast.message.Message` :arg config: :py:class:`dict`-like object that holds the nowcast system configuration that is loaded from the system configuration file. :type config: :py:class:`nemo_nowcast.config.Config` :arg dict checklist: System checklist: data structure containing the present state of the nowcast system. :returns: Worker(s) to launch next :rtype: list """ next_workers = { "crash": [], "failure fvcom forecast": [], "failure nemo forecast": [], "failure nemo forecast2": [], "failure wwatch3 forecast": [], "failure wwatch3 forecast2": [], "success fvcom forecast": [], "success nemo forecast": [], "success nemo forecast2": [], "success wwatch3 forecast": [], "success wwatch3 forecast2": [], } if msg.type.startswith("success"): model = msg.type.split()[1] run_type = msg.type.split()[2] try: run_date = checklist[f"{model.upper()} run"][run_type]["run date"] except KeyError: # FVCOM run has model config prefixed to run type run_date = checklist[f"{model.upper()} run"][f"x2 {run_type}"]["run date"] next_workers[msg.type].append( NextWorker("nowcast.workers.ping_erddap", args=[f"{model}-forecast"]) ) if model == "nemo": next_workers[msg.type].extend( [ NextWorker( "nowcast.workers.make_plots", args=["nemo", run_type, "publish", "--run-date", run_date], ), NextWorker( "nowcast.workers.make_surface_current_tiles", args=[run_type, "--run-date", run_date], ), ] ) return next_workers[msg.type]
21,708
def index(request): """Homepage for this app. """ with open('index.html') as fp: return HttpResponse(fp.read())
21,709
def SECH(*args) -> Function: """ The SECH function returns the hyperbolic secant of an angle. Learn more: https//support.google.com/docs/answer/9116560 """ return Function("SECH", args)
21,710
def read_ATAC_10x(matrix, cell_names='', var_names='', path_file=''): """ Load sparse matrix (including matrices corresponding to 10x data) as AnnData objects. read the mtx file, tsv file coresponding to cell_names and the bed file containing the variable names Parameters ---------- matrix: sparse count matrix cell_names: optional, tsv file containing cell names var_names: optional, bed file containing the feature names Return ------ AnnData object """ mat = mmread(''.join([path_file, matrix])) mat = mat.toarray() mat = np.matrix(mat.transpose()) with open(path_file+cell_names) as f: barcodes = f.readlines() barcodes = [x[:-1] for x in barcodes] with open(path_file+var_names) as f: var_names = f.readlines() var_names = ["_".join(x[:-1].split('\t')) for x in var_names] adata = ad.AnnData(mat, obs=pd.DataFrame(index=barcodes), var=pd.DataFrame(index=var_names)) adata.uns['omic'] = 'ATAC' return(adata)
21,711
def print_header(): """ Prints header for app :return: """ print('-------------------------------------------') print(' Weather APP') print('-------------------------------------------') print()
21,712
def _resolve_placeholder(placeholder, original): """Resolve a placeholder to the given original object. :param placeholder: The placeholder to resolve, in place. :type placeholder: dict :param original: The object that the placeholder represents. :type original: dict """ new = copy.deepcopy(original) # We are supposed to be resolving the placeholder, # not replacing it with another. assert original["type"] != "placeholder" # The name remains the same. new["name"] = placeholder["name"] new["full_name"] = placeholder["full_name"] # Record where the placeholder originally came from. new["original_path"] = original["full_name"] # The source lines for this placeholder do not exist in this file. # The keys might not exist if original is a resolved placeholder. new.pop("from_line_no", None) new.pop("to_line_no", None) # Resolve the children stack = list(new.get("children", ())) while stack: child = stack.pop() # Relocate the child to the new location assert child["full_name"].startswith(original["full_name"]) suffix = child["full_name"][len(original["full_name"]) :] child["full_name"] = new["full_name"] + suffix # The source lines for this placeholder do not exist in this file. # The keys might not exist if original is a resolved placeholder. child.pop("from_line_no", None) child.pop("to_line_no", None) # Resolve the remaining children stack.extend(child.get("children", ())) placeholder.clear() placeholder.update(new)
21,713
def get_html_subsection(name): """ Return a subsection as HTML, with the given name :param name: subsection name :type name: str :rtype: str """ return "<h2>{}</h2>".format(name)
21,714
def test_load_pandas_df( size, num_samples, num_movies, movie_example, title_example, genres_example, year_example, tmp, ): """Test MovieLens dataset load as pd.DataFrame""" # Test if correct data are loaded header = ["a", "b", "c"] df = load_pandas_df(size=size, local_cache_path=tmp, header=header) assert len(df) == num_samples assert len(df.columns) == len(header) # Test if raw-zip file, rating file, and item file are cached assert len(os.listdir(tmp)) == 3 # Test title, genres, and released year load header = ["a", "b", "c", "d", "e"] with pytest.warns(Warning): df = load_pandas_df( size=size, header=header, local_cache_path=tmp, title_col="Title", genres_col="Genres", year_col="Year", ) assert len(df) == num_samples assert ( len(df.columns) == 7 ) # 4 header columns (user, item, rating, timestamp) and 3 feature columns assert "e" not in df.columns # only the first 4 header columns are used # Get two records of the same items and check if the item-features are the same. head = df.loc[df["b"] == movie_example][:2] title = head["Title"].values assert title[0] == title[1] assert title[0] == title_example genres = head["Genres"].values assert genres[0] == genres[1] assert genres[0] == genres_example year = head["Year"].values assert year[0] == year[1] assert year[0] == year_example # Test default arguments df = load_pandas_df(size) assert len(df) == num_samples # user, item, rating and timestamp assert len(df.columns) == 4
21,715
def compute_norms(items): """ Compute the norms of the item vectors provided. Arguments: items -- a hashmap which maps itemIDs to the characteristic vectors """ norms = {} for item in items: norms[item] = np.sqrt(np.sum(np.square(items[item]))) return norms
21,716
def check_cert_path(path): """Pass.""" build_path = path.parent / "build_certs.py" if not path.is_file(): error = "Cert {path!r} does not exist, run {build_path!r}" error = error.format(path=format(path), build_path=format(build_path)) raise Exception(error)
21,717
def do_part_1(): """ Solves part 1 """ digested_lines = list(map(digest_line, input_lines(2))) # Poor man's partial doubles = sum(map(lambda l: contains_nple(l, reps=2), digested_lines)) triples = sum(map(lambda l: contains_nple(l, reps=3), digested_lines)) print(doubles * triples) return doubles * triples
21,718
def create_Rz_batch(a): """ Creates a batch of rotation matrices about z of angles a. Input (batch) Output (batch, 3, 3) """ return torch.stack([ torch.stack([torch.cos(a), torch.sin(a), torch.zeros_like(a)], dim=1), torch.stack([-torch.sin(a), torch.cos(a), torch.zeros_like(a)], dim=1), torch.stack([torch.zeros_like(a), torch.zeros_like(a), torch.ones_like(a)], dim=1) ], dim=2)
21,719
def get_upsample_filter(size): """Make a 2D bilinear kernel suitable for upsampling""" factor = (size + 1) // 2 if size % 2 == 1: center = factor - 1 else: center = factor - 0.5 og = np.ogrid[:size, :size] filter = (1 - abs(og[0] - center) / factor) * \ (1 - abs(og[1] - center) / factor) return torch.from_numpy(filter).float()
21,720
def lst2gmst(longitude, hour, minute=None, second=None, longitudeDirection='W', longitudeUnits='DEGREES'): """ Converts Local Sidereal Time to Greenwich Mean Sidereal Time. Parameters ---------- longitude : float (any numeric type) The longitude of the site to calculate the Local Sidereal Time. Defaults are Longitude WEST and units DEGREES, but these can be changed with the optional parameters lonDirection and lonUnits. hour : int (or float) If an integer, the function will expect a minute and second. If a float, it will ignore minute and second and convert from decimal hours to hh:mm:ss. minute : int Ignored if hour is a float. second : int (any numeric type, to include microseconds) Ignored if hour is a float. longitudeDirection : string Default is longitude WEST, 'W', but you can specify EAST by passing 'E'. longitudeUnits : string Default units are 'DEGREES', but this can be switched to radians by passing 'RADIANS' in this parameter. Returns ------- hour : int The hour of the calculated GMST minute : int The minutes of the calculated GMST second: float The seconds of the calculated GMST Examples -------- >>> lst2gmst(70.3425, hour=14, minute=26, second=18) (19, 7, 40.20000000000607) >>> lst2gmst(5.055477, hour=14.4383333333333333, longitudeDirection='E', longitudeUnits='RADIANS') (19, 7, 40.20107388985991) """ if minute != None and second != None: hours = sex2dec(hour, minute, second) elif minute == None and second == None: hours = hour else: raise AssertionError('minute and second must either be both set, or both unset.') if longitudeUnits.upper() == 'DEGREES': longitudeTime = longitude / 15.0 elif longitudeUnits.upper() == 'RADIANS': longitudeTime = longitude * 180.0 / math.pi / 15.0 if longitudeDirection.upper() == 'W': gmst = hours + longitudeTime elif longitudeDirection.upper() == 'E': gmst = hours - longitudeTime else: raise AssertionError('longitudeDirection must be W or E') gmst = gmst % 24.0 return dec2sex(gmst)
21,721
def find_components(package, base_class): """Find components which are subclass of a given base class. """ for filename in resource_listdir(package, ''): basename, extension = os.path.splitext(filename) if extension != '.py' or basename.startswith('.'): continue module_name = "{}.{}".format(package, basename) __import__(module_name, fromlist='*') module = sys.modules[module_name] if not hasattr(module, '__all__'): continue yield from scan_module(module, base_class)
21,722
def main(): """run this by default""" bigfix_cli = bescli.bescli.BESCLInterface() bigfix_cli.do_conf() # generate MSI uninstallers # use session relevance to get the name of the property to get the values from: property_name = bigfix_cli.bes_conn.session_relevance_array( 'unique value of names of bes properties whose(custom flag of it AND name of it contains "DisplayName" AND definition of it contains "ModifyPath")' )[0] # print help messages if property not found: if "ERROR:" in property_name: print("ERROR: Property not found!", property_name) print("You may need to create the property that this script uses") print( "- Recommended Property Name: `DisplayNames of MSI Applications - Windows`" ) print("- Recommended Property Evaluation Period: Once a day") print( "- Recommended Property Relevance found here: https://bigfix.me/relevance/details/3023371" ) raise ValueError("ERROR: Property not found!", property_name) # get the unique set of property results to generate the MSI installers for: property_results = bigfix_cli.bes_conn.session_relevance_array( f'unique values of values of results of bes property "{property_name}"' ) # print(property_results) template_dict = {} template_dict["DownloadSize"] = "0" template_file_path = os.path.join( os.path.dirname(os.path.abspath(__file__)), "Uninstall_MSI-Windows.bes.mustache" ) template_dict["template_file_path"] = template_file_path template_dict = generate_bes_from_template.generate_bes_from_template.get_missing_bes_values( template_dict ) # print(template_dict) for result in property_results: # print(result) # generate the uninstallers: template_dict["DisplayName"] = result generated_task = generate_bes_from_template.generate_bes_from_template.generate_content_from_template( template_dict ) print(save_item_to_besfile(generated_task)) # generate EXE uninstallers: template_file_path = os.path.join( os.path.dirname(os.path.abspath(__file__)), "Uninstall_EXE-Windows.bes.mustache" ) template_dict["template_file_path"] = template_file_path property_name = bigfix_cli.bes_conn.session_relevance_array( 'unique value of names of bes properties whose(custom flag of it AND name of it contains "DisplayName" AND definition of it contains "QuietUninstallString")' )[0] # print help messages if property not found: if "ERROR:" in property_name: print("ERROR: Property not found!", property_name) print("You may need to create the property that this script uses") print( "- Recommended Property Name: `DisplayNames of MSI Applications - Windows`" ) print("- Recommended Property Evaluation Period: Once a day") print( "- Recommended Property Relevance found here: https://bigfix.me/relevance/details/3023371" ) raise ValueError("ERROR: Property not found!", property_name) print(property_name) property_results = bigfix_cli.bes_conn.session_relevance_array( f'unique values of values of results of bes property "{property_name}"' ) # print(property_results) for result in property_results: # print(result) # generate the uninstallers: template_dict["DisplayName"] = result generated_task = generate_bes_from_template.generate_bes_from_template.generate_content_from_template( template_dict ) print(save_item_to_besfile(generated_task))
21,723
def filter_funcs(node) -> bool: """Filter to get functions names and remove dunder names""" if not isinstance(node, ast.FunctionDef): return False elif node.name.startswith('__') or node.name.endswith('__'): return False else: return True
21,724
def test_disabled_enable_debug() -> None: """Check that enable_debug=False works.""" tc.assertTrue( is_file_exists(get_absolute_from_current_path(__file__, "0001.png")) ) copy_file( get_absolute_from_current_path(__file__, "0001.png"), get_absolute_from_current_path(__file__, "0001_debug.png"), ) SeparatePage().treat_file( get_absolute_from_current_path(__file__, "0001_debug.png"), debug=DebugImage(DebugImage.Level.OFF), ) delete_file(get_absolute_from_current_path(__file__, "0001_debug.png"))
21,725
def main(): """ Load the list of valid country codes and create output for each country. Two output files and one plot are created for each country. """ with open(DATA_FOLDER+COUNTRY_CODES, "r") as infile: infile.readline() info = [(int(_l.split("\t")[0]), _l.split("\t")[3]) for _l in infile] for c_id, name in info: if c_id in [554, 643, 840]: # 554, 643, 840 the three countries that span the -180/180 degree # latitude line and hence cause an array of population data that is # too large to be plotted on a map. # These countries are: # - New Zealand (554) # - Russia (643) # - USA (840) print(c_id, "caused errors in the past. Skipping for now...") continue if os.path.exists("plots/{0}.png".format(c_id)): print(c_id, "already present.") else: print("Running for country:", c_id) plot = Plot(c_id) plot.plot(title=name)
21,726
def attach(address, log_dir=None, multiprocess=True): """Starts a DAP (Debug Adapter Protocol) server in this process, and connects it to the IDE that is listening for an incoming connection on a socket with the specified address. address must be a (host, port) tuple, as defined by the standard socket module for the AF_INET address family. If specified, log_dir must be a path to some existing directory; the debugger will then create its log files in that directory. A separate log file is created for every process, to accommodate scenarios involving multiple processes. The log file for a process with process ID <pid> will be named "ptvsd_<pid>.log". If multiprocess is true, ptvsd will also intercept child processes spawned by this process, inject a debug server into them, and configure it to attach to the same IDE before the child process starts running any user code. This function doesn't return until connection to the IDE has been established. """ from ptvsd.server import api return api.attach(address, log_dir)
21,727
def create_api_token( creator_id: UserID, permissions: set[PermissionID], *, description: Optional[str] = None, ) -> ApiToken: """Create an API token.""" num_bytes = 40 token = token_urlsafe(num_bytes) db_api_token = DbApiToken( creator_id, token, permissions, description=description ) db.session.add(db_api_token) db.session.commit() return _db_entity_to_api_token(db_api_token)
21,728
def parse_arguments(): """Parse command line arguments.""" parser = argparse.ArgumentParser(description="Update OCFL inventory sidecar file", formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument("path", type=str, nargs="*", help="OCFL inventory files or directories containing them") parser.add_argument("--digest", default=None, help="Digest algorithm to use overriding any in inventory") ocfl.add_shared_args(parser) args = parser.parse_args() ocfl.check_shared_args(args) return args
21,729
def match_image_widths( image_i1: Image, image_i2: Image ) -> Tuple[Image, Image, Tuple[float, float], Tuple[float, float]]: """Automatically chooses the target width (larger of the two inputs), and scales both images to that width. Args: image_i1: 1st image to match width. image_i2: 2nd image to match width. Returns: Scaled image_i1. Scaled image_i2. Scaling factor (W, H) for image_i1. Scaling factor (W, H) for image_i2. """ max_width = max(image_i1.width, image_i2.width) # scale image_i1 new_width = int(max_width) new_height = int(image_i1.height * new_width / image_i1.width) scale_factor_i1 = (new_width / image_i1.width, new_height / image_i1.height) scaled_image_i1 = resize_image(image_i1, new_height, new_width) # scale image_i2 new_width = int(max_width) new_height = int(image_i2.height * new_width / image_i2.width) scale_factor_i2 = (new_width / image_i2.width, new_height / image_i2.height) scaled_image_i2 = resize_image(image_i2, new_height, new_width) return scaled_image_i1, scaled_image_i2, scale_factor_i1, scale_factor_i2
21,730
def get_parameter_value_and_validate_return_type( domain: Optional[Domain] = None, parameter_reference: Optional[Union[Any, str]] = None, expected_return_type: Optional[Union[type, tuple]] = None, variables: Optional[ParameterContainer] = None, parameters: Optional[Dict[str, ParameterContainer]] = None, ) -> Optional[Any]: """ This method allows for the parameter_reference to be specified as an object (literal, dict, any typed object, etc.) or as a fully-qualified parameter name. In either case, it can optionally validate the type of the return value. """ if isinstance(parameter_reference, dict): parameter_reference = dict(copy.deepcopy(parameter_reference)) parameter_reference = get_parameter_value( domain=domain, parameter_reference=parameter_reference, variables=variables, parameters=parameters, ) if expected_return_type is not None: if not isinstance(parameter_reference, expected_return_type): raise ge_exceptions.ProfilerExecutionError( message=f"""Argument "{parameter_reference}" must be of type "{str(expected_return_type)}" \ (value of type "{str(type(parameter_reference))}" was encountered). """ ) return parameter_reference
21,731
def diff_tags(list_a, list_b): """ Return human readable diff string of tags changed between two tag lists :param list_a: Original tag list :param list_b: New tag list :return: Difference string """ status_str = text_type("") tags_added = [tag for tag in list_b if tag not in list_a] tags_removed = [tag for tag in list_a if tag not in list_b] if tags_added and tags_removed: status_str += "added: {0}".format(text_type(tags_added)) status_str += " removed: {0}".format(text_type(tags_removed)) elif tags_added: status_str += "added: {0}".format(text_type(tags_added)) elif tags_removed: status_str += "removed: {0}".format(text_type(tags_removed)) if not status_str: status_str = "no changes required." return status_str
21,732
def distance_on_great_circle(start_point, direction, distance): """compute the location of a point a specified distance along a great circle NOTE: This assumes a spherical earth. The error introduced in the location is pretty small (~15 km for a 13000 km path), but it totall screws with the altitude. YOU SHOULD NOT USE THE ALTITUDE COMING OUT OF THIS, ESPECIALLY IF YOU HAVE ANY MEANGINFUL DISTANCE Arguments: start_point: the starting point of the great circle. The direction is given in a NED frame at this point. Numpy (3,) array in radians, lla direction: a NED vector indicating the direction of the great circle distance: the length of the great circle arc (m) Returns: end_point: the end of a great circle path of length <distance> from <start_point> with initial <direction> """ start_xyz = geodesy.conversions.lla_to_xyz(start_point) direction = geometry.conversions.to_unit_vector(direction) delta_xyz = geodesy.conversions.ned_to_xyz( direction, numpy.array(start_point, ndmin=2)) rotation_axis = -geometry.conversions.to_unit_vector( numpy.cross(start_xyz, delta_xyz)) rotation_magnitude = distance / environments.earth.constants['r0'] rotation_quaternion = geometry.quaternion.Quaternion() rotation_quaternion.from_axis_and_rotation( rotation_axis, rotation_magnitude) end_point_xyz = rotation_quaternion.rot(start_xyz) end_point = geodesy.conversions.xyz_to_lla(end_point_xyz) return end_point
21,733
def bigo(): """ User inputs corresponding Big O of randomly generated expression """ # Init algorithm 1 a1 = randint(0, 2) if (a1 == 0): a1 = Expression(terms=3) else : a1 = return_rterm() # Question user print(f"\nGive the corresponding Big O of {a1}.") user_inp = str(input("\nInput answer: ")).lower() if (user_inp == a1.bigo().lower()): print(f"Correct!") else: print(f"Incorrect ._. -> Correct Answer: {a1.bigo().lower()}")
21,734
def test_extra_kwargs_error(): """Test that unrecognized kwargs gives a FutureWarning.""" with pytest.raises(TypeError) as wrn: widgets.Label(unknown_kwarg="hi") assert "unexpected keyword argument" in str(wrn)
21,735
def construct_tree_framework(bracket): """Given the tree in bracket form, creates a tree with labeled leaves and unlabeled inner nodes.""" if type(bracket)==int: #base case, creates leaf return Node(tree) else: #recursive step, inner nodes root = Node(None, construct_tree_framework(bracket[0]), construct_tree_framework(bracket[1])) return root
21,736
def eckart_transform(atommasses, atomcoords): """Compute the Eckart transform. This transform is described in https://gaussian.com/vib/. Parameters ---------- atommasses : array-like Atomic masses in atomic mass units (amu). atomcoords : array-like Atomic coordinates. Returns ------- array-like Examples -------- >>> from overreact import _datasets as datasets >>> data = datasets.logfiles["tanaka1996"]["Cl·@UMP2/cc-pVTZ"] >>> eckart_transform(data.atommasses, data.atomcoords) array([[1., 0., 0.], [0., 1., 0.], [0., 0., 1.]]) >>> data = datasets.logfiles["symmetries"]["dihydrogen"] >>> eckart_transform(data.atommasses, data.atomcoords) array([[...]]) >>> data = datasets.logfiles["symmetries"]["water"] >>> eckart_transform(data.atommasses, data.atomcoords) array([[-9.42386999e-01, 0.00000000e+00, 0.00000000e+00, 2.99716727e-01, -2.86166258e-06, -7.42376895e-02, -1.19022276e-02, 4.33736541e-03, -1.28081683e-01], [-0.00000000e+00, -9.42386999e-01, 0.00000000e+00, 1.40934586e-02, -1.34562803e-07, 1.01850683e-01, -1.52466204e-01, -2.78628770e-01, -2.13218735e-02], [-0.00000000e+00, -0.00000000e+00, -9.42386999e-01, -1.47912143e-01, 1.41224899e-06, -1.40724409e-01, -3.86450545e-02, -1.77596105e-02, -2.61565554e-01], [-2.36544652e-01, -0.00000000e+00, -0.00000000e+00, -5.97037403e-01, -6.33525274e-01, 2.70812665e-02, -2.34354970e-01, 8.09905642e-02, 3.52169811e-01], [-0.00000000e+00, -2.36544652e-01, -0.00000000e+00, -2.80742485e-02, -2.97900030e-02, -6.93753868e-01, 5.78451116e-01, 2.06337502e-01, 2.89647600e-01], [-0.00000000e+00, -0.00000000e+00, -2.36544652e-01, 2.94641819e-01, 3.12648820e-01, -1.12274948e-02, -4.19760855e-01, 1.83772848e-01, 7.41205673e-01], [-2.36544652e-01, -0.00000000e+00, -0.00000000e+00, -5.97025305e-01, 6.33536675e-01, 2.68679525e-01, 2.81773098e-01, -9.82705016e-02, 1.58103880e-01], [-0.00000000e+00, -2.36544652e-01, -0.00000000e+00, -2.80736797e-02, 2.97905391e-02, 2.87983715e-01, 2.89697972e-02, 9.03711399e-01, -2.04701877e-01], [-0.00000000e+00, -0.00000000e+00, -2.36544652e-01, 2.94635849e-01, -3.12654446e-01, 5.71869440e-01, 5.73721626e-01, -1.13019078e-01, 3.00863871e-01]]) """ atommasses = np.asarray(atommasses) natom = len(atommasses) dof = 3 * natom moments, axes, atomcoords = inertia(atommasses, atomcoords, align=False) x = np.block( [ np.ones(natom)[:, np.newaxis], np.zeros(natom)[:, np.newaxis], np.zeros(natom)[:, np.newaxis], ] ) y = np.block( [ np.zeros(natom)[:, np.newaxis], np.ones(natom)[:, np.newaxis], np.zeros(natom)[:, np.newaxis], ] ) z = np.block( [ np.zeros(natom)[:, np.newaxis], np.zeros(natom)[:, np.newaxis], np.ones(natom)[:, np.newaxis], ] ) x *= np.sqrt(atommasses[:, np.newaxis]) y *= np.sqrt(atommasses[:, np.newaxis]) z *= np.sqrt(atommasses[:, np.newaxis]) D_trans = np.block([x.reshape(1, dof).T, y.reshape(1, dof).T, z.reshape(1, dof).T]) D_rot = np.array( [ np.cross((atomcoords @ axes)[i], axes[:, j]) / np.sqrt(atommasses[i]) for i in range(natom) for j in range(3) ] ) D = np.block([D_trans, D_rot]) return np.linalg.qr(D, mode="complete")[0]
21,737
def plot_rdkit(mol, filename=None): """ Plots an RDKit molecule in Matplotlib :param mol: an RDKit molecule :param filename: save the image with the given filename :return: """ if rdc is None: raise ImportError('`draw_rdkit_mol` requires RDkit.') if filename is not None: Draw.MolToFile(mol, filename) img = Draw.MolToImage(mol) plt.imshow(img)
21,738
def as_java_array(gateway, java_type, iterable): """Creates a Java array from a Python iterable, using the given p4yj gateway""" java_type = gateway.jvm.__getattr__(java_type) lst = list(iterable) arr = gateway.new_array(java_type, len(lst)) for i, e in enumerate(lst): jobj = as_java_object(gateway, e) arr[i] = jobj return arr
21,739
def match(a: np.ndarray, b: np.ndarray) -> np.ndarray: """Finds the matrix R that minimizes the frobenius norm of RA - B, where R is orthonormal. Args: a (np.ndarray[samples, features]): the first matrix to match b (np.ndarray[samples, features]): the second matrix to match Returns: np.ndarray: the orthonormal matching matrix R """ tus.check_ndarrays( a=(a, ('samples', 'features'), ('float32', 'float64')), b=(b, (('samples', a.shape[0]), ('features', a.shape[1])), a.dtype) ) m = b @ a.T u, _, vh = scipy.linalg.svd(m) return np.real(u @ vh)
21,740
def macro_cons_silver_amount(): """ 全球最大白银ETF--iShares Silver Trust持仓报告, 数据区间从20060429-至今 :return: pandas.Series 2006-04-29 263651152 2006-05-02 263651152 2006-05-03 445408550 2006-05-04 555123947 2006-05-05 574713264 ... 2019-10-17 Show All 2019-10-18 Show All 2019-10-21 Show All 2019-10-22 Show All 2019-10-23 Show All """ t = time.time() res = requests.get( JS_CONS_SLIVER_ETF_URL.format( str(int(round(t * 1000))), str(int(round(t * 1000)) + 90) ) ) json_data = json.loads(res.text[res.text.find("{"): res.text.rfind("}") + 1]) date_list = [item["date"] for item in json_data["list"]] value_list = [item["datas"]["白银"] for item in json_data["list"]] value_df = pd.DataFrame(value_list) value_df.columns = json_data["kinds"] value_df.index = pd.to_datetime(date_list) temp_df = value_df["总价值(美元)"] url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "max_date": "", "category": "etf", "attr_id": "2", "_": str(int(round(t * 1000))), } headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment", "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } r = requests.get(url, params=params, headers=headers) temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, [0, 3]] temp_se.index = pd.to_datetime(temp_se.iloc[:, 0]) temp_se = temp_se.iloc[:, 1] temp_df = temp_df.append(temp_se) temp_df.dropna(inplace=True) temp_df.sort_index(inplace=True) temp_df = temp_df.reset_index() temp_df.drop_duplicates(subset="index", keep="last", inplace=True) temp_df.set_index("index", inplace=True) temp_df = temp_df.squeeze() temp_df.index.name = None temp_df.name = "silver_amount" url = "https://cdn.jin10.com/data_center/reports/etf_2.json" r = requests.get(url) data_json = r.json() append_temp_df = pd.DataFrame(data_json["values"]).T append_temp_df.columns = [item["name"] for item in data_json["keys"]] temp_append_df = append_temp_df["总价值"] temp_append_df.name = "silver_amount" temp_df = temp_df.reset_index() temp_df["index"] = temp_df["index"].astype(str) temp_df = temp_df.append(temp_append_df.reset_index()) temp_df.drop_duplicates(subset=["index"], keep="last", inplace=True) temp_df.index = pd.to_datetime(temp_df["index"]) del temp_df["index"] temp_df = temp_df[temp_df != 'Show All'] temp_df.sort_index(inplace=True) temp_df = temp_df.astype(float) return temp_df
21,741
def shuffle(answers): """ Returns mixed answers and the index of the correct one, assuming the first answer is the correct one. """ indices = list(range(len(answers))) random.shuffle(indices) correct = indices.index(0) answers = [answers[i] for i in indices] return answers, correct
21,742
def annotations_to_xml(annotations_df: pd.DataFrame, image_path: Union[str, Path], write_file=True) -> str: """ Load annotations from dataframe (retinanet output format) and convert them into xml format (e.g. RectLabel editor / LabelImg). Args: annotations_df (DataFrame): Format [xmin,ymin,xmax,ymax,label,...] image_path: string/Path path to the file where these bboxes are found write_file: Writes the xml at the same path as the image it describes. Overwrites the existent file, if any. Returns: XML <annotation> <folder>unlabeled_imgs</folder> <filename>autumn-forest-from-above-2210x1473.jpeg</filename> <path>/work/trees/unlabeled_imgs/autumn-forest-from-above-2210x1473.jpeg</path> <source> <database>Unknown</database> </source> <size> <width>2210</width> <height>1473</height> <depth>3</depth> </size> <segmented>0</segmented> <object> <name>tree</name> <pose>Unspecified</pose> <truncated>0</truncated> <difficult>0</difficult> <bndbox> <xmin>718</xmin> <ymin>603</ymin> <xmax>792</xmax> <ymax>705</ymax> </bndbox> </object> </annotation> """ image_path = Path(image_path) out_dict = { 'folder': image_path.parent.name, 'filename': image_path.name, 'path': str(image_path), 'segmented': 0 } xml_out = '<annotation>\n' xml_out += dict2xml(out_dict, indent=" ") + '\n' xml_out += "\n".join([__annotation_row_to_dict(row) for _, row in annotations_df.iterrows()]) xml_out += '\n</annotation>\n' if write_file: # annotations file should be near its image file_path = image_path.parent / f'{image_path.stem}.xml' with open(file_path, 'w+') as the_file: the_file.write(xml_out) return xml_out
21,743
def depth(sequence, func=max, _depth=0): """ Find the nesting depth of a nested sequence """ if isinstance(sequence, dict): sequence = list(sequence.values()) depth_list = [ depth(item, func=func, _depth=_depth + 1) for item in sequence if (isinstance(item, dict) or util_type.is_listlike(item)) ] if len(depth_list) > 0: return func(depth_list) else: return _depth
21,744
def tei_email(elem_text): """ create TEI element <email> with given element text """ email = etree.Element("email") email.text = elem_text return email
21,745
def rebuild(request): """Rebuild ``XPI`` file. It can be provided as POST['location'] :returns: (JSON) contains one field - hashtag it is later used to download the xpi using :meth:`xpi.views.check_download` and :meth:`xpi.views.get_download` """ # validate entries secret = request.POST.get('secret', None) if not secret or secret != settings.AMO_SECRET_KEY: log.error("Rebuild requested with an invalid key. Rejecting.") return HttpResponseForbidden('Access denied') options = request.POST.get('options', None) location = request.POST.get('location', None) addons = request.POST.get('addons', None) upload = request.FILES.get('upload', None) if not location and not upload and not addons: log.error("Rebuild requested but files weren't specified. Rejecting.") return HttpResponseBadRequest('Please provide XPI files to rebuild') if location and upload: log.error("Rebuild requested but location and upload provided." "Rejecting") return HttpResponseBadRequest('Please provide XPI files to rebuild') # locate SDK source directory sdk_version = request.POST.get('sdk_version', None) if sdk_version: sdk = get_object_or_404(SDK, version=sdk_version) sdk_source_dir = sdk.get_source_dir() else: sdk_source_dir = (settings.REPACKAGE_SDK_SOURCE or _get_latest_sdk_source_dir()) sdk_manifest = '%s/packages/%s/package.json' % (sdk_source_dir, 'addon-kit') try: handle = open(sdk_manifest) except Exception, err: log.critical("Problems loading SDK manifest\n%s" % str(err)) raise else: sdk_version = simplejson.loads(handle.read())['version'] handle.close() pingback = request.POST.get('pingback', None) priority = request.POST.get('priority', None) post = request.POST.urlencode() if priority and priority == 'high': rebuild_task = tasks.high_rebuild else: rebuild_task = tasks.low_rebuild response = {'status': 'success'} errors = [] counter = 0 if location or upload: hashtag = get_random_string(10) if location: log.debug('[%s] Single rebuild started for location (%s)' % (hashtag, location)) else: log.debug('[%s] Single rebuild started from upload' % hashtag) filename = request.POST.get('filename', None) try: package_overrides = _get_package_overrides(request.POST, sdk_version) except BadManifestFieldException, err: errors.append('[%s] %s' % (hashtag, str(err))) else: rebuild_task.delay( location, upload, sdk_source_dir, hashtag, package_overrides=package_overrides, filename=filename, pingback=pingback, post=post, options=options) counter = counter + 1 if addons: try: addons = simplejson.loads(addons) except Exception, err: errors.append('[%s] %s' % (hashtag, str(err))) else: for addon in addons: error = False filename = addon.get('filename', None) hashtag = get_random_string(10) location = addon.get('location', None) upload_name = addon.get('upload', None) upload = None if upload_name: upload = request.FILES.get(upload_name, None) if not (location or upload): errors.append("[%s] Files not specified." % hashtag) error = True if location and upload: errors.append(("[%s] Location and upload provided. " "Rejecting") % hashtag) error = True try: package_overrides = _get_package_overrides(addon, sdk_version) except Exception, err: errors.append('[%s] %s' % (hashtag, str(err))) error = True if not error: rebuild_task.delay( location, upload, sdk_source_dir, hashtag, package_overrides=package_overrides, filename=filename, pingback=pingback, post=post) counter = counter + 1 if errors: log.error("Errors reported when rebuilding") response['status'] = 'some failures' response['errors'] = '' for e in errors: response['errors'] = "%s%s\n" % (response['errors'], e) log.error(" Error: %s" % e) response['addons'] = counter uuid = request.POST.get('uuid', 'no uuid') log.info("%d addon(s) will be created, %d syntax errors, uuid: %s" % (counter, len(errors), uuid)) return HttpResponse(simplejson.dumps(response), mimetype='application/json')
21,746
def get_requirements(req_file: str) -> List[str]: """ Extract requirements from provided file. """ req_path = Path(req_file) requirements = req_path.read_text().split("\n") if req_path.exists() else [] return requirements
21,747
def _generate_ngram_contexts(ngram: str) -> 'List[Acronym]': """ Generate a list of contextualized n-grams with a decreasing central n-gram and increasing \ lateral context. :param ngram: :return: """ tokens = ngram.split(" ") ngram_size = len(tokens) contexts = [] # Walk only until half and `max_diff` more. for i in range(0, int((ngram_size + 1 + MAX_DIFF) / 2)): # Allow up to `max_diff` difference in size. for j in range(ngram_size - i + MAX_DIFF, ngram_size - i - MAX_DIFF - 1, -1): # Do not allow empty acronym. if i >= j: break # Do not walk past the n-gram. if j > ngram_size: continue left = sys.intern(" ".join(tokens[0:i])) right = sys.intern(" ".join(tokens[j:ngram_size])) center = sys.intern(" ".join(tokens[i:j])) contexts.append(Acronym(acronym=center, left_context=left, right_context=right)) return contexts
21,748
def get_gmail_account(slug): """ Return the details of the given account - just pass in the slug e.g. get_account('testcity') """ service = get_gapps_client() if not service: return None try: return service.users().get(userKey=make_email(slug)).execute() except HttpError: return None
21,749
def _estimate_components(data, xdata): """Not implemented.""" raise NotImplementedError
21,750
def unisolate_machine_command(): """Undo isolation of a machine. Returns: (str, dict, dict). Human readable, context, raw response """ headers = ['ID', 'Type', 'Requestor', 'RequestorComment', 'Status', 'MachineID', 'ComputerDNSName'] machine_id = demisto.args().get('machine_id') comment = demisto.args().get('comment') machine_action_response = unisolate_machine_request(machine_id, comment) machine_action_data = get_machine_action_data(machine_action_response) entry_context = { 'MicrosoftATP.MachineAction(val.ID === obj.ID)': machine_action_data } human_readable = tableToMarkdown("The request to stop the isolation has been submitted successfully:", machine_action_data, headers=headers, removeNull=True) return human_readable, entry_context, machine_action_response
21,751
def func(*listItems): """ 1、遍历所有的列表元素 2、遍历所有的列表元素里面的所有元素放进去一个列表里面 3、排序这个列表,返回最大的那个元素 """ tmp_list=[] for item in listItems: if isinstance(item,list): for i in item: tmp_list.append(i) tmp_list=list(filter(lambda k:isinstance(k,int),tmp_list)) tmp_list.sort(reverse=True) max_value=tmp_list[0] return max_value
21,752
def factory(name: str): """Factory function to return a processing function for Part of Speech tagging. Parameters: ----------- name : str Identifier, e.g. 'spacy-de', 'stanza-de', 'flair-de', 'someweta-de', 'someweta-web-de' Example: -------- import nlptasks as nt import nlptasks.pos sequences = [['Die', 'Kuh', 'ist', 'bunt', '.']] myfn = nt.pos.factory("spacy-de") idseqs, TAGSET = myfn(sequences, maxlen=4) """ if name in ("spacy", "spacy-de"): return spacy_de elif name in ("stanza", "stanza-de"): return stanza_de elif name == "flair-de": return flair_de elif name in ("someweta", "someweta-de"): return someweta_de elif name in ("someweta-web", "someweta-web-de"): return someweta_web_de else: raise Exception(f"Unknown PoS tagger: '{name}'")
21,753
def backoff_handler(debug_only=True): """Backoff logging handler for when polling occurs. Args: details (dict): Backoff context containing the number of tries, target function currently executing, kwargs, args, value, and wait time. """ def _wrapped(details): message = '[Backoff]: Calling \'{}\' again in {:f} seconds with {:d} tries so far'.format( details['target'].__name__, details['wait'], details['tries'] ) if not debug_only: LOGGER.info(message) else: LOGGER.debug(message) return _wrapped
21,754
def align_dataframes(framea, frameb, fill_value = 0.0): """Use pandas DataFrame structure to align two-dimensional data :param framea: First pandas dataframe to align :param frameb: Other pandas dataframe to align :param fill_value: default fill value (0.0 float) return: tuple of aligned frames """ zeroframe = frameb.copy() zeroframe[:] = fill_value aligneda = framea.add(zeroframe, fill_value = fill_value) zeroframe = framea.copy() zeroframe[:] = fill_value alignedb = frameb.add(zeroframe, fill_value = fill_value) return aligneda, alignedb
21,755
def flip_ud(img): """ Expects shape to be (num_examples, modalities, depth, width, height) """ return np.flip(img.copy(), 3)
21,756
def download_facescrub((data_dir, genders, names, urls, bboxes)): """ download from urls into folder names using wget """ assert(len(names) == len(urls)) assert(len(names) == len(bboxes)) # download using external wget CMD = 'wget -c -t 1 -T 3 "%s" -O "%s"' for i in range(len(names)): directory = join(data_dir, genders[i]) if not exists(directory): print(directory) os.mkdir(directory) fname = hashlib.sha1(urls[i]).hexdigest() + "_" + names[i] + '.jpg' dst = join(directory, fname) print("downloading", dst) if exists(dst): print("already downloaded, skipping...") continue else: res = os.system(CMD % (urls[i], dst)) # get face face_directory = join(directory, 'face') if not exists(face_directory): os.mkdir(face_directory) img = cv2.imread(dst) if img is None: # no image data os.remove(dst) else: face_path = join(face_directory, fname) face = img[bboxes[i][1]:bboxes[i][3], bboxes[i][0]:bboxes[i][2]] cv2.imwrite(face_path, face) #write bbox to file with open(join(directory, '_bboxes.txt'), 'a') as fd: bbox_str = ','.join([str(_) for _ in bboxes[i]]) fd.write('%s %s\n' % (fname, bbox_str))
21,757
def data_context_service_interface_pointuuid_otsi_service_interface_point_spec_otsi_capability_get(uuid): # noqa: E501 """data_context_service_interface_pointuuid_otsi_service_interface_point_spec_otsi_capability_get returns tapi.photonic.media.OtsiCapabilityPac # noqa: E501 :param uuid: Id of service-interface-point :type uuid: str :rtype: TapiPhotonicMediaOtsiCapabilityPac """ return 'do some magic!'
21,758
def test_select_all_columns(): """Validate select returning all columns using '*' (the default).""" _logger.debug(stack()[0][3]) config = deepcopy(_CONFIG) t = table(config) data = t.select(container='tuple') assert len(data[0]) == len(t.columns())
21,759
def _get_trial_event_times(events, units, trial_cond_name): """ Get median event start times from all unit-trials from the specified "trial_cond_name" and "units" - aligned to GO CUE :param events: list of events """ events = list(events) + ['go'] event_types, event_times = (psth.TrialCondition().get_trials(trial_cond_name) * (experiment.TrialEvent & [{'trial_event_type': eve} for eve in events]) & units).fetch('trial_event_type', 'trial_event_time') period_starts = [(event_type, np.nanmedian((event_times[event_types == event_type] - event_times[event_types == 'go']).astype(float))) for event_type in events[:-1] if len(event_times[event_types == event_type])] present_events, event_starts = list(zip(*period_starts)) return np.array(present_events), np.array(event_starts)
21,760
def is_path_exists_or_creatable(pathname=None): """ `True` if the passed pathname is a valid pathname for the current OS _and_ either currently exists or is hypothetically creatable; `False` otherwise. This function is guaranteed to _never_ raise exceptions. """ try: # To prevent "os" module calls from raising undesirable exceptions on # invalid pathnames, is_pathname_valid() is explicitly called first. return is_pathname_valid(pathname) and (os.path.exists(pathname) or is_path_creatable(pathname)) # Report failure on non-fatal filesystem complaints (e.g., connection # timeouts, permissions issues) implying this path to be inaccessible. All # other exceptions are unrelated fatal issues and should not be caught here. except OSError: return False
21,761
def set_virtualenv_prefix(prefix_tuple): """ :return: Sets the virtualenv prefix given a tuple returned from get_virtualenv_prefix() """ if prefix_tuple[0] == 'sys.real_prefix' and hasattr(sys, 'real_prefix'): sys.real_prefix = prefix_tuple[1] elif prefix_tuple[0] == 'sys.base_prefix' and hasattr(sys, 'base_prefix'): sys.base_prefix = prefix_tuple[1]
21,762
def draw_point(framebuffer, x, y, color): """ Draw a single pixel of given color at the specified coordinates. :param framebuffer: An instance of the framebuffer class. :param int x: The X-coordinate. :param int y: The Y-coordinate. :param color: An instance of the color class. """ framebuffer.pixel_data[y * framebuffer.width + x] = color.get_value()
21,763
def select_region(selections, positions, region): """ selection in region from selections """ if not region: return selections region = list(region) + [None, None] assert all([x is None or isinstance(x, Iterable) and len(x) == 2 for x in region]), 'region should be collections of x,y,z region' output = [] for sel in selections: for regi, reg in enumerate(region[:3]): if reg: if reg[0] <= positions[sel][regi] <= reg[1]: output.append(sel) return output
21,764
def summarize_center_and_dispersion( analysis_layer, summarize_type=["CentralFeature"], ellipse_size=None, weight_field=None, group_field=None, output_name=None, context=None, gis=None, estimate=False, future=False): """ .. image:: _static/images/summarize_center_and_dispersion/summarize_center_and_dispersion.png The ``summarize_center_and_dispersion`` method finds central features and directional distributions. It can be used to answer questions such as: * Where is the center? * Which feature is the most accessible from all other features? * How dispersed, compact, or integrated are the features? * Are there directional trends?s ==================== ========================================================= **Argument** **Description** -------------------- --------------------------------------------------------- analysis_layer Required frature layer. The point, line, or polygon features to be analyzed. See :ref:`Feature Input<FeatureInput>`. -------------------- --------------------------------------------------------- summarize_type Required list of strings. The method with which to summarize the ``analysis_layer``. Choice list: ["CentralFeature", "MeanCenter", "MedianCenter", "Ellipse"] -------------------- --------------------------------------------------------- ellipse_size Optional string. The size of the output ellipse in standard deviations. Choice list: ['1 standard deviations', '2 standard deviations', '3 standard deviations'] The default ellipse size is '1 standard deviations'. -------------------- --------------------------------------------------------- weight_field Optional field. A numeric field in the ``analysis_layer`` to be used to weight locations according to their relative importance. -------------------- --------------------------------------------------------- group_field Optional field. The field used to group features for separate directional distribution calculations. The ``group_field`` can be of integer, date, or string type. -------------------- --------------------------------------------------------- output_name Optional string. If provided, the method will create a feature service of the results. You define the name of the service. If ``output_name`` is not supplied, the method will return a feature collection. -------------------- --------------------------------------------------------- context Optional string. Context contains additional settings that affect task execution. For ``summarize_center_and_dispersion``, there are two settings. #. Extent (``extent``) - a bounding box that defines the analysis area. Only those features in the input layer that intersect the bounding box will be buffered. #. Output Spatial Reference (``outSR``) - the output features will be projected into the output spatial reference. -------------------- --------------------------------------------------------- estimate Optional boolean. If True, the number of credits to run the operation will be returned. -------------------- --------------------------------------------------------- future Optional boolean. If True, the result will be a GPJob object and results will be returned asynchronously. ==================== ========================================================= :returns: list of items if ``output_name`` is supplied else, a Python dictionary with the following keys: "central_feature_result_layer" : layer (FeatureCollection) "mean_feature_result_layer" : layer (FeatureCollection) "median_feature_result_layer" : layer (FeatureCollection) "ellipse_feature_result_layer" : layer (FeatureCollection) .. code-block:: python # USAGE EXAMPLE: To find central features and mean center of earthquake over past months. central_features = summarize_center_and_dispersion(analysis_layer=earthquakes, summarize_type=["CentralFeature","MeanCenter"], ellipse_size='2 standard deviations', weight_field='mag', group_field='magType', output_name='find central features and mean center of earthquake over past months') """ gis = _arcgis.env.active_gis if gis is None else gis return gis._tools.featureanalysis.summarize_center_and_dispersion( analysis_layer, summarize_type, ellipse_size, weight_field, group_field, output_name, context, estimate=estimate, future=future)
21,765
def rename_channel(channel_id, old_name, new_name): """Renames channel folders and updates channel.json""" channel_list_path = archive_path / "channels.json" with open(channel_list_path, 'r+') as channel_list: old_channel_list = json.load(channel_list) channel = next((ch for ch in old_channel_list if ch['id'] == channel_id), None) if channel is not None: channel['name'] = new_name else: print(f"Renamed channel (id={channel_id}) from {old_name} to {new_name}," f"but have not found channel with id on channels.json", file=err_stream, flush=True) channel_list.seek(0) json.dump(old_channel_list, channel_list, indent=4) channel_list.truncate() print(f"Channel rename event from {old_name} to {new_name}", flush=True, file=info_stream) if old_name is not None: old_path = archive_path / old_name new_path = archive_path / new_name old_path.rename(new_path) else: print(f"Attempted to rename channel id {channel_id}, but it doesn't exist", flush=True, file=warn_stream)
21,766
def length_entropy(r: np.ndarray, minlen: int = 2) -> float: """Calculate entropy of diagonal lengths in RQ matrix. Args: r (np.ndarray[bool, bool]): Recurrence matrix minlen (int): Minimum length of a line Returns: float: Shannon entropy of distribution of segment lengths """ dlens = diagonal_lengths(r, minlen) counts = _dlen_counts(dlens, minlen, r.shape[0]) return entropy(counts)
21,767
def verify_scholarship_chair(user): """ Verify user has Scholarship Chair permissions """ user_id = user.brother.id if Position.objects.filter(title='President')[0].brother.id == user_id or \ Position.objects.filter(title='Scholarship Chair')[0].brother.id == user_id or \ debug: return True else: return False
21,768
def float_range(start=0, stop=None, step=1): """ Much like the built-in function range, but accepts floats >>> tuple(float_range(0, 9, 1.5)) (0.0, 1.5, 3.0, 4.5, 6.0, 7.5) """ start = float(start) while start < stop: yield start start += step
21,769
def rotate(posList, axis, angle): """Rotate the points about a given axis by a given angle.""" #normalize axis, turn angle into radians axis = axis/np.linalg.norm(axis) angle = np.deg2rad(angle) #rotation matrix construction ux, uy, uz = axis sin, cos = np.sin(angle), np.cos(angle) rotMat = np.array([[cos+ux*ux*(1.-cos), ux*uy*(1.-cos)-uz*sin, ux*uz*(1.-cos)+uy*sin], [uy*ux*(1.-cos)+uz*sin, cos+uy*uy*(1.-cos), uy*uz*(1.-cos)-ux*sin], [uz*ux*(1.-cos)-uy*sin, uz*uy*(1.-cos)+ux*sin, cos+uz*uz*(1.-cos)]]) #rotate points return np.transpose(np.dot(rotMat,np.transpose(posList)))
21,770
def _make_frame_with_filename(tb, idx, filename): """Return a copy of an existing stack frame with a new filename.""" frame = tb[idx] return FrameSummary( filename, frame.lineno, frame.name, frame.line)
21,771
def do_environment_session_create(mc, args): """Creates a new configuration session for environment ID.""" environment_id = args.id session_id = mc.sessions.configure(environment_id).id print("Created new session:") formatters = {"id": utils.text_wrap_formatter} utils.print_dict({"id": session_id}, formatters=formatters)
21,772
def median(X): """ Middle value after sorting all values by size, or mean of the two middle values. Parameters ---------- X : np.array Dataset. Should be a two-dimensional array. Returns ------- a: np.array One-dimensional array that contains the median for each feature. """ return np.nanmedian(X, axis=0)
21,773
def setTextFont(self, strng): """ TOWRITE :param `strng`: TOWRITE :type `strng`: QString """ self.textFontSelector.setCurrentFont(QFont(strng)) self.setSettingsTextFont(strng)
21,774
def _filter_none_values(d: dict): """ Filter out the key-value pairs with `None` as value. Arguments: d dictionary Returns: filtered dictionary. """ return {key: value for (key, value) in d.items() if value is not None}
21,775
def new_project(request): """ if this is a new project, call crud_project without a slug and with action set to New """ return crud_project(request, slug=None, action="New")
21,776
def get_Simon_instance(simon_instance): """Return an instance of the Simon family as a `Cipher`.""" if simon_instance == SimonInstance.simon_32_64: default_rounds = 32 n = 16 m = 4 z = "11111010001001010110000111001101111101000100101011000011100110" elif simon_instance == SimonInstance.simon_48_96: default_rounds = 36 n = 24 m = 4 z = "10001110111110010011000010110101000111011111001001100001011010" elif simon_instance == SimonInstance.simon_64_128: default_rounds = 44 n = 32 m = 4 z = "11011011101011000110010111100000010010001010011100110100001111" else: raise ValueError("invalid instance of Simon") class SimonKeySchedule(RoundBasedFunction): """Key schedule function.""" num_rounds = default_rounds input_widths = [n for _ in range(m)] output_widths = [n for _ in range(default_rounds)] @classmethod def set_num_rounds(cls, new_num_rounds): cls.num_rounds = new_num_rounds cls.input_widths = [n for _ in range(min(m, new_num_rounds))] cls.output_widths = [n for _ in range(new_num_rounds)] @classmethod def eval(cls, *master_key): if cls.num_rounds <= m: return list(reversed(master_key))[:cls.num_rounds] k = [None for _ in range(cls.num_rounds)] k[:m] = list(reversed(master_key)) for i in range(m, cls.num_rounds): tmp = RotateRight(k[i - 1], 3) if m == 4: tmp ^= k[i - 3] tmp ^= RotateRight(tmp, 1) k[i] = ~k[i - m] ^ tmp ^ int(z[(i - m) % 62]) ^ 3 return k class SimonEncryption(Encryption, RoundBasedFunction): """Encryption function.""" num_rounds = default_rounds input_widths = [n, n] output_widths = [n, n] round_keys = None @classmethod def set_num_rounds(cls, new_num_rounds): cls.num_rounds = new_num_rounds @classmethod def eval(cls, x, y): for i in range(cls.num_rounds): x, y = (y ^ SimonRF(x) ^ cls.round_keys[i], x) cls.add_round_outputs(x, y) return x, y class SimonCipher(Cipher): key_schedule = SimonKeySchedule encryption = SimonEncryption _simon_instance = simon_instance @classmethod def set_num_rounds(cls, new_num_rounds): cls.key_schedule.set_num_rounds(new_num_rounds) cls.encryption.set_num_rounds(new_num_rounds) @classmethod def test(cls): old_num_rounds = cls.num_rounds cls.set_num_rounds(default_rounds) if cls._simon_instance == SimonInstance.simon_32_64: plaintext = (0x6565, 0x6877) key = (0x1918, 0x1110, 0x0908, 0x0100) assert cls(plaintext, key) == (0xc69b, 0xe9bb) elif cls._simon_instance == SimonInstance.simon_48_96: plaintext = (0x726963, 0x20646e) key = (0x1a1918, 0x121110, 0x0a0908, 0x020100) assert cls(plaintext, key) == (0x6e06a5, 0xacf156) elif cls._simon_instance == SimonInstance.simon_64_128: plaintext = (0x656b696c, 0x20646e75) key = (0x1b1a1918, 0x13121110, 0x0b0a0908, 0x03020100) assert cls(plaintext, key) == (0x44c8fc20, 0xb9dfa07a) else: raise ValueError("invalid instance of Simon") cls.set_num_rounds(old_num_rounds) return SimonCipher
21,777
def load_mnist(path, kind="train"): """ Documentation: --- Description: Load MNIST images and labels from unzipped source files. --- Parameters: kind : str Used to identify training data vs. validation data. Pass "train" to load training data, and "t10k" to load validation data. --- Returns images : Numpy array Numpy array containing all images in dataset. Has shape N by 784, where N is the number of samples and 784 is the number of pixels. targets : Numpy array Numpy array containing all targets associated with images. Has shape N by 1, where N is the number of samples. """ labels_path = os.path.join(path, "{}-labels-idx1-ubyte".format(kind)) images_path = os.path.join(path, "{}-images-idx3-ubyte".format(kind)) with open(labels_path, "rb") as lbpath: magic, n = struct.unpack(">II", lbpath.read(8)) targets = np.fromfile(lbpath, dtype=np.uint8) with open(images_path, "rb") as imgpath: magic, num, rows, cols = struct.unpack(">IIII", imgpath.read(16)) images = np.fromfile(imgpath, dtype=np.uint8).reshape( len(targets), 784) return images, targets
21,778
def chop(data): """Split given data stream in normalized chunks. :param data: Data stream to be divided. :type data: python:bytes :returns: A three items tuple with the chunk start index, the chunk length and the chunk data. :rtype: ~typing.Tuple[python:int, python:int, python:bytes] """ data_size = len(data) # Maximum length of the data. ck_start = 0 # Chunk start index within the data. ck_end = 0 # Chunk end index within the data. ct_idx = c.GHASH_CHUNK_HI # Current cutting index. while ct_idx != ck_end: ck_end = ck_start + cut(data[ck_start:ct_idx]) yield ck_start, ck_end, data[ck_start:ck_end] ck_start, ct_idx = ck_end, min(ck_end + c.GHASH_CHUNK_HI, data_size)
21,779
def run_server(): """Run server.""" uvicorn.run( "hive_gns.server.serve:app", host=config['server_host'], port=int(config['server_port']), log_level="info", reload=False, workers=10 )
21,780
def clamp(val: float) -> int: """Clamp a number to that expected by a reasonable RGB component This ensures that we don't have negative values, or values exceeding one byte Additionally, all number inputs are rounded Args: val (float): Raw float value to clamp Returns: int: Clamped R/G/B value """ return floor(min(max(0, val), 255))
21,781
def componental_mfpt(trans: np.ndarray, **kwargs) -> np.ndarray: """Compute Markov mean first passage times per connected component of the chain.""" n_comps, comp_labels = scipy.sparse.csgraph.connected_components( trans, **kwargs ) hier_trans = transition_matrix(trans) absorbing = np.isclose(np.diag(hier_trans), 1) if n_comps == 1 and not absorbing.any(): print('shortcut') return mfpt(hier_trans) else: print('longrun') times = np.full_like(hier_trans, fill_value=np.inf) # for each autonomous subsystem for comp_i in range(n_comps): is_comp = (comp_labels == comp_i) absorbing_i = np.flatnonzero(absorbing & is_comp) nonabsorbing_i = np.flatnonzero(~absorbing & is_comp) times[nonabsorbing_i[:, None], nonabsorbing_i] = mfpt( hier_trans[nonabsorbing_i[:, None], nonabsorbing_i] ) times[absorbing_i, absorbing_i] = 1 return times
21,782
def get_snippet(path): """Get snippet source string""" current_file_dir = os.path.dirname(__file__) absolute_path = os.path.join(current_file_dir, path) with open(absolute_path) as src: return src.read()
21,783
def atleast_1d(*arys): """ Convert inputs to arrays with at least one dimension. Scalar inputs are converted to 1-dimensional arrays, whilst higher-dimensional inputs are preserved. Parameters ---------- array1, array2, ... : array_like One or more input arrays. Returns ------- ret : ndarray An array, or sequence of arrays, each with ``a.ndim >= 1``. Copies are made only if necessary. See Also -------- atleast_2d, atleast_3d Examples -------- >>> np.atleast_1d(1.0) array([ 1.]) >>> x = np.arange(9.0).reshape(3,3) >>> np.atleast_1d(x) array([[ 0., 1., 2.], [ 3., 4., 5.], [ 6., 7., 8.]]) >>> np.atleast_1d(x) is x True >>> np.atleast_1d(1, [3, 4]) [array([1]), array([3, 4])] """ res = [] for ary in arys: ary = asanyarray(ary) if len(ary.shape) == 0 : result = ary.reshape(1) else : result = ary res.append(result) if len(res) == 1: return res[0] else: return res
21,784
def post_inbox(): """ POST /v3/inbox/tests :return: """ data = { 'domain': 'domain.com', 'from': 'user@sending_domain.com', 'subject': 'testSubject', 'html': '<html>HTML version of the body</html>' } req = client.inbox_tests.create(domain=domain, data=data) print(req.json())
21,785
def test_list_negative_integer_white_space_nistxml_sv_iv_list_negative_integer_white_space_1_4(mode, save_output, output_format): """ Type list/negativeInteger is restricted by facet whiteSpace with value collapse. """ assert_bindings( schema="nistData/list/negativeInteger/Schema+Instance/NISTSchema-SV-IV-list-negativeInteger-whiteSpace-1.xsd", instance="nistData/list/negativeInteger/Schema+Instance/NISTXML-SV-IV-list-negativeInteger-whiteSpace-1-4.xml", class_name="NistschemaSvIvListNegativeIntegerWhiteSpace1", version="1.1", mode=mode, save_output=save_output, output_format=output_format, structure_style="filenames", )
21,786
def plot_fig_1(f, axs): """ Plot the figure labelled Figure 1 in our paper given the data. """ idx = 0 N = 5 x_values = [i + 1 for i in range(N)] axs[idx].plot( x_values, create_weights(N, "uniform"), CB_color_cycle[1], marker="o", label=r"\texttt{uniform}", linewidth=linewidth, markersize=markersize, ) axs[idx].plot( x_values, create_weights(N, "centred"), CB_color_cycle[7], marker="o", label=r"\texttt{centred}", linewidth=linewidth, markersize=markersize, ) axs[idx].plot( x_values, create_weights(N, "increasing"), CB_color_cycle[2], marker="o", label=r"\texttt{increasing}", linewidth=linewidth, markersize=markersize, ) axs[idx].plot( x_values, create_weights(N, "decreasing"), CB_color_cycle[0], marker="o", label=r"\texttt{decreasing}", linewidth=linewidth, markersize=markersize, ) axs[idx].tick_params( axis="x", which="both", bottom=False, top=False, labelbottom=False ) axs[idx].set_ylabel("Weights", labelpad=10) axs[idx].set_title(str(N) + " bandwidths", pad=8, fontsize=fs) axs[idx].set_yticks([0, 0.1, 0.2, 0.3, 0.4, 0.5]) axs[idx].set_ylim([-0.025, 0.525]) idx = 1 N = 6 x_values = [i + 1 for i in range(N)] axs[idx].plot( x_values, create_weights(N, "uniform"), CB_color_cycle[1], marker="o", label=r"\texttt{MMDAgg uniform}", linewidth=linewidth, markersize=markersize, ) axs[idx].plot( x_values, create_weights(N, "centred"), CB_color_cycle[7], marker="o", label=r"\texttt{MMDAgg centred}", linewidth=linewidth, markersize=markersize, ) axs[idx].plot( x_values, create_weights(N, "increasing"), CB_color_cycle[2], marker="o", label=r"\texttt{MMDAgg increasing}", linewidth=linewidth, markersize=markersize, ) axs[idx].plot( x_values, create_weights(N, "decreasing"), CB_color_cycle[0], marker="o", label=r"\texttt{MMDAgg decreasing}", linewidth=linewidth, markersize=markersize, ) axs[idx].tick_params( axis="x", which="both", bottom=False, top=False, labelbottom=False ) axs[idx].set_title(str(N) + " bandwidths", pad=8, fontsize=fs) f.text(0.5, 0.065, "Bandwidths sorted in increasing order", ha="center")
21,787
def cli(codelabel): """Click interface.""" try: code = Code.get_from_string(codelabel) except NotExistent: print("The code '{}' does not exist.".format(codelabel)) sys.exit(1) example_dft_atomic_kinds(code)
21,788
def write_formatted_mons(pkmn_string): """ Writes string with all Pokémon to txt file. params: pkmn_string (string) returns: None """ try: with open('pokemon_list.txt', 'w', encoding='utf8') as pkfile: pkfile.write(pkmn_string) pkfile.close() print("File saved successfully.") except Exception as e: print(f"Something went wrong while attempting to create the file: {e}") return
21,789
def _encode_mapping(mapping, f): """Encodes the mapping items in lexical order (spec)""" f.write(_TYPE_DICT) for key, value in sorted(mapping.items()): _encode_buffer(key, f) bencode(value, f) f.write(_TYPE_END)
21,790
def lines2str(lines, sep = "\n"): """Merge a list of lines into a single string Args: lines (list, str, other): a list of lines or a single object sep (str, optional): a separator Returns: str: a single string which is either a concatenated lines (using a custom or the default separator) or a str(lines) result """ if isinstance(lines, str): return lines if hasattr(lines, '__iter__'): return sep.join(lines) return str(lines)
21,791
def tail(fname, n=10, with_tail='tail'): """Get the last lines in a file. Parameters ---------- fname : str File name. n : int, optional Number of lines to get (default is 10). with_tail : str, optional The 'tail' command to use (default is `tail`). Returns ------- str The last lines in file, or None on error. """ fname = os.path.abspath(fname) try: lines = subprocess.check_output( [with_tail, '-n{n}'.format(n=n), fname]) except subprocess.CalledProcessError: raise RuntimeError('Unable to get status. Please try again.') except Exception: raise else: return lines.strip()
21,792
def caplog_handler_at_level(caplog_fixture, level, logger=None): """ Helper function to set the caplog fixture's handler to a certain level as well, otherwise it wont be captured e.g. if caplog.set_level(logging.INFO) but caplog.handler is at logging.CRITICAL, anything below CRITICAL wont be captured. """ starting_handler_level = caplog_fixture.handler.level caplog_fixture.handler.setLevel(level) with caplog_fixture.at_level(level, logger=logger): yield caplog_fixture.handler.setLevel(starting_handler_level)
21,793
def evaluate(board): """ Evaluates chess board input parameter(s): board --> The chess board to be evaluated return parameter(s): score --> The board evaluation """ score = 0 for i in range(len(board)): for j in range(len(board[i])): # Add piece value and it's current square value (A Queen on d4 will be worth 900 + 5) piece_value = piece_values[board[i][j]] + \ square_values[board[i][j]][i][j] # Add piece value to overall board score score += piece_value return score
21,794
def get_atom(value): """atom = [CFWS] 1*atext [CFWS] An atom could be an rfc2047 encoded word. """ atom = Atom() if value and value[0] in CFWS_LEADER: token, value = get_cfws(value) atom.append(token) if value and value[0] in ATOM_ENDS: raise errors.HeaderParseError( "expected atom but found '{}'".format(value)) if value.startswith('=?'): try: token, value = get_encoded_word(value) except errors.HeaderParseError: # XXX: need to figure out how to register defects when # appropriate here. token, value = get_atext(value) else: token, value = get_atext(value) atom.append(token) if value and value[0] in CFWS_LEADER: token, value = get_cfws(value) atom.append(token) return atom, value
21,795
def create_page(): """新增页面""" tags = dbutils.get_tags() return render_template('edit.html', title='新建', edit=False, tags=tags)
21,796
def test_init_values(test_dbm_fx): """ Test and verify all values required for instantiation are not None. """ assert test_dbm_fx._initialized assert test_dbm_fx._dbhost assert test_dbm_fx._dbpass assert test_dbm_fx._dbname assert test_dbm_fx._dbport assert test_dbm_fx._dbuser
21,797
def calculate_class_weights(): """ :return: class-wise true-label-area / false-label-area as a dictionary """ df = collect_stats() df = df.fillna(0) df = df.pivot(index = 'Class', columns = 'ImageId', values = 'TotalArea') df = df.sum(axis=1) df = df / (2500. - df) return df.to_dict()
21,798
def get_data_layer(roidb, num_classes): """return a data layer.""" if cfg.TRAIN.HAS_RPN: if cfg.IS_MULTISCALE: layer = GtDataLayer(roidb) else: layer = RoIDataLayer(roidb, num_classes) else: layer = RoIDataLayer(roidb, num_classes) return layer
21,799