content
stringlengths
22
815k
id
int64
0
4.91M
def _apply_sobel(img_matrix): """ Input: img_matrix(height, width) with type float32 Convolves the image with sobel mask and returns the magnitude """ dx = sobel(img_matrix, 1) dy = sobel(img_matrix, 0) grad_mag = np.hypot(dx, dy) # Calculates sqrt(dx^2 + dy^2) grad_mag *= 255 / grad_mag.max() # Normalize the gradient magnitudes return grad_mag
20,700
def isDeleted(doc_ref): """ Checks if document is logically deleted, i.e. has a deleted timestamp. Returns: boolean """ return exists(doc_ref) and 'ts_deleted' in get_doc(doc_ref)
20,701
def log_sql_result(count, time): """Print the given string to the console with "[SQL] " prefixed Parameters: statement (String): The statement to log """ print(str(datetime.now().strftime(fmt)) + CYAN + ' [SQL] ' + RESET + str(count) + ' Rows(s) affected in ' + str(round(time,3)) + ' s')
20,702
def test_list_byte_length_1_nistxml_sv_iv_list_byte_length_2_4(mode, save_output, output_format): """ Type list/byte is restricted by facet length with value 6. """ assert_bindings( schema="nistData/list/byte/Schema+Instance/NISTSchema-SV-IV-list-byte-length-2.xsd", instance="nistData/list/byte/Schema+Instance/NISTXML-SV-IV-list-byte-length-2-4.xml", class_name="NistschemaSvIvListByteLength2", version="1.1", mode=mode, save_output=save_output, output_format=output_format, structure_style="filenames", )
20,703
def GenerateSysroot(sysroot_path, board, build_tests, unpack_only=False): """Create a sysroot using only binary packages from local binhost. Args: sysroot_path: Where we want to place the sysroot. board: Board we want to build for. build_tests: If we should include autotest packages. unpack_only: If we only want to unpack the binary packages, and not build them. """ osutils.SafeMakedirs(sysroot_path) if not unpack_only: # Generate the sysroot configuration. sysroot = sysroot_lib.Sysroot(sysroot_path) sysroot.WriteConfig(sysroot.GenerateBoardConfiguration(board)) cros_build_lib.RunCommand( [os.path.join(constants.CROSUTILS_DIR, 'install_toolchain'), '--noconfigure', '--sysroot', sysroot_path]) cmd = list(_BUILD_PKGS_CMD) cmd.extend(['--board_root', sysroot_path, '--board', board]) if unpack_only: cmd.append('--unpackonly') if not build_tests: cmd.append('--nowithautotest') env = {'USE': os.environ.get('USE', ''), 'PORTAGE_BINHOST': 'file://%s' % portage_util.GetBinaryPackageDir( sysroot=cros_build_lib.GetSysroot(board))} cros_build_lib.RunCommand(cmd, extra_env=env)
20,704
def postprocess_summary(summary, name, result_dict, result_keys): """ Save the result_keys performances in the result_dict. """ for key in result_keys: if key in summary.keys(): result_dict[key][name] = summary[key]
20,705
def sys_wait_for_event( mask: int, k: Optional[Key], m: Optional[Mouse], flush: bool ) -> int: """Wait for an event then return. If flush is True then the buffer will be cleared before waiting. Otherwise each available event will be returned in the order they're recieved. Args: mask (int): :any:`Event types` to wait for. k (Optional[Key]): A tcod.Key instance which might be updated with an event. Can be None. m (Optional[Mouse]): A tcod.Mouse instance which might be updated with an event. Can be None. flush (bool): Clear the event buffer before waiting. .. deprecated:: 9.3 Use the :any:`tcod.event.wait` function to wait for events. """ return int( lib.TCOD_sys_wait_for_event( mask, k.key_p if k else ffi.NULL, m.mouse_p if m else ffi.NULL, flush, ) )
20,706
def func_module_subcmd(args): """Entry point for "buildtest module" subcommand. :param args: command line arguments passed to buildtest :type args: dict, required """ if args.diff_trees: diff_trees(args.diff_trees) if args.easybuild: check_easybuild_module() if args.spack: check_spack_module() if args.module_deps: find_module_deps(args.module_deps) if args.list_all_parents: list_all_parent_modules() if args.software: list_software()
20,707
def get_test(): """ Return test data. """ context = {} context['test'] = 'this is a test message' return flask.jsonify(**context)
20,708
def num_poisson_events(rate, period, rng=None): """ Returns the number of events that have occurred in a Poisson process of ``rate`` over ``period``. """ if rng is None: rng = GLOBAL_RNG events = 0 while period > 0: time_to_next = rng.expovariate(1.0/rate) if time_to_next <= period: events = events + 1 period = period - time_to_next return events
20,709
def findmatch(members,classprefix): """Find match for class member.""" lst = [n for (n,c) in members] return fnmatch.filter(lst,classprefix)
20,710
def create_fields_provided_instances(apps, schema_editor): """ creates new instances of the FieldsProvided model for each submission. This helps track which form fields were filled in (or edited/removed) when users submit activity reports or staff edits. Each submission should have one related instance of FieldsProvided. """ ActivitySubmission = apps.get_model('wells', 'ActivitySubmission') FieldsProvided = apps.get_model('wells', 'FieldsProvided') foreign_key_models = { 'casing_set': apps.get_model('wells', 'Casing'), 'screen_set': apps.get_model('wells', 'Screen'), 'linerperforation_set': apps.get_model('wells', 'ActivitySubmissionLinerPerforation'), 'decommission_description_set': apps.get_model('wells', 'DecommissionDescription'), 'lithologydescription_set': apps.get_model('wells', 'LithologyDescription') } instances_created = 0 # find reports that do not have a "fields_provided" object. This means we were # not recording the fields that were explicitly provided by the user # at the time the report was submitted. for report in ActivitySubmission.objects.filter(fields_provided__isnull=True, well_activity_type='STAFF_EDIT'): data_submitted = {} # we gather values from each report using the same logic in place in stack.py on 2019/05/21, # and create a "fields provided" mapping. By moving toward using the mapping to determine # which fields were explicitly filled in or altered by the user, we can be determine what # fields to update rather than guessing based on the value. After this migration is run, # it should no longer be necessary to inspect the value to decide whether to update a piece of # well data or not. for field in FieldsProvided._meta.get_fields(): if field.name == 'activity_submission': continue source_key = field.name value = _getattr(report, source_key, foreign_key_models) if value or value is False or value == 0 or value == '': data_submitted[source_key] = True data_submitted.pop('filing_number', None) FieldsProvided.objects.create(activity_submission=report, **data_submitted) instances_created += 1 logger.info("created {} fields_provided mappings for submission reports".format(instances_created))
20,711
def find_cheapest_price(price_data, timeframe, power): """Return start time and end time where the electricity price is the cheapest. :param price_data: Price data, key is start hour in unix time, value is price :type price_data: Dict[int, float] :param timeframe: time span for which we want to consume power :type price_data: int :param power: the total power consumption (kWh) which occurres in the timeframe :type power: float :rtype: tuple(int, float) """ start = arrow.now() end = start.shift(minutes=+timeframe) start_date = arrow.get(start.date()) max_end_ts = max(price_data) next_full_hour = start_date.shift(hours=+start.to("UTC").hour + 1) # left aligned prices = {start.timestamp: calculate_price(start, end, price_data, power)} # aligned on the next full hour prices[next_full_hour.timestamp] = calculate_price( next_full_hour, next_full_hour.shift(minutes=+timeframe), price_data, power ) # Shift the window by one hour got jump into the loop that increments at the end next_full_hour = next_full_hour.shift(hours=+1) # We have price data until the next_full_hour + 1h while next_full_hour.shift(minutes=+timeframe).timestamp <= max_end_ts: # 1) Look for end bound price (use the full last hour) # Get the last hour. end_hour = next_full_hour.shift(minutes=+timeframe).replace(minute=0) prices[end_hour.shift(minutes=-timeframe).timestamp] = calculate_price( end_hour.shift(minutes=-timeframe), end_hour, price_data, power, ) # start bound prices[next_full_hour.timestamp] = calculate_price( next_full_hour, next_full_hour.shift(minutes=+timeframe), price_data, power ) # Shift the window by one hour next_full_hour = next_full_hour.shift(hours=+1) # Add the price that ends at the end of the last hour we have prices for # 1) Look for end bound price (use the full last hour) # Get the last hour. end_hour = next_full_hour.shift(minutes=+timeframe).replace(minute=0) prices[end_hour.shift(minutes=-timeframe).timestamp] = calculate_price( end_hour.shift(minutes=-timeframe), end_hour, price_data, power, ) for ts, p in prices.items(): print(arrow.get(ts).to("local"), p) cheapest_price_ts = min(prices, key=prices.get) print( "\n" f"The cheapest price is starting at {arrow.get(cheapest_price_ts).to('local')} " f"ending at {arrow.get(cheapest_price_ts).shift(minutes=+timeframe).to('local')} " f"costing {prices[cheapest_price_ts]}." )
20,712
def main(args, unit_test=False): """ Runs fluxing steps """ import os import numpy as np from pypeit import fluxspec from pypeit.core import flux from pypeit.par import pypeitpar # Load the file spectrograph, config_lines, flux_dict = read_fluxfile(args.flux_file) # Parameters spectrograph_def_par = spectrograph.default_pypeit_par() par = pypeitpar.PypeItPar.from_cfg_lines(cfg_lines=spectrograph_def_par.to_config(), merge_with=config_lines) # TODO: Remove this. Put this in the unit test itself. if unit_test: path = os.path.join(os.getenv('PYPEIT_DEV'), 'Cooked', 'Science') par['fluxcalib']['std_file'] = os.path.join(path, par['fluxcalib']['std_file']) for kk, spec1d_file, flux_file in zip(np.arange(len(flux_dict['spec1d_files'])), flux_dict['spec1d_files'], flux_dict['flux_files']): flux_dict['spec1d_files'][kk] = os.path.join(path, spec1d_file) flux_dict['flux_files'][kk] = os.path.join(path, flux_file) # Write the par to disk print("Writing the parameters to {}".format(args.par_outfile)) par.to_config(args.par_outfile) # Instantiate FxSpec = fluxspec.instantiate_me(spectrograph, par['fluxcalib'], debug=args.debug) # Generate sensfunc?? if par['fluxcalib']['std_file'] is not None: # Load standard _,_ = FxSpec.load_objs(par['fluxcalib']['std_file'], std=True) ## For echelle, the code will deal with the standard star in the ech_fluxspec.py #if not spectrograph.pypeline == 'Echelle': # Find the star _ = FxSpec.find_standard() # Sensitivity _ = FxSpec.generate_sensfunc() # Output _ = FxSpec.save_sens_dict(FxSpec.sens_dict, par['fluxcalib']['sensfunc']) # Show if args.plot: FxSpec.show_sensfunc() # Flux? if len(flux_dict) > 0: for spec1d_file, flux_file in zip(flux_dict['spec1d_files'], flux_dict['flux_files']): FxSpec.flux_science(spec1d_file) FxSpec.write_science(flux_file)
20,713
def drop_database(dbname,engine): """ Warning, drops the specified database! Args: dbname (str): Name of database to drop. engine (obj): Database engine. """ msg = """ --------------------------------------------------------- \n Warning, you are about to delete the following database! \n {}.{} Are you sure you wish to continue? \n Type 'yes' to proceed. \n --------------------------------------------------------- \n \n""".format(engine.name,dbname) if input(msg).lower() != "yes": sys.exit() con = engine.connect() con.execute("COMMIT") # need to close current transaction con.execute("DROP DATABASE IF EXISTS {}".format(dbname)) con.execute("COMMIT") # need to close current transaction con.close() msg = "Target database dropped: {}".format(dbname) logging.info(msg)
20,714
def is_narcissistic(number): """Must return True if number is narcissistic""" return sum([pow(int(x), len(str(number))) for x in str(number)]) == number
20,715
def Plot1DFields(r,h,phi_n_bar,g_s,g_b): """ Generates a nice plot of the 1D fields with 2 axes and a legend. Note: The sizing works well in a jupyter notebook but probably should be adjusted for a paper. """ fig,ax1 = plt.subplots(figsize=(6.7,4)) fig.subplots_adjust(right=0.8) ax2 = ax1.twinx() p1, = ax1.plot(r,h,'C0-',label=r'$h$') p2, = ax2.plot(r,phi_n_bar,'C1-',label=r'$\bar{\phi}_n$') p3, = ax2.plot(r,g_s,'C2-',label=r'$g_s$') p4, = ax2.plot(r,g_b,'C3-',label=r'$g_b$') ax1.set_xlabel(r'$r$',labelpad=0) ax1.set_ylabel(r'$h$',rotation=0,labelpad=10) ax1.set_xlim(r[0],r[-1]) ax2.set_ylabel('$\\bar{\\phi}_n$\n$g_s$\n$g_b$',rotation=0,labelpad=12,va='center') ax2.set_ylim(-0.05,1.05) lines = [p1,p2,p3,p4] ax1.legend(lines,[l.get_label() for l in lines],loc='center left',bbox_to_anchor=(1.16,0.54)) return fig,[ax1,ax2]
20,716
def get_yesterday(): """ :return: """ return _get_passed_one_day_from_now(days=1).date()
20,717
def classroom_mc(): """ Corresponds to the 2nd line of Table 4 in https://doi.org/10.1101/2021.10.14.21264988 """ concentration_mc = mc.ConcentrationModel( room=models.Room(volume=160, inside_temp=models.PiecewiseConstant((0., 24.), (293,)), humidity=0.3), ventilation=models.MultipleVentilation( ventilations=( models.SlidingWindow( active=models.PeriodicInterval(period=120, duration=120), outside_temp=TorontoTemperatures['Dec'], window_height=1.6, opening_length=0.2, ), models.AirChange(active=models.PeriodicInterval(period=120, duration=120), air_exch=0.25), ) ), infected=mc.InfectedPopulation( number=1, presence=models.SpecificInterval(((0, 2), (2.5, 4), (5, 7), (7.5, 9))), virus=virus_distributions['SARS_CoV_2_ALPHA'], mask=models.Mask.types["No mask"], activity=activity_distributions['Light activity'], expiration=build_expiration('Speaking'), host_immunity=0., ), evaporation_factor=0.3, ) return mc.ExposureModel( concentration_model=concentration_mc, short_range=(), exposed=mc.Population( number=19, presence=models.SpecificInterval(((0, 2), (2.5, 4), (5, 7), (7.5, 9))), activity=activity_distributions['Seated'], mask=models.Mask.types["No mask"], host_immunity=0., ), )
20,718
def teardown_module(): """Remove test data and scripts from .retriever directories.""" for test in tests: shutil.rmtree(os.path.join(HOME_DIR, "raw_data", test['name'])) os.remove(os.path.join(HOME_DIR, "scripts", test['name'] + '.json')) subprocess.call(['rm', '-r', test['name']])
20,719
def reset_params(): """Reset all global (or module) parameters. """ Z3_global_param_reset_all()
20,720
def smart_eval(stmt, _globals, _locals, filename=None, *, ast_transformer=None): """ Automatically exec/eval stmt. Returns the result if eval, or NoResult if it was an exec. Or raises if the stmt is a syntax error or raises an exception. If stmt is multiple statements ending in an expression, the statements are exec-ed and the final expression is eval-ed and returned as the result. filename should be the filename used for compiling the statement. If given, stmt will be saved to the Python linecache, so that it appears in tracebacks. Otherwise, a default filename is used and it isn't saved to the linecache. To work properly, "fake" filenames should start with < and end with >, and be unique for each stmt. Note that classes defined with this will have their module set to '__main__'. To change this, set _globals['__name__'] to the desired module. To transform the ast before compiling it, pass in an ast_transformer function. It should take in an ast and return a new ast. Examples: >>> g = l = {} >>> smart_eval('1 + 1', g, l) 2 >>> smart_eval('a = 1 + 1', g, l) <class 'mypython.mypython.NoResult'> >>> g['a'] 2 >>> smart_eval('a = 1 + 1; a', g, l) 2 """ if filename: if filename != "<stdin>": # (size, mtime, lines, fullname) linecache.cache[filename] = (len(stmt), None, stmt.splitlines(keepends=True), filename) else: filename = mypython_file() p = ast.parse(stmt) if ast_transformer: p = ast_transformer(p) expr = None res = NoResult if p.body and isinstance(p.body[-1], ast.Expr): expr = p.body.pop() code = compile(p, filename, 'exec') exec(code, _globals, _locals) if expr: code = compile(ast.Expression(expr.value), filename, 'eval') res = eval(code, _globals, _locals) return res
20,721
def parse_toml(path_string: Optional[str]) -> Dict[str, Any]: """Parse toml""" if not path_string: path = pathlib.Path(os.getcwd()) else: path = pathlib.Path(path_string) toml_path = path / "pyproject.toml" if not toml_path.exists(): return {} with open(toml_path, encoding="utf8") as handle: pyproject_toml = tomli.loads(handle.read()) config = pyproject_toml.get("tool", {}).get("pydoc_fork", {}) loose_matching = { k.replace("--", "").replace("-", "_"): v for k, v in config.items() } return loose_matching
20,722
def run_authorization_flow(): """Run authorization flow where the user must authorize Pardal to access their Twitter account.""" start_server() logger.info('Starting not logged user flow...') say('Please wait while an access token is retrieved from Twitter.') # FIXME if Linux copy the address to user clipboard webbrowser.open(f'{API_ADDRESS}/authorize')
20,723
def mtxv(m1, vin): """ Multiplies the transpose of a 3x3 matrix on the left with a vector on the right. http://naif.jpl.nasa.gov/pub/naif/toolkit_docs/C/cspice/mtxv_c.html :param m1: 3x3 double precision matrix. :type m1: 3x3-Element Array of floats :param vin: 3-dimensional double precision vector. :type vin: 3-Element Array of floats :return: 3-dimensional double precision vector. :rtype: 3-Element Array of floats """ m1 = stypes.toDoubleMatrix(m1) vin = stypes.toDoubleVector(vin) vout = stypes.emptyDoubleVector(3) libspice.mtxv_c(m1, vin, vout) return stypes.cVectorToPython(vout)
20,724
def cmip_recipe_basics(func): """A decorator for starting a cmip recipe """ def parse_and_run(*args, **kwargs): set_verbose(_logger, kwargs.get('verbose')) opts = parse_recipe_options(kwargs.get('options'), add_cmip_collection_args_to_parser) # Recipe is run. returnval = func(*args, **kwargs) return returnval return parse_and_run
20,725
def optimize_concrete_function( concrete_function: function.ConcreteFunction, strip_control_dependencies: bool) -> wrap_function.WrappedFunction: """Returns optimized function with same signature as `concrete_function`.""" wrapped_fn = wrap_function.WrappedFunction( concrete_function.graph, variable_holder=wrap_function.VariableHolder(share_variables=True)) fetches = concrete_function.structured_outputs if strip_control_dependencies: flat_outputs, _ = tf2_utils.strip_and_get_tensors_and_control_dependencies( tf.nest.flatten(fetches, expand_composites=True)) fetches = tf.nest.pack_sequence_as( concrete_function.structured_outputs, flat_outputs, expand_composites=True) result = wrapped_fn.prune( feeds=concrete_function.inputs, fetches=fetches, input_signature=concrete_function.structured_input_signature) # TODO(b/163329414): Remove once `prune` retains shape information for all # components. for original_out, pruned_out in zip(concrete_function.outputs, result.outputs): pruned_out.set_shape(original_out.get_shape()) return result
20,726
def serialize_cupcake(cupcake): """Serialize a cupcake SQLAlchemy obj to dictionary.""" return { "id": cupcake.id, "flavor": cupcake.flavor, "size": cupcake.size, "rating": cupcake.rating, "image": cupcake.image, }
20,727
def compute_accuracy(labels, logits): """Compute accuracy for a single batch of data, given the precomputed logits and expected labels. The returned accuracy is normalized by the batch size. """ current_batch_size = tf.cast(labels.shape[0], tf.float32) # logits is the percent chance; this gives the category for each. predictions = tf.argmax(logits, axis=1) # return the average number of items equal to their label. return tf.reduce_sum(tf.cast(tf.equal(labels, predictions), tf.float32)) / current_batch_size
20,728
def enable_daily_notification(update: Update, context: CallbackContext) -> None: """Enable daily notifications for clean time at user specified time.""" update, context, user = bot_helper.get_user(update, context) user_job = bot_helper.get_daily_notification(context, user["UserID"]) if user_job: notification_time = utils.convert_utc_time_to_local_time(user_job[0].job.next_run_time, database.get_time_offset(user["UserID"])) msg = Strings.ENABLE_NOTIFICATION_NOTIFICATION_ALREADY_SET.format(user["FirstName"], notification_time.time()) else: msg = enable_daily_notification_set(update, context, user) send_message(BotUCM(update, context, msg), reply_markup=bot_helper.main_menu_keyboard())
20,729
def jvc(ctx): """Current–voltage characteristic + graphs""" extension = "ocw" jvc_template_out = ["+V [V]", "+J [mA/cm2]", "-V [V]", "-J [mA/cm2]", "+P [W/cm2]", "-P [W/cm2]"] jvc_result_template = ["Scan", "Power max", "Voc [V]","Jsc [mA/cm2]", "FF", "PCE (%)"] jvc_summary = [] jvc_mask_area = click.prompt( "Enter mask-area value which will be applied to all provided files.", value_proc=check_maskarea) file_paths = ctx.obj['user_file_paths'] or get_files_at(ctx.obj['abs_path_in'], extension) make_dir_at(ctx.obj['abs_path_out']) for file in progressBar(file_paths, prefix = 'Progress:', suffix = 'Complete', length = 50): filename = extract_filename(file, extension) if ctx.obj['user_file_paths']: file_path_in = file else: file_path_in = f"{ctx.obj['abs_path_in']}/{file}" file_path_out = f"{ctx.obj['abs_path_out']}/{filename}" # READ SOURCE scan, file_lenght = read_jvc_file(file_path_in) if file_lenght == 0: click.echo(f"File {file} has no records") continue voltage = [] _voltage = [] density = [] _density = [] power = [] _power = [] middle_index = int(file_lenght / 2) # middle index of source file # LOGIC for reversed order of data in source file if not ctx.obj['reversed']: f_index = 0 r_index = middle_index else: f_index = middle_index r_index = 0 for i in range(middle_index): voltage.append(calc_voltage(scan[i + f_index][0])) _voltage.append(calc_voltage(scan[i + r_index][0])) density.append(calc_density(scan[i + f_index][1], jvc_mask_area)) _density.append(calc_density(scan[i + r_index][1], jvc_mask_area)) power.append(calc_power(voltage[i], density[i])) _power.append(calc_power(_voltage[i], _density[i])) # WRITE OUTPUT output = transpose([voltage, density, _voltage, _density, power, _power]) write_csv_file(output, file_path_out, jvc_template_out) # WRITE RESULTS results = [ result_row("Forward", power, voltage, density), result_row("Reverse", _power, _voltage, _density) ] write_csv_file(results, file_path_out + "-result", jvc_result_template) for row in results: jvc_summary.append([filename] + row) if len(file_paths) > 1: write_csv_file(jvc_summary, ctx.obj['abs_path_out'] + "/jvc_summary", jvc_result_template) draw_graph(filename, file_path_out, density, voltage, _density, _voltage) time.sleep(0.01) finish(ctx.obj['abs_path_out'])
20,730
def generate_sosreport_in_node( nodeip: str, uname: str, pword: str, directory: str, results: list ) -> None: """Generate sosreport in the given node and copy report to directory provided Args: nodeip host Ip address uname Username for accessing host pword password for accessing host through given user directory directory to store all the logs results host IP address for which this operation are failed Returns: None """ print(f"Connecting {nodeip} to generate sosreport") try: ssh_d = paramiko.SSHClient() ssh_d.set_missing_host_key_policy(paramiko.AutoAddPolicy()) ssh_d.connect(nodeip, username=uname, password=pword) ssh_d.exec_command("sudo yum -y install sos") stdin, stdout, stderr = ssh_d.exec_command( "sudo sosreport -a --all-logs -e ceph --batch" ) rc = stdout.channel.recv_exit_status() sosreport = re.search(r"sosreport-.*.tar.xz", stdout.read().decode()) if rc and not sosreport: print(f"Failed to generate sosreport {nodeip}") results.append(nodeip) return source_file = f"/var/tmp/{sosreport.group()}" ssh_d.exec_command(f"sudo chown {uname} {source_file}") directory_path = os.path.join(directory, "sosreports") dir_exist = os.path.exists(directory_path) if not dir_exist: os.makedirs(directory_path) ftp_client = ssh_d.open_sftp() ftp_client.get(f"{source_file}", f"{directory_path}/{sosreport.group()}") ftp_client.close() print( f"Successfully generated sosreport for node {nodeip} :{sosreport.group()}" ) ssh_d.exec_command(f"sudo rm -rf {source_file}") ssh_d.close() except Exception: results.append(nodeip)
20,731
def get_data(generic_iterator): """Code to get minibatch from data iterator Inputs: - generic_iterator; iterator for dataset Outputs: - data; minibatch of data from iterator """ data = next(generic_iterator) if torch.cuda.is_available(): data = data.cuda() return data
20,732
def aug_transform(crop, base_transform, cfg, extra_t=[]): """ augmentation transform generated from config """ return T.Compose( [ T.RandomApply( [T.ColorJitter(cfg.cj0, cfg.cj1, cfg.cj2, cfg.cj3)], p=cfg.cj_p ), T.RandomGrayscale(p=cfg.gs_p), T.RandomResizedCrop( crop, scale=(cfg.crop_s0, cfg.crop_s1), ratio=(cfg.crop_r0, cfg.crop_r1), interpolation=3, ), T.RandomHorizontalFlip(p=cfg.hf_p), *extra_t, base_transform(), ] )
20,733
def _check_definition_contains_or(definition_dict, key, values): """need docstring""" out = False for value in values: if (np.array(list(definition_dict[key])) == value).any(): out = True break return out
20,734
def write_conf(config): """ """ try: with open('./data/config.json', 'w') as outfile: print(timestamp(), "\tConfig written: ", config) json.dump(config, outfile) except IOError: print(timestamp(), "\tIOError opening config.json for writing") return
20,735
def concurrent_map(func, data): """ Similar to the bultin function map(). But spawn a thread for each argument and apply `func` concurrently. Note: unlike map(), we cannot take an iterable argument. `data` should be an indexable sequence. WARNING : this function doesn't limit the number of threads at the same time """ N = len(data) result = [None] * N # wrapper to dispose the result in the right slot def task_wrapper(i): result[i] = func(data[i]) threads = [Thread(target=task_wrapper, args=(i,)) for i in range(N)] for t in threads: t.start() for t in threads: t.join() return result
20,736
def star_hexagon(xy, radius=5, **kwargs): """ |\ c | \ b |__\ a """ x,y = xy r = radius a = 1/4*r b = a*2 c = a*3**(1/2) return plt.Polygon(xy=( (x, y-2*c), (x+a, y-c), (x+a+b, y-c), (x+b, y), (x+a+b, y+c), (x+a, y+c), (x, y+2*c), (x-a, y+c), (x-a-b, y+c), (x-b, y), (x-a-b, y-c), (x-a, y-c), ), closed=True, **kwargs)
20,737
def initialize(*args, **kwargs): """Instance creation""" global TSI TSI = TestServerInterface(*args, **kwargs) TSI.startFifo()
20,738
def calibrate(leveled_arcs, sat_biases, stn_biases): """ ??? """ calibrated_arcs = [] for arc in leveled_arcs: if arc.sat[0] == 'G': sat_bias = sat_biases['GPS'][int(arc.sat[1:])][0] * NS_TO_TECU stn_bias = stn_biases['GPS'][arc.stn.upper()][0] * NS_TO_TECU elif arc.sat[0] == 'R': sat_bias = sat_biases['GLONASS'][int(arc.sat[1:])][0] * NS_TO_TECU stn_bias = stn_biases['GLONASS'][arc.stn.upper()][0] * NS_TO_TECU else: raise ValueError('Satellite bias for {} not found'.format(arc.sat)) data_map = {'gps_time': arc.gps_time.values, 'az': arc.az.values, 'el': arc.el.values, 'satx': arc.satx.values, 'saty': arc.saty.values, 'satz': arc.satz.values, 'sobs': arc.L_I + sat_bias + stn_bias, 'sprn': arc.P_I + sat_bias + stn_bias} calibrated_arc = CalibratedArc(data_map) calibrated_arc.xyz = arc.xyz calibrated_arc.llh = arc.llh calibrated_arc.stn = arc.stn calibrated_arc.recv_type = arc.recv_type calibrated_arc.sat = arc.sat calibrated_arc.L = arc.L calibrated_arc.L_scatter = arc.L_scatter calibrated_arc.sat_bias = sat_bias calibrated_arc.stn_bias = stn_bias calibrated_arcs.append(calibrated_arc) return calibrated_arcs
20,739
def test_google_bigquery_destination(sdc_builder, sdc_executor, gcp): """ Send data to Google BigQuery from Dev Raw Data Source and confirm that Google BigQuery destination successfully recieves them using Google BigQuery client. This is achieved by using a deduplicator which assures that there is only one ingest to Google BigQuery. The pipeline looks like: dev_raw_data_source >> record_deduplicator >> google_bigquery record_deduplicator >> trash """ pipeline_builder = sdc_builder.get_pipeline_builder() dev_raw_data_source = pipeline_builder.add_stage('Dev Raw Data Source') dev_raw_data_source.set_attributes(data_format='DELIMITED', header_line='WITH_HEADER', raw_data='\n'.join(CSV_DATA_TO_INSERT)) dataset_name = get_random_string(ascii_letters, 5) table_name = get_random_string(ascii_letters, 5) google_bigquery = pipeline_builder.add_stage('Google BigQuery', type='destination') google_bigquery.set_attributes(dataset=dataset_name, table_name=table_name) record_deduplicator = pipeline_builder.add_stage('Record Deduplicator') trash = pipeline_builder.add_stage('Trash') dev_raw_data_source >> record_deduplicator >> google_bigquery record_deduplicator >> trash pipeline = pipeline_builder.build(title='Google BigQuery Destination').configure_for_environment(gcp) sdc_executor.add_pipeline(pipeline) bigquery_client = gcp.bigquery_client schema = [SchemaField('full_name', 'STRING', mode='required'), SchemaField('age', 'INTEGER', mode='required')] dataset_ref = Dataset(bigquery_client.dataset(dataset_name)) try: logger.info('Creating dataset %s using Google BigQuery client ...', dataset_name) dataset = bigquery_client.create_dataset(dataset_ref) table = bigquery_client.create_table(Table(dataset_ref.table(table_name), schema=schema)) logger.info('Starting BigQuery Destination pipeline and waiting for it to produce records ...') sdc_executor.start_pipeline(pipeline).wait_for_pipeline_batch_count(1) logger.info('Stopping BigQuery Destination pipeline and getting the count of records produced in total ...') sdc_executor.stop_pipeline(pipeline) # Verify by reading records using Google BigQuery client data_from_bigquery = [tuple(row.values()) for row in bigquery_client.list_rows(table)] data_from_bigquery.sort() logger.debug('read_data = {}'.format(data_from_bigquery)) assert ROWS_EXPECTED == data_from_bigquery finally: bigquery_client.delete_dataset(dataset_ref, delete_contents=True)
20,740
def negSamplingCostAndGradient(predicted, target, outputVectors, dataset, K=10): """ Implements the negative sampling cost function and gradients for word2vec :param predicted: ndarray, the predicted (center) word vector(v_c) :param target: integer, the index of the target word :param outputVectors: 2D ndarray, output word vectors (as rows) :param dataset: an interface into the dataset :param K: integer, no of negative samples :return: cost: cost function for negative sampling gradPred: gradient with respect to predicted (input / center) word vector grad: gradient with respect to output word vectors """ grad = np.zeros(outputVectors.shape) gradPred = np.zeros(predicted.shape) indices = [target] for k in xrange(K): newidx = dataset.sampleTokenIdx() while newidx == target: newidx = dataset.sampleTokenIdx() indices += [newidx] labels = np.array([1] + [-1 for k in xrange(K)]).reshape(-1, 1) vecs = outputVectors[indices, :] t = sigmoid(vecs.dot(predicted.T) * labels) cost = -np.sum(np.log(t)) delta = labels * (t - 1) gradPred = delta.reshape((1, K + 1)).dot(vecs).flatten() gradtemp = delta.dot(predicted) for k in xrange(K + 1): grad[indices[k]] += gradtemp[k, :] return cost, gradPred, grad
20,741
def isotime(timestamp): """ISO 8601 formatted date in UTC from unix timestamp""" return datetime.fromtimestamp(timestamp, pytz.utc).isoformat()
20,742
def initializeSeam(): """ This function defines the seams of a baseball. It is based, in large extant, on the work from http://www.darenscotwilson.com/spec/bbseam/bbseam.html """ n = 109 #number of points were calculating on the seam line alpha = np.linspace(0,np.pi*2,n) x = np.zeros(len(alpha)) y = np.zeros(len(alpha)) z = np.zeros(len(alpha)) R = (2 + 15/16.)/2 for i in range(len(alpha)-1): x[i] = ((1/13)*R*((9*np.cos(alpha[i]) - 4*np.cos(3*alpha[i])))) y[i] = ((1/13)*R*((9*np.sin(alpha[i]) + 4*np.sin(3*alpha[i])))) z[i] = ((12/13)*R*np.cos(2*alpha[i])) return x,y,z
20,743
def check_model_consistency(model, grounding_dict, pos_labels): """Check that serialized model is consistent with associated json files. """ groundings = {grounding for grounding_map in grounding_dict.values() for grounding in grounding_map.values()} model_labels = set(model.estimator.named_steps['logit'].classes_) consistent_labels = groundings <= model_labels shortforms = set(grounding_dict.keys()) model_shortforms = set(model.shortforms) consistent_shortforms = shortforms == model_shortforms model_labels = set(model.estimator.named_steps['logit'].classes_) consistent_pos_labels = set(pos_labels) <= model_labels return consistent_labels and consistent_shortforms and \ consistent_pos_labels
20,744
def get_submission_info(tile_grid, collections, tile_indices, period_start, period_end, period_freq): """ Return information about tracked order submissions """ return { 'submitted': dt.datetime.today().isoformat(), 'collections': collections, 'tile_grid': tile_grid.to_dict(), 'tile_indices': list(tile_indices), 'period_start': period_start.isoformat(), 'period_end': period_end.isoformat(), 'period_freq': period_freq }
20,745
def load_obj(path): """Load an object from a Python file. path is relative to the data dir. The file is executed and the obj local is returned. """ localdict = {} with open(_DATADIR / path) as file: exec(file.read(), localdict, localdict) return localdict['obj']
20,746
def dp_policy_evaluation(env, pi, v=None, gamma=1, tol=1e-3, iter_max=100, verbose=True): """Evaluates state-value function by performing iterative policy evaluation via Bellman expectation equation (in-place) Based on Sutton/Barto, Reinforcement Learning, 2nd ed. p. 75 Args: env: Environment pi: Policy v: Initial value function or None gamma: Discount factor tol: Tolerance to stop iteration iter_max: Maximum iteration count Returns: v: State-value function """ if v is None: v = np.zeros(env.observation_space.n) for i_iter in range(iter_max): if verbose: print("\r> DP Policy evaluation: Iteration {}/{}".format( i_iter+1, iter_max), end="") delta = 0 for state in range(env.observation_space.n): v_new = 0 for action in range(env.action_space.n): for (prob,state2,reward,done) in env.P[state][action]: v_new += pi[state][action] * prob * ( reward + gamma*v[state2] ) delta = max(delta, np.abs(v_new-v[state])) v[state] = v_new if delta < tol: break if verbose: print() return v
20,747
async def test_cut_video_aio(): """ 测试视频缩放 :return: """ print('') h264_obj = H264Video(constval.VIDEO, constval.OUTPUT_DIR, aio=True) start_time = random.random() * 100 last_time = random.randint(int(start_time)+1, 1000) print('current work dir', os.path.abspath(os.getcwd())) print(f'start_time: {start_time:f}, last_time: {last_time:d}') print(start_time, last_time) home_dir = os.path.abspath(os.getenv('HOME')) cuted_video, stderr = await h264_obj.cmd_do_aio(f'{home_dir:s}', 'mp4', FfmpegCmdModel.cut_video, start_time=start_time, last_time=last_time, encode_lib=constval.CODEC, target_videobitrate=500) assert cuted_video is not None and stderr == '' print('H264Video object info:', cuted_video) print(f'out put video width:{cuted_video.video_width:d},video height:{cuted_video.video_height:d},' f'video bit rate:{cuted_video.video_bitrate:d}') slice_begin = random.randint(0, 120) slice_end = random.randint(slice_begin, 240) slice_count = random.randint(0,20) print(f'begin: {slice_begin:d}, end: {slice_end:d}, count: {slice_count:d}') print(h264_obj[slice_begin:slice_end:slice_count]) print(h264_obj[slice_end])
20,748
def gpst2utc(tgps, leaps_=-18): """ calculate UTC-time from gps-time """ tutc = timeadd(tgps, leaps_) return tutc
20,749
def create_shell(username, session_id, key): """Instantiates a CapturingSocket and SwiftShell and hooks them up. After you call this, the returned CapturingSocket should capture all IPython display messages. """ socket = CapturingSocket() session = Session(username=username, session=session_id, key=key) shell = SwiftShell.instance() shell.display_pub.session = session shell.display_pub.pub_socket = socket return [socket, shell]
20,750
def _get_index_sort_str(env, name): """ Returns a string by which an object with the given name shall be sorted in indices. """ ignored_prefixes = env.config.cmake_index_common_prefix for prefix in ignored_prefixes: if name.startswith(prefix) and name != prefix: return name[len(prefix):] return name
20,751
def giveError(message: str) -> None: """Display error message and exits program""" print(colored(f"Error: {message}", 'red')) exit()
20,752
def utcnow(): """Gets current time. :returns: current time from utc :rtype: :py:obj:`datetime.datetime` """ return datetime.datetime.utcnow()
20,753
def elem2full(elem: str) -> str: """Retrieves full element name for short element name.""" for element_name, element_ids, element_short in PERIODIC_TABLE: if elem == element_short: print(element_name) return element_name else: raise ValueError(f"Index {elem} does not match any element.")
20,754
def fixture_path(relapath=''): """:return: absolute path into the fixture directory :param relapath: relative path into the fixtures directory, or '' to obtain the fixture directory itself""" return os.path.join(os.path.dirname(__file__), 'fixtures', relapath)
20,755
def create_random_totp_secret(secret_length: int = 72) -> bytes: """ Generate a random TOTP secret :param int secret_length: How long should the secret be? :rtype: bytes :returns: A random secret """ random = SystemRandom() return bytes(random.getrandbits(8) for _ in range(secret_length))
20,756
def _get_roles_can_update(community_id): """Get the full list of roles that current identity can update.""" return _filter_roles("members_update", {"user", "group"}, community_id)
20,757
def register_external_compiler(op_name, fexternal=None, level=10): """Register the external compiler for an op. Parameters ---------- op_name : str The name of the operator. fexternal : function (attrs: Attrs, args: List[Expr], compiler: str) -> new_expr: Expr The function for wrapping a call expr with compiler_begin and compiler_end. level : int The priority level """ return tvm.ir.register_op_attr(op_name, "FTVMExternalCompiler", fexternal, level)
20,758
def kl_divergence_from_logits_bm(logits_a, logits_b): """Gets KL divergence from logits parameterizing categorical distributions. Args: logits_a: A tensor of logits parameterizing the first distribution. logits_b: A tensor of logits parameterizing the second distribution. Returns: The (batch_size,) shaped tensor of KL divergences. """ beta_coeff = 1 alphas = tf.exp(logits_a) betas = tf.exp(logits_b) a_zero = tf.reduce_sum(alphas, -1) loss1 = tf.lgamma(a_zero) - tf.reduce_sum(tf.lgamma(alphas), -1) loss2 = tf.reduce_sum( (alphas - betas) * (tf.digamma(alphas) - tf.digamma(tf.expand_dims(a_zero, -1))), -1) kl_loss = loss1 + loss2 return kl_loss
20,759
def get_stats_fuzzy(stats, img, var_img, roi_set, suffix="", ignore_nan=True, ignore_inf=True, ignore_zerovar=True, mask=None, pv_threshold=0.): """ Get a set of statistics for a set of 'fuzzy' ROIs :param img: 3D Numpy array :param roi_set: 4D Numpy array with same dimensions as img and each volume containing partial volumes for each ROI in the set :return: Mapping from name of statistic to sequence of values, one for each ROI in the set. This may be NaN or infinite depending on the input arguments. """ roi_shape = list(roi_set.shape)[:3] if list(img.shape) != roi_shape: raise ValueError("Image must have same dimensions as ROI") if list(var_img.shape) != roi_shape: raise ValueError("Variance image must have same dimensions as ROI") if mask is not None and list(mask.shape) != roi_shape: raise ValueError("Mask must have same dimensions as ROI") if mask is None: mask = np.ones(roi_shape, dtype=np.int) if ignore_nan: mask = np.logical_and(mask, ~np.isnan(img)) if ignore_inf: mask = np.logical_and(mask, np.isfinite(img)) if ignore_zerovar: mask = np.logical_and(mask, var_img > 0) # Only take voxels where at least one of the ROIs has non-zero percentage mask = np.logical_and(mask, np.sum(roi_set, axis=3) > pv_threshold) # Flatten ROI PVs and data into masked 2D array roi_array = roi_set[mask] g = img[mask] # Standardize ROI set so total PV is 1 roi_array = standardise(roi_array, mode='expand') # Ask Jack about this??? #if var: # roi_array = np.square(roi_array) HT = roi_array.T print(f" - Fuzzy ROI set: condition number for transfer matrix (unweighted) = {np.linalg.cond(HT):.2f}.") # Calculate roi means by linear regression means_lstsq, _res, _rank, _s = np.linalg.lstsq(HT@roi_array, HT@g[..., np.newaxis], rcond=None) # None uses future default # and silences warning # Note that we do not report stats for the 'background' ROI added to ensure total PV of 1 stats["Nvoxels" + suffix] = [np.count_nonzero(roi_array[:, idx] > pv_threshold) for idx in range(roi_set.shape[-1])] stats["Mean" + suffix] = np.atleast_1d(np.squeeze(means_lstsq[:-1])) # If variance has been supplied add a precision-weighted mean if var_img is not None: V_inv = scipy.sparse.diags(1/var_img[mask]) HT = roi_array.T @ V_inv print(f" - Fuzzy ROI set: condition number for transfer matrix (prec-weighted) = {np.linalg.cond(HT):.2f}.") # Calculate roi means by linear regression means_lstsq, _res, _rank, _s = np.linalg.lstsq(HT@roi_array, HT@g[..., np.newaxis], rcond=None) # None uses future default # and silences warning stats["Precision-weighted mean" + suffix] = np.atleast_1d(np.squeeze(means_lstsq[:-1]))
20,760
def if_stopped_or_playing(speaker, action, args, soco_function, use_local_speaker_list): """Perform the action only if the speaker is currently in the desired playback state""" state = speaker.get_current_transport_info()["current_transport_state"] logging.info( "Condition: '{}': Speaker '{}' is in state '{}'".format( action, speaker.player_name, state ) ) if (state != "PLAYING" and action == "if_playing") or ( state == "PLAYING" and action == "if_stopped" ): logging.info("Action suppressed") return True action = args[0] args = args[1:] logging.info( "Action invoked: '{} {} {}'".format(speaker.player_name, action, " ".join(args)) ) return process_action( speaker, action, args, use_local_speaker_list=use_local_speaker_list )
20,761
def test_quorum_slices_to_definition(): """Test quorum_slices_to_definition()""" assert quorum_slices_to_definition([{'A', 'B'}, {'C'}]) == { 'threshold': 1, 'nodes': set(), 'children_definitions': [{ 'threshold': 2, 'nodes': {'A', 'B'}, 'children_definitions': set() }, { 'threshold': 1, 'nodes': {'C'}, 'children_definitions': set() }] }
20,762
def compute_src_graph(hive_holder, common_table): """ computes just the src part of the full version graph. Side effect: updates requirements of blocks to actually point to real dep versions """ graph = BlockVersionGraph() versions = hive_holder.versions graph.add_nodes(versions.itervalues()) references = References() for block_holder in hive_holder.block_holders: dep_table = block_holder.requirements base_version = versions[block_holder.block_name] for target_bcn in block_holder.external_targets(): target_block_name = target_bcn.block_name if target_block_name in versions: other_version = versions[target_block_name] else: other_version = common_table[target_block_name] references[other_version].add(target_bcn.cell_name) graph.add_edge(base_version, other_version) dep_table.add_version(other_version) return graph, references
20,763
def get_uv(seed=0, nrm=False, vector=False): """Dataset with random univariate data Parameters ---------- seed : None | int Seed the numpy random state before generating random data. nrm : bool Add a nested random-effects variable (default False). vector : bool Add a 3d vector variable as ``ds['v']`` (default ``False``). """ if seed is not None: np.random.seed(seed) ds = permute([('A', ('a1', 'a2')), ('B', ('b1', 'b2')), ('rm', ['s%03i' % i for i in range(20)])]) ds['rm'].random = True ds['intvar'] = Var(np.random.randint(5, 15, 80)) ds['intvar'][:20] += 3 ds['fltvar'] = Var(np.random.normal(0, 1, 80)) ds['fltvar'][:40] += 1. ds['fltvar2'] = Var(np.random.normal(0, 1, 80)) ds['fltvar2'][40:] += ds['fltvar'][40:].x ds['index'] = Var(np.repeat([True, False], 40)) if nrm: ds['nrm'] = Factor(['s%03i' % i for i in range(40)], tile=2, random=True) if vector: x = np.random.normal(0, 1, (80, 3)) x[:40] += [.3, .3, .3] ds['v'] = NDVar(x, (Case, Space('RAS'))) return ds
20,764
def private_names_for(cls, names): """ Returns: Iterable of private names using privateNameFor()""" if not isinstance(names, Iterable): raise TypeError('names must be an interable') return (private_name_for(item, cls) for item in names)
20,765
def check_xpbs_install() -> None: """Try to get the install path of third party tool Xpbs (https://github.com/FranckLejzerowicz/Xpbs). If it exists, nothing happens and the code proceeds. Otherwise, the code ends and tells what to do. """ ret_code, ret_path = subprocess.getstatusoutput('which Xpbs') if ret_code: print('Xpbs is not installed:\n either use `--no-jobs` to not ' 'prepare Torque/Slurm job scripts,\n or make sure to install ' 'Xpbs (https://github.com/FranckLejzerowicz/Xpbs) ' 'and to edit its config.txt (see readme))\nExiting...') sys.exit(1) else: with open(ret_path) as f: for line in f: break if line.startswith('$HOME'): print('Xpbs is installed but its config.txt ' 'need editing!\nExiting...') sys.exit(1)
20,766
def find_vcs_root(location="", dirs=(".git", ".hg", ".svn"), default=None) -> str: """Return current repository root directory.""" if not location: location = os.getcwd() prev, location = None, os.path.abspath(location) while prev != location: if any(os.path.isdir(os.path.join(location, d)) for d in dirs): return location prev, location = location, os.path.abspath(os.path.join(location, os.pardir)) return default
20,767
def invert_trimat(A, lower=False, right_inv=False, return_logdet=False, return_inv=False): """Inversion of triangular matrices. Returns lambda function f that multiplies the inverse of A times a vector. Args: A: Triangular matrix. lower: if True A is lower triangular, else A is upper triangular. right_inv: If False, f(v)=A^{-1}v; if True f(v)=v' A^{-1} return_logdet: If True, it also returns the log determinant of A. return_inv: If True, it also returns A^{-1} Returns: Lambda function that multiplies A^{-1} times vector. Log determinant of A A^{-1} """ if right_inv: fh=lambda x: la.solve_triangular(A.T, x.T, lower=not(lower)).T else: fh=lambda x: la.solve_triangular(A, x, lower=lower) if return_logdet or return_inv: r = [fh] else: r = fh if return_logdet: logdet=np.sum(np.log(np.diag(A))) r.append(logdet) if return_inv: invA=fh(np.eye(A.shape[0])) r.append(invA) return r
20,768
def category_input_field_delete(request, structure_slug, category_slug, module_id, field_id, structure): """ Deletes a field from a category input module :type structure_slug: String :type category_slug: String :type module_id: Integer :type field_id: Integer :type structure: OrganizationalStructure (from @is_manager) :param structure_slug: structure slug :param category_slug: category slug :param module_id: input module id :param field_id: module field id :param structure: structure object (from @is_manager) :return: redirect """ category = get_object_or_404(TicketCategory, organizational_structure=structure, slug=category_slug) module = get_object_or_404(TicketCategoryModule, pk=module_id, ticket_category=category) if not module.can_be_deleted(): # log action logger.error('[{}] manager of structure {}' ' {} tried to delete a field' ' from module {} of category {}'.format(timezone.localtime(), structure, request.user, module, category)) messages.add_message(request, messages.ERROR, _("Impossibile eliminare il modulo {}." " Ci sono delle richieste collegate").format(module)) else: field = get_object_or_404(TicketCategoryInputList, pk=field_id, category_module=module) # log action logger.info('[{}] manager of structure {}' ' {} deleted the field {}' ' from module {} of category {}'.format(timezone.localtime(), structure, request.user, field, module, category)) field.delete() messages.add_message(request, messages.SUCCESS, _("Campo {} eliminato con successo").format(field.name)) return redirect('uni_ticket:manager_category_input_module', structure_slug=structure_slug, category_slug=category_slug, module_id=module_id)
20,769
def cat_to_num(att_df): """ Changes categorical variables in a dataframe to numerical """ att_df_encode = att_df.copy(deep=True) for att in att_df_encode.columns: if att_df_encode[att].dtype != float: att_df_encode[att] = pd.Categorical(att_df_encode[att]) att_df_encode[att] = att_df_encode[att].cat.codes return att_df_encode
20,770
async def handle_get(request): """Handle GET request, can be display at http://localhost:8080""" text = (f'Server is running at {request.url}.\n' f'Try `curl -X POST --data "text=test" {request.url}example`\n') return web.Response(text=text)
20,771
def values_target(size: tuple, value: float, cuda: False) -> Variable: """ returns tensor filled with value of given size """ result = Variable(full(size=size, fill_value=value)) if cuda: result = result.cuda() return result
20,772
def get_new_perpendicular_point_with_custom_distance_to_every_line_segment( line_segments: np.ndarray, distance_from_the_line: np.ndarray ): """ :param line_segments: array of shape [number_of_line_segments, 2, 2] :param distance_from_the_line: how far the new point to create from the reference :return: """ return new_perpendicular_point_to_line_segment( line_segments, distance_from_the_line )
20,773
def test_files_safen_path(mongodb_settings, filename, fuuid): """Verify that regular and url-encoded paths are equivalent """ base = FileStore(mongodb_settings) doc = FileRecord({'name': filename}) resp = base.add_update_document(doc) assert resp['uuid'] == fuuid
20,774
def tmdb_find_movie(movie: str, tmdb_api_token: str): """ Search the tmdb api for movies by title Args: movie (str): the title of a movie tmdb_api_token (str): your tmdb v3 api token Returns: dict """ url = 'https://api.themoviedb.org/3/search/movie?' params = {'query': movie, 'language': 'en-US', 'api_key': tmdb_api_token, } return requests.get(url, params).json()
20,775
def bus_routes(): """ Gets all the bus routes from the LTA API and store them in bus_routes.txt Each row in bus_routes.txt will have a bus service number, direction, bus stop code, bus stop name, first and last bus timings for weekdays, Saturday and Sunday """ os.remove('bus_routes.txt') bus_stop_list = get_bus_stop_name() length_json, interval = 500, 1 while length_json == 500: url = "http://datamall2.mytransport.sg/ltaodataservice/BusRoutes?$skip={}".format(interval * 500) headers = {'AccountKey': ACCOUNT_KEY} response = requests.get(url, headers=headers).json() routes = response['value'] for route in routes: for bus_stop in bus_stop_list: if route['BusStopCode'] == bus_stop[0]: with open('bus_routes.txt', 'a') as r: r.write('{} | {} | {} | {} | {} | {} | {} ' '| {} | {} | {}\n'.format(route['ServiceNo'], route['Direction'], route['BusStopCode'], bus_stop[1].upper(), route['WD_FirstBus'], route['WD_LastBus'], route['SAT_FirstBus'], route['SAT_LastBus'], route['SUN_FirstBus'], route['SUN_LastBus'])) length_json = len(response['value']) interval += 1
20,776
def is_missing_artifact_error(err: WandbError): """ Check if a specific W&B error is caused by a 404 on the artifact we're looking for. """ # This is brittle, but at least we have a test for it. return "does not contain artifact" in err.message
20,777
def robust_makedirs(path): """ create a directory in a robust race safe manner if not already existing. Good for multiprocessing / threading or cases where multiple actors might create a directory """ if not os.path.isdir(path): try: os.makedirs(path) except Exception: if not os.path.isdir(path): if os.path.isfile(path): raise MyTBError("path %r is not a directory" % path) else: raise
20,778
def activate_locale(locale=None, app=None): """Active an app or a locale.""" prefixer = old_prefix = get_url_prefix() old_app = old_prefix.app old_locale = translation.get_language() if locale: rf = RequestFactory() prefixer = Prefixer(rf.get('/%s/' % (locale,))) translation.activate(locale) if app: prefixer.app = app set_url_prefix(prefixer) yield old_prefix.app = old_app set_url_prefix(old_prefix) translation.activate(old_locale)
20,779
def create_reforecast_valid_times(start_year=2000): """Inits from year 2000 to 2019 for the same days as in 2020.""" reforecasts_inits = [] inits_2020 = create_forecast_valid_times().forecast_time.to_index() for year in range(start_year, reforecast_end_year + 1): # dates_year = pd.date_range(start=f"{year}-01-02", end=f"{year}-12-31", freq="7D") dates_year = pd.DatetimeIndex([i.strftime("%Y%m%d").replace("2020", str(year)) for i in inits_2020]) dates_year = xr.DataArray( dates_year, dims="forecast_time", coords={"forecast_time": dates_year}, ) reforecasts_inits.append(dates_year) reforecasts_inits = xr.concat(reforecasts_inits, dim="forecast_time") reforecast_valid_times = create_valid_time_from_forecast_time_and_lead_time(reforecasts_inits, leads) reforecast_valid_times = ( reforecast_valid_times.rename("test").assign_coords(valid_time=reforecast_valid_times).to_dataset() ) reforecast_valid_times = xr.ones_like(reforecast_valid_times).astype("float32") return reforecast_valid_times
20,780
def _checkerror(fulloutput): """ Function to check the full output for known strings and plausible fixes to the error. Future: add items to `edict` where the key is a unique string contained in the offending output, and the data is the reccomended solution to resolve the problem """ edict = {'multiply': ('NOTE: you might(?) need to clean the `tmp/` folder!'), 'already defined': ('NOTE: you probably (might?) need to clean the `tmp/` folder!'), 'unresolved externals': ('NOTE: consider recompiling the linked libraries to' 'have the correct name mangling for cl.exe:' 'ifort: /names:lowercase /assume:underscore '), "KeyError: 'void'": ('There may be an issue with public/private function ' 'definitions or a missing variable definition in the last ' 'function listed above. For the first error consider using ' 'the parameter `functiondict` or checking to ensure all ' 'module functions are public... For the second error, check ' 'that all of the parameters in the subroutine are defined'), "No such file or directory": ('There may be a space in the path to one of the ' 'source code or library folders'), "LINK : fatal error LNK1104: cannot open file": ('The pyd is currently in use, ' 'restart any kernels using it !') } # iterate through the keys in the error dictionary and see if the key is in the full output extramessage = '' for error_key in edict.keys(): if error_key in fulloutput: extramessage = edict[error_key] return extramessage
20,781
def create_pre_process_block(net, ref_layer_name, means, scales=None): """ Generates the pre-process block for the IR XML Args: net: root XML element ref_layer_name: name of the layer where it is referenced to means: tuple of values scales: tuple of values Returns: pre-process XML element """ pre_process = SubElement(net, 'pre-process') pre_process.set('reference-layer-name', ref_layer_name) for idx in range(len(means)): channel_xml = SubElement(pre_process, 'channel') channel_xml.set('id', str(idx)) mean_xml = SubElement(channel_xml, 'mean') mean_xml.set('value', str(means[idx])) if scales: scale_xml = SubElement(channel_xml, 'scale') scale_xml.set('value', str(scales[idx])) return pre_process
20,782
def tabWidget_func(value, main_window): """Connect main tabWidget.""" main_window.scene.current_tab_idx = value fill_listWidget_with_data(main_window.scene.project_data, main_window.listWidget, value) set_selected_id_in_listWidget(main_window.scene, 0)
20,783
def GetSystemFaultsFromState(state, spot_wrapper): """Maps system fault data from robot state proto to ROS SystemFaultState message Args: data: Robot State proto spot_wrapper: A SpotWrapper object Returns: SystemFaultState message """ system_fault_state_msg = SystemFaultState() system_fault_state_msg.faults = getSystemFaults(state.system_fault_state.faults, spot_wrapper) system_fault_state_msg.historical_faults = getSystemFaults(state.system_fault_state.historical_faults, spot_wrapper) return system_fault_state_msg
20,784
def findAnEven(L): """ :Assumes L is a list of integers: :Returns the first even number in L: :Raises ValueError if L does not contain an even number: """ for num in L: if num % 2 == 0: return num raise ValueError
20,785
def get_points(wire): """ get all points (including starting point), where the wire bends >>> get_points(["R75","D30","R83","U83","L12","D49","R71","U7","L72"]) [((0, 0), (75, 0)), ((75, 0), (75, -30)), ((75, -30), (158, -30)), ((158, -30), (158, 53)), ((158, 53), (146, 53)), ((146, 53), (146, 4)), ((146, 4), (217, 4)), ((217, 4), (217, 11)), ((217, 11), (145, 11))] >>> get_points(["U62","R66","U55","R34","D71","R55","D58","R83"]) [((0, 0), (0, 62)), ((0, 62), (66, 62)), ((66, 62), (66, 117)), ((66, 117), (100, 117)), ((100, 117), (100, 46)), ((100, 46), (155, 46)), ((155, 46), (155, -12)), ((155, -12), (238, -12))] >>> get_points(["R98","U47","R26","D63","R33","U87","L62","D20","R33","U53","R51"]) [((0, 0), (98, 0)), ((98, 0), (98, 47)), ((98, 47), (124, 47)), ((124, 47), (124, -16)), ((124, -16), (157, -16)), ((157, -16), (157, 71)), ((157, 71), (95, 71)), ((95, 71), (95, 51)), ((95, 51), (128, 51)), ((128, 51), (128, 104)), ((128, 104), (179, 104))] >>> get_points(["U98","R91","D20","R16","D67","R40","U7","R15","U6","R7"]) [((0, 0), (0, 98)), ((0, 98), (91, 98)), ((91, 98), (91, 78)), ((91, 78), (107, 78)), ((107, 78), (107, 11)), ((107, 11), (147, 11)), ((147, 11), (147, 18)), ((147, 18), (162, 18)), ((162, 18), (162, 24)), ((162, 24), (169, 24))] """ starting_point = (0, 0) result = [] for part in wire: end_point = get_end_point(starting_point, part) result.append((starting_point, end_point)) starting_point = end_point return result
20,786
def getcutscheckerboard(rho): """ :param rho: :return: cell centers and values along horizontal, vertical, diag cut """ ny, nx = rho.shape assert nx == ny n = ny horizontal = rho[6 * n // 7, :] vertical = rho[:, n // 7] if np.abs(horizontal[0]) < 1e-15: horizontal = horizontal[2:-2] if np.abs(vertical[0]) < 1e-15: vertical = vertical[2:-2] diag = [rho[i, i] for i in range(n)] if np.abs(diag[0]) < 1e-15: diag = diag[2:-2] edges = np.linspace(0, 7, len(horizontal) + 1) centers = (edges[1:] + edges[:-1]) / 2 return centers, horizontal, vertical, diag
20,787
def errorString(node, error): """ Format error messages for node errors returned by checkLinkoStructure. inputs: node - the node for the error. error - a (backset, foreset) tuple, where backset is the set of missing backlinks and foreset is the set of missing forelinks. returns: string string - the error string message. """ back, fore = error[0], error[1] if len(back) == 0: back = 'None' if len(fore) == 0: fore = 'None' return ('Node {0}: missing backlinks {1},' ' missing forelinks {2}').format(node, back, fore)
20,788
def test_2(): """ query : compare average sales of A and B in date range 2000 to 2010 here the oversight is not detected as the 2 companies don't differ in experience time """ table = pandas.DataFrame() table['Company'] = pandas.Series(['A', 'B', 'A', 'B', 'A', 'B', 'A', 'B']) table['year'] = pandas.Series(['2001', '2001', '2002', '2002', '2006', '2006', '2007', '2007']) table['sales'] = pandas.Series([1, 34, 23, 42, 23, 1324, 34, 134]) print(table) suggestion = calendar_vs_experience_time.calendar_vs_experience_time(table, 'sales', ['Company', 'year', 'sales'], 'Company', 'A', 'B', SummaryOperators.MEAN, date_column_name='year', date_range=['2000-01-01', '2010-01-01'], date_format='%Y') print(suggestion) expected_suggestion = 'None' assert(str(suggestion) == expected_suggestion)
20,789
def deep_update(target, source): """ Deep merge two dicts """ if isinstance(source, dict): for key, item in source.items(): if key in target: target[key] = deep_update(target[key], item) else: target[key] = source[key] return target
20,790
def verify_iou_value(issued_currency_value: str) -> None: """ Validates the format of an issued currency amount value. Raises if value is invalid. Args: issued_currency_value: A string representing the "value" field of an issued currency amount. Returns: None, but raises if issued_currency_value is not valid. Raises: XRPLBinaryCodecException: If issued_currency_value is invalid. """ decimal_value = Decimal(issued_currency_value) if decimal_value.is_zero(): return exponent = decimal_value.as_tuple().exponent if ( (_calculate_precision(issued_currency_value) > _MAX_IOU_PRECISION) or (exponent > _MAX_IOU_EXPONENT) or (exponent < _MIN_IOU_EXPONENT) ): raise XRPLBinaryCodecException( "Decimal precision out of range for issued currency value." ) _verify_no_decimal(decimal_value)
20,791
def md5_hash_file(path): """ Return a md5 hashdigest for a file or None if path could not be read. """ hasher = hashlib.md5() try: with open(path, 'rb') as afile: buf = afile.read() hasher.update(buf) return hasher.hexdigest() except IOError: # This may happen if path has been deleted return None
20,792
def Constant(value): """ Produce an object suitable for use as a source in the 'connect' function that evaluates to the given 'value' :param value: Constant value to provide to a connected target :return: Output instance port of an instance of a Block that produces the given constant when evaluated """ global _constantCounter blockName = "Constant" + str(_constantCounter) constBlock = defineBlock(blockName) defineOutputs(constBlock, "out") defineBlockOutputBehaviour(constBlock.out, lambda: value) setMetaData(constBlock.out, "Sensation-Producing", False) inst = createInstance(blockName, "constant" + str(_constantCounter)) _constantCounter += 1 return inst.out
20,793
def _Backward3a_T_Ps(P, s): """Backward equation for region 3a, T=f(P,s) Parameters ---------- P : float Pressure [MPa] s : float Specific entropy [kJ/kgK] Returns ------- T : float Temperature [K] References ---------- IAPWS, Revised Supplementary Release on Backward Equations for the Functions T(p,h), v(p,h) and T(p,s), v(p,s) for Region 3 of the IAPWS Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam, http://www.iapws.org/relguide/Supp-Tv%28ph,ps%293-2014.pdf, Eq 6 Examples -------- >>> _Backward3a_T_Ps(20,3.8) 628.2959869 >>> _Backward3a_T_Ps(100,4) 705.6880237 """ I = [-12, -12, -10, -10, -10, -10, -8, -8, -8, -8, -6, -6, -6, -5, -5, -5, -4, -4, -4, -2, -2, -1, -1, 0, 0, 0, 1, 2, 2, 3, 8, 8, 10] J = [28, 32, 4, 10, 12, 14, 5, 7, 8, 28, 2, 6, 32, 0, 14, 32, 6, 10, 36, 1, 4, 1, 6, 0, 1, 4, 0, 0, 3, 2, 0, 1, 2] n = [0.150042008263875e10, -0.159397258480424e12, 0.502181140217975e-3, -0.672057767855466e2, 0.145058545404456e4, -0.823889534888890e4, -0.154852214233853, 0.112305046746695e2, -0.297000213482822e2, 0.438565132635495e11, 0.137837838635464e-2, -0.297478527157462e1, 0.971777947349413e13, -0.571527767052398e-4, 0.288307949778420e5, -0.744428289262703e14, 0.128017324848921e2, -0.368275545889071e3, 0.664768904779177e16, 0.449359251958880e-1, -0.422897836099655e1, -0.240614376434179, -0.474341365254924e1, 0.724093999126110, 0.923874349695897, 0.399043655281015e1, 0.384066651868009e-1, -0.359344365571848e-2, -0.735196448821653, 0.188367048396131, 0.141064266818704e-3, -0.257418501496337e-2, 0.123220024851555e-2] Pr = P/100 sigma = s/4.4 suma = 0 for i, j, ni in zip(I, J, n): suma += ni * (Pr+0.240)**i * (sigma-0.703)**j return 760*suma
20,794
def calculate_width_and_height(url_parts, options): """Appends width and height information to url""" width = options.get("width", 0) has_width = width height = options.get("height", 0) has_height = height flip = options.get("flip", False) flop = options.get("flop", False) if flip: width = width * -1 if flop: height = height * -1 if not has_width and not has_height: if flip: width = "-0" if flop: height = "-0" if width or height: url_parts.append("%sx%s" % (width, height))
20,795
def db_handler(args): """db_handler.""" if args.type == 'create': if args.db is None: db.init_db() return if not _setup_db(args.db): return if args.type == 'status': current_rev = db_revision.current_db_revision() print('current_rev', current_rev) if args.type == 'upgrade': db.upgrade() if args.type == 'revision': db_revision.new_revision() if args.type == 'drop': if args.db is not None: db.downgrade() db.remove_db()
20,796
def expandvars(s): """Expand environment variables of form %var%. Unknown variables are left unchanged. """ global _env_rx if '%' not in s: return s if _env_rx is None: import re _env_rx = re.compile(r'%([^|<>=^%]+)%') return _env_rx.sub(_substenv, s)
20,797
def main(): """ Parse command line parameters """ parser = argparse.ArgumentParser(add_help=False, description="Don't worry loves, cavalry's here!") subparsers = parser.add_subparsers(dest='command') parser_config = subparsers.add_parser('config', description='Configure general authentication.') parser_config.add_argument('-cs', '--clientsecret', help='path to Google Drive client secret json file') parser_config.add_argument('-ac', '--authcode', help='Google Drive OAuth2 authorization code') parser_config.add_argument('-a', '--appname', help='name of Google Drive app to register (custom)') parser_config.add_argument('-t', '--temp', default=tempfile.gettempdir(), help='save temporary files to this path') parser_init = subparsers.add_parser('init', description='Initializes a directory to be pushed to remote.') parser_init.add_argument('-g', '--gnupg', help='GnuPG key rings directory path') parser_init.add_argument('-i', '--keyid', help='keypair ID to use to encrypt directory files') parser_init.add_argument('-n', '--enable-names', help='do not encrypt file names', action='store_true', default=False) parser_push = subparsers.add_parser('push', description='Pushes all unchanged files in the current directory.') parser_push.add_argument('-f', '--force', action='store_true', help='skips file change verification') parser_pull = subparsers.add_parser('pull', description='Pulls all unchanged files in the current directory') parser_pull.add_argument('-f', '--force', action='store_true', help='skips file change verification') args = parser.parse_args() command = args.command if (command not in COMMANDS): parser.print_help() sys.exit(-1) if (command == 'config'): cmd_config(args) elif (command == 'init'): cmd_init(args) elif (command == 'push'): cmd_push(args) elif (command == 'pull'): cmd_pull(args)
20,798
def run_queries(q, file): """Run Twitter username queires against Twitter API. Args: q (tuple): A tuple of query strings. file (str): A str filepath to a save results. """ data = csv(cd(file)) # modified to point to Data dir. seen = set(col(0, data)) for q in reversed(q): for t in twitter(q): if t.id not in seen: data.append(( t.id, t.author, t.language, t.text, t.date, t.likes, )) seen.add(t.id) data.save()
20,799